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How To Use This Book 

By purchasing this book, Technical Applications, you've shown that you're 
interested in getting the most from your Hewlett-Packard calculator. In 
the pages that follow, we'll help you achieve that goal. 

This book divided into two chapters. In Chapter 1, advanced techniques 
for writing Solver equations are discussed. In Chapter 2, a number of sci­
ence and engineering-related applications and examples are presented. It 
is not necessary to read the material on advanced Solver equation-writing 
before using an application. Simply turn to the appropriate topic in 
Chapter 2 and enter the equation you need. Likewise, it is not necessary 
to understand the specific applications if you only wish to learn the 
advanced Solver techniques described in Chapter 1. How you use the 
book is best determined by your particular needs and wants. However, 
before you try the examples in this book, you should be familiar with cer­
tain concepts from the owner's manual: 

• The basics of your calculator - how to write Solver equations and 
assign values to variables, how to solve for an unknown variable in an 
equation, how to recall Solver variables, how to move from menu to 
menu, and how to enter and edit lists . 

• Entering numbers and using the built-in functions (LN, %, TAN, 
ABS, etc.) 

This portion of the book contains important information on the examples 
in this book and provides a quick review of selected calculator operations. 
While this book presents basic equations and theory for each application 
topic, it should not be considered a text on these subjects. For more 
information on the topics encountered, you can consult the references 
listed at the end of each topic or any good textbook. 
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The examples in this book demonstrate approaches to solving certain 
problems, but by no means exhaust the many possible ways to obtain an 
answer. 

Please take a moment to familiarize yourself with the formats used in this 
book. 

Keys and Menu Selection 

A box represents a key on the calculator keyboard: 

The shift key is represented by the symbol _. Thus, shifted keys appear 
as: 

-~ _I CLEAR DATA I 
_IMODESI 
_ISHOwl 

A menu label is represented like this: 

~ 
=STDEV= 

=:DOT=: 

(found in the I TVM I menu) 
(found in the I STAT I menu) 
(a user-created variable in a Solver equation) 

6 How To Use This Book 

Some menus contain sub-menus accessed by pressing the appropriate 
menu key (these are listed in the owner's manual). Also, some menus 
include more labels than can be displayed above the six redefinable menu 
keys. Press = MORE = to see the other menu options. 

Display Formats and Numeric Input 

The examples in this book will use a display format of 4 decimal places 
(FIX 4) except where noted. If your display is set such that the numeric 
displays do not match exactly, you can modify your display format with the 
I MODES I menu on the HP-27S or the I DISP I menu on the HP-19B, and the 
~ FIX ~ key within these menus. If you wish to see the full 12-digit preci­
sion of a number regardless of the display format, simply press _I SHOW I ; 
the full precision number is displayed as long as you hold down the I SHOW I 

key. 

Negative numbers are created using the [ill key: 

Keys: 

39.087[illB 

2.9 _ [[] 30 [ill B 

Display: 

-39.0870 

-2.9000E30 

Negative exponents of ten are created using the [J key: 

Keys: Display: 

1.408 _ [[] [J 27 B 1. 4080E-27 

2.55 - [[] [J 15 [ill B -2.S500E-1S 
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Entering Equations 

When entering equations on your calculator, follow the instructions in the 
Solver chapter of your owner's manual, and in "Advanced Solver Tech­
niques." Here are hints to help you in common error situations: 

• If the calculator displays INVALID EQUATION when you press 
=' CALC =' , the calculator does not understand something in the equa­
tion. When the equation returns to the display, the cursor blinks 
where the calculator detected the error. Check the equation in the 
display against the equation in the book. Make sure the parentheses 
match and the operators are where they should be. If the equation 
includes a logical operator ("AND" or "OR"), make certain that you 
include a space on both sides of the operator. 

• If the calculator accepts the equation but your answer does not match 
the example, check the values stored in the variables by recalling them 
(press []Qh] then the menu key). If the values are correct, return to 
the I SOLVE I menu by pressing I EXIT I and check the equation against the 
one in this book for accuracy. When you find an error, edit the equa­
tion and then press =' CALC =' to display the menu of variables again. 

• If the calculator displays INSUFFICIENT MEMORY when you 
press I INPUT lor = CALC = , you must clear portions of memory before 
continuing. Refer to "Managing Calculator Memory" in appendix A of 
your owner's manual and to the conclusion of "Advanced Solver Tech­
niques" in this book for additional information. 

The equations in this book use variable names that are intended to 
remind you of what to store. Feel free to change them to something more 
meaningful to you. 

Our thanks to Steven 1. Sabin of Oregon State University for developing the 
problems and Solver equations in this book. 

8 How To Use This Book 
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Advanced Solver Techniques 

To help you utilize the full power and flexibility of your calculator, several 
advanced techniques and two new and powerful functions, LET and GET, 
are introduced in this chapter. As was mentioned in "How To Use This 
Book," it is not necessary to read this chapter if you are only interested in 
using a specific application. Simply turn to the appropriate topic in 
Chapter 2 and key in the equation. However, the Solver equations used in 
the applications incorporate many of the advanced techniques presented 
here. Thus, if you want to understand what you are keying in, read this 
chapter first. 

1: Advanced Solver Techniques 9 



Using LET and GET 

Function Descriptions 

These two functions are not covered in your owner's manual. However, 
you'll find them useful in a variety of applications. LET assigns the value 
of an algebraic expression (or number) to a specific variable. GET recalls 
the contents of a specific variable. The format for these two functions is: 

Function: 

L ( variable name : algebraic 
expression) 

G (variable name) 

Description: 

Evaluates the algebraic expression, 
stores the result in the specified vari­
able, and also returns that result as 
the value of the LET function. 

Returns the contents of the specified 
variable. 

Like E and IF, LET and GET are for use only in Solver equations. Thus, 
you will not find these functions on a calculator key or in any menu. * To 
use LET and GET in a Solver equation, simply type the letters G or L and 
include the parentheses around the arguments. If a variable appears only 
as the first argument of a LET function and/or only as the argument of a 
GET function, it will not appear in the menu of variables. 

There are many ways in which LET and GET enhance the capabilities of 
your Solver, and we will describe each of these in the pages that follow. 
First, a few examples will help introduce you to these two powerful func­
tions. 

* The GET here has no relation to GET in the I TEXT I , I SUM I , and I CFLO I menus of the 
HP-19B, or to GET in the [STAT I menu of the HP-27S. 

10 1: Using LET and GET 

Example 1. The Solver equation A=L(D: B+C) +SIN (D) stores 
the sum of B and C in D , and adds this result to the sine of D when cal­
culatingA. The LET function causes the value of D used in the argu­
ment of the sine function to be B + C. Notice that when this equation is 
"CALC"ed, A, B , C, and D all appear in the menu, but it is not neces­
sary to explicitly enter a value for D since the LET function does so 
automatically. 

Example2.TheSolverequation A=L(D:B+C)+SIN(G(D» is 
functionally identical to the last example when calculating a result for A , 
but here the GET function is used in computing the sine of D. When this 
equation is "CALC"ed, D does not appear in the menu. This is because D 
only appears as the first argument of the LET function and as the argu­
ment of the GET function in this Solver equation. In the last example, D 
was the argument of the SIN function (an appearance outside the first 
argument of LET or GET), and thus did appear in the menu. 

Intermediate Variables 

Normally, whenever you use a variable in a Solver equation, it will appear 
in the menu. When variables are used in this manner they are referred to 
as Jonnal variables or simply variables when no distinction is necessary. 
However, there are two cases in which a variable will not appear in the 
menu: 

1. The only occurrence of a variable is as the counter variable of the E 
function. 

2. The only occurrence of a variable is as the first argument of LET 
and/or as the argument of GET. 

The second case was illustrated in Example 2 for the variable D. When a 
variable is used only as the first argument of LET and as the argument of 
GET it is given the special name intennediate variable. This is because 
intermediate variables hold intermediate results that can be used 
repeatedly in an equation, even though such variables do not appear in the 
menu. The user cannot directly assign a. value to an intermediate variable. 
Keeping an intermediate variable from appearing in the menu avoids con­
fusion since the menu prompts only for relevant variables. 

1: Using LET and GET 11 



Example 3. The equation a = b + c - In( b + c) + x b + C can be imple­
mented by the Solver equation 

A=L(D:B+C)-LN(G(D» +XAG(D). 

Here, D serves as an intermediate variable and will not show up in the 
menu. The use of D in this manner avoids having to type B+C more 
than once in the equation and keeps D from appearing in the menu, a 
source of possible confusion since there is no variable d in the original 
equation. 

Reducing Keystrokes With LET 

In some instances you may wish to use the LET function to reduce 
keystrokes (as shown in the previous examples), yet still view the value of 
the variable used with the LET function. This is accomplished by simply 
including the variable formally one or more times in your equation, thus 
causing it to appear in the menu of variables. An example will help clarify 
this. 

Example 4. The Solver equation from Example 3 can be changed 
slightly to A=L(D: B+C) -LN (D) +XAD. Notice that the GET func­
tion has simply been removed and now D appears formally two times; as 
the argument of ln, and as the powe~ to which x is raised. We have still 
employed LET to reduce redundant keystrokes (typing B+C more than 
once), but now the sum b + c can be viewed by recalling D . 

A practical application of these last two techniques is in the calculation of 
planetary orbits as shown in the next example. 

12 1: Using LET and GET 
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Example 5: Orbits of Planets. The equation in polar coordinates for 
a planet's orbit about the sun is given by: 

where: 

r= pe 
1+ecos8 

ro vo 2 

e=---l. 
GM 

Here, r is the orbital radius, 8 is the angle swept out by the planet as it 
orbits, p is the distance between the focus and directrix (the orbit i~ 
always one of the conic sections), ro is the planet's orbital radius at its 
closest approach to the sun, Vo is its speed at the point of closest 
approach, G is the universal gravitational constant, and M is the mass of 
the sun. 

To simplify the orbital equation, we have used the variable e. You are 
probably familiar with this method of notation for complicated expres­
sions. In an analogous manner, repetitive keystrokes can be eliminated in 
a Solver equation by using the variable E. The following Solver equation 
for the planet's orbit uses ANG to represent 8. 

R=PxL(E:ROxSQ(VO)+(GXM)-l)+(l+ExCOS(ANG» 

Here we have used the LET function to assign a value to E and thus elim­
inate the need to type the rather long expression for E again later in the 
equation. Since the variable e in the original equations has special 
significance (the eccentricity of orbit), E is not used as an intermediate 
variable; instead, it appears formally as a multiplier of cos 8 and thus 
appears in the menu of variables. If it were not necessary to view E , the 
Solver equation 

R=PxL(E:ROxSQ(VO)+(GXM)-l)+(l+G(E)xCOS(ANG» 

could be used. Notice that the only change made from the previous 
Solver equation is to employ the GET function with E. We have still used 
LET to reduce keystrokes by assigning a value to E , and the equation is 
functionally identical to the previous Solver equation when R is solved for. 
However, now E does not appear in the menu. In this case, E is used as 
an intermediate variable. 

1: Using LET and GET 13 



How LET and GET Change an Equation 

In many cases, when an unknown variable appears only once as a formal 
variable, the Solver algebraically rearranges the equation to isolate a direct 
solution. However, if an unknown variable appears formally more than 
once, the direct solution method always fails and the Solver attempts to 
locate a solution iteratively. When a variable appears as the first argu­
ment of LET or as the argument of GET, it is not considered by the 
Solver in determining whether a direct solution can be found. Thus, a 
variable may occur many times in an equation, yet only once formally. In 
these instances, a direct solution may be found, but it will not normally be 
"correct" mathematically. The next example will clarify this. 

Example 6. The Solver equation A=2xA+ B is solved iteratively for A 
(since A appears twice formally) such thatA = -B. On the other hand, 
the Solver equation A=2xG (A) +B is treated much differently. When 
A is solved for, a direct solution is found (A appears formally only once). 
The Solver multiplies the current contents of A by 2, adds the contents of 
B , and stores this result as the new value of A . 

Using New and Old Values 

As shown in "How LET and GET Change and Equation," the Solver will 
often return a solution that is not "correct" in the strict mathematical 
sense when LET and GET occur in an equation. Actually, this result is 
quite useful and allows LET and GET to be used to assign new values to 
variables using the values they currently contain. This technique can be 
used in recursive problems; i.e., problems in which the next value of the 
output is dependent on the old output. 

Whenever you encounter an equation in which the unknown variable 
appears as both a formal variable and as the argument of a GET function, 
the GET function will use the current value of the variable (the value of 
the variable when the calculation is initiated). 

14 1: Using LET and GET 
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A helpful aid in understanding this is to think of the variable as behaving 
in two different ways: 

1. Where it appears formally, the variable is used as it would normally 
be in finding a solution to an equation; i.e., it can be algebraically 
rearranged to find a direct solution or used to find an iterative solu­
tion. 

2. As the argument of a GET function, the variable is treated as 
though it were a constant, not an unknown. The value used is the 
current value as previously described. 

In the LET function, the Solver does not check to see if a variable appears 
on both sides of the colon. Instead, it simply evaluates the algebraic 
expression on the right side of the colon using the current values of all 
variables. This result is assigned as the new value of the variable on the 
left side of the colon. 

Some specific examples will demonstrate these features. 

Example 7. Consider the Solver equation A=G (A) +1. SinceA only 
appears once formally, the direct Solver is used. This equation recalls the 
current value of A (by the GET function) then adds 1. This result is then 
assigned as the new value of A. Thus, this simple equation increments A 
by 1 each time A is calculated. 

Example 8. Like the last example, the Solver equation 
Q= L (A: A + 1 ) also increments A by 1. In this case, Q is calculated 
instead of A . As mentioned above, the right side of the colon in the LET 
argument (A+1) is evaluated using the current value of A and this result 
is assigned as the new value of A . Note thatA appears on the right side 
of the colon in the LET argument and therefore appears in the menu 
when the equation is "CALC"ed. 

The next example shows a practical use of these techniques. 

1: Using LET and GET 15 



Example 9: Taylor Series Expansion. The Taylor Series expansion 
for e is 

00 1 
e=~-. ~., 

;=oJ· 

How many terms are needed in the series to express e accurately to 4 
decimal places? 

