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Introduction 
Congratulations! Whether you are new to HP calculators or an 
experienced user, you will find the HP-15C unmatched in the 
calculator world_ 8esides Continuous Memory and low power 
consumption, the HP-15C state-of-the-art technology provides: 

• 448 bytes of program memory (one or two bytes per 
instruction) and sophisticated programming capability, in­
cluding conditional and unconditional branching, subrou­
tines, flags, and editing. 

• Four advanced mathematics capabilities: complex number 
calculations, matrix calculations, solving for roots, and 
numerical integration. 

• Direct and indirect storage in up to 67 registers. 

• Long-life batteries. 

This handbook is written for you, regardless of your level of 
expertise. The first part, Fundamentals, covers all the basic 
functions of the HP-15C and how to use them. Each section in the 
second part, Programming, is broken down into three sub­
sections-The Mechanics, Examples, and Further Information-in 
order to make it easy for users with varying backgrounds to find 
the information they need. The third part, Advanced Functions, 
describes the four advanced mathematics capabilities. * 
Before starting these sections, you may want to gain some 
operating and programming experience on the HP-15C by work­
ing through the introductory material, The HP-15C: A Problem 
Solver, on page 12. 

The various appendices describe additional details of calculator 
operation, as well as warranty and service information. The 
Function Summary and Index and the Programming Summary 
and Index at the back of this manual can be used for quick 

• You certainly do not need to read every page of parts I and II before delving into the HP-
15C Advanced Functions if you are already familiar with HP calculators. The use of 
I SOLVE land [ill requires a knowledge of HP-15C programming. 

2 



Introduction 3 

reference to each function key and as a handy page reference to 
more comprehensive information inside the manual. 

Also available from Hewlett-Packard dealers is the HP-15C 
Advanced Functions Handbook, which provides applications and 
technical descriptions for the root-solving, integration, complex 
number, and matrix functions. 
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The HP-15C: 
A Problem Solver 

The HP-15C Advanced Programmable Scientific Calculator is a 
powerful problem solver, convenient to carry and easy to hold. Its 
Continuous Memory retains data and program instructions 
indefinitely until you choose to reset it. Though sophisticated, it 
requires no prior programming experience or knowledge of 
programming languages to use it. 

An important new feature of your HP-15C is its extremely low 
power consumption. This efficiency is responsible for the 
lightweight, compact design, and eliminates the need for a 
recharger. Power consumption in the HP-15C is so low that the 
average battery life in normal use is 6 to 12 months. In addition, 
the low-power indicator gives you plenty of warning before the 
calculator stops functioning. 

The HP-15C also conserves power by automatically shutting its 
display off if it is left inactive for a few minutes. But don't worry 
about losing data-any information contained in the HP-15C is 
saved by Continuous Memory. 

A Quick Look at I ENTER I 
Your Hewlett-Packard calculator uses a unique operating logic, 
represented by the I ENTER I key, that differs from the logic in most 
other calculators. You will find that using I ENTER I makes nested 
and complicated calculations easier and faster to work out. Let's 
get acquainted with how this works. 

For example, let's look at the arithmetic functions. First we have to 
get the numbers into the machine. Is your calculator on? If not, 
press [QHJ. Is the display cleared? To display all zeros, you can 
press [i) I CLx I. that is, press [i), then [B. * To perform arithmetic, 

• If you have not used an HP calculator before, you will notice that most keys have three 
labels. To use the primary function-the one printed in white on top of the key-just 
press that key. For those printed in gold or blue, pres. the gold ITl key or the blueWkey 
fir.t. 
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key in the first number, press I ENTER I to separate the first number 
from the second, then key in the second numiber and press G, G, 
0, or 0· The result appears immediately after you press any 
numerical function key. 

The display format used in this handbook is I£lKl 4 (the decimal 
point is "fixed" to show four decimal places) unless otherwise 
mentioned. If your calculator does not show four decimal places, 
you may want to press [I) I£lKl 4 to match the displays in the 
examples. 

Manual Solutions 
Run through the following two-number calculations. It is not 
necessary to clear the calculator between problems. If you enter a 
digit incorrectly, press ~ to undo the mistake, then key in the 
correct number. 

To Compute: 

9-6=3 
9X6=54 
9+6= 1.5 
96 = 531,441 

Keystrokes 

SlENTERI6G 
SIENTERI60 
91ENTERI60 
9IENTERI6[ZJ 

Notice that in the four examples: 

Display 

3.0000 
54.0000 
1.6000 
531.441.0000 

• Both numbers are in the calculator before you press the 
function key. 

• I ENTER I is used only to separate two numbers that are keyed in 
one after the other. 

• Pressing a numeric function key, in this case G, 0, 0, or [ZJ, 
executes the function immediately and displays the result. 

To see the close relationship between manual and programmed 
problem solving, let's first calculate the solution to a problem 
manually, that is, from the keyboard. Then we'll use a program to 
calculate the solution to the same problem with different data. 
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The time an object takes to fall to the ground (ignoring air friction) 
is given by the formula 

t=J2h , 
g 

where t = time in seconds, 
h = height in meters, 
g = the acceleration due to 

gravity, 9.8 m/s2. 

Example: Compute the time taken 
by a stone falling from the top of the 
Eiffel Tower (300.51 meters high) to 
the earth. 

Keystrokes Display 

300.511ENTERI 300.5100 

20 601.0200 

9.8B 61.3286 

~ 7.8313 

Programmed Solutions 

Enterh. 

Calculates 2h. 

(2h) /g. 

Falling time, seconds. 

Suppose you wanted to calculate falling times from various 
heights. The easiest way is to write a program to cover all the 
constant parts of a calculation and provide for entry of variable 
data. 

Writing the Program. The program is similar to the keystroke 
sequence you used above. A label is useful to define the beginning 
of a program, and a return is useful to mark the end of a program. 
Also, the program must accommodate the entry of new data. 

Loading the Program. You can load a program for the above 
problem by pressing the following keys in sequence. (The display 
shows information which you can ignore for now, though it will be 
useful later.) 
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Keystrokes Display 

[BJI P/R I 000- Sets HP-15C to Program 
mode. (PRGM annuncia-
tor on.) 

[IJ CLEAR I PRGM I 000- Clears program mem-
ory. (This step is option-
al here.} 

[IJILBLI[K) 001-42.21.11 Label "A" defines the be-
ginning of the program. 

2 002- 2 
0 003- 20 
9 004- 9 

The same keys you 
pressed to solve the proh-

l] 005- 48 lem manually. 
8 006- S 
G 007- 10 
00 008- 11 
[BJI RTN I 009- 4332 "Return" defines the end 

ofthe program. 

[BJI P/R I 7.8313 Switches to Run mode. 
(No PRGM annunciator.) 

Running the Program. Enter the following information to run 
the program. 

Keystrokes 

300.51 

1050[IJ[K) 

Display 

300.51 

7.8313 

14.6385 

Height of the Eiffel 
Tower. 

Falling time you calcu­
lated earlier. 

The time (seconds) for a 
stone to reach the 
ground after release 
from a blimp 1050 m 
high. 
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With this program loaded, you can quickly calculate the time of 
descent of an object from different heights. Simply key in the 
height and press rn~. Find the time of descent for objects released 
from heights of 100 m, 2 m, 275 m, and 2,000 m. 

The answers are: 4.5175 s; 0.6389 s; 7.4915 s; and 20.2031 s. 

That program was relatively easy. You will see many more aspects 
and details of programming in part II. For now, turn the page to 
part I to take an in-depth look at some ofthe calculator's important 
operating basics. 





Section 1 

Getting Started 
Power On and Off 
The [Qffi key turns the HP-15C on and off.* To conserve power, the 
calculator automatically turns itself off after a few minutes of 
inactivity. 

Keyboard Operation 

Primary and Alternate Functions 

Most keys on your HP-15C perform one primary and two alternate, 
shifted functions. The primary function of any key is indicated by 
the character(s) on the face ofthe key. The alternate functions are 
indicated by the gold characters printed above the key and the blue 
characters printed on the lower face of the key. 

• To select the primary function 
printed on the face of a key, 
press only that key. For 
example: [B. 

• To select the alternate function 
printed in gold or blue, press the 
like-colored prefix key ([IJ or [gJ) 
followed by the function key. For 
example: [IJISOLVEI; [gJ~. 

SOLVE 

II 
Throughout this handbook, we will observe certain conventions in 
referring to alternate functions. References to the function itself 
will appear as just the key name in a box, such as "the I MEM 1 

function." References to the use of the key will include the prefix 
key, such as "press [gJ1 MEM I." References to the four gold functions 
printed under the bracket labeled "CLEAR" will be preceded by the 
word "CLEAR," such as "the CLEAR 1 REG I function," or "press [IJ 
CLEAR I PRGM I." 

• Note that the [QID key is lower than the other keys to help prevent its being pressed 
inadvertently_ 

18 
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Notice that when you press the m or 
Ii] prefix key, an f or 9 annunciator 
appears and remains in the display 
until a function key is pressed to 
complete the sequence. 

Prefix Keys 

0.0000 

A prefix key is any key which must precede another key to 
complete the key sequence for a function. Certain functions require 
two parts: a prefix key and a digit or other key. For your reference, 
the prefix keys are: 

I MATRIX! 

[ill] 
l!®ilif) 

If you make a mistake while keying in a prefix for a function, press 
ill CLEAR I PREFIX! to cancel the error. The CLEAR I PREFIX! key is also 
used to show the mantissa of a displayed number, so aIllO digits of 
the number in the display will appear for a moment after the 
I PREFIX! key is pressed. 

Changing Signs 

Pressing I CHS! (change sign) will change the sign (positive or 
negative) of any displayed number. To key in a negative number, 
press I CHS! after its digits have been keyed in. 

Keying in Exponents 

IEEX! (enter exponent) is used when keying in a number with an 
exponent. First key in the mantissa, then press I EEX! and key in the 
exponent. 

For a negative exponent press I CHS! after keying in the exponent. * 
For example, to key in Planck's constant (6.6262 X 10-34 Joule­
seconds) and multiply it by 50: 

• (£H[] may also be pressed after ~ and before the exponent, with the same result 
(unlike the mantissa, where digit entry must precede (£H[]). 
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Keystrokes Display 

6.6262 6.6262 
IEEXI 6.6262 00 The 00 prompts you to 

key in the exponent. 

3 6.6262 03 (6.6262 X 103). 

4 6.6262 34 (6.6262 X 10:34 ). 

ICHSI 6.6262 -34 (6.6262 X 10-34). 

IENTERI 6.6262 -34 Enters number. 

500 3.3131 -32 ,J oule-seconds. 

N., "; Decimal digits from the mantissa that spill into the 
exponent field will disappear from the display when you 
press I EEX I. but will be retained internally. 

To prevent a misleading display pattern, I EEX I will not operate with 
a number having more than seven digits to the left of the radix 
mark (decimal point), nor with a mantissa smaller than 0.00000l. 
To key in such a number, use a form having a greater exponent 
value (w:'lether positive or negative). For example, 123456789.8 X 
102:3 can be keyed in as 1234567.898 X 1025 ; 0.00000025 X 10-15 can 
be keyed in as 2.5 X 10-22 . 

The "CLEAR" Keys 

Clearing means to replace a number with zero. The clearing 
operations in the HP-15C are (the table is continued on the next 
page): 

Clearing Sequence 

[gJICLxl 

~ 
In Run mode: 
In Program mode: 

[j]CI.EAR ~ 

Effect 

Clears disp!lay (X-register). 

Clears last dig"t or entire display. 
Deletes current instruction. 

Clears statistics storage registers, 
display, and the memory stack (described 
in section 3). 



Clearing Sequence 

[I] CLEAR I PRGM 1 

In Run mode: 

Effect 

Repositions program memory to line 
000. i 

I 
In Program mode: 

[I] CLEAR I REG 1 

Deletes all program memory. 

Clears all data storage registers. I 
I [I] CLEAR I PREFIX I' Clears any prefix from a partially entered I 
I i key sequence. -1 
! • Also temporarily displays the mantissa. J 

Display Clearing: I CLx I and [±) 
The Hp·15C has two types of display clearing operations: I CLx 1 

(clear X) and [±] (back arrow). 

In Run mode: 

" I CLx 1 clears the display to zero. 

.. [±] deletes only the last digit in the display if digit entry has 
not been terminated by I ENTER I or most other functions. You 
can then key in a new digit or digits to replace the one(s) 
deleted. If digit entry has been terminated, then [±] acts like 
ICLxl. 

Keystrokes 

12345 

In Program mode: 

Display 

12.345 

1.234 

12.349 
111.1261 

0.0000 

Digit entry not 
terminated. 

Clears only the last digit. 

Terminates digit entry. 

Clears all digits to zero. 

" I CLxI is programmable: it is stored as a programmed 
instruction, and will not delete the currently displayed 
instruction. 

.. [±] is not programmable, so it can be used for program 
correction. Pressing [±] will delete the entire instruction 
currently displayed. 



Calculations 

One-Number Functions 

A one-number function performs an operation using only the 
number in the display. To use anyone-number function, press the 
function key after the number has been placed in the display. 

Keystrokes 

45 
[ill I LOG I 

Display 

45 
1.6532 

Two-Number Functions and I ENTER I 
A two-number function must have two numbers present in the 
calculator before executing the function. G, G, 0. and G are 
examples of two-number functions. 

Terminating Digit Entry. When keying in two numbers to 
perform an operation, the calculator needs a signal that digit entry 
is terminated for the first number. This is done by pressing I ENTER I 
to separate the two numbers. If, on the other hand, one of the 
numbers is already in the calculator as the result of a previous 
operation, you do not need to use the I ENTER I key. All functions 
except the digit entry keys themselves* have the eff.ect of 
terminating digit entry. 

Notice that, regardless of the number, a decimal point always 
appears and a set number of decimal places are displayed when 
you terminate digit entry (as by pressing I ENTER I). 

Chain Calculations. In the following calculations, notice that: 

~ The I ENTER I key is used only for separating the sequential 
entry of two numbers. 

The operator is keyed in only after both operands are in the 
calculator. 

• The result of any operation may itself become an operand. 
Such intermediate results are stored and retrieved on a last-in, 
first-out basis. ~ew digits keyed in following an operation are 
treated as a new number . 

• The digit keys. D. [Q§], :liKl, and [B 



Example: Calculate (9 + 17 - 4) -;- 4. 

Keystrokes Display 

91 ENTER 1 9.0000 Digit entry terminated. 

17~ 26.0000 (9+ 17). 

4G 22.0000 (9+ 17- 4). 

4G 5.5000 (9 + 17 - 4) -;- 4. 

Even more complicated problems are solved in the same manner­
using automatic storage and retrieval of intermediate results. It is 
easiest to work from the inside of parentheses outwards, just as you 
would with calculations on paper. 

Example: Calculate (6 + 7) X (9 - 3). 

Keystrokes Display 

6IENTER! 6.0000 First solve for the 
intermediate result of 
(6+ 7). 

7G 13.0000 
9IENTER! 9.0000 Then solve for the 

intermediate result of 
(9-3). 

3G 6.0000 

0 78.0000 Then multiply the 
intermediate results 
together (13 and 6) for the 
final answer. 

Try your hand at the following problems. Each time you press 
I ENTER! or a function key in a calculation, the preceding number is 
saved for the next operation. 

(16 X 38) - (13 X 11) = 465.0000 

4 X (17 - 12) -;- (10 - 5) = 4.0000 

232 - (13 X 9) + 117 = 412.1429 

J[ (5.4 X 0.8) -;- (12.5 - 0.72) 1 = 0.5998 



Section 2 

Numeric Functions 
This section discusses the numeric functions of the HP-15C 
(excluding statistics and advanced functions). The nonnumeric 
functions are discussed separately (digit entry in section 1, stack 
manipulation in section 3, and display control in section 5). 

The numeric functions of the HP-15C are used in the same way 
whether executed from the keyboard or in a program. Some of the 
functions (such as I ABS I) are, in fact, primarily of interest for 
programming. 

Remember that the numeric functions, like all functions except 
digit entry functions, automatically terminate digit entry. This 
means a numeric function does not need to be preceded or followed 
byl ENTER I. 

Pi 
Pressing [9) [!] places the first 10 digits of 1f into the calculator. [!] 
does not need to be separated from other numbers by 1 ENTER I. 

Number Alteration Functions 
The number alteration functions act upon the number in the 
display (X-register). 

Integer Portion. Pressing [9) liNT I replaces the number in the 
display with the nearest integer oflesser or equal magnitude. 

Fractional Portion. Pressing rnl FRAC I replaces the number in the 
display with its fractional part (that is, the difference between the 
number and its integer part). 

Rounding. Pressing [9)1 RND I rounds all 10 internally held digits of 
the mantissa of the displayed value to the number of digits 
specified by the current ffiRl, I SCI I , or I ENG I display format. 

Absolute Value. Pressing !ill ABS 1 yields the absolute value of the 
number in the display. 
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Keystrokes Display 

123.4567 [9]Q0] 123.0000 
~I LSTx II CHS 1~[illTI -123.0000 

~I LSTxl[J1 FRAC I 

1.234567891 CHS I 
~IRNDI 

[J CLEAR I PREFIX I 
(release) 

~IABSI 

-0.4567 

-1.2346 

1234600000 
-1.2346 

1.2346 

One-Number Functions 

Reversing the sign does 
not alter digits. 

Temporarily displays all 
digits in the mantissa. 

One·number math functions in the Hp·15C operate only upon the 
number in the display (X·register). 

General Functions 

Reciprocal. Pressing 11 Ix I calculates the reciprocal of the number 
in the display. 

Factorial and Gamma. Pressing [J [ZJ calculates the factorial of 
the displayed value, where x is an integer 0 ~ x ~ 69. 

You can also use [ZJ to calculate the Gamma function, r (x), used in 
advanced mathematics and statistics. Pressing [J GIJ calculates 
r (x + 1), so you must subtract 1 from your initial operand to get 
r (x). For the Gamma function, x is not restricted to nonnegative 
integers. 

Square Root. Pressing GTI calculates the positive square root of 
the number in the display. 

Squaring. Pressing ~ [ZJ calculates the square of the number in 
the display. 

Keystrokes 

2511/xl 
8[J[ZJ 

39GTI 
12.3[9]0 

Display 

0.0400 
40,320.0000 Calculates 8! or r (9). 
1.9748 
151.2900 



Trigonometric Operations 

Trigonometric Modes. The trigonometric functions operate in 
the trigonometric mode you select. Specifying a trigonometric 
mode does not convert any number already in the calculator to that 
mode; it merely tells the calculator what unit of measure (degrees, 
radians, or grads) to assign a number for a trigonometric function. 

Pressing lil I DEG I sets Degrees mode. No annunciator appears in 
the display. Degrees are in decimal, not minutes-seconds form. 

Pressing lil I RAD I sets Radians mode. The 'RAD annunciator 
appears in the display. In Complex mode, all functions (except ~ 
and [±[J) assume values are in radians, regardless of the 
trigonometric annunciator displayed. 

Pressing lil I GRD I sets Grads mode. The G'RAD annunciator 
appears in the display. 

Continuous Memory will maintain the last trigonometric mode 
selected. At "power up" (initial condition or when Continuous 
Memory is reset), the calculator is in Degrees mode. 

Trigonometric Functions. Given x in the display (X-register): 

···-t 

: ~!~_l".~~~. Calculates I 

ISINI sine of x 
.j 

lil~ arc sine of x I 
i Icosl cosine of x I 

1 [gil COSo, I arc cosine of x i ITANI tangent of x , 
I lilITAN·' I arc tangent oI x I 

Before executing a trigonometric function, be sure that the 
calculator is set to the desired trigonometric mode (Degrees, 
Radians, or Grads). 

Time and Angle Conversions 

Numbers representing time (hours) or angles (degrees) can be 
converted by the HP-15C between a decimal-fraction and a 
minutes-seconds form.at: 
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Hours.Decimal Hours ........ I---~ .. ~ Hours.Minutes Seconds Decimal Seconds 
(H.h) (H.MMSSs) 

Degrees.Decimal Degrees .......... - ...... ~ Degrees.Minutes Seconds Decimal Seconds 
(D.d) (D.MMSSs) 

Hours/Degrees-Minutes-Seconds Conversion. Pressing 
[IJ I +H.MS I converts the number in the display from a decimal 
hours/degrees format to an hours/degree-minutes-seconds-decimal 
seconds format. 

For example, pre!'!!'! [IJI +HMS Ito convert 

1.2 3 4 5 

I to 

hours 

1.1404 T T ~. seconds 
minutes 

hours 

Press [Ill PREFIX Ito display the value to all possible decimal places: 

1 1 404 2 0 000 

Lto the hundred-thousandths of a second. 

Decimal Hours (or Degrees) Conversion. Pressing [9J I +H I 
converts the number in the display frum an hours/degrees­
minutes-seconds-decimal seconds format to a decimal 
hours/degrees format. 

Degrees/Radians Conversions 

The I +DEG I and [+RAD] functions are used to convert angles to 
degrees or radians (D.d ...... R.r). The degr~es must be expressed 
as decimal numbers, and not in a minutes-seconds format. 

Keystrokes 

40.5 [Ill +AAD I 
[9J1+DEG I 

Display 

0.7069 

40.5000 

Radians. 

40.5 degrees (decimal 
fraction). 



Logarithmic Functions 

Natural Logarithm. Pressing cal (Iill calculates the natural 
logarithm ofthe number in the display; that is, the logarithm to the 
basee. 

Natural Antilogarithm. Pressing ~ calculates the natural 
antilogarithm of the number in the display; that is, raises e to the 
power of that number. 

Common Logarithm. Pressing cal I LOG I calculates the common 
logarithm of the number in the display; that is, the logarithm to the 
base 10. 

Common Antilogarithm. Pressing 110" I calculates the common 
antilogarithm of the number in the display; that is, raises 10 to the 
power ofthat number. 

Keystrokes 

45 cal(Iill 
3.4012~ 

12.4578 call LOG I 
3.1354~ 

Display 

3.8067 

30.0001 

1.0954 

1,365.8405 

Natural log of 45. 

Natural antilog of 3.4012. 

Common log of 12.4578. 

Common antilog of 
3.1354. 

Hyperbolic Functi,ons 

Given x in the display (X·register): 

Pressing 

IIlIHypl~ 

call HYP-'II SIN I 
IIlI Hypil COS I 
cal I HYP-' II COS I 

, IIlI HYP II TAN! 
call HYP-'IITAN I 

I r 
I 
I 

Calculates 

hyperbolic sine of x 

inverse hyperbolic sine of x 

hyperbolic cosine of x 

inverse hyperbolic cosine of x 

hyperbolic tangent of x 

inverse hyperbolic tangent of x 



2.9 

Two-Number Functions 
The HP-15C performs two-number math functions using two 
values entered sequentially into the display. If you are keying in 
both numbers. remember that they must be separated by 1 ENTER 1 or 
any other function-like [9] @IT) or 11/xl-that terminates digit 
entry. 

For a two-number function. the first value entered is considered the 
y-value because it is placed into the V-register for memory storage. 
The second value entered is considered the x-value because it 
remains in the display. which is the X-register. 

The arithmetic operators. G. B. 0. and G. are the four basic 
two-number functions. Others are given below. 

The Power Function 

Pressing 0 calculates the value of y raised to the x power. The 
base number. y. is keyed in before the exponent. x. 

f --

f

-- To Calculate 
214 

I 2-1.4 

! (-2)3 

{!2 or 2 'I, 

Percentages 

ir;:;E:~~4'0-~"=F~l~~~~o-1 
21 ENTER 11.41 CHS 101 0.3789 I 
21cHSilENTERI30 i -8.0000 I 
21 ENTER 13 [j"EJ0 1.2599 

The percentage functions. 00 and ~. preserve the value of the 
original base number along with the result of the percentage 
calculation. As shown in the example below, this allows you to 
carry out subsequent calculations using the base number and the 
result without re-entering the base number. 

Percent. The 00 function calculates the specified percentage of a 
base number. 
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For example, tu find the sales tax at 3% and total cost of a $15.76 
item: 

Keystrokes 

15.761 ENTER I 
Display 

15.7600 

0.4728 

16.2328 

Enters the base number 
(the price). 

Calculates 3% of $15.76 
(the tax). 

Total cost of item ($11),76 
+ $0.47). 

Percent Difference. The 1 A % I function calculates the percent 
difference between two numbers. The result expresses the relative 
increase (a positive result) or decrease (a negative result) of the 
second number entered compared to the first number entered. 

For example, suppose the $15.76 item only cost $14.12 last year. 
What is the percent difference in last year's price relative to this 
year's'? 

Keystrokes 

15.761 ENTER 1 

14.12[ruIA%1 

Display 

15.7600 

-10.4061 

This year's price (our 
base number). 

Last year's price was 
10.41 % less than this 
year's price. 

Polar and Rectangular Coordinate Conversio:1S 
The ~ and 1 +R I functions are ,--------------, 
provided in the HP-15C for conver­
sions between polar coordinates and 
rectangular coordinates. 

The angle () is assumed to be in the 
units set by the current trigonometric 
mode, whether degrees (in a decimal 
furmat, not a minutes-seconds for-
mat), radians, or grads. () is measured 
as shown in the illustration at right. 

r 

x 

() 

I 
IV 
I 

Polar Conversion. Pressing [jj] 1 +p I (polar) converts a set of 
rectangular coordinates (x, y) to polar coordinates (magnitude r, 



angle IJ). The y-value must be entered first, the x-value second. 
Upon executing wi +pl, r will appear in the display. Press ~ (X 

exchange Y) to bring IJ out of the Y-register and into the display 
(X-register). IJ will be returned as a value between -180° and 180 0

, 

between -rr and Tr radians, or between -200 and 200 grads. 

Rectangular Conversion. PreRRing ITJ ~ (rectangular) con­
verts a set of polar coordinates (magnitude r, angle IJ) into 
rectangular coordinates (x, y). IJ must be entered first, then r. Upon 
executing ITJI +R I, x will be displayed first; press ~ to display y. 

Keystrokes Display 

WIDEGI Set to Degrees mode (no 
annunciator). 

51ENTERI 5.0000 y-value. 

10 10 x·value. 

W~ 11.1803 r. 

~ 26.5651 IJ; rectangular coordinates 
converted to polar coordi-
nates. 

30 I ENTER I 30.0000 IJ. 

12 12 r. 

ITJ~ 10.3923 x-value. 

~ 6.0000 y-value. Polar coordinates 
converted to rectangular 
coordinates. 



Section 3 

The Automatic Memory Stack, 
LAST X, and Data Storage 

The Automatic Memory Stack 
and Stack Manipulation 
HP operating logic is based on a mathematical logic known as 
"Polish Notation," developed by the noted Polish logician Jan 
l:..ukasiewicz (Wookashye'ueech) (1878-1956). Conventional alge­
braic notation places the algebraic operators between the relevant 
numbers or variables when evaluating algebraic expressions. 
Lukasiewicz's notation specifies the operators before the variables. 
For optimal efficiency of calculator use, HP applied the convention 
of specifying (entering) the operators after specifying (entering) the 
variable(s). Hence the term "Reverse Polish Notation" (RPN). 

The HP-15C uses RPN to solve complicated calculations in a 
straightforward manner, without parentheses or punctuation. It 
does so by automatically retaining and returning intermediate 
results. This system is implemented through the automatic 
memory stack and the I ENTER I key, minimizing total keystrokes. 

The Automatic 
Memory Stack Registers 

T 0.0000 

Z 0.0000 

Y 0.0000 

X 0.0000 Always displayed. 

When the HP-15C is in Run mode (no PRGM annunciator 
displayed), the number that appears in the display is the number in 
the X-register. 
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Any number that is keyed in or results from the execution of a 
numeric function is placed into the display (X-register). This action 
will cause numbers already in the stack to lift, remain in the same 
register, or drop, depending upon both the immediately preceding 
and the current operation. Numbers in the stack are stored on a 
last-in, first-out basis. The three stacks drawn below illustrate the 
three types of stack movement. Assume x, y, z, and t represent any 
numbers which may be in the stack. 

Stack Lift No Stack Lift or Drop 

~ 
lost 

T T -----.,/,/"" 
z 

Z z 
/ 

y z z - z 

y y x Y y --.- y 
,# 

X X 
,/ 

~ ..... 

