
HP-32S
FliDW HEWLETT
a:~ PACKARD

3

4

5

6

F/;n- HEWLETT
~eJIII PACKARD

325

1. Menu and menu keys.

2. Letter keys for variables & labels.

3. Steps through programs and lists.

4. Shift key.

5. On; cancel display, menu, program
entry.

6. Shows all decimal places.

7. Run/Stop toggle for programs.

RPN SCIENTIFIC

14

11

10

8

8. For indirect addressing via i.

9. Toggles in and out of program
entry.

10. User memory; stored variables
and programs.

11. Menu keys (boxed area)

12. Clears all or parts of memory.

13. Display formats.

14. Angular modes, periods &
commas.

... • --• --• i
;
;
-. • -. • -. • .. • .. • .. , , , ,
· ,
.. ,
.. ,
..
" ..
"
~

" III. ,
" ,
" , ,

The Hewlett-Packard
calculator you've just
purchased will serve you
faithfully for many years.
Whether you're a student
or a seasoned professional,
your HP calculator will
help you solve the tough
problems your work
demands.
The Perfect Complement
to a New HP Calculator
HP's Step-by-Step solutions
books are the closest thing
to having a custom
calculator at your fingertips.
These handy books offer a
variety of examples and
keystroke procedures to help
you set up your calculations the
way you need them.
Specific to a wide range of
topics within science and
engineering, these books will
help you with precisely the
problems you need to solve .

For the HP-22S:

Science Student Applications $9.95
(00022 -90034)
• Solve mathematical problems in

algebra, trigonometry, linear
algebra, and calculus.

• Learn methods for solving problems
in physics, chemistry, thermo­
dynamics, statics and dynamics,
and electrical fundamentals.

• Learn advanced equation-writing
techniques.

For the HP-32S:

Engineering Applications
(00032-90057)

$9.95

• Solve problems in electrical
engineering: reactance chart,
impedance of a ladder network,
Smith chart conversions, transistor
amplifier performance.

• Perform mechanical engineering
calculations: black body radiation,
conduit flow, composite section
properties, and Soderberg's
equation.

• Calculate civil engineering
problems including Mohr's circle
for stress and field angle traverse.

• Perform statistics calculations of
Chi-square, t statistics, F distribu­
tion, and analysis of variance.

• Solve math problems: triangle
solutions and linear interpolation.

Elegant Leather Cases
Protect your new HP-22S or HP-32S in style with a handsome
leather case.
Black (HP 92169K)
Brown (HP 92169L)
Burgundy (HP 92169M)

Owner's Manuals

$19.00
$19.00
$19.00

Each HP calculator comes with an owner's manual. Additional
manuals may be ordered separately as well.
Manuals for HP calculators are also available in a variety of
languages. Contact your HP dealer or local HP sales office for more
information.

For More Information
For additional information on calculator accessories and a
demonstration of Hewlett-Packard professional calculators or
handheld computers, visit your nearest HP dealer. For the location
and number of the dealer nearest you, call toll-free 1-800-752-0900.

How To Order
To order items your local dealer does not carry, call toll-free
1-800-538-8787. Please refer to Call Code P180 when ordering.
MasterCard, Visa and American Express cards are welcome. 1.-- 1 fIII!!IIl r-MERICAN 'I

l~ . ____ . j .. t:~:~~:' '~
All prices are suggested US. list and are subject to change without notice.

! / -,!

L'

rliO- HEWLETT
~r... PACKARD

.... • -• -• -• -• • • • -• -• -• -• -• """-• -• -• -• -• • .. • .. • .. • -.,
~ -

HP-32S
RPN Scientific Calculator

Owner's Manual

Flidl HEWLETT .:e.. PACKARD

Edition 2 September 1988
Reorder Number 00032-90039

Notice

For warranty and regulatory information, see pages 248 and 252.

This manual and any keystroke programs contained herein are pro­
vided "as is" and are subject to change without notice. Hewlett­
Packard Company makes no warranty of any kind with regard to
this manual or the keystroke programs contained herein, includ­
ing, but not limited to, the implied warranties of merchantability
and fitness for a particular purpose. Hewlett-Packard Co. shall not
be liable for any errors or for incidental or consequential damages in
connection with the furnishing, performance, or use of this manual or
the keystroke programs contained herein.

© Hewlett-Packard Co. 1988. All rights reserved. Reproduction, ad­
aptation, or translation of this manual, including any programs, is
prohibited without prior written permission of Hewlett-Packard Com­
pany, except as allowed under the copyright laws. Hewlett-Packard
Company grants you the right to use any program contained in this
manual in this calculator.

The programs that control your calculator are copyrighted and all
rights are reserved. Reproduction, adaptation, or translation of those
programs without prior written permission of Hewlett-Packard Com­
pany is also prohibited.

Corvallis Division
1000 H.E. Circle Blvd.
Corvallis, OR 97330, U.S.A.

Printing History

Edition 1
Edition 2

March 1988
September 1988

Mfg. No. 00032-90040
Mfg. No. 00032-90065

•
• a
• .. • " iii
~

• • i
i
i -• -• "-• -., -" -.,

Welcome to the HP·32S

Your HP-32S reflects the superior quality and attention to detail in
engineering and manufacturing that have distinguished Hewlett­
Packard products for more than 40 years. Hewlett-Packard stands
behind this calculator: we offer accessories, worldwide service, and
expertise to support its use (see inside the back cover).

Hewlett-Packard Quality

Our calculators are made to excel, to last, and to be easy to use.

• This calculator is designed to withstand the usual drops, vibrations,
pollutants (smog, ozone), temperature extremes, and humidity vari­
ations that it may encounter in normal, everyday worklife.

• The calculator and its manual have been designed and tested for
ease of use. We selected spiral binding to let the manual stay open
to any page, and we added many examples to highlight the varied
uses of this calculator.

• Advanced materials and permanent, molded-in key lettering pro­
vide a long keyboard life and a positive feel to the keyboard.

• CMOS (low-power) electronics and the liquid-crystal display allow
data to be retained even when the calculator is off, and let the bat­
teries last a long time.

• The microprocessor has been optimized for fast and reliable com­
putations using 15 digits internally for precise results.

• Extensive research has created a design that has minimized the ad­
verse effects of static electricity (a potential cause of malfunctions
and data loss in calculators).

Welcome to the HP-32S 3

Features

The feature set of this calculator reflects needs and wishes we solic­
ited from customers. The HP-32S features:

• All functions available either on the keyboard or in menus: you do
not have to type their names in.

• Messages and program lines in English, such as 0 I V IDE BY (3 in-
stead of ERR 21. Data storage in variables A through Z.

• Our traditional RPN logic, which saves keystrokes.

• 390 bytes of memory to store data and programs.

• Advanced functionality for statistics, base conversions, complex­
number arithmetic, integration, and solving for the unknown
variable of an equation.

• Extensive HP programming capability, including editing, labeled in­
put and output, subroutines, looping, conditional instructions, flags,
and indirect addressing.

4 Welcome to the HP·32S

• .

•
• • -• -• -• • • "-• -.. -• -..
-. .. -..
-.. -• -.. ... • -.. ...
• ...
• -• -.. ... • • • • • -.. -• ...
'.-

Contents

Part 1: Basic Operation

1 14
14
14
14
15
15
15
15
16
19
20
21
21
22
23
24
24
24
25
26
29
29
29
30
31
32
33
33
34

Getting Started
Important Preliminaries

Turning the Calculator On and Off
Adjusting the Display's Contrast

Highlights of the Keyboard and Display
Shifted Keystrokes
The Letter Keys
Backspacing and Clearing
Using Menus
Exiting Menus
Annunciators

Keying In Numbers
Making Numbers Negative
Exponents of Ten
Understanding Digit Entry
Range of Numbers and OVERFLOW

Doing Arithmetic
One-Number Functions
Two-Number Functions
Chain Calculations
Exercises

Controlling the Display Format
Periods and Commas in Numbers
Number of Decimal Places <.1 OISP)

SHOWing Full 12-Digit Precision
Messages
Calculator Memory

Checking Available Memory
Clearing All of Memory

Contents 5

2 35 The Automatic Memory Stack
35 What the Stack Is
36 Reviewing the Stack ([]!])
37 Exchanging the X- and Y -Registers in the Stack

(~)
38 Arithmetic-How the Stack Does It
39 How ENTER Works
40 How CLEAR x Works
41 The LAST X Register
42 Correcting Mistakes With .1 LASTx I
43 Reusing Numbers With .1 LASTx I
44 Chain Calculations
45 Order of Calculation
46 Exercises

3 47 Storing Data Into Variables
48 Storing and Recalling Numbers
49 Reviewing Variables in the VAR Catalog
50 Clearing Variables
50 Arithmetic With Stored Variables
50 Storage Arithmetic
51 Recall Arithmetic
53 The Variable "j*

4 54 Real-Number Functions
55 Exponential and Logarithmic Functions
56 The Power Function 0f)
56 Trigonometry
56 Entering 11"

56 Setting the Angular Mode
57 Trigonometric Functions
59 Hyperbolic Functions
59 Percentage Functions (%, %CHG)
60 Conversion Functions
60 Coordinate Conversions (P++RECT)
63 Fractional Conversions (H ++ HMS)
64 Angle Conversions (D++RAD)
65 Probability Functions
67 Parts of Numbers
67 Names of Functions

6 Contents

• • "" ,
If

• Part 2: Programming,
... 5 70 Simple Programming
If 71 Creating a Program ... 71 Program Boundaries (LBL and RTN) .-
'"

72 Program Entry (PRGM) , 75 Running a Program
-- 75 Executing a Program (XEQ) ,
""

76 Testing a Program , 77 Data Input and Output

'" 77 Entering Data Into Variables (INPUT) ,
79 Displaying Data in Variables (VIEW) ...

If 82 Stopping or Interrupting a Program
... 82 Programming a Stop or Pause (STOP, PSE) • 82 Interrupting a Running Program ... • 82 Error Stops

'" 83 Editing a Program • 84 Program Memory ... • 84 Viewing Program Memory - 84 Memory Usage • 85 The Catalog of Programs (MEM) , 85 Clearing One or More Programs , 86 The Checksum
87 Nonprogrammable Functions · , 87 Polynomial Expressions and Horner's Method ,

6 · 90 Programming Techniques • 90 Routines in Programs
· , 91 Calling Subroutines (XEQ, RTN) .. 92 Nested Subroutines ,

93 Branching (GTO) ... 95 Conditional Instructions ,.
"

96 Tests of Comparison (TESTS) ,. 97 Flags
III. 99 Loops (GTO, LOOP) ,.
III. 100 Conditional Loops (GTO) ,. 101 Loops With Counters (DSE, ISG)
... 103 Indirectly Addressing Variables and Labels , , 103 The Variable Miw , 104 The Indirect Address, (i)
... 105 Program Control With (i) ,.
.. ,

Contents 7

Part 3: Advanced Operation

7 110 Solving for an Unknown Variable in an
Equation

111 Using SOLVE
112 Writing Programs for SOLVE
113 Examples Using SOLVE
118 Understanding and Controlling SOLVE
119 Verifying the Result
119 Interrupting the SOLVE Calculation
120 Choosing Initial Guesses for SOLVE
124 Using SOLVE in a Program
125 For More Information

8 126 Numerical Integration
127 Using Integration (JFN)
128 Writing Programs for JFN
128 Examples Using JFN
131 Accuracy of Integration
132 Specifying Accuracy
132 Interpreting Accuracy
134 Using Integration in a Program
136 For More Information

9 137 Operations With Complex Numbers
138 The Complex Stack
139 Complex Operations
142 Using Numbers in Polar Notation

10 144 Base Conversions and Arithmetic
146 Arithmetic in Bases 2, 8, and 16
147 The Representation of Numbers
148 Negative Numbers
149 Range of Numbers
149 Windows for Long Binary Numbers
150 SHOWing Partially Hidden Numbers
151 Programming With BASE
151 Selecting a Base Mode in a Program
151 Numbers Entered in Program Lines

8 Contents

.... • -• • 11 153 Statistical Operations

• 153 Entering Statistical Data (I ~+ I, .1 2:-1) - 154 Entering One-Variable Data • 154 Entering Two-Variable Data - 155 Correcting Errors in Data Entry • - 156 Statistical Calculations • 156 Mean and Standard Deviation - 158 Linear Regression • -. 160 Limitations on Precision of Data • 161 Summation Values and the Statistics Registers -. • 161 Summation Statistics -• 162 The Statistics Registers in Calculator Memory

-.. - Part 4: Application Programs .. -• 12 164 Mathematics Programs -• 164 Vector Operations - 175 Solutions of Simultaneous Equations-• Determinant Method
-.

183 Solutions of Simultaneous Equations-• - Matrix Inversion Method • 191 Quadratic Equation -• 198 Coordinate Transformations -• 13 - 204 Statistics Programs • 204 Curve Fitting -• 215 Normal and Inverse-Normal Distributions -• 14 - 222 Miscellaneous Programs • 222 Time Value of Money ... 229 Unit Conversions 235 Prime Number Generator -• Contents 9 -

Part 5: Appendixes and Reference

A 240 Assistance, Batteries, and Service
240 Obtaining Help in Operating the Calculator
240 Answers to Common Questions
242 Power and Batteries
242 Low-Power Indicator
243 Installing Batteries
245 Environmental Limits
245 Determining if the Calculator Requires Service
246 Confirming Calculator Operation-the Self-Test
248 Limited One-Year Warranty
248 What Is Covered
248 What Is Not Covered
249 Consumer Transactions in the United Kingdom
249 If the Calculator Requires Service
250 Obtaining Service
250 Service Charge
251 Shipping Instructions
251 Warranty on Service
251 Service Agreements
252 Regulatory Information
252 Radio Frequency Interference

B 253 User Memory and the Stack
253 Managing Calculator Memory
254 Resetting the Calculator
255 Clearing Memory
256 The Status of Stack Lift
257 Disabling Operations
257 Neutral Operations
258 The Status of the LAST X Register

C 259 More About Solving an Equation
259 How SOLVE Finds a Root
261 Interpreting Results
267 When SOLVE Cannot Find a Root
272 Round-Off Error and 6Underflow"

10 Contents

-., -.. .. D 273 More About Integration

" 273 How the Integral Is Evaluated -., .. 274 Conditions That Could Cause Incorrect Results
279 Conditions That Prolong Calculation Time .,

.... • 281 Messages -• ... • 286 Function Index

...
If
.... 299 Subject Index

• ... • -• -• -• -• • •
I
I ,
I ,
.... • ..
• ..
• • • • • .. • .. • .. • .. ,

Contents 11

-• -• -• .. • ~

I •
.... •
"'" r. • ~ Basic Operation
..... • • -• -• -• -• -• -• -.. -• -• -• -• -• -• .. • • • -• • • .. • .. • .. •

Page 14 1: Getting Started

35 2: The Automatic Memory Stack

47 3: Storing Data Into Variables

54 4: Real-Number Functions

1
Getting Started

Important Preliminaries

Turning the Calculator On and Off

To turn the calculator on, press 1]]. Note ON printed below the key.

To turn the calculator off, press .1 OFF I. That is, press and release the
shift key (.), then press @J (which has OFF printed above it). Since
the calculator has Continuous Memory, turning it off does not affect
any information you've stored.

To conseD:'.~~Ile!gY, the calculator turns itself off after about 10 min­
uteS--~o use. .- --_.- ---

Under most conditions, the calculator's batteries last well over a year.
If you see the low-power indicator (c::::J) in the display, replace the
oatteries as soon as possible. See appendix A for details and_- ..
lristfudions.- .

Adjusting the Display's Contrast

~~.play's _brightness ~epends on lighting, your viewing angle, and
~colltrast sett,~g. To dar!<en or lighten the d~sp1~ hold down t~e_
LfJ key and press m or 8.
~ .. , -,-----"

14 1: Getting Started

;;
i
it

• i
;

• i
i
i
i
;

• • iii
i
i -• -• -• i -
" •

Highlights of the Keyboard and Display

Shifted Keystrokes

Each key has two functions: one printed on its face and a shifted func­
tion printed in color above the key. Press the colored shift key (.)
before these functions. For example, to turn the calculator off, press
and release .' then press @]. This is written as .1 OFF I.

Pressing. turns on the shift annunciator (~), which remains until
you press the next key. To cancel ~, just press • again.

x2 f------ Shifted function

[J X) f---- Letter for alphabetic key

The Letter Keys

Most of the keys have a letter written next to them, as shown above.
Whenever you need to type in a letter-which is used to identify a
variable or a label-the A .. Z annunciator appears in the display, indi­
cating that the letter keys are "active". (Variables are covered in
chapter 3.)

Backspacing and Clearing

One of the first things you need to know is how to clear: how to
correct numbers, clear the display, and, in general, start over.

1: Getting Started 15

Keys for Clearing

Key Description

~ Backspace. Erases the last character before the cursor (_) or
backs out of the current menu. For a completed number (no
cursor), ~ clears the entire number. Also clears error
messages.

During program entry: deletes the program line.

@] Clear or Cancel. Clears the displayed number to zero or can-
cels the current situation (such as a menu, a message, a
prompt for input, a catalog, or program entry) .

• 1 CLEAR I The CLEAR menu. Gives you options for clearing data: {:>::},
{VARS}, {ALL}, and {I}. These clear: the current num-
ber (called "x"), all variables, all of memory, and statistical data.

During program entry, the menu includes {PGM}, which
erases all of program memory.

Using Menus

There is a lot more power to the HP-325 than what you see printed
on the keyboard. This is because almost half of the shifted keys are
menu keys, which, when pressed, offer you several more functions­
or more options for more functions. This extra power is easier to find
than if each function had its own key.

16 1: Getting Started

.. • · , , ,
'" ., .. • .. •
"' • , ,
, , .. • .. • .. ,
"' ,
.. ,
· , ,
· , ,
· ,
· , ,
• ,
• ,
.. ,.
..
"'

.. ,

.. ,
• ,

325 RPN SCIENTIFIC

Menu choices ;- \:ARS ~LL ~:.111-i-1-
Menu pointers

~t-,t ,00 ! ,~ tT
(IX). 0. 0c 00 ~E GFloI~f--- Redefined top-row keys
CMPLX IT HYP ASI'I ACOS AlAN matched to menu choices.

(STO)G§)HG,8J8,~,
LAST x ~ MODES DtSP CLEAR

(ENTER)~.(+/-100.0
GTO ~ H_HMS O_RAD BASE

8 CDaCTI.CDsG]
(~) (~'\(; L(~Gs1.0

~ [rSw0x(~l~
o m,U,~("G:J

ON

,--------------------~

Menu keys
(boxed area)

Those shifted functions printed with lighter backgrounds on the cal­
culator (such as_) are menu keys. Pressing a menu key produces
a menu in the display-a series of choices.

1: Getting Started 17

HP-32S Menus

Menu Description In Chapter:

Numeric Functions

PARTS Number-altering functions (integer part, abso- 4
lute value, etc.).

P-RECT Conversions between polar and rectangular 4
coordinates.

H-HMS Conversions between hours and hours-min- 4
utes-seconds.

D-RAD Conversions between degrees and radians. 4

BASE Base conversions. 10

SOLVE/J Functions for root-solving and integration. 7,8

STAT Statistical functions. 11

PROB Probability functions. 4

Programming Instructions

LBL/RTN Label, return (end), and pause. 5

LOOP Conditional looping and counting functions. 6

FLAGS Functions to set, clear, ar.d test flags. 6

TESTS Conditional tests. 6

Other Functions

MODES Angular modes and decimal-point convention. 4, 1

DISP Display formats. 1

CLEAR Functions to clear data. 1, 3, 5

MEM Status of memory: memory used for individual 1
variables and programs. Catalogs for variables
and programs.

18 1: Getting Started

-.,
-• • • •, -• • • • • ... • -• -• -• -• -• -., .,
.... .,
.... .,
.... ., -.,
... • • • • • • • • • • • • • ... •

For example, to find the factorial of 25:

Keys: Display:

25

.1 PROB I Cn,r Pn,r ,,! R

{" !} (the 11/x I key) 1.5511E25

Description:

Displays number.

Displays the Probabil­
ity menu.

25! is 1.5511 x 1025.

In this way, menus help you execute dozens of functions by guiding
you to them with menu choices. There is no need to remember the
exact names of all of the many functions available on the HP-32S nor
to search through many names printed on the keyboard.

Exiting Menus

Whenever you execute a function in a menu, the menu automatically
disappears, as in the example above. If you wish to leave a menu
without executing a function, you have three options:

• Pressing [!] backs out of the menu, one step at a time .

123 123_

.1 PROB I Cn,r Pn,r ,,! R

{R} RANDOM SEED

[!] Cn,r Pn,r ,,! R

[!] 123.0000

• Pressing @] cancels the menu.

123 123_

.1 PROB I Cn,r Pn,r ,,! R

{R} RANDOM SEED

@] 123.0000

1: Getting Started 19

• Pressing any other menu key replaces the old menu with the new
one.

123

.[Pff6[]

{R}

.@LEARI

Annunciators

123

en,r Pn,r "'! R

RANDOM SEED

'" VARS ALL };

The symbols shown here are called annunciators. Each one has a spe­
cial significance when it appears in the display.

PRGM INPUT 0 1 2 3 GRAD HEX OCT BIN

0.(1 (1 ~~1 (1
• +- • A .. Z. A • CJ • --+.

Annunciator Meaning

"". [YJ and .C!] are active for stepping through a pro-
gram or a list (pages 33, 76).

~ Shift (.) is active (page 15).

PRGM Program entry is active (pages 72, 75).

INPUT Program is waiting for input; enter number and press
I RIS I to resume the program (page 77).

0 1 2 3 Specifies which flags are set (page 98).

RAD GRAD Radians or Grads angular mode is set (page 57).

HEX OCT BIN Specifies which number base is active (page 144). , Top-row keys are redefined according to the menu la-
bels above the menu pointers (page 17).

20 1: Getting Started

-• -• -• ... • -• -• -•
i
...... • ii
ii -• -• -• -• -• -• -• -• • -• -• -• -• .. •,,, .. ., -• ... -

Annunciator Meaning

+--, --+ There are more digits to the left or right. Use .1 SHOW I to
see the rest of a decimal number; use left and right
scrolling keys ([E], (0) to see the rest of a binary num-
ber (page 150).

A .. Z The alphabetic keys are active (page 48).

A Attention! Indicates a special condition or an error (pages
21, 32).

c::::J Battery power is low (page 242).

Keying In Numbers

You can key in a number that has up to 12 digits plus a 3-digit expo­
nent up to ± 499. If you try to key in a number larger than this, digit
entry halts and the A annunciator briefly appears.

If you make a mistake while keying in a number, press [!) to back­
space and delete the last digit, or press @] to clear the whole number.

Making Numbers Negative

The ~ key changes the sign of a number.

• To key in a negative number, type that number, then press ~.

• To change the sign of a number that was entered previously, just
press ~. (If the number has an exponent, ~ affects only the
mantissa-the non-exponent part.)

1: Getting Started 21

Exponents of Ten

Exponents in the Display. Numbers with exponents of ten (such as
4.2 x 10-5) are shown in the display with an E preceding the expo­
nent (such as 4.2000E-5). A number whose magnitude is too large
or too small for the display format will automatically be displayed in
exponential form. For example, in FIX 4 format for four decimal
places, observe the effect of the following keystrokes:

Keys: Display:

.000062 0.000062_

I ENTER I 0.0001

.000042 I ENTER I 4.2000E-5

Description:

Shows number being
entered.

Rounds number to fit
display format.

Automatically uses sci­
entific notation
because otherwise no
significant digits would
appear.

Keying In Exponents of Ten. Use W (exponent) to key in numbers
multiplied by powers of ten. For example, take Planck's constant,
6.6262 x 10-34•

1. Key in the mantissa (the non-exponent part) of the number. If
this part is negative, press ~.

6.6262 6.6262_

2. Press W. Notice that the cursor moves behind the E.

W 6.6262E_

3. Key in the exponent. (Largest possible exponent is ±499.) If it is
negative, press ~.

34 ~ 6.6262E-34_

For a power of ten without a multiplier, such as 1034, just press W 34.
The calculator displays 1 E 3 4.

22 1: Getting Started

-,
If ,
· • , .. • • ... , .. • .. • ,
.. • .. • ... • ... ,
... ,
• • -, , ,
· ,
· ,
.. ,
~
p

~ ., .. .,
-. ..
-. ,
.. .,
.. ,

Other Exponent Functions. To specify an exponent of ten while en­
tering a number, use []]. To calculate an exponent of ten (the base 10
antilogarithm), use .~ (chapter 4). To calculate the result of any
number raised to a power (exponentiation), use [ZJ (chapter 4) .

Understanding Digit Entry

As you key in a number, the cursor (_) appears in the display. The
cursor shows you where the next digit will go; it therefore indicates
that this number is not completed yet. In technical talk, we say that
digit entry is not terminated.

Keys: Display:

123

Description:

Digit entry is not ter­
minated: the number is
not completed .

If you execute a function to calculate a result, then the cursor disap­
pears because the number is complete. Digit entry has been
terminated.

11.0905 Digit entry terminated.

Pressing I ENTER 1 also terminates digit entry. This is why you must sep­
arate two numbers with I ENTER I: to terminate one number before
starting to key in the second one.

123 I ENTER 1

5G

123.0000

128.0000

A completed number.

Another completed
number .

If digit entry is not terminated (the cursor is present), then [!) back­
spaces to erase the last digit. If digit entry is terminated (no cursor),
then [!) acts like @] and clears the entire number. Try it!

1: Getting Started 23

Range of Numbers and OVERFLOW

The smallest magnitude of a number available on the calculator is
1 x 10-499 . The largest magnitude is 9.99999999999 x 10499 (dis­
played as 1.0000E500 because of rounding) .

• If a calculation produces a result that exceeds the largest possible
magnitude, then the number 9.99999999999 x 10499 is provided in­
stead. The warning message 0 V E R FLO It.! appears .

• If a calculation produces a result smaller than the smallest possible
magnitude, then zero is provided instead. There is no warning.

Doing Arithmetic

When you press a function key, the calculator immediately executes
the function written on that key. Therefore, all operands (numbers)
must be present before you press the function key.

All calculations can be broken down into one-number functions and
two-number functions.

One-Number Functions

To use a one-number function (such as~, 00, .0, and ~):

1. Key in the number. (You do not need to press I ENTER I.)
2. Press the function key. (For a shifted function, press the shift key

first.)

For example, calculate 1/32 and y'148.84 . Then square the last result
and change its sign.

Keys:

32

~

148.8400

24 1: Getting Started

Display: Description:

32_ Operand.

0.0313 Reciprocal.

12.2000 Square root.

-• -• • -• • -• -• -• • • -• -• -• -• -• -• -• -• -• ... • -.. -.. -.. -.. ... •
~

-­..
-­.. = -

148.8400

-148.8400

Square of 12.2.

Negation of 148.84.

The one-number functions also include the trigonometric functions,
the logarithmic functions, the hyperbolic functions, and the parts-of­
numbers functions, all of which are discussed in chapter 4.

Two-Number Functions

To use a two-number function (such as [B, G, 0, and [IJ):

1. Key in the first number.

2. Press 1 ENTER 1 to separate the first number from the second.

3. Key in the second number. (Do not press 1 ENTER I.)
4. Press the function key. (For a shifted function, press the shift key

first.)

Remember to enter both numbers before executing the function.

For example:

To Calculate:

12 + 3

12 3

12 X 3

12 3

Press:

12 1 ENTER 1 3 [B

12 1 ENTER 1 3 G
12 1 ENTER 1 3 0
121 ENTER 13 [IJ

Display Is:

15.0000

9.0000

36.0000

4.0000

The order of entry is, of course, essential for noncommutative func­
tions such as G and [IJ. If the numbers have been entered in the
wrong order, you can still get the correct answer without re-entering
the numbers by pressing ~ to swap the order of the numbers. Then
perform the intended function. (This is explained in detail in chapter
2 under HStack Manipulations.")

1: Getting Started 25

Chain Calculations

The speed and simplicity of calculating with the HP-32S are apparent
during chain calculations (that is, calculations with more than one op­
eration). Even during the longest of calculations, you still work with
only one or two numbers at a time-the automatic memory stack stores
intermediate results until you need them, then it inserts them into the
calcula tion. *

• This method requires fewer keystrokes than other calculator logic
does, and it adapts itself naturally to programming.

• The process of working through a problem is the same as working
it out on paper, but the calculator does the hard part.

For example, solve (12 + 3) x 7.

Work From the Parentheses Out. If you were working this prob­
lem out on paper, you would first calculate the intermediate result of
(12 + 3) ...

15
(~) x 7 =

... and then you would multiply the intermediate result by 7.

15 x 7 = 105

Solve the problem in the same way on the HP-32S, starting inside the
parentheses.

Keys: Display:

12 I ENTER I 3 G 15.0000

Description:

Calculates the interme­
diate result first.

You don't need to press I ENTER I to save this intermediate result before
proceeding. Since it is a calculated result, it is saved automatically.

• Don't worry now about the automatic (RPN) memory stack and how it works. The stack is
explained in chapter 2.

26 1: Getting Started

i

• • "'-• i

• • i .. .,
iii

• i
i
i
i
i
i
..... .,
"'-•,
.... .,
-. .,

105.0000 Pressing the function
key produces the an­
swer. This result can be
used in further
ca1cula tions.

Now study these examples. Notice that you only press I ENTER I to sep­
arate sequentially entered numbers, such as at the beginning of a
problem. The operations themselves (G, G, etc.) separate subse­
quent numbers and save intermediate results. The last result saved is
the first one retrieved as needed to carry out the calculation.

First calculate 2 + 3
10

Keys:

2 I ENTER I 3 G 10 G

Now calculate _-=2=--_
3 + 10

Keys:

3 I ENTER I 10 G

Display:

0.5000

Display:

13.0000

0.1538

Calculate 14 + 7 + 3 - 2
4

Keys: Display:

14 I ENTER I 7 G 3 G 2
G 22.0000

4 G 5.5000

Description:

(2 + 3) -;- 10.

Description:

Calculates (3 + 10)
first.

Puts 2 before 13 so the
division is correct: 2 -;-
13 .

Description:

Calculates (14 + 7 +
3 - 2) first.

22 -;- 4.

1: Getting Started 27

Now calculate 4
14 + (7 x 3) - 2

71 ENTER 130 21.13131313

33.13000

4~ 33.0000

0.1212

Calculates (7 x 3).

Calculates bracketed
numbers next.

Puts 4 before 33 in
preparation for
division.

Calculates 4 -;- 33, the
answer.

Problems that have multiple parentheses can be solved in the same
simple manner, using the automatic storage of intermediate results.
For example, to solve (3 + 4) x (5 + 6) on paper, you would

first calculate the quantity
inside these parentheses ...

~(3 + 4) x (5 + 6)"

... and then the quantity
inside these parentheses ...

. . . and then you would multiply the two intermediate answers together.

You work through the problem the same way with the HP-32S, except
that you don't have to write down intermediate answers-the calcu­
lator remembers them for you.

Keys:

31 ENTER 14 G

51 ENTER 16 G

o

28 1: Getting Started

Display:

7.0000

11.0000

77.13000

Description:

First adds (3 + 4).

Then adds (5 + 6).

Then multiplies the in­
termediate answers
together for the final
answer.

" • •
I

• -• • -• • • -•,
-., -., -.,
-• • • • ... • -• ... • ... • ... •
" • .. • ,
• .. • .. • .. • .. • ...
•

Remember. This method of entering numbers, called Reverse Polish
Notation, is unambiguous and therefore does not need parentheses.

• You never work with more than two numbers at a time.

• Use I ENTER 1 to separate two numbers keyed in sequentially.

• Pressing a function key immediately executes that function .

• Intermediate results appear as they are calculated, so you can check
each step as you go .

• Intermediate results are automatically stored. They reappear auto­
matically as they are needed for the calculation-the last result
stored is the first to come back out.

• You can calculate in the same order as you would with pencil and
paper .

Exercises

Calculate: y(16.3805 x 5) = 181.000
0.05

Solution: 16.3805 I ENTER 150 em .050

Calculate: y [(2 + 3) x (4 + 5)] + Y [(6 + 7) x (8 + 9)]
21.5743
Solution: 2 I ENTER 1 3 0 4 1 ENTER 1 5 0 0 em 6 I ENTER 1 7 0 8
I ENTER 1 9 00 em 0

Calculate: (10 - 5) --;- [(17 - 12) x 4] = 0.2500
Solution: 171 ENTER 112 G 4010 1 ENTER 15 G ~ 0
or
10 r::1 E'""N=TE=R"I 5 G 17 I ENTER 112 G 400

Controlling the Display Format

Periods and Commas in Numbers

To exchange the periods and commas used for the decimal point (radix
mark) and digit separators in a number:

1. Press .[MODIS] to display the MODES menu .

1: Getting Started 29

2. Specify the decimal point by pressing { , } or {, } . For example,
the number one million looks like:

• 1,131313,131313,13131313 if you press {,}, or

• 1.131313,131313,13131313 if you press {,}.

Number of Decimal Places ,.1 0 I SP I)

All numbers are stored with 12-digit precision,* but you can select the
number of decimal places to be displayed by using the .1 DISP I (dis­
play) function. The displayed number is rounded according to the
display format. The DISP menu gives you four options:

FX SC EN ALL

Fixed-Decimal Format ({F X}). FIX format displays a number with
up to 11 decimal places (if they fit). After the prompt F I X _, specify
the number of decimal places to be displayed. For 10 or 11 places,
press c:::J 0 or c:::J 1.

Decimal places
~

123,456,13131313

Any number that is too large or too small to display in the current
setting will automatically be displayed in scientific format.

Scientific Format ({SC}). SCI format displays a number in scien­
tific notation (one number before the decimal point) with up to 11
decimal places (if they fit) and up to three digits in the exponent. Af­
ter the prompt, SCI _, specify the number of decimal places. (The
integer part will always be less than 10.) For 10 or 11 places, press c:::J
o or c:::J 1.

Decimal places Power of 10

1:2346 E 5 ..----
~

Mantissa

• During some complicated internal calculations, the calculator uses 1S-digit precision for in­
termediate results.

30 1: Getting Started

• .,
• • -•
-.. .,
ii
..... • • -• ~ .,
-.,
-• -.,
-• • -., .,
-• -• ., ., .. ,.
• • • • • • • • • • • • • ... •

Engineering Format ({ EN},. ENG format displays a number in a
manner similar to scientific notation, but the exponent is a multiple of
three (and therefore there can be one, two, or three digits before the
decimal point). This is most useful for scientific and engineering cal­
culations that use units specified in multiples of 103 (such as micro-,
milli-, and kilo-units).

After the prompt, ENG _, specify the number of digits you want after
the first significant digit. (The integer part will always be less than
1,000.) For 10 or 11 digits, press [] a or [] 1 .

Digits after first significant digit Power of 10 (multiple of 3)

123A6E3~
'-;----'

Mantissa

ALL Format ({A L L} ,. ALL format displays a number as precisely as
possible (12 digits maximum). If not all digits fit in the display, the
number is automatically displayed in scientific format.

123,456

SHOWing Full 12-Digit Precision

Changing the number of displayed decimal places affects what you
see, but it does not affect the internal representation of numbers. The
number stored internally always has 12 digits.

14.8745632019
~~

You see only these ~ ~ ... but these digits are
digits in {FIX} 4. . . also present internally .

To temporarily display a number with its full precision, press
.[SHOW [. This shows you just the mantissa (no exponent) of the num­
ber for as long as you hold down [SHOW [.

1: Getting Started 31

Keys: Display: Description:

.1 DISP 1 {FX} 4 Displays four decimal
places.

45 I ENTER 1 1.3 0 58.5131313 Four decimal places
displayed.

.1 DISP 1 {SC} 2 5.85E 1 Scientific format: two
decimal places and an
exponent.

.1 DISP 1 {ALL} 58.5 All significant digits;
trailing zeros dropped.

.1 DISP 1 {FX} 4 58.5131313 Four decimal places, no
exponent.

11/x 1 13.13171

.1 SHOW 1 (hold) 1713941317139413 Temporarily shows full
precision.

Messages

The calculator responds to certain conditions or keystrokes by dis­
playing a message. The A. symbol comes on to call your attention to
the message.

• To clear a message, press [QJ or [!) .

• To clear the message and perform another function, press any other
key.

If no message appears but A. does, then you have pressed an inactive
key (a key that has no meaning in the current situation, such as the rn
key in Binary mode).

All displayed messages are explained in the list of messages on page
281.

32 1: Getting Started

-• •
t

• -
" .. •
" I'
.... •
it

..
I' .. • -. • .. • .. • ... • ,
• -, ,
-,

.. ,
•

Calculator Memory

There are 390 bytes of user memory in the HP-32S available to you
for any combination of stored data (variables or program lines). The
memory requirements of specific activities are given under uManaging
Calculator Memory" in appendix B .

Checking Available Memory

Pressing .1 MEMJ shows you the amount of memory still available:

216.0 VAR PGM

Bytes of memory /cataIOg· of vari~ Catalog of programs
available ~ ;see chapter 3, (See chapter 5,

page 49.) page 85.)

1. To enter the catalog of variables, press {VAR} . To enter the cata­
log of programs, press {P G M} .

2. To review the catalogs, press [!] or .w .
3. To delete a variable or a program, press .[CLEARl while viewing

it in its catalog.

4. To exit the catalog, press @].

1: Getting Started 33

Clearing All of Memory

Clearing all of memory erases all numbers and program lines you've
stored. It does not affect settings (modes and formats). (To clear
settings as well as data, see HClearing MemoryH in appendix B.)

To clear all of memory:

1. Press .1 CLEAR I {A L L} . You will then see the confirmation
prompt CLR ALL? Y N, which safeguards against the unin­
tentional clearing of memory.

2. Press {Y} (yes).

34 1: Getting Started

.. • , .. , .. ,
~ ,
~ ,
~ ,
... ,
III. ,
..
~

~ ..
• ,.
• ..
" ..

.. ,

The Automatic Memory
Stack

2

This chapter explains how calculations take place in the automatic
memory stack and why this method minimizes the number of key­
strokes for complicated calculations. You do not need to read and
understand this material to use the calculator. However, you will find
that understanding this material greatly enhances your use of the cal­
culator, especially when programming.

In part 2, "ProgrammingH, you will see that the stack helps manipulate
and organize data for programs .

What the Stack Is

Automatic storage of intermediate results is the reason that the HP-32S
easily processes the most complex calculations, and does so without
parentheses. The key to automatic storage is the automatic, RPN mem­
ory stack. *

The memory stack consists of four storage locations, called registers,
which are "stackedH on top of each other. It is a work area for calcula­
tions. These registers-labeled X, Y, Z, and T -store and manipulate
four current numbers. The "oldestH number is the one in the T- (top)
register.

• HP's operating logic is based on an unambiguous, parentheses-free mathematical logic
known as 'Polish Notation,' developed by the Polish logician Jan .l,ukasiewicz (1878-
1956). While conventional algebraic notation places the operators between the relevant num­
bers or variables, -l.ukasiewicz's notation places them before the numbers or variables. For
optimal efficiency of the stack, we have modified that notation to specify the operators after
the numbers. Hence the term Reverse Polish Notation, or RPN .

2: The Automatic Memory Stack 35

T 0.0000 "Oldest" number

Z 0.0000

Y 0.0000

X 0.0000 Displayed

The most HrecentH number is in the X-register: this is the number you
see in the display.

In programming, the stack is used to perform calculations, to tempo­
rarily store intermediate results, to pass stored data (variables) among
programs and subroutines, to accept input, and to deliver output.

The X·Register Is in the Display. The X-register is what you see
except when a menu, a message, or a program line is being displayed.
You might have noticed that several functions' names include an x or
y. This is no coincidence: these letters refer to the X- and Y-registers.
For example, .~ raises ten to the power of the number in the X­
register (the displayed number) .

• [1XEf'ill {x} versus @]. Pressing .LCLEA[j {x} always clears the
X-register to zero, and it is also used to program this instruction. The
@] key, in contrast, is context-sensitive. It either clears or cancels the
current display, depending on the situation: it acts like .[CLEAR I {x}
only when the X-register is displayed.* It cancels other displays:
menus, labeled numbers, messages, and program entry.

Reviewing the Stack (ffiIJ)

The ffiI] (roll down) key lets you review the entire contents of the
stack by HrollingH the contents downward, one register at a time. You
can see each number when it enters the X-register.

*[!) also acts like Ii .. ,d· {,,} when the X·register is displayed and digit entry is termi-
nated (no cursor present).

36 2: The Automatic Memory Stack

i

• •

-~ -~ -• -~ -~ -~ ... • ,
•
'" ..
" ..
" ..
" • ,
• .. • .. •

Suppose the stack is filled with I, 2, 3, 4 (press 1 I ENTER I 2 I ENTER I 3
I ENTER I 4). Pressing []I] four times rolls the numbers all the way
around and back to where they started:

T 1

Z 2

Y 3

X 4

4

2

3

3

4

2

2

3 2

4 3

4

What was in the X-register rotates around and enters the T -register.
Notice that the contents of the registers are rolled. The registers them­
selves maintain their positions, and the X-register is always displayed.

Exchanging the X- and V-Registers in the Stack
(I x~y I)

Another key that manipulates the stack contents is I x~y I (x exchange y).
It swaps the contents of the X- and Y-registers without affecting the
rest of the stack. Pressing I x~y I twice, of course, restores the original
order of the contents.

The ~ function is used primarily for two purposes:

• To view y and then return it to the Y-register (press I x~y I twice).
Some functions yield two results: one into the X-register and one
into the Y-register. An example is {y,::.:~8,r}, which converts rect­
angular coordinates in the X- and Y -registers into polar coordinates
in the X- and Y-registers .

• To swap the order of numbers in a calculation. For example, an
easy way to calculate 9 -7- (13 x 8) is to press 13 I ENTER I 8 0 9

~0·

2: The Automatic Memory Stack 37

Arithmetic-How the Stack Does It

The contents of the stack move up and down automatically as new
numbers enter the X-register (lifting the stack) and as operators com­
bine two numbers to produce one new number (dropping the stack) in
the X-register. Suppose the stack is still filled with the numbers I, 2,
3, 4. See how the stack drops and lifts its contents while calculating

3 + 4 - 9:

T 1 1 1 1

Z 2 1 2 1

Y 3 2 7 2

X 4 G 7 []] 9 G -2

1 2 3

1 The stack "drops" its contents. (The top register replicates its contents.)
2 The stack "lifts" its contents. (The top contents are "lost".)
3 The stack drops.

• Notice that when the stack lifts, it pushes the top contents out of
the T -register, and that number is lost. You can see, therefore, that
the stack's memory is limited to four numbers for calculations.

• When the stack drops, it replicates the contents of the T -register.

• Because of the automatic movement of the stack, you do not need
to clear the display before doing a new calculation.

• Most functions prepare the stack to lift its contents when the next
number enters the X-register. See appendix B for lists of functions
that affect stack lift.

38 2: The Automatic Memory Stack

-., , ,
-, .. .,
• • .. • .. • • • ... • • • • • .. • .. •
.. •
.. ,
.. ,
.. ,
.. ,
II. ,
III
~

• ·

How ENTER Works

You know that I ENTER I separates two numbers keyed in one after the
other. In terms of the stack, how does it do this? Suppose the stack is
again filled with 1, 2, 3, and 4. Now enter and add two new numbers:

T 1

Z 2

Y 3

X 4

1

1 Lifts the stack .

5 + 6:

1 lost 2 lost

2 3

3 4

4 5

5 I ENTER I 5

2

2 Lifts the stack and replicates the X-register.

3 Does not lift the stack .

4 Drops the stack and replicates the T-register.

3 3

4 3

5 4

6 11

3 4

I ENTER I replicates the contents of the X-register into the Y-register. The
next number you key in (or recall) writes over the copy of the first
number left in the X-register. The effect is simply to separate two se­
quentially entered numbers.

You can use the replicating effect of I ENTER I to clear the stack quickly:
press 0 I ENTER II ENTER II ENTER I. All registers now contain zero. Note,
however, that you don't need to clear the stack before doing
calcula tions.

Using a Number Twice in a Row. You can use the replicating fea­
ture of I ENTER I to other advantages. To add a number to itself, press
I ENTER IG·

Filling the Stack With a Constant. The replicating effect of I ENTER I
together with the replicating effect (from T into Z) of stack drop al­
lows you to fill the stack with a numeric constant for calculations.

