
HP 48SX

Fl..," HEWUE1'T
~~ PACKARD

Scientific Expandable

HP 48SX Scientific Expandable
Calculator

Owner·s Manual
Volume II

Flin- HEWLETT
~~PACKARD

Edition 4 July 1990
Reorder Number 00048-90003

Notice

For warranty and regulatory information for this calculator, see pages 673
and 676.

This manual and any examples contained herein are provid d " 5 is" nd
are subject to change without notice. Hewlett-Packard Company makes
no warranty of any kind with regard to this manual, including, but not
limited to, the implied warranties of merchantability and fitness for a
particular purpose. Hewlett-Packard Co. shall not be liable for any errors
or for incidental or consequential damages in connection with the
furnishing, performance, or use of this manual or the examples herein.

C) Hewlett-Packard Co. 1990. All rights reserved. Reproduction,
adaptation, or translation of this manual is prohibited without prior
written permission of Hewlett-Packard Company, except as allowed under
the copyright laws.

The programs that control your calculator are copyrighted and all rights
are reserved. Reproduction, adaptation, or translation of those programs
without prior written permission of Hewlett-Packard Co. is also
prohibited.

C) Trustees of Columbia University in the City of New York, 1989.
Permission is granted to any individual or institution to use, copy, or
redistribute Kermit software so long as it is not sold for profit, provided
this copyright notice is retained.

Corvallis Division
1000 N.E. Circle Blvd.
Corvallis, OR 97330, U.S.A.

Printing History

Edition 1
Edition 2
Edition 3
Edition 4

January 1990
April 1990
May 1990
July 1990

Mfg. No. 00048-90004
Mfg. No. 00048-90059
Mfg. No. 00048-90062
Mfg. No. 00048-90078

Contents

Part 4: Programming

25

26

468
470
470
472
472
473
479
480
483
484
486

Programming Fundamentals
Entering and Executing a Program

Entering a Program
Executing a Program

Editing a Program
Using Local Variables
Programs That Manipulate Data on the Stack
Using Subroutines
Single-Step Execution of a Program

Single-Step Execution from the Start of the Program
Single-Step Execution from the Middle of
the Program

486 Single-Step Execution of Subroutines

488
490
491
493
494
494
494
496
498
499
500
500

Tests and Conditional Structures
Program Tests

Comparison Functions
Logical Functions
Testing Object Types

Conditional Structures
The IF ... THEN ... END Structure
The IF ... THEN ... ELSE ... END Structure
The CASE ... END Structure

Conditional Commands
The 1FT (If-Then-End) Command
The lITE Function

Contents 461

27 501 Loop Structures
501 Definite Loop Structures
502 The START ... NEXT Structure
504 The START ... STEP Structure
506 The FOR. .. NEXT Structure
508 The FOR. .. STEP Structure
510 Indefinite Loop Structures
510 The DO ... UNTIL. .. END Structure
512 The WHILE ... REPEAT ... END Structure
513 Loop Counters (INCR and DECR)

28 515 Flags
515 Flag Types
516 Setting, Clearing, and Testing Flags
518 Recalling and Storing the Flag States
518 Recalling the Flag States
518 Storing the Flag States

29 519 Interactive Programs
520 Suspending Program Execution for Data Input
521 The PROMPT Command
523 The BEEP Command
523 The DISP, HALT and FREEZE Commands
524 The INPUT Command
531 Labeling Program Output
532 Using Tagged Objects as Data Output
533 Using String Commands to Label Data Output
534 Pausing to Display Data Output
534 Using Menus in Programs
534 Displaying a Built-In Menu
535 Custom Menus in Programs
539 Building a Temporary Menu
539 Commands That Return a Key Location
539 The WAIT Command with Argument 0
539 The WAIT Command with Argument -1
540 The KEY Command
540 Turning the HP 48 Off from a Program

462 Contents

30

31

'\
543
544
546

547
548
548
550
551
554
554
555
557
560
561
583
565
568
569
570
572

573

576

579
580

582
585
588
588

E - T_c-Cl'tla
The \i"E,tlR. . . ~HEN . .. E s u·ucl.me

T lFERR ... THEN ... ELSE ... END S lIU tute

U se.r-Deftned Errors

More Programming Examples

Fibonacci Numbers
FIBI (Fibonacci Numbers, Recursive Version)

FIB2 (Fibonacci Numbers, Loop Version)

FIBT (Comparing Program-Execution Time)

Displaying a Binary Integer

PAD (Pad with Leading Spaces)

PRESERVE (Save and Restore Previous Status)

BDISP (Binary Display)

Median of Statistics Data

SORT (Sort a List)

LMED (Median of a List)

MEDIAN (Median of Statistics Data)

Expanding and Conecting Completely

MULTI (Multiple Execution)

EXCO (Expand and Collect Completely)

Finding the Minimum or Maximum Element of

an Array

MNX (Finding the Minimum or Maximum Element

of an Array-Technique 1)

MNX2 (Finding the Minimum or Maximum Element

of an Array-Technique 2)

Verification of Program Arguments

NAMES (Does the List Contain Exactly 1\vo

Names?)

VFY (Verify Program Argument)

Bessel Functions

Animation of Successive Taylor's Polynomials

Drawing a Sine Curve and Converting It to a

Graphics Object

589 Superposition of Successive Taylor'S Polynomials

591 Animation of Taylor's Polynomials

Contents 463

592 Programmatic Use of Statistics and Plotting
597 Animation of a Graphical Image

Part 5: Printing, Data Transfer, and
Plug-Ins

32 602 Printing
602 Printing with an HP 82240B Printer
604 Print Formats
605 Basic Printing Commands
606 Printing a Text String
606 Printing a Graphics Object
607 Double Space Printing
607 Setting the Delay
607 The HP 48 Character Set
608 Sending Escape Sequences and Control Codes
608 Accumulating Data in the Printer Buffer
609 Printing with an HP 82240A Infrared Printer
610 Printing to the Serial Port
611 The PRTPAR Variable

33 612 Transferring Data to and from the HP 48
613 Types of Data You Can Transfer
814 The I/O Menu
618 Local and Server Modes
617 Setting the I/O Parameters
617 The SETUP Menu
618 The 10PAR Variable
611 Transferring Data between Two HP 48's
621 Transferring Data between a Computer and the HP 48
621 Cable Connection
622 Transferring Data
624 Backing Up All of HP 48 Memory
626 Character Translations (TRANSIO)
828 More About File Names
629 Errors
629 ASCII and Binary Transmission Modes

464 Con ts

34

A

631 Sending Commands to a Server (PKT)
632 Serial Commands

635
635
636
631
631
642
643

644
645
646
647
648
641
651
651
652

653

656
656
656
660
660
661
661
661
663
665
667

Using Plug-in Cards and Libraries
Types of Memory
Installing and Removing Plug-In Cards
RAM Cards

Preparing the Card for Installation
Uses for RAM Cards

Using RAM Cards to Expand User Memory (Merged
Memory)

Using RAM Cards for Backup (Independent Memory)
Backing Up Objects into Independent Memory
Accessing Backup Objects
Backing Up Objects into User Memory (Port 0)
Backing Up All of Memory

Freeing Merged Memory
Using Application Cards and Libraries

Attaching a Library to a Directory
Accessing Library Operations (The LIBRARY
Menu)

Additional Commands That Access Libraries

Appendixes and Indexes

Support, BaHeries, and Service
Calculator Support
Answers to Common Questions
Environmental Limits
When to Replace Batteries
Changing Batteries

Battery Types
Changing Calculator Batteries
Changing a RAM Card Battery

Testing Calculator Operation
Self-Test

Contents 465

667 Keyboard Test
669 Port RAM Test
670 IR Loop-Back Test
671 Serial Loop-Back Test
673 Limited One-Year Warranty
674 If the Calculator Requires Service
~ Regulatory Information

B 877 Me.sagel

C 694 HP 48 Character Codes

697 Menu Number.

E 699 listing of HP 48 System Flag

707 Opera1ion Index

823 Index

468 Con til

Part 4

Programming

25
Programming Fundamentals

A program is an object defmed by « »delimiters. A program is itself
composed of objects and commands whose execution is delayed until the
progranl is executed. Because a program is an object, it can be:

• Placed on the stack.