I 
7r X X -".~ v'X 

Keys: w@ [E 

Stack Drop 

T 

~~~ Z : }:.:, y 

X 
Keys: G 

Notice the number in the T-register remains there when the stack 
drops, allowing this number to be used repetitively as an 
arithmetic constant. 

Stack Manipulation Functions 

I ENTER I, Pressing I ENTER I separates two numbers keyed in one after 
the other. I t does so by lifting the stack and copying the number in 
the display (X-register) into the Y-register. The next number 
entered then writes over the value in the X-register; there is no 
stack lift. The example below shows what happens as the stack is 



filled with the numbers 1. 2. 3. 4. (The shading indicates that the 
contents ofthat register will be written over when the next number 
is keyed in or recalled.) 

,dr lost ,'1,' lost lost 
",. 

T j;./ z y ., .. ~ ... y )( .... ,'~' 

Z z y )( ~~" x 

"'" 
"roo 

y y X 
.,.-,.. 2 

".r 
X x "00. '" ,.fIt.o. 2 . .< 2 

Keys: IENTERI 2 IENTERI 

lost 

T )( fj, .. )( 
.,.y 

Z •.• ?-. 
:}'" 2 2 

Y 2 ". ""', 2 3 3 

X 2 ."'?«- 3 "·1,,. 3 4 

Keys: 3 I ENTER I 4 

IR. 1 (roll down), []I) (roll up), and ~ (X exchange Y). ffi!J 
and 1 Rt I roll the contents of the stack registers lip or down one 
register (one value moves between the X- and the T-register). No 
values arc lost. ImJ exchanges the numbers in the X- and y. 
registers. If the stack were loaded with the seqllence 1. 2. 3, 4. the 
following shifts would result from pressing I R. I. []I). and~ . 

T . ~ J; 4.:~.' 

Z 
~" ' -I 

2 , 1 ~ 2 -,"'" 2 

Y 
I,,., 

3 ,i 2 14' 3 '. ~¥ 4 
~I., .... ; " .. 

'.~, 

X 4 _.J 3' -.... 4 3 

Keys: []J] [g][[£] [ill 



The LAST X Register and I LSTx I 
The LAST X register, a separate memory register, preserves the 
value that was last in the display before executwn of a numeric 
operation.* Pressing [9] ILSTxl (LAST X) places a copy of the 
contents of the LAST X register into the display (X-register). For 
example: 

T . ...,. ./ /"" 
lost 

/ z 
,-

Z z ",. 
Z 

/ 

Y .• 1iI" 

Y Y ..... Y 
/ 

~ 16 
/' 

X 4 ' •.• -)0<. 16 
, .... 

4 
yf 

Keys: [9][ZJ [9]1 LSTx I 

LAST X: [~] -~0 :·~0 

The I LSTx I feature saves you from having to re-enter numbers you 
want to use again (as shown under Arithmetic Calculations With 
Constants, page 39). It can also assist you in error recovery, such 
as executing the wrong function or keying in the wrong number. 

For example, suppose you mistakenly entered the wrong divisor in 
a chain calculation: 

Keystrokes 

2871ENTERI 

12.9B 

wi LSTxl 

Display 

287.0000 
22.2481 

12.9000 

Oops! The wrong divisor. 

Retrieves from LAST X 
the last entry to the X· 
register (the incorrect 
divisor) before B was 
executed. 

* Unless that operation was [il, [il, or [[[], which don't use or preserve the value in the 
display ~X-reglsteT). but instead calculate from data in the statistics storage registers 
(R2 to R7) Por a (omplete list of operations which ~ave x in LAST X, refer to appendlx 
B. 



Keystrokes 

13.9B 

Display 

287.0000 

20.6475 

Calculator Functions and the Stack 

Reverses the function that 
produced the wrong 
answer. 

The correct answer. 

When you want to key in two numbers, one after the other, you 
press I ENTER 1 between entries of the numbers. However, when you 
want to key in a number immediately following any function 
(including manipulations like I R+I), you do not need to use 1 ENTER I. 

Why? Executing most RP·l fie functions has this additional effect: 

• The automatic memory stack is lift-enabled; that is, the stack 
will lift automatically when the next number is keyed or 
recalled into the display. 

• Digit entry is terminated, so the next number starts a new 
entry. 

lost 

T 

~-
/ 

~ 
:t 

/ 
z 

z z - z y z 

y 
y -

y / 2 Y 

X 4 ~ 2 ~ 5 7 

Keys: [EJ 5 G 

There are four functions-l ENTER!, ICLxI, lE, and ~-that 
disable stack lift. * They do not provide for the lifting of the stack 
when the next number is keyed in or recalled. Following the 
execution of one of these functions, a new number will simply write 
over the currently displayed number instead of causing the stack to 
lift. (Although the stack lifts when 1 ENTER 1 is pressed, it will not lift 
when the next number is keyed in or recalled. The operation of 

• ~ will also disable the stack lift .f digit entry is terminated. making ~ clear the entire 
display like [£h!J. Otherwise, it is neutral. For a further discussion of the stack. refer to 
appendix B. 
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1 ENTER 1 illustrated on page 34 shows how 1 ENTER 1 thus disables the 
stack.) In most cases, the above effects will come so naturally that 
you won't even think about them. 

T z - z -- z 

~ 
z 

Z z - z ----- z z 

y 
y -- y 

-----
y 

z 

X 7 -- 0 r 6 ~ yB 
Keys: [9]1 CLxI 6 [Z] 

Order of Entry and the I ENTER I Key 

An important aspect oftwo-nurnber functions is the positioning of 
thc numbers in the stack. To execute an arithmetic function, the 
numbers should be positioned in the stuck in the same way that 
you would vertically position them on paper. For example: 

98 
-15 

98 
+15 

98 
X15 

98 
15 

As you can see, the first (or top) number would be in the Y-register, 
while the second (or bottom) number would be in the X-register. 
When the mathematics operation is performed, the stack drops, 
leaving the result in the X-register. Here is how a subtraction 
operation is executed in the calculator: 

lost lost 

~;' ;;' ~~y =;y ~;y 
y y x 98 ----- 98 1 x 

X x -f 98 ~ 98 ~ 15 ~ 83 

Keys: 98 IENTERI 15 [j 

The same number positioning would be used to add 15 to 98, 
multiply 98 by 15, or divide 98 by 15. 



Nested Calculations 

The automatic stack lift and stack drop make it possible to do 

nested calculations without using parentheses or storing inter­

mediate results_ A nested calculation is solved simply as a series of 

one- and two-number operations_ 

Almost every nested calculation you are likely to encounter can be 

done using just the four stack registers. It is usually wisest to begin 

the calculation at the innermost number or pair of parentheses and 

work outward (as you would for a manual calculation). Otherwise, 

you may need to place an intermediate result into a storage 

register. For example, consider the calculation of 

3 [4+ 5(6 + 7)] 

Keystrokes Display 

61ENTERI70 13.0000 Intermediate result of 
(6+7). 

50 65.0000 Intermediate result of 
5(6+ 7)_ 

40 69.0000 Intermediate result of 
[4+5(6+7)]_ 

30 207.0000 Final result: 
3 [4 + 5 (6 + 7)]. 

The following sequence illustrates the stack manipulation in this 

example. The stack automatically drops after each two-number 

calculation, and then lifts when a new number is keyed in. (For 

simplicity, throughout the rest of this handbook we will not show 

arrows between the stacks.) 

T 

Z 

Y x 6 x 

X 6 7 13 

Keys: 6 lllif® 7 G 



T y y y y 

Z y x y x 

y x 13 x 65 

X 13 5 65 4 

Keys: 5 0 4 

T y y y y 

Z x y x y 

y 65 x 69 x 

X 4 69 3 207 

Keys: G 3 0 

Arithmetic Calculations With Constants 
There are three ways (without using a storage register) to 
manipulate the memory stack to perform repeated calculations 
with a constant: 

1. Use the LAST X register. 

2. Load the stack with a constant and operate upon different 
numbers. (Clear the X-register every time you want to 
change the number operated upon.) 

3. Load the stack with a constant and operate upon an 
accumulating number. (Do not change the number in the 
X-register.) 

LAST X. Use your constant in the X-register (that is, enter it 
second) so that it always will be saved in the LAST X register. 
Pressing cru I LSTx I will retrieve the constant and place it into the 
X-register (the display). This can be done repeatedly. 
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Example: 'Two close stellar neighbors 
of Earth are Rigel Centaurus (4.3 
light-years away) and Sirius (8.7 
light-years away). Use the speed of 
light, c (3.0 x lOB meters/second, or 
9.5 x 1015 meters/year), to figure the 
distances to these stars in meters. 
(The stack diagrams show only one 
decimal place.) 

T t z 

Z z y 

y y x 

X x 4.3 

d I ,e ,.', 

y y 

x x 

4.3 4.3 

4.3 9.5 15 

Keys: 4.3 IENTERJ 951 EEXI15 

LAST X: 

T 

Z 

Y 

X 

Keys: 

LAST X: 

T 

Z 

Y 

X 

Keys: 

y 

x 

4.3 

9.5 15 

x 

4.1 16 

8.7 

9.5 115 

LAST X: r-19-.-5-1-15-'1 

4.1 

4.1 

8.3 

y 

y 

x 

16 

x 

x 

16 

16 

y x 

x 4.1 16 

4.1 16 8.7 

8.7 9.5 15 

..- (Rigel Centaurus is 
4.1 x 1016 meters away.) 

~(Sirius is 8.3 X 1016 

meters away.) 
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Loading the Stack with a Constant. Because the number in the 
T·register is replicated when the stack drops, this number can be 
used as a constant in arithmetic operations. 

T e e • New constant 

Z 
generation. 

e e 

y e e III Drops to interact 

X 
with X-register. 

x ex 

Keys: 0 
Fill the stack with a constant by keying it into the display and 
pressing I ENTER I three times. Key in your initial argument and 
perform the arithmetic operation. The stack will drop, a copy ofthe 
constant will "fall" into the Y-register, and a new copy of the 
constant will be generated in the T-register. 

If the variables change (as in the preceding example), be sure and 
clear the display before entering the new variable. This disables 
the stack so that the arithmetic result will be written over and only 
the constant will occupy the rest ofthe stack. 

If you do not have different arguments, that is, the operation will 
be performed upon a cumulative number, then do not clear the 
display-simply repeat the arithmetic operation. 

Example: A bacteriologist tests a 
certain strain of microorganisms 
whose population typically increases 
by 15% each day (a growth factor of 
1.15). If she starts with a sample 
culture of 1000, what will be the 
bacteria population at the end of 
each day for four consecutive days? 

Keystrokes 

1.15 

I ENTER II ENTER I 
I ENTER I 
1000 

Display 

1.15 

1.1500 

1,000 

Growth factor. 

Filling the stack. 

Initial culture size. 



Keystrokes Display 

0 1,150.0000 Population at the end of 
day l. 

0 1,322.5000 Day2. 

0 1,520.8750 Day:3. 

0 1,749.0063 Day4. 

Storage Register Operations 
When numbers are stored or recalled, they are copied between the 
display (X· register) and the data storage registers. At "power·up" 
(initial turn·on or Continuous Memory reset) the HP·15C has 21 
directly accessible storage registers: RII through R9, RII through R;;, 
and the Index register (R I ) (see the diagram of the registers on the 
inside back cover). Six registers, R2 to R

" 
are. also used for 

statistics calculations. 

The number of available data storage registers can be increased or 
decreased. The I DIM I function, which is used to reallocate registers 
in calculator memory, is discussed in appendix C, Memory 
Allocation. The lowest·numbered registers are the last to be 
deallocated from data storage, therefore it is wisest to store data in 
the lowest·numbered registers available. 

Storing and Recalling Numbers 

I STO (store). When followed by a storage register address (0 
through 9 or.O through .9*), this function copies a number from the 
display (X·register) into the specified data storage register. It will 
replace any existing contents of that register. 

I RCL I (recall). Similarly, you can recall data from a particular 
register into the display by pressing I RCL! followed by the register 
address. This brings a copy of the desired data into the display: the 
contents of the storage register remain unaltered. 

~ (X exchange). Followed by 0 t.hrough .9,* this function 
exchanges the contents of the X-register and the addressed data 
storage register. This is useful to view storage registers without 
disturbing the stack. 

* All t>turage Yl'gistt'f operatiG)m~ can als() be performed with the InclE'x regi~ter (USlI1g [J 
Of Uill), '\.vhich is co\'.!red in section 10, Cl:.Id ..... ·ith matriCf'H, seeti( tn 1:1 



The above are stack lift-enabling operations, so the number 
remaining in the X-register can be used for subsequent calcula­
tions. If you address a nonexistent register, the display will show 
Error 3. 

Example: Springtime is coming and you want to keep track of 24 
crocuses planted in your garden. Store the number of crocuses 
blooming the first day, and add to this the number of new blooms 
the second day. 

Keystrokes 

31sTOIo 
Display 

3.0000 Stores the number of first­
day blooms in Ro. 

Turn the calculator off. Next day, turn it back on again. 

I Rello 3.0000 

5[!] 8.0000 

Clearing Data Storage Registers 

Recalls the number of cro­
cuses that bloomed 
yesterday. 

Adds today's new blooms 
to get the total blooming 
crocuses. 

Pressing [IJ CLEAR I REG I (clear registers) clears the contents of all 
data storage registers to zero. (It does not affect the stack or the 
LAST X register.) To clear a single data storage register, store zero 
in that register. Resetting Continuous Memory clears all registers 
and the stack. 

Storage and Recall Arithmetic 

Storage Arithmetic. Suppose you not only wanted to store a 
number, but perform arithmetic with it and store the result in the 
same register. You can do this directly-without using I RCl I-by 
using the following procedure: 

1. Have your second operand (besides the one in storage) in the 
display (as the result of a calculation, a recall, or keying in). 

2. PressiSTOI. 



3. Press[!],G,0,orG. 

4. Key in the register address (0 to 9, .0 to .9). (The Index 
register, discussed in section 10, can also be used.) 

The new number in the register is determined as follows: 

For storage arithmetic, 

+ 
new contents old contents number in 

of register of register X display 

RoO T Ro B T 

Z z Z z 

y y y y 

X x X x 

Keys: ISlo180 

Recall Arithmetic. Recall arithmetic allows you to perform 
arithmetic with the displayed value and a stored value without 
lifting the stack, that is, without losing any values from the Yo, Z-, 
and T-registers. The keystroke sequence is the same as for storage 
arithmetic using I RCLI.in place ofl S10 I. 

For recall arithmetic, 

'+ 
new display old display 

. contents of 
X register 

RoO T Ro 0 T 

Z z Z z 

y y y y 

X x X x-r 

Keys: IRCLIGo 



Example: Keep a running count of your newly blooming crocuses 
for two more days. 

Keystrokes Display 

alSTOlo 8.0000 

41sTOIGo 4.0000 

3lSToiGo 3.0000 

24lRCLIGo 9.0000 

IRCLlo 15.0000 

Overflow and Underflow 

Places the total number of 
blooms as of day 2 in RD. 

Day 3: adds four new 
blooms to those already 
blooming. 

Day 4: adds three new 
blooms. 

Subtracts total number of 
blooms summed in Ro (15) 
from the total number of 
plants (24): 9 crocuses 
have not bloomed. 
(The number in Ro does 
not change.) 

If an attempted storage or recall arithmetic operation would result 
in overflow in a data storage register, the value in the affected 
register will be replaced with ±9.999999999 X 1099 and the display 
will blink. To stop the blinking (clear the overflow condition), press 
[Bor [Q[jor [gJcm 9. 

In case of underflow, the value in the register will be replaced with 
zero (no display blinking). Overflow and underflow are discussed 
further on page 61. 

Problems 
1. Calculate the value of x in the following equation. 

x= 
/833 (4 - 5.2) -:- [iB.33 -7.46) O~32] 

V 4.3 (3.15 - 2.75) - (1.71) (2.01) 

Answer: 4.6728. 
A possible keystroke solution is: 

4 I ENTER I 5.2 G B.33 0 W I LSTx 1 7.46 G 0.32 0 G 3.15 
I ENTER 12.75 G 4.301.711 ENTER 12.010 G G IK:: 



2. Use arithmetic with constants to calculate the remaining 
balance of a $1000 loan after six payments of $100 each and 
an interest rate of 1 'iT, (0.01) per payment period. 

Procedure: Load the stack with (1 + i), where i = interest rate, 
and key in the initial loan balance. Use the following 
formula to find the new balance after each payment. 

New Balance= ((Old Balance) X (1 + i» ~ Payment 

The first part of the key sequence would be: 

1.011 ENTER II ENTER II ENTER 11000 

For each payment, execute: 

0100G 

Balance after six payments: $446.32. 

3. Store 100 in R5. Then: 

1. Divide the contents ofRs by 25. 

2. Subtract 2 from the contents ofR5. 

3. Multiply the contents afRo by 0.75. 

4. Add 1.75 to the contents ofRs. 

5. Recall the contents ofRs. 

Answer: 3.2.500. 



Section 4 

A word about the statistics functions: their use is based on an 
understanding of memory stack operation (section 3). You will find 
that order of entry is important for most statistics calculations. 

Probability Calculations 
The input for permutation and combination calculations is 
restricted to nonnegative integers. Enter the y-value before the 
x-value. These functions, like the arithmetic operators, cause the 
stack to drop as the result is placed in the X-register. 

Permutations. Pressing ITl ~ calculates the number of possible 
different arrangements of y different items taken in quantities of x 
items at a time. No item occurs more than once in an arrangement, 
and different orders of the same x items in an arrangement are 
counted separately. The formula is 

yt 
p y . x = --"---

(y-x)! 

Combinations. Pressing CilJ ~ calculates the number of 
possible sets of y different items taken in quantities of x items at a 
time. No item occurs more than once in a set, and different orders of 
the same x items in a set are not counted separately. The formula is 

I C = y. 
y,x x!(y-x)! 

Examples: How many different arrangements are possible of five 
pictures which can be hung on the wall three at a time? 

Keystrokes 

51 ENTER 13 
Display 

3 

60.0000 

47 

Five (y) pictures put up 
three (x) at a time. 
Sixty different arrange­
ments possible. 



How many different four-card hands can be dealt from a deck of 52 
cards? 

Keystrokes 

521 ENTER 14 

Display 

4 Fifty-two (y) cards dealt 
four (x) at a time. 

270.725.0000 Number of different 
hands possible. 

The execution times for these functions may last several seconds, 
depending on the magnitude of the x and y inputs. The display will 
show running during this time. The maximum size of x or y is 
9,999,999,999. 

Random Number Generator 
Pressing m 1 RAN# 1 (random number) will generate a random 
number (part of a uniformly distributed pseudo-random number 
sequence) in the range 0 ~ r < 1.* 

At initial power-up (including reset of Continuous Memory), the 
Hp·15C random number generator will use zero as a "seed" to 
initiate a random number sequence. Any time you generate a 
random number, that number becomes the seed for the next 
random number. You can initiate a different random number 
sequence by storing a new seed for the random number generator. 
(Repetition of.a random number seed will produce repetition of the 
random number sequence.) 

ISTOlml RAN#lwiH store the X-register number (O~ r < 1) as a new 
seed for the random number generator. (A value for r outside this 
range wm be converted to fit within the range.) 

1 RCL 1 m 1 RAN# 1 will recall to the display the current random number 
seed . 

.. Pass.es the spectral test (D. Kn uth, 5eminumerical Algorithms, vol. 2, 1969) 



Keystrokes Display 

.5764 0.5764 
I STO I[IJI RAN# I 0.5764 

[IJI RAN# I 0.3422 
[IJI RAN# I 0.2809 

~ 0.0000 
I RCLm RAN#I 0.2809 

Accumulating Statistics 

Stores 0.5764 as random 
number seed. (The [IJ key­
stroke may be omitted.) 

Random number sequence 
initiated by the above 
seed. 

Recalls last random num­
ber generated, which is 
the new seed. (The [IJ may 
be omitted.) 

The HP-15C performs one- and two-variable statistical calcula­
tions. The data is first entered into the Y- and X-registers. Then the 
~ function automatically calculates and stores statistics of the 
data in storage registers R2 through R7. These registers are 
therefore referred to as the statistics registers. 

Before beginning to accumulate statistics for a new set of data, 
press [IJ CLEAR 00 to clear the statistics registers and stack. (If you 
have reallocated registers in memory and any of the statistics 
registers no longer exist, Error 3 will be displayed when you try to 
use CLEAR 00, ~, or ~. Appendix C explains how to reallocate 
memory.) 

In one-variable statistical calculations, enter each data point (x­
value) by keying in x and then press ~. 

In two-variable statistical calculations, enter each data pair (the x­
and y-values) as follows: 

1. Key y into the display first. 

2. Press I ENTER I. The displayed y-value is copied into the 
Y-register_ 

3. Key x into the display. 

4. Press ~. The current number of accumulated data points, 
n, will be displayed. The x-value is saved in the LAST X 
register and y remains in the Y-register. ~ disables stack 
lift, so the stack will not lift when the next number is keyed 
in_ 
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In some cases involving x or y data values that differ by a 
relatively small amount, the calculator cannot compute s, r, linear 
regression, or y, and will display Error 2. This will not happen, 
however, if you normalize the data by keying in only the difference 
between each value and the mean or approximate mean of the 
values. This difference must be added back to the calculations of x, 
y, and the y-intercept ([I]J). For example, if your x-values were 
665999, 666000, and 666001, you should enter the data as -1, 0, and 
1; then add 666000 back to the relevant results. 

The statistics of the data are compiled as follows: 

Register 
} 

R2 in 
I 
I 

R3 De 

R4 rx2 
R5 ~y 

R6 ~y2 

R, Dey 

Contents 

Number of data points accumulated (n also 
appears in the X-register). 

Summation of x-values. 

Summation of squares of x -values. 

Summation of y-values. 

Summation of squares of y-values. 

Summation of products of x- and y-values. 

1 
-..) 

i 

You can recall any of the accumulated statistics to the display 
(X-register) by pressing I RCL I and the number of the data storage 
register containing the desired statistic. If you press I RCL I [0, ~x 
and ~y will be copied simultaneously from R3 and R5 , respectively, 
into the X-register and the Y-register, respectively. (The sequence 
I RCL 1[0 lifts the stack twice if stack lift is enabled, once if not, and 
then enables stack lift.) 

Example: Agronomist Silas Farmer 
has developed a new variety of high­
yield rice, and has measured the 
plant's yield rate as a function of 
fertilization. Use the ~ function to 
accumulate the data below to find the 
values for ~x, ~X2, ~y, ~y2, and ~xy 
for nitrogen fertilizer application (x) 
versus grain yield (y). 



'; NITROGEN APPLIED ! 
X '(kg per hectare'), x : 0.00 

(metric tons per 
hectare), y 

'. A hectare equals 2.47 acres 

. " ., 

: 4.63 

1. 

Keystrokes Display 

ITJCLEAR [1D 0.0000 

ITJ0RJ2 0.00 

4.631 ENTER I 4.63 
0[0 1.00 

4.781 ENTER I 4.78 
20[0 2.00 

6.61 I ENTER I 6.61 
40[0 3.00 

7.21 I ENTER I 7.21 
60[0 4.00 

7.781 ENTER I 7.78 
80[0 5.00 

I RCLI3 200.00 

IRCLI4 12,000.00 

I RCLI5 31.01 

I RcLi6 200.49 

I RcLi7 1,415.00 

I 

20.00 40.00 ·60.00 : 80.00 

4.78: 6.61 7.21 7.78 

Clears statistical storage 
registers (R2 through R7 
and the stack). 

Limits display to two 
decimal places, like the 
data. 

First data point. 

Second data point. 

Third data point. 

Fourth data point. 

Fifth data point. 
Sum of x-values, Ix (kg of 
nitrogen). 

Sum of squares of x-
values, Ix 2. 

Sum of y-values, Iy (grain 
yield). 

Sum of squares of y. 
values, Iy2. 

Sum of products of x - and 
y-values, ~xy. 



Correcting Accumulated Statistics 

If you discover that you have entered data incorrectly, the 
accumulated statistics can be easily corrected. Even if only one 
value of an (x ,Y) data pair is incorrect, you must delete and re-enter 
both values. 

I. Key the incorrect data pair into the Y- and X-registers. 

2. Press W ~ to delete the incorrect data. 

3. Key in the correct values for x and y. 

4. Press~. 

Alternatively, if the incorrect data point or pair is the most recent 
one entered and ~ has been pressed, you can press wi LSTx Iw~ 
to remove the incorrect data.* 

Example: After keying in the preceding data, Farmer realizes he 
misread a smeared figure in his lab book. The second y-value 
should have been 5.78 instead of 4.78. Correct the data input. 

Keystrokes 

4.78IENTERI 

20W~ 

5.781 ENTER I 

20~ 

Display 

4.78 
4.00 

5.78 

5.00 

Keys in the data pair we 
want to replace and 
deletes the accompanying 
statistics. The n-value 
drops to four. 
Keys in and accumulates 
the replacement data pair. 
The n-value is back to five. 

We will use these statistics m the rest of the examples in this 
section. 

'" ~ote that these methods of data deletion will not delete any rounding errors that may 
have been generated in the- statistics registers. This difference wiLl not be serious unless 
the erroneous pair has a magmtude that is enormous compand with the correct pair; in 
such a case, it would be wise to start over! 



Mean 

The [IJ function computes the arithmetic mean (average) of the 
x-and y-values using the formulas shown in appendix A and the 
statistics accumulated in the relevant registers. When you press 
W [IJ, the contents of the stack lift (two registers if stack lift is 
enabled, one if not); the mean of x (i) is copied into the X-register 
as the mean of y (,y) is copied simultaneously into the Y-register. 
Press ~ to view y. 

Example: From the corrected statistics data we have already 
entered and accumulated, calculate the average fertilizer applica­
tion, i, and average grain yield y, for the entire range. 

Keystrokes 

wOO 

Standard Deviation 

Display 

40.00 

6.40 

Average kg of nitrogen, i, 
for all cases. 

Average tons of rice, y, for 
all cases. 

Pressing WW computes the standard devi.ation of the accumulated 
statistics data. The formulas used to cOr:lpuce SX' the standard 
deviation of the accumulated x-values, and SY' be standard 
deviation of the accumulated y-values, are given in appendix A. 

This function gives an estimate of the populatior_ standard 
deviation from the sample data, and is therefore termed the sample 
standard deviation." When you press [JL W, the contents of the 
stack registers are lifted (twice if stack lift is enabled, once if not); 
Sx is placed into the X-register and Sy is placed! into ~he V-register. 
Press ~ to view Sy. 

* When your data c()nstitutes not just a sample of a population burt ai~ oft~e :Jopulation, 
the standard deviation of the data is the true population stan.iard de ... iat:..::;.n Idenoted a). 

The formula for the true population standard deviatio:'l cliffers by a f;;:.ct:lr (:f \/(n - l)/n 

from the formula used for thew function. The difference between the vcJl.IIes is small for 
large n, and for most applications can be Jgnored. But lfyou ~'ant to'~8:cul.ate the exact 
value of the population standard deviation for an en:rre popula1i.on. you can easily rio 
so: simply add, using I]!] , the mean (i) of the data to the d :':Ita before pr-essing [gJ [§J. 
The result will be the populativn standard de·viation. (] fsou s-.:.Jbs-equ ffitly o;::"((]'rect any of 
your accumulated data values, remember to delete tre first mean "i.'ah.:~ and add the 
corrected one.) 



Example: Calculate the standard deviation about the mean 
calculated above. 

Keystrokes 

~[i] 

linear Regression 

Display 

31.62. 

1.2.4 

Standard deviation about 
the mean nitrogen 
application, X. 

Standard deviation about 
the mean grain yield, y. 

Linear regression is a statistical method for finding a straight line 
that best fits a set of two or more data pairs, thus providing a 
relationship between two variables. By the method of least 
squares, [I) [IE] will calculate the slope, A, and y-intercept, B, of 
the linear equation: 

y = Ax i-B 

1. Accumulate the statistics of your data using the ~ key. 

2. Press [I) Q;]J. The y-intercept, B, appears in the display 
(X-register). The slope, A, is copied simultaneously into the 
Y-register. 

3. Press ~ to view A. (As is the case with the functions m 
and [i), [IE] causes the stack to lift two registers if it's 
enabled, one if not.) 

T y V 

Z z x x 

y y A slope B y- intercept 

X x B v- i nterc:ept A slope 

Keys: [I) IT]] [tli] 

The slope and y-intercept of the least squares line of the 
accumulated data are calculated using the equations shown in 
appendix A. 
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Example: Find the y-intercept and slope of the linear approxima­
tion of the data and compare to the plotted data on the graph 
below. 

Grain Yield 
(metric tons/hectare) 

8.50 

7.50 
/" 

6.50 

5.50 

B 

4.50 L..-__ +-__ -+-__ -+ __ -+ 

Keystrokes 

mlL.R.1 

o 20 40 60 80 

Nitrogen Application (kg/hectare) 

Display 

4.86 

0.04 

y-intercept ofthe line. 

Slope ofthe line. 

Linear Estimation and Correlation Coefficient 

When you press m [I!J the linear estimate, y, is placed in the 
X-register and the correlation coefficient, r, is placed in the 
V-register. To display r, press (tliJ-



Linear Estimation. With the statistics accumulated, an esti­
mated value for y, denoted y, can be calculated by keying in a 
proposed value for x and pressing ITl[ILl. 

An Estimated value for x (denoted x) can be calculated as 
follows: 

1. Press OJ IT]] . 

2. Key in the known y-value. 

3. Press ~G~G. 

Correlation Coefficient. Both linear regression and linear 
estimation presume that the relationship between the x and y data 
values can be approximated by a linear function. The correlation 
coefficient, r, is a determination of how closely your data fit a 
straight line. The range is - 1 :( r :( 1, with - 1 representing a 
perfectly negative correlation and + 1 representing a perfectly 
positive correlation. 

Note that if you do not key in a value for x before executing ITl [ILl, 
the number previously in the X-register will be used (usually 
yielding a meaningless value for y). 
Example: What if 70 kg of nitrogen fertilizer were applied to the 
rice field? Predict the grain yield based on Farmer's accumulated 
statistics. Because the correlation coefficient is automatically 
included in the calculation, you can view how closely the data fit a 
straight line by pressing ~ after the y prediction appears in the 
display. 

y 

12 

8 

. -..-

x ...... ;.. _. ao. y) 

4L-------1I-----~x 
o 50 100 



Keystrokes 

70 ITllM 

Other Applications 

Display 

7.56 

0.99 

Predicted grain yield in 
tons/hectare. 

The original data closely 
approximates a straight 
line. 

Interpolation. Linear interpolation of tabular values, such as in 
thermodynamics and statistics tables, can be carried out very 
simply on the HP-15C by using the lM function_ This is because 
linear interpolation is linear estimation: two consecutive tabular 
values are assumed to form two points on a line, and the unknown 
intermediate value is assumed to fall on that same line. 

Vector Arithmetic. The statistical accumulation functions 
can be used to perform vector addition and subtraction. Polar 
vector coordinates must be converted to rectangular coordinates 
upon entry (II, 1 ENTER I, r ~, [1!])- The results are recalled 
from R3 (2:x) and R5 (2;y) (using 1 RCL 1[1!]) and converted back 
to polar coordinates, if necessary_ Remember that for polar co­
ordinates the angle is between -1800 and 180· (or -11' and 11' 
radians, or - 200 and 200 grads)_ To convert to a positive angle, 
add 360 (or 211' or 400) to the angle_ 

For the second vector entered, the final keystroke will be either ~ 
or~, dependin~ on whether the two vectors should be added or 
subtracted. 



Section 5 

Display Control 
The HP-15C has three display formats-mRJ, I SCI I, and I ENG 1-
that use a given number (0 through 9) to specify display format. 
The illustration below shows how the number 123,456 would be 
displayed specified to four places in each possible mode. 

123.456.0000 
1.2346 05 
123.46 03 

Owing to Continuous Memory, any change you make in the 
display format will be preserved until Continuous Memory is reset. 

The current display format takes effect when digit entry is 
terminated; until then, all digits you key in (up to 10) are displayed. 

Fixed Decimal Display 

mRJ (fixed decimal) format displays a figure with the number of 
decimal places you specify (up to nine, depending on the size ofthe 
integer portion.) Exponents will be displayed if the number is too 
small or too large for the disp1ay. At "power-up," the HP-15C is in 
mRJ4 format. The key sequence is [Ij[£lRJ n. 

Keystrokes 

123.4567895 
[D[£jRJ4 
W[£jRJ6 

Display 

123.4567895 
123.4568 
123.456790 

123.4568 

Scientific Notation Display 

Display is rounded to six 
decimal places. (Ten 
places are stored 
internally.) 
Usual [£jRJ 4 display. 

I SCI I (scientific} format dis.plays a number in scientific notation. 
The sequence II ~ n specifies the num ber .of decimal places to be 
shown. Up to six decimal places can be shown since the exponent 
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display takes three spaces. The display will be rounded to the 
specified number of decimal places; however, if you specify more 
decimal places than the six places the display can hold (that is, 
@ 7, 8, or 9), rounding will occur in the undisplayed seventh, 
eighth, or ninth decimal place.* 

With the previous number still in the display: 

Keystrokes 

[D[gI]6 
Display 

1.234568 02 Rounds to and shows six 
decimal places. 

1.234567 02 Rounds to eight decimal 
places, but displays only 
six. 

Engineering Notation Display 

[ENG[ (engineering) format displays numbers in an engineering 
notation format in a manner similar to [SCI I, except: 

• In engineering notation, the first significant digit is always 
present in the display. The number you key in after [D[ ENG I 

specifies the number of additional digits to which you want to 
round the display. 

- Engineering notation shows all exponents in multiples of 
three. 

Keystrokes 

.012345 
[II ENG [ 1 

Display 

0.012345 
12. -03 

-03 

Rounds to the first digit 
after the leading digit. 

12.35 
123.5 -03 Decimal shifts to main-

0.1235 

tain multiple ofthree in 
exponent. 

U sual ~ 4 format. 

* Therefore, the display shows no d1stir..ctiun among ~ 7, H. and 9 unless tl:e number 
rounded up is a 9, which carries a : over into the next higher decimal place. 



Mantissa Display 

Regardless of the display format, the HP-15C always internally 
holds each number as a 10-digit mantissa and a two-digit exponent 
of 10_ For example, 1T is always represented internally as 
3.141592654 X 1000 , regardless of what is in the display. 

When you want to view the full 10-digit mantissa of a number in 
the X-register, press CD CLEAR 1 PREFIX I. To keep the mantissa in the 
display, hold the 1 PREFIX 1 key down. 

Keystrokes 

~GJ 
[j] CLEAR 1 PREFIX 1 

(hold) 

Round-Off Error 

Display 

3.1416 

3141592654 

As mentioned earlier, the HP-15C holds every value to 10 digits 
internally. It also rounds the final result of every calculation to the 
10th digit. Because the calculator can provide only a finite 
approximation for numbers such as IT or 2/3 (0.666 ... ), a small error 
due to rounding can occur. This error can be increased in lengthy 
calculations, but usually is insignificant. To accurately assess this 
effect for a given calculation requires numerical analysis beyond 
our scope and space here! Refer to the HP-15C Advanced Functions 
Handbook for a more detailed discussion. 

Special Displays 

Annunciators 

The HP-15C display contains eight annunciators that indicate the 
status of the calculator for various operations. The meaning and 
use of these annunciators is discussed on the following ppges: 

USER 
f and 9 
RAD and GRAD 
C 
PRGM 

Low-power indication, page 62. 
User mode, pages 79 and 144. 
Prefixes for alternate functions, pages 18-19. 
Trigonometric modes, page 26. 
Complex mode, page 121 
Program mode, page 66. 



Digit Separators 

The Hp·15C is set at power· up so that it separates integral and 
fractional portions of a number with a period (a decimal point), and 
separates groups of three digits in the integer portion with a 
comma. You can reverse this setting to conform to the numerical 
convention used in many countries. To do so, turn off the 
calculator. Press and hold [Qill, press and hold 0, release [Qill, 
then release 0 ([Qill/ 0). (Repeating this sequence will set the 
calculator to the previous display convention.) 

Keystrokes 

12345.67 
[Qill/O 
[Qill/O 

Error Display 

Display 

12,345.67 
12.345,6700 
12,345.6700 

If you attempt an improper operation-such as division by zero­
an error message (Error followed by a digit) will appear in the 
display. For a complete listing of error messages and their causes, 
refer to appendix A. 

To clear the Error display and restore the calculator to its prior 
condition, press any key. You can then resume normal operation. 

Overflow and Underflow 

Overflow. When the result of a calculation in any register is a 
number with a magnitude greater than 9.999999999 X 1099 , 

± 9.999999999 X 1099 is placed in the affected register and the 
overflow flag, flag 9, is set.* Flag 9 causes the display to blink. 
When overflow occurs in a running program, execution continues 
until completion of the program, and then the display blinks. 

Thp hlinking can be stopped and flag 9 cleared by pressing [±j, 
[Qill,orcrucm9. 

Underflow. If the result of a calculation in any register is a 
number with a magnitude less than 1.000000000 X 10-99 , that 
number will be replaced by zero. Underflow does not have any 
other effect. 

* Recall that the display does not include the last three digits cfth.e mantissa. 



Low-Power Indication 
When a flashing asterisk, which 
indicates low battery power, appears 
in the lower left-hand side of the 
display, there is no reason to panic. 
You still have plenty of calculator 
time remaining: at least 10 minutes if 
you continuously run programs, and 
at least an hour if you do calculations 
manually. Refer to appendix F (page 
259) for information on replacing the 
batteries. 

Continuous Memory 

Status 

0.0000 

The Continuous Memory feature of the Hp·15C retains the 
following in the calculator, even when the display is turned off: 

• All numeric data stored in the calculator. 

• All programs stored in the calculator. 
.. Position ofthe calculator in program memory. 

$ Display mode and setting. 

" Trigonometric mode (Degrees, Radians, or Grads). 

• Any pending subroutine returns. 
~ Flag settings {except flag 9, which clears when the display is 

manually turned off). 

• User mode setting. 
~ Complex mode setting. 

When the Hp·15C is turned on, it always "wakes up" in Run mode. 

If the calculator is turned off, Continuous Memory will be 
preserved for a short period while the batteries are removed. Data 
and programs are preserved longer than other aspects of calculator 
status. Refer to appendix F for instructions on changing batteries .. 
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Resetting Continuous Memory 
If at any time you want to reset (entirely clear) the HP-15C 
Continuous Memory: 

1. Turn the calculator off. 

2. Press and hold the [Q0 key, then press and hold the G key . 

. 3. Release the [Qffi key, then the G key. (This convention is 
represented as [Qffi / G.) 

When Continuous Memory is reset, Pr Error (power error) will be 
displayed. Press any key to clear the display. 

Norl' Continuous Memory can inadvertently be interrupted 
and reset if the calculator is dropped or otherwise 
traumatized. 







Section 6 

Programming Basics 
The next five sections are dedicated to explaining aspects of 
programming the Hp·l;,)C. Each of these programming sections 
will first discuss basic techniques (The Mechanics), then give 
examples for the implementation of these techniques (Examples), 
and lastly discuss finer points of operation in greater detail 
(Further Information). Read only as far as you need to support your 
use of the Hp·15C. 

The Mechanics 

Creating a Program 

Programming the HP-15C is an easy matter, based simply on 
recording the keystroke sequence used when calculating manually. 
(This is called "keystroke programming".) To create a program out 
of a series of calculation steps requires two extra manipulations: 
deciding where and how to enter your data; and loading and 
storing the program. In addition, programs can be instructed to 
make decisions and perform iterations through conditional and 
unconditional branching. 

As we step through the fundamentals of programming, we'll 
rework the falling object program illustrated in the Problem Solver 
(page 14). 

Loading a Program 

Program Mode_ Press [9]1 P/R 1 (program/run) to set the calculator 
to Program mode (PRGM annunciator on). Functions are stored 
and not executed when keys are pressed in Program mode. 

Keystrokes 

[9]1 P/R 1 
Display 

000-

66 

Switches tu Program 
mode; PRGM annunciator 
and line number (000) 
displayed. 
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Location in Program Memory. Program memory-and there· 
fore the calculator's position in program memory-is demarcated 
by line numbers. Line 000 marks the beginning of program 
memory and cannot be used to store an instruction. The first line 
that contains an instruction is line 001. Program lines other than 
000 do not exist until instructions are written for them. 

You can start a program at any existent line (designated nnn), but 
it is simplest and safest to start an independent program (as 
opposed to a subroutine) at the beginning of program memory. As 
you write, any existing program lines will be preserved and 
"bumped" down in program memory. 

Press I GTO I[ CHS I 000 (in Program or Run mode) to move to line 000 
without recording the I GTO I statement. In Run mode, [IJ CLEAR 

I PRGM I will also reset the calculator to line OOO-without clearing 
program memory. 

Alternatively, you can clear program memory, which will erase all 
programs in memory and position you to line 000. To do so, press [IJ 
CLEAR I PRG M I In Program mode. 

Program Begin. A label instruction- [IJ I LBLI followed by a letter 
(lliJ through [Ill or number (0 through 9 or.O through .9)-is used to 
define the beginning of a program or routine. The use of labels 
allows you to quickly select and run one particular program or 
routine out of several. 

Keystrokes 

m CLEAR I PRGM I 
Display 

000-

001-42,21,11 

Clears program memory 
and sets to line 000 (start 
of program memory). 

Recording a Program. Any key pressed-operator or constant­
will be recorded in memory as a programmed instruction.* 

... ExclC'pt the nonproF[rammablt;- functions, whIch are listed on page 80. 
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Keystrokes Display 

2 002- 2 

0 003- 20 
9 004- 9 

Given h in the X-register, [J 005- 48 
8 006- 8 

lines 002 to 008 calculate 

G 007- 10 A· [£J 008- 11 

Program End. There are three possible endings for a program: 

• [gJ I RTN I (return) will end a program, return to line 000, and 
halt. 

• IRIS 1 will stop a program without moving to line ODD. 

• The end of program memory contains an automatic 1 RTN I. 

Keystrokes 

[gJ1 RTN 1 
Display 

0.09-

Intermediate Program Stops 

4332 Optional if this is the iast 
program in memory. 

Use m IpSE 1 (pause) as a program instruction to momentarily stop a 
program and display an intermediate result. (Use more than one 
1 PSE 1 for a longer pause.) 

Use a IRIS 1 (run/stop) instruction to stop the program indefinitely. 
The program will remain positioned at that line. You can resume 
program execution (from that line) by pressing IRIS 1 during Run 
mode, that is, from the keyboard. 

Running a Program 

Run Mode. Switch back to Run mode when YOll are done 
programming: [gJ I P/R j. Program execution must take place in Run 
mode. 



Keystrokes 

[9]1 PIR 1 
Display 
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Run mode; no PRGM 
annunciator displayed. 
(The display will depend 
on any previous result.) 

The position in program memory does not change when modes are 
switched. Should the calculator be shut off, it always "wakes up" in 
Run mode. 

Executing a Program. In Run mode, press ITlletter label or 1 GSB 1 

digit (or letter) label. This addresses a program and starts its 
execution. The display will flash running. 

Keystrokes 

300.51 

Display 

300.51 

7.8313 

Key a value for h into the 
X-register. 

The result of executing pro· 
gram "A". (The number of 
seconds it takes an object 
dropped from 300.51 
meters high to hit the 
ground.) 

Restarting a Program. Press 1 RIS 1 to continue execution of a 
program that was stopped with a 1 RIS 1 instruction. 

User Mode. User mode is an optional condition to save keystrokes 
when executing letter-named programs. Pressing CD 1 USER 1 will 
interchange the [!J-shifted and primary functions of the [KJ through 
[]J keys. You can then execute a program using just one keystroke 
(skipping the [!Jor 1 GSB I). 

How to Enter Data 

Every program must take into account how and when data will be 
supplied_ This can be done in Run mode before running the 
program or during an interruption in the program. 

1. Prior entry. If a variable value will be used in the first line 
ofthe program, enter it into the X-register before starting the 
program. If it will be used later, you can store it (with 1 STO I) 
into a storage register, and recall it (with a programmed 
1 RcLi) within the program. 



This is the method used above, where h was placed in the 
X-register before running the program. No I ENTER I instruc· 
tion is necessary because program execution (here: rn [KJ) 
both terminates digit entry and enables the stack lift. The 
above program then multiplied the contents ofthe X-register 
(h) by 2. 

The presence of the stack even makes it possible to load more 
than one variable prior to running a program. Keeping in 
mind how the stack moves with subsequent calculations and 
how the stack can be manipulated (as with ~), it is 
possible to write a program to use variables which have been 
keyed into the X-, Y-, Z·, and T-registers. 

2. Direct entry. Enter the data as needed as the program 
runs. Write a I RIS I (run/stop) instruction into the program 
where needed so the program will stop execution. Enter your 
data, then press I RIS Ito restart the program. 

Do not key variable data into the program itself. Any values that 
will vary should be entered anew with each program execution. 

Program Memory 

At power-up (Continuous Memory reset), the HP-15C offers 322 
bytes of program memory and 21 storage registers. Most program 
steps (instructions) use one byte, but some use two. The distribution 
of memory capacity can be altered, as explained in appendix C. 
The maximum attainable program memory is 448 bytes (with the 
permanent storage registers-RI , Ro, and R1-remaining); maxi· 
mum number of storag·e registers is 67 (with no program memory). 

Example 
Mother's Kitchen, a canning com· 
pany, wants to package a ready-to­
eat spaghetti mix containing three 
different cylindrical cans: one of spa­
ghetti sauce, one of grated cheese, 
and one of meatballs. Mother's needs 
to calculate the base areas, total 
surface areas, and volumes of the 
three different cans. It would also 
like to know, per package, the total 
base area, surface area, and volume. 



The program to calculate this information uses these formulas and 
data: 

base area = 17'r2. 
volume = base area X height = 17'r 2h. 
surface area = 2 base areas + side area = 217'r2 + 217'rh. 

Radius, r 

2.5em 
4.0 
4.5 

Method: 

Height, h 

a.Oem 
10.5 

4.0 

TOTALS 

Base Area Volume Surf~~-~ -A;~~--l 
.... - - -., 

? I 

? ------1 __ .J 

1. Enter an r value into the calculator and save it for other 
calculations. Calculate the base area (17'r2), store it for later 
use, and add the base area to a register which will hold the 
sum of all base areas. 

2. Enter h and calculate the volume (17'r2 h). Add it to a register 
to hold the sum of all volumes. 

3. Recall r. Divide the volume by r and multiply by 2 to yield 
the side area_ Recall the base area, multiply by 2, and add to 
the side area to yield the surface area. Sum the surface areas 
in a register. 

Do not enter the actual data while writing the program-just 
provide for their entry. These values will vary and so will be 
entered before andlor during each program run. 

Key in the following program to solve the above problem. The 
display shows line numbers and keycodes (the row and column 
location of a key), which will be explained under Further 
Information. 

Keystrokes 

@\P/R\ 

m CLEAR I PRGM \ 

Display 

000-

000-

Sets calculator to Pro­
gram mode (PRGM dis· 
played). 

Clears program memory. 
Starts at line 000. 
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Keystrokes Display 

[TIl lBlllKl 001-42.21.11 Assigns this program the 
label "A". 

ISTOlo 002- 44 0 Stores the contents of 
X-register into Ro. r must 
be in the X-register before 
running the program. 

w[ZJ 003- 4311 Squares the contents of 
the X-register (which will 
ber). 

WG] 004- 4326 

0 005- 20 rrr2, the BASE AREA of a 
can. 

ISTOI4 006- 44 4 Stores the BASE AREA in 
R4· 

ISTOIG' 007-44.40. Keeps a sum of all BASE 
AREASinR1· 

IRlsl 008- 31 Stops to display BASE 
AREA and allow entry of 
the h value. 

0 009- 20 Multiplies h by the BASE 
AREA, giving VOLUME. 

[TIlpSEI 010- 4231 Pauses briefly to display 
VOLUME. 

ISTOIG2 011-44.40. 2 Keeps a sum of all can 
VOLUMES in R2. 

I RCllO 012- 45 0 Recalls r. 

B 013- 10 Divides VOLUME by r. 

2 014- 2 

0 015- 20 2 rrTh , the SIDE AREA of 
a can_ 

IRCll4 016- 45 4 Recalls the BASE AREA 
ofthecan. 

2 017-
2} Multiplies base area by 

0 018-
20 two (for top and bottom). 



Keystrokes 

G 
Display 

019- 40 SIDE AREA + BASE 
AREA = SURFACE 
AREA. 

; i 

020-44.40. 3 Keeps a sum of all 
SURFACE AREAS in R3 . 

021- 4332 Ends the program and 
returns program memory 
to line 000. 

Now, let's run the program: 

Keystrokes 

~IP/RI 

m CLEAR I REG I 

2.5 

m~ 
(or:IGSBI~) 

8 

4 

iRIs I 

10.5 

IRIsl 

4.5 

IRlsl 

Display 

2.5 

19.6350 

8 

157.0796 

164.9336 

4 

50.2655 

10.5 

527.7876 
364.4247 

4.5 

63.6173 

Sets calculator to Run 
mode. (PRGM cleared.) 

Clears all storage 
registers. The display does 
not change. 

Enter r of the first can. 

Starts program A. BASE 
AREA of first can. 
(running flashes during 
execution.) 

Enter h of first can. Then 
restart program. 

VOLUME of first can. 

SURFACE AREA of first 
can. 

Enter r of the second can. 

BASE AREA of second 
can. 

Enter h of second can. 

VOLUME of second can. 
SURFACE AREA of 
second can. 

Enter r of the third can. 

BASE AREA of third can. 
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Keystrokes Display 

4 4 Enter h ofthird can. 

iRIs I 254.4690 VOLUME of third can. 
240.3318 SURF ACE AREA of third 

can. 

I RCLl1 133.5177 Sum of BASE AREAS. 

I RCLI2 939.3362 Sum of VOLUMES. 

IRCLI3 769.6902 Sum of SURFACE 
AREAS. 

The preceding program illustrates the basic techniques of 
programming. It also shows how data can be manipulated in 
Program and Run modes by entering, storing, and recalling data 
(input and output) using IENTERI, ISTol, IRCLI, storage register 
arithmetic, and programmed stops. 

Further Information 

Program Instructions 

Each digit, decimal point, and function key is considered an 
instruction and is stored in one line of program memory. An 
instruction may include prefixes (such as m ,I STO 1,1 GTO I, and I LBL I) 
and still occupy only one line. Most instructions require one byte of 
program memory; hDwever, some require two. For a complete list of 
two·byte instructions, refer to appendix C. 

Instruction Coding 

Each key on the Hp·15C keyboard-except for the digit keys 0 
through 9-is identified in Program mode by a two·digit "keycode" 
that corresponds to the key's position on the keyboard. 

Instruction Code 

006-44.40, Sixth program line. 

XXX-42, 5,25 I DSE lis just "5". 

The first digit of a keycDde refers to the row (1 to 4 from top to 
bottom), and the second digit refers to the column (1,2, ... 9,0 from 
left to right). Exception: the key code for a digit key is simply that 
digit. 



.--------------- -----------------

[ l 1.2 3 Y 5 6 1 - I 5 I] 

LBL HYP DIM 1'1 i RESULT x, DSE ISG N 

RiiIBl II ~ Ie II II 111111 
I CLEAR i 

iI~ii!!IRAN# ~!~! 
.~~IIII·lIllilil. _H E W LET T· PA C K A R D 

~' r '. I .. , '! c: c ,-, 

Memory Configuration 

Understanding memory configuration is not essential to your use 
of the HP-15C. It is essential, however, for obtaining maximum 
efficiency in memory and programming use. The more you 
program, the more useful this knowledge will be. Memory 
configuration and allocation is thoroughly explained in appendix 
C, Memory Allocation. 

Should you ever get an Error 10, you have run up against 
limitations of the HP-15C memory. If you learn how to reallocate 
memory, you can greatly increase your ability to store information 
in the HP-15C. 

The HP-15C memory consists of 67 registers (Ro to R65 and the 
Index register) divided between data storage and programming/ 
advanced function capability. The initial configuration i:s: 

46 registers for both pmgramming and the advanced 
functions <ISOLVEI, 0, the imaginary stack, and I MATRIX I 
functions). At seven bytes of memory per register, this is worth 
322 program bytes if no memory is dedicated to advanced 
functions. 

21 registers for data storage (Ro to R9• R.o to R.9, and the Index 
register). 
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Permanent 
Registers 

Statistics 
Registers 

Initial Memory Configuration 
STORAGE REGISTERS: RI • Ro to Rg 

RrlL.. ___ ...J 

RO~ 
R1e=] 
R2 

R3 

R4 

Rs 

As 

R7 

Ra 

Rg 

Ro 

R.2 

R.3 

R.4 

R.a 

R.g 

COMMON 
REGISTERS: 

R 20 to Rss 
(available for 

programming) 

322 program 
bytes 
available (if 
no memory 
used for 
advanced 
functions) 

:::B 
:::H 
RssD 

____ .Movable Boundary 

Allocatable Registers (shaded) 

Memory is reallucated by telling the calculator which data storage 
register shall be the highest data register; all other registers are left 
for programming and advanced functions. 

Keystrokes 

60 ill 1 DIM 1[iliJ* 

Display 

60.0000 R60 and below allocated to 
data storage; five (R.SI to 
R65) remain for 
programming. 

,. The optional omission of the OJ keystroke c.fter another prefix ke}' is explained om page 
7R., AbbrEviated Key Seq"Jences. 



Keystrokes 

11 [Ill DIM IITITJ 
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Display 

1.0000 

19.0000 

19.0000 

RI and Ro allocated for 
data storage; R2 to R65 
available for 
programming and 
advanced functions. 

Original allocation: RI9 
(Hg) and below for data 
storage; R 20 to R65 for 
programming and 
advanced functions. * 
Displays the current 
highest data register. 

The I DIM I and I MEM I (memory status) functions are described in 
detail in appendix C. 

Keep in mind that an error message will result (given the above 
memory configuration) if 

1. You try to address a register higher than RI9 (R.g), which 
initially is the highest register allocated to data storage 
(Error 3). 

2. You have 322 occupied program bytes and try to load more 
program lines (Error 4). 

3. You try to run an advanced function with insufficient 
available memory (Error 10). 

Program Boundaries 

End. Not every program needs to end with a I RTN I or I RIS I 
instruction. If you are at the end of occupied program memory, 
there is an automatic I RTN I instruction, so you do not need to enter 
one. This cam save you one line of memory. On the other hand, a 
program can "end" by simply transferring execution to another 
routine using I GTO I (section 7). 

Labels. Labels in a program (or subroutine) are markers telling 
the calculator where to begin execution. Following an [Il label or 
I GSB I label instruction, the calculator will sear·ch downward in 

* For memory alJocation and indirect addressing, registers R,O through R.9 are referred to 
.8 RIO through R19· 
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program memory for the corresponding label. If need be, the search 
will wrap around at the end of program memory and continue at 
line 000. When it encounters an appropriate label, the search stops 
and execution begins. 

If a label is encountered as part of a running program, it has no 
effect, that is, execution simply continues. Therefore, you can label 
a subordinate routine within a program (more on subroutines in 
section 9). 

Since the calculator searches in only one direction from its present 
position, it is possible (though not advisable) to use duplicate 
program labels. Execution will begin at the first appropriately 
labeled line encountered. 

If an CD ~ entry starts the search for 
"A" here, 

it then proceeds downward through 
memory, wraps around to line 000, 
and stops at label ·'A". Execution 
then starts and continues (ignoring 
any other labels) until a halt 
instruction. 

Unexpected Program Stops 

000-

[IlILBLI~ 

[Ill LBLI3 

IRlsl 

end of memory 

~ 
(stop) 

VA 

Pressing Any Key. Pressing any key will halt program 
execution. It will not halt in the middle of an operation. This 
instruction will be completed before the program stops. 

Error Stops. Program execution is immediately halted when the 
calculator attempts an improper operation that results in an Error 
display. 

To see the line number and keycode of the error-causing instruction 
(the line at which the program stopped), press anyone key to 
remove the Error message, then switch to Program mode. 

If the display is flashing when a program stops, an overflow 
condition exists (page 61). Press [±J. @ID. or [9J [ill 9 to stop the 
blinking. 

Abbreviated Key Seq uences 

In certain cases, an LIl prefix you might expect to include in a key 
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sequence is not needed. The rule for using an abbreviated key 
sequence is: the [D prefix key is unnecessary after any other prefix 
key. (Page 19 contains a list of prefix keys.) 

For example, [DI LBL I[D~ becomes [DI LBLI~, [DI DIM 1[D[ill] becomes 
[D, DIM I [ill] , and I STO I[I)I RAN# I becomes I STO II RAN# I. The removal of 
the [I) is not ambiguous because the [I)-shifted function is the only 
logical one in these cases. The key codes for such instructions do 
not include the extraneous [I) even if you do key it in. 

User Mode 

User mode is a convenience to save keystrokes when addressing 
(calling up) programs for execution. Pressing [I) I USER I will 
exchange the primary functions and [I)-shifted functions of the ~ 
through []] keys only. In User mode (USER annunciator displayed): 

[I) shift 
Primary 
~shift 

A 
",,,,,[K] 
~'" x

2 

B 

~ 
LN 

c 
Iw"l 
LOG 

Press [I) I USER I again to deactivate User mode. 

Polynomial Expressions and Horner's Method 

D 
[Z] 
% 

Some expressions, such as polynomials, use the same variable 
several times for their solution. For example, the expression 

{(x) = Ax4 + Bx 3 + Cx 2 + Dx + E 

uses the variable x four different times. A program to solve such an 
equation could repeatedly recall a stored copy of x from a storage 
register. A shorter programming method, however, would be to use 
a stack which has been filled with the constant (refer to Loading 
the Stack with a Constant, page 41). 

Horner's Method is a useful means of rearranging polynomial 
expressions to cut calculation steps and calculation time. It is 
especially expedient in I SOLVE I and em, two rather long-running 
functions that use subroutines. 

This method involves rewriting a polynomial expression in a 
nested fashion to eliminate exponents greater than 1: 

Ax4 + Bx3 + Cx2 + Dx + E 

(Ax3 + Bx2 + Cx + D)x + E 