The Solver equation E=G (E) + 1 -;-FACT ( L (J : J + 1» will accom-
plish this. The GET used with E causes E to appear only once formally, 
and thus the direct method is used when E is solved for. The GET tech­
nique of Example 7 is used to add a new term (1/i!) to the current value 
of E each time E is calculated. This new result is then returned as the 
"solution" for E . 

Using the LET technique of Example 8, the equation increments J by 1 
each time E is calculated. When the equation is "CALC"ed, E and J 
appear in the menu of variables. You should set E initially by storing a 
zero in it, since the sum should begin by GETting a zero value for E . 
From the defining equation for the series expansion of e , the sum should 
start at i = O. J in the Solver equation is set to -1 initially so that the 
value of J used by the factorial function is zero the first time E is calcu­
lated. 

To view the full precision of the number as the Solver adds each term in 
the series, select the display format "ALL". You will find that E must be 
calculated 8 times to express e accurately to 4 decimal places. Thus, 8 
terms U = 0 to 7) are needed to achieve the specified accuracy. 

When Not to Use LET and GET 

There are times when you must iterate to find the solution to an equation. 
The previous examples have shown how LET and GET change the wayan 
equation is evaluated when their arguments are unknowns. Sometimes 
this can result in a direct solution that is not the desired solution. 

16 1: Using LET and GET 

Consider the equationx = -ez • This is a transcendental equation; i.e., it 
cannot be algebraically manipUlated to isolate a solution for x. Here it is 
necessary to iteratively find a solution. If you write the Solver equation 
X=-EXP ( G (X) ) with hopes that the Solver will somehow find a direct 
solution (since, formally, X only appears once), you are asking for a 
mathematical impossibility. The Solver equation above takes the base e, 
raises it to the X th power based on an initial value of X, and assigns the 
negative of this result as the final value of X . 

Arranging Menu Variables 

At times you may wish to arrange your equation variables in a specific 
order in the menu. There are two ways to do this. 

LET and GET Method. Recall that a variable only appears in a menu 
when it appears formally in an equation. When you press == CALC == after 
entering an equation, the Solver scans from left to right in your equation 
and assigns variables to the menu in the order in which they are encoun­
tered. A variable is not considered by the Solver in menu assignments 
under the following conditions: 

1. When a variable is used as a counter variable in the E function. 

2. When a variable is used as the first argument of LET. 

3. When a variable is used as the argument of GET. 

This technique is shown in the example below. 

Example 10. The equation a =In (bd)+e c +d2 can have its variables 
arranged alphabetically using the Solver equation A= LN ( BxG ( D) ) 
+ EXP ( C) +SQ ( D). Since D first occurs as the argument of a GET 
function, it is not assigned to the menu until it is encountered as a formal 
variable in the term SQ (D) . 

1: Using LET and GET 17 



Note 

This technique of arranging menu variables is most useful 
when certain variables will not be unknowns. If the Solver 
equation of Example 10 is used to calculate D, the GET 
function causes new and old values of D to be used rather 

than a true algebraic solution. If the equation always calculates variables 
other than D , it is perfectly acceptable. 

Multiplication by 0 Method. Unlike the LET and GET method, mul­
tiplication by zero does not cause the Solver to use new and old values of a 
variable. Instead, the true mathematical integrity of the equation is 
preserved. The next example shows how. 

Example 11. The Solver equation of Example 10 can be rewritten as 
A=LN ( (B+OxC) xD) +EXP (C) +SQ (D). This will arrange the 
menu variables alphabetically and still allow all variables to be calculated. 
Notice that as the Solver scans this equation, it encounters the formal 
variables in the order A , B , C, and D . The multiplication by zero adds 
nothing to the argument of the natural logarithm function and its sole pur­
pose is to arrange the variables alphabetically in the menu. 

Note 

Multiplication by zero causes variables that appear only 
once in a defining equation to appear more than once in a 
Solver equation. If these variables are unknown, the Solver 
will iteratively locate a solution since they appear formally 

more than once. For example, C appears formally twice in the Solver 
equation above even though it appears only once in the defining equation 
of Example 10. Thus, when C is calculated, the Solver will locate a solu­
tion iteratively. 

18 1: Using LET and GET 

~ 

~ 

~ Solving for More Than One Variable at a Time 

In the last example, multiplication by zero was used to arrange the menu 
of variables in a Solver equation. Multiplication by zero has another very 
powerful use in Solver equations ... assigning a result to more than one vari­
able when a single unknown is calculated. This is done by employing the 
LET function and multiplication by zero. An example will illustrate this 
technique. 

Example 12: Nautical Depth Conversions. Nautical depths are 
often measured infathoms. Since most people do not "think" in terms of 
fathoms, conversion to more customary units is desirable. To convert 
from fathoms to feet, multiply by 6.000012; to convert from fathoms to 
meters multiply by 1.828804. A Solver equation that converts fathoms to 
feet and meters at the same time is 

FT=FATHx6.000012+0xL(M:FATHxl.828804)+OxM. 

Here we assume that fathoms (FATH) is the known quantity, and feet 
(FT) and meters (M) are unknown. Notice that whenFT is calculated, 
the Solver multiplies FATH by the proper conversion factor. Then, the 
LET function is multiplied by zero so that its value will not affect the value 
of FT. The LET function will assign the proper value to M. We have 
also included the term OxM to cause M to appear formally and hence, in 
the menu of variables. When FT is calculated, the Solver returns a 
proper result and stores the number of meters in M. To see M, you must 
recall it using I RCL I ~ M ~. 

Note 

This technique of solving for more than one unknown is 
most useful when certain variables will not be unknowns. 
The Solver equation of Example 12 is intended to be used 
only when F ATH is known and FT and M are to be found. 

Solving for M will result in the message SOLUTION NOT FOUND 
since the direct Solver will attempt to isolate M and a division by zero 
error occurs. In general, this technique should not be employed when all 
variables in an equation will be calculated. 

1: Using LET and GET 19 



The next example combines several of the techniques you have learned so 
far to solve a practical problem. 

Example 13: Complex Multiplication. To multiply two complex 
numbers x =a +ib andy =e +id, use the formula 

xy = (ae - bd) + i (be + ad) . 

A Solver equation can be written that calculates the product, stores the 
real part of the product as a and the imaginary part as b, and leaves e 
and d unchanged. This makes the equation useful for chain calculations. 

Equation: 

OxL(R:AxG(C)-BxG(D» 

+OxL (B: BxC+AxD) 

20 1: Using LET and GET 

Comments: 

Stores the real part of the product xy 
in the intermediate variable R. The 
intermediate variable R is employed 
since we do not want to store the 
real part ofthe product inA yet. 
Before A can be assigned a new 
value, the current value of A is 
needed to calculate the imaginary 
part of the product. Notice that 
GET is used with C and D so that 
the menu of variables will be in the 
order A, B, C, D, andXY. This can 
be verified by looking at the equation 
as a whole and noting the order in 
which the values appear formally 
when scanning from left to right. 

Stores the imaginary part of the pro­
ductxy inB. 

+L(A:G(R»=XY Stores the real part ofthe product xy 
in A since the original value of A is 
no longer needed. GET is used with 
R since it is an intermediate variable 
and is not to appear in the menu. 
Notice that all the LET functions 
except this one are multiplied by 
zero. Thus, whenXY is solved for, 
the Solver uses a direct solution 
method (XY appears formally only 
once) and effectively reduces the 
equation to XY = R. When XY is 
solved for, the real part of the pro­
duct is displayed and the real and 
imaginary parts of the product are 
stored inA and B respectively. 
Notice that C and D are left 
unchanged. 

Since the real part of the product is returned as the value of XY, this elim­
inates having to press I RCL I ~ A ~ after every calculation to see the real 
part of the product. To see the imaginary part, press I RCL I ~ B ~. 

An application with a several complex number. funct.ions .has bee~ 
developed in Chapter 2 of this book using the Ideas m this equatIon. 

Evaluation Order 

As your Solver equations become increasin~y more sophisticate.d, you 
may find that using LET and GET takes a bIt of forethought to msure 
that the Solver assigns and recalls values in the order you intended. When 
calculating an unknown, your calculator effectively rearranges the equa­
tion and either isolates the variable in question and solves for it directly, 
or uses an iterative process. During rearrangement, the simple left-to­
right order of evaluation may be disturbed. 
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For example, when G (X) +Y=OxL (X: 4+X) +4 is solved for Y, it is 
not obvious if the GET or LET is performed first. Actually, the Solver 
performs the LET before the GET in this equation. 

Most ambiguities in using LET and GET can be avoided by observing the 
following guidelines: 

1. Place all LET and GET functions on the same side of an equal sign. 

2. Try to group the variable(s) you are calculating on the other side of 
the equals sign. 

When these guidelines are followed, you can assume that the simple left­
to-right evaluation process occurs. 

22 1: Using LET and GET 

Forcing Iteration 

Although the idea of forcing iteration was introduced in your owner's 
manual, it bears repeating here. An equation such as 1 = sinx can be 
solved directly for x , but there are an infinite number of solutions to this 
equation given by x = ± (2n + 1)-ni2 for n =0,1,2, .... The Solver will find 
the root corresponding to the principle value of the sine function. 

In general, the trigonometric functions operate using the principle value. 
If you are interested in a root that is not a principle value, you can re-write 
the equation in a mathematically equivalent form that forces an iterative 
solution. This allows you to enter initial guesses instructing the Solver to 
look for a root between the two bounds. 

The equation above can be entered as the Solver equation 
l=OxX+SIN (X). This forces an iterative search since X appears for­
mally twice. 
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More on Using the E Function 

Definite and Indefinite Loops 

A loop is a technique used by computer programmers to repeat a certain 
section of instructions a number of times before continuing to other 
instructions. Often, the loop is executed a fixed number of times (a 
definite loop), while other times the loop repeats indefinitely until a cer­
tain condition is met. The second type of loop is referred to as an 
indefinite loop. 

No 

A=O 
N=l 

N=Nd 

Yes 

Definite Loop 
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%=%+3 

No 

Yes 

Indefinite Loop 

The definite loop illustrated in the figure will generate the sum of the 
squares of the integers 1 through 10. Notice thatA is 0 initially, the loop 
counter N is 1 initially, and the loop counter is incremented by 1 with 
each pass through the loop. The definite loop is performed afixed 
number of times (10 in this case). On the other hand, the indefinite loop 
repeats indefinitely until the desired condition (X ~100) is met. 

By using the E function you can effectively include definite loops in your 
equations. In fact, the E function was designed to operate as a definite 
loop. Indefinite loops may also arise. While you are not able to construct 
a true indefinite loop for reasons that are explained below, you can 
effectively simulate one. 

Simulating an Indefinite Loop 

The E function is defined as follows: 

E( cv:c1:c2:s:alg) 

where the algebraic expression (alg) is evaluated and summed for values 
of the counter variable ( cv). The counter variable starts with value c1 
and is incremented in steps of s to a final value of c2. 

When the E function is first encountered in an equation, the Solver stores 
the step size s and the counter variable's initial and final values c1 and c2 
in a special location in memory not accessible to the user. Any attempt to 
alter the values of s , cv , c 1, or c2 using the LET function causes the 
Solver to create separate variables of the same name. Since the value of 
these variables cannot be changed, a loop cannot be prematurely exited. 
This is precisely what makes construction of a true indefinite loop impos­
sible. However, an indefinite loop can be simulated as shown in the next 
example. 
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Example 14: An Indefinite Loop. To simulate the indefinite loop 
shown in the previous figure, the E function can be performed until the 
desired condition (X gOO) is met. Then the loop can simply add zeros to 
this result on subsequent passes until the final value of the counter vari­
able is reached. To avoid having too few or far too many loop repetitions, 
a way is needed to determine in advance the maximum number of loops 
necessary to meet the desired condition and to assign this value to c2. 

For the example at hand, we must find the number of times n that X 
must be divided by 3. This is given by the equation 

Xirrilial < 100. 
3n -

If this is solved for n , we obtain the maximum number of loops needed to 
obtain the desired result (X gOO). Rearranging and taking the logarithms 
of both sides we have 

~rriIial 3n In(Xirrilial) ln3 --= --+ --=n . 
100 100 

Solving for n , we obtain the final result 

In( Xirrilial ) 
100 n =----

ln3 

This value of n is the value for c2 that guarantees sufficient passes 
through the loop. The Solver equation is shown below. 

Equation: 

A= 

E(N:1: 

IF(X<=300:1: 
LN(X+100)+LN(3)+1) : 

Comments: 

The variable we will calculate. 

The counter variable is N and is set 
initially to 1. 

This is the final value of the counter 
variable. the conditional check 
made by the I F insures that at 
least 1 loop will be performed (if X 
is less than 300, n is less than 1). In 
the event that X > 300, the result for 

26 1: More on Using the E Function 

1: 

IF(X<=100 AND N<>l: 
O:OxL(X:X+3») 

+X 

n derived above is used with a small 
change: here we have added a 1 to 
the result. If this had not been done, 
the loop would only be performed 
n - 1 times instead of n times. 

This is the step value; i.e., N is incre­
mented by 1 each time the loop is 
repeated. 

The body of the loop. If X is less 
than or equal to 100 and it is not the 
first pass through the loop (N f-1), a 
zero is added to the loop and X 
remains unchanged. If X is greater 
than 100 or N = 1 (first pass), the 
current value of X is divided by 3 
and this result is assigned as the new 
value of X. Notice that the LET 
function is multiplied by zero causing 
the E function to have a value of 
zero. The 3 dosing parentheses are 
needed to complete the LET func­
tion, the IF function, and the E func­
tion respectively. 

This term simply adds the final value 
of X to the value of the E function 
(which is zero as noted above) le~v­
ing the effective resultA =X. This 
final value of X is returned as the 
solution for A . 

A practical use of this Solver technique can be found ?t t~~ application 
"Greatest Common Divisor and Least Common Multiple m Chapter 2 of 
this book. 
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Using Trigonometric Functions 

Equations involving trigonometric functions often demand that the vari­
ables be in radians rather than degrees. For example, in a branch of 
mathematics known as Fourier Transforms, the sinc function arises and is 
defined as 

• SlDX 
SlDCX=-- . 

x 

Here,x must be in radians; however, it is often desirable to enter x in 
either radians or degrees. A convenient way to accomplish this is with a 
conditional check, illustrated in the following Solver equation: 

SINC=IF(SIN(30)=.5:SIN(X)+RAD(X) :SIN(X)+X). 