2: The Automatic Memory Stack 39

Example: Constant, Cumulative Growth. Given a bacterial culture
with a constant growth rate of 50%, how large would a population of
100 be at the end of 3 days?

T 1.5 1.5
1.5

Z 1.5 1.5
I ENTER I y 1.5 1.5 I ENTER I
I ENTER I X 1.5 100 100 0

1 2 3

1 Fills the stack with the growth rate.

2 Keys in the initial population.

3 Calculates the population after 1 day.

4 Calculates the population after 2 days.

5 Calculates the population after 3 days.

How CLEAR X Works

Replicates T-register

1.5 1.5 1.5

1.5 1.5 1.5

1.5 1.5 1.5

150 0 225 0 337.5

4 5

Clearing the display (X-register) puts a zero in the X-register. The next
number you key in (or recall) writes over this zero.

There are three ways to clear the number in the X-register, that is, to
clear x:

• Press @].

• Press [!].

• Press .LQ!OI@ {::.:}. (These keystrokes are mainly used in program
entry.)

40 2: The Automatic Memory Stack

Note these exceptions:

• During program entry, [!] deletes program lines and @] cancels
program entry.

• During digit entry, [!] backspaces over the number.

• If the display shows a labeled number (such as A=2.0000), pressing
@] or [!] cancels that display and shows the X-register.

For example, if you wanted to enter 1 and 3 but mistakenly entered 1
and 2, this is what you would do to correct it:

T

Z

Y

[IJX

1

1 1 ENTER 1

2

1 Lifts the stack.

1

1 2

3

2 Lifts the stack and replicates the X-register.

3 Overwrites the X-register.

4 Clears x by overwriting it with zero.

S Overwrites x (replaces the zero.)

The LAST X Register

1

o 3

4 S

The LAST X register is a companion to the stack: it holds the number
that was in the X-register before the last numeric function was exe­
cuted. (A numeric function is an operator that produces a result from
another number or numbers, such as em.) Pressing .1 LASTx I returns
this value into the X-register. This ability to retrieve the "last x" has
two main uses: correcting errors and reusing a number in a
calculation.

See appendix B for a comprehensive list of the functions that save x
in the LAST X register.

2: The Automatic Memory Stack 41

Correcting Mistakes With .1 LASTx I

Wrong One-Number Function. If you execute the wrong one­
number function, use .1 LASTx 1 to retrieve the number so you can
execute the correct function. (Press @] first if you want to clear the
incorrect result from the stack.)

Since.CJJ and .1 %CHG 1 don't cause the stack to drop, you can re­
cover from these functions in the same manner as from one-number
functions.

Example. Suppose that you had just computed In 4.7839 x
(3.879 x 105) and wanted to find its square root, but pressed 0 by
mistake. You don't have to start over! To find the correct result, just
press .1 LASTx 100·

Mistakes With Two-Number Functions. If you make a mistake
with a two-number operation ([£J, G, 0, [Il, or 0), you can cor­
rect it by using .1 LASTx 1 and the inverse of the two-number function
(G or [£J, [Il or 0, ~ or 0):

1. Press .1 LASTx 1 to recover the second number (x just before the
operation).

2. Execute the inverse operation. This returns the number that was
originally first. The second number is still in the LAST X register.
Then:

• If you had used the wrong function, press .1 LASTx 1 again to
restore the original stack contents. Now execute the correct
function .

• If you had used the wrong second number, key in the correct
one and execute the function.

If you had used the wrong first number, key in the correct first number,
press .1 LASTx 1 to recover the second number, and execute the func­
tion again. (Press @] first if you want to clear the incorrect result from
the stack.)

Example. Suppose you made a mistake while calculating

16 x 19 = 304.

There are three kinds of mistakes you could have made:

42 2: The Automatic Memory Stack

"" •

Wrong
Calculation Mistake Correction

16 1 ENTER 1 19 G Wrong function. .1 LASTx 1 G .1 LASTx 10
15 1 ENTER 1 19 0 Wrong first 16 .1 LASTx 10

number.

16 , ENTER 1 18 0 Wrong second ., LASTx 1 G 19 0
number.

Reusing Numbers With .1 LASTx I
You can use ., LASTx 1 to reuse a number (such as a constant) in a
calculation. Remember to enter the constant second, just before exe­
cuting the arithmetic operation, so that the constant is the last
number in the X-register, and therefore can be saved and retrieved
with ., LASTx I.

Example. Calculate 96.704 + 52.3947
52.3947

T t t t

Z z z t

96.704 Y 96.704 96.704 z

'ENTER 1 X 96.704 52.3947 52.3947 G 149.0987

LAST X 1 152.3947 1

T t t

Z z t
y 149.0987 Z

.[LASTx 1 X 52.3947 G 2.8457

LAST X 152.39471 152.39471

2: The Automatic Memory Stack 43

Keys:

96.704 1 ENTER 1

52.3947 [I]

.1 LASTx I

[I]

Display:

96.7040

149.0987

52.3947

2.8457

Description:

Intermediate result.

Brings back display
from before [I].

Final result.

Example. Two close stellar neighbors of Earth are Rigel Centaurus
(4.3 light-years away) and Sirius (8.7 light-years away). Use c, the
speed of light (9.5 x 1015 meters per year) to convert the distances
from the Earth to these stars into meters.

to Rigel Centaurus = 4.3 yr. x (9.5 x 1015 mjyr.)
to Sirius = 8.7 yr. x (9.5 x 1015 mjyr.)

Keys: Display: Description:

4.31 ENTER I 4.3000 Light-years to R.
Centaurus.

9.5[IJ15 9.5E 15_ Speed of light, c.

0 4.085E 16 Distance to R.
Centaurus.

8. 7 .[h/S~I~ 9.5000E 15 Retrieves c.

0 8.2650E 16 Distance to Sirius.

Chain Calculations

The automatic lifting and dropping of the stack's contents let you re­
tain intermediate results without storing or reentering them, and
without using parentheses. This is an advantage the RPN stack has
over other data-handling methods.

44 2: The Automatic Memory Stack

-..
t ,
..

...
" ...

" i -,
... , , .. • , ,
" II'

Order of Calculation

In chapter 1 we recommended solving chain calculations by working
from the innermost parentheses outward. However, you can also
choose to work problems in a left-to-right order.

For example, in chapter 1 you calculated:

4 -7- [14 + (7 x 3) - 2]

by starting with the innermost parentheses (7 x 3) and working out­
ward-just as you would with pencil and paper. The keystrokes were:

7 I ENTER I 3 0 14 [B 2 8 4 ~ 0·

Working the problem left-to-right, the solution would be:

4 I ENTER I 14 I ENTER I 7 I ENTER I 3 0 [B 2 8 [B,

which takes one additional keystroke. Notice that the first intermedi­
ate result is still the innermost parentheses: (7 x 3). The advantage to
working a problem left-to-right is that you don't have to use I x~y I to
reposition operands for noncommutative functions (8 and 0).

The first method (starting with the innermost parentheses) is often
preferred because:

• It takes fewer keystrokes .

• It requires fewer registers in the stack.

When using a left-to-right method, be sure that no more than four
intermediate numbers (or results) will be needed at one time, since the
stack can hold no more than four numbers at once. This example,
when solved left-to-right, needed all the registers in the stack at one
point.

4 [14 + (7 x 3) - 2]

2: The Automatic Memory Stack 45

Keys:

41 ENTER I
14 I ENTER I

7 I ENTER 13

Exercises

Display:

14.0000

3

21.0000

35.0000

33.0000

0.1212

Description:

Saves 4 and 14 as in­
termediate numbers in
stack.

At this point the stack
is full with numbers
for this calculation.

Intermediate result.

Intermediate result.

Intermediate result.

Final result.

Here are some extra problems that you can do to practice using RPN.

Calculate: (14 + 12) x (18 - 12) -7- (9 - 7) = 78.0000
A Solution: 141 ENTER 112 GJ 181 ENTER 112 B 091 ENTER 17 B ITJ

Calculate: 232 - (13 x 9) + 1j7 = 412.1429
A Solution: 23.0 13 I ENTER 1 9 0 B 7 [IE] GJ

Calculate: Y(5.4 x 0.8) -7- (12.5 - 0.73) = 0.5961
A Solution: 5.41 ENTER 1.80 .7 I ENTER 13 [Z] 12.5 ~ B ITJ ffiJ
or
5.41 ENTER 1.8 0 12.5 I ENTER 1.71 ENTER 13 [z] B ITJ ffiJ

Calculate: 8.33 x (4 - 5.2) -;- [(8.33 - 7.46) x 0.32] = 4.5728
4.3 x (3.15 - 2.75) - (1.71 x 2.01)

A Solution: 4 r::1 E'"'"'N::;:;TE;::-:R"I 5.2 B 8.33 0.1 LASTx 1 7.46 B 0.32 0 ITJ
3.15 I ENTER 12.75 B 4.3 0 1.71 I ENTER 12.01 0 B ITJ ffiJ

46 2: The Automatic Memory Stack

• • -•

Storing Data Into
Variables

3

The HP-32S has 390 bytes of user memory: memory space that you
can use to store numbers or program lines. Numbers are stored in
locations called variables, each named with a letter from A through Z.
(You can choose the letter to remind you of what is stored there, such
as B for bank balance and C for the speed of light.)*

325 RPN SCIENTIFIC

I!:; T 0 - --------...:1...:...:.-- Cursor prompts for input II
Aool .. ; Indicates letters

are active
x 2 10 x LOG % %CHG E-

[~ t 0. 0c 00 ~£ (~J
GMPLX TT HYP ASIN AGOS ATAN ~ Letter keys

(ST0 1o EJ.G, 8J [COsJ.[TANt
LAST X PARTS MODES DISP CLEAR

~_E_N_T~E~R-JM[X~Y)N[~-)O~p •

OFF INPUT SHOW PRGM o [DzD, R/S (lieD
ON

• Note that the variables X, Y, Z, and T are different storage locations from the X-register, Y­
register, Z-register, and T -register in the stack.

3: Storing Data Into Variables 47

Each white letter is associated with a key and a unique variable. The
letter keys are automatically active when needed. (The A .. Z annunci­
ator in the display confirms this.)

Storing and Recalling Numbers

Numbers are stored into and recalled from lettered variables with the
I STO) (store) and I RCL) (recall) functions.

To store a copy of a number from the display (X-register) to a
variable: press I STO) letter-key.

To recall a copy of a number from a variable to the
display: press I RCL) letter-key.

Example: Storing Numbers. Store Avogadro's number (approxi­
mately 6.0225 x 1023) in A.

Keys:

6.0225 [I] 23

I STO)

A (ffi] key)

A

Display:

6.13225E23

STO

STO A

6.13225E23

13.13131313

RCL _

6.13225E23

48 3: Storing Data Into Variables

Description:

Prompts for variable.

Displays function as
long as key is held
down.

Stores a copy of
Avogadro's number in
A. This also terminates
digit entry (no cursor
present).

Clears the number in
the display.

Prompts you for the
variable's name.

Copies Avogadro's
number from A to the
display.

Viewing a Variable Without Recalling It. The .1 VIEW 1 function
shows you the contents of a variable without putting that number in
the X-register. The display is labeled for the variable, such as:

A= 1 , 2:::4. 567:::

If the number is too large to fit completely in the display with its
label, it is rounded and the rightmost digits are dropped. (An expo­
nent is displayed in full.) To see the full mantissa, press .1 SHOW I .

• [VI EW I is most often used in programming, but it is useful anytime
you want to view a variable's value without affecting the contents of
the stack.

To cancel the VIEW display, press [!) or @] once.

Reviewing Variables in the VAR Catalog

The .[1f@ (memory) function provides information about memory:

Number of bytes available in memory
~ nnn.n I,}AF: PGt'l

;f ,
Catalog of variables Catalog of programs

To review the values of any or all non-zero variables:

1. Press.IMEM] {I,}AR}.

2. Press [!] or .C.iJ to move the list and display the desired vari­
able. (Note the annunciator, indicating that the arrow keys
are active.)

To see all the significant digits of a number displayed in the
{I,} A R} catalog, press .C?JIQYVj. (If it is a binary number with
more than 12 digits, use the [KJ and [E keys to see the rest.)

3. To copy a displayed variable from the catalog to the X-register,
press I ENTER I.

4. To clear a variable to zero, press .', while it is displayed
in the catalog.

5. Press @] to cancel the catalog (or [!) to back up to the menu).

3: Storing Data Into Variables 49

Clearing Variables

Variables' values are retained by Continuous Memory until you re­
place them or clear them. Clearing a variable stores a zero there; a
value of zero takes no memory.

To clear a single variable: store zero in it.

To clear selected variables:

1. Press .~ { VA R} and use [!] or .m to display the variable.

2. Press ., CLEAR I.
3. Press @] to cancel the catalog, or [!] to back out.

To clear all variables at once: press ., CLEAR 1 {V A R S} .

Arithmetic With Stored Variables

Storage arithmetic and recall arithmetic allow you to do calculations
with a number stored in a variable without recalling the variable into
the stack. A calculation uses one number from the X-register and one
number from the specified variable.

Storage Arithmetic

Storage arithmetic uses , STO EJ, , STO IG, , STO 10, or 1 STO EJ to do
arithmetic in the variable itself and to store the result there. It uses the
value in the X-register and does not affect the stack.

New value of variable = Previous value of variable {+, -, x, -;-} x

For example, suppose you want to reduce the value in A (15) by the
number in the X-register (3, displayed). Press , STO 1 G A. Now A
12, while 3 is still in the display.

50 3: Storing Data Into Variables

• • • -• -• • ;
;
;
;
;
;

• • • i
i -• -• -" ..
" i

A0 AGJ Result: 15 - 3,
that is, A-x.

T t T t

Z z Z z

y y y y

X 3 ISTOl80 X 3

Recall Arithmetic

Recall arithmetic uses 1 RCL I~, 1 RCL 18, 1 RCL 10, or 1 RCL ICB to do
arithmetic in the X-register using a recalled number and to leave the
result in the display. Only the X-register is affected; all other stack
registers are unaffected.

New x = Previous x {+, -, x, -7-} Variable

For example, suppose you want to divide the number in the X-register
(3, displayed) by the value in A (12). Press 1 RCL 1 CB A. Now x = 0.25,
while 12 is still in A.*

A~ AGJ
T t T t

Z z Z z

y y y y

X 3 1 RCLI CB 0 X 0.25 Result: 3..;-12,
that is, x..;-A .

• Recall arithmetic saves memory space in programs. Using I RCL I G A (one instruction) uses
half as much memory as I RCL I A, G (two instructions).

3: Storing Data Into Variables 51

More Examples. Suppose the variables D, E, and F contain the val­
ues 1, 2, and 3. Use storage arithmetic to add 1 to each of these
variables.

Keys:

1 1 STO I D
21 STO IE
31 STO IF

1 ISTOI G D
ISTOIG E
ISTOIG F

.[jIEWJ D

• [VTEW1 E

.[VIEw IF

Display:

3.0000

1.0000

0=2.0000

E=3.0000

F=4.0000

1.0000

Description:

Stores the assumed
values into the
variables.

Adds 1 to D, E, and F.

Displays the current
value of D .

Clears the VIEW
display; displays X-reg­
ister again.

Suppose the variables D, E, and F contain the values 2, 3, and 4 from
the last example. Divide 3 by D, multiply it by E, and add F to the
result.

Keys:

31 RCL I [B D

1 RCLI0 E

IRCLIG F

Display:

1.5000

4.5000

8.5000

52 3: Storing Data Into Variables

Description:

Calculates 3 D.

3-7- D x E.

3 -7- D x E + F.

• • • • • -• -• -• """-• """-• -• -• -• ~ • -• -• -• -• -• -. • -• -• -• -• .. • -.. • ..
• ..
• ..
•
III. • --

The Variable "i"

There is a 27th variable-the variable i. (The ill is located with the []
key.) Although it stores numbers as other variables do, it is special in
that it can be used (via the [NJ function) to refer to other variables-a
technique called indirect addressing. Because this is a programming
technique, it is covered in chapter 6 under "Indirectly Addressing
Variables and Labels."

3: Storing Data Into Variables 53

4
Real-Number Functions

This chapter covers most of the calculator's functions that do com­
putations on real numbers, including some numeric functions
intended for programs (such as the absolute-value function):

• Exponential and logarithmic functions.

• Trigonometric functions.

• Hyperbolic functions.

• Percentage functions.

• Conversion functions for coordinates, angles, and fractions.

• Probability functions.

• Parts of numbers (number-altering functions).

Arithmetic functions and calculations were covered in chapters 1 and
2. The advanced numeric operations (root-finding, integrating, com­
plex numbers, base conversions, and statistics) are in part 3 of this
manual.

54 4: Real-Number Functions

" ,
t

" -. .,
-~
-• • • ... • ... • .. • .. • ... • • -, ,
~ , , ,
-,
... ,
-­IJ

'-•
'-II'
'-II'

...

Many of the numeric functions appear on keys in the top two rows of
the keyboard. The rest appear in one of these menus:

IP FP RN ASS

-RAD
... LBL/RTN LCXlP FLAG~ TESTS

o 0Tmu0v~'<J
SOL VE I r STAT PROS MEM

~ OJw0,eD,8
y,x-O,r O,r-y,x

en,r Pn,r x! R -HR -HMS

~
RANDOM SEED

Exponential and Logarithmic Functions

Put the number in the display first, then execute the function. There
is no need to press 1 ENTER I.

To Calculate: Press:

Natural logarithm (base e) [ill]

Common logarithm (base 10) .1 LOG I
Natural exponential 0
Common exponential (antilogarithm) .~

4: Real-Number Functions 55

The Power Function (y.)

To calculate a number, y, raised to a power, x, key in y I ENTER I X [ZJ.

For y > 0, x can be any rational number. For y < 0, x must be an
integer. For y = 0, x must be positive.

For example:

To Calculate: Press: Result:

152 15.C£J 225.0000

2- 1.4 2 I ENTER 1 1.4 E{J [ZJ 0.3789

(-1.4)3 1 .4 E{J 1 ENTER 1 3 [ZJ -2.7440

'0/2 or 2'13 2 I ENTER I 3 [IE] [ZJ 1.2599

Trigonometry

Entering 7r

Press .GJ to place the first 12 digits of 7r into the X-register. (The
number displayed depends on the display format.) Because this is a
function, 7r does not need to be separated from another number by
I ENTER I.

Note that a calculator cannot exactly represent 7r, since 7r is an irratio­
nal number.

Setting the Angular Mode

The angular mode specifies which unit of measure to assume for an­
gles used in trigonometric functions. The mode does not convert
numbers already present (see uConversion Functions" in this chapter).

56 4: Real-Number Functions

• • • • • -• ... •
'" • -..

" -~ .. .,

360 degrees = 211" radians = 400 grads

To set an angular mode, press .1 MODES I. Then select an option.

Option Description Annunciator

{OG} Sets Degrees mode (DEG). Uses decimal frac- none
tions, not minutes and seconds.

{RO} Sets Radians mode (RAD). RAD

{GR} Sets Grads mode (GRAD). GRAD

- Trigonometric Functions • j With x in the display:

-• -• • , , ,
-• • • .. , .. • • • • • • • • ,
-,
iii ,
..
r

Note

-2.0676 x

To Calculate: Press:

Sine of x. @ill]

Cosine of x. Icosl

Tangent of x. I TAN 1
Arc sine of x. .IASINI

Arc cosine of x. .1 ACOS 1
Arc tangent of x. .1 ATAN 1

Calculations with the irrational number 11" cannot be ex­
pressed exactly with the 12-digit internal precision of the
calculator. This is particularly noticeable in trigonom­
etry; for example, the calculated sin 11" is not zero but
10-13, a very small number close to zero.

4: Real-Number Functions 57

Example. Show that the cosine of (5 j7)7r radians and the cosine of
128.57° are the same.*

Keys: Display:

.1 MODES 1 {RD}

5 1 ENTER I 7 0. GJ 0
1 cos I -0.6235

.1 MODES I {DG}
128.57 1 COS I -0.6235

Description:

Sets Radians mode;
RAD annunciator on.

Cos (5 j7)7r.

Switches to Degrees
mode (no annunciator)
and calculates cos
128.57°, which is the
same as cos (5 j7)7r.

Programming Note. Equations using inverse trigonometric functions
to determine an angle, (), often look something like this:

() = arctan 0Jjx).

If x = 0, then y -7- x is undefined, resulting in the error
o I V I DE BY 121. For a program, then, it would be more reliable to
determine () by a rectangular to polar conversion, which converts x, y to
r, (). See HCoordinate Conversions/ later in this chapter .

• Actually, these calculated results are the same only to four significant digits due to the inex­

act representation of 11'. (Press .[§!io\fiJ to see more digits.)

58 4: Real-Number Functions

• • • • •
i .. .,
• i

• " • .. ., .. .,
-• -• -• -W

• ...
I

I ,
• ,

..

Hyperbolic Functions

With x in the display:

To Calculate: Press:

Hyperbolic sine of x (SINH). .1 HYP I []ill]
Hyperbolic cosine of x (COSH). .1 HYP II cos I
Hyperbolic tangent of x (TANH). .1 HYP II TAN I
Hyperbolic arc sine of x (ASINH). .1 HYP 1.1 ASIN I
Hyperbolic arc cosine of x (ACOSH) . .1 HYP I .1 ACOS I
Hyperbolic arc tangent of x (ATANH) . .1 HYP 1.1 ATAN I

Percentage Functions (°/0, °/oCHG)

The percentage functions are special (compared with 0 and 0) be­
cause they preserve the value of the base number (in the Y -register)
when they return the result of the percentage calculation (in the X­
register). You can then carry out subsequent calculations using both
the base number and the result without reentering the base number.

To Calculate: Key In:

x% of y y I ENTER I x .C!J
Percentage change from y to x. (y =I=- 0) y I ENTER I x .1 %CHG I

Example. Find the sales tax at 6% and the total cost of a $15.76
item. Use FIX 2 display format so the costs are rounded appropriately.

Keys: Display:

.1 DISP I {FX} 2

Description:

Rounds display to two
decimal places.

4: Real-Number Functions 59

15.761 ENTER 16.00

GJ

13.95

16.71

Calculates 6% tax.

Total cost (base price
+ tax).

Suppose that the $15.76 item cost $16.12 last year. What is the per­
centage change from last year's price to this year's?

Keys:

16.12 1 ENTER 115.76 .1 %CH<D

• 1 DISP] {FX} 4

Display:

-2.23

-2.2333

Description:

This year's price
dropped about 2.2%
from last year's price .

Restores FIX 4 format.

Note that the order of the two numbers is important for the %CHG
function. The order affects whether the percentage change is consid­
ered positive or negative.

Conversion Functions

There are three types of conversions: coordinate (polar/rectangular),
angular (degrees/radians), and fractional (decimal/minutes-seconds).

Coordinate Conversions (P-RECT)

Rectangular coordinates (x, y) and polar coordinates (r, 0) are mea­
sured as shown in the illustration. Functions in the P-RECT (polar
from/to rectangular) menu convert between the two. The angle 0 uses
the units set by the current angular mode. A calculated result for 0
will be between -1800 and 1800 , between -7(" and 7(" radians, or be­
tween - 200 and 200 grads.

60 4: Real-Number Functions

.. ,
t
-,

... • ... •
" , ,
, ,
, ,
, , ,
... ,
•

x _---

To convert between rectangular coordinates (x, V) and polar
coordinates (r, 0):

1. First enter the coordinates (in rectangular form or polar form)
that you want to convert. The order is y 1 ENTER I x or 0 1 ENTER I r .

2. Press .1 P"'R@.

3. Execute the conversion you want: h·,:>::~8,f'} (rectangular to po­
lar) or {8,f' ~ >' ,:>::} (polar to rectangular). The converted
coordinates occupy the X- and Y-registers.

4. The resulting display shows either r (polar result) or x (rectangu­
lar result). Press 1 x~y I to see 0 or y.

8,f'~>',:>::

Example: Polar to Rectangular Conversion. Find x and y in the
right triangle on the left. Find rand 0 in the right triangle on the right.

4: Real-Number Functions 61

Keys:

• 1 MODES 1 {DG}

30 1 ENTER 110

Display:

.Ip-RECTI {8,r~y,x} 8.6603

~ 5.0000

41 ENTER 13 .1 P-RECT 1 {y,x~8,r} 5.0000

~lx~YI 53.1301

y 4

Description:

Sets Degrees mode .

Calculates x.

Displays y.

Calculates the hypote­
nuse (r).

Displays O.

Example: Conversion With Vectors. Engineer P.c. Bord has deter­
mined that in the RC circuit shown on the next page at left, the total
impedance is 77.8 ohms and voltage lags current by 36.5°. What are
the values of resistance, R, and capacitive reactance, Xc' in the circuit?

Use a vector diagram as shown with impedance equal to the polar
magnitude, r, and voltage lag equal to the angle, 0, in degrees. When
the values are converted to rectangular coordinates, the x-value yields
R, in ohms, while the y-value yields Xc' in ohms.

62 4: Real·Number Functions

, , , , ,
.. ,
..
J .. ,
.. ,
.. ,
..
r
II. ,
.. ,
.. ,
.. ,
• ,
. ,
,
,
,
,
,

Keys:

.1 MODES I {DG}

R

C

Display:

36.5 ~ I ENTER I -36.5000

-46.2772

R

Description:

Sets Degrees mode .

Enters 0, degrees of
voltage lag.

Enters " ohms of total
impedance.

Calculates x, ohms re­
sistance, R.

Displays y, ohms reac­
tance, Xc.

For more sophisticated operations with vectors (addition, subtraction,
cross product, and dot product), refer to the "Vector OperationsH pro­
gram in chapter 12 ("Mathematics ProgramsH

).

Fractional Conversions (H-HMS)

Values for time (in hours, H) or angles (in degrees, D) can be con­
verted between a decimal-fraction form (H.h or D.d) and a minutes­
seconds form (H.MMSSss or D.MMSSss) using the H-HMS menu
(hours from/to hours-minutes-seconds).

4: Real-Number Functions 63

To convert between decimal fractions and minutes-seconds:

1. Key in the time or angle (in decimal form or minutes-seconds
form) that you want to convert.

2. Press .1 H-H~.
3. Select { ... HR} (hours-minutes-seconds to hours) or { ... H MS} (hours

to hours-minutes-seconds). The result is displayed.

Example: Converting Time Formats. How many minutes and sec­
onds are there in 1f7 of an hour? Use FIX 6 display format.

Keys: Display:

.1 OISP I {FX} 6

7 02!J 0.142857

0.083429

• [5lsp J {FX} 4

Angle Conversions (D-RAD)

Description:

One-seventh as a deci­
mal fraction.

Equals 8 minutes and
34.29 seconds.

Restores FIX 4 format .

The D-RAD (degrees from/to radians) menu operates independently
of the angular mode. When converting to radians, the number in the
X-register is assumed to be degrees. Likewise, when converting to de­
grees, the number in the X-register is assumed to be radians.

To convert an angle between degrees and radians:

1. Key in the angle (in decimal degrees or radians) that you want to
convert.

2. Press .IT)~RARj.

3. Select {"'OEG} (radians to degrees) or {"'RAO} (degrees to radi­
ans). The result is displayed.

64 4: Real-Number Functions

, , , ,

... ,
;
" ,
" , .. ,
... , , , , ,
.. ,

Probability Functions

The PROB (probability) menu has functions to calculate factorials,
combinations, and permutations, and to obtain random numbers.

The PROB Menu

Menu Label Description

{Cn,r} Combinations. Enter n first, then r. (Nonnegative integers
only.) Calculates the number of possible sets of n items
taken r at a time. No item occurs more than once in a set,
and different orders of the same r items are not counted
separately .

{Pn,r} Permutations. Enter n first, then r. (Nonnegative integers
only.) Calculates the number of possible arrangements of n
items taken r at a time. No item occurs more than once in
an arrangement, and different orders of the same r items
are counted separately.

{x!} Factorial and Gamma. Calculates the factorial of the dis-
played positive integer (0 .,;; x .,;; 253) .

To calculate the gamma function of a, [(a), key in (a - 1)
and press ., PROS I {x!}. (The {x! } function calcu-
lates [' (x + 1). The value for x cannot be a negative
integer.)

{R} Random number generator. Has two options.
Pressing {R AND 0 M} generates a random number in the
range 0 .,;; x < 1. * Pressing {S E ED} starts a new ran-
dom-number sequence with the number that is in the X-
register .

• The random number generator in the HP-32S actually returns a number that is part of a
uniformly distributed pseudo-random number sequence. It passes the spectral test (0.
Knuth, Seminumerical Algorithms, vol. 2. London: Addison Wesley, 1981).

{RANDOM} uses a seed to generate a random number. Each random
number generated becomes the seed for the next random number.
Therefore, a sequence of random numbers can be repeated by starting
with the same seed. You can store a new seed with the {S E ED} func­
tion. If memory is cleared, the seed is reset to zero.

4: Real-Number Functions 65

Example: Combinations of People. A company employing 14
women and 10 men is forming a 6-person safety committee. How
many different combinations of people are possible?

Keys: Display: Description:

241 ENTER 16 6_ Twenty-four people
grouped six at a time .

• 1 PROS I en,!'" Pn,r x! R Probability menu.

{en,!,"} 134,596.0000 Total number of com-
binations possible.

If employees are chosen at random, what is the probability that the
committee will contain six women? To find the probability of an event,
divide the number of combinations for that event by the total number
of combinations.

Keys: Display:

141 ENTER 16

• 1 PROS I {en,!,"} 3,003.0000

134,596.0000

0.0223

66 4: Real-Number Functions

Description:

Fourteen women
grouped six at a time .

Number of combina­
tions of six women on
the committee.

Brings total number of
combinations back into
the X-register.

Divides combinations
of women by total
combinations to find
probability that any
one combination
would have all women.

-, , ,
-,
-,
... • .. • ... • ,
.... ,
... • .. • .. • ... • ... • II. • .. • ... • .. • .. • .. , ,
.. ,
.. ,
" " • ..
• •

• ..
• ..

..

Parts of Numbers

The functions in the PARTS menu alter the number in the X-register
in simple ways. These functions are used in programming .

The PARTS Menu

Menu Label Description

{IP} Integer part. Removes the fractional part of x and replaces
it with zeros. (For example, the integer part of 14.2300 is
14.0000.)

{FP} Fractional part. Removes the integer part of x and replaces
it with zeros. (For example, the fractional part of 14.2300 is
0.2300.)

{RN} Round (RND). Rounds x internally to the number of digits
specified by the display format. (If not rounded, the internal
number is represented by 12 digits.)

{ABS} Absolute value. Replaces x with its absolute value.

Names of Functions

You might have noticed that the name of a function appears in the
display when you press and hold the key to execute it. (The name
remains displayed for as long as you hold the key down.) For in­
stance, while pressing []TI, the display shows SQRT. "SQRT" is the
name of the function as it will appear in program lines, and is the
name by which the function is alphabetized in the function index .

4: Real-Number Functions 67

" ,
• -•

....
II' ... • ... , .. , .. • .. • .. ,
-. .,

Programming

Page 70 5: Simple Programming

90 6: Programming Techniques

5
Simple Programming

Part 1 of this manual introduced you to functions and operations that
you can use manually, that is, by pressing a key for each individual
operation. A program lets you repeat operations or calculations with­
out repeating the keystrokes. In this chapter you will learn how to
program a series of operations to occur automatically. In the next
chapter, UProgramming Techniques,h you will learn about subroutines
and conditional instructions.

Introduction: A Simple Programming Example. To find the area
of a circle with a radius of 5, you would use the formula A = 7rr2 and
press

to get the result for this circle, 78.5398.

But what if you wanted to find the area of many different circles?
Rather than repeat the given keystrokes each time (varying only the
u5 h for the different radii), you can put the repeatable keystrokes into
a program:

001 :>::2

002 11'

003 x

This very simple program assumes that the value for the radius is in
the X-register (the display) when the program starts to run. It com­
putes the area and leaves it in the X-register.

70 5: Simple Programming

.. -
To enter this program into program memory, do the following:

Keys:

.!PRGM I .1 GTOI [J[J

.0.GJ0

., PRGM I

Display:

PRGM TOP

001 ,,2

002 ff

003 x

Description

This resets the program
pointer.

Now try running this program to find the area of a circle with a ra­
dius of 5.

Keys: Display:

51 RIS I 78.5398

Creating a Program

Description:

This sets the program
to its beginning.

The answer!

We will continue using the above program for the area of a circle to
illustrate programming concepts and methods.

Program Boundaries (LBL and RTN,

If you want more than one program stored in program memory, then
a program needs a label to mark its beginning (such as R0i LBL R)
and a return to mark its end (such as R05 RTN). Notice that the line
numbers acquire an R to match their label.

Program Labels. Programs and segments of programs (called
routines) should start with a label. To record a label, press:

., LBL/RTN I {L B L} letter-key

5: Simple Programming 71

The label is used as identification for executing a specific program or
routine. The label is a single letter from A through Z. The letter keys
are used as they are for variables (as discussed in chapter 3). You
cannot assign the same label more than once (this causes the message
DUPL I CAT. LBL), but a label can use the same letter that a variable
uses.

It is possible to have one program (the top one) in memory without
any label. However, adjacent programs need a label between them to
keep them distinct.

Program Line Numbers. Line numbers are preceded by the letter
for the label, such as A01. If one label's routine has more than 99
lines, then the line number appears with a decimal point instead of
the leftmost number, such as A.01 for line 101 in A. For more than
199 lines, the line number uses a comma, such as A,01 for line 201.

Program Returns. Programs and subroutines should end with a re­
turn instruction. The keystrokes are:

.1 LBL/RTN I {RTN}

When a program finishes running, the last RTN instruction returns
the program pointer to P R GMT 0 P, the top of program memory.

Program Entry (PRGM,

Pressing .1 PRGM I toggles the calculator into and out of program entry
(PRGM annunciator on). Keystrokes during program entry are stored
as program lines in memory. Each instruction or number occupies one
program line, and there is no limit (other than available memory) on
the number of lines in a program.

To enter a program into memory:

1. Press .1 PRGM I for program entry.

72 5: Simple Programming

, , , ,
. ,
.. ,
.. ,
.. ,
.. ,
.. ,
.. ,
.. ,
.. ,
.. ,
.. ,
.. , . ,
,
,
,

2. Press ., GTO I 00 to display P R GMT 0 P. This sets the program
pointer to a known spot, before any other programs. As you en­
ter program lines, they are inserted before all other program lines .

If you don't need any other programs that might be in memory,
clear program memory by pressing ., CLEAR I {PGM} . To con­
firm that you want all programs deleted, press {Y} after the
message CL PGMS? Y N .

3. Give the program a label-a single letter, A through Z. Press
., LBL/RTN I {L B L} letter. Choose a letter that will remind you of
the program, such as "A" for "area."

4. To record calculator operations as program instructions, press the
same keys you would to do an operation manually. Remember
that many functions don't appear on the keyboard but must be
accessed using menus .

5. End the program with a return instruction, which sets the pro­
gram pointer back to PRGM TOP after the program runs. Press
., LBL/RTN I {RTN} .

6. Press @] (or ., PRGM J) to cancel program entry .

Numbers in program lines are displayed as precisely as you entered
them, using ALL or SCI format. (If digits are hidden in a long number
by the line number or an exponent, press ., SHOW I to view them.)

Data Input and Output. For programs that need more than one in­
put or return more than one output, there are program instructions
that will prompt for a specific variable (INPUT) and display a labeled
variable (VIEW). These are covered later in this chapter under "Data
Input and Output."

@], [!], and ., CLEAR I {:-.:} in Program Entry. Note these special
conditions during program entry:

• @] always cancels program entry. It never clears a number to zero.

• [!] deletes the current program line. It backspaces if a digit is being
entered (cursor present).

• To program a function to clear the X-register, use ., CLEAR I {:-.:} .

5: Simple Programming 73

Function Names in Programs. The name of a function that is used
in a program line is not necessarily the same as the function's name
on its key or in its menu. The name that is used in a program is usu­
ally a fuller abbreviation than that which can fit on a key or in a
menu. This fuller name appears briefly in the display whenever you
execute a function-as long as you hold down the key, the name is
displayed.

Example: Entering a Labeled Program. The following keystrokes
delete the previous program for the area of a circle and enter a new
one that includes a label and a return instruction. If you make a mis­
take during entry, press [!] to delete the current program line, then
reenter it correctly.

Keys: Display:

.1 PRGM 1

.1 CLEAR I {PGM} {y} PRGM TOP

.1 LBL/RTN I {LBL} A

.[£]
• GJ
o
• 1 LBL/RTN I {RTN}

A01 LBL A

A02 ",2

A03 11"

A04 x

A05 RTN

Description:

Activates program en­
try (PRGM on).

Clears all of program
memory.

Labels this program
routine A (for area).*

Enters the three pro­
gram lines .

Ends the program .

Cancels program entry
(PRGM annunciator
off).

• If this causes the message DUPL I CAT. LBL, then use a different letter or clear the exist­
ing program A.

74 5: Simple Programming

~ • ,
t
t

II. ,
... ,
.. ,
• ,
· ,
· ,
· ,
· ,
, ,

• ,

Running a Program

To run or execute a program, program entry cannot be active (no pro­
gram-line numbers displayed; PRGM off). Pressing @] will cancel
program entry.

Executing a Program (XEQ)

Press 1 XED 1 label to execute the program labeled with that letter. * The
PRGM annunciator blinks on and off while the program is running.

If necessary, enter the data before executing the program.

Example. Run the program labeled A to find the areas of three dif­
ferent circles with radii of 5, 2.5, and 2'lr. Remember to enter the
radius before executing A.

Keys: Display:

78.5398

2.51 XED 1 A 19.63513

124.13251

Description:

Enters the radius, then
starts program A. The
resulting area is
displayed.

Calculates area of sec­
ond circle.

Calculates area of third
circle.

• If there is only one program in memory, you can also execute it by pressing .1 GTO 1 DO
1 RIS 1 (run/stop).

5: Simple Programming 75

Testing a Program

If you know there is an error in a program, but are not sure where the
error is, then a good way to test the program is by stepwise execution.
It is also a good idea to test a long or complicated program before
relying on it. By stepping through its execution, one line at a time,
you can see the result after each program line is executed, so you can
verify the progress of known data whose correct results are also
known.

1. As for regular execution, make sure program entry is not active
(PRGM annunciator off).

2. Press .1 GTO I label to set the program pointer to the start of the
program (that is, at its LBL instruction). The go to instruction
moves the program pointer without starting execution. (If the
program is the first or only program, you can press ., GTO I DO
to move to its beginning.)

3. Press and hold [!]. This displays the current program line. When
you release [YJ, the line is executed. The result of that execution
is then displayed (it is in the X-register).

To move to the preceding line, you can press .CIJ. No execution
occurs.

4. The program pointer moves to the next line. Repeat step 3 until
you find an error (an incorrect result occurs) or reach the end of
the program.

If program entry is active, then [YJ (or .CIJ) simply changes the pro­
gram pointer, without executing lines. Holding down an arrow key
during program entry makes the lines roll by automatically.

Example: Testing a Program. Step through the execution of the
program labeled A. Use a radius of 5 for the test data. Check that
program entry is not active before you start.

76 5: Simple Programming

,
• • -,
-,
...
• .. • .. • ...
"
.. • ... • .. , .. ,
.... ,
.... ,
, , , , ,
... ,
, , ,
r

Keys: Display:

5 5_

.'GTOI A 5.121121121121

[!J (hold) A 121 1 LBL
(release) 5.121000

[!J (hold) A02 ",2

(release) 25.0000

[!J (hold) A03 11

(release) 3.1416

[!J (hold) A04 x
(release) 78.5398

[!J (hold) A05 RTN

(release) 78.5398

A

Description:

Moves program
counter to label A.

Squares input.

Value of 1r.

2511".

End of program. Result
is correct.

Data Input and Output

The calculator's variables are used to store data input, intermediate
results, and final results. (Variables, as explained in chapter 3, are
identified by a letter from A through Z, but the variables' names have
nothing to do with program labels.)

Entering Data Into Variables (INPUT)

The INPUT instruction (.'1 NPUT I variable) stops a running program
and displays a prompt for the given variable. This display includes
the existing value for the variable, such as

Variable's name ---,

+ INPUT

R,?0.0000

Prompt for information ~ ~urrent value in the variable

5: Simple Programming 77

Press I RIS I (run/stop) or [YJ to resume the program. The value you
keyed in then writes over the contents of the X-register and is stored
in the given variable. If you have not changed the displayed value,
then that value is retained in the X-register.

The area-of-a-circle program with an INPUT instruction looks like
this:

A01 LBL A
A02 INPUT R
A03 ;:.:::<:

A04 11"

A05 x
A06 RTN

Using INPUT in a Program.

1. Decide which data values you will need, and assign them names.
(In the area-of-a-circle example, the only input needed is the ra­
dius, which we can assign to R.)

2. In the beginning of the program, insert an INPUT instruction for
each variable whose value you will need. Later in the program,
when you write the part of the calculation that needs a given
value, insert a I RCL I variable instruction to bring that value back
into the stack. *

For Example: See the HTime Value of Money" program on page 222
in part 4. The first thing that routine T does is collect all the necessary
input for the variables N, I, B, P, and F (lines T02 through T06) .

• Since the INPUT instruction also leaves the value you just entered in the X-register, you
don't have to recall the variable at a later time-you could INPUT it and use it when you
need it. You might be able to save some memory space this way. Howeve~ in a long pro­
gram it is simpler to just input all your data up front, and then recall individual variables as
you need them.

Remember also that the user of the program can do calculations while the program is
stopped, waiting for input. This can alter the contents of the stack, which might affect the
next calculation to be done by the program. Thus the program should not assume that the
X-, Y-, and Z-registers' contents will be the same before and after the INPUT instruction. If
you collect all the data in the beginning and then recall them when needed for calculation,
then this prevents the stack's contents from being altered just before a calculation.

78 5: Simple Programming

• ,

~

" II'

~ .. ,
.. ,
• ... ,
" ,
" ,
.. ,
~ ,
" ,
.. , ,
...

~

• ~

• r

• · • ·
•
~ ,

When the Program Runs. When you run the program, it will stop at
each INPUT, turn on the INPUT annunciator, and prompt you for that
variable, such as R?0.0000. The value displayed (and in the X-regis­
ter) will be the current contents of R.

• To change the number, key in the new number and press , RIS I. * If
you need to calculate a number, you can do so before pressing
'RIS I.

• To leave the number unchanged, just press [BZ[J.

• To calculate with the displayed number, press , ENTER 1 before key­
ing in another number ..

• To cancel the INPUT prompt, press W.t The current value for the
variable remains in the X-register. If you press , RIS 1 to resume the
program, the canceled INPUT prompt is repeated.

• To display digits hidden by the prompt, press ., SHOW I. (If it is a
binary number with more than 12 digits, use the (E] and [EJ keys
to see the rest.)

Displaying Data in Variables (VIEW)

The programmed VIEW instruction (., VIEW 1 variable) stops a running
program and displays and identifies the contents of the given vari­
able, such as

A=78.5398

This is a display only, and it does not copy the number to the X­
register.

• Pressing , ENTER 1 copies this number to the X-register .

• If the number has more than 10 digits, pressing ., SHOW 1 displays
the entire number. (If it is a binary number with more than 12 dig­
its, use the (E] and [EJ keys to see the rest.)

• Pressing W (or [!]) erases the VIEW display and shows the X­
register.

• This new number writes over the old value in the X-register.

t If you press @] during digit entry, it clears the number to zero. Press it again to cancel the
INPUT prompt.

5: Simple Programming 79

• Pressing .1 CLEAR I clears the contents of the displayed variable.

Press I RIS I to continue the program.

For Example: See the program for USolutions of Simultaneous Equa­
tions-Determinant Method/ on page 175 in part 4. Lines S24
through S29 at the end of the S routine display the results for X, Y,
and Z. Note also that each VIEW instruction in this program-as in all
the applications programs-is preceded by a RCL instruction. The
RCL instruction is not necessary, but it is convenient because it brings
the VIEWed variable to the X-register, making it available for manual
calculations. (Pressing I ENTER I while viewing a VIEW display would
have the same effect.)

Example: INPUTting and VIEWing Variables in a Program. Write
an equation to find the surface area and volume of a cylinder given its
radius and height. Label the program C (for cylinder), and use the
variables S (surface area), V (volume), R (radius), and H (height). Use
these formulas:

V = 7rR2H
S 27rR2 + 27rRH 2 (7rR2 + 7rRH).

