
HEWLETI-PACKARD 

HP·34C 
OWNER'S HANDBOOK 

AND PROGRAMMING GUIDE 



"The success and prosperity of our company will ~ assured only If we offer our 
customers superior products that fill real needs and provide lasting value, and that 
are supported by a wide variety of useful services, both before and after sale." 

Statement of Corporate Objectives. 
Hewlett·Packard 

When Messrs. Hewlett and Packard founded our company in 1939, we offered one 
superior product, ·an 'audio, oscillator. Today', we offer over 3500 QUali ty produds, 
designed and buill for some of the world's most cisceming customers. 

Since we introduced our first scientific calculator in 1967, we've SOld millions wortd­
wide, both pocket and desktop models. Their owners include Nobel laureates, 
astronauts, mountain climbers, businesspersons, doctors , students, and 
homemakers. 

Each of our calculators is precision crafted and designed to solve the problems 
its owner can expect to encounter throughout a working lifetime. 

HP calculators fill real needs. And they provide lasting value. 



~~ HEWLETT 
1.:'l.:JI PACKARD 

The HP-34C Advanced 
Programmable 

Scientific Calculator 
With Continuous Memory 

Owner's Handbook and 
Programming Guide 

AUlust 1980 

USED 
00034·9(X)() I Rev. C 8/ 80 

Printed in U.S.A. C Hewlett-PaCkard Company 1979 



Contents 

The HP-34C Advanced Programmable Scientific Calculator 
With Continuous Memory 

Keyboard and Memories ....... , .............. , .... ........ .... 7 
Function Key Index ...............•... , ..... • .... • . .. • .. ....... 8 
Program Control Index ..... , ....•... • .... . •• . .• •.. . • . . . .. ..... 12 

Section I: Meet the HP-34C ....... _ ... . ... .... . .. . . . . . . ...... 14 
Manual Problem Solving ......................• . ...•.......... 15 
Programmed Problem Solving ...... , . . . . . . . ............... 16 
What Continuous Memory Means to You . • . . •.. , ... 19 

Section 2: Specific Features of the HP-34C ......... .. . .•...... 20 
Keyboard Operation ............................. . ............ 20 
Storage Registers and Program Memory ........•....•.......... 21 
Number Alteration Keys .............. . .............•.......... 22 

Absolute Value .. .. .................... .. .... ..... ......... 22 
Integer Portion of a Number ....... . . . . . . . . . . .. . . .. . ......... 22 
Fractional Portion of a Number . . . • . . . • • . . . . • . . . ... . ... 23 

Mathematical Functions ................• • ... • •. . . • .. . . .•...... 24 
Factorial .........................•...••...•....•. . ........ 24 
Gamma Function ...... . .... . . .. ... ...•. .. ••. . ... . .. • .. . ... 25 
Percent Difference . ... • . . . . • . . . . . . • . . . . • . . . .26 

Statistical Functions . . .. ........ . . . ... •.. . •• .. ... . . . •... . .. 27 
Accumulations . . . . . . . . . . . . . . . . . . . .... , • . . . . .. , .. 27 
Deleting and Correcting Data ....... ..... .................... 31 
Mean ....... .......... . ....... . ....•....•...... . .32 
Standard Deviation ........... . ........ . .... . .... . .. . . ...... 34 
linear Regression . . . . . . • .. . . •. . . ••. . .•• . ....•......... 36 
linear Estimation .......................................... 39 
Correlation CoeffiCient . . . . . . . . . .• . . . •• ... . •. . ........ 40 

Vector Arithmetic. . . . . . . . . . . . . .. . . .. . . . .. . . . .. . . . . • . . .40 

Section 3: Simple Programming ......... . .. .. .. . ........... 44 
What Is a Program? ........ ............•..... • .. . . •.... ...... 44 
Why Write Programs? . .................•.... • . ... • . ..••...... 44 
Three Calculator Modes ........ . •• . .. . ••. . . •• . . .•• . .......... 45 
Looking at Program Memory .......•..... • .... • .... • . ..•..... .46 
Keycodes ......... .. ................................. 48 
Problems ..... . ... . ..................•.... . .......... 49 
Clearing a Program ....................• • . . . . . .. . . . .. • ....... 49 

___ 3 



4 Contents 

Creating Your Own Program . . . • • . . • • . . . .49 
Beginning a Program . . . .50 
Ending a Program . . . . . . . . . . . . • . . . . .. . . ... 50 
Loading a Program . . . . . . . . . . . . • . . . . . . .. 51 

Running a Program ... . . . • . . . • • . . • • . . • • • . . • . .53 
Searching For a Label .. . . . • . . . • . . . .53 
Executing Instructions ... . .54 

Automatic Memory Allocation . . . . . . . . . . . . .55 
Converting Storage Registers to Program Memory . . . .55 
Converting Program Memory to Storage Registers . . . .. ... 59 
Using ~ ........... ........ . ... .. ... . .. ........ . 59 

Writing a Third Program . . . . . . . . . . . .. 60 
Program Stops and Pauses .... 62 

Planned SlOps During Program Execution .. • . • • •. . . . •...... 62 
Pausing During Program Execution .•.... .. .••...... 65 
Unexpected Program Stops ..... 66 

Labels .. 68 
Flowcharts .68 
Problems . .. .. . . •. . .. 72 
Programming Techn iques. . . . . . .. . .... .. .. . ....... . .76 

Using Homer's Method . . . . . . • . . . . . .79 
Further Applications . . . . . . . . . . . .. • . . . .82 

Problems ..... 82 

Section 4: Program Editing. . . . ... .. 84 
Nonrecordable Operations ... . . .. • . ... • ....... 84 
Pythagorean Theorem Program . . . • • . . . • • . . . • • . . • • . . . .. 86 
Single· Step Execution of a Program . . . . . . • . .• • . . • . . ... . 87 
Modifying a Program ........ . . . . . . . . . . . . . .. 89 
Single·Step Viewing Without Execution ... . . . . . . . . • . . .90 
Resetting to Line 000 . . . . . . . . . . . . . . • .. .. .. .. . . . ... 91 
Going to a Line Number .. . ..... . ... .. .......... 91 
Inserting Instructions in Longer Programs . . . . . . .• • . . • • . . . . . . . .93 
Stepping Backwards Through a Program . . . ... 93 
Running the Modified Program ........... . .. ....... . .. .. . ... 95 
Deleting Instructions .... . .. ... ..... 96 
Problems .. . . ........ .. .... . ... 98 

Section 5: Branching, Decisions, and Flags .... ... . . .. .. . · ... . 102 
Unoonditional Branching and Looping . ....... . • •...•........ 102 
Problems .. . . .. •• . , •• .. ..... 104 
Conditionals and Conditional Branches .. . . . . . • . . .108 
Problems ....•• • . . •• .. •.... .116 
Flags . ....... . ......... . ........ .. ......•.. . .120 
Problem . . . . .. . . .. . . . .. . . . .. . . . .. . . .. . . . .. . . .. . . . . . . .124 



Contents 5 

Section 6: Subroutines ... ... . .. . 
Subroutine Usage. . ......... . 
Subroutine Limits . ...... ....... ,... . . ........ , .. . 
Using [E) [!!!J at the End of Occupied Program Memory 

Seelion 7: Adnnced Pro: .............. . 
Controlling the I-Register . ... ...... . 

Storing a Number in the I-Register . . . . . ....•.... 

. . . 126 
... 133 
· .135 

.137 

. .. . . 140 
.140 

Exchanging X and I ... . . . . . . . . . . . .... .... . , .. 
· .140 
.141 

Incrementing and Decrementing the I-Register ... . 
ISG and DSE Limits . ... . . ........... . 

Problem ....... . 
Using the I-Register For Display, Storage Register, 

· .141 
· .149 
.149 

and Program Control . . .1 S1 
I-Register Display Control . . . . . . . • . . . .. 152 
Exchanging X and (i) . . .. 156 
Indirect Store and Recall . .. ....... .158 
I-Register Control of Branches and Subroutines .. . .... 163 
Problem .................... . .170 
Branching and Subroutines Using Line Number Addressing .... 171 

Section 8: Finding the Roots of an Equation ... 174 
Using ISOLVEI .. . .. 174 
When No Root Is Found .... . . . . . . . . ..... .. 180 
Choosing Initial Estimates .... .•...••.. . .... 182 
How ISOLVEI Works ............ . .•• .. .••• • . •••. . • •. . . •• . ...... 186 
Accuracy of the Root . . . . . . . . . • . . . . . . . .. 188 
Interpreting Results ....... . . • . . . . • . . • . .192 
Using ISOlVEI in a Program . . .. 199 
Restriction on the Use of ~ .... . . . . • . . .. 200 
For Further Information ..... . . . . . . . ... 200 

Section 9: Numerica l Integration .................... . ....... 202 
Using IlIl .. ....... ............ .. .. . .. . . . .. . . .......... 202 
Accuracy of IlIl . . . . . . . . . . . .. 208 
Using 1m in a Program . .. . ....... ... ....... 212 
For Further Information. .. . . . ....... . .•.. . . .213 

Appendix A: Advanced Use of ISOLYfI .... .••....•...• •. . .... 214 
. .. 214 

. ... 219 
· .224 

Using ISOLVE! With Potynomials . . . . . . . . . . . .... . ... .. . . 
Finding Several Roots ...............•. . • • 
Finding Local Extremes of a Function .. 

Using the Oerivative . .. 
Using an Approximate Slope 
Using Repeated Estimation 

Limiting the Estimation Time ........ . 

. . . . • .. ... . .224 

. .. ........... 227 
. . .. 230 

. .. • ....•.... . .. 232 



6 Contents 

Counting Iterations .. . . . . .. . • .. . 
Specifying a Tolerance ... . .. . ... . . 

Using IsolVEl With lZD · ... . 

.233 
. . . . . 233 

.233 

Appendix B: A More Detailed Look at 1m . . . . . . . 236 
How 1m Wor1<s . . . . . . . . . . . . . . . . . . . ... 236 
Accuracy , Uncertainty, and Calculation Time. . . . . .. •. .. ... . .237 
Accuracy of the Function to be Integrated . . .241 

Functions Related to Physical Situations. . . . . . . . . • . . . . . . . . . 242 
Round-Off Error in Internal Calculations ..... . 243 

Uncertainty and the Display Format . . . . . . . . . . . . . . . . . . . . . . .244 
Calculating Integrals of Maximum Accuracy .,,: . . 247 
Obtaining the Current Approximation to an Integral .. 250 
Considerations that Could Cause Incorrect Results .... . . 252 
Considerations That Prolong Calculation Time . _ .... .. ...... . . 260 

Subdividing the Interval of Integration . . . . . . 263 
Transformation of Variables . . . . . . . . . . . . . . . . . . . . . .267 

Appendix C: Service and Maintenance. 

Appendix D: Error Conditions ... ... .. .. .... . 

Appendix E: Stack Lift and LAST X .. ... . .. . . . . 

General Index. 

. . ... .. . 270 

. . . 280 

. . . . 284 

.286 



The HP·34C Advanced Programmable 
Scientific Calculator With Continuous Memory 

1I '.!f1l1l 
II ••• • 
.. iiilhl 

83i±li±l 
rnffi -m 
!±1m 

PROGRAM MEMORY 
Pennanent Shared 

I:~J I:~~ 
• • 

~~ ~~ 

AUTOMATIC 
MEMORY STACK 

~~ IYl 
IXl Olsplayed 

LAST X 

STORAGE REGISTERS 
Pennanent Sha~ 

10 R.D R .. O 
R, D R.,O 

R, D R ,O 

R,D R,D 

R. D R. D 

R,D R, D 

RoD R oD 

R,D R.,D 

RoD R .• D 
R,D R .• D 

The basic program memory-storage register allocation is 70 lines of programming 
and 20 data storage registers, plus the I-register. The calculator automaticaJly 
converts one data storage register into seven lines of program memory. one 
register at a lime , as you need them. Conversion begins with R.e and ends with 
R •. 

7 



Function Key Index 
OFF.mnON OFF·ON switch set to ON. 
PRGM.mn RUN PRGM·RUN switch set to RUN. 
Function keys pressed from the keyboard execute individual functions as 
they are pressed. Input numbers and answers afe displayed. Except where otherwise indicated, each function key listed below operates from the 
keyboard and as a recorded instruction in a program. 

Prellx Keys I CHS I Changes sign Stack Manipulation 
IT) Pressed before 
a function key. 
selects gold function 
printed above that 
key. 

III Pressed before 
a function key. 
selects blue function 
printed above that 
key. 

[!) Pressed before 
a function key , se­
lects black function 
printed on slanted 
face of that key. 

CLEAR I ""EFIX ! 
(nonprogrammable) 
cancels a partially 
entered instruction 
such as m. m 
cmJ. IIJ, m. m 
lID. I STO! m. etc. 

Digit Entry 

I EN'1U'tl Enters a 
copy of number in 
displayed X-register 
into V-register. Used 
to separate 
numbers. 

of number or expo­
nent of 10 in dis­
played X-register. 

I EEX I Enter ex­
ponent. After press­
ing. next digits keyed 
in are exponents of 
10. 

o lhrough 9 Digit 
keys. 

8 Decimal point. 

NUmber Alteration 

OED Leaves onty 
integer portion of 
number in displayed 
X-register by truncat­
ing fractional 
portion. 

I FRAC I Leaves onty 
fractional portion of 
number in displayed 
X-register by trun­
cating integer por­
tion. 

IA8s I Gives abso­
lute value of number 
in displayed X· 
register. 

___________________8 

lEI Rolls down 
contents of stack for 
viewing in displayed 
X-register, 

§J Rolls up con­
tents of stack for 
viewing in displayed 
X-register. 

\"'! Exchanges 
contents of X- and Y­
stack registers. 

I CLX I Clears con­
lents of displayed X· 
register to zero. 

Storage 

I STO I Store. Fol­
lowed by address 
key, stores dis­
played number in the 
storage register 
(R, through R •• R .• 
through R .•• I) speci. 
fied. Also used to 
perform storage 
register arithmetic. ~ 



~ IRCLI Recall . FoI- I MANT I Mantissa (ID Computes 
lowed by address (nonprogramma- reciprocal of number 

key, recalls number ble) . Displays all 10 in displayed X-

~ 
from storage regis- significant digits of register. 
ter (Ro through R~ , the number in the X- ffi Places value of 
A.o through R.t • I) register as long as pi (3.141592654) 
specified into the I MANT I key is into displayed x -
lhe displayed X- pressed. register. 
register. 

~ 
ILST xl Recalls num- Percentage lID Inlegrate. 

ber displayed before Computes definite 

the previous opera- I ""q Computes integral of/(x) with 

tion back into the dis- percent of change expression for f(x) 

~ 
played X-register. between number in keyed into program 

CLEAR I REG IClears 
V-register and num- memory. 
ber in displayed X-

contents of all star- register. ISOI...vel Solves for 
age registers (Ro real root of equation 

~ 
through Ag , R,o (!J Computes x% f(x) ~ O . with expres-
through R.o• I) to of value in the V- sion f(x) keyed .. to 
zero. register. program memory. 

Display Control Mathematics 

~ 
S1a1lst tcs 

mEJ Selects fixed 8m0m CLEAR m Clears point display. Arithmetic opera-
tors. statistical storage 

~ 
[ED Selects scian- registers (Ro through 
tific notation display. @j Computes R,) . 

I ENG I Selects engi-
square root of num- (!!) Accumulates 
ber in displayed X- numbers from X-

nearing notation dis- register. and V-registers into .. play . 
(£] Computes 

storage registers Ao 

I DSP I I Displays as square of number 
through As. .. many digits after the in displayed X- IE Subtracts x and 

decimal point as are register. Y values from stor-

,a specified by the age registers Ro 
number in the 1- C!D Calculates fac- through As for 

~ 
register (0 through torial x! I or Gamma correcting I]!] 
9). function r(1+x). accumulations. 

9 



00 Computes Polar/Rectangular (!ID Converts 
mean (average) Qf x Conversion degrees to radians. 
and y values accum· 

EID Converts polar EID Converts rad· ulated by [0 . 
ians to degrees. magnitude rand 

[!) Computes angle (J in X- and I +HMS I Converts 
sample standard V-registers to ree- decimal hours (or 
deviations Of)( and y tangular x and y degrees) to hours, 
values accumulated coordinates. minutes, seconds 
by [0 . E!l Converts x I Y 

(or degrees, min-
utes, seconds). m Unear estimate. rectangular coordi-
EEJ Converts hours, Computes Bstj. nates placed in X-

mated value of y for and V-registers to minutes, seconds 

a given value of x by polar magnitude r (or degrees. min-

method of least and angle B. utes, seconds) to 

squares. decimal hours (or 
degrees). 

o Correlation 
Trigonometry 

I-Reglstor Control 
coefficient. Com-

I DEG I Sets decimal putes "goodness of 1.r~11 Ex.changes 
fit" between the x degrees mode for 

and y values accum· trigonometric func· contents of dis· 
tions. played X·register 

ulatad using @ with those of the I· 
and the linear func· I RAO I Sets radians register. 
tion that approx· mode for trigone--
imates them. metric functions. IX 'Hill Exchanges 

I GRO I Sets grads 
contents of dis· 

IT]] Unear regres- played X-register 
mode for trigonome- with those of the sian. Computes y- tric functions . 

register addressed intercept and slope 
for linear function @EjlcosliTANI by the value stored 

that best approxi· Computes sine, co- in the I-register, 

mates x and y sine, or tangent of CD I·register. 
values accumulated value in displayed Storage register 
using ~. The X·register. for increment/de· 
value of the y-inter- I SlN"1 Ileos-'Il TAN-II crement operations 
cept is placed in the Computes arc sine. and for indirect 
X-register: the value arc cosine, or arc control of dis--
of the slope is placed tangent of number in play and program 
in the Y·register. displayed X·register. execution. 

10 



Gill Indirect opera­
tions command. 
Used with I STO I and 
[RCL I for indirect 
data storage, recall, 
and storage register 
arithmetic. 

[OSp I I Displays as 
many digits after the 
decimal point as are 
specified in the 
I-register. 

[OSE I Decrement, 
skip when equal or 
less than. Subtracts 
specified decrement 
value from counter 
value. Skips one 
program line if new 
counter value is 
equal to or less than 
specified test value. 

(I!ID lncrement, 
skip when greater. 
Adds specified 
increment value to 
counter value. Skips 
one program line if 
new counter value is 
greater than speci­
fied test value. 

Logarithmic and 
exponential 

@) Computes 
natural logarithm 
(base e = 
2.718281828 ... ) of 
number in displayed 
X-register. 

IEl Natural anti­
logarithm. Raises e 

11 

(2.718281828) to 
power of number In 
displayed X-register. 

I LOG I Computes 
common logarithm 
(base 10) of number 
in displayed X­
register. 

~Common 
antilogarithm. Raises 
10 to power of num­
ber in displayed x­
register. 

lrJ Raises number 
in V-register to 
power of number in 
displayed X-register. 



Program Control Index 
Several of the following keys operate only in PRGM mode; others operate 
differently in PRGM mode than in RUN mode. For specific details of 
operation, consult the indicated pages. 

IMEul Displays search downward in 'GTol c:::J nnn Go to 
current status of pro- program memory for line number. Posi-
gram memory! designated label and lions calculator to 
storage register alia- halt. In a running occupied line num-
cation (page 59). program : causes ber specified by nnn 

calculator to transfer (_85). 
downward in pro--

leST ) Back step. o [!) User-dehn- gram memory to 
abfe program keys designated label Moves calculator 
for both program and resume pro- back one line in 
labels and execution gram execution occupied program 
(page 68). (pege 102). memory (_ 84). 

I SST) Single-step. 
0123456789 Moves calculator 
Label designators. I GS8) Go to sub- forward one line in 
When preceded by routine. Used with occupted program 
I LBL I. define begin· 0. [!). 0 through memory (_ 84). 
ning of a routine 9 or I. From the key- I DEL) Delete. Used (page 68). board: causes cal- in PRGM mode to 

culator to search delete displayed in-
I L8L ) Label. When downward in pro- structton from pre>-
used with 0 . gram memory for gram memory. AU 
[!). Of 0 through 9. designated label and subsequent in-
denote Ihe begin- begin program axe- structions are 
ning of a program or cuUon. In a running moved up one line 
subroutine (page program: causes (_85). 
68). cak:ulator to transfer 

downward in pro- CLEAR IPAGM) 
IGTo)Go to. Used gram memory to C~ars all instrue-
with 0. ®o designated label and tions in program 
through 9, or CD. begin subroutine memory and ...... to 
From Ihe keyboald: execution <- _Iolne 
causes calculator to 126). 0001 ... 14). 

12 



1 PSE I Pause. Halts occupKKj program skips one line in 
program execution memory (page program memory 

for about one sec- 126). before resuming 
ond to display con- (E) Set flag. execution (page 
tents of X-register, Followed by flag 

120). 

then resumes designator (0, 1, 2, 
execution (page or 3) sets flag true 
65). (page 120). 

@!) Runfstop. @elearflag. 
lx<yllx>yl§)lx'yl 

Begins program Followed by flag Ix<oll x,o II "0 II x·o I 
execution from designator (0, 1, 2, 
current line number 

or 3) clears flag Conditionals. Each 
in program memory. tests value in X-
Stops execution jf (page 120). 

register against 0 or 
program is running 

!TIl ls flag true? value in V-register 
(page 62). 

Followed by flag as indicated. If true, 
designator (0, 1, 2. calculator eXeaJtes 

1 RTN I Return. or 3) . tests design- instruction in next 
Causes calculator ated flag . If flag is set line of program 
to return from any (true) the calculator memory. If false, 
line in occupied pro- executes the instruc- calculator skips 
gram memory to line tion in the next line of one line in program 
000, or from subrou- program memory. If memory before 
tine to appropriate flag is cleared resuming execution 
line elsewhere in (false) , calculator (page 106). 

F. 
F. ra 
~ 13 



Section 1 

Meet the HP-34C 

Congratulations! 

Your HP-34C Advanced Programmable Scientific Calculator with Con­
tinuous Memory is a truly unique and versatil e calculating instrument. 
Using the Hewlett-Packard RPN logiC system. your calculator can easily 
slice through the most difficult calculations with case. It is without 
parallel : 

As a scientific calculator. The HP-34C features a multiple-entry 
keyboard with each of the keys controlling up to four separate operations. 
ensuring maximum computing power. 

As a problem-solving macbine. Following step-by-step instructions in 
the HP-34C Applications books. you can key in programs from the 
areas of mathematics , engineering. statistics. surveying, and other fields 
and begin using your calculator. Immediately. 

As a personal programmable calculator. The HP-34C is so easy to 
program and use that it requires no prior programming experience or 
knowledge of mysterious programming languages. Yet even computer 
experts can appreciate the calculator's programming features: 

• Continuous Memory , allowing programs and data to be remem­
bered by the calculator-even when the power switch is off. 

• Automatic Memory Allocation: The basic 70 lines of program 
memory plus 21 storage registers reallocates in 7-line increments 
to as many as 210 lines of program memory plus 1 storage 
register-automatically-as needed. 

• Fully merged prefix and function keys that mean more program­
ming power per line. 

• Easy-to-use editing features for correcting and modifying pro­
grams_ 

• Conditional and unconditional branching. 

14 



Meet the HP-34C 15 

• Six levels of subroutines. 4 nags, 12 easily accessed and reusable 
labels. 

• Direct or indirect storage, recall. branching, and subroutine calls . 

• Powerful root-finding and numerical integration operations using 
the IsoLVEI and (ZD keys. 

And in addition, the HP-34C can be operated from its rechargeable 
battery pack for complete portability, anywhere . 

If you are new to HP calculators and their RPN logic system, you may 
want to carefully work through Solving Problems With Your Hewlell­
Packard Calculator before consulting this handbook . Even if you 
already own another HP calculator, you may find some ncw features in 
the problem-solving book. 

Now let's take a closer look at your calcul ator to see how easy it is to 
use, whether we solve a problem manually or use its programming power 
to solve the problem automatically . 

Manual Problem Solving 

Before continuing. you should be comfortable solving problems 
manually. If not, refer to the Getting Staned sect ion of Solving Problems 
With Your Hewlett-Packard Calculator. 

Ready? Slide the OFF-ON switch to.um ON and be sure that the 
PRGM-RUN switch is in the .mJAUH position . Now press EIJ 11I!J4 
to be sure your HP-34C's display setting matches the setting used in the 
following pages. * 

To see the close relationShip between manual and programmed calcula­
tions , let ' s first calculate the solution to a problem . Then we'll use a 
program to calculate the solut ion to the same problem and others like it. 

If you were to calculate the surface area of a sphere, you would use the 
formula A = 7Td2 where: 

• The displllY selling used with eumpJes in this handbook is always [!I!J 4 unless 
otherwise indicated. 



16 Meet the HP-34C 

A is the surface area of the sphere. 
d is the diameter of the sphere. 
1f is the value of pi, 3.141592654 

Example: Ganymede, one of Jupiter's 
12 moons, has a diameter of 3 ,200 
miles . You can use the calculator to 
manually compute the surface area of 
Ganymede. Merely press the following 
keys in order. (Be sure the PRGM·RUN 
switch is in the .. fUoI position .) 

Keystrokes 

3200 
OO(!!] 
(IJ0 
® 

Display 

3,200. 
10,240,000.00 
3.1416 
32,169.908.78 

Diameter of Ganymede. 
Square of the diameter. 
The quantity 1T. 

Surface area of Ganymede in 
square miles. 

Programmed Problem Solving 
After calculating the surface area of Ganymede, supJX>se you decided 
you want to calculate the surface area of each moon . You could repeat 
the procedure you used for Ganymede 12 times , using a different diam­
eter d each time. However , an easier and faster method is to create a 
program that will calculate the surface area of any sphere from its 
diameter rather than pressing aU the keys for each moon. 
To calculate the area of a sphere using a program. you first write the 
program. then you key the program into the calculator. and finally you 
run the program to calculate each answer. 



.. 
~ 

.. .. 

Meet the HP-34C 17 

Writing the Program. You have already written it! A program is liule 
more than the series of keysLrokes you wou ld execute to calculate the 
solution manually. Two additional operations. a labe l and a return , are 
used to define the beginning and end of the program . 

Loading tbe Program. To load the keystrokes of the program into the 
calculator: 

I. Stide the PROM-RUN switch to PROM m:m. (program). 

2. Press [I) CLEAR I PAGM I to clear program memory. 

3. Press the following keys in order. (When you are loading a 
program, the display gives you infonnation that you will find 
useful later, but which you can ignore for now .) 

Keystrokes Display 

01 LBL I0 001 - 25,13, II Defines the reginning of the 
program . 

[I](£) 002 - 15 3 These are the same keys you 

00 003- 25 73 press to sol ve the problem 
0 004 - 61 manually . 
o I ATNI 005- 25 12 Defines the end of the 

program. 

The calcula[or will now remember this keystroke sequence. 

Running the Program. To run the program to find the area of any sphere 
from its diameter: 

I . Slide the PROM-RUN switch to ..rm"", 
2. Key in the value of the diameter. 

3. Press 0 to run the program . 

When you press 00 . the sequence of keystrokes you loaded is automat· 
ieall y executed by the calculato r, giving you the same answer you would 
have obtained manually . 



18 Meet the HP-34C 

For example, to calculate the surface area of Ganymede with a diameter 
of 3,200 miles: 

Keystrokes 

3200 
o 

Display 

3,200. 
32,169,908.78 Square miles. 

With the program you have loaded , you can now calculate the surface 
area of any of Jupiter 's moons- in fact, of any sphere-using it !i 
diameter. Leave the calculator in RUN mode and key in the diameter of 
each sphere for which you want the surface area, then press 0. 

For example, compute the surface area of Jupiter' s moon 10, with a 
diameter of 2,310 miles . 

Keystrokes 

23100 

Display 

16,763,852.56 Square miles. 

Now compute the surface area of the moons Europa. diameter 1,950 
miles , and Callisto. diameter 3,220 miles. 

Keystrokes 

19500 

3220 0 

Display 

11,945,906.07 

32,573,289.27 

Area of Europa in square 
miles. 
Area of Callisto in square 
miles. 

Programming is that easy! The calculator remembers a series of key­
strokes and then executes them whenever you wish. In fact, your HP-34C 
ean remember up to 210 separate operations (and many more keystrokes , 
since many operations require two or three keystrokes) . 



Meet the HP-34C 19 

What Continuous Memory Means to You 
Your calculator conta ins Continuous Memory-one of the most ad­
vanced memory systems avail able in a sc ienfific calculator. Continuous 
Memory means the program memory. all 21 storage registers, and the 
di splay mode stay "on" when your calculator is turned off. You can 
store your favorite program (or programs) for days or weeks! 

Continuous Memory is especially convenient when you want to retai n 
data, save banery life, or customize your calculator (e.g., if )"OU use 
20% of your programs in 80% of your calculations.) You save consider­
able lime because you don't have to key in those common programs again 
and again-they arc stored in your calculator. Continuous Memory 
reduces human entry errors too; fewer keystrokes mean fewer chances 
of making inadve rtent errors. Perhaps the most important advantage of 
Continuous Memory is that it enables you to customize or personaJize 
your calculator. The easiest way to customize your calcul ator is to make a 
li st of the problems you encounte r most frequently. rate them in order of 
priority, then write and save the spec ialized programs for those pro­
blems. Whenever you encounter a repetitive problem set, you just write 
the program once, the n use it at different times. You can even preserve 
one o r two favorite programs in the calcul ato r. 

Bes ides saving programs, Continuous Memory lets you save data in 
up to 2 1 storage registers, depending on curre nt program memory/data 
storage allocation . Constants, accumulations, and intermediate answers 
ean be retrieved whe never you need them . And because di splay mode 
is also saved in Continuous Memory . your HP-34C " wakes up" in 
whatever (!IK] , [!£I] , or IENGI setting you last used . 

Continuous Memory helps save battery life because yo u don' l have to 
keep the calculator turned on 10 save programs or data between calcu­
lations. And if your calculator is left off, Continuous Memory can store 
your programs and data for 1 month o r longer. When you do use your 
calculator , keying in fewer programs means less time that the display 
is on-hence. less battery drain . 



Section 2 

Specific Features of the HP-34C 
Most of the features found on (he HP·34C are discussed in Solving 
Problems With Your Hewlett·Packard Calculator. However, several 
features un ique to (he HP·34C (or new to HP calculators) are discussed 
in the following pages. 

Keyboard Operation 
Most keys on the Hp·34C keyboard perfonn three or four functions. One 
function is indicated by the symbol on the horizontal key face. while 
another is printed in black on the slanted key face. A third function is 
indicated by (he gold symbol printed above the key . On keys designed 
with four functions. the last function is indicated by the appropriate 
blue symbol, also printed above (he key . 
To select the function on the horizontal face of a key , press the key. 
To select the function printed in black on the slanted face of a key, press 
the black prefix key [EJ , then press the function key. 
To select the function printed in gold above a key, press the gold prefix 
key 1Il , then press the function key. 
To select the function printed in blue above a key. press the blue prefix 
key [!]. then press the function key . 

20 

To execute this function, 
press CD @ . 

To execute this function, 
press I!l~ . 

To execute this function, 
simply press 3. 

To execute this function, 
press ill!Z!l. 



Specific Features of the HP-34C 21 

Notice that for all four-function keys except Iiii. the function 
printed in gold is above and to the left ofthc key and the function printed 
in blue is above and to the right of the key. 

Storage Registers and Program Memory 
In addition to rhe four-register stack and the LAST X register, your 
HP-34C features a shared program and data storage memory that is 
controlled automatically. The HP-34C' s basic program memory/dala 
storage aUocation is 70 lines of program memory and 20 data storage 
registers , plus the I-register. According to your programming needs. 
one o r more of the data storage registe rs can be automatically exchanged 
for seven lines each of program memory , And , by pressing [!)IMEM I 
your HP-34C will even teU you the current program memory storage 
register allocation a l any time! We will cover this important subject in 
detail when we discuss programming. 

Storing and Recalling Numbers. Your HP-34C's twenty data storage 
registers are denoted Ro through Rg and R.o through R.9 (plus the [-regis­
ter, which we ' ll cover later). As you learned in Solving Problems With 
Your Hewlett-Packard Calculalor , a copy ofthe number in the d isplayed 
X-register can be stored in registers Ro through Rg by pressing ISTol 

(slore) and the number key of the register address (0-9). A copy of a 
number in any register Ro through Rg can be recalled to the displayed 
X-register by pressing IRell (recall) and the number key of the register 
address (0-9). Notice . however, that store or recall o}Xral ions involving 
registers R.o through R.9 use an additional keystroke, 8 . to conespond 
to the decimal point in these register names . For example, to store a 
copy of 1T in register R.:l>: 

Keystrokes 

00 
I.TOI [!] 5 

Display 

3.1416 
3.1416 A copy of 1T is now stored in 

R.:l>. 



22 Specific Features of the HP·34C 

To recall a copy of 1T from R,o:;: 

Keystrokes 

ICLXI 
locLI85 

Display 

0.0000 
3.1416 

Storage Register Arithmetic. Registers Ro through Rg in your HP-34C 
are used for the direct storage register arithmetic operations described in 
Solving Problems Wilh Your Hewlett-Packard Calculator. However, all 
storage registers (Ru through Rg. R.o through R,i. and I) can be used to 
perfonn indirect storage register arithmetic (we' ll cover this subjecllater, 
in section 7). 

Number Alteration Keys 
Besides ICHSI, your HP· 34C has three keys provided for altering 
number.;: I_I . ~ . and 1"'-"' 1. 

Absolute Value 

Some calcul ations req uire the absolute value, or magnitude, of a number. 
To obtain the absolute va lue of the number in the displayed X-register, 
press o followed by the IABsl {absolute value) key. For example, to 
find the absolute value of - 3: 

Keystrokes 

3 leHsl 
01 ... 1 

Display 

- 3. 
3.0000 

Integer Portion of a Number 

To extract and display the integer portion of a number, press the m 
prefix key followed by the Oill (integer) key . For example, to display 
only the integer portion of the number 111 .222. 



Specific Features of the HP-34C 23 

Keystrokes 

111.222 
[IJDE!) 

333.444 l eH51 
[IJDE!) 

Display 

111.222 
111.0000 

-333.444 
-333.0000 

Only the integer portion 
remains. 

Again , only the integer 
portion remains. 

When [E) OE!J is pressed, the fractional portion of the number is re­
placed by zero. The sign is unaffected. The original number, of course, 
is preserved in the LAST X register. 

-333.4440 The original number. 

Fractional Portion of a Number 

To extract and display only the fractional portion of a number, press the 
[E) prefix key followed by the I FAA(: I (fraction) key. For example. to 
see the fractional portion of 555.666: 

555.666 
[IJIFAAC I 

777.888 leH51 
[IJIFAAC I 

555.666 
0.6660 

-777._ 
-0.8880 

Only the fractional portion 
of the number remains . 

Again , only the fractional 
portion remains. 

When the IX)IFRACI is pressed, the integer portion of the number is 
replaced by zero. The sign is unaffected . The original number is pre­
served in the LAST X register. 

-777.8880 



24 Specific Features of the HP-34C 

Mathematical Functions 

Factorial 

When the number in the X-register is a nonnegative integer n . pressing 
~gives you the factorial of n , which is denoted n! and defined as the 
product of the integers from 1 to n . This function enables you to quickly 
and easily solve pcnnutations and combinations. 

Example: Willie 's Widget Works 
wants a photograph of its product line 
for advertising. How many different 
way~ can (he photographer arrange their 
eight widget models? 

Solution: The number of arrangements is given by 

8! = 8 x 7 x 6 x 5 x 4 x 3 x 2 x 

Keystrokes 

81B@] 

Display 

40,320.0000 The photogrdpl)er can ar­
range the widgets 40,320 
different ways. 

Example: The photographer looks through her viewfinder and decides 
that she can show only five widgets if her cameid is to capture the 
intricate details of the widgets on film . How many different sets of five 
widgets can she select from the eight? 

Solution: The number of sets is given by 

8! 
(8-5)!5! 



Specific Features of the Hp·34C 25 

Keystrokes 

8 0 01 
8 1 ....... 1 
58 
001 
5 0 01 
o 
o 

Gamma Function 

Display 

<W,320.oooo 
8.0000 
3.0000 
6.0000 
120.0000 
720.0000 
56.0000 The photographer can select 

56 different sets of fi ve 
widgets. 

The [!I] key can also be used* to calculate the Gamma function. 
denoted by f (x). which occurs in certain problems in advanced 
mathematics and statistics. Press ing [!I] gives you f (x + 1). To calcu­
late the Gamma function of any number. thc:rcfore. subtract I from the 
number. then with the result in the X-register, press ill (iD . 

Example: Calculate r (2.7). 

Keystrokes 

2.7 
1 ........ 118 
0 01 

Display 

2.7 
1.7000 
1.5447 

Example: Calculate f(-2 .7) . 

Keystrokes 

2.7 leHs l 
1 ....... 11 8 
001 

Display 

-2.7 
-3.7000 
-11.9311 

Key in number. 
Subtract 1. 
r {2.7). 

Key in number. 
Subtract I . 
r (-2.7) . 

• The ~key can be used for both the factorial and Gamma funCitons because whcn x is a 
nonnegative iotegefll . r (x + I)" r (1I + J) ; II! . lbe Gamma function can be regarded 8$ 

a gencralitation of the factoria1 funct ion, smce the number in the X.register is not limited to 
nonnegative integers. Conversely , the fac torial fuooion can be regarded as a special case of 
tbc Gamma function . 



26 Specific Features of the HP-34C 

Since f(x) is not defined when x is a negative integer or 0, rex + 1), 
the value returned by ~ . is not defined when x is a negative integer. 
As x approaches these values , the magnitude of rex + 1) increases 
without limit . Since the largest number your HP-34C can calculate 
is 9.999999999 x 1099 , if you press (E) [!D with a negative integer 
in the X-register the calculator will display the overflow indication 
-9.999999 99. Although rex + 1) as x approaches a negative integer 
may be positive or negative, depending on the value of x , the calculator 
always displays a minus sign in the overflow display when x is a 
negative integer. This differentiates the value from the overflow display 
9.999999 99 for vcry large positive values of x , at which rex) increases 
without limit but is always positive. 

Percent Difference 

The 16%! operation gives you the percent difference - that is. the 
relative increase or decrease- between two numbers . To find the per­
cent difference: 

1. Key in the base number (typically. the number that occurs first in 
time) . 

2. Press lana.!. 

3. Key in the second number . 

4. Press (E](1jj9. 

The fonnula used is: 6.% 1000x - y) 

y 

Using the above order of entry . a positive result signifies an increase. 
while a negative result signifies a decrease. 



Specific Features of the HP-34C 27 

Example: Silas Silversaver's coin 
collection was appraised in 1974 at 
$475 . An appraisal in 1979 valued the 
collection at $735. By what percent did 
the value of the collection increase from 
1974 to 1979? 

Keystrokes 

4751 ....... 1 
735 [E] [1iliJ 

Display 

475.0000 
54.7368 

Statistical Functions 

Accumulations 

Percent increase. 

Pressing (he (El key computes certain important sums and products of 
the values in the X· and Y·registers. The results are automatically 
accumulated in storage registers Ro through R~. Before you start to 
calculate accumulations with a new sct of x and y values , you should 
first clear these registers by pressing [I] CLEAR [[I. Then, do the 
following for each pair of x and y values in your data: 

I . Key the y value into the X-register. 

2. Press IENTfRtl to raise the)' value into the V-register. 

3. Key the x value into the X·register. 

4 . Press m lEI. 



28 Specific Features of the HP-34C 

Lf your statistics problem involves only one variable (x) instead of two 
(x and y), the procedure is similar. First clear statistical storage 
registers Ro through Rs. In addition , if the contents of the Y.register are 
not zero , you should clear the V-register also. (A nonzero number in the 
V-register during one -variable ca1culations of s, r, L.R . , or y may 
result in a display of Error 3 .) Pressing CD CLEAR IIImI will clear 
registers Ro through R5 , but will also clear registers R, through R\I. R.o 
through R .lh and I. Therefore, if there arc numbers stored in these other 
registers that you want 10 save , you should press the keys ill CLEAR m instead of ill CLEAR I .. GI. After clearing the 
registers, do the following for each value of.x in your data: 

I . Key the number into the X-register . 

2. Press ill @). 

Each time you press m IE . the following operatio ns are perfonned: 

I. The number in the X-register is added to the contents of storage 
register R I . 

2. The square of the number in the X-register is added to the contents 
of storage register R2 -

3. The number in the Y -register is added to the contents of storage 
register R3 . 

4 . The square of the number in the Y · registe r is added to the contents 
of storage register R4 . 

5 . The number in the V-register is multiplied by the number in the 
X-register, and the product is added to the contents o f storage 
registe r R~. 

6. The number 1 is added to the contents o f storage register RD. The 
result-the number of (..ttY) data pairs accumulated so far­
is copied into the displayed X-register. 

After you press [I] IE t the number previously in the X-register is 
placed in the LAST X register _ The number previously in the Y -register 
is not changed. 



-~------ -

Specific Features of the HP-34C 29 

To summarize. this is where the statistical accumulations are stored 
inside your calculator: 

Register Contents 

R, n: number 01 data pairs accumulated. 
R, lx: summation of x values. 
R, Ix2; summahon of squares of x values. 
R, Iy: summatton of y values. 

R. ~y2: summation of squares of y values. 

R. Ixy: summation of products of x values and y values. 

Some sets of data consist of x or y values that all differ from some 
number by a comparatively small amount. You can maximize the pre· 
cision of any statistical calculation involving such data by entering into 
the calculator only the differences between each value and a number 
approximating the average of the values . When you do thi s, this number 
must be added to the result of calculating X, 9, or the y-intcrcept of 
L.R. For example, if your x values consist of 665999, 666000, and 
66600 J, you should enter the data as - I , 0 , and 1. If afterwards you 
calculate x, add 666()(X) to the answer. In some cases the calculator 
cannot compute s , r. L.R . , or y with data values that arc too close to 
each other, and if you attempt to do so the calculator will display 
Error 3 . This will not happen, however, if you normalize the data as 
described above . 

Note: Unlike storage register arithmetic, the IE and (!:J 
operations allow overtlow to occur in storage registers Ao 
through As without indicating Error 1 in the display. (i.e., 
when executing IEor (!:Jwould result in an overtlow in any 
statistics register, 9.999999999 x 10" is placed in that regis­
ter without interrupting normal operation.) 

To use any of the accumulations, you can recall the contents of the 
desired storage register into the displayed X-register by pressing 
I ACL I followed by the number of the register. If this is done immedi­
ately after pressing CO ~ (or OO~). the accumulation recalled is 
written over the number of data pair entries (n ) in the di splay . 



30 Specific Features of the HP·34C 

If you want to use both :L- and Iy. press I RCL Im~. This simultane­
ously copies Ix from RI into the displayed X-register and copies I y 
from R3 into the Y -register . If this is done immediately after pressing 
OJIE}. OOl!3, ICLXI, or IENTBItl . the number in the V-register is first 
lifted into the Z-register. Otherwise. the numbers in the X- and Y­
registers arc ftrst lifted into the Z- and T-registers. respectively . 

Example: Find Ix, IX2, Iy. Iy2, and IX)' for the paired values ofx and 
y listed below. 

y I 7 I : I 9 

x 5 8 

Keystrokes Display 

[I] CLEAR [IJ 0.0000 Clear statistical storage 
regi sters . (Display shown 
assumes no results remain 
from previous calculations.) 

7 I.N", .. I 7.0000 
5 [I] [0 1.0000 First pair is accumulated; 

n = 1. 
5 I """,.1 5.0000 
3 [I] [0 2.0000 Second pair is accumulated; 

n = 2. 
9 I """,.1 9.0000 
8 [I] [0 3.0000 Third pair is accumulated; 

n = 3. 
IRcLiI 16.0000 Sum of x values from 

register R t . 

IRCLI2 96.0000 Sum of squares of x values 
from register R2• 

IRCLI3 21.0000 Sum of y values from 
register R:I' 

IRCLI4 155.0000 Sum of squares of y values 
from register R.4j . 

IRCLI5 122.0000 Sum of products of x and y 
values from register R,s. 

IRCLIO 3.0000 Number of entries (n = 3) 
from register ~. 



Specific Features of the HP-34C 31 

Deleting and Correcting Data 

If you key in an inconect value and have not yet pressed m~. 
press ICLX I and key in the correct value . 

If you want to change one of the values, or if you discover after pressing 
CD ~ that one of the values was erroneous, you can correct the 
accumulations by using the 1£3 (summation minus) key as foll ows: 

I. Key the incorrect data pair into the X- and V-registers. (You can 
use IlST xl to return a single incorrect data value [0 the displayed 
X-register.) 

2. Press III ~to delete the incorrect data . 

3. Key in the correct values for x and y. If onc value of an (x,y) data 
pair is incorrect , you must delete and reenter both values. 

4. Press rn~. 

For example . if the last data pair (8,9) in the previous example should 
have been (8,6), you could correct the accumulation as follows: 

Keystrokes Display 

9 I.N ... "I 9.0000 Incorrect y value is ente red 
again . 

8 8. Correct x value is entered 
again. 

OO[B 2.0000 Numbered of entries (n) is 
now two. 

61 ........ 1 6.0000 Correct y value is entered. 
8 8. X value is entered again. 

rn~ 3.0000 Number of entries is again 
three. 



32 Specific Features of the HP·34C 

Mean 

Note: Although 00 jEcan be used to delete an erroneous 
(x, y) pair, it will not delete any rounding errors that may 
have occured when that pair was added into accumulating 
registers A, through Rs. Consequently , subsequent results 
may be different than they would have been if the erroneous 
pair (x,y) had not been entered via CD (Eland then deleted 
via [j) ~ However, the difference will not be serious 
unless the erroneous pair (x,y) have a magnitude that is 
enormous compared with the correct pair; and in such a case 
it may be wise to start over again and re-enter the data again 
(and more carefully!). 

Pressing [!)compules the arithmetic mean (average) of x and y values 
accumulated in registers RI and R3, respectively . 
When you press [[I 00 

1. The contents of the stack registers are lifted just as they are when 
you press [RCll m IE. as described on page 30. 

2. The mean of the x values (i) is calculated using the data accumu­
lated in registers R\ (Ix) and Ro (n) according to the formula: 

l:.x 
.f= 

n 

The resuhant value for x appears in the displayed X-register. 

3. The mean of the y values (y) is calculated using the data accumu­
lated in registers R3 (ly) and Ro (n) accord ing to the formula: 

The resultant value fory is available in the Y -register of the stack. 



-----~---- - - -

Specific Features of the HP-34C 33 

Example: Below is a chart of daily high 
and low te mperatures for a winter week 
in Fairbanks. Alaska . What are the aver· 
age high and low temperatures for the 
week selected? 

High 
Sun 

6 

Low -22 

Keystrokes 

mCLEAR (I] 

6 1...,... 122 
ICHs l m ~ 

II 1." ..... 11 7 
ICH5 1m ~ 

141...,...1 15 
ICH51 m ~ 
121...,... 19 
ICHs l m~ 

5 1." ..... 124 
ICHs l m ~ 
2 IcH511 ........ 1 
29 ICHsl m!B 

Mon 
11 

-17 

lues 
14 

-15 

Display 

0.0000 

22. 
1.0000 

17. 
2.0000 

15. 
3.0000 
9. 
4.0000 
24. 
5.0000 

-2.0000 
6.0000 

Wed 
12 

-9 

Thunl 
5 

-24 

Frl Sat 
- 2 -9 

-29 -35 

Accumulation reg isters 
cleared. (Display shown 
assumes no results remain 
from previous calculations.) 

Number o f data pairs (n) is 
now 1. 

Number of data pairs (n) is 
now 2 . 



34 Specific Features of the HP-34C 

Keystrokes 

9 I eHslI ........ I 
35 I eHsl [I) [0 

Display 

-9.0000 
7.0000 

-21.5714 
5.2857 

Standard Deviation 

Number of data pairs (n) is 
now 7. 
Average low temperature . 
A verage high temperature. 