«Ax2 +Bx+ C)x +D)x +E 

«(Ax + B)x + C)x + D)x + E 

Example: Write a program for 5x 4 ~ 2x 3 as «(5x + 2)x )x)x, then 
evaluate for x = 7. 

Keystrokes Display 

call PIR I 000- Assumes position in memo 
ory is line 000. If it is not, 
clear program memory. 

[DI LBLI[]] 001-42,21,12 
5 002- 5 
0 003- 20 5x. 

2 004- 2 

G 005- 40 5x+2. 

0 006- 20 (5x + 2)x. 

0 007- 20 (5x + 2)x 2 

0 008- 20 (5x + 2)x3• 

call RTN I 009- 4332 
call PIR I Returns to Run mode. 

Prior result remains in 
display. 

7 [ENTER II ENTER I 

I ENTER I 7.0000 Loads the stack I:X" Yo, Z-, 
and T-registers) with 7. 

[D[ID 12,691.0000 

Nonprogrammable Functions 

When the calculator is in Program mode, almost every function on 
the keyboard can be recorded as an instruction in program 
memory. The following fun·ctions cannot be stored as instructions 
in program memory. 

[}]CLEAR I PREFIXI 

[}]CLEAR [PRGM I 
[}][ill] 
[}]IUSERI 



Problems 
1. The village of Sonance has installed a 12-0'clock whistle in 

the firehouse steeple. The sound level at the firehouse door, 
3.2 meters from the whistle, is 138 decibels. Write a program 
to find the sound level at various distances from the whistle. 

Use the equation L = Lo - 20 log (rlro), where: 
Lo is the known sound level (138 db) at a point near the 

source, 
ro is the distance of that point from the source (3.2 m), 
L is the unknown sound level at a second point, and 
r is the distance of the second point from the source in 

meters. 

What is the sound level at 3 km from the source (r = 3 km)? 

A possible keystroke sequence is: 
[ill I P/R III] I LBL I @] 3.2 G [ill I LOG I 20 0 I CHS I 138 G 
[ill I RTN I [ill 1 P/R I taking 15 program lines and 15 bytes of 
memory. This problem can be solved in a more general way 
by removing the specific values 3.2 and 138 from the pro­
gram, and instead recalling the Lo and ro values from stor­
age registers; or by removing 3.2 and 138 and loading Lo, r, 
and ro into the stack before execution: Lo I ENTER Irl ENTER Iro. 
(Answer: for r = 3 km, L = 78.5606 db.) 

2. A "typical" large tomato weighs about 200 grams, of which 
about 188 g (94%) are water. A tomato grower is trying to 
produce tomatoes of lower percentage water. Write a 
program to calculate the percent change in water content of 
a given tomato compared to the typical tomato. Use a 
programmed stop to enter the water weight of the new 
tomato. 

What is the percent change in water content for a 230 g 
tomato of which 205 g are water? 

A possible keystroke sequence is: 
01 LBL I[QJ .94 I ENTER I I RIS I (enter water weight of new 
tomato) I ENTER I I RIS I (enter weight of new tomato) G 
[QJ I.c:.% I [QJ 1 RTN I taking 11 program lines and 11 bytes of 
memory. 

(Answer: for the 230 g tomato above, the percent change in 
percent water weight is -5.1804%.) 



Section 7 

There are many reasons to modify a program after you've already 
stored it: you might want to add or delete an instruction (like I STO I, 
I PSE I, or I RIS I), or you might even find some errors! The HP-15C is 
equipped with several editing features to make this process as easy 
as possible. 

The Mechanics 
Making a program modification of any kind involves two steps: 
moving to the proper line (the location of the needed change) and 
making the deletion(s) and/or insertion(s). 

Moving to a Line in Program Memory 

The Go To (I, GTO I) Instruction. The sequence I GTO II CHS I nnn will 
move program memory to line number nnn, whether pressed in 
Run mode or Program mode (PRGM displayed). This is not a 
programmable sequence; it is for manually finding a specific 
position in program memory. The line number must be a three-digit 
number satisfying 000";; nnn";; 448. 

The Single Step (I SST I) Instruction. To move only one line at a 
time forward through program memory, press I SST I (single step). 
This function is not programmable. 

In Program mode: I SST I will move the memory position forward one 
line and display that instruction. The instruction is not executed. If 
you hold the key down, the calculator will continuously scroll 
through the lines in program memory. 

In Run mode: I SST I will display the current program line while the 
key is held down. When the key is released, the current instruction 
is executed, the result displayed, and the calculator steps forward 
to the next program line to be executed. 
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The Back Step (I SST I) Instruction. To move one line backwards 
in program memory, press ISSTI (back step) in Program or Run 
mode. This function is not programmable. I SST I will scroll (with the 
key held down) in Program mode. Program instructions are not 
executed. 

Deleting Program Lines 

Deletions of program instructions are made with [±J (back arrow) 
in Program mode. Move to the line you want to delete, then press 
[±J. Any remaining following lines will be renumbered to stay in 
sequence. 

Pressing [±J in Run mode does not affect program memory, but is 
used for display clearing. (Refer to page 21.) 

Inserting Program Lines 

Additions to a program are made by moving to the line preceding 
the point of insertion. Any instruction you key in will be added 
following the line currently in the display. To alter an instruction, 
first delete it, then add the new version. 

Examples 
Let's refer back to the can volume program on page 71 in section 6 
and make a few changes in the instructions. (The can program as 
listed below is assumed to be in memory starting on line 001.) 

Deletions: If we don't need the summed base area, volume, and 
surface area values, we can delete the storage register additions 
(lines 007, 011, and 020). 

Changes: To eliminate the need to stop the program to enter the 
height value (h), change the I RIS I instruction to a I RCL I 1 
instruction (because of the above deletions, R) is no longer being 
used) and store h in R) before running the program. To clean things 
up, let's also alter I STO 14 (line 006) to I STO 12 and I RCLI4 (old line 
016) toO I RCL 12, since we are no langer using R2 and R3. 

The editing process is diagrammed on the next page. 
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Original. Version 

:-----
006-lsT014 

007-1 STO IG 1 

008-IRIsl 

009-0 

010-ITllpSEI, 

011-lsTOIG2 

012-IRCLlO 

013-0 

014-2 

015-0 

016-1 RCLI4 

017-2 

018-0 

019-G 

020-1 STO IG 3 

021-~IRTNI 

~ -

change -----'l .. ~ 
delete ~ 

Change~ 

=c= 
d"'" ~ 

'h'"9'~ 
d"",1 

Edited Version 

- -
006-1 STO 12 new 

007-IRCL11 new 

008-0 

009-[!JlpsEI 

010-1 RcLlO 

011-0 

012-2 

013-0 

014-IRCL12 new 

015-2 

016-0 

017-G 

018-~IRTNI 

~ -

Let's start at the end of the program and work backwards. In this 
way. deletions will not change the line numbers of the preceding 
lines in the program. 

Keystrokes 

~IP/RI 

1 GTO II CHS 11020 
(or use 1 SST I) 

Display 

000- Program mode. (Assumes 
position is at line 000.) 

020-44.40. 3 Moves position to line 020 
(instruction 1 STO IG3.) 
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Keystrokes Display 

~ 019- 40 Line 020 deleted. 
@ISSTI (hold) 016- 45 4 The next line to edit is line 

016 (I RCLI4). 

~ 015- 20 Line 016 deleted. 

IRCLI2 016- 45 2 Line 016 changed to 
IRCLI2. 

I GTolI CHslo11 011-44.40. 2 Moves to line 011 (I STO I 
(or hold I BST I) (2). 

~ 010- 4231 Line 011 deleted. 
@IBSTI (hold) 008- 31 Stop! (Single-stepping 

backwards to line 008: 
IRIs I.) 

~ 007-44.40. 1 I RIS I deleted. 

I RCLI1 008- 45 1 Line 008 changed to 
I RCLll. 

@IBSTI 007-44.40. Back-step to line 007. 

~ 006- 44 4 Line 007 (I STO 18 1) 
deleted. 

~ 005- 20 Line 006 (I STO 14) deleted. 

ISTOl2 006- 44 2 Changed to I STO 12. 

The replacement of a line proceeds like this: --015-0 

016-[B9J4 

017-2 

.. 

-F 
015-0 

016-2 

017-0 

----
Further Information 

Single-Step Operations 

.. 015-0 

=t 
016-IRCL12 

017-2 ---
Single-Step Program Execution. If you want to check the 
contents of a program or the location of an instruction, you can 
single step throug h tihe program in Program mode. If, on the other 
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hand, running the program produces an error, or you suspect that a 
portion of the program is faulty, you can check the program by 
executing it stepwise. This is done by pressing I SST 1 in Run mode. 

Keystrokes Display 

(9]1 P/R 1 Run mode. 

ITl CLEAR I REG 1 Clear storage registers. 

IGTol[A] Move to first line of pro-
gramA. 

SlSTOl1 8.0000 Store a can height. 

2.5 2.5 Enter a can radius. 
ISSTI (hold) 001-42.21.11 Keycode for line 001 

(label). 
(release) 2.5000 Result of executing line 

001. 
ISSTI 002- 44 0 ISToIO. 

2.5000 Result. 

ISSTI 003- 4311 (9]0· 
6.2500 Result. 

ISSTI 004- 4326 (9]~. 
3.1416 Result. 

ISSTI 005- 20 0. 
19.6350 Result: the base area of 

the can. 

Wrapping. I SST I will not move program position into "unoccupied" 
program territory. Instead, the calculator will "wrap around" to 
line 000. (In Run mode, I SST I will perform any instructions at the 
end of program memory, such asl RTNI, I GTol, orIGSBI.) 

Line Position 

Recall that the calculator's position in program memory does not 
change when it is shut off or Program/Run modes are changed. 
Upon returning to Program mode, the calculator line position will 
be where you left it. (If you executed a program ending with I RTN I, 
the position will be at line 000.) Therefore, if the calculator is left on 
and shuts itself off, you need only turn it on and switch to Program 
mode (the calculator always "wakes up" in Run mode) to be back 
where you were. 
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Insertions and Deletions 

After an insertion, the display will show the instruction you just 
added. After a deletion, the display will show the line prior to the 
deleted (now nonexistent) one. 

If all space available in memory is occupied, the calculator will not 
accept any program instruction insertions and Error 4 will be 
displayed. 

Initializing Calculator Status 

The contents of storage registers and the status of calculator 
settings will affect a program if the program uses those registers or 
depends on a certain status setting. If the current status is 
incorrect for the program being run, you will get incorrect results. 
Therefore, it is wise to clear registers and set relevant modes either 
just prior to running a program or within the program itself. A 
self-initializing program is more mistake-proof-but it also uses 
more program lines. 

Calculator-initializing functions are: m CLEAR ~, m CLEAR 
1 PRGM I, m CLEAR 1 REG I, [WI OEG I, [WI RAOI, [WI GRol, [S][MJ, and [W 

lm-

Problems 
It is good programming technique to avoid using identical program 
labels. (This shouldn't be hard, since the HP-15C provides 25 
different labels.) To ensure against duplication of labels, you can 
clear program memory first. 

1. The following program is used by the manager of a savings 
and loan company to compute the future values of savings 
accounts according to the formula FV = PV (1 + i)", where 
FV is future value, PV is present value, i is the periodic 
interest rate, and n is the number of periods. Enter PV first 
(into the Y-register) and n second (into the X-register) before 
executing the program. Given is an annual interest rate of 
7.5% (so i = 0.075). 
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Keystrokes Display 

[DI LBLI[:::J 1 001-42.21 .. 1 

[DWRl2 002-42. 7. 2 
1 003-

'} [:::J 004- 48 

0 005- ~ Interest. 
7 006-

5 007-
[tli] 008- 34 
[ZJ 009- 14 (1 + i)n. 

0 010- 20 PV(l + i)n. 

[BJI RTN 1 011- 4332 

Load the program and find the future value of $1,000 
invested for 5 years; of $2,300 invested for 4 years. Remember 
to use I GSB 1 to run a program with a digit label. (Answers: 
$1,435.63; $3,071.58.) 

Alter the program to make the annual interest rate 8.0%. 

Using the edited program, find the future value of $500 
invested for 4 years; of $2,000 invested for 10 years. 
(Answers: $680.24; $4,317.85.) 

2. Create a program to calculate the length of a chord 11 
subtended by an angle IJ (in degrees) on a circle of radius r, 
according to the equation 

11 = 2rsin ~. 
2 

Find 11 when IJ = 300 and r = 25. 

(Answer: 12.9410. A possible program is: [DI LBL I~ [BJII DEG 1 

ITlITOO4 2 0 C!:IiJ 2 [II 1 SIN 1 0 [BJI RTN I). (Assumes 
IJ in Y -register and r in X-register when program is run.) 
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Make any necessary modifications in the program to also 
find and display s, the length of the circular arc cut by () (in 
radians), according to the equation 

s= r(). 

Complete the following table: 

() r II s 

45° 50 ? ? 
90° 100 ? ? 

270° 100 ? ? 

(Answers: 38.2683 and 39.2699; 141.4214 and 157.0796; 
141.4214 and 471.2389. A possible new sequence is: 
[IJILBLI0 ~IOEGI [IJWRl4 ISTOlo 20 (iliJ ISTOIl 
20 ISINI 0 [IJlpSEI [IJlpSEI IRCLIO IRCLIl [IJI+RAOI 
o ~IRTNI). 



Section 8 

Program Branching 
and Controls 

Although the instructions in a program are normally executed 
sequentially, it is often desirable to transfer execution to a part of 
the program other than the next line. Branching in the HP-15C 
may be simple, or it may depend on a certain condition. By 
branching to a previous line, it is possible to execute part of a 
program more than once-a process called looping. 

The Mechanics 

Branching 

The Go To (I GTO I) Instruction. Simple branching-that is, 
unconditional branching-is carried out with the instruction 1 GTO 1 
label. In a running program, I GTO 1 will transfer execution to the 
next appropriately labeled program or routine (not to a line 
number). 

---015-IGT017 

016-

017-

018-

019-0 1 LBL 17 

020-

The calculator searches forward in memory, wrapping around 
through line 000 if necessary, and resumes execution at the first 
line containing the proper label. 

Looping. If a 1 GTO 1 instruction specifies a label at a lower­
numbered line (that is, a prior line), the series of instructions 

90 
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between the I GTO I and the label will be executed repeatedly­
possibly indefinitely. The continuation of this loop can be 
controlled by a conditional branch, an I RIS I instruction (written 
into the loop), or simply by pressing any key during execution 
(which stops the program). 

---015-m1LBL17 

016~ 

017-

018-

019-IGT017 

020-

- -
Conditional Tests 

Another way to alter the sequence of program execution is by a 
conditional test, a true/false test which compares the number in 
the X-register either to zero or to the number in the V-register. The 
HP-15C provides 12 different tests, two explicit on the keyboard 
and 10 others accessible using [BJI TESTln.* 

1. Direct:[BJ~and[BJlx=ol. 

2. Indirect: [BJ I TEST In. 

n I Test n I Test 

0 x#O 5 x=y 
1 x>O 6 x#y 
2 x<O 7 x>y 
3 x~O 8 x<y 
4 x";;;;O 9 x~y 

• Four of the conditional tests can also be used for complex values, as expla.ined in 
section lion page 132. 
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Following a conditional test, program execution follows the "Do if 
True" Rule: it proceeds sequentially if the condition is true, and it 
skips one instruction if the condition is false. A I GTO I instruction is 
often placed right after a conditional test, making it a conditional 
branch; that is, the I GTO I branch is executed only if the test 
condition is met. 

Program Execution After Test 

If True If False ---015-ml LBLI.l 

016-

017-[iJ,~ 

018-IGTOI.l 

019-

020-

-
Flags 

Another conditional test for programming is a flag test. A flag is a 
status indicator that is either set (= true) or clear (= false). Again, 
execution follows the "Do if True" Rule: it proceeds sequentially if 
the flag is set, and skips one line if the flag is clear. 

The HP-15C has eight user flags, numbered 0 to 7, and two system 
flags, numbered 8 (Complex mode) and 9 (overflow condition). The 
system flags are discussed later in this section. All flags can be set, 
cleared, and tested as follows: 

• [iJOO n will set flag number n (0 to 9). 

• [iJ@n will clear flag number n. 

• [iJ[TI] n will check if flag n is set. 

A flag n that has been set remains set until it is cleared either by a 
@n instruction or by clearing (resetting) Continuous Memory. 
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Examples 

Example: Branching and Looping 

A radiobiology lab wants to predict 
the diminishing radioactivity of a 
test amount of 1311, a radioisotope. 
Write a program to figure the radio­
activity at 3-day intervals until a 
given limit is reached. The formula 
for Nt, the amount of radioisotope 
remaining after t days, is 

Nt = No (2-tlk ), 

where k = 8 days, the half-life of 131 I, and No is the initial amount. 

The following program uses a loop to calculate the number of 
millicuries (mci) of isotope theoretically remaining at 3-day 
intervals of decay. Included is a conditional test to check the result 
and end the program when radioactivity has fallen to a given value 
(a limit). 

The program assumes tl-the first day of measurement-is stored 
in Ro, No-the initial amount of isotope-is stored in R I , and the 
limit value for radioactivity is stored in R2 • 

Keystrokes Display 

[SJIP/RI 000- Program mode. 
[Il CLEAR I PRGM I 000- (Optional.) 
[Ill lBl I[KJ 001-42.21.11 Each loop returns to this 

line. 
IRCllo 002- 45 0 Recalls current t, which 

changes with each loop. 
[Ill PSE I 003- 4231 Pauses to display t. 
8 004- 8 k. 

G 005- 10 
ICHSI 006- 16 -Uk. 
2 007- 2 
~ 008- 34 
(Z] 009- 14 2-tlk. 
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Keystrokes 

(!]I PSE 1 

IRCLI2 

[9]ITESTI9 

[9]1 RTN 1 

3 

ISTOI[!]o 
IGTOI[A) 

Display 

010-45.20, 

011- 4231 

012- 45 2 

013-43.30. 9 

014- 4332 

015- 3 

01 6-44.40. 0 

017- 2211 

Recall multiplication with 
the contents ofRl (No), 
yielding Nt, the mci of l3lI 
remaining after t days. 
Pauses to display Nt. 
Recalls limit value to X­
register. 
x~y? Tests whether limit 
value (in X) meets or 
exceeds Nt (in Y). 
If so, program ends. 
If not, program continues. 
Adds 3 days to t in Ro. 
Go to "An and repeat exe­
cution to find a new Nt 
from anewt. 

Notice that without lines 012 to 014, the loop would run indefinitely 
(until stopped from the keyboard). 

Let's run the program, using tl = 2 days, No = 100 mci, and a limit 
value of half of No (50 mci). 

Keystrokes Display 

[ill P/R 1 Run mode (display will 
vary). 

215Tolo 2.0000 t l · 
100isTol1 100.0000 No· 
50lsTol2 50.0000 Limit value for Nt. 

m~ 2.0000 t l -

84.0896 N l · 

5.0000 t 2· 

64.8420 N2• 

8.0000 t3' 

50.0000 N3· 

50.0000 Nt limit; program ends_ 
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Example: Flags 

Calculations on debts or investments can be calculated in two 
ways: for payments made in advance (at the beginning of a given 
period) and for payments made in arrears (at the end of a given 
period). If you write a program to calculate the value (or "present 
value") of a debt or investment with periodic interest and periodic 
payments, you can use a flag as a status indicator to tell the 
program whether to assume payments are made in advance or 
payments are made i.n arrears. 

Suppose you are planning the payment of your child's future 
college tuition. You expect the cost to be about $3,000/year or about 
$250/month. If you wanted to withdraw the monthly payments 
from a bank account yielding 6% per year, compounded monthly 
(which equals 0.5% per month), how much must you deposit in the 
account at the start of the college years to fund monthly payments 
for the next 4 years? 

The formula is 

and the formula is 

if payments are to be 
made each month in 
advance, 

if payments are to be 
made each month in 
arrears. 

V is the total value of the deposit you must make in the account; 

P is the size of the periodic payment you will draw from the 
account; 

i is the per.iodic interest rate (here: "periodic" means monthly, 
since interest is compounded monthly); and 

n is the number of compounding periods (months). 

The following program allows for either payment mode. It assumes 
that, before the program is run, P is in the Z-register, n is in the 
Y-register, and i is in the X-register. 
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Keystrokes Display 

[9]1 P/R I 000- Program mode. 

rnl lBll[ID 001-42.21.12 Start at "B" if payments 
to be made at the 
beginning. 

[9](gJO 002-43. 5. 0 Flag 0 clear (false); indio 
cates advance payments. 

IGTOll 003- 22 Go to main routine. 

rnl lBll[[) 004-42.21.15 Start at "E" if payments 
to be made at the end. 

[9]rgJO 005-43. 4, 0 Flag 0 set (true); indicates 
payment in arrears. 

(!]llBlll 006-42.21. Routine 1 (main routine). 

ISTOll 007- 44 Stores i (from X-register). 

1 008- 1 

0 009- 40 (1 +i). 

[iii] 010- 34 Puts n in X; (1 + i) in Y. 

ICHSI 011- 16 -no 

0 012- 14 (1 + i)-no 

ICHSI 013- 16 -(1 + i)-no 

1 014- 1 

G 015- 40 1- (1 + i)-no 

IRCllG 1 016-45.10. 1 Recall division with Rl (i) 
to get [1- (1 + i)-n]li. 

0 017- 20 Multiplies quantity by P. 

[9][TI]0 018-43. 6. 0 Flag 0 set? 

[9]IRTNI 019- 4332 End of calculation if fl ag 0 
set (for payments in 
arrears). 

I RClil 020- 45 1 Recalls i. 

1 021- 1 

G. 022- 40 (1 + i). 

0 023- 20 Multiplies quantity by 
final term. 

[9]1 RTN I 024- 4332 End of calculation if flag 0 
clear. 
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Now run the program to find the total amount needed in an 
account from which you want to take $250/month for 48 months. 
Enter the periodic interest rate as a decimal fraction, that is, 0.005 
per month. First find the sum needed if payments will be made at 
the beginning of the month (payments in advance), then calculate 
the sum needed if payments will be made at the end of the month 
(in arrears). 

Keystrokes Display 

UiJI P/R I 

250 I ENTER I 250.0000 

481ENTERI 48.0000 

.005 0.005 

[iJ[ID 10.698.3049 

(Repeat stack entries.) 

[iJ[IJ 10.645.0795 

Further Information 

GoTo 

Set to Run mode. 

Monthly payment. 

Payment periods (4 years 
X 12 months). 

Monthly interest rate as a 
decimal fraction. 

Deposit necessary for pay-
ments to be made in 
advance. 

Deposit necessary for pay­
ments to be made in 
arrears. (The difference be­
tween this deposit and the 
tuition cost ($12,000) repre­
sents interest earned on 
the deposit!) 

In contrast to the non programmable sequence I GTO II CHS I nnn, the 
programmable sequence I GTO I label cannot be used to branch to a 
line number, but only to a program label (a line containing [iJ1 LBLI 
label). * Execution continues from the point of the new label, and 
does not return to the original routine unless given another I GTO I 
instruction. 

*' It is possible to branch under program control to a particuJar line number by using 
indirect addressing, discussed in section 10. 
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I GTO I label can also be used in Run mode (that is, from the 
keyboard) to move to a labeled position in program memory. No 
execution occurs. 

Looping 

Looping is an application of branching which uses a I GTO 1 
instruction to repeat a portion ofthe program. A loop can continue 
indefinitely, or may be conditional. A loop is frequently used to 
repeat a calculation with different variables. At the same time, a 
counter, which increments with each loop, may be included to keep 
track of loop iterations. This counter can then be checked with a 
conditional test to determine when to exit the loop. (This is shown 
in the example on page 112.) 

Conditional Branching 

There are two general applications for conditional branching. One 
is to control loops, as explained above. A conditional test can check 
for either a certain calculated value or a certain loop count. 

The other major use is to test for options and pursue one. For 
example, if a salesperson made a variable commission depending 
on the amount of sale, you could write a program which takes the 
amount of sale, compares it to a test value, and then calculates a 
specific commission depending on whether the sale is less than or 
greater than the test value. 

Tests. A conditional test takes what is in the X·register ("x") and 
compares it either to zero (such as 1.,=0 /) or to "y", that is, what is 
in the Y·register (such as ~). For an x:y comparison, therefore, 
you must have the x· and y-values juxtaposed in the X- and Y­
registers. This might require that you store a test value and then 
recall it (bringing it into the X-register). Or, the value might be in 
the stack and be moved, as necessary, using l:!:iil, rn:IJ, or lBfJ. 
Tests With Complex Numbers and Matrix Descriptors. Four 
of the conditional tests also work with complex numbers and 
matrix descriptors: 1.:=01, I TEST 10 (x # 0), ITESTI5 (x = y), and ITESTI 
6 (x # y). Refer to sections 11 and 12 for more information. 

Flags 

As a conditional test can be used to pick an option by comparing 
two numbers in a program, a flag ,can be used to pick an option 
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externally. Usually, a flag is set or cleared first thing in a program 
by choosing a different starting point (using different labels) 
depending on the condition or mode you want (refer to the example 
on page 95) .. 

In this way, a program can accommodate two different modes of 
input, such as degrees and radians, and make the correct 
calculation for the mode chosen. You set a flag if a conversion 
needs to be made, for instance, and clear it if no conversion is 
needed. 

Suppose you had an equation requiring temperature input in 
degrees Kelvin, although sometimes your data might be in degrees 
Celsius. You could use a program with a flag to allow either a 
Kelvin or Celsius input. In part, such a program might include: 

[!]ILBLi@j 
ca:J[QJ7 
IGTOl1 
[!]ILBLi@] 
[9J[gJ7 
[!]ILBU1 
[9J[TI)7 

IGTOl2 

2 
7 
3 
G 
[!]I LBLI2 

Start program at "C" for degrees Celsius. 
Flag 7 cleared (=false). 

Start program at "D" for degrees Kelvin. 

Flag.7 set (=true). 

(Assuming temperature in X·register.) 

Checks for flag 7 (checks for Celsius or 
Kelvin input). 

If set (Kelvin input), goes to a later routine, 
skipping the next few instructions. 

If cleared (Celsius input), adds 273 to the 
value in the X·register, since OK = °C + 273. 

Calculation continues for both modes. 

The System Flags: Flags 8 and 9 

Flag 8. Setting flag 8 will activate Complex mode (described in 
section 11), turning on the C annunciator. If another method is 
used to activate Complex mode, flag 8 will automatically be set. 
Complex mode is deactivated only by clearing flag 8; flag 8 is 
cleared in the same manner as the other flags. 
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Flag 9. An overflow condition (described on page 61) auto­
matically sets flag 9. Flag 9 causes the display to blink or, if a 
program is running, waits until execution is complete and then 
starts blinking the display. 

Flag 9 may be cleared in three ways: 

• Press ~@I) 9 (the common procedure for clearing flags). 

• Press (±). This will only clear flag 9 and stop the blinking-it 
will not clear the display. 

• Turn the calculator off. (Flag 9 is not cleared if the calculator 
turns itself off.) 

If you set flag 9 manually ([gJ 9), it causes the display to blink 
irrespective of the overflow status of the calculator. As usual, a 
program will run to completion before the display starts blinking. 
Therefore, flag 9 can be used as a programming tool to provide a 
visual signal for a selected condition. 
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Subroutines 

When the same set of instructions needs to be used at more than 
one point in a program, memory space can be conserved by storing 
those instructions as a single subroutine. 

The Mechanics 

Go To Subroutine and Return 

The IGSBI (go to subroutine) instruction is executed in the same 
way as the I GTG I branch, with one major difference: it establishes a 
pending return condition. I GSB I label, like I GTG I label, * transfers 
program execution to the line with the corresponding label (0 to 
m, 0 to 9 or .0 to .9). However, execution then continues until the 
first subsequent I RTN I instruction is encountered-at which point 
execution transfers back to the instruction immediately following 
the last I GSB I instruction, and continues on from there. 

Subroutine Execution 

1 
1 

ITJILBLI0 

IGselQ1 

[ijIRTNI 

END 
Execution transfers to line 000 
and halts" 

/ 
/ 

..... ITJILBLI01 

[ijIRTN\ 

RETURN 
Execution transfers back to 
original routine. aher I GSB 181, 

.. A @@ or I GTO I instruction followed by a letter label is an abbreviated key sequence (no 
m netessary). Abbreviated key sequences are explained on page 78. 

101 
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Subroutine Limits 

A subroutine can call up another subroutine, and that subroutine 
can call up yet another subroutine. This "subroutine nesting" -the 
execution of a subroutine within a subroutine-is limited to a stack 
of subroutines seven levels deep (this does not count the main 
program level). The operation of nested subroutines is as shown 
below: 

Main Program 

[ffi]~ 

I 

t 
~1 

L .. 
[[@ 

End 

~ 
I 

/ 

\ 
\ 
\ 

Examples 

[ill] 1 

I 

I , 
[§W2 

J .. 
iBfNJ 

~ 
I 
I 
I 

I 

\ 
\ 

[ill] 2 

I , 
~3 

I 

J .. 
@R: 

Example: Write a program to calcu­
late the slope of the secant line 
joining points (Xl> YI) and (X2. Y2) on 
the graph shown, where Y = x2 -
sin X (given x in radians). 
The secant slope is: 

, 
I 

/ 
\ 

\ 
\ 

[ill] 3 

I 

1 
t 

@§ID4 

1 .. 
®ID 

~ 
I 

I 
I 

I 

" \ 
\ 

y 

[ill] 4 

®ID 

ill
2 

6 • 

y=x2 -sinx ~ 
-4 0 x, x2 

,or 
(x,i - sin x2) - (X12 - sin Xl) 

X2- X I 

x 

The solution requires that the equation for Y be evaluated twice­
once for YI and once for Y2, given the data input for Xl and X2' 
Since the same calculation must be made for different values, it 
will save program space to call a subroutine to calculate y. 

The following program assumes that X I has been entered into the 
Y-register and X 2 into the X-register. 



MAIN PROGRAM 

lillp/RI 
ill CLEAR I PRGM I 
000-
001-ill1LBLi9 
002- [SJI RAD I 
003-lsTOlo 
004-lxhl 
005-lsT018o 
006-IGSB1.3 

007-lcHSI 
008-lxhl 
009-1 GSB 1.3 

010-G 
011-IRCLIGo 

012- [ill RTN I 

SUBROUTINE 
13- [Ill LBL 1.3 

014-lil[£) 
015-lil1LSTxl 
016-ls1NI 
017-8 
018-lill RTN I 
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(N ot programmable.) 

Start main program. 
Radians mode. 
Stores x 2 in Ro. 
Brings Xl into X; X2into Y. 
(X2 - Xl) in Ro. 
Transfer to subroutine ".3" with Xl. 

Return from subroutine ".3". 

-YI· 
Brings X2 into X-register. 
Transfer to subroutine with X 2. 

Return from subroutine" .3". 

Y2 - YI· 
Recalls (x2 - Xl) from Ro and 
calculates (Y2 - YI)/(X2 - Xl). 
Program end (return to line 000). 

Start subroutine .3. 
x2. 

Recallx. 
Sinx. 
x 2 - sin x, which equals y. 
Return to origin in main program. 

Calculate the slope for the following values of x I and x 2: 0.52, 1.25; 
-1, 1; 0.81, 0.98. Remember to use I GSB 19 (rather than ill 9) when 
addressing a routine with a digit label. 

Answers: 1.1507; -0.8415; 1.1652. 

Example: Nestiing. The following subroutine. labeled "A", 
calculates the value of the expression JX2 + y2 + Z2 + t 2 as part of 
a larger calculation in a larger program. The subroutine calls upon 
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another subroutine (a nested subroutine), labeled ".5", to do the 
repetitive squaring. 

The program is executed after placing the variables t, Z, y, and x 
into the T-, Z-, Yo, and X-registers. 

Keystrokes 

L-..[I)I lBll.4 

IGSBI.5 

IGSBI.5 

[!)I lBll.5 

Start of main 
subroutine. 
x 2• 

Calculates y2 and 
x2+ y2. 

Calculates z2 and 
x 2+ y2+ z2. 

Calculates t 2 and 
x 2 + y2 + z2 + t 2. 

,j x 2 + y2 + z2 + t2 

End of main subroutine; 
returns to main program. 

Start of nested 
subroutine. 

Calculates a square and 
adds it to current sum of 
squares. 

End of nested sub­
routine; returns to main 
su broutine. 

If you run the subroutine (with its nested subroutine) alone using 
x = 4.3, y = 7.9, Z = 1.3, and t = 8.0, the answer you get upon 
pressing I GSB 1.4 is 12.1074. 
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Further Information 

The Subroutine Return 

The pending return condition means that the I RTN I instruction 
occurring subsequent to a I GSB I instruction causes a return to the 
line following the I GSB I rather than a return to line 000. This is what 
makes a subroutine useful and reuse able in different parts of a pro­
gram: it will always return execution to where it branched from, 
even as that point changes. The only difference between using a 
I GSB I branch and a I GTO I branch is the transfer of execution after a 
1 RTNI. 

Nested Subroutines 

If you attempt to call a subroutine that is nested more than seven 
levels deep, the calculator will halt and display Error 5 when it 
encounters the I GSB I instruction at the eighth level. 

Note that there is no limitation (other than memory size) on the 
number of non nested subroutines or sets of nested subroutines that 
you may use. 
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The Index Register 
and Loop Control 

The Index register (Rr) is a powerful tool in advanced 
programming of the HP·15C. In addition to storage and recall of 
data the Index register can use an index number to: 

• Count and control loops. 

• Indirectly address storage registers, including those beyond 
R.9 (R19)· 

• Indirectly branch to program line numbers, as well as to 
labels. 

• Indirectly control the display format. 

• Indirectly control flag operations. 

The [) and [ill] Keys 

Direct Versus Indirect Data Storage With the Index Register 

The Index register is a data storage register that can be used 
directly, with [J, or indirectly, with ffiD.* The difference is 
important to note: 

OJ [ill] 
The (I] function uses 
the number itself in the 
Index register. 

The (ill] function uses the 
absolute value of the integer 
portion of the numberin the 
Index register to address 
another data storage register. 
This is called indirect 
addressing . 

• Note that the matrix functions and complex functions use the rn and [ill] keys al80, but 
for ,different purposes. RefeT to sections 11 and 12 for their usage. 

106 
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Indirect Program Control With the Index Register 

The [J key is used for all forms of indirect program control other 
than indirect register addressing. Hence, [J (not [illJ) is used for 
indirect program branching, indirect display format control, and 
indirect flag control. 

Program Loop Control 

Program loop counting and control can be carried out in the 
HP-15C by any storage register: Ro through Rg, R.o through R.g, or 
the Index register ([J). Loop control can also be carried out 
indirectly with (ffi]. 

The Mechanics 
Both [J and [ill] can be used in abbreviated key sequences, omitting 
the preceding I] prefix (as explained on page 78). 

Index Register Storage and Recall 

Direct. I STO I [J and I RCL I [J. Storage and recall between the X· 
register and the Index register operate in the same manner as with 
other data storage registers (page 42). 

Indirect. I STO I (or I RCl /) [ill] stores into (or recalls from) the data 
storage register whose number is addressed by the integer portion 
of the value (0 to 65) in the Index register. See the table below and 
on the next page. 

Indirect Addressing 

If R I contains: [ill] will address: 
IGTOI[JorIGSBI[Jwill 

transfer to: * 

±O Ro I]llBllO 

9 Rg I]ILBll9 
10 R.o " " .0 
11 R.1 " " .1 

19 R~g I]ILBLI.9 
20 R20 " " ~ 

• For Rl~Oonly. 

(Continued on next page.) 
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Indirect Addressing 

If R, contains: [ill] will address: 
\GTO l[Jor \ GSBI[JwiII 

transfer to:* 

21 R21 lIll LBLI[ID 
22 R22 " " @] 
23 R23 " " [QJ 
24 R24 

.. " [[] 
-

65 R65 -

* For RI ~ 0 only. 

Index Register Arithmetic 

Direct. I STO 1 or 1 RCL 1 { G, G, 0, G } [J. Storage or recall 
arithmetic operates with the Index register in the same manner as 
upon other data storage registers (page 43). 

Indirect. 1 STO lor 1 RCL I { G, G, 0, G) [ill] carries out storage or 
recall arithmetic with the contents of the data storage register 
addressed by the integer portion of the number (0 to 65) in the 
Index register. See the above table. 

Exchanging the X-Register 

Direct. m ~ [J exchanges contents between the X-register and 
the Index register. (Works the same as [!!l n does with registers 0 
through.9.) 

Indirect. lIl[!!l[ill] exchanges contents between the X-register and 
the data storage register addressed by the number (0 to 65) in the 
Index register. See the above table. 

Indirect Branching With ill 
The ITl key-but not the [ill] key-can be used for indirect branching 
{I GToIITl) and subroutine calls (I GSBI[J). (Only the int·eger portion 
of the number in R, is used.) ([jill is only used for indirect 
addressing of storage registers.) 
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To Labels. If the Rr value is positive, I GTO I 00 and I GSB 100 will 
transfer execution to the label which corresponds to the number in 
the Index register (see the above table). 

For instance, if the Index register contains 20.00500, then a I GTO 100 
instruction will transfer program execution to rn I LBL I [KJ. See the 
chart on page 107. 

To Line numbers. If the RJ value is negative, I GTO IOJ causes 
branching to that line number (using the absolute value of the in­
teger portion of the value in R J ). 

For instance, if RJ contains -20.00500, then a I GTO I 00 instruction 
will transfer program execution to program line 020. 

Indirect Flag Control With rn 
[§rJ [D, [QJ [D, or [H) [] will set, clear, or test the flag (0 to 9) 
specified in RJ (by the magnitude of the integer portion). 

Indirect Display Format Control With rn 
rn (£lR) [], rn I SCI I 00, and rn I ENG 100 will format the display in their 
customary manner (refer to pages 58-59), using the number in RJ 
(integer part only) for n, which must be from 0 to 9.* 

Loop Control With Counters: IISG I and I DSE I 
The IISG I (increment and skip if greater than) and lOSE I (decrement 
and skip if less than or equal to) functions control loop execution 
by referencing and altering a loop control number in a given 
register. Program execution (skipping a line or not) then depends 
on that number. 

The key sequence is ill {IISG I, lOSE II register number. This number 
is 0 to 9,.0 to .9, [!], or []jJ. 

The Loop Control Number. The format of the loop control 
number is: 

nnnnn.xxxyy. where 
±nnnnn 

xxx 
is the current counter value, 
is the test (goal) value, and 

vy is the increment or decrement 
value. 

* Exceptwhen using0(section 14). 
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For example, the number 0.05002 in a storage register represents: 

nnnnn x x x y y 

0.05002 

Sta rt cou nt at zero. ~ TT&....-..- Count by twos. 
Count up to 50. 

IISG 1 and I DSE 1 Operation. Each time a program encounters IISG 1 

or I DSE I, it increments or decrements nnnnn (the integer portion of 
the loop control number), thereby keeping count ofloop iterations. 
It compares nnnnn to xxx, the prescribed test value, and exits the 
loop by skipping the next line if the loop counter (nnnnn) is either 
greater than (IiSG I) or lesa than or equal to (I DSE I) the test value 
(xxx). The amount that nnnnn is incremented or decremented is 
specified by yy. 

With these functions (as opposed to the other conditional tests), the 
rule is "Skip if True". 

False Innnnn ~ xxx) True Innnnn > xxx) 

instruction 

IGTOIE] 1 

instruction t - J exit loop 

For IISG I: given nnnnn.xxxyy, increment nnnnn to nnnnn + yy, 
compare it to xxx, and skip the next program line if the new value 
satisfies nnnnn > xxx. This allows you to exit a loop at this point 
when nnnnn becomes greater than xxx. 
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False (nnnnn > xxx) True (nnnnn ~ xxx) 

instruction 

+-, , 
instruction '" J exit loop 

For IOSEI: given nnnnn.xxxyy, decrement nnnnn to nnnnn­
yy, compare it to xxx, and .skip the next program line if the new 
value .sati.sfies nnnnn ~ xxx. This allow.s you to exit a loop at thi.s 
point when nnnnn becomes less than or equal to xxx. 

For example, loop iterations will alter these control numbers as 
follows: 

Iterations 

Operation 0 1 

IISGI 0.00602 2.00602 

IOSEI 6.00002 4.00002 

Examples 

Examples: Register Operations 

Storing and Recalling 

Keystrokes 

III CLEAR I REG I 
12.3456 
ISTolW 

700 
I STO I (ill) 

Display 

12.3456 
12.3456 

2.6458 
2.6458 

12.3456 

2 3 4 

4.00602 6.00602 8.00602 
(skip next 
line) 

2.00002 0.00002 
(skip next 
line) 

Clears all storage registers. 

Stores in RI . 

Storage in R.2 by indirect 
addressing (RI = 12.3456). 
Recalls contents of RI . 
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Keystrokes 

1 RcLi(illJ 

mCtll·2 

Display 

2.6458 

2.6458 

Exchanging the X-Register 

Keystrokes Display 

m~rn 12.3456 

1 RcLirn 2.6458 

m~[ill] 0.0000 

1 RcLi[ill] 2.6458 

mCtll2 2.6458 

Storage Register Arithmetic 

Keystrokes Display 

101sTOI[!]rn 10.0000 

1 RCLlrn 12.6458 

[9]01 STO IGCilll 3.1416 

1 RCL 1 [ill] 0.8422 

mCtll·2 0.8422 

Example: Loop Control with lOSE I 

Indirectly recalls contents 
ofR.2• 

Check: same contents re­
called by directly ad­
dressing R .2. 

Exchanges contents ofRr 
and X-register. 
Present contents ofRr. 
Exchanges contents ofR2 
(which is zero) with X. 

Check: directly address 
R2• 

Adds 10 to Rr. 
New contents ofR t (= old 
+ 10). 
Divides contents ofR.2 
bytr. 

New contents ofR.2. 

Check: directly address 
R.2· 

Remember the program in section 8 whi.ch used a loop to calculate 
radioactive decay? (Refer tOo page 93.) This program used a test 
condition (x;;;'y?) to exit the loop when the calculated result passed 
a given limit (50). As we've seen in this section, there's another way 
to control loop execution: through a stored loop counter that is 
monitored by the IISG lor 1 DSE 1 function. 
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Here is a revision of the original radioisotope decay program. This 
time, we will limit the program to three executions of the loop 
rather than setting a specific limit value. This example uses lOSE 1 
with a loop control number in R2 of 3. 0 0 0 0 1. 

initial loop counter.-J T L decrement value 

test (goal) value 

Make the following changes to the program (assuming it is in 
memory). A loop counter will be stored in R2 and a line number in 
the Index register. 

Keystrokes 

[9]1 P/R 1 
1 GTolI CHslo13 

Display 

000- Program mode. 

013-43.30. 9 The second of the two loop 
test condition lines. 

011- 4231 Delete lines 013 and 012. 

012-42. 5. 2 Add your loop counter 
function (counter stored in 
R2)· 

013- 2225 Go to given line number 
(015). 

Now when the loop counter (stored in R2) has reached zero, it. will 
skip line 013 and go on to 014, the 1 RTN I instruction, thereby ending 
the program. If the loop counter has not yet decreased to zero, 
execution continues with line 013. This branches to line 015 and 
continues the program and the looping. 

To run the program, put t I (day 1) in Ro, No (initial isotope batch) in 
RI , the loop counter in R2, and the line number for branching in the 
Index register. 

Keystrokes 

[9]1 P/R I 
21sTOIo 
loolsTOll 
3.00001IsTOI2 

Display 

2.0000 

100.0000 

3.0000 

Run mode. 

t I • 

No· 
Loop counter. (This in· 
struction cou]d also be 
programmed.) 
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Keystrokes 

151 CHS II STO 100 
rn[KJ 

Display 

-15.0000 

2.0000 

84.0896 
5.0000 

64.8420 
8.0000 
60.0000 
60.0000 

Branch line number. 
Running program: loop 
counter = 3. 

Loop counter = 2. 

Loop counter = 1. 

Loop counter = 0; program 
ends. 

Example: Display Format Control 

The following program pauses and displays an example of (flR] 
display format for each possible decimal place. It utilizes a loop 
containing a lOSE I instruction to automatically change the number 
of decimal places. 

Keystrokes 

[ill P/RI 
[DClEAR IPRGMI 
[DILBLI[[] 
9 

I STO IIIl 
rnlLBLIO 
lIl(flR]1Il 
I RCLIilJ 
[IJlpSEI 
[IJIIDsEIIIl 

IGTOlo 
[ijITESTI, 
IGTOIO 

nnnnn = 9. Therefore, xxx = 0 and by 
defaultyy = 1 (yy cannot be zero). 

Displays current value of nnnnn. 
Value in RI is decremented and tested. Skip 
a line if nnnnn';;; test value. 
Continue loop if nnnnn > test value (0). 
Tests whether value in display is greater 
than 0, so loop will continue when nnnnn 
has reached 0 but display still only shows 
1.0. 
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To display fixed point notation for all possible decimal places on 
the HP-l5C: 

Keystrokes 

[iJ1 P/R 1 
moo 

Display 

9.000000000 
8.00000000 
7.0000000 
6.000000 
5.00000 
4.0000 
3.000 
2..00 
1.0 
O. 

o. 

Further Information 

Index Register Contents 

Run mode. 

Display at ml PSE 1 
instruction. 
Display when program 
halts. 

Any value stored in the Index register can be referenced in three 
different ways: 

• Using [J like any other storage register. The value in R[ can be 
manipulated as it is: stored, recalled, exchanged, added to, etc. 

• Using ill as a control number. The absolute value of the 
integer portion in R[ is a separate entity from the fractional 
portion. For indirect branching, flag control, and display 
format control with [J, only this portion is used. For loop 
control, the fractional portion is also used, but separately from 
the integer portion." 

• Using [ill] as a reference to the contents of another .storage 
register. The [ill] key uses the indirect addressing system 
shown in the tables on pages 107 and 108. (In turn, the 
contents of that second register may be used as a loop control 
number, in the fashion described above.) 

* This is also true for the value in any storage register used for indirect loop eontrol. 
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IISG land I DSE I 
For the purpose of loop control, the integer portion (the counter 
value) of the stored control number can be up to five digits long 
(nnnnn.xxxyy). The counter value (nnnnn) is zero if not specified 
otherwise. 
xxx, in the decimal portion of the control number, must be 
specified as a three-digit number. (For example, "5" must be "005".) 
xxx is zero if not specified otherwise. Whenever IISG I or I DSE I is 
encountered, nnnnn is compared internally to xxx, which 
represents the end level for incrementing or decrementing. 
yy must be specified as a two-digit number. yy cannot be zero, so if 
left (or specified) as 00, the value for yy defaults to 1. The value 
nnnnn is altered by the amount of yy each time the loop runs 
through IISG I or I DSE I. Both yy and xxx are reference values, which 
do not change with loop execution. 

Indirect Display Control 
While you can use the Index register to format the display 
manually (that is, from the keyboard), this function is most 
commonly used in programming. This capability is especially 
valuable for the IE] function, for which accuracy can be stipulated 
by specifying the number of digits to be displayed (as described in 
section 14). 

There are, as usual, certain display limitations to keep in mind. 
Recall that any display format function merely alters the number 
of decimal places to which the display is rounded. In its memory, 
the calculator always retains a number in scientific notation as a 
lO-digit mantissa with a two-digit exponent. 

The integer portion of the number in the Index register specifies the 
number of decimal places to which the display is rounded. A 
number less. than zero defaults to zero (zero decimal places 
displayed in (£lRJ format), while a number greater than 9 defaults to 
9 (9 decimal places displayed in (£lRJ).* 

°Note that in I]gJ and I ENG I format modes, the maximum display is a seven·digit 
mantisss with a two-digit exponent. However. a format number greater than six (and 
less than or equal to nine) will alter the decimal place at which rounding occurs. (Refer 
to pages 58-59.) 
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An exception is in the case of@), where the display format number 
in R, may range from -6 to +9. (This is discussed in appendix E on 
page 247.) A number less than zero will not affect the display 
format, but will affect accuracy with this function. 
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Calculating With 
Complex Numbers 

The HP-15C enables you to calculate with complex numbers, that 
is, numbers of the form 

a+ib, 

where a is the real part of the complex number, 

b is the imaginary part of the complex number, and 

i=yCT. 
As you will see, the beauty of calculating with the HP-15C in 
Complex mode is that once the complex numbers are keyed in, most 
operations are executed in the same manner as with real numbers. 

The Complex Stack and Complex Mode 
Calculations with complex numbers 
are performed using a complex stack 
composed of two parallel four­
register stacks (and two LAST X 
registers). One of these parallel 
stacks-referred to as the real 
stack-contains the real parts of 
complex numbers used in calcula­
tions. {This is the same stack used in 
ordinary calculations.} The other 
stack-referred to as the imaginary 
stack-contains the imaginary parts 
of complex numbers used in 
calculations. 

Creatiing the Complex Stack 

Real Imaginary 

Stack 1 r Stack 

T 

Z 
y 

x 

LASTX rn 
The imaginary stack is created (by converting five storage 
registers as described in appendix C) when you activate Complex 
mode; it does not exist when the calculator is not in Complex mode. 

120 
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Complex mode is activated 

1) automatically, when executing rnrn or CDI Re~lm I; or 

2) by setting flag 8, the Complex mode flag. 

When the calculator is in Complex mode, the C annunciator in the 
display is lit. This tells you that flag 8 is set and the complex stack 
exists. In or out of Complex mode, the number appearing in the 
display is the number in the real X·register. 

Note In Complex mode (signified by the C annunciator), the 
HP-15C performs all trigonometric functions using radians. 
The trigonometric mode annunciator in the display (RAD. 
GRAD, or blank for Degrees) applies to two functions only: 
~ and ~ (as explained later in this section). 

Deactivating Complex Mode 

Since Complex mode requires the allocation of five registers from 
memory, you will have more memory available for programming 
and other advanced functions if you deactivate Complex mode 
when you are working solely with real numbers. 

To deactivate Complex mode, clear flag 8 (keystroke sequence: 
(BJ~ 8). The C annunciator will disappear. 

Complex mode is also deactivated when Continuous Memory is 
reset (as described on page 63). In any case, deactivating Complex 
mode dissolves the imaginary stack, and all imaginary numbers 
there are lost. 

Complex Numbers and the Stack 

Entering Complex Numbers 

To enter a number with real and imaginary parts: 

1. Key the real part of the number into the display. 

2. Press I ENTER I. 

3. Key the imaginary part of the number into the display. 

4. Press mrn. (If not already in Complex mode, this creates the 
imaginary stack and displays the C annunciator.) 

Example: Add 2 + 3i and 4 + 5i. (The operations are illustrated in 
the stack diagrams following the keystroke listing.) 
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Keystrokes 

mmRJ4 
21ENTERI 

3 

moo 

41ENTERI 

5 

moo 

G 
m[illJ (hold) 

(releasel 

Display 

2.0000 

3 

2.0000 

4.0000 

5 

4.0000 

6.0000 

8.0000 
6.0000 

Keys real part of first 
number into (real) y. 
register. 
Keys imaginary part of 
first number into (real) x­
register. 

Creates imaginary stack; 
moves the 3 into the 
imaginary X-register, and 
drops the 2 into the real X­
register. 

Keys real part of second 
number into (real) Y­
register. 

Keys imaginary part of 
second number into (real) 
X·register. 

Copies 5 from real X· 
register into imaginary X­
register, copies 4 from real 
Y·register into real X­
register, and drops stack. 

Real part of sum. 

Displays imaginary part 
of sum while the [ill] key is 
held. (This also termi· 
nates digit entry.) 

The operation of the real and imaginary stacks during this process 
is illustrated below. (Assume that the stack registers have been 
loaded already with the numbers shown as the result of previous 
calculations.) Note that the imaginary stack, which is shown below 
at the right of the real stack, is not created until moo is pressed. 
(Recall also that the shading of the stack indicates that those 
contents will be written over when the next number is keyed in or 
recalled.) 
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Re 1m Re 1m Re 1m Re 1m Re 1m 
----I ----I -- ... , 

T 9 
, 

8 
, 

7 
, , I I 7 , 

I I ----I I , 

Z 8 
---- ! 

7 i 6 , 6 , I ----I ----I , 

Y 7 6 
I 

2 
----: 

2 I I i I I I 
- .. • .. 1 ----I ........ ~ 

X 6 I 2 
I 

2 3 I I I 
I I , 

I ____ I ____ I ____ I 
- .. __ .I 

7 0 

7 0 

6 0 

2 3 

Keys: 2 I ENTER I 3 mill 

The execution of mill causes the entire stack to drop, the T contents 
to duplicate, and the real X contents to move to the imaginary 
X-register. 

When the second complex number is entered, the stacks operate as 
shown below. Note that I ENTER Ilifts both stacks. 

T 

Z 

Y 

X 

Keys: 

Re 1m 

7 

7 

6 

2 

0 

0 

0 

3 

T 

Z 

Y 

X 

Keys: 

Re 1m 

7 0 

6 0 

2 3 

14 0 

4 

Re 1m 

6 0 

2 3 

4 0 

5 0 

mill 

Re 1m Re 1m 

6 0 6 0 

2 3 2 3 

4 0 4 0 

4 0 5 0 

5 

Re 1m Re 1m 

6 0 6 0 

6 0 6 0 

2 3 6 0 

4 5 6 8 

A second method of entering complex numbers is to enter the 
imaginary part first, then use I Re,lm I and ~. This method is 
illustrated under Entering Complex Numbers With ~, page 127. 
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Stack Lift in Complex Mode 
Stack lift operates on the imaginary stack as it does on the real 
stack (the real stack behaves identically in and out of Complex 
mode). The same functions that enable, disable, or are neutral to 
lifting of the real stack will enable, disable, or be neutral to lifting 
of t he imaginary stack. (These processes are explained in detail in 
section 3 and appendix B.) 
In addition, every nonneutral function except ~ and I CLx I causes 
the clearing of the imaginary X-register when the next number is 
entered. That is, these functions cause a zero to be placed in the 
imaginary X-register when the next number is keyed in or recalled. 
Refer to the stack diagrams above for illustrations. This feature 
allows you to execute calculator operations using the same key 
sequences you use outside of Complex mode. * 

Manipulating the Real and Imaginary Stacks 

I Rellm I (real exchange imaginary). Pressing [IJ I Re~lm I will 
exchange the contents of the real and imaginary X-registers, 
thereby converting the imaginary part of the number into the real 
part and vice-versa. The Yo, Z-, and T-registers are not affected. 
Press ITJI Re~lm I twice to restore a number to its original form. 

I Re~lm I also activates Complex mode if it is not already activated. 

Temporary Display afthe Imaginary X-Register. Press ITJ[ill] 
to momentarily display the imaginary part of the number in the 
X-register without actually switching the real and imaginary 
parts. Hold the key down to maintain the display. 

Changing Signs 

In Complex mode, the I CHS I function affects only the number in the 
real X-register-the imaginary X-register does not change. This 
enables you to change the sign of the real or imaginary part 
without affecting the other. To key in a negative real or :imaginary 
part, change the sign of that part as you enter it. 

If you want to find the additive inverse of a complex number 
already in the X-register, however, you cannot simply press I CHS I 
as you would outside of Complex mode. Instead, you can do either 
ofthe following: 

'" Except for the ~ and ~ffunctif'n8, as explained in this section gpage 133). 
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• Multiply by-I. 

• If you don't want to disturb the rest of the stack, press I CHS I 
ill I Re,lml ICHSI ill I Re,lml. 

To find the negative of only one part of a complex number in the 
X·register: 

• Press I CHS I to negate the real part only. 

• Press ill I Re,lm I I CHS I ill I Re"m I to negate the imaginary part 
only, forming the complex conjugate. 

Clearing a Complex Number 

Inevitably you will need to clear a complex number. You can clear 
only one part at a time, but you can then write over both parts 
(since [±J and I CLx I disable the stack). 

Clearing the Real X-Register. Pressing [±J (or [[) I CLx i) with the 
calculator in Complex mode clears only the number in the real 
X-register; it does not clear the number in the imaginary X-register. 

Example: Change 6 + 8i to 7 + 8i and subtract it from the previous 
entry. (Use [IJ I Re"m I or [IJ ffii] to view the imaginary part in X.) 
Assume a, b, c, and drepresent parts of complex numbers. 

T 

Z 

Y 

X 

Keys: 

Rs 1m 

a b 

c d 

6 0 

6 8 

Re 1m 

a b 

c d 

6 0 

0 8 

7 

Rslm 

a b 

c d 

6 0 

7 8 

Rs 1m 

a b 

a b 

c d 

-1 -8 

B (or other 
operation) 

Since clearing disables the stack (as explained above), the next 
number you enter will replace the cleared value. If you want to 
replace the real part with zero, after clearing use I ENTER I or any 
other function to terminate digit entry (otherwise the next number 
you enter will write over the zero); the imaginary part will remain 
unchanged. You can then continue with any calculator function. 
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Clearing the Imaginary X-Register. To clear the number in the 
imaginary X-register, press ill 1 Re-'m I, then press [B. Press 
m I Re~lm I again to return the zero, or any new number keyed in, to 
the imaginary X-register. 

Example: Replace -1 - 8i by -1 + 5i. 

T 

Z 

Y 

X 

Keys: 

Re 1m 

a b 

c d 

e f 

-1 -8 

Re 1m 

a b 8 b 

c d c d 

e f e f 

-8 -1 [ttl -1 

5 

Re 1m Re 1m 

8 b 

c d 

e f 

5 -1 

a b 

c d 

e f 

-1 5 

IRe~lml 

(continue with 
any operation) 

Clearing the Real and Imaginary X-Registers. If you want to 
clear or replace both the real and imaginary parts ofthe number in 
the X-register, simply press~, which will disable the stack, and 
enter your new number. (Enter zeros if you want the X-register to 
contain zeros.) Alternatively, if the new number will be purely real 
(including 0 + Oi), you can quickly clear or replace the old, complex 
number by pressing ffiI) followed by zero or the new, real number. 

Example: Replace -1 + 5i with 4 + 7 i. 

T 

Z 

Y 

X 

Keys: 

Re 1m 

a b 

c d 

e f 

-1 5 

Re 1m Re 1m 

8 b c d 

c d e f 

e f 4 5 

0 5 .. • 
41 ENTER I 

Re 1m 

c d 

e f 

4 5 

7 0 

7 

Re 11m 

c d 

c d 

e f 

4 7 

mm 
(continue with 
any operation) 
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Entering Complex Numbers with~. The clearing functions 
~ and' CLx I can also be used with I Re,lm I as an alternative method 
of entering (and clearing) complex numbers. Using this method, 
you can enter a complex number using only the X-register, without 
affecting the rest of the stack. (This is possible because ~ and , CLx I 
disable stack lift.) Executing , Re"m I will also create an imaginary 
stack if one is not already present. 

Example: Enter 9 + 8i without moving the stack and then find its 
square. 

Keystrokes 

(~) 

8 

9 

!B:J!Z1 
ITHTID (hold) 

