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Notice

This book and any keystroke programs contained herein are provided “as
is” and are subject to change without notice. Hewlett-Packard Company
makes no warranty of any kind with regard to this book or the keystroke
programs contained herein, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose.
Hewlett-Packard Company shall not be liable for any errors or for
incidental or consequential damages in connection with the furnishing,
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How To Use This Book

By purchasing this book, Technical Applications, yow've shown that you're
interested in getting the most from your Hewlett-Packard calculator. In
the pages that follow, we’ll help you achieve that goal.

This book divided into two chapters. In Chapter 1, advanced techniques
for writing Solver equations are discussed. In Chapter 2, a number of sci-
ence and engineering-related applications and examples are presented. It
is not necessary to read the material on advanced Solver equation-writing
before using an application. Simply turn to the appropriate topic in
Chapter 2 and enter the equation you need. Likewise, it is not necessary
to understand the specific applications if you only wish to learn the
advanced Solver techniques described in Chapter 1. How you use the
book is best determined by your particular needs and wants. However,
before you try the examples in this book, you should be familiar with cer-
tain concepts from the owner’s manual:

m The basics of your calculator — how to write Solver equations and
assign values to variables, how to solve for an unknown variable in an
equation, how to recall Solver variables, how to move from menu to
menu, and how to enter and edit lists.

» Entering numbers and using the built-in functions (LN, %, TAN,
ABS, etc.)

This portion of the book contains important information on the examples

in this book and provides a quick review of selected calculator operations.

While this book presents basic equations and theory for each application
topic, it should not be considered a text on these subjects. For more
information on the topics encountered, you can consult the references
listed at the end of each topic or any good textbook.
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The examples in this book demonstrate approaches to solving certain
problems, but by no means exhaust the many possible ways to obtain an
answer.

Please take a moment to familiarize yourself with the formats used in this
book.

Keys and Menu Selection

A box represents a key on the calculator keyboard:

IT

HEEH

INPUT

The shift key is represented by the symbol M. Thus, shifted keys appear

as:

u

l [CLEAR DATA

M | MODES

]

A menu label is represented like this:

EPMT= (found in the menu)

=sTDEVE  (found in the menu)

EDOT= (a user-created variable in a Solver equation)

6 How To Use This Book
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Some menus contain sub-menus accessed by pressing the appropriate
menu key (these are listed in the owner’s manual). Also, some menus
include more labels than can be displayed above the six redefinable menu
keys. Press = MORE = to see the other menu options.

Display Formats and Numeric Input

The examples in this book will use a display format of 4 decimal places
(FIX 4) except where noted. If your display is set such that the numeric
displays do not match exactly, you can modify your display format with the
menu on the HP-27S or the menu on the HP-19B, and the
= FIX = key within these menus. If you wish to see the full 12-digit preci-
sion of a number regardless of the display format, simply press B ;
the full precision number is displayed as long as you hold down the
key.

Negative numbers are created using the key:

Keys: Display:

39.087 [+/-1[=] -39.0870

29 W ([E]30[+/-][=] -2.9000E30
Negative exponents of ten are created using the [- ] key:
Keys: Display:

1.408 M [E][-]27[=] 1.4080E-27
255 m[E][=]15(+/-][=] -2.5500E-15

How To Use This Book 7




Entering Equations

When entering equations on your calculator, follow the instructions in the
Solver chapter of your owner’s manual, and in "Advanced Solver Tech-
niques." Here are hints to help you in common error situations:

m If the calculator displays INVALID EQUATION when you press
= CALC £, the calculator does not understand something in the equa-
tion. When the equation returns to the display, the cursor blinks
where the calculator detected the error. Check the equation in the
display against the equation in the book. Make sure the parentheses
match and the operators are where they should be. If the equation
includes a logical operator ("AND" or "OR"), make certain that you
include a space on both sides of the operator.

m If the calculator accepts the equation but your answer does not match
the example, check the values stored in the variables by recalling them
(press then the menu key). If the values are correct, return to
the menu by pressing and check the equation against the
one in this book for accuracy. When you find an error, edit the equa-
tion and then press = CALC = to display the menu of variables again.

m If the calculator displays INSUFFICIENT MEMORY when you
press [INPUT ] or = CALC £, you must clear portions of memory before
continuing. Refer to "Managing Calculator Memory" in appendix A of
your owner’s manual and to the conclusion of "Advanced Solver Tech-
niques" in this book for additional information.

The equations in this book use variable names that are intended to
remind you of what to store. Feel free to change them to something more
meaningful to you.

Our thanks to Steven J. Sabin of Oregon State University for developing the
problems and Solver equations in this book.

8 How To Use This Book
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Advanced Solver Techniques

To help you utilize the full power and flexibility of your calculator, several
advanced techniques and two new and powerful functions, LET and GET,
are introduced in this chapter. As was mentioned in "How To Use This
Book," it is not necessary to read this chapter if you are only interested in
using a specific application. Simply turn to the appropriate topic in
Chapter 2 and key in the equation. However, the Solver equations used in
the applications incorporate many of the advanced techniques presented
here. Thus, if you want to understand what you are keying in, read this
chapter first.

1: Advanced Solver Techniques 9




Using LET and GET

Function Descriptions

These two functions are not covered in your owner’s manual. However,
you’ll find them useful in a variety of applications. LET assigns the value
of an algebraic expression (or number) to a specific variable. GET recalls
the contents of a specific variable. The format for these two functions is:

Function: Description:

L (variable name : algebraic
expression)

Evaluates the algebraic expression,
stores the result in the specified vari-
able, and also returns that result as
the value of the LET function.

G (variable name) Returns the contents of the specified

variable.

Like X and IF, LET and GET are for use only in Solver equations. Thus,
you will not find these functions on a calculator key or in any menu.” To
use LET and GET in a Solver equation, simply type the letters G or L and
include the parentheses around the arguments. If a variable appears only
as the first argument of a LET function and/or only as the argument of a
GET function, it will not appear in the menu of variables.

There are many ways in which LET and GET enhance the capabilities of
your Solver, and we will describe each of these in the pages that follow.
First, a few examples will help introduce you to these two powerful func-
tions.

* The GET here has no relation to GET in the s , and menus of the
HP-19B, or to GET in the [STAT] menu of the HP-27S.

10  1: Using LET and GET
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Example 1. The Solver equation A=L(D:B+C)+SIN(D) stores
the sum of B and C in D, and adds this result to the sine of D when cal-
culating 4 . The LET function causes the value of D used in the argu-
ment of the sine function to be B + C. Notice that when this equation is
"CALC"ed, 4,B,C,and D all appear in the menu, but it is not neces-
sary to explicitly enter a value for D since the LET function does so
automatically.

Example 2. The Solver equation A=L(D:B+C)+SIN(G(D) ) is
functionally identical to the last example when calculating a result for A4,
but here the GET function is used in computing the sine of D. When this
equation is "CALC"ed, D does not appear in the menu. This is because D
only appears as the first argument of the LET function and as the argu-
ment of the GET function in this Solver equation. In the last example, D
was the argument of the SIN function (an appearance outside the first
argument of LET or GET), and thus did appear in the menu.

Intermediate Variables

Normally, whenever you use a variable in a Solver equation, it will appear
in the menu. When variables are used in this manner they are referred to
as formal variables or simply variables when no distinction is necessary.
However, there are two cases in which a variable will not appear in the
menu:

1. The only occurrence of a variable is as the counter variable of the &
function.

2. The only occurrence of a variable is as the first argument of LET
and/or as the argument of GET.

The second case was illustrated in Example 2 for the variable D. When a
variable is used only as the first argument of LET and as the argument of
GET it is given the special name intermediate variable. This is because
intermediate variables hold intermediate results that can be used
repeatedly in an equation, even though such variables do not appear in the
menu. The user cannot directly assign a value to an intermediate variable.
Keeping an intermediate variable from appearing in the menu avoids con-
fusion since the menu prompts only for relevant variables.

1: Using LET and GET 11




Example 3. The equationa =b +¢ — In(b +¢) +x°*° can be imple-
mented by the Solver equation

A=L(D:B+C)-LN(G(D)) +X~G(D).

Here, D serves as an intermediate variable and will not show up in the
menu. The use of D in this manner avoids having to type B+C more
than once in the equation and keeps D from appearing in the menu, a

source of possible confusion since there is no variable 4 in the original
equation.

Reducing Keystrokes With LET

In some instances you may wish to use the LET function to reduce
keystrokes (as shown in the previous examples), yet still view the value of
the variable used with the LET function. This is accomplished by simply
including the variable formally one or more times in your equation, thus
clelliusing it to appear in the menu of variables. An example will help clarify
this.

Example 4. The Solver equation from Example 3 can be changed
slightly to A=L(D:B+C)—LN (D) +X"D. Notice that the GET func-
tion has simply been removed and now D appears formally two times; as
the argument of In, and as the power to which x is raised. We have still
employed LET to reduce redundant keystrokes (typing B+C more than
once), but now the sum b + ¢ can be viewed by recalling D .

A practical application of these last two techniques is in the calculation of
planetary orbits as shown in the next example.

12  1: Using LET and GET
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Example 5: Orbits of Planets. The equation in polar coordinates for
a planet’s orbit about the sun is given by:

r=—2PC
1+ecosf
where:
ro Vo2
e= 090 -1.
GM

Here, r is the orbital radius, § is the angle swept out by the planet as it
orbits, p is the distance between the focus and directrix (the orbit is
always one of the conic sections), 7, is the planet’s orbital radius at its
closest approach to the sun, v is its speed at the point of closest
approach, G is the universal gravitational constant, and M is the mass of
the sun.

To simplify the orbital equation, we have used the variable e. You are
probably familiar with this method of notation for complicated expres-
sions. In an analogous manner, repetitive keystrokes can be eliminated in
a Solver equation by using the variable E. The following Solver equation
for the planet’s orbit uses ANG to represent 6.

R=PxL (E:ROxSQ (V0)+(Gx) —1) + (1+ExCOS (ANG) )

Here we have used the LET function to assign a value to E and thus elim-
inate the need to type the rather long expression for E again later in the
equation. Since the variable e in the original equations has special
significance (the eccentricity of orbit), E is not used as an intermediate
variable; instead, it appears formally as a multiplier of cosé and thus
appears in the menu of variables. If it were not necessary to view E , the
Solver equation

R=PxL (E:ROxSQ (V0) + (GxM) —1) + (1+G (E) xCOS (ANG) )

could be used. Notice that the only change made from the previous
Solver equation is to employ the GET function with E. We have still used
LET to reduce keystrokes by assigning a value to E, and the equation is
functionally identical to the previous Solver equation when R is solved for.
However, now E does not appear in the menu. In this case, E is used as
an intermediate variable.

1: Using LET and GET 13




How LET and GET Change an Equation

In many cases, when an unknown variable appears only once as a formal
variable, the Solver algebraically rearranges the equation to isolate a direct
solution. However, if an unknown variable appears formally more than
once, the direct solution method always fails and the Solver attempts to
locate a solution iteratively. When a variable appears as the first argu-
ment of LET or as the argument of GET, it is not considered by the
Solver in determining whether a direct solution can be found. Thus, a
variable may occur many times in an equation, yet only once formally. In
these instances, a direct solution may be found, but it will not normally be
"correct" mathematically. The next example will clarify this.

Example 6. The Solver equation A=2xA+B is solved iteratively for 4
(since 4 appears twice formally) such that 4 = -B. On the other hand,
the Solver equation A=2xG (A) +B is treated much differently. When
A is solved for, a direct solution is found (4 appears formally only once).
The Solver multiplies the current contents of 4 by 2, adds the contents of
B, and stores this result as the new value of 4.

Using New and Old Values

As shown in "How LET and GET Change and Equation," the Solver will
often return a solution that is not "correct" in the strict mathematical
sense when LET and GET occur in an equation. Actually, this result is
quite useful and allows LET and GET to be used to assign new values to
variables using the values they currently contain. This technique can be
used in recursive problems; i.e., problems in which the next value of the
output is dependent on the old output.

Whenever you encounter an equation in which the unknown variable
appears as both a formal variable and as the argument of a GET function,
the GET function will use the current value of the variable (the value of
the variable when the calculation is initiated).

14 1: Using LET and GET
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A helpful aid in understanding this is to think of the variable as behaving
in two different ways:

1. Where it appears formally, the variable is used as it would normally
be in finding a solution to an equation; i.e., it can be algebraically
rearranged to find a direct solution or used to find an iterative solu-
tion.

2. As the argument of a GET function, the variable is treated as
though it were a constant, not an unknown. The value used is the
current value as previously described.

In the LET function, the Solver does not check to see if a variable appears
on both sides of the colon. Instead, it simply evaluates the algebraic
expression on the right side of the colon using the current values of all
variables. This result is assigned as the new value of the variable on the
left side of the colon.

Some specific examples will demonstrate these features.

Example 7. Consider the Solver equation A=G (A)+1. Since 4 only
appears once formally, the direct Solver is used. This equation recalls the
current value of A (by the GET function) then adds 1. This result is then
assigned as the new value of 4. Thus, this simple equation increments 4

by 1 each time A4 is calculated.

