HEWLETT-PACKARD

ﬂﬂ HEWLETT

PACKARD

HP-28S
Advanced Scientific Calculator

Owner’s Manual

(ﬁﬂ HEWLETT

PACKARD

Edition 4 November 1988
Reorder Number 00028-90066

Notice

For warranty and regulatory information for this calculator, see pages 291
and 295.

This manual and any examples contained herein are provided “as is” and
are subject to change without notice. Hewlett-Packard Company makes
no warranty of any kind with regard to this manual, including, but not
limited to, the implied warranties of merchantability and fitness for a
particular purpose. Hewlett-Packard Co. shall not be liable for any
errors or for incidental or consequential damages in connection with the
furnishing, performance, or use of this manual or the keystroke programs
contained herein.

o Hewlett-Packard Co. 1988. All rights reserved. Reproduction, adapta-
tion, or translation of this manual is prohibited without prior written per-
mission of Hewlett-Packard Company, except as allowed under the copy-
right laws.

The programs that control your calculator are copyrighted and all rights
are reserved. Reproduction, adaptation, or translation of those programs
without prior written permission of Hewlett-Packard Co. is also
prohibited.

Corvallis Division
1000 N.E. Circle Blvd.
Corvallis, OR 97330, U.S.A.

Printing History

Edition 1 November 1987 Mfg. No. 00028-90067
Edition 2 April 1988 Mfg. No. 00028-90128
Edition 3 June 1988 Mfg. No. 00028-90130

Edition 4 November 1988 Mfg. No. 00028-90147

Welcome to the HP-28S

Congratulations! With the HP-28S you can easily solve complicated
problems, including problems you couldn’t solve on a calculator be-
fore. The HP-28S combines powerful numerical computation with a
new dimension—symbolic computation. You can formulate a problem
symbolically, find a symbolic solution that shows the global behavior
of the problem, and obtain numerical results from the symbolic solu-
tion.

The HP-28S offers the following features:

B Algebraic manipulation. You can expand, collect, or rearrange terms
in an expression, and you can symbolically solve an equation for a
variable.

B Calculus. You can calculate derivatives, indefinite integrals, and
definite integrals.

® Numerical solutions. Using HP Solve on the HP-28S, you can solve
an expression or equation for any variable. You can also solve a
system of linear equations. With multiple data types, you can use
complex numbers, vectors, and matrices as easily as real numbers.

B Plotting. You can plot expressions, equations, and statistical data.

® Unit conversion. You can convert between any equivalent combina-
tions of the 120 built-in units. You can also define your own units.

B Statistics. You can calculate single-sample statistics, paired-sample
statistics, and probabilities.

B Binary number bases. You can calculate with binary, octal, and
hexadecimal numbers and perform bit manipulations.

B Direct entry for algebraic formulas, plus RPN logic for interactive
calculations.

Welcome to the HP-28S 3

The HP-285 Owner’s Manual (this manual) contains three parts. Part 1,
“Fundamentals,” demonstrates how to work some simple problems.
Part 2, “Summary of Calculator Features,” builds on part 1 to help
you apply those examples to your own problems. Part 3, “Program-
ming,” describes programming features and demonstrates them in a
series of programming examples.

The HP-28S Reference Manual gives detailed information about com-
mands. It is a dictionary of menus, describing the concepts and
commands for each menu.

We recommend that you first work through the examples in part 1 of
the Owner’s Manual to get comfortable with the calculator, and then
look at part 2 to gain a broader understanding of the calculator’s op-
eration. When you want to know more about a particular command,
look it up in the Reference Manual. When you want to learn about
programming, read part 3 of the Owner’s Manual.

These manuals show you how to use the HP-285 to do math, but
they don't teach math. We assume that you're already familiar with
the relevant mathematical principles. For example, to use the calculus
features of the HP-28S effectively, you should know elementary
calculus.

On the other hand, you don’t need to understand all the math topics
in the HP-28S to use those parts of interest to you. For example, you
don’t need to understand calculus to use the statistical capabilities.

4 Welcome to the HP-28S

Contents

15 How To Use This Manual
15 What's in This Manual
16 For More Information

Part 1: Fundamentals

1 18 Getting Started
18 Preliminaries
18 Opening and Closing the Case
19 Locating the Battery Door and Printer Port
20 Turning the HP-28S On and Off
20 Clearing All Memory (Memory Reset)
21 Adjusting the Display Contrast

21 Keyboard Calculations
25 An Overview of the Calculator

25 Major Features and Concepts
31 The Catalog of Commands

2 34 Doing Arithmetic
36 Entering and Displaying Numbers
36 Changing the Decimal Point
37 Selecting Number Display Mode
39 Keying In Numbers
40 One-Number Functions
41 Two-Number Functions
41 Addition and Subtraction
41 Multiplication and Division
42 Powers and Roots
43 Percentages

Contents 5

43
44
45
47

48
49
50
50
51
52
52
54
56
56
57

58
60
63
66
68
71
72

73
73
74
76
77

78
79

6 Contents

Swapping Levels 1 and 2

Clearing Objects From the Stack
Chain Calculations

If You Execute the Wrong Function

Using Variables

Introduction to Variables
Creating a Numerical Variable
Recalling a Numerical Variable
Evaluating a Numerical Variable

Changing the Value of a Variable

Purging a Variable

Changing the Name of a Variable
Creating a Program Variable
Recalling a Program Variable
Evaluating a Program Variable

Quoted and Unquoted Names

Repeating Calculations

Creating an Expression

Creating a Directory

Using the Solver To Repeat a Calculation
Using a Different Set of Values

Using a Different Expression

Returning to HOME

Summary

Real-Number Functions
Trigonometric Functions
Selecting Angle Mode
Using «
Converting Angular Measure
Logarithmic, Exponential, and Hyperbolic
Functions
Other Real Functions
Defining New Functions

10

82
82
84
86

89
91
91
93
94
97

98
98
100
103

107
107
109
110
112

117
117
118
120
120
121
122

Complex-Number Functions
Using Complex Numbers

Using Polar Coordinates

A User Function for Polar Addition

Plotting

Printing a Plot

Changing the Scale of the Plot
Translating the Plot

Redefining the Corners of the Plot
Plotting Equations

The Solver

Finding a Zero of an Expression
Finding a Minimum or Maximum
Time Value of Money

Symbolic Solutions
Finding the Zeros of a Quadratic Expression
Isolating a Variable

Expanding and Collecting

Using FORM

Calculus

Differentiating an Expression
Step-by-Step Differentiation
Complete Differentiation

Integrating an Expression
Symbolic Integration of Polynomials
Numerical Integration of Expressions

Contents

11 124 Vectors and Matrices
124 Vectors

124 Keying In a Vector

125 Multiplying and Dividing a Vector by a Number
125 Adding and Subtracting Vectors
126 Finding the Cross Product

126 Finding the Dot Product

126 Matrices

127 Keying In a Matrix

127 Viewing a Large Matrix

128 Inverting a Matrix

128 Finding the Determinant

128 Multiplying Two Arrays

128 Multiplying Two Matrices

129 Multiplying a Matrix and a Vector

130 Solving a System of Linear Equations

12 131 Statistics
132 Entering Data
133 Editing Data
134 Single-Sample Statistics

134 Finding the Mean
135 Finding the Standard Deviation
135 Finding the Variance
135 Paired-Sample Statistics
136 Specifying a Pair of Columns
136 Finding the Correlation
136 Finding the Covariance
137 Finding the Linear Regression
137 Finding Predicted Values

13 138 Binary Arithmetic

138 Selecting the Wordsize

139 Selecting the Base

139 Entering Binary Integers

140 Calculating With Binary Integers

8 Contents

14 141
141
143
144
146
147

15 149
149
150
151
152
152

Unit Conversion

The UNITS Catalog

Converting Units

Converting Unit Strings

Checking for the Correct Units
User Functions for Unit Conversion

Printing

Printing the Display
Printing a Running Record
Printing Level 1

Printing the Stack
Printing a Variable

Part 2: Summary of Calculator Features

16 154
155
155
156
156
157
158
159
160
161
161
162
163

17 164

Objects

Real Numbers

Complex Numbers

Binary Integers

Strings

Arrays

Lists

Names

Programs

Algebraics
Expressions
Equations
Symbolic Constants

Operations, Commands, and Functions

Contents

18

19

20

21

10

166
166
168
169
169
171
171
172
173
173
174
175

176
176
177
177
179
179
180
181

182
182
182
183
187
188
190

192
193
194
194
195

Contents

The Command Line
The Cursor Menu
Some Entry Keys
Object Delimiters and Separators
Entry Modes

Exceptions

Manual Selection of Entry Modes
How the Cursor Indicates Modes
Executing the Command Line
Editing Existing Objects
Recovering Command Lines
The Command Line as a String

The Stack

Review of Stack Concepts
Viewing the Stack
Manipulating the Stack

Local Variables

Recovering the Last Arguments
Restoring the Stack

The Stack as a List

Memory
User Memory
Global Variables
Directories
Recovery Features
Low Memory
Maximizing Performance

Menus

Menus of Commands
Menus of Operations
Menus of Variables
Custom Menus

22

23

24

25

196
197
197

198
199
199
200
200
201
201
202
203

205
205
207
210
211
212

215
216
216
216
216
217
217

Catalog of Commands
Finding a Command
Checking Command Use

Evaluation

Data-Class Objects

Name-Class Objects
Evaluation of Local Names
Evaluation of Global Names

Procedure-Class Objects
Evaluation of Programs
Evaluation of Algebraics
Evaluation of Functions

Modes

General Modes

Entry and Display Modes
Recovery Modes
Mathematical Exceptions
Printing Modes

System Operations
Printing the Display
Contrast Control
Clearing Operations
Attention
System Halt
Memory Reset

Contents

11

218 Test Operations
218 Repeating Test
219 Keyboard Test

Part 3: Programming

26 222 Program Structures
222 Local-Variable Structure
223 Conditional Structures

226 IF ... THEN ... ELSE ... END
226 IFTE (If-Then-Else-End Function)
227 IF ... THEN ... END

227 IFT (If-Then-End Command)
227 Error Traps

228 Definite Loop Structures

228 START ... NEXT

229 FOR counter ... NEXT

230 ... increment STEP

231 Indefinite Loop Structures

231 DO ... UNTIL ... END

232 WHILE ... REPEAT ... END

233 Nested Program Structures

27 234 Interactive Programs
234 Asking for Input
235 Asking for a Choice
235 A More Complicated Example

28 240 Programming Examples
241 Box Functions
241 BOXS (Surface of a Box)
244 BOXS Without Local Variables
245 BOXR (Ratio of Surface to Volume of a Box)
246 Fibonacci Numbers
247 FIB1 (Fibonacci Numbers, Recursive Version)
248 FIB2 (Fibonacci Numbers, Loop Version)
249 Comparison of FIB1 and FIB2

250 Single-Step Execution

12 Contents

253
253
255
257
257
258
259
262
263
265
266
266
267
270
270
272
273
275
276
277

Expanding and Collecting Completely
MULTI (Multiple Execution)
EXCO (Expand and Collect Completely)
Displaying a Binary Integer
PAD (Pad With Leading Spaces)
PRESERVE (Save and Restore Previous Status)
BDISP (Binary Display)
Summary Statistics
SUMS (Summary Statistics Matrix)
2GET (Get an Element of ZCOV)
2ZX2 (Sum of Squares of x)
ZY2 (Sum of Squares of y)
ZXY (Sum of Products of x and vy)
Median of Statistics Data
SORT (Sort a List)
LMED (Median of a List)
MEDIAN (Median of Statistics Data)
Changing Directories
UP (Move to a Parent Directory)
DOWN (Move to a Subdirectory)

Contents 13

Appendixes & Indexes

A

14

282
282
286
289
289
289
291
293
295

296

302

306

327

332

Contents

Assistance, Batteries, and Service
Answers to Common Questions

Batteries

Calculator Maintenance

Environmental Limits

Determining If the Calculator Requires Service
Limited One-Year Warranty

If the Calculator Requires Service

Regulatory Information

Notes for RPN Calculator Users
Notes for Algebraic Calculator Users
Menu Map

Key Index

Subject Index

How To Use This Manual

If you have the time and inclination, you can read this manual from
front to back, working every example. If not, we recommend the fol-
lowing approach for getting started.

1. Read the first five chapters in part 1, “Fundamentals,” to get
comfortable with the calculator.

2, There are two appendixes that compare the HP-285 with other
styles of calculators.

B If you're familiar with other Hewlett-Packard calculators that
use RPN, read appendix B, “Notes for RPN Calculator Users,”
on page 296.

B If you're familiar with calculators that use a form of algebraic
entry, read appendix C, “Notes for Algebraic Calculator Us-
ers,” on page 302.

3. If you're interested in a topic covered later in part 1, you can
skip ahead and try the examples in that chapter.

What’s in This Manual

Part 1, “Fundamentals,” demonstrates how to work some simple prob-
lems. While solving these problems you'll learn the basics about HP-
28S operations, object types, and menus.

Part 2, “Summary of Calculator Features,” builds on part 1. It provides
more detail about how to use the calculator, including options and
features not discussed in part 1. Using part 2, you can extend the
examples in part 1 to solve your own problems.

How to Use This Manual 15

Part 3, “Programming,” describes the programming features of the
HP-28S. The last chapter, “Programming Examples,” contains a series
of short programs that demonstrate programming techniques.

For More Information

As you work the examples in this manual, you may have questions
about the features demonstrated or mentioned in the examples. Both
this manual and the Reference Manual contain additional
information.

8 [f you have problems, see “Answers to Common Questions” on
page 282.

® For a brief description of what each key does, see “Key Index” on
page 327.

B For a brief description of the commands in each menu, see appen-
dix D, “Menu Map,” on page 306.

B For detailed information about a menu, look in the Reference Man-
ual. All menus (plus some additional topics) appear in alphabetical
order. The contents of the dictionary are listed on the back cover of
the Reference Manual.

8 For detailed information about a particular command, look in the
“Operation Index” at the back of the Reference Manual. There
you'll find a reference to a dictionary entry (usually a menu) and a
page reference to the particular command.

16 How To Use This Manual

Fundamentals

Page 18
34
48
58
73
82
89
98

107
117
124
131
138
141
149

1: Getting Started
2: Doing Arithmetic
3: Using Variables
4: Repeating Calculations
5: Real-Number Functions
6: Complex-Number Functions
7: Plotting
8: The Solver
9: Symbolic Solutions
10: Calculus
11: Vectors and Matrices
12: Statistics
13: Binary Arithmetic
14: Unit Conversions
15: Printing

Getting Started

This chapter first describes the calculator’s basic features, then dem-
onstrates a simple calculation. Next, an annotated illustration of the
keyboard highlights the major features of the keyboard and display.
Last, you'll learn about the catalog of commands, which is a handy
guide to commands and how to use them.

Preliminaries

This section describes the calculator’s basic features.

Opening and Closing the Case

The calculator forms its own case, opening and closing like a book. To
open the calculator, hold it with the hinge away from you and open it
with your thumbs.

18 1: Getting Started

To close the calculator, fold the two sides together and press until you
hear a click.

You can fold back the left-hand side of the calculator until it is back-
to-back with the right-hand keyboard. This is handy for field work—
when you want to hold the calculator in one hand and operate it with
the other—or to save space on a desk.

Locating the Battery Door and Printer Port

With the calculator open, note the location of the battery door and the
printer port.

— Printer port

Battery door

The HP-285 is powered by three N-cell alkaline batteries. Batteries
are included with the calculator. If the batteries are not already in-
stalled, follow the instructions that start on page 286.

1: Getting Started 19

When you use the HP-28S with a printer, the calculator sends in-
formation to the printer via an infra-red signal. This signal is emitted
from the printer port and received by the printer. Printer operations
are described in chapter 15.

Turning the HP-28S On and Off

Press to turn on the calculator. The HP-28S has Continuous Mem-
ory, so all data in the calculator, including the contents of the display,
are unchanged from the last time you used the calculator.

While the calculator is on, acts as the ATTN (attention) key, as
printed in white below the key. Pressing clears any text you've
typed in and stops programs.

Press [(OFF] to turn off the calculator. (“Press [lJ[OFF)” means “press
the shift key [l}, then press the key with OFF printed above it.”)

If the calculator is inactive for about 10 minutes, it automatically turns
off to conserve energy. Press to turn it on again.

Clearing All Memory (Memory Reset)

You can restore the calculator to its initial state by resetting memory.
All information in the calculator is lost. Any modes you've changed
(number display format, angle mode, and so on) are restored to their
default settings.

To reset memory:

1. Press and hold [ON].

2. Press and hold (in the upper-left corner of the right-hand
keyboard).

3. Press and release (] (in the upper-right corner of the right-hand
keyboard).

4. Release [INS].
5. Release [ON].

20 1: Getting Started

The calculator beeps and displays Memary Lost. The message auto-
matically disappears when you press a key.

If you begin to reset memory but change your mind, continue holding

down while you press (in the top row, next to [INS]), and
then release [ON]. Pressing cancels the reset sequence.

Adjusting the Display COntrastl

You can adjust the contrast of the display to compensate for various
viewing angles and light intensities.

To adjust the contrast:

1. Press and hold [ON].

2. Press [+] one or more times to darken the display, or press [-]
one or more times to lighten the display.

3. Release .

Keyboard Calculations
Try the following calculation.
(15 + 23) x sin 30°

The basic steps are the same as using paper and pencil. First you'll
calculate 15 + 23, which produces an intermediate result. Next you'll
calculate sin 30°, which produces the other intermediate result. Fi-
nally, you'll combine the intermediate results for the answer.

If you make a mistake while keying in a number, you can:

B Press (@] to erase the last digit you keyed in.
® Press to erase all the digits you keyed in.

1: Getting Started 21

Start with a clean sheet of paper.

M(CLEAR]

~=NoWA

The display shows the stack, which is your work area. Currently the
stack is empty.

Press to write 15 in the command line.
15 3

[el 1]
(] s »s us

a

Note that the stack moves up to make room for the command line, so
only three stack levels are displayed.

Put 15 on the stack.

[LV e S

15

The number goes in stack level 1, as indicated by 1: at the left. Note
that the command line disappears, so four stack levels are displayed
again.

Press to write 23 in the command line.

23 2:
21
1: 15
230

Put 23 in level 1.

g:
3t 15
1: 23

The number 15, which was in level 1, is lifted to level 2.

22 1: Getting Started

Add 15 and 23.

MW

38

The numbers 15 and 23 are removed from the stack, and their sum,
38, is returned to level 1. You'll leave this intermediate result on the
stack while you calculate the second intermediate result.

To calculate sin 30° you'll use the TRIG (trigonometry) menu.

E]
2
1

38
[SIN [REIN] Cos [RCos | THN [6THN]

The bottom line of the display shows six commands in the TRIG
menu. The six menu labels (814 through -ArAW) define the six
menu keys (the keys immediately below the display).

Press [3](0] to write 30 in the command line.

30 2:
iz 38
380
LEIN JRSINT Cos [acos | THN [RTAN |

Put 30 in level 1.

The previous result, 15 + 23 = 38, is lifted to level 2.
Calculate sin 30°.

8IN

38

=
[SIN [RSIN] Cid [RC0Z | THN [ATAM |

1: Getting Started 23

The number 30 is removed from level 1, and its sine, .5, is returned to
level 1. The previous result, 38, remains in level 2.

Calculate 38 x .5.

19
| ZIN [REIN] Cos [RCos | THN [ATAN |

The numbers 38 and .5 are removed from levels 1 and 2, and their
product, 19, is returned to level 1.

This completes the calculation:
(15 + 23) X sin 30° = 19.

To summarize, here’s a general procedure for the calculation you just
completed.

1. Key a number into the command line.
2. Press to put a number on the stack.

3. Press the key to execute the command. (If the command doesn’t
appear on the keyboard, select the menu that contains the com-
mand, and press the menu key below the appropriate menu label.)

The previous example demonstrated that all calculations occur on the
stack. To highlight this idea, you pressed to put every number
on the stack. In practice, you need to press only to separate two
numbers keyed in sequentially—in the example, to separate 15 and 23.
Try repeating the example, omitting the second and third (ENTER]s.

24 1: Getting Started

The style of calculation illustrated above, in which you enter numbers
onto the stack before you perform mathematical functions, is called
RPN (Reverse Polish Notation), postfix notation, or stack logic. Nearly
all HP-28S commands, not just calculations, use stack logic. This sys-
tem uses two simple rules:

B The inputs required by a function, called the arguments to the func-
tion, must be on the stack before the function is executed.

B The results of a function are returned to the stack, where they are
available as arguments to the next function.

You can also calculate by entering an expression in algebraic form, as
it might appear written in a book. In the next chapter you'll perform
the same calculation as above, using an algebraic expression.

An Overview of the Calculator

This section points out some major features of the calculator, includ-
ing a catalog of commands that lists and describes each command.

Major Features and Concepts
The illustrations on pages 26 and 27 show the calculator keyboard

and display, with important features identified. The numbers in the
following descriptions correspond to the numbers in the illustrations.

1: Getting Started 25

Object Type Symbol Example
Data |
Real Number 1.23456E-25
Complex Number () (123.45,678.90)
Binary Integer #123AB
String B “RESULT”
Vector [] [1.23 456 7.89]
Matrix m n [[1.23 4.56]
4 (6.54 3.21])
1 List o {1.23 "ABC" #45}
Names
Name 1 I[cac)
Procedures \
Program][« WIj P + SWAP»
Algebraic .
ARRAY BINAAY COMPLX STRING LIST
— i — U
STACK STORE MEMORY ALGBAA STAT PAINT
p
2 S T U mm
CONTRL BRANCH TEST CATALOG UNITS
< 2 > P o 3
—— —— I —— |
< > " } 1 i
NEWLINE > MENUS
| seace | -
L
A A A
3 4 5

1. Object types and formats
2. Menu selection (shifted)
3. Object delimiters

26 1: Getting Started

4. Lowercase
5. Entry mode

6. Command and unit listings

(shifted)

—

HEWLETT
PACKARD

e

28S

SCIENTIFIC CALCULATOR

ADVANCED

N\
7 (6 5+ a w « Ty @
21
1: 28 } 19
8 380
| SIN JRSIN] ooz Tons | THM | ATRN BHESS 18
= D - o= ! — 17
PI.O'I’ CW‘I’W PREY
9 . ‘ TRIG SOLV @ 16
| | EDIT VIEW ¢ VIEW + ROLL SWAP I
10 S ENTER \EEX) B o 15
VISIT COMMAND UNDO LAST 1/X
1 - J EN]| EN
RCL PURGE J didx ~
6
e e,
+ NUM CONT % %CH X
fLEvaL [1] l 2] [3 1 [-]
l OFF CLEAR hld CONVERT x2
12 'g‘ 9 4 - 3 b) L *)
ATTN
L J
13
7. Annunciators 13. Number entry
8. Command line 14. Arithmetic
9. Shift key 15. Backspace
10. Enter command line 16. Menu selection, next menu row
11. Delimiter for symbolic objects 17. Menu keys
12. Power on and off; clear com- 18. Menu labels
mand line; stop program 19. Stack levels

1: Getting Started 27

1. Object types and formats. This table shows the correct delimit-
ers and examples for the 10 basic types of object. An “object” is any of
the individual items you work with on the calculator. The 10 basic
object types are:

® Real numbers, such as 5 or —4.3 x 10'5

® Complex numbers, which are a pair of real numbers representing a
complex number x + iy or a point in a plane.

B Binary integers, which are unsigned integers used in computer
science.

Strings, which contain arbitrary sequences of characters.
Vectors, which are one-dimensional arrays used in linear algebra.
Matrices, which are two-dimensional arrays used in linear algebra.

Lists, which contain arbitrary sequences of objects.

Names, which enable you to name and store other objects and to
perform symbolic calculations.

Programs, which enable you to create your own commands.

B Algebraics, which represent mathematical expressions and
equations.

2, Menu selection (shifted). Use the menu selection keys to assign
commands to the menu keys. For example, press J[ARRAY] to select
the ARRAY menu. To select a different menu, press another menu
selection key.

There are additional menu selection keys on the right-hand keyboard
(see item 16).

3. Object delimiters. These symbols identify the different object
types (see item 1). For example, [#] identifies binary integers, while [«]
and [J(»] identify programs.

Real numbers require no delimiters. Symbolic objects (names and
algebraics) require the [7] delimiter, located on the right-hand key-
board (see item 11).

4. Lowercase. Press to key in lowercase letters. Lowercase
mode continues until you press a second time, press to
process the command line, or press to clear the command line.

28 1: Getting Started

5. Entry mode. The command line has three entry modes, each
suited to entering certain types of objects. Entry modes change auto-

matically as you key in objects, but sometimes you want manual ‘
control; the [a] key enables you to select the entry mode you want.

6. Command and unit listings (shifted). Press [B[CATALOG] for a
listing of all HP-285 commands and their required arguments (page
31). Press [[UNITS] for a listing of the units recognized in unit conver-
sion (page 141).

7. Annunciators. The annunciators indicate the status of the calcu-
lator. When an annunciator is visible, it indicates the following;:

Annunciator Meaning

O Suspended program.
_* shift key [l was pressed.

a Alpha entry mode.

((®) Busy, not ready for input.
—l Low battery.

2am Radians mode.

9 Sending data to printer.

8. Command line. The text you key in goes in the command line.

9. Shift key. Press the colored shift key il to execute a command
printed in color above a key.

10. Enter command line. Press to process the text in the
command line.

11. Delimiter for symbolic objects. Delimiters are punctuation
that identify types of objects; symbolic objects are names and
algebraics. To key in a symbolic object, press [*] at the beginning and
(when necessary) the end of the object.

1: Getting Started 29

Real numbers require no delimiters. The delimiters for other object
types are on the left-hand keyboard (see items 1 and 3).

12. Power on and off; clear command line; stop program. To
turn on the calculator, press [ON]J; to turn it off, press lJ[OFF] . (OFF is
printed on the keyboard above [ON]. “Press ll(OFF]” means press the
shift key [l] and then press [ON].)

While the calculator is on, also acts as the ATTN (attention) key
to clear text in the command line or stop a running program. (ATTN
is printed on the keyboard below [ON].)

13. Number entry. To key in numbers, use the digit keys (0] through
(o], (change sign), and (enter exponent). Assuming you want
to use the period as the decimal point (page 36), use [-] to separate the
integer part from the fractional part. Number entry is described on
page 39.

14. Arithmetic. The arithmetic functions are described in “One-
Number Functions” on page 40 and “Two-Number Functions” on
page 41.

15. Backspace. Press (€] to erase the last character you typed in.

16. Menu selection, next menu row. Use the menu selection keys
to assign commands to the menu keys. For example, press to
select the TRIG menu. To select a different menu, press another menu
selection key.

When no menu labels are visible, the cursor menu is active. The opera-
tions in the cursor menu ([INS] through [»]) are printed in white
above the menu keys. When menu labels are visible, press (%] to se-
lect the cursor menu. To restore the previous menu, press [« a
second time.

A menu can contain more than one row, with up to six commands in
each row. Press [NEXT] to display the next row of the current menu.
Press l[PREV] to display the previous row.

30 1: Getting Started

There are additional menu selection keys on the left-hand keyboard
(see item 2). For an alphabetical listing of all menus, including a brief
description of the commands in each menu, refer to appendix D,
“Menu Map.”

17. Menu keys. The menu keys are defined by the menu labels. If
no labels are visible, these keys execute the cursor menu operations
labeled in white above the keys.

18. Menu labels. The menu labels show the current definitions of
the menu keys.

19. Stack levels. The stack shows the objects you're currently
working with. Each numbered stack level (level 1, level 2, and so on)
holds one object.

The Catalog of Commands

The HP-28S contains a catalog of all commands, listed alphabetically.
For each command the catalog shows its usage—that is, the argu-
ments required by the command. For a complete description of any
command listed in the catalog, refer to “Operation Index” in the back
of the Reference Manual.

Start the catalog.
W(CATALOG]

(MEST[FREN | | WZE [FETCH

The first command is ABORT.

Normal calculator operation is suspended while the catalog is active.
The NeEXT and PREV operations move the catalog to other com-

mands. The uUsg operation displays the arguments required by the
current command. The FETCH and QUIT operations terminate the
catalog, restoring normal calculator operation.

Try pressing NEXT and PREV to move through the catalog. You can
hold down the keys for repeated moves.

1: Getting Started 31

You can move to the first catalog entry for a particular letter by press-
ing the letter key. Try “T".

@ L THH

(MEST[FREN | | USE [FETCH

The first “T” command is the TAN function. If you press a symbol
(non-letter) key on the left-hand keyboard, the catalog moves to the
first catalog entry for that symbol. Try “Z”.

BE)

[NEXT[FREV | [LZE [FETCH

The first “2” command is the 2+ command. If you press a symbol
key on the left-hand keyboard, and no commands begin with that
symbol, the catalog moves to +, the first non-alphabetical command.

(#)]

[MEXT|FEEN | | UZE [FETCH

Check the usage for +.

USE !!%E!!?ﬁ?l!llllllllll
I Real Number

1: Real Humber
[WERT[FREW] | [[owIr]

This shows that you can add two real numbers. Check the next

combination.
!: Eeag ﬁumger

1! Complex Humbet
P MERT[FEEN] [| [ouIT]

NEXT

This shows that you can add real and complex numbers. Check the
next combination.

NEXT

! Lomplex Numbet
1: Real Humber
I[MERT[FREV] | | [GuUIv]

This shows that the real and complex numbers can be in either order.

32 1: Getting Started

Check the 14 remaining combinations. The last combination looks

like this.
!= E) HEJEC!
1: List
WERTIFREN [[| [&uIT)

When you're done checking combinations, return to the main catalog.

auiT
[MEXT[FREV] [UZE [FETEH
You can now move to another catalog entry and check its combina-

tions of arguments. When you're done with the catalog, return to
normal calculator operation.

QUIT

19
| SIN JREIW] Cits [icos | TaN [HTAN]

Alternatively, you can exit the catalog by pressing FeTcH , which also
writes the name of the current command in the command line.

1: Getting Started 33

Doing Arithmetic

There are two ways to do arithmetic on the HP-28S5. You can do
arithmetic using the stack, as you did in the previous chapter, or you
can enter an expression representing the calculation. In the previous
chapter you calculated:

(15 + 23) X sin 30°

Here’s how to make the same calculation using an expression.
Clear the stack and select the TRIG menu.
M(CLEAR)

Start the expression.

CJ

[SIH [REIN] Cis [HCOZ | TAN | ATAN |

The cursor changes, indicating Algebraic Entry mode. You'll see the ef-
fects of this entry mode as you key in the expression.

Key in the first part of the expression.

D15+ 23 @0 2:

1:
'(15+23>8
[TN [REIN] Cos [HCOS | THH | ATAN |

34 2: Doing Arithmetic

Because of Algebraic Entry mode, pressing (+] wrote the character + in
the command line rather than executing the command.

Continue the expression.

SIN

(15+23)%STH(E
[SIN THIIN] cnZ | ACoZ] THN | ATAN]

Because of Algebraic Entry mode, pressing wrote # in the com-
mand line, and pressing SIN wrote ZIH¢ in the command line,
rather than executing the commands.

Complete the expression and put it on the stack.

30 (ENTER]

' (13+23>*5INC30) '
[JIN | REIN] CoF [RC0S | THH | ATHM |

The closing parenthesis » and the closing delimiter ' are added for
you.

Evaluate the expression.

1

19
[ZIN [REIN] Cid JCos | TN [RTAN |

The expression is removed from the stack, and the result, 19, is re-
turned to level 1.

This completes the calculation:
(I5 + 23) x sin 30° = 19.

To perform a calculation that’s already written as an expression, such
as in a textbook, it’s easier to key in the expression and evaluate it.
Alternatively, to see the intermediate results of your calculation, or to
perform an on-going calculation, it’s easier to calculate on the stack.
The results are the same.

The relationship between stack calculations and expressions is demon-
strated in chapter 4, “Repeating Calculations.” In that chapter you
calculate on the stack, using names instead of numbers, to produce an
expression.

2: Doing Arithmetic 35

Entering and Displaying Numbers

There are modes that affect how numbers are displayed. To demon-
strate the choices, put the number %5 on the stack.

Put 2 on the stack.

2 19
: 2
[ZIN fAEIN] Ciof JRCOS] THH [HTAN |
Divide by 3.

3 EE
] 2: 19
1: . GEEE6EEE666T
| SIN JREIN] Ciod [Acos | THN [ATAN]

The result, %3, is returned to level 1. This result is the decimal ap-
proximation to %3, as displayed by the default choices for decimal
point and number display mode. The next section describes other

choices.

Changing the Decimal Point

In the United States a period is used to separate the integer part of a
number from the fractional part. In this role the period is called a
decimal point; the general term for this numerical punctuation is a
radix mark.

Many other countries use a comma as the radix mark. You can select
the comma as follows.
Select the MODE menu.
W(MoDE)

36 2: Doing Arithmetic

The first row of the MODE menu appears. Display the second row of
the MODE menu.

19
« 666666666667
(cHie BNDomlL iz Te] HLs [RDETFRHD

Select the comma as the radix mark.

RDX, 3:
2t 19
1: s GEEEEEE6666T
[CHDm JINDs[LksTa] Mim [RO. = [FRHD]]

The decimal points are replaced by comma radix marks, and a square
appears in the menu label gpx, to indicate that RDX, mode is
turned on.

Turn off RDX, mode to restore decimal points.

RDX,

19
1: « EEGEE666666 7
TN XL TOD0 (W Y AT TR T

Selecting Number Display Mode

You can choose how many decimal places are displayed.

Return to the first row of the MODE menu.

3 (9
1: . 666666666667
(270w | FIt | 701 | ENG [[EGe] FAD |

You can move from the last row in a menu to the first row by pressing

(NEXT]. Since the MODE menu has only two rows, pressing cy-
cled back to the first row.

The menu shows four basic choices for number display mode: STD
(standard), FIX (fixed), SCI (scientific), and ENG (engineering). The
label for STD currently includes a square, indicating that STD is the
current choice. In STD mode the number of decimal places depends

2: Doing Arithmetic 37

on the value. For an integer, no decimal places are shown; for the
example displayed above, the maximum of 12 decimal places are
shown.

The other display formats show a given number of decimal places—
from 0 through 11—regardless of the number being displayed. We'll
demonstrate each of the other display formats with two decimal
places. Only the displays of the numbers are rounded—internally, the
numbers are unchanged.

Display %3 rounded to two decimal places.

2 FIx

Display %3 as a mantissa and an exponent, with the mantissa rounded
to two decimal places.

2 sc1

The value of the number is the product of the mantissa and 10 raised
to the power of the exponent. The mantissa is always between 1 and
9.99999999999.

Display %5 as a mantissa and an exponent, with the mantissa rounded
to two decimal places and the exponent a multiple of 3.

2 ENG

STD

66666666666?
mmﬂiﬂm

38 2: Doing Arithmetic

Keying In Numbers

You can enter numbers as a mantissa and an exponent, where the
value of the number is the product of the mantissa and 10 raised to
the power of the exponent. The mantissa or the exponent or both can
be negative.

For example, key in the number —4.2 x 10712,

First key in the digits for the mantissa.

4.2 2: 19
‘1‘ : 20 . BEBBRELE6E6T
70w | Pt | 501 | EMi3 | DEGE | Rl |

If you make a mistake, press (€] to erase the mistake and then key in
the correct digits.

Next make the mantissa negative.

CHS

1 ==

: 19
i 20 . BELELEBEEEE Y
[5Tos] PLi | 5CL [ENS [DEGe | kil |
“CHS” stands for “change sign’—pressing a second time would
make the mantissa positive again.

Now begin the exponent.

EEX 2% 19
1: . 666566666667
-4.2E[0
[=70m | FTH [SCT | EMG JDEGS [RAD |

“EEX” stands for “enter exponent.” The E in the command line marks
the number’s exponent. If you press by mistake for a number
without an exponent, you can erase the E by pressing (4], just as you
would erase an incorrect digit.

Key in the digits for the exponent.

12 2t 19
1: . 6EEE6ER6H6667
-4.2E120
[SToe [FI8 T =01 [ENG [DEGe] EAD_

2: Doing Arithmetic 39

Make the exponent negative.

CHS 2 19
1: «BEEGEEEEEEET
-4.2E-1203

[£T0m | FIN | 21 | ENS J DESw [FRD |

Put the number on the stack.

13
[EnTER) : . EEREEEEHEE6T
1: -4,2E-12
[sT0m | FIY [CI [ENG [0EGs | Rab |

Don't forget to use to key in negative numbers. For example, if
this manual shows the keystrokes —4 [x], you'll need to press (4]

(ers] [,

One-Number Functions

Functions that act on a single number—for example, negating a num-
ber or taking a square root—are called one-number functions. All act
on the number in level 1. There are four one-number functions on the
keyboard:

| Press to negate the number.

B Press [(1/x) to take the inverse (reciprocal) of the number.
B Press (=) to take the square root of the number.

B Press (7] to square the number.

If you're keying in a number, it's not necessary to press before
executing the one-number function—pressing the function key auto-
matically performs ENTER for you. For example, you can calculate s
as follows:

o w § ey
1: .125
[£T0m | FIX [SCI | ENG [DEGE] RAb |

40 2: Doing Arithmetic

Two-Number Functions

Functions that act on two numbers—such as addition—are called
two-number functions. All act on the numbers in levels 1 and 2.

When you're keying in both arguments to the function, as when you
divided 2 by 3 on page 36, you must press to separate the two
arguments. When one or both arguments are already on the stack
from previous calculations, you don’t need to press [ENTER].

Addition and Subtraction
Calculate 36 + 17.

36 3t -4.2E-12
17 2: .125

1: 93
[ZT0e | FIH | SCT | ENG [[EGe | RAD |

The result is 53.

For addition the order of the numbers doesn’t matter. However, the

order is important for subtraction. Next calculate 91 — 27.
91 EE .125

2: 23
1-

27 (=] : 64
[iT0w | FIH [30T [ENG [CEGe | BAD

The result is 64.

Multiplication and Division
Calculate 13 x 6.

13 [ENTER]
6 [x]

The result is 78.

2: Doing Arithmetic 41

For multiplication the order of the numbers doesn’t matter. However,
the order is important for division. Next calculate 182/14.

182 [ENTER]
14 5]

The result is 13.

Powers and Roots

The order of the numbers is important for both powers and roots.
Calculate 53.

5 7 72
& i 133

The result is 125.
To calculate 2401 , first put 2401 on the stack.

2401

Now raise 2401 to the %4 power.

1 ol o 3 I3

The result is 7.

42 2: Doing Arithmetic

Percentages
Calculate 40% of 85.

85
40 W)

The result is 34.

For “percent” the order of the numbers doesn’t matter. However, the
order is important for “percent change.” Calculate the percent change
from 60 to 75.

60
75 W(%CH]

The result is +25, meaning that 75 is 25% more than 60.

Swapping Levels 1 and 2

For all the functions where the order of the numbers is important—
subtraction, division, powers, roots, and percent change—you can
switch the order of the numbers by pressing [I[SWAP]. For example,
you currently have 25 on the stack; suppose you want to calculate
30 — 25.

Key in 30.
30

Swap the order of 25 and 30.
W(swaP]

1-

[iT0m | FIH [SCT [ENG JDEGE | RAD |

Note that pressing performed ENTER for you.

2: Doing Arithmetic 43

Subtract 25 from 30.
=]

The result is 5.

Clearing Objects From the Stack

As you worked these examples, you accumulated quite a few numbers
on the stack. The stack grows without limit as you put more objects
on the stack, and those objects remain until you use them in an oper-
ation or until you clear them.

You can clear objects one at a time or all at once.

Clear the number in level 1.

Objects in higher levels move down one level each.

Clear all objects from the stack.

B(CLEAR]

i:
[0 | FI8 | SCT [ENG [DESe | B0 |

It's a good idea to clear the stack whenever you start a problem. As
you work on the problem you’ll know that all objects on the stack are
relevant to the current problem, not left over from the previous
problem.

44 2: Doing Arithmetic

Chain Calculations

When you perform complicated calculations, the stack acts as tempo-
rary storage to hold intermediate results. This temporary storage acts
automatically. For example, suppose you want to calculate the total
resistance of the following circuit:

Ry

The formula for total resistance in this circuit is:

1
+

Ryw = R, +

total 1 1
R, Ry

If Ry, Ry, and R; have resistances of 8, 6, and 3 ohms respectively,
calculate the following:

Rtutal = 8 + 1 1 1
—_ + -
6 3
Calculate as follows:
Put 8 on the stack.
8 g=

You'll leave 8 on the stack until it’s time to add it to the rest of the
calculation.

2: Doing Arithmetic 45

Put Y% on the stack.

6 B0/=)

Put 5 on the stack.

3 B0/

Add the reciprocals of 6 and 3.

Take the reciprocal of the sum.

KV

Complete the calculation of R,,.

The result is 10 ohms.

46 2: Doing Arithmetic

g
. 166666666667
| [EGE] RAD]

3:
2: . 166566666667
1 : . 333333333333

3:
: :
[770a L FLi | ZiI | ENG |LEGe] RAD |

mﬁmmm

If You Execute the Wrong Function

The HP-28S includes recovery features to help you “backtrack” when
you mistakenly execute a function. The following steps reverse the
effects of a function, whether a one-number or two-number function.

1. Press J(UNDO) to recover the previous contents of the stack.

2, If a number was in the command line when you made the mis-
take, press [J[COMMAND] to recover the previous contents of the

command line.