(release) 

T 

Z 

Y 

X 

Keya: 

Re 1m 

a b 

c d 

e f 

4 7 

Display 

(0.0000) 

8 

7.0000 

0.0000 

9 

17.0000 

144.0000 

17.0000 

Re 1m 

a b 

c d 

e f 

IB 8 

Prevents stack lift when 
the next digit (8) is keyed 
in. Omit this step if you'd 
rather save what's in X 
and lose what's in T. 
Enter imaginary part 
first. 
Displays real part; 
Complex mode activated. 
Disables stack. 
(Otherwise, it would lift 
following' Re,lml.) 

Enters real part (digit 
entry not terminated). 
Real part. 
Imaginary part. 

Re 1m Re 1m 
, 

8 b a b 

c d c d 

e f e f 

8 7 7 8 
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T 

Z 

Y 

X 

Keys: 

Re 1m 

a b 

c d 

e f 

7 8 

Re 1m 

a b 

c d 

e f 

0 8 

Entering a Real Number 

Re 1m Re 1m 

a b a b 

c d c d 

e f e f 

9 8 17 144 

9 ~)[Zl 

You have already seen two ways of entering a complex number. 
There is a shorter way to enter a real number: simply key it (or 
recall it) into the display just as you would if the calculator were 
not in Complex mode. As you do so, a zero will be placed in the 
imaginary X-register (as long as the previous operation was not ~ 
or I Cud, as explained on page 124). 

The operation oftbe real and imaginary stacks during this process 
is illustrated below. (Assume the last key pressed was not ~ or 
I cUr I and the contents remain from the previous example.) 

T 

Z 

Y 

X 

Keys: 

Re 1m 

a b 

c d 

e f 

17 144 

Re 1m 

c d 

e f 

17 1414 

4 0 

4 

Re 1m 

e 

17 

4 

('4\, 

f 

144 

0 

,:' 
(Followed by 
another number.) 



Section 11: Calculating With Complex Numbers 129 

Entering a Pure Imaginary Number 

There is a shortcut for entering a pure imaginary number into the 
X-register when you are already in Complex mode: key in the 
(imaginary) number and press [Ill Re"m I. 

Example: Enter 0 + lOi (assuming the last function executed was 
not~orl CLxI). 

Keystrokes 

10 

Display 

10 

0.0000 

Keys 10 into the displayed 
real X-register and zero 
into the imaginary X­
register. 
Exchanges numbers in 
real and imaginary X­
registers. Display again 
shows that the number in 
the real X-register is 
zero-as it should be for a 
pure imaginary number. 

The operation of the real and imaginary stacks during this process 
is illustrated below. (Assume the stack registers contain the 
numbers resulting from the preceding examples.) 

T 

Z 

Y 

X 

Keys: 

Re 1m 

e f 

17 144 

4 0 

4 0 

10 

Re 1m 

e f 

17 144 

4 0 

10 0 

Re 1m 

e f 

17 144 

4 0 

0 10 

(Continue with 
any operation.) 
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Note that pressing [!]I Re"m I simply exchanges the numbers in the 
real and imaginary X-registers and not those in the remaining 
stack registers. 

Storing and Recalling Complex Numbers 

The 1 5TO I and 1 RCl I functions act on the real X-register only; 
therefore, the imaginary part of a complex number must be stor!ld 
or recalled separately. The keystrokes to do this can be entered as 
part of a program and executed automatically.* 

To store a + ib from the complex X-register to Rl and ~, you can 
use the sequence 

You can follow this by (!] 1 Re,lm I to return the stack to its original 
condition if desired. To recall a + ib from Rl and R2 you can use the 
sequence 

IRClll IRCll2 (!]oo 

If you wish to avoid disturbing the rest of the stack, you can recall 
the number using the sequence 

(In Program mode, use [9]1 Cll' I instead of~.) 

Operations With Complex Numbers 
Almost all functions performed on real numbers will yield the same 
answer whether executed in or out of Complex mode,t assuming 
the result is also real. In other words, Complex mode does not 
restrict your ability to calculate with real numbers. 

Any functions not mentioned below or in the rest of this section 
(Calculating With Complex Numbers) ignore the imaginary stack. 

• You can use the HP-l5C matrix funct~on8. described in section 12, to make storing and 
recalling complex numbers more convenioent. By dimensioning a matrix to be n X 2, n 
complex numbers can be stored as rows of the matrix. (This technique is demonstrated 
in the HP-15C Advanced Functions Handbook, section 3, und"r Applications.) 

t The ex.eption. are ~ and ~. whi.h operate differently in Complex mode in order to 
facilitate converting complex numbers to polar form (page 133)_ 



Section 11: Calculating With Complex Numbers 131 

One-Number Functions 
The following functions operate on both the real and imaginary 
parts of the number in the X-register, and place the real and 
imaginary parts of the answer back into those registers. 

[ill [ZJ [ili] !lOGI!lIxlllOXI ~ IABSI [+P] !+RI 
All trigonometric and hyperbolic functions and their inverses also 
belong to this group.· 
The I ABS I function gives the magnitude of the number in the X­
registers (the square root of the sum of the squares of the real and 
imaginary parts); the imaginary part ofthe magnitude is zero. 
L±El converts to polar form and I +R I converts to rectangular form, 
as described later in this section (page 133). 

For the trigonometric functions, the calculator considers numbers 
in the real and imaginary X-registers to be expressed in radians­
regardless of the current trigonometric mode. To calculate 
trigonometric functions for values given in degrees, use I .RAD I to 
convert those values to radians before executing the trigonometric 
function. 

Two-Number Functions 
The following functions operate on both the real and imaginary 
parts of the numbers in the X- and Y-registers, and place the real 
and imaginary parts ofthe answer into the X-registers. Both stacks 
drop, just as the ordinary stack drops after a two-number function 
not in Complex mode. 

Stack Manipulation Functions 
When the calculator is in Complex mode, the following functions 
simultaneously manipulate both the real and imaginary stacks in 
the same way as they manipulate the ordinary stack when the 
calculator is not in Complex mode. The (iliJ function, for instance, 

·Refer to the Hp·15C Adv.anced Functions Handbook for definitions of compl •• 
trigonometric functions and further information about doing calculations in Complex 
mode. 
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will exchange both the real and imaginary parts ofthe numbers in 
the X- and Y-registers. 

~ IR+llMJ I ENTER I I LSTxl 

Conditional Tests 
For programming, the four conditional tests below will work in the 
complex sense: Ix=ol and I TEST I 0 compare the complex number in 
the (real and imaginary) X-registers to 0 + Oi, while ITESTI5 and 
I TEST 16 compare the complex numbers in the (real and imaginary) 
X- and Y-registers. All other conditional tests besides those listed 
below ignore the imaginary stack. 

Ix=ol ITESTIO(x#O) ITESTI5(x=y) ITESTI6(x#y) 

Example: Complex Arithmetic. The characteristic impedance 
of a ladder network is given by an equation of the form 

Zo=A, 

where A and B are complex numbers. Find Zo for the hypothetical 
values A = 1.2 + 4.7i andB = 2.7 + 3.2i. 

Keystrokes Display 

1.2IENTERI4.7(I)[] 1.2000 

2.71 ENTER 13.2 (I)[] 2.7000 

G 1.0428 

00 1.0491 

(I)ffiII (hold) 0.2406 

(release) ·1.0491 

Enters A into real and 
imaginary X-registers. 

Enters B into real and 
imaginary X-registers, 
moving A into real and 
imaginary Y-registers. 
Calculates A / B. 

Calculates Zo and 
displays real part. 
Displays imaginary part 
of Za while [illJis held 
down. 
Again displays real part 
ofZa· 
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Complex Results from Real Numbers 

In the preceding examples, the entry of complex numbers had 
ensured the (automatic) activation of Complex mode. There will be 
times, however, when you will need Complex mode to perform 
certain operations on real numbers, such as J=5. (Without 
Complex mode, such as operation would result in an Error 0-
improper math function.) To activate Complex mode at any time 
and without disturbing the stack contents, set flag 8 before 
executing the function in question. * 

Example: The arc sine (sin-I) of 2.404 normally would result in an 
Error o. Assuming 2.404 in the X-register, the complex value arc sin 
2.404 can be calculated as follows: 

Keystrokes 

@~8 

@lsl~'1 

CDffiIl (hold) 

(release) 

Display 

1.5708 

-1.5239 

1.5708 

Activates Complex Mode. 

Real part of 
arc sin 2.404. 
Imaginary part of 
arc sin 2.404. 
Display shows real part 
again when [ill] is released. 

Polar and Rectangular Coordinate 
Conversions 
In many applications, complex numbers are represented in polar 
form, sometimes using phasor notation. However, the HP-15C 
assumes that any complex numbers are in rectangular form. 
Therefore, any numbers in polar or phasor form must be converted 
to rectangular form before performing a function in Complex mode . 

• Pressing [!) I R.-'m I twice will accomplish the same thing. The sequemce m rn is not used 
because it would combine any numbers in the real X- and V-registers into a single 
complex number. 
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I 
r(cosO+isinO)=reiB 

a+ib= 

rLO 

imaginary 
(a, b) 

(polar) 

(phasor) 

~----~-----------.real 

I +R I and r+Pl can be used to interconvert the rectangular and polar 
forms of a complex number. They operate in Complex mode as 
follows: 

converts the polar (or phasor) form of a complex number 
to its rectangular form by replacing the magnitude r in 
the real X-register with a, and replacing the angle 0 in 
the imaginary X-register with b. 

converts the rectangular coordinates of a complex 
number to the polar (or phasor) form by replacing the 
real part a in the real X-register with r, and replacing 
the imaginary part b in the imaginary X-register with O. 

/ffiJ~ 
Re 1m Re 1m 

X~ [E 

~/ 
These are the only functions in Complex mode that are affected by 
the current trigonometric mode setting. That is, the angular units 
for 0 must correspond to the trigonometric mode indicated by the 
annunciator (or absence thereof). 
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Example: Find the sum 2(cos 65° + i sin 65°) + 3(cos 40° + i sin 
40°) and express the result in polar form. (In phasor form, evaluate 
2L65° + 3L40°.) 

Keystrokes Display 

[BJIOEGI Sets Degrees mode for any 
polar·rectangular 
conversions. 

21ENTERI 2.0000 
65 [IJOO 2.0000 C annunciator displayed; 

Complex mode activated. 

[IJI +R 1 0.8452 Converts polar to 
rectangular form; real 
part (a) displayed. 

31 ENTER 1 3.0000 
40 [IJOO 3.0000 
[IJ~ 2.2981 Converts polar to 

rectangular form; real 
part (a) displayed. 

G 3.1434 
[BJ~ 4.8863 Converts rectangular to 

polar form; r displayed. 

[IJffij) (hold) 49.9612 8 (in degrees). 

(release) 4.8863 

Problems 
By working through the following problems, you will see that 
calculating with complex numbers on the Hp·15e is as easy as 
calculating with real numbers. In fact, once your numbers are 
entered, most mathematical operations will use exactly the same 
keystrokes. Try it and see! 

1. Evaluate: 2i (-8 + 6i)3 

(4 - 2,,;5 i)(2 - 4,,;5 i) 
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Keystrokes Display 

2 CD! Re~lml 0.0000 2i. Display shows real 
part. 

sl CHS II ENTER I -S.OOOO 
6[IJ1II -8.0000 -S+6i. 

30 352.0000 ( -S+6i)3. 

0 -1.872.0000 2i ( -S + 6i}3. 

41 ENTER I 4.0000 
5GTI 2.2361 
21cHsI0 -4.4721 -2y5. 

[IJrn 4.0000 4-2J5i. 

G -295.4551 2i(-8 + 6i)3 

4-2 V5i 
2 I ENTER 15 GTI 2.2361 
41cHsI0 -8.9443 
[IJrn 2.0000 2-4y5i. 

G 9.3982 Real part of result. 

[IJ[ill) -35.1344 } Answer: 9.3982 - 35.1344i. 
9.3982 

2. Write a program to evaluate the function w = 2z + 1 for dif-
5z+3 

ferent values of z. (w represents a linear fractional transforma­
tion, a class of conformal mappings.) Evaluate w for z = 1 +2i. 

(Answer: 0.3902 + 0.0122 i. One possible keystroke sequence is: 
[IJ I LBL I ~ I ENTER II ENTER I 2 0 1 [£J [ill 5 0 3 [£J G I RIS I 
[IJI Re~lm I [ill RTN I.) 

3. Try your hand at a complex polynomial and rework the 
example on page 80. You ·can use the same program to 
evaluate P(z) = 5z4 + 2z3, where z is some complex number. 

Load the stack with z = 7 + Oi and see if you get the same 
answer as before. 

(Answer: 12,691.0000 + O.OOOOi.) 

Now run the program for z = 1 + i. 
(Answer: -24.0000 + 4.0000i.) 
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For Further Information 
The HP-15C Advanced Functions Handbook presents more 
detailed and technical aspects of using complex numbers in 
various functions with the HP-15C. Applications are included. The 
topics include: 

• Accuracy considerations. 

• Principal branches of multivalued functions. 

• Complex contour integrals. 

• Complex potentials. 

• Storing and recalling complex numbers using a matrix. 

• Calculating the nth roots of a complex number. 

• Solving an equation for its complex roots. 

• Using I SOLVE I and [!Din Complex mode. 
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Calculating With Matrices 

The HP-15C enables you to perform matrix calculations, giving 
you the capability to handle advanced problems with ease. The 
calculator can work with up to five matrices, which are named A 
through E since they are accessed using the corresponding [KJ 
through [[] keys. The HP-15C lets you specify the size of each 
matrix, store and recall the values of matrix elements, and perform 
matrix operations-for matrices with real or complex elements. (A 
summary of matrix functions is listed at the end of this section.) 

A common application of matrix calculations is solving a system of 
linear equations. For example, consider the equations 

3.8xI + 7.2x2 = 16.5 

1.3xI - 0.9x2 = -22.1 

for which you must determine the values of x I and x 2. 

These equations can be expressed in matrix form as AX = B, where 

[
3.8 7.2J [XI] [ 16.5J 

A = , X = ,and B = . 
1.3 -0.9 X2 -22.1 ' 

The following keystrokes show how easily you can solve this 
matrix problem using your HP-15C. (The matrix operations used in 
this example are explained in detail later in this section.) 

First, dimension the two known matrices, A and B, and enter the 
values of their elements, from left to right along each row from the 
first row to the last. Also, designate matrix C as the matrix that 
you will use to store the result of your matrix calculation (C = X). 

138 
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Keystrokes Display 

~rm8 

ill I MATRIX 11 2.0000 

illl USER 1 2.0000 

3.81 sTol[A) A 1.1 

3.8000 

7.2 I sTol[A) 7.2000 

1.31 STO I [A) 1.3000 

.9 I CHslisTO I [A) -0.9000 

21 ENTER 11 [!]I DIM 100 1.0000 

16.5IsTOI([] 16.5000 

22.1lcHsllsTol[[l -22.1000 

illl RESULT I@) -22.1000 

Deactivates Complex 
mode. 
Dimensions matrix A to 
be2X2. 
Prepares for automatic 
entry of matrix elements 
in User mode. 
(Turns on the USER 
annunciator.) 
Denotes matrix A, row 1, 
column 1. (A display like 
this appears momentarily 
as you enter each element 
and remains as long as 
you hold the letter key.) 

Stores all' 

Stores a12' 

Stores a21' 

Stores a 22. 

Dimensions matrix B to 
be2X 1. 

Stores bu. 
Stores b2I • 

Designates matrix C for 
storing the result. 

Using matrix notation, the solution ofthe matrix equation AX = B 
is 

where A-I is the inverse of matrix A. You can perform this 
operation by entering the "descriptors" for matrices B and A into 
the Y- and X-registers and then pressing [B. (A descriptor shows 
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the name and dimensions of a matrix.) Note that if A and B were 
numbers, you could calculate the answer in a similar manner. 

Keystrokes 

I RCLII MATRIX 100 
Display 

b 2 Enters descriptor for B, 
the 2 X 1 constant matrix. 

2 2 Enters descriptor for A, A 

running 

c 2 

the 2 X 2 coefficient 
matrix, into the X-register, 
moving the descriptor for 
B into the Y-register. 
Temporary display while 
A -[ B is being calculated 
and stored in matrix C. 
Descriptor for the result 
matrix, C, a 2 X 1 matrix. 

Now recall the elements of matrix C-the solution to the matrix 
equation. (Also remove the calculator from User mode and clear all 
matrices.) 

Keystrokes Display 

IRCLI~ C 1.1 Denotes matrix C, row 1, 
column 1. 

-11.2887 Valueofcll (Xl)' 

IRCLI~ 8.2496 Valueofc2l (X2)' 

[IJIUSERI 8.2496 Deactivates User mode. 

[IJIMATRlxlo 8.2496 Clears all matrices. 

The solution to the system of equations is Xl = -11.2887 and X2 = 
8.2496. 

Note: The description of matrix calculations in this section 
presumes that you are already familliar with matrix theory 
and matrix algebra. 

Matrix Dimensions 
Up to 64 matrix elements can be stored in memory. You can use an 
64 elements in one matrix or distribute them among up to five 
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matrices. Matrix inversion, for example, can be performed on an 
8 X 8 matrix with real elements (or on a 4 X 4 matrix with complex 
elements, as described later·). 
To conserve memory, all matrices are initially dimensioned as 0 X 
O. When a matrix is dimensioned or redimensioned, the proper 
number of registers is automatically allocated in memory. You may 
have to increase the number of registers allocated to matrix 
memory before dimensioning a matrix or before performing certain 
matrix operations. Appendix C describes how memory is 
organized, how to determine the number of registers currently 
available for storing matrix elements, and how to increase or 
decrease that number. 

Dimensioning a Matrix 

To dimension a matrix to have y rows and x columns, place those 
numbers in the Y- and X-registers, respectively, and then execute 
ill I DIM I followed by the letter key specifying the matrix: 

1. Key the number of rows (y) 
into the display, then press 
I ENTER I to lift it into the y­
register. 

2. Key the number of columns (x) 
into the X-register. 

3. Press !Ill DIM I followed by a 
letter key, ~ through ill, that 
specifies the name of the 
matrix. t 

y 

x 

number of 
rows 

number of 
columns 

• The matrix functions described in this section operate on real matrices only. (In 
Complex mode, the im aginary stack is ignored during matrix operations.) However, the 
HP·15C has four matrix function.s that enable you to calculate using real representa­
tion. of complex matrices, as described on pages 160-173. 

tyou don't need to press rnbefore the letter key. (&efer to Abbreviated Key Sequences on 
page 78.) 
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Example: Dimension matrix A to be a 2 X 3 matrix. 

Keystrokes 

21ENTERI 

Display 

2.0000 Keys number of rows into 
Y-register. 

3 3 

3.0000 

Keys number of columns 
into X-register. 
Dimensions matrix A to 
be2X3. 

Displaying Matrix Dimensions 

There are two ways you can display the dimensions of a matrix: 

• Press I RCL II MATRIX I followed by the letter key specifying the 
matrix. The calculator displays the name of the matrix at the 
left, and the number of rows followed by the number of 
columns at the right . 

• Press I RcLiI DIM I followed by the letter key specifying the 
matrix. The calculator places the number of rows in the 
Y-register and the number of columns in the X-register. 

Keystrokes 

I RCL II MATRIX I lID 
Display 

bOO Matrix B has 0 rows and 0 
columns, since it has not 
been dimensioned 
otherwise. 

3.0000 Number of columns in A. 
2.0000 Number of rows inA. 

Changing Matrix Dimensions 

Values of matrix elements are stored in memory in order from left 
to right along each row, from the first row to the last. If you 
redimension a matrix to a smaller size, the required values are 
reassigned according to the new dimensions and the extra values 
are lost. For example, if the 2 X 3 matrix shown at the left below is 
redimensioned to 2 X 2, then 

lost -5 6 
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If you redimension ,a matrix to a larger size, elements with the 
value 0 are added at the end as required by the new dimensions. 
For example, if the same 2 X 3 matrix is redimensioned to 2 X 4, 
then 

When you have finished calculating with matrices, you'll probably 
want to redimension all five matrices to 0 X 0, so that the registers 
used for storing their elements will be available for program lines 
or for other advanced functions. You can redimension all five 
matrices to 0 X 0 at one time by pressing m I MATRIX I O. (You can 
dimension a single matrix to 0 X 0 by pressing 0 m I DIM I I (A] 
through (]] J.) 

Storing and Recalling Matrix Elements 
The HP-15C provides two ways of storing and recalling values of 
matrix elements. The first method allows you to progress through 
all of the elements in order. The second method allows you to 
access elements individually, 

Storing and Recalling All Elements in Order 

The HP-15C normally uses storage 
registers Ro and RI to indicate the 
row and column numbers of a matrix 
element. If the calculator is in User 
mode, the row and column numbers 
are automatically incremented as 
you store or recall each matrix 
element, from left to right along each 
row from the first row to the last. 

Ro~1 =n=~=::,w=b=M=~ 
R, 

To set the row and column numbers in Ro and RI to row 1, column 
1, press [Ill MATRIX I L 
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To store or recall sequential elements of a matrix: 

1. Be sure the matrix is properly dimensioned. 

2. Press CD I MATRIX 11. This stores 1 in both storage registers Ro 
and Rl> so that elements will be accessed starting at row 1, 
column 1. 

3. Activate User mode by pressing CD IUSERI. With the 
calculator in User mode, after each element is stored or 
recalled the row number in Ro or the column number in Rl is 
automatically incremented by 1, as shown in the example 
following. 

4. If you are storing elements, key in the value ofthe element to 
be stored in row 1, column 1. 

5. Press I STO I or I RCL I followed by the letter key specifying the 
matrix. 

6. Repeat steps 4 and 5 for all elements ofthe matrix. The row 
and column numbers are incremented according to the 
dimensions ofthe matrix you specify. 

While the letter key specifying the matrix is held down after I STO I 
or I RCL I is pressed, the calculator displays the name of the matrix 
followed by the row and column numbers of the element whose 
value is being stored or recalled. If the letter key is held down for 
longer than about 3 seconds, the calculator displays null, doesn't 
store or recall the element value, and doesn't increment the row 
and column numbers. (Also, the stack registers aren't changed.) 

After the last element of the matrix has been accessed, the row and 
column numbers both return to 1. 

Example: Store the values shown below in the elements of the 
matrix A dimensioned above. (Be sure matrix A is dimensioned to 
2X3.) 



Keystrokes 

ITliMATRIXl1 

21sTOIlAl 
31sTOIlAl 
41sTOIlAl 
51sTOIlAl 
61sTOIlAl 
1 RCLllAl 

1 RCLllAll 
1 RCLllAl: 
1 RCLllAl 
1 RCLllAl 
1 RCLllAl 
ITlIUSERI 
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Display 

A 1.1 

1.0000 

2.0000 

3.0000 

4.0000 

5.0000 

6.0000 

A 1.1 

1.0000 

2.0000 

3.0000 

4.0000 

5.0000 

6.0000 

6.0000 

Sets beginning row and 
column numbers in Ro 
and RI to 1. (Display 
shows the previous result.) 

Activates User mode. 
Row I, column 1 of A. 
(Displayed momentarily 
while lAl key held down.) 

Value of an. 

Value of a12. 

Valueofal3· 
Value of a21. 
Value of a22. 

Value of a23. 

Recalls element in row 1, 
column 1. (Ro and RI were 
reset in preceding step.) 
Value of an. 

Value of a12. 
Value of a 13. 

Value of a21. 

Valueofa22· 
Valueofa23· 
Deactivates User mode. 

Checking and Changing Matrix Elements Individually 

The calculator provides two ways to check (recall) and change 
(store) the value of a particular matrix element. The first method 
uses storage registers Ro and RI in the same way as described 
above-except that the row and column numbers aren't auto­
matically changed when User mode is deactivated. The second 
method uses the stack to define the row and column numbers. 
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Using Ro and R I . To access a particular matrix element, store its 
row number in Ro and its column number in R I . These numbers 
won't change automatically (unless the calculator is in User mode). 

• To recall the element value (after storing the row and column 
numbers), press I RCLI followed by the letter key specifying the 
matrix. 

• To store a value in that element (after storing the row and 
column numbers), place the value in the X-register and press 
I STO I followed by the letter key specifying the matrix. 

Example: Store the value 9 as the element in row 2, column 3 of 
matrix A from the previous example. 

Keystrokes Display 

21sTOIo 2.0000 Stores row number in Ro. 
31sTOIl 3.0000 Stores column number in 

R I · 

g 9 Keys the new element 
value into the X-register. 

ISTOI~ A 2.3 Row 2, column 3 of A. 

9.0000 Value of a23' 

Using the Stack. You can use the stack registers to specify a 
particular matrix element. This eliminates the need to change the 
numbers in Ro and R I . 

• To recall an element value, enter the row number and column 
number into the stack (in that order). Then press I RCL I [9J 
foHowed by the letter key specifying the matrix. The element 
value is placed in the X-register. (The row and column 
numbers are lost from the stack.) 

• To store an element value, first enter the value into the stack 
followed by the row number and column number. Then press 
I STO I [BJ followed by the letter key specifying the matrix. (The 
row and column numbers ate lost from the stack; the element 
value is returned to the X-register.) 

Note that these are the only operations in which the blue [BJ key 
precedes a gold letter key_ 
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Example: Recall the element in row 2, column 1 of matrix A from 
the previous example. Use the stack registers. 

Keystrokes 

21ENTERI1 

Display 

1 

4.0000 

Enters row number into y­
register and column 
number into X-register. 
Value of a2l. 

Storing a Number in All Elements of a Matrix 

To store a number in all elements of a matrix, simply key that 
number into the display, then press 1 STO 1lM&!!!.RJ followed by the 
letter key specifying the matrix. 

Matrix Operations 
In many ways, matrix operations are like numeric calculations. 
Numeric calculations require you to specify the numbers to be used; 
often you define a register for storing the result. Similarly, matrix 
calculations require you to specify one or two matrices that you 
want to use. A matrix descriptor is used to specify a particular 
matrix. For many calculations, you also must specify a matrix for 
storing the result. This is the result matrix. 

Because matrix operations usually require many individual 
calculations, the calculator flashes the running display during 
most matrix operations. 

Matrix Descriptors 

Earlier in this section you saw that when you press 1 RCLII MATRIX I 
followed by a letter key specifying a matrix, the name of the matrix 
appears at the left of the display and the number of rows followed 
by the number of columns appears at the right. The matrix name is 
called the descriptor of the matrix. Matrix descriptors can be 
moved among the stack and data storage registers just like a 
number-that is, using I STO I, 1 RcLi, 1 ENTER I, etc. Whenever a matrix 
descriptor is displayed in the X-register, the current dimensions of 
that matrix are shown with it. 

You use matrix descriptors to indicate which matrices are used in 
each matrix operation. The matrix operations discussed in the 
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rest of this section operate on the matrices whose descriptors are 
placed in the X-register and (for some operations) the Y-register. 

Two matrix operations-calculating a determinant and solving the 
matrix equation AX = B-involve calculating an L U decomposi­
tion (also known as an L U factorization} of the matrix specified in 
the X-register.* A matrix that is an LU decomposition is signified 
by two dashes following the matrix name in the display of its 
descriptor. (Refer to page 160 for using a matrix in L U form.) 

The Result Matrix 

For many operations discussed in this section, you need to define 
the matrix in which the result of the operation should be stored. 
This matrix is called the result matrix. 

Other matrix operations do not use or affect the result matrix. (This 
is noted in the descriptions of these operations.) Such an operation 
either replaces the original matrix with the result of the operation 
(if the result is a matrix, such as a transpose) or returns a number 
to the X-register (if the result is a number, such as a row norm). 

Before you perform an operation that uses the result matrix, you 
must designate the result matrix. Do this by pressing m I RESULT I 
followed by the letter key specifying the matrix. (If the descriptor of 
the intended result matrix is already in the X-register, you can 
press I STO II RESULT I instead.) The designated matrix remains the 
result matrix until another is designated. t To display the 
descriptor ofthe result matrix, press I RCLII RESULTI. 

When you perform an operation that affects the result matrix, the 
matrix is automatically redimensioned to the proper size. If this 
redimensioning would require more additional elements than there 
are available in matrix memory (a maximum of 64 for all five 
matrices), then the operation can't be performed. This restriction 

,. The L U decompositiJon G)f a matrix A is another matrix in which is encoded a lower­
triangular matrix, L, and an upper-triangular matrix, U, whose product LU equals 
matrix A (possibly with some row. interchanged). The Hp·15C Advanced Functions 
Handbook discusses L U decomposit:ion in detail. 

t Matrix A is automatically designated 8S the result matrix whenever Continuou.s 
Memory is reset. 
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can often be overcome by designating the result matrix to be one of 
the matrices being operated on. (However, there are certain 
operations for which the result matrix can not be the same one as 
either of the matrices being operated on-this is noted in the 
description of these operations.) 

While the key used for any matrix operation that stores a result in 
the result matrix is held down, the descriptor of the result matrix is 
displayed. If the key is released within about 3 seconds, the 
operation is performed, and the descriptor of the result matrix is 
placed in the X-register. If the key is held down longer, the 
operation is not performed and the calculator displays null. 

Copying a Matrix 

To copy the elements of a matrix into the corresponding elements 
of another matrix, use the I STO II MATRIX I sequence: 

1. Press I RCL II MATRIX I followed by the letter key specifying the 
matrix to be copied. This enters the descriptor of the matrix 
into the display. 

2. Press I STO II MATRIX I followed by the letter key specifying the 
matrix to be copied into. 

If the matrix specified after I RCL I does not have the same 
dimensions as the matrix specified after I STO I, the second matrix is 
redimensioned to agree with the first. The matrix specified after 
I STO I need not already be dimensioned. 

Example: Copy matrix A from the previous example into matrix 
B. 
Keystrokes Display 

IRCLIlMATRlxl~ A 2 3 Displays descriptor of 
matrix to be copied. 

I STO II MATRIX 100 A 2 3 Redimensions matrix B 
and copies A into B. 

I RCL I [MATRiX] [ID b 2 3 Displays descriptor of new 
matrixB. 

One-Matrix Operations 

The following table shows functions that operate on only the 
matrix specified in the X-register. Operations involving a single 
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matrix plus a number in another stack register are described under 
Scalar Operations (page 151). 

Effect on 

Keystroke(s) 
Result in Matrix Effect on 

X-register Specified in Result Matrix 
X-register 

ICHSI No change. Changes sign of None·t 
all elements. 

, 11/xl Descriptor of None·t Inverse of 
result matrix. specified 

matrix. § 

[IJIMATRlxI4 Descriptor of Replaced by None·t 
transpose. transpose. 

[IJIMATRlxI7 Row norm of None. None. 
specified 
matrix.* 

[IJIMATRlxla Frobenius or None. None. 
Euclidean 
norm of 
specified 
matrix·t 

[IJIMATRlxI9 Determinant None·t LV decomposi-
of specified tion of specified 
matrix. matrix. § 

. The row norm is the largest sum of the absolute values of the eiements in each row 
of the specified matrix. 

t The Frobenius or Euclidean norm ~s the square root of the sum of the squares of all 
elements lin the specified matrix. 

t Unless the result matrix is the same matrix specified in. the X-register. 

§ If the specified matrix is a singular matrix (that is. one that dOesr"t have an 
inverse), then the HP-15C ",odifies theLUform blJ an amount ~hat is usuailly small 
compared to round-off error. For 1J::ftJ, the calculated in\terse is the inverse of a 
mlatrix close to the origi.nal. singular matrix. (Refer to the HP-15C Advanced 
Functions Handbook for further information.) 
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Example: Calculate the transpose of matrix B. Matrix B was set 
in preceding examples to 

Keystrokes Display 

! RCL!I MATRIXI[[] b 2 3 Displays descriptor of2 X 
3 matrix B. 

[IJI MATRIX 14 b 3 2 Descriptor of 3 X 2 
transpose. 

Matrix B (which you can view using! RCLI[!)in User mode) is now 

Scalar Operations 

Scalar operations perform arithmetic operations between a scalar 
(that is, a number) and each element of a matrix. The sca]ar and 
the descriptor of the matrix must be placed in the X- and 
Y-registers-in either order. (Note that the register position will 
affect the outcome of the G and G functions.) The resulting values 
are stored in the corresponding elements ofthe result matrix. 

The possible operations are shown in the following table. 
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Elements of Result Matrix· 

Operation Matrix in V-Register 

I 
Scalar in V -Register 

Scalar in X-Register Matrix in X-Register 

G Adds scalar value to each matrix element. 

0 Multiplies each matrix element by scalar value. 

G Subtracts scalar value Subtracts each matrix 
from each matrix element from scalar 
element. value. 

D Divides each matrix Calculates inverse of 
element by scalar matrix and multiplies 
value. each element by scalar 

value. 

* Result matrix lITlay be the specified matrix 

Example: Calculate the matrix B = 2A, then subtract 1 from every 
element in B. From before, use 

Keystrokes 

[TIl RESULT I [ill 
Display 

A 2 3 

b 2 3 

Designates matrix B as 
result matrix. 

Displays descriptor of 
matrixA. 
Redimensions matrix B to 
the same dimensions as 
A, multiplies the elements 
of A by 2, stores those 
values in the 
corresponding elements of 
B, and displays the 
descriptor of the result 
matrix. 
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Display 

b 2 3 Subtracts 1 from the 
elements of matrix Band 
stores those values in the 
same elements ofB. 

The result (which you can view using I RCLllIDin User mode) is 

Arithmetic Operations 

With matrix descriptors in both the X· and Y·registers, pressing G 
or G calculates the sum or difference of the matrices. 

Pressing Calculates· 

G Y+X 
G V-X 

• Result is stored in result matrix 

Result matrix may be X or Y. 

Example: Calculate C = B - A, where A and B are defined in the 
previous example, 

Keystrokes 

!Ill RESUL n[f] 

A= [1 2 3J [1 3 5J 
4 5 9 and B = 7 9 17 . 

Display 

Designates C as result 
matrix. 

b 2 3 Recalls descriptor of 
matrix B. (This step can 
be skipped if descriptor is 
already in X-register.) 

A 2 3 Recalls descriptor of 
matrix A into X·register, 
moving descriptor of 
matrix B to V-register. 
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Keystrokes Display 

G C 2 3 Calculates B - A and 
stores values in 
redimensioned result 
matrixC. 

1 
The result is C=[~ :J 4 

Matrix Multi.plication 
With matrix descriptors in both the X- and Y-registers, you can 
calculate three different matrix products. The table below shows 
the results of the three functions for a matrix X specified in the 
X-register and a matrix Y specified in the Y-register. The matrix 
X-I is the inverse of X , and the matrix yT is the transpose ofY. 

Preasing Calculates· 

0 YX 
[IJlM&!@5 yTX 
G, X-ly 

*Result stored in result matrix. For G. the result 
matrix can be Y but not X. For the others, the 
result matrix must be ather than Xor Y. 

Note: When you use the G function to evaluate the 
expression A -1 B, you must enter the matrix descriptors in 
the order B, A rather than in the order that they appear in 
the expression.· 

The value stored in each element of the result matrix is determined 
according to the usual rules of matrix multiplication. 

For I MATRIX I 5, the matrix specified in the Y-register isn't changed 
by this operation, even though its transpose is used. The result is 
identical to that obtained using I MATRIX 14 (transpose) and 0 . 

• This is, the ssme order you would use if you were entering b and a for evaluating a-1b 

=bla. 
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For 0. the matrix specified in the X-register is replaced by its LU 
decomposition_ The 0 function calculates X-I Y using a more 
direct method than does!1/xJ and 0. giving the result faster and 
with improved accuracy. 

Example: Using matrices A and B from the previous example. 
calculate C = AT B. 

A = [~ : :] and B = G : 1 ~ ] 

Keystrokes Display 

I RCL II MATRIX J (A) A 2 3 Recalls descriptor for 
matrixA. 

I RCL II MATRIX J[]J b 2 3 Recalls descriptor for 
matrix B into X-register, 
moving matrix A 
descriptor into Y-register_ 

ill! RESULTJ[£] b 2 3 Designates matrix C as 
result matrix. 

[fJ!MATRIXJ5 C 3 3 Calculates AT Band 
stores result in matrix C. 
which is redimensioned to 
3X3. 

The result, matrix C, is 

[~ 39 nJ C= 37 51 95 . 
66 90 168 
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Solving the Equation AX = B 

The G function is useful for solving 
matrix equations of the form 
AX = B, where A is the coefficient 
matrix, B is the constant matrix, and 
X is the solution matrix. The descrip­
tor of the constant matrix B should 
be entered in the Y-register and the 
descriptor of the coefficient matrix A 
should be entered in the X-register. 
Pressing G then calculates the solu-
tionX=A-1B.* 

y 

x 

constant 
matrix 

coefficient 
matrix 

Remember that the G function replaces the coefficient matrix by 
its LU decomposition and that this matrix must not be specified as 
the result matrix. Furthermore, using G rather than 11/,,1 and 0 
gives a solution faster and with improved accuracy. 

At the beginning of this section, you found the solution for a 
system of lin,ear equations in which the constant matrix and the 
solution matrix each had one column. The following example 
illustrates that you can use the HP-15C to find solutions for more 
than one set of constants-that is, for a constant matrix and 
solution matrix with more than one column. 

Example: Looking at his receipts for 
his last three deliveries of cabbage 
and broccoli, Silas Farmer sees the 
following summary . 

• If A is a singular matrix (that is, one that doesn't have an inverse), then the HP-15C 
modifies the L U form of A by an amount that is. usually small compared to round-off 
error. The calculated soluHon ,corresponds to that for a nODsingular coefficient matrix 
dose to the original, singular matrix. 
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WAAk 

1 2 3 

Total Weight (kg) 274 233 331 
Total Value $120.32 $112.96 $151.36 

Silas knows that he received $0.24 per kilogram for his cabbage 
and $0.86 per kilogram for his broccoli. Use matrix operations to 
determine the weights of cabbage and broccoli he delivered each 
week. 

Solution: Each week's delivery represents two linear equations 
(one for weight and one for value) with two unknown variables (the 
weights of cabbage and broccoli). All three weeks can be handled 
simultaneously using the matrix equation 

[~.24 ~.86J [::: ::: :::J = [::;.32 :::.96 ~:~.36J 
or AD=B 

where the first row of matrix D is the weights of cabbage for the 
three weeks and the second row is the weights of broccoli. 

Keystrokes Display 

21 ENTER I [Ill DIM I~ 2.0000 Dimensions A as 2 X 2 
matrix. 

[IJI MATRIX 11 2.0000 Sets row and column 
numbers in Roand Rl to l. 

[IJI USER I 2.0000 Activates User mode. 
1 Jsrol~ 1.0000 Stores all. 

I STO I(K] 1.0000 Stores a12. 

.241 STO I(K] 0.2400 Stores a21. 

.B61 STO I(K] 0.8600 Stores a22. 

21 ENTER 13 !Ill DIM 100 3.0000 Dimensions B as 2 X 3 
matrix. 
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Keystrokes Display 

2741sTO!lID 274.0000 Stores b 11' * 
2331 STO IlID 233.0000 Stores b 12• 

3311 STO 100 331.0000 Stores b 13• 

120.321 STO I lID 120.3200 Storesb 21• 

112.961 STO I(]] 112.9600 Stores b22• 

151.36ISTOI@ 151.3600 Stores b 23• 

[IJ1 RESULTI@] 151.3600 Designates matrix D as 
result matrix. 

I RCL II MATRIX I lID b 2 3 Recalls descriptor of 
constant matriK. 

IRCLIlMATRlxl~ A 2 2 Recalls descriptor of 
coefficient matriK A into 
X-register, moving 
descriptor of constant 
matrix B into Y-register. 

G d 2 3 Calculates A-I Band 
stores result in matrix D. 

IRCLI@] 186.0000 Recalls dll, the weight of 
cabbage for the first week. 

IRCLI@] 141.0000 Recalls d 12, the weight of 
cabbage for the second 
week. 

I RCLI@] 215.0000 Recalls d 13' 

I RCLI@] 88.0000 Recallsd21 · 

I RCLI@] 92.0000 Recalls d 22. 

IRCLI@] 116.0000 RecaUsd 23· 

[IJI USER I 116.0000 Deactivates User mode. 

• Note thai you did not need to press (!]I MATRIXll before beginning to slore the elements 
of matrix. B. Thh; is because after you stored the last element of matrix A. the row and 
column numbers in RO and HI were automatically reset to 1. 
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Silas' deliveries were: 

Week 
1 2 3 

Cabbage (kg) 186 141 215 

Broccoli (kg) 88 92 116 

Calculating the Residual 

The HP-15C enables you to calculate the residual, that is, the 
matrix 

Residual = R - YX 

where R is the result matrix and X and Yare the matrices specified 
in the X- and V-registers. 

This capability is useful, for example, in doing iterative refinement 
on the solution of a system of equations and for linear regression 
problems. For example, if C is a possible solution for AX = B, then 
B - AC indicates how well this solution satisfies the equation. 
(Refer to the HP-15C Advanced Functions Handbook for 
information about iterative refinement and linear regression.) 

The residual function (I MATRIX 16) uses the current contents of the 
result matrix and the matrices specified in the X- and V-registers to 
calculate the residual defined above. The residual is stored in the 
result matrix, replacing the original result matrix. A matrix 
specified in the X- or V-register can not be the result matrix. 

Using I MATRIX 16 rather than 0 and Ggives a result with improved 
accuracy, particularly if the residual is small compared to the 
matrices being subtracted. 

To calculate the residual: 

L Enter the descriptor of the Y matrix into the Y-register_ 

2_ Enter the descriptor of the X matrix into the X-register_ 

3. Designate the R matrix as the result matrix. 

4. Press m I MATRIX 16. The residual replaces the original result 
matrix (R). The descriptor of the result matrix is placed in 
the X-register. 
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Using Matrices in LU Form 

As noted earlier, two matrix operations (calculating a deter­

minant and solving the matrix equation AX = B) create an LU 

decomposition of the matrix specified in the X-register. The 

descriptor of such a matrix has two dashes following the matrix 

name. A matrix in L U form has elements that differ from the 

elements of the original matrix. 

However, the descriptor for a matrix in LU form can be used in 

place of the descriptor for the origin!ll matrix for operations 

involving the inverse of the matrix and for the determinant 

operation. That is, either the original matrix or its LU 

decomposition can be used for these operations: 

11/,,1 
G for the matrix in the X-register 

IMATRlxl9 

For these three functions, using the LU form of the matrix to be 

inverted gives a result that is identical to that using the original 

matrix. 

As an example, if you solved the matrix equation AX = B, matrix 

A would be changed to its L U form. If you wanted to change the B 

matrix and solve the equation again, you could do so without 

changing the A matrix-the L U matrix will give the correct 

solution. 

For all other matrix operations, a matrix that is an LU 

decomposition is not recognized as representing its original 

matrix. Instead, the elements of the L U matrix are used just as 

they appear in matrix memory and the result is not the result you 

would obtain using the original matrix. 

Calcu~ations With Complex Matrices 
The HP-15C enables you to perform matrix multiplication and 

matrix inversion with complex matrices (that is, matrices whose 

elements are complex numbers) and to solve systems of complex 

equations (that is, equations whose coefficients and variables are 

complex). 

However, the HP-15C stores and operates on only real matrices. 

The capability of doing calculations with complex matrices is 
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completely independent of the capability of doing calculations with 
complex numbers described in the preceding section. You don't 
need to activate Complex mode for calculations with complex 
matrices. 

Instead, calculations with complex matrices are performed by 
using real matrices derived from the original complex matrices-in 
a manner to be described below-and performing certain 
transformations in addition to the regular matrix operations. 
These transformations are performed by four calculator functions. 
This section will describe how to do these calculations. (There are 
more examples of calculations with complex matrices in the 
HP-15C Advanced Functions Handbook.) 

Storing the Elements of a Complex Matrix 

Consider an m X n complex matrix Z = X + iV, where X and Yare 
real m X n matrices. This matrix can be represented in the 
calculator as a 2m X n "partitioned" matrix: 

zP= [:] Real Part 

Imaginary Part 

The superscript P signifies that the complex matrix is represented 
by a partitioned matrix. 

All ofthe elements of zP are real numbers-those in the upper half 
represent the elements of the real part (matrix X), those in the 
lower half represent the elements ofthe imaginary part (matrix V). 
The elements of zP are stored in one of the five matrices (A, for 
example) in the usual manner, as described earlier in this section. 

For example, if Z = X + iV, where 

and Y = [Yll Y12] , 
Y21 Y22 
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then Z can be represented in the calculator by 

Suppose you need to do a calculation with a complex matrix that is 
not written as the sum of a real matrix and an imaginary matrix­
as was the matrix Z in the example above-but rather written with 
an entire complex number in each element, such as 

This matrix can be represented in the calculator by a real matrix 
that looks very similar-one that is derived simply by ignoring the 
i and the + sign. The 2 X 2 matrix Z shown above, for example, can 
be represented in the calculator in "complex" form by the 2 X 4 
matrix. 

The superscript C signifies that the complex matrix is represented 
in a "complex-like" form. 

Although a complex matrix can be initially represented in the 
calculator by a matrix of the form shown for Z C, the 
transformations used for multiplying and inverting a complex 
matrix pr·esume that the matrix is represented by a matrix of the 
form shown for Zp. The HP-15C provides two transformations that 
convert the representation of a complex matrix between ZC and 
ZP: 

Pressing Transforms Into 

m~ ZC zP 
[BJ~ zP ZC 

To do either ofthese transformations, recall the descriptor ofZ c or 
zP into the display, then press the keys shown above. The 
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transformation is done to the specified matrix; the result matrix is 
not affected. 

Example: Store the complex matrix 

Z= r4 + 3i 7- 2i1 
L1+5i 3+BiJ 

in the form ZC, since it is written in a form that shows Zc. Then 
transform ZC into the form Zp. 

You can do this by storing the elements of Z C in matrix A and then 
using the [Mfunction, where 

Keystrokes 

mlMATRlxlo 

A=ZC= r4

1 
3 7 -21 L 5 3 BJ· 

Display 

Clears all matrices. 
21 ENTER 14 [Ill DIM I [A) 4.0000 Dimensions matrix A to 

be2X4. 
[Ill MATRIX I 1 4.0000 Sets beginning row and 

column numbers in Ro 
andRl to 1. 

[IllusERI 4.0000 Activates User mode. 
4lsTol[A) 4.0000 Stores all. 

3lsTol[A) 3.0000 Stores al2. 

7\STOI[A) 7.0000 Stores al3. 

2\ CHS II STO I (A) -2.0000 Stores a 14. 

1 \ STO I [A) 1.0000 Stores a2l. 

5\STOI[A) 5.0000 Stores a22. 

3\STOI[A) 3.0000 Stores a23. 

alsTol1AJ 8.0000 Stores a24. 

[Il\USERI 8.0000 Deactivates User mode. 
I RCL II MATRIX IIAJ A 2 4 Displays descriptor of 

matrixA. 

m~ A 4 2 Transforms ZC into ZP, 
and redimensions matrix 
A. 
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Matrix A now represents the complex matrix Z in zP form: 

A = zP = [~ .... ;J. } Real Part 
3 -2 } 5 8 Imaginary Part 

The Complex Transformations 

An additional transformation must be done when you want to 
calculate the product of two complex matrices, and still another 
when you want to calculate the inverse of a complex matrix. These 
transformations convert between the zP representation of an 
m X n complex matrix and a 2m X 2n partitioned matrix of the 
following form: 

_ = [x -V] 
Z Y X· 

The matrix Z created by the I MATRIX 12 transformation has twice as 
many elements as Zp. 

For example, the matrices below show how Z is related to Zp. 

z = L~ __ -=-~_~_-:_=~] 
L-4 5;1 -6 J 

The transformations that convert the represention of a complex 
matrix between zP and Z are shown in the following table. 

Pressing Transforms Into 

miMATRlxI2 zP Z 
mIMATRIX'13. Z zP 

To do either of these transformations, recall the descriptor of zP or 
Z into the display, then press the keys shown above. The 
transformation is done to the specified matrix; the result matrix is 
not affected. 
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Inverting a Complex Matrix 

You c~n calc~ate the inverse of a complex matrix by using the fact 
that (Zt1 = (Z-l). 

To calculate the inverse, z-l, of a complex matrix Z: 

1. Store the elements ofZ in memory, in the form either ofZ P or 
ofZ c . 

2. Recall the descriptor of the matrix representing Z into the 
display. 

3. If the elements ofZ were entered in the form ZC, press [fJ~ 
to transform ZC into Zp. 

4. Press [fJ1 MATRIX 12 to transform zP into Z. 
5. Designate a matrix as the result matrix. It may be the same 

as the matrix in which Z is stored. _ r-J 

6. Press I 1 Ix I. This calculates (Z)-l, which is equal to (Z-l). The 
values of these matrix elements are stored in the result 
matrix, and the descriptor of the result matrix is placed in 
the X-register. ,...... 

7. Press [fJ1 MATRIXI3 to transform (Z-l) into (Z-l)P. 

8. If you want the inverse in the form (Z-l)C, press [gJ~. 

You can derive the complex elements of Z-l by recalling the 
elements ofZP or ZC and then combining them as described earlier. 

Example: Calculate the inverse of the complex matrix Z from the 
previous example, 

Keystrokes 

1 RCL II MATRIX I(K] 

[fJ1 MATRIX 12 

A=ZP=t~---~~· 3 -2 
5 8 

Display 

A 4 2 Recalls descriptor of 
matrixA. 

A 4 4 Transforms zP into Z, 
and redimensions matrix 
A. 
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Keystrokes Display 

[II RESULT 100 A 4 4 Designates B as the result 
matrix. 

f"oJ 

11/xl b 4 4 Calculates (Z)-l = (Z-l) 
and places the result in 
matrixB. 

f"oJ 

Illi MATRIX 13 b 4 2 Transforms (Z-l) into 
(Z-l)P. 

The representation of Z-l in partitioned form is contained in 
matrixB. 

B = t;~:;;;;---:~~~~~~j } Real Part 
-0.2829 -0.0022 } 

Imaginary Part 
0.1691 -0.1315 

Multiplying Complex Matrices 

The product of two complex matrices can be calculated by using the 
fact that {YX)p = YX p. 

To calculate YX, where Y and X are complex matrices: 

1. Store the elements ofY and X in memory, in the form either 
ofZP or ofZc . 

2. Reeall the descriptor of the matrix representing Y into the 
display. 

3. If the elements of Y were entered in the form Y c, press 
Ill~to transform yC into yp. 

4. Press III I MATRIX 12 to transform Y Pinto Y. 
5. Recall the descriptor of the matrix representing X into the 

display. 

6. If the elements of X were entered in the form XC, press 
Ill~totransform XC intoXP. 

7. Designate the result matrix; it must not be the same matrix 
as either of the other two. 
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8. Press 0 to calculate YX P = (YX)P. The values of these 
matrix elements are placed in the result matrix, and the 
descriptor ofthe result matrix is placed in the X-register. 

9. If you want the product in the form (YX)c, press [i]~. 

Note that you don't transform X Pinto X. 
You can derive the complex elements of the matrix product YX by 
recalling the elements of (YX)p or (YX)c and combining them 
according to the conventions described earlier. 

Example: Calculate the product ZZ-l, where Z is the complex 
matrix given in the preceding example. 

Since elements representing both matrices are already stored {Z in 
A and (Z-l)P in B), skip steps 1, 3, 4, and 6. 

Keystrokes Display 

IRCLlIMATRlxl~ A 4 4 Displays descriptor of 
matrixA. 

I RCLIlMATRIXI[ID b 4 2 Displays descriptor of 
matrixB. 

(!]I RESULT I(£] b 4 2 Designates C as result 
matrix. 

~ C 4 2 Calculates Z{Z-l)P = 
(ZZ-l )P. 

(!]I USER I C 4 2 Activates User mode. 
IRCLI(£] C 1.1 Matrix C, row 1, column l. 

(Displayed momentarily 
while last key held down.) 

1.0000 Value of Cll. 

I RCLI(£] -2.8500 -10 Value of c 12. 

I RCLI(£] -4.0000 -11 Value of C21. 

I RCLIITI 1.0000 Valueofc22· 
I RCL,IITI 1.0000 -11 Value of C31. 

I RCLI[£J 3.8000 -10 Value of C32. 

I RCLI(£] 1.0000 -11 Value of C41. 

I RcLI(£] -1.0500 -10 Value of C42. 

(!]I USER I -1.0500 -10 Deactivates User mode. 
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Writing down the elements ofC, 

r 
1.0000 -2.8500 X lO- lOj 

~i~~~5~-~~~~~---~~i~~~xio~1o-
1.0000 X 10-11 -1.0500 X 10-10 

C= 

where the upper half of matrix C is the real part of ZZ-1 and the 
lower half is the imaginary part. Therefore, by inspection of matrix 
C, 

ZZ-1 = r 1.0000 
L-4.0000 X 10-11 

[ 
1.0000 X 10-11 

+i 
1.0000 X 10-11 

As expected, 

-2.8500 X 10-10 
] 

1.0000 

3.8000 X 10-11 
] 

-1.0500 X 10-10 

Solving the Complex Equation AX = B 
You can solve the complex matrix equation AX = B by finding 
X = A -1 B. Do this by calculating X P = (Ar l B P • 

To solve the equation AX = B, where A, X, and B are complex 
matrices: 

1. Store the elements of A and B in memory, in the form either 
ofZPorofZ c . 

2. Recall the descriptor of the matrix representing B into the 
display. 

3. If the elements of B were entered in the form B c, press (!) 
~ to transform Be into B P• 
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4. Recall the descriptor of the matrix representing A into the 
display. 

5. If the elements of A were entered in the form of A c, press rn 
~ to transform A C into A p. 

6. Press rnl MATRIX 12 to transform A Pinto A. 
7. Designate the result matrix; it must not be the same as the 

matrix representing A. 

8. Press G; this calculates X p
. The values of these matrix 

elements are placed in the result matrix, and the descriptor 
of the result matrix is placed in the X-register. 

9. If you want the solution in the form Xc, press(a)~. 

Note that you don't transform B P into B. 
You can derive the complex elements of the solution X by recalling 
the elements of xP or XC and combining them according to the 
conventions described earlier. 

Example: Engineering student A. C. Dimmer wants to analyze the 
electrical circuit shown below. The impedances of the components 
are indicated in complex form. Determine the complex representa­
tion ofthe currents II and 12, 

£=5 Zc=-30i 

This system can be represented by the complex matrix equation 

or 

[

W+200i 

-200i 
-200i] [II] [5] 

(200-30)i 12 = 0 

AX=B. 
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In partitioned form, 

A = t-~~----~]- and B = f~j 200 -200 0 ' 
-200 170 0 

where the zero elements correspond to real and imaginary parts 
with zero value. 

Keystrokes Display 

41 ENTERI2 ml DIMIIKJ 2.0000 Dimensions matrix A to 
be4X2. 

m[MA!RiXJ1 2.0000 Set beginning row and 
column numbers in He 
andR l to 1. 

mlUSERI 2.0000 Activates User mode. 

1olsTOI~ 10.0000 Stores all' 
OISTOI~ 0.0000 Stores a12' 

ISTOI~ 0.0000 Stores a21' 

ISTOI~ 0.0000 Storesa22' 
200lsTOI~ 200.0000 Stores a3l' 
ICHSllsTOl1K] -200.0000 Stores a32' 

ISTOI~ -200.0000 Stores a4l' 
1701sTOII~ 170.0000 Storesa42' 
41 ENTER 11 ml DIM I[[] 1.0000 Dimensions matrix B to 

be4 X 1. 

o I STO II MATRIXI[[] 0.0000 Stores value 0 in all 
elements of B. 

51ENTERI1 I ENTER 1 1.0000 Specifies value 5 for row 
1, column 1. 

I STO I[SJ[[] 5.0000 Stores value 5 in bu. 
I RCL II MATRIX 1 [[] b 4 Recalls descriptor for 

matrixB. 
IRCLIlMATRlxl~ A 4 2 Places descriptor for 

matrix A into X-register, 
moving descriptor for 
matrix B into V-register. 
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Keystrokes Display 

[IJ [MA'fRIX] 2 A 4 4 Transforms A P into A-
[IJIRESULTI[£] A 4 4 Designates matrix C as 

result matrix. 

G C 4 1 Calculates X P and 
stores inC. 

~~ C 2 2 Transforms X P into Xc. 

I RCLI[£] 0.0372 Recalls C ll' 

I RCLI[£] 0.1311 Recalls C12' 

I RCLI[£] 0.0437 Recalls C 21' 

I RCLI[£] 0.1543 Recalls C 22. 

mlUSERI 0.1543 Deactivates User mode. 

mlMATRlxlO 0.1543 Redimensions all 
matrices to ° X 0. 

The currents, represented by the complex matrix X, can be derived 
fromC: 

X = [h] = [0.0372+0.1311i] 
12 0.0437 + 0.1543i . 

Solving the matrix equation in the preceding example required 24 
registers of matrix memory-I6 for the 4 X 4 matrix A (which was 
originally entered as a 4 X 2 matrix representing a 2 X 2 complex 
matrix), and four each for the matrices Band C (each representing 
a 2 X 1 complex matrix). (However, you would have used four fewer 
registers if the result matrix were matrix B.) Note that since X and 
B are not restricted to be vectors {that is, single-column matrices), 
X and B could have required more memory. 

The HP-15C contains .Bufficient memory to solve, using the method 
described above, the complex matrix equation AX = B with X and 
B having up to six columns if A is 2 X 2, or up to two columns if A is 
3 X 3.* (The allowable number of column.s doubles if the constant 
matrix B is used as the result matrix.) If X and B have more 
columns, or if A is 4 X 4, you can solve the equation using the 

• H all available memory space is dimensi<>ned to the common pool (I MEM I: 1 840·0). 
Refer to appendix C, Memory Anlocation. 
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alternate method below. This method differs from the preceding 
one in that it involves separate inversion and multiplication 
operations and fewer registers. 

1. Store the elements of A in memory, in the form either of A P 

orofA c . 

2. Recall the descriptor of the matrix representing A into the 
display. 

3. If the elements of A were entered in the form A c, press 
[IJ~ to transform A C into A p. 

4. Press [IJI MATRIX 12 to transform A P into A. 
5. Press I STO II RESUh. T I to designate the matrix representing A 

