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Your Applications Book

The Applications Book is a representative collection of key sequence
routines for solving problems with your HP-45 Pocket Calculator.

We suggest that you first read the introductory material explaining the
Standard Key Sequence Format. Then find the routine you want, and use it.
Numerical examples are provided to enable you to try out routines before
using them. An understanding of the HP-45 Owner’s Handbook is also
required if, in addition, you wish to track the changes in the calculator’s
memory on a step-by-step basis.

The body of the book is arranged in alphabetic sequence of
topics—those you are likely to think of when you want a routine. Thus,
Complex Number Operations are presented in the “C” section; Progressions
are presented in the “P” section, including arithmetic, geometric, and
harmonic progressions. In addition to such main entries, cross-reference
entries enable the reader to find a routine by an alternate route. Thus, in the
“A” section (between ““Arithmetic Mean” and “Average™) a cross-reference
entry, ‘“Arithmetic Progressions,” refers the reader to the page under
“Progressions” where the routine is presented. Similarly, cross-references are
provided for “Geometric Progressions,” and “Harmonic Progressions,” etc.
The contents section at the front is arranged logically (instead of by page
order) to show all the routines available under each of seven broad categories.
The back cover contains an index.

Two key sequence forms are included inside the back cover of this
manual. You may wish to duplicate these forms and record your own key
step programs.
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Standard Key Sequence Format

Shown below is the key sequence routine for computing the roots of the
Quadratic Equation:

AX? +BX+C=0

Using A, B, and C, which you supply as data, the routine produces an inter-
mediate result D. If D<O, one root is the complex conjugate of the other;
the real and imaginary parts of one complex root develop on lines 10 and 11.
Except for the opposite sign of the imaginary part, the other complex root is
identical. If D > 0, the roots are real and develop on lines 6 and 9 (if -B/2A
= 0) or on lines 7 and 9 (if -B/2A <0).

LINE | DATA OPERATIONS DISPLAY REMARKS
1A ol 0 JL 2 I+« JL__ 1)
2| 8 [y [« {[ens ][ t 1] o i
I ion e |
4 [ =11 1 ] 1 ] D 1f D <0, goto 10
I ]I || ] |
5 =] ] -B/2A If —B/2A<0,goto 7
I j| L1l H _ l o
6 ) LI VIVI » l X, Goto8
A s o | |
7 L= Hlews 0 I I | T ]
8 [Crec] ([ H « J(re][ 2. Jl
|9 774L3<:3J[ - 11 ) ]| Stop
LI | — , H+ I ]
10 --I_H——‘I'_H .
n Gl i 1! | v

To execute the sequence, start with line 1 and read from left to right, making
the appropriate keystrokes as you proceed. Interpret the respective columns
as follows:

Data: Information to be supplied by you, the user. In the sample
case, lines 1, 2 and 3 prompt the reader to enter coefficients
A, B and C. To enter negative data, it is merely necessary to
press after pressing the data value.
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Operations:  The keys to be pressed after you enter any requested data item
for the line. is the symbol used to denote the
key of the HP-45. All other key designations are identical to
the HP-45 keys. Ignore any blank positions in the operations
column. The gold prefix key is represented as a solid key with
no lettering (e.g., the first stroke of line 5). The next key to be
pressed is denoted by the corresponding functional name (e.g.,
VX, second stroke, line 5) which, on the keyboard is printed in
gold.

Display: Intermediate or final results which you should, in most cases,
jot down. In the sample case, D is developed so that the reader
can decide which line (5 or 10) to execute next.

Remarks: Conditional and unconditional jumps to specified lines or
other information for the reader. In the sample case, the
reader is prompted to continue with line 10 (ignoring lines 5
through 9) if D is negative. If the condition fails, execution
continues on the next line. In the sample case, the reader
proceeds to line S, if D is zero or positive.

Thus, lines are read in sequential order except where the remarks column
directs otherwise (as in line 4 of the sample case). To assist the reader in
distinguishing lines to be repeated, a sequence of lines making up an iterative
process is outlined with a bold border. The following sequence for computing
chi-square statistic for goodness of fit illustrates this convention.

Formula:
= ~ (0; - Ep)?
E;

—
I
—

where  O; = observed frequency

E; = expected frequency

LINE| DATA OPERATIONS DISPLAY REMARKS

1 [oox [+ ] ][ 1 ]

2 o ([t 1] I i || Perform 2-4 fori=1,2,..,n
3] & |[sto][ [ = [ % ][ re]

4 o o | e | o

In a few cases, an iterative process is embedded in a series of lines which are
themselves iterated.
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Amortization
See page 90

Analysis of Variance (One Way)

The one-way analysis of variance tests the differences between means of
k treatment groups, group i (i = 1, 2, ..., k) has n; observations (treatment
may have equal or unequal number of observations).

The following keysequence yields the analysis of variance table, sum of
squares, mean squares, degrees of freedom, and the F ratio.

Formulas: Kk N0

Total $3= Z CR L i EA

i=1
2
Error SS = Total SS - Treat SS

Treatdf=k -1

Kk
Error df=Z n; -k

i=1

Treat SS
TreatMS = —————
rea Treat df
Error MS = Error S§
Error df

Treat MS

k
Fe """ i k- O
Error MS (with k-1 and Z n; - k degrees of freedom)

i=1
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Example:
i J 1 2 4 5 6
10 8 12 14 11
Treatment 2 6 9 13
3 14 13 10 17 16
Answers:  Total SS=172.93
Treat SS = 66.93
Error SS = 106.00
Treat df = 2.00
Treat MS = 33.47
Error df = 12.00
Error MS = 8.83
F = 3.79 (with 2 and 12 degrees of freedom)
LINE| DATA OPERATIONS DISPLAY REMARKS
1 B c.cAr][sTo [+ |[s70 ] Or turn machine off and on.
2 = 1G] ]l 1
3 1 J[sto [+ [ 4 J§ ] Perform 3-8 fori=1,2,....k
4 x; sto J[ « JL v J[= [ 1 ] Perform 45 for j=1,2,...n;
: Groll - JLz JC C ]
o] eIz Jlre ]l -] -
7 L2 JlsoJl + [ 3 JL o] ]
8 [stoJ{ 1 J[sroll 2 J ]
10 [rec I = 10 s M - 11 ] Total S5 ]
1 [Rer JL 3 Jlmec 17 10 ] h ]
12 (rec = 10 s - 11 ]m};e;tsg
n| A L JC 1 ewass
14 I (cesTx] (R [ & 11 |
15 COC O JC ] et ]
16 L1l | JC__ ] Treatms
17 [ xey [ rec ][5 ][ Rrec J[ - 1
18 CadC_JC_JC 1] erorar
19 [E) I ]I || Erorms
20 L I || | F
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Angle Conversions

Bearing to azimuth
Note: x = bearing

Example:
S42.6° E=137.40° = 137°24’

LINE| DATA OPERATIONS DISPLAY REMARKS
1 ' HEEE 1 1 ] If x is in decimal degrees,
o — — — o fwes
2 [ [ | | o
3 [ [ 11 11 11 J,,, If SX°E, go to 4,
L ][ I[ }! |[ i I#Sx°W, go to 5, ]
CJC JC I 1C 1 oW, 006, |
o e o e ItNCE o0,
* L Jls JLo = L - ] _[sere? _ -
i | | o | ]
5 e J0e 10+ 1C_] Goto?
| C_JC 1C JC 1]
I3 | | N
R e | s | | | ]
7 | I ] I L _ ” } [ J ~ For degrees, minutes,
o | s | |  Jsconts got08.
[ ” ” 777” IL 7J _ Otherwise, stop.
8 [ =] ] ] ")
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Azimuth to bearing
Note: x = azimuth

Method:
If 0 < x < 90°, convert to ND°E
If 90° < x < 180°, convert to SD°E
If 180° < x < 270°, convert to SD°W
If 270° < x < 360°, convert to ND°W

Example:
226°23' = §46.38°W = S46°23' W

LINE| DATA OPERATIONS DISPLAY REMARKS

1 x| oec )T ] I[ ] If x is in decimal degress,
| H 1]l JL__1 g 03,

2 [ | XS | . | | o

3 [ | | o | | 10 <x<90,50107,
[ 11 I{ I ] I 80 < x < 180, ga to 4.
] I [ i ] If 180 < x < 270, go 10 5.
[ 1 1L [ | I 270 < x < 360, go t0 6.

4 Lol e [ o Jh= ][ -1 b |Gotw7?
[ ] LI J [ ]

5 K | I | I | I ] D Goto?
Ll i Ll ||

6 L3 1l e J[ o J[ - J[cns] D

7 | 1 I 1 *] [ ] For degrees, minutes,
[ —|L ” . “ H ] seconds, go to 8.
%[ ] I 1 [ ] [ ] [ | Otherwise, stop.

8 I -ovs] [ I L1
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Radians to degrees
Note: x = input data in radians

Examples:
1. 1 radian = 57.30° (To see full display, press (9])

2. %n radians = 135°

LINE| DATA OPERATIONS DISPLAY REMARKS
L e ] o ] -]
2 I | I | I | ]
3 {ex ][ 11 1 ||
4 x| [ 1 I ] Stop. For new case, go to 3.

Degrees to radians
Note: x =input data in degrees

Examples:

1. 1° =0.02 radians (To see full display, press @ )
2. 266° = 4.64 radians

LINE| DATA OPERATIONS DISPLAY REMARKS

1 - e ] i -
2 (I | AN N | I | [ ]
3 e ]| [ Ii I ]

4 X | X ” I I ]L —I [ l St:);. ;or Vne‘w ::;e; to 3.

Mils to degrees

Example: 1600 mils = 90°

LINE| DATA OPERATIONS DISPLAY REMARKS
v)omis (Lt M e L « J[ v [ 6 ]
2 o J[ = ]l LI I

Degrees to mils

Note: x =input data in degrees

Example: 90° = 1600 mils

LINE| DATA OPERATIONS DISPLAY REMARKS
VoL JE 1 JE e o 1 < ]
2 Ls J[ = i 1Ll l




20 Angle Conversions

Grads to degrees

Note: x = input data in grads

Example: 300 grads = 270°

LINE

OPERATIONS DISPLAY

REMARKS

t

| N | | |

Degrees to grads

Note: x =input data in degrees

Example: 360° = 400 grads

LINE

OPERATIONS DISPLAY

REMARKS

1

J[e J[ = [ 1

Angles of Triangles
See page 190
Appendix
See page 215

Arithmetic Mean

See page 148

Arithmetic Progressions

See page 157

Bartlett’s Chi-Square

See page 36
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Base Conversions

Note:

Base conversion algorithms are given for positive values only. To con-
vert a negative number, change sign, convert, and change sign of result.

Decimal integer to integer in any base
Lio=>Jp
In the following key sequence, f + 1 is the number of digits in Jy,.

d;(i=1,...,f+ 1) represents the i'? digit in J,, counting from left to right, i.e.

Jp =(dyd, — df+1)b

For large numbers, J,, = (d;. d — dgsq), bf, see example 3.

LINE| DATA OPERATIONS DISPLAY REMARKS
1 b Jt ] | ] | 7 ]
12 1 [sto]l 1+ J{ m J[xey J[ w ] |
3 [ =] | S | O | D Let f be the largest
I J i | | integer < D 1
4 [eux ] /| | B | I
5 f Dy Lt It JlrRe J[ + |
6 Cre 10n ey |/ ] S
7 L= ][ meL ] — I i l' E, d; = integer part of E; ]
[ I 11 ] ] ] (=1, ... B i
8 | d [ - JLx ]l J[ ] ] E,
9 o - Jx 11 1 il | Eivs Perform 9 for i=2, ..., f
10 [ex J[ o ] | N | drss
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Example 1:
Convert 1206 to hexadecimal (base 16).

(The hexadecimal digits are 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E, F)

Answer:
1206,9 = 4B6,¢ f=2)
LINE | DATA T! OPERATIONS ! DISPLAY REMARKS
v (L Jt JC 00 I 1 |
2| 1206 [sTo [ 1 J[ m [x2v ][ = 1
3 I I T ] 28 Ji-2
4 Ceox 1L JL_JC 1 ] )
s 2 Del ]t Jre ][] ] )
o e e e | N ]
B COC I IC I 3 a0 e
L T | I | | | | B o L e
o | n = JC _JC_JC 1, s d =6
Example 2:
Convert 513 to octal (base 8).
Answer:
513, =10014
LINE | DATA OPERATIONS DISPLAY REMARKS
I o | i [ |
2| 53 |[sto ][ 1 —len i x2y 1[Cn w] o - 1
2 CIC I I 3] se s
4 S | | R | B B |
5 3 [y ][t 10t ][ ReL l[ 1] - -
6 e I ] B -
7 1 1C I 100 di=1
s | v = J I JC I | 0.02 4 =0
o] o I JC JC JC T ez a0 ]
oo [ - 1L [} ] 1.00 jde =1
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Example 3:
Convert 6.023 x 10?3 to octal.

Answer:
6.023 x 10?3 = 1.7743;5 x 82°

Note:

If we consider 6.023 x 1023 to be a scientific measurement good only
to 4 significant digits, it is meaningless for the octal representation to
contain more than 5 significant digits. Therefore, we stop before the
loop is completed.

LINE | DATA OPERATIONS DISPLAY REMARKS
v s Lt JL+ JLe 10 - [ o ]
[ 2 T s Jeexdl 2 J[ 3 ]
Lsro 101+ J0n Jley [ n ]
=11 ] 1 H ]
5 Lo ]| {l J[ L]
6 26 ([ xey [+ 10t J[mec J[ 1 ]
|
]
]
J
]
]

Hjw N

26.33 f=26 {Note: this gives

the exponent in base 8)

7 Cr 10 1=y [

8 | I JL__JL ] 1ee d =1
9 L | | | I N
10 A | ][ 1 7.54 dy =7
n| 7 I JC 434 di=a )
2| e - J < ][ J[ 10 269 ds = 3 (rounded), stop |

Integer without exponent in base b to decimal
(dydy —dp-1dg)y = Lio

Examples:
1. 7300204614 = 123740465,
2. 7DOF ¢ = 32015,

(A=10,B=11,C=12,D=13,E =14, F = 15 in the hexadecimal
system)

UNE | DATA OPERATIONS DISPLAY REMARKS

[ | I | I | i1 , -
1E i 1L 11 J
] [ X ] I ” l ] Perform 3 for i=2, ..., n-1

|l I | I |

+

N

Q.
—I——

x

+
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Integer with exponent in base b to decimal
dy . dy = dy xbEP > 14

Examples:
1. 3.00025 x 8! =2.577399803 x 10'°
2. D2EE4,¢ x 162® = D.2EE4,4 x 1632
= 4.485999088 x 10%°
(Dys = 13,E46 = 14)

LINE| DATA OPERATIONS : DISPLAY REMARKS

1 b [t J[ ¢+ ][ ”IIW_WIJ_"WV]' ]
2o ee Lo JLJC LI 00 .
s oo [ I ) ] . |
4 [sro ][+ 1] i3 1 N
s, v [ + J0 e ] | -

6 d || x | i ][I ] |

7 g [+ J0 « ]l 1) ‘ Perform 7 for i=2, ..., n-1
8| o |+ Jlrec][a 1< J_]

Fractional decimal number to base b
X10 > Yb

Method:
In the following algorithm, c is the number of significant digits in x.

d; (i =1, ..., c) represents the i™ digit in y,, counting from left to right.
yb =(d; . dy = dc), x b

Examples:

1. 0.2937,6 =2.2635 x 87! =.22635 (c=4)
2. 3.688x1075% =5 A6F 4 x16™° (c=4, A, =10,E,5 = 14)
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1

LINE| DATA OPERATIONS i DISPLAY REMARKS
1 o L+ L JC_JC_1I ]T ]
IER IR i [ e | v = |
E N v s | | | - B (TS
i | s _|megerz0
4 Lewx | I Jf L l‘ -
s oH X~VJL'7J,J,J |[Ret J[_1 ,H, N . ]
z 7 L_H _ H JL J[ _ 7] 577 ,,,,,,,,d mtegerpartgfiii
S i i s s i Y T
8 d [ - H x| |{ _H_._' £
9 d; [ —J[ X H ” ” ] Eisq Perform 9 for i=2, ..., ¢-1
10 Ceo o JC JC AT
Fractional number in base b to decimal
(.dydz = dp)y 2250
or
dl . d2 .- dl’l X b_EXp > a9
Examples:

1. .OE72816 =0.056434631 (EIG = 14)
2. 7.2000675 x 87%°

=4.685338214 x 1072¢

LINE| DATA OPERATIONS i DISPLAY REMARKS

e a1 ]

R R B S | T

3 di [;H X ” ” H ] Perform 3 for i=n-1, ..., 1

« ) 1 there is no exponent, |
N | | o |  [stop.Oterwiego 05, |

s o [+ |MERCsc s 1 1 }

s eo [+ ][+ J[ - JNEERC ]| -

’ 7 | v | | |

Bearing to Azimuth
See page 17
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Bernoulli Numbers

The Bernoulli numbers B;, B,, B ... are defined by
!
an‘z(zn); 1+L+ 1 + ...
(22[1 - 1) ﬂ,2n 32!1 52n

11 1 1 5 691 7

6°30°42°30°66°2730° 6"

specifically

Example:
The 8™ Bernoulli number = 7.09 (i takes the values 1, 2).

LINE | DATA OPERATIONS DISPLAY

REMARKS

o e I G I

I | DN N | N | B

Lsto 1+ Jlex I3 Perform 36 for i=1,2, ..

i L 1 ]LZ —1qu 1 ][ + I untiléjfigir}})tchange

Ce /M 1% e
‘ul._] ]L ] A;

[ | 2 [ ]|
[—)mf_l[_—im

W ® | Nl (v s (W N -

T2 0= /Iy 1]
(- 1= I 102

o

| [




Formula:

Note:

Example:
J,(2) = 0.033995720 (i =
(Press @ to see the whole display.)

Bessel Function of First Kind, Order n

300 = (5 >

x=20

()

£ (n + k)!

Bessel Function of First Kind , Order n

This routine is only good for small values of the argument x.

2,.,6,7)

27

LINE ‘ DATA [ OPERATIONS DISPLAY REMARKS
1 II] III 1 - Il Set machine to desired
‘2** 7n 7 l - | ) decimal set;Tr; B ]
ERI S HZ:HIJ .
‘. C O 0]
5 1 L__JE__]E__IEj': Perform 512 for i=2, 3,
6 - =] - - - 4,0, untit 0, doss ot |
8 ‘l 2 JIRCLJI 3Jl +_,J-k

o IIl-L_lL_lL_J o |wiesmen. |
N C [ o S G
i o o s —
E || | | o
12 rsrurur H—jl—] o

14 --rv e lr ||




28 Binomial Distribution

Binomial Distribution

Formula:
60 =(})p* (1 - pr

where n and x are integers,

(0 waor

0<x<n<69,and

0<p<l.

Example:

If n =6, p=0.49 then
Answer:

f(4) = 0.224913711
LINE| DATA OPERATIONS DISPLAY REMARKS
! p (lsto J[ 1 ][ N | B B ]
(2 x [sollz )1 B ]
3 e 1] B B
o) o |Csod(e J(Re-JCzd, )
5| M s I o o
70 [ = (e[ 2 ] B )
8 | M 0 e ][ )l




Bivariate Normal Distribution

Bivariate Normal Distribution

Formula:
flxy) = —— e PO
21 0,0, V1 - p?
where
1 (x-wm)? (x-p)(y-u - u2)?
P(x,y) = . 21 -2 1) (y - 12) + (y I:z)
2(1 =P ) (3] 0,0, [}
Example:

If/-il =-1l,uy=1,0, =1.5, 0,=.5,p=.7, find f(l, 2)

Answer:
f(1, 2) = 0.04

T
LINE | DATA OPERATIONS : DISPLAY REMARKS

« I JC 11

1

2| w [JC JC JC 0]
3 o [so][o ][ o]z ]
‘ I [ — —
sy
o W [ I 1
7 e (o] ]l e ]le ]
& ["’ H _* ][RCL][ 2 ] ReL ];
S S e | | —
_1_0M ° |sroi|7|775 7][ x__ H - ][ |‘
IR 3 [ | = | . o
2, [0 Jles ]
13 [ e ][5 J--.
14 e = JFe ]3]
I (ara] [

16| =l 1 ]ty
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Bonds

Formulas:

n = total number of days between purchase and maturity

C = decimal coupon rate (on an annual basis)

i = annual yield to maturity (as a decimal)

PV = bond price
Ifn <182.5,
py = 200+100C _ (1 _n > 100C
2+ LI i 180 2
180

If n > 182.5,

-n -n

-\ 182.5 N -\ 182.5 .

PV=100<1+‘—> +100( & <1+_‘>_(1+i> _ 100G
2 i 2 2 2

n
here j = 1 - fractional part of ———
where j ractional part o 1873
Example 1:
What is the price of a 4% bond yielding 3% and maturing in 99 days?

Answer:
100.27

Example 2:

What is the price of a bond which has a coupon rate of 4.5%, a yield of
3.22% to maturity, and the number of days between purchase and
maturity is 18687

Answer:
105.99
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UNE| DATA OPERATIONS DISPLAY REMARKS
1 ¢ |[so ][ v 1 1] [ ] 1fn>1825,got0 9.

| I I J1 J B ]
2 L2 0+ ]I Il [ ]
3 n Lt 0 Q08 [ o J[ = ]
4 Lt J0t J0me JLRe ] ]
5 N | ]ET—“'+ N _
6 Lo Lo JleeeJL v JC 1) | ]
7 (2 =11 ][] ) B
8 Lo J[ x ] I L] v Stop

[ I J[ JC_JC 1)
o o o[ ][ J=2] e
10 [ s 1= s ]3] D Let f = integer part of D
wlot L - 1L Jey ] - [ sto]
12 (I | A | I | [ | ~
) i lso]l 7 J2 JE=JC]
14 [so][s J[rec ][ 3 | I
18 Ly I % J(sto [ s J[Rer ]
16 [ J(rec][ « 1N ] - ]
7 ey - Jrec [ Jx] - ]
18 [Ret ] 7 J[ = J[(retj[ 6 ]
19 e e ] ]
2 Ex 12 = 1107 ] )
2 Lo JLo J[ ] I ] PV




32 Cash Flow Analysis (Discounted)
Cash Flow Analysis (Discounted)
Formula:

PV, = original investment

PV, = cash flow of the k*" period
i = discount rate per period (as a decimal)
Cx = net present value at period k
n
PV;
Co=-PVo+ ) —— :
= (1 +i)
Example:

You are offered an investment opportunity for $100,000 at a capital
cost of 10% after taxes. Will this investment be profitable based on the
following cash flows?