3. Continue the calculation.

2: Doing Arithmetic 47

Using Variables

Variables enable you to refer to objects by name. You create a vari-
able by associating a name object with any other object. The name
object defines the name of the variable; the other object defines the
contents of the variable. You can then use the variable’s name to refer
to the variable’s contents.

Variables are stored in user memory, a part of the calculator’s memory
distinct from the stack. The stack is designed for temporary storage of
the objects you're currently working with, such as the numbers you're
using in a calculation. User memory is designed for long-term storage
of variables, such as numbers that you use repeatedly.

In this chapter you'll create a numerical variable, which may be a fa-
miliar concept to you; you'll also create a program variable, which is
probably an unfamiliar concept. In the HP-28S, a program has no in-
trinsic name—it is simply another object type. You name the program
by storing it in a variable, just as you would a number, and you can
then execute the program by name.

The steps to create, recall, evaluate, change, rename, or purge a vari-
able are identical for all variables, regardless of their contents. This
uniformity makes the HP-28S both easy to use and powerful, because
there are fewer special rules and because it is more flexible.

Introduction to Variables

The simplest variables are numerical variables. This section shows
how to create, recall, and evaluate a numerical variable.

48 3: Using Variables

Creating a Numerical Variable

Suppose you repeatedly use a volume measurement of 133 in your
calculations. Create a variable named VOL (for “volume”) as follows:
Clear the stack and select the USER menu.

W(CLEAR]

The USER menu shows your variables. It’s blank because you haven’t
created any variables yet.

Put the number in level 1.

133 [(ENTER]

Put the name 'YOL' in level 1.

("] VOL [ENTER]

Note that the closing ' is added for you. The number 133 is lifted to
level 2. (In practice you don’t need to press (ENTER], but it’s included
here for clarity.)

Create the variable VOL.
STO

i:
LT I I D I
The number and the name are removed from the stack, creating a

variable named VOL with a value of 133. Note that VOL now appears
in the USER menu.

3: Using Variables 49

Recalling a Numerical Variable

Now that you've created the variable VOL, return its value to the
stack.

Put the name VOL on the stack, taking advantage of the USER menu.
) wvou ER

1 '\MOL!
AT I I N N

Recall the contents of VOL.
B(kcL)

133

This is the number you stored in VOL.

If you're accustomed to a calculator with storage registers, recalling is
a familiar process. On the HP-28S, variables are recalled infrequently;
more often they are evaluated.

Evaluating a Numerical Variable

For numerical variables, “evaluating” has the same meaning as “recall-
ing”—evaluating a numerical variable returns the number to the stack.
You'll see that evaluation is easier. (When you create a program vari-
able later in this chapter, you'll see that evaluating and recalling can
have quite different effects.)

Return the value of VOL to the stack by evaluation.

VoL

133
133

You can also evaluate VOL by typing in its name without quotes.

VoL

50 3: Using Variables

Changing the Value of a Variable

You can change the value of a variable by using the same procedure
as when you created the variable. The new value replaces the old
value.

Now change the value of the variable VOL to 151.
Write the new value in the command line.
151

Note that the cursor appears as an empty box. The cursor will change
in the next step.

Write the variable’s name in the command line.

) wou

The cursor changed when you pressed (7] to indicate the new entry
mode—how the calculator responds when you press keys.

Initially the command line was in immediate execution mode, suitable
for keyboard calculations. When you pressed [*], which indicates a
name or an expression, the command line changed to algebraic entry
mode, suitable for entering names and expressions:

B Pressing a function key such as writes the character + rather
than executing the command.

W Pressing a USER menu key writes the variable’s name rather than
evaluating the variable.

Now store the new value in the variable.

STO

3: Using Variables 51

Check the new value.

VoL

1
(ol | [| 1 1 |

Purging a Variable

When you finish with the variable VOL, purge it from user memory.

Write the variable name in the command line.

VoL 2: 133
u 1: 151

(The quote ['] is necessary to avoid evaluating the variable.)

Purge the variable VOL from user memory.

B(PURGE]

Note that the label for VOL disappears from the USER menu.

Changing the Name of a Variable

You can effectively change the name of a variable by creating a new
variable with the same value and purging the original variable.

In this section you’ll first go through the steps required to rename a
variable, then write a program that contains the same steps, and fi-
nally store the program in a variable and execute it by name.

52 3: Using Variables

In preparation, create a variable so you have something to rename—a
variable A with value 10.

Put the value 10 on the stack.
10

Create the variable A.

(J A (s10]

Note that A appears in the USER menu.

Suppose you want to rename A to B. Put the old name on the stack.

J & [ENTER]

Put the new name on the stack.

() B (ENTER]

This completes the preparation: the variable exists, the old name is on
the stack, and the new name is on the stack. The old and new names
are the arguments to the program—the program will assume they’re
on the stack in this order. The steps that follow are those that will be
in the program.

The steps include three common stack-manipulation commands,
OVER, ROT, and SWAP. You'll see how they work as you execute the
steps.

Copy the old name to level 1. (Use the OVER command in the STACK
menu.)

W(sTACK] over 3 iR
2 B
[CuF [over oFa Jukire] kit JLIZTS]

3: Using Variables 53

Recall the contents of the variable.

W(rc)

ROT

Purge the old variable. (By purging the old variable before creating
the new one, you avoid making an extra copy of the value.)

B(PURGE] EF 1=
i 1o
[U] VR [OUF2 Juk0FR] FaT JLISTS

Put the contents and the new name in the correct order.

B(swAP] 3t 151
2: 1o
[BUF | 0vER | DUFR [OEOFR] FOT JLISTS]

Create the new variable.

STO 2z 133
2: 133
1: 151
[OUF] oVER [DUFE JOROFE] ROT JLISTS]

Now you can create a program that automates these steps.

Creating a Program Variable

First you'll key in the program, and then you'll store it in a variable.

54 3: Using Variables

Begin the program with the program delimiter.

2: 133
= 1: 151
|

[DUF [OVEFR [OIS [DROFR] KoT [LISTS]

Note that the cursor changed form and the O annunciator appeared,
both indicating alpha entry mode. Pressing the key for any pro-
grammable operation writes the operation’s name in the command
line. Only non-programmable operations, such as pressing [¢] to erase
a character, are executed.

Now key in the steps you executed before.

over [l(RcL]
RoT [[PURGE]

151
1: ¢« OVER_RCL ROT PURGE
SWAP STO *

W(swar) [DLF ToVER [OLIF [DRIFE] RoT [LITH

Note that the closing delimiter » was added for you.
Store the program in a variable RENAME.
(") RENAME

Check the USER menu.

Note that RENAME (in abbreviated form) appears in the USER menu.

Now you're ready to execute RENAME. You'll do it first in a round-
about method, by using RCL, and then in a normal method, by using
the USER menu. The difference in the methods highlights the differ-
ence between recalling and evaluating a program variable.

3: Using Variables 55

Recalling a Program Variable

For this example, rename the variable B to C.

Put the old name and the new name on the stack.

[J 8 [ENTER]
(] C (EnTER]

Recall the program RENAME.
[rewn mACE)

« OVER_RCL ROT PURGE
SWAP STO @
(FENn] & [| | | |

For any variable, RCL simply returns the contents of the variable to
the stack.

Evaluating a Program Variable

To execute a program on the stack you must explicitly evaluate it.

The USER menu shows that B was renamed to C.

it wasn’t necessary to recall the program to the stack for execution,
but it demonstrated how RCL works for programs and how EVAL
causes programs to execute. Next you'll see the easy way to execute
your program.

This time you’ll rename C to D. Put the old name and the new name
on the stack.

C) ¢
("] D (ENTER

56 3: Using Variables

Rename C to D.
REMA

The USER menu shows that C was renamed to D. You executed the
program simply by pressing one key in the USER menu.

Quoted and Unquoted Names

In the examples above you used variable names in two ways, quoted
and unquoted. The quotes [7] are important: they distinguish the name
of a variable from the contents of a variable. Here’s a summary of the
purposes of quoted and unquoted names.

B Use a quoted name to represent the name itself. The quotes prevent
evaluation of the name, so it goes on the stack and can be an argu-
ment to a command. In this chapter you used quoted names as
arguments to STO, RCL, PURGE, and the program RENAME.

® Use an unquoted name to evaluate the variable with that name.
The unquoted name doesn’t go on the stack—instead, the object
stored in the variable is handled according to its type: numerical
variables are returned to the stack, and programs are executed.
You'll see what happens with other variable types later in this
manual.

If you type in an unquoted name that isn’t associated with a variable,
the quoted form of the name goes on the stack.

3: Using Variables 57

4

Repeating Calculations

In this chapter you'll create an expression containing numerical vari-
ables and then use a calculator feature called the Solver to evaluate
the expression for various values of the numerical variables.

In chapter 2 you made a calculation by keying in an expression that
contained numbers and then evaluating the expression. In this chapter
you'll create an expression by calculating on the stack, using names as
symbolic arguments. You'll use the Solver to assign values to the vari-
ables and evaluate the expression. Each time you evaluate the
expression, the calculation is made with the current values of the vari-
ables. If you change the value of one or more variables, you can
simply evaluate the expression again to recalculate with the new
values.

In chapter 3 you created numerical variables and a program variable.
In this chapter you'll create expression variables and name variables.
(Remember, any object can be stored in a variable.) You'll also learn
about directories, which are sets of variables.

Creating an Expression

We'll repeat the resistance calculation from “Chain Calculations” in
chapter 2, only this time we’ll use names, rather than numbers, as
arguments. Recall that the formula for the circuit is:

Rmml = R] +

58 4: Repeating Calculations

Clear the stack and select the cursor menu.

B(CLEAR]

L IS[IEE

If a menu is displayed, press to select the cursor menu.

Put the name 'E1' on the stack.

(] R1 (ENTER]

4
2
2
1

" IRII

Note that the closing ' is added for you. You'll leave R1 on the stack
until it’s time to add it to the rest of the calculation.

Put the reciprocal of R2 on the stack.

[R2 Cwa 37
o 'R1"
1: 'TNV(RE)!
Put the reciprocal of R3 on the stack.
[R3 B 3 -y
% ' INV(RE% '
1: 'INV(R3)'
Add the reciprocals of R2 and R3.
23 ‘Rl
1: 'TNVCR2)+INV(R3) !
Take the reciprocal of the sum.
) : -
¥ s INVCINVCR2) + TNV (R3)

4: Repeating Calculations 59

Add R1 and the reciprocal.
3
1

'RI+INVYCINYCRZ2+IMVC
R3Y)!

The resulting expression represents R;,,;.

You could key in this expression directly, taking care to add parenthe-
ses where necessary. Every expression is equivalent to a stack
calculation, so you can choose the method that is easier for you.

Later in this chapter you'll store this expression in a variable, but first
create a directory to group together the examples in this chapter.

Creating a Directory

A directory is a set of variables. Right now you’re working in the
HOME directory—a built-in directory that exists even after MEMORY
RESET. In this chapter you'll create a subdirectory within HOME, and
then subdirectories within that subdirectory.

Here are some concepts about directories that you’ll use in this
chapter.

¥ Only one directory can be the current directory; only its variables
appear in the USER menu.

B If a directory A contains a directory B, then A is called the parent
directory of B, and B is called a subdirectory of A.

W If you start at the current directory and find its parent directory,
and then the next parent directory, and so on, you always return to
HOME. This sequence of directories (in the reverse order) is called
the current path.

You can check the current path by executing the command PATH.
Select the MEMORY menu.

g 57 |
1: ég%;;NV(INVCRZ23+INVC

[HEM [MENU[ORDER] FATH [HOME JCRDIF]

60 4: Repeating Calculations

Check the current path.
FATH

'R1+INY(INVYCRZ)+ 1NV,
£ HOME 3>

| MEHM [MENU[0ROER] FATH [HOME [CRDIF]

The list that PATH returns always begins with HOME and ends with
the current directory. HOME is the starting point for all paths and,
since you haven’t created any other directories yet, HOME is also the
current directory.

To group together all your electrical engineering problems, create a
subdirectory named EE.

('] EE crDIR

3:
22 'RI+INYCINYC(RZD+INV..
1: { HOME 3%

Switch to the EE directory.
EE

'RI+IMNVCINVCRZ 2 +IHW.,
{ HOME 2

[MEM JMENG [ORDER] FATH JHUHE [CRDIE]

Check the current path again.

PATH 3¢ 'RI+INVCINYC(RZ22+IMV..
2: { HOME 2
1: { HOME EE 2
{HEM [HMENLIJORDER] FATH [HOME [CRDIF

Now the current directory is EE. To see one effect of switching to the
EE directory, display the USER menu.

(USER] 2 'RI+INYCINYC(RZ2+IHV..
{ HOME 2

Note that the RENAME program (created in the last chapter) doesn’t
appear. Only variables in the current directory (EE) appear in the USER
menu; RENAME is in the HOME directory.

However, you could still execute RENAME by typing its name, be-

cause any variable whose directory is on the current path (HOME EE)
can be found by name.

4: Repeating Calculations 61

This is one of the benefits of directories: If you put general-purpose
programs such as RENAME in the HOME directory, you can always exe-
cute them but they don't clutter up the USER menu.

Now you can work in the new directory EE.

Drop the two path lists from the stack.

1: ég%;mw IMVYCRZ2+INYVC
[[1 1 1 |

Store the expression in a variable named EQ1 (equation 1). You'll see
the reason for this name later.

(J EQ1 [s10]

The variable EQ1 appears in the USER menu.

Let’s assume that you'll use this expression for a variety of problems,
each of which you want to treat independently. To do so, you can put
the values for each problem in a subdirectory for that problem.

Create a subdirectory SP1 (series-parallel 1) for the first problem.

[7] SP1
CRDIR

The name of the new subdirectory appears in the USER menu. Press
the menu key to switch to SP1.

5P1

The USER menu is empty again because the current directory (SP1) is
empty.

62 4: Repeating Calculations

Check the current path.
PATH

{ HOME EE SP1
[1 [|

You can find any variable in the HOME or EE directories by name,
because those directories are on the current path (HOME EE SP1), but
the USER menu shows only the variables in the current directory
(5P1).

Now you're ready to use the Solver with the expression EQ1.

Using the Solver To Repeat a Calculation

There are three basic steps to using the Solver with an expression.

1. Store the expression (or the name of the expression) in a variable
named EQ (equation). The Solver requires a variable by this
name.

2. Use the Solver menu to assign values to the variables.
3. Use the Solver to evaluate the expression.

4. Repeat steps 2 and 3 for other values.
Here are the steps for the present example.
Step 1. Store the name EQ1 in a variable EQ.

This step may surprise you—why store a name in a variable? Why not
store the expression itself in EQ? The simplest reason is that the name
EQ1 is shorter and easier to remember than the entire expression.
Also, you'll see later that this makes it easy to switch back and forth
between different equations.

Put the name EQ1 on the stack.
(] EQ1

If you forgot the quote [*], you got the expression itself on the stack;
in this case press to drop the expression and try again.

4: Repeating Calculations 63

Select the SOLVE menu.

3
2 ¢ HOME EE $P1

Use STEQ (Store Equation) to store th

e name EQ1 in the variable EQ.
STEG 3
z

£ HOME EE SP1 3
[RCECE [EOLVE] TE0L [CURD{ZHOM |

Step 2: Assign values to the variables.

Display the Solver menu.

SOLYR %:
1 £ HOME EE SP1 2
| Cra JEseRsIC JC]

The variables in the current equation appear in the Solver menu. (If
the equation contains more than six variables, pressing displays
additional rows of variables.)

This menu Jooks different from the USER menu because it works dif-
ferently: the Solver menu sfores values in variables rather than
evaluating variables.

Now you can assign values to the variables R1, R2, and R3. First store
the number 8 in the variable R1.

ing [(s10]. Note that the top line of the display shows the variable
name and the value.

Store the number 6 in the variable R2.

{ HOME EE SP1 >
CraJespeslC_]C 1

64 4: Repeating Calculations

Store the number 3 in the variable R3.

Step 3: Evaluate the expression.

The menu label EZFES means “expression equals”—pressing it evalu-

ates the expression.

The value (10) is returned to level 1, and it appears in inverse charac-
ters in the top line of the display.

Step 4: Repeat steps 2 and 3 for other values. For example, what if
R3 is 12?

Store the number 12 in the variable R3.

The new value (12) is returned to level 1, and it appears in inverse
characters in the top line of the display.

4: Repeating Calculations 65

Using a Different Set of Values

Suppose you want to work on a different problem, with different val-
ues of R1, R2, and R3, and later return to the values now assigned.
You could reenter all the values each time you switch problems, but
this section shows you an easier way. There are three steps:

1. Create a new directory for the new values.
2. Define the same expression to be EQ.

3. Use the Solver as before to assign values and evaluate the
expression.

This process shows another benefit of directories: Within a directory,
only one variable can exist with a particular name; but any number of
directories can contain a variable with a particular name.

Step 1: Create a new directory.

Since the new directory is an alternative to SP1, call it SP2 and create
it within the same parent directory (namely EE). This will be the first
“branch” within your directory structure—two subdirectories (SP1 and
SP2) within the same parent directory (EE).

To create a subdirectory within EE, you must make EE the current
directory. (Any subdirectory you created now would be within SP1.)
Switch to the EE directory.

EE gt_:l Current Equation

The calculator beeps, displays Ho Current Equatior, and acti-
vates the SOLVE menu. This occurs because there is no current
equation 'EQ’ in the EE directory.

Create a directory SP2.

(] sP2 3¢ { HOME EE 5P1 2
W(ERGRY) cROIR 2 15
[HEH [MENUoRDER | FATH JROME [CEDIR]

66 4: Repeating Calculations

Switch to the SP2 directory.

SP2 [ENTER) % ¢ HOME EE 5P11%
1: 12
[HEH [HENUTORER [FATH [HOME [CROTR]

Check the current path.

PATH 3: 18
2: 12

1: { HOME EE SPZ2 2

[MEFS [HENLOREER [FTH THOME [CRDIE]

Note that HOME and EE are in the current path, as they were when
SP1 was the current directory, but SP1 doesn’t appear now. As a re-
sult, you can still find the variables in HOME (such as RENAME) and
in EE (such as EQ1), but not the variables in SP1 (EQ, R1, R2, and
R3); now you can create new variables R1, R2, and R3.

Step 2: Define the same expression to be EQ.
As before, use STEQ to store the name EQ1 in the variable EQ.

(] Ean STEQ g %g
: 3

1s * HOME EE SP2
STEG! ZOLVE] TT0L LA SH |

Step 3: Use the Solver as before to assign values and evaluate the
expression. Suppose the values for the new problem are

R1 = 11, R2 = 21, R3 =7

Select the Solver menu.
SOLVR 3
2

Assign the values.

{ HOME EE S
[ra JExFE=]

4: Repeating Calculations 67

Evaluate the expression.

To return to the previous problem, you would execute EE (to switch to
the EE directory), execute SP1 (to switch to the SP1 directory), and
press sOLWR (to activate the Solver menu); all the variable val-
ues would be the same as when you left SP1.

Using a Different Expression

Now that you have two sets of values to use with the expression EQ1,
try creating a second expression EQ2 that you can use with either set
of values. There are two basic steps:

1. Switch to the EE directory, create the new expression, and store
the new expression in a variable EQ2.

2. Switch to the SP1 or SP2 directory, change the value of EQ from
"EQ1’ to 'EQ2’, and use the Solver to evaluate the expression.
Step 1: Switch to the EE directory, create the new expression, and

store the new expression in a variable EQ2.

Switch to the EE directory.

EE [ENTER] No Current Equation
< HDﬁE EE ?222%

Create the new expression. In this example, EQ2 will be an edited
copy of the expression EQI.

68 4: Repeating Calculations

Return the expression stored in EQ1 to the stack.

(USER] Ea1 21 16.25
1: éE%;;NV(IHWRZHINV(

Return the expression to the command line.

BT

The expression in level 1 appears in inverse characters to warn you
that it will be replaced by the contents of the command line. The

alpha annunciator O appears, indicating that alpha entry mode is

active.

Now edit the expression to represent the formula:

Rmml = Rl +

Move the cursor to the lower row of the command line. (The opera-
tions for moving the cursor are on the cursor menu—the labels printed
in white just above the menu keys.)

(]

The cursor menu is active whenever the command line exists and no
menu is displayed. You can turn the cursor menu on and off by press-
ing («]. Pressing [J(EDIT automatically turns on the cursor menu.

Move the cursor just past the term for R3.

o] 0]

4: Repeating Calculations 69

Select Insert mode.

The shape of the cursor changes to an arrow, indicating that text will
be inserted to the left of the character at the cursor position.
(Pressing a second time returns to replace mode, where text re-
places the character at the cursor position.)

Key in the second term for R3.

(£ MG~ ([R3

+ +
RS> + TNV (RS¢’

Replace the expression in level 1 by the edited expression in the com-
mand line.

2: 16.25
13 'RI+INVCINYCRZI+INV(
R3>+INYCR32 2!

Store the new expression in a variable EQ2.

EQ2 [STO EER 12
& 2 ¢ HOME EE SP2_J
I I T T A

Step 2: Switch to the SP1 or SP2 directory, change the definition of
EQ from EQ1 to EQ2, and use the Solver to evaluate the expression.
For this example, use the values in SP1 with the new expression.

Switch to the SP1 directory.
5P1

2 { HOME EE SPEE%
mmm--

70 4: Repeating Calculations

Change the definition of EQ from EQ1 to EQ2.
(] EQ2 STEQ

12
{ HOME EE SP2_32
16.25

Evaluate the expression EQ2 with the values from SP1.

SOLYR [EX

To evaluate EQ2 with the values from SP2, you could execute EE (to
switch directories back to EE) and then repeat step 2 above, substitut-
ing SP2 for SP1.

Returning to HOME

Assuming you're done for now with your electrical engineering prob-
lems, you can return to the HOME directory. Since HOME is a built-in
directory, its name is included in the MEMORY menu.

Switch to the HOME directory.
B(VMEMORY] HomE

Check the USER menu.

EF t HOME EE ?222%
1t 11
I T Y N N .

The menu label €& s the only sign of everything you created in
this chapter—EQ1, EQ2, the subdirectories SP1 and SP2, and all the
variables in them. This is a major advantage of directories: Viewed
from its parent directory, an entire directory—its variables and its own
subdirectories—appear simply as the name of the directory.

4: Repeating Calculations 71

Summary
Here's the overall strategy you've followed in this chapter.

B Create a directory for each set of related problems.
B Store each expression needed for the problems in a variable.
Create a subdirectory for the specific values in each problem.

B Use the Solver with any combination of expression and values.

72 4: Repeating Calculations

S

Real-Number Functions

This chapter introduces the TRIG, LOGS, and REAL menus. The
TRIG menu contains trigonometric functions and commands dealing
with angular measurement. The LOGS menu contains logarithmic, ex-
ponential, and hyperbolic functions. The REAL menu contains
additional commands for real numbers.

All commands in these menus are described briefly in appendix D,
“Menu Map.” For complete descriptions, refer to “TRIG,” “LOGS,” or
“REAL” in the Reference Manual.

Trigonometric Functions

This section shows how to select the current angle mode, calculate
with 7, and convert angular measure.

Selecting Angle Mode

The calculator can interpret angular arguments and results as degrees
(360 of a circle) or as radians (2w of a circle). The default choice is
Degrees angle mode. For the examples in this section, switch to Radi-
ans angle mode.

Clear the stack and select the MODE menu.
B(CLeAR] [MODE '

1:
[2Tbm | FIH [30T [ENS [DESe] RAD

5: Real-Number Functions 73

The two right-most menu labels, Dec (degrees) and RaD (radians),
represent your choices of angle mode. Note that the pes label
shows a small square, indicating that the current angle mode is
Degrees.

Select Radians angle mode.

RAD

i:
[270 [FI | SCT J ENG | DEG | Fnie |

The Radians annunciator (27) appears and the menu labels change.
(Most illustrations in this manual don’t show the annunciators. To lo-
cate the (2) annunciator, see the illustration on page 27.)

Display the first row of the TRIG menu.

[SIM [HSIN] Cis [Acus | THN | ATAN |

These are one-number functions, acting on the number in level 1. For
real numbers, the angle mode affects how SIN (sine), COS (cosine),
and TAN (tangent) interpret their arguments, and how ASIN (arc sine),
ACOS (arc cosine), and ATAN (arc tangent) express their results.

You’ll use the SIN function in the discussion of = that comes next.

Using 7

The transcendental number = can’t be represented exactly in a finite
decimal form. In general, the calculator’s 12-digit approximation
(3.14159265359) yields results accurate to 12 digits, which is suffi-
cient for most applications.

The HP-28S also offers a symbolic constant m that represents = ex-
actly. In radians angle mode, the functions SIN, COS, and TAN
recognize the symbolic constant 7 and produce an exact result. The
functions SIN and COS also recognize w.-2.

74 5: Real-Number Functions

For other functions, the symbolic constant m produces an expression
containing w. If you force a real-number result, the calculator uses the
12-digit approximation.

To demonstrate the difference between 3.14159265359 and w, calcu-
late the sine of each.

Put 'n' in level 1.

() (ENTER]

1
m

Although this object looks like a name, it’s actually an expression
with a single term, the symbolic constant 7.

Force a real-number result using =NUM (to number)

BN E

1: 3.14159265359
[IN [REIN] co: [Rios | THE JATAN |

The 12-digit approximation to = (3.14159265359) is returned to level
1.

Calculate the sine of the approximation to .
3

1: -2.86761537357E-13
[IN [AZIN] Coi [HO0E | THN JATAN]

SIN

The result (—2.06761537357 x 10713) isn't exactly 0 because the ar-
gument (3.14159265359) isn’t exactly .

Now calculate the sine of .

B] siH

3
2

-2.86761537357E-1 g
[IN [REIN] cod [REOZ | THN JATAN |

The SIN function recognizes the symbolic constant = and returns the
exact result (0).

5: Real-Number Functions 75

Converting Angular Measure

The TRIG menu contains commands that convert an angle from one
system of measurement to another. These commands are on the third
row of the TRIG menu. Take a quick look at the second row before
continuing to the third.

Display the second row of the TRIG menu.

3
% -2.86761537357E- 1%
[Faofi | RaF [ReC | 3R | ARG []

These commands deal with complex numbers and are duplicated in
the COMPLEX menu. Complex numbers are described in the next
chapter.

Display the third row of the TRIG menu.

% ~2.86761537357E- 13

You'll use the commands HMS- and D-R to convert an angle ex-
pressed in degrees, minutes, and seconds to an angle expressed in
radians.

The four HMS (hours-minutes-seconds) commands enable you to calcu-
late with numbers whose fractional parts are expressed as minutes
and seconds. Such numbers must have the following special format,
called the HMS format:

h.MMSSs

where h represents hours (or degrees), MM represents minutes, SS
represents seconds, and s represents decimal fraction of seconds. MM
and SS each represent two digits; h and s each represent any number
of digits.

The commands +HMS (decimal-to-HMS) and HMS- (HMS-to-decimal)
convert a real number between the normal decimal format and the
special HMS format. The commands HMS+ (HMS plus) and HMS—
(HMS minus) add and subtract numbers in HMS format, with the re-
sult also in HMS format.

76 5: Real-Number Functions

For example, convert 141° 26’ 15” to decimal degrees.

Enter the number in HMS format.
141.2615

% -2.857561537357E- 1%

141.26150
(o HH 7 [[HMEs (KM 2= | DE | D |

Convert the number from HMS format to decimal degrees.
-2.86761537357E- 1%

141. 43?5
mm

HMS>

The other two functions on this menu row, DR (degrees-to-radians)
and R-D (radians-to-degrees) convert a real number between degrees
angular measure and radians angular measure.

Convert the number in level 1 from degrees to radians.
D3R % -2.86761537357E- 18
2 468355086879

[*#HMZ[HHZ S [HMS s [HME-] D3k [B+D |

Altogether, you've calculated:

141° 26’ 15”7 = 141.4375° = 2.46855006079 radians

Logarithmic, Exponential, and Hyperbolic
Functions
The LOGS menu contains logarithmic and exponential functions, both

common and natural, and hyperbolic functions. For a detailed de-
scription of these functions, refer to “LOGS” in the Reference Manual.

Display the first row of the LOGS menu.
W(oGs]

-2.86761537357VE-1 g

2. 46855886879
mm

5: Real-Number Functions 77

The functions LOG (common logarithm) and ALOG (common antiloga-
rithm) compute logarithms and exponentials to base 10. The functions
LN (natural logarithm) and EXP (natural exponential) calculate loga-
rithms and exponentials to base e. (¢ is a transcendental number
approximately equal to 2.71828182846.)

For an argument x, the function LNP1 (In plus 1) computes In (x + 1),
and the function EXPM (exp minus 1) computes (exp x) — 1. For argu-
ments close to 0, each of these functions provides greater accuracy
than the corresponding sequence of functions. (An example using
LNP1 appears in “Time Value of Money” on page 103.)

Display the second row of the LOGS menu.
-2.867610537357E- 18

2. 46855886879
[SINH JHSINH] CoZH [0 ZH] THNH [RTANH]

3:
-H
1:

These are the hyperbolic functions and their inverses: SINH (hyper-
bolic sine) and ASINH (inverse hyperbolic sine), COSH (hyperbolic
cosine) and ACOSH (inverse hyperbolic cosine), and TANH (hyperbolic
tangent) and ATANH (inverse hyperbolic tangent). These functions are
derived from e*, the natural exponential function. All are one-number
functions that act on the number in level 1.

Other Real Functions

The REAL menu contains functions that apply primarily to real
numbers.

Select the REAL menu.

BReA0 % —2.P6761537357E-1 g
: 2. 46855006079
[NEG | FACT | GHND | Rb2 [MASE [MINE]

The function NEG (negate) returns —x for an argument x. The func-
tion FACT (factorial) returns n! for a positive integer n or the gamma
function ['(x + 1) for a non-integer argument x. The command
RAND (random number) returns a random number calculated from a
seed specified by RDZ (randomize).

78 5: Real-Number Functions

The functions MAXR (maximum real) and MINR (minimum real) return
symbolic constants for the largest and smallest positive real numbers
representable on the HP-28S. (To force a numerical result for a sym-
bolic constant, see “Using " on page 74.)

This section shows you how to use the function NEG. For conve-
nience, you can execute NEG by pressing (change sign) if no
command line is present. To enter the NEG command in the com-
mand line—for example, when you're keying in a program—press

NEc or (N] (€] [G).

Now negate the number in level 1 twice, once by pressing and
once by pressing - HEG™
Negate the number in level 1.
CHS

-2.06761537357E-13

a
-2.46855806879
mmmmm

Negate the number a second time.

HEG

-2.86761537357E-1 g

1 2. 46855086879
| NEG [FHET [RAND] FD2 [HikE [HINE]

Defining New Functions

You can create program variables that work like the built-in func-
tions—you can even use them in expressions. Such program variables,
called user functions, must fulfill two requirements:

B They must explicitly indicate their arguments.

B They must return exactly one result.

5: Real-Number Functions 79

For example, you can define a function COT for the cotangent func-
tion, where cot x = 1/tan x.

Begin the program.

(J

z:

o)
1 2.46850886079
|

| NES | FRCT [RRMD | ROZ [MARE [HINE]

Indicate the argument.

LC| x {LC 21 %]

B0 .41;:.;, 5 2. 46855886879
X

[NES JFACT [RAND | KDE [t1ARE [HINE]

The right arrow indicates that the following name represents a local
variable, which will exist only within this program.

It's useful to follow some convention to distinguish your local vari-
ables from your ordinary or “global” variables. This manual uses
lower-case letters to distinguish local variables. (Pressing once
switches to lower case; pressing a second time switches back to
upper case.)

Define the function.

CJMG7) [TAN [(i) x

a
2.46853006079

' INV (TAHCxE
[NEG | FHET [RAHD | KBE [HARE [HINE]

Enter the program.

: 2.46855085079
a3+ ox "INVCTANCGD D!

»
[WEG | FHET [RAHD] EDZ JHASE [MINE]

The closing parentheses and delimiters are added for you.

80 5: Real-Number Functions

This program means: take an argument from the stack (in RPN syn-
tax) or from the expression (in algebraic syntax) and call it x; then
evaluate the expression 1/tan x, using the local definition of x.
Store the program in a variable COT.

) coT 3t -2.86761537357E-13

Now you can use COT in either RPN or algebraic syntax, just like the
built-in trigonometric functions.

Calculate cot 45° using RPN.

| DEG a
2.4685500668 79
45 coT 1 i

(] cor —45 [ENTER] 3 2.468559@!‘5.‘3?‘%l

'COTC-45> "
[| |

Evaluate the expression.

5: Real-Number Functions 81

6

Complex-Number
Functions

The HP-28S includes an object type that represents complex numbers.
For example, the complex number z = 3 + 4i is represented by the
object (2, 4. Because each complex number is a single object, you
can calculate with complex numbers as easily as real numbers.

The pair of real numbers in a complex number can represent the co-
ordinates of a point in a plane. For example, the HP-28S uses
complex numbers to represent plotting coordinates. The second sec-
tion in this chapter describes two coordinate systems, rectangular and
polar, and shows how to convert a point from one system to the
other.

Using Complex Numbers

Most functions that work with real numbers work the same way with
complex numbers. For example, you do arithmetic with complex num-
bers just as you do real numbers—put the numbers on the stack and
execute the function. Try calculating the following:

(9 + 2i) + (—4 + 3i) x (6 + i)
Clear the stack and enter 9 + 2i.

B CLEAR] g
9(5]2 1: (9,27
0T | EE | 0 [REWA] | |

82 6: Complex-Number Functions

Add —4 + 3i. (Remember to press (4] to enter —4.)
—4(]3

Multiply by 6 + 1.
6[]1

Sometimes a real-number argument can produce a complex-number
result.

Calculate \V —4 .
—4 B=)

(2?632 p)
li!“lﬂ!ml--

Calculate arcsin 2.

2 [TRIG] ASIN 21 B 27
1: (1.57079632679
-1.31695789692)

CZIN [RaIN] C0Z | oz [TAN LHTAN]

Functions specifically for complex numbers are in the COMPLEX
menu.

Select the COMPLEX menu.
B(compix]

g, 2>

I: ¢1.57079632679
6957896925
nunlllnllmallmnlﬁmmnlmnn

All commands in the COMPLEX menu are described briefly in appen-
dix D, “Menu Map.” For complete descriptions, refer to “COMPLEX”
in the Reference Manual.

B R-C (real-to-complex) converts two real numbers x and y to one
complex number (x, y).

8 C—R (complex-to-real) converts one complex number (x, y) to two
real numbers x and y.

W RE (real part) returns x for a complex argument (x, y).

6: Complex-Number Functions 83

B IM (imaginary party returns y for a complex argument (x, y).

® CONJ (conjugate) returns (x, —y) for a complex argument (x, y).

® SIGN returns (x/Vx* + ¥*, y/Vx® + y?) for a complex argument
@, y).

Display the next row of the COMPLEX menu.

(NEXT] 21 (a,2>
1: (1.57079632679,
-1, 3169 95789692)

Lh*F [F3E | AES [NEG | BEG | |

These functions (except NEG) relate to complex numbers in polar
coordinates.

Using Polar Coordinates

A point in a plane can be described by two different coordinate sys-
tems. The illustration below shows one point described two ways, in
rectangular notation (x, y) and in polar notation (r,).

84 6: Complex-Number Functions

W R-P (rectangular-to-polar) converts a complex number in rectangu-
lar notation (x, y) to polar notation (r, §).

m P-R (polar-to-rectangular) converts a complex number in polar no-
tation (r, #) to rectangular notation (x, y).

B ABS (absolute value) returns r for a complex argument (X, ¥).
B NEG returns (—x, —y) for a complex argument (x, y).

B ARG returns 8 for a complex argument (x, y).

Note that only PR interprets a complex number as polar coordinates;
all other functions—arithmetic, trigonometric, logarithmic, hyperbolic,
and so on—interpret a complex number as rectangular coordinates.
Remember this important rule: Any complex number in polar coordi-
nates must be converted to rectangular coordinates before you can use it
in a calculation.

As an example of arithmetic with polar coordinates, suppose you
travel 2 miles at a bearing of 36°, then 3 miles at a bearing of 65°.
What is the resulting distance and bearing, calculated to two decimal
places?

Select Degrees angle mode and FIX 2 number display.

EC 2 FIX 3 (25,008, 35. 08|
Mvooe] pee ! 6. 00, 2. 08

1: (1.57,-1.
CETD LFlue] LT | ENG | UEias | RAD

Enter the first distance and bearing.

ga2(.]36 2% (@.88,2 GB)
L] i: (1.57,-1.325
(2,360
[:70 [FIdw [50T [ENG [DESe | RAD
Convert to rectangular coordinates.
M (CompPLx] PR 5t a, aa 2.007
2= (1,57,-1.32)
1: 762, 11155
mmmﬂm-

M3 6s 2t 157,132

1: 183
(3,650
[raF [Pk | AEZ [MEG | ARG | |

6: Complex-Number Functionns 85

Convert to rectangular coordinates.

P3R 3t (1.57¢,-1.32>
%: (1.6%

Add the rectangular coordinates.

Convert to polar coordinates.

R+P

mmm-

The resulting distance is 4.85 miles, and the resulting bearing is
53.46°.

A User Function for Polar Addition

Here’s a simple program PSUM (polar sum) to automate the process
you did manually in the previous section.
Begin the program.

Zt (1.5¢,-1.32)
o 1: ¢4.385,53. 465

|
| FF | P | HES [NEG | #FG] |

Indicate the arguments. (Use a space to separate the two arguments.)

+] (L] x [SPACE] [Z: (1.57s-1.327
B =] y 1: ¢4, 85,53, 465
X

| FitF | FoF [RES [MES | ARG [|

The right arrow indicates that the following names are local variables,
which will exist only within this program.

86 6: Complex-Number Functions

Define the function.

(‘] mep rar (O x B0 ()
PsR [0 y (ENTER)

The closing parentheses and delimiters are added for you.

This program means: take two arguments from the stack (in RPN syn-
tax) or from the expression (in algebraic syntax) and call them x and y;
then calculate the polar coordinates of the sum of the rectangular co-
ordinates of x and y.

Store the program in a variable PSUM,

('] PSUM 3: (9,00,2.0087

2: ¢1.57,-1.325
1: ¢4.85,53.465
[ReF | P3h | RES LMEG T WS o]

Now use PSUM to repeat the previous calculation, once in RPN syn-
tax and once in algebraic syntax.

Enter the first distance and bearing.

(0 2 (5] 36 [ENTER] [5: (1.57s=-1.32)
2: (4.85,53.46)

{200, 36.00)

IHHMIHEIIHEIIEEIIEEIIIII

Enter the second distance and bearing.

(03 (5] 65 [Z: (4.59,53.46)
1 (2.80,36.00)
(3,650

[R+F | F3E | AES [NEG | #ka | |

Execute PSUM.
PSUM

6: Complex-Number Functions 87

The result matches the previous answer.

Now try algebraic syntax.

rsun (J[J20G)36 BOIGI[Q3 (2 4.85,53.46)
%65 L) LW 1: 'PSUM((E 363, (3 6322

[Filiti] ot | EE | © JRENR{ |

The outer parentheses and the center comma define the arguments to
PSUM; the other parentheses and commas are part of complex-num-
ber syntax. Don’t forget that you need two sets of parentheses when
using a complex number as an argument in algebraic syntax.

Evaluate the expression.

(EvAL] T (3.95,53. 487
2: {4.85,53. 465
1: (4. 85,53, 425
AT N A T

88 6: Complex-Number Functions

7

Plotting

This chapter introduces plotting on the HP-28S. Plotting is helpful in
itself, giving a visual understanding of how an expression or equation
behaves. In addition, plotting makes it easy to estimate the roots,

maxima, or minima of an expression. The next chapter, “The Solver,”
shows how to use the Solver to turn estimates into precise numbers.

In this chapter you'll learn how to use some of the commands in the
PLOT menu. All commands in the PLOT menu are described briefly
in appendix D, “Menu Map.” For complete descriptions, refer to
“PLOT” in the Reference Manual.

For the first example you’ll plot sin x in Radians angle mode, but first
there are preliminaries to make sure your display will match the
illustrations.

Plotting uses a variable named PPAR to store a list of plotting param-
eters. Purge any existing PPAR to ensure that the next plot uses the
default plotting parameters.

Clear the stack and select the PLOT menu.

W(CLEAR]
B(FLoT)

Display the second row of the PLOT menu.

2
i
LPPAE] RE: [AHES [CENTR] 34 | *H |

7: Plotting 89

Purge any existing PPAR.
() ppar EB(PURGE]

Select Radians angle mode and STD number display mode.

P(MODE] RAG - - STD

Now enter the expression.

CJ(RIG) siN X [ENTER]

'SINCKY!
[ZIN [AEIN] Cii [RooZ] TAN | HTAN |

Store the expression as the current equation—a normal variable with
the special name EQ. (This is the same convention you followed with
the Solver in chapter 4.)

B(PLoT] sTEQ

Pressing sTE@ is equivalent to pressing (] EQ [§T0].
Plot the expression.

DRAW

&N £
< S

Wait for the ((®) annunciator to disappear, indicating that the plot is
complete.

The horizontal line is the axis for the independent variable (x in this
example), and the vertical line is the axis for the dependent variable
(the value of the expression sin x). The ticks on both axes mark inter-
vals of length 1.

90 7: Plotting

Printing a Plot

If you have an HP 82240A printer, you can print an image of the plot
you just made as follows.