Example 8. Like the last example, the Solver equation
Q=L(A:A+1) alsoincrements 4 by 1. In this case, Q is calculated
instead of 4. As mentioned above, the right side of the colon in the LET
argument (A+1) is evaluated using the current value of 4 and this result
is assigned as the new value of 4. Note that.4 appears on the right side
of the colon in the LET argument and therefore appears in the menu
when the equation is "CALC"ed.

The next example shows a practical use of these techniques.

1: Using LET and GET 15




Example 9: Taylor Series Expansion. The Taylor Series expansion
for e is

How many terms are needed in the series to express e accurately to 4
decimal places?

The Solver equation E=G (E)+1+FACT(L(J:J+1)) will accom-
plish this. The GET used with E causes E to appear only once formally,
and thus the direct method is used when E is solved for. The GET tech-
nique of Example 7 is used to add a new term (1/j!) to the current value
of E each time E is calculated. This new result is then returned as the
“solution" for E .

Using the LET technique of Example 8, the equation increments J by 1
each time E is calculated. When the equation is "CALC"ed, E andJ
appear in the menu of variables. You should set E initially by storing a
zero in it, since the sum should begin by GETting a zero value for E .
From the defining equation for the series expansion of e, the sum should
start at j =0. J in the Solver equation is set to —1 initially so that the
value of J used by the factorial function is zero the first time E is calcu-
lated.

To view the full precision of the number as the Solver adds each term in
the series, select the display format "ALL". You will find that E must be
calculated 8 times to express e accurately to 4 decimal places. Thus, 8
terms (j =0 to 7) are needed to achieve the specified accuracy.

When Not to Use LET and GET

There are times when you must iterate to find the solution to an equation.
The previous examples have shown how LET and GET change the way an
equation is evaluated when their arguments are unknowns. Sometimes
this can result in a direct solution that is not the desired solution.

16 1: Using LET and GET
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Consider the equation x = —e®. This is a transcendental equation; i.e., it
cannot be algebraically manipulated to isolate a solution forx. Here it is
necessary to iteratively find a solution. If you write the Solver equation

=—EXP (G (X)) with hopes that the Solver will somehow find a direct
solution (since, formally, X only appears once), you are asking for a
mathematical impossibility. The Solver equation above takes the base e,
raises it to the X th power based on an initial value of X, and assigns the
negative of this result as the final value of X .

Arranging Menu Variables

At times you may wish to arrange your equation variables in a specific
order in the menu. There are two ways to do this.

LET and GET Method. Recall that a variable only appears in a menu
when it appears formally in an equation. When you press = CALC £ after
entering an equation, the Solver scans from left to right in your equation
and assigns variables to the menu in the order in which they are encoun-
tered. A variable is not considered by the Solver in menu assignments
under the following conditions:

1. When a variable is used as a counter variable in the I function.
2. When a variable is used as the first argument of LET.
3. When a variable is used as the argument of GET.

This technique is shown in the example below.

Example 10. The equation a =in (bd ) +e° +d? can have its variables
arranged alphabetically using the Solver equation A=LN (BxG (D))
+EXP (C) +SQ (D). Since D first occurs as the argument of a GET
function, it is not assigned to the menu until it is encountered as a formal
variable in the term SQ (D).

1: Using LET and GET 17




# This technique of arranging menu variables is most useful
when certain variables will not be unknowns. If the Solver
Note equation of Example 10 is used to calculate D, the GET
function causes new and old values of D to be used rather
than a true algebraic solution. If the equation always calculates variables
other than D, it is perfectly acceptable.

Multiplication by 0 Method. Unlike the LET and GET method, mul-
tiplication by zero does not cause the Solver to use new and old values of a
variable. Instead, the true mathematical integrity of the equation is
preserved. The next example shows how.

Example 11. The Solver equation of Example 10 can be rewritten as
A=LN( (B+0xC)xD)+EXP(C)+SQ (D). This will arrange the
menu variables alphabetically and still allow a/l variables to be calculated.
Notice that as the Solver scans this equation, it encounters the formal
variables in the order A, B, C, and D . The multiplication by zero adds
nothing to the argument of the natural logarithm function and its sole pur-
pose is to arrange the variables alphabetically in the menu.

ﬂ Multiplication by zero causes variables that appear only
once in a defining equation to appear more than once in a
Note Solver equation. If these variables are unknown, the Solver
will iteratively locate a solution since they appear formally

more than once. For example, C appears formally twice in the Solver
equation above even though it appears only once in the defining equation
of Example 10. Thus, when C is calculated, the Solver will locate a solu-
tion iteratively.

18  1: Using LET and GET
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Solving for More Than One Variable at a Time

In the last example, multiplication by zero was used to arrange the menu
of variables in a Solver equation. Multiplication by zero has another very
powerful use in Solver equations...assigning a result to more than one vari-
able when a single unknown is calculated. This is done by employing the
LET function and multiplication by zero. An example will illustrate this
technique.

Example 12: Nautical Depth Conversions. Nautical depths are
often measured in fathoms. Since most people do not “think" in terms of
fathoms, conversion to more customary units is desirable. To convert
from fathoms to feet, multiply by 6.000012; to convert from fathoms to
meters multiply by 1.828804. A Solver equation that converts fathoms to
feet and meters at the same time is

FT=FATHx6.000012+0xL(M: FATHx1.828804) +0xM.

Here we assume that fathoms (FATH) is the known quantity, and feet
(FT) and meters (M) are unknown. Notice that when FT is calculated,
the Solver multiplies FATH by the proper conversion factor. Then, the
LET function is multiplied by zero so that its value will not affect the value
of FT. The LET function will assign the proper value to M. We have
also included the term OxM to cause M to appear formally and hence, in
the menu of variables. When FT is calculated, the Solver returns a
proper result and stores the number of meters in M. To see M, you must
recall it using =M=

ﬂ This technique of solving for more than one unknown is
most useful when certain variables will not be unknowns.
Note The Solver equation of Example 12 is intended to be used
only when FATH is known and FT and M are to be found.
Solving for M will result in the message SOLUTION NOT FOUND
since the direct Solver will attempt to isolate M and a division by zero
error occurs. In general, this technique should not be employed when al/
variables in an equation will be calculated.

1: Using LET and GET 19




The next example combines several of the techniques you have learned so
far to solve a practical problem.

Example 13: Complex Multiplication. To multiply two complex
numbers x =a +ib andy =c +id, use the formula

xy =(ac - bd) + i(bc +ad).

A Solver equation can be written that calculates the product, stores the
real part of the product as @ and the imaginary part as b, and leaves ¢
and d unchanged. This makes the equation useful for chain calculations.

Equation: Comments:

OxL(R:AXG(C)—-BxG (D))  Stores the real part of the product xy
in the intermediate variable R. The
intermediate variable R is employed
since we do not want to store the
real part of the product in 4 yet.
Before A can be assigned a new
value, the current value of 4 is
needed to calculate the imaginary
part of the product. Notice that
GET is used with C and D so that
the menu of variables will be in the
orderA4,B,C,D,and XY. This can
be verified by looking at the equation
as a whole and noting the order in
which the values appear formally
when scanning from left to right.

+0xL (B: BxC+AxD) Stores the imaginary part of the pro-

ductxy inB.

+L(A:G(R))=XY Stores the real part of the product xy
in 4 since the original value of 4 is
no longer needed. GET is used with
R since it is an intermediate variable
and is not to appear in the menu.
Notice that all the LET functions
except this one are multiplied by
zero. Thus, when XY is solved for,
the Solver uses a direct solution
method (XY appears formally only
once) and effectively reduces the
equation to XY =R. When XY is
solved for, the real part of the pro-
duct is displayed and the real and
imaginary parts of the product are
stored in 4 and B respectively.
Notice that C and D are left
unchanged.

Since the real part of the product is returned as the value of XY, this elim-
inates having to press = A = after every calculation to see the real
part of the product. To see the imaginary part, press EBE.

An application with a several complex number functions has been
developed in Chapter 2 of this book using the ideas in this equation.

Evaluation Order

As your Solver equations become increasingly more sophisticated, you
may find that using LET and GET takes a bit of forethought to insure
that the Solver assigns and recalls values in the order you intended. When
calculating an unknown, your calculator effectively rearranges the equa-
tion and either isolates the variable in question and solves for it directly,
or uses an iterative process. During rearrangement, the simple left-to-
right order of evaluation may be disturbed.

20 1: Using LET and GET
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For example, when G (X)+Y=0xL(X:4+X)+4 issolved for Y, itis
not obvious if the GET or LET is performed first. Actually, the Solver
performs the LET before the GET in this equation.

Forcing Iteration

e
Most ambiguities in using LET and GET can be avoided by observing the ‘| Although the idea of forcing iteration was introduced in your owner’s
following guidelines: manual, it bears repeating here. An equation such as 1=sinx can be
1. Place all LET and GET functions on the same side of an equal sign. ‘} SOIVCg dire.ctly tl';)rx ) bf;;e:i)af /Czafll mfim(;e1l;Mb;1 of Ssollution'sut;). tgis
. . ) equation given by x =+ n/2 for n =0,1,2,.... The Solver will fin
2. Tryto group the variable(s) you are calculating on the other side of @ the root corresponding to the principle value of the sine function.
the equals sign. e |
When these guidelines are followed, you can assume that the simple left- @ l In general,. the trlgon.ometrlc funcqons operate using the principle value:
. : If you are interested in a root that is nof a principle value, you can re-write
to-right evaluation process occurs. e | .. . . . .
the equation in a mathematically equivalent form that forces an iterative

solution. This allows you to enter initial guesses instructing the Solver to
look for a root between the two bounds.

The equation above can be entered as the Solver equation
1=0xX+SIN (X). This forces an iterative search since X appears for-
mally twice.
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The definite loop illustrated in the figure will generate the sum of the
squares of the integers 1 through 10. Notice that 4 is 0 initially, the loop
counter N is 1 initially, and the loop counter is incremented by 1 with
each pass through the loop. The definite loop is performed a fixed
number of times (10 in this case). On the other hand, the indefinite loop

More on Using the X Function Ql

Definite and Indefinite Loops @ l repeats indefinitely until the desired condition (X <100) is met.

A lqop is a technigue used by computer programmers to repeat a certain @ I By using the ¥ function you can effectively include definite loops in your
section -of instructions a number of times before continuing to other ® I equations. In fact, the ¥ function was designed to operate as a definite
instructions. Oftefn, the loop is executed a fixed number of times (a I loop. Indefinite loops may also arise. While you are not able to construct
definite loop), while other times the loop repeats indefinitely until a cer- e a true indefinite loop for reasons that are explained below, you can

tain condition is met. The second type of loop is referred to as an @ l effectively simulate one.

indefinite loop.

Simulating an Indefinite Loop

The T function is defined as follows:

xw
T
oy

L

B(cvicI:c2:s:alg)

where the algebraic expression (alg) is evaluated and summed for values
of the counter variable (cv). The counter variable starts with value c1
and is incremented in steps of s to a final value of 2.

- 2

A=AN When the ¥ function is first encountered in an equation, the Solver stores
the step size s and the counter variable’s initial and final values ¢! and c2
in a special location in memory not accessible to the user. Any attempt to
alter the values of s, ¢v, c1, or c2 using the LET function causes the
Solver to create separate variables of the same name. Since the value of
these variables cannot be changed, a loop cannot be prematurely exited.
This is precisely what makes construction of a true indefinite loop impos-
sible. However, an indefinite loop can be simulated as shown in the next

example.

X=x=+3

N=N+1 ¢ ‘

Yes Yes “

Definite Loop Indefinite Loop
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Example 14: An Indefinite Loop. To simulate the indefinite loop
shown in the previous figure, the I function can be performed until the
desired condition (X <100) is met. Then the loop can simply add zeros to
this result on subsequent passes until the final value of the counter vari-
able is reached. To avoid having too few or far too many loop repetitions,
a way is needed to determine in advance the maximum number of loops
necessary to meet the desired condition and to assign this value to ¢2.

For the example at hand, we must find the number of times » that X
must be divided by 3. This is given by the equation

il < 100.

3

If this is solved for n, we obtain the maximum number of loops needed to
obtain the desired result (X<100). Rearranging and taking the logarithms
of both sides we have

X X

W=3" — In( 100 ) =nln3.
Solving for 2, we obtain the final result
X
()
In3

This value of n is the value for ¢2 that guarantees sufficient passes
through the loop. The Solver equation is shown below.

Equation: Comments:
A= The variable we will calculate.
D(N:1: The counter variable is N and is set

initially to 1.

IF(X<=300:1:
LN(X<+100)=LN(3)+1):

This is the final value of the counter
variable. The conditional check
made by the IF insures that at
least 1 loop will be performed (if X
is less than 300, » is less than 1). In
the event that X >300, the result for

26 1: More on Using the £ Function
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IF (X<=100 AND N<>1:
0:0xL(X:X+3)))

+X

n derived above is used with a small
change: here we have added a1 to
the result. If this had not been done,
the loop would only be performed

n —1 times instead of #n times.

This is the step value; i.e., N is incre-
mented by 1 each time the loop is
repeated.