Year Cash flow
1 $34,000
2 $27,500
3 $59,700
4 $ 7,800
Answer:
Final value C, = $3817.36 is positive, so the investment will be
profitable.
LINE | DATA OPERATIONS DISPLAY REMARKS
1 i D JL = Jismo J[ 1 1 - -
2| ey iy |+ ] ]| J[ J| ]
3 Pve [ - ILJL I ] C
4 pv; [[rec J[ 1 ]I I 1 ] Perform 45 for j=2, 3, ..., n
s i oI 1 o




Chi-Square Statistics

Centigrade to Fahrenheit
See page 65

Chi—Square Statistics

Evaluation of Chi-Square for goodness of fit

Formula:
—~ (0; - E)*
2 _ i~ Wi

where  O; = observed frequency

E; = expected frequency

33

Example:

o | 8 50 47 56 5 14

B, | 96 4675 5185 544 825 915
Answer:

x*=4.84

LINE| DATA I OPERATIONS DISPLAY REMARKS
1 fox J[ 1 ]| [ |
2y o OO0 JE L _JL 1) |Peform2zdforimize.n |
3 g |[sto [ v 0 - [ j[re] o -
4 I | I | I | J J
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Chi-Square Statistics

2 x 2 contingency table

observed results

I II Totals
Group A a atb
Group B c c+d
Formula:
2_ (ad-bc)* (atb+c+d)
¥t d@ o+
(Degrees of freedom d.f. = 1)
Example:
I II
A 75 25
B 65 35
Answer:
x%=2.38 (df.=1
LINE | DATA OPERATIONS DISPLAY REMARKS
1 a |['sto ][ 1 ][7 [ |[777] B B )
2 o o2 -~ 1C 1 B
3 ¢ [ sTO ]] »3 —lL,f,,,,”,,,,JI,——J ) -
P I (o | | N | B )
5 W*[VRCL 107 J[rec ][ 4 HIEN B ]
6 [ret [ 2 J[rec ][ s ][ x | |
7 ri—”x’].x [RCLIIL ) |
s ez [+ I ][5 ] O
3 N | | | O
10 IR | | N | R )
1 [rRet J[ 2 J[re ][4 [+ ]
12 > J0= J I | X




Chi-Square Statistics 35

2 x k contingency table

1 2 3 k Totals

A a a, as ag Na
B b, b, bs bk Ng
Totals | Ny N, N, v | Nk N

Formula:
X2=NN %}2_ N_N ;_iz'N
i=g 1 B oz i
Degrees of freedom=k - 1
Example:
1 2 3
A 5
B 8 7
Answer:
=0.02 (df.=2)
LINE | DATA OPERATIONS ! DISPLAY i REMARKS
BN —lciLEARHSTO J 1+ Jfsto0 ] L ]
2 I I J 1 |
3 b; ISTO l[ + ” 2 H T ][1 7]‘ o ] 4Perform3—7fori=1,2,...,k
4 o [so ][+ 11 ] [~ ]‘ ]
5 [ | |IX<-v 1= ]\”
6 -[LASTx][ /Rt [ R ]\
7 [ J{xv ][ + J[ 2 | li ;
8| [Rec J{ 1 Jimre Jf 2 ] + J 4 ]
0 Gro e Jlre ) I ]
10 T [ M | . |
R ez ] JleeJ[e ). |
12 Cx 1+ Jlrec Je JC- ] X |
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Testing a population variance

Given a random sample of size n from a normal population (variance ¢? is
unknown), we can use

n - 1)s?
X2=( 2)
Oo

(where s? is the sample variance) to test the null hypothesis
Ho: o = 04?
Degrees of freedom=n - 1.

Example:

Given a sample { 2.1, 0.5, -3.1, 1.4, -0.92, -1.35, 1.2} and 0,7 = 2.5,
find chi-square.

Answer:
x? =8.13 (d.f. = 6)

LINE : DATA OPERATIONS DISPLAY REMARKS

! I ccARl ] 11

2 x [ =+ ][ [ 1 1[ 1 Perform 2 for i=1,2,...,n
s = 1C 0 g

R = | e

I | N | R | M |

e | o [ ] JC_1C 1

Bartlett’s chi-square

Formula:

k
fln §2 - E fIn S;2
i=1

- k
1 1 1
REC )KZ;—) ] ?]
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where  S;% = sample variance of the i sample
f; = degrees of freedom associated with S;2
i=1,2,..,k
k = number of sarﬁples

k

This x* has a chi-square distribution (approximately) with k — 1 degrees of
freedom which can be used to test the ‘null hypothesis that S;2, 8,2, ..., §;2
are all estimates of the same population variance ¢2.

Hy: Each of S,2, 8,2, ..., S is an estimate of ¢2.

Example:

i | o 2 3 4 5 6
f; 10 20 17 18 8 15
s? |55 51 52 47 48 43

Answer:
x?=0.25 (d.f.=5)

T T
LINE | DATA OPERATIONS DISPLAY i REMARKS

1 B cicarl (st [ 3 |[st0 I+

2 [ 2 ][ I

3| & [sro]l 1 Jlsro [+ ][ 3 Il Perform 3-7 for i=1,2,...k
SR L Jlsto JU+ JCa J |

s, os2 [ v )+ J{ree JL 1 [ x ] |
o [ ]le e )] |
7 L[z ] I ] I J

o [re]Ce lee e 05 ]

o (L J{mec J[ 3 J[ x Jlret |

10 = Iz Il e 1[Rer ]

1 s Jlw 1 - Jiree Jls |

12 o - Il = J= 1

13 L0 J0= JC_JC 1 X
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Circle
See page 95

Combinations

Combinations of a objects taken b at a time (binomial coefficient)

Formula:
a = = a = = L
(b) o= Ch=Ca b= o 2
Example:
.Cs=21.00
Note:
aCO = aCa = 1,

aC1=aCag =2

Program requires a < 69

LINE| DATA OPERATIONS DiSPLAY REMARKS

i
;
RN e[ [eoojm))

2 e [ RS
3 Do - 0 1]

Complex Hyperbolic Functions

Note:
In this section, all angles in the equations are in radians.
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Complex hyperbolic sine

Formula:
sinh (a +ib) = ~isini(a +ib)=u +iv
Example:
sinh (3 - 2i) =-4.17-9.15 i
LINE| DATA OPERATIONS DISPLAY REMARKS
1) b Ces]fso]l 1 IR0 ]
2 [IETIYIN | R | N | N | ] ) B
3. e sl 2 JLe L7 1% ] B
4 L I 2 [ = JC x J[ens ] B
5 { RCLﬁ“ 71—|| cos VHVRCLVH; 2 | )
|6 Le Lt JLw =102 ,
A N | | | v
; {0 | | | '
Complex hyperbolic cosine
Formula:
cosh (a+ib)=cosi(a+ib)=u+iv
Example:
cosh (1 +2i)=-0.64+1.07i
LINE| DATA OPERATIONS i DISPLAY 1 REMARKS
v |Cews]Csto] o] I Crso ], ‘
2o obeosdU 0 JC_JC
3] o [sro][ 2 ][ J+ [ 1/x—li
4 L JL 2 J = JL 10 Hiu
|5 ) -»ancLH 1} SII\!jLRCLI[ 2 l :
6 e JEe J0w - ]2 ]
7 GOl JC 10
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Complex hyperbolic tangent

Formula:
tanh (a +ib)=-itani(a+ib)=u +iv
Example:
tanh (1 +2i)=1.17 - 0.241i
LINE | DATA OPERATIONS DISPLAY REMARKS
1 b |Ccws |NEM(ra0 [ 2 1< 1
2| [sw l-lLASTxH7C0§7H ]
(3] o Lt Jl2 JLx JlsroJLt I
4 e I Jlw 10+ [ 2 l
5 1 Jlos | HEE
6 MILASTrxH RCL ][ 1777”5’7‘ [ 1 ]
R [ e | e e | =)
I S i | i A
9 =] ! 1 v |

Complex hyperbolic cotangent

Formula:
coth(a+ib)=icoti(at+ib)=u +iv
Example:
coth (1 +2i)=0.82+0.17

LINE t DATA OPERATIONS { DISPLAY REMARKS
B Vlcns]- mo 1z 1= 1

2 L ]I [cast <] [cos |[chs )!

3 a If][2 JLx_Jlsto ][ 1 ]’;

K3 e I 0w L+ 12 Ji

5 I ]-[LASTxJ

6 Cre 17 Je It 1% I‘

7 | | T | B ] u

8 Cal il 1C 11 j: v
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Complex hyperbolic cosecant

Formula:
csch(a+ib)=icsci(atib)=u+iv
Example:
csch (1 +2i)=-0.22-0641i

LINEW DATA W\l OPERATIONS DISPLAY E REMARKS
BER Jmm[:':l-- - | ]
IS T G o e

E O o i s o P

s ?[ :fH 2 [ -JLflL_J o N
6 Cox -] 2 B |

7 rx ”,513%” 1 JI X’J x2y

;| COmmEEC ] i
0 ‘@_H__JI__J[_JIIJ 1
10 - LAST x u B
" -f N B I v

Complex hyperbolic secant

Formula:
sech(a+ib)=seci(a+ib)=u+iv
Example:
sech (1 +2i)=-0.41 - 0.69i
UNE | DATA OPERATIONS oseLar | REMARKS

1i b chs_|[sTo ] ]I i
3, s I[—J”sm | s y
4
5

e I,
I | T |Crec J[ 2 1= 1
| S e | e |
i | | )
--ILASTerf || YRR 7
‘E[I]-ME] v

oo ™ \l}d’
|
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Complex inverse hyperbolic sine

Formula:

Example:

sinh™! (a +ib) = ~i sin~

sinh™ (8 - 5i) = 2.94 - 0.56 i

Vi(atib)=u+iv

LINE| DATA

OPERATIONS

DISPLAY

REMARKS

{ X’—H + —|| g«y—l-!LASTx

ﬂ-[IM-bﬂ

O Jl_j

C 11 1L’1L ]

[ AN | A | A | N |

N | | | s | |

L] 1 I Cao]

T s ] (ons I { 1:]

‘+lfa>0,goto11

Complex inverse hyperbolic cosine

Formula:

Example:

cosh™ (a+ib)=icos™! (a+ib)=u +iv

cosh™! (5 +8i) = 2.94 + 1.01 i
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LINE| DATA

OPERATIONS ‘ DISPLAY l REMARKS

= 1], ‘
20 )~ M)

I | I | = |-m

i

L_]LJM--

] ]

I+J[2JI+HTIIX’]

j[e=m]  [eva ]

| |

w | o iN|o| ] sl w N =

[—J[_”__}[ ” _ ilft{?O,gotojl

CC JC JC JC 1,

| J— R

o [ o L

Rl nien] [cul R

Complex inverse hyperbolic tangent

Formula:

tanh™! (a+ib)=-itan" ! i(a+ib)=u +iv
Example:

tanh™' (8 - 5i) = 0.09 - 1.511i

LINE| DATA \ OPERATIONS DISPLAY ‘ REMARKS
| _-EHII-I:J‘ |
3 b rCHSHSTOH 2 ][+ |_
:‘;7 TAN™! l WR("IVL |
| 5] Ll RCL]F- I[_]-
6 [ran— l IEZI- , ,
7 chL|I1J|11[ 1 o
I e J- |
B [ﬁﬂl—mmlr— [
| 10 G | I | G | | I B é
EI -JI ] | o
Y = | e | s LA
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Complex inverse hyperbolic cotangent

Formula:

coth™! (a+ib)=icot™'i(a+ib)=u+iv
Example:

coth ! (8-5i)=0.09+0.06i

LINE j DATA ‘ OPERATIONS DISPLAY REMARKS
e D] ] =
2o |[ewsfso ][ 2 [+ J R
s [eao | (Rer]
o L0 me0EI0 ]
5 I - 102 (=]
e leee Lo JL I« e T
7 [re 02 J J- 1
|8 lasto][ 1+ Jlre J[ - J[1] |
o ol Jl Jl= JlnJla |
|10 = | N | N | oL
" Gy [ N | A I v i

Complex inverse hyperbolic cosecant
Formula:
csch™ (a+ib)=icsc ' i(a+ib)=u+iv
Example:
csch™! (8 - 5i) = 0.09 + 0.06 i
(D =-0.09)
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LINEW DATA [ OPERATIONS DISPLAY REMARKS
1 e FCHSH sto J[L 1 [« lL_l I |
| 3 ‘I Gl JI R L+ 1= IFRCLI'
4 I 1 I-ILASTXH = _[sT0 ] :
:S,L { K J- [RaD | 1 _ |i D i
6 i Jl o
7 ‘I (| I Jl x_J[Ret ], ‘
| & C == X«v}-, !
o O
10 [\FIFSTOJI 0= 1R
]’{: 0 . (s (e ]
|12 I ! ll_jl 2 J= 1t ] ‘
EI e s (| [eva) f
14 [ + ]rln J[ ][ 11 ]. 1D <0,got016

‘[ | LI L1
3 N i | i s |
16 A —3C 1 11 v B
v el s v
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Complex inverse hyperbolic secant

Formula:

sech™! (a+ib)=isec™' (a+ib)=u+iv
Example:

sech™! (5+8i)=-0.09+1.511i
(D = -0.09)

LINE [ DATA OPERATIONS : DISPLAY REMARKS
i b |[cns |[s70 || r I @ |[ — ] |
2.+ [ |Iis T R
3 [r [+ J[ = J[re J[ 1 ] |
I’ B ol ] b |
s O] N
L O JC 0 1. N
7 [Rao J{re J[ 1 ][ J{ + | ]
KRN | S ) a
o O o] ]
n, o lesidfra J0 JL JL2 1
12 L e e JLo 1L - | ]
13 R eI NN | N B o>0gw0ts
I N | I D N
w o [es)CCC -
15 | CICJCJC 1
o ez s -
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Complex Number Operations

Complex add

Formula:

(a; +iby) +(a; +iby)=(a; +a;) +i(b; +by)=u+iv

Example:
(3 +4i) + (7.4 - 5.6i)= 10.40 - 1.60i
LINE | DATA OPERATIONS DISPLAY REMARKS
L | N | AN | I | B | B ]
2 - [+ [l i i | u
I | [ [ i | |
4 b, | I ][ | v

Complex subtract

Formula:
(ay +iby) - (a; +iby)=(a; —a;) +i(by - by)=u tiv
Example:
(B+4i)-(74-56i)=-44+96i

LINE | DATA OPERATIONS DISPLAY REMARKS

R [;JI I L1l I ]
2 & [ - | ] Il | u ]
O N s | N | B -
4 b [ -] I{ J [ ] v




48 Complex Number Operations
Complex multiply

Formula:

(a, +iby) (ap +iby) =(a a2 —byby) +i(ay by +aby)=u +iv

Example:
(3 +4i) (7-2i)=29.00 + 22.00 i
LINEi DATA OPERATIONS DISPLAY REMARKS
R oo oo o o |
IR | | i
3w lsm S | |  —

4 a;i { -LASTx RCL

;r,w" 7 ]RCL” 2 ]mBCL | x” |

o { UI I | [
’ 70 | o

Multiplication of n complex numbers

Formula:

™M=

0y
=u+tiv

n n i
H(ak+ibk)= Hrk ekl
k=1 k=1
where ay +iby = 1 ek,

Example:

(3 + 4i) (7 - 2i) (4.38 + 7i) (12.3 - 5.44i) = 1296.66 + 3828.90i

LINE! DATA OPERATIONS DISPLAY REMARKS

! MECEAR [ |

2 b [ 1] I T T [ Perform 2-3 for k=1,2....n
3 a Lo, Jfw JC =] J[__1

4 Crec 1=+ 1 /N[ R u

51 C=JC _JC_JC_JC__J v
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Complex divide

Formula:
I .
(a; +iby) (2 +iby) = — €@ -0 =y 4 iy
Iy
where
ay +lb1 =I eiol
a, +iby =1y e2 £0
Example:
3+4i .
=0.25+0.
790 0.25+0.64 i
LINE| DATA [ OPERATIONS DISPLAY ‘Y REMARKS
e [ |HE(rao [ ]
2 . [op ] i I I ]
N A ) A | A | I
14 o [z JDey Jlm e ]+ ]
5 La JL - e Jlm j[r ]
8] {___ JEECR| | N N R
7 [0 | | S | N

Complex reciprocal

Formula:
1 a-ib .
= =u+tiv
a+tib a2 +b?
Example:
1 _ )
—=0.15-0.231i
2+3i
LINE‘ DATA ‘ OPERATIONS DISPLAY ‘ REMARKS
1o lems{sto [ 1 [« 1] ]
2, 2 [ st JCe )
S N | BTSN | IS | NN | N ) BN |
4 Mrec 1 s ] v




50 Complex Number Operations

Complex absolute value

Formula:
la+ib| = Va® +b?
Example:
[3 +4i| = 5.00

LINE? DATA ' OPERATIONS E DISPLAY REMARKS

RN o | i o | o ] |
2 a [ or ] J{ I L1
Complex square
Formula:

(a+ib)? =(a®? -b?)+i(2ab)=u +iv
Example:
(7 - 2)? =45.00 - 28.00 i

LINE§ DATA ? OPERATIONS DISPLAY REMARKS
I i |

2 o [sto J[ 1 J[+ JL = J[ =1 u ]
| 3 | @y HRCL_”H L I I | O
4 [ x 1] J{ J[ ] || v

Complex square root

Formula:
1 9
Vatib =zxr? ¢i2
where
a+ib = rel?
Example:

V7+6i =#(2.85+1.050)
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LINE DATA OPERATIONS DISPLAY REMARKS
[ o
. RG] }
3 CCe e ] . -
; = | o | [ | PR

e)

In(a+ib)=1n( Va? +b2)+i<tan‘1 2)

Complex natural logarithm (base
Formula:
=lnr+if
Example:
Ini=1.57i

Note: a+ib=reif = r(cos 8 +isin 6)

=u+iv (@ isin radians)

LINE | DATA OPERATIONS DISPLAY ! REMARKS
v O JCJC 1 |
2 - HEE(reo [ [ n || ] v ! }
3| Loy [ J{ I L] v
Complex exponential
Formula:
e@0) = 68 i = 63 (cog b +isinb)=u+iv
Example:
e!571=1.00i

LINE | DATA 1 OPERATIONS i DISPLAY REMARKS

1 o |HEEE{ra0 ) C I i

2| o [ |1 1 ) )
3 [xey ] i /| | v




52 Complex Number Operations

Complex exponential (t**1?)

Formula:
ta+ib - e(a+ib)lnt =u+iv (t > 0)
Example:
23%41 = _7.46 +2.89i
LINEE DATA OPERATIONS ‘ DISPLAY ! REMARKS
B ‘! ; l-lm 11 1
KR [ ] LAST x _ |
|3 a i[ W:ij m =] | u
4 [y || /[ |[ [ ] v
Integral power of a complex number
Formula:
(a+ib)" = 1" (cosnd +isinnb)=u +iv
where r= Va? +b?,0=tan™! g and
n is a positive integer.
Example:
(3 +4.51)° = 926.44 - 4533.47i
LINE| DATA OPERATIONS DISPLAY REMARKS
R H t ] | I | ]
2 a ( | - I X

BN (wal -
KX ‘[erjl x2y l-[ -R 1_ u

5 (=] J{ J| H l v




Complex Number Operations

Integral roots of a complex number

Formula:

1

1
(a+tb)y =" <cos— +isi

0 + 360k in 6+ 360k)
n n

=uy +ivy
where n is a positive integer and k=0, 1, ..., n - 1. (8 is in degrees)

Example:
5 + 3 i has three cube roots:

Uy +ive =1.77 + 0.32i
u; +iv, =-1.16 + 1.37i
u, tiv, =-0.61 -1.69i

53

T T
LINE' DATA !

OPERATIONS DISPLAY REMARKS
[ .» x[ o 1L JL__]
2 o [ ] 0 I I
3 on [ L ]-l ¥ 7”x2v ]-
S ¥ | = [ [
D[ cra
o [z (e /=1 ]
71 Loy ] | I .| | vo
8 Ly J[ e 77]&:_;%]7["3(:} 1L+ ]A Perform 810 for k=12,..., |
o Lz D= /BRIl 1w e
10 [ x2y |] 1] I | N | v,




54 Complex Number Operations

Complex number to a complex power

Formula:

(31 + lbl )(a2+ib2) = e(a2+ib2)ln(a1 + ibl) =u+iv

where a; +ib, #0

Example:
(1+i)?D=149+4.13i
LINE " DATA OPERATIONS DISPLAY ; REMARKS
s MGl ]
S | BN | 3 | N
3 b [sTo][ 2 [ ”—;:_THSTOL
BT S | B | o
s o [« JIER(usto(Reu < ]
6 '| 1 JlRre J[ 2 ][ ReL [ x [.
. O Geloe]
o COE e .
A | | | s R
10 L ]I j JL_ I | v

Complex root of a complex number

Formula:

1
(al +ibl)a2+1b2 = e[ln(al +iby) [ (a, +1ib,)] =u+iv

where a; +ib; #0

Example:
Find the (2 - i)™ root of 1.49 +4.13i.

Answer:
1.00 + 1.00i
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LINE| DATA : OPERATIONS DISPLAY REMARKS
e ij [ e

2 & [ ]Cm[so )= )
3 ,l STO|L2 ][ IL___H ]’

|4 j,_i[ ] I[ IR ]! B
5 a | P | e e

5 l > I )[R = }

|7 RS ILRl 1~ LR ]

. ERCCOEm] O
9 G ]| [l ]| ] v

Logarithm of a complex number to a complex base

Formula:
. In (82 +ib2) .
log(a; +iby) (a2 +iby) = G, 7)) =u+iv
ag +ib1 #0
Example:
log(1 +iy (1.49 +4.13i) = 2.00 - 1.00i
unsz paTA OPERATIONS | DISPLAY REMARKS
e RG]
IR vn | | o | | | |
s e [ A I
R [ [ = T
|5 x J[ = J[re J[- ][R . ;
o, O MECAC ] i
7. = JL___1l 1] v




56 Complex Trigonometric Functions

Complex Trigonometric Functions

Note:

In this section, all angles in the equations are in radians.

Complex sine

Formula:

sin(a‘+ib)=sinacoshb+icosasinhb=u+iv
Example:

sin (2 +3i)=9.15-4.17i

LlNEi DATA 1 OPERATIONS DISPLAY 'l REMARKS
1 1 a |[sT10 il JIEEE l
12, o ([sto ][ 2 ][ e | LA \
s b Jlz JE= 0« ] I u 1
2 MrerCL ][ 177;7[7903 “RCLH 2 ] 1
R A [ n — n =] |
6| I | \
Complex cosine
Formula:

cos(atib)=cosacoshb-isinasinhb=u+iv
Example:

cos (2 +3i)=-4.19-9.11i

I..INE}r DATA [ OPERATIONS T DISPLAY REMARKS
1T a l sto || 1 ]-[RAD H cos ]
2 v [stojl 2 J[ e J[TH*/I
3 e JLe s |- I u
. LReL ] l,lﬂ 1 Irsw ][ RCL IL 37 I‘W
|5 \le 1L H '/J{ [ 2 ]
6 . [ J[ens I /| | v
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Complex tangent

Formula:

Example:

sin 2a +1i sinh 2b -

t +ib) = ——————
an (a +ib) cos 2a + cosh 2b

tan (2 + 3i) = ~0.004 + 1.003i

(Press [8] tosee the answers.)

T
OPERATIONS : DISPLAY

LINE ‘ DATA ' REMARKS
1o [-W-IIHED
;7277; ) ; I- -LAST X 7-(.?08 i
3 b 1[ t ,” 2 [ x HSTOJ[ 1J
. B S | S | | ]*
jﬁi o aC i | u
6 - (e
7 ,_I (I I | I | I | W B
S S =T | | s [ ]
Complex cotangent
Formula:
., _ sin2a-isinh2b _ .
cot(a t+ib)= osh 2b — cos 22 u+iv
Example:
cot (2 + 3i) = -0.004 - 0.997i
LINE § DATA OPERATIONS DISPLAY REMARKS
1yoa ‘-[RADJF 2 |[x lm—h
2 Vi_lfAVS!TJIiCOSJ[CHS“ ] .
3 S 5 -
4 et IM 1 zj
5 R - 1= e
6 -[LASTJlRCL 10 e 1)
N r w12 J0= 1
s el dlesC I [ v




58 Complex Trigonometric Functions

Complex cosecant

Formula:
= 1 _ )
csc (a +ib) S Grin @+iD) u +iv
Example:
csc (2 +3i) = 0.09 + 0.04i
LINE| DATA OPERATIONS DISPLAY REMARKS
| 1 e jlsro ] o |ME(Rao][sn ] . N
2 v sl 2 e IE A1) | ]
HEN S e | | e | e v | R R a
K3 1 ][ cos} LreL ][ [ 2 1ij - . ]
B | N [ - 2 ] = P ]
6 [« ]LCHﬂmL 1 —H_xZJW? B
Rl Ca e JMasd ] | ]
| 8 Cr]Cr 1= 1] L N
) (e s =]
Complex secant
Formula:
i 1 _ .
sec(a+1b)—m u+iv
Example
sec (2 + 3i) = -0.04 + 0.09i
LINE| DATA OPERATIONS DISPLAY REMARKS
T G e
| 2| b [[sT0] | | A | N7
3 777L_H_7_‘II__‘II_JLJ
| 4 |z I[S'NHRCVLH 2 [« ]|
I T N | 7 | 27|_j | B
IS (e i IL < ][] i |
7 > T (CasT x|| il [ l -
B S| BTN +,LLE,,,£ [ _
9 (Crec [ s - |’ v




Complex Trigonometric Functions

Complex arc sine

Formula:

sin™! (a+ib)=sin"! B+isgn(b)In(a+ Va2 -1 ) =u+iv

whete oz=%\/(a+1)2 +b? +% V(a-1)? +b?

p=2Viar P 0 - S V- 1y 4

|1 ifb=o0
sgn (b) = l-1 ifb<0

Example:

sin™! (5 + 8i) = 0.56 + 2.94i

Note:

59

Inverse trigonometric and inverse hyperbolic functions are multiple-

valued functions, but only one answer is given for each.