1. Position the printer according to the instructions in the printer
manual.
2. Press and hold [ON].
3. Press (the key with “PRINT” written above it).
4. Release [ON].
These keystrokes are the keyboard equivalent of the command
PRLCD (print LCD, found on the first row of the PRINT menu). You

can use these keystrokes to print the display at practically any time,
without disturbing calculator operation.

If you write a program to plot an expression and print the result, use
the following sequence of commands:

...CLLCD DRAW PRLCD...

Returning to the present example, now restore the normal display of
the stack.

3
{
[ZTEC: [RLE: [PMIN]F it [INVEF] DRRH |

] #u su sn

Changing the Scale of the Plot

In general, plotting an expression doesn’t produce such tidy results
the first time. When you're plotting an unfamiliar expression you may
need to adjust the plotting region—defined by the plotting param-
eters—to show the relevant characteristics of the expression.

7: Plotting 91

If you know beforehand the region that you want to plot, you can
directly change the plotting parameters in PPAR. (PPAR is described
in detail in “PLOT” in the Reference Manual.) More often you need to
experiment to find the desired plotting region. This manual shows

you how to use commands in the PLOT menu to “home in” on the
desired plot.

For the second example, you'll plot the expression x> — x2 — x + 3.

Put the expression in level 1.

CXEEE X2 X ()3
B KR4S
[Z1E L TREC: [FHINTFHAR TINDEF Dl

STEQ

1:
[ZTEC |RCEC: [FMIN[FHAR [TNDEF]DRAM |

Plot the expression.

ORAMW

The horizontal line is the axis for x, and the vertical line is the axis for
the value of the expression x> — x> — x + 3.

This plot shows a zero of the expression—a value of X for which the
value of the expression is zero. The zero is located where the graph of
the expression crosses the X axis. In the next chapter we’ll use the
Solver to find a precise number for this zero.

To show more of the graph, expand the vertical scale and plot again.

Restore the normal display of the stack.

92 7: Plotting

Expand the height by a scaling factor of 2, using the %W (times
height) operation on the next menu row.

(NEXT] 2 xH

2:
1
[FEAR | REZ [RRES CENTE] €14 | %H |

Plot again with the new plot parameters.

B(PREV] DrAM P T

The ticks on the horizontal axis still mark off intervals of length 1,
but now the tick marks on the vertical axis mark off intervals of
length 2.

Next you'll translate the plot, moving the interesting part to the center
of the display.

Translating the Plot

After each plot the calculator leaves cross hairs in the center of the
display. (You can’t see the cross hairs when the axes are in the center
of the display.) You can use the cross hairs to digitize any point on the
display, returning the coordinates of the point to the stack. We'll digi-
tize the point we want to be the center of the next plot and use it to
adjust the plotting parameters.

Move the cross hairs to the indicated position.

[»] (press four times) T
(4] (press nine times) ;

Digitize the point.
The

7: Plotting 93

Return to the stack display.

The coordinates of the digitized point, represented by a complex
number, are in level 1.

Redefine the center of the plot, using CENTR on the next menu row.

CENTR

1
[FRAF | RES [AHES [CEMTR] 344 | %H |

The coordinates are taken from the stack and used to adjust the plot
parameters. Unlike x4 , CEMTR doesn’t change the scale.

Try another plot.
W(PREV] orAM

Now zoom in on an interesting part of the plot. You could use #H
again, using a fractional scaling factor. (For example, a scaling factor of
.5 would return the vertical scale to its original value.) But there’s a
more flexible way to zoom in on a plot.

Redefining the Corners of the Plot

This time you'll digitize two points, one for the lower-left corner of
the new plot and one for the upper-right corner, to zoom in on the
plot.

Move the cross hairs to the desired lower-left corner.

+

94 7: Plotting

Digitize the point.

Move the cross hairs to the desired upper-right corner.

&

i Ny
Digitize the point.
+
i

Return to the stack display.

The coordinates of the lower-left corner, represented by a complex
number, are in level 2. The coordinates of the upper-right corner are
in level 1. (Your coordinates may differ slightly from the illustration.)

Redefine the upper-right corner of the plot, using pMax (plot
maxima).

PMAX

The coordinates are taken from the stack and used to adjust the plot-
ting parameters.

Redefine the lower-left corner of the plot, using pMIN (plot minima).

PMIN

1:
[FTEC [RCEC [FMIN[FHAY [INDEF] DA |

7: Plotting 95

Try another plot.

DRAKW 5
!/AH_‘_‘_’_‘/

S

Since you changed the height and width of the plot, both the vertical
and horizontal scales are changed.

The plot shows two extrema in the expression’s graph-—a local maxi-
mum and a local minimum. In the next chapter you'll use the Solver
to find a precise value for the minimum. To avoid repeating all these
steps to generate our current plotting parameters, store the current
value of PPAR in a variable with a different name. To recreate this
plot in the next chapter, you'll restore PPAR to its current value.

Return to the stack display.

[ZTEC: JRCEC: [FHMIN]FHAE [INDEFBRAI

Put the current contents of PPAR on the stack.

(NEXT] PPAR 10 £ (-1.5:,1.20
52.1,3.é> %1 (8,8
(FFiF | EEZ | WAES [LENTE] $b1 | *H |

For information about the plotting parameters and for details about
plotting in general, see “PLOT” in the Reference Manual.

Create a variable PPAR1 that contains the current plotting
parameters.

(] epAar 1 (STO)

[FFAE | REZ [AHES [CENTR] %14 | ¥H |

Now you're ready to use the Solver to find precise numbers for the
zero and local minimum of the expression.

96 7: Plotting

Plotting Equations

The examples in this chapter were both expressions, but the same
rules and techniques work for plotting equations. When the variable
EQ contains an equation, DRAW plots each side of the equation as an
expression. You can find a root of the equation by finding where the
two graphs cross, because that is where the two sides of the equation
have equal values.

7: Plotting 97

The Solver

This chapter describes how to find a zero and a minimum of the ex-
pression you plotted in the previous chapter. Work through the steps
in the previous chapter if you haven’t done so already, because you'll
need some of the results from that chapter.

For a complete description of the Solver, refer to “SOLVE” in the Ref-
erence Manual.

Finding a Zero of an Expression

The following example assumes that the expression x> — x> — x + 3
is still the current equation and that you've created the variable
PPAR1, as described in the previous chapter. You'll plot the expres-
sion again, digitize an estimate for a zero of the expression, and then
use the Solver to find a more accurate value for the zero.

Before starting these examples, clear the stack, select Radians angle
mode, and select FIX 2 number display mode.

B(CLEAR]
(MODE] RAD
2 FIx

Purge the existing PPAR to ensure that the next plot uses the default
plotting parameters.

W(FioT) (NexT)
] eear @(PURGE]

1
[FFAfi | RES [RHES [CENTR] 24 | €H |

98 8: The Solver

Now plot the expression.

B(PREV] DrAM

This plot shows a zero of the expression—a value of X for which the
value of the expression is zero. The zero is located where the graph of
the expression crosses the horizontal axis.

Move the cross hairs to the approximate intersection of the graph and
the horizontal axis. (Use (4], [¥], (€], and] to move the cross hairs.)

REERN S

Digitize this estimate for the zero.

R T

You'll use this point as an estimate for finding the exact zero of the
expression. (In case the expression has more than one root, the esti-
mate indicates which one you want.)

Return to the stack display.

3:
H
1: (-1.38,0.88)
[FTEC! [RCEC: [FHIM]FHA [TNDEF] DhAb |

The coordinates of the digitized point, represented by a complex
number, are in level 1. (Your coordinates may differ slightly from the
illustration.)

Select the Solver menu.

SOLVR g
1: ¢-1.30,0.00)
(I ExEe=Il Il I]]

8: The Solver 99

The Solver menu shows all the variables in the current equation (only
X in this example).

Store the digitized estimate in variable X.

%

1
CEIERFR=Il Il i ||]

Although the digitized point contained two coordinates, the Solver
will use only the first coordinate as an estimate.

g 19n HEUEI"SS !

1t -1.36
[JESFE=II i i | I

Now solve for X.

The message Sian Rewersal indicates that the Solver found an
approximate solution, correct to 12 digits. If the Solver found an exact
solution, it would display the message Zer o. These messages, called
qualifying messages, are discussed in “SOLVE” in the Reference
Manual.

Return to the normal stack display.

3
i -1.36
EEserEEl || 1l | |

Finding a Minimum or Maximum

To find the zero of an expression, the Solver samples points on the
graph, starting with your estimate, and tries to find points closer to
the x-axis. If your estimate is quite close to a positive local minimum or
a negative local maximum, there are no points nearby that are closer to
the x-axis. In this case, the Solver finds that extremum (minimum or
maximum) rather than a zero. (Generally the Solver won’t “get stuck”
at an extremum unless your estimate forces it there.) g

100 8: The Solver

Look at the graph you made in the last chapter, on page 96. It shows
that the expression has a positive local minimum and a positive local
maximum. The Solver can find the minimum, because locally it's the
point closest to the x-axis; but the Solver can’t find the maximum,
because locally it’s the point farthest from the x-axis.

In this section you'll plot the expression, using the plotting parameters
stored in the variable PPAR1, then digitize three points to estimate
the minimum, and then use the Solver to find a more accurate
minimum.

Return the list stored in PPAR1 to the stack.

(USER] PPAR1 [¢ ¢- 1 S8,1.208)
(z.10,3 éa; ¥ 1.00
mlimlmm

Restore the variable PPAR to the values stored in PPARI.
] epar [STO

-1.36
|5 [FFAE [FRARI] EC: JFEUM] coT |

Plot the expression.

WieLon) oo S T S

Move the cross hairs to the approximate minimum.

-

-

Digitize the point.
;

-

8: The Solver 101

Move the cross hairs just to the left of the minimum.

~

Digitize the point.
e

Move the cross hairs just to the right of the minimum and digitize the
point.

m/ ’
-

Return to the stack display.
EE

The three points are in levels 1, 2, and 3. (Your points may differ
slightly from the illustration.)

Now combine the three estimates in a list. By doing so, you can han-
dle the three estimates as a single object. This is a typical use for
lists—combining several objects into one.

B(LsT) 3 »L18T

Select the Solver menu.

SOLVR 10 { ¢

(
(
CJEgPR=ll i Il Il]

The Solver menu shows all the variables in the current equation (only
X in this example).

102 8: The Solver

Store the list of points in the variable X.

[N

= JERRRIC_1] i]

The list of points is taken from the stack and stored in the variable X
as initial estimates.

Solve for X.

| Iw_l
xXtremam
1: 1.608
i JERPESIL] 1] I]

The message Ex tr emum indicates that the Solver found an extreme
point of the expression.

Return to the normal stack display.

(on] 3z
21 -1.36
1: . 80
e ——]

Calculate the extreme value.

[EXFES] l!ﬂﬂMl
1: 206
i JERPE=lC_ 1 |]

The minimum value is 2.

Time Value of Money

This section shows how to use the Solver with time value of money
(TVM) calculations. For n number of periods, i% interest per period,
$pmt payment, $pv present value, and $fv future value, the formula
for TVM is:

(1 — sppv) X pmt X (100/i) + pv = —fv X sppv

8: The Solver 103

where
sppv (single payment present value) = (1 + i/100)~"
=exp (—n X In(1 + i/100)).

This formula assumes that payments are made at the end of each
period.

Here are the major steps you'll perform:

. Key in the expression for sppv and store it in a variable SPPV.
. Key in the equation and store it in a variable TVM.

» Make TVM the current equation.

aON =

Use the Solver to calculate any of the five variables n, i, pmt, pv,
or fv, for given values of the other four variables.

Before starting, clear the stack and select FIX 2 number display mode.

B(CLEAR]
B(MODE] 2 -~ Fix

| 70 [FIdm | 0T JENG | DEG [FRADs |

Step 1: Key in the expression for sppv and store it in a variable SPPV.

Key in the expression for sppv.

B(L0GsS] ExP N LHP1 z
[IZ]E]m() EIND] 1: :EXP(-H*LHPI(IXIBB))

[L5 [ALiS | LW | EXF JLWFLEHFM]

This expression takes advantage of the greater accuracy of LNP1 to
calculate In (1 + i/100).

Create the variable SPPV and check the USER menu.

C] sppv

104 8: The Solver

Step 2: Key in the equation and store it in a variable TVM.
Key in the equation for TVM.

I 1 =] seev D) (x) PMT [X]
100 (=] I[1JPV(S][2)FV [X] sppPv

Create the variable TVM.
(JTV™m

1 ';6'1 EEPED*PMT*198KI+
[SFEM | 3 [FFAE [FRARL] EC [FIUM]

The USER menu shows a new label for TVM.

Step 3: Make TVM the current equation.
Key in the name TVM.

) T1vm

Store the name TVM in the Varlable EQ.
(soLv] stE@

Step 4: Use the Solver to calculate any of the five variables 7, i, pmt,
pv, or fo, for given values of the other four variables.

Select the Solver menu.

SOLYR 3
{

LN 1 M IC ey JCFy JLEFTS]

All the variables in TVM and SPPV appear in the menu. (The vari-
ables in SPPV appear because the current equation, TVM, contains
SPPV.)

Given values N = 30 x 12,1 = 11.5/12, PMT = —630, and FV =
0, calculate PV. (PMT has a negative value because money paid out is
a negative number, while money received is a positive number.)

8: The Solver 105

First assign the value to N.

30 (ENTER] 12 [x]]

Assign the value to I

11.5 [ENTER] 12 (=]

Assign the value to PMT.

Assign the value to FV.
0 ’

Now solve for PV.

The message Zer o indicates that the returned value exactly satisfies
the current equation.

106 8: The Solver

Symbolic Solutions

This chapter describes two methods for finding symbolic solutions.
There is a simple method for solving a quadratic expression by cal-
culating the linear expression that represents both zeros. There is also
a more versatile method that provides a symbolic solution for a vari-
able in more general equations.

Each method works with both expressions and equations. The zero of
an expression f(x) is the same as the root of the equation f(x) = 0, and
the root of the equation f(x) = g(x) is the same as the zero of the
expression f(x) — g(x).

Finding the Zeros of a Quadratic Expression

You can find both zeros of a quadratic expression without plotting or
making estimates. The following example solves x2 — 6x + 8.

Before starting the example, clear the stack and select STD number
display mode.

M(CLEAR]
@(vOoDE] sTo

Put the expression on the stack.

X @) 2([=)6 (x] X (+] 8 [(ENTER

'RT2-6¥K+G "
mﬁlﬁllﬂiﬁlm

9: Symbolic Solutions 107

Put the name X on the stack, indicating the variable for which you're
solving.

(] X (ENTER]

'H2-6ER+E!
] X 1

SOLV | QURD

'(E+s]x2) /2!
mm

This expression represents both solutions to the quadratic expression.
The variable sl represents an arbitrary sign, either +1 or —1, and
each value of sl corresponds to a zero of the expression.

Store the expression as the current equation.

STER :
1:
[ZTEC [RCEC [F0LVR] TE0L [Cdnb SRk]

Display the Solver menu.

SOLVR

=M

S EReE=l | I Il]

sl is the only variable in the current equation.

First make sl a positive sign.

1075 |_|

1:
=1 1EsF&=Il I 1l []

Return one of the solutions to level 1.

’E?ﬁiﬁiiiiiiiiiiiiiiiii

(e JEeR=ll I 1 j]

108 9: Symbolic Solutions

Now make sl a negative sign.

I —

1: 4
| I 7 | N]

Return the second solution to level 1.

l

1
=1 JERPR=Il 1l Il ||

L_J

The two roots of x> — 6x + 8 are x = 4 and x = 2.

Isolating a Variable

The HP-28S can isolate a single occurrence of a variable in an equa-
tion, returning an expression representing the symbolic solution of
the equation. In other words, if x is the variable for which the equa-
tion is solved, and 4, b, and c are the other variables in the equation,
isolating x produces an expression in 4, b, and ¢ such that the equa-
tion is satisfied when x has the value of the expression.

For the first example, isolate x in the equation
ax + 3) — b = c

This example is simple because there is only one occurrence of x. Later
examples show how to manipulate the equation to produce a single
occurrence of x.

Clear the stack.

W(CER) 3
1
=L JERFRsIC_JCI |]

Put the equation on the stack.

DAXIOXx®s3m=8s=c 3
2

1: 'H¥(K+3)-B=C"'
L ERrE=]l Il || I |

9: Symbolic Solutions 109

Specify the variable you want to isolate.
[X z:
i

"A¥(X+32-B=C'
EXFR=I(Il If []

Isolate x, using ISOL (isolate) in the SOLVE menu.
1soL

' (C+B)/A-3

The expression returned represents a symbolic solution of the equa-
tion for x—that is, the equation

ax + 3) — b =

is satisfied when x = (¢ + b)/a — 3.

Expanding and Collecting

If x occurs more than once, you must manipulate the equation to
eliminate all but one occurrence of x. The next example shows how to
isolate x in the equation

2@ + x) = 3(b — x) + c

The strategy for this example is to expand the equation, subtract one
side’s x-term from both sides, collect the equation to cancel the x-term
on one side and produce a single x-term on the other side, and then
isolate.

Put the equation on the stack.

D2xOAMXBOE3EOB ' (C+BY/A-3'
(=] x B0 (+] C [EnTER] P 2% AdR)= 3*(3 ><:u+c'

Select the ALGEBRA menu.
W(ALGBRA]

'(C+B)-A-3'

'2%¥ (A+X)=3%(B-x)+C'
[COLET[EXFAN] ST2E [FORH JOEZUE[ERILE

110 9: Symbolic Solutions

In this example you'll use expan (expand) and coLcT (collect) to
manipulate the equation. In the next example you'll use Form (form
algebraic expression) to manipulate an equation. All commands in the
ALGEBRA menu are described briefly in appendix D, “Menu Map.”
For complete descriptions, refer to “ALGEBRA” in the Reference Man-
ual. In addition, FORM, a powerful algebraic editor, has its own
section “ALGEBRA (FORM)” in the Reference Manual.

Expand both sides of the equation.

EXPAH

: '(C+B)-A-3'
11 '2%A+2%X=3%B-3*¥X+("'
[COLCT[ERFAN] SI2E [FORH [0ESUE[ERZLIE]

To subtract the left side’s x-term (2x) from both sides of the equation,
first put the left side’s x-term on the stack.

2 [x] X [(ENTER] 3: '(C+B)~A-3'
a %‘: '2*H+2*X=3*B—3*§+E'
: 1%
[COLCTJERFAN] SI2E [Fokt JoksUE[ERSUE]

Then subtract 2x from both sides.
=] [2: "(C+B>/R-3'
13 '2¥A+2%K-2%X=3*B-3%X

+C-2%%!

PEOLCT JERFAN] SI2E [FofM [0ESUE[ER S UE]

Collect the equation.

COLLT

: 'CC+B)~A-3"'

1: ' 2¥A=3*%B+C-5*X"
[COLCT[ERFAN] SIZE [FiRH [0ESUE[ERSUE]

Each side is collected independently, and the x-terms cancel on the
left side.

Now you can isolate x in the equation. Specify the variable you want
to isolate.

(] X [2: "CC+B)/A-3'
;;{E '2¥A=3%B+C-5%X"
[E0LCT [EFAN] ZI2E [F ok [0k ZUE]E S UE]

9: Symbolic Solutions 111

Isolate x. The command ISOL appears in the second row of the AL-
GEBRA menu as well as the SOLVE menu.

[NEXT] 1s0L 3:
z '(C+B>~R-3'

1: ' (3%B+C-2%¥A) 5"
[TRYLE] 1301 | CL0RD | ZHOLE 0B BETIEAGET

The expression returned represents a symbolic solution of the equa-
tion for x—that is, the equation

2@ + x) = 3(b — x) + ¢

is satisfied when x = (3b + ¢ — 2a)/5.

Using FORM

If there are multiple occurrences of x, and if any occurrence has a
symbolic coefficient, the command COLCT won’t combine the coef-
ficients. The next example isolates x in the equation

ax + b) + 2x = ¢,

where x occurs more than once and has a symbolic coefficient a. The
strategy is to expand the equation, use FORM to collect coefficients of
x, and then isolate x.

Put the equation on the stack.

OAXOx+HBEAD2xXx[=) |38 AR
2 ' (3¥BAC- DAY 4G
C [ENTER] 1t VRECRAE Y FORRED

[TAYLE] TE0L JCeltAD | SHOM [0EGET]ERSET]

Expand the equation.
EXPAN

3: ' (C+BI~A-3'
2 ' (I*B+C-2%A) <D
1: 'A*¥X+H*B+2%X=C"
[COLCTJERFAN] SISE [Pkt [0ESUE[ERZLIE]

Now use FORM to collect the coefficients of x.

FORM
ég((}RX)+(H*B))+(2*X))=

[COLCTJERFANILEVEL JERGET] [£1 [[+1 |

112 9: Symbolic Solutions

Normal calculator operation is suspended while FORM is active. The
FORM display shows the equation with all subexpressions delimited
by parentheses. You'll use FORM to manipulate subexpressions
within the equation.

The goal is to combine (A% and ¢2%X> in a single term
CCA+23%%s. There are three steps required, shown below as you
might write them on paper. The current form of the equation is:
(ax + ab)y + 2x = ¢
The first step is to commute ax and ab, giving:
(ab + ax) + 2x = ¢
The second step is to associate ax and 2x, giving:
ab + (ax + 2x) = ¢
The third step is to merge ax and 2x, giving:
ab + (@ + 2)x = ¢

Step 1: Commute ax and ab.

Move the cursor (the inverse character or characters) to +.

L+3 L+3 CL+1

ég((H*H)H(H*B))+(2*X))=

(CULCTJERFANLEVEL JERSET] [£1 [[+ |
The position of the cursor determines which subexpression you're act-

ing on. Here you want to act on the subexpression ¢ ¢ A%x > +{A%XE 2
to commute the arguments to +.

9: Symbolic Solutions 113

Display the first row of manipulations for +.

ég((H*X)ﬂ(H*B))+(2*H))=
L -t | %% | «M [M+ | €6 | b3 |

The manipulations that appear when you press are specific to
the function or variable indicated by the cursor; these manipulations
are specific to +.

Commute the arguments to +, using ¢+ (commute).

>

ég((H*B)H(H*X) YHC2xK) 0=
[-0 | €% [em [M* | €8]| 63 |

Return to the main FORM menu.

ég((H*B)H(H*X) Y+HC2EKDI =
[COLCT[ERFANILEVEL [EXGET] [£1 [[+1 |

Step 2: Associate ax and 2x.

Move the cursor to the second +.

£+3 [| L»1 £+1
ég((H*B)HH*X) YEC2¥KII=

[COLCTJERFAN[LEVEL

Here you want to act on the subexpression
COCREB +CRAXM Y 2 +(22X K22

to associate the terms CA%x> and <2%X?» in a single subexpression.
Display the first row of manipulations for +.

ég CCA*BY+H(A*K) D@(2%K) 3=
[-0 [€% [¢M [M> | €8 | 63 |

These are the same manipulations as before because the cursor again
indicated an additive subexpression.

114 9: Symbolic Solutions

Associate the terms (A%x> and (2%X) in the subexpression
CORERI+C2ER D, using A+ (associate right).

A

[(:g CA*BIRCCA¥KI+(2%X) 2 0=

| -0 [€% | <M [M2 | €6 | a3 |

Return to the main FORM menu.

ég(H*B)H((H*X)+(2*X)))=
[CoLET[ERFANLEVEL [EXGET] [+ [3] |

Step 3: Merge ax and 2x.

Move the cursor to the second +.

C+1 C+1 C+1 £+1
ég CA¥BY+((A*¥XIEC2EX2) 0=

[COLET [ERFAM]LEVEL

Here you want to act on the subexpression ¢ {A¥¥» +(2%x2) to com-
bine the coefficients of .

Display the first row of manipulations for +.

(NEXT]

ég(H*B)+((H*X)H(2*X))}=
[-0 | £+ [b | M | €n [A]

Combine the coefficients of ¥, using M+ (merge right).

M+
CCCA*B+(CA+22 3R 2=C)

[10] €+ [&0 | 03 | <0 [A]

This accomplishes the goal of combining ¢A%%» and (Z*X> in a sin-
gle term ¢ CA+23%H),

Exit FORM and return the modified equation to the stack.

(ON] [3: "(C+B)~A-3°

2: ' (3*¥B+C-2%A) 5"
1- 'A%B+(A+2) ¥ X=C"
Sl CT[ERFAM] SI2E JF kM [0E:LIE]ERZLE]

9: Symbolic Solutions 115

Now that x occurs only once in the equation, you can isolate x.

Specify the variable you want to isolate.

(] X 2: ' (3¥B+L-2*%A2 45
}X 'AxB+(A+22xX=C"

Isolate x.

(NEXT] 1s0L H '(C+Br-A-3°
i '({3¥B+C-2*¥A0 5"
1: '(C- F!-I-B)f(FHE)'

TAYLE] T30l [CURD]SHIM [0ESET[ERGET]

The expression returned represents a symbolic solution of the equa-
tion for x—that is, the equation

ax + b) + 2x = ¢

is satisfied when x = (¢ — ab)/(a + 2)

116 9: Symbolic Solutions

1

Calculus

You can symbolically differentiate any expression for which a sensible
derivative exists. Integration is more restricted: you can compute a def-
inite numerical integral for any expression, but an exact symbolic
integral only for a polynomial.

This chapter contains simple examples of finding derivatives, indefi-
nite integrals, and definite integrals for expressions. For more
information about doing calculus on the HP-28S, refer to “Calculus”
in the Reference Manual.

Differentiating an Expression

You can differentiate an expression step-by-step, observing how the
calculator applies the rules of differentiation, or you can differentiate
an expression all at once. The final results are identical. In this section
you'll differentiate an expression twice, first step-by-step and then all
at once.

10: Calculus 117

Step-by-Step Differentiation

To differentiate step-by-step, key in the derivative as a expression. For
this example, calculate:

A fan (@ + 1)
dx

Before starting the example, clear the stack, select Radians angle
mode, and select STD number display mode.

M(CLEAR]
W(MOoDE] RAD

STD

Purge the variable X (if it exists).

(J X M(PURGE]

Now start the expression for the derivative, beginning with the vari-
able of differentiation.

@] rzp B
' aRC
(2708 | FI% | 501 | EWi3 | DEG | RADW |

Tan X (3] 2(+] 1 [(ENTER

'OX(TANCK 2+1 32!
m:lmm

This expression represents the derivative, with respect to x, of
tan (x2 + 1).

Evaluate the expression once.

(EvAL] 2:
1: '¢ 1+SQ(THN(X"2+1 PR DT
AXCK 2+10!
[AEIN] Cof [AcoZ | TN | ATHN |

The result reflects the chain rule of differentiation:

118 10: Calculus

d

d 2
— t 1 = - =
an (x~ + 1) i+ 1)

™ tan (¥ + 1) X -dd? «? + 1)

The derivative of the tangent function has been evaluated. Next you’ll
evaluate the derivative of x> + 1.

Evaluate the expression a second time.

(EvAL] 2
1: ! (1+SQ(THN(X"2+1)))*
ax(R 2!
[HEIN] Cos [RCOE [THM [nTaM |

The result reflects the derivative of a sum:
d

N

d
—_ 1 —
PR A dx

The derivative of 1 is 0, so that term disappears. Next you'll evaluate
the derivative of x2.

Evaluate the expression a third time.

(EvaL] :
18 P COI+SRCTANCK 241220 %
CARCRIE2ER(2-107 !
[SIN [RSIN] Coi [RC0S | THN [ATHN |
The result again reflects the chain rule:
a4 »_d o . 4
i dx () X i

The derivative of x? has been evaluated. Finally, evaluate the deriva-
tive of x itself.

Evaluate the expression a fourth time.

2%

18 'CI+SRCTANCR 2+10020%
(2%K)

[SIN JRSIN] Cof JRE0Z | THH | RTAM |

Here is the fully evaluated derivative.

10: Calculus 119

Complete Differentiation

To differentiate an expression all at once, perform differentiation as a
stack operation. Again, suppose you want to find:

A fan (2 + 1)
dx

Put the expression to be differentiated on the stack.

W (CEaR)
O v xBED 21 ENTER] [§ 'TAN(RA2+1)

| SIN [RSIN] Coz [ACos | THN | HTAN

X (ENTER]
= 'THN(K"EH%'

Differentiate the expression.

W(c/dx) 2t
I3 | CLESQCTANCRAZH1D))%
[SIN [RIIN] i [fios [TAH | ATAN]

The fully evaluated derivative is returned to level 1.

Integrating an Expression

The HP-285 calculates the indefinite integral of an expression by sym-
bolic integration, which returns an expression as a result. This method
returns an exact result only for polynomial expressions. (For other ex-
pressions, the HP-28S integrates a Taylor series approximation to the
expression. See “Calculus” in the Reference Manual for details.) The
first example below demonstrates symbolic integration.

In contrast, definite integrals are calculated by numerical integration,
which returns numerical results. This method works for any expres-
sion that is “well-behaved” in the mathematical sense. The second
example below demonstrates numerical integration.

120 10: Calculus

Symbolic Integration of Polynomials
In this example you'll symbolically integrate the polynomial

8x3 + 9x2 + 2x + 5.

Clear the stack.
B(CLEAR]

1
[SIN [#sIN] Cof [RC0S | THN [ATAM |

Put the polynomial on the stack.

(J8lIx B3 (-9 x)xMr) 2
(+] 2 X X [+] 5 [ENTER]

o
2%

1: '8xX 349K 2+2%5XK+5!
[ZIN [RZIN] Cod [HC0s | THN [HTAN]

Specify the variable of integration.

(] X [ENTER]

: ' 8*K"3+9*X’”‘2+2*XT§ :
[SIN [RZIN] CioZ JHEOE | THN | HTAN]

Specify the degree of the polynomial.

3 3T e EORK ZVERRYS,
1 2
[ZIN JRZIN] G0z [C0s] THN | ATAN]

Integrate the polynomial.

a8

25
13 '3¥R+RT2+3IEXIH2EK "4
L SIM JASIN] Cof JAC0s | THN | HTAN]

Wait for the ((®) annunciator to disappear, indicating that integration
is completed. The integral is returned to level 1.

10: Calculus 121

Numerical Integration of Expressions
In this example you’ll find a numerical value for the integral
1
j;exp(x3+ 22 - x + 4)dx
Clear the stack.
B(CLEAR]

Put the expression on the stack.

OBMCSGS) ExF XACI3@E@2
(x] X 8] 2 [X [+] 4 [ENTER]

23
18 'EXP(R~3+2%K"2-R+4)’
[Lo [ALos] LM | EXF [LNFL[EHFH]

Key in the variable and limits of integration. You'll enter them as ob-
jects within a list object. (This is a typical use of a list—combining
several objects so you can handle them as a single object.)

X (SPACE] O [SPACE] 1 [ENTER]

% 'EXP(H"3+2*>{¢!"2 K+4):'}
[Lis [atos[LM [EXF [LNFIJERFH]

X is the variable of integration, 0 and 1 the limits of integration.
Next key in the accuracy you require.

If the expression included constants derived from empirical data,
specify the accuracy of the constants. For example, if the constants are
accurate to three decimal places, specify an accuracy of .001.

122 10: Calculus

In this example you're integrating an expression without empirical
constants, so you could specify 12-digit accuracy. However, the itera-
tive process of numerical integration takes longer for greater accuracy,
so here you'll specify an accuracy of .00001.

1E—5 [ENTER]

Find the integral.

[l

35 TEXPCRAZH2ERN2-R4d D!
2t {Xxe 13
: . 08EE 1

[L JALos] LN | ERF JLNF1JEHFH |

: 183, 117678152
1: 1.83086911923E-
[Lovs JAL@G | LN | ERF JLNF1JERFH |

)

The estimated integral is returned to level 2, and an error bound is

returned to level 1.

The value of the integral is 103.118 + .001. Note that the error bound
returned is approximately the product of the estimated integral and

the accuracy you specified.

10: Calculus 123

11

Vectors and Matrices

The HP-28S deals with two types of arrays: vectors, which are one-
dimensional arrays, and matrices, which are two-dimensional arrays.
You can enter vectors and matrices as individual objects, called array
objects, and calculate with them as easily as with numbers.

This chapter shows basic array calculations using real arrays—vectors
and matrices whose elements are real numbers. You can also calculate
with arrays whose elements are complex numbers.

All commands in the ARRAY menu are described briefly in appendix
D, “Menu Map.” For complete descriptions, refer to “ARRAY” in the
Reference Manual.

Vectors

This section demonstrates vector arithmetic, the cross product, and
the dot product.

Keying In a Vector:

Before beginning these examples, clear the stack and select STD num-
ber display mode.

W)

124 11: Vectors and Matrices

Key in the vector [2 3 4]. You can use either spaces or the non-radix
mark (the comma if you have selected the period as the radix mark) to
scparate 2 from 3 and 3 from 4.

[d234

Multiplying and Dividing a Vector by a Number
Multiply the vector by 15.
15 [x].

: [30 45 68]
[2T0m | P | 301 [ENG | GEG [Raba |

For multiplication, the order of the arguments makes no difference,
just as it makes no difference when you multiply two numbers. How-
ever, for division, the vector must be in level 2 and the number in
level 1.

Divide the vector by 5.
5[]

Adding and Subtracting Vectors

You can add and subtract vectors just as you add and subtract num-
bers, provided that the vectors have the same number of elements.
For subtraction, the order of the arguments is important, just as it’s
important when you subtract one number from another.

For this example, subtract the vector [—10 20 30].

(0 —10,20,30 (=}

: L 16 -11 -18 1]
(2708 j FI | 5CT [EMG | DEG | fAle |

11: Vectors and Matrices 125

Finding the Cross Product

Find the cross product of the vector in level 1 with the vector
[2 —2 1] (The cross product is defined only for two- and three-
element vectors.)

Key in the vector.

(0J2,—2,1

Calculate the cross product, using CROSS in the third row of the AR-
RAY menu.

B(ARRAY] [NEXT] [NEXT] cROSS

L -47 -52 -18 1
[CRozE] 00T [DET | RES [ENRH]CHEH]

Finding the Dot Product

Find the dot product of the vector in level 1 with the vector [5 7 2].
(The two vectors must have the same number of elements.)

Key in the vector.

(1)5.7.2

2%

i: [-47 -52 -18 1]
L[5, 7200

[CRoss] D0T | DET | RES JENRH]CNEN]

Calculate the dot product.
oot

3
2

-519
(Chozs] 0T [DET | RES [ENFRE[CHEH]

Matrices

This section describes how to invert a matrix and how to find the
determinant of a matrix. Both of these calculations are restricted to
square matrices—those with the same number of rows as columns.

126 11: Vectors and Matrices

The calculations you performed on vectors also apply to matrices
(with the exception of the dot and cross products). You can multiply
or divide a matrix by a number, and you can add or subtract two
matrices (provided that the matrices have the same dimensions).

Keying In a Matrix

Key in the following matrix:

1 2 3
1 3 3
1 2 4

Start the matrix.

(d

28
1: -&519

(g
(CRuzi] D07 | DET | AES JENRM[CHEM

Enter each row of the matrix like a separate vector.
(1,23 1: (L1231

(0133 F123 1
(D1.24 CRosz] 00T [DET | RE: | RNEH]CHEM)]

Viewing a Large Matrix

When a matrix has many elements or non-integer elements, you may
not see the entire matrix at once. To view a large matrix, use [J(EDIT]
(if the matrix is in level 1) or (viSIT] to return the matrix to the com-
mand line. You can then use the cursor menu keys to display any part
of the matrix. For details, refer to “Editing Existing Objects” in chapter
18.

11: Vectors and Matrices 127

inverting a Matrix

Because the matrix in level 1 is square, you can find its inverse.

(i7/x) 1: (L 6 -2 -2 1
N [-11@]
[-1 81 73

{choss] ol | DET | RES [ENRHM]CNEH]

Finding the Determinant

Because the matrix in level 1 is square, you can find its determinant.

DET
-5619
1

1:
jcRoss] (o7 | DET [#ES [ENRH]CNEM]

Multiplying Two Arrays

You can use the [x] function to multiply two matrices or a matrix and
a vector. (Use cross or DOT to multiply two vectors, as described
above.)

Multiplying Two Matrices

The order of the arguments is important when multiplying two matri-
ces. The number of columns in the matrix in level 2 must equal the
number of rows in the matrix in level 1. For example, you can calcu-
late the following matrix product.

2 2

2 21 4
4 1

3 4 21
2 3

128 11: Vectors and Matrices

To calculate this matrix product:

Enter the first matrix.

[Mm=22
(0 4.1
[M23

Key in the second matrix.

MD221.4
(0 3,4.2,1

Multiply the matrices.

Multiplying a Matrix and a Vector

The order of the arguments is important when multiplying a matrix
and a vector. The matrix must be in level 2, and the vector must be in
level 1. The number of columns in the matrix must equal the number

of elements in the vector.

For the next example, multiply the matrix currently in level 1 by the

vector [3 1 1 2]

Key in the vector.
(031,12

Multiply the matrix and vector.

1: [18 12 18
[11 12 & 17 1

[3,1,1,20

[CRoss] 0T | BET | AES [RMEM]CNRH]

3: -619

2: 1

1: [68 85 85 1]

[CRuss] Dot | DET | kB2 [RNEM[CNEM]
11: Vectors and Matrices 129

Solving a System of Linear Equations

To solve a system of # linear equations with n variables, use an n-
element constant vector, an n X n coefficient matrix, and division ([£]).
The constant vector contains the constant values of the equations. The
coefficient matrix contains the coefficients of the variables.

The next example shows how to solve a system of three linearly inde-
pendent equations in three variables. Suppose the equations are

3x + y + 2z = 13
x+ y— 8= -1
— x4+ 2y +5z= 13

Enter the constant vector.

(0 13,—1,13 [ENTER]

3 1
2 [62 85 85 1
1 L 13 -1 13 1
[CRos:] 0ot § DET | HES [EHREM]CNRH]

Key in the coefficient matrix.

(()[1) 3,1.,2 zt [68 85 85

M1.1,—8 1: [13 -1 13
T [[351,2[1,1,"8["1,255[}

M —-1.25 CRezz] (o | GET | WE: |KMEM]CHGM]

Solve the system of equations.

(]

The values in the solution vector are the values of the variables that
satisfy the equations:

To solve under-determined, over-determined, or near-singular sys-
tems of equations, refer to “ARRAY” in the Reference Manual.

130 11: Vectors and Matrices

1

Statistics

This chapter describes how to enter statistical data and how to calcu-
late single-sample and paired-sample statistics, using commands in
the STAT menu. All commands in the STAT menu are described
briefly in appendix D, “Menu Map.” For complete descriptions, refer
to “STAT” in the Reference Manual.

The following table lists the consumer price index change (CPI), the
producer price index change (PPI), and the unemployment rate (UR),
all in percentages, for the United States over a 5-year period. Enter
these data and calculate statistics from them.

Data for Statistical Example

Year | CPl | PP]1 | UR

1975 9.1 9.2] 85
1976 5.8 46|77
1977 6.5 61170
1978 7.6 781 6.0
1979 [115] 193 | 5.8

12: Statistics 131

Entering Data

Statistical data are stored in a statistics matrix named ZDAT—an ordi-
nary matrix with a special name. Each row of the matrix contains one
data point, which in this example comprises the values of CPI, PPI,
and UR for one year.

Before you start, clear the stack and select FIX 2 number display
mode.

B(CLEAR] R
B(MODE] 2 Fix %

Clear any previous statistical data, using CLZ (clear statistics) in the
STAT menu. (Any existing ZDAT is purged.)

B(STAT) oz

Key in the data point for 1975.
(1] 9.1,9.2,8.5

Store this data point in ZDAT.
T+

=M

LI+ | E- | NX [CLE [SToE]RCLE]

A new matrix named ZDAT is automatically created. The data point
for 1975 is the first row of ZDAT.

Enter the data point for 1976.
(1) 5.84.6,7.7 3+

[=+ | T- | WE | CLE [STOEJRCLI]

The data point for 1976 is added to ZDAT, forming the second row of
the statistics matrix.

132 12: Statistics

Enter the data point for 1977,
(()6.56.1,7 3+

[+ | Z- | NX JCLE [STOE[RCLE]

The data point for 1977 is added to ZDAT, forming the third row of
the statistics matrix.

Editing Data

If you make a mistake while keying in data, and you realize your mis-
take before pressing 2+ , you can simply edit the command line.
But suppose you believe that you made a mistake entering the data
point for 1976. You can return data points to the stack, edit those that
contain mistakes, and restore the data points to ZDAT.

Remove the data point for 1977 (the last row in ZDAT) and return it
to the stack.

-

[6.58 6.18 7.88]
| £+ | I- | NX | CLE [STOE[RCLE]

Remove the data point for 1976 (the last row in ZDAT) and return it
to the stack.

Z-

[6.08 6.16 7.88]
[5.88 4.68 7.78 1

| - [NI [CLE [=T0Z [RiLE |

If you find you did make a mistake in this data point, press [[EbiT] to
return the data point to the command line, edit the data point, and
press to put the corrected data point back on the stack. (Refer
to “Editing Existing Objects” in chapter 18.)

Return the corrected data point for 1976 to EDAT.
3

1: [6.58 6.18 7.88 1]
[I+ | T- | RE [GLE [SToZ[RCLE]

12: Statistics 133

Return the data point for 1977 to ZDAT.
z+

1
[T+ | Z- | NE [CLE [ST0OZ[KOLI]

Now enter the rest of the data (for 1978 and 1979) and check that
you entered all five data points.
(76786 z+
() 11.5,19.35.8 =+

NI

Single-Sample Statistics

In this section you'll find the mean, standard deviation, and variance
of CPI, PPI, and UR. The data for CPI are contained in the first col-
umn of EDAT, the data for PPI in the second column, and the data
for UR in the third column.

