1,\\
0

_z :

AN

HEWLETT-PACKARD

b 3

DODPIDIIDDDIDABADADLA

4

EEEEEEY

[ﬁﬁ HEWLETT

PACKARD



A

l

HP-42S
RPN Scientific

Programming Examples and Techniques

COPORPOOLOGLOOO

HEWLETT
[ﬁﬁ] PACKARD
Edition1 July 1988
Reorder Number 00042-90020

YOV LRLYLOLOGOULEOROLOLYOU




—7

L N X))

Notice

This manual and any keystroke programs contained herein are provided
" as is" and are subject to change without notice. Hewlett-Packard Com-
pany makes no warranty of any kind with regard to this manual or the
keystroke programs contained herein, including, but not limited to, the
implied warranties of merchantability and fitness for a particular pur-
pose. Hewlett-Packard Company shall not be liable for any errors or for
incidental or consequential damages in connection with the furnishing,
performance, or use of this manual or the keystroke programs contained
herein.

o Hewlett-Packard Company 1988. All rights reserved. Reproduction,
adaptation, or translation of this manual, including any programs, is prohi-
bited without prior written permission of Hewlett-Packard Company,
except as allowed under the copyright laws. Hewlett-Packard Company
grants you the right to use any program contained in this manual in this
Hewlett-Packard calculator.

The programs that control your calculator are copyrighted and all rights
are reserved. Reproduction, adaptation, or translation of those programs
without prior written permission of Hewlett-Packard Company is also
prohibited.

Corvallis Division
1000 N.E. Circle Blvd.
Corvallis, OR 97330, U.S.A.

Printing History

POODDDDHDBODOHDODOOODOOOCOOOOD

Edition 1 July 1988 Mfg. No. 00042-90019

2999 ¢

T




I

COLOLOLOLO®OO

0WOVOOLVLOLHOLOO

_——
GVVVVEVOOO

Contents
6 List of Examples
9 How to Use This Manual

1 12  Programming

12 Simple Programming

13 Flowcharting

15 Defining the Program

15 Prompting for Data Input

16 Displaying Program Results

19 Executing the Program

21 Branching

22 Conditional Branching

25 Subroutines

29 Menu-Controlled Branching

39 Controlled Looping

43 Indirect Addressing in Programs

46 Flags in Programs

46 User Flags

47 System Flags

49 Error Trapping

51 A Summary Program

58  The Triangle Solutions Program

Contents




2 67 Enhancing HP-41 Programs
67 Using Named Variables
68 Using HP-42S Data Input and Output Functions
68 Prompting for Data with INPUT
€8 Displaying Data with VIEW
69 Operations with HP-42S Data Types
69 Using the Two-Line Display
71 Using Menu Variables
73 Assigning a Program to the CUSTOM Menu
3 77  The Solver
77 Basic Use of the Solver
80 Providing Initial Guesses for the Solver
80 Directing the Solver to a Realistic Solution
83 Finding More Than One Solution
86 Emulating the Solver in a Program
92 Using the Solver in Programs
92 Using the Solver and Explicit Solutions in a Program
101 Using the SOLVE and PGMSLYV Functions with
Indirect Addresses
105 More on How the Solver Works
105 The Root(s) of a Function
107 The Solver’s Ability to Find a Root
108 Interpreting the Results of the Solver
123 Round-Off Error and Underflow
4 124  Integration
124 Basic Integration
127  Approximating an Integral That Has an Infinite Limit
131 Using the Solver and Integration Interactively
134 More on How Integration Works
134 The Accuracy Factor and the Uncertainty of
Integration
140 Conditions That Can Cause Incorrect Results
143 Conditions That Prolong Calculation Time
4 Contents

COOCOOIFOGID
YT 17T 1rrrrrr_r.

PPN OEHNNNNDONOHNANNONO

N,

e —— — —— S S SN



146  Matrices

146 Using the Matrix Editor and Indexing Functions

147 Creating a Named Matrix

147 Using the Matrix Editor

149 Using Indexing Utilities and Statistics

Functions Interactively

150 Matrix Utilities

154 Vector Solutions

154 Geometry

156 Coordinate Transformations

163  Solving Simultancous Equations

168 Using the Solver with Simultaneous Equations

172 Matrix Operations in Programs

174  Statistics

175 List Statistics

181 Using the Summation-Coefficient Functions +,
¥ -, and CLY) in Programs

193 Curve Fitting in Programs

194 Graphics and Plotting

194 Graphics

202 Multifunction Plots

212 Plotting Data from a Complex Matrix

Contents




l

List of Examples

The following list groups the examples by chapter.

1 Programming
20 Executing a Program from the CUSTOM Menu
32 A Programmable Menu
42 Loop Control in a Program
57 The Flag Catalog Program
2 Enhancing HP-41 Programs
74 Executing an Enhanced HP-41 Program from the
CUSTOM Menu
3 The Solver
78 Basic Use of the Solver
80 Directing the Solver to a Realistic Solution
84 Using the Solver to Find Two Real Solutions
87  Using the Solver for a Simple Resistive Circuit
90  Calculating Complex Values in an RC Circuit
99  Executing Algebraic Solutions for TVM Problems
101 Using SOLVE with an Indirect Address
110 A Case 1 Solution with Two Roots
112 A Case 2 Solution
114 A Discontinuous Function
116 A Pole
6 List of Examples

NNV 00N000DHOODOOOOOOOOOOD

|




|

¢0¢00000000“0000000000000000“‘

¢

118 A Relative Minimum

119 An Asymptote

120 A Math Error

121 A Local Flat Region
Integration

125 Basic Integration

128 Evaluating an Integral That Has an Infinite Upper
Limit

131 Using the Solver and Integration Interactively

136  The Accuracy Factor and the Uncertainty of
Integration

138 A Problem Where the Uncertainty of Integration is

‘ Relatively Large

140 A Condition That Causes Incorrect Results

142  Subdividing the Interval of Integration

143 An Upper-Limit Approximation That Prolongs
Calculation Time
Matrices

148  Accumulating Meterological Data

158 The Area of a Parallelogram

161 A Three-Dimensional Translation with Rotation

163 Solving Real-Number Simultaneous Equations

166  Solving Simultaneous Equations That Have
Complex Terms

169  Using the Solver to Find the Value of an Element
in the Coefficient Matrix
Statistics

178  Accumulating Statistical Data in a Matrix

191 A Linear Regression for Three Independent

Variables

List of Examples




Graphics and Plotting

199 Building a Logo

201 Using Binary Data to Build a Logo

210 Plotting Multiple Functions

219 Plotting Data from a Compression Process
and Fitting a Power Curve to the Data

List of Examples

— S Y B S SN SN B BN NN e

POODDOODODOHDOOOOOOOOOODOCOMMRD

”®

2999292999999 9 9 -

I



How to Use This Manual

Welcome to the Programming Examples and Techniques manual for your
HP-42S calculator. This manual builds on concepts introduced to you in
the HP-42S Owner’s Manual so that you can more fully utilize your
calculator’s powerful problem-solving capabilities. This manual focuses on
the following subjects:

m Programming techniques for the HP-42S.
m Enhancing existing HP-41 programs.
m Using the HP-42S built-in applications:

a The Solver.

s Integration.

® Matrices.

m Statistics.

® Building and printing graphics patterns and plots.

There are many examples in this manual. We feel that the best way to
help you gain expertise with your calculator is to show you how to solve
practical problems in mathematics, science, engineering, and finance.
Many of these problems are solved using programs. Chapter 1, "Program-
ming," addresses the task of creating programs with the HP-428. It further
develops material presented to you in chapters 8 through 10 of the
owner’s manual.

Chapter 2 specifically addresses the topic of enhancing programs written
for the HP-41 calculator. It builds on the material introduced in chapter
11 of your owner’s manual.

Chapters 3 through 6 further develop the built-in applications discussed in
chapters 12 through 15 of the owner’s manual. If you wish to learn more

How to Use This Manual 9




o

about matrix operations, for example, you can turn directly to chapter 5,
"Matrices,” without working through the preceding chapters. However,
since many of the examples in the manual are programmed solutions to
problems, you should first review chapter 1.

Chapter 7 describes how to generate graphics patterns and plots using the
HP-42S calculator and, in several examples, the optional HP 82240A
Infrared Printer. It builds on the material presented in chapter 7 of the
owner’s manual.

The notations in this manual are consistent with those in the owner’s
manual; ’

m Plain typeface is used for numbers and Alpha characters in keystroke
sequences: 1.2345, ABCD.

m Black keyboxes are used for primary keyboard functions in keystroke
sequences: [EXIT).

m Orange keyboxes preceded by the orange shift key are used for secon-
dary (shifted) functions in keystroke sequences: JJ[ASSIGN).

a Menu keyboxes are used for functions executed from a menu in
keystroke sequences:

m Capital letters are used for any function that is referenced in text:
CLP.

s Capital letters are used for program names that are referenced in
text: SSS.

s Italic letters are used for variable names that are referenced in text:
STEP

@ Dot matrix typeface is used for program listings:
01 LBL "RRER".

At the beginning of each example, it is assumed that the stack registers
(X-, Y-, Z-, and T-registers) are clear (contain the value 0). It is also
assumed that the value of each variable in the examples is 0. Your display
may sometimes differ from the displays in the manual. However, if you exe-
cute the keystroke sequences as they are shown in the examples, the
values of the stack registers and variables in your calculator at the start of
the examples will not affect the answers you obtain.

10 How to Use This Manual

OODHNOONN0000000000000000000009

g

«J




330000000000‘000000000000000“

F————————————_—_._—

Fre

Some examples include optional instructions to print results with the

HP 82240A Infrared Printer. If you have a printer and execute these
instructions, you will not see some of the subsequent displays in the exam-
ple. These displays will be printed.

How to Use This Manual "




Programming

Your calculator is a powerful and easy-to-use tool for creating and execut-
ing programs. This chapter builds on programming methods introduced to
you in chapters 8 through 10 of your owner’s manual. Specifically, this
chapter addresses:
® Simple programming.
= Branching.
s Looping controlled by a counter.
® Indirect addressing.
s Flags in programs.
m Error trapping.

Simple Programming
The program SSS in this section finds the values of the three angles of a

triangle when the values of the three sides are known. (The annotated list-
ing is on pages 17 through 18.)

12 1: Programming

>
0

DODNDNNNOOODHOAOOHOOCOOONOOD

now

%9

7,90



When the dimensions of the three sides (S;, Sz, and S3) of a triangle are
known, the following equations are used to calculate the three angles
(Al 9A2’ andA3)‘

VP(P -Sz) (S],+SZ+SS)
A =2 _— h P - ——
3 arccos[ (5,53) ]w ere 5
VPP —sl)]
A, =2arccos | ——————
z (S2S3)

A, = arccos [ —cos (Az + Ag)]*

These equations form the main body of SSS.

Flowcharting

A flowchart is a graphical outline of a program. Flowcharts are used in
this manual to help you understand how programs solve problems.
Flowcharts can also help you design your own programs by breaking them
down into smaller groups of instructions. The flowchart can be as simple
or as detailed as you like. Flowcharts are drawn linearly, from top to bot-
tom, representing the general flow of the program from beginning to end.

* This expression for 4 , enables you to calculate 4 in any angular mode.

eeuuooo«ueouoaeeeuuuuua«uaocooﬂ

JEEE RN L RN TS NS RS RS SRS A B R T T T T

1: Programming 13

g®




L\
-

Here is a flowchart for one possible program solution for the side-side-
side triangle problem.

CALCULATE
A3

v

CALCULATE
Ao

v

CALCULATE
Aq

v

DISPLAY
AgApAg

v

€
3
c
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
€
€
¢
=
€
e\
€

14 1: Programming e‘




This manual uses the following conventions for flowchart symbols:

m An oval represents the beginning or end of a routine. This can be the
beginning or end of a program, a subroutine, or a counter-controlled
loop within a program.

m A circle represents a program label. It also represents a GTO instruc-
tion to a program label from another point in the program. (This con-
vention reduces the need for connecting lines that can make the
flowchart difficult to read.)

m A rectangle represents a functional operation in the program.

m A diamond represents a decision the program makes based on a com-
parison of two values (or based on the status of a flag).

m A triangle represents a decision the user (that’s you) makes by select-
ing one of several possible program routines, each of which performs
a different task.

Defining the Program

Program SSS begins with a global label and ends with an END instruction.
These two instructions define the beginning and end of the program.

Bl LBL "gss¢

435 EMD

Prompting for Data Input

SSS prompts you for data input (prompts you for the three known values
of the sides of the triangle).

B2 INFUT "51°

83 INPUT “sz2"
B4 IHFUT "53"

1: Programming 15

LT




—

Displaying Program Results

SSS concludes by displaying (or printing) the calculated results (the three
angles).

41 SF 21

42 YIEW "A1"
43 VIEW "R2"
44 YIEW "R3"

This section of the program begins by setting flag 21, the Printer Enable
flag. When flag 21 is set, a VIEW (or AVIEW) instruction is:

® Printed and displayed if you have executed PRON. Program execution
does not halt when a message is displayed; a subsequent VIEW (or
AVIEW) instruction erases the current message. When you set flag
21 and execute PRON, and then execute a program that has a
sequence of VIEW (or AVIEW) instructions, you must have a printer
present and turned on to record each message; you'll see only the last
message in the display.

u Displayed by the calculator if you have executed PROFF. (PROFF is
the default mode for the calculator. You need to execute PROFF only
if you have previously executed PRON.) When you set flag 21 in
PROFF mode, program execution halts after each VIEW (or
AVIEW) instruction and must be resumed by pressing [R/S].

16 1: Programming

900NNV ONONNNNDODOODOOOOOONDOMNAMN
oy ey S — i

29

o



¢

VPPV OVUVLUVVLOVOLOOOVLOOLOLOLHBLEOLOLLOLOLOLBGSG

NP
) & 9 ¢

T

Helpful hints for keying in programs:

1. If the variables you are using in your program do not already exist,

create them before you select Program-entry mode (by pressing 0
variable for each variable). When you subsequently key in a
STO, RCL, INPUT, or VIEW instruction during program entry and
are prompted for a register or variable, the existing variables
(including the ones you just created) are displayed in the variable-
catalog menu. You only need to press the corresponding menu key,
rather than type the variable name.

2. In Program-entry mode, first key in all the global label instructions

in your program (by pressing li[PGMFCN] . LBL /abel for each
label). When you subsequently key in branch mstructlons and are

prompted for a label, the existing global labels (including the ones
you just created) are displayed in the program-catalog menu. You
only need to press the corresponding menu key, rather than type the
name.

Longer programs in this manual are preceded by instructions that list the
variables and labels to create for program entry.

To key in SSS: Create variables S1, S2, §3, 41, A2, A3, and P before
program entry.

Here is an annotated listing of SSS.

Program: Comments:

88 { 115-Byte Pram 2 Line 01: Define the beginning of the
81 LBL "SS5* program.

gz IHPUT "S1¢ Lines 02— 04: Prompt for the values of
a3 INPUT "g2" the three sides and store the values in
a4 IWPUT "sS3" named variables.

a3 RCL "S1" Lines 05—-40: Calculate 4,,4,, and
a5 RCL+ “S2" Ag. Store the values in named vari-
a7 RCL+ "53 ables.

B3 2

a3 +

1: Programming 17




DU W R I )

LU I NI R )

—

T

0

18

_____

5T "RZ"

ACOS
STO "ALe

SF 21

2 VIEW "A1"
3 YIEW “A2"

VYIEW "RA3"

i EMD

1: Programming

Lines 41-44: Display (or print) the
calculated results.

Line 45: End the program.

NNV NONNNOOODOOOONDOOOONOOON(

¢
[

4




e

YN EERENNN

VUG O66U6UOGUWUVIGUOGVG GGV

Executing the Program

You can execute SSS by using any one of the following keystroke
sequences.

Using the Program Catalog. The global label SSS was automatically
placed in the program catalog when you keyed in program line 01. You
can execute the program by pressing

PCATALOG] | FGM.. 888

This sequence requires a minimum of four keystrokes, depending on
where label /€SS is in the program catalog. (If you have created more
than five programs subsequent to SSS, use the [¥] key to find label

S55 )

Using XEQ. When you press (XEQ), the program-catalog menu is
automatically displayed. Thus, you can execute SSS by pressing

888

This sequence requires a minimum of two keystrokes, depending on
where label SSS is in the program catalog.

Using the CUSTOM Menu. Alternately, you can assign SSS to the
CUSTOM menu by pressing

B(ASSIGN} | FGM  28%

and then the desired menu key.

1: Programming 19




?__-_'
| e
. l
The program can now be executed directly from the CUSTOM menu by (
pressing . I
W(CUSTOM) - 558 - {
This sequence requires three keystrokes when you first select the c H
CUSTOM menu, and only one keystroke on subsequent executions if you Tt
stay in the current row of the menu. c “
- |
Example: Executing a Program from the CUSTOM Menu. Find e |
the angles (in degrees) of the following triangle. I
(c I
(c I
[~ I
(= ‘l
= |
(G :
S3=275tt. l
G \I
Assign SSS to the CUSTOM menu. Set the angular mode to Degrees. (2
Execute PRON if you have a printer and want to print the results. Begin IS }I
program execution. c }I
{
p—— 1S “
€
( EANT) 1
BCosTOM - 5 . I
"
Enter the value for S, (in feet) and continue program execution. c \l
\ I
24 125 5270, 0000 ‘
Csss] T 1 [ | IS |
> “
Ny I

20 1: Programming NJ




Enter the value for S5, then for S3. The program now calculates the
three angles and displays 41, the first result. (If you have executed PRON
to print the results, you won’t see the next two displays.)

1 2.75 Al=129,.8384
N

Continue program execution to see A 3.

A2=33. 9479
B A N N N

Continue program execution to see A3.

A3=16.2136
53 I A D S .
Exit from the program.

v: 8,2792
x: 129.8384

Branching

A branch instruction enables program execution to jump to a different
location in program memory. A branch can be:

= Conditional (based on a test).

s Unconditional (used typically to call a subroutine that, on completion,
returns program execution to the main program).

m Menu-controlled (executed by you from a programmable menu).

1: Programming 21

e — |




)\ J

Conditional Branching

The program SSA on pages 24 through 25 in this section illustrates the
use of conditional branching. SSA finds the two unknown angles and the
unknown side of a triangle when two sides and the adjacent angle (S,
S2,and 4,) are known,

The equations used to calculate A5, 4,, and S5 are

L S2] .
Az =arcsin | | =] sinAd,
Sy

Aj;=arccos| —cos (A; + Ag)]
S3=S,cos A3 + S;c08A4,

Note from the drawing that two possible solutions exist if S, is greater
than S; and A3 does not equal 90°. This leads to a fourth equation.

A" =arccos (-cosAj)
SSA calculates both possible answer sets.

Here is a flowchart for the program.

0‘9’)')")")')')')0000000000000000000.‘

L i e e S A S S S S S S S SN S S SN A SN S A S ey

"7

22  1: Programming

.;—




G0 00O OO OOVVVOVOVOOVVOVOVVVOIOVOVOVIVIOSLOESEOSOSYS

SSA

INPUT
S1.52: 4

Y

CALCULATE
Ag

v

CALCULATE
A1.S3

Y

DISPLAY
RESULTS

NO

CALCULATE
A
3

4

CALCULATE
A1, S3

v

DISPLAY

RESULTS

GB*—__}

LBL
SSA

1: Programming

23




Observe from the flowchart that the program calculates the first answer
set, then compares the values of S, and S;. Depending on the result of
the comparison, the program either returns to label SSA or calculates the
second answer set. SSA accomplishes this with a conditional branch. The
corresponding keystrokes are highlighted in the following annotated list-
ing. (This conditional branch is based on a number test. Later in this
chapter, you’ll write programs that make conditional branches based on
flag tests.)

To key in SSA: Create variables S1, S2, $3, 41, A2, and A3 before pro-
gram entry. (These variables already exist if you keyed in program SSS.)

Program: Comments:
86 { 157-Bute Pram 2

A1 LBL "SSA"

B2 SF 21

B2 IMPUT "sS1" Lines 03-05: Input the known vari-
84 INFUT "S2" ables.

85 IMFUT “A2"

@& SIN Lines 06-23: Calculate the unknown
a7 RCLx "g2" variables.

g3 RCL+ "s1v

89 ASIN

18 STO "R3"

11 RCL+ "R2"

12 Cos

13 +--

14 ACDS

15 STO AL

16 RCL "R2"

17 Cos

18 RCLx "g2¢

12 RCL "R3"

Z| cos

21 RCLx "3i"

22 +

24 1: Programming

YT rrrrr._ s r 1.

OOOHBAANNAANNONOO™D

R N N L I A

- q



0000000000 00000000VVOVLIOVOLELOLVLEIOS

sTO 53"
VIEW "A1"
VIEW "S3"
VIEW "A3"
RCL "S1"

3 RCL “S2"

 REY?

GTO "SSA"
RCL "A3"
cos

+/-

ACOS

STO "A3"
RCL+ "R2"
oS

+/-

ACOS

sTO “A1"
RCL “A2"
COS

RCLx "S2"
RCL "A3"
cos

RCLX "S1*
-+

sTO 53"
VIEM "A1"
VIEW "53"
VIEW "A3"
GTO "SSA"
END

Lines 24~ 26: Display (or print) the
unknown variables.

Lines 27-30: Test if S, is less than or
equal to S, . If so, return to the begin-
ning of the program. If not, calculate
the second answer set.

Lines 31 -48: Calculate the second
answer set. '

Lines 49— 52: Display the second
answer set and return to the beginning
of the program.

1: Programming 25




Subroutines

A routine is a set of program steps defined by a local or global label and a
RTN or END instruction. (Programs SSS and SSA are routines.) A rou-
tine becomes a subroutine when it is called by (executed from) another
routine using an XEQ instruction. After the subroutine has been exe-
cuted, the RTN or END instruction at the end of the subroutine retums
program execution to the main routine.

Notice that SSA calculates the second answer set (if there is one) by first
calculating 45" . It then calculates the remaining unknowns using the
same equations that were used to calculate the first answer set and
displays the second answer set using the same instructions that were used
to display the first answer set. By placing these shared instructions in a
subroutine, the program becomes:

a Shorter.

s Easier to read.

= Easier to write.

m Easier to edit.

Here is a flowchart for a new program SSA2 that uses a subroutine.

26  1: Programming



29 U0 YUDYDUYYYODOUOOO O EGUVUUVUOLULVLOUYVUYOOO Y o ¢

S8A2

—)

INPUT
S1.8.4

Y

CALCULATE
A3

Y

XEQ
SSASUB

Y

ALCULATE CALCULATE
Ay’ A1, Sy

Y v

XEQ DISPLAY
SSASUB RESULTS

The corresponding program lines are highlighted in the following anno-
tated listing.

To key in SSA2:

1. Create variables S1, 52, $3, 41, A2, and A3 before program entry.
2. Create label SSASUB when you begin program entry.

-

1: Programming 27




Program: Comments: e ;:
@@ { 137-Byte Prgm > e i
01 LBL "ssAz2" e
@2 SF 21 [
@3 INPUT "S1" €,
@4 IHPUT “s2" i
@5 INPUT "R2" o i |
@6 SIN Lines 06 -09: Calculate 4. y HI
87 RCLx "gz2" (= ‘}I
83 RCL+ "Si" e
99 ASIN e |
18 €EQ "SSASUE" Line 10: Call subroutine SSASUB to e ‘II
calculate A, and S 5. This uncondi- ‘I
tional branch uses an XEQ instruc- (=
tion; the next encountered RTN (or © |I

END) instruction will transfer pro-

gram execution back to line 11. (Now (<
follow the branch to line 21.) e \’I
1
11 RCL "S1" Lines 11-14: If §, is less than or € \EI
12 RCL "s2" equal to S, , return to the beginning of l
13 Xzvy? the program. If not, calculate the & 1
14 GTO "SSAz2" second answer set. &l
i
15 RCL "A3" Lines 15-18: Calculate 45" . W@ l“
16 COS @ Il
16 feo el
18 ACOS 1S |
19 XER "SSASUE" Lines 19 —20: Call subroutine 3 |
28 GTO "SSA2" SSASUB (o calculate 4, and S3” . o il
Then return to the beginning of the *“
program. e !!H
. I
21 LEL "SSASUE" Subroutine SSASUB, lines 21-39: K“\]'
22 =TO “Az" Calculate the values 4; and S3 (4;° (o “I
22 RCL+ “R2" and S,” in the second answer set), and ) Q*HH
24 COS display the results. - L
RN ”
\\&MJ
28 1: Programming M




l

'YX EE XN XN N N

GPYVPIPDYVWODIWVWOLOLOLOLIOOLOLLO

25 +/-

26 RACOS

2v¥ STO "AL"
22 RCL “"RA2"
29 CDs

20 RCLx "g2"
21 RCL "RA3"
32 COs

23 RCLx "S1v
24 +

35 STO "S3"
36 VIEW "RAL"
27 VIEMW “g2¢
22 WIEW "R3"
@2 RTH

48 END

SSAZ2 is 13 lines shorter than SSA and 20 bytes shorter than SSA.

Nested Subroutines. The program TRI X in the following section
organizes each of the five possible triangle solutions in subroutines
labeled A through E. Refer to the flowchart for TRIA. on pages 30-31,
and note that subroutine B, which calculates the solution to the SSA initial
condition, itself calls subroutine SSASUB to calculate A, and S5. In

TRI 4., subroutine SSASUB is nested in subroutine B. When subroutine
SSASUB is called by subroutine B, there are two pending subroutines.
The HP-42S can have up to eight pending subroutines.

Menu-Controlled Branching

Programmable menus enable you to make a decision during a program,
prompted by labeled menu keys that cause branches to new locations in
program memory. Using KEY XEQ or KEY GTO instructions (which act
just like XEQ and GTO instructions), any label in program memory can
be made the target of a programmable menu key. When MENU and
STOP instructions are subsequently executed, program execution is
suspended, the programmable menu is displayed, and keys 1 through 9

(the six top-row keys, plus the [a], [¥], and keys) assume their
menu definitions.

1: Programming 29




The previous two programs, SSS and SSA, each calculated one of the five

triangle solutions. The other solutions respectively find:
® S3, Az,and Ss(when 44, S, and A, are known).
B S;, S3,and A5 (when S,, 4,,and A, are known).
B A3, S3,and 43 (when S;, 4,, and S, are known).

Here is a flowchart for a program named TRIA.. TRI.X. organizes each
of the five solutions in a subroutine, builds a programmable menu, and
allows you to select any solution by pressing the corresponding menu key.

( TRIA )
TR LBL
TRIA

BUILD MENU

DISPLAY MENU
AND STOP FOR INPUT

KEY 1 KEY 2 KEY 3 KEY 4
*SSs* "SSA" "ASA" "SAA"

KEY 5
"SAS"

XEQ XEQ XEQ XEQ
A C D

XEQ
E

1 1 3

v

XEQ RESULTS

30 1: Programming




D
D
b
D
D
D
d
-
-
9
S
~
~
>
-]
>
o
>
»
S
3
-
2
>
2
-
2
J
*
> J
J
3
8

r——————— e ——— -

7

¥

b1

7

INPUT INPUT INPUT INPUT INPUT
S1,52.S3| |S1:52: 42| |A3:S1:A1| |S1:A1:42] [S1:41: 52
CALCULATE] [CALCULATE| [CALCULATE| | CALCULATE| [CALCULATE
Ay Ax.Ag Az S3,A2,53 | S2:53.43 | |A2:S3: 43

RTN RTN RTN ) (_RIN )
Cem) SSASUB C ) (

@—

nesuus
CALCULATE
SSASUB Ay’
CALCULATE XEQ
Ay,S3 SSASUB
RTN TN

RESULTS

CALCULATE
AREA

v

DISPLAY
INPUTS,
RESULTS

v

1: Programming 31



el
L
The triangle symbol in the flowchart indicates where the program stops to e
display the menu. You choose which solution you want to execute by e
pressing the corresponding menu key.

Here are the corresponding program lines.

|
|
Program: Comments: I
a3 "sss¢ Lines 03 -12: Build the menu keys. l
B4 KEY 1 XEQ A (For example, lines 03 and 04 label 1
85 “"SSA" menu key 1 with the Alpha string SSS I
A& KEY 2 XEGQ B and define that key to execute a
67 "ASA" branch to label A.) |
08 KEY 3 XEQ C
a3 "“SAR" I
16 KEY 4 XEQ D |
11 “SAS® I
12 KEY S ¥EQ E
13 MENU Lines 13- 16: Select the menu (line l
14 STOP 13) and suspend program execution
15 ¥E®@ “RESULTS" (line 14). (The menu is displayed
1¢ GTO "TRIL" when program execution halts.) After

execution of any subroutine A through
E, call subroutine RESULTS to
display the results (line 15). Then
return to label TRIX at the start of
the program (line 16).

The complete listing of TRIX is on pages 60-65 at the end of this
chapter.

Example: A Programmable Menu. A surveyor needs to find the
area and dimensions of a triangular land parcel. From point A, he meas-
ures the distance to points B and C, and the angle between AB and AC.

/

QQQQQOQOOGQQQOC‘OOOOOOC‘

)
[y Sy E—

c\

g
:

32 1: Programming




PVVVVULVUVUVLVOLWOOOOVOOLHOVOVOVOGOGGGOS

(7

F———__—————______4

®

KK

Sy=171.63m Sp=207.35m

This is an SAS (side-angle-side) problem.

Set the angular mode to Degrees. (Execute PRON if you want to print the
results.) Begin program execution.

BMODES] [EG %: 0. 0000
(. @) FoOM ) A ET EERETEEH N
TRIZ

Select the SAS routine by pressing menu key 5.

iy
<
[

S170.0000
[ sss | ssa [ hn | Swn | sas ]

Key in the value for S, and continue program execution.

171.63 A170. 0000
(5551 s3h [ Ain | S | A3 | |

Key in the values for 4, (you need to convert A, to its decimal equivalent)
and S,. The program calculates the unknowns and displays the initial
known values and calculated results.

98.12[J[CONVERT]  +HF S1=171, 6300
297.35 x: 25, 256.2094

Press three times to see A,.

(R/S]) (R/8) AZ=27.8270
x: 254 256. 2094

1: Programming 33




-

Press again to see Sj.

§-3

Press again to see A 4.

R7S] A3=53, 9730
X: 29y 206. 2094

Press again to see AREA.

ng

Press again to display the menu.

x: 29 296.2094

End the program.