T
LINE!| DATA | OPERATIONS DISPLAY REMARKS

L8 T | A | BN ) RN A { N O

2 Ce 1 1= .

30 v [ 10=

I E=a . | ]
5 ”_[ sto |[ 1 ”,, X2y ]-7 | i
K [ - JEE(~st[re J[ 1 ]

] I | | o |

7
9

oGz 1= 1

10 i o o | |
LIS 1 "2 | NN | NN | A | N 1630, goto 13
[ i I il II__T

ISR - | | s | |
13 | i I I [ H ] v




60 Complex Trigonometric Functions

Complex arc cosine

Formula:
cos™! (a+ib)=cos™! B-isgn(b)In(a+ Va? -1)

where a=% @+1) +b? +—\/(a—1)2 b2

B——\/(a+1)2+b2 _x/(.el-1)2+b2

. ifb=0

Sgn(b)“ 21 ifb<0

Example:
cos™! (5 +8i)=1.01 - 2.94i

LINE | DATA OPERATIONS ; DISPLAY REMARKS
1 a Lt J JL JC 10 ];,,,,
2 Lz H - = 1-|RAD|
KR N | N = I-[LASTx]
; Ca 10 I MCE ]
5 | 7[78T70 1L 0=y I-L[ J
6 l:I-ILASTx” L] I
7 L+ JLz J[ =+ J[+ HX’}”M
8 COC MG
9 e b 1= )
| 10 | [cos- ] I J B
71147 [xey |{ 11 H—“—]i B 1tb<0got013 |
| 1 L I ]I I ]
*12: Lens 1L 1[ i JL__1 B
13 1 H /[ | I v 1

1
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Complex arc tangent

Formula:

_ L1 L {1+0b 4 f{1-b i a’ +(1+b)?
an 1(a+lb)_§[ﬂ—tan l( a )—tan 1(—a‘—>] +Zln [m

=utiv

where (a +ib)? #-1

Example:

an~! (5 +8i)=1.51 + 0.091i
LINE ‘i DATA ' OPERATIONS ‘ DISPLAY REMARKS
N \-l o o -
2 b r?mr—n——]--
s . ol |
O [ | e [ | |
5 (Re][ = 12 |~ |
K3 | N | | | o | |
I B A N B .
K T e e 1-+ |
B [Casto 7 J[Fec [ = [ ] | B
R B | BN | N | B | B L |
1" ) e | | o o [ Y |
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Complex arc cotangent
Formula:

cot! (a+ib)= % —tan~! (a +ib)

/ _ ; 2 2
D R <1+b) +ltan-1(1 b) i 220t
2 a 2 a 4 a? +(1 - b)?
=u+iv
Example:
cot™ (5 + 8i) = 0.06 - 0.091i
LINE; DATA ' OPERATIONS DISPLAY REMARKS

LRSS T | N | N | S | |
2 o |lso ]z 1L - IR~
I

3 -[TAN"_]Vli T |[ReL |[ -

4 Lo e ]2 ]l

5 el - Lz JLe JL T
Re JL J L+ 1< 1]

Cre]z 101 ]

[ [ | e | e o |
I e e
10 L= Jlews i J[__J[_J v
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Complex arc cosecant

Formula:
1
_1 + « = - _1 = + .
csc” (a+ib) =sin ( " +ib> u+iv
Example:
csc™! (5 +8i) = 0.06 - 0.09i
(D=-0.09)

LINE‘[ DATA OPERATIONS ! DISPLAY REMARKS

1 o |CensCsro I 102 JC_]
2 o« MMy ]
s 1 T 1|__]1RcL IC 11_, IR
s 41 0 | I o o L

CEJC I
R rrn | e | [ | |
5 D= ) I s e ] ]|
9

o sG]
o b /T
" [ | | RE A
12 | v [ [ |
s SR e

4 L2 = !-[S'N i R ]
s [x._y i 1 ]" IfD>Ogoto17

| L | 7[ i

w  fes I

v I 1 1 v




64 Complex Trigonometric Functions

Complex arc secant
Formula:
-1 1 = -1 = i
sec”* (a+ib)=cos (a+ib> u+iv
Example:
sec™ (5 +8i)=1.51+0.09i

(D =-0.09)
LINET; DATA [ OPERATIONS } DISPLAY REMARKS
1 uw\fr ems | [sto J[ T = 1]
2 a l x? I![LASTX” ] m ]w )
3 V*I f*{ | IFRCL ]F 1 ]J o i
K -[LrASTrx] + ][STOJ[ T M o |
5 D JEt [ jJLﬁLJ[ , )
c I mm -
7 A| Rap J[mec J[ 1 J[ J[+ |0
787r 7x<-y l-lLASTx” X2y ” x2 ] ] B
9 L+ I-I\FIISTOII 1”} ]
10 < il 1;- |
KB ﬁf:Juanaan 0 | e ] B
12 7 L]L ] < [ 3 —|[___] - ]
|13 ] fl + i =y J‘ - ]
e [ e ] v
5 x@y_ lL 7 H ][ ”, J |#D<0,goto17
Plﬁ ] | — B
16 {CHSJ [l ] ]
17 ] | o | o | — v

Compound Interest

See page 132

Contingency Table

See page 34
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Conversions

Repetitive use of formulas with two constants

Note:

The technique used here is storing both constants (one in register R,,
the other in T), after which the formulas can be used repeatedly.

Centigrade to Fahrenheit

Formula:
a°C~>b°F
where b=% at32
Examples:
| -30 0 28 100 539

a
b | -22.00 32.00 82.40 212.00 1002.20

LINEE[ DATA j OPERATIONS | DISPLAY ‘ REMARKS
[z e IL__ :
| s =01
| | |

4 Lo C 0

5. o [xJlme ][ JL+ ]I
[

B[

b lsmp. For new case,

1goto4




66 Conversions

Fahrenheit to centigrade

Formula:
b°F - a°C
5
where a= 9 (b -32)
Examples:
b | -460  -40
a | -27333  -40.00
LINE | DATA OPERATIONS [ DISPLAY REMARKS
1 [3 J[ 2 J{sro ][+ ][5 |
2 Lt L =10+ J[ 1+ ]
3 ]l I I I ]
s 30 | — — —
5 b |RCL [ 1 “ - J[ X I[ | a Stop. For new case,
[ I ” H___”_I goto4d
Feet and inches to centimeters
Formula:
1 foot = 12 inches,
1 inch=2.54 cm
Examples:
4'8" =142.24 cm
5'5" =165.10 cm
6'3" =190.50 cm
LINE | DATA OPERATIONS [ DISPLAY REMARKS
1 I | | |
2 TS | ] | |

4 In I + ]-[cm/in” XJ[

Stop. For new case,

|
]

3 | o o | i
|
!

j C_JC JC J1C 1 1

goto2




Centimeters to feet and inches

Examples:

164 cm = 5'4.57"
180cm=510.87"

Conversions 67

LINE OPERATIONS } DISPLAY REMARKS
B Lz Jfsojo Jm| ]
2 I 7 | ]
3 ‘ B N I | J ]
4 le [[Rec J[ v [ =11 ] D Let f = integer part of D
|5 B | N | | I Feet ]
6 [ - —HRCL ” 1 “ X H J Inches ‘StODAFSrne\V/vcase,
JC_1C_JC 1 003
Gallons to liters
Formula:
1 gallon = 3.785411784 liters
Notation:
gal = gallons
1tr = liters
Examples:
5.3 gal = 20.06 1tr
61.55 gal = 232.99 1tr
LINE OPERATIONS DISPLAY REMARKS

e T 10 10 ]

| I | |

1CJC JC ] w

Stop. For new case,

I I _J 1

goto2




68 Conversions

Liters to gallons

Notation:
gal = gallons
Itr = liters
Examples:
201tr=5.28 gal\
232.99 1tr = 61.55 gal
LINE! DATA 3 OPERATIONS DISPLAY REMARKS
! I (e % 7 7]
N0 A | | s s o
3 lex I I N ’
4 . Ifrﬂ4[ x H Jl H ” ] ] gal iStop. For new case,
; il J{ 11 1 I ] ‘goto3
Miles to kilometers
Formula:
1 mile = 1.609344 kilometers
Notation:
mi = miles
km = kilometers
Examples:
40 mi = 64.37 km
12.34 mi = 19.86 km
LINE[ DATA ‘ OPERATIONS | DISPLAY REMARKS
T e JreJred
IE I e | o | | |
3 [+ JC 11 | A 1
4 IS0 | N | N | N | N l
5 m| [ x J [ _ Jr l[ _ ]l km iStop.forrn’ewcase, -
i) 11 J[ L1 wtod
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Kilometers to miles

Notation:
mi = miles

km = kilometers
Examples:

65 km = 40.39 mi

2444 km = 15.19 mi
LINE . DATA ‘ OPERATIONS DISPLAY 1 REMARKS
(S s - [ o o
2 L3 Jla e jlwlil1]
T S | | o s
s Lex ]I I 11 ‘
5 km I__i‘_j L i I 11 } ) mi Stop. For new case,
L L]l 11 | w4

Pounds to kilograms

Formula:
1 pound = 0.45359237 kilograms
Notations:
b = pounds
kg = kilograms
Examples:
1501b = 68.04 kg
120.51b = 54.66 kg
LINE? DATA OPERATIONS DISPLAY ; REMARKS
 EEECee ) L] |
S v | || | — ‘
3 ' b il,,,,x H 7 ] 10 7 1 | . kg ‘Stop. For new case,
I I JC_JC 7 90 t02




70 Coordinate Translation and Rotation (Rectangular)

Kilograms to pounds

Notation:
Ib = pounds
kg = kilograms
Examples:
60 kg=132.281b
51.34kg=113.191b
LINE![ DATA ; OPERATIONS ‘ DISPLAY REMARKS

1 I JC C

1! - 3-[ ky/ib ] [ l/x—ILTmf’“’ 1 ] o
| I ]
s L _JCIC ]
4| xg [ x ] LI H77]
I ]

it

C I

Ib

: Stop. For new case,

goto3

Coordinate Translation and Rotation (Rectangular)

Suppose point P has coordinates (x, y) with respect to a coordinate system
having x, y axes. After translating the origin to (xo, ¥o), rotate the two axes
through an angle a. Find the coordinates (x', y') of P with respect to the new

system having X', y' axes.

WY

I

(x¥,)




Coordinate Translation and Rotation (Rectangular)

Formulas:
X' =(x -Xq)cosa+(y - yo) sin @
y' =—(x -Xo)sina+(y - yo) cos @
Example:
If (X0, ¥0) = (3,2), (x,y)=(5,5), =20°
then (x', y') = (2.91, 2.14)
LINE| DATA OPERATIONS [ DISPLAY REMARKS
4 L AT | N | N | NN | N -
20 % L - Jlsto ][ 1 | I{ ]
3 « [sto][ 2 ][ cos ,“_,Ax,,,l,[,,,,,,,,,l,_i )
« v I I3
5 vo [ - J[so][ s J[ra ][ 2 ] -
6 Lsv J0 Jf « JL_JL__ ]« -
7] leec ][ 1 J[rec ][ 2 JLs | B
8! = J[es]lre]lsJlre] )
0 [ 2 Jlecos J[ « ][+ J[ ] y

Correlation Coefficient
See page 72

Cosecant
See page 201

Cotangent
See page 200



72 Covariance and Correlation Coefficient

Covariance and Correlation Coefficient

Formulas:
Covariance

1 1
SXy = m [Exi Yi - H Exi Zyi]

Correlation coefficient

_ Sxy
Sx Sy

where
n
x=}—"
L n-1 J

Sy— ——_J

n = number of data points

Example:

xi|26 30 44 50 62 68 74
yi 192 8 78 81 54 51 40

Answers:
Sxy =-354.14
r=-0.96

(Sx = 18.50, Sy = 20.00)

Note:

Also see t statistic for correlation coefficient.
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T T
LINE DATA '

OPERATIONS 1(

DISPLAY REMARKS

'
i

i

-[CLEAR][STO |[3_][sm |

2 N || o | .

3 vi [ s 10+ 1= 1R Perform 3-6 for i=1.2....n |
I | R | N | | | |
s« [ JEelF e X))

8 s 0 |

7 B % e ol 1] s

8 ’[RCLJ[ 4T[RCL I 7 HRCL }

) s ) e ][5 1= ]

10 d[ - Jlret J{ s J[ v J[-

[T i D D | | ™

SR L | B 0 | |

ES N - | N | e [T

W I
K V0 | s s S

16 IRCL 7 = J=JC ] '

Coversine
See page 202

Cross Product (Vector)
See page 211




74 Cubic Equation
Cubic Equation
Formulas:
The general cubic equation

x> +ax? +bx+c=0

(1)
can be reduced to the form
y>+py+q=0 ®)
by letting
x=y-2
Y73
where
by

The reduced equation (2) has solutions

y, =A+B
y,=—A*B) . V3(A-B)
2 2
_-(A+B) . V3(A-B)
y3 2 2
where
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Case 1. d > 0: there exist one real and two complex roots.
Case 2. d=0: there exist three real roots of which at least two are equal.

Case 3. d<0: there exist three real and distinct roots.

Equation (1) has solutions

xi=yi—%, i=1,2,3.

Example 1:

Solve X3 +2%x2-5x-6=0
Answers:

x; =2.00

X, =-3.00

X3 =-1.00

(d=-8.33).
Example 2:

Solve x3-4x2 +8x-8=0
Answers:

x; =2.00

X, =1+1.73i

X3 =1-1.73i

(d=1.78)
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LINE ' DATA ) OPERATIONS DISPLAY REMARKS
IR (NS | [ | e }
oz e [so]l s J[ 1 J[ X[ 3 ]

3 L= = JCso ]+ J[Re ]

PO W |
5 L g2 <]
s O

OO S 0% | e [ | e

S | M | |
o O
10 O Ge] =) , B
1 [Toes || 1 I | d 1fd<0,goto31.

1 /| I 111 |

12 (/< ][ sto ][ s J[Rel] N
13 L2 lens ][ 2 [+ ][ st0]
14: L2 I+ ] I I D, :IfD.>0,go(o16.

‘ Vl I | N | S 1D, =0, got0 18,
15 Cens 171
6 :L3 1w (- H_._I. ElfD,>o,go;§1é.

[ S | B
R e i e
18 [sto ][ a4 J[rec ][ 2 J[ReL] :
10 I 1] o n>oste

_ 3 I ) 11D, =0,901023.
20 Lews IO JCIC 1 ;
21 0w /- ] 1D, >0,90 10 23.
2! Cems 11 :
231 7 [sto 1[5 ][ acL JLa JL+ )
2 [STOJ[ a |[ree [ 8 [ 3 ]
s [l =] =«
2% | [RCLJ[ 4J[ 2 ][ + |[ CHsl
! V\[ sTO ”"6 j[ RCL][ 8” - | u ’If”d=0,x2=x3=u,stop
. | j ][ I_J_1
|28 e [Ce Jrec s J[2 ]
» OO0 |
30 \-I vx 1< Jso ][5 ] v xautiy,
| ;1 Il 11 Dxy=u—iv,stop
31 [RCL][ 2 ILRCLH (|
32 [ 1= 1= (e[ 2] |
| 33 O = 2] i
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LINE EL DATA ' OPERATIONS \ DISPLAY ’ REMARKS

(o [ JC Jlcrs | [cos]

35 t 3 [+ J[sto][ 2 ]| cos |

36 [rec JL J s JL = 1< |

|37 L[] [EvGEieea) :

Kk ‘l x [ sto ]l 1 ][ x J[HCLJ. i |
3 e JL s J[ = Jlso][ s | : B
‘401 ’[ - JL_Hiilliill _ l "17 o * ]
o  [red)[ 0 JC2 e ] 3 |
2 '{ + Jlcos ][ Rrec J[ 1 ][ «x ]‘

3 [rec JL 8 J =]l ] x : ]
R - [ B | W [ W | ]
45 [ Ceos]| ncEUJ |rx”]f )

w el JC ) s |

Curve Fitting
Linear regression and correlation coefficient
Formulas:
This routine fits a straight line
y=ax+b
to a set of data points

{ xpy)i=1, ., n}
}
by the least squares method.

ZX; 2V
X - i<Yi
= n
zxiz _ (zxi)2
n
b=y -ax
where
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coefficient of determination:

>xZy |?
[Exi)’i - ]

[ - 57 [ - &7 ]

r2

r? can be interpreted as the proportion of total variation about the mean y

explained by the regression. In other words, r* measures the “goodness of fit”
of the regression line. Note that 0 < r? < I, and if r? = 1, we have a perfect
fit.

Correlation coefficient
1= Vr?

(r takes the sign of a)

Zyi?, Zxiyi, n, 2xi2, Tx;, Zy; are in storage registers R3 through Rg.

Example:

xil26 30 4 50 62 68 74
yi | 92 8 78 81 54 51 40

Answers:

y=-1.03x + 121.04

r2=0.92
r=-0.96
n=7

Zx; =354
zx;2 = 19956
Zy; = 481
Tyi® = 35451

Zxqy; = 22200
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LINE | DATA OPERATIONS DISPLAY REMARKS

1 | [ERECEENIEC

2 C_ L JC C )

3w [ s = 1= 1l Perform 3-6 for i=1,2, .., n

s BT LTI

R e o == | ]

6 | [ESEIEE] 11

7 [roc 1 & Jlre J[ 2 [ = ] ]

I A e s

s e el 7]

I N = | =

" L= Jsro J[ 1 ]I 11 2

12 ffrec [ 7 ][ x [ ret | 8 ]

R (= | o [ | L R |

14 [rec [ [mec J[ 2 [ = |

s R ](e JCre )l J02] ]

| [ o [ e [ o |

v ECCC I 1] - 12> 0,100
] | | i | |

18 I N | N | A | N ‘

Multiple linear regression (three variables)

For the set of data points (x;, ¥;, Z;), this key sequence fits a linear equation
of the form

Z=ao+alx+azy

by the method of least squares.
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Formulas:

Regression coefficients ay, a;, a, can be found by solving the normal
equations:

2z; = agn + a; Zx; +a; 2y;
Ixizi = a9 TX; +a; X2 + a2, TXpy;
Zyiz; = ap Zy; +a; Ix;y; +a, Zyi’
i=1,2,..,n

_ A-B
7 nEx2 - (Zx?] [2Zy2 - (Zyi] - [nZxay; - (2x) (Byp)] ®

where A= [nZx? - (2x))?] [nZyiz; - (Zyi) (Z2)]

B = [nZx;yi - (Zx;) (Tyi)] [nZxiz; - (Zx;) (Z2;)]

_ [nZx3z; - (2x) (Zz)] - 2, [nZx5y; - (2x;) (Zyi)]
- aniz - (EXi)2

4

1
ag = - (Zz; - 2, Zy; - a, Zx;)

ZX;yi, ZXizi, TyizZi, ZyiZ, n, Ix;%, Tx;, Zyi, 2z; are in storage registers R;
through R,.

Example:
X 1.5 0.45 1.8 2.8
y 0.7 2.3 1.6 4.5
z 2.1 4.0 4.1 9.4
Answer:

z=-0.10+0.79x + 1.63y
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Parabola (least squares fit)

Formula:

For a set of data points {(xi, yi,i=1,2, .., n}, this routine fits a
parabola

y=ag +a;x +a,x2
which is a special case of the three variable multiple regression model
Z=ag ta;x +ay
(if we replace y by x? and z by y).

=X, ZXiyi, ZXi%yis ZXit, 0, X2, ZX;, Zy; are in registers R, through Rg.

Example:

x | o 1 s 3 5
i ‘2.1 2 -5 -245 -8

Answer:

y=2.28 +1.85x ~ 3.66x>
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Least squares regression of y = cx® + dx®

Formula:
This key sequence determines the coefficients c, d of the equation
y =cx? + dx°
for a set of data points
{(xi, vi),i=1,2, .., n} ,
where a, b are any given real numbers.

_ (3% (Ex"yi) - Cxyd) ()
(2x2°) (2x;2%) - (2x*®)?

Exiayi - dExi“b
C =

in2a
where x; >0fori=1,2, .., n.
Example:
a= l ,b=3
2
x |1 4 9 16
vi | 9 -44  -699 4056
Answer:

y=10x" - x*
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LINE| DATA OPERATIONS ‘ DISPLAY REMARKS

1 M ol L]

SN S| | —| — —

COR AN (L0 | R |

4 x [st0 [ 3 J[rec ][ ]- Perform 4-13 for i=1,2,...,n
E | H T

| t-|LASTx|LRCLJ[ 3 ]LRCL i
s [z My o]

6‘y I ]J B |7L v ]l CLX ‘,,"
7

R B | e [ | = )
(10 lRCL jLe JLx Jlso gt » 1 o
AR S o oo o | 5 [ |

1z A| 8_ 7H7RC7I_W“W”9 || X2 ILSTO] ) 7 T

13 L JL7 ] I ] [ i ;

141} i[RCL][ 8 ]LCL“ x |[ 4 ]‘

15 ‘LRCL |6 Jlre )= 1[5 ]

v COfe el ] ]
RS - | N | | |
e I = ] /[ T L,,,,,,“,,, ]
N lnans e e | |
2 [X*V J[ - [ret ][ 8 ][ = ]‘ o i
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Power curve (least squares fit)
Formula:
For a given set of data points
{(xi, yi),i=1,2, .., n}

fit a power curve of the form

y = ax®

(a>0)
By writing this equation as

Iny=blnx+Ina

the problem can be solved as a linear regression problem.

Example:

X; l 26 30 44 50 62 68

74

Vi [,92 85 78 81 54 51

Answers:
y =987.66x707
12 =0.80
Note:

40

Compare results with those of the example for “Linear regression and
correlation coefficient”. Since in that case r> = 0.92 > 0.80, we know

that the linear regression line

y =-1.03x + 121.04
fits the data points better than the power curve

y = 987.66x™ %7
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LINE | DATA OPERATIONS ‘ DISPLAY REMARKS

R I c.c+r] [so ][ 5 ][0 1

2 | | —T — —

3 ,,VJ,,_J n [« Hsto ][ + _]| 3 I; Perform 3-6 for i=1,2,..n
4 | — ‘ |
(5 x Lm J[ x Jlsto ][ ~ 1[__IL,

6 ‘lcu.x -[LASTxII = ]

7 [R_(:L_JI 4 |{rce J[ 7 J[Rer ]

80 ,,,,,,‘[ 8 J[ x l[aa J[s J[ = 1 |
KR N e Y HRCLH 67}

0] [ere (7 J0e JGa s ]

RIR | | | e | b

v el mels ] L
3 |X<—v ” - “RCL I[ 5 ” - _] - ]
AN e I 1L ] a . N
15 [RCL I HRCL I[ 2 ]Fx ]

6 Crec 1[5 J[rec e [ =] T
R 0 [ | i [ | [
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Exponential curve (least squares fit)

Formula:

For a given set of data points

{(Xi, Yi), i= 1, 2, veey Il}

this algorithm fits an exponential curve of the form
y = aeb*

(a>0)

By writing this equation as
Iny=bx+Ina

the problem can be solved as a linear regression problem (y; must be positive
foralli=1, 2, ..., n).