Display the second row of the STAT menu.

Here are the commands for mean, standard deviation, and variance.

Finding the Mean

Calculate the mean.

MEAH 3=
: 5.60
1: [8.18 9.48 7.680 1]

L T0T [MEAM] S0EY | Wik [MRRE [HINZ]

The mean for CPI is 8.1, for PPl is 9.4, and for UR is 7.

134 12: Statistics

Finding the Standard Deviation

Calculate the standard deviation.

SDEV

The sample standard deviation for CPI is 2.27, for PPl is 5.8, and for
UR is 1.14.

Finding the Variance

Calculate the variance.

VAR [8. 18 9 48 /.80]
[2.27 3.868 1.14]
[5.17 33 64 1.38 1

| TOT JHEAW SOEY | Wik [MARE[MINE

[RVTY]

The sample variance for CPI is 5.17, for PPI is 33.64, and for UR is
1.3.

Paired-Sample Statistics

In this section you'll find the correlation and covariance of CPI and
PPI, then use a linear regression model to predict values of PPl from
values of CPIL

Display the third row of the STAT menu.
[8.18 9.40

Here are the commands for correlation, covariance, linear regression,
and predicted value.

12: Statistics 135

Specifying a Pair of Columns

Before performing paired-sample statistics, specify which columns of
the statistics matrix ZDAT contain the independent and dependent
data. In this example you want CPI (in column 1) to be the indepen-
dent data and PPI (in column 2) to be the dependent data.

Specify columns 1 and 2 as the independent and dependent data.

3: [8.18 9.48 v.08]
28 [2.27 5.88 1.14 1]
1: [S5.17 33.64 1.38 1]
[COLE [Cokk | Cov | LR [FRECM] |

1,2 coLs

The numbers 1 and 2 are stored in a list named ZPAR, which is an
ordinary list with a special name. The commands that perform
paired-sample statistics refer to ZPAR.

If you don’t specify the columns containing the independent and de-
pendent data, the calculator uses columns 1 and 2. In this example
you didn’t need to specify the columns, but remember to execute
coLz if your independent and dependent data aren’t contained in
columns 1 and 2.

Finding the Correlation

Calculate the correlation.

3t [.27 5.80 1.14 1
2 05.17'33164 11361
T T T T ()

CORR

The correlation of CPI and PPI is 0.96.

Finding the Covariance

Calculate the sample covariance.

coy

[5.17 33.64 1.38_1]
a.9¢5
12.65
[CoLZ[cokk [cov | LR [FEEDVM] |

The sample covariance of CPI and PPI is 12.65.

136 12: Statistics

Finding the Linear Regression

Calculate the straight line that best fits the data for CPl and PPL
3 12.65
28 -18.43
1: 2.45
(COLE [ok Cow | LR [FREDVN] |

LR

The line’s intercept is —10.43, and its slope is 2.45. The intercept and
slope are also stored in the list ZPAR.

Finding Predicted Values

Suppose you want to find the predicted values for PPI when CPI has
values of 6 and 7. The predicted value can be calculated from the
slope and intercept stored in ZPAR.

Predict the value for PP1 when CPI has value 6.
6 PREDV

1-

[COLE [Cokfi | Col | LE_JFREDV] |

The predicted value is 4.26.
Predict the value for PPI when CPI has value 7.
7 PREDV

The predicted value is 6.71.

12: Statistics 137

1

Binary Arithmetic

This chapter describes how to perform arithmetic with binary inte-
gers. Each binary integer contains from 1 to 64 bits and represents an
unsigned binary number. For ease in entering binary numbers and
reading the results, you can choose decimal, hexadecimal, octal or bi-
nary base. However, this choice doesn’t affect the internal
representation of binary integers, and commands act on binary inte-
gers bit-by-bit.

All commands in the BINARY menu are described briefly in appendix
D, “Menu Map.” For complete descriptions, refer to “BINARY” in the
Reference Manual.

Selecting the Wordsize

The current wordsize affects the length of binary integers returned by
commands and the display of binary integers on the stack. The
wordsize can range from 1 through 64 bits, with a default wordsize of
64 bits. Suppose you want a wordsize of 16.

Before you start the example, clear the stack and display the BINARY
menu.

B (CLEAR] [I[BINARY]

[GECe | HEHR [0CT | EIN [SThE [RCHE |

138 13: Binary Arithmetic

Specify a wordsize of 16 bits.

16 STHS

[DECe [HER [0CT] EIN JSTHE [RCE]

Now if you key in a binary integer longer than 16 bits, only the 16
least significant bits are displayed.

Selecting the Base

The current base affects how binary integers are displayed on the
stack. The choices for the base are decimal, hexadecimal, octal, and
binary, with a default choice of decimal base.

Suppose you want hexadecimal base.

HEX

STHE JRCHE

The label for HEx now includes a small square, indicating that the
current base is HEX.

Entering Binary Integers
Enter the address 24FF .
24FF

24FFh
I!EII!EDIEII

The lowercase “h” is a base marker, indicating that the current base is
HEX. When you enter a number, you don’t need to key in the base
marker unless the number is not in the current base.

Check how this binary integer is represented in other bases. You don’t
need to change the binary integer, only the current mode.

13: Binary Arithmetic 139

Change to DEC base.
‘DEC

Change to OCT base.
ocT

{ # 223770
[Es | MEs [0iTa | EIN [STH: [Riokis)

Change to BIN base.

BIN 35
1: $ 10010011111111b
[DEC | HER | #iT [EIMm [ThZ [REbs |

Return to HEX base.
HEX

24FFh
[EC [Wewn | 0T | BIN LTIz [hCM:]

Calculating With Binary Integers

Calculate the address 1F04 less than the given address.

(# 1F0 (5] gf
1: # 230Fh
lMilHEEIIHIIIiEIIIHIEEMﬂ

The difference is returned to level 1, just as for other numbers.

You can mix binary integers and real numbers in your calculations. A
normal real integer (entered without the # delimiter) is interpreted in
base 10 regardless of the current binary integer base.

For example, calculate the address 27, less than the given address.

27 [5)

1: # ZZFah
[UEC_[HEns [0CT | BIN [3THE [RCH:]

The difference, expressed as a binary integer, is returned to level 1.

140 13: Binary Arithmetic

14

Unit Conversion

This chapter contains examples of unit conversion—converting the
numerical value of a physical measurement from one system of units
to another. For detailed information, refer to “UNITS” in the Refer-
ence Manual.

The UNITS Catalog

The UNITS catalog lists alphabetically all units built into the HP-28S.
You'll use it to check the spelling and definition of units.

First clear the stack and select STD number display mode.
B CLeAR] l{MODE] sTD

i:
FI | SCT [ENG | DEG | FRle |

Start the UNITS catalog.
BuNiTS]

m™2
(MERTJFREY] [[FETCH

The first unit is “are”, abbreviated “a”. This is a unit of area equivalent
to 100 meter2.

Try scanning forward and backward through the catalog by holding
down the NEXT and PREV menu keys (not the permanent keys on
the keyboard).

14: Unit Conversion 141

You can move to the first unit that begins with a particular letter by
pressing that letter key.

m—

s
(WERTJFREW [| [FETCH

The entry for “second” shows that the correct abbreviation is “s” and
the value is 1 second. “Second” is defined in terms of itself because it
is a fundamental unit.

Be sure to use the abbreviations exactly as they appear in the UNITS
catalog. For example, the HP-28S recognizes lower-case
onds, but not upper-case “S”.

“_ "

s” as sec-

Next check the entry for “day.”
(0] %ﬁﬂ—

s
(NEXT[FREN] | [FETCH

This entry shows that the correct abbreviation is “d” and the value is
86,400 seconds.

Next look for the “foot” unit.

A"2*s" 4 kg¥m™2
[MERTFREW] | [FETCH[DUIT]

The catalog shows the entry for “farad.” Move forward seven entries.

NEXT NEXT NEXT MNEXT W_
NEXT NEXT MEXT by

m
(MERTJFREN | | [FETCH

The catalog shows the entry for “international foot.” There are two
versions of “foot” in the catalog; the next unit is “survey foot.”

You can write the abbreviation for “international foot” to the com-
mand line.

FETCH

142 14: Unit Conversion

The normal display returns, and the command line shows the unit
abbreviation.

The examples in this chapter show you how to key in units directly,
but you can use [(UniTS) and FETCH if you prefer.

Clear the command line.

3:
2:
[sTOm | FI [SCT | EMG | BES | KRCs |

Converting Units

First convert 15 °C to degrees Fahrenheit.

Put the numerical value on the stack.

15 [ENTER]

mEc 3 -
1. IHCI
[270w | FIN | 301 | ENS | DEG | Rile |

The unit abbreviation is converted to a name.

Enter the unit abbreviation for “degrees Fahrenheit.”

BCIF 3 L3
1: IHFI
[T0w [FLi | SCI | ENG | DES | ina |

The unit abbreviation is converted to a name.

Convert the numerical value from the old unit to the new unit.

@(convERT]

o9
1a F [}
ﬂllﬂﬂﬂﬁlm

14: Unit Conversion 143

The result shows that 15 °C converts to 59 °F
For the next example, convert 40 inches to millimeters. This time
you'll let)(CONVERT] automatically execute ENTER for you.

Clear the stack and enter the numerical value.

W(ce]
40 4

lmmmﬁlmmu

Enter the unit for “inches.”

in 31
2: 40
: ‘in'
LiT0w | FIE | SCT [ENG | DEG | RADe |

Key in the unit for “millimeter” and convert units.

You won't find “millimeter” in the UNITS catalog. It's considered a
prefixed unit—the unit “m” (for meter) prefixed by “m” (for milli, or
one-thousandth). Similarly, “km” is a prefixed unit for kilometer, and
“ms” is a prefixed unit for millisecond. A complete list of prefixes ap-
pears in “UNITS” in the Reference Manual.

(€] mm E[CONVERT] 3 1016
1- 'mm’

LaT0m | FIN [SCT [ENG | DEG | RADS |

The result shows that 40 inches converts to 1016 millimeters.

Converting Unit Strings

Strings are objects that contain characters. You can use unit strings to
define more complicated units than those used so far.

A unit string can represent a unit raised to a power, such as “ft*2”, or
the product of units, such as “ft*lb”, or any combination of unit pow-
ers and products.

144 14: Unit Conversion

A unit string can also represent a quotient of units, such as “m/sec”.
However, the / symbol can’t appear more than once. Be sure to group
all direct units before the / symbol and all inverse units after the /
symbol. For example, “feet per second per second” is represented by
“ft/s"2".

For the next example, convert 1 mile per hour to feet per second.

Clear the stack and enter the numerical value.

W(cLErR) EF
1 [ENTeR] i i

Enter the unit for “miles per hour.”

(tc] mph [ENTER]

1-

1
. ' mph 1
[5T0m | FIi | SCI [ENG |

Key in the unit for “feet per second.”

There is no built-in unit for “feet per second,” so you'll use a unit
string.

B tEs 2

"-t 7 S.

1
1 mph 1
[2The | FIH § SC1 | ENG | DEG [Fnbe |

Alpha entry mode was activated (as indicated by the form of the
cursor) when you began keying in the string. In alpha mode all com-
mands are written to the command line, so you'll need to press

to complete the string.
!
m

1: "ft o "
[0 [FIN | 22T [EMS | DES | RADe |

@(CONVERT]

The result shows that 1 mile per hour converts to 1.46666666667 feet
per second.

14: Unit Conversion 145

Next convert 10 cubic feet to gallons.

Clear the stack and enter the numerical value.

W(CLEAR]
10 [ENTER]

Enter the unit string for “cubic feet.”

B () ft @3 (ENTeR) 3
1: IIFt FaY 3"

[T | FI8 | SCT [ENG | DES [FRAle |

C] qal 3:
gal [I(CONVERT] %: 74.8051948052
H ga
[oTum | FIx | 01 | NG | DES |Raoe |

The result shows that 10 cubic feet converts to 74.8051948052
gallons.

Checking for the Correct Units

Using incorrect units can lead to unexpected numerical results or to an
Inconsistent Units error. The solution in either case is to check
the UNITS catalog or the “UNITS” section of the Reference Manual.

Unexpected numerical results can occur if you use a unit with the cor-
rect dimensions but an incorrect numerical value. For example, if you
convert one acre to “ft*2” , the result is greater than 43,560. This oc-
curs because there are two “foot” units, “ft" (international foot) and
“ftUS” (survey foot). Converting one acre to “ftUS”2” returns exactly
43,560.

An Inconsistent WUnits error occurs if you use a unit with in-

correct dimensions. For example, this occurs if you use “Ib” (pound) as
a unit of force. The correct unit for force is “Ibf” (pound-force).

146 14: Unit Conversion

User Functions for Unit Conversion

If you perform particular unit conversions often, you can write user
functions for those conversions. In this section you’ll write user func-
tions O-=G and G—+O that convert between ounces and grams; since
they’re user functions, you can use them in either RPN or algebraic
syntax.

Recall that user functions must fulfill two requirements:

® They must explicitly indicate their arguments.

B They must return exactly one result.

First write O-G.

Begin the program and indicate the argument.

() B(=] (XS] x

The right arrow indicates that the following name is a local variable,
which will exist only within this program.

Define the conversion.

() x] oz (J (7] g ("] M(CONVERT 2: . ., |gal’
1 EavERT Brop%s »°

[3T0m] FIN | 3CT] ENG | DEG | Knle |

The closing delimiters are added for you.

This program means: take an argument from the stack (in RPN syn-
tax) or from the expression (in algebraic syntax) and call it x; convert x
from ounces to grams; and drop the gram unit from the stack.

Store the program in a variable O—+G.

(J o B=] G (519}

74.3051 948@?2

EEIISIEII]EIM

14: Unit Conversion 147

Now write G-+0O.

Begin the program and indicate the argument.
[« B[S x z 74.8051948052
ga
% 3

[|
[iT0m [FIE | SCT [EMS | DEG [FRDw |

Define the conversion.

@X[jg[j[]oz[j.cowem % . . .'9?1'
DROP] (ENTER " CONVERT DROP » »-
[=Tum L FI3] 201] ENG | DEG | RAbs |

This program means: take an argument from the stack (in RPN syn-
tax) or from the expression (in algebraic syntax) and call it x; convert x
from grams to ounces; and drop the ounce unit from the stack.

Store the program in a variable G—+O.

1 G W= o (570)

74.8851948852
‘gal'’

mmrzllmmn:

To test the conversions, check how may grams are in 1 ounce, and
then convert that result back to ounces. The result should be 1 again.

Convert 1 ounce to grams.

1 [USER] 0+G

3
2
1

a
28 . 349523 125

There are about 28 grams in 1 ounce. Now convert this result back to
ounces.

620 F 74, 5051948052
i 2al
TN T T N T

The conversions are inverses, as they should be.

148 14: Unit Conversion

15

Printing

This chapter describes some basic commands for using your HP-285
with an HP 82240A printer. Refer to the printer manual for instruc-
tions about how to position the printer relative to the HP-28S and
how to turn on the printer.

All commands in the PRINT menu are described briefly in appendix
D, “Menu Map.” For complete descriptions, refer to “PRINT” in the
Reference Manual.

Printing the Display
You can print an image of the display as follows.

1. Press and hold [ON].

2. Press (the key with “PRINT” written above it).

3. Release [ON].
These keystrokes are the keyboard equivalent of the command
PRLCD (print LCD, found on the first row of the PRINT menu). You

can use these keystrokes to print the display at practically any time,
without disturbing calculator operation.

If you want a program to print the display, simply include the com-
mand PRLCD, found in the PRINT menu.

Clear the stack and display the PRINT menu.

M(cLEAR]
W(PRINT]

| FR1 | FRET [PEVARIFRLCD] CFf TRAC |

15: Printing 149

B PR1 (print 1) prints the object in level 1.

B PRST (print stack) prints all objects on the stack.

® PRVAR (print variable) prints the name and contents of a variable.
B PRLCD (print LCD) prints the display.

B CR (carriage right) prints a blank line.

® TRAC (trace on/off) turns Trace printing mode on and off.

Printing a Running Record

To print a running record of your calculations, turn on Trace printing
mode.

TRAC

[FEL JFRET [FRUGEJFRLCO] R [TRACH]

A square appears in the TRAC menu label to indicate that Trace
printing mode is turned on.

Now see what happens when you add two numbers—for example, 44
and 72. First put 44 on the stack.

44
44 ENTER
1: 44
The input and level 1 result are printed.
Now add 72.
72
e o+
1: 116

Again the input and level 1 result are printed.

Turn off Trace printing mode.

TRAC

116
[FEL JFRET [FRVARFRLCD] CR | TRAC |

150 15: Printing

Printing Level 1

Rather than printing all results using Trace printing mode, you can
selectively print results using PR1.

PR1

116

The result remains in level 1, unchanged.

You can print a message by putting a string in level 1. To print the
message “OK”, first put the string on the stack.

B() oK 3 o
1 ; IIDK 1
| FE1 [FEST [FRVAR[FRELCO] CF] TRAC |

Now print the message.

PR1
Ok

Only the contents of the string are printed, not the quotation marks.

15: Printing 151

Printing the Stack
You can print all objects on the stack by using PRST.

PRST
2: 116
10 "OK

The contents of the stack are unchanged.

Printing a Variable

You can print the name and contents of a variable without recalling
the variable to the stack. To demonstrate, store the string “OK” in a
variable named “A”, then print variable A.

Create the variable A with value “OK”.

(I A 3
it 116
[Pl [FRST[PRUARIFRLCO] CE] TRAC

Print the name and value of the variable.
"] A PrRYRR

A
"DK"

The name of the variable is dropped from the stack.

152 15: Printing

Summary of Calculator
Features

Page 154
164
166
176
182
192
196
198
205
215

16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

Objects

Operations, Commands, and Functions
The Command Line

The Stack

Memory

Menus

Catalog of Commands

Evaluation

Modes

System Operations

1

Objects

Part 1 of this manual contains examples of the 10 basic object types in
the HP-28S. Objects are the basic entities in the calculator—the enti-
ties you create to formulate problems and manipulate to find
solutions.

The purpose of most object types is to save you work by providing
specific data types. For example, imagine using real numbers to repre-
sent arrays, somehow keeping track of each element in each array and
writing programs to do arithmetic with these arrays. It's simpler to
enter the numbers in an array object, which you can manipulate as a
single entity, and to perform calculations by using the normal
arithmetic functions.

However, the reason for multiple object types is broader than just
multiple data types. The symbolic and programmable features of the
calculator are based on symbolic objects (names and algebraics) and
program objects. These objects are not just data; they can be evalu-
ated to produce a result. (Evaluation of objects is discussed in chapter
23))

By basing multiple data types, symbolic operations, and programming
on the simple concept of object types, the HP-285 minimizes the rules
you need to remember. Objects are keyed into the command line, put
on the stack, or stored in variables in exactly the same way, regardless
of object type.

This chapter summarizes what you learned about each object type,
gives more detailed information, and suggests additional uses.

154 16: Objects

Real Numbers

Real numbers represent numbers greater than —10°% and less than
10°%0. They are stored internally as a mantissa between 1 and
9.99999999999, a sign (positive or negative) for the mantissa, an expo-
nent between 0 and 499, and a sign for the exponent.

In Hours-Minutes-Seconds Format. You can use the commands
HMS+ and HMS— to add and subtract numbers expressed as hours,
minutes, and seconds (or degrees, minutes, and seconds). For any
computation other than addition or subtraction, first use HMS— to
convert the numbers from HMS format to decimal degree format. (See
“TRIG” in the Reference Manual for details.)

Complex Numbers

Complex-number objects are ordered pairs of real numbers that repre-
sent the real part and the imaginary part of a complex number or the
coordinates of a point in a plane.

Rectangular and Polar Coordinates. In chapters 7 and 8 you used
complex numbers for plotting and digitizing; each complex number
represented rectangular coordinates—that is, distances along per-
pendicular axes.

Chapter 6 described polar coordinates—a radial distance and an an-
gle—and used the commands R+P and P-R to convert between polar
and rectangular coordinates. You can use polar coordinates to key in
coordinates and to display results, but you must use rectangular co-
ordinates for calculations. The user function PSUM, described on
page 86, adds points in polar coordinates by converting them, adding
them, and reconverting them.

In Algebraic Objects. When you key in a complex number in an
algebraic object, you may need two pairs of parentheses, as in the
expression 'SIMC¢@, 133", The outer pair of parentheses are re-

quired by the function SIH: 3, while the inner pair are delimiters
for complex numbers.

16: Objects 155

Binary Integers

Binary integers represent a sequence of bits. The length of the se-
quence, from 1 to 64 bits, depends on the current wordsize. The
current binary integer base determines how binary integers are dis-
played but has no effect on their internal representation.

Large Integers. Using binary integers in decimal base mode, you
can express a 19-digit positive integer exactly; this is 7 digits more
than you can express exactly using real numbers.

Programming Example. The programs in “Displaying a Binary Inte-
ger,” on page 257, work together to display a binary integer in all four
bases.

Preserving Status. The command RCLF (recall flags) returns a bi-
nary integer representing the status of all 64 user flags; the command
STOF (store flags) sets the user flags according to a binary-integer ar-
gument. These commands are demonstrated in “PRESERVE (Save and
Restore Previous Status)”, one of the programs in “Displaying a Binary
Integer” described above.

Strings

A string comprises a sequence of characters. Part 1 showed the fol-
lowing uses for strings.

B In chapter 14, “Unit Conversion,” you used strings to represent a
combination of unit products and powers.

® In chapter 15, “Printing,” you entered a message as a string in order
to print it. You can also display messages by using the command
DISP; it is described in chapter 27, “Interactive Programs.”

Most often a string represents text, but each character can also repre-
sent a numerical value from 0 through 255. The commands CHR
(character) and NUM (character number) convert between characters
and their numerical values.

156 16: Objects

Non-Keyboard Characters. You can display characters that don't
appear on the HP-28S keyboard by entering a numerical value and
executing CHR. There are also non-displayable characters that you
can print; for a list of all characters, see “STRING” in the Reference
Manual.

Graphics Strings. The command LCD- (LCD to string) returns a
graphics string that represents the current displayed image; the com-
mand ~LCD (string to LCD) displays the image represented by a
graphics-string argument. For details about these commands, see the
Reference Manual.

String Manipulations. The programs in “Displaying a Binary Inte-
ger’, on page 257, show how to convert an object to string form,
count the number of characters, and join two strings.

Arrays

Arrays can be one-dimensional (called vectors) or two-dimensional
(called matrices), and they can comprise real or complex numbers.
Chapter 11, “Vectors and Matrices,” shows the basic calculations with
arrays. Part 1 included the following additional uses for arrays.

B Chapter 11 shows how to solve a system of n linear equations in n
unknowns by using a an n-element constant vector and an n X n
coefficient matrix. For details about this process and its accuracy,
see “ARRAY” in the Reference Manual.

B In chapter 12, “Statistics,” the statistics data you entered was stored
in the current statistics matrix ZDAT.

In Algebraic Syntax. If an array is stored in a variable, you can re-
fer to elements in the array by using the variable name as a function.
For example, you could represent the sum of the third and fifth ele-
ments of a vector V as 'W(Ia+U(Ss ",

Array Manipulations. The programs in “Summary Statistics” on
page 262, and “Median of Statistics Data,” on page 270, demonstrate a
variety of array manipulations.

16: Objects 157

Lists

Lists are sequences of objects; they are the most general method of
combining several objects into one. Part 1 showed the following uses
for lists.

B in chapter 4, “Repeating a Calculation,” the command PATH re-
turned a list of directory names, from the HOME directory to the
current directory.

B In chapter 7, “Plotting,” the list variable PPAR contained param-
eters used by DRAW.

&]n chapter 8, “The Solver,” you gave a list containing three digitized
points as an estimate.

B [n chapter 10, “Calculus,” you specified the variable of integration
and the lower and upper limits of integration by combining them in
a list.

B In chapter 12, “Statistics,” the list variable ZPAR contained param-
eters for paired-sample statistics.

In Algebraic Syntax. If a list is stored in a variable, you can refer to
elements in the list by using the variable name as a function. For ex-
ample, you could represent the sum of the third and fifth elements of
alist Las "LiZa>+Li53",

Lists and the Stack. The program MEDIAN, on page 273, shows
how to put the elements of a list on the stack and combine objects on
the stack into a list.

Sorting a List. The program SORT, on page 270, shows how to sort
the elements in a list.

Extracting Elements From a List. The program LMED, on page
272, shows how to extract elements from a list.

158 16: Objects

Names

Names are a sequence of characters used to name other objects. They
can contain up to 127 characters, although practical considerations
suggest that names be no longer than five or six characters.

The legal characters available on the keyboard are letters, digits, and
the characters * £ # + v . The first character can’t be a digit. The
following characters cannot be included in names.

® Characters that separate objects: delimiters (# T 1 " ' {
£ » % @), space, period, or comma.

i}
I
1
H
a2

B Algebraic operator symbols (+ - % . = [

)

The calculator determines whether a name is global or local when the
command line is processed: if the name is used by a program struc-
ture to create a local variable, the name is local within that program
structure; otherwise, the name is global.

Local Names. In part 1 you wrote user functions that created local
variables. This manual used lowercase letters for the local names to
help you distinguish them from global names. It's important to re-
member that it was the command -~ that made the names local, not
the lowercase letters. If you name a local variable & or i, your local
definition supersedes the built-in definition.

Global Names. All the other names in part 1 were global. Examples
include:

® Names for global variables (numerical variables used for plotting or
the Solver; all variables in the USER menu).

B Names for directories.

® Names used symbolically, without reference to specific values

(symbolic arithmetic, symbolic solutions, and calculus).

Names of commands, including =, i, and w, can’t be used as global
names. In addition, the following names are reserved for specific uses.

16: Objects 159

B EQ refers to the current equation used by the Solver and PLOT
commands.

ZPAR refers to a list of parameters used by statistics commands.
PPAR refers to a list of parameters used by plot commands.

ZDAT refers to the current statistical array.

s1, s2, and so on, are created by ISOL and QUAD to represent arbi-
trary signs obtained in symbolic solutions.

B nl, n2, and so on, are created by ISOL to represent arbitrary inte-
gers obtained in symbolic solutions.

B Names beginning with “der” refer to user-defined derivatives.

You can use any of these names for your own purposes, but remem-
ber that certain commands use these names as implicit arguments.

Programs

Programs are sequences of objects and commands. Each program is
essentially a command line made into an object; when you surround
the contents of the command line by program delimiters, you indicate
that you want to save the contents for later execution.

Special program commands appear in the PROGRAM BRANCH,
PROGRAM CONTROL, and PROGRAM TEST menus. These menus
are described in the Reference Manual, along with the general topic
“Programs.”

You wrote five programs in part 1:
B In chapter 3 you wrote a program for renaming variables, and you

stored it in the variable RENAME.

B In chapter 5 you wrote a program for the cotangent function, and
you stored it in the variable COT.

B In chapter 6 you wrote a program for adding polar coordinates, and
you stored it in the variable PSUM.

® In chapter 14 you wrote programs for converting between ounces
and grams, and you stored them in the variables O-G and G-O.

160 16: Objects

User Functions. The programs COT, PSUM, O~G, and G-O are

user functions—they begin with the command = and one or more

names, which together define one or more local variables, followed by
one expression or program. When the user function is stored in a vari-
able, you can use the name of the variable in algebraics as you would
use a built-in function.

Program Structures. The command ~ followed by names and an
expression or program is called a local-variable structure, which is one
type of program structure. There are also program structures for
branching (such as IF ... THEN ... ELSE ... END) and looping (such
as DO ... UNTIL ... END). See chapter 26, “Program Structures,” for
descriptions. Also, chapter 28, “Programming Examples,” contains 20
programs that demonstrate every program structure, along with a va-
riety of programming techniques.

Unnamed Programs. Programs don’t need to be stored in variables
to be useful; for examples, see “Expanding and Collecting Com-
pletely,” on page 253, and “Displaying a Binary Integer,” on page 257.

Algebraics

Algebraics comprise one or more functions and the functions’ argu-
ments; the arguments can be numbers, names, or subexpressions.
Algebraics are written and displayed in algebraic syntax, a form simi-
lar to written mathematical notation. There are two types of
algebraics, expressions and equations.

Expressions

In part 1 you used expressions in three different ways: as data, as
functions, and as implicit equations.

Expressions As Data. When you calculate with expressions, such as
adding two expressions, squaring an expression, or differentiating an
expression, the result is another expression. In these cases the expres-
sions act as data to be manipulated, independent of any values
assigned to the variables.

16: Objects 161

Expressions as Functions. In chapter 4 you created the expression
RTOT and, using the Solver, assigned values to the variables and then
evaluated RTOT to calculate the desired result. In this case the
expression acted as a function which, given the input values,
produced a result.

Expressions as Implicit Equations. In chapter 8 you used the
Solver to find the numerical zero of an expression—that is, the
numerical value of the independent variable for which the expression
has value 0. In chapter 9 you used QUAD to find a symbolic zero—
that is, an expression which, substituted for the independent variable,
would give the original expression the value 0.

In both cases the expression f(x) acts like the equation f(x) = 0,
because the zero of the expression is the same as the root of the
equation.

Equations

Equations comprise two expressions related by an equals sign (=). In
mathematics there are two uses for the equals sign:

® To indicate a proposition, such as “x> = 4” or “x? 4+ y? = 1.” Here
the equation holds only for some values of the variables.

B To indicate an identity or definition, such as “sin 2x = 2 sin x cos x”
or “y = 3x?> + 2x + 5.” Here the equation holds for all values of
the variables.

On the HP-28S, equations are used for propositions only; to make a
definition such as “y = 3x2 + 2x + 5,” the expression
PIAYHCZ42EK S is stored in a variable named Y.

In “Time Value of Money” on page 103, both TVM and SPPV are
expressed mathematically as equations. The TVM equation, which

holds only for certain values of its variables, is entered as an equation;
but SPPV, whose value is defined by the value of its variables, is

created as a variable.

162 16: Objects

Equations as Data. When you calculate with equations, such as
adding two equations, or squaring an equation, or differentiating an
equation, the result is another equation. Each side of the equation is
treated independently—each side is an expression treated as data. The
equation maintains its propositional nature, where it holds for only
some values of its variables.

Solving Equations. When you solve an equation numerically, as
you did in “Time Value of Money,” you find the value of the
independent variable that satisfies the equality. Similarly, when you
solve an equation symbolically, as you did in “Isolating a Variable” on
page 109, you find an expression which, substituted for the
independent variable, would satisfy the equation.

Symbolic Constants

Algebraics can include the following symbolic constants. These look
like names but are actually functions.

® MINR (minimum real) represents the smallest positive real number,
Its numerical value is 1.00000000000E —499.

B MAXR (maximum real) represents the largest positive real number.
Its numerical value is 9.99999999999E499.

W ¢ represents the base of natural logarithms. Its numerical value on
the HP-28S is 2.71828182846.

B 7 represents the ratio of circumference to diameter of a circle. Its
numerical value on the HP-28S is 3.14159265359.

W | represents the imaginary number \/—1 . Its numerical value is
0, 1).

In Numerical Constants mode or Numerical Result mode, evaluation
of symbolic constants returns their numerical values; otherwise,
evaluation returns their symbolic form. (Constants mode and Result
mode are described in chapter 24.)

16: Objects 163

17

Operations, Commands,
and Functions

Each procedure built into the HP-28S can be classified as an opera-
tion, a command, a function, or an analytic function.

® An operation is any procedure built into the calculator.
M A command is a programmable operation.
B A function is a command allowed in algebraics.

B An analytic function is a function for which the HP-28S provides a
derivative and inverse.

Built-in procedures are usually characterized by their highest capabil-
ity. For example, SWAP and IP are both commands, but we
characterize SWAP as a command and IP as a function. The following
table shows examples of each type.

Operations
Commands
Non-Programmable)
Operations RPN Functions
Commands
Non-Analytic | Analytic
INS SWAP ABS ASIN
NEXT DROP d EXP
BieoiT LAST P INV
B(viEwt] RCL MAX LN
PURGE OR NEG
EEX f %CH SIN
B COMMAND | STO R-D SINH
B(unpo] EVAL R-P sQ
B conT] CLEAR XPON +
CONVERT #* =
164 17: Operations, Commands, and Functions

The Operation Index in the back of the Reference Manual identifies
each built-in procedure as an operation, a command, a function, or an
analytic function. As a rough guide, here are general comments about
each type.

® Most non-programmable operations can be executed only by press-
ing a key. However, there are programmable equivalents for some
operations: for example, the operation (to select the TRIG
menu) can be effected in a program by executing 21 MEHU, and
the RAD operation (to select Radians angle mode) can be effected
by executing €8 Fs.

® Most RPN commands involve manipulating the stack or altering
user memory rather than calculating mathematical values.

B Most non-analytic functions are mathematical calculations without
inverses—that is, they return some characteristic of the arguments,
but the arguments can’t be reconstructed from the result. Examples
include integer part and fractional part, absolute value and sign.

® In mathematics, a function of complex variables is analytic if it can
be expressed as a power series at every point in its domain; in this
case it has an inverse and a derivative. The HP-28S makes a few
exceptions to this definition. For example, no derivative is given for
the command ¥, although one would be possible; a derivative is
given for the function AES, although the function is non-analytic at
the point 0 + 0i.

Every built-in procedure is available on a key, either on the keyboard
or in a menu. When you press a key, the exact result depends on the
type of procedure and the entry mode, as discussed in the next
chapter.

17: Operations, Commands, and Functions 165

18

The Command Line

The command line holds any number of characters representing ob-
jects in text form. It appears at the bottom of the display (immediately
above the menu labels, if present) when you begin to key in an object

or when you use [J(EDIT] or [l{VISIT] to edit the contents of an exist-

ing object.

The command line can hold more than one row of text. If you enter
more than 23 characters into one row, characters scroll off the display
to the left. An ellipsis (...) appears in the leftmost character position
to indicate the undisplayed characters. If you try to move the cursor
past the left end of the display, the leftmost characters scroll back into
the display, and characters scroll off the display to the right. An ellip-
sis then appears at the right end of the display. When the command
line contains multiple rows of text, all rows scroll left and right
together.

The Cursor Menu

The cursor menu is a special menu of editing operations. It is active
whenever the command line is present and no menu labels are visi-
ble. The cursor menu contains both shifted and unshifted keys. The
unshifted keys are labeled in white above the corresponding menu
keys, as illustrated.

166 18: The Command Line

INS DEL A

o e on e o0

If you press and hold an unshifted cursor menu key (except [INS]), the
operation is repeated until you release the key.

Key Description

Switch between Replace mode and Insert mode. In Replace
mode, new characters replace existing characters. In Insert
mode, new characters are inserted between existing
characters.

DEL] Delete the character at the cursor position.
Move the cursor up one line.
Move the cursor down one line.

Move the cursor left one space.

E@BBH

Move the cursor right one space.

The shifted cursor menu keys (except for [j(iNS]) are equivalent to
repetitions of the unshifted operations.

18: The Command Line 167

Key

Bns)
=N

W)
A2
K
I3

Description
Delete all characters to the left of the cursor.

Delete the character at the cursor position and all characters
to the right.

Move the cursor to the top row of the command line.
Move the cursor to the bottom row of the command line.
Move the cursor to the left end of the command line.

Move the cursor to the right end of the command line.

Some Entry Keys

The following keys are useful when you're entering objects in the
command line.

Key

(=]

CHS

EEX

168

Description

Cursor Menu On/Off. When the Cursor menu is not ac-
tive: selects the Cursor menu. When the Cursor menu is
active: selects the previous menu.

Change Sign. When the cursor is positioned at a num-
ber: changes the sign of the number. When the cursor is
not positioned at a number: writes a minus sign. (If no
command line is present: executes the command NEG.)

Enter Exponent. When the cursor is positioned at a
number without an exponent: writes the character E after
the number. When the cursor is positioned at a number
with an exponent: positions the cursor after the E. If the
cursor is not positioned at a number: writes 1E.

Backspace. Deletes the character to the left of the
cursor, moving the cursor (and any characters to the
right) one space to the left. If you press and hold [¢], the
action is repeated until you release the key.

Lower-Case Letters. Switches between Upper-case and
Lower-case modes. When the command line is created,
Upper-case mode is active—[A] through write A

through Z. In Lower-case mode, through write a
through =.

18: The Command Line

B(VENUS] Menu Lock. Turns Menu Lock on and off. When Menu
Lock is on, the shifted and unshifted “positions” are
switched for the top three rows of the lefthand keyboard
(letter keys (A] through [R]). You don’t need to press [}

before through [UNITS], but you need to press [l§}
before the letters A through R.

Attention. Cancels the command line.

Object Delimiters and Separators

To enter more than one object or command into the same command
line, you must separate them by one of the following:

B An object delimiter: ¢ » L 14 + # " ' & =

B A space or newline. Pressing [(NEWLINE] inserts a “newline” char-
acter (line-feed) into the command line at the cursor position.
Newline characters are equivalent to spaces when the command
line is executed.

® A comma (assuming you haven’t selected the comma to act as the
decimal point).

Entry Modes

To make object entry easier, there are three entry modes—Immediate,
Algebraic, and Alpha—for entering different types of objects. Remem-
ber the distinctions made in the previous chapter, “Operations,
Commands, and Functions”:

B Operations are not programmable.
® Commands can appear in programs but not in algebraics.

® Functions (analytic and non-analytic) and names can appear in pro-
grams or algebraics.

18: The Command Line 169

The calculator recognizes these distinctions as you enter objects in the
command line. Pressing an operation key (such as [ENTER]) always
causes execution of the operation. The current entry mode primarily
affects what happens when you press a command key (such as (ST0]),
a function key (such as [+]), or a USER menu key.

Immediate Entry Mode. This mode is for entering numbers, lists,
and arrays. In Immediate entry mode:

® Pressing a command key executes the command line and then exe-
cutes the command.

B Pressing a function key executes the command line and then exe-
cutes the function.

B Pressing a USER menu key executes the command line and then
evaluates the corresponding name.

Algebraic Entry Mode. This mode is for entering names and
algebraics. If you begin the command line by pressing (*], Algebraic
entry mode is automatically activated. In this mode:

B Pressing a command key executes the command line and then exe-
cutes the command.

B Pressing a function key writes the function’s name in the command
line. If the function takes its arguments in parentheses, the opening
parenthesis is included.

B Pressing a USER menu key writes the corresponding name in the
command line.

Alpha Entry Mode. This mode is for entering strings and programs.
Pressing (™) or («] automatically activates Alpha entry mode and
turns on the O annunciator. In this mode:

M Pressing a command key writes the command’s name in the com-
mand line.

® Pressing a function key writes the function’s name in the command
line.

® Pressing a USER menu key writes the corresponding name in the
command line.

170 18: The Command Line

If the cursor is positioned at the end of the command line, or if Insert
mode is active, spaces are included as needed to keep successive com-
mands separate.

Exceptions

To enable you to select a mode while using the command line in Im-
mediate or Algebraic entry mode, the following command keys
execute their command without disturbing the command line.

B sto , peEs , and RrRAD . in the MODE menu.
M pec , HEX , ocT , and BIN in the BINARY menu.

Since the following commands make sense only in a program, press-
ing one of these keys always writes the command’s name in the
command line.

B HALT in the PROGRAM CONTROL menu.
B All keys in the PROGRAM BRANCH menu.

To help prevent the accidental loss of variables, pressing cLusR (in
the MEMORY menu) always writes CLUSR in the command line. You
must then press to execute the command.

Manual Selection of Entry Modes

The calculator automatically switches between Immediate and Alge-
braic entry modes each time you press [*] to begin or end a name or
algebraic. It also switches to Alpha entry mode when you press ("]
or [«]. You can manually select the entry mode by pressing the (a]
key. Doing so switches the entry mode in the cycle illustrated below.

rede] s [Aiga] ——— [Ageoac]

Manual Selection of Entry Modes

18: The Command Line 171

Thus you can switch to any entry mode by pressing {a] once or twice.
Here are some examples of using the [a] key.

Suppose you want to write a program that you’ll execute only once
or twice. Press [a] to select Alpha entry mode; key in the program
without program delimiters; press to execute the program;
press [J[COMMAND] to return the program to the command line;
press to execute the program again.

Suppose you want to purge several variables at once. Press [{] to
start a list; press [a] to select Alpha entry mode; press the USER
menu keys for the variables to be purged; press to put the
list on the stack; press JJ(PURGE].

Suppose you're keying in a program, and you want to use the char-
acter - in a name. Since Alpha entry mode is active, pressing [Jj(=]
would write the command “~” surrounded by spaces. Press [a] to
select Algebraic entry mode; press {l{(=]; press [a] (o] to return to
Alpha entry mode.

How the Cursor Indicates Modes

The appearance of the cursor indicates the current entry mode and
the current choice of Insert or Replace mode. The following table
shows the six possible combinations of entry mode and Insert or Re-
place mode.

Insert mode Replace mode
Immediate entry mode B O
Algebraic entry mode # =]
Alpha entry mode +

1

72 18: The Command Line

Executing the Command Line

When you press (or a key that performs ENTER in the current
entry mode), the calculator does the following:

1. The busy annunciator ((®) is turned on.
2. If UNDO is enabled, a copy of the current stack is saved.

3. The text string in the command line is searched for object delim-
iters and separators, then broken into the corresponding
substrings.