Keys: Display:

.1 PRGM I

.1 GTO I DO PRGM TOP

• 1 LBL/RTN I {LBL} C
(C is the [ill] key) C01 LBL C

.IINPUTI R C02 INPUT .1 INPUT I H C03 INPUT

IRCLI R C04 RCL R

.0 C05 ,,2

IRCLI0 H C06 RCLx H .0 C07 11'

0 C08 x

ISTOI V C09 STO V

I RCLIG H C10 RCL.;. H

80 5: Simple Programming

R

H

Description:

Program entry; sets
pointer to top of
memory .

Labels program.

Instructions to prompt
for radius and height,
to calculate the vol­
ume, and to store
volume in V.

II. ,
... ,
... ,
... ,
.. ,
... ,
II ,.

" "

1 RCLI R

IRCLI0 H .GJ
o
G

2

o
ISTOI s

.'vIEwl v
• ~s
• , LBL/RTN I {RTN}

@]

.'MEMI {PGM} .1 SHOW I (hold)

C 11 RCL R

C12 RCLx H

C13 If

C14 x

C15 +

C16 2_

C17 x

C18 STO S

C19 VIEW V
C213 VIEW S

C21 RTN

LBL C 1331.5

CHKSUM=46132

Calculates 7rRH.

Calculates (7rR2 +
7rRH).

Calculates 2 (7rR2 +
7rRH) and stores result­
ing surface area in S.

Will display volume
and surface area .

Ends program .

Cancels program entry.

Checks memory usage
and checksum. A dif­
ferent checksum means
the program was not
entered exactly as it is
given here .

Now find the volume and surface area of a cylinder with a radius of
2.5 cm and a height of 8.0 cm .

Keys: Display:

IXEQI C
(C is the [ill] key) R'?13.1313130

2.5' RIS I H'?13.1313130

81 RIS I V= 157.13796

S= 164.9336

Description:

Starts executing C;
prompts for R. (It dis­
plays whatever value
happens to be in R.)

Prompts for H. (It dis­
plays whatever value
happens to be in H.)

Resulting volume in
cm3.

Resulting surface area
in cm2.

5: Simple Programming 81

Stopping or Interrupting a Program

Programming a Stop or Pause (STOP, PSE)

• Pressing 1 RIS I (run/stop) during program entry inserts a STOP in­
struction. This will halt a running program until you resume it by
pressing 1 RIS I from the keyboard. You can use STOP rather than
RTN in order to end a program without returning the program
pointer to the top of memory .

• Pressing ., LBLIRTN I {PSE} during program entry inserts aPSE
(pause) instruction. This will suspend a running program for about
1 second and display the contents of the X-register.

Interrupting a Running Program

You can interrupt a running program at any time by pressing @] or
, RIS I. The program completes its current instruction before stopping.
Press 1 RIS I (run/stop) to resume the program.

If you interrupt a program and then press 'XEQ I, 1 GTO I, or {RTN},
you cannot resume the program with 1 RIS I. Re-execute the program
instead (I XEQ I label).

Error Stops

If an error occurs in the course of a running program, program execu­
tion halts and an error message appears in the display. (There is a list
of messages and conditions in front of the indexes.)

To see the line in the program containing the error-causing instruc­
tion, press .1 PRGM I. The program will have stopped at that point.
(For instance, it might be a 7 instruction, which caused an illegal
division by zero.)

82 5: Simple Programming

-• • • -.,

... .,

... .,

... .,
~
~
~
t
t

• It
It
It

•

Editing a Program

You can modify a program in program memory by inserting and de­
leting program lines. Even if a program line requires only a minor
change, you must delete the old line and insert a new one.

To delete a program line:

1. Select the relevant program or routine (.1 GTO 1 label), activate
program entry (.1 PRGM I), and press [YJ or .~ to locate the
program line that must be changed. Hold the arrow key down to
continue scrolling. (If you know the line number you want,
pressing .1 GTO 1 [] label nn moves the program pointer there.)

2. Delete the line you want to change by pressing ~. The pointer
then moves to the preceding line. (If you are deleting more than
one consecutive program line, start with the last line in the
group.)

3. Key in the new instruction, if any. This replaces the one you
deleted.

4. Exit program entry (@J or .1 PRGM I).

To insert a program line: Locate and display the program line that
is before the spot where you would like to insert a line. Key in the new
instruction; it is inserted after the currently displayed line .

For example, if you wanted to insert a new line between lines A04
and AOS of a program, you would first display line A04, then key in
the instruction or instructions. Subsequent program lines, starting
with the original line AOS, are moved down and renumbered
accordingly.

5: Simple Programming 83

Program Memory

Viewing Program Memory

Pressing .1 PRGM J toggles the calculator into and out of program entry
(PRGM annunciator on, program lines displayed). When program en­
try is active, the contents of program memory are displayed.

Program memory starts at PRGM TOP. The list of program lines is
circular, so you can wrap the program pointer from the bottom to the
top and reverse. While program entry is active, there are three ways
to change the program pointer (the displayed line):

• Use the arrow keys, [!] and .m. Pressing [!] at the last line
wraps the pointer around to PRGM TOP, while pressing .m at
PRGM TOP wraps the pointer around to the last program line.

To move more than one line at a time ("scrolling"), continue to hold
the [!] or m key.

• Press 1 GTO J 00 to move the program pointer to P R GMT 0 P .

• Press 1 GTO J 0 label nn to move to a labeled line number < 100.

If program entry is not active (no lines displayed), you can also move
the program pointer by pressing .1 GTO J/abel.

Canceling program entry does not change the position of the program
pointer.

Memory Usage

Each program line uses either 1.5 or 9.5 bytes.

• Numbers use 9.5 bytes, except for integer numbers from zero
through 99, which use only 1.5 bytes.

• All other instructions use 1.5 bytes.

84 5: Simple Programming

If during program entry you encounter the message MEMORY FULL,
then there is not enough room in program memory for the line you
just tried to enter. You can make more room available by clearing pro­
grams or other data. See "Clearing One or More Programs" below, or
"Managing Calculator Memory" in appendix B.

The Catalog of Programs (MEM)

The catalog of programs is a list of all program labels with the num­
ber of bytes of memory used by each label and the lines associated
with it. Press .1 MEM 1 {PGM} to display the catalog, and press [!] or
.m to move within the list. You can use this catalog to:

• Review the labels in program memory and the memory cost of each
labeled program or routine.

• Execute a labeled program. (Press 1 XEQ 1 or 1 RIS 1 while the label is
displayed.)

• Display a labeled program. (Press .1 PRGM 1 while the label is
displayed.)

• Delete specific programs. (Press .1 CLEAR 1 while the label is
displayed.)

• See the checksum associated with a given program segment. (Press .1 SHOW I.)

The catalog shows you how many bytes of memory each labeled pro­
gram segment uses. The programs are identified by program label:

LBL C 1331.5

Number of bytes used by program c.~

Clearing One or More Programs

To clear (delete from memory) a specific program:

1. Press .1 MEM I {PGM} and display (using [!] and .m) the label
of the program.

5: Simple Programming 85

2. Press .1 CLEAR I.
3. Press @] to cancel the catalog or [JJ to back out.

To clear all programs in memory:

1. Press .~ to display program lines (PRGM annunciator on).

2. Press .1 CLEAR 1 {P G M} to clear program memory.

3. The message CL PGMS? Y N prompts you for confirmation.
Press {Y}.

4. Press .1 PRGM I to cancel program entry.

Clearing all of memory (.1 CLEAR I {A L L}) also clears all programs.

The Checksum

The checksum is a unique hexadecimal value given to each program
label and its associated lines (until the next label). This number is use­
ful for comparison with a known checksum for an existing program
that you have keyed into program memory. If the known checksum
and the one shown by your calculator are the same, then you have
correctly entered all the lines of the program. To see your checksum:

1. Press .1 MEM I {P G M} for the catalog of program labels.

2. Display the appropriate label by using the arrow keys, if
necessary.

3. Press and hold .1 SHOW I to display CHKSUM=va/ue.

For example, to see the checksum for the current program (the ucylin­
der" program):

Keys: Display:

.1 MEM I {PGM} LBL C 031.5

• 1 SHOW I (hold) CHKSUM=4602

86 5: Simple Programming

Description:

Displays label C,
which takes 31.5 bytes .

If your checksum does
not match this number,
then you have not en­
tered this program
correctly.

-• • • You will see that all of the application programs provided in part 4
include CHKSUM values with each labeled routine so that you can
verify the accuracy of the program entry.

Nonprogrammable Functions

The following functions of the HP-32S are not programmable:

.1 CLEAR I {PGM} .1 CLEAR I {ALL}

~

[Yj, .C!J .1 PRGM I

.1 GTO I [][] .1 GTO I [] label nn

.IMEMI

.1 SHOW I

Polynomial Expressions and Horner's
Method

Some expressions, such as polynomials, use the same variable several
times for their solution. For example, the expression

f(x) = Ax4 + Bx3 + Cx2 + Dx + E

uses the variable x four different times. A program to solve such an
equation could repeatedly recall a stored copy of x from a variable. A
shorter programming method, however, would be to use a stack
which has been filled with the constant (see #Filling the Stack With a
Constant," on page 39 in chapter 2).

Horner's Method is a useful means of rearranging polynomial expres­
sions to cut calculation steps and calculation time. It is especially
expedient with SOLVE and IFN, two relatively complex operations
that use subroutines.

5: Simple Programming 87

This method involves rewriting a polynomial expression in a nested
fashion to eliminate exponents greater than 1:

A0 + Bx3 + CX2 + Dx + E

(Ax3 + Bx2 + Cx + D)x + E

((AX2 + Bx + C)x + D)x + E

(((Ax + B)x + C)x + D)x + E

Example. Write a program for 50 + 2x3 as (((5x + 2)x)x)x, then
evaluate it for x = 7.

Keys: Display:

.1 PRGM I .1 GTOI[:::J[:::J PRGM TOP

• ILBL/RTNI {LBL} P P01 LBL P

.1 INPUT I X P02 INPUT
1 ENTER I P03 ENTER
1 ENTER I P04 ENTER
1 ENTER I P05 ENTER
5 P06 5

0 P07 x

2 P08 2
[B P09 +

0 P10 x

0 Pll x

0 P12 x

.1 LBL/RTN I {RTN} P13 RTN

@]

88 5: Simple Programming

X

Description:

You can skip the 1 GTO I

if the display already
shows PRGM TOP .

Fills the stack with x,
then calculates 5x.

(5x + 2)x.

(5x + 2)x3.

Cancels program entry.

•

• , , , ,

• ..
" ..
11\ ,
11\ ,
II. ,
• ,
• ,
110 ,.

Now evaluate this polynomial for x

1 XEQ 1 P

71 RIS I

X?value

12,691.0000

7.

Prompts for x.

Result.

A more general form of this program for any equation
(((Ax + B)x + C)X + D)x + E would be:

P01 LBL P
P02 INPUT A
P03 INPUT B
P04 INPUT C
P05 INPUT 0
P06 INPUT E
P0? INPUT X
P08 EtHER
P09 Et-HER
P10 ENTER
Pll RCLX A
P12 RCL+ B
P13 x

P14 RCL+ I~

P15 x

P16 RCL+ 0
Pl? ::-~

P18 RCL+ E
P19 RTN

5: Simple Programming 89

6
Programming Techniques

Chapter 5 covered the basics of programming. This chapter delves
into more sophisticated but useful techniques:

• Using subroutines to simplify programs by separating and labeling
portions of the program that are dedicated to particular tasks. The
use of subroutines also shortens a program that must perform a
series of steps more than once.

• Using conditional instructions (comparisons and flags) to determine
which instructions or subroutines should be used in a particular
case.

• Using loops with counters to execute a set of instructions a certain
number of times.

• Using indirect addressing to access different variables using the
same program instruction.

Routines in Programs

A program is composed of one or more routines. A routine is a func­
tional unit that accomplishes something specific. Complicated
programs need routines to group and separate tasks. This makes a
program easier to write, read, understand, and alter.

90 6: Programming Techniques

... ..

... ,
'" ,
'" ,
'" ,
'" ,
... ,

, ,

For example, look at the program for "Normal and Inverse-Normal
Distributions" on page 215 in part 4. This program has four routines,
labeled S, 0, N, and F. Routine S "initializes" the program by collect­
ing the input for the mean and standard deviation. Routine 0 sets a
limit of integration, executes routine N, and displays the result. Rou­
tine N integrates the function defined in routine F and finishes the
probability calculation of Q(x).

A routine typically starts with a label (LBL) and ends with an instruc­
tion that alters or stops program execution, such as RTN, GTO, or
STOP, or perhaps another label.

Calling Subroutines (XEQ, RTN)

A subroutine is a routine that is called from (executed by) another rou­
tine and returns to that same routine when the subroutine is finished.
The subroutine must start with a LBL and end with a RTN. A subrou­
tine is itself a routine, and it can call other subroutines .

• XEQ must branch to a label (LBL) for the subroutine. (It cannot
branch to a line number.)

• At the very next RTN encountered, program execution returns to
the line after the originating XEQ .

For example, routine N in the "Normal and Inverse-Normal Distribu­
tions" program is a subroutine (to calculate Q(x)) that is called from
routine 0 by line 003 XEQ N. Routine N ends with a RTN instruc­
tion that sends program execution back to routine 0 (to store and
display the result) at line 004.

n
I
I
I
I
I
I
I
I
!. __ .

001 LBL 0
002 INPUT X
003 XEQ N
004 STO Q
005 VIEW Q
006 GTO 0

N01 LBL N
N02 RCL X

N16 RTN

l_, Call, "bm","" at LSL N
I
I
I
I
I
I
I
I

r .. Starts subroutine.

Returns to the calling routine.

6: Programming Techniques 91

Nested Subroutines

A subroutine can call another subroutine, and that subroutine can call
yet another subroutine. This "nestingH of subroutines-the calling of a
subroutine within another subroutine-is limited to a stack of subrou­
tines seven levels deep (not counting the topmost program level). The
operation of nested subroutines is as shown below:

Main program
(top level)

LBL A

l,~
LBL B II LBL C

~,if
LBL 0

~,~
LBL E

XEQ B XEQ C XEQ 0 XEQ E
SIN 3.1416

~,
SQRT t\ RCL A t\ ,

RTN RTN RTN RTN RTN

End of
program

Attempting to execute a subroutine nested more than seven levels
deep causes an XEQ O\}ERFLOW error.

Example: A Nested Subroutine. The following subroutine, labeled
5, calculates the value of the expression

as part of a larger calculation in a larger program. The subroutine
calls upon another subroutine (a nested subroutine), labeled Q, to do
the repetitive squaring and addition. This keeps the program shorter
than it would be without the subroutine.

92 6: Programming Techniques

Returns to From main program,
main program XEG!

Program Lines:~
:3(11 LBL S

Description:
Starts the main subroutine.
Enters A. S~)2 I ~lPUT A

S03 I t~PUT B
:::;(14 I t·lPUT C
S~35 I t~PUT D
S(16 F<:CL D
S(17 RCL C
S(18 RCL B
S(19 RCL A
S1(1 ;:.;:2

S 11 :"::EI;! Q
1 S12 :"::EQ G!
2 S13 >(EQ Q
3 S14 SQRT

815 F~Hl

G! (11 LBL Q
Q(12 x <> > ..
Q(13 :.r,:2

Q(14 +
Q(15 RHI

Branching (GTO)

Enters B.
Enters C.
Enters O.
Recalls the data for the calcula­
tion to follow.

Calculates A2.
Calculates B2, then A2 + B2.
Calculates A2 + B2 + C2.

Calculates A2 + B2 + C2 + 0 2.

Calculates

YA2 + B2 + C2 + 0 2

Ends main subroutine; returns
execution to main program.
Starts nested subroutine.
Squares number and adds it to
the current sum of squares.

Ends nested subroutine, Q; re­
turns to first subroutine, S.

As we have seen with subroutines, it is often desirable to transfer exe­
cution to a part of the program other than the next line. This is called
branching.

6: Programming Techniques 93

Unconditional branching uses the GTO (go to) instruction to branch to
a program label. It is not possible to branch to a specific line number
during a program.

., GTe I label

A Programmed GTO Instruction. The GTO label instruction trans­
fers the execution of a running program to the program line
containing that label, wherever it may be. The program continues
running from the new location, and it does not ever automatically re­
turn to its point of origination, so GTO is not used for subroutines.

For example, consider the uCurve Fitting" program on page 204 in
part 4. The G T 0 Z instruction branches execution from anyone of
three independent initializing routines to LBL Z, the routine that is the
common entry point into the heart of the program:

8131 LBL 8 l ___ . 8135 GTO Z
I
I

Lel LBL L I
I
I
I

Le5 GTO Z ~
I
I

Eel LBL E I
I
I

Ee5 GTO Z
I
~

I
I

zel LBL Z
I r-"

Using ., GTe I From the Keyboard. If program entry is not active
(no program lines displayed; PRGM off), then you can use ., GTe I to
move the program pointer to a specified label or line number without
starting program execution.

• To a label: ., GTe I label (Example: ., GTe I A .)

• To a line number: ., GTO I c:J label nn (nn < 100. Example:
., GTe I c:J AD5.)

• To PRGt·l TOP: ., GTe I c:Jc:J

94 6: Programming Techniques

.. • .. • .. • ... ,
.. ,
~ .,

•

Conditional Instructions

Another way to alter the sequence of program execution is by a condi­
tional test, a true/false test that compares two numbers and skips the
next program instruction if the proposition is false.

For instance, if a conditional instruction on line ADS is -.:=0? (that is,
is x equal to zero?), then the program compares the contents of the X­
register with zero. If the X-register does contain zero, then the
program goes on to the next line. If the X-register does not contain
zero, then the program skips the next line, thereby branching to line
AD7. This rule is commonly known as "'Do if true."

Do if true A01 LBL A Skip if false

J A05 -.:=0? t,
A06 GTO B I

I
I A07 LN r I
I A08 STO A I

+
to LBL B

The example above points out a common technique used with condi­
tional tests: the line immediately after the test (which is only executed
in the "'true" case) is a branch to another label. So the net effect of the
test is to branch to a different routine under certain circumstances.

There are three categories of conditional instructions:

• Comparison tests. These compare the X- and Y-registers, or the X­
register and zero .

• Flag tests. These check the status of flags, which can be either set
or clear.

• Loop counters. These are usually used to loop a specified number
of times.

6: Programming Techniques 95

Tests of Comparison (TESTS)

There are eight comparisons available for programming in the TESTS
menu. Pressing .1 TESTS I displays the two categories of tests:

,,?y ,,?0

I ,
For tests comparing x and y. For tests comparing x and O.

Remember that x refers to the number in the X-register, and y refers
to the number in the Y -register. These do not compare the variables X
and Y.

Select the category of comparison, then press the menu key for the
conditional instruction you want:

The TESTS Menu Keys

{,,?y} {,,?0}

{.ey} for ".e y? { .e 0} for ".e 0 ?

{<y} for" <y? { < 0} for ,,< 0 ?

{>y} for" > y? { > 0} for ,,> 0 ?

{=y} for ,,=y? { = 0} for ,,= 0?

Although you can display these menus outside of program entry,
these functions have no purpose outside of programs.

For Example: The "Quadratic Equation" program on page 191 in
part 4 uses the ,,=0? and" <0? conditionals in routine Q.

Q01 LBL Q
Q02 INPUT A
Q03 ,,=0? Checks the validity of A, which cannot be

zero.
Q04 GTO Q If A 0, then the program starts over.
Q05 INPUT B If A =1= 0, then the program continues.

96 6: Programming Techniques

...
~ ... • ...
" ...
" ... •

" ... • ,
•
~ •

Lines QI4 through QI9 calculate 82 - 4Ae. The following lines test
for a negative value (which would produce an imaginary root).

Q2a ,,(a?
Q21 GTO I
Q22 SQRT

Flags

Is result negative?
If yes, branches to different routine.
If positive, takes square root.

A flag is an indicator of status. It is either set (true) or clear (false).
Testing a flag is another conditional test that follows the "Do if true"
rule: program execution proceeds directly if the tested flag is set, and
it skips one line if the flag is clear.

Meanings of Flags. The HP-32S has seven flags, numbered 0
through 6. All of these flags can be set, cleared, and tested by a pro­
gram instruction. You can also set and clear flags from the keyboard. *

• Flags 0, I, 2, 3, and 4 have no preassigned meanings. That is, their
status will mean whatever you define it to mean in a given pro­
gram. (See the example below.)

• Flag 5, when set, will interrupt a program when an overflow occurs
within the program, displaying 0 V E R FLO Wand A.. t If flag 5 is
clear, a program with an overflow is not interrupted, though
OVERFLOW is displayed briefly when the program eventually stops .

• Flag 6 is automatically set by the calculator any time an overflow
occurs (although you can also set flag 6 yourself). It has no effect,
but can be tested.

• The only other action that clears flags is the three-key memory clearing operation described
in appendix B.

t An overflow occurs when a result exceeds the largest number that the calculator can handle.
The largest possible number is substituted for the overflow result.

6: Programming Techniques 97

Flags 5 and 6 allow you to control overflow conditions that occur dur­
ing a program. Setting flag 5 stops a program at the line just after the
line that caused the overflow. By testing flag 6 in a program, you can
alter the program's flow or change a result anytime an overflow
occurs.

Annunciators for Set Flags. Flags 0, 1, 2, and 3 have annunciators
in the display that turn on when the corresponding flag is set. The
presence or absence of 0, 1, 2, or 3 lets you know at any time
whether any of these four flags is set or not. However, there is no
such indication for the status of flags 4, 5, and 6. These flags' status
can be determined only by a programmed FS? instruction. (See "Test­
ing Flags (FS?)" below.)

Functions for Flags. Pressing ., FLAGS I displays the FLAGS menu:

SF CF FS?

After selecting the function you want, you will be prompted for the
flag number, 0-6. For example, to set flag 0, press .1 FLAGS I {SF} o.

The FLAGS Menu

Menu Key Description

{SF} n Set flag. Sets flag n.

{CF} n Clear flag. Clears flag n.

{FS?} n Is flag set? Tests the status of flag n.

Testing Flags (FS?). A flag test is a conditional test that affects pro­
gram execution just as the comparison tests do. The FS? n instruction
tests whether the given flag is set. If it is, then the next line in the
program is executed. If it is not, then the next line is skipped. This is
the "Do if True" rule, illustrated on page 95 under "Conditional
Instructions. "

Although you can execute {F S?} outside of program entry, testing
flags has no purpose outside of programs.

98 6: Programming Techniques

-If ,
I It is good practice in a program to make sure that any conditions you

will be testing start out in a known state. Current flag settings depend
on how they have been left by earlier programs that have been run.
You should not assume that any given flag is clear, for instance, and
that it will be set only if something in the program sets it. You should
make sure of this by clearing the flag before the condition arises that
might set it. See the example below.

Example: Using Flags. The '"Quadratic Equation" program on page
191 in part 4 uses flag 0 in conjunction with the ,,< 0? comparison to
remember the sign of B. Note that line Qll clears flag 0 to make sure
that it will be set for only the condition desired.

Qll CF 0 Makes sure that flag 0 is clear.
Q12 ,,<0? Is B (in X-register) negative?
Q13 SF 0 Sets flag 0 if B is negative.

Q23 FS? 0 Is flag 0 set (is B negative)?
Q24 +/- If yes, change sign.
Q25 + In either case, add.

Other programs in part 4 that make use of flags are -Curve Fitting"
and -Unit Conversions." They both use flags to remember which con­
dition the user wants solved (which type of curve, which type of
conversion), thereby affecting which options or calculations are
chosen.

Loops (GTO, LOOP)

Branching backwards-that is, to a label in a previous line-makes it
possible to execute part of a program more than once. This is called
looping.

6: Programming Techniques 99

001 LBL 0
002 INPUT M
003 INPUT N
004 INPUT T
005 GTO 0

This routine (taken from the "'Coordinate Transformations" program
on page 198 in part 4) is an example of an infinite loop. It is used to
collect the initial data prior to the coordinate transformation. After en­
tering the three values, it is up to the user to manually interrupt this
loop by selecting the transformation to be performed (pressing I XEQ I N
for the old-to-new system or I XEQ I 0 for the new-to-old system).

Conditional Loops (GTO)

When you want to perform an operation until a certain condition is
met, but you don't know how many times the loop needs to repeat
itself, you can create a loop with a conditional test and a GTO
instruction.

For example, the following routine uses a loop to diminish a value A
by a constant amount B until the resulting A is less than or equal to B.

Program Lines:
A01 LBL A
A02 INPUT A
A03 INPUT B

801 LBL 8
802 RCL A

803 RCL- B
804 8TO A
805 RCL B
806 :>::<y?

807 GTO 8
808 VIEW A
809 RTN

Description:

It is easier to recall A than to remember
where it is in the stack.
Calculates A-B.
Replaces old A with new result.
Recalls constant for comparison.
Is B < new A?
Yes: loops to repeat subtraction.
No: displays new A.

100 6: Programming Techniques

, ,
• , ,
;

• ~ , ,
" ,
" ,
II. ,
.. ,
.. ,
.. ,
.. ,
.. , , , , , ,
,
• ,
k ,

Loops With Counters (DSE, ISG)

When you want to execute a loop a specific number of times, use the
DSE (decrement; skip if less than or equal to) or ISG (increment; skip if
greater than) conditional functions in the LOOP menu (., LOOP I).
Each time a LOOP function is executed in a program, it automatically
decrements or increments a counter value stored in a variable. It com­
pares the current counter value to a final counter value, then
continues or exits the loop depending on the result.

For a count-down loop, use:

.1 LOOP 1 {D S E} variable

For a count-up loop, use:

., LOOP 1 {I S G} variable

These functions accomplish the same thing as a FOR-NEXT loop in
BASIC:

FOR variable = initial-value TO final-value S T E P increment

N EXT variable

A DSE instruction is like a FOR-NEXT loop with a negative
increment.

After pressing the menu key for {D S E} or {I S G }, you will be
prompted for a variable that will contain the loop-control number (de­
scribed below).

The Loop·Control Number. The specified variable should contain a
loop-control number ±ccccccc.fffii, where:

• ±ccccccc is the current counter value (1 to 12 digits). This value
changes with loop execution.

• fff is the final counter value (must be three digits). This value does
not change as the loop runs.

• ii is the interval for incrementing and decrementing (must be two
digits or unspecified). This value does not change. An unspecified
value for ii is assumed to be 01 (increment/decrement by 1).

6: Programming Techniques 101

Given the loop-control number ccccccc.fffii, DSE decrements ccccccc to
ccccccc - ii, compares the new ccecccc with fff, and makes program
execution skip the next program line if this ccccccc ~ fff·

Given the loop-control number ccccccc.fffii, ISG increments ccccccc to
ccccccc + ii, compares the new ccccccc with fff, and makes program
execution skip the next program line if this ccccccc > fff.

[W"' LBL W

If current value W09 DSE

~J
If current value ~ final

> final value, W10 GTO value, exit loop.

continue loop. Wll XEQ

[W"' LBL W

If current value W09 ISG

~J
If current value > final

~ final value, W10 GTO value, exit loop.

continue loop. Wll XEQ

For example, the loop-control number 0.050 for ISG means: start
counting at zero, count up to 50, and increase the number by 1 each
loop.

The following program uses ISG to loop 10 times. The loop counter
(0000001.01000) is stored in the variable Z. Leading and trailing zeros
can be left off.

L01 LBL L
L02 1.01
L03 STO Z
M01 LBL M
M02 ISG Z
M03 GTO M
M04 RTN

Press ., VIEW I z to see that the loop-control number is now 11.0100.

102 6: Programming Techniques

4

4

4

4

•
•

• ,
• ,
•
•
~

•
•
•

Indirectly Addressing Variables and Labels

Indirect addressing is a technique used in advanced programming to
specify a variable or label without specifying beforehand exactly which
one. This is determined when the program runs, so it depends on the
intermediate results (or input) of the program.

Indirect addressing uses two different keys: [0 (with 8) and [ill] (with
IRIS 1).* These keys are active for many functions that take A through
Z as variables or labels.

• i is a variable whose contents can refer to another variable or label.
It holds a number just like any other variable (A through Z).

• [ill] is a programming function that dir,~cts, "'Use the number in i to
determine which variable or label to address." This is an indirect
address. (A through Z are direct addresses.)

Both [0 and [ill] are used together to create an indirect address. (See
the examples below.) By itself, i is just another variable. By itself, [ill]
is either undefined (no number in i) or uncontrolled (using whatever
number happens to be left over in i).

The Variable "i"

You can store, recall, and manipulate the contents of i just as you can
the contents of other variables. You can even solve for i and integrate
using i.

STO i

RCLi

Functions That Use ; Directly

INPUT i

STO +,-,x,+ i

RCL +,-, x,+ i

VIEW i

fFN i

SOLVE i

• The variable I has nothing to do with [][] or the variable i.

DSE i

ISG i

6: Programming Techniques 103

The Indirect Address, (i)

Many functions that use A through Z (as variables or labels) can use
OlD to refer to A through Z (variables or labels) indirectly. The function
OlD uses the value in variable i to determine which variable or label to
address. This table shows how:

Indirect Addressing

If i contains: Then Ii) will address:

± 1 variable A or label A

±26 variable Z or label Z

~ 27 or ..;; - 27 or 0 error: I NVAL I 0 (i)

Only the absolute value of the integer portion of the number in i is
used for addressing.

Following are the functions that can use (i) as an address. For GTO,
XEQ, and FN =, (i) refers to a label; for all other functions it refers to
a variable.

Functions That Use (i) for Indirect Addressing

STO(i) INPUT(i)

RCL(i)

STO+, -, x, -:- (i)

RCL+,-, X,-:- (i)

XEQ(i)

GTO(i)

104 6: Programming Techniques

VIEW(i)

DSE(i)

ISG(i)

SOLVE(i)

fFN(i)

FN=(i)

.. , ,
• ,
.. ,
~
~ ,

, ,

~ ,
to. ,
, ,

.. ,

.. ,

.. ,

.. ,

Program Control With (i)

Since the contents of i can change each time a program runs-or even
in different parts of the same program-a program instruction such as
GTO (i) can branch to a different label at different times. This main­
tains flexibility by leaving open (until the program runs) exactly
which variable or program label will be needed. (See the first example
below.)

Indirect addressing is very useful for counting and controlling loops.
The variable i serves as an index, holding the address of the variable
that contains the loop-control number for the functions DSE and ISG.
(See the second example below.)

Example: Choosing Subroutines With (i). The Turve Fitting" pro­
gram on page 204 in part 4 uses indirect addressing to determine
which model to use to compute estimated values for x and y. (Differ­
ent subroutines compute x and y for the different models.) Notice that
i is stored and then indirectly addressed in widely separated parts of
the program.

The first four routines (5, L, E, P) of the program specify the curve­
fitting model that will be used and assign a number (I, 2, 3, 4) to each
of these models. This number is then stored during routine Z, the
common entry point for all models:

Z03 STO

Routine Y uses i to call the appropriate subroutine (by model) to cal­
culate the x- and y-estimates. Line Y03 calls the subroutine to
compute y:

V03 XEQ(i)

and line Y08 calls a different subroutine to compute x after i has been
increased by 6:

V06 6
V07 STO+
V08 XEQ(i)

6: Programming Techniques 105

If I holds: Then XEQ(i) calls: To:

1 LBL A Compute y for straight-line model.

2 LBL B Compute y for logarithmic model.

3 LBL C Compute y for exponential model.

4 LBL D Compute y for power model.

7 LBL G Compute x for straight-line model.

8 LBL H Compute x for logarithmic model.

9 LBL I Compute x for exponential model.

10 LBL J Compute x for power model.

Example: Loop Control With (I). An index value in i is used by the
program "Solutions of Simultaneous Equations-Determinant
Method" on page 175 in part 4. This program uses the looping in­
structions I S G i and 0 S E i in conjunction with the indirect
instructions RCL< i) and STO (i) to fill and manipulate a matrix.

The first part of this program is routine A, which puts the initial loop­
control number in i.

Program Lines:

A01 LBL A
A02 1.012

A03 STO i

Description:

The starting point for data input.
Loop-control number: loop from 1 to 12 in
intervals of 1.
Stores loop-control number in i.

The next routine is L, a loop to collect all 12 known values for a 3 x 3
coefficient matrix (variables A-I) and the three constants (J-L) for the
equations.

106 6: Programming Techniques

..
" i ,
• ..
" ~
~
~
~
~
• ..
• ..
• ..
• ,.
... ,.
... ,.
...
r
...
II'

III. ,.
III.
II'
III.
II' ..
II'
...
r
~
P'

• ,
• •
•
• •
~

Program Lines:

L01 LBL L

L02 INPUT< i)

L03 ISG i

L04 GTO L
L05 GTO A

Description:

This routine collects all known values in
three equations.
Prompts for and stores a number into the
variable addressed by i.
Adds 1 to i and repeats the loop until i
reaches 13.012.

When i exceeds the final counter value, exe­
cution branches back to A.

6: Programming Techniques 107

, , , ,

Advanced Operation

Page 110

126

137

144

153

7: Solving for an Unknown Variable in an Equation

8: Numerical Integration

9: Operations With Complex Numbers

10: Base Conversions and Arithmetic

11: Statistical Operations

Solving for an Unknown
Variable in an Equation

7

The SOLVE operation can solve for anyone variable in an equation.
For instance, take the function

x2 - 3y.

This function can be set equal to zero to create the equation:

x2 - 3y = 0.*

If you know the value of y in this equation, then SOLVE can solve for
the unknown x. If you know the value of x, then SOLVE can solve for
the unknown y. This works for "word problems" just as well:

Markup x Cost = Price
Markup x Cost - Price = o.

If you know any two of these variables, then SOLVE can calculate the
value of the third.

When the equation has only one variable, or when known values are
supplied for all the variables except one, then to solve for x is to find
the root(s) of the equation. A root of an equation occurs where the
graph of the function crosses the x-axis, because at that point the
value of the function equals zero.

• Actually, you can set the function equal to any real value, such as x2 - y = 10. This can
then be expressed as x2 - y - 10 = 0 to use SOLVE.

110 7: Solving for an Unknown Variable in an Equation

.. ,
lit. •
"-,
"-,
· ,
· ,
· ,
• ,
.. ,

Value of the function

Root

/
K

Using SOLVE

To solve for an unknown variable:

1. Enter a program that defines the function. (See "Writing Pro­
grams for SOLVE," below.)

2. Select the program that defines the function to solve: press .1 SOlVE/ f 1 {FN} label.

3. Solve for the unknown variable: press .1 SOlVEn 1 {SOLVE} variable.

You can halt a running calculation by pressing @] or 1 R/S I.

Initial Guesses. For certain functions it helps to provide one or two
initial guesses (in the variable and the X-register) for the unknown
variable before starting the calculation (step 3). This can speed up the
calculation, direct the answer toward a realistic solution, and find
more than one solution, if appropriate. See *Choosing Initial Guesses
for SOLVE" on page 120.

Results. The X-register and the variable itself contain the final esti­
mate of the root, the Y -register contains the previous estimate, and
the Z-register contains the value of the function at the last estimate of
the root (which should be zero).

For some complicated mathematical conditions, a definitive solution
cannot be found. See "Interpreting Results" and "When SOLVE Can­
not Find a Root" in appendix C.

7: Solving for an Unknown Variable in an Equation 111

To solve for a different unknown in the same equation: Just
specify the unknown variable: ., SOLVE/ [I {S 0 L V E} variable. The
same program that was last specified (FN= label) will be used again.

Writing Programs for SOLVE

Before you solve for an unknown variable, you must write a program
or subroutine that evaluates the function.*

Writing a Function From an Equation. First simplify the equation
by combining all like variables and all constants. Then move all the
terms to one side of the equation, leaving only zero on the other side.

For example, the equation for the volume of a box is given by

Length x Width x Height = Volume.

Rearranging the terms to make one side equal to zero yields

Length x Width x Height - Volume = 0 , or

L x W x H - V = o.

To write a program evaluating a function:

1. Begin with a label so that the program can be called by SOLVE.

2. Include an INPUT instruction for each variable, including the
unknown. (If there is only one variable in the function, omit the
INPUT instruction since it is ignored for the unknown anyway.)t

• SOLVE works only with real numbers. However, if you have a complex-valued function that
can be written to isolate the real and imaginary parts, SOLVE can then solve for the parts
separately.

t The INPUT instructions are useful for multi-variable functions. Since the INPUT for the
unknown is ignored, you need write only one program, which contains INPUT instructions
for all variables. You can use the same program no matter which variable is the unknown.

112 7: Solving for an Unknown Variable in an Equation

A •

• .

3. Enter the instructions to evaluate the function. Use a ReL in­
struction any place a variable's value is needed for a calculation.

4. End the program with a RTN. The program should end with the
value of the function in the X-register.

Each time that SOLVE executes your program (which could be many
times), the value of the unknown variable changes, as does the value
your program produces. When your program returns a zero, then a
solution has been found for the unknown variable.

Examples Using SOLVE

Example: Solving for the Dimensions of a Box. Use the following
program to evaluate the dimensions of a box (L x W x H - V). Note
that the program uses recall arithmetic, which takes less memory than
recalling a variable and doing arithmetic as separate operations.

801 L8L 8
802 INPUT L
803 INPUT W
804 INPUT H

805 INPUT V
806 RCL L
807 RCLX W
808 RCLx H

809 RCL- V
810 RTN

First enter the program labeled B:

Keys: Display:

PRGM TOP

Description:

Starts program entry.
Goes to the top of
memory (if necessary).

7: Solving for an Unknown Variable in an Equation 113

.1 LBL/RTN I {LBL} B B01 .1 INPUT I L B02 .1 INPUT I W B03

.IINPUTI H B04

.IINPUTI V B05
IRCLI L B06
IRCLI0w B07
IRCLI0 H B08
IRCLIB V B09 .1 LBL/RTN I {RTN} B10

LBL B
INPUT
INPUT
INPUT
INPUT
RCL L
RCLx w
RCLx H

RCL- V
RTN

L
w
H

V

Enters program lines.

At this point, the X­
register will contain
the value of the func-
tion L x W x H - V.

Ends program entry.
Displays whatever is in
X-register.

Solve for the volume of a box that is 8.5 cm high x 10 cm wide x 25
em long. Afterward we will use the same function to solve for a dif­
ferent variable .

• ISOLVE/! I {FN} FN= _

B

.1 SOLVE/! I {SOLVE} SOLVE_

V L ?value
25 I RIS I W?value
10 1 RIS I H?value
8.5

IRlsl SOLVING
V=2,125.0000

Prompts for the label
of the program that de­
fines the function.

Specifies program B.

Prompts for the un­
known variable.

Starts program B;
prompts for all data ex­
cept V, the variable
being solved.

The volume is 2,125
cm3.

Now solve for the length of this box if you change the volume (to
3,000 cm3), but leave the height and width the same. Remember that
you do not need to specify the program label again since we will use
the same one that was used last.

114 7: Solving for an Unknown Variable in an Equation

= i

... ..
-

.1 SOlVEn I {SOLVE}
L

IRIS I
IRIS I
3000 IRIS 1

1.<1710.0000

H78.5000
V?2,12S.0000
L=3S.2941

Starts program B to
solve for L. Prompts
for unknown variables.

To keep a same value,
just press I RIS I. Solves
for the length.

Example: The Equation of Linear Motion. The equation of motion
for a free-falling object is:

where d is the distance, Vo is the initial velocity, t is the time, and g is
the acceleration due to gravity. Setting the equation equal to zero and
simplifying it yields

o = t(vo + gt/2) - d.

The following program evaluates this function:

M0l LBL M
M02 INPUT V
M03 INPUT T
M04 INPUT G
M0S INPUT D
M06 RCL G
M0? 2
M0a
M09 RCLx T
Nl0 RCL+ V
Mll RCLx T
Ml2 RCL- D
Ml3 RTN

The acceleration due to gravity, g, is included as a variable to allow
you to change it for working with different units:

g = 9.8 m/s2 = 32.2 ft/s2.

Enter the above program (LBL M). Calculate how far an object falls in
5 seconds, starting from rest.

7: Solving for an Unknown Variable in an Equation 115

Keys: Display: Description:

., SalvEn I {FN} M FN= M (briefly) Specifies LBL M for the
function.

., SOlVE/! I Specifies D as the un-
{SOLVE}O V ?3,13 13 13.0 13 13 13 known. Prompts for V

as it shows the current
value of V (used in the
last example).

0' RIS I T'? value

5' RISI G'? value

9.8 'RIS I 0=122.5131313 Resulting distance in
meters.

Try another calculation using the same equation: how long does it
take an object to fall 500 meters? Since Vo and g are already stored,
there is no need to reenter them.

., salvEn I

{SOLVE}T

'RIS I
'RIS I
500 'RIS I

V,?13.1313130

G'?9.813130
O'? 122.5131313

T= 113.11315

Specifies a different
unknown; prompts for
V.

Result in seconds.

Example: Finding the Roots of an Equation. Consider the single­
variable equation

x3 - 5x2 - lOx = -20.

Rearranging the equation so one side is zero yields

x3 - 5x2 - lOx + 20 = O.

Horner's method (see chapter 5) simplifies this equation to use less
memory:

x(x(x - 5) - 10) + 20 O.

116 7: Solving for an Unknown Variable in an Equation

II. •

, , , ,
.. ,
.. ,
,
f
.. ,
>

..

The following program evaluates this function:

Re1 LBL R
Re2 RCL X
Re3 5
Re4 -
Re5 RCLx X
Re6 113
Re7 -
ReS RCLX x
Re9 213
R1e +
R11 RTN

A plot of this function is:

x3-Sx 2-10x+20

-S

The plot indicates that there are three roots because the curve crosses
the x-axis three times. The calculator can find all three roots if you
run SOLVE three times and supply different initial guesses each time.
(For more information, see "Choosing Initial Guesses for SOLVE. W)

Enter the above program (LBL R). The graph shows that the first root
is somewhere between x = - 3 and x = - 2, the second root is be­
tween 1 and 2, and the third root is between 6 and 7. Put each set of
guesses in the variable X and in the X-register, then solve for X.

7: Solving for an Unknown Variable in an Equation 117

Keys:

.ISOLVE/!I {FN} R

3 ~lsTol X
2~

.1 SOLVE/[I {SOLVE}
X

11sTOI X
2

• 1 SOLVE/! I {SOLVE}
X

SISTOI X
7

• 1 SOLVE/! I {SOLVE}
X

Display:

-3.0000
-2_

X=-2.4433

X=1.3416

6.0000

L

X=6.1017

Description:

Selects program LBL R.

First initial guesses.

Specifies the unknown;
returns the first root.

Second initial guesses.

The second root.

Third initial guesses.

The third root.

If you did not enter any initial guesses, you could get only one of these
roots. Which one depends on whatever happened to be in the variable
X and in the X-register, since the calculator uses these values for initial
guesses whether you intend it to or not.

Understanding and Controlling SOLVE

SOLVE uses an iterative (repetitive) procedure to solve for the un­
known variable. The procedure starts by substituting two initial
guesses for the unknown into the function defined in the program.
Based on the result with those two guesses, SOLVE generates another,
better guess. Through successive iterations, SOLVE finds a value that
makes the function equal to zero.

Some equations are more difficult to solve than others. In some cases,
you need to enter initial guesses yourself in order to find the solution.
(See "Choosing Initial Guesses for SOLVE,.. below.) If SOLVE cannot
find a real solution, the calculator displays NOR 0 0 T F NO.

See appendix C for more information about how SOLVE works.

118 7: Solving for an Unknown Variable in an Equation

•
l1li

•
"II

• ..

A ,
• ,
• ..
· l1li

... •
f
I
·
t -, .. • .. • ..
" .. ., ..
~ ..
" ..
" .. ,
.. ,
.. ., .. • .. • .. ,
-. ,
.. ,
.. ,
• .. •
"­, ,
,-

" ..

Verifying the Result

After the SOLVE calculation ends, you can verify that the result is
indeed a root of f(x) by reviewing the values left in the stack:

• The display (the X-register) and the variable itself contain the solu­
tion (root) for the unknown; that is, the value that makes f(x) = o .

• The Y -register (press []I] to view Y) contains the previous estimate
for the root. This number should be the same as the value in the X­
register. If it is not, then the root given was only an approximation
to the root, and the values in the X- and Y -register bracket the root.
These bracketing numbers should be close together .