Pressing 0 (!]compules (he standard deviation (a measure of disper. 
sicn around the mean) of the accumulated data . The fonnulas used by the 
HP-34C to compute sx. the standard deviation of the accumulated x 
values, and SY' the standard deviation of the accumulated y values, are: 

s, = Y nIx' - (Ix)' 
n(n I ) 

s . = Y nIY'- (Iy)' 
, n(n I) 

These formulas give the best estimates of the population standard 
deviations from the sample data. Consequently, the standard devia­
tion given by these formulas is termed by convention the sample 
standard deviation. 

When you press CEJ [!): 

1. The contents of the slack registers are lifted just as they are when 
you press I ACL I CD [E). as described on page 30. 

2. The standard deviation of thex values (sx) is calculated using the 
data accumulated in registers R2 (!x 2), RI (Ix). and Ro ('I ) 
according to the formula shown above. The resultant value for Sx 

appears in the displayed X-register. 

3. The standard deviation of the), values (s)') is calculated using the 
data accumulated in registers R4 (ly2), R3 (ly), and Ro (n ) 
according to the formula shown above. The resultant value for s y 

is available in the Y -register. -



~ 

Specific Features of the HP-34C 35 

Exam ple: Norman Numbercruncher . 
a rising young math professor at Mam· 
moth University, has developed a ncw 
test for measuring the mathematical 
abilities of college freshmen . To eval­
uatc its effectiveness. he administers 
the lest to the 746 students in Calculus 
I. Exhausted after grading the tests, 
Numbercrunchcr decides to randomly 
select 8 of the 746 tests and estimate 
the standard deviation of all the scores from the sample of 8. The scores 
on the tests selected were 79, 94, 68, 86, 82, 78, 83, and 89 . What 
standard deviation does Numbcrcruncher calculate? 

Keystrokes Display 

le")I ........ ) 0,0000 Clear displayed X-register 
and Y -register. 

mCLEAR m 0,0000 Clear statistical registers 

79 m10 1,0000 First score is entered . Notice 
that since this problem 
involves onl y onc variable, 
you don't have to enter a 
y-value into the Y -register 
using the 11ENTEA. 1 key . 

94 m10 2.0000 Display shows number of 
scores entered so far . 

68 m10 3,0000 
86 m10 4,0000 
82 m10 5,0000 
78 m10 6,0000 
83 m10 7,0000 
89 m10 8,0000 Last score in sample . 

mm 7,8365 Standard deviation 
estimated for the 746 stu-
dents based on sample of 8. 



36 Specific Features of the HP-34C 

When your data constitutes not just a sample of a population but rather 
all of the population, the standard deviation of the data is the true 
population standard deviation (denoted (1). The formula for the true 
population standard deviation differs by a factor of [ (n -1 )/n] 1/'1. from 
the formula used for the [!Jfunelion . The difference between the values 
is small . and for most applications can be ignored. Nevertheless , if you 
want to calculate the exact value of the population standard deviation for 
an entire population, you can easily do so with just a few keystrokes on 
your HP-34C. Simply add, using the m [EJ kcy, the mean (t) of the 
data to the data and then press (E) 0 . The result will be the true pop­
ulation standard deviation of the orig inal data . 

Example: Suppose the data from the previous example represented all 
the final exam scores from Numbercruncher's seminar on transcendental 
func tions. Since this is the first time Numbercruncher has given this 
seminar, he wants to calculate the standard deviation of the test scores to 
detennine how good his exam was. Numbcrcruncher takes his calculator 
in hand , enters the data, then proceeds as follows: 

Keystrokes 

[I][!) 
m[EJ 

Linear Regression 

Display 

82.3750 
9.0000 

7.3304 

Mean of scores. 
Mean is added to data . 
Display shows nine total 
entries. 
Standard deviation for all 
scores on final exam. 

Linear regression is a statistical method for finding a straight line that 
best fits a set of data points, thus providing a relationship between two 
variables. After a group of data points has been totaled in registers Ro 
through Rs, you can calculate the coefficients of the linear equation 
y = Ax + B using the least squares method by pressing ~, L.1l 1. 
(Naturally. at least two data points must be in the calculator before a 
least squares line can be fitted to them.) 

To use the linear regression function on your HP~34C . first key in a 
series of data points using the OJ (fB key. Then press ill [QJ . 



Specific Features of the HP-34C 37 

When you press ill em: 
1. The contents of the stack reg isters are li fted just as they are when 

you press [RCLI [I) I]!). as descri bed on page 30. 

2. The slope (.4) of the least squares line of the data is calculated 
using the equation: 

A=nlxy - l xly 

n lx' - (lx)' 

The slope is available in the V-register of the stack. 

3. The y- intercept (8 ) of the least squares line of the data is cal­
culated using the equation: 

B = ly lx' - lx lxy 
n lx' - (lx)' 

The y-intercept appears in the displayed X-register of the stack. 

To use the value for A or to bring it into the di splayed X- register. 
simply exchange the stack contents with the [!!l) key . 

Example: Big George Gusher. owner­
operator of the Gusher Oil Company, 
wishes to know the slope andy-intercept 
of a least squares line for the consump­
tion of motor fue l in the United States 
against time since 1945 . He knows the 
data given in the fo llowing table. 



38 Specific Features of the HP-34C 

Motor Fuel 
Demand 

(Million. of 
Barrals) 696 994 1,330 1,512 1,750 2,162 2,243 2,382 2,484 

Y •• r 1945 1950 1955 1960 1965 1970 1971 1972 1973 

Solution: Gusher could draw a plot of motor fuel demand against time 
like the one shown below. 

Demand 
(Millions of Barrels) 

2,500 

2,000 

1,500 

1,000 

500 

5 
Year 

1111 II 
19451950 19551960196519701975 

However, with his HP-34C . Gusher has only 10 key the data into the 
calculator using the IE key , then press [li](I[). 

Keystrokes 

CDCLEAR m 

6961 ....... 1 
1945 CD ~ 
9941 ........ 1 
1950 CD ~ 
1330 1 ........ 1 
1955 CD ~ 
15121 ........ 1 
1960 CD ~ 

Display 

0.0000 

696.0000 
1.0000 
994.0000 
2.0000 
1,330.0000 
3.0000 
1,512.0000 
4.0000 

Clear statistical storage 
registers. (Display shown 
assumes no results remain 
from previous calculations.) 



~ 
,;J;) 

~ 
~ 

Specific Features of the Hp·34C 39 

1750 IfHTBI. 1 1,750.0000 

1965 CIJ ~ 5.0000 

2162 IfHTBI.1 2,162.0000 

1970 CIJ ~ 6.0000 

2243 1_.1 2,243.0000 

1971 CIJ~ 7.0000 

2382 1 ...... · 1 2,382.0000 

1972 CIJ ~ 8.0000 

2484 1_·1 2,484.0000 

1973 CIJ ~ 9.0000 All data pairs have been 
keyed in . 

[mITl - 118,290.6295 The y-intercept of the line. 

Ix" l 61.1612 Slope of the line. 

Linear Estimation 

With data accumulated in registers Ro through R3 • a predicted value for 
y (denoted y) can be calculated by key ing in a new value for x and 
press ing III ITl . 

For example . with data intact from the previous example in registers 
Roo through R5 • if Gusher wishes to predict the demand for motor fuel 
for the years 1980 and 2000, he keys in the new x value and presses 

III m 

Keystrokes 

1980 IIIITl 

2000 IIIITl 

Display 

2,808.6264 

4,031.8512 

Predicted demand in 
millions of barrels for the 
year 1980. 

Predicted demand in 
millions of barrels for the 
year 2000. 



40 Specific Features of the HP-34C 

Correlation Coellicient 
Both linear regression and linear estimation presume that the relationship 
between thex andy data values can be approximated, to some degree, by 
a linear function (i.e .• a straight line). You can use CD (correlation 
coefficient) to determine how closely your data "fits" a straight line . 
The correlation coefficient can range from r = + 1 to r = - I . At 
r = + I , the data falls exactly onto a straight line with positive slope, 
while at r = - I, the data faUs exactly onto a straight line with negative 
slope. At r = 0, the data cannot be approximated at all by a straight line. 
For example, to calculate the correlation coefficient for the example 
above: 

Keystrokes 

CEJ[!] 
Display 

0.9931 

Vector Arithmetic 

The data approximates a 
straight line vcry closely. 

You can add or subtract vectors with your HP-34C by using ~and 
~in conjunction with ~and E!1 
Example: Federation starship Felicity has emerged victorious from 
a furious battle with the starship Thanalos from the renegade planet 
Maldek. However, its automatic pilot is kaput. and its main thrust 
engine is locked on at 37.2 meganewtons directed along an angle of 
25.2° from the star Ultima. Consulting the ship's star map, the 
navigator reports a hyperspace entrance vector of 51 meganewtons 
at an angle of41.3° from Ultima. To what thrust and angle should 
the auxiliary engine be set, for Felicity to achieve a lignment with 
the hyperspace entrance vector? 

Solution : The required thrust vector of the auxiliary engine is equal to 
the hyperspace entrance vector minus the thrust vector of the main 
engine. The vectors are converted to rectangular coordinates using 
[[j~, and their difference is calculated using CD [El and 00 (El 
This difference is recalled to the X- and V-registers using IHell CD (0. 
Then, these rectangular coordinates of the auxiliary engine thrust vector 
are converted to polar coordinates using II) ~ 



~ 

~ 
JJ 
~ 
3/j 

.;a 

.a 

.a 
:a 
~ 
;) 

-------

25.2" 

41.3" 

Keystrokes 

(I] CLEAR 

[I] I DEG I 

41.3 I " "" .. I 

51 (I]@ 

!II 

Specific Features of the HP-34C 41 

Display 

0.0000 

0.0000 

41 .3000 

38.3145 

Clear statistical registers . 
(Display shown assumes no 
results remain from previous 
calculations .) 
Ensures that trigonometric 
mode is set to degrees. 
Enter angle of hyperspace 
entrance vector into Y­
register. 
Enter magnitude of hyper­
space entrance vector into 
X-register and convert to 
rectangular coordinates . 



42 Specific Features of the HP-34C 

Keystrokes 

[D[0 

25 .21 ........ 1 

37.2 [D §) 

Display 

1.0000 

25.2000 

33.6596 

0.0000 

4.6549 

18.4190 

75.3613 

Rectangular coordinates of 
hyperspace entrance vector 
accumulated in registers 
R. and Ra. 
Enter angle of main enginc 
thrust vector into V-register. 
Enter magnitude of main 
engine thrust vector into X­
register and convert to 
rectangular coordinates. 
Subtract rectangular coor­
dinates of main cngine 
thrust vector from rectang­
ular coordinates of hyper­
space entrance vector in 
reg isters R. and Ra into X­
register and Y -register . 
RecalJ rectangular coor­
dinates of auxiliary engine 
thrust vector from registers 
RI and R~ into X-register and 
Y -register. 
Convert to polar coordi­
nates. Display shows re­
quired magnitude, in mega­
newtons, of auxiliary engine 
thrust vector . 
Required angle of auxiliary 
engine thrust vector. 



---------- --



Section 3 

Simple Programming 

What Is a Program? 

A program is a sequence of keystrokes that is remembered by the 
calculator. You can execute a given program as often as you like­
typically with just one keystroke . The answer di splayed at the end of 
execution is the same one you would have obtained by pressing the keys 
one at a time manually . No prior programming experience is necessary to 
learn HP-34C programming. 

Why Write Programs? 

Programs are written to save time on repetitive calculations. Once you 
have written the keystroke procedure for a panicular problem and 
recorded it in the calculator. you need no longer devote attention to the 
individual keystrokes that make up the procedure. You can let your 
Hp·34C calculate the solution to each problem for you . And you can 
have more confidence in the answer . Why? Because once you have 
checked that your program is correctly recorded in the calculator, you 
may be sure that the calculator will execute your commands faithfully , 
without the slips yo u might make if you had to manually press the keys 
over and over again. The calculator performs the drudgery . leaving 
your mind free for more creative work . 

Before proceeding . let' s take another look at the powerful programming 
features designed into your HP-34C: 

• An easily understood programming language . 

• Twelve labels you can use (and re-usc) to designate various 
programs and portions of programs. 

• Fully merged program lines . Commands reqUiring multiple 
keystrokes-such as IT) C!:I!l or I 5TO I m I-consume only 
one line of program memory. 

44 



,i) 
,p 
~ 
,f) 
,:) 
,J) 
,,:) 
,,::J 
J:j 

~ 
.:l) 

A 
.a 
o4l 

Simple Programming 45 

• Automatic Memory Allocation. Possible memory combinations 
range from 21 storage registers and 70 lines of programming to I 
storage register (the I-register) and 210 lines of programming. 
Memory conversion occurs at the rate of seven lines of program­
ming for each data storage register-automatically! 

• Decision-making capability for more sophisticated routines. 

• Easy to use editing features for correcting and modifying 
programs. 

• Six levels of subroutines and four flags to help simplify otherwise 
complicated programs. 

• Indirect storage, recall, branching, and subroutine calls to auto­
matically control data, decisions, and program control. 

• Increment/decrement counter and looping control. 

Together . these features provide you with the tools necessary to tackle 
complex problems with confidence. 

Three Calculator Modes 
Your HP-34C calculator has three operational modes: 

1. Manual run mode . 

2. Program mode. 

3. Automatic run mode. 

Manual Run Mode. The functions and operations you have learned 
about in the first part of this handbook and in Solving Problems With 
Your Hewlett-Packard Calculator are performed manually one at a 
time. These functions combined with the automatic memory stack enable 
you to calculate with ease. 

Program Mode. In program mode the functions and operations you have 
learned about are not executed but instead are recorded, in a part of the 
calculator called program memory , for later execution. To get into pro­
gram mode , simply slide the PROM-RUN switch to PRGM~ . All 
operations on the keyboard except the following can be recorded for 
later execution when the calculator is in program mode . 



46 Simple Programming 

These operations cannot be recorded: 

mCLEAR 1 ...... 1 
[EJI SST I 
[EJ I85T I 

m CLEAR 1 PREFIX 1 
1 GTO 1 C!J nnn 
[EJ10EL1 

OOIMEMI 
[EJ 1 lOA,," 1 
ISTOIIBmR'1 

You will fi nd all of the above operations except (E] I MANT I and I 5TO I 
IBlTPtl useful when keying in and editing your programs.* 

Automatic Run Mode. As you have learned. the HP-34C will aulo­
matically execute a list of operations when the calcul ato r is in run mode 
if they have previously been recorded in program memory. lnstead of 
press ing each key manually, the recorded operations are executed 
sequentially in automatic run mode. Typically. you press only onc key 
to stan the calculator at the beginning of the list. The entire li st of 
recorded operations is then executed much more quickly than you could 
have executed them yourse lf. 

Looking at Program Memory 
As you may remember from the program you created in section I , 
the keystrokes used to calculate a solution manually are also used when 
you write a program 10 calculate the solution automaticall y . These 
keystrokes are siored in the ca lcul ator's program memory . When you 
slide the PRGM-RUN switch to ProM on. you can examine the 
con tents of program memory. one line al a time. Press [oTol 8XlO to 
return the calculator to the beginning of program memory. If you have 
not already done so. slide the PRGM-RUN switch to PAGM". The 
display should show 000- . 

Program memory consists of from 70 to 210 lines. together with a top­
of-memory marker which is the 000- yo u now see in your display. 
Program memory operates separately from the stack, LAST X. 1, and 
avai lable storage registers . t 

• Pressing 0 1 MANT 1 does nothing in program mode, but pressing Il!ru I INT8It I in ci.her 
program or TUn mode will perfOfTJ\ the liClJ-check ;tS instruclo!d . and will dear the stack . 
LAST X register. and nags. resel trig mode 10 dlegrees. and resel the calculalOr 10 line OOOin 
program memory. 

t .. Available" slClrage regislcrs refers 10 data siorage registen that are not converted to 
program memory. 



000-

001-

002-
003-

Program Memory 068-
069-

070-

-
208-

209-
210-

Simple Programming 47 

-+- TOJH>f-Memory Marker 

....- Minimum Program Line 
Allocation 

....- Maximum Program Line 
Allocallon 

With the PRGM-RUN switch sel to ~ nm. ' the number that you 
sec on the left side of the display indicates the line number of program 
memory to which the calculator is set. Press m CLEAR I PROM b 
IT] IlBL I ~, the first keystrokes of the Moon Surface Area program 

(refer to page 17) . and the display will change to; 

Line number ----. ,001,-25, 13, 11 

The calculator is now set to line 00 I of program memory, as indicated 
by the number 001 that you see on the left side of the display . The other 
numbers in the display arc keycodes for the keystrokes that have been 
loaded into that line of program memory. Press OO~. Your display 
shows: 

002- 15 3 

The number 002 on the left side of the display indicates that you are now 
at line two of the program. 

Each line of program memory can "remember" a single instruction. 
whether that instruction consists of one, two, or three keystrokes . Thus, 
one line of program memory might contain a single-keystroke instruction 
like fCHsl . while another line of program memory could contain the 
three-keystroke instruction [slol m 6 (adds the value in the displayed 
X-register to the contents of register number 6). 



48 Simple Programming 

But how do those numbers in the display relate to the actual keystrokes 
of program commands? This question brings us to the nexl step in 
mastering your HP-34C-keycodes. 

Keycodes 
Let ' s take another look at the program instructions we just entered. 
Press (EJllIsTi. Your display will now show the first line of the Moon 
Surface Area program: 

Line number -----. 001-25. 13. 11"""'- Keycodes 
'---1 I I 

As you know, the number code 001 appearing on the left side of the 
display designates the line number of program memory. The next digit 
pair, 25, represents the [E] keystroke; 13, the 'l8ll keystroke; and 
11 , the I]] keystroke . The first digit of each pair denotes the row the 
key is located in; the second digit denotes the number of the key in the 
row . So 25 tells you that the key is in the second rowan the calculator 
and that it is the fifth key in that row, or, the mkey . In this manner each 
key on the keyboard is represented by a two-digit keycode, except for the 
digit keys zero through nine. For convenience, these keys and their 
respective alternate functions are coded 0 through 9. Let's see an exam­
ple. Press misSTI once . Your HP-34C's display will now show the 
second line of the Moon Surface Area program, II] (£): 

Un. number ___ 002 - 15 3......- Keycodes 
L-J L---I 

From the above. we know that 002 is the program line number and 15 is 
the first row, fifth key , or the 00 key . Because the [!Jprefix key is pan 
of this instruction , the 3 denotes thexz function which is located on lhe 
3 digit key. In calculalor jargon , (!) [£) is a " shifted function" ofthc 
3 key, just as the asterisk is a shifted func tion of a typewriter key . 

The remaining keystrokes for the Moon Surface Area program are shown 
below with their corresponding displays. Press each key in tum and 
verify the keycodes shown in the display. 

Keystrokes 

[El[E] 
0 -
[ElloTNI 

Display 

003-
004-
005-

25 73 
61 

25 12 



Simple Programming 49 

In this case, a program consisting of IO keystrokes takes only five lines 
of program memory. 

Problems 
I . What would be the keycodes for the following operations: 

[El(h) , I!ll GAD I , CIlI · ..... I. 15Tol0 I? (Answers: 252; 
15 13; 14 6; 23, 51, 1). 

2. How many lines of program memory would be required to load the 
following sections of programs? 

a. 2 1""""13 0 . 
b. 10 ISTo l 6 locli 6 0 . 

c. 100 ISTOI 1 50 15TOI0 I locll 2 [El 00· 
(Answers: a. 4; b. 5; c. 10.) 

Clearing a Program 
The Continuous Me mory feature of your calculato r preserves any pro­
grams loaded into program me mory even while the calculator is turned 
ofr. To clear program me mory, tum the calculato r on, s lide the PRGM­
RUN ,witch to PRGM ~ ,and press CIl CLEAR 1_ I All lines of 
program memory fonnerly occupied by programs you cleared using OJ 
CLEAR IPRGM I are again available for sloring new program instructions. 
If the programs you cleared occupied more than 70 lines of program 
memory. the lines the programs used in excess of the first 70 are auto· 
matically reallocated to data sto rage registers . Note that if you press ill 
CLEAR !PAGN I in RUN mode , the calculator resets to line (X)(), but 
program memory is not cleared. 

If power to the calculato r is interrupted (that is, battery fa ilure), a ll 
instructions in program memory and all data in the storage registers may 
be lost. When power is restored and the unit turned on, Pr Error appears 
in the display to warn of thi s loss. 

Creating Your Own Program 
In Meet the HP·34C, at the beginning of Ihis hand book, we created a 
program that calculated the surface area of a sphere , g iven the d iameter 
of that sphere . Now let' s create another program to show you how to use 
some of the other features of the HP·34C. 



50 Simple Programming 

If you wanted to use your HP-34C to calculate manually the area of a 
circle using the fonnulaA = 1Tr'l you could frrst key in the radius,., then 
square it by pressing (!] (i!) . Next you would summon 7r into the 
display by pressing IX) ~ . Finally you would multiply the squared 
radius and 1T together by pressing 0 . 

Remember that a program to calculate a given solution is litlle more 
than the keystrokes you would use to calculate that solution manually . 
Thus. to create an HP-34C program for calculating the area of any circle, 
you will want to identify the keystroke sequence used to calculate the 
area of a circle manually . 

The keystroke: sequence for calculating the a rea of a circle 
according to the formula A = rrr2 is: 

You will load into program memory these keystrokes plus, normally , 
lwomoreoperations. 01lBl i 0 and lEJl!IITN I. [EJ ILBLl0iscaUed 
a label address and is used to begin the program . £Ell !IITN I is used to end 
the program. 

Beginning a Program 
To define the beginning of a program use an 01 LBL I (label) instruction 
followed by one of the letter keys ( 0 or 00) , or by one of the digit keys 
(0 through 9). The use of labels pennits you to have several different 
programs or pans of programs loaded into the calculator at any time. and 
to run them in the order you choose. 

Ending a Program 

To define the end of a program, you can usc an [EJI!IITNI (return) 
instruction. When the calculator encounters a I !IITN I instruction while 
executing a program. it immediately transfers execution to line 000 and 
halts (unless executed as part of a subroutine-more about subroutines 
later) . 



Simple Programming 51 

Note: Vv'hen a running program encounters the end of 
occupied program memory, the effect is the same as if an 
(E) I "TN I had been encountered. This means that when 
programming, if your last instruction in occupted program 
memory would be an 01 "TN I, it can be eliminated, saving 
you one line of memory space. 

If you want a program to halt at a certain line in memory without return­
ing to line 000, you can key in a (E!I instruction at that line. When a 
running program encounters a C!OO instruction in program memory , 
execution simply halts. If you switch from RUN 10 PROM mode, you 
will see the next line of program memory after the [RISI instruction. 
(Remember that the calculator returns to line 000 and hairs after execut­
ing [he last instruction in program memory whenever the last instruction 
is any command other than I]I!], IG58I . IGTol. or a IRTN lfrom a sub­
routine; so there is nonnally no need to P Ul ~at the end of the last 
progrdm in memory to hal l execution .) 

The complete program to calculate the area of any circle given its radius 
is: 

Assigns name to and defines beginning of program. 
Squares the radius. 
Summons 7T into the di splay. 
Multiplies r2 by 7T and displays the answer. 
Defines the end of and stops the program. 

loading a Program 

When the calculator is set to PRGM. the functions and operations that 
are nonnally executed when you press the keys are not executed . Instead, 
they arc stored in program memory for later execut ion. All keyboard 
operations except the nine listed on page 46 call be loaded into program 
me"wry for later execut;Ofl . 

To prepare for loading a complete program into [he calculator: 

I , Slide the PRG M-RUN switch to """" om. , 
2. Press [DCLEAR I PAGM tto clear program memory of any previous 

programs. 



52 Simple Programming 
You can teU that the calculator is at the top of program memory because the digits 000 appear at the left of the display. The digits appearing at the left of the display when the calculator is in PRGM mode always indicate the program memory line number being shown at the time. 
The keys you pre)s to load the program calculating the area of a circle arc: 

Press the first key , 0 . of the program. 

Keystrokes 

[El 
DIsplay 

000-

You can see that the display of program me mory has not changed. Now press the second and third keys of [he program . 

Keystrokes 

ILBLI 
ill 

Display 

000-
001- 25, 13, II 

When a new program memory line number appears on the left of the display. it indicates that a complete operation has been loaded into that line. As you can see from the keycodes present on the right side of the display. the complete operation is lli)(keycode 25), I I.. BI.. I(kcycodc 13), 0(keycode 11 ) . Nothing is loaded into program memory until a com­plete operation (whether one, two, or three keystrokes) has been specified . 

Now load the remainder of the program by pressing the following keys. Observe the program memory line numbers and keycodes . 

Keystrokes DIsplay 
OO[£J 002- 15 3 
[El0 003- 2573 
0 004- 81 
[ElIOTNI 005- 25 12 -



,:J 
~ 
:J 
,I) 

;I 
Jj 

:I 
,:,) 

,;.) 
,;) 
,:) 

..:I 
~ 
.a 
.a 
.a 
~ 
;.a 
.;t 

:t 

Simple Programming 53 

The program fo r so lving the area o f a circle g iven it s radius is now loaded 
into your Hp·34C·s program memory . Notice that nothing could be 
loaded into the top-DC-memory marker, line 000. 

Running a Program 
Programs are executed in auto matic run mode. W ith the PRG M -RUN 
switch in .mRUN JX>s ition, key in any data that is required , and press 
the letter key ( (II or lID, that labels your program. 

Fo r example , to use the program now in the calculator to calculate areas 
of circles with radi i of 3 inches. 6 meters, and 9 miles: 

First , slide the PRGM-RUN switch to .mJfUI . 

Key!!o1rokes Display 

3 0 28.2743 Square inches. 
6 0 113.0973 Square meters . 
9 0 254.4690 Square miles. 

Now let' s see how the HP-34C executed this program. 

Searching for a Label 

When you switched the PROM -RUN switch to R UN, the calculator was 
set at line 005 of progmm me mory. the last line you had fi lled with an 
instruction when you were loading the program . When you pressed the 
0key, the calculator began searching seq uenti all y downward through 
program me mory, beg inning with line 005 , for a IL8Ll0instruction. 
When the calculator searches. it does not execute instructions. 

Because line 005 did not contain the lEI I L8L I IX! instruction , and no 
further lines of program memory were occupied . your HP-34C returned 
to line 000 and resumed searching do wnward through program memory . 
When the calculator found the ill I L8L I m instruction in line 00 I it 
then began executing your program. 



54 Simple Programming 

Executing Instructions 

The calculator executes instructions in exactly the order you keyed them 
in, peIforming the III [i!]operat ion in line 002 first, then m ~in line 
003, etc. , until it executes an m lRTH I instruction, a IA /sl (run !stop) 
instruction, or encounters the end of occupied program memory . Since 
there is an m IRTN linstJUction in line 005, execution returns to line <XX> 
and halts . The calculator then displays the contents of the X-register . 

It is normally best to use [!Jor [!)to define the beginning of a program 
and to save 0 through 9 for subroutine labels (more on subroutines later). 
Why? Labels 0 and [!] require only one keystroke to begin execu­
tion, as in our area of a circle program. But if you have several short 
programs to key into your HP-34C you can use labels 0 through 9 to 
address some of the individual programs. Using numerical labels 
requires an additional keystroke , IGSa l, for program execution. To 
illustrate. let's load and execute our area of a circle program using 0 for 
the label. 

Slide the PRGM·RUN switch to PROM m.I . 

Keystrokes Display 

mCLEAR I_I 000-
[ElILBL IO 001-25, 13, 0 
(!J~ 002- 15 3 
[El~ 003- 25 73 
0 004- 61 
[El1·THI 005- 25 12 

Slide tbe PRGM·RUN switch back to """ . 

Now , execute the program using the example from page 53. This time , 
because of our label change, press IGsaIO instead of 0 . 

Keystrokes 

3 l asa lO 
6 lose lO 
9 IGSII IO 

Display 

28.2743 
113.0973 
254.4690 



:I 
~ 
;J 
;; 
:;J 
:J 
~ 
;:;I 
;I 
:J 
:J 
~ 
~ 
i:j 

:. 
~ 
~ 

~ 

~ 

~ 

Simple Programming 55 

If you try to execute a label (I LBL I) that is not contained as an instnJCtion 
in program memory. the HP-34C will display Error 4 . For example. if 
your calculator contains only the program for area of a circle that you just 
keyed in, you can cause an Error 4 condition by simply press ing a letter 
key_ 

Keystrokes 

[IJ 

Display 

Error 4 

To clear the error message from the d isplay, press ICLX lor any other key. 
The calc ulator remains set at the current line of program memory. 

Automatic Memory Allocation 
Converting Storage Registers to Program Memory 

The aUlomatic me mory allocation des igned into your HP-34C gives you 
increased versat ility by converting storage registers to lines of program 
memory only as needed . You begin programming with 70 lines of pro­
gram memory and 20 sto rage registers (plus thc I-register, dcs<: ribed in 
section 7). With 0 to 70 instructions in program memory. the allocation 
looks like this: 

STORAGE REGISTERS PROGRAM MEMORY 
Permanent Shared Shared Permanent 

10 ROn R.,O 

~ R,D Ix R,D 001-

R,DIx' R,D 002-

R,D IY R,D 
R·D IY' R·D . ,..:::::. 
R,D I.y R..D 068-

R·D R.D 069-

R,D R,D 070-

Shared 

R·D R.D -none-

R·D R.D 



56 Simple Programming 

When you key in the 71 ~ t line of programming. storage register R.9 
converts to 7 lines of add itional program memory . Now the memory 
allocation looks like this: 

STORAGE REGISTERS 
Permanent Shared Shared 

{~ RoDn 
R,D Ix 

RoD 
R,D 
R,D 
R·,D 

R.D IY' R.D 
R,DIxy R,D 
RoD RoD 
R,D R,D 
RoD RoD 
R.D r--, 

I I R .• L __ -' , 

PROGRAM MEMORY 
Permanent 

000-

001-lnstruction 

002- lnstruction 

~ 

068-1nstruction 

069-lnstruction 

07a-lnstruction 
I Shared I 
I , 
~71-ln.tNctiOl1 

072-

073-

074-

075-

076-

on-



~ 
~ 
~ 
~ 
~ 
~ 
,) 
~ 
:I 
~ 
;:; 
.;a 
.;; 
~ 

~ 
~ 

~ 
:;;) 

Simple Programming 57 

When you record a full 210 lines of program memory . the calculator's 
memory registers look like this: 

STORAGE REGISTERS 

Permanent Shared 

I ,----, Ron '---I L-J "L ___ ..J . . 
1'"- -' -..., 
I I 

R~ L_ . _....I 

PROGRAM MEMORY 

Permanent 

001-lnstruction 

002-lnstruction 

068-lnstruction 

069-lnstruction 

07G-lnstruction 

07l-lnstruction 

072-lnstruction 

__ Instruction 

21c)-lnstruction 

Program memory is separate from [he four stack registers and the LAST 
X register. Notice that instead of the original 21 storage registers (Ro 
through Rg. R.o through R.9 , and I) we now have just the non·convertable 
I-register. What happened to storage registers Ro through R9 and R.o 
through R.9? They were convened to program memory at the rate of 
seven lines per register. The following table shows the allocation of the 
lines of program memory to their respective storage registers . 



58 Simple Programming 

R .• 071-077 R. 141 - 147 
R .• 078-084 R. 148-154 
R, 085-091 R, 155- 161 
R.o 092-098 R. 162- 168 
R .• 099-105 R, 169-175 
R. 106-112 R. 176-182 
R, 11 3-1 19 R, 183-189 
R .• 120-126 R, 190- 196 
R., 127-133 R, 197-203 
R.o 134-140 Ro 204-210 

When all 210 lines of program memory arc occupied, attempting to 
insert an additional program instruction anywhere in memory results 
only in Error 4 appearing in the display . The additional instruction will 
be ignored and none of the original 210 lines will be lost. 

As you can see, each time currently available programming space is 
filled, keying in another command automatically converts the next 
remaining storage register to seven more lines of program memory . For 
example, filling the first 77 lines and then keying a command into line 78 
converts register R.8 (Q 7 more lines of program memory (lines 78-84), 
and so on. 

Note: Your HP-34C converts storage registers to program 
lines in reverse numerical order, from R .• to R.o and then from 
At to Ro. For this reason it is good practice to program your 
I $TO I and I RCL I operations using data registers in the oppo. 
site order; that is, beginning with register Ro- This procedure 
helps avoid accidentally programming I 'TO I and I RCll for 
data registers which have been converted to lines of program 
memory. Remember also that the calculator does not retain 
data previously stored in registers that are later converted 
to lines of program memory. 



Simple Programming 

Converting Program Memory to Storage Registers 

59 

Pressing [DCLEAR I PAGM lin PRGM mode converts all shared program 
memory (l ines 071·210) to storage reg isters Ro through R.9 . However, 
dele ting individual lines of program memory allows you to convert 
portions of shared memory to storage registers without clearing all of 
program memory . (More on deleting Jines of memory in section 4 . 
Editing.) 

Using IMEMI 

The IMENI (memory) function on your calculator describes the current 
memory allocation in or out of program mode. When you press ([J 
INnt llhc display shows both (I) the number of currently unused (avail· 
able) program lines you must load before a storage register will be 
converted . and (2). the name of the storage register which is next in 
line to be converted (R.II through R.o• R9 through Re). For example, if 
you press 001 "'E", I with 44 lines of program me mory occupied. you 
will sec the fo llowing display; 

Lines remaining to be occupied 
before the calculator automat ... 
cally converts a storage register 
to 7 more program lines. 

The next storage register to be 
converted. 

If you press OOIMEM I with 173 lines of program memory occupied , you 
will see this display: 

linn remaining to be occupied 
before the calculator automatI­
cally converta a atorage reglst.r 
to 7 more program IIn.a. 

The next atorage register to be 
converted. 



60 Simple Programming 
If you press (I)IMEMI with 205 lines of program memory occupied , you will see this di splay : 

r--P- OS ,- ---, 
lin .. remaining to be occupied 
before.lIl1.,.. of progrem mem­
ory are occupied. 

No more storage registers can 
be converted to program mem­
ory. 

As long as you arc pressing IMEMI, the memory allocation will be dis­played . When you release the lllEwl key, the calculator returns 10 the original display. So at any time, you can find out the number of lines available for programming and the number of registers available for storing data . Because the I-register is a pennanent storage regi ster with special functions , it is not covered by the IMeMI operation. 

Note: Remember that the statistical functions involve registers Ro through As_ If one or more of these last six registers are converted to lines of program memory, attempts to execute statistical functions will result in an Error 2 display. 

Writing a Third Program 
To funher explore the programming capabilities of your HP·34C let's write a third program. Suppose you want to write a program that will calculate the increase in volume of a spherical balloon as its diameter increases using the formula: 

where do is the original diameter of the balloon and d I is the new diame· ter. If do were entered in the Y·register and d t were keyed into the X·register , the problem could be solved manually by pressing the keys shown in the left·hand column below. The program keystrokes for this problem are the same as the manual keystrokes. Switch the PROM-RUN switch to PfIOM" and press the keys shown below. 



Simple Programming 61 

Keystrokes Display 

CD CLEAR I PROM I 000-
[EJILBL I(IJ 001- 25,13, 12 
3 002- 3 

[EJ~ 003 - 25 3 Cube the new diameter. 

1"'1 004- 21 
3 005- 3 
[EJ~ 006 - 25 3 Cube the original diameter. 

El 007- 41 Subtract the cubes. 
[EJ~ 008 - 25 73 

0 009- 61 Multiply by fr . 

6 010 - 6 

0 OlI- n Divide by 6. 
[EJI RTHI 012- 25 12 

Slide the PRGM-RUN switch to -.JfUI 
Notice that an lemRtl command was not included to separate the number 
3 in line 002 from the digits you will key in later . Including IEJmRtl 
after the I LBL I instruction would not cause an error in this example. but 
is not necessary. Why? When a running program executes a ILBL I 
instruct ion, Slack lift is enabled . Whe n a new number is then ente red into 
the X-register the stack automatically lifts. Here is how thi s works when 
you run the above program with do entered into the V-register and d, 
keyed into the X-register. 

Stack Register. 

001 002 003 

If you are unsure how other operations affect the stack . see appendix E . 
Stack Lift and LAST X. 



62 Simple Programming 

Example: Find the increase in volume 
of a spherical balloon if the diameter 
changes from 30 feet to 35 feet. 

Keystrokes 

30 1 ....... 1 

35 ~ 

Display 

30.0000 

8,312.1306 

Enter original diameter into 
Y. 
Key new diameter into X 
and run the program. The 
answer is displayed in cubic 
feet. 

Program Stops and Pauses 
When programming, there may be occasions when you want a program 
to halt during execution so that you can key in data. Or you may want the 
program to pause so that you can quickly view results before the program 
automatically resumes running. Two keys, ~ (run /stop) and I PSE I 
(pause) . are used for program interruptions. 

Planned Stops During Program ExecutIon 

The (E!J(rWl lstop) function can be used either as an instruction in a 
program or as an operation pressed from the key board. 

When pressed from the keyboard; 



• 
• • 
• • • 
~ 

• • • • • 

Simple Programming 63 

I. If a program is funning, ~ halts program execution. 

2. If a program is stopped or not running . and the calculator is in 
RUN mode, pressing l!Z!J starts the program running . Execution 
then begins with the fLfst line of program memory following the 
IA/slinstruction . (When [!Z!]is pressed and held in RUN mode, 
it displays the line number and keycode of that current line­
when released, execution begins with that line.) 

You can use these features of the ! AIS I instruction to stop a runn ing 
program at points where you want to key in data . After the data has been 
keyed in , restart the program using the IA/slkey from the keyboard . 

Example: Universal Tins; a canning 
company, needs to calculate the vol­
umes of various cylindrically- shaped 
cans. Universal would also like to be 
able to record the area of the base of each 
can before the volume is cakulated . 

The following program calculates the area of the base of each can and 
then stops. After you have written down the result. the program can be 
restarted to calculate the final volume. The formula used is: 

Volume = base area x height = 1fr'J. X h 

The radius (r) and the height (h) of the can are keyed into the X- and 
Y -registers. respectively. before the program is fun . 



64 Simple Programming 

To record this program, set the PRGM-RUN switch to PAGM ~ • then 
key in the following program instructions. 

Keystrokes DIsplay 

OJ CLEAR I PAGM I 000- Clears program memory and 
displays line 000. 

~l lBL l0 001 - 25, 13, 11 

OO ~ 002- 15 3 Square the radius. 

~0 003- 25 73 Place 1T in X. 

0 004- 61 Calculate the area of the 
base . 

[!Z!J 005- 74 Stop to record the area. 

0 006- 61 Calculate the final volume . 

~I'T. I 007- 25 12 

Sct the PRGM-RUN switch to -.JRUH . Then usc the program to 
complete the table below: 

Height 
25 

8 

Keystrokes 

25 1""",.1 

100 

8 1...,.... 1 

4.50 

Radius Area of Base Volume 
10.0 

4.5 

Display 

25.0000 

314.1593 

7,653.9616 

8.0000 

83.6173 

508.9380 

? 
? 

? 
? 

Enter the height into the 
Y -register. 
Key the radius into the 
X-register and calculate 
area. Program stops to 
display the area. 
Volume of first can is 
calculated. 
Enter the height into the 
Y -register. 
Key the radius into the 
X-register and calculate 
area. Program stops to dis· 
play the area. 
Second volume is 
calculated. 



~ 

~ 

,. ,. 

Simple Programming 65 

With the height in the Y -reg ister and the radius in the X-registe r. pressing 
o in automatic RUN mode calculates the area of the can 's base; the 
program stops at the first I!Z!J instruction encounte red . Pressing I]Z!] 
calculates the volume of the can. Program execution then returns to 
line 000 and halts. 

Pausing During Program Execution 

An [!] I PSE I instruction executed in a prog ram interrupts program 
execution to display results momentarily before execution is resumed. 
The length oflhe pause is about 1 second. but you can use more than onc 
consecutive II1 [PSEI instruction to lengthen the time . 

To sec how ill ipSE lean be used in a program, we' ll modify the cylinder 
volume program in the previous example . In the new program the area 
of the base will be briefly displayed before the volume is calculated . 
This example will also show how different progmmming approaches can 
be taken to solve the same problem. 

To key in the program, set the PROM-RUN switch to PRiM~ . 

Press [[) CLEAR I PROM I to clear program memory and display line 
()(X) . Then key in the following program instructions. 

Keystrokes Display 
[I) CLEAR 1 ....... 1 000-

miLBLI0 001 - 25, 13, 11 
OO(£] 002- 15 3 Squares the radius in X. 

m0 003 - 25 73 Places 7T in X. 

0 004 - 61 Calculates the area of the 
base . 

m lpsel 005 - 25 74 Pauses to show the base area 
for one second . 

0 006- 61 Calculates final volume of 
can. 

ml. T.1 007- 25 12 



66 Simple Programming 

This program also a.<iisumes the height has been entered into the Y -register 
and the radius has been keyed into the X-register . If you have stored the 
instructio ns, sct the PRGM-RUN switch to .:I!JRUN . Now complete 
the table belo w using the new program . 

Hel ht Radius 
20 15 
10 5 

Keystrokes Display 

201 ........ 1 20.0000 

150 706.8583 

A ..... of Base 
? 
? 

Volume 

? 
? 

Enter the height into the 
Y -register. 
Key the radius into the 
X-register and calculate. 
Area o f base is displayed for 
1 second. 

14,137.1 669 Program stops . displaying 
the volume . 

10 I.N", .. I 10.0000 

50 78.5398 

785.3982 

Unexpected Program Stops 

Enter the second height into 
Y. 
Key the radius into the 
X-register and caJculate . 
Area of base is displayed for 
1 second . 
Program stops. displaying 
the volume . 

At times a mistake o f some kind in your program will stop program 
execution. To help you determine why the calculator stopped in the 
middle of a program, possible reasons are listed below. 

Execu ting [IJ I"nll . Unless in a subroutine, whenever [IJ I" TNI is 
executed in a program. the calculator immediately returns to line 000 and 
hailS . 



.. 

Simple Programming 67 

Encountering the End of Program Memory. When the final instruc­
tion in program memory is not I GTol, IGSBI , I RTN lor I R/SI , and is not in 
a subroutine, a running program will encounter the end of occupied 
program memory, transfer immediately to line 000. and halt . 

Pressing Any Key. Pressing any key halts program execution. Be care· 
ful to avoid press ing keys during program execution. The calculator has 
been designed so that program execution will not halt in the middle of a 
digit entry sequence. [fyou press any key while a number is being placed 
in the X-register by a running program , the entire number will be "writ­
ten " and the following line will be executed by the program before the 
calculator halts. 

When a program is halted, you can resume execution by pressing IRISI 
from the keyboard in RUN mode. When you press I RIS I, the program 
resumes execution where it left off as though it had never stopped at all . 

Error Stops. If the calculator attempts to execute any error-causing 
operation (refer to appendix D, Error Indications) during a running 
program , execution immediately halts and the calculator displays the 
word Error and a number. To see the line number and keycode of the 
error-causing instruction, you can switch the calculator to PRGM mode . 

Overflow Calculations. Your HP-34C has been designed so that by 
looking at the display you can always tell why the calculator SlOpS. If 
program execution stops because the result of a calculation in the X­
register is a number with a magnitude greater than 9.999999999 x 1099

, 

all 9's are displayed with appropriate sign. It is then easy to detenninc 
the operation that caused the overflow by switching to PRGM mode and 
identifying the keycode in the display. 

If an attempted storage register arithmetic operation would result in 
overflow in a storage register, the calculator halts and displays Error 1. 
The number in the affected storage register remains unchanged from its 
previous value. When you clear the error message , the last number in the 
display returns. 

If the result of a calculation is a number with a magnitude less than 
1.000000000 x 10-99 • zero will be substituted for that number and a 
running program will continue to execute normally. This is known as an 
underflow. 



68 Simple Programming 

Labels 
The labels (0. []], 0-9) in your programs act as addres~s-lhey tell 
the calculator where to begin or resume execution . When a label is 
encountered as part of a program, execution merely " fall s through" the 
labe l and cont inues onward . for example, in the program segme nt shown 
be low, if you pres~ 0. execution would begin at !Xl I L.BL 10 and con­
t inue downward through program memory. on through the !Xl I LBL I 3 
instruction, until the I ATN I was encountered and execution returned 10 

line 000 and halted . 

01lBLI0 

0 1LBL I3 

!XJ IRTNI 

-----Flowcharts 

Whe n you press 00 ... exec ution 
begins here. 

No (I) I RTN I here ... 
so execution fall s through the 
[EJ I lBL 13 instruct ion . 

... and continues to the I RT" I. 
then tra nsfers to line 000 and halts. 

At this point , we digress for a moment from our discussion of the calcu­
lator itse lf to di scuss a fundame ntal and ex tremely useful lOol in 
programming-the flowchart. 

A nowchart is an outline of the way a program solves a problem . With 
210 possible instructions, it is quite easy to get " lost" while creating a 
long program , espec ially if you try to simply load the complete program 
from beginning to end with no breaks. A flowchart is a shol1hand that can 



.. 
~ 

.. 

Simple Programming 69 

help you design your program by breaking it down into smaller groups 
of instructions. It is al so very useful as documentation- a road map that 
summarizes the operation of a program. 

A flowchart can be as simple or as detailed as you like , Here is a flow­
chart that shows the operations you executed to calculate the area of a 
circle according to the formula A = 11'r2. Compare the flowchart to the 
actual instructions for the program: 

00 

0 

( Stop. ) 010T.1 



70 Simple Programming 

You can see the similarities. At times. a flowchart may duplicate the set 
of instructions exactly, as shown above . At other times. it may be more 
useful to have an entire group of instructions represented by a single 
block in the flowt:hart . For example, here is another flowchart for the 
program that calculates the area of a circ le: 

( Start 

t 
I Calculate trr'. I 

~ 
Stop 

Here an ~ ntire group of instructions was replaced by one block in the 
flowchan . This is a common practice, and one that makes a flowchart 
extremely useful in visualizing a complete program . 

You can see how a flowchart is drawn linearly, from the top ofthc page 
to the bottom. This represents the general flow of the program , from 
beginning to end. Although flowcharting symbols sometimes vary . 
throughout this handbook we have held to the convention of ovals for 
the beginning and end of a program or subroutine. and rectangles to 
represent groups of functions that take an input . process it , and yield a 
single output. We have used a diamond to represent a decision, where a 
single input can yield either of two outputs. 



.. 

Simple Programming 71 

For example, if you had two numbers and wished to write a program 
that would display only the larger, you might design your program by 
first drawing a flowchan that looks like this: 

Yes Is No 
,---C#2Iarger thanl>-----, 

#17 

After drawing the flowchart , you would go back and substitute groups of 
instructions for each element of the flowchart. When the program was 
loaded into the calculator and run , if #2 was larger than :# I, the answer 
to the question "Is #2 larger than II I ?' . would be YES, and the program 



72 Simple Programming 

would take the left -hand path , display # 2, and stop. If the answe r to the 
question was NO, the program would execute the right-hand path , and 
#1 would be displayed. You wi ll see late r the many dec ision-making 
instructions available on your HP-34C. 

As you work through this handbook . you will become morc familiar with 
flowchans . Use the flowcharts that illustrate the ex.amples and problems 
to help you understand the many features of the calc ulator. or draw your 
own flowcharts to help you create , edit . e liminate errors in, and 
docume nt your programs. 

Problems 
Here are four programming examples for yoll to try using material we 've 
already covered. Possible solutions for these examples are shown on the 
fo llowing pages . However, you will rece ive the most bene fit from the 
exercises by coming up with your own solutions before finding out how 
we' ve done it. Remember. there is usually more than one way to solve a 
programming problem. Perhaps you can improve on our solutions! 

I . You have seen how to write , load . and run a program to calculate 
the area of a circle from its rad ius . Now write and load a program 
that will calculate the radius r of a c ircle give n its area A using the 
fo rmula r = v;iJ;. Be sure to slide the PRGM-RUN switch '0 PRGM and press II) C LEAR 1""",,1 fi rs' '0 clear program 
memory . Define the program with m I LBll m and m I RTH ~ 
Afte r you have loaded the program, run it to calculate the radii of 
circles with areas of 28.2743 square inches , 11 3.0973 square 
meters , and 254.4690 square miles. 

(Answers: 3 .0000 inches, 6 .0000 meters, 9 .0000 miles .) 

2. Create a program to calculate the le ngth of a chord ~ subtended by 
angle (J on a circle of r radius using the equation ~= 2r Sin + . 