EXIT v: 27. 8270
X: 255 256. 2094

Multirow Menus. The preceding program, TRIX., builds menu labels
for five of the six top-row keys, and assigns a KEY XEQ instruction to
each labeled key.

A multirow menu has more than one row of labeled keys. (For example,
the CLEAR menu has two rows.) When you enter a multirow menu, the
(¥) and (4] keys enable you to move to each row in the menu. (The va
annunciator appears in the display to show you that these keys may be
used to display more rows.)

You can emulate a multirow menu in a program by assigning KEY GTO
instructions to menu key 7 (the (&) key) and menu key 8 (the [¥] key).
(KEY GTO or KEY XEQ instructions for menu keys 7 and 8 also
automatically turn on the va annunciator in the display.)

34 1: Programming

— — —— S S S N S S NN S S N A S ey

i

4

£

NP R NN NN NNOENNNNNAAOOANONNN

wmon

|



R KA AKX NN)

P R R E XN E XXX NENNN NN N

¢

dod

Consider the following simple menu of calculator functions.

VA
R
VA
mERY
e

Here is a program that emulates this multirow menu.
To key in ROW1:

1. Create labels ROW1, ROW2, and ROW3 when you begin program

entry.
2. Note that program lines 03, 05, 07, 16, 18, 20, 29, and 31 are Alpha
strings.
Program: Comments:

pa { 184-Byte Pram
@81 LBL "ROW1"

@z CLMEHNU Lines 01—-13: Clear the current menu
@3 "I definitions, then build and display the
@4 KEY 2 XER @1 first row of the menu. Assign branch
@s "LoG" instructions to keys 7 and 8 (the (4]
B8 KEY 4 XE@ 62 and (V) keys) to the previous and

a7 "LN" succeeding rows respectively (lines
a2 KEY 5 #®ER @3 09-10).

B9 KEY ¥ GTO “"ROW2®
18 KEY & GTO “"ROWZ"
11 HMEHU

12 STOP

13 G700 "ROML"

1: Programming 35




14
15
16
17
18
19
pdc
21
22
23
24
25
26

2v
28
29
3a
3
32
33
34
35
35
37

38
39
458
41
42

-
-~

44
45
46
47
45
49

LBL "ROW2"
CLMEHNU

IIR¢II

KEY 3 XKEQ 94
"SIN"

KEY 4 XEQ 85
"cos"

KEY S XKEQ B8&
KEY ¥ GTO "ROMW1™
KEY &8 GTO "ROW3"
MERU

STOF

GTO "ROW2"

LBL “ROKWZ"
CLMENU

"KLY

KEY 3 XEG 67

Ny st

KEY 4 XEQ B3
KEY 7 GTO "ROW2"
KEY & GTOD "ROM1"
MEHU

STOP

GTG "ROK3"®

LEL @1
SQRT
RTH
LBL a2
LOG
RTH
LEL @3
LN
RTH
LEL @4
R4

RTH

1: Programming

Lines 14 -26: Clear the current menu
definitions, then build and display the
second row of the menu. Assign
branch instructions to keys 7 and 8 to
the previous and succeeding rows
respectively (lines 22 -23).

Lines 27-37: Clear the current menu
definitions, then build and display the
third row of the menu. Assign branch
instructions to keys 7 and 8 to the pre-
vious and succeeding rows respectively
(lines 33-34).

Subroutines 0108, lines 38 - 61: Exe-
cute the calculator functions
corresponding to each menu label.

W\

T;J!

4

99BN NNANNNABONNONOONNND

1




50 LBL 85
51 SIN

52 RTH

53 LBL 96
54 COS

55 RTN

56 LBL B7
57 ROV
58 RTH

59 LBL @8
68 +/-

61 RTH

62 END

" XXX XXX XN 3

Nested Menus. In many menus, one or more of the six fop-row menu
keys bring up a new menu called a nested, or submenu. For example, in
the PGM.FCN menu, when you press the = 7@  menu key, a nested
menu of related functions (X=0?, X#0?, ..., X>0?) is displayed. To return
to the main menu, you press the key.

You can emulate a nested menu in a program by assigning a KEY GTO
instruction to any labeled top-row menu key. Consider the following sim-
ple menu of calculator functions.

Here is a program that emulates this menu structure.
To key in LVL1:

1. Create labels LVL1 and LVL2 when you begin program entry.
2. Note that lines 03, 05, 07, 14, 16, and 18 are Alpha strings.

6666060000006 00606000

é

1: Programming 37

$44q

y..________________




Program:

ag
a1

B2
a3
a4
a5
5[
arv
a3
a9
18
11

12
1=
14
1S
i
17
18

fJ =
[

[0 R ]
—

M
LRI L))

(A2 JE N OO I I S I LV SR LV g

FORN DN (U R el Y R RS B e ) B o

()

{ 188-Bute Pram >
LBL "LwvL1"

CLMEMU

||+II

KEY 2 XER B1

KEY 2 MEQ @2
"TRIG"

KEY 3 GTO "LwLz"
MEMHU

STOP

GTO "LwL1"

LEL "LwL2"
CLMENL

"SIN

KEY 4 ME@ 11
"Cos"

KEY 5 XE@ 12
"TAN"

KEY & XER 13
KEY 9 GTO “LvL1"
MEHL

STOP

GTO "LvLz"

LEL @1
+
RTH
LEL &
RTN
LEL 11
SIN
RTH
LEL 12
cog

o

1: Programming

Comments:

Lines 01-11: Build and display the
primary level of the menu. Assign to
key 3 (labeled TRIG) a branch
instruction to label LVL2 to build the
nested menu (line 08).

Lines 12-23: Build and display the
nested menu. Assign a branch instruc-
tion to key 9 (the key) back to
label LVLI1 (line 20).

Subroutines 01, 02, and 11-13, lines
24-38: Execute the calculator func-

tions corresponding to each menu
label.

iziii

PHADNDDDODDHDDHDDDODDODOONDOIONOONONONOO
T T T T rrr

"
iy ——

iyl ylyAyE

il

%‘




35 RTHN
36 LBL 13
37 TAN
32 RTH

39 END

Controlled Looping

A controlled loop is a loop that is executed a specified number of times.
You can build a controlled loop with a local or global label, an ISG or
DSE instruction, and a GTO instruction.

The program DISPL in this section uses a controlled loop to calculate
successive linear displacements of an object traveling at a constant velo-
city.

The equation of motion for constant velocity on a smooth surface is
x=xgt+wt

where:

x is the total displacement.

X is the initial position.

v is the velocity.

t is the elapsed time.

DISPL calculates the displacement at successive time intervals from ¢ = 0
tot = t; . It builds a loop counter of the form .fffcc by prompting you for
the value of t;, and for the value of STEP (the value of the time interval).
t; becomes the fff portion of the counter and STEP becomes the ii portion
of the counter.

1: Programming 39



Here is a flowchart for DISPL.

The program segment that uses a controlled loop to calculate successive
values of x is highlighted in the following annotated listing.

40

DISPL

INPUT
WV, t,,STEP

v

X0

BUILD COUNTER

FROM t STEP

LBL
DISPL

FOR EACH TIM
(0TO t()

&

1: Programming

CALCULATE
x

Y

VIEW
X

\

INCREMENT

N

YES @

NO

&

i

QO ONNDOOONOONDDO

79999

iyl

I



“l

k4
9 before program entry.
k J Program:
9 80 ¢ 116-Byte Prom
9 @1 LBL "DISPL"
9 B2 SF 21
9 @3 INPUT "xB"
9 @4 INPUT "u"
@5 INPUT "tF"
9 @6 INPUT “STEP"
@7 RCL "tF"
9 68 1E-3
9 @9 x
| 10 STO “fff"
}‘ 11 RCL "STEP"
| 9 12 1E-S
13 x
|‘ 14 STO "ii"
I' 15 RCL+ "ff¢"
® 16 STO "COUNT"
| o 17 LEL @1
| 12 RCL "COUMT"
|“O 19 IP
2@ RCLx “"y"
|’ 21 RCL+ "x@"
| 9 22 STO "x"
23 CL¥
|" 24 VIEM "x"
IO 25 ISG "COUHT®
26 GTO @1
|' 27 GTO "DISPL®
9
|' 28 END
| ®
I"'
Lo

Comments:

Lines 03 -16: Prompt for the vari-
ables. Build the counter.

Lines 17-27: Calculate successive
values of x in the counter-controlled
loop. (Note that the integer part of
COUNT in line 19 is the time ¢.)

1: Programming

To key In DISPL: Create variables x, x0, v, tF, STEP, fff, ii, and COUNT

41




Example: Loop Control in a Program. Find successive values of
the displacement x of an object in intervals of five seconds from ¢ = 0 to
t = 15 seconds when x, = 10 meters and v = 20 meters/second.

Begin program execution.

XEQ DIsPL

Enter the values for xy and v.

10 (R7S] 20 (R/S})

'y: 206.0000
tF?70. 0000

Enter the value for ¢, and continue program execution.

15 [R/S)

v: 15, 0000
STEP?8. 0000

Enter the value of STEP (the size of the interval) and continue program

execution.

5 R/S]

The value of x at ¢ = 0 is 10. Press again to display the value of x at

t=5.
GYA))

Press to see the value of x at ¢ = 10.

B/S)

Press again to see the value of x at ¢ = 15.

®7S)

x=310, 0000
X: 8.8000

Press again to prompt for new values. Exit from the program.

[B/S) [EXTT)

42 1: Programming

v: 8, 6000
x: 18.6000

o
-

HDONDNDODODNDOOOHOHOODODOHODHOODOOONONONONNAE®

09990 nn90nnnnnonn

_—_



G 0 0WOVWOWUVOVUVVVOVIVLOLOVOLOVULOLHLVOVLDOLOLOBOBLOBLVbOGO

Indirect Addressing in Programs

Indirect addressing is a useful programming tool, particularly when used
in combination with a controlled loop. The operation index in your
owner’s manual indicates which functions can use indirect addresses. In
this section, three applications of indirect addressing in programs are
presented.

Using Indirect Addressing to Initialize Data Storage
Registers. Program INIT prompts for data and stores it in successive
registers using INPUT IND in a controlled loop. This is a useful initializa-
tion routine if you are using registers instead of variables for data storage
and recall.

.....
o

=
[

fax]
[ ]

[

ad
Bs
ae
a7

az

{ 37-Bute Pramn
LEL "IWIT®

1.81

STO "COUMT®

LEL @1
IHPUT IHD "COUNT"

ISG "COUNT"
GTO a1
EMD

Lines 02-03: Build a counter and
store it in COUNT. The counter has a
beginning value of 1, a test value of 10,
and a default increment value of 1.

Lines 04-07: Prompt for data for suc-
cessive registers Ro; —Ryp.

1: Programming 43




4

Using Indirect Addressing to Clear Registers. The following
routine clears a specified number of storage registers using STO IND in a
controlled loop.

Program:

510
a1

a2

B3
a4
as
5]
a7
a3
a9
19

11
12
13
14
15

16
iv
18

19

4

{ 74-Buyte Pram >
LBL "CLEARR"

a

"FIRST?"
PROMPT

STO "COUNT"
"LAST?"
PROMPT

1E-3

x

STO+ "COUNT"

LBL 1@

a

STO IND “"COUNT"
ISG "COUNT"
GTO 1@

TONE 9
"RERADY"
PROMPT

EMD

1: Programming

Comments:

Line 02: Initialize the X-register to 0.

Lines 03-10: Build a counter in
COUNT. The counter has a beginning
value equal to the first data storage
register to be cleared, a test value
equal to the last register to be cleared,
and an increment value of one.

Lines 11-15: Successively set the
values of the block of specified regis-
ters to 0.

Lines 16-18: Sound a tone and
display the message RERDY. Press
to end the program.

MO OSBO NN AN NANANOONON ™

000

Y 1T T 1T Y%Trrrrrror.r.

J / J /
N N

-




|

FEE R EEIEEEZEIIIIE Y Y X W X 3 3 K K N B SN N

Using Indirect Addressing to Execute Subroutines. The follow-
ing routine retrieves data (telephone numbers) from subroutines using
XEQ IND.

Program:

1o
ai

a:z
63
a4
as
a6
ar
as

a9
16
11
i2
13
14
15
16
iv
18
19
28
21
22
23

24

{ 134-Byte Pram 2

LBL "PHONE"

“NAME?"

AOH

FROMPT

AOFF

ASTO ST X
KE@ IND ST X
PROMFT

LBL "JANET"
"@eE-555-9874"
RTH

LBL "BRUCE"
"@Be-555-1356"
RTHN

LBL "PAM"
"@aB-555-6023"
RTH

LBL "CHRIS®
"B8@8-555-627E"
RTN

LBL "poB"
"@Ea-355-2411"
RTH

END

Comments:

Lines 02-08: Prompt for the name
(Alpha string) whose telephone
number is desired (lines 02-05) and
store the string in the X-register (line
06). (The string may be six Alpha
characters maximum; the X-register
holds only up to six Alpha characters.)
Execute the subroutine whose label
matches the Alpha string (line 07),
then suspend program execution (line
08).

Lines 09 ~23: Build the telephone
numbers (actually Alpha strings) in
the Alpha register.

1: Programming 45



Flags in Programs < 1
Earlier in this chapter you wrote a program SSA that makes a branch < ‘I
based on a number test; specifically, SSA uses the X<Y? function to con- = ]l
struct the branch. The program asks the question: Is S5 < S, ? Then it <
makes a decision based on the answer - either calculate the second answer ’I
set or end the program. - ’I
The X?0 and X?Y sets of ft}nctions enable programs to ask questions only ' ?I
concerning number values.  However, programs can also make condi- L =
tional branches (ask questions and make decisions) based on flag tests. |I
Flag tests follow the "do-if-true” rule. If the test is true, the next instruc- < ‘I
tion is executed. If the test is false, the next instruction is skipped. [ =
Because flags have unique meanings for the calculator, they greatly < ‘I
expand the logic control you can exercise in a program. (User flags 00 ‘ 'I
through 35 and 81 through 99 may be set, cleared and tested. System flags =

36 through 80 may only be tested. Refer to appendix C in your owner’s ’I
manual for a complete listing of the HP-42S flags and their meanings.) g ‘l

6

User Flags c i
Flags 00 through 35 and 81 through 99 are user flags; they may be set, < I
cleared, and tested. C
General Purpose Flags. General purpose flags (flags 00 through 10 c I
and 81 through 99) are not used internally by the calculator; what they I
mean depends entirely on how you define them. €

* The X=Y? and X£Y? functions are exceptions; they can compare Alpha strings. & I

46 1: Programming S‘l




P U S P G PP PP TSP S I S S T TR A A

The program LIST on pages 176 through 178 creates a matrix BLIST
using the following instruction sequence.

31 LBL A2

32 1

332 ENTER

34 FC? 01

235 2

26 DIM “"ELIST"
37 KER I

38 Ry

39 R+

48 GTO 84

Before you execute LIST, you set flag 01 if you want ELIST to be a 1-
column matrix, or you clear flag 01 if you want ZLIST to be a 2-column
matrix. Flag 01 is defined to have a unique meaning in the program,; its
status determines the number of columns in the matrix XLIST.
(Remember that current status of user flags is maintained by HP-42S
Continuous Memory. This can affect other programs that use the same

flags.)

Control Flags. Control flags 11 through 35 have a specific meaning and
are used internally by the calculator. For example, flag 21, the Printer
Enable flag, affects the way the VIEW and AVIEW functions work in
programs. When flag 21 is set in PROFF mode, VIEW and AVIEW mes-
sages are displayed, and program execution halts. When flag 21 is set and
PRON is executed, VIEW and AVIEW messages are printed and pro-
gram execution does not halt. Many programs in this manual that use
VIEW or AVIEW also set flag 21.

System Flags

System flags 36 through 80 also have a specific meaning for the calculator.
You cannot directly set or clear these flags. However, you can test them.

The following program, MINMAX, searches for the maximum or
minimum element of the matrix in the X-register. In line 23, it tests the
status of system flag 77, the Matrix End-Wrap flag, to determine if the last
element of the matrix has been checked.

1: Programming 47




MINMAX also uses general purpose flag 09 in line 08 to determine
whether to search for the maximum or minimum element of the matrix,
Before you execute the program, you set flag 09 to find the maximum ele-
ment, or clear flag 09 to find the minimum element.

(The annotated listing is on pages 152 through 153.)

—_ . -
o =y

—
%5}

[0 O O R 0
Ja 00 [0 o 30

N

J
[

48

£ E1-Bute Pram
LEL "MIMHMAX"

STO "MIMNMARX"
INDE® "MIMHMAR"

RCLEL
GTO @3

LEL o1
RCLEL

F&? @9
GTO @2
L g

GTO B4
GTO a3

Z LEL a2

HEYT?
GTO a4

& LEL B2
¥ RCLIJ
e RCL ST

)

EHTER

LBEL &4
R4
J+
FC? 77
GTD a1

END

1: Programming




CGOOPYPIBVVUVVVLVYVOVOOVOOLOOLOLOOVOGGBGOGOGLNOEGOOGOGISG

Error Trapping

When you attempt an improper operation during function execution, the
operation is not executed and an explanatory message is displayed. For
example, if you execute the keystroke sequence

1 [E) 2600(x?)

the calculator returns the message Out of Range, and leaves the value
1 x 10*° in the X-register.

If an improper operation is attempted in @ program, the calculator returns
the corresponding message, and program execution halts at the instruction
that caused the error. Consider the following program.

g@ € 26-Bute Praom 3
B1 LBL “TRAP"

B2 SF 21

63 INPUT "R

B84 ¥+2

85 STO "v"

ae VIEW "Y'

87 GTO “TRAP"

ags END

If you execute TRAP and supply the value 1 10% for X, the program
halts at line 03 and the calculator displays the message Qut of Range.
To supply a new value for X, you must restart the program at line 01 (by
pressing XfiP?). In a short program like TRAP, this method of
recovery from an error presents little problem. However, when executing
a program that performs time-consuming calculations, or that has
numerous stops for intermediate data entry, it may be inconvenient to
restart the program at line 01 each time an error occurs.

1: Programming 49



You can enable program execution to continue after an error has occurred
by setting flag 25, the Error Ignore flag. When flag 25 is set:

® One error during program execution is ignored. The instruction that
causes the error is not performed and program execution continues at
the next instruction.

m The error clears flag 25.

Consider this revision to TRAP.

88 { S8-Bute Pram 2
@1l LBL "TRAP"

a2 SF 21

863 SF 25

@4 [HPUT "X
05 ¥+2

Qe FC?C 25
By GTO pa

B2 STO "y

a3 MIEW "y"
18 GTQ "TRAP"

11 LBL @@

2 CF 21

12 EEEP

14 "DQut of Range"
15 AVIENW

ie PSE

17 PSE

12 GTQ "TRAR"

1% EHD

TRAP now responds to the error condition by:

m Displaying an error message.

90O NANANNDNDNDNOONOOOOOONOA®(D

m Resetting flag 25 and prompting for a new value for X.

This programming technique, called error trapping, adds program steps,
but is effective when you can identify operations in a program that are
likely to generate errors.

” %

iviviva

50 1: Programming




‘

$0600000000000060606000600¢
v 6&06000o¢¢¢¢0¢¢¢e¢o¢¢¢¢4‘4¢££

A Summary Program

The program FCAT in this section displays the current status of flags 00
through 99. The flags are displayed in a multirow menu in sets of six.
Each of the menu keys is labeled with a flag number. You can set and
clear user flags 00 through 35 (except flag 25) and 81 through 99 by press-
ing the corresponding menu key. The "u" character is appended to the
menu label if that flag is currently set. When you attempt to set or clear a
system flag, FCAT beeps and displays the error message Restricted
Dperat ion. The previous set of six flags is displayed by pressing menu
key 7 ([a]), and the succeeding set is displayed by pressing menu key 8

().
FCAT uses many of the programming concepts discussed in this chapter:
# Global and local labeling.
® Prompting for data input.
w Conditional branching based on:
s Number tests.
m Flag tests.
s Subroutines.
m Multirow menus.
u Counter-controlled looping.
m Indirect addressing.
u Error trapping.

1: Programming 51




Here is a flowchart for FCAT.

®—

FCAT

INITIALIZE

BUILD A MENU
OF SIX FLAGS

v

KEYS 1 THRU 6 KEY 7 KEY 8
(PAGEUP) | (PAGE DOWN)

SET ERROR INCREMENT

IGNORE FLAG COUNTER BY 6

!

"RESTRICTED
OPERATION"
MESSAGE

52

1: Programming

TOGGLE FLAG

DECREMENT

COUNTER BY 6

RESET

COUNTERTO 0

COUNTER TO 96

RESET




Here is the annotated listing.

Program: Comments:

B8 { 234-Byte Pram 2
@1 LBL "FCAT"

B2 9.89686 Lines 02-03: Store the loop counter

@3 STO 8O inRgg.

84 LEBL A Lines 4-17: Build menu keys 1-6.

BS RCL 60 The label for each menu key is built by

Be KEQ BB calling subroutine 00. (Now go to sub-

B7 KEY 1 GTO 61 routine 00.)

ag XER /8

89 KEY 2 GTO ez

18 XEQ 88

11 KEY 3 GTO a3

12 XEG 08

12 KEY 4 GTO 84

14 XEQ D@

15 KEY 5 GTO 83

16 XEQ B@

17 KEY & GTO 8¢

12 KEY 7 GTO @7 Lines 18- 19: Assign GTO instructions

19 KEY & GTO B8 to menu keys 7 and 8.

28 "FLAG CATALOG" Lines 20 -25: Build the Alpha string

21 MEHU FLAG CATALOG (line 20). Display

22 6 the menu (line 21). Initialize register

23 570 @1 Ry, to 6 (lines 22-23). Display the

24 PROMPT Alpha register, suspend program exe-

25 GTO A cution, and prompt for numeric input
(line 24).

1: Programming s3

PPV PPV UYIUUVUOLEOOGEOGOGOGOO®WGEOGIUWsBEOSES




OO0 0 G0 0y D ) MM N
LU | I =N TN R o N B N B 1

=]

58
34
40
41
42
44
45
46
47
48
49
50
51
52

54

LEL @B

CLA
99.1
RS>y

3 HXY?

RTH
AIF

'_ll. n
1
+

RTH

LBL
DSE
LEL
DSE
LEL
DsSE
LEL
DSE
LBEL
DSE
LBL
DSE
LEL
RCL

RCL+ B8&

1: Programming

* FS? IHD ST ¥

a1
a1
az
o1
a3
01
04
ai
as
21
a6
a1
14
a1

Subroutine 00, lines 26-37; Build the
Alpha string for each menu key. First,
test to see if the current value in the
X-register (the loop counter) is
greater than 99 (lines 28-31), If yes,
do not build a label for the menu key.
(The highest numbered flag is 99.) If
no, append the (integer portion of) the
value in the X-register to the Alpha
register (line 32). Test the status of
the flag whose number is in the X-
register. If that flag is set, append the
"u" character to the Alpha register
(lines 33~-34). (Thus, the Alpha label
for each menu key consists of a
number, and, if the corresponding flag
is set, a "u".) Increment the value of
the X-register by 1 (lines 35-36).

Lines 38 - 52 establish the flag to be
set or cleared: Successively decrement
R, by 1 (lines 38-49). (If menu key 1
is pressed, the value in Ry, is 0 when
Ry, is recalled to the X-register in line
51. If menu key 6 is pressed, the value
in R, is S when Ry, is recalled to the
X-register.) Add the current value in
Ry, (the counter) to the current value
in the X-register (line 52). (The value
in the X-register after execution of
line 52 is the value of the flag to be set
or cleared.)




l

B A4 484 bédbééédddéddddddddbddievdovoosoed

53 SF 25

54 FC?C IND ST X
55 GTO @9

56 GTO A

57 LBL @9

S8 FC?C 25

53 GTO 18

6@ SF IND ST X
61 GTO A

62 LBL @7
63 RCL GO
€4 &

65 -

66 ¥<B7?

67 96.8960%
68 STO B0
69 GT0 A

Lines 53— 56 build the set/clear toggle
and error trap: Set the Error Ignore
flag (line 53). Test if the flag (whose
number value is in X) is clear, then
clear it (line 54). If the flag was clear
when tested in line 54, or the attempt
to clear causes a Restricted Operation
error, go to label 09 (line 55). If the
flag was set, and the clear operation
does not cause a Restricted Operation
error, return to the menu-label rou-
tine to update the flag status (line 56).

Lines 57-61: If the branch to label 09
was caused by a Restricted Operation
error, go to label 10 (lines 57-59). If
the branch to subroutine 09 was exe-
cuted because the flag was clear, then
set it, and return to the menu-label
routine to update the flag status (lines
60-61).

Lines 62—69: Decrement R by 6.
(Thus, when (V] is pressed, the top-
row menu keys are each relabeled
with the number that is six less than in
the previous menu. If Rog has the
value 12 when [¥] is pressed, R takes
the value 6, and the menu keys are
relabeled 6-11.) Test if the new value
of Ry is less than 0. If yes, store 96 in
R (lines 66— 68). (Menu keys 1-4
will be labeled 96-99.)

1: Programming S5




’e
71
ra
73

74
7S
7E
(&3
78
79
88
21
82
&3
84
&5
26
ar
88
89

98

LBL @8

I1SG 08
GTO A

GTO "FCAT"

LBL 18
Fs?C 21
GTO 11
XE® 12
GTO A
LBL 11
XE@ 12
SF 21
GTO R
LBL 12
BEEP

"Restricted "
F"Operation”

RVYIEW
PSE
RTH

ENHD

1: Programming

Lines 70~ 73: Increment R o by 6 using
the ISG function. (Remember that the
number in R, is the loop counter; it
has the initial value 0.09906. When (&)
is pressed, the top row menu keys are
each relabeled with the number that is
six greater than in the previous menu,
When the counter test value exceeds
96, program execution transfers to
FCAT, restoring the counter to its ini-
tial value; the menu keys are thus rela-
beled 0-5.)

Lines 74-89: Execute the BEEP func-
tion, display the Alpha message
Restricted Operation, and
transfer program execution back to
label A. If flag 21 is set, clear it before
displaying the Alpha message, then
reset it. (Program execution continues,
redisplaying the flag menu, and the
status of flag 21 is maintained.)

i\

®

li

PONNONAOOOOANNOOOGON®

”5990

2%292%

r



Start FCAT.

Set flag 01.

Check the status of flag 38.

NEM
¥¥e™

Flag 38 is clear. Attempt to set it.
a8

EXIT

2

V2000000000000 6dsddddsd|

0 T T T T T T T T T T T T T T T T

(X RN RN

Fﬁr

Example: The Flag Catalog Program. Use FCAT to set flag 01.
Check the status of flag 38. Attempt to set or clear it.

FLAG CATALOG
Lo | o ] 2 [ 3 [ 4 ] 5 |

FLAG CATALOG

|FLFIG CATALOG ]
[ 36 [ 37w | 38 | 39 j 40w ] M1 ]

FLAG CATALOG
[ 36 [ 37w [ 38 [ 39 [ 4om ] N1 ]

The calculator beeps, displays the message Restricted Operation,
and returns to the state before the error. Exit from FCAT.

v: 42,0961
x: 6.8000

1: Programming 57




J

The Triangle Solutions Program

This section contains the complete set of equations for the triangle solu-

tions, instructions for keying in TRIX., an annotated listing of TRIXA., and
instructions for using TRIX..

Aq

Ag Az

Program Equations. The following equations are used in the program:

® Condition 1: S, S, and S (three sides) are known:

VP(P -5S3) ] _ (8 +sz+s3)

Ag = 2 arc cos
° [ ($153)

Ay = 2 arccos [

m]

(S253)

A, = arccos[ -cos (Ag + A3)]

58 1: Programming

o™
™

POOONNNOOODODNNNOAONOOD

99

9

2%2%2%%

_——d




|

dosdédoésé

) 000000 00000006000 OOOO¢

®

XXX

s Condition 2: S, Sz, and A5 (two sides and the adjacent angle) are
known:

|12 .
Ag = arcsin | | ==| sinA4,|*
Sy

A, = arccos [ -cos (Az + A3)]

The problem has been reduced to the A3, 1,4, configuration.

m Condition 3: 43, S;, and 4, (two angles and the included side) are
known: ’

A, =arccos [ -cos (A3 +A4;)]

S S SinA3
271 oA,

S3=S8,c084;+ SycosA,

m Condition 4: §,,A4,, and A, (one side and the following two angles)
are known:

Ag = arccos [ -cos (4, + A2)]

The problem has been reduced to the A3, Sy, 4, configuration.
m Condition 5: S, S (two sides and the included angle) are known:

Sa=\/§12 +522 —2SISQCOSA1

The problem has been reduced to the Sy, S3, S5 configuration.

m For any triangle, the area is:

AREA = %sls3 sin A,

* Two possible solutions exist if §, is greater than S, and A, does not equal 90°. Both
possible answer sets are calculated.

1: Programming 59




To key in TRI X :

gram entry.

1. Create variables S1, 52, $3, 41, A2, A3, P, and AREA before pro-

2. Create labels RESULTS and SSASUB when you begin program

entry.

Here is an annotated listing of TRI X,

Program:

08 { 573~Bute Pram 2}

81
a2

a3
a4
85
ae
ar
s
a3
18
11
12

13
14
15

-

15

17
18
19
26
21
22
23
24

25

L.BL "TRIL"
SF 21

[1] SSS L]
KEY 1 XE@ A
" SSH "
KEY 2 XEG B
"ASA"
KEY 3 XEQ C
"SAA"
KEY 4 XEG D
"SAS"
KEY 5 XE@ E

MEHNU

STOP

XEG "RESULTS"
GTO "TRIgL"

LBL A
INPUT "S1
INPUT "g2"
INPUT "S53
RCL "31"
RCL+ "s2
RCL+ "53¢
2

1: Programming

Comments:

Lines 03 -12: Build the menu key
assignments.

Lines 13~-16: Display the menu keys.

Subroutine A, lines 17-59: Calculate
the SSS solution.

#



l

B0 6000000000ddddbvbbé6é6sdddddes

26
27
28
29
30
31
32
33
34
35
36
37
38
39
49
41
42
43
44
45
46
47
48
49
58
51
52
53
54
S5
56
57
S8
59

68
&1
&2
63

STO " P "
%2

LASTX
RCLX "S2"
RCL "S1"
RCLX "S3"
SGRT

ACOS

2

X

sTO "A3"
SIN

RCLX “S1*
STO @9
RCL "P"
K2

LASTX
RCLX "S1"
RCL+ "52"
RCL+ "S3"
SGRT
ACOS

2

X

sTO “A2"
RCL+ "R3"
£0S

-

ACOS

STO "AL"
RTHN

LEL E

INFUT "s1"
INFUT “52"
INPUT "R2"

Subroutine B, lines 60— 100: Calculate

the SSA solution.