The body of the loop. If X is less
than or equal to 100 and it is not the
first pass through the loop (N #1), a
zero is added to the loop and X
remains unchanged. If X is greater
than 100 or N =1 (first pass), the
current value of X is divided by 3
and this result is assigned as the new
value of X. Notice that the LET
function is multiplied by zero causing
the ¥ function to have a value of
zero. The 3 closing parentheses are
needed to complete the LET func-
tion, the IF function, and the X func-
tion respectively.

This term simply adds the final value
of X to the value of the X function
(which is zero as noted above) leav-
ing the effective result 4 =X . This
final value of X is returned as the
solution for A4 .

A practical use of this Solver technique can be found in the application
"Greatest Common Divisor and Least Common Multiple" in Chapter 2 of

this book.
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Using Trigonometric Functions

Equations involving trigonometric functions often demand that the vari-
ables be in radians rather than degrees. For example, in a branch of
mathematics known as Fourier Transforms, the sinc function arises and is
defined as

) sinx
sincx = .
X

Here, x must be in radians; however, it is often desirable to enter x in
either radians or degrees. A convenient way to accomplish this is with a
conditional check, illustrated in the following Solver equation:

SINC=IF(SIN(30)=.5:SIN(X)<RAD(X) :SIN(X)=X).

Notice that the conditional check is true only when the calculator is in
degrees mode. Although you must be aware of what mode the calculator
is in when entering numbers in this Solver equation, this technique elim-
inates the need to always set radians mode and the need for two separate
Solver equations (one for degrees and one for radians).

The sinc function has the indeterminate value 0/0 at x =0.
By a technique of calculus known as L’Hopital’s Rule, the

¥

Note
Thus, the sinc function is defined as 1 at x =0. To give a
correct result for x =0, the above Solver equation can be modified slightly
to:

SINC=IF(X=0:1:IF(SIN(30)=.5:SIN(X)<RAD(X):
SIN(X)=X)).

sinc function can be shown to approach 1 as x approaches 0.

28  1: Using Trigonometric Functions
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In Conclusion

Although it is unlikely that you will want to use every application in this
book, they represent operations that arise frequently in science and
engineering. For this reason, you will probably want to keep several
applications in your calculator’s memory. To give yourself plenty of room
to store and "CALC" the application Solver equations, we recommend
that you delete the example equations created in this chapter after you
have worked through them.

Recall from your owner’s manual that Solver variables are "remembered"
by the calculator for use in moving from one Solver equation to another.

These variables consume a significant amount of calculator memory and

should be periodically reviewed and deleted as described in your owner’s
manual.
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30

1: Reference

l

___—___——__—_d

{
®
J
¢
e
e
e
L
L
@
®
¢
e
e
2
®
¢
¢
¢
‘,
¢
¢
¢
¢
6
&
&
S
»
S
L
¢

FYRRREEREEREREXEX KRN RN R N RS I B 2

2

Technical Application Equations

The topics included in this chapter contain Solver equations used in many
science and engineering-related applications. In most cases, the examples
have been chosen to reflect typical uses for such equations in engineering
practice.

2: Technical Application Equations 3




The GCD and LCM Equation

XXXT

Greatest Common Divisor and Least [ Equation: Comments:
Common Multiple “ LCM/GCD Eouati
: quation name.
In some situations it is preferable to use fractions rather than decimals to ‘l . . e
express numbers (e.g. 1/17 rather than 0.05882). The techniques of “ OxL(Al:A)xL(B1:B) izzrgs fgﬁl :(é)llllltli?e()f @ and b for
adding, subtracting, multiplying, and dividing fractions require the ability I y )
to find greatest common divisors and least common multiples. Although e +3(N:0:2.078x Sets loop parameters, including the
simple in theory, this is often a tedious process. ‘I IN(A+1)-.328+1:1: maximum number of divisions (loop
repetitions) required.
The basic algorithm used in finding the greatest common divisor for two ‘I
integers @ and b is as follows: ‘l IF(B=0:0:0xL(Z: GCD algorithm.
1. Ifb = 0, GCD(a,b) —a and execution stops. ‘l I-fg)?[(. ?B BG) () ;')0;%- )(A: B)
2. Ifb#0, z—(a modb),a«—b,andb+z. Returnto 1. ‘l
+A Value of GCD(a,b) after loop is
The least common multiple of ¢ and b is found by ] I completed.
¢ I =IF (S (GCD) :GCD: Generates the proper result (GCD
LCM(a,b)=—22— ;
) GCD(a,b)’ .\‘ G(Al)xG(B1l)+LCM) or LCM) depending upon what you

are solving for.

The equation uses an indefinite loop similar to the one that was discussed L 2
in "More on Using the & Function" in Part 1 of this book. Of particular ‘I
importance is a formula that gives the maximum number of divisions M

| Remarks on Using the Equation.
needed to arrive at a zero remainder. This formula is given as: .‘l

m The larger of the two numbers must be entered as A.
m The equation is designed to operate on positive integers only.

Forn>a>b>0, M =2078In(n)-.328 m You may wish to set your display format to "ALL" to eliminate extra

. . L trailing zeros since only integers are used.
The development of this result as well as the algorithm above is in the

reference cited following the examples m The equation assigns new values to4 and B when calculating LCM or

GCD:; thus, the original values of A and B are lost.

Example Problems

Check to see that you have entered the equation described above prop-
erly, then press = CALC = to display the menu of variables.
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Example 1. Find the greatest common divisor and least common multi-
ple of 406 and 266.

Keys: Display: Description:

I MODES | Set the display format

EALLE" to ALL to eliminate
trailing zeros.

406 EA= A=406 Stores a.

266 ZB= B=266 Stores b .

ZGCDE GCD=14 Greatest common divi-
SOr.

406 =A= A=406 Re-enters a.

266 =B= B=266 Re-enters b .

ELCME LCM=7,714 Least common multiple.

Example 2: Addition of Fractions. Express E 39 as a single

494 1026
fraction. Make sure that your display is still set to "ALL" as shown in the

previous example.

Keys: Display: Description:

1026 A= A=1026 Stores a.

494=B= B=494 Stores b .

ZLCM= LCM=13,338 Least common multiple
(denominator of final
fraction).

* To set the display format to ALL on the HP-19B, press EALLE.
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[+]494 [x] 71 Assigns the numerator
d SLCM= of final fraction i.e.,
[E 1026 | x| 39 13338 13338
=B= B=2,424 YRR EeTrvakeb
tob.
Re-enters a.
A=13,338
GCD=6 Greatest common divi-

sSOor.

Thus,

71, 39 _ 2424/6 _ 404
494 1026 13338/6 2223

Reference

Knuth, Donald E., The Art of Computer Programming, Vol. 2, Addison-
Wesley, Reading, MA, 1969.
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Numerical Integration

Simpson’s Rule is widely used to approximate definite integrals. This is
due to its simplicity, good results, and ease of implementation. Simpson’s
Rule essentially divides the area to be integrated into an even number of

subintervals and interpolates a quadratic polynomial to f (x) at the top of
each subinterval.

For integrals of the form

b
£ (xyax

the approximation for 2n subintervals is given by:

52n=‘@_—ﬂ[f0+4f1+2f2+4f3+2f4+ ot +2foq ptdfon1+f ]

a
3
This approximation is valid if the integral meets the following conditions:

1. The limits of integration are finite.
2. Foralla <x <b, f (x) is both finite and defined.

A judicious change of variables can sometimes transform an integral
violating these conditions into an acceptable form. For example, consider
the improper integral

o0

Jax /(1+x%%).

1
The change of variable u =1/x transforms this integral to

1

Ju®du /(1+u®)
0

which is easily evaluated.
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Errors in approximating definite integrals with Simpson’s Rule arise in
two ways:

1. Error due to the quadratic polynomial substituted for f (x) in each
subinterval.

2. Round-off error during calculations due to the limited precision of
your calculator.

While the second source of errors can never be completely eliminated, the
first source of errors can generally be made arbitrarily small by choosing a
large enough number of subintervals. While increasing the number of
subintervals will usually improve the accuracy of the results, it also
increases the computation time needed by the calculator.

The Integration Equation

Equation: Comments:

INTEGRATE: Equation name.

I=L(H: (A-B)=(—-2xN)) Interval size set to (b —a)/2n.
+3xE(R:0:2xN:1:0x Evaluates f (x) at 2n +1 evenly

L(X:A+RxG (H))

+(SGN (R) +SGN (2xN-R) + Multiplies f (x) by proper constant.
2xMOD (R:2) )x(FX))

spaced points.

Remarks on Using the Equation.
® When integrating trigonometric equations, radians mode must be set.

m The function being integrated should be written with x as the indepen-
dent variable.

® The function being integrated is used in place of FX in the Solver
equation above.
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9
Example Problems O‘ 9 . 1
' 2 16 2 2
In preparation for the first example, enter the equation described above “ s 36”-’; [1 - ‘SLI-] [1+ 3_2:;{?] .
using the following function in place of FX. ® I 9 -
® Since the integrand becomes infinite at both endpoints (y = +9), we will
1 e | ’ adjust our limits to y = +8.999 to avoid an error condition when the Solver
fx)=36r ||1- x2 1+ 16x2 z 9 evaluates the equation. We will use 40 subintervals to approximate the
81 324 dx? ® l Py integral.
e l 9 Keys: Display: Description:
The Solver equation should now look like this: ] l 9
® I 8.999 EAZS A=-8.9990 Stores a.
INTEGRATE: I=L(H: (A-B)+(-2xN) )3 9 = 3
XE(R:0: 2xN: 12 OxL (X2 A+RxG (H) ) + (SGN (R) el o 8.99958% B=8.99%0 Stores b
+SGN (2xN-R) +2>xMOD (R: 2) ) x (36xPIXSQRT (1 ) ‘ 20=ENE N=20.0000 Stores n (recall that the
-SQ(X)+81)xSQRT (1+ (16xSQ(X) )+(324- l s approximation is for 2
4x8Q(X))))) [ I 9 subintervals or 40 in this
) 9 case).
When your equation matches this one, press Z CALC= to display the menu ® | s =JE 1=2,809.2376 Approximate surface
of variables. ‘ l a area in square feet.
‘I ) For comparison, the exact result is
Example 1: Surface Area Computation. A new water tank is to be 'Y |
constructed by Erisman Industries. The tank has a circular cross-section ‘ ~ ]
when viewed from above. When viewed from the side its cross-section is ¢ 18 9 18+V182-92
that of an ellipse with height 18 ft. and width 36 ft. How many square feet P ‘ 9 2r(9)(18) 35t Vi o In 9 =2809.68999 square feet.
of steel should Mr. Erisman plan on using for the tank? by - ) -
The shape of the tank can be generated by revolving the ellipse e : The numerical estimate is accurate to within .016%.
x?  y?
i . <
2
) 18 . g ) P 9 Example 2: Broadcast Signal Coverage. An AM radio station
about the y-axis. The surface area integral is then 9 radiates a signal from its directional antenna array in the shape of the car-
b | dioid r =30(1 + cos 6) , where f is the radial angle around the antenna
PTITRS 9
A=2r f fOWV1+[f @)F gy s array. If 7 is measured in miles, how many square miles of coverage does
a =) this radio station have?
Substituting the values for the problem at hand we obtain L 9
*9
%3
* 9
S
38 2: Numerical Integration . : 2: Numerical Integration 39




The equation for area in polar coordinates is:

8
1

A==[r?de.
29{’

For this problem we have

2r

A = [450(1+cos 6)* db.
0

Enter this equation in the INTEGRATE equation by replacing § with x .
It is not necessary to re-type the entire equation. Simply edit the existing
INTEGRATE equation. Your equation should look like this:

INTEGRATE: I=L(H: (A-B)+(-2xN) )+3
x5 (R: 02 2xN: 1: 0xL(X:A+RxG (H) ) + (SGN (R)
+SGN (2xN-R) +2xMOD (R:2) ) x(450xSQ (1+COS (X)) ) )

When your equation matches this one, press = CALC £ to display the menu
of variables. Evaluate the area using 40 subintervals.

Keys: Display: Description:

M MODES ] E MORE = Set radians mode.
=D/RE ¥

0=A= A=0.0000 Stores a .

* To set radians mode on the HP-19B, press: 1l [MODES|ED/RE .

:
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2 [ m=" Storesb.

[=]EB= B=6.2832

20=ENE N=20.0000 Stores n.

=HE 1=4,241.1501 Approximate area in
- square miles.

The exact area is 6m (30/2)?=4241.15008234 square miles.

Reference

Kaplan, W., Advanced Mathematics for Engineers, Addison-Wesley, Inc.,
Reading, MA, 1981.

* To enter x from the HP-19B, press: [l [MATH]ZPI £ .
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Numerical Differentiation

The numefical differentiation Solver equation developed below calculates
the numerical value of a function’s derivative at a point. Using the

features of your Solver, minimums and maximums of functions can also
be found.

’I.'he defining equation for the derivative is the limit of the difference quo-
tient.

() =k f(x+h)-f(x)
f7e) P, h |
Another way of expressing a derivative is with the equation

f’(X)=}lli2)f(x +h)?;'f(x —h) .