Simple Programming 73 

Define this new program with II} [LBL I [!)and use it to complete 

the folJowing table: 

, (meters) 6 Q 

25 30 ? 
50 45 ? 

100 90 ? 

Design your program for a r. e order of data entry. 

(Answers: 12 .9410 meIers, 38.2683 meIers, 141 .4214 melers.) 

If you have difficulty programming for this example. go back to 

page 60 and study Writing a Third Program . 

3. Write and load a program that will convert temperature in degrees 

Celsius to Fahrenheit , according to the formula F = 1.8 C + 32. 

Derme the program with m I LBL l O a n d m I RT" I and run it to 

conven Celsius temperatures of - 4<t, 0°, and + 72°, 

(Answers: _40.()()()()OF, 32,()()()()OF, 16 1.6000°F.) 

4. Create a program that will convert temperature in Fahrenheit 

back to Celsius according to the fonnula C = ( F - 32)5/9. 

Define the program using ill I LBL I I and m I AT" I· Run this 

new program to convert the temperatures in Fahrenheit you 

obtained back to Celsius. 

If you wrote and loaded the programs as called fo r in problems 3 and 4, 

you should now be able to convert any temperature in Celsius to Fahren­

heit by pressing IQUI 0 and any temperature in Fahrenheit to Celsius by 

pressing IOUI I . Questions? Review Executing Instructions. beginning 

on page 54 , concerning the use of IQUI and labels 0 through 9 for 

addressing individual programs. 



74 Simple Programming 

Key in area. Key in r, O. 
Start Start 

Summon pi . sin 0/2 

~ ~ 
Divide . 2r 

~ 

( Stop ) Stop 

Key in C. 
Start 

1.6C 

Stop 



Simple Programming 75 

Example Problem Solutions 

Keystrokes Display 

Radius of a Circle IBILBLI0 001- 25, 13, 11 

1B0 002- 25 73 

G 003- 71 

[l]@') 004- 14 3 

IBIRTHI 005- 25 12 

Length of a Chord IB ILBLIOO 001- 25,13, 12 
2 002- 2 

G 003- 71 

[l] WEI 004- 14 7 

0 005- 61 
2 006- 2 

0 007- 61 

IBIRTHI 006- 25 12 

Convert Celsius [ 0 Fahrenheit IBILBLIO 001- 25,13, 0 

I 002- 1 

8 003- 73 
8 004- 8 

0 005- 61 
3 006- 3 
2 007- 2 
(±) 006- 51 

IBIRTHI 009- 25 12 

Convert Fahrenheit to Celsius IB ILBLII 001- 25, 13, I 
3 002- 3 
2 003- 2 

G 004- 41 
5 005- 5 

0 006- 61 
9 007- 9 

G 006- 71 

IBIRTHI 009 - 25 12 

Keystroke Solutions 

1. Area 0 = Radius 3. C 1058 10 = F 

~ 
2. Radius 100 .... 18 00= Length of Chord 4. F IGSBII = c 



76 Simple Programming 

Programming Techniques 

The solutions to some types of problems require you to use the same 
variable severa] limes during our calculations. As you may Jnow, there 
is more than one way to program such solutions in your HP-34C . How­
ever, the program that is economical both in execution time and in 
program space is often the most desirable . Lei 's compare two different 
ways we can approach the solution to a problem using the same variable 
severa.! times. For example, the polynomial 

f(x) = x" + 3.x3 - x 2 + 4x - 1 

uses the variable x four times; i.e. , .t ol
, x\ x2 , x. This means that four 

powers of x will be needed to calculatej(x). Your task is to write a pro­
gram that both describesj(x) mathematical ly and makes available a copy 
of the variable x each time it is needed during program execution. You 
can do this with reasonable e ffic iency in one of two ways. Either initially 
store a copy of the variable for later recall wherever it is needed; or, 
better, write your prognlm so that the stack need only Ix: filled with 
copies of the variable prior to execution . The advantages of thi s stack 
fill method over the stor.lge method are: 

1. Your program can easily be wriHen to keep a copy of the variable 
either ready for immediate use or accessible with an 1 x'IoYI instruc­
lion. (Remember that each time the stack drops, the T-register 
dupl icates the number which last occupied it before the stack 
dropped .) This means you use fewer lines of program memory 
because ISTOI and IRcLt instructions are unnecessary. 

2. A storage register is saved for other uses. 

3. Stack fill is convenient for evaluating polynomial expressions 
generally, and for use with most lSOlvEI and lZIJ applications 
(more on lSOl.vEI and rm later) . 

Now let's look at a program that evaluates the expression X4 + 3x3
-

x! + 4x - I using the stack fill method . This time we ' ll see just the 
program instructions and stack contents. Examine the program instruc­
tions line by line and Ix sure you understand how and why each instruc­
tion affects the stack. Assume that the value of x is alread y in the stack 
when program execution begins. 



-------------------~~. ~ 

Simple Programming T7 

Stack Registers 
001 002 003 004 005 

~§x §x ~x ~x ~x. ~x x x x· x 

'X x 4 x' x 3 

ITl 
IZ 
IY 
IX 

01lBL I 0 

011 

x 

x 

x4+3x3 

x' 

014 

x 

x4+3x3 -X2 

X 

4 

4 

4 

012 

x 

x 

X 

x.4+3x 3 - x~ 

G 

015 

x 

X 

x4+3x3 x' 

4x 

3 

009 010 

x x 

x x 

X x"+3x3 

x"+3x3 X 

013 

x 

X 

x"+3x3 -x% 

X 

016 

X 

X 

x 

x"+ 3x3 - xt+4x 



78 Simple Programming 

T 
Zl 
~ 
Xl 

017 

x 

x 

x"+3x3 -x!+ 4x 

1 

Stack Registers 
018 

x 

x 

x 

x4 +3x 3
- x2 + 4x- i 

019 

x 

x 

x 

x4 + 3x3 -x2+ 4x- J 

Notice that extra copies of the variable remain in the stack after the 
program has been run. If, for any reason, you want to return a copy of the 
variable 10 the display after evaluating f(x) at that variable, simply 
press IXHI. 

To experiment with the stack fill method , key in the program for evalu­
ating the above expression and try running some examples. 

Slide ,he PRGM-RUN ,witch '0 ...... ~ . 

Keystrokes Display 

mCLEARI_1 000-

01 lBL I0 001 - 25,13, 11 
4 002- 4 
0(EJ 003- 25 3 
Ixul 004- 21 
3 005- 3 
0 (EJ 008- 25 3 
3 007- 3 
0 008- 61 
m 009- 51 
1 .. ,1 010- 21 
(!)[£] 011- 15 3 
G 012- 41 

1"'1 013- 21 
4 014- 4 
0 015- 61 
m 016- 51 
I 017- 1 
G 018- 41 

01""1 019- 25 12 



Simple Programming 79 

Slide the PRGM·RUN switch to .alRl.III and evaluate the expression 
at the followi ng values of x: I , 2, 7.1935, In 17 .5 . 

Keystrokes 

11 ....... \1 ....... 1 
1 ...... ·1 
o 
2 1 """ .. 11.",., .. 1 
1 ...... · 1 
o 
7. 19351 ....... 1 
1 ....... \1 ........ 1 

o 
17.5 ITl f®1.",., .. 1 

1 ...... · \1 ' .. "' .. 1 

o 

Display 

1.0000 
6.0000 

2.0000 
43.0000 

7.1935 
3,770.4359 

2.8622 
139.7118 

Fill stack wit h variable. 

lex) 

Fill stack with variable . 

lex) 

Fill stack with variable. 

lex) 

Fill stack with variable. 
lex) 

Using Horner's Method 

As you can see, the above program was log icall y and eas ily writte n; and 
it produced the results we wanted . However. using a mathematical tech­
nique known as Horne r' s method , we can write a program that is not 
only logical , but is also simpler and shorter. 

Horne r 's method essentially rearra nges a polynomial expression 
GnXn + a n_1xn- 1 + ... + G1X 1 + Qo to eliminate exponents greater than 
1. As a result , the expression is stated as a series o f arithmetic operations 
involving the variable x and the coeffic ie nts an. 0 n_ I • ... ,O , . 0 0 . For 
example , applying Horner' s method to the polynomial expression we 
calculated earlier: 

x· + 3x:1 - x 2 + 4x - I 

(x 3 + 3x2 - X + 4)x - I 

«(x' + 3x - I)x + 4)x - I 

(((x + 3)x - I )x + 4)x - I 

We can now write another program using the same stack fill method we 
used in the previous program . But this lime , because we rewrote/ex) 
using Horner ' s method , our program involves just seven arithmetic 
operations instead of the s ix ar ithmetic and three exponential operations 
needed earlier. 



80 Simple Programming 

Stack Register. 
001 002 003 004 005 

~~x ~: ~x tyj x x x 

!Xl x 3 (x + 3) 

x x 

x x 

x (x +3)x 

(x+3)x I 

3 

007 008 

x x x 

x x x 

x x «x+3)x I )., 

«x+3)x I ) «x+3)x - l )x 4 

G 4 

009 010 011 

x x x 

x x X 

x x «(x+3)x l )x+4)x 

.T 
z 
IY 
IX «x+3)x - l)x+4 «x+3)x- l )x+4)x I 

012 013 

x x 

x X 

X x 

«(x+3)x 1)x+4)x 1 ((x+3 )x - l )x+4 )x I 

G 



Simple Programming 81 

The above program uses only 13 lines of program memory, a savings of 
6 lines over the previous program to calculate the same expression. Key 
in the above program and try the same examples we ran earlier. 

Slide the PRGM·RUN switch to ~ ~. If you have not executed 
any other instructions since the previous evaluations off(x), you will 
see 000- in the display , If this is not the case, press lGTol8 000 
(more on IGTollater). 

Keystrokes Display 

IB llBL l l]] 001- 25, 13, 12 
3 002- 3 

ill 003- 51 

IB 004- 61 
I 005- 1 

G 006- 41 

IB 007- 61 
4 008- 4 

ill 009- 51 

IB 010- 61 
I 011- 1 

G 012- 41 
IBIATN I 013- 25 12 

Slide the PRGM·R UN switch to ..:lJll]fU\I and evaluate the expression 
using the same values of x we used earlier . 

Keystrokes Display 

11...,...·1[...,..·1 
1...,....1 1.0000 Fill slack with variable . 
I]] 6.0000 f(x) 
2 1...,...1[...,...1 
1...,..·1 2.0000 FiJI stack with variable. 
I]] 43.0000 f(x) 
7. 1935 1...,...1 
1...,....1[00 .... 1 7.1935 Fill stack with variable. 
I]] 3,770.4359 f(x) 
17 .5 ITl ~I"""".I 

1...,...1[...,...1 2.8622 Fill stack with variable . 

I]] 139.7118 f(x) 



82 Simple Programming 

Did you notice something different? In addition to reducing the size of 
the program, using Homer's method reduced execution time as wel l. 

Further Applications 
As you have seen, the stack fill technique provides a simple and useful 
approach to evaluating an expression containing several occurrences of 
the same variable . By applying Horner's method to the problem, where 
possible , we realize greater space savings and speed. Later, when we 
discuss root-finding and numerical integration , you will see how tbe 
automatic stack fill designed into the ISOLvEland (lD operationsenhances 
the power and convenience of your HP-34C's programming and 
problem-solving capability. 

Problems 

USing the stack fill technique and Horner' s method, write and execute 
programs for eva lua[ing the fo llowing ex press ions a[ x va lues of 
1.5,3.73, and -4.25. 

I. 2x li -x" + 2x2 +.:c + 1 

2. 0.97 sin3 x + 0 ,04 sin 2 x - 1.73 sin x - I 

Answers: 

I. 17 .1250, 1,283.0102, -3,066.5371. 
2 . - 1.0452, - 1.1121 , -0.8720. 





Section 4 

Program Editing 

Often you may want to alter, correct, or add to a program that is loaded in 
the calculator. On your HP-34C keyboard, you will find several editing 
functions that permit you to easily add or change steps in a loaded pro­
gram without reloading the entire program. 

As you may recall. there are nine functions that cannot be recorded in 
prognun memory . Seven of these functions arc program editing and 
manipulation jun(·tions, and can aid you in modifying and correcting 
your programs. 

Nonrecordable Operations 
CLEAR I PAGM I is one keyboard operation that cannot be recorded in pro­
gram memory. When you press IJJ CLEAR I~I in PRGM mode, 
program memory is cleared and the calculator is reset to the top of mem­
ory (line (00). Note ,ha' CD CLEAR [ ..... Idoes notresc' a RAD orGRD 
trig mode to DEG. 

I SST I (s ingle step) is another nonrecordable operation. When you press 
[E) I SST I, in PRGM mode. the calculator moves to and displays the nex.t 
line in occupied program memory. No program instructions are exe­
cuted . Whe n you press [E) I SST lin RUN mode thec_alculator also moves 
to and displays the next line of program memory. But when you release 
the I SST I key . the calculator executes the instruction loaded in that line . 

laST I (back step) is a nonrecordable operation used in both PRGM and 
RUN mode to move to and di splay the previous line of program memory. 
In RUN mode the original contents of the display reappear when I aST lis 
released. No program instructions arc executed . 

CLEAR I PREFIX I is the nonrecordable operation used after a prefix key­
stroke ( CD. (I). or (El) '0 cancel ,ha' keystroke. CLEAR 1 """'X 1 also 
cancels all keystrokes in an incomplete instruction such as m Isc l lor 
ISTO] m. CLEAR! PREFIX I has no effect on a completed instruction (i.e., CD [!£] 5. [sTol [II I . etc .). 

B4 



Program Editing 85 

IGTol (go to) [!] nnn is used for go ing to a specific line number, and is 
anmher keyboard operation which cannot be loaded as an instruction. 
(However , IOTOI followed by a numbered labe l 0 through 9 can be 
loaded as a program instruction . More about the use of this instruction 
later.) Whether the calculator is in PRGM or RUN, when you press 
10Toi [!] followed by a three d ig it line number, the program memory is 
set to that line number. No instructions are executed. If the calculator is 
in RUN mode. you can verify that the calculator is set to the specified 
line by briefly switching to PRGM mode. The 10Toi [!] nnn opera· 
tion is especially useful in PRGM mode because it pennilS you to jump 
to any location in occupied program memory for editing or checking 
purposes. 

Note: Attempting to execute a 10Toi C!J mm instruction 
to any tines of program memory that are unoccupied or 
that the calculator has not converted from data storage 
registers is an illegal operation which results in the error 
signal Error 4. 

The IDEL. I (delete) key is a nonrecordable operation that you can use in 
PROM mode to delete instructions from program memory. When the 
calculator is in PROM mode and you press [ElIDEL.I . the instruction at 
the current line of program memory is erased. All subsequent in­
structions in program memory then move upward one line . Press ing 
[El I DEL. I in RUN mode does nothing . 

The IMEMI(memory) function, displays the current memory allocation at 
any time, in or out of program mode . To review I.MI. see page 59 in 
section 3, Simple Programming. 

Now let' s load a program from the keyboard and use your HP-34C's 
editing tools to check and modify it. 



86 Program Editing 

Pythagorean Theorem Program 

The following program computes the 
hypotenuse of any right triangle . given 
the other two sides. The formula used is 
c =Va 2 +b2 , 

Below are instructions for the program 
(basically. the same keys you would 
press to solve for c manually), assum­
ing that values for sides a and b have 
been input to the X- and Y -registers of 
the stack . 

To load the program: 

First set the calculator to PFlGMrm:.i mode. Then press Q] CLEAR 
I PRGM I to clear program memory of any pTCvious programs and reset 
the calculator to line 000 of program memory . Finally. load the program 
by press ing the keys shown below. 

Keystrokes Display 

001- 25, 13, 11 
002- 15 3 
003- 21 
004- 15 3 
005- 51 
006- 14 3 
007- 25 12 

b' 

a' 
a 2 + b 2 

W+b' 
End of program; calculator 
returns to line 000 and halts. 

Return the calculator to - -.JIUII mode. 



Program Editing 87 

Now you can run the program. For example , calculate ttte hypote nuse of 
a ri ght triangle with side a of 22 meters and side b of 9 meters. (Notice 
that the order of entry does not matter in this case.) 

Keystrokes 

221 ........ 1 
9 

o 

Display 

22.0000 
9. 
23.7697 Length of side c in meters. 

To compute the hypotenuse of a right triangle with a side a of 73 miles 
and a side b of 99 miles: 

Keystrokes 

731 ........ 1 
99 
o 

Display 

73.0000 
99. 
123.0041 Length of side c in miles . 

Now let's sec how we can use the nonrccordable editing features of the 
calculator to examine and alter this program . 

Single-Step Execution of a Program 

With the Program Mode switch set to RUN mode, you can execute a 
recorded program one line at a time by using [E] INTI (singl e-step) . 

To single-step through the Pythagorean Theorem program using a 
triangle with side a of 73 miles and side b of 99 miles: 

Keystrokes 

731 """,. 1 
99 

Display 

73.0000 
99. Program initialized for this 

set of data before running. 

Now, press III I SST I and hold I SST I down to see the keycode for the 
next instruction. When you release the IssTlkey, that next instruction is 
executed . (Remember that the [EJI .. TN I instruction in line 007 returned 
the calculator to line 000 after the last execution of the program.) 



88 Program Editing 

Keystrokes 

0155TI 

Display 

001- 25, 13, II 

99.0000 

Kcycode for 01 LBL 10 
seen when you hold I SST I 
down. 

lli1' L8L I ill executed when 
you release [SST I. 

(Notice that you didn', have to press 0. When you are executing a 
program one line at a time. pressing [E) I SST I begins the program 
from the current line of program memory; in this case, line 001.) 

Continue executing the program by press ing [E) I SST I again. When you 
hold [ssTldown. you see the keycode for the next instruction . When you 
release I SST I. that instruction is executed . 

Keystrokes 

0155TI 

Display 

002- 15 3 
9,801.0000 

Kcycode for ~ 
Executed. 

When yOll press (E] [slTia third time in RUN mode, line 003 of pro­
gram memory is displayed. When you release the [SST] key, the instruc­
tion in that line . (!!l). is executed, and tht': calculator halts . 

Keystrokes 

0155TI 

Display 

003- 21 
73.0000 

Keycode for IxU'l. 
Executed. 

Continue executing the program by means of CEJ I SST I. When you have 
executed the CEJ I "TN I instruction in line 007. the calculator returns to 
line 000 (later we will cover more on how [Rn~1 works). You have 
completed executing the program and the answer is displayed, just as if 
the calculator had executed the program automatically. instead of via 
01ssTi. 



:> 
~ 
P 
~ 

~ 
.a 
!J 

Program Editing 

Keystrokes Display 

01ml 004- 15 3 
5329.0000 

0155TI 005- 51 
15,130.0000 

015STI 006- 14 3 
123.0041 

0155TI 007- 25 12 
123.0041 Final answer. 

Note: [EJ I SST I will not advance into unoccupied lines of 
program memory. If you single-step from the last occupied 
line of program memory in RUN or PRGM mode your HP-34C 
conveniently returns to line 000. In RUN mode the original 
rontents of the display remain unchanged. In PRGM mode 
000- indicating the top of program memory, is displayed. 

89 

You have seen how the I SST I key can be used in RUN mode to single­
step through a program. Using [!] I SST I in this manner can help you 
create and correct programs. Now let' s see how you can use IGTO l [!] 
000, 155TI. 00. and IGTol0 """ in PRGM mode to help you 
modify a program . 

Modifying a Program 
Let 's modify the Pythagorean Theorem program so that the X-register 
contents will automatically be displayed at certain points in the program . 
We will do this by inse rting the (EJ I P$E I instruction to halt the program 
and display the contents of the X-register for about I second , then reo 
sume execution. (More about IpSE I later.) Here is the program you just 
ran . 

Keystrokes Display 

01LBLI0 
OO~ 

IXI,I 
OO~ 
[II 

CD(!!] 

EE
25

, :~' :;~we will insert an (EJ lpSEI 
004- 15 3"""" instruction after each of 
005- 51' these instructions. 

006- 14 3 
01.TH I 007- 25 12 



90 Program Editing 

Single-Step Viewing Without Execution 

You can use 'SST I in PRGM mode to single·step to the desired line of 
program memory without executing the program . When you switch the 
calculator to PRGM mode, you will see that the calculator is reset to line 
000 of program memory as a result of executing the ill 1 "TN linstruction 
in the above example. When you press [II I SST lonce, the calculator now 
moves to line 001 and displays the contents of that line of program 
memory. No instructions arc executed . 

Slide the PRGM·RUN switch to -ma.. 

Keystrokes Display 

000-

001- 25, 13, 11 

Line 000 of program 
memory . 

You can see that the calculator is set at line 001 of program memory. If 
you press a recordable operation now. it will be loaded in the next 
line , line 002, of program memory , and all subsequent instructions 
will be ' "bumped" down one line in program memory . 

Thus, to load the illlPSEI instruction so that the calculator will pause 
and display the contents of the X-register: 

Keystrokes 

illlPSEI 
Display 

002- 2574 

Now let's see what happened in program memory when you loaded that 
instruction. With the calculator set at line 001. when you pressed 
(IJIPSEI, program memory was altered ... 



J) 
.;;I 

~ 
.;J 
,J:j 

.;J 

~ 
,J:j 

~ 
.J;) 

.J;) 

.a 

..a 

..a 

.a 

.a 

.a 

..a 

.:;, 
~ 

Program Editing 91 

... from this. . to this . 

001 [ElILBlI0 001 [ElILBlI0 
002 iIl[i!) 002 
003 I"yl 003 
004 iIl[i!) 004 

005 G 005 
006 CD@] 006 
007 [El I OTN I 007 

008 

Resetting to Line 000 

[El I PsE I 
iIl[i!) 
InYI 
iIl[i!) 
G 
CD@] 
[ElloTNI 

... [liJ 1 PSE I instruction 
inserted here. 

All subsequent 
instructions are 
" bumped" down 
one line of program 
memory . 

Your HP-34C automatically resets to line 000 when turned on. And, as 
you know, when you press [II CLEAR IPAGMl with the calculator set to 
PRGM mode, the calculator is reset to line 000 and all instructions in 
program memory are erased. However. you can also reset the calculator 
to line 000 while preserving existing programs in program memory by 
pressing IGTolC!] 000 in PROM or RUN mode and [ElloTNI in RUN 
mode. 

To set the calculator to line 000 with the Pythagorean Theorem program 
loaded into program memory: 

Keystrokes 

IGTo l C!] 000 

Display 

000-

Going to a Line Number 
It is easy to see that if you wanted to single-step from line 000 to some 
remote line number in program memory, it would lake a great deal of 
time and a number of presses of [I) 1 SST ~ To avoid such inconveniences 
simply apply the IGTOl8 nnn procedure which you used previously to 
jump to line 000. In a manner simi lar to IGTol8 ()(X) , when you press 
IOTol8 nnn , the calculator immediately jumps to the occupied line 
number specified by nnn . No instructions are executed. If you press 
I GTO 18 nnn in RUN mode, the display remains unchanged . If you press 



92 Program Editing 

I GTOI C!J nnn in PROM mode, the line of occupied memory (line number 
and keycodes) addressed by nnn appears in the display. In RUN mode, if 
you then initiate a label search or program execution , the search or 
execution will begin with that line of program me mory , In PRGM mode, 
any loading of additional instructions will begin with the next line of 
program memory. 

For example, to add an II)lpsel instruction to review the X.registcr 
contents after the squares have been added together by the instruction in 
line 006, you can first press tOTol(go to) followed by a decimal point and 
the appropriate three-digit line number of program memory. Then press 
m lPselto place that instruction in the/ollowing line of program mem­
ory. Remember that when you add an instruction in this manner. each 
subsequent instrtx.:tion is moved down one line in program memory. To 
add the (Ell PSE I instruction after the ill instruct ion that is now loaded 
into line 006, be sure the calculator is in PRGM mode, then: 
Keystrokes Display 
IGTol [;] 006 006- 51 
0 1p5EI 007- 25 74 

A s you load the (Ell pse I instruction into line 007, the instruction that 
was formerly in line 007 is moved to line 008, and the instruction in 
subsequent lines are similarly moved down one line . 
When you added the [E] I PSE I instruction after line 006, program 
memory was altered .. . 

.•. from this ... 

001 01ml0 
002 01 p5EI 
003 [!)Ci!J 
004 I'lyl 
005 [!) Ci!J 

0060 
007 m@ 
008 01RTH I 

. . . to this . 

001 01m l 0 
002 01psEI 
003 [!) Ci!J 
004 I'lyl 
005 [!)Ci!J 
0060 
007 01p5EI 
008 m@ 
009 01RTHI T 

01 PSE I instruction 
Inserted here . 
Subsequent instruc ­
ion bumped down 

one li ne in program 
memory . 



~ 
~ 
p 
p 
~ 
~ 
;J 
/:I 
,D 

~ 

~ 
,Q .. 
~ 

~ 

~ 
~ 
~ 
~ 

Program Editing 93 

Inserting Instructions in Longer Programs 

After the initial 70 lines of program me mory arc occupied, the cal cul ator 

automatically converts storage registers to available program me mory in 

blocks of 7 lines at a time . This occurs block by block as each new 

allocat ion of program lines is filled up with instructions. If only the first 

70 program lines are occupied , insening another instruction at any point 

automatica ll y causes the convers ion of onc storage register (R.II in Ihis 

case) to 7 more lines of available program memory and places the last 

instruction of the program in line 71 . You would then have 77 progmm 

lines available and 7 1 occupied. (Refer to page 55. Automat ic Memory 

Allocation .) With 77 lines oc:cup ied, inserting one instruction converts 

another storage register (R.II ) to 7 program lines, and so on . If all 2 10 

program lines are occilpied . the ca lc ulator will not accept any additional 

program instructions. If you attempt to add a new instruction at any point 

in program memory with a11 2 10 lines already occupied, Error4 appears 

in the di splay and program memory re mains unchanged. (Remember­

press ing ill IMEW) pcrioo ically while loading a long program will tell 

you the current status of the program line/sto rage register allocation.) 

Stepping Backwards Through a Program 

The I eST I (back step) key allows you to back step through a loaded 

program for editing whether the calculator is in RUN or PROM mode. 

When you press CEJ leST) , the calculato r backs up one line in program 

me mory . If the calculator is in RUN mode, the pre vious line is displayed 

as long as you hold down the leST )key . When you release it , the o rig inal 

contents of the X-register are again displayed . In PRGM mode, of 

course, you can see the line number and keYI,;·ode of the instruction in the 

display at all times. No instructions are executed , whether you are in 

RUN or PRGM mode. 

Note: When your HP-34C is at the top of the program 

memory (line 000), pressing 01 SST) moves the calculator 

to the last line of occupied program memory. This feature is 

particularty helpful when you want to quickly verify the length 

of an existing program or to begin loading a new program or 

subroutine that you want to follow a program or subroutine 

already in memory. 



94 Program Editing 

You now have one morc CEJ [PSE I instruction to add to the Pythagorean 
Theorem program. The (Ell PSE I instruction should be added after the 
1 XHI instruction that is now loaded in line 004 of program memory . If 
you have just completed loading (liJ I P8E lin line 007 as desc ribed above, 
the calculator is set at line 007 of program memory . You can use I aST Ito 
back the calculator up to line 004, then insert the m I PSE I instruction in 
line 005. To begin: 

Ensure that the calculator is set to PAGM~ mode. 

Keystrokes Display 

007- 25 74 

006- 51 

Calculator initially set to 
line 008. 
Pressing [E] laST I once 
moves the calculator back 
one line in program 
memory. 

Continue using the 18ST I key to move backward through program 
memory until the calcul ator displays line 004. 

Keystrokes 

01BST! 
01ml 

Display 

005- 15 3 
004- 21 

Since you wish to insert the [!] I PSE I instruction after the I x,;yl in£truc· 
tion now loaded in line 004, you move the ca lculato r to line 004. As 
always, when you key in an instruction. it is loaded into the next line 
after the line being d isplayed. Thus, if you press [!] I PSE I now . that 
instruction will be loaded into line 005 of program memory , and all 
subsequent instructions will be moved down, or " bumped," one line. 

Keystrokes 

0Ip •• 1 

Display 

005- 25 74 

You have now fini shed mod ify ing the Pythagorean Theorem program so 
that you can review the contents of the X-register at several points while 
it runs. 



.1J 
~ 
.J;j 
.fj 
J;) 
.j;j 
I) 
~ 
,:} 
.:;J 
,J) 

~ 
~ 
.,Q 

~ 
..a 
..til 
..a 
.:J 

~ 

-------------------------------------
Program Editing 95 

The altered program is shown below: 

Keystrokes Display 

CEl iLBLI0 001 - 25, 13, 11 
CEl I PSE I 002- 25 74 
[!]~ 003- 15 3 
1",1 004- 21 
CElIPSEI 005- 25 74 
[!]~ 006- 15 3 
[!) 007 - 51 
CEll PSE 1 008 - 25 74 
CD@ 009 - 14 3 
CElIRTN I 010- 25 12 

If you wish, you can use CEJ I SST I in PRGM mode to verify that the 
program in your calculator matches the one shown above. 

Running the Modified Program 
To run the Pythagorean Theorem program, you need only sel the calcu­
lator to RUN mode. key in the values for sides a and b and press 0 . 
The calculato r displays the X-reg ister contents (side b) . then squares s ide 
b. exchanges the contenls of the X- and V-registers, and again rev iews 
the X-register coments (s ide a this time). Then the calculato r squares 
side a, addsb2 toa 2 , and reviews the X-register conte nts (a 2 + b 2

) a third 
lime . The hypotenuse is then calculated and execution returns to line 000 
and halts. 

For example, to compute the hypo tenuse of a right triangle wi th sides 
a and b of 22 meters and 9 meters: 

Sel the calculator to .:mJRlJN . 

Keystrokes Display 

22 IElr", .. 1 22.0000 
9 0 23.7697 After reviewing thc X-regis­

ter contents three limes 
during the running program , 
the answer in metcrs is 
displayed . 

Now run the program for a right triangle with sides a and b of 73 miles 
and 99 miles. 

(Answer: 123. 0041 miles.) 



96 Program Editing 

Deleting Instructions 

Often in modifying or correcting a program you may wish to delete an 
instruction from program memory . To delete the instruction to which the 
calculator is set , merely press the nonrecordable operation ill IDEL I 
(dele/e) with the calcu lator set to PROM mode. (When you delete an 
instruction from program memory using IOEll . all subsequent instruc­
tions in program memory are moved up one line. The calculator then 
displays the line preceding the line that held the instruction you deleted .) 

For example, if you wanted to modify the Pythagorean Theorem program 
that is now loaded imo the calculator so that the X-register was onl y 
reviewed once, for the sum of the squares, you would have to delete the 
m I PSE I instructions that are presently loaded in lines 002 and 005 or 
program memory . To delete these instructions, you must first set the 
ca1culatorat these lines using [EJISSTI , [E) laST I. or IOTol8 nnn, then 
press [EJ loElI . To delete the [ElIPSE ! instruction now loaded in line 
002: 

First, set the calculato r to PRGMna:. 
Keystrokes 

IG,018002 
010EL I 

Display 

002- 25 74 
001- 25, 13, 11 

Line 002 is displayed. 
The instruction in line 002 is 
deleted and the calcul ator 
moves to line 00 I. 

You can use !Xl 1 SST) to verify that the [E] 1 PSE I instruction has been 
deleted and subsequent instructions have been moved up one line . 

Keystrokes 

01ss' l 

Display 

002- 15 3 The instruction fo rmerly in 
003 was moved up to line 
002, and all subsequent 
instructions were moved up 
one line when you pressed 
0 10ELI . 

When you set the calculator to line 002 of program memory and pressed 
(E) I DEL I, memory was altered ... 



!) 
fj 

~ 
~ 
~ 
J;j 

;; 
J;j 
,(j 

t:J 
I,j 

,a 
~ 

-'t 

"" ~ 
r" .. 
.a 
~ 

Program Editing 97 

... from this .•. ... to this. 

001 CE:TI!D 0 One instruction 
.... deleted here. 

~ 
i-=.~~-~ 

~ ,..-
1-==-,==-='----1 ,..-
1-==--"="==:---1 ,..-

E~-:::=::--l :::; 

002 [!]~ 

003 (!!Zl 

004 CElloSEJ 
005 [!]~ 

006m 
007 CElloSEJ 
OO8 OJ@ 
009 CElI"," 1 

These instructions all 
move upward one 
line . 

To delete the (E] I PSE I instruction now loaded in line 004 you can use 
the [SST I key to single-step down to that line number and then delete 
the instruction with the ill I DEL I operation. 

Keystrokes 

CElISSTI 
CEllssTI 
CElIDELI 

Display 

003-
004-
003-

21 
2574 

21 The [E) I PSE I instruction is 
deleted from lineOO4and the 
calculator displays line 003 . 
Subsequent instructions 
move up one line of program 
memory . 

If you have modified the program as described above, the X-register is 
reviewed only once, just after the sum of the squares is calculated. The 
value of the hypoteneuse is then calculated and execution hall s . 

Sct the calculator to"'"", mode and run lhe program for right 
triangles wilh: 



98 Program Editing 

Sides a and b of 17 and 34 meters. After reviewing the 
X·register (sum of the squares = 1,445 .0000 meters), the 
rest of the program is executed and the calculator halts 
displaying the hypoteneuse: 38.0132 meters. 
Sides a and b 0(550 rods and 740 rods. After reviewing the 
X-register (sum of the squares = 850,100.0000 rods), the 
rest of the program is executed and the calculator halts, 
displaying the hypotenuse: 922.()()87 rods. 

To replace any instruction with another. simply set the calculator to the 
desired line of program memory , press m 1 DEL I to delete the first 
instruction, then press the keystrokes for the new instruction. 

When deleting instructions from a program of more than 70 lines , 
the process of automatically allocating storage registers to program 
lines wo rks in reverse. For example, deleting any instruction from a 
78-1ine program automatically converts program lines 78-85 back to 
storage register RI. (Refer to Automatic Memory Allocation. page 
55.) 

The editing features of the calculator have been designed to provide 
you with quick and easy access to any part of your program. whether 
for editing. debugging , or documentation. If a program stops running 
because of an error or because of an overflow . you can simply switch 
the calculator to PRGM mode to see the line number and kcycode of 
the operation that caused the error o r overflow. If you suspect a portion of 
your program is faulty. you can use the ! GTOI [!] nnn operation from the 
keyboard to go to the suspect section. then use the I SST I operation in 
RUN mode to monitor every change in calculator status as you execute 
the program one line at a time . 

Problems 
1. You may have noticed that there is a single keyboard operation. 

(!J E!] • that calculates the hypotenuse. side c. of a right triangle 
with sides a and b input to the X- and Y -registers. Replace the 
~. Ix"'I. ~. (I) , IPsEI . and @ instructions in the 
Pythagorean Theorem program with the single [I) E!]instruction 
as follows: 



-- - ---

Program Editing 99 

a. Use IGTol8 nnn and 01 SST I to verify that the Pythagorean 
Theorem program contains the instructions shown below . 

Keystrokes Display 

[EJl lBLl 0 001- 25. 13. 11 

OO(£) 002- '''} lUll 003- 21 Replace all of these instruc-

OO(£) 004- 15 3 lions with a (!) E!] instruc-

ill 005- 51 tion. 
[EJ lpsE I 006- 25 74 
CIJ[KJ 007- 14 3 
[EJI RTNI 008- 25 12 

b. Use the IOTol0 nnn keyboard operation to go to line 007, 
the last instruction to be deleted in the program. 

c . Use the m I DEL. I keyboard operation in PRGM mode to delete 
the instruction in lines 007,006, 005 , 004, 003, and 002. 

d, Load the [!) E!1 instruction into line 002. 

e. Verify that the modified program looks like the one below . 

001- 25. 13. 11 
002 - 15 4 
003- 25 12 

f. Switch to -.JAlN mode and run the program for a right 
triangle with sides a and b of 73 feet and 112 feet. (Answer: 
133.6899 [eeL) 

2. The following program is used by the manager of a savings and 
loan company to compute the future amounts of savings accounts 
according to the fonnula FV = PV( t + "ln, where FV is future 
value or amount, PV is present value,; is the periodic interest rate 
expressed as a decimal , and n is the number of periods. With PV 
entered into the V-register, n keyed into the X-register , and an 
annual interest rate of 7 .5%, the program is: 



100 Program Editing 

Keystrokes 
(IJlml(!) 
[I) (E!] 2 

Display 
001- 25, 13, 12 
002-14,11 , 2 

1 003- 1 
8 00f- 73 o 005- 0 

7 006- 7 
5 007- 5 
1 .. ,1 
(IJrB m 

006- 21 
009- 25 3 
010- 61 

(IJ I.T. I 011- 25 12 

a. load the program into the calculator. 

b . Run the program to find (he future amount of $1,000 invested 
for 5 years . 

(Answer: $1,435 .63) 

Of 52,300 invested for 4 years . 

(Answer: $3 ,071.58) 

c. Alter the program to account for a change of the annual interest 
rate from 7.5% to 8%. 

d . Run the program for the new interest rale to find the future 
value of $500 invested for 4 years; of 52,000 invested for 10 
years . 

(Answer: $680.24; $4,317 .85) 

3 . The following program calculates the time it takes for an object to 
fall to the earth when dropped from a given height. (Friction 
from the air is not taken into account.) When the heighth in meters 
is keyed into the displayed X-register and (!Jis pressed, the lime 
I in seconds lhe object to fall to earth is computed according to 
the formula: 

t = V --;2;;;h,---
9.8 



{;j 

'" .a 
.a 
~ 

~ 

,a 
~ 
,:a 
,fA 

~ 

~ 
A 

"" .a .. .. 
lit 
,{Ij 

,a 

Program Editing 101 

a . Clear all previously recorded programs from the caJculator, 
re set the display mode to FIX 4. and load the program below . 

Keystrokes Display 

CD CLEAR 1 ..... 1 000-
(li) ILBlI[!] 001- 25, 13, 12 
2 002- 2 
[KJ 003- 61 
9 004- 9 

8 005- 73 
8 006- 8 
(!) 007- 71 
CD@ 008- 14 3 
(li) I " TN I 009- 25 12 

b. Run the progrdm to compute the time taken by a stone to fall 
from the top of the Eiffel Tower, 300.51 meters high; and from 
a blimp stationed 1000 meters in the air. 

(Answers: 7.8313 seconds; 14.2857 seconds.) 

C. Alter the program to compute the lime of descent when the 
height in/eel is known, according to the formula: 

t = .,. ! _ ==2",h-=-_ V 32. 1740 

d. Run the altered program to compute the time taken by a stone to 
fall from the top of the Grand Coulee Darn, 550 feet high; and 
from the 1 350-fool height of the World Trade Center buildings 
in New York City . 

(Answers: 5 .8471 seconds; 9 . 1607 seconds .) 



Section 5 

Branching, Decisions, and Flags 

Uncondit ional Branching and Looping 
You have seeD how the nonloadable operation I GTO 18 nnn can be used 
from the keyboard to transfer to any line in occupied program memory. 
You can also use the go to instruction as part of a program . However, in 
order for IGTOItO be recorded as an instruction , it must be followed by a 

label designator ( 0 or (!J, or 0 through 9). (It can also be followed by 
!I}-more about using OJ later.) 

When the calculator is executing a program and encounters a IGTol [!] 
instruction. for example. it immediately halts execution and begins 
searching sequentially downward through program memory for that 
label. When the first ffi) I LBL I (!] instruction is then encountered, 
execution resumes. 

By using a IGTolinstruction followed by a label designator in a program, 
you can transfer execution to any part of the program that you choose . 

Execution branches to next ffi)tlBLI (!] . 1 
[EJlml0 

IGTol [!] 

[EJlml[!] 

A [GTol instruction used this way is known as an uncondi/ioTUli branch. 
It always branches execution from the I GTol instruction to the specified 
label. (Later, you will see how a conditional instruction can be used in 
conjunction with a [GTol instruction to create a condilionai branch- a 
branch that depends on the outcome of a test.) 

102 



Branching, Decisions, and Flags 103 

A common use of a branch is to create a " loop" in a program . For 
example, the following program calculates and displays the square roots 
of consecutive whole numbers beginning with the number 1. The 
HP-34C continues to compute the square root of the next consecutive 
whole number until you press (!Z!Jto stop program execution (or until 
the calculator overflows). 

To key in the program: 

Firsl , slide lhe PRGM-RUN swilch 10 PAGU no. . Press m CLEAR 
IPRGMI 1Q clear program memory and to reset the calculator to line 000. 

Keystrokes Display 

01LaLI0 001- 25, 13, 11 
0 002- 0 
ISTol1 003- 23 1 
o I LOL I 0 004- 25,13, 0 
I 005- 1 
ISTol m I 006- 23. Sf, 1 Adds I to current number in 

R, . 
10cLII 007- 24 1 Recalls current number 

from R 1 • 

01"'1 008- 2574 Displays current number. 

ml!!l 009- 14 3 
01 PSE I 010- 25 74 Displays square root of 

current number. 
10Toi0 011- 22 0 Transfers execution to 

01LoL10. 
o I ATH I 012- 25 12 

To run the program, slide the PRGM-RUN switch to .:mI~ and 
press ~ . The program will begin displaying a table of integers and their 
square roots and will continue until you press I!l!Jfrom the keyboard or 
until the calculator overflows. 

How it works: When you press ~. the calculator searches through 
program memory until it encounters the [I) 11..81..1 [!] instruction that 
begins the program. It executes that instruction and each subsequent 
instruction in order until it reaches line 011, the IGTolO instruction. 



104 Branching, Decisions, and Flags 

The [GTolO instruction causes the calculator to search once again, this 
time for a I LBL I 0 instruction in the program . When it encounters the 
I L8L I 0 instruction loaded in line 004, execution begins again from 
IUlIO. (Notice that the address after a [GTol instruction in a program 
is a label, not a line number .) Since execution is transferred to the 
I L8l1 0 instruction in line 004 each lime the calculator executes the 
IGlo lO instruction in step 011 , the calculator will remain in this "loop," 
continually adding one to the number in storage register R] and display­
ing the new number and its square root. 

Looping techniques like the one illustrated here are common and extra· 
ordinaril y useful in programming . By using loops , you take advantage of 
one of the most powerful features of the HP-34C-the ability 10 update 
data and perform calculations automatically. quickly . and, if you so 
desire, endlessly . 

You can use unconditional branches to create a loop, as shown above , or 
in any part of a program where you wish to transfer execution to another 
label. When the calculator executes a IGTOI instruction in a running 
program it searches sequentially downward through program memory 
and begins execution again at the ftrst specified label it encounters. 

In RUN mode you can also use IGTOI for finding a label without running 
the program in memory. When you execute IGTol ( 0 . (!). or n) from 
the keyboard you cause the calculator to go to the spec ified label and 
halt . This feature is convenient when you want to simply review or edit 
lines of memory following a certain label instead of executing them as 
part of a program . 

Problems 
I . The following program calculates and pauses to display the square 

of the number in storage register RI each time it is run . Key the 
program in with tbe PROM-RUN switch set to PRGM nu. . then 
switch to RUN mode and run the program a few times to see how 
it works. (The answer will always be 1.000. ) Finally , modify the 
program by inserting a 10TOII instruction after the [E) IPSEI 
instruction at line 009 and inserting an [E) I LBL II instruction after 
the ISTol1 instruction in line 003. This will create a loop that will 
continually display a new number and its square , then increment 



Branching, Decisions, and Flags 105 

the number by I. display the new number and compule and display 
its square, etc . To load lhe original program. before modification , 
slide the PROM-RUN switch to PRGM ~ • Then press: 

Keystrokes Display 

CD CLEAR I PllGM I 000-
01 LBL I ~ 001- 25, 13. 12 
0 002- 0 
ISTo l 1 003 - 23 1 
I 004- 1 
ISTOlm I 005 - 23. 51. 1 
IRCLII 006- 24 1 
01PSEI 007- 25 74 

~[£] 008- 15 3 
01PSEI 009- 25 74 
0 1RTH I 010 - 25 12 

Slide the PRGM-RUN switc h to .mJAUN and test the program 
in its original form . After keying in the suggested modifications, 
run the program again to generate a table of squares. 

2. Use the following flowchart to create a program thai computes and 
pauses to display the future value (FV) of a compound interest 
savings account in increments of one year according to the for­
mula: 

F V = PV( I + i)" 

wbereFV = furure value of the savings account. 
PV = present value (or principal) of the account. 

= imerest ratc (expressed as a decimal fraction; e .g ., 
6% is expressed as 0.06). 

n = number of compounding periods (usually , years). 



106 Branching, Decisions, and Flags 

Assume that program execution will begin with i entered into the 
Y -register of the stack and with PV k.eyed into the displayed 
X-register. 

After you have written and loaded the program, run it for an 
initial interest rate i of 6% (keyed in as .06) and an initial deposit 
(or present value, PV) of $1000. 

(Answer: 1st year, S106O; 2nd year, $1123 .60; yd year, $1191.02; 
etc .) 

The program will continue running until yOll press (!Z!] (or any 
key), or until the HP-34C overflows. You can see how your 
savings would grow from year to year. Try the program for differ­
ent interest rates i and values of PV. 



Define beginning 
of program with 

LBL A. 

F~2 
Display mode. 

Store PV in 
Storage register Ro. 

Bring i into 
display by rolling 

down stack. 

Store quantity 1 
in storage 
ragister A,. 

Add1toi , 

Store (1+ I) 
in storage 
register A2 . 

Branching, Decisions, and Flags 107 

Define beginning 
of routine with 

LBL O. 

Recall (1+/) 
from A., 

Recall n from A" 

Pause to 
display n . 

Compute (1 + I)~ 

Recall 
PV from Ao· 

Multiply PV 
by (1 +i )~ 

Go to 
lBlO. 

RTN 



108 Branching, Decisions, and Flags 

Solutions: 

Here is a possible solution to problem 2. 

ISTOIO 
[I][B 
I 
ISTOII 
(£] 
ISTol2 
[IJ IlBLI 0 
IRcll2 
IRcl11 
[IJI PSE I 
[IJ[EJ 
IRcllO 
o 
[IJlpsEI 
I 
ISTol (£] I 
IGTOIO 
[IJ I"TH I 

Convenient financial display 
mode. 
Stores PV. 
Brings i into display. 

Stores initial quantity (I) of n. 
Adds 1 to i. 
S,ores ( I + i) . 

Recalls (I + i). 
Recalls n. 

Displays n . 
Calculates (1 + on. 
Recalls original PV from Ro. 
Calculates new FV. 
Displays result (FV). 

Adds I to n in R i . 

Unconditional branch. 
End of Program. 

Conditionals and Conditional Branches 
Often there are times when you want a program to make a decision. The 
conditional operations on your Hp·34C keyboard are program instruc­
tions that allow your calculator to make decisions . The conditionals 
available on your HP-34C are; 

tests to see if the value in the X-register is less than or 
equal to the value in the Y -register. 



Branching, Decisions, and Flags 109 

lest's to see if the value in the X-register is greatcrthan 
the value in the V-register. 

tests to see if the value in the X-register is not equal to 
the value in the Y -register. 

tests to see if the value in the X-register is equal to the 
value in the V-register. 

tests to see if the value in the X-register is less than zero. 

tests to see if the value in the X-register is greater Ihan 
zero. 

tests to see if the val ue in the X-register is not equal to 
zero. 

tests to see ifthe value in the X-register is equal to zero . 

tests to see if flag n is set (more on flags later). 

Each conditional essentially asks a question when it is encountered as an 
instruction in a program. If the answer is YES, program execution 
continues sequentially downward with the next line in program memory_ 
If the answer is NO, the calculator branches around the next line. For 
example: 

c:: Conditional Test - - : 

r-------i .. _.J Yes 
No 



110 Branching. Decisions. and Flags 

You can see that after it bas made the conditional test, the calculator will 
do the next instruction if the test is true. This is the " DO IF TRUE" 
rule . 

The line immediately following the conditional test can contain any 
instruction . The most commonly used instruction you'll find will be a 
[GTolinstruction. This will branch program execution to another section 
of program memory if the conditional test is true. 