1: Programming

61




64 SIN

65 RCLx "g2"

66 RCL+ "St*

67 RSIN

68 STO "A3"

69 SIN

78 RCLx "si*®

71 STO o8

72 XKER "SSASUB"
73 RCL "sS1*

74 RCL "s2"

7S REY?

76 RTHN

77 XEQ “RESULTS"
78 RCL "A3"

79 COs

88 +-~

81 ACOS

82 STO “A3"

83 XEQ "SSAsSUB"
84 RTN

85 LBL “SsAsus*
86 RCL "R3"

8¢ RCL+ "R2"

88 COs

89 +/~

968 ACOs

21 STO "AL"

92 RCL "“R2"

93 CO0S

94 RCLx "g2"

95 RCL "A3"

9& COS

97 RCLx "siv

98 +

99 STO "53¢

188 RTH

62 1: Programming

i

DODODIASOONONONONONND



B0V 0000000000000 000000VOGVVOCEIIdS|

181 LBL C Subroutine C, lines 101 —126: Calcu-
162 IMFUT "Az" late the ASA solution.
163 IHPUT "3S1"
184 IWFUT "A1"
185 RCL "AZ3"
186 RCL+ "ALY
187 COS

188 +--

199 ACOS

116 STO "R2"
111 RCL "A3"
112 RCL "S51"
112 »REC

114 RH<4Y

115 =TO G

11 RCL “RZ2"
117 1

112 *REC

112 R+

128 =+

121 =70 Y52

122 Rt

124 +
125 5To 53"
12

26 RTH

LEBL D Subroutine D, lines 127-150: Calcu-
IMPUIT "51t late the SAA solution.

INFUT “A1"

INFUT "AZ"

RCL+ “AL"

COs

+ -

RCOS

70 "R3v

RCL "=1t

o 0w 0D )

XS R I I TR N VI O

T o N = B N ol

=]
4
5
&

1: Programming 63




137
128
139
148
141
142
143
144
145
14¢
147
143
149
15a

151
152
152
154
135
156
157
158
153
1668
151
1e2
1ex
1e4
165
166
167
g
1e%9
1va
171
172
1va

174

64

*REC
Ry
STO @o
RCL "R2"
1

+REC

R4

sTQ vgze
Rt

%

+

STO "g3v
RTH

LEL E Subroutine E, lines 151-194: Calcu-
IHFUT "51 late the SAS solution.
IMFUT "R1"

INFUT ©wg2v

RCL "AL®

ALY

+REC

RCL "S1v

*POL

sTO 53

RCL+ "S1v

RCL+ "g52¢

ST P

M2

LASTH

RCL» "g2v

RCL "Sg

RCLx "gz+
SERT
1: Programming




175 ACOS

ive 2

177 X

178 STO "A3"
179 SIN

188 RCLx "S1*
131 S5TO @4
122 RCL "P"
183 X+2

184 LASTX

185 RCLx "S1"
186 -

187 RCL+ "s2“
1828 RCL+ "s38"
189 SaRT

198 ACOS

191 2

192 x

193 STO "R2"
194 RTH

195 LBL "RESULTS" Subroutine RESULTS, lines 195-208:
196 RCL 68 Calculate AREA and display the initial
197 RCLx "S3" known values and the results.

198 2

129 =+

288 STO "ARER"

281 VIEW "51"

282 VIEW "A1"

282 VIEW "g2¢

284 VIEW "R2"

285 VIENW "g3v

286 YIEW "“A2"

287 VIEW "ARER"

262 RTH

282 EHND

1: Programming 65

"'FEEEREEREIEXEENENEXENEENEENENEENENNENEERNENNENENSENENEERSR NS/




To use TRIX :

1. Press TRI&.
2. Select a solution by pressing the corresponding menu key.

3. Input values as prompted. You can name any side §,. A, is the
adjacent angle. You can enter values in a clockwise or counterclock-
wise order. The values are displayed in the same order as they were
entered.

66 1: Programming




B SO 00000dbddddddbbbbb68dsddd9oe

2

Enhancing HP-41 Programs

In chapter 11 of your owner’s manual, you keyed in and executed a pro-
gram originally written for the HP-41 calculator. That program, named
QUAD, solves for (real number) roots of quadratic equations. Two pro-
grams Q2 and Q3 in this chapter use HP-42S features and functions to
enhance QUAD. A third program QSHORT uses only 11 lines to solve
for quadratic equation roots.

Using Named Variables

In the HP-42S, data may be stored in and recalled from data storage
registers or named variables. Programs that use named variables for data
storage and recall can be easier to write and read.

In QUAD, the values of coefficients a, b, and ¢ are stored in and recalled
from data storage registers. In Q2 these values are stored in and recalled
from named variables a, b, and c. (Q2 also stores the values of the two
roots 7, and 7, in named variables R1 and R2. In QUAD, these values are
calculated and displayed, but not saved.)

2: Enhancing HP-41 Programs 67




Using HP-42S Data Input and Output
Functions

Prompting for Data with INPUT

The HP-42S INPUT function enables programs to prompt for data in one
program line.

QUAD prompts for the value of a, then stores the value 2a in a data
storage register with the three-instruction sequence

n a='? 1
: PROMPT
5 5TO 9@

o
O O3 [

Q2 uses INPUT (and the named variable @) to replace these three
instructions with one.

a2 IMFUT "a

Displaying Data with VIEW

The HP-42S VIEW function enables programs to display data in one pro-
gram line.

QUAD displays the labeled value of r, with the three-instruction
sequence

29 “"ROOTS="
28 ARCL =
21 AVIEM

Q2 uses VIEW (and the named variable R1) to replace these three
instructions with one.

22 VIEW "R1™

68 2: Enhancing HP-41 Programs



|

B0 690006006006 06d$060600000006000090

Operations with HP-42S Data Types

Programs written for the HP-41 calculators can operate on only two data

types: real numbers and Alpha strings. Programs for the HP-42S, how-
ever, can also operate on complex numbers and matrices.

In QUAD, complex-number roots cannot be calculated; instead, if the
value b2 - 4ac is less than 0, the calculation is halted and the message
ROOTS COMPLEX is displayed. In Q2, complex number roots are calcu-
lated, stored in variables, and displayed. '

Using the Two-Line Display

Programs can effectively show longer messages in the HP-42S two-line
display. In Q2, the two-line message

Zero Input Invalid.
Fress B-5 to continue.

is displayed if 0 is supplied for variables a or c.

To key in Q2: Create variables q, b, ¢, R1, and R2 before program
entry.

Here is an annotated listing of Q2.

Program: Comments:
80 { 132~Bute Pram I Lines 01-05: Display the 0-input error
81 LEL &8 message.

g2 "Zero Input Inwa"
B2 F"lid.%Fress R~-3"
84 +" to continue."
85 PROMPT

2: Enhancing HP-41 Programs




as
a7
az
a9
16
11

12

LEL "n2¢
CPXRES

SF 21
IMPUT "a"
=07

GTO &4
IHPUT "B"
INPUT "c"
n=a7?

GTO @

RI::L "tl"
+=

12 ENTER

X]
n

O3 03 P P o o P
Lo T L B I8 4
|CIE L B B4

A3}
[AU ]

4]

70

w2

4

1 RCLx "a"

RCLx "o

SRRT

F‘:'::L [ 1] t‘ n
SIGH

RCL+ "a"

STO “RiIM
VYIEW "R1"

Lines 06— 15: Set the program to cal-
culate complex numbers, prompt for
the values of a, b, and ¢, and test if 0 is
supplied for a or c. (Flag 21 is set in
line 08 so that VIEW results are
displayed in PROFF mode, or printed
if PRON has been executed.)

Lines 16 —24: Calculate

Vb2 - 4ac

Lines 25-31: Calculate either

-b +Vb? - dac
2a

or

-b - Vb3 - dac
2a

depending on the sign of b. Lines 25—
27 ensure that the root that has the
greatest absolute value is calculated
first. This improves the accuracy of
the results.

Lines 32-33: Store the calculated
value in R and display R1.

2: Enhancing HP-41 Programs



[:

I‘.
| ®
® 34 RCL "c" Lines 34 -38: Calculate the second

| 9 25 RCL+ "a" root, store the value in R2, and display
36 RCL+ “"R1" R2*
37 STO "R2"
33 VIEW "R2"
39 GTO "Q2" Line 39: Return program execution to

label Q2.

4@ END

Using Menu Variables

Q2 uses the INPUT function to prompt for the values of the program
variables @, b, and c. Q3 uses a variable menu to prompt for these values.
The corresponding program lines are highlighted in the following anno-
tated listing,

* The quadratic gguation ax? + bx + ¢ = 0 can be divided by a (since a cannot equal 0)
yielding x2 + = + % = 0 . This equation can be factored as (x - Ry)(x - R) where
R; and R, are the roots of the equation. By definition of the factoring process,
RYRY = % Therefore, R, =

6000606006060 0666600¢66000066966

<
(aRy)’

2: Enhancing HP-41 Programs 71




To key in Q3: Create variables a, b, ¢, R1, and R2 before program *'I
entry. e ]l
Program: Comments: < |
60 ¢ 143-Byte Pram > e,
@1 LBL 00 e
62 "Zero Input Inva" I
83 +"lid.“Press RsS" < I
84 k" to continue." L 2
85 FROMPT

c
85 LBL “"Q3" Lines 06— 13: Declare menu variables e }
a7 MVAR "a" a, b, and c, set the program to calcu- |
88 MVYAR "b" late complex numbers, set flag 21, and <€
@9 MYAR “c" display the variable menu. c I
18 CPXRES \I
11 SF 21 <
12 YARMENU "Q3" < .
13 STOP 1

‘ |
14 RCL "a" I
15 X=@7 L <
16 GTO B4 < I
17 RCL "c"
18 ®=87 LS
12 GTO &8 cl
28 RCL "b" < |
21 +--
22 ENTER ¢ =
23 W2 6
24 4 I
25 ROLX "a" ‘l
26 RCLX "c* -
27 -
22 SBRT CJI
2% RCL "b" “l
208 SIGH €
31 = “I
72 2: Enhancing HP-41 Programs ﬁ




00900000V VVUVOVVOUUUVYWVOVOGOVEUOOOO6

a2 -

33 2

24 =

a5 RCL+ "a"
26 STO “"R1"
37 VIEW "R1"
33 RCL "c
39 RCL+ "a"
48 RCL+ "R1"

41 STO “"R2"
2 VIEW "RZ"
43 GTO "@s"

44 EMD

Assigning a Program to the CUSTOM Menu

When you created the global label Q3 in program line 06, that label was
automatically placed in the HP-42S program catalog. You can now exe-
cute Q3 by pressing

oz

(requiring a minimum of two keystrokes, depending on where label
. B2 isin the program catalog).

Alternately, you can assign Q3 to the CUSTOM menu by pressing
BASSIGN] FGH - 03

then selecting the desired row of the menu and pressing the desired menu
key in that row. The program now can be executed directly from the
CUSTOM menu with one keystroke.

2: Enhancing HP-41 Programs 73




Example: Executing an Enhanced HP-41 Program from the
CUSTOM Menu.

Part 1. Execute Q3 from the CUSTOM menu to find the roots of the
equation

x2+6x +1=0(a =1,b =6,c =1)

Assign Q3 to the CUSTOM menu using the keystroke sequence just
described. If you want to print the results, execute PRON. Start the pro-
gram from the CUSTOM menu.

(M(PRINT] (&) Fm{-ﬁ-: ) %: B, 0000
BCusToM) Cole T ¢ T T

Enter the values for a, b, and c. Then calculate R1. (If you are printing the
results, you won’t see this display.)

R1=-5.8284
Lea [ & [ C ] [ [ |

@ =2~
oo

R1 is calculated and displayed. Now check R2.

R2=-8.1716
Lw ] & | ¢ ] [ ] |

5

Return to the start of the program for new data.

% -0, 1716
Innn--—l

74 2: Enhancing HP-41 Programs

o vl

Al T I T T " ™ r " r 7y 7y 7y yrrrryrrrrro T

HDODODHDDHODDDDDODODOHDODODOOINONOONONONN

!

L/ /]
j-

1233



3 0000 0009000000000 000000VVVIVOGUVOOGOY

Part 2. Find the complex roots of the equation

2x2+x +3=0(a =2,b =1,¢c =3)

Set the angular mode to Rectangular. Enter the values for a, b, and c.
Then calculate R1. (If you are printing the results, you won’t see this
display.)

‘RECT R1=-8.2500 -il.1990
1. E
R1is calculated and displayed. Now check R2.
R2=-8.25008 i1.1990
I T N S N
Exit from Q3.
EXIT v: -9.2500 -i1.1990
x: -8,2500 i1.1990

A Short Quadratic Program. In conclusion, here is an 11-line, 26-
byte quadratic equation solver.

88 { 26-Byte Pram >
81 LBL "RSHORT"

82 -a.5

B3 x

84 ENTER

85 ENTER

BE ¥+2

a7 RCL- ST T
83 SORT

89 STO+ ST 2
18 -

11 EMD

2: Enhancing HP-41 Programs 75



e “\
el
To use QSHORT: ’I
1. Set the calculator to Rectangular mode and to Complex Results < ‘I
modc. c ’I
2. Key in the value i— , then press [ENTER]. L= I
c 1
3. Key in the value LA . lI
a <
4. Press ‘QSHO. [ |

76  2: Enhancing HP-41 Programs ®M
o4
. |




The Solver

The material in this chapter builds on concepts introduced to you in .
chapter 12 of your owner’s manual.

The following topics are covered:

Basic use of the Solver.

Providing initial guesses for the Solver.

[

n

= Emulating the Solver.

m Using the Solver in programs.
n

More on how the Solver works.

Basic Use of the Solver

The general procedure for executing the Solver is:
1. Create a program that:
a. Uses MVAR to define the variable(s) in the equation.

b. Expresses the equation such that its right side equals 0. (Note
that each variable in the equation must be recalled to the X-
register.)

2. Apply the Solver to the program:
a. Press B(SOLVER).
b. Select the program by pressing the corresponding menu key.

c. Enter the value for each known variable by keying in the
value, then pressing the corresponding menu key.

0000006000000 06000060068000000000d00d06s

d. Optional: Supply one or two guesses for the unknown variable
by keying in the guess(es), then pressing the corresponding
menu key.

3: The Solver 7




e. Find the value of the unknown variable by pressing the

corresponding menu key. e l
Example: Basic Use of the Solver. The equation of state for an |
ideal gas is e I

PV =nRT
where:

P is the pressure of the gas (in atmospheres).

Vis the volume of the gas (in liters).

n is the weight of the gas (in moles).

R is the universal gas constant (0.082057 liter-atmosphere /Kelvin-mole).
T is the temperature of the gas (in Kelvins).

Part 1. Create a program for the Solver that declares the variables and
expresses the equation.

First, set the right side of the equation equal to 0.

NDHNODHODNHDHODDHDDHOHOHOONHNNOHNHONNO

*2%9

PV -nRT =0

Now write the program.

Program: Comments:

83 { 4zZ-Bute Fram >

@1 LEL "GAS"

Bz MVAR "P" Lines 02~ 05: Declare the variables.

BE: r.1 I'"IHE n I.‘.I n

B4 MYAR "n"

85 MYAR "T"

A& RCL “"P" Lines 06— 12: Express the equation

BF RCLx "y such that its right side equals 0.

a2z RCL "m"

83 RCLx “T" -
184 @.822857

11 = )
1z - -
12 EHD

78 3: The Solver

_—



®
®
®
®
®
9
>
>
9
o
S
S
S
S
9
L
®
®
®
9
®
®
*
®
®
@
*
@
@
*
*
K.

Part 2. Use the Solver to find the solution to the following problem.

Calculate the pressure exerted by .305 mole of oxygen in .950 liter at
150 °C (423 K), assuming ideal gas behavior.

Select the Solver application.
(SOLVER] |Se1ect Solve Program l
u T I N T N .

Select the program you just created.

GRS x: B.0000 -
L P I Y | A
Enter the values for the variables you know.
95 W T=423. 0000
305 H e 1T o T~ 1 v [ [ |
423 . .1
Solve for the pressure.
kB P=11.1438
L e [ v | | |

Part 3. Given the same volume and weight of oxygen, what is the tem-
perature of the gas at a pressure of 15 atmospheres?

Since the values of the volume and weight are unchanged, you need only
enter the value of the pressure.

15 P=15. DO0D
Ce 1 v ] T 1

Now solve for the temperature.

— T=569.5763
I I N

Exit from the Solver application.

EXIT] [EXIT v
X:




Providing Initial Guesses for the Solver

For certain functions, it helps to provide one or two initial guesses for the
unknown variable. This can speed up the calculation, direct the Solver to a
realistic solution, and find more than one solution, if appropriate.

Directing the Solver to a Realistic Solution

Often, the Solver equation that describes a system may have solution(s)
that are mathematically valid but that do not have physical significance.
In these cases, it may be necessary to direct the Solver to the realistic
solution by providing appropriate initial guesses.

Example: Directing the Solver to a Realistic Solution. The
volume of the frustum of a right circular cone is found by

V= %xh(a’ +ab +b?)

where:

V is the volume of the frustum.

h is the height of the frustum,

a is the radius at the top of the frustum.
b is the radius at the base of the frustum.

0DO0O0OO0OODOO0OO0OO0O

0000071



Part 1. Write a Solver program that declares the variables and expresses
the equation such that its right side equals 0.

68 { 45-Byte Pram
B1 LBL "COHE"

B2 MVAR "v"
@3 MVYAR "h"
B4 MYAR "a"
85 MVAR "b"

a6 RCL "a"
a7 Ke2

88 LASTX

A9 RCLx "b"
18 +

11 RCL "b"
12 X+2

13 +

i4 RCLx "h"
15 PI

16 X

iv 3

18 +

19 RCL- "w"

28 END

For the purposes of this example, assume that you have already created
variable ¢ and used it in a previous program. Assume that the value
-3.7765 is currently stored in a . (Go ahead now and store that value in ¢
by pressing 3.7765 )

6400000000000 0008000VUVVVICEIEISO000]

1

3: The Solver 81




Part 2. For a frustum of volume V' = 119.381 meters®, height 4 = 6
meters, and radius b at the base of the cone = 3 meters, use the Solver to
find radius a .

i\

==

i

Select the Solver application and then program CONE.

B(SOLVER] ! X —3. 7765
[ n | & |

Enter the values for the known variables.

119.381 b=3. 8080
[ € [ ]

s a=-5. 0000

L 1 o [ | & [ |
The Solver uses the current value of variable @ (-3.7765) as an initial
guess and finds the solution @ = -5 meters. The answer is mathematically
valid. However, a negative radius clearly has no physical significance. Try
guesses of 0 and 5.
0= .

o |a=2. 0060y I

The value 2.0000 meters for radius @ is mathematically valid and has phy-
sical significance.

Exit from the Solver.

EXIT) [EXIT |Y= z.gggg
X: L

¢

NHNHHHONHOHNHOHANONHONNNONDNONONO

"n%29

227

82 3: The Solver



Finding More Than One Solution

The equation of motion for an object experiencing constant acceleration
due to gravity is

Y =Yo+vot + %8‘2

where:

y is the total displacement.

¥, is the initial position.

v is the initial velocity.

g is the acceleration due to gravity ( -9.8 meters/second?).
t is the time.

In your owner’s manual in section "More Solver Examples" in chapter 12,
you solved several problems in which an object was dropped from an ini-
tial position; v, was equal to 0 and the direction of the object’s motion was
down at all times. The object attained a given displacement y at only one
time ¢. However, an object thrown upwards attains a given displacement y
at two different times - once on the way up, and again on the way down.

3: The Solver 83




To find both times ¢, and ¢, you must execute the Solver twice, and at
least once provide the Solver with an initial guess to direct it to the second
solution,

Example: Using the Solver to Find Two Real Solutions. A boy

throws a ball with an initial vertical velocity v, = 15 meters/second, from

an initial height y = 2 meters. Use the Solver to find the two times ¢, and
t2 when the ball has a height y = 5 meters.

Part 1. Create a Solver program that declares the variables and expresses
the equation such that its right side equals 0.

Gt
81

a2
a3
a4
85

as
ar
ag
a9
18
11
12
13
14
15
1e
17

1a

84

{ 3523-Bute Pram 2
LBL "MOTION"

MYAR "y"
MYAR "yB"
MVYAR "va"
MVARA "t
RCL "QB"
RCL "v@"
RCLX lltll
RCL Iltll
B2
-2.8
X
2
+
+
RCL_ Ilgll
EMD

3: The Solver

‘

y

HNHNHHNOHNOHONNDNODOOHOHOODOOONOD

27

iy




-

et 55t P

0V O0POVVP VOOV VVVVOOOGOOE

KX

Part 2. Exccute the Solver to find the first time ¢; . Since you know that
this time is close to 0 seconds, provide initial guesses of 0 and 1.

Select the Solver application and then program MOTION.

SOLVER] MOTI0 : 0, 0000
(SOLVER] MOTI! i

Enter the values for the known variables.

Vo=15. DOPD
Cv Two Twa [ 1 ] ]

Solve for time ¢, using initial guesses of 0 and 1.

t=0.2151
L v | owe [ e [T [ 1

The Solver finds the value of ¢, = 0.2151 seconds. Now find the second
time ¢, by providing two initial guesses that you can expect to bound the
second solution. Guesses of 1 and 20 seem reasonable. (You need not
enter values for the other variables since they have not changed.)

t1=2.8461
L v Lwe [ oo {7 1 |

The Solver finds the value of t; = 2.8461 seconds.

Exit from the Solver.
Y2 %-g
X: 2.

3: The Solver 85




Emulating the Solver in a Program

For certain types of functions, the Solver algorithm cannot find solutions.
For example, the Solver cannot solve for complex numbers. However, for
such functions, you can write a program that finds explicit solutions and
acts like the Solver during program execution.

First, consider the following simple circuit.

—
F U

Ohm’s law defines the relationship between the voltage potential E, resis-
tance R, and current / for this circuit as

E=1IR

Since there are no complex terms in this equation, the Solver can be used
to find the value of any variable in the equation.

86 3: The Solver

POPPP

oo

DPODODODOOOOO

</l



'YX XXXXXX X )

Example: Using the Solver for a Simple Resistive Circuit. For
a simple resistive circuit, use the Solver to find the resistance R when the
voltage E = 10 V, and the current I=5A.

First, create a Solver program that declares the variables and expresses
the Ohm’s law equation such that its right side equals 0.

@0 { 29-Bute Pram X
®1 LBL "CIRCUIT"

p2 MVAR "E"
83 MVAR "I"
@4 MVAR "R"

@S RCL "I
@6 RCLx "R"
@7 RCL- "E"

88 END

Select the Solver application and then program CIRCUIT.

B(SOLVER] 4 %: 0. 0000
S A S N N

Enter the known values for E and I, then solve for R.

|R=2. 0008 |
Ce 1 v el [ I |

Exit from the Solver application.

v: 2.8000
x: 2.0800

3: The Solver 87




Now consider the following circuit.

R

W

€

Application of Ohm’s law to this circuit results in the following expression.

E=1Z
where:

E is the circuit voltage.
I is the circuit current.
Z is the circuit impedance.

The impedance Z is the complex number (in rectangular form)

R - [—1 ]
wC
where:

R is the circuit resistance.

w is the circuit frequency (in radians/second).
C is the circuit capacitance.

Because the voltage, current, and impedance are complex numbers, you
cannot use the Solver to find their values. However, the HP-42S can per-
form grithmetic operations on complex numbers. (Refer to chapter 6 in
your owner’s manual for a discussion of complex-number arithmetic.) The
following program, EIZ, solves explicitly (algebraically) for the complex
numbers E, I, and Z, and uses a variable menu to simulate the external
appearance of the Solver. (Refer to the section "Using a Variable Menu"
in chapter 9 of your owner’s manual for a discussion of variable menus.)

88 3: The Solver

" NN aaaHnHaHOHOHODHOODOOOO®S®

*

L T T T A
iams EEEEs EEEEs Sms EESEE EEEEE EEEE BEEES EEEEE AMEEN BEEEE EEEw BEEEE BNEEE DS BN AEEEN BN DN I NS E—

- .

I



Here is an annotated listing of the program.

Program:

ge { 96-Byte Prom J
81 LBL “EIZ"

B2 MYAR “E£"

23 MVAR "Ig"

P4 MVAR "2&

@5 VARMEWU “EIZ"
#5 POLAR

@7 CPXRES

A3 CLA

@9 STOP

18 ALEMG

11 X=67

12 GTO "EIZ"

13 RSTO ST X

14
15
16
17

ig
12
28

21

[y

]
[l
=
[

)
[t

ME@ IND ST X
STO IND ST Y
YIEW IMD ST v
5TO “EIZ"
LEL “E£"

RCL "I
RCLx "Z&"
RTH

LEL "I

RCL "E<"
RCL: "Za"
RTH

Comments:

Lines 02-05: Declare variables E, I,
and Z and build the variable menu.

Lines 06-12: Set the calculator to .
Polar mode and to calculate complex
results. Suspend program execution
for data entry. If a variable to solve for
has not been specified, return to the
start of the program.

Lines 13—17: Recall the current Alpha
string to the X-register and execute
the corresponding subroutine. (The
current Alpha string is the name of
the variable for which no value is sup-
plied.) Store the calculated result from
the subroutine in the Y-register and
view the result. Then return to the
start of the program.

Subroutine E 4., lines 18 —21: Calcu-
late E X. in terms of 1.4 and RA..

Subroutine [.X., lines 22-25: Calcu-
late I 4 in terms of EA and ZX&..

3: The Solver 89




26 LBL "2«&" Subroutine Z 4., lines 26 -29: Calcu- ‘“I
27 RCL "Eg" late Z& interms of EX and IX., L !
28 RCL+ "Ixg" e 1'
29 RTN 1

c i
38 END

(Line 06 sets the calculator to Polar mode. Multimeters typically display
complex voltage, current, and impedance values in polar form, that is, as a

magnitude and phase angle.)

Example: Calculating Complex Values In an RC Circuit. A
10-volt power supply at phase angle 0° drives an RC circuit at a frequency
of 40 radians per second. A current of .37 A at phase angle 68° is meas-
ured. What is the resistance of the circuit? What is the capacitance of the

circuit?

Begin program EIZ,
i

Enter the known value for the voltage.

10 [ENTER) 0 l[COMPLEX]

Enter the known value for the current.

.37 [ENTER) 68 I[COMPLEX

Solve for the impedance.

90 3: The Solver

L <3
el
el
el
c;l
cl
cil
cil
R I |
[e< 102 [ea [ [ 1 ) | <
cl
cl
E<=10.0000 <0,0000 I
IIE!IIEEIIEEIIllllllllllll < I
[~
el
1<=0.3700 <68, 0000 ] |
[IM_-_I .
el
ol

Z4=27.02¢8 £-68.0000
(Ea ] 1& Tea ] 1 T | C]

Lmzv.”



¢

0000060060606 00006¢d0OCOOGES

é

TTI(III

The impedance of the circuit (in polar form) is 27 {1 at phase angle —68°.
Convert the impedance to rectangular form to find the circuit resistance
and capacitance. (Remember, R is the real term and C is one factor in the
imaginary term of the rectangular form of the impedance Z)

RECT < 10,1245 -129.0990

The circuit resistance is 10 2. Now calculate the capacitance.

[COMPLEX] x: @.0010
40 [x) [Ea] ba [22 | [ 1 |

@TOPFCN)  1¢4x

The circuit capacitance is .001 F.

If, at the original input voltage, the impedance is now varied and measures
20 01 at phase angle —45°, what is the current?

Return to polar mode. Then enter the new value for the impedance and
solve for the current.

14£=0.5000 <45.0000
N P T . .

20 [ENTER] 4

The current is 0.5 A at phase angle 45°.

Exit from EIZ.

EXIT v " 1L"
x: @.50080 £45.0000

3: The Solver o1




Using the Solver in Programs

Using the Solver and Explicit Solutions in a
Program

The Solver uses an iterative method to find solutions for the variables in
an equation. You must use an iterative method to find the solution for a
variable that cannot be isolated (cannot be expressed uniquely in terms of
the other variables in the equation). However, in cases where the
unknown variable can be isolated by algebraic manipulation, an explicit

solution for that variable is always faster than an iterative solution using
the Solver.

Some functions may contain a variable whose value must be found itera-
tively, and other variables whose values can be calculated explicitly. In
your owner’s manual, in the section "More Solver Examples” in chapter
12, you worked an example in which the Solver was used to find the solu-
tions to time-value-of-money (TVM) problems. The TVM equation is

1-Q@+i)™ li” _"] +FV (L +i)Y

0= -PV + (1 + ip) PMT

where:

N is the number of compounding periods or payments,
i is the decimal form of the periodic interest rate.

PV is the present value. (This can also be an initial cash flow or the
discounted value of a series of future cash flows.) PV always
occurs at the beginning of the first period.

PMT is the periodic payment.

FV is the future value. (This can also be a final cash flow or the
compounded value of a series of cash flows.) It always occurs at
the end N* period.

p is the payment timing. If p = 1, payments occur at the beginning
of the period. If p = 0, payments occur at the end of the period.

92 3: The Solver



S O OOOOPOVOVVREVOWOOUVLOUVOLVIIDOOULULUUVOYOY

In the example in your owner’s manual, you wrote a program TVM that
declares each of the TVM variables and expresses the TVM equation.
The Solver is used to find the solution for each of the function variables.
Notice, though, that the variables PV, N, FV, and PMT can each be iso-
lated. For example, PV can be expressed as

- i\y-N
PV = -(1 +ip) PMT I——M)——] -FV (@ +i) ¥
1

Only the variable i cannot be isolated; you need to use the Solver only
when you want to find the value of i.

The following program, TVM2, calculates the solutions to PV, N, FV, and
PMT explicitly, and calls the Solver to find the solution for i. The pro-
gram uses a programmable menu and flag 22, the Numeric Data Input
flag, to simulate the external appearance of the Solver application.

To key in TVM2: Create variables P/YR, p, CNTRL, N, FV, MODE,
PMT, i, I%YR, and PV.

Here is an annotated listing.