This t‘:quation can b.e shown to approach its limit faster than the first

equation and for this reason will be used to approximate f * (x) for suit-

gll)ly S};lilall h. (More about the choice of & later.) The figure below shows
at this approximation is the slope of the secant line thro

and f (x -h). venf (k)

flx-hJ
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We can use the previous results and an increment of % to approximate
frr(x)as

(x+h/2)-f"(x=h/2)
@®r/2) '

O
This can be simplified to
f"(x)xf(x +h)—2];(2x)+f (x-h)

which will be used since it involves only the function (not its first
derivative).

Choosing

The HP-27S and HP-19B store numbers using 12-digit precision. This
means that 2+10~2 and 2—10~*2 will both be rounded and stored as 2.

Thus, if you are calculating
f’ (z)z f (2+h);’f(2_hl

you will always obtain a zero result for & =1x10~2. In general, x and 4
cannot be separated by more than 12 orders of magnitude.

In addition to the effects of round-off error on the argument of f, another
equally important consideration in choosing & is the effect of round-off
error on the result. If i is too small, f (x +h) and f (x ~h) may only
differ in decimal places beyond the 12-digit precision of your calculator.
This rounding of f (x +k) and f (x —h) may cause f (x +h)-f (x —h) to
deviate significantly from its actual value, thus affecting the approximation
of f* (x). For example, if f (x)=Vx using h =1x10~"* we have

Viswti-vVi-iet o,
210~ o

fr=

The true value is 0.5. The error here is because V 1+ 10~ is rounded to
1. Values for & in the range —15— <h < % give good results for f* (x);

similarly, for f * " (x), 2 _<h <-%_ gives good results.
y, for £ (x) 7 1o Evese

2: Numerical Differentiation 43




The Differentiation Equation

The listings below outline Solver equations for differentiation.

Equation: Comments:

DY/DX: Equation name.

F’/X=0xL(Q:X) Create local variable so x will not be
lost.

+5(N:-1:1:2:0xL Equivalent to ()= (x=h)

(X:G(Q)+NxH) +

2h
Nx (FX) + (2xH) ) where FX is replaced by the function

to be differentiated.

+0OxL(X:G(Q)) Restores value of x .

Equation: Comments:

D2Y/DX2: Equation name.

F’/7X=0xL(Q:X) Create local variable sox will not be
lost.

+5(N:1:3:1:0xL(X: Equivalent to

G(Q)+Hx(2-N) )+ fx+h)-2f(x)+f(x—h)
(-1) ~(N+1)x(2- h?
MOD (N:2) )x(FX)+SQ(H))

+OXL(X:G(Q))

Restores value of x .

Remarks on Using the Equations.

m In each equation, FX is replaced with the function to be differentiated.

m The functions to be differentiated must be entered with x as the
independent variable.

» Trigonometric functions must have radians mode set for proper
results.

44 2: Numerical Differentiation
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Example Problems
Key in the Solver equations listed with
f(x)=yo %In (coshxv/7g )
in preparation for the first example. Your equations should look like this:

DY/DX:F'X=OxL(Q:X)+2(N:—1:1:2:0xL(X:G(Q)
+NxH) +Nx (Y0- (1+P) xLN (COSH (
XXSQRT (PxG) ) ) )+ (2xH) ) +OxL(X:G(Q))

D2Y/DX2:F’ /X=0xL(Q:X) +Z(N:1:3:1:0xL(X:G(Q) +H
% (2-N) )+ (=1) A (N+1)x(2-MOD (N: 2) )x(Y0- (1+P)
LN (COSH (XxSQRT (PxG) ) ) ) +5Q (H) ) +OxL(X:G(Q) )

When your equations match these, press = CALC = to display the menu of
variables.

Example 1: Freefall of Heavy Bodies. As part of a TV advertising
campaign for a new pick-up truck, creative genius Will Selmore proposes
to have several pick-ups dropped by parachute into a large field for the
video portion of the ad. To ensure that the trucks will not be damaged on
impact they must be traveling no faster than 200 ft /sec when their para-
chutes open. If the trucks-are dropped from 6,000 ft. and allowed to
freefall for 10 seconds, will they land safely? Also, find the acceleration at
the instant when the parachutes open.

The equation governing freefall of a heavy body under the influence of
gravity and air resistance is:

y()=yo- %In (cosht\/E)
where

g =32 ft/sec (acceleration due to gravity)
p=.001 (drag coefficient)

¥0=6000 ft. (initial height)

y(t) = position at time ¢

2: Numerical Differentiation 45




Since you have already loaded this function into both the 1st and 2nd
derivative Solver equations, the velocity at ¢ =10 seconds can be found
simply by evaluating dy / dx atx =10. Use h =0.001.

Keys Display: Description:
10EXE X=10.0000 Stores x .

001 EHE H=0.0010 Stores .

6000 Y0 = Y0=6,000.0000 Stores y,.
001EP= P=0.0010 Stores p.

32ZG= G=32.0000 Stores g.
EFXE F'X=-169.1611 Velocity in ft/sec at

t =10 seconds.

The minus sign indicates the trucks are falling downward. The actual
velocity is

dy/dt =v = —Vg [ptanhtVpg = ~169.161141610

The numerical estimate agrees with the actual velocity to 4 decimal
places. Since the speed is less than 200 ft/sec the trucks will land safely.

The acceleration is found by using the Solver equation D2Y/DX2. Move
the pointer in your Solver to this equation and press = CALC=. The values
from the previous equation are saved. Simply change 4 to 0.01 and solve

for f "7(x).

Keys Display: Description:
01=HE H=0.0100 Stores new value of /.
SFXE F’X=-3.3845 Acceleration in ft/sec®.
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The true acceleration is

%:22)— = -g +g tanh? ¢V pg = —3.38450816930 ft/sec?

The estimate agrees to 4 decimal places.

Minimum/Maximum Problems

An extremely powerful application of the derivative is that of finding
extrema of functions. Local maximums and minimums potentially occur
where f * (x) is O or undefined. If an extrema exists, the sign of the
second derivative indicates the type of extrema (negative for local max-
imums and positive for local minimums).

Example 2: Minimum Field Strength. For the design of a vertical
broadcasting tower, radio engineer Ann Tenor wants to find the angle
from the tower at which the relative field intensity is most negative. The
relative field intensity created by the tower is given by:

cos(2nd cos 6) —cos(2al)
[1 —cos(2ml )] sin @

E =

where E is the relative field intensity, / is the antenna height in
wavelengths, and 4 is the angle from vertical in radians. The height is 0.6
wavelengths for her design.

The desired angle is one at which the derivative of the intensity with
respect to 6 is zero. Edit both existing derivative equations (DY/DX and
D2Y/DX2) replacing the old f (x) with the function for E above
(remember to enter the function in terms of x instead of §). Your equa-
tions should look like this:

DY/DX:F’/X=0xL(Q:X)+Z(N:-1:1:2:0xL(X:G(Q)
+NxH) +Nx ( (COS (2xPIXIxXCOS (X))
—COS (2xPIxL) ) +( (1-COS (2xPIxL) )xSIN(X)))
+(2xH) ) +0xL(X:G(Q))
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D2Y/DX2:F’ ’X=0xL(Q:X) +S(N:1:3:1:0xL(X:G(Q)
+Hx (2—-N) )+ (-1) ~ (N+1)x(2-MOD(N:2) )x( (COS
(2xPIXLXCOS (X)) —COS (2xPIXL) )+ ( (1-COS (2xPIxL) )
xSIN (X)) )+5Q (H))+0xL(X:G(Q))

When your equations match these, set radians mode, adjust your Solver
pointer to DY/DX, and press = CALC £ to display the menu of variables.

Solve for %I—Z— =0 using an & of .001.

Keys: Display: Description:

M MODES | = MORE = Set radians mode, if

=D/R= v necessary.

| 0.0000 Sets all variables equal
to zero, including
F (X).

6L L=0.6000 Stores /.

001 EHE H=0.0010 Stores A .

EXE X=0.4899 Angle in radians where

extrema occurs.

Now see if this corresponds to a local maximum or minimum by executing
D2Y/DX2. The values from the previous calculation are retained, but
you should use a slightly larger k of .01. Position your pointer to this
equation and press = CALC=.

Keys: Display: Description:
OD1=H= H=0.0100 New value of h .
=y = N, 2
SF'XE F’X=2.7105 Valueode.
de

* To set radians mode on the HP-19B, press: Il [MODES]ZD/RE [EXT].
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The positive value indicates that a local minimum was found. To ensure
that this is an absolute minimum on the interval 0° < 4 < 90° you should
check for other zeros of the first derivative. You will find an absolute
maximum at #=90° and no other extrema in the interval, as shown in the
figure below. Thus, the most negative relative field intensity occurs at

9 = .4899 radians = 28.0692°. For comparison the exact minimum occurs
at §=28.068°.

0.5 T

m/4 m/2

=25 T

Example 3: Minimizing Cost per Part. A production line supervi-
sor for the Rainy Day Sprinkler Company must determine the optimal
number of machines to install for making 500,000 plastic housings for a
new line of lawn sprinklers. It costs $6,750 to set up each machine initially
and $250+ $37.60n to run n machines for 1 hour. Each machine is capa-
ble of producing 73 parts/hour. The parts must be ready in 6 weeks and
the machines can run at most 6 days a week for 16 hours a day.

The optimal number of machines occurs where the cost per part is
minimum. The set-up cost is 6750n /500000 ($/part). The remaining cost
is the hourly cost per part, and is given by

250+37.60n

1
T (hours/part) x (250+37.60n ) ($/hour) = 3 ($/part).
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The total cost is then
6750n  250+37.60n
500000 Tano/par).

Edit the DY /DX equation replacing the old function of x with the one
above (usingx in place of n). It should look like this:

DY/DX:F’X=OxL(Q:X)+2(N:—l: 1:2:0xL(X:G(Q)
+NxH) +Nx (250 (73xX) +37 . 673
+6750xX+500000) <+ (2xH) ) +OxL(X:G(Q))

Press = CALC= to display the menu of variables, and solve for f"(x)=0
using an & of .001. Instruct the Solver to look for a zero in the positive
direction (you cannot have a negative number of machines) by entering
initial guesses of 1 and 50. The Solver will search between these two

bounds for a zero.

Keys: Display: Description:

001 EHE H=0.0010 Stores k.

0EFX= F’X=0.0000 Stores f * (x).
1EX=50=XEEX=E X=15.9273 Stores search boun-

daries and locates
minimum.

Since the number of machines must be an integer, we round this to 16.
You may wish to verify that this is indeed an absolute minimum over the
interval 1 to 50 and that the function increases without bound for x > 16.

For n =15 and n =17 the cost per part is 94.6 cents; for n =16 the cost per

part is 94.5 cents. This small difference amounts to a $500 savings for
500,000 parts. Finally, to insure the validity of this answer, verify that 16
machines will be able to produce 500,000 parts in the allotted time.
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6 (wks) x 6 (dys/wk) x 16 (hrs/dy) x 73 (parts/machine-hr) x 16
(machines) = 672,768 parts.

Thus, 16 machines can meet the time constraint with the least cost per
part.
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Factors and Primes

The factors and primes Solver equation will find all the prime factors of a
positive integer 1.

The algorithm for this equation selects a trial divisor d and tests d as a
factor of n. If d dividesn,thenn+n/d and d is tested as a factor of
the newn . If d does not divide n, a new d is selected. The process con-
tinues until d >V , at which point n is returned as the final factor. The
trial divisor d takes on the values 2, 3, 5, and 7; then for d >10, d takes on
those values that satisfy (d —10)mod 30 = 1, 3,7, 9, 13, 19, 21, or 27.
Thus, in the first cycle of 30 integers from 11 to 40, d assumes the values
11, 13, 17, 19, 23, 29, 31, 37. This technique eliminates from the test those
values of d (d >10) that are divisible by 2, 3, or 5.

To translate this algorithm into a suitable Solver equation we use the fol-
lowing techniques:

1. Use nested IF functions to test for a factor of 2, 3, 5, or 7.
2. Use a final nested IF as a loop that looks for prime factors > 11.

The Factors and Primes Equation

The following Solver equation uses the algorithm described above to
determine the prime factors of a number.

Equation: Comments:
FACTOR:

FACT=0xL(E:N)

Equation name.

Stores N in intermediate variable E
so that initial value of N will not be
lost.

+IF(MOD(N:2)=0:
OxL(E:2):

If 2 is a factor store 2 in E, otherwise
continue.
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IF(MOD(N:3)=0:
OxL(E:3):

IF(MOD(N:5)=0:
OxL(E:5):

IF(MOD(N:7)=0:
OXL(E:7):

L(J:0)

+¥(D:11:SQRT(N):2:
IF(G(J)=1:0:
IF(L(C:MOD(D-10:30))
=1 OR G(C)=3 OR
G(C)=7 OR G(C)=9 OR
G(C)=13 OR G(C)=19
OR G(C)=21 OR
G(C)=27:

IF(MOD(G(E):D)=0:
OxL(J:1)xL(E:D):
0):

0)))))))

+G(E)+L(J:0)x
L(N:N=G(E))

If 3 is a factor store 3 in E, otherwise
continue.