Conditional Test 

IGTol7 YesC: r--
instruction 

instruction 

instruction 

instruction 

01L8LI7 

Example: Certified Public Accountant 
Polly Preparer knows that persons with 
incomes over $IO,()(X) pay a lax of 20% 
and persons with incomes of $10,000 or 
less pay a tax of 17.5%. To make her job 
easier. Preparer wants to write a program 
that will allow her to compute taxes for 
all her clients in the simplest way pos­
sible. She will use a program containing 
condi tional brancbes. 

-
, 

... .J No 



Branching, Decisions, and Flags 111 

The flowchart for the program might look like this: 

Yes 

Start 

Is 
income over 

$10,000? 

Stop 

No 



112 Branching, Decisions, and Flags 

To key in the program: 

Slide the PRGM-RUN switch to ...... mn. , 

Keystrokes 

[jJ CLEAR 1""""1 
IIJIlBll0 
IEEXI 
4 

IXI'I 
[jJ 1.,,1 
10Tol[!) 

7 
[!] 
5 
10ToII 
IIJlml[!) 
2 
0 
IIJlml! 
lIJoo 
IIJ I 'TH I 

Display 

000-
001- 25, 13, 11 

002- 33} 
003- 4 
004- 21 
005- 14 51 ) 
006- 22 12 

007-

7D 
008-
009-
010-
011- 22 I 
0/2- 25,13,/2 
013-

~} 014-
0/5- 25, 13, I 
016- 25 41 
0/7- 25 12 

Amount of $10,000 placed 
in V-register. 
If amount of income is 
greater than SIO,OCXl, go to 
portion of program defined 
by labe l B. 

Tax percentage for this 
portion of program is 17.5. 

Tax percentage for this 
portion of program is 20. 

To run the program to compute taxes on incomes of $15 ,000 and $7,500: 

Slide the PRGM-RUN switch to ImII1 """ 

Keystrokes 

!5000 0 
7500 0 

Display 

3,000.00 
1,3/2_SO 

Dollars of tax. 
Dollars of tax. 



• • 

Branching. Decisions. and Flags 113 

All Preparer has to do to compute tax rates for her other clients is key in 
their incomes and press 0. The calculator automatically detennines the 
clients' tax bracket and computes the tax . 

Another place where you often want a program to make a decision is 
within a loop. The loops that you have seen have, to this point, been 
infinite loops- that is, once the calculator begins executing a loop, it 
remains locked in that loop, executing the same set of instructions over 
and over again, forever (or, morc practically, until the calculator 
overflows or you halt the running program by pressing rnmor any other 
key). 

You can use the decision-making power of the conditional instructions to 
shift program execution out of a loop. A conditional instruction can shift 
execution out of a loop after a specified number of iterations or when a 
certain value has been reached within the loop. 

Example: As you know, your HP-34C contains a value fore. the base of 
natural logarithms. (You can display the calculator's value for e by press­
ing I ill ~.) The following program shows that l In! can be used to 
verify that the seriese = I/O! + II I ! + 1/2! + ... + II n.' approximates the 
value for e. After each iteration through the loop, the latest approxima­
tion is displayed and compared to the calculator's value for e. When the 
two va lues are equal, the execution is transferred out of the loop to stop 
the program . 



114 Branching, Decisions, and Flags 

No 



Branching, Decisions, and Flags 

To load the program into the calculator: 

115 

Slide the PRGM-RUN switch to """"~ . 

Keystrokes Display 

m CLEAR IPRGMI 000-
[EJILBLI[EJ 001- 25, 13,11 
IRcl11 002- 24 1 
IRCllO 003- 24 0 
[EJ@) 004- 25 1 
[EJ(ID 005- 25 2 

m 008- 51 
CD [lliJ 9 007- 14, 11, 9 
ISTol1 008- 23 1 
[EJ 1 .. EI 009- 25 74 
I 010- 1 
(!)(B 011- 15 1 
CD 1",1 012- 14 71 
[EJloTNI 013- 25 12 
I 014- 1 
ISTol m 0 015- 23, 51, 0 
IGTol0 016- 2211 

Slide the PRGM·RUN switch to -.m ..... 
Ensure that the registers are cleared to zero. Then press ill to run the 
program . 

Keystrokes 

mCLEAR IREGI 

Display 

1,312.50 

2.718281828 

Clears all storage registers 
to zero. (Displayed value 
remains from previous 
example.) 

You can see that execution continues within the loop until the approxi­
mation for e equals the calculator' s value for e. When the instruction 
1%':)'1 in line 012 is finally true , execution is transferred out of the loop. 



116 Branching , Decisions, and Flags 

Problems 
I . Write a program that tests for a negative angle and then converts 

any negative angle to it s positive equivalent. Use a conditional . 
and, if the angle is negative , add 360 degrees to it to make the 
angle positive . Use the flowchart below to help you write the 
program. 

No 

Start 

Is angle 
less than 

zero? 



Branching, Decisions, and Flags 117 

2. Use the flowchart to help you 
write a program that will allow a 

dealer to compute sa les staff 
commissions at the rates of 10% 
of sales of up 10 $ 1000, 12.5% for 
sales of$IOOO 10 $5000, and 15% 
for sales of over 55000. The pro­
gram should display the amount 
of sales and the amount of com­
mission. 

Load the program and run it for sales amounts of $500, S1000. 
$1500, $5000, and $6000. 

(Answers: $50.00, $125.00, $187.50, $625.00, $900.00.) 



118 Branching, Decisions, and Flags 

Yes Sales ,---< < $10007 >---, 
No 

Yes Sales No 
,--<.." $50oo? 

Calculate 
t2.5% of sales. 



Branching, Decisions. and Flags 119 

J) Solutions: 

I. Keystrokes Display 

ill CLEAR 1 ... 01 000-
GJlml0 001- 25, 13, II 
OOlx<ol 002- 15 41 
IG.o IO 003- 22 0 

GJI"" I 004- 25 12 

0 1ml 0 005- 25, 13, 0 
3 006- 3 
6 007- 6 
0 008- 0 

ill 009- 51 

GJI",.I 010- 25 12 

"fJ User instructions: After keying in program, set PRGM· RUN switch to 
.aJ Fl.H and set display mode to AX 4 . Input angle and press (!). 

~ 
.IJ 

2. Keystrokes Display 

ill CLEAR I_I 000-
GJILBll0 001- 25, 13, 11 
IE .. I 002- 33 
3 003- 3 
illlx·,1 004- 14 51 
10To i0 005- 22 0 
5 006- 5 

0 007- 61 
1 .. ,1 008- 21 
ill " ''11 009- 14 41 
IGTo l1 010- 22 I 
I 011- I 

I.e 5 012- 5 

GJ oo 013- 25 41 

~ GJ I"Tol 014- 25 12 
GJlml l 015- 25, 13, I 



120 Branching, Decisions, and Flags 

Keystrokes Display 
I 016- 1 
2 017- 2 
GJ 018- 73 
5 019- 5 
000 020- 25 41 
01.,. 1 021 - 25 12 
01 LBLIO 022- 25, 13, 0 
I.", 023- 21 
I 024- 1 
0 025- 0 
0 00 026- 25 41 
01"·' 027- 25 12 

User instructions: After keying in program , set PRGM-RUN switch to 
.mJ] RUN and set display mode to FiX 2. Input sales dollars and press o 

Flags 
Besides the x /y and x/O tests (I r-y I, 1%,..0 ]. etc .). you can also use flags 
for conditional tests in your programs. A flag actually is a memory device 
that can be either SET (true) or CLEAR (false). A running program can 
then test the fl ag later in the program and make a decision, depending 
upon whether the flag was sct o r clear. 

There are four flags available in your HP-34C. They are numbered 0 , I , 
2, and 3. To sel a flag true, use the instruction (0(serflag) fo llowed by 
tbe proper digit key (0 , 1, 2, or 3) of the desired flag . To setf/ag 3, 
for example, you would use these keystrokes: 

Flags are cleared using the @I) (clear flag) instruct ion followed by 
the proper digit key. To clear flag 3 you would use these keystrokes: 



- - ------- -- -

Branching, Decisions, and Flags 121 

When using flags, decisions are made using the instruction ~ (is flag 
Irue?) followed by the digit key (0, 1, 2,3) specifying the flag to be 
tested. When a fl ag is tested by a ill I!!I n instruction . the calculator 
executes the next line if the flag is set (this is the "DO if TRUE" 
rule). If the flag is clear, the next line of program memory is skipped 
before execution resumes. 

Is fl ag I true? 

Yes No 

I--'==---i - ,, 

if YES, 
continue execut ion 
with next line. 

( 
(E)~I -

1-------4./ if NO, skip 
one line before 
resuming execut ion. 

A flag which has been set by an m (ll)n command remains set until it 
is cleared by one of the following: · 

1. Executing an [E] [£!)n command . 

2. Turning the calculator OFF. 

Using flags 

Like thexly andxl O tests, flags give you the capability to either skip or 
execute individual lines in program memory. However . while [he xly 
and x/O tests function by comparing values , flags function by telling the 
calculator whether or not a particular operation or type of opemtion has 
been perfomled . 

• Note that pressing CD CLEAR IMlMI does not clear a f1 a8 Ihal has been Stl by an 
[EJ [EI It insIJUClion . 



122 Branching, Decisions, and Flags 

Example: The following program contains an infinite loop that illus­
trates the operation of a flag . The program alternately displays all l's and 
all O's by changing the status of the flag. and hence, the result of the test 
in line 006, each time through the loop. A flowchart for the program 
might look like this: 

Start 

Yes 



~ 
p 
,J) 

,&> 

P 
p 
p 
,p 
,t;j 

Branching, Decisions. and Flags 123 

The program assumes that you have stored the number 0 in register Ro 
and the number 1.11111 1111 in register R I · 

Slide the PRGM·RUN switch to """" on.. . 

Keystrokes Display 

[I) CLEAR I PRGM I 000 -
[Ellm l0 001- 25, 13, 11 
IRcLl1 002- 24 1 Recalls and displays ones 

from register R I · 

[Ellml 003- 25 74 
[El @!] 0 004-25, 61 , 0 Clears flag O. 
[El lm l OO 005-25, 13, 12 
[El 1m 0 006- 25, 71, 0 Tests flag O. 
IOTol0 007- 2211 If set(true), go to I LeL 10· 
IReLIO 008- 24 0 Otherwise, recall and dis-

[El rmJ 009- 25 74 play zeros from register Ro. 

[El lID 0 010-25, 51, 0 set flag 0, and go to 

10Toi 00 011- 22 12 lU Ll 00· 
[El I ATH I 012- 25 12 

Now switch to .rm fUoI , load storage registers Roand Rio then execute 
the program. 

Keystrokes 

[I) ITiK)9 
o 15To i0 
1.111111 11 1 
15To II 
o 

Display 

0.000000000 
0.000000000 
1.111111111 
1.111111111 
1.111111111 
0.000000000 

All ones and all zeros. 

To stop the running program. press lE!1 (or any other key) . 



124 Brandling, Decisions, and Flags 

How it works: After you have initialized the program by storing zero in 
register Ro and all ones in register Rt • the program begins running when 
you press ill. The I ACL II and ill' PSE I instructions in lines 002 and 003 
pause to display all ones from storage registerR t • The ill@!]Oimtmc· 
tion in line 004 clears flag 0. (Since the flag is already clear when you 
begin the program, the status of the flag simply remains the same.) 

There is no I RTM I after the routine begun by I LBll ill, so execution 
continues through the I LBLI (!)instruct ion in line 005 tothe test , m §) 
0, in line 006. The ill §)O instruction asks the question " Is flag 0 set 
(true)?" Since the flag has been cleared earlier, the answer is NO, and 
execution skips one line of program memory and continues with the I ACll o instruction in line 008. The '"ellO and m IPSE) instructions in lines 
008 and 009 pause to display all zeros from register Ro. Hag 0 is then set 
by the ill (!!) 0 instruction in line 010 and execution is transferred to 
lLBLI (!)by the )GTO) minstruction in line 011. 

With flag 0 now set, the answer to the test (I) §)O (" Is flag 0 true?' ') is 
now YES. so the calculator executes the ) GTol illinstruction in line 007. 
the next line after the test. After again pausing to display all ones, the 
flag is cleared, and the program continues in an endless cycle, alternately 
displaying ones and zeros. until you stop execut ion from the keyboard . 

Problem 
One mile is equal to 1.609344 kilometers. Use the following flowchart to 
create and load a program that will permit you to key in distance in either 
miles (define with [LBL I ill) or kilometers (define with I LBll 00 ). Use 
a flag for determining whether to multiply or divide to convert from one 
unit of measure to the other. (Hint: m [Y!] ill yields the same result as 
G ·) 

Set the calculator to lli!J 4 display mode. Then run the program to 
conven 26 miles into kilometers; to convert 1500 meters (1.5 kilometers) 
into miles. (Answers: 41.8429 kilometers; 0.9321 miles.) 



Branching. Decisions. and Flags 125 

J) 

P 
P Key in 

kilometers. 

,P Start 

p 
p 
p 
,p Place 

1.609344 

,t) in X·register. 

p 
.D 

No Is flag Yes 
set? 

,JJ 

~ 
.Q 
.0 
,Q 

,Q 
Stop 

.0 
~ 

JJ 



Section 6 

Subroutines 
Often , a program contains a certain series of instructions that are 
executed several times throughout the program . When the same set of 
instructions occurs more than once in a program , it can be executed as a 
subroutine . A subroutine is selected by the 10511) (go to subroutine) 
o peration, followed by a label address 0 . m. or 0 through 9. You can 
also select a subroutine with )GSa) OJ - more about CD later. 
A IGSaI instruction transfers execution to the routine specified by the 
label address , just like a IGTO) instruction. However, after a IGSa) in· 
struction has been executed , when the running program then executes a 
j,n", J(re/urn), execution is transferred back to the next instruction after 
the IGSaI. Execution then continues sequentially downward througb 
program memory. The illustration below should make the distinction 
between IGTOI and IGSaI more clear. 

! 

! 
Execution trans-t 
rers to line 000 
and hailS . 

Branch 

!ElILOLI0 !Ell LOL I C!) 
I 

I 

I"TolC!) I 

~ 010TNI 

Subroutine 

!Ell LOL 10 

IGSIIIC!) I 

~ 

I 
I 

\ 
\ 

126 

01 LIl IC!) 

~ 

E xecution transfers 
to line 000 and 
hailS. 



Si 
,&J 

JJ 
,J) 
,J;j 

~ 
J:) 

IJ 
~ 

~ 

4 
.a 
Q 
Q 

til 
~ 

S) 

Subroutines 127 

In the top illustration of a branch, if you pressed 0from the keyboard , 
the program would execute instructions sequentially downward through 
program memory. If it encountered a lGToll]]instruction. it would then 
search for the next I L8L I 00 and continue execution from there, until it 
encountered a I RTN I. When it executed the I "TN I instruction, execu· 
tion would transfer directly to line 000 and halt. 

However, if the running program encounters a IGSaI (!J(go to subrou­
tine B) instruction , as shown in the lower illustration . it searches down­
ward for the next IlBL I [!Jand resumes execution. When it encounters a 
1 "TN I (return), program execution is once again transferred , this time 
back to the first line after the origin of the subroutine caU ( IGSaI (0) , 
where execution resumes . 

As you can see, the only difference between a subroutine and a normal 
branch is the transfer of execution after the [ill). After a IGTol. the 
next I "TN Icauses execution to transfer to line ()()() and halt; after a I GSa I. 
the next IATNI returns execution back to the main program , where it 
continues until another IRTNl (or a ~) is encountered. 

Example: Write a program for caJcuJa· 
ling the average slope of the graph of 
f(x) between x, and x, where f(x) = 
x 2 - In(x2 + e-X ). 



128 Subroutines 

Solution: The average slope of I(x) between X l and X2 is given by 

lex,) - !(x ,) 

[x~l; - In(x:!:! + e-Xt ) ] - [X12 - In(x l ! + e· x 1)] 

A t - XI 

Notice that the solution requires two computations of the expression 
XS - 1n(x2 + e- ll ) . 

The progrdlll below allows you to key in the values for Xl and.(2 and 
compute the average slope by pressing 0 . 

Calculates!(x,) . 

These sections of 
program memory are 
identical . 

Calculates !(x ,) . 

Since the program section for calculating/(x!) contains a large portion of 
program memory identical to the section for calculating I(x I) . you can 
simply create a subroutine that will execute thi s section of instructions. 
The subroutine is then called up and executed in calculating both/ex:!) 
and!(x,). 



J) 

~ 
,J;) 
,:) 
,J:) 

wfJ 
,&j 

~ 
,J;j 

~ 

~ 

~ .. .. 
.a 
.a 

" 

Subroutines 129 

00 1 [EJllBl l[EJ ",, 013 [EJ llBl lO 
002 ISTolO .... ~If 0 141Bm1O.1 
003 Ix,'1 .,",-' // 015 ICHs l 
004 15Tol8 9 ...... /' 016 [!]~ 
00510sBI 0------.. /' 0 17 [EJILSTXI 
006 IcHs l __ --- _, /' 018 [!] (£] 
007 1.,,1 ' .., ' 019 m 
008105810 ------" , 020 OJ@) 
009 m __ -----, ', 02 1 ICHs l 
010 l,cllO '.. ', 022 1.,,1 .. , 
011 [!] ' ....... ', 023 [!) [£I 
012 [EJI'TH I " .. ' 024 m .. ' .., .. 025 ~I'TH I 

With the modified program , when you press 0with XI in the V-register 
and X2 in the di splayed X-register , exec ution begins with the 
[E) I LBL I o instruction in line 001. When the I GS81 0 instruction in line 
005 is encountered , execution transfers to the [IJI LBL 10 instruction in 
line 013 and calculates the quantity !(x ,). If forexamplc, we used a value 
of 2 for x I and a value of 3 for Xz. here is an illustration of what would be 
happe ni ng in the stack as the average slope ofJ(.1') was calculated . 

!~$$$$ 
~EBEB EE3EBE3 

IIfQJ 0 IGSBIO 
(XI in Y-reg ., (Xt in Rc.) (x \ in X.reg ., (Xt - x, in Ro) 
.1'2 in X-reg.) X, in V-reg.) 

!$$$$e ooEB EB EEj @a ffi 
[EJ ITID 0 
(Begin 
subroutine) 

CIJ(B 
(e - x,) 

[E) ILST xl 

(RecaUs -XI) 



130 Subroutines 

018 019 020 021 022 

!~EpEpE:p~ 
oo~~~~ffi 

023 024 025 

!~Ept:p 
[XJffi~~ 

IIIImJ 
(Return to main 
program) 

From line 025 execution transfers back to the main program and con­
tinues with the flfst line after the last IGSal instruction . When the IGSBI 
o instruction in line 008 is encountered , execution again transfers to the m I LBL I 0 instruction in line 013. To continue our illustration: 

006 007 006 013 014 

~Ep~~~~ 
[XJ~ ffi ffi ffi 8 

@II 
( - / (x ,) saved 
In slack .) 

@!!)o [EJ (ill) 0 
(Begin 
subroutine) 



,j) 
,J#j 

~ 

~ 
JJ 
~ 
,I) 
,J) 

,:J 

JJ 
tJ 
,I;j 

,Q 

.a 

.a 

.a 

.a 

.a 
,I;j 

[j 

015 016 

m!! IZl -2.5804 -2.5804 

IYI 3 3 

IXl -3 0.0498 

~ OO IB 
( - XI) (e - .1.I ) 

020 021 

-2.5804 -2.5804 

-2.5804 -2.5804 

3 3 

2.2027 -2.2027 

m~ @B!I 
(In(xl + I.' -~' » ( -In(.ll + t' - ll» 

025 

ITl -2.5804 

IZl - 2.5804 

IYI -2.5804 

:xJ 6.7973 

[EJ 1"," 1 

(Return to main 
program) 

017 

-2.5804 

3 

0.0498 

-3 

(EJ ILSUI 
(Recalls - XI) 

022 

-2.5804 

-2.5804 

-2.2027 

3 

Ix\ y l 

( x, ) 

Subroutines 131 

018 019 

~ 
-2.5804 

-2.5804 

0.0498 3 

9 9.0498 

OO(£] G 
(xl) (x l + e -x, ) 

023 024 

-2.5804 -2.5804 

-2.5804 -2.5804 

-2.2027 -2.5804 

9 6.7973 

After the calculator passes through the slibroutine under IlBl lO a second 
time to compute ! (X2), the (!] IRTNI instruction at line 025 causes 
execution to return to the first instruction in the main program after the 
last I GSB I 0 instruction. ! (X2) is in the X-register; -f(x .) is in the Y -, Z- , 
and T-rcgisters . 



132 Subroutines 

009 010 011 012 

-2.5804 -2.5804 -2.5804 -2.5804 
-2.5804 -2.5804 -2.5804 -2.5804 

-2.5804 4.21611 -2.5804 -2.5804 
4.21611 1 4.21611 4.21611 

[II [illJo [!] 0~ 
(/(.1"1) - /(X,) (XI - XI) (J(XI) - I (x\) (End of 

+- ( XI - x \» progntm) 

Whe n calculation halts , the average slope of I(x) between XI and X2; 
appears in the display . Extra copies of -f(X 1) in the Y', Z-, and T­
registers are ignored . 

Now key in the program and try the problems on the next page. Slide 
the PRGM·RUN switch to """" mm.. 
Keystrokes Display 

rnCLEAR 1 ...... 1 000-
01lBLI0 001- 25. 13. 11 
ISTolO 002- 23 0 
Ix,,1 003- 21 
ISTol GO 004- 23. 41. 0 
IGSBIO 005- 13 0 
ICHs l 006- 32 
lu,l 007- 21 
IGSOIO 008- 13 0 
[II 009- 51 
IRc,IO 010- 24 0 
0 011- 71 
0 1RTH I 012- 25 12 
01'8'10 013- 25. 13. 0 
I·N"'''I 014- 31 
leHsl 015- 32 
IIlla 016- 15 1 
01LSTXI 017- 25 0 
1Il[£) 018- 15 3 
[II 019- 51 
rnlIBl 020- 14 1 
ICHsl 021- 32 



~ 
~ 

~ 

JJ 
,/J 
wi) 

,;) 
.;) 
.;J 
.J) 

~ 
~ 

~ ,.. 
.J;j 

~ 

~ 
.;, 
,J;j 

,JJ 

022-
023-
024-
025-

21 
15 3 

51 
25 12 

Subroutines 133 

Slide the PRGM-RUN switch to -.mRUol . No w find the average slo pe 
of f(x ) between the following pairs of points: (0 , 0.5) , (0 .55, 1.15), 
(1.25, 1.75). 

Answers: 0 .8097 , 0.6623, 1.8804. 

Subroutine Usage 
Subroutines give you extre me versatility in programming. A subroutine 
can contain a loop, or it can be executed as part of a loop. Another com­
mon and space-sav ing trick is to use the same rout ine as a subrout ine and 
as pan of the main program . 

Example: The program below simu­
lates the throw ing of a pair of d ice , paus­
ing to display flfSt the value of one die 
(an integer from I to 6) and then pausing 
to display the value of the second die 
(another integer from I to 6) . Finally the 
values of the two dice are added together 
to give the total value . 

The " heart" of the program is a random number generator (actually a 
pseudorandom number generator) that is executed first as a sutroutine 
and then as part of the main program . When you key in a fi rst number, 
called a "seed ," and press m. the digi t for the firs t die is generated and 
displayed using the CEJ 1 LB L 12 ro utine as a subrout ine. Then the dig it fo r 
the second die is generated using the same routine as part of the main 
program. The program then uses the generated number as a new seed fo r 
successive " throws" of the dice. 



134 Subroutines 

To key in the program: 

Sct the calculator to PAGM~ mode. 

Keystrokes Display 

CD CLEAR 1""",,1 000-
IGTol1 001- 22 1 
0 1m l0 002- 25, 13, If 
ISTolO 003- 23 0 
01l8l l1 004- 25, 13, 1 
0 005- 0 
ISTol1 006- 23 1 
IG58 12 007- 13 2 

0 1l8l 12 008- 25, 13, 2 
10cli0 009- 24 0 
9 010- 9 
9 011 - 9 
7 012- 7 
0 013- 61 
0 1 .. "" I 014- 2533 
ISTolO 015- 23 0 
6 0 16 - 6 
0 017- 61 
I 018- 1 
0 0 19- 51 
000J 020- 2532 
CD 0!J0 021 - 14, 11, 0 
0 1psEI 022- 25 74 
ISTol0 I 023- 23, 51, 1 
loclil 024- 24 1 
0 10'0 1 025- 25 12 

m I L8 l1 2 executed first as 
a subroutine. 

~ IlBll2 then executed as 
the remainder of the main 
program . 

Transfers execution to line 
008 when I LB L.! 2 executed 
as a subroutine; to line 000 
when ILBll2 executedas the 
remainder of the main pro· 
gram. 



Subroutines 135 

Now set the calculator to -.DRUN mode and "roll" the dice . To roll 
the dice, key in the initial decimal "seed" ((hat is. 0 < n < I) . Then 
press 0. The calculator will display first the number rolled by the first 
die, then the number rolled by the second, and finally , when the program 
stops, you can see the total number rolled by the dice. To make another 
roll. press (!Z!] . The program uses the last number as a new seed for the 
roll. 

You can playa game with your friends using the " dice. " If your first 
"roll" is 7 or II, you win . Ifit is anolhernurnber, that number becomes 
your "point. to You then keep "rolling" (pressing [E!) umil the dice 
again lotal your point (you win) or you roll a 7 or 11 (you lose) . To run 
the program: 

Keystrokes Display 

.2315478 0.2315478 The seed. 
0 10. Your point is 10. 
@!I 8. You missed your point. 
IRISI 5. Missed it again . 
@!I 7. Whoops! You lose . 

Now try it again using the last number as the new seed . 

Keystrokes 

@!I 
IR/.I 

Display 

8. 
8. 

Your point is 8. 
Congratulations! You win. 

~ Before you continue. reset the display to four decimal places , 

Keystrokes 

[I) [!ill 4 

Display 

8.0000 

Subroutine Limits 

A subroutine can call up another subroutine, and that subroutine can call 
up yet another subroutine. Subroutine branching is limited only by the 
number of returns that can be held pending by the calculator. Six 
subroutine returns can be held pending at anyone time in the HP-34C . 



136 Subroutines 

The diagram belo ..... should make this more clear. 

Main Program 

ILBLI0 LLB~ I IlBl l5 ILBLI6 

I • IGsal1 I • I 
losal6 

'" \ 
I Gsa I 2 I 

I 

I IiITN I 
\ 

, 
IATN I \ IATN I 

\ 
\ IATHI 

END 

The calculator can return back to the main program from subroutines that 
are six deep. as shown. However, if you attempt to call up subroutines 
that are seven deep. the calculator will halt and display Error 8 when it 
encounters the instruction attempting to call the seventh subroutine 
leve1. 

Main Program 

(ill) 0 
I 

I Gsa I I 

I LBL II 

~ ••• I 
I 

IGsal2 

IATNl 

ILBLI6 

I • IGsal7 

IATN I 

Execution 
halts and 
Error 8 is 
displayed . 

ILBLI 7 

IRTNI 



;J 
,[,) 

~ 
~ 
~ 
,f;j 

:J 
~ 

~ 
.a 
~ 

~ 

~ ,:. 

Subroutines 137 

Naturally. the calculator can execute non-subroutine I ATN I instructions 
(transfer execution to line 000 and halt) any number of times. Also, if you 
press IOTOl or I_I with 0 , [!], or 0 through 9 from the keyboard, 
any pending I ATN I instructions are fo rgotten by the calculator. 

Press IGSBI2 

Main Program 

IlBl l I 

105812 

Execution 
begins here. 

IlBll 2 

IGSBI 3 

, 
IATN I 

LlBI,] 5 IlBll 6 

~ 
~ •• • 1 , ' 1_16 1 

IRTH I \ IAu l 

Note that in PRGM mode. single-step execution of a program contain­
ing subroutines follows the same order of execution as in a running 
program. 

Using [EJ I RTN I at the End of Occupied 

Program Memory 

The programming examples in your HP-34C Owner's Handbook and 
Programming Guide include an m I ATN I as the last line in occupied 
program me mory. This is done both to clearly indicate the ends of 
programs and to illustrate how IATHI affects program executio n . 
However. yOll can omit CEJ IRTH I where it occurs as the last instruction 
in occupied progmm me mory without affecting program execution . 
Why? Whenever the last instruction in program memory is not m 
I RTfit I , program execution performs j ust as if m I "Tfit I ex isted immedi· 
ately fOllowing the last instruction you keyed in. In other words. when 
program exec ution e ncounters the end of occupied memory without 
finding an m I FtTfit I instruction: 



138 Subroutines 

I . If in a subroutine, execution returns to the first line after the las t 
I GA l instruction and resumes. 

2. If not in a subroutine, execution returns to line ()(X) and halts . 

If the last line in occupied memory contains a I Gsa ] instruction, the cal· 
culator executes the indicated subroutine. returns to line ()(X) , and halts. 

Notice that IOToland (GSa] instructions always cause the calculator to 
search/orward in program memory for the spec ified label. This feature 
often allows you to write a program in such a way that it uses a given 
label more than once . 

Exam~le: The following program to calculate the value of the expres­
sion V x:Z + y2: + Zl + t2 uses I LBL.I 010 identify both the beginning of 
the program and a subroutine within the program. The program is 
executed by placing the variables x, y, z. and t in the stack and press ing 

o 
Slide the PRGM· RUN switch to PROM ~ and key in the following 
program . 

Keystrokes Display 

mCLEAR 1 ..... 1 000-
01,aLl0 001 - 25. 13. 11 
001£) 002- 15 3 
IGSBI0 003- 13 11 
IGSBI0 004- 13 11 
IGSSI0 005 - 13 11 

m~ 005- 14 3 
01.,.1 007- 25 12 
01LBLI0 008- 25. 13. 11 
1.,,1 009- 21 

001£) 010- 15 3 

ill 011 - 51 

0 1·'·1 012- 25 12 



Subroutines 139 

Slide the PROM-RUN switch to .aD1UI and key in the following set 
of variables: 

x =4.3, y =7 .9,z = 1.3, t = 8.0 

Keystrokes 

81 ....... 1 

I. 3 I """ .. I 
7.9 1 ....... 14.30 

Display 

8.000 
1.3000 
12.1074 



Section 7 

Advanced Programming 

Controlling the I-Register 
The I-register is one of the most powerful programming tools available 
on your HP-34C. In addition to serving as a register for the simple storage 
and recal l of data , the I-reg ister can also be used in conjunction wilholher 
instructions to perform the following: 

• Increment or decrement a specified value from the current value 
in I for loop control or other functions. 

• Indirectly control the storage register address of ISTol , IRCLI . 
and storage register arithmetic . 

• Indirectly control the label address of 10Toi and 1GS81 . 

• Indirectly control the number of digits displayed by the [@. 
@. and IENGI modes. 

• Transfer execution to any line of occupied program memory. 

Storing a Number in the I-Register 

To store a number in the I-register, you use the key sequence ISTO] CD 
0]. For example. to store the number 7 in the I-register: 

Ensure that the PROM-RUN switch is set to .mIlFt.N 

Keystrokes 

7 ISTol 0 0 
Display 

7.0000 

To recall a number from the I-register into the displayed X-register, you 
use the key sequence I RCL] CD CD . 

Keystrokes 

Icul 
locLi00 

Display 

0.0000 
7.0000 

140 

A copy of the number stored 
in I is recalled . 



Advanced Programming 141 

Exchanging X and I 

In a manner similar to the lu)'l operation , the m@D (Xexchangel) 
operation exchanges the contents of the displayed X-register with those 
of the I-register. For example, key the number 2 into the displayed X­
register and exchange the contents of the X-registe r with the value you 
stored in the I-register in the previous example. 

Keystrokes 

2 
CD I x" I 

Display 

2. 
7.0000 Contents of X-register and 

I-register exchanged. 

When you pressed I xu I, the contents of the stack and the I-register 
were changed ... 

.•. from this .•. • .. Iolhis. 

~~::: I IYl 7.0000 

!Xl 2.0000 Display ~F=I IYl 7.0000 

IXI 7.0000 Display 

7.0000 2.0000 

To restore the X-register and I-register contents to their original 
JX>sitions: 

Keystrokes 

CD Ix"J 
Display 

2.0000 

Incrementing and Decrementing the I-Reglater 

Another way of ahering the contents of the I-register. and onc that is most 
useful in programming. is through the ISO (increment , then sk ip if 
greater) and DSE (decrement . then skip if less than or equal) functions. 
Both contain internal counters that al low you to control the execution of 
a loop. as well as the sequential addressing operations covered later in 
this section . 



142 Advanced Programming 

The ISG and DSE functions use a number that is stored in the I-register 
and interpreted in a special way. The number is ca lled a loop cotllrol 
value. The usual format is: 

nnnnn.xxxyy 

A loop control value is interpreted as three separate integers. where: 

± nnnnn is the current counter value , 
xxx is the counter test value, and 
yy is the increment or decrement value. 

The nnnnn portion of the number tells your HP-34C that you wish to 
count the number of passes through the loop beginning with that number. 
If you do not specify an nnnnn value , the HP-34C assumes you wish to 
begin counting at zero. An nnnnn value can be specified as one to five 
digits. 

1be xxx portion of the number tells the HP-34C that you wish to stop the 
counting at that number. The xxx value must always be specified as a 
three-digit number (e.g. , an xxx value of 10 would be specified as 010). 
The yy portion of the loop control number tells the calculator how you 
wish to count. Current counter value nnnnn is incremented or decre­
mented by the value of yy. If you do not specify a yy value , the HP-34C 
automatically assumes you wish to count by ones (yy default = 0 I). A 
specified yy value must be two digits (e.g., 02, 03, 55). 

Increment, Then Skip if Greater. Each time IISG I is executed, it first 
increments nnnnn by yy. lt then teSts to see ifnnnnn is greater than xxx. 
If it is , the HP-34C skips the next line in the program. 
So, with the loop control value 100.20001 in the I-register, the IIsGI 
instruction would begin counting up from 100. Each time the program 
executed IISG I, the nnnnn pol1'ion of the loop control value would be 
incremented by I . 

Contents of the I-register = 100.20001 
Execution of IT![) would: 

Stall counting up from 100. 
Increment nnnnn by I . 
Test to see if nnnnn is greater 
than 200. 



......... ----------
Advanced Programming 143 

After one execution or pass through the loop containing urn. the 

I-register would contain 101.20001. After to executions or passes 

through the loop. the I-register would contain 110.20001. Each time 

~ increments, it then checks to see if the current counter value 

nnnnn is greater than 200 (xxx). When nnnnn is greater than 200, 

program execution skips the next line of program memory following 

the 1150 I instruction . You will see how skipping the next line in the 

program is useful in a moment. 

Decrement, then Skip if Equal (or Less Than). Each time IDselis 

executed , it first decrements nnnnn by yy. It then tests to see ifonnn" is 

equal to (or less than) xxx. If it is , the HP-34C skips the next line in the 

program . 

So, with the number 100.01001 in the I-register, the lcselinstruclion 

would begin counting down from 100. Each time the program executed 

I OSE ~ the nnnnn portion of the loop control value would be decremented 

by I. 

Contents of the I-register = 100.01001 

Execution of IOSEl would: 

Start counting down from 100. 

Decrement by 1. 
Test to see if xxx was equal to (or 

less than) J O. 

After one execution or pass through the loop, the I-register would contain 

99.01001 . After 10 executions or passes through the loop, the I-register 

would contain 90.01001 . Each time lOSE Idecrements , it then checks to 

see if the counter value nnnnn is equal to or less than 010 (xxx). When 

nnnnn is equal toor less than 010 (xxx), the calculator skips the next line 

of the program. 

Example: Here is a program that illustrates how Grn works . It con­

tains a loop that pauses to display the current value in the I-register and 

uses IISG Ito control the number of passes through the loop and the value 

of the squared number. The program generates a table of squares of even 

numbers from 2 through 50. 



144 Advanced Programming 

Slide the PRGM-RUN switch to PRiM" and key in the following 
program . 

Keystrokes Display 

ITJ CLEAR I ""'" I 000-

[II I LBL I 0 001- 25, 13, II Program label 

ITJ !I!IJ5 002-14, II , 5 
2 003- 2 Current counter value 

8 004- 73 (nnnnn), 
0 005- 0 

} 5 006- 5 Counter test value (xxx). 
0 007- 0 
0 008- 0 

} Increment value (rr), 2 009- 2 

I STO I ITJ ITJ 010- 23, 14, 23 Store loop control val ue in I , 

[II ILBL 11 011- 25,13, I Begin the loop. 

IReL I ITJ ITJ 012- 24, 14, 23 Recall the number in I. 
[IlQill 013- 25 32 Take the integer portion. 
[II I PSE I 014- 25 74 Pause to display the integer. 

(!](£) 015- 15 3 Square the number. 

[II I PSE I 016- 25 74 Display the sq uare of the 
number. 

(!] IISG I 017- 1524 Increment I by 2 and check 
to see that the counler is not 
greater than the final number 
(50). If the counter is 
greater than the final 
number, skip the next line in 
the program. 

IGTO I) 018- 22 I Loop back to label ) , 
[Il IRTNI 019- 25 12 Halts the program. 



Now run the program: 

Slide the PRGM-RUN switch to 

Keystrokes 

o 
Display 

2.00000 
4.00000 

4.00000 
16.00000 

Advanced Programming 145 

..a .... and press 0 · 

When the HP-34C begins 
executing, it frrst pauses to 
display the number to be 
squared, then pauses to dis­
play the square of the num­
ber. When the loop counter 
increme nts beyond 50, the 
program halts . 

50.00000 
2,500.00000 

Here is what happens when you run the above program. 

I. Under label 0. the number 2.05002 is stored in the I-register 
as the loop control va lue . It is in the counter formal : i.e., 

nnnnn 

(0000)2 
Current counter 

Value 

xxx 

050 
Test 

Value 

yy 

02 
Increment 

Value 

2 . Under label I , the following sequence occurs: 

After 2 and 4 (the square of 2) are displayed . the current counter value in 
I. ()()()()2 (nnnnn). is inc remented by the increme nt value 02 (yy). The 
new number in the I-register is 4 .05002 , which is interpreted by your 
calculator as: 

nnnnn 

(0000)4 
Current Counter 

Value 

xxx 

050 
Test 

Val ue 

yy 

02 
Increment 

Val ue 

The new counter value is then compared to the test value 050 (xxx) . As 
the counter value has no t exceeded the test value. the calculator proceeds 
10 the next line , 10Toi I, and the process is repeated with the new 
number . 



146 Advanced Programming 

3. After 25 even numbers (2·50) and their squares are di splayed, 
the current counter value finally increments beyond 50. This 
causes the calculator to skip one line after the [!] 1150 I at line 17 . 
As a result , the IGTo l I command at line 18 is bypassed and the 
I RTN I command at line 19 is executed, causing the calculator 
to return to li ne 000 and halt . 

After running the program , press IACL I CD OJ The recalled I-register 
value in your display should now look like this : 

52 .05002 

/ - 1- , 
Current Test Increment 
Counter 

Value 
(nnnnn) 

Value 

(xxx) 

Value 

(yy) 

Now let's add a second program which uses your HP·34C's lOSE lfunc­
tion . Remember, the nnnnn.xxxyy fonnat is the same as for Q!ID. 
You will , however, be decrementing the current counter value instead of 
incrementing it . 

The island of Manhattan was sold in the 
year 1624 for $24. The following pro­
gram shows a simplified method to cal· 
cui ate growth of the original amount if it 
had been placed in a bank account draw· 
ing 6% annual interest. The number of 
years for which you want to calculate 
growth is stored in the I·register as a loop 
control value. The lOSE t instruction is 
then used to keep track of the number of 
iterations through the loop. 



,Ja 

.:t 

~ 

Advanced Programming 147 

Slide the PRGM-RUN switch to PAGM ~ • Executing the IRTHI 

instruction in line 019 of the previous program returned your calculator 
to line 000. To add the following program to the end of currently occu­
pied program memory. press 010'T I (or IGTol[!J 019) to return to 
line 019 . 

Keystrokes DIsplay 

0 105TI 019- 25 12 Last line of previous 
program. 

01 LBL I0 020- 25, 13, 12 New program label. 

CD@!) 2 021- 14, 11, 2 

I.ToI CD CD 022- 23, 14, 23 Stores user-i nput loop con-
trol value nnnnn.xxxyy in 
the I-register. 

I 023- 1 

} 6 024- 6 Initial year . 
2 025- 2 
4 026- 4 

m 027- 51 Final year. 

ISTolO 028- 23 0 Stores final year. 
2 029- 2 } Initial dollar amount. 
4 030- 4 

01l8l 12 031- 25, 13, 2 Begins the loop. 

I 032- 1 

} 0 033- 0 Calculates annual growth. 
6 034 - 6 

000 035 - 2541 

OO losE I 036- 1523 Decrements the current 
counter value DDODD and 
compares with the counter 
test value xxx. 

IGTol2 037- 22 2 If nnnnn> xxx, returns to 
IUlI2. 

10cli0 038- 24 0 

} 01"'1 039- 25 74 
IXlyl 040- 21 If nnnnnlSi; XXX', displays 

010TNI 041- 25 12 final year. final growth 
value , and halts. 



148 Advanced Programming 

Slide the PRGM-RUN switch to .mJ"-'N and key in the number of 
years ( loop control value) for which you want to see the accumulated 
amount . Press [!] to store your input value in the I-register and to run 
the program. 

Keystrokes 

5 

15 

Display 

5. 

32.12 

15. 

57.52 

Loop control value; 
nnnnn = 5, xxx = (X)() , 

yy ~ 00 (defaults to 0 I 
internally). 
After five years, in 1629, the 
account would ha ve been 
worth $32 .12. 
Loop control value; 
nnn = 15, xxx "" 000, 
yy ~ 00 (defaults to 0 I 
internally). 
After 15 years, in 1639, the 
account would have been 
worth $57.52. 

How it works: When you key in the number of years and press [!]your 
entry is stored in the I-register and becomes the loop control value 
(nnnnn.xxxyy). 

nnnnn 

(0000)5 
Current Counter 

Value 

xxx 

000 
Counter Test 

Value 

yy 

00 
Decrement Value 

(Defaults to 01 internally.) 

(Notice that when the test value is 000 and the increment or decrement 
value is 0 1, it is nol necessary to enter them .) 

The loop control value is then added to the initial year. This sum is the 
final year and is stored in Ro fo r later recall. The initial dollar amount is 
then entered. Each lime through the loop the dollar amount is increased 
by 6%. The lose 1 instruction then subtracts I from the I· regi sler. If the 
loop control value in I is not then zero , execution returns to I LBL 12 and 
the loop is executed again . 



Advanced Programming 149 

When the loop control value in the I·register is decremented 10 zero 
(nnnnn= xxx), execution bypasses the IGTol 2 instruction arline 37 and 
resumes with the IRCL 10 instruction at line 38 . The final year and dollar 
value then appear in succession and the program halts . 

ISG and DSE Limits 

Note that HSG I and I DSE I can be used to increment and decrement any 
number that the HP-34C can display. However. the decimal portion of 
the loop control value will be affected by current counter values exceed­
ing the five-digit nnnnn value. 

For example, the number 99,950.50055 , when incremented using @ID 
would become 100,005.5006. The initial number was incremented by 
55 . But since the new number 100,005.50055 , cannot be fully displayed, 
the decimal portion of the number was rounded . As the calc ulator 
assumes a two-digit number for the increme nt value (yy), the next in­
crement would be by 60, not 55. And when the number becomes 
999.945 .5006, the next number would be 1.000.005 .501. thus rounding 
the decimal portion ofthc number again . Since no increment value yy is 
present , the next increment would default to 01 instead of remaining at 
60. 

Problem: 
I . Write a program that will count from zero up to a limit using the 

o:!ID function. and then , in the same program, count bad down 
to zero using the l OSE I function . Use the flowchart on the fo llow­
ing page to help you. 



150 Advanced Programming 

~ 

~ 

Start ~ 

STO n~nnnxxxyy ~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

~ 

.-. 
~ .-

Stop .-
~ 

~ 



Advanced Programming 
Using The I-Register For Display, 
Storage Register, and Program Control 

151 

You have seen how the value in the I-register can be altered using 1 sTo l, 
I x~ l l , I ISG I, and lOSE I operations. But the value contained in the 
I-register can also be used to control display , storage registcr, branching, 
and subroutine operations. First , let' s get a brief overview of these 
operations. TIlen we' ll examine each one in detail. 
I OSPII (dispJay I) uses a number stored in the I-register to specify the 
number of decimal places appearing in the di splay. 
Ix,wl (X exchange indirect) exchanges the contents of the di splayed 
X-register with the contents of the available storage registe r add ressed 
by the absolute value of the number in the I-register. 

1 $TO I m @D(store indirect) stores the value that is in the display in the 
storage register addressed by the absolute value of the number currently 
in the I-register. 

IACLl m Gll) (recall indirect) recalls the contents of the storage register 
addressed by the absolute value of the number currently in the I-register. 
I STO I ( [£] , 0 , G , or GJ) (ill) (indirect storage register arithmetic) 
performs storage register arithmetic on the contents of the storage reg ister 
addressed by the absolute value of the number currently in the I-register. 

IGTo l CD m (go to label or line I) with a positive num ber in the 
I-register transfers execution of a running program sequentially down­
ward in progmm memory to the next label specified by the num ber 
currently in I. With a negative number in the I-register . execution 
transfers to the occupied line number specified by the absolute value of 
the number currently in I. 

IGSaI rn ITJ (go 10 label or line I subroutine) with a positive number 
in the I-register transfers execution of a running program sequenuaJly 
downward in program memory to the next label specified by the number 
currently in I. With a negative number in the I-register, execut ion 
transfers to the occupied line number specified by the absolute value of 
the number currently in l. In both cases, when a '''TN li s then encoun­
tered , execution transfers back to the line following the IGSIIl instruc­
tion, and continues. 

'1 



152 Advanced Programming 

When ex.ecuting anyone of the above operations. if the number in the 
I-register is inappropriate for that operation, the display will show an 
Error message. Also , when using a number in I for display, storage regis­
ter. or program control, remember that the calculator uses only the in­
teger portion of the number in l. Thus, 12.99041276 stored in the 
I-register retains its full value there. but when used to control any of 
the above operations it is read as 12 by the calculator. 

You can already see that using the I-register in conjunction with other 
functions gives you a tremendous amount of computing power and 
ex.ceptional programming control. Now let' s have a closer look at 
these operations. 

I-Register Display Control 

You can use a number in the I-register to control the number of decimal 
places appearing in the display . When m I DSP II is perfonned, the 
display is seen rounded to the number of decimal places specified by the 
current value contained in the I-register . (The display is seen rounded , 
but of course, the calculator maintains its full accuracy. 10 digits multip­
lied by 10 raised to a two-digit exponent. internally .) The above opera­
tion is most useful as pan of a program, but it can also be executed 
manually from the keyboard . For example, execute the following in 
RUN mode . 

Keystrokes Display 

IcLX I m (ill) 4 0.0000 Clears display; normal FIX 
display . 

ISToi m m 0.0000 Insures that zero is in the 
I-register . 

9.123456789 9.123456789 
[IJ 10sp I) 9. FIX display specified by the 

zero value in the I-register. 
oopSGI 9. Increments value in 

1-register to I . 
[IJ loop II 9.1 FIX display specified by the 

the value in the I-register. 
oolisGI 9.1 Increments value in 1-

register to 2. 
[IJ 10Sf01i 9.12 FIX display specified by the 

value in the I-register. 



,J!j 

,P 
,P 

,P 
~ 
.IfJ 

~ 

Advanced Programming 153 

Example: The following program pauses and displays an ex.ample of 
FIX display format for each possible decimal place. It utilizes a loop 
containing a I D$E I instruction to automatically change the number of 
decimal places . 

Slide the PRGM-RUN switch to MlM ~ and key in the following 
program. 

Keystrokes Display 

III CLEAR 1 ....... 1 000-
[El ILBLI0 001- 25,13, " 
9 002- 9 
I STO I III III 003- 23, 14,23 
[ElILBLI O 004- 25, 13, 0 

[Ell ... " 005- 25 II 
I ACL I III III 006- 24, 14,23 
[El1 .. ol 007- 2574 
OO losol 008- IS 23 
IGTolO 009- 22 0 
OOlx>ol 010- 15 51 
10Toi 0 011- 22 0 
[El1.TN I 012- 25 12 

To display fIXed point notation for all possible decimal places on your 
HP-34C. 