Program: Comments:

A8 { S533-Bute Pram
@1 LEBL "Tvmz®

A2 REALRES Lines 02— 15: Ensure results are real
a2 CF 21 numbers. Display AVIEW messages
a4 12 and continue program execution. Call
65 SF 25 subroutine 21 to set the default pay-
@6 RCL “PoyRY ments per year to 12. Set the default
a7 XER 21 payment mode to End mode. Call sub-
@s SF 25 routine 20 to display the payments per
@3 RCL vp year and the payment mode.

18 CF 25

11 1

12 B=2Y7?

12 8

14 STO "p*

15 HKEG z8

3: The Solver 93




—_ s e
O 0N

N
[V I

[ )R]
o D

M oM
=~

M Mo
oo

o

Qo0 D) G
[ T AN I K

R N N A ]
LV L R B E 4

fux )

41

94

LBL 99
CLMENU

" hl 1"

KEY 1 XEG @81
"I%YR"

KEY 2 XEQ 82
H plv! n

KEY 3 XEQ B3
"PMT"

KEY 4 XEQ B4
n Fll'll "

KEY S XEQ 85

"MODES"

KEY & GTD @&
MENU

STOP

ASTO "“CHTRL"
STQ IMD “CHTRL®
MIEM IMD "CHTRL™
GTO 99

LEL 28

CLA

RCL “"P~YR"

AIF

" PoYRY

RCL "p"

K=07?

" EHD MODE"

X=@7?

+"  BEGIN MODE"
AVIEW

CLMEHU

RTH

3: The Solver

o

— .
ey T T

Lines 16 -35: Build the main menu,
display it, and wait for data input
(lines 17-31). Display the value of the
entered or calculated variable (lines
32-34).

Subroutine 20, lines 36— 48: Build and
display the payments-per-year and
payment-mode message.

NN HOOONNNAANNTONANANANANONONONO®

/
N

L?.?.l?.



|

000000000000 00000000 dVodosdsddssoy

49
1%
51

‘52

93
24
S5
56
o7
58
59
&8
61
62

63
64
&5
51
&7
6g
69
7a
[
ra
3

74
[g=
76
s

78
e
en
81

LEL @6

XEQ 20
"P/YR"

KEY 1 XEQ 21
“BEG"

KEY 2 XEQ 22
"EMD"

KEY 3 XER 23
"TYH"

KEY 4 GTO "Tv¥mMz"

MENU

RCL "Ps¥R"
STOP

GTO @6

LEL 21
AES

IP
1806
ROOY
Hay?
12
R=07
12
STO "PsYR"
RTH

LBL 22
1

STO 1 p 1
RTH

LBL 232
a

STD Ilpll
RTH

Lines 49-62: Build and display the
payments-per-year and payment-mode
menu.

Subroutine 21, lines 63 -73: Check if
the specified number of payments per
year is valid. If not, substitute 12 pay-
ments per year.

Subroutine 22, lines 74-77: Set pay-
ment mode to Begin by supplying 1 for

P-

Subroutine 23, lines 78 -81: Set pay-
ment mode to End by supplying 0 for

pP-

3: The Solver 95



82
83
84
85
86
87
88
89
98
91
92
93
94
95
26
97
28
99
108
191
182
183
184
185
106
187

188
189
110
111
112
113

LBL @1
IINII

FS?C 22
RTHN

1

STO “H"
XEQ 18
RCL "Fy"
RCL+ "MODE"
+/=

RCL "PMT"
RCL "i"
R=a7

GTO o8

+
LASTX
RCL "Pv"
RCL+ "MODE"
+

LN

RCL "i"
LN1+X

RTH

LBL @8
RCL “"PY"
RCL+ "F¥"
RCL+ "FMT"
+/-

RTH

3: The Solver

Subroutine 01, lines 82-107: If

numeric input is made for N, return to
the main menu and display the value

of N. If not, calculate N in terms of

the other variables. If i = 0, go to label

00 to calculate N (lines 93-95).

Lines 108 —113: Calculate N if i is 0.

i

!
.

DDNNONDNNHNNN0O0DHDHOOOOOOHOOOODOOONCOM

fr—

”
-

“2.22%



§388888868066608606¢¢dd6606606é6ddddddésd

114
115
116
117
118
1139
120
121
122
123

124
125
126
127
128
129
138
121

132
133
134
135
136
137
128
139
148
141
142

143
144
145
145
147
148

LBL @2

1] I:,:YR n

FS?C 22

RTH

PGMSLY "i"

8

sSTO “IXYR"
28

SOLVE "I%YR"
RTH

LeL "i"
XER 10
RCLx "PMT"
WY

RCLx "“F¥"
+

RCL+ “"PV"
RTH

LEL 83

n P"l" "

Fs?C 22
RTH

XER 18
RCLx "PMT"
ROV

RCLX L Fl'.'l n

LBEL 84
"PMT"
FS?C 22
RETH

XER 18
Ry

Subroutine 02, lines 114-123: Use the
Solver to calculate I%YR. Specify the
Solver subroutine "i". Supply initial
guesses of 0 and 20 for I%YR.

Subroutine "i", lines 124 -131: Express
the TVM equation for the Solver.

Subroutine 03, lines 132-142: If
numeric input is made for PV, return
to the main menu and display the
value of PV. If not, calculate PV in
terms of the other variables.

Subroutine 04, lines 143 —154: If
numeric input is made for PMT,
return to the main menu and display
the value of PMT. If not, calculate
PMT in terms of the other variables.

3: The Solver 97




oy T

[ N el e
DI I <

[aOw O I I

(241

RCLx "Fy"
RCL+ "PV"
XY
+/-
RTN

LEL &5
llFl.',lll

FS?C 22
RTH

XEQ 1@
RCLx "pPMT"
RCL+ "FP¥"
REY

+7-

RTH

LEL 10
RCL "IXYR"

RCL+ "P/YR"

168

£TO "i"
RCLx "p"

1

+

STO "MODE"
1

EHTER
RCL+ "i"
RCL "H"
+=

Y

STO 5T 2.

RCL= "MODE"

SF 25

F:I:L_:_ n i "

3: The Solver

Subroutine 05, lines 155-165: If
numeric input is made for FV, return
to the main menu and display the
value of FV. If not, calculate FV in
terms of the other variables.

Subroutine 10, lines 166 — 188: Calcu-
late terms of the TVM equation based
on the value of I%YR. Calculate i; the
decimal form of the periodic interest
rate (lines 167 - 171). Calculate
MODE (1 + ip) (lines 172-175). Cal-
culate the FV coefficient (1 + i )™¥
(lines 176 -182). Calculate the PMT
coefficient. If i = 0, go to line 189
(lines 183 -188).

’

r

/

1

£

n—

NN OGN ONNAODODHONODOOOOOOOOOOIE® RO

2277

i



|

0900000000 UY0088EUdédddddddddddds

187 FS?C 25

182 RTH

189 1 Lines 189-191: If i = 0, then the FV
196 RCL "H" coefficient is 1 and the PMT

191 EHD coefficient is N.

To use TVM2:

1. Press TUME .

2. Supply values for the known variables. For example, press 60
H

3. Solve for the unknown variable by pressing the corresponding menu
key.
4. TVM?2 uses the variable I%YR to prompt for and display the

interest rate. I%YR is the percent form of the annualized interest
rate.

5. The default payment period is one month (12 payments per year).
The default payment timing is the end of each period. To specify a
different payment period or payment timing, first select the MODE

menu. Then, for example, to specify six payments per year, press 6
PAvR

To specify payment timing at the beginning of each period, press
BEG.

To return to the main menu, press “TYH .

Example: Executing Algebraic Solutions for TVM Problems.
In the section "More Solver Examples" in chapter 12 of your owner’s
manual, Penny of Penny’s Accounting wants to calculate the monthly pay-
ment PMT for a 3-year loan financed at a 10.5% annual interest rate,
compounded monthly. The loan amount is $5,750.

In that example, you executed the program TVM to calculate the value
PMT = -186.89. TVM uses the Solver to calculate PMT. The calculation
takes about three seconds with initial guesses of 0 and —500.

Part 1. Use TVM2 to calculate the value of PMT explicitly.

3: The Solver 99



Set the display format to FIX 2. Then execute TVM2.

12 P/YR END M
TS WERTN T IERT

Enter the known values.

5750 PV FV=0.00
10.5 1%YR I KB T A R RS

36N
0 F¥

Solve for the payment.

PMT PMT=-186,89
[N _[i:vR] Py JPHT ] Fu_[HOCE]

The explicitly calculated value is —186.89 (the same as when you used
TVM) and the calculation takes less than one second. Also note that the
calculation time is independent of the previously calculated value PMT.
(The Solver interprets the previously calculated value as a guess if two
guesses are not supplied. The explicit solution does not use guesses.)

Part 2. Another bank has offered to loan Penny’s customer $5,750, to be
paid in monthly installments of $200. What interest rate is this bank
charging?

J‘.J’.MJ

IZXYR=15.24
LN _[tvR] Py TPMT] FY_JHODE]

200 - PHMT

TVM uses the Solver to calculate the new interest rate. The Solver uses
the guesses 0 and 20 (supplied by the program) to start its iterative search.

The calculation takes about 11 seconds.

Exit from TVM2 and return the display format to FIX 4.

EXIT

1s.
BOEE) 4 15,2333

100 3: The Solver

1779900000000 000000



~

Using the SOLVE and PGMSLYV Functions with
[®  Indirect Addresses

In the previous section, you used the SOLVE function in TVM2 to find
the value of the interest rate i in the TVM equation:

122 SOLVE "IXYR"

You used the PGMSLY function to specify the routine that expresses the
TVM equation:

118 PGMSLY "i*

In TVM2, the SOLVE and PRGSLYV instructions directly address the vari-
able and the subroutine. Such use of direct addressing enables you to
specify only one Solver routine and, within that routine, only one variable.
However, the use of indirect addressing expands the utility of the Solver by

enabling you to specify any of multiple routines, and any of multiple vari-
ables.

Example: Using SOLVE with an Indirect Address. Restating the
ideal gas equation of state:

PV -nRT =0

The "van der Waals” equation of state refines the ideal gas equation to

2
P+ 2 (v -nb)|-nRT =0
[P 2w -m)
where a and b are constants characteristic of the gas in question.

the variables using either the ideal gas or van der Waals equation of state.

h
b
b
9
b 4
9 Part 1. Write a program that enables you to solve for the value of any of
-
4
-
-'
4

l_* 3: The Solver 101
|



Here is a flowchart for the program, named GAS?2.

GAS2
O—
4 Y

DECLARE MENU
VARIABLES

v

DISPLAY VARIABLE MENU
FOR DATA INPUT

KEY 1 iKEYZ ¢KEY3 iKEY4 ¢KEY5 KEY 6
V llPlI Ivll -nl ITI Ial V Ibl

STORE NAME OF
UNKNOWN VARIABLE
FROM ALPHA REGISTER
TO VARIABLE CONTROL
SPECIFY SOLVER
PROGRAM WAALS
SOLVE FOR
UNKNOWN VARIABLE
¢ WAALS
VIEW SOLUTION
EXPRESS THE
VAN DER WAALS
EQUATION

& Y

102 3: The Solver




L L Xk EEEEEEEXXXXXXYYXYYXYX XXX XN NN NN NN N

Here is an annotated listing of the program.

Program: Comments:

aa { 129-Byte Pram 2
81 LBL "GRS2"

B2 MVAR “P" Lines 02-08: Build the variable menu.
a3 MYRR "W

a4 MVYAR "n"

85 MYAR "T"

as MVYAR "a"

a7 MVAR “"b"

85 YARMENU "GRS2"

83 CF 21 Lines 09-16: Clear flag 21 to continue
18 REALRES program execution after a VIEW

11 STOF instruction. Set to calculate real results
12 ASTO "COWTROL" only. Display the menu. Store the

13 PGHMSLY "MWAARLS" name of the unknown variable in

14 SOLVE IHND “"COWTROL" CONTROL (line 12). Specify Solver
15 VIEW IND "COWTROL" routine WAALS (line 13). Indirectly
16 GTO "“GASZ2" specify the variable to be solved (line

14). View the solution and return to
label GAS2 (lines 15-16).

17 LBL "WAALS" Lines 17-34, the Solver routine

12 RCL "P" WAALS: Express the van der Waals
19 RCL "m" cquation such that its right side equals
26 Wz 0.

21 RELx "a"

22 RCL "y

25 W2

24 +

25 +

26 RCL wye

27 RCL "n"

28 RCLx "p"

29 -

38 x

3: The Solver 103 L




31 8.es2857

32 RCLx "n"
33 RCLX “T"
34 -

35 END

Part 2. Use the van der Waals equation of state to calculate the pressure
exerted by 0.250 mole of carbon dioxide in 0.275 liter at 373 K, and com-
pare this value with the value expected for an ideal gas. For CO,,

a = 3.59 liters? - atmosphere /mole?, and b = 0.0427 liter/mole.

Execute GAS2.

GHE2 %: 8. 0000
Ill:lllﬂllnllllllllnllmlﬂ

Enter the values for the known variables.

250 H b=0.08427

2750 0y L fp [ v I N ¥ | # | E]
359 A .

0427 B

Enter guesses of 10 and 30 for P, and solve for P.

10 P P=25.9816
30 P |lnlnlullnIMIMIlnmllnl|

B

Using the van der Waals equation of state, the predicted pressure is
25.9816 atmospheres.

Now use the ideal gas equation to predict the pressure. Simply supply the
value 0 for @ and b and solve for P. The previously calculated value for P
serves as an initial guess.

0 H P=27.8248
0. B [ f ] % | N [ 7 | h [ E]

104 3: The Solver

N N0
o

mMAA M AN NN NDNDDDANODDDD



The ideal gas equation predicts a pressure of 27.8248 atmospheres. (The
actual observed pressure is 26.1 atmospheres.)

Exit from GAS2.
EXIT

More on How the Solver Works

The Root(s) of a Function

To use the Solver, you have learned that you first create a program that
expresses the equation such that its right side equals 0 (by subtracting the
terms on the right side from both sides of the equation). If the equation
has more than one variable, you must, after selecting the Solver applica-
tion, supply values for all but the one unknown variable. At this point,
your equation has taken the form f(x) = 0, where x is the unknown vari-
able, and f(x) is a mathematical shorthand for the function that defines x.
Consider the equation

2x%2 +xy + 10 =3z + 22

Setting the equation equal to 0 by subtracting the terms on the right side
from both sides gives

2x2+xy +10-3x2 -2z =0

To use the Solver, you now write a program that declares the variables x,
y, and z and expresses the equation. When you select the Solver applica-
tion and, for example, supply the value 2 for y, and 3 for z, by substitution
the equation becomes

2x2-7x -2=0

where:x is the unknown variable and f(x) = 2x% - 7x - 2. Each value x
for which f(x) = 0is called a root of the function. The Solver iteratively

E: 3: The Solver 105

Sédddo0vvo0000000OOOOQCOIQCROVLOLOEOCLOIOLOGE




seeks a root for f(x) by evaluating the function repeatedly at estimates of
x, and comparing the results to previous estimates. Using a complex algo-
rithm, the Solver intelligently "predicts” a new estimate of where the graph
of f(x) might cross the x-axis. Here is a graph of the function

f(x) = 2x2 - 7x - 2. The graph shows two roots. (The example on pages
110-112 calculates these roots.)

f(x)
A

All except one of the functions in the examples in this section are func-
tions of one variable x only. Remember, though, that the situations
described in the examples apply equally to multivariable functions, since
multivariable functions become single variable functions when, in the
Solver application, you supply values for the known variables.

106 3: The Solver

|

MR\ B\

4 ]

i

HNHDNHNODNNANDNONOODND

279707

yayaa

1727



4400000000000 00vvdbdbvbddddédédddddsd

The Solver’s Ability to Find a Root

For the Solver to find a root, the root has to exist within the range of
numbers of the calculator, and the function must be mathematically
defined where the iterative search occurs. The Solver always finds a root
if one or more of the following conditions is met:

m Two estimates yield f(x) values with opposite signs, and the function’s
graph crosses the x-axis in at least one place between those estimates
(figure 3-1a).

® f(x) always increases or always decreases as x increases (figure 3-1b).

m The graph of f(x) is either concave everywhere or convex everywhere
(figure 3-1c).

= If f(x) has one or more local minima or maxima, each occurs singly
between adjacent roots of f(x) (figure 3-1d).

f(x) f(x)
A A

\i\)X /

f(x) f(x)

A

VA avae

Figure 3-1. Functions for Which a Root Can Be Found

3: The Solver 107




oo

In most situations, the calculated root is an accurate estimate of the
theoretical, infinitely precise root of the function. An ideal solution is one
for which f(x) exactly equals 0. However, a nonzero value for f(x) is often
also acceptable, because it results from approximating the root with lim-
ited (12-digit) precision.

P—J‘

Interpreting the Results of the Solver

The Solver returns data to the stack registers on completion of its iterative
search for a root of the specified function, and in four conditions, returns
a message to the display. These messages and data can help you interpret
the results of the search:

m The X-register contains the best guess. This guess may or may not be
a root of the function.

m The Y-register contains the previous guess.

s The Z-register contains the value of the function f(x) evaluated at the
best guess.

m The T-register contains a code 0~4 that indicates the Solver’s
interpretation of its search for a root. (This code is displayed in the
current display mode; in FIX 4, code 0 is displayed as 8.@0880.).

r ’ H
B e Y . ¥y . r r r r rFr ¥F ¥ ¥F ¥ |

!

r r

F

DDDIDIDDIDIDOIDNDINDDOIOONOONONHNOONONONONMN

108 3: The Solver
R R RRRRRRBRRRRRBD R

7"




POOVWOLWOWLLLLOLOLLOLOLOL

’W@@@”d"’d@o«

Code in
T-register

Interpretation

0
1 <

The Solver has found a root.

The Solver has generated a sign
reversal in f(x) at neighboring
values of x, but f(x) has been
strongly diverging from 0 as x
approaches the two neighbors
from both sides.

The Solver has found an approxi-
mation to a local minimum or
maximum of the numerical abso-
lute value. If the solution is
+0.999999999999 x 10*%, it
corresponds to an asymptotic
extremum.

One or both initial guesses lie out-
side the domain of f(x). That is,
f(x) returns an error when
evaluated at the guess points.
f(x) returns the same value at

every point evaluated by the
Solver.

Sian Reversal

Extremun

Bad Gues=s(es)

Constant?

When a Root Is Found. There are two cases in which a root is found:

® In case 1, the calculated root sets f(x) exactly equal to 0 (figure 3-2a).
® In case 2, the calculated root does not set f(x) exactly equal to 0, but is

a 12-digit number adjacent to the place where the function’s graph
crosses the x-axis (figure 3-2b). This occurs when the final two esti-

mates are neighbors (they differ by 1 in the 12th digit) and f(x) is posi-

tive for one estimate and negative for the other. In most cases, f(x)
will be relatively close to 0.

3: The Solver

109



000

f(x) fx)

a e

a b

—»> x

Figure 3-2. Case When A Root Is Found

In both cases, the code in the T-register is a 0 and no message is
displayed. You can differcntiate between the two cases by:

w Viewing the contents of the Z-register (the value of f(x) at the calcu-
lated root). For a case 2 solution, it will be a nonzero number.

m Comparing the best guess (the contents of the X-register) and the
previous guess (the contents of the Y-register). For a case 2 solution,
the guesses differ by 1 in the 12th digit.

m Immediately solving again for the variable. For a case 2 solution, the
Solver will return the message Sian Reversal on the second
attempt to find the root.

Example: A Case 1 Solution with Two Roots. Find the two roots
of the equation

2x2-7x -2=0

NN N NN NN NN ONDDOD

Express the function in program AA.

F\
AR L 25-Bute Pram 2 ~
#l LEL "HA" :
B2 MYRR "R €
B2 RCL v €

€~..

oy . _r-— ¥y ¥y _F F " ¥F ¥ ¥ ¥y ¥y ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥F Fr |

"

110 3: The Solver

_—_




R NN NN NN N NN NN N NN NNNENN NN NN NN NNN NN,

B4 X+2

a5 2

B6 X

er 7

88 RCLx "X"
89 -

18 2

a1 -

12 END

Set the display format to ALL. Select the Solver application and then pro-
gram AA,

BODISP] ALE |x= 2] |
B(SOLVER) Lol 1 | | 1 |

Enter guesses of 1 and 5 for x. Solve for x.

%=3.76956443708
Lx 1 1 1 I |
Roll the stack contents down to see the previous guess.
Ry x: 3. 76556443708
N D Y

The estimates are the same in all 11 decimal places. Roll the stack con-
tents down to see the value of f(x) at the root.

Ix: ] |
E N D T

f(x) is exactly 0. Now enter guesses of ~0.1 and 1 for the second root
and solve.

K=~2.65564437075E~-1
L& | | I S

3: The Solver 11




Roll the stack contents down to see the value of f(x) at the root. Again,
f(x) is exactly 0.

RY) RY x: @
|“-----l

Exit from the Solver and return the display format to FIX 4,

o

A\

EXIT v: ©. 0000
B0DisP) 4 x: 0. 0000

Example: A Case 2 Solution. In the example on pages 101-105 in
this chapter, you found the value of the pressure P in the ideal gas equa-
tion of state given values for the other variables V, n, and 7.,

Using the same values for the variables V, n, and T, solve again for P.
Set the display format to ALL.

ADisA AL |Se1ect Solve Program |
Geze] [ 1 [ 1 ]

Start program GAS2. (Reenter the program if you have cleared it from
the calculator.)

GAS2 |><= 0 I
N I O O B

Enter the values for the known variables and solve for the pressure.

P=27,8247827273
(P [ v [N [ T ] & ]E|

i

!

!

Roll the stack down to see the previous estimate.

< 27, B247827272
I D T O N €\l

NHDHNHHHNDNDNDNGTHNNNONHNNHOONONHO

1

112  3: The Solver Q‘,J

—



S S dOdbbbdd0b OOV SVVVSVVOIVGY VIS

The estimates differ by 1 in the last decimal place. Roll the stack down to
see the value of f(x).

A : 0. 00DP0PPDOD]
|nn.:--:-u|

The value of f(x) at the root is a very small nonzero number. The root is
not an exact root, but it is a very good approximation. Exit from the pro-
gram and return the display format to FIX 4.

EXIT v 0. 0000
@0iSP) F1IX 4 [ENTER) x: 1.0000e-11

Problems That Require Special Consideration. Some types of
problems require special consideration. The following function has a
discontinuity that crosses the x-axis.

T~ > x

The Solver will return an x-value adjacent to the discontinuity. The value
of f(x) may be relatively large.

3: The Solver 113




Example: A Discontinuous Function. Find the root of the equation
IPx)-15=0

Express the function in program BB.

88 { 18-Buyte Prgom
81 LBL "BB"

82 MVYAR "X"

@3 RCL "R"

P4 IP

85 1.5

86 -

87 END

Select the Solver, select program BB, provide guesses of 0 and 5, and

solve for x.
B(SOLVER] | BR |X=2-0890 l
0 IERE DR N N S

The Solver finds a root at x = 2.0000. Now check the value of f(x).
BY RY E -0. 5000 I
L« 1 t f{ { 1 |

The value of f(x) seems relatively large. This indicates that you should
further evaluate the function. By plotting the function, you find that the
root atx = 2.0000 is in fact a discontinuity, and not a true zero crossing.

Exit from the Solver.

ExiT] EXIT) v: 0, 0000
x: -0.50008

Finally, consider the following function. This function has a very steep
slope in the area of the root. Evaluation of the function at either neighbor
may return a very large value even though the function has a true root
between the neighbors.

114 3: The Solver

|

/

}

NHNNNNONNONOOOONONOOANOOOONMGNAD

f

ViAAEE



Sl S sadt aami it

8606000000000 00000VVVVVCVVIYVVIVIIOIVIVLILY

f(x)

» x

Use care in interpreting the results of the Solver. The Solver is most
effective when used in conjunction with your own analysis of the function
you are evaluating.

A Sign Reversal. The values of the following function are approaching
infinity at the location x, where the graph changes sign.

The function has a pole at x,. When the Solver evaluates such a function,
it returns the message Sian Rewsr=zal.

3: The Solver 115




NODDS

Example: A Pole. Find the root of the equation

x _ -

(x’ - 6) c I

As x approaches V6, f(x) becomes a very large positive or negative c I

number. I
<

Express the function in program CC. c l

Ba { 23-Bute Pram 3 c I

@1 LBL "CC" I
gz MVAR "X" c

B2 RCL "RX" c I

@4 RCL "X" I
65 He2 ¢

1513 < I

8y - I
as + ¢

g9 1 ¢ I

19 - I

11 EHMD & I

el

Select the Solver and then select program CC. ¢ I
BSOLVER) ¢ %: B, 0000 '3

N ———— i

Provide guesses of 2.3 and 2.7, and solve for x. ¢ =
23 %=2.4495 ¢

27 Sign Reversal e I

= =

G\I

€\4,
N
el

116 3: The Solver Q,

e ]



AP bbdbddddddddddddbbdbddddddddis

“

The initial guesses yielded opposite signs for f(x). The interval between
successive estimates was then narrowed until two neighbors were found.
These neighbors made f(x) approach a pole instead of the x-axis. The
function does have roots at -2 and 3, which can be found by entering
better guesses.

Exit from the Solver.

EXIT) (EXIT 2.4495
2.44%5

Y
X

An Extremum. When the Solver returns the message Extremunm, it
has found an approximation to a local minimum or maximum of the
numerical absolute value of the function. If the solution (the value in the
X-register) is + /- 9.99999999999 x 10*®, the Solver has found an asymp-
totic extremum,

N/ N

Relative minimum Asymptote

ft)
A

P X

Relative maximum

=

3: The Solver 117




Example: A Relative Minimum. Find the solution of the parabolic

equation

x2-6x+13=

(It has a minimum atx = 3.)

Express the function in program DD.

B8 { 23-Bute Pram 2
a1 LeL "DD"

B2 MYAR "X"

B3 RCL "wr"

B4 K+2
65 &

B6 RCLx
a7 -

gge 13
a9 +

1a END

n :)::II

Select the Solver application and then program DD.

x: B.6000
INEN DN S S S

BEOLVER) - pD

Provide guesses of 0 and 10 and solve for x.

Exit from the Solver.

EXIT] [EXIT

118 3: The Solver

.

- p——

0

0

®=3. 0000
Ex tremum

TNV NDHONONNONNNOONO00D0

»

LA.‘Z.X.‘Z.Y.Y.’L



I

B 8880866060600 0060dd6dbb0b00db6d6d6dddboes

Example: An Asymptote. Find the solutions for the equation
10 - L-0
x

Express the function in program EE.

pa { 17-Byte Prgm 2
p1 LBL "EE"

982 MVYAR "X

a3 18

B4 RCL "X"

B85 1-/¥%

96 -

a7 END

Select the Solver application and then program EE.

[SOLVER] |x= 0.0000 |
. I N U N N

Enter guesses of 0.005 and S, and solve for x.

.005 |X=B . 10009 I

The Solver finds a root at x = 0.1000. Now enter guesses that have nega-
tive values.

X=-1.0000e560
Extremum

The Solver finds an asymptotic extremum. (Press [J[SHOW] to verify that
the solution is actually —9.99999999999 x 10*® ) It’s apparent from
inspecting the equation that if x is a negative number, the smallest that
Jx) can be is 10; f(x) approaches 10 as x becomes a large negative number.

Exit from the Solver.
v -5.9246E 498
x: -1, 0000E 560

3: The Solver 119




Bad Guess(es). The Solver returns the message Bad Guess(es)
when one or both initial guesses lie outside the domain of the function. (If
a guess lies outside the domain of the function, the function returns a
math error when evaluated at that guess point.)

<
Example: A Math Error. Find the root of the equation <
/ X
——— -05=0
(x +03) [ =3
Express the function in program FF. <
AR ¢ 26—-Bute Pram <
@1 LEL “FF" P |
B2 MYAR “R" .
B3 ROL " <
B4 B.3 .
B3 RECL+ "x" € .
B+ &
a7 SRRET .
B3 .5 L2 .
as - €
18 EMD |
-
c
Select the Solver application and then program FF. c I
[SOLVER] FF x: B, 8000
u Enneeeeeeee € =
(2
First attempt to find a positive root, using guesses 0 and 10. e I
0 %=0. 1000 e~ I
10 # I N A T . I

7

”7-

120 3: The Solver

iy Yy

l




Jldé&‘iﬁ6664644446444‘&‘&4&444&44!

The Solver finds a root atx = 0.1. Now attempt to find a negative root
using guesses of —0.1 and —0.2. Note that the function is undefined for
values of x between 0 and —0.3, since those values produce a positive
denominator but a negative numerator, causing a negative square root.
Although the HP-42S can execute arithmetic operations with complex
numbers, the Solver cannot find a complex number solution. If evaluation
of f(x) returns a complex number, the Solver considers the function
undefined at that x-value.

A BA)

%=-0, 2000
Bad Guess(es)

Exit from the Solver.

EXIT \g -g.
X: =W

al5]5)
Boo

A Constant. The Solver returns the message Constant 7 when it
finds that f(x) returns the same value at every sample point x. Such a
situation can occur if guesses are confined to a local "flat" region of a
function.

Example: A Local Flat Region. Find the root of the equation

1 _10-=0
X

Express the function in program GG.

g8 { 17-Bute FPram
LEL "GG"

MYAR "Rt

: RCL "R

1.1

1a

" EHD

=
ford

Do B ]
LA ]

[ o o
DR W) I =

(]
=d

3: The Solver 121




Select the Solver and then program GG.

[SOLVER] x: 8. 0000
Supply guesses of 10 and 10%,
(E] 20 X=1.B660E 500

Constant?

30

In this region of the function, the value of f(x) is, within the 12-digit preci-
sion of the calculator, the same at every sample point. Here is a graph of
the function.

f(x)

—

Try guesses of 0 and 10.
0.

X=0. 1000
Ls 1 T 1 { [ |

The Solver finds the root ati = 0.1. Exit from the Solver.
v: 8. mag

x: 0. 100

122 3: The Solver

B\

0

i

NN HNNNNNNNNNNNNONONOO

97

)
—'—-——-—--------ﬁ

I?.’L?.’L"



T4 4900000000800 000600b0bbbdddddddd

Round-Off Error and Underflow

Round-Off Error. The 12-digit precision of the calculator is adequate
for almost all cases. However, round-off errors can sometimes affect
Solver results. For example,

[(Jx] +1) + 1082 - 10 =0

has no roots because f(x) is always positive. However, given initial guesses
of 1 and 2, the Solver returns the answer 1.0000 because of round-off
error.