• The Z-register (press []I] again to view Z) contains the value of f(x)
at the value given in the X-register. For an exact root, this should
be zero. If it is not zero, then the root given was only an approxima­
tion, and this number should be close to zero .

If a calculation ends with NO ROOT FND, this means that the cal­
culation could not converge on a root, so the values in the X- and Y­
registers are probably not close together. (You can see the value in the
X-register-the final estimate of the root-by pressing @] or [!] to
clear the message.) These two values bracket the interval that was last
searched for the root. The Z-register contains the value of f(x) at the
final estimate of the root. This value should not be close to zero.

Interrupting the SOLVE Calculation

To halt the calculation, press @] or I RIS I. The current best estimate of
the root is in the unknown variable; use .1 VIEW 1 to view it without
disturbing the stack. To resume the calculation, press I RIS I. *

• Pressing I XEQ I, I GTe I, or {RTN} cancels the SOLVE operation. In this case, start the pro­
gram over rather than resuming it.

7: Solving for an Unknown Variable in an Equation 119

Choosing Initial Guesses for SOLVE

The two initial guesses come from:

• The number currently stored in the unknown variable.

• The number in the X-register (the display).

These sources are used for guesses whether you enter guesses or not. If
you enter only one guess and store it into the variable, then the sec­
ond guess will be the same value since the display also holds the
number you just stored into the variable. Entering your own guesses
has these advantages:

• By narrowing the range of the search, guesses can reduce the time
required to find a solution.

• If there is more than one mathematical solution, the guesses can
direct the SOLVE procedure to the desired answer or range of an­
swers. For example, the equation of motion

d = do + vot + 1/2gt2

can have two solutions for t. You can direct the answer to the only
meaningful one (t > 0) by entering appropriate guesses.*

• If an equation does not allow certain values for the unknown,
guesses can prevent these values from occurring. For example, the
equation

y = t + logx

results in an error if x :s;; 0 (LOG (0), LOG (NEG».

The example in the previous section ("Finding the Roots of an Equa­
tion") used guesses to find three solutions to one equation. Here is
another example that examines the dimensions of a box (as does the
example on page 113) but with more restrictions.

• The example using this equation on page 116 did not need to enter guesses before solving
for t because in the first part of the example we stored a value for T and solved for D. The
value that was left in T was a good (realistic) one, and it was used as a guess when solving
for T.

120 7: Solving for an Unknown Variable in an Equation

• ,

• • ,
I
· • .. ,
... .,
~
~
~
~
~
III
p , .. ,
•
" , .. ,
.. ,
.. ,
.. ,
.. ,
.. ,

Example: Folding a Box. Using a rectangular piece of sheet metal
40 centimeters by 80 centimeters, form an open-top box having a vol­
ume of 7500 cubic centimeters. You need to find out the height of the
box (that is, the amount to be folded up along each of the four sides)
that gives the specified volume. A taller box is preferred to a shorter
one.

n
~ 0

II
T

1
T
1

~--~-----------r--
I

--1------------1---
I I

J.. J..

If H is the height, then the length of the box is (80 - 2H) and the
width is (40 - 2H). The volume, V, is:

V = (80 - 2H) x (40 - 2H) x H

and the function equal to zero is

o =(80 - 2H) x (40 - 2H) x H - V
= 4H [(40 - H) (20 - H)] - V

7: Solving for an Unknown Variable in an Equation 121

One program to define this function would be:

vel LBL V
ve2 INPUT
ve3 INPUT
ve4 413
ve5 RCL- H
ve6 213
ve? RCL- H
ve8 x
ve9 4
vie x
Vii RCLx H
V12 RCL- V
V13 RTN

H
v

It seems reasonable that either a tall, narrow box or a short, flat box
could be formed having the desired volume. Because the taller box is
preferred, larger initial estimates of the height are reasonable. How­
ever, heights greater than 20 centimeters are not physically possible
because the metal sheet is only 40 centimeters wide. Initial estimates
of 10 and 20 centimeters are therefore appropriate.

Keys: Display: Description:

.1 SOlVEI I I {FN} V Selects program V as
the function to solve.

10 1 STO I H 10.0000 Stores upper and lower
20 20_ limits.

.1 SOlVE/f I {SOLVE} Prompts for volume.
H V?value

7500 1 RIS I SOLVING This is the desired
H=15.0000 height.

Now check the quality of this solution-that is, whether it provided
an exact root-by looking at the values of the previous estimate (in
the Y -register) and f(x) at the root (in the Z-register).

122 7: Solving for an Unknown Variable in an Equation

-if
I

..
II'
... ,.
... ,..
... • Ill. ,. .. .,
... •
~
~ ..
• ..
• or , ...

, ..
• ..
...

15.13131313

13.13131313

This value from the Y­
register is the estimate
made just prior to the
final result. Since it is
the same as the solu­
tion, the solution is an
exact root ...

. . . and, as this value
from the Z-register
shows, f(x) = 0 at the
root.

The dimensions of the desired box are 50 X 10 x 15 cm. If you
ignored the upper limit on the height (20 cm) and used initial esti­
mates of 30 and 40 cm, you would obtain a height of 42.0256 cm-a
root that is physically meaningless. If you used small initial estimates
such as 0 and 10 cm, you would obtain a height of 2.9744 cm-pro­
ducing an undesirably short, flat box.

Using Graphs to Select Initial Guesses. As an aid to understand­
ing the behavior of a particular function, you can graph it. Use your
program routine to evaluate the function for several values of the un­
known. For each point on the graph, store the value for the x­
coordinate in the variable, and then obtain the corresponding value for
the y-coordinate by pressing I XEQ I label. For the problem above, you
would always set V = 7500 and vary the value of H to produce dif­
ferent values for the function. The plot of this function looks like this:

4H (40-H) (20-H) -7500

30,000

~-+---¥--+-T-+---+--+++--I~ X = H

-20,000

7: Solving for an Unknown Variable in an Equation 123

Using SOLVE in a Program

You can use the SOLVE operation as part of a program. If appropri­
ate, include or prompt for initial guesses (into the unknown variable
and into the X-register) before executing the SOLVE variable instruc­
tion. The two instructions for solving an equation for an unknown
variable appear in the program as:

FN= label
SOL V E variable

Labeling Output. The programmed SOLVE instruction does not pro­
duce a labeled display (variable=value) since this might not be the
significant output for your program (that is, you might want to do
further calculations with this number before displaying it). If you do
want this result displayed, add a VIEW variable instruction after the
SOLVE instruction.

Conditional Execution if No Solution. If no solution is found for
the unknown variable, then the next program line is skipped (in ac­
cordance with the "Do if True" rule, explained in chapter 6). The
program should then handle the case of not finding a root, such as by
choosing new initial estimates or changing an input value.

Example: Time Value of Money. The '"Time Value of Money" pro­
gram in chapter 14 solves loan and savings problems by solving for
an unknown in the given TVM equation. This equation is defined as a
function in routine T, which relates the variables for present balance,
future balance, payment, interest rate, and number of payments.

124 7: Solving for an Unknown Variable in an Equation

.. , , , , , ..
r ,
•
" •
" •
" •
" p .. • ,
r
iii. ,
.. ,
.. ,
.. ,
.. ,
~ ,
~ ,
~ , ,
II ,
to • ,
"

" "
" ...

" III'

" ..

Given any four of these variables, the SOLVE instruction (line L04)
finds the solution for the fifth one:

L01 LBL L
L02 STO i Stores an index value that indicates which

variable had been specified as the unknown.
L03 FN= T Selects the function defined in program T.
L04 SOLVE(i) Solves for the indicated unknown variable

in program T.
L05 VIEW(i) Displays the resulting solution.
L06 GTO(i) Returns to the initializing subroutine to pre-

pare for another calculation.

This SOLVE operation works fine without the user supplying initial
guesses.

Limitations. The SOLVE instruction cannot call a routine that con­
tains another SOLVE instruction; that is, it cannot be used recursively
(SOLVE(SOLVE) error). Nor can SOLVE call a routine that contains a
FN= label instruction (SOLVE ACT I VE error). SOLVE cannot call a
routine that contains an fFN instruction (SOLVE <JFN) error), just as
fFN cannot call a routine that contains a SOLVE instruction
(J(SOLVE) error) .

The SOL V E variable instruction in a program uses one of the seven
pending subroutine returns in the calculator. (Refer to "Nested Sub­
routines" in chapter 6.)

For More Information

This chapter gives you instructions for solving for unknowns or roots
over a wide range of applications. Appendix C contains more detailed
information about how the algorithm for SOLVE works, how to inter­
pret results, what happens when no solution is found, and conditions
that can cause incorrect results.

7: Solving for an Unknown Variable in an Equation 125

8
Numerical Integration

Many problems in mathematics, science, and engineering require cal­
culating the definite integral of a function. If the function is denoted
by [(x) and the interval of integration is a to b, then the integral can be
expressed mathematically as

I = Lb [(x) dx.

{(x)

I

~~--------~--~ x
a h

The quantity I can be interpreted geometrically as the area of a region
bounded by the graph of the function [(x), the x-axis, and the limits ~

x = a and x = b (provided that [(x) is nonnegative throughout the in-
terval of integration).

The JFN operation integrates a specified function with respect to a
specified variable.* The function must be defined beforehand in a la­
beled program, and it may have more than one variable .

• JFN works only with real numbers.

126 8: Numerical Integration

• •
" I

-II'

" •
" • ... • .. • ... , .. ,
... • .. ,
.. , .. •
~ •
" ..

Using Integration (fFN)

To integrate a function:

1. Enter a program that defines the integrand's function. (See
"Writing Programs for JFN'" below.)

2. Select the program that defines the function to integrate: press
.[SOLVE/! [{FN} label.

3. Enter the limits of integration: key in the lower limit and press
[ENTER [, then key in the upper limit.

4. Select the variable of integration: press
.[SOLVE/! [{iFN} variable.

This starts the calculation.

This operation uses far more memory than any other operation in the
calculator. If executing {i F N} causes a ME M 0 R Y F U L L message, re­
fer to appendix B.

You can halt a running integration calculation by pressing @] or [R/S [.

(However, no information about the integration is available until the
calculation finishes normally.) To resume the calculation, press [R/S [.*

Accuracy. The display format setting affects the level of accuracy as­
sumed for your function and used for the result. Integration is more
precise but takes much longer in the {A L L} and higher {F X}, {S C },
and {E N} settings. The uncertainty of the result ends up in the Y­
register, pushing the limits of integration up into the T - and Z­
registers. For more information, see "Accuracy of Integration,'" page
131.

Results. The X-register contains the integral, the Y-register the un­
certainty, the Z-register the upper limit, and the T -register the lower
limit. (The variable of integration contains an immaterial value.)

• Pressing I XEQ I, I GTG I, or {RTN} cancels the fFN operation. In this case, start the opera­
tion over rather than resuming it.

8: Numerical Integration 127

To integrate the same function with different information: Skip
the first two steps above. If using the same limits of integration, press
[]IJ []IJ to bring them back into the X- and Y -registers. (If not using 4
the same limits, repeat step 3.) Then execute .1 SOLVE/ f I {J F N }
variable. (To work another problem using a different function, start
over with a different program for the function.)

Writing Programs for fFN

To write a program defining the integrand's function:

1. Begin with a label so that the program can be called by fFN.

2. Include an initial INPUT instruction for each variable, including
the variable of integration. (If there is only one variable in the
function, you can omit the INPUT instruction.)*

3. Enter the instructions to define the function. Use a ReL instruc­
tion any place a variable's value is needed for a calculation.

4. End the program with a RTN. The program should end with the
value of the function in the X-register.

Examples Using fFN

Example: Bessel Function. The Bessel function of the first kind of
order 0 can be expressed as

Jo(x) = 1/7r fa'll" cos (x sint) dt.

Find the Bessel function for x-values of 2 and 3 .

• The INPUT instructions are useful for multi-variable functions. Since the INPUT for the
variable of integration (integrand) is ignored, you can write one program that contains IN­
PUT instructions for all variables, which you can then use no matter which variable you
specify as the variable of integration.

128 8: Numerical Integration

This program evaluates the function f(t} = cos (x sint):

J01 LBL J
J02 RAD
J03 INPUT X
J04 INPUT T
J05 RCL T
J06 SIN
J07 RCLx X
J08 COS
J09 RTN

These keystrokes enter the program:

Keys:

., PRGM I

.IGTOIc:::Jc:::J

• , LBLIRTN I {LBL} J
., MODES I {RD}

.'INPUTI X

.'INPUT IT
, RCL I T []I[]
, RCL I 0 X , cos I
., LBLIRTN I {RTN}

Display:

PRGM TOP

J01 LBL J
J02 RAD

J03 INPUT
J04 INPUT
J06 SIN
J08 cos
J09 RTN

X
T

Description:

Starts program entry;
places program pointer
at the top of memory.

Enters program .

At this point, the x­
register will contain
the value of the
function.

Ends program entry.

Now integrate this function with respect to t from zero to 7r; x = 2.

.'SOLVE/J I {FN}
J

o 'ENTERI.w

., SOLVE!f I {J'FN}

T

FN= _

3.1416

.fFN d _

X?value

Selects routine J for the
function.

Enters limits of inte­
gration (lower first).

Specifies T as the vari­
able of integration.
Prompts for the value
of x.

8: Numerical Integration 129

21 RISI ..1'=0.7034 x = 2. Starts integrat­
ing and produces the
result for Iff f(t}.

To complete the calculation, remember to multiply the value of the
integral by the constant (1/1I") outside the integral. (You could also in­
clude this multiplication as part of the program.)

0.2239 Final result for fo(2}.

Now calculate Jo(3} with the same limits of integration. You don't
have to respecify the function (routine J), but you must respecify the
limits of integration (0, 11") since they were pushed off the stack by the
subsequent division by 11".

o 1 ENTER 1 .GJ 3.1416 Displays upper limit.

.1 SOLVEI f 1 {J'FN} T Xn.0000 Starts integration;
prompts for x.

31 RIS 1 ..1'=-0.8170 Integral of f(t} .

.GJ0 -0.2601 Result for fo(3}.

Example: Sine Integral. Certain problems in communications the­
ory (for example, pulse transmission through idealized networks)
require calculating an integral (sometimes called the sine integral) of
the form

Si(t} = fat (Si~ x) dx.

Find Si(2}.

Key in the following program to evaluate the function
f(x} = (sin x) -;- x.'"

• If the calculator attempted to evalutate this function at x = 0, the lower limit of integration,
an error (D I V IDE BY 0) would result. However, the integration algorithm normally does
not evaluate functions at either limit of integration, unless the endpoints of the interval of
integration are extremely close together or the number of sample points is extremely large.

130 8: Numerical Integration

.oj ,

.oj ,
III ,
.oj ,

• ..

,
p

... ,

.. ,

.. • .. ,

... , , ,
~

III

801 LBL 8
802 RAD
803 RCL X
804 8IN
805 RCL-:- X
806 RTN

Now integrate this function with respect to x (that is, X) from zero to
2 (t = 2).

Keys:

.1 SOLVE/ f 1

{FN} S

o I ENTER 12

• 1 SOLVE/ f 1

{JFN}X

Display:

J=1.6054

Description:

Selects routine S for
the function.

Enters limits of inte­
gration (lower first) .

Result for 5i(2).

Accuracy of Integration

Since the calculator cannot compute the value of an integral exactly, it
approximates it. The accuracy of this approximation depends on the
accuracy of the integrand's function itself, as calculated by your pro­
gram.* This is affected by round-off error in the calculator and the
accuracy of the empirical constants .

• Integrals of functions with certain characteristics such as spikes or very rapid oscillations
might be calculated inaccurately, but the likelihood is very small. The general characteristics
of functions that can cause problems, as well as techniques for dealing with them, are dis­
cussed in appendix D.

8: Numerical Integration 131

Specifying Accuracy

The display format's setting determines the precision of the integration
calculation: the greater the number of digits displayed, the greater the
precision of the calculated integral (and the greater the time required
to calculate it). The fewer the number of digits displayed, the faster
the calculation, but the calculator will presume that the function is
accurate to only the number of digits specified in the display format.

To specify the accuracy of the integration, set the display format so
that the display shows no more than the number of digits that you
consider accurate in the integrand's values. This same level of accuracy
and precision will be reflected in the result of integration.

Interpreting Accuracy

After calculating the integral, the calculator places the estimated un­
certainty of that integral's result in the V-register. Press 1 x~y 1 to view
the value of the uncertainty.

For example, if the integral 5i(2) is 1.6054 ± 0.0001, then 0.0001 is its
uncertainty.

Example: Specifying Accuracy. With the display format set to SCI
2, calculate the integral in the expression for 5i(2) (from the previous
example).

Keys: Display:

.1 DISP 1 {SC}2 1.61E0

o 1 ENTER 12

• ISOlVE/! I {FN} S 2.00E0

• 1 salvEn I {fFN} X .f=1.61E0

132 8: Numerical Integration

Description:

Sets scientific notation
with two decimal
places, specifying that
the function is accurate
to two decimal places.

Limits of integration .

Selects routine S for
the function .

Integral approximated
to two decimal places.

~ ,
;

.. ,

.. ,

.. ,

~

r
, ,

.. ,

.. ,
~ ,

•

1.00E-3 The uncertainty of the
approximation of the
integral.

The integral is 1.61±0.00100. Since the uncertainty would not affect
the approximation until its third decimal place, you can consider all
the displayed digits in this approximation to be accurate .

If the uncertainty of an approximation is larger than what you choose
to tolerate, you can increase the number of digits in the display for­
mat and repeat the integration (provided that f(x) is still calculated
accurately to the number of digits shown in the display). In general,
the uncertainty of an integration calculation decreases by a factor of
10 for each additional digit specified in the display format.

Example: Changing the Accuracy. For the integral of Si(2) just cal­
culated, specify that the result be accurate to four decimal places
instead of only two.

Keys:

.1 DISP 1 {SC} 4

[E] [E]

.1 SOLVE/ J 1 {J'FN} X

~

.1 DISP I {FX} 4

Display:

1.0000E-3

2.0000E0

.f= 1.6054E0

1.0000E-5

Description:

Specifies accuracy to
four decimal places.
The uncertainty from
the last example is still
in the display.

Rolls down the limits
of integration from the
z- and T -registers into
the X- and Y -registers.

Result.

Note that the uncer­
tainty is about 1fl00 as
large as the uncertainty
of the SCI 2 result cal­
culated previously.

Restores FIX 4 format.

8: Numerical Integration 133

This uncertainty indicates that the result might be correct to only four
decimal places. In reality, this result is accurate to seven decimal
places when compared with the actual value of this integral. Since the
uncertainty of a result is calculated conservatively, the calculator's ap­
proximation in most cases is more accurate than its uncertainty indicates.

For more information, see appendix D.

Using Integration in a Program

Integration can be executed from a program. Remember to include or
prompt for the limits of integration before executing the integration,
and remember that accuracy and execution time are controlled by the
display format at the time the program runs. The two integration in­
structions appear in the program as:

FN= label
J' F N d variable

Labeling Output. The programmed fFN instruction does not produce
a labeled display (J'=value), since this might not be the significant out­
put for your program (that is, you might want to do further
calculations with this number). If you do want this result displayed,
add aPSE (.1 LBLIRTN 1 {P S E}) or STOP (I RIS I) instruction to dis­
play the result in the X-register after the fFN instruction.

Example: Normal Distribution. The "Normal and Inverse-Normal
Distributions" program on page 215 in part 4 includes an integration
of the equation of the normal density function,

1 s: e -(D ~ M)' +, dD.

SVh

134 8: Numerical Integration ..

.. .,
i -•

=
= = ;

• ... • -• -• -•

This function is defined in routine F:

FlO 1 LBL F
FIZ12 RCL 0
FIZ13 RCL- M
FIZ14 RCL+ S
FIZ15 :>:::<:

FIZ16 2
FlO?
FIZ18 +/-
FIZ19 eo:>::

FllZ1 RTN

Other routines prompt for the known values and do the other calcula­
tions to find Q(D), the upper-tail area of a normal curve. The
integration itself is set up and executed from routine Q:

QlZ1l LBL Q

QIZ12 RCL M Recalls the lower limit of integration.

QIZ13 RCL X Recalls the upper limit of integration. (X =
D.)

QIZ14 FN= F Specifies the function defined by LBL F for
integration .

QIZ15 .)'FN d 0 Integrates the normal function for the vari-
able D.

Limitations. The .)'FN variable instruction cannot call a routine that
contains another JFN instruction; that is, it cannot be used recursively,
so you cannot calculate multiple integrals U (,fFN) error). Nor can
JFN call a routine that contains a FN= label instruction UFN
ACT I VE error). JFN cannot call a routine that contains a SOLVE in­
struction U (SOL V E) error), just as SOLVE cannot call a routine that
contains an integration instruction (SOLVE(.)'FN) error).

The .)' F N d variable instruction in a program uses one of the seven
pending subroutine returns in the calculator. (Refer to "Nested Sub­
routines" in chapter 6.)

8: Numerical Integration 135

For More Information

This chapter gives you instructions for using integration in the
HP-32S over a wide range of applications. Appendix D contains more
detailed information about how the algorithm for integration works,
conditions that could cause incorrect results, conditions that prolong
calculation time, and obtaining the current approximation to an
integral.

136 8: Numerical Integration

<II
'III

..
'III

Operations With Complex
Numbers

The HP-32S can use complex numbers in the form

x + iy.

9

It has operations for complex arithmetic (+, -, x, +), complex
trigonometry (sin, cos, tan), and the mathematics functions -z, l/z,
zlZ2, In z, and eZ (where zl and z2 are complex numbers).

Complex numbers in the HP-32S are handled by entering each part
(imaginary and real) of a complex number as a separate entry. To en­
ter two complex numbers, you enter four separate numbers. To do a
complex operation, press .1 CMPLX I before the operator. For example,
to do

(2 + i4) + (3 + is),

press 41 ENTER I 21 ENTER I 51 ENTER 13 .1 CMPLX I G. The result is S + i9.
(Press ~ to see the imaginary part.)

9: Operations With Complex Numbers 137

The Complex Stack

The complex stack is really the regular memory stack split into two
double registers for holding two complex numbers, Zlx + iZly and
zZx + izzy:

T t { iY1
Z1

Z Z X1

Y Y
" { iY2

X X x2

Real Stack Complex Stack

Since the imaginary and real parts of a complex number are entered
and stored separately, you can easily work with or alter either part by
itself.

Z1 { Y1

x1 Complex function

{
•

Z2 Y2 Y imaginary part

x2 (displayed) x real part

Complex input: Complex result, Z

Z or Z1 and z2

Always enter the imaginary part (the y-part) of a number first. The real por­
tion of the result (zx) is displayed; press ~ to view the imaginary
portion (Zy).

138 9: Operations With Complex Numbers

.. .,
• •

Complex Operations

Use the complex operations as you do real operations, but precede the
operator with .1 CMPLX I.

To do an operation with one complex number:

1. Enter the complex number z, composed of x + iy, by keying in y
I ENTER Ix.

2. Select the complex function:

Functions for One Complex Number, z

To Calculate: Press:

Change sign, -z .1 CMPLX I [!f)
Inverse, 1/z .1 CMPLX 111/x I
Natural log, In z .1 CMPLX I [ill]
Natural antilog, eZ .lcMPLx10

Sin z .1 CMPLX I []ill]
Cos z .1 CMPLX II COS I
Tan z .1 CMPLX II TAN I

To do· an arithmetic operation with two complex numbers:

1. Enter the first complex number, zl (composed of Xl + iYl), by
keying in Yl I ENTER I Xl I ENTER I. (For zlz2, key in the base part, Zl'

first.)

2. Enter the second complex number, z2' by keying in Y21 ENTER I x2'

(For zlz2, key in the superscript, z2' second.)

3. Select the arithmetic operation:

9: Operations With Complex Numbers 139

Arithmetic With Two Complex Numbers, Z1 and z2

To Calculate: Press:

Addition, Z1 + z2 .1 CMPLX 1 [I]
Subtraction, Z1 - z2 .ICMPLXIG

Multiplication, z1 x Z2 .ICMPLXI0

Division, Z1 -:- Z2 .ICMPLXI0

Power function, Z1z2 .1 CMPLX lIZ]

Examples. Here are some examples of trigonometry and arithmetic
with complex numbers:

Evaluate sin (2 + i3).

Keys: Display: Description:

31 ENTER 12 Real part of result. .1 CMPLX I [§!ill 9,1545

-4.1689 Result is
9.1545 - i4.1689.

Evaluate the expression

where zl = 23 + i13, Z2 = -2 + i, Z3 = 4 - i3.

Since the stack can retain only two complex numbers at a time, per­
form the calculation as

Zl x [1

140 9: Operations With Complex Numbers

~

~

• ,

• ,
AI
~

.. • .. • .. • .. • ...
•
AI ..
.. ..
• " .. ,
..
" ..
" .. , ..
" ..
'"

.. , ,

.. ,

.. ,

.. ,

.. ,
>

Keys: Display:

1 1 ENTER 12 ~
1 ENTER 1 3 ~ ;:::1 E~N-TE-R~I 4 .1 CMPLX 1 G 2.13131313

.1 CMPLX 111/x 1 13.251313

13 1 ENTER 1 23 .1 CMPLX 1 0 2.5131313

1 x~y 1 9.13131313

Description:

Adds Z2 + z3; displays
real part.

1 -7 (z2 + z3)'

z1 -7 (z2 + z3)'

Result is 2.5 + i9.

Evaluate (4 - i2/5) (3 - i2/3). Do not use complex operations when
calculating just one part of a complex number.

Keys: Display:

2 1 ENTER 1 5 G ~ -13.4131313

41 ENTER 1 4.13131313

21ENTERI3 G~ -13.6667

3.lcMPLx10 11.7333

-3.8667

Description:

Calculates imaginary
part using real
operations.

Enters real part of first
complex number .

Calculates imaginary
part of second complex
number.

Completes entry of
second number and
then multiplies the two
complex numbers.

Result is 11.7333
i3.8667.

Evaluate e Z·2, where z = (1 + i). Use .1 CMPLX 10 to evaluate z-2;
enter -2 as -2 + iO.

9: Operations With Complex Numbers 141

Keys: Display: Description:

1 1 ENTER 1 1 1 ENTER 1 0 Intermediate result of
1 ENTER 1 2 EZ;l (1 + it2

. .1 CMPLX I [ZJ 0.0000

.ICMPLXI0 0.8776 Real part of final
result.

(ili] -0.4 794 Final result is
0.8776 - iO.4794.

Using Numbers in Polar Notation

Many applications use real numbers in polar form or phasor notation.
These forms use pairs of numbers, as do complex numbers, so you
can do arithmetic with these numbers by using the complex opera­
tions. Since the HP-32S's complex operations work on numbers in
rectangular form, convert polar form to rectangular form (using .1 P-RECT I) before executing the complex operation, then convert the
result back to polar form.

a + ib r(cos 6 + i sin 6) = rei6

r L 6 Polar or phasor form

imaginary
(a.h)

real

Example: Vector Addition. Add the following three loads. You will
first need to convert the polar coordinates to rectangular coordinates.

142 9: Operations With Complex Numbers

" • ,
4
4

• " • • •

A • .
'II

• • • • .. • .. •
AI
~

All ,.
All ,.
All ,.
All
All
All ,.
AI ,.
.oil

y

185 lB 4. 62 0

170

------------~~------------ x

100 lB 4. 2610

Keys: Display:

• 1 MODES 1 {DG}

62 1 ENTER 1185
• Ip-RECTI {8,r~y,,,,} 86.8522

1431 ENTER 1170
• 1 P-RECT 1 {8,r~y,,,,} -135.7680

.1 CMPLX ICB -48.9158

261 1 ENTER 1 100
• 1 P-RECT 1 {8,r~y,,,,} -15.6434

.1 CMPLX ICB -64.5592

.1 P-RECT 1 {y,,,,~8,r} 1 78.9372

111.1489

Description:

Sets Degrees mode .

Enters Ll and converts
it to rectangular form .

Enters and converts L2 .

Adds vectors.

Enters and converts L3 .

Converts vector back
to polar form; displays
r.

Displays ().

9: Operations With Complex Numbers 143

10
Base Conversions and
Arithmetic

The BASE menu (.1 BASE I) lets you change the number base used for
entering numbers and other operations (including programming).
Changing bases also converts the displayed number to the new base.

The BASE Menu

Menu Label Description

{DEC} Decimal mode. No annunciator. Converts numbers to base
10. Numbers have integer and fractional parts.

{H::q Hexadecimal mode. HEX annunciator on. Converts num-
bers to base 16; uses integers only. The top-row keys
become digits 0 through [I].

{OC} Octal mode. OCT annunciator on. Converts numbers to
base 8; uses integers only. The [IJ, rn ' and unshifted top-
row keys are inactive.

{BN} Binary mode. BIN annunciator on. Converts numbers to
base 2; uses integers only. Digit keys other than [QJ and
[JJ, and the unshifted top-row functions are inactive. If a
number is longer than 12 digits, then the outer top-row
keys (em and eE) are active for viewing windows. (See
"Windows for Long Binary Numbers" in this chapter.)

Examples: Converting the Base of a Number. The following key­
strokes do various base conversions.

Convert 125.9910 to hexadecimal, octal, and binary numbers.

144 10: Base Conversions and Arithmetic

· •
.oil

'II

.oil ..

.. ..

A
'II

...
~

•
•
•
•
• •

Keys:

125.99.1 BASE 1 {HX}

• 1 BASE 1 {OC}

• 1 BASE 1 {BN}

• 1 BASE 1 {DEC}

Display: Description:

70 Converts just the inte­
ger part (125) of the
decimal number to
base 16 and displays
this value .

175 Base 8 .

111111211 Base 2 .

125.991210 Restores base 10; the
original decimal value
has been preserved, in­
cluding its fractional
part.

Convert 24FF16 to binary base. The binary number will be more than
12 digits (the maximum display) long.

.1 BASE 1 {HX} 24FF

.1 BASE 1 {BN}

• 1 BASE I {DEC}

24FF _ Use the [E) key to
type HF".

121112112111111111 The entire binary num­
ber does not fit. The
..... annunciator indi­
cates that the number
continues to the left;
the , annunciator
points to em.

121112112111111111

9,4 71.1211210121

1121 Displays the rest of the
number. The full
number is
100100111111112,

Displays the first 12
digits again .

Back to base 10.

10: Base Conversions and Arithmetic 145

Arithmetic in Bases 2, 8, and 16

You can perform arithmetic operations using 0,8,0, and IT] in
any base.* Arithmetic in bases 2, 8, and 16 is in 2's complement form
and uses integers only:

• If a number has a fractional part, only the integer part is used for
an arithmetic calculation .

• The result of an operation is always an integer (any fractional por­
tion is truncated).

Whereas conversions change only the displayed number and ~ot the
number in the X-register, arithmetic does alter the number in the X­
register.

If the result of an operation cannot be represented in 36 bits, the dis­
play shows OVERFLOW and then the largest positive or negative
number possible.

Examples. Here are some examples of arithmetic in Hexadecimal,
Octal, and Binary modes:

Keys:

.illASE I {HX}

12F I ENTER I E9A 0

12F16 + E9A16 ?

Display: Description:

Sets base 16; HEX an­
nunciator on.

FC9 Result.

• The only function keys that are actually deactivated outside of Decimal mode are EEl ,
0, Q]], 0, ~, ~. However, you should realize that most operations other than
arithmetic will not produce meaningful results since the fractional parts of numbers are
truncated.

146 10: Base Conversions and Arithmetic

41 ,

.. •
I

•

.. • •

., BASE' {OC}

7760 , ENTER I 4326 El

100 , ENTER I 5 G

., BASE 1 {HX} 5AO

• 1 BASE 1 {BN}

1001100

[B

., BASE 1 {HX}

• 1 BASE 1 {DC}

77608 - 43268 = ?

7711 Sets base 8; OCT an­
nunciator on. Converts
displayed number to
octal.

3432 Result.

1008 58 = ?

1 4 Integer part of result.

5A016 + 10011002 = ?

5A0_ Sets base 16; HEX an­
nunciator on .

Changes to base 2; BIN

100 11 00_ annunciator on. This
terminates digit entry,
so no , ENTER 1 is needed
between the numbers .

10111101100 Result in binary base.

5 E C Result in hexadecimal
base .

1,516.0000 Restores decimal base.

The Representation of Numbers

Although the display of a number is converted when the base is
changed, its stored form is not modified, so decimal numbers are not
truncated-until they are used in arithmetic calculations.

10: Base Conversions and Arithmetic 147

When a number appears in hexadecimal, octal, or binary base, it is
shown as a right-justified integer with up to 36 bits (12 octal digits or
9 hexadecimal digits). Leading zeros are not displayed, but they are
important because they indicate a positive number. For example, the
binary representation of 12510 is displayed as:

1111101

which is the same as these 36 digits:

000000000000000000000000000001111101

Negative Numbers

The leftmost (most significant or Uhighest") bit of a number's binary
representation is the sign bit; it is set (1) for negative numbers. If there
are (un displayed) leading zeros, then the sign bit is 0 (positive). A
negative number is the 2's complement of its positive binary number.

Keys:

• 1 BASE I {BN}

.1 BASE I {DEC}

Display: Description:

FFFFFFDDE

222 Enters a positive, deci­
mal number; then
converts it to
hexadecimal.

2's complement (sign
changed) .

110111011110 Binary version; +-­
indicates more digits.

111111111111

-546.0000

Displays the leftmost
window; the number is
negative since the
highest bit is 1.

Negative decimal
number.

148 10: Base Conversions and Arithmetic

4

•
•
•

.. ..

<II
~

AI
'III

AI
'III

.AI
'III

AI ...
AI
'II

AI
'III
<II

1111

..

Range of Numbers

The 36-bit word size determines the range of numbers that can be
represented in hexadecimal (9 digits), octal (12 digits), and binary
bases (36 digits), and the range of decimal numbers (11 digits) that
can be converted to these other bases.

Range of Numbers for Base Conversions

Base
Positive Integer Negative Integer

of Largest Magnitude of Largest Magnitude

Hexadecimal 7FFFFFFFF 800000000

Octal 377777777777 400000000000

Binary 011111111111111111 100000000000000000
111111111111111111 000000000000000000

Decimal 34,359,738,367 -34,359,738,368

When you key in numbers, the calculator will not accept more than
the maximum number of digits for each base. For example, if you at­
tempt to key in a 10-digit hexadecimal number, digit entry halts and
the A annunciator appears.

If a number entered in decimal base is outside the range given above,
then it produces the message TOO BIG in the other base modes. Any
operation using TOO BIG causes an overflow condition, which sub­
stitutes the largest positive or negative number possible for the too­
big number.

Windows for Long Binary Numbers

The longest binary number can have 36 digits-three times as many
digits as fit in the display. Each 12-digit display of a long number is
called a window.

10: Base Conversions and Arithmetic 149

36-bit number

111111111111 0~10000000000 11111111111111

Highest window lowest window
(displayed)

When a binary number is larger than the 12 digits, the +- or ~
annunciator (or both) appears, indicating in which direction the addi­
tional digits lie. Press the indicated key ([E] or ~). to view the
obscured window.

111111111111 000000000000 111111111111
W.... ...w

Press to display _'- ~ Press to display
left window. [EJ ~ [lli] [l] [lli] [E) right window.

SHOWing Partially Hidden Numbers

The ., VIEW' and .'INPUT) functions work with non-decimal numbers
as they do with decimal numbers. However, if the full octal or binary
number does not fit in the display, the leftmost digits are replaced
with ellipses (no). Press ., SHOW) to view the digits obscured by the
A= ... or A? .. labels.

Keys:

.'BASE) {OC}
123456712345
'STO) A

Display:

23456712345_
123456712345

Description:

Enters a large octal
number.

150 10: Base Conversions and Arithmetic

.. ..

~
~

• • • • • It

.lvlEwl A A= . ..456712345

• 1 SHOW 1 (hold) 123456712345

Programming With BASE

Drops leftmost three
digits .

Shows all digits.

You can program instructions to change the base mode using .1 BASE I. These settings work in programs just as they do as functions
used from the keyboard. This allows you to write programs that ac­
cept numbers in any of the four bases, do arithmetic in any base, and
display results in any base.

When writing programs that use numbers in a base other than 10, set
the base mode both as the current setting for the calculator and in the
program (as an instruction).

Selecting a Base Mode in a Program

Insert a BIN, OCT, or HEX instruction into the beginning of the pro­
gram. You should usually include a DEC instruction at the end of the
program so that the calculator's setting will revert to Decimal mode
when the program is done.

An instruction in a program to change the base mode will determine
how input is interpreted and how output looks during and after pro­
gram execution, but it does not affect the program lines as you enter
them.

The SOLVE and JFN operations automatically set DEC mode.

Numbers Entered in Program Lines

Before starting program entry, set the base mode. The current setting
for the base mode determines the base of the numbers that are en­
tered into program lines. The display of these numbers changes when
you change the base mode.

10: Base Conversions and Arithmetic 151

Program line numbers always appear in base 10.

An annunciator tells you which base is the current setting. For in­
stance, compare the program lines below in the left and right
columns. Notice that the hexadecimal number, like all non-decimal
numbers, is right-justified.

Decimal mode set

PRGM

A09 HEX

PRGM

A10 23

Hexadecimal mode set

PRGM

A09 HEX

A10

t
Program line numbers
are always decimal.

PRGM

HEX

HEX

17

Current base mode set.

152 10: Base Conversions and Arithmetic

• • • • • •
III. •

11
Statistical Operations

The STAT (statistics) menu provides functions to statistically analyze a
set of one- or two-variable data.

• One-variable data: mean and standard deviation.

• Two-variable data (x,y): linear regression and linear estimation (x
and y).

• Weighted mean (x weighted by y).

• Summation statistics: n, ~x, ~y, ~x2, ~y2, and ~xy.

STAT

I
I
E x,Y 5 loR.
I

J" I I I I
n x y x2 y2 xy sx sy

X y xw " 9 b x r m

Entering Statistical Data (@], .~)

One- and two-variable statistical data are entered in similar fashion.
The data values are accumulated as summation statistics in six statis­
tics registers, whose values are displayed under .1 STAT I {:l::} .

11: Statistical Operations 153

Entering One-Variable Data

1. Press ., CLEAR' {};} to clear previous statistical data.

2. Key in each x-value and press a:B.
3. The display shows n, the number of statistical data values now

accumulated. *

To recall a value to the display immediately after it has been entered,
press ., LASTx I.

Entering Two-Variable Data

When your data consist'of two variables, x is the independent variable
and y is the dependent variable. Remember to enter an (x, y) pair in
reverse order so that y ends up in the Y-register and x in the x­
register.

1. Press ., CLEAR 1 {};} to clear previous statistical data.

2. Key in the y-value first and press , ENTER I.
3. Key in the corresponding x-value and press ,2:+ I.
4. The display shows n, the number of statistical data pairs now

accumulated.

5. Continue entering x,y-pairs. The n-value is updated with each
entry.

To recall an x-value to the display immediately after it has been en­
tered, press ., LASTx I .

• This procedure actually enters two variables into the statistics registers because the value
already in the Y -register is accumulated as the y-value. For this reason, the calculator will
do linear regression and show you values based on y even when you have entered only x­
data-or even if you have entered an unequal number of x- and y-values. No error occurs,
but the results are obviously not meaningful.

154 11: Statistical Operations

Correcting Errors in Data Entry

If you make a mistake in entering statistical data, delete the incorrect
data and add the correct data. Even if only one value of an x, y-pair is
incorrect, you must delete and then reenter both values.

To correct statistical data:

1. Reenter the incorrect data, but instead of pressing , ~+ I, press
.~. This deletes the value(s) and decrements n.

2. Enter the correct value(s) using [E.

If the incorrect values were the ones just entered, you can simply
press ., LASTx I to retrieve them, then ., ~- I to delete them. (The in­
correct y-value was still in the Y -register, and its x-value was saved in
the LASTx register.)

Example. Key in the x, y-values on the left, then make the correc­
tions shown on the right.

Keys:

., CLEAR I {I}

4 , ENTER I 20 , ~+ I
6 , ENTER I 400 [E

• 'LASTxI

.~
6 , ENTER I 40 , ~+ I

Initial x, y

20,4

400,6

Display:

1.0000
2.0000

Corrected x, y

20,5

40,6

Description:

Clears previous statisti­
cal data, then enters
two data pairs. Display
shows n, the number
of data pairs entered .

400.0000 Brings back last x­
value. Last y is still in
Y-register. (Press ~
twice to check y.)

1.0000
2.0000

Deletes and replaces
last data pair (400, 6 to
40, 6).

11: Statistical Operations 155

4 1 ENTER I 20 .1 2;- I
5 1 ENTER I 20 [EJ

1.0000
2.0000

Deletes and replaces
the first pair (20, 4 to
20, 5). Still two pairs
total.

Statistical Calculations

Once you have entered your statistical data, you can use the functions
in the STAT menu. Press .1 STAT I to display the STAT menu.

The STAT Menu

Menu Label Description

{I} The summation menu: n. ~x. ~Y. ~x2, ~y2, ~xy. See "Sum-
mation Statistics."

{x,y} The mean menu: x, y and weighted x (xw). See "Mean and
Standard Deviation."

{s} The standard-deviation menu: Sx and Sy' See "Mean and
Standard Deviation."

{ L.R.} The linear-regression menu: curve-fitting (r, m, b) and linear
estimation (x, 9). See "Linear Regression."

Mean and Standard Deviation

The Mean (i, y, Menu.

• Press .1 STAT I {x ,y} {x} for the arithmetic mean (average) of the
x-values .

• Press .1 STAT I {x,y} {y} for the arithmetic mean (average) of the
y-values.

156 11: Statistical Operations

.. ,

A ,

• Press ., STAT 1 {XIY} Fl..)} for the weighted mean of the x-values
using the y-values as weights or frequencies. The weights can be
integers or non-integers.

The Standard Deviation (s) Menu. Standard deviation is a measure
of how dispersed the data values are about the mean.

• Press ., STAT 1 {s} {s x} for the standard deviation of the x­
values. *

• Press .1 STAT 1 {s} {sy} for the standard deviation of the y­
values. *

Example: Mean and Standard Deviation With One Variable.
Production supervisor May Kitt wants to determine how long a cer­
tain process takes. She randomly picks ten people, observes each one
as he or she carries out the process, and records the number of min­
utes required:

15.5 9.25 10.0

12.5 12.0 8.5

Calculate the mean and standard deviation of the times. (Treat all
these data as x-values.)

Keys:

., CLEAR 1 {I}

15.5 [E]

9.25 [E] 10 [E]
12.5 [E] 12 [E]
8.5 [E]

.1 STAT 1 F,Y} F}

Display:

1.0000

3.0000

5.0000

6.0000

11.2917

Description:

Clears the statistics
registers.

Enters the first time.

Enters the remaining
data.

Calculates mean.

• This calculates the sample standard deviation (using n -1 as a divisor), which assumes the
data is a sampling of a larger, complete set of data. If your data constitute the entire popula­
tion of data, the true population standard deviation can be computed by calculating the mean
of the original data, adding the mean to the statistical data using (]!], and then calculating
the standard deviation.

11: Statistical Operations 157

·'STAT, {s} {s,,} 2.5808 Calculates standard
deviation.

Example: Weighted Mean. A manufacturing company purchases a
certain part four times a year. Last year's purchases were:

Price per Part (x) $4.25 $4.60 $4.70 $4.10

Number of Parts (V) 250 800 900 1000

Find the mean price paid for this part. Remember to enter y, the
weight (frequency), before x, the price.

Keys:

.,CLEARI {I}

250 , ENTER 1 4.25 I 2:+ 1

800 , ENTER 1 4.6 [E)
900 , ENTER 1 4.7 [E)
1000 , ENTER I 4.1 I 2:+ 1

., STAT 1 {X,y} {;;:w}

Linear Regression

Display:

1.0000

2.0000

3.0000

4.0000

4.4314

Description:

Clears the statistics
registers.

Enters the data and
their weights.

Calculates mean price
weighted for quantity
purchased.

Linear regression (also called linear estimation) is a statistical method
for finding a straight line that best fits a set of x,y-data. Be sure to
enter your data values before using these functions.

• To find an estimated value for x (or y), first key in a given hypo­
thetical value for y (or x), then press .1 STAT 1 {L.R.} {X} (or
{Y}).

• To find the values that define the line that best fits your data, press
.,STATI {L.R.} followed {r}, {m}, or {b}.