Slide PRGM-RUN switch to ..m "'-" . 
Keystrokes 

o 
Display 

9.000000000 
8.00000000 
7.0000000 
6.000000 
5_00000 
4.0000 
3.000 
2.00 
1.0 
O. 
0_ 



154 Advanced Programming 

To display scientific or engineering notation for a1l possible places, 
replace the 9 at line 002 with a 6 and shift the calculator to SCI or ENG 
mode by pressing III £ED or CD [ENGI and any digit 0-7 .· Then press 
ill as you did in the above example. 

Slide the PROM· RUN switch to PfIGM ~ • 

Keystrokes 

I.TO I C!J 002 
[IJ 10ElI 
6 

Display 

002- 9 
001 - 25, 13, 11 
002- 6 

Slide the PROM· RUN switch to .m ..... 
Keystrokes Display 

IIlIED 4 0.0000 00 Nonna! 
or 

IIliENGI 4 0.0000 00 Normal 

[IJ 6.000000 00 
5.00000 00 
4.0000 00 
3.000 00 
2.00 00 
1.0 00 
O. 00 
o. 00 

IED display. 

I ENG I display . 

If any number less than 0 is stored in the I-register. executing IX) losp II 
results in the same number of digits in the display as when you execute m [DIP II withO in the I-register. t If a number greater than 9 is stored in 
the I-register, executing [EJ I DSP II results in the same number of digits 
in the display as when you execute m I DSP I I with 9 in the I-register. 
Note that in SCI and ENG modes any number greater than 6 in the 
I-register results in a maximum of 6 digits and a 2-digit exponent 

• In PRGM mode , pressing m @ or CD ~ followed by 8 or 9 automatically 
results in an m (!£J 7 or OJ ~ 7 in program memory . 

t During eucution o( IZD only. a numbt-r-6 through +9 in the I-register is used by IDSPII 
as liD automatic parameter for lZD cakulations (more Of) IZIl in section 9). 



Advanced P rogramming 155 

~ appearing to the right of the decimal. (Remember. however, that 

@ or [ENGI ? rounds the display to one more digit than does (!ill or 
IENG] 6 .) 

Execute the following: 

,Jj 
Keystrokes Display 

~ o ffi!J 4 0.0000 Normal AX display . 

~ 
1.999999999 1.999999999 
]STO ] 0 0 2.0000 Display rounds to last 

display format command . 
[EJ] DSPI ] 2.0 Only the integer portion of 

the value in I is read by 

,:P I D5P II . 
. 9852 0.9852 

~ 
ISTO] 0 0 1.0 Display rounds to last format 

command . 

~ 
[EJ 10 .. II 1. A value of < J brings the 

same result as a value of O. 

,; 19 19. 
]STO ] 0 0 19. 

~ 
[EJ ]0" I] 19.00000000 With 2 dig its to the left of the 

decimal occupied. a value 

,:I 
> 9 stored in I brings 
the same result as a value of 
8 or 9 . 

.1Jj leHs llsTo] 0 0 - 19.00000000 Stores a negative number 
in!. 

,(Jj [EJIDsp I] -19. A negative number stored in 
[ brings the same result as 

~ 
a positive number < 1. 

o (ill) 4 - 1.9000 01 Normal SCI display . 

~ 
1.1 11 1119 ]"'". " ] 1.1111 00 
7 ISTo] 0 0 Ix,,] 1.1111 00 

.1Jj 
[EJ IDSP II 1.111111 00 Display rounded to 7 

decimal places. 
6 ISTO] 0 0 Iu, ] 1.1111 11 

r1' [EJ] DSPI] 1.111112 00 Display rounded to 6 
decimal places . 

~ 



156 Advanced Programming 

Exchanging X and (Il 

Using 1%'1111 you can exchange the contents of the displayed X-register 
with those of any available storage register indirectly addressed by the 
absolute value ofaoy number -21 < n < 21 in the I-register . The integers 
from 0 through ± 9 address storage registers Ro through RIj. The 
integers from ± 10 through ± 19 address registers R.o through R.II • With 
the number ±20 in the I-register , Ix\ml addresses the I-register itself! 

The following diagram illustrates these addresses more clearly: 

(i) Address (i) Address 

R, CJ 0 R·,D IO 

R, 0 R.,D 11 

R, 0 2 R.,D 12 

R, 0 3 R·,D 13 

R. 0 4 R..D 14 

R. 0 5 R..D 15 

R. 0 6 R·. O 16 

R, 0 7 R.,O 17 

R. 0 8 R..O 18 

R, 0 9 R..O 19 

D 20 

Before proceeding. set the display to FIX 4 and clear both the displayed 
X-register and all storage registers . 

Keystrokes DIsplay 

CD lli!l 4 leul 0.0000 
CD CLEAR I_I 0.0000 

Now try the following examples using Ill' \m l to store 1.234 in registers 
R3 • R. s• and I. 



I 
Advanced Programming 157 

p Keystrokes Display 

3 CD 1%"1 0.0000 Exchanges contents of dis· 
played X-register and 

~ 
I-register . 

1.2345 IE)lx\ml 0.0000 Exchanges contents of dis-

~ 
played X-register and R3 • 

using the integer 3 in I for an 

,P address . 

IReLI3 1.2345 Recalls a copy of the 

,P contents of Ra. 

15 CD 1%"1 3.0000 Exchanges contents of dis-

,Jf) played X-register and I. 

lu,l 1.2345 Exchanges contents of dis-

,Jf) played X-register and Y-
register. 

,Jf) mlx~ml 0.0000 Exchanges contents of dis-
played X-register and R.~ 

~ 
using the integer 15 in I as 
an address. 

J/) IReL I8 5 1.2345 Recalls a copy of the 
contents of R.i -

~ CD CLEAR 1"'1 1.2345 Clears the contents of all 
storage registers to O. 

~ 
15.3974 ICH'I -15.3974 
CD@!) 0.0000 Exchanges the contents of 

.Il'/i 
the displayed X-register and 
I. 

.Il'/i 
Ix,,1 1.2345 Exchanges the contents of 

the displayed X-register and 
the Y -register. 

0 1%;(111 0.0000 Exchanges contents of dis-

,,3) 
played X-register and R.5 
using the integer portion of 
the absol ute value of 

.J//) - 15.3974 stored in I as an 
address. 

"J/) IRcLI 85 1.2345 Recalls a copy of the con-
tents of R.5 



158 Advanced Programming 

Keystrokes Display 
20 m@!) -15.3974 Exchanges the contents of 

the displayed X .register and 
I. 

1 .. ,1 1.2345 Exchanges the contents of 
the displayed X· register and 
the Y -regi ster . 

mlx~U1I 20.0000 Exchanges the contents of 
the displayed X-register and 
It using the integer stored in 
I as an address . 

l-cLlm m 1.2345 Recalls a copy of the con-
tents of I. 

m CLEAR I .. GI 1.2345 Clears the contents of all 
storage registers to O. 

IcLxlI ....... \I ...... ·1 
1·" ..... 1 0.0000 Clears all stack registers . 

Indirect Store and Recall 

Like IX~IIII . you can use the I-register to indirectly address all 21 storage 
registers for I STO I and I ACL I operations. When you press I STO I m @D. 
the value in the display is stored in the storage register addressed by the 
number in the I-register. I ACL IOJ GE1 addresses the storage registers in a 
like manner , as do the storage register arithmetic operations 15To l l1] 
@D. ISTo I G @D . I STO I 0 @D . and I STO I [£J @D . (If you have for· 
gotten the nonnal operation of the storage registers. or of storage regis­
ter arithmetic, go back and review section 4. Storing and Recalling 
Numbers . in Solving Problems With Your Hewleu-Packard Calculator.) 

When using 15101 CD [ill] . lRCtl ill Gill . or any of the storage register 
arithmetic operations utilizing the Gill function. the I-register can contain 
the same positive or negative values from 0 through 20, as used with 
I;nml . 



,II!J 

~ 
,Jf:J 
,if) 
,if) 
,if) 

~ 
~ 

Advanced Programming 159 

By using the calculator manually, you can easily see how I STO I m (ill] 
and I RCL I CD @Dare used in conjunction with the I-register to address 
the different storage registers: 

Ensure that the PRGM-RUN switch is set to .mfUII . 

Keystrokes 

ICLxl [[] 1Iill4 

[[] CLEAR IRE. I 

5 ISTol [[] [[] 

1.23 ISTol [[] @ 

19 ISTol [[] [[] 

85083 I STO I [[] @ 

12 ISTol [[] [[] 

77 1 • .,143 

ISTol [[] @ 

Display 

0.0000 

0.0000 

5.0000 

1.2300 

19.0000 

85,083.0000 

12.0000 

77. 43 

7.7000 44 

Clears all storage regisle rs, 
including I, to zero. 

Stores the number 5 in the 
I-register . 

Stores the number 1.23 in 
the storage register ad­
dressed by the number in 
I-that is, storage register 
R,. 

Stores the number 19 in the 
I-register . 

Stores the number 85083 in 
the storage register R.9 
addressed by the current 
number 19 in I. 

Stores the number 12 in the 
I-register. 

Stores the number 7 .7 X 10"" 
in the storage register ad­
dressed by the number in 
I-that is. in storage register 
R.2 • 



160 Advanced Programming 

To recall numbers that are stored in any register, you can use the IRCLI 
(recall) key followed by the number of the register address . However, 
when the number currently stored in the I-register addresses the storage 
register you want, you can recall the contents of that register with I RCL.I 
ITl @D. 

Keystrokes 

IRcll5 

Display 

1.2300 

7.7000 44 

Contents of storage register 
R5 recalled to displayed 
X-register. 
Since the I-register still 
contains the number 12 . this 
operation recalls the con­
tents of storage register R.2 • 

which is addressed by the 
number 12. 

By changing the number in the I-register, you change the address 
specified by ISTO I CD Wil or IRCLI m [illJ . For example : 

Keystrokes 

19 ISTol ITl ITl 
I RCll ITl @D 

5 ISTo l ITl ITl 
I RCll ITl @D 

Display 

19.0000 
85.083.0000 

5.0000 
1.2300 

Contents of storage register 
R.9 recalled to displayed 
X-register. 

Contents of storage register 
R$ recalled to displayed 
X-register . 

Storage register arithmetic is performed upon the contents of the register 
addressed by I by using ISTol G @D . ISTol G @D. 15Tol0 @D. and 
I STO I 0 @.iJ . Notice that it is not necessary to use the CD shift function 
key with these four operations. 



p 
~ 
~ 
~ 
p 
p 
If) 
If) 
p 
p 
~ 
p 
;fj 

~ 
~ 

~ 

~ 
~ 

Keystrokes 

I ISTol m @i] 

IRCll OJ @i] 

2 ISTol0 @i] 

IRCll OJ @i] 

ICu ] 

IRCll5 

Display 

1.0000 

2.2300 

2.0000 

4.4IlOO 

0.0000 
4.4IlOO 

Advanced Programming 161 

One added to number in 
storage register (R:.) cur· 
rently addressed by the 
I-register. 

Recalls the number stored 
in R:.. 
Multiplies the contents of 
R, by 2. 
RccaJis the new contents of 
R,. 
Clears display. 
Directly recaJls the conten ts 
of R:,. 

Note: When programming. storage register arithmetic 
commands for register Ro through Rt can be keyed in as 
either direct or indirect storage operations. However, storage 
register arithmetic commands for registers R.o through R .• 
and the I-register are implemented using indirect storage 
operations only. 

Naturally , the most effecti ve use of the I-register as an address for ISlOI 
and I JIICL I is in a program. 

Example: The following program uses a loop to place the number 
representing its address in storage registers Ro through Rg and registers 
R.o through R.g_ During each ite ration through the loop, program execu­
tion pauses to show the current value of I. When I reaches 20. execution 
is finally trdnsferred out of the loop by the [[lIISG I instruction and the 
program returns to line (X)() and hal ts. 



162 Advanced Programming 

Slide the PROM-RUN switch to PRGM mm. and key in (he fo llowing 
program . 

Keystrokes 

CD CLEAR 1 ..... 1 
ill I LBL I 0 
8 
0 
I 
9 
ISTOI CD CD 
ill llllil 
IRcll CD CD 
illlJE!J 
ISTol CD @D 

ill lPSEI 

[!]IISG I 

IGTol1 
ill 1"01 

Display 

000-
001- 25, 13, 11 
002- 7n 003-
004-
005-
006- 23, 14,23 
007- 25, 13, 1 
008- 24, 14, 23 } 009- 25 32 
010- 23, 14, 24 

011- 25 74 

012- 15 24 

013- 22 1 
014- 25 12 

Loop control number . 

Store loop control number. 

Current integer value of I 
stored in storage register 
addressed by (i) . 

Pause to display current 
value of I. 
Add one to value in J­
registe r and compare with 
counter test value (019). 
IfI~ 19. execute loop again. 
If I> 19. execution transfe rs 
to line ()(X) and halts . 

Slide the PRGM-RUN switch to ..uIIl ..... . 
When the program is run , it begins by placing zero in the I-register . 
Then the program recalls the current value in the I-register (loop control 
value) and stores the integer part of that number in the corresponding 
address - for example. when the I- register contains the number 17.019. 
that number is recalled and the integer portion, 17, is stored in the indirect 
storage register (RI1) that is addressed by the number 17. Each time 
through the loop the I-register is incremented and the result is used both 
as data and as an address by the I STa I m [ill] instruction. When the 
number in the I-register reaches 20, execution transfers out of the loop 
and the program stops . 



To run the Program: 

Keystrokes 

o 
Display 

0.0000 
1.0000 
2.0000 

19.0000 

Advanced Programming 163 

Notice that the contents of the I-register have been incremented to 
20 .0190 . 

Keystrokes 

IRCLI CD CD 

Display 

20.0190 

I-Register Control 01 Branches and Subroutines 

Like the addressing of storage registers using [STO I CD @Dand I ACtl CD 
@D . you can address routines, subroutines, even entire programs. 
with the I-register. 

To address a routine using the I-register, use the instruction [GloI CD 
tIl . When a running program encounters a IGTol [I] CD instruction, 
execution is transferred sequentially downward to the I LBL I that is 
addressed by the number in the I-register. Thus. with the number 7 stored 
in I , when the instruction [GTol (I] IJJ is encountered . execution is 
transferred downward in program me mory to the nex l I LBL 17 instruction 
before resuming . 

1 7 
15Tol CD CD 
10ToI CD CD 

0 1L8L I7 



164 Advanced Programming 

Naturally, you can also execute IGTOI OJ m from the keyboard when 
you want the calculator to go to the label addressed in the I-register and 
hall. 

Subroutines can also be addressed and utili zed with the I-register. When 
IGss l [I] m is executed in a running program, execution transfers to the 
specified I LBL.land executes the subroutine . When a I AT ... I is then encoun­
tered , execution transfers back to the next instruction after the 
I GSa) OJ lIland resumes . For example. with the number 7 stored in the 
I-register. 1 GSa ! OJ III causes execution of the subroutine defined by 
ILBl l ? and IRTH! . 

01L8L I7 1 /~ 
7 

/ 
ISTol m m / 

/ 
IGSB l m m / 

01RTHI ! -', , 

Yo u can also execute !GSaI OJ (Dfro m the keyboard when you want the 
calculator to execute the program or subroutine addressed by the number 
in I . then halt . 

The simple-to-remember addressing using the I-register is the same for 
IGTo l (I] (Dand lase l ill OJ. If the t-register contains zero or aposirive 
number from I through 9, IOToi or IGSBI m m addresses IL8LIO 
through 9 . When the number in I is a positive 10 or II , ILB LI mor 



Advanced Programming 165 

I LBL I C!J is addressed. Label addressing is illustrated below . 

If the number 
in I is: 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
II 

IGTo l ill ill or IGSaI ill ill 
transfers execution to: 

01LBlI O 
01,",11 
01LBll2 
01L8L I3 
01L8LI4 
01L8LI 5 
01L8LI 6 
0 1L8LI 7 
01LBLI 8 
01L8LI 9 
01LBll0 
01LBl I [!] 

Remember that label address numbers in the J·register must be 0 or a 
positive value less than 12 (negative numbers cause transfer of program 
execution , which we will discuss later) , and that the calculator looks at 
only the integer ponion of the number in I when using it for an address. 

Example: One method of generating pseudorandom numbers in a 
program is to take a number (caUed a "seed"), square it, and then 
remove the center of the resulting square and square that , etc . Thus, a 
seed of 5 182 when squared yields 26853124. A random number 
generator could then extract the four center digits, 853 1, and square that 
value . Continuing for several iterations through a loop would generate 
several pseudorandom numbers. * 
The following program uses the I GTol m (IJinstruction to pennit you to 
key in a four-digit seed in any of three forms: nnnn, .nnnn, or nn.nn. 
The seed is squared and the sq uare truncated by the main part of the 
program, and the resulting four-digit random number is displayed in the 
fonn of the original seed: nnn, .nnnn, or nn.nn . 

• As indicated. the numbers are nOI relilly random. After several suct! "pseudorandom" 
numbers have been generated by this mid-sq uare method they may well bcsin bebaving in a 
vcry syslcmalic, /lon-random way. The art of geoeratin& lruly random numbers is beyoDd 
the scope of this band book. 



166 Advanced Programming 

A flowchart for the program might look like this: 

LBL 1 

Change to 
form nnnn. 

Square 
number. 

LBL 3 

Change to 
form nn.nn. 



p 
P 
P 
P 
P 
P 
P 
~ 
'&) 

'&) 

fj 

P 
'[) 

Advanced Programming 167 

The use of dIe IGTOI m IJJ instruction leLS you select, via your seed 
format, the operat ions that are performed upon the number after the main 
ponion of the program. 

By storing I , 2, or 3 in the I.registcr depending upon the fonnat of the 
seed, the program selects the form of the result after it is generated by 
the main portion ofthe program. Allhough the program shown here SlOpS 

after each result. it would be a simple matter to create a loop that would 
iterate several limes, increasing the apparent randomness of the result 
each time. 

SJidc the PRGM·RUN switch to PftGM ~ and key in tbe program. 

Keystrokes Display 

mCLEAR 1 ..... 1 000-
ffil lBl l4 001- 25, 13, 4 
IE .. I 002- 33 

} 2 003- 2 Changes nnnn to nn .nn . 
@ 004- 71 
1 005- 1 Places J in X-register for 

storage in I. 
IGTo l7 006- 22 7 
ffi llBll 5 007- 25. 13. 5 
IE .. I 008- 33 

} Changes .nnnn to nn.nn . 2 009- 2 

0 010- 61 
2 011- 2 Places 2 in X-register for 

storage in I. 
IOTo l7 012- 22 7 
ffillll 16 013- 25. 13. 6 
3 014- 3 Places 3 in X-register for 

storage in [. 
ffillBll 7 015- 25, 13, 7 
ISTol m m 016- 23. 14. 23 Stores address of later 

operation in I. 



168 Advanced Programming 

Keystrokes Display 

1 .. ,1 017- 21 Brings nn.nn to X-register. 
[I] (£] 018- 15 3 Squares nn ,nn . 

IEul 019- 33 
2 020- 2 } Truncates two final digits of 

square. 
0 021- 61 
[EJIJE!J 022- 2532 
IEul 023- 33 
4 024- 4 } Truncates two leading digits 
G 025- 71 of square. 
[EJ I FlIAC 1 026- 25 33 
IGTOI [jJ [jJ 027- 22, 14,23 Transfers execution to 

appropriate operational 
routine . 

[EJllolll 028- 25, 13, 1 

}.,,~--.-IEExl 029- 33 
4 030- 4 
0 031- 61 
[jJ lliK) 0 032- 14, 11, 0 
[EJ I .TH I 033- 25 12 
[EJ I lBl 12 034- 25, 13, 2 

} Result appears as .nn"n. (I) lliK) 4 035- 14, 11, 4 
[EJIRTHI 036- 25 12 
[EJILOlI3 037- 25,13, 3 

}.~,~ .--IEEXI 036- 33 
2 039- 2 
0 040- 61 
(I) lliK) 2 041-14,11, 2 
[EJI.THI 042- 25 12 

We could also have stored the digits for 100 (that is , I EEX 12) and recalled 
them for use in lines 002-003 , 008-009, 019-020. and 038-039, but we 
have used this more straightforward program to illustrate the use of the 
tGTol [[) CD instruction. 



p 
;iii 

P 
IJ 
P 
P 
P 
~ 
~ 
,:J 
p 
p 
p 
p 
,Q 

~ 

~ 

~ 
,fJ 
p 

Advanced Programming 169 

When you key in a four.digit seed number in one of the three formats 
shown, an address (l , 2, or 3) is placed in the Ro-register. This address 
is used by the IGTol CD m instruction in line 27 to transfer program 
execution to the proper routine so that the new random number is seen 
in the same fonn as the original seed . 

Now run the program for seeds of 5182, .5 182 and 51 .82. To run the 
program: 

Set the calculator to .. ~ 

Keystrokes 

51821GS814 

. 5182 IGSal5 
51.82 IGSal6 

Display 

8,531. 

0.8531 
85.31 

Random number generated 
in the proper form . 

The program generates a random number of the same form as the seed 
you keyed in. To use the random number as a new seed (simulating the 
operation of an actual random number generator. in which a loop would 
be used to decrease the apparent predictability of each succeeding 
number) . continue pressing I GSa I and the appropriate label key: 

Keystrokes 

1 GSa 1 6 
loseJ 6 
lasel6 

Display 

77.79 
51.28 
29.63 

With a few slight modifications of the program, you could have used a 
losel m CIJ instruction instead of the Icnol (]] CD instruction. 



170 Advanced Programming 

Problem 

Create and load a program using lI!ID and ISTO 1m WLI that permits you 
to key in a se ries of values during successive halts. The values should be 
stored in storage registers ~ through Rg. R,o through R.9 and I in the 
order you key them in . Use the fo llowing flowchart to help you. 

Yes 

Start 

Store counter 
test value in I. 

Halt to key 
in number. 

Store number 

Stop 



~ 
~ 
~ 

IJ 
P 
P 
I) 
P 
~ 
p 
~ 
I;) 

~ ,.. 
~ 
~ 

~ 

~ 

~ 

~ 

Advanced Programming 171 

Branching and Subroutines Using Line Number Addressing 

Using [GlOI CD CD or IGSIII [D CD. with a negative number stored in 
the I-register, you can actually branch to any occupied line number in 
program memory. 

As you know , when (Glol m I]] or (GSB III! m is executed in a 
running program, the calculator searches downward through program 
memory until it locates the I L.Bl l addressed by the positive number in I. 
Then execution resumes. However, when [GTO] [[) (D or [GSal CD CD 
is executed in a running program with a negative number stored in I, the 
calculator does not search for a label . Instead, execution is transferred (0 

the occupied line number in program memory specified by the absolute 
va lue of the negative number in I. This feature allows yOll to transfer 
program execution even when a111abe15 have been used or when you want 
to execute only part of a subroutine or program wi thout using an addi­
tional label . 

For example. in the sec-tion of progrdm memory shown below. -35 is 
stored in the I-register. Then, when line 047 , IGTol [II CD. is executed. 
the running program jumps immediately to line 035, where execut ion 
begins again. 

J. When [!] is 
pressed, execu tion 
begins at line 
04J. 

2. With -35 stored 
in I. execution 
transferred [0 

line 035 by 10Toi 
[I)ITJ. 

033- 01l:1 
034 - 3 

r- 035- I.ToI3 

036- 4 

037- 5 
038- [II~ 

039- 01m0 
040- 0 10T" 1 
041- 0IL.LI [. 

042- ITlILOGI 
043 - 3 

044- 5 

045- leH.1 

L 
046-lsTo l ITl 0:: 

- 047- laTol ITl [I 
048- [II IT .... ' I 

J . Execution 
resu mes here 
and continues 
until the [EJ 
IRTNI at line 
040 is encoun­
tered . 



172 Advanced Programming 

When IGTol (]] m is pcrfonned in a running program, execution then 
continues until the next IRTNl or (!Z!] instruction is encountered , and 
then halts. If you pressed (!] Wilh the instructions shown above loaded 
into the calculator, the instructions in lines 041 through 047 would be 
executed in order. Then program execution would jump backward and 
resume at line 035 and continue with 036, 037 . etc., until the IIn NI 
instruction was encountered in line 040. Program execution would then 
halt and the calculator would return to line 000. 

Note that ex.ecuting lGTol CD [I] from the keyboard brings the same 
results as execution in a running program except the calculator halts at 
the speci fied line number instead of resuming program execut ion. 

With a negative number stored in the I-register, IGSBI m (Dalso trans­
fe rs execution to the occupied line of program memory specified by the 
absolute value of the negati ve number in I. However, just as when using 
lase l with labels, subsequent instructions are the n executed as a sub­
rout ine. Therefore, when the next I RTH I is encountered , ex.ecution trans­
fers back to the instruction following the lGS81 m (D instruction. 

The fo llowing sec tion of program memory shows how IGSa 1 CD OJ 
openttcs. If you press (!] , -35 will be stored in the I-reg ister. Whe n the 
IGSB I ill [IJ at li ne 047 is then executed, the running program jumps 
back 10 line 035 and resumes execution. When the I RTH I instruction at 
line 040 is encountered, ex.ecution returns to line 048 and continues. 



~ 
~ 
I/j 

I/j 

~ 
,flj 
,fJ) 
p 
,P) 
,JD 
p 
~ 
,IJj 

~ 
~ 
,flj 

,flj .. 
I;j 

,a 

~ .. 
[ 

I 
I 
I 
I 
I 

I When [!] is I 
pressed , c,;;ecurio n I 
beg ins at line I 
04 1. 

I 
I 

2. Execution trans- I 
ferred to l ine L 
035 by I GSB[ CD 
CD-

-

Advanced Programming 173 

033 £IJ ~ 
034 3 

035 [sTo[ 3 

036 4 

037 5 

038 OO~ 
039 £IJ lEI 0 

040 £IJ ["TN[ 

041 £IJ [ lBl [ [!] 
042 CD [lOO[ 

043 3 

044 5 
045 [eHS [ 

046 [STO [ CD CD 
047 [GSa [ CD CD 
048 ooIT..,..-[ 

• 
• 
• 

j 
3. Execution re­

sumes here. 

The subroutine 
ends here . 

Execution trans­
fers back to first 
l ine aner IGsa l 
and resumes. 

Like IGTol m [D. IGsa l [Om can be used tojumptoa specifidineof 
program memory without running your entire program . When you exe­
cute I Gsa I m III from the keyboard using the absolute value of a 
negative number in I as an occupied line address , the caJcuJ ato r j umps to 
that line and begins execut ion . However, unlike the execution of 
I GSa) CD [[l in a runn ing program, when a IATN I is encountered, the 
calculator returns to line 000 and halts. 



Section 8 

Finding the Roots of an Equation 

In many applications you need to solve equations of the ronn 

f(x) = 0.· 
This means finding the values of x that 
satisfy the equation. Each such value of x 
is called a root of the equation f(x) = 0 
and a :zero of the function J(x). These 
roots (or zeros) that are re.al numbers are 
called real roots (or real zeros). For many 
problems the roots of an equation can be 
detennined analytically through algebraic 
manipulation; in many other instances, 
this is nol possible . Numerical teChniques 
can be used to estimate the roots when 
analytical methods arc not suitable . When you use the ISOL#! key on 
your HP-34C. you utili ze an advanced numerical technique lhat leIs 
you effectively and conveniently find real roots for a wide nmgc of 
equations. 

Using ISOLVEI 
The basic rules for using ~ are: 

I . Key in a subroutine that evaluates the function/(x) that is to be 
equated to zero. This subroutine must begin with the instruction 
ml,a'i followed by O. 1. 2. 3. m . or III. and must place 
the value of [(x) into the X. regisler. 

2. Key two initial estimates of the desired root , separated by IEHTEJItl. 
into the X- and Y -registers . These estimates merely indicate to Lhe 
calculator the approximate range of x in which it should initially 
seek a root off(x) = O. 

3. Press CD (SOLVEI followed by the label of your subroutine. The 
calculator then searches for the desired zero of your function and 

.. Actuall)'. any equllicn with one variable cln be expressed in this fann . For example, 
j(x) - Q is equivalent 10/(X) - a - O. and/(x) - g(x) is equi valent to/ex) - ,(x) = o. 

174 



Finding the Roots of an Equation 175 

displays the resulr. If the funct ion that you are analyzing equals 
U TO at more than one value of x. the routine will stop when it finds 
anyone of those values . To find additional values. you can key in 
different initial estimates and use ISOlvEl again . 

Immediately before ISOlvEl uses your funct ion subroutine, a value of x is 
placed in the X-, Y-, Z-. and T-registers. This value is the n used by your 
subroutine to calculate/ex). Because the emire stack is fLlled wi th lhe x 
value, this number is continually available to your subroutine. (The usc 
of this technique is described on page 76). 

Example: Use ISOLYEl to find the values of x for which 

f(x) = x' - 3x - 10 = O. 

Using Homer's method (refe r 10 page 79). you can rewrile/(x) so that it 
is programmed more efficicnlly: 

f(x) = (x - 3)x - 10. 

Slide the PRGM·RUN switch to PAGM uu. and key in the following 
subroutine (hat e\o'aluates/(x) . 

Keystrokes Disptay 

[j]CLEAR I_I 000- Clear program memory. 
0 1LoLIO 001 - 25, 13, 0 Begin with I La !.. I 

instruction. 
3 002- 3 
G 003- 41 

0 004- 61 
1 005- 1 
0 006- 0 
G 007- 41 
0 10THI 008- 25 12 



176 Finding the Roots of an Equation 

Now slide the PRGM·RUN switch back to -.m:J RUN • Key two initial 
estimates into the X· and Y -registers. Try estimates of 0 and 10 to look 
for a positi ve rool. 

Keystrokes 

01 ........ 1 
IO 

Display· 

0.0000 
10. 

} Initial estimates. 

You can now find the desired root by pressing (IJ ~O. When you do 
this , the calculator will not display the answer right away. The HP·34C 
uses an iterative algorithmt to estimate the root. The algorithm analyzes 
your function by sampling it many times, perhaps a dozen limes or more . 
h does this by repeatedly execut ing your subroutine. Finding a foot will 
usually require about 30 seconds to 2 minutes; but sometimes the process 
wi ll require even more time. 

Press IJJ ~ 0 and sit back while your HP-34C exhibits one of its 
powerfUl capabilities: 

Keystrokes 

rn~ O 

Display 

5.0000 The desired root. 

After the routine finds and displays the root , you can ensure that the 
d isplayed number is indeed a root off(x) = 0 by checking the stack . You 
have seen that the displayed X-register contains the desired root. The 
Y -register contains a previous estimate of the root, which should be very 
close to the displayed root . The Z-register contains the value of your 
function evaluated at the displayed root . 

• Preu OJ (ffi) 4 to obtain the displays in this section. 1be display setting docs no( 
influence the operation of ~ 

t An algorithm is a step-by-step procedure for solving a mathematical problem. An 
ileraliw algori thm is one containing a portion thaI is executed a number of times in the 
proces.~ of solving the problem. 



Finding the Roots of an Equation 1 n 
Keystrokes Display 

00 IE 5.0000 A previous estimate of the 
root . 

0.0000 Value of the function at the 
root. showing that 
[(xl = o. 

Quadratic equations , such as the one you are solving. can have two roots . 
If you spec ify two new initial estimates. you can check for a second root. 
Try estimates of 0 and -10 to look for a negative root. 

Keystrokes Display 

01 ....... 1 0.0000 } iO ICH51 -10. 
m ISOlY£l O -2.0000 

00 IE -2.0000 

00 IE 0.0000 

You have now found the two roots of 
lex) = O. Note that this quadratic equa· 
tion co uld have been solve d 
algebraically-and you would have ob· 
tained the same roots that you found 
using ~. 

Initial estimates. 

The second root . 
A previous estimate of the 
root. 
Value of [(xl . , second root. 

\ / 
\J 
Graph 01 '(xl 



178 Finding the Roots of an Equation 

The convenience and power of the ISOl.vEl key becomes more apparent 
when you solve an equation for a root that cannot be determined 
algebraically. 

Exa m ple: Champi on ridge t hurle r 
Chuck Fahr throws a rid get with an 
upward velocity of 50 meters/second . 
if the he ight of the ridget is expressed as 

h ~ 5000( 1 - ,-,/2,) - 2001, 

how long does i11ake for it to reach the 
ground again? In this equation, h is the 
he ight in meters and t is the time in 
seconds. 

Solution : The desired solution is the positive value of t at which 
h ~ o . 

Slide the PRGM·R UN switch to PfQt .. and key in the fo llowing 
subroutine that calculates the height. 

Keystrokes DIsplay 

[EJ l lBLl0 001 - 25, 13, 11 Begin with IlBL I 
instruction. 

2 002- 2 
0 003- 0 

G 004- 71 
leHs l 005- 32 

ill~ 008 - 15 1 
ICHs l 007- 32 
I 008 - 1 

m 009- 51 
5 010- 5 
0 011- 0 
0 012- 0 
0 013- 0 
[EJ 014- 61 
1 .. ,1 015 - 21 Bring I value into 

X-register. 



,J;j 

-­..a 
~ 

-'-' 
..a 
.a 
~ 
~ 
~ 
~ 
~ 
~ 
~ 

~ 
,.a 

ra 
;a 

~ 

Finding the Roots of an Equation 179 

Keystrokes Display 

2 018- 2 
0 017- 0 
0 018- 0 
0 019- 81 

8 020- 41 
010,.1 021- 25 12 

Next. set the PRGM-RUN switch to -.JRUN . Key in two initial 
estimates of the time (for example. 5 and 6 seconds) and execute ISOl.vEt . 

Keystrokes Display 

5 I 'NT"" I 5.0000 } Initial estimates. 
6 6. 
m~0 9.2843 The desired root. 

Verify the root by reviewing the Y- and Z-registers. 

Keystrokes 

OO~ 

OO~ 

Display 

9.2843 

0.0000 

Fahr's ridget falls to the ground 9.2843 
seconds after he hurls it- a remarkable 
toss. 

A previous estimate of the 
root . 
Value of the function at the 
root, showing that h = O. 

f\ 
I \ 

Graph of h versus t 



180 Finding the Roots of an Equation 

When No Root Is Found 
You have seen how the JSOl.vel key estimates and displays a root of an 
equation of the formf(x) = O. However. it is possible that an equation 
has no real roots (that is, the re is no real value ofx for which the equality 
is true). Of course . you would not expect the HP-34C to find a root in this 
case. Instead. it displays Error 6 . 

Example: Consider the equation 

Ixl =- 1 

which bas no solution since the absolute 
value function is never negative. Ex­
press this equation in the required form 

and attempt to use ISOLvel to find a solu­
tion. With the PRGM-RUN switch set 

Graph 011 (x) = I x I + 1 

to PRGM ~. key in the required function subroutine. 

Keystrokes Display 

01'8, ! 1 001 - 25,13, 1 Begin subroutine with 
I LB L.I instruction . 

01 ••• ! 002- 2534 
I 003- 1 

G 004- 51 
0IRTH ! 005- 25 12 

Because the absolute-value function is minimum near an argument of 
zero , specify the initial estimates in that region, for instance 1 and -1 . 
Then attempt to find a root. After setting the PRGM-RUN switch to 

..n ..... : 
Keystrokes 

1 I- .! 
1 leHS! 
CD ISOlVE! 1 

Dlsptay 

1.0000 
-I. 

Errot 6 

} Initial estimates . 

This display indicates that 
no root was found . 



Finding the Roots of an Equation 181 

As you can see, the HP-34C slopped seeking a root of/ex) = 0 when it 
decided that none existed- at least nOI in the general range of x to which 
it was initially directed. The Error 6 display does not indicate that an 
" illegal" operation has been attempted; it merely states that no root was 
found where ISOLVEI presumed onc might exist (based on your initial 
estimates). 

If the HP-34C stops seeking a root and displays an error message, one of 
these four types of conditions has occurred: 

• If repeated iterations all produce a constant non-zero value for the 
spec ified function , execution stops with the display Erro, 6. 

• If numerous samples indicate that the magnitude of the function 
appears to have a nonzero minimum value in the area being 
searched, execution stops with the display Error 6 . 

• If an improper argument is used in a mathematical operation as 
pan of your subroutine , execution stops with the display E"or O. 

• If the result of any calculation has a magnitude greater than 
9.999999999 x 10911 , execution SlOpS with all 9's and the appro­
priate sign (or Error 1 in the case of regi ster overflow) in the 
display . 

In the case of a constant function value, the routine can see no indica­
tion of a tendency for the value to move toward zero. This can occur for 
a function whose 10 most significant digits are constant (such as when 
its graph levels off at a nonzero horizontal asymptote) o r for a function 
with a relatively broad, local " flat" region in comparison to the range of 
x values being tried . 

In the case where the function's magnitude reaches a nonzero minimum, 
the routine has logically pursued a sequence of samples for which the 
magnitude has been getting smaller. However, it has not found a valueof 
x at which the function's graph touches or crosses the x-axis . 

The two final cases point out a potential deficiency in the subroutine 
rather than a limitation of the root-finding routine . Improper operations 
may sometimes be avoided by specifying initial estimates that focus the 
search in a region where such an outcome will not occur . However, the 
ISOlvEl routine is very aggressive and may sample the function over a 



182 Finding the Roots of an Equation 

wide range . It is a good practice to have your subroutine test or adjust 
potentially improper arguments prior to perfonning an operation (for 
instance, use l .... sl prior to @j). Rescaling variables to avoid large 
numbers can also be helpful. 

The success of the ISOLVEl routine in locating a root depends primarily 
upon the nature of the function it is analyzing and the initial estimates at 
which it begins searching. The mere existence of a root does not ensure 
that the casual use of the ISOlv'E!lcey wi ll fi nd it . If the function/(x) has a 
nonzero horizontal asymptote or a local minimum of it s magnitude, the 
routine can be expected to find a root of f(x) = 0 only if the initial 
estimates do not concentrate the search in one of these unproductive 
regions-and, of course, if a root actually exists. 

Choosing Initial Estimates 
When you use !sotVE! to find the root of an equation, the two initial 
estimates that you provide determine the values ofthe variable x at which 
the routine begins its search. In general, the likelihood that you will find 
the particular root you are seeking increases with the level of under· 
standing that you have about the function you are analyz.ing. Realistic . 
intelligent estimates greatl y facilitate the determination of a root. 

TIle initial estimates that you use may be chosen in a number of ways: 

If the variable x has a limited range in which it is conceptually meaning­
ful as a solution, it is reasonable to choose initial estimates within this 
range. Frequently an equation that is applicable to a real problem has. in 
addition to the desired solution , other roots that are physically meaning. 
less. These usually occur because the equation being analyzed is appro· 
priare only between certain limits of the variable . You should recognize 
this restriction and interpret the results accordingly . 

If you have some knowledge of the behavior of the functionj(x) as it 
varies with different values of x , you are in a position to specify initial 
estimates in the general vicinity of a zero of the function . You can also 
avoid the more troublesome ranges of x such as those producing a reJa· 
tivelyconstant function value or a minimum of the function 's magnitude. 



p 
Ifj 

p 
p 
p 
,:J 
I> 
~ 
~ 
1) 

~ 
~ 

~ 
~ 
~ 
~ .. 
~ 

~ 

~ 

Finding the Roots of an Equation 183 

Example: Using a rectangular piece of 
sheet metal 4 decimeters by 8 deci· 
meters , an open-top box having a vol ­
ume of 7.5 cubic decimeters is to be 
fo rmed. How should the metal be 
folded? (A tall box is preferred to a 
short one.) 

Solution: You need to find the height 
of the box (thaI is. the amount to be 
folded up along each of the four sides) that gives the specified volume . 
If x is the height (or amount folded up), the length of the box is (8 - 2x) 
and the width is (4 - 2x). The volume V is given by 

v = (8 - 2x)(4 - 2x)x, 

By expanding the expression and the n using Homer' s method (page 79) . 
this equation can be rewrineR as 

v = 4«x - 6)x + 8)x . 

To get V = 7.5, find the values of x for which 

i(x) = 4«x - 6)x + 8)x - 7.5 = O. 

Set the PROM-RUN switch to PftGM em. and key in the following 
subroutine that calculates/(x) . 

Keystrokes Display 

~ILBL I3 001- 25, 13, 3 Begin with ILBLI 
instruction . 

6 002- 6 

G 003- 41 

~ 004- 61 
8 005- 8 

0 006- 51 

~ 007- 61 
4 008- 4 

~ 009- 61 



184 Finding the Roots of an Equation 

Keystrokes Display 

7 010- 7 
8 011 - 73 
5 012- S 

G 013- 41 
0IR'HI 014 - 25 12 

It seems reasonable that either a tall, narrow box or a short, flat box 
could be fonned having the desired volume . Because the tall box is 
preferred, larger initial estimates of the height are reasonable. How­
ever, heights greater than 2 decimeters are not physically possible 
(because the metal is only 4 decimeters wide) . Initial estimates of I and 
2 decimeters are therefore appropriate . 

Set the PROM· RUN switch to ..m ..... and find the desired height. 

Keystr okes Display 

I l .. fT .... 1 1.0000 } 2 2. 
[I) Iso .... 1 3 1.5000 

OO~ 1.5000 

OO~ 0.0000 

By making the height 1.5 dec imeters, a 
5.0 x 1.0 X 1.5-decimeter box is 
specified . 

If you ignore the upper limit on the 
height and use initial estimates of 3 and 4 
decimeters (still less than the width), 
you will obtain II height of 4.2026 
decimeters-a root that is physically 
meaningless. If you use small initial 
estimates such as 0 and I decimeter, you 
will obtain a height of 0 .2974 decimete r 
-producing an undesirable short. 
flat box.. 

Initial estimates. 

The desired height. 
Previous estimate. 
f(x) at root. 

~ J 
,'V 

Gfllph 01 f(x) 



~ 
~ 
,.a ,. ,. ,. 
~ 
~ 
~ 
~ 
~ ,. 
,... ,... 
,... ... ... ... 
,/If 

,It 

Finding the Roots of an Equation 185 

As an aid for examining the behavior of a function. you can easily evalu­
ate the function at o ne or more values of x if your subroutine is in program 
memory . To do this, key the value of x into the X-register, then press 
lENl!RtIlBmR+II&fTER+' to fill the stack . Calculate the value of the func­
tion by pressing 0 . (!] , or IGSaI followed by your functio n label , 
whichever is appropriate. The values you calculate can be plotted to g ive 
you a graph of the function. This procedure is particularly useful for a 
function whose behavior you do not know , A simple-looking function 
may have a graph with relatively extreme variations that you might not 
anticipate. A root that occurs near a localized variation may be hard to 
find unless you specify initial estimates that are close to the root. 

If you have no informed or intuitive concept of the nature of the function 
or the location of the zero you are seeking, you can search for a solu­
tion using trial-and-error. The success of finding a solution depends 
panially upon the function itself. Trial-and-error is often-but not 
always-successful. 

• If you specify two moderately large positive or negative estimates 
and the funct ion's graph does not have a horizontal asymptote, the 
routine will seek a zero which might be the most positive or 
negative (unless the function osci llates many times, as the 
trigonometric functions do). 

• lfyou have already found a zero oflhe function, you can check for 
another solution by specifying estimates that are relatively distant 
from any known zeros. 

• Many functions exhibit special behavior when their arguments 
approach zero. You can check your function to determine values 
of x for which any argument within your function becomes zero, 
and then specify estimates at or near those values . 

Although two different initial estimates are usually supplied when using 
ISOLVEJ , you can also use ISOlVElwith the same estimate in both the X- and 
V-registers. If the two estimates are identical, a second estimate is 
generated internally . If your single estimate is nonzero, the second 
estimate differs from your estimate by one count in the seventh signifi­
cant digit. If your estimate is zero , 1 x 10-7 is used as the second 
estimate. Then the root-finding procedure continues as it normally would 
with two estimates . 



186 Finding the Roots of an Equation 

How Iscx.VEI Works 

You will be able to use ISOlVEI most effectively by having a basic 
understanding of how the algorithm works. 

In the process of searching for a zero of 
the specified function, the algorithm 
uses the value of the function at two or 
three previous estimates to approximate 
the shape of the function' s graph. The 
algorithm uses this shape to intelligently 
" predict" a new estimate where the 
graph might cross the x ·axis . The func­
tion subroutine is then executed , com­
puting the value of the function at the 
new estimate. This procedure is performed repeatedly by the ISOlVEI 
algorithm. 

If any two estimates yield function 
values with opposite signs, the algo­
rithm presumes that the function' s graph 
must cross the x -axis in at least one 
place in the interval between these 
estimates. The interval is systematically 
narrowed until a root of the equation is 
found . 

A root is successfully found e ithe r if the 
computed function value is equal to zero 
or if two estimates. differing by less than two or three units in their 
least-significant (tenth) digit , give function values having opposite 
signs. In this case, execution stops and the estimate is displayed . 

As discussed earlier (refer to page 180), the occurrence of other situa­
tions in the iteration process indicate the apparent absence of a function 
zero. This is a result of there being no way to logically predict a new 
estimate that is likely to have a function value close r to zero. In such 
cases, Errot' 6 is displayed . 



Finding the Roots of an Equation 187 

You shouJd note that the initial estimates you provide are used to begin 
the " prediction" process. By permitling more acc urate predictions than 
might otherwise occur, properly chosen estimates greatly facilitate the 
determination of the solution you seek. 

The ~algorithm will always find a root provided onc exists, if any 
one of four conditions are met: 

• Any two estimates have function 
values with opposite signs. 

• The function is monotonic. mean­
ing that I(x) ei the r a lways 
decreases o r else always increases 
as x is increased . 



188 Finding the Roots of an Equation 

• The function's graph is either 
convex everywhere or concave 
everywhere. 

• The only local minimums and 
max imums o f the fun c tio n' s 
graph occ ur s ingly between 
adjacent zeros of the function. 

In addition, it is assumed that the ISOlVEl algorithm will not be inter­
rupted by an improper operation or overflow condition. 

Accuracy of the Root 
When you use the ~key to find a root of an equation. the root is 
found accurately. The di splayed root either gives a calculated function 
value (/( x » exactly equal to zero or else is a IO·digit number virtually 
adjacent to the place where the function's graph crosses the x-axis. Any 
such rool has an accuracy within two or three units in the tenth significant 
digit . 



----- -- -----

Finding the Roots of an Equation 189 

In most situations the calculated root is an accurate estimate of the 
theoretical (infinitely precise) root of the equation. However. certain 
conditions can cause the finite accuracy of the calculator to give a result 
that appears to be inconsistent with your theoretical expectation. 

If a calculation has a result whose magnitude is smaller than 
1.000000000 X 10-99 , the result is set equal to zero. This effect is 
referred to as "underflow. " If the subroutine that calculates your func­
tion encounters underflow for a range of x and if this affects the value of 
the function , then a root in this range may be expected to have some 
inaccuracy . For example, the equation 

has a root at x = O. Because of underflow, lSOlvEl produces a root of 
1.5060 -25 (for initial estimates of 1 and 2). As another ellample, 
consider the equation 

I/x' = 0 

whose root is infinite in value. Because of underflow. [SOLVEI gives a root 
of 3.1707 49 (for initial estimates of IO and 20). In each of these 
examples, the algorithm has found a value of x for which the calculated 
function value equals zero. By understanding the effect of underflow . 
you can readily interpret results such as these . 

The accuracy of a computed value sometimes can be adversely affected 
by " round·off '· error, by which an infinitely precise number is rounded 
to 10 significant digits. If your subroutine requires excessive precision 
to properly calculate the function for a rd.nge of x. the result obtained by 
ISOLVEI may be inaccurate. For example, the equation 

Ix'-51 =0 

has a root atx = Vs. Because no IO.digit number exactly equals v5, the 
result of using ISOlVEI is Error 6 (for any initial estimates) because the 
function ne ver equals zcro nor changes sign. On the other hand, the 
equation 

[<lx l + I ) + 10"1' = 10'" 



190 Finding the Roots of an Equation 

has no roots because the left side of the equation is always greater than 
the right side. However. because of round-off in the calculation of 

f(x) = [<lx i + 1)+ 10" ] ' - 10", 

the root 1.0000 is found for initial estimates of I and 2. By recognizing 
situations in which round-off error may influence the opemtion of lSOlVEl, 
you can evaluate the results accordingly and perhaps rewrite the function 
to reduce the effects of round-off . 