Notice that the conditional check is true only when the calculator is in 
degrees mode. Although you must be aware of what mode the calculator 
is in when entering numbers in this Solver equation, this technique elim­
inates the need to always set radians mode and the need for two separate 
Solver equations (one for degrees and one for radians). 

Note 

The sinc function has the indeterminate value % atx =0. 
Bya technique of calculus known as L'Hopital's Rule, the 
sinc function can be shown to approach 1 as x approaches O. 
Thus, the sinc function is defined as 1 atx =0. To give a 

correct result for x = 0, the above Solver equation can be modified slightly 
to: 

SINC=IF(X=O:1:IF(SIN(30)=.5:SIN(X)+RAD(X): 
SIN (X) +X) ). 
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In Conclusion 

Although it is unlikely that you will want to use every application in this 
book, they represent operations that arise frequently in science and 
engineering. For this reason, you will probably want to keep several 
applications in your calculator's memory. To give yourself plenty of room 
to store and "CALC" the application Solver equations, we recommend 
that you delete the example equations created in this chapter after you 
have worked through them. 

Recall from your owner's manual that Solver variables are "remembered" 
by the calculator for use in moving from one Solver equation to another. 
These variables consume a significant amount of calculator memory and 
should be periodically reviewed and deleted as described in your owner's 
manual. 
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30 1: Reference 

2 

Technical Application Equations 

The topics included in this chapter contain Solver equations used in many 
science and engineering-related applications. In most cases, the examples 
have been chosen to reflect typical uses for such equations in engineering 
practice. 
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Greatest Common Divisor and Least 
Common Multiple 

In some situations it is preferable to use fractions rather than decimals to 
express numbers (e.g. 1/17 rather than 0.05882). The techniques of 
adding, subtracting, multiplying, and dividing fractions require the ability 
to find greatest common divisors and least common multiples. Although 
simple in theory, this is often a tedious process. 

The basic algorithm used in finding the greatest common divisor for two 
integers a and b is as follows: 

1. If b = 0, GCD( a ,b ) +- a and execution stops. 

2. If b f 0, Z +- (a mod b ), a+- b , and b +- z. Return to 1. 

The least common multiple of a and b is found by 

ab 
LCM( a ,b ) = GCD( a , b ) 

The equation uses an indefinite loop similar to the one that was discussed 
in "More on Using the E Function" in Part 1 of this book. Of particular 
importance is a formula that gives the maximum number of divisions M 
needed to arrive at a zero remainder. This formula is given as: 

For n > a > b ~ 0, M;::; 2.078 In( n ) - .328 

The development of this result as well as the algorithm above is in the 
reference cited following the examples. 
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The GCD and LCM Equation 
Equation: 

LCM/GCD: 

OxL(Al:A)xL(Bl:B) 

+E(N:O:2.078x 
LN(A+l)-.328+1:1: 

IF(B=O:O:OxL(Z: 
MOD(A:B))+OxL(A:B) 
+ OxL ( B : G ( Z) ) ) ) 

+A 

=IF(S(GCD) :GCD: 
G(Al)xG(Bl)+LCM) 

Comments: 

Equation name. 

Stores initial values of a and b for 
use by LCM routine. 

Sets loop parameters, including the 
maximum number of divisions (loop 
repetitions) required. 

GCD algorithm. 

Value of GCD( a ,b ) after loop is 
completed. 

Generates the proper result (GCD 
or LCM) depending upon what you 
are solving for. 

Remarks on Using the Equation. 

• The larger of the two numbers must be entered asA. 

• The equation is designed to operate on positive integers only. 

• You may wish to set your display format to "ALL" to eliminate extra 
trailing zeros since only integers are used. 

• The equation assigns new values to A and B when calculating LCM or 
GCD; thus, the original values of A and B are lost. 

Example Problems 

Check to see that you have entered the equation described above prop­
erly, then press = CALC = to display the menu of variables. 
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Example 1. Find the greatest common divisor and least common multi­
ple of 406 and 266. 

Keys: 

-I MODES 1 
~ALL~· 

406~A~ 

266~ 

==GCD== 

406~A~ 

266~B~ 

==LCM== 

Display: 

A=406 

8=266 

GCD=14 

A=406 

8=266 

LCM=7,714 

Description: 

Set the display format 
to ALL to eliminate 
trailing zeros. 

Stores a. 

Stores b. 

Greatest common divi­
sor. 

Re-enters a . 

Re-enters b . 

Least common multiple. 

. . . 71 39 . 
Example 2: Addition of Fractions. Express - + -- as a smgle 

494 1026 
fraction. Make sure that your display is still set to "ALL" as shown in the 
previous example. 

Keys: 

1026~A~ 

494~B~ 

==LCM== 

Display: 

A=1026 

8=494 

LCM=13,338 

Description: 

Stores a. 

Stores b. 

Least common multiple 
(denominator of final 
fraction). 

• To set the display format to ALL on the HP-19B, press I DlSP I '" ALL", • 
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[±J 494 ~ 71 [±] 
I] I RCL I == LCM == 
[±J 1026~39 
~B~ 

I RCLI== LCM == 
[§!QJ~A~ 

==GCD== 

Thus, 

Reference 

8=2,424 

A=13,338 

GCD=6 

Assigns the numerator 
of final fraction i.e., 

13338 x 71 + (13338 x 39] 
494 1026' 

tob. 

Re-enters a . 

Greatest common divi­
sor. 

71 39 2424/6 404 -+--= =--. 
494 1026 13338/6 2223 

Knuth, Donald E., The Art of Computer Programming, Vol. 2, Addison­
Wesley, Reading, MA, 1969. 
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Numerical Integration 

Simpson's Rule is widely used to approximate definite integrals. This is 
due to its simplicity, good results, and ease of implementation. Simpson's 
Rule essentially divides the area to be integrated into an even number of 
subintervals and interpolates a quadratic polynomial to f (x) at the top of 
each subinterval. 

For integrals of the form 
b 

J f (x)dx 
a 

the approximation for 2n subintervals is given by: 

This approximation is valid if the integral meets the following conditions: 

1. The limits of integration are finite. 

2. For all a ~x ~ b, f (x) is both finite and defined. 

A judicious change of variables can sometimes transform an integral 
violating these conditions into an acceptable form. For example, consider 
the improper integral 

00 

The change of variable u = 1/x transforms this integral to 
1 

which is easily evaluated. 

Ju 62du /(1 +u 64
) 

o 
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.. ~ 
·I~ · ~ • • • • • • • • • • • • • • · ~ 
·1~ 
·I~ 
·I~ c ~ 
e a · ~ · ~ • • • .. .. 

Errors in approximating definite integrals with Simpson's Rule arise in 
two ways: 

1. Error due to the quadratic polynomial substituted for f (x) in each 
subinterval. 

2. Round-off error during calculations due to the limited precision of 
your calculator. 

While the second source of errors can never be completely eliminated, the 
first source of errors can generally be made arbitrarily small by choosing a 
large enough number of subintervals. While increasing the number of 
subintervals will usually improve the accuracy of the results, it also 
increases the computation time needed by the calculator. 

The Integration Equation 

Equation: 

INTEGRATE: 

I=L(H: (A-B)+(-2xN» 

+3~(R:O:2xN:l:0x 

L(X:A+RxG(H) ) 

+(SGN(R)+SGN(2xN-R)+ 
2XMOD(R:2»x(FX» 

Comments: 

Equation name. 

Interval size set to (b - a ) /2n . 

Evaluates f (x) at 2n + 1 evenly 
spaced points. 

Multiplies f (x ) by proper constant. 

Remarks on Using the Equation. 

• When integrating trigonometric equations, radians mode must be set. 

• The function being integrated should be written with x as the indepen­
dent variable. 

• The function being integrated is used in place of FX in the Solver 
equation above. 
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Example Problems 

In preparation for the first example, enter the equation described above 
using the following function in place of FX . 

f(x)=361r [(1_X2) (1+ 16x2 )]~ 
81 324-<k2 

The Solver equation should now look like this: 

INTEGRATE:I=L(H: (A-B)+(-2xN»+3 
xE(R:O:2xN:l:OxL(X:A+RxG(H»+(SGN(R) 
+SGN(2xN-R)+2XMOD(R:2»x(36xPlxSQRT(1 
-SQ(X)+81)xSQRT(1+(16xSQ(X»+(324-
4xSQ(X»» ) 

When your equation matches this one, press ~ CALC ~ to display the menu 
of variables. 

Example 1: Surface Area Computation. A new water tank is to be 
constructed by Erisman Industries. The tank has a circular cross-section 
when viewed from above. When viewed from the side its cross-section is 
that of an ellipse with height 18 ft. and width 36 ft. How many square feet 
of steel should Mr. Erisman plan on using for the tank? 

The shape of the tank can be generated by revolving the ellipse 

x2 v 2 
-+L-=1 
182 9'2 

about the y-axis. The surface area integral is then 
b 

A =21rf f (v )'J 1 +[f' (v )]2 dy. 
a 

Substituting the values for the problem at hand we obtain 
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• • • • • • • • · ~ · ~ · ~ · ~ · ~ · ~ · ~ · ~ · ~ e a 
e a 
C a · ~ · ~ · .. · ., .. ., 
.. iIt 

• ill • • • • 

361r j [[1- r) [1 + 16y2 )]~ dy. 
-9 81 324-4y 2 

Since the integrand becomes infinite at both endpoints (v = ± 9), we will 
adjust our limits to y = ± 8.999 to avoid an error condition when the Solver 
evaluates the equation. We will use 40 subintervals to approximate the 
integral. 

Keys: 

8.999 C±EJ ~ A ~ 

8.999~ B~ 

20~N~ 

Display: 

A= -8.9990 

B=8.9990 

N=20.0000 

I = 2,809.2376 

For comparison, the exact result is 

Description: 

Stores a. 

Stores b. 

Stores n (recall that the 
approximation is for 2n 
subintervals or 40 in this 
case). 

Approximate surface 
area in square feet. 

[
18 9 ( 18+v' 18

2 -9'2)] 21r(9)(18) - + . r::::;:;-::;, In =2809.68999 square feet 
9 V 182 -9'2 9 

The numerical estimate is accurate to within .016%. 

Example 2: Broadcast Signal Coverage. An AM radio station 
radiates a signal from its directional antenna array in the shape of the car­
dioid r = 30( 1 + cos () , where () is the radial angle around the antenna 
array. If r is measured in miles, how many square miles of coverage does 
this radio station have? 
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The equation for area in polar coordinates is: 

For this problem we have 

211' 

A = J450(1+cosB)2dB. 
o 

Enter this equation in the INTEGRATE equation by replacing B with x . 
It is not necessary to re-type the entire equation. Simply edit the existing 
INTEGRATE equation. Your equation should look like this: 

INTEGRATE:I=L(H: (A-B)+(-2xN»+3 
~(R:O:2xN:l:0xL(X:A+RxG(H»+(SGN(R) 
+SGN(2xN-R)+2XMOD(R:2»x(450xSQ(1+COS(X»» 

When your equation matches this one, press == CALC == to display the menu 
of variables. Evaluate the area using 40 subintervals. 

Keys: 

_I MODES I == MORE == 
~D/R~IEXITI· 

O~A~ 

Display: 

A=O.OOOO 

Description: 

Set radians mode. 

Stores a. 

• To set radians mode on the HP-19B, press: _I MODES 1 '" D/R '" 1 EXIT I. 
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; -.1 ~ .1 ~ .1 ~ 
• ~ • • • • • • • • • • • • • • • • • • • • • ~ • ~ • ~ 
-\ ~ 
·I~ 
·I~ 
·I~ 
·I~ 
ela 
·I~ 
·I~ 
.\~ 
-I;' 

• • • • • .. • • • ~ • • 

2~_~· Stores b. 

GJ~B~ 6=6.2832 

20~N~ N=20.0000 Storesn. 

~I~ 1=4,241.1501 Approximate area in 
square miles. 

The exact area is 61r (30/2)2=4241.15008234 square miles. 

Reference 

Kaplan, W.,Advanced Mathematics for Engineers, Addison-Wesley, Inc., 
Reading, MA, 1981. 

• To enteorfrom the HP-19B, press: _[MATH I", PI '" 1 EXIT I . 
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Numerical Differentiation 

The numerical differentiation Solver equation developed below calculates 
the numerical value of a function's derivative at a point. Using the 
features of your Solver, minimums and maximums of functions can also 
be found. 

The defining equation for the derivative is the limit of the difference quo­
tient: 

!'(x)=liml(x+h)-I(x) . 
h-l() h 

Another way of expressing a derivative is with the equation 

!'(x)=liml(x+h)-I(x-h) . 
h-l() Zh 

This equation can be shown to approach its limit faster than the first 
equation and for this reason will be used to approximate 1 ' (x) for suit­
ably small h. (More about the choice of h later.) The figure below shows 
that this approximation is the slope of the secant line through 1 (x + h ) 
and 1 (x -h). 

{{x} 

{{x-h} - - - -
I 
I 
I 

1-------L-------------~--------~ x 
x-h x+h 
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~ ; 
~ , . fh . t 
~ ~ We can use the previous results and an mcrement 0 "2 to approxuna e 

~ ! J"<x)as "( )_!'(x+h/2)-!'(x-h/2) 

• ~ 1 x - (2)(h /2) . 

~ : This can be simplified to 

1 ' , (x) z 1 (x + h ) - 2 Ih ~x ) + 1 (x - h ) 

which will be used since it involves only the function (not its first 

derivative) . = : 
~ ~ 
-I ~ Choosing h 

-) ~ The HP-27S and HP-19B store numbers using 12-digit precision. This -I ~ means that 2+ 10-12 and 2_10-12 will both be rounded and stored as 2. 

_, ' Thus, if you are calculating 

.1 ~ [' (2)z 1 (2+h )~I (2-h) 

.1 ~ you will always obtain a zero result for h = 1x1O-12
• In general, x and h 

., ~ cannot be separated by more than 12 orders of magnitude. 