If 5 is a factor store 5 in E, otherwise
continue.

If 7 is a factor store 7 in E, otherwise
continue.

Initializes "first factor" flagJ to zero.

If the first prime factor has already
been found (J =1) zeros are added.
If not, the prime divisors greater
than 10 are generated.

Tests to see if current value of D is a
prime factor.

If so, value of D is saved and "first
factor" flag J is set.

If not, loop gets next value of D .

Other argument of the first IF func-
tion. Only occurs if no prime factors
are found.

Returns the value of the first prime
factor encountered, clears the "first
factor" flagJ, and adjusts N to its
new value (N, /D).
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Remarks on Using the Equation.
m 7 must be an integer > 1.
m To eliminate extra trailing zeros, set your display format to "ALL".

m You should expect long execution times for very large integers.

Example Problems

Enter the Solver equation FACTOR, taking special care to include the
correct number of parentheses and to put spaces around the AND func-
tions. When your equation matches the equation listed, press = CALCE,
then set your display to ALL. You should see only = FACTZ and =N = on
the menu of variables.

Keys: Display: Description:

Set the display to ALL.

EALLE

924ENE N=924 Stores number to be
factored.

SFACT= FACT=2 First factor.

EFACTE FACT=2 Second factor.

EFACT= FACT=3 Third factor.

EFACTE FACT=7 Fourth factor.

* To set the display to ALL on the HP-19B, use the following keystrokes: EALLE.
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FACT=11
FACT=1

Fifth factor.

FACT

A result of 1 indicates
complete factorization.

FACT

Thus, 924=2x2x3x7x 11.

Example 2. Find all the prime factors of 3623.

Make sure that your display is still set to ALL as in the previous example.

Keys: Display: Description:

3623 =NZ N=3,623 Stores number to be
factored.

EFACT = FACT=3,623 Indicates 3623 has no
prime factors...it is
prime itself.
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Vector Operations

Because vectors arise frequently in engineering computations, it is con-
venient to have several vector operations available. The most common of
these are the cross product, the dot product, the magnitude of a vector,
and the angle between 2 vectors. Given the vectors Vy=xi +y,j +z,k
and Vy=x4 +y,j +z.k defined in a 3-dimensional rectangular coordinate
system, the definitions are as follows:

Cross product:

VixVo=|x1 y1 24

X2 Y2 22

Dot product:

ViVa=xwotywatziza
Magnitude:

Vi |-VEeyEea
Angle between vectors:

1 ViVa
y=cos™
AIE
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The Vector Operations Equation

Since it is convenient to have all the functions defined above available on
a single menu, nested IF S functions are used. The equation is as follows:

Equation: Comments:

VECTOR:

IF (S (CROSS) : CROSS:
IF (S (DOT) : DOT:
IF (S (ANG) :ANG:MAG)) )=

OxL (M: SQRT (SQ(X1) +
SQ(Y1)+8SQ(21)))

+IF (S (DOT) OR
S (ANG) : OxL (C: X1xX2+
YIxY2+Z1xZ2)

+IF (S (ANG):
ACOS (G (C)+ (G (M) x
SQRT (SQ (X2)+SQ(Y2)+
$Q(z22)))):G(C))

:IF (S (MAG) :G(M) :

Equation name.

Nested IF’s to assign result to proper
variable.

Stores magnitude of ¥ in intermedi-
ate variable M .

If DOT or ANG are desired, com-
pute dot product and store in inter-
mediate variable C.

If solving for angle, compute angle; if
solving for dot product, recall C.

If dot product or angle is not being
solved for, check if magnitude is
sought. If so, recall M.

OxL (A:Z1xX2-X1xZ2)Xx
L(B:X1xY2-Y1xX2)+
L(X1:Y1xZ2-Z1xY2)+
OxL(Y1:G(A))+
O0xL(Z1:G(B))))

If not, then cross product is the only
possibility left and it is computed.
The intermediate variables 4 and B
will store the y- and z-components of
the resulting vector until equation
finishes using the original com-
ponents of V;.
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Remarks on Using the Equation. L I 9 Keys: Display: D L.

m DOT,MAG, and ANG leave the x, y, and z-components of their e 9 ) pray: escription:
arguments unchanged. ?{ou can then do computations using the same ® | 10(x|200=X1 = X1=2,000.0000 Stores x-component of
vectors without re-entering the vector components. I Q 200d.

» The magnitude of ¥, is calculated when the MAG function is exe- * 9
cuted. e l ® = MORE = 7.3 |x] 200 Stores y-component of

m CROSS returns the resulting vector as ¥;. The x-component is ) ‘ PS =Yis Y1=1,460.0000 200d.
displayed and the other components can be viewed by using the P \ 41[+/-][xJ]200Ez1= Z1=-820.0000 Stores z-component of
key. This feature is useful for chain calculations. 9 200 d

a For two dimensional vectors, simply consider that the k component @ 9 —
does not exist, i.e. enter 0 for the z’s. e 008EX2E X2=0.0080 Stores x-component of

9 B.
e @ 0015[+/-]EY2% Y2=-0.0015 Stores y-component of

Example Problems @ ® B.

Key in the equation described above, making sure to put spaces around @ 9 .0049 =222 Z2=-0.0049 Stores z-component of
the OR function. When you finish, press = CALC £ to display the menuof  @u s B.
variables. = == =

¢ s = MORE ZE CROSS = CROSS=-8.3840 x-component of force

Example 1: Force on a Transmission Line. A long straight P9 per unit length

transmission line carrying a DC current of 200 A in the direction - ) =MOREE ff

d =10i +7.3j —4.1k (m) is immersed in a uniform magnetic field L 3 s TRC L——é\(ﬁ V1 =3.2400 y-com?:);lent l(1) orce

| B =.008i -.0015j —.0049k where B is in Wb/m?. Find the force per unit Py D . per unit lengt
J length (N/m) acting on the wire. "’ 9 E2E Z1=-14.6800 z-component of force
- per unit length
The force per unit length is given by é 9
e 3> Tl;us, the force per unit length acting on the wire is
F @ —8384i +3.24j -14.68k (N/m).
—=1d xB
l (5 :
c » Exalpple 2: quk Done by a Space Probe. A space probe must be
‘ - ) ) . - rt.apo.smoned by flight controllers on earth so that it can achieve a better
where / is the length of the wire and I is the DC current 1n the wire. Py viewing angle of one of Saturn’s rings. To place the probe in a proper
| = position fo.r obtaining photographs, it must move to a position
¢ =) 100i +534j +378(c (!(m) from its present position. The probe is acted
Y s upon by the- grav1t_at10na1 fields of several bodies which exert a total force
| ‘ of F=~52 +34j - 1.6k (N). Find the energy expended by the probe in
] [ 9 moving to the desired position.
| b 3
|
b @
L N
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4 | 9
The work done is given by the formula ® 9
W=F-d ® l 9 Example 3 An.gle.for a Mounting Bracket. A mounting bracket
| ' for supporting a sign is to be constructed as shown in the figure below.
where d is the vector of motion. (Y 9 What angle a should be used for the dimensions given? Also, find the
'Y l length of cable needed.
Set the display format to "FIX 2" for this example. ° |
Keys: Display: Description: Y |
M[MODES|Z FIXE 2 Set the display to FIX2. @ |
| [iNPUT]" ® |

1 100 EX1 £ X1=100.00 Stores x-component of

distance vector. Mounting -

VLWV WOLWVOVLVYVLIPESEYVOVUVUVVOLVOVOOGISIOSIOSINOGINOGOS

Bracket
S MORE = Stores y-component of
534=SY1E Y1=534.00 distance vector.
378712 Z1=378.00 Stores z-component of
distance vector.
5.2 EX2E X2=-5.20 Stores x-component of z
force vector.
y
| 34EY2Z Y2=3.40 Stores y-component of
’ force vector. X \
1.6 S22= Z2=-1.60 Stores z-component of |~

force vector.
Represent the cables as vectors going from the wall to the brackets and
compute the angle. a between them for the bracket angle. For the length
of cable needed, find the magnitude of the vector representing one cable.
By symmetry, the total cable length is twice this.

EMOREZZDOT= DOT=690.80 Dot product.

Thus, the energy expended is 690.8 kJ.

For this example set the display mode to "FIX 2" and the angular mode to
degrees.

* To set the display to FIX 2 on the HP-19B, use the following keystrokes: SAXE2
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Keys: Display:
M[MODES|EFIXE 2
[iNPUT]"
B MODES | = MORE =
=p/RE[EXT)!
5EX1= X1=5.00
EMORE=
STO|EX2E X2=5.00
2EVv2= Y1=2.00
SY2% Y2=-2.00
7[z)12
[+]a[=)[+/-JEz12 Z1=-458
STO|Z22E Z2=-4.58
SMORES =ANGE ANG=32.86
SMAGE MAG=7.07

Description:

Set the display to FIX 2,
if necessary.

Set degrees mode, if
necessary.

Stores x-coordinate of
cable 1.

Stores x-coordinate of
cable 2.

Stores y-coordinate of
cable 1.

Stores y-coordinate of
cable 2.

Converts 4 feet 7 inches
to decimal feet and
stores as z-coordinate of
cable 1.

Stores —4.58 feet as the
z-coordinate of cable 2.

Angle between cables in
degrees.

Length of one cable in
feet. (Double this for
total cable needed.)

* To set the display to FIX 2 on the HP-19B, use the following keystrokes: EFXE2

t To set degrees mode on the HP-19B, use the following keystrokes: Wl

[EXIT].
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Thus, the total length of cable needed is about 14 feet 2 inches and the
bracket should have an angle of about 33°.
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Meriam, J.L., Engineering Mechanics, Vol. 1 and 2, John Wiley and Sons,

New York, 1980.

Resnick, Robert and David Halliday, Fundamentals of Physics, 2nd Edi-

tion, John Wiley and Sons, Inc., New York, 1981.

2: Vector Operations




.J

Complex Number Operations

Given the complex numbers x =a + i = re®and y = c + id = mei%, the

following operations will be implemented:
Addition: x+y=(a+b)+i(c+d)
Subtraction: x-y=(a-b)+i(c-d)

Multiplication: xy =(ac — bd) +i(ad + bc)

X _ (a+ib)(c-id)

Division: 5 T
Logarithm:  In(x)=In(re*’)=In(r) + i6
Power: x¥ = o = pyInz
Inverse: 1_a-ib

x  a2+b2
Swap: exchanges x andy

The Complex Operations Equation

The Solver equation listed here implements the operations described
above.

Equation: Comments:

COMPLEX: Equation name.

IF (S (SWAP): Is a swap desired?
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Ox(L(R:RX)+L(I:IX))

~L(RX:RY)+Ox(L(IX:IY)
+L(RY:G(R))
+L(IY:G(I)))

+SWAP:

IF(S(MUL) OR S(DIV):

IF(S(DIV):

Ox (L(RX:RX
+SQ(RADIUS(RY:1Y)))

+L(IX:IX
+SQ (RADIUS (RY:IY)))

+L(R: RXXRY+IXXIY)

+L(IX:IX<RY-RXxIY))

-L(RX:G(R))

If so, store the real and imaginary
parts of x in the intermediate vari-
ables R and /.

Store the real and imaginary part of
yinx.

Store the original contents of x iny.

End of execution when SWAP is
solved for. Mulitiplication by zero
has been used to assign proper
results to variables. This leaves the
effective equation —SWAP +RX =0.
This is solved directly to obtain
SWAP =RX.

Are either multiplication or division
desired? (Note the spaces around
OR))

If so, is division desired?

If division is desired, execution
comes here. Real part of x (RX) is
divided by denominator in division
definition above. This becomes new
RX.

Analagous operation is done on

imaginary part of x (IX).

R is used as an intermediate variable
to store the final value of RX (old
value of RX is still needed).

IX given its final value. Note that a
2nd closing parenthesis encloses
those functions that are multiplied by
0.

Assigns RX its proper value.
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+DIV:

0x (L (R: RXxRY-IXxIY)

+L(IX: IXXRY+RXXIY))

End of execution when DIV is solved
for. Multiplication by zero has been
used to assign proper values to vari-
ables. This leaves the equation

~RX +DIV =0. This is solved
directly to obtain DIV =RX .

If multiplication is desired, execution
jumps to here. This line uses R as
an intermediate variable to store the
final value of RX (old value of RX is
still needed).

IX given its final value. Note that
2nd closing parenthesis encloses
those functions that are multiplied by

+OxL (IX:IX+IY) :

IF (S(SUB) :

SUB-L (RX:RX-RY)

+OxL(IX:IX-IY):

Assigns IX its proper value without
disturbing the equation ADD —

RX =0 that was generated in the pre-
vious line. This is solved directly to
give ADD =RX .

If ADD is not desired execution
jumps to here.

If SUB is desired, RX is assigned its
proper value.

Assigns IX its proper value without
disturbing the equation SUB -

RX =0 that was generated in the pre-
vious line. This is solved directly to

e e s et s iy — SR SV S SN S SRS Sy
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0. give SUB =RX.