In a variety of practical appl ications. the parameters in an equation-or 
perhaps the equation itself-are merely approximations. Physical para­
meters have an inherent accuracy (or inaccuracy) . Mathematical repre­
sentations of physical processes are onl y models of those processes, 
accurate onl y to the extent that the underlying assumptions are true. An 
awareness of these and other inaccurac ies can be used to your advantage. 
By structuring your subrout ine to return a function value of zero when the 
calculated value is negligible for practical purposes, you can usually save 
considerable time in finding a root with ISOlVEf-panicularly for cases 
that would normally take a long time. 

Example: Ridget hurlers such as Chuck Fahr can throw a fidget to 
heights of 105 meters and more. In fact. Fahr's hurls usually reach a 
height of 107 meters. How long does it take for his remarkable toss, 
described on page 178 , to reach 107 meler..? 

Solution: The des ired solution is the value of t at which h = 107. The 
subroutine from the earlie r example calculates the height of the ridget. 
This subroutine can be used in a new function subroutine to calculate 

f(t)= h(t)-107. 

Slide the PRGM-RUN switch to PAGM mo. and key in a subroutine 
that calculatesf(t). 

Keystrokes 

[EJ1L8l 1 ~ 

Display 

001- 25, 13, 12 

002- 13 11 

Begin with I L8l ] 

instruction. 
Calculales h(t). 



Keystrokes 

I 
o 
7 
G 
010,.1 

Finding the Roots of an Equation 

Display 

003-
004-
005-
006-
007-

~ } Calculates h(t) - 107. 
41 

25 12 

191 

Now slide the PRGM· RUN switch to .alAlIII . In order to find the 
first time at which the height is 107 meters. use initial estimates of 0 and 
I second . 

Keystrokes Display 

01 ...... ·1 0.0000 } I I. Initial estimates. 

(IJ~ I]] 4 ./718 The desired root. 
I]]~ 4. /718 A previous estimate of the 

root. 
I]]~ 0.0000 Value off(t) at root. 

It takes 4 .17 18 seconds for the ridget to reach a height of exactly 107 
meters. (It takes approximately one minute to find this solution.) 

However , suppose you assume that the function h (t) is accurate only to 
the nearest whole meter. You can now change your subroutine to give 
l(t) = 0 whenever the calculated magnitude of f(t) is less than 0.5 
meter. Slide the PRGM· RUN switch to PAGM'" and key in the 
rollowing changes to your subroutine: 

Keystrokes Display 

10'010006 006- 41 Line before I RTN I 
instruction. 

01 ... 1 007- 2534 Magnitude off(t ) . 

0 008- 73 } Accuracy. 5 009- 5 
(IJlx>yl 010- 14 51 } Return zero if accuracy > 
IClxl 011- 34 magnitude. 
1]]1.001 012- 15 61 } Restore I(t) if value is 
01lsul 013- 25 0 nonzero . 



192 Finding the Roots of an Equation 

Slide the PRGM-RUN switch to .mI RUN and execute ~ again . 

Keystrokes Display 

o I """,.1 0.0000 } Initial estimates. I I . 
[D(@!] (I] 4.0681 The desired root. 

m~ 4.0681 A pre vious estimate of the 
root. 

m~ 0.0000 Value of modifled!(t) al 
root. 

After 4.0681 seconds, the rid get is at a height of 107 ~O. 5 meters. This 
solution. although different from the previous answer, is correct con­
sidering the uncenainty of the height equation. (And this solution is 
found in just under half the lime of the earlier solution.) 

Interpreting Results 
The numbers that ISOlvEl places in the X-, Y-, and Z-registers help you 
evaluate the results of the search for a root of your equation.· Even when 
no root is found, the results are still significant. 

When ~finds a root of lhe specified 
equation, the root and function values 
are placed in the X- and Z-registers . A 
funct ion value of zero is the expected 
result . However, a nonzero function 
value is also acceptable because it indi­
cates that the function's graph appar­
ently crosses the x-axis within an 
infinitesimal distance from the calcu­
lated root. In most suc h cases , the 
function value will be relatively close to zero . 

• The number in the T.register is tbe same number that ..... as left in the Y·regisler by the 
fma.l execut ion of your func1ion subroutine . GeneraJly. this number is not of intere ~ 1. 



Finding the Roots of an Equation 193 

Special consideration is required for a 
different type of situation in which 
ISOLvEl finds a root with a nonzero func­
tion value. [f your function ' s graph has a 
discontinuity that crosses the x-axis, 
(SOLVEI specifies as a root an x value 
adjacent to the di scontinuity . This is 
reasonable because a large change in the 
function value between two adjacent 
values of x might be the result of a very 
rapid, continuous transition. Because this cannot be resolved by the 
algorithm, the root is displayed for you to interpret. 

A function may have a pole, where its 
value approaches infinity. Tfthe function 
value changes sign at a pole , the corre­
sponding value of x looks like a possible 
Toot of your equation, just as it would for 
any other discont inuity cross ing the x­
axis. However, for such functions, the 
function value placed into the Z- rcgister 
when that root is found will be rel atively 
large. If the pole occurs at a value of x 
that is exactly represented with 10 digits, the subroutine may try that 
value and halt prematurely with an error or overflow ind ication. In this 
case, the ISOl.VEl operation will not be completed. Of course, this may be 
avoided by the prudent use of a conditional statement in your subroutine. 



194 Finding the Roots of an Equation 

Example: In her analysis of the stresses 
in a structural component , design con­
sultant Lucy I. Bearne has determined 
that the shear stress can be expressed as 

Q= { 3x3 - 45X'+350 forO < x < 1O 
1000 for I0!6x < 14 

where Q is the sbear stress in newtons 
per square meier and x is the distance from one end in meters . Write a 
subroutine to compute the shear stress for any value of x. Use ~ to 
find the location of zero shear stress. 

Solution : The equation for the shear stress for x between 0 and 10 is 
more efficiently programmed after rewriting it using Horner's method: 

Q = (3x - 45)x' + 350 for O< x < IO . 

Slide the PRGM-RUN switch to PRGM r:m.I and key in the subroutine: 

Keystrokes Display 

ill CLEAR 1 ..... 1 000- Clear program memory . 
0 1L8LI 2 001 - 25, 13, 2 Begin with I LBll 

instruction. 
I 002- 1 

} 0 003- 0 Test for x range . 
illl"yl 004- 14 41 
IGTol9 005- 22 9 Branch for x~ 10. 
ICLxl 006- 34 
3 007- 3 
0 008- 61 
4 009- 4 
5 010- 5 
G 011- 41 
0 012- 61 
0 013- 61 
3 014- 3 
5 015- 5 
0 016- 0 



Finding the Roots of an Equation 195 

KeY!Jo1rokes 

[!) 

!Ill·'· I 
!IlILBL I9 
IEu l 
3 
!Il1. ,. 1 

Display 
017- 51 
018- 25 12 
019- 25, 13, 9 
020- 33 
021 - 3 
022- 25 12 

Now slide the PRGM-RUN switch to ..mAllN . Use in itial estimates 
of? and 14 to start at the outer end of the beam and search for a point of 
zero shear stress. 

Keystrokes Display 

7 1 ........ 1 7.0000 } Initial estimates. 
14 14. 
m ISOLVEI 2 10.0000 Poss ible root. 

IIJ~IIJ~ 1,000.0000 Stress not zero. 

The large stress value at the root points out that the [SOLVEI routine has 
found a discontinuity. This is a place on the beam where the stress 
quickly changes from negative to positive. Start at the other end of the 
beam (estimates of 0 and 7) and use [SOLVEI again . 

Keystrokes Display 

0 1 ....... ·1 0.0000 } 7 7. 
m ISOLVEI 2 3.1358 

IIJ~IIJ~ 2.0000 -()7 

Beame's beam has zero shear stress at 
approximately 3. 1358 meters and an 
abrupt change o f stress at 10 .0000 
meters. 

Initial estimates. 

Poss ible root. 
Negligible stress. 

Graph of Q versus JC 



196 Finding the Roots of an Equation 

When no root is found and Error 6 is displayed, you can press any key to 
clear the display and observe the estimate at which the function was 
closest to zero . By also reviewing the numbers in the y . and Z-regisrcrs, 
you can often determine the nalure of the function near the root estimate 
and use this information constructively. 

If the algorithm terminates its search 
near a local minimum of the function's 
magnitude, clear the Error 6 di splay and 
observe the numbers in the X- . Y-, and 
Z-rcgisters by rolling down the stack . If 
the value of the function saved in the Z­
register is relatively close to zero, it is 
possible that a root of your equation has 
been found-the number returned in the 
X-register may be a lO-digit number 
very close to a theoretical root. You can explore this potential minimum 
further by rolling the stack unlil the returned estimates are back in the 
X- and V-registers and the n executing ISOLYElagain using lbese numbers 
as initial estimates. If an actual minimum has been found , Error 6 will 
again be displayed and the number in the X-regi ster will be approxi­
mately the same as before , but possibly closer to the actual location of 
the minimum. 

Of course, you may deliberately usc !SOlvelto find the location of a local 
minimum of the function's magnitude. However. in thi s case you must 
be careful to confine the search in the region of the minimum . Remem­
ber. ~tries hard to find a zero of the function. 

If the algorithm sto ps searc hing and 
di splays Error 6 because it is working on 
a horizontal asymptote (when the value 
of the function is essentially constant fo r 
a large range of x) , the estimates in the 
X- and V-registers usuall y are signifi­
cantly different from each other . The 
number in the Z-register is the value of 
the potential asymptote. If you execute 
ISOLVElagain using as initial estimalcs the 
numbers that were returned in the X- and V-registers , a hori zontal 



Finding the Roots of an Equation 197 

asymptote may again cause Error 6 , but with numbers in the X· and 
Y -registers that will differ from the previous numbers. The value of the 
function in the Z-register would then be the same as that obtained 
previously . 

If Error 6 is displayed as a result of a 
search that is concentrdted in a local 
" flat " region of the function, the esti­
mates in the X- and V-registers will be 
relatively close together or extremely 
small. Execute ISOlVEI again using for 
initial estimates the numbers from the 
X- and Y -registers (or perhaps two 
numbers somewhat further apart) . If the 
magnitude of the function is not a mini­
mum nor constant . the algorithm will eventually expand its search and 
fi nd a more significant result . 

Example: Investigate the behavior of the function 

First set the PRGM-RUN switch to PAGM mr. and key in the fo llowing 
subroutine to calculate !(x) . 

Keystrokes 

01LBli0 

01 ... 1 
leH.' 
[I](B 

Ix", 
[I](£) 

0 
[I](B 
2 
0 
leH.' 

Display 

001- 25,13, 0 

002- 2534 
003- 32 
004- 15 1 
005- 21 

006- 15 3 
007- 61 
008- 15 1 
009- 2 
010- 61 
011- 32 

Begin with I LBL I 
instruction. 

Bring x value into 
X-register. 



198 Finding the Roots of an Equation 

Keystrokes Display 
1.,,1 012- 21 Bring x value into 

X·register. 
CElIA"1 013- 2534 
leHs l 014- 32 
I 015- 1 
0 016- 0 
[!] 017- 71 
(!)(B 018- 15 1 
[!] 019- 51 
3 020- 3 
(II 021- 51 
CEl loTN I 022- 25 12 

Slide the PRGM-RUN switch to -.n "'" and use ISOlVElwith the 
following single initial estimates: 10, I, and 10-20 • 

Keystrokes Display 

10 I """"I 10.0000 Single estimate. 
ITlISOlvEIO Error 6 
lel xl 455.4335 Best x value. 
(!)IEJ 48,026,721 .85 Previous value. 
(!)IEJ 1.0000 Function value. 
ITlIEJITlIEJ 455.4335 Restore the stack. 
ITlISOlvEIO Error 6 
lelx l 48,026,721.85 Another x value. 
(!)IEJ(!)IEJ 1.0000 Same function value (an 

asymptote). 

I 1""",,1 1.0000 Single estimate. 
ITl~o Error 6 
lelx l 2.1213 Best x value. 
(!)IEJ 2.1471 Previous value. 
(!)IEJ 0.3788 Function value. 
ITlIEJITlIEJ 2.1213 Restore the stack. 
ITllsolVElo Error 6 
IClX I 2.1213 Same x value . 
(!)IEJ(!)IEJ 0.3788 Same function value (a 

minimum). 



-- -

Finding the Roots of an Equation 

Keystrokes Display 
IEEXIlcHsl20 1 ....... 1 1.0000 - 20 
CD IsoLVEI O Error 6 
Icu ] 1.0000 -20 
[!J@!) 1.1250 - 20 
[!J@!) 2.0000 
CD@!)CD@!) 1.0000 - 20 
CD~O Error 6 
ICLXI 1.1250 - 20 
[!J@!) 1.5626 -16 
[!J@!) 2.0000 

In each of the three cases, ISOLVE] ini· 
tially searched for a root in a direction 
suggested by the graph aro und the initial 
estimate. Using 10 as the initial esti· 
mate, ISOLVE] fo und the ho ri zonta l 
asymptote (value of 1.0000). Using 1 as 
the initial es timate, a minimum of 
0 .3788 al x=2. J2 J3 was found . 
Using 10-20 as the initial estimate, the 
function was essentially constant (at a 
value of 2.0000) for the small range of 
x that was sampled. 

Using IsoLvel in a Program 

Single Estimate. 

Best.x value . 
Previous value . 
Function value . 
Restore the stack. 

Another x value. 
Previous value . 
Same function value. 

199 

You can use the iSoLVElopcration as part of a program. Be sure that the 
program provides initial estimates in the X- and Y -registers j ust prior to 
the lSOlvEl operation, The Isot..vE1 routine stops with a value of x in the 
X-register and the corres(X>nding function value in the Z-register. If the 
x value is a root (ao; explained on page 192). the program proceeds to 
the next line, If the x value isn' t a root (as explai ned on page 196), the 
next line is skipped . Essentially, the ISOlVEI instruction tests whether [hex 

value is a root and then proceeds accord ing to the " 00 IF TRUE" rule . 
The program can then handle the case of not finding a root , such as by 
choosing new initial estimates or Changing a function parameter, 



200 Finding the Roots of an Equation 
The use of ISOlvel as an instruction in a program utilizes one of the six. 
pend ing returns in the calcul ator. Since the subroutine called by ISOlVE) 
util izes another return , there can be onl y four other pending returns. 
Executed from the keyboard , on the other hand, ISOlVEl itself does not 
utilize one of lhe pending returns, so that fi ve pending returns are avail ­
able for subroutines within the subroutine called by lSOLve!. Remember 
that if all s ix pending returns have been util ized , a cal l to another sub­
routine will result in a display of Error 8. (Refer to page 135). 

Restriction on the Use of ISOLVEI 
The one restrictio n regarding the use o f lSOlVEl is that lSOl.vel cannot be 
used recursive ly. That is. yOll cannot use ISOlve) in a subroutine that is 
called during the execut ion of 1SOLVEI. If this s ituation occurs , execution 
stops and Error 5 is displayed. 

It is possible, however. to use ISOLVEI with 1ZIl . thereby using the 
advanced capabilities of both of these keys. An example of a combined 
application is given in appendix A. 

For Further Information 
In appendix A, Advanced Use of ISOLVEI . additional techniques and 
applications for using ~are prese nted. These include ; 

• Using ISOlVElwith polynomials. 

• Finding several roots. 

• Finding local extre mes of a function. 

• Limiting the estimation time. 

• Using ISOLVEl with [ZIl . 





Section 9 

Numerical Integration 

Many problems in mathematics, sci­
ence, and engineering require calculat­
ing the defmite integral of a function. If 
the function is denoted by f(x) and the 
interval of integration isa to b, the integ­
ral can be expressed mathematically as 

J = f f(X)dx. 

The quantity I can be interpreted geometrically as the area of a region 
bounded by the graph of f(x) , thex-axis, and the limitsx = a andx = h.· 
When an integral is difficult or impossible to evaJuate by analytical 
methods, it can be calculated using numerical teChniques. tn the past, 
this could be done only with a fairly complicated computer program. 
With your HP-34C, however. you can easily do numerical integration 
using the iZI1 (integrate) key. 

Using !ZIl 
The basic rules for using [lD are: 

I. Key in a subroutine that evaluates the functionf(x) that you want 
to integrate. This subroutine must begin with the instruction 
(EJ lULl followed by 0, 1, 2,3, 0 , or m, and must place the 
value of f(x) in the X-register. 

2. Key the lower limit of integration (a) into the displayed X-register . 
then press I ENTIAt I to lift it into the V-register. 

3. Key the upper limit of integration (b) into the X-register. 
4 . Press CD IZII followed by the label of your subroutine . 

• Provided thatf(x) is oormegative throughout the interval of integration. 

202 



Numerical Integration 203 

Example: Certain problems in physics and engineering require calcu­
lating Bessel junctions. The Bessel function of the first kind of order 0 
can be expressed as 

Find 

I f." 1. (x) = - cos (x sin 8 ) d8 . 
1r 0 

I f. " 1. ( I ) = - cos (sin 8) d8. 
1r 0 

First, slide the PRGM-RUN switch to PRGM mr. and key in the ro llow­
ing subroutine that evaluates the function/(O) = cos (sin 8). 

Keystrokes 

CDCLEAR 1 ...... 1 
[IJllBll O 

CD ISINI 
CD Icosl 
[IJIRTHI 

Display 

000-
001- 25, 13, 0 

002- 14 7 
003- 14 8 
004- 25 12 

Clear program memory. 
Begi n subroutine with a 
I LBll instruction . Sub­
routine assumes a val ue 
of () is in X-register. 
Calculate sin (1 . 

Calculate cos (sin 8), 

Now, slide the PRGM-RUN switch back to -.n RUN • and key the 
lower limit of integration into the Y -register and the upper limit into the 
X-register. For Ihis particular problem, you also need to specify radians 
mode for the trigonometric functions. 

Keystrokes 

o 1 ....... , 1 
Display 

0.0000 

3.1416 

3.1416 

Key lower limit , O. into 
Y . reg ister . 
Key upper limit, 7T , into 
X· register . 
Specify radians mode for 
trigonometric functions. 



204 Numerical Integration 

Now you are ready 10 press m IZIl 0 to calculate the integral. When you 
do so, you' ll find that-just as with ~the calculator will not 
display the result right away, as it does with other operations. Your 
HP-34C calculates integrals using a sophisticated iterative algorithm. 
Briefly, this algorithm evaluates f (x) , the function to be integrated, at 
many values of x between the limits of integration. At each of these 
values, the calculator evaluates the function by executing the subroutine 
you write for that purpose. You may recall that some oCthe programs and 
subroutines you executed earlier in this handbook required several 
seconds to yield an answer. This may not seem too long, but when the 
calculator must execute the subroutine many times-as it does when you 
press (ZD.-you can ' t expect an answer right away. Most integrals will 
require on the order of 30 seconds to 2 minutes ; but some integrals will 
require even more. Later on we'll discuss how you can decrease the 
time somewhat ; but for now, press CD rm 0 and take a break (or read 
ahead) while your HP-34C takes care of the drudgery for you. 

Keystrokes Display 

2.4040 = I: cos (sin 0) dO . 

In general, don' t forget to multiply the value of the integral by whatever 
constants, if any, are outside the integral. In this particular problem, we 
need to multiply the integral by l /rr to get 10 (I): 

Keystrokes 

lEI 0 
o 

Display 

3.1416 
0.7652 Jo(l)· 

Before calling the subroutine that evaluates!(x) , the (lD algorithm­
just like the ISOLvEl algorithm- places the value ofx in the X- , Y-, Z- , and 
T -registers. Because every stack regi ster contains the x value. your 
subroutine can calculate with this number without having to recall it from 
a storage register. The subroutines in the next two examples take advan­
tage of this feature. (A polynomial evaluation technique that assumes the 
stack is fi lled with the value of x is discussed on page 79.) 



- -------

Numerical Integration 205 

Note: Since the calculator puts the value of x into all the stack 
registers, any numbers previously there will be replaced by x . 
Therefore. if the stack contains intermediate results that you'll 
need after you calculate an integral, slore those numbers in 
storage.registers and recall them later. 

Occasionally you may want to use the subroutine that you 
wrote for the [l[I operation to merely evaluate the function at 
some value of x. If you do so with a function that gets x from 
the stack more than once, be sure to fill the stack manually w ith 
the value of x, by pressing lEN"TB'tl l !tl19t l [BmRtl . before you 
execute the subroutine. 

Example: The Bessel function of the first kind of order 1 can be 
expressed as 

I f' J, (x) = - cos (0 - x sin 0) dO. 
Tr 0 

Find I f " J, ( I) =- cos(O-sinO)dO. 
Tr 0 

First . slide the PRGM-RUN switch to ~ mn. and key in the follow­
ing subroutine that evaluates the function/CO) = cos (0 - sin 8) . 

Keystrokes Display 

[II l l ol l I 001- 25. 13. 1 Begin subroutine with a 
I LBll instruction. 

CD (!iE) 002 - 14 7 Calculate sin B. 
G 003- 41 Since a value of 8 will be 

placed into the Y -register by 
the lZD algorithm before it 
executes this subroutine , the 
G operation at this point 
will calculate (8 - sin 8). 

CD Icosl 004- 14 8 Calculate cos (8 - sin 8). 
[II I.T· I 005- 25 12 



206 Numerical Integration 

Now, slide the PRGM-RUN switch back tollllll "'-" , and key the 
limits of integration into the X· and Y -registers . Ensure that the trigono­
metric mode is set to radians, then press m lZD 1 to calculate the inte­
gral. Finally, multiply the integral by l i fT to calculate J ,(I). 

Keystrokes Display 

o [""",.1 0.0000 

[I) [I) 3.1416 

[!) [RAOI 3.1416 

(Dim I ' _3825 

[I)[I)G 0_4401 

Example: Certain problems in com­
municat ions theory (for example. 
pulse transmission through idealized 
netwo rks) req uire calc ulating an 
integral (sometimes called the sine 
integral) of the form 

Find Si (2). 

Key lo wer limit into 
Y -register. 
Key upper limit into 
X-register. 
Ensure that trigonometric 
mode is set to radians. (This 
step is not necessary if you 
have not switched your 
calculator off nor reset the 
trigonometric mode since 
you last set it to radians. ) 

= f: cos (0 - sin 0 ) dO . 

J, ( I ). 



Numerical Integration 207 

First , slide the PRGM-RUN switch to PAGM nm. and key in the follow­

ing subroutine that evaluates the functionf(;c) = (sin x)/x .... 

Keystrokes Display 

01LBLI2 001 - 25, 13, 2 Begin subroutine with a 

Ilall instruction. 

CD [!!]) 002- 14 7 Calculate sin x. 

Ix,,1 003 - 21 Since a value of x will be 

placed in the Y -register by 

the IZD algorithm hefore it 

executes this subroutine, the 

IXHloperation at this point 

will return x to the X-

reg ister and move sin x to 

the Y -register. 

G 004- 71 Divide sin x by x. 

01"Tol 005- 25 12 

Now, slide the PRGM-RUN switch back to .. AJN • and key the 

limits of integration into the X- and Y -registers. Ensure that the trigono­

metric mode is set to radians, then press III flI) 2 to calculate the 

integral . 

• If the calculator attempted to evaluate f(x) - (sin )l}lx al x - O. the lower limit or 
integration, it would tenninate with Error 0 in the display (signify ing an attemp( to divide by 

zero), and the integral could nO( be c.kul.t~ , However, the (lD ala:orithm normally does 

flO' evaluate functions at either limit of intea:ration. so the cakulator call calculate the 

integra] of a function that is undcrmed there . Only when the endpoints of the mterval of 

integration arc extremely close together. or the number of 5afIIple points is extremely large. 

does the a1goritkm evaluate the function at the limits of integration . 



208 Numerical Integration 

Keystrokes 

o 1""",. 1 

2 

CD 1m 2 

Display 

0.0000 

2. 

2.0000 

1.6054 

Accuracy of rm 

Key lower limit into 
Y -register. 
Key upper limit into 
X-register . 
Ensure that trigonometric 
mode is set to radians . (This 
step is not necessary if you 
have not switched your 
calculator off nor reset the 
trigonometric mode since 
you last set it to radians.) 
Si(2) . 

The accuracy of the integrdl of any function depends on the accuracy of 
the function itself. Therefore, the accuracy of an integral calculated using 
{Z!I is limited by the accuracy of the function calculated by your subrou­
tine. * To specify the accuracy of the function , set the display fannat so 
that the di splay shows no more than the number of digits that you con­
sider accurate in the function's values. t If you specify fewer digits. the 
calculator will compute the integral more quickly;:t: but it will presume 
that the function is accurate to only the number of digits specified in the 
display format. We' ll show you how you can determine the accuracy of 
the calculated integral afler we say another word about the display 
format . 

• It is possible that intean ls of functions with cenain cbanK:1eristics (such as spikes or very 
rapid oscillalions)might be calculated inaccurately. However. this possibility is ~'u'Y small. 
The general ch.aracteristics offunctions that could cause problems , as well as techniques f()f 
deal ing with them, are discuued in appendix B. 

t The accuracy of a calculated function depends on such considerations as tbe accuracy of 
empirical constanll; in the fu nction as well as round·off error in tbe calculations. These 
conslderatiollS arc discussed in more deta il in appendill B. 

l: The reason for this is discussed in appendix B. 



Numerical Integration 209 

You' ll recall that yOUf HP-34C provides three types of display fonnat­
ting: CE:!J . [!£D . and I ENG I. Which display format should be used is 
largely a matter of convenience. since for many integrals you ' ll get about 
the same results using any of them (provided that the number of digits is 
specified correctly, considering the magnitude of the function). Because 
it's more convenient to use (!£D display format when calculating most 
integral s, we'll use (!£D when calculating integral s in examples 
throughout the rest of this handbook . 

Note: Remember that once you have set the display format 
to ~, IENG' . or [TI[]. you can change the number of 
digits appearing in the display by storing a number in the I· 
register and then pressing m IDSP II , as described in section 
7. This capability is especially useful when Q'I)is executed as 
part of a program, and is essential in a particular situation 
described in appendix 8 under Calculating Integrals of Max­
imum Accuracy. 

Because the accuracy of any integral is limited by the accuracy of the 
function (as indicated in the display format). the calculator cannot com­
pute the value of an integral exactly, but rather onl y approximates it. 
Your HP-34C places the uncerta inty· of an integral ' s approximation in 
the V-register at the same time it places the approximation in the X­
register. To detennine the accuracy of an approximation . check its 
uncertainty by pressing Ixnl . 

• No algorithm fot numerical integration can compute the exact difference between its 
approximation and tbe actual integral. But the algorithm in your HP-J.4C computes an 
" upper bound" on this difference, which is the unc~rlulnty of the approximation. For 
example, if the integral Si(2) is 1.6054 ± 0.0001 , the approximation 10 the integral is 
1.6054 and its unccnainty is 0.0001 . This means that while ..... e don' t Ir:now theexa~t dirrer. 
ence betw~n the actual integral and its approximation, we do know that the difference is 
no bigger than OJX)QI. 



210 Numerical Integration 

Example: With the display format sello !liD 2. calculate the integral 
in the expression for J I( 1) (from the example on page 205). 

Keystrokes Display 

o I.N" ... I 0.0000 Key lower limit into 
Y ·register. 

m~ 3.1416 Key upper limit into 
X. register. 

001""1 3.1416 Ensure that trigonometric 
mode is set to radians . (This 
step is nol necessary if you 
have not switched your cal-
culator off nor reset the 
trigonometric mode since 
you last set it to radians .) 

CD loc0l 2 3.14 00 Set display format to 
15c.1 2. 

CDIZIl 1 1.38 00 Integral approximated in 
[!§J 2. 

Ix,,1 1.88 -03 Uncertainty of (!£D 2 
approximation. 

The integral is 1.38 ± 0.00188. Since the uncertainty would not affect 
the approximation until its third decimal place, you can consider all the 
displayed digits in this approximation to be accurate . tn general. though, 
it is difficult to anticipate how many digits in an approximation will be 
unaffected by its uncertainty . This depends on the particular function 
being integrated. the limits of integration, and the display format. 

If the uncertainty of an approximation is larger than what you choose to 
tolerate , you can decrease it by specifying a greater number of digits in 
the display fonnat and repeating the approximation .· 

• Provided that ! (x) is stiU calcu1ated accurately to the number of digits shown in ' 
tbc display . 



Numerical Integration 211 

Whenever you want to repeat an approximation, your HP: 34C can save 
you the trouble of keying the limits of integration back into the X- and Y­
registers . After an integral is calculated, not only are the approximation 
and its uncertainty placed in the X- and V-registers . but in addition the 
upper limit of integration is placed in the Zrregister, and the lower limit 
is placed in the T-register. To return the limits to the X- and V-registers 
for calculating an integral again , simply press 00 IE) (!] IE). 

Example: For the integral in the expression for J 1(1). you want an 
answer aCcuidte to four decimal places instead of only two. 

Keystrokes Display 

CD@ 4 1.8826 - 03 Set display fonnat to Isc11 4. 
[I]~[I]~ 3.1416 00 Roll down stack until upper 

limit appears in X-register . 

CD 1m 1.3825 00 Integral approximated in 
@ 4. 

1"11 1.7091 -05 Uncertainty of I SCI I 4 
approximation , 

The uncertainty indicates that this approximation is accurate to at least 
four decimal places. Note that the uncertainty of the [!£I) 4 approxima­
tion is about one-hundredth as large as the uncertainty of the ~ 2 
approximation. In general , the uncertainty of any (ZD approximation 
decreases by about a factor of 10 for each additional digit specified in 
the display format. 

In the preceding example, the uncertainty indicated that the approxima­
tion might be correct to only four decimal places. If we temporarily 
display all 10 digits of the approximation, however, and compare it to the 
actual value of the integral (actually. an approximation known to be 
accurate to a sufficient number of decimal places), we find that the 
approximation is actually more accurate than its uncertainty indicates . 

Keystrokes 

IX>11 
Display 

1.3825 00 

1382459676 

Return approximation to 
display . 
All 10 digits of approxi­
mation. 



212 Numerical Integration 

The value of thi s integral, correct to eight decimal places, is 1.38245969. 
The calculator's approximation is accurate to seven decimal places rather 
than only four. In fact , since the uncertainty of an approximation is cal­
culated very conservatively. the calculator's approximation in most 
cases will be more accurate than its uncertainty indicates. However, 
normally there is no way to determine just how accurate an approxima­
tion is; we know only that the difference between it and the actual integral 
is no bigger than the number in the Y -register. 

We'll take a more detailed look at the accuracy and uncertainty of {lD 
approximations in appendix B. 

Using lm in a Program 
(Z!J can appear as an instruction in a program provided that the program 
is not called (as a subroutine) by IZII itself. In other words, IZD cannot be 
used recursively . Consequently, you cannot use 1m to calculate 
mult.iple integrals; if you anempt to do so, the calculator will halt with 
Error 5 in the display. However, (l[J can appear as an instruction in a 
subroutine called by ISOLVEI . An example of doing so will be shown at 
the end of appendix A. 

The use of IZII as an instruction in a program utilizes one of the six 
pending reCUrns in the calculator. Since the subroutine called by lZ!I 
utilizes another return, there can be only four other pending returns . 
Executed from the keyboard , on the other hand, IlII itself does not 
utilize one of the pending returns , so that five pending returns are avail· 
able for subroutines within the subroutine called by 11!) . Remember that 
if all six pending returns have been utilized , a call to another subroutine 
will result in a display of Error 8. (Refer to page 135). 



Numerical Integration 213 

For Further Information 
This section has given you the information you need to use I.m with 
confidence over a wide range of applications. In appendix B, A More 
Detailed Look at (Z!I . we will discuss more esoteric aspects of (lJ) . 
These include: 

• How [lD works. 

• Accuracy, uncertainty . and calculation time. 

• Accuracy of the function to be integrated. 

• Uncenainty and the display format. 

• Calculating integrals of maximum accuracy . 

• Obtaining the current approximation to an integral. 

• Considerations that could cause incorrect results . 

• Considerations that prolong calculation time . 



Appendix A 

Advanced Use of ISOLVEI 

Section 8 includes the basic infonnation needed for the effective use of 
the ~algorithm . This appendix presents more advanced, supple­
mental considerations regarding ISOlVE~ 

Using ISOLVEI With Polynomials 

In many practical applications, functions known as polynomials are 
useful for representing physical processes or more complex mathemat­
ical functions. Polynomials are easily understood and can be structured 
to have a wide range of mathematical chardctcristics. 

A polynomial of degree n can be represented as 

This function has at most n rea) values for which the function equals 
zero. A limit to the number of positive zeros of this function can be 
determined by counting the number of times the signs of the coeffi ­
cients change as you scan the polynomial from left to right. Similarly, a 
limit to the number of negative zeros can be determined by scanning a 
new function obtained by substituting -x in place of x in the original 
polynomial. lfthe actual number of real positive or negative zeros is less 
than its limit , it will differ by an even number . (These relationships arc 
known as Descartes' Rule of Signs.) 

As an example , consider the third-degree polynomial function 

f(x) = x' - 3x' - 6x + 8. 

It can have no more than three real zeros. It has at most two positive 
real zeros (observe the sign changes from the fIrst to second and third 
to fourth terms) and one negative real zero (obtained fromf( -x) = _x 3 

- 3x' + 6x + 8) . 

214 



Advanced Use of ~ 215 

Polynomial functions are best programmed by rewriting them in a 
slightly different fonn that uses nested mUltiplication. This is sometimes 
referred to as Homer's method . As an illustration, the function from the 
previous example can be rewritten as 

fCx) = [Cx - 3)x - 6] x + 8. 

This representation is more eas il y programmed and more efficiently 
executed than the original fonn. especially since the stack contains the 
value of x in aJl four reg isters . (This technique is described on page 79.) 

Example: During the winter of '78. Arctic explorer lean-Claude 
Coulerre, isolated at his frozen camp in the far nonh, began scanning 
the southern horizon in ant icipation of the sun's reappearance . Coulerre 
knew that the sun would not be visible to him until early March, when it 
reached a declination of 50 18' 5 . On what day and time in March was the 
chill y explorer's vigil rewarded? 

Solution: The time in March when the sun reached 5° 18'S declination 
can be computed by solving the following equation for I : 

where D is the declination in degrees , I is the time in days, and 

0, = 4.2725 X 10-' 
a, = -1.9931 x 10-' 
a, = 1.0229 X 10-3 

0, = 3.7680 X 10-' 
00 = -8.1806. 

This equation is vaJid for l EO, < 32, representing March, 1978 . 

First convert 50 18' S to decimal degrees by pressing 5. 18 I CHS I I]] Effi 
and obtaining -5.3000 (using [ill] 4 display mode) . (Southern latitudes 
are expressed as negative numbers for calculation purposes.) 



216 Advanced Use of IsolVEl 

The solution to Coulerre's problem is the value of t satisfying 

Expressed in the form required by ISOlVEI , the equation is 

where the last , constant term now incorporates the value of the declina­
tion. 

Using Homer' s method. the function to be set equal to zero is 

I(r) ~ «(a,r + a,)r + a,)r + a,)r - 2.8806. 

To shorten the subroutine, store and recall the constants using the regis­
ters corresponding to the exponent of t. Slide the PRGM·RUN switch to PAGM" and key in the subroutine: 

Keystrokes Display 

[DCLEAR I_I 000- Clear program memory . 
CEllmlm 001- 25, 13, II Begins with I LBll 

instruction. 
IRcll4 002- 24 4 

m 003 - 61 
IRcll3 004 - 24 3 
[I) 005- 51 

m 006- 61 
IRcLl2 007- 24 2 
[I) 006- 51 

m 009- 61 
IReLl1 010- 24 I 
[I) 011 - 51 

m 012- 61 
IRcllO 013- 24 0 
[I) 014- 51 
CEl IRTol 015- 25 12 



.gJ 

~ 
~ 

,Jj 

Advanced Use of IsolVEl 217 

Now set the PRGM·R UN switch to ..rIAUH and key in the five coef-
ficients: 

Keystrokes Display ' 

4.2725 1_ .. IICHsIS 4.2725 -08 
ISTol4 4.2725 - 08 Coefficient o f 14. 

1.9931 leHslI _ .. 1 
l eHsl5 ISTol 3 -1.9931 -05 Coeffic ient of t a. 

1.0229 1_ .. I ICHsI 3 1.0229 - 03 
ISTo l 2 0.0010 Coefficient of ,1, 
3.76S0 1< .. IICHs l l 3.7680 -01 
ISTol1 0.3768 Coefficient of I . 

2. SS06 leHsll STol 0 - 2.8806 Constant term . 

Because the desired solution should be between I and 32, key in these 
two values fo r initial estimates. Then use ISOlVEI to find the rOOl . 

Keystrokes Display 

I 1 ....... 1 1.0000 } Initial estimates . 
32 32. 

m ISOLVEI 0 7.5137 Root found. 

OO~ 7.5137 Same previous estimate. 

OO~ 0.0000 Function value. 

m~m~ 7.5137 Restore stack . 

The day was March 7th . Convert the fractional port ion of the number to 
decimal hours and then to hours, minutes, and seconds . 

Keystrokes 

lEI I FMC I 
24 0 
mi ....... I 

Display 

0.5137 
12.3293 
12.1945 

Fractional portion of day . 
Decimal ho urs . 
Hours, minutes. seconds. 

• Press CD W!J 4 to obtain the display settings in this appendix , 



218 Advanced Use of ~ 

Explorer Coulerre saw the sun on March 7th at 12h 19m 455 (Coordinated 
Universal Time). 

By examining Coulerre's functionf(t) . you realize that it can have as 
many as four real roots-three positive and onc negative. Try to find 
additional positive roots by using ~ with larger positive estimates. 

Keystrokes Display 

1000 1'''' .... 1 I 100 1,100. Two larger, positive 
estimates. 

CD I .... Y<I 0 Error 6 No root found . 
leLxl 278.4497 Last estimate tried. 

OOlli!J 276.7942 A previous estimate. 

OOlli!J 7.8948 Non-zero value of function . 

CDlli!JCDlli!J 278.4497 Restore stack to original 
state . 

CD ISOLV£i 0 Error 6 Again , no root found. 
leLxl 278.4398 Approximately same 

estimate. 

OOlli!J 278.4497 A previous estimate. 

OOlli!J 7._ Same function value. 

You have found a positive local minimum rather than a root. Now try to 
find the negative rool. 

Keystrokes 

1000 I eHs II ........ I 
1100 leH5 1 

CD~ 0 
OOlli!J 
OOlli!J 

Display 

-1,000.0000 
-1 ,100. 
-108.9441 
-108.9441 

1.8000 

} 
Two larger, negative 
estimates. 
Negative root. 

-08 
Same previous estimate. 
Function value. 



Advanced Use of Iso<yEj 

There is no need to search fun her- you 
have found all possible roots. The nega­
tive root has no meaning since it is out­
side of the range for which the declina­
tion approximation is valid . The graph 
of the function confirms the results you 
have found . 

Finding Several Roots 

Graph 01 f(l) 

219 

Many equations that you encounter have more than one root. For this 
reason, you will find it helpful to understand some techniques for finding 
several roots of an equation . 

The simplest method for finding several roots is to direct the root search 
in different ranges of x where roots may exist. Your initial estimates 
specify the range that is initially searched. This method is used through­
out section 8, Finding the Roots of an Equation. You can often find the 
roots of an equation in this manner. 

A more advanced method is know as deflation . This technique is useful 
when the function in an equation has characteri stics that make it difficult 
for ISOlVE[1O fi nd all of the roots. Deflation is a method by which roots 
arc "climinated" from an cquation. This involves modifying the equa­
tion so that the first roots found are no longer roots, but the rest of the 
roots remain roots. 

If a functionf(x) has a value of zero at x = a, then the new function 

~will not approach zero in this region (if a is a simple root 
(x - a) 

of f(x) = 0). You can use this infonnation to eliminate a known 
rool. Simply add a few program lines at the end of your function sub­
routine. These lines should suhtrdct the known root (to 10 significant 
digits) from the x value and divide this difference into the function 
value. In many cases the root will be a simple one, and the new function 
will direct ISOlvElaway from the known root. 



220 Advanced Use of 150m) 

On the other band, the root may be a multiple root . A multiple root is one 

that appears to be present repeatedly, in the following sense; at such a 

root , not only does the graph off(x) cross thex · axis, but its slope (and 

perhaps the next few highcr·order derivatives) is equal to zero. If the 

known root of your equation is a multiple root , the root is not eliminated 

by merely dividing by the factor described above. For example, the 

equation 

J(x) = x (x - a)' = 0 

has a mUltiple root al x = a (with a multiplicity of 3). This root is not 

eliminated by dividingf(x) by (x - a ). But it can be eliminated by divid­

ing by (x-of!. 

Example: Use deflation to help find the roots of 

6Ox' - 944x' + 3003x' + 6 I 7 Ix - 2890 = O. 

Using Homer's method, this equation can be rewritten in the form 

«(60x - 944)x + 3(03)x + 6J7I)x - 2890 = O. 

Slide the PRGM-RUN switch to PAGM _ • Key in a subroutine to 

evaluate the polynomial. 

Keystrokes Display 

(EjILBL)2 001- 25. 13. 2 

6 002- 6 

0 003- 0 

0 004- 61 

9 005- 9 

4 006- 4 

4 007- 4 

G 008- 41 

0 009- 61 

3 010- 3 

0 011- 0 

0 012- 0 

3 013- 3 



Advanced Use of 150lVEi 221 

Keystrokes Display 

m 014- 51 

0 015- 61 
6 016 - 6 
1 017- 1 
7 018- 7 

1 019- 1 

m 020- 51 

0 021- 61 
2 022- 2 
8 023- 8 
9 024 - 9 

0 025 - 0 

G 026- 41 

0 10' 01 027- 25 12 

Slide the PRGM·RUN switch to .mJRUN . Key in two large. negative 
initial est imates (such as - 10 and -20) and use !SOlve! to find the most 
negative rooL 

Keystrokes 

10 I CH5 II """,.1 
20lcH51 
CD ISOlVEI 2 
ISTolO 
[!)IEJ[!)IEJ 

Display 

- 10.0000 
-20 
-1.6667 
- 1.6667 

4.0000 

} Initial estimates. 

First root. 
Store root for deflation. 

-06 Function value near zero . 

Slide the PRGM·RUN switch to PAGMIlIII , Add instructions to your 
subrouti ne to eliminate the root just found . 

Keystrokes Display 

10'018026 026- 41 Line before I " TN I 
instruction . 

1 .. ' 1 027- 21 Bring x into X-register. 
10cLI0 028- 24 0 

} Divide by (x - a). where a 
G 029- 41 

m 030- 71 
is known root . 



222 Advanced Use of 1""'-v£1 

Now slide the PRGM·RUN switch to "'RUN . Use the same initial 
estimates to find the next rOOL 

Keystrokes Display 

10 leHsll """" 1 -10.0000 } Same initial estimates. 
20 leHsl - 20. 
CDI"",-V§ 2 0.4000 Second root . 
ISTo l1 0.4000 Store root for deflation. 

(!]IE)(!]IE) 0.0000 Deflated function value. 

With the PRGM·RUN switch set to PfOII.-, modify your sub­
routine to eliminate the second root. 

Keystrokes Display 

IGTol C!J 030 030- n Line before I RTN I 
instruction . 

Ix,,1 031 - 21 Bring x into X-register . 
loel ll 032- 24 I 

} G 033- 41 Deflation for second rool. 
[!) 034- n 

Slide the PRGM-RUN switch to ..::JRUN . Again, usc the same initial 
estimates to find the next root. 

Keystrokes 

10 leHslI ........ 1 
20 leHsl 
CD ISOLYEI 2 
ISTol2 
(!]IE)(!]IE) 

Display 

- 10.0000 
- 20 

B.4999 
B.4999 

-1.0929 

} Same initial estimates . 

Third root. 
Store root for deflation. 

-07 Deflated function value near 
zero . 



A 
A 
A 

Advanced Use of ~ 223 

With the PRGM-RUN switch set to PAGM.-, change your subrou­
tine to eliminate the third rool. 

Keystrokes Display 

I GTO I C!J 034 034- 71 Line before '"TN I 
instruction. 

I"yl 035- 21 Bring x into X-register. 

IRcLl2 036- 24 2 
} Defl'Iion for Ihird rool , S 037- 41 

0 038- 71 

Slide Ihe PRGM-RUN swilch 10 ..:JIll .... and find Ihe fourth rool. 

Keystrokes 

10 ICHslI ....... 1 
20 ICHsl 
CD ISOLYEI 2 
ISTol3 
[I)~[I)~ 

Display 

-10.0000 
-20. 

8.5001 
8.5001 

-0.0009 

Using the same initial estimates each 
time , you have found four roots for 
this equation involving a fourth-degree 
polynomial. However , the last two roots 
are quite close to each other, and are 
actually one root (with a multiplicity of 
2). That is why the rool was not elim­
inated when you tried deflation once at 
this root. (Round-off eITor causes the 
original function to have small positive 
and negative values for values of x 
belween 8,4999 and 8,5001; for x = 8,5 
the function is exactly zero.) 

} Same initial estimates. 

Fourth root. 
Store root for reference. 
Defl ated function value near 
zero. 

\f\) 
\/ 

Graph oll(x) 



224 Advanced Use of 150evel 

In general, you will not know in advance the multiplicity of the root you 
are try ing to eliminate. If. after you have attempted to eliminate a root, 
[SOlvE]finds that same root again , you can proceed in a number of ways: 

• Use different initial estimates with the deflated function in an 
attempt to search for a different root. 

• Use deflation again in an attempt to eliminate a multiple root. If 
you do not know the multiplicty of the root, you may need to 
repeat this a number of times. 

• Examine the behavior of the deflated function at x values near the 
known root. If the function's calculated values cross the x -axis 
smoothly. either another root or a greater multiplicity is indicated. 

• Analyze the original function algebraically. It may be possible to 
detennine its behavior for x values ncar the known rooL (A 
Taylor series representation , for example, may indicate the multi­
plicity of a root.) 

Finding Local Extremes of a Function 

Using the Derivative 

The traditional way to find local maximums and minimums of a func­
tion' s graph uses the derivative of the function. The derivative is a 
function that describes the slope of the graph. Values of x at which the 
derivative is zero represent potential local extremes of the function. 
(Although less common for well-behaved functions, values of x where 
the derivative is infinite or undefined arc also possible extremes.) Uyou 
can express the derivative of a function in closed form, you can use ISOlVE] 

to find where the derivative is zero- showing where the function may be 
maximum or minimum. 



Advanced Use of ISOlVEI 225 

Example: For the design of a vertical 
broadcasting tower, radio engineer Ann 
Tenor wants to find the angle from the 
tower at which the relative field intensity 
is most negative . The relative intensity 
created by the tower is gi ven by 

E = cos(2rr h cos 0) - cos(2". h ) 

[I - cos(2".h )] sin 0 

where E is the relative field intensity, h is the antenna height in wave­
lengths. and () is the angle from ve rtical in radians. The height is 0.6 
wave lengths for he r design . 

Solution: The desired angle is one at which the deri vative of the inten­
sity with respect to (J is lero, 

To save program memory space and execution time, store the following 
constants in registers and recall them as needed: 

RO = 21Th 
R 1 = cos(2".h) 
R2 = 1/[ I -cos(2".h)] 

and is stored in regi ster Ro, 
and is stored in register R I • 

and is slOred in register Ri! o 

The derivative of [he inte nsity E with respect to the angle (J is given by 

!!£ = R 2 ~ 0 sin(R 0 cos 0) - cos(R 0 cos 0) - R 1 ] . 
dO r sin Otan 8 



226 Advanced Use of I.oml 

Slide the PRGM-RUN switch to ~U:m.I and key in a subroutine to 
calculate the derivative. 

