
HP-42S
FliS- HEWLETT
a:~ PACKARD

~ .,
i~
l~
l~
l~
l~
l:a
l~
L~

•

HP-42S
RPN Scientific

Programming Examples and Techniques

Fli;' HEWLETT
a!"J:. PACKARD

Edition 1 July 1988
Reorder Number 00042-90020

Notice

This manual and any keystroke programs contained herein are provided
" as is" and are subject to change without notice. Hewlett-Packard Com­
pany makes no warranty of any kind with regard to this manual or the
keystroke programs contained herein, including, but not limited to, the
implied warranties of merchantability and fitness for a particular pur­
pose. Hewlett-Packard Company shall not be liable for any errors or for
incidental or consequential damages in connection with the furnishing,
performance, or use of this manual or the keystroke programs contained
herein.

C Hewlett-Packard Company 1988. All rights reserved. Reproduction,
adaptation, or translation of this manual, including any programs, is prohi­
bited without prior written permission of Hewlett-Packard Company,
except as allowed under the copyright laws. Hewlett-Packard Company
grants you the right to use any program contained in this manual in this
Hewlett-Packard calculator.

The programs that control your calculator are copyrighted and all rights
are reserved. Reproduction, adaptation, or translation of those programs
without prior written permission of Hewlett-Packard Company is also
prohibited.

Corvallis Division
1000 N.E. Circle Blvd.
Corvallis, OR 97330, U.S.A.

Printing History

Edition 1 July 1988 Mfg. No. 00042-90019

• • • • • • a
a
a
a

~
,~

• '. a
,a
a
a
a
\~

,a
:a \.

r­
Ia
la
l~
L· . \.

Contents

1

6

9

12
12
13
15
15
16
19
21
22
25
29
39
43
46
46
47
49
51
58

List of Examples

How to Use This Manual

Programming
Simple Programming

Flowcharting
Defining the Program
Prompting for Data Input
Displaying Program Results
Executing the Program

Branching
Conditional Branching
Subroutines
Menu-Controlled Branching

Controlled Looping
Indirect Addressing in Programs
Flags in Programs

User Flags
System Flags

Error Trapping
A Summary Program
The Triangle Solutions Program

Contents 3

e l
.1
~I

2 67 Enhancing HP-41 Programs ~I
67 Using Named Variables e-68 Using HP-42S Data Input and Output Functions

e l 68 Prompting for Data with INPUT
68 Displaying Data with VIEW e l
69 Operations with HP-42S Data Types

e l 69 Using the Two-Line Display
71 Using Menu Variables e I
73 Assigning a Program to the CUSTOM Menu e I

c I
3 77 The Solver C I

77 Basic Use of the Solver C I 80 Providing Initial Guesses for the Solver
80 Directing the Solver to a Realistic Solution C
83 Finding More Than One Solution

C 86 Emulating the Solver in a Program
92 U sing the Solver in Programs C
92 Using the Solver and Explicit Solutions in a Program

C 101 Using the SOLVE and PGMSLV Functions with
Indirect Addresses C

105 More on How the Solver Works
C 105 The Root(s) of a Function

107 The Solver's Ability to Find a Root e
108 Interpreting the Results of the Solver e 123 Round-Off Error and Underflow

~

~
4 124 Integration ~

124 Basic Integration
127 Approximating an Integral That Has an Infinite Limit ~
131 U sing the Solver and Integration Interactively ~J
134 More on How Integration Works ~I 134 The Accuracy Factor and the Uncertainty of

Integration ~I
140 Conditions That Can Cause Incorrect Results

~.
143 Conditions That Prolong Calculation Time

~

~

4 Contents r
e,"IIII

• • • • 5 148 .. atrices

• 148 Using the Matrix Editor and Indexing Functions

147 Creating a Named Matrix

• 147 Using the Matrix Editor

• 149 Using Indexing Utilities and Statistics

Functions Interactively

• 150 Matrix Utilities

• 154 Vector Solutions
154 Geometry

• 158 Coordinate Transformations

• 183 Solving Simultaneous Equations

188 Using the Solver with Simultaneous Equations

• 172 Matrix Operations in Programs

• • • 6 174 Statistics
175 List Statistics

• 181 Using the Summation-Coefficient Functions (E+,

• E-, and CLE) in Programs

193 Curve Fitting in Programs

• I.
I. 7 194 Graphics and Plotting

I 194 Graphics

I • 202 Multifunction Plots

I • 212 Plotting Data from a Complex Matrix

I -I-
I-
I-
1'-.-I ,.
• I

l'·
!!

Contents 5

II

List of Examples

The following list groups the examples by chapter.

1

2

20
32
42
57

74

Programming
Executing a Program from the CUSTOM Menu
A Programmable Menu
Loop Control in a Program
The Flag Catalog Program

Enhancing HP-41 Programs
Executing an Enhanced HP-41 Program from the
CUSTOM Menu

3 The Solver
78 Basic Use of the Solver
80 Directing the Solver to a Realistic Solution
84 Using the Solver to Find Two Real Solutions
87 Using the Solver for a Simple Resistive Circuit
90 Calculating Complex Values in an RC Circuit
99 Executing Algebraic Solutions for TVM Problems

101 Using SOLVE with an Indirect Address
110 A Case 1 Solution with Two Roots
112 A Case 2 Solution
114 A Discontinuous Function
116 A Pole

6 Us, of Exampl_

;r
- . e

l e.
e

l e l e.
~I
e l ~ , (;,
(;1
(; I -• --• •
~

~ .­.-
• ., .,
• •
~
~.

"J
~
.~

.. ,.
• 118 A Relative Minimum

• 119 An Asymptote
120 A Math Error • 121 A Local Flat Region

• • 4 • Integration
125 Basic Integration

• 128 Evaluating an Integral That Has an Infinite Upper

• Limit

131 Using the Solver and Integration Interactively

a 138 The Accuracy Factor and the Uncertainty of

a Integration

138 A Problem Where the Uncertainty of Integration is a Relatively Large

~ 140 A Condition That Causes Incorrect Results

• 142 Subdividing the Interval of Integration
143 An Upper-Limit Approximation That Prolongs

a Calculation Time

• • 5 Matrices • 148 Accumulating Meterological Data

• 155 The Area of a Parallelogram
181 A Three-Dimensional Translation with Rotation • 183 Solving Real-Number Simultaneous Equations

a 186 Solving Simultaneous Equations That Have

a
Complex Terms

189 Using the Solver to Find the Value of an Element

a in the Coefficient Matrix

• • 6 Statistics • 178 Accumulating Statistical Data in a Matrix

• 191 A Linear Regression for Three Independent

• Variables

• la
L- Ust of Examples 7

••

7 Graphic. and PloHlng
199 Building a Logo
201 Using Binary Data to Build a Logo
210 Plotting Multiple Functions
219 Plotting Data from a Compression Process

and Fitting a Power Curve to the Data

8 Us, of Examples

I· ,. ,. ,.
• • • • • • a
8

" • • • •
I-
I-.­I-
I­
I­
I­
I­
I­
I­
I­
la
l· .­..

How to Use This Manual

Welcome to the Programming Examples and Techniques manual for your
HP-42S calculator. This manual builds on concepts introduced to you in
the HP-42S Owner's Manual so that you can more fully utilize your
calculator's powerful problem-solving capabilities. This manual focuses on
the following subjects:

• Programming techniques for the HP-42S.

• Enhancing existing HP-41 programs.

• Using the HP-42S built-in applications:

• The Solver.

• Integration.

• Matrices.

• Statistics.

• Building and printing graphics patterns and plots.

There are many examples in this manual. We feel that the best way to
help you gain expertise with your calculator is to show you how to solve
practical problems in mathematics, science, engineering, and finance.
Many of these problems are solved using programs. Chapter 1, "Program­
ming," addresses the task of creating programs with the HP-42S. It further
develops material presented to you in chapters 8 through 10 of the
owner's manual.

Chapter 2 specifically addresses the topic of enhancing programs written
for the HP-41 calculator. It builds on the material introduced in chapter
11 of your owner's manual.

Chapters 3 through 6 further develop the built-in applications discussed in
chapters 12 through 15 of the owner's manual. If you wish to learn more

How to Use This ual 9

about matrix operations, for example, you can turn directly to chapter 5,
"Matrices," without working through the preceding chapters. However,
since many of the examples in the manual are programmed solutions to
problems, you should first review chapter 1.

Chapter 7 describes how to generate graphics patterns and plots using the
HP-42S calculator and, in several examples, the optional HP 82240A
Infrared Printer. It builds on the material presented in chapter 7 of the
owner's manual.

The notations in this manual are consistent with those in the owner's
manual:

• Plain typeface is used for numbers and Alpha characters in keystroke
sequences: 1.2345, ABeD.

• Black keyboxes are used for primary keyboard functions in keystroke
sequences: (EXITI.

• Orange keyboxes preceded by the orange shift key are used for secon­
dary (shifted) functions in keystroke sequences: .'ASSIGNI.

• Menu keyboxes are used for functions executed from a menu in
keystroke sequences: }PCep'".

• Capital letters are used for any function that is referenced in text:
CLP.

• Capital letters are used for program names that are referenced in
text: SSS.

• Italic letters are used for variable names that are referenced in text:
STEP

• Dot matrix typeface is used for program listings:
01 LBL "AREA".

At the beginning of each example, it is assumed that the stack registers
(X-, Y-, Z-, and T-registers) are clear (contain the value 0). It is also
assumed that the value of each variable in the examples is O. Your display
may sometimes differ from the displays in the manual. However, if you exe­
cute the keystroke sequences as they are shown in the examples, the
values of the stack registers and variables in your calculator at the start of
the examples will not affect the answers you obtain.

10 How to Use This Manual

,..
• • • • • • • • • • a
a
•
I-
I-• • • • • • • • • • • • • •
L·
!!

Some examples include optional instructions to print results with the
HP 82240A Infrared Printer. If you have a printer and execute these
instructions, you will not see some of the subsequent displays in the exam­
ple. These displays will be printed.

How to Use This llanual 11

1
Programming

Your calculator is a powerful and easy-to-use tool for creating and execut­
ing programs. This chapter builds on programming methods introduced to
you in chapters 8 through 10 of your owner's manual. Specifically, this
chapter addresses:

• Simple programming.

• Branching.

• Looping controlled by a counter.

• Indirect addressing.

• Flags in programs.

• Error trapping.

Simple Programming

The program SSS in this section finds the values of the three angles of a
triangle when the values of the three sides are known. (The annotated list­
ing is on pages 17 through 18.)

12 1: Programming

--.
• • • • a
~

~

~

a
~

~

~

~

•
" • • a
a
3
3
a
~

a
a
a
a
•

I-1_:
~

A 3 =? .ttt:::;.. ___ ___________ -L_~

When the dimensions of the three sides (S 1 , S 2, and S 3) of a triangle are
known, the following equations are used to calculate the three angles
(A i ,A 2 , andA 3)·

[
VP(P-Sd]

A 2 = 2 arc cos (S 2 S 3)

Ai = arc cos [-cos (A3 + A2)]*

These equations form the main body of SSS.

Flowcharting

A flowchart is a graphical outline of a program. Flowcharts are used in
this manual to help you understand how programs solve problems.
Flowcharts can also help you design your own programs by breaking them
down into smaller groups of instructions. The flowchart can be as simple
or as detailed as you like. Flowcharts are drawn linearly, from top to bot­
tom, representing the general flow of the program from beginning to end.

• This expression for A I enables you to calculate A I in any angular mode.

1: Programming 13

Here is a flowchart for one possible program solution for the side-side­
side triangle problem.

14 1: Programming

INPUT
51

CALCULATE

A3

ei
~-1
~I
~ I
(I
c
c
~

c
c , , , , , , , , ,
e

:1
~ II

"I ~I
f'­
£
f
('"

£"
€ ..

~ .,..

~ r.
I.

• • • • • -• • • • • •
I-
I­
I­
I-.­I-
I­
I­
I­
I­
I­
I­
I­
I­
I'·
t:

This manual uses the following conventions for flowchart symbols:

• An oval represents the beginning or end of a routine. This can be the
beginning or end of a program, a subroutine, or a counter-controlled
loop within a program.

• A circle represents a program label. It also represents a GTO inst1Uc­
tion to a program label from another point in the program. (This con­
vention reduces the need for connecting lines that can make the
flowchart difficult to read.)

• A rectangle represents afunctional operation in the program.

• A diamond represents a decision the program makes based on a com­
parison of two values (or based on the status of a flag).

• A triangle represents a decision the user (that's you) makes by select­
ing one of several possible program routines, each of which performs
a different task.

Defining the Program

Program SSS begins with a global label and ends with an END instruction.
These two instructions define the beginning and end of the program.

(11 LBL "SSS"

45 Et·lD

Prompting for Data Input

SSS prompts you for data input (prompts you for the three known values
of the sides of the triangle).

(12 INPUT "Sl 11

(1::: INPUT 11,-..-,11
.=-..:::.

(14 It·lPUT liS::: II

1: Programming 15

Displaying Program Results

sss concludes by displaying (or printing) the calculated results (the three
angles).

41 SF 21
42 VIEl~ "Al"
43 VIEW "A2"
44 VIEW "A3"

This section of the program begins by setting flag 21, the Printer Enable
flag. When flag 21 is set, a VIEW (or A VIEW) instruction is:

• Printed and displayed if you have executed PRON. Program execution
does not halt when a message is displayed; a subsequent VIEW (or
A VIEW) instruction erases the current message. When you set flag
21 and execute PRON, and then execute a program that has a
sequence of VIEW (or A VIEW) instructions, you must have a printer
present and turned on to record each message; you'll see only the last
message in the display .

• Displayed by the calculator if you have executed PROFF. (PROFF is
the default mode for the calculator. You need to execute PROFF only
if you have previously executed PRON.) When you set flag 21 in
PROFF mode, program execution halts after each VIEW (or
A VIEW) instruction and must be resumed by pressing !BZ§].

16 1: Progra •• lng

-.
• • • • • • • a
a
I~

~

a
~

• • • • ,.
a
a
a
a
.a
\a
a
a
a
a

•
l\a
!!

Helpful hints for keying In programs:

1. If the variables you are using in your program do not already exist,
create them before you select Program-entry mode (by pressing 0
ISTOI variable for each variable). When you subsequently key in a
STO, RCL, INPUT, or VIEW instruction during program entry and
are prompted for a register or variable, the existing variables
(including the ones you just created) are displayed in the variable­
catalog menu. You only need to press the corresponding menu key,
rather than type the variable name.

2. In Program-entry mode, first key in all the global label instructions
in your program (by pressing IlpGM.FCNll.SL> label for each
label). When you subsequently key in branch instructions and are
prompted for a label, the existing global labels (including the ones
you just created) are displayed in the program-catalog menu. You
only need to press the corresponding menu key, rather than type the
name.

Longer programs in this manual are preceded by instructions that list the
variables and labels to create for program entry.

To key In SSS: Create variablesSI, S2, S3,AI,A2,A3, andPbefore
program entry.

Here is an annotated listing of SSS.

Program:

00 { 115-Byte Pr9M }

01 LBL "SSS"

02 It~PUT "S1"
03 INPUT "S2"
04 INPUT "S3"

05 RCL "S1"
0E. RCL+ "S2"
07 RCL+ "S3"
08 2
09

Comments:

Line 01: Define the beginning of the
program.

Lines 02-04: Prompt for the values of
the three sides and store the values in
named variables.

Lines 05 - 40: Calculate A 1 ,A 2, and
A 3' Store the values in named vari­
ables.

10 STO "P"
11 X-t-2
12 LASTX
13 RCLx "82"
14 -
15 RCL "Sl"
16 F.:CLx IIS8 11

17
U:: SOF~T

19 ACOS
20 ~,

.::.

21 "
2'-' .::. STO IIA3 11

'-"1 .::..::. SIt~

24 F.:CL "P"

~ ;·::·t·2
26 LAST::·(
.-,-,
"::'r' F~CLx IISl ll

28 -
29 F.:CL~ 11.-··-.11 .: . .::.
30 F~CL~ 11.-··-.11 .: . .:.
::: 1 SG!RT
.: . ..,
'-'';'' ACOS
.-,,-, .: .. :. .-,

.::.
:::4 x
.-.-=-
'::"-' STO II A2 II
~.--=,'=, F~CL+ IIR3 11

.-,..,
'::'1' COS
.: .. :. +/-,_"_,

:3'3 ACOS
40 STO "Al"

41 ::W 21
42 VIHJ "Al"
4':' '-' '",' I E~'J "A211
44 VIHJ "R3"

45 Et·j[)

18 1: Programming

Lines 41- 44: Display (or print) the
calculated results.

Line 45: End the program.

executing the Program

You can execute SSS by using anyone of the following keystroke
sequences.

Using the Program Catalog. The global label SSS was automatically
placed in the program catalog when you keyed in program line 01. You
can execute the program by pressing

IICATALOGIPGM SSS

This sequence requires a minimum of four keystrokes, depending on
where label $S S is in the program catalog. (If you have created more
than five programs subsequent to SSS, use the [!) key to find label

e.:.~"") ,-I.:,.~ •

Using XEQ. When you press IXEOI, the program-catalog menu is
automatically displayed. Thus, you can execute SSS by pressing

IXEOI SSS

This sequence requires a minimum of two keystrokes, depending on
where label SSS is in the program catalog.

Using the CUSTOM Menu. Alternately, you can assign SSS to the
CUSTOM menu by pressing

IIASSIGNI F·Gt-1 SSS

'a and then the desired menu key.

'a

~

~

1: Programming 19

F

The program can now be executed directly from the CUSTOM menu by
pressing

I'CUSTOMI S$$

This sequence requires three keystrokes when you first select the
CUSTOM menu, and only one keystroke on subsequent executions if you
stay in the current row of the menu.

Example: Executing a Program from the CUSTOM Menu. Find
the angles (in degrees) of the following triangle.

8 3 = 2.75 ft.

Assign SSS to the CUSTOM menu. Set the angular mode to Degrees.
Execute PRON if you have a printer and want to print the results. Begin
program execution.

I' ASSIGN l;eQJt
i.SSS
IIMODESI~gG
(1[ffilliI] (!]PON)
IlcUSTOMISSS\

IS1 ?0. 0000 I ------
Enter the value for S 1 (in feet) and continue program execution.

24 IENTERI12 [±] [BZID 182?0.0000 1 .------.

20 1: Programming

• • •
a

•
a
a
a
:a
~

~

~

~

~

~

~

~

~

a
a
~

a
a
~

a
a
a
a
a
'~

l~
I~
~~-.

Enter the value for S ~, then for S s. The program now calculates the

three angles and displaysAl, the first result. (Uyou have executed PRON

to print the results, you won't see the next two displays.)

1 mzID2.75~

Continue program execution to see A ~.

~

Continue program execution to seeAs .

mzID

Exit from the program.

IEXITI

Branching

IA1=129.8384 I ------
IA2=33. 9479 I ------
IA3=16.2136 I ------
Iv: 0.2792
x: 129.8384

A branch instruction enables program execution to jump to a different

location in program memory. A branch can be:

• Conditional (based on a test).

• Unconditional (used typically to call a subroutine that, on completion,

returns program execution to the main program).

• Menu-controlled (executed by you from a programmable menu).

1: Programming 21

Conditional Branching

The program SSA on pages 24 through 25 in this section illustrates the
use of conditional branching. SSA finds the two unknown angles and the
unknown side of a triangle when two sides and the adjacent angle (S 1 ,

S2, andA 2) are known.

The equations used to calculate A 3, A 1 , and S 3 are

Al = arc cos [-cos (A2 + A 3)]

Note from the drawing that two possible solutions exist if S2 is greater
than S 1 andA 3 does not equal 9<r. This leads to a fourth equation.

A 3 ' = arc cos (-cosA 3)

SSA calculates both possible answer sets.

Here is a flowchart for the program.

22 1: Programming

• •
INPUT .. S1 ,S2' A1

• • CALCULATE

• A3

• • • • DISPLAY • RESULTS

• • @ YES • • • • CALCULATE
A ' • 3

• • • • DISPLAY

• RESULTS

• • ". I.
L.

~ 1: Programming 23

Observe from the flowchart that the program calculates the first answer
set, then compares the values of S 1 and S ~. Depending on the result of
the comparison, the program either returns to label SSA or calculates the
second answer set. SSA accomplishes this with a conditional branch. The
corresponding keystrokes are highlighted in the following annotated list­
ing. (This conditional branch is based on a number test. Later in this
chapter, you'll write programs that make conditional branches based on
flag tests.)

To key in SSA: Create variables Sl, S2, S3,Al,A2, andA3 before pro­
gram entry. (These variables already exist if you keyed in program SSS.)

Program:

00 { 157-Byte PrgM
01 LBL "SSA"

02 SF 21

03 INPUT "Sl"
04 INPUT "S2"
05 It·1PUT "A2"

0E. SUl
07 F~CLx "S2"
08 RCL~ "Sl"
09 ASIN
10 STO "A3"
11 RCL+ "A2"
12 COS
13 +/-
14 ACOS
15 STO "Al"
lE. RCL "A2"
17 COS
18 F.:CLx "S2"
19 RCL IIA3 11

2~3 COS
21 RCLx "S1 11

22 +

24 1: Programming

}

Comments:

Lines 03-05: Input the known vari­
ables.

Lines 06 - 23: Calculate the unknown
variables.

• • • 23 STO "S3"

• 24 VIEW "Al" Lines 24-26: Display (or print) the

• 25 VIEW "S3" unknown variables.

26 VIEW "A3"

• 27 RCL "Sl" Lines 27 - 30: Test if S 2 is less than or

a 28 RCL "S2" equal to S l' If so, return to the begin-

a .-.q >tfY? ning of the program. If not, calculate
'::'.'

30 GTO "SSR" the second answer set.

a

• 31 RCL "A3" Lines 31-48: Calculate the second

32 COS answer set.

a 33 +/-

a 34 ACOS
35 STO "A3"

• 36 RCL+ "A2"

• 37 COS
38 +/-

• 39 ACOS
40 STO "Al" • 41 RCL "A2"

• 42 COS

• 43 RCLx "S2"
44 RCL "A3"

• 45 COS

• 46 RCLx "S1"
47 +

• 48 STO "S3"

• 49 VIHI "Al" Lines 49 - 52: Display the second I. 50 VIEl~ "S3 11 answer set and return to the beginning

I. 51 VIEW "A3" of the program.
52 GTO "SSA"

I. 53 Et~D '. I. '. I. '. '. l-. 1: Programming 25

!-;

Subroutines

A routine is a set of program steps defined by a local or global label and a
RTN or END instruction. (Programs SSS and SSA are routines.) A rou­
tine becomes a subroutine when it is called by (executed from) another
routine using an XEQ instruction. After the subroutine has been exe­
cuted, the RTN or END instruction at the end of the subroutine returns
program execution to the main routine.

Notice that SSA calculates the second answer set (if there is one) by first
calculating A 3' • It then calculates the remaining unknowns using the
same equations that were used to calculate the fIrst answer set and
displays the second answer set using the same instructions that were used
to display the fIrst answer set. By placing these shared instructions in a
subroutine, the program becomes:

• Shorter.

• Easier to read.

• Easier to write.

• Easier to edit.

Here is a flowchart for a new program SSA2 that uses a subroutine.

26 1: Programming

CALCULATE
A3

~~4r-____________ ~
'eJ

(SSASUB)

DISPLAY
RESULTS

The corresponding program lines are highlighted in the following anno­
tated listing.

To key in SSA2:

1. Create variables Sl, S2, S3,Al,A2, andA3 before program entry.

2. Create label SSASUB when you begin program entry.

1: Programming 27

re' II
,~1

Program: Comments: Ie-II
ie II 1313 { 137-Byte PrgM }

131 LBL "SSA2" 'e II
132 SF 21 ell 133 INPUT "S1"
134 INPUT "S2" e :1
135 INPUT "A2" (~ III
136 SIN Lines 06 - 09: Calculate A 3 • (~ III 137 RCLx "S2"

(e'll 138 RCL-:- "S1"
139 ASIN (e ,II
10 XEQ "SSASU8" Line 10: Call subroutine SSASUB to (e ,II

calculate A 1 and S 3' This uncondi-
(C :11 tional branch uses an XEQ instruc-

tion; the next encountered RTN (or ,(,II
END) instruction will transfer pro- t' ;11 gram execution back to line 11. (Now
follow the branch to line 21.) , III

11 RCL "S1" Lines 11- 14: If S 2 is less than or
I !II
, II

12 RCL "S2" equal to S 1 , return to the beginning of ('II
13 X~Y? the program. If not, calculate the \e ':1
14 GTO "SSA2" second answer set.

\~~ iii 15 RCL "A3" Lines 15 - 18: Calculate A 3' •

16 COS
\1:1111 17 +/-
\~IIII 18 ACOS

19 XEGI "SSASU8" Lines 19 - 20: Call subroutine \,~,III
213 GTO "SSA2" SSASUB to calculate AI' and S 3' . ~JI

Then return to the beginning of the
~JI program.

\~I,II 21 L8L "SSASU8" Subroutine SSASUB, lines 21-39:
OJ'" STO II A::: II Calculate the values A 1 and S 3 (A 1 ' (\,~JII '-'-
·~I·:I f':CL+ "A211 and S 3' in the second answer set), and \~IIIJ ':"0_'

24 COS display the results.

~,~~~
~~M
~

28 1: Programming ~

• ,.
• • • • • • • • • • • • • • • • I.
I.
la
I.
I,
I.
I.
I
I-
I­
La
L­
.8

25 +/-

26 ACOS
27 STO "Al"
28 RCL IIA2"

2'3 COS
30 RCLX "S2"
:::1 RCL "A3"
~.;o cos
::::3 F.:CLX "Sl"
:=:4 +

85 STO "S3"
3E. V I E~·J "Al"
37 VIHJ II C-:) II ..;J-_'

38 VIHJ "A3"
:::'3 RTt~

40 E~m

SSA2 is 13 lines shorter than SSA and 20 bytes shorter than SSA.

Nested Subroutines. The program TRI4 in the following section
organizes each of the five possible triangle solutions in subroutines
labeled A through E. Refer to the flowchart for TRI4 on pages 30 - 31,
and note that subroutine B, which calculates the solution to the SSA initial
condition, itself calls subroutine SSASUB to calculate A 2 and S 3' In
TRI4, subroutine SSASUB is nested in subroutine B. When subroutine
SSASUB is called by subroutine B, there are two pending subroutines.
The HP-42S can have up to eight pending subroutines.

Menu-Controlled Branching

Programmable menus enable you to make a decision during a program,
prompted by labeled menu keys that cause branches to new locations in
program memory. Using KEY XEQ or KEY GTO instructions (which act
just like XEQ and GTO instructions), any label in program memory can
be made the target of a programmable menu key. When MENU and
STOP instructions are subsequently executed, program execution is
suspended, the programmable menu is displayed, and keys 1 through 9
(the six top-row keys, plus the [II, [!], and IEXITI keys) assume their
menu definitions.

1: Programming 29

The previous two programs, SSS and SSA, each calculated one of the five
triangle solutions. The other solutions respectively find:

• S'J, A'J, and Ss (when As, Sit and Al are known).

• S2, Ss,and As {when Sl, Altand A2 are known) .

• A'J, Ss,and As {when Sl, Al,and S2 are known).

Here is a flowchart for a program named TRIA.. TRIA. organizes each
of the five solutions in a subroutine, builds a programmable menu, and
allows you to select any solution by pressing the corresponding menu key.

(

30 1: Programming

) (lsi\
t-----~

KEYS
·SAS·

• • • • • • • • • • •
It
It

• • • • • • • • • • • • • • • • a
a
• •

1: Programming 31

The triangle symbol in the flowchart indicates where the program stops to
display the menu. You choose which solution you want to execute by
pressing the corresponding menu key.

Here are the corresponding program lines.

Program:

03 "SSS"
04 KEY 1 XEQ A
05 "SSA"
06 KEY 2 XEQ B
07 "ASA"
08 KEY 3 XEQ C
09 "SAA"
10 KEY 4 XEQ D
11 "SAS"
12 KEY 5 XEQ E

13 MENU
14 STOP
15 XEQ "RESULTS"
16 GTO "TRIo:"

Comments:

Lines 03 -12: Build the menu keys.
(For example, lines 03 and 04 label
menu key 1 with the Alpha string SSS
and define that key to execute a
branch to label A.)

Lines 13 -16: Select the menu (line
13) and suspend program execution
(line 14). (The menu is displayed
when program execution halts.) After
execution of any subroutine A through
E, call subroutine RESULTS to
display the results (line 15). Then
return to label TRIA. at the start of
the program (line 16).

The complete listing of TRI A. is on pages 60 - 65 at the end of this
chapter.

Example: A Programmable Menu. A surveyor needs to find the
area and dimensions of a triangular land parcel. From point A, he meas­
ures the distance to points Band C, and the angle between AB and AC.

32 1: Programming

...
•
• -.
• • • a

• •
I" I.
I.
I ..
la
la
la
I~
I~
la
I.
I.
I.
la

l:
~

This is an SAS (side-angle-side) problem.

Set the angular mode to Degrees. (Execute PRON if you want to print the
results.) Begin program execution.

I'MODESI DEG
(.'PRINTI 00 pm~)
IXEal TR I~

Select the SAS routine by pressing menu key 5.

SAS

Key in the value for S I and continue program execution.

171.63 ffiZID

Key in the values for Al (you need to convert A 1 to its decimal equivalent)
and S 2. The program calculates the unknowns and displays the initial
known values and calculated results.

98.121'cONVERTI ..;.HF~
Ml 297.35 ffiZID

Press ffiZID three times to see A 2 •

Ml ffiZID ffiZID

\81=171. 6300
x: 25,256.2094

\A2-27.8270
x: 25,256.2094

1: Programming 33

Press ~ again to see S 3.

~

Press ~ again to see A 3 .

~

Press ~ again to see AREA.

~

Press ~ again to display the menu.

~

End the program.

(EXIT!

IS3=363.9118
x: 25,256.2094

IA3=53. 9730
x: 25,256.2094

IAREA=25 l 256.2094
x: 25, 25b. 2094

E: 25,256.2094 I
RaImllE6:lBmlIHllll_

IY: 27.8270
x: 25,256.2094

Multirow Menus. The preceding program, TRI4, builds menu labels
for five of the six top-row keys, and assigns a KEY XEQ instruction to
each labeled key.

A multirow menu has more than one row of labeled keys. (For example,
the CLEAR menu has two rows.) When you enter a multirow menu, the
[!] and [IJ keys enable you to move to each row in the menu. (The 'Y.6.

annunciator appears in the display to show you that these keys may be
used to display more rows.)