·1 ~ 
-I ~ 
.\ ~ 

In addition to the effects of round-off error on the argument of I, another 
equally important consideration in choosing h is the effect of round-off 
error on the result. If h is too small,1 (x + h ) and 1 (x - h ) may only 
differ in decimal places beyond the 12-digit precision of your calculator. 
This rounding ofl (x +h) and 1 (x -h) may cause~ (x +h )-1 (x.-h). to 
deviate significantly from its actual value, thus affectmg the approxunatlOn 
of ['(x). Forexample,ifl(x)=Vx usingh =1x10-11 we have 

e\ ' 
·1 ' · ~ .1 ~ 
.1 
.\ : · ~ · ~ · ~ · ~ · ~ .'. 

V 1 + 10-11_V 1-10-11 
!' (l)Z 2x10-11 0.25. 

The true value is 0.5. The error here is because V 1 + 10-11 is rounded to 

1 Values for h in the range ~ < h < ~ give good results for 1 ' (x ); 
. 1<fi - - 1Q4 

similarly for 1 ' , (x) ~ < h < ~ oives good results. , , 1Q4 - - lOS 0-
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The Differentiation Equation 

The listings below outline Solver equations for differentiation. 

Equation: 

DY/DX: 

F'X=OxL(Q:X) 

+E(N:-l:l:2:0xL 
(X:G(Q)+NxH)+ 
Nx (FX)-;- (2xH) ) 

+ OxL ( X : G ( Q) ) 

Equation: 

D2Y/DX2: 

F' 'X=OxL(Q: X) 

+E(N:l:3:1:OxL(X: 
G(Q)+Hx(2-N) )+ 
(-1)A(N+l)x(2-
MOD(N:2»x(FX)+SQ(H» 

+ OxL (X : G ( Q) ) 

Comments: 

Equation name. 

Create local variable so x will not be 
lost. 

f(x+h)-f(x-h) 
Equivalent to 

2h 
where FX is replaced by the function 
to be differentiated. 

Restores value of x . 

Comments: 

Equation name. 

Create local variable so x will not be 
lost. 

Equivalent to 
f (x +h )-2f (x)+f (x -h) 

h 2 

Restores value of x . 

Remarks on Using the Equations. 

• In each equation, FX is replaced with the function to be differentiated. 

• The functions to be differentiated must be entered with x as the 
independent variable. 

• Trigonometric functions must have radians mode set for proper 
results. 
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Example Problems 

Key in the Solver equations listed with 

f (x)=Yo-.lZn (coshxv'/i) 
p 

in preparation for the first example. Your equations should look like this: 

DY/DX:F'X=OxL(Q:X)+E(N:-l:l:2:0xL(X:G(Q) 
+NxH)+Nx(YO-(l+P)xLN(COSH( 
XxSQRT(PxG»»+(2xH»+OxL(X:G(Q» 

D2Y/DX2:F"X=OxL(Q:X)+E(N:l:3:1:OxL(X:G(Q)+H 
x(2-N»+(-1)A(N+l)x(2-MOD(N:2»x(YO-(1+P) 
xLN(COSH(XxSQRT(PxG»»+SQ(H»+OxL(X:G(Q» 

When your equations match these, press == CALC == to display the menu of 
variables. 

Example 1: Freefall of Heavy Bodies. As part of a TV advertising 
campaign for a new pick-up truck, creative genius Will Selmore proposes 
to have several pick-ups dropped by parachute into a large field for the 
video portion of the ad. To ensure that the trucks will not be damaged on 
impact they must be traveling no faster than 200 ft/sec when their para­
chutes open. If the trucks-are dropped from 6,000 ft. and allowed to 
freefall for 10 seconds, will they land safely? Also, find the acceleration at 
the instant when the parachutes open. 

The equation governing freefall of a heavy body under the influence of 
gravity and air resistance is: 

y (t) =Yo- .lZn (coshtv'/i) 
p 

where 

g =32 ft/sec (acceleration due to gravity) 
p=.OO1 (drag coefficient) 
Yo = 6000 ft. (initial height) 
y (t) = position at time t 
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Since you have already loaded this function into both the 1st and 2nd 
derivative Solver equations, the velocity at t = 10 seconds can be found 
simply by evaluating dy / dx atx = 10. Use h =0.001. 

Keys: Display: Description: 

10~X~ X=10.0000 Stores x . 

. 001 ~ H~ H=0.0010 Stores h. 

60dO~YO~ YO = 6,000.0000 Stores Yo. 

.001 ~ p~ P=0.0010 Stores p. 

32~G~ G=32.0000 Storesg. 

~ F'X~ F'X= -169.1611 Velocity in ft/sec at 
t = 10 seconds. 

The minus sign indicates the trucks are falling downward. The actual 
velocity is 

dy / dt =V = -v g / p tanhtVli = -169.161141610 

The numerical estimate agrees with the actual velocity to 4 decimal 
places. Since the speed is less than 200 ft/sec the trucks will land safely. 

The acceleration is found by using the Solver equation D2Y /DX2. Move 
the pointer in your Solver to this equation and press == CALC ==. The values 
from the previous equation are saved. Simply change h to 0.01 and solve 
for f "(x). 

Keys: 

.01 ~H~ 

Display: 

H=0.0100 

F"X= -3.3845 
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Description: 

Stores new value of h . 

Acceleration in ft/sec2. 

The true acceleration is 

~ = - g + g tanh2 tVli = - 3.38450816930 ft/ sec2. 
dt2 

The estimate agrees to 4 decimal places. 

Minimum/Maximum Problems 

An extremely powerful application of the derivative is that of finding 
extrema of functions. Local maximums and minimums potentially occur 
where f ' (x) is 0 or undefined. If an extrema exists, the sign of the 
second derivative indicates the type of extrema (negative for local max­
imums and positive for local minimums). 

Example 2: Minimum Field Strength. For the design of a vertical 
broadcasting tower, radio engineer Ann Tenor wants to find the angle 
from the tower at which the relative field intensity is most negative. The 
relative field intensity created by the tower is given by: 

E = cos(211"l cos 0) - cos(211'1) 

[1- cos(211'l)] sin 0 

where E is the relative field intensity, I is the antenna height in 
wavelengths, and 0 is the angle from vertical in radians. The height is 0.6 
wavelengths for her design. 

The desired angle is one at which the derivative of the intensity with 
respect to 0 is zero. Edit both existing derivative equations (DY /DX and 
D2Y /DX2) replacing the old f (x) with the function for E above 
(remember to enter the function in terms ofx instead of 0). Your equa­
tions should look like this: 

DY/DX:F'X=OxL(Q:X)+E(N:-l:l:2:0xL(X:G(Q) 
+NXH)+Nx«COS(2xPlxLxCOS(X» 
-COS(2xPlxL»+«1-COS(2xPlxL»xSIN(X») 
+(2XH»+OxL(X:G(Q» 
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D2Y/DX2:F"X=OxL(Q:X)+E(N:l:3:1:0xL(X:G(Q) 
+Hx(2-N))+(-1)A(N+l)x(2-MOD(N:2))x«COS 
(2xPlxLxCOS(X))-COS(2xPlxL))+«1-COS(2xPlxL)) 
xSIN(X)))+SQ(H))+OxL(X:G(Q)) 

When your equations match these, set radians mode, adjust your Solver 
pointer to DY /DX, and press =' CALC =' to display the menu of variables. 

Solve for dE = 0 using an h of .001. 
d() 

Keys: 

_I MODES 1 = MORE =' 
~[giIJ. 

_I CLEAR DATA 1 

. 6~L~ 

.001 ~ H ~ 

~x~ 

Display: 

0.0000 

L=0.6000 

H=0.0010 

X=0.4899 

Description: 

Set radians mode, if 
necessary. 

Sets all variables equal 
to zero, including 
F '(X). 

Stores I . 

Storesh. 

Angle in radians where 
extrema occurs. 

Now see if this corresponds to a local maximum or minimum by executing 
D2Y /DX2. The values from the previous calculation are retained, but 
you should use a slightly larger h of .01. Position your pointer to this 
equation and press =' CALC ='. 

Keys: 

. 01 ~ H ~ 

Display: 

H=0.0100 

F"X=2.7105 

Description: 

New value of h . 

d2E 
Value of drP' 

• To set radians mode on the HP-19B, press: _I MODES I" D/R" 1 EXIT I· 
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The positive value indicates that a local minimum was found. To ensure 
that this is an absolute minimum on the interval 0° ~ () ~ 90° you should 
check for other zeros of the first derivative. You will find an absolute 
maximum at ()=9Q0 and no other extrema in the interval, as shown in the 
figure below. Thus, the most negative relative field intensity occurs at 
() = .4899 radians = 28.0692°. For comparison the exact minimum occurs 
at ()=28.068°. 

E 

1 

0.5 

o~~--~~----~----~----~-----. B 

-.25 

Example 3: Minimizing Cost per Part. A production line supervi­
sor for the Rainy Day Sprinkler Company must determine the optimal 
number of machines to install for making 500,000 plastic housings for a 
new line of lawn sprinklers. It costs $6,750 to set up each machine initially 
and $250+ $37.60n to run n machines for 1 hour. Each machine is capa­
ble of producing 73 parts/hour. The parts must be ready in 6 weeks and 
the machines can run at most 6 days a week for 16 hours a day. 

The optimal number of machines occurs where the cost per part is 
minimum. The set-up cost is 6750n /500000 ($/part). The remaining cost 
is the hourly cost per part, and is given by 

1 250 + 37.60n 
73n (hours/part) x (250 + 37.60n ) ($/hour) = 73n ($/part). 
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The total cost is then 

6750n + 250+37.60n ($/ t) 
500000 73 n par . 

Edit the DY /DX equation replacing the old function ofx with the one 
above (usingx in place of n). It should look like this: 

DY/DX:F'X=OxL(Q:X)+E(N:-l:l:2:0xL(X:G(Q) 
+NXH)+Nx(250+(73xX)+37.6+73 
+6750xX+500000)+(2XH))+OxL(X:G(Q)) 

Press := CALC := to display the menu of variables, and solve for f ' (x) = 0 
using an h of .001. Instruct the Solver to look for a zero in the positive 
direction (you cannot have a negative number of machines) by entering 
initial guesses of 1 and 50. The Solver will search between these two 

bounds for a zero. 

Keys: Display: 

.001 ~ H ~ H=0.0010 

o ~ F'X~ F'X=O.OOOO 

1 ~x~ 50 ~x~ ~x~ X=15.9273 

Description: 

Storesh. 

Stores r (x). 

Stores search boun­
daries and locates 
minimum. 

Since the number of machines must be an integer, we round this to 16. 
You may wish to verify that this is indeed an absolute minimum over the 
interval 1 to 50 and that the function increases without bound for x > 16. 
For n = 15 and n = 17 the cost per part is 94.6 cents; for n = 16 the cost per 
part is 94.5 cents. This small difference amounts to a $500 savings for 
500,000 parts. Finally, to insure the validity of this answer, verify that 16 
machines will be able to produce 500,000 parts in the allotted time. 
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6 (wks) x 6 (dys/wk) x 16 (hrs/dy) x 73 (parts/machine-hr) x 16 
(machines) = 672,768 parts. 

Thus, 16 machines can meet the time constraint with the least cost per 
part. 

References 

Edwards, Penney, Calculus and Analytic Geometry, Prentice-Hall, Inc., 
Englewood Cliffs, New Jersey, 1982. 

Kaplan, W.,Advanced Mathematics for Engineers, Addison-Wesley, Inc., 
Reading, MA, 1981. 

2: Numerical Dltlerentlatlon 51 



Factors and Primes 

The factors and primes Solver equation will find all the prime factors of a 
positive integer n . 

The algorithm for this equation selects a trial divisor d and tests d as a 
factor of n. If d divides n , then n +- n j d and d is tested as a factor of 
the new n. If d does not divide n , a new d is selected. The process con-
tinues until d >Vn, at which point n is returned as the final factor. The 
trial divisor d takes on the values 2, 3, 5, and 7; then for d > 10, d takes on 
those values that satisfy (d -lO)mod 30 = 1,3, 7, 9, 13, 19,21, or 27. 
Thus, in the first cycle of 30 integers from 11 to 40, d assumes the values 
11, 13, 17, 19,23,29,31,37. This technique eliminates from the test those 
values of d (d > 10) that are divisible by 2,3, or 5. 

To translate this algorithm into a suitable Solver equation we use the fol-
lowing techniques: 

1. Use nested IF functions to test for a factor of 2,3,5, or 7. 

2. Use a final nested IF as a loop that looks for prime factors ~ II. 

The Factors and Primes Equation 

The following Solver equation uses the algorithm described above to 
determine the prime factors of a number. 

Equation: Comments: 

FACTOR: Equation name. 

FACT=OxL (E: N) Stores N in intermediate variable E 
so that initial value of N will not be 
lost. 

+IF(MOD(N:2)=0: If 2 is a factor store 2 in E , otherwise 
OxL (E: 2) : continue. 
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IF(MOD(N:3)=0: 
OxL (E: 3) : 

IF(MOD(N:5)=0: 
OxL (E: 5) : 

IF(MOD(N:7)=O: 
OxL (E: 7) : 

L(J:O) 

+E(D:11:SQRT(N) :2: 
IF(G(J)=1:0: 
IF(L(C:MOD(D-10:30» 
=1 OR G(C)=3 OR 
G(C)=7 OR G(C)=9 OR 
G(C)=13 OR G(C)=19 
OR G(C)=21 OR 
G(C)=27: 

IF(MOD(G(E):D)=O: 

OxL(J:1)xL(E:D): 

0) : 

0»»») 

+G(E)+L(J:O)x 
L(N:N+G(E» 

If 3 is a factor store 3 in E , otherwise 
continue. 

If 5 is a factor store 5 in E , otherwise 
continue. 

If 7 is a factor store 7 in E , otherwise 
continue. 

Initializes "first factor" flag] to zero. 

If the first prime factor has already 
been found (] = 1) zeros are added. 
If not, the prime divisors greater 
than 10 are generated. 

Tests to see if current value of D is a 
prime factor. 