Example:

xi |26 30 4 50 62 68 74
vi |92 8 78 81 54 51 40

Answers:
y = 149.07¢"0-02x
r? =0.89

Note:

Compare results with those of the example for “Linear regression and
correlation coefficient”. Since in that case > = 0.92 > 0.89, we know
that the linear regression line

y=-1.03x + 121.04
fits the data points better than the exponential curve

y = 149.07¢ 002
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LINE| DATA OPERATIONS DISPLAY REMARKS

1 -[CLEAJ{STOJ[ 3 ]rTOI

2 L__IL_IL_i[_ll__ll

3 v [m )= J[sto ]l 13 1 Perform 3—6 for i=1,2,...,n
4 !fLASTJ + 10 10 ]‘ ‘

(s o« [ Jsro ]+ Jla Jlewx ] L

6 | ISR I ﬂ

7 [ree J[ 4 J[mee JL 7 JlgeL | |

R A | | | e ? B
9 - 1G]l ILRC_LIE_] | |
R 0 | | [ n
T i | 0 | I S ]
12 Lrec J[ 7 1« J{re 1L 8 || ] |
3 Loy ] 1[ker H——Hﬁ o o
1 ) s [ P ]
s e ez J= 1 e
16 [RCL H__]fRCLJre J[———l 777777777

1 s == =1 - ‘

Declining Balance Depreciation

See page 91
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Depreciation Amortization

Straight line depreciation

Formulas:

By =PV -kD
where PV = original value of asset (less salvage value)
n = lifetime periods of asset
D = each year’s depreciation
Bk = book value at time period k
Example:

A fleet car has a value of $2100 and a life expectancy of six years.
Using the straight line method, what is the amount of depreciation and
what is the book value after two years?

Answers:
D =3$350.00
B, = $1400.00
LINE} DATA OPERATIONS : DISPLAY REMARKS

ST [ o i

IES NI S| | —— )

s« I JC 1 s
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Variable rate declining balance

k-1
Dk=PV-B< _B>
n n

Formulas:

where PV = original value of asset
n = lifetime periods of asset
R = depreciation rate (given by user)
Dy = depreciation at time period k

By = book value at time period k

Example:

A fleet car has a value of $2500 and a life expectancy of six years. Use
the double declining balance method (R = 2) to find the amount of
depreciation and book value after four years.

Answers:
B, = $ 493.83
4 = $246.91
LINE | DATA ‘1 OPERATIONS E DISPLAY REMARKS
1 Ko l v ]l 1L l* 7
2| l i | | | - )
3 , Jlsro JL 0 Jloe J
EIn CC I l. ]
5 PV L:;,L,—“ J[ 10 h B |
6 |[ReL ][I] RCL || B i
7 o=t I D«
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Sum of the year’s digits depreciation (SOD)

Formula:
2(n-k+1)
Dy=—-——"—""PV
k n(n + 1)

Bk = S+(n-k)Dk/2

where PV = original value of asset
n = life time periods of asset
S = salvage value
Dy = depreciation at time period k

By = book value at time period k

Example:

A car has a value (less salvage value — $800) of $2100 and a life
expectancy of 6 years. Using the SOD method, what is the amount of
depreciation and what is the book value after 2 years?

Answers:

D, = $500.00

B, = $1800.00
LINE DATA " OPERATIONS 1 DISPLAY REMARKS
(0 o s J 1 _JC 11 B i
2 k |[sTo [ 2 [ - l[ STO ][7 3 ]
B o e ] ]
4. (I | IO | B | N | B
s | | | — [ — |
s vl JC L I T D
E e e e e B
s s O I I .
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Diminishing balance depreciation

' i
o B AR
k k-1 on

PVk = PVk-l - Dk

Formulas:

where PV, = beginning value of asset
S = salvage value (> 0)
PVy = book value at time period k (k=1, 2, ..., n)

Dy = depreciation at time period k

Example:

A car has a value of $2500, a salvage value of $400, and a life
expectancy of six years. Find the amount of depreciation and book
value for each of the first three years by using the diminishing balance

method.
Answers:

D; = $657.98

PV, =$1842.02

D, = $484.81

PV, =§1357.21

D3 =$357.21

PV; = $1000.00

LINE j DATA OPERATIONS | DISPLAY REMARKS
IR | i [ i |

2, v, [sto ][ 1 JL= ]I i1 |
3o ;[ 3 l-! v J[ ]rxT—’v] : 3
4 (N | T | I | B | N 1

|5 ,l rRe J[ Rt J[re J[sT0 ][ 1 I.

|6 | | /] i | D, |
7 [ - I J{ | PV,

s ‘[ RIENIrriEe ]‘ o !Perforfn8—79fror”jr=72,7.7.11<”“
9 S | | | (N




94 Determinant of a 3x3 Matrix
DETERMINANT OF A 3x3 MATRIX

Formula:
a; b, €1
D= |a, b, C2
as bs C3
=aj(bac3 -bzcy) —az(bycs ~bzcy) +az(bycy -bacy)
Example:
1.3 -4.5 25
29 3.3 -7.8|=191.19
22 4.1 =2.5
LINE‘ DATA ‘ OPERATIONS DISPLAY REMARKS
L (R | | | |
2| b [sto][ 2 J[ x ][ 11
3| o [sto][ 3 J[ x ] I
4l (Lsrof[ 2 JL_JC_JC_1
5, o j[so] s [~ J0 ][]
6w [so][ e I JCF 1]
7. e qlso ][ 7 T ] I I
s = Lo JJC I
o o> [soll s J[ > L+ |
71707’7 7 [ RCL ][”6”7” RCL ][ 2 ][ x|
EE R | [ | e |
12 '[ Rel J[ 9 [ reL ][ 5 ][ «x ’
3 [re L M =11
4 CofmecJl s JlRec J[ 8 J[ x|
15, rec J o [ x 3= 11 ]
DOT PRODUCT

See page 212
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EQUALLY SPACED POINTS ON A CIRCLE

"Given a circle with radius r and center (Xq, Yo), the routine computes the
rectangular coordinates of equally spaced points (x;, y;), i=1, 2, ..., n) on the
circle if angle 6 and number of points n are known. The position of the first

point (x,, y;) on the circle is determined by the angle 0.

(x¥,)

(xle1 )

(Xps¥a)

Xk+1 = Xo +rcos<0+ 360 k)
n

Vik+1 =y0+rsin<0+—3@_ k>
n

wherek=0,1,2, ...,,n-1

Note: @ isin degrees.
Example:
(X0,¥0)=(1,1)
6 =90°
r=1
n=4



96 Equation Solving (Iterative Techniques)
Answers:

(x1,y1)=(1,2)

(X2,y2)=(0, 1)

(x3,¥3)=(1,0)

(xa,y4)=(2,1).

LINE' DATA \[ OPERATIONS DISPLAY | REMARKS
1 0 _[DEG]LSTO | i
2 o)z M %
I o e | e | [ A
4 A= | | | — 1
s lsodf e ML JL_ 11 v |
s e Jle J[e JL+ JL__1 .
7. n [+ J{s0][ s ] || |
8 [rer JL v+ J{re J[ 5 J[ + ]' lPrerforrmB—l]forri=72 ..... n |
o ([so][ o J[rec ]2 NN, . N
10 (erllrec [ s JLe JL_1
1" = e e | o | o | |

Equation Solving (lterative Techniques)
Note:

We will deal here with equations of the form
x = f(x)

for cases where it is difficult to separate all x’s to one side of the equal
sign. The iterative approach is illustrated through the solution of
selected equations.
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Example 1: Find x such that x =e™*
Method:

Choose x, = 5 as an approximation for the solution. Then after 44
iterations, the answer is x = 0.567143290.

Note:

The algorithm will converge to 0.567143290 in about 50 iterations for
any value of x,.

LINE‘ DATA 1' OPERATIONS : DISPLAY REMARKS
1 s Toms [ e J[Frx ][ 9 ] ] 0.006737947
2 [ CHS l I e* | I I | | [ ] Perform 2 forty-three times
3 1 1 I I 1l |- 0567143200
_ 1
Example 2: 4=x—-—
X
Method:
Rewrite the equation as
1
x=— t+4
X

Choose an approximate solution for x, say x, = 4.

Answer:
4.236067978
LINE DATA : OPERATIONS DISPLAY REMARKS
1. 4 w e J0 + J[Fex 39 ]
2 { x ] [ 4 I + iPerform 2 seven times
S s s s T
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Example 3: x* = 1000

Method:

Rewrite the eguation in the form

x =1n 1000/In x .

Pick an approximation x, for x, say x, = 4. If we use the following
algorithm, convergence is from both sides, and takes a long time.

LINE | DATA OPERATIONS DISPLAY REMARKS
vporeeo [ T LTI ) i
2 4 [ 0= e d e ] ] 4982892143

D | R | | | N )
s =0 ][ [ ] 4734es900 |
B [ [ = [ [ ][] esezsreear

6 ‘| I 1[ 1l J 4632377942

ER [,,, n |[ 0 "“ ' ] ) J‘ 4.505830645 |
s i |7nﬁm][' = ] 1{ I J' 4588735608 i
o | | | A T
10 “ I i I |4 4569933525 ielc. ]

To hasten convergence, modify the loop and use the average of the last
two approximations as the new approximation.

LINE| DATA OPERATIONS ’ DISPLAY REMARKS
1w [w Jt 30 F [ ] T N o

2 4 |[sto ][ v J[ m ][+ ][ReL}

s Jx J[2 J[ = Jso]] ]
4 I I I [ || 4491446072

5 [w ][ = H RCL '[ + ] 1 ! Perform 5—6 twelve times

§ L2 J[ = J{sro J[ 1 1 ]

7 [ } H I B ]| 4555635705

Example 4: Largest x*

What is the largest value of x such that xxx does not overflow in the HP-45
Ge., KX < 9.999999999 x 10°%)?
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Method:

Since 9.999999999 x 10°? is only slightly less than a googol (10°9), let
us call this constant G.

Then xX =G
*Inx=InG
x* =1n G/In x
x In x =In (In G/In x)
x=[In(In G/lnx)] /Inx

Use 3 as an initial approximation for the solution. The loop in the
following algorithm eventually alternates between the last two answers,
3.830482865 and 3.830482864. Upon substitution of both values in

xxx, 3.830482865 gives an overflow. Thus the answer is 3.830482864.

LINE | DATA OPERATIONS DISPLAY REMARKS
1 e e Jle @ e 4 | O
27 [t ][7 TW][iFiIX ]7[9 _ 7|[ |E.302%5093 92 <—VInG -
e eI rEg |
4 L JL= J0so L1 J[_ ] 4sssseesns
s [ n e
| 6 Lo = Jee J 7 ]
? 12 ] —|[7ST0 ,,“,,,,,1, 7][ ] 4006633409
IS S | s | = f | |
1o L )= Jee JLoJ+ T o ]
i L2 JL= Jlsro JLT J[ ] 3esesazso -
B | I J[ i H ] f 1
B [ _H H Iu[ ]: | ‘ 6 iterations B
) | Il 1Ll J | J B
ES L JLz J[m Jrecj 1 |
30 Lm J[ = Jret J[ 1 J[+ ] ' ]
3Lz 0= s J[ 1 J[C_] 3ssosszses |
%2 Lo JLz 0w J[Ret L1 ] ! I
3 e [+ Jee JL L ] -
] 3.830482864 *‘

s [ ]




100 Equation Solving (lterative Techniques)

Example 5: Solve x2 +4sinx=0

Method:
Rewrite the equation as

x =+ +/-4sinx (xis in radians)

upon plotting this curve, we see that there is a root near -2, so take
X, = -2 as an approximation of the solution, and substitute in

X=-+/-4sinx.

Note:

Since this algorithm converges from both sides, we modified our loop
to average two approximations to hasten convergence. It is only
necessary to do the loop 5 times to get 4 digits of accuracy.

] T
LINE| OATA ! OPERATIONS ; DISPLAY

REMARKS

2 (o J(sto J( 1 | (7a0 ]
Crx e JCJC 1

[N

,,,3 ) | S!N ] CHS [ 4” X J_ Perform 3f5seventeen tir,",e?
GINNS v; | | EH | HE

5 L= Jlens J[sto ][ + J[ |

5 C_ L JL I L] -reasmsores

A method for faster convergence

Some equations f(x) = O converge very slowly by the above methods, how-

ever, the following method gives faster convergence.

Formula:
E;i (xi - Xi-1)

x7+1 = X~ -
' ' E; - Eiy

where i=1, 2,3, ...
X; = current trial value
Xj+1 = next trial value
Xj.1 = previous trial value
E; = current error = f(x;)
E;.; = last error = f(x;_;)
L = lower bound for the solution

U = upper bound for the solution
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Example 6: Solve x> = 3* where 1 <x<e

Method:
Rewrite equation in the form
x3-3%=0

Replace f(x) in the program by

(3 L. r~ ”»
CIC) I L o) 3 (o) I Lo

Let L=1,
U=e.

Answer:

2.478052679

(E, = =2.000000001, E, = 0.272546170, E, = 0.056084610,
E, = -0.033421420, E, = 0.001191760, E5 = 0.000022540,
E,=E,=-1x10%)

Example 7: Find a root of a polynomial
f(x) = x* - 4x® + 8x® + 20x - 65.
Method:
Replace f(x) in the program by
“[OEJ)e ) 8 [+ [x] 20 [+] [x] 65 (=] ™
Note that f(2)=-9<0,f(3)=40>>0, so there is a root between 2 and 3.

Let L=2
U=3.
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Answer:

2.236067977 (or /5)

(Xo = 2, Xy =3, X, = 2.183673469, x5 = 2.224244398,
Xa = 2.236236914, x5 = 2.236067428, x¢ = X5 = 2.236067977)

T

LINE. DATA OPERATIONS DISPLAY REMARKS

1 oo Jex [ e ] ]
2] tl tx) [ sTo ][ 2 ”,,, ”JI )i Eo Replace f(x} by proper
B C O3 eyswokels
s v Gsels I JC |

4 [t |[sto 1] 2 |l I | E; " Perform 4~11 for i=1,2,...
s el Jrel[ =1 untileither the last two |
[ & T[ x|l reL || 4,,“ RVCLVHVE J i*trialrvaluesarethesame
K2 el 6] orthe st twoerors |
N i | [ | | R
9 [rec ][ 3 Jlsto ][ 1 ][ meL ]
(0 [ 0sol[2 JmJlm] 4

1 Lsol[ s J[ I ][ 1




Error Function

Error Function

Formula:
2 [ L2
erff x= -2 eV du x=0
I J; (x=0)
erf x =1 -(ast+a,t% +a;t3 +a,t? +a,t%) e 2
where t= 1
1 +px
p=10.3275911 a; =0.254829592
a, = -0.284496736 as = 1.421413741
ay =-1.453152027 as = 1.061405429
Example:

erf 1.34=0.9419138

Note:

erf (-x) = —erf x

103

LINE| DATA OPERATIONS DISPLAY REMARKS
e fsto J[ 0 Jlex J[ 7 )0 I ‘
e [so][2 ] i I ¥ ;
o oa sl s LML JL 1 1
a Lsto J[ & T J[_ ]| ] ‘
‘ | ——

e [l

7« G Jlrec 16 10 ]
B NN | N | 7o | |

2
3
4
s s s[5 ]
7
8

KN [1 Jlree J[s 1 x J[aeL Ii

110, e M M lee s T

v GO OGa ]z 0] ’

2 [ J{eec J00 J+ J0x 1

3 leedl g JLe Jlews JL e ] I

14 [ x |1 ”x?v ”,_ i ] iStop;fornewcase,
[

1 1C

goto7




104 Euler Numbers
Euler Numbers
Compute the n'" Euler number

Note:

The Euler numbers are 1, 5, 61, 1385, 50521, ...

Formula:

The Euler numbers E;, E,, E5, ... are defined by

E=22"+2(2n)! PR SR SEN NN
n Tr2n+1 32n+1 52n+l 72n+1 o

Example:

The 5™ Euler number = 50521.

LINE | DATA OPERATIONS DISPLAY ‘ REMARKS
A o [ i | |
EI m| [ewiesiw) |

E e e=n]  [a)

+ OO

s [T/

s | NGES| SN | | N

Exponential Curve (Least Squares Fit)
See page 88

Exponentiation

Multiple successive power operations

As written, these terms must be executed from right to left. For example,

x1.5
€

means

1.5
e®*™) not (),




means

C
a(® ) not (ab)°.

Example:
t i

t —
Evaluate S = t* where t = ¢°.

Exponentiation 105

Answer:
1.99
LINE | DATA 1 OPERATIONS ‘ DISPLAY REMARKS
1 e Ol e*Jriﬁ]i e e
2| [ .
3, Ly Bl [ L] 1.99
Example: )
Find the limit of & where s = V3.
Answer:
oo (Display = 9.999999999  99)
LINE[ DATA ' OPERATIONS DISPLAY REMARKS
TN [alaaaes)
2 1 i-l v ] I }i jPerform2six times
Example:
Find the limit of s , where s = V2.
Answer:
2 (rounded)
LINEY DATA ‘1 OPERATIONS ; DISPLAY I REMARKS
o Oz IEmcE]
2 | | B S
3 -[ v J[ ]r ”____] Perform 3 fifty-six times
I 74"7“” ;r ] I,, - ” - J{ _ ,,,] r J 1.9?3?99995 3 Displayrwould not changﬁ:ﬂ N
i 1[ J [ J r J [ i any more.




106 Exponentiation
e* for large positive x (x > 230)

Formula:
Suppose e* =a x 10°
where a< 10

Find a, b for a given x.

Example:
399 =1.942426525 x 10'3°

UINE J DATA J OPERATIONS DISPLAY

REMARKS
B _MI ] i
20 o« el 17 WELln lLsro—I'r |
K |__]L 1 |_JL17 . N
ES IT]ujl_—j@_] ]
R I 3 A T
I T | o [ | P { B
7 -L I N | R
BI il 1 C —I b

yX for large x and/or y (x In y > 230)
Formula:

Suppose y* = a x 10°

where a < 10

Find a, b for given x, y.
Example:

75190 = 3207202635 x 1087
LINEE DATA OPERATIONS } DISPLAY REMARKS

Lo 7

S S| | | . [ —)

v GG 1w ]
_-EE--
OO eex ]
@F‘Tﬁ[ﬁ@
O Jre 1]
O | o |
--Eﬂm[‘l b

T

1

T i
N oo e W N -

|
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Example:

The largest number that can be written with three digits and no other

symbol is 9°°. How big is this number?

Answer:

999 = 3.981071706 x 10369693099

(Due to machine accuracy limitations, this is only an approximate

[ | N | —

,convergence.

answer.)
LINE DATA : OPERATIONS : DISPLAY REMARKS
1 Cex o e 0+ 1+ ]
S S| || e | | N
3 P | IV | I | P | B
o el el
5 | IS | NN | I | O | I
5 e - 0s - Jleex 1 B
7 o 10 Jleex I 0 0= T
8 I | Y | I YT | B
9 T e I 10 10 1 3es071708
v [edlm 0 JC I ] scomamsocs |
Converging wt”
Formula: .
If 0<x <e,and u=x*, then w will converge at x.
Example: .
Letx = 1.5, and u = x*, find W
Answer:
uuul converges at 1.5 in 21 iterations
(display shows 1.499999999).
LINE 1 DATA ! OPERATIONS DISPLAY REMARKS
3 [+ 1L+ I | I |
4 [ ] I N . ] Perform 4 as many times as

necessary to see




108 Exponentiation

Diverging at”
Formula:
1 .
- u- ‘
If u>e® (= 1.444667861), u”  will diverge.
Example:

u.’
Ifu=145thenu" diverges

(overflows after 43 iterations).

LINE | DATA OPERATIONS DISPLAY REMARKS
I
e B e JEe I J0
2 - [y 1] [ 1 ] Perform 2 as many times
{ 1L I ] [ ] as necessary to see
‘[—] L___l L ] l l divergence.

Calculator limits for y*

1. For a positive value of y, how big can x be so that y* will not overflow
in HP-45?
Example:
If y = 50, then x can be as large as around 58 (505° will overflow).
Note:  The following gives an approximate, not exact answer.
LINE DATA OPERATIONS DISPLAY REMARKS
I e [ e | | ]
724 y [ ,In 1[ * H ] [ I; D ] Answeristhelargegt
[ i 1l L] integer < D
2.  For a positive value of x, how big can y be without causing y* to
overflow?
Example:
If x =50, then we can take y as large as around 99 (100°° will overflow).
Note:  The following gives an approximate, not exact answer.
LINE  DATA OPERATIONS DISPLAY REMARKS
R [ o [} |
kz ‘ X ;L + ” e* “ ” _H ] D Answer is the largest
j[ j I I L__] [ ] iinteger <D.
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Factorial and Gamma Function

Stirling’s approximation

Notes:

This approximation can be used for positive x < 69
(otherwise the answer is > 10'°°).

This approximation is good for large x.
For x < 1, use polynomial approximation.

To compute Gamma Function I'(x) = (x - 1)!

Formula:

W = Vorx xX e (1 + 1 1 139 571 >

+ p— -—
12x  288x>  51840x>  2488320x*

Example:
4.25!'=35.21

LINE DATA OPERATIONS DISPLAY i REMARKS

" [ [ ) ‘ ]
2 [EEEgrEIrE]

s [ e o] ]

¢« OO gErs g

s [Ts e =1

6 [ems 1[50 ][z J[2 J[= ]

v E0aEIng §

O i | | e e

o« [so][s 1[z ] |l
no [JEEIZ ]
12 5o 1]
16 | e e .|
7! o | e e |
ol [ReOE [ =00 ]
19! T+ J[rec [ 6 10~ J[_] For new case, 0 108




110 Factorial and Gamma Function

Polynomial approximation

Notes:

This approximation can be used for positive x < 69.
This is a more accurate method (to 6 or 7 decimal places), but longer
than Stirling’s approximation.

Formula: x!'=1+b;x+byx?+ .. +bgx?

for0<x<1

where b, = -.577191652,
b, = -.897056937,
bs = -.756704078,
b, = -.193527818,

b, = .988205891
b, = .918206857
be = .482199394
bg = .035868343

Example: 4.25!=35.2116196

LINE | DATA OPERATIONS DISPLAY l REMARKS

1 be |[STO [T _J[Fx [ 7 1] | '

B i | e | | — |

3 b [[st0 ][ 3 ] 111

4 b |[sto J[ 4 1] i 1]

I | | |

N 5 [ R | |

7 e ] JC I IC ] |

s » e IC I 1 | B

9 « [t ] 11 il 11 |. ‘Ifx>‘l,goto1‘l B

N | | | |

10 [ Jisto s ][Rt ][ | Goto 17

R | | | | B litx>2 01013

112 [sroJ] d 1T 0= ]‘ (Goto17 i

R | | s |

R S | R | | o |

14 [sto ][ @ ][ x ][reL J[ o ] :

71:77 - "[7 T ,”,,:,,,,” ' 1{ 1 ]' D !IfD>1,goto14
[ S| | S = | f‘

v EIEICEIEEIC | ]

LB W | | o | ]

e Lx dleec Lz L+ JLx ] !

19 [rec [ 3 J[+ [ x ]J[re ]

ECIY o | i i | .50 | - A B i

N R | | B -

22 I S | | | S ]

# e Jle J I J02 ] ]

24 “ + J[REC)[ 9 [ x ][ ]} EFornewcase,gotOQ
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Factoring Integers and Determining Primes

Prime Numbers under 100

2 13 31
3 17 37
5 19 41
7 23 43
1 29 47

53
59
61
67
71

73
79
83
89
97

With the list memorized or in sight, it is easy to factor any integer x less than
10000 (and many other integers even greater). In the following program, omit
the numbers 2 and 5 from the list of primes if the integer ends in 1, 3, 7 or 9.

LINE . DATA | OPERATIONS DISPLAY REMARKS

1 x [ Flﬂ[ 5 ] [ ] | I I__, Hf x is even, let P=2;
H_‘l 3 i JL_JC ] otherwiseP<3 |
: OO I EE] v ]
3 | ]I 1 IfP > Max, stop i
s | T | s o o |

5] » [ L 0 JC 1] o |Resaoons

Note: If Q is not an integer, let P = next prime number, go to 3. If Q is a prime, then both P and Q are factors, stop.

Otherwise P is a factor, let P = current prime, go to 2.
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Example:

Factor 4807.

Answer:

4807=11x19x 23

4

quT} oATA | OPERATIONS DISPLAY REMARKS

1 4807 1[ Fx s ]t 0+ J0 1
R -[\/‘ [ - ']| - 1 - I‘ 69.33253 “MAX. P =3
ER [ Rlilra WI[ = 'H ' 1 ],, 160233333 p=7
W ROCTOC 07 essrme et
| s :I [ ][1 - H, 1 I = 1 ]i 437.00000 j<—07isan inte;;er, 7 )
R i | | i

6 ERNEN S 2090454 |l p=11
L'7 ' LE[ ] ] 3972727 [P=13
Y [RL ][ T |[ E ][ = 10 J 3361538  [P=17 N
o V[mmﬁ ”,71, ][ 7 ]7[” E ”][ 7 ]' 2570588 P=19 ]
;704 I s ][_—_][ I 23.00000 Q=23 isaprime, 19and |

I ” ][ ” Ir ] 23 are factors, stop o

Example:

Factor 2909.