as the result matrix. 

6. Pressll/xlto calculate (A)-I. 

7. Redimension A to have half the number of rows as indicated 
in the display of its descriptor after the preceding step. 

8. Store the elements of B in memory, in the form either of B P 

orofB c . 

9. Recall the descriptor of the matrix representing A into the 
display. 

10. Recall the descriptor of the matrix representing B into the 
display. 

11. If the elements of B were entered in the form B c, press 
[IJ~totransform BC into BP. 

12. Press [IJI MATRIX 12 to transform BPinto B. 
13. Designate the result matrix; it must not be the same matrix 

as either of the other two. 

14. Press@. 

15. Press [IJI MATRIX 14 to transpose the result matrix. 

16. Press [11 MATRIX I 2. 

17. Redimension the result matrix to have half the number of 
rows as indicated in the display of its descriptor after the 
preceding step. 
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18. Press IRCLIIRESULTI to recall the descriptor of the result 
matrix. 

19. Press [Ill MATRIXl4 to calculate X p
. 

20. If you want the solution in the form Xc, press (B] ~. 

A problem using this procedure is given in the Hp·15C Advanced 
Functions Handbook under Solving a Large System of Complex 
Equations. 

Miscellaneous Operations Involving Matrices 

Using a Matrix Element With Register Operations 

If a letter key specifying a matrix is pressed after any of the 
following function keys, the operation is performed using the 
matrix element specified by the row and column numbers in Ito and 
Rr. just as though it were a data storage register. 

ISTOI* IRCLI* 
ISTOI10,G,~,G) IRCLI{0,G,~,GJ 
IOSEI IISG I 
(rt] 

Using Matrix Descriptors in the Index Register 

In certain applications, you may want to perform a programmed 
sequence of matrix operations using any ofthe matrices A through 
E. In this situation, the matrix operations can refer to whatever 
matrix descriptor is stored in the index register (RI ). 

Ifthe index register contains a matrix descriptor: 

• Pressing []I] after any of the functions listed above performs 
the operation using the element specified by Ro and R[ and the 
matrix specified in RI . 

• Pressing []I] after I STO I (B] or I RCL I (iJ performs the operation 
using the element specified by the row and column numbers in 
the y. and X·registers and the matrix specified in R I . 

• Also, in User mode the row and column numbers in RO and Hi are incremented 
according to the djmensions of the specified matrix. 



174 Section 12: Calculating With Matrices 

• Pressing rn I DIM I rn dimensions the matrix specified in Rr 
according to the dimensions in the X- and Y-registers . 

• Pressing I RCll1 DIM I rn recalls to the X- and Y-registers the 
dimensions ofthe matrix specified in RI . 

• Pressing I GSB I rn or I GTO I rn has the same result as pressing 
I GSB I: or I GTO I followed by the letter of the matrix specified in 
RI . (This is not actually a matrix operation-only the letter in 
the matrix descriptor is used.) 

Conditional Tests on Matrix Descriptors 

Four conditional tests-Ix=ol, ITESTlo (x # 0), I TEST! 5 (x = y), and 
ITESTI6 (x # y)-can be performed with matrix descriptors in the X­
and Y-registers. Conditional tests can be used to control program 
execution, as described in section 8. 

If a matrix descriptor is in the X·register, the result ofl x=ol will be 
false and the result of I TEST I 0 will be true (regardless of the element 
values in the matrix.) 

If matrix descriptors are in the X- and Y-registers when I TEST 15 or 
I TEST 16 conditional test is performed, x and y are equal if the same 
descriptor is in the X- and Y-registers, and not equal otherwise. The 
comparison is made between the descriptors themselves, not 
between the elements of the specified matrices. 

Other conditional tests can't be used with matrix descriptors. 

Stack Operation for Matrix Calculations 
During matrix calculations, the contents of the stack registers shift 
much like they do during numeric calculations. 

For some matrix calculations, the result is stored in the result 
matrix. The arguments-one or two descriptors or numbers in the 
X-register or the X- and Y-registers-are combined by the 
operation, and the descriptor of the result matrix is placed in the 
X-register. (The argument from the X-register is placed in the 
LAST X register.) 
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6.0000 ... 6.0000 

5.0000 .. 5.0000 

4.0000 ... 4.0000 

matrix A .. result mat . 

matrix A 

5.0000 ;::: 4.0000 

matrix B 

~ matrix A 

5.0000 

5.0000 

4.0000 

result mat. 

matrix A 

Several matrix functions operate on the matrix specified in the 
X-register only and store the result in the same matrix. For these 
operations the contents of the stack (including the LAST X 
register) are not moved-although the display changes to show the 
new dimensions if necessary. 

For the I MATRIX I 7, I MATRIX I 8, and I MATRIX I 9 functions, the 
matrix descriptor specified in the X-register is placed in the 
LAST X register and the norm or (for I MATRIX I 9) the determinant is 
placed in the X-register. The Y-, Z-, and T-registers aren't changed. 

When you recall descriptors or matrix elements into the X-register 
(with the stack enabled), other descriptors and numbers alread!y in 
the stack move up in the stack-and the contents of the T-register 
are lost. (The LAST X register is not changed.) When you store 
descriptors or matrix elements, the stack (and the LAST X register) 
isn't changed. 

In contrast to the operation described above, the I STO , [iI and I RCL I 
[iI functions do not affect the LAST X register and operate as 
shown on the next page. 
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T 

Z 
y 

X 

T 

Z 

Y 
X 

4.0000 

value 

row number 

col. number 

6.0000 

4.0000 

row number 

col. number 

I STO 1[i](K) 

~ j 

lost 

4.0000 

4.0000 

4.0000 

value 

lost 

5.0000 

6.0000 

4.0000 

value 

Using Matrix Operations in a Program 
If the calculator is in User mode during program entry when you 
enter a I STO I or I RCL I {(K) through [n [ill]} instruction to store or 
recall a matrix element, a u replaces the dash usually displayed 
after the line number. When this line is executed in a running 
program, it operates as though the calculator were in User mode. 
That is, the TOW and column numbers in Ro and Rl are 
automatically incremented according to the dimensions of the 
specified matrix. This allows you to access elements sequentially. 
(The USER annunciator has no effect during program execution.) 

In addition, when the last element is accessed by the "User" I STO I 
or I RCL I instruction-when Ro and Rl are returned to I-program 
execution ski.ps the next line. This is useful for programming a loop 
that stores or recalls each matrix element, then continues 
executing the program. For example, the following sequence 
squares all elements of matrix D: 
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For all 1--1 
matrix I 
elements 
except last I 

L __ 

miLBLJ4 

I RCLI[Q] 

[BJ(ZJ 

"User"l STO I[Q] 

IGTOl4 

L For last 
I matrix element --- ... ...J 

t 
The I MATRIX I 7 (row norm) and I MATRIX I 8 (Frobenius norm) 
functions also operate as conditional branching instructions in a 
program. If the X-register contains a matrix descriptor, these 
functions calculate the norm in the usual manner, and program 
execution continues with the next program line. If the X-register 
contains a number, program execution skips the next line. In both 
cases, the original contents of the X-register are stored in the 
LAST X register. This is useful for testing whether a matrix 
descriptor is in the X-register during a program. 

Summary of Matrix Functions 
Keystroke(s) 

[BJ/li!] 

/cHsl 

[II DIM I {[K] 
through 00, [m 
ffifMAi'RiXlo 
m fMAi'RiXl1 
mlM&IDRl2 
0lM&IDRl3 
mlM&!!.®4 

mlMATlUXIS 

Results 

Transforms zP intoZ C. 

Changes sign of all elements in matrix specified in 
X-register. 

Dimensions specified matrix. 

Dimensions all matrices to 0 X O. 

Sets row and column numbers in Ro and A, to 1. 

Transforms zP into Z. 
Transforms Z into Zp. 

Calculates transpose of matrix specified in 
X-register. 

Multiplies transpose of matrix specified in 
V-register with matrix specified in X-register. 
Stores in result matrix. 
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Keystroke(s) 

III I MATRIX 16 
III I MATRIX 17 

III 1 MATRIXls 

1ll(M 
I RCLI{(A] 
through[ID. (ill]} 

1 RCL I[S],{ (A] 
through [ID. (ill]} 

IRGlilOIMI{(A] 

through rID. [I)} 

1 RCLII MATRIX I{ (A] 
through rID} 
IRCLIIRESULTI 

[!JI RESULTI{(A] 

through rID} 
Isrol{(A] 
throug h [n (ill]} 

I STO l(il{ (A] 

through rID. ffiIJ} 

1 STO II MATRIX I{ (A] 
through [IDJ 

Results 

Calculates residual in result matrix. 

Calculates row norm of matrix specified in 
X-register. 

Calculates Frobenius or Euclidean norm of matrix 
specified in X-register. 

Calculates determinant of matrix specified in 
X-register. Places LU in result matrix. 

Transforms ZC into zP 
Recalls value from specified matrix. using row and 
column numbers in Ro and R1• 

Recalls value from specified matrix. using row and 
column numbers in Y - and X-registers. 

Recalls dimensions of specified matrix into X- and 
Y -registers. 

Displays descriptor of specified matrix. 

Displays descriptor of result matrix. 

Designates specified matrix as result matrix. 

Stores value from display into element of specified 
matrix. using row and column numbers in Ro and 

R1• 

Stores value from Z-register into element of 
specified matrix. using row and column numbers in 
Y - and X-registers. 

If matrix descriptor is in display. copies all 
elements of that matrix into corresponding 
elements of specified matrix. If number is in 
display. stores that value in all elements of 
specified matrix. 



Keystroke(s) 

l STO II RESULT! 

G.G 
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Results 

Designates matrix specified in X-register as result 
matrix. 

Rowand column numbers in Ro and R1 are 
automatically incremented each timel STO I or 
l Rell{ ~through []]. ffii)} is pressed. 

Inverts matrix specified in X-register. Stores in 
result matrix. 

If matrix descriptors specified in both X- and 
V-registers. adds or subtracts corresponding 
elements of matrices specified. If matrix descriptor 
specified in only one of these registers. performs 
addition or subtraction with all elements in 
specified matrix and scalar in other register. Stores 
in result matrix. 

If matrix descriptors specified in both X- and 
V-registers. calculates product of specified 
matrices (as YX). If matrix specified in only one of 
these registers. rnultiplies all elements in specified 
matrix by scalar in other register. Stores in result 
matrix. 

If matrix descriptors specified in both X- and V­
registers. multiplies inverse of matrix specified in 
X-register with matrix specified in V-register. If 
matrix specified in only V-register. divides all 
elements of specified matrix by scalar in other 
register. If matrix specified in only X-registeir. 
mUltiplies each element of inverse of specified 
matrix by scalar in other register. Stores in result 
matrix. 

For Further Information 
The HP-15C Advanced Functions Handbook presents more 
detailed and technical aspects of the matrix functions in the 
HP-15C, including applications. The topics include: least-squares 
calculations, solving nonlinear equations, ill-conditioned and 
singular matrices, accuracy considerations, iterative refinement, 
and creating the identity matrix. 



Section 13 

Finding the Roots 
of an Equation 

In many applications you need to solve equations of the form 

f(x) =0.*' 

This means finding the values of x 
that satisfy the equation. Each such 
value of x is called a root of the 
equation f(x) = 0 and a zero of the 
function f(x). These roots (or zeros) 
that are real numbers are called real 
roots (or real zeros). For many 
problems the roots of an equation can 
be determined analytically through 
algebraic manipulation; in many 
other instances, this is not possible. 

!(x) 

ROOT 

-+----.:It---x 

Numerical techniques can be used to estimate the roots when 
analytical methods are not suitable. When you use the I SOLVE I key 
on your HP-15C, you utilize an advanced numerical technique that 
lets you effectively and conveniently find real roots for a wide 
range of eq1ilations. t 

Using I SOLVE I 
In calculating roots, the I SOLVE I operation repeatedly calls up and 
executes a subroutine t hat you write for evaluating f(x) . 

• Actually, any equation with one variable can be expressed in this form. For example, 
rex) = a is equivalenttof(x) - a = O. andr(x) =g(x) is equivalent tor(x) - g(x) = O. 

t The I SOLVE I function does not use the imaginary stack. Refer to the Hp·15C Advanced 
Functions Handbook for information about complex roots. 

180 
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The basic rules for using I SOLVE 1 are: 

1. In Program mode, key in a subroutine that evaluates the 
function f(x) that is to be equated to zero. This subroutine 
must begin with a label instruction ([!JllBlllabel) and end up 
with a result for f(x) in the X·register. 

In Run mode: 

2. Key two initial estimates of the desired root, separated by 
I ENTER I, into the X· and Y·registers. These estimates merely 
indicate to the calculator the approximate range of x in 
which it should initially seek a root of f(x) = O. 

3. Press rnl SOLVE 1 followed by the label of your subroutine. The 
calculator then searches for the desired zero of your function 
and displays the result. If the function that you are 
analyzing equals zero at more than one value of x, the 
routine will stop when it finds anyone of those values. To 
find additional values, you can key in different initial 

. estimates and use I SOLVE 1 again. 

Immediately before I SOLVE 1 addresses your subroutine it places a 
value of x in the X-, Y-, Z-, and T-registers. This value is then used 
by your subroutine to calculate f(x). Because the entire stack is 
filled with the x-value, this number is continually available to your 
subroutine. (The use of this technique is described on page 41). 

Example: Use I SOLVE 1 to find the values of x for which 

f(x) = x 2 - 3x -10 = O. 

Using Horner's method (refer to page 79), you can rewrite f(x) so 
that it is programmed more efficiently: 

f(x) = (x -3)x -10. 

In Program mode, key in the following subroutine to evaluate f(x). 

Keystrokes 

[9]1 P/R 1 
ITl CLEAR I PflGM 1 

Display 

000-
000-

Program mode. 
Clear program memory. 
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Keystrokes 

[IJI lBllo 

3 
G 
o 
1 
o 
G 
!alIRTNI 

Display 

001-42.21. 0 Begin with I lBl I 
instruction. Subroutine 
assumes stack loaded 
withx. 

002- 3 
003- 30 Calculate x - 3. 
004- 20 Calculate (x - 3)x. 

005- 1 
006- 0 
007- 30 Calculate (x - 3)x - 10. 
008- 4332 

In Run mode, key two initial estimates into the X- and Y-registers. 
Try estimates of 0 and 10 to look for a positive root. 

Keystrokes Display· 

!all P/R I Run mode. 
OIENTERI 0.0000 } 10 10 

Initial estimates. 

You can now find the desired root by pressing [IJ I SOLVE 10. When 
you do this, the calculator will not display the answer right away. 
The HP-15C uses an iterative algorithmt to estimate the root. The 
algorithm analyzes your function by sampling it many times, 
perhaps a dozen times or more. It does this by repeatedly executing 
your subroutine. Finding a root will usually require about 30 
seconds to 2 minutes; but sometimes the process will require even 
more time. 

Press [IJI SOLVE 10 and sit back while YOUir HP-15C exhibits one of its 
powerful capabHities. The display flashes runnillg while I SOLVE I is 
operating . 

• Press illWRl4 to -0 btain the displays shown here. The clisplay setting does nobnfluence 
the operation ofl SOLVE I. 

t An algorithm is a step·by·step procedure for solving a mathematical problem. An 
it,erative algorithm is one containing a portion that-is executed a number of times in the 
proce.ss of solving the problem. 



Keystrokes 

IIlI SOLVE 10 
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Display 

5.0000 The desired root. 

After the routine finds and displays the root, you can ensure that 
the displayed number is indeed a root of f{x) = 0 by checking the 
stack. You have seen that the display (X-register) contains the 
desired root. The Y-register contains a previous estimate of the 
root, which should be very close to the displayed root. The 
Z-register contains the value of your function evaluated at the 
displayed root. 

Keystrokes 

[HJ 

Display 

5.0000 

0.0000 

A previous estimate of 
the root. 
Value of the function at 
the root showing that 
f(x)=O. 

Quadratic equations, such as the one you are solving, can have two 
roots. If you specify two new initial estimates, you can check for a 
second root. Try estimates of 0 and -10 to-look for a negative root. 

Keystrokes Display 

OIENTER\ 0.0000 } Initial estimates. 
101cHS\ -10 
!IJISOLVE\O -2.0000 The second root. 
[ftIJ -2.0000 A previous estimate of 

the root. 
[HJ 0.0000 Valueoff(x) atsecond 

root. 
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You have now found the two roots of 
f(x} == O. Note that this quadratic 
equation could have been solved 
algebraically-and you would have 
obtained the same roots that you 
found using I SOLVE !. 

fix) 
30 

-20 

Graph of f(x) 

The convenience and power of the I SOLVE'I key become more 
apparent when you solve an equation for a root that cannot be 
determined algebraically. 

Example: Champion rid get hurler 
Chuck Fahr throws a ridget with an 
upward velocity of 50 meters/second. 
If the height of the ridget is expressed 
as 

h == 5000(1- e-!l2~ - 200t, 

how long does it take for it to reach 
the ground again? In this equation, h 
is the height in meters and t is the 
time in seconds. 

Solution: The desired solution is the positive value of t at which 
h==O. 

Use the following subroutine to calculate the height. 

Keystrokes 

(ill P/R I 
mILBLI~ 

2 

o 
o 

Display 

000-
001-42.21.11 Begin with label. 

002- 2 Subroutine assumes tis 

003-
004-

o 
10 

loaded in X- and Y­
registers. 
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Keystrokes Display 

iCHS) 005- 16 -tI20. 

~ 006- 12 
ICHS) 007- 16 -e -tl20. 

1 008- 1 
G 009- 40 1- e- t !2o. 

5 010- 5 
0 011- 0 
0 012- 0 
0 013- 0 
0 014- 20 5000 (1 - e- 1I2!). 
[ili] 015- 34 Brings another t-value 

into X-register. 

2 016- 2 
0 017- 0 
0 018- 0 
0 019- 20 200t. 

B 020- 30 5000 (1 - e-tI20) - 200t. 

[BJI RTN) 021- 4332 

Switch to Run mode, key in two initial estimates of the time (for 
example,5 and 6 seconds) and execute I SOLVE I. 

Keystrokes Display 

[BJI P/R 1 Run mode. 
51ENTERI 5.0000 } 6 6 Initial estimates. 

ITlISOLVE)!Kl 9.2843 The desired root. 

Verify the root by reviewing the Y - and Z-registers. 

Keystrokes 

[BlJ 

Display 

9.2843 

0.0000 

A previous estimate ofthe 
root. 
Value ofthe function at 
the root shoVloing that 
h=O. 
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Fahr's ridget falls to the ground 
9.2843 seconds after he hurls it-a h(tj 
remarkable toss. 120 

-2 -20 

Graph of h versus t 

When No Root Is Found 
You have seen how the I SOLVE I key estimates and displays a root of 
an equation of the form (xl = o. However, it is possible that an 
equation has no real roots (that is, there is no real value of x for 
which the equality is true). Of course, you would not expect the 
calculator to find a root in this case. Instead, it displays Error 8. 

Example: Consider the equation 

Ixl=-l 

which has no solution since the 
absolute value function is never 
negative. Express this equation in 
the required form 

Ixl+ 1 =0 

and attempt to use ISOLVEI to find a 
solution. 

Display 

((xl 
10 

__ +--+--+--+-__ x 

-4 -2 8 

Graph of f(xl = Ixl-t 1 

Keystrokes 

[9]IP/RI 000- Program mode. 
ill 1 LBLI1 
[9]IABS!1 
1 
[!J 
[9]IRTNI 

001-42.21. 
002- 4316 
003- 1 
004- 40 
005- 4332 
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Because the absolute-value function is minimum near an argument 
of zero, specify the initial estimates in that region, for instance 1 
and -1. Then attempt to find a root. 

Keystrokes Display 

[ill P/R I Run mode. 
1 I ENTER I 1.0000 } Initial estimates. 
llcHSI -1 
(IJISOLVEll Error 8 This display indicates 

that no root was found. 

~ 0.0000 Clear error display. 

As you can see, the HP-15C stopped seeking a root of {(x) = 0 when 
it decided that none existed-at least not in the general range of x 
to which it was initially directed. The Error 8 display does not 
indicate that an "illegal" operation has been attempted; it merely 
states that no root was found where I SOLVE I presumed one might 
exist (based on your initial estimates). 

If the HP-15C stops seeking a root and displays an error message, 
one of these three types of conditions has occurred: 

• If repeated iterations all produce a constant nonzero value for 
the specified function, execution stops with the display 
ErrorS. 

• If numerous samples indicate that the magnitude of the 
function appears to have a nonzero minimum value in the 
area being searched, execution stops with the display Error 8. 

• If an improper argument is used in a mathematical operation 
as part of your subroutine, execution stops with the display 
ErrorO. 

In the case of a constant function value, the routine can see no 
indication of a tendency for the value to move toward zero. This 
can occur for a function whose first 10 significant digits are 
constant (such as when its graph levels off at a nonzero horizontal 
asymptote) or for a function with a relatively broad, local "flat" 
region in comparison to the range of x-values being tried. 

In the case where the function's magnitude reaches a nonzero 
minimum, the routine has logically pursued a sequence of samples 
for which the magnitude has been getting smaller. However, it has 
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not found a value of x at which the function's graph touches or 
crosses the x -axis. 

The final case points out a potential deficiency in the subroutine 
rather than a limitation of the root-finding routine. Improper 
operations may sometimes be avoided by specifying initial 
estimates that focus the search in a region where such an outcome 
will not occur. However, the I SOLVE I routine is very aggressive and 
may sample the function over a wide range. It is a good practice to 
have your subroutine test or adjust potentially improper argu­
ments prior to performing an operation (for instance, use I ABS I 
prior to 00). Rescaling variables to avoid large numbers can also 
be helpful. 

The success of the I SOLVE I routine in locating a root depends 
primarily upon the nature of the function it is analyzing and the 
initial estimates at which it begins searching. The mere existence 
of a root does not ensure that the casual use of the I SOLVE I key will 
find it. If the function {(x) has a nonzero horizontal asymptote or a 
local minimum of its magnitude, the routine can be expected to find 
a root of {(x) = 0 only if the initial estimates do not concentrate the 
search in one of these unproductive regions-and, of course, if a 
root actually exists. 

Choosing Initial Estimates 
When you use I SOLVE Ito find the root of an equation, the two initial 
estimates that you provide determine the values of the variable x at 
which the routine begins its search. In general, the likelihood that 
you will find the particular root you are seeking increases with the 
level of understanding that you have about the function you are 
analyzing. Realistic, intelligent estimates greatly facilitate the 
determination of a root. 

The initial estimates that you use may be chosen in a number of 
ways: 

If the variable x has a limited range in which it is conceptually 
meaningful as a solution, it is reasonable to choose initial 
estimates within this range. Frequently an equation that is 
applicable to a real problem has, in additionto the desired solution, 
other roots that are physically meaningless. These usually occur 
because the equation being analyzed is appropriate only between 
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certain limits of the variable. You should recognize this restriction 
and interpret the results accordingly. 

If you have some knowledge ofthe behavior of the functionf(x) as 
it varies with different values of x, you are in a position to specify 
initial estimates in the general vicinity of a zero of the function. 
You can also avoid the more troublesome ranges of x such as those 
producing a relatively constant function value or a minimum ofthe 
function's magnitude. 

Example: Using a rectangular piece 
of sheet metal 4 decimeters by 8 
decimeters, an open-top box having a 
volume of 7.5 cubic decimeters is to be 
formed. How should the metal be 
folded? (A taller box is preferred to a 
shorter one.) 

Solution: You need to find the 
height of the box (that is, the amount 
to be folded up along each of the four 
sides) that gives the specified volume. If x is the height (or amount 
folded up), the length of the box is (8 - 2x) and the width is 
(4 - 2x). The volume Vis given by 

V= (8 - 2x)(4 - 2xlx. 

By expanding the expression and then using Horner's method 
(page 79), this equation can be rewritten as 

V= 4«x - 6)x + 8)x. 

To get V = 7.5, find the values of x for which 

{(x) = 4«x - 6)x+ 8)x -7.5 = O. 

The following subroutine calculates {(x): 

Keystrokes 

[9J1 P/R I 
[IJILBLI3 
6 

Display 

000- Program mode. 

001-42.21. 3 Label. 
002- 6 Assumes stack loaded 

withx. 
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Keystrokes Display 

B 003- 30 
0 004- 20 (x - 6)x. 

8 006- 8 
0 006- 40 
0 007- 20 «x - 6)x + 8)x. 

4 008- 4 
0 009- 20 4«x - 6)x + 8}x. 

7 010- 7 
[J 011- 48 
5 012- 5 
B 013- 30 
~IRTNI 014- 4332 

It seems reasonable that either a tall, narrow box or a short, flat 
box -could be formed having the desired volume. Because the taller 
box is preferred, larger initial estimates of the height are 
reasonable. However, heights greater than 2 decimeters are not 
physically possible (because the metal is only 4 decimeters wide). 
Initial estimates of 1 and 2 decimeters are therefore appropriate. 

Find the desired height: 

Keystrokes Display 

~Ip/RI Run mode. 
11ENTERf 1.0000 } Initial estimates. 
2 2 
[II SOLVE f3 1.6000 The desired height. 
(H] 1.5000 Previous estimate. 
(H] 0.0000 t(x) at root. 
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By making the height 1.5 decimeters, 
a 5.0 X 1.0 X 1.5-decimeter box is 
specified. 

If you ignore the upper limit on the 
height and use initial estimates of 3 
and 4 decimeters (still less than the 
width), you will obtain a height of 
4.2026 decimeters-a root that is 
physically meaningless. If you use 
small initial estimates such as 0 and 
1 decimeter, you will obtain a height 
of 0.2974 decimeter-producing an 
undesirably short, flat box. 

!(x) 

30 

_+-,~~~~-t-5~X 

Graph of f(xl 

AB an aid for examining the behavior of a function, you can easily 
evaluate the function at one or more values of x using your 
subroutine in program memory. To do this, fill the stack with x. 
Execute the subroutine to calculate the value of the function (press 
m letter label or I GSB I label. 

The values you calculate can be plotted to give you a graph of the 
function. This procedure is particularly useful for a function whose 
behavior you do not know. A simple-looking function may have a 
graph with relatively extreme variations that you might not 
anticipate. A root that occurs near a localized variation may be 
hard to find unless you specify initial estimates that are close to the 
root. 

If you have no informed or intuitive concept of the nature of the 
function or the location of the zero you are seeking, you can search 
for a solution using trial-and-error. The success of finding a 
solution depends partially upon the function itself. Trial-and-error 
is often-but not always-successful. 

• If you specify two moderately large positive or negative 
estimate,s and the function's graph does not have a horizontal 
asymptote, the routine will seek a zero which might be the 
most positive or negative (unless the function oscillates many 
times, as the trigonometric functions do). 

• If you have already found a zero of the function, you can check 
for another solution by specifying estimates that are relatively 
distant from any known ze'ros. 
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• Many functions exhibit special behavior when their argu­
ments approach zero. You can check your function to 
determine values of x for which any argument within your 
function becomes zero, and then specify estimates at or near 
those values. 

Although two different initial estimates are usually supplied when 
using I SOLVE I, you can also use I SOLVE 1 with the same estimate in 
both the X- and Y-registers. If the two estimates are identical, a 
second estimate is generated internally. If your single estimate is 
nonzero, the second estimate differs from your estimate by one 
count in the seventh significant digit. If your estimate is zero, 
1 X 10-7 is used as the second estimate. Then the root-finding 
procedure continues as it normally would with two estimates. 

Using I SOLVE I in a Program 
You can use the I SOLVE 1 operation as part of a program. Be sure 
that the program provides initial estimates in the X- and Y­
registers just prior to the I SOLVE I operation. The I SOLVE I routine 
stops with a value of x in the X-register and the corresponding 
function value in the Z-register.1f the x-value is a root, the program 
proceeds to the next line. If the x-value is not a root, the next line is 
skipped. (Refer also to Interpreting Results on page 226 for a 
further explanation of roots.) Essentially, the /SOLVEI instruction 
tests whether the x-value is a root and then proceeds according to 
the "Do if True" rule. The program can then handle the case of not 
finding a root, such as by choosing new initial estimates or 
changing a function parameter. 

The use of I SO LVE I as an instruction in a program utilizes one of the 
seven pending returns in the calculator. Since the subroutine called 
by I SOLVE 1 utilizes another return, there can be only five other 
pending returns. Executed from the keyboard, on the other hand, 
1 SOLVE 1 itself does not utilize one of the pending returns, so that six 
pending returns are available for subroutines within the 
subroutine calltd by I SOLVE I. Remember that if all seven pending 
returns have been utilized, a call to another subroutine will result 
in a display of Error 5. (Refer to page 105.) 
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Restriction on the Use of I SOLVE I 
The one restriction regarding the use of ISOLVEI is that 1 SOLVE 1 

cannot be used recursively. That is, you cannot use 1 SOLVE 1 in a 
subroutine that is called during the execution of 1 SOLVE I. If this 
situation occurs, execution stops and Error 7 is displayed. It is 
possible, however, to use I SOLVE 1 with [!D, thereby using the 
advanced capabilities. of both ofthese keys. 

Memory Requirements 
I SOLVE 1 requires five registers to operate. (Appendix C explains how 
they are automatically allocated from memory.) If five unoccupied 
registers are not available, I SOLVE 1 will not run and Error 10 will be 
displayed. 

A routine that combines I SOLVE I and [!D requires 23 registers of 
space. 

For Further Information 
In appendix D, Advanced Use of I SOLVE!, additional techniques 
and explanations for using I SOLVE 1 are presented. These include: 

• HowfSOLVElworks. 

• Accuracy of the root. 

• Interpreting results. 

• Finding several roots. 

• Limiting estimation time. 
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Numerical Integration 

Many problems in mathematics, sci· 
ence, and engineering require calcu· 
lating the definite integral of a 
function. If the functi.on is denoted by 
{(x) and the interval of integration is 
a to b, the integral can be expressed 
mathematically as 

((x) 

The quantity I can be interpreted geometrically as the area of a 
region bounded by the graph of ((x), the x-axis, and the limits x = a 
and x = b.* 

When an integral is difficult or impossible to evaluate by 
analytical methods, it can be calculated using numerical 
techniques. Usually, this can be done only with a fairly 
complicated computer program. With your HP-15C, however, you 
can easily do numerical integration using the (ft](integrate) key.t 

Using[ZU 
The basic rules for using [KJ are: 

1. In Program mode, key in a subroutine that evaluates the 
function {(x) that you want to integrate. This subroutine 
must begin with a label instruction (I]I LBL 1 label) and end up 
with a value for ((x) in the X-register . 

• Provided that f(x) is nonnegative throughout the inteTval of integration. 

t The 0 function does not. use the imaginary stack. Refer to the HP·15C Advanced 
Functions Handbook for information about uoing0in Complex mode. 

194 
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In Run mode: 

2. Key the lower limit ofintegration (a) into the X-register, then 
press I ENTER 1 to lift it into the Y-register. 

3. Key the upper limit of integration (b) into the X-register. 

4. Press m0followed by the label of your subroutine. 

Example: Certain problems in physics and engineering require 
calculating Bessel functions. The Bessel function of the first kind 
of order 0 can be expressed as 

1 I"" Jo (x) = - cos (x sin 0) dB. 
11" 0 

Find 1 1" Jo(l)=- cos (sin 0) dB. 
11" 0 

In Program mode, key in the following subroutine to evaluate the 
functionf(O) = cos (sin B). 

Keystrokes Display 

[BJI PIR 1 000- Program mode. 

m CLEAR I PRGM 1 000- Clear program memory. 

IIlllBllo 001-42,21. 0 Begin subroutine with a 
IlBll instruction. 
Subroutine assumes a 
value of (J is in X-register. 

ISINI 002- 23 Calculate sin O. 

leosl 003- 24 Calculate cos (sin B). 

[BJliRTNI 004- 4332 

Now, in Run mode key the lower limit of integration into the Y­
register and the upper limit into the X-register. For this particular 
problem, you also need to specify Radians mode for the 
trigonometric functions. 
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Keystrokes Display 

[BJI P/R I 
01 ENTER 1 0.0000 

[BJ[i] 3.1416 

[BJI RAD I 3.1416 

Run mode. 

Key lower limit, 0, into 
Y-register. 

Key upper limit, 11", into 
X-register. 

Specify Radians mode for 
trigonometric functions. 

N ow you are ready to press [] [KJ 0 to calculate the integral. When 
you do so, you'll find that-just as with I SOLVE I-the calculator will 
not display the result right away, as it does with other operations. 
The HP-15C calculates integrals. using a sophisticated iterative 
algorithm. Briefly, this algorithm evaluates f(x), the function to be 
integrated, at many values of x between the limits of integration. 
At each of these values, the calculator evaluates the function by 
executing the subroutine you write for that purpose. When the 
calculator must execute the subroutine many times-as it does 
when you press [KJ-you can't expect any answer right away. Most 
integrals will require on the order of 30 seconds to 2 minutes; but 
some integrals will require even more. Later on we'll discuss how 
you can decrease the time somew hat; but for now, press [] em 0 and 
take a break (or read ahead) while the HP-15C takes care of the 
drudgery for you. 

Keystrokes Display 

2.4040 = fo" cos (sin 0) dO. 

In general, don't forget to multiply the value of the integral by 
whatever constants, if any, are outside the integral. In this 
particular problem, we need to multiply the integral by lIrr to get 
Jo(l): 

Keystrokes Display 

3.1416 
0.7652 
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Before calling the subroutine you provide to evaluate {(x), the em 
algorithm-just like the I SOLVE I algorithm-places the value of x in 
the X-, Y-, Z-, and T-registers. Because every stack register contains 
the x-value, your subroutine can calculate with this number 
without having to recall it from a storage register. The subroutines 
in the next two examples take advantage of this feature. (A 
polynomial evaluation technique that assumes the stack is filled 
with the value of x is discussed on page 79.) 

Note: Since the calculator puts the value of x into all stack 
registers, any numbers previously there will be replaced by x. 
Therefore, if the stack contains intermediate results that 
you'll need after you calculate an integral, store those 
numbers in storage registers and recall them later. 

Occasionally you may want to use the subroutine that you 
wrote for the em operation to merely evaluate the function at 
some value of x. If you do so with a function that gets x from 
the stack more than once, be sure to fill the stack manually 
with the value of x, by pressing I ENTER I IENTERI IENTERI, 

before you execute the subroutine. 

Example: The Bessel function of the first kind of order 1 can be 
expressed as 

Find 

1 (" 
J 1 (x)=- Jr cos(O-xsinO)dO. 

7r 0 

1 1" J 1 (1) = - cos (0 - sin 0) dO. 
7r 0 

Key in the following subroutine that evaluates the function 
{(O) = cos (0 - sin 0). 

Keystrokes 

[gJlp/RI 

[IJI LBL 11 

Display 

000-

001-42,21, 

Program mode. 

Begin subroutine with a 
label. 
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Keystrokes Display 

ISINI 002- 23 Calculate sin 6. 

G 003- 30 Since a value of e will be 
placed into the Y-register 
by the em algorithm before 
it executes this 
subroutine, the G 
operation at this point will 
calculate (e - sin e). 

Icosl 004- 24 Calculate cos (6 - sin e). 
[[)IRTNI 005- 4332 

In Run mode, key the limits of integration into the X- and Y­
registers. Be sure that the trigonometric mode is set to Radians, 
then.press ITl 01 to calculate the integral. Fina]ly, multiply the 
integral by 1111' to calculate J 1 (1). 

Keystrokes Display 

[[)IP/RI 
OIENTERI 0.0000 

[[)@ 3.1416 

[[)IRADI 3.1416 

rnem 1 1.3825 

[[)@G 0.4401 

Example: Certain problems in 
communications theory (for example, 
pulse transmission through idealized 
networks) require calculating an 
integral (sometimes called the sine 
integral) of the form 

S·() It sinx d It = -- x. o x 

Run mode. 
Key lower limit into 
Y·register. 
Key upper limit into 
X·register. 
(If not already in Radians 
mode.) 

= 10" CoOs (e - sin e) de. 

J 1(1). 
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FindSi(2). 

Key in the following subroutine to evaluate the function f(x) = 
(sin x)/x.* 

Keystrokes Display 

call P/R I 000- Program mode. 
[IJI LBLI.2 001-42.21 •. 2 Begin subroutine with a 

I LBL I instruction. 

ISINI 002- 23 Calculate sin x. 

~ 003- 34 Since a value of x will be 
placed in the Y -register by 
the rm algorithm before it 
executes this subroutine, 
the!ifi] operation at this 
point will return x to the 
X-register and move sin x 
to the Y-register. 

m 004- 10 Divide sin x by x. 

call RTN I 005- 4332 

N ow key the limits of integration into the X- and Y-registers. In 
Radians mode, press [IJ@).2 to calculate the integral. 

Keystrokes Display 
[ill P/R I 0.4401 Run mode 

01 ENTER I 0.0000 Key lower limit into 
Y-register. 

2 2 Key upper limit into 
X-register. 

callRADI 2.0000 (If not already in Radians 
mode.) 

[IJ [fl].2 1.6054 Si(2). 

• If the calculator attempted to evaluate (ex) = (sin x)/x at x = 0, the lower limit of 
integration, it would terminate with Error 0 in the dispUay (signifying an .ttempt to 
divide by zero), and the integral could not be calculated. However, the [ZiJ algorithm 
normally does not evaluate functions at either limn of integration, 80 the calculator can 
calculat" the integral of a function that is undefined there. Only when the endpointa of 
the interval of integration are extremely cLose together, or the number of sample points 
is exuemely large, does the algorithm evaluate the function at the· lim ita of integration. 
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Accuracy of [ZD 
The accuracy of the integral of any function depends on the 
accuracy of the function itself. Therefore, the accuracy of an 
integral calculated using [EJ is limited by the accuracy of the 
function calculated by your subroutine. * To specify the accuracy of 
the function, set the display format so that the display shows no 
more than the number of digits that you consider accurate in the 
function's values.t If you specify fewer digits, the calculator will 
compute the integral more quickly;t but it will presume that the 
function is accurate to only the number of digits specified in the 
display format. We'll show you how you can determine the 
accuracy of the calculated integral after we say another word about 
the display format. 

You'll recall that the HP-15C provides three types of display 
formating: [£00, I SCII, and I ENG I. Which display format should be 
used is largely a matter of convenience, since for many integrals 
you'n get about the same results using any of them (provided that 
the number of digits is specified correctly, considering the 
magnitude of the function). Because it's more convenient to use 
I SCI I display format when calculating most integrals, we'll use I SCI I 
when calculating integrals in subsequent examples. 

Note: Remember that once you have set the display format. 
you can change the number of digits appearing in the display 
by storing a number in the Index register and then pressing 
[IJ[£ooITJ. [IJI scil ITJ. or [IJI ENG IITJ. as described in section 
10. This capability is especially useful when [EJ i,s executed 
as part of a program . 

• It is possible that integrals of functions with certain characteristics (such 8S spikes or 
very rapid oscillations) might be calculated inaccurately, However. this possibility is 
very small. The general characteristics of functions that could caase iJloblems, 8S well 
8S techniques fOT dealing with them, are disoCussed in appendix E. 

t The accuracy of a calculated function depends on such considerations 8S the accuracy 
of empirical constants in the function as well as round-off error in the calculations. 
These considerations are discussed in more detail in the Hp·15C Advanced Functions 
Handbook. 

t The reason for this is discus8ed in appendix E. 
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Because the accuracy of any integral is limited by the accuracy of 
the function (as indicated in the display format), the calculator 
cannot compute the value of an integral exactly, but rather only 
approximates it. The HP-15C places the uncertainty* of an 
integral's approximation in the Y-register at the same time it 
places the approximation in the X-register. To determine the 
accuracy of an approximation, check its uncertainty by pressing 
~. 

Example: With the display format set to I SCI I 2, calculate the 
integral in the expression forJ1(1) (from the example on page 197). 

Keystrokes Display 

01 ENTER I 0.0000 Key lower limit into 
Y-register. 

~0 3.1416 Key upper limit into 
X-register. 

~IRADI 3.1416 (If not already in Radians 
mode.) 

[III SCI12 3.14 00 Set display format to I SCI I 
2. 

[II(K]l 1.38 00 Integral approximated in 
IsclI2. 

~ 1.88 -03 Uncertainty of I SCI12 
approximation. 

The integral is 1.38 ± 0.00188. Since the uncertainty would not 
affect the approximation until its third decimal place, you can 
consider all the displayed digits in this approximation to be 
accurate. In general, though, it is difficult to anticipate how many 

• No algorithm for numerical integration can compute the exact difference between its 
approximation and the actual integral. But the algorithm in the HP-15C estimates an 
"upper bound" on this difference, which is the uncertainty of the approximation. For 
example, if the integral 8i(2) is 1.6054 ± 0.0001, the approximation to the integral is 
1.6054 and its uncertainty is 0.0001. This means that while we dOIl't know th.e exact 
differenc::e between the actual integral and its approximation, we do know that it is 
highly unlikely that the difference is bigger than 0.0001. (Note the first footnote on page 
200.) 
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digits in an approximation will be unaffected by its uncertainty. 
This depends on the particular function being integrated, the limits 
of integration, and the display format. 

If the uncertainty of an approximation is larger than what you 
choose to tolerate, you can decrease it by specifying a greater 
number of digits in the display format and repeating the 
approximation. • 

Whenever you want to repeat an approximation, you don't need to 
key the limits of integration back into the X- and V-registers. After 
an integral is calculated, not only are the approximation and its 
uncertainty placed in the X- and V-registers, but in addition the 
upper limit of itegration is placed in the Z-register, and the lower 
limit is placed in the T'-register_ To return the limits to the X- and 
V-registers for calculating an integral again, simply press [MJ 
[MJ. 

Example: For the integral in the expression for J 1(1), you want an 
answer accurate to four decimal places instead of only two. 

Keystrokes Display 

(!]I SCil4 1.8826 -03 Set display format to I SCI I 
4. 

[HJ[BIJ 3.1416 00 Roll down stack until 
upper limit appears in 
X-register. 

(!]@)1 1.3826 00 Integral approximated in 
Iscil4. 

(tli] 1.7091 -06 Uncertainty ofl SCI14 
approximation. 

The uncertainty indicates that this approximation is accurate to at 
least four decimal places. Note that the uncertainty of the I SCI14 
approximation is about one-hundredth as large as the uncertainty 
of the I SCI I 2 approxim.ation. In general, the uncertainty of any @) 
approximation decreases by about a factor of 10 for each additional 
digit specified in the display format . 

• Provided that fIx) is still calculated accurately I<> the number 0; digits shown in the 
display. 



Section 14: Numerical Integration 203 

In the preceding example, the uncertainty indicated that the 
approximation might be correct to only four decimal places. If we 
temporarily display all10 digits of the approximation, however, 
and compare it to the actual value of the integral (actually, an 
approximation known to be accurate to a sufficient number of 
decimal places), we find that the approximation is actually more 
accurate than its uncertainty indicates. 

Keystrokes 

CtliJ 

m CLEAR I PREFIX I 

Display 

1.3825 00 

1382469676 

Return approximation to 
display. 
AlllO digits of 
approximation. 

The value of this integral, correct to eight decimal places, is 
1.38245969. The calculator's approximation is accurate to seuen 
decimal places rather than only four. In fact, since the uncertainty 
of an approximation is calculated very conservatively, the 
calculator's approximation in most cases will be more accurate 
than its uncertainty indicates. However, normally there is no way 
to determine just how accurate an approximation is. 

For a more detailed look at the accuracy and uncertainty of [[!] 
approximations, refer to appendix E. 

Using Em in a Program 
[[!] can appear as an instruction in a program provided that the 
program is not called (as a subroutine) by [[!]itself. In other words, 
[[!] cannot be used recursively. Consequently, you cannot use [[!] to 
calculate multiple integrals; if you attempt to do so, the calculator 
will halt with Error 7 in the display. However, [[!] can appear as an 
instruction in a subroutine called by I SOLVE I. 
The use of 0 as an instruction in a program utilizes one of the 
seven pending returns in the calculator. Since the subroutine called 
by [[!] utilizes another return, there can be only five other pending 
returns. Executed from the keyboard, on the other hand, [[!] itself 
does not utilize one of the pending returns, so that six pending 
returns are available for subroutines within the subroutine called 
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by 0. Remember that if all seven pending returns have been 
utilized, a call to another subroutine will result in a display of Error 
5. (Refer to page 105.) 

Memory Requirements 
o requires 23 registers to operate. (Appendix C explains how they 
are automatically allocated from memory.) If 23 unoccupied 
registers are not available, r:m will not run and Error 10 will be 
displayed. 

A routine that combines 0 and I SOLVE I also requires 23 registers of 
space. 

For Further Information 
This section has given you the information you need to use Em with 
confidence over a wide range of applications. In appendix E, more 
esoteric aspects of Em are discussed. These include: 

• How[ftJworks. 

• Accuracy, uncertainty, and calculation time. 

• Uncertainty and the display format. 

• Conditions that could cause incorrect results. 

• Conditions that prolong calculation time. 

• Obtaining the current approximation to an integral. 
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Error Conditions 

If you attempt a calculation containing an improper operation­
say division by zero-the display will show Error and a number. To 
clear an error message, press anyone key. This also restores the 
display prior to the Error display. 

The HP·15C has the following error messages. (The description of 
Error 2 includes a list of statistical formulas used.) 

Error 0: Improper Mathematics Operation 

Illegal argument to math routine: 

0, where x = o. 
[ZJ, where: 

• out of Complex mode, y < 0 and x is noninteger; 

• out of Complex mode, y = 0 and x';;; 0; or 
• in Complex mode, y = 0 and Re(x)';;; o. 

~, where, out of Complex mode, x < O. 
11/.:1, wherex= O. 
I LOG I, where: 

• out of Complex mode, x.;;; 0; or 
• in Complex mode, x = o. 

[hID, where: 

• out of Complex mode, x .;;; 0; or 

• in Complex mode, x = o. 
~, where, out of Complex mode, I xl > 1. 

I cos·' I, where, out of Complex mode, I xl > 1. 
I STO 10, where x = o. 
I RCL 10, where the contents of the addressed register = o. 
1t..%I, where the value in the Y·register is O. 
I HYP-' II cos I, where, out of Complex mode, x < 1. 

I HYP-' II TAN ii, where, out of Complex mode, I xl > 1. 

~or(M,where: 
• x or y is noninteger; 

205 
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• x<Oory<O; 
• x>y; 
• X or y~ 1010. 

Error 1: Improper Matrix Operation 

Applying an operation other than a matrix operation to a matrix, 
that is, attempting a nonmatrix operation while a matrix is in the 
relevant register (whether the X- or Y -register or a storage register). 

Error 2: Improper Statistics Operation 

rn n=O 
[iJ nO;;;;; 1 
IUl nO;;;;;} 

I L.R. I nO;;;;;} 

Error 2 is also displayed if division by zero or the square root of a 
negative number would be required during computation with any 
of the following formulas: 

A=~ 
M 

_ Ix 
x=-­

n 

B= MIy-PIx 
n'M 

A MIy+P(n'x-Ix) 
y= 

n·M 

where: 

_ Iy 
y=­

n 

r 

P=nIxy-IxIy 

(A and B are the vaJiues 
returned by the operation 
IL.R.I,wherey= Ax+B.) 

P 

"/M·N 
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Error 3: Improper Register Number or Matrix Element 

Storage register named is nonexistent or matrix element indicated 
is nonexistent. 

Error 4: Improper Line Number or Label Call 

Line number called for is currently unoccupied or nonexistent 
(>448); or you have attempted to load a program line without 
available space; or the label called does not exist. 

Error 5: Subroutine Level Too Deep 

Subroutine nested more than seven deep. 

Error 6: I:mproper Flag Number 

Attempted a flag number >9. 

Error 7: Recursive I SOLVE I or [Z[] 
A subroutine which is called by I SOLVE I also contains a I SOLVE I 
instruction; a subroutine which is called by @)also contains an @) 
instruction. 

Error 8: No Root 

I SOLVE I unable to find a root using given estimates. 

Error 9: Service 

Self-test discovered circuitry problem, or wrong key pressed during 
key test. Refer to appendix F. 

Error 10: Insufficient Memory 

There is not enough memory available to perform a given 
operation. 

Error 11: Improper Matrix Argument 

Inconsistent or improper matrix arguments for a given matrix 
operation: 

G or G, where the dimensions are incompatible. 
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~,where: 

• the dimensions are incompatible; or 

• the result is one ofthe arguments. 

11 /x I, where the matrix is not square. 

scalar/matrix G, where the matrix is not square. 

G, where: 
• the matrix in the X·register is not square; 

• the dimensions are incompatible; or 

• the result is the matrix in the X-register. 

I MATRIX 12, where the input is a scalar; or the number of rows is 
odd. 

I MATRIX 13, where the input is a scalar; or the number of columns 
is odd. 

I MATRIX I 4, where the input is scalar. 

I MATRIX 15, where: 

• the input is a scalar; 

• the dimensions are incompatible; or 

• the result is one of the arguments. 

I MATRIXI6, where: 

• the input is scalar; 

• the dimensions are incompatible (including the result); or 

• the result is one of the arguments. 

I MATRIX 19, where the matrix is not square. 

I RCLII DIM I[i], where contents ofRI are scalar. 

I DIM I[i], where contents ofRI are scalar. 

I STO II RESULTI, where the input is scalar. 

~, where the number of columns is odd. 

~,where the number of rows is odd. 

Pr Error (Power Errorl 

Continuous Memory interrupted and reset because of power faHure. 
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Stack Lift and 
the LAST X Register 

The HP-15C calculator has been designed to operate in a natural 
manner. As you have seen working through this handbook, most 
calculations do not require you to think about the operation of the 
automatic memory stack. 

There are occasions, however-especially as you delve into 
programming-when you need to know the effect of a particular 
operation upon the stack. The following explanation should help 
you. 

Digit Entry Termination 
Most operations on the calculator, whether executed as instructions 
in a program or pressed from the keyboard, terminate digit entry. 
This means that the calculator knows that any digits you key in 
after any of these operations are part of a new number. 

The only operations that do not terminate digit entry are the digit 
entry keys themselves: 

[QJ through (ID 
El 

Stack Lift 
There are three types of operations on the calculator based on how 
they affect stack lift. These are stack-disabling operations, stack­
enabling operations, and neutral operations. 

When the calculator is in Complex mode, each operation affects 
both the real and imaginary stacks. The stack lift effects are the 
same. In addition, the number keyed into the display (real X­
register) after any operation except ~ or I CLx I is accompanied by 
the placement of a zero in the imaginary X-register. 

209 
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Disabling Operations 

Stack Lift. There are four stack-disabling operations on the 
calculator.· These operations disable the stack lift, so that a 
number keyed in after one ofthese disabling operations writes over 
the current number in the displayed X-register and the stack does 
not lift. These special disabling operations are: 

I ENTER I I Clx I rnB ~ 

Imaginary X-Register. A zero is placed in the imaginary X­
register when the next number following I ENTER I, rnB, or ~ is 
keyed or recalled into the display (real X-register). However, the 
next number keyed in or recalled after ~ or I CLx 1 does not change 
the contents ofthe imaginary X-register. 

Enabling Operations 

Stack Lift. Most of the operations on the keyboard, including one­
and two-number mathematical functions like [ZJ and 0, are stack­
enabling operations. This means that a number keyed in after one 
of these operations will lift the stack (because the stack has been 
"enabled" to lift). Both the real and imaginary stacks are affected. 
(Recall that a shaded X-register means that its contents will be 
written over when the next number is keyed in or recalled.) 

(Assumes 
stack 

enablecl.) 

• Refer to footnote. page 36. 

Stack 
lifts. 

Stack 
disabled. 

No stack 
lift. 
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T 

14~1 
y 

Wi] 
y 

Z x x 

y 63.1301 63.1301 

X 6.0000 j;;.- . '. ~~ 7 

Keys: [[)I+pj [ill CLxI 7 

Stack Stack No stack 
enabled. disabled. lift. 

Imaginary X-Register. All enabling functions provide for a zero 
to be placed in the imaginary X-register when the next number is 
keyed or recalled into the display. 

Neutral Operations 

Stack Lift. Some operations, like ~, are neutral; that is, they do 
not alter the previous status of the stack lift. Thus, if you disable 
the stack lift by pressing I ENTER I, then press ill CBRJ n and key in a 
new number, that number will write over the number in the X· 
register and the stack will not lift. Similarly, if you have previously 
enabled the stack lift by executing, say 00, then execute a CBRJ 
instruction followed by a digit entry sequence, the stack will lift. • 

The following operations are neutral on the HP-15C; 

[ElK) 
[§QJ 
IENGI 

iOEGI 

IRAOI 

IGROI 

I GTD II CHS I nnn 
leSTI 

I ssT! 
!MEMI 

IUSERI 

CLEAR I PREFIX I 

CLEARIREGI 

CLEAR 00 
IpSEI 

Imaginary X-Register_ The above operations are also neutral 
with respect to clearing the imaginary X-register . 

• All digit entcy functions are also neutral during digit entry. After digit entry 
terminati()n, [fH§] and ~ are Iift.enabling; [±Jis disablinll. 

t That i., the rnffiil sequence used to view the imaginary X·register. 
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LAST X Register 
The following operations save x in the LAST X register: 

B [ZJ I HYP-' II cos I [ill 

G ISINI I HYP-'IITAN I 1t.%1 
0 Icosl I+H.MSI ~ 
G ITANI I+HI I+RI 

IABSI ~ I+DEGI ~* 

IFRACI I COS"' I I +RAD I ~ .. 
(ffi!] I TAN"' I [ill] ~ 
IRNDI I HypliSIN I ~ ~ 
II/xl IHypllCOSI ILOGI [@ 

~ IHypllTANI 110"1 I MATRIXl5 through 9 

[K] I HVP-'II SIN I (Z] cmt 

• Except when used as a matrix function. 

t0use. the LAST X r'egisterin a special way. as described in appendix E. 
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Memory Allocation 
The Memory Space 
Storage registers, program lines, and advanced function execution* 
all draw on a common memory space in the HP-15C. The 
availability of memory for a specific purpose depends on the 
current allocation of memory, as well as on the total memory 
capacity of the calculator. 

Registers 

Memory space in the HP-15C is allocated on the basis of registers. 
This space is partitioned into two pools, which strictly define how a 
register may be used. There is always a combined total of 67 
registers in these two pools. 

• The data storage pool contains registers which may be used 
only for data storage. At power-up (Continuous Memory reset) 
this equals 21 registers. This pool contains at least three 
registers at all times: RI , Ro, and RI -

• The common pool contains uncommitted registers available 
for allocation to programming, matrices, the imaginary stack, 
and I SOLVE I and rn operation. At power-up there are 46 
uncommitted registers in the common pool. 

·The use of! SOLVE I, [1!]. Complex mode, or matrices temporarily requires extra memory 
space, as explained later in this appendix. 

213 
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MEMORY 
Permanent 

R I Index Regilta. 

Ro 0 

R, , 
Allocatable 

R2 8 
~ 

R9 9 DATA STORAGE POOL 
R2 to Rddallocated 

R,o 10 here. Initial config-
uration: dd= 19. 

R" '1 

~ 

data 
~~~:::ed R,8 ~8 
register = dd ~R,9 19 MOVABLE BOUNDARY 