-L(RX:G(R)) Assigns RX its proper value. IF(S(INV): Is 1/x desired?

+MUL) : End of execution when MUL is L(RX:RX+L(R:SQ( Assigns new value to RX while stor-
solved for. Multiplication by zero RADIUS (RX:IX)))) ing a%+b? in intermediate variable R

has been used to assign proper
values to variables. This leaves the
equation —RX +MUL =0. This is
solved directly to obtain MUL =RX.
Note the closing parenthesis after
MUL to finish the IF(S(DIV) argu-
ment. The colon refers to the 2nd

for use in next step.

+OxL(IX:-IX+G(R)) Assigns new value to X .

-INV: Multiplication by zero leaves the
effective equation RX —INV =0.
This is solved directly to give

INV =RX.
half of the IF(S(MUL) OR S(DIV)
argument. Ox(L(LNX: If SUB is not desired, execution
o L IN(RADIUS (RX:IX))) jumps to here. LNX is used as an
IF(S(ADD): Execution jumps to here if neither intermediate variable to store the

MUL or DIV are desired and checks

. . ] final value of RX (old value of RX is
to see if ADD is desired.

still needed).

+L(IX:ANGLE(RX:IX))) Final value of IX assigned if LNX is
desired. IfxY is desired, IX will be
changed again later. Note that the
3rd closing parenthesis encloses
those functions multiplied by zero.

ADD-L (RX:RX+RY) If ADD is desired, RX is assigned its
proper value.

66 2: Complex Number Operﬂibns

T EEXEEFNFEEENEEEERENNEN NN R RN NN N N N N N N N/

2: Complex Number Operations 67




-L(RX:G (LNX) )

+IF (S (LNX) :
LNX:

LNX+0xL (R: RXxRY—
IXxIY)

+0x (L (IX: IXXRY+
RXxIY)

+L(RX:G(R)))

~L(RX:EXP (G (R))x
CoS (IX))

+0xL (IX:SIN (IX)x
EXP(G(R)))

+X¥))))))

Assigns RX its final value if LNX is
desired. If x¥ is desired, RX will be
changed again later.

Is LNX desired?

If so, execution stops. Multiplica-
tion by zero has been used to assign
proper values to variables. This
leaves the equation —RX +LNX =0.
This is solved directly to obtain
LNX =RX.

If LNX is not desired, then the only
option left is XY (x¥). LNX is
added to the - L(RX:G(LNX))
encountered two lines previously to
give a zero result. Then, R is used
as an intermediate variable to store
the real part of yIn(x).

IX is assigned an intermediate value
of the imaginary part of y In(x).

RX is assigned an intermediate value
since its old value is no longer
needed. Note that the 3rd closing
parenthesis encloses those functions
that are multiplied by zero.

Final value of RX is assigned.

Final value of IX is assigned and
multiplied by zero.

The remaining equation is

—-RX +XY =0. This is solved directly
to give XY =RX . The six closing
parentheses are required to conclude
all of the nested IFs.
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Remarks on Using the Equation.

m All functions (4DD, SUB, XY, LNX, MUL , SWAP, INV , and DIV’)
return the real part of the result when evaluated. The real and imag-
inary parts of the result are placed in RX and LX respectively and can
be viewed using the key. The real and complex parts of y are not
changed.

m For XY and LNX to give proper results, radians mode must be set.

m The equation will not allow RX, IX, RY, or IY to be unknowns. A
"solution" will be returned, but it will not be correct.

® An infinite family of solutions for In(x) exist of the form
In(x)=In(r)+i(f + 2nk ), where k =0,1,2,...
LNX returns the principle value of this family of solutions (k =0).

® XY likewise returns the principle value when an 7 th root is sought.

Example Problems

When your Solver equation matches the one listed, press = CALC = to
display the menu of variables.

Example 1: Parallel Impedance. Find the total impedance Z,, for
the circuit illustrated below. Assume the circuit is excited with a
sinusoidal source of frequency f = 60 Hz.

O
150 Q 100 Q
2y
25 uF —— 65 mH
N
O
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The elements in series are simply added to give the branch impedances
Z,=150-1106.1033 and Z =100 +i24.5044. The circuit is redrawn below.

O

The formula for two impedances in parallel is

Zae
m—— + e
Z, Zp
Keys Display: Description:
150 S RX= RX=150.0000 Stores real part of Z,.
106.1033 SIXE IX=-106.1033 Stores imaginary part of
Z,.
100=ZRY= RY =100.0000 Stores real part of Z,.
245044 1Y = IY =24.5044 Stores imaginary part of
Z,
SMOREE=INVE INV=0.0044 Real part of 1/Z,.
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x (1/Z;) andy (Z2)

SSWAPE= SWAP =100.0000 swapped. Real part of
number in RX is
displayed.

EMOREEZINVE INV=0.0094 Calculates 1/Z, and
displays real part.

SADDE ADD=0.0139 Calculates 1/Z, + 1/Z,
and displays real part.

SINVE INV=71.8042 Final result calculated
and real part displayed.

= MORE £ = MORE = Recall imaginary part of

SIXE IX=—4.3021 final result.

Thus, the total impedance Z;, is 71.8042 - i4.3021 (0).

Example 2: Logarithm of a Negative Number. Find the natural
logarithm of -12.

Be sure to set your calculator to radians mode before performing this
example.

Keys: Display: Description:

B MODES | = MORE £ Set radians mode.
=D/RE *

M{CLEAR DATA| Sets all variables to zero
12 and stores real part of
=ERXE RX=-12.0000 X.

* To set radians mode on the HP-19B, use the following keystrokes:
(ExiT].

[t
}E
]
iy
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Real part of result.

= MORE =

SMOREZZ LNX= LNX=2.4849 References

Z MORE = Imaginary part of result Boas, Mary L., Mathematical Methods in the Physical Sciences, John Wiley
= & = IX=3.1416 (7). and Sons, New York, 1983.

Nilsson, James W., Electric Circuits, 2nd Edition, Addison-Wesley, Read-

Thus, In(-12) = 2.4849 + im. ing, MA, 1986.

Example 3: Complex Roots. Find v 27+136. . .
P P Van Valkenburg, M. E., Network Analysis, 3rd Edition, Préntice-Hall,

Be sure to set your calculator to radians mode before performing this Englewood Cliffs, New Jersey, 1974.

e —— e s e — —— — — — Vo—

example.
Keys: Display: Description:
M MODES]=MORE = Set radians mode, if
=p/RE " necessary.
M CLEAR DATA | Sets all variables to zero
27 =RXE RX=27.0000 and stores real part of
X.
36 IX= IX=36.0000 Stores IX .
SERVE RY=0.5000 Stores RY .
= MORE = = MORE £ Real part of Vx .
=EXYE XY =6.0000
‘ ZMOREE= Imaginary part of Vx .
i RCLIZIXE IX=3.0000

Thus, V' 27+i36=6+13.

* To set radians mode on the HP-19B, use the following keystrokes: Wl
[ExT].

(Lt
o
]
[t
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| Angle-Side-Angle (43,5, 4;)
Triangle Solutions o | Aymcos=(— cos(A +43)
The triangle solutions Solver equation can be used to find the area, the | 2 | =S, sindg
lengths of the sides (S1, S2, S3), and the angles (4,45, A3) of a triangle. sinA,

Sa=S,c0843 + Syc0sA4,

Side-Angle-Angle (S, 4, A7)
As=cos~!(-cos(4;+A43))

—

The problem has been reduced to the 43, S, 4, configuration.

o090 00

Side-Angle-Side (S;,4,, S5)
S3=‘\/S12+S22_2S]_S2COSA1

The problem has been reduced to the S, So, S5 configuration.

Triangle Formulas Side-Side-Angle (S, S,, 45)

The following formulas are used as the basis for the triangle solutions

. 1|82 .
A 3= sm— L _S sind 2
Solver equation. L

5,59 A;=cos~ (- cos(45+A43))
ide-Side-Side (S, S, ‘ .
Side-Side (532 54 The problem has been reduced to the 43, S, 4, configuration. Note that

1
| P(P-S2) 2 two possible solutions exist for 44 if 44 is not equal to 90° and S, is
Ag=2cos S.Ss greater than §,, as shown below. Both possible answer sets are calcu-
. lated.
P(P-S,) r
Ay=2cos ——F—
a5,

where P =(S,+S2+53)/2
A,=cos~}(—cos(Az+A43))
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In all cases, the area is calculated as

Area = %SISS sinds.

The Triangle Solutions Equation

To use the Solver equation described below, simply key in the three
known values and solve for the appropriate variable. After the calculator
finishes solving the triangle, it displays the area. To view the sides and
angles, use the key and the appropriate menu key.

Equation:

TRIANGLE:

IF(S(SSS) OR S(SAS):
IF(S(SAS):

OxL(S3: SQRT (SQ(S1)
+5Q(52) -2xS1xS2
xCOS (G(A1)))):

0)
+0xL (P: (S1+S2+83)+2)

+0xL (A3 : 2xACOS (SQRT
(G(P)x(G(P)-52)
+(S1x83))))

+0xL (A2 : 2xACOS (SQRT
(G(P)x(G(P)-S1)
+(52xS3))))

+0xL (A1:ACOS (-
COS (OxA1+A2+A3)))

- .5xS1xS3xSIN(A3)

76 2: Triangle Solutions

Comments:

Equation name.
Solving for SSS or SAS?
If so, solving for SAS specifically?

Calculates S 3. Triangle is now in
SSS configuration.

Does nothing if SSS is sought.
Defines intermediate variable P.

Calculates 4 3 according to SSS for-
mula.

Calculates 4 2 according to SSS for-
mula.

Calculates 4 1 according to SSS for-
mula. Notice multiplication by zero
employed to force 4 1 to appear on
the menu before 42 and A 3.

Calculates area.
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+IF(S(SSS) :SSS:SAS):

IF (S(SSA):

IF(G(FLG)=1 AND
S§2>81:

OxL (A3 :2xASIN(1)-
A3)+0xL(FLG:0) :

OxL (FLG: 1) +0xL(A3:
ASIN(S2xSIN (A2)
+51)))

+0xL (Al :ACOS (-
COS (A2+A3))):

0)

+IF (S(SAA):0
xL (A3 : ACOS (-
COS (A1+A2))):

0)

+0xL (A2 : ACOS (-
COS (A1+A3))) .

+0xL(S2:S1
xSIN(A3)+SIN(A2))

+0xL(S3:81
xCOS (A3) +S2xCOS (A2) )

Assigns area to proper variable. If
solving for SSS or SAS execution
stops here.

If not solving for SSS or SAS,

execution jumps here. Checks to see
if SSA is sought.

If SSA is sought, check flag and side
relationship to see which solution set
will appear.

If flag is set, convert 4 3 to its other
possible value and clear the flag.

If flag is clear, calculate 4 3 accord-
ing to principle value of arcsine func-
tion. Set flag so the next time SSA4 is
sought the other solution set will be
generated.

Calculates 4 1. Problem is now
reduced to ASA configuration.

Other argument of IF(G(FLG) =1:
from above. Does nothing if SSA is
not sought.

If SAA is sought, calculate 43
accordingly. Problem is now
reduced to ASA configuration.

Does nothing if SAA4 is not sought.

Calculates 4 2 according to ASA for-
mula.

Calculates S 2 according to ASA for-
mula.

Calculates S 3 according to ASA for-
mula.
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- .5xS1xS3xSIN(A3) Calculates area.

+IF(S(SSA) :SS8A:
IF(S(SAA) :SAA:ASA)))

Nested IF functions assign area to
proper variable.

Remarks on Using the Equation

u Label the sides and angles of the triangle you wish to solve so they are
consistent with the illustration on page 74. As you move clockwise
around the triangle, the labels must be in the order
Sl)AI’ SZ’AZ’ S39A3'

® Angles must be in units corresponding to the angular mode of the cal-
culator (degrees or radians).

» Note that the triangle described by the equation does not conform to
the standard triangle notation, i.e., 4 is not opposite S 1.

m Angles must be entered as decimals. The £ >HR= key can be used to
convert degrees, minutes, and seconds to decimal degrees.

® The accuracy of a solution may degenerate for triangles containing
extremely small angles.

m If the calculator displays SOLUTION HOT FOLUMD, there is no trian-
gle satisfying the given dimensions.

m When the Solver equation uses the SSA formula, the first solution set
is displayed. To see the second set, solve for $54 again (it is not
necessary to re-enter the dimensions). Subsequent pushes of = SSA =
will alternate between the two solution sets.

Example Problems.

Enter the Solver equation described above, taking care to put spaces
around the OR functions and to use the proper number of parentheses.
When you have finished, press £ CALC £ to display the menu of variables.

78  2: Triangle Solutions

X X XX XX XXX X.

L 4
L g
L
L
e
¢
LS
L
L
' 3
L
S
&
&
»
»
»

>

¢

L 2

W WOV UVIUVOVUVIVIVIVOVIOVOVIOIPDPIOOPDOIIOEIBEOENMNO

Example 1: Surveying a Land Parcel. A surveyor is to find the
area and dimensions of a triangular land parcel. From point 4, the dis-
tances to B and C are measured with an electronic distance meter. The
angle between AB and AC is also measured. Find the area and other
dimensions of the triangle.