• Stored in a variable.

• Executed repeatedly.

• Executed by another program.

The following example calculates the volume of a sphere, first using
keystrokes and then using a program.

Example: Calculations with Keystrokes and with a Program.
The volume of a sphere of radius r is calculated by:

To do one calculation, you can use the following keystrokes. (Assume you
have already placed the radius on the stack.)

468 25: Programming Fundam_tala

Each time you press a command key, it is immediately executed, leaving
an intermediate result on the stack.

If you want to calculate the volumes of many spheres, you can create a
program. The following program assumes the radius is on the stack at the
start of program execution:

« 3 A ~ * 4 * 3 / ~NUM »

After keying in the « »delimiters (by pressing ~~), you use the
same keystrokes to enter the subsequent objects and commands as you
did before. However, the objects and commands that you type are simply
listed in the command line - their execution is delayed until you execute
the program itself.

Because the program is an object, you can place it on the stack and save it
in a variable. To place the program on the stack, press IENTER!. To store
the program in a variable named VOL, type rl VOL ISTOI. Now you can
calculate the volume of any sphere simply by placing the radius on the
stack and executing VOL (select the VAR menu and press :VO L » . You
can execute VOL as many times as you want; it acts like a built-in
command.

VOL is a program of the simplest form; a series of objects and commands,
written in the same order as you would type them from the keyboard. In
following chapters, you'll learn about more advanced HP 48 programming
features:

• Conditional expressions (chapter 26).

• Looping structures (chapter 27).

• Flags (chapter 28).

• Interactive programs (chapter 29).

• Error trapping (chapter 30).

This chapter covers basic HP 48 programming concepts:

• Entering and executing programs.

• Editing programs.

• Using local variables in programs.

• Stack manipulation of data in programs.

25: Programming Fundamentals 489

• Using subroutines.

• Single-step execution of programs.

The Programmer's Reference Manual for the HP 48 (part number 00048-
90054) contains useful programming information, including complete
syntax information for all HP 48 commands.

Entering and Executing a Program

Entering a Program

To define the beginning of a program, press ~ E28. The F'F;G
annunciator appears, indicating Program-entry mode. In this mode,
pressing the key for any command now writes the command's name in the
command line. (You can also type the command name into the command
line with alpha characters.) Only nonprogrammable operations such as
Band IVARI are executed.

The following program, SPH, calculates the volume of a spherical cap of
radius, and height h.

The volume is calculated by V = .! 71" h 2 (3r - h).
3

470 25: Programming Fundamentals

In this and following chapters on programming, "stack diagrams" are used
as appropriate to show what arguments must be on the stack before a
program is executed and what results the program leaves on the stack.
Here is the stack diagram for SPH.

Arguments He ults

2: 2:
1 : 1: volume

The diagram indicates that SPH takes no arguments from the stack and
returns the volume of the spherical cap to level!. (SPH assumes that you
have stored the numerical value for the radius in variable R and the
numerical value for the height in variable H.)

Program listings are shown with program steps in the left column and
associated comments in the right column. Remember, you can either
press the command keys or type in the command names to key in the
program. In this first listing, the keystrokes are also shown.

Program:

'1/3

Keys:
~~

rl1El3

~~~ 
~H02 

~~[OJ 
3~R[] 
H [EJ [EJ 

~I .. NUMI 

IENTERI 

rl SPH rSTol 

Comments: 
Begins the program. 

Begins the algebraic expression to 
calculate the volume. 

Multiplies by 1rh2• 

Multiplies by 3r - h, completing 
the calculation and ending the 
expression. 

Converts 1r to a number. 

Ends the program. 

Puts the program on the stack. 

Stores the program in variable 
SPH. 

25: Progr.mmlng Fund.mentals 471 



Executing a Program 

There are several ways to execute SPH: 

• Type SPH in the command line, then press I ENTER I. 

• Select the VAR menu, then press 

• If the program or the program name is already in levell, press 
IEV@. 

Example: Executing a Program from the VAR Menu. Use SPH 
to calculate the volume of a spherical cap of radius r = 10 mm and height 
h = 3mm. 

First, store the data in the appropriate variables. Then select the VAR 
menu and execute the program. The answer is returned to level 1 of the 
stack. 

10 B R ISTol 
3 B H ~Tol 
IVARI 

Editing a Program 

I~ 254. 4690849421 EllII _ 

Follow the same rules to edit a program as you do to edit any other object 
(see "Displaying Objects For Viewing or Editing" on page 66). 

Example: Editing a Program. Edit SPH so that it stores the number 
in level 1 into variable H and the number in level 2 into variab1e R. 

Use the VAR menu and IVISITI to call SPH to the command line for 
editing. 

IVARI 

B>SF'H 
~lvlslTI 

• ' 1 /3*u*H~2*(3*R-H 
)1 NUM ,. 
mmmmca:mlmDmElmnI 

Move the cursor past the first program delimiter and insert the new 
program steps. 

[EJ B H [EJ ISTol 
B R [EJ ISTol 

472 25: Programming Fundamentals 

«'H I STO JR' STO 41/3 ... 
)1 -+NUM , 
CEm8J'WmBmamDCans 



Save the edited v: rsioD of SPH in the variabl To verify that the changes 
were saved, recall SPH to the command line. 

IENTERI 
l:l ; X~~B .t 
~IVlslTI 

« 'H' STO 'R' STO I 

1/3*~*H~*(3*R-H)' 
"NOM 
» 
Hmlrim:lmDlmDlI:KIlIDII 

No further changes need to be made, so press IA TTNI to abort the editing 
session or IENTERI to resave the program. 

The edited version of SPH now takes two arguments from the stack, the 
height from level 1 and the radius from level 2. 

Using Local Variables 

The program SPH in the previous section uses global variables for data 
storage and recall. There are disadvantages to using global variables in 
programs: 

• After program execution, global variables that you no longer need to 
use must be purged if you want to clear the VAR menu and free user 
memory . 

• You must explicitly store data in global variables prior to program 
execution, or have the program execute STD. 

In this section, you'll see how local variables address the disadvantages of 
global variables in programs. Local variables are temporary variables 
created by a program. They exist only while the program is being executed 
and cannot be used outside the program. They never appear in the V AR 
menu. 

To create local variables, you must use the following sequence (of 
command and objects, called a local variable structure: 

1. The - command (press ~E1). 

2. One or more variable names. 

3. A procedure (an algebraic expression or a program) that includes 
the names. This procedure is called the defining procedure. 

25: Programming Fundam8l11ta1s 473 



The structure looks like this: 

« -+ name} name2 .. . namen « program» » 

or 

« -+ name} name2 .. . namen I algebraic expression I » 

When tbe -+ command is executed in a program, n values are taken from 
the stack and assigned to variables name!> name2, ... namen • For 
example, if the stack contains: 

( NaME) 

tben: 

• -+ d creates local variable a = 20. 

• -+ d b creates local variabl a = 6 and b = 20. 

• -+ d b c creates local variables a = 10, b = 6, and c = 20. 

Tbe defining procedure then uses the local variables to do calculations. 

(By convention, this manual uses lowercase names for local variables.) 

The foUowing program SPHLV calculates the volume of a spherical cap 
using local variables. The defIning procedure is an algebraic expression. 

Arguments Hesuha 

2: , 2: 
1: h 1: volume 

474 25: Programming Fundamentals 



Program: 

~ r h 

~NUM 

(g[TMJ tJ SPHLV ISTOJ 

Comments: 

Creates local variables r and h for 
the radius of the sphere and height 
of the cap. 

Expresses the defining pro<:edure. In 
this program, the defining procedure 
for the local variable structure is an 
algebraic expression. 

Converts 1(" to a number. 

Stores the program in vari~lble 

SPHLV. 

Example: Executing a Program That Uses Local Vari bles. 
Use SPHLV to calculate the volume of a spherical cap of radius r = 10 
mm and height h = 3 mm. 

Place the data on the stack in the correct order, then select the VAR 
menu and execute the program. 

10lENTERJ3 
lYABlSPHGV 

The preceding program and example demonstrate the advantagl:!s of local 
variable structures: 

• The -+ command stores the value(s) from the stack in the 
corresponding variable( s) - you do not need to explicitly execute 
STD. 

• Local variables automatically disappear when the defining procedure 
for which they are created has completed execution. Consequently, 
local variables do not appear in the VAR menu and occupy user 
memory only during program execution. 

• Local variables exist only within their defining prO<:edure - different 
local variable structures can use the same variable names without 
conflict. 

25: Pro,.rammlng Fundamental. 475 



Evaluation of Local Names. Local names are evaluated differently 
than global names. When a global name is evaluated, the object stored in 
the corresponding variable is itself evaluated. (You've seen how programs 
stored in global variables are automatically evaluated when the name is 
evaluated.) 

When a local name is evaluated, the object stored in the corresponding 
variable is returned to the stack but is not evaluated. When a local 
variable contains a number, the effect is identical to evaluation of a global 
name, since putting a number on the stack is equivalent to evaluating it. 
However, if a local variable contains a program, algebraic expression, or 
global variable name, that object must be explicitly evaluated (by executing 
EVAL) after it is returned to the stack. 

Scope of Local Variables. Local variables exist only in the procedure 
for which they are defined. The following sample program illustrates the 
availability of local variables in nested defining procedures (procedures 
within procedures). 

Program: 

~ abc 

a b -+ C + 

~ d e f 

Comments: 

Starts the outer program. 

For these arbitrary program steps, 
no local variables are available. 

Creates local variables a, b, and c. 

Starts the defining procedure (a 
program) for local variables a, b, and 
c. This procedure is nested in the 
outer program. Local variables a, b, 
and c are available in this procedure. 

Defines local variables d, e, andf. 

Starts the defining procedure (an 
algebraic expression) for local 
variables d, e, and/. This procedure 
is nested in the defining procedure 
for local variables a, b, and c. Local 
variables a, b, c, d, e, and fare 

476 25: Progn mmlng Fund_ental. 



a c / -

available in this procedure. 

Ends the defIning procedw'e for 
local variables d, e,/. Local variables 
d, e, and/no longer exist. 

Local variables a, b, and c remain 
available. 

Ends the defIning procedu:re for 
local variables a, b, and c. Local 
variables a, b, and c no longer exist. 

For these arbitrary program steps, 
no local variables are available. 

Ends the outer program. 

Since local variables a, b, and c already exist when the defining procedure 
for local variables d, e, and/ is executed, they are available for lise in that 
procedure. However, suppose that the defining procedure for local 
variables d, e, and/ calls a program that you previously created and stored 
in global variable P 1. 

Program: 

~ abc 

a b + C + 

~ d e f 

Comments: 

Defines local variables d, e, andf. 

Starts the defining procedure for 
local variables d, e, and/. 

The defining procedure executes the 
program stored in variable P 1. 

25: Programming Fundamentals 477 



Ends the defining procedure for 
local variables d, e, and f. 

The six local variables are not available in program P 1 because they did 
not exist when you created P 1. The objects stored in the local variables 
are available to program P 1 only if you put those objects on the stack as 
arguments for PI or store those objects in global variables. 

Conversely, program PI can create its own local variable structure with 
local variables a, c, andf, for example, without conflicting with the local 
variables of the same name in the procedure that calls P 1. 

Programs That Act Like User-Defined Functions. In this chapter 
you've learned that the defining procedure for a local variable structure 
can be either an algebraic expression or a program. In chapter 10, you 
learned that a user-defined function is a program that consists solely of a 
local variable structure whose defining procedure is an algebraic 
expression. 

A program that begins with a local variable stnlcture whose defining 
procedure is a program acts like a user-defined function in two ways: It 
takes numeric or symbolic arguments, and takes those arguments either 
from the stack or in algebraic syntax. However, it does not have a 
derivative. (The defining program must, like algebraic defining 
procedures, return only one result to the stack.) 

The advantage of using a program as the defining procedure for a local 
variable structure is that a program can contain commands not allowed in 
algebrai(: expressions. For example, the loop structures described in 
chapter 27 are not allowed in algebraic expressions. The program BER in 
chapter 31 calculates a Bessel function approximation to 12-digit accuracy. 
BER uses a local variable structure whose defining procedure is an RPN 
p ogr that contains a FOR ... STEP structutc nd a n st d 
IF . . . THEN ... ELSE . .. END structure. BER is not differentiable, but the 
example in chapter 31 demonstrates that it can take its arguments either 
from the stack or in algebraic syntax. 

478 25: Programming Fundamentals 



Programs That Manipulate Data on the Stack 

The programs SPH (page 471) and SPHLV (page 475) in this chapter use 
variables for data storage and recall. An alternative programming method 
manipulates numbers on the stack without storing them in variables. This 
method usually results in faster program execution time. There are several 
disadvantages of the stack manipulation method: 

• As you write a program, the location of the data on the stack must be 
tracked. For example, data arguments must be duplicated if used by 
more than one command. 

• A program that manipulates data on the stack is generally harder to 
read and understand than a program that uses variables. 

The following program SPHSTACK uses the stack-manipulation method 
to calculate the volume of spherical cap. (SPH and SPHLV execute the 
same calculation.) 

L-

_Ar __ g_u_m __ e_n_,s __ ~ ______________ R __ S_U_I_'S _________ ~ 2 : r 2 : 
1: h 1: volume 

Program: 

DUP 

I':OT 

3 * 
S~JAP -

Comments: 

Makes a copy of the number in level 
1 (the height). 

Rotates the number now in level 3 
(the radius) to level I. 

Multiplies the radius by 3. 

Swaps the height into leve:! 1 and 
subtracts, calculating 3r - h. 

25: Programming Fundametlltala 479 



SWAP SQ .. 

'IT .. 3 / 

'H~UM 

IENTERI I:l SPHSTACK ISTOI 

Using Subroutines 

Swaps the copy of the height into 
levell, squares it, and multiplies by 
3f' - h. 

Multiplies by 1r and divides by 3, 
completing the calculation. 

Converts 1r to a number. 

Puts the program on the stack, then 
stores it in SPHSTACK. 

Remember that a program is composed of objects and commands that are 
executed when the program is executed. Because a program is itself an 
object, it can be used by another program. When program B is used by 
program A, program A calls program B, and program B is a subroutine in 
programA. 

This section introduces two programs to illustrate the use of subroutines. 
The first program, TORSA, calculates the surface area of a torus of inner 
radius a and outer radius b. TORSA is used as subroutine in the second 
program. 

The surface area is calculated by: 

480 25: Programming Fundamentals 



Here is the stack diagram and program listing for TORSA. 

Argument 

2: 8 2: 
1: b 1: area 

Program: 

~ a b 

'lT A 2*(bA 2-aA 2), 

~t'lUt1 

(g[TERI 

tJ TORSA ISTOI 

Results 

Comments: 

Creates local variables a and b. 

Expresses the defining procedure for 
the local variable structure, 

Converts ?f to a number. 

Puts the program on the stack, 