You can emulate a multirow menu in a program by assigning KEY GTO
instructions to menu key 7 (the [IJ key) and menu key 8 (the [!] key).
(KEY GTO or KEY XEQ instructions for menu keys 7 and 8 also
automatically turn on the 'Y.6. annunciator in the display.)

34 1: Programming

-. ..
• • • • a
a
a
a
~

~

a
a

• • • • • • • • • • • • • • • • I.

~

Consider the following simple menu of calculator functions.

I

/}~X

<tzoo····
·<·r:H

R4<
SIU
COS

XO'r'

Here is a program that emulates this multirow menu.

To key in ROW1:

1. Create labels ROW1, ROW2, and ROW3 when you begin program

entry.
2. Note that program lines 03, 05, 07, 16, 18, 20, 29, and 31 are Alpha

strings.

Program: Comments:

00 { 184-Byte Prgl"l }

01 LBL "Rm~l"

02 CLMENU Lines 01-13: Clear the current menu

03 ".f" definitions, then build and display the

04 KEY 3 XEQ 01 first row of the menu. Assign branch

05 "LOG" instructions to keys 7 and 8 (the 00
06 KEY 4 XEQ 02 and [!] keys) to the previous and

07 "LN" succeeding rows respectively (lines

08 KEY 5 XEQ (13 09-10).

09 KEY 7 GTO II Rm.l3"
10 KEY 8 GTO "Rm~2"

11 t1E~·~U

12 STOP
13 GTO "Rm·l1"

1: Programming 35

14 LBL "ROW2"
15 CLMEt~U
16 "R "
17 KEY 3 XEQ 04
18 "SIW'
19 KEY 4 XEQ 05
20 "COS"
21 KEY 5 XEQ 06
22 KEY 7 GTO "ROW1"
23 KEY 8 GTO "ROW3"
24 t'lENU
25 STOP
26 GTO "ROW2"

27 LBL "ROloJ3"
28 CU1ENU
29 "X<>Y"
30 KEY 3 XEQ 07
31 "+/-"
32 KE~" 4 XEQ 08
33 KEY 7 GTO "ROW2"
34 KEY 8 GTO "ROW1"
35 MENU
36 STOP
37 GTO "Rm~3"

38 LBL 01
39 SQRT
40 RTN
41 LBL 02
42 LOG
43 RTN
44 LBL 03
45 LN
46 RTN
47 LBL 04
48 R
49 RTN

36 1: Programming

Lines 14-26: Clear the current menu
definitions, then build and display the
second row of the menu. Assign
branch instructions to keys 7 and 8 to
the previous and succeeding rows
respectively (lines 22 - 23).

Lines 27 - 37: Clear the current menu
definitions, then build and display the
third row of the menu. Assign branch
instructions to keys 7 and 8 to the pre­
vious and succeeding rows respectively
(lines 33-34).

Subroutines 01-08, lines 38-61: Exe­
cute the calculator functions
corresponding to each menu label.

~

• • • •
• • • • ..
• ..
• I.
I.
I.
I ..
I ..
I ..
I ..
L ..
L ..
t ..
t.
L ..

~
~

50 LBL 05
51 SIN
52 RTN
53 LBL 06
54 COS
55 RTN
56 LBL 07
57 X<>y
58 RTN
59 LBL 08
60 +/-

61 RTN

62 END

Nested Menus. In many menus, one or more of the six top-row menu
keys bring up a new menu called a nested, or submenu. For example, in
the PGM.FCN menu, when you press theX?0 menu key, a nested
menu of related functions (X = O?, X #)?, ... , ~?) is displayed. To return
to the main menu, you press the IEXIT! key.

You can emulate a nested menu in a program by assigning a KEY GTO
instruction to any labeled top-row menu key. Consider the following sim­
ple menu of calculator functions.

~ I •..•.. , ••... ~ci~i
TAN······

Here is a program that emulates this menu structure.

To key in LVL1:

1. Create labels L VL1 and L VL2 when you begin program entry.

2. Note that lines 03, 05, 07,14,16, and 18 are Alpha strings.

1: Programming 37

Program:

00 { 108-Byte PrgM }
01 LBL "LVL1"

02 CU1E~~U
03 "+"
04 KEY 2 >::EQ 01
05 "-"
06 KEY 3 XEQ 02
07 "TRIG"
08 KEY 5 GTO "L"lL2"
09 l'lE~~U

10 STOP
11 GTO "LVL1"

12 LBL "LVL2"
13 CU'lEt-lU
14 "SIt-l"
15 KEY 4 XEQ 11
16 "COS"
17 KE~) 5)<EQ 12
18 "TAt·~"

19 KEY' 6 XEQ 13
20 KEY 9 GTO "LVL1"
21 ~lEt-lU

22 STOP
23 GTO "LVL2"

24 LBL £11
25 +
26 RTt~

27 LBL 02
28 -
2'3 RTN
30 LBL 11
31 SIN
32 Rn~
33 LBL 12
:::4 COS

38 1: Programming

Comments:

Lines 01-11: Build and display the
primary level of the menu, Assign to
key 3 (labeled TR I G) a branch
instruction to label L VL2 to build the
nested menu (line 08).

Lines 12 - 23: Build and display the
nested menu. Assign a branch instruc­
tion to key 9 (the IEXIT! key) back to
label LVLl (line 20).

Subroutines 01, 02, and 11-13, lines
24 - 38: Execute the calculator func­
tions corresponding to each menu
label.

85 RTN
86 LBL 18
87 TAN
88 RTN

89 END

Controlled Looping

A controlled loop is a loop that is executed a specified number of times.
You can build a controlled loop with a local or global label, an ISG or
DSE instruction, and a GTO instruction.

The program DISPL in this section uses a controlled loop to calculate
successive linear displacements of an object traveling at a constant velo­
city.

The equation of motion for constant velocity on a smooth surface is

where:

x is the total displacement.
Xo is the initial position.
v is the velocity.
I is the elapsed time.

x = Xo + vi

DISPL calculates the displacement at successive time intervals from I = 0
to I = I, . It builds a loop counter of the form .fffcc by prompting you for
the value of I" and for the value of STEP (the value ofthe time interval). I, becomes the fff portion of the counter and STEP becomes the Ii portion
ofthe counter.

1: Programming 39

Here is a flowchart for DISPL.

INPUT
Xo ,v, t, , STEP

The program segment that uses a controlled loop to calculate successive
values of x is highlighted in the following annotated listing.

40 1: Programming

.~

"f
.... To key In DISPL: Create variablesx,xO, v, tF, STEP,fff, ii, and COUNT
.... before program entry.

Program:

00 { 110-Byte PrgM }
01 LBL "DISPL"

.. 02 SF 21
•
I-
i" -,.
... ..
• ..

03 INPUT "x0"
04 INPUT "v"
05 INPUT "tF"
06 INPUT "STEP"
07 RCL "tF"
08 lE-3
09 x
10 STO "fff"
11 RCL "STEP"
12 lE-5
13 x
14 STO "ii"
15 RCL+ "fff"
16 STO "COUNT"

17 LBL 01
18 RCL "cou~n"

19 IP
20 RCLx "v"
21 RCL+ "x0"

.. 22 STO "x"
23 CLX
24 VIHJ "x"
25 ISG "COUNT"
26 GTO 01
27 GTO "DISPL"

28 END

Comment.:

Lines 03 -16: Prompt for the vari­
ables. Build the counter.

Lines 17 - 27: Calculate successive
values of x in the counter-controlled
loop. (Note that the integer part of
COUNT in line 19 is the time t.)

1: Programming 41

Example: Loop Control In a Program. Find successive values of
the displacement x of an object in intervals of five seconds from t = 0 to
t = 15 seconds whenxo = 10 meters and v = 20 meters/second.

Begin program execution.

IXEal ~l$~t.

Enter the values for Xo and v.

10 IfiZID 20 IfiZID

Iv: 0.0000
x0?0.0000

Iv: 20.0000
tF?0.0000

Enter the value for t, and continue program execution.

15 IfiZID Iv: 15.0000
STEP?0.0000

Enter the value of STEP (the size of the interval) and continue program
execution.

IX=10.0000
x: 0.0000

The value of x at t = 0 is 10. Press IfiZID again to display the value of x at
t = 5.

Press IfiZID to see the value of x at t = 10.

IfiZID

IX=110.0000
x: 0.0000

IX=210.0000
x: 0.0000

Press IfiZID again to see the value ofx at t = 15.

IX=S10.0000
x: 0.0000

Press IRlsl again to prompt for new values. Exit from the program.

IfiZIDIExtTI

42 1: Programming

Iv: 0.0000
x: 10.0000

~

~

$

$

t
I

• • • • • • • • a
a
• a
a
• • • • •

Indirect Addressing in Programs

Indirect addressing is a useful programming tool, particularly when used
in combination with a controlled loop. The operation index in your
owner's manual indicates which functions can use indirect addresses. In
this section, three applications of indirect addressing in programs are
presented.

Using Indirect Addressing to Initialize Data Storage
Registers. Program INIT prompts for data and stores it in successive
registers using INPUT IND in a controlled loop. This is a useful initializa­
tion routine if you are using registers instead of variables for data storage
and recall.

00 { 37-Byte Pr9~ }
131 LBL "HUT"

02 1. 01
03 STO "COUt-lT"

04 LBL 01
05 IHPUT IHD 11 COUHT 11

06 ISG 11 COUHT 11

07 GTO 01

08 EHD

Lines 02 - 03: Build a counter and
store it in COUNT. The counter has a
beginning value of 1, a test value of 10,
and a default increment value of 1.

Lines 04-07: Prompt for data for suc­
cessive registers R 01 - R 10 •

1: Programming 43

Using Indirect Addressing to Clear Registers. The following
routine clears a specified number of storage registers using STO IND in a
controlled loop.

Program:

00 (74-Byte PrgM)
01 LBL "CLEAR"

02 0

03 "FIRST?"
04 PRot1PT
05 STO "COUNT"
06 "LAST?"
07 PROMPT
08 1E-3
09 x
10 STO+ "COUNT"

11 LBL 10
12 0
13 STO IND "COUNT"
14 ISG "COUtH"
15 GTO 10

16 TONE 9
17 "READY"
18 PRO~lPT

19 END

44 1: Programming

Comments:

Line 02: Initialize the X-register to O.

Lines 03 -10: Build a counter in
COUNT. The counter has a beginning
value equal to the first data storage
register to be cleared, a test value
equal to the last register to be cleared,
and an increment value of one.

Lines 11-15: Successively set the
values of the block of specified regis­
ters to O.

Lines 16 -18: Sound a tone and
display the message READY. Press
rnzru to end the program.

,.
... ,. ..
• • • • • • • • • • • • • • • -..
..... ..

Using Indirect Addressing to Execute Subroutines. The follow­
ing routine retrieves data (telephone numbers) from subroutines using
XEQIND .

Program:

00 { 134-Byte Pr9M }
01 LBL "PHONE"

02 "t~AME?"

03 AON
04 PRot1PT
05 AOFF
06 ASTO ST X
07 XEQ IND ST X
08 PROMPT

09 LBL "JAt~ET"

10 "000-555-9874"
11 RTN
12 LBL "BRUCE"
13 "000-555-1356"
14 RTN
15 LBL "PAM"
16 "000-555-6093"
17 RTN
18 LBL "CHRIS"
19 "000-555-6276"
20 RTN
21 LBL "BOB"
22 "000-555-2411"
23 RTN

24 am

Comments:

Lines 02-08: Prompt for the name
(Alpha string) whose telephone
number is desired (lines 02 - 05) and
store the string in the X-register (line
06). (The string may be six Alpha
characters maximum; the X-register
holds only up to six Alpha characters.)
Execute the subroutine whose label
matches the Alpha string (line 07),
then suspend program execution (line
08).

Lines 09 - 23: Build the telephone
numbers (actually Alpha strings) in
the Alpha register.

1: Progr lng 45

Flags in Programs

Earlier in this chapter you wrote a program SSA that makes a branch
based on a number test; specifically, SSA uses the X..:;Y? function to con­
struct the branch. The program asks the question: Is S 2 ~ S 1 ? Then it
makes a decision based on the answer - either calculate the second answer
set or end the program.

The X?O and X?Y sets of functions enable programs to ask questions only
concerning number values.· However, programs can also make condi­
tional branches (ask questions and make decisions) based on flag tests.
Flag tests follow the "do-if-true" rule. If the test is true, the next instruc­
tion is executed. If the test is false, the next instruction is skipped.
Because flags have unique meanings for the calculator, they greatly
expand the logic control you can exercise in a program. (User flags 00
through 35 and 81 through 99 may be set, cleared and tested. System flags
36 through 80 may only be tested. Refer to appendix C in your owner's
manual for a complete listing of the HP-42S flags and their meanings.)

User Flags

Flags 00 through 35 and 81 through 99 are user flags; they may be set,
cleared, and tested.

General Purpose Flags. General purpose flags (flags 00 through 10
and 81 through 99) are not used internally by the calculator; what they
mean depends entirely on how you define them.

• The X = Y? and X -rY? functions are exceptions; they can compare Alpha strings.

46 1: Programming

-..
•
• The program LIST on pages 176 through 178 creates a matrix ELIST
• using the following instruction sequence.

• •
t
t

• •
t
t
t

• • • • • •
t
t

• •
t

•
t

• • • ..
-.,.
-...
-...

31 LBL 02
32 1
33 ENTER
34 Fe? 01
35 2
36 DIM "i:LIST"
37 XEQ I
38 R
3'3 R
40 GTO 00

Before you execute LIST, you set flag 01 if you want 'ELIST to be a 1-
column matrix, or you clear flag 01 if you want 'ELIST to be a 2-column
matrix. Flag 01 is defined to have a unique meaning in the program; its
status determines the number of columns in the matrix 'ELIST.
(Remember that current status of user flags is maintained by HP-42S
Continuous Memory. This can affect other programs that use the same
flags.)

Control Flags. Control flags 11 through 35 have a specific meaning and
are used internally by the calculator. For example, flag 21, the Printer
Enable flag, affects the way the VIEW and A VIEW functions work in
programs. When flag 21 is set in PROFF mode, VIEW and A VIEW mes­
sages are displayed, and program execution halts. When flag 21 is set and
PRON is executed, VIEW and A VIEW messages are printed and pro­
gram execution does not halt. Many programs in this manual that use
VIEW or A VIEW also set flag 21.

System Flags

System flags 36 through 80 also have a specific meaning for the calculator.
You cannot directly set or clear these flags. However, you can test them.

The following program, MINMAX, searches for the maximum or
minimum element ofthe matrix in the X-register. In line 23, it tests the
status of system flag 77, the Matrix End-Wrap flag, to determine if the last
element of the matrix has been checked .

1: Programming 47

MINMAX also uses general purpose flag 09 in line 08 to determine
whether to search for the maximum or minimum element of the matrix.
Before you execute the program, you set flag 09 to find the maximum ele­
ment, or clear flag 09 to find the minimum element.

(The annotated listing is on pages 152 through 153.)

00 { 61-Byte Pr9~ }
01 LBL "MHH1AX"

02 8TO "~1 HH1AX"
03 INDEX "MINMAX"

(14 RCLEL
05 GTO 03

06 LBL 01
07 RCLEL
08 F8? 09
09 GTO 02
10 X~Y?
11 GTO 04
12 GTO 03

1 ~ . . :0 LBL (12
14)<~Y?
15 GTO 04

IE. LBL 03
17 RCLI.,J
18 RCL 8T
19 EtHER

20 LBL 04
21 R·,·
22 .J+
28 FC? 77
24 GTO 01

'-I~ .::,._1 Et·m

Z

48 1: Programming

• • • • • a
a
a
• • • • • a
a
• • • • • • • • • •
~

• • • • ,.

Error Trapping

When you attempt an improper operation during function execution, the
operation is not executed and an explanatory message is displayed. For
example, if you execute the keystroke sequence

the calculator returns the message Out of Range, and leaves the value
1 x lQ200 in the X-register.

If an improper operation is attempted in a program, the calculator returns
the corresponding message, and program execution halts at the instruction
that caused the error. Consider the following program.

00 { 26-Byte PrgM }

01 LBL "TRAP"
02 SF 21
03 INPUT "X"
04 X'I'-2
05 STO lIylll

06 VIEW "~J "
07 GTO "TRAP"
08 END

If you execute TRAP and supply the value 1 x lQ200 for X, the program
halts at line 03 and the calculator displays the message Out of Range.
To supply a new value for X, you must restart the program at line 01 (by
pressing IXEal;ZrRBP). In a short program like TRAP, this method of
recovery from an error presents little problem. However, when executing
a program that performs time-consuming calculations, or that has
numerous stops for intermediate data entry, it may be inconvenient to
restart the program at line 01 each time an error occurs.

1: Prognunnalng 49

You can enable program execution to continue after an error has occurred
by setting flag 25, the Error Ignore flag. When flag 25 is set:

• One error during program execution is ignored. The instruction that
causes the error is not performed and program execution continues at
the next instruction.

• The error clears flag 25.

Consider this revision to TRAP.

00 { 58-Byte Prg~)
01 LBL "TRAP"

02 SF 21
03 SF 25
04 It·lPUT "X"
05 X-t·2
06 FC?C 25
07 GTO 00
08 STO "y"
0'3 V I E~·J , II

10 GTO "TRAP"

11 LBL 00
12 CF 21
13 BEEP
14 "Out of Range"
15 AVIEW
16 PSE
17 PSE
1'=' GTO "TRAP"

19 END

TRAP now responds to the error condition by:

• Displaying an error message .

• Resetting flag 25 and prompting for a new value for X.

This programming technique, called error trapping, adds program steps,
but is effective when you can identify operations in a program that are
likely to generate errors.

50 1: Programming

-.
~ ,..
~

"t
"t
"I
I­
i·
I­,­,­
I­
I-• I.
I.
I.
I.
I.
I.
I.
I.
I.
1-.
l
!! ;:
!;

A Summary Program

The program FCA T in this section displays the current status of flags 00

through 99. The flags are displayed in a multirow menu in sets of six.

Each of the menu keys is labeled with a flag number. You can set and

clear user flags 00 through 35 (except flag 25) and 81 through 99 by press­

ing the corresponding menu key. The "." character is appended to the

menu label if that flag is currently set. When you attempt to set or clear a

system flag, FCA T beeps and displays the error message Rest r i ct ed

Operat ion. The previous set of six flags is displayed by pressing menu

key 7 (00), and the succeeding set is displayed by pressing menu key 8

(00)·

FCAT uses many of the programming concepts discussed in this chapter:

• Global and local labeling.

• Prompting for data input.

• Conditional branching based on:

• Number tests.

• Flag tests.

• Subroutines .

• Multirow menus.

• Counter-controlled looping.

• Indirect addressing.

• Error trapping.

1: Programming 51

Here is a flowchart for FCAT.

OPERATION"
MESSAGE

52 1: Programming

KEY 7 KEYS
(PAGE UP) (PAGE DOWN)

•
~

• .-
(I

(I

•

Here is the annotated listing.

Program:

£1£1 { 234-Byte Pt-gr'l }
£11 LBL "FCAT"

£12 £1.£196£16
£13 STO £1£1

£14 LBL A
£15 RCL £1£1
£16 XEQ £1£1
£17 KEY 1 GTO £11
£18 XEQ £1£1
£19 KEY 2 GTO £12
1£1 XEQ £1£1
11 KEY 3 GTO £13
12 XEQ £1£1
13 KEY 4 GTO £14
14 XEQ £1£1
15 KE~' 5 GTO £15
16 >~EQ £1£1
17 KE~' 6 GTO £16

18 KEY 7 GTO £17
19 KEY 8 GTO £18

2£1 "FLAG CATALOG"
21 ~1ENU

22 6
'-'oj Co...., STO £11
24 PRO~1PT
25 GTO A

Comments:

Lines 02-03: Store the loop counter
inRoo ·

Lines 4-17: Build menu keys 1-6.
The label for each menu key is built by
calling subroutine 00. (Now go to sub­
routine 00.)

Lines 18-19: Assign GTO instructions
to menu keys 7 and 8.

Lines 20 - 25: Build the Alpha string
FLAG CATALOG (line 20). Display
the menu (line 21). Initialize register
ROl to 6 (lines 22-23). Display the
Alpha register, suspend program exe­
cution, and prompt for numeric input
(line 24).

1: Programming 53

;-; @-.
e1 26 LBL 00 Subroutine 00, lines 26 - 37: Build the e .•

27 CLA Alpha string for each menu key. First, e
l 28 99.1 test to see if the current value in the

29 XOY X-register (the loop counter) is e. 30 X>Y? greater than 99 (lines 28-31). If yes, e 31 RTN do not build a label for the menu key. e l 32 AlP (The highest numbered flag is 99.) If

e l -::,.:. Fe·? HlD ST X no, append the (integer portion of) the "'-'-' -J.

34 f-". II value in the X-register to the Alpha e l 35 1 register (line 32). Test the status of
8E. + the flag whose number is in the X- ci :::7 I<:n~ register. If that flag is set, append the

C l "." character to the Alpha register
I (lines 33- 34). (Thus, the Alpha label C
1 for each menu key consists of a

number, and, if the co"esponding/lag C 1 is set, a ".".) Increment the value of
ell the X-register by 1 (lines 35-36).
C

38 LBL 01 Lines 38 - 52 establish the flag to be c l 39 DSE 01 set or cleared: Successively decrement

C l 40 LBL 02 ROI by 1 (lines 38-49). (If menu key 1
41 DSE 01 is pressed, the value in ROI is 0 when (c ,I 42 LBL 03 ROl is recalled to the X-register in line

C II 4·:' DSE 01 51. If menu key 6 is pressed, the value ~.

44 LBL 04 in R 01 is 5 when R 01 is recalled to the e II 45 DSE 01 X-register.) Add the current value in
C l 46 LBL 05 Roo (the counter) to the current value

47 DSE 01 in the X-register (line 52). (The value C-I 48 LBL 06 in the X-register after execution of
(~II 49 DSE 01 line 52 is the value of the flag to be set

50 LBL 14 or cleared.) ~II 51 RCL 01

:J 52 RCL+ 00

c--I

::I
54 1: Programming ~

~

• • • •
-.
....
.... ..
....
....
.....
-t
.....
,

;1

53 SF 25
54 FC?C IND
55 GTG '219
56 GTG A

57 LBL '219
58 FC?C 25
59 GTO 1'21
6'21 SF IND ST
61 GTO A

62 LBL '217
63 RCL '21'21
64 6
65 -
66 x<e?
67 96.'2196'216
68 STO '21'21
69 GTO A

ST X

X

Lines 53 - 56 build the setl clear toggle

and error trap: Set the Error Ignore

flag (line 53). Test if the flag (whose

number value is in X) is clear, then

clear it (line 54). If the flag was clear

when tested in line 54, or the attempt

to clear causes a Restricted Operation

error, go to label 09 (line 55). If the

flag was set, and the clear operation

does not cause a Restricted Operation

error, return to the menu-label rou­

tine to update the flag status (line 56) .

Lines 57 - 61: If the branch to label 09

was caused by a Restricted Operation

error, go to label 10 (lines 57 - 59). If
the branch to subroutine 09 was exe­

cuted because the flag was clear, then

set it, and return to the menu-label

routine to update the flag status (lines

60-61) .

Lines 62-69: Decrement Roo by 6.
(Thus, when [!] is pressed, the top­

row menu keys are each relabeled

with the number that is six less than in

the previous menu. If Roo has the

value 12 when [!] is pressed, Roo takes

the value 6, and the menu keys are

relabeled 6-11.) Test if the new value

of Roo is less than O. If yes, store 96 in

Roo (lines 66-68). (Menu keys 1-4
will be labeled 96-99.)

1: Programming 55

713 LBL 138
71 ISG 1313
72 GTO A
73 GTO "FCAT"

74 LBL 113
75 FS?C 21
76 GTO 11
77 XEQ 12
78 GTO A
79 LBL 11
813 XEQ 12
81 SF 21
82 GTO A
83 LBL 12
84 BEEP
85 "Restt-ict.ed "
86 "Operat.ion"
87 AVIEW
88 PSE
89 RTN

913 END

56 1: Programming

Lines 70 -73: Increment Roo by 6 using
the ISa function. (Remember that the
number in Roo is the loop counter; it
has the initial value 0.09906. When [I]
is pressed, the top row menu keys are
each relabeled with the number that is
six greater than in the previous menu.
When the counter test value exceeds
96, program execution transfers to
FeAT, restoring the counter to its ini­
tial value; the menu keys are thus rela­
beled 0-5.)

Lines 74-89: Execute the BEEP func­
tion, display the Alpha message
Rest. r i ct ed Oper at. i on, and
transfer program execution back to
label A. If flag 21 is set, clear it before
displaying the Alpha message, then
reset it. (Program execution continues,
redisplaying the flag menu, and the
status of flag 21 is maintained.)

¥

~

~

~ .,...
... i.
i.

Example: The Flag Catalog Program. Use FCAT to set flag 01.
Check the status of flag 38. Attempt to set or clear it.

Start FCAT.

IXEal (,F;C,*lJl':

Set flag 01.

1

IF LAG CATALOG I
rLAG CATALOG I ..11m

.. Check the status of flag 38.

rLAG CATALOG I
IlHlIIliitI~mJIl:J11l1lEI11

• Flag 38 is clear. Attempt to set it.

• • ..
• ..
• • • • • • • • •
L\~

~
~

88 rLAG CATALOG I
IlHlIIliitI~mJIl:J11l1lEI11

The calculator beeps, displays the message Rest r i ct ed Oper at ion,
and returns to the state before the error. Exit from FCAT.

IY: 42.0961 x: 6.0000

1: Programming 57

The Triangle Solutions Program

This section contains the complete set of equations for the triangle solu­
tions, instructions for keying in TRI4., an annotated listing ofTRI4., and
instructions for using TRI 4..

~ ____ ~~ ____________________ ~ __ ~ A2

Program Equations. The following equations are used in the program:

• Condition 1: S I, S 2, and S 3 (three sides) are known:

Al = arccos [-cos(A3 +A2)]

58 1: Programming

... ,..;
~ ...
~

~

".
". ,.

I "e
1

I-..
• ..
• • • • • •
~ !-;

• Condition 2: S 1 , S 2, and A 2 (two sides and the adjacent angle) are
known:

The problem has been reduced to the A 3, S 1 ,A 1 configuration .

• Condition 3: A 3 , S 1, andA 1 (two angles and the included side) are
known: .

A 2 = arc cos [- cos (A 3 + Ad]

[
sinA3)

S2 = S1 -.-­
smA2

• Condition 4: S 1 ,A I , and A 2 (one side and the following two angles)
are known:

A3 = arc cos [-cos (AI + A 2)]

The problem has been reduced to the A 3, S 1 ,A I configuration.

• Condition 5: S I, S2 (two sides and the included angle) are known:

S3 = JSt + S1 - 2SlS2 cosA I

The problem has been reduced to the S I , S 2, S 3 configuration .

• For any triangle, the area is:

* Two possible solutions exist if S 2 is greater than S 1 and A 3 does not equal 90". Both
possible answer sets are calculated.

1: Programming 59

To key In TRI4.:

1. Create variables SI, S2, S3,AI,A2,A3, P, andAREA before pro­
gram entry.

2. Create labels RESULTS and SSASUB when you begin program
entry.

Here is an annotated listing of TRI 4..

Program: Comments:

00 { 573-Byte Pr91"'J }

01 LBL "TRI.!"

02 SF 21

03 "SSS" Lines 03 -12: Build the menu key
04 KEY 1 XEQ A assignments.
05 "SSA"
06 KEY 2 XEQ B
07 "ASA"
08 KEY 3 XEQ C
09 "SAA"
10 KEY 4 XEQ D
11 "SAS"
12 KEY 5 XEQ E

13 ~lENU Lines 13 -16: Display the menu keys.
14 STOP
15 XEQ "RESULTS"
16 GTO "TRI.!"

17 LBL A Subroutine A, lines 17 - 59: Calculate
18 INPUT "S1" the SSS solution.
19 INPUT "S2"
20 INPUT "S3"
21 RCL "S1"
22 RCL+ "S2"
23 RCL+ "S3"
24 2
25

60 1: Programming

... .. " ...
".
". ,.
... ...
•
-.. ...
'1t ...
11 ,. ,.
• • ..
• ..
• • .. -.. ..
~

26 STO "P"
27 X-t-2
28 LAST X
29 RCLX "S2"
30 -
31 RCL "Sl"
32 RCLX "S3"
33 +
34 SQRT
35 ACOS
36 2
37 X
38 STO "A3"
39 SIN
40 RCLx "Sl"
41 STO 00
42 RCL "P"
43 X-t-2
44 LAST X
45 RCLx "Sl"
46 -
47 RCL+ "S2"
48 RCL+ "S3"
49 SQRT
50 ACOS
51 2
52 x
53 STO "A2"
54 RCL+ "A3"
55 COS
56 +/-
57 ACOS
58 STO "Al"
59 RTN

60 LBL B
61 INPUT "Sl"
62 INPUT "S2"
63 INPUT "A2"

Subroutine B, lines 60 -100: Calculate
the SSA solution.

1: Programming 61

:-I '!-.
64 SIN e 1 65 RCLx "S2" e. 66 RCL+ "Sl"
67 ASIN e l 68 STO "A3" c. 69 SIN
712.1 RCLx "Sl" ell 71 STO 12.112.1

C 1 72 XEQ "SSASUB"
73 RCL "Sl"

C [I 74 RCL "S2"

ell 75 X~Y?
76 RTN

C [I 77 XEQ "RESULTS"

ell 78 RCL "A3"
79 COS ell 812.1 +/-
81 ACOS ell
82 STO "A3" (;
83 XEQ "SSASUB" (~ II
84 RTN

C [I 85 LBL "SSASUB"
86 RCL "A3" C [I
87 RCL+ "A2"

C [I 88 COS
89 +/- ~II
912.1 ACOS

~ II 91 STO "Al"
92 RCL "A2" ~ II
93 COS

~ II 94 RCLx "S2"
95 RCL "A3" ~ II
96 COS

~JI 97 RCLx "Sl"
98 + ~JI
99 STO "S3" . I
lee RTN ~I

~
:J

62 1: Programming ~ ..

~

• ...
-... 101 LBL C Subroutine C, lines 101-126: Calcu-

". 102 IHPUT IIASI! late the ASA solution. ,. 103 It~PUT "S1"
104 IHPUT "Al"

'"e 105 RCL IIA3 H

-. 106 RCL+ "Al"
107 COS .. 108 +/-.. 109 ACOS
110 STO II A2 II

• 111 RCL IIA3 11

• 112 RCL IIS1 11

113 "*REC • 114 X<>\'

• 115 :;::TO 00
116 RCL IIA211

• 117 1

'"e 118 "*F.:EC
119 R~· .. 120
121 STO 11,-'·-.11 -. :;..c..