Keystrokes Display 

mCLEAR 1 ...... 1 000-
01,",1 0 001- 25, 13, 0 

mlco'l 002- 14 8 
IRcllO 003- 24 0 
0 004- 61 
mlcosl 005- 14 8 
IRcl11 006- 24 1 
G 007- 41 
1 .. ,1 008- 21 
m I!!RJ 009- 14 7 
[!) 010- 71 
Ix"l 011- 21 
mlTAHI 012- 14 9 
[!) 013- 71 
leHs l 014- 32 
Ix,,1 015- 21 
mlcosl 016- 14 8 
IRcllO 017- 24 0 
0 018- 61 
m I!!RJ 019- 14 7 
IRcllO 020- 24 0 

0 021- 61 
[!) 022- 51 
IRcll2 023- 24 2 
0 024- 61 
01RTNI 025- 25 12 

Now slide the PRGM-RUN switch to .mRUN . In radian mode , calcu­
late and store the three constants. 

Keystrokes 

[[) IRAol 

Display 

0.0000 Specify radian mode. 
(Assumes display has been 
cleared.) 



i) 
,fij 

~ 
,j1} 

Il/l 
~ 
P' 
J1) 
,il' 
,if) 

P 
Il' 
P 
;.a 

Advanced Use of IsolVEl 227 

Keystrokes Display 

2000 6.2832 
,6 01sToi 0 3.7699 Constant RO . 
m IcoslisTol I - 0.8090 Constant R 1 . 
ICHs l 1 ill 1.8090 
0(IDl sTo l2 0.5528 Constant R 2 . 

The relative field intensity is maximum at an angle of 90° (perpendicular 
to the [ower). To find the minimum , usc angles closer to zero as initial 
estimates, such as the radian equivalents of 10° and 60°. 

Keystrokes 

10 (IJ §] 
60 (IJ§] 

Display 

0.1745 
1.0472 
0.4899 

} Initial estimates. 

Angle giving ze ro slope. m IsolVEl 0 
(IJ~(IJ~ 
m~m~ 
mE£! 

- 5.5279 
0._ 
28.0680 

- 10 Slope at specified angle. 

The relative field intensity is most nega­
tive at an angle of 28 .0680° from verti­
cal. 

USing an Approximate Slope 

The derivative of a function can also be 
approximated numerically. If you sam­
ple a function at two points relatively 
close tox (namely x +Ll and x -~). you 
can calculate an average slope of the 
function 's graph 

/(x+l!.)-/(x-l!.) 
2l!. 

Restore the stack. 
Angle in degrees. 

Graph of dE/d8 Versus 8 



228 Advanced Use of !SOLVE! 

The accuracy of this approx imation depends upon the increment 6. and 
the nature of the function . Smaller values of .6. give better approxima­
tions to the derivative . but excessively small values can cause round-off 
inaccuracy. A value of x at which the slope is z.ero is potentially a local 
extreme of the function. 

Example: Solve the previous example without using the equation for 
the derivative dE/d (}. 

Solution: Find the angle at which the derivative (determined numeri­
cally) of the intensity E is 1..ero. 

Slide the PROM-RUN switch to PAGM~ and key in two subrou­
tines: onc to estimate the derivative of the intensity and one to evaluate 
the intensity function E. In the following subrout ine . the slope is calcu­
lated between 0 + 0.001 and (J - 0.001 radians (a range equivalent to 
approximately 0. 1°). 

Keystrokes Display 

01ml0 001- 25, 13, 11 
IEul 002- 33 

} 
ICHsl 003- 32 
3 004- 3 Evaluate E at 8 + 0.001. 
m DOS- 51 

1""""1 006- 31 
IGSBI(!] 007- 13 12 
In 'l 008- 21 
IEEXI 009- »} ICHs l 010-

~ Eva!uate E at 8 - 0 .001. 3 011-

G 012- 41 
1 ...... ·1 013- 31 
IGSB I (!] 014- 13 12 
G 015- 41 
2 016- 2 
I EEX I 017- 33 
ICHs l 018- 32 
3 019- .3 
0 020- 71 
010,.1 021- 25 12 



Advanced Use of IsolVEl 229 

Keystrokes Display 

(EJ1L811(II 022- 25, 13, 12 
(I] Icosl 023- 14 8 
IRcllO 024- 24 0 

0 025- 61 
(I] Icosl 026- 14 8 
IRCll1 027- 24 1 
G 028- 41 
Ix,,1 029- 21 
(I]ls'NI 030- 14 7 

0 OlI- n 
IRcll2 032- 24 2 
0 033- 61 
(EJIRTNI 034- 25 12 

Slide the PRGM·RUN switch to .al]RUN . In the previous exam ple , 
the calculator was set to radian mode and the three consta nts were stored 
in registe rs 0, I. and 2. Key in the same initial estimates as befo re and 
execute ISOLVEI . 

Keystrokes Display 

10 [])~ 0.1745 } Initial estimates. 

60[])~ 1.0472 

(I]~ 0 0.4899 Angle giving zero slope. 
[])®J[])®J 0.0000 Slope at specified angle . 
(I]®J(I]®J 0.4899 Restore the stack. 
I.N ..... U.Nm"l (II -0.2043 Use function subroutine to 

calc ulate minimum inten-
sity . 

Ix,,1 0.4899 Recall (J value. 
(I] EEl 28.0679 Angle in degrees . 

This numerical approx imation of the derivati ve indicates a minimum 
field intensity of -0.2043 at an angle of 28.0679°, (This angle differs 
from the previous solution by 0.0001 °.) 



230 Advanced Use of Isot.vEI 

Using Repeated Estimation 

A third technique is useful when it is not 
practical to calculate the derivative. It is 
a slower method because it requi res the 
repeated use of the ISOlVEI key. On the 
other hand, you do not have to find a 
good value for ll ofthe previous method. 
To find a local extreme of the function 
[(x), define a new function 

g (x) = I(x) - • 

where e is a number slightly beyond the 
estimated extreme value of [(x). If e is 
properly chosen, g (x) will approach 
zero near the extreme off(x) but will not 
equal zero . Use ~to analyze g(x) 
near the ex treme. The desired result is 
Error 6. 

• If Error 6 is displayed the number in the X-register is an x value 
near the extre me . The number in the Z-register tells roughly how 
far e is from the extreme value of [(x). Revisee to bring it closer 
(but not equal) to the extreme value. Then use ISOlvEl to examine 
the revised 8 (x) near the x value previously found . Repeat this 
procedure until success ive x values do not differ significantly. 

• If a root of g(x) is found , either the number i.' is nol beyond the 
extreme value of [(x) or else ISOlYElhas found a different region 
where[ (x) equals e. Revisee so that it is close to-but beyond­
the extreme value of [(x) and try ISOlVEI again . It may also be 
possible to modify g (x) in order to eliminate the distant root. 



Ji 
~ 

..a 
A 
A 
A 
Jj 

,Jlj 

,il) 
,Jj 

,.Q) 

~ 

rill 
,,/JI 

-" 
,Q 

A 
.a ., 
;J 

Advanced Use of ISOlVEI 231 

Example: Solve the previous example without calculating the deriva· 
tive of the relative field intensity E . 

Solution: The subroutine to calculate E and the required constants have 
been entered in the previous examples. 

Slide the PRGM-RUN switch to PRGM~. Key in a subroutine 
which subtracts an estimated extreme number from the field intensity E. 
The extreme number should be stored in a regi ster so that it can be man­
ually changed as needed . 

Keystrokes Display 

[EJ llsll I 001- 25, 13, 1 Begin with I LBL I 
instruction. 

IOSB l oo 002- 13 12 Calculate E. 
locll9 003- 24 9 } Subtract extreme estimate. 
S 004- 41 
[EJloTH I 005- 25 12 

Slide the PRGM-RUN switch to .m!l1U\l , Estimate the minimum 
intensity value by manually sampling the function. 

Keystrokes Display 

10 [[) §J 0.1745 
I ENTER. I 00 -0.1029 
30 [[) §J 0.5236 } '-" ~ '" .. ~ " 
I ENTER' I 00 -0.2028 10°, 30°, 50Q

, ... 

50 [[) §J 0.8727 
I ENTER' I 00 0.0405 



232 Advanced Use of ISOlVEI 

Based on these samples. try using an extreme estimate of -0.25 and 
initial ISOlVE) estimates (in radians) near 10° and 30°. 

Keystrokes Display 

.25 leH5 11 5Toi 9 -0.2500 Store ex treme estimate . 

. 2IemR. 1 0.2000 } Initial estimates . . 6 0.6 
[IJ IsoLVEI I Error 6 No root found. 
lelxl15Toi 4 0.4849 Store 8 estimate . 
[II ~15Tol 5 0.4698 Store previous 9 estimate , 
[II~ 0.0457 Distance from extreme. 

.90 0.0411 } 
Revise extreme estimate 

15To l m 9 0.041 1 by 90 percent of the 
distance . 

IRell4 0.4849 Recall 0 estimate. 
I ENTER' II ENTER. I [!) -0.2043 Calculate intensity E. 

ICLX I 0.0000 } 
Recall other 8 estimate. 

IRell5 0.4698 keeping first estimate 
in Y. registe r. 

[IJ ISOlVEI I Error 6 No root found . 
ICLXI 0.4898 B estimate . 
1 .. ,1 0.4893 Previous 8 estimate . 
1 .. ,1 0.4898 Recall 8 estimate. 
I ENTEA. II ENTEA'I [!) - 0.2043 Calculate intensity E. 
IXI>I 0.4898 Recall 8 value. 
[IJ@ 28.0660 Angle in degrees. 

The second iteration produces two (] estimates that differ in the fourth 
decimal place. The field intensities E for the two iterations are equal 
to four decimal places. Stopping at this poinr, a minimum field intensity 
of -0.2043 is indicated at an angle of 28.0660° . (This angle differ.) from 
the previous solutions by about 0 .0020. ) 

Limiting the Estimation Time 
Occasionally, you may desire to limit the time used by ISOlYElto find a 
root . You can use two possible techniques to do this- counting iterations 
and specifying a tolerance. 



J) ... 
.a 
.a 
A 
~ 
.fJ) 

~ 

~ 
A ' 
~ 
.a 
.a 
..a 
..a 
A .. 
A .. 
rIA 

Advanced Use of ISOlVEI 233 

Counting Iterations 

While searching for a root, ISOLvEl typically samples your function at least 
a dozen times. Occasionally. ISOLVEI may need to sample it onc hundred 
times or more. (However , ISOlVEI will always stop by itself.) Because 
your function subroutine is executed once for each estimate that is tried, it 
can count and limit the number of iterations. An easy way to do this is 
with an [Jj[} instruction to accumulate the number of iterations in the 
l. register. If you store an appropriate number in the I-register before 
using ISOlVEI. your subroutine can interrupt the ISOlVEI algorithm when 
the limit is exceeded. (The IJ!ID instruction is discussed on page 141 .) 

Specifying a Tolerance 

You can shorten the time required to find a foot by specifying a tolerable 
inaccuracy for your function . Your subroutine should return a function 
value of zero if the calculated function value is less than the specified 
tolerance. This tolerance that you specify should correspond to a value 
that is negligible for practical purposes or should correspond to the 
accuracy of the computation. This teChnique eliminates the time required 
to define the estimate more accurately than is justified by the problem. 
(Example of this method are given on page 190 and below .) 

Using 150LVEI With IZD 
Example: For a phase-modulated radio signal , the amplitude of the 
carrier signal is proportional to JIJ(x) , the zero-order Besse l function of 
the first king , where x is the modulation index. What is the smallest 
modulation index at which the carrier signal is suppressed (that is, its 
amplitude is zero)? 

Solution: The des ired index is the smallest value of x for which 

J o(x) ~ J" cos (x sin 0) dO ~ o. 
o 7T 

You can use ISOlvEl to determine this value. The function J o(x) must 
be calculated by using [ZIJ. 



234 Advanced Use of Isocv, l 

The approximation of Jo(x) calculated by [l.IJ has an uncertainty that is 
returned in the Y -register. Whenever the magnitude of J o{x) is less than 
this uncertainty , Jo(x) can be considered to be zero. By using this 
technique , you can prevent ISOlVEI from seeking unreasonable accuracy. 

Slide the PRGM-RUN switch to PRGM~ . Key in a subroutine that 
calculates Jo(x) and a subroutine that calculates the function to oc 
integrated . 

Keystrokes Display 

CD CLEAR 1 ...... 1 000- Clear program memory. 
CElIL.LI0 001- 25, 13, 11 Begin with I L.8ll 

instruction. 
ISTolO 002- 23 0 Store argument x. 
0 003- 0 } Limits of integration. 
CEl0 004- 25 73 

CD IZD 3 005-14,72, 3 Calculate Jo(x). 
CElIA .. 1 006- 2534 Magnitude of Jo(x). 

CD 1 .. ,1 007- 14 41 } Return zero if 
ICLXI 008- 34 Jo(x) ~ uncertainty . 
[[] Ix.ol 009- 15 61 } ~estore Jo(.:C) if value 
CElILSTXI 010- 25 0 IS nonzero . 
CElIA'NI 011- 25 12 

CEliLBLI3 012- 25, 13, 3 

CDm!l 013- 14 7 
IACLIO 014- 24 0 

0 015- 61 Calculate funct ion 

CDlcosl 016- 14 8 to be integrated . 

00 017- 25 73 

G 018- 71 

CElIA'NI 019- 25 12 

In order to shorten the time to find the desired root, initially specify 
@ O display mode for the integration . After an approximate ~olution 
has been found, specify a greater integration accuracy (by using 1 SCI1 3). 
Then let ISOlVEt home in on the root using the more accurate function . 
This procedure eliminates the need to integrate with great accuracy for 
values of x not near the root , saving considerable time . 



,Ij ... 
----A 
A ,.. ,.. 
,pj 

,it 

• Ia 

-­.. 
.a 
.a 
.a .. 
.a ... 

Advanced Use of ISOLYEI 235 

Slide the PRGM-RUN switch to .m:JFUII and perfonn the following 
steps. Keep in mind that ISOLYE[ samples your function many times and 
that lZIl often requires up to a minute or more to evaluate an integral. For 
these reasons the ~ executions that follow take about 3 and 6 minutes 
to be completed . 

Keystrokes Display 

[TI [ill) 0 o. 00 Specify the tm 
accuracy . 
(Assumes that the display 
has been cleared,) 

001"· 1 o. 00 
01 ...... · 1 o. 00 } Initial estimates to 
I 1. search near 0 . 
[TI1i§ill] 0 2. 00 Desired root. 
[TI [ill) 3 2.480 00 Specify grealer tm 

accuracy. 
2.41 ........ 1 2.400 00 } Initial estimates near 
2.5 2.5 first approximation. 
[TI IsolYEI 0 2.405 00 Desired root. 
[TIm!] 4 2.4049 View in m!J 4 fonnat. 
oo~oo~ 0.0000 J o(..t) is less than 

OO~ 
uncertainty , 

0.0001 Uncertainty from tm. 

A modulation index of 2.4049 causes the carrier signal amplitude 10 be 
suppressed by at least 99.99%. (That is, its amplitude is less than 0.0001 
of maximum.) 



Appendix B 

A More Detailed Look at 1m 

Section 9 presented the basic information you need to use 1m know· 
ledgeably in most applications. This appendix discusses more esoteric 
aspects of IZ!l that may be of interest to you if you use IZD often. 

How rm Works 
The rm algorithm calculates the integral of a function/(x) by computing 
a weighted average of the function' s values at many values of x (known 
as sample poilUs) within the interval of integration . The accuracy of the 
result of any such sampling process depends on the number of sample 
points considered: the more sample points , the greater the accuracy. If 
f(x) could be evaluated at an infinite number of sample points , the 
algorithm could-neglecting the limitation imposed by the inaccuracy 
in the calculated function/(x)- providc an exact answer. 

Evaluating the function at an infinite number of sample points would 
take a very long time (namely , forever) . Fortunately , this is not neces- __ 
sary, since the maximum accuracy of the calculated integral is limited by 
the accuracy of the calculated function values. Using only a finite num­
ber of sample points, the algorithm can calculate an integral that is as 
accurate as is justified considering the inherent uncertainty in f(x). 

The IZD algorithm at first considers only a few sample points , yielding 
relatively inaccurate approximations. If these approximations are not 
yet as accurate as the accuracy of f(x) would permit , the algorithm is 
iter.tted (that is , repeated) with a larger number of sample points. These 
iterations continue. using about twice as many sample points each time, 
until the resulting approximation is as accurate as is justified conSidering 
the inherent uncertainty inf(x). 

The uncertainty of the final approximation is a number derived from the 
display fonnat. which indicates the uncertainty in the function ." At the 
end of each iteration, the algorithm compares the approximation calcu­
lated during that iteration with the approximations calculated during two 

• The relationship bet ..... een the display format, the uocenainty in the function, and the 

uncenainty in the approximation to its integral are discussed later in this appendix. 

236 



JIj 

-­.a 
.a 
.a 
rtIiA 
A 
,JIj 

~ 
A 
Je ... 
.a 
.a ... ... 
.a ... 
.a 
JA 

A More Detailed Look at (Zl) 237 

previous iterations. If the difference between any of these three approxi­
mations and the other two is less than the uncertainty of the final approx­
imation, the algorithm tenninates , placing the current approximation in 
the X-register and its uncertainty in the V-register . 

The IZrI algorit hm is designed so that it is extremely unlikely that the 
errors ineach ofthree successive approximations-that is , the differences 
between the actual integral and the approximations-would all be larger 
than the disparity among the approximations themselves. Consequentl y, 
the error in the final approximation will be less than its uncerta inty. * 
Although we can't know the error in the final approximation , we can 
be very confident that the error is less than the displayed uncertainty of 
the approximation. Thus, the uncertainty of the approximation is an 
"upper bound" on the differencc between the approximation and the 
actual integral. 

Accuracy, Uncertainty, and Calculation Time 
The accuracy of an !ZI] approximation does not always change when you 
increase by just one the number of digits specified in the display format. 
Similarly, the time required to calculate an integral sometimes changes 
when you change the display format , but sometimes does not. 

Example: The Bessel function of the flrst kind of order four can be 
expressed as 

J.(x) = _1_ { " cos (48 - x sin 8) dO . 
7T Jo 

Calculate the integral in the expression for J.i l) , 

1 (" - J, c05(40 - sin8)dO. 
7T 0 

• Provided thalf(.~) is sufficiently smooth, a consideration we will discuss in more dettillater 
in this appendix . 



238 A More Detailed Look at IlD 

First, slide the PROM-RUN switch to PAGM~ , and key in a sub­
routine that evaluates the function/( 0) = cos (48 - sin 8). 

Keystrokes Display 

mCLEAR 1 ..... 1 000-
01l8ll0 001 - 25, 13, 0 
4 002- 4 

0 003- 61 
IxlYl 004- 21 
misoNI 005 - 14 7 

G 006- 41 
mlcasl 007- 14 8 
[IJIRTHI 008- 25 12 

Now, slide the PROM-RUN switch back to ..nOUN , and key the 
limits of integration into the X- and V-registers. Ensure that the trigo­
nometric mode is set to radians , and set the display format to ~ 2. 
Finally . press m IZD 0 to calculate the integral. 

Keystrokes 

o I"""" I 

mIlD 0 

Display 

0.0000 

3.1416 

3.1416 

3.14 

7.79 

1.45 

00 

-03 

-03 

Key lower limit into 
Y ·register. 
Key upper limit into 
X-register. 
Ensure that trigonometric 
mode is set 10 radians . (This 
step is not necessary if you 
have not switched your cal­
culator off nor reset [he 
trigonometric mode since 
you last set it to radians .) 
Set display format to 
(ill) 2. 
Integral approximated in 
(ill) 2. 
Uncertainty of (!£D 2 
approx imation. 



A More Detailed Look at IZII 239 

,f{I -The uncertainty indicates that the displayed digits of the approximation 
..LA. might not include any digits that could be considered accurate. Actually , 
,..... J usllike the last approximation in section 9, this approximation is morc I" accurate tban its uncertainty indicates . 

,. Keystrokes Display 

r:~ 
~ (ElIMANT I 

7.79 - 03 

7785820888 

Return approximation to 
display . 
All 10 dig its of Isclj 2 
approximation. 

t: ,. 
~ 
~ 

The actual value of this integral , correct to five significant digits. is 
7.7805 x 10- 3 , Therefore , the error in this approximation is about 
(7.7858 - 7.7805) X 10- ' = 5 .3 x 10- '. This error is considerably less 
than the uncertainty, 1.45 x 10- 3 . The uncertainty is only an upper 
bound on the error in the approximation; the actual error will generally 
be smaller. 

Now let 's calculate the integral in [!§]3 and compare the accuracy ofthc 
resulting approximation to that of tne (!£!) 2 approximation . 

Keystrokes Display 

CD (ill] 3 7.786 - 03 Change display format to 

OO®OO® 3.142 
(ill] 3. 

00 Roll down stack until upper 
limit appears in X· register. 

CD IZIJ 0 7.786 - 03 Integral approximated in 
(ill] 3. 

I.,yl 1.448 -D4 Uncertainty of (!£!) 3 
approximation. 

Inyl 7.786 -03 Return approximation to 
display . 

(El IMANT I 7785820888 All to digits of [!§) 3 
approximation . 



240 A More Detailed Look at 1m 

All 10 digits of the approximations in (!£I) 2 and in @ 3 are identi­
cal: the accuracy of the approximation in I]£I] 3 is no better than the 
accuracy in f!£I) 2, despite the fact that the uncertainty in 1R!)3 is less 
than the uncertainty in 1!£D2 . Why is this? Remember that the accuracy 
of any approximation depends primarily on the number of sample points 
at which the function f(x) has been evaluated. The [ZI] algorithm is 
iterated with increasing numbers of sample points until the disparity 
among three success ive approximations is less than the uncenainty , 
which is a number derived from the display format. After a particular 
iteration , the disparity among the approximations may already be so 
much less than the uncertainty that it would still be less if the uncertainty 
were decreased by a factor of 10. In such cases, if you decreased the 
uncenainty by specifying one more digit in the display fonnat, the algo­
rithm would not have to consider additional sample points, and the result­
ing approximation would be identical to the approximation calculated 
with the larger uncertainty . 

If you calculated the two preceding approximations on your calculator, 
you may have noticed that it look just as long to calculate the integral in 
1]£I]3 as in (!£D2. This is because the time to calculate the integral of a 
given funclion depends on the number of sample points at which the 
function must be evaluated to achieve an approximation of acceptable 
accuracy. For the (!£!] 3 approximation. the algorithm did not have to 
consider more sample points that it did in 1llil2. SO it did not take any 
longer to calculate the integral. 

Often. however, increasing the number of digit s in the display format 
will require evaluating the function at additional sample points, so that 
calculating the integral will take more time . Let's now calculate the same 
integral in (ill) 4: 

Keystrokes Display 

(D Iscq 4 7.7858 -03 Change display format to 
(ill) 4. 

IIJ®JIIJ®J 3.1416 00 Roll down stack until upper 
limit appears in X-register. 

(Dim 0 7.7807 -03 Integral approximated in 
(ill) 4. 



p 
~ 

• ;J 

~ 
p 
p 
{fj 
p 
p 
~ 
~ 
II' 
J/j 

~ 
Ifj 
Ifj 

~ .. 
,a 

A More Detailed Look at lID 241 

This approximation look about twice as long as the approximation in 
[]£I] 3 or ~ 2. In this case, the algorithm had to evaluate the function 
at about twice as many sample points as before in order to achieve an 
approximation ofacceprable accuracy. Note, however, that we received 
a reward for our palience: the accuracy of this approximation is bener. 
by alrnosllwo digits, than the accuracy of the approximation calculated 
using half the number of sample points. 

The preceding examples show that repeating the approximation of an 
integral in a different display format sometimes will give you a more 
accurate answer, but sometimes it will not. Whether or not the accuracy 
is changed depends on the particular function, and generally can be 
detennined only by trying it. 

Furthermore, if you do get a more accurate answer , it will come at the 
cost of about double the calculation time. This unavoidable trade-off 
between accuracy and time is important to keep in mind if you are con­
sidering decreasing the uncertainty in hopes of obtaining a more accurate 
answer. 

Note: The time required to calculate the integral of a given 
function depends not only on the number of digits specified in 
the display format, but also, to a certain extent, on the limits 
of integration. When the calculation of an integral requires an 
excessive amount of time, the width of the interval of integra­
tion (that is, the difference of the limits) may be too large 
compared with certain features of the function being inte­
grated. For most problems, however, you need not be con­
cerned about the effects of the limits of integration on the 
calculation time. These considerations, together with exam­
ples where the limits may be unduly prolonging the calcula­
tion time as well as techniques for dealing with such 
situations, will be discussed later in this appendix. 

Accuracy of the Function to be Integrated 

The accuracy of an integral calculated using (ID depends on the accuracy 
of the function calculated by your subroutine. This accuracy, which you 
spec ify using the display format , depends primarily on three consider­
ations: 

I. The accuracy of empirical constants in the function . 



242 A More Detailed Look at 1m 
2. The degree to which the function may accurately describe a 

physical situation. 

3. The extent of round-off error in the internal calculations of the 
calculator. 

Functions Related to Physical Situations 

The functions we've integrated so far in section 9 and this appendix­
cos (sin 9 ). cos (9 - sin8 ), cos (48 - sin 0), and (s in x)/x-areexam­
pies of pure mathematical junctions. In this context, this means that 
the functions do not contain any empirical constants, and neither the 
variables nor the limits of integration represent actual physical quantities. 
For such functions, you can specify as many digits as you want in the 
display funnat (up to nine) to achieve the desired degree of accuracy in 
the integral.· All you need to consider is the trade-off between the 
accuracy and calc ulation time. 

There are additional considerations, ho wever , when you're integrdling 
functions relating to an actual physical s ituation . BaClically . with such 
functions you should ask yourself whether the accuracy you would like 
in the integral is justified by the accuracy in the fun ction. For example, 
if the function contains e mpirical constants that are spec ified to only , 
say t three significant digits , it might not make sense to specify more than 
three digits in the display fonnat. 

Another important consideration-and one which is more subtl e and 
therefore more easily overlooked-is that nearly every function relating 
to a physical situation is inherently inaccurate co a certain degree, 
because it is only a mathematical model of an actua l process or event. A 
mathematical model is itse lf an approximation that igno res the effects of 
known o r unknown factors which are insignificant to the degree that the 
results are st ill useful. 

An example of a mathematical model is the normal distribution fun ction 

• Provided that/(x) is still calculated accurate I),. despite round-off error. 10 lhe number of 
di,it5 shown in the display . 



~ 
~ 

~ 

~ 
~ 
~ 

fA 
~ 
~ 
~ ,. 
r-
~ 
~ 
• 
~ 

• • 

A More Detailed Look at (ZlJ 243 

which has been found to be useful in deriving information concerning 
physical measurements on living organisms. product dimensions. 
average temperatures. etc. A similar mathematical model is 

c= Co f oc e - y'/4Dt dy -:::;r;;o;- ,nY;;;, • 

which is a particular solution of the diffusion equation for semiconduc­
tors . Such rnathe-matical descriptions typically arc either derived from 
theoretical considerations or inferred from experimental data . To be 
practically useful , they are constructed with certain assumptions, such 
as ignoring the effects of relatively insignificant factors . For example , 
the accuracy of n::sulls ubtttilled using the (lomlal di stribution function as 
a model of the distribution of certa in quantities depends on the size of the 
population being stud ied. The accuracy of results obtained using the 
solution to the diffusion equation ignores quantum effects . And the 
accuracy of results obtained from the equation S = So - Y.zgt2, which 
gives the height of a falling body, ignores the variation with altitude of g. 
the acce leration of gravity . 

Thus , mathematical descriptions of the physical world can provide 
resuhs of only limited accuracy. If numerical results of the model are 
needed to on ly, say. three significant digits, the effects of many factors 
and assumptions can be ignored . On the other hand. such factors and 
assumptions might. if they could be included in a more precise mathe­
matical description- which would still be only a mooel-affect the 
digits in the fifth and succeeding dec imal p!aces . If you calculated an 
integral with an apparent accuracy beyond that with which the model 
describes the actual behavior of the process or event, you would not be 
justified in using the calculated value to the full apparent accuracy. 

Round-Off Error in Internal Calculations 

With any computational device - including your HP-34C-calculated 
results must be "rounded off" to a finite number of digits (10 digits in 
your HP-34C). Because of this round-off error, calculated results­
especially results of evaluating a function that contains seveml mathe­
matical operations-may not be accurate to all 10 dig its that can be 
displayed . Note that round-off error affects the evaluation of any mathe­
matical expression , not just the evaluation of a function to be integrated 
using (ZlJ, 



244 A More Detailed Look at IZIl 

Iff(x) is a function relating to a physical situation, its inaccuracy due to 
round·off typically is insignificant compared to the inaccuracy due to 
empirical constants . etc . Iff(x ) is what we have called a pure mathemat­
ical function . its accuracy is limited only by round-off error. Generally, 
it would require a complicated analysis to detcnnine precisely how many 
digits of a calculated function might be affected by round-off. In prac­
tice, its effects are typically (and adequate ly) detennined through exper­
ience rather than analysis. 

In certain situations round-off error can cause peculiar results, particu­
larly if you should compare the result s of calculating integrals that are 
equivalent mathematically but differ by a transformation of variables. 
Describing such situations- which you are unlikely to encounter in 
typical applications- is beyond the scope of thi s handbook . 

Uncertainty and the Display Format 

Because of round-off error, the subroutine you write for evaluating 
f(x) cannot calculatcf(x) exactly, but rather calculates 

j(x) = f(x) ± S.(x). 

where 51(x) is the uncertainty of f (x ) caused by round-off error. 

lff(x) relates to a physical situation , then the function you would like to 
integrate is notf(x) but rather 

F (x) = f(x) ± 6,(x). 

where 52(x) is the uncertainty associated withf(x) that is caused by the 
approximation to the actual physical situation. 

Sincef(x) = j(x) ~ B1(x), the function you want to integrate is 

or 

F(x) = j(x) ± 6. (x ) ± 6,(x) 

F (x) = j(x) ± 6(x). 

where B(x) is the net uncertainty associated withj(x) . 



... 

.. .. .. .. 

A More Detai led Look at IZD 

Therefore, th~ integral you want is 

f.b F (x ) <Ix~ f.b [fix) ± S(x)] <Ix 

~ J,b fix) dx ± f Six) <Ix 

I ± t; 

245 

where I is the approximation tofa
b 

F(x) dx and ~ is the uncertainty 

associated with the approximation. The lZD algorithm places the number 
1 in the X-register and the number ~ in the Y -register. 

The uncertainty Sex) of j(x). the function calculated by your subroutine, 
is determined as follows. Suppose you consider three significant digits of 
the function's values to be accurate , so you set the display fo rmat to [!ill 
2. The display would then show only the accurate digits in the mantissa of 
a function' s values: for example, 1.23 -04 . 

Since the display format rounds the number in the X-register to the 
number displayed. this implies that the uncertainty in the function 's 
values is ±O.OO5 x 10-4 = ±O.5 x 10-2 X 10-4 = ± O,5 X 10-6 • Thus, 
setting the di splay rennat to (ili] n or IENGl n, where n is an integer. 
implies that the uncertainty in the function 's values is 

o(x) = 0.5 X lO-n x IOm(~) 

_ = 0.5 X I o-n+m(~) 

In this formula, n is the number of digits specified in the display fonnat 
andm (x) is the exponent of the function' s value atx that would appear if 
the value were displayed in [ill) display format. 

The uncertainty is proportional to the factor lom(xl, which represents the 
magnitude of the function 's value at x. Therefore, (!£D and IENGI di s­
play formats imply an uncertainty in the function that is rylative to the 
function's magnitude . : 

Ii; 



246 A More Detailed Look at rm 
Similarly . if a function value is displayed in CE!J n, the rounding of the 
display implies that the uncertainty in the function's values is 

8(x) ~ 0.5 X 10-". 

Since this uncertainty is independent of the function 's magnitude, (flK) 
display fonnat implies an uncertainty that is absolute , 

Each time the mJ algorithm samples the function at a value of x, it also 
derives a sample of 8(x). the uncertainty of the function's value alx. This 
is calculated using the number of digits n currently specified in the di s-
play format and (if the di splay fonnat is set to (!§] or I ENG P the mag- r~Q~ 
ni tude m (x) of the function 's value at x. The number 6., the uncertainty .: 
of the approx.imation to the desired integral , is the integral of 6(x): 

t., ~ f: 8(x) dx 

r 

This integral is calculated using the samples of 5(x) in roughly the sal e 
way that the approximation to the integral of the function is calculat.ed 
using the samples ofj(x). ~ 

b 

~ f. [0,5 X IO- "+m(,) 1 dx. 

Because ~ is proportional to the factor lo-n, the uncertainty of an app! x.-­
imation changes by about a factor of 10 for each digit specified in the 
display format. This will generally not be exact in [!£lor IENGl display 
format , however, because changing the number of digits specified may 
require that the function be evaluated at different sample points. so that 
&(x) -- IOm

( X) would ha.v¢ different values . 

I 
Note that when an integral is approximated in (!I!] display fonnat, 
m (x) = 0 and so the calculated uncertainty in the approximation turns 
out to be 

t. ~ 0.5 X lO-"(b - a). 



A More Detailed Look at IZD 247 

Normally you do not have to determine precisely the uncertainlY in the 
function . (To do so would frequently require a very complicated analy­
sis.) Generally, it's more convenient to use [!£Dor I ENG Idisplay format 
if the uncertainty in the function's values can be more easily estimated as 
a relative uncertainty . On the other hand. it' s more convenient to use 
C!I:!J display fonnat if the uncertainty in the function 's values can be 
more easily estimated as an abJolute uncenainty. (£IKIdisplay format 
may be inappropriate to use (leading to peculiar results) when you are 
integrating a function whose magnitude and uncertainty have extremely 
small values throughout the interval of integration, or a function whose 
magnitude and uncertainty vary through extremely large and small 
Yalues within the interval of integration . Likewise, Isclldisplay format 
may be inappropriate to use (also leading to peculiar results) if the mag­
nitude of the function becomes much smaller than its uncenainlY. If the 
results of calculating an integral seem strange, it may be more appropri­
ate to calculate the integral in the alternate display format. 

Calculating Integrals of Maximum Accuracy 

In (ill or I ENG Idisplay fonnat, numbers can be displayed with a man­
tissa containing up to seven digits. Specifying !!£D8 or (ill9 generally 
results in the same display as ~ 7. However, the uncenainty of 
integrals calculated in !!£D8 or (!£D9 is smaller than the uncenainty of 
integrals calculated in (!£I] 7 . The same is true, of course, for integrals 
calculated in I ENG I display format. 

You can calculate an integral of greatest possible accuracy with the 
display mode set to (!§J(or IENGI) 9. * If the calculator is in RUN mode , 
you can do so either directly by pressing (I)(lli) 9 , or indirectly by 
pressing 9 ISlol CD CD [II I OSP Ii (when the display format is already set 
to Iscll or I ENGl). If the calculator is in PRGM mode . however. you 
cannot set the display modedirectJy to ISCIIS, (!£D9, IENG IS. or IENGI9. 
If you attempt to do so, the resulting keycode will indicate (lli)7 or I ENG t 
7, and integrals will be calculated with an uncenainlY derived from a 

• Provided, of course, thatf(x) is ca1cu.latcd accwately to 10 signiflCUlI digill . 



248 A More Detailed Look at IZIJ 
display format specify ing seven digit s. To calculate integrals of 
maximum accuracy in PRGM mode, therefore, you must set the display 
fonnat indirectly using I OSP I I · * 
To see how this is done. slide the PRGM· RUN switch to PRGM~ 
and key in the fo llowing (tri vial) program . which calcul ates the integral 
of (sin x )/x with maximum accuracy . Afterwards. we' ll execute the 
program to calculate 5;(2) . 
Keystrokes Display 
[EJILBLI 0 001-25, 13, 11 

m IZIJ 2 

m~ 
Iilll 
G 
[EJI.,.I 

002- 9 
003- 23, 14, 23 
004- 25 11 

005- 15 22 

006- 14, 72, 2 

007- 25 12 
008- 25, 13, 2 

009-
010-
011-
012-

14 7 
21 
7f 

25 12 

Labe l of program containing 
IZD in program line. 
Key 9 into X-reg ister. 
Store 9 in I-register . 
Sets display fonnat to nine 
digits. (This program 
assumes that the display 
fonnat will have been 
manually set to (!£D before 
the program is executed.) 
Roll down the stack so that 
the 9 entered into the X­
register in program line 002 
does not become the upper 
limit of integration. 
Calculate the integral 

J: (s inx)/x dx . 

Label of subroutine that 
evaluatesf(x) = (sin xl/x. 

• If lnere is a negalive Dumber in the l-regislCr wilen you preS5 m I OIP I I numbers wi] be 
Jisplay~d as they wOlild 3JlJ!.u if 0 were in (he l -regi5Ier. However. the negalive number 
will be coBSilkred by the ll1J algorithm in delennining the uncertainty of an approxiRlll­l;on. 'The minimum number thai can be COfISKleted in detennining the uncertainty of an approximation is -6 . If the I.regisler contains a number less lhan -6. the approxim.aa:ion will be performed as if -6 were in the I-register. 



... ... .. 
,Ie .. .. .. 
-­.. .. .. ... .. .. .. .. 
.It 

A More Detailed Look at 1m 249 

Now, slide the PRGM-RUN switch back to .mJFU-I. To calculate 
5;(2), key the limits of integration into the X- and V-registers , then 
press (I] to execute the program. 

Keystrokes 

ED [ill) 3 

o 1..,....1 

2 

Display 

0.000 00 

0.000 00 

2. 

2.000 00 

1.605412 00 

6.000000-10 

1.605412 00 

1605412977 

Specify [ill) display for­
mat. Executing the subse­
quent program (by pressing 
0) will change the number 
of digits specified from 3 to 
9. (Display shown assumes 
no results remain from 
preceding example.) 
Key lower limit into 
Y -register. 
Key upper limit into 
X-register. 
Ensure that trigonometric 
mode is set to radians . (This 
step is not necessary if you 
have not switched your cal­
culator off nor reset the 
trigonomerric mode since 
you last sct it to radians.) 

Si (2) calculated with 
maximum accuracy. 
Uncertainty of 
approximation. 
Return approximation to 
display. 
All 10 digits of 
approximation . 

Since the most significant digit of the uncertainty occurs in the tenth 
decimal place, the uncertainty indicates that the estimate is correct to at 
feast nine decimal places. Indeed, the estimate agrees to all nine decimal 
places with the value given for Si (2) in tables of mathematical functions . 



250 A More Detailed Look at !ZD 

Obtaining the Current Approximation to an 
Integral 

Pressing I]Z!J while your Hp·34C is calculating an integral halts the 
calculation. just as it halts the execution of a running program . When you 
do so, the calculator SlOPS at the current program line in the subroutine 
you wrote for evaluating the function , and displays the result of execut­
ing the preceding program line . Note that after you halt the calculation, 
the current approximation to the integral is not the number in the X­
register nor the number in any other stack register. Just as with any 
program. pressing (E!) again starts the calculation from the program 
line at which it was slopped. 

When the calculation of an integral is requiring more time than you care 
to wait, you may want 10 stop and display the current approximation. 
You can obtain the current approximation, but not its uncertainty . The 
(lJ) algorithm updates the current approximation and stores it in the 
LAST X register after evaluating the function at each new sample point . 
To obtain the current approximation. therefore, simply halt the calcu­
lator. single-step if necessary through your function subroutine until the 
calculator has finished evaluating the function and updating the current 
approx.imation . then recall the contents of the LAST X register. 

Note that while the calculator is Updating the current approximation, the 
display does not flash as it usually does while the calculator is executing 
your function subroutine . Therefore, you might avoid having to single­
step through your subroutine by halting the calculator at a moment when 
the di splay is blanlc . 

In summary. to obtain the current approximation to an integral, follow 
the steps below. 

1. Press ~to halt the calculator, preferably while the display is 
blank. 

2. When the calculator halts with a number in the display. slide the 
PRGM-RUN switch to _~ . 

3 . If the display shows the program line containing the label of 
your function subroutine. slide the PRGM-RUN switch back 
to ~R.I\I and proceed with step 3. 



A More Detailed Look at 1m 251 

b. If you didn ' t press (!Z!)at a moment when the display was 
blank, the display will now show some other program line 
within your subroutine. Slide the PROM-RUN switch back 
to .:mJRl.IN and press (li) I SST I repeatedly until the 
display shows 25 12 at the right (or DOO- at the left·) while 
(he I SST I key is held down; then release the key and wail 
for the calculator to halt with a number in the display. 

3. Press (E]ILST xl. The current approximation will appear in the 
display. If you want to continue calculating the final approxima­
tion, press ICLXI m IRlsl. This refills the stack with the current 
x value and restarts the calculator. 

For example , let's calculate the integral Si (2) again and obtain the 
current approximation after a minute or two. 

Keystrokes 

00[000[0 
Display 

2.000000 00 

('lDhlng) 

Roll down stack until upper 
limit appears in X-register. 
Stan calculation of integral. 

After a minute or two, hah the calculator and check the current 
approx.imation: 

Keystrokes 

I!I!J 

Display 

6.771087-01 Halt the calculator by pres­
sing I!I!J while the display 
is blank . (Of course, the 
particular number in your 
calculator's display depends 
on the moment you pressed 
I!I!J.) 

• This will occur only when you have not included a ~ instnK:tion at the end of your 
subroutine . 



252 A More Detailed Look at IZII 
Now slide the PRGM-RUN switch to ~ to verify that the 
calculator has stopped at the label of your subroutine . 

Display 

001- 25, 13, 2 Label 2. 

Since the calculator slopped at the label of your subroutine , you can 
recall the current approximation from the LAST X register after sliding 
tbe PROM-RUN switch back to .om ..... 
Keystrokes 

IIJILSTXI 
Display 

1.605412 00 Current approximation to 
integral. (Again, the partic­
ular number in your calcu­
lator's display depends on 
the moment you pressed 
~.) 

To continue with the calculation and obtain the final approximation: 

Keyst rokes 

ICLxlm 

Display 

6.771087-01 

1.605412 00 

Return current x value to 
X-register . 
Final approximation 10 
integral. 

Considerations That Could Cause Incorrect 
Results 

Although the (ID algorithm in your HP-34C is one of the best available, 
in certain si tuations it-like nearly all algorithms for numerical 
integration- might give you an incorrect answer. The possibility o/Ihis 
occurring is extremely remote. The I1D algorithm has been designed to 



A More Detailed Look at IZII 253 

give accurate re)ults with almost any smooth function . Only for func­
tions that exhibit extremely erratic behavior is there any substantial ri sk 
of obtaining an inaccurate answer. Such functions rarely occur in prob­
lems related to actual physical situations; when they do, they usually can 
be recognized and dealt with in a straightforward manner . 

Let's take a more detailed look at the operation of the IZ!I algorithm to 
see how it might calculate an incorrect answer. This will enable us to 
identify the gener,d characteristics of functions that could cause prob­
lems. Final ly, we ' ll see how you can verify the accuracy of an approxi­
mation if you should ever want to. 

As we discussed on page 236, the IZIl algorithm samples the function 
f(x) at various values of x within the interval of integration . By caJcu· 
lating a weighted average of the function's values at the sample points , 
the algorithm approximates the integral of f(:c) . 

Unfortunately , since all that the algorithm knows aboutf(;:c) are its values 
at the sample points , it cannot distinguish between f(;:c) and any other 
function that agrees withf(;:c) at all the sample points . This siruation is 
depicted in the illustration below, which shows (over a ponion of the 
interval of integration) three of the infinitely many functions whose 
graphs include the finitely many sample points . 

I(x) 

~------__________________________ ~ __ x 



254 A More Detailed Look at IZll 
With this number of sample points. the algorithm will calculate the same 
approximation for the integral of any of the functions shown. The actual 
integrals oC tlle functions shown in black and gold are about the same, so 
the approximation will be fairly accurate ifj(x) is one of these functions. 
However, the actual integral of the function shown in blue is quite dif­
ferent from those of the others, so the c urrent approximation will be 
rather inaccurate ifJ(x) is this function . 

Suppose that the approximation using this number of sample points 
differs from previous approximations by less than the uncertainty , which 
was derived from the number of digits spec ified in the display format. 
The lZIJalgorithm will then tenninate , returning the current approxima­
tion as the best approximation to (he integral given the uncertainty you 
have implicitly agreed to tolerate. Thus, for certain functions-such as 
the function shown in blue-the calculator can give you a rather inac­
curate approximation because it samples the Junclion at only a finite 
number of points. This situation represents the extreme case of the trade­
off we mentioned earlier (page 241) between accuracy and calculation 
time: because you don 't want to wait an infinitely long time (to sample 
the function at an infinite number of points), you can 't be absolutely 
confident that the calculator's approximation is as accurate as its 
uncertainty indicates. 

Suppose, in contmst to the situation above. that the derived uncertainty 
in the approximation is so small (because you have specified sufficiently 
many digits in the display fo rmat) that the approximation to the integral 
using this number of sample points is not sufficiently acc urate. The 
algorithm will then samplef(x) al additional sample points. This situa­
tion is depicted in the next illustration, which shows the same three 
JXlssible functions whose graphs include the first set of sample points. 



A More Detailed Look at (ZIJ 255 

fIx) 

J-__________________________________ L--x 

Although all three functions shown in this illustration have identical 
values at the smaller number of sample points, the function shown in 
blue has very differe nt values at the new sample points . Whe n the algo­
ritmn processes these new function values. it will find that the disparity 
between the current approximation and the previous ones is much Jarger 
than the acceptable uncenainty. Consequently, the algorithm will con­
tinue evaluating the function at more and more sample points until 
successive approximations agree suffic iently closely . In this case, the 
calculator can give you an accurate approximation because, in say ing 
that you would accept only a relatively small uncertainty . you agreed 10 

wail as lo ng as necessary. 

Practically speaking, howe ver, you wouldn'l wanllO wait forever for an 
answer. (Yo u probably wouldn't need it then!) By impos ing this restric­
tion on the algorithm, you must accept that the function cannot be 
evaluated at infinitely many sample points and that consequently a sharp 
and narrow " spike " in the function can be ove rl ooked by the algorithm . 
This situation is depicted in the ne xt illustration , which shows a func­
lion that is smooth excepl for a prominent spike. 



256 A More Detailed Look at 1m 
fix) 

-+ ____ ~~~--------------------------+__x 

Despite a relatively high density of sample points , none of the sample 
points happens to discover the spike in the function. Since the approx.i­
mations after successive iterations agree quite closely, the algorithm 
would terminate with an approximation that is significandy incorrect 
because the spike remains undetected by the algorithm . 

Why is the spike not detected? Because it is so unlike the mild behavior 
of the function elsewhere throughout the interval of integration . Except 
for the spike, the function is smooth throughout the interval shown in the 
illustration. (Actually , if you viewed the graph of these functions over 
the entire interval of integration, they might not appear smooth but 
instead exhibit rapid fluctuations. The illustrations show an expanded 
view of a small portion of the interval of integration, so that characteri s­
tic rapid variations in the functions appear to be smooth.) By sampling 
the function with sample points of sufficient density , the algorithm 
comes to know the general behavior of the funct ion. If the spike were not 
so unlike the rest of the function, either it or similar variations would be 
detected by the algorithm at some iteration . When this happens. the 
number of sample points is increased until successive iterations yield 
approximations that take into account the presence of the most rapid , but 
characteristic, fluctuations. 



~ 

A More Detai led Look at 1m 257 

For example, consider the approximation of 

Since we ' re evaluating thi s integral numerically, we might think (naive ly 
in this case, as we will see late r) that we should represent the upper limit 
of in leg ration by 1099 , which is virtually the largest number you can key 
into the calculator. Let' s try it and see what happens. 

Slide the PRGM -RUN switch 10 PAGM ~ and key in a subroutine 
that evaluates the functionj(x) = xe-x • 

Keystrokes Display 

[EJ IL8LII 001- 25, 13, 1 
l eH.1 002- 32 

OO Ia 003- 15 1 
0 004- 61 
[EJI"THI 005- 25 12 

Now slide the PRGM-RUN switch back to .oII]RUN , set the display 
fa nnat to [!£I) 3, and key the limits of integration into the X- and 
Y -registers. 

Keystrokes Display 

OJ [ill) 3 0.000 00 Set display format to (!£I] 
3. (Display shown assumes 
no results remain from 
preceding example.) 

01 ........ 1 0.000 00 Key lower I imit into 
V-register. 

1 ... 199 1. 99 Key upper limit into 
X-register. 

OJ 1m I 0.000 00 Approx imation of integral. 