Stores the program in TOR.sA. 

Program TORSV calculates the volume of a torus. It calls TORSA to 
execute part of the calculation. 

The: formula for the volume of a torus is: 

This equation can be rewritten as: 

The: quantity.,(2 ( b2 - Ql ) in this equation is the surface area of a torus 
and can be calculated by executing TORSA. 

25: Programming Fundamen'tals 481 



Here is a stack diagram for TORSV. 

Arguments 

2: a 2: 
1: b 1: volume 

Program: 

-+ a b 

a b TORSA 

IENTERI 

rJ TORSV ISTOI 

Results 

Comments: 

Creates local variables a and b. 

Starts the defining procedure (a 
program) for the local variable 
structure. 

Puts the numbers stored in a and b 
on the stack as arguments for 
TORSA, then call TORSA to 
calculate the area il(b2 - a2). 

Completes the volume calculation. 

Ends the defining procedure. 

Ends the program. 

Puts the program on the stack. 

Stores the program in TORSV. 

TORSV calls program TORSA to execute part of the volume calculation. 
TORSA is a subroutine in TORSV. In turn, another program can call 
TORS V. 

Example: Executing a Program That Uses a Subroutine. Use 
TORSV to calculate the volume of a torus of inner radius a = 6 inches 
and outer radius b = 8 inches. 

Place thf: data on the stack according to the stack diagram. Select the 
VAR menu and execute the program. 

6IENTER] 8 
IVARI TORSV 

482 25: Programming Fundamentals 

11: 138.1744616161 
IBimfiE7l'!lilwrm .... rm::II 



Single-Step Execution of a Program 

It's easier to understand how a program works if you execute it step by 
step, observing the effect of each step. Doing this can help you "debug" 
your own programs or understand programs written by others. 

The operations for single-stepping through a program are containl!d in 
the PRG CI'RL menu. 

Single-Step Operations 

Keys Progr mmable Description 
Command 

~ICONT\ CONT Resumes execution of a halted 
program. 

IPRGI ':rR~ 

DBlJI Takes as its argument the program or 
program name in level 1. Starts 
program execution, then suspends it 
as if HALT were the first program 
command. 

SST,., Executes the next object or command 
in the suspended program. 

- ~ Same as ,raaT except when the 
next program step is a subroutine. 
When the next step Is a subroutine. 
single-steps to the first step in that 
subroutine. 

25: Programming Fundamenul. 483 



Single-Step Operations (continued) 

Keys Programmable Description 
Command 

NEJ<T Displays the next one or two objects. 
but does not execute them. 

:BRO , HALT Suspends program execution at the 
location of the HALT command In the 
program. 

~LL KILL Cancels all suspended programs. 

Single-Step Execution from the Start of the 
Program 

In many cases, you want to begin single-step execution at the beginning of 
a program. The general procedure is: 

1. Put the program or program name in the command line or levell. 

2. Press IPRGI Q.I3VQ:,.Program execution is started, then 
suspended before execution of the nrst object or command. The 
HAL T annunciator is displayed in the status area. 

3. Optional: Press Hf;)<J' -to display in the status area, but not 
execute, the next one or two program steps. The display persists 
until the next keystroke. 

4. Press once to see the nrst program step displayed in the 
status area and then executed. 

5. You can now: 

• Keep pressing /2>"'."' •• 1/" ..... to display and execute sequential steps. 

• PressHEX'I"T at any time to display but not execute the next 
one or two program steps. 

• Press ~ICONTI to continue normal execution. 

• Press](U"i..to abandon further program execution. 

484 25: Programming Fundamentals 



Example: Single-Step Program Execution. Execute pr<>glram 
TORSV step by step. Use the torus from the previous example (a = 6 
inches, b = 8 inches). 

Select the V AR menu and enter the data. Return the program name to 
the command line. Select the PRG CfRL menu and execute DUUG? 
The HAL T annunciator turns on, indicating that program execution has 
been started, then suspended. 

IYMI 
6 IENTERI 8 IENTERI 
rJ TORSV 
I PRG I~CTRL.7'DBUG 

MALT 
( IIIME )0 

6 
8 

CImlIllmIDlDI 

Execute SST . The first program step is displayed in the status area, 
then executed. 

SST -+ a b 

4= 
3= 
2= 
1: 
om mmllJ:IDlBID 

You can see that the first program step took the two arguments from the 
stack and stored them in local variables a and b. 

Refer to the rules at the beginning of this section. You've executed the 
first four steps and can now choose one of the four alternatives dc~scribed 
in ste:p 5. For this example, continue single-step execution until the HALT 
annunciator disappears. Watch the stack and status area as you single-step 
through the program. 

SST ... I~ 138.1744616161 
BiDImIIIIlI:lDImm 

25: Progr ....... lng Fund .... entlil. 485 



Single-Step Execution from the Middle of 1he 
Program 

You may want to start single-step execution at some point in the program 
other than the first step. To do so: 

1. Insert the HALT command in the program. Place it where you want 
to begin single-step execution. 

2. Execute the program. When the HALT command is executed, the 
program stops and the HAL T annunciator is displayed. 

3. Follow steps 3 - 5 on page 484. 

4. When you want the program to run normally again, remove the 
HALT command from the program. 

Single-Step Execution of Subroutines 

SST executes the next step in a program. If the next step is a 
subroutine, SST executes that subroutine in one step. In the previous 
example, you used SST to execute subroutine TORSA in one step. 
However, you may want to single-step through a subroutine, executing 
each individual step rather than the program as a whole. To do so, use the 
%$$Ii.t'~ operation. LSSTi~:;;; works just like S $ I i , except when the 
next program step is a subroutine. In this case,SST+ single-steps to 
the first step in the subroutine. 

Example: Single-Step Execution of a Subroutine. Execute 
program TORSV step by step to calculate the volume of a torus of radii a 
= 10 inches and b = 20 inches. When you reach subroutine TORSA, 
execute it step by step. 

Select the VAR menu and key in the data. Return the program name to 
the command line, select the PRG CfRL menu, and execute DBUG. 
Execute the first four steps of the program, then check the next step. 

IVARI 
10 r=IE"""N""'r ""ER="'1 12 

C1 TORSV 
IpRGI .CTRL DeUG 
SSJ '" (orS:3T) 4 times 
HEXT 

486 25: Progr.mmlng Fund.mental. 

TORSA b 

4= 
3: 
2: 1B 
1: 12 
m!HlmilmDmDlmllilH 



The next st p' is TOR. A. If you now execute TORSA will be 
executed. Since you want to single-step through TORSA, execute SS T.", 
Then verify that you are now at the first step of TORSA, not the l1ext step 
of TORSV. 

$$T,* 
NEXT 

+ a 

4: 
3= 
2= 18 
1: 12 
IiDllEI.&IIBillrnmllmID.IliIBII 1 

Execute or $$T,* repeatedly to single step through the 
remainder of the program, or at any time, press ~ICONTI to resume 
program execution. 

25: Progr mmlng Fundam tI:ls 487 



26 
Tests and Conditional Structures 

This chapter describes commands and program structures that, used 
togeth~:r, let programs ask questions and make decisions: 

• Comparison functions and logical functions let a program test whether 
or not a specified condition exists. 

• Program structures called conditional structures use test results to 
make decisions. 

Example: Tests and Conditional Structures. The program in this 
example uses a test inside a conditional structure to execute the following 
task: 

"If the two numbers on the stack have the same value, drop one of the 
numbers from the stack and store the other in variable VI. If, however, the 
numbers are not equal, store the number from level 1 in VI and the number 
from level 2 in V2." 

488 26: T .... Mid CondlUonai Structur •• 



Program: Commnts: 

« Starts the program. 

DUP2 Copies the numbers in level. 1 and 2. 

IF Starts the test clause of the 
conditional structure. 

SAt1E Tests if the numbers have the same 
value. 

THEN Ends the test clause and starts the 
true clause of the conditional 
structure. The true clause is executed 
only if the test is true. 

DROP If the test is true (if the numbers are 
, '.11' STO the same), then drops one of the 

numbers from the stack and stores 
the remaining number in VI. 

ELSE Starts the false clause of the 
conditional structure. The false 
clause is executed only if the: test is 
false. 

'Vi' STO If the test is false, (if the nwnbers 
''.12' STO are not the same), then stor,~s the 

levell number in VI and the level 2 
number in V2. 

END Ends the conditional structure. 

» Ends the program. 

IENT~ r:J TST 15TOI Puts the program on the sta,:::k and 
stores it in TST. 

26: Tes .. and Conditional Structures 489 



Enter the numbers 26 and 52, then execute TST to compare their values. 

26IENT~ 52 
(VARI 'iilST, 

, .... ED ___ I 

Since the two number were not equal, the VAR menu now contains two 
new variables VI and V2. You can verify that the variables contain the 
numbers you entered by pressing both menu keys. 

Program Tests 

A test is an algebraic or a command sequence that returns a test result to 
the sta(:k. A test result is either a 1 -which means the test was true, or a 
0-which means the test wasfalse. For example, I X<Y I is a test. The 
same t(:st could be executed as a command sequence: X Y <. In either 
case, if X contains 5 and Y contains 10, then the test is true, and 1 is 
returned to the stack. Conditional structures (discussed later in the 
chapter) use a test result to determine which clause of the structure to 
execute. 

The commands used in tests can be categorized as follows: 

• Comparison functions. 

• Logical functions. 

• Flag-testing commands. Flags and flag testing commands are 
discussed in chapter 28, "Flags." 

These (;ommands are located in the PRG TEST menu (press [PRGI 
'TEST » . 

490 26: Te.ts and Condltlona. Structure. 



Comparison Functions 

Comparison functions compare two objects. 

Comparison Functions 

Key. Progl'8lmm.ble Description 
Comm.nd 

(PRGl i EST (pages 1 and 2) : 

,t. < Less than. 

~~ > Greater than. 

-- :5 Less than or equal to. 

~- > Greater than or equal to. 

::::- .. :::.:: -- Tests equality of two objects. For 
algebraics or names, returns an 
expression that can be evaluated to 
produce a. test result based on 
numerical values. 

F Not equal. Uke = = , but returns the 
opposite test result. 

SAME SAME Uke = =, but does not allow a 
comparison between the numerical 
value of an algebraic (or name) and a 
number. 

<, >, ~ and ~ compare two real numbers, two binary integers, or two 
strings returning 1 (true) or 0 (false) based on the comparison. The 
order of the comparison is level 2 test level 1, where test is the 
comparison function. For example, if 6 is stored in X, X 5 < removes Eo 
and 5 from the stack and returns o. If one object is an algebraic (or 
name) and the other object is an algebraic (or name) or a number, <, >, 
~, and ~ return an expression that must be evaluated to return a test 
result. For strings, "less than" means alphabetically previous. For 
example, .. AAA" is less than .. AAB" . 

26: T .... and Condition .. Strucllllr_ 491 



= = takes two objects from the stack and: 

• If either object is not an algebraic or a name, returns 1 if the two 
objects are the same type and have the same value, or 0 otherwise. 
Lists and programs are considered to have the same value if the 
objects they contain are identical. 

• If one object is an algebraic (or name) and the other object is an 
algebraic (or name) or a number, returns an expression that must be 
evaluated to return a test result. 

(Note that = = is used for comparisons, while = separates two sides of an 
equation.) 

F works just like = =, except that the test results are opposite. 

SAME returns 1 (true) if two objects identical. For example, 'X+3' 4 
SANE returns 0 regardless of the value of X because the algebraic 
, ~·~+3' is not identical to the real number 4. For all object types other 
than algebraics and names, SAME works just like = = . 

Using Comparison Functions In Algebraics. Comparison 
functions (except SAME) can be used in algebraics as infix functions. For 
exampl(~, if 6 is stored in X, 'X<5' -+NUM returns 0. 

492 26: T .... _d CondHion .. Structures 



Logical Functions 

Logical functions return a test result based on the outcomes of tHO 

previously executed tests. Note that these four functions interpn:t any 
non-zero argument as a true result. 

Logical Functions 

Keys Programmable Description 
Command 

IPRGI T:£ST" {page 1) ' ::::;::::::.. :::: ... .... \ ... :x:· ... ::.:/::: • 

••••••• · •••• tt.N.V.;.· AND Returns 1 (true) If both arguments are 
true. 