If so, value of D is saved and "first 
factor" flag] is set. 

If not, loop gets next value of D . 

Other argument of the first IF func­
tion. Only occurs if no prime factors 
are found. 

Returns the value of the first prime 
factor encountered, clears the "first 
factor" flag], and adjusts N to its 
new value (Nold jD). 

2: Factors and Primes 53 



Remarks on Using the Equation. 

• n must be an integer ~ 1. 

• To eliminate extra trailing zeros, set your display format to "ALL". 

• You should expect long execution times for very large integers. 

Example Problems 

Enter the Solver equation FACTOR, taking special care to include the 
correct number of parentheses and to put spaces around the AND func­
tions. When your equation matches the equation listed, press = CALC =, 
then set your display to ALL. You should see only = FACT = and ~ N ~ on 
the menu of variables. 

Example 1. Find all the prime factors of 924. 

Keys: 

-I MODES 1 
~ALL~* 

924~N~ 

= FACT = 
= FACT = 
= FACT = 
= FACT = 

Display: 

N=924 

FACT=2 

FACT=2 

FACT =3 

FACT = 7 

Description: 

Set the display to ALL. 

Stores number to be 
factored. 

First factor. 

Second factor. 

Third factor. 

Fourth factor. 

• To set the display to ALL on the HP-19B, use the following keystrokes: I DlSP I ~ ALL ~ . 
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= FACT = 

= FACT = 

FACT = 11 

FACT = 1 

Thus, 924=2 x 2 x 3 x 7 xII. 

Example 2. Find all the prime factors of 3623. 

Fifth factor. 

A result of 1 indicates 
complete factorization. 

Make sure that your display is still set to ALL as in the previous example. 

Keys: 

3623~N~ 

= FACT = 

Display: 

N=3,623 

FACT = 3,623 

Description: 

Stores number to be 
factored. 

Indicates 3623 has no 
prime factors .. .it is 
prime itself. 
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Vector Operations 

Because vectors arise frequently in engineering computations, it is con­
venient to have several vector operations available. The most common of 
these are the cross product, the dot product, the magnitude of a vector, 
and the angle between 2 vectors. Given the vectors Vl =xli +yJ +zlk 
and V2=X.j +Y2i +z.jc defined in a 3-dimensional rectangular coordinate 
system, the definitions are as follows: 

Cross product: 

Dot product: 

Magnitude: 

Angle between vectors: 

i j k 

V IXV2 = Xl YI Zl 

X2 Y2 Z2 
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The Vector Operations Equation 

Since it is convenient to have all the functions defined above available on 
a single menu, nested IF S functions are used. The equation is as follows: 

Equation: Comments: 

VECTOR: Equation name. 

IF (S (CROSS) : CROSS: Nested IF's to assign result to proper 
IF ( S ( DOT) : DOT: variable. 
IF(S(ANG):ANG:MAG»)= 

OxL(M:SQRT(SQ(Xl)+ 
SQ(Yl)+SQ(Zl») 

+IF(S(DOT) OR 
S(ANG) :OxL(C:XlxX2+ 
YlxY2+Z1xZ2 ) 

+IF(S(ANG): 
ACOS(G(C)+(G(M)x 
SQRT(SQ(X2)+SQ(Y2)+ 
SQ(Z2»» :G(C» 

: IF (S (MAG) : G (M) : 

OxL (A: ZlxX2-XlxZ2) x 
L(B:XlxY2-YlxX2)+ 
L(Xl:YlxZ2-Z1xY2)+ 
OxL(Yl:G(A»+ 
OxL(Zl:G(B»» 

Stores magnitude of Vl in intermedi­
ate variable M . 

If DOT or ANG are desired, com­
pute dot product and store in inter­
mediate variable C. 

If solving for angle, compute angle; if 
solving for dot product, recall C . 

If dot product or angle is not being 
solved for, check if magnitude is 
sought. If so, recall M . 

If not, then cross product is the only 
possibility left and it is computed. 
The intermediate variables A and B 
will store the y- and z-components of 
the resulting vector until equation 
finishes using the original com­
ponents of Vl' 
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Remarks on Using the Equation. 
• DOT, MAG, andANG leave the X, y, and z-components of their 

arguments unchanged. You can then do computations using the same 
vectors without re-entering the vector components. 

• The magnitude of V1 is calculated when the MAG function is exe­

cuted. 

• CROSS returns the resulting vector as V 1• The x-component is 
displayed and the other components can be viewed by using the I RCL I 
key. This feature is useful for chain calculations. 

• For two dimensional vectors, simply consider that the k component 
does not exist, i.e. enter 0 for the z 'so 

Example Problems 

Key in the equation described above, making sure to put spaces around 
the OR function. When you finish, press == CALC == to display the menu of 

variables. 

Example 1: Force on a Transmission Line. A long straight 
transmission line carrying a DC current of 200 A in the direction 
d = 10i + 7.3j -4.1k (m) is immersed in a uniform magnetic field 
B =.ooSi - .0015j - .0049k where B is in Wh/m2. Find the force per unit 

length (N/m) acting on the wire. 

The force per unit length is given by 

F 
-= Id xB 
I 

where I is the length of the wire and I is the DC current in the wire. 
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Keys: Display: Description: 

10 ~200 ~X1 ~ X1 =2,000.0000 Stores x-component of 
200d. 

== MORE == 7.3 ~ 200 Stores y-component of 

~Y1 ~ Y1 = 1,460.0000 200d. 

4.1 GEJ~200~Z1~ Z1 = -820.0000 Stores z-component of 
2OOd . 

.008 ~X2 ~ X2=0.0080 Stores x-component of 
B. 

.0015 l±LJ ~--'y2 ~ Y2= -0.0015 Stores y-component of 
B. 

.0049 GEJ ~ Z2 ~ Z2= -0.0049 Stores z-component of 
B. 

== MORE == == CROSS == CROSS = - 8.3840 x-component of force 
per unit length 

==MORE== y-component of force 
IRCLI~Y1 ~ Y1 =3.2400 per unit length 

I RCLI~Z1 ~ Z1 = -14.6800 z-component of force 
per unit length 

Thus, the force per unit length acting on the wire is 
-S.384i +3.24j -14.68k (N/m). 

Example 2: Work Done by a Space Probe. A space probe must be 
repositioned by flight controllers on earth so that it can achieve a better 
viewing angle of one of Saturn's rings. To place the probe in a proper 
position for obtaining photographs, it must move to a position 
lOOi + 534j + 378k (km) from its present position. The probe is acted 
upon by the gravitational fields of several bodies which exert a total force 
of F = - 5.U + 3.4j -1.6k (N). Find the energy expended by the probe in 
moving to the desired position. 
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The work done is given by the formula 

W=F·d 

where d is the vector of motion. 

Set the display format to "FIX 2" for this example. 

Keys: 

• IMODESj~ FIX~ 2 

jINPUTj* 

100 ~X1 ~ 

:=MORE:= 

534~Y1 ~ 

378~Z1 ~ 

5.2 c±El ~ X2 ~ 

3.4~Y2~ 

1.6 c±El~Z2~ 

= MORE = := DOT := 

Display: 

X1 =100.00 

Y1 =534.00 

Z1 =378.00 

X2= -5.20 

Y2=3.40 

Z2= -1.60 

DOT=690.80 

Thus, the energy expended is 690.8 kJ. 

Description: 

Set the display to FIX 2 . 

Stores x-component of 
distance vector. 

Stores y-component of 
distance vector. 

Stores z~component of 
distance vector. 

Stores x-component of 
force vector. 

Stores y-component of 
force vector. 

Stores z-component of 
force vector. 

Dot product. 

• To set the display to FIX 2 on the HP-19B, use the following keystrokes: I DlSP I ~ FIX ~ 2 

IINPUT~ 
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Example 3: Angle for a Mounting Bracket. A mounting bracket 
for supporting a sign is to be constructed as shown in the figure below. 
What angle a should be used for the dimensions given? Also, find the 
length of cable needed. 

~2' 

2'~t 2 

4' 7" 

z 

k x 

Represent the cables as vectors going from the wall to the brackets and 
compute the angle a between them for the bracket angle. For the length 
of cable needed, find the magnitude of the vector representing one cable. 
By symmetry, the total cable length is twice this. 

For this example set the display mode to "FIX 2" and the angular mode to 
degrees. 
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Keys: 

_I MODES 1 ~ FIX ~ 2 
~. 

_I MODES 1 = MORE = 
~ D/R ~ 1 EXIT It 

5~X1 ~ 

= MORE = 
ISTOI~X2~ 

2~Y2~ 

= MORE = = ANG = 

=MAG= 

Display: 

X1 =5.00 

X2=5.00 

Y1 =2.00 

Y2= -2.00 

Z1 = -4.58 

Z2= -4.58 

ANG=32.86 

MAG =7.07 

Description: 

Set the display to FIX 2, 
if necessary. 

Set degrees mode, if 
necessary. 

Stores x-coordinate of 
cable 1. 

Stores x-coordinate of 
cable 2. 

Stores y-coordinate of 
cable 1. 

Stores y-coordinate of 
cable 2. 

Converts 4 feet 7 inches 
to decimal feet and 
stores as z-coordinate of 
cable 1. 

Stores - 4.58 feet as the 
z-coordinate of cable 2. 

Angle between cables in 
degrees. 

Length of one cable in 
feet. (Double this for 
total cable needed.) 

• To set the display to FIX 2 on the HP-19B, use the following keystrokes: I DlSP I ~ FIX ~ 2 
I INPUT f 

t To set degrees mode on the HP-19B, use the following keystrokes: _ I MODES I ~ D/R '" 

[EXITI· 
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Thus, the total length of cable needed is about 14 feet 2 inches and the 
bracket should have an angle of about 33°. 
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Complex Number Operations 

ib iO d + id iq, th Given the complex numbers x = a + = re an y = e = me , e 
following operations will be implemented: 

Addition: x + y = (a + b ) + i( e + d) 

Subtraction: x - y = (a - b ) + i( e - d) 

Multiplication: xy = ( ae - bd) + i( ad + be) 

~= (a+ib)(e-id) 

y e2 +d2 Division: 

Logarithm: In(x)=ln(reil')=ln(r) + iO 

Power: 

Inverse: 
1 a-ib 

Swap: exchanges x and y 

The Complex Operations Equation 

The Solver equation listed here implements the operations described 

above. 

Equation: 

COMPLEX: 

IF(S(SWAP): 

Comments: 

Equation name. 

Is a swap desired? 
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Ox(L(R:RX)+L(I:IX» If so, store the real and imaginary 
parts of x in the intermediate vari­
ables R and I. 

- L (RX: RY) +Ox (L (IX: IY) Store the real and imaginary part of 

+L(RY:G(R) ) 
+L(IY:G(I») 

+SWAP: 

y inx. 

Store the original contents of x in y . 

End of execution when SWAP is 
solved for. Mulitiplication by zero 
has been used to assign proper 
results to variables. This leaves the 
effective equation -SWAP +RX =0. 
This is solved directly to obtain 
SWAP=RX. 

IF (S (MUL) OR S (DIV): Are either multiplication or division 
desired? (Note the spaces around 
OR.) 

IF (S (DIV) : If so, is division desired? 

Ox(L(RX:RX 
+SQ(RADIUS(RY:IY») 

+L(IX: IX 
+SQ(RADIUS(RY:IY») 

+L(R:RXxRY+IXxIY) 

+L(IX: IXxRY-RXxIY) ) 

-L(RX:G(R) ) 

If division is desired, execution 
comes here. Real part of x (RX) is 
divided by denominator in division 
definition above. This becomes new 
RX. 

Analagous operation is done on 
imaginary part of x (IX). 

R is used as an intermediate variable 
to store the final value of RX (old 
v~ue of RX is still needed). 

IX given its final value. Note that a 
2nd closing parenthesis encloses 
those functions that are multiplied by 
o. 
Assigns RX its proper value. 
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+DIV: 

Ox(L(R:RXxRY-IXxIY) 

+L(IX:IXxRY+RXxIY) ) 

-L(RX:G(R) ) 

+MUL) : 

IF(S(ADD) : 

ADD-L(RX:RX+RY) 

End of execution whenDW is solved 
for. Multiplication by zero has been 
used to assign proper values to vari­
ables. This leaves the equation 
-RX +DW =0. This is solved 
directly to obtain DW =RX. 

If multiplication is desired, execution 
jumps to here. This line uses R as 
an intermediate variable to store the 
final value of RX (old value of RX is 
still needed). 

IX given its final value. Note that 
2nd closing parenthesis encloses 
those functions that are multiplied by 
o. 
Assigns RX its proper value. 

End of execution when MUL is 
solved for. Multiplication by zero 
has been used to assign proper 
values to variables. This leaves the 
equation - RX + MUL = O. This is 
solved directly to obtain MUL = RX . 
Note the closing parenthesis after 
MUL to finish the IF(S(DIV) argu­
ment. The colon refers to the 2nd 
half of the IF(S(MUL) OR S(DIV) 
argument. 

Execution jumps to here if neither 
MUL or DW are desired and checks 
to see if ADD is desired. 

If ADD is desired, RX is assigned its 
proper value. 
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• .~ • .~ 

• ~ .. ~ 
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• I~ 
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+OxL(IX: IX+IY) : 

IF(S(SUB): 

SUB-L(RX:RX-RY) 

+OxL(IX: IX-IY) : 

IF(S(INV): 

L(RX:RX+L(R:SQ( 
RADIUS(RX:IX»» 

+OxL(IX:-IX+G(R» 

-INV: 

Ox(L(LNX: 
LN(RADIUS(RX:IX») 

+L(IX:ANGLE(RX:IX») 

Assigns IX its proper value without 
disturbing the equation ADD -
RX = 0 that was generated in the pre­
vious line. This is solved directly to 
giveADD =RX. 

If ADD is not desired execution 
jumps to here. 

If SUB is desired, RX is assigned its 
proper value. 

Assigns IX its proper value without 
disturbing the equation SUB -
RX = 0 that was generated in the pre­
vious line. This is solved directly to 
give SUB =RX . 

Is l/x desired? 

Assigns new value to RX while stor­
ing a 2+b 2 in intermediate variable R 
for use in next step. 