Round-off error can also cause the Solver to fail to find a root. The equa-
tion

[x2-7| =0

has a root at v'7 . However, no 12-digit number exactly equals v'7 , so the
calculator can never make the function equal to 0. Furthermore, the func-
tion never changes sign. The Solver returns the message Extt-=mun.
However, the final estimate of x is the best possible 12-digit approxima-
tion of the root when the routine ends.

Underflow. Underflow can occur when the magnitude of a number is
smaller than the calculator can represent; in such a case, it will substitute
the number 0. This can affect the Solver’s results. For example, consider
the equation

1
— =0
x2

whose root is infinity. Because of underflow, the Solver returns a very
large (finite) value as a root. (The calculator cannot represent infinity,
anyway.)

3: The Solver 123




Integration

In this chapter, the following topics are covered:

= Basic use of the Integration application.

® Approximating an integral that has an infinite upper or lower limit.
m Using Integration and the Solver interactively.

m More on how Integration works.

Basic Integration

The procedure for execution of the Integration application is:
1. Create a program that:

a. Uses MVAR to define the variable(s) in the integrand (the
function to be integrated).

b. Expresses the integrand. (Note that each variable in the
integrand must be recalled to the X-register.)

2. Apply the Integration application to the program.
a. Select the Integration application (press BZf(x)).
b. Select the program by pressing the corresponding menu key.

¢. Specify the values for any known variables in the integrand.
Select the variable of integration.

d. Specify the values for LLIM, ULIM, and ACC.
e. Press

to begin the calculation.

124  4: Integration

D-JUA

!

MMM TN NNNODHDDOOO

¢

li

/R

! f
e s M s Sy DS RSN SRSED DEENY ENT SEENY DN MNNSNN NN

?‘!"V,




' YYYXXXXXEEXEXIXEEXEEEEXEEERE R NN’ N N N B A B A A A B o

Example: Basic Integration. The angle of twist in a round shaft
under torsional loading is calculated by evaluating the following integral.

where:

§ is the angle of twist of the shaft (in radians).

L is the length of the shaft (in meters).

T is the torque applied to the shaft (in Newton-meters).

J is the polar moment of inertia of the shaft (in meters*).

G is the shear modulus of the shaft material (in Newtons/meters?).

Torque T increases along
the length of the shaft
as a function of x .

Consider a solid steel shaft (G = 83 x 10° N/m? ) that has a constant
diameter of 0.03 meters (J = 7.9521x 10"8 m*) and a total length L of 2
meters. Find the angle of twist in the shaft when loaded by a torque that
varies along the length x of the shaft as a function of x:

T =13x*+8x3+15x2+9x + 6

For programming purposes, use Horner’s method to expand the polyno-
mial.

T=(((13x +8)x +15)x +9)x +6

4: Integration 125




0

—iF

€. |
e !
Substituting this expression for T, the equation becomes e l
L
g - f (((13x +8)x +15)x +9Nx +6 dy c '
0 JG c |
Express the integrand in the program TORQUE. c I
Program: Comments: ot {
@8 £ 53-Bute Pram 3 2
@1 LEL "TORGUE" c I
A2 MVYAR YR Lines 02-04: Declare the variables. ¢ I
@83 MYAR "J" ' |
G4 MVYAR "M 2 I
a5 12 Lines 05-19: Express the integrand. ¢ I
Ge RCLx "R" ¢ |
a7 = ~
B+ L4 I
B3 RCLX " ¢
18 15 |
11 + v I
12 RCLx "x" 3
13 3 I
14 + G. I
13 RCLx "®Y c
16 & |
17 + «
18 RCL+ "d" v I
19 RCL+ "G" |
8 EMLC d I
= |
26 v
<
Select the Integration application. C I
[ [WATER) Select Jf{x) Program @\I
c-.
Select program TORQUE. = I
TOR®G Set Varsj Select Sfvar §l
L& § Jd]6 | 1 T | l
t\; -
~1

126 4: Integration

—

iz_f'



|
)
)
®
®
®
®
;
®
@
9
9
9
k-]
k
9
k4
®
)
-
®
®
®
*
o
®
@
@
L ]
@
@
Q.

Supply the known values for J and G, and specify the variable of integra-
tion X.

7.9521 €] 8 FA)
83 (B9

Specify the lower limit (0), the upper limit L (2), and an accuracy factor of
0.01.

CC=0.08100
ST WTNTEE BTN I N

Start the calculation.

S=0.8281
OTEE ETHTER TSN N N R

The shaft twists through an angle # = 0.0281 radians (1.6077 degrees).
Exit from the Integration application.

([EXIT) [EXIT) (EXIT) v: 8.08803
x: B.0281

Approximating an Integral That Has an
Infinite Limit

It is often of interest to evaluate an improper integral (an integral that has
an infinite upper or lower limit). An improper integral with an infinite
upper limit

[ fee) de

is calculated "by hand" by evaluating the equivalent expression

lim, oo f| flc) de

4: Integration 127




You cannot use the HP-42S to directly evaluate such an expression. You

can, however, approximate an answer by substituting a large number for
the infinite limit.

Example: Evaluating an Integral That Has an Infinite-Upper
Limit. Calculate the integral

*  dx
',;’ 1+x2

by hand. Then approximate the integral with the HP-42S.
Part 1. The result is calculated by hand as follows.

[C i [
0 1+x2 TR 1 4 42

= lim,_,, (arctana)

=X
2

Use the HP-428 to calculate /2 to 12-digit precision.

[DISP} - ALE : @
=B % 1.5707963268

Part 2. Use the Integration application to evaluate the same integral,
using the value 1,000 to approximate the upper limit. First, express the
integrand in the program INFIN,

B8 { 28-Bute Pram X
81 LBL "IMFIN"

B2 MVYAR "X"

a3 RCL "R"

A4 ¥+2

as 1

aé +

@Y 1-¥

83 EHD

128 4: Integration

i\

HNDNDOOOOONDNOD

EEEEEERERE

"

29997

"9

b/




B S L0 b dddddddddiddddddddddd

)

Select the Integration application and then program INFIN.

Set Varsj Select Sfvar
T N S N T

Select the variable of integration.

|x: 1.5707963268 |
[Lemafoewaf i | 1 1 & |

Specify the lower limit (0), the upper limit approximation (1,000), and an

accuracy factor of 0.01.
ACC=08.81
|m—-nl

Calculate the integral.

JS=1.57020935993
TN TN TN R I

Using an upper limit of 1,000, and an accuracy factor of 0.01, the calcula-
tor returns the result 1.57020935993. The calculation takes about 36
seconds and is correct to three decimal places.

Exit from the Integration application and return the display format to FIX
4,

[EXIT) [EXIT) (EXIT) B BISE
BOISP] 4 x: 1,5702

The following table summarizes results and calculation times for upper

limit approximations of 100, 1,000, and 10,000, and accuracy factors of
0.01 and 0.0001.

4: Integration 129




Acc. Calc. Time
Factor ULIM Result (seconds)
( % actual) 1.5707963268
0.01 100 1.57518831857 5
1,000 1.57020935993 36
10,000 1.57088603739 140
0.0001 100 1.5607891695 18
1,000 1.56979476064 69
10,000 1.57069673168 279

Note that the principle determining factor in the accuracy of the result is
the value of the upper-limit approximation, not the accuracy factor. Also

note that the calculations using an accuracy factor of 0.0001 require about
twice the time of those using an accuracy factor of 0.01.

In general, when you are approximating an integral, assess the extent to
which you are constraining the accuracy of the true integral with the
approximation of the limit, and choose an accuracy factor wisely. If the

limit that you substitute results in only a rough approximation of the true

integral, it makes little sense to calculate the approximation to a high
degree of accuracy.

130 4: Integration



|

I I R R XEEEEEE R N R R R R A A dl g

Using the Solver and Integration
Interactively

In the first example in this chapter, you found the twist angle 6 at the end
of a shaft by integrating the applied torque with respect to x. (The torque
varied as a function of the position x along the shaft.) You were limited, in
that example, to solving specifically for the twist angle 6. In general, for
the equation

ULIM
I-= fLLIM f(x) dx (calculated to accuracy ACC)

the Integration application enables you to solve only for the value 7 of the
integral. To solve for I, you:

® Write a program P that defines the integrand f(x).
® Specify values for the known variables in the integrand.

s Specify the variable of integration.
= Specify values for the variables LLIM, ULIM, and ACC.

However, by writing a program S for the Solver that declares each vari-
able in the equation and invokes the Integration application on program P,
you can solve for any of the variables in the equation:

m/
m The variables in the integrand f(x).
s LLIM, ULIM.

In the following example, you'll solve for the length L of a shaft (the vari-
able ULIM in the Integration application) in the angle-of-twist equation.

Example. Using the Solver and Integration Interactively.
Restating the equation for twist in a shaft under torsional loading:

4: Integration 131




Consider again the solid steel shaft of the first example in this chapter.
For this shaft, G = 83x10° N/m? andJ = 7.9521 x 108 m*. The shaft
is subjected to the same torsional loading T as in the first example. That
loading varies along the length x of the shaft as a function of x.

T =13x* + 8x% + 15x2 + 9x + 6.

Find the length L that results in a twist angle ¢ of 0.1396 radians (8
degrees).

The variables in the equation are §, L, T,J, and G. The unknown variable
L is the upper limit of integration ULIM.

Part 1. Write a Solver program SHAFT that:

® Declares each variable in the equation.
= Expresses the equation such that its right side equals 0.

L
Lax-6=0

° JG

Program: Comments:

B8 { 66-Bute Prgm X

81 LBL "SHAFT"

82 MVAR “"THETA" Lines 02-08: Declare the variables in

a3 MVYAR “"G" the equation.

o4 MVYAR "Jd"

@3 MVAR "LLIM"

a8 MVYAR “ULIM"

8?7 MVAR “"ACC"

82 MVAR "X"

89 PGMINT "TORGUE" Lines 09-11: Express the equation

18 INTEG "X*® such that its right side equals 0. First,

11 RCL- "THETR" calculate the first term of the equation
(the integral) (lines 09-10). The
value of the integral is returned to the
X-register. Subtract the second term
(THETA) (line 11).

12 EHND

132  4: Integration




E IR EEE IR R R R E R R AR R R R RN R AR A A A A4

In lines 09 - 10, the integral is calculated using the current value of ULIM,
which is iteratively supplied by the Solver as it searches for a solution.
Note that the specified integration program is TORQUE from the first
example in the chapter. If you've deleted this program, you need to key it
into the calculator now.

Part 2. Select the Solver application and then program SHAFT.

M(SOLVER] SHAFT x: 0. 0000
|ﬂml

(The variable X is on the second line of the menu.) Enter values for the
known variables.

1396 THETH ACC=0.0100
83 [E (THETA G [ o4 JCLIM[UCIA ] Ao ]

7.9521 ‘{E} 8

Now solve for the upper limit L, providing initial guesses of 1 and 10.

ULIM=2.9528
UHeTe] 6 [ J frisdfunet] cc |

The shaft must be 2.9528 meters long to twist through an angle of 0.1396
radians.

Exit from the Solver application.

EXIT] [EXIT

4: Integration 133




More on How Integration Works

The Accuracy Factor and the Uncertainty of
Integration

The Integration algorithm calculates the integral of a function f(x) by
computing a weighted average of the function’s values at many values of x
(sample points) within the interval of integration. The accuracy of the
result depends on the number of sample points considered; generally, the
more the sample points, the greater the accuracy. There are two reasons
why you might want to limit the accuracy of the integral:

1. The length of time to calculate the integral increases as the number
of sample points increases.

2. There are inherent inaccuracies in each calculated value of f(x):

a. Empirically-derived constants in f(x) may be inaccurate, If, for
example, f(x) contains empirically-derived constants that are
accurate to only two decimal places, it is of little value to cal-
culate the integral to the full (12-digit) precision of the calcu-
lator.

b. If f(x) models a physical system, there may be inaccuracies in
the model.

€. The calculator itself introduces round-off error into each com-
putation of f(x).

To indirectly limit the accuracy of the integral, specify the accuracy factor
of the function, defined as

true value of f(x) - computed value of f(x)
ACC =
computed value of f(x)

HH YD HHHHHDHDHHHHHDDHIDDHIDIDIOHODONNNONDG

)

"L=”?

134 4: Integration



The accuracy factor is your estimation of the (decimal form of the) per-
cent error in each computed value of f(x). This value is stored in ACC.
The accuracy factor is related to the uncertainty of integration (a measure-
ment of the accuracy of the integral) by:

uncertainty of integration = accuracy factor x'f | fix)] dx

f(x)
A

The striped area is the value of the integral. The orange-shaded area is
the value of the uncertainty of integration. It is the weighted sum of the
errors of each computation of f(x). You can see that at any point x, the

uncertainty of integration is proportional to f(x).

The Integration algorithm uses an iterative method, doubling the number
of sample points in each successive iteration. At the end of each iteration,
it calculates both the integral and the uncertainty of integration. It then
compares the value of the integral calculated during that iteration with the
values calculated during the two previous iterations. If the difference
between any one of these three values and the other two is less than the
uncertainty of integration, the algorithm stops. The current value of the
integral is returned to the X-register, and the uncertainty of integration is
returned to the Y-register.

It is extremely unlikely that the errors in each of the three successive cal-
culations of the integral - that is, the differences between the actual
integral and the calculated values —would all be larger than the disparity
among the approximations themselves. Consequently, the error in the
final calculated value will almost certainly be less than the uncertainty of

4: Integration 135




integration.

Example: The Accuracy Factor and the Uncertainty of
Integration. Certain problems in communications theory (for example,
pulse transmissions through idealized networks) require calculating an
integral (sometimes called the sine integral) of the form

¢
Si(t) = J:, sn;nx dr
Find Si (2).

First, write a program that expresses the function.

B0 { 1é-Byte Pram %

@1 LBL "SI"
a2 MYAR "X
83 RCL "&"
84 SIN

85 RCL+ "X"
86 EMD

Set the display format to ALL. Set the angular mode to RAD.

B0isF] HALL v: 9
RMODES) RAD x: 0
Select the Integration application and then program SI.
WETNE = Set Vars; Select Jfvar
n ' I T S N S

Select the variable of integration X, then enter a lower limit of 0 and an
upper limit of 2.

136 4: Integration

IULIM=2 I
NI T TR I N

{

—

NHNHNHNHNHNHNHHOHDHNHNNHHHONOHOHONOHNHDIONO

¥




—

.

(A

()

I I A TR

?

>

/’:’.

Since the function

sinx
x) = ——
fte) = =

is a purely mathematical expression containing no empirically-derived
constants, the only constraint on the accuracy of the function is the
round-off error introduced by the calculator. It is, therefore, at least
analytically reasonable to specify an accuracy factor of 0.00000000001
(1x10711),

(€ 11 “Acc ACC=0. P0POPPPPOO 1
[N TN T I I N
Calculate the integral.
e F=1. 6054129768

[NHTET TN T R N N

Check the uncertainty of integration.

(xzy]

%: 2. 1094221 0026E-11
N AT TN I S

The uncertainty of integration is significant only with respect to the last
digit of the integral. The calculation took about 19 seconds. If you can
accept a less accurate answer, you can shorten the calculation time. Try an
accuracy factor of 0.001.

001 RACC

JS=1.68541531589
TN ITATE N TN R N

Check the uncertainty of integration.

[xzy] %: 1.6D60P822892E-3
I TN TR I T

4: Integration 137




The error of integration is much larger now. However, it is still relatively
small compared to the value of the integral, and the calculation takes only
3 seconds.

Exit from the Integration application and return the display format to FIX
4,

([EXIT) [EXIT] [EXIT) Y 1.8

ENTER

Example: A Problem Where the Uncertainty of Integration Is
Relatively Large. In the previous example, the uncertainty of integra-
tion was relatively small compared to the value of the integral. This is
because the value of the function was always positive within the interval of
integration. Now consider the simple function

ftx) = sinx

Integrate the function from x = 0 tox = 6 (radians).

f(x)
A

By inspection, you can see that the value of the integral is a small positive
number, since the area with positive value from 0 to x is almost cancelled
by the area with negative value from = to 6.

138  4: Integration

L 0 KL
[

HHNHHHBH N HEHNNNNHINHNNNHNNNONONONOO

[y Y N 16 r 1y r r-’r o

QL")

—



XXX

'TEEXX

dbee e

Write the program that expresses the function.

68 { 14-Bute Pram 2
81 LBL “"SIN"

82 MVAR "X"

B3 RCL "®¥"

B4 SIN

85 EHND

Set the angular mode to RAD. Select the Integration application and then
program SIN. ‘

BMODES] © RAD Set Vars; Select Jfvar
B/fx) L I T T 1§ ]
SIH

Select the variable of integration X, enter the lower and upper limits (0
and 6), and an accuracy factor of 0.01. Then integrate with respect to x.

s T=0.0398
0 LLIM fltim Jotra T wee | 1 | o |
6 ULIN
01 ACe:

Now check the uncertainty of integration.

(xxy)

x: B.8398
TN T AT I N

The uncertainty of integration is large compared to the value of the
integral.

Exit from the Integration application.
[EXIT] (EXIT] [EXIT)

4: Integration 139




Conditions That Can Cause Incorrect Results

Although the integration algorithm in the HP-42S is one of the best avail-
able, in certain situations it - like all algorithms for numeric integration —
might give you an incorrect answer. The possibility of this occurring is very
remote. The integration algorithm has been designed to give accurate
results for almost any smooth function. Only for functions that exhibit
extremely erratic behavior is there any substantial risk of obtaining an
inaccurate answer. Such functions rarely occur in problems related to
actual physical systems,

Example: A Condition That Causes an Incorrect Result. Con-
sider the approximation of

j:oxe" dx

Since you’re evaluating this integral numerically, you might think that you
should represent the upper limit of integration with a large numbser, say
100,000. Try it and see what happens. First write a program that expresses
f@x).

B8 { 17-Buyte Pram 3
81 LBL "XEX"

82 MYAR "R"

@3 RCL "X"

84 ENTER

a5 +/-

86 E+¥

arv x

83 END

Now select the Integration application and then program XEX.

B mER Set Vars; Select JSfvar

L& [ [ 1 1 [

140 4: Integration

000

I

-

NN NNNNHNNNNNNNNDNNANANARAONOONONM

22

ya




~

I". Select the variable of integration X, then enter the lower and upper limits
and an accuracy factor of 0.001.

I,‘ ACC=0. aé 10

k2 Im--nl
9

: |

Integrate with respect tox. (Stay in the Integration application after exe-
cuting this calculation. You will integrate this function again in the next
section.)

JS=0,00008
(Lot wic | [ | - |

The answer is clearly incorrect, since the actual integral of f(x) = xe * ,
evaluated from 0 to oo, is exactly 1. But the problem is not that you
represented oo by 100,000, since the actual integral of this function from 0
to 100,000 is very close to 1. The reason you obtained an incorrect answer
becomes apparent if you look at the graph of f(x) over the interval of
integration.

f(x)
A

= » X

The graph has a spike (illustrated here with a greatly exaggerated width)
very closv.: to the origin . Because no sample point discovered the spike,
the algorithm assumed that f(x) was equal to 0 throughout the interval of

44444

E R R E R R R R R E R EEEEREREERR"

4: Integration 141




integration. Even if you increased the number of sample points by specify-
ing an accuracy factor of 1x 107! | none of the additional sample points
would discover the spike when this particular function is integrated over
this particular interval.

) ) B
e

o e nel

Subdividing the Interval of Integration. If you suspect the validity
of the approximation of an integral, subdivide the interval of integration
into two or more subintervals, integrate the function over each subinter-
val, then add the resulting approximations. This causes the function to be
evaluated at a new set of sample points, more likely revealing any previ-
ously hidden spikes. If the initial approximation is valid, it equals the sum
of the approximations over the subintervals.

Example: Subdividing the Interval of Integration. Consider
again the integral

[ xe™®ax
0
Approximate the integral by subdividing the interval of integration into

three subintervals, one from 0 to 10, the second from 10 to 100, and the
third from 100 to 100,000.

First, integrate between 0 and 10. If you are still in the Integration appli-
cation, simply supply the new value for ULIM.

10 ULIN 7=0.9995
e [N TN T W S N

The answer is very close to 1. Now integrate between 10 and 100.

10 ELIHM JS=0.08005

100 ULIN T TN T I N

The answer is very close to 0. The sum of the approximations over the two
subintervals is 1. Finally, integrate between 100 and 100,000. (Stay in the
Integration application after executing this calculation. You will integrate
this function again in the next section.)

100 LEIM.
100000

/

/

r
I N

S=0.0000
ofuunTece [ [ 1« |

HNHNNHNHHHHHODNHHHHDHNHNOEOHNHONNONONONO

ylydydy 2

]

142 4: Integration

—



e

POV OODVDOVVODOLOOLOLOOLOLULOLOLOLOLOLOLOLOWLOEOGGEGOG

The integral over the third subinterval is 0. The sum of the integrals over
the three subintervals is 1.

Conditions That Prolong Calculation Time

In the first example in the preceding section, the algorithm gave an
incorrect answer because it never detected the spike in the function

fx) = xe * . This happened because the variation in the function was too
quick relative to the width of the interval of integration. In the second
example, you obtained a very good approximation by subdividing the
interval of integration into three subintervals between 0 and 100,000.
However, for this function, there is a range of intervals that is small
enough to obtain the correct answer, yet result in a very long calculation
time.

Example: An Upper-Limit Approximation That Prolongs
Calculation Time. Consider again the integral

f oc,xe *dx
o
Approximate the integral by calculating it over the interval (0, 1,000).

Enter the new values for LLIM and ULIM. Then integrate with respect to

S=1.0000
LLLIMJULIM ] ACC ] I

This is the correct answer, but it took a long time to calculate. To under-
stand why, compare the graph of the function betweenx = 10 andx = 10°
(which looks about the same as that shown on page 141) with the follow-
ing graph of the function betweenx = 0 andx = 10.

4: Integration 143




f(x)

0 10

You can see that the function is "interesting" only at small values of x. At
greater values of x, the function is not interesting since it decreases
smoothly and gradually in a predictable manner.

The algorithm samples the function at increasing numbers of sample
points until it has sufficient information about the function to provide an
approximation that changes insignificantly when further samples are con-
sidered. In the previous section, when you evaluated the integral between
0 and 10, the algorithm needed to sample the function only at values
where it was interesting but relatively smooth. The sample points, after
the first few iterations, contributed no new information about the
behavior of the function and the algorithm stopped.

In the last example, most of the sample points capture the function in the
region where its slope is not varying much. The algorithm finds that the
few sample points at small values of x return values of the function that
change appreciably from one iteration to the next. Consequently, the func-
tion has to be evaluated at additional sample points before the disparity
between successive approximations becomes sufficiently small.

144  4: Integration

o
0l

MO NHNNHOENHDNOODNDNDONONNOHNHONONONON



F VP VOV VUVVWOUVULUVIULOOUUYUYUUOOLLLULUYUG GGG

For the integral to be approximated with the same accuracy over the larger
interval as over the smaller interval, the density of sample points must be the
same in the region where the function is interesting. To achieve the same
density of sample points, the total number of sample points required over
the larger interval is much greater than the number required over the
smaller interval. Consequently, several more iterations are required over
the larger interval to achieve an approximation of the same accuracy, and
the calculation requires considerably more time.

4: Integration 145




oO%0
g e 5

Matrices

S

OO0
|

This chapter builds on material introduced to you in chapter 14 of your
owner’s manual. The following topics are covered:

Using the matrix editor and indexing functions.
Vector solutions.

Solving simultaneous equations.

Using the Solver with simultancous equations.
Matrix operations in programs.

Using the Matrix Editor and Indexing
Functions

In the following example, you'll:

m Create a matrix.
m Use the matrix editor to manipulate data.

m Use indexing functions and statistics functions interactively.
Example: Accumulating Meteorological Data. Dr. Steven

Stormwarning, noted meteorologist, has accumulated the following data
and wishes to store it in a matrix in the HP-42S,

146

T T T T T T O I .1

NV NN NN HHEHONNNNNO

-
s




Day # | Temp | Wind | Humid

1 67 8 54
2 69 14 36
3 74 4 72

Creating a Named Matrix

Create a 4 x 4 matrix "WTHR".
4 BMATRIX] (V] DIM < 4. 0000
WTHR (LOT JcRO:STUVES | DI UNDES[ECITN]

Using the Matrix Editor

Enter the matrix editor and select the matrix you just created.

1:1=0.0060

GOTOD

Fill element 1:1 with the Alpha string DAY #. (Remember, to execute
[ASTO], press in ALPHA mode.)

B(ALPHA] DAY # (ASTO] (]
(EXIT]

1:1="DAY #"
Le joe] + | 4 [oOTO] > |

Fill the remaining clements in row 1 with the corresponding Alpha strings
from the table. (The keystrokes for element (1:2) are shown here.)

W(ALPHA] TEMP T3 4="HUNID"
'

5: Matrices 147




Now fill the remaining elements with the corresponding data.

qi14=72_

Stormwarning finds that his assistant has incorrectly recorded the tem-
perature on day 1; it was 77, not 67.

BOT0G 2 [ENTER] 2 [ENTER) 77 [EXIT) %: 77 . 0000
Ilmnlaxsanmzilmulnmnnﬂmnd

Several days later the doctor has more data to add: on day #4, the tem-
perature is 77, the windspeed is 5, and the humidity is 76. First, set the cal-
culator to Grow mode to create a new row in the matrix.

EDITN WTHR ¢« S:1-0. 0000

(V] GROW. (@)
Fill in the new data.

5:4=76_

Ce o] + | + [0T0] + |

Stormwarning now realizes he has entered the data for day #5, not day
#4. For day #4, the temperature was 68, the windspeed was 12, and the
humidity was 41. First change the value in element 5:1 to 5.

Now insert the new row.

(¥] IHER

D: 1=0.6000
LN:R ] TUELR]  [WRAPIGROs]

148 5: Matrices

7HTHODHH A HHDHNHHNDOHHEHHOHOHOHDODDOHOHODHODODOODOOD

”

I S



’oaoooucuutuuuwv“«‘«&r

Voo

P oo OO0V VY

Enter the actual data for day #4.
(&l 68

Di4=41_
[+ Joe] + | + Jooto] + |

Exit from the Matrix application.

EXIT] [EXIT

Using Indexing Utilities and Statistics Functions
Interactively

Dr. Stormwarning now wants to execute statistical operations on segments
of his accumulated data. He would like to find the mean temperature and
windspeed for the five days. He’ll execute GETM to create in the X-
register a 5 x 2 submatrix that contains the temperature and windspeed
data. He’ll then execute £+ to store the data from this submatrix in the
summation (statistical) registers, select the STAT menu, and find the
mean. (Remember that the £+ function automatically stores the data
from an n-row x 2-column matrix into the currently defined summation
registers. Refer to the discussion of the £+ function in chapter 15 of your
owner’s manual for more information.)

Specify WTHR as the indexed matrix.
BMATRIX] (V] IHOER: ‘WTHR

x: 41,0060
L 00T JCROSS[UNEC] D1 [INDER[ECITN]

Set the index pointers to element 2:2 (the first temperature data entry).

2 [ENTER) (V) 5TOLY . 7.0000

Now get the 5 x 2 submatrix that contains the temperature and windspeed
data.

5 2. GETH

% [ Sx2 Matrix ]
STOI[RELI[TOEL[RCLEL[PUTH [GETH]

5: Matrices 149



Clear the summation registers, then store the data from the matrix in the
summation registers. (If the calculator returns the message
Nonexistent, the current SIZE allocation is insufficient.)

BCLEAR] CLZ x: 5. 0000
.TOP.FCN z* ;

Select the STAT menu and find the mean of the temperature data.

B(STAT)] MEAN: x: 73,0000
LZe ] SUM [HEAN]HIMN] S0EY | CFIT |

Find the mean of the windspeed data.

x% x: 8. 6000
L Zs ] St [MEANTHMN S0EV ] CFIT |

The mean temperature for the five days is 73. The mean windspeed is 8.6.

Exit from the STAT menu.
EXIT

Matrix Utilities

The following routines use existing matrix functions to build useful matrix
utilities.

Finding the Column Sum of a Matrix. CSUM calculates the
column sum of the matrix in the X-register. (The column sum of a matrix
A is a row matrix, each element of which is the sum of the elements of the
corresponding column of matrix 4.) The resultant matrix is returned to
the X-register.

08 { 14-Byte Pram 2
81 LBL "Csum»

82 TRANS

A3 RSUM

150 5: Matrices

) )T ) O OO DY DDDHDDHDDHDEHEDHDHDHDODDODDOHDIIODOIIOIIOEONND
R R R R S yaap——.



0006066066600 0606606066060606066066060666

04 TRANS
a5 END

Finding the Column Norm of a Matrix. CNRM calculates the
column norm of the matrix in the X-register. (The column norm of a
matrix A is the maximum value (over all columns) of the sums of the
absolute values of all elements in a column.) The result is returned to the
X-register.

08 { 12-Bute Pram
91 LBL “"CHRM"

B2 TRANS

83 RHRM

B84 END

Finding the Conjugate of a Complex Matrix. To find the conju-
gate of a complex matrix:

1. Place the matrix in the X-register.
2. Press l[COMPLEX].

3. Press [*4].

4. Press [J[COMPLEX].

The conjugate is returned to the X-register.

Finding the Matrix Sum of a Matrix. MSUM calculates the matrix
sum (the sum of all the elements) of the matrix in the X-register. The
result is returned to the X-register.