~~~ OR Returns 1 (true) if either or both 
arguments are true.

XOR XOR Returns 1 (true) If either, but Inot both,
arguments are true.

HOT NOT Returns 1 (true) if the argumElnt is (1

(false); otherwise. returns o (Iralse).

AND, OR, and XOR are used to combine two test results. For example, if
4 is stored in Y, Y 8 < 5 A~m returns 1. First, Y 8 < returns 1 to
the stack. AND removes 1 and 5 from the stack, interpreting both as
trm: results, and returns 1 to the stack.

NOT returns the logical inverse of a test result. For example, if 1 is stored
inX and 2 is stored in Y, X Y < HOT returns O.

Using Logical Functions in Algebraics. AND, OR, and XOR can
be used as infix functions in algebraics. For example, '3< 5 XOR 4> 7 I

·HlUt1 returns 1.

NOT can be used as a prefix function in algebraics. For example:, 't·lOT
Z~4 I ~HUM returns 0 if Z = 2.

26: Testa and Conditional Slrucblres 493

Testing Object Types

The TYPE command (lPRGI TEST TYPE) takes any object as its
argument and returns the number that identifies that object type. The
table on page 97 in chapter 4 lists the HP 48 objects and their
corresponding type number.

Conditional Structures

The HP 48 conditional structures let a program make a decision based on
the result of a test or tests. Conditional structures are built with
commands that work only when used in proper combination with each
other. These commands are contained in the PRG BRCH menu (IPRGI
BRCH) .

The conditional structures are:

• IF ... THEN ... END.

• IF ... THEN ... ELSE ... END.

• CASE ... END.

The IF ... THEN ... END Structure

IF ... THEN ... END executes a sequence of commands only if a test
evaluates to true. The syntax is:

I F test-clause THEt·j true-clause Et'j[)

The test··clause can be a command sequence (for example, A B ~) or an
algebraic (for example, I A~B '). If the test-clause is an algebraic, it is
automatically evaluated to a number (-+NVM or EVAL isn't necessary).

As a typing aid, press ~ I F to key in:

IF
THEt'l

END

494 26: T and Conditional S1ructur ••

Example 1: IF .•• THEN ••. END. Both programs below test the value
in levell. If the value is positive it is made negative. The first program
use~ a command sequence as the test-clause:

« DUP IF 0 > THEN NEG END »

The value on the stack must be duplicated because the> command
removes two arguments from the stack (the copy of the value made by
DUP, and 0).

The next version uses an algebraic as the test clause:

« ~ x « IF 'x>0' THEN x NEG END» »

Example 2: IF ••• THEN ••• END. This program multiplies two
numbers together if both are non-zero.

Program:

~ x y

IF

'x~0'

'y~0'

AND

THEN

x y *'

Comments:

Creates local variables x and y
containing the two numbers from the
stack.

Starts the test-clause.

Tests one of the numbers (IUd leaves
a test result on the stack.

Tests tbe other number, leaving
another test result on the ~ ,tack.

Tests whether both tests were true.

Ends the test-clause, start~, the true­
clause.

If AND returns true, multilplies the
two numbers together.

28: T _d Condition .. Structl..... 495

Et-1O Ends the true-clause.

The following program accomplishes the same task as the previous
program:

c ~ x y « IF I X AND y' THEN x y * END » »

The test-clause I x At·lO IJ I returns "true" if both numbers are non­
zero.

How IF ... THEN ... END Works. IF begins the test-clause, which
leaves a test result on the stack. THEN removes the test result from the
stack. If the value is non-zero, the true-clause is executed. Otherwise,
program execution resumes following END.

The IF. .. THEN ... ELSE ... END Structure

IF . .. THEN . .. ELSE ... END executes one sequence of commands if a test
is true, and another sequence of commands if that test is false. The syntax
IS:

I F test-clause THEt·l true-clause ELSE false-clause Et·1D

If the test-clause is an algebraic, it is automatically evaluated to a number
(-+NUM or EVAL isn't necessary).