Assigns new value to IX . 

Multiplication by zero leaves the 
effective equation RX - INV = O. 
This is solved directly to give 
INV=RX. 

If SUB is not desired, execution 
jumps to here. LNX is used as an 
intermediate variable to store the 
final value of RX (old value of RX is 
still needed). 

Final value of IX assigned if LNX is 
desired. If x" is desired, IX will be 
changed again later. Note that the 
3rd closing parenthesis encloses 
those functions multiplied by zero. 
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- L (RX : G ( LNX) ) 

+IF(S(LNX): 

LNX: 

LNX+OxL(R:RXxRY­
IXxIY) 

+Ox(L(IX:IXxRY+ 
RXxIY) 

+L(RX:G(R») 

-L(RX:EXP(G(R»x 
COS(IX» 

+OxL(IX: SIN (IX)x 
EXP(G(R») 

+XY) ) ) ) ) ) 

Assigns RX its final value if LNX is 
desired. If x Y is desired, RX will be 
changed again later. 

Is LNX desired? 

If so, execution stops. Multiplica­
tion by zero has been used to assign 
proper values to variables. This 
leaves the equation - RX + LNX = O. 
This is solved directly to obtain 
LNX=RX. 

If LNX is not desired, then the only 
option left isXY (xY). LNX is 
added to the - L(RX:G(LNX)) 
encountered two lines previously to 
give a zero result. Then, R is used 
as an intermediate variable to store 
the real part ofy In( x). 

IX is assigned an intermediate value 
of the imaginary part of y In( x ). 

RX is assigned an intermediate value 
since its old value is no longer 
needed. Note that the 3rd closing 
parenthesis encloses those functions 
that are multiplied by zero. 

Final value of RX is assigned. 

Final value of IX is assigned and 
multiplied by zero. 

The remaining equation is 
- RX + XY = O. This is solved directly 
to give XY = RX. The six closing 
parentheses are required to conclude 
all of the nested IFs. 
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Remarks on Using the Equation. 

• All functions (ADD, SUB, XY, LNX, MUL, SWAP, INV, and DW) 
return the real part ofthe result when evaluated. The real and imag­
inary parts of the result are placed in RX and IX respectively and can 
be viewed using the I RCL I key. The real and complex parts of y are not 
changed. 

• For XY and LNX to give proper results, radians mode must be set. 

• The equation will not allow RX, IX, RY, or IY to be unknowns. A 
"solution" will be returned, but it will not be correct. 

• An infinite family of solutions for In( x) exist of the form 

In(x)=ln(r)+ i(O + 27rk), wherek =0,1,2, ... 

LNX returns the principle value of this family of solutions (k =0). 

• XY likewise returns the principle value when an n th root is sought. 

Example Problems 

When your Solver equation matches the one listed, press == CALC == to 
display the menu of variables. 

Example 1: Parallel Impedance. Find the total impedance Zin for 
the circuit illustrated below. Assume the circuit is excited with a 
sinusoidal source of frequency f = 60 Hz. 

150 Q 100 Q 

25 )J F 65 mH 
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The elements in series are simply added to give the branch impedances 
Z1 = 150-i106.1033 and Z2= 100 + i24.5044. The circuit is redrawn below. 

The formula for two impedances in parallel is 

1 Z· =---­
In 1 1 

-+­
Z1 Z2 

Keys: Display: 

150~RX~ RX=150.0000 

106.1033 GE}~ IX~ IX= -106.1033 

100~RV~ RV=100.0000 

24.5044 ~ IV ~ IV = 24.5044 

= MORE = ~ INV~ INV=O.0044 
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Description: 

Stores real part of Z1. 

Stores imaginary part of 

Z1· 

Stores real part of Z2. 

Stores imaginary part of 

Z2· 

Real part of 1/Z1• 

.'.~ · .~ · ~ · ~ · ~ · ~ · ~ · ~ • • • • · ~ · ~ · ~ . , ~ 

.I~ 

.I~ 

.I~ 

.!~ · ~ · ~ · ~ · ~ 
• i · ~ · ~ · ~ · ~ 
• i) · ~ · ~ 
• i • • • • 

= MORE = = MORE = 

= SWAP = 

= MORE = ~ INV~ 

=ADD= 

= MORE == ~ MORE ~ 
[RCLI~ IX~ 

SWAP = 100.0000 

INV=0.0094 

ADD=0.0139 

INV = 71.8042 

IX= -4.3021 

x (1/Z 1) andy (Z2) 
swapped. Real part of 
number in RX is 
displayed. 

Calculates 1/Z2 and 
displays real part. 

Calculates 1/Z1 + 1/Z2 

and displays real part. 

Final result calculated 
and real part displayed. 

Recall imaginary part of 
final result. 

Thus, the total impedance Zin is 71.8042 - i4.3021 (0) . 

Example 2: Logarithm of a Negative Number. Find the natural 
logarithm of -12. 

Be sure to set your calculator to radians mode before performing this 
example. 

Keys: 

• [ MODES I == MORE ~ 
~~* 

.[ CLEAR DATA I 
12GE} 

Display: 

RX= -12.0000 

Description: 

Set radians mode . 

Sets all variables to zero 
and stores real part of 
x. 

• To set radians mode on the HP-19B, use the following keystrokes: • I MODES I ~ D/R ~ 
IEXITI· 
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~ MORE = 

~ MORE ~ ~ LNX~ LNX = 2.4849 

~ MORE~ 

IRCLI~ IX~ IX=3.1416 

Thus, In( -12) = 2.4849 + i1l". 

Example 3: Complex Roots. Find v' 27 + i36. 

Real part of result. 

Imaginary part of result 
(11"). 

Be sure to set your calculator to radians mode before performing this 
example. 

Keys: 

_I MODES 1 = MORE = 
~~* 

_I CLEAR DATA 1 

27 ~ RX~ 

36~IX~ 

. 5~ 

= MORE = ~ MORE = 

~XY~ 

=MORE= 

IRCLI~ IX~ 

Thus, v' 27 + i36 = 6 + i3. 

Display: 

RX=27.0000 

IX = 36.0000 

RY=0.5000 

XY=6.0000 

IX = 3.0000 

Description: 

Set radians mode, if 
necessary. 

Sets all variables to zero 
and stores real part of 
x. 

Stores IX . 

StoresRY. 

Real part of Vi". 

Imaginary part of Vi". 

• :0 set radians mode on the HP-19B, use the following keystrokes: _ I MODES I ~ D/R ~ 
IEXIf] . 
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• • • • .. 
• • • • • • • • • 

~ 

~ 

a 
a 
~ 

.~ ., ., ., 
i) ., 
,jt 

~ 

• 
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Triangle Solutions 
The triangle solutions Solver equation can be used to find the area, the 
lengths of the sides (S h S 2, S 3), and the angles (A 1, A 2, A 3) of a triangle. 

A L-----------------------~A2 
3 S3 

Triangle Formulas 

The following formulas are used as the basis for the triangle solutions 

Solver equation. 

Side-Side-Side (S h S 2, S 3) 
1 

-l[P(P -S2)]"2 
A3=2cos SlS 3 

1 

[
P(P-S 1)]"2 

A 2=2cos-
1 S~3 

where P =(Sl +S2+S 3)/2 

A1 =cos-1( -COS(A2+A3)) 
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.I.~ .1;. 

.. I~ 

.I~ .1. 

.I§ 

.1 • 
• 1 • . 1. .1. .1. 
• I~ 
.l~ 
.,1 ~ 
• l~ 
.I~ 
.I~ 
.I~ 
.I~ · ~ 
• a 
• a C a · , · ~ ., ~ 

4 ~ ., -.. . .. .­
.~ .. -­•• 

Angle-Side-Angle (A 3, S hAl) 

A 2=coS-1( -COS(Al +A3)) 

sinA3 
S2=Sl~A 

sm 2 

Side-Angle-Angle (S h A h A 2) 

A3=COS-1( -COS(A1 +A3)) 

The problem has been reduced to the A 3, S hAl configuration . 

Side-Angle-Side (S h A h S 2) 

S3=V S12+S22_2S1S2cosA1 

The problem has been reduced to the S 1, S 2, S 3 configuration . 

Side-Side-Angle (S 1, S 2, A 2) 

A 3=Sin-
1

[ ~: SinA2j 

A1 =cos-1( -COS(A2+A3)) 

The problem has been reduced to theA 3, S hAl configuration. Note that 
two possible solutions exist for A 3 if A 3 is not equal to 90° and S 2 is 
greater than S h as shown below. Both possible answer sets are calcu­
lated. 

\ s; 
\ 

\ 

s; 
~------------~y~--------------~ 

S3 
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In all cases, the area is calculated as 

Area =.ls lS 3 sinA 3 . 
2 

The Triangle Solutions Equation 

To use the Solver equation described below, simply key in the three 
known values and solve for the appropriate variable. After the calculator 
finishes solving the triangle, it displays the area. To view the sides and 
angles, use the I RCL I key and the appropriate menu key. 

Equation: 

TRIANGLE: 

IF(S(SSS) OR S(SAS): 

IF(S(SAS): 

OxL(S3:SQRT(SQ(Sl) 
+SQ (S2) -2xS1xS2 
xCOS (G(A1»» : 

0) 

+OxL(P: (Sl+S2+S3)+2) 

+OxL(A3:2xACOS(SQRT 
(G(P)x(G(P)-S2) 
+ ( S 1xS 3 ) ) ) ) 

+OxL(A2:2xACOS(SQRT 
(G(P)x(G(P)-Sl) 
+(S2xS3»» 

+OxL(A1:ACOS(­
COS(OxA1+A2+A3») 

-.5xS1xS3xSIN(A3) 
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Comments: 

Equation name. 

Solving for SSS or SAS ? 

If so, solving for SAS specifically? 

Calculates S 3. Triangle is now in 
SSS configuration. 

Does nothing if SSS is sought. 

Defines intermediate variable P . 

Calculates A 3 according to SSS for­
mula. 

Calculates A 2 according to SSS for­
mula. 

Calculates A 1 according to SSS for­
mula. Notice multiplication by zero 
employed to force A 1 to appear on 
the menu before A 2 and A 3. 

Calculates area. 

• • • ., 
• • .' • • ., 

~ 

• -• • 
i 
i 

--~ 

+IF(S(SSS):SSS:SAS): 

IF(S(SSA) : 

IF(G(FLG)=l AND 
S2>Sl: 

OxL(A3:2xASIN(l)­
A3)+OxL(FLG:O) : 

OxL(FLG:1)+OxL(A3: 
ASIN(S2xSIN(A2) 
+Sl) ) ) 

+OxL(A1 : ACOS (­
COS(A2+A3») : 

0) 

+IF(S(SAA):O 
xL(A3:ACOS(­
COS(A1+A2») : 

0) 

+OxL(A2 : ACOS (­
COS(A1+A3») 

+OxL(S2 :Sl 
xSIN(A3)+SIN(A2» 

+OxL(S3 :Sl 
xCOS(A3)+S2xCOS(A2» 

Assigns area to proper variable. If 
solving for SSS or SAS execution 
stops here. 

If not solving for SSS or SAS , 
execution jumps here. Checks to see 
if SSA is sought. 

If SSA is sought, check flag and side 
relationship to see which solution set 
will appear. 

If flag is set, convert A 3 to its other 
possible value and clear the flag. 

If flag is clear, calculate A 3 accord­
ing to principle value of arcsine func" 
tion. Set flag so the next time SSA is 
sought the other solution set will be 
generated. 

Calculates A 1. Problem is now 
reduced to ASA configuration. 

Other argument of IF(G(FLG) = 1: 
from above. Does nothing if SSA is 
not sought. 

If SAA is sought, calculate A 3 
accordingly. Problem is now 
reduced to ASA configuration. 

Does nothing if SAA is not sought. 

Calculates A 2 according to ASA for­
mula. 

Calculates S 2 according to ASA for­
mula. 

Calculates S 3 according to ASA for­
mula. 
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-.5xSlxS3xSIN(A3) 

+IF(S(SSA):SSA: 
IF(S(SAA):SAA:ASA») 

Calculates area. 

Nested IF functions assign area to 
proper variable. 

Remarks on Using the Equation 
• Label the sides and angles of the triangle you wish to solve so they are 

consistent with the illustration on page 74. As you move clockwise 
around the triangle, the labels must be in the order 

ShAh S2,A 2, S3,A 3· 
• Angles must be in units corresponding to the angular mode of the cal­

culator (degrees or radians). 

• Note that the triangle described by the equation does not conform to 
the standard triangle notation, i.e., A 1 is not opposite S l' 

• Angles must be entered as decimals. The = >HR = key can be used to 
convert degrees, minutes, and seconds to decimal degrees. 

• The accuracy of a solution may degenerate for triangles containing 
extremely small angles. 

• If the calculator displays SOLUT I m'l HOT Fout·m, there is no trian­
gle satisfying the given dimensions. 

• When the Solver equation uses the SSA formula, the first solution set 
is displayed. To see the second set, solve for SSA again (it is not 
necessary to re-enter the dimensions). Subsequent pushes of ~ SSA ~ 
will alternate between the two solution sets. 

Example Problems. 

Enter the Solver equation described above, taking care to put spaces 
around the OR functions and to use the proper number of parentheses. 
When you have finished, press ~ CALC ~ to display the menu of variables. 
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Example 1: Surveying a Land Parcel. A surveyor is to find the 
area and dimensions of a triangular land parcel. From point A , the dis­
tances to B and C are measured with an electronic distance meter. The 
angle between AB and A C is also measured. Find the area and other 
dimensions of the triangle. 

171.63 

meters 

A 

297.35 
meters 

C <------------------=::::::. 8 
S3 

This is a side-angle-side problem. Labeling the triangle to be consistent 
with the illustration on page 74 we have: 

S 1 = 171.63, A 1 = 98.2°, and S 2 = 297.35. 

For this example set the angular mode to degrees and the display format 
to "FIX 2." 

Keys: 

_I MODES I ~ FIX ~ 2 
~* --

_I MODES I = MORE = 
~ D/R ~ 1 EXIT It 

171.63 ~ S1 ~ 

Display: 

81 =171.63 

Description: 

Set the display to FIX 2. 