171.83

meters S, S, 297.35

T!lis isa .side-angle-side problem. Labeling the triangle to be consistent
with the illustration on page 74 we have:

§,=171.63,4,=98.2°, and §;=297.35.

For 1:‘tTh)l(s example set the angular mode to degrees and the display format
tO " 2‘"

Keys: Display: Description:
M[MODES|EFIX= 2 Set the display to FIX
[nPUT]" P >
W[ MODES | = MORE = Set de i

W MOoD = grees mode, if
=p/RE[EXT] necessary.

17163581 $1=171.63 Stores side 1.

* To set the di i
fo se e display to FIX 2 on the HP-19B, use the following keystrokes: EFRXE2

t To set degree - i SD/RE
o 5 grees mode on the HP-19B, use the following keystrokes: IR ED/RE
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297.35=852= $2=297.35 Stores side 2. :] Example 2: Phasor Diagrams. For a certain circuit it is known that
- the three voltages V; +V;+V3=0. The voltages are complex quantities
SAIE =98. St L 1tVatVs ;
$B2EMZ A1=98.20 ores angle ‘| and can be expressed in a phasor diagram as shown below. The magni-
=MORE= = GASZ= SAS=25,256.21 Area of land in square tudes are measured with a voltmeter and are as shown. Find the angular
meters. relationships between the voltages.
RCLIZEA3 = A3=53.97 Angle 3 (angle at point
C in the figure).
= MORE = = MORE = Angle 2 (angle at point
[RCLIEA2= A2=27.83 B in the figure).
RCL|I=ES3 = $3=363.91 Side 3 (BC in the
figure).

V=92V
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Q} 9
The phasor diagram can be re-drawn as the triangle shown below. We e 9 _ == =
now have a side-side-side problem. ._l = MORE = = MORE = A1=23.16 Angle 1.
1 9 [RoEm=
.‘l 9 [RCLJEA2E A2=109.16 Angle 2.
¢ 9
‘| @ Thusf = 180° - A; = T084° and 6, = 180° - A5 = 132.32°.
e | 9
el o Reference
@ I 9 Munem, M.A, Foulis, D.J., College Trigonometry with Applications, Worth
l Publishers, Inc., 1982
@
el,
® I o
® s
ML,
Make sure that the calculator is still in FIX 2 and degrees mode, as set in ¢ l 9
the previous example. e l s
Keys: Display: Description: L } S
221 581= $1=221.00 Stores side 1. ¢S
- : ®
173=82= $2=173.00 Stores side 2. ¢
92 =83 $3=92.00 Stores side 3. ¢ 9
=MOREEZZ=SSS= §$88=7,517.13 Area of triangle (no < d
physical interpretation 9
in this example). L 2 )
e A3=47.68 Angle 3. ¢ 5
¢S
¢S
®S
3
)
® S
>
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3 x 3 Matrix Operations

This Solver equation calculates both the determinant and, if it exists, the
inverse of a 3 x 3 matrix. The inverse exists only if the determinant is not
equal to zero. Using these results, a system of 3 linear equations in 3
unknowns may be solved.

Defining Equations

Let
ay a2 a3
A =|ay ax axs
a3 4z 433
then
ax ax a2 433 12 453 T
Qs Q33 - Az 433 Ay Qo
) 1 ag 4z ay a3 ay a3
A =—d; " | as ass asz 4s3 T ez axn
ag ax ap a2 ay a2
i as a4z " | as ax az ax
where
det = 11 (Apass — @8x) — G12(@nds ~ axas)
+ ay3(@n s - axnds)
and
ab
cdl= ad — bc.
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Solving a System of Linear Equations

A set of three linear equations in three unknowns can be written as:
Xy + aXz t ay3x3 =€y
AopXy + AopXo + ApXa = Cq
Az X, + AapXy + AzzXs = C3

where each a;; is a constant coefficient, each ¢; is a constant, and each x;
is an unknown.

This system of equations is written compactly in matrix form as
Ax =C

where

ay Q2 Q13
Gy Ay G (coefficient matrix),
a3 Q3 Q33

X1
X =[x, (unknown vector),
X3
and
51
C=|c 2

C3

(constant vector).

The unknowns are then found as

x = A-IC.
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The 3 x 3 Matrix Operation Equation

This Solver equation uses the equations described previously to calculate
the determinant and inverse of a3x3 matrix and, using these results, to
solve a set of three linear equations in three unknowns.

Equation:
MATRIX:
OxL (M: 1+ (OxA11xAl2+

A13x(A21xG(A32) -A22x
G(A31))-Al2x(—~A23x
A31+0xA32+A21xA33)+
A11x(A22xA33-A23
xA32)))

L (A:A22xA33-A23xA32)
XL (B:A12xA33-A13xA32)
L (C:A12xA23-A13xA22)
L (D:A21xA33-A23xA31)
L (E:A11xA33-A13xA31)
«L(F:A11xA23-A13xA21)

xL(G:A21XA32—A22xA31)

xL (A32:G(M)x— (Allx
A32-A12xA31))

86 2: 3x 3 Matrix Operations

Comments:

Equation name.

Assigns 1/det to intermediate vari-
able M . Notice multiplication by
zero used to arrange the variables
A 11 through A4 33 on the menu.

Assigns @y, of A~! to intermediate
variable 4 .

Assigns @, of A~* to intermediate
variable B.

Assigns a5 of A~* to intermediate
variable C.

Assigns @ of A~* to intermediate
variable D .

Assigns @ of A~" to intermediate
variable E .

Assigns @ of A~" to intermediate
variable F.

Assigns ag of A~1 to intermediate
variable G .

Assigns ag; of A~1 to A32.

—— e —— e ——— — —
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xL(A33:G(M)x(All
xA22-A12xA21))

+OXL(A11:G(M)xG (A))
xL(A12:G(M)x-G(B))
xL(A13:G(M)xG(C))
xL(A21:G (M) x-G (D))
XL (A22:G (M)XG (E))
xL(A23:G (M) x-G(F))
xL(A31:G (M) %G (G))
+IF(S(SIM):

L(X1:0xX1xX2xX3+All
xC1+A12xC2+A13xC3)

+0xL(X2:A21xC1+A22
xC2+A23xC3)

+0xL (X3 :A31xC1+A32
xC2+A33xC3)

-SIM:

1+G (M) -DET)

Assigns as3 of 471 to.433.

Assigns a3 of 471 to A 11.
Assigns a;p of A~ t0.A4 12
Assigns a3 of A1 to A 13.
Assigns @ of A~ to A 21.
Assigns @ of A~1 to A 22.
Assigns ag of A~ to.A23.
Assigns ag of 471 to.A 3L
Solving for SIM ?

Uses multiplication by zero to
arrange variables on the menu and
assigns result to X 1.

Assigns result to X 2.
Assigns result to X 3.

Generates equation X1 - SIM = 0,
which is solved directly to give
SIM =X1.

If SIM is not solved for, the equation
1/(1+det) - DET = Ois solved
directly to give DET = det.
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Remarks on Using the Equation.

®m When DET is calculated, the matrix elements are replaced by the ele-
ments of the inverted matrix. These new elements can be viewed by
using the key and the appropriate menu key.

m The Solver equation will return the value of X 1 when SIM is calcu-
lated and will replace the matrix elements with the elements of the
inverted matrix. X 2, X 3, and the inverted matrix elements can be
viewed by using the key and the appropriate menu key.

® A homogeneous system (every ¢; equals zero) will return the trivial
solution x = 0.

» If the calculator displays SOLUTION NOT FOUND when
solving for DET or SIM , the original matrix elements will remain
intact. This message occurs when the computed value of det 4 = 0.

A matrix with a zero determinant is known as a singular matrix and
has no inverse. When no inverse exists for the coefficient matrix in a
system of simultaneous equations, either the system has no solution or
infinitely many solutions. In some rare cases, the calculator may,
through round-off error, return a zero value for det 4 when the actual
value for the determinant is not zero. For matrices of this kind, an
inverse does exist, but cannot be found using this Solver equation.

Example Problems

When your equation matches the matrix operation Solver equation, press
= CALC £ to display the menu of variables.
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Example 1: Finding the Determinant and Inverse. Find the
determinant and inverse of 4 where

1 2 3

133

1 2 4

Since the matrix has only integer elements, use the display format "ALL"
for this example to eliminate extra trailing zeros.

A =

Keys: Display: Description:
WMODES|" EALLE Set the display to ALL.
1Z2A11E Al1=1 Stores 4 11.
2=A12S A12=2 Stores 4 12.
3EZA13E A13=3 Stores.A 13.
1SA21E A21=1 Stores 4 21.
3=ZA2= A22=3 Stores A4 22.
ZMORE = Stores 4 23
3=A23= A23=3

1ZA31S A31=1 Stores 4 31.
2=ZA32= A32=2 Stores 4 32.
4=A33E A33=4 Stores A4 33.

= MORE == MORE = Determinant of 4 .
EDETE DET =1

* To set the display to ALL on the HP-19B, use the following keystrokes: [DISP]EALLE .
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£ MORE = a; of A7L.
RCL|EA11Z A11=6

RCLIZEA12S A12=-2 apof A7L
[RCL]EAIZE A13=-3 agof A~L.
[RCLIEA21 2 A21=-1 ay of A~
[RCLIEA22Z A22=1 apofA~t.
EMOREE= aqof A7L.
[RCL|EA23= A23=0

[RCL]EA31E A31=-1 ay of AL
RCL|EA32= A32=0 apof AL
[RCL]EA33 = A33=1 asg of AL,

Thus, detA = 1, and

6 -2 -3
A-t=1 -1 1 0
-1 0 1

Example 2: A Singular Matrix. Find the inverse and determinant of
A where

AN

I
SRV
WS
E N )

As in the previous example, set the display format to "ALL."

Keys: Display: Description:
4EA11E Al1=4 Stores 4 11.
6=A12Z A12=6 Stores A 12.
8=A13Z A13=8 Stores 4 13.

90 2 3x 3 Matrix Operations
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5ZA21S A21=5 Stores A 21.

7T=EA22E A22=7 Stores 4 22.
5=EMORE=ZA23=S A23=5 Stores A 23.

2ZA31E A31=2 Stores A4 31.

3=A32E A32=3 Stores A 32.

4=A33= A33=4 Stores 4 33.

£ MORE = = MORE = SOLUTION NOT A~ does not exist.
EDET= FOUND Thus, 4 is singular and

det4 = 0.

You may also wish to recall the elements of the original matrix to verify
that they have not been altered.

Example 3: DC Circuit Analysis. For the circuit below, find iy, i5,

and is. (iy, i, and i3 are all measured in mA.)

470Q 100 Q
A%

%
+ tbar—
5y — 330Q %1009 1 kQ
- / h

The following 3 equations are generated by summing the voltage drops
around each loop.

800i, - 330i; + 0ig=15
-330i; + 530i, - 100i3= 0
Oil - 100i2 + 110013 = 0
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Set your display format to "FIX 4" for this example.

Keys:

WM MODES|E FIX= 4
[INPUT]"

| CLEAR DATA

800=A11=

330 [+/-]1EA12=
SA21E

530 EA22=

=MORE =
100 [+/-]=A23=

[STO|=EA32S
1100 SA33=

= MORE =
152C1=Z

* To set the display to FIX 4 on the HP-19B, use the following keystrokes: EFRXE4

INPUT

Display:

0.0000

A11=800.0000
A12=-330.0000

A21=-330.0000
A22=530.0000
A23=-100.0000

A32=-100.0000
A33=1,100.0000

C1=15.0000
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Description:

Set the display to FIX 4,
if necessary.

Sets all variables in
equation equal to zero
(eliminates having to
explicitly store zeros in
A13,431,C2, and
C3).

Stores 4 11.
Stores 4 12.
Stores A 21.
Stores.A 22.
Stores 4 23.

Stores A 32.
Stores A 33.
Stores C 1.

4____.———————5
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EMOREE=SIM= SIM=0.0254 Solves for the 3
unknown currents and
returns the value of i;.

= MORE £ £ MORE = Recalls value of i,

=MORE=

Sxe= X2=0.0161

RCL|=EX3Z X3=0.0015 Recalls value of i 5.

Thus, i; = 254 mA, i, = 16.1 mA, and i3 = 1.5 mA.

References

Florey, Francis G., Elementary Linear Algebra with Applications, Prentice-
Hall, Englewood Cliffs, NJ, 1979.

Foulis, D. J. and M.A. Munem, College Algebra with Applications, Worth
Publishers, Inc., 1982
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- Coordinate Transformation Formulas
Coordinate Transformations

The following formulas are used to develop the coordinate transformation
The coordinate transformation Solver equation will provide two- and Solver equation.

three-dimensional coordinate translation and/or rotation.