1'-"-' R·t· .:::..::. • 1'-"-' .::..::- .'-

• 124 +
1-:00:::- STO 11.-··-.11

.:-,.J .: .. :-

• 126 RHl

-. 127 LBL D Subroutine D, lines 127 -150: Calcu-

• 128 It·lPUT II ::: 111 late the SAA solution.
12'3 It·1PUT "Al" ... 130 It·1PUT IIA211

• 131 RCL+ "Al"
1'-"-' COS .:-.::, I. 1 ~,.-, + -

I.
.: .. :.

1::::4 ACOS
I 1::::5 STO II A::: II I. 1:;::6 RCL II ::: 111
I I-IX'

l·
~
~

1: Programming 63

137 ~REC
138 XOV
139 STO 00
140 RCL "A2"
141 1
142 ~REC
143 R·"
144
145 STO "S2"
146 R1'
147 X

148 +
149 STO II .-. .-, II

~'::I

150 Rn~

151 LBL E
152 INPUT II ~:; 111
153 It·~PUT "Al"
154 It·WUT "S2 11

155 RCL "Al"
156 >::<>V
157 ~REC
158 RCL "S1"
159 -
160 -*POL
1 ';:.1 STO 11,-''-.11

Q'::.

162 F~CL+ "Sl"
16::: RCL+ 118211

164 ~ .
.:::.

165
166 STO II FI II

167 X·t·2
168 LAST>::
169 RCL>:: lie .. " --I'::'

170 -
171 RCL "Sl"
172 F::CU·::
17:::
174 SG!F~T

II C':' II
"_10_I

64 1: Programming

Subroutine E, lines 151-194: Calcu­
late the SAS solution.

• • • 175 ACOS

• 176 2
177 x

• 178 STO "A3"

• 179 SIN
180 RCLX "Sl"

• 181 STO 00

• 182 RCL "P"
183 X-t-2

• 184 LASTX

• 185 RCLx "Sl"
186

• 187 RCL+ "S2"

• 188 RCL+ "S3"
189 SQRT

• 190 ACOS

• 191 2
192 x

• 193 STO "A2"

• 194 RTN

• 195 LBL "RESULTS" Subroutine RESULTS, lines 195 - 208:
196 RCL 00 Calculate AREA and display the initial

• 197 RCLX "S3" known values and the results.

• 198 2
199

• 200 STO "AREA"

• 201 VIEH "Sl"
202 VIEH "Al"

• 203 VIEH "82"

• 204 VIEH "A2"
205 VIEl~ "S3"

• 206 VIHJ "A3"

• 207 VIEl~ "AREA"
208 RTN

• 209 END • • • • 1: Protranunlnl 65 ...

To use TRIA:

1. Press IXEOITR tJr:.
2. Select a solution by pressing the corresponding menu key.

3. Input values as prompted. You can name any side S 1. A 1 is the
adjacent angle. You can enter values in a clockwise or counterclock·
wise order. The values are displayed in the same order as they were
entered.

~ ...
". ,..
". ,.
-. -. ,.
".
'1t ,.
• • ..
• • -. ..
-. -..
~

~

2
Enhancing HP-41 Programs

In chapter 11 of your owner's manual, you keyed in and executed a pro­
gram originally written for the HP-41 calculator. That program, named
QUAD, solves for (real number) roots of quadratic equations. Two pro­
grams Q2 and Q3 in this chapter use HP-42S features and functions to
enhance QUAD. A third program QSHORT uses only 11 lines to solve
for quadratic equation roots.

Using Named Variables

In the HP-42S, data may be stored in and recalled from data storage
registers or named variables. Programs that use named variables for data
storage and recall can be easier to write and read .

In QUAD, the values of coefficients a, b, and c are stored in and recalled
from data storage registers. In Q2 these values are stored in and recalled
from named variables a, b, and c. (Q2 also stores the values of the two
roots rl and r2 in named variables Rl and R2. In QUAD, these values are
calculated and displayed, but not saved.)

2: Enhancing HP-41 Programs 67

Using HP-42S Data Input and Output
Functions

Prompting for Data with INPUT

The HP-42S INPUT function enables programs to prompt for data in one
program line.

QUAD prompts for the value of a, then stores the value 2a in a data
storage register with the three-instruction sequence

(12 lIa=?"
(13 PRot'lPT
136 STO 00

Q2 uses INPUT (and the named variable a) to replace these three
instructions with one.

09 INPUT "a"

Displaying Data with VIEW

The HP-42S VIEW function enables programs to display data in one pro­
gram line.

QUAD displays the labeled value of ' 1 with the three-instruction
sequence

29 "ROOTS="
:::(1 AF~CL ~-::

:::1 AVIEl'l

Q2 uses VIEW (and the named variable Rl) to replace these three
instructions with one.

3:3 VIE~~ "F.:1"

68 2: Enhancing HP-41 Programs

.. ,. ..
• ..
• • • -.
-. ,. -.
•

Operations with HP-42S Data Types

Programs written for the HP-41 calculators can operate on only two data
types: real numbers and Alpha strings. Programs for the HP-42S, how­
ever, can also operate on complex numbers and matrices.

In OUAD, complex-number roots cannot be calculated; instead, if the
value b2 - 4ac is less than 0, the calculation is halted and the message
ROOTS CDt1PLEX is displayed. In 02, complex number roots are calcu­
lated, stored in variables, and displayed .

Using the Two-Line Display

Programs can effectively show longer messages in the HP-42S two-line
display. In 02, the two-line message

Zero Input Invalid .
Press R/S to continue.

is displayed if 0 is supplied for variables a or c.

To key in Q2: Create variables a, b, c, Rl, and R2 before program
entry .

Here is an annotated listing of 02.

Program: Comments:

00
01
02
03
04
05

(132-Byte Pr9r~)

LBL 00
"Zet-o Input Inva"
1-"1 id. LFPress R/S"
1-" to continue."
PROMPT

Lines 01- 05: Display the O-input error
message .

2: Enhancing HP-41 Programs 69

06 LBL "Q2"
07 CPXRES
08 SF 21
09 It~PUT lIall

10 >~=o?

11 GTO 00
12 nlPUT IIb ll

1-:0 'J It~PUT lie"

14 X=O?
15 GTO 00

16 RCL "b"
17 +/-

1° 0..' EtHER
19 }<·t-2
20 4
21 F~CU< "all

22 RCL>(lie"

23 -
24 SQF~T

25 RCL lib II
......
.:::.b SIGt~

27 x

28 -
29 2
30
31 RCL+ II all

32 STO "R1"
33 VIE~4 "R1"

Lines 06 -15: Set the program to cal­
culate complex numbers, prompt for
the values of a, b, and c, and test if 0 is
supplied for a or c. (Flag 21 is set in
line 08 so that VIEW results are
displayed in PROFF mode, or printed
if PRON has been executed.)

Lines 16 - 24: Calculate

Lines 25 - 31: Calculate either

-b + Vb 2 - 4ac

2a
or
-b - Vb2 - 4ac

2a

depending on the sign of b. Lines 25-
27 ensure that the root that has the
greatest absolute value is calculated
first. This improves the accuracy of
the results.

Lines 32 - 33: Store the calculated
value in RI and display RI.

70 2: Enhancing HP-41 Programs

r.
I. '. '. I. '. I.
I.
I.
I.
I.
I.
I.
•
I· r· r·
~
l:
!;

34 RCL "c"
35 RCL+ "a"
36 RCL+ "Ri"
37 STO "R2"
38 VIEW "R2"

39 GTO "Q2"

40 END

Lines 34 - 38: Calculate the second
root, store the value in R2, and display
R2 .•

Line 39: Return program execution to
label 02.

Using Menu Variables

02 uses the INPUT function to prompt for the values of the program
variables a, b, and c. 03 uses a variable menu to prompt for these values .
The corresponding program lines are highlighted in the following anno­
tated listing .

• The quadratic equation ax2 + bx + c = 0 can be divided by a (since a cannot equal 0)
yielding x2 + bx + .£ = 0 . This equation can be factored as (x - R1)(x - R~ where

a a
Rl and R2 are the roots of the equation. By definition of the factoring process,

(Rl)(R~ = .£. Therefore,R2 = _c_.
a (aR 1)

2: Enhancing HP-41 Programs 71

To key In Q3: Create variables a, b, c, RI, and R2 before program
entry.

Program:

00 (143-Byte Pr9M)
01 LBL 00
02 "Zero Input Inva"
03 1-" 1 id. L,Press R/S"
04 1-" to continue."
05 PROMPT

06 LBL "Q3"
07 MVAR Ita II

08 MVAR "b"
09 MVAR lie"
10 CPXRES
11 SF 21
12 VARMENU "Q3"
13 STOP

14 RCL II all

15 X=0?
16 GTO 00
17 RCL lie"

18 X=0?
19 GTO 00

20 RCL "b"
21 +/-

22 ENTER
23 X-t2
24 4
25 RCLX lIa ll

2E. RCLX II ell

~,
,"-I -
,-,.-, (;...:. SQRT

29 RCL "b"
30 SIGt·j
31 x

Comments:

Lines 06-13: Declare menu variables
a, b, and c, set the program to calcu­
late complex numbers, set flag 21, and
display the variable menu.

72 2: Enhancing HP-41 Programs

-.
•
~

~
• ..
• • • • • • • • • • • • • • • • • •
~.

-. -.
~

~

32 -
33 2
34
35 RCL+ lIa"

36 8TO "F~ 1"
37 VIE~~ "Rl"

38 RCL "e"
3'3 RCL+ "all

40 F~CL+ "R1"
41 8TO IIR211

42 VIE~'l 1I~:2"

4~' -=- GTO II Q::: II

44 Et-j[)

Assigning a Program to the CUSTOM Menu

When you created the global label 03 in program line 06, that label was
automatically placed in the HP-42S program catalog. You can now exe­
cute 03 by pressing

(requiring a minimum of two keystrokes, depending on where label
G!:3 is in the program catalog).

Alternately, you can assign 03 to the CUSTOM menu by pressing

.'ASSIGNI PGt-1 171--':-

then selecting the desired row of the menu and pressing the desired menu
key in that row. The program now can be executed directly from the
CUSTOM menu with one keystroke.

2: Enhancing HP-41 Programs 73

Example: Executing an Enhanced HP-41 Program from the
CUSTOM Menu.

Part 1. Execute Q3 from the CUSTOM menu to find the roots of the
equation

x 2 + 6x + 1 = 0 (a = I, b = 6, c = 1)

Assign Q3 to the CUSTOM menu using the keystroke sequence just
described. If you want to print the results, execute PRON. Start the pro­
gram from the CUSTOM menu.

(1(ffilliI] lIlF'OH ••.)
IIcUSTOMIQ3

Ix: 0.0000 I _--
Enter the values for a, b, and c. Then calculate RI. (If you are printing the
results, you won't see this display.)

1 R
6 8
1C
rnzru

r1--5.8284 ! _--
RI is calculated and displayed. Now check R2.

!R2=-0.1716 ! _--
Return to the start of the program for new data.

rnzru Ix: -0.1716 I ---.

74 2: Enhancing HP-41 Programs

..
• -.
• • • • • • • • • • • • -.
'It ,.
• • • • • • • • • ,.
--.

Part 2. Find the complex roots of the equation

2X2 + x + 3 = 0 (a = 2, b = 1, c = 3)

Set the angular mode to Rectangular. Enter the values for a, b, and c.
Then calculate R 1. (If you are printing the results, you won't see this
display.)

.'MODESI RECT
2 A
1 B
3 C
IBZID

"1--0.2500 -i1.1990 I _--
R1 is calculated and displayed. Now check R2.

Exit from 03.

'EXIT I

"2--0.2500 i1.1990 I _--
y:-0.2500 -i1.1990
x:-0.2500 i1.1990

A Short Quadratic Program. In conclusion, here is an ll-line, 26-
byte quadratic equation solver.

00 { 26-Byt e Pt-gf"l }

01 LBL "QSHORT"

02 -0.5
03 x
04 ENTER
05 ENTER
06 X-t-2
07 RCL- ST T
08 SQRT
09 STO+ ST Z
10 -

11 END

2: Enhancing HP-41 Programs 75

To use QSHORT:

1. Set the calculator to Rectangular mode and to Complex Results
mode.

2. Key in the value £, then press IENTERI.
a

3. Key in the value!' .
a

4. Press IXEalQSHQ .

76 2: Enhancing HP-41 Programs

,. ..
• -..
• -. ,.
• • • •
• • ..
• I.
I.
I.
I.
I.

~
~
~

The Solver

The material in this chapter builds on concepts introduced to you in .
chapter 12 of your owner's manual.

The following topics are covered:

• Basic use of the Solver.

• Providing initial guesses for the Solver.

• Emulating the Solver .

• Using the Solver in programs .

• More on how the Solver works .

Basic Use of the Solver

The general procedure for executing the Solver is:

1. Create a program that:

8. Uses MVAR to define the variable(s) in the equation.

3

b. Expresses the equation such that its right side equals O. (Note
that each variable in the equation must be recalled to the x­
register.)

2. Apply the Solver to the program:

8. Press .ISOLVERI.

b. Select the program by pressing the corresponding menu key.

c. Enter the value for each known variable by keying in the
value, then pressing the corresponding menu key.

d. Optional: Supply one or two guesses for the unknown variable
by keying in the guess(es), then pressing the corresponding
menu key.

3: The Solver T7

e. Find the value of the unknown variable by pressing the
corresponding menu key.

Example: Basic Use of the Solver. The equation of state for an
ideal gas is

PV= nRT

where:

P is the pressure of the gas (in atmospheres).
Vis the volume of the gas (in liters).
n is the weight of the gas (in moles).
R is the universal gas constant (0.082057Iiter-atmosphere/Kelvin-mole).
T is the temperature of the gas (in Kelvins).

Part 1. Create a program for the Solver that declares the variables and
expresses the equation.

First, set the right side of the equation equal to O.

Now write the program.

Program:

0El { 42-Byte
01 LBL II GA::; II

(12 t'lVAF~ II FI II

(1:=: t'lVAR 111./11

(14 t'l\,'AR II nil

(15 t'l"lAR "T"

(16 F.:CL "P"
~j7 F~CU{ "V"
(1:3 F.:CL "n"
(19 F.:CLx "T"
10 ~j. 0:32E157
11 >~

12 -

1:3 HlD

PI-gr"1

78 3: The Solver

)

PV - nRT = 0

Comments:

Lines 02 - 05: Declare the variables.

Lines 06 -12: Express the equation
such that its right side equals O.

• • • Part 2. Use the Solver to find the solution to the following problem.

• Calculate the pressure exerted by .305 mole of oxygen in .950 liter at
• 150°C (423 K), assuming ideal gas behavior.

• ,.
• -. ,.

Select the Solver application.

.ISOLVERI

Select the program you just created.

GAS

Iselect Solve Program I 1!mI ____ _

Ix: 0.0000 . I _-
Enter the values for the variables you know.

.95 V

.305H
423 T

Solve for the pressure.

f'

r=423.0000 I:. .. _-
IP=11.1438 ~ -

Part 3. Given the same volume and weight of oxygen, what is the tem­
perature of the gas at a pressure of 15 atmospheres?

Since the values of the volume and weight are unchanged, you need only
enter the value of the pressure.

15 f'

Now solve for the temperature.

T

Exit from the Solver application.

IEXIT! IEXITI

r-15.0000 I _-
IT=569.3763 -
Iv: 569.3763
x: 569.3763

3: The SoIY... 79

Providing Initial Guesses for the Solver

For certain functions, it helps to provide one or two initial guesses for the
unknown variable. This can speed up the calculation, direct the Solver to a
realistic solution, and find more than one solution, if appropriate.

Directing the Solver to a Realistic Solution

Often, the Solver equation that describes a system may have solution(s)
that are mathematically valid but that do not have physical significance.
In these cases, it may be necessary to direct the Solver to the realistic
solution by providing appropriate initial guesses.

Example: Directing the Solver to a Realistic Solution. The
volume of the frustum of a right circular cone is found by

V = ..!.1rh(a2 + ab + b2)
3

where:

V is the volume of the frustum.
h is the height of the frustum.
a is the radius at the top of the frustum.
b is the radius at the base of the frustum.

10 3: The Solv.

..
• • • ,. ,.
• • ,.
• • • • • • •
• I.
I.
I.
I.
I.
I.
I.
I.
I,.
L.

~
~

Part 1. Write a Solver program that declares the variables and expresses
the equation such that its right side equals o.
00 { 45-Byte Pr91') }

01 LBL "CONE"

02 MVAR "V"
03 MVAR "h"
04 MVAR lIall

05 MVAR "b"

06 RCL "a"
07 X-1'2
08 LASTX
09 RCLx "b"
10 +
11 RCL "b"
12 X-1'2
13 +
14 RCLx "h"
15 PI
16 x
17 3
18
19 RCL- "V"

20 END

For the purposes of this example, assume that you have already created
variable a and used it in a previous program. Assume that the value
- 3.7765 is currently stored in a . (Go ahead now and store that value in a
by pressing 3.7765 I+!-IISTOI l@MtlWMgi,~.)

3: The So.v. 81

Part 2. For a frustum of volume V = 119.381 metersS, height h = 6
meters, and radius b at the base of the cone = 3 meters, use the Solver to
find radius a .

Select the Solver application and then program CONE.

Enter the values for the known variables.

119.381 V
6
3

Solve for a.

·····.·· .•.... A

Ix: -3.7765

la--5 .0000 ;;J -
The Solver uses the current value of variable a (- 3. n65) as an initial
guess and finds the solution a = - 5 meters. The answer is mathematically
valid. However, a negative radius clearly has no physical significance. Try
guesses of 0 and 5.

The value 2.0000 meters for radius a is mathematically valid and has phy·
sical significance.

Exit from the Solver.

82 3: The Solvw

-. ,. ,.
• • • • • • • • • • • • • • •
l-
~
~

Finding More Than One Solution

The equation of motion for an object experiencing constant acceleration
due to gravity is

y = Yo + vat + "!'gt2
2

where:

y is the total displacement.
Yo is the initial position.
va is the initial velocity .
g is the acceleration due to gravity (- 9.8 meters/second2).

t is the time .

In your owner's manual in section "More Solver Examples" in chapter 12,
you solved several problems in which an object was dropped from an ini­
tial position; va was equal to 0 and the direction of the object's motion was
down at all times. The object attained a given displacement y at only one
time t. However, an object thrown upwards attains a given displacementy
at two different times - once on the way up, and again on the way down.

\
\ ,

t1 j/ \ t2 --j.,.,.-----....... ,--- Y
\

3: The Solv. 83

To find both times 11 and I'J, you must execute the Solver twice, and at
least once provide the Solver with an initial guess to direct it to the second
solution.

Example: Using the Solver to Find Two Real Solutions. A boy
throws a ball with an initial vertical velocity Vo = 15 meters/second, from
an initial height Yo = 2 meters. Use the Solver to find the two times t 1 and
12 when the ball has a height y = 5 meters.

Part 1. Create a Solver program that declares the variables and expresses
the equation such that its right side equals O.

1313 { 53-Byte PrgM }

131 LBL "t10TION"

132 t1VAR "y"
133 t1VAR "ye"
134 ~1VAR "ve"
135 ~1VARA "t"

136 RCL "ye"
137 RCL "ve"
138 RCLx "t"
139 RCL "t"
113 X-t-2
11 -9.8
12 x
13 2
14
15 +
16 +
17 RCL- "y"

18 HlD

84 3: The Solver

r I

r-i

r·'
[.'
I­
I-• -. l ..
~

Pert 2. Execute the Solver to find the first time t 1. Since you know that
this time is close to 0 seconds, provide initial guesses of 0 and 1.

Select the Solver application and then program MOTION.

II SOLVER I M O;rIO

Enter the values for the known variables.

5
2,:Y~
l5i: \i,0

Ix: 0.0000 I _-
IV0=15.0000 -

Solve for time t 1 using initial guesses of 0 and 1.

\
t=0.2151 \ --.

The Solver finds the value of t 1 = 0.2151 seconds. Now find the second
time t 2 by providing two initial guesses that you can expect to bound the
second solution. Guesses of 1 and 20 seem reasonable. (You need not
enter values for the other variables since they have not changed.)

It=2.8461 I _-
The Solver finds the value of t2 = 2.8461 seconds.

Exit from the Solver.

IEXITIIEXITI IY: 2.8461
x: 2.8461

3: The Solv. 85

F

For certain types of functions, the Solver algorithm cannot find solutions.
For example, the Solver cannot solve for complex numbers. However, for
such functions, you can write a program that finds explicit solutions and
acts like the Solver during program execution.

First, consider the following simple circuit.

R

E _

Ohm's law defines the relationship between the voltage potential E, resis­
tance R, and current I for this circuit as

E =IR

Since there are no complex terms in this equation, the Solver can be used
to find the value of any variable in the equation.

86 3: The Solver

... ...
~

~
."'e -..
~

I~
I·
I·
I~
I'"
I'"
I~
".

• -...
• • .. .­..
t.

~
~

Example: Using the Solver for a Simple Resistive ClrcuH. For
a simple resistive circuit, use the Solver to find the resistance R when the
voltage E = 10 V, and the current I = 5 A.

First, create a Solver program that declares the variables and expresses
the Ohm's law equation such that its right side equals O •

00 { 29-Byte Pt""91"l }

01 LBL "CIRCUIT"

02 MVAR "E"
03 MVAR "I"
04 MVAR "R"

05 RCL "I"
06 RCLX "R"
07 RCL- "E"

08 END

Select the Solver application and then program CIRCUIT .

I' SOLVER I G.IRC)U Ix: 0.0000 I _--
Enter the known values for E and I, then solve for R.

10
5

Exit from the Solver application.

IEXITIIEXITI

IR=2.0000 I ---
Iv: 2.0000
x: 2.0000

3: The Solver 87

Now consider the following circuit.

R

E c

Application of Ohm's law to this circuit results in the following expression.

where:

E is the circuit voltage.
I is the circuit current.
Z is the circuit impedance.

E = IZ

The impedance Z is the complex number (in rectangular form)

where:

R is the circuit resistance.
w is the circuit frequency (in radians/second).
C is the circuit capacitance.

Because the voltage, current, and impedance are complex numbers, you
cannot use the Solver to find their values. However, the HP-42S can per­
form arithmetic operations on complex numbers. (Refer to chapter 6 in
your owner's manual for a discussion of complex-number arithmetic.) The
following program, EIZ, solves explicitly (algebraically) for the complex
numbers E, I, and Z, and uses a variable menu to simulate the external
appearance of the Solver. (Refer to the section "Using a Variable Menu"
in chapter 9 of your owner's manual for a discussion of variable menus.)

88 3: The Solver

f!1
~I
e l
e l
e l
e l
e l
c l
~ I
~ I
, I
, I
, I
, I
• I
t;; I
, I
, I
, I
, I
, I
., I
i I
Ii I
., I
Ii I
" I
" I
" I
" I .- I
.. I
t J

d

Sf ..
9 ,
•
!J
$

~

•
$

~

s.
$
$

a

• • • • • • '. I.
I.
I.
I.
I.
L.
I.
I.

t:
~

Here is an annotated listing of the program.

Program:

00 { 96-Byte Pr9~ }
01 LBL "EIZ"

02 MVAR "E..!"
03 MVAR "I..!"
04 MVAR "Z..!"
05 VARt1ENU II E I Z II

06 POLAR
07 CPXRES
08 CLA
09 STOP
10 ALENG
11 X=0?
12 GTO "EIZ"

13 ASTO ST >~

14 XEQ It~D ST X
15 STO IND ST Y

16 VIal Hm ST y

17 GTO "EIZ"

18 LBL "E..!"
1'3 RCL "I..!"
20 RCLx II Z..! II
21 RTt-~

22 LBL II I..! II
.-.~,

.:::.::.' RCL 11 E.! II

24 RCL~ liZ.£. II
~,c-

'::'.' RTN

comments:

Lines 02-05: Declare variables E, I,
and Z and build the variable menu.

Lines 06 - 12: Set the calculator to .
Polar mode and to calculate complex
results. Suspend program execution
for data entry. If a variable to solve for
has not been specified, return to the
start of the program.

Lines 13 -17: Recall the current Alpha
string to the X-register and execute
the corresponding subroutine. (The
current Alpha string is the name of
the variable for which no value is sup­
plied.) Store the calculated result from
the subroutine in the V-register and
view the result. Then return to the
start of the program.

Subroutine E4, lines 18-21: Calcu­
lateE4 in terms of/4 andR4.

Subroutine 14, lines 22-25: Calcu­
late 14 in terms of E 4 and Z 4 .

3: The Solver 89

26 LBL "Z~"

27 RCL "E~"

28 RCL+ "I~"

29 RTN

Subroutine Z4, lines 26-29: Calcu­
lateZ4 in terms ofE4 and 14.

313 END

(Line 06 sets the calculator to Polar mode. Multimeters typically display
complex voltage, current, and impedance values in polar form, that is, as a
magnitude and phase angle.)

Example: Calculating Complex Values In an RC Circuit. A
lO-volt power supply at phase angle 00 drives an RC circuit at a frequency
of 40 radians per second. A current of .37 A at phase angle 68" is meas­
ured. What is the resistance of the circuit? What is the capacitance of the
circuit?

Begin program EIZ.

IXEal 0~E1Z'

Enter the known value for the voltage.

10 IENTERI ollcOMPLEXI

Enter the known value for the current.

.37IENTERI68I'cOMPLEXI

Solve for the impedance.

90 3: The Solver

Ix: 0.0000 I IIDI"IH!II __ _

IE~=10.0000 ~0.0000 I IIDI"IH!II __ _

I I ~=0. 3700 ~68. 0000 I IIDI"IH!II __ _

IZ~=27 • 0270 ~-68. 0000 I IIDI"IH!II __ _

.~

• • ..
• • ,. I. I.
I.
I.
I.
I.
I.
I ..
I ..
I".
I~
I ...
I.
L ..
I ...
I ...
I.
I.
~

~
~
~
~
~

The impedance of the circuit (in polar form) is 27 n at phase angle -~.
Convert the impedance to rectangular form to find the circuit resistance
and capacitance. (Remember, R is the real term and C is one factor in the
imaginary term of the rectangular form of the impedance Z.)

'IMODESI.J~ECT 1~~1im~=~1

The circuit resistance is 10 n. Now calculate the capacitance.

IICOMPLEXI
(ti;] 40 ~
IITOP.FCNll/.x

The circuit capacitance is .001 F.

Ix: 0.0010 I .n"Il!nIII __ _

If, at the original input voltage, the impedance is now varied and measures
20 n at phase angle -45°, what is the current?

Return to polar mode. Then enter the new value for the impedance and
solve for the current.

IIMODES 1 P Ol,..AR
20 IENTERI 45 1+/-1
II COMPLEX 1 Z",,<
W;!M·X·~tT·

The current is 0.5 A at phase angle 45°.

Exit from EIZ.

IEXITI

lI.d::-0.5000 "'45.0000 I .n"Il!nIII __ _

Iv: "I"''' x: 0.5000 "'45.0000

3: The Solver 91

Using the Solver in Programs

Using the Solver and Explicit Solutions In a
Program

The Solver uses an iterative method to find solutions for the variables in
an equation. You must use an iterative method to find the solution for a
variable that cannot be isolated (cannot be expressed uniquely in terms of
the other variables in the equation). However, in cases where the
unknown variable can be isolated by algebraic manipulation, an explicit
solution for that variable is always Jaster than an iterative solution using
the Solver.

Some functions may contain a variable whose value must be found itera­
tively, and other variables whose values can be calculated explicitly. In
your owner's manual, in the section "More Solver Examples" in chapter
12, you worked an example in which the Solver was used to fmd the solu­
tions to time-value-of-money (TVM) problems. The TVM equation is

0= -PV + (1 + ip)PMT [1 - (\+ i)-N] + FV(1 + i)-N

where:

N is the number of compounding periods or payments.
; is the decimal form of the periodic interest rate.

PV is the present value. (This can also be an initial cash flow or the
discounted value of a series of future cash flows.) PValways
occurs at the beginning of the frrst period.

PMT is the periodic payment.
FV is the future value. (This can also be a final cash flow or the

compounded value of a series of cash flows.) It always occurs at
the end fVth period.

p is the payment timing. If p = 1, payments occur at the beginning
of the period. If p = 0, payments occur at the end of the period.

92 3: The Solver

~

• • a
a
~

a
a
a
a
~

~

a
~

a
a
a
• •
~

• • • • ,
~

• • • • •

In the example in your owner's manual, you wrote a program TVM that
declares each of the TVM variables and expresses the TVM equation.
The Solver is used to find the solution for each of the function variables.
Notice, though, that the variables PV, N, FV, and PMT can each be iso­
lated. For example, PV can be expressed as

PV = -(1 + ip)PMT [1 - (1 i+ i)-N] - FV(l + i)-N

Only the variable i cannot be isolated; you need to use the Solver only
when you want to find the value of i.

The following program, TVM2, calculates the solutions to PV, N, FV, and
PMT explicitly, and calls the Solver to find the solution for i. The pro­
gram uses a programmable menu and flag 22, the Numeric Data Input
flag, to simulate the external appearance of the Solver application.

To key in TVM2: Create variables P /YR,p, CNTRL, N, FV, MODE,
PMT, i, I%YR, and PV.

Here is an annotated listing.

Program:

00 (533-Byte PrgM)
01 LBL II TVt'12II

02 REALRES
03 CF 21
04 12
05 SF 25
06 F.:CL IIp \IR Il

(17 ::-::EQ 21
(18 SF 25
09 F~CL IIpll

10 CF -:oc:
.:..~I

11 1
12 X~\'?

13 0
14 STO IIpll

15 >~EQ 20

Comments:

Lines 02-15: Ensure results are real
numbers. Display A VIEW messages
and continue program execution. Call
subroutine 21 to set the default pay­
ments per year to 12. Set the default
payment mode to End mode. Call sub­
routine 20 to display the payments per
year and the payment mode.