4. Each substring of text is tested against syntax rules to identify its
object type.

5. If COMMAND is enabled, a copy of the command line is saved
in the command stack.

6. The command line is executed.

7. The busy annunciator ((#) is turned off.

If a substring fails the syntax tests in step 4, steps 5 and 6 are not
performed. Instead, Suntax Error is displayed, and the incorrect
text is highlighted in inverse characters, followed by the cursor. If the
error resulted from incomplete syntax, the cursor is positioned at the
end of the line.

Editing Existing Objects

You can return an existing object to the command line, view it or edit
it using command-line operations, and replace the original object with
the modified object if desired.

Key Description
| [E) Edit Level 1. Returns the object in level 1 to the
command line.
n PBvisiT) Edit Level n. Returns the object in level 1 to the

command line.

'name’ [[VISIT] Edit a Variable. Returns the contents of the speci-
fied variable to the command line.

18: The Command Line 173

The cursor menu and Alpha entry mode are activated. The original
object, if visible, is highlighted to remind you that you are editing that
object and that the original copy is still preserved.

When you're done viewing or editing the object, you can:

| Press to cancel the edit, clear the command line, and leave the
original object unchanged.

B Press (or a key that performs ENTER) to replace the original
object.

If the cursor menu is still active when you complete the editing, the
previous menu is restored,

Recovering Command Lines

The HP-28S saves the contents of the last four command lines you
executed. Pressing fJ(COMMAND] once returns the most recently exe-
cuted command line (replacing the current command line if it exists);
pressing lJ[COMMAND] a second time returns the next oldest command
line; and so on. If you press [J[COMMAND] more than four times, the
sequence starts over with the most recent command line.

Some uses for [J{[COMMAND] appear in “If You Execute the Wrong
Function” on page 47 and “Manual Selection of Entry Modes” on page

171.

You can disable this feature by pressing c#p in the MODE menu.
The box disappears from the menu label, indicating that command
lines won't be saved. To enable this feature again, press cMd a sec-
ond time.

174 18: The Command Line

The Command Line as a String

The text that you key into the command line is equivalent to the con-
tents of a string object—that is, a sequence of characters. You can
programmatically execute a command line by entering the text in a
string and executing STR— (string-to-objects). This technique is useful
for storing programs in text form, which is more compact than object
form. Also, any local names that exist when STR~ is executed will be
recognized in the command line.

18: The Command Line 175

19

The Stack

This chapter reviews what you've learned about the stack and de-
scribes commands for manipulating objects on the stack. Also briefly
described is the use of local variables to simplify stack manipulations.

Review of Stack Concepts

The stack is a sequence of numbered levels, each holding one object.
The objects you key into the command line are put on the stack when
you execute ENTER. The first object in the command line is the first
object put on the stack. Each object is put in level 1, lifting other ob-
jects to the next higher stack level. The stack can grow indefinitely
(within the limits of calculator memory), so you don’t need to think
about how many objects are on the stack before entering more
objects.

In general, a command removes input objects (called arguments) from
the stack and replaces them with output objects (called results) to the
stack. For example, the function + removes two arguments from levels
1 and 2, replacing them with their sum in level 1.

The arguments must be present on the stack before the command is
executed. This type of logic, where the command comes after the ar-
guments, is called stack logic, postfix logic, or RPN, for Reverse Polish
Notation, in honor of the Polish logician Jan Lukasiewicz (1878-1956).

The results of a command are available as arguments for the next
command. If you're not ready to use the results yet, simply leave
them on the stack—they’ll be available when you're ready for them.

176 19: The Stack

Objects leave the stack from level 1, and the objects remaining on the
stack each drop to a lower level. It’s best to drop an object or store it
in a variable when you don’t need it on the stack; this makes it easier
to keep track of the stack objects you do need. Similarly, it's best to
clear the entire stack when you begin a problem, so you'll know that
the objects on the stack are pertinent.

Viewing the Stack

Normally you see only the first few objects on the stack. If the object
in level 1 is large, you see only the first part of it. The operations

@(viEwt]and [[VIEW?] enable you to view the first part of any object

on the stack and all of the object in level 1.

These operations move the “window” through which you see the
stack. The size of this window can range from one to four display
lines, depending on the presence of a menu, the command line, or
both.

Key Description
B(viEw+] Moves the window up (toward higher stack levels).
B(ViEW+] Moves the window down (toward the end of the object in
level 1).

Viewing has no effect on the contents of the stack, the command line,
or the action of commands.

Manipulating the Stack

In part 1 you used some basic commands for manipulating the stack:
CLEAR (to clear the stack), DROP (to drop the object in level 1), and
SWAP (to switch the order of the objects in levels 1 and 2). This sec-
tion briefly describes all commands for moving, copying, and

dropping stack objects; for details, see “STACK” in Reference Manual.

19: The Stack 177

Moving Stack Objects. These commands rearrange the objects on
the stack; the number of objects doesn’t change. Commands preceded
by “n” require a real-number argument.

Command Description
SWAP Moves the object in level 2 to level 1.
ROT Moves the object in level 3 to level 1.

n ROLL Moves the object in level #n to level 1.
n ROLLD Moves the object in level 1 to level n.

The command names ROT (rotate), ROLL, and ROLLD (roll down) are
descriptive of the motion of objects as a block. ROT moves the object
in level 3 to level 1, rotating a block of three objects; ROLL and
ROLLD roll blocks of n objects.

Copying Stack Objects. These commands return a copy of one or
more stack objects. Copying only one object returns the copy to level
1 and lifts the other objects on the stack (including the original object)
to a higher level. When you copy more than one object, they’re copied
as a block in a similar manner. Commands preceded by “n” require a
real-number argument.

Command Description

DUP Copy the object in level 1. (When no command line is
present, you can execute DUP by pressing [ENTER].)

OVER Copy the object in level 2.

n PICK Copy the object in level n.

DUP2 Copy the objects in levels 1 and 2.

n DUPN Copy the objects in levels 1 through n.

178 19: The Stack

Dropping Stack Objects. These commands drop one or more ob-
jects from the stack. The objects remaining on the stack are dropped

to a lower level. Commands preceded by “n” require a real-number

argument.
Command Description
DROP Drop the object in level 1.

DROP2 Drop the objects in levels 1 and 2.
n DROPN Drop the objects in levels 1 through n.
CLEAR Drop all objects.

Local Variables

In part 1 you wrote a few user functions—programs that define local
variables and use them in a single expression or program. User func-
tions can be included in algebraics, just like built-in functions.

The use of local variables reduces the need for stack manipulations.
When you create local variables, their values are removed from the
stack. You can then refer to them by name instead of finding them on
the stack.

Local variables have applications in addition to user functions. Al-
most all of the programming examples in chapter 28 use local
variables. Of particular interest are “Box Functions” on page 241,
“MULTI (Multiple Execution)” on page 253, “PRESERVE (Save and
Restore Previous Status)” on page 258, and “SORT (Sort a List)” on
page 270.

Recovering the Last Arguments

The HP-28S saves the arguments to the last command executed. De-
pending on the command, one, two, or three objects may be saved. (If
a command takes no arguments, the previous saved arguments are
preserved.) The command LAST returns the saved arguments, each to
the stack level it occupied originally.

19: The Stack 179

If you need exactly the same arguments for two or more commands in
sequence, you can execute LAST to return copies of the arguments to
the stack for the next command. If the commands don’t require ex-
actly the same arguments, or if the commands aren’t in sequence, it’s
easier to use local variables.

You can disable LAST (that is, the saving of arguments) by pressing

LAST in the MODE menu. The box disappears from the menu label,
indicating that arguments won't be saved. This practice is not gener-
ally recommended, since the calculator uses the saved arguments for
recovery when an error occurs. However, if a command or program
fails because of insufficient memory, you can attempt execution with
LAST disabled. When you're done, be sure to enable LAST again by
pressing LAST a second time.

Restoring the Stack

Each time you press (or a key that performs ENTER) the
HP-28S first saves a copy of the stack and then performs the specified
actions. If you're dissatisfied with the results, you can restore the
saved stack by pressing [[J[UNDOJ. Note that UNDO affects only the
stack—it doesn’t undo changes to user flags or user variables. For an
example using [l(UNDO], see “If You Execute the Wrong Function” on
page 47.

You can disable this feature by pressing unpo in the MODE menu.
The box disappears from the menu label, indicating that the stack
won’t be saved. To enable this feature again, press : uMpg a second
time.

180 19: The Stack

The Stack as a List

The contents of the stack are equivalent to the contents of a list—that
is, a sequence of objects. You can put all of the objects on the stack
into a single list by executing DEPTH —LIST. The command DEPTH
returns the number of objects on the stack, and the command -LIST
(stack to list) combines the specified number of objects into a list.

More often, a list is “opened” onto the stack by the command LIST—+
(list to stack). After the elements are manipulated on the stack, they
may be recombined into a list by the command —LIST. For examples
of these commands, see “MEDIAN (Median of Statistics Data)” on

page 273.

19: The Stack 181

20

Memory

Memory is used for a variety of purposes in the HP-28S, including
the command line, the stack, user memory, recovery features, and the
operating system. The command line and the stack are described in
chapters 18 and 19. This chapter primarily discusses user memory,
including directories; it also discusses low-memory conditions and its
effects on recovery features and the operating system.

User Memory

User memory can contain variables, and it can contain directories to
organize the variables.

Global Variables

A variable is the combination of a name object and any other object.
The name object represents the name of the variable; the other object
is the value or contents of the variable.

Global variables are those that are stored in user memory. There are
also local variables, which are created by program structures and exist
only during execution of the program structures. Local variables are
primarily a substitute for stack manipulations and are described in
chapter 19, “The Stack.” In the present chapter, the term “variables”
indicates global variables.

The contents of a variable can be any type of object. In part 1 you
created numerical variables, program variables, algebraic variables, list
variables, and array variables. You even created name variables,

where the contents of the variable was the name of another variable.

182 20: Memory

You used the following commands to create, recall, and purge vari-
ables. These commands treat all variables alike, regardless of their
contents.

Command Description

STO Creates a variable with the specified value and name.
RCL Recalls the contents of the specified variable.

PURGE Deletes one or more specified variables.
Directories

In chapter 4, “Repeating a Calculation,” you used the Solver to calcu-
late the total resistance of two series-parallel circuits, with two sets of
resistor values that could be applied to either circuit. Here is a review
of the concepts you learned.

There are two primary motivations for creating directories.

B To group together the variables for a particular application or topic.
You created the directory EE for your electrical engineering prob-
lems so that, when you’re working on these problems, you can
focus on the relevant variables. Equally important, when you're
working on other problems, the electrical engineering variables are
all hidden within the EE directory.

B To keep separate sets of variables that use the same names. You cre-
ated directories SP1 and SP2 (series-parallel-1 and series-parallel-2)
within EE to hold different values of the variables R1, R2, and R3.
You can switch from one set of values to the other simply by
switching directories.

Creating a Directory. To create a directory you enter a name and
execute CRDIR (create directory). The name of the directory appears in
the USER menu. The new directory is called a subdirectory, and the
directory that contains it is called its parent directory.

20: Memory 183

The Current Directory. Initially, the only directory that exists is the
built-in directory HOME. After creating other directories, you can
choose which is the current directory—that is, which set of variables
appears in the USER menu.

To choose the current directory you evaluate its name—for example,
if you've just created a directory, you make it the current directory by
pressing the appropriate key in the USER menu.

Almost all commands that use variables work only in the current di-
rectory, since the purpose of multiple directories is to control which
variables are available. You can alter a variable only if it’s in the cur-
rent directory.

The following commands in the MEMORY menu act on the current
directory.

Command Description

VARS Returns a list of names of all variables and directories in
the current directory.

ORDER Reorders variables and directories in the current direc-
tory as specified by a list.

CLUSR Purges all variables and empty directories in the current
directory.

The Current Path. You can check where you are in the directory
structure by executing the command PATH. It returns a list specifying
the sequence of directories from the HOME directory to the current
directory.

In some cases the calculator searches not only the current directory,
but the entire current path. The search begins in the current directory;
if the variable isn’t found, the search continues in the parent direc-
tory; and this process continues back to the HOME directory.

This occurs in the evaluation of names—after all, you could never re-
turn to a parent directory if you couldn’t successfully evaluate its
name. Evaluation of names occurs when you key in an unquoted
name, when you plot or use the Solver, when you evaluate algebraics
on the stack, and so on.

184 20: Memory

Other commands that search the current path are RCL and PRVAR
(print variables). Note that none of the actions that search the current
path can alter the variable.

Since the HOME directory is always on the current path, the calcu-
lator can always find variables in the HOME directory. You might
choose to limit the contents of the HOME directory to subdirectories
and those variables you want always available.

Directory Structure. The diagrams below show the directory struc-
ture you created in chapter 4. In the first diagram, HOME is the
current directory; in the second, EE; and in the third, SP2. Each dia-
gram uses the following symbols.

Symbols Used in the Directory Diagrams
name Name of a directory.

name A name in the current directory. These names appear in the
USER menu. The corresponding variables can be altered.

The current path.

A name on the current path. These names can be found only
by evaluation, RCL, and PRVARS. The corresponding vari-
ables can’t be altered.

20: Memory 185

HOME

. |
| ! | !

coT EE D RENAME

EQ2 SP2 SP1 EQ1

o

R3 R2 R1 EQ R3 R2 Rt EQ

Current Directory is HOME

HOME

T [I l

coT EE D RENAME

EQ2 SP2 SP1 EQ1

Current Directory is EE

HOME

1 | | |

CcoT EE D RENAME

Current Directory is SP2.

186 20: Memory

Purging a Directory. You can purge an empty directory just as you
would a variable: switch to the directory that contains the directory to
be purged, put the directory’s name on the stack, and execute
PURGE.

If the directory to be purged contains variables or subdirectories, you
must purge the variables or subdirectories before you can purge the
directory. Here’s a general procedure.

1. Switch to the directory to be purged.
2, Execute CLUSR to clear the directory.
3. Switch to the parent directory.

4. Purge the directory.

If a Horn-Empty Directory error occurs in step 2, the directory
contains a subdirectory that isn’t empty. In this case you must per-
form steps 1, 2, and 3 to clear the subdirectory. You can then
continue with step 2 through 4 to purge the directory.

Moving Up and Down the Directory Structure. Chapter 28 in-
cludes programs for moving up the directory structure (switching to a
parent directory) or moving down (switching to a subdirectory). See
“Changing Directories” on page 275.

Recovery Features

The HP-28S automatically saves copies of command lines, arguments,
and the stack. These copies enable you to recover from a mistake—to
go back to where you were before the mistake. You can then redo a
calculation without starting over from the beginning. The copies of
command lines and arguments are also handy for repeating
calculations.

These copies can consume a significant amount of memory. For each
of these recovery features—command lines, the stack, and argu-
ments—you can choose whether to enable or disable the feature. The
operations to enable or disable the recovery features appear in the
MODE menu.

20: Memory 187

Generally it’s best to leave these features enabled. If very little mem-
ory is available and large objects have been saved by the recovery
features, you can safely regain some memory by disabling and re-en-
abling each feature, thereby clearing the stored objects.

Low Memory

The HP-28S contains 32 Kbytes of user memory, of which about 400
bytes are reserved for system use. Virtually every HP-28S operation
requires some memory use—even interpreting the command line. The
amount of memory used by some algebra commands (COLCT,
EXPAN, TAYLR) increases rapidly as their arguments become more
complicated. Try to leave at least a few thousand bytes of memory
free for dynamic system use.

You can check the amount of available memory by executing MEM,
found in the MEMORY menu.

Because the HP-28S operating system shares memory with user ob-
jects, you can fill memory so full of user objects that normal calculator
operation becomes difficult or impossible. The HP-28S provides a se-
ries of low memory warnings and responses, listed below in order of
increasing severity.

Insufficient Memory. If there isn’t enough memory available for a
command to execute, an Insufficient Memory error occurs. If
LAST is enabled, the original arguments are restored to the stack. If
LAST is disabled, the arguments are lost.

No Room for UNDO. If there isn’t enough memory available to save
a copy of the stack, a Mo Room for UNDO error occurs. The UNDO
feature is automatically disabled; to reenable UNDO, press ‘unpo: in
the MODE menu.

No Room to ENTER. If there isn’t enough memory available to pro-
cess the command line, the calculator clears the command line and
displays Ho Room to ENTER. A copy of the unsuccessful com-
mand line is saved in the command stack if the command stack is
enabled.

188 20: Memory

If you're attempting to edit an existing object, using EDIT or VISIT,
and a copy of the unsuccessful command line is saved in the com-

mand stack, purge the original copy of the object, press [lJ{COMMAND]
to recover the command line containing the edited object, and press

ENTER] to enter the edited version.

Low Memory! If fewer than 128 bytes of free memory remain,
Low Memora! flashes once in the top line of the display. This mes-
sage will flash at every keystroke until additional memory is available.
Clear unneeded objects from memory before continuing your
calculations.

No Room To Show Stack. It is sometimes possible for the HP-285
to complete all pending operations, and not have enough free mem-
ory left for the normal stack display. In this case, the calculator
displays Mo Room to Show Stack in the top line of the display.
Those lines of the display that would normally display stack objects,
now show those objects only by type, for example, Feal Humber,
Alaebraic, and so on.

The amount of memory required to display a stack object varies with
the object type—algebraics usually require the most memory. Clear
one or more objects from memory, or store a stack object as a variable
so that it does not have to be displayed.

Out of Memory. In the extreme case of low memory, there is insuffi-
cient memory for the calculator to do anything—display the stack,
show menu labels, build a command line, and so on. In this situation,
you must clear some memory before continuing. A special

Qut of Memor g procedure is activated, which will create a display:

Qut of Memory

Purge?

Command 5t ack

EEE KT

20: Memory 189

The calculator will sequentially prompt you to clear:

1. The COMMAND stack (if enabled).
2. The UNDO stack (if enabled).

3. LAST Arguments (if enabled).

4. The custom menu (if any).

5. The stack.

6. Each variable in the HOME directory.

For each item that you want to purge, press the yes menu key; for
those that you want to keep, press no

After pressing YES at least once, you can try to terminate the

Qut of Memory procedure by pressing [ON]. If sufficient memory is
available, the calculator returns to the normal display; otherwise, the
calculator beeps and continues through the purge sequence. After cy-
cling once through the choices, the Out of Memaory procedure

attempts to return to normal operation. If there still is not enough free
memory, the procedure starts over with the sequence of choices to

purge.

If you press yes for an empty directory, it is purged. If you press
ves for a directory that contains variables, the variables in that di-
rectory are displayed.

Maximizing Performance

From time to time the calculator does “housekeeping” to make better
use of memory. Generally this process is noticeable only as short
pauses during plotting, for example; however, when memory is al-
most full and the stack contains hundreds of objects, the calculator
may respond slowly to even simple operations such as selecting a
menu.

This section contains tips for maximizing speed (by reducing the
amount of housekeeping required) and maximizing available memory
(by increasing the effectiveness of housekeeping).

190 20: Memory

To Maximize Speed:

® Don’t put more than a few hundred objects on the stack.

® Don't leave large lists (more than a few hundred objects) on the
stack; store them in user memory.

To Maximize Available Memory:

“#' The following procedure clears the stack, recovery data

(COMMAND, UNDO, LAST), the current custom menu
Note (CUSTOM), and any suspended programs.

1. Purge unwanted variables and directories from user memory.

2. Store in user memory any objects on the stack that you want to
keep.

3. Perform a System Halt ((ON](a]).

The current directory is now HOME.

To Minimize Memory Usage for Array Calculations: Store arrays
in variables and refer to them by name; avoid using them on the
stack. Here's a comprehensive strategy for doing so.

1. Plan in advance how many variables you'll need, including in-
termediate results.

2, Create small arrays of the correct type (real or complex, vector or
matrix), store them in variables, and then use RDM to adjust
their sizes.

3. Perform calculations using the storage arithmetic commands in
the STORE menu.

4. To act on individual elements, use GET, GETI, PUT, PUTI with
the variable’s name, or use algebraic syntax such as
‘R.S.63' EVAL and 'BC32' 5T0O; don't return the entire ar-
ray to the stack.

20: Memory 191

21

Menus

Every operation, command, and function on the HP-28S is available
on the keyboard or in a menu. When you select a menu, six menu
labels appear in the bottom line of the display. These labels constitute
one menu row, which indicates the current definitions of the six menu
keys at the top of the keyboard. (The Cursor menu is an exception; its
definitions are printed in white above the menu keys.)

In addition to the keys that select specific menus (such as [J[ARRAY] or
(TR1G]), the following keys control menu operations.

Key Description

() Cursor Menu On/Off. When the Cursor menu is not ac-
tive: selects the Cursor menu. When the Cursor menu is
active: selects the previous menu.

B(CUsTOM] Last Custom Menu. Displays the Custom menu last
created by the MENU command.

Next Menu Row. Displays the next row of menu labels.
If the last row is displayed, displays the first row.

B (FrReEV] Previous Menu Row. Displays the previous row of
menu labels. If the first row is displayed, displays the
last row.

B(vENUS] Menu Lock. Turns Menu Lock on and off. When Menu
Lock is on, the shifted and unshifted “positions” are
switched for the top three rows of the lefthand key-
board (letter keys through [R]). When Menu Lock is
on, pressing selects the ARRAY menu and pressing
B(A] writes the letter A.

192 21: Menus

Menus of Commands

The following menus contain keys for built-in operations, most of

which are programmable commands. For a brief description of the

commands in each menu, see appendix D, “Menu Map.” The Refer-
ence Manual covers these menus in alphabetical order and describes
them in detail.

The action of the keys in these menus depends on the entry mode,
described on page 169.

Menu Description
ALGEBRA Algebra commands.
ARRAY Vector and matrix commands.
BINARY Integer arithmetic, base conversions, bit
manipulations.

COMPLEX Complex-number commands.

LIST List commands.

LOGS Logarithmic, exponential, hyperbolic functions.
MEMORY User memory, directories.

MODE Display, angle, recovery modes.

PLOT Plotting commands.

PRINT Printing commands.

PROGRAM Program branch structures.

BRANCH

PROGRAM Program control, halt, and single-step operations.
CONTROL

PROGRAM Flags, logical tests.

TEST
REAL Real number commands.
SOLVE Numerical and symbolic solution commands, the

Solver.

21: Menus 193

Menu
STACK
STAT
STORE
STRING
TRIG

Description
Stack manipulation.
Statistics and probability commands.
Storage arithmetic.
Character strings.

Trigonometric functions, coordinate and angle
conversions.

Menus of Operations

The following menus offer non-programmable operations.

Menu

Cursor

CATALOG

UNITS

Description

For editing the command line. Described in chapter
18.

Catalog of commands, including USAGE submenu.
Described in chapter 22.

Units available for conversion. Described in chapter
14.

Menus of Variables

Solver

USER

Description

Stores values and solves for variables in the current
equation. Distinctive appearance (black letters against
white menu label) indicates its distinctive action.

Displays variables and subdirectories in current direc-
tory. The action of the keys depends on the entry
mode, described on page 169.

194 21: Menus

Custom Menus

The command MENU can create a custom menu from a list of names
and commands. The custom menu can be similar to the Solver menu
or the USER menu.

B If the first element in the list is the command STO, followed by a
sequence of names, MENU creates a Custom Input menu. This
menu looks and acts like the Solver menu: pressing a menu key
take a value from the stack and stores it in the corresponding vari-
able. For an example, see chapter 27, “Interactive Programs.”

® [f the list contains a sequence of names and commands (the first
element being different from STO), MENU creates a Custom User
menu. This menu acts like a hybrid of the USER menu and a com-
mand menu. For an example, see “Changing Directories” on page
275.

21: Menus 195

22

Catalog of Commands

In chapter 1 you used the catalog of commands to check the correct
spelling of a few commands and to check various combinations of
arguments for the function +. This chapter reviews the operations
available in the catalog, including the USAGE menu that shows cor-
rect combinations of arguments.

Pressing [(CATALOG] displays the command ABORT, which is the first
command alphabetically, and the CATALOG menu.
Key Description

NEXT Advances the catalog to the next command. If you press
and hold this key, the catalog advances repeatedly until
you release the key.

PREV. Move the catalog back to the previous command. If you
press and hold this key, the catalog moves back repeatedly
until you release the key.

AUSE” Activates the USAGE menu display (see below) showing
the stack arguments used by the command.

FETEH Exits the catalog and writes the command’s name in the
command line.

QulT Exits the catalog, leaving the command line unchanged.

You can exit the catalog and clear any current command line by press-

ing (ON].

196 22: Catalog of Commands

Finding a Command

You can use the keys on the left-hand keyboard to move the catalog
to a specific character.

B Pressing a letter key on the left-hand keyboard moves the catalog
to the first command that starts with that letter. If there are no
commands starting with that letter, the catalog moves to the last
command starting with the previous letter.

® Pressing a non-letter character key (such as §(T]) moves the cata-
log to the first command that starts with that character. If there are
no commands starting with that character, the catalog moves to +,
the first command that starts with a non-letter character.

B Pressing [J[(MENUS] moves the catalog to +STR, the last entry in the
catalog.

Checking Command Usage

You can check the correct stack argument types for the command cur-
rently displayed by the catalog. Pressing USE activates a second
level of the catalog, called the USAGE menu, that shows all combina-
tions of arguments for the command. If the command accepts more
than one combination of arguments, the following menu keys appear.
(If the command accepts only one combination of arguments, the la-
bels HEXT and PREV don't appear)

Key Description
HEXT - Displays the next combination of arguments.
PREY Displays the previous combination of arguments.
guIT Returns to the main catalog, with the current command

displayed. You can then move through the catalog to other
commands, or exit by pressing 8uiT again.

You can exit both USAGE and the main catalog, and clear any current
command line, by pressing {ON].

22: Catalog of Commands 197

Evaluation

All calculator operations, from simple keyboard calculations to com-
plicated programs, involve evaluation. Some examples:

® When you key one or more objects into the command line and
press (ENTER], the command line is translated into a program,
which is then evaluated.

B When you press a key on the USER menu in Immediate entry
mode, the corresponding name is evaluated.

8 When you perform step-by-step differentiation, you press to
evaluate the expression in level 1.

® When you use the Solver to find numerical solutions, the procedure
stored in the variable EQ is repeatedly evaluated.

It’s easiest to understand calculator operations in terms of delaying
evaluation and causing evaluation. Although the term “delaying eval-
uation” is new, the process is familiar: whenever you enter a quoted
name or an algebraic, the object’s delimiters indicate that you want to
delay evaluation of the object—that you want the object to go on the
stack.

Delayed evaluation is the basis for programming on any computing
device, since otherwise a program would execute as soon as you
wrote it. The HP-28S extends the concept in a uniform way to allow
symbolic operations—you can use names and algebraics as data for
symbolic calculations. For example, you choose when, if ever, you
want to evaluate an expression. You can differentiate it, symbolically
solve it, make substitutions for variables in it, and so on. Of course,
you can also calculate its numerical value.

198 23: Evaluation

This chapter describes what happens when you evaluate the various
types of objects. As a general introduction, consider the following ob-
ject classes.

W Data-class objects. This class comprises real numbers, complex num-
bers, binary integers, strings, arrays, and lists. The “value” of a data
object is exactly what it contains.

B Name-class objects. This class comprises global names and local
names. The “value” of a name is generally the contents of a
variable.

B Procedure-class objects. This class comprises algebraics and pro-
grams. The “value” of a procedure is the result of whatever process
it defines.

In a rough way, these classes define what happens when you evalu-
ate an object: it returns itself, or the contents of a variable, or the
result of a process. It's not quite that simple, though, and more details
are provided below for each object class.

Data-Class Objects

This is the simplest class of objects. Evaluating any data-class object
returns the same object.

Note that lists are all-purpose data objects, since they can contain any
object type. Consider a list of names: the names are protected from
evaluation by the list, and they can’t be evaluated until they're re-
moved from the list.

Name-Class Objects

Generally, the “value” of a name is the contents of a variable. Evalua-
tion of local names is simple and is described first, followed by
evaluation of global names.

23: Evaluation 199

Evaluation of Local Names

As described in chapter 19, the use of local variables simplifies stack
manipulations. The purpose of local variables is (1) to remove the

variable’s contents from the stack so it's out of the way and (2) to
return a copy of the variable’s contents whenever you need it. Conse-
quently, evaluating a local name always returns the contents of the
corresponding local variable to the stack.

Evaluation of Global Names

In general, evaluating a global name causes evaluation of the contents
of the corresponding global variable. In other words, evaluating a
global name has the same effect as evaluating the object it represents.

There are two exceptions to the general rule:

B If no variable exists with the specified name, the name is returned
to the stack. An undefined name used as a variable is called a for-
mal variable.

B If the contents of the specified variable is an algebraic, the algebraic
is not evaluated. The calculator avoids evaluation of these objects so
you can continue symbolic calculations. If you do want evaluation,
execute the command EVAL with the algebraic in level 1. (To eval-
uate an algebraic repeatedly until it produces a numerical result,
execute =NUM.)

If the variable contains a data-class object, evaluating the variable’s
name is equivalent to simply recalling the variable’s contents. How-
ever, evaluating a variable’s name can lead to a long chain of
evaluations. For example, if a variable contains a name, and that
name is the name of a second variable, and the second variable con-
tains a name, and that name is the name of a third variable, then
evaluating the name of the first variable ultimately causes evaluation
of contents of the third variable.

200 23: Evaluation

”a Do not create a variable whose value is its own name,
such as a variable named X that contains the name 'X’.
Note Evaluating such a variable causes an endless loop. To

halt an endless loop, you must perform a system halt

([on] (a]), which also clears the stack.

Similarly, do not create variables that reference one another in a circu-
lar definition. Evaluating a variable included in a circular definition
also causes an endless loop.

Procedure-Class Objects

Generally, the “value” of a procedure is the result of whatever process
it defines. Programs are the most general procedure-class objects, so
they're described first, followed by algebraics.

Evaluation of Programs

A program is a sequence of objects and commands. This manual uses
the terms “evaluate a program” and “execute a program” inter-
changably. In general, evaluating a program takes the program'’s
contents in order, putting each object on the stack and executing each
command. There are two additional points to remember:

B Unquoted names are evaluated, while quoted names go on the
stack. Names are quoted expressly to delay evaluation, as discussed
on page 57.

B Program structures are executed according to their own rules. In
part 1 you wrote several user functions, which contain a local-
variable structure. Program structures are described in chapter 26.

23: Evaluation 201

The rules for evaluating names and evaluating programs lead to one
of the fundamental ideas in programming the HP-28S. For this dis-
cussion, “program” means a program stored in a variable, and “name
of a program” means the name of the variable that contains a
program.

The fundamental idea is called structured programming. It means that a
complicated task is broken into subtasks, and a program is written for
each subtask. The main program can now be relatively simple, reflect-
ing the overall logic of the task. It can execute each subtask simply by
including the unquoted name of the program for that subtask. If a
subtask is executed more than once, the unquoted name can be in-
cluded more than once. If other main programs use the same subtask,
they can execute the subtask in the same way.

Structured programming is demonstrated in “Expanding and Collect-
ing Completely” on page 253, “Displaying a Binary Integer” on page
257, and “Median of Statistics Data” on page 270.

Evaluation of Algebraics

Each algebraic is equivalent to a program that contains only unquoted
names and functions. Evaluating an algebraic produces the same re-
sult as evaluating the corresponding program: unquoted names are
evaluated, and functions are executed. This topic is also discussed in
“Evaluation of Algebraic Objects” in the Reference Manual.

The result of evaluating a name depends on the existence of a vari-
able with that name, as described in “Evaluation of Global Names”
above. Some examples:

W If a name refers to a user function, you can use the user function’s
name like a built-in function. Evaluation of the algebraic causes
execution of the user function. The arguments to the user function,
enclosed in parentheses and following the user function’s name, are
part of the algebraic.

202 23: Evaluation

B If a name refers to a program that takes no arguments from the
stack and returns exactly one result, you can use the program'’s
name to refer (indirectly) to the result. Evaluation of the algebraic
causes execution of the program, so in effect the program’s name is
replaced by the result. For examples, see “Summary Statistics” on
page 262.

B [f a name refers to a second algebraic, evaluation of the first alge-
braic doesn’t cause evaluation of the second algebraic. Instead, the
second algebraic effectively replaces its name in the first algebraic.

A special case among functions is the function “=", which distin-
guishes equations from expressions. Depending on the Result mode
(Symbolic or Numerical), executing = returns an equation or a nu-
merical result.

® In Symbolic Result mode, evaluating an equation produces a new
equation. The new left-hand expression is the result of evaluating
the original left-hand expression. The new right-hand expression is
the result of evaluating the original right-hand expression.

® In Numerical Result mode, evaluating an equation produces the nu-
merical difference between the original left-hand expression (nu-
merically evaluated) and the original right-hand expression
(numerically evaluated).

The next section describes Result modes in more detail.

Evaluation of Functions

When a function is evaluated, its action depends on the current Result
mode, which can be Symbolic or Numerical. These modes are also
described in the next chapter, “Modes.”

Symbolic Result Mode. This is the default case, where a function
accepts symbolic arguments and returns symbolic results. The action
of functions in Symbolic Result mode is evident when you calculate
with names and expressions to create larger expressions.

23: Evaluation 203

Numerical Result Mode. This alternative is used in plotting and by
the Solver. Its purpose is to ensure a numerical result from the func-
tion. In this mode, functions repeatedly evaluate symbolic arguments,
accepting only numerical arguments and returning numerical results,

You can force evaluation of an object until it returns a numerical re-
sult by executing =NUM (to number); in chapter 5 you did this to
return a numerical value for =.

|ﬁl In Numerical Result mode, do not evaluate a variable
whose value includes its own name, such as a variable
Note named X that contains the expression 'X+Y’. Evaluating

such a variable causes an endless loop. To halt an end-
less loop, you must perform a system halt ([ON][a]), which also clears
the stack.

Similarly, do not create variables that reference one another in a cir-
cular definition. Evaluating a variable included in a circular definition
also causes an endless loop.

204 23: Evaluation

24

Modes

You can affect the results of many operations by selecting a mode.
Some modes, such as angle mode (Degrees or Radians), can be se-
lected by pressing a menu key. The mode’s menu label includes a
small square when the mode is selected. For example, the menu label
for Radians angle mode appears as RAD= when that mode is
selected.

Most modes, such as Beeper mode (on or off), can be selected by set-
ting or clearing a user flag, using the commands 5F (set flag) and CF
(clear flag). For example, flag 51 controls Beeper mode, so you can
turn the beeper off by executing 51 5F.

This chapter describes how the modes affect calculator operation and
lists the associated menu labels and flags. Also shown are annunci-
ators that appear when a mode is selected. For each mode, the
selection listed first is the default selection, active following Memory
Lost.

General Modes

These modes affect computations and the beeper.

Angle Mode
This mode determines whether real numbers represent angular mea-

sure in degrees or in radians. This affects arguments to trigonometric
functions and the results from inverse trigonometric functions.

24: Modes 205

Degrees Mode (DEG= , Flag 60 Clear). Real numbers represent
angular measure in degrees.

Radians Mode (. Rafi= , Flag 60 Set, (27)). Real numbers repre-
sent angular measure in radians.

Beeper Mode

This mode controls whether the calculator makes sounds when an er-
ror occurs or BEEP is executed.

Beeper On (Flag 51 Clear). The calculator makes sounds.

Beeper Off (Flag 51 Set). The calculator is silent.

Principal Value

A solution returned by ISOL or QUAD generally requires arbitrary
signs (+1 or —1) and integers (0, 1, 2, ...) to represent all possible
solutions. This mode determines whether arbitrary signs and integers
are included in solutions generated by ISOL or QUAD.

Principal Value Off (Flag 34 Clear). Solutions returned by ISOL
and QUAD include variables sl, s2, ..., for arbitrary signs and nl,
n2, ..., for arbitrary integers.

Principal Value On (Flag 34 Set). ISOL and QUAD take arbitrary
signs to be +1 and arbitrary integers to be 0.

Constants Mode

This mode affects whether evaluation of a symbolic constant (=, i,
MINRE, MAXE, or w) returns its numerical value. In Numerical Results
mode (flag 36 clear), evaluation of a symbolic constant returns its nu-
merical value regardless of Constants Mode.

Symbolic Constants (Flag 35 Set). Evaluation of a symbolic con-
stant returns its symbolic form.

206 24: Modes

Numerical Constants (Flag 35 Clear). Evaluation of a symbolic
constant returns its numerical value.

Results Mode

The current Result mode affects the result of evaluating a function
when its arguments are symbolic.

Symbolic Results (Flag 36 Set). Given symbolic arguments, func-
tions return symbolic results.

Numerical Results (Flag 36 Clear). Functions always return nu-
merical results. To do so, functions evaluate symbolic arguments
repeatedly to determine their numerical values. Evaluation of a sym-
bolic constant returns its numerical value regardless of Constants
Mode.

Entry and Display Modes

These modes affect how objects are entered and displayed.

Entry Mode

The current entry mode affects the result when you press a command,
function, or User menu key. The entry mode automatically changes
when you press (*], l(*], or [«]; you can also change it manually by
pressing [a]. The appearance of the cursor indicates the current entry
mode. For details, see chapter 18, “The Command Line.”

Immediate Entry (Open Cursor). The command line is executed
when you press a command, function, or User menu key.

Algebraic Entry (Partly Filled Cursor). The command line is exe-
cuted when you press a command key.

Alpha Entry (Solid Cursor, (0). The command line is executed only
when you press (ENTER].

24: Modes 207

Replace or Insert Mode

Pressing in the cursor menu switches between Replace and Insert
modes. The appearance of the cursor indicates Replace or Insert
mode.

Replace Mode (Box Cursor). New characters replace existing
characters.

Insert Mode (Arrow Cursor). New characters are inserted between
existing characters.

Uppercase or Lowercase
Pressing switches between Uppercase and Lowercase modes.

Uppercase Mode. Pressing a letter key writes an uppercase letter in
the command line.

Lowercase Mode. Pressing a letter key writes a lowercase letter in
the command line.

Level 1 Display

Many objects are too large to show on a single display line. You can
choose to use more than one line to display the object in level 1, if
needed, or to use only one line regardless of the object’s size. This
choice affects the printed output in Trace mode.

ML On (L= , Flag 45 Set). Objects in level 1 are displayed on
more than one line if needed.

MLOff(ML ,Flag 45 Clear). Objects in level 1 are displayed on
only one line.

208 24: Modes

Decimal Point Mode

The comma and the period share the roles of radix mark (to distin-
guish the integer part of a number from the fractional part) and
separator (to distinguish objects in the command line; the space is al-
ways a separator). You can assign these roles to the comma and
period in either order.

RDX, Off (RDX, , Flag 48 Clear). The period is the radix mark
(decimal point), and the comma is a separator.

RDX, On (ROX, » , Flag 48 Set).
The comma is the radix mark, and the period is a separator.

Number Format

These modes determine the number of decimal places displayed for
real numbers. The commands FIX, SCI, and ENG require a real-num-
ber argument n. The current number format mode also affects the
command RND (round).

STD Format { S10s). Real numbers are displayed with a decimal
point or an exponent only if necessary.

FIX Format (FIX=). Real numbers are displayed with n decimal
places. An exponent is displayed only if necessary.

SCl Format (SCI=). Real numbers are displayed as a mantissa,
which is less than 10 and contains n decimal places, and an exponent.

ENG Format (ENG=). Real numbers are displayed as a mantissa,
which contains 7 + 1 digits, and an exponent that is a multiple of 3.

integer Base
You can choose the base used for entering and displaying binary inte-

gers. The choice of base doesn’t affect the internal structure of binary
integers, which are always treated as a sequence of bits.

24: Modes 209

DEC Base (DEC»). Binary integers entered without base markers
are interpreted in base 10. All binary integers are displayed in base 10
and show a “d” base marker.

HEX Base (HEX*). Binary integers entered without base markers
are interpreted in base 16. All binary integers are displayed in base 16
and show an “h” base marker.

OCT Base (OCT»). Binary integers entered without base markers
are interpreted in base 8. All binary integers are displayed in base 8
and show a “0” base marker.

BIN Base (EIN=). Binary integers entered without base markers
are interpreted in base 2. All binary integers are displayed in base 2
and show a “b” base marker.

Binary Integer Wordsize

The current wordsize can range from 1 bit through 64 bits. It controls
how binary integers are displayed; also, binary integers are truncated
to the current wordsize when used as arguments or returned as re-
sults. To set the wordsize to n, execute n STWS (store wordsize).

Recovery Modes

The recovery modes determine whether copies are made of command
lines, of the stack, and of arguments to commands. These copies can
help you to recover if you make a mistake.

CMD Mode

This mode determines whether a copy of the command line is saved
when you press (or a key that performs ENTER).

CMD On { cMOw). Command lines are saved for recovery by
W(CoMMAND].

210 24: Modes

CMD Off { cwD). Command lines are not saved.

UNDO Mode

This mode determines whether a copy of the stack is saved when you
press (or a key that performs ENTER).

UNDO On ({ UHDD®). The stack is saved for recovery by [J[UNDO).

UNDO Off { UNOO). The stack is not saved.

LAST Mode

This mode determines whether copies of arguments are saved when a
command is executed.

LAST On (Flag 31 Set, LAST*). Arguments are saved for recovery
by LAST or in case of error.

LAST Off (Flag 31 Clear, LAST). Arguments are not saved. If an
error occurs, the arguments to the last command are not returned to
the stack.

Mathematical Exceptions

Certain errors that can arise during ordinary real number calculations
are called mathematical exceptions. An exception can act as an ordinary
error and halt the calculation, or it can supply a default result and
allow the calculation to proceed.