~ after Rdd• Initially 

Rdd + 1 ---.... ~ 

:::::: 

6B 

dd= 19. 

COMMON POOL 
Matrix Elements 
Imaginary Stack 
I SOLVE land em 
Program Lines 

Number of 
uncommitted 
register.s = uu, 

Number of registers 
occupied by program 
lines=pp. 

Total allocatable memory: 64 registers, numbered R2 through 
Rss. [(dd- 1) + uu + pp + (matrix elements) + (imaginary stack) + 
(I SOLVE I and em)] = 64. For memory allocation and indirect 
addressing, data registers R,o through R.9 are referred to as RIO 
through R19. 
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Memory Status (I MEM I) 
To view the current memory configuration of the calculator, press 
[i] IMEMI (memory), holding IMEMI to retain the display.- The 
display will be four numbers, 

dd uu pp-b 

where: 

del = the number of the highest·numbered register in the data 
storage pool (making the total number of data registers dd + 2 
because of Ito and Rr); 

uu = the number of uncommitted registers in the common pool; 

pp = the number of registers containing program instructions; and 

b = the number of bytes left before uu is decremented (to supply 
seven more bytes of program memory) andpp is incremented. 

The initial status of the Hp·15C at power-up is: 

19 46 0-0 

The movable boundary between the data storage and common 
pools is always between Rdd and Rdd + ,. 

Memory Reallocation 
There are 67 registers in memory, worth seven bytes each. Sixty­
four of these registers (R:! to Rs5) are interconvertible between the 
data storage and common pools. 

The I DIM 1 [ill] Function 

If you should require more common space (as for programming) or 
more data storage space (but not both simultaneously!), you can 
make the necessary register reallocation using 1 DIM 1 wilt The 
procedure is: 

01 MEM I is nonprogrammable. 

t[QlM] (dimension) is ao called because it is also used (with 1Al through lID or iIl) to 
dimension matrices. Abov.e, however, it is used (with WIll to "dimension" the size of the 
data storage pool. 



216 Appendix C: Memory Allocation 

1. Place dd, the number of the highest data storage register you 
want allocated, into the display. 1';;; dd';;; 65. The number of 
registers in the uncommitted pool (and therefore potentially 
available for programming) will be (65 - dd). 

2. Press [Ill DIM I[ill]. 

There are two ways to review your allocation: 

• Press I RCL II DIM I [ill) to recall into the stack the number of the 
highest-allocated data storage register, dd. (Programmable.) 

• Press [il I MEM I (as explained above) to view a more complete 
memory status (dd uu pp-b). 

Keystrokes Display 

(assuming a cleared program memory)* 

, !Ill DIM I [ill) 
[ill MEM i(hold) 

1.0000 
64 0-0, 

19.0000 
19.0000 

Restrictions on Reallocation 

Rlo Ro, and Rr 
allocated for data storage. 
Sixty-four registers are 
uncommitted; none 
contain program 
instructions. 

RI9 (R9) is the highest­
numbered data storage 
register. Forty-six 
registers left in the 
common pool. 

Continuous Memory will maintain the configuration you allocate 
until a new I DIM I [ill] is executed or Continuous Memory is reset. If 
you try to allocate a number less than 1, dd = 1. If you try to 
allocate a number greater than 65, Error 10 results. 

*If program memory is not cleared, the number of uncommitted Tegisters (uu) is less, 
owingto allocation of registers to program memory (pp). Therefore,pp would be > 0 and 
b would vary. 
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When converting registers, note that: 

• You can convert registers from the common pool only if they 
are uncommitted. If, for example, you try to convert registers 
which contain program instructions, you will get an Error 10 
(insufficient memory) . 

• You can convert occupied registers from the data storage pool, 
causing a loss of stored data. An Error 3 results if you try to 
address a "lost" -that is, nonexistent-register. Therefore, it 
is good practice to store data in the lowest·numbered registers 
first, as these are the last to be converted. 

Program Memory 
As mentioned before, each register consists of seven bytes of 
memory. Program instructions use one or two bytes of memory. 
Most program lines use one byte; those using two bytes are listed 
on page 218. 

The maximum programming capacity of the HP·15C is 448 
program bytes (64 convertible registers at seven bytes per register). 
At power-up, memory can hold up to 322 program bytes (46 
allocated registers at seven bytes per register). 

Automatic Program Memory Reallocation 
Within the common register pool, program memory will auto­
matically expand as needed. One uncommitted register at a time, 
starting with the highest-numbered register available, will be 
allocated to seven bytes of program memory. 

Conversion of Uncommitted Registers to Program Memory 

Program Bytes 

--...... ~ 1 t07 

--....... ~ 8to 14 

--4"~ 15 to 21 

R.21 § .. 309t0315 

R20 .. 316t0322 
Movable Boundary 
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Your very first program instruction will commit Rss (all seven 
bytes) from an uncommitted register to a program register. Your 
eighth program instruction commits R64• and so on. until the 
boundary of the common pool is encountered. Registers from the 
data storage pool (at power· uP. this is RI9 and below) are not 
available for program memory without reallocating registers using 
! DIM !(ill]. 

Two-Byte Program Instructions 

The following instructions are the only ones which require two 
bytes of calculator memory. (All others require only one byte.) 

ITl! LBLI8labei 

I GTO 18 label 
(i][Q](norrn) 
(i][ill(norrn) 
(i][ITJ(n or rn) 

ITl[lliJ(n orm) 

ITllsCII(norrn) 

ITlI ENG I(n or rn) 
ITlISOLVEI 

[mill 

ITl!MATRlxl(Oto9} 
ITl[tl] (2. to 9 •. 0 to .9) 

ITl! DSE I {2 to 9 •. 0 to .9) 
ITl!ISGI(2 to 9 •. Oto .9) 

!SToI!0.8.0.GI 
!RCLlr0.8.0.GJ 
I STO I [MAfRTX] ( ~ to (]]) 

I STO I (~to [Ij. (ill]) in User mode 
!RCLI([K)to[Ij.(ill]} in User mode 

I STO I(i](ill] 
I RCLI[BJ(ill] 

Memory Requirements for the Advanced 
Functions 
The four advanced flllnctions require temporary register space from 
the common register pool. 

Function Registers Ne·eded 

!SOLVEI 5 } 23 if executed 0 23 
together 

'I 

Complex Stack 5 
Matrices 1 per matrix element 
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For I SOLVE \ and llil. allocation and deallocation of the required 
register space takes place automatically.* Memory is thereby 
allocated only for the duration ofthese operations. 
Space for the imaginary stack is allocated whenever [!) rn. [!) 
I Re,lm\. or ~(]fJ 8 is pressed. The imaginary stack is deallocated 
when [0 8 is executed. 

Space for matrix registers is not allocated until you dimension it 
(using [QiM]). Reallocation takes place when you redimension a 
matrix. I MATRIX \ 0 dimensions all matrices to 0 X o. 

O!fyou should interrupt a I SOLVE I or [EJroutine in progress by pressing a key, you could deallocate ita registers by press;ng [g][l!Nl or ill CLEAR I PRGM I in Run modle. 



Appendix D 

A Detailed Look at I SOLVE I 

Section 13, Finding the Roots of an Equation, includes the basic 
information needed for the effective use of the I SOLVE 1 algorithm. 
This appendix presents more advanced, supplemental considera­
tions regarding I SOLVE I. 

How I SOLVE \ Works 
You will be able to use I SOLVE 1 most effectively by having a basic 
understanding of how the algorithm works. 

In the process of searching for a zero 
of the specified function, the algo· 
rithm uses the value of the function 
at two or three previous estimates to 
approximate the shape of the func­
tion's graph. The algorithm uses this 
shape to intelligently "predict" a new 
estimate where the graph might 
cross the x-axis. The function sub-
routine is then executed, computing 

r---------------~ 

{(x) 

+-,---,---""-_x 

the value of the function at the new estimate. This procedure is 
performed repeatedly by the I SOLVE 1 algorithm. 

If any two estimates yield function 
values with opposite signs, the algo­
rithm presumes that the function's 
graph must cross the x-axis in at 
least one place in the interval 
between these estimates. The inter­
val is systematically narrowed until 
a root ofthe eql.lation is found. 

A root is successfully found either if 
the computed function value is equal 

f(x) 

+-..L-_~~-:-_ X 

to zero or if two estimates, differing by one unit in their last 
significant digit, give function values having opposite signs. In 
this case, execution stops and the estimate is displayed. 

220 
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As discussed in section 13, page 186, the occurrence of other 
situations in the iteration process indicates the apparent absence 
of a function zero. The reason is that there is no way to logically 
predict a new estimate that is likely to have a function value closer 
to zero. In such cases, Error 8 is displayed. 

You should note that the initial estimates you provide are used to 
begin the "prediction" process. By permitting more accurate 
predictions than might otherwise occur, properly chosen estimates 
greatly facilitate the determination of the root you seek. 

The I SOLVE I algorithm will always find a root provided one exists 
(within the overflow bounds), if anyone offour conditions are met: 

• Any two estimates have func-
tion values with opposite signs. f(xj 

• The function is monotonic, mean­
ing that f(x) either always 
decreas·es or else always in­
creases as x is increased. 

f(xj 

-+-~~---x 



222 Appendix D: A Detailed Look at I SOLVE I 

• The function's graph is either 
convex everywhere or concave fIx) 
everywhere. 

-t-l------x 

• The only local minIma and 
maxima of the function's graph fIx) 
occur singly between adjacent 
zeros of the function. 

In addition, it is assumed that the I SOLVE I algorithm will not be 
interrupted by an improper operation. 

Accuracy of the Root 
When you use the I SOILVE I key to find a root of an equation, the root 
is found accurately. The displayed root either gives a calculated 
function value (f(x» exactly equal to zero or else is a IO-digit 
number virtually adjacent to the place where the function's graph 
crosses the x·axis. Any such root has an accuracy within two or 
three units in the lOth significant digit. 

In most situations the calculated root is an accurate estimate of the 
theoretical (infinitely precise) root of the equation. However, 
certain conditions can cause the finite accuracy of the calculator to 
give a result that appears to be inconsistent with your theoretical 
expectation. 
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If a calculation has a result whose magnitude is smaller than 
1.000000000 X 10-99, the result is set equal to zero. This effect is 
referred to as "underflow." If the subroutine that calculates your 
function encounters underflow for a range of x and if this affects 
the value of the function, then a root in this range may be expected 
to have some inaccuracy. For example, the equation 

has a root atx = O. Because of underflow, I SOLVE I produces a root of 
1.5060 -25 (for initial estimates of 1 and 2). As another 
example, consider the equation 

whose root is infinite in value. Because of underflow, I SOLVE I gives 
a root of 3. 1707 49 (for initial estimates of 10 and 20). In each 
of these examples, the algorithm has found a value of x for which 
the calculated function value equals zero. By understanding the 
effect of underflow, you can readily interpret results such as these. 

The accuracy of a computed value sometimes can be adversely 
affected by "round-off' error, by which an infinitely precise 
number is rounded to 10 significant digits_ If your subroutine 
requires extra precision to properly calculate the function for a 
range of x, the result obtained by I SOLVE I may be inaccurate. For 
example, the equation 

has a root at x = ,,;5. Because no 10-digit number exactly equals 
,,;5, the result of using I SOLVE I is Error 8 (for any initial estimates) 
because the function never equals zero nor changes sign. On the 
other hand, the equation 

has no roots because the left side of the equation is always greater 
than the right side. However, because of round-off in the 
calculation of 
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the root 1.0000 is found for initial estimates of 1 and 2. By 
recognizing situations in which round-off error may influence the 
operation of I SOLVE I, you can evaluate the results accordingly and 
perhaps rewrite the function to reduce the effects of round-off. 

In a variety of practical applications, the parameters in an 
equation-or perhaps the equation itself-are merely approxima­
tions. Physical parameters have an inherent accuracy (or 
inaccuracy). Mathematical representations of physical processes' 
are only models ofthose processes, accurate only to the extent that 
the underlying assumptions are true. An awareness of these and 
other inaccuracies can be used to your advantage. By structuring 
your subroutine to return a function value of zero when the 
calculated value is negligible for practical purposes, you can 
usually save considerable time in finding a root with I SOLVE 1-
particularly for cases that would normally take a long time. 

Example: Ridget hurlers such as Chuck Fahr can throw a ridget to 
heights of 105 meters and more. In fact, Fahr's hurls usually reach 
a height of 107 meters. How long does it take for his remarkable 
toss, described on page 184 in section 13, to reach 107 meters? 

Solution: The desired solution is the value of t at which h = 107. 
Enter the subroutine from page 184 that calculates the height of 
the ridget. This subroutine can be used in a new function 
subroutine to calculate 

t(t) = h(t) -107. 

The following subroutine calculates t(t): 

Keystrokes Display 

~lp/RI 000- Program mode. 

[lILBLI[[) 001-42.21.12 Begin with new label. 

IGSBI~ 002- 3211 Calculates hit). 

Keystrokes Display 

1 003- 1 
0 004- 0 
7 005- 7 Calculates h(t) -107. 

G 006- 30 
~IRTNI 007- 4332 



Appendix D: A Detailed Look at I SOLVE I 225 

In order to find the first time at which the height is 107 meters, use 
initial estimates of 0 and 1 second and execute I SOLVE I using rID. 

Keystrokes Disp)ay 

[BJI P/R I Run mode. 
01 ENTER I 0.0000 } Initial estimates. 
1 1 
[!)I SOLVE I rID 4.1718 The desired root. 
[MJ 4.1718 A previous estimate of the 

root. 
[MJ 0.0000 Value of f( t) at root. 

It takes 4.1718 seconds for the rid get to reach a height of exactly 
107 meters. (It takes approximately one minute to find this 
solution.) 

However, suppose you assume that the function h(t) is accurate 
only to the nearest whole meter. You can now change your 
subroutine to give f(t) = 0 whenever the calculated magnitude of 
f(t) is less than 0.5 meter. Change your subroutine as follows: 

Keystrokes 

[BJI P/RI 

I GTO II CHS 1006 

[BJIABS I 

[J 
5 
[BJITESTI7 

[BJI Cl%1 

[BJITESTIO 

Display 

000-

006-

Program mode. 
30 Line before I RTN I 

instruction. 
007- 4316 Magnitudeoff(t). 

008- 48} 
009- 5 Acclllracy. 

010-43,30, 7} Test for x> y and return 
zero if accuracy> 

011- 4335 magnitude (0.5 >If(t)l. 

012-43,30, O} Test for x#-O and restore 

01 3- 43 36 f( t) if val ue is nonzero. 
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Execute I SOLVE I again: 

Keystrokes Display 

~IP/RI Run mode. 
01 ENTER I 0.0000 } Initial estimates. 
1 1 
[DI SOLVE I lID 4.0681 The desired root. 
[H) 4.0681 A previous estimate ofthe 

root. 
[H) 0.0000 Value of modified f(t) at 

root. 

After 4.0681 seconds, the ridget is at a height of 107 ± 0.5 meters. 
This solution, although different from the previous answer, is 
correct considering the uncertainty of the height equation. (And 
this solution is found in just under half the time of the earlier 
solution.) 

Interpreting Results 
The numbers that I SOLVE I places in the X-, Yo, and Z·registers help 
you evaluate the results of the search for a root of your equation.· 
Even when no root is found, the results are still significant. 

When I SOLVE I finds a root of the 
specified equation, the root and 
function values are placed in the X­
and Z-registers. A function value of 
zero is the expected result. However, 
a nonzero function value is also 
acceptable because it indicates that 
the function's graph apparently 
crosses the x -axis within an infini-
tesimal distance from the calculated 

((x) 

@ 
-+--......;:"S:::::--x 

root. In most such cases, the function value will be relatively close 
to zero . 

• The number in the T-register is the same number that was left in the Y-register by the 
final execution of your function subroutine. Generally. this number is not of interest. 
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Special consideration is required for 
a different type of situation in which 
ISOLVE! finds a root with a nonzero 
function value. If your function's 
graph has a discontinuity that 
crosses the x ·axis, I SOLVE! specifies 
as a root an x-value adjacent to the 
discontinuity. This is reasonable 
because a large change in the func· 
tion value between two adjacent 

f(xj 

-+---+----x , 

V 
I 

values of x might be the result of a very rapid, continuous 
transition. Because this cannot be resolved by the algorithm, the 
root is displayed for you to interpret. 

A function may have a pole, where 
its magnitude approaches infinity. If 
the function value changes sign at a 
pole, the corresponding value of x 
looks like a possible root of your 
equation, just as it would ·for any 
other discontinuity crossing the 
x-axis. However, for such functions, 
the function value placed into the Z­
register when that root is found will 

fM l~ 
".J: 
-+---;----x 

be relatively large. If the pole occurs at a value of x that is exactly 
represented with 10 digits, the subroutine may try that value and 
halt prematurely with an errorindication. In this case, the I SOLVE! 
operation will not be completed. Of course, this may be avoided by 
the prudent use of a conditional statement in your subroutine. 

Example: In her analysis of the 
stresses in a structural component, 
design consultant Lucy I. Beame has 
determined that the shear stress can 
be expressed as 

Q= {3X3 -45X2 +350for O<x<lO 
1000 for 10 ,,;;; x < 14 

where Q is the shear stress in 
newtons per square meter and x is the distance from one end in 
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meters. Write a subroutine to compute the shear stress for any 
value of x. Use I SOLVE Ito find the location ofzero shear stress. 

Solution: The equation for the shear stress for x between 0 and 10 
is more efficiently programmed after rewriting it using Horner's 
method: 

Q = (3x - 45)x 2 + 350 forO<x<10. 

Keystrokes Display 

[all P/R I 000- Program mode. 

[DI LBLI2 001-42.21. 2 
1 002- ~ ) Test for x range. 0 003-
[al~ 004- 4310 
IGTOl9 005- 22 9 Branch for x~lO. 

[all CLxl 006- 4335 
3 007- 3 
0 006- 20 3x. 

4 009- 4 
5 010- 5 
B 011- 30 (3x - 45). 

0 012- 20 
0, 013- 20 (3x-45)x 2 . 

3 014- 3 
5 015- 5 
0 016- 0 
G 017- 40 (3x - 45)x 2 + 350. 

[all RTN II 018- 4332 End subroutine. 

[DILBLI9 019-42.21. 9 Subroutine for x ~ 10. 

IEEXI 020- 26 
3 021- 3 103 = 1000. 

[alIRTNI 022- 4332 End subroutine. 

Execute I SOLVE I using initial estimates of 7 and 14 to start at the 
outer end of the beam and search for a point of zero shear stress. 
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Keystrokes Display 

~Ip/RI Run mode. 
71ENTERI 7.0000 } Initial estimates. 
14 14 
[IJI SOLVE 12 10.0000 Possible root. 

I R+ICi!Il 1.000.0000 Stress not zero. 