158 11: Statistical Operations

..
•

The Linear Regression (L.R., Menu

Menu Label Description

{q Estimates (predicts) x for a given hypothetical value of y,
based on the line calculated to fit the data.

{Y} Estimates (predicts) y for a given hypothetical value of x,
based on the line calculated to fit the data.

{r} Correlation coefficient for the (x,Y) data. The correlation co-
efficient is a number in the range -1 through + 1 that
measures how closely the calculated line fits the data.

{m} Slope of the calculated line.

{b} V-intercept of the calculated line.

Example: Curve Fitting. The yield of a new variety of rice depends
on its rate of fertilization with nitrogen. For the following data, deter­
mine the linear relationship: the correlation coefficient, the slope, and
the y-intercept.

X, Nitrogen Applied (kg per
hectare)

Y, Grain Yield (metric tons
per hectare)

0.00 20.00 40.00 60.00 80.00

4.63 5.78 6.61 7.21 7.78

Keys: Display: Description:

., CLEAR I {I}

4.63 I ENTER I 0 , ~+ I
5.78 I ENTER 120 ,~+ I
6.61 I ENTER I 40 I ~+ I
7.21 I ENTER I 60 , ~+ I
7.78 I ENTER 180 ,~+ I

.1 STAT I {L.R,}

{r}

5,0000

x y r m b

0,9880

Clears any previous
statistical data.

Enters data; displays n:
5 data pairs entered.

Displays linear­
regression menu.

Correlation coefficient;
the data closely
approximate a straight
line.

11: Statistical Operations 159

• 1 STAT I {LR.} {m}

.1 STAT I {LR.} {b}

y

8.50

7.50

6.50

5.50
...

h ...

4.50
0

... ...

0.0387

4.8560

....
r =0.9880 ...

...
...

...
m=0.0387

...

20 40 60

Slope of the line .

y-intercept.

...
;X (70.9)

x
80

...
11

• 11

· , ,
What if 70 kg of nitrogen fertilizer were applied to the rice field? Pre- •
dict the grain yield based on the above statistics. 4

Keys:

70

.1 STAT I {LR.} {Y}

Display:

70

7.5615

Description:

Enters hypothetical x­
value.

The predicted yield in
tons per hectare.

Limitations on Precision of Data

Since the calculator uses finite precision (12 to 15 digits), it follows
that there are limitations to calculations due to rounding. Here are
two examples:

160 11: Statistical Operations

•
4

• •
..
11

..
11

AI ,
.. ...
..
...

Normalizing Close, Large Numbers. The calculator might be un­
able to correctly calculate the standard deviation and linear regression
for a variable whose data values differ by a relatively small amount.
To avoid this, normalize the data by entering each value as the differ­
ence from one central value (such as the mean). For normalized x­
values, this difference must then be added back to the calculation of x
and x, and y and b must also be adjusted. For example, if your x­
values were 7776999, 7777000, and 7777001, you should enter the
data as -1, 0, and 1; then add 7777000 back to x and x. For b, add
back 7777000 x m. To calculate y, be sure to supply an x-value that

• is less 7777000.

Similar inaccuracies can result if your x and y values have greatly dif­
ferent magnitudes. Again, scaling the data can avoid this problem.

Effect of Deleted Data. Executing .CEJ does not delete any
rounding errors that might have been generated in the statistics regis­
ters by the original data values. This difference is not serious unless
the incorrect data have a magnitude that is enormous compared with
the correct data; in such a case, it would be wise to clear and reenter
all the data.

Summation Values and the Statistics
Registers

The statistics registers are six unique locations in memory that store
the accumulation of the six summation values.

Summation Statistics

Pressing .1 STAT I {};} gives you access to the contents of the statistics
registers:

• Press {n} to see the number of accumulated data sets.

• Press {:>::} to see the sum of the x-values.

• Press {y} to see the sum of the y-values.

11: Statistical Operations 161

• Press {:>:: 2: }, { >' 2: }, and { :>:: >'} to see the sums of the squares and 4
the sum of the products, values that are of interest for performing.
other statistical calculations besides those provided by the
calculator.

..
The Statistics Registers in Calculator Memory "
The memory space (48 bytes) for the statistics registers is automati- ..
cally allocated (if it doesn't exist already) when you press []I] or I ~-I.'
The registers are deleted and the memory deallocated when you exe-~
cute .1 CLEAR I {I}. A

'<II

If not enough calculator memory is available to hold the statistics reg-~
isters when you first press I ~+ I (or I ~-I), the calculator displays ~
MEMORY FULL. You will need to clear variables or programs (or
both) to make room for the statistics registers before you can enter~
statistical data. Refer to "Managing Calculator Memory'" in
appendix B.

162 11: Statistical Operations

• • •
•
~ ,
<
<
<
C
C
C

<
<

Application Programs

Page 164 12: Mathematics Programs

204 13: Statistics Programs

222 14: Miscellaneous Programs

12
Mathematics Programs

The memory usage and checksum for each program label can be
checked using the catalog of programs (page 85).

Vector Operations

This program performs the basic vector operations of addition, sub­
traction, cross product, and dot (or scalar) product. The program uses
three-dimensional vectors and provides input and output in rectangu­
lar or polar form. Angles between vectors can also be found.

Z -.

r

....... :

- -------~

Vector Coordinate Systems

164 12: Mathematics Programs

..
...

• ,
•
•
•
•
•
•

oil
...
.II
...
A
...
A
'II

This program uses the following equations.

Coordinate conversion:

x = R sin(P) cos(1)

Y = R sin(P) sin(1)

Z = R cos(P)

R = YX2 + y2 + Z2

Y T = arctan-
X

Z
P = arctan y

X2 + y2

Vector addition and subtraction:

VI + V2 = (X + U)i + (Y + V)j + (Z + W)k

V2 - VI = (U - X)i + (V - Y)j + (W - Z)k

Cross product:

VI X V2 = (YW - ZV)i + (ZU - XW)j + (XV - YU)k

Dot product:

D = XU + YV + ZW

Angle between vectors ('Y):

where

and

G = arccos _--=D=-----_
R] x R2 '

VI = Xi + Yj + Zk

V2 = Ui + Vj + Wk

The vector displayed by the input routines (LBL P and LBL R) is VI'

12: Mathematics Programs 165

Program Listing:

Program Lines:
R01 LBL R

Description:
Defines the beginning of the rectangular
input/display routine.

R02 I NPUT X Displays or accepts input of X.
R03 INPUT Y Displays or accepts input of Y.
R04 INPUT Z Displays or accepts input of Z.
Bytes and Checksum: 006.0, 80FB

001 LBL 0 Defines beginning of rectangular-to-polar
conversion process.

002 RCL Y
003 RCL X
004 y,x-+8 ,r Calculates Y(X2 + y2) and arctan(Y IX).
005 x<) y

006 STO T Saves T = arctan(Y IX).
007 R'" Gets Y(X2 + y2) back.
008 RCL Z

009 y,x-+8 ,r Calculates Y(X2 + y2 + Z2) and P.
010 STO R Saves R.
011 xOy

012 STO P Saves P.
Bytes and Checksum: 018.0, 0605

P 0 1 L B L P Defines the beginning of the polar

P02
P03
P04
P05
P06
P07
P08
P09
P10
P11

P12
P13

166

INPUT
INPUT
INPUT
RCL T
RCL P
RCL R
8,r-+Ylx

STO Z
R'"
8 ,r -+y ,x

STO X
xOy

R
T
P

input/display routine.
Displays or accepts input of R.
Displays or accepts input of T.
Displays or accepts input of P.

Calculates R cos(P) and Rsin(P).
Stores Z = R cos(P).

Calculates R sin(P) cos(T) and R sin(P)
sin(T).
Saves X = R sin(P) cos(T).

12: Mathematics Programs

P14 8TO Y
P15 GTO P

Saves Y = R sin(P) sin(T).
Loops back for another display of polar
form.

Bytes and Checksum: 022.5, AA98

Eel L B L E Defines the beginning of the vector-enter
routine.

Ee2 RCL X

Ee3 8TO U
Ee4 RCL Y
Ee5 8TO V
Ee6 RCL Z
Ee7 8TO W

Copies values in X, Y and Z to U, V and W
respectively.

Ee8 GTO Q Loops back for polar conversion and
display jinput.

Bytes and Checksum: 012.0, 7137

X 13 1 L B L X Defines beginning of vector-exchange
routine.

xe2

xe3
xe4
xe5
xe6
xe7
xe8
xe9
Xle
Xll
X12
X13
X14
X15
X16

RCL X

RCL U

8TO X
x<>y
8TO U

RCL Y
RCL V
8TO Y
x <> y

8TO V
RCL Z
RCL W
8TO Z
x<>y
8TO W

Exchanges X, Y and Z with U, V and W
respectively.

X 1 7 G T 0 Q Loops back for polar conversion and
display jinput.

Bytes and Checksum: 025.5, EAD8

12: Mathematics Programs 167

A01 LBL A Defines beginning of vector-addition
routine.

A02 RCL X
A03 RCL+ U
A04 STO X Saves X + U in X.
A05 RCL IJ
A06 RCL+ 'r'

A07 STO Y Saves V + Y in Y.
A08 RCL Z
A09 RCL+ !.oJ

A10 STO Z Saves Z + W in Z.
All G T 0 Q Loops back for polar conversion and

display jinput.
Bytes and Checksum: 016.5, F888

S 0 1 L B L S Defines the beginning of the vector­
subtraction routine.

S 0 2 - 1 Multiplies X, Y and Z by (-1) to change the
sign.

S03 STOx)<

S04 STOX Y
S05 STOx Z
S06 GTO A Goes to the vector-addition routine.
Bytes and Checksum: 017.0, 250B

C 01 L B L C Defines the beginning of the cross-product
routine.

C02 RCL Y
C03 RCLx ~'l

C04 RCL Z
C05 F:CLx IJ
C06 -

C07 RCL Z
C08 RCL::< U
C09 RCL X
C10 RCLx !.oJ

C 11 -

Calculates (YW
component.

ZV), which is the X

Calculates (ZU - WX), which is the Y
component.

168 12: Mathematics Programs

C12 RCL X
C13 RCLx V
C14 RCL Y
C15 RCLx U
C16 -
C17 STO Z

C18 R
C19 STO Y
C213 R

Stores (XV - YU), which is the Z
component.

Stores Y component.

C 2 1 S T 0 X Stores X component.
C22 GTO Q Loops back for polar conversion and

display jinput.
Bytes and Checksum: 033.0, D74B

0131 LBL 0 Defines beginning of dot-product and
vector-angle routine.

0132 RCL X
0133 RCLx U
0134 RCL Y
0135 RCLx V
0136 +
0137 RCL Z
0138 RCLx W
0139 +
0113 STO 0 Stores the dot product of XU + YV + ZW.
011 VIEW 0 Displays the dot product.
012 RCL 0
013 RCL R
014 Divides the dot product by the magnitude of

the X-, Y-, Z-vector.
015 RCL W
016 RCL V
017 RCL U

018 y,:>::-t8 .. r
019 ' ;.::-:. y

0213 R
021 y,:>::~8,r Calculates the magnitude of the U, V, W

vector.
022 x <> y

023 R

12: Mathematics Programs 169

024
025 ACOS
026 STO G

Divides previous result by the magnitude.
Calculates angle.

027 V I EW G Displays angle.
028 GTO P Loops back for polar display/input.
Bytes and Checksum: 042.0, 739F

Flags Used: None.

Memory Required: 280.5 bytes: 192.5 for program, 88 for variables.

Remarks: The length of routine S can be shortened by 6.5 bytes.
The value -1 as shown uses 9.5 bytes. If it appears as 1 followed by
+./ - , it will require only 3 bytes. To do this, you must key in a
dummy step between the 1 and the +./ -, and then delete the
dummy step.

The terms Hpolar" and Hrectangular," which refer to two-dimensional
systems, are used instead of the proper three-dimensional terms of
Hspherical" and HCartesian." This stretch of terminology allows the la­
bels to be associated with their function without confusing conflicts.
For instance, if LBL C had been associated with Cartesian coordinate
input, it would not have been available for cross product.

Program Instructions:

1. Key in the program routines; press @] when done.

2. If your vector is in rectangular form, press I XEO I R and go to step
4. If your vector is in polar form, press I XEO I P and continue with
step 3.

3. Key in R and press I RIS I, key in T and press I RIS I, and key in P
and press I RIS I. Continue at step 5.

4. Key in X and press I RIS I, key in Y and press I RIS I, and key in Z
and press I RIS I.

5. To key in a second vector, press I XEO I E (for enter) and go to
step 2.

170 12: Mathematics Programs

•
•
• ,
~

• ,

• ,

~ ,

6. Perform desired vector operation:

a. Add vectors by pressing I XEQ 1 A;

b. Subtract vector one from vector two by pressing I XEQ 1 S;

c. Compute the cross product by pressing I XEQ 1 C;

d. Compute the dot product by pressing I XEQ 1 D and the angle
between vectors by pressing I R/S I.

7. Optional: to review vI in polar form, press I XEQ 1 P, then press
I R/S 1 repeatedly to see the individual elements.

8. Optional: to review vI in rectangular form, press I XEQ 1 R, then
press I R/S 1 repeatedly to see the individual elements.

9. If you added, subtracted, or computed the cross product, vI has
been replaced by the result. v2 is not altered. To continue cal­
culations based on the result, remember to press I XEQ 1 E before
keying in a new vector.

10. Go to step 2 to continue vector calculations.

Variables Used:

X, y, Z

u, V, W

R,T,P

D

G

The rectangular components of vI.

The rectangular components of v2.

The radius, the angle in the x-y plane (8), and the
angle from the Z axis of vI (<1».

The dot product.

The angle between vectors ('Y).

Example 1. A microwave antenna is to be pointed at a transmitter
which is 15.7 kilometers North, 7.3 kilometers East and 0.76 kilome­
ters below. Use the rectangular to polar conversion capability to find
the total distance and the direction to the transmitter.

12: Mathematics Programs 171

Keys:

IXEQI R

7.31 RIS 1

15.7 1 RIS 1

.76 ~IRlsl

N (y)

Antenna

w
s

7.3

Display:

X?value

Y?value

Z?value

R=17.3308

T=65.0631

P=92.5134

Transmitter

15.7

E (x)

Description:

Starts rectangular
input/display routine.

Sets X equal to 7.3.

Sets Y equal to 15.7.

Sets Z equal to -0.76
and calculates R, the
radius.

Calculates T, the angle
in the x/y plane.

Calculates P, the angle
from the z-axis.

Example 2. What is the moment at the origin of the lever shown
below? What is the component of force along the lever? What is the
angle between the resultant of the force vectors and the lever?

172 12: Mathematics Programs

,

•
.. ,

.. •
~

•
•
•
•
•
~
.. •

..

-• ;

•

.. ...

~ -• " • ... •
" •
" • ... •
" •

z

x

Ft=17
T=21So
P=17°

First, add the force vectors .

Keys:

IXEOI P

171 RIS I

215 1 RIS I

171 RIS I

IXEOI E

231 RIS I

80 1 RIS I

741 RIS I

IXEO I A

Display:

R?value

T?value

P?value

R? 17.0000

R? 17.0000

T?-145.0000

P?17.0000

R?23.0000

R?29,4741

T?90.7032

Description:

Starts polar input
routine.

Sets radius equal to 17.

Sets T equal to 215.

Sets P equal to 17.

Enters vector by copy­
ing it into v2'

Sets radius of vI equal
to 23 .

Sets T equal to 80.

Sets P equal to 74.

Adds the vectors and
displays the resultant
R.

Displays T of resultant
vector.

12: Mathematics Programs 173

P?39.9445

IXEQI E R?29.4741

Displays P of resultant
vector.

Enters resultant vector.

Since the moment equals the cross product of the radius vector and
the force vector (r x F), key in the vector representing the lever and
take the cross product.

Keys: Display: Description:

1.071 RIS I T?90.7032 Sets R equal to 1.07.

125 1 RIS I P?39.9445 Sets T equal to 125.

631 RIS I R? 1.0700 Sets P equal to 63.

IXEQI C R?18.0209 Calculates cross prod-
uct and displays R of
result.

1 RIS 1 T?55.3719 Displays T of cross
product.

1 RISI P? 124.3412 Displays P of cross
product.

IXEQI R X?8.4554 Displays rectangular
form of cross product.

1 RIS I Y?12.2439

1 RIS I Z?-10.1660

The dot product can be used to resolve the force (still in v2) along the
axis of the lever.

174 12: Mathematics Programs

• ,

.. • -..
• -•

,
~
!
~
~

• • • • • • ..

Keys:

IXEQI p

1 1 RIS I

125 1 RIS I

631 RIS I

IXEQID

1 RIS I

Display:

R?18.0209

T?55.3719

P? 124.3412

R? 1.0000

0=24.1882

G=34.8490

R? 1.121121121121

Description:

Starts polar input
routine.

Defines the radius as
one unit vector.

Sets T equal to 125.

Sets P equal to 63.

Calculates dot product.

Calculates angle be­
tween resultant force
vector and lever.

Gets back to input
routine.

Solutions of Simultaneous Equations­
Determinant Method

This program solves simultaneous linear equations in two or three un­
knowns. The program uses Cramer's method, also know as the
method of determinants.

Given a system of three linear equations

AX + DY + GZ = J

BX + EY + HZ = K

ex + FY + lZ = L

the three unknowns X, Y, and Z may be computed from determinants.

12: Mathematics Programs 175

Det
X = __ x

Det

~ [: D

Det E

F

D,', ~ [: J
K

L

Program Listing:

Program Lines:
A01 LBL A
A02 1.012

7]

Det
y = --y

Det

Detx =

7] Detz =

Description:

Det
Z = __ z

Det

[:

D

7] E

F

[:

D

:] E

F

Starting point for input of all known values.
Loop-control value: loops from 1 to 12, 1 at
a time.

A03 STO i Stores control value in index variable.
Bytes and Checksum: 012.5, 7878

L01 LBL L Starts the input loop.
L02 INPUT (i) Prompts for and stores the variable pointed

L03 ISG
L04 GTO L

to by i.
Adds one to i.
If i is less than 13, goes back to LBL Land
gets the next value.

L05 GTO A Returns to LBL A to review values.
Bytes and Checksum: 007.5, C1DE

S01 LBL S

S02 9
S03 STO

Starting point for simultaneous equation
solutions.
Index value of I for indirect addressing.
Stores index value.

176 12: Mathematics Programs

= it
~ • • 804 XEQ E Exchanges solution column and coefficients

i column containing I.
805 XEQ 0 Calculates determinant.

a 806 8TO Z Saves determinant in Z. , 807 XEQ E Restores determinant to original form.
808 6 Index value of F for indirect addressing.

~ 809 8TO i Stores index value.

! 810 XEQ E Exchanges solution column and column
containing F.

~ 811 XEQ 0 Calculates determinant.

! 812 8TO '/ Saves determinant in Y.
813 XEQ E Restores determinant to original form.

! 814 3 Index value of C for indirect addressing.

! 815 8TO Stores index value in index variable.
816 XEQ E Exchanges solution column and column

~ containing F. , 817 XEQ 0 Calculates determinant.
818 8TO X Saves determinant in X.

~ 819 XEQ E Restores determinant to original form. - 820 XEQ 0 Calculates determinant of original .. coefficients.

~ 821 8TO-:- X Divides by original determinant.

... 822 8TO-:- y

• 823 8TO-:- Z -. 824 RCL X Recalls and displays results for X, Y and Z. • -. 825 IJ I EW X

• 826 RCL Y ... 827 VIEW Y •
~

828 RCL Z .. 829 VInl Z

~ 830 RTN Returns to the calling program or to

~
PRGM TOP.

Bytes and Checksum: 045.0, 3971

! E01 LBL E This routine exchanges columns for

~ Cramer's rule.
E02 RCl(i) Gets last element from column of coefficient

~ determinant.

~ E03 RCL L Gets last element from solution vector.
E04 8TO(i) Saves vector element in determinant.

~
~
~ 12: Mathematics Programs 177

c , ,
..

EI2I5 x<>y Gets the coefficient element back. ,
EI2I6 STO L Saves the element in the vector.

-EI2I7 OSE i Sets index value to point to middle element
A

in column of determinant. ,
EI2I8 RCL< i) Gets middle element from column of ..

determinant. •
EI2I9 RCL K Gets middle element from vector.

;tj •
El121 STO(i) Saves vector element in determinant. <III

Ell x<>y Gets the coefficient element back. ..
E12 STO K Saves the coefficient element in the vector.

.... ..
E13 OSE i Sets index value to point to top element in • column of determinant. "II

E14 RCL< i) Gets top element from column of • "II

determinant. • E15 RCL J Gets top element from vector. "II

E16 STO(i) Saves vector element in determinant. ..
"II

E17 x <> y Gets the determinant element back.
E18 STO J Saves the determinant element in the vector. ..
E19 2

.... ..
E2121 STO+ Restores i to its original value when routine ...

started. ..
Returns to the calling program or to

..
E21 RTN • PRGM TOP. ..
Bytes and Checksum: 031.5, 8420 • ...
01211 LBL 0 This routine calculates the determinant. •
01212 RCL A

... • 01213 RCLx E ...
01214 RCLx I Calculates A X E X I. •
01215 RCL 0
01216 RCLx H ..
01217 RCLx C ..
01218 + Calculates (A X E X I) + (D X H X C). • "II
01219 RCL G • 01121 RCLx F •
011 RCLx B • Calculates (A X E x J) + (DxHxC) + ...
012 + • (GxFxB). ...
013 RCL G • • 014 RCLx E • • • "II

A
178 12: Mathematics Programs "II ..

.. ., -• ~ •
015 RCLx
016 -

017 RCL
018 RCLx
019 RCLx
0213 -

021 RCL
022 RCLx
023 RCLx
024 -

025 RTN

C

A
F
H

0
B
I

(AxExI) + (DxHxC) + (GxFxB)
(G x Ex C).

(AxExI) + (DxHxC) + (GxFxB)
(GxExC) - (AxFxH).

(AxExI) + (DxHxC) + (GxFxB) -
(GxExC) - (AxFxH) - (DxBxI).
Returns to the calling program or to
PRGM TOP.

Bytes and Checksum: 037.5, 152E

Flags Used: None.

Memory Required: 262 bytes: 134 for program, 128 for variables.

Program Instructions:

1. Key in the program routines; press @) when done.

2. Press I XEQ I A to input coefficients (that is, A through L) of linear
equations.

3. Key in coefficient (A through L) at each prompt and press I R/S I.
4. Optional: to compute determinant of a 3 x 3 system, I XEQ 1 D.

5. Compute solution to system of equations by pressing I XEQ 1 s.
6. See value of X and press I R/S 1 to see the value of Y.

7. Press I R/S 1 to see the value of Z.

8. For a new case, go back to step 2.

Variables Used:

A through I

J through L

X through Z

Coefficients of equations.

Right-hand sides of equations.

Unknowns.

Loop-control value (index variable).

12: Mathematics Programs 179

Remarks: This program is for a system of two or three equations
(that is, a matrix of n ~ 3).

For 2 X 2 solutions use zero for coefficients C, F, G, H, and L. Use 1
for coefficient 1. For non-square matrices, use zero for the umissingH
coefficients.

Not all systems of equations have solutions. If not, they cause the
error DIVIDE BY 121 at line 521.

Example 1. For the system below, compute the determinant and the
system solution. Then substitute the values back into the first equa­
tion to verify that the left side of the equation is actually equal to the
right side (1).

Keys:

IXEol A

231 R/S I

81 R/sl

41 R/sl

15 1 R/S I

IXEolD

23X + 15Y + 17Z = 1

8X + 11 Y - 6Z = 1

4X + 15Y + 12Z = 1

Display:

A?value

B?value

C?value

D?value

E?value

A?23.eee0

4,598.121121121121

Description:

Starts input routine.

Sets first coefficient, A,
equal to 23.

Sets B equal to 8.

Sets C equal to 4.

Sets D equal to 15.

Continues entry for all
values (E through L).

Returns to first coef­
ficient entered.

Calculates the
determinant.

180 12: Mathematics Programs

, , , ,
-•

.. • .. • , , , ,
... •

• 'II

A
'II

A
'II

;II
111

•

-•
I

•

IXEQI S X=0.0043 Solves system of equa-
tions and displays X.

1 RIS I Y=0.0787 Displays Y.

I RIS I Z=-0.0165 Displays Z.

Now, to verify the result:

Keys:

231RCLI0 X

151 RCLI0 Y

B

17IRCLI0 Z

B

Display:

0.1000

1.1809

1.2810

-0.2810

1.0000

Description:

Multiplies X by 23.

Multiplies Y by 15.

Adds the last two
results.

Multiplies Z by 17.

Completes the left side
of the equation. Since
the left and right sides
are both equal to one
(to 11 significant dig­
its), the solution is
correct.

Example 2. Solve for the loop currents in the circuit below:

ao 10

Loop 2 ~ oj Loop 3 -~
100

~

40 ,--- ,--
Loop 1

~
150

+ JI -III.
40V

12: Mathematics Programs 181

First write the equations for the voltage drops around each loop.

For loop 1: 4X - 4Y + 15X - 152 - 40 = 0

For loop 2: 4Y - 4X + 8Y + lOY - 102 = 0

For loop 3: 102 - lOY + 2 + 152 - 15X = 0

Combining like terms within each equation produces

Keys:

IXEQI A

19 I RIS I

4 ~IRlsl

15 ~ IRlsl

o I RIS I

IXEQI s

19X - 4Y - 152 = 40

- 4X + 22Y - 102 = 0

-15X - lOY + 262 = 0

Display:

A?value

B?value

C?value

D?value

A?19.0000

X=7.8601

Y=4.2298

Z=6.1615

Description:

Starts input routine.

Sets first coefficient, A,
equal to 19.

Sets B equal to -4.

Sets C equal to -15.

Continues entry for D
through L.

Enters L and returns to
first coefficient
entered.

Solves system of equa­
tions and displays X.

Displays Y.

Displays 2.

182 12: Mathematics Programs

-., -I
I

...
II'

• •

Solutions of Simultaneous Equations­
Matrix Inversion Method

This program solves simultaneous linear equations in two or three un­
knowns. It does this through matrix inversion and matrix
multiplication.

A system of three linear equations

AX + DY + GZ = J

BX + EY + HZ = K

ex + FY + 1Z = L

can be represented by the matrix equation below .

The matrix equation may be solved for X, Y, and Z by multiplying the
result matrix by the inverse of the coefficient matrix.

[

A' D'

B' E'

C F'

Specifics regarding the inversion process are given in the comments
for the inversion routine, I.

12: Mathematics Programs 183

Program Listing:

Program Lines:
A01 LBL A
A02 1.012

Description:
Starting point for input of coefficients.
Loop-control value: loops from 1 to 12, 1 at
a time.

A03 8TO i Stores control value in index variable.
Bytes and Checksum: 012.5, 7878

L01 LBL L
L02 It~PUT (i)

L03 I8G
L04 GTO L

L05 GTO A
Bytes and Checksum:

101 LBL I
102 XEQ D

103 8TO W
104 RCL A
105 RCU< I
106 RCL C
107 RCLX G
108 -
109 8TO X
110 RCL C
I 11 RC U< D
112 RCL A
113 RCLX F
114 -
115 8TO Y
116 RCL B
I 17 RCLx G
118 RCL A
119 RCLx H
120 -
121 8TO Z
122 RCL A

Starts the input loop.
Prompts for and stores the variable ad­
dressed by i.
Adds one to i.
If i is less than 13, goes back to LBL Land
gets the next value.
Returns to LBL A to review values.

007.5, C1DE

This routine inverts a 3 X 3 matrix.
Calculates determinant and saves value for
the division loop, J.

Calculates E' X determinant = AI - CG.

Calculates F' X determinant CD - AF.

Calculates H' X determinant = BG - AH.

184 12: Mathematics Programs

= • ~ • .. 123 RCLx E

; 124 RCL B
125 RCLx 0 ;, 126 -, 127 STO i Calculates I' x determinant = AE - BO.
128 RCL E ,
129 RCLx 1 , 130 RCL F
131 RCLx H , 132 -, 133 STO A Calculates A' x determinant = EI - FH.
134 RCL C

! 135 RCLx H , 136 RCL B
137 RCLx 1 , 138 Calculates B' x determinant CH - BI.

~
139 RCL B
140 RCLx F

~ 141 RCL C

~
142 RCLx E
143 -

=
144 STO C Calculates C' x determinant = BF - CEo

a 145 R~
146 STO B Stores B'.

~ 147 RCL F

~
148 RCLx G
149 RCL 0 • 150 RCLx 1

~
151 Calculates 0' x determinant FG - DI.
152 RCL 0 , 153 RCLx H

~
154 RCL E
155 RCLx G , 156 -

!t
157 STO G Calculates G' x determinant = OE - EG.
158 R~

~ 159 STO 0 Stores 0'.

~
160 RCL i
161 STO 1 Stores I'.

" 162 RCL X

It
163 STO E Stores P.

" 12: Mathematics Programs 185

164 RCL Y • 165 8TO F Stores P.

• 166 RCL Z
167 8TO H Stores H'. • 168 9
169 8TO Sets index value to point to last element of ~

" matrix. • 170 RCL !.oJ Recalls value of determinant. ,
Bytes and Checksum: 105.0, E5Cl •

"
J0l LBL J This routine completes inverse by dividing •

by determinant. ~ ..
J02 8TO·H i) Divides element. .III

J03 D8E i Decrements index value so that it points ..
closer to A. • ..

J04 GTO J Loops for next value. •
J05 RTN Returns to the calling program or to ~

PRGM TOP. A • Bytes and Checksum: 007.5, A354 ·
M0l LBL M This routine multiplies a column matrix and •

a 3 x 3 matrix. ~
M02 7 Sets index value to point to last element in • first row.
M03 XEQ N • M04 8 Sets index value to point to last element in ,

second row.
M05 XEQ N 4
M06 9 Sets index value to point to last element in 4

third row.
Bytes and Checksum: 009.0, OAB5 •

This routine calculates product of column • N0l LBL N • vector and row pointed to by index value. .III

~102 8TO i Saves index value in i.
.,.

~103 RCL J Recalls J from column matrix. • ..
N04 RCL K Recalls K from column matrix. AI

N05 RCL L Recalls L from column vector. ..
N06 RCLx(i) Multiplies by last element in row. AI ..
~107 XEQ P Multiplies by second element in row and AI

adds. ..
•
'III

.III ..

..
186 12: Mathematics Programs ..

A

Ne8 XEQ P Multiplies by third element in row and
adds.

Ne9 23 Sets index value to display X, Y, or Z based
on input row.

Nle STO+
Nll R~ Gets result back.
N12 STO(i) Stores result.
N13 IJIEW(i) Displays result.
N14 RTN Returns to the calling program or to

PRGM TOP.
Bytes and Checksum: 021.0, BBBF

pel L B L P This routine multiplies and adds values
within a row.

pe2 ;.::<>y
pe3 OSE i
pe4 OSE i
pe5 OSE i

Gets next column value.
Sets index value to point to next row value.

pe6 RCLx (i) Multiplies column value by row value.
P 13 7 + Adds product to previous sum.
P 13 8 R T N Returns to the calling program.
Bytes and Checksum: 012.0, 520E

Del LBL 0
0132 RCL A
0133 RCLx E
0134 RCLx I
0135 RCL 0
0136 RCLx H
0137 RCLx C
0138 +
0139 RCL G
Ole RCLx F
011 RCLx B
012 +

013 RCL G
014 RCLx E
015 RCLx C
016 -

This routine calculates the determinant.

Calculates A x E x I.

Calculates (A x E x J) + (D x H x q.

Calculates (AxExI) + (DxHxq +
(G xFx B).

(AxE xl) + (DxHxq + (GxFxB)
(GxExq.

12: Mathematics Programs 187

017 RCL A
018 RCLx
019 RCLx
020 -

021 RCL 0
022 RCLx
023 RCLx
024 -

025 RTN

F
H

B
I

(AxExJ) + (DxHxC) + (GxFxB)
(GxExC) - (AxFxH).

(AxExJ) + (DxHxC) + (GxFxB) -
(GxExC) - (AxFxH) - (DxBxJ).
Returns to the calling program or to
PRGM TOP.

Bytes and Checksum: 037.5, 152E

Flags Used: None.

Memory Required: 348 bytes: 212 for program, 136 for variables.

Program Instructions:

1. Key in the program routines; press @] when done.

2. Press I XEQ 1 A to input coefficients of matrix and column vector.

3. Key in coefficient or vector value (A through L) at each prompt
and press I RIS I.

4. Optional: press I XEQ 1 0 to compute determinant of 3 x 3 system.

5. Press I XEQ 1 I to compute inverse of 3 x 3 matrix.

6. Optional: press I XEQ 1 A and repeatedly press IRIS 1 to review the
values of the inverted matrix.

7. Press I XEQ 1 M to multiply the inverted matrix by the column vec­
tor and to see the value of X. Press IRIS 1 to see the value of Y,
then press IRIS 1 again to see the value of Z.

8. For a new case, go back to step 2.

188 12: Mathematics Programs

• ,

.. ,

.. ,
• ..

.. • -• .. • Variables Used:

A through I

J through L

W

X through 2

Coefficients of matrix.

Column vector values.

Scratch variable used to store the determinant.

Output vector values; also used for scratch.

Loop-control value (index variable); also used for
scratch.

Remarks: For 2 x 2 solutions use zero for coefficients C, F, H, G and
for L. Use 1 for coefficient I.

Not all systems of equations have solutions.

Note that routines A, L, and D are common to this program and to
the 6Solutions of Simultaneous Equations-Determinant Method"
program.

Example. For the system below, compute the inverse and the system
solution. Review the inverted matrix. Invert the matrix again and re­
view the result to make sure that the original matrix is returned.

Keys:

IXEQI A

231 RIS 1

81 RIS 1

41 RIS 1

15 1 RIS 1

23X + 15Y + 172 = 31

8X + 11 Y - 62 = 17

4X + 15Y + 122 = 14

Display:

A?value

B?value

C?value

D?value

E?value

Description:

Starts input routine.

Sets first coefficient, A,
equal to 23.

Sets B equal to 8.

Sets C equal to 4.

Sets D equal to 15.

Continues entry for D
through L.

12: Mathematics Programs 189

141 RIS I A?23.eeee Returns to first coef-
ficient entered.

I XEO I I 4,598.13131313 Calculates the inverse
and displays the
determinant.

IXEOI M x=e.93e6 Multiplies by column
vector to compute X.

I RISI Y=e.7943 Calculates and displays
Y.

I RIS I z=-e.1364 Calculates and displays
z.

IXEOI A A?e.e483 Begins review of the
inverted matrix.

I RIS I B?-e.e261 Displays next value.

I RISI C?e.e165 Displays next value.

I RIS I D?e.e163 Displays next value.

I RISI E?e.e452 Displays next value.

I RIS I F?-e.e62e Displays next value.

I RIS I G?-e.e602 Displays next value.

I RISI H?e.e596 Displays next value.

I RIS I I?e.e289 Displays next value. 1

I XEO I I 13.1313132 Inverts inverse to pro-
duce original matrix. <

IXEQI A A?23.ee0e Begins review of in- ~
verted inverted matrix.

I RISI B?8.eee0 Displays next value, ...

... and so on.

190 12: Mathematics Programs

Quadratic Equation

This program uses the quadratic formula to solve for the real and
complex roots of a second-degree polynomial.

A polynomial of degree two

ax2 + bx + c = 0

can be solved for x using the quadratic formula

4ac -b ± yb2

x = ----~~-------
2a

where b2 - 4ac is the discriminant. In the case of complex roots
(where the discriminant is negative), the real part is

while the imaginary part is

-b R=-
2a '

i ylb2
- 4acl

I = ± ---'---------
2a

For real roots, the program always calculates the root of the greatest
absolute value first. It does this to minimize inaccuracies that can be
introduced if the square root of the discriminant is nearly equal to b.
Once the first root, Xl' is found, the second root, x2' is computed using
the relationship

Numerical errors, like the one avoided by this program, are common
in computer software. Any computer that uses a finite number of dig­
its for computation will fail numerically unless care is taken in
selection and implementation of the method of solution. Inaccurate

12: Mathematics Programs 191

results produced by the computer are often preventable by careful
software design. Example 4 illustrates the numerical problem that is
avoided by this quadratic-formula program.

Program Listing: 4

• Program Lines: Description: •
Q01 LBL Q Defines the beginning of the quadratic- ~

equation routine. •
~

Q02 INPUT A Prompts for and stores the value of A. •
Q03 x=07 If A is zero, goes back and asks for A again. ..
Q04 GTO Q
Q05 INPUT B Prompts for and stores the value of B.
Q06 INPUT C Prompts for and stores the value of C.
Q07 x=07 If C is zero, goes back and asks for all inputs

again.
Q08 GTO Q
Q09 RCL B Recalls B.
Q10 +/- -B. ,
Qll CF 0 Clears flag O. (Assumes that (-B) is ~

positive.) ~
Q12 x<07 Is (-B) negative?
Q13 SF 0 Sets flag 0 if it is. ~

Q14 RCL B • Q15 x 2 Calculates B2.
Q16 4 • Q17 RCLx A • Q18 RCLx C
Q19 - Calculates B2 - 4AC. • Q20 x<07 Tests to see if the roots are imaginary. '4
Q21 GTO I Branches to imaginary routine if they are. • Q22 SQRT Y(B2 - 4AC). ~

Q23 FS7 0 Tests to see if (-B) is negative. A
...

Q24 +/- Selects root of largest absolute value.
ot1

Q25 + -B - Y(B2 - 4AC) or -B + Y(B2 - 4AC). ,
Q26 2 ot1

".
Q27 ..
Q28 RCL+ A Calculates X of largest absolute value. ".

Q29 STO X Stores value of X with largest absolute ..
".

value. ..
".

.III

...
.III

192 12: Mathematics Programs ...

Q30 VIEW X
Q31 RCL C
Q32 RCL+ A
Q33 RCL+ X
Q34 STO X
Q35 VIEW X
Q36 GTO Q
Bytes and Checksum:

101 LBL I

102 ABS
103 SQRT
104 2
105 RCLx A
106

107 STO I
108 RCL B
109 +/-
110 LAST::.::
I 11
112 STO R
113 RCL
114 RCL R
115 VIEW R
116 VIEW I
117 GTO Q
Bytes and Checksum:

Displays x.
Calculates second value of x.

Calculates X = C --;- AX.
Stores second value of X.
Displays X.
Goes back for a new case.

054.0, A04D

Defines the beginning of the imaginary
computation routine.

Calculates absolute value of
V(B2 - 4Ae) --;- 2A.
Stores the imaginary part.

Retrieves 2A.

Stores the real part in R.
Retrieves the imaginary part of X.
Retrieves the real part of X.
Displays the real part.
Displays the imaginary part.
Goes back for a new case.

025.5, DA3B

Flags Used: Flag 0 is used to remember the sign of (-B). If (-B) is
negative, then flag 0 is set. Flag 0 is tested later in the program to
assure that the first real root computed is the one of largest absolute
value. If (-B) is negative (flag 0 is set), then the routine subtracts the
square root of the discriminant from (-B). If (- B) is positive (flag 0 is
clear), then the routine adds the square root.

12: Mathematics Programs 193

Memory Required: 127.5 bytes: 79.5 for program, 48 for variables.

Remarks: Expanding this program to handle cubic equations would
be quite easy. Since a cubic equation always has at least one real root,
the SOLVE function could be used to find the root. Then synthetic
division could reduce the cubic equation to a quadratic equation
which would be solved by this program.

Program Instructions:

1. Key in the program routines; press @] when done.

2. Press I XEQ I Q to start the quadratic equation routine.

3. Key in A and press I RIS I.
4. Key in B and press I RIS I.
5. Key in C and press I RIS I.
6. See the first value of X, if the roots are real, or see the real part,

R, if the roots are imaginary.

7. Press I RIS I to see the second value of X, or to see the imaginary
part, I, if the roots are imaginary.

8. For a new case, press I RIS I and go back to step 3.

Variables Used:

A Coefficient of x2.

B Coefficient of x.

C Constant.

X The first or second real value of x.

R The real portion of the complex root.

I The positive, imaginary part of the complex root.

Example 1. Find the roots of 3x2 + 5x - 3 = O.

194 12: Mathematics Programs

-• "i --
~ •
~

-=
~
4

• • ~
~
~
~
e
~
~
~
~
~
~
~
~
e
~
4
4 ..
4 ..
4

•

Keys: Display:

IXEQI Q A?value

31 RIS I B?value

51 RIS I C?value

3 ~IRIsl X=-2.1350

X=0.4684

Description:

Starts the quadratic
equation program.

Stores 3 in A.

Stores 5 in B.

Stores - 3 in C and
calculates the first
value of X.

Calculates second
value of X.

Example 2. Find the roots of 3x2 + 5x + 3 = O. Note that the only
difference between this problem and example 1 is the sign of C. If you
have already run example 1, all you have to do is change the sign
ofC:

Keys: Display:

I RIS I A?3.0000

I RIS I B?5.0000

I RIS I C?-3.0000

~IRIsl R=-0.8333

1=0.5528

Description:

Resumes the program.

Keeps A.

Keeps B.

Changes the sign of C
and calculates the real
part of the complex
root.

Calculates the positive
value of the imaginary
root.

Example 3. A ball is thrown straight up at a velocity of 20 meters
per second from a height of 2 meters. Neglecting air resistance, at
what time will it reach the ground? The acceleration of gravity is 9.81
meters per second2.

12: Mathematics Programs 195

According to Newtonian mechanics, this problem may be expressed
as a second degree polynomial, where T is time in seconds.

[(T) = (-9.81 -7 2)T2 + 20T + 2

Keys:

IXEOI Q

9.81 ~ I ENTER I 2 GJ
I RIS I

20 I RIS I

21 RIS I

Display:

A?value

B?value

C?value

X=4.1751

X=-0.0977

Description:

Starts the quadratic
equation program.

Stores (-9.81/2) in A.

Stores 20 in B.

Stores 2 in C and cal­
culates X (which in this
case is also known as
T).

Calculates the other
root.

Note that since a negative time has no meaning in the context of this
problem, the first result, 4.1751 seconds, is the meaningful answer.

Example 4. Find the roots of the following second-degree polyno­
mial using the program as it is listed. Then change the sense of the
comparison at line Q12 so that the second root is computed first and
then the results are compared. Remember to restore the original line
or clear the program when you finish this example.

x2 + (3 X 106)x + 1 = 0

Keys: Display: Description:

IXEOI Q A?value Starts program.

1 I RIS I B?value Stores 1 in A.

3 [IJ 61 RIS I C?value Stores 3 x 106 in B.

1 I RIS I X=-3,000,000.00 Stores 1 in C and cal-
culates the first root.

196 12: Mathematics Programs

-• ... • "'--• i ., , , , ,
~
!
! , , ,
~

= =
~
~
a
I , , , , , , ,
t

"

.@@

.1 TESTS I {x?0}

{>0}

@]

IXEQI Q

1 RIS II RIS I

X=-3.3333E-7

Q36 GTO Q

Q12 x<0?

Qll CF 0

Q12 x>0?

-3.3333E-7

A? 1.0000

X=0.0000

DIVIDE BY 0

Calculates the second
root.

Switches to program
entry.

Moves program pointer
to line Q12.

Deletes line Q12.

Adds the conditional
test x>O?

Cancels program entry.

Starts program.

Skips data entry since
values are already
stored.

Calculates first root us­
ing previous inputs.

Attempts to compute
second root.

As you can see, the results of a simple change in the order of calcula­
tion can be quite significant.

If you substitute the first values calculated back into the equation, you
will find that the left-hand side of the equation is zero for the root of
smaller absolute value (as it theoretically should be) and 1 for the root
of larger absolute value. Does this mean that the result of
-3,000,000.0000 is incorrect? The answer to this question is a quali­
fied no. If you increment or decrement this value by one count in the
least significant digit and substitute the result back into the original
equation, then the left-hand side will be 31 or - 29. Thus,
-3,000,000.0000, while not being exactly correct, is the best possible
12-digit result that could be generated.

12: Mathematics Programs 197

Coordinate Transformations

This program provides two-dimensional coordinate translation and
rotation.