3: The Solver 93

16 LBL 99
17 CLMENU
18 "N"
19 KEY 1 XEQ 01
20 "I%YR"
21 KEY 2 XEQ 02
22 "PV"
23 KEY 3 XEQ 03
24 "PMT"
25 KEY 4 XEQ 04
26 "FV"
27 KEY 5 XEQ 05
28 "MODES"
29 KEY 6 GTO 06
30 t'1H~U

31 STOP
32 AS TO "CNTF.:L"
33 STO IND "CNTRL"
34 Ii I El·j I t·lD "Ct-lTRL"
35 GTO 99

36 LBL 2~3

37 CLA
38 RCL "P/ R"
39 AlP
40 1-" P/YR"
41 RCL "p"
42 X=0?
43 1-" END MODE"
44 X:;t:0?
45 1-" BEGIN MODE"
46 AVIEl~

47 CLt-1Et·~U

48 RTt~

94 3: The Solver

Lines 16-35: Build the main menu,
display it, and wait for data input
(lines 17 - 31). Display the value of the
entered or calculated variable (lines
32-34).

Subroutine 20, lines 36 - 48: Build and
display the payments-per-year and
payment-mode message.

.. ,

... ,. ..
• ..
~

~
~
• • ..
• ..
•
•

49 LBL 06
50 XEQ 20
51 "P/YR"

'52 KEY 1 XEQ 21
53 "BEG"
54 KEY 2 XEQ 22
55 "END"
56 KEY 3 XEQ 23
57 "TVM"
58 KEY 4 GTO "TVM2"
59 MENU
60 RCL "P/YR"
61 STOP
62 GTO 06

63 LBL 21
64 RBS
65 IP
66 1000
67 X<>Y
68 X~Y?
69 12
70 X=0?
71 12
72 STO "P/YR"
73 RTt~

74 LBL 22
75 1
76 STO lip"

77 RTt~

78 LBL 23
79 0
80 STO lip"

81 RTN

Lines 49-62: Build and display the
payments-per-year and payment-mode
menu.

Subroutine 21, lines 63 - 73: Check if
the specified number of payments per
year is valid. If not, substitute 12 pay­
ments per year .

Subroutine 22, lines 74-77: Set pay­
ment mode to Begin by supplying 1 for
p .

Subroutine 23, lines 78-81: Set pay­
ment mode to End by supplying 0 for
p.

3: The SoIyer 95

82 LBL 01
83 "N"
84 FS?C 22
85 RTN
86 1
87 STO "N"
88 XEQ 10
89 RCL "FV"
90 RCL+ "MODE"
91 +/-
92 RCL "PMT"
93 RCL "i"
94 X=0?
95 GTO 00
96
97 +
98 LASTX
99 RCL "PV"
100 RCL+ "MODE"
101 +
102
103 LN
104 RCL "i"
105 LN1+X
106
107 RTt~

108 LBL 00
109 RCL "PV"
110 RCL+ "FV"
111 RCL+ "PMT"
112 +/-
113 RTN

96 3: The Solv.

Subroutine 01,Iines 82-107: If
numeric input is made for N, return to
the main menu and display the value
of N. If not, calculate N in terms of
the other variables. If i = 0, go to label
00 to calculate N (lines 93-95).

Lines 108 - 113: Calculate N if i is O.

". ,..
....
".
.... 114 LBL 02 Subroutine 02, lines 114-123: Use the

115 "I%YR" Solver to calculate I%YR. Specify the .. 116 FS?C 22 Solver subroutine "i". Supply initial .. 117 RTN guesses of 0 and 20 for I%YR.
118 PGMSLV "i"

"t 119 0

". 120 STO "I%YR"
121 20 .. 122 SOLVE "I%YR" .. 123 RTN .. 124 LBL "i" Subroutine "i", lines 124-131: Express

... 125 XEQ 10 the TVM equation for the Solver.
126 RCLx "Pt'1T"

". 127 XOY

... 128 RCLx "FV"
129 +

",. 130 RCL+ "PV"

".
131 RTN ,. 132 LBL 03 Subroutine 03, lines 132-142: If
133 "PV" numeric input is made for Pv, return

~ 134 FS?C 22 to the main menu and display the ... 135 RTN value of PV. If not, calculate PV in
136 XEQ 10 terms of the other variables. ... 137 RCLx "PMT" ... 138 XOY
139 RCLx "FV"

!"'I 140 +
I,. 141 +/-

l,. 142 RTN

I ... 143 LBL 04 Subroutine 04, lines 143-154: If

l
144 "PMT" numeric input is made for PMT,
145 FS?C 22 return to the main menu and display

1-...
146 RTt~ the value of PMT. If not, calculate

r: 147 XEQ 10 PMT in terms of the other variables.
148 XOY

~
3: TheSolY_ 97

~ I
1 ~'

~
149 RCLx "FV" ~
150 RCL+ "PV"
151 XOY e,
152 e
153 +/-
154 RTN e
155 LBL 05 Subroutine 05, lines 155 -165: If C
156 "FV" numeric input is made for FV, return e
157 FS?C 22 to the main menu and display the
158 RTN value of FV. If not, calculate FV in e
159 XEQ 10 terms of the other variables. e
160 RCLX "P~1T"

161 RCL+ "PV" C
162
163

XOY e
164 +/- ,
165 RTN ,
166 LBL 10 Subroutine 10, lines 166 - 188: Calcu- ,
167 RCL " I %'y'R " late terms of the TVM equation based ,
168 RCL~ "P/VR" on the value of I%YR. Calculate i; the
169 100 decimal form of the periodic interest ,
170 rate (lines 167 - 171). Calculate

~ 171 STO II i II MODE (1 + ip)(lines 172-175). CaI-
172 RCLx lip" culate the FV coefficient (1 + i)-N ~
173 1 (lines 176-182). Calculate the PMT

~ 174 + coefficient. If i = 0, go to line 189
175 STO "t'10DE" (lines 183 -188). • 176 1 • 177 ENTER
178 RCL+ II i II .-
179 RCL "N"

.~
180 +/- .J 181 'y'-t-X
182 STO ~:n 2 ~J 1 ,-,.-, -.:,.;:.

~"J 184 RCLx "t'10DE"
1::::5 SF .-.e:" i'J '::"-'
18E. F~CL~ II i II

:J
~

98 3: The Solver ~

..

....

....

....
"t
"t
....
"f
"f ...
...
••
'It
• -. -.

""9

187 FS?C
188 RTN

189 1
190 RCL
191 Et'~D

25

"N"
Lines 189 -191: If i = 0, then the FV
coefficient is 1 and the PMT
coefficient is N.

To use TVM2:

1 . Press IXEal T'·/t·12 .

2. Supply values for the known variables. For example, press 60
t·~

3. Solve for the unknown variable by pressing the corresponding menu
key.

4. TVM2 uses the variable I%YR to prompt for and display the
interest rate. I%YR is the percent form of the annualized interest
rate .

5. The default payment period is one month (12 payments per year).
The default payment timing is the end of each period. To specify a
different payment period or payment timing, first select the MODE
menu. Then, for example, to specify six payments per year, press 6
P/ F~ .

To specify payment timing at the beginning of each period, press
BEe; .

To return to the main menu, press TV t'1 .

Example: Executing Algebraic Solutions for TVM Problems.
In the section "More Solver Examples" in chapter 12 of your owner's
manual, Penny of Penny's Accounting wants to calculate the monthly pay­
ment PMT for a 3-year loan financed at a 10.5% annual interest rate,
compounded monthly. The loan amount is $5,750 .

In that example, you executed the program TVM to calculate the value
PMT = -186.89. TVM uses the Solver to calculate PMT. The calculation
takes about three seconds with initial guesses of 0 and - 500 .

Part 1. Use TVM2 to calculate the value of PMT explicitly.

3: The Solver 99

Set the display format to FIX 2. Then execute TVM2.

IIOlspl'F'IX 21ENTERI 112 P""'YR EHD MODE 1
IXEQIJ'VM~E .1EII1EiI .. IDII .. DIiID.

Enter the known values.

5750 PV
10.51~'r'R
36 tot
o F¥

Solve for the payment.

PMli IPMT --186.89 I
1Ell1EiI .. IDII .. DIiID

The explicitly calculated value is -186.89 (the same as when you used
TVM) and the calculation takes less than one second. Also note that the
calculation time is independent of the previously calculated value PMT.
(The Solver interprets the previously calculated value as a guess if two
guesses are not supplied. The explicit solution does not use guesses.)

Part 2. Another bank has offered to loan Penny's customer $5,750, to be
paid in monthly installments of $200. What interest rate is this bank
charging?

200 1+/-1 PMT
l~YR

II%YR=15.24 I
1Ell1EiI .. IDII .. DIiID

TVM uses the Solver to calculate the new interest rate. The Solver uses
the guesses 0 and 20 (supplied by the program) to start its iterative search.
The calculation takes about 11 seconds.

Exit from TVM2 and return the display format to FIX 4.

41ENTERI

100 3: The Solver

IY: 15.2393
x: 15.2393

~
r~
I~
I~
I
I
....
....
~

~ ...
~
....

l'" ...
I.
I.

'. L ..
L
L ...

~

Using the SOLVE and PGMSLV Functions with
Indirect Addresses

In the previous section, you used the SOLVE function in TVM2 to find
the value of the interest rate i in the TVM equation:

122 SOLVE "I%YR"

You used the PGMSLV function to specify the routine that expresses the
TVM equation:

118 PGMSLV "i"

In TVM2, the SOLVE and PRGSLV instructions directly address the vari­
able and the subroutine. Such use of direct addressing enables you to
specify only one Solver routine and, within that routine, only one variable .
However, the use of indirect addressing expands the utility of the Solver by
enabling you to specify any of multiple routines, and any of multiple vari­
ables .

Example: Using SOLVE with an Indirect Address. Restating the
ideal gas equation of state:

pv- nRT= 0

The "van der Waals" equation of state refines the ideal gas equation to

[[p + n~ 1 (V - nb)]- nRT ~ 0

where a and b are constants characteristic of the gas in question .

Part 1. Write a program that enables you to solve for the value of any of
the variables using either the ideal gas or van der Waals equation of state .

3: The SoIY_ 101

q

Here is a flowchart for the program, named GAS2.

(GAS2)

~...-----~~
DECLARE MENU

VARIABLES

DISPLAY VARIABLE MENU
FOR DATA INPUT

STORE NAME OF
UNKNOWN VARIABLE

FROM ALPHA REGISTER
TO VARIABLE CONTROL

102 3: The Solver

EXPRESS THE
VAN DER WAALS

EQUATION

..
".
• •
• • • • • ,.
• • • • • • • • • • • • • • -".

Here is an annotated listing of the program .

Program:

00 { 129-Byte Pt-gr'l }

01 LBL II GAS2 It

02 t1'v'AR "P"
03 MVAR "V"
04 t'1YAR lin II

05 t1VAR "T"
06 MVAR II all

07 ~1YAR "b"
08 VARMEt~U "GAS2"

09 CF 21
10 REAL RES
11 STOP
12 AS TO "CotHROL"
13 PGt1SLV "l,JAALS"
14 SOLVE Hm "CotHROL"
15 VIEW IND "CONTROL"
16 GTO "GAS2"

17 LBL "l,JAALS"
18 RCL II FI II

1 " F~CL II nil

2(1 ~·::·t-2

21 RCL>:: lIa ll

22 RCL IIV II

.-,.-. .::..:.)-::-1'2
24
':00:-,-,_I +
26 F.:CL "V"
27 RCL IInll

2'-' 0 RCLx lib II

29 -
30 x

Comments:

Lines 02 - 08: Build the variable menu.

Lines 09 -16: Clear flag 21 to continue
program execution after a VIEW
instruction. Set to calculate real results
only. Display the menu. Store the
name of the unknown variable in
CONTROL (line 12). Specify Solver
routine WAALS (line 13). Indirectly
specify the variable to be solved (line
14). View the solution and return to
label GAS2 (lines 15 -16).

Lines 17 - 34, the Solver routine
WAALS: Express the van der Waals
equation such that its right side equals
o.

3: The Solver 103

•

31 13.13821357
32 RCLX "n"
33 RCLX "T"
34 -

35 Et~D

Part 2. Use the van der Waals equation of state to calculate the pressure
exerted by 0.250 mole of carbon dioxide in 0.275 liter at 373 K, and com­
pare this value with the value expected for an ideal gas. For CO2 •

a = 3.59liters2 -atmosphere/mole2 • and b = 0.0427 liter/mole.

Execute GAS2.

IXEal GAS2

Enter the values for the known variables.

.250 H

. 275 V
3731
3.59 A
.0427 E:

Ix: 13.13131313 I:.
N=13.13427 I:.

Enter guesses of 10 and 30 for P, and solve for P.

10 P
30 P

P

IP-25.9816 I:.
Using the van der Waals equation of state, the predicted pressure is
25.9816 atmospheres.

Now use the ideal gas equation to predict the pressure. Simply supply the
value 0 for a and b and solve for P. The previously calculated value for P
serves as an initial guess.

o A
o B

p'

104 3: The Solver

[=27.8248 I:.

~' r
1
~l
~-I
f!1
e I
e I
e I
C I
e I
: I
c
t:

r:
~

,;
(;

,;­
(;:

t:
~'

~

~'

••
~-

('-.

f'-I
...--1
f"'"1

~J
~
~
t,~

• • • • • • ..
• • ..
• • • ..
• • • • '. • • • • • • • • ..

The ideal gas equation predicts a pressure of 27.8248 atmospheres. (The
actual observed pressure is 26.1 atmospheres.)

Exit from GAS2.

(EXIT I Iv: 27.8248 x: 27.8248

More on How the Solver Works

The Root(s) of a Function

To use the Solver, you have learned that you first create a program that
expresses the equation such that its right side equals 0 (by subtracting the
terms on the right side from both sides of the equation). If the equation
has more than one variable, you must, after selecting the Solver applica­
tion, supply values for all but the one unknown variable. At this point,
your equation has taken the form/ex) = 0, where x is the unknown vari­
able, and/(x) is a mathematical shorthand for the function that definesx.
Consider the equation

2X2 + xy + 10 = 3xz + 2yz

Setting the equation equal to 0 by subtracting the terms on the right side
from both sides gives

2X2 + xy + 10 - 3xz - 2yz = 0

To use the Solver, you now write a program that declares the variables x,
y, and z and expresses the equation. When you select the Solver applica­
tion and, for example, supply the value 2 for y, and 3 for z, by substitution
the equation becomes

2X2 - 7x - 2 = 0

where x is the unknown variable and/(x) = 2X2 - 7x - 2. Each value x
for which/(x) = 0 is called a root of the function. The Solver iteratively

3: The Solver 105

seeks a root for f(x) by evaluating the function repeatedly at estimates of
x, and comparing the results to previous estimates. Using a complex algo­
rithm, the Solver intelligently "predicts" a new estimate of where the graph
off(x) might cross the x-axis. Here is a graph of the function
f(x) = 2t2 - 7x - 2. The graph shows two roots. (The example on pages
110-112 calculates these roots.)

f(x)

x

All except one ofthe functions in the examples in this section are func­
tions of one variable x only. Remember, though, that the situations
described in the examples apply equally to multivariable functions, since
multivariable functions become single variable functions when, in the
Solver application, you supply values for the known variables.

106 3: The Solver

~

~

~

"..
'1t
".
".
". ...
• • • •• ..
". -. ..
• • • ..-
-­..
•• • ..
• •
~

~ ,

~

~

The Solver's Ability to Find a Root

For the Solver to find a root, the root has to exist within the range of
numbers of the calculator, and the function must be mathematically
defined where the iterative search occurs. The Solver always finds a root
if one or more of the following conditions is met:

• Two estimates yieldf(x) values with opposite signs, and the function's
graph crosses the x-axis in at least one place between those estimates
(figure 3-1a).

• f(x) always increases or always decreases asx increases (figure 3-1b).

• The graph off(x) is either concave everywhere or convex everywhere
(figure 3-1c).

• Iff(x) has one or more local minima or maxima, each occurs singly
between adjacent roots off(x) (figure 3-ld) .

f(x) f(x)

~
I

--r---~------~X

a
f(x) f(x)

--~----------~~x

c

Figure 3-1. Functions for Which a Root Can Be Found

3: The Solver 107

In most situations, the calculated root is an accurate estimate of the
theoretical, infinitely precise root of the function. An ideal solution is one
for whichf(x) exactly equals O. However, a nonzero value for f(x) is often
also acceptable, because it results from approximating the root with lim­
ited (12-digit) precision.

Interpreting the Results of the Solver

The Solver returns data to the stack registers on completion of its iterative
search for a root of the specified function, and in four conditions, returns
a message to the display. These messages and data can help you interpret
the results of the search:

• The X-register contains the best guess. This guess may or may not be
a root of the function.

• The Y -register contains the previous guess.

• The Z-register contains the value of the functionf(x) evaluated at the
best guess.

• The T-register contains a code 0-4 that indicates the Solver's
interpretation of its search for a root. (This code is displayed in the
current display mode; in FIX 4, code 0 is displayed as 0. 0000.).

108 3: The Solver

~
~
~ e-

I e"1 e.
e
e
e
e
e
e
e
e
e
e
e
e
e
e
c
c'
c'
~,

~,

c­
~,I

I

~ ..
~ ..
~ ..
~
i"'" .

'S
a
a
$,.
~

~ ,.
$

s
s
s
s
a
~a

~a

\=t

a
a
a
~

~

~

~

~

Code In Interpretation lIes .. ge T-reglster

0 The Solver has found a root.
1 , The Solver has generated a sign Sign Reversal

reversal In ((x) at neighboring
values of x, but ((x) has been
strongly diverging from 0 as x
approaches the two neighbors
from both sides.

2 The Solver has found an approxi- ExtreMUM
mation to a local minimum or
maximum of the numerical abso-
lute value. If the solution Is
± 9.999999999999 x 1()499, it
corresponds to an asymptotic
extremum.

3 One or both initial guesses lie out- Bad Guess(es)
side the domain of ((x). That is,
((x) returns an error when
evaluated at the guess points.

4 ((x) returns the same value at Constant?
every point evaluated by the
Solver.

When a Root Is Found. There are two cases in which a root is found:

• In case 1, the calculated root setsf(x) exactly equal to 0 (figure 3-2a).

• In case 2, the calculated root does not setf(x) exactly equal to 0, but is
a 12-digit number adjacent to the place where the function's graph
crosses the x-axis (figure 3-2b). This occurs when the final two esti­
mates are neighbors (they differ by 1 in the 12th digit) andf(x) is posi­
tive for one estimate and negative for the other. In most cases,f(x)
will be relatively close to O.

3: The SoIYer 109

'(x) '(x)

--+-----~~-----4~x --+-----~bL------~x

a b

Figure 3-2. Case When A Root Is Found

In both cases, the code in the T-register is a 0 and no message is
displayed. You can differentiate between the two cases by:

• Viewing the contents of the Z-register (the value ofJ(x) at the calcu­
lated root). For a case 2 solution, it will be a nonzero number.

• Comparing the best guess (the contents of the X-register) and the
previous guess (the contents of the Y-register). For a case 2 solution,
the guesses differ by 1 in the 12th digit.

• Immediately solving again for the variable. For a case 2 solution, the
Solver will return the message ::; i 9n F.:e' et-sa 1 on the second
attempt to find the root.

Example: A Case 1 Solution with Two Roots. Find the two roots
of the equation

2X2 - 7x - 2 = 0

Express the function in program AA.

00 { 25-Byte Pr9M }
01 LBL "AA"
02 t'1',lAP ").::"
0::: F.:CL "::.::"

110 3: The Solver

... ,. ,.
•
• ..
• • • •
• •

134 X1'2
135 2
136 x
137 7
138 RCLX "X"
139 -
113 2
131 -
12 END

Set the display format to ALL. Select the Solver application and then pro­
gramAA .

:~E~tJ,~ 1;m:. _____ 1
fiA.;···

Enter guesses of 1 and 5 for x. Solve for x .

IX=3.765564437a8 I ------
Roll the stack contents down to see the previous guess .

Ix: 3. 765564437138 I ------
The estimates are the same in all 11 decimal places. Roll the stack con­
tents down to see the value off(x) at the root.

f(x) is exactly O. Now enter guesses of -0.1 and -1 for the second root
and solve.

IX=-2.65564437a75E-1 I ------
3: The Solvet' 111

Roll the stack contents down to see the value of f(x) at the root. Again,
f(x) is exactly O.

IB!]IB!] 1;m:. _____ 1

Exit from the Solver and return the display format to FIX 4.

IEXITIIEXITI
Ilolspl'>f!lX 4 IENTERI

Iv: 0.0000 x: 0.0000

Example: A Case 2 Solution. In the example on pages 101-105 in
this chapter, you found the value of the pressure P in the ideal gas equa­
tion of state given values for the other variables V, n, and T.

Using the same values for the variables V, n, and T, solve again for P.

Set the display format to ALL.

Iioispi ALL ISelect Solve PrOgraM I 1!I:IfJ ____ _

Start program GAS2. (Reenter the program if you have cleared it from
the calculator.)

Enter the values for the known variables and solve for the pressure.

IP=27.8247827273 I
... II'IIIEII

Roll the stack down to see the previous estimate.

[B!] Ix: 27. 8247827272 I
... II'IIIEII

112 3: The Solver

The estimates differ by 1 in the last decimal place. Roll the stack down to
see the value ofJ(x).

Ix: 0. 00000000001 I
The value ofJ(x) at the root is a very small nonzero number. The root is
not an exact root, but it is a very good approximation. Exit from the pro­
gram and return the display format to FIX 4.

IEXITI IY: 0.0000
.Ioispi FIX 4IENTERlx: 1.0000E-ll

Problems That Require Special Consideration. Some types of
problems require special consideration. The following function has a
discontinuity that crosses the x-axis.

((x)

---~---~---~---------~~x

The Solver will return an x-value adjacent to the discontinuity. The value
ofJ(x) may be relatively large.

3: The Solver 113

Example: A Discontinuous Function. Ymd the root of the equation

IP(x) - 1.5 = 0

Express the function in program BB.

00 { lS-Byte Pr9M)
01 LBL "BB"
02 MVAR "X"
03 RCL "X"
04 IP
05 1.5
06 -
07 END

Select the Solver, select program BB, provide guesses of 0 and 5, and
solve forx.

IX=2.0000 I ------
The Solver fmds a root at x = 2.0000. Now check the value of !(x) .

;. -0 5000 I _---
The value off(X) seems relatively large. This indicates that you should
further evaluate the function. By plotting the function, you fmd that the
root at x = 2.0000 is in fact a discontinuity, and not a true zero crossing.

Exit from the Solver.

IEXITIIEXITI IY: 0.0000 x: -0.5000

Finally, consider the following function. This function has a very steep
slope in the area of the root. Evaluation of the function at either neighbor
may return a very large value even though the function has a true root
between the neighbors.

114 3: The Solver

;i @,
f!-.
~I e.
e •
c •
C I
e I
: I
c
e
~ ---~
e
~

~

~

" " .-
~-

~­
~ ..
~J

~ !

~-J

£­
~

~ ~

..
• • • • • • • • • • • • ..
• • • ..
it ..

: .
• I.
I.
I.
I.
I. '. '. L ..
L.
~
~

'(x)

-------+----~------~.x

Use care in interpreting the results of the Solver. The Solver is most
effective when used in conjunction with your own analysis of the function
you are evaluating.

A Sign Reversal. The values of the following function are approaching
infinity at the location x 0 where the graph changes sign.

'(x)

______ -+ ____ ~----------~~ x

The function has a pole at x o. When the Solver evaluates such a function,
it returns the message ::; i 9n PE".)E't-s.31.

3: The Solver 115

Example: A Pole. Find the root of the equation

....:.x'--- _ 1 = 0
(X2 - 6)

Asx approaches V6,f(x) becomes a very large positive or negative
number.

Express the function in program cc.
00 { 23-Byte
01 LBL
02 MVAF:
03 RCL
04 RCL
05 X 1'-2
06 6
07 -
08
09 1
lO-
II Et·m

"CC"
"X"

"X"
"X"

PrgM }

Select the Solver and then select program CC .

• ISOLVERI CC Ix: 0.0000 I .-------.
Provide guesses of 2.3 and 2.7, and solve for x.

IX=2.4495
Slgn Reversal

116 3: The Solver

r-.
~ I" i~
.~

"" '"
~
'e .. ,. ,.
.... ,.
... ;.
~
1
1 ..

The initial guesses yielded opposite signs for f(x). The interval between
successive estimates was then narrowed until two neighbors were found.
These neighbors madef(x) approach a pole instead of the x-axis. The
function does have roots at - 2 and 3, which can be found by entering
better guesses.

Exit from the Solver .

IEXITIIEXITI Iv: 2.4495
x: 2.4495

An Extremum. When the Solver returns the message Ext reMUM, it
has found an approximation to a local minimum or maximum of the
numerical absolute value of the function. If the solution (the value in the
X-register) is + / - 9.99999999999 x lQ400, the Solver has found an asymp­
totic extremum.

((x)

u
Relative minimum Asymptote

------~----------------------------------~x
Relative maximum

3: The Solver 117

Example: A Relative Minimum. Find the solution of the parabolic
equation

x 2 - tit' + 13 = 0

(It has a minimum atx = 3.)

Express the function in program DO.

00 { 23-Byte
01 LBL
02 t'lVAR
03 RCL
04 X1'2
05 6
(16 RCLx
07 -
(18 13
09 +
10 END

"DO"
"X"

"X"

II >~ II

Pt-9r~ }

Select the Solver application and then program DO .

• ISOLVERI DD Ix: 0.0000 I .-------.
Provide guesses of 0 and 10 and solve for x.

Exit from the Solver.

118 3: The Solvet'

IX=3.0000
ExtreMuM

Iv: 3.0000
x: 3.0000

~

• • ...
".
".
'"e ...
".

• ..
".

• ...
". ,. ,.
.... ,. ,. ,.. ,.
'4 -.
.....
~ -

Example: An Asymptote. Find the solutions for the equation

10 - 1.=0

Express the function in program EE.

00 { 17-Byte Pr9~)
01 LBL "EE"
02 MVAR "X"
03 10
04 RCL "X"
05 l/X
06 -
07 END

x

Select the Solver application and then program EE .

.'SOLVERI Ix: 0.0000 I .------.

Enter guesses of 0.005 and 5, and solve for x .

.005 IX=0. 1000 I
5 .------.

The Solver finds a root atx = 0.1000. Now enter guesses that have nega­
tive values.

1 [ti;] Itf{g:}iJ&I
2 1+/-1 i:;.':}{i}}

IX=-l • 0000E 500
ExtreMUM

The Solver finds an asymptotic extremum. (Press .[SHOW) to verify that
the solution is actually -9.99999999999 x 1Q400.) It's apparent from
inspecting the equation that ifx is a negative number, the smallest that
f(x) can be is 10;f(x) approaches 10 asx becomes a large negative number .

Exit from the Solver .

IExlTIlEXITI Iv: -5. 9246E498
x: -1.0000E500

3: The Solv.. 119

Bad Guess(es). The Solver returns the message Bad Guess(es)
when one or both initial guesses lie outside the domain of the function. (If
a guess lies outside the domain of the function, the function returns a
math error when evaluated at that guess point.)

Example: A Math Error. Find the root of the equation

- / x _ 0.5 = 0
V (x + 0.3)

Express the function in program FF.

00 { 26-Byte
01 LBL
02 t'lVAF.:
0:3 F:CL
04 o. :=:
(15 F.:CL+
06
o? :::; 0 F.: T
08 0.5
0'3 -
10 Et·jD

"FF"
111 •• 111

1"'".

11::.::11

"X"

Prgp·1 }

Select the Solver application and then program FF .

• ISOLVERI FF Ix: 0.0000 \ .--------
First attempt to find a positive root, using guesses 0 and 10.

o
10

120 3: The Solver

\X-0.1000 I -------

..
~ ...
~ ..
~

~ ,..
'1t
'
~

~

'it ...
"it ,.
~

The Solver finds a root at x = 0.1. Now attempt to find a negative root
using guesses of -0.1 and -0.2. Note that the function is undefined for
values of x between 0 and - 0.3, since those values produce a positive
denominator but a negative numerator, causing a negative square root.
Although the HP-42S can execute arithmetic operations with complex
numbers, the Solver cannot find a complex number solution. If evaluation
off(x) returns a complex number, the Solver considers the function
undefined at that x-value.

.1 1+/-1 X .

.21+/-1 X

Exit from the Solver.

IX--0.2000
~ad Guess(es)

Iv: -0.1000
x: -0.2000

A Constant. The Solver returns the message Const ant. ? when it
finds thatf(x) returns the same value at every sample pointx. Such a
situation can occur if guesses are confined to a local "flat" region of a
function.

Example: A Local Flat Region. Find the root of the equation

1.- 10 =0
x

Express the function in program GG.

00 { 17-B'"Ite
01 LBL
02 t'l","AR
03 F.:CL
04 l/>~

05 H]

~]6 -
07 EHD

"GG"
II >:: II

11' .. 111
{,

Pt-9P) }

3: The Solver 121

Select the Solver and then program GG.

., SOL VER I :,/:,,',':\I:U;·}\':'

Supply guesses of 1~ and 1000 .

~20
~30

Ix: 0.0000 I ------
IX= 1 • 0000E 500
Constant?

In this region of the function, the value off(x) is, within the 12-digit preci­
sion of the calculator, the same at every sample point. Here is a graph of
the function.

((x)

---~-----""x

Try guesses of 0 and 10.

r-0.1000 I ------
The Solver finds the root at x = 0.1. Exit from the Solver.

122 3: The Solver

Iv: 0.1000
x: 0.1000

~ .,.
~

~

".
"t
"I

• ..
• -. -.
it
it .. ,.
•

Round-Off Error and Underflow

Round-Off Error. The 12-digit precision of the calculator is adequate
for almost all cases. However, round-off errors can sometimes affect
Solver results. For example,

[(1 x 1 + 1) + 1015]2 - l(iD = 0

has no roots because f(x) is always positive. However, given initial guesses
of 1 and 2, the Solver returns the answer 1.0000 because of round-off
error .

Round-off error can also cause the Solver to fail to find a root. The equa­
tion

Ix2
- 71 = 0

has a root at..f7. However, no 12-digit number exactly equals ..f7, so the
calculator can never make the function equal to O. Furthermore, the func­
tion never changes sign. The Solver returns the message Ext t-erH.Jr'l.

However, the final estimate of x is the best possible 12-digit approxima­
tion of the root when the routine ends .

Underflow. Underflow can occur when the magnitude of a number is
smaller than the calculator can represent; in such a case, it will substitute
the number O. This can affect the Solver's results. For example, consider
the equation

1
- =0
x2

whose root is infinity. Because of underflow, the Solver returns a very
large (finite) value as a root. (The calculator cannot represent infinity,
anyway.)

3: The Solver 123

4
Integration

In this chapter, the following topics are covered:

• Basic use of the Integration application.

• Approximating an integral that has an infinite upper or lower limit.

• Using Integration and the Solver interactively.

• More on how Integration works.