258 A More Detailed Look at 1m 
The answer returned by the calculator is clearly incorrect. since the 
actual integral off(x) = xe-J. from 0 to 00 is exactly 1. But the problem is 
not that we represented 00 by 10". since the actual integral ofthis funct ion 
from 0 to 1099 is very close to 1. The reason we got an incorrect answer 
becomes apparent if we look at the graph of f(x) over the interval of 
integration: 

fIx) 

The graph is a spike very close to the origin. (Actually. to illustrate 
f(x) we have considerably exaggerdted the width of the spike. Shown in 
actual scale over the interval of integration. the spike would be indis­
tinguishable from the vertical axis of the graph.) Because no sample 
point happened to discover the spike, the algorithm assumed thatf(x) 
was identically equal to zero throughout the interval of integration. 
Even if you increased the number of sample points by calculating the 
integral in (!§)9, none of the additional sample points would di scover 
the spike when thi s particular function is integrated over thi s particular 
interval. We' ll mention a better solution after we briefly describe the 
generdl nature of functions that could cause problems. 

We have seen how the {lDalgorithm can give you an incorrect answer 
whenj(x) has a wiggle somewhere that is very uncharacteri stic of the 
behavior of the function elsewhere . Fortunately , functions exhibiting 
such aberrations arc unusual enough that you are unlikely to have to 
integrate one unknowingly . 

Functions that could lead to incorrect results can be identified most 
precisely by describing them from the mathematical viewpoint of com-



A More Detailed Look at IZIl 259 

plex analys is. * But in more simple lenns, suc h a function can be identi­
fied by how rapidly it and its low-order deri vati ves vary across the 
interval of integration. Basically. the more rapid the variation in the 
function or its derivatives, and the lower the order of such rapidly vary­
ing derivatives, the less quic"ly will the (lDalgorithm terminate, and the 
Jess reliable will the resuhing approximation be . 

Note that the rapidity of variation in the function (or its low-order 
derivatives) must be detennined with respect to the width of the interval 
of integration. With a given number of sample points, a functionj(x) 
that has three "wiggles" can be bette r characterized by its samples when 
these variations are spread out over most of the interval of integration 
than if they are confined to only a small fraction of the interval . (These 
two situations are shown in the next two illustrations.) Considering 
the variations or wiggles as a type of oscillation in the function, the cri~ 
terion of interest is the ratio of the period of the osc ill ations to the width 
of the interval of integration: the larger this ratio, the more quickl y the 
algorithm will tenninate, and the more reliable will be the resulting 
approx imation. 

In many cases you will be familiar enough with (he function you want to 
integrate that you' ll know whether the function has any quick wiggles 
relati ve to the interval of integration. If you' re not familiar with the 
function, and you have reason to suspect that it may cause proble ms, you 
can quickly plot a few points by evaluating the function using the 
subroutine you wrote for that purpose . 

If for any reason, after obtaining an approximation to an integral, you 
have reason to suspect its validity , there 's a very simple procedure you 
can use to verify it: subdi vide the interval of integration into two or more 
adjacent subintervals, integrate the function over each subinterval , then 
add the resulting approximations. This causes the function to be sampled 
at a brand new set of sample points, thereby more likely re vealing any 
previously hidden spikes. If the initial approximation was valid, it will 
equal the sum of the approximations over the subintervals . 

• The approximations computed by the HP-34C .... iIl converge rapidJy to the C()l"n':ct answer 
p-ovKlc:d the integrand /(t). regarded a5 an analytic function of the complex variable t, 
has no singularities on nor too Deat the interval of integration, and bas an avel'lll.ge value on 
that interval not drastically smalle r than its magnitude near that interval. 



260 A More Detailed Look at !ZIl 

a 

a 

Calculated Integral 
of this function 
will be accurate. 

Calculated integral 
01 this function 
may be inaccurate. 

Considerations That Prolong Calculation 
Time 

b 

b 

tn the example on page 257, we saw that the algorithm gave an incorrect 
answer because it neve r detected the spike in the function. This happened 
because the variation in the function was too quick relative to the width of 
the interval of integration . If the width of the interval were smaller, we 
would get the correct answer; but it would take a very long time if the 
interval were still too wide. 



A More Detailed Look at IZIJ 261 

For ce rtain integrals. such as the one in that example. calculating the 
integral may be undu ly pro lo nged occause the width of the interva l of 
integ ration is too large re lative to certain features of the function being 
integrated . Let 's consider an integra l whe re the interval of integration is 
wide enoug h to require excessive ca lculation time but not so wide that it 
would be calculated inco rrectly . Note that because f(x) = xe - x ap­
proaches ze ro very quick ly as x approac hes:lO, the cont ributio n to the 
integral of the function at large va lues of x is negl igible. Therefore, 
we can eva luate the inlcgral by replac ing ex;, the upper limit of integra­
tion. by a num ber nol so lurge as 1099

, say loa. 

Keystrokes Disptay 

o 1""",.1 0.000 00 Key lower limit into 
Y -register . 

l'EXI3 1. 03 Key upper limit into 
X-register. 

OJIZIJ 1.000 00 Approximation to integral. 
IXlYI 1.824 -04 Uncenainty of 

approximation. 

This is the correct answer, but it took a very long time. To understand 
why, compare the graph of the function over the interval of integration . 
which looks about identical to that shown on page 258 . to the graph of the 
function between x = 0 and x = 10. 

fix) 

o 10 



262 A More Detailed Look at 1m 
By comparing the two graphs, you can see that the function is ., inter­
esting" only at small values of x . At greater values of x. the function is 
"uninteresting," since it decreases smoothly and gradually in a very 
predictable manner. 

As we discussed earlier, the IZD algorithm will sample the funct ion 
with higher densities of sample points until the disparity between s~c­
cessive approximations becomes sufficiently small. In other words, the 
al gOrithm samples the function at increasing numbers of sample points 
until it has sufficient information about the function to provide an 
approximation that changes insignificantly when further samples are 
considered . 

If the interval of integration were (0, 10) so that the algorithm needed to 
sample the function only at values where it was interesting but relatively 
smooth , the sample points after the fi rst few iterations would contribute 
no new information about the behavior of the function. Therefore, only 
a few iterations would be necessary before the disparity between suc­
cessive approximations became sufficiently small that the algorithm 
could terminate with an approximation of a given accuracy. 

On the othe r hand, if the interval of integration were more like the one 
shown in the graph on page 258, most ofthe sample points would capture 
the function in the region where its slope is not varying much. The few 
sample points at small values of x would find that values of the funct ion 
changed appreciably from one iteration to the next. Consequently, the 
function would have to be evaluated at additional sample points before 
the di sparity be tween successive approximations would become 
sufficiently small . 

In order for the integral to be approximated with the !iame accuracy over 
the larger interval as over the smaller interval, the denSity of the sample 
poiflls must be the same in the region where the junction is interesting . 
To achieve the same density of sample points, the total number of sam­
ple points required over the Jarger interval is much greater than the num­
ber required over the smaller interval. Consequently. several more 
iterations are required over the larger interval to achieve an approxima­
tion with the same accuracy. and therefore calculating the integral 
requires considerably more time. 



A More Detailed Look at!ZIl 263 

Because the calculation time depends on how soon a certain density of 
sample points is achieved in the region where the function is interesting . 
the calculation of the integral of any function will be prolonged if the 
interval of integration includes mostly regions where the function is not 
interesting. Fortunately, if you must calculate such an integral , you can 
modify the problem so that the calculation time is considerably reduced . 
We will di scuss two techniques of doing so: subdividing the interval of 
integration. and transfonnation of variables. 

Subdividing the Interval of Integration 

In regions where the slope of/ex) is varying appreciably. a high density 
of sample points is necessary to provide an approximation that changes 
insignificantly from one iteration to the next. However, in regions where 
the slolX! of the function stays nearly constant, a high density of sample 
points is not necessary . This is because evaluating the function at addi­
tional sample points would not yield much new information about the 
function . so it would not dramatically affect the disparity between suc­
cessive approximations. Consequently. in such regions an approxima­
tion of compantble accuracy could be achieved with substantially fewer 
sample points; so much of the time spent evaluating the function in these 
regions is wasted . When integrating such function s, you can save time 
by using the followin g procedure: 

I. Divide the interval of integration into subintervals over which the 
function is interesting and subintervals over which the function is 
uninteresting. 

2. Over the subintervals where the function is interesting, calculate 
the integral in the display fonnat corresponding to the accuracy 
you would like overall. 

3. Over the subintervals where the function either is not interesting 
or contributes negligibly to the integral, calculate the integntl with 
less accwacy . that is . in a display fonnat specifying fewer digits. 

4. To get the integral over the entire interval of integration. add 
together the approximations and their uncertainties from the 
integrals calculated over each subintervaL You can do this easily 
using the (Elkey . 



264 A More Detailed Look at 1m 
Before sutxiividing the interval of integration, check whether the calcu· 
lator underflows when evaluating the function around the upper (or 
lower) limit of integration.· Since there is no point in evaluating the 
function at values of x for which the calculator underflows, in some cases 
the upper limit of integration can be reduced, saving considerable 
calculation time. 

Remember that once you have keyed in the subroutine that evaluates 
j(x), you can calculatef(x) for any value ofx by keying that value into 
the X-register and pressing loneu 1I£NT&II*IIEN'1'a'.IIGsel followed by the 
label of the subroutine. 

If the calculator underflows at the upper limit of integration, try smaller 
numbers until you get closer to the point where the calculator no longer 
underflows. 

Let's apply these procedures to the example on page 257 . 

Keystrokes Display 

1 .. ,13 1. 03 Key upper limit into 
X -register. 

1 ........ 11 ........ 1 
1 ....... · 1 1.000 03 Fill the stack with x. 
IGSel1 0.000 00 Calculator underflows at the 

upper limit. 
300 I.N1.' .. II ........ 1 
1 ........ 1 3.000 02 Try a smaller value of x. 
IGse l 1 0.000 00 Calculator still underflows. 
200 I.N1.' .. II ........ 1 
1 ........ 1 2.000 02 Try a smaller value of x. 
IGsel1 2.768 -85 Calculator does not under-

flow at x = 200; try a num-
ber between 200 and 250. 

225 1 .N", .. II .N", .. I 
1 ........ 1 2.250 02 
IGSBII 4.324 -96 Calculator is close to 

underflow . 

At this point . you can usc ~ to pinpoint the smallest value of x at 
which the calculator underflows . 

• Remember that when the: calculation or any quantity would resul! in a number less than 
10-" , the result is tepliK"ed by uro. This condition is known as underflow . 



~ 
~ ... .. 
I 
~ 
~ 

Keystrokes 

[!]IEJ 

m lsot.@ I 

A More Detailed Look at IlD 265 

Display 

2.250 

2.280 

02 

02 

Roll down stack until the 
last value tried is in the X­
and Y -registers. 
The minimum value of x at 
which the calculator under­
flows is about 228. 

We have now detcnnined that we need integrate only from 0 to 228. 
Since the function is interesting only for values of x less than 10, let 's 
divide the interval of integration there. The problem has now become: 

f ' f '" f 'O f 'U xe- X dx - .re - X dx = xe- x dx + :ce -x d:c. 
o 0 0 10 

Keystrokes Display 

o 1"""" 1 0.000 00 Key in lower limit of 
integration o ver first 
subinterval. 

10 10. Key in upper limit of 
integration over first 
subinterval. 

mIlD I 9.995 -01 Integral over (0. 10) 
calculated in [!5D 3. 

mCLEAR m - 9.995 - 01 Clear statistical storage 
registers. 

mlE 1.000 00 Sum approximation and it s 
uncertainty in registers RJ 
and R3 . 

I"yl 1.841 -Q4 Uncertainty of 
approximation. 

[!]IEJ[!]IEJ 1.000 01 Roll down stack until upper 
limit of fi rst integral appears 
in X-register. 



266 A More Detailed Look at 1m 
Keystrokes Display 
228 228. Key upper limit of second 

integral into X·register. 
Upper limit of first integral 
is lifted into Y -register, 
becoming lower limit of 
second integral . 

ill [ill) 0 2. 02 Specify [ill) 0 display for-
mat for a quick ca1culation 
over (10, 228). lfthe uncer-
tainty o f the approximation 
turns out nOl to be accurate 
enough. we can repeat the 
approximation in a display 
fonnat specifying more 
digits. 

ill 1m I 5. -04 Integral over (10, 228) 
calculated in !]£I) O. 

ill [ill) 3 5.328 -04 Change display format back 
to [ill) 3. 

I .. yl 7.588 -05 Check uncertainty of 
approximation. Since it is 
less than the uncertainty of 
the approximalion over the 
flrst subinterval, (!9] 0 
yielded an approximation of 
sufficient accuracy. 

I"yl 5.328 -04 Return approximation and 
its uncertainty to the X- and 
Y -registers , respectively. 
before summing them in 
statistical storage registers. 

ill[E 2.000 00 Sum approximation and its 
uncertainty . 

10cLl ill [E 1.000 00 Integral over total interval 
(0, 228). 

IXl, I 2.598 -04 Uncertainty of integral . 

Calculating the integral over the two subintervals look o nl y a fraction of 
the time to calcul ate the integral over (0, 1(00); and the combined uncer· 



.. .. .. .. .. 

A More Detailed Look at 1m 267 

tainty of the total approximation is not appreciably larger than the 
uncertainty of the single approximation over the entire interval. 

Transformation of Variables 

In many problems where the function changes very slowly over most of a 
very wide interval of integration. a suitable transfonnation of variables 
may decrease the time required to calculate the integral. 

For example, consider again the integral 

Let 

Then 

and 

Substituting , 

x = - In u 

dx= - ~. 
u 

De-'dx = I.: -"(- In u) (u) (_ ~u) 

= flo lnudu . 

Slide the PRGM-RUN switch to PRGMmm:. and key in a subroutine that 
evaluates the functionf (u) = In u . 

Keystrokes 

(!Jlm l3 
[I]~ 
(!J IATNI 

Display 

001- 25, 13, 3 
002- 14 1 
003- 25 12 



268 A More Detailed Look at (lD 

Slide the PRGM-RUN switch back to .mJRlIN and key in the limitsof 
integration , then press [[) lZIl 3 10 calculate the integral. 

Keystrokes Display 

I I.N"''' I 1.000 00 Key in lower limit of 
integration . 

0 O. Key in upper limit of 
integf"dtion. 

m (lD 3 9.998 -01 Approximation to equiva-
lent integral . 

1 .. ,1 2.130 -04 Uncertainty of 
approximation. 

Considering the uncertainty of this approximation , it agrees with the 
value calculated above for the original integral. Yet , it required only a 
f)delion of the calculation time . 





Appendix C 

Service and Maintenance 

Your Hewlett-Packard Calculator 
Your calculator is another example of the award-winning design, 
superior quality . and attention to detail in engineering and construction 
that have marked Hewlett-Packard electronic instruments for more than 
30 years . Each Hewlett-Packard calculator is precision crafted by people 
who are dedicated to giving you the best possible product at any price. 

AC Line Operation 
Your calculator contains a rechargeable battery pack consisting of 
nickel-cadmium batteries. When you receive your calculator. the battery 
pack inside may be discharged, but you can operate the calculator 
immediate ly by using the ac adapter/recharger. 

Note: 00 not attempt to operate the calculator from an ae 
line with the battery pack removed. 

The procedure for using the ac adapter/recharger is as follows: 

I . You need not tum the calculator off. 
2. Insert the ac adapter/recharger plug into the connector on the lOp 

of the calculator, with the snap release lab on the plug facing 
toward the right side of the calculator. 

3. Insert the power plug into a live ac power outlet. 

Note: It is norma! for the ac adapter/recharger (and the 
battery pack) to be warm to the touch when plugged into an 
ae outlet. 

270 



.. 

... .... 

Service and Maintenance 271 

CAUTION 

The use of a charger other than the HP recharger supplied 
with the calculator may result in damage to your calculator. 

Use only the "8" suffix version ae adapter/ recharger 
shipped with your calculator (see product number on 
recharger) . Earlier "A" suffix version rechargers will not 
damage your calculator, but may clear continuous memory 
when plugged in. 

Battery Operation 
To operate the calculator from battery power alone, simply disconnect 
the recharger plug from the calculator by grasping the plug between your 
thumb and forefinger, squeezing to depress the snap release tab. and 
pulling gently. (Even when not connected to the calculator, the ae 
adapter/recharger may be left plugged into the ae outlet.) 

Using the calculator on battery power gives the calculator full port­
ability, allowing you to carry it nearly anywhere. A fully charged battery 
pack typically provides 3 hours of continuous operation. By turning the 
power off when the calculator is not in use , the charge on the battery 
pack should easily last throughout a normal working day. 

Low Power 

When you are operating from battery power and the batteries get low. a 
raised decimal is turned on at the far left of the display to warn you that 
you have between 1 minute and 25 minutes of operating time left. 

'1.23 

If the display contains the low power indication, the minus sign looks like 
an incomplete divide sign. 

To return to full power either connect the ac adapter/recharger to the 
calculator as described under AC Line Operation, or substitute a fully 
charged battery pack for the one in the calculator . 



272 Service and Maintenance 

Battery Charging 
The rechargeable batteries in the battery pack are charged while you 
operate the calculator from the ac adapter/recharger. Batteries will 
charge with the calculator on or off, provided batteries are in place and 
recharger is connected. Nonnal charging times between the fully dis­
charged state and the fully charged state are (depending on ac line voltage 
value); 

Calculator off: 5 to 9 hours 

Calculator on: 17 hours 

Shoner charging periods will reduce the operating time you can e)(pect 
from a single banery charge. Whether the calculator is off or on , the 
calculator battery pack is never in danger of becoming overcharged. 

Note: The ae adapter/recharger is a sealed unit and is not 
repairable. Return it to Hewlett-Packard if service is required. 

Using Continuous Memory 
When you turn your calculator off, the following information is retained: 

• All programs that are loaded into the calculator . 

• Contents of the storage registers. 

• Display status (RX, SCI, or ENG. and number of displayed 
digits) . 

Regardless of where you stopped in a program, the calculator returns to 
line 000 (top of program memory) when you turn it on again. 

Numbers in the stack, LAST X. and trigonometric mode status (DEG, 
RAD, or GRAD) are not preserved when you turn the calculator off. 
Also, all flags and pending subroutines are cleared . 

Continuous memory requires that the batteries be kept in the calculator. 
If the low power indicator appears in the display , turn your calculator off 
immediately and connect it to an ac outlet or insen a new battery pack. 
If you allow the battery to discharge completely, the information in 
continuous memory will be lost. 



Service and Maintenance 273 

If you drop or traumatize your calculator, or if power to the continu­
ous memory is interrupted. whether the calculator is off or on, the con­
tents of program memory and the data storage registers may be lost. If 
this occurs, when the calculator is next turned on with power available. 
Pr Error (power failure) will appear in the display . (Pressing any key will 
clear this and all other error signals.) 

Battery Pack Replacement 
If it becomes necessary to replace the battery pack , use only another 
Hewlett-Packard battery pack like the one shipped with your calculator. 
Continuous memory req uires thai batteries be replaced as quickly as 
possible. Nonnally you have a minimum of 5 seconds to change the 
batteries. Leaving batteries out of the calculator for ex tended periods will 
result in loss of information in cont inuous memory . 

CAUTION 

Use of any baHeries other than the Hewlett·Packard battery 
pack may result in damage to your calculator. 

To replace the battery pack use the following procedure: 

I. Set calculator ON·OFF switch 
to OFF and disconnect the ac 
adapter/ recharger from the 
calculator . 



274 Service and Maintenance 

2. Press down on the short ridges 
of the battery door. close to the 
edge, until the door re lease 
s naps open . Slide the door 
open . 

3 . Whe n door is re moved. turn 
calcul ator o"'er and gently 
s hake, allowing the ban cry 
pack to faU into the palm of your 
hand . 

4 . Place the new battery pack into 
the calculator. Your calculator 
will turn on only if the batte ry 
pac k is in serted correc tl y . 

5. Insert battery door and slide 
door back into place. 



Service and Maintenance 275 

6. Tum calculator over and turn 
power on to assure proper 
bauery installation . If the dis· 
play does not light, make sure 
the battery pack is correctly 
placed in calculator. 

Battery Care 
When not being u~d , the batteries in your calculator have a self· 
discharge rate of approximately 1 percent of available charge per day . 
After 30 days, a battery pack might have only 50 to 75 percent of its 
charge remaining. and the calculator might not even turn on. If a calcu­
lator fails to tum on, you should substitute a charged battery pack , if 
available, for the one in the calculator, or plug in the ac adapter/ 
recharger. The discharged battery pack should be charged for at least 12 
hours. 

If a battery pack will not hold a charge and seems to discharge very 
quickly in use, it may be defective. If the one-year warranty on the 
battery pack has not expired, return the defective pack to Hewlett­
Packard according to the shipping instructions. (If you are in doubt 
about the cause of the problem, return the complete calculator aJong with 
its battery pack and ac adapter/recharger .) If the battery pack is out of 
warranty . see your nearest dealer to order a replacement. 

WARNING 

Do not attempt to incinerate or mutilate the battery pack­
the pack may burst or release toxic materials. 

Do not oonnect together or otherwise short-circuit the battery 
terminals-the pack may melt or cause serious bums. 



276 Service and Maintenance 

Temperature Range 
Temperature ranges for the calculator are: 

Operating 
Charging 
Storage 

Service 

Blank DIsplay 

0° to 45°C 
15° to 40°C 

_ 40° to 55°C 

32°10 11 3° F 
59°10 104°F 

- 40° 10 131 °F 

If the display blanks out , tum the calculator off, then on. If the display 
remains blank, check the following : 

1. If the ac adapte r/ recharger is attached to the calculator, make sure 
it is plugged into an ac outlet. 

2. Examine the battery pack to see if the contacts are dirty. 

3. Substitute a fully charged banery pack , if available, for the one 
that was in the calculator. 

4 . Ifthe display is still blank , try operating the calculator using the ac 
adapter/recharger (with the batteries in the calculator). 

5. Lf, after step 4 , the display is still blank , service is required . 
(Refer to Limited One-Year Warranty .) 

Limited One-Year Warranty 

What We Will Do 

The HP-34C and its accessories are warranted by Hewlett-Packard 
against defects in materials and workmanship for one year from date of 
orig inal purchase. If you se ll your calculator or give it as a gift , the war­
r.mty is automat ically transferred to the new owner and remains in effec t 
for the original one-year period . During the warranty period we will 
repair or, at our option, replace at no charge a product that proves to be 
defective provided that you return the product , shipping prepaid, to a 
Hewlett-Packard repair center. 



.. 

Service and Maintenance 2n 

How to Obtain Repair Service 

Hewlett · Packard maintains repair centers in most major countries 
throughout the world. You may have your calculator repaired at a 
Hewlett·Packard repair center anytime it needs service , whether the 
unit is under warranty or not. There is a charge for repairs after the one­
year warranty period. Please refer to the Shipping Instructions in 
this handbook . 

Uewlett·Packard calculators are normally repaired and reshipped within 
five (5) working days of receipt at any repair center. This is an average 
time and could possibly vary depending upon time of year and work load 
at the repair center. 

The Hewlett -Packard United States Repair Center for handheld and 
portable printing calculators is located at Corvallis, Oregon . The mailing 
address is: 

Hewlett~Packard 

Corvallis Division Service Dept. 
P.O. Box 999 

Corvallis, OR 97330 

What Is Not Covered 

This warranty docs not apply if the product has been damaged by 
accident or mi suse , or as a result of se rv ice or modification by other 
than an authorized Hewlett-Packard repair center. 

No other express warranty is given. The repair or replacement of a 
product is your exclusive remedy. ANY IMPLIED " tARRANTY OF 
MERCHANT ABILITY OR FITNESS IS LIMITED TO THE ONE· 
YEAR DURATION OF THIS WRITTEN WARRANTY. Some 
states do not allow limitations on how long an implied warranty lasts. 
so the above limitation may not apply to you. IN NO EVENT SHALL 
HEWLETT·PACKARD COMPANY BE LIABLE FOR CONSE· 
QUENTIAL DAMAGES. Some states do not allow the exclusion or 
limitation of incidental or consequential damages . so the above 
limitation or exclusion may not apply to you. 

This warranty gives you specific legal rights, and you may also have 
other rights which vary from state to state . 



278 Service and Maintenance 

Obligation to Make Changes 

Products {ire sold on the basis of specifications applicable at the time of 
manufacture. Hewlett-Packard shall have no obligation to modify or 
update products once sold. 

Warranty Information Toll-Free Number 

If you have any questions concern ing this warranty, please call 
800/ 547-3400. ( In Oregon ca1l758-1010. ) 

Shipping Instructions 
The calculator should be returned. along with completed Service Card, 
in its shipping case (or other protective package) to avoid in-transit 
damage. Such damage is not covered by warranty and Hewlett-Packard 
suggests that the customer insure shipments to the repair center. A calcu­
lator returned for repair should include the ac adapter/recharger and the 
battery pack. Send these items to the address shown on the Service Card . 
Remember to include a sales slip or other proof of purchase with your 
unit. 

Whether the unit is under warranty or not , it is your responsibility to pay 
shipping charges for delivery to the Hewlett·Packard repair center. 

After warranty repairs are completed, the repair center returns the unit 
with postage prepaid . On out.of.warranty repairs , the unit is returned 
C.O.D . (covering shipping costs and the service charge). 

Programming and Applications Assistance 
Should you need technical assistance concerning programming, calcu· 
lator applications, e tc. , call Hewleu·Packard Customer Support at 
S03nS7·2000. This is nol a toll· free number, and we regret that we 
cannot accept collect calls . As an alternative, you may write to : 

Hewlett-Packard 
Corvallis Division Customer Support 

1000 N .E. Circle Boulevard 
Corvallis, OR 97330 



Service and Maintenance 279 

A great number of our users submit program applications or unique 
program key sequences to share with other HP owners. Hewlett-Packard 
will only consider using ideas given freely to us . Since it is the policy of 
Hewlett-Packard not to accept suggestions given in confidence, the 
following statement must be included with your submittal: 

" . am voluntari ly submitting th is information to Hewlett-Packard 
Company. The information is not confidential and Hewlett -Packard may 
do whatever it wishes with the information without obligation to me or 
anyone else ." 

Further Information 
Service contmcts are not available. Calculator circuitry and design are 
proprietary to Hewlett-Packard , and service manuals are not avaiJable 
to customers. 

Should other problems or questions ari se regard ing repairs, please call 
your nearest Hewlett-Packard sales office or repair center. 

Note: Not all Hewlett-Packard repair centers offer service 
for all models of HP calculators. However, you can be sure 
that service may be obtained in the country where you bought 
your calculator. 

tf you happen to be outside of the country where you bought 
your calculator, you can contact the local Hewlett-Packard 
repair center to see if service capability is available for your 
model. If service is unavailable, please ship your calculator 
to the following address: 

Hewlett-Packard 
1000 H.E. Circle Boulevard 

Corvallla, Oregon 97330 
U.S.A. 

All shipping and reimportation arrangements are your 
responsibility. 



Appendix 0 

Error Conditions 

If you attempt a calculation containing an improper operation-say divj· 
sion by zero-the display will show Error and a number. To clear an 
error message. press any key . 

1be following operations will display Error plus a number: 

Error 0: Improper Mathematical Operation 

IIIegaJ argument 10 math mUline; 
0 . where x = O. 
~ , where y = 0 and x ~ O. or y < 0 and x is non-integer . 
@ , where x < O. 
CY!J • where x = O. 
IlOOl, where x!S; O. 
ITEl. where x ~ O. 
1...-'1 , where I x I is> I. 
leos-'J , where I x I is > I. 
151010 . where x = O. 
~ , where the value in the y-register is O. 

Error 1: Storage Register Onrflow 

Storage register overflow (except ~. 1]3). Magnitude of number in 
storage reg ister would be large r than 9.999999999 x 1CJ99, 

Error 2: Improper Register Number 

Named storage register currently converted to program memory. or 
nonexistent storage register. 

280 



Error Conditions 281 

Error 3: Improper Statistical Operation 

00 n = 0 
ill n '" I 
QJ n ::s;; 1 

m n '" I 
ILR.I n ~ l 

Note: Error 3 is also displayed if division by zero or the 
square root of a negative number would be required during 
computation wrth any of the following formulas : 

s. - V n(~-I) s, - V n(nN_ I) 

A - ~ 
M 

B 
M'i. y - P'i.x 

n ·M 

y _ .:M::..='i..!.-y_+_p:...o:( n"'·"'x'----='i.:;:x'"-) 
n ·M 

where: 

M - n'i.x' - ('i.x)' 
N -n'i.y' - ('i.y)' 
P - n'i.xy - 'i.x'i.y 

(A and B are the values re­
turned by the operation II[J, 
where), = Ax + 8 .) 

Error 4: Improper Line Number or Label Call 

Line number called for is currently unoccupied, or nonexistent (> 210) . 
attempt to load more than 2 to lines of program memory. or label 
called does nor exist. 

Error 5 

Recursive call to IZIJ or ISOlVEl . i.e ., IZ!1 within a subroutine called by 
another IZIJ or ISOLVEI within a subroutine called by another ~. 



282 Error Conditions 

Error 6 

ISOlv£lunable to find a root using given estimates. 

Error 7 

Dlegal label (4-9) used wilh !ZII or ~. or illegal flag name (4·9) . 

E"orS 

Subroutine leve l too deep. 

Error 9 

Self-test discovered circuitry problem. Note that program memory, 
storage register contents. and display setting are not cleared by executing 
lhe se lf·lest ( I 5TOII""",. I). 

Pr Error 

Continuous me mory cleared because o f power failure. 





Appendix E 

Stack Lift and LAST X 

Your HP-34C calculator has been designed to operate in a natural 
manner . As you have seen as you worked through this handbook, you are 
seldom required to think about the operation of the automatic memory 
stack-you merely work through calculations in the same way you 
would with a pencil and paper, perfonning one operation at a time. 

There may be occasions, however. particularly as you program the 
HP-34C, when you wish to know the effect of a particular operation 
upon the stack. The following explanation should help you . 

Digit Entry Termination 
Most operations on the calculator, whether executed as instructions in a 
program or pressed from the keyboard, terminate digit entry. This means 
that the calculator knows that any digits you key in after any of these 
operations are pan of a new number . 

Stack Lift 
There are three types of operations on the calculator , depending upon 
how they affect the stack lift . These are stack-disabling operations, 
slack-enabJing operations, and neutral operations. 

Disabil ng Operations 

There are only four stack-disabling operations on the calculator. These 
operations disable the stack lift , so that a number keyed in after one of 
these disabling operations writes over the current number in the dis­
played X-register and the stack docs not lift. These special disabling 
operations are: 

1 . .. ' .... 1 

Enabling Operations 

The bulk of the operations on the keyboard, including one- and two­
number mathematical functions like [!!] and ~, are stack enabling 

284 



Stack Lift and LAST X 285 

operations. These operations enable the stack lift, so that a number keyed 
in after one of the enabling operations lifts the stack. Note that switching 
from PRGM mode to RUN mode is an enabling operation. 

Neutral Operations 

Some operations, like ICHS] and CEKJ, are neutral; that is, they do not 
alter the previous status of the stack lift. Thus, if you di sable the stack 
lift by pressing [ENTER.], then press m IIOO n and key in a new number , 
that number will write over the number in the X-register and the stack 
will nOllin. Similarly , if you have previously enabled the stack lift by 
executing, say (£], then execute a lI!!J instruction followed by a digit 
entry sequence, the stack will lift . 

The following operations arc neutral on the HP-34C: 

LAST X 

IGTOI8nnn 
IBSTI 
ISST] (In RUN mode IssTi 

may execute an instruc­
tion that does enable 
the stack.) 

The following operations save x in LAST X: 

[B 
I LC'G I 
~ 
mEl 

I SIP~-I I 
Icosl 
Icos-' I 
IUN] 

I TAN-I I 

CLEAR I PREFIX I 

CLEAR I A£GI 
CLEAR (IJ 
ICHsl-
IMANTI 

~ 
I PSE I 

@ 

~ 
(lil 
~ 
EID 
~t 

• (2!!] is neutral during digit entry of a nwnber from keys, as in 1. 2. 3, (2!!] to enter 
_ I 23; or, 123 rrm@!!l to enter 123 x 10-'. But otherwise. (2!!] enables the stack, as 
you would expect. 

rSaves the absolule value of x in Last X. 



Index 

A -----------------------------------
Ab$olute value, 22 
AC line operation, 270 
Accumulations , 27, 33, 38 
Addresses 

label , 165 
negative number. 17. 
storage register . 1 S6 

Ahcring programs, 84-101 
Arithmetic , storage register. 22, 158, 160 
Ass istance. programming and applications, 278 
Automatic memory allocat ion, 55-60 
Automatic run mode. 46 
A vail able program memory. 59, 93 
Aver.:tgc (mean). 32-34 

B ________________________________ _ 

Backstepping, 84, 93 
Batteries , 270-275 
Bessel function 

first kind, order 0, 203, 23J..235 
first kind . order I , 205, 210 
lin;t ki nd , order 4, 237-238 

Blank di splay, 276 
Branching, 102-120 

conditional, lO8.120 
I-register , 151 , 163-173 
unconditional, 102-108 

c ________________________________ _ 
Charging the battery, 272 
Clearing 

flags, 120, 121 
286 



pending subroutines, 137,272 
prefix keys, 84 
program memory. 49, 84 
storage registers. 58 

Conditional tests, 108·110, 120 
Continuous memory, 19, 272 
Converting memory, 55-60 
Correct ing statistical data, 31 
Counter, l· register. 141-143 
Counte r test value, 142 
Current counter value. 142 

Index 287 

D __________________________________ _ 

Decision instructions. 108-125 
Decrementing the I-reg ister, 141-149 
Deflation of an equation, 219-224 
Deleting program instructions, 8S, 96-98 
Deleting statistical data , 31 
Descartes' rule of signs. 214 
Display 

blank , 276 
error, 280 
low power. 271 
overfl ow, 67, 181 

Display cont rol, indirect. 152, 247 
Display I, 152-155 
Displaying I-register contents, 140-141 

E ________________________________ _ 

Editing a program, 84-101 
End of memory, 67 
End of program , 50 
Error conditions, 280 
Error di splay. 67, 280 
Exchanging X and I, 141 
Exchanging X and (i), 156 
Executing a program, 54, 87 
Executing instructions. S4 
Extreme of a function, finding, 224-232 



288 Index 

F __________________________________ ___ 

Flags. 120-125 
Flags. clearing. 120-121 
Flowcharting, 68-72 
Fractional portion of a number, 23 
Function key index . 8 

G ________________________________ _ 

Go to 
branch . 102-108, 126 
I . 151, 163, 171 
nnn, 85. 91 
subroutine. 126 
subroutine I, 151, 164, 171 

H __________________________________ ___ 

Halling execution, SI 
Horner's method, 79-82, 175, 183, 194, 216, 220 

1---------------------------------
Incrementing the I-register, 141-149 
Indirect display control, 152, 209, 247-250 
Indirect exchange, lSI, ]56 
In itial estimates for l50LvEL 174, 182, 185 
Inserting an instruction, ~93 
Integer portion of a number, 22 
Integration, numerical, 202-213, 233-268 

accuracy. 208-212, 236-244, 252-260, 262 
automatic stack fill , 204-.208 
calculation time. 204, 208, 240-242, 260-268 
current approximation, 250-252 
display format . 208-211, 236, 244-249 
how IZD works. 204, 236-237, 240, 252-260 
labels of subroutine called , 202 
LAST X register. 250 
mUltiple, 212 
program containing IZD . 212, 247-249 
IsolYEf used with. 212, 233-235 , 264-265 
subdividing interval of integration, 263-267 



Index 289 

transformation of variables , 267-268 
uncertainty of approximation, 209-212, 234, 236-239, 244-247 

Interrupting a program, 62 
ISG and DSE limits, 149 
I-register, 140-173 

displaying contents. 140-141 
indirect store and recall. 151, 158 
indirect storage regi ster arithmetic, 151, 160 
integer portion of a number in I. 152 
storing a number in I, 141 

K ________________________________ _ 

Key index , 8 
Keycodcs . 48 

L __________________________________ ___ 

Label addresses, 165 
Label search, 53 
Labels, 54, 68 
LAST X, 285 
Limits, ISG and DSE, 149 
Limits, subroutine, 135-137,200,212 
Limits of integration 

accuracy of approximation, 210 
entering, 202 
evaluating/(x) at, 207 
remaining in stack, 211 

Line 000, 91 
Lines, program , 46-47, 52 
Loading a program, 51 
Loop, 103, In, 133, 141-149, 153, 161 
Loop control, 141-149, 153, 161 
Loop control value , 142 
Low power display , 271 

M __________________________________ ___ 

Manual run mode. 45 
Mathematical functions, 24-27, 174, 202 



290 Index 

Maximum of a func tion, finding , 224-232 
IMEMI , 59, 85 
Memory 

allocation. 58 
converting program memory to storage registers , S9 
converting storage reg isters to program memory, 55·58 
end of memory. 67 
program , 7, 21 , 46, 55 
registers, 7, 21, 55 

Minimum of a function , finding . 224-232 
Model. mathematical, 24~243 
Multiple roOl, 220, 224 

N ______________________________________ _ 

Nonrecordablc operations, 46, 84 
Number generator, pseudorandom, 133, 165 
Numerical integration (see Integration, numerical) 

0 ________________________________ __ 

Occupied program memory, 59, 93, 137 
Operating temperature, 276 
Overflow, storage registers, 67, 181,280 
Overflow display. 67, 181 

p----------------------------------
Pause , 65, 89 
Pending subroutines. 135·137, 272 
Polynomial. roots of, 214-219 
Polynomial evaluation, 76-82 
Power failure , 49, 282 
Prefix keys, 20 
Prefix keys, clearing. 84 
Program 

available memory. 59, 93 
deleting instructions. 85, 96 
editing, 84-101 
end of, 50 
execution. 54, 87 
inserting instructions, 89-93 



lines, 46-48 
loading, 51-53 
memory . 7, 21 , 46, 55·60 
modifying, 89 
running, 53, 95 
single-step execution , 87 
viewing, 90 

Program cont rol index, 12 
Programming 44-82, 140-173 

techniques. 76 

Index 291 

R ________________________________ __ 

Random number generator. 133, 165 
Real root" finding , 174-200, 214-235 
Recall , indirect , 151 , 158 
Recalling numbers, 21 
Recharging the battery, 272 
Registers 

memory . 7, 21, 55 
stack, 7 

Repair, 277 
Replacing the battery, 273 
Resetting 10 line 000 , 49, 91 
Return . 50, 91, 126,135-139 
Roots of an equation , finding , 174-200,214-135 

asymptote, effect of, 181 , 196 
deflation of an equation. 219·224 
discontinu ity , effec t of, 193, 195 
minimum , effect of, 181 , 196 
multiple root. 220, 224 
pole, effect of, 193 
polynomial equation, 214-218 
several roots. 219-224 

Rounding, ISS 
Roundoff error, 189, 209, 242-244 
Run/stop function, 51 
S ________________________________ __ 

Self-di scharge rate , batte ry. 275 
Shipping , 278 



292 Index 

Shared memory, 55-60 
Sine integral, 206-208, 248-249 
Single-step , 84, 87, 90 
Slope of a graph, 224-230 
ISOlVEI (See aJso Roots of an equation, finding.) 

accuracy , 188-192 
error message, 180, 181, 196·199, 200 
execution time, 176, 232 
initial estimates. 174, 182, 185 
labels. use of. 174 
operation, 186·188 
programming with , 199·200 
recursive use, 200 
resuhs, interpreting. 192·199 
rules for use, 174 
stack contents, 176, 192 

Stack fill , 76-82, 175, 204-205 
Stack lift , 284 
Start of program, 50 
Statistical data, correcting and deleting, 31 
Statistical registers, 7, 28 
Stepping backwards. 84, 93 
Stops, 62, 66 
Storage, indirect, 151 , 158 
Storage register arithmetic, 22, 158-161 
Storage registers, 7, 21, 55 
Storage temperature, 276 
Store indirect , lSI, ISS 
Storing numbers, 21 
Subroutines. I-register, 151, 163-173 
Subroutines, pending, 135-137, 272 
Summations, 27-30 

T __________________________________ ___ 

TcmJXrature ranges, 276 
Test value, 142 
Tests, conditional, 108 
Top-of-memory marker, 47, 52, 91 



U-z 
Uncenainty, 209-212, 236, 237-241 , 244-250 
Viewing program memory . 90 
Warranty, 276 . 
X exchange I, 141 
X exchange indirect, 151 , 156 
Zero of a funct ion. 174 

Index 293 





a 
a .. 
'it 
~ 

~ 

~ 

" " ;it .. 
ill 
~ 

~ 

lit 
lit 

• 

Service Card 
This card must be completed and returned with your calculator and/or 
red1arger, and batteries. Return of this card is considered authoriza-
tion for Hewlett-Packard to make all repairs necessary to return the 
calculator to normal working order and to charge the cost of those 
repairs to the owner for units out of warranty. 

Owner", Name Dale 

SltHt Address 

0" Slate Zip Code 

Hom~ Phone Wor~ Phoou 

Date Purchased 

What Is The Problem Area? 

a Intermittent Problem o Display 
o Printer (Enclose sample) o Recharger/Battery 
o Keyboard o Prerecorded Program/Reader 
o Programming 

Describe Problem : 

Model No. Serial No. 

Preferred method of payment for OUI-ot-warranty repairs . 
If not specified, unit will be returned C.O.D. 

o VISA o Masler Charge 

card No. Ex~ralion Date 

Name appearing on credit card 

o Purchase Order. Companies with established Hewlett-Packard 
credit only. (Include copy of purchase order with shipment.) 

P O. Nurrt>er 

Aurhonl8(l Sigl\illure 
./ 



Information 
The warranty period fOf your calculator and/or accessory is one year 
from dale of purchase. Hewlett·Packard will assume that any unit 
returned without a copy of proof of purchase (sales slip or validation) is 
out of warranty . Should service be required , please return your cal-
culator, charger, batteries and this card protectively packaged to avoid 
in-transit damage. Such damage is not covered under warranty . 

Inside the U.S.A. 

Return items safely packaged directly to: 

Hewlett-Packard 
Corvallis Division _ Service Department 
1000 N.E. Circle Boulevard/P.O. Box 999 

Corvallis, Oregon 97330 

We advise that you insure your calculator and use priority (AIR) mail 
for distances greater than 300 miles to minimize transit times. All units 
will be retumed by fastest practical means. 

Outside the U.S.A. 

INhere required please fill in the validation below and return your unit 
to the nearest designated Hewlett-Packard Sales and Service Offjce. 
Your warranty will be considered invalid if this completed card is not 
returned with the calculator. 

_No S«lal No. 

Date Received 

Invoice NoJOelivery Note No. 

Sold by: 

'\ 

"- ./ 



Useful Conversion Factors 

The following factors are provided to 10 digits ef accuracy where possible. 
Exact values are marked with an asterisk. For more complete information 
on conversion factors, refer to Metric Practice Guide E380-74 by the 
American Society for Testing and Materials (ASTM). 

Length 
1 inch 
1 fool 
1 mile !statut8)t 
1 mile nautical)t 
1 mile nautical)t 

A .... 
1 sQUare Inch 
1 square fool 
1 acre 
1 square milet 

Volume 
1 cubic Inch 
1 cubic fool 
1 ounce (tluid)t 
1 ounce (tluid)t 
1 gallon (fluid)t 

MH. 
1 ounce (mass) 
1 pound (mass) 
1 Ion (short) 

Energy 
1 British thermal unit 
1 kilocalorie (mean) 
1 watt-hour 
Force 
1 ounce (force\ 
1 pound (force 

p-

25.4 millimeters-
0.304 8 meier" 
1.609 344 kilomelers" 
1.852 kilomelers" 
1.150 779 448 miles (slaMe)t 

6.451 6 square centimeters· 
0.092 903 04 square meter· 

= 43 560 square feet 
.., 640 acres 

16.387 064 cubic centimeters~ 
= 0.028316847 cubic meier 
:::I 29.573529 56 cubic centimeters 

0.029 573 530 liler 
3.785411784 Hiers" 

- 28.349 523 12 grams 
0.453 592 37 kilogram" 
0.907 184 74 melric Ion" 

1 055.055 853 Joules 
4 190.02 Joules 
3 600 Joules" 

0.27801385 Newlon 
4.448 221 615 Newlons 

1 horsepower (elec1ric) - 746 watts· 

P .... aure 
1 atmosphere 
1 atmosphere 
1 atmosphere 

r .... peroture 
Fahrenheit 
Celsius 
Kelvin 
Kelvin 
Kelvin 

760 mm Hg at sea level 
14.7 pounds per square inch 

- 101 325 Pascals 

1.8 Celsius + 32 
5/9 (Fahrenheil - 32) 
Celsius + 273.15 
5/9 (Fahrenheil + 459.67) 
519 Rankine 

t U.S. values shown. • Exact values. 



C Calculator Catalog and Buying Guide Request Card "\ 

" 

Thank you for your order. 
A friend or associate might also want to know about Hewlett-Packard calculators. If you 
would like us to send the current issue of the Hewlelt-Packard Personal Calculator Digest 
(The HP Magazine and Product Catalog). please write his/her name and address on this 
postage-paid Request Card. 

Prlm_" In'-': 
o Scientific Calculators 
o Fully-Programmable Calculators 
o Business Calculators 
o All 
Name __________________________________________________________ __ 

Titie '-=====_---=----=---=---=--=--=~~~= 
Compann.y~================ ________ ~::=_======~~-=====~~ Street - State Zip 

City Valid in U.S. only 430M 

- 1 



/ 

" 

H p. 34C Registration Card ""'\ 

Please complete and return this postage-paid card. Owners with 8 U. S. address will have their name added to the 
Hewlett-Packard Personal Calculator Digestmailing list, and will automatically receive future product information. 

Date Product Received I I 

Month Day Y8Il1 
Name I I I I ( 

Fim Initial Last 
Company ! I I I { r I I I I 

(Include Bldg. , Oi'lision. Room No .. etc.) 

Sireet/Box/Route I I 

City I I State I I Zip Code I,-.L.-'-~--'---' 

1. Whore w •• your calculo.or 2. Check.he ONE category bee. 3. R.nk TWO "'ogorl •• oI.ppllco-
purchllnd? descrlbtng your job function tiona for which your calculltor 

will be uNd. (1 for moat Impor­
IOn', 2 for MCond.) 

101 0 Directly from an HP sales 
office or factory 

102 0 By mail from HP 
103 0 From any retail store 

201 0 Top Management 
202 0 Midclte Management! 

Supervl.ory 
203 0 ProfessionaLITechnical 
204 0 Student 
205 0 Other (Speedy) ___ _ 

Completion 01 thia card la not • condition precedent to Wllr'lanty 
cove,age. 

301 0 Engineering 
302 0 Physical Science 
303 0 Natural Science 
304 0 Computet' Science/Data Processing 
305 0 AviationlMarine Nav;gaoon 
306 0 StatisticslMathematics 
307 0 Financial Analysis 
308 0 Real Estate/Lending 
309 0 BudgetinWForecasting 

If you are outside the United Stat •• pi .... mill this card to the nearest Hewlett-Packard Sal .. OffIce . ./ 

.- n '1 • - ... -.--~ --~.----



111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 33 CORVALLIS, OREGON 

Postage will be paid by 

Hewlett-Packard 
1000 N.E. Circle Blvd. 
Corvallis, Oregon 97330 

NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 



IIIIII 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 33 CORVALLIS, OREGON 

Postage will be paid by 

Hewlett-Packard 
1000 N.E. Circle Blvd. 
Corvallis, Oregon 97330 

NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 



FliPfj HEWLETT 
~~ PACKARD 

1000 N.E. Circle Blvd., Corv.m., OR 97330 

For additional sales and service information contact your 
local Hewlett-Packard Sales Office or CaIiBOO/547--3400. 
(In Oregon call 758-1010.) 

00034-90001 Rev. C 8/80 Printed in "U.S.A. 

• 
• .. .. .. 
... 



 
 
 
 
 
 
 
 
 

Scan Copyright © 
The Museum of HP Calculators 

www.hpmuseum.org 
 

Original content used with permission. 
 

Thank you for supporting the Museum of HP 
Calculators by purchasing this Scan! 

 
Please to not make copies of this scan or 
make it available on file sharing services.