The following formulas are used to convert a point P from the Carte­
sian coordinate pair (x, y) in the old system to the pair (u, v) in the
new, translated, rotated system.

u = (x - m) cosO + (y - n) sinO

v = (y - n) cosO - (y - n) sinO

The inverse transformation is accomplished with the formulas below.

x = u cosO v sinO + m

y = u sinO + v cosO + n

The HP-32S complex and polar-to-rectangular functions make these
computations straightforward.

y'

Old coordinate
system ~

y

x
- - - - - -;ltP - ., u,," I"

,-'" :y", v , [0,0]
------------~~~--~----~--~--~~~x

New coordinate
system

A Two-Dimensional Rotation About the Axis

198 12: Mathematics Programs

Program Listing:

Program Lines:
Del LBL 0

0132 INPUT M

0133 INPUT N

Description:
This routine defines the new coordinate
system.
Prompts for and stores M, the new origin's
x-coordinate.
Prompts for and stores N, the new origin's
y-coordinate.

0134 INPUT T Prompts for and stores T, the angle O.
0135 G TOO Loops for review of inputs.
Bytes and Checksum: 007.5, lCD9

N 131 L B L N This routine converts from the old system to

Ne2 INPUT X

Ne3 INPUT y

Ne4 RCL x
Ne5 RCL N

Ne6 RCL M
Ne? CMPLX-
Ne8 RCL T
Ne9 +/-

Nle 1

Nll a,r ~y ,,,

N12 CMPLXx

N13 STO U
N14 ,,<> y

N15 STO V
N16 ,,<> y

Nl? VIEW U
N18 VIEW V
N19 GTO N
Bytes and Checksum:

the new system.
Prompts for and stores X, the old x­
coordinate.
Prompts for and stores Y, the old y­
coordina te.
Pushes Y up and recalls X to the X-register.
Pushes X and Y up and recalls N to the X­
register.
Pushes N, X, and Y up and recalls M.
Calculates (X - M) and (Y - N).
Pushes (X - M) and (Y - N) up and recalls T.
Changes the sign of T because sin(- T)
equals -sin(T).
Sets radius to 1 for computation of cos(T)
and - sin(T).
Calculates cos(T) and -sin(T) in X- and Y­
registers.
Calculates (X - M) cos(T) + (Y - N) sin(T)
and (Y - N)cos(T) - (X - M) sin(T).
Stores x-coordinate in variable U.
Swaps positions of the coordinates.
Stores y-coordinate in variable V.
Swaps positions of coordinates back.
Halts program to display U.
Halts program to display V.
Goes back for another calculation.

028.5, 6078

12: Mathematics Programs 199

001 LBL 0

002 INPUT U
003 INPUT V
004 RCL U
005 RCL T
006 1

007 8,r ~ y,x.

008 CMPLXx

009 RCL N
010 RCL M
011 CMPLX+

012 8TO X
013 x<>y

014 8TO Y
015 x<>y

016 VIEW X
017 VIEW Y
018 GTO 0
Bytes and Checksum:

Flags Used: None.

This routine converts from the new system
to the old system.
Prompts for and stores U.
Prompts for and stores V.
Pushes V up and recalls U.
Pushes U and V up and recalls T.
Sets radius to 1 for the computation of
sin(1) and cos(1).
Calculates cos(1) and sin(1).
Calculates U cos(1) - V sin(1) and U sin(1)
+ V cos(1).
Pushes up previous results and recalls N.
Pushes up results and recalls M.
Completes calculation by adding M and N
to previous results.
Stores the x-coordinate in variable x.
Swaps the positions of the coordinates.
Stores the y-coordinate in variable Y.
Swaps the positions of the coordinates back.
Halts the program to display X.
Halts the program to display Y.
Goes back for another calculation.

027.0, 9AE6

Memory Required: 119 bytes: 63 for program, 56 for variables.

Program Instructions:

1. Key in the program routines; press @] when done.

2. Press I XEQ 1 D to start the prompt sequence which defines the co­
ordinate transformation.

3. Key in the x-coordinate of the origin of the new system M and
press I RIS I.

4. Key in the y-coordinate of the origin of the new system Nand
press I RIS I.

200 12: Mathematics Programs

•

A ,

5. Key in the rotation angle T and press I RIS I.
6. To translate from the old system to the new system, continue

with instruction step 7. To translate from the new system to the
old system, skip to step 12.

7. Press I XEO I N to start the old-to-new transformation routine.

8. Key in X and press I RIS I.
9. Key in Y, press I RIS I, and see the x-coordinate, U, in the new

system.

10. Press I RIS I and see the y-coordinate, V, in the new system.

11. For another old-to-new transformation, press I RIS I and go to
step 8. For a new-to-old transformation, continue with step 12.

12. Press I XEO I 0 to start the new-to-old transformation routine.

13. Key in U (the x-coordinate in the new system) and press I RIS I.
14. Key in V (the y-coordinate in the new system) and press I RIS I to

see X.

15. Press I RIS I to see Y.

16. For another new-to-old transformation, press I RIS I and go to
step 13. For an old-to-new transformation, go to step 7.

Variables Used:

M The x-coordinate of the origin of the new system.

N The y-coordinate of the origin of the new system.

T The rotation angle, 0, between the old and new systems.

X The x-coordinate of a point in the old system.

Y The y-coordinate of a point in the old system.

U The x-coordinate of a point in the new system.

V The y-coordinate of a point in the new system.

Remarks: For translation only, key zero for T. For rotation only, key
zero for M and N.

Example: For the coordinate systems shown below, convert points
PI' P2, and P3, which are currently in the (X,y) system, to points in
the (X',Y') system. Convert point P'4' which is in the (X',Y') system, to
the (X, Y) system.

12: Mathematics Programs 201

Keys:

• PI(-9,71

(II,N1=(7,-41
'=27°

.1 MODES I {DG}

IXEQI D

71 R/sl

4 ~IR/sl

271 R/S I

y

Display:

M?value

N?value

T?value

M?7.0000

202 12: Mathematics Programs

• PJ(6,81

x'

Description:

Sets Degrees mode
since T is given in
degrees.

Starts the routine
that defines the
transformation.

Stores 7 in M.

Stores -4 in N.

Stores 27 in T.

.­..

.. ..
•
• •
•
• ...
AI ..

AI •
.oj • .. • ..
•
II1II

"

• ...

• ...

• ...

• ...

• ...

~

t!
~ IXEOI N X?value Starts the old-to-new

~
routine.

9 ~IRIsl Y?value Stores -9 in X.

~
71 RISI U=-9.2622 Stores 7 in Y and cal-

culates U.

I RISI V=17.0649 Calculates V.

~ I RIS I X?-9.0000 Resumes the old-to-
new routine for next

~
problem.

5 ~IRIsl Y?7.0000 Stores -5 in X.

~ 4 ~IRIsl U=-10.6921 Stores -4 in Y.

~ I RIS I V=5.4479 Calculates V.

~ I RIS I X?-5.0000 Resumes the old -to-

~ new routine for next

~
problem.

-= 61 RIS I Y?-4.0000 Stores 6 in X.

-= 81 RIS I U=4.5569 Stores 8 in Y and cal-

~
culates U.

~ I RIS I V=11.1461 Calculates V.

--=
IXEOIO U?4.5569 Starts the new-to-old

~
routine.

~ 2.7 I RIS I V?11.1461 Stores 2.7 in U.

~ 3.6 ~IRIsl X= 11.0401 Stores -3.6 in V and

4
calculates X.

~ I RIS I Y=-5.9818 Calculates Y.

~
-4 12: Mathematics Programs 203

13
Statistics Programs

The memory usage and checksum for each program label can be
checked using the catalog of programs (page 85).

Curve Fitting

This program can be used to fit one of four models of equations to
your data. These models are the straight line, the logarithmic curve,
the exponential curve and the power curve. The program accepts two
or more (x, y) data pairs and then calculates the correlation coefficient,
r, and the two regression coefficients, m and b. The program includes
a routine to calculate the estimates x and y. (For definitions of these
values, see "Linear Regression" in chapter 11.)

Samples of the curves and the relevant equations are shown below.
The internal regression functions of the HP-32S are used to compute
the regression coefficients.

204 13: Statistics Programs

y

y

Straight Line Fit

S

y=B + IIx

x

Logarithmic Curve Fit

L

y=8 + II In x

x

y

y

Exponential Curve Fit

E

y=Be llx

Power Curve Fit

P

y=8x M

x

x

To fit logarithmic curves, values of x must be positive. To fit exponen­
tial curves, values of y must be positive. To fit power curves, both x
and y must be positive. A LOG (NEG) error will occur if a negative
number is entered for these cases.

Data values of large magnitude but relatively small differences can
incur problems of precision, as can data values of greatly different
magnitudes. Refer to "Limitations in Precision of Data" in chapter 11.

13: Statistics Programs 205

Program Listing:

Program Lines:
S81 LBL S

Description:
This routine sets the status for the straight­
line model.

S82 1 Enters index value for later storage in i (for
indirect addressing).

S83 CF 8 Clears flag 0, the indicator for InX.
S84 CF 1 Clears flag 1, the indicator for InY.
S85 GTO Z Branches to common entry point Z.
Bytes and Checksum: 007.5, 17CA

L81 LBL L This routine sets the status for the logarith­
mic model.

L82 2 Enters index value for later storage in i (for
indirect addressing).

L83 SF 8 Sets flag 0, the indicator for InX.
L84 CF 1 Clears flag 1, the indicator for InY.
L85 GTO Z Branches to common entry point Z.
Bytes and Checksum: 007.5, 6047

E81 LBL E This routine sets the status for the exponen­
tial model.

E82 3 Enters index value for later storage in i (for
indirect addressing).

E83 CF 8 Clears flag 0, the indicator for InX.
E84 SF 1 Sets flag 1, the indicator for InY.
E85 GTO Z Branches to common entry point Z.
Bytes and Checksum: 007.5, COFI

P 8 1 L B L P This routine sets the status for the power
model.

P82 4 Enters index value for later storage in i (for
indirect addressing).

P83 SF 8 Sets flag 0, the indicator for InX.
P84 SF 1 Sets flag 1, the indicator for InY.
Bytes and Checksum: 006.0, A26B

206 13: Statistics Programs

· •
•
•
• · •
• · •
• · • · •

• • · •

zel LBL Z
ze2 CU:
ze3 STO i

Defines common entry point for all models.
Clears the statistics registers.
Stores the index value in i for indirect
addressing.

Z 13 4 13 Sets the loop counter to zero for the first
input.

Bytes and Checksum: 006.0, CCIB

weI LBL 10.1 Defines the beginning of the input loop.
10.1 13 2 1 Adjusts the loop counter by one to prompt

for input.
10.1133 +
10.1134 STO X Stores loop counter in X so that it will ap-

pear with the prompt for X.
10.1135 INPUT X Displays counter with prompt and stores X

input.
10.1136 FS? 13 If flag 0 is set. ..
10.1137 LN ... takes the natural log of the input.
10.1138 STO B Stores that value for the correction routine.
10.1139 INPUT Y Prompts for and stores Y.
10.1113 FS? 1 If flag 1 is set. ..
10.111 LN ... takes the natural log of the input.
10.112 STO R
10.113 RCL B
10.114 };+ Accumulates Band R as x,y-data pair in sta-

tistics registers.
10.1 15 G TOW Loops for another X, Y pair.
Bytes and Checksum: 022.5, lA43

uel LBL U Defines the beginning of the "undo"
routine.

ue2 RCL R
ue3 RCL B

Recalls the most recent data pair.

ue4 };- Deletes this pair from the statistical
accumulation.

ue5 GTO 10.1 Loops for another X,Y pair.
Bytes and Checksum: 007.5, 5D02

13: Statistics Programs 207

R01 LBL R
R02 r
R03 STO R
R04 VIEW R
R05 b
R06 FS?
R0? e:>::

R08 STO B
R09 VIEW B
R10 m

R11 STO M
R12 VIEW M
Bytes and Checksum:

Y01 LBL Y

Y02 INPUT X

Y03 XEQ(i)
Y04 STO Y
Y05 INPUT Y

Y06 6

Defines the start of the output routine.
Calculates the correlation coefficient.
Stores it in R.
Displays the correlation coefficient.
Calculates the coefficient b.
If flag 1 is set, takes the natural antilog of b.

Stores b in B.
Displays value.
Calculates coefficient m.
Stores m in M.
Displays value.

018.0, 7492

Defines the beginning of the estimation
(projection) loop.
Displays, prompts for, and, if changed,
stores x-value in X.
Calls subroutine to compute y.
Stores .ii-value in Y.
Displays, prompts for, and, if changed,
stores y-value in Y.

Y0? STO + i Adjusts index value to address the appropri-
ate subroutine.

'y'08 XEQ (i) Calls subroutine to compute x.
Y09 STO X Stores x in X for next loop.
Y 10 GTO '(Loops for another estimate.
Bytes and Checksum: 015.0, 9AEA

A01 LBL A

A02 RCL M
A03 RCLx X

This subroutine calculates y for the straight­
line model.

A04 RCL + B Calculates y = MX + B.
A05 RTN Returns to the calling routine.
Bytes and Checksum: 007.5, OEB5

208 13: Statistics Programs

G01 L8L G This subroutine calculates x for the straight-
line model.

G02 STO- i Restores index value to its original value.
G03 RCL i'
G04 RCL- 8

G05 RCL+ M Calculates x = (Y - B) -:- M.
G06 RTN Returns to the calling routine.
Bytes and Checksum: 009.0, FDFI

801 L8L 8 This subroutine calculates y for the logarith­
mic model.

802 RCL X
803 LN
804 RCLx M

805 RCL + 8 Calculates y = MinX + B.
806 RHl Returns to the calling routine.
Bytes and Checksum: 009.0, IB06

H01 L8L

H02 STO-

H03 RCL
H04 RCL-
H05 RCL+
H06 eX

H

i
Y

8
M

This subroutine calculates x for the logarith­
mic model.
Restores index value to its original value.

Calculates x = e(Y - B) + M.

H07 RTN Returns to the calling routine.
Bytes and Checksum: 010.5, C783

C01 L8L r"

C(12 RCL M

C03 RCL>< >(

C04 eX

This subroutine calculates y for the ex­
ponential model.

C05 RCLx 8 Calculates y = BeMX.
C06 RHl Returns to the calling routine.
Bytes and Checksum: 009.0, B411

13: Statistics Programs 209

101 LBL I

102 STO- i
103 RCL Y
104 RCL+ B
105 LN

This subroutine calculates X for the ex­
ponential model.
Restores index value to its original value.

106 RCL+ M Calculates x = (In(Y + B» + M.
107 RTN Returns to the calling routine.
Bytes and Checksum: 010.5, 0106

001 LBL 0 This subroutine calculates y for the power
model.

002 RCL X
003 RCL M
004 y:>::

005 RCLx B Calculates Y = B(XM).
006 RTN Returns to the calling routine.
Bytes and Checksum: 009.0, B404

J01 LBL J This subroutine calculates x for the power
model.

J02 STO- i
J03 RCL Y
J04 RCL+ B
J05 RCL M
J06 1/:>::

Restores index value to its original value.

J07 y:>:: Calculates x = (Y jB)l/M.
J08 RTN Returns to the calling routine.
Bytes and Checksum: 012.0, FAA4

Flags Used: Flag 0 is set if a natural log is required of the X input.
Flag 1 is set if a natural log is required of the Y input.

Memory Required: 270 bytes: 174 for program, 96 for data (statis­
tics registers 48).

210 13: Statistics Programs

• •

Program Instructions:

1. Key in the program routines; press @J when done.

2. Press 1 XEQ 1 and select the type of curve you wish to fit by
pressing:

• S for a straight line;

• L for a logarithmic curve;

• E for an exponential curve; or

• P for a power curve.

3. Key in x-value and press 1 RIS I.
4. Key in y-value and press 1 RIS I.

5. Repeat steps 3 and 4 for each data pair. If you discover that you
have made an error after you have pressed 1 RIS I in step 3 (with
the Y?value prompt still visible), press I RIS I again (displaying the
X?value prompt) and press 1 XEQ I u to undo (remove) the last data
pair. If you discover that you made an error after step 4, press
I XEQ I U. In either case continue at step 3.

6. After all data are keyed in, press 1 XEQ I R to see the correlation
coefficient, R.

7. Press 1 RIS I to see the regression coefficient B.

8. Press 1 RIS I to see the regression coefficient M.

9. Press I RIS I to see the X?value prompt for the x-, y-estimation
routine.

10. If you wish to estimate y based on x, key in x at the X?value
prompt, then press I RIS I to see y (Y?).

11. If you wish to estimate x based on y, press I RIS I until you see the
Y?value prompt, key in y, then press 1 RIS I to see x (X?).

12. For more estimations, go to steps 10 or 11.

13. For a new case, go to step 2.

13: Statistics Programs 211

Variables Used:

B

M

R

x

y

Regression coefficient (y-intercept of a straight
line); also used for scratch.

Regression coefficient (slope of a straight line).

Correlation coefficient; also used for scratch.

The x-value of a data pair when entering data;
the hypothetical x when projecting y; or x
(x-estimate) when given a hypothetical y.

The y-value of a data pair when entering data;
the hypothetical y when projecting x; or y
(y-estimate) when given a hypothetical x.

Index variable used to indirectly address the cor­
rect x-, y-projection equation.

Statistics registers Statistical accumulation and computation.

Example 1. Fit a straight line to the data below. Make an intentional
error when keying in the third data pair and correct it with the undo
routine. Also, estimate y for an x value of 37. Estimate x for a y value
of 101.

X 40.5 38.6 37.9 36.2 35.1 34.6

Y 104.5 102 100 97.5 95.5 94

Keys: Display: Description:

IXEQI S X? 1.13131313 Starts straight-line
routine.

40.5 1 RIS I Y?value Enters x-value of data
pair.

104.51 RIS I X?2.eeee Enters y-value of data
pair.

212 13: Statistics Programs

.. ,

... •

... .,

38.61 RIS 1

102 1 RIS I

Y? 1 e4.5eee

X'?3.eeee

Enters x-value of data
pair.

Enters y-value of data
pair.

Now intentionally enter 379 instead of 37.9 so that you can see how
to correct incorrect entries.

379 I RIS I Y? 1 e2.eeee Enters wrong x-value
of data pair.

I RIS I X?4.eeee Retrieves X? prompt.

IXEQI U X'?3.eeee Deletes the last pair.

Now proceed with the correct data entry.

37.91 RIS I Y? 1 e2.eeee Enters correct x-value
of data pair.

100 I RIS I X?4.eeee Enters y-value of data
pair.

36.21 RIS I Y? 1 ee.eeee Enters x-value of data
pair .

97.51 RIS I X?5.eeee Enters y-value of data
pair.

35.1 1 RIS I Y?97.5eee Enters x-value of data
pair.

95.51 RIS I X?6.eeee Enters y-value of data
pair.

34.6 I RIS I Y?95.5eee Enters x-value of data
pair.

941 RIS I X?7.eeee Enters y-value of data
pair.

IXEQI R R=e.9955 Calculates the correla-
tion coefficient.

13: Statistics Programs 213

1 R/S I 8=33.5271 Calculates regression
coefficient B.

1 R/sl M= 1.7601 Calculates regression
coefficient M.

1 R/S I X?7.0000 Prompts for hypotheti-
cal x-value.

371 R/S I Y?98.6526 Stores 37 in X and cal-
culates y.

101 1 R/S I X?38.3336 Stores 101 in Y and
calcula tes x .

Example 2. Repeat example 1 (using the same data) for logarithmic,
exponential and power curve fits. The table below gives you the start­
ing execution label and the results (the correlation and regression
coefficients and the x- and y-estimates) for each type of curve. You
will need to reenter the data values each time you run the program
for a different curve fit.

Logarithmic Exponential Power

To start: IXEQ I L IXEQ IE IXEQ I P

R 0.9965 0.9945 0.9959

B -139.0088 51.1312 8.9730

M 65.8446 0.0177 0.6640

Y (9 when X=37) 98.7508 98.5870 98.6845

X (x when Y=101) 38.2857 38.3628 38.3151

214 13: Statistics Programs

. • ..
" " " t
.. ,
-C
C
<
C
C
C
C

Normal and Inverse-Normal Distributions

Normal distribution is frequently used to model the behavior of ran­
dom variation about a mean. This model assumes that the sample
distribution is symmetric about the mean, M, with a standard devi­
ation, 5, and approximates the shape of the bell-shaped curve shown
below. Given a value x, this program calculates the probability that a
random selection from the sample data will have a higher value. This
is known as the upper tail area, Q(x). This program also provides the
inverse: given a value Q(x), the program calculates the corresponding
value x.

y

x x

Q(x)
1 fX e-«x - x) -;-- a/

0.5 - --===- .h
(J yI2; x

2
dx.

This program uses the built-in integration feature of the HP-32S to
integrate the equation of the normal frequency curve. The inverse is
obtained using Newton's method to iteratively search for a value of x
which yields the given probability Q(x).

Program Listing:

Program Lines:
801 LBL 8

802 0
803 8TO M
804 INPUT M

Description:
This routines initializes the standard­
deviation program.
Stores default value for mean.

Prompts for and stores mean, M.

13: Statistics Programs 215

S05 1
S€16 STO S
S07 I t~PUT S

Stores default value for standard deviation.

Prompts for and stores standard deviation,
S.

S €18 R n~ Stops displaying value of standard
deviation.

Bytes and Checksum: 012.0, 1F60

D01 LBL D
D02 INPUT X
D03 XEQ Q
D04 STO Q

D05 '.} I E~l Q
D06 GTO D
Bytes and Checksum:

101 LBL I
102 INPUT Q
un RCL t1

This routine calculates Q(X} given X.
Prompts for and stores X.
Calculates upper tail area.
Stores value in Q so VIEW function can dis­
play it.
Displays Q(X}.
Loops to calculate another Q(X}.

009.0, 002C

This routine calculates X given Q(X}.
Prompts for and stores Q(X}.
Recalls the mean.

I 04 S T 0 ;>(Stores the mean as the guess for X, called

Xguess'
Bytes and Checksum: 006.0, ED6E

T01 LBL T

T02 ;'(EQ Q

T03 RCL-
T04 RCL ~.::

T05 STO D
T06 F~-.I·

T07 XEQ F

T08 RCL"""
T09

T10 STO+

Tll ABS
T12 0,0001
T13 ;:.:: <> .. ?
T14 GTO T

T15 RCL ;':;

(l

T

..,.
(.,

This label defines the start of the iterative
loop.
Calculates (Q(Xguess) - Q(X)}.

Calculates the derivative at Xguess'

Calculates the correction for Xguess'

Adds the correction to yield a new Xguess'

Tests to see if the correction is significant.
Goes back to start of loop if correction is
significant. Continues if correction is not
significant.

216 13: Statistics Programs

.. ..

.. ,.

T 16 In D'l >=: Displays the calculated value of X.
T 1 7 G T 0 I Loops to calculate another X.
Bytes and Checksum: 033.5, 4355

W31 LBL G!

Q02 RCL t1
Q03 RCL '." , .. ,

G!04 Ft'l= F

Q05 Inl d 0

Q06 2
Q07 11'

Q08){

G!09 smn
Q10 RCL S
Q 11 >(

Q12 ::::TO T

Q13
Q14 + -

Q15 0,5
Q16 +

Q17 RHI
Bytes and Checksum:

Ftll LBL F

F02 RCL 0
F03 RCL- t'l
F04 RCL.;.- S
F05 ;:.-;2

F06 2
F07
F08 + -

F09 e:-.r.:

F10 RHI
Bytes and Checksum:

Flags Used: None.

This subroutine calculates the upper-tail
area Q(x).
Recalls the lower limit of integration.
Recalls the upper limit of integration.
Selects the function defined by LBL F for
integration.
Integrates the normal function using the
dummy variable D.

Calculates S x fi;.
Stores result temporarily for inverse routine.

Adds half the area under the curve since we
integrated using the mean as the lower limit.
Returns to the calling routine.

033.5, 4B20

This subroutine calculates the integrand for
the normal function e-((X-M)-;-S)2-;-2.

Returns to the calling routine.
015.0, 034D

13: Statistics Programs 217

Memory Required: 157 bytes: 109 for program, 48 for variables.

Remarks: The accuracy of this program is dependent on the display
setting. For inputs in the range between ± 3 standard deviations, a
display of four or more significant figures is adequate for most appli­
cations. At full precision, the input limit becomes ± 5 standard
deviations. Computation time is significantly less with a lower num­
ber of displayed digits.

In routine N, the constant 0.5 may be replaced by 2 and 11/x I. This
will save 6.5 bytes at the expense of clarity.

You do not need to key in the inverse routine (in routines I and T) if
you are not interested in the inverse capability.

Program Instructions:

1. Key in the program routines; press @] when done.

2. Press I XEQ 1 S.

3. After the prompt for M, key in the population mean and press
I R/S I. (If the mean is zero, just press I R/S I.)

4. After the prompt for 5, key in the population standard deviation
and press I R/S I. (If the standard deviation is 1, just press I R/S I.)

5. To calculate X given Q(X), skip to step 9 of these instructions.

6. To calculate Q(X) given X, I XEQ 1 D.

7. After the prompt, key in the value of X and press I R/S I. The
result, Q(X), is displayed.

8. To calculate Q(X) for a new X with the same mean and standard
deviation, press I R/S 1 and go to step 7.

9. To calculate X given Q(X), press I XEQ 1 I.

10. After the prompt, key in the value of Q(X) and press I R/S I. The
result, X, is displayed.

11. To calculate X for a new Q(X) with the same mean and standard
deviation, press I R/S 1 and go to step 10.

218 13: Statistics Programs

• ..
• ...

•,..

• 111
... • ,.
· ..
• ..
...
• ...

•
'II

• ...

Variables Used:

D Dummy variable of integration.

M Population mean, default value zero.

Q Probability corresponding to the upper-tail area.

S Population standard deviation, default value of 1.

T Variable used temporarily to pass the value s'/h to the inverse
program.

X Input value that defines the left side of the upper-tail area.

Example 1. Your good friend informs you that your blind date has
"3<1" intelligence. You interpret this to mean that this person is more
intelligent than the local population except for people more than
th~ee standard deviations above the mean. Suppose that you intuit
that the local population contains 10,000 possible blind dates. How
many people fall into the "3<1" band? Since this problem is stated in
terms of standard deviations, use the default values of zero for M and
1 for S.

Keys: Display:

IXEQI S M70.0000

I RIS I S71.0000

I RIS I 1.0000

IXEQI D X7va!ue

Q=0.0014

Description:

Starts the initialization
routine.

Accepts the default
value of zero for M.

Accepts the default
value of 1 for S.

Starts the distribution
program and prompts
for X.

Enters 3 for X and
starts computation of
Q(X). Displays the ra­
tio of the population
smarter than everyone
within three standard
deviations of the mean.

13: Statistics Programs 219

100000 13.5049 Multiplies by the
population. Displays
the approximate num­
ber of blind dates in
the local population,
which meet the
criteria.

Since your friend has been known to exaggerate from time to time,
you decide to see how rare a "2u" date might be. Note that the pro­
gram may be rerun simply by pressing 1 RIS I.

Keys: Display: Description:

1 RIS I xn.0000 Resumes program.

21 RIS I Q=0.0227 Enters X-value of 2
and calculates Q(X).

100000 227.4937 Multiplies by the
population for the re-
vised estimate.

Example 2 .. The mean of a set oftest scores is 55. The standard devia­
tion is 15.3. Assuming that the standard normal curve adequately models
the distribution, what is the probability that a randomly selected student
scored 90 or above? What is the score that only 10 percent of the students
would be expected to have surpassed? What would be the score that only
20 percent of the students would have failed to achieve?

220 13: Statistics Programs

.. .,
"'-• ... • Keys:

IXEQI S

551 RIS I

15.3 I RIS I

IXEQI D

90 I RIS I

Display:

M? 13.13 13 1313

S? 1.13131313

15.31300

X?value

Q=13.13111

Description:

Starts the initialization
routine.

Stores 55 for the mean.

Stores 15.3 for the
standard deviation.

Starts the distribution
program and prompts
for X.

Enters 90 for X and
calculates Q(X).

Thus, we would expect that only about 1 percent of the students
would do better than score 90.

Keys: Display:

I XEQ I I Q?0.0111

. 1 I RIS I X=74.61378

Q?13.1131313

. 81 RIS I X=42.1232

Description:

Starts the inverse
routine .

Stores 0.1 (10 percent)
in Q(X) and calculates
X.

Resumes the inverse
routine .

Stores 0.8 (100 percent
minus 20 percent) in
Q(X) and calculates X.

13: Statistics Programs 221

14
Miscellaneous Programs

The memory usage and checksum for each program label can be
checked using the catalog of programs (page 85).

Time Value of Money

Given four of the five values of the time-value-of-money equation,
this program solves for the fifth. It is useful in a wide variety of finan­
cial applications such as consumer and home loans and savings
accounts.

The equation used to solve problems for the time value of money is:

p [1 -(1 z+ Z)-N] + F(l + Z)-N + B o.

Balance, B

t
Payments, P

t t t • . . N
1 2 3 N-l

Future Value, F

A Cash·Flow Diagram

222 14: Miscellaneous Programs

The signs of the cash values (balance, B; payment, P; and future bal­
ance, F) correspond to the direction that the cash flows. Money that
you receive has a positive sign while money that you pay has a nega­
tive sign. Note that any problem can be viewed from two perspec­
tives. The lender and the borrower view the same problem with
reversed signs.

Program Listing:

Program Lines:
N01 LBL N

N02 14

Description:
This routine calculates the number of pay­
ments, N.
Enters the number that corresponds to N for
indirect addressing.

N03 GTO L Branches to the common control routine, L.
Bytes and Checksum: 004.5, 61E5

101 LBL I This routine calculates the interest rate, I.
102 9 Enters the number that corresponds to I for

indirect addressing.
I 03 G T 0 L Branches to the common control routine, L.
Bytes and Checksum: 004.5, DA04

B01 LBL B This routine calculates the initial balance, B.
B02 2 Enters the number that corresponds to B for

indirect addressing.
B 0 3 G T 0 L Branches to the common control routine, L.
Bytes and Checksum: 004.5, 98EB

P01 LBL P This routine calculates the periodic pay-

P02 16

P03 GTO L

ment, P.
Enters the number that corresponds to P for
indirect addressing.
Branches to the common control routine, L.

Bytes and Checksum: 004.5, A556

F01 LBL F This routine calculates the future value, F.
F02 6 Enters the number that corresponds to F for

indirect addressing.
Bytes and Checksum: 003.0, 6779

14: Miscellaneous Programs 223

L01 LBL L This label controls the computation of the
selected variable.

L02 STO i Stores the index value (for indirect address­
ing) in i.

L03 nl= T Selects the T routine, which contains the
equation, for SOLVE.

L 0 4 SOL V E (i) Solves for the variable indirectly addressed
by i.

L05 V I EW (i) Displays the result addressed by i.
L06 GTO (i) Goes back for another calculation.
Bytes and Checksum: 009.0, 7878

T01 LBL T

T02 INPUT
T03 INPUT
T04 INPUT
T05 INPUT
T06 INPUT
T0? RCL I
T08 :>::=0?
T09 GTO K

T10 100
Tll
T12 STO Z

T13
T14 +
T15 RCL N
T16 +/-
Tl? y;':

T18 E~nER

T19 +/-
T20
T21 +
T22 RCL.;.

N
I
B
P
F

Z

This routine contains the equation defining
the time value of money.
Prompts for and stores N.
Prompts for and stores 1.
Prompts for and stores B.
Prompts for and stores P.
Prompts for and stores F.
Recalls the interest rate in percent.
If 1=0 ...
... then uses the equation in routine K.

Converts 1 to decimal form and stores it
inZ.

Calculates (1 + Z).

Calculates (1 + Z)-N.
Duplicates quantity so that it can be used
later.

Calculates 1 - (1 + Z)-N.
Calculates (1 - (1 + Z)-N) Z.

224 14: Miscellaneous Programs

T23 RCLx P Calculates P x (1-(1 +Z)-N)-;.-Z.
T24 ;.:: <> >' Swaps duplicate copy of (1 +Z)-N (from

line T18) into the X-register.
T25 RCLx F Calculates Fx (1 +Z)-N.
T26 + Calculates FX(l+Z)-N +

P x (1-(1 +Z)-N)-;.-Z.
T27 RCL+ B Calculates FX(l+Z)-N +

P x (1-(1 +Z)-N)-;.-Z+B.
T28 RTN Returns to calling routine.
Bytes and Checksum: 050.0, 429C

K01 LBL K This routine is called if I = O.
K02 RCL P
K03 RCLx N
K04 RCL+ F
K05 RCL + B Calculates P x N + F + B.
K06 RTN Returns to calling routine.
Bytes and Checksum: 009.0, F2EO

Flags Used: None.

Memory Required: 145 bytes: 89 for program, 56 for variables.

Remarks: Since all of the computation for the program is done in
routines T and K, it is possible to shorten the program by eliminating
the other user-interface routines. To run the program in this shortened
form, select the function defined by LBL T (.1 SOLVE/! 1 {FN=} T)
and then solve for the variable you need (.1 SOLVE/ ! I {S 0 L V E}
variable).

Program Instructions:

1. Key in the program routines; press @] when done.

2. Select the appropriate routine:

• 1 XEQ I N to calculate the number of compounding periods;

• 1 XEQ I I to calculate the periodic interest;

• 1 XEQ I B to calculate the initial balance of a loan or savings
account;

14: Miscellaneous Programs 225

• I XEQ I P to calculate the periodic payment;

• I XEQ I F to calculate the future value or balance of a loan.

3. Key in the values of the other four variables as they are
prompted for, and press I RIS I after each value.

4. After the last I RIS I, the result is displayed.

5. To recalculate the same variable using different data, press I RIS I
and go to step 3.

6. For a totally new case go to step 2.

Variables Used:

N The number of compounding periods.

I The periodic interest rate as a percentage rate. (For example, if the
annual interest rate is 15% but there are 12 payments per year,
then the periodic interest rate is 15 -;.-12 = 1.25%.)

Z The periodic interest rate as a decimal.

B The initial balance of loan or savings account.

P The periodic payment.

F The future value of a savings account or balance of a loan.

The index variable, used here for indirect addressing.

Example: Part 1. You are financing the purchase of a car with a 3-
year loan (36 months) at 10.5% annual interest compounded monthly.
The purchase price of the car is $7,250. Your down payment is
$1,500. What are your monthly payments?

226 14: Miscellaneous Programs

8=7,250-1,500

p=?

Keys:

.'DISpl {FX}2

IXEQI p

361 R/S I

10.5 I ENTER 1120

7250 I ENTER I 1500 G

o I R/sl

I =10.5% per year
N =36 months

Display:

N?value

I ?value

I?0.88

B?value

B?5,750.00

F?value

P=-186.89

F=O

Description:

Sets the display format
to FIX 2.

Selects routine P,
which calculates the
periodic payment.

Stores 36 in N.

Converts the annual
interest rate to a
monthly rate.

Stores the monthly in­
terest rate in I.

Calculates the begin­
ning loan balance.

Sets B equal to the be­
ginning balance.

Stores zero in F, the fu­
ture or ending balance,
and calculates the pay­
ment of the loan.

The answer is negative since the loan has been viewed from the
borrower's perspective. Money received by the borrower (the begin­
ning balance) is positive, while money paid out is negative.

14: Miscellaneous Programs 227

Part 2. What interest rate would reduce the monthly payment by
$10?

Keys: Display:

I XEQ I I N?36.00

B?5,750.00

P?-186.89

I ENTER I P?-186.89

10[!] P?-176.89

F?0.00

1=0.56

120 6.75

Description:

Selects rou!ine t which
calculates the periodic
interest rate.

Accepts 36 as the num­
ber of payments.

Accepts $5,750.00 as
the initial balance.

Copies payment in
stack so that you can
calculate with it. (The
X-register will be over­
written by the next
number entered.)

Reduces the monthly
payment by $10.00.

Stores the modified
payment value.

Accepts zero as the fu­
ture balance and
calculates I, the
monthly interest rate.

Calculates the annual
interest rate.

Part 3. Using the interest rate of 6.75%, assume that you sell the car
after 2 years. What balance will you still owe? In other words, what is
the future balance in 2 years?

228 14: Miscellaneous Programs

... • , , ,

~

" • .. ., .. • .. ,
... , .. ,

•

Keys: Display:

1 XEQ IF N?36.ee

241 RIS I 1113.56

815,7513.1313

P1-176.89

F=-2,047.04

Unit Conversions

Description:

Selects routine F,
which calculates the
future value.

Changes the number
of payments to 24
months.

Accepts the monthly
interest rate.

Accepts $5,750.00 as
the initial balance.

Accepts the payment
value and calculates
the future balance.
Again, the sign is neg­
ative, indicating that
you must payout this
money .

This program consists of two routines that convert one type of unit to
another. One routine converts among Celsius, Fahrenheit, Rankine
and Kelvin temperatures. The other routine converts among inches,
feet, and meters, and among square inches, square feet and square
meters. The programs can easily be modified to convert other types of
units.

14: Miscellaneous Programs 229

Both routines are based on the "Ferris wheel principle." The program
has a circular structure. When the program is started, it loops through
a cycle (or series) of input prompts. You repeatedly ignore the
prompts (by pressing I RIS I) until the prompt that corresponds to the
units of your input comes up. For instance, if you wanted to input
kelvins, you would start the temperature program by pressing I XEQ I T
and then by pressing I RIS I until the K? prompt appeared. At the
prompt you would key in the temperature in kelvins and press I RIS I
until you come to the prompt indicating the units that you desired
(F? for Fahrenheit, for example). The value displayed with the
prompt would be the temperature in degrees Fahrenheit. To end the
program, press @].

input /output

t
C~K-273_1S~F~~C+32

;op"l/o"lp"1 ---IK~ EfY? 1--- ;op"l/o"lp"1

K=~R R=F+4S9.S7
9 R?

t
input /output

Ferris Wheel Structure for Temperature Conversion

The program has been designed to minimize the use of the stack.
When the program is terminated, the values you had in the X- and Y­
registers are left in the Y - and Z-registers, respectively, and the
converted value is displayed. If the value that you wish to convert is
in the X-register (the display) when you start the program, press [BIJ
to retrieve it when you get to the correct prompt.

The length- and area-conversion routines give good examples of flag
usage. Note that flag 2 was selected so that the 2 annunciator in the
display would indicate that the unit is squared.

230 14: Miscellaneous Programs

Program Listing:

Program Lines:
T01 LBL T
T02 INPUT C

T03 9
T04 x
T05 5
T06
T07 32
T08 +
T09 STO F
T10 R-l-
T1l INPUT F

T12 459.67
T13 +
T14 STO R
T15 R-l-
T16 INPUT R

T17 9
T18
T19 5
T20 x
T21 STO K
T22 R-l-
T23 INPUT K

T24 273.15

Description:
Starts the temperature-conversion routine.
Displays the temperature in °C, or requests
and stores Celsius input.

Converts from Celsius to Fahrenheit.
Stores Fahrenheit temperature in F.
Drops stack so that only one level is used.
Displays temperature in of, or requests and
stores Fahrenheit input.

Converts from Fahrenheit to Rankine.
Stores Rankine temperature in R.
Drops stack so that only one level is used.
Displays temperature in oR, or requests and
stores Rankine input.

Converts Rankine to Kelvin.
Stores Kelvin temperature in K.
Drops stack so that only one level is used.
Displays temperature in kelvins, or requests
and stores Kelvin input.

T25 - Converts Kelvin to Celsius.
T26 STO C Stores Celsius temperature in C.
T27 R-l- Drops stack so that only one level is used.
T28 GTO T Loops back for more conversions.
Bytes and Checksum: 058.0, 9EF4

14: Miscellaneous Programs 231

A01 LBL A
A02 SF 2

A03 GTO Q
Bytes and Checksum:

Starts the area-conversion routine.
Sets flag 2 to indicate area conversion
(squared length).
Branches to the conversion routine.

004.5, 2A52

L01 LBL L Starts the length-conversion routine.
L02 CF 2 Clears the area-conversion flag.
Bytes and Checksum: 003.0, 2C3C

Q01 LBL Q

Q02 INPUT

Q03 12
Q04 FS? 2
Q05 ;.::2

Q06
Q07 STO F
Q08 R~

Q09 INPUT

Q10 0.3048
Q 11 FS? 2
Q12 ;.::2

Q13 x
Q14 STO M
Q15 R~

Q16 INPUT

Q17 0.0254

Q18 FS? 2

I

F

M

Starts the combined length- and area-con­
version routine.
Displays inches or square inches, or accepts
input.
Enters conversion factor for inches to feet.
Tests whether this is an area conversion.
If yes, squares the conversion factor.
Calculates result.
Stores feet or square feet.
Drops stack so that only one level is used.
Displays feet or square feet, or accepts
input.
Enters conversion factor for feet to meters.
Tests whether this is an area conversion.
If yes, squares the conversion factor.
Calculates the result.
Stores meters or square meters.
Drops stack so that only one level is used.
Displays meters or square meters, or accepts
input.
Enters conversion factor for meters to
inches.
Tests whether this is an area conversion.

Q 1 9 ;.:: 2 If yes, squares the conversion factor.
Q 2 0 Calculates the result.
Q 2 1 S T 0 Stores inches or square inches.
Q22 R'~ Drops stack so that only one level is used.
Q23 GTO Q Loops back for more conversions.
Bytes and Checksum: 050.5, 2A15

232 14: Miscellaneous Programs

Flags Used: Flag 2.

Memory Required: 164 bytes: 116 for program, 48 for variables.

Program Instructions:

1. Key in the program routines; press @] when done.

2. Press I XEQ I and the appropriate label.

• A for area conversion, or

• L for length conversion, or

• T for temperature conversion.

3. Press I RIS I until the appropriate input prompt appears.

4. Key in input (or press [BIJ to recover the input if it had been in
the display when the routine was started).

5. Press I RIS I until the prompt (with a result) corresponds to the
units you want to find.

6. Go to step 3 for another conversion.

7. Press @] to clear the prompt and end the program.

Variables Used:

C Temperature in degrees Celsius.

F Temperature in degrees Fahrenheit; or feet.

R Temperature in degrees Rankine.

K Temperature in kelvins.

I Inches.

M Meters.

Example 1. Convert 212°F to kelvins.

Keys: Display: Description:

IXEQ IT C?value Selects the temperature
conversion routine.

I RIS I F?value Searches for the Fahr-
enheit prompt.

14: Miscellaneous Programs 233

212 I RIS I R?671.6700

K?373.1500

Enters Fahrenheit tem­
perature and converts
to degrees Rankine.

Converts to kelvins.

Example 2. A floor measures 108 x 127 inches. How many square
feet is this?

Keys: Display:

108 I ENTER I

1270 K?13,716.0000

IXEQI A I ?value

I? 13,716.0000

F?95.2500

95.2500

Description:

Calculates area in
square inches.

Selects area-conversion
routine.

Rolls down from the
Y -register the value
you previously calcu-
1ated for in2.

Calculates the square
feet.

Cancels the prompt
and ends the program.

Example 3. Suppose that the result of a lengthy calculation is 3.787
and that it is currently in the display of your calculator. Further sup­
pose that this value must be divided by a length specified in meters to
complete the problem. You know that the length you need to divide
by is 25.73 feet. Compute the final answer.

234 14: Miscellaneous Programs

,
• • i
I
~ ,
• • • ~
!
! , , ,
=
= -• -• -• ..
IF -... • -.. -• -• -
~

• -• -• ..

Keys: Display:

3.787 3.787

IXEQI L I ?value

1 RIS I F?value

25.731 RIS I M?7.8425

7.8425

0.4829

Prime Number Generator

Description:

Enters the hypothetical
result.

Selects the length­
conversion routine.

Moves to the prompt
for feet.

Enters the divisor in
feet, then converts it to
meters.

Cancels the prompt
and ends the program.

Calculates the final
result.

This program accepts any odd, positive integer greater than 3. If the
number is a prime number (not evenly divisible by integers other than
itself and I), then the program returns the input value. If the input is
not a prime number, then the program returns the first prime number
larger than the input.

The program identifies non-prime numbers by exhaustively trying all
possible factors. If a number is not prime, the program adds 2 (assur­
ing that the value is still odd) and tests to see if it has found a prime.
This process continues until a prime number is found .

14: Miscellaneous Programs 235

Note: x is the
value in the
x-register.

l
(Start)1---___ ~

x_p

3-0

I FP[P/o)-x I
l

yes

Prime Number Flow Chart

236 14: Miscellaneous Programs

Program Listing:

Program Lines: Description:
Y01 LBL Y This routine displays the prime number.
Y02 V I EW P Displays the prime number P.
Bytes and Checksum: 003.0, 9008

20 1 L B L 2 This routine adds 2 to P before testing to
see if P is prime.