Basic Integration

The procedure for execution of the Integration application is:

1. Create a program that:

8. Uses MVAR to define the variable(s) in the integrand (the
function to be integrated).

b. Expresses the integrand. (Note that each variable in the
integrand must be recalled to the X-register.)

2. Apply the Integration application to the program.

8. Select the Integration application (press II1E!Il).
b. Select the program by pressing the corresponding menu key.

c. Specify the values for any known variables in the integrand.
Select the variable of integration.

d. Specify the values for LLIM, ULIM, andACC.

e. Press to begin the calculation.

124 4: Integration

i
• • • • • • • • • • • • ..
• • • • • • • • • • • • ..-..
4 ...

Example: Basic Integration. The angle of twist in a round shaft
under torsional loading is calculated by evaluating the following integral.

L T
(J = fa JG dx

where:

(J is the angle of twist of the shaft (in radians).
L is the length of the shaft (in meters).
T is the torque applied to the shaft (in Newton-meters).
J is the polar moment of inertia of the shaft (in meters4

).

G is the shear modulus of the shaft material (in Newtons/meters2
).

Torque T increases along
the length of the shaft
as a function of x .

Consider a solid steel shaft (G = 83 x 1<f N/m2
) that has a constant

diameter of 0.03 meters (J = 7.9521 x 10 -8 m 4) and a total length L of 2
meters. Find the angle of twist in the shaft when loaded by a torque that
varies along the length x of the shaft as a function of x:

T = 13x4 + 8x3 + 15x2 + 9x + 6

For programming purposes, use Horner's method to expand the polyno­
mial.

T=«(13x +8)x +15)x +9)x +6

4: Integration 125

Substituting this expression for T, the equation becomes

e = lL «(13x +8)x + 15)x +9)x +6 dx
o JG

Express the integrand in the program TORQUE.

Program:

00 { 53-B':::It..e Pt-9P) J-
01 LBL "TOF~OUE"

02 t'lVAR IIX"
03 t'lVAR II 1"

04 t'lVAR flG Il

05 1':-'-'
OEo F.:CU< If >-~ II

07 :=:
0::: +
0'3 RCLx IIX"
10 15
11 +
12 F~CL>("XII
13 '3
14 +
15 F~CLx 11 '11

"
lEo E,
17 +
1 ':' F.:CL+ II 1" '
1 '3 F~CL+ IIG II

20 Et·j[)

Select the Integration application.

1'/f(x)J

Select program TORQUE.

TORG"~

126 4: Integration

Comments:

Lines 02 - 04: Declare the variables.

Lines 05 -19: Express the integrand.

Iselect tf(x) Program , 1EIiD ____ _

,set Vars; Select tvar , _--

~'T
e; r
~ r
~I
, I'

'I
'I
'I
"I
~I
~I
~I
'"I
~I
fl
~I
~

~ -
---.-
--
--t
f'
~

•
• • • -.
• ,.
11
it

•
tI
tI
tI
it

•
•

Supply the known values for J and G. and specify the variable of integra­
tionX .

Specify the lower limit (0). the upper limit L (2). and an accuracy factor of
0.01 .

o .¥f,$f,$lMJ
2 JUf,$Il'f2
.01 ;2'~atiQT:

Start the calculation.

~CC=0. 0100 I I!!IDI!I!IDID __ _

1/ =0.0281 I I!!IDI!I!IDID __ _

The shaft twists through an angle (J = 0.0281 radians (1.60n degrees).
Exit from the Integration application.

IY: 0.0003 x: 0.0281

Approximating an Integral That Has an
Infinite l.imit

It is often of interest to evaluate an improper integral (an integral that has
an infinite upper or lower limit). An improper integral with an infInite
upper limit

00 fo f(x) dx

is calculated "by hand" by evaluating the equivalent expression

a

lima--<oo fo f(x) dx

4: Integration 127

You cannot use the HP-42S to directly evaluate such an expression. You
can, however, approximate an answer by substituting a large number for
the infinite limit.

Example: Evaluating an Integral That Ha. an InfinHe'Upper
LlmH. Calculate the integral

00 dx

10 1 + x2

by hand. Then approximate the integral with the HP-42S.

Part 1. The result is calculated by hand as follows.

roo dx . ra. dx
Jo 1 + x2 = lima.-IOO Jo 1 + x2

= lima.-IOO (arc tan a)

11" = -
2

Use the HP-42S to calculate 11"/2 to 12-digit precision .

• 1 DISP !,RLJ,.<
.~ 2B

Iy' 0 x: 1.5707963268

Part 2. Use the Integration application to evaluate the same integral,
using the value 1,000 to approximate the upper limit. First, express the
integrand in the program INFIN.

00 { 20-Byt e Prgl"))

01 LBL "INFIN"
02 MVAR "X"
03 RCL "X"
04 Kt-2
05 1
06 +
07 l/X
08 END

128 4: Integration

" -. ...
"'t
"'t
"'t
"t
....
~

~ ...
-...
-...
"'t ,..
...
-.of

•
. "..

~
~
~.

Select the Integration application and then program INFIN .

• [llliDX'NE1H 1i;j.~i.i=~'l;ii.1

Select the variable of integration.

Ix: 1. 5707963268 I 1!!ID1!I!ID1mI __ "

Specify the lower limit (0), the upper limit approximation (1,000), and an
accuracy factor of 0.01 .

o ;;J,;t.."It1'?
1 OOO?fJt2IM
.01 CACC;}

Calculate the integral.

rCC=0.01 I 1!!ID1!I!ID1mI __ "

If= 1 • 57020935993 I 1!!ID1!I!ID1mI __ "

Using an upper limit of 1,000, and an accuracy factor of 0.01, the calcula­
tor returns the result 1.57020935993. The calculation takes about 36
seconds and is correct to three decimal places.

Exit from the Integration application and return the display format to FIX
4 .

Iv: 0.0156
x: 1.5702

The following table summarizes results and calculation times for upper
limit approximations of 100, 1,000, and 10,000, and accuracy factors of
0.01 and 0.0001.

4: Integration 129

Acc. ULiU Result Calc. Time
Factor (seconds)

(.!. actual) 1.5707963268
2

0.01 100 1.57518831857 5
1,000 1.57020935993 36

10,000 1.57088603739 140

0.0001 100 1.5607891695 18
1,000 1.56979476064 69

10,000 1.57069673168 279

Note that the principle determining factor in the accuracy of the result is
the value of the upper-limit approximation, not the accuracy factor. Also
note that the calculations using an accuracy factor of 0.0001 require about
twice the time of those using an accuracy factor of 0.01.

In general, when you are approximating an integral, assess the extent to
which you are constraining the accuracy of the true integral with the
approximation of the limit, and choose an accuracy factor wisely. If the
limit that you substitute results in only a rough approximation of the true
integral, it makes little sense to calculate the approximation to a high
degree of accuracy.

130 4: Integration

~

~

• ~ Using the Solver and Integration
a Interactively

a
a
a
at
a
a

• • a

• • • • • • • • '. • • •
~
~
~

In the first example in this chapter, you found the twist angle () at the end
of a shaft by integrating the applied torque with respect to x. (The torque
varied as a function ofthe position x along the shaft.) You were limited, in
that example, to solving specifically for the twist angle (). In general, for
the equation

UUM
I = fLUM f(x) dx (calculated to accuracy ACC)

the Integration application enables you to solve only for the value I of the
integral. To solve for I, you:

• Write a program P that defines the integrandf(x).

• Specify values for the known variables in the integrand.

• Specify the variable of integration.

• Specify values for the variables LLIM, ULIM, andACC.

However, by writing a program S for the Solver that declares each vari­
able in the equation and invokes the Integration application on program P,
you can solve for any of the variables in the equation:

• I
• The variables in the integrandf(x).

• LLIM, ULIM.

In the following example, you'll solve for the length L of a shaft (the vari­
able ULIM in the Integration application) in the angle-of-twist equation.

Example. Using the Solver and Integration Interactively.
Restating the equation for twist in a shaft under torsional loading:

() = rL Ldx
Jo JG

4: Integration 131

Consider again the solid steel shaft of the first example in this chapter.
For this shaft, G = 83 x 1(f N/m'J andJ = 7.9521 x 10-8 m4. The shaft
is subjected to the same torsional loading T as in the first example. That
loading varies along the length x of the shaft as a function of x.

T = 13x4 + 8x3 + 15x 'J + 9x + 6.

Find the length L that results in a twist angle 0 of 0.1396 radians (8
degrees).

The variables in the equation are 0, L, T, J, and G. The unknown variable
L is the upper limit of integration ULIM.

Part 1. Write a Solver program SHAFT that:

• Declares each variable in the equation.

• Expresses the equation such that its right side equals O.

Program:

00 { 60-Byte Pr9f"1
01 LBL "SHAFT"

02 MVAR "THETA"
03 ~1VAR IIG II

04 MVAR "J"
05 MVAR "LLlt1"
06 MVAR "ULIM"
07 MVAR "ACC"
08 MVAR "X"

09 PGMltH "TORQUE"
10 I~nEG "X"
11 RCL- "THETA"

12 Et~D

132 4: Integration

}

L T fo JG dx - 0 = 0

Comments:

Lines 02 - 08: Declare the variables in
the equation.

Lines 09-11: Express the equation
such that its right side equals O. First,
calculate the first term of the equation
(the integral) (lines 09-10). The
value of the integral is returned to the
X-register. Subtract the second term
(THETA) (line 11).

•
".
~

~

~ -. -. ,. ,. ..
• • • • • • • • • • .. I­I.
I.
1-.

~
~

In lines 09-10, the integral is calculated using the current value of ULIM,
which is iteratively supplied by the Solver as it searches for a solution.
Note that the specified integration program is TORQUE from the first
example in the chapter. If you've deleted this program, you need to key it
into the calculator now.

Part 2. Select the Solver application and then program SHAFf .

.ISOLVERI SHAFT Ix: 0.0000 I
mIm 1!!ID1!Im1l:B

(The variable X is on the second line of the menu.) Enter values for the
known variables .

.1396!HETA
83 lID 9 :',",)/C." •..... '.' .. "',:"
7.9521 lID 8 1+/-1
O'LLIM
.01'11(;0

IACC=0.0100 I
mIm 1!!ID1!Im1l:B

Now solve for the upper limit L, providing initial guesses of 1 and 10.

1 ,])t.5lM}:
10UClf1,
:UL·I .. Mf

lUll M=2. 9528 I
mIm 1!!ID1!Im1l:B

The shaft must be 2.9528 meters long to twist through an angle of 0.1396
radians.

Exit from the Solver application.

IEXITIIEXITJ Iv: 2.9528 x: 2.9528

4: Integration 133

More on How Integration Works

The Accuracy Factor and the Uncertainty of
Integration

The Integration algorithm calculates the integral of a function/(x) by
computing a weighted average ofthe function's values at many values ofx
(sample points) within the interval of integration. The accuracy of the
result depends on the number of sample points considered; generally, the
more the sample points, the greater the accuracy. There are two reasons
why you might want to limit the accuracy of the integral:

1. The length of time to calculate the integral increases as the number
of sample points increases.

2. There are inherent inaccuracies in each calculated value of/ex):

a. Empirically-derived constants in/ex) may be inaccurate. If, for
example,/(x) contains empirically-derived constants that are
accurate to only two decimal places, it is of little value to cal­
culate the integral to the full (12-digit) precision of the calcu­
lator.

b. If/(x) models a physical system, there may be inaccuracies in
the model.

c. The calculator itself introduces round-off error into each com­
putation of/(x).

To indirectly limit the accuracy of the integral, specify the accuracy factor
of the function, defined as

ACC = I true value of /(x) - computed value of f(x) I
computed value of f(x)

134 4: Integration

e r.
I".
I~
I.
I ... ,. ,.
• ..
•
'$

-.
•
-­..
11
11
11 ., ..

The accuracy factor is your estimation of the (decimal form of the) per­
cent error in each computed value off(x). This value is stored inACC.
The accuracy factor is related to the uncertainty of integration (a measure­
ment of the accuracy of the integral) by:

uncertainty of integration = accuracy factor x f I f(x) I dx

I(x)

--+x

The striped area is the value of the integral. The orange-shaded area is
the value of the uncertainty of integration. It is the weighted sum of the
errors of each computation off(x). You can see that at any point x, the
uncertainty of integration is proportional to f(x) .

The Integration algorithm uses an iterative method, doubling the number
of sample points in each successive iteration. At the end of each iteration,
it calculates both the integral and the uncertainty of integration. It then
compares the value of the integral calculated during that iteration with the
values calculated during the two previous iterations. If the difference
between anyone of these three values and the other two is less than the
uncertainty of integration, the algorithm stops. The current value of the
integral is returned to the X-register, and the uncertainty of integration is
returned to the Y-register.

It is extremely unlikely that the errors in each of the three successive cal­
culations of the integral- that is, the differences between the actual
integral and the calculated values-would all be larger than the disparity
among the approximations themselves. Consequently, the error in the
fmal calculated value will almost certainly be less than the uncertainty of

4: Integration 135

integration.

Example: The Accuracy Factor and the Uncertainty of
Integration. Certain problems in communications theory (for example,
pulse transmissions through idealized networks) require calculating an
integral (sometimes called the sine integral) of the form

t •
Si(t) = 1 SlDX dx

o x

Find Si (2).

First, write a program that expresses the function.

00 { 16-Byte PrgM)

01 LBL "SI"
02 MVAR "X"
03 RCL "X"
04 SIN
05 RCL+ "X"
06 END

Set the display format to ALL. Set the angular mode to RAD.

I~RLI.;.'
I'MODESIRRD

Select the Integration application and then program SI.

1'/f(x>lSl 1~~ii.i=~~1

Select the variable of integration X, then enter a lower limit of 0 and an
upper limit of 2.

o LLtM
2 ULIM

136 4: Integration

IULIM=2 I mIDl!mDl:D __ __

F
r'
r~
I~
I~
I~ ,., ..

.." -t!J

ttl

t!J .,

Since the function

f(x) = sin x
x

is a purely mathematical expression containing no empirically-derived
constants, the only constraint on the accuracy of the function is the
round-off error introduced by the calculator. It is, therefore, at least
analytically reasonable to specify an accuracy factor of 0.00000000001
(1 x 10-11).

(g) 11 I+!-I'RCC

Calculate the integral.

.f

IACC=0.00000000001 I mIDl!ImJl:IH __ __

jt=1.6054129768 I mIDl!ImJl:IH __ __

.~ Check the uncertainty of integration.

\~

,~

Ix: 2. 10542218026E-11 I mIDl!ImJl:IH __ __

The uncertainty of integration is significant only with respect to the last
digit of the integral. The calculation took about 19 seconds. If you can
accept a less accurate answer, you can shorten the calculation time. Try an
accuracy factor of 0.001.

.001 ACe It-1.60541531589 I mIDl!I!IDl:IH __ __

~ Check the uncertainty of integration.

\~

\~

Ix: 1.60600822892E-3 I mIDl!ImJl:IH __ __

I·~
I

\~

4: Integration 137

The error of integration is much larger now. However, it is still relatively
small compared to the value of the integral, and the calculation takes only
3 seconds.

Exit from the Integration application and return the display format to FIX
4.

IEXITI IEXITIIEXITI
IIDISplftJJ<r; 4 =IE=NT=ER=I

Iv: 1.6054 x: 0.0016

Example: A Problem Where the Uncertainty of Integration I.
Relatively Large. In the previous example, the uncertainty of integra­
tion was relatively small compared to the value of the integral. This is
because the value of the function was always positive within the interval of
integration. Now consider the simple function

f(x) = sinx

Integrate the function from x = 0 tox = 6 (radians).

I(x)

--~------------~--------____ ~ __ ~x

By inspection, you can see that the value of the integral is a small positive
number, since the area with positive value from 0 to 11" is almost cancelled
by the area with negative value from 11" to 6.

138 4: Integration

r-
r·
I­
r­
I-,.
• • -. -.
11 ..
• • • •
•
I·
~
~
~

Write the program that expresses the function.

00 { 14-Byte Pr9M }
01 LBL "SIN"
02 M\JAR "X"
03 RCL "X"
04 SIN
05 END

Set the angular mode to RAD. Select the Integration application and then
program SIN.

IIMODESI RRD
IUf(x>l

StN

Iset \Jars; Select .fvar I -------
Select the variable of integration X, enter the lower and upper limits (0
and 6), and an accuracy factor of 0.01. Then integrate with respect to x .

x
o LL tf't
6 UC1M
.01 ACC··

.f

Now check the uncertainty of integration.

Ix,yl

l.f -0. 0398 I mIIIl!mDllD __ __

Ix: 0.0398 I mIIIl!mDllD __ __

The uncertainty of integration is large compared to the value of the
integral .

Exit from the Integration application .

IEXITIIEXITIIEXITI Iv: 0.0398
x: 0.0398

4: Integration 139

Conditions That Can Cause Incorrect Results

Although the integration algorithm in the HP-42S is one of the best avail­
able, in certain situations it -like all algorithms for numeric integration­
might give you an incorrect answer. The possibility 01 this occurring is very
remote. The integration algorithm has been designed to give accurate
results for almost any smooth function. Only for functions that exhibit
extremely erratic behavior is there any substantial risk of obtaining an
inaccurate answer. Such functions rarely occur in problems related to
actual physical systems.

Example: A Condition That Causes an Incorrect Result. Con­
sider the approximation of

00 10 xe -., dx

Since you're evaluating this integral numerically, you might think that you
should represent the upper limit of integration with a large number, say
100,000. Try it and see what happens. First write a program that expresses
I(x).

00 { 17-B';::Ite Pt-g }

01 LBL "XEX"
02 MVAR "X"
03 RCL "X"
04 ENTER
05 +/-

06 E X
07 x
08 END

Now select the Integration application and then program XEX.

l'/f(x>l XEM ISet Vars; Select fvar I .-------.

140 4: Integration

f!1
r:
r~
r".
~

"it

"it ...
it -.
--• ,. ,.
.-
1t
'11 ..
11
11
11

--11
11
11 ..
I.
'-~

~
~

Select the variable of integration X, then enter the lower and upper limits
and an accuracy factor of 0.001.

o ALLIN!
~ 5 'iL1Mf
.001 gEacer

IACC-0.0010 I I!!lDI!I!IDDB __ __

Integrate with respect tox. (Stay in the Integration application after exe­
cuting this calculation. You will integrate this function again in the next
section.)

1/ =0.0000 I I!!lDI!I!IDDB __ __

The answer is clearly incorrect, since the actual integral ofJ(x) = xe -z ,

evaluated from 0 to 00, is exactly 1. But the problem is not that you
represented 00 by 100,000, since the actual integral of this function from 0
to 100,000 is very close to 1. The reason you obtained an incorrect answer
becomes apparent if you look at the graph ofJ(x) over the interval of
integration.

f(x)

-4----~==----~----------------~x

The graph has a spike (illustrated here with a greatly exaggerated width)
very close to the origin. Because no sample point discovered the spike,
the algorithm assumed thatJ(x) was equal to 0 throughout the interval of

4: Integration 141

integration. Even if you increased the number of sample points by specify­
ing an accuracy factor of 1 x 10 -11 , none of the additional sample points
would discover the spike when this particular function is integrated over
this particular interval.

Subdividing the Interval of Integration. If you suspect the validity
of the approximation of an integral, subdivide the interval of integration
into two or more subintervals, integrate the function over each subinter­
val, then add the resulting approximations. This causes the function to be
evaluated at a new set of sample points, more likdy revealing any previ­
ously hidden spikes. If the initial approximation is valid, it equals the sum
of the approximations over the subintervals.

Example: Subdividing the Interval of Integration. Consider
again the integral

00 faxe -z dx

Approximate the integral by subdividing the interval of integration into
three subintervals, one from 0 to 10, the second from 10 to 100, and the
third from 100 to 100,000.

First, integrate between 0 and 10. If you are still in the Integration appli­
cation, simply supply the new value for ULIM.

10 ULHt
··S

IS -e. 9995 I mIDl!I!IIIllH __ __

The answer is very close to 1. Now integrate between 10 and 100.

10 LLIH
100 ULH1

J'

Is=e. eees I mIDl!I!IIIllH __ __

The answer is very close to O. The sum of the approximations over the two
subintervals is 1. Finally, integrate between 100 and 100,000. (Stay in the
Integration application after executing this calculation. You will integrate
this function again in the next section.)

100 ~LI.t'l.
1 OOOOOI,j~·JH

t

142 4: Integration

K-e.eeee I mIDl!I!IIIllH __ __

[

r~'
r· ,. .. ,.
• •
" • • • • •
" • • • • • • • • • • • • • • • •
~.

-.
~

The integral over the third subinterval is O. The sum of the integrals over
the three subintervals is 1 .

Conditions That Prolong Calculation Time

In the first example in the preceding section, the algorithm gave an
incorrect answer because it never detected the spike in the function
f(x) = xe -'" . This happened because the variation in the function was too
quick relative to the width of the interval of integration. In the second
example, you obtained a very good approximation by subdividing the
interval of integration into three subintervals between 0 and 100,000.
However, for this function, there is a range of intervals that is small
enough to obtain the correct answer, yet result in a very long calculation
time.

Example: An Upper-Limit Approximation That Prolongs
Calculation Time. Consider again the integral

00 fo xe -'" dx

Approximate the integral by calculating it over the interval (0, 1,(00).

Enter the new values for LLIM and ULIM. Then integrate with respect to
x.

V=l.eeee
D!lDI!I!IDII:IH

__ I

This is the correct answer, but it took a long time to calculate. To under­
stand why, compare the graph of the function between x = 10 andx = 1(i3
(which looks about the same as that shown on page 141) with the follow­
ing graph ofthe function between x = 0 and x = 10.

4: Integration 143

((x)

~~------------------~=---~~~x
o 10

You can see that the function is "interesting" only at small values ofx. At
greater values of x, the function is not interesting since it decreases
smoothly and gradually in a predictable manner.

The algorithm samples the function at increasing numbers of sample
points until it has sufficient information about the function to provide an
approximation that changes insignificantly when further samples are con­
sidered. In the previous section, when you evaluated the integral between
o and 10, the algorithm needed to sample the function only at values
where it was interesting but relatively smooth. The sample points, after
the ftrst few iterations, contributed no new information about the
behavior of the function and the algorithm stopped.

In the last example, most of the sample points capture the function in the
region where its slope is not varying much. The algorithm finds that the
few sample points at small values ofx return values of the function that
change appreciably from one iteration to the next. Consequently, the func­
tion has to be evaluated at additional sample points before the disparity
between successive approximations becomes sufficiently small.

144 4: Integration

--.
• • •
"
• • • • • ,. ,.
• • • • • • • • • • • • • • • •• -.

For the integral to be approximated with the same accuracy over the larger
interval as over the smaller interval, the density of sample points must be the
same in the region where the function is interesting. To achieve the same
density of sample points, the total number of sample points required over
the larger interval is much greater than the number required over the
smaller interval. Consequently, several more iterations are required over
the larger interval to achieve an approximation of the same accuracy, and
the calculation requires considerably more time .

4: Integration 145

..

5
Matrices

This chapter builds on material introduced to you in chapter 14 of your
owner's manual. The following topics are covered:

• Using the matrix editor and indexing functions.

• Vector solutions.

• Solving simultaneous equations.

• Using the Solver with simultaneous equations.

• Matrix operations in programs.

Using the Matrix Editor and Indexing
Functions

In the following example, you'll:

• Create a matrix.

• Use the matrix editor to manipulate data.

• Use indexing functions and statistics functions interactively.

Example: Accumulating Meteorological Data. Dr. Steven
Stormwarning, noted meteorologist, has accumulated the following data
and wishes to store it in a matrix in the HP-42S.

146 5: MatrIces

• • •
t
...
...
~

~

~ ...
'-t ,.,.
~ ,..
"" ...
....
....
-e

s'

DayN Temp

1 67
2 69
3 74

Creating a Named Matrix

Create a 4 x 4 matrix "WI'HR" .

4 IENTERI IlMATRlxl [!] D 1M
IENTERI WTHR lENTERI

Using the Matrix Editor

Wind Humid

8 54
14 36
4 72

Enter the matrix editor and select the matrix you just created .

Fill element 1:1 with the Alpha string DAY #. (Remember, to execute
~, press ISTOI in ALPHA mode.)

IlALPHAI DAY # IASTOI 0 11: l="DAY I" I
IEXITI ."~""IffiIEIII:II.

Fill the remaining elements in row 1 with the corresponding Alpha strings
from the table. (The keystrokes for element (1:2) are shown here.)

• IALPHAI TEMP IASTOI 11: 4=IHUMID" I
o jSTXJEXITI ... "~""1ffiIEI1I:II

5: Matrices 147

Now fill the remaining elements with the corresponding data.

1
67

2
....

36

""i"""
4 72

Stormwarning finds that his assistant has incorrectly recorded the tem­
perature on day 1; it was 77, not 67.

GOTO 2 (ENTERI 2 (ENTERI 77 (EXITI

Several days later the doctor has more data to add: on day #4, the tem­
perature is 77, the windspeed is 5, and the humidity is 76. First, set the cal­
culator to Grow mode to create a new row in the matrix.

f!OITNWTHR
[!]G ROt-le, 00

....

Fill in the new data.

4
76

15: 1-0.0000 I
.. 1!ID I!IllEI ..

P:4-76 I ..1!ID I!IllEI ..

Stormwarning now realizes he has entered the data for day #5, not day
#4. For day #4, the temperature was 68, the windspeed was 12, and the
humidity was 41. First change the value in element 5:1 to 5.

Now insert the new row.

[!]lHSR

148 5: Matrices

15: 1-0.0000 I mmJ_lmiI_omlffilD

....
...
•
•
•
•
'$

~

~

• • • • ,.
• ,.

Enter the actual data for day #4 .

68
41

Exit from the Matrix application .

IExlTl ~

I~): 4=41 I ~~""I!IlDlJ"

Iv: 4.0000
?<: 41.0000

Using Indexing Utilities and Statistics Functions
Interactively

Dr. Stormwarning now wants to execute statistical operations on segments
of his accumulated data. He would like to find the mean temperature and
windspeed for the five days. He'll execute GETM to create in the X­
register a 5 x 2 submatrix that contains the temperature and windspeed
data. He'll then execute E+ to store the data from this submatrix in the
summation (statistical) registers, select the STAT menu, and find the
mean. (Remember that the E+ function automatically stores the data
from an n-row x 2-column matrix into the currently defined summation
registers. Refer to the discussion of the E + function in chapter 15 of your
owner's manual for more information.)

Specify WFHR as the indexed matrix.

.'MATRIXI [!] IHDEXIHTHR

Set the index pointers to element 2:2 (the first temperature data entry).

21ENTERI [!]8JOIJ Ix: 2.0000 I
Dm1lImJmImlilSmlmDl!ImI

Now get the 5 x 2 submatrix that contains the temperature and windspeed
data.

5 (ENTERI 2 GJ~n1· Ix: [5x2 Matrix] I
Dm1lImJmImlilSmlmDl!ImI

5: MatrIces 149

Clear the summation registers, then store the data from the matrix in the
summation registers. (If the calculator returns the message
Nonex i st ent, the current SIZE allocation is insufficient.)

.'CLEARI eLl:

.(TOP.FCNI 1:+

Select the STAT menu and find the mean of the temperature data .

• 'STATI ~le;RH Ix: 73.0000 I
. .mIi!IllIlImlIllElImIDml.

Find the mean of the windspeed data.

'x~YI

The mean temperature for the five days is 73. The mean windspeed is 8.6.

Exit from the STAT menu.

Matrix Utilities

IY: 73.0000
x: 8.6000

The following routines use existing matrix functions to build useful matrix
utilities.

Finding the Column Sum of a Matrix. CSUM calculates the
column sum of the matrix in the X-register. (The column sum of a matrix
A is a row matrix, each element of which is the sum of the elements of the
corresponding column of matrix A.) The resultant matrix is returned to
the X-register.

00 { 14-Byte PrgM }
01 LBL "CSUM"
02 TRR~~S
03 RSU~l

150 5: Matrices

• • • • • • • • • ..
• •
• • '. '. I.

~
~

134 TRANS
as END

Finding the Column Norm of a Matrix. CNRM calculates the
column norm of the matrix in the X-register. (The column norm of a
matrixA is the maximum value (over all columns) ofthe sums ofthe
absolute values of all elements in a column.) The result is returned to the
X-register.

1313 { 12-Byte Pr9M)
131 LBL "CNRM"
132 TRANS
133 R~~RM

134 END

Finding the Conjugate of a Complex Matrix. To find the conju­
gate of a complex matrix:

1. Place the matrix in the X-register .

2. Press I' COMPLEX I •

3. Press (+7-1.
4. Press I'COMPLEXI.

The conjugate is returned to the X-register.

Finding the Matrix Sum of a Matrix. MSUM calculates the matrix
sum (the sum of all the elements) of the matrix in the X-register. The
result is returned to the X-register .

1313 { 18-Byte Pr9M)
131 LBL "MSUM"
132 XEQ "CSUM"
133 RSUM
134 DET
as END

5: MatrIces 151

Finding the Maximum and Minimum Element. of • ".trlx.
MINMAX finds the maximum or minimum element of the real matrix in
the X-register. The element is returned to the X-register. The indexed
location ofthe element is returned to the Y- and Z-registers (column
number in Y, row number in Z). Set flag 09 to find the maximum ele­
ment. Clear flag 09 to find the minimum element.

Program:

00 { 61-Byte Pr9M }
01 LBL IMIN~lAX"

02 STO IMI~mAX"

03 I NDEX II ~l I Nt'lAX II
04 RCLEL
05 GTO 03

06 LBL 01
07 RCLEL
08 FS? 09
09 GTO 02
10 X~Y?
11 GTO 04
12 GTO 03

13 LBL 02
14 X~Y?
15 GTO 04

16 LBL 03
17 RCLI,J
18 RCL ST Z
19 ENTER

20 LBL 04
21 R
22 J+

152 5: Matrices

Comments:

Lines 02-05: Store the matrix
currently in the X-register in
MINMAX, index MIN MAX, and
establish element 1:1 as the current
maximum or minimum element.

Lines 06-12: If flag 09 is clear, test if
the current element is greater than the
current minimum. If yes, go to label 04
(to maintain the current minimum). If
no, go to label 03 (to make the current
element the new minimum).

Lines 13 -15: If flag 09 is set, test if
the current element is less than the
current maximum. If yes, go to label
04 (to maintain the current max­
imum). If no, make the current ele­
ment the new maximum.

Lines 16 -19: Make the current ele­
ment the new maximum or minimum.

Lines 20 - 24: Maintain the current
maximum or minimum element.