Infinite Result Action

An Infinite Result exception occurs when a calculation returns an infi-
nite result. Examples include evaluation of 'LH¢@3 ', 'TAH(S@> "
(in Degrees angle mode), or 'x.-@".

Infinite Result Error On (Flag 59 Set). Infinite Result exceptions
are errors.

24: Modes 211

Infinite Result Error Off {Flag 59 Clear). Infinite Result exceptions
return +9.99999999999E499 and set the Infinite Result indicator (flag
64).

Overflow Action

An Overflow exception occurs when a calculation would return a fi-
nite result whose absolute value is greater than the largest machine-
representable number. Examples include the evaluation of
'OE493+2E495 ", 'EXFP(SP@AY ', or 'FRCT ZBA60 ",

Overflow Error Off (Flag 58 Clear). Overflow exceptions return
+9.99999999999E499 and set the Overflow indicator (flag 63).

Overflow Error On (Flag 58 Set). Overflow exceptions are errors.

Underflow Action

Underflow exceptions occur when a calculation returns a finite result
whose absolute value is smaller than the smallest machine-
representable number. Examples include the evaluation of
"1E-433-2' or 'ERP(-5S8@82 ",

Underflow Error Off (Flag 57 Clear). Underflow exceptions return
the default result 0. They set the Underflow+ indicator (flag 62) or
the Underflow— indicator (flag 61), depending on the sign of the ac-
tual resuit.

Underflow Error On (Flag 57 Set). Underflow exceptions are errors.
They return the error message Meaative Underflow or
Fazitiwe Underflow, depending on the sign of the actual result.

Printing Modes

The following modes give you greater flexibility in printing.

212 24: Modes

Trace Printing
You can automatically print a record of your calculations.

Trace Printing Off (IRAC , Flag 32 Clear). No automatic printing
occurs.

Trace Printing On (TRACs , Flag 32 Set). Each time the command
line is executed, the calculator prints the contents of the command
line, the operation that caused execution, and the result in level 1.

Auto CR Mode

Generally you want to send data to the printer and print the data
with a single command. In other cases, such as printing graphics, you
want to accumulate data in the printer without printing. This mode
determines whether print commands automatically cause printing.

Auto CR (Flag 33 Clear). Print commands send Carriage Right at
the end of transmission, causing the data to be printed.

Accumulate Print Data (Flag 33 Set). Print commands send data
without Carriage Right, causing the data to accumulate in the printer
buffer.

Print Speed

The calculator can’t sense when the printer is ready for more data, so
it computes the rate at which data can safely be transmitted. This
mode determines whether the computation is made for a printer
powered by batteries or one that is powered by an adaptor.

Normal Print Speed (Flag 52 Clear). The calculator sends data at a
rate suitable for battery-powered printing.

Faster Print Speed (Flag 52 Set). The calculator sends data at a
rate suitable for adaptor-powered printing.

24: Modes 213

Print Spacing
This mode determines whether blank lines are automatically printed.

Single-Space Printing (Flag 47 Clear). No blank lines are printed
automatically.

Double-Space Printing (Flag 47 Set). One blank line is automati-
cally printed between every two text lines.

214 24: Modes

System Operations

This chapter describes special key combinations that interrupt normal
HP-28S operation. These system operations include printing the dis-
play, adjusting display contrast, halting programs, resetting memory,
and performing diagnostic tests.

All system operations begin by pressing the key. You can cancel
any system operation by pressing before you release [ON].

The table below shows the keystrokes for system operations, followed
by a description of each.

System Operations

Name Keystrokes
Print Display

Contrast Control or [ON](=]
Attention

System Halt (ON](a)

Memory Reset (ON]JUNS] ()
Repeating Test (oN)[d
Keyboard Test

Cancel System Operation

25: System Operations 215

Printing the Display
To print the current display image:

1. Press and hold [ON].
2. Press (the key with “PRINT” above it).
3. Release [ON].

Contrast Control
To change the display contrast:

1. Press and hold (ON].

2. Press [+]to increase the contrast or press (-] to decrease the con-

trast. As long as you hold down [ON], you can press [+] or (-]
repeatedly or continuously to find the best contrast.

3. Release [ON].

Clearing Operations

There are three clearing operations, given below in order of increasing
severity.

Attention

To return to the normal stack display, execute Attention by pressing
[ON]). In some cases you may need to press twice. Attention has
following effects:

® Clears the command line.
B Cancels all command or procedure execution.
® Exits special operations such as FORM, PLOT, and catalogs.

® Restarts normal keyboard operation.

216 25: System Operations

System Hait

To halt a program that doesn’t respond to (ON], execute System Halt
as follows:

1. Press and hold [oN].
2. Press [a].

3. Release [ON].
System Halt has the following effects:

B All the effects of Attention.

B (Clears all suspended programs and local variables.

B Clears the stack.

B Clears items saved for recovery (CMD, UNDO, LAST).
B (lears the custom menu.

B Selects HOME as the current directory.

B Activates the cursor menu.

B Selects Trace Printing Off mode.

Memory Reset
To reset all memory:

1. Press and hold [ON].

2. Press and hold and [p].
3. Release and [»].

4. Release [ON].

Memory Reset has the following effects:

B All the effects of Attention and System Halt.
B Purges all user variables and directories.
W Resets all user flags to their default values.

® Beeps and displays Memory Lost in display line 1.

25: System Operations 217

Test Operations

There are two system operations for testing the calculator. The first is
a repeating test of the electronics, which runs without assistance. The
second is a keyboard test, which requires you to press all the keys in a
specified sequence. Both tests perform a System Halt.

Repeating Test

To perform the repeating test:

1.

218

Start the test.

a. Press and hold [ON].
b. Press [(«].

¢. Release [ON].

The display shows horizontal and vertical lines, a blank display,
a random pattern, and then it briefly displays the result of the
test before starting over.

B The message 0K -22% indicates that the calculator passed the
test.

B A message such as 1 FRIL indicates that the calculator failed
the test. The number indicates the nature of the failure.

If you interrupt the test by pressing a key, the test returns a
failure message because it didn’t expect any keystrokes. Such a
failure message doesn’t indicate a problem with the calculator.

Exit the test by performing a System Halt.
a. Press and hold [ON].

b. Press (a].

¢. Release [ON].

25: System Operations

Keyboard Test
To perform the keyboard test:

1. Start the test.
a. Press and hold [oN].

b. Press (NEXT).
€. Release [ON].
2. The calculator displays KEVYEOARD TEST.
a. Test the first row of the lefthand keyboard by pressing
GINEE
b. Test the second through sixth rows of the lefthand key-
board in the same way.

. Test the first row of the righthand keyboard by pressing
(a) Y]

d. Test the second through seventh rows of the righthand
keyboard in the same way. (Press the key in the correct
order—it won't interrupt the test.)

3. If you've pressed the keys in the correct order and the keyboard
is working properly, the calculator displays 0k-z&3. A message
such as 1 FRIL indicates that you didn’t follow the correct or-
der or the calculator failed the test. The number indicates the
nature of the failure.

4. Press [ON].

25: System Operations 219

Programming

Page 222 26: Program Structures
234 27: Interactive Programs
240 28: Programming Examples

Program Structures

Many programs are equivalent to a series of immediate-execute key-
board computations. Objects go on the stack and commands are
executed, producing the desired result. These programs are simply a
record of the objects and commands, written in the same order as you
would execute them from the keyboard. However, there are features
you can use in programs that go beyond simple keystrokes.

For example, in part 1 you wrote programs that created local vari-
ables. The special command +, followed by one or more names,
followed by a procedure, is called a local-variable structure. You can’t
execute the command + from the keyboard; it must appear in the
same program as the names and procedure that constitute the entire
program structure.

This chapter first reviews the local-variable structure. It then describes
additional program structures that conduct tests and modify program
execution based on the result. All commands for these program struc-
tures appear in the PROGRAM BRANCH menu. Be sure to read the
first example in “Conditional Structures” on page 223, which intro-
duces concepts used in the remainder of the chapter.

Local-Variable Structure

In part 1 you wrote several user functions, which are the most impor-
tant application of the local-variable structure. There are two
requirements for user functions. They must:

B Explicitly indicate their arguments.

B Return exactly one result.

222 26: Program Structures

For example, the user function COT (from chapter 5) was written:
2 = 'INVOTAMGx2 ' =

Here the local-variable structure stores one argument in a local vari-
able : (satisfying the first requirement) and evaluates the expression
PINVETAN G0 ! (satisfying the second requirement). The user func-
tion O~G (from chapter 14) included a program rather than an
expression but, since the program returned exactly one result, O-G
also satisfied the second requirement.

These requirements apply only to user functions. More generally, local
variables are used as a substitute for stack manipulations. The follow-
ing example returns the sum and difference of two numbers. Since it
returns two results, it can’t be a user function. ‘
FoxMod E oH o9 o+ ooy - H

For more examples, see the programs in chapter 28. They use local-
variable structures more often to avoid stack manipulations than to
create user functions.

Conditional Structures

Conditional structures enable a program to test a specified condition
and make a decision based on the result of the test. This section first
gives an example of a conditional structure. It uses that example to
discuss program structures in general, and then it describes other
types of conditional structures.

Suppose you're writing a program that uses the variable x, and you
want to calculate (sin x)/x. A problem arises because the quotient is
undefined when x = 0. The following example returns (sin x)/x if
x # 0, or returns 1 if x = 0.

IF ¥ @ = THEN ¥ SIN % - ELSE 1 EMD

26: Program Structures 223

Here’s how this structure works when you execute the program:

1. The IF command simply marks the start of the structure. It can
be anywhere before the THEN command.

2. X is evaluated.
3. The number 0 goes on the stack.

4. The command = takes the value of X and the number 0 as
arguments.

B [f the arguments are “not equal”, # returns 1.
B If the arguments are not “not equal”, # returns 0.
5. The command THEN takes 1 or 0 as its argument.

B If its argument is 1, THEN evaluates the program up to ELSE
(namely # SIH ®).

® If its argument is 0, THEN evaluates the program from ELSE
to END (namely 1).

6. Program execution continues after the END command.

Before continuing with specifics about conditional structures, here’s
some general information about program structures.

Program-Structure Commands. The commands IF, THEN, ELSE,
and END are examples of program-structure commands. The order and
meaning of these commands are similar to their use in English. You
can’t use program-structure commands as flexibly as other commands;
they work only in the combinations described in this chapter.

Test Functions and Commands. The function # is called a fest
function. Given two numbers, # returns 1 or 0, indicating whether the
test is true or false. Other test functions are <, £, =,*, and ==. (Re-
member that = is used for equations, not to test equality.) Given
symbolic arguments, test functions return a symbolic result.

There are also test commands that always return 1 or 0. For example,
the test command SAME is similar to ==, but it simply tests whether
the two objects are identical. Additional test commands are available
for working with flags (described next). For more information about
test functions and commands, see “PROGRAM TEST” in the Refer-
ence Manual.

224 26: Program Structures

Flags. The numbers 1 and 0 that are returned by test commands are
called stack flags. Because they represent the truth or falsity of the
test, 1 is called a true flag, and 0 is called a false flag.

The term “flag” also refers to the built-in user flags. They are num-
bered 1 through 64; flags 31 through 64 have specific meanings to the
calculator, while flags 1 through 30 can represent any true/false dis-
tinction you wish. You can effectively store a stack flag in a user flag,
since both represent a truth value. For example, the sequence

IF A BE < THEN 12 SF ELSE 12 CF END

sets flag 12 if A < B, or it clears flag 12 if A > B. You can later test
whether flag 12 is set by the sequence

IF 12 F5? THEHN ...

which returns the same truth value as the original test A B <. The
advantage to this technique is that the truth value of the original test
is preserved, even if the values of A and B have changed. The com-
mands for changing and testing user flags appear in “PROGRAM
TEST” in the Reference Manual. For the remainder of this chapter,
“flag” refers to a stack flag.

Clauses. The objects and commands between two program-structure
commands are called a clause. Each clause is handled as a single en-
tity by the program structure. A clause is labeled by its logical role or
by the command that precedes it. In the first example:

B The clause between IF and THEN (X @ #) is called the test clause
or IF clause.

B The clause between THEN and ELSE (¥ SIH X) is called the
true clause or THEN clause.

B The clause between ELSE and END (1) is called the false clause or
ELSE clause.

26: Program Structures 225

The clauses in the example represent simple numerical calculations,
but you can include any sequence of objects and commands. In effect,
a clause is like a subprogram within the program. If you write a sepa-
rate program that contains the clause and store this program in a
variable, you can use the variable’s name as the entire clause. In this
case a simple-looking structure like

IF A THEN B ELSE C END

can represent a complicated decision process with two possible com-
plicated results, depending on the contents of A, B, and C.

IF ... THEN ... ELSE ... END

Using the terminology just defined, the evaluation of this conditional
structure can be described as follows: The IF clause is evaluated and
returns a flag. If the flag is true, the THEN clause is evaluated; if the
flag is false, the ELSE clause is evaluated.

For another example of this structure, see “FIB2 (Fibonacci Numbers,
Loop Version)” on page 248.

IFTE (1f-Then-Else-End Function)

The first example in this chapter can be written in algebraic syntax by
using the function IFTE:

"IFTECK=8,5INCRI AKX, 10!

This form is handy for symbolic calculations. If you execute the pro-
gram-structure version while X is undefined, this algebraic form is the
result. The arguments to IFTE must be representable in algebraic syn-
tax; to include RPN commands in the conditional, you must use the
program-structure form.

The IFTE function is used in “FIB1 (Fibonacci Numbers, Recursive
Version)” on page 247.

226 26: Program Structures

7———-—ﬁ

IF ... THEN ... END

If an ELSE clause isn't required—that is, if the choices are to do
something or do nothing—you can omit ELSE from the program
structure. The following example ensures that the object in level 1 is
greater than the object in level 2 by swapping them if necessary.

IF DUFPZ2 £ THEH SHWAP EHD

Note the use of DUP2 to make copies of the objects. The copies are

then consumed by the comparison <. For another example of IF ...
THEN ... END, see “SORT (Sort a List)” on page 270.

IFT (If-Then-End Command)

You could write the previous example by using the command IFT in-
stead of the program structure:

DUFZ £ # SWAP = IFT

The sequence DUUFz < leaves a flag on the stack, the program

SHAF = goes on the stack, and the command IFT takes the flag
and the program as arguments. If the flag is true, IFT evaluates the
program; if the flag is false, IFT drops the program. The result is iden-
tical to the program-structure form.

Error Traps

In some cases you can predict that an error might occur during pro-
gram execution. Normally an error cancels program execution; but if
you trap the offending command by enclosing it in a special program
structure, the program can continue execution when the error occurs.

Remember the problem with (sin x)/x—it causes an Infinite Result er-
ror when x = 0. Another method for defining (sin 0)/0 = 1 would
be:

IFEER ¥ SIN ¥ .~ THEHM OROFZ 1 EHD

26: Program Structures 227

This means: Evaluate the IFERR clause (¥ SIH =). If an error oc-
curs, evaluate the THEN clause (DROFZ 1).

This example includes the command DROP2 to drop the two zeros
that caused the error. Note that this assumes that LAST is enabled. If
LAST is disabled, the zeros aren’t present and the DROP2 command
is inappropriate. Be sure to consider the state of LAST when using
error traps.

Another example of IFERFE ... THEH ... EHD appears in “BDISP (Bi-
nary Display)” on page 259. Also, you can include an ELSE clause to
be evaluated only if an error doesn’t occur, using the form

IFERE ... THEM ... ELSE ... END

Definite Loop Structures

Loop structures contain a loop clause that is repeatedly evaluated. In a
definite loop structure, the program specifies in advance how many
times to evaluate the loop clause. Another type of program structure,
called an indefinite loop structure, uses a test clause to determine
whether to repeat evaluation of the loop clause. This section describes
definite loop structures; indefinite loop structures are described on
page 231.

START... NEXT

The following example sounds a tone four times.

1 4

TART 448 .1 BEEF HEST
This structure works as follows:

1. The command START takes the values 1 and 4 from the stack
and creates a counter. The counter will be used to keep track of
how many times to repeat the loop. The value 1 specifies the
initial value of the counter, and the value 4 specifies its final
value.

228 26: Program Structures

2. The loop clause 44 ,1 EEEF is executed.
3. The command NEXT adds 1 to the counter.

4. The current counter value is compared with the final counter
value.

B [f the current counter value doesn’t exceed the final counter
value, steps (2), (3), and (4) are repeated.

B If the current counter value exceeds the final counter value,
the definite loop structure is completed, and program execu-
tion continues after the NEXT command.

In this example, steps (2), (3), and (4) are repeated four times. The
loop counter is first incremented from 1 to 2, then to 3, then to 4, and
then to 5. At this point it exceeds the final value 4, so the definite
loop structure ends. Note that step (1) is performed before any tests
are made, so the loop clause is always evaluated at least once. For
another example of START ... NEXT, see “FIB2 (Fibonacci Numbers,
Loop Version)” on page 248.

FOR counter... NEXT

In many cases it's handy to use the current value of the counter as a
variable in the loop clause. To do so, replace START by FOR name.
The counter becomes a local variable with the specified name. As be-
fore, this manual follows the convention of writing local names in
lowercase letters to help you distinguish them from global names. The
following example puts the first five square integers on the stack.

1 5 FOR = = S0 HEXET

The sequence FOR 3 is executed only once. The sequence x 5@ is
the loop clause, which is executed repeatedly.

26: Program Structures 229

The examples so far have specified an initial counter value of 1, but
any integer is acceptable. Since you're using the counter as a variable,
set the initial and final counter values to the desired initial and final
variable values. The following example puts the third through ninth
square integers on the stack.

29 FOR = = S0 HEXET

For another example, see “BDISP (Binary Display)” on page 259.

... increment STEP

The command NEXT always increments the counter by 1. To specify
a different increment, replace NEXT by n STEP, where 7 is the desired
increment. STEP is commonly used following FOR counter, as demon-
strated in the examples below, but it can also be used following
START. The following example puts the odd square integers from 12
through 5% on the stack.

1 5 FOR = = SR 2 STEP

The loop clause = 5@ 2 is executed three times. The command STEF
first increments the counter from 1 to 3, then to 5, and then to 7. At
this point the current value of the counter exceeds the final value 5,
so the definite loop structure ends.

The examples so far have used ascending values of the counter. For
descending values of the counter, you can specify a negative incre-
ment. The following example puts the odd square integers from 52
through 1% on the stack.

5 1 FOR = = S -2 STEF

The sequence -2 STEF decrements the counter from 5 to 3, then 1,
and then —1. At this point the current value of the counter is less
than the final value 1, so the definite loop structure ends.

The program “SORT (Sort a List)” on page 270 uses -1 STEF to dec-
rement the counter by one. In this case STEP alters the value of the
counter by 1, as does NEXT, but the counter decreases rather than
increases.

230 26: Program Structures

Indefinite Loop Structures

If you can’t specify in advance how many times to repeat a loop, you
can write an indefinite loop structure that contains both a loop clause
and a test clause. The clauses are executed alternatingly, with the re-
sult of the test clause determining whether to continue.

This section describes two types of indefinite loop structure. The first,
DO... UNTIL... END, executes the loop clause before the test clause.
Consequently, the loop clause is always executed at least once. The
second type, WHILE... REPEAT... END, executes the test clause

first. Consequently, in some cases the loop clause is never executed.

DO...UNTIL...END

The following example evaluates an object repeatedly until evaluation
doesn’t change the object. Since evaluation must occur at least once
before the first test can be made, this example uses DO... UNTIL. ..
END.

0o QDUPF EYAL UMTIL OUF ROT SAME EHD
This structure works as follows:

1. The loop clause DUF EMAL is executed, leaving the object and
the evaluated result on the stack.

2. The test clause DUF ROT SAME is evaluated, leaving the evalu-
ated result and a flag on the stack. The flag indicates whether
the object and the evaluated result are the same.

3. The flag is taken from the stack. Its value determines whether
the loop structure is repeated.

B If the flag is false, steps (1), (2), and (3) are repeated.

W If the flag is true, the loop structure ends.

26: Program Structures 231

Suppose that you want to completely evaluate 'R+E ', where A con-
tains ' P+&' and P contains 2. The first evaluation of the loop clause
returns 'A+E* and *'F+2+E'. These expressions are not the same, so
the loop clause is evaluated a second time, returning 'F+&+E' and
‘Z+@+E'. These expressions are not the same, so the loop clause is
evaluated a third time, returning '2+2+B' and '2+@+B'. These ex-
pressions are the same, so the loop structure ends.

The effect of this example is similar to the effect of *NUM, except
-NUM causes an error if a name is undefined. For a more versatile
version of this example, see “MULTI (Multiple Execution)” on page
253.

WHILE ... REPEAT ... END

The following example takes any number of vectors from the stack
and adds them to the current statistics matrix. Since it needs to test
whether the object in level 1 is a vector before attempting to add it,
this example uses WHILE ... REPEAT ... END.

HHILE DUP TYFPE 3 == REFERT Z+ EHND
This structure works as follows:

1. The test clause DUF T¥FE 3 == is evaluated, leaving a flag on
the stack. The flag indicates whether the object in level 2 is a
real vector.

2. The flag is taken from the stack. Its value determines whether
the loop clause is executed.

B [f the flag is true, the loop clause I+ is executed, adding the
vector to the current statistics matrix, and steps (1) and (2) are
repeated.

B If the flag is false, the loop structure ends.
Note that WHILE ... REPEAT ... END ends when the flag is false,
but DO ... UNTIL ... END ends when the flag is true. If you need to

change the truth value of a test clause, add NOT as the last com-
mand: WHILE ... NOT REPEAT or UNTIL ... NOT END.

For another example of WHILE ... REPEAT ... END, see “PAD (Pad
With Leading Spaces)” on page 257.

232 26: Program Structures

Nested Program Structures

Since a clause in a program structure is like a subprogram, the clause
itself can contain a program structure. The structure inside the clause
is called the inner structure, and the structure that contains the clause
is called the outer structure. The program “SORT (Sort a List)” on page
270 demonstrates nested definite loops.

There is no limit to the levels of nesting, except perhaps your ability
to understand the logic. In some cases it's easier to store the inner
structures in programs and use their names as clauses in the outer
structures.

26: Program Structures 233

27

Interactive Programs

Some programs require direction from the user—that is, from you
when you're running the program. When the user must supply values
for variables, a program can ask for input. When the user must
choose among several alternatives, a program can ask for a choice.

This chapter demonstrates how a program can ask for input or a
choice, using the following commands from the PROGRAM CON-
TROL menu.

Command Description

HALT Suspend program execution.
s WAIT Suspend program execution for s seconds.
KEY Return a key string if a key was pressed.

f s BEEP Sound a tone of frequency f for s seconds.
CLLCD Clear the display.
n DISP Display an object in line n of the display.

CLMF Restore the normal display when the program completes
execution.

Asking for Input

The following sequence creates a custom input menu for variables A,
B, and C, sounds a tone to alert the user, and halts for input.

ST R B C ¥ MEMU 448 .1 BEEF HALT ...

234 27: Interactive Programs

The displayed menu shows the labels
which resemble labels in the Solver menu. After entering a value o
the stack, the user can simply press one of these keys to store the
value in the corresponding variable. After entering the values, the
user must press [lJ[CONT] to continue program execution.

Asking for a Choice

For complex tasks it’s best to write a series of small programs, each
performing a small task. In some cases the user has several options
for performing one of the tasks. One approach is to write alternative
programs to perform that task.

Assume that one task is completed, and the user must choose among
the programs HOP, SKIP, and JUMP for the next task. The following
sequence creates a custom user menu for programs HOP, SKIP, and
JUMP, sounds a tone to alert the user, and ends program execution.

. & HOF SKIP JUMF ¥ MEHU 448 .1 BEEP =

The displayed menu shows the labels Hop , skip , and Jump ,
which resemble labels in the User menu. When the user presses one
of the menu keys, the next task is performed. That task may end with
a similar sequence, offering the user a different set of options; and so
on throughout the entire complex task.

A More Complicated Example

The example below displays a message, waits until the user presses a
key, and checks that the key is defined (that is, represents one of the
choices). If the key is defined, the corresponding action is performed;
if the key isn’t defined, an error message is displayed and the process
starts over.

This example uses program structures described in the previous chap-
ter. There is an “outer” DO ... UNTIL ... END structure that repeats
until the user presses a defined key. The outer DO clause contains an
‘inner” DO ... UNTIL ... END structure that repeats until the user
presses a key. The outer UNTIL clause contains a conditional that

27: Interactive Programs 235

displays an error message if the key is undefined. In the listing below,
the indentation marks the outer structure, the clauses, the inner struc-

tures, and their clauses.

Sequence

"Apple" "Banana"
"Cherryg" |

(1]

CLLCD

" LAl for HAppl="
Z DIsSF

" [B1 for Banana"
Z bhI1sp

" LCOI faor Cherru"
4 OISF

OO UHTIL KEY EHD

LUHMTIL

Comments

This list contains the possible out-
comes. It remains on the stack until
the following DO...UNTIL.. . END
structure returns 1, 2, or 3, indicating
the user’s choice.

Begin the outer loop clause. This
clause displays option messages,
which tell the user what the choices
are, and gets a response from the user.

Clear the display.

The option message for line 1.
Display the message.

The option message for line 2.
Display the message.

The option message for line 3.
Display the message.

The option message for line 4.
Display the message.

This inner indefinite loop repeats until
the user presses a key. The command
KEY returns @ if no key was pressed,
or a string (representing the key) and
1 if a key was pressed. When the loop
ends, the string is left on the stack.

Begin the outer test clause. This clause
checks whether the key pressed was a
defined key.

236 27: Interactive Programs

EH

GET

1" = 1 B " non

WAF FPOS

IF DUur

THEH 1

ELZE

CLLCD "Bad key®
i DISF

448 .1 BEEF
1 MAIT
EMD

[N

This list contains the defined keys.
There is a one-to-one correspondence
between the defined keys and the pos-
sible outcomes.

Match the key string to the list of de-
fined keys. POS (position) returns 1 if
the key string is A", 2 if the key
string is “B", 2 if the key string is
“C", or @ if no match occurs.

Make a copy of the position to use as
a flag. If the position is 1, 2, or 3, exe-
cute the THEN clause. If the position
is 8, execute the ELSE clause.

The key was defined, so put a true
flag on the stack.

The key was undefined, so display an
error message and beep.

Display an error message.

Sound a tone.
Wait 1 second.

End the IF ... THEN ... ELSE ...
END structure. If the key was defined,
the position and a true flag are on the
stack. If the key was undefined, only
the position (which is also a false flag)
is on the stack.

End the outer indefinite loop. If the
key was defined, the loop ends with
the position on the stack. If the key
was undefined, the loop clause is
repeated.

Given the list of possible outcomes
and a position, get the correponding
outcome.

27: Interactive Programs 237

EVAL Evaluate the outcome. In this example, EVAL
has no effect because the outcome is a string. In
a more realistic example, the outcome might be
a program (possibly stored in a variable), so
EVAL would be needed.

CLMF Enable the normal stack display.

When this sequence is executed, the user sees the option messages.

If the user presses a key other than [A], [B], or [C], a beep sounds and
the error message appears for 1 second.

Bad key

Then the option messages reappear. When the user presses [A], (B], or
(C], the string "Apple", "Banana®, or "Cherru" is returned to
level 1.

By modifying the list of possible outcomes, the option messages, and
the list of defined keys, you can make this sequence more significant
than putting a string on the stack. More generally, by using local vari-
ables and putting this sequence inside a local-variable structure, you
can make the following program.

238 27: Interactive Programs

+ keus
oo CLL
ml 1
mz 2
m3 32
md 4
oo UM
UHTIL
IF o
THEH
ELSE~
44
EHDO
EHD

ml m2 m3 m

oo

OIsF

TIL KEY EH
kegs SHAP

F

1

CLLCDO "Bad
.1 BEEP 1

GET EWAL CLMF

4

u]
FOS

ke

WRIT

1 DISP

If you store this program in a variable named KEY?, you could per-
form the example above by executing

n pr 1 = n
{ an " E: 1"t

" LAD far
" CE1 for
" CCD faor
EEY?

Apple"

Earians'
Cherryg"

"Cherry®

27: Interactive Programs

239

28

Programming Examples

This chapter contains 20 programs for your HP-285. These programs
are useful and, more importantly, they demonstrate a variety of pro-
gramming techniques. For each program you'll find the following
information.

Stack Diagram. A stack diagram is a two-column table showing

“Arguments” and “Results”. “Arguments” shows what must be on
the stack before the program is executed; “Results” shows what the
program leaves on the stack.

The stack diagram doesn’t show everything; a program that
changes user memory or displays objects might have no effect on
the stack.

Techniques. This is the most interesting part. When you understand
how a technique is used in this chapter, you can use it in your own
programs.

Required Programs. Some programs call others as subroutines. You
can enter the required programs and the calling program in any
order, but you must enter all of them before executing the calling
program.

Program and Comments. This chapter formats the program listing
to show a program’s structure and process. You don't need to fol-
low the format of the listing when you enter a program. However,
be sure to key in spaces where they appear in the listing or be-
tween objects appearing on separate lines.

You can key in a program character by character, or you can use
the menus to key it in command by command. It makes no differ-
ence as long as the result matches the listing.

240 28: Programming Examples

When you key in the program you can omit all closing parentheses
and delimiters that appear at the very end of the program; when you
press the closing parentheses and delimiters are added for
you.

B Example. The examples assume STD display format. To select STD
display format, press STD or use the MODE menu.

The most important technique demonstrated in this chapter is struc-
tured programming: small programs used to build other programs. The
following programs are used in other programs.

BOXS is used in BOXR.
MULTI is used in EXCO.
PAD and PRESERVE are used in BDISP.

2ZGET is used in 2X2, 2Y2, and ZXY.
SORT and LMED are used in MEDIAN.

Box Functions
This section contains two programs:

B BOXS calculates the total surface area of a box.

B BOXR uses BOXS to calculate the ratio of surface to volume for a
box.

BOXS (Surface of a Box)

Given the height, width, and length of a box, calculate the total area
of its six sides.

Arguments Results
2 height 2
2 width z
1: length 1: area

28: Programming Examples 241

Techniques:

B [ocal-variable structure. Local variables allow you to assign names
to arguments without conflicting with global variables. Like global
variables, local variables are convenient because you can use argu-
ments any number of times without tracking their positions on the
stack; unlike global variables, local variables disappear when the
program structure that creates them is done.

A local-variable structure has three parts.

1. A command named “+ ”. When you key in this command, re-
member to put spaces before and after it. (Like any command,
+ is spelled using normal characters and is recognized only
when it's set off by spaces. Don’t confuse this one-character
command with delimiters like # or =.)

2. One or more names.

3. A procedure (expression, equation, or program) that includes
the names. This procedure is called the defining procedure.

When a local-variable structure is evaluated, a local variable is cre-
ated for each name. The values for the local variables are taken
from the stack. The defining procedure is then evaluated, substitut-
ing the values of the local variables.

To appreciate the power of local variables, compare the version of
BOXS given below with the version that appears on page 244.

8 User function. This type of program works in either RPN or alge-
braic syntax. A user function is a program that consists solely of a
local-variable structure and returns exactly one result.

Program Comments
Begin the program.
+ how 1 Create local variables for height,

width, and length. By conven-
tion, lower-case letters are used.
The values are taken from the
stack (in RPN) or from the argu-
ments to the user function (in
algebraic syntax).

242 28: Programming Examples

Program Comments
2 ChEwARE]l gl e The defining expression for the
surface area. Evaluating the user
function causes evaluation of this
expression, returning the area to

the stack.
® End the program.
Put the program on the stack.
('] BOXS Store the program as BOXS.

Example. One of the advantages of user functions is that they work
in either RPN or algebraic syntax. Calculate the surface of a box 12
inches high, 16 inches wide, and 24 inches long; make the calculation
first in RPN and then in algebraic syntax.

For the RPN version, first enter the height and width.

12 [ENTER]
16 [ENTER]

24 BODXS

The surface area is 1728 square inches.

Now try the algebraic version.

("] Boxs 12,16,24 [EVAL)

Again, the surface area is 1728,

28: Programming Examples 243

BOXS Without Local Variables

The following program uses only stack operations to calculate the sur-
face of a box. Compare this program with BOXS.

Arguments Results
3 height 3
21 width 2
1: length 1: area
Program Comments
% Begin the program.
DUFz % Calculate wl.
ROT Move w to level 1.
4 PICE Copy h to level 1.
¥ Calculate wh.
+ Calculate wl + wh.
ROT ROT Move h and | to levels 2 and 1.
¥ Calculate hl.
+ Calculate wl + wh + hl
ER Calculate 2(w! + wh + hli).

End the program.

Because this version of BOXS isn’t a user function, it can’t be used in
algebraic syntax.

244 28: Programming Examples

BOXR (Ratio of Surface to Volume of a Box)

Given the height, width, and length of a box, calculate the ratio of its
surface to its volume.

Arguments Results
2 height 3
21 width 2
1: length 1: area/volume
Techniques:

B Nested user functions. BOXR is a user function whose defining ex-
pression uses BOXS in its calculation. In turn, BOXR could be used
to define other user functions.

Recall that BOXS was defined using h, w, and [as local variables,
and note below that BOXS takes x, y, and z as arguments in the
definition for BOXR. It makes no difference if the local variables in
the two definitions match, or if they don’t match, because each set
of local variables is independent of the other. However, it’s essential
that local variables be consistent within a single definition.

Program Comments
Begin the program.
+ %oy oz Create local variables for height,

width, and length. This program
uses X, y, and z, rather than h, w,

and [.
"BOMS (., y, 2 Begin the defining expression
with the user function BOXS.
PREY ITE + 2 0 Divide by the volume of the box.
: End the program.
Put the program on the stack.
(] BOXR Store the program as BOXR.

28: Programming Examples 245

Example. Calculate the ratio of surface to volume for a box 9 inches
high, 18 inches wide, and 21 inches long; make the calculation first in
RPN and then in algebraic syntax.

For the RPN version, first enter the height and width.

o (EnTER)
18 [ENTER)

Then key in the length and execute BOXR.

21 EBOXR g_ H
1: .428571428571
T I S S I R

The ratio is .428571428571.
Now try the algebraic version.

("] Boxr 9,18,21

Again, the ratio is .428571428571.

Fibonacci Numbers
Given an integer n, calculate the nth Fibonacci number F, where
FOZO/ 1::1 = 1/ Fnanfl +Fn~2

This section includes two programs, each demonstrating an approach
to this problem.

FIB1 is a user function that is defined recursively—its defining ex-
pression contains its own name. FIB1 is short, easy to understand,
and can be used with symbolic arguments.

® FIB2 is a user function defined with a program. It executes faster
than FIB1, but cannot be used with symbolic arguments.

246 28: Programming Examples

FIB1 (Fibonacci Numbers, Recursive Version)

Arguments Results

Techniques:

B IFTE (If-Then-Else function). The defining expression for FIB1 con-
tains the conditional function IFTE, which can be used in either
RPN or algebraic syntax. (FIB2 uses the program structure IF ...
THEN ... ELSE ... END))

B Recursion. The defining expression for FIB1 is written in terms of
FIB1, just as F, is defined in terms of F, _ ; and F, _ ,.

Program Comments
Begin the program.
+ h Define a local variable.
: Begin the defining expression.
IFTEDn£1, If n <1,
n. Then F, = n;

FIEL(n-13+FIB1n=-232 Else F, = F, _; + F, _,.
End the defining expression.
End the program.

Put the program on the stack.
[FB1 Store the program as FIB1.

Example. Calculate F¢ using RPN syntax and F;, using algebraic
syntax.

First calculate F, using RPN.

6 FIBl

Next calculate Fy, using algebraic syntax.

() fie1 (J 10 [Eval)

28: Programming Examples 247

FIB2 (Fibonacci Numbers, Loop Version)

Arguments

Results

Techniques:

& JF ... THEN ... ELSE ... END. FIB2 uses the program-structure
form of the conditional. (FIB1 uses IFTE.)

B START ... NEXT (definite loop). To calculate F,, FIB2 starts with F
and F; and repeats a loop to calculate successive F/’s.

Program
*on

IF n 1 £
THEH n
ELZE

§ 1

]
STRET
OuF

-
P

3

EOT

+
MET
SHAF DROF
EHD

(ENTER]
(] FiB2 (s10]

Comments

Begin the program.

Create a local variable.
Begin the defining program.
Ifn <1,

Then F, = n;

Begin ELSE clause.

Put F, and F; on the stack.

From 2 to n,

Do the following loop:

Make a copy of the latest F (ini-
tially Fy).

Move the previous F (initially Fp)
to level 1.

Calculate the next F (initially F,).

Repeat the loop.

Drop F, _ ;.

End ELSE clause.

End the defining program.
End the program.

Put the program on the stack.
Store the program as FIB2.

248 28: Programming Examples

Example. Calculate F¢ and Fjy. Note that FIB2 is faster than FIBI.
Calculate Fg.

EL
6 Fiez % o
[FIER [FIEL JEORR [EOHE] | |

Calculate Fqj.

10 FiB2

g
1: a5
{FIER | FIEL JEouR {Eons] | |

Comparison of FIB1 and FIB2

FIB1 calculates intermediate values F; more than once, while FIB2 cal-
culates each intermediate F; only once. Consequently, FIB2 is faster.

The difference in speed increases with the size of n because the time
required for FIB1 grows exponentially with n, while the time required
for FIB2 grows only linearly with n.

The diagram below shows the beginning steps of FIB1 calculating Fy.
Note the number of intermediate calculations: 1 in the first row, 2 in
the second row, 4 in the third row, and 8 in the fourth row.

SN\, N
/NN NN

28: Programming Examples 249

Single-Step Execution

It’s easier to understand how a program works if you execute it step
by step, seeing the effect on the stack of each step. Doing this can
help you “debug” your own programs or help you understand pro-
grams written by others.

This section shows you how to execute FIB2 step by step, but you can
apply these rules to any program. The general rules are:

1.

250

Use VISIT to insert the command HALT in the program. Place
HALT where you want to begin single-step execution. (You'll see
how the position of HALT within FIB2 affects execution.)

Execute the program. When the HALT command is executed, the
program stops (indicated by the “stopsign” annunciator).

Select the PROGRAM CONTROL menu.

Press 88T once to see the next program step displayed and
then executed.

You can now:

B Keep pressing ssT to display and execute sequential steps.
B Press J(CONT] to continue normal execution.

B Press kitlL to abandon further program execution.

When you want the program to run normally again, use VISIT to
remove HALT from the program.

28: Programming Examples

For the first example, insert HALT as the first command in FIB2.
Clear the stack and select the USER menu.

M(CLEAR]

Use VISIT to return FIB2 to the command line.

(] Frez @VISIT] F; n
IFnlil«<
THEN n
Insert the HALT command.
(»] (INS] M(CONTRL] HALT € HALT 4> n
&
IFnl <

KILL [HAIT [KEY |

Store the edited version of FIB2.

3

2

1:

L S5T JHALT JREORT]KILL [WAIT [KEY]

Calculate F;. At first, nothing happens except that the) annunciator
appears.

1 Fie2

Select the PROGRAM CONTROL menu and execute SST (single-step).
Watch the top line of the display to see the first step displayed before
it's executed.

W(CONTRL]

88T

1: 1
FILL [WAIT] KEY |

Note that + n constitutes one step; “step” is a logical unit rather than
simply the next object in the program.

28: Programming Examples 251

Look at the general rules at the beginning of this section. Now you
can choose one of the three alternatives described in step 4.

For this example, press $sT repeatedly until the @ annunciator dis-
appears, indicating that FIB2 is completed. (These single-steps not
shown here.)

The calculation for F; executes only the THEN clause in FIB2.

For the second example, execute 3 FIE2 and single-step through
the calculation for F;. This executes the ELSE clause, including the
START ... NEXT loop. You'll see that, for n = 3, the START ...

NEXT loop is executed twice.

For the third example, suppose you want to single-step the START ...
NEXT loop as a whole—seeing the stack before each iteration of the
loop, but not single-stepping all the steps in FIB2 or in the loop itself.
To do so, move the HALT command inside the loop. Then FIB2 won't
halt until it reaches the loop, and you can use l[CONT] (continue) to
execute the loop one iteration at a time.

Use VISIT to return FIB2 to the command line.

B HALT * n
() riez BVISIT) &

IF nl <
THEN n

Use the cursor menu keys to delete HALT. Then insert HALT as
shown (following the START command).

1
n
612n
ART HALT4DUP R..

Store the edited version of FIB2.

3 Fiez 3:
£ ¢
{FIES [FIEL [EBodk [Bonz] | |

252 28: Programming Examples

Continue execution of the loop. FIB2 will halt before performing the
loop a second time.

M (coRT) E:)
i: 1
[FI62 | FIEL | BUk [E0HS | |

Continue execution of the loop. Because this is the last iteration of the
loop, FIB2 will execute to completion.

@(conT]

25
1: 2
[FIE2 [FIEL [EOHR JEORE] |]

When you're done experimenting with FIB2, don't forget to use VISIT
to remove the HALT command.

Expanding and Collecting Completely
This section contains two programs:

® MULTI repeats a program until the program has no effect.
B EXCO uses MULTI to expand and collect completely.

MULTI (Multiple Execution)

Given an object and a program that acts on the object, apply the pro-
gram to the object repeatedly until the object is unchanged.