202 2
203 RCL+ P
Bytes and Checksum: 004.5, E455

P01 LBL P This routine stores the input value for P.
P02 STO P
P03 3 Stores 3 in test divisor, D.
P04 STO 0
Bytes and Checksum: 006.0, 9E38

X 01 L B L X This routine tests P to see if it is prime.
X02 RCL P
X03 RCL+
X04 FP
X05 :>c:=0?

X06 GTO 2

X07 RCL P
X08 SQRT
X09 RCL 0
X10 :>c:>,...?

Xll GTO Y

X12 2
X13 STO+

0

0

Finds the fractional part of P+D.
Tests for a remainder of zero (number not
prime).
If the number is not prime, tries next
possibility.

Tests to see whether all possible factors
have been tried.
If all factors have been tried, branches to
the display routine.
Calculates the next possible factor, D + 2.

14: Miscellaneous Programs 237

X 1 4 G T 0 X Branches to test the potential prime with the
new factor.

Bytes and Checksum: 021.0, 43F2

Flags Used: None.

Memory Required: 50.5 bytes: 34.5 for program, 16 for variables.

Program Instructions:

1. Key in the program routines; press @] when done.

2. Key in an odd integer.

3. Press 1 XEQ 1 P to start program. The prime number, P, will be
displayed.

4. To see the next prime number, press 1 RIS I.

Variables Used:

P Prime value and potential prime values.

D Divisor which is being used to test the current value of P.

Remarks: No tests are made to assure that the input is an odd, posi­
tive integer greater than 3.

Example. What is the first prime number after 789? What is the next
prime number?

Keys: Display:

7891 XEQ 1 P P=797.0000

P=809.0000

238 14: Miscellaneous Programs

Description:

Keys in 789 and starts
program; displays first
prime number.

Calculates the next
prime number after
797.

-• • -• ; .,
!
~

• • !
!
~
~
~ ,
= -., -.. -., -., -• -.,

Appendixes and
Reference

Page 240 A: Assistance, Batteries, and Service

253 B: User Memory and the Stack

259 C: More About Solving an Equation

273 D: More About Integration

281 Messages

286 Function Index

299 Subject Index

Assistance, Batteries, and
Service

A

Obtaining Help in Operating the Calculator

We at Hewlett-Packard are committed to providing the owners of
HP calculators with ongoing support. You can obtain answers to your
questions about using the calculator from our Calculator Support
Department.

We suggest that you read the next section, g Answers to Common
Questions, h before contacting us. Past experience has shown that
many of our customers have similar questions about our products.

If you don't find an answer to your question, you can contact us using
the address or phone number listed on the inside back cover.

Answers to Common Questions

Q. How can I determine if the calculator is operating properly?

A. Refer to page 246, which describes the diagnostic self-test.

Q. How do I change the number of decimal places in the display?

A. Use the .1 DISP 1 function (page 30).

Q. My numbers contain commas instead of periods as decimal points.
How do I restore the periods?

A. Use the .1 MODES I function (page 29).

240 A: Assistance, Batteries, and Service

~ • ..
~
~
~
~
14
~
4
~
~
~
"$
"S
~
~
~
~

-=
~
~
4
-4 ..-
---4
4

Q. How do I clear all or portions of memory?

A • • [@[] displays the CLEAR menu, which allows you to clear all
variables, all programs (in program entry only), the statistics registers,
or all of user memory (not during program entry).

Q. What does an HE" in a number (for example, 2.51E-13) mean?

A. Exponent of ten; that is, 2.51 x 10- 13.

Q. The calculator has displayed the message MEMORY FULL. What
should I do?

A. You must clear a portion of memory before proceeding. (See ap­
pendix B.)

Q. Why does calculating the sine (or tangent) of 7r radians display a
very small number instead of O?

A. 7r cannot be represented exactly with the 12-digit precision of the
calculator.

Q. Why do I get incorrect answers when I use the trigonometric
functions?

A. You must make sure the calculator is using the correct angular
mode (.1 MODES I).

Q. What does the symbol in the display mean?

A. This is an annunciator, and it indicates something about the status
of the calculator. See H Annunciators" in chapter 1.

A: Assistance, Batteries, and Service 241

Power and Batteries

The calculator is shipped with alkaline batteries. A fresh set of three
alkaline batteries provides approximately a year of normal use. How­
ever, expected battery life depends on how the calculator is used;
frequent, long calculations require more power than short, periodic
calculations. The calculator consumes the most power while running
programs or doing long calculations (like SOLVE or JFN). For any
level of use, mercury and silver oxide batteries last about twice as
long as alkaline batteries.

Use only fresh button-cell batteries. Do not use rechargeable batteries.
The following batteries are recommended for use. Not all batteries are
available in all countries.

Alkaline Mercury Silver Oxide

Panasonic LR44 Panasonic NP675 Panasonic SR44W or
SP357

Eveready A76 Eveready EP675E Eveready 357

Varta V13GA Toshiba NR44 or MR44 Varta V357

Radio Shack NR44 or Ray-O-Vac 357
MR44

Duracell LR44 Duracell MP675H

Low-Power Indicator

When the low battery annunciator (~) comes on, you should re­
place the batteries as soon as possible.

242 A: Assistance, Batteries, and Service

If you continue to use the calculator after the battery annunciator
comes on, power can eventually drop to a level at which the display
becomes dim and stored data may be affected. If this happens, the
calculator requires fresh batteries before it will operate properly. If
stored data has not been preserved due to extremely low power, the
calculator displays t'lEt'10R'l CLEAF.:.

Installing Batteries

Once the batteries are removed, replace them within a minute to
save Continuous Memory.

To install batteries:

1. Have three fresh button-cell batteries at hand, Hold batteries by the
edges, Do not touch the contacts, Wipe each battery with a clean,
lint-free cloth to remove dirt and oil.

2. Make sure the calculator is off. Do not press @] again until the
entire procedure for changing batteries is completed. Chang­
ing batteries with the calculator on can erase the contents of
Continuous Memory.

3. Hold the calculator as shown. To remove the battery-compart­
ment door, press down and outward on it until it slides off
(away from the center).

A: Assistance, Batteries, and Service 243

4. Turn the calculator over and shake the batteries out.

Warning

Do not mutilate, puncture, or dispose of batteries in
fire. The batteries can burst or explode, releasing haz­
ardous chemicals.

5. Hold the calculator as shown and stack the batteries, one at a
time, in the battery compartment. Orient the batteries according
to the diagram inside the battery compartment. Be sure the
raised and flat ends match the diagram.

6. Insert the tab of the battery-compartment door into the slot in
the calculator case, as shown.

244 A: Assistance, Batteries, and Service

•

Now turn the calculator back on. If it does not function, check that
the orientation of the batteries is correct. If the calculator still does not
function, you might have taken too long to change the batteries or
inadvertently turned the calculator on while the batteries were out.
Remove the batteries again and lightly press a coin against both battery
contacts in the calculator for a few seconds. Put the batteries back in
and turn the calculator on. It should display MEMORY CLEAR.

Environmental Limits

To maintain product reliability, observe the following temperature
and humidity limits:

• Operating temperature: 0° to 45°C (32° to 113°F).

• Storage temperature: -20° to 65°C (-4° to 149°F).

• Operating and storage humidity: 90% relative humidity at 40°C
(104°F) maximum.

Determining if the Calculator Requires
Service

Use these guidelines to determine if the calculator requires service.
Then, if necessary, read HIf the Calculator Requires Service" on page
249.

• If the calculator won't turn on (nothing is visible in the display):

1. Attempt to reset the calculator. (Hold down the @] key and
press ITill.)

2. If the calculator fails to respond after step 1, replace the bat­
teries (see page 242).

If steps 1 and 2 fail to restore calculator function, it requires service.

A: Assistance, Batteries, and Service 245

• If the calculator doesn't respond to keystrokes (nothing hap­
pens when you press any of the keys):

1. Attempt to reset the calculator. (Hold down the @] key and
press [10.)

2. If the calculator fails to respond after step t attempt to clear
memory. (Hold down @], [EJ, and [E as described on page
255). This will erase all the information you've stored.

3. If the calculator fails to respond after steps 1 and 2, remove
the batteries (see page 243) and lightly press a coin against
both calculator battery contacts. Put the batteries back in and
turn on the calculator. It should display MEMORY CLEAR.

If steps 1 through 3 fail to restore calculator function, the calculator
requires service.

• If the calculator responds to keystrokes but you suspect that it
is malfunctioning:

1. Do the self-test (described below). If the calculator fails the
self test, it requires service.

2. If the calculator passes the self-test, it is likely that you've
made a mistake in operating the calculator. Try rereading por­
tions of the manual and check U Answers to Common
Questions" at the beginning of this chapter.

3. Contact the Calculator Support department. The address and
phone number are listed on the inside back cover.

Confirming Calculator Operation­
the Self· Test

If the display can be turned on, but it appears that the calculator is
not operating properly, you can do a diagnostic self-test.

1. To start the self-test, hold down the @] key while you press

0·*

• Holding down @] as you press ~ starts a continuous self-test that is used at the factory.
If you accidentally start this self-test, you can halt it by pressing any key.

246 A: Assistance, Batteries, and Service

•

2. Press any key eight times and watch the display as various pat­
terns are displayed. After you've pressed the key eight times, the
calculator displays the copyright message COPR. HP 1987 and
then the message K B 0 0 1 .

3. Starting at the upper left corner ([IT]) and moving from left to
right, press each key in the top row. Then, moving left to right,
press each key in the second row, third row, etc., until you've
pressed each key.

• If you press the keys in the proper order and they are func­
tioning properly, the calculator displays K B 0 followed by two­
digit numbers. (The calculator is counting the keys using
hexadecimal base.)

• If you press a key out of order, or if a key isn't functioning
properly, the next keystroke displays a fail message (see step
4).

4. The self-test produces one of these two results:

• The calculator displays 32S - OK if it passed the self-test.
Go to step 5.

• The calculator displays 32S - FA I L, followed by a one-digit
number, if it failed the self-test. If you received the message
because you pressed a key out of order, you should reset the
calculator (hold down @] and press [b[)), and do the self-test
again. If you pressed the keys in order, but got this message,
repeat the self-test to verify the results. If the calculator fails
again, it requires service (see page 249). Include a copy of the
fail message with the calculator when you ship it for service.

5. To exit the self-test, reset the calculator (hold down @] and press
[b[)).

A: Assistance, Batteries, and Service 247

Limited One-Year Warranty

What Is Covered

The calculator (except for the batteries, or damage caused by the bat­
teries) is warranted by Hewlett-Packard against defects in materials and
workmanship for one year from the date of original purchase. If you sell
your unit or give it as a gift, the warranty is automatically transferred
to the new owner and remains in effect for the original one-year pe­
riod. During the warranty period, we will repair or, at our option,
replace at no charge a product that proves to be defective, provided
you return the product, shipping prepaid, to a Hewlett-Packard ser­
vice center. (Replacement may be with a newer model of equivalent
or better functionality.)

This warranty gives you specific legal rights, and you may also have
other rights that vary from state to state, province to province, or
country to country.

What Is Not Covered

Batteries, and damage caused by the batteries, are not covered by the
Hewlett-Packard warranty. Check with the battery manufacturer about
battery and battery leakage warranties.

This warranty does not apply if the product has been damaged by
accident or misuse or as the result of service or modification by other
than an authorized Hewlett-Packard service center.

248 A: Assistance, Batteries, and Service

No other express warranty is given. The repair or replacement of a
product is your exclusive remedy. ANY OTHER IMPLIED WARRANTY
OF MERCHANTABILITY OR FITNESS IS LIMITED TO THE ONE-YEAR
DURATION OF THIS WRITTEN WARRANTY. Some states, provinces,
or countries do not allow limitations on how long an implied war­
ranty lasts, so the above limitation may not apply to you. IN NO
EVENT SHALL HEWLETT -PACKARD COMPANY BE LIABLE FOR
CONSEQUENTIAL DAMAGES. Some states, provinces, or countries do
not allow the exclusion or limitation of incidental or consequential
damages, so the above limitation or exclusion may not apply to you.

Products are sold on the basis of specifications applicable at the time
of manufacture. Hewlett-Packard shall have no obligation to modify
or update products once sold.

Consumer Transactions in the United Kingdom

This warranty shall not apply to consumer transactions and shall not
affect the statutory rights of a consumer. In relation to such transac­
tions, the rights and obligations of Seller and Buyer shall be
determined by statute.

If the Calculator Requires Service

Hewlett-Packard maintains service centers in many countries. These
centers will repair a calculator or replace it (with an equivalent or
newer model), whether it is under warranty or not. There is a charge
for service after the warranty period. Calculators normally are
serviced and reshipped within 5 working days of receipt.

A: Assistance, Batteries, and Service 249

Obtaining Service

• In the United States: Send the calculator to the Calculator Service
Center listed on the inside of the back cover.

• In Europe: Contact your HP sales office or dealer, or HP's Euro­
pean headquarters for the location of the nearest service center. Do
not ship the calculator for service without first contacting a Hewlett­
Packard office.

Hewlett-Packard S.A.
150, Route du Nant-d' Avril
P.O. Box CH 1217 Meyrin 2
Geneva, Switzerland
Telephone: (022) 82 81 11

• In other countries: Contact your HP sales office or dealer or write
to the U.s. Calculator Service Center (listed on the inside of the
back cover) for the location of other service centers. If local service
is unavailable, you can ship the calculator to the U.s. Calculator
Service Center for repair.

All shipping, reimportation arrangements, and customs costs are
your responsibility.

Service Charge

There is a standard repair charge for out-of-warranty service. The
Calculator Service Center (listed on the inside of the back cover) can
tell you how much this charge is. The full charge is subject to the
customer's local sales or value-added tax wherever applicable.

Calculator products damaged by accident or misuse are not covered
by the fixed service charges. In these cases, charges are individually
determined based on time and material.

250 A: Assistance, Batteries, and Service

Shipping Instructions

If your calculator requires service, ship it to the nearest authorized
service center or collection point. Be sure to:

• Include your return address and description of the problem.

• Include proof of purchase date if the warranty has not expired.

• Include a purchase order, check, or credit card number plus expira­
tion date (Visa or MasterCard) to cover the standard repair charge.
In the United States and some other countries, the serviced calcu­
lator can be returned C.O.D. if you do not pay in advance.

• Ship the calculator in adequate protective packaging to prevent
damage. Such damage is not covered by the warranty, so we rec­
ommend that you insure the shipment.

• Pay the shipping charges for delivery to the Hewlett-Packard ser­
vice center, whether or not the calculator is under warranty.

Warranty on Service

Service is warranted against defects in materials and workmanship for
90 days from the date of service.

Service Agreements

In the U.S., a support agreement is available for repair and service.
Refer to the form that was packaged with the manual. For additional
information, contact the Calculator Service Center (see the inside of
the back cover).

A: Assistance, Batteries, and Service 251

Regulatory Information

Radio Frequency Interference

U.S.A. The HP-32S generates and uses radio frequency energy and
may interfere with radio and television reception. The calculator com­
plies with the limits for a Class B computing device as specified in
Subpart J of Part 15 of FCC Rules, which provide reasonable protec­
tion against such interference in a residential installation. In the
unlikely event that there is interference to radio or television reception
(which can be determined by turning the calculator off and on or by
removing the batteries), try:

• Reorienting the receiving antenna.

• Relocating the calculator with respect to the receiver.

For more information, consult your dealer, an experienced radio or
television technician, or the following booklet, prepared by the Fed­
eral Communications Commission: How to Identify and Resolve
Radio-TV Interference Problems. This booklet is available from the U.S.
Government Printing Office, Washington, D.C. 20402, Stock Number
004-000-00345-4. At the first printing of this manual, the telephone
number was (202) 783-3238.

West Germany. The HP-32S complies with VFG 1046/84, VDE
0871B, and similar non-interference standards. If you use equipment
that is not authorized by Hewlett-Packard, that system configuration
has to comply with the requirements of Paragraph 2 of the German
Federal Gazette, Order (VFG) 1046/84, dated December 14, 1984.

252 A: Assistance, Batteries, and Service

•

User Memory and the
Stack

This appendix covers

• The allocation and requirements of user memory,

• How to reset the calculator without affecting memory,

B

• How to clear (purge) all of user memory and reset the system de­
faults, and

• Which operations affect stack lift.

Managing Calculator Memory

The HP-32S has 390 bytes of user memory available to you for any
combination of stored data (variables or program lines). SOLVE, JFN,
and statistical calculations also require user memory. (The JFN opera­
tion is particularly H expensive" to run.)

All of your stored data is preserved until you explicitly clear it. The
message MEMOR'l FULL means that there is currently not enough
memory available for the operation you just attempted. You need to
clear some (or all) of user memory. For instance, you can:

• Clear the contents of any or all variables (see page 50).

• Clear any or all programs (see page 85).

• Clear the statistics registers (press .1 CLEAR I {};}).
• Clear all of user memory (press .1 CLEAR I {A L L}).

B: User Memory and the Stack 253

Memory Requirements

Data or Operation Amount of Memory Used

Variables 8 bytes per non-zero value. (No bytes for zero
values.)

Instructions in pro- 1.5 bytes.
gram lines

Numbers in program Integers 0 through 99: 1.5 bytes.
lines

All other numbers: 9.5 bytes.

Statistics data 48 bytes.

SOLVE calculations 33.5 bytes.

JFN (integration) 140 bytes.
calculations

To see the total memory requirement of specific programs, press .1 MEM I{PGM} . Press [!J or.m to view the entries. (For an exam­
ple, see page 86.)

To manually deallocate the memory allocated for a SOLVE or JFN
calculation that has been interrupted, press .1 LBLIRTN I {RT N} . This
deallocation is done automatically whenever you execute a program
or another SOLVE or JFN calculation.

Resetting the Calculator

If the calculator doesn't respond to keystrokes or if it is otherwise be­
having unusually, attempt to reset it. Resetting the calculator halts the
current calculation and cancels program entry, digit entry, a running
program, a SOLVE calculation, an JFN calculation, a VIEW display, or
an INPUT display. Stored data usually remain intact.

254 B: User Memory and the Stack

, , ,

To reset the calculator, hold down the @] key and press [ill]. If you
are unable to reset the calculator, try installing fresh batteries. If the
calculator cannot be reset, or if it still fails to operate properly, you
should attempt to clear memory using the special procedure described
in the next section.

The calculator can reset itself if it is dropped or if power is
interrupted.

Clearing Memory

The usual way to clear user memory is to press .1 CLEAR I {A L L} .
However, there is also a more powerful clearing procedure that resets
additional information and is useful if the keyboard is not functioning
properly.

If the calculator fails to respond to keystrokes, and you are unable to
restore operation by resetting it or changing the batteries, try the fol­
lowing procedure. These keystrokes clear all of memory, reset the
calculator, and restore all formats and modes to their original, default
settings (shown below).

1. Press and hold down the @] key.

2. Press and hold down em.
3. Press [EJ. (You will be pressing three keys simultaneously).

When you release all three keys, the display shows
MEMORY CLEAR if the operation is successful.

B: User Memory and the Stack 255

Default Settings

Category Default Status

Angular mode. Degrees.

Base mode. Decimal.

Contrast setting. Medium.

Decimal point. II "

Display format. FIX 4.

Flags. Cleared to zero.

FN = (current function). Null.

Program pointer (current line). PRGM TOP.

Program memory. Cleared.

Random-number seed. Zero.

Stack lift. Enabled.

Stack registers. Cleared to zero.

Variables. Cleared to zero.

Memory may inadvertently be cleared if the calculator is dropped or if
power is interrupted.

The Status of Stack Lift

The four stack registers are always present, and the stack always has a
stack-lift status. That is to say, the stack lift is always enabled or dis­
abled regarding its behavior when the next number is placed in the x­
register. (Refer to chapter 2, "The Automatic Memory Stack.")

Any function not in the following two lists will enable stack lift.

256 B: User Memory and the Stack

..,
• .. ,
I Disabling Operations

There are four operations that disable stack lift. A number keyed in
after one of these disabling operations writes over the number cur­
rently in the X-register. The Y-, Z- and T-registers remain unchanged.

ENTER ~+ ~- CLx

In addition, when @] and [!] act like CLx, they also disable stack lift.

The INPUT function disables stack lift as it halts a program for
prompting (so any number you then enter writes over the X-register),
but it enables stack lift when the program resumes.

Neutral Operations

The following operations do not alter the previous status of the stack
lift:

DEG,RAD, FIX,SCI, DEC,HEX, CLVARS
GRAD ENG,ALL OCT,BIN

PSE SHOW RADIX.;RADIX, CL~

I OFF I I RIS I and STOP ~,[!] @]*, [!]*

I MEM I{VAR} t I MEM I{PGM} t IGTOI DO I GTO 10 label nn

Switching binary Digit entry Errors I PRGM I and pro-
windows gram entry

• Except when used like CLx.

t Including all operations performed while the catalog is displayed except {VA R} I ENTER I
and {PGM} I XEQ I, which enable stack lift.

B: User Memory and the Stack 257

The Status of the LAST X Register

The following operations save x in the LAST X register:

+, -, x, SORT, x2 eX, 10x

LN, LOG yX 1/x

%, %CHG ~+,~- RCL+,-,x,+*

X, y SIN, COS, TAN ASIN, ACOS, ATAN

SINH, COSH, TANH ASINH, ACOSH, IP, FP, RND, ABS
ATANH

y,x-O,r; O,r-y,x -HR, -HMS -DEG, -RAD

Cn,r; Pn,r x! CMPLX+/-

CMPLX+, -, x ,+ CMPLX eX, LN,yX, 1/x CMPLX SIN,COS,TAN

• Note that the recall-arithmetic sequence x [RCL 10 variable stores a different value in the
LAST X register than the sequence x 1 RCL 1 variable 0 does. The former stores x in LAST X;
the latter stores the recalled number in LAST X.

258 B: User Memory and the Stack

... • ... • ... • .. •, ..
II' , ..

• ..

More About Solving an
Equation

c
This appendix provides information about the SOLVE operation be­
yond that given in chapter 7.

How SOLVE Finds a Root

SOLVE is an iterative operation; that is, it repetitively executes the
specified function. It starts with an estimate for the unknown vari­
able, x, and refines that estimate with each successive execution of the
function, f(x).*

If any two successive estimates of the function f(x) have opposite
signs, then SOLVE presumes that the function f(x) crosses the x-axis in
at least one place between the two estimates. This interval is sys­
tematically narrowed until a root is found.

For SOLVE to find a root, the root has to exist within the range of
numbers of the calculator, and the function must be mathematically
defined where the iterative search occurs. SOLVE always finds a root,
provided one exists (within the overflow bounds), if one or more of
these conditions are met:

• Two estimates yield f(x) values with opposite signs, and the
function's graph crosses the x-axis in at least one place between
those estimates (figure a, next page) .

• {(x) is mathematical shorthand for a function defmed in terms of the unknown variable x.

c: More About Solving an Equation 259

• I(x) always increases or always decreases as x increases (figure b,
below).

• The graph of I(x) is either concave everywhere or convex every­
where (figure c, below).

• If f(x) has one or more local minima or maxima, each occurs singly
between adjacent roots of f(x) (figure d, below).

{[xl {[xl

-+~------~--~x -+----~~----~x

a b

{[xl ([xl

__ ++ __________ ~~x -+---I-----~--~~ x

c d

Functions Whose Roots Can Be Found

In most situations, the calculated root is an accurate estimate of the
theoretical, infinitely precise root of the equation. An uidear solution
is one for which f(x)=O. However, a very small non-zero value for f(x)
is often acceptable because it might result from approximating num­
bers with limited (12-digit) precision.

260 C: More About Solving an Equation

Interpreting Results

The SOLVE operation will produce a solution under either of these
conditions:

• If it finds an estimate for which f(x) equals zero (see figure a,
below).

• If it finds an estimate where f(x) is not equal to zero, but the calcu­
lated root is a 12-digit number adjacent to the place where the
function's graph crosses the x-axis (see figure b, below). This occurs
when the two final estimates are neighbors (that is, they differ by 1
in the 12th digit), and the function's value is positive for one esti­
mate and negative for the other. * In most cases, f(x) will be
relatively close to zero.

{[xl ([xl

x x

a

Cases Where a Root Is Found

To obtain additional information about the result, press []I] to see the
previous estimate of the root (x), which was left in the Y -register.
Press []I] again to see the value of f(x), which was left in the Z-regis­
ter. If f(x) equals zero or is relatively small, it is very likely that a
solution has been found. However, if f(x) is relatively large, you must
use caution in interpreting the results.

• Or they are (0, 10-499) or (0, _10- 499).

c: More About Solving an Equation 261

Example: An Equation With One Root. Find the root of the
equation:

- 2.x3 + 4x2 - 6x + 8 = 0,

which, using Horner's method (chapter 5), simplifies to

x(x(-2x + 4) - 6) + 8 = O.

Enter the function as the program:

A0l LBL A
A02 -2
A03 RCLx X
A04 4
A05 +
A06 RCLx X
A07 6
A08 -
A09 RCLx X
Al0 8
All +
Al2 RTN

Keys:

.1 SOLVE/! 1 {FN}A

o [§IQJ X 10
.1 SOLVE/! I
{SOLVE}X

§]

Display:

X= 1.6506

1.6506

- 1.0000 E - 1 1

262 C: More About Solving an Equation

Description:

Calculates x using
guesses 0 and 10.

Final two estimates are
the same to four deci­
mal places.

f(x) is very small, so the
approximation is a
good root.

• II'

Example: An Equation With Two Roots. Find the two roots of the
parabolic equation:

x2 + x - 6 O.

Enter the function as the program:

0131 LBL 0
0132 RCL X
0133 ;.;:z

0134 RCL+ X
0135 6
0136 -
0137 RTN

Keys: Display:

.ISOlVE/! I {FN} D

o [§IQJ X 10
• 1 SalvEn I {SOLVE}
X X=2.13131313

illIJ 2.13131313

illIJ .1 SHOW I 13.1313131313131313131313

o [§IQJ X 10 ~

.1 SOlVE/! I
{SOLVE}X X=-3.13131313

illIJ[]IJ .1 SHOW I 13.1313131313131313131313

Certain cases require special consideration:

Description:

Calculates the positive
root using guesses 0
and 10 .

Final two estimates are
the same.

[(x) = O.

Calculates the negative
root using guesses 0
and -10.

[(x) = O.

• If the function's graph has a discontinuity that crosses the x-axis,
then the SOLVE operation returns a value adjacent to the disconti­
nuity (see figure a, next page). In this case, [(x) may be relatively
large.

c: More About Solving an Equation 263

• Values of f(x) may be approaching infinity at the location where the
graph changes sign (see figure b, below). This situation is called a
pole. Since the SOLVE operation determines that there is a sign
change between two neighboring values of x, it returns the possible
root. However, the value for I(x) will be relatively large. If the pole
occurs at a value of x that is exactly represented with 12 digits, then
that value would cause the calculation to halt with an error
message.

{{xl ({xl

-+-----t---.... x -+--_t__-----.x

a b

Special Cases: A Discontinuity and a Pole

Example: A Discontinuous Function. Find the root of the
equation:

IP(x) - 1.5 O.

264 C: More About Solving an Equation

Enter the function as the program:

E0l LBL E
E02 RCL X
E03 I P
E04 1.5
E05 -
R06 RTN

Keys:

.1 SOLVE/ L I
o I STO I X 5
.1 SOLVE/ L I
{SOLVE}X

.1 sHawl

{FN}E

[EJ.[@owl

[EJ

Display: Description:

Finds a root with
guesses a and 5.

X=2.0000

1.99999999999 Shows root to 11 deci-
mal places.

2.00000000000 The previous estimate
is slightly bigger.

-0.5000 [(x) is relatively large.

Note the difference between the last two estimates, as well as the rel­
atively large value for f(x). The problem is that there is no value of x
for which [(x) equals zero. However, at x = 1.99999999999, there is a
neighboring value of x that yields an opposite sign for [(x).

Example: A Pole. Find the root of the equation

- 1 = o.
X2 - 6

x

As x approaches V6, f(x) becomes a very large positive or negative
number.

c: More About Solving an Equation 265

Enter the function as the program:

F01 LBL F
F02 RCL X
F03 ::.:~

F04 6
F05 -
F06 RCL X
FO? ::.: <> y

F08
F09 1
FlO -
F1l RTN

Note that you can shorten the program by deleting lines F06-F07 and
adding a second RCL X instruction after line F02.

Keys: Display:

.1 SOlVEn I
{FN}F
2.3 (]!QJ X 2.7 .1 SOlVEn I
{SOLVE}X X=2.4495

[[f][[f] 81,649,658,092.0

Description:

Calculates the root using
guesses that bracket {6.

f(x) is relatively large.

There is a pole between the final estimates. The initial guesses yielded
opposite signs for f(x), and the interval between successive estimates
was narrowed until two neighbors were found. Unfortunately, these
neighbors made f(x) approach a pole instead of the x-axis. The func­
tion does have roots at - 2 and 3, which can be found by entering
better guesses.

266 C: More About Solving an Equation

-•

" ... •
When SOLVE Cannot Find a Root

Sometimes SOLVE fails to find a root. The following conditions cause
the message NO ROOT FND:

• The search terminates near a local minimum or maximum (see fig­
ure a, below). If the ending value of [(x) (stored in the Z-register) is
relatively close to zero, it is possible that a root has been found; the
number stored in the unknown variable might be a 12-digit num­
ber very close to a theoretical root.

• The search halts because SOLVE is working on a horizontal asymp­
tote-an area where [(x) is essentially constant for a wide range of x
(see figure b, below). The ending value of [(x) is the value of the
potential asymptote.

• The search is concentrated in a local Mflat" region of the function
(see figure c, below). The ending value of [(x) is the value of the
function in this region.

{[xl {[xl

~---------r~--~ x

-+--------------l~ X

a b

{[xl

---t--t--+---'~ x

c

Cases Where a Root Is Not Found

C: More About Solving an Equation 267

The SOLVE operation returns a math error if an estimate produces an
operation that is not allowed-for example, division by zero, a square
root of a negative number, or a logarithm of zero. Keep in mind that
SOLVE can generate estimates over a wide range. You can sometimes
avoid math errors by using good guesses. If a math error occurs, press
I RCL 1 unknown variable (or .1 VIEW 1 variable) to see the value that pro­
duced the error.

Example: A Relative Minimum. Calculate the root of this parabolic
equation:

x2 - 6x + 13 O.

It has a minimum at x = 3.

Enter the function as the program:

G01 LBL G
G02 RCL X
G03 ;..:2

G04 6
G05 RCLx X
G06 -
G07 13
G08 +
G09 RTN

Keys:

.ISOLVE/f 1 {FN}G
o [§!QJ X 10
• 1 SOLVE/ f 1

{SOLVE}X

[!] .1 SHOW 1

Display:

NO ROOT FND

3.0131313131311313131

3.13 a a a a 4 6 8 4 4 3

4.13131313

268 C: More About Solving an Equation

Description:

Search fails with
guesses a and 10 .

Displays the final esti­
mate of x.

Previous estimate was
not the same.

Final value for I(x) is
relatively large.

Example: An Asymptote. Find the root of the equation

1 10 - - = o.
x

Enter the function as the program:

HI]1 LBL H

H02 1(1

Hl;'n F.:CL ;0::

HI:':14 1 :.0::

H05 -
H06 F.:Hl

Keys:

.[]QLVEI f I {FN} H
. 005 [§IQJ X 5 .1 SOLvE/l]

{SOLVE}X

ffiIl

Display: Description:

X=0.1000

Solves for x using
guesses 0.005 and 5 .

0.1000 Previous estimate is
the same.

0.00000000000 [(x) = O.

Watch what happens when you use negative values for guesses:

Keys:

1~[§IQJX2~
.1 SOLVEI f I
{SOLVE}X

Display: Description:

No root found for f(x).

NO ROOT FND

-46,666,666,692.1 Displays last estimate
of x.

-5.7750E 15

10.0000

Previous estimate was
much larger in
magnitude.

[(x) for last estimate is
rather large.

c: More About Solving an Equation 269

It's apparent from inspecting the equation that if x is a negative num­
ber, the smallest that f(x) can be is 10. f(x) approaches 10 as x becomes
a negative number of large magnitude.

Example: A Math Error. Find the root of the equation:

y[x -;- (x + 0.3)] - 0.5 = O.

Enter the function as the program:

101 LBL I
102 RCL X
103 0.3
104 RCL+ X
105
106 SQRT
107 0.5
108 -
109 RTN

First attempt to find a positive root.

Keys: Display:

.ISOLVE/! I {FN} I
o [§!QJ X 10
• 1 SOLVE/! I {SOLVE}
X x=e.leee

Description:

Calculates the root us­
ing guesses 0 and 10 .

Now attempt to find a negative root by entering guesses 0 and -10.
Notice that the function is undefined for values of x between 0 and
-0.3 since those values produce a positive denominator but a nega­
tive numerator, causing a negative square root.

o [§!QJ X 10 ~
• 1 SOLVE/! I {SOLVE}
X SQRT(NEG)

.1 VIEW I X x=-e.13e8

270 C: More About Solving an Equation

Math error .

Displays the final esti­
mate of x.

.. ..
Example: A Local "Flat" Region. Find the root of the function

{

x+2ifx<-1
f(x) = 1 for -l';;;x,;;; 1

-x + 2 if x>l
(a local flat region)

Enter the function as the program:

J01 LBL J
J02
J03 ENTER *
J04 2
J05 RCL+ X
J06 ::.:<)""7
J07 RTN
J08 4
J09 -
J10 +/-

Jll ::.:»""7
J12 R-.j.-

J13 RTt~

Solve for X using initial guesses of 10-8 and -10-8.

Keys:

.1 SOLVE/ f 1 {FN} J
[IJ 8 Ell 1 STO 1 X
1 Ell [IJ 8 Ell .1 SOLVE/ f 1 {SOLVE}

Display:

X NO ROOT FND

1.0000E-8
121.12112125

1.121121121121

Description:

No root found using
very small guesses
near zero (thereby re­
stricting the search to
the flat region of the
function).

The last two estimates
are far apart, and the
final value of f(x) is
large.

If you use larger guesses, then SOLVE can find the roots, which are
outside the flat region (at x= 2 and x= - 2) .

• You can subsequently delete line J03 to save memory.

c: More About Solving an Equation 271

Round-Off Error and "Underflow"

Round-off Error. The limited (12-digit) precision of the calculator
can cause errors due to rounding off, which adversely affect the itera­
tive solutions of SOLVE and integration. For example,

[(Ixl + 1) + 1Q15f - 1030 = 0

has no roots because [(x) is always greater than zero. However, given
initial guesses of 1 and 2, SOLVE returns the answer 1.0000 due to
round-off error.

Round-off error can also cause SOLVE to fail to find a root. The
equation

Ix2 - 71 = 0

has a root at V7. However, no 12-digit number exactly equals V7, so
the calculator can never make the function equal to zero. Further­
more, the function never changes sign. SOLVE returns the message
NO ROOT FND. However, the final estimate of x (press [1J to see it) is
the best possible 12-digit approximation of the root when the routine
quits.

"Underflow." Underflow occurs when the magnitude of a number is
smaller than the calculator can represent, so it substitutes zero. This
can affect SOLVE results. For example, consider the equation

whose root is infinite in value. Because of underflow, SOLVE returns a
very large value as a root. (The calculator cannot represent infinity,
anyway.)

272 C: More About Solving an Equation

" II' ...
I' -~ ... • , ., .. .,

-•
" •
" • • ..
• Ii'

•

D
More About Integration

This appendix provides information about integration beyond that
given in chapter 8.

How the Integral Is Evaluated

The algorithm used by the integration operation, J'FN d x, calculates
the integral of a function f(x) by computing a weighted average of the
function's values at many values of x (known as sample points)
within the interval of integration. The accuracy of the result of any
such sampling process depends on the number of sample points con­
sidered: generally, the more sample points, the greater the accuracy. If
f(x) could be evaluated at an infinite number of sample points, the
algorithm could-neglecting the limitation imposed by the inaccuracy
in the calculated function f(x)-always provide an exact answer.

Evaluating the function at an infinite number of sample points would
take forever. However, this is not necessary since the maximum accu­
racy of the calculated integral is limited by the accuracy of the
calculated function values. Using only a finite number of sample
points, the algorithm can calculate an integral that is as accurate as is
justified considering the inherent uncertainty in f(x) .

The integration algorithm at first considers only a few sample points,
yielding relatively inaccurate approximations. If these approximations
are not yet as accurate as the accuracy of f(x) would permit, the algo­
rithm is iterated (repeated) with a larger number of sample points.
These iterations continue, using about twice as many sample points
each time, until the resulting approximation is as accurate as is justi­
fied considering the inherent uncertainty in f(x).

D: More About Integration 273

As explained in chapter 8, the uncertainty of the final approximation
is a number derived from the display format, which specifies the un­
certainty for the function. At the end of each iteration, the algorithm
compares the approximation calculated during that iteration with the
approximations calculated during two previous iterations. If the dif­
ference between any of these three approximations and the other two
is less than the uncertainty tolerable in the final approximation, the
calculations ends, leaving the current approximation in the X-register
and its uncertainty in the Y -register.

It is extremely unlikely that the errors in each of three successive ap­
proximations-that is, the differences between the actual integral and
the approximations-would all be larger than the disparity among the
approximations themselves. Consequently, the error in the final ap­
proximation will be less than its uncertainty (provided that f(x) does
not vary rapidly). Although we can't know the error in the final ap­
proximation, the error is extremely unlikely to exceed the displayed
uncertainty of the approximation. In other words, the uncertainty esti­
mate in the Y -register is an almost certain "upper bound" on the
difference between the approximation and the actual integral.

Conditions That Could Cause Incorrect
Results

Although the integration algorithm in the HP-32S is one of the best
available, in certain situations it-like all other algorithms for numeri­
cal integration-might give you an incorrect answer. The possibility of
this occurring is extremely remote. The algorithm has been designed to
give accurate results with almost any smooth function. Only for func­
tions that exhibit extremely erratic behavior is there any substantial
risk of obtaining an inaccurate answer. Such functions rarely occur in
problems related to actual physical situations; when they do, they
usually can be recognized and dealt with in a straightforward manner.

Unfortunately, since all that the algorithm knows about f(x) are its
values at the sample points, it cannot distinguish between f(x) and any
other function that agrees with f(x) at all the sample points. This situa­
tion is depicted below, showing (over a portion of the interval of
integration) three functions whose graphs include the many sample
points in common.

274 D: More About Integration

" ...
• ..

f{xl

.. .' "

-+--------------------------------------~~x

With this number of sample points, the algorithm will calculate the
same approximation for the integral of any of the functions shown.
The actual integrals of the functions shown with solid and dashed
lines are about the same, so the approximation will be fairly accurate
if f(x) is one of these functions. However, the actual integral of the
function shown with a dotted line is quite different from those of the
others, so the current approximation will be rather inaccurate if f(x) is
this function.

The algorithm comes to know the general behavior of the function by
sampling the function at more and more points. If a fluctuation of the
function in one region is not unlike the behavior over the rest of the
interval of integration, at some iteration the algorithm will likely de­
tect the fluctuation. When this happens, the number of sample points
is increased until successive iterations yield approximations that take
into account the presence of the most rapid, but characteristic,
fluctuations.

For example, consider the approximation of

fooo xe-xdx.

Since you're evaluating this integral numerically, you might think that
you should represent the upper limit of integration as 10499, which is
virtually the largest number you can key into the calculator. Try it and
see what happens. Enter this program that evaluates the function
f(x) = xe-x.

D: More About Integration 275

F0l LBL F
F02 RCL X
F03 +/-
F04 eX
F05 RCLx X
F06 RTN

Set the display format to SCI 3, specify the lower and upper limits of
integration as zero and 10499, then start the integration.

Keys:

.~ {SC} 3
o 1 ENTER 1 [I) 499

.1 SOLVE/ f I {FN} F .1 SOLVEd I {J'FN} X

Display:

J'=0.000E0

Description:

Specifies accuracy level
and limits of
integration.

Approximation of
integral.

The answer returned by the calculator is clearly incorrect, since the
actual integral of f(x) = xe- X from zero to 00 is exactly 1. But the
problem is not that 00 was represented by 10499, since the actual inte­
gral of this function from zero to 10499 is very close to 1. The reason
for the incorrect answer becomes apparent from the graph of f(x) over
the interval of integration:

{[xl

-+--~~=-----------------------------~~ x

276 D: More About Integration

.. •

.. • .. •
11\ • • •

•

The graph is a spike very close to the origin. Because no sample point
happened to discover the spike, the algorithm assumed that f(x) was
identically equal to zero throughout the interval of integration. Even if
you increased the number of sample points by calculating the integral
in SCI 11 or ALL format, none of the additional sample points would
discover the spike when this particular function is integrated over this
particular interval. (For better approaches to problems such as this,
see the next topic, MConditions That Prolong Calculation Time.")

Fortunately, functions exhibiting such aberrations (a fluctuation that is
uncharacteristic of the behavior of the function elsewhere) are un­
usual enough that you are unlikely to have to integrate one unknow­
ingly. A function that could lead to incorrect results can be identified
in simple terms by how rapidly it and its low-order derivatives vary
across the interval of integration. Basically, the more rapid the varia­
tion in the function or its derivatives, and the lower the order of such
rapidly varying derivatives, the less quickly will the calculation finish,
and the less reliable will be the resulting approximation.

Note that the rapidity of variation in the function (or its low-order
derivatives) must be determined with respect to the width of the in­
terval of integration. With a given number of sample points, a
function f(x) that has three fluctuations can be better characterized by
its samples when these variations are spread out over most of the in­
terval of integration than if they are confined to only a small fraction
of the interval. (These two situations are shown in the following two
illustrations.) Considering the variations or fluctuation as a type of
oscillation in the function, the criterion of interest is the ratio of the
period of the oscillations to the width of the interval of integration:
the larger this ratio, the more quickly the calculation will finish, and
the more reliable will be the resulting approximation.

D: More About Integration 277

{(xl

Calculated integral
of this function
will be accurate.

~--L.------------------------------------71~~X
a h

{(xl
Calculated integral
of this function
may be inaccurate.

--+-~------------------------------------~~x

a h

In many cases you will be familiar enough with the function you
want to integrate that you will know whether the function has any
quick wiggles relative to the interval of integration. If you're not fa­
miliar with the function, and you suspect that it may cause problems,
you can quickly plot a few points by evaluating the function using the
subroutine you wrote for that purpose.

If, for any reason, after obtaining an approximation to an integral,
you suspect its validity, there's a simple procedure to verify it: subdi­
vide the interval of integration into two or more adjacent subintervals,
integrate the function over each subinterval, then add the resulting
approximations. This causes the function to be sampled at a brand
new set of sample points, thereby more likely revealing any previ­
ously hidden spikes. If the initial approximation was valid, it will
equal the sum of the approximation over the subintervals.

278 D: More About Integration

• r
... ,
... ,

Conditions That Prolong Calculation Time

In the preceding example, the algorithm gave an incorrect answer be­
cause it never detected the spike in the function. This happened
because the variation in the function was too quick relative to the
width of the interval of integration. If the width of the interval were
smaller, you would get the correct answer; but it would take a very
long time if the interval were still too wide.

Consider an integral where the interval of integration is wide enough
to require excessive calculation time, but not so wide that it would be
calculated incorrectly. Note that because f(x) = xe-x approaches zero
very quickly as x approaches 00, the contribution to the integral of the
function at large values of x is negligible. Therefore, you can evaluate
the integral by replacing 00, the upper limit of integration, by a num­
ber not so large as 10499-say 103.

Re-run the previous integration problem with this new limit of inte­
gration. If you have not run any other integrations in the meantime,
you do not have to re-specify FN= F.

Keys: Display:

o I ENTER I W 3 1 E 3_

_ISOLVE/f I {fFN} X j=1.000E0

I x~y I 1.824E-4

Description:

New upper limit.

Integral. (The calcula­
tion takes a while.)

Uncertainty of
approximation.

This is the correct answer, but it took a very long time. To understand
why, compare the graph of the function between x = 0 and x = 103,

which looks about the same as that shown on page 276, with the
graph of the function between x = 0 and x = 10:

D: More About Integration 279

({xl

-r------------------------~------------_T--.. x
o 10

You can see that this function is NinterestingW only at small values of x.
At greater values of x, the function is not interesting, since it decreases
smoothly and gradually in a predictable manner.