88 { 18-Byte Pram
a1 LBL "mMsum®

A2 XEG@ "Csum"

83 RSUM

84 DET

a5 END




Finding the Maximum and Minimum Elements of a Matrix. ¢
MINMAX finds the maximum or minimum element of the real matrix in e M
the X-register. The element is returned to the X-register. The indexed I
location of the element is returned to the Y- and Z-registers (column | f
number in Y, row number in Z). Set flag 09 to find the maximum ele- e I
ment. Clear flag 09 to find the minimum element. e I
Program: Comments: c I
88 { 61-Bute Praom X e I
@1 LBL "MINMAX" e |
@2 STO "MIHMAR" Lines 02-05: Store the matrix I
B3 INDEX "MIHMAX" currently in the X-register in c I
84 RCLEL MINMAX, index MINMAX, and c
85 GTO B3 establish element 1:1 as the current I
maximum or minimum element. = I
96 LBL @1 Lines 06— 12: If flag 09 is clear, test if ¢ I
87 RCLEL the current element is greater than the &
B3 FS? @9 current minimum. If yes, go to label 04 c I
@3 GTD &2 (to maintain the current minimum). If I
18 Hav? no, go to label 03 (to make the current &
11 GTO &4 element the new minimum). c I
12 GTO B3 I
13 LBL @2 Lines 13-15: If flag 09 is set, test if ¢ I
14 KLN7? the current element is less than the ¢
15 GTO 84 current maximum. If yes, go to label c I
04 (to maintain the current max- i I
imum). If no, make the current ele- ¢
ment the new maximum. 'S I
16 LBL B3 Lines 16—19: Make the current ele- ¢ l
17 RCLIY ment the new maximum or minimum. |
12 RCL ST 2 ¢ I
19 ENTER ¢ |
20 LBL B4 Lines 20—24: Maintain the current ¢
21 R+ maximum or minimum element. IS l
22 J+ I
(3
.
152 5: Matrices 3




¢

23 FC? 77
24 GTO 81

25 END

Sorting a Matrix. SORT sorts the rows of the matrix in the X-register
in ascending order by the values in column 1. The sorted matrix is
returned to the X-register.

Program: Comments:

B3 { 81-Bute Pram 2
@1 LBL "SORT"

@2 STO "SORTHAT"
63 IWDEY “SORTHMAT®

84 LBL 91 Lines 07— 10: Establish the row

85 I+ number to sort. (On the first pass, row
@& F57 76 2 is the row to sort, against row 1. On
B7 GTO B4 the second pass, row 3 is the row to
83 RCLIJ sort, against rows 1 and 2.) Continue
89 ROY until all rows are sorted.

1A RCLEL

066006000000 OVGY

11 LBL B2 Lines 11-24: Successively move the
12 1- "sort row" up the matrix until its

13 RCLEL column 1 value is greater than the
14 F37 76 column 1 value of the previous row.
15 GTO B2

16 HZY?

i¥ GTO 83

18 R+

19 RCLIJ

28 RCL+ ST %

21 ROR

22 Rv

23 R+

24 GTO 82

00000000000

¢

‘XX

5: Matrices 153




25
26
27
28
29
30
31
32

33

LBL 83

R+

R+

1

STOIJ

GTD a1

LBL a4

RCL "SORTMAT"

EMD

Lines 25-32: Increment the *sort-row"
number. If the increment causes the
index pointer to wrap, return the
sorted matrix to X and end the pro-
gram,

Vector Solutions

Vectors are a special subset of matrices. You can describe a vector with
either a 1-row X n-column matrix, or a 1-column X n-row matrix.

Geometry

The area of a parallelogram can be determined by the equation

A = Frobenius norm (magnitude) of ( V'V, x V;)

where ( 'V, xV,) is the vector cross product V; and V.

154

5: Matrices

,’",»"A"A":")')')')')')')')')')")')')nﬂnnnﬂﬂn“ﬂnﬂnnn
A i e S S S SRS SEEE EEEE EEEY SEES EEEE S SEEE SN BN SEEY SRSY SENY SENN BENY NN SENN SNEN EEEN DENY NN SU SEN SENN S S A




P 000000V VYIOPVOGEOVVOPFVOPIOVOVNOIOLOGOUODPOPOPOPOPVOPIPFEOPRPY R

Example: The Area of a Parallelogram. Find the area of the fol-
lowing parallelogram.

(0,0,0)

Create vectors V; and V; .

(MATRIX] < 3.0000
, 3(¥ DI (00T JCROET UNEC | GIM [INGES [ECITN]

[ENTER] V1 [ENTER]
1[ENTER]3 [IN
[ENTER] V2 [ENTER]

Enter values for each element in V; .

|x:2.8098 |
[ 007 [CROSE[UMEC] Dur1 [INDERJEDITH]

2 [EXIT

Enter values for each element in V, .

|x:3.BGGB |
| 00T [ROEE[ UMEC] Ditd [INGER[EDITH]

3 [EXIT

Calculate the area.
RCL) ¢ ¥1 i x: 15,0000
CROSS WMCATALOG) Immmml

5: Matrices 155




The area of the parallelogram is 15.0000.

Exit from the Matrix application.
EXIT

Coordinate Transformations

It is often necessary in dynamics or mechanical design problems to per-
form coordinate transformations. Coordinate transformations require you
to:

m Calculate a unit vector.

® Add vectors.

m Calculate a vector dot product.

s Multiply vectors.

m Calculate a vector cross product.

156 5: Matrices

M AN N NN NN D



ORIGINAL
SYSTEM

a\ - ) X
\\ \\ ’
\ L

X
\ - W~ NEW SYSTEM
AR A 4
P - N Notes: AXIS (the rotation axis vector)
P is pointing out of the page
P - atpoint T.
Pd

The rotation is relative to the
translated origin.

The equation for a coordinate transformation of a point from the old sys-
tem to a new system is

P°=[(P-T)'n]n(1 -~ cosf) + (P - T)cosf + [(P - T)xn]sind

The equation for a coordinate transformation of a point from a new sys-
tem to the old system is

P=[(P"*n)n(1l - cosf) + P cos6 + (P"xn)sin(-6)]+ T

where:

P’ is the coordinates of the point in the new system.
P is the coordinates of the point in the old system.
T is the origin of the new system.

n-is the unit vector of the axis about which the rotation is to be done.
6 is the rotation angle.

00000006000 00000¢60dddobdedsééd0sé




Note that the translation occurs before the rotation. The rotation is rela-
tive to the translated origin.

The following program, COORD, enables you to fill the vectors P,

(or P), T, and AXIS with data by programmatically invoking the matrix
editor and enables you to specify either an old-to-new or new-to-old
transformation. (AXIS is the rotation axis vector. COORD stores the data
you supply for AXIS in the variable n, then calculates the unit vector n.)

To key in COORD: Create variables P, T, P*, n, and A before pro-
gram entry.,

Here is an annotated listing of COORD.

Program: Comments:

B8 { 2i6~Bute Pram
gl LBL "COOGRD®

62 EXITALL Lines 02 - 11: Build the main menu.
H#3 CLMEHU

B4 "p

635 KEY 1 GTO
86 T"

87 KEY 2 XEQ
BE "ARIS"

89 KEY 2 XEQ
16 "g"

11 KEY 4 XEQ @

[
—

[ux )
)

1)
Pk

$a

12 LBL 92 Lines 12-15: Display the main menu.
123 MENU

14 STOP

15 GTQ 92

16 LBL @1 Lines 16~22: Display the submenu to
17 "p" edit vector P ( or P” ) and choose the
12 ©EQ 29 direction of the transformation.

19 "H=sD®

28 EEY 5 5TO B85

158 §: Matrices

NN NN NNNANNONNAONNNNNNANAOANAIRANO

»)



TOECC G0 d 0666660660666 6666066666006060FF

21
22

23
24
295
26
27

28
29
28
31
3z

33
34
35
36
37
38
39
48
41
42
43
44
45
46

47
43
49
=248
1
o2

53
54
55

IIO_)HII

KEY & GTO Bé

LBL 97
MEMU
CF B8
STOP
GTO 37

LBL @z
IITII

GTO 39
LEL &3

n

LBEL 29
CLMENU

ASTO ST L

1
ENTER
3

DIM IMD ST L

EDITH
ll(_ll

KEY 1
Il%ll
KEY
KEY
RTH

L35 I o]

LBL 11
%~

RTH
LBL 12
=3

RTH

LBEL B84
IHFUT
RTH

IHD

HEQ

HER
GTO

H
£ "

ST L

11

12

"COORE"

Lines 23-27: Display the submenu.

Lines 28 - 32: Place the vector names
T and n in the Alpha register to create
the vector. :

Lines 33-46: Create a 1 x 3 vector P,
T, or n and open it for editing. Build
matrix editor menu labels and prompt
for data input.

Lines 47-52: Execute the matrix edi-
tor functions.

Lines 53-55: Prompt for the value of
A.

5: Matrices 159




160

LEBL B85
SF @21

LBL 86
EXITALL
RCL “P"
FC? @8
RCL- "T"
STD llPl n
RCL "n"
UVEC

STO "n"
DoT

1

RCL "«
cos

RCLx "nm"
X

RCL "«&*
cos

RCLx "pP'"
+

RCL Ilpl 1
RCL Ilnll
CROSS
RCL "«
FS? 88
+/-

SIN

®

+

Fs? @@
RCL+ "T"
sTO "P"
GTO @1

END

5: Matrices

Lines 56— 57: Set flag 00 for a new-to-
old transformation.

Lines 58 -90: Evaluate the transfor-
mation equation. If flag 00 is clear,
calculate the old-to-new transforma-
tion. If flag 00 is set, calculate the
new-to-old transformation.

YOO NN N NNNNOENHONONNNNOOOOOOOONO



9
i J
)
A/
9
9
) J
k J
9
9
9
9
9
N
9
9
9
®
A
9
9
®
9
®
L
®
9
2
-*
-9
-9

To use COORD:

1. Press COORD.

2. Press then supply values for the elements of T using the
matrix editor labels in the menu. Press (EXIT] to return to the main
menu.

3. Press _AX1S ,then supply values for the elements of the rotation
axis using the matrix editor labels in the menu. Press to
return to the main menu. Note that COORD stores the rotation
axis in variable n, calculates the unit vector of the rotation axis, and
stores the unit vector back in n. If you press ‘AXIS after executing
a three-dimensional transformation, you will see the newly calcu-
lated elements of the unit vector, not the original rotation axis.

For a two-dimensional transformation, set the rotation axis to
0,0,1).

4. Press |

, then supply a value for X and press [R/S].

5. Press | F , then supply values for the elements of P (or P”)
using the matrix editor labels in the menu. Then press  Q+N to
convert from the old system to the new system, or press “N+0 . to
convert from the new system to the old system. The calculation is
now executed.

Example: A Three-Dimensional Translation with Rotation. A
three-dimensional coordinate system is translated from (0, 0, 0) to (2.45,
4.00, 4.25). After the translation, a 62.5° rotation occurs about the (0, -1,
—1) axis. In the original system, a point had the coordinates (3.90, 2.10,

7.00). What are the coordinates of the point in the translated, rotated sys-
tem?

For this problem:
P = (3.90, 2.10, 7.00)
T = (245, 400, 4.25)

AXIS = (0, -1, -1)
K = 62.5°

5: Matrices 161



Set the display format to FIX 2. Set the angular mode to Degrees. Exe-

cute program COORD.

H0OISP) F 02 x: 8.00

B(MODES) : LP L T [asii] & [ ]
COORD

Enter the elements of T.

T X 2,49
245 % (e 17 [ews] o | |

4

|><: 9.00 I
L P 1 T [es] & [ 1 |

Enter the value of X..

LA x: 62,50
62.5 Iﬂnmg_g

Enter the elements of P,

Calculate the transformation.

162 5: Matrices

MmN M T N N N N NN anNnAnnnanqnn



A A A L B AL L 2B A B A 2B A A 2 B B A A A A A b Jb Jh JB b Jh J Jh Jb dh i o

Check element 1:3.

1:3=0.59
Le | = |  [N>0]0+N|

The coordinates of the point in the new system are (3.59, 0.26, 0.59). Exit
from program COORD and return the display format to FIX 4.

[EXIT] (EXIT) v: 1.0000
BOISF)  F1x 4 x: 8.5891

Solving Simultaneous Equations

Evaluation of an electrical circuit by the technique of loop currents gen-
erates a system of simultaneous equations. The number of equations in
the system is equal to the number of loops in the circuit. The first example
in this section finds the currents in a four-loop, purely resistive circuit (the
terms in the system of equations are real numbers). The second example
finds the currents in a four-loop circuit that has complex impedances (the
terms in the system of equations are complex numbers).

Example: Solving Real-Number Simultaneous Equations.
Consider the following four-loop circuit.

R4 Rg3 Rs Rz

W W—MN—7W

Apply the technique of loop currents to find the currents I, I,, I3, 1, .

|+
|

<
il

%)
1

5: Matrices 163




The equations to be solved are (in variable form):

1. (Ry+R3)(I1) - (R3)(I3) =V

2. -(R3)(11) + (R2+R3 + R()(I3) - (R)(I3) =0
3. ~(R)(I3) + (Rg+Rs+ Rg)(I3) - (Rg)(I4) =0
4. -(Rg)(Is) + (Re+ R7 + Rg)(14) =0

Put the equations in matrix form, substituting the following values for the
variables: V' = 34 V and R, through Rz = 111

2 -1 0 of |1
-1 3-1 0 I,
0 -1 3-1| || =
o o0-1 3| |g,

OOQ%

Select the Simultaneous Equation application, and specify the number of
unknowns.

x: 8.8800
G G TR I S

Enter the values for the elements of the coefficient matrix MATA. (The
keystrokes for the entering the first row data are shown here.) After
entering all the values, return to the main menu.

x: 3.0000
(TN (TN CETCTS A I .

EXIT

Enter values for the constant matrix MATB.

MATB x: 8. 0000

34 (AT HRTETtRTR] | | |
0

0 :

0

164 5: Matrices

f\ﬂ

i

i

i

MM VNN NN NDNNADAANDDANNN

WY/




Calculate the unknowns.

MATR:

1:1=21.0000

1, is 21 A. Now check /5.
e 2: 1=8. 0000

3:1=3.0000
e Qut L+ | 4 [6010]
4:1=1.6000

Leave the matrix editor. (Stay in the Simultancous Equation application
for the next example.)

EXIT

x: 1.0000
[bnTietnTefrmes] | 1 |

5: Matrices 165

FEEEXXXXXXXXENERXXE XN N N N X N N N B A A A dddd




Example: Solving Simultaneous Equations That Have Com-
plex Terms. Now consider the following circuit.

R4 R3 Rg R7

W—TW

AY
/1 /| J1 JI

c, C, Cg Cq

The capacitor in each loop of the circuit introduces a complex term into
cach loop equation:

1 |(Ry+ Ry) = i (o) (1) = (Ra) (1) =V
[ ]
2. = (R)(I2) + [Ry + Ry + Ry = i(=)|(13) = (R) (Is) = 0
2 o

L

3. - (R)(3) + |Ry + Re + Rg = i(=1)|(Is) = (Re) (L) = 0
L >

[ ]
4. - (Re)(I3) + LR6+R'I+R8_’.(O)CL4)-(I4)=0

166 5: Matrices

}”)ﬂﬂ”)’)’)’)ﬂ'}'}ﬂ'ﬂﬂﬂﬂﬂhﬁﬂﬂﬂﬂﬂﬂﬁhﬂﬂﬂﬂﬂ(\ﬂ



PFE R EEEEXXXXXXXX XXX My W N N A N I I N S A SN N N

Put the equations in matrix form, substituting the following values for the
variables: V = 34V, R; through Rg = 511, w = 100 radians/second,
and C; through C,=1F.

10 - i0.01 -5 0 0 I 34
-5 15 - i0.01 -5 0 I3 0
0 -5 15-i001 -5 I3 = | o
0 0 -5 15-i001| |f, 0

Set the coordinate mode to Rectangular. Make MATA a complex matrix.
x: 8.0008 18.0000

0ﬁ§ﬁiﬁ]|ﬂéﬁﬁmﬁjsa

[T YT 7 S N S
ET0) (x) M

Enter the values for the elements of the matrix. (The keystrokes for the
entering the first row data are shown here.) After entering all values,
return to the main menu.

x: 15.0000 -10.0100

0 .01 CEREEEE G S
W(COMPLEX] |
5A)
0
0

EXIT

Solve for MATX. (MATB has the same value as in the previous example.)

1:1=4,2000 10.0061

I, is 42000 + i0.0061 A. Now check I, .

2:1=1.6000 i8.0037




Check I 3.
G 311=0.6000 10,0013
[ = [oww ] + [ 4+ Jcorn]
Chcck I 4

4:1=0.2000 id.0008

Exit from MATX.
EXIT x: 80,2000 i0.0008

MATE[HATH] | [

Make MATA and MATX real matrices. Exit from the Matrix application.

MARTA B(COMPLEX) v: [ 4x1 Matrix ]
MATA x: [ 4x1 Matrix 1]
MATX B[COMPLEX]

MATR

Using the Solver with Simultaneous
Equations

In the examples in the previous section, you found the loop currents I,
through 7, by dividing the constant matrix MATB by the coefficient matrix
MATA. You were limited in that example to solving specifically for the
loop currents in the solution matrix MATX.

In the following example, you’ll use the Solver and matrix division to find
the value of one element of the coefficient matrix, MATA, given:

m Values for the other elements of the coefficient matrix.
m Values for the elements of the constant matrix.

® A specified relationship between two values of the solution matrix.

168 S5: Matrices

NOHOOD

i i i

NN NN NN AN NN ODNOINNDONNADODN



CS G VGG b 0G0 GGG GVOOOOOOOVOOVOOVOOVLOVOOOBLIWWY

Example. Using the Solver to Find the Value of an Element
of the Coefficient Matrix. Consider again the circuit from the previ-
ous section in this chapter.

Rg

=

Find the resistor value R, such that loop current I; is 20 A greater than
loop current I, (I; = I;+20), when V' = 40 V, and R, through Rg = 11}.

These conditions generate the following matrix equation.

R
-1
0
0

-1 0 0
3 -1
-1 3 -1
0 -1

I, +20
Iy
Iy
Iy

OOOS

5: Matrices 169




Part 1. Write the program for the Solver.

Program:

88 { 82-Byte Pram >
81 LBL "SIMUL"

82 MVAR “R*
03 MYAR "ROW"
B4 MVAR "COL"
85 MvAR "D"

A6 IMDEX "MATAR"

67 RCL "ROW"
B3 RCL “"CoL"
89 STOIJ

18 RCL "R"
11 STOEL

12 RCL "MRTB"

13 RCL+ "MATA"

14 STO "MATR"

15 IHNDEX "MRTX"

16 RCLEL

17 I+

18 RCLEL

19 RCL+ "D"
20 -

21 END

170 5: Matrices

Comments:

Lines 02-05: Declare the variables R,
ROW, COL, and D.

Lines 06— 11: Index the coefficient
matrix, and set the index pointer to
the element specified by the current
values of ROW and COL (lines 05—
08). Store the current value of R (sup-
plied first by you as initial guesses, and
then iteratively by the Solver) in the
specified element (lines 09-10).

Line 12-14: Solve for MATX. MATA
has the current value of R in the
specified element.

Lines 15-20: Index the just-calculated
solution matrix (line 14). Calculate

I, - (I; + D) (lines 15-20). The
Solver iteratively supplies values for R
untill, - (I + D) = 0.

X

i

NN N NN NN AN NANNODNNNONNNOONONOONOOO



'YX XX YXXXXXEXFEIEXEEFXXEXNNNNNNNE NN N NN N N NN

Part 2. Enter the Matrix application, and specify a system of equations
with four unknowns.

IX MK 4 (ENTER) x: B.00008
BMATR XTI [REATS ST I N

Fill MATA with the known coefficients. Element 1:1 contains the
unknown resistor value R. You can leave this element at its current value.
(The keystrokes for the first two rows are shown here.) After entering all
the data, return to the main menu.

3 8808
(nTAlHRTELAT] [ |

Fill MATB with the known constants, then exit from the Matrix applica-
tion.

[ ]5]%)
2[5 [o]7)

* O

AQ
-

EXIT] [EXIT] [EXIT

Select the Solver apphcatlon and then program SIMUL.

W(SOLVER] %: 40, 0600
—mn“--

Specify element 1:1 of the coefficient matrix.

COL=1.0000
I T T O R

Enter 20 for D.

20

|D=2B. 8000 l
I T TN T A

5: Matrices 171



Enter guesses of 0 and 10 for R and solve for R.

0 e =1.6190

Verify that element 1:1 of the coefficient matrix (R) is 1.6190.

BMATRIX] (V] 1:1=1.6190
EDITH M

Ry =R - Rz = 0.619 Q. Check the values for I, and I, .

EDITHN MATE 1:1=32.3077

I, is 32.3077 A. Check I,

2:1=12.30677

I, is 12.3077 A. Exit from the Matrix application.

(EXIT] [EXIT) v: 1,6198
x 12.3077

Matrix Operations in Programs

All matrix functions except GOTO are programmable. The programs for
advanced statistical operations in the following chapters use matrices
extensively.

The program LIST on pages 176 — 178 enables you to accumulate statisti-
cal data in a matrix with the same keystroke sequence that you use in nor-
mal data entry into the summation registers.

The program MLR on pages 186 — 192 uses matrix and statistical functions
to calculate a linear regression for data sets of three independent vari-
ables. MLR creates a coefficient matrix MATA and a constant matrix
MATB. It executes matrix editor functions to fill them with data, then exe-
cutes matrix division to calculate the solution matrix MATX.

172 5: Matrices

MMM N AN NN NN NN ONONONNNNNOONONOOMNN



The program PFIT on pages 218 -222 plots the statistical data from the
matrix currently in the X-register, then fits and plots a curve to the data
using the current statistical model. It plots the curve and the data points
using x-y data pairs from complex matrices.

5: Matrices 173

CEECES AL b dddddddddéddddddddddd



6

Statistics

This chapter presents five programs for statistical operations. The pro-
grams use statistical functions introduced in chapter 15 of your owner’s
manual, and integrate matrix operations presented in the previous chapter
and in chapter 14 of your owner’s manual.

» Three programs enable you to accumulate data in a matrix for subse-
quent statistical operations:

m LIST enables you to fill an n x 2 matrix LZLIST with x- y data
pairs with the same keystroke sequence that you use to enter data
into the summation registers.

s YFORM stores an n X m matrix in LIST and redimensions
LLIST to nm x 2. Each element of the original matrix becomes
an element of column 2 of ELIST. Column 1 is filled with zeros.

m XVALS fills column 1 of ELIST with x-values 1, 2, 3, ..., n for
linear or exponential curve fitting.

m MLR calculates a multiple linear regression for two or three indepen-
dent variables using the £+ function and matrix operations.

m PFIT plots the x-y data pairs from SLIST and uses FCSTY to plot a
curve to the data according to the currently selected statistical model.
(The annotated listing of PFIT is in chapter 7 on pages 218 -222.)

174 6: Statistics

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂnﬂnﬂﬂﬂ(‘f\




FYYXXXXKEXEEREREEEEEE R B E B B B B A A A 0 db dbdhdhdhdihdg

List Statistics

To supply a set of x-y data pairs to the calculator for subsequent statistical
operations, you use the keystroke sequence

y-value [ENTER] x-value

for each data pair. The summation cocfficients in the 6 (or 13) summation
registers are automatically recalculated each time you press (Z+]. The cal-
culator does not, however, maintain a list of the individual data pairs.

To update the summation registers and maintain a list of the x-y data
pairs, you:
1. Create a 2-column matrix.
2. Use matrix editor functions to fill the matrix with the data pairs.
3. Place the matrix in the X-register.

4. Execute I+ to accumulate the data in the summation registers.

(You did this in chapter 5 in the section "Using Indexing Utilities and
Statistics Functions Interactively".)

6: Statistics 175




The LIST Program. The following program, LIST, enables you to fill a
1- or 2-column matrix LLIST with x-y data pairs using the keystroke
sequence

y-value x-value L. 18T+ (for each data pair).

where [ 18&T# is one of three menu keys built by LIST. Note that this is
the same keystroke sequence that you use to enter statistical data into the
summation registers.

To key in LIST:

1. Create variable ZLIST before program entry.

2. Assign functions J+ and J - to the CUSTOM menu before program
entry.

3. Create labels LIST, LIST +, LIST -, and CLIST when you begin
program entry.

Here is an annotated listing of LIST.

Program: Comments:

Be { 197-Bute FPram 2
@1 LBL "LIST®

82 CLMENU Lines 02-11: Build and display the
B3 "LIST+" menu keys.

a4 KEY 1 HEQ "LIST+"

a5 “"LIST-"

Ac KEY 2 XE@ "LIST-"
av "CLIST"

62 KEY 6 HKER "CLIST"
@3 MEMU

1a STOP

11 GTO "LIST"

176 6: Statistics

I R T T TR R T T TR AT T T T TR TR T T, T I O T )




t

'R N X NN NN NN N

S0 bdddbbdboovoodbbovedduvio

12
13
14
15
16
17
18
19
28

21
22
23
24
23
26
27
28

29
28

31

a2

33

34
35
36
37
a8
a9
48
41
42

LBL "LIST+"
SF 23

KE@ I

FC?C 25
GTO 8z
GROM

‘J_

J+

WRAP

LBL @4
STOEL
FS? B1
GTO a1
J+
XY
STOEL
KOOV

LEL @1
VIEW "ZLIST®
RTH

LBL @2
1

FS? @81
1

FC? A1
2

DIM "ZLIST"
WER I
R+

R4

GTO a8

Lines 12-20: If ZLIST exists, index it
and make it grow by one row. If it
doesn’t exist, create and index it (in
lines 32-42).

Lines 21 -28: Store the x-value into
the matrix. If flag 01 is clear, then also
store the y-value.

Lines 29-31: View the ZLIST matrix.

Lines 32-42: Create the 1- or 2-
column matrix TLIST.

6: Statistics 177




43
44
45
46
47
48
49
50
51
52
53

o4
35
96
37

28
29
=10

61
62
632

64

178

LBL "LIsST-"
SF 25
KEQ@ I
FC? 25
RTN

J-
RCLEL
FS? B1
GTO @3
J_
RCLEL

LBL 83
DELR
FS?C 25
GTO 81

LeL "CLIST"
cLy "ZLIsT"
RTH

LEL I

INDEX "ELIST"

RTH
EHD

6: Statistics

Lines 43— 53: Recall the element(s) in
the last row of ZLIST to the X- (or X-
and Y-) register(s).

Lines 54 - 57: Delete the last row of
LLIST.

Subroutine CLIST, lines 58 - 60: Clear
the variable ZLIST.

Subroutine I, lines 61-63: Index
LLIST.

l

vunuﬁﬁi}f)@

A\ 4

PADDDD DD

2NN DD DD



Q000 00V VVVVPOVOVVOOVVVVOVVOVOVVIOVVOOVOYY

To use LIST:

1. For two-variable statistics (x- and y-values), clear flag 01. For one-
variable statistics (x-values only), set flag 01; the program makes
TLIST a 1-column matrix.

2. Press (XEQ] (LIST .
3. Clear LLIST by pressing ELIST.

4. Enter data pairs by pressing y-value x-value LIST#* (for
each data pair).

5. You can delete the last data pair by pressing L1

Example: Accumulating Statistical Data in a Matrix. Use pro-
gram LIST to accumulate the following x-y data pairs in the matrix XLIST.
Then find the mean of the x- and y-values.

x-value | y-value

6 2
5 3
9 5
6
1
4

12
21 1
7

Clear flag 01 for two-variable statistics. Start LIST.

x: 0, 0000
NESTY [WESE] I R N

Clear XLIST.

x: 8. 8000
(LisTeuist=-f | ]  fCUIST]

6: Statistics 179



Enter the first data pair.

2 6LIST+ ZLIST=L 1x2 Matrix ]
ISEARY [WETT I N N G

Key in the next data pair.
3 S5LIST+

ZLIST=L 2x2 Matrix 1
NEZI EE I N N G

Key in the remaining data pairs (the keystrokes are not shown here). Exit
from LIST.

EXIT

v: 4.0000
X: 7. 00800

Clear the summation registers. Recall ZLIST to the X-register.

W[CLEAR) cCL:z v 7.0000 .
RCL) ZLIST x: [ 6x2 Matrix 1

Accumulate the data from LLIST into the summation registers.

Y: 7. 0000
x: 6. 0000

Find the mean of the x- and y-values.

B(STAT) ‘MERH x: 10. 0000
[ T+ ] SUH [MEAN]HAMN | S0EY | CFIT ]

The mean of the x-values is 10. Check the mean of the y-values.

(xxy) x: 5. 1667

L E+ | Sutd [MERN[IHMN] Z0EW ] CFIT |
Exit from the STAT menu.
EXIT v: 16,0040

x: 9. 1667

180 6: Statistics

- TN NN NN NN NNANAONONNONNNO




GO OO OO OOOOGEOIOLOILOGOOOIFOIOIOIFOIIFVIVFIFVIVIVFIVFIVFVFIVIVIVIFV

Redimensioning the TL/ST Matrix to nm x 2. In the previous exam-
ple, you used LIST to create a 6 x 2 matrix ZLIST. You then recalled
SIIST to the X-register, and executed Z+ to accumulate the x-y data
pairs from the matrix into the summation registers. To execute £+ when a
matrix is in the X-register, that matrix must have a column dimension equal
to 2. If, for example, you use LIST to create ann X 1 matrix ZLIST (by
setting flag 01), you must redimension it before executing L+.

The following program, ZFORM, redimensions any matrix BLIST of
dimension 7 x m to dimension nm x 2. All of the elements in the input
matrix are moved to the second column. The first column is filled with 0’s
(zeros).

88 { 58-Bute Pram 3
©1 LBL "ZFORM"

a2 2

A3 RCL “ELIST"
a4 DIM?

B85 X

86 DIM “"ZLIST"
@7 INDEX "ZELIST"
6s8 1

@9 ENTER

18 2

11 REOR

12 RCL "ZLIST"
13 TRAMS

14 STO "ZLIST"

15 END

Filling Column Two of £L/ST with Evenly Spaced Integers.
You may want to fit a linear or exponential curve to a set of one-variable
statistical data. The following program, XVALS, fills the first column of
the ELIST matrix with integers 1,2, 3, .., n. IfELIST is a 1-column
matrix, XVALS automatically creates the new column.

6: Statistics 181




Program: Comments:

80 { 46-Buyte Pram 2
g1 LBL "XVALS"

82 RCL "ZLIST" Lines 02-08: Recall ELIST. If itis a
@3 DIM? 1-column matrix, execute ZFORM to
64 1 make it a 2-column matrix. Then index
g5 - it.

HE X£@7

a7 RER "EFORM"
@8 INDEX "ELIST"

B9 LBL 88 Lines 9-14: Fill column 1 with

18 RCLIJ integers 1, 2, 3, ..., n. Continue to the
11 XY end of the column.

12 +

12 FC? 7é

14 GTO B4

15 END

Using the Summation-Coefficient Functions
(X+, -, and CLY)) in Programs

The program MLR in this section uses the £+ function and matrix opera-
tions to calculate a multiple linear regression for three independent vari-
ables.

For a set of data points { (x; ,y;,2,4),i=1,2,..,n }, MLR fits a
linear equation of the form

t=a+bx+cy+dz

by the least squares method.