11 my ny

You must input the coordinates of the origin of the translated system e X =X
(X0,Y o Z0), the rotation angle (6) relative to the original system, and the v’ _ Iy my ny y = Yo
axis about which rotation has occurred by giving a d:irectign vector - I mg ng z -2g
(ai, bj, ck) parallel to this axis. Note that the rotation axis passes through . .
the translated origin (xo,y0,20)- A point (x,y,z) in the original system x I, I, g X’ Xo
can be converted to a point (x *,y *,z *) in the new system. Inverse y = e e m Ao

. . . . 1 Mz ms y Yo
transformations are also possible. The figure below depicts two- 2 -
dimensional translation and rotation. | 71 Nz N3 Zo

y where
4 ) L 1y I a*(q)+cosé ab(q)-c sinf ac(q)+b sind
— ”_ —— P-P my my mg| = |ba(q)+csind b%(q)+cosd bc(g)-a sind
v o7 N n, n, ns ca(q)-b siné cb(q)+a sinf c?(q)+cosd
~ I\
1N\
Original System | A and

S——

g4 2: Coordinate Transformations

2922220000000 000000000009509009000000

I Y Y Y Y Y Y Y Y Y Y Y Y Y'Yl

g = (1-cosf)

The Coordinate Transformation Equation

This Solver equation uses the matrix formulas described above to
translate and/or rotate a two or three dimensional coordinate system.

Equation: Comments:

CTRANS: Equation name.

OxL(A:A+L(D: Changes a to a true direction vector
SQRT (SQ(A) +SQ(B) component if it isn’t already. The
+8Q(C)))) intermediate variable D is used for

the magnitude of the original vector.
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|

Qbbb

+0xL(B:B+G (D)) Changes b to a true direction vector

t +OXL (Y’ :G(L2)x(X Assigns proper result to Y during
component if it isn’t already.

-X0)+G(M2)x(Y-YO0)+ forward transformation.
G(N2)x(Z2-20))

+OxL (27 :G(L3)x(X Assigns propef result to Z * during
-X0)+G(M3)x(Y-YO0)+ forward transformation.
G(N3)x(2-20))

+0xL(C:C+G (D)) Changes ¢ to a true direction vector
component if it isn’t already.

+0xL(L1:SQ(A)xL(Q:1—  Assigns proper value to L 1. Note
COS (ANG) ) +COS (ANG) ) that Q serves the role of g in the

L(X’:G(L1)x(X-G(X0)) Assigns proper result to. X~ during
+G(M1)x(¥-G(Y0))+ forward transformation.
G(N1)x(Z2-G(Z20)))
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K
defining equations. 9 -FTRN: Generates the equation

9 ' X “—=FTRN =0, which is solved

+0xL (L2 : AXBXG (Q) - Assigns proper value to L 2. ° directly to give FTRN =X *.
G

OSIN(ANG)) L(X:G(L1)xX’'+G(L2) Execution jumps to here when not
+0xL (L3 : AXCxG (Q) + Assigns proper value to L 3. 9 xY’+G(L3)xZ’+X0) solving for FTRN (implies that
BxSIN (ANG) ) 9 ITRN is sought). Assigns proper

PS result to X when reverse transform-
+0xL(M1:G(L2) +2xC Assigns proper value to M 1. ing.
xSIN (ANG) ) B4 +OXL(Y:G(M1)xX'+ Assigns proper result to Y when
+0xL(M2:SQ(B)xG(Q) + Assigns proper value to M 2. ® GC(M2)xY'+G(M3)xZ’+ reverse transforming,
COS (ANG) ) 9 Y0)
+0xL (M3 : BXCxG (Q) Assigns proper value to M 3. 9 +OxL(Z:G(N1)xX’+ Assigns proper result to Z when
~AxSIN (ANG)) s G(N2)xY’'+G(N3)xZ’+ reverse transforming,

Z0)
+0xL(N1:G(L3)—-2xBx Assigns proper value to N1. s
SIN (ANG)) —ITRN) Generates the equation
) ~ ] X -ITRN =0, which is solved directly

+0xL (N2 :G(M3) +2xAx Assigns proper value to N2. 3 to give ITRN =X .
SIN(ANG))
+0xL(N3:8Q(C)xG(Q) + Assigns proper value to N 3. 9
COS (ANG) ) =
+IF(S(FTRN) : Solving for FTRN ? ~ J

9

v

9

9

9

9

9

9

®
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Remarks on Using the Equation.

m The sign of the rotation angle ¢ is determined by the direction of the
rotation axis and the right-hand rule. Thus, with the thumb of the
right hand pointing in the direction of the rotation axis, the fingers
curl in the positive direction of 6.

m § is given the variable name ANG in the Solver equation. It may be in
cither radians or degrees, depending upon the angular mode of the
calculator.

w It is not necessary to key in a true direction vector parallel to the axis
of rotation. Any parallel vector, whether it has unit magnitude or not,
can be used. The equation will automatically adjust (a,b ,¢) so that
they constitute a true direction vector of magnitude 1.

a Two-dimensional transformations are handled as a special case of
three-dimensional transformation with (a,b,c) set to (0,0,1). This
causes rotation to occur about the z-axis.

 For pure translation, input 0 for 6.
m For pure rotation, input zeros for xq, yo, and zo.

= For forward transforms (original to new) use F TRN (Forward
TRaNsform). For inverse transforms (new to original) use ITRN
(Inverse TRaNsform). FTRN and ITRN return X ~ and X respec-
tively. The other coordinates of the transformed point can be viewed
by using and the appropriate menu key.

Example Problems

The following examples show you how to use the Solver equation to per-
form coordinate transformations. When your Solver equation matches
the one listed, press = CALC = to display the menu of variables.

98 2: Coordinate Transformations
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Example 1: A Two-Dimensional Transformation. A two-
dimensional coordinate system with origin (0,0) is translated to (7,—4).
After translation, a 27° rotation occurs. Convert the points Py(-9,7) and
P,(6,8) to equivalent coordinates in the translated rotated system.

For this example make sure that the calculator is set to degrees mode.

Keys: Display: Description:

_l MOI:_)ES = MORE = Set degrees mode if

=D/RE necessary.

W[ CLEAR DATA] 0.0000 Sets all variables equal
to zero.

1=C= C=1.0000 Stores rotation axis
(0,0,1).

27=ZANGE ANG =27.0000 Stores rotation angle.

EMOREE7ZX0E X0=7.0000 Stores x-coordinate of
translated origin.

4 SYo= Y0 = -4.0000 Stores y-coordinate of
translated origin.

7=EYE Y =7.0000 Stores y-coordinate of
P;.

= MORE = = MORE = Stores x-coordinate of

9 EXE X=-9.0000 P,.

§ MOREZE EMORE= x-coordinate of P, in

EFTRNES FTRN=-9.2622 new coordinate system.

* To set de i
Lo set grees mode on the HP-19B, use the following keystrokes: i

i
o
P
1
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| ]
L { 9
EY'= Y'=17.0649 y-coordinate of Py in e 9 Example 2: A Three-Dimensional Transformation. A three-
RCLIEY'= . I _ .
new coordinate system. @ 9 dimensional coordinate system is translated to (2.45, 4.00, 4.25). After
= & ¢ e ‘ translation, a 62.5° rotation occurs about the (0, -1, —1) axis. In the ori-
SMORES6=X= X=6.0000 Stores x-coordinate 0 "9 ginal system, a point had the coordinates (3.9, 2.1, 7.0). What are the
Py L l 9 coordinates of the point in the translated rotated system?
= =E8EY= =8.0000 Stores y-coordinate of p ‘
SMOREZBYZ =80 P,. d e 9 As in the previous example, set the calculator to degrees mode.
L
EMOREZ = FIRNZ FTRN=4.5569 x-coordinate of P, in e ° Keys: Display: Description:
new coordinate system. > @ . '
) ) L3P M[CLEAR DATA| 0.0000 Clears all variables in
EY'E Y'=11.1461 y-coordinate of Py in "CTRANS" equation.
new coordinate system. @ 9
P 1 =BE= B=-1.0000 Stores b-component of
Now, convert the point P"5(2.7, -3.6) to its equivalent coordinates in the Q\ 9 rotation axis.
original system. -9 =CE C=-1.0000 Stores c-component of
o e L 9 rotation axis.
Keys: Display: Description: o ‘
_ . | 62.5 SANG = ANG =62.5000 Stores rotation angle.
27EXE X'=2.7000 Stores x-coordinate of P
- P’ in new system. - 9 = MORE = Stores x-coordinate of
. £ 9 245=X0= X0=2.4500 translated origin.
36 £y = Y’ = -3.6000 Stores y-coordinate of L .
P’; in new system. £ S 4=Y0E Y0=4.0000 Stores y-coordinate of
) translated origin.
=TRNZ ITRN=11.0401 x-coordinate of P”gin £ _ .
- original system. £ 9 425=20= Z0=4.2500 Stores z-coordinate of
. - translated origin.
y-coordinate of P”3 in (-
Y=-5.9818 original system. é 21=YE Y=2.1000 Stores y-co.o.rdinate of
9 point in original system.
Notice that once the translated origin, rotation angle, and rotation axis LA 757= Z-7.0000 Stores z-coordinate of
have been stored, points can be both forward and inverse transformed ) point in original system.
without re-entering this data. ; _ __ _
=) =MOREZ EMORE= 3.9 Stores x-coordinate of
F 9 =EXE X=3.9000 point in original system.
-
’ 9
! -
/' @
/' @
)
an




= MORE £ = MORE =

EFTRNE FTRN=3.5861
ZY'E Y’=0.2609
EZ= Z'=0.5891

x-coordinate of point in
new system.

y-coordinate of point in
new system.

z-coordinate of point in
new system.

In the translated, rotated system above, a point has the coordinates
(1,1, 1). What are the corresponding coordinates in the original system?

Keys: Display:
15%= X'=1.0000
[STOIEY'E Y’=1.0000
STOIEZE Z'=1.0000
EMRNE ITRN=2.9117
£ MORE = = MORE £
EYS Y=4.3728
RCLIZEZZ Z2=5.8772

102 2: Coordinate Transformations

Description:

Stores x-component of
point in new system.

Stores y-component of
point in new system.

Stores z-component of
point in new system.

x-component of point in
original system.

y-component of point in
original system.

z-component of point in
original system.
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More Step-by-Step Solutions
for Your HP-27S or HP-19B Calculator

These additional books offer a variety of examples and keystroke pro-
cedures to help set up your calculations the way you need them.

Practical routines show you how to use the built-in menus to solve prob-
lems more effectively, while easy-to-follow instructions help you create
personalized menus.

Real Estate, Banking, and Leasing (00017-90019)

Use the TVM menu for real estate, banking, and leasing calculations.
Calculate the annual percentage rate of a loan with fees.

Calculate discounted, adjustable-rate, and bi-weekly mortgages.
Develop menus for graduated-payment and wrap-around mortgages.
Estimate monthly payments and mortgage insurance.

Use menus to calculate Rule of 78s, add-on loans, constant payment
loans, loans with odd first periods, and leases with multiple payments
in advance.

Work with a variety of methods to evaluate savings plans.

Business Finance and Accounting (00017-90020)
m Calculate break-even point, profits, and standard business ratios.

m Make investment decisions using payback period, net present value,
and internal rate of return.

m Solve for variances and other cost-accounting variables.

® Develop menus to calculate the sample size for an inventory audit.
m Perform financial statement, production, and inventory analyses.
m Forecast sales and units to manufacture.



Marketing and Sales (00017-90021)
s Forecast sales using moving averages, exponential growth curves, and
linear regression.
s Determine price, mark-up, and profit.
» Estimate the financial feasibility of a new product.
s Estimate the elasticity of demand.
s Build a "quote maker" for accurate, on-the-spot quotes.

s Base a customized menu on your company’s commission scale to cal-
culate your commission on a product.

Personal Investment and Tax Planning (00017-90022)

s Evaluate savings and IRA plans.
s Solve for funds available upon premature distribution from an IRA.

a Calculate basic mortgage components and the annual percentage rate
of a loan.

s Evaluate your investment alternatives among life insurance, treasury
bills, bonds, stocks, mutual funds, and limited partnerships.

s Calculate the Beta of your portfolio, estimate your stock price volatil-
ity, target your gains, hedge with call options, and estimate margin
account gain or loss.

s Determine your tax and inflation break-even point.

29929990000

How to Order...

To order a book your dealer does not carry, call toll-free 1-800-538-8787
and refer to call code P270. Master Card, Visa, and American Express
cards are welcome. For countries outside the U.S., contact your local
Hewlett-Packard sales office.
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Step-by-Step Solutions
for Your HP-27S or HP-19B Calculator

This book contains advanced Solver techniques and a variety of appli-
cations, equations, and keystrokes to provide solutions for the science
and engineering professions.
B Advanced Solver Techniques
® Two Powerful New Functions: LET and GET
Keystroke Reduction Techniques
Recursive Equations
Menu Variable Arrangement
Solutions for More Than One Variable at a Time

Techniques for Forcing Iteration

Indefinite Loop Simulation

B Use of Trigonometric Functions

Technical and Scientific Solutions

B Greatest Common Divisor and Least Common Multiple
Numerical Integration

Numerical Differentiation

Factors and Primes

Vector Operations

Complex Number Operations

Triangle Solutions

3 X 3 Matrix Operations

Coordinate Transformations
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