23 FC? 77
24 GTO 01

25 END

Sorting a Matrix. SORT sorts the rows of the matrix in the X·register
in ascending order by the values in column 1. The sorted matrix is
returned to the X-register.

Program:

00 { 81-Byte Pr9~ }
01 LBL "SORT"

02 STO "SORTt-1AT"
03 INDEX "SORTMAT"

04 LBL 01
05 1+
06 FS? 76
07 GTO 04
08 RCLl ... 1

09 XOY
10 RCLEL

11 LBL 02
12 1-
13 RCLEL
14 FS? 76
15 GTO 03
16 X,f'y'?
17 GTO 03
18 R-¥
19 RCLlJ
20 RCL + ST "1'

21 ROR
22 R·
23 R-¥
24 GTO 02

Comments:

Lines 07 -10: Establish the row
number to sort. (On the first pass, row
2 is the row to sort, against row 1. On
the second pass, row 3 is the row to
sort, against rows 1 and 2.) Continue
until all rows are sorted.

Lines 11-24: Successively move the
"sort row" up the matrix until its
column 1 value is greater than the
column 1 value of the previous row.

5: MatrIces 153

25 LBL 03 Lines 25 - 32: Increment the "sort-row"
26 R~ number. If the increment causes the
27 R~ index pointer to wrap. return the
28 1 sorted matrix to X and end the pro-
29 STOIJ gram.
30 GTO 01
31 LBL 04
32 RCL II SORTMAT II

33 END

Vector Solutions

Vectors are a special subset of matrices. You can describe a vector with
either a 1-row x n-column matrix, or a 1-column x n-row matrix.

Geometry

The area of a parallelogram can be determined by the equation

A = Frobenius norm (magnitude) of (VVl x V2)

where (Vl x V2) is the vector cross product Vl and V2 •

154 5: lIatrices

• •
I Example: The Area of a Parallelogram. Find the area of the fol-
• lowing parallelogram.

•
• (0,0,0)

• • • • • •
• Create vectors VI and V2 •

• • • • • • • • • • • • • • • • • •
@It -

.IMATRlxl
1 IENTERI 3 [!] D I t'l
IENTERI V1 IENTERI
1 IENTER13 D H1
IENTERI V21ENTERI

Enter values for each element in VI .

E[);lI.M
31+/-1
21+/-1
21EXITI

Enter values for each element in V2 •

SlllIN , .. ".y:&. •.•••••••••••••

2[+/-1··".··;.· ... ·" .. ·.·.
2 g:liI2If.
3 [EXITI

Calculate the area.

5: Matrices 155

The area of the parallelogram is 15.0000.

Exit from the Matrix application.

(EXITl

Coordinate Transformations

Iv: 3.0000
x: 15.0000

It is often necessary in dynamics or mechanical design problems to per­
form coordinate transformations. Coordinate transformations require you
to:

• Calculate a unit vector.

• Add vectors.

• Calculate a vector dot product.

• Multiply vectors.

• Calculate a vector cross product.

156 5: lIatrices

-..
• • ...
•
• ...
~

~

....
~

....
~

.~
i ...

I ...

I.
I~
I ...
I.
I ...
L.

y

" ;

Px

\
\ , x'

\ "~ ~NEWSYSTEM
\ ,," 0

(Tx.T)\ "

" ~ "~~otes: AXIS (the rotation axis vector)
" " is pointing out of the page

at point T .

The rotation is relative to the
translated origin .

The equation for a coordinate transformation of a point from the old sys­
tem to a new system is

p' = [(P - T) • n] n (1 - cosO) + (P - T) cosO + [(P - T) x n] sinO

The equation for a coordinate transformation of a point from a new sys­
tem to the old system is

P = [(p' . n) n (1 - cosO) + p' cosO + (P' x n) sin (-0)] + T

where:

P' is the coordinates of the point in the new system.
P is the coordinates of the point in the old system.
T is the origin of the new system.
n is the unit vector of the axis about which the rotation is to be done.
o is the rotation angle. ~

~
~ ___________ 5_:._~_c ___ m_

Note that the translation occurs before the rotation. The rotation is rela­
tive to the translated origin.

The following program, COORD, enables you to fill the vectors P,
(or P'), T, and AXIS with data by programmatically invoking the matrix
editor and enables you to specify either an old-to-new or new-to-old
transformation. (AXIS is the rotation axis vector. COORD stores the data
you supply for AXIS in the variable n, then calculates the unit vector n.)

To key in COORD: Create variables P, T, P', n, and .4 before pro­
gram entry.

Here is an annotated listing of COORD.

Program:

00 { 216-Byte PrgM }
01 LBL "COORD"

02 EXITALL
03 CL~lENU
04 "P"
05 KEY 1 GTO 1:11
06 "T"
[17 KE'I' 2 XEQ 02
08 "AXIS"
09 KEY .::-

'-' :X:EQ 03
10 116,11

11 KEY 4 >~EQ 04

12 LBL 13:3

13 ~lEt'lU

14 STOP
15 GTO '38

Comments:

Lines 02-11: Build the main menu.

Lines 12-15: Display the main menu.

e
e
e
e
e
e
e
e
e
e
e
e
e
c:
c:
c:
~

~

~

•
~

~

~

~
~-

16 LBL 01
17 II Fill

Lines 16 - 22: Display the submenu to ~.
edit vector P (or P') and choose the

1'=' 'oJ ::·::EQ '39 direction of the transformation. f;-
19 "t'HO"
2[1 KE'l co GTO 05 ~I

~-

158 5: Mattices

• • • 21 "O-+N"

• 22 KEY 6 GTO 06

• 23 LBL 97 Lines 23 - 27: Display the submenu.

24 MENU

• 25 CF 00

• 26 STOP
27 GTO 97

• 28 LBL 02 Lines 28 - 32: Place the vector names

• 29 "T" T and n in the Alpha register to create .. 30 GTO 99 the vector.

31 LBL 03

• 32 "nll

• 33 LBL 99 Lines 33 - 46: Create a 1 x 3 vector P, .. 34 CU1E~lU T, or n and open it for editing. Build

35 ASTO ST L matrix editor menu labels and prompt .. 36 1 for data input. .. 37 EtHER
38 3 .. 39 DIM HlD ST L .. 40 EDITN HlD ST L
41 II~" .. 42 KEY 1 XEQ 11 ... 43 "-+11

44 KEY 2 ~<EQ 12 ... 45 KE · 9 GTO "COOF~D" ... 46 RTN

... 47 LBL 11 Lines 47 - 52: Execute the matrix edi-... 48 ~ tor functions.
49 RHl ... 50 LBL 12 ... 51 -+
52 RHl ... 53 LBL 04 Lines 53-55: Prompt for the value of .. 54 I~lPUT II..! II 4. .. 55 RTN

~ 5: Matrices 159

56 LBL 05
57 SF 00

58 LBL 06
59 EXITALL
60 RCL "P"
61 FC? 00
62 RCL- "T"
63 STO "P'"
64 RCL lin II

65 UVEC
66 STO II nil

67 DOT
68 1
69 RCL 11.£.11

70 COS
71 -
72 RCLx II nil

73 x
74 RCL ".£.11

75 COS
76 RCLx IIplli

77 +
78 RCL IIplli

79 RCL IInll

80 CROSS
81 RCL II.£. II

82 FS? 00
83 +/-
84 SIN
85 x
86 +
87 FS? 00
88 RCL+ "T"
89 STO "P"
90 GTO 01

91 END

160 5: Matrices

Lines 56-57: Set flag 00 for a new-to­
old transformation.

Lines 58-90: Evaluate the transfor­
mation equation. If flag 00 is clear,
calculate the old-to-new transforma­
tion. If flag 00 is set, calculate the
new-to-old transformation.

~ ..
... ...
"f ...
"t
...
"t-.
"f
~

~ ,. ,.
• • • ...

.....
e

Tou •• COORD:

1. Press (xEal COORtt

2. Press then supply values for the elements of T using the
matrix editor labels in the menu. Press (EXITI to return to the main
menu.

3. Press RX IS, then supply values for the elements of the rotation
axis using the matrix editor labels in the menu. Press (EXIT! to
return to the main menu. Note that COORD stores the rotation
axis in variable n, calculates the unit vector of the rotation axis, and
stores the unit vector back in n. If you press AX!$ after executing
a three-dimensional transformation, you will see the newly calcu­
lated elements of the unit vector, not the original rotation axis .

For a two-dimensional transformation, set the rotation axis to
(0,0,1).

4. Press i,\, then supply a value for .4. and press [BlID.

5. Press .. P , then supply values for the elements of P (or P')
using the matrix editor labels in the menu. Then press O~lr to
convert from the old system to the new system, or press tHO to
convert from the new system to the old system. The calculation is
now executed.

Example: A Three-Dimensional Translation with Rotation. A
three-dimensional coordinate system is translated from (0, 0, 0) to (2.45,
4.00, 4.25). After the translation, a 62S rotation occurs about the (0, -1,
-1) axis. In the original system, a point had the coordinates (3.90, 2.10,
7.00). What are the coordinates of the point in the translated, rotated sys­
tem?

For this problem:

P = (3.90,2.10, 7.00)
T = (2.45, 4.00, 4.25)
AXIS = (0, -1, -1)
.4. =62S

5: MatrIces 161

e
e

Set the display format to FIX 2. Set the angular mode to Degrees. Exe- f:
cute program COORD. e
I~ FIX 02
IIMODESliDEG
IXEQI COORD

Enter the elements ofT.

T
2.45 ..
4
4.25
IEXITI

Enter the elements of the rotation axis.

AXIS
...... +

1 1+/-1
1 1+/-1
IEXITI

Enter the value of 4..

.. t. ..

62.5 rnzru
Enter the elements of P.

Calculate the transformation.

Ix: 0.00 ;;j " .. li:liiii __ _

Ix: 2.45 li:liiii __ _

Ix: 0.00 I li:liiii ___ _

Ix: 62.50 li:liiii __

,
.­,
r
r
r
f
r
f ,
.-

Element 1:1 of P' is 3.59. Check element 1:2. f

1
1:2-0.26 I • .1IDI ____ I3!1lIIBJ:I. ..

162 5: Matrices

I
I
I

• • • •
I

• It
It

• t

Check element 1:3.

11: 3=0.59 I EII ____ I3:BIGrnI

The coordinates of the point in the new system are (3.59, 0.26, 0.59). Exit
from program COORD and return the display format to FIX 4.

IEXITlIEXITI
IIDISpl.FIX 41ENTERI

Iv: 1.0000
x: 0.5891

Solving Simultaneous Equations

Evaluation of an electrical circuit by the technique of loop currents gen­
erates a system of simultaneous equations. The number of equations in
the system is equal to the number of loops in the circuit. The first example
in this section finds the currents in a four-loop, purely resistive circuit (the
terms in the system of equations are real numbers). The second example
finds the currents in a four-loop circuit that has complex impedances (the
terms in the system of equations are complex numbers).

Example: Solving Real-Number Simultaneous Equations.
Consider the following four-loop circuit.

Apply the technique of loop currents to find the currents 11 , 12 , 13 , 14 .

5: Matrices 163

The equations to be solved are (in variable form):

1. (R1 + R2)(/d - (R2)(I2) = V

2. -(R2)(I1) + (R2 + R3 + R,,)(/2) - (R,,)(/3) = 0

3. -(R,,)(/2) + (R" + R6 + R6)(/3) - (R 6)(I,,) = 0

4. -(R6)(/3) + (R6 + R7 + Rs)(/,,) = 0

Put the equations in matrix form, substituting the following values for the
variables: V = 34 V and R 1 through R s = 1 O.

2 -1 0 0 11 34
-1 3 -1 0 12 0

0 -1 3 -1 13 0
0 0 -1 3 I" 0

Select the Simultaneous Equation application, and specify the number of
unknowns.

.IMATRlxl iSl MQ 41ENTERI Ix: 0.0000 I om:mm:DJIImII __ _

Enter the values for the elements of the coefficient matrix MA TA. (The
keystrokes for the entering the first row data are shown here.) After
entering all the values, return to the main menu.

Ix: 3.0000 I om:mm:DJIImII __ _

Enter values for the constant matrix MA TB.

tIAra}
34
o
o
o IEXITI

164 5: MatrIces

f:0.0000 I om:mm:DJIImII __ _

fe' .,
~~

~~

~.

~

~

f!

f!

e
e
e
e
e
t:
t:
~

~

,;; ,.
•
t:
t:
t:'

•
t:'
(;'-

(;'­

~­

~­

f'­
t:'­

~

f""'

• • • • • • • • • • • • •
• •
~

Calculate the unknowns.

11 is 21 A. Now check 12 .

.. ",

Check 13 .

Check I • .

\1: 1=21.0000 I
.. 1IlI!II I!IiIIlI ..

\2: 1=8.0000 I
.. 1IlI!II I!IiIIlI ..

\3: 1-3.0000 . I
.. 1IlI!II I!IiIIlI ..

\4: 1=1.0000 I
.. 1IlI!II I!IiIIlI ..

Leave the matrix editor. (Stay in the Simultaneous Equation application
for the next example.)

Ix: 1.0000 I m:mmmmm __ -

5: MatrIces 165

t­
t!

Example: Solving Simultaneous Equations That Have Com- e
plex Terms. Now consider the following circuit. e

v

The capacitor in each loop of the circuit introduces a complex term into
each loop equation:

1. [(R 1 + R 2) - i(~l)] (ld - (R 2)(I2) = V

2. - (R2)(I2) + [R2 + R3 + R4 - i (~2)](12) - (R4)(I3) = 0

3. - (R4)(I2) + [R4 + Rs + R6 - i (~3)](13) - (R6)(I4) = 0

4. - (R6)(I3) + [R6 + R7 + Rs - i(~4)](14) = 0

166 5: Matrices

• •

Put the equations in matrix form, substituting the following values for the
variables: V = 34 V, Rl through Rs = 5 n, W = 100 radians/second •
and C1 through C4 = 1 F .

10 - iO.01 - 5 0 0 11 34

-5 15 - iO.01 - 5 0 I'J 0

0 -5 15 - iO.01 -5 Is = 0

0 0 - 5 15 - iO.01 14 0

Set the coordinate mode to Rectangular. Make MATA a complex matrix.

I'MODES l~iCI
o IENTERII,cOMPLEXI

Ix: 0.0000 i0.0000 I m:n:Ilmllm:DII __ _

ISTOI ~t1aya

Enter the values for the elements of the matrix. (The keystrokes for the
entering the first row data are shown here.) After entering all values,
return to the main menu .

····M·AIA···· :::::L:.:. .. : ::.: ... ::::: .. ::: ... :tt
10 IENTERI .01 1+/-1
I'COMPLEXI
51+/-1
o
o

Ix: 15.0000 - i0. 0100 I m:n:Ilmllm:DII __ _

Solve for MATX. (MATB has the same value as in the previous example.)

11 is 4.2000 + iO.0061 A. Now check I'J .

11: 1=4.2000 i0.0061 I ..1!mI I!IlIEI ..

12: 1=1.6000 i0.0037 I ..1!mI I!IlIEI ..

5: MatrIces 167

CheckI3 •

+

Check I, .

Exit from MA TX.

I EXIT!

13: 1=0.6000 i0. 0019 I
.. 1I!IEI l!IlIEIpp

4:1-0.2000 i0.0008
.. 1I!IEI I!IlIEI ..

Ix: 0.2000 i0.0008 1II:D:Im:DJ1ImII __

Make MA TA and MA TX real matrices. Exit from the Matrix application.

IRCLI ~1ATAllcOMPLEXI
ISIOIMATft
IRCLIMATX I'COMPLEXI
ISIOI MATX
IEXlTllEXlll

I~ [4xl Matrix]
.x: [4x1 Matrix]

Using the Solver with Simultaneous
Equations

In the examples in the previous section, you found the loop currents II
through I, by dividing the constant matrix MA TB by the coefficient matrix
MATA. You were limited in that example to solving specifically for the
loop currents in the solution matrix MA TX.

In the following example, you'll use the Solver and matrix division to find
the value of one element of the coefficient matrix, MA TA, given:

• Values for the other elements of the coefficient matrix.

• Values for the elements of the constant matrix.

• A specified relationship between two values of the solution matrix.

168 5: Matrices

e­
f!.

e·
e
e
e
c:
c:
e
e
e
f:
e
(;

(;

~

• •
f;

f:
f:
~

~

~

~

f'
F­
~­

f"­
~­

~­

~­

t-~

'$, ,
• , ,
• ,
• • • .. ,.
... ... -. -.
•
• ...
• • • •

Example. Using the Solver to Find the Value of an Element
of the Coefficient Matrix. Consider again the circuit from the previ­
ous section in this chapter.

Find the resistor value R 1 such that loop current Ii is 20 A greater than
loop current 12 (Ii = 12+20), when V = 40 V, and R2 through Rs = 1 n .

These conditions generate the following matrix equation .

R -1 0 0 12 + 20 40

-1 3 -1 0 12 0

0 -1 3 -1 13 0

0 0 -1 3 14 0

5: Matrices 169

Part 1. Write the program for the Solver.

Program:

1313 { 82-Byte Prgl"l
131 LBL "SIMUL"

132 MVAR "R"
133 MVAR "ROW"
134 MVAR "COL"
135 MVAR "0"

136 INDEX "MATA"
137 RCL "ROW"
138 RCL "COL"
139 STOIJ
113 RCL "R"
11 STOEL

12 RCL "MATB"
13 RCL + "~lATA"

14 STO "MATX"

15 It~DEX "MATX"
16 RCLEL
17 1+
18 RCLEL
19 RCL+ "0"
213 -

21 END

170 5: Matrices

}

Comments:

Lines 02 - 05: Declare the variables R,
ROW, COL, and D.

Lines 06 - 11: Index the coefficient
matrix, and set the index pointer to
the element specified by the current
values of ROWand COL (lines 05-
OS). Store the current value of R (sup­
plied first by you as initial guesses, and
then iteratively by the Solver) in the
specified element (lines 09-10).

Line 12-14: Solve for MA TX. MA TA
has the current value of R in the
specified element.

Lines 15 - 20: Index the just -calculated
solution matrix (line 14). Calculate
11 - (/2 + D) (lines 15-20). The
Solver iteratively supplies values for R
untill1 - (/2 + D) = o.

e~

e­
e­
e
e
e
c
c
e
e
e
c
c
~

~

~

~

~

•
~

~

~

~

~

~

~

~

~ -
~'

t'-

..
".
•
•

P.rt 2. Enter the Matrix application, and specify a system of equations
with four unknowns .

.IMATRlxl $Sll1Q 41ENTERI Ix: 0.0000 I 1II:IJ:I1ImI1ICDII __ _

Fill MA TA with the known coefficients. Element 1: 1 contains the
unknown resistor value R. You can leave this element at its current value .
(The keystrokes for the first two rows are shown here.) After entering aU
the data, return to the main menu .

MAtff
1 1+/-1

Ix: 3.0000 . I nm:IlImIlICDII __ _

Fill MA TB with the known constants, then exit from the Matrix applica­
tion .

AHara, 40
o
o .,,:,:,:,:,,:,:,:,: ... :., 4;ii': ':':',.:

o ;5;~~?:Yn;

IEXITIIEXITIIEXITI

Iv: 0.0000
x: 40.0000

Select the Solver application, and then program SIMUL .

Ix: 40. 0000 I .. 1iIlID __

Specify element 1:1 of the coefficient matrix.

Enter 20 for D .

20 0Y#;~;: f€Wi

fOL=1.0000 I ..1iIlID __

10=20. 0000 I ..1iIlID __

5: MatrIces 171

Enter guesses of 0 and 10 for R and solve for R.

o
10'

IR=1.6190
"1iIiIII1!!I!I"

Verify that element 1:1 of the coefficient matrix (R) is 1.6190.

.IMATRlxl (!]
EDtJN'f1A]a:

11:1=1.6190 I
.. 1iTIlII IiIi!IiI ..

R 1 = R - R2 = 0.619 n. Check the values for 11 and 12 .

IEXITI ED1'tNt1AJX 11: 1=32.3077 I
.. 1IlID IiIi!IiI ..

11 is 32.30TI A. Check 12

12: 1=12.3077 I
.. 1IlID IiIi!IiI ..

12 is 12.30TI A. Exit from the Matrix application.

Iv: 1.6190 x: 12.3077

Matrix Operations in Programs

All matrix functions except GOTO are programmable. The programs for
advanced statistical operations in the following chapters use matrices
extensively.

The program LIST on pages 176-178 enables you to accumulate statisti­
cal data in a matrix with the same keystroke sequence that you use in nor­
mal data entry into the summation registers.

The program MLR on pages 186 -192 uses matrix and statistical functions
to calculate a linear regression for data sets of three independent vari­
ables. MLR creates a coefficient matrixMATA and a constant matrix
MA TB. It executes matrix editor functions to fill them with data, then exe­
cutes matrix division to calculate the solution matrix MA TX.

172 5: MatrIces

~.

e
e
e
e
e
(;

(;

e
e
e
t:
t:
~

~

~

• •
(;

(;

(;

.­

.­..
f'
f'
~ .­
~. • •
••
t;--

f'-

The program PFIT on pages 218 - 222 plots the statistical data from the
matrix currently in the X-register, then fits and plots a curve to the data
using the current statistical model. It plots the curve and the data points
usingx-y data pairs from complex matrices.

5: u.trIces 173

6
Statistics

This chapter presents five programs for statistical operations. The pro­
grams use statistical functions introduced in chapter 15 of your owner's
manual, and integrate matrix operations presented in the previous chapter
and in chapter 14 of your owner's manual.

• Three programs enable you to accumulate data in a matrix for subse­
quent statistical operations:

• LIST enables you to fill an n x 2 matrix ELIST with x- y data
pairs with the same keystroke sequence that you use to enter data
into the summation registers.

• EFORM stores an n x m matrix in ELIST and redimensions
ELIST to nm x 2. Each element of the original matrix becomes
an element of column 2 of ELIST. Column 1 is filled with zeros.

• XVALS fills column 1 of ELIST with x-values 1,2,3, ... , n for
linear or exponential curve fitting.

• MLR calculates a multiple linear regression for two or three indepen­
dent variables using the E+ function and matrix operations.

• PFIT plots the x-y data pairs from ELIST and uses FCSTY to plot a
curve to the data according to the currently selected statistical model.
(The annotated listing of PFIT is in chapter 7 on pages 218 - 222.)

174 6: Statistics

e­
I!
e
e
e
e
e
t:
e
e
c
c
~

• • • • • •
~

~

• • •
f'
f'
f' ..
;:

~

•
~ .-

• • • t
t

• • • • • ..
• • • • • • • • • • • • • • •

List Statistics

To supply a set of x-y data pairs to the calculator for subsequent statistical
operations, you use the keystroke sequence

y-value fENTERI x-value (@

for each data pair. The summation coefficients in the 6 (or 13) summation
registers are automatically recalculated each time you press (@. The cal­
culator does not, however, maintain a list of the individual data pairs.

To update the summation registers and maintain a list of thex-y data
pairs, you:

1. Create a 2-column matrix.

2. Use matrix editor functions to fiII the matrix with the data pairs.

3. Place the matrix in the X-register.

4. Execute E+ to accumulate the data in the summation registers.

(You did this in chapter 5 in the section "Using Indexing Utilities and
Statistics Functions Interactively".)

6: Statistics 175

The LIST Program. The following program, LIST, enables you to fill a
1- or 2-column matrix ELIST with x-y data pairs using the keystroke
sequence

y-value I ENTER I x-value LIS T + (for each data pair).

where L t S Tio is one of three menu keys built by LIST. Note that this is
the same keystroke sequence that you use to enter statistical data into the
summation registers.

To key in LIST:

1. Create variable ELIST before program entry.

2. Assign functions J + and J - to the CUSTOM menu before program
entry.

3. Create labels LIST, LIST +, LIST -, and CLIST when you begin
program entry.

Here is an annotated listing of LIST.

Program:

0(1 { 197-Byte Pt-'31"1)

01 LBL "LIST"

02 CU1ENU
03 "LIST+"
04 KEY 1 >~EQ "LIST+"
05 "LIST-"
06 KEY 2 XEQ "LIST-"
07 "CLIST"
08 KEY 6 XHl "CLIST"
09 ~lEt·lU

10 STOP
11 GTO "LIST"

176 6: Statistics

Comments:

Lines 02-11: Build and display the
menu keys.

-. . .. ,. .. 12 LBL "LIST+" Lines 12 - 20: If ELIST exists, index it -. 13 SF 25 and make it grow by one row. If it
14 XEQ I doesn't exist, create and index it (in ,.
15 FC?C 25 lines 32-42). ,. 16 GTO 02
17 GRml ,.
18 J-.. 19 J+
20 WRAP ..

Lines 21- 28: Store the x-value into

•• 21 LBL 00
22 STOEL the matrix. If flag 01 is clear, then also ,. 23 FS? 01 store the y-value. ,. 24 GTO 01
25 J+

• 26 X<>V .. 27 STOEL
28 X<>V .. 29 LBL 01 Lines 29 - 31: View the ELIST matrix. .. 30 VIEW "ILIST" .. 31 RTN

• 32 LBL 02 Lines 32 - 42: Create the 1- or 2-
33 1 column matrix ELIST. ,.
34 FS? 01 .. 35 1
36 FC? 01 • 37 2 .. 38 DH1 "ILIST"
39 XEQ I • 40 R

• 41 R
42 GTO 00 • 6: Stallsllcs 177

•

=
(e~

~-

~-

43 LBL "LIST-" Lines 43 - 53: Recall the element(s) in (!
44 SF 25 the last row ofELISTto the X- (or X- (!
45 XEQ I and Y-) register(s).
46 FC? 25 (:
47 RTN (;
48 J-
49 RCLEL (;
50 FS? 01 (;
51 GTO 03
52 J- (;
53 RCLEL

~
54 LBL 03 Lines 54 - 57: Delete the last row of (;
55 DELR ELIST.

(; 56 FS?C 25
57 GTO 01 r.
58 LBL "CLIST" Subroutine CLIST, lines 58-60: Clear {;
59 CLV "};LIST" the variable ELIST. c; 60 RTN

(~
61 LBL I Subroutine I, lines 61- 63: Index
62 INDEX "};LIST" ELIST. (~

63 RTN r.
64 END ~

~

~

(~

~-

~
~-

~

~

~

~

~
17. 6: StaUsUcs ~

~-..

..
• • • • • • • • • • ,. .. ,.
• • • • • • • • • • • -. -.
• •

To us. LIST:

1. For two-variable statistics (x- andy-values), clear flag 01. For one­
variable statistics (x-values only), set flag 01; the program makes
'ELIST a I-column matrix.

2. Press (XEoIII.tJI$T>.
3. Clear 'ELISTby pressing Ct.;I$T.
4. Enter data pairs by pressingy-value (ENTERI x-value t.;I ST+ (for

each data pair).

5. You can delete the last data pair by pressing t.;lST±.

Example: Accumulating Statistical Data in a Matrix. Use pro­
gram LIST to accumulate the followingx-y data pairs in the matrix 'ELIST.
Then find the mean of the x- and y-values .

x-value y-value

6 2
5 3
9 5

12 6
21 11

7 4

Clear flag 01 for two-variable statistics. Start LIST.

=~~!~~~F 01 I~=~ __ rmnl
Clear 'ELIST.

CtilST Ix: 0.0000 I mmmm ___ rmn

6: StatisUcs 179

Enter the first data pair.

21ENTERJ6 LI 5T+

Key in the next data pair.

31ENTERJ5 LI5T+

IILlST=[lx2 Matrix] I miDOJIiIII ___ 1DIiD

IILlST -[2x2 Matrix] I miDOJIiIII ___ 1DIiD

Key in the remaining data pairs (the keystrokes are not shown here). Exit
from LIST.

Iv: 4.0000
x: 7.0000

Clear the summation registers. Recall "£LIST to the X-register.

IICLEARJ eu:
IRCLJ }:LI 5T Iv: 7.0000

?C: [6x2 Matnx]

Accumulate the data from "£LIST into the summation registers.

Find the mean of the x- and y-values.

IlsTATJ~1EAN

Iv: 7.0000 x: 6.0000

Ix: 10.0000 I
~1i!IDItm:l:l1lllCl1iDl1mI

The mean of the x-values is 10. Check the mean of the y-values.

Exit from the STAT menu.

IEXIT!

180 6: Statistics

Ix: 5.1667 I
~1i!IDItm:l:l1lllCl1iDl1mI

Iv: 10.0000
x: 5.1667

• • • a
a

• • • • • .. ,.
• • • • • • • • • • • •

Redimensioning the rLlST ... trlx to nm x 2. In the previous exam­
ple, you used LIST to create a 6 x 2 matrix ELIST. You then recalled
ELIST to the X-register, and executed E+ to accumulate thex-y data
pairs from the matrix into the summation registers. To execute E+ when a
matrix is in the X-register, that matrix must have a column dimension equal
to 2. If, for example, you use LIST to create an n x 1 matrix ELIST (by
setting flag 01), you must redimension it before executing E+.

The following program, EFORM, redimensions any matrix ELIST of
dimension n x m to dimension nm x 2. All of the elements in the input
matrix are moved to the second column. The first column is filled with D's

(zeros) .

00 { 58-Byte Pr9~ }
01 LBL "};FORM"

02 2
03 RCL "};LIST"
04 DIM?
05 x
06 DIM "};LIST"
07 INDEX "};LIST"
08 1
09 ENTER
10 2
11 ROR
12 RCL "};LIST"
13 TRANS
14 STO "};LIST"

15 HID

Filling Column Two of ELIST with Evenly Spaced Integers.
You may want to fit a linear or exponential curve to a set of one-variable
statistical data. The following program, XV ALS, fills the first column of
the ELIST matrix with integers 1, 2, 3, ... , n. If ELIST is a i-column
matrix, XV ALS automatically creates the new column .

8: Statistics 181

Program:

00 { 46-Byte Pr9M }
01 LBL "XVALS"

02 RCL "}:LIST"
03 DIM?
04 1
05 -
06 X~0?
07 XEQ I}:FORt1"
08 INDEX

09 LBL 00
10 RCLIJ
11 X<>'r'
12 -.j.-

13 FC? 76
14 GTO 00

15 END

"}:LIST"

Comments:

Lines 02-08: Recall ELIST. If it is a
1-column matrix, execute EFORM to
make it a 2-column matrix. Then index
it.

Lines 9-14: Fill column 1 with
integers 1, 2, 3, ... , n. Continue to the
end of the column.

Using the Summation-Coefficient Functions
(E+ , L--, and CLE) in Programs

The program MLR in this section uses the E+ function and matrix opera­
tions to calculate a multiple linear regression for three independent vari­
ables.