182 6: Statistics

HNOHNONNHNNANDNDHNNNDITDNDNAEHNNNNDOONARAIONOANOAEOGE



Regression coefficients a, b, ¢, and d are calculated by solving the follow-
ing set of equations.

n &t Wi &t 21',-

a
o Z()? By Ixz b Ix; t;
o Iy D002 Iz c Ly t;
o Bzx Dzy; Z(z)? d g4

The coefficient of determination R? is defined as

alt; + bIx; t; + cTy; t; +dBz t; - 1 )32
n

R?=
23 - ',%(}3';)2

Here is a flowchart for MLR.

6: Statistics 183




MLR

BUILD MATRICES
MATA, MATB, MATX

v

CLEAR FLAG 00 TO
UPDATE STATISTICAL
COEFFICIENTS WITH

NEW DATA SET

LBL
00

BUILD MAIN
MENU KEYS

DISPLAY MAIN MENU
AND STOP FOR INPUT
KEY 1 KEY 2 KEY 3 KEY 3
i reLz” "CALC"

/I2+I’

[ Xxea11 || xeQ12 |f xeQ13 |

OO OO0 ®O®®

<

€

& ‘°

I~

¢

Il

USE STACK ARITH USE STACK ARITH USE CLZ TO CLEAR €
ANDZ+TO UPDATE | JANDZ—TO SUBTRACT] ALL SUMMATION Q@
STATISTICAL COEFF.| | THE LAST DATA SET REGISTERS o
e
N

184  6: Statistics N
]



FILL MATA, MATB
WITH SUMMATION
COEFFICIENTS

\

CALCULATE MATX
AND R2

y

BUILD SOLUTION
MENU

DISPLAY SOLUTION MENU
AND WAIT FOR DATA INPUT

¢KEY1 $KEY2 iKEYS LKEY4 l
IAI L] IC. lD'

KEY i@
Kevs |keys N2

y

INDEX MATX AND
DISPLAY VARIABLE

O O0POOOOOOOIOIOVOIPIOPIVIIIIIGIFIGITVVTIIFIT VTS E®T

B "R2" T?"
¢ DISPLAY
R2

LOAD ALPHA REGISTER

WITH VARIABLE NAME CALCULATE

AND X-REGISTER WITH AND DISPLAY T
CORRESPONDING COLUMN

NUMBER OF MATX J

6: Statistics

185




To key in MLR:

1. Assign functions —, 1, «, |, I- and J+ to the CUSTOM menu
before program entry.

2. Create variables MATA, MATB, MATX, R2, and T before program
entry.

Here is an annotated listing of the program.

Program: Comments:

B8 { 460-Bute Prgm 2}
81 LBL "MLR"

82 REALRES Lines 02-12: Set to calculate real
83 4 results only. Create 4 X 1 matrices
@4 ENTER MATX and MATB. Create 4 x4
@5 1 matrix MATA. Clear flag 00 (set to
86 DIM "MATX" L+ mode). Set to Linear (statistics)
a7 DIM "MATB" mode (calculate six summation

a8 4 cocfficients).

89 ENTER

18 DIM "MARTA"

11 CF B8

12 LINZ

13 LBL 08 Lines 13-27: Build and display the
14 CF 21 menu keys

15 CLMENU

16 "Z+"

17 KEY 1 XEQ@ 11
18 n z_ "

19 KEY 2 XE@ 12
28 "CL=z"

21 KEY 3 XEQ 13
22 "CALC"

23 KEY 6 GTOD 14
24 MENU

25 CLD

26 STOP

27 GTO 98

186 6: Statistics

M DO N DO N H D NDNDHHHHDDDADDOOOODDINNNAD




A R BB K A IR N BN BN 2 I K X X BN Y BN BN W N AN AN AN AN X N ¥ % X N QN QN J

28
29
30
31

32
33
34
35
36
57
38
29
40
41

42
43
44
45
46
47
48
49
5@
51
52
53
54
55
56
57
58

LBL 11
RCLx ST
FS? 88
+/-
STO+ 12
CLX
LASTX
RCLx ST
FS? B8
+/=
STO+ 15
CL¥
LASTH
E+

RCL* ST
FS? B8
+/-
STO+ 14
CLX
LASTH
RCLX ST
FS? @@
+/—-
STO+ 16
CLX
LASTX
R+
ZREG 87
FS? @8
RTH

2+

Y

™~J

Subroutine 11, lines 28 - 58: Emulate
I+ (or I- if flag 00 set) to update the
following summation coefficients: Dxz
in Rys, Bt in Ry5, Tyz in Ryq, Tyt in

R 6. Execute £+ to update the follow-
ing coefficients: £z in Ry, 22 in R g,
Ttin Rog, ¥2in Ry, X2t in Ry, 1 in
Ry

6: Statistics 187



59
e
61
62
63
64
65
66
67
&3

69
ra
[
re
73
4
73

‘e
rad
8
79
g8
a1
82
a3

a4
85
=]
a7
a8
a9
94
21
o2
232

188

LBL 81
CLX
LASTX
R+

R+

ZREG 81
FS?C B9
RTH

z+

RTH

LBL 12
SF 68
“EQ 11
2_

KEQ 61
E_

RTH

LBEL 13
ZREG 11
CLZ
ZREG 87
CLZE
ZREG A1
CLZ

RTN

LEL 14
"Calculatina"

AVIEN

a

STOX "MATAH"
IHDEX "MATA"
J+

RCL 81

+

RCL 83

6: Statistics

Subroutine 01, lines 59 -68: Execute
I+ to update the following
coefficients: Bx in Ro;, Bx?in Rey, Ty
in Rgg, By? in Roy, Ty in Reg, and 1 in
Ry . (Note that n is also calculated in
subroutine 11.)

Subroutine 12, lines 69-75: Emulate
L~ (set flag 00) to update the
coefficients calculated in subroutine
11. Execute - to update the remain-
ing coefficients.

Subroutine 13, lines 76 —83: Execute
CLZ to clear all defined summation
registers.

Lines 84 - 147, calculation of
coefficients a, b, c, d, and R? : Fill
MATA with x, y, z summation
coefficients. Fill MATB with t summa-
tion coefficients. Calculate MATX
(MATB + MATA). Calculate R?

HMOADNNDNNDNDNADBADDDIDDDHDDDODOIOIIIDIOIIIG®M®




94 »

95 RCL B7

96 +

97 RCL 13

98 €

99 RCL @5

109 +

181 J+

162 RCL 14

163 +

164 RCL "MATA"
185 TRAHNS

186 S5TO+ "MATA"
197 RCL 88

168 +

169 «

118 RCL B4

111 +

112 ¢

113 RCL B2

114 +

115 <

116 RCL A6

117 STOEL

112 INDEX “"MATE"
119 RCL a9

128 4+

121 RCL 15

122 «

123 RCL 16

124 4

125 RCL 11

126 STOEL

127 RCL "MATB"
122 RCL+ "MATA"
129 STO "MATH®
128 LASTH

131 TRANS

132 KOV

133 x

134 FHRM

6: Statistics

189




135
136
137
138
129
140
141
142
143
144
145
146
147

142
149
158
151
152
152
134
1353
158
157
158
159
led
161
162
163
154

163
156
167
163
169
1ra
171

190

RCL @89
X2
RCL+ 86
LASTX
RCL 18
H<eyY

STO “R2"
CLD

F$? 55
SF 21

LEL B2

n H n

KEY 1 ®ER
n B "

KEY 2 RER
IIC "

KEY 3 HER
IID n

KEY 4 XE®
" RE "

KEY 5 XEGQ
n T? n

KEY & WERQ
KEY 9 GTO
MENU

STOP

GTO B8z

LEL 21
1

llall

GTO Az
LEL 22
=

llbll

b

g%

[
ra

[
w

$a

3

Td
o

DoV ¥ ]
(241

=
)

Lines 148 - 164: Build and display the
solution menu.

Subroutines 21-25, lines 165—192:
Display the calculated coefficients a,
b, c, d, and R2. If PRON has been exe-
cuted, print the coefficients (lines 187
and 191),

R R T TR T TN B T S B R B L )



OO0O0OO0OO0OOO OO OOLOOLIIVOOIVFIVFIVFIIVFIVIVFIIVFIVISFSFVFIVFIVFVIYVYST® -v(

i1ve
173
174
175
176
177
178
179
12o
181
182
183
184
185
186
187
188
189
199
191
192

192
194
195
196
197
198
199
280
201
282
283
284
283

GTO 83
LBL 23

3

IICII

GTO 83
LBL 24

4

Ildll

LBL 83

1

INDEX "MATX"
STOLJ
RCLEL
=

ARCL ST %
AVIEW

RTN

LBL 25
RCL "R2"
VIEW "R2"
RTN

LBL 26
INDEX "MATX"
KEQ 04
KEQ 84
XEQ 04

+

+

I_
RCLEL

+

sTO "T"
VIEW "T"
RTH

Subroutine 26, lines 193 -205: Fore-
cast T based on the calculated
coefficients a, b, ¢, and d. Display T
and, if PRON has been executed, print
T.

6: Statistics 191




LBL 94 Subroutine 04, lines 206 -210: Calcu-

I- late terms bx, cy, and dz.
RCLEL

RCL» ST T
RTH

EMD

To use MLR:

7.

. Press MLR

. Press  CLZ  to clear the summation registers.

Enter each data set, using the keystroke sequence t-value [ENTER
Z-value [ENTER] y-value [ENTER] x-value = T+ .

- Press CRLC..

- Press the corresponding menu keys to see the values of variables a,

b, c,d, and R2.

To forecast 7, use the keystroke sequence z-value [ENTER) y-value
ENTER] x-value @14,

To return to the main menu, press [EXIT).

Example: A Linear Regression For Three Independent Vari-
ables. Find the regression equation for the following set of data.

ij1j213|4]|5

x| 7 1{11|1| 7
v | 2529563152
z| 6|15| 8| 8| 6
t, |60 |52 |20]47 |33

Execute MLR.

192

6: Statistics

NN N A N AN AN DO DIDIDDDODDIODANND




D DD GGG OOOOGGOGGGYGOGVOYGVOVVGVOVOGVO

Clear the summation registers. Enter the first data set, starting with the
t-value.

60 (ENTER] 6 [ENTER] 25 [ENTER)
7 2

Enter the second data set.

52 [ENTER] 15 [ENTER] 29 [ENTER]
e »

Enter the remaining data sets (the keystrokes are not shown here). Now
calculate the regression coefficients and the coefficient of determination.

ALC

Check the value of a.

Check the value of b.
oy

Check the value of c.

Check the value of d.

Check the value of R2.

a=103.4473
Lp | & | € ] 0 |R2]T% |

b=-1.2841
L n | E ]

6: Statistics 193



Calculate T (the forecasted value of ¢ given values for x, y, and z). Use the
values from data set #4.

8 [ENTER] 31 [ENTER] 11

(The actual value of ¢ in data set #4 is 47.) Return to the main menu and
clear the statistics registers for new data.

cLZ

x: 46.4616

%3 I . e
Exit from MLR.

Curve Fitting in Programs

The curve fitting functions FCSTX, FCSTY, SLOPE, YINT, CORR,
LINF, LOGF, EXPF, PWRF, and BEST are programmable.

Refer to program PFIT on pages 218 -222 in the following chapter. PFIT
uses FCSTY in line 89 to forecast a y-value based on the currently
selected statistical model for each of 110 x-values. A curve is then plotted
with the 110 data pairs.

194 6: Statistics

3‘33@}

DD DDADDDADIDIDNDDADDIDNAIANIINIIND

g

/)




¢

8044000000600 0¢ddddd

Graphics and Plotting

The following topics are covered in this chapter:

m Building graphics patterns.
s Multifunction plotting.

m Plotting statistical data from a complex matrix.

Graphics

The program HPLOGO in this section uses the XTOA and AGRAPH
functions to build the Hewlett-Packard company logo in the center of the
display.

To key in HPLOGO:

1. Assign the functions XTOA, CLA, ARCL, and XEQ to the
CUSTOM menu.

2. Create the variable BLOCK.

7: Graphics and Plotting 195



Here is the annotated listing.

Program:

68
at

oz
a3
a4

as
a5
ar
ag
69

18
11
12
13
i4
15

16
17
12
19
2a
21
2z
23
24
25
26
27

196

{ 441-Byte Fram >
LBL "HPLOGO"

CLLCD
CF 24
CF 35

®EQ “TOP"
1

ENTER

44
AGRAFH

®ER "EBOT"
9

ENTER

48
AGRAPH
RTH

LeL "TOp"
CLA

233

KTOR
wTOR
“TOR
®TOA
®TOA
XTOAR
ASTO "BLOCK"
CLA

254

7: Graphics and Plotting

Comments:

Lines 02-04: Clear the display for
graphics. Clear flags 34 and 35 so that
graphics placed in the display with
AGRAPH are merged with any
graphics already in the display. (The
top and bottom halves of the logo are
built separately and merged in the
display.)

Lines 05—-09: Call subroutine TOP to
build the top half of the logo. Then
display the top half of the logo, start-
ing at pixel (1, 40).

Lines 10-15: Call subroutine BOT to
build the bottom half of the logo.
Then display the bottom half of the
logo, starting at pixel (9, 40).

Subroutine TOP, lines 16—91: Build
the Alpha string that represents the
top half of the logo. (Begin by building
the Alpha string that represents an 8 X
6 block of on-pixels and storing that
string in the variable BLOCK.)

AN NN NN AN NN N NN OO N00060000AAAMRM



XX XXIXEKXKEXKEKE N N'N N N NN N B B N B A A A A Jd

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
&6
61
62
63
64
85
66

KTOR
ARCL
255
XTOA
63
XTOA
15
XTOA

XTOA
XTOA

XTOA

XTOA
129
KTOA
224
XTOA
1208
®TOR
62
KTOA
39
¥TOAR
161
XTOR
224
XTOA
@B
XTOA

®TOAR

XTOR
129
®TOR
2235
XTORA

"BLOCK"

7: Graphics and Plotting

197




67
68
€9
7o
I8!
72
73
74
7S
76
e
78
79
ga
81
8z
&3
84
35
g6
a7
28
29
Q8
21

2
93
4
25
96
av
28
29
168
181
182
183
184

198

av
XTOA
33
®TOA
XTOA
35
XTOA
163
XTOA
231
®TOA
183
XTOA
15
XTOR
31
“TOA
63
®TOA
ARCL "BLOCK"
233
KTOH
254
XTOA
RTH

LEL "BOT"
CLA

127

¥TOA
ARCL "BLOCK"
255

XTOR

252

XTOR
248
XTOA
224
XTOA

7: Graphics and Plotting

l

Subroutine BOT, lines 92-156: Build
the Alpha string that represents the
bottom half of the logo.

NHNNOHNHHHHNOHE NN OHHEHOODODONODODODODOOOOARAAMRAM

]



L BB 0000000000000 dbOOOVVGVVOOO

185
10&
167
108
189
118
111
112
113
114
115
116
117
118
119
128
121
122
123
124
1235
126
127
128
129
136
131
132
133
134
135
136
137
138
139
146
141
142
143

XTOA
192
XTOR
198
XTOA
135
XTOA
129
XTOA

XTOR
XKTOA

XTOA

KTOA
129
XTOA
224
XTOA
120
XTOA
30
XTOR

XTOA

XTOA
132
XTOA
XTOR
XTOA
198
KTOA
199
XTOR
225
XTOR
224

7: Graphics and Plotting

199



144 XTOAR
145 248
145 XTOA
147 248
145 XTOA
149 252
1568 XTOR
151 ARCL "BLOCE"
152 255
153 XKTOA
154 127
155 XTOR
155 RTH

157 EHD

Example: Building a Logo. Display the Hewlett-Packard logo. If you

have a printer, modify HPLOGO to print the logo. Then print it.

Execute HPLOGO.
HFLD

| G/D |

Insert the instruction PRLCD after line 14 of HPLOGO to print the logo.

B(FRGM] B(GTO) [] 14 [ENTER]
VI FRLCD (EXIT

Print the logo.

BPRINT] (A] FOH
HFLD

v: 9, 0009

x: 40.0000

A

N

Using Binary Data to Build a Graphics Pattern. To build the
logo in the previous example, you had to calculate the column print
number for each of 91 columns - a time-consuming effort. The following
program, BINDATA, calculates the column print number when you input

the equivalent sequence of binary numbers in a column pattern.

200 7: Graphics and Plotting

MDA NNHNHNHNNHN NG00 000H000000D00060000000OKMHMEO




Program:

517}
a1

az
a3
a4

a5
as
ar
83
a9
18
11
12
13
14
13

16
17
18
19
28
21
22
22
24

25

26

{ 68-Byte Pram
LBL "BIMDATR"

CF 34
CF 35
BINNM

LBL 80
CLX
STOP
126
REOY
WY
GTO 81
“XTOR
}_ nn n

LEL &1
RIF
AYIEW
CLA
WTOA

1
EMTER
=1
AGRAFH
GTO @/

EHL

Comments:

Lines 02-04; Clear flags 34 and 35.
Set the calculator to Binary mode.

Lines 05-15: Clear the X-register and
suspend program execution for binary
data entry (lines 06—07). Build an
Alpha string of five spaces (line 08).
Test if the binary data (converted to
decimal form) is greater than 126. If
50, go to label 01. If not, enclose the
corresponding HP-42S Alpha charac-
ter in quotes and append two spaces
to the Alpha register.

Lines 16 -25: Append the number in
the X-register (the decimal equivalent
of the binary data) to the Alpha regis-
ter and display the current contents of
the Alpha register (lines 17-18). (The
Alpha register contains the decimal
number equivalent of the binary data.
If that number is less than 128, the
Alpha register also contains the
corresponding HP-42S character,
enclosed in quotes). Build the
equivalent column pattern and display
it, beginning at pixel (1, 66) (lines
20-24). Return to label 00 for the
next data entry (line 25).

7: Graphics and Plotting 201




To use BINDATA:

1. An on-pixel has value 1. An off-pixel has value 0.
2. Enter digits beginning at the bottom of the column.

3. If, for example, you enter only six digits, the bottom two digits are
interpreted to be zeros.

4. Press after data entry to see the calculation. After the calcula-
tion is displayed, simply key in the next sequence of numbers when
you are ready.

Example: Using Binary Data to Build a Logo. Columns 16-18 of
the Hewlett-Packard logo in the previous example have the following pixel
patterns.

O 0O 0O LastDigitEntered

O O nm

O O =

O m =u

O B =

H E B

H N 0O

M O 0O FistDigit Entered
Column# 16 17 18

Use BINDATA to calculate the column print number for each column.

Start the program.

(XEQ] | a8

Enter the binary data for column 16.
11100000 224

202 7: Graphics and Plotting

MHHTHA TN NN DDDODONDNLNANAD




LA A A N N B N N B N N N NN NN NN NN NNNNNNHNNZXNHNHNJN)

The column print number for column 16 is 224. There is no equivalent
Alpha character. The column pattern is at the right of the display. Now
enter the binary data for column 17,

01111000 "x" 120

The column print number for column 17 is 120. The equivalent HP-42S
character is "x". (You can therefore either accumulate 120 in the X-
register and execute XTOA, or accumulate character "x" in the Alpha
register. The column pattern is at the right of the display. Enter the
binary data for column 18. '

00111110 [R/S] "6z ]

The column print number for column 18 is 62. The equivalent HP-42S
Alpha character is ">". Now exit from the program.

EXIT v: 1.0060
x: B. 0086

(Refer to the character table in your owner’s manual (appendix E) and
note that five of the first 127 characters cannot be typed from the HP-42S
keyboard. The character codes are 4, 6, 13, 27, and 30. Program
BINDATA shows you the character corresponding to each of these codes,
but because these characters cannot be typed, you must accumulate the
corresponding character code in the X-register and execute XTOA.)

Multifunction Plots

The program PLOTS3 in this section enables you to plot up to three func-
tions concurrently on the HP 82240A Infrared Printer. It is based on the
program PLOT in the section "Example Programs"” in chapter 10 of your
owner’s manual. As in PLOT, you supply to the program the name of the
routine that defines the function you wish to plot. However, in PLOT3,
you can supply up to three routine names.

7: Graphics and Plotting 203




Here is a flowchart for PLOT3.

LBL
A

v

USE VARIABLE MENU TO
STORE PLOT PARAMETERS

\

INPUT FUNCTION
ROUTINE NAMES

v

PLOT HEADER INFO
AND INITIALIZE

v

SET INITIAL x-VALUE

LBL
00

Y

CLEAR DISPLAY

Y

YES

(YMIN, YMAX, AXS,
XMIN, XMAX, XINC)

NO |{ABEL AXIS

<«

YES

NO |DRAW AXIS

—

204  7: Graphics and Plotting

’)ﬂﬂﬂﬂﬂﬂ")ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ00000000(\(\0




[l

l

OR EACH PIXEL RO
(1 7O 16)

*

v

INT DISPLAY

PRINT FINAL
DISPLAY

a8
a1

@2
a3
e
@5
as
oy

To key in PLOT3: Create variables YMIN, YMAX, AXIS, XMIN,
XMAX, XINC, FCN1, FCN2, and FCN3 before program entry.

{ 424-Bute Pram

LEL

MYAR
MYAR
MYAR
MVAR
MYAR
MYAR

Program:

"PLOTZ"

"YHIN
" MA
"ANIS"
"HMIN®
"RMAR
"KINC"

i
|
|
|
|
|
|
I
i
|
I
I
I
|
|
|
|
|
|
I
t
|
t
I
t
|
|
|
1

-=—(NEXT PIXEL ROW )

Here is an annotated listing of the program.

>

A
@R EACH FUNCTIOh

+ EVALUATE f(x)
INCREMENT]
X - VALUE

PLOT PIXEL

-—=-(_ NEXT FUNCTION

Comments:

Lines 02-07: Declare the menu vari-
ables.

7: Graphics and Plotting 205




0 = T N B ) R o= S0 @ ] e 0] e

oo

N R CU R R 4% IO (I 3 I O I I T o T R O B 6 T i S I

LI SN

LBL A

VARMENU "PLOT3"
CF 34

CF 35

CLA

STOF

EXITHLL

"FCH1"
KER B7
"FCH2"
KEQ @7
"FCN3"
HER B7

Al

"Flot of:"
FEA

ADY

SF 12

RCL "FCH1®
wER 88

RCL "FCHz2"
KEQ 88

RCL "FCHz"
KER B8

ADY

CF 12

FRY "YMIN"
PRV "YHAR®
FRY "RAXIS"
FREY "HMIN"
FEV "HEMAS"

FRY "XINC"
RDY

"e YMIN®

k" YHAK 3t
FRA

7: Graphics and Plotting

Lines 08 - 14: Display the menu and
suspend program execution for data
input.

Lines 15-20: Prompt for the function
names (the subroutine labels).

Lines 21-43: Print the header infor-
mation. (In line 42, there are seven
spaces in the Alpha string before
YMAX.)

“-nan0naaaHsHHN000860660606000600000600038000



44 130 Lines 44 —-48: Calculate the relative y-
45 RCL "YMAX" value of one pixel.

46 RCL- "YHMIH"

47 =+

48 STO 09

49 RCL "XMIW" Lines 49 - 50: Store the first x-value.
58 STO @1

51 LBL @8 Lines 51-58: Clear the display. If flag
52 CLLCD 00 is clear, label the x-axis. If flag 01 is
53 FC? @a clear, draw an axis. Build a loop

54 XEQ 85 counter corresponding to the 16 rows
55 FC? 61 in the display.

56 XEQ 86

o7 1.016

58 STO @2

59 LBL 81 Lines 59-61: Build a loop counter for
68 49.651 the three possible functions. (The

&1 STO 83 character codes for characters "1°, "2",

and "3" are 49, 50, and 51 respectively.
Routine 02 uses these numbers to
create the variables.)

62 LBL @2 Lines 62-83: Create the Alpha strings
63 "FCN" FCNI1, FCN2, and FCN3 successively.
64 RCL 83 Call each string to the X-register, then
65 XTOAR recall to the X-register the variable

66 ASTO ST ¥ that matches that string. Test if the
67 RCL IND ST ¥ variable has an Alpha string (a func-
€68 STR? tion program name) in it (lines 62—
69 XEQ 84 68). If so, plot a pixel for each func-
78 ISG a2 tion. Increment the x-value. If the plot
7l GTO @z is complete (if x-value > XMAX), go
72 RCL "XINC® to label 03. If the current display is

73 16 complete (if rows 1-16 are filled),

4 = then print the display and start a new
73 STO+ a1 one.

P Y R xx xx y y w i N NN N NN

7: Graphics and Plotting 207




76
tad
73
r9
86
81
82
83

24
85
86
87

g8
89
98
91
92
93
94
)
96
97
98
99
106
181

162
182
184
1835

RCL "XMAX"
RCL @1
R>¥?

GTO 83

ISG @2
GTO o1
PRLCD

GTO 09

LBL B3 Lines 84 -87: Print the final display
PRLCD and stop. (Line 87 enables you to res-

RTN tart the program by pressing [R/S).)
GTO A

LBL 94 Subroutine 04, lines 88 - 101: Evaluate
RCL 81 the function at x and plot the
¥EQ IND ST ¥ appropriate pixel.
SF 24
RCL- "YMIN"
RCLx 86
1
+
CF 24
RCL @82
nEXY
®>e7
PIKEL
RTH

LBL @5 Subroutine 05, lines 102 -108: Label
CF 21 the x-axis.

CLA

ARCL a1

18 AVIEW
187 SF 21
162 RTH

7: Graphics and Plotting

R T I T I B T T B N SO B RGN S G B W G W I W I




rEEYXYXYXEXXXXXX XXX EENNNNNENNEN N BN RS S A

189
118
111
112
113
114
115
116
117
118
119
1206
121
122
123

124

123
126

127
128
129
138
131

132
133
124
135
126
137
128
132
148
141
142
143
144

LBL 65
1

RCL "AXIS"
RCL- "YMIN"

RCLX 98

xR RK"
AGRAFH
RTH

LBL @7
CF 21
ASTO ST
CLX
AVIEW
PSE

CLR

FS? 35
SF 21
SF 25
RCL IND
CF 25
STR?
ARCL ST
AOH

CLD
STOP
ROFF
ALENG
K=Q7
ASTO ST

ST L

Subroutine 06, lines 109 —-123: Draw
the axis. (In line 120, the Alpha string
is five "multiply" characters: press

B(ACPHA] (x] (] (x] (] B [ENTER].)

Lines 124-146: Prompt for an Alpha
string (function name). If the variable
already contains an Alpha string, that
string is recalled to the Alpha register
as the default.

7: Graphics and Plotting 209




145 STO IHWD ST L
146 RTH

147 LBL @s Subroutine 08, lines 147-153: Print
143 CLA the function names.

STR?

ARCL ST ¥

STR?

FRA

ETH

—
oy
o

—
b}

N

—_ -

LR RN

—
an
£

EHD

To use PLOT3:

1. Execute PRON and turn on your Infrared Printer.

2. Write a routine for each function that you want to plot. The current
x-value is in the X-register when the program calls the function rou-
tines. The routines need not recall the current x-value to the X-
register.

Set the display format to ALL.
4. Start the program (press PLOTE).

5. Supply the plot parameters. For example, specify 20 for YMIN by
pressing 20 YMIH .

6. After supplying values for the plot parameters, press [R7S].

8. As prompted, store the name of each function routine in a
function variable. For example, to supply the name TAN for
FCN1, press TAN at the first prompt.

b. If you have already supplied a routine name for a function
variable, that name is displayed at the prompt. If you want to
leave that name in the variable, simply press [R/S).

c. If you want to plot only two functions, supply names for only
two variables. Leave the Alpha register clear for the third
variable (just press when prompted). If a name is
displayed for the third variable, press [«] to clear the Alpha
register, then press [R/S]. If you want to plot only one func-
tion, supply a name for only one variable and leave the Alpha
register clear (or clear it) for the other two variables.

w

210 7: Graphics and Plotting

\mnmmﬂ)ﬂmnhﬁn000000000000000000000(‘



|

0000000 OVOLOOGOOGOGLOOIOOFOSIFOGFEFIFSGSIFIFFIFTIITFIFIVFVFIVY

Example: Plotting Multiple Functions. Use PLOTS3 to plot the fol-
lowing functions.

1. y = sinx
2. y = 0.35(In x) (cosx)

First, write routines to describe the functions.

BB { 9-Bute Prom
@1 LBL "SINE"

Bz SIN

62 END

Program: Comments:

o { 27-Byte Pram 3 Lines 04 - 05: Ensure that the program
@1 LBL "LHCOZ" does not attempt to execute In (0).
az cos

Az LASTH

A4 @.060]

B3 +

Be LM

67 8,33

a2 x

63 X

18 END

Set the Display format to ALL. Execute PRON. Clear flags 00 and 01 to
draw and label the x-axis. Start PLOT3.

@Dse] | AL E?_____J
oM AN Lt | AUz JEHIN [ SING ]

B(FCAGS) BFLAGS)
XEQ) PLOTS

01 [EXIT

Plot y-values between —3 and 3, and set the axis aty = 0.

AXI1S=0
CetiN ] bR nzls RHIN s SING |

7: Graphics and Plotting 211




Plot x-values between 0 and 720 in increments of 60 per display.

|XINC=60 |
LYPAIN VRRE] RS TRPIN [t HING |

Supply the program name SINE for the first function variable.

SINE SINE_
[xECRE[ FGHI [JELH[NDP R [RETUN[1RY2

Supply the program name LNCOS for the second function variable.

LNCOS LNCOS_
e BE] FGRI [JELH[NDRC [RETU b2 ]

212  7: Graphics and Plotting

Lﬂﬂﬂﬂﬂﬂﬂﬂﬁﬂﬂﬂﬂﬂﬂﬂ'\nﬂﬂﬁnnﬂnnnnﬂf\ﬂﬂf‘j



o9V VvVPVPVPVVIVFVITIIVIVIIPIIIPIVSIDP VTP P T P PV VFF v vV Ve

Leave the Alpha register clear for the third function variable and start the
plot. The printer output is shown here.

Plot of:

ZH
0Z
om
0

HKXXD<=
CIICZUNICT
[0 T e I )

MIN YMAX

858"
VAN
Ky \,"

S,

7

-
[=a1a0] |
. DERO®WW

Exit from the program. Return the display format to FIX 4.

EXIT
B0isP)

4 [ENTER

v: 720.88080
x: 723.7500

7: Graphics and Plotting

213




Plotting Data from a Complex Matrix

In previous programs, you have used:

s PIXEL to turn on individual pixels in the display. You specify the
pixel number in the X- and Y-registers (row number in Y and column
number in X).

m AGRAPH to display a graphics pattern. You specify the location of
the pattern in the display by placing a pixel number in the X- and Y-
registers (row number in Y and column number in X).