Answer:

2909 is a prime.
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Fibonacci Numbers

Formula:
In a Fibonacci sequence, each term is the sum of the two preceding
terms.

fi="fi.1 +fip

f; represents the i term in the sequence.

Example:

Develop the Fibonacci sequence with f; =1, f, = 1.

Answer:

1,1,2,3,5,8,13,21, ...

LINE| DATA ‘ OPERATIONS T DISPLAY REMARKS
IR JL__ L1 | ]
2 1, ]I ] [ 11 |

3 Lt J0 ¢ Jlre Jlme J[+ ] f, Perform 3 for i=3,4, ...

Finding the n'® Fibonacci number

Example:

Find the 12" Fibonacci number in the sequence 1,1,2,3,5,8...

Answer:
144
LINE g DATA OPERATIONS i DISPLAY § REMARKS
ER L] [V |Lsto | ) ]
2 | Lo Jle JLa 1L+ JL 2 lj : B
3 IR (R
4 Lo 00 Jlex JLo I ]
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F Statistic
Testing two population variances
Given independent random samples {xi, i=1.2, .., nx}and{yi, i=1.2, .., ny}
taken from two normal populations whose variances are 0,2 and oyz, the

F statistic (with n,—1 and ny~1 degrees of freedom) can be used to test the
null hypothesis

F is computed from the following:

F= S":
Sy
where sy 2 = sample variance of x
sy 2 = sample variance of y
Example:
x: 91,103,90,113,108, 87,100, 80,99, 54 (ny, =10)
y: 79,84,108, 114,120, 103, 122, 120 (ny, =8)
Answer:
F=1.02(df.=9and 7)
l.INE3 DATA OPERATIONS DISPLAY i REMARKS
B[] —"— '
2 1 X I Z+ ] [ J l I l J [ ] Perform 2 for i=1,2,...,n,
|

3 ‘ ‘_[ ®s [y J[sT0 )1 ]
4 | e I [

o i [ i ” H J[ ” J Perform 5 for i=1,2,...,n,
S B N

! \[ 1J‘ x2 H X2y ” + H J




Gaussian Probability Function

Future Value
See pages 135, 139

Gamma Function
See page 109

Gaussian Probability Function

Formula:
;e
@(x) = e ?
V2m
1 * L
d(x) = f e 2 dt
2 —co
where x =0

B(x) = 1- (%) (ast + 2 t? +a3t® +agt? +a5t°)

where t=
1 +px

p=0.2316419 a; = 0.31938153
a; =-0.356563782 az = 1.781477937
a, =-1.821255978 as = 1.330274429

115



116 Gaussian Quadratures

Example:
¥(2.22) = 0.033940763
®(2.22) = 0.9867907

Note:

o(-x) = p(x), &(-x) = 1 - &(x)
LINE‘E DATA ‘. OPERATIONS i DISPLAY \ REMARKS
IR [ o J o o } , |
2 Vgsrml sto [ 4 | [l | ‘
s [stol[ s 1] i1

3
4

4 & so]leJC JC 0 )

5 & ISTOIF7 )
6 a IS | . — 7]“
S
8

x |STO” 1J x? ”___H s
‘CHs [e l-[ n ]

LN e . . , ]

o ‘[ x l-r\/‘ lL__]ISTo]l ]
R B | A | | | R )

K L 17J[ T ]IRCL |F1 ”RCL | )

RPN e s [ B
I ) L j (R 1 e [ =

J‘LL [10)4[ 5 H + ” x HRCL

1 = [« J[reJ[& [~

17 Ix]IRCLllzl[xJI1
18 e =07 0

]
i
L Ls I+ i xJ Ree J[7 ]
|
|
]

<l>(x) ‘ For new case, go to 7

Gaussian Quadratures

b oo
Gaussian quadrature for f f(x) dx or f f(x) dx
a

a

Formula:

We estimate the value b

1,=f f(x) dx

or
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f f(x) dx

by the six point Gauss-Legendre quadrature formula,

Ibf(x)dxz b;aiwif(4zi(b'?+b+a>

i=1

- 6 4 w; )
orf f(x)dxzé_ > — f(1+ ta-1
a i-1 (1+z) %

I

where i Z; Wi
1 2386191861 14679139346
2 -.2386191861 4679139346
3 6612093865 360761573
4 -.6612093865 360761573
5 .9324695142 1713244924
6 -.9324695142 .1713244924

f(x) is any single-valued function and a, b are finite.

Example:
10
Evaluate In 10 = f &
X
1
Answer:

2.30 (replace f(x) by “ )

Example:
o2
Evaluate J L3
. X(nx)
Answer:

0.37 (replace f(x) by “[Z] 3 - E/Ej @ 43 )



118 Gaussian Quadratures
Example:

Evaluate I(1.8) = f e x %8 dx .
0

Answer:

0.92

(replace f(x) by “ ex LU\ST_}

(crs] 0.8 [

e
w__J

LINE DATA OPERATIONS 1 REMARKS

. Gz JC JE 7 |

PR N | |

2w el IC I3 N

« ow Lsodls JU L L [

15w [sto [ & ] I I | Llfb=w,got031
| [ —

PSS i i | o

7 [ Jlsro ] 1= I

8 last«][ - J[sto || 8 ] ] |

S IR | | T | N ,

o edCJC 330 ‘Replace f(x) by proper

S s | | Kersvoket

1 [ree 1 a4 J[ x J[sto J[ 1 ]

12 [ree J[ &8 I[mree | H ] Perform 1217 for i=2,3

30 [ Jeec JLz J 12 ] |

P | B | | —

15 R I I | B

o [ra] [ JC3C 1

7 w3 [ x J{sroJ[ + J[ 1 ][ ]

18 z [meu ][ 8 [ x }[cHs |[reL ]

IR o | e | | | —

|20 Leo PO J0 J0

O - | | e [ o e

22 [ 1 ]l i |

23, wchn_ JLe Jleee JI __JU__ 1 !*Perrforrr12:’3ﬁ—2§fqri=2,3 7
20, 7‘| PR | I | T | N i
22 I | |

s [l C JC 7

(2 BB | | [ |

8 w3 [ x J[s10][ = J[ 1 ]I I
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I

LINE { DATA “ OPERATIONS : DISPLAY REMARKS
29§ [Crec ][ e ]e 12 1 j
j‘l‘ Ml "ﬁ”{” ]F 7 1 ] I zStop. for new case, goto’
L | SN NN | N N Bor 3
XN S | 03 [
a2z, [so [ 17 J[ o J[sto ][ 8 ]
33 | 2 J[meL || 11 1 | Perform 3348 for i=1,2,3
« o ) dEalm] ' '
35 Ll j J{ ] ]
36 [ ]| 1 || I ]
37 Lz Jree JI_ JL I ]
8 i [ JLe Jls Jle JLx ]
30 frec JL_ 0 I 30 T
4 w3 [ x J[sto [ + J[ 8 J[ 2 ]
a [rec ][ J it ] l |
a2 i fems [ 1 [+ J[= J[Re |
I 2 | B } I
S | A | N | NN | N N )
45 L2 Jlrec J[ I ]
a6 1 [ews ][0 ][« J[ = 1[e ]
a7 L Jlee JL___J0 101
# wa [« Jfso](+ JLe J[ ]
49‘1 ‘[ rec |8 J[ 2 ][ = ][ ]. I, ‘Stop,fornewcase,
| 1 H JL_ 1 ] ‘got06or 31
Gaussian quadrature for f e * f(x) dx

We estimate the value

oo

I=f e™* f(x) dx

by the three-point Gauss-Laguerre quadrature formula:

- 3
f e f(x) dx =e™? Z w; f(z; + a)
a i=1

where i Z; l Wi
1 4157745568 7110930099
2 2.29428036 2785177336
3 6.289945083 .0103892565



120 Gaussian Quadratures

Example:

Approximate the Gamma function

I=I‘(a)=f e X x*! dx fora=525.
0
Answer:

35.27
LINE | DATA " OPERATIONS { DISPLAY REMARKS
R o e o o | o |
|2, = |[so ][ 2 ] |} ]
I N | NI | NS
4 ow [sTo ][ a4 J[ ] 1 B
s ow [sTo ][5 JC__JC_1C_ 1
e ow [solfe JL_J_JC_ 1 | B
7 e [sro ][ 7 J[Rec JT J[+ ] o
S | ) S | S Replace flx) by proper
ISR s s i [ s | ]
9* CRe e I J[sod[ e ]
10 | [Rev J0 7 J[me ][ 2 [ + 1}
(KA e e [ s i
| 12 il ReL [ 5 J[x JCsto [+ 1 ]
13 (s J[rec J[3 J[Rec ][ 7 ]
IR SN | NN AN | NN B | |
ISR S0 | AN § N | AN |
16 [rReL e ][ x [reL |[ 8 ]
7 COEe )T e & -
18 ‘rx—][ —” ][ J[ ] Stop, for new case, go to 7

Geometric Mean
See page 148

Geometric Progressions
See page 157

Goodness of Fit
See page 33

Harmonic Mean
See page 149



Harmonic Numbers

Harmonic Numbers

Formula:

The Harmonic numbers H; (i=1, 2, ...) are

or

Example:

Display the sequence in decimal form.

Answer:

1.00, 1.50, 1.83,2.08, ...

121

LINE ‘ DATA ‘ OPERATIONS | DISPLAY REMARKS

-[.__}L_IL__]E__'J

\rs 1r+ nsm 1ra ml J

aiw N| -

ﬁ.EARJ [ ] {7 l [ [ ) Perform 2 4 for IT'I 2,.

n'® Harmonic number

Example:

Find the 7™" Harmonic number.

Answer:

2.59

Note: E=.5772156649 is Euler’s constant.

LINE ! DATA OPERATIONS ‘ DISPLAY REMARKS

1] = s ALt ]l

|—7r1 7IF?7 J[,Of ]

mi—ﬂl—j[:lzjﬁ

E | FRCLJFfJ[ln 1L +J




122 Highest Common Factor

Harmonic Progressions
" See page 157

Haversine
See page 203

Highest Common Factor

Definition:
The highest common factor (or greatest common divisor) of two
positive integers a and b is the largest integer which divides both a and
b. We write it as HCF(a, b).

Example:

HCF (51, 119) = 17.00

LINE | DATA OPERATIONS ‘ DISPLAY REMARKS

RN o can o [ ] m’ , -
N | | S | |
L ,-L—JL_W“J{__‘ D lietfhethelargest
L I:L_;]r——fl {_ﬂ_] inleggr<[?
a1 el Crec ) 1]
jl_—jm[_ﬁml_jj E I1E=0,got08

o CJWLJWLJ‘ )

K },,,_. mm[xﬂﬂ sto J[ ], B 7 ]

J,»,,#culL I IC 1 eows ]
! | — — 1[—1;

mahTw J‘[ RCL ]7[7 1":'|7L _][ ] HCF(;,’I:;)" T -
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Hyperbolic Functions

123

Hyperbolic sine
Formula:
X N e—X
sinh x =
2
Example:
sinh 3.2=12.25
LINE; DATA | OPERATIONS ‘ DISPLAY REMARKS
o e, |
A S | I || | —]
Hyperbolic cosine
Formula:
eX + e—X
hx=—+——"
cosh x 3
Example:
cosh 3.2=12.29
LINE; DATA ' OPERATIONS DISPLAY REMARKS
rox jLe t ] JEs M2 1
2 = 1 i | | .
Hyperbolic tangent
Formula:
tanh x = sinh x
osh x
Example:
tanh 3.2=1.00
LINE . DATA OPERATIONS DISPLAY REMARKS

IR e e [
3 | | | — —
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Hyperbolic cotangent

Formula:

cothx =
tanh x

Example:
coth 3.2=1.00

LINE | DATA OPERATIONS DISPLAY

REMARKS

[7: ]LRC}. I[ 1'—|- LA?TX?

| I | | —

wiN | =

Hyperbolic cosecant

Formula:

cschx =

sinh x

Example:

¢sch 3.2=0.08

LINE | DATA OPERATIONS DISPLAY

REMARKS

N IR | | | [ |

Hyperbolic secant

Formula:

sechx =

cosh x

Example:

sech 3.2=0.08

LINE DATA OPERATIONS DISPLAY

REMARKS

L S SN | A | 0 | N | W |
2 (IS | B | I |




Hyperbolic Functions 125

Inverse hyperbolic sine

Formula:
sinh“x=ln<x+ x2+1)
Example:
sinh™! 51.777 = 4.64
LINE: DATA ' OPERATIONS 1 DISPLAY i REMARKS
o« OOy l -
: RO e |

Inverse hyperbolic cosine

Formula:
cosh™! x=ln(x + Vx? - 1) x=1)
Example:
cosh™! 51.777 = 4.64
LINE| DATA I OPERATIONS DISPLAY REMARKS
IR (NN | NS | N | ]I ]
2, Lvx JL« [ wm JE i ] ;‘
Inverse hyperbolic tangent
Formula:
tanh~! x = L jp LFX
2 1-x
(-1<x<1)
Example:
tanh™! 0.777 = 1.04
LINE DATA OPERATIONS DISPLAY REMARKS

) R s | | ) , ]
2 x [ ) Rastd( -] , ]

3.i _[|n][2”_H ]‘ }
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Inverse hyperbolic secant

Formula:
sech™! x = cosh™! L
X
(0<x<1)
Example:
sech™! 0.777=0.74
LINE' DATA OPERATIONS DISPLAY REMARKS
IR e Jl e e I 10 =1 -
2! { ___|EvaErmiarm) ]
Inverse hyperbolic cotangent
Formula:
coth~! x = tanh!
X
x2>1)
Example:
coth™! 51.777=0.02
LINE - DATA OPERATIONS DISPLAY REMARKS
T Lo JEe J il ] |
2 R )
3 - + In 2 +
Inverse hyperbolic cosecant
Formula:
esch™! x = sinh™! 1
X
Example:
csch™! 0.777=1.07
LINE DATA OPERATIONS DISPLAY REMARKS
RN N7 | I | O | I |

2 [ | ) ] -

]
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Hypergeometric Distribution

(G
()

x=0,1,2,...,h

Formula:

f(x)=

where h = min (n, k).

If a population consists of k elements of one kind and N-k elements of
another kind, then f(x) represents the probability of getting exactly x
elements of the first kind in a random sample of size n.

Restriction: N <69

Example:

Ifk=2,n=3,N=5 then

f(0)=0.10
f(1) = 0.60
f(2)=0.30
LINE I DATA ‘ OPERATIONS : DISPLAY REMARKS
ok \LiT_O_]L_J-I_H_I i N
2o I I I . 7
R o3 L= | Iemil
4! ‘[ S J[Fe ][5 [ ) -
S S . | 2 8 | |
6 G ] ;
7 }rxHRCLHZJ- o] o )
8 COle s JC 1 L ]
°  x ’[STO [ s ]-L nl J[BPL | L )
10 o dCre]Cs 1 -1 ‘ ]
e [ 30 % J[Rec ][ 3 7][7Rq7.|i s
12 e )7 ]
13 [Tn [ x ]{re J[ 4 }[ meL ]‘”7
" = <] I
5 frejls Joey J= 401 o | Stop; for new value )
l | I | | I ofx,got09




128 Interpolation

Interpolation

Aiken’s formula

Given a set of n + 1 data points

{xi,y).i=1,2,.,n+1}

where the x; are distinct, a unique polynomial P, (x) of degree n exists which
passes through those points.

We generate a table (using Aiken’s formula) to evaluate P,(x) at a given
point X,.

Xy Yi—
~ 1
YI\\
=~ 1
|X2 Yo _ \}’2\
| —
| r N
| | Y2 \\ .
‘ I Yn = Pu(Xo)
I | n-2 P
| | n_l//}'2 e
! | Ya 1/
Xn Yao— /Y2“'
1%
Xn+1 Yn+1//
where

Ylk = [yk * (X0 = Xk+ 1) =Yk+1 * (Xo = Xi)] /(Xk = Xk+1)

k=1,2,..,n

Y = IvK " (o = Xpem) = Y5+ (%o = X1 /(X = Xicm)

m=2,..,n,andk=1,2, ..., ntl-m
Superscripts of y,, ¥ denote the index value of the left hand data point used

in an interpolation, subscripts indicate the degree of the iterated interpolating
polynomial at the current stage of the procedure.

Example:
Use Aiken’s formula to approximate P, (0.25) if five data points (0, 1),

(0.1, 1.105171), (0.2, 1.221403), (0.3, 1.349859), (0.4, 1.491825) are
given.
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Answer:

x;=0 y;=1
yi! =1.262928
X, =0.1y, =1.105171 y,! =1.283667
y12=1.279519  y,;' =1.284030
x3=02y;3= 1.221463 y22 =1.284103 ya' =1.284026 = P,(0.25)
y,2 =1.285631 y32 =1.284023
Xa =03y, =1349859 y,° = 1283942
yi* =1.278876

xs =04 ys = 1491825

UNE  DATA OPERATIONS ~ oseLy | REMARKS

1 % [stod[ v [ Aex ][ e ] I

P | I | | I

3 v [sto][ 4 ] || L]

74: ;| RCL“r 4 U ReL J[ ||7 K jPerform4—9fork=1,2 ..... n

[ 5 e l[ sto [ 3 ][ - ][ « [ ]

6 v [ STO[ 4 J{rer [+ J[ReL | '

R S | 0 S

I | A5 | e T .
0 [reJ[ 3 J[srof[ 2 J[ ]

10 y:‘“_' {[ STOH 4 IL I I I Perform 10—16 for m=2,...,n

1 'I ReL 1[4 J{re J[ 1 1 I' iPerforT11j16f?r"k=1,.
' (D | RN | SN | | A , (ntt-m

12 xen (SOJ 2] JC 1 ]

13 yiy [sTo ][4 J[ReL [ H"__T )
N 0 N e |
15 TN [ |

AR | e | s | s [ R L
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Linear interpolation

Assume f(x) is a function of x, for given x4, X5, f(X,), f(x,) and x; <xqo <X,
we can approximate f(xo) by

- (x2 = x0) f(x1) + (%o ~ xy) f(x5)

f(xo)

X2 =Xy

Example:

Suppose a table shows

X | f(x)
1.2 0.30119
1.3 0.27253

Interpolate f to 5 decimal places for x = 1.27.

Answer:
0.28113
LINE DATA OPERATIONS DISPLAY REMARKS
! S ECLCH I ] 1‘ 4 |
2o lsoJfz JL - 01 |
N i | O e i
4 x [soff 3 J[ - ) ] | 7
|5 ,f(x’,’,,l,[,,’i 1+ J[ReL [ 1 HRCL]' i
5 [ ||




Intersections of Straight Line and Conic

Formula:

Intersections of Straight Line and Conic

Find the intersections (x,, y; ), (X,, y2) of the equations

ax+by+c=0

if there are any real intersections.

Ax? +Bxy +Cy? +Dx +Ey +F=0

131

&)
()

We can solve equation (1) for x (if a # 0), then substitute in equation
(2) and solve the new quadratic equation in y (this program does not
work if the new equation in y is linear or constant, in that case display
will show flashing zeros).

Example:

Find intersections of

2x-y-2=0

and
4x% +16y2 - 8x -32y-44=0
Answers:
(x1,y1)=(2.43,2.87), (X2, y2) = (0.51,-0.98) (Q=3.71)
UNE  DATA OPERATIONS “ DISPLAY ] REMARKS
N | | | |
2 v [soZ J[x Jx L] ]
I TN | I | NS | NG | — i
o 8 [ a jfre JL3 )+ ] | }
5 B | N | R ¥
s o [ I+ JlsOJLs p ]
7 [re ) 2 )= J[Re ]
8 L2 JCx JMret 3 J[ < | i ]
9 = i I{ JL_1
0 ¢ [sro][ e J[x J[FeL ][4 ] %
n: i[RCLH 6 J[ x Jfret ][ 3 ] I
12 L= 1 1] ‘ B
3D | sto |[" 7 J[meL [ 2 ][ x ] _ |
1 (rec 13 J0 = 1= 1 |




132 Interest (Compound)

T

LINE j DATA { OPERATIONS 1 DISPLAY REMARKS

|15 E [« Jlsto ]l 8 J[reL J[ 1 J‘

16 [TReL e [ [ x ”RCL]’ ]
17 T3 x? B RCL 7] |

i178: :[RCLH 6 || x |[roL J[ 3 l, ‘ i
19 L= ] ]

0 F ‘| + JIsto ]l 1 J[ReL ][ & ]

E3 .IRCLH s ] = (e[ ]

2 R trec J{ 0 JL o JL+ ] , - -
723> l[ RCL][ 5 H + “ — ]r ] WQ"WV7%IfQ<O,thereaie7no
:., ‘I_ 1 N I ][ } ) ieeal intersections,stop.m |
| 2. -LLJISTOJI 1w -

| 25 sto J[_4_J[ =y J[ReL ][ | o

® | S | || | s A

277 | ROL I 2 ) x ] RCL {8 ].,, 7

I A | o

»  [red[edR] 1= ]

736 '[ ReL ][ 6 [+ J[Rec][ 3 7] )

3 [+ J{ens | I I 5§ X,

Interest (Compound)

Notation:
n = number of time periods
i = periodic interest rate expressed as a decimal
PV = present value or principal
FV = future value or amount

I

interest amount
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Interest amount
Formula:
[=PV [(1 +])" - 1]

Example:

Find the compound interest on $1500 for S years if interest at 6% is
compounded annually.

Answer:

$507.34 (Note: i=0.06)

LINE; DATA OPERATIONS DISPLAY REMARKS
AT | i i

2 o~ MR - 1
s v I JC I

Number of time periods
Formula:
ln( B,)
0= PV
In (1 +1i)

Example:

How long does it take to yield $2007.34 at 6% compounded annually
if the principal is $1500?

Answer:

5 years (Note: i=0.06)

L|NE‘\ DATA . OPERATIONS DISPLAY REMARKS

t | A | A § N .

[ LIl
R e | | S | | .
3 I | e | |
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Rate of return

Formula:

()"
i=(—) -1
PV

Find the rate of return if $1500 invested today compounded annually
will amount to $2007.34 in 5 years?

Example:

Answer:
0.06 (6%)
LINE DATA T OPERATIONS : DISPLAY REMARKS
VA s o | [ |
2w COCJC I I
RS | )
- Present value
Formula:
V:l
(1+i)"
Example:

What sum invested today at 6% compounded annually will amount to
$2007.34 in 5 years?

Answer:

$1500.00  (Note: i=0.06)

LINE DATA ! OPERATIONS ; DISPLAY REMARKS

UL 2 I | S | 1
J
J

2 o

s o (=10
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Future value
Formula:

FV=PV (1 +i)"

Example:

Find the future amount of $1500 invested at 6% compounded annually
for 5 years.

Answer:

$2007.34 (Note: i=0.06)

LINE DATA OPERATIONS DISPLAY ‘T REMARKS
I [ [ [ | e [
2 o ERCOC T % ]
sl e [ I 07, i

Compound continuously
Formula:
FV=PV - ¢"

Example:

Determine the value of $50 deposited at 6% for S years, compounded
continuously?

Answer:

$67.49  (Note: i=0.06)

LINEi DATA OPERATIONS i DISPLAY E REMARKS

KT A [ [ e [ o [ |
IESC S S | P | | — —

A | | | i
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Nominal rate converted to effective annual rate

Formula:

Effective rate = (1 +i)" - 1

Example:

What is the effective annual rate of interest if the nominal (annual) rate

of 12% is compounded quarterly? (n=4,i= 0.12/4).

Answer:

0.1255 (12.55%)

LINE| DATA | OPERATIONS f DISPLAY REMARKS

O N o3 s PR
| 1

N

Add-on rate converted to true annual percentage rate (APR)

Formula:

. 600 ni
" 3(n+1)+[(n-1)ni/m]

APR

where n = number of payments
m = number of payments in one year

i = add-on interest rate
Note: This formula will give an approximate, not exact answer.