For a set of data points { (Xi ,Yi ,Zi , Ii) , i = 1, 2, ... , n }, MLR fits a
linear equation of the form

I=a+bx+cy+dz

by the least squares method.

182 6: Statistics

e..
~.

e
e
e
e
e
e
e
c
c
c
e , , ,
~ ,
~

~

~

~

• • • •
~

~

~

~

~

~

"

•

Regression coefficients a, b, c, and d are calculated by solving the follow­
ing set of equations.

n Et; ~i ~ a Eti

Et; E(x.)2 EXiYi EX.Zi b Ex. ti

~i EYiX. E(yi)2 EYiZi C EYi ti

~ EZiXi EZiYi E(Zi) 2 d EZi ti

The coefficient of determination R2 is defined as

Here is a flowchart for MLR.

6: Statistics 183

USE STACK ARITH
AND 2:+ TO UPDATE

STATISTICAL COEFF.

(RTN)

184 6: Statistics

CLEAR FLAG 00 TO
UPDATE STATISTICAL
COEFFICIENTS WITH

NEW DATASET

USE STACK ARITH
AND 2:-TO SUBTRAC
THE LAST DATA SET

(RTN)

KEY 3
·CALC·

tG-im
\V

USE CL2: TO CLEAR
ALL SUMMATION

REGISTERS

(RTN)

~

•
:f!

~
.~

~

e
e
e
e
e
e
e
~

~

~

~

~

:~

.~

e
:~

:~

:~

Ie
IC"
Ie
~

\~

(~

(~

i.~

(;-

It , , , , , ,
It ..
it
it
it
It
It
It
It
It
• • • • • • • • • • •

® 14

FILL MATA, MATB
WITH SUMMATION

COEFFICIENTS

DISPLAY SOLUTION MENU
AND WAIT FOR DATA INPUT

I KEY 2 I KEY 3 KEY 4 I KEY 5
t "B" t "C" "D" t "R2"

~ I DlS;~YI
LOAD ALPHA REGISTER
WITH VARIABLE NAME
AND X-REGISTER WITH

CORRESPONDING COLUMN
NUMBER OF MArx

"T?"

6: Statistics 185

To key In IILR:

1. Assign functions -, t, -, !, I - and J + to the CUSTOM menu
before program entry.

2. Create variables MATA, MATB, MATX, R2, and Tbefore program
entry.

Here is an annotated listing of the program.

Program:

00 { 460-Byte
01 LBL "MLR"

02 REALRES
03 4
04 EtHER
05 1
06 DIM "MATX"
07 DIM "NATB"
08 4
09 ENTER
10 DIN "NATA"
11 CF 00
12 LINI

PrgM }

Comments:

Lines 02 -12: Set to calculate real
results only. Create 4 x 1 matrices
MA TX and MA TB. Create 4 x 4
matrix MA TA. Clear flag 00 (set to
E+ mode). Set to Linear (statistics)
mode (calculate six summation
coefficients).

e
~

e
e
e
e
e
e
c
e
e
e
e
~

~

~

~

~

~
Lines 13-27: Build and display the ~
menu keys eW~~JM,:;f\ Z;g~,~'£l,

13 LBL 00
14 CF 21
15 CU1ENU ··e"4~A, and nCall~Wi. ~
16 "I+"
17 KEY 1 XEQ 11
18 "I-"
19 KEY 2 XEQ 12
20 "ClI" \~

21 KEY 3 XEQ 13
22 "CALC"
23 KEY 6 GTO 14
24 NENU
25 CLD
26 STOP
27 GTO 00

186 6: Statistics

• • • .. 28 LBL 11 Subroutine 11, lines 28 - 58: Emulate

• 29 RCLX 8T Z E+ (or E- if flag 00 set) to update the
30 F8? 00 following summation coefficients: lli

• 31 +/- in R 13, Ed in R 15, Eyz in R 140, ~t in .. 32 8TO+ 13 R 16• Execute E+ to update the follow-
33 CLX ing coefficients: Ez in R (11, Ez 2 in R ('lJ, • 34 LA8TX Et in Roo. Et2 in R lOt Ezt in R 11> n in .. 35 RCLX 8T T R 12•

36 F8? 00 .. 37 +/-.. 38 8TO+ 15
39 CLX • 40 LA8TX .. 41 R~

42 RCLx 8T y .. 43 F8? 00 .. 44 +/-
45 8TO+ 14 .. 46 CLX .. 47 LA8TX
48 RCLx 8T Z .. 49 F8? 00

• 50 +/-
51 8TO+ 16 • 52 CLX

• 53 LA8TX
54 R~ • 55 };REG 07

• 56 F8? 00
57 RTN • 58 };+

• • • • • • • • 6: StatisUcs 187

•

e.
~

~

59 lBl 131 Subroutine 01, lines 59-68: Execute f!
613 ClX E+ to update the following f!
61 lASTX coefficients: Et- in ROb Et-2 in Rra. ~ f! 62 R,," in Roo, ~2 in Ra., Ery in Rm, and n in
63 R,," R 06 • (Note that n is also calculated in e
64 IREG 131 subroutine 11.) e 65 FS?C 1313
66 RTN e
67 I+ e 68 RTN

69 lBl 12 Subroutine 12, lines 69-75: Emulate
e

713 SF 1313 E- (set flag (0) to update the C
71 XEQ 11 coefficients calculated in subroutine e 72 I- ll. Execute E- to update the remain-
73 XEQ 131 ing coefficients. (;
74 I- ,
75 RTN

~
76 lBl 13 Subroutine 13, lines 76-83: Execute ,
77 IREG 11 CLE to clear all defined summation
78 ClI registers. ,
79 IREG 137
813 ClI (;

81 IREG 131 C
82 ClI
83 RTN C

84 lBl 14 Lines 84-147, calculation of C
85 "Calculating" coefficients a, b, c, d, and R2 : Fill I:
86 AVIE~~ MATA withx,y,z summation ,
87 a coefficients. Fill MA TB with t summa-
.1
01::; STOx "MATA" tion coefficients. Calculate MA TX ~
89 INDEX "t'lATA" (MATB +MATA). CalculateR2•

~ 913 J+
91 RCl 131 t:
92 ~

~ 93 RCl 133
~

~

~

188 6: Statistics ~

~

• • • 94 ~

• 95 RCL 07
96

• 97 RCL 13 .. 98 ~
99 RCL 05 .. 100 101 J+
102 RCL 14

• le3

• le4 RCL II t1ATA II
le5 TRANS

• le6 STO+ II ~lATA II

• le7 RCL e8
le8 1-

• le9 ~

• lle RCL 04
111 1-

• 112 ~

• 113 RCL e2
114 1-

• 115 ~

• 116 RCL 06
117 STOEL

• 118 INDEX It'lATB"

• 119 RCL 09
12e ~.

• 121 RCL 15

• 122
123 RCL 16

• 124

• 125 RCL 11
126 STOEL

• 127 RCL l~lATB"

• 128 RCL~ "MATA"
129 STO l~lATX"

• 13e LASTX

• 131 TRANS
132 XOV

• 133 x

• 134 FNRM

• • 6: Statistics 189

•

e
t!

135 RCL 139 e
136 X-t-2 e
137 RCL.;. 136
138 - e
139 LASTX e
1413 RCL 113
141 X<>Y

,
142 - ,
143
144 STO "R2"

,
145 CLD ,
146 FS? 55
147 SF 21

,
148 LBL 132 Lines 148-164: Build and display the ~

149 "A" solution menu. ~
1513 KE'(1 ~::EQ 21 • 151 "B"
152 KEY 2 ~-=:EQ OJ'" .:.....:.... .-
153 "C"
154 KEY 3 ~<EQ

.j

.:...'::' ti
155 "D" fi
156 KEY 4 :X:EI) 24
157 IIR211 ff
158 KEY' <="

~I ~~EQ 25 (;
159 "T?II ,
1613 KE~' 6 ~~EQ 26
161 KEY 9 GTO ~)(1 ,
162 t'lHlU ,
163 STOP
164 GTO 132 (;

lE.5 LBL 21 Subroutines 21- 25, lines 165 -192: ,
166 1 Display the calculated coefficients a, ,
167 lIa ll b, c, d, and R2. If PRON has been exe-
168 GTO ~)3 cuted, print the coefficients (lines 187 f'
169 LBL 22 and 191). f 1713 2
171 "b" ~

;
.-..
~

190 6: StaUsUcs ~

•

• •
t
t
~
t ..
It
It
It
!It
fa ..
• • • • • • • • • • • • • • • • • •

172 GTO 03
173 LBL 23
174 3
175 IIC"

176 GTO 03
177 LBL 24
178 4
179 "d"
180 LBL 03
181 1
182 INDEX "~lAT>~"

183 STOIJ
184 RCLEL
185 1-"="
186 ARCL ST X
187 AVIEW
188 RTN
189 LBL 25
190 RCL "R2"
191 VIB~ "R2"
192 RTN

193 LBL 26
194 INDEX "~lATX"

195 XEQ 04
196 XEQ 04
197 XEQ 04
198 +
199 +
200 1-
201 RCLEL
202 +
203 STO "T"
204 VIEl~ "T"
205 Rn~

Subroutine 26, lines 193-205: Fore­
cast T based on the calculated
coefficients a, b, c, and d. Display T
and, if PRON has been executed, print
T.

6: Statistics 191

206 lBl 04
207 1-
208 RClEl
209 RClx ST T
210 RTN

211 END

To use MLR:

1. Press IXEOI l'lLR

Subroutine 04, lines 206 - 210: Calcu­
late terms bx, cy, and dz.

2. Press xC L :t to clear the summation registers.

3. Enter each data set, using the keystroke sequence t-value IENTERI
z-value IENTERI y-value IENTERI x-value :t+

4. PressC8LC.

5. Press the corresponding menu keys to see the values of variables a,
b, c, d, and R2.

6. To forecast T, use the keystroke sequence z-value IENTERI y-value
IENTERI x-valuer? .

7. To return to the main menu, press IEXITI.

Example: A Linear Regression For Three Independent Vari­
ables. Find the regression equation for the following set of data.

Execute MLR.

IXEOIMLR.

192 6: Statistics

i

XI

YI

Zl

tl

1 2

7 1
25 29
6 15

60 52

3

11
56

8
20

4 5

11 7
31 52
8 6

47 33

E,4.0000 I 1Im1lfm1D.ll __ mu

Clear the summation registers. Enter the first data set, starting with the
t-value.

',Ct •. :!:);;'
60 I ENTER I 6 IENTERI 25 IENTERI
7 'It

Enter the second data set.

Ix: 1.0000 I lBII_aa __ 1mI

Ix: 2.0000 I lBII_aa __ 1mI

Enter the remaining data sets (the keystrokes are not shown here). Now
calculate the regression coefficients and the coefficient of determination.

Check the value of a.

Check the value of b.

Check the value of c.

',C'

Check the value of d.

····D

Check the value of R2.

Ix: 0.9989 I
........ E::II_

la=103.4473 I
........ E::II_

Ib--1.2841 I
........ E::II_

IC=-1.0369 I
........ E::II_

Id-- 1 • 3395 I
........ E::II_

IR2-e.9989 I
........ E::II_

8: Statistics 193

Calculate T (the forecasted value of t given values for x, y, and z). Use the
values from data set #4.

8 IENTERI 31 IENTERI 11 IT=46.4616 1
(The actual value of t in data set #4 is 47.) Return to the main menu and
clear the statistics registers for new data.

Exit from MLR.

I EXIT!

Curve Fitting in Programs

Ix: 46.4616 I .m .. aHI __ mm

Iy: 11.0000
x: 46.4616

The curve fitting functions FCSTX, FCSTY, SLOPE, YINT, CORR,
LINF, LOGF, EXPF, PWRF, and BEST are programmable.

Refer to program PFIT on pages 218-222 in the following chapter. PFIT
uses FCSTY in line 89 to forecast a y-value based on the currently
selected statistical model for each of 110 x-values. A curve is then plotted
with the 110 data pairs.

194 6: Statistics

-

tie

~

(\;

~

~

~

~

~

~

~

~
~.

~­

~

~

~

~

~

l~

~

l~

r.
r~
I,.
I ..
I ..
I ..

I ..

I.
I.
I.
II. :.
"'e
~ ,. ,. ..
• • • • •
•

7
Graphics and Plotting

The following topics are covered in this chapter:

• Building graphics patterns.

• Multifunction plotting.

• Plotting statistical data from a complex matrix.

Graphics

The program HPLOGO in this section uses the XTOA and AGRAPH
functions to build the Hewlett-Packard company logo in the center of the
display .

To key in HPLOGO:

1. Assign the functions XTOA, CLA, ARCL, and XEQ to the
CUSTOM menu .

2. Create the variable BLOCK.

7: Graphics and Plotting 195

e.o
f!,

Here is the annotated listing. e
Program: Comment.: e
00 (441-Byte Pr-gr'l)

e
01 LBL "HPLOGO" e
02 CLLCD Lines 02-04: Clear the display for ~
03 CF 34 graphics. Clear flags 34 and 35 so that ,
04 CF 35 graphics placed in the display with

AGRAPH are merged with any e
graphics already in the display. (The C
top and bottom halves of the logo are

C built separately and merged in the
display.) C

05 XEQ "TOP" Lines 05 - 09: Call subroutine TOP to ,
06 1 build the top half of the logo. Then -07 ENTER display the top half of the logo, start-
08 40 ing at pixel (1, 40). -09 AGRAPH ,
10 XEQ "BOT" Lines 10-15: Call subroutine BOT to ,
11 9 build the bottom half of the logo.
12 ENTER Then display the bottom half of the ,
13 40 logo, starting at pixel (9, 40). • 14 AGRAPH
15 RTN ~

16 LBL "TOP" Subroutine TOP, lines 16-91: Build ~
17 CLA the Alpha string that represents the • 18 255 top half of the logo. (Begin by building
19 XTOA the Alpha string that represents an 8 x • 20 XTOA 6 block of on-pixels and storing that • 21 XTOA string in the variable BLOCK.)
22 XTOA .-
23 XTOA f'
24 XTOA .-25 ASTO "BLOCK"
26 CLA • 27 254 • • •
196 7: Graphics and Plotting ~

f'

• • • • • • • • • • • • • ..
• • • • • • • • • • • • • • •

28 XTOA
29 ARCL "BLOCK"
313 255
31 XTOA
32 63
33 XTOA
34 15
35 XTOA
36 7
37 XTOA
38 XTOA
39 3
413 XTOA
41 1
42 XTOA
43 129
44 XTOA
45 224
46 XTOA
47 1213
48 XTOA
49 62
513 XTOA
51 39
52 XTOA
53 161
54 XTOA
55 224
56 XTOA
57 96
58 XTOA
59 0
60 XTOA
61 1
62 XTOA
63 129
64 XTOA
65 225
66 XTOA

7: Graphics _d Plotting 197

67 97
68 XTOA
69 33
70 XTOA
71 XTOA
72 35
73 XTOA
74 163
75 XTOA
76 231
77 XTOA
78 103
79 XTOA
80 15
81 XTOA
82 31
83 XTOA
84 63
85 XTOA
86 ARCL "BLOCK"
87 255
88 XTOA
89 254
90 XTOA
91 RTN

92 LBL "BOT"
93 CLA
94 127
95 XTOA
96 ARCL "BLOCK"
97 255
98 XTOA
99 252
100 XTOA
101 240
102 XTOA
103 224
104 XTOA

198 7: Graphics and Plotting

Subroutine BOT, lines 92-156: Build
the Alpha string that represents the
bottom half of the logo.

.. ,. ,. ,. ,.
• • • ,.
• .. ,.
-. -.
--• • • • ,.
•
".
....
....

1135 XTOA
1136 192
1137 XTOA
1138 198
1139 XTOA
1113 135
111 XTOA
112 129
113 XTOA
114 13
115 XTOA
116 XTOA
117 6
118 XTOA
119 7
1213 XTOA
121 129
122 XTOA
123 224
124 XTOA
125 1213
126 XTOA
127 313
128 XTOA
129 7
1313 XTOA
131 5
132 XTOA
133 132
134 XTOA
135 XTOA
136 XTOA
137 198
138 XTOA
139 199
1413 XTOA
141 225
142 XTOA
143 224

7: Graphics and Plotting 199

144 XTOA
145 240
146 XTOA
147 248
148 XTOA
149 252
150 XTOA
151 ARCL
152 255
153 XTOA
154 127
155 XTOA
156 RHl

157 Et·lD

"BLOCK"

e.­
~

e
e
e
e
e
c:
e
e
e
c
c

Example: Building a Logo. Display the Hewlett-Packard logo. If you ~
have a printer, modify HPLOGO to print the logo. Then print it. ~

Execute HPLOGO.

IXEOI HPLO

Insert the instruction PRLCD after line 14 of HPLOGO to print the logo.

IlpRGMI IIGTOI EJ141ENTERI
[!] PRLCD IEXITI

Print the logo.

IlpRINTI 00 POt·j
IXEOI HPLO

Iv: 9.0000
x: 40.0000

USing Binary Data to Build a Graphics PaHern. To build the
logo in the previous example, you had to calculate the column print
number for each of 91 columns- a time-consuming effort. The following
program, BINDATA, calculates the column print number when you input
the equivalent sequence of binary numbers in a column pattern.

200 7: Graphics and Plotting

..
t
t Program:

It 1313 { 6a-Byte Pr9M

t 131 LBL "BINDATA" .. 132 CF 34 .. 133 CF 35
134 BINM ..
135 LBL 1313 • 136 CLX

• 137 STOP
138 II

II

~ 139 126

• 113 XOY
11 X>Y? • 12 GTO 131
13 111111 .. 14 XTOA • 15 f-IIII II

• 16 LBL 131

• 17 AlP
18 AVIEl~ • 19 CLA

• 213 XTOA
21 1 • 22 ENTER

• 23 66
24 AGRAPH • 25 GTO 1313

• • • • • 26 Et·m

• • • • • •

)

Comments:

Lines 02-04: Clear flags 34 and 35.
Set the calculator to Binary mode.

Lines 05-15: Clear the X-register and
suspend program execution for binary
data entry (lines 06-07). Build an.
Alpha string of five spaces (line OS).
Test if the binary data (converted to
decimal form) is greater than 126. If
so, go to label 01. If not, enclose the
corresponding HP-42S Alpha charac­
ter in quotes and append two spaces
to the Alpha register.

Lines 16 - 25: Append the number in
the X-register (the decimal equivalent
of the binary data) to the Alpha regis­
ter and display the current contents of
the Alpha register (lines 17 -18). (The
Alpha register contains the decimal
number equivalent of the binary data.
If that number is less than 128, the
Alpha register also contains the
corresponding HP-42S character,
enclosed in quotes). Build the
equivalent column pattern and display
it, beginning at pixel (1,66) (lines
20 - 24). Return to label 00 for the
next data entry (line 25).

7: Graphics and Plotting 201

To use BINDATA:

1. An on-pixel has value 1. An off-pixel has value O.

2. Enter digits beginning at the bottom of the column.

3. If, for example, you enter only six digits, the bottom two digits are
interpreted to be zeros.

4. Press!BZ§J after data entry to see the calculation. After the calcula­
tion is displayed, simply key in the next sequence of numbers when
you are ready.

Example: Using Binary Data to Build a Logo. Columns 16-18 of
the Hewlett-Packard logo in the previous example have the following pixel
patterns.

[J [J [J Last Digit Entered
[J C • [J C • C • • C • • • • • • • [J

• C [J First Digit Entered
Column # 16 17 18

Use BINDATA to calculate the column print number for each column.

Start the program.

Ixeall,ttiUitB;

Enter the binary data for column 16.

11100000 IBZ§]

202 7: Graphics and Plotting

224

..
•

The column print number for column 16 is 224. There is no equivalent
Alpha character. The column pattern is at the right of the display. Now
enter the binary data for column 17.

01111000 ~ I"x" 120

The column print number for column 17 is 120. The equivalent HP-42S
character is "x". (You can therefore either accumulate 120 in the X­
register and execute XTOA, or accumulate character "x" in the Alpha
register. The column pattern is at the right of the display. Enter the
binary data for column 18.

00111110 ~ 1">" 62

The column print number for column 18 is 62. The equivalent HP-42S
Alpha character is "> ". Now exit from the program.

IY: 1.0000 x: 0.0000

(Refer to the character table in your owner's manual (appendix E) and
note that five of the first 127 characters cannot be typed from the HP-42S
keyboard. The character codes are 4, 6,13,27, and 30. Program
BINDATA shows you the character corresponding to each ofthese codes,
but because these characters cannot be typed, you must accumulate the
corresponding character code in the X-register and execute XTOA.)

Multifunction Plots

The program PLOn in this section enables you to plot up to three func­
tions concurrently on the HP 82240A Infrared Printer. It is based on the
program PLOT in the section "Example Programs" in chapter 10 of your
owner's manual. As in PLOT, you supply to the program the name of the
routine that defines the function you wish to plot. However, in PLon,
you can supply up to three routine names.

7: Graphics and PlotUng 203

Here is a flowchart for PWTI.

(PLOT3) ®I------It
USE VARIABLE MENU TO (YMIN, YMAX, AXIS,

STORE PLOT PARAMETERS XMIN, XMAX, XlNC)

INPUT FUNCTION
ROUTINE NAMES

PLOT HEADER INFO
AND INITIALIZE

SET INITIAL x-VALUE

CLEAR DISPLAY

t

204 7: Graphics and Plotting

• • • • • • I
I
t

•

,

~

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

L_-CNEXT PIXEL ROW)

To key in PLOT3: Create variables ¥MIN, ¥MAX, AXIS, XMIN,
XMAX,XINC, FCN], FCN2, and FCN3 before program entry.

Here is an annotated listing of the program.

Program:

00 { 424-Byte
01 LBL "PLOT3"

02 t'1VAR "Yt'lIt-l"
03 t1VAR " 't'lA)<"
~14 t-lVAR "AXI::;"
05 t'1VAR "Xt'l I t-l"
06 t'1VAR "Xt'lA)·~ "
07 t'lV A F.: "X I t·j(: "

Pt-gp', }

Comments:

Lines 02-07: Declare the menu vari­
ables.

7: Graphics and PloWng 205

08 LBL A
09 VARMENU "PLOT3"
10 CF 34
11 CF 35
12 CLA
13 STOP
14 EXITALL

15 "FCN1"
16 XEQ 07
17 "FCN2"
18 XEQ 07
19 "FCN3"
2(1 >~EQ 07

21 AD',,..
22 "Plot. of:"
23 PRA
24 ADV
25 SF 12
26 RCL "FCt·~ 1"
27
28
29
3(1

~':EQ

RCL
~<EQ

RCL

08
"FCN2"
08
"FCt'~3"

31 ~<EQ 08
32 ADV
33 CF 12
34 PRV "'ltHN"
35
36
37
'='0 ... 11_'

8'3

PRV
PRV
PR'",'
PF~V

PRV
4(1 ADV

" ~"t'1A~'::"
"AXIS"
">~~1It·~"

"X~1AX"

"~<H~C"

41 ".;.. 'lMIN"
42 1-"
43 PF:A

206 7: Graphics and PlotUng

e.
e
e

Lines 08 -14: Display the menu and e
suspend program execution for data e
input.

Lines 15-20: Prompt for the function C
names (the subroutine labels). C

Lines 21- 43: Print the header infor­
mation. (In line 42, there are seven
spaces in the Alpha string before
mAX.)

• .. ,. ,.
'6 44 130 Lines 44 - 48: Calculate the relative y-

"I 45 RCL "YMAX" value of one pixel.

~
46 RCL- "YMIN"
47

"I 48 STO 00

~ 49 RCL "XMIt~" Lines 49-50: Store the first x-value.

• 50 STO 01

-. 51 LBL 00 Lines 51- 58: Clear the display. If flag
52 CLLCD 00 is clear, label the x-axis. If flag 01 is

~ 53 FC? 00 clear, draw an axis. Build a loop ... 54 XEQ 05 counter corresponding to the 16 rows
55 FC? 01 in the display. ... 56 XEQ 06

~ 57 1. 016
58 STO 02 ,. 59 LBL 01 Lines 59 - 61: Build a loop counter for
60 49.051 the three possible functions. (The .. 61 STO 03 character codes for characters "1", "2", .. and "3" are 49, 50, and 51 respectively .

Routine 02 uses these numbers to .. create the variables.) .. 62 LBL 02 Lines 62-83: Create the Alpha strings

• 63 "FCN" FCN1, FCN2, and FCN3 successively.
64 RCL 03 Call each string to the X-register, then .. 65 XTOA recall to the X-register the variable .. 66 ASTO ST X that matches that string. Test if the
67 RCL It~D ST variable has an Alpha string (a func-0"> • 68 STR? tion program name) in it (lines 62-.. 69 XEQ 04 68). If so, plot a pixel for each func-
70 ISG 03 tion. Increment the x-value. If the plot .. 71 GTO 02 is complete (if x-value > XMAX), go

.~ 72 RCL "XH1C" to label 03. If the current display is
73 16 complete (if rows 1-16 are filled),

~ 74 then print the display and start a new

~ 75 STO+ 01 one.

7: Graphics and Plotting 207

76 RCL "XMAX"
77 RCL 131
78 X)Y?
79 GTO 133
813 ISG 132
81 GTO 131
82 PRLCD
83 GTO 1313

84 LBL 133
85 PRLCD
86 RTN
87 GTO A

88 LBL 134
89 RCL 131
913 XEQ IND ST Y
91 SF 24
92 RCL- "Yt'lIN"
93 RCLx 1313
94 1
95 +
96 CF 24
97 RCL 132
98 XOY
99 x)e?
1013 PIXEL
lei Rn~

1132 LBL 135
103 CF 21
1134 CLA
1135 ARCL 01
1136 AVIEW
1137 SF 21
1138 RTN

208 7: Graphics and Plotting

Lines 84 - 87: Print the final display
and stop. (Line 87 enables you to res­
tart the program by pressing lBlID.)

Subroutine 04, lines 88 -101: Evaluate
the function at x and plot the
appropriate pixel.

Subroutine 05, lines 102 -108: Label
the x-axis.

• • • • 1139 LBL 136 Subroutine 06, lines 109-123: Draw

• 1113 1 the axis. (In line 120, the Alpha string

• 111 RCL "AXIS" is five "multiply" characters: press

112 RCL- "YMIN" .'ALPHAI ~ ~ ~ ~ ~ IENTERI.)

• 113 RCLX 1313

• 114 +/-

115 1

• 116 -

• 117 PIXEL
118 +/-

• 119 2

• 1213 -
121 "xxxxx"

• 122 AGRAPH

• 123 RTt~

• 124 LBL 137 Lines 124-146: Prompt for an Alpha
125 CF 21 string (function name). If the variable

• 126 AS TO ST L already contains an Alpha string, that

• 127 CLX string is recalled to the Alpha register
128 AVIE~J as the default.

• 129 PSE

• 1313 CLA
131 FS? 55

• 132 SF 21

• 133 SF 25
134 RCL It~D ST L

• 135 CF 25

• 136 STR?
137 ARCL ST X

• 138 AON

• 139 CLD
1413 STOP

• 141 AOFF

• 142 ALEt~G
143 K;!:13? .. 144 ASTO ST X

• • 7: Graphics and Plotting 209

•

145 STO It-lD ST L
146 RHI

147 LBL 08 Subroutine 08, lines 147 -153: Print
148 CLA the function names.
149 STR?
150 ARCL ST X
151 STR?
152 PRA
15:=: RHI

154 Et·j[)

To use PLOT3:

1. Execute PRON and turn on your Infrared Printer.

2. Write a routine for each function that you want to plot. The current
x·value is in the X-register when the program calls the function rou­
tines. The routines need not recall the current x-value to the X­
register.

3. Set the display format to ALL.

4. Start the program (press IXEQJ PLOT:::).
5. Supply the plot parameters. For example, specify 20 for YMIN by

pressing 20 'l t-1 I t-l .

6. After supplying values for the plot parameters, press [Bl§].

8. As prompted, store the name of each function routine in a
function variable. For example, to supply the name TAN for
FeN], press TAN [Bl§] at the first prompt.

b. If you have already supplied a routine name for a function
variable, that name is displayed at the prompt. If you want to
leave that name in the variable, simply press [Bl§].

c. If you want to plot only two functions, supply names for only
two variables. Leave the Alpha register clear for the third
variable Gust press [Bl§] when prompted). If a name is
displayed for the third variable, press 0 to clear the Alpha
register, then press [Bl§]. If you want to plot only one func­
tion, supply a name for only one variable and leave the Alpha
register clear (or clear it) for the other two variables.

210 7: Graphics and Plotting

a
~

• t
• ..
• • • • • • • • • • • • • • • • • • •
• • •

Example: Plotting Multiple Functions. Use PWTI to plot the fol­
lowing functions.

1. Y = sinx

2. y = 0.35(lnx) (cosx)

First, write routines to describe the functions.

00 { 9-Byte PrgM }
01 LBL "SINE"
02 SIN
03 END

Program:

00 { 27-Byte PrgM }
01 LBL "U-lCOS"
02 COS
03 LASTX
04 ~J. 0001
05 +
06 U'~

07 0.35
08 x
(19 x
10 END

Comments:

Lines 04 - 05: Ensure that the program
does not attempt to execute In (0).

Set the Display format to ALL. Execute PRON. Clear flags 00 and 01 to
draw and label the x-axis. Start PLOTI.

.lolspl'ALL

.[ffiffilJ 00 P (I N

.IFLAGSI .'FLAGSI
. "CF i 00 CF' 01 ,EXIT\
IXEOIPLOJ8

Ploty-values between -3 and 3, and set the axis aty = O .

3 1+/-IY111N
3YJ1A'X····'··
o AXIS

7: Graphics and Plotting 211

Plot x-values between 0 and 7W in increments of 60 per display.

e
~

e
e

°XMlhl.
720XMAX
6O'KINC.

IXIHC-60 I e
. mIJ:lmmBElllBIIIIll3I111m11IB1:111.

Supply the program name SINE for the first function variable.

rnzID SINE

Supply the program name LNCOS for the second function variable.

rnzID LNCOS

212 7: Graphics and Plotting

e
e
e
e
e
e
e
e , ,
~

~

~

.:
~

c , , , ,
'" '" -•
~

~
~. .-

it

• t
It
t
It
It
It
It
It
It
It
It
lit

• • • • • • • • • • • • • • • • •

Leave the Alpha register clear for the third function variable and start the
plot. The printer output is shown here.