Arguments Results

21 object =

1: « program = 1: resulting object

28: Programming Examples 253

Techniques:

® DO ... UNTIL ... END (indefinite loop). The DO clause contains
the steps to be repeated; the UNTIL clause contains the test that
determines whether to repeat both clauses again (if false) or to exit
(if true).

B Programs as arguments. Although programs are commonly named
and then executed by calling their names, programs can also be put
on the stack and used as arguments to other programs.

W Evaluation of local variables. The program argument to be executed
repeatedly is stored in a local variable. It's handy to store an object
in a local variable when you don’t know beforehand how many
copies you'll need.

MULTI demonstrates one of the differences between global and lo-
cal variables: if a global variable contains a name or program, the
contents of the variable are evaluated when the name is evaluated;
but the contents of a local variable are always simply recalled. Con-
sequently, MULTI uses the local name to put the program argu-
ment on the stack and then executes an explicit EVAL command to
evaluate the program.

Program Comments
Begin the program.
B Create a local variable p that con-

tains the program argument.
Begin the defining program.
oo Begin the DO clause.

OUF Make a copy of the object.
F EVAL Apply the program to the object,

returning a new version. (The
EVAL command is necessary to
execute the program because lo-
cal variables always return their
contents to the stack
unevaluated.)

UHTIL Begin the UNTIL clause.
ourF Make a copy of the new version
of the object.
ROT Move the old version to level 1.
SHME Test whether the old version and

the new version are the same.

254 28: Programming Examples

Program Comments
EHD End the UNTIL clause.
® End the defining program.
End the program.

Put the program on the stack.
('] MULTI Store the program as MULTI.

Example. MULTI is demonstrated in the next program.

EXCO (Expand and Collect Completely)

Given an algebraic object, execute EXPAN repeatedly until the alge-
braic doesn’t change, then execute COLCT repeatedly until the
algebraic doesn’t change. In some cases the result will be a number.

Arguments Results
1: ‘algebraic'’ 1: ‘algebraic'
1: ‘'algebraic' 1: z
Techniques:

B Structured programming. EXCO calls the program MULTI twice.
Even if you don’t use MULTI anywhere else, the efficiency of re-
peating all the commands in MULTI by simply including its name a
second time justifies writing MULTI as a separate program.

Required Programs:

® MULTI (page 253) repeatedly executes the programs that EXCO
provides as arguments.

28: Programming Examples 255

Program Comments

Begin the program.
« EXPAM @ Put EXPAN on the stack.
MULTI Execute EXPAN until the alge-
braic object doesn’t change.
% COLCT = Put COLCT on the stack.
MULTI Execute COLCT until the alge-

braic object doesn’t change.
End the program.

Put the program on the stack.
["] EXCO Store the program as EXCO.

Example. Expand and collect completely the expression

3x (4y + z) + (8x — 5z)%

Enter the expression.

T
(I3 [x] X[It BEA¥CAxvHZi+(8RX-5%
04XYHzBOH (Etici JHUCT] FIEZ | FIEL | 0k | Bos
O8XXEs5XzENEE 2

ENTER

Expand and collect completely.

EXCO 2%
1: '12*X*Y ??*K*2+64*X"
2+25%2"

mﬁlﬂ FIEL | Bl | EOHS |

Expressions with many products of sums or with powers can take
many iterations of EXPAN to expand completely, resulting in a long
execution time for EXCO.

256 28: Programming Examples

Displaying a Binary Integer
This section contains three programs:

W PAD is a utility program that converts an object to a string for
right-justified display.

® PRESERVE is a utility program for use in programs that change the
calculator’s status (angle mode, binary base, and so on).

B BDISP displays a binary integer in HEX, DEC, OCT, and BIN bases.
It calls PAD to show the displayed numbers right-justified, and it
calls PRESERVE to preserve the binary base.

PAD (Pad With Leading Spaces)

Convert an object to a string and, if the string contains fewer than 23
characters, add spaces to the beginning.

When a short string is displayed by using DISP, it appears left-justi-
fied: its first character appears at the left end of the display. The
position of the last character is determined by the length of the string.

By adding spaces to the beginning of a short string, PAD moves the
position of the last character to the right. When the string is 23 char-
acters long, it appears right-justified: its last character appears at the
right end of the display.

PAD has no effect on strings that are longer than 22 characters.

Arguments Results

1: object 1" object"

Techniques:

® WHILE ... REPEAT ... END (indefinite loop). The WHILE clause
contains a test that determines whether to execute the REPEAT
clause and test again (if true) or to skip the REPEAT clause and exit
(if false).

28: Programming Examples 257

B String operations. PAD demonstrates how to convert an object to
string form, count the number of characters, and concatenate two
strings.

Program Comments
« Begin the program.
+S§TR Make sure the object is in string

form. (Strings are unaffected by
this command.)

WHILE Begin WHILE clause.
DUP SIZE 23 < Does the string contain fewer
than 23 characters?
REPEAT Begin REPEAT clause.
"M SWAP + Add a leading space.
END End REPEAT clause.
» End the program.
Put the program on the stack.
(] PAD Store the program as PAD.

Example. PAD is demonstrated in the program BDISP.

PRESERVE (Save and Restore Previous Status)

Given a program on the stack, store the current status, execute the
program, and then restore the previous status.

Arguments Results
1: « program * 1: (result of program)
Techniques:

m RCLF and STOF. PRESERVE uses RCLF (recall flags) to record the
current status of the calculator in a binary integer and STOF (store
flags) to restore the status from that binary integer.

258 28: Programming Examples

B Local-variable structure. PRESERVE creates a local variable just to
remove the object from the stack briefly; its defining program does
little except evaluate the program argument on the stack.

Program Comments
Begin the program.

RCLF Recall a 64-bit binary integer
representing the status of all 64
user flags.

+ f Store the binary integer in a local
variable f.

Begin the defining program.

EYAL Execute the program argument.
f STOF Restore the status of all 64 user
flags.

£ End the defining program.

End the program.
Put the program on the stack.
(] PRESERVE Store the program as PRESERVE.

Example. PRESERVE is demonstrated in the program BDISP.

BDISP (Binary Display)

Display a number in HEX, DEC, OCT, and BIN bases.

Arguments Results
1 # n 1: # n
1: n 1: n
Techniques:

® IFERR ... THEN ... END (error trap). To accomodate real numbers,
BDISP includes the command F+E (real-to-binary). However, this
command causes an error if the argument is already a binary
integer.

28: Programming Examples 259

To maintain execution if an error occurs, the R+E command is
placed inside an IFERR clause. Because no action is required when
an error occurs, the THEN clause contains no commands.

Enabling LAST. In case an error occurs, LAST must be enabled to
return the argument to the stack. BDISP sets flag 31 to pro-
grammatically enable the LAST recovery feature.

FOR ... NEXT loop (definite loop with counter). BDISP executes a
loop from 1 to 4, each time displaying n in a different base on a
different line.

The loop counter (named j in this program) is a local variable. It’s
created by the FOR ... NEXT program structure (rather than by a +
command) and it's automatically incremented by NEXT.

Subprograms. BDISP demonstrates three uses for subprograms.

1. BDISP contains a main subprogram and a call to PRESERVE.
The main subprogram goes on the stack and is evaluated by
PRESERVE.

2. When BDISP creates a local variable for n, the defining pro-
gram is a subprogram.

3. There are four subprograms that “customize” the action of the
loop. Each subprogram contains a command to change the bi-
nary base, and each iteration of the loop executes one of these
subprograms.

Required Programs:

B PAD (page 257) expands a string to 23 characters so that DISP

shows it right-justified.

®m PRESERVE (page 258) stores the current status, executes the main

subprograms and restores the status.

260 28: Programming Examples

Program

Oup
31 3F
IFERE
E=+B
THEH
EHD

* N

%

CLLCO
« BIN »
£ OCT #
% DEC %
1 4
FOR
EWAL

n *STR

FRO
J DISP
HEXT

&

FEESERVE

() BDISP

Comments

Begin the program.

Begin the main subprogram.
Make a copy of n.

Set flag 31 to enable LAST.
Begin error trap.

Convert n to a binary integer.
If an error occured,

Do nothing (no commands in
THEN clause).

Create a local variable n.

Begin the defining program.
Clear the display.

Subprogram for BIN.
Subprogram for OCT.
Subprogram for DEC.
Subprogram for HEX.

First and last counter values.
Start loop with counter j.
Evaluate one of the base subpro-
grams (initially the one for HEX).
Make a string showing 7 in the
current base.

Pad the string to 23 characters.
Display the string in the jth line.
Increment j and repeat the loop.
End the defining program.

End the main subprogram.
Store the current status, execute
the main subprogram, and re-
store the status.

End the program.

Put the program on the stack.
Store the program as BDISP.

28: Programming Examples 261

Example. Switch to DEC base, display # 100 in all bases, and check
that BDISP restored the base to DEC.

Clear the stack and select the BINARY menu.

W(CLEAR]
W(BNARY]

DEC
100

Execute BDISP. (Don’t switch menus, since you'll want to see the BI-
NARY menu in the next step.)

BDISP ¥

2
1
[cEce [HEY [oCT | EIN [ETHE [RCEZ]

Although the main subprogram left the calculator in BIN base, PRE-
SERVE restored DEC base.

To check that BDISP also works for real numbers, try 144.

96h
144 Bo1sP § 144d
100108605

Summary Statistics
For paired-sample statistics it's often useful to calculate the sum of

the squares (Zx?> and Zy?) and the sum of the products (Zxy) of the
two variables. This section contains five programs:

262 28: Programming Examples

B SUMS creates a variable ZCOV that contains the covariance matrix
for the current statistics matrix TDAT.

W 2GET extracts a number from the specified position in ZCOV.
B 2X2 uses TGET to extract Zx? from TCOV.
B 2Y2 uses ZGET to extract Zy? from ZCOV.
B 2XY uses ZGET to extract Zxy from ZCOV.

If 2DAT contains n columns, ZCOV is an #n X n matrix. The pro-
grams ZX2, 2Y2, and ZXY refer to TPAR (statistics parameters) to
determine which columns contain the x data (called C;) and the y
data (called C,).

Techniques:

B Matrix operations. These programs demonstrate how to transpose a
matrix, how to multiply two matrices, and how to extract one ele-
ment from a matrix.

B Programs usable in algebraic objects. Because £X2, £Y2, and IXY
conform to algebraic syntax (no arguments from the stack, one re-
sult put on the stack), you can use their names like ordinary
variables in an expression or equation.

B 2PAR convention. Several paired-sample statistics commands use a
variable named ZPAR to specify a pair of columns in SDAT. SPAR
contains a list with four numbers, the first two specifying columns.
(The other two numbers are the slope and intercept from linear re-
gression.)

SUMS ensures that ZPAR exists by executing 0 PREDV DROP; the
command PREDV (predicted value) creates ZPAR with default val-
ues if ZPAR doesn't already exist, and DROP removes the
predicted value computed for 0.

2X2, 2Y2, and ZXY use the values stored in ZPAR to determine
which element to extract from ZCOV.

SUMS (Summary Statistics Matrix)

Create a variable ZCOV that contains the covariance matrix of the
statistics matrix ZDAT.

28: Programming Examples 263

As an example, if ZDAT is the n X 2 matrix

X

X

x!‘!

Yy
Y2

yn

then ZCOV will contain the covariance matrix

¥’ Zxy
Sxy 2y
Arguments Results
1: 1:
Program Comments
Begin the program.
RCLE Recall the contents of the n X m
statistics matrix ZDAT.
ouF Make a copy.
TREH Transpose the matrix. The result
is an m X n matrix.
SWAF # Multiply the matrices to produce
the m X m covariance matrix.
(Without swapping the matrices,
the product would be an n X n
matrix.)
TECOVY STO Store the covariance maftrix in a
variable ZCOV.
& PREDY OROP Make sure ZPAR exists.
End the program.
Put the program on the stack.

(') SUMS

264

Store the program as SUMS.

28: Programming Examples

2GET (Get an Element of ZCOV)

Given p and g, each indicating either the first or second position in
2ZPAR, extract the rs element from ZCOV, where r and s are the cor-
responding first or second elements in TPAR.

ZGET is called by £X2, Y2, and ZXY with the following arguments.

® For X2, p = 1 and g =

® For 2Y2, p = 2 and ¢
B For ZXY, p = 1 and g

Arguments Results
2y Tor2 20
1: Tor2 1: rs element of 2COV
Program Comments
Begin the program.
ZCay Put the covariance matrix on the
stack.
EPAR Put the list of statistics param-
eters on the stack.
nuUp Make a copy.
S ROLL Move p to level 1.
GET Get 7, the pth element in ZPAR.
SHAF Move ZPAR to level 1.
4 ROLL Move g to level 1.
GET Get s, the gth element in TPAR.
2 *LIST Put { r, s } on the stack.
GET Get the rs element from ZCOV.
End the program.
Put the program on the stack.

(] GET

Store the program as ZGET.

28: Programming Examples 265

2X2 (Sum of Squares of x)

Calculate Zx?, where the x's are the elements of C; (the column speci-
fied by the first parameter in ZPAR).

Arguments Results

1: 1: 3%
Program Comments
& Begin the program.

11 Specify C; twice.

EIGET Extract Tx2.
End the program.
Put the program on the stack.
[TJ=x2 Store the program as ZX2.

2Y2 (Sum of Squares of y)

Calculate Zy?, where the y's are the elements of C, (the column speci-
fied by the second parameter in ZPAR).

Arguments Results

1 1: zy?
Program Comments

Begin the program.

z oz Specify C, twice.

IGET Extract Zy2.
End the program.
Put the program on the stack.
(") zvy2 Store the program as ZY2.

266 28: Programming Examples

2XY (Sum of Products of x and y)

Calculate Zxy, where the x’s and y’s are corresponding elements of C,
and C, (the columns specified by the first and second parameters in

2ZPAR).
Arguments Results

1: 1: Zxy
Program Comments
L Begin the program.

1z Specify C; and C,.

ZGET Extract Zxy.
ES End the program.
Put the program on the stack.
(1] =Xy Store the program as ZXY.

Example. Calculate 2X2, 2Y2, and ZXY for the following statistics

data:

F18 12_
4 7
3 2
11 1
31 48

_20 17

28: Programming Examples 267

The general steps are as follows.

1. Enter the statistical data.
2. Execute SUMS to create the covariance matrix ZCOV.
3. Execute ZX2, 2Y2, and ZXY.

4. If ZDAT contains more than two columns (that is, if each data
point contains more than two variables):

a. Execute COLZ to specify new values for C; and C,. The
values are stored in ZPAR.

b. Execute ZX2, Y2, and 2ZXY.

Now try the example given above.
Clear the stack, select the STAT menu, and clear ZDAT.

W(CLEAR)
W(sTAT)

CLZ

(1) 18,12 -2+
1) 4,7 - 3% %; c
%3,2 B+ L 2+ | =- | ME [CLE [STOE[RCLE]
11,1 2%
(1] 31,48 . 's+
1) 20,17 ~ 24
NE

Drop the number of data points.

[E+ [E- [WE [CLE [STOE[RCLE]

268 28: Programming Examples

Create the covariance matrix 2CQOV.

SUMS

Calculate Zx2.
ZX2

1831
LEFARTSCov [Z0AT [Ziv | Eve [242 |

Calculate Zy?.
ZYy2a

Calculate Zxy.

XY

LEFRE[TCov [Z0AT] XV [Eve | 22 |

If the statistics matrix had more than two columns, you could specify
new values for C; and C,. For practice, specify C; = 1 and C, = 2
(the current values).

The command COLZ is available in the STAT menu, but here it’s eas-
ier to spell out the command name and stay in the USER menu.

1 (ENTER]
2 COLZ [ENTER]

[EFARJZCoW [Z0AT] Exv | Zva | Eka |

You could now execute 2X2, 2Y2, and XY for the new pair of col-
umns C; and C,.

Don’t forget to execute SUMS again whenever you add or delete data
from the statistics matrix ZDAT.

28: Programming Examples 269

Median of Statistics Data

This section contains three programs:

SORT orders the elements of a list.
LMED calculates the median of a sorted list.

MEDIAN uses SORT and LMED to calculate the median of the cur-
rent statistics data.

SORT (Sort a List)

Sort a list into ascending order.

Arguments Results

1: 4 list ¥ 1: { sorted list }

Techniques:

Bubble sort. Starting with the first and second numbers in the list,
SORT compares adjacent numbers and moves the larger number
toward the end of the list. This process is done once to move the
largest number to the last position in list, then again to move the
next largest to the next-to-last position, and so on.

Nested definite loops. The outer loop controls the stopping position
each time the process is done; the inner loop runs from 1 to the
stopping position each time the process is done.

Nested local-variable structures. SORT contains two local-variable
structures, the second inside the defining program of the first. This
nesting is done for convenience; it's easier to create the first local
variable as soon as its value is computed, thereby removing its
value from the stack, rather than computing both values and creat-
ing both local variables at once.

270 28: Programming Examples

B FOR ... STEP and FOR ... NEXT (definite loops). SORT uses two
counters: — 1 STEP decrements the counter for the outer loop each
iteration; NEXT increments the counter for the inner loop by 1 each

iteration.

Program

ODUF SIZE 1 - 1

FOr

FOR k
k GETI + nt

o

GETI =+ nZ

&

OrROP

IF nl n2 >
THEH
k mz PUTI
i FPUT
END
HEXT
-1 STEF

('] SORT

Comments

Begin the program.

From the next-to-last position to
the first position,

Begin the outer loop with counter
J.

From the first position to the jth
position,

Begin the inner loop with counter
k.

Get the kth number in the list
and store it in a local variable n;.

Begin outer defining program.
Get the next number in the list
and store it in a local variable n,.

Begin inner defining program.
Drop the counter.

If the two numbers are in the
wrong order,

Then do the following:

Put the second one back in the
kth position.

Put the kth one back in the next
position.

End of THEN clause.

End inner defining program.
End outer defining program.
Increment k and repeat the inner
loop.

Decrement j and repeat the outer
loop.

End the program.

Put the program on the stack.
Store the program as SORT.

28: Programming Examples 271

Example.
Sort the list { 8, 3, 1, 2, 5 }.

8,3,1,2,5 SORT

21
1- £12358%3
[Z0RT | ZFRF | ZC00 | ZOAT | ZHv | T |

LMED (Median of a List)

Given a sorted list, calculate the median. If the list contains an odd
number of elements, the median is the value of the center element. If
the list contains an even number of elements, the median is the aver-
age value of the elements just above and below the center.

Arguments Results
1: { sorted list * 1: median of sorted list
Techniques:

B FLOOR and CEIL. For an integer, FLOOR and CEIL both return
that integer; for a non-integer, FLOOR and CEIL return successive
integers that bracket the non-integer.

Program Comments
% Begin the program.
ouF SIZE The size of the list.
1 + 2 « The center position in the list
(fractional for even-sized lists).
* p Store the center position in local
variable p.
i Begin the defining program.
CUF Make a copy of the list.
r FLOOR GET Get the number at or below the
center position.
SHAF Move the list to level 1.
p CEIL GET Get the number at or above the
center position.

272 28: Programming Examples

Program Comments

+ 2 - The average of the two numbers
at or near the center position.
® End the defining program.
® End the program.
Put the program on the stack.
("] LMED Store the program as LMED.
Example.

Calculate the median of the list you sorted using SORT.
LMED 1: g
[LEED [Z0RT [ZFAR [ZC0v | TORT [ZHY]

LMED is called by MEDIAN.

MEDIAN (Median of Statistics Data)

Return a vector representing the medians of the columns of the statis-
tics data.

Arguments Results

1: 10 € xyx ..o x, 13

Techniques:

B Arrays, lists, and stack elements. MEDIAN extracts a column of
data from ZDAT in vector form. To convert the vector to a list,
MEDIAN puts the vector elements on the stack and then combines
them into a list. From this list the median is calculated using SORT
and LMED.

The median for the mth column is calculated first, and the median
for the first column is calculated last, so as each median is calcu-
lated, it is moved to the stack level above the previously calculated
medians.

28: Programming Examples 273

After all medians are calculated and positioned correctly on the
stack, they’re combined into a vector.

B FOR ... NEXT (definite loop with counter). MEDIAN uses a loop to
calculate the median of each column. Because the medians are cal-
culated in reverse order (last column first), the counter is used to
reverse the order of the medians.

Required Programs:

B SORT (page 270) arranges a list in ascending order.
B LMED (page 272) calculates the median of a sorted list.

Program Comments
« Begin the program.

RCLE Put a copy of the current statis-
tics matrix ZDAT on the stack for
safekeeping.

DUF SIZE Put the list { n m } on the stack,

where 71 is the number of rows in
2DAT and m is the number of

columns.
LIST+ DROP Put n and m on the stack. Drop
the list size.
Fnom Create local variables for n and
m.
3 Begin the defining program.
"ZDAT' TRN Transpose ZDAT. Now n is the

number of columns in DAT and
m is the number of rows.

1 m The first and last rows.
FOR J For each row, do the following:
z- Extract the last row in ZDAT. Ini-

tially this is the mth row, which
corresponds to the mth column in
the original ZDAT.

ARRY+ DROP Put the row elements on the
stack. Drop the index list { n },
since n is already stored in a local

variable.
n 2LIST Make an n-element list.
SORT Sort the list.
LMED Calculate the median of the list.

274 28: Programming Examples

Program Comments

4 ROLLD Move the median to the proper
stack level.
HEXT Increment j and repeat the loop.
m 1 #LIST Make the list { m }.
+AREY Combine all the medians into an
m-element vector.
® End the defining program.
SHAF Move the orginal ZDAT to level
1.
STOE Restore ZDAT to its previous
value.
® End the program.
Put the program on the stack.
(] MEDIAN Store the program as MEDIAN.

Example. Calculate the median of the data on page 268. (This exam-
ple assumes you've keyed in the data.) There are two columns of data,
so MEDIAN will return a two-element vector.

Calculate the median.

MEDI : [14.5 9.5]
[E0HT [MEDT [LHED] 50T | TFAFE | Zeo)]

The medians are 14.5 for the first column and 9.5 for the second
column.

Changing Directories
This section contains two programs:

W UP gives you a menu of parent directories.

B DOWN gives you a menu of subdirectories.

These programs have no utility for those who always remember their
entire directory structure and know exactly where they are at all

times. For those who occasionally become confused, these programs
are helpful.

28: Programming Examples 275

UP (Move to a Parent Directory)

Create a menu that contains the names of the parent directory, its
parent directory, and so on, back to the HOME directory.

Arguments

Results

Techniques:

B List of parent directories. UP uses PATH to return the names of the
current directory and all parent directories.

B Subset of a list. UP uses SUB to remove the name of the current

directory from the PATH list.

B Custom menu. UP uses MENU to create a custom menu of parent
directories from the modified PATH list.

Program

FATH

1

OUVER SIZE 1 -
SUE

MERL

CJ uP (sT0]

Comments

Begin the program.

Put the path list on the stack.
Put 1 on the stack.

Put size — 1 on the stack.
Create a subset of the PATH list
that includes all names but the
last name (the current directory).
Create a menu of parent
directories.

End the program.

Put the program on the stack.
Store the program as UP.

276 28: Programming Examples

Example. From the HOME directory, create a hierarchy of
subdirectories D1, D2, and D3; then use UP to move from D3 to D1.

Clear the stack and move to the HOME directory.

W(CLEAR]
B (VEMORY] HoME

Create a subdirectory D1 and move to it

('] D1 croIr
D1 7
| MEF [MENUORDEF [FATH [HOME [CRDIE]

Repeat the process for subdirectories D2 and D3.

() D2 ¢roIR

D2
(") D3 croIR

D3 [ENTER]

Display the menu of parent directories.

UP [ENTER]

Move to the D1 directory.
D1

1:
Hoe] D1 [b2 | |] |

DOWN (Move to a Subdirectory)

Create a menu that contains the names of all subdirectories of the
current directory.

Arguments Results

28: Programming Examples 277

Techniques:

@ List of variables. DOWN uses VARS to return the list of variables
and subdirectories in the current directory.

® Error trap. To check whether a name in the VARS list is a directory,
DOWN uses the name as an argument to RCL; since directories
can’t be recalled to the stack, an error occurs if the name is a direc-
tory name, and the name is added to the list of directory names.

Program

=

VARS

w i GET
IFERER RCL OROF

THEHN +

END

MEXT
MEML

3
&

('] DOWN

Comments

Begin the program.

Put on the stack a list of the
names of all variables and
subdirectories.

Store the VARS list in a local
variable v.

Begin the defining program.

Put the list of directory names on
the stack (initally empty).

Put 1 and size of v on the stack.
For each name in v, do the
following;:

Get the name.

Attempt to recall the contents of
a variable with that name; if suc-
cessful, drop the contents.

If RCL caused an error, the name
must be a directory name, so add
the name to the list of directory
names.

End of the THEN clause and the
program structure.

Repeat for next name in v.
Create a custom menu for the di-
rectory names.

End the defining program.

End the program.

Put the program on the stack.
Store the program as DOWN.

278 28: Programming Examples

Example. In the previous example (page 277) you created a hierar-
chy of subdirectories D1, D2, and D3, and completed the example
with D1 the current directory. For this example, move to D2 and then
D3.

Display the menu of subdirectories.

DOWN

Move down to D2.
Bz

Display the menu of subdirectories.

DOWN

Move down to D3.
D3

28: Programming Examples 279

Appendixes & Indexes

Page 282 A: Assistance, Batteries, and Service
296 B: Notes for HP RPN Calculator Users
302 C: Notes for Algebraic Calculator Users
306 D: Menu Map

327 Key Index

332 Subject Index

A

Assistance, Batteries, and
Service

This appendix contains information to help you when you have prob-
lems with your calculator. If you have problems understanding how
to use the calculator, and you can’t find an appropriate topic in the
Table of Contents (page 5) or the Subject Index (page 332), see “An-
swers to Common Questions” below. If you don’t find an answer to
your question, you can contact our Calculator Support department,
using the address or phone number listed on the inside back cover.

If you need to replace the batteries, see page 286. If your calculator
doesn’t seem to work properly, see “Determining If the Calculator Re-
quires Service” on page 289. If the calculator does require service, see
“Limited One-Year Warranty” on page 291 and “If the Calculator Re-
quires Service” on page 293.

Answers to Common Questions

Q: The calculator doesn’t turn on when I press [ON]. What is wrong?
A: There may be a simple problem that you can solve immediately, or
the calculator may require service. See “Determining If the Calculator
Requires Service” on page 289.

Q: How can I verify that the calculator is operating properly?
A: Perform the repeating test, as described on page 290.

Q: How do I clear everything from the calculator’'s memory?
A: Press and hold [ON][INS](»], then release, as described in “Clearing
All Memory (Memory Reset)” on page 20.

282 A: Assistance, Batteries, and Service

Q: What do three dots (...) mean at the right end of a display line?
A: The three dots, called an ellipsis, indicate that the displayed object
is too long to display on one line.

Q: How do I display all of an object?

A: Use lj(eniT) or @[ViSIT] to return the object to the command line,
as described in “Editing Exisiting Objects” on page 173. You can then
use the cursor keys to display any part of the object. To cancel the

edit, press .

Q: What does “object” mean?

A: “Object” is a general term for almost everything you work with.
Numbers, expressions, arrays, programs, and so on, are all types of
objects. See “Major Features and Concepts” on page 25 for a brief
description of object types, or see chapter 16, “Objects,” for a detailed
discussion of object types.

Q: The calculator beeps and displays Bad Argument Tupe. What is
wrong?

A: The objects on the stack aren’t the correct type for the command
you're attempting. For example, executing without a name in
level 1 causes this error. Use CATALOG to check the correct argu-
ments for the command, as described in “The Catalog of Commands”
on page 31.

Q: The calculator beeps and displays Too Few FArguments. What is
wrong?

A: There are fewer objects on the stack than required by the com-
mand you're attempting. For example, executing with only one
number on the stack causes this error. Use CATALOG to check the
correct arguments for the command, as described in “The Catalog of
Commands” on page 31.

Q: The calculator beeps and displays an error message different from the
two listed above. How do I find out what's wrong?
A: See appendix A, “Messages,” in the Reference Manual.

Q: How do I turn off the beeper?
: Type 51 SF (ENTER]. This sets flag 51, which disables the beeper.

A
Q: How can I print a copy of the display?
A: Press and hold [ON], press [L], and release [ON].

A: Assistance, Batteries, and Service 283

Q: The keys from to (R] don’t work. What is wrong?
A: You accidentally selected Menu Lock, so the keys from to [R]
select menus unless you press [first. To turn off Menu Lock, press

W(VENUS).

Q: [can't find some variables that I used earlier. Where did they go?
A: You may have been using the variables in a different directory. If
you can’t remember which directory you were using, you'll need to
check all the directories.

Q: How can 1 determine how much memory is left?
A: Execute HEH to return the number of bytes available in
memory.

Q: Why did the cursor change its appearance?

A: The cursor indicates the current entry mode. The entry modes are
Immediate (empty cursor), Algebraic (partly filled cursor), or Alpha
(filled cursor). The shape of the cursor indicates Replace mode (box
cursor) or Insert mode (arrow cursor). See “How the Cursor Indicates
Modes” on page 172.

Q: | keyed in a name (or pressed a USER menu key), but the name didn’t
g0 on the stack. Why not?

A: You entered an unguoted name, which refers to the contents of a
variable. To put a name on the stack, press ("] first. (See “Quoted and
Unquoted Names” on page 57.)

Q: When I calculate the cube root of —27, why isn’t the result —3?
A: Every number has three cube roots, two of which are complex
numbers. The HP-28S returns one of the three roots, called the princi-
pal value. For positive real arguments the principal value is the real
root; for negative real arguments the principal value is one of the
complex roots. To calculate the real bth root of a real number a, key in
the following program.

% % a b '"SIGHCa¥ABS a2 IHV(bL> ' »

Press "] RROOT to store the program in a variable RROOT (real
roof). You can then find the real cube root of —27 by typing 27

[ENTER] 3 [ENTER) RROOT (ENTER].

284 A: Assistance, Batteries, and Service

Q: The calculator is slower than usual, and the & annunciator is blink-
ing. What is happening?

A: The calculator is in Trace printing mode. Press l[PRINT] trac to
turn off Trace printing mode.

Q: The printer prints several lines quickly, then slows down. Why?

A: The calculator quickly transmits a certain amount of data to the
printer, then slows its transmission rate to make sure the printer can
keep up.

Q: How can I speed up printing?

A: If your printer is plugged into an adaptor, the calculator can safely
send data at a faster rate. To select faster printing, type 52 SF
(ENTER]. This sets flag 52, which controls the printing speed. When
the printer isn’t plugged into an adaptor, type 52 CF to clear
flag 52 and return to normal printing speed.

Q: The printer drops characters or prints W characters. What is wrong?
A: The distance or angle between the printer and the calculator may
be too large, or there may be an obstruction blocking the transmis-
sion. See the printer manual for details about positioning the printer
and calculator.

Q: What is the difference between STO and STORE?

A: The STO command assigns a specified value to a variable. The
STORE menu contains commands that perform storage arithmetic, us-
ing the value of a variable as an argument and assigning the resulting
value to the variable.

Q: [expected a symbolic result, but I got a numerical result. Why?

A: There are values assigned to one or more variables. Purge the con-
tents of the variables (see “Purging a Variable” on page 52) and then
try again.

Q: When I press DRaw , the display clears, the ((#)) annunciator blinks
and then stops, but I don’t see any points plotted on the display. Why not?
A: The calculated values are outside the current plot range. See
“Changing the Scale of the Plot” on page 91.

A: Assistance, Batteries, and Service 285

Q: | evaluated a variable or an expression, and now the calculator doesn’t
respond. Pressing has no effect. What happened?

A: You defined a variable in terms of itself, creating a circular defini-
tion, and now the calculator is executing an “endless loop.” To
terminate the loop, perform a System Halt as follows:

1. Press and hold [ON].
2. Press (a].
3. Release [ON].

Then redefine the variable to remove the circular definition.

If you don’t find an answer to your question, you can contact our
Calculator Technical Support department, using the address or phone
number listed on the inside back cover.

Batteries

The HP-28S is powered by three alkaline batteries. A fresh set of bat-
teries typically will provide approximately six months to one year of
use. However, expected battery life depends on how the calculator is
used.

Use only fresh N-cell alkaline batteries. Do not use rechargeable
batteries.

Low Power Indicator

When the low battery annunciator (§_2J) comes on, the HP-28S can
continue operating for at least 10 hours. If the calculator is turned off
when the annunciator first comes on, Continuous Memory will be

preserved for approximately one month.

286 A: Assistance, Batteries, and Service

Installing Batteries

If you have just purchased the HP-285 and are installing the batteries
for the first time, you can take as long as you'd like to complete these
procedures. ‘

However, if you are replacing batteries, you should keep in mind that
there is a time limit for completing these procedures if you want to
preserve the information you have stored inside the calculator (Con-
tinuous Memory). Once the battery compartment is open, you must
replace the batteries and close the compartment within one minute to
prevent loss of Continuous Memory. Therefore, you should have the
new batteries readily at hand before opening the battery compart-
ment. Also, you must make sure the calculator is off during the entire
process of changing batteries.

To install batteries:

1. Have three fresh N-cell batteries readily at hand.

2. Open the calculator to expose the keyboard and display. If you
are replacing batteries, make sure the calculator is off. Do not
press until the entire procedure for changing batteries is com-
pleted. Changing batteries with the calculator on could erase the
contents of Continuous Memory.

3. Hold the calculator with the battery compartment door facing
up. To remove the battery compartment door, slide it towards
the back of the calculator (away from the product label).

- i)

A: Assistance, Batteries, and Service 287

4.
5.

288

Tip the calculator to remove the old batteries.

Insert three new batteries. Orient the batteries as shown on the
diagram on the back of the calculator. Be certain to observe the
polarities (+ and —) as shown.

Press the batteries into the compartment using the portion of the
battery door that extends beyond the metal contact plate. Press
down until the contact plate is lined up with the grooves on the
calculator case.

Slide the contact plate into the grooves. If necessary, use your
finger to push the batteries into the compartment so that the
door can slide over them. Slide the door until it latches into

place.

O_
C©

f

A: Assistance, Batteries, and Service

Calculator Maintenance

To clean the display, use a cloth slightly moistened with water. Avoid
getting the calculator wet.

Do not lubricate the hinge.

Environmental Limits

In order to maintain product reliability, you should observe the fol-
lowing temperature and humidity limits of the HP-28S:

® Operating temperature: 0° to 45°C (32° to 113°F).

B Storage temperature: —20° to 65°C (—4° to 149°F).

® Operating and storage humidity: 90% relative humidity at 40°C
(104°F) maximum.

Determining If the Calculator Requires
Service

Use these guidelines to determine whether the calculator is function-
ing properly. If the calculator does require service, see “Limited One-
Year Warranty” on page 291 and “If the Calculator Requires Service”
on page 293,

If nothing appears in the display when you press [ON]:

1. Check the display contrast.
a. Press and hold [ON].
b. Press several times.

€. Release [ON].

d. If the display remains blank, press and repeat steps a,
b, and c.

A: Assistance, Batteries, and Service 289

2. Change the batteries, as described on page 286.

3. If steps 1 and 2 don't restore the calculator, it requires service.
See “Limited One-Year Warranty” on page 291 and “If the Cal-
culator Requires Service” on page 293.

If the display is visible, but nothing happens when you press
keys:
1. Perform a System Halt.
a. Press and hold [ON].
b. Press (a].
c. Release [ON].
2. If the calculator is still unresponsive, perform a Memory Reset.
a. Press and hold [ON].
b. Press and hold and [»].
c. Release and [»].
d. Release [ON].

3. If steps 1 and 2 fail to restore the calculator, it requires service.
See “Limited One-Year Warranty” on page 291 and “If the Cal-
culator Requires Service” on page 293.

The Repeating Test

If the calculator works, but you think it’s not working
properly:

1. If you have a printer, turn it on. During the test the calculator
prints numbers that are helpful if the calculator requires service.

2. Start the repeating test.

a. Press and hold [ON].
b. Press [(4].

c. Release (ON].

290 A: Assistance, Batteries, and Service

The repeating test proceeds automatically. (If the test doesn’t
proceed, you probably pressed [ON](¥] by mistake. This starts a
different test, used at the factory, that requires input from the
keyboard. Quit this self-test by executing a System Halt, de-
scribed in step 4 below, and then start the correct repeating test.)

3. Watch for the test message. The test shows horizontal and verti-
cal lines, a blank display, a random pattern, and then it displays
the result of the test.

B The message 0K-225 indicates that the calculator passed the
test.

® A message such as 1 FAIL indicates that the calculator failed
the test. The number indicates the nature of the failure. When
you send the calculator for service, include the failure number
and printed output (if available).

If you interrupt the repeating test by pressing a key, the test
returns a failure message because it didn't expect any key-
strokes. Such a failure message doesn’t indicate a problem with
the calculator.

4. Halt the test by performing a System Halt.
a. DPress and hold [ON].
b. Press [a].
€. Release [ON].

5. If the test returns a failure message, and you didn’t cause the fail-
ure by interrupting the test, the calculator requires service. See
“Limited One-Year Warranty” below and “If the Calculator Re-
quires Service” on page 293.

Limited One-Year Warranty

What Is Covered

The calculator (except for the batteries, or damage caused by the bat-
teries) is warranted by Hewlett-Packard against defects in materials and
workmanship for one year from the date of original purchase. If you sell
your unit or give it as a gift, the warranty is automatically transferred
to the new owner and remains in effect for the original one-year

A: Assistance, Batteries, and Service 291

period. During the warranty period, we will repair or, at our option,
replace at no charge a product that proves to be defective, provided
you return the product, shipping prepaid, to a Hewlett-Packard ser-
vice center. (Replacement may be with a newer model of equivalent
or better functionality.)

This warranty gives you specific legal rights, and you may also have
other rights that vary from state to state, province to province, or
country to country.

What Is Not Covered

Batteries, and damage caused by the batteries, are not covered by the
Hewlett-Packard warranty. Check with the battery manufacturer about
battery and battery leakage warranties.

This warranty does not apply if the product has been damaged by
accident or misuse or as the result of service or modification by other
than an authorized Hewlett-Packard service center.

No other express warranty is given. The repair or replacement of a
product is your exclusive remedy. ANY OTHER IMPLIED WARRANTY
OF MERCHANTABILITY OR FITNESS IS LIMITED TO THE ONE-YEAR
DURATION OF THIS WRITTEN WARRANTY. Some states, provinces,
or countries do not allow limitations on how long an implied war-
ranty lasts, so the above limitation may not apply to you. IN NO

EVENT SHALL HEWLETT-PACKARD COMPANY BE LIABLE FOR

CONSEQUENTIAL DAMAGES. Some states, provinces, or countries do
not allow the exclusion or limitation of incidental or consequential
damages, so the above limitation or exclusion may not apply to you.

Products are sold on the basis of specifications applicable at the time
of manufacture. Hewlett-Packard shall have no obligation to modify
or update products once sold.

292 A: Assistance, Batteries, and Service

Consumer Transactions in the United Kingdom

This warranty shall not apply to consumer transactions and shall not
affect the statutory rights of a consumer. In relation to such transac-
tions, the rights and obligations of Seller and Buyer shall be
determined by statute.

If the Calculator Requires Service

Hewlett-Packard maintains service centers in many countries. These
centers will repair a calculator or replace it (with an equivalent or
newer model), whether it is under warranty or not. There is a charge
for service after the warranty period. Calculators normally are
serviced and reshipped within 5 working days of receipt.

Obtaining Service

% In the United States: Send the calculator to the Calculator Service
Center listed on the inside of the back cover.

B in Europe: Contact your HP sales office or dealer or HP’s Euro-
pean headquarters for the location of the nearest service center. Do
not ship the calculator for service without first contacting a Hewlett-
Packard office.

Hewlett-Packard S.A.

150, Route du Nant-d’Avril
P.O. Box

CH 1217 Meyrin 2
Geneva, Switzerland
Telephone: (022) 82 81 11

B In other countries: Contact your HP sales office or dealer or write
to the U.S. Calculator Service Center (listed on the inside of the
back cover) for the location of other service centers. If local service
is unavailable, you can ship the calculator to the U.S. Calculator
Service Center for repair.

All shipping, reimportation arrangements, and customs costs are
your responsibility.

A: Assistance, Batteries, and Service 293

Service Charge

There is a standard repair charge for out-of-warranty service. The
Calculator Service Center (listed on the inside of the back cover) can
tell you how much this charge is. The full charge is subject to the
customer’s local sales or value-added tax wherever applicable.

Calculator products damaged by accident or misuse are not covered
by the fixed service charges. In these cases, charges are individually
determined based on time and material.

Shipping Instructions

If your calculator requires service, ship it to the nearest authorized
service center or collection point. (You must pay the shipping charges
for delivery to the service center, whether or not the calculator is un-
der warranty.) Be sure to:

® Include your return address and description of the problem.
® Include proof of purchase date if the warranty has not expired.

B Include a purchase order, check, or credit card number plus expira-
tion date (VISA or MasterCard) to cover the standard repair charge.

B Ship the calculator in adequate protective packaging to prevent
damage. Such damage is not covered by the warranty, so we rec-
ommend that you insure the shipment.

B Pay the shipping charges for delivery to the Hewlett-Packard ser-
vice center, whether or not the calculator is under warranty.

Warranty on Service

Service is warranted against defects in materials and workmanship for
90 days from the date of service.

294 A: Assistance, Batteries, and Service

Service Agreements

In the U.S., a support agreement is available for repair and service.
Refer to the form that was wrapped with the manual. For additional
information, contact the Calculator Service Center (see the inside of
the back cover).