PIXEL and AGRAPH operate on the numbers in the X- and Y-registers.

The efficiency of these functions is enhanced by enabling them to operate
on a complex matrix in the X-register, where each element of the complex
matrix has the form

x-value + iy-value

When such a matrix is in the X-register, PIXEL turns on each pixel in the
display as specified by the elements in the matrix. For example, consider
the following complex matrix.

1+i10 5+i20
10+i30 16+i40

If you execute PIXEL when this matrix is in the X-register, pixels (1, 10),
(5, 20), (10, 30), and (16, 40) are each turned on.

214  7: Graphics and Plotting

-nen e e e NN NN NN DODBOARRROOIOOONANREREM




®
J
»
»
»
®
9
®
9
®
®
®
 J
®
°
®
9
®
®
9
9
L
®
) J
®
®
9
-'
-9
-9

Similarly, AGRAPH places the graphics pattern that is encoded in the
Alpha register at each position in the display as specified by the elements

in the matrix.

Note that PIXEL and AGRAPH operate on the rectangular form of the
complex matrix. Before entering numbers into the complex matrix, set the
angular mode to Rectangular.

The program PFIT in this section plots the individual data pairs from the
real n X 2 matrix in the X-register, then fits and plots a curve to that data
using the currently selected statistical model. PFIT creates one complex
matrix and executes AGRAPH to mark each data point witha " +" charac-
ter. PFIT then creates a second complex matrix and executes PIXEL to
plot the forecasted curve.

7: Graphics and Plotting 215




PFIT

STORE THE (DATA)
MATRIX IN DATAMTX

¥

INDEX DATAMTX

Y

XEQ MM TO FIND MIN
AND MAX VALUES, THEN
CALCULATE SCALING
FACTORS

\/

PLOT
AXES

Y

STORE DATA FROM
DATAMTX IN SUMMATION
REGISTERS

Y

BUILD PLOTTING
MARKER

7: Graphics and

Plotting

aoonoooonnnooononnmmml

©® H 9

IR EERS




¥

SCALE EACH
x AND y VALUE

v

IcTaEATE COMPLEX MATRIX
OF x AND y VALUES

[PLOT THE DATA POINTS |

ICREATE 1 X 22 TEMPORARY
MATRIX AND FILL IT WITH
x VALUES 1-22

FOR EACH SET 1-6
OF 22 x -VALUES

A
1 " [FORECAST 22 y -VALUES |
PRINTTHE | |
DISPLAY | |  [TSCALE EACHx, y VALUE |
!
& ¥
(END) | [COMBINE x, y MATRICES
| | nTo A cCoMPLEX MATRIX
1
|
; ¥
[ pLoT22pixELS
(DRAW THE CURVE)

To key in PFIT:

1. Create variable DATAMTX before program entry.
2. Create label MM when you begin program entry.

9
>
-
>
>
>
>
>
>
®
9
®
°
9
®
9
®
9
9
9
9
|
®
@
[ J
A
®
-9

7: Graphics and Plotting 217




Here is an annotated listing of PFIT.

Program: Comments:

68 { 295-Byte Prgm

81 LBL "PFIT"

82 CF 24 Lines 02-06: Clear flags 34 and 35.
B3 CF 35 Store the matrix that is in the X- regis-
84 RECT ter in DATAMTX and index

83 STO “"DATAMTX" DATAMTX,

06 INDEX "DARTAMTR"

a7 XEQ@ "MM" Lines 07-13: Call subroutine MM to
B8 STO B2 find the minimum and maximum x-
89 - values. Then calculate the x-value scal-
10 128 ing factor.

11 =+

12 STO 61

13 ST0+ @82

14 XKEQ "MM" Lines 14-25: Call subroutine MM to
15 Ry find the minimum and maximum y-

16 STO 94 values. Then calculate the y-value scal-
17 - ing factor.

18 13

19 XY

28 +

21 STO @3

22 STOx 904

23 2

24 STO- B84

25 STO- @2

218  7: Graphics and Plotting

m‘mq)@a’)@)‘nﬂsﬁhﬁhbhﬂhhonnnnnnnnnnnnﬂmfl‘



$
9
9
» 26 CLLCD Lines 26— 33: Plot the axes.
9 27 RCL @4
28 X>87?7
- J
29 RCL- ST K
- ) 38 RCL 82
31 XK>8?
‘ 32 CLX
@® 33 PIXEL
9 34 EREG 11 Lines 34-37: Store the data in
9 35 CLZ DATAMTX into the summation regis-
36 RCL "DRATAMTXK" ters.
9 37 Z+
9 38 CLA Lines 38— 44: Build the "+" character
39 2 used to mark each data point in the
9
® 49 XTOA plot).
41 7
9 42 XTOA
43 ROV
® 44 xTOR
® 45 ReL "DATANMTR Lines 45~ 55: Make the matrix 2 x
@ 46 TRANS and index it (lines 45-48). Make two
47 STO "DATAMTH" 1 x n matrices, where the matrix in the
9 48 INDEX "DATAMTR" X- register is the x-values, and the
gt
9 49 DIM? matrix in DATAMTX is the y- values
568 1 (lines 49-53). Convert the x-values to
® 51 XY screen coordinates for plotting (lines
® 52 GETM 54-56).
53 DELR
‘ 54 RCL-+
+ 81
' 55 RCL- @82
@
®
@
-
9

7: Graphics and Plotting 219




56
57
Sz
99

&4
61
&2
&3
&4

&3
€6
67
68
&3

78
71
va
ra
7
7S

TE
Id
va
e
28

220

RCL "DATAMTX"
RCLx 83
RCL- @4
COMPLEX

1
EHTER
COMFLEX

AGRRFH

RCL "REGS"
1

EHTER

22

DIM "REGS™

21

LEL ©1

STO IND 5T ¥
DSE ST ¥

GTO 81

STO @e

Rt

RCL "REGS™
BERY

STO "REGS"™
CLX

7: Graphics and Plotting

Lines 56— 59: Convert the y-values to
screen coordinates (lines 56 - 58).
Convert the matrices in X and Y to
one complex matrix in X, each ele-
ment of which is: x-value + iy-value
(line 57).

Lines 60—-64: Subtract 1 + i1 from
each value (to set the center of the "+"
character at the data point) (lines
60-63). Place the center of the "+" at
the coordinates defined by each ele-
ment of the matrix (plot the data
points) (line 64).

Lines 65-69: Recall the registers
matrix to the X-register, and redimen-
sion it to a 1 x 22 temporary matrix.

Lines 70-75: Fill the temporary
matrix with values 0 through 21.

Lines 76 —80: Store the data from the
registers back into REGS, then clear
the X-register.

mmqmmqqmm@;ﬂnnonnnnnnnnnnnnnonnmmm‘



000000000000 VLOEOGEOKOLONIOGGEOGIOGIIITFTIIITYTTIEY

81 &

B2 XY

83 1
84 +

85 LBL @z
26 ENTER
87 RCL+ @2
88 RCLx 81
89 FCSTY
98 RCLx B3
91 RCL- 64
92 COMPLEX
93 PIXEL
94 COMPLEA
95 R¢

6 22

97 +

98 DSE ST ¥
99 GTO 82

168
181
182

183
184
185
18
187
182
189
118
111
112
113
114
115

FRLCD
CLY "DRTAMTK"
RTH

LBL "MM"
RCLEL
ENTER
LBL B89
I+

F5? 76
RTH
RCLEL
REY?
ROy
RO
R+
Kov?

Lines 81— 84: Establish a loop counter
6.00000 in the Y-register. Change the
values in the temporary matrix to 1
through 22. (These values represent
the first set of 22 x-values.)

Lines 85— 102: Forecast y-values for a
set of 22 x-values, make a complex
matrix of x-y data pairs, and plot each
data pair. Repeat for five more sets of
x-values.

Subroutine MM, lines 103 -120; Find
the maximum and minimum elements
of one column of the matrix for scal-
ing. At the start of the subroutine, the
matrix DATAMTX is indexed with the
index pointer at the top of a column.
At the end of the subroutine, the
minimum element of the column is in
X, the maximum element is in Y, and
the index pointer is at the top of the
next column.

7: Graphics and Plotting 221




116 XY

117 Re

118 RCL ST 2
119 GTO B9
120 RTH

121 END

To use PFIT:
1. Select a statistical model. For example, press MSTAT] CFIT:
 HMODL LINF .
2. Place a 2-column real matrix of data pairs in the X-register.

3. Press ‘PFIT

Example: Plotting Data from a Compression Process and
Fitting a Power Curve to the Data. Many compression processes
can be correlated using the power curve

P =gqV®
where:

P is the pressure.
V is the volume.
-b is the polytropic constant.

Enter the following pressure-volume data in the £LIST matrix.
Then use PFIT to plot the data and to plot a power curve to the data.

VP

10 | 210
30 | 40
50 | 12
70| 9
% | 6.8

222  7: Graphics and Plotting

\ﬂﬂ'ﬂ"’)?)")’)”)")")ﬂ“ﬂﬂ'}'\ﬂ'\ﬂﬂnnnﬂﬂﬂﬂnnnnnﬂ



QP 00000V VWV IIIOPVPIPIPIFVIFIIIIFPFVFFPFPFI STV

Execute program LIST. (If you've deleted the program, you need to key it in
again. The listing is in section "List Statistics" in chapter 6.)

x: 8. 0000
[ERS [VETE) S N

Clear the SLIST matrix, then fill it with the data.

SLIST=L 5x2 Matrix ]
[LEvefusr-f — [ [ [CUET]

210 10LIET
40 30LISTH
12 50LIST+
9 70
6.8 ENTER)90 L I1ST#

Exit from LIST. Recall ZLIST to the X-register.

- 90,0000 .

Set the statistical model to a power fit. Execute PRON if you have a
printer. Execute PFIT.

WETAT)
(BPRIN
B{TOP.FCN

.

Exit from PFIT. Check the correlation coefficient for the data.

EXIT x: -0.9939
ST CSTW[ELOPE] YINT [ COFR]

rHoDL

The correlation coefficient is —0.9939. Check the value of -b.

ZLOPE 0oL

The value of —b is —1.6252. Exit from the STAT menu.

EXIT] (EXIT y: -8.9939
x: —1.6152

7: Graphics and Plotting 223




Index

Special Characters

2+ function
emulating in LIST program, 176
in programs, 182
stores data from 2-column
matrix to summation regis-
ters, 149, 181, 175
LFORM program, listing of, 181
LLIST matrix
filling column 2 with evenly
spaced integers, 181
in curve fitting example, 220
in LIST program, 176
redimensioning to nm x 2, 181

A

ACC variable. See Accuracy factor
Accuracy factor
affects Integration calculation
time, 130
definition, 134
effect on calculation time, 137
in basic integration, 124
related to uncertainty of
integration, 135
Addressing. See Indirect

224 Index

addressing
AGRAPH function
in HPLOGO program, 195
operates on complex matrices,
213
Algebraic solution. See Explicit
solutions
Angle of twist equation, 131, 125
Approximating an integral that has
an infinite limit, 127-130
Asymptote, Solver results with,
117

Ead Guess{=s) message, 120
Binary data, building a graphics
pattern with, 200-203
BINDATA program, listing of,
201
Branching, 21-39
conditional, 22 -25§
emulating a multirow menu with
KEY GTO, 34-37
emulating a nested menu with
KEY GTO, 37-39
menu-controlled, 29-39
types of, 21

O O G n

- 66

R R R



|

C

Calculation time
for an explicit solution, 100
for Integration approximations,
129-130
for the Solver, 99
Integration conditions that pro-
long, 143 145
Case 1 and 2 (Solver) solutions,
how to differentiate
between, 110
Case 1 (Solver) solution,
definition, 109
Case 2 (Solver) solution,
definition, 109
CIRCUIT program, listing of, 87
CLEAR program, listing of, 44
Coefficient matrix. See MATA
Column norm of a matrix, 151
Column sum of a matrix, 150-151
Complex numbers. See Emulating
the Solver; HP-41 programs,
enhancing with HP-42S data
types; Simultaneous equa-
tions, complex-number
Compression process equation,
220
Conditional branching, 22 -25
based on a number test, 24
CONE program, listing of, 81
Conjugate of a complex matrix,
151
Constant matrix. See MATB
Constant 7 message, 121
Constant velocity equation, 39
Control flags, 47
definition, 47
flag 21 used to control VIEW
and AVIEW functions, 47,
16

00000000 0000000 000000 HOEIOGIIIOIGIOIS

Controlled looping, 39-43
definition, 39
DSE function in, 39
GTO function in, 39
indirect addressing with, 43
INPUT IND in, 43
ISG function in, 39
STO IND in, 44
XEQIND in, 45
COORD program, listing of],
158-160
Coordinate transformations,
156-163
Correlation coefficient, 221
Curve fitting in programs, 194
CUSTOM menu, executing pro-
grams from, 73, 19

D

Data input, prompting for in a
program, 68, 15
Data output, displaying in a pro-
gram, 68, 16
Declaring variables. See MVAR
function
Directing the Solver to a realistic
solution, 8082
Discontinuous function, Solver
results with, 113-114
DISPL program
flowchart for, 40
listing of, 41
Displaying program results. See
Data output
DSE function, in a controlled
loop, 39

index 225



E

EIZ program, listing of, 89-90
Electrical circuits. See Simultane-
ous Equations; Emulating
the Solver
Emulating
a multirow menu, 34-37
a nested menu, 37-39
T+ function, 176
the Solver, 86-91
END function, 15
Enhancing HP-41 programs, 67 -
76
Equation(s)
angle of twist, 131, 12§
asymptote, 119
compression process, 220
constant acceleration due to
gravity, 83
constant velocity, 39
ideal gas, 101, 78
local flat region, 121
loop current, 166, 169, 163
math error, 120
multiple linear regression,
182-183
Ohm’s law, 86, 88
pole, 116
relative minimum, 118
setting equal to 0 for the Solver,
105,77
sine integral, 136
SSA (triangle solution), 22
SSS (triangle solution), 13
time-value-of-money, 92
triangle solutions, 58 - 59
van der Waals, 101
volume of the frustum of a right
circular cone, 80
Error Ignore flag, used in error

trapping, 50
Error trapping, 49 -50
Examples, displays in the manual
may differ from your
displays, 10
Executing a program
from the CUSTOM menu, 73,
19
from the program catalog, 19
with the XEQ function, 73, 19
Explicit solutions
calculation time, 100
faster than iterative solutions, 92
for complex numbers, 88
using with the Solver in pro-
grams, 92 -100
Extrremum message, 117

F

FCAT program
flowchart for, 52
listing of, 53 - 56
uses programming concepts dis-
cussed in chapter 2, 51
Finding more than one solution
with the Solver, 83 -85
Flag 21
and PROFF function, 16
and PRON function, 16
effect on VIEW and AVIEW
instructions, 47, 16
Flag 25, used in error trapping, 50
Flag 77, used in MINMAX pro-
gram, 47
Flag tests, follow do-if-true rule,
46
Flags, 4657
control, 47
current status maintained by
Continuous Memory, 47

MM N O T MNMHHAHNNANNANNOHOANOAOOONRDOOAONNDNNDMMNM

ﬁ




P

X NN K N N N N N B B A A A A A A A A A J 4 db dbdhdihdihdihdidiing

Error Ignore, 50

general purpose, 46-47

have unique meanings for the
calculator, 46

listing of in appendix C of
owner’s manual, 46

Matrix End-Wrap, 47

Numeric Data Input, 93

Printer Enable, 47, 16

system, 47 - 48

user, 4647

Flat region, Solver results with,
121
Flowchart

definition of, 13

for DISPL program, 40

for FCAT program, 52

for GAS2 program, 102

for MLR program, 184

for PFIT program, 214-215

for PLOT3 program, 204 -205

for SSA program, 23

for SSA2 program, 27

for SSS program, 15

for TRIA. program, 3031

symbols for, 15

G

GAS program, listing of, 78
GAS2 program
flowchart for, 102
listing of, 103 -104
General purpose flags, 46-47
definition of, 46
in LIST program, 47
in MINMAX program, 48
Global label, defines start of a
program, 15
Graphics, 195-203
binary data to build, 200203

GTO function, in a controlled
loop, 39

H

Horner’s method, 125
HP 82240A Infrared Printer
some examples include optional
instructions for, 11
HP-41 programs, enhancing, 67 -
76
with HP-42S data types, 69
with INPUT function, 68
with menu variables, 71-73
with named variables, 67— 68
with the two-line display, 69
with VIEW function, 68
HPLOGO program, listing of, -
196-200

Ideal gas equation, 101, 78
Improper integral, definition of,
127
Incorrect results in Integration,
140-143
Indexing (matrix) functions, 146 -
154
Indirect addressing, 43 -45
clearing storage registers with,
4
controlled looping with, 43
executing subroutines with, 45
initializing data storage registers
with, 43
INPUT function with, 43
SOLVE and PGMSLY func-
tions with, 101 -105
STO function with, 44
XEQ function with, 45

Index 227




Infinite limit, approximating an
integral that has an, 127 -
130
Infrared Printer.
some examples include optional
instructions for, 11
See also Printing
INIT program, listing of, 43
Initial guesses, for the Solver,
80-85
INPUT function, 15
brings up variable catalog in
Program-entry mode, 17
enhancing HP-41 programs
with, 68
indirect address with, 43
Integration, 124-145
ACC variable in, 124
accuracy factor and uncertainty
of integration, 134-139
approximating an integral that
has an infinite limit, 127 -
130
basic use of, 124127
calculation time for approxima-
tions, 129-130
conditions that can cause
incorrect results, 140 - 143
conditions that prolong calcula-
tion time, 143 -145
limiting the accuracy of, 134
LLIM variable in, 124
more on how it works, 134-145
MVAR function in, 124
Solver and, 131 -133
subdividing the interval of
integration, 142 -143
ULIM variable in, 124
uncertainty of. See Uncertainty
of integration
Interactive use of the Solver

228 Index

and Integration, 131-133
and Simultaneous Equations,
168-172
Interpreting the results of the
Solver, 108 -122
ISG function, in a controlled loop,
39

K

KEY GTO function
emulating a multirow menu
with, 34-37
emulating a nested menu with,
37-39
to build programmable menu,
29
turns on VA annunciator when
assigned to menu key 7 or 8,
34
KEY XEQ function
to build programmable menu,
29
turns on VA annunciator when
assigned to menu key 7 or 8,

34

Keying in programs, helpful hints
for, 17

Keystrokes, required to execute a
program, 19-20

L

LIST program

accumulates statistical data for
plotting, 220

emulating £+ function in, 176

fills ©2IST matrix with x-y data
pairs, 176

general purpose flag in, 47

listing of, 176 -179

mHOMOANM MM AN AN NNNNNNNANNANRDRRENNDN AT DM]



l.‘..“‘ﬁﬂﬂ‘OOOOCOOCOOOOOCCCC.O..

matrix operations in, 172
List statistics, 175—182
LLIM variable
in basic integration, 124
solving for with the Solver, 131
Local maximum or minimum,
Solver results with, 117
Loop current equations, 166, 169,
163
LVL1 program, listing of, 38 -39

MATA matrix
in MLR program, 172
in Simultaneous Equations
application, 164
solving for an element of, 168
MATB matrix
in MLR program, 172
in Simultaneous Equations
application, 164
Math error, Solver results with,
120
Matrices, 146-173
coordinate transformations with
vectors, 156 -163
creating a named matrix, 147
filling a matrix element with an
Alpha string, 147
finding the column norm of a
matrix, 151
finding the column sum of a
matrix, 150-151
finding the conjugate of a com-
plex matrix, 151
finding the matrix sum of a
matrix, 151
finding the maximum and
minimum elements of a
matrix, 152-153

geometric calculations with vec-
tors, 154-156
interactive use of indexing utili-
ties and statistics functions,
149-150
matrix editor and indexing func-
tions, 146154
matrix operations in statistics
and graphics programs,
172-173
matrix utility programs, 150- -
154
solving simultaneous equations,
163-168
sorting a matrix, 153 -154
vector solutions, 154-163
Matrix editor, 146154
Matrix End-Wrap flag, in MIN-
MAX program, 47
Matrix sum of a matrix, 151
MATX matrix
in MLR program, 172
in Simultaneous Equations
application, 165
Maximum and minimum elements
of a matrix, 152-153
Menu
multirow, emulating in a pro-
gram, 34-37
nested, emulating in a program,
37-39
programmable, 29
MENU function, 29
Menu keys, 29
Menu variables
enhancing HP-41 programs
with, 71-73
to simulate the Solver, 88
Menu-controlled branching, 29—
39
Messages

Index 229




Bad Guess(ez), 120
Constant?, 121
Extremun, 117
Out of Ranage, 49
Restricted Operation, 56
Sign Rewversal, 115
MINMAX program, flags in, 47
MLR program
flowchart for, 184
listing of, 186 - 192
matrix operations in, 172
MOTION program, listing of, 84
Multifunction plotting, 203 -213
Multiple linear regression, 182 -
194
Multiple-linear-regression
equations, 182 - 183
Multirow menu
VA annunciator in, 34
{¥] and [4] keys in, 34
emulating in a program, 34-37
MVAR function
defines variables in Integration
programs, 124
defines variables in Solver pro-
grams, 77

Neighbors, 109

Nested menu, emulating in a pro-
gram, 37-39

Notations, consistent with owner’s
manual, 10

Numeric Data Input flag, 93

230 Index

(0

Ohm’s law equation, 86, 88
Out of Range message, 49

P

Parabolic equation. See
Equation(s), relative
minimum

PFIT program

flowchart for, 214-215
listing of, 216-220
matrix operations in, 173

PGMSLYV function, indirect
address with, 101 - 105

PHONE program, listing of, 45

PIXEL function, operates on com-
plex matrices, 213

PLOT3 program

flowchart for, 204 -205
listing of, 205-210
Plotting, 203 -222
multifunction plotting, 203-213
plotting data from a complex
matrix, 213-222

Pole, Solver results with, 115

Printer Enable flag, 47, 16

Printing

HPLOGO program results, 200

optional instructions for, 11

PLOT3 program results, 212

Q3 program results, 74

SSS program results, 33
PROFF function, and flag 21, 16
Program catalog

executing a program from, 19

global labels placed in, 19
Program listing

for BINDATA, 201

for CIRCUIT, 87

"N,

1

1 T T I TR T TR TR T O T T T M T4 T4 T O 0 T 0 T T T

BB DD D




for CLEAR, 44
for CONE, 81
for COORD, 158 -160
for DISPL, 41
for EIZ, 89-90
for FCAT, 53-56
for GAS, 78
for GAS2, 103-104
for HPLOGO, 196 -200
for INIT, 43
for LIST, 176-179
for LVL1, 38-39
for matrix utility programs,
150-154
for MLR, 186-192
for MOTION, 84
for PFIT, 216-220
for PHONE, 45
for PLOT3, 205-210
for Q2,69-71
for Q3,72-73
for QSHORT, 75
for ROW1, 35-37
for ZFORM, 181
for SHAFT, 132
for SIMUL, 170
for SSA, 24-25
for SSA2, 28-29
for SSS,17-18
for TORQUIE, 126
for TRAP (revised), 50
for TRIX., 60-65
for TVM2, 93-99
for XVALS, 182
Programmable menu
definition of, 29
in TRIX program, 32
Programming, 12-66
branching, 21-39
controlled looping, 39-43
curve fitting functions in

0060060000000 06000000858°8BTETTTTTTT

programs, 194
defining the program, 15
displaying results, 16
error trapping, 49-50
flags, 46— 57
helpful hints for keying in pro-
grams, 17
indirect addressing, 4345
prompting for data input, 15
simple programming, 12-21
Solver and explicit solutions in
programs, 92-100
Solver in programs, 92-105
subroutines, 2629
summation-coefficient functions
in programs, 182 —194
Programs
executing from the CUSTOM
menu, 19
executing from the program
catalog, 19
executing with XEQ function,
19
keystrokes required to execute,
19-20
Prompting for data input. See
Data input
PRON function, and flag 21, 16
Providing initial guesses for the
Solver, 80-85

Q

Q2 program, listing of, 69-71
Q3 program, listing of, 72-73
QSHORT program, listing of, 75

Index 231

®




RCL function, brings up variable
catalog in Program-entry
mode, 17

Realistic solution, directing the
Solver to, 8082

Redimensioning £LIST matrix,
181

Regression, multiple linear, 182 -
194

Festricted Operation mes-
sage, 56

Root(s) of a function

approximations of, 108
definition of, 105

ideal solutions for, 108
multivariable function roots, 106
Solver’s ability to find, 107-108

Round-off error, can affect Solver
results, 123

ROW1 program, listing of, 35-37

S

SHAFT program, listing of, 132
Sion Reversal message, 115
Simple programming, 12 -21
SIMUL program, listing of, 170
Simultaneous equations
complex-number, 166 — 168
real-number, 163 - 165
Simultaneous Equations, 163 -172
Solver and, 168-172
Sine integral equation, 136
Solution matrix. See MATX
SOLVE function, indirect address
with, 101-105
Solver, 77-123
ability to find a root, 107 -108
approximations for which f(x) is

232 Index

nonzero, 108
Bad Guess(es) message, 120
basic use of, 77-80
calculation time in TVM pro-
gram, 99
cases when a root is found,
109-115
codes returned to the T-register,
108-109
Const ant ? message, 121
differentiating between Case 1
and Case 2 solutions, 110
directing to a realistic solution,
80-82
emulating in a program, 86-91
explicit solutions and, 92-100
Extremurm message, 117
finding more than one solution,
83-85
ideal solution, definition, 108
Integration and, 131-133
interpreting the results of,
108122
more on how it works, 105-123
MVAR function in, 77
providing initial guesses for,
80-85
results may be affected by
round-off error or
underflow, 123
results with a discontinous func-
tion, 113-114
Sign Reversal message, 115
Simultaneous Equations and,
168-172
using in programs, 92 105
Sorting a matrix, 153154
SSA program
flowchart for, 23
listing of, 2425
SSA (triangle solution) equations,

I T T T T W T T TR T T T W TR W R R R (N TR SR R W SR R 1 SR W N N NI P N



22
SSA2 program
flowchart for, 27
listing of, 28 -29
SSS program
flowchart for, 15
listing of, 17-18
SSS (triangle solution) equations,
13
Stack registers, contain results of
the Solver, 108
Statistics, 174-194
calculating a multiple linear
regression, 182 -194
correlation coefficient, 221
curve fitting in programs, 194
linear or exponential curve
fitting for one-variable data,
181
list statistics, 175182
matrix indexing utilities and,
149-150
redimensioning XLIST matrix to
execute X+, 181
summation-coefficient functions
in programs, 182194
STO function
brings up variable catalog in
Program-entry mode, 17
indirect address with, 44
STOP function, 29
Subdividing the interval of integra-
tion, 142 -143
Subroutines, 26 -29
advantages of, 26
called with XEQ, 26
definition, 26
end with RTN or END, 26
in SSA2 program, 26
Summation registers. See T+
function; Summation-

coefficient functions
Summation-coefficient functions,
using in programs, 182 - 194
System flags, 47 - 48
in MINMAX program, 47

T

Time-value-of-money equation, 92
TORQUE program, listing of, 126
Translations, coordinate. See
Coordinate transformations
TRAP program, listing of, 50
TRIA. program
flowchart for, 30-31
listing of, 60-65
Triangle solutions equations, 58 -
59
TVM?2 program, listing of, 93-99

U

ULIM variable
in basic integration, 124
solving for with the Solver, 131
Uncertainty of integration
definition, 135
is greater than error in final cal-
culation, 135
may be relatively large, 138 -
139
returned to the Y-register, 135
Underflow, can affect SolverV
results, 123
User flags, 46 — 47

Index 233




\'4

Valid solution. See Directing the
Solver to a realistic
van der Waals equation, 101
Variable menu
enhancing HP-41 programs
with, 71-73
to simulate the Solver, 88
Variables
ACC, 124
keying in in programs, 17
LLIM, 124
MATA, 164
MATB, 164
MATX, 165
LLIST, 176
ULIM, 124
Vector solutions, 154163
VIEW function, 16
brings up variable catalog in
Program-entry mode, 17
enhancing HP-41 programs
with, 68
Volume of frustum of right circu-
lar cone, equation, 80

X

XEQ function
executifg a program with, 73, 19
indirect address with, 45
XTOA function
in HPLOGO program, 195
used if corresponding character
cannot be typed, 203
XVALS program, listing of, 182

234 Index

MDD M AR A A A AR R RO AR AR NN NN N



Programming Examples and Techniques

for Your HP-42S Calculator
L

Programming Examples and Techniques contains examples in mathe-
matics, science, engineering, and finance to help you more fully
utilize the built-in applications in your HP-42S calculator. Programmed
solutions are emphasized. Graphics and plotting with the HP 82240A
Infrared Printer are also addressed.

B Programming
Simple Programming « Branching ¢ Controlled Looping ¢ Indirect
Addressing in Programs e« Flags in Programs ¢ Error Trapping

8 Enhancing HP-41 Programs
Using Named Variables » Using HP-42S Data Input and Output
Functions » Operations with HP-42S Data Types * Using the Two-
Line Display » Using Menu Variables » Assigning a Program to the
CUSTOM Menu

B The Solver
Basic Use of the Solver ¢ Providing Initial Guesses for the Solver

* Emulating the Solver « Using the Solver in Programs ¢« More on
How the Solver Works

B integration
Basic Integration « Approximating an Integral That Has an Infinite
Limit « Using the Solver and Integration Interactively » More on
How Integration Works

H Matrices
Using the Matrix Editor and Indexing Functions ¢ Vector Solutions
* Solving Simultaneous Equations ¢ Using the Solver with
Simultaneous Equations « Matrix Operations in Programs

B Statistics
List Statistics » Using the Summation-Coefficient Functions in
Programs « Curve Fitting in Programs

8 Graphics and Plotting

Graphics * Multifunction Plots « Plotting Data from a Complex
Matrix

HEWLETT
(D PACKARD
Reorder Number
00042-90020
00042-90019 English
7/88 0 ""88698"00036" " 6

Printed in U.S.A.

W’@’I)@”‘)ﬂ)’bﬁﬂ'ﬂﬁﬂﬂﬂﬂﬂﬂﬂﬂﬂnﬂﬂnﬂﬂﬂﬂﬂﬂ(‘\f!;‘

L]




Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.