As a typing aid, press ~ I F to key in:

IF
THEt'l
ELSE
Et·lO

496 26: Teats and Conditional Structure.

Example 1: IF ••• THEN ••• ELSE ••• END. The following program
takes a value x from the stack and calculates sin xix. At x = 0 thc~ division
would error, so the program returns the limit value 1 in this casc:::

« ~ x « IF Ix~0' THEN x SIN x / ELSE 1 END» »

Example 2: IF ••• THEN ••• ELSE ••• END. This program, like example
2 for IF ... THEN ... END, multiplies two numbers together if they are
both non·zero. However, the program returns the string "ZERO" if
either value is O.

Program:

"* nl n2

IF

THEN

nl n2 '*
ELSE

"ZERO"

END

Comments:

Stores the values from levels 1 and 2
in local variables.

Starts the defining procedure for the
local variable structure.

Starts the test clause.

Tests nl and n2.

If both numbers are non·Zl!ro ...

... multiplies the two values.

If both numbers are not nOD-zero ...

... returns the string ZERO.

Ends tli:Je conditional.

Ends the defining procedure.

How IF ••• THEN ••• ELSE ••• END Works. IF begins the test-clause,
which leaves a test result on the stack. THEN removes the test Jresult from
tb e stack. If the value is nOll -zero, the true-cbuse is executed. Othetwise,
the false-clause is executed. After the appropriate clause is executed,
execution resumes following END.

28: Teala and CondHionai Struc:ta.rea 497

The CASE ... END Structure

The CASE ... END structure lets you execute a series of cases (tests). The
first test that returns a true result causes execution of the corresponding
true-clause, ending the CASE ... END structure. Optionally, you can
include after the last test a default clause that is executed if all the tests
evaluate to false.

The CASE ... END structure has the syntax:

CASE

HID

test-clausSl THEN true-clausel END
test-clause2 THEN true-clause2 E~lD

test-clausen THHI true-clausen Et·lD
default-clause (optional)

As typing aids, press ~:CASE? to key in:

CASE
THHI
HlD
END

and [~lCaSE to key in:

THEN
Et·lD

Example: The CASE ... END Structure. The following program
stores the level 1 argument in a variable if the argument is a string, list, or
program.

498 26: Teats and Conditional Structur_

Program:

CASE

'~ TYPE 2 SAME
THEN y 'STR' STO END

Comments:

Stores the argument in local variable
y.

Starts the defining procedure.

Starts the case structure.

Case 1: If the argument is a string,
stores it in STR.

'~ TYPE 5 SA~lE Case 2: If the argument is a list,
THEN y 'L I ST' STO END stores it in LIST.

,~ TYPE 8 SA~lE Case 3: If the argument is a program,
THEN y 'PROG' STO END stores it in PROG.

END Ends the case structure.

Ends the defming procedure.

How CASE ... END Works. When CASE is executed, test-clause} is
evaluated. If the test is true, true-clause! is executed, and execution skips
to END. If test-clause! is false, execution proceeds to test-clausc;!.
Exe(:ution within the CASE structure continues until a true-clam,e is
executed, or until all the test -clauses evaluate to false. Optionally, a
default clause can be included. In this case, the default-clause is executed
if all the test-clauses evaluate to false.

Conditional Commands

The IF ... THEN ... END and IF ... THEN ... ELSE structures are useful for
situations where the true-clause and false· clause are sequences of
commands and objects. Two commands, 1FT (If ... Then) and IFTE
(If ... Then ... Else), let you easily execute the same decision-making
process if the true- and false-clauses are each a single command Dr object.

26: Tests and Conditional Structu.·es 499

The 1FT (H-Then-End) Command

The 1FT command takes two arguments: a test result in level 2 and an
object in level 1 (the "true clause"). The object in level 1 is executed if the
test result is true.

Example: The 1FT Command. The following program removes a
number from the stack and displays POS I T I VE if the number is positive.

« 0 > "POSITIVE" 1FT »

The IFTE Function

The IFfE function takes three arguments: a test result in level 3, and
objects in levels 2 and 1. The level-2 object (the "true-clause") is executed
if the test result is true. Otherwise, the level-l object (the "false-clause")
is executed.

Example: The IFTE Command. This program takes a value from
level 1 and displays POS I T I VE if it is positive or zero, and NEGAT I VE
otherwise:

« 0 ~ "POSITIVE" "NEGATIVE" IFTE »

Using IFTE in Algebraics. The IFfE function can also be used as a
function in a1gebraics. It has the syntax:

I FTE (test, true-clause, false-clause)

Example: The IFTE Function. This program is a user-defined
function that takes a number (x) from the stack and calculates sin(x)/x if x
is non-zero. If x is 0, the program returns 1:

500 26: T_ta and Conditional Structu~

27
Loop Structures

Loop structures execute a part of a program repeatedly. There are two
fundamental types of loops:

• For a definite loop, the program specifies in advance how many times
the loop clause will be executed.

• In an indefinite loop, the program uses a test to determine whether to
execute the loop-clause again.

Lik(: the conditional structures described in chapter 26, looping structures
are built with commands that work only when used in proper combination
with each other. These commands are contained in the PRG BRCH menu
([ffi§]aRCHi).

Definite Loop Structures

There are two definite loop structures. Each has two variations:

• START ... NEXT and START ... STEP.

• FOR ... NEXT and FOR. .. STEP.

%7: Loop Structure. 501

The START ... NEXT Structure

START. ... NEXT executes a portion of a program a specified number of
times. The syntax is:

start finish START loop-clause NEXT

As a typing aid, press ~START to key in:

START
NEXT

Example: A START ... NEXT Loop. The following program creates a
list containing ten copies of the string 10 ABC 10:

« 1 10 START 10 ABC 10 NEXT 10 -*LI ST »

How START ... NEXT Works. START takes two numbers (start and
finish) from the stack and stores them as the starting and ending values
for a loop counter. Then, the loop-clause is executed. NEXT increments
the counter by 1 and tests to see if its value is less than or equal to finish.
If so, the loop-clause is executed again.

502 'Z1: Loop Structures

Syntax

start
finish

START

loop-clause

NEXT

Flowchart

1: start
2: finish

t

yes

Notice tha(tbe loop-clause is always execute.d at least once.

The START ... STEP Structure

START ... STEP works just like START ... NEXT, except that it lets you
specify an increment value other than 1. The syntax is:

start finish START loop-clause increment STEP

As a typing aid, press ~$,.aE" to key in:

START
STEP

Example: A START ... STEP Loop. The following program takes a
number x from the stack and calculates the square of that number xl3
times:

« DUP ~ x « x 1 START x SQ -3 STEP »

How START ... STEP Works. START takes two numbers (start and
finish) from the stack and stores them as the starting and ending values of
the loop counter. Then, the loop-clause is executed. STEP takes the
increment value from the stack and increments the counter by th I w Iue.
If the argument of STEP is an algebraic or a name, it is automatically
evaluated to a number.

The increment value can be positive or negative. If it is positive, the loop
is executed again when the counter is less than or equal to final. If the
increment value is negative, the loop is executed when the counter is
greater l.han or equal to final. In the following flowchart, the increment
value is positive.

504 :0: Loop S1nIctures

Syntax Flowchart

ststt
1 : start

finis h

I
2: finish

t
START

loop-clause

1
increment

,: increment

t
yes

STEP

%1: Loop Structure. 505

The FOR ... NEXT Structure

A FOR ... NEXT loop executes a program segment a specified number of
times using a local variable as the loop counter. You can use this variable
within the loop. The syntax is:

start finish FOR counter loop-clause t·1Ei<T

As a typing aid, press ~ FOR . to key in:

FOR
t-lE::<T

Example 1: A FOR ... NEXT Loop. The following program places the
squares of the integers 1 through 5 on the stack:

« 1 5 FOR j j SQ t-lEXT »

Example 2: A FOR ... NEXT Loop. The following program takes the
value x from the stack and computes the integer powers j of x. For
exampk, when x = 12 and start and finish are 3 and 5 respectively, the
program returns 123

, 12\ and 125. It requires as inputs start and finish in
levels 3 and 2, and x in level 1:

« ~ x « FOR n ' xAn' EVAL t-lEXT » »

~ ::< removes x from the stack, leaving start and finish there as arguments
for FOR.