The algorithm samples the function with higher densities of sample
points until the disparity between successive approximations becomes
sufficiently small. For a narrow interval in an area where the function
is interesting, it takes less time to reach this critical density.

To achieve the same density of sample points, the total number of
sample points required over the larger interval is much greater than
the number required over the smaller interval. Consequently, several
more iterations are required over the larger interval to achieve an ap­
proximation with the same accuracy, and therefore calculating the
integral requires considerably more time.

Because the calculation time depends on how soon a certain density
of sample points is achieved in the region where the function is inter­
esting, the calculation of the integral of any function will be
prolonged if the interval of integration includes mostly regions where
the function is not interesting. Fortunately, if you must calculate such
an integral, you can modify the problem so that the calculation time is
considerably reduced. Two such techniques are subdividing the inter­
val of integration and transformation of variables. These methods
enable you to change the function or the limits of integration so that
the integrand is better behaved over the interval(s) of integration.

280 D: More About Integration

... •,

... .,

... ., .. ., ..
IF -• -• !
! -
"

Messages

The calculator responds to certain conditions or keystrokes by display­
ing a message. The A. symbol comes on to call your attention to the
message. For significant conditions, the message remains until you
clear it. Pressing @) or [!] clears the message; pressing any other key
clears the message and executes that key's function.

JFN ACTIVE
A running program attempted to select a program label (F N = label)
while an integration calculation was running.

J (JFN)
A running program attempted to calculate an integral
(JFN d variable) while another integration calculation was running .

j(SOLVE)
A running program attempted a SOLVE operation while an integra­
tion calculation was running .

ALL VARS=0
The catalog of variables (.1 MEM I {VAR}) indicates no values stored .

CALCULATING
The calculator is executing a function that might take a while.

DIVIDE BY 0
Attempted to divide by zero. (Includes I %CHG I if Y -register contains
zero.)

DUPL I CAT. LBL
Attempted to record a program label that already exists for another
program routine .

Messages 281

INTEGRATING
The calculator is calculating an integral. This might take a while.

INVALID DATA
Data error:

• Attempted to calculate combinations or permutations with r> n,
with non-integer r or n, or with n~ 1012.

• Attempted to use a trigonometric or hyperbolic function with an
illegal argument: I TAN I with x an odd mUltiple of 90°; I ACOS I or
I ASIN I with x < -lor x > 1; I HYP II ATAN I with x ~ -lor x ~ 1;
I HYP II ACOS I with x < 1.

INVALID :>::!
Attempted a factorial or gamma operation with x as a negative
integer.

I NVALI D y:>::

Exponentiation error:

• Attempted to raise 0 to the Oth or to a negative power.

• Attempted to raise a negative number to a non-integer power.

• Attempted to raise the complex number (0 + iO) to a number with
a negative real part.

INVALID (i)

Attempted an operation with an indirect address, but the number in
the index register is invalid (Iii ~27 or 0 ~ Iii < 1).

LOG(0)
Attempted to take a logarithm of zero or (0 + iO).

LOG(NEG)
Attempted to take a logarithm of a negative number.

MEMOR'y' CLEAR
All of user memory has been erased (see page 255).

282 Messages

..

t'lEt'10F.:'i' FULL
The calculator has insufficient memory available to do the operation.
See appendix B.

t~Ot'ID:: I ::HEtH
Attempted to refer to a nonexistent program label (or line number)
with I GTO I, I GTO I[J, I XEQ I, or {Ft'l} . Note that the error
t~ 0 t~ D:: I ::: T E tH can mean either (1) you explicitly (from the keyboard)
called a program label that does not exist; or (2) the program that you
called referred to another label, which does not exist.

t~O LABELS
The catalog of programs (.1 MEM I {PGt'l}) indicates no program la­
bels stored.

t~O F.:OOT Ft~D

SOLVE cannot find the root of the equation using the current initial
guesses (see page 120 and page 261). A SOLVE operation executed in a
program does not produce this error; the same condition causes it instead
to skip the next program line (the line following the instruction :::OL''1'E

variable).

t·lD STAT DATA

Attempted to do a statistics calculation with no statistics data stored.

O',}EPFLO~,j

Warning (displayed momentarily); the magnitude of a result is too
large for the calculator to handle. The calculator returns
±9.99999999999E499 in the current display format. (See URange of
Numbers and Overflow" on page 24.) This condition sets flag 6. If
flag 5 is set, then overflow has the added effect of halting a running
program and leaving the message in the display until you press a key.

PF.:Gt'l TOP

Indicates the Utop" of program memory. The memory scheme is circu­
lar, so P F: G fo1 TOP is also the line after the last line in program
memory.

PUt·lt·1 I t·IG

The calculator is running a program (other than a SOLVE or JFN
routine).

Messages 283

SELECT FN
Attempted to execute SOL V E variable or f F N d variable without a se­
lected program label. This can happen only the first time that you use
SOLVE or JFN after the message MEMORY CLEAR, or it can happen
if the current label no longer exists.

SOLVE ACTIVE
A running program attempted to select a program label (FN=/abe/)
while a SOLVE operation was running.

SOLVE (SOL'JE)
A running program attempted a SOLVE operation while another
SOLVE operation was running.

SOLVE (fFN)
A running program attempted to calculate an integral while a SOLVE
operation was running.

SOLVING
The calculator is solving an equation for its root. This might take a
while.

SQRT(NEG)
Attempted to calculate the square root of a negative number.

STAT ERROR
Statistics error:

• Attempted to calculate Sx- SY' x, y, m, r, or b with n = 1.

• Attempted to calculate r, x, or xw with x-data only (all y-values
equal to zero).

• Attempted to calculate x, y, r, m, or b with all x-values equal.

• Attempted to do a statistics calculation after ~ has reduced n to
zero.

284 Messages

TOO BIG
The magnitude of the number is too large to be converted to HEX,
OCT, or BIN base. The number must be in the range
-34,359,738,368 ~ n ~ 34,359,738,367.

XEQ OVERFLOW
A running program attempted an eighth nested XEQ label. (Up to
seven subroutines can be nested.) Since SOLVE and fFN each use a
level, they can also generate this error.

Messages 285

Function Index

This section is a quick reference for all functions and operations and
their formulas, where appropriate. The listing is in alphabetical order
by the function's name. This name is the one used in program lines.
For example, the function named FIX n is executed as .1 DISP I {FX}n.

Those functions that are not programmable have their names in key
boxes, such as [!].

Non-letter characters and Greek letters are alphabetized before all the
letters; function names preceded by arrows (e.g. -+OEG) are alphabet­
ized as if the arrow were not there.

Function Name Keys and Description Page

+/- ~ 21
Changes the sign of a number.

+ [B 25
Addition. Returns y + x.

- G 25
Subtraction. Returns y - x.

x 0 25
Multiplication. Returns y x x.

G 25
Division. Returns y -7- x.

[!] Deletes the last digit keyed in; clears x; 16, 19,
clears a menu; deletes a program step. 32,83

.[1] Displays previous entry in catalog; moves 33,76
program pointer to previous step.

286 Function Index

Function Name Keys and Description Page

[!] Displays next entry in catalog; moves pro- 33.76
gram pointer to next step (during program
entry); executes the current program line
(not during program entry).

1/x OEJ 24
Reciprocal .

10x . ~ 55
Common exponential. Returns 10 raised to
the x power .

0/0 • 00 59
Percent. Returns (y x x) -;- 100.

%CHG .I%CHG I 59
Percent change. Returns (x - y)(100 -;- y) .

1r • 0 56
Returns the approximation
3.14159265359.

~+ [E] 154
Accumulates (y. x) into statistics registers .

~- • CEJ 155
Removes (y. x) from statistics registers .

~x • 1 STAT I {I} {x} 161
Returns the sum of x-values.

~x2 .1 STAT I {I} {x 2 } 162
Returns the sum of squares of x-values .

~xy • 1 STAT I {I} {Xy} 162
Returns the sum of products of x- and y-
values .

~y • 1 STAT 1 {I} {y} 161
Returns the sum of y-values.

~y2 .1 STAT I {I} {y2} 162
Returns the sum of squares of y-values.

Function Index 287

Function Name Keys and Description Page

O,r y,x .[P-RECT I {8,f -ty .• ::o::} 61
Polar to rectangular. Converts (r, 0) to (x,
y) .

JFN d variable • [SOLVE/ J I {JHl} variable 127
Integrates the current function with respect
to the variable, using lower limit in Y-regis-
ter and upper limit in X-register .

ABS • [PARTS I {ABS} 67
Absolute value. Returns Ix I .

ACOS • [ACOS I 57
Arc cosine. Returns cos- 1 x .

ACOSH • [HYP I .[ACOS I 59
Hyperbolic arc cosine. Returns cosh- 1 x .

ALL • [OISP I {ALL} 30
Selects display of all significant digits .

ASIN • [ASINI 57
Arc sine. Returns sin- 1 x .

ASINH • [HYP 1.[ASIN I 59
Hyperbolic arc sine. Returns sinh -1 x .

ATAN • [ATAN I 57
Arc tangent. Returns tan -1 x .

ATANH • [HYP 1.[ATAN I 59
Hyperbolic arc tangent. Returns tanh -1 x .

b • [STATI {L.R.} {b} 159
Returns the y-intercept of the regression
line: y - mx .

• [BASE I Displays the menu for base conversions. 144

BIN .[BASE I {Bt--l} 144
Selects Binary (base 2) mode.

[£] Turns on calculator; clears x; clears mes- 14, 16,
sages and prompts; cancels menus; 19, 32,
cancels catalogs; cancels program entry; 36, 73
halts a running program.

288 Function Index

... .,

... ., .. • ,

... ,

... ,
-, , .. •,
~

" ..

fF

-

--

--

--

..

~

"

Function Name

CF n

• 1 CLEAR 1

• 1 CLEAR 1 {ALL}

• 1 CLEAR 1 {PGM}

CU;

CLVARS

CLx

.1 CMPLX 1

CMPLX+/-

CMPLX+

CMPLX-

CMPLXx

Keys and Description Page

.1 FLAGS 1 {CF}n 98
Clears flag n (0 ~ n ~ 6) .

Displays the menu to clear numbers or 16, 33
parts of memory; or clears the indicated
variable or program from a MEM catalog .

Clears all stored data and programs . 34

Clears all programs. 86

.1 CLEAR 1 {:} 154
Clears statistics registers .

• 1 CLEAR 1 {!"lARS} 50
Clears all variables to zero .

• 1 CLEAR 1 {x} 36,40,
Clears x to zero. 73

Displays the CMPLX_ prefix for complex 139
functions .

.1 CMPLX 1 E1J 139
Complex change sign. Returns -(zx +
iZy) .

.1 CMPLX 1 [B 140
Complex addition. Returns (Z1X + iz1y)
+ (z2x + iz2y)·

.1 CMPLX 1 G 140
Complex subtraction. Returns
(z1X + iz1y) - (z2x + iz2y)·

.lcMPLX 10 140
Complex multiplication. Returns (Z1X +
iz1y) X (z2X + iz2y)·

Function Index 289

Function Name Keys and Description Page

CMPLX+ .1 CMPLX I [I] 140
Complex division. Returns (z1x + iz1y) +

(z2x + iz2y)·

CMPLX1/x .1 CMPLX I o::z!J 139
Complex reciprocal. Returns 1/(zx + izy) .

CMPLXCOS • 1 CMPLX I I cos I 139
Complex cosine. Returns cos (zx + izy) .

CMPLX eX • ICMPLXI0 139
Complex natural exponential. Returns
eZx + izy .

CMPLXLN • 1 CMPLX I [QD 139
Complex natural log.
Returns 10ge (zx + iZy) .

CMPLXSIN • 1 CMPLX I []ill] 139
Complex sine. Returns sin (zx + iZy) .

CMPLXTAN • 1 CMPLX II TAN I 139
Complex tangent. Returns tan (zx + izy) .

CMPLX yX • 1 CMPLX I [ZJ 140
Complex power. Returns

(z + iz (z2x + iZ2) 1x 1y) y

Cn,r .1 PROB I {Cn)!,"} 65
Combinations of n items taken r at a time. Re-
turns n! + (r!(n - r)!).

COS Icosl 57
Cosine. Returns cos x .

COSH • 1 HYP I I cos I 59
Hyperbolic cosine. Returns cosh x .

DEC • 1 BASE I {DEC} 144
Selects Decimal mode .

.... DEG • 1 D-RAD I {~DEG} 64
Radians to degrees. Returns (360/21l")x.

290 Function Index

Function Name Keys and Description Page

DEG .1 MOOE I {OG} 57
Selects Degrees angular mode .

• Ioispi Displays the menu to adjust the display 30
format.

.1 O-RAO I Displays the menu to convert between de- 64
grees and radians .

DSE variable • 1 LOOP I {O S E} variable 101
Decrement, Skip if Equal or less. For con-
trol number ccccccc.fffii stored in a
variable, subtracts ii (incremental value)
from ccccccc (counter value) and, if the re-
sult ~ fff (final value), skips the next
program line.

[I] Begins entry of exponents and adds "E" to 22
the number being entered. Indicates that a
power of ten follows.

eX 0 55
Natural exponential. Returns e raised to
the x power .

ENG n • 1 OISP 1 {EN} n 30
Selects Engineering display with n digits
following the first digit. 0 ~ n ~ 11.

- ENTER I ENTER 1 23,39
Separates two numbers keyed in sequen-
tially; copies x into the V-register, lifts y
into the Z-register, lifts z into the T-regis-
ter, and loses t .

FIX n • 1 OISP 1 {FX} n 30
Selects Fixed display with n decimal
places. 0 ~ n ~ 11 .

.. • 1 FLAGS 1 Displays the menu to set, clear, and test 98
flags .

~ FN= label • 1 SOLVE/ Jl {FN} label 111, 127
Selects the labeled program as the current
function (used by SOLVE and fFN) .

". FP • 1 PARTS 1 {FP} 67
Fractional part of x.

Function Index 291

Function Name Keys and Description Page

FS? n .[FLAGS] {FS?} n 98
If flag n (0 .;; n .;; 6) is set, executes the
next program line; if flag n is clear, skips the
next program line .

GRAD • 1 MODES I {GR} 57
Sets Grads angular mode .

GTO label • 1 GTO I label 93, 100
Sets the program pointer to the program la-
bel in program memory .

• 1 GTO I 0 label Sets the program pointer to the program 94
nn line label nn.

.IGToIOO Sets the program pointer to PRGM TOP. 94

HEX .1 BASE I {HX} 144
Selects Hexadecimal (base 16) mode .

• IHypl Displays the HYP _ prefix for hyperbolic 59
functions .

• 1 H-HMS I Displays the menu to convert between frac- 63
tional hours and hours-minutes-seconds .

-HMS • IH-HMsl {~HMS} 64
Hours to hours, minutes, seconds. Converts
x from a decimal fraction to minutes-sec-
onds format.

-HR .1 H-HMS I {~HR} 64
Hours, minutes, seconds to hours. Converts
x from minutes-seconds format to a decimal
fraction.

[ill The indirect parameter. Addresses (indi- 103
rectly) the variable or label whose letter
corresponds to the numeric value in the
variable i .

INPUT variable • 11 NPUT I variable 77
Recalls the variable to the X-register, dis-
plays the variable name along with the
contents of the X-register, and halts pro-
gram execution; pressing I RIS I (or [!])
stores the number in the variable. (Used
only in programs.)

IP .LE&tt§J {I P} 67
Integer part of x.

292 Function Index

.... • -" -
" -•

-• -• ... • ..
Ii' .. • .. • ,
• -• .. .,
... ..
II ..
•

•

,

Function Name

ISG variable

LASTx

LBL letter

.1 LBL/RTN I

LN

LOG

.1 LOOP I

{L.R.}

m

• IMEMI

.1 MEM! {PGM}

.1 MEM! {VAR}

.1 MODES I

n

OCT

.IOFFI

.1 P-RECTI

Keys and Description Page

.1 LOOP! {I S G} variable 101
Increment, Skip if Greater. For control number
ccccccc.fffii stored in variable, adds ii (incre-
mental value) to ccccccc (counter value) and,
if the result > fff (final value), skips the next
program line .

• ILASTx! 41
Returns number stored in LAST X register .

• 1 LBLIRTN! {LBL} label 71
Labels a program with a single letter for refer-
ence by XEQ, GTO, or FN operations. (Used
only in programs.)

Displays the menu for LBL, RTN, and PSE. 71

[ill] 55
Natural logarithm. Returns loge x . .1 LOG I 55
Common logarithm. Returns IOg10 x.

Displays the menu for DSE and ISG. 99

.1 STAT I {L.R.} 158
Displays menu for linear regression .

• 1 STAT I {L.R.} {m} 159
Returns the slope of the regression line:
[2:(Xi - x)(Yi - y)] -:- 2:(Xi - x)2 .

Displays the amount of available memory and 33
the catalog menu.

Begins catalog of programs. 85

Begins catalog of variables. 49

Displays the menu to set angular modes and 29
the radix (. or ,).

.1 STAT I {I} {n} 161
Returns the number of sets of data points .

.1 BASE I {~C} 144
Selects Octal (base 8) mode.

Turns the calculator off. 14

Displays the menu for converting between po- 60
lar and rectangular coordinates .

Function Index 293

Function Name Keys and Description Page

.1 PARTS I Displays the menu for selecting parts of 67
numbers .

Pn,r • 1 PROB I {Pn,r} 65
Permutations of n items taken r at a time. Re-
turns n! -;- (n - r)!.

.1 PRGM I Activates or cancels program entry (toggles) . 72

• 1 PROB I Displays the menu for probability functions. 65

PSE .1 LBL/RTN I {PSE} 82
Pause. Halts program execution briefly to dis-
play x, then resumes. (Used only in programs.)

r .1 STAT I {L.R.} {r} 159
Returns the correlation coefficient between
the x- and y-values: ~(Xi - X)(Yi - y)

-;-V~(x. - xl x ~(y. - y)2.
I I

~RAD .1 D-RAD I {+RAD} 64
Degrees to radians. Returns (21r/360)x .

{R} • 1 PROB I {R} 65
Displays random-number menu .

RAD • 1 MODES I {RD} 57
Selects Radians angular mode .

• RADIX, • 1 MODES I { , } 29
Selects the comma as the radix mark (decimal
point) .

"" RADIX. • 1 MODES I { . } 29
Selects the period as the radix mark (decimal
point) .

RANDOM • 1 PROB I {R} {RANDOM} 65
Returns a random number in the range
O.;;;x<1.

RCL variable 1 RCL I variable 48
Recall. Copies variable into the X-register.

RCL+ variable I RCL I ~ variable 51
Returns x + variable.

RCL- variable. 1 RCL I B variable. 51
Returns x - variable.

294 Function Index

III , , ,
" , Function Name Keys and Description Page ,

RCLx variable. I RCL 10 variable. 51

~
~

Returns x x variable.

RCL..,. variable. 1 RCL 1 CD variable. 51
Returns x ..,. variable.

~ RND .1 PARTS I{RN} 67

~
Rounds x to n decimal places (in FIX n dis-
play option) or to n + 1 significant digits

~ (in SCI n or ENG n display option).

~
RTN .1 LSL/RTN I {RTN} 71, 91

Return. Marks the end of a program; the

~ program pointer returns to the top or to
the calling routine.

~ '" IRIS 1 Run/stop. Begins program execution at the 82

~ ,
current program line or stops a running
program.

II' f) R' [ill 36

~ ..
Roll down. Moves t to Z-register, z to Y-
register, y to X-register, and x to T-register . ,

SCI n .IDlspl {SC}n 30 ... ,
...

Selects Scientific display with n decimal
places, 0 ,.;; n ,.;; 11 . ,

SEED .1 PROS 1 {R} {SEED} 65 ... , . Restarts the random-number sequence
with the seed Ixl. ... ,

SF n .1 FLAGS 1 {SF}n 98 ... , Sets flag n (0 ,.;; n ,.;; 6), indicating "true."

... , .1 SHOW I Shows the full mantissa (all 12 digits) of x 31
(or the number in the current program line).

" r SIN ~ 57 , Sine. Returns sin x.

•
~

SINH .IHypl~ 59
Hyperbolic sine. Returns sinh x.

-.. ., SOLVE!j I Displays the menu for solving for an un- 111, 127

- known and for integration. ..
II ..
-.. -.. • Ii" Function Index 295

Function Name Keys and Description Page

SOLVE variable ., SOLVEI J I {SOLVE} variable 111
Solves the current function for the variable,
using initial estimates in variable and x.

SQRT [E] 24
Square root of x .

• ,STATI Displays the menu for statistical functions. 156

STO variable , STO I variable 48
Store. Copies x into variable.

STO+ variable , STO I G variable 50
Stores variable + x into variable.

STO- variable , STO I G variable 50
Stores variable - x into variable.

STOx variable , STO I 0 variable 50
Stores variable x x into variable.

STO+ variable , STO I G variable 50
Stores variable + x into variable.

STOP , RISI 82
Halts program execution and displays the X-
register .

sx • 1 S-(AT I {s}{s,,} 157
Returns the standard deviation of x-values:

V ~(x - X)2 + (n - 1) .
I

sy ., STAT I {s}{sy} 157
Returns the standard deviation of y-values:

V ~(y - y)2 + (n - 1)
I

TAN 'TAN I 57
Tangent. Returns tan x .

TANH • 1 HYP II TAN I 59
Hyperbolic tangent. Returns tanh x .

• , TESTS I Displays the menu of conditional tests. 96

VIEW variable ., VIEW I variable 79
Displays the labeled contents of variable with-
out recalling the value to the stack.

296 Function Index

~
... ,
... ,
• Function Name Keys and Description Page

i' <- XEQ label I XEQ I label 75, 91

~ Executes the program identified by label.

s x2 .~ 24
Square of x.

~ X .1 STAT I F.·;:} {:=.;;} 156

~
~

Returns the mean of x values: T.xj"7-n.

x .1 STAT I {L.R.} {;i;:} 159
Given a y-value in the X-register, returns the

~
x-estimate based on the regression line:
x = (y ~ b) -;- m.

~ x! .lpROBI{x!} 65

~
Factorial (or gamma). Returns
(x)(x ~ 1) ... (2)(1), or f(x+1).

~ xw .1 STAT I {:=.;; .• ;:} {:=';;w} 157

~
Returns the weighted mean of x values:
(T.Yixi) -;- T.Yi·

~ x<>y ~ 37

" • x exchange y. Moves x to the Y -register and
Y to the X-register • x<O? .1 TESTS I {x?0} {<0} 96 ... • If x < 0, executes the next program line;
if x ;. 0, skips the next program line

• ~ x<y? .1 TESTS I {x?y} {<y} 96 ... • If x < Y, executes the next program line; if x
;. y, skips the next program line • x=O? .1 TESTS I {x?0} {=0} 96

" • If x = 0, executes the next program line; if
x 7'= 0, skips the next program line.

" • x=y? .1 TESTS I {x?; } {=y} 96

~ If x = y, executes the next program line; if x
7'= y, skips the next program line.

~ x>O? .1 TESTS I {x?0} {>0} 96

~ If x > 0, executes the next program line; if
x .;;; 0, skips the next program line.

~
~
~
~
~ Function Index 297

Function Name Keys and Description Page

x>y? .1 TESTS 1 {x,?y} {> y} 96
If x > y, executes the next program line; if x
.;; y, skips the next program line.

x"",O? .[TESTS I {x'?0} {;!:0} 96
If x "'" 0, executes the next program line; if x
= 0, skips the next program line.

x"",y? .[TESTS I {x'?y} {;!:y} 96
If x "'" y, executes the next program line; if x
= y, skips the next program line.

Y .[STAT I {x,y} {Y} 156
Returns the mean of y values: ~Yi"7-n.

y .[STATI {L.R,}{Y} 159
Given an x-value in the X-register, re-
turns the y-estimate based on the
regression line: y = mx + b.

y,x-O,r .1 P-RECT I {y,x~8,r} 61
Rectangular to polar. Converts (x, y) to (r,
0).

yX [Z) 56
Power. Returns y raised to the x power.

298 Function Index

Index

Page numbers in bold type indicate primary references. To look up
functions by name, use the function index that is before this index.

Special Characters
Jo,15
A.,32
C:::::J, 242

" 17 +- ---. , 150
~&, 49
.... See Backspace
"ir, 56, 57
o 1 2 3, 98

A
A .• Z, 15, 48
Absolute value, 67
Accuracy, specifying for integration,

132
Address, indirect, 103-106
ALL format, 31
Angles, converting between degrees

and fractions, 64
vector, 164, 171

Angular mode, 56-57
Annunciators, 20-21

flag, 98
Arc cosine, 57
Arc sine, 57
Arc tangent, 57
Area conversions, 229-235
Area of a circle, 70, 74, 78

Arithmetic, 24-29, 38-46
complex, 139-140
nondecimal. See Base arithmetic
in stack, 38
with stored variables, 50-52
vector, 164-175

Assistance, 240
Average. See Mean

B
Backspace, 16, 19, 23, 32, 40, 73
Balance, 226
Base

arithmetic, 146-148
conversions, 144-145
modes, programming, 151-152

Batteries,
damage from, 248
installing, 243-245
types of, 242

Bessel function, 128-130
Binary numbers, 144-150

large, 49
long, 149
positive, 148

Bit, most significant, 148
Box, solving for dimensions of, 113,

121

Index 299

Branching, 93-94, 95
backwards, 99-102
unconditional, 94

Brightness, display, 14
Bytes in programs, 85

c
C. See Cancel key
Calculator malfunction, 245-247,

249-250
Cancel key, 16, 19, 32, 36, 40, 73
Canceling the display, 36
Cartesian coordinates. See Rectangu­

lar coordinates
Cash values, positive and negative,

223
Catalog

of programs, 85
of variables, 49

Celsius conversion, 229-235
Chain calculations, 26, 44-46
Change sign, 21
Checksum, 85, 86-87
Clear key. See C
Clear x, 36, 40-41, 73
Clearing, 15-16

memory, 34, 253, 255-256
programs, 85-86
statistical data, 154
variables from catalog, 49

Column vector, 189
Combinations, 65-66
Commas in numbers, 29
Comparison tests, 95-97
Complex arithmetic, 139-140
Complex numbers, 137-143

entering, 137, 138
with integration, 126
with SOLVE, 112

Complex roots, quadratic, 191
Compounding periods, 226
Conditional instructions, 95-99, 100

SOLVE,124
JFN, 134

300 Index

Constant, using, 39-40, 43
Constant growth, 40
Continuous Memory, 14, 243
Contrast, 14
Conversions,

angular, 64
coordinate, 60-62
fractional, 63-64

Coordinate transformations, 198-203
Coordinates, converting, 60-62
Copying numbers. See Storing

numbers
Copying variables from catalog, 49
Correcting errors using LAST X, 41,

42-43
Correlation coefficient, 159, 204, 211-

212
Cosine, 57
Counter value, 101
Cramer's method, 175
Cross product, vector, 164, 171
Cube root, 56
Cubic equation, 194
Cursor, 15-16, 23
Curve fitting, 158-160

nonlinear, 204-214
Curve models, 204, 211
Curves, limitations on, 205

D
Damage, 250
Data, displaying, 79-80
Data entry, in a program, 78
Decimal places, 30
Decimal point, 29
Decrement loop counter, 101
Default settings, restoring, 255-256
Defects, 248
Definite integral, 126
DEG,57
Degrees, converting, 64
Degrees mode, 57
Deleting program lines, 82
Dependent variable, 154
Determinant method, 175-182

~ • • •
" • • = =
= ;
;

• -• -• -• -• --• --• --• --• • -• ... •
" • -• -• -• ,
• .. .,
• .,
• ..
•

Digit
entry, 23
entry, terminating, 23
separator, 29

Digits, maximum number of, 21
Discontinuity, SOLVE function,

263-264
Display

contrast, adjusting, 14
format, 29-31
format for integration, 127
inoperative, 245-246
of stack, 36, 40
temporary, 31

Displaying numbers in a program,
79-80

Dot product, vector, 164, 171
Dots in display, 150
DSE, 101-102

E
E,22
e, 55
Ellipses in display, 150
ENG format, 30
Engineering format, 30
ENTER, 23, 25-27, 39
Equation solving, 110-125
Error

with a function, correcting, 42
message, 32, 82, 281-285
stops in a program, 82

Errors, integration, 274
Errors, numerical,

in quadratic equations, 191, 197
in SOLVE, 272
in statistics, 161, 205
in trigonometry, 57

Exponent, 22-23, 30
digi ts in, 21
keying in, 22

Exponential,
common, 55
natural, 55
curve, 204-205, 211

Exponentiation. See yX

F
/(x), 126

in integration, 273
in SOLVE, 259

Factorial, 19, 65
Fahrenheit conversion, 229-235
Feet conversion, 229-235
Ferris wheel principle, 230
Financial calculations. See Time value

of money
FIX format, 30
Fixed-decimal format, 30
Flag

clearing, 98
numbers, 97
setting, 98
status, 98-99
testing, 95, 97, 98-99

Flags,
overflow, 97-98
types of, 97-98

FOR-NEXT loop, 101
Force vector, 174
Fractional part, 67

non decimal arithmetic, 146
Fractions, converting, 63-64
Frequencies, statistical, 157
Frequency curve, normal, 215
Function,

evaluating (SOLVE), 112-113
evaluating (JFN), 128
key, 24
names, 67
names in programs, 74
one-number, 24-25
two-number, 25

Index 301

Functions,
index of, 286-298
numeric, 54-69
SOLVE,112
SOLVEable, 259-260

Future value, 226

G-I
Go to. See GTO
GRAD,57
Grads mode, 57
Graphing SOLVE functions, 123
GTO, 76, 84, 93-94, 100
Hexadecimal numbers, 144-149
Highest bit, 148
Horner's method, 262

programming, 87-88
Humidity limits, 245
Hyperbolic functions, 25, 59
i, 103-106

functions that use, 103
the variable, 53

(i), 103-106
functions that use, 104
for program control, 105

Imaginary numbers, 137
Inactive key, 32
Inch conversion, 229-235
Increment loop counter, 101
Independent variable, 154
Index value, 105
Indirect addressing, 103-106
Initial guesses (SOLVE), 111, 118,

120
locations of, 120
selecting, 123

INPUT, 77-79
canceling, 79
effect on stack of, 257
with integration, 128
with nondecimal numbers, 150
with SOLVE, 112

302 Index

Input, program, 78
Inserting program lines, 82
Integer part, 67

in nondecimal arithmetic, 146
Integral, approximating, 131
Integrand, 127, 131
Integration, 126-136

accuracy of, 127, 131-134
algorithm, 130, 272-274
anomalies, 275-277
approximations, 273-274
calculation time, 279-280
conditional, 134
errors, 274
function for, 128
how it works, 273-280
interrupting, 127
iterations, 274
limitations on, 135
limits, 127, 130, 134
method, 274
multi-variable input with, 128
nested, 135
output, 134
in programs, 134-135
results, 127, 134, 274-278
results, verifying, 278
sampling, 274, 277
uncertainty of, 127, 132, 274
using, 127
writing program for, 128

Interest rate, 226
Interference, radio frequency, 252
Intermediate results, 26, 28, 35,

44-46
Internal precision, 30-31
Inverse, matrix. See Matrix inverse
Inverse trigonometry, 57, 58
Inverse-normal distribution, 215-221
Inverses, complex, 139
ISG, 101-102

.. ..
K-L
Kelvin conversion, 229-235
.Lukasiewicz, 35
Labels. See Program labels
Largest numbers for base conversion

149 '

LAST X register, 41-44
operations affecting, 258

LBL, 71-72, 73. See also Program
labels

Length conversions, 229-235
Letter keys, 15, 48, 71
Line numbers, program, 72
Linear

estimation. See Linear regression
motion, solving for, 115
regression, 156, 158-160

Loan calculations. See Time value of
money

Lock-up, calculator, 245-246
Logarithm,

common, 55
complex, 139
natural, 55

Logarithmic
curve, 204-205, 211
functions, 25, 55, 139

LOOP, 99, 101
Loop,

conditional, 100
control number, 101
with counter, 95, 101-102
currents, 181
infinite, 100

Looping, 99-102
with (i), 106

Low power, 242-243

M
Magnitude, 24
Mantissa, 22, 30-31, 49
Matrices, solving. See Simultaneous

equations

Matrix
coefficient, 183
formulas, 175-176, 183
inverse, 183-190
inversion, 183-190
result, 183

Mean, 156-157
population, 219
weighted, 157-158

MEM, 33, 49, 85
Memory,

available, 33, 49
checking, 33
MEMORY CLEAR, 243, 245, 255
Memory
clearing, 34, 50, 253
clearing all, 255-256
deallocating, 254

MEMORY FULL, 85, 162, 253
Memory

loss, low power, 243
loss after battery installation, 245
management, 253-254
program, 72, 78, 84-87
requirements, 254
saving, 51
space. See Memory, user
stored, 253-254
usage, 254
usage for statistics, 162
usage for programs, 84-85
user, 47
for variables, 50

Menu, 17
canceling, 19
exiting, 19-20
keys, 16-19
types of, 18
using a, 16-19

Messages, 32, 281-286
Meter conversion, 229-235
MODES menu, 29
Moment, 174
Money, sign of, 223
Money calculations. See Time value

of money

Index 303

N
Negative

integer, largest, 149
numbers, 21
non decimal numbers, 148
Newton's method, 215
NO ROOT FND, 119, 267
Noncommutative functions, 25, 37,

45
Nonprogrammable functions, 87
Normal distribution, 215-221
Number,
-altering functions, 67
displayed, 30
labeled, 41
magnitude of, 24, 272
range, 24, 272
rounded, 30
two-function, 25
using twice, 39

Numbers,
complex, 137-143
correcting, 15-16, 41
internal representation of, 147-148
keying in, 21
negative, 21
non decimal, 144-150
nondecimal, internal representa-

tion of, 147-148
partially hidden, 150
prime, 235-238
in program lines, 73, 151
real, 54
right-justified, 148
separating, 23, 27, 39
size of, 21
too large, 21, 22, 49
too small, 22

o
Octal numbers, 144-149
Off, 14

304 Index

On, 14
One-variable data, 154
Operation,

checking, 245-247
help with, 240

Operations, index of, 286-298
Order

of calculation, 26, 45-46
of entry, 25
of numbers, 37

Output, program, 78
Overflow, 24

flagged, 97-98
in nondecimal arithmetic, 146
program, 98

p
P-RECT, 60-62
Parentheses, 26, 28, 45
PARTS menu, 67
Parts-of-numbers functions, 25, 67
Pause, programmed, 82
Payment, 226
Percent, 59-60
Percentage change, 59-60
Periods in numbers, 29
Permutations, 65
Phasor form, complex, 142
Polar

coordinates, converting, 60-62
form, complex, 142
vector coordinates, 170

Pole, SOLVE function, 264-265
Polynomial

expressions, programming, 87-88
second-degree, 191-197

Positive integer, largest, 149
Power

consumption, 242
curve, 204-205, 211
function, 56
function, complex, 140

... ,

... ,

... • ~ • .. • ... • •

Precision,
full, 31
integration, 132
numeric, 30-31
SOLVE,272
of statistical data, 160-161
trigonometric, 57

PRGM, 72, 73, 75
PRGM TOP, 72, 73, 84

moving to, 84, 94
Prime number generator, 235-238
PROB menu, 65
Probability, 65-66

normal, 215-221, 219
Program,

boundaries, 71-72
catalog, 85
checking a, 86
deleting, via catalog, 85
displaying, via catalog, 85
editing, 82
entry, 72-73
executing, 75
executing via catalog, 85
executing step by step, 76
interrupting, 82

Program labels, 71-72, 73, 77, 85, 86,
94, 95

branching to, 94
in catalog, 85
duplicate, 72
indirect, 103, 104

Program line numbers,
moving to, 84, 94
in nondecimal modes, 151
Program lines, 72
deleting, 73, 82
inserting, 82
in nondecimal modes, 151
renumbering, 82

Program
memory, 72, 84-87
names. See Program labels
pointer, 76, 84, 94
resuming, 78, 82
returns, 72, 73

running a, 75, 76, 85
stepping through, 76
stopping, 82
testing, 75-76
writing a, 71-74

Programming, 70-89
Programming with base modes,

151-152
Programs, clearing, 85-86
Prompt for variable, 77, 79

Q-A
Quadratic equation, 191-197
Questions, 240-241
R~, 36-37
RAD,57
Radians, converting, 64
Radians mode, 57
Radius vector, 174
Radix mark, 29
Raising a number to a power, 56
Random number

generator, 65
seed, 65

Range of numbers, 24, 149
Rankine conversion, 229-235
ReL,48
Real numbers, 54
Recall arithmetic, 51-52
Recalling numbers, 48

in a program, 78
Rectangular

coordinates, converting, 58,60-62
form, complex, 142
vector coordinates, 170

Reference, function, 286-298
Register, LAST X, 41-44
Registers,

stack, 35-41, 78
storage. See Variables
swapping, 37

Regression. See also Linear regression
coefficients. See Slope and

y-intercept
nonlinear, 204-214

Index 305

Repair, 248. See also Service
Resetting memory, 254-255
Retrieving numbers. See Recalling

numbers
Reusing numbers with LAST X, 41,

43-44
Reverse Polish Notation. See RPN
Roll down, 36-37
Root,

approximation to, 119, 197, 261
of equation, 110, 116-117, 119
-finding, 259-260
function, 56
maximum, 267
minimum, 267-268
no, 267-271
quadratic, 191-197

Rotation, coordinate, 198-203
Round-off error with integration, 131
Rounding, 24, 30, 49, 67
Routines, program, 90
RPN (Reverse Polish Notation),

25-26, 28, 35, 44-46
RTN, 72, 73. See also Program returns
RTN, subroutine, 91
Run/stop, 78

s
Savings calculations. See Time value

of money
Scalar product, vector, 164, 171
SCI format, 30
Scientific format, 30
Scrolling, 84
Self-test, calculator, 246-247
Service, 249-251

centers, 250
charge, 250
contracts, 251
international, 250

Shift, canceling, 15
Shift key, 15
Shipping, 251
Shorting, 246

306 Index

SHOW, 31, 49, 79
nondecimal numbers, 150

Sign bit, 148
Significant digits, 22, 31, 49
Simultaneous equations,

determinant method of, 175-182
matrix-inversion method of,

183-190
Sine, 57

integral, 130-131
Slope, 159, 204, 211-212
Solutions. See SOLVE results
SOLVE, 259-272

asymptote, 267, 269
calculation, interrupting, 119
conditional, 124
defining functions for, 112-113
with discontinuous function,

263-264
estimates, 261
flat region, 267, 271
iterations, 118, 259
how it works, 259-260
limitations on, 125
math error, 270
maximum, 267
method, 259-260
minimum, 267-268
multivariable input with, 112
nested, 125
with one-root function, 262
output, 124
precision, 272
programs (functions), 112-113
in programs, 124
restrictions, 259-260
results, 111, 119, 120, 124, 268,

272
results, interpreting, 261
results, no, 267-271
search, 120, 267-268
with two-root function, 263
underflow, 272
using, 111-113

-• ... • ... • Solving for unknown variables,
'" , 110-125

• Spherical coordinates. See Polar
coordinates

a Stack,

~
automatic memory 35-46
complex, 138 , drop, 38, 39
filling with a constant, 39-40

~ Stack lift, 38, 39

~
disabling, 257
enabling, 257

~ neutral, 257
operations affecting, 256-257

~ Stack,

~
reviewing, 36
subroutine, 92, 125, 135 .. viewing without affecting, 49 • Standard deviation, 156-157 .. population, 219 • ... sample, 157 • true, 157 ... STAT menu, 156 ,

Statistical calculations, 156-162 ... , limitations of, 160-161
Statistical data, ,

accumulated, 161 ... clearing, 154, 162 ,
correcting, 155 , deleting, 154, 161 , entering, 153-154
normalizing, 161 .. precision of, 160-161 , .. predicting, 158-160

• sets, number of, 154, 161

~ Statistics, 153-162

• Statistics registers, 161-162

" allocating, 162 ...
clearing, 162

~ STO, 48

~ Storage arithmetic, 50-51 ... Stored data, 253
~ Storing numbers, 48 .-
• Subroutines, 91
... nested, 92

• ...
• ...

Sum
of products, 162
of squares, 162
of x-values, 161
of y-values, 161

Summation values, statistical, 156,
161-162

Support, customer, 240
Surface area of a cylinder, 80-81
Swapping numbers (X- and Y-regis-

ters), 25, 37

T
T -register, 35-36, 38-40, 47
Tangent, 57
Temperatures,

converting, 229-235
operating, 245
storage, 245

TESTS, 96
Tests, conditional, 95-99
Time, converting between minutes

and fractions, 63-64
Time value of money, 222-229
Translation, coordinate, 198-203
Trigonometry, 25, 56

complex, 139
Troubleshooting, 245-247
True/false test, 95-99
Truncation in nondecimal arithmetic,

146, 147
Two's complement, 146, 148
Two-variable data, 154

u-w
Underflow, 24

SOLVE,272
Unit conversions, 229-235
Variable, viewing a, 49

Index 307

Variables, 47-53
catalog of, 49
clearing, 49-50
copying, 49
current value of, 77
displaying, 49
indirect, 103
integration, 128
listing, 49
names of, 47-48, 77
in programs, 77
in programs, copying, 79-80
in programs, displaying, 79-80
SOLVE,112
unknown, 110-112, 120

Vector
addition, 142
components, 171
operations, 164-175
converting to rectangular coordi­

nates, 62
VIEW, 49, 79-80

with nondecimal numbers, 150
Volume of a cylinder, 80-81
Warranty, 248-249

service, 251
United Kingdom, 249

Weighted mean. See Mean, weighted
Windows, 149-150
Word size, 149
Wrong function, correcting, 42
Wrong numbers, correcting, 42

x-z
x-estimate, 158-159, 212
X-register, 35-40, 47

clearing, 40-41
clearing in a program, 73
exchanging with Y -register, 37
and integration, 128
in programming, 70
with SOLVE, 113, 120
for statistical data, 154

308 Index

testing, 95-96
with Y -register, comparing, 95-96
with zero, comparing, 96

XEQ,75
subroutine, 91

y-estimate, 158-159, 212
y-intercept, 159, 204, 211-212
V-register, 35-37, 47

and integration, 132
for statistical data, 154

yX, 56
Z-register, 35-36, 47
Zero, 40
Zero in variable, 50

Contacting Hewlett-Packard

For Information About Using the Calculator. If you
have questions about how to use the calculator, first check
the table of contents, the subject index, and H Answers to
Common QuestionsH in appendix A. If you can't find an
answer in the manual, you can contact the Calculator Sup­
port Department:

Hewlett-Packard
Calculator Support
1000 N.E. Circle Blvd.
Corvallis, OR 97330, U.S.A.

(503) 757-2004
8:00 a.m. to 3:00 p.m. Pacific time
Monday through Friday

For Service. If your calculator doesn't seem to work prop­
erly, see appendix A to determine if the calculator requires
service. Appendix A also contains important information
about obtaining service. If your calculator does require ser­
vice, mail it to the Calculator Service Center:

Hewlett-Packard
Calculator Service Center
1030 N.E. Circle Blvd.
Corvallis, OR 97330, U.s.A.

(503) 757-2002

For Information About Hewlett·Packard Dealers,
Products, and Prices. Call the following toll-free
number:

(800) 752-0900

Contents

Page 13 Part 1: Basic Operation
Getting Started· The Automatic Memory Stack· Storing
Data Into Variables • Real-Number Functions

69 Part 2: Programming
Simple Programming • Programming Techniques

109 Part 3: Advanced Operation
Solving for an Unknown Variable in an Equation
• Numerical Integration. Operations With Complex
Numbers· Base Conversions and Arithmetic
• Statistical Operations

163 Part 4: Application Programs
Mathematics Programs • Statistics Programs
• Miscellaneous Programs

239 Part 5: Appendixes and Reference
Assistance, Batteries, and Service· User Memory and the
Stack. More About Solving an Equation • More About
Integration. Messages • Function Index • Subject Index

rli~ HEWLETT
~~ PACKARD

Reorder Number
00032·90039

00032-90065 English
Printed in U.s.A. 9188

Scan Copyright ©
The Museum of HP Calculators

www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