Example:

What is the true rate of interest (APR) on an 18-month, 5% add-on loan?

Answer:

9.27 (%)
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LINE | DATA OPERATIONS : DISPLAY REMARKS
N | | 5 | | N ]
2 n |[sto ][ 2 [ x ]lrec }[ 2 1
IS S s | i | s R
4 om [ Jlee )2 JL1 JL+ 7 |
s s JE J0+ JLe J[ o ]
o Lo Jlre Lz L JlRe | ]
7 | | K | P | = | |
Interest (Simple)
Notation:
n = number of time periods
i = periodic interest rate expressed as a decimal
PV = present value or principal
FV = future value or amount
I = interest amount

Interest amount
Formula:

I[=PV-.n-i
Example:

Find the interest payment due of $1500 on a 360-day basis at 6%
simple interest for 200 days.

Answer:

$50.00 (Note: i=0.06/360)

LINE | DATA OPERATIONS | DISPLAY REMARKS

RN | W |

l
2 o [ x ]| JL_JL__Ji |
I

3 PV

~JC_ [ 1C_JC 7,




138 Interest (Simple)

Number of time periods

Formula:

_FV-PV

PV -i

Example:

How long does it take to yield $1950 at 6% simple interest if the

present value is $1500?

Answer:
S years (Note: i=0.06)
LINE‘l DATA OPERATIONS i DISPLAY REMARKS
ISRV [ o s | |
2y opv Lsofl o JL= 00 JC 1
3 i lrec JL 0 10 ]+ 1 ]
Interest rate
Formula:
(= FV -PV
PV+en
Example:

Find the simple interest rate if $1500 invested today will amount to

$1950in 5 years.

Answer:

0.06 (6%)
LINE\[ DATA OPERATIONS DISPLAY REMARKS
v oev I -
20 ev {stof[ 0 JL -1 J[_] ]
N R e | | e | |
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Present value

Formula:

FV
1+ni

PV =

Example:

What sum invested today at 6% simple interest will amount to $1950

in 5 years?
Answer:

$1500 (Note: i=0.06)
LINE' DATA OPERATIONS DISPLAY " REMARKS
o I 1C 7 j
2o [l i i J{ |
I SO | S | s | | — |
Future value
Formula:

FV=PV (1 +ni)

Example:

Find the future value of $1500invested at 6% simple interest for S years.

Answer:

$1950.00  (Note: i=0.06)

LINE DATA OPERATIONS DISPLAY REMARKS
X i T | )
ST N N | N | — | —)
O T2 S| | —|

Interest Rebate (Rule of 78’s)
See page 145

Inverse Hyperbolic Functions
See page 125



140 Least Common Multiple
lterative Solution of Equations
See page 96

Least Common Multiple

Formula:

The least common multiple of two positive integers a and b is the
smallest positive integer that both a and b can divide.

a*b
LOM (. 6) = e gy
Example:
LCM (51,119)=357.00
LINE | DATA OPERATIONS ‘ DISPLAY REMARKS
1 a ;[ sto [ v J{sto ][ 3 ][ I ]
2 b [st0 ][ 2 ] ] | i
3 | e | [ Lottbe the largest |
1 I I I i 1 |integer <D
4 f »l x2y J[eux J{me J[ 1 J[ x ]. N
5 =1l 1 I IL_] & nE-0gpws |
1 i L]l 11 ‘
6 Lree JL 1 Jlxey [[sto J[ 1 ] ]
7 Lo J{+ | | I | Goto3 B
1 i J /[ I J o
|8 foee JL o JLt Jlrer J[ s ]
9 Lt Jeee JU 2 JLx Jlev -
10 [ = i )L JL___1 iomem

Least Squares Regression
See page 77

Linear Regression
See page 77



Loan Repayments 141
Loan Repayments

Notations:
n = number of payments
i = periodic interest rate expressed as a decimal
PMT = payment
PV = present value or principal

Number of time periods

Formula:
n =logy +i !
81 +i i PV - i
PMT
Example:

How many payments does it take to pay off a loan of $4000 at 9.5%
annual rate, with payments close to $150 per month?

Answer:

30.07 payments (Note: i=0.095/12)

LINE DATA OPERATIONS DISPLAY REMARKS
I O | | ,,
SV N N [ | N | § ]
O S N | )

T SRR . | | | |
: | | D | |
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Interest rate

Formula:

PMT [IP_V<1 :iy]

Annual interest rate = monthly rate x 12

Monthly interest rate i =

Example:

If n = 360, monthly payment PMT = 179.86, PV = 30000, find the
annual interest rate.
Answer:

6.00% (8 iterations)

LINE | DATA OPERATIONS i DISPLAY REMARKS
O A i o [ | |
2 oemr [t J[Fx J[ 9 ] I ]
3| pv [ = J[sto J[ 1 Jlewx J[ + ] :
L e e [eemese
5 v 7 = [ = ][ReL ] until Dy, converges (to
7‘5 ‘[ T 1] i J. Dy desired decimal place}
7 Ceex 2 JJC [z 1 *

20 [ | | f—

Payment amount
Formula:
PV -i

PMT = —
I -(1+i)"

Example:

To pay off a loan of $4000 at 9.5% interest in 30 months, what monthly
payment is required?

Answer:

$150.32 (Note: i=0.095/12)

LINE' DATA OPERATIONS ‘ DISPLAY REMARKS

N . o e s B
I B i | [ ) 7
s EMOCAC0E ], B
S S| | s | |
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Present value

Formula:

PV =PMT [_1;(1+—1)—11]

1

Example:

A person is willing to pay $150 per month for 30 months for a loan at
9.5%, how much can be borrowed?

Answer:

$3991.55  (Note: i=0.095/12)

LINE ‘ DATA k OPERATIONS DISPLAY REMARKS

1 ‘ i i| sto [ 7 7 [+ 11 lT ]
2 O] A _
El I | IS | ) 7
a4 par [« 1L I ]

Accumulated interest

Formula:

The interest paid from payment j to payment K is

Li_x = PMT [k-j - (liﬁ(l ~(1+ i)j—k)]

Compute the monthly payment, PMT, by the formula given above
under “Payment Amount.”
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Example:

Consider a house costing $30,000 with a mortgage life of 30 years at
8% yearly interest. Find the interest paid on the first 36 monthly
payments (i = 0.08/12,j =0, k = 36, n = 360).

Answer:

PMT = $220.13
Io-36 = $7108.72

LINE } DATA OPERATIONS X DISPLAY [ REMARKS
e e [ | e
2 i sl JC

3.« o)) M

I e e s s

IR S | [ o i o

s, [ JC 3

7 o [ /R« [Re]

s [ EOEI0E]

IE S H | | | | , |
o e (I JC 10 ] |

Remaining balance

Formula:
The remaining balance at paymentk (k=1,2,3,...,n)is
ka-% [ -1+ %]
Example:

Using the previous example, find the remaining balance at payment 36.

Answer:

$29184.13
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LINE| DATA I OPERATIONS " DISPLAY g REMARKS

IR I (o o [ [
N | o s s A o
EipEin=n] o msjeea) |

s CIC I 3 7 * o
s | ewr [ J(re )0 JC= 0] |

Interest rebate (Rule of 78’s)

Formula:
F = finance charge
I = interest charged at month k = 2m-k+1)
n(n+1)
-k
rebate = (n_.z_k
2
Example:

A 30-month, $1000 loan having a finance charge of $180.00 is being
repaid at $39.33 per month. What is the interest portion of the 25t
payment? What is the interest rebate at that point?

Answers:

Interest portion of the 25™ payment = $2.32
Rebate = $5.81

LINE DATA ' OPERATIONS 1‘ DISPLAY REMARKS
oo Dol JC ) ]
2w [sro]l2 J[-lso][s ] N
3 l 1 ] Jlrec JT0 I+ ] R |
4 frec JL JL M+ JL= 1 ]
|5 T2 I I Il i1 i -
IS S | I | N | N | BN O ' |
7 (ree I3 J0 x J[ 2 J[ =+ |
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Logarithms

Logarithm of a to base b (log,, a)

Formula:
log, a= -2
& 2% Tnb
Example:
log, 5=0.83
LINE‘ DATA OPERATIONS DISPLAY REMARKS
|1, a [ in_ I | 1 ]
2 e [ J= 1 | I | N |
Means

Mean, standard deviation and sums of grouped data

Formulas:

Given a set of data points
X1,X2, w0 Xp
with respective frequencies

fl H f2 3 "oy fn

n
Letk= z f;.
i=1
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Then n
Zfixi
— _i=1
x:
n
2 f
i=1
n
SSx = fix;?
i=1
Example:
f; ' 30 13 4 22 7
X; 1 2 3 4 5
Answers: x =2.51
s=1.48
Sx =191.00
SSx = 645.00
LINE DATA OPERATIONS i " DISPLAY REMARKS
1 WS
2 f', [sto [+ ][ 57 1 | I‘ N "Perf?rmZflrlrfgrﬁir=1,2,...lr17
s COGelCO e |
4 [tast[ x J[sto J[_+ J[ & ]|
5 [T i1 = )
6 ey I | s ]
7 Crec ][ 7 1] Il L1 s i |
’ ed(e I JC I 1 s |
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Arit_hmetic mean

Formula:

The arithmetic mean (average) of a set of numbers

{al,az,...,an}

is

Example:
Compute the arithmetic mean of

2,3.4,341,7,11,23

Answer:

8.30
LINEj‘ DATA ! OPERATIONS DISPLAY REMARKS
I (e e o T e [ | i
20 & [+ ]| i I 1) {Perform 2 for i=2,3,...,n
sl o [l /[ i J[ ]

Geometric mean

Formula:

The geometric mean of a set of numbers
{al 5 A2y -eey an}
is
G= 2, -a, .. a,
Example:
Compute the geometric mean of

2,3.4,341,7,11,23

Answer:

5.87
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LINE | DATA 1 OPERATIONS DISPLAY REMARKS
L Y I N | | 1]
2 a [ X ” ” J[ I[ Ii Perform 2 for i=2,3,...,n
5] - - ML L ]
Harmonic mean
Formula:
The harmonic mean of a set of numbers
{als A2, ey an}
is
H= "1
n
1
i1 4
Example:
Find the harmonic mean of
2,3.4,3.41,7,11,23
Answer:
4.40
LINEY DATA OPERATIONS ‘ DISPLAY I REMARKS
v }I t 1l 1 | B ]
2 s [ |] [ 110 |
3 a; l x ]| + ]r ” ] . Perform 3 for i=2,3,...,n
4 L= 1l ] [ ||

Mils to Degrees
See page 19

Multiple Linear Regression
See page 79

Navigation
See page 186
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Negative Binomial Distribution

Formula:

to=(7 ) a-pr= () e a-pr

X

where x=0,1,2,...

0<p<l

Example:

If r=4,p=0.9 then

£(0) = 0.66

f(1)=0.26

f(2) = 0.07
LINE } DATA ‘ OPERATIONS DISPLAY REMARKS
IR (5o [ [ [ T o
2| » ][] JEe]= ]
3 x sTO ],,[ 2 J[rec [ [+ r]i ; )
L O i
s oM e j |
6 lrlmj | | | , |
K3 e ][] |
8 0 el ] - B
9? [ f(CL“ « )] Stop; for new value of x, |

[ — —

igotoS

Normal Distribution
See page 115
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Numerical Integration

Method:
To approximate the area A under a curve, sum the areas of the con-
situent trapezoids of width I. Each trapezoid has the area

Yi T Yi1

Ix

Example:
Find the area bounded by
y=x%+2x -3,
X=-2,
x = 0 (the y axis)

and
y = 0 (the x axis).
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In this case

Xo=-2,X,=0,n=4,1=0.5

Replace f(x) by “[*] [+] [+] 2 [+] [x]3 (=) ”

Answer:
7.25
LINE | DATA OPERATIONS | DISPLAY REMARKS
1 I (cLcqr) | I 1 ] )
12 o« it J0 J I |{ §
131 % |[sto ][ J[= ][I l 7
a4 o = Jlso ][ 2 J[_Jf | o |
2! LT | T | N | |
‘ I S|
7 [rec )L 1 J[ReL )l + [ 2 ] Perform 712 for i=1,2,...,n
3 I o
(o |l J{sro ][« [ J[ ] v
o Cre}[ )R
i Lwx Jz+ Jlre ][ 4 J[s10]
12 [ 3 ] J[ 1] ]| J
13 [Rec [ 7 [{me J[ 2 [ =« ]
14 Lz = ]l ][ 11

Parabola (Least Squares Fit)

See page 82

Payments
See page 142
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Percent

Markup percent

Formula:

To make a gross profit of G%, add A% to the cost price. To find A for
a given G.

_ 100G
100-G

Example:

To make a profit of 30%, what is the percentage of markup?

Answer:

42.86%
LINET DATA ! OPERATIONS DISPLAY REMARKS
o [edledles]C2 =1 | ]
S T i e o | |
Gross % profit
Formula:

If A% is added to the cost price, the profit will be G% of the selling
price.

_ 100A
A+100

Example:

If we add 30% to our cost price, what percent of the selling price will
be the profit?

Answer:

23.08%
LINE‘1 DATA “ OPERATIONS ‘\ DISPLAY REMARKS
I (| o o | | 1
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Permutations

Permutations of a objects taken b at a time

Formula:
P, =P (a,b) a!
= a’ P ——
b (a-b)!
Example:
2Ps =2520.00
Notes:
aPO = 1;
aP 174,
2Py = a!
Program requires a < 69.
LINE| DATA T OPERATIONS DISPLAY REMARKS

1] J-| o] I (e | ]

20 » [ |1

Plotting Curves

Objective:

The following routines give values of y = f(x) in increments of I for
values of x between Xy = a, and x = b where b > a. f(x) should be
replaced by appropriate sequence of keystrokes. I is saved in register
R;, so f(x) cannot use that register.
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Examples of f(x): (assuming x is in the X register)
For Replace f(x) by

y=x? [x]

v = In sin x

y=3 9% gl -1 _lmee
y=x*-2x*+3x-7 @@@@28@3@78

LINE? DATA OPERATIONS ] DISPLAY REMARKS

I o T o [ |

L. CACJCOC I

P | | [ o | S

4 [_]L_]WLJ[ + J[ ) Xi Perform 4—6 for i=1,2,...k,

S I | | [ = P N

5 o | | | s Y L
S i s | | e | RO
Example:

/X
Plot = /In=
0 y n>

from x = 3 to x = § at intervals of 0.5.

Replace f(x) in the program by [Z] 2 E] - Eaﬂ

LINE 1 DATA ‘i OPERATIONS ‘ DISPLAY REMARKS
(] os E__IE_ID_IL_H__J T ]
2 ‘ 3 3.00 %o
S i [ | [N
I R vz i | s Y N B 0
5 [CLX” + Jlrec JL+ [ I 350 -x,
6 o e | e [ -
7 -,LLH—IL—][——’ 075 [<fm)
8 | ‘T + J[rec I+ JL 3 ] 400 L’"L,

A | | v |
o -[IH:H___H:] om et
R i | T i | AT
2 ‘[ + 1 I 2JL__IED
3 -LAL][__”__]L__I 090 i flxs)
16 -LL“ Jl JI 1 0.96 F e Hxa)
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Poisson Distribution

Formula:

e ax
x!

f(x) =

where x is a positive integer and A > 0.

Example:

Suppose A = 2.8; f(7)=0.016279878

LINE | DATA OPERATIONS ‘ DISPLAY REMARKS
1 A cts [ e | (A5t ] [chs
B wam]  [esm |
3| Lo 0= 1 Jex[Ce }
Polynomial Evaluation
Formulas:
f(x) =cox" +c;x" 1+ . +cq X +cp
write
f(x0) = (... (((coxo T c1)Xo+ca) Xg +C3) Xg +... )Xo +Cp
Example:
If f(x) = x% + 5x* - 3x? - 7x + 11, find £(2.5).
Answer:
267.72
LINE' DATA T OPERATIONS DISPLAY REMARKS

RS o [

2 I | o | s | o | |

Perform 3—4 for i=1,2

|

|
3 i | [ [ |
L N o | [ i [
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Power Curve (Least Squares Fit)
See page 86

Present Value
See pages, 134, 139

Primes
See page 111

Progressions

Formulas:
Arithmetic Progression
a,a+d,at2d,...,a+(n-1)d

Geometric Progression

a, ar, ar?, ..., ar"!

Harmonic Progression

i a a a
b b+c’  b+2¢’ T b+(n-1)

n = number of terms

a = first term in arithmetic and geometric progressions

[ =last term

d = difference between two successive terms in an arithmetic progression

r = ratio between two successive terms in a geometric progression

S = sum of a progression
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Step through an arithmetic progression

Formula:

Example:

a,at+d,a+2d,..,a+t(n-1)d

Display the progression witha=0,d=17.

Answer:

0.00, 17.00, 34.00, 51.00, 68.00, 85.00, 102.00, 119.00, ...

LINE[ DATA OPERATIONS DISPLAY REMARKS
KT o | i |
27 o || || || | ] }
3 | + I[ ”“77% ” , H ]i Perform Ciﬁasirria?!!i?nes i
[ ] ]| 1 1 } \ as desired
Step through a geometric progression
Formula:
a, ér, ar?, ..., ar
Example:
Step through the powers of 8.
Answers:
8.00, 64.00, 512.00, 4096.00, 32768.00, ...
LINE | DATA OPERATIONS ‘ DISPLAY REMARKS
0 IS NN | NN | NN | B —
2 a | I 1 J[ I ]
o I JC L JC ,Perform 3 as many times |
L__“ ” ”__’L,‘ %asdesired
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through a harmonic progression

Formula:

a  a a a
b’ b+c  b+2c’ 7 b+(n-1)c

Note: A harmonic progression can be obtained by multiplying the constant
a by the reciprocals of the terms of the arithmetic progression
b,b+c, b+ 2, .., b+ (n~-1)c. In the following algorithm,
x; (=1, 2, ...) represents the i™ term of the progression.

Example:

Answ

Step through the harmonic progression where a= 1, b= 2, and ¢ = 3.

ers.

0.50, 0.20, 0.13, 0.09, ...

LINE| DATA OPERATIONS DISPLAY REMARKS

IR R e o | o | o ]
3 o [t % J[rec J[ 0 3 =] X

4 e+ 1] ‘ “,,,1 % |; Perform 45 for i=23,... |
5 CreJC T JC=x1C _1C 1 = {

n'® term of an arithmetic progression

Formula:

Given the number of terms, the last term of an arithmetic progression
is given by

nMterm=a+(n-1)d

Example:

Find the 25™ term of the arithmetic progression with a = 2, d = 3.14.

Answer:
77.36
LINE | DATA | OPERATIONS 1 DISPLAY REMARKS
B AN I | N | ”L - ]
K | A | NN | N | Ij ]
3] e L+ ] H il I I




160 Progressions

n? term of a geometric progression

Formula:

Given the number of terms, the last term of a geometric progression is
given by

Example:

n't term = ar™”

Find the 14™ term of the geometric progression with a = 2, r = 3.14.

Answer:
5769197.69
LINE| DATA OPERATIONS ’ DISPLAY REMARKS
O i i , ]
2| o [ JC 37, Mte>ogwa |
N | | — —
: (= llos)De MLy ] nsemmos |
I | | — Oterwi o106 |
s o] — — | — Gotos
CIC JC JC C 7 ]
5 | —| — —
o] o CAC I CJC )

Arithmetic progression sum (given the last term)

Formula:

Given the last term, the sum of an arithmetic progression to n terms is

Example:

S=

b
2

(a+])

Ifa=3.5,/=25,and n =11, find the sum.

Answer:

S=156.75
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LINE ! DATA OPERATIONS ] DISPLAY REMARKS

8 I o o o 77

2| | ICJC I IC 1 ]
S | | | |

Arithmetic progression sum (given the difference)

Formula:

Given the first term and the difference between two successive terms,
the sum of an arithmetic progression to n terms is:

S=na+ n(n-1)d
Example:

Ifa=3.5,n=11,and d = 2.15, find the sum of 11 terms.

Answer:
S=156.75
LINE DATA E OPERATIONS DISPLAY REMARKS
L n [_[VII ] ll—]ljvml

2| o | JC 1
3l e 2 =1+ 1[=]
a | | | |

Sum of a geometric progression (r <1)

Formula:
The sum of a geometric progression to n terms with r <1 is

a(l1-1")
1-r

S=
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Example:

Ifa=1,r=-2.1,and n = 6, find the sum of 6 terms.

Answer:

S=-2734

OPERATIONS : DISPLAY REMARKS

I I e | i T e 1
2 o [ 3]
I3 SO AN | N N | N | M
) | | s
4 [ens |G | T 1)
S S oo | o i e
5 [ | —]
| | I I | —
}
)
|

LINE| DATA

Ifr>0,goto5

S S S

If nis odd, go to 6;

! Otherwise, go to 7

Goto7

6 | |
7 = JRe )T

8 e | | e |

Sum of a geometric progression (r > 1)

Formula:

The sum of geometric progression to n terms with r > 1 is

n
= a(r"-1)
r-1

Example:

Ifa=1,r=2.1,n=6, find the sum.

Answer:
S=77.06
LINE DATA : OPERATIONS DISPLAY REMARKS
1 a ‘l, t 0t ) Vlf ] e B
2 v [ dlsto J[ 1 ]l I }

s R 0e ] T
4 Cred ) I ==
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Sum of an infinite geometric progression (-1 < r <1)

Formula:
__a
1-r
Example:
If a=2and r=.5, find the sum.
Answer:
S=4.00
LINET DATA OPERATIONS ' DISPLAY REMARKS
e :[ L J ] I l:f I o ]
L A | I 11 ‘
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Quadratic Equation

Formula:
The roots of Ax2+Bx+C=0
are -B+VB? 4AC
2A
If D = (B2 —4AC)/4A?

is positive, the roots are real. The root with larger absolute value x, is
computed first to obtain better significance. The second real root x, is
found by C

X2 =
Axl

If D is negative, roots are complex (one root is the complex conjugate

of the other), being
-B |, V4AC- B? i

utiv=—— %
2A 2A
Example 1:
Solve 3.142958x2 - 6.987122x + 1.001976 =0
Answers: x; =2.07,x, =0.15
-B
é) =0.92, A 1.1 1)
Example 2:
Solve -7.23x*+2.67x-3.17=0
Answers: utiv = 0.18 + 0.64i
(D =-0.40)
LINEE DATA | OPERATIONS i DISPLAY REMARKS

17 A “STOH 1}FTJI + IF ]

_ 2» —B T[' ny” = ][ CHS] I___I

3 C, { STOH 2 2 ]| RCLJ[ L ]L_.J, I
4; j —J[ H:H JI |; o IfD<Ogot010

| —

—~B/2A I B/ZA <0 g0 to 7.

l

| 5. ,—I f II ey J[ "I[ ]| -B2a -8 oto7.
o AN | A | I[ ] o
K3 (i +JI 11 3 x | Gots o
I L JI, IC_ 11 ,Jr‘ o ]
7 7‘[__][ crHs’JW S | I | N T ]
|8 [rec 0 JL < RCLJI 2 | L |
k3 ey = 1 C JL x,  isop |

) L [ I I 5 s -

10 T CHSI-I NG !R‘jYJI ] u

1 = | A | | | s P
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Radians to Degrees
See page 19

Random Numbers

Objective:

This routine will use a “seed” S to generate a sequence of pseudo
random numbers R; in either of two ranges ~1 to 0 (if S < Q) or 0 to 1
(if S > 0). For best results, the seed must be a ten digit decimal fraction
containing all digits O through 9 in an arbitrary order.

Example:

If S = .2510637948, generate a random series.

Answers:

0.28,0.14, 0.19, 0.65, 0.90, 0.20, 0.85, etc.