Set degrees mode, if 
necessary. 

Stores side 1. 

. ~~p~\ the display to FIX 2 on the HP-19B, use the following keystrokes: ! DlSP! '" FIX", 2 

t ~I;jt degrees mode on the HP-19B, use the following keystrokes: _ !MODES! '" D/R~ 
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297.35 ~S2~ 

98.2~ 

== MORE == ~ SAS ~ 

= MORE = == MORE == 

IRCLI~A2 ~ 

IRCLI~ S3~ 

82=297.35 

A1 =98.20 

8A8 = 25,256.21 

A3=53.97 

A2=27.83 

83=363.91 

80 2: Triangle Solutions 

Stores side 2. 

Stores angle 1. 

Area of land in square 
meters. 

Angle 3 (angle at point 
C in the figure). 

Angle 2 (angle at point 
B in the figure). 

Side 3 (Be in the 
figure). 

.I.~ 

.I~ 

.1 § 

.1 ~ .. .. .. 
• • • • '. • • · ~ 
·I~ 
.:~ 

.!~ · ~ · ~ · ~ · ~ 
4t ~ 

• • • • 
~ 

~ 

~ 

~ 

~ • · ~ .. ~ · .. ~ · ~ 
.~ 

Example 2: Phasor Diagrams. For a certain circuit it is known that 
the three voltages V l + V2 + V3=O. The voltages are complex quantities 
and can be expressed in a phasor diagram as shown below. The magni­
tudes are measured with a voltmeter and are as shown. Find the angular 
relationships between the voltages. 

~-f---~ v] =92V 
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The phasor diagram can be re-drawn as the triangle shown below. We 
now have a side-side-side problem. 

Make sure that the calculator is still in FIX 2 and degrees mode, as set in 
the previous example. 

Keys: 

221 ~ S1 ~ 

173~S2~ 

92~ 

= MORE = ~ SSS ~ 

Display: 

S1 =221.00 

S2= 173.00 

S3=92.00 

SSS=7,517.13 

A3=47.68 

82 2: Triangle Solutions 

Description: 

Stores side 1. 

Stores side 2. 

Stores side 3. 

Area of triangle (no 
physical interpretation 
in this example). 

Angle 3. 

= MORE = == MORE == 
IRCLI~A1 ~ 

IRCLI~A2~ 

Reference 

A1 =23.16 Angle 1. 

A2= 109.16 Angle 2. 

Munem, MA., Foulis, D.J., College Trigonometry with Appiications, Worth 
Publishers, Inc., 1982 
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3 x 3 Matrix Operations 

This Solver equation calculates both the determi~ant and, if it .exists: the 
. f 3 x 3 matrix The inverse exists only If the determmant IS not mverse 0 a· ., . 
equal to zero. Using these results, a system of 3 lmear equattons m 3 
unknowns may be solved. 

Defining Equations 

Let 

then 

where 

and 

1 
A-l = -

det 

[

all a12 a13] 
A = a21 a22 a23 

a3l a~ a33 

det = aU(a22a33 - a23a~) - ada21 a33 - a23 a3l) 

+ a13(a21a~ - a22 a3l) 

I : ~ I = ad - bc. 
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Solving a System of Linear Equations 

A set of three linear equations in three unknowns can be written as: 

aUxl + a12x2 + a13x3 = Cl 

a21xl + a22x2 + a23x3 = C2 

a3lxl + a~x2 + a33x3 = C3 

where each aij is a constant coefficient, each Ci is a constant, and each Xj 

is an unknown . 

This system of equations is written compactly in matrix form as 

Ax=C 

where 

A 

x 

and 

C= 

au a12 a13 

a21 a22 a23 

a3l a~ a33 

(coefficient matrix), 

(unknown vector), 

(constant vector). 

The unknowns are then found as 

x = A-lC. 
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The 3 x 3 Matrix Operation Equation 

This Solver equation uses the equations described previously to calculate 
the determinant and inverse of a 3 x 3 matrix and, using these results, to 
solve a set of three linear equations in three unknowns. 

Equation: 

MATRIX: 

OxL(M:l+(OxAllxA12+ 
A13x(A21xG(A32)-A22x 
G(A31»-A12x(-A23x 
A31+0xA32+A21xA33)+ 
Allx(A22xA33-A23 
xA32) ) ) 

xL(A:A22xA33-A23xA32) 

xL(B:A12xA33-A13xA32) 

xL(C:A12xA23-A13xA22) 

xL(D:A21xA33-A23xA31) 

xL(E:AllxA33-A13xA31) 

xL(F:AllxA23-A13xA21) 

xL(G:A21xA32-A22xA31) 

xL(A32:G(M)x-(Allx 
A32-A12xA31) ) 

86 2: 3x 3 Mattix operations 

Comments: 

Equation name. 

Assigns l/det to intermediate vari­
able M. Notice multiplication by 
zero used to arrange the variables 
All through A 33 on the menu. 

Assigns all of A -1 to intermediate 
variable A . 

Assigns a 12 of A -1 to intermediate 
variableB. 

Assigns a13 ofA-1 to intermediate 
variable C. 

Assigns a2l ofA-1 to intermediate 
variableD. 

Assigns a 22 of A -1 to intermediate 
variableE. 

Assigns a23 of A -1 to intermediate 
variableF. 

Assigns a31 of A -1 to intermediate 
variable G. 

Assigns a 32 of A -1 to A 32. 
~. ~ 

- ~ , 
~ , • , i , i 

, i 
l • 

xL(A33 :G(M)x(All 
xA22-A12xA21) ) 

+OxL(All:G(M)xG(A» 

xL(A12:G(M)x-G(B» 

xL(A13:G(M)xG(C» 

xL(A21:G(M)x-G(D» 

xL(A22:G(M)xG(E» 

xL(A23:G(M)x-G(F» 

xL(A31:G(M)xG(G» 

+IF(S(SIM): 

L(Xl:OxXlxX2xX3+All 
xCl+A12xC2+A13xC3) 

+OxL(X2:A21xCl+A22 
xC2+A23xC3) 

+OxL(X3:A31xCl+A32 
xC2+A3 3xC3 ) 

-SIM: 

l+G(M)-DET) 

Assigns a33 of A -1 toA 33. 

Assigns all of A -1 toA 1l. 

Assigns a12 of A -1 toA 12: 

Assigns a13 ofA-1 toA 13. 

Assigns a2l of A -1 toA 2l. 

Assigns a22 of A -1 to A 22. 

Assigns a23 ofA- 1 toA 23. 

Assigns a31 ofA-1 toA 31. 

Solving for SIM? 

Uses multiplication by zero to 
arrange variables on the menu and 
assigns result to X l. 

Assigns result toX2. 

Assigns result to X3. 

Generates equation X 1 - SIM = 0, 
which is solved directly to give 
SIM=Xl. 

If SIM is not solved for, the equation 
l/(1+det) - DET = 0 is solved 
directly to give DET = det. 
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Remarks on Using the Equation. 

• When DET is calculated, the matrix elements are replaced by the ele­
ments of the inverted matrix. These new elements can be viewed by 
using the 1 RCL 1 key and the appropriate menu key. 

• The Solver equation will return the value of X 1 when SIM is calcu­
lated and will replace the matrix elements with the elements of the 
inverted matrix. X2, X3, and the inverted matrix elements can be 
viewed by using the 1 RCL 1 key and the appropriate menu key. 

• A homogeneous system (every Ci equals zero) will return the trivial 
solution x = o. 

• If the calculator displays SOLUTION NOT FOUND when 
solving for DET or SIM, the original matrix elements will remain 
intact. This message occurs when the computed value of det A = O. 
A matrix with a zero determinant is known as a singular matrix and 
has no inverse. When no inverse exists for the coefficient matrix in a 
system of simultaneous equations, either the system has no solution or 
infinitely many solutions. In some rare cases, the calculator may, 
through round-off error, return a zero value for detA when the actual 
value for the determinant is not zero. For matrices of this kind, an 
inverse does exist, but cannot be found using this Solver equation. 

Example Problems 

When your equation matches the matrix operation Solver equation, press 
= CALC = to display the menu of variables. 
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Example 1: Finding the Determinant and Inverse. Find the 
determinant and inverse of A where 

A=[~ ~ ~l 
124 

Since the matrix has only integer elements, use the display format "ALL" 
for this example to eliminate extra trailing zeros. 

Keys: 

_I MODES I· ~ALL~ 
1 ~A11 ~ 

2~A12~ 

3~A13~ 

1 ~A21 ~ 

3~A22~ 

=:MORE=: 

3~A23~ 

1 ~A31 ~ 

2~A32~ 

4~A33~ 

=: MORE =: =: MORE ~ 

~DET~ 

Display: 

A11 = 1 

A12=2 

A13=3 

A21=1 

A22=3 

A23=3 

A31=1 

A32=2 

A33=4 

DET=1 

Description: 

Set the display to ALL. 

StoresA 11. 

StoresA 12. 

StoresA 13 . 

Stores A 21. 

Stores A 22. 

Stores A 23 

Stores A 31. 

Stores A 32. 

Stores A 33. 

Determinant of A . 

• To set the display to ALL on the HP-19B, use the following keystrokes: I DlSP I" ALL" . 
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==MORE== 
IRCLI~A11 ~ 

IRCLI~A12~ 

IRCLI~A13~ 

I RCLI~A21 ~ 

IRCLI~A22~ 

==MORE== 
IRCLI~A23~ 

IRCLI~A31 ~ 

IRCLi~A32~ 

IRCLI~A33~ 

Thus, det A = 1, and 

A11 =6 

A12= -2 

A13= -3 

A21 =-1 

A22=1 

A23=O 

A31 =-1 

A32=O 

A33=1 

a12 0fA- l
. 

a13 0fA- l
. 

a21 of A-I. 

a22 of A-I. 

a23 of A-I. 

a3l ofA- 1
• 

a32 ofA-I. 

a33 of A-I. 

[ 
6 -2 -3] 

A-I = -1 1 0 
-1 0 1 

Example 2: A Singular Matrix. Find the inverse and determinant of 

A where 

As in the previous example, set the display format to "ALL." 

Keys: Display: Description: 

4~A11~ A11 =4 Stores A 11. 

6~A12~ A12=6 Stores A 12. 

8 ~ A13 ~ A13=8 StoresA 13. 
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5 ~A21~ 

7~ 

5 == MORE == ~ A23 ~ 

2 ~A31 ~ 

3~A32~ 

4~ 

== MORE == = MORE = 
~DET~ 

A21=5 

A22=7 

A23=5 

A31=2 

A32=3 

A33=4 

SOLUTION NOT 
FOUND 

Stores A 21. 

Stores A 22 . 

Stores A 23. 

Stores A 31. 

Stores A 32. 

Stores A 33. 

A -1 does not exist. 
Thus, A is singular and 
detA = O. 

You may also wish to recall the elements of the original matrix to verify 
that they have not been altered. 

Example 3: DC Circuit Analysis. For the circuit below find i i 
d

. (. . ' h 2, 
an '3' '1' '2, and i 3 are all measured in mA.) 

4700 100 0 

1 kO 

The following 3 equations are generated by summing the voltage drops 
around each loop. 

800i 1 - 330i2 + Oi 3 = 15 

-330i I + 530i2 - 100i3 = 0 

Oil - 100i2 + 1100i3 = 0 
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Set your display format to "FIX 4" for this example. 

Keys: 

_I MODES I~ FIX~ 4 
~* 

_I CLEAR DATA 1 

800~A11~ 

330 [±E] ~ A12 ~ 

ISTOI~A21 ~ 

530~ 

= MORE = 
100 [±E]~A23~ 

ISTOI~A32~ 

1100~ 

~ MORE == 
15 ~ C1 ~ 

Display: 

0.0000 

A11 =800.0000 

A12= -330.0000 

A21 = -330.0000 

A22 = 530.0000 

A23 = -100.0000 

A32 = -100.0000 

A33 = 1 ,100.0000 

C1 =15.0000 

Description: 

Set the display to FIX 4, 
if necessary. 

Sets all variables in 
equation equal to zero 
(eliminates having to 
explicitly store zeros in 
A 13,A31, C2, and 
C3). 

Stores A 11. 

Stores A 12. 

Stores A 21. 

Stores A 22. 

Stores A 23. 

Stores A 32. 

Stores A 33. 

Stores C1. 

• To set the display to FIX 4 on the HP-19B, use the following keystrokes: I DlSP I ~ FIX ~ 4 

IINPUT~ 

92 2: 3x 3 Ma1rIx Operations 

.I.~ 

.I~ 

.I~ 

.. I~ 
a l • 
a l § .1. .1. .1. .1. .1. 
• • • • • • • • · ~ 

$ • • • • 
~ 

~ 

~ · ~ · ~ 
C ~ · , · ~ · ~ 
45 ~ 

• • • • • • ., • ., • • • 

== MORE == ~ SIM ~ 

== MORE == == MORE == 

== MORE == 
IRCLI~X2~ 

IRCLI~X3~ 

SIM=0.0254 

X2=0.0161 

X3=0.0015 

Solves for the 3 
unknown currents and 
returns the value of i 1. 

Recalls value of i2• 

Recalls value of i 3. 

Thus, il = 25.4 mA, i2 = 16.1 mA, and i3 = 1.5 mAo 

References 

Florey, Francis G., Elementary Linear Algebra with Applications, Prentice­
Hall, Englewood Cliffs, NJ, 1979. 

Poulis, D. J. and MA. Munem, College Algebra with Applications, Worth 
Publishers, Inc., 1982 

2: 3x 3 M .... ix Operations 93 



Coordinate Transformations 

The coordinate transformation Solver equation will provide two- and 
three-dimensional coordinate translation and/or rotation. 