The large stress value at the root points out that the I SOLVE I routine 
has found a discontinuity. This is a place on the beam where the 
stress quickly changes from negative to positive. Start at the other 
end of the beam (estimates of 0 and 7) and usel SOLVE I again. 

Keystrokes Display 

OIENTERI 0.0000 } 7 7 
illisOLVEI2 3.1358 

[]JJ[]JJ 2.0000 -07 

Beame's beam has zero shear stress 
at approximately 3.1358 meters and 
an abrupt change of stress at 10.0000 
meters. 

Initial estimates. 

Possible root. 
Negligible stress. 

Q 

1500 

-1500 

Graph of Q versus x. 

When no root is found and Error 8 is dis.played, you can press ~ or 
anyone key to clear the display and observe the estimate at which 
the function was closest to zero. By also reviewing the numbers in 
the y- and Z-registers, you can often determine the nature of the 
function near the root estimate and use this information 
constructively. 
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If the algorithm terminates its search 
near a local minimum of the func­
tion's magnitude, clear the Error 8 
display and observe the numbers in 
the X-, Yo, and Z-registers by rolling 
down the stack_ If the value of the 
function saved in the Z-register is 
relatively close to zero, it is possible 
that a root of your equation has been 
found-the number returned in the 

{(xj 

-4---f-+-x 

X-register may be a lO-digit number very close to a theoretical root. 
You can explore this potential minimum further by rolling the 
stack until the returned estimates are back in the X- and Y -registers 
and then executing I SOLVE I again using these numbers as initial 
estimates. If an actual minimum has been found, Error 8 will again 
be displayed and the number in the X-register will be approxi­
mately the same as before, but possibly closer to the actual location 
ofthe minimum. 

Of course, you may deliberately use I SOLVE Ito find the location of a 
local minimum of the function's magnitude. However, in this case 
you must be careful to confine the search in the region of the 
minimum. Remember, I SOLVE I tries hard to find a zero of the 
function. 

If the algorithm stops searching and 
displays Error 8 because it is working 
on a horizontal asymptote (when the 
value of the function is essentially 
constant for a large range of x), the 
estimates in the X- and V-registers 
usually are significantly different 
from each other. The number in the 
Z-register is the value of the potential 
asymptote. If you execute I SOLVE I 

{(xj 

-+------.. x 

again using as initial estimates the numbers that were returned in 
the X- and V-registers, a horizontal asymptote may again cause 
Error 8, but with numbers in the X- and V-registers that will differ 
from the previous numbers. The value of the function in the 
Z-register would then be about the same as that obtained 
previously. 
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If Error 8 is displayed as a result of a 
search that is concentrated in a local 
"flat" region of the function, the 
estimates in the X- and Y-registers 
will be relatively close together or 
extremely small. Execute I SOLVE I 
again using for initial estimates the 
numbers from the X- and Y-registers 
(or perhaps two numbers somewhat 
further apart). If the magnitude of 

{(x) 

--+--+-1---' x 

the function is neither a minimum nor constant, the algorithm will 
eventually expand its search and find a more significant result. 

Example: Investigate the behavior of the function 

f(x) = 3 + e-lxIilO - 2~2e-ixi 

as evaluated in the following subroutine. 

Keystrokes Display 

[DJI P/R I 000- Program mode. 

illILBll.O 001-42.21 •. 0 
[DJIABSI 002- 4316 
ICHSI 003- 16 
~ 004- 12 e-ixi . 

[tliJ 005- 34 Bring x-value into 
X-register. 

[DJ[Z] 006- 4311 
0 007- 20 x 2e-1xi . 

~ 008- 12 
2 009- 2 
0 010- 20 

_2~2e-lxl. ICHSI 011- 16 
[tliJ 012- 34 Bring x -value into 

X-register. 

[DJ!ABSI 013- 4316 
ICHSI 014- 16 
1 015- 1 
0 016- 0 
G 017- 10 -lxl/lO. 

~ 018- 12 
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Keystrokes Display 

G 019- 40 e-lxl/lO_2ex2e-lxl. 

3 020- 3 
3 + e-lxl/lO_2ex2e-lxl. G 021- 40 

~IRTNI 022- 4332 

Use I SOLVE I with the following single initial estimates: 10, 1, and 
10-2°. 

Keystrokes Display 

[SJI P/R I Run mode. 

101 ENTER I 10.0000 Single estimate. 

mISOLVEI.O Error 8 

~ 455.4335 Best x-value. 

ern 48.026.721.85 Previous value. 

IR+I 1.0000 Function value. 

[il [iff) [il I R t I 455.4335 Restore the stack. 

mISOLVEI.O Error 8 

~ 48.026.721.85 Another x-value. 

IR+ICRiJ 1.0000 Same function value (an 
asymptote). 

1 I ENTER I 1.0000 Single estimate. 

[OiSOLVEI.o Error 8 

~ 2.1213 Best x-value. 

ern 2.1471 Previous value. 

ern 0.3788 Function value. 

[ill Rt l[ill Rt I 2.1213 Restore the ,stack. 

mISOLVEI.O Error 8 
~ 2.1213 Same x·value. 

IR+ I[H] 0.3788 Same function value (a 
minimum). 

I EEXlicHS 120lENTERI 1.0000 -20 Single estimate. 
mlsolvEI,o Error 8 
~ 1.0000 -20 Bestx·value. 

ern 1.1250 -20 Previous value. 

ern 2.0000 Function value. 



Appendix D: A Detailed Look at I SOLVE I 

Keystrokes Display 

(gJrrn(gJ1 R+ I 1.0000 -20 

(lJ1 SOLVE 1.0 Error 8 

~ 1.1250 -20 

[ijJ 1.5626 -16 

IRtl 2.0000 

In each of the three cases, I SOLVE I 
initially searched for a root in a 
direction suggested by the graph 
around the initial estimate. Using 10 
as the initial estimate, I SOLVE I found 
the horizontal asymptote (value of 
1.0000). Using 1 as the initial esti· 
mate, a minimum of 0.3788 at x = 
2.1213 was found. Using 10-20 as the 
initial estimate, the function was 
essentially constant (at a value of 
2.0000) for the small range of x that 
was sampled. 

Finding Several Roots 

Restore the stack. 

Another x·value. 
Previous value. 
Same function value. 

f(x) 
3/cthird case 
I ~econd case I first case\ 

I 

233 

Many equations that you encounter have more than one root. For 
this reason, you will find it helpful to understand some techniques 
for finding several roots of an equation. 

The simplest method for finding several roots is to direct the root 
search in different ranges of x where roots may exist. Your initial 
estimates specify the range that is initially searched. This methq.d' 
was used for all examples in section 13. You can often find the roots 
of an equation in this manner. 

Another method is known as deflation. Deflation is a method by 
which roots are "eliminated" from an equation. This involves 
modifying the equation so that the first roots found are no longer 
roots, but the rest of the roots remain roots. 

If a function f( x) has a value of zero at x = a, then the new function 
f(x)/(x - a) will not approach zero in this region (if a is a simple 
root of {(x) = 0). You can use this information to eliminate a known 
root. Simply add a few program lines at the end of your function 
subroutine. These lines should subtract the known root (to 10 
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significant digits) from the x·value and divide this difference into 
the function value. In many cases the root will be a simple one, and 
the new function will direct I SOLVE I away from the known root. 

On the other hand, the root may be a multiple root. A multiple root 
is one that appears to be present repeatedly, in the following sense: 
at such a root, not only does the graph of f(x) cross the x·axis, but 
its slope (and perhaps the next few higher·order derivatives) also 
equals zero. If the known root of your equation is a multiple root, 
the root is not eliminated by merely dividing by the factor 
described above. For example, the equation 

f(x)=x(x-a)3=0 

has a multiple root at x = a (with a multiplicity of 3). This root is 
not eliminated by dividing f(x) by (x - a). But it can be eliminated 
by dividing by (x - a)3. 

Example: Use deflation to help find the roots of 

60x4 - 944x3 + 3003x2 + 6171x - 2890 = o. 

Using Horner's method, this equation can be rewritten in the form 

«(60x - 944)x + 3003)x + 6171)x - 2890 = O. 

Program a subroutine that evaluates the polynomiaL 

Keystrokes Display 

(all P/R I 000- Program mode. 

m CLEAR I PRGM I 000-
miLBLI2 001-42.21. 2 
6 002- 6 
0 003- 0 
0 004- 20 
9 005- 9 
4 006- 4 
4 007- 4 
G 008- 3-0 
0 009- 20 
3 010- 3 
0 011- 0 
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Keystrokes Display 

0 012- 0 
3 013- 3 
G 014- 40 
0 015- 20 
6 016- 6 
1 017- 1 
7 018- 7 
1 019- 1 
G 020- 40 
0 021- 20 
2 022- 2 
8 023- 8 
9 024- 9 
0 025- 0 
8 026- 30 
[9][RTNI 027- 4332 

In Run mode, key in two large, negative initial estimates (such as 
-10 and -20) and use I SOLVE I to find the most negative root. 

Keystrokes Display 

[9][ P/R I Run mode. 
10 [CHS II ENTER I -10.0000 } Initial estimates. 
20[CHSI -20 
01 SOLVE 12 -1.6667 First root. 
[SToia -1.6667 Stores root for deflation. 
[H)[H) 4.0000 -06 Function value near zero. 

Return to Program mode and add instructions to your subroutine to 
eliminate the root just found. 

Keystrokes 

[9][P/RI 
~[ SST l(ill SST I 
[tli) 
[RCLlo 
8 
G 

Display 

000-
026-
027-
028-
029-
030-

Program mode. 
30 Line before [RTN I. 
34 Brings x into X-register. 

45 3~} D~vides by (x - a), where 
1 0 a is known root. 
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N ow use the same initial estimates to find the next root. 

Keystrokes Display 

[BJlp/RI 4.0000 -06 Run mode. 
1 0 I CHS II ENTER 1 -10.0000 } Same initial estimates. 
20lcHSI -20 
[DISOLVEI2 0.4000 Second root. 
ISTOl1 0.4000 Stores root for deflation. 

[ll][ll] 0.0000 Deflated function value. 

Now modify your subroutine to eliminate the second root. 

Keystrokes Display 

[gJIP/RI 000- Program mode. 
[gJIBSTI[gJIBSTI 030- 10 Line before I RTN I. 

[rti1 031- 34 Brings x into X-register. 

IRCLI1 032-
45 1} G 033- 30 Deflation for second root. 

G 034- 10 

Again, use the same initial estimates to find the next root. 

Keystrokes Display 

WlP/RI 0.0000 Run mode. 
10 I CHS II ENTER 1 -10.0000 } Same initial estimates. 
20lcHSI -20 
IIJI SOLVE 12 8.4999 Third root. 
ISTOI2 8.4999 Stores root for deflation. 
[HJ[ll] -1.0929 -07 Deflated function value 

near zero. 

Now change your subroutine to eliminate the third root. 

Keystrokes Display 

WlP/RI 000- Program mode. 
WIBSTIWI BS1I'1 034- 10 Line before I RTN I. 

[ili] 035- 34 Brings x into X-register. 
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Keystrokes 

IRCLI2 

B 

Display 

036 
037-
038-

30 Deflation for third root. 
45 2} 

G 10 

Find the fourth root. 

Keystrokes 

[[)IP/RI 
101 CHS II ENTER I 
20lcHSI 
[DISOLVEI2 

ISTOI3 

[H][H] 

Display 

-1.0929 -07 
-10.0000 
-20 

8.5001 

8.5001 

-0.0009 

Using the same initial estimates 
each time, you have found four roots 
for this equation involving a fourth· 
degree polynomial. However, the last 
two roots are quite close to each other 
and are actually one root (with a 
multiplicity of 2). That is why the 
root was not eliminated when you 
tried deflation once at this root. 
(Round-off error causes the original 
function to have small positive and 
negative values for values of x 
between 8.4999 and 8.5001; for x = 8.5 
the function is exactly zero.) 

} Same initial estimates. 

Fourth root. 

Stores root for reference. 

Deflated function value 
near zero. 

fIx) (in 103s) 
30 

8r-f-+--+-......,loL.-
1
-
2 

X 

-10 

Graph of f(xl 

In general, you will not know in advance the multiplicity ofthe root 
you are trying to eliminate. If, after you have attempted to 
eliminate a root, I SOLVE I finds that same root again, you can 
proceed in a number of ways: 

• Use different initial estimates with the deflated function in an 
attempt to search for a different root. 

• Use deflation again in an attempt to eliminate a multiple root. 
If you do not know the multiplidty of the root, you may need to 
repeat this a number oftimes. 
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• Examine the behavior of the deflated function at x-values near 
the known root. If the function's calculated values cross the 
x-axis smoothly, either another root or a greater multiplicity is 
indicated. 

• Analyze the original function and its derivatives algebra­
ically. It may be possible to determine its behavior for x-values 
near the known root. (A Taylor series representation, for 
example, may indicate the multiplicity of a root.) 

Limiting the Estimation Time 
Occasionally, you may desire to limit the time used by I SOLVE I to 
find a root. You can use two possible techniques to do this­
counting iterations and specifying a tolerance. 

Counting Iterations 

While searching for a root, I SOLVE I typically samples your function 
at least a dozen times. Occasionally, I SOLVE I may need to sample it 
one hundred times or more. (However, I SOLVE 1 will always stop by 
itself.) Because your function subroutine is executed once for each 
estimate that is tried, it can count and limit the number of 
iterations. An easy way to do this is with an IISG I instr~ction to 
accumulate the number of iterations in the Index register (or other 
storage register). 

If you store an appropriate nllmber in the register before using 
I SOLVE I, your subroutine can interrupt the I SOLVE 1 algorithm when 
the limit is exceeded_ 

Specifying a Tolerance 

You can shorten the time required to find a root by specifying a 
tolerable inaccuracy for your function. Your subroutine should 
return a function value of zero if the calculated function value is 
less than the specified tolerance. This tolerance that you specify 
should correspond to a value that is negligible for practical 
purposes or should correspond to the accuracy of the computation. 
This technique eliminates the time required to define the estimate 
more accurately than is justified by the problem. (The example on 
]page 2241 uses this method.) 
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For Advanced Information 
In the HP-15C Advanced Functions Handbook, additional, 
advanced techniques and applications for using I SOLVE I are 
presented. These topics include: 

• Using' SOLVE I with polynomials. 

• Solving a system of equations. 

• Finding local extremes of a function. 

• Using' SOLVE I for financial problems. 

• Using' SOLVE lin Complex mode. 

• Solving an equation for its complex roots. 
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A Detailed Look at I !Y I 

Section 14, Numerical Integration, presented the basic information 
you need to use [ZiJ. This appendix discusses more intricate aspects 
of[ZiJ that are of interest if you use [ZiJ often. 

How[E)Works 
The [ZiJ algorithm calculates the integral of a function f(x) by 
computing a weighted average of the function's values at many 
values of x (known as sample points) within the interval of 
integration. The accuracy of the result of any such sampling 
process depends on the number of sample points considered: 
generally, the mOle sample points, the greater the accuracy. If f(x) 
could be evaluated at an infinite number of sample points, the 
algorithm could-neglecting the limitation imposed by the 
inaccuracy in the calculated function f(x )-provide an exact 
answer. 

Evaluating the function at an infinite number of sample points 
would take a very long time (namely, forever). However, this is not 
necessary, since the maximum accuracy of the calculated integral 
is limited by the accuracy ofthe calculated function values. Using 
only a finite number of sample points, the algorithm can calculate 
an integral that is as accurate as is justified considering the 
inherent uncertainty in t(x). 

The [ZiJ algorithm at first considers only a few sample points, 
yielding relatively inaccurate approximations. If these approxima­
tions are not yet as accurate as the accuracy of f(x) would permit, 
the algorithm is iterated (that is, repeated) with a larger number of 
sample points. These iterations continue, using about twice as 
many sample points each time, until the resulting approximation 
is as accurate as is justified considering the inherent uncertainty in 
f(x)-

240 



Appendix E: A Detailed Look at [[] 241 

The uncertainty of the final approximation is a number derived 
from the display format, which specifies the uncertainty for the 
function. * At the end of each iteration, the algorithm compares the 
approximation calculated during that iteration with the approx­
imations calculated during two previous iterations. If the 
difference between any of these three approximations and the 
other two is less than the uncertainty tolerable in the final 
approximation, the algorithm terminates, placing the current 
approximation in the X-register and its uncertainty in the 
V-register. 

It is extremely unlikely that the errors in each of three successive 
approximations-that is, the differences between the actual 
integral and the approximations-would all be larger than the 
disparity among the approximations themselves. Consequently, 
the error in the final approximation will be less than its 
uncertainty. t Although we can't know the error in the final 
approximation, the error is extremely unlikely to exceed the 
displayed uncertainty of the approximation. In other words, the 
uncertainty estimate in the V-register is an almost certain "upper 
bound" on the difference between the approximation and the 
actual integral. 

Accuracy, Uncertainty, and Calculation Time 
The accuracy of an [[] approximation does not always change 
when you increase by just one the number of digits specified in the 
display format, though the uncertainty will decrease. Similarly, 
the time required to calculate an integral sometimes changes when 
you change the display format, but sometimes does not. 

Example: The Bessel function of the first kind, of order four, can 
be expressed as 

1 (" 
J 4 (x)= -j, cos(49-x sin 9)dtl 

1r 0 

"The relationship between the display format, tho uncertainty in the function, and the 
uncertainty in the approximation to its integral are discussed later in this appendix. 

tProvided that f(x} does not vary rapidly, a consideration that will "" discussed in more 
detail later in this appendix. 
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Calculate the integral in the expression for J 4 (I), 

fo" cos (40 - sinO) dO. 

First, switch to Program mode and key in a subroutine that 
evaluates the function {(O) = cos (40 - sinO). 

Keystrokes 

~IP/RI 

m CLEAR I PRGM I 
mlLBLlo 
4 

o 
[iUJ 
ISINI 

G 
lcosl 
~IRTNI 

Display 

000- Program mode. 
000-
001-42.21. 0 
002- 4 
003- 20 
004- 34 
005- 23 
006- 30 
007- 24 
008- 4332 

Now, switch to Run mode and key the limits of integration into the 
x- and Y-registers. Be sure the trigonometric mode is set to 
Radians, and set the display format to I SC112. Finally, press [IJ[EJ 0 
to calculate the integral. 

Keystrokes Display 

~IP/RI Run mode. 
OIENTERI 0.0000 Keys lower limit into Y-

register. 

~@ 3.1416 Keys upper limit into X-
register. 

~IRADI 3.1416 Sets the trigonometric 
mode to Radians. 

moo 2 3.14 00 Sets display format to 
002. 

m[EJo 7.79 -03 Integral approximated in 
002. 

[iUJ 1.45 -03 Uncertainty ofl SCI12 
approximation. 
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The uncertainty indicates that the displayed digits of the 
approximation might not include any digits that could be 
considered accurate. Actually, this approximation is more accurate 
than its uncertainty indicates. 

Keystrokes 

[tli) 

o CLEAR I PREFIX I 
(hold) 

Display 

7.79 -03 Return approximation to 
display. 

7785820888 All 10 digits ofl SCI12 
approximation. 

The actual value of this integral, con-ect to five significant digits, is 
7.7805 X 10-3. Therefore, the error in this approximation is about 
(7.7858 - 7.7805) X 10-3 = 5.3 X 10-6. This error is considerably less 
than the uncertainty, 1.45 X 10-;;. The uncertainty is only an upper 
bound on the error in the approximation; the actual error will 
generally be smaller. 

Now calculate the integral in I SCI13 and compare the accuracy of 
the resulting approximation to that ofthe ~ 2 approximation. 

Keystrokes Display 

01scI13 7.786 -03 Changes display format 
to1SC113. 

(H][H] 3.142 00 Rolls down stack until 
upper limit appears in X-
register. 

000 7.786 -03 Integral :>pproximated in 
[§Qj3. 

[tli) 1.448 -04 Uncertainty of[§Qj3 
approximation. 

[ili] 7.786 -03 Returns approximation to 
display. 

0CLEAR I PREFIX I 
(hold) 7785820888 All 10 digits of[§Ql3 

approximation. 
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All 10 digits of the approximations in I SCI I 2 and I SCI I 3 are 
identical: the accuracy of the approximation in I SCI I 3 is no better 
than the accuracy in I SCI12 despite the fact that the uncertainty in 
I SCI13 is less than the uncertainty in I SC112. Why is this? Remember 
that the accuracy of any approximation depends primarily on the 
number of sample points at which the function {(x) has been 
evaluated. The [EJ algorithm is iterated with increasing numbers of 
sample points until the disparity among three successive 
approximations is less than the uncertainty derived from the 
display format. After a particular iteration, the disparity among 
the approximations may already be so much less than the 
uncertainty that it would still be less if the uncertainty were 
decreased by a factor of 10. In such cases, if you decreased the 
uncertainty by specifying one more digit in the display format, the 
algorithm would not have to consider additional sample points, 
and the resulting approximation would be identical to the 
approximation calculated with the larger uncertainty. 

If you calculated the two preceding approximations on your 
calculator, you may have noticed that it did not take any longer to 
calculate the integral in I SCI I 3 than in @ 2. This is because the 
time to calculate the integral of a given function depends on the 
number of sample points at which the function must be evaluated 
to achieve an approximation of acceptable accuracy. For the I SCI 1.3 
approximation, the algorithm did not have to consider more 
sample points than it did in I SC112, so it did not take any longer to 
calculate the integral. 

Often, however, increasing the number of digits in the display 
format will req1llire evaluating the function at additional sample 
points, so that calculating the integral will take more time. Now 
calculate the same integral in I SC114. 

Keystrokes Display 

miscI14 7.7858 -03 I SCI14 display. 
(H](H] 3.1416 00 Rolls down stack until 

upper limit appears in X· 
register. 

m[ZDo 7.7807 -03 Integral approximated in 
[@j4. 
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This approximation took about twice as long as the approximation 
in I SCI I 3 or I SC112. In this case, the algorithm had to evaluate the 
function at about twice as many sample points as before in order to 
achieve an approximation of acceptable accuracy. Note, however, 
that you received a reward for your patience: the accuracy of this 
approximation is better, by almost two digits, than the accuracy of 
the approximation calculated using half the number of sample 
points. 

The preceding examples show that repeating the approximation of 
an integral in a differ'!nt display format sometimes will give you a 
more accurate answer, but sometimes it will not. Whether or not the 
accuracy is changed depends on the particular function, and 
generally can be determined only by trying it. 

Furthermore, if you do get a more accurate answer, it will come at 
the cost of about double the calculation time. This unavoidable 
trade-off between accuracy and calculation time is important to 
keep in mind if you are considering decreasing the uncertainty in 
hopes of obtaining a more accurate answer. 

The time required to calculate the integral of a given function 
depends not only on the number of digits specified in the display 
format, but also, to a certain extent on the limits of integration. 
When the calculation of an integral requires an excessive amount 
of time, the width of the interval of integration (that is, the 
difference of the limits) may be too large compared with certain 
features of the function being integrated. For most problems, 
however, you need not be concerned about the effects of the limits 
of integration on the calculation time. These conditions, as well as 
techniques for dealing with such situations, will be discussed later 
in this appendix. 

Uncertainty and the Display Format 
Because of round-off error, the subroutine you write for evaluating 
t(x) cannot calculate t(x) exactly, but rather calculates 

f(x) = t(x) ± fJ.(x), 

where fJ. (x) is the uncertainty of t(x) caused by round-off error. If 
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{(x) relates to a physical situation, then the function you would like 
to integrate is not ((x) but rather 

F(x)={(x)±62 (x), 

where 62 (x) is the uncertainty associated with {(x) that is caused 
by the approximation to the actual physical situation. 

Since ((x) = l(x) ± 61 (x), the function you want to integrate is 

F(x)=I(x)±61 (x)± 1l2 (x) 

or F(x) = lex) ± fJ(x), 

where 6(x) is the net uncertainty associated with i(x). 

Therefore, the integral you want is 

fb F(x) dx = fb rl(x) ± /lex)] dx 
a a 

= fb lex) dx ± fb 6(x)dx 
a a 

=I±d 

where I is the approximation to f b F( x) dx and d is the uncertainty 
a 

associated with the approximation. The 0 algorithm places the 
number I in the X-register and the number d in the Y-regist.er. 

The uncertainty 6(x) of lex), the function calculated by your 
subroutine, is determined as follows. Suppose you consider three 
significant digits of the function's values to be accurate, so you set 
the display format to I SC112. The display would then show only the 
accurate digits in the mantissa of a function's values: for example, 
1.23 -04. 

Since the display format rounds the number in the X-register to the 
number displayed, this implies that the uncertainty in the 
function's values is ± 0.005 X 10-4 = ± 0.5 X 10-2 X 10-4 = 
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± 0.5 X 10-6• Thus, setting the display format to I SCI I n or I ENG I n, 
where n is an integer,· implies that the uncertainty in the 
function's values is 

«'l(x)=0.5X lO-n X lOm(x) 

= 0.5 X lO- n + m (x) 

In this formula, n is the number of digits specified in the display 
format and m(x) is the exponent of the function's value at x that 
would appear ifthe value were displayed in I SCI I display format. 

The uncertainty is proportional to the factor lOm(x), which 
represents the magnitude of the function's value at x. Therefore, 
I SCI I and I ENG I display formats imply an uncertainty in the 
function that is relative to the function's magnitude. 

Similarly, if a function value is displayed in [ERl n, the rounding of 
the display implies that the uncertainty in the function's values is 

«'l(x) = 0.5 X lO-n. 

Since this uncertainty is independent of the function's magnitude, 
[ERl display format implies an uncertainty that is absolute. 

Each time the CZiJ algorithm samples the function at a value of x, it 
also derives a sample of 5(x), the uncertainty of the function's 
value at x. This is calculated using the number of digits n currently 
specified in the display format and (if the display format is set to 

• Although @j8 or 9 generally results in the same display as @j7. it will result in a 
smaller uncertainty of a calculated integral. (The same is true for the I]ffij] format.) A 
negatin value for n (which can be set by using the Index register) will also affect the 
uncertainty of an [ill calculation. The minimum value for n that. will affect nncertainty 
is -6. A number in RI less than -6 will be interpreted as -6. 
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I SCI I or I ENG I) the magnitude m(x) ofthe function's value at x. The 
number ~, the uncertainty of the approximation to the desired 
integral, is the integral of 8(x): 

= fb [0.5 X lO-n + m(x)] dx. 
a 

This integral is calculated llsing the samples of 8(x) in roughly the 
same ways that the approximation to the integral of the function is 
calculated using the samples of l(x). 

Because ~ is proportional to the factor 10-n , the uncertainty of an 
approximation changes by about a factor of 10 for each digit 
specified in the display format. This will generally not be exact in 
I SCI I or I ENG I display format, however, because changing the 
number of digits specified may require that the function be 
evaluated at different sample points, so that 8(x) - lOm(x) would 
have different values. 

Note that when an integral is approximated in [IjRJ display format, 
m(x) = Oand so the calculated uncertainty in the approximation 
turns out to be 

~ = 0.5 >( lO-n(b - a). 

Normally you do not have to determine precisely the uncertainty in 
the function. (To do so would frequently require a very complicated 
analysis.) Generally, it's more convenient to use I SCI I or I ENG I 
display format if the uncertainty in the function's values can be 
more easily estimated as a relative uncertainty. On the other hand, 
it's more convenient to use [IjRJ display format if the uncertainty in 
the function's values can be more easily estimated as an absolute 
uncertainty. (£lR) display format may be inappropriate to use 
(1eading to peculiar results) when you are integrating a function 
whose magnitude and uncertainty have extremely sma]l values 
within the interval of integration. Likewise, I SCI I display format 
may be inappropriate to use (also leading to peculiar results) if the 
magnitude of the function becomes m1llch smaller than its 
uncertainty. If the results of calculating an integral seem strange, 
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it may be more appropriate to calculate the integral in the alternate 
display format. 

Conditions That Could Cause 
Incorrect Results 
Although the []] algorithm in the HP-15C is one of the best 
available, in certain situations it-like nearly all algorithms for 
numerical integration-might give you an incorrect answer. The 
possibility of this occurring is extremely remote. The []] algorithm 
has been designed to give accurate results with almost any smooth 
function. Only for functions that exhibit extremely erratic 
behavior is there any substantial risk of obtaining an inaccurate 
answer. Such functions rarely occur in problems related to actual 
physical situations; when they do, they usually can be recognized 
and dealt with in a straightforward manner. 

As discussed on page 240, the [EJ algorithm samples the function 
f(x) at various values of x within the interval of integration. By 
calculating a weighted average of the function's values at the 
sample points, the algorithm approximates the integral off(x). 

Unfortunately, since all that the algorithm knows about f(x) are its 
values at the sample points, it cannot distinguish between f(x) and 
any other function that agrees with f(x) at all the sample points. 
This situation is depicted in the illustration on the next page, 
which shows (over a portion of the interval of integration) three of 
the infinitely many functions whose graphs include the finitely 
many sample points. 
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fIx) 

. . . 
.- .. . . . . 

~------------------------------------------------___ x 

With this number of sample points, the algorithm will calculate the 
same approximation for the integral of any of the functions shown. 
The actual integrals of the functions shown with solid lines are 
about the same, so the approximation will be fairly accurate if f(x) 
is one of these functions. However, the actual :integral of the 
function shown with a dashed line is quite different from those of 
the others, so the current approximation will be rather inaccurate if 
f(x) is this function. 

The 0 algorithm comes to know the general behavior of the 
function by sampling the function at more and more points. If a 
fluduation of the function in one region is not unlike the behavior 
over the rest of the interval of integration, at some iteration the 
algorithm win likely detect the fluctuation. When this happens, the 
number of sample points is increased until successive iterations 
yield approximations that take into account the presence of the 
most rapid, but characteristic, fluctuations. 

For example, consider the approximation of 
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Since you're evaluating this integral numerically, you might think 
(naively in this case, as you'll see) that you should represent the 
upper limit of integration by 1099-which is virtually the largest 
number you can key into the calculator. Try it and see what 
happens. 

Key in a subroutine that evaluates the functionf{x) = xe-x . 

Keystrokes 

[ilIP/RI 
rnl LBUl 
ICHSI 
~ 
o 
[ill RTN I 

Display 

000- Program mode. 
001-42,21, 
002- 16 
003- 12 
004- 20 
005- 4332 

Set the calculator to Run mode. Then set the display format to 
I SCI13 and key the limits of integration into the X- and Y-registers. 

Keystrokes Display 

[ilIP/RI Run mode. 

rnl SCI13 Sets display format to 
~3. 

OIENTERI 0.000 00 Keys lower limit into Y-
register. 

IEEXl99 1 99 Keys upper limit into X-
register. 

rncml 0.000 00 Approximation of 
integral. 

The answer returned by the calculator is clearly incorrect, since the 
actual integral of {(x) = xe-x from 0 to 00 is exactly l. But the 
problem is not that you represented 00 by 1099, since the actual 
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integral ofthis function from 0 to 1099 is very close to 1. The reason 
you got an incorrect answer becomes apparent if you look at the 
graph of f(x) over the interval of integration: 

({x) 

x 

The graph is a spike very close to the origin. (Actually, to illustrate 
f(x) the width of the spike has been considerably exaggerated. 
Shown in actual scale over the interval of integration, the spike 
would be indistinguishable from the vertical axis of the graph.) 
Because no sample point happened to discover the spike, the 
algorithm assumed that f(x} was identically equal to zero 
throughout the interval of integration. Even if you increased the 
number of sample points by calculating the integral in I Sel19, none 
of the additional sample points would discover the spike when this 
particular function is integrated over this particular interval. 
(Better approaches to problems such as this are mentioned at the 
end of the next topic, Conditions That Prolong Calculation Time.) 

You've seen how the 0 algorithm can give YOll an incorrect answer 
when f(x) has a fluctuation somewhere that is very uncharacter­
istic of the behavior of the function elsewhere. Fortunately, 
functions exhibiting such aberrations are unusual enough that you 
are unlikely to have to integrate one unknowingly. 

Functions that could lead to incorrect results can be identified in 
simple terms by how rapidly it and its low-order derivatives vary 
across the interval of integration. Basically, the more rapid the vari­
ation in the function or its derivatives, and the lower the order of 
such rapidly varying derivatives, the less quickly will the []] al­
gorithm terminate, and the less reliable will the resulting 
approximation be. 
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Note that the rapidity of variation in the function (or its low-order 
derivatives) must be determined with respect to the width of the 
interval of integration. With a given num ber of sample points, a 
function f(x) that has three fluctuations can be better character­
ized by its samples when these variations are spread out over most 
of the interval of integration than if they are confined to only a 
small fraction of the interval. (These two situations are shown in 
the next two illustrations.) Considering the variations or 
fluctuations as a type of oscillation in the function, the criterion of 
interest is the ratio of the period of the oscillations to the width of 
the interval of integration: the larger this ratio, the more quickly 
the algorithm will terminate, and the more reliable will be the 
resulting approximation. 

f(x) 

I 
I 
I Calculated integral 
I of this function 
I will be accurate. 
I 
I 
I 

--~--~-----------------------------------------+--_x 

f(x) 

a 

: Calculated integral 
I of this function 
I may be inaccurate. 

I 

b 

--+---+------------------------------------------+--_x 
a b 
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In many cases you will be familiar enough with the function you 
want to integrate that you'll know whether the function has any 
quick wiggles relative to the interval of integration. If you're not 
familiar with the function, and you have reason to suspect that it 
may cause problems, you can quickly plot a few points by 
evaluating the function using the subroutine you wrote for that 
purpose. 

If for any reason, after obtaining an approximation to an integral, 
you have reason to suspect its validity, there's a very simple 
procedure you can use to verify it: subdivide the interval of 
integration into two or more adjacent subintervals, integrate the 
function over each subinterval, then add the resulting approxima· 
tions. This causes the function to be sampled at a brand new set of 
sample points, thereby more likely revealing any previously 
hidden spikes. If the initial approximation was valid, it will equal 
the sum ofthe approximations over the subintervals. 

Conditions That Prolong Calculation Time 
In the preceding example (page 251), you saw that the algorithm 
gave an incorrect answer because it never detected the spike in the 
function. This happened because the variation in the function was 
too quick relative to the width of the interval of integration. ]f the 
width of the interval were smaller, you would get the correct 
answer; but it would take a very long time if the interval were still 
too wide. 

For certain integrals such as the one in that example, calculating 
the integral may be unduly prolonged because the width of the 
interval of integration is too large relative to certain features of the 
functions being integrated. Consider an integral where the interval 
of integration is wide enough to require excessive calculation time 
but not so wide that it would be calculated incorrectly. Note that 
because t(x) = xe-X approaches zero very quickly as x approaches 
"", the contribution to the integral ofthe function at large values of 
x is negligible. Therefore, you can evaluate the integral by 
replacing 00, the upper limit of integration, by a number not so 
large as 1099, say 103• 
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OIENTERI 
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Display 

0.000 00 

1 03 

1.000 00 

1.824 -04 

Keys lower limit into Y­
register. 
Keys upper limit into X­
register. 
Approximation to 
integral. 
Uncertainty of 
approximation. 

This is the correct answer, but it took a very long time. To 
understand why, compare the graph of the function over the 
interval of integration, which looks about identical to that shown 
on page 252, to the graph ofthe function between x = 0 and x = 10. 

fIx) 

x 
10 

By comparing the two graphs, you can see that the function is 
"interesting" only at small values of x. At greater values of x, the 
function is "uninteresting," since it decreases smoothly and 
gradually in a very predictable manner. 

As discussed earlier, the em algorithm will sample the function 
with higher densities of sample points until the disparity between 
successive approximations becomes sufficiently small. In other 
words, the algorithm samples the function at increasing numbers 
of sample points until it has sufficient information about the 
function to provide an approximation that changes insignificantly 
when further samples are considered. 
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If the interval of integration were (0, 10) so that the algorithm 
needed to sample the function only at values where it was 
interesting but relatively smooth, the sample points after the first 
few iterations would contribute no new information about the 
behavior of the function. Therefore, only a few iterations would be 
necessary before the disparity between successive approximations 
became sufficiently small that the algorithm could terminate with 
an approximation of a given accuracy. 

On the other hand, if the interval of integration were more like the 
one shown in the graph on page 252, most of the sample points 
would capture the function in the region where its slope is not 
varying much. The few sample points at small values of x would 
find that values of the function changed appreciably from one 
iteration to the next. Consequently the function would have to be 
evaluated at additional sample points before the disparity between 
successive approximations would become sufficiently small. 

In order for the integral to be approximated with the same 
accuracy over the larger interval as over the smaller interval, the 
density of the sample points must be the same in the region where 
the function is interesting. To achieve the same density of sample 
points, the total number of sample points required over the larger 
:interval is much greater than the number required over the smaller 
interval. Consequently., several more iterations are required over 
the larger interval to achieve an approximation with the same 
accuracy, and therefore calculating the integral requires con­
siderably more time. 

Because the calculation time depends on how soon a certain 
density of sample points is achieved in the region where the 
function is interesting, the calculation of the integral of any 
function will be prolonged if the interval of integration includes 
mostly regions where the function is not interesting. Fortunately, if 
you must calculate such an integral, you can modify the problem so 
that the calculation time is considerably reduced. Two such 
techniques are subdividing the interval of integration and 
transformation of variab]es. These methods enable you to change 
the function or the limits of integration so that the integrand is 
better behaved over the interval(s) of integration. (These 
techniques are described in the Hp·15C Advanced Functions 
Handbook.) 
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Obtaining the Current Approximation 
to an Integral 
When the calculation of an integral is requiring more time than 
you care to wait, you may want to stop and display the current 
approximation. You can obtain the current approximation, but not 
its uncertainty. 

Pressing I RIS I while the HP-15C is calculating an integral halts the 
calculation, just as it halts the execution of a running program. 
When you do so, the calculator stops at the current program line in 
the subroutine you wrote for evaluating the function, and displays 
the result of executing the preceding program line. Note that after 
you halt the calculation, the current approximation to the integral 
is not the number in the X-register nor the number in any other 
stack register. Just as with any program, pressing I RIS I again 
starts the calculation from the program line at which it was 
stopped. 

The 0 algorithm updates the current approximation and stores it 
in the LAST X register after evaluating the function at each new 
sample point. To obtain the current approximation, therefore, 
simply halt the calculator, single-step if necessary through your 
function subroutine until the calculator has finished evaluating 
the function and updating the current approximation. Thim recall 
the contents of the LAST X register, which are updated when the 
I RTN I instruction in the function subroutine is executed. 

While the calculator is updating the current approximation, the 
display is blank and does not show running. (While the calculator is 
executing your function subroutine, running is displayed.) There­
fore, you might avoid having to .single-step through your 
subroutine by halting the calculator at a moment when the display 
is blank. 

In summary, to obtain the current approximation to an integral, 
follow the steps below. 

1. Press I RIS I to halt the calculator, preferably while the 
display is blank. 

2. When the calculator halts, switch to. Program mode to check 
the current program line . 

• If that line contains the subroutine label, return to Run 
mode and view the LAST X register (step 3). 
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• If any other program line is displayed, return to Run 

mode and single-step (I SST \) through the program until 

you reach a I RTN I instruction (key code 43 32) or line 000 (if 

there is no I RTN D. (Be sure to hold the I SST Ikey down long 

enough to view the program line numbers and keycodes.) 

3. Press IJi] I LSTx 1 to view the current approximation. If you 

want to continue calculating the final approximation, press 

~ G I RIS I. This refills the stack with the current x-value 

and restarts the calculator. 

For Advanced Information 
The Hp·15C Advanced Functions Handbook explores more esoteric 

aspects of[EJ and its applications. These topics include: 

• Accuracy of the function to be integrated. 

• Shortening calculation time. 

• Calculating difficult integrals. 

• Using [EJin Complex mode. 
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Battery, Warranty, and 
Service Information 

Batteries 
The HP-15C is powered by three batteries. In "typical" use, the 
HP-15C has been designed to operate 6 months or more on a set of 
alkaline batteries. The batteries supplied with the calculator are 
alkaline, but silver-oxide batteries (which should last twice as long) 
can also be used. 

A set of three fresh alkaline batteries will provide at least 60 hours 
of continuous program running (the most power-consuming kind of 
calculator use·). A set of three fresh silver-oxide batteries will 
provide at least 135 hours of continuous program running. If the 
calculator is being used to perform operations other than running 
programs, it uses much less power_ When only the display is on­
that is, if you are not pressing keys or running programs-very 
little power is consumed. 

If the calculator remains turned off, a set of fresh batteries will 
preserve the contents of Continuous Memory for as long as the 
batteries would last outside ofthe calculator-at least 11/2 years for 
alkaline batteries or at least 2 years for silver-oxide batteries. 

The actual lifetime of the batteries depends on how often you use 
the calculator, whether you use it more for running programs or 
more for manual calculations, and which functions you use.· 

The batteries supplied with the calculator, as well as the batteries 
listed on the next page for replacement, are not rechargeable . 

• Power consumption in the HP-15C depends on the mode of calculator us·e: off (with 
Continuous Memory preserved); idle (with only the display on); or "operating" (running 
a program. performing acalculalion, or having a key pressed). Whlle the calculator is 
turned on, typical calculator use is a mixture of idle time and "operating" time. 
Therefore, the actual lifetime of the batteries depends on how much time the calculator 
spends in each of the three modes. 

269 
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WARNING 

Do not attempt to recharge the batteries; do not store 
batteries near a source of high heat; do not dispose of 
batteries in fire. Doing 50 may cause the batteries to leak or 
explode. 

The following batteries are recommended for replacement in your 
HP-15C (not all batteries available in all countries): 

Alkaline Silver-Oxide 

Eveready A 76* 
DeAR A76 
National or Panasonic LR44 

low-Power Indi·cation 

Eveready 357* 
DCAR 357 

An asterisk (*) flashing in the lower left corner ofthe display when 
the calculator is on signifies that the available battery power is 
running low. 

With alkaline batteries installed: 

• The calculator can be used for at least I1h hours of continuous 
program running after the asterisk first appears.t 

• If the calculator remains turned off, the contents of its 
Continuous Memory will be preserved for at least 1 month 
after the asterisk first appears. 

With silver-oxide batteries in.stalled: 

• The calculator can be used for at least 10 minutes of 
continuous program running after the asterisk first appears. t 

• If the calculator remains turned off, the contents of its 

• Not available in the United Kingdom or Republi~ ofIreland. 

tNote that thils time is the minimum available for continuous program running-tJIat is, 
while continuously Uoperating'" (as described tn the footnote on pag·e 259), If you aTe 

using th·e calculator fOl" manual calculations-a mixture of the idle and "operating" 
modes-the calculator can be used for a mueh longer time after the asterisk first 
appears. 
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Continuous Memory will be preserved for at least 1 week after 
the asterisk first appears. 

Instamng New Batteries 

The contents of the calculator's Continuous Memory are preserved 
for a short time while the batteries are out of the calculator 
(provided that you turn off the calculator before removing the 
batteries). This allows you ample time to replace the batteries 
without losing data or programs. If the batteries are left out of the 
calculator for an extended period, the contents of Continuous 
Memory may be lost. 

To install new batteries, use the following procedure: 

1. Be sure that the calculator is 
off. 

2. Holding the calculator as 
shown, press outward on the 
battery compartment door 
until it opens slightly. 

3. Grasp the outer edge of the 
battery compartment door, 
then tilt it up and out of the 
calculator. 
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CAUTION 
In the next two steps, be careful not to press any keys while 
batteries are out of the calculator. If you do so, the contents 
of Continuous Memory may be lost and keyboard control may 
be lost (that is, the calculator may not respond to keystrokes). 

4. Turn the calculator over and 
gently shake, allowing the 
batteries to fall into the palm 
of your hand. 

CAUTION 

In the next step, replace all three batteries with fresh ones. If 
you leave an old battery inside, it may leak. Furthermore, be 
careful not to insert the baueries backwa,rds. If you do so, the 
contents of Continuous Memory may be lost, and the 
batteries may be damaged. 

5. Insert three new batteries un­
der the plastic flap or flaps 
shielding th·e battery 
compartment. They should be 
positioned with their flat 
sides (the sides marked +) 
facing toward the nearby rub­
ber foot, as shown in the 
illustration on the calculator 
case. 



Appendix F: Battery, Warranty, and Service Information 263 

6. Insert the tab of the battery 
compartment door into the slot 
in the calculator case. 

7. Lower the battery compart­
ment door until it is flush with 
the case, then push the door 
inward until it is tightly shut. 

8. Turn the calculator on. If for 
any reason Continuous Mem­
ory has been reset (that is, ifits 
contents have been lost), the 
display will show Pr Error. 
Pressing any key will clear 
this message from the display. 

Verifying Proper Operation (Self-Tests) 
If it appears that the calculator will not turn on or otherwise is not 
operating properly, use one of the following procedures. 

For a calculator that does not respond to keystrokes: 

1. Press the [Z] and [QE] keys simultaneously, then release 
them. This wiJI alter the contents of the X-register, so clear 
the X-register afterward. 

2. If the calculator still does not respond to keystrokes, remove 
and reinsert the batteries. Make sure the batteries are 
properly positioned in the compartment. 

3. If the calculator still does not respond to keystrokes, leave 
the batteries in the compartment and short the battery 
terminals together. (The batteries must remain in place to 
prevent possible internal damage to the calculator.) With a 
pap,er clip or piece of wil'e, briefly connect the terminals. 
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Only momentary contact is required. The terminals are 
matching metal strips, or a combination of one spring and 
one hard edged tab located at either end of the battery 
compartment. After you do this, the contents of Continu­
ous Memory will be lost, and you may need to press the 
ION I key more than once to turn the calculator back on. 

4. If the calculator still does not turn on, install fresh batteries. 
If there is still no response, the calculator requires service, 

For a calculator that does respond to keystrokes: 

1. With the calculator off, hold down the [Q[] key and press 0. 
2. Release the @ill key, then release the 0 key. This initiates a 

complete test of the calculator's electronic circuitry. If 
everything is working correctly, within about 25 seconds 
(during which the word running flashes) the display should 
show -8.8.8.8.8.8.8.8.8.8. and all of the status indicators 
{except the * low-power indicator) should turn on.* If the 
display shows Error 9, goes blank, or otherwise does not 
show the proper result, the calculator requires service. t 

Note: Tests of the calculator's electronics are also per­
formed if the 0 key or the G key is held down when [Q[] is 
released. tt These tests are included in the calculator to be 
used in verifying that it is operating properly during 
manufacture and service . 