LINE  DATA OPERATIONS ? DISPLAY REMARKS

e e Jle JE JEe J e T ]

2 s [ /| ]| ]| |

3 ] 1 I ] o} Perform 3—4 for i=1,2,3,...

oo OO I I A [t
I ]| [ I | I § of D;

Rank Correlation (Spearman’s Coefficient)

Formula:

n
63 D/’
i=1

- n(n®-1)

Iy =

where n = number of paired observations (x;, y;)

D; = rank (x;) - rank (y) = R; = §;
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If the X and Y random variables from which these n pairs of observa-
tions are derived are independent, then ry has a mean of zero and a
variance
1
n-1

An approximate test for the null hypothesis
Ho: X, Y are independent
is
Z=r1; v/n-1

which is approximately a standardized normal variable (for large n,
say n = 10).

If the null hypothesis of independence is not rejected, we can infer that
the population correlation coefficient p(x, y) = 0, but dependence
between the variables does not necessarily imply that po(x, y) # O.

Note: -1 <rg<1
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Example:
X Y R S

Student Math Grade‘ Stat Grade Rank of X Rank of Y
1 82 81 6 7
2 67 75 14 11
3 91 85 3 4
4 98 90 1 2
5 74 80 11 8
6 52 60 15 15
7 86 94 4 1
8 95 78 2 9
9 79 83 9 6
10 78 76 10 10
11 84 84 5 5
12 80 69 8 13
13 69 72 13 12
14 81 88 7 3
15 73 61 12 14

Answers:
s = 0.76
Z=285

LINE DATA OPERATIONS ! DISPLAY i REMARKS

B [C5] o — ’

2 m [t 1 I i ] Perform 2—3 for i=1,2,....n

o s [ EFCC I 1 "’

4 [rec ][ & [ & J[ = J[mRet]

s [ EI !

I i i | = | i TS

7 ‘[ reL 1[5 ] 1 |[“:—1-

R V| E | [ |

Rate of Return
See page 134
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Register Operations

In the following eighteen routines, X, y, z, t and 1y denote the contents of
registers X, Y, Z, T and Ry, respectively. (k=1, 2, ...,9)

1.  Clear stack; retain all storage registers

lost
t T
z Z
y Y
X X
0
LINE | DATA OPERATIONS ‘. DISPLAY REMARKS
1 Ceox I+ Ja 1 I 1
2. Delete x
(Lower the stack.)
z \ Z
y Y
X s: X
lost
LINE! DATA OPERATIONS 1( DISPLAY REMARKS

1 [TE | Il H §
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3. Deletey

(Lower that part of the stack above X.)

t Y T
z \ Z
y Y
X lt X
lost
LINEF DATA OPERATIONS / DISPLAY REMARKS
1 G o] I C
4. Reverse the stack
t T
Z Z
y Y
X X
LINE“ DATA J OPERATIONS | DISPLAY REMARKS
1 ' Dy R 1 Rr [ x=y | |

5. Fetchtorroll up
(Bring t to X, keeping the other operands in the same order).

T

Z
Y
X

LINE | DATA OPERATIONS DISPLAY

1 Cre R J[Re T 1 ]

M N

REMARKS
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6. FetchttoY

(Bring t to Y, keeping the other operands in the same order).

t T
oL
y Y
X X
LINE' DATA OPERATIONS DISPLAY REMARKS
1} ‘ R LR R ] xey ]
7. Fetchz

(Bring z to X, keeping the other operands in the same order).

LINET DATA ‘ OPERATIONS DISPLAY REMARKS
1 I R x2y R
8. CopyxintoZand T
lost
7
z
y
X
LINE' DATA i OPERATIONS DISPLAY REMARKS

1 T J[ R [ we )
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9. Copyyinto Z
(T is cleared).

0 lost
e
z Z
y _4 Y
X X

LINE  DATA OPERATIONS DISPLAY REMARKS

1

o e I JCm J ]

10. Copyyinto Zand T

—+

Mo N A D

LINE  DATA OPERATIONS DISPLAY REMARKS

1

2

= 0 ][RLJIRLL
(r L ] | I ]

11.

Copy y and x into Z and T, respectively

(Copy x and y in reverse stack order, but this is the shortest way to save
both x and y in the stack)

-

< N = @

LINE DATA \ OPERATIONS . DISPLAY REMARKS

T

1

e R
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12. Copy y and x into T and Z, respectively

(Copy x and y in the same stack order to Z and T).

lost

LINE  DATA

OPERATIONS DISPLAY REMARKS
I =" | N | N | e |
2 Cr] I | I |
13. Swap x and ry
(Exchange x and ry, tislost), wherek=1,2, ..., 9.
/ lost
t : T
z Z
y Y
">
I Ry
LINE | DATA OPERATIONS DISPLAY REMARKS
| 1 1 ‘[ RCLjI 1[ ]”7 _ I,—:L L kisenﬁinﬁt?gerand
2 ¢ Ll ]l I 1 fr<kss
3 kolex 1 1 11 ]
14. Swapyand:z
t T
‘>t
y Y
X X
LINE; DATA OPERATIONS DISPLAY REMARKS

1

CrOGa ] Cr ]

Re [ Re !
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15. Swapzandt

b
Z Z
y Y
X X
LINE| DATA OPERATIONS ! DISPLAY REMARKS
1 Ty Ry x2y I _RE Ry \
16. Swap xandt
t T
z Z
y Y
X X
LINE DATA OPERATIONS DISPLAY REMARKS
1 T re [ R R J[x=y Ri_|
17. Swapxandz
(Reverse contents of X, Y, Z)
t T
yA Z
y >€ Y
X X
LINE| DATA OPERATIONS DISPLAY REMARKS

1 ey MR e 0y 1R ]
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18. Swapyandt

(Reverse contents of Y, Z, T).

t T

S

y Y

X X
LINE DATA OPERATIONS f DISPLAY REMARKS
1 Cr e R RG]

Resistance

Formula:

The equivalent resistence R of a parallel combination of resistors is

R= !
oL,
R, R, R,
Example: l
Find R.
R~ § §129 -R,
Answer:
R=3.00
LINE | DATA ‘ OPERATIONS ' DISPLAY | REMARKS
v R /| /{ ] |
2 r [ % [ = ]I Ti 1] Perform 2 for i=2,...n
3 L% ]l /| |l J 1 "
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Roots of a Polynomial
Formula:
The Newton-Raphson iterative method can be used to compute a root
of the polynomial equation '
f(x)=agx™ +a,;x" 1+ .. +a, x+a,=0
by using
f(x;)

Xj+1 T Xj - f'(xl)
1

where f' is the derivative of f.

Due to storage limitations, the following key sequence is limited to
handling polynomials with n < 9. The routine can be modified (to
record intermediate results instead of storing them) to solve poly-
nomials with n > 9.

Example:
Given an initial estimate xo, = 0.6875 of a zero of the polynomial

f(x)=x3 - 11x? +32x - 22

improve the estimate so that it is accurate to the 5™ decimal place.
Answer:
x; =0.95396, x, = 0.99875, x5 = x4 = 1.00000
LINE | DATA ‘ OPERATIONS . DISPLAY !‘ REMARKS
R A A | o
20 a8 [x ]I i [ i1 ] {Perform 213 for i=1,2,..
3l o [+ 1lsto ]! 1l ) ] Perform 3—4 for j=1,...
R | | | |
a i [ | I | ]
s - L[ ol L IC 1
PP i | S | NN | B |
AT B | N | N | I |
8 | [(rec 1 1 10 1 Perform 89 for k=1,...
I J1 /1 I I y n-2
I L B | | /| |
o) (Rl JC JC JC |
wl e ORI JC ] |
2o ey )= JL= J0 T ] i
13 [ L JL__J X1
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Secant
See page 201

Simple Interest
See page 137

Simultaneous Linear Equations

Two unknowns

Formula:

Solve for x and y

ax +by=e
cx+tdy=f

Determinant solutions are:

e b
_f d
x —_————
D
’a e
_lc f
)
where
_la b
D= c d . #0
Example
7.32x - 9.08y = 3.14
Solve
12.39x + 7y = 0.05
Answers:
x=0.14
y =-0.24

(D =163.74)
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LINE: DaTA OPERATIONS DISPLAY REMARKS

I [ i | B |
2 ¢ [sol 2= 11
N 0 | R [

a1 S a ==

|
i
| -
|

s o [so][ s JfRe [z ][ x ]
I % N I |

7 I 0 | 2 s
8 Fracacr g«
5 (e )5 J[Re 1A} <]
10 (e[ J[Re ][ 6 ] % ]
" | e e

J
1
i S |

Three unknowns

Formulas:
a;xt+tbyytciz=d,
X tbyy +cyz=4d,
azx +byy +c3z=d;
Determinant solution to these simultaneous equations:

dl bl Cq
d2 b2 Ca
_lds b3 c3

a, dy ¢
a; dy ¢
az d; c3

y:

dy -byy-a;x
Z=_—__._
C1

where

ag b1 Cy

az bz c3
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Example:
Solve
3.14x +10.02y - 7z =1
0.25x +30.3y -9.1z=2
-3.5x+274y +82=3
Answers:
x=0.29
y=0.11
z=0.14
(D=1052.86)
LINEI DATA OPERATIONS DISPLAY REMARKS
e [ I JL 1 |
2 b [sto][ s J[ x J[ _J[ ] i
s Gl Il Jl |-} |
4 b, [sto ][ a4 ] | ]|7 ]i
s . olle ]l I[ I
o o [ ICIC L] ]
e [l IC JC JC ]
s o A IC ] )
I o0 | [ o [ A B
?jgﬁa}w&l CLJFE ] JiRe J 7 | B
IR [ | e =
12 e Jc i1 ]
B ooa [ = J[recJ o J[ ]
e [x Jlea JL e J[ < -] D
RS A | B | N [ - ]
(16, d .[ sto |{ ][RCL ][ s 1 x ] |
|17 [ree J[ o J[ x I[Re J[ 4 ] . o ]
18 [ree J[ & [ x | i | |
O A0 N | B | . ]
|20 L7 Jlrec e JL = 11 ]
2t e [sro]l 2 10~ JL + J[Ret] ]
2 [ 3 —“RCL” 5 [« J[Rc] ]
3 4 S | NI | N O B ]
24 [RCLH 8 | x ”RCL]r1 ] o
s, e[ lee]
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LINE ‘ DATA OPERATIONS ‘ DISPLAY REMARKS
% Lz Jx Jrec o 1] ]
7 L= Jle JL = Jlso]l s ] x B
% Le J0 I IO 1 |
2 o qsto][ e J[re J[ 2 J[ x ]
E3 I | | e
31 re s J0 JC |
2 s [x 0+ Jleec ]2 JL__ T
EJ | e | e e B
3 o [rec [ 2 J[x J[recJ[7 ] ]
35 L JU = Jee J[s J{ree ] |
|36 s Jx Jlre Je 10 <]
a7 L= Jlre Jl o I J[ ] ; B
# o [ x J(recJl o+ 0« )= 1 1 i
EN ey 10 1 I 101 v | ]
40 Cree 1L« I« Jlens Jlaer ] ]
o a0 e ]
a2 j[ s JLx JC=1lre ] 7 1 ]
a3 CoOCJCJC :

Sinking Fund
Notation:

n = number of time periods
i = periodic interest rate, expressed as a decimal
PMT = payment

FV = future value
Number of periods

Formula:

i*FV
I +1
) n(PMT )

In (1 +1i)
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Example:

If you put $100 into a savings account every month, how long does it
take to save 35000, if interest is earned at 5% compounded monthly?

Answer:

45.51 months (Note: i=0.05/12)

LINE DATA OPERATIONS DISPLAY REMARKS
AR s o [ ) '
SV S R | B - |
3w [ w0 ;
AL [ S | | o [ ?

Payment amount

Formula:

PMT = _Fv-i
a+i-1
Example:

To save $5000 in 45 months in a savings account paying 5%, com-
pounded monthly, how much should you deposit each month?

Answer:

$101.25 (Note: i=0.05/12)

LINE| DATA | OPERATIONS DISPLAY REMARKS

ORI 55 o o [ o
RIS EER S i [ | o
s 5

Future value

Formula:

FV = PMT [_(1 ”i)n = 1]
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Example:

If you deposit $100 every month in a savings account at 5% com-
pounded monthly, how much will you accumulate after 45 months?

Answer:

$4938.25  (Note: i=0.05/12)

Skewness and Kurtosis
(for grouped or ungrouped data)

Formulas:
mean:
X = 1 x4
n
274 moment:
m, == Zx2 -x?
3" moment:
ms = 1 zx2 - Ei ox? + 2% 3
n n
4™ moment:
my = l 2)(;‘ - ii}:xf + §§2 Exiz -3x4
n n n
Skewness:

LINE | DATA ‘ OPERATIONS DISPLAY REMARKS “-]
v D= g |
2 o WM (- 0]
O S | | N A (I g
o e OC ST ]
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Kurtosis (excess):

|
15 L 1 J[srof[ « J[ 5 ] |

my
= -3
72 my?
Example 1: Ungrouped data
i | o 2 3 4 5 6 7 8 9
X I 2.1 3.5 4.2 6.5 4.1 3.6 5.3 3.7 4.9
Answers:
Y1 =0.24, Y2 =-0.16
(m, =1.39, m3 = 0.39, my = 5.49)
Example 2: Grouped data
x |3 2 4 6 1
il 4 s 3 2
Answers:
v =0.77, v, =-0.19
{m, =198, m; =2.14, my = 11.05) .
LINE: DATA ;r ) OPERATIONS i DISPLAY REMARKS
1 -ICLEARHSTO][ 4 I For grouped data, go to 7
j ;I ][ Jl 1T JC ]i
2] x i| t [t 4 ]-[ v ' Perform 2-5 for i=1,2,...n
B n [ |
<] COCE Il 1G]
5 | = /| I L]
o s | ) Goto 16
| I H 1L ]I ]| ]
7‘ X H + 1 H 4 _]-[ yx ] . Perform 7—15 for i=1,2,...,n
WB; 1 ‘| STo][ 1 [ x J[smo ][+ ]  Tf.isthefrequencyofx,
W [ Hx«vH |
10 I |m% 2 ]
1 4I sto J[_+ H 8 Jl= ][+ ] ]
LT | e [ [ cn ) ]
K e e e e | ]
14 x |[sto [+ J[ 7 [ e ]
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LINE i DATA ’ OPERATIONS ‘ DISPLAY ‘ REMARKS

16 B = (sl ] (el |

17 e Jre ][5 JL = Je= ]

18 e a1 Jr 3 om
o WL [so]l 2 Jlre]
(20 e Jlrec J[ o+ J[rec [ e |

2 I | T | I = | AT +
s -z Jfreldf 1 . ]
| [ e e R ,

i - — ]

I
» OO mmc],
r

e A
TS B | T | ]l

2 [re][ T [= e =]
2 [eeJl e J[ « J[+ JlRet )
* L0 Mlped[ + J[ ]
. ) S| e | i
2 feedlz )0« 0]

B f o o | = | | |

T2

SOD Depreciation
See page 92

Speedometer/Odometer Adjustments

Objective:

Assume that you are an automobile passenger approaching a speed-
ometer test section with an HP-45 in your hand. You want to calculate
TS — true speed of the car

RS — what your speedometer will register at a posted speed

DS — distance traveled after a trip

RO — the reading of the odometer after a specific distance d
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Notation:

a; = mileage read at beginning of trip

a, = mileage read at end of trip

b; = mileage read at beginning of test section (to nearest 20™ of a mile,

if possible)
b, = mileage read at end of test section
L = length of test section
s = speedometer value
p = posted speed

q = present milage

LINE DATA OPERATIONS- » i 7ﬂD|SPV—LA;“’ o ;E”M—A;KS;A—"‘ 1
v Tess ] 0 0T ]
AT s | e | S L [
s o [ <% o 0 it l '
T I | | | For TS, g0 105
L_;}i 1[ :{ H____j vForRS,gotoS
) S N S | | ForDS,goto7
N | D N T | For RD, go 109
5 s (ReLjl 1 L+ 1 H ] TS Gotoa
* { I ] ‘
6 p e )l 1 I N RS Gotod
- ! I R | Iy
7 e [ ] 1 | _
8 a = Jleec J 2 1+ ] | DS Goto4
N | N ¢ N | N |
o o [ra JOT 30 0T B
o o [ JC_JC I 01 eo Gotod

Example:
Assume the following:

a; =2185.2 Mileage at start of trip

b; =22194 Mileage at start of test section

b, =2224.15 Mileage at end of test section
L = 5 miles Length of test section
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(a) 50 mph? (b) 70 mph? (c) 30 mph?

since the start of your trip.

. How fast is the car actually traveling when the speedometer registers
. What will the speedometer register if the true speed is (a) 65 mph?
(b) 55 mph?

. When the odometer reads 2236.3, how many miles have you traveled

. You see asign saying “DOEVILLE 48”. If your odometer now reads

2241.5, what will it register when you arrive at DOEVILLE?

DATA

REMARKS

LINE OPERATIONS DISPLAY
1 C2 02 1L d0e I -]
2 i |
3 !
. i
5 A l 52.63 Answer for 1(a}
6 73.68 Answer for 1(b)
7 ‘ 31.58 ' Answer for 1{c)
8 61.75 Answer for 2{a}
9 ’ 52.25 Answer for 2(b)
10 | _
1 Bl
12 )| LR
3 i ERET 1 i 53.79 Answer for 3
w o e e eed JC 10
15 ! W e W]
6 .L 5 [+ 1] i 107 2287.10 Answer for 4
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Spherical Triangle

Formulas:

Suppose A, B, C are the three angles of a spherical triangle and a, b, ¢
are the opposite sides.

If A, b, ¢ are given, then

a=cos™! [cos b cosc +sin b sin ¢ cos A]

C = cos! [cos C—COSs acos b]

sin a sin b

T T
LINE  DATA OPERATIONS ! DISPLAY REMARKS

| p;L_;u__JL_;n__JL_:
‘ ) c STO RCL \7

N

3, j[ s | RCL I[_ﬁ SIN ‘ B 7 ) N
o O ritr_ﬂmrl[_ I
s oA Leos) o JO+ JMM(cost] . R
6 [ sto [ 3 ]U(}VLW”___‘H_._]‘

7 YI_H_WEDTIWL

S == e [ | e
o ;'l siv [ rec 10 1 I sin J[ x 1 -
10 :E-MDE c
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Navigational course
The above routine can be used to find the great circle route a and the

true course C if the coordinates of the source (¢, 85) and destination
(¢p, 8p) are known.

North Pole.

S
(¢s,0s)

(¢, 0p)

S = Source D = Destination
Notes:
1. A=es—0D,b=90°—¢S,C=9OO—¢D

2. Northern hemisphere latitudes and Western hemisphere longitudes
are indicated as positive numbers, Southern and Eastern coordinates
are indicated as negative numbers.

3. 1° (spherical coordinate) = 60 nautical miles

4. True course = 360° — C if sin A <O (i.e., going west).
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Example:

Find the great circle distance and true course from San Francisco
(37° 37" N, 122° 23' W) to Monterey (36° 35’ N, 121° 51' W).

Answers:

Distance = 67.05 nautical miles

True course = 157.46°

LINE DATA OPERATIONS DISPLAY ; REMARKS
1 M o ) o J0 o (1 ]

2 | | e [ e T )

3 B ovs- - J[so ][ 1] 52.38 b

] Ceos o157 |

: I - |
6 lows-][— J[sto ][ 2 ][] sz «c
7 Il Ilrer 101 ][ sin |

s Cre ][ e I

s | | e |

10 I ovs-] 2 0 )

2 s 1] . ows]

12 L0 I JC oss A

13 Cx ] I (cos ] 112 '+ a in decimal degrees)
12 '( sto ][ 3 [ e J[ o [« ]' 67.05 < a {in nautical miles)
15 (e[ 2 Jeos J[me ][5 ]

16 [eos e J [+ Jleos 1]

” e s 10w ] Cre

18 GO, _ L
19 [cos-1] [ ] [ ] [ ] 157.46 '« C (in decimal degrees)

Stack Operations
See page 168

Stirling’s Approximation
See page 109
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Synthetic Division

Formula:

This program performs synthetic division on a polynomial of degree n
(with real coefficients)

n-1

anxn +an_lx +...+alx+ao

by x - X¢ so that

apx" +...ta;x tag = by X" + by, X" 4 .+ byx + by + R
X - Xg X - Xg
Example:
Divide x5 - 4x* + 7x® - 10x? + 8 by x - 2.
Answer:
(x4—2x3+3x2—4x—8)+@
x=-2
LINE | DATA OPERATIONS DISPLAY REMARKS
IR N o o | )
2 a [ i ] ][ I ] Ba_ s
:3' l X H J[ —H ” ] }Perforrjn3—4fori=n—1,
7777777 [ AU | OO | O | | 7 2
LI A A | B { | L] bi- 1
15 x0T 1 I N
o s [ I L1 =
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Triangles (Oblique)
The basic formulas used to solve a triangle are:

1. law of sines
a b _ ¢

sin A sin B sin C

2. law of cosines

¢?=a%2 +b% ~2abcosC

B C
a

Note: Triangle solution routines work in any angular mode. When the
calculator is in DEG mode, all angles are in decimal degrees.

Given a, b, C; find A, B, ¢

Formulas:
c= Va? +b? = 2ab cos C
A= tan-! asin C
b-acosC
B=cos™! [ —cos (A +C)]
Example:
Given b=224
C=28°40'
a=132
Find ¢, A, B

(Note: C must be converted to decimal degrees before calculation.)

Answer:
c=125.35
A =3034°

B=120.99°
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LINE | DATA OPERATIONS { DISPLAY REMARKS

> ol L 1L

1 ]‘
2! o |l JC JCC )
3.« (e ) 0]
o
5

o | e o | e | S
|5 v ]| 1 | D | e U i
6 | reL [ 2 J[ + |[cos J[crs ]
7 I {cos ]| 1 1l ] ]
Givena, b, c;find A, B, C
Formulas:
A = 2 cos_l M
bec
where S=(a+b +¢)/2
B=tan"! __bsinA
c-bcos A
C=cos™! [—cos (A + B)]
Example:
Given a=30.3
b=404
c=62.6
Find A, B, C.

c-62.6 B

Answer:

A =23.66° = 0.41 radians = 26.29 grads
B =32.35° = 0.56 radians = 35.95 grads
C=123.99° = 2.16 radians = 137.76 grads
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T
LINE: DATA ' OPERATIONS DISPLAY

REMARKS

. ol 33

o oz JC_ 33

e [+ JC= 127
|| o = |
]G]z =1,
(il [wva)
B2 ][« J(s0]
) NI | N | A R
[ReC] (2] I =R ) [(Rer )
| T =

[Rer [ 1 )[ + 1{cos}[cHs]

M (cos ) ][ (] c

© O N A W N

)

p

N
T

Given a, A, C;find B, b, ¢

Formulas:
p= 2 sin (A +C)
sin A
¢=Va? +b? - 2ab cos C
B = tan-! b sin C
a-bcosC
Example:

Given a=175
C =1.09 radians
A =0.72 radians

Find B, b, c.

Answer:
b=25.78
¢=23.53

B =1.33 radians
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LINE T DATA \ OPERATIONS DISPLAY REMARKS
;f a ISTo JL JC 1]
f‘ c !STO ]Li,ﬂ,, | lL J o
,;3 " A STO I SIN H
KN nsmw * JRec [ l -
5 ) ‘[,jJ,L,, 1] JL_ |,L,,,, I\ b
KR [RCL 12 = ]-m - - )
R S =n [ .
BN =0 | s |
Given a, B, C; find A, b, ¢
Formulas:
- asinC
sin (B + C)
b=Va? +c? —2ac cos B
A=cos™! [~cos (B + C)]
‘Example:
Given a=1252
B =39.26 grads
C=176.11 grads
Find A,b,c.
Answer:
c=24.15
b=15.01
A =84.63 grads
LINE DATA OPERATIONS DISPLAVM T REMA’R’K;“~ T
vtooa 1 sto [ 1 ][ [ i I;
I o0 | | — [ —
3 ¢ ‘[ sto [ 3 J[sin J[ReL |[ 2 ]
S | N [ 0 | )
5 V[RCLH I ][sm?[ 3 ] c
o [Fe[zJ[re] e
2 R 0 | | =
S 2 | s s s IO
o '! 2y J[Ret J[2 J[ + ] [Ccos |
10 (cvs | I (cos '] A B
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Given B, b, c;find a, A, C

Formulas:

_csin(B+Cy
sin C,

where

A = tan-! asin B
c—-asinB

C=cos™! [~cos (A +B)]

Note: 1If Bisacute and b <c, two solutions exist.