You must input the coordinates of the origin of the translated system 
(xo,yo,zo), the rotation angle (0) relative to the original system, and the 
axis about which rotation has occurred by giving a direction vector 
(ai, bj, ek) parallel to this axis. Note that the rotation axis passes through 
the translated origin (xcnYcnzo). A point (x ,y, z) in the original system 
can be converted to a point (x ' ,Y , ,z ') in the new system. Inverse 
transformations are also possible. The figure below depicts two­
dimensional translation and rotation. 

y 

x 

Original System 

"-- x 

x' 
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Coordinate Transformation Formulas 

The following formulas are used to develop the coordinate transformation 
Solver equation. 

where 

and 

11 m1 n1 x - Xo 

12 m2 n2 Y - Yo 

13 m3 n3 z -zo 

11 12 13 

[;: 1 

Xo 

m1 m2 m3 + Yo 

n1 n2 n3 Zo 

a 2(q )+cosO ab (q) -e sinO ae (q )+b sinO 

ba ( q ) + e sin 0 b 2( q ) + cos 0 be ( q ) - a sin 0 

ea (q)-b sinO eb (q )+a sinO e2(q )+cosO 

q = (I-cosO) 

The Coordinate Transformation Equation 

This Solver equation uses the matrix formulas described above to 
translate and/or rotate a two or three dimensional coordinate system. 

Equation: 

CTRANS: 

OxL(A:A+L(D: 
SQRT(SQ(A)+SQ(B) 
+SQ(C»» 

Comments: 

Equation name . 

Changes a to a true direction vector 
component if it isn't already. The 
intermediate variable D is used for 
the magnitude of the original vector . 
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+ OxL ( B : B+G ( D) ) Changes b to a true direction vector 
component if it isn't already. 

+OxL (C: C+G (D) ) Changes c to a true direction vector 
component if it isn't already. 

+OxL(Ll:SQ(A)xL(Q:l- Assigns proper value to L 1. Note 

COS(ANG»+COS(ANG» that Q serves the role of q in the 
defining equations. 

+OxL(L2:AxBxG(Q)- Assigns proper value to L 2. 

CxSIN(ANG) ) 

+OxL(L3:AxCxG(Q)+ Assigns proper value to L 3. 

BxSIN (ANG) ) 

+OxL(Ml:G(L2)+2xC Assigns proper value to Mi. 

xSIN(ANG) ) 

+OxL(M2:SQ(B)xG(Q)+ Assigns proper value to M 2. 

COS (ANG) ) 

+OxL (M3: BxCxG (Q) Assigns proper value to M3. 
-AxSIN (ANG) ) 

+OxL(Nl:G(L3)-2xBx Assigns proper value to N 1. 

SIN (ANG) ) 

+OxL(N2:G(M3)+2xAx Assigns proper value to N2. 

SIN (ANG) ) 

+OxL(N3:SQ(C)xG(Q)+ Assigns proper value to N3. 

COS (ANG) ) 

+IF(S(FTRN): Solving for FTRN? 

L(X':G(Ll)x(X-G(XO» Assigns proper result to X' during 
+G(Ml)x(Y-G(YO»+ forward transformation. 
G(Nl)x(Z-G(ZO») 

96 2: Coordinate Transformations 

.r.~ I ' 
·I~ 
·I~ 
·I~ · .. .1 4 .1. 
• .. • .. • • • • • • • • e. • • • • ~ • $ 

• ~ « ~ .. ~ 
C. a 
C a 
t; a 
C ~ 
~ ~ 
6 ~ ., 
~ -~ 

." ~ 

•• ~ 
•• ~ ... it 
II' • 

+OxL(Y':G(L2)x(X 
-XO)+G(M2)x(Y-YO)+ 
G(N2)x(Z-ZO» 

+OxL(Z':G(L3)x(X 
-XO)+G(M3)x(Y-YO)+ 
G(N3)x(Z-ZO» 

-FTRN: 

L(X:G(Ll)xX'+G(L2) 
xY'+G(L3)xZ'+XO) 

+OxL(Y:G(Ml)xX'+ 
G(M2)xY'+G(M3)xZ'+ 
YO) 

+OxL(Z:G(Nl)xX'+ 
G(N2)xY'+G(N3)xZ'+ 
ZO) 

-ITRN) 

Assigns proper result to Y' during 
forward transformation. 

Assigns proper result to Z ' during 
forward transformation. 

Generates the equation 
X ' - FTRN = 0, which is solved 
directly to give FTRN = X' . 

Execution jumps to here when not 
solving for FTRN (implies that 
ITRN is sought). Assigns proper 
result to X when reverse transform­
ing. 

Assigns proper result to Y when 
reverse transforming. 

Assigns proper result to Z when 
reverse transforming. 

Generates the equation 
X - ITRN = 0, which is solved directly 
to give ITRN =X. 

2: Coordinate Transformations 97 



Remarks on Using the Equation. 
• The sign of the rotation angle () is determined by the direction of the 

rotation axis and the right-hand rule. Thus, with the thumb of the 
right hand pointing in the direction of the rotation axis, the fingers 
curl in the positive direction of (). 

• () is given the variable nameANG in the Solver equation. It may be in 
either radians or degrees, depending upon the angular mode of the 

calculator. 
• It is not necessary to key in a true direction vector parallel to the axis 

of rotation. Any parallel vector, whether it has unit magnitude or not, 
can be used. The equation will automatically adjust (a, b , c) so that 
they constitute a true direction vector of magnitude 1. 

• Two-dimensional transformations are handled as a special case of 
three-dimensional transformation with (a,b,c) set to (0,0,1). This 
causes rotation to occur about the z-axis. 

• For pure translation, input a for (). 

• For pure rotation, input zeros for Xo.Yo. andzo· 

• For forward transforms (original to new) use FTRN (Forward 
TRaNsform). For inverse transforms (new to original) use ITRN 
(Inverse TRaNsform). FTRN andITRN returnX'. and X res~ec­
tively. The other coordinates of the transformed pomt can be Vlewed 
by using 1 RCL I and the appropriate menu key. 

Example Problems 

The following examples show you how to use the Solver equation to per­
form coordinate transformations. When your Solver equation matches 
the one listed, press == CALC == to display the menu of variables. 
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Example 1: A Two-Dimensional Transformation. A two­
dimensional coordinate system with origin (0,0) is translated to (7, -4). 
After translation, a 27° rotation occurs. Convert the points Pl ( -9,7) and 
P2(6,8) to equivalent coordinates in the translated rotated system . 

For this example make sure that the calculator is set to degrees mode. 

Keys: 

_I MODES I == MORE ~ 
~(gill. 

-I CLEAR DATAl 

27 ==ANG== 

==MORE==7~XO~ 

== MORE == == MORE == 
9[±E]~x~ 

= MORE = == MORE == 
== FTRN== 

Display: 

0.0000 

C=1.0000 

ANG = 27.0000 

XO = 7.0000 

YO= -4.0000 

Y=7.0000 

X= -9.0000 

FTRN = - 9.2622 

Description: 

Set degrees mode if 
necessary. 

Sets all variables equal 
to zero. 

Stores rotation axis 
(0,0,1). 

Stores rotation angle. 

Stores x-coordinate of 
translated origin. 

Stores y-coordinate of 
translated origin. 

Stores y-coordinate of 

Pl' 

Stores x-coordinate of 

Pl' 

x-coordinate of Pl in 
new coordinate system. 

• To set degrees mode on the HP-19B, use the following keystrokes: _ I MODES I'" D/R '" 

[EXiT1· 
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Y'=17.0649 

=:MORE=:6~X~ X=6.0000 

=:MORE=:8~Y~ Y=8.0000 

=: MORE =: =: FTRN =: FTRN = 4.5569 

Y'= 11.1461 

y-coordinate of P 1 in 
new coordinate system. 

Stores x-coordinate of 

P2• 

Stores y-coordinate of 

P2• 

x-coordinate of P2 in 
new coordinate system. 

y-coordinate of P2 in 
new coordinate system. 

Now, convert the point P' 3(2.7, - 3.6) to its equivalent coordinates in the 

original system. 

Keys: 

2.7~x'~ 

3.6GEl~Y'~ 

=: ITRN=: 

=: MORE = =: MORE =: 

IRCLI~Y~ 

Display: 

X'=2.7000 

Y'= -3.6000 

ITRN = 11.0401 

Y= -5.9818 

Description: 

Stores x-coordinate of 
P' 3 in new system. 

Stores y-coordinate of 
P' 3 in new system. 

x-coordinate of P' 3 in 
original system. 

y-coordinate of P' 3 in 
original system. 

Notice that once the translated origin, rotation angle, and rotation axis 
have been stored, points can be both forward and inverse transformed 

without re-entering this data. 

100 2: Coordinate Transformations 

.r. .... 
I~ 

·I~ ., ~ 
•. I~ 
.1 4 
.!~ 
~ 4 
~ ~ 
~ . 
~ ~ 
~ . ... 
~. It). 
1',' • 

,: ~ 
,: S 
, ~ 
, ~ 
# ~ . ~ 
• a 
• a 
; ~ 

, ~ 
Ii ~ , ~ 
, -
, -
, -, ~ 
, , it 
I I. 

Example 2: A Three-Dimensional Transformation. A three­
dimensional coordinate system is translated to (2.45, 4.00, 4.25). After 
translation, a 62S rotation occurs about the (0, -1, -1) axis. In the ori­
ginal system, a point had the coordinates (3.9,2.1, 7.0). What are the 
coordinates of the point in the translated rotated system? 

As in the previous example; set the calculator to degrees mode. 

Keys: Display: Description: 

_I CLEAR DATA 1 0.0000 Clears all variables in 
"CTRANS" equation. 

1 GEl~B~ B= -1.0000 Stores b-component of 
rotation axis. 

ISTOI~c~ c= -1.0000 Stores c-component of 
rotation axis. 

62.5 =:ANG=: ANG = 62.5000 Stores rotation angle. - -

=:MORE= Stores x-coordinate of 

2.45 ~xo~ XO=2.4500 translated origin. 

4~Yo~ YO =4.0000 Stores y-coordinate of 
translated origin. 

4.25 ~zo~ ZO=4.2500 Stores z-coordinate of 
translated origin. 

2.1 ~Y~ Y=2.1000 Stores y-coordinate of 
point in original system. 

7~z~ Z=7.0000 Stores z-coordinate of 
point in original system. 

=: MORE =: § MORE § 3.9 Stores x-coordinate of 
~x~ X=3.9000 point in original system. 
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= MORE== MORE = 

~ FTRN= FTRN = 3.5861 

Y'=0.2609 

Z'=0.5891 

x-coordinate of point in 
new system. 

y-coordinate of point in 
new system. 

z-coordinate of point in 
new system. 

In the translated, rotated system above, a point has the coordinates 
(1,1,1). What are the corresponding coordinates in the original system? 

Keys: Display: Description: 

1 ~X'~ X'=1.0000 Stores x-component of 
point in new system. 

ISTOI~Y' ~ Y'=1.0000 Stores y-component of 
point in new system. 

ISTOI~z'~ Z'=1.0000 Stores z-component of 
point in new system. 

= ITRN= ITRN = 2.9117 x-component of point in 
original system. 

= MORE = = MORE = y-component of point in 

IRCLI~Y~ Y=4.3728 original system. 

IRCLI~z~ Z=5.8772 z-component of point in 
original system. 
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More Step-by-Step Solutions 
for Your HP-27S or HP-19B Calculator 
These additional books offer a variety of examples and keystroke pro­
cedures to help set up your calculations the way you need them. 

Practical routines show you how to use the built-in menus to solve prob­
lems more effectively, while easy-to-follow instructions help you create 
personalized menus . 

Real Estate, Banking, and Leasing (00017-90019) 

• Use the TVM menu for real estate, banking, and leasing calculations . 

• Calculate the annual percentage rate of a loan with fees. 

• Calculate discounted, adjustable-rate, and bi-weekly mortgages. 

• Develop menus for graduated-payment and wrap-around mortgages. 

• Estimate monthly payments and mortgage insurance. 

• Use menus to calculate Rule of 78s, add-on loans, constant payment 
loans, loans with odd first periods, and leases with multiple payments 
in advance . 

• Work with a variety of methods to evaluate savings plans. 

Business Finance and Accounting (00017-90020) 

• Calculate break-even point, profits, and standard business ratios . 

• Make investment decisions using payback period, net present value, 
and internal rate of return. 

• Solve for variances and other cost -accounting variables . 

• Develop menus to calculate the sample size for an inventory audit. 

• Perform financial statement, production, and inventory analyses . 

• Forecast sales and units to manufacture. 



Marketing and Sales (00017-90021) 

• Forecast sales using moving averages, exponential growth curves, and 

linear regression. 

• Determine price, mark-up, and profit. 

• Estimate the financial feasibility of a new product. 

• Estimate the elasticity of demand. 

• Build a "quote maker" for accurate, on-the-spot quotes. 

• Base a customized menu on your company's commission scale to cal­
culate your commission on a product. 

Personal Investment and Tax Planning (00017-90022) 

• Evaluate savings and IRA plans. 
• Solve for funds available upon premature distribution from an IRA. 

• Calculate basic mortgage components and the annual percentage rate 

of a loan. 
• Evaluate your investment alternatives among life insurance, treasury 

bills, bonds, stocks, mutual funds, and limited partnerships. 

• Calculate the Beta of your portfolio, estimate your stock price volatil­
ity, target your gains, hedge with call options, and estimate margin 

account gain or loss. 

• Determine your tax and inflation break-even point. 

How to Order ... 

To order a book your dealer does not carry, call toll-free 1-800-538-8787 
and refer to call code P270. Master Card, Visa, and American Express 
cards are welcome. For countries outside the U.S., contact your local 

Hewlett-Packard sales office. 
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Step-by-Step Solutions 
for Your HP-27S or HP-19B Calculator 

This book contains advanced Solver techniques and a variety of appli­
cations, equations, and keystrokes to provide solutions for the science 
and engineering professions. 

• Advanced Solver Techniques 

• Two Powerful New Functions: LET and GET 

• Keystroke Reduction Techniques 

• Recursive Equations 

• Menu Variable Arrangement 

• Solutions for More Than One Variable at a Time 

• Techniques for Forcing Iteration 

• Indefinite Loop Simulation 

• Use of Trigonometric Functions 

• Technical and Scientific Solutions 

• Greatest Common Divisor and Least Common Multiple 

• Numerical Integration 

• Numerical Differentiation 

• Factors and Primes 

• Vector Operations 

• Complex Number Operations 

• Triangle Solutions 

• 3 x 3 Matrix Operations 

• Coordinate Transformations 
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