How FOR ... NEXT Works. FOR takes start and finish from the stack
as the beginning and ending values for the loop counter, then creates the
local variable counter as a loop counter. Then, the loop-clause is
executed; counter can appear within the loop clause. NEXT increments
counter by one, and then tests whether counter is less than or equal to
finish. If so, the loop-clause is repeated (with the new value of counter).

W e the loop is cxi ed. counter is p rged.

506 27: Loop Structures

Syntax

start
finish

I
FOR

loop-clause

NEXT

Flowchart

1: stan
2: finish

yes

27: Loop Slru ctures 507

The FOR ... STEP Structure

FOR. .. STEP works just like FOR. .. NEXT, except that it lets you specify
an increment value other than 1. The syntax is:

start finish FOR counter loop-clause increment STEP

As a typing aid, press ~ FOR to key in:

FOR
STEP

Example 1: A FOR ... STEP Loop. The following program places the
squares ofthe integers 1, 3, 5, 7, and 9 on the stack:

« 1 9 FOR x x SQ 2 STEP »

Example 2: A FOR ... STEP Loop. The following program takes n
from the: stack, and returns the series of numbers 1, 2, 4, 8, 16, ... n. If n
isn't in the series, the program stops at the last value less than n:

« 1 SWAP FOR n n n STEP »

How FOR ... STEP Works. FOR takes start and finish from the stack
as the beginning and ending values for the loop counter, then creates the
local variable counter as a loop counter. Next, the loop-clause is executed;
counter can appear within the loop clause. STEP takes the increment
value from the stack and increments counter by that value.

The increment value can be positive or negative. If the increment is
positive, the loop is executed again when counter is less than or equal to
final. If the increment is negative, the loop is executed when counter is
greater than or equal to final.

When the loop is exited, counter is purged.

(In the following flowchart, the increment value is positive.)

508 27: Loop S1ructur_

Syntax Flowchart

start 1: staff
finish 2: finish

~
FOR

loop-clause

I
increment 1: increment

f
yes

STEP

27: Loop Structures 5D9

,

Indefinite Loop Structures

The DO ... UNTIL. .. END Structure

DO ... UNTIL ... END ... executes a loop repeatedly until a test returns a
true (non-zero) result. Since the test-clause is executed after the loop­
clause, the loop is always executed at least once. The syntax is:

DO loop-clause UNT I L test-clause Hm

As a typing aid, press ~/p;q II to key in:

DO
UtHIL
Et~D

Example: A DO ... UNTIL. .. END Loop. The following program
calculate.s n + 2n + 3n + ... for a value of n. The program stops when the
sum exceeds 1000, and returns the sum and the coefficient of n.

Program:

«

DUP 1 ~ n s c

DO

'c' INCR

n *' '5' STO+

510 27: Loop Structure.

Comments:

Duplicates n and stores the value
into nand s; initializes counter c to 1.

Starts the defining procedure, in this
case a program, for the local variable
structure.

Starts the loop-clause.

Increments the counter by 1. (INCR
is discussed on page 513.)

Calculates ex n, and adds the
product to s.

UtHIL

s Ieee >

END

s c

Starts the test clause.

Repeats loop until s> 1000.

Ends the test-clause.

Puts s and C 00 the stade

Ends the defining procedure.

How DO . •• UNTIL •• END orks. DO starts execution of tbe loop­
clause. UNTIL ends the loop clause and begins the test-clau c. The test­
clause leaves a test result 00 the stack. END removes the test result from
the stack. If its value is zero, the loop-clause is executed again; otherwise,
execution resumes following END.

Syntax

DO

loop·clause

I
UNTIL

test-clause

END

Flowchart

1: test resuH

77: Loop Sbuc turcs 511

The WHILE ... REPEAT ... END Structure

WHILE. ... REPEAT ... END repeatedly evaluates a test and executes a
loop-clause if the test is true. Since the test -clause occurs before the
loop-clause, the loop-clause is never executed if the test is initially false.
The syntax is:

WH I LE test-clause REPEAT loop-clause END

As a typing aid, press ~WHILE to key in:

WHILE
REPEAT
END

Example 1: A WHILE ... REPEAT ... END Loop. The following
program starts with a number on the stack, and repeatedly performs a
division by 2 as long as the result is evenly divisible. For example, starting
with the number 24, the program computes 12, then 6, then 3:

c WHILE DUP 2 MOD 0 == REPEAT 2 / DUP END DROP »

Example 2: A WHILE ... REPEAT ... END Loop. The following
program takes any number of vectors or arrays from the stack and adds
them to the statistics matrix. (The vectors and arrays must have the same
number of columns.) WHILE ... REPEAT ... END is used instead of
DO ... UNTIL ... END because the test must be done before the addition.
(If only vectors or arrays with the same number of columns are on the
stack, the program errors after the last vector or array is added to the
statistics matrix.)

« WHILE DUP TYPE 3 -- REPEAT X+ END #

How WHILE ... REPEAT ... END Works. The test-clause is executed
and returns a test result to the stack. REPEAT takes the value from the
stack. If the value is non-zero, execution continues with the loop-clause;
otherwise, execution resumes following END.

512 n: Loop Structures

Syntax

WHILE

I
test-clause

I
REPEAT

loop-clause

I
END

Flowchart

1 : lest result

Loop Counters (INCR and DECR)

no

The INCR (increment) command (~IMEMORYI INCRm) takes a global
or local variable name as its argument. The variable must contain a real
number. The command:

• Returns the new value of the variable.

• Increments by 1 the value stored in the variable.

For example, if c contains the value 5, I C I I HeR returns 6 to the stack
and stores 6 in c.

The DECR (decrement) command is analogous to INCR, except that it
subtracts 1 from the specified variable.

%7: Loop Structures 513

Example: Using a Loop Counter with an Indefinite Loop. The
foDowing program takes a maximum of five vectors from the stack and
adds them to the current statistics matrix.

Program:

«

e ~ e

«

WHILE

DUP T,(PE 3 --

'e' INCR

5 ~

At·ID

REPEAT

}:+

END

»

»

514 %7: Loop Structures

Comments:

Stores 0 in local variable c.

Starts the defining procedure for the
local variable structure.

Starts the test clause.

Returns true if level! contains a
vector.

Increments the value in c and puts
the incremented value in Icv I 1.

Returns true if the incremented
value of c :5 5.

Returns true if the two previous lest
results are true.

Adds the vector to EDAT.

Ends the WHILE ... REPEAT
structure.

Ends the defining procedure.

28
Flags

Flags are an important programming tool in the HP 48. You can think of
a flag as a switch that is either on (set) or off (clear). A program can test a
flag's state within a conditional or looping structure (described in the
previous chapters) to make a decision. Since flags have unique meanings
for the calculator, flag tests expand a program's decision-making
capabilities beyond that available with comparison and logical functions .

Flag Types

There are two types of flags in the HP 48: system flags, numbered - 1
through - 64; and user flags, numbered 1 through 64. System flags have a
predefined meaning for the calculator. For example, system flag -40
controls the clock display-when this flag is clear (the default state), the
clock is displayed only when the TIME menu is selected; when this flag is
set, the clock is displayed at all times. (Actually, when you press eLK
in the MODES menu, you set or clear flag -40.) Appendix E lists the 64
system flags and their definitions.

28: Flag. 515

User flags are not used by any built-in operations; what they mean
depends entirely on how you define them. When you set a user flag 1
through 5, the corresponding annunciator is activated. (Note that plug-in
cards, described in chapter 34, may affect the settings of user-flags
31-64.)