Example:
Given b=31.5 A
c=51.8
B=33.67°
Find a, A, C.
Answer:
114.26° /
a=56.05 <0 g/
A =80.59° B C ¢
C=65.74°

Alternate answer:

a=30.17
A=3207°
C=114.26°
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LINE | DATA OPERATIONS DISPLAY REMARKS
e sl J 0 1 ]

RN (con e | | [ ]
3 B [sto ][ 3 fs~n ][ x 1} RCL |

47 WA[ 1 [ + ]-[er1 ]STO ]? h
A S | | SO

5
_-ej [ SN ]]RCL][ 3 IIRCLH 4 ];

7‘ ) l + [ sin ] X2y 1 * |[ RCL ]
Nai | 2 ][ x [[ 1 I | e
° 7‘[RCL] [x<_y ]-l-’ﬂ ]

EO = R = [ | S i
o .[X«ﬂ[ JC Il 1‘ A I

12 [re ][ 3 |L+ J[cos |[CHs] [

s s JCC ¢ litbmeson il

}
N | S | | | —
!

14 1[ RCL ” 4 H CHS H STO || 4 Go to 6 for alternate solution

Given a, b, c; find area

Formula:

area= VS(S-a) (S-b)(S-c¢)
where

=%(a+b+c).
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Example:

a= 5317361553
b= 7.08981 5404
c = 8.862269255

Answer:
area = 18.85
($=10.63).
LINE - DATA i OPERATIONS DISPLAY REMARKS
IR o o w  wn | |
(2. v fsto ][ 2 J[ + ] 1 ]
3, ¢ Iso]f s JL+ J[2][=1] s i
EN I | N | BN | ATST |
s O Jedle 2]
O S | IR | E | I | )
7 - I~ | area
Given a, b, C; find area
Formula:
_1 .
area—i absinC A
Example:
If a=5.3174, c b
b= 7.0898
C:E
4
B C
Answer:
area= 13.33
LINE: DATA OPERATIONS DISPLAY REMARKS
»1 a | t IL “ H J[ j Setmachinetoarwgeffdmw
2 b ‘[ x 2 [ = ][ J ' mode (DEG, RAD, or GRD). |
3 ¢ [sn J[ x ] I 1




Given a, B, C; find area

Formula:

area =

Example:

If B=70"32" 12"
C=62°57" 28"
a=14.625

Answer:

area= 123.80

Note:
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sin B sin C
sin (B + C)

70.54°
a=14.625

62.96

In this example, convert angles to decimal degrees before using trigo-

nometric function keys.

LINE ; DATA OPERATIONS T\ DISPLAY REMARKS
i 7177”7 a [ x? ” __ ]!777” L }r Set machine to any desired
2 g8 |I[stol[ 1 Jlsin [ x ]I }; mode (DEG, RAD, or GRD).
3] ¢ [ =)l Jlswll =1
4| Crec )7 Jsw ]2z > J
5 [ =1 ] ][ ]

Given vertices; find area

Formula:

Given the three vertices (X, ¥1), (X2, ¥2), (X3, ¥3) of a triangle

X1 Y1 1
X2 Y2 1
X3 y3 1

area =

!
|

= 2 [0 G2 -9 ¥x (5 -y + X (7 - v3)]
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Example:

Compute the area of the triangle with vertices (0,0), (4,0), (4,3).
Answer:

6.00
LINET DATA T OPERATIONS } DISPLAY REMARKS
1 v il sto ][] I -
2 v [sro]l 2 J[ - i [ I
3 x lelRCLIIZW i1,
4 V',,-I sto ][ 3 J[ - J[_ i |, |
s m e+ J(re (s 1lmer] ]
6 =1 | O
7*x3‘|xll+llzl[-1l ]!

Trigonometric Functions

Let p = principal value

We set the calculator to DEG, RAD, or GRD mode, as desired.

q = secondary value.

Secondary value of arc sin x

Example:

x = =0.77, find secondary value of arc sin x.

Answer:

q = 230.35° = 4.02 radians = 255.95 grads.
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LINE i DATA OPERATIONS DISPLAY REMARKS
IS s s o | e 1 |1tin RAD mode, gor04 |
| ‘ ‘[7 11 ]I 1] [ 7 ” Iin GRD mode, go o6 |
2, A-ISIN‘II 1L 1L I} P o
3. o Jle Jlo ey ][ S A Stop ]
o i o | Jl__] o N
4 .-I—sTF‘H_T[_H’__I N , -
5 - [ -] ] stop
| [ | s O
s WG 0 1 s |
7 o oGl =1 q
Secondary value of arc cos x
Example:
x = 0.76, find secondary value of arc cos x.
Answer:
q = 319.46° = 5.58 radians = 354.96 grads.
LINE DATA OPERATIONS DISPLAY REMARKS
1 x ‘[ I J{ 71”[7 I _ L7 _|!fin RAD mode, gotod |
o 4[ I [ 1 I J IfinGRD mode, goto 6 |
2 B JC JC 1 . e -
3 ,,.l 3 e Jlo e[ =1 qa | stop.
.[_ll I[ | ”]4 ]
4 () IC 1 ] . |
5 -[ T ” 2 J[ x [ = |‘ a ;Stop )
| Ll 3 | — — e ]
K3 { ||| —] S J ]
’ Lol o ][0 J[h—v” - q |
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i

Trigonometric Functions

Secondary value of arc tan x

Example:

x = 2, find secondary value of arc tan x.

Answer:

q = 243.43° = 4.25 radians = 270.48 grads.

T
DATA -

LINE OPERATIONS ‘T DISPLAY REMARKS
| x [ _“ __ ]7[7 __ H , ” ]l !Vf"in F,{A,D mOfie, gé lof'b_
[ H ” _ “ _]I |l ‘If in GRD moge, go lf)? ]
2 ERCcL 0 JC 1 e
3 Ll e JLe JL I 1 @ Stop B
I | | B | | T
4 WL I3 e ,
s EC- -0 _JL 1 o [see
- ll J I | N § 7 ]
6 [ — | — O
7 L2 J[Co J[ o J[+ ] I q
Cotangent
Formula:
cotx=
tan x
Example:
x =37
Answer:
cot x = 1.33 (in DEG mode) or
~1.19 (in RAD mode) or
1.52 (in GRD mode). |
LINE | DATA OPERATIONS DISPLAY REMARKS

[Tan 11

Y

11 |




]
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Cosecant
Formula:
CSC X = —
sin X
Example:
x=30
Answer:
csc X = 2.00 (in DEG mode) or
-1.01 (in RAD mode) or
2.20 (in GRD mode).
LINE | DATA OPERATIONS DISPLAY REMARKS

1 x |[sin [ w JE I

Secant

Formula:

seC X =

COs X

Example:

X =45

Answer:
sec X = 1.41 (in DEG mode) or

1.90 (in RAD mode) or
1.32 (in GRD mode).

LINE | DATA ’ OPERATIONS DISPLAY REMARKS
{

N IR [ = | | o | |
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Versine

Formula:

vers x =1 -cos x

Example:

x=38

Answer:

vers x = 0.21 (in DEG mode) or
0.04 (in RAD mode) or
0.17 (in GRD mode).

LINE! DATA . OPERATIONS DISPLAY REMARKS
1 o« teos 1 JLa =1 7]
Coversine
Formula:
covers X =1 —-sin x
Example:
x =38
Answer:
covers x = 0.38 (in DEG mode) or
0.70 (in RAD mode) or
0.44 (in GRD mode).
LINE| DATA ! OPERATIONS ! DISPLAY REMARKS

R = [ |




Haversine

Formula:

havx =

Example:

x =423

Answer:

hav x = 0.13 (in DEG mode) or

0.56 (in RAD mode) or
0.11 (in GRD mode).

Trigonometric Functions 203

1 -cosx

LINE DATA i OPERATIONS DISPLAY REMARKS
1 . X ‘ COS 1 X<y — 2
; . — — —_ S
2 | | I | | /|
Arc cotangent
Formula:
cot~! x=tan"! L
X
Example:
x=0.35
Answer:
cot™! x =70.71° or 1.23 radians or 78.57 grads.
LINE DATA OPERATIONS DISPLAY REMARKS

1
|

T

o) a1

C_1
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Arc cosecant

Formula:

cscTT X =sin”

w| =

Example:

X =345

Answer:

csc™! x = 16.85° or 0.29 radians or 18.72 grads.

LINE  DATA | OPERATIONS DISPLAY

REMARKS
o« A e ]
Arc secant
Formula:
-1 —- -1 1
sec™ Xx=cos™! =
X
Example:
x =1.1547
Answer:
sec™! x =30° or 0.52 radians or 33.33 grads.
LINE DATA OPERATIONS DISPLAY REMARKS

| ] CCSN | N -




T Statistics
T Statistics
t for paired observations
Formulas:
Given a set of paired observations:
X; l X4 ) X3 Xn
Vi | i Y2 ¥s Yn
let D; =xi-vyi
N .
D=- Z Di
R
S
Sp = D
vn
test statistic
t= 3
Sp
Example:
Compute t for the following:
x |14 175 17 175 15.4

vi |17 207 216 209 172

205

Answer:
t=-7.16
LINE ' DATA OPERATIONS DISPLAY { REMARKS
1 AR [ ] 11 |
2 % ,l t 11 i ][ Il iPerform2—3fori=1,2,.‘.,n
s v [ =0 J[__J{ ]
¢ HEELc 0o ) Jlea ]
s [ e )
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t for population mean

Formula:

Suppose {xl xn} is a random sample from a normal population
(mean y and variance are unknown).

1

§=—2Xi
n

Degrees of freedom=n - 1

We can use this t statistic to test the null hypothesis Ho: u = ug.

Example:
Compute t from the sample:
{2.1, 0.5,-3.1,14,-092,-1.35,1.2 }

for testing Ho: p=0.2.

Answer:

t=-0.12
(6 degrees of freedom)

LINE ' DATA ! OPERATIONS ‘ DISPLAY REMARKS

! N R | JLJC ]

2 x =+ | [ 1 ] Perform 2 for i=1,2,...,n
S |EEZY | N | N — _
L R | = | B | . B
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t for correlation coefficient

Formula:

where  n = sample size

r = estimate of the correlation coefficient.

This t statistic has n - 2 degrees of freedom and can be used to test the
null hypothesis that the correlation coefficient p is zero.

Ho: p= 0
Example:

xi|26 30 44 50 62 68 74
yi|92 85 78 81 54 51 40

n=7
r = -0.96 (See Covariance and Correlation Coefficient)
Answer:

t=-7.67
(Degrees of freedom = 5)

LINE [ DATA OPERATIONS DISPLAY REMARKS
I
T

2| o [z ] A
PR | 0 | B

. ] o |
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t for two sample means
Formula:

Suppose Xy, X2, .., Xn, and yy, ya, ..., ¥n, are samples from normal
populations with means u; and y,, both with variance ¢ (unknown).

t= x-y-d
/ 1,1 X2 =0y X2 + 3y - n,y?
n; n, ng +n, -2

S| _
X = — 2Xj Y‘_‘LEYi
n, N

where

We can use this t to test the null hypothesis
Ho'py —pp=d
t has n; +n, - 2 degrees of freedom.
Example:
x: 79, 84,108, 114,120, 103, 122,120 (n; = 8)
y: 91,103, 90, 113, 108, 87, 100, 80, 99, 54 (n, = 10)
Answer:

Ifd=0,thent=1.73
degrees of freedom = 16

LINE 1 DATA OPERATIONS : DISPLAY ‘ REMARKS

1 [ [ | ] . |

2 x [z [ ] 11 T Perform 2 for i=1,2,....n,
T B ol o]

s [sro [z (R ][5 )[5%]

5 N[00 .

6 v | =z ] i [ 1 | Perform 6 for i=1,2,...,n,
7 ML (eslra]l 1]

8 AN U N | N | N !

o o L= lsnoll v Jhe L2 ]

IR - | o |

1 {rec J[ 2 ][ = J[Rec ][ 3 ] :

[RE S i [ = i (= |

5 G (Fe s I+ 121

OO S | AT N | 7§

15 trec s JL % JL+ J[ x ]

RN [ | |
17 (=]l j! I I !




Vector Operations 209

Variance, Analysis of
See page 15

Vector Operations

Vector addition

Suppose vector Vi (in 2-dimensional space) has magnitude my and direction
0 (k=1,2,..,n). Find the sum

n
V= 2 Vi =xi+tyj

k=1
Example:
myg 0y
2 30°
6.2 -45°
7.6 125°
10.7 232°
Answer:
V=-483i-559;
LINEI DATA { OPERATIONS [ DISPLAY REMARKS
1 N (cLeAR] | 11 1 J
2 O« | t ” ” H H I Perform 2—3 for k=1,2,....n
3 o (=TI
4 Trec 1=+ JT 11 i1 x
5 x2y [ 11 [ Jl l Y
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Vector angles

Suppose

then the angle between these two vectors is

Example:

R
X=(Xy,Xz2,X3)

y=(y1,Y2,¥3)

0 =cos”

1 X1¥1 tX2y2 ¥ X3Y3

\/xl2 +X,% +x52 \/}’12 ty,? +ys?

Find the angle between

Answer:

x=(5,-6.2,-7),

y=(3.15,2.22, -0.3)

6= 84.28 degrees = 1.47 radians = 93.64 grads.

LINE DATA OPERATIONS DISPLAY REMARKS

1 ECc [ [

2 x Lt 1 Jlsto ]l + [ s | Perform 25 for i=1,2,3
ER e o s o [ | ]
« v [ JE G J0e ] N
5 Lo JC 1 1

s |[rec ][5 )M/~ [rc] - j
AR ]  Javan|eres )

8 s 1C I ]




]
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Vector cross product

Formula:

If x = (X1, X2, X3) and y = (y;, Y2, ¥3) are two vectors, then cross

-
product z is also a vector.

-+ -+
xxy

=(X2¥3 - XaY2, X3V -X1Y3, X1¥2— X2¥1)

=(21,22,23)
Example:
If x=(2.34,5.17,7.43)
v=(.072, 231, .409)
Find X x y
Answer:

x x y = (0.40,-0.42, 0.17)

LINE | DATA OPERATIONS ‘ DISPLAY REMARKS

2, v o[ 2 _H xJ[ _ 1 WJ:, B S
3 % [smojfs [ I H—J ]
4 v LSML_H x [ = | lj I
5 v [srols Jrer [ x J[ 3 J I o |
8| x WII]LML__ILJ

7 C—1C_I Jl_jrfl R ]
8 ULJ[GJI?CLJI4IIx g

0 [ -] Jr ]
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Vector dot product

Formulas:

Example:

If

X = (X1, X2, -y Xn)
y= (Y1 5 Y25 wees Yn)
the dot product is

> o
X y=X1y; t X2y, + ...t Xpyn

X=(234,5.17,7.43,9.11, 11.41)
y =(.072, .231, .409, .703, .891)

thenx - y = 20.97

ER
Given two vectors X, y in an n-dimensional vector space

LINE; DATA ‘ OPERATIONS DISPLAY REMARKS
o« I JC O 1
2 v I I JC_JC 1
3 xi [+ N ,,” i 10 ,, ] i Perform 3—4 for i=2,3,...n
oy > I I ]

Versine

See page 202
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Weekday

Day of the week for any date since September 14, 1752

d = day of month

m = month, with January and February being the 13™ and 14" months
of the previous year.

y = year (4 digits)
Weekday = d +n; +n, - n3 +n4 (mod 7)

where n; =Int (—1—53— (m + 1)>

5
n, =Int<x )
Y
_I t{——o
fa T (100)

- y
= Int (——
ng ]( >

Int is “integer part of”.

Output is read as follows:

0 — Saturday

1 — Sunday

2 — Monday

3 — Tuesday

4 — Wednesday

5 — Thursday

6 — Friday
Example:

On what day was February 29, 1972?

Answer:

Tuesday (d=29, m = 14,y = 1971)
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LINE DATA OPERATIONS ‘ DISPLAY REMARKS

, ‘
1, (N | SN | R | N | N ]
2o L 1 J ]
3! y

S l

1_H 3 ” X ” 5 ” + | E, Lete, —mtegerpartofElr

|
I -

(o | | T | B | s
L

L

o]

®

4
5
6. I ) re] 7 1 Cal STO_}
|7 l 11[)«—){“1” T]LT]
8
9

[ 5 ] L ;17” - ” ] E, Lete,fintreigferrpartofElm_
[CLXH | | AN |

710 A e; [_RC_L] L J [ + ” ] l—_lj For 56";;;1;:;;;1: N
. [ T[ ” ” ” 7 —lri - ‘goto 18 ]
" ol e e[ 2] IR
12 OO 0] & | Letey - imegrpanore,

13 | | — — —
|14 e [cons || sto]] L e R
15 I 4 ”—O—H o JL = 1l 1 By  jlete =in lntegerpartofE4 ]
16 Cenx ] | I[ 11 |
7] e [ReO[JICJC 1 cewrs
o 1 J{ J{ I [ }<
| 18 e J—JC JC_ 1]

+

ICX Y S | | o | e | o T [T PR —r
|20, | I | I - ] ]
2 o =1
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Appendix .

Questions you may have wanted answered about your HP-45.

1.

Question:

Answer:

Question:

Answer:

Question:

Answer:

Question:

Answer:

Question:

Answer:

What are the maximum and minimum light displays on the
HP-45?

Maximum: ~8.888888888~88 after all decimal points light
up on low battery power.

Minimum: -

A googol is 10'°°, We can key this in as 10 x 10°° on the
HP-45, right? Its reciprocal can be keyed in as .1 x 10799,

right?

Wrong. 10 99 - 9.999999999 99

1 [e=x 99 > 0.00

The display is blanked out during computation. Is the key-
board also locked out?

Yes

What calculation takes the longest response on the HP-45?7

99! It’s about 2 seconds.
g or &) of 9.999999999 99. It’s about 2 seconds.

DolE]2lZ]3[z] .Nowifwepress@or
" r=-1 . 3 . . .
- Lo ] <that is 5 or 03) which will result in

flashing zeros, will the stack be dropped?

Yes for 3 :[Av]>2.00 [w+]> 1.00 [A+]~> 1.00
No for 0%: [R+]~> 3.00[r+ ]~ 2.00[r+] > 1.00
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6.

10.

11.

Question:

Answer:

Question:

Answer:

Question:

Answer:

Question:

Answer:

Question:

Answer:

Question:

Answer:

Suppose we pressed the gold key by mistake. Which key
will cancel it, causing no other operations?

Any one of @,@,@,@,@,@-

Do: 6 16. How can we make the whole number
negative?

How can three successive presses be used to calculate
the tangent of 30° (accurate to about 7 decimal places)?

r=-n
o M B Wl G ~058

When may it be desirable to press if the display is
already zero?

When we get zero as the result of an operation, but don’t
want to raise it in the stack upon entering data.

When may it be desirable to enter O if x is already zero?

If an algorithm requires the integer part of a number
(already in the X register) such as 0.41, we would do:  |cLx
0, which would insure that this zero would be raised in the
stack, if the algorithm requires it.

Enter any three digits in the form d.dd x 1077

d.dd 7.

How do you add 1 to this number with one keystroke?
Your number now has the form 1.000000ddd, how do you
subtract 1 from it with one keystroke?

and (All this means is that In (1 + A) approaches
A as A approaches 0.)



12.

13.

14.

15.

16.

Question:

Answer:

Question:

Answer:

Question:

Answer:

Question:

Answer:

Question:
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What numbers will the HP-45 not give reciprocals to?

0 and any number with an exponent of +99 having a value
other than 1.

How many decimal points light up on low battery power?

Only 14; the point following the true decimal point does
not come on!

To divide x by 2: [+] 2 [+]. What other keystrokes will do
the same?

B I o<
9 () 8 (2] [ [e=d 97 [x] KA ()0

— —-8.888888889-98

Change this number to -8.888888888-98 in a shorter
number of keystrokes than keying in the new value. (Note:
we must add 1 x 107'°7 to the number in the display. If
we try to add .000000001 x 1078, we also get into trouble.)

e 98 (1) e 89 [) A (%) [ o) 98 (2]

How would you display the number e(2.718281828):

(a) in the shortest number of keystrokes? ( 2 keystrokes)

(b) as the limit of (1 + %)n as n gets large? (9 keystrokes)
(c) as the function of a digit? ( 6 keystrokes)
(d) using the [:rrj key, but not [

or E;E}" (14 keystrokes)
(e) as a continued fraction? (21 keystrokes)

(Press [__5] to see the whole number.)
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16.

17

18,

Cont’d

Answer:

Question:

Answer:

Question:

Answer:

@1 B

(b) 6 ) (+) [ I [

© B

O VBEECEEFNEE
[+ K8 (=]

OREY - REAEIN - RUAERY - KNEIN -]
1[+] B 2 (x)1[+]

Can you display all ten L.E. D. digits in an orderly sequence?

80 [+] 81 [+] 9 - 0.987654321

Determine the Golden Ratio ¢ to 11 significant digits, given

o= (/5+ 1)/2and¢—$=l.

SEREI1+]) 2] o 1618033989

] - 6.180339887-01
=) 2 ~1.00

¢ =1.6180339887





















Amortization 90

Analysis of Variance 15
Angle Conversions 17
Angles of Triangles 190
Appendix 21§

Arithmetic Mean 148
Arithmetic Progressions 157

Bartlett’s Chi-Square 36

Base Conversions 21

Bernouli Numbers 26

Bessel Function of First Kind 27
Binomial Distribution 28
Bivariate Normal Distribution 29
Bonds 30

Cash Flow Analysis (discounted) 32
Chi-Square Statistics 33

Circle 95

Combinations 38

Complex Hyperbolic Functions 39
Complex Number Operations 47
Complex Trigonometric Functions 56
Compound Interest 132

Conversions 65

Coordinate Translation and Rotation 70
Correlation Coefficient 72

Cosecant 201

Cotangent 200

Covariance and Correlation Coefficient 72
Coversine 202

Cross Product (Vector) 211

Cubic Equation 74

Curve Fitting 77

Declining Balance Depreciation 91
Depreciation Amortization 90
Determinant of a 3 x 3 Matrix 94
Dot Product 212

Equally Spaced Points on a Circle 95
Equation Solving (Iterative Techniques) 96
Error Function 103

Euler Numbers 104

Exponential Curve (Lease Squares Fit) 88
Exponentiation 104

Factorial and Gamma Function 109

Factoring Integers and Determining Primes 111
Fibonacci Numbers 113

F Statistic 114

Future Value 135,139

Gamma Function 109

Gaussian Probability Function 115
Gaussian Quadratures 116
Geometric Mean 148

Geometric Progressions 157

Harmonic Mean 149
Harmonic Numbers 121
Harmonic Progressions 157
Haversine 203

INDEX

Highest Common Factor 122
Hyperbolic Functions 123
Hypergeometric Distribution 127

Interpolation 128

Intersections of Straight Line and Conic 131
Interest 132,137

Inverse Hyperbolic Functions 125

Iterative Solution of Equations 96

Least Common Multiple 140
Least Squares Regression 77
Loan Repayments 141
Logarithms 146

Means 146

Navigation 186

Negative Binomial Distribution 150
Normal Distribution 115
Numerical Integration 151

Parabola (Least Squares Fit) 82
Payments 142

Percent 153

Permutations 154

Plotting Curves 154

Poisson Distribution 156
Polynomial Evaluation 156
Power Curve (Least Squares Fit) 86
Present Value 134,139

Primes 111

Progressions 157

Quadratic Equation 164

Random Numbers 165

Rank Correlation (Spearman’s Coefficient) 165
Register Operations 168

Resistance 174

Roots of a Polynomial 175

Secant 201

Simple Interest 137

Simultaneous Linear Equations 176
Sinking Fund 179

Skewness and Kurtosis 181

SOD Depreciation 92
Speedometer/Odometer Adjustments 183
Spherical Triangle 186

Stack Operations 168

Stirling’s Approximation 109
Synthetic Division 189

Triangles (Oblique) 190
Trigonometric Functions 198
T Statistics 205

Variance, Analysis of 15
Vector Operations 209
Versine 202

Weekday 213
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