Plot of:

SINE
LNCOS
YI'IIH=
YI'IAX=
AXIS=
XI'IIH=
XI'IAX=
XIHC=
~ VI'IIH

~ 'S<
128 ,)

YI'IAX +

180 (.. (",'
248 ...
3ee

'\." ... ,.)
36e " :: //)"
54 (/,'
68e ..

668 ... ~: \

720

Exit from the program. Return the display format to FIX 4.

(EXITI
I(OISpl {t"J>?5i 4 (ENTERI

7: Graphics lind Plotting

-3
3
8
8

728
68

213

Plotting Data from a Complex Matrix

In previous programs, you have used:

• PIXEL to turn on individual pixels in the display. You specify the
pixel number in the X- and Y-registers (row number in Y and column
number in X).

• AGRAPH to display a graphics pattern. You specify the location of
the pattern in the display by placing a pixel number in the X- and Y­
registers (row number in Y and column number in X).

PIXEL and AGRAPH operate on the numbers in the X- and Y-registers.

The efficiency of these functions is enhanced by enabling them to operate
on a complex matrix in the X-register, where each element of the complex
matrix has the form

x-value + iy-value

When such a matrix is in the X-register, PIXEL turns on each pixel in the
display as specified by the elements in the matrix. For example, consider
the following complex matrix.

[
1+i1O 5+;20]

10 + i 30 16 + i 40

If you execute PIXEL when this matrix is in the X-register, pixels (1, 10),
(5, 20), (10, 30), and (16, 40) are each turned on.

214 7: Graphics and Plotting

q

@.:

~

e
e
e
e
e
e
e
e
e
e
e
e
e
e , , , , , ,
'" '" f
f
f
f'
..-
" .-
-­..

..
It
It
It
It

• • • • • • • • • • • • • • • • •
i

Similarly, AGRAPH places the graphics pattern that is encoded in the

Alpha register at each position in the display as specified by the elements

in the matrix.

Note that PIXEL and AGRAPH operate on the rectangular form of the

complex matrix. Before entering numbers into the complex matrix, set the

angular mode to Rectangular.

The program PFIT in this section plots the individual data pairs from the

real n x 2 matrix in the X-register, then fits and plots a curve to that data

using the currently selected statistical model. PFIT creates one complex

matrix and executes AGRAPH to mark each data point with a "+" charac­

ter. PFIT then creates a second complex matrix and executes PIXEL to

plot the forecasted curve.

7: Graphics and Plotting 215

~.

~

!
!
e
e
e

INDEX DATAMTX e
t e

XEO MM TO FIND MIN e
AND MAX VALUES, THEN e

CALCULATE SCALING
FACTORS e

e
e
e
e

STORE DATA FROM
DATAMTX IN SUMMATION C

REGISTERS ~

C
(-

iC

C
I~

(~

\f
f
f

"
" " '" 216 7: Graphics and Plotting ~

""

• ..
•

REATE 1 X 22 TEMPORARY
MATRIX AND FILL IT WITH

x-VALUES 1-22

PRINT THE
DISPLAY

To key in PFIT:

l'
I
I
I
I
I
I
I
I
I
I
!

SCALE EACH x, y -VALUE

COMBINE x, Y MATRICES

INTO A COMPLEX MATRIX

PLOT 22 PIXELS
(DRAW THE CURVE)

1. Create variable DATAMTX before program entry .

2. Create label MM when you begin program entry .

7: Graphics and Plotting 217

Here is an annotated listing of PFIT.

Program:

121121 { 295-Byte PrgM }
1211 LBL "PFIT"

1212 CF 34
1213 CF 35
1214 RECT
1215 STO "DATAMTX"
1216 INDEX "DATAMTX"

1217 XEQ "MM"
1218 STO 1212
1219 -
1121 128
11
12 STO 1211
13 STO+ 1212

14 XEQ "MM"
15 XOV
16 STO 1214
17 -
18 13
19 XOV
2121
21 STO 1213
22 STOx 1214
23 2
24 STO- 1214
25 STO- 1212

218 7: Graphics and Plotting

Comment.:

Lines 02 - 06: Clear flags 34 and 35.
Store the matrix that is in the X- regis­
ter in DATAMTX and index
DATAMTX.

Lines 07 -13: Call subroutine MM to
find the minimum and maximum x­
values. Then calculate the x-value scal­
ing factor.

Lines 14-25: Call subroutine MM to
fmd the minimum and maximum y­
values. Then calculate the y-value scal­
ing factor.

•

•

26 CLLCD
27 RCL 04
28 X>0?
29 RCL- ST X
30 RCL 02
31 X>0?
32 CLX
33 PIXEL

34 IREG 11
35 CLI
36 RCL "DATAMTX"
37 I+

38 CLA
39 2
40 XTOA
41 7
42 XTOA
43 X<>'y'
44 XTOA

45 RCL II DATA~lTX II

46 TRANS
47 STO II DATA~1TX II

48 INDEX IDATA~1TX"

49 DIM?
50 1
51 X<>V
52 GETM
53 DELR
54 RCL+ 01
55 RCL- 02

Lines 26 - 33: Plot the axes.

Lines 34-37: Store the data in
DATAMTX into the summation regis­
ters.

Lines 38 - 44: Build the" +" character
(used to mark each data point in the
plot).

Lines 45 - 55: Make the matrix 2 x n
and index it (lines 45-48). Make two
1 x n matrices, where the matrix in the
x- register is the x-values, and the
matrix in DATAMTX is the y- values
(lines 49-53). Convert the x-values to
screen coordinates for plotting (lines
54-56).

7: Graphics and Plotting 219

56 RCL "DATAt1TX"
57 RCLx 1213
58 RCL- 1214
59 COMPLEX

6121 1
61 ENTEF~

62 COMPLEX
63 -
64 AGRAPH

65 RCL "REGS"
66 1
67 ENTER
68 22
69 DIt1 "REGS"

7121 21
71 LBL 01
72 STO IND ST
73 DSE ST X
74 GTO 01
75 STO 00

76 R-t-
77 RCL "REGS"
78 XO'(
79 STO 1I~~EGSIf

80 CLX

X ,"

220 7: Graphics and Plotting

Lines 56 - 59: Convert the y-values to
screen coordinates (lines 56 - 58),
Convert the matrices in X and Y to
one complex matrix in X, each ele­
ment of which is: x-value + ;y-value
(line 57),

Lines 60 - 64: Subtract 1 + it from
each value (to set the center of the" +"
character at the data point) (lines
60 - 63). Place the center of the" +" at
the coordinates defined by each ele­
ment of the matrix (plot the data
points) (line 64).

Lines 65 - 69: Recall the registers
matrix to the X-register, and redimen­
sion it to a 1 x 22 temporary matrix.

Lines 70-75: Fill the temporary
matrix with values 0 through 21.

Lines 76 - 80: Store the data from the
registers back into REGS, then clear
the X-register,

•

•
~

•
• ..
MIt

81 6
82 X<>Y
83 1
84 +

85 LBL 02
86 ENTER
87 RCL+ 02
88 RCLX 01
89 FC8TY
90 RCLx 03
91 RCL- 04
92 CO~1PLEX
93 PIXEL
94 COt1PLEX
95 R",
96 22
97 +
98 D8E 8T Y
99 GTO 02
100 PRLCD
101 CLV IDATAt'1T~<"

102 RTt~

103 LBL IM~1"

104 RCLEL
105 ENTER
106 LBL 09
107 1+
108 F8? 76
109 Rn~
110 RCLEL
111 X<Y?
112 X<>Y
113 X<>Y
114 R",
115 X>Y?

Lines 81-84: Establish a loop counter
6.00000 in the Y-register. Change the
values in the temporary matrix to 1
through 22. (These values represent
the first set of 22 x-values.)

Lines 85 -102: Forecast y-values for a
set of 22 x-values, make a complex
matrix of x-y data pairs, and plot each
data pair. Repeat for five more sets of
x-values.

Subroutine MM, lines 103 -120: Find
the maximum and minimum elements
of one column of the matrix for seal-
ing. At the start of the subroutine, the
matrix DATAMTX is indexed with the
index pointer at the top of a column.
At the end of the subroutine, the
minimum element of the column is in
X, the maximum element is in Y, and
the index pointer is at the top of the
next column.

7: Graphics and PlotUng 221

116 XOV
117 R",
118 RCL ST Z
119 GTO 09
120 RTN

121 END

To use PFIT:

1. Select a statistical model. For exam pie, press lIST A T lie F.ITi
,HODLL INF .

2. Place a 2-column real matrix of data pairs in the X-register.

3. Press IXEal PF I T

Example: Plotting Data from a Compression Process and
Fitting a Power Curve to the Data. Many compression processes
can be correlated using the power curve

where:

P is the pressure.
V is the volume.
-b is the polytropic constant.

Enter the following pressure-volume data in the "£LIST matrix.
Then use PFIT to plot the data and to plot a power curve to the data.

v P

10 210
30 40
50 12
70 9
90 6.8

222 7: Graphics and Plotting

4

e
e
e
(!

(!

e
~

~ , ,
t! ,
e ,
~

;;

.­

.­

.­
;
;
;
;

~

f"

f" , ,
~­

i"
~

~

f"

It
t
t
t
t
t
t
It
It
I

•
I

•
~

Execute program LIST. (If you've deleted the program, you need to key it in
again. The listing is in section "List Statistics" in chapter 6.)

IXECI'tI S1' r-I~-: 0"".-:::O~0~00""_--_--_--rmn--'1

Clear the '£LIST matrix, then fill it with the data.

CLlS.! IILIST=[5x2 Matrix] I
210 I ENTER I 10 1..181+ .l!IiDmBI ___ ImiJ.

40 IENTERI30 LlST+
12IENTERI50 1..18T +
9 IENTERI 701..1S1+
6.8 I ENTER I 90 1,.J 51+

Exit from LIST. Recall '£LIST to the X-register.

:~~~II lLIS't I~: ?05~~0~atnx]

Set the statistical model to a power fit. Execute PRON if you have a
printer. Execute PFIT.

.ISTATICEITJ1dDL· .. P~RF
(.~ 00 ;,'1='09.)
., TOP .FeN IX;'REQ:"PFIT

1'--

Exit from PFIT. Check the correlation coefficient for the data.

,I

~:-0.9939 I
IDiillIDiBDmlmllmililllIml

The correlation coefficient is -0.9939. Check the value of -b.

The value of -b is -1.6252. Exit from the STAT menu.

Iv: -0.9939
x: -1.6152

7: Graphics and Plotting 223

Index

Special Characters
E+ function

~mulating in LIST program, 176
1D programs, 182
stores data from 2-column

matrix to summation regis­
ters, 149, 181, 175

EFORM program, listing of, 181
'£LIST matrix

A

filling column 2 with evenly
spaced integers, 181

~n curve fitting example, 220
1D LIST program, 176
redimensioning to nm x 2, 181

ACC variable. See Accuracy factor
Accuracy factor

affects Integration calculation
time, 130

definition, 134
effect on calculation time, 137
in basic integration, 124
related to uncertainty of

integration, 135
Addressing. See Indirect

224 Index

addressing
AGRAPH function

in HPLOGO program, 195
operates on complex matrices,

213
Algebraic solution. See Explicit

solutions
Angle of twist equation, 131, 125
Approximating an integral that has

an infinite limit, 127 -130
Asymptote, Solver results with

117 '

B
Bad GIJess (es) message, 120
Binary data, building a graphics

pattern with, 200 - 203
BINDATA program, listing of,

201
Branching, 21-39

conditional, 22 - 25
emulating a multirow menu with

KEY GTO, 34 - 37
emulating a nested menu with

KEY GTO, 37 - 39
menu-controlled, 29 - 39
types of, 21

• ..
• • .' -.
lit

c
Calculation time

for an explicit solution, 100
for Integration approximations,

129-130
for the Solver, 99
Integration conditions that pro­

long, 143 -145
Case 1 and 2 (Solver) solutions,

how to differentiate
between, 110

Case 1 (Solver) solution,
definition, 109

Case 2 (Solver) solution,
definition, 109

CIRCUIT program, listing of, 87
CLEAR program, listing of, 44
Coefficient matrix. See MATA
Column norm of a matrix, 151
Column sum of a matrix, 150 -151
Complex numbers. See Emulating

the Solver; HP-41 programs,
enhancing with HP-42S data
types; Simultaneous equa­
tions, complex-number

Compression process equation,
220

Conditional branching, 22 - 25
based on a number test 24

CO~E program, listing of, 81
Conjugate of a complex matrix,

151
Constant matrix. See MA TB
Const ant? message, 121
Constant velocity equation, 39
Control flags, 47

definition, 47
flag 21 used to control VIEW

and A VIEW functions 47
16 ' ,

Controlled looping, 39 - 43
definition, 39
DSE function in, 39
GTO function in, 39
indirect addressing with, 43
INPUT IND in, 43
ISG function in, 39
STO IND in, 44
XEQ IND in, 45

COORD program, listing of,
158-160

Coordinate transformations ,
156-163

Correlation coefficient 221 ,
Curve fitting in programs, 194
CUSTOM menu, executing pro­

grams from, 73, 19

D
Data input, prompting for in a

program, 68, 15
Data output, displaying in a pro­

gram, 68,16
Declaring variables. See MV AR

function
Directing the Solver to a realistic

solution, 80-82
Discontinuous function, Solver

results with, 113 -114
DISPL program

flowchart for, 40
listing of, 41

Displaying program results. See
Data output

DSE function, in a controlled
loop, 39

Index 225

E
EIZ program, listing of, 89 - 90
Electrical circuits. See Simultane­

ous Equations; Emulating
the Solver

Emulating
a multirow menu, 34 - 37
a nested menu, 37 -39
E+ function, 176
the Solver, 86 - 91

END function, 15
Enhancing HP-41 programs, 67-

76
Equation(s)

angle of twist, 131,125
asymptote, 119
compression process, 220
constant acceleration due to

gravity, 83
constant velocity, 39
ideal gas, 101, 78
local flat region, 121
loop current, 166, 169, 163
math error, 120
multiple linear regression,

182-183
Ohm's law, 86, 88
pole, 116
relative minimum, 118
setting equal to 0 for the Solver

105,77 '
sine integral, 136
SSA (triangle solution), 22
~SS (triangle solution), 13
ttme-value-of-money, 92
triangle solutions, 58 - 59
van der Waals, 101
volume of the frustum of a right

circular cone, 80
Error Ignore flag, used in error

226 Index

trapping, 50
Error trapping, 49 - 50
Examples, displays in the manual

may differ from your
displays, 10

Executing a program
from the CUSTOM menu 73 , ,

19
fr?m the program catalog, 19
WIth the XEQ function, 73 19

Explicit solutions '
calculation time, 100
faster than iterative solutions, 92
for complex numbers, 88
using with the Solver in pro-

grams, 92 -100
Ext.t-erO'iJr'O, message, 117

F
FCAT program

flowchart for, 52
listing of, 53 - 56
uses programming concepts dis­

cussed in chapter 2, 51
Finding more than one solution

with the Solver, 83 - 85
Flag 21

and PROFF function, 16
and PRON function, 16
effect on VIEW and A VIEW

instructions, 47, 16
Flag 25, used in error trapping, 50
Flag 77, used in MINMAX pro­

gram, 47
Flag tests, follow do-if-true rule,

46
Flags, 46 - 57

control, 47
current status maintained by

Continuous Memory, 47

~

~

~ Error Ignore, 50 GTO function, in a controlled

t general purpose, 46 - 47 loop, 39
have unique meanings for the

t calculator, 46 H
t listing of in appendix C of

owner's manual, 46 Horner's method, 125

t Matrix End-Wrap, 47 HP 82240A Infrared Printer

• Numeric Data Input, 93 some examples include optional

Printer Enable, 47, 16 instructions for, 11

• system, 47 - 48 HP-41 programs, enhancing, 67-

• user, 46-47 76

Flat region, Solver results with, with HP-42S data types, 69

• 121 with INPUT function, 68

• Flowchart with menu variables, 71-73

definition of, 13 with named variables, 67 - 68

• for DISPL program, 40 with the two-line display, 69

I for FCA T program, 52 with VIEW function, 68

for GAS2 program, 102 HPLOGO program, listing of, ,

• for MLR program, 184 196-200

• for PFIT program, 214-215

• for PLOn program, 204 - 205 I
for SSA program, 23

• for SSA2 program, 27 Ideal gas equation, 101, 78

for SSS program, 15 Improper integral, definition of,

• for TRI..6.. program, 30-31 127

• symbols for, 15 Incorrect results in Integration,
140-143

• G
Indexing (matrix) functions, 146-

• 154

GAS program, listing of, 78 Indirect addressing, 43 - 45

a GAS2 program clearing storage registers with,

a flowchart for, 102 44
listing of, 103 -104 controlled looping with, 43

a General purpose flags, 46 - 47 executing subroutines with, 45

a definition of, 46 initializing data storage registers

in LIST program, 47 with, 43

a in MINMAX program, 48 INPUT function with, 43

• Global label, defines start of a SOLVE and PGMSLV func-
program, 15 tions with, 101-105

• Graphics, 195 - 203 STO function with, 44

• binary data to build, 200 - 203 XEO function with, 45

• • Index 'Z2:T

•

Infinite limit, approximating an
integral that has an, 127-
130

Infrared Printer.
some examples include optional

instructions for, 11
See also Printing

INIT program, listing of, 43
Initial guesses, for the Solver,

80-85
INPUT function, 15

brings up variable catalog in
Program-entry mode, 17

enhancing HP-41 programs
with,68

indirect address with, 43
Integration, 124-145

ACC variable in, 124
accuracy factor and uncertainty

of integration, 134 - 139
approximating an integral that

has an infinite limit, 127-
130

basic use of, 124 - 127
calculation time for approxima­

tions, 129 -130
conditions that can cause

incorrect results, 140 -143
conditions that prolong calcula-

tion time, 143 -145
limiting the accuracy of, 134
LLIM variable in, 124
more on how it works, 134-145
MV AR function in, 124
Solver and, 131-133
subdividing the interval of

integration, 142 -143
ULIM variable in, 124
uncertainty of. See Uncertainty

of integration
Interactive use of the Solver

228 Index

sa

~~

~

and Integration, 131-133 ~
and Simultaneous Equations, e

168-172
Interpreting the results of the (!

Solver, 108-122 (!
ISG function, in a controlled loop, e 39

e
K e
KEY GTO function e

emulating a multirow menu
with, 34-37 e

emulating a nested menu with, e
37-39

to build programmable menu, e
29 :

turns on&. annunciator when
assigned to menu key 7 or 8, :
34 ,

KEY XEQ function
to build programmable menu, ~

29 ~
turns on&. annunciator when

assigned to menu key 7 or 8, ~
34 C

Keying in programs, helpful hints
for, 17 C

Keystrokes, required to execute a C
program, 19 - 20

C

l r-
LIST program t

accumulates statistical data for r
plotting, 220

emulating E+ function in, 176 t
fills ELIST matrix with x-y data f

pairs, 176
general purpose flag in, 47 ~
listing of, 176-179 ~

~

~

r--

• a

• • • • • • •

matrix operations in, 172
List statistics, 175-182
LLIM variable

in basic integration, 124
solving for with the Solver, 131

Local maximum or minimum,
Solver results with, 117

Loop current equations, 166, 169,
163

L VL1 program, listing of, 38 - 39

M
MATA matrix

in MLR program, 172
in Simultaneous Equations

application, 164
solving for an element of, 168

MATB matrix
in MLR program, 172
in Simultaneous Equations

application, 164
Math error, Solver results with,

120
Matrices, 146-173

coordinate transformations with
vectors, 156 - 163

creating a named matrix, 147
filling a matrix element with an

Alpha string, 147
finding the column norm of a

matrix, 151
finding the column sum of a

matrix, 150 -151
finding the conjugate of a com­

plex matrix, 151
finding the matrix sum of a

matrix, 151
finding the maximum and

minimum elements of a
matrix, 152 -153

geometric calculations with vec­
tors, 154 -156

interactive use of indexing utili­
ties and statistics functions,
149-150

matrix editor and indexing func­
tions, 146 -154

matrix operations in statistics
and graphics programs,
172-173

matrix utility programs, 150-
154

solving simultaneous equations,
163-168

sorting a matrix, 153 - 154
vector solutions, 154 -163

Matrix editor, 146-154
Matrix End-Wrap flag, in MIN­

MAX program, 47
Matrix sum of a matrix, 151
MATXmatrix

in MLR program, 172
in Simultaneous Equations

application, 165
Maximum and minimum elements

of a matrix, 152 - 153
Menu

multirow, emulating in a pro­
gram,34-37

nested, emulating in a program,
37-39

programmable, 29
MENU function, 29
Menu keys, 29
Menu variables

enhancing HP-41 programs
with, 71-73

to simulate the Solver, 88
Menu-controlled branching, 29-

39
Messages

Index 229

Bad Guess(es),120
Constant?,121
Ext re 1"1 U 1"1, 117
Out of Range, 49
Restricted Operation,S6
Sign Reversal,IIS

MINMAX program, flags in, 47
MLRprogram

flowchart for, 184
listing of, 186 -192
matrix operations in, 172

MOTION program, listing of, 84
Multifunction plotting, 203 - 213
Multiple linear regression, 182-

194
Multiple-linear-regression

equations, 182 -183
Multirow menu

T.& annunciator in, 34
[!] and [IJ keys in, 34
emulating in a program, 34 - 37

MVAR function

N

defines variables in Integration
programs, 124

defines variables in Solver pro­
grams, 77

Neighbors, 109
Nested menu, emulating in a pro­

gram, 37-39
Notations, consistent with owner's

manual, 10
Numeric Data Input flag, 93

230 Index

o
Ohm's law equation, 86, 88
Out of Range message, 49

p

Parabolic equation. See
Equation(s), relative
minimum

PFIT program
flowchart for, 214 - 215
listing of, 216-220
matrix operations in, 173

PGMSLV function, indirect
address with, 101-105

PHONE program, listing of, 45
PIXEL function, operates on com­

plex matrices, 213
PLOD program

flowchart for, 204-205
listing of, 205 - 210

Plotting, 203 - 222
multifunction plotting, 203 - 213
plotting data from a complex

matrix, 213 - 222
Pole, Solver results with, 115
Printer Enable flag, 47, 16
Printing

HPLOGO program results, 200
optional instructions for, 11
PLOD program results, 212
Q3 program results, 74
SSS program results, 33

PROFF function, and flag 21,16
Program catalog

executing a program from, 19
global labels placed in, 19

Program listing
for BINDATA, 201
for CIRCUIT, 87

t
It
It

• •
It .,
It

• Ie
It

for CLEAR, 44
for CONE, 81
for COORD, 158 -160
for DISPL, 41
for EIZ, 89 - 90
for FCAT, 53-56
for GAS, 78
for GAS2, 103 -104
for HPLOGO, 196 - 200
for INIT, 43
for LIST, 176-179
for L VLl, 38 - 39
for matrix utility programs,

150-154
for MLR, 186 -192
for MOTION, 84
for PFIT, 216-220
for PHONE, 45
for PLOTI, 205 - 210
for Q2, 69 -71
for Q3, 72 -73
for QSHORT, 75
for ROWl, 35 - 37
for EFORM, 181
for SHAFT, 132
for SIMUL, 170
for SSA, 24 - 25
for SSA2, 28 - 29
for SSS, 17 -18
for TORQUE, 126
for TRAP (revised), 50
for TRI4, 60-65
for TVM2, 93 - 99
for XV ALS, 182

Programmable menu
definition of, 29
in TRI4 program, 32

Programming, 12 - 66
branching, 21-39
controlled looping, 39 - 43
curve fitting functions in

programs, 194
defining the program, 15
displaying results, 16
error trapping, 49 - 50
flags, 46 - 57
helpful hints for keying in pro-

grams, 17
indirect addressing, 43 - 45
prompting for data input, 15
simple programming, 12 - 21
Solver and explicit solutions in

programs, 92 -100
Solver in programs, 92 -105
subroutines, 26 - 29
summation-coefficient functions

in programs, 182 -194
Programs

executing from the CUSTOM
menu, 19

executing from the program
catalog, 19

executing with XEO function,
19

keystrokes required to execute,
19-20

Prompting for data input. See
Data input

PRON function, and flag 21, 16
Providing initial guesses for the

Solver, 80 - 85

Q
02 program, listing of, 69 -71
03 program, listing of, 72 -73
QSHORT program, listing of, 75

Index 231

R
RCL function, brings up variable

catalog in Program-entry
mode, 17

Realistic solution, directing the
Solver to, 80 - 82

Redimensioning ELIST matrix,
181

Regression, multiple linear, 182-
194

F.:estt-icted Opet-at ion mes­
sage,56

Root(s) of a function
approximations of, 108
definition of, 105
ideal solutions for, 108
multivariable function roots, 106
Solver's ability to find, 107 -108

Round-off error, can affect Solver
results, 123

ROW1 program, listing of, 35 - 37

s
SHAFf program, listing of, 132
Sign Reversa 1 message, 115
Simple programming, 12 - 21
SIMUL program, listing of, 170
Simultaneous equations

complex-number, 166-168
real-number, 163 -165

Simultaneous Equations, 163 -172
Solver and, 168 -172

Sine integral equation, 136
Solution matrix. See MA IX
SOLVE function, indirect address

with, 101-105
Solver, 77 - 123

ability to find a root, 107 -108
approximations for which/(x) is

232 Index

nonzero, 108
Ba~ Guess (es) message, 120
baSIC use of, 77 - 80
calculation time in TVM pro-

gram, 99
cases when a root is found,

109-115
codes returned to the T-register,

108-109
C,;:.nst ant? message, 121
differentiating between Case 1

and Case 2 solutions, 110
directing to a realistic solution,

80-82
emulating in a program, 86-91
explicit solutions and, 92 -100
Ext t-er)ul") message, 117
finding more than one solution,

83-85
ideal solution, definition, 108
Integration and, 131-133
interpreting the results of,

108-122
more on how it works, 105 -123
MV AR function in, 77
providing initial guesses for,

80-85
results may be affected by

round-off error or
underflow, 123

results with a discontinous func­
tion, 113 -114

Sign Revet-sa 1 message, 115
Simultaneous Equations and,

168-172
using in programs, 92 -105

Sorting a matrix, 153 -154
SSAprogram

flowchart for, 23
listing of, 24 - 25

SSA (triangle solution) equations,

• • I

• • • I

• I

• •
I

• • • It

• • • It
It
It
It

• • :.
• • • • • • •

22
SSA2 program

flowchart for, 27
listing of, 28 - 29

SSS program
flowchart for, 15
listing of, 17 -18

SSS (triangle solution) equations,
13

Stack registers, contain results of
the Solver, 108

Statistics, 174 -194
calculating a mUltiple linear

regression, 182 -194
correlation coefficient, 221
curve fitting in programs, 194
linear or exponential curve

fitting for one-variable data,
181

list statistics, 175 -182
matrix indexing utilities and,

149-150
redimensioning "£LIST matrix to

execute E +, 181
summation-coefficient functions

in programs, 182 -194
STO function

brings up variable catalog in
Program-entry mode, 17

indirect address with, 44
STOP function, 29
Subdividing the interval of integra­

tion,142-143
Subroutines, 26 - 29

advantages of, 26
called with XEQ, 26
definition, 26
end with RTN or END 26 . ' m SSA2 program, 26

Summation registers. See E +
function; Summation-

coefficient functions
Summation-coefficient functions,

using in programs, 182 -194
System flags, 47 - 48

in MINMAX program, 47

T
Time-value-of-money equation, 92
TORQUE program,listing of, 126
Translations, coordinate. See

Coordinate transformations
TRAP program, listing of, 50
TRIA program

flowchart for, 30-31
listing of, 60 - 65

Triangle solutions equations, 58-
59

TVM2 program, listing of, 93 - 99

u
ULIM variable

in basic integration, 124
solving for with the Solver, 131

Uncertainty of integration
definition, 135
is greater than error in final cal­

culation, 135
may be relatively large, 138-

139
returned to the Y-register, 135

Underflow, can affect SolverV
results, 123

User flags, 46 - 47

Index 233

j
~
~.

v ~

Valid solution. See Directing the ~.

Solver to a realistic ~
van der Waals equation, 101
Variable menu ~

enhancing HP-41 programs r;.
with, 71-73

to simulate the Solver, 88 (;

Variables ~
ACC, 124
keying in in programs, 17 ~
LLIM, 124 ~
MATA, 164

~ MATB,l64
MATX,165 ~
ELIST,176
ULlM,124 ~.

Vector solutions, 154-163 ~
VIEW function, 16

~ brings up variable catalog in
Program-entry mode, 17 ,;-

enhancing HP-41 programs
ff with,68

Volume of frustum of right circu- ~
lar cone, equation, 80

;'

X ;'

XEQ function ;'
executing a program with, 73, 19 ;-
indirect address with, 45

XTOA function ;-
in HPLOGO program, 195 r-
used if corresponding character

r-cannot be typed, 203
XV ALS program, listing of, 182 r-

f'
~

~

~

234 Index ~

~

Programming Examples and Techniques
for Your HP-42S Calculator

Programming Examples and Techniques contains examples in mathe­
matics, science, engineering, and finance to help you more fully
utilize the built-in applications in your HP-42S calculator. Programmed
solutions are emphasized. Graphics and plotting with the HP 82240A
Infrared Printer are also addressed.

• Programming
Simple Programming • Branching • Controlled Looping • Indirect
Addressing in Programs • Flags in Programs • Error Trapping

• Enhancing HP·41 Programs
Using Named Variables • Using HP-42S Data Input and Output
Functions • Operations with HP-42S Data Types • Using the Two­
Line Display • Using Menu Variables • Assigning a Program to the
CUSTOM Menu

• The Solver
Basic Use of the Solver • Providing Initial Guesses for the Solver
• Emulating the Solver • Using the Solver in Programs • More on
How the Solver Works

• Integration
Basic Integration • Approximating an Integral That Has an Infinite
Limit • Using the Solver and Integration Interactively • More on
How Integration Works

• Matrices
Using the Matrix Editor and Indexing Functions • Vector Solutions
• Solving Simultaneous Equations • Using the Solver with
Simultaneous Equations • Matrix Operations in Programs

• Statistics
List Statistics • Using the Summation-Coefficient Functions in
Programs • Curve Fitting in Programs

• Graphics and Plotting
Graphics • Multifunction Plots • Plotting Data from a Complex
Matrix

rli~ HEWLETT
~~ PACKARD

Reorder Number
00042·90020

00042-90019 English
Printed in U.s.A. 7/88 o 6

G

e~

e·
e·
e
e
e
(;.

~

e
e
e
e
e
(; ,
• • • ,
~

~

~

~

~

~

~
~­

~.

~.

~

~

~

~

Scan Copyright ©
The Museum of HP Calculators

www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