Regulatory Information

Radio Frequency Interference

U.S.A. The HP-28S generates and uses radio frequency energy and
may interfere with radio and television reception. The calculator com-
plies with the limits for a Class B computing device as specified in
Subpart | of Part 15 of FCC Rules, which provide reasonable protec-
tion against such interference in a residential installation. In the
unlikely event that there is interference to radio or television reception
(which can be determined by turning the HP-28S off and on or by
removing the batteries), try:

® Reorienting the receiving antenna.

B Relocating the calculator with respect to the receiver.

For more information, consult your dealer, an experienced
radio/television technician, or the following booklet, prepared by the
Federal Communications Commission: How to Identify and Resolve Ra-
dio-TV Interference Problems. This booklet is available from the U.S.
Government Printing Office, Washington, D.C. 20402, Stock Number
004-000-00345-4. At the first printing of this manual, the telephone
number was (202) 783-3238.

West Germany. The HP-285 and the HP 82240A printer comply
with VFG 1046/84, VDE 0871B, and similar non-interference
standards.

If you use equipment that is not authorized by Hewlett-Packard, that
system configuration has to comply with the requirements of Para-
graph 2 of the German Federal Gazette, Order (VFG) 1046 /84, dated
December 14, 1984.

A: Assistance, Batteries, and Service 295

Notes for HP RPN
Calculator Users

Starting with the HP-35 in 1972, Hewlett-Packard has developed a
series of handheld scientific and business calculators based upon the
RPN stack interface. Although there are many differences in the ca-
pabilities and applications of these various calculators, they all share a
common implementation of the basic stack interface, which makes it
easy for a user accustomed to one calculator to learn to use any of the
others.

The HP-28S also uses a stack and RPN logic as the central themes of
its user interface. However, the four-level stack and fixed register
structure of the previous calculators is inadequate to support the mul-
tiple object types and symbolic mathematical capability of the HP-
28S. Thus while the HP-28S is a natural evolution of the “original”
RPN interface, there are sufficient differences between the HP-285
and its predecessors to require a little “getting used to” if you are ac-
customed to other RPN calculators. In this appendix, we will highlight
the major differences.

The Dynamic Stack

The most dramatic difference in the basic interface of the HP-285
compared with previous HP RPN calculators is the size of the stack.
The other calculators feature a fixed, four-level stack consisting of the
X-, Y-, Z- and T-registers, augmented by a single LAST X, or L-regis-
ter. This stack is always “full’—even when you “clear” the stack, all
you are doing is filling the stack with zeros.

296 B: Notes for HP RPN Calculator Users

The HP-28S has no fixed size to its stack. As you enter new objects
onto the stack, new levels are dynamically created as they are needed.
When you remove objects from the stack, the stack shrinks, even to
the point where the stack is empty. Thus the HP-28S can generate a
Too Few Arguments error that previous HP RPN calculators could
not.

The dynamic versus fixed stack implementation gives rise to the fol-
lowing specific differences between the HP-28S and fixed-stack
calculators:

Numbered levels. The indefinite size of the HP-28S stack makes the
XY Z T stack level names inappropriate—instead, the levels are num-
bered. Thus level 1 is analogous to the X-register, 2 to Y, 3 to Z, and 4
to T. The key labels 1/x and x? were preserved on the HP-28S for the
sake of familiarity—they make the keys more visible than their actual
command names INV and SQ, respectively. However, the RPN fix-
ture X<<>Y has been renamed SWAP on the HP-28S.

Stack Manipulation. The HP-28S requires a more general set of
stack manipulation commands than the fixed-stack calculators. Rt and
R4, for example, are replaced by ROLL and ROLLD, respectively,
each of which require an additional argument to specify how many
stack levels to roll. The STACK menu contains several stack manipu-
lation commands that do not exist on the fixed-stack calculators.

No Automatic Replication of the T-register. On fixed-stack calcu-
lators, the contents of the T-register are duplicated into the Z-register
whenever the stack “drops” (that is, when a number is removed from
the stack). This provides a convenient means for constant multiplica-
tion—you can fill the stack with copies of a constant, then multiply it
by a series of numbers by entering each number, pressing (x], then
after you have recorded each result. You can’t do this on the
HP-285—but it is easy to create a program of the form

% 123245 % % 'MULT' STO

where 12345 represents a typical constant. Then all you have to do is
press (USER], enter a number and press MULT , enter a new number
and press MULT again, and so on, to perform constant multiplication.
You can leave successive results on the stack.

B: Notes for HP RPN Calculator Users 297

Stack Memory. A dynamic stack has the advantage that you can use
as many levels as you need for any calculation, without worrying
about losing objects “off the top” as you enter new ones. This also has
the disadvantage that you can tie up a significant amount of memory
with old objects, if you leave them on the stack after you are finished
with a calculation. With the HP-28S, you should get in the habit of
discarding unneeded objects from the stack.

DROP Versus CLX. In fixed-stack calculators, CLX means “replace
the contents of the X-register with 0, and disable stack lift” (see be-
low). Its primary purpose is to throw away an old number, prior to
replacing it with a new one—but you can also use it as a means to
enter 0. On the HP-28S, CLX is replaced by DROP, which does what
its name implies—it drops the object in level 1 from the stack, and the
rest of the stack drops down to fill in. No extraneous 0 is entered.
Similarly, CLEAR drops all objects from the stack, instead of replacing
them with zeros as does its fixed-stack counterpart CLST (CLEAR
STACK).

Stack-Lift Disable and ENTER

Certain commands on fixed-stack calculators (ENTERt, CLX, Z+,
% —) exhibit a peculiar feature called stack-lift disable. That is, after
any of these commands is executed, the next number entered onto the
stack replaces the current contents of the X-register, rather than push-
ing it into the Y-register. This feature is entirely absent on the HP-
285S. New objects entered onto the stack always push the previous
stack objects up to higher levels.

The X-register and ENTER on fixed-stack calculators play dual roles
that are derived more from the single-line display of the calculators
than from the stack structure. The X-register acts as an input register
as well as an ordinary stack register—when you key in a number, the
digits are created in the X-register, until a non-digit key terminates
entry. The key is provided for separating two consecutive

number entries. But in addition to terminating digit entry, the

key also copies the contents of the X-register into Y, and dis-
ables stack lift.

298 B: Notes for HP RPN Calculator Users

On the HP-28S each of these dual roles is separated—there is no
stack lift disable. A command line completely distinct from level 1
(the “X-register”) is used for command entry. ENTER is used only to
process the contents of the command line—it does not duplicate the
contents of level 1. Note, however, that the key will execute
DUP (which copies level 1 into level 2) if no command line is present.
This feature of is provided partly for the sake of similarity to
previous calculators.

Prefix Versus Postfix

HP-28S commands use a strict postfix syntax. That is, all commands
using arguments require that those arguments be present on the stack
before the command is executed. This departs from the convention
used by previous RPN calculators, in which arguments specifying a
register number, a flag number, and so on, are not entered on the

stack but are entered after the command itself—for example, STO 25,
TONE 1, CF 03, and so on. This latter method has the advantage of
saving a stack level, but the disadvantage of requiring an inflexible
format—STO on the HP-41, for example, must always be followed by
a two-digit register number.

Similar operations of the HP-28S are closer in style to indirect opera-
tions on the fixed-stack calculators, where you can use an i-register (or
any register, in the case of the HP-41) to specify the register, flag
number, and so on, addressed by a command. You can view STO,
RCL, and so on, on the HP-28S as using level 1 as an i-register. RCL,
for example, means “recall the contents of the variable (‘register’)
named in level 1”— equivalent to RCL IND X on the HP-41.

You should be aware also that most HP-28S commands remove their
arguments from the stack. If you execute, for example, 123 ‘X’ STO,
the 123 and the ‘X’ disappear from the stack. Without this behavior,
the stack would be overloaded with “old” arguments. If you want to
keep the 123 on the stack, you should execute 123 DUP ‘X’ STO.

B: Notes for HP RPN Calculator Users 299

Registers Versus Variables

Fixed-stack calculators can deal efficiently only with real, floating-

point numbers for which the fixed, seven-byte register structure of the
stack and numbered data register memory is suitable (the HP-41 in-
troduced a primitive alpha data object constrained to the seven-byte
format). The HP-28S replaces numbered data registers with named
variables. Variables, in addition to having a flexible structure so that
they can accomodate different object types, have names that can help
you remember their contents more readily than can register numbers.

If you want to duplicate numbered registers on the HP-28S, you can
use a vector:

S8 + B COH 'REG' =TO
creates a vector with 50 elements initialized to 0;
'REG' SWAF GET » 'HWECL' STO

creates a program NRCL that recalls the nth element from the vector,
where n is a number in level 1;

« 'REG' SHWAP REOT PUT = 'MSTO' STO

creates the analogous store program NSTO.

300 B: Notes for HP RPN Calculator Users

LASTX Versus LAST

The LASTX command on fixed-stack calculators returns the contents
of the LASTX (or L) register, which contains the last value used from
the X-register. This concept is generalized on the HP-28S to the LAST
command, which returns the last one, two, or three arguments taken
from the stack by a command (no command uses more than three
arguments). Thus 1 2 + LASTX returns 3 and 2 to the stack on a
fixed-stack calculator, but 1 2 + LAST returns 3, 1, and 2 to the stack
on the HP-28S.

Although the HP-28S LAST is more flexible than its LASTX predeces-
sor, you should keep in mind that more HP-28S commands use
arguments from the stack than their fixed-stack calculator counter-
parts. This means that the LAST arguments are updated more
frequently, and even such commands as DROP or ROLL will replace
the LAST arguments.

Remember also that UNDO can replace the entire stack, which for
simple error recovery may be preferable to LAST.

B: Notes for HP RPN Calculator Users 301

Notes for Algebraic
Calculator Users

Many calculators, including the great majority of simple, “four-func-
tion” calculators, use variations of the algebraic calculator interface.
The name derives from the feature that the keystroke sequences used
for simple calculations closely parallel the way in which the calcula-
tion is specified in algebraic expressions “on paper.” That is, to

evaluate 1 + 2 — 3, you press HEIE.

This interface works nicely for expressions containing numbers and
operators—functions like +, —, X, and / that are written in infix
notation between their arguments. More sophisticated calculators al-
low you to enter parentheses to specify precedence (the order of
operations). However, the introduction of prefix functions, like SIN,
LOG, and so on, leads to two different variations:

® Ordinary algebraic calculators use a combination of styles—infix
operators remain infix, but prefix functions are entered in a postfix
style (like RPN calculators). For example, 1 + SIN(23) is entered as
(=]. This approach has the advantages of being
able to show intermediate results, and of preserving single-key
evaluations of prefix functions (that is, without parentheses), but
the disadvantage of losing the correspondence with ordinary math-
ematical notation that is the primary advantage of the algebraic
interface.

302 C: Notes for Algebraic Calculator Users

® “Direct formula entry” calculators, and BASIC language computers
that have an immediate-execute mode, allow you to key in an en-
tire expression in its ordinary algebraic form, then compute the
result when you press a termination key (variously labeled (ENTER],
(ENDLINE], [RETURN], and so on). This approach has the advantage
of preserving the correspondence between written expressions and
keystrokes, but usually the disadvantage of providing no intermedi-
ate results. (The HP-71B CALC mode is an exception.) You have to
know the full form of an expression before you start to enter it—it
is difficult to “work your way through a problem,” varying the cal-
culation according to intermediate results.

Getting Used to the HP-28S

HP-28S operating logic is based on a mathematical logic known as
“Polish Notation,” developed by the Polish logician Jan kukasiewicz
(Wookashyeveech) (1878-1956). Conventional algebraic notation
places arithmetic operators between the relevant numbers or variables
when evaluating algebraic expressions. kukasiewicz’s notation speci-
fies the operators before the variables. A variation of this logic
specifies the operators after the variables—this is termed “Reverse Pol-
ish Notation,” or “‘RPN” for short.

The basic idea of RPN is that you enter numbers or other objects into
the calculator first, then execute a command that acts on those entries
(called “arguments”). The “stack” is just the sequence of objects wait-
ing to be used. Most commands return their results to the stack,

where they can then be used as arguments for subsequent operations.

The HP-28S uses an RPN stack interface because it provides the nec-
essary flexibility to support the wide variety of HP-28S mathematical
capabilities in a uniform manner. All calculator operations, including
those that can not be expressed as algebraic expressions, are per-
formed in the same manner—arguments from the stack, results to the
stack.

C: Notes for Algebraic Calculator Users 303

Nevertheless, using the RPN stack for simple arithmetic is most likely
the biggest stumbling block for algebraic calculator users trying to
learn to use RPN calculators. RPN is very efficient, but it does require
you mentally to rearrange an expression before you can calculate re-
sults. But the HP-285’s capability of interpreting algebraic expressions
without translation should make the transition from algebraic calcu-
lator use more straightforward than has been possible on previous
RPN calculators. The four-line display can also help to take away
some of the mystery of the stack, by showing you the contents of up
to four levels at a time.

For the purpose of evaluating algebraic expressions, the HP-28S is es-
sentially a “direct formula entry” calculator. That is, to evaluate an
algebraic expression, all you have to do is precede it with a [*], key in
the expression in its algebraic form, including infix operators, prefix
functions, and parentheses, and then press to see the result.
You can use this method even for simple arithmetic:

) [# () () (8] (EvAL] returns 0.

Except for the preceding [*], these are the same keystrokes you would
use on a simple algebraic calculator, where you substitute for

(=].

||:| Don’t confuse the HP-28S [=] key with that found on alge-
i braic calculators — on the HP-28S, (=] is used for the sole
Note purpose of creating algebraic equations (described in

“ALGEBRA” in the Reference Manual).

304 C: Notes for Algebraic Calculator Users

When you use the HP-28S as a “direct formula entry calculator,” each
result that you compute is retained on the stack, which takes on the
role of a “history stack.” This allows you to save old results indefi-
nitely for reuse later. It also allows you to break up large calculations
into smaller ones, keeping each partial result on the stack and then
combining the results when they are all available. (When carried to
the extreme, this is the essence of RPN arithmetic). The stack provides
a much easier-to-use and more powerful history stack than the single
“result” function available on algebraic or BASIC calculators.

A key feature of the HP-28S is that you really don’t need to concern
yourself over whether RPN logic is better or worse than algebraic
logic. You can choose the logic that is best suited for the problem at
hand, and intermix algebraic expressions with RPN manipulations.

C: Notes for Algebraic Calculator Users 305

Menu Map

This appendix shows the commands in each HP-285 menu. The
menus are listed in alphabetical order, from ALGEBRA to TRIG. For
detailed information about a menu, refer to the Dictionary in the Ref-
erence Manual. The Dictionary describes all menus, listed in
alphabetical order. For detailed information about a particular com-
mand, refer to the Operation Index at the back of the Reference
Manual. The Operation Index lists all commands in alphabetical order
and gives a page reference to the command’s description in the
Dictionary.

This appendix doesn’t include the menus of the interactive operations
offered by CATALOG, FORM, the Solver, and UNITS.

8 CATALOG is described in chapter 22 and demonstrated on page
31.

B FORM is described in “Using FORM” on page 112. For details, see
“ALGEBRA (FORM)” in the Reference Manual.

B The Solver is described in chapter 8, “The Solver,”. For details, see
“SOLVE” in the Reference Manual.

B UNITS is described in “The UNITS Catalog” on page 141. For de-
tails, see “UNITS” in the Reference Manual.

For each menu in this appendix, the commands are grouped by rows
that appear in the display at one time. Pressing moves to the
next row, and pressing [J[PREV] moves to the previous row.

The column Jabeled “Command” is the name that appears in the dis-
play. The column labeled “Description” is a short description of the
command or its entire name. The column labeled “Page” refers to an
example, description, or mention of the command in this manual. For
commands without page references, see the Operation Index in the
Reference Manual.

306 D: Menu Map

ALGEBRA

Command Description Page

COLCT Collect terms 111

EXPAN Expand products 111
Row 1 SIZE Size

FORM Form algebraic expression 112

oBsuB Object substitute

EXSUB Expression substitute

TAYLR Taylor series

180L Isolate 112
Row 2 QUAD Quadratic form

SHOHW Show variable

OBGET Object get

EXGET Expression get

D: Menu Map 307

ARRAY

Command Description Page
2ARRY Stack-to-array 275
ARRY Array-to-stack 274
Row 1 PUT Put element
GET Get element
PUTI Put and increment index
GETI Get and increment index
SIZE Size 274
RDM Redimension
Row 2 TRH Transpose 264
COH Constant array
IDN identity matrix
RSD Residual
CROSS Cross product 126
Dot Dot product 126
Row 3 DET Determinant 128

Row 4 RE =

I
CONJ
NEG

ABS Absolute value
RNRM Row norm
CNRM Column norm
R+C. Real-to-complex
CHR Complex-to-real

Real part
Imaginary part
Conjugate

Negate

308

D: Menu Map

BINARY

Command Description Page
DEC Decimal mode 140
HEX Hexadecimal mode 139
Row 1 ocT Octal mode 140
BIN Binary mode 140
STWS Store wordsize 139
RCHS Recall wordsize
RL Rotate left
RR Rotate right
Row 2 RLB Rotate left byte
RRB Rotate right byte
R3B Real-to-binary 261
B4R Binary-to-real
SL Shift left
SR Shift right
Row 3 5LB Shift left byte
SRB Shift right byte
ASR Arithmetic shift right
AND And
OR Or
Row 4 XOR Exclusive or
NOT Not
D: Menu Map 309

COMPLEX

Command Description Page
RaC Real-to-complex 83
CHR Complex-to-real 83
Row 1 RE Real part 83
I Imaginary part 84
COoNJ Conjugate 84
SIGN Sign 84
RaP Rectangular-to-polar 86
PIR: Polar-to-rectangular 85
Row 2 ABSs Absolute value 85
NEG Negate 85
ARG Argument 85

310

D: Menu Map

LIST

Command Description Page

SLIST Stack-to-list 181

LIST» List-to-stack 181

Row 1 PUT Put element 271

GET Get element 237

PUTI Put and increment index 271

GETI Get and increment index 271

PO Position 237

sue Subset 276

Row 2 S12E Size 271
D: Menu Map 311

LOGS

Command Description Page
LOG Common logarithm 78
ALOG Common antilogarithm 78
Row 1 LN Natural logarithm 78
EXP Exponential 78
LNP1 Natural log of 1 + x 78
EXFM Exponential minus 1 78
S1NH Hyperbolic sine 78
ASINH Inverse hyperbolic sine 78
Row 2 COSH Hyperbolic cosine 78
ACOSH Inverse hyperbolic cosine 78
TANH Hyperbolic tangent 78
ATAMH Inverse hyperbolic tangent 78

312

D: Menu Map

MEMORY

Command Description Page
Available memory 188
Create custom menu 195
Row 1 Order variables 184
Current path 67
Select HOME directory 71
Create directory 66
Variables in current directory 184
Clear current directory 184
Row 2
D: Menu Map 313

MODE

Command Description Page
8TD Standard number display format 38
FIX Fixed number display format 38
Row 1 §C1 Scientific number display format 38
ENG Engineering number display format 38
DEG Degrees angle mode 74
RAD Radians angle mode 74
CHMD Enables or disables COMMAND 210
UNDO Enables or disables UNDO 211
Row 2 LAST Enables or disables LAST 211
ML Enables or disables multi-line 208
RD¥, Enables or disables RDX, 37
PRMD Prints and displays modes

314

D: Menu Map

PLOT

Command Description Page
STEQ Store equation 90
RCEQ Recall equation
Row 1 PHIN Plot minima 95
PMAX Plot maxima 95
THOEP Independent
DRAN Draw 90
PPAR Recall plot parameters 30
RES Resolution
Row 2 AXES Axes
CENTR Center 94
LEW Muttiply width
*H Multiply height 93
8T0% Store sigma
RCLZ Recall sigma
Row 3 | ¢oLs Sigma columns
sCLY Scale sigma
DRMZ Draw sigma
cLico Clear LCD
DGT1Z Digitize
Row 4 | PIXEL Pixel
DRAX Draw axes
CLMF Clear message flag
PRLCD Print LCD
D: Menu Map 315

PRINT

Row 2 | PRMD

Print modes

Command Description Page
PR1 Print level 1 151
PRST Print stack 152

Row 1 | PRVAR Print variable 152

PRLCD Print LCD 149
CR Carriage right

TRAC Enable or disable Trace mode 150

PRSTC Print stack (compact)

PRUSR Print user variables

316

D: Menu Map

PROGRAM BRANCH

Command Description Page

IF Begin IF clause 226

IFERR Begin IF ERROR clause 227

Row 1 THEN Begin THEN clause 226
ELSE Begin ELSE clause 226

END End program structure 226

START Begin definite loop 228

FOR Begin definite loop 229

Row 2 NEXT End definite loop 228
STEP End definite loop 230

IFT If-Then command 227

IFTE If-Then-Eise function 226

Bo Define indefinite loop 231

UNT1I Define indefinite loop 231

Row 3 END End program structure 231
WHIL Define indefinite loop 232

REPER Define indefinite loop 232

END End program structure 232

D: Menu Map 317

PROGRAM CONTROL

Error number

Error message

Command Description Page
587 Single step 250
Suspend program 234
Row 1 Abort program
Abort suspended programs 250
Pause program 234
Return key string 234
Beep 234
Ciear LCD 234
Row 2 Display 234
Clear message flag 234

318 D: Menu Map

PROGRAM TEST

Command Description Page
SF Set flag 205
CF Clear flag 205
Row 1 Fg? Flag set? 225
FC? Flag clear?
Fs?C Flag set? Clear
FC?C Flag clear? Clear
AND And
OR Or
Row 2 XOR Exclusive or
MOT Not 232
SAME Same 231
== Equal 222
STOF Store flags 156
RCLF Recall flags 156
Row 3 TYPE Type 232
D: Menu Map 319

REAL

-
-t

Percent of total

Command Description Page
NEG Negate 78
FACT Factorial (gamma) 78
Row 1 RAND Random number 78
RD2 Randomize 78
MAXR Maximum real 79
MINR Minimum real 79
ABS Absolute value
SIGH Sign
Row 2 MANT Mantissa
¥PON Exponent
IF Integer part
FP Fractional part
Row 3 | FLOOR Floor 272
CEIL Ceiling 272
RND Round
MAX Maximum
MIN Minimum
Row 4 MoD Modulo

320 D: Menu Map

SOLVE

Command Description Page
STEGQ Store equation 64
RCE® Recall equation

Row 1 SOLVR Solver variables menu 102

I80L Isolate 110

GUAD Quadratic form 108

SHOW Show variable
RooT Rootfinder
Row 2

D: Menu Map 321

STACK

Command Description Page

pup Duplicate 178

QVER Over 178

Row 1 nur2 Duplicate two objects 178
DROPZ Drop two objects 179

ROT Rotate 178

LIST» List-to-stack 181

ROLLD Roll down 178

PICK Pick 178

Row 2 DUPHN Duplicate n objects 178
DROPH Drop n objects 179

DEPTH Depth 181

+LIST Stack-to-list 181

322 D: Menu Map

STAT

Command Description Page
Z+ Sigma plus 132
- Sigma minus 133
Row 1 NE Sigma N 134
CLZ Clear sigma 132
8TQZ Store sigma 275
RCLZE Recall sigma 264
TOT Total
MEAN Mean 134
Row 2 SDEV Standard deviation 135
VAR Variance 135
MAKE Maximum sigma
MINZ Minimum sigma
coLz Sigma columns 136
CORR Correlation 136
Row 3 coy Covariance 136
LR Linear regression 137
PREDV Predicted value 137
UTprC Upper chi-square distribution
UTPF Upper Snedecor’s f distribution
Row 4 UTPH Upper normal distribution
UTPT Upper Student’s t distribution
COMB Combinations
PERM Permutations
D: Menu Map 323

STORE

Command Description Page
STO+ Store plus

s$TO~ Store minus

Row 1 STOX Store times

STO/ Store divide

SHEG Store negate

SINY Store invert

SCONJ Store conjugate

Row 2
324 D: Menu Map

STRING

Command Description Page
+STR Object-to-string 258
STR» String-to-object 175
Row 1 CHR Character 166
NUM Character number 156
+LCD String-to-LCD 157
LCO» LCD-to-string 157
POS Position
suB Subset
Row 2 SI1ZE Size 258
oIsp Display 156

D: Menu Map

325

TRIG

Command Description Page
SIN Sine 74
ASIN Arc sine 74
Row 1 Cos Cosine 74
ACoS Arc cosine 74
TAN Tangent 74
ATAN Arc tangent 74
PR Polar-to-rectangular 76
R3P Rectangular-to-polar 76
Row 2 RaC Real-to-complex 76
C+R Complex-to-real 76
ARG Argument 76
+HMS Decimal to hours-minutes-seconds 76
HHS» Hours-minutes-seconds to decimal 76
Row 3 HMS + Hours-minutes-seconds plus 76
HMS~ Hours-minutes-seconds minus 76
DeR Degrees-to-radians 77
R3O Radians-to-degrees 77
326 D: Menu Map

Key Index

This index describes the actions of the keys on the calculator key-
board. First is an alphabetical index of the keys on the left-hand
keyboard, followed by an alphabetical index of the keys on the right-
hand keyboard. Last is an index of the keys on the cursor menu (the
white labels above the top row of the right-hand keyboard).

This index includes shifted keys such as l[ARRAY] and MB(OFF]_ 1t
doesn’t include character keys such as through (z] and [0] through
(9], which always write a character in the command line. (Other char-
acter keys include delimiters such as ([, operators such as [=], and
symbolic constants such as l(z]). These characters have special mean-
ing to the calculator, but their keys are simply character keys.) If you
don’t find a key listed in this index, it is a character key.

For each key, there is a brief description of its action and a page refer-
ence. If the key isn’t mentioned in this manual, or for additional
information about any key, look in the Operation Index at the back of
the Reference Manual.

Key Index 327

Left-hand Keyboard

Key Description Page
B(ALGBRA] Selects the ALGEBRA menu. 110
B(ARRAY] Selects the ARRAY menu. 124
B(ENARY) Selects the BINARY menu. 138
(BRANCH] Selects the PROGRAM BRANCH menu. 222
B(CATALOG] | Starts the command cataiog. 196
B covpPLx] Selects the COMPLEX menu. 83
@(CONTRL] | Selects the PROGRAM CONTROL menu. 234
Switches lower-case mode on or off. 168
BtisT) Selects the LIST menu. 102
B vENUS] Switches Menu Lock on or off. 192
@(MEMORY] | Selects the MEMORY menu. 182
B(PRINT] Selects the PRINT menu. 149
B(REAL] Selects the REAL menu. 78
B (sTACK] Selects the STACK menu. 176
B5TAT) Selects the STAT menu. 131
B (sTORE] Selects the STORE menu. 191
B(STRING) Selects the STRING menu. 156
[[Selects the PROGRAM TEST menu. 225
B(inNiTS] Selects the UNITS catalog. 141
(a] Switches entry mode. 171

328 Key Index

Right-hand Keyboard

Key Description Page
([ON]) | Aborts program execution; clears the command 216
line; exits catalogs, FORM, plot displays.

CHS Changes the sign of a number in the command 168

line or executes NEG.

B(CLEAR] Clears the stack. 179
B(COMMAND] | Moves an entry from the command stack to the | 174

command line.

B(conT] Continues a halted program. 235
B(CONVERT] | Performs a unit conversion. 143
B (CusTtom) Seclects the last-displayed custom menu. 192
B (d/ax] Derivative. 117
Drops one object from the stack. 179
BeoiT) Copies the object in level 1 to the command line | 173

for editing.

EEX Enters exponent in command line. 168
Parses and evaluates the command line. 173
Evaluates an object. 118
B(LAST) Returns last arguments. 179
B (oGs] Selects the LOGS menu. 77
B vGDE Selects the MODE menu. 36
Displays the next row of menu labels. 192
((ATIN]) | Turns the calculator on; aborts program execu- 216

tion; clears the command line; exits catalogs,
FORM, plot displays.

B (oFF] Turns the calculator off. 20
B(rLoT) Selects the PLOT menu. 89
B PREV] Displays the previous row of menu labels. 192

Key Index 329

Key Description Page

i Purges one or more variables. 183
B(rcL) Recalls the contents of a variable, unevaluated. 183
B(RoLL) Moves the level n+1 object to level 1. 178
Selects the SOLVE menu. 99
STO Stores an object in a variable. 183
W(swarP) Swaps the objects in levels 1 and 2. 178
Selects the TRIG menu. 74
i (unDO] Replaces the stack contents. 180
Selects the USER menu. 49
BViEwt) Moves the display window up one line. 177
BViEW] Moves the display window down one line. 177
BlvisiT] Copies an object to the command line for editing. 173
E] Delimiter for names and symbolic expressions. 51
B Squares a number or matrix. 40
B/ Inverse (reciprocal). 40
Adds two objects. 41
(=] Subtracts two objects. 41
Multiplies two objects. 41
() Divides two objects. 42
B(-) Percent. 43
| [EA) Percent change. 43
) Raises a number to a power. 42
=] Takes the square root. 40
B Definite or indefinite integral. 120
[] Shift key. 29
() Selects cursor menu or restores last menu. 168
(¢] Backspace. 168
L [ETYA Forces a numerical result. 75

330 Key Index

Cursor Menu

The cursor menu is labeled in white above the menu keys (the top
row of the right-hand keyboard). The cursor menu is active when the
command line is present and no menu labels are displayed. To select
the cursor menu when menu labels are displayed, press [«]. To re-

store the previous menu, press [#] a second time.

Key Description Page
Switches between Replace and Insert modes. 167
Bns] Deletes all characters to the left of the cursor. 168

DEL Deletes character at cursor. 167
| [N Deletes character at cursor and all characters to | 168
the right.
(a] Moves cursor up. 167
B4 Moves cursor up all the way. 168
(v] Moves cursor down. 167
.[z] Moves cursor down all the way. 168
(] Moves cursor left. 167
B < Moves cursor left all the way. 168
) Moves cursor right. 167
.E] Moves cursor right all the way. 168
Key Index 331

Subject Index

Page numbers in bold type indicate primary references; page numbers
in regular type indicate secondary references.

A

Algebraic calculators, 302-305
Algebraic entry mode, 34, 51,
170-172
Algebraic objects, 161-163
evaluating, 202-203
Alpha entry mode, 55, 170-172
Analytic function, 164-165
Angle mode, 73, 205-206
Annunciators, 27, 29
Arguments
defined, 25
order of, 41, 43
usage, 197
Array elements, 272
Arrays
in algebraic syntax, 157
defined, 124
minimal memory usage, 191
Associating terms, 114-115
Attention, 216
Auto CR mode, 213
Automatic off, 20
Available memory, 188

332 Subject Index

Backspace, 27, 30
Backtrack, 47

Base for binary integers, 139
Base marker, 139

Batteries, 286-288

Battery door, location, 19
BDISP program, 259-262
Beeper mode, 206

Binary integer wordsize, 210
Binary integers, 156

BOXR program, 245-246
BOXS program, 241-244
Bubble sort, 270

C

Cancel system operation, 215
Case, opening and closing, 18
Catalog

of commands, 196-197

of units, 141-143
Chain calcuations, 45
Chain rule, 118-119
Change sign, 39
Changing

directories, 275-279

a variable, 51
Classes of objects, 199
Clause, 225-226

Clearing

all memory, 20

the stack, 44

statistical data, 132
Closing the case, 18
Collecting an algebraic, 111, 256
Comma, 169
Commands, 164-165

catalog of, 26, 29, 31-33
Command line, 22, 166

recovering, 174
Commuting terms, 113-114
Complex numbers, 82, 155
Conditional structures, 223-228
Constants mode, 206-207
Continuous Memory, 20
Contrast, display, 21, 216
Copying stack objects, 178
Corners of a plot, 94
Correcting errors, 47
Correlation, 136
COT program, 80-81
Cotangent, 80-81
Counter, 228-230, 260, 271, 274
Covariance, 136
Covariance matrix, 263
Creating

a directory, 183

a variable, 49, 54
Cross product, 126
Cubic feet conversion, 146
Current directory, 60, 184
Current equation, 90
Current path, 60, 184-185
Current statistics matrix, 132
Current status, 258
Cursor, indicating modes, 172
Cursor menu, 30, 69, 166-168
Custom input menu, 234-235
Custom menus, 192, 195, 276, 277
Custom user menu, 235

Darkening the display, 21
Data point, 132
Data-class objects, 199
Debugging programs, 250
Decimal places, 37
Decimal point, 36, 209
Default modes, 205
Definite loops, 228-230, 248, 260,
274
nested, 270-271
Degrees angle mode, 73
Degrees-minutes-seconds, 76
Delaying evaluation, 198
Delimiters, 26, 28, 169
Dependent data, 136
Determinant, 128
Diagnostics, 218-219
Differentiation, 117-120
Digitize, 93, 99
Directories, 183-187
benefits, 62, 66, 71, 183
changing, 275-279
creating, 60
Display, printing, 149, 216
Display contrast, 21
Dot product, 126
Dropping stack objects, 179

Editing, 69, 173
statistics data, 133

ENTER, 24, 173

Enter exponent, 39

Entry modes, 51, 169-172, 207

Equality test, 224

Equations, 162-163
evaluating, 203
plotting, 97
quadratic, 107
root of, 107

Subject Index 333

Error trap, 227-228, 259, 278
Estimates for Solver, 99, 102
Evaluating a variable, 50, 56
Evaluating an expression, using
Solver, 65
Evaluation, 198-199
Exceptions, mathematical, 211-212
EXCO program, 255-256
Expanding an algebraic, 111, 256
Exponent, 38
Exponential functions, 77-78
Expressions, 34, 161-162
evaluating, 202-203
evaluating using Solver, 65
from stack calculations, 59-60
zero of, 92, 98-100, 107
Extrema of a plot, 96

F

Feet per second conversion, 145
FIB1 program, 247
FIB2 program, 248-253
Fibonacci numbers, 246249
Financial calculations, 103-106
Flags, 205, 225, 258
Foot units, 146
Force unit, 146
Formal variable, 200
Function, 164-165
evaluating, 203-204
one-number, 41
two-number, 41

G

Gallon conversion, 146

Gamma function, 78

Global names, 159
evaluating, 200-201

Global variables, 80, 182-183

Gram conversion, 147-148

Graphics strings, 157

G-0O program, 148

334 Subject Index

HOME directory, 60, 71
Hours-minutes-seconds, 76
Housekeeping, 190-191

HP RPN calculators, 296-301
HP Solve. See Solver
Hyperbolic functions, 77-78

Immediate entry mode, 170-172
Inch conversion, 144

Increment for counter, 230
Indefinite loops, 231-232, 254, 257
Independent data, 136

Infinite result, 211-212

Input menu, custom, 234-235
Insert mode, 70

Integer base, 209-210
Integration, 120--123

Inverse, 40

Inverting a matrix, 128
Isolating a variable, 109-116

J, K

KEY? program, 239
Keyboard, 26-27, 328~330
Keyboard test, 219

L

Last arguments, 179-180
Level 1, printing, 151
Levels, of the stack, 176
Lightening the display, 21
Linear equations, system of, 130
Linear regression, 137
Lists, 158, 276
elements of, 272
LMED program, 272-273
Loan calculations, 103-106
Local names, 159
evaluating, 200

Local variables, 80, 86, 147, 179,
222-223, 242, 259
evaluation of, 254
nested, 270
Logarithmic functions, 77-78
Loop structures, 228
Low memory, 188-190
Lowercase mode, 26, 28

Maintenance, 289
Mantissa, 38
Matrix, defined, 124
Matrix operations, 263
Maximum, of a expression, 100
Mean, 134
Median, defined, 272
MEDIAN program, 273-275
Memory, low, 188-190
Memory Reset, 20, 217
Menu keys, 27, 31
Menu labels, 27, 31
Menu Lock, 169
Merging terms, 115
Message, printing, 151
Miles per hour conversion, 145
Millimeter conversion, 144
Minimum, of a expression, 100
Modes, 205-214

indicated by cursor, 172
Moving stack objects, 178
MULTI program, 253-255
Multi-line mode, 208

Name-class objects, 199-201
Names, 159-160
quoted and unquoted, 57
Negation, 40, 79
Negative number, 39
Nested program structures, 233
definite loops, 270-271
local variable structures, 270
user functions, 245

Newline character, 169
Number display mode, 37, 209
Numerical integration, 122-123
Numerical result mode, 203-204
Numerical variable, 49

o

Object classes, 199

Object types, 26-29
Objects, 154

Off, automatic, 20
One-number functions, 40
Opening the case, 18
Operation, 164-165

Order of arguments, 41, 43
Ounce conversion, 147-148
Overflow, 212

O-G program, 147

P

PAD program, 257-258

Parent directory, 60, 183, 275

Percentages, 43

Performance, maximizing, 190-191

Period, 169

Pi, 74-75

Plotting, 89-97

Plotting parameters, 89

Polar coordinates, 84-88

Postfix notation, 25

Powers, 42

Predicted values, 137

Prefixed units, 144

PRESERVE program, 258-259

Principal value, 206

Printer port, location, 19

Printing a plot, 91

Procedure-class objects, 199,

201-204

Program structures, 161

evaluating, 201

Subject Index 335

Programs, 160-161

in algebraics, 263

as arguments, 254

evaluating, 201-202
Proposition, 162
PSUM program, 8688
Purging

a directory, 187

a variable, 52

Q

Quadratic expressions and equations,
107
Quoted names, 57

Radians angle mode, 73
Radix mark, defined, 36
Random numbers, 78

Real numbers, 155
Recalling a variable, 50, 56
Reciprocal, 40

Recovery modes, 210-211
Recursion, 246-247, 249
RENAME program, 54-55
Renaming a variable, 52
Repeating test, 218
Reserved names, 159-160
Resetting memory, 20
Restoring the stack, 180
Results mode, 207

Root of an equation, 107
Roots, 42

RPN, 25

Running record, printing, 150

S

Scale of a plot, 91
Self-tests, 218-219
Separators, 169
Service, 293-295
Shift key, 27, 29

336 Subject Index

EGET program, 265
X2 program, 266
2XY program, 267
ZY2 program, 266
Single-step execution, 250-253
Solver, 63-64, 98-109
SORT program, 270-272
Spacing of printed output, 214
Speed of printing, 213
Square, 40
Square root, 40
Stack, 176-181
Stack, 22, 272

clearing, 44

printing, 152
Stack diagram, defined, 240
Stack flags, 225
Stack levels, 27, 31
Stack logic, 25
Standard deviation, 135
Statistics parameters, 136, 263
Status, preserving, 258
Storing plot parameters, 96
Strings, 156-157, 258
Structured programming, 202, 241,

255

Subdirectory, 60, 183, 275
Subprograms, 260
SUMS program, 263-264
Symbolic constants, 163
Symbolic integration, 121
Symbolic result mode, 203
System Halt, 217
System of linear equations, 130

T

Taylor series, 120

Temperature conversion, 143-144
Test functions and commands, 224
Time value of money, 103-106
Trace printing, 150, 213
Translating a plot, 93

Transpose, 264

Trigonometric functions, 73-77
Two-number functions, 40

Types of objects, 26, 28

U

Underflow, 212

Unit catalog, 26, 29

Unit strings, 144-145

Unquoted names, 57

Usage of commands, 197

User flags, 225

User functions, 79-81, 161, 202, 242
nested, 245

User memory, 48

User menu, custom, 235

\'}

Variables, 48
creating, 49, 54
isolating, 109-116
printing, 152
purging, 52

Variance, 135

Vectors, defined, 124

w

Warranty, 291-293
Wordsize, 138-139

X, Y2

Zero of an expression, 92, 98-100,
107, 162

Subject Index 337

Contacting Hewlett-Packard

For Information About Using the Calculator. If you have ques-
tions about how to use the calculator, first check the table of contents,

the subject index, and "Answers to Common Questions" in appendix A.
If you can’t find an answer in the manual, you can contact the Calcula-
tor Support department:

Hewlett-Packard
Calculator Support
1000 N.E. Circle Blvd.
Corvallis, OR 97330, U.S.A.

(503) 757-2004
8:00 a.m. to 3:00 p.m. Pacific time
Monday through Friday

For Service. If your calculator doesn’t seem to work properly, refer
to appendix A for diagnostic instructions and information on obtaining
service. If you are in the United States and your calculator requires ser-
vice, mail it to the Calculator Service Center:

Hewlett-Packard
Calculator Service Center
1030 N.E. Circle Blvd.
Corvallis, OR 97330, U.S.A.
(503) 757-2002

If you are outside the United States, refer to appendix A for informa-
tion on locating the nearest service center.

Contents

Page 15 How To Use This Manual

17 Part 1: Fundamentals

Getting Started « Doing Arithmetic » Using Variables
Repeating Calculations « Real-Number Functions
Complex-Number Functions « Plotting » The Solver
Symbolic Solutions Calculus » Vectors and Matrices
Statistics « Binary Arithmetic « Unit Conversion
Printing

153 Part 2: Summary of Calculator Features
Objects « Operations, Commands, and Functions
The Command Line » The Stack « Memory « Menus
Catalog of Commands « Evaluation « Modes
System Operations

221 Part 3: Programming
Program Structures « Interactive Programs
Programming Examples

281 Appendixes and Indexes
Assistance, Batteries, and Service « Notes for RPN
Calculator Users « Notes for Algebraic Calculator Users
Menu Map « Key Index ¢ Subject Index

(l’ﬁ HEWLETT

PACKARD

Reorder Number
00028-90066

00028-90147 English
Printed in US.A. 11/88

Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