• The status indicators turned on at the end of this test include some that normally are 
not displayed on the HP·15C. 

t If the calculator displays Error 9 as • result of the 1QID/0 test or the [Qffi/Gtest but 
you wish to continue using your calculator, you should reset Continuous Memory as 
dellcribed on page 63. 

t The [Qffi/G -combination initiates a test that is similar 10 that described above, but 
continues indefinitely. The test can be terminated by pressing any key, which will halt 
the te.t within 25 sec'>Dds. The [Qffil G combination initiates a test of the keyboard and 
the display. When the IQID key is. released, certain segment., in the display will be lit. To 
run the tellt, the keys are pressed in order from left 10 right along each row, from the t<>p 
row to the bottom row. A.s each key is pressed, different segments in the display are lit. 
If the calculator is operating properly and all the keys are pressed in the proper order, 
the calculator will di,play 15 after the last key is pressed. (The I ENTER I key should be 
pressed both with the third·row keys and with the fourth·row keys.) If the calculator is 
not working properly, or if a key is pressed out of order, the calculator will display 
Error 9. /llote that if this error display results from an .incorrect key being pressed, this 
does not indicate that your calculator requires service. This test can be terminated by 
pressing any key out of order (which will, of course, result in the Error 9 display). Both 
the Error 9 display and the 16 display can beeleared by pre8sing any key. 



Appendix F: Battery, Warranty, and Service Information 265 

If you had suspected that the calculator was not working properly 
but the proper display was obtained in step 2, it is likely that you 
made an error in operating the calculator.We suggest you reread 
the section in this handbook applicable to your calculation. If you 
still experience difficulty, write or telephone Hewlett-Packard at an 
address or phone number listed under Service (page 267). 

Limited One-Year Warranty 

What We Will Do 

The HP-15C (except for the batteries, or damage caused by the bat­
teries) is warranted by Hewlett-Packard against defects in materials 
and workmanship for one year from the date of original purchase. If 
you sell your unit or give it as a gift, the warranty is automatically 
transferred to the new owner and remains in effect for the original 
one-year period. During the warranty period, we will repair or, at our 
option, replace at no charge a product that proves to be defective, 
provided you return the product, shipping prepaid, to a 
Hewlett-Packard service center. 

What Is Not Covered 

Batteries, and damage caused by the batteries, are not covered by the 
Hewlett-Packard warranty. Check with the battery manufacturer 
about battery and battery leakage warranties. 

This warranty does not apply if the product has been damaged by 
accident or misuse or as the result of service or modification by 
other than an authorized Hewlett-Packard service center. 

No other express warranty is given. The repair or replacement of a 
product is your exclusive remedy. ANY OTHER IMPLIED WAR­
RANTY OF MERCHANTABILITY OR FITNESS IS 
LIMITED TO THE ONE-YEAR DURATION OF THIS 
WRITTEN WARRANTY. Some states, provinces, or countries do 
not allow limitations on how long an implied warranty lasts, so the 
above limitation may not apply to you. IN NO EVENT SHALL 
HEWLETT-PACKARD COMPANY BE LIABLE FOR CON­
SEQUENTIAL DAMAGES. Some states, provinces, or countries 
do not allow the exclusion or limitation of incidental or 
consequential damages, so the above limitation 0][' exclusion may 
not app]y to you. 
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This warranty gives you specific legal rights, and you may also 
have other rights which vary from state to state, province to 
province, or country to country. 

Warranty for Consumer Transactions 
in the United Kingdom 

This warranty shall not apply to consumer transactions and shall 
not affect the statutory rights of a consumer. In relation to such 
transactions, the rights and obligations of Seller and Buyer shall 
be determined by statute. 

Obligation to Make Changes 

Products are sold on the basis of specifications applicable at the 
time of manufacture. Hewlett-Packard shall have no obligation to 
modify or update products once sold. 

Warranty Information 

If you have any questions concerning this warranty, please 
contact: 

• In the United States: 

• In Europe: 

Hewlett-Packard 
Calculator Service Center 

1030 N.E. Circle Blvd. 
Corvallis, OR 97330 

Telephone: (503) 757-2002 

Hewlett-Packard S.A. 
150, route du Nant-d'Avril 

P.O, Box 
CH-1217 Meyrin 2 

Geneva 
Switzerland 

Telephone: (022) 83 81 11 

Note: Do not send calculators to this address for repair. 
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• In other countries: 

Hewlett-Packard Intercontinental 
3495 Deer Creek Rd. 

Palo Alto, California 94304 
U.S.A. 

Telephone: (415) 857-1501 

Note: Do not send calculators to this address for repair. 

Hewlett-Packard maintains service centers in most major 
countries throughout the world. You may have your unit repaired 
at a Hewlett-Packard service center any time it needs service, 
whether the unit is under warranty or not. There is a charge for 
repairs after the one-year warranty period. 

Hewlett-Packard calculator products normally are repaired and 
reshipped within five (5) working days of receipt at any service 
center. This is an average time and could vary depending upon the 
time of year and work load at the service center. The total time you 
are without your unit will depend largely on the shipping time. 

Obtaining Repair Service in the United States 

The Hewlett-Packard United States Service Center for handheld 
and portable calculator products is located in Corvallis, Oregon: 

Hewlett-Packard Company 
Service Department 

P.O. Box 999 or 1030 N.E. Circle Blvd. 
Corvallis, OR 97330, U.S.A, 
Telephone: (503) 757-2000 

Obtaining Repair Service in Europe 

Service centers are maintained at the following locations. For 
countries not listed, contact the dealer where you purchased your 
calculator. 

AUSTRIA 

HEWLETI-PACKARO Ges.m.b.H 

Kleinre-:hner-Service 

Wagrannerstrasse-Ueblgasse 1 

A-122CI Wlen (Vienna) 

Telephone: (0222) 23 65 11 

BELGIUM 

HEWLETI-PACKARD BELGIUr.1 SAjNV 

Woluwedal 100 

8-1200 Brussels 

Telephone: (02) 762 32 00 
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DENMARK NETHERLANDS 

HEWLETT-PACKARD AIS 

Datave) 52 

DK-3460 Birkerod (Copenhagen) 

Telephone: 102) 81 6640 

EASTERN EUROPE 

Refer to the address listed under Austria. 

FINLAND 

HEWLETT-PACKARD OY 

Revontulentie 7 

SF-02100 Espoo 10 (Helsinki) 

Telephone: 190) 455 02 11 

FRANCE 

HEWLETT-PACKARD FRANCE 

Division Informatique Pelfsonnelle 

S.A.V. Calculateurs de Poche 

F-91947 Les Ulis Cedex 

Telephone: 16) 907 78 25 

GERMANY 

HEWLETT-PACKARD GmbH 

Kleinrechner-Service 

Vertriebszentrale 

Berner Strasse 117 

Postfach 5S0 140 

0-6000 Frankfurt 56 

Telephone: (611) 50041 

ITALY 

HEWLETT-PACKARD ITALIANA S.P.A. 

Casella poslale 3645 (Milano) 

Via G. Oi Vi1torio, 9 

1-20063 Cernusco Sui Naviglio (Milan) 

Telephone: 12) 90 36 91 

HEWLETT-PACKARD NEDERLAND S.V. 

Van Heuven Goedhartlaan 121 

NL-1181 KK Amstelveen (Amsterdaml 

P.O. Box 667 

Telephone: (020) 472021 

NORWAY 

HEWLETT-PACKARD NORGE AIS 

P.O. Box 34 

Oesterndalen 18 

N-1345 Oesleraas 10s10) 

Telephone: (2) 17 11 80 

SPAIN 

HEWLETT -PACKARD ESPANOLA SA 

Calle Jerez 3 

E-Madrid lS 

Telephone: (1) 458 2600 

SWEDEN 

HEWLETT -PACKARD SVERIGE AB 

Skalholtsgatan 9, Kista 

Box 19 

S-163 93 Spang. ISlockholm) 

Telephone: (08) 750 20 00 

SWITZERLAND 

HEWLETT-PACKARD (SCHWEIZ) AG 

Kleinrechner-Serllice 

A.llmend 2 

'CH-8967 Widen 

Telephone: (057) 31 21 11 

UNITED KINGDOM 

IiEWLETT-PACKARD lid 

King Street Lane 

GB-Winnersl'il, Wokingham 

Berkshire RGll 5AR 

Telephone: (0734) 784 774 

International Service Information 

Not all Hewlett-Packard service centers offer service for all models 
of HP calculator products. However, if you bought your product 
from an authorized Hewlett-Packard dealer, you can be sure that 
service is available in the country where you bought it. 

If you happen to be outside of the country where you bought your 
unit, you can contact the local Hewlett-Packard service center to 
see if service is available for it. If service is unavailable, please ship 
the unit to the address listed above under Obtaining Repair Service 
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in the United States. A list of service centers for other countries can 
be obtained by writing to that address. 

All shipping, reimportation arrangements, and customs costs are 
your responsibility. 

Service Repair Charge 

There is a standard repair charge for out-of-warranty repairs. The 
repair charges include all labor and materials. In the United 
States, the full charge is subject to the customer's local sales tax. In 
European countries, the full charge is subject to Value Added Tax 
(VAT) and similar taxes wherever applicable. All such taxes will 
appear as separate items on invoiced amounts. 

Calculator products damaged by accident or misuse are not 
covered by the fixed repair charges. In these situations, repair 
charges will be individually determined based on time and 
material. 

Service Warranty 

Any out-of-warranty repairs are warranted against defects in 
materials and workmanship for a period of 90 days from date of 
service. 

Shipping Instructions 

Should your unit require service, return it with the following items: 

A completed Service Card, including a description of the 
problem. 

A sales receipt or other documentary proof of purchase date if 
the one-year warranty has not expired. 

The product, the Service Card, a brief description of the problem, 
and (if required) the proof of purchase date should be packaged in 
the original shipping case or other adequate protective packaging 
to prevent in-transit damage. Such damage is not covered by the 
one-year limited warranty; Hewlett-Packard suggests that you 
insure the shipment to the service center. The packaged unit should 
be shipped to the nearest Hewlett-Packard designated collection 
point or service center. Contact your dealer for assistance. (If you 
are not in the country where you originally purchased the unit, 
refer to International Service Information above.) 
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Whether the unit is under warranty or not, it is your responsibility 
to pay shipping charges for delivery to the Hewlett·Packard service 
center. 

After warranty repairs are completed, the service center returns the 
unit with postage prepaid. On out·of·warranty repairs in the 
United States and some other countries, the unit is returned C.O.D. 
(covering shipping costs and the service charge). 

Further Information 

Service contracts are available. For information about service con­
tracts, please contact the Calculator Service Center in Corvallis, 
Oregon. 

Calculator product circuitry and design are proprietary to Hewlett­
Packard, and service manuals are not available to customers. 

Should other problems or questions arise regarding repairs, please 
calJ your nearest Hewlett-Packard service center. 

When You Need Help 

Technical Assistance. For technical assistance with this prod­
uct, call: 

or write to: 

(503) 757-2004 
8 a.m. to 3 p.m. 

Pacific time 

Hewlett-Packard Co. 
Portable Computer Division 

Calculator Technical Support 
1000 N.E. Circle Blvd. 

Corvallis, OR 97330 

Product Information. For information about Hewlett·Packard 
products and prices, contact your local Hewlett-Packard dealer. 
For the name of the dealer nearest you, or to order free literature 
about Hewlett·Packard! products, call toll-free: 

(800) FOR-HPPC 
(800) 367-4772 
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or write to: 

Hewlett-Packard Co. 
Personal Computer Group 

PCG Telemarketing 
10520 Ridgeview Court 
Cupertino, CA 95014 

Temperature Specifications 

• Operating: 0° to 55° C (32° to 131 0 F) 

• Storage: -400 to 65° C (-40° to 1490 F) 

Potential for Radio and Television 
Interference (for U.S.A. Only) 
The HP-15C generates and uses radio frequency energy and if not 
installed and used properly, that is, in strict accordance with the 
manufacturer's instructions, may cause interference to radio and 
television reception. It has been type tested and found to comply 
with the limits for a Class B computing device in accordance with 
the specifications in Subpart J of Part 15 of FCC Rules, which are 
designed to provide reasonable protection against such inter· 
ference in a residential installation. However, there is no guarantee 
that interference will not occur in a particular installation. If your 
HP-15C does cause interference to radio or television reception, you 
are encouraged to try to correct the interference by one or more of 
the following measures: 

• Reorient the receiving antenna. 

• Relocate the calculator with respect to the receiver. 

• Move the calculator away from the receiver. 

If necessary, you should consult your dealer or an experienced ra· 
dio/television technician for additional suggestions. You may find 
the following booklet prepared by the Federal Communications 
Commission helpful: How to Identify and Resolve Radio-TV 
Interference Problems. This booklet is available from the U.S. 
Government Printing Office, Washington, D.C. 20402, Stock No. 
004'()00-00345-4. 
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[Qffi 

[Q[)rurns the calcu­
lator's display on and 
off (page 18). It is 
also used in resetting 
Continuous Memory 
(page 631. changing 
the digit separator 
(page 611. and in var­
ious tests of the cal­
culator's opelration 
(pages 263-2641. 

Complex 
Functions 

I Re=lm Real ex­
change imaginary. 
Activates Complex 
mode (establishing 
an imaginary stack) 
and exchanges the 
real and imaginary 
X-registers 
(page 124). 

272 

[!)Jsed to enter 
complex numbers. 
Activates Complex 
mode (establishing 
an imaginary stack) 
(page 1211. Also 
used with I DIM to 
indirectly dimension 
matrices (page 1741. 
(For Index register 
functions, refer to 
Index Register Con­
trol keys, page 274.) 
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[illJDisplays the con- minutes. seconds (or [JDecimal point 
tents of the imagi- degrees. minutes. (page 22). 
nary X-register while seconds) (page 27). 
the key is held 
(page 124). I +H I Converts hours. Display Control 

minutes. seconds (or 
ffiRJSelects fixed 

emS Sets flag S. degrees. minutes. 
which activates seconds) to decimal point display mode 

Complex mode hours (or degrees) (page 58). 

(page 121). (page 27). 
I SCllSelects scientif-

[illS Clears flag B. I +RAD IConverts ic notation display 

deactivating Com- degrees to radians mode (page 58). 

plexmode (page 27). 

(page 121). I ENG ISelects en-
I +DEG IConverts gineering notation 
radians to degrees display mode (page 

Conversions (page 27). 59). 

~Converts polar Mantissa. Pressing 
magnitude rand [DCLEAR I PREFIX I 
angle () in X- and y. Digit Entry displays all 10 digits 
reg isters respectively I ENTER IEnters a copy of the number in the 
to rectangular x- and of nllmber in X- X-register as long as 
V-coordinates (page register (display) into the I PREFIX Ikey is 
311. For operation in Y-register; used to held down (page 
Complex mode, refer separate mUltiple 60). It also clears 
to page 134. number entries any partial key se-

~Converts x • y rec-
(pages 22,37). quences (page 19). 

tangular coordinates I CHS IChanges sign 
placed in X- and Y- of number or expon-
registers respectively ent of 10 in display Hyperbolic 
to polar magnitude r (pag'lIs 19. 124). Functions 
and angle () (page 

IHypllSINI IHypl 30). For operation in I EEX IEnter exponent; 
Complex mode. refer next digits keyed in IcasllHypllTANI 

to page 134. are exponents of 10 
Compute hyperbolic 
sine. hyperbolic co-

I +H,MS IConverts 
(page 19). sine. or hyperbolic 

decimal hours (or @]thirough I]]digit tangent. respectively 
degrees) to hours. keys (page 22). (page 28). 
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I Hyp-i I [§ill] , I Hyp-i I logarithmic and [ZJ Computes the 

I cosl,1 Hyp-i II TAN I Exponential square of x (page 

Compute inverse Functions 25). 

hyperbolic sine, [bill Computes 
inverse hyperbolic naturaillogarithm [ill Calculates the 
cosine, or inverse (page 28). factorial (n I) of x or 
hyperbolic tangent, Gamma function (f) 
respectively (page ~ Natural antiloga- of (1 + x) (page 25). 
28). rithm. Raises e to 

power of number in 11/ x I Computes 

Index Register display (X-register) reciprocal (page 25). 

Control (page 28). (For matrix use, refer 
to Matrix Functions, 

ITllndex register (RI). I LOG I Computes page 275.) 
Storage register for: common logarithm 
indirect program exe- (base 10) (page 28). o Places value of 7T 
cution-branching in display (page 24). 
withl GTO I andl GSB I, 

11 Ox I Common anti-
looping with IISG I 

logarithm. Raises 10 I SOLVE I Solves for 
and! DSE I-indi rect 

to power of number real root of a function 
flag control, and 

in display (X-register) fix), with the expres-
indirect display 

(page2S). sion for fix) defined 
format control (page 

by the user in a 
, 07). Also used to [ZJ Raises number in labeled subroutine 
enter complex num- V-register to power (page 180). 
bers and activate of number in display 
Compllex mode (page (X-register) (enter y. [Ejlntegrate. Com-
121). then x). Causes the putes the definite 
[ill] Iindirect opera- stack to drop (page integral of fix), with 
tions. Used to 29). the expression f(xl 
address another defined by the user 
storage register 

Mathematics 
in a labeled sub-

through RI for pur- routine (page 194). 
poses of storage, re- GG0G 
call, storage, arith- Arithmetic operators; 
metic, and program cause tille stack to 
loop control (page drop(page 29). Matrix Functions 

, 07). Also used with I DIM I Dimensions a 
I DIM I t,o allocate [K] Computes matrix of a given 
storage registers square mot x (page name {[6J to [[ ,ITl} 
(page 215). 25). (page 141). 
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~-:-f'2lJlIJ Designates calls descriptor of the of inverse of matrix 
the matrix into which result matrix Ipage by the scalar in Y. 
the result of certain 148). Stores in result 
matrix operations is matrix (pages 
placed (page 1481. l!ls:Il [QTM~ ( ~ 152-155). 

through en W} [c:.8]~Changes sign 
IUS~User mode. Recalls the dimen- of all elements in 
Rowand column sions of the given matrix specified in X-
numbers in Ro and matrix into the Y- register (page 150). 
R, are automatically (row) and X-(column) [MATRIXI,(Othrough 
incremented each registers (page 142). 9} Matrix operations. 
time ~61or [RCL 

lli'lAT'1 IXl 0 Dimen-
I ~to ~, [jill} is Ll!~ I nverts the sions all matrices to 
pressed Ipage 144). matrix whose descrip- OX 0 (page 143). 

tor is displayed and 
I MATBQ<J 1 Sets row l~f6J and I RCL il LEto places the result in en Gill} Stores or re- the specified result and column numbers 

calls matrix elements matrix. The descrip- in Roand R, to 1 

using the row and tor of the result (page 143). 

column numbers in matrix is then dis- : MA TRIX',2 Complex 

Ro and R 1 (pages played (page 150). transform: zP to Z 
144,146). (page 164). 

8, B. 0Adds, sub- IMATRIXI3 Inverse 
I STO I Wand CBTIJ &1 tracts, or multiplies complex transform: 
(~to en Gill) the corresponding Z to zP (page 164). 
Stores or recalls elements oftwo I MATRIX 14 Trans-
matrix elements matrices or of one pose: X to X T (page 
usi ng the row and matrix and a scalar. 150). 
column numbers in Stores in result 

~MATRIXI5 Trans-the Y- and X- matrix (page 
pose multiply: Y and registers (page 146). 152-155). X to yTX (page 

rSJiSl and I RcLi 8 For two matrices, 
154). 

I MATRIX II~to [Ill multiplies inverse of I MATRIXJ6 Calcu-

Stores or recalls matrix in X by matrix lates residuals in re-

matrices for the in Y. For only one suit matrix (page 
specified matrix matrix: if matrix in Y, 159) 
(pages 142, 147). divides all elements l!YIATRIX' 7 Calcu-

of matriK by scalar ill lates row norm of 
: STO land [BgJ X; if matrix in X, mul- matrix specified in X-
I RESUL T I Stores or re- tiplies each element register (page 150). 
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I MATRIX 18 Calcu- Yare the same. The cent of change be-
lates Frobenius norm result affects tween number in 
of matrix specified in program execution: Y-register and 
X-register (page skip (one line) if false number in display 
150). (page 174). (page 30). Does not 

I MATRIX I 9 Calcu-
Number Alteration 

drop the stack. 

lates determinant of 
Pretix Keys 

matrix specified in X- lABS 1 Yields absolute 

reg ister (a Iso does value of number in ITl Pressed before a 

LV decomposition of display {page 24). function key to select 

the matrix) (page I FRAC I Leaves only the gold function 

150). fractional portion of printed above that 

number in display key (page 18). 
~ Transforms (X-register) by trun- llil Pressed before a 
matrix stored in eating integer por- function key to select 
"partitioned form" tion (page 24). the blue function 
(Zp) to "complex 

0illJ Leaves only inte- printed below that 
form" (ZC) (page 

ger portion of num- key (page 1 8). 
162). 

ber in display (X- For other prefix keys. 
~ Transforms register) by refer to Display Con-
matrix stored in truncating fractional tral keys (page 273). 
"complex form" (ZC) portion (page 24). Storage keys (page 
to "partitHOned 

I RND I Rounds man- 278). and the Pro-
form"IZ P ) (page 

tissa of entire (1 0- gramming Summary 
162). 

digit) number in and Index (page 278). 

Ix=olnSTlo X-register to match CLEAR I PREFIX Can-
ITESTI51TESTI6 Con- displlay format (page cels any prefix key-
ditional tests for 24). strokes and partially 
matrix descriptors in Percentage entered instructions 
the X- or X- andY-

[ill Percent. Com-
such as [IJ [ill (page 

registers. I x = 0 I and 19). Also displays 
I TEST 10 (x #- 0) test putesx%(value in 

the complete 10-digit 
the quantity in the X- display) of number in 

mantissa of the num-
register for zero. the Y-register (page 

ber in the display 
Matrix descriptors 29). Unlike most (page 60). 
are considered two-number func:-

nonzero. TEST 15 tions. [ill does not 

(x = y) and I TEST 16 drop the stack. Probability 

(x #- y) test ifthe 1.-'.% I Percent differ- ~ Combination. 
descriptors in X and ence. Computes per- Computes the num-
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ber of possible sets 
of V different items 
taken x at a time, and 
ca uses the stack to 
drop (page 47). (For 
matrix use, refer to 
Matrix Functions 
keys, page 276.) 

~ Permutation. 
Computes the num­
ber of possible differ­
ent arrangements of 
V different items 
taken x at a time, and 
causes the stack to 
drop (page 471. (For 
matrix use, refer to 
Matrix Functions 
keys, page 276.) 

vates Complex mode 
(page 124). 

I R + I Rolls down con­
tents of stack (page 
34). 

[BJJ Rolls up con­
tents of stack (page 
34). 

I CLx I Clears contents 
of display (X-register) 
to zero (page 21). 

[±) In Run mode: re­
moves the last digit 
keyed in, or clears 
the display (if digit 
entry has been ter­
minated) (page 21). 

Statistics 

Stack Manipulation ~Accumulates 

cumulated by~ 
(page 63). 

GLJ Linear estimate 
and correlation coeffi­
cient. Computes esti­
mated value of y (y) 
for a given value of x 
by least squares 
method and places re­
sult in X-register. 
Computes the corre­
lation coefficient, r, 
ofthe accumulated 
data and places re­
sult in V-register 
(page 55). 

IT]] Linear Regres­
sion. Computes the 
v-intercept and slope 
for the linear func-
tion best approxi-= numbers from X- and 

~ Exchanges con- mating the accumu-
tents of X- and V - V-registers into stor- lated data. The value 
stack registers (page age registers R2 
34). through R7 (page 

of the y-intercept is 
placed in the X­
register; the value of 
the slope is placed in 
the V-register (page 
54). 

~ X-register ex­
change. Exchanges 
contents of X­
register with those of 
any other named 
storage register. 
Used with m ffiI), 
digit, or [Jdigit 
address (page 42). 

I Re~lm I Real ex­
change imaginary. 
Exchanges the con­
tents of the rea I and 
imaginary X­
registers and acti-

49). 

~Removes num­
bers in X- and V­
registe.rs from stor­
age registers R2 
through R7 for cor­
recting ~aecumu­
lations (page 52). 

~Computes mean 
of x - and y-values ac­
cumulated by ~ 
(page 63). 

IRAN#IRandom num­
ber. Yields a pseudo­
random number as 
generated from a 
seed stored using 
I STO II RAN# I(page 
48). 

CLEAR ~ Clears 
5JComputes sample contents of the statis-
standard devi.ations tics registers (R2 to 
of x- and v-values ae- R7) (page 49). 
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Storage ter contents (page mode for trigono-

I STO IStore. Stores a 44). metric functions-in-

copy of a number CLEAR I AEG i Clears dicated by RAD an-

into the storage regis- contents of all stor- nunciator (page 26). 

ter specified {O to 9, age registers to zero [G]DJSets Grads 
.0 to .9, ITl. UITl}jpage (page 43). mode for trigono-
42). Ailso used for I LSTx iRecalis into metric functions-in-
storage register arith- the display the num- dicated by GRAD an-
metic: new register ber present before nunciator (page 26). 
contents = old regis-

the previous opera- Not operative for com-
ter contents { G, G, tion (page 35). plex trigonometry. 
0, G) display (page 
44). 

Trigonometry ISIN; COS I, ITANI 

i DEG ISets decimal 
Compute sine, co-

I ACL IRecal1. Recalls Degrees mode for 
sine, or tangent, re-

a copy of the number trigonometric func-
spectively, of number 

from the storag·e reg- tions-indicated by 
in display (X-register) 

ister specified tOto 9, absence of GRAD or 
(page 26). 

.Oto .9, m illIl} RAD annunciator ~, 1 COSo, I, I TAN-' i 

(page 42). Also used (page 26). Not oper- Compute arc sine, 
for storage reg ister ative for complex arc cosine, or arc tan-
arithmetic: new dis- trigonometry. gent, respectively, of 
play = old display number in display (X-
{ G, G, 0, G) regis- 1 AAD ISets Radians register) (page 26). 

Programming Summary 
and Index 

1 PIA IProgram/Run 
mode. Sets the calcu­
lator to Program 
mode (PRGM annun­
ciator on) or Run 
mode (PRGM annun­
ciator cleared) (page 
66). 

CLEAR I PAGM lin 
Program mode: 
clears all program 
memory and deallo­
cates all program reg­
isters. In Run mode: 
only resets calculator 
to line 000 (page 67). 

I MEM IDisplays cur­
rent status of calcula­
tor memory (number 
of registers dedi­
cated to data storage, 
the common pool, 
and program mem­
ory) (page 215). 



[±J Back arrow. In 
Program mode, de­
letes displayed in­
struction from pro­
gram memory. All 
subsequent instruc­
tions are moved up 
(page 83). 

i LBL I Label. Used 
with the label desig­
nations below to de­
note the start of a pro­
gram routine (page 
67). 

0[IDw[QJ1El 01 2 
3456789.0.1 .2 
.3.4.5.6.7.8.9 
Label designations. 
When preceded by 
I LBL I ' define the 
beginning of a pro­
gram routine (page 
67). Also used (with­
ou~ LBL II to initiate 
execution of a 
specific routine 
(page 69). 

. USER I Activates and 
deactivates User 
mode, which ex­
changes the primary 
(white) and gold alter­
nate functions (K] 
through[Ij ) of the 
top left five functions 
(page 69). User 
mode also affects the 
matrix use o~ STO I 
or(]gJ 0 through 
1] ,[ill] }. User mode 
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automatically incre­
ments Ro{row num­
ber) or R, (column 
number) for storage 
or recall of matrix 
elements (page 
144). 

I GTO I Go to. Used 
with a label designa-

tine. Can be used 
both in a program 
and from the key­
board (in Run mode). 
AffiIill instruction 
transfers execution 
back to the first line 
following thel GSB I 

(page 101). 

tor (listed above) or I SST I Back step. 
[] to transfer the pos- Moves calculator 
ition of the calculator back one or more 
to the designated 
label. If it is a pro­
gram instruction, pro­
gram execution con­
tinues. If it is not a 
program instruction, 
only the position 
change occurs (page 
90). If a negative 
number is stored in 
RI ,! GTO![] will effect 
a transfer to a 1i."Ie 
number (page 109). 

IGTollCHSI nnn Go 
to line number. Posi­
tions calc ulator to 
the existing line num­
ber specified by nnn. 
Not programmable 
(page 82J. 

IGSBj Gotosub­
routine. Used with a 
label designator 
(listed above) or to 
start the execution of 
a given, labeled rou-

lines in program 
memory. (Also 
scrolls in Program 
mode.) Displays line 
number and contents 
of previous program 
line (page 83). 

I SST I Single step. In 
Program mode: 
moves calculator for­
ward one or more 
lines in program 
memory. In Run 
mode: displays and 
executes the current 
program line, then 
steps to next line to 
be executed (page 
82). 

IpSE i Pause. Halts 
program execution 
for about 1 second to 
display contents of 
X-register, then re­
sumes executHon 
(page6B). 
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I RIS I Run/Stop. 8e- [IT) Is flag set? Tests ITESTI2 x<O 
gins program execu- for designated flag. If I TEST 13 x;;' 0 
tion from current line set, program execu- I TEST 14 x"; 0 
number in program tion continues; if ITESTI5 x=y 
memory. Stops exe- cleared, program exe- ITEST 16 x # y 
cut ion ilf program is cution skips one line ITESTI7 x >y 
running (page 68). before continuing ITESTIS x <y 

(page 92). ITESTI9 x;;' y 

I RTN I Return. Causes 
~1:>:=oIITESTI {O calculator to return I DSE I Decrement and 

to line 000 and halt through 9} Condition-
skip if equal to or less 

execution (if running) al tests. Each test 
than. Decrements 

(page 68). If in a sub- compares value in X-
counter value in 

routine, merely re- register against 0 or 
given register as stip-

turns to line after value in V-register as 
ulated. Skips one pro-

I GSB I (page 101). indicated.lftrue, cal-
gram line if new 

culator executes in-
counter value is 

struction in next line 
[§£J Set flag (= truel. of program memory. 

equal to or less than 

Sets designated flag If false, calculator 
specified test value 

(0 to 9). Flags 0 skips one line in pro-
(page 109). 

through 7 are user gram memory before 
flags, flag S signifies resuming execution IISG I Increment and 
Complex mode, and (page 91 ).1:>:= 0 I and skip if greater than. 
flag 9 signifies an I TEST I 0, 5, and 6 are Increments counter 
overflow condition also valid for com- value in given regis-
(page92~. plex numbers and ter as stipulated. 

matrilc descriptors Skips one program 
[Q] Clear flag (pages 132 •. 174)_ line if new counter 
(= falsel. Clears de- value is greater than 
signated flag (0 to 9) ITESTIO x#O/ specified test value 
(page 92J. IrESTI1 x >0 (page 109). 
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Subject Index 

Page numbers in bold type indicate primary references; page 
numbers in regular type indicate secondary references. 

A 

Abbreviated key sequences, 78 
Absolute value (lASS I), 24 
Allocating memory, 42, 213-219 
Altering program lines, 83 
Annunciators, 

complex, 121 
list of, 60 
PRGM,32,66 
trigonometric, 26 

Antilogarithms, common and natural,. 28 
Arithmetic operation, 29, 37 
Assistance, technical, 270 
Asymptotes, horizontal, 230 
Automatic incrementing of row and column numbers, 143 

B~ ____________________________________________ _ 

Back-stepping (I SST 1),83 
Bacterial population example, 41 
Battery life, 259 
Battery replacement, 260, 261-263 
Bessel functions, 195, 197 
Branching, 

C 

conditional, 91, 98, 177, 192 
indirect, 108-109, 112-114, 115 
simple, 90 

C annunciator, 99, 121 
Can volume and area example, 70-74 
Chain calculations, 22-23, 38 
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Changing signs, 19 
in Complex mode, 124-125 
in matrices, 177 

ICHSI,19 
Clearing 

blinking in display, 100 
complex numbers, 125-127 
display, 21 
operations, 20-21 
overflow condition, 45, 61 
prefix keys, 19 
statistics registers, 49 

Coefficient matrix, 156 
Combinations function (~), 47 
Common pool, 213 
Complex arithmetic example, 132 
Complex conjugate, forming, 125 
Complex matrix, 

inverting, 162, 164, 165 
multiplying, 162, 164, 166 
storing elements, 161 
transforming, 162, 164 

Complex mode, 120-121 
activating, 99,120-121,133 
deactivating, 121 
mathematics functions in, 131 
stack lift in, 124 

Complex numbers, 
clearing, 125-127 
converting polar and rectangular forms, 133-135 
entering, 121, 127, 128-129 
storing and recalling, 130 

Conditionals, indirect, 109-111, 112, 116 
Conditional tests, 91, 98, 192 

in Complex mode, 132 
with matrix descriptors, 174 

Constant matrix, 156 
Constants, 

calculations with, 39-42 
using in arithmetic calculations, 35, 39-42 

Continuous Memory, 
duration of, 62 



resetting (clearing), 63 
what it retains, 43, 48, 58, 61, 62 

Conventions, handbook, 18 
Conversions, 

degrees and radians, 27 
polar and rectangular coordinates, 30-31 
time and angle, 26-27 
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Correcting accumulated statistics data, 52 
Correlation coefficient, find the (GLJ), 55-56 
I cos 1,1 COSo, I, 26 
Counters in program loops, 98,112-114 
Crocus example, 43 
Cumulative calculations, 41 

D 
Data storage, 42 
Data storage pool, 213-214 
Debt payment example, 95 
Decimal point, 22 
Decimal point display, 61 
Deflation, 233, 234, 237 
IOEGI,26 
Determinant, 150 
Digit entry, 22 

in Complex mode, 121,125,127,128-129 
termination, 22, 36, 209 

Digit separator display. 61 
I DIM I, 76-77, 215-217 
Disabling stack lift, 36 
Display (See also X-register), 

blinking, 100 
clearing, 21 
error messages, 61 
full mantissa, 60 
in Complex mode, 121 

Display format, 58-59, 61 
effect on [!D, 200,241,244,245-249 

Do if True rule, 92, 192 
IOSEI, 109-111, 112,116 
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E~ ____________________________________________ _ 

IEEXI,19 
Electrical circuit example, 169-171 
Enabling stack lift, 36 
IENGI,59 
Engineering notation, 59 
IENTERI,12,33-34,36 

effect on digit entry, 22, 29 
effect on stack movement, 37, 41 

Entering data for statistical analysis, 49 
Error 

conditions, 205-208 
display,61 
stops, 78 

Errors, 
with [ZiJ, 203-204 
withlsOLVEI, 187, 192, 193 

Euclidean norm (See Frobenius norm) 
Exchanging the real and imaginary stacks, 124 
Exponential function (See Power function) 
Exponents, 19,20 

F 
[!J,18 
Factorial function ([ill), 25 
Falling stone example, 14 
WRl,58 
Fixed decimal notation, 58 
Flag tests, 92, 98 
Flag8,99 
Flag 9, 100 
Format, handbook, 2, 18 
Fractional portion ( I FRAC I), 24 
Frobenius norm, 150, 177 
Functions, nonprogrammable, 80 
Functions, one-number, 22, 25 
Functions, primary and alternate, 18 
Functions, two-number, 22,29 

G 
[9],18 



Gamma function (~), 25 
IGROI,26 
IGSBI,101 
IGTOI, 90, 97, 98 
I GTO II CHS L 82 

Subject Index 285 

H~ ____________________________________________ _ 

Homer's Method, 79, 181 
Hyperbolic functions, 28 

I 

Imaginary stack, 
clearing the, 124 
creation of, 121-123, 133 
display of, 124 
stack lift of, 124 

Index register 
arithmetic, 108, 112 
display format control, 109, 114, 115, 116 
exchange with X-register, 108, 112 
flag control, 109, 115 
loop control, 107, 109-111 
storage and recall, 107,111,115 

Indirect addressing, 106-108, 115 
Initialization, 87 
Instructions,74 
Integer portion (liNT I), 24 
Integrate function ([][), 194-204 

accuracy of, 200-203, 240, 241-2415 
algorithm for, 196,240-241,249-251, 255-256 
display format with, 245-249 
execution time for, 196,200,244,245,254-256 
memory usage, 204 
obtaining an approximation for, 257-258 
problems with erratic functions, 249-254 
programmed, 203-204 
recursive use of, 203 
subroutines for, 194-195 
uncertainty in, 202-203, 240-244, 245-249 

Interchanging functions (See User mode) 
Interference, radio and television, 271 
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Intermediate results, 22, 38 
Interpolation, using GlJ, 57 
ilSGI, 109-111, 116 
Iterations using IISG 1 and I DSE 1,111 

K 

Keycodes, 74-75 
Keying in 

L 

chain calculations, 22 
exponents, 19-20 
one-number functions, 22 
two-number functions, 22, 29 

Labels, 67, 77, 90, 97 
LAST X register, 35 

in matrix functions, 174-176 
operations saved by, 212 
putting constants in, 39-40 
to correct statistics data, 52 

Linear equations, solving with matrices, 138, 156 
Linear estimation (GLJ), 55-56 
Linear regression (I L.R.I), 54 
Loading the stack with constants, 39, 41 
Logarithmic functions, common and natural, 28 
Loop control number, 109,116 
Looping, 90, 98 
Low-power indication, 62, 260-261 
L U decomposition, 148, 155, 156, 160 
I:.ukasiewicz, Jan, 32 

M 
Mantissa, displaying full 10 digits, 60 
Matrix 

complex, 160-163 
copying, 149 
descriptors, 139, 147, 160, in RI , 173-174 
dimensioning, 140, 142, 142,174 
dimensions, displaying, 142,147 
equation, complex, 168 
memory, 140, 171 



name (See Matrix descriptors) 
partitioned, 161, 164 

Matrix elements, 
accessing individually, 145-147 
displaying, 144 

Subject Index 287 

storing and recalling, 143-144, 147, 149, 176 
Matrix functions, 

using RI , 173-174 
using registers, 173 
arithmetic, 153 
conditional, 177 
inverse, 150, 154 
multiplication 154 
one-matrix, 149-151 
programmed, 176-177 
reciprocal, 150 
residual, 159 
row norm, 150, 177 
summary, 177-179 
transpose, 150, 151, 154 

Mean (00), 53 
IMEMI,215 
Memory 

allocation, 76, 215-217 
availability, 75-77, 213, 215 
configuration, initial, 75-76 
distribution, 75,213-214 
limitations, 75, 77, 217 
requirements for advanced functions, 218-219 
requirements for programming, 218 
stack (See Stack) 
status display, 215 
registers in, 213-2:15 

Metal box dimensions example, 189-191 
Minima, finding with I SOLVE I, 230 
Modes, trigonometric, 26 
Multiple roots, 234 

N 
Negative numbers, 19 

in Complex mode, 124-125 
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Nested calculations, 38 
Neutral operations, 211 
Nonprogrammable functions, 80 
Normalizing statistics data, 50 
null display, 144, 149 

o~ ____________________________________________ _ 
[Qffi, 

and off, 18 
to reset Continuous Memory, 63 
to set decimal point display, 61 

Overflow condition, 45, 61,100 

p 

I P/R I, 66, 68 
Pause (I PSE I), 68 
Percent difference ( I/:.% I), 29 
Percentage functions, 29-30 
Permutations function ([E!J), 47 
Phasor notation, 133 
Pi,24 
Polar coordinates, 30, in Complex mode, 133-135 
Power function «(Z]), 29 
Prefix keys, 19 
PRGM annunciator, 66,82 
Program 

control,indirect, 107, 109-111 
data entry techniques, 69-70 
end, 68, 77 
entering, 66-68 
labels, 67, 77 
loading 66 
loop counters, 109, 112-114,116 
mode, 66, 68, 86 
position, changing, 82, 86 
running, 68-69 
starting, 69 
stops, 68, 78 

Program execution, 69 
after I GSBI, 1101 
after I GTO 1,97 



after overflow, 100 
after test, 92 
from or through labels, 78-79 

Program lines (instructions), 67, 74 
deleting, 83, 86 
inserting, 83, 86 

Program memory, 67, 70, 75,217-219 
automatic reallocation, 217-218 
clearing, 67 
moving in, 67 

Q 

Quadratic equation, solving, 181 

R 
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~ and RI> using to access matrix elements, 143, 146, 176 
IRADI,26 
Radioisotope example, 93-94 
Random number generator (I RAN# 1),48 
Random number storage and recall, 48 
Recall arithmetic, 44 
Recalling accumulated statistics data, 50 
Recalling numbers (i ReL 1),42,44, with matrices, 144, 149, 176 
Reciprocal (Illxl), 25, with matrix,150 
Rectangular coordinates, 31, in Complex mode, 133-135 
Registers, converting, 215-217 
Residual,159 
Resultmatrix,147,148,150, 152 
Return (I RTN I), 68, 77 
Returns, pending, 101, 105, 192,204 
Reverse Polish Notation, 32 
I Re~lm I, 124, 127 
Rice yield example, 50-56 
Ridget hurling example, 184-186,224-226 
Roll down, 34 
Roll up,34 
Roots, eliminating, 233, 234, .237 
Roots, meaningless, 188, ]91 
Rounding (I RND I), 24 
Rounding in the display, 59 
Round-off errors, 52, 60, with I SOLVE 1,223,237 
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Row norm, 150, 177 
Run/Stop {I RIS 1),68,91 
running display, 69,147,182 

s~ ______________________________________ __ 
Scalar operations, 151-153 
Isell,58 
Scientific notation, 58 
Scrolling,82 
Secant line calculation example, 102 
Self-tests, 263-265 
Service information, 267-270 
Shear stress example, 227-228 
ISIN I, I SIN-'I, 26 
Sine integral example, 198-199 
Single-stepping (I SST D, 82, 85 
Skip if True rule, 110 
Slope, finding the, 54 
I SOLVE!, 180-181 

accuracy, 222-226, specifying, 238 
algorithm, 182, 187-188,220-222,230-231 
conditions necessary for, 221-222 
constant function value with, 187,189 
execution time, 238 
illegal math routine with, 187-188 
initial estimates with, 181,188-192,221,233,237 
memory usage, 193 
nonzero minimum of function with, 187 
programmed,192 
recursive use of, 193 
restrictions on, 193 
using as a conditional test, 192 
using functions with discontinuities, 227 
using functions with poles, 227 
using functions with several roots, 233-238 
with no root, 186-188, 192,229 

Square root (m:J), 25 
Squaring ([ZJ), 25 
Stack 

contents, with 0,197,202 
drop, 33,38 
lift, 33,36,38, 44, 209-211 
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manipulation functions, 33-34, in Complex mode, 131 
imaginary, 120-125 
used to access matrix elements, 146-147 

Stack-disabling operations, 210 
Stack-enabling operations, 210-211 
Stack movement, 32, 33-37 

in matrix functions,174-176 
withlsOLVEI,181 

Standard deviation ([!)), 53, sample vs. population, 53 
Star example, 40 
Statistics, accumulation of data (~), 49 
Statistics, correction of accumulated data «(k]), 52 
Statistics functions, 

combinations, 47 
correlation coefficient, 55 
linear estimation, 55 
linear regression, 54 
mean, 53 
permutations, 47 
probability,47 
standard deviation, 53 

Statistics registers, 49-50 
Status indicators, 60 
Storage and recall (I STO 1,1 RCLI), 42, 43, 44 

complex numbers, 130 
direct(withill),106,107 
indirect, 106-107, 111 
matrices, 144, 149,176 
matrix elements, 143-144, 147, 149 

Storage arithmetic, 43 
Storage registers, 42 

allocation, 42,215-217 
arithmetic, 43 
clearing, 43 
statistics, 42,49 

Subroutine 
levels, 102,105 
limits, 102, 105 
nesting example, 103 
returns, 101, 105 
using with ISOLvEI, 180-181, 192 

System flags, 92, 99 
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T 

T-register, 32, 33 
in matrix functions, 174-176 
with[ftJ,202 

I TAN I, I TAN""' I, 26 
Temperature specifications, 270 
ITESTI,91 
Tracing, 82 
Transpose, 150,151, 154 
Trigonometric modes in Complex mode, 121, 134 
Trigonometric operations, 26 

u 
u display, 176 
Uncommitted registers, 213, 215, 217 
Underflow, 

in any register, 61 
storage register arithmetic, 45 
with I SOLVE 1 , 223 

User flags, 92 
User mode, 69, 79, with matrices, 143, 176 

V 

Vector arithmetic, using statistics functions, 57 

W 

Warranty information, 265-267 
Wrapping, 86, 90 

X 

Xexchrunge(~), 42 
X exchange Y ([tli]), 34 
X-register, 32, 35, 37, 42, 60, 209-210 

imaginary, 210, 211 

y 

in matrix functions, 141, 156,175-176 
with [ftJ,.202 
with I SOLVE I, 181, 183, 192, 226 

y-intercept, finding, 54 



V-register, 32, 37 
in matrix functions, 141,156,175-176 
with [EJ, 202 
",ith I SOLVE 1,181,183,192,226 
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z~ _________________________________________ _ 
Z-register,32 

in matrix functions, 174-176 
with [EJ, 202 
with 1 SOLVE I, 181, 183, 192,226 



The HP-15C 
Keyboard and Continuous Memory 
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DATA STORAGE POOL 
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Ix2 
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R.o 10 

R.1 11 
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R.3 13 

R.4 14 

R.II 1. 

R .• ,. 
R.7 17 

R.B l' 
R.B l' 

Initial allocation is 110 through 
R19 to data storage. 

Allocations can be changed with 
the@iMJlilllfunction. 

There are seven bytes of memory 
per register. One or two bytes are 
needed per program instruction. 
One register at a time is con· 
verted to program memory as 
needed, starting at the highest· 
numbered available register and 
proceeding to the lower registers. 

COMMON POOL 

Metrix Memory 

Imeginary Steck 

I SOLVE lend [ill 

Uncommitted 
Regilt_ 

Progrem Memory 
up to levIn pro­
gnmlinllper 
regia1er 

Memory allocation for 
program lines is automatic 
within the common memory 
pool. 

Initial allocation is Rw 
through Rso to the common 
pool, from which the above 
functions andl programming 
draw memory space. 
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