Setting, Clearing, and Testing Flags

The following commands take as their argument a flag number - an
integer 1 through 64 (for user flags), or -1 through -64 (for system
flags).

Flag Commands

Keys Programmable Description
Command

IPRGI AESI4t: (page 3) (or [[!]IMODESj pages 2 and 3) :

Ij!1r SF" SF Sets the flag.

-=~~ CF Clears the flag.

FSr FS? Returns true (1) if the flag Is set, or
false (0) if the flag Is clear.

r:;:t:~ ~ Fe? Returns true (1) if the flag Is clear, or
false (B) If the flag Is set.

FS7C FS?C Tests the flag (returns true if the flag Is
set), then clears he flag.

FC?O FC?C Tests the flag (returns true if the flag Is
clear), then clears the flag.

Example: Testing a System Flag. The following program sets an
alarm for June 6,1991 at 5:05 PM. It first tests the status of system flag
-42 (the Date Format flag) in a conditional structure and then supplies
the alarm date in the current date format, based on the test result.

516 28: FIIig.

I

I

I

Program:

IF
-42 FC?

THEN
6.151991

ELSE
15.061991

END

17.05 "TEST COMPLETE"
3 "*L I ST STOALARt'l

Comments:

Tests the status of flag - 42, the Date
Format flag.

If flag -42 is clear, supplies the date
in month/day !year format.

If flag - 42 is set, supplies the date in
day. month. year format.

Ends the conditional.

Completes the set-alarm command
sequence. (17. 05 is the alarm time
and "TEST cmlPLETE" is the
alarm message.)

Example: User Flags in Programs. The following program returns
either the fractional or integer part of the level 1 argument, depending on
the state of user flag 10.

Program: Comments:

«

IF Starts the conditional.

10 FS? Tests the status of user flag 10.

THEN If flag 10 is set ...

IP ... returns the integer part.

ELSE If flag 10 is clear ...

FP ... returns the fractional part.

END Ends the conditional.

»

28: Flags 517

Before you execute this program, you set flag 10 if you want to return the
integer part of the argument, or you clear flag 10 if you want to return the
fractional part of the argument. Flag 10 is defined to have a unique
meaning in the program; its status determines which part of the level 1
argument is returned to the stack.

Recalling and Storing the Flag States

The RCLF (recall flag status) and STOF (store flag status) commands let
you recall and then store the status of the UP 48 flags. The commands let
a program that alters the status of a flag or flags during execution
preserve the pre-program-execution flag status.

Recalling the Flag States

RCLF returns a list containing two 64-bit binary integers that represent
the current status of the system flags and user flags respectively:

The rightmost (least significant) bits of #n$ and #nu represent the states
of system flag -1 and user flag + 1 respectively.

Storing the Flag States

STOF sets the current states of the system flags, or the states of both the
system and user flags. It takes as its argument either:

• A single binary integer (#n$)' in which case only the corresponding
system flags are set or cleared .

• A list containing two binary integers ({ #n$ #nu }), in which case
the corresponding system and user flags are set or cleared.

A bit with value 1 sets the corresponding flag; a bit with value 0 clears the
corresponding flag. The rightmost (least significant) bits of #ns and #nu
set the states of system flag -1 and user flag + 1 respectively.

The program PRESERVE on page 555 in chapter 31 uses RCLF and
STOF.

518 28: Flags

29
Interactive Programs

Simple programs like those in chapter 25 use data that is supplied before
program execution and return results as unlabeled numbers. Such
programs may be difficult to use, particularly if you are not the program
author. You must know what arguments to enter on the stack and in what
order to enter them, and you must know how to interpret the results
returned to the stack.

Interactive programs do any of the following:

• Stop during execution to prompt you for data.

• Display program results with explanatory messages or tags.

• Stop during execution so that you can make a choice about how you
want the program to proceed.

a: Inter8CtlV. Progr..... 511

Suspending Program Execution for Data
Input

Data Input Commands

Keys Programmable Description
Command

I!iJICONTI CONT Restarts a halted program.

IPRGI tTRI;';rr (pages 1. 2 and 3) :
. HALT HALT Halts program execution.

lNf'UT INPUT Suspends program execution for data
Input Prevents stack operations while
the program Is paused.

PROM PROMPT Halts program execution for data Input.
Dr Sp- D1SP Displays an object in the specified line

of the display.

tWan ; ... WAIT Suspends program execution for x
seconds. where x Is a number from
level 1.

_-E,.~ KEY Retums a test result to level 1 and. if a
key Is pressed, the location of that key.

BEEE BEEP Sounds a beep at a specified
frequency for a specified duration.

IPRGI ED~I!C (page 4}:

CLL"!: D CLLCD Blanks the display.

FREEZ FREEZE "Freezes" a specified area of the
display so that it ~s not updated until a
key press.

520 29: InterllC1ive Programs

The PROMPT Command

PROMPT takes a string argument from levell, displays the string
(without the "delimiters) in the status area, and halts program
execution. Calculator control is returned to the keyboard. Program
execution is resumed by executing CONT. For example, when you execute
the program segment:

« "ABC?" PROMPT ~

the display looks like this:

ABC?

The message is displayed until you press (ENTER I or ~ or until you
update the status area (for example, by pressing ~(REVIEWI).

The following program, TPROMPT, prompts you for the dimensions of a
torus, then calls program TORSA (chapter 25, page 481) to calculate its
surface area. You don't have to enter data on the stack prior to program
execution.

[Arguments' " area

Program:

«

"ENTER a, b IN ORDER:"

Results

Comments:

Puts the prompting string on the
stack.

29: InterKtiY. Programs 521

PRO~lPT Displays the string in the status area,
halts program execution, and returns
calculator control to the keyboard.

TORSA

IENTER] r:J TPROMPT ISTOI

Executes TORSA, using the just­
entered stack arguments.

Stores the program in TPROMPT.

Example: Prompting for Data Input in a Program. Execute
TPROMPT to calculate the volume of a torus with inner radius a = 8
inches and outer radius b = 10 inches.

Select the VAR menu and start TPROMPT.

ENTER a. b IN ORDER:

4=
3:
2:
1 : IlITlHlIllmmm __ _

The program prompts you for data. Enter the inner and outer radii. Note
that after you press IENTERI, the prompt message is cleared from the
status area.

8IENT~ 10 HALT
{ HOME)

8

Continue the program.

~[QONTI II : 355. 385758439/
fmlf1mnbIll

The answer is returned to level 1 of the stack.

Note that when program execution is suspended by PROMPT, you can
x I. u] t 0 (ion j 51: a you djd befor yon strut d til

program. Suppose the outer radius b of the torus in the previous example
is measured as 0.83 feet. You can convert that value to inches while the
program is suspended for data input by pressing .83 ~ 12 ~.

522 29: InteracUve Programs

The BEEP Command

The BEEP command lets you enhance an interactive program with
audible prompting. BEEP takes two arguments from the stack: the tone
frequency from level 2 and the tone duration from level I. The following
edited version of TPROMPT sounds a 44O-hertz, one-half-second tone at
the prompt for data input.

Program: Comments:

«

»

"ENTER a, b Hl ORDER:"

440 .5 BEEP

PR0I1PT

TORSA

Sounds a tone to audibly supplement
the prompt for data input.

The DISP, HALT and FREEZE Commands

DISP, HALT, and FREEZE can be used together to prompt for data
input:

• DISP displays an object in a specified line of the display. DISP takes
two arguments from the stack: an object from level 2, and a display­
line number 1 through 7 from level I. To facilitate the display of
messages, DISP displays string objects without the surrounding "
delimiters.

Note that the display created by DISP persists only as long as the
program continues execution. When the program ends, or when it is
suspended by the HALT command, the calculator returns to the
normal stack environment, and the display is automatically updated .

• FREEZE "freezes" one or more display areas so they are not
updated until a key press. Argument n in levell is the sum of the
value ~ode5 for the areas to be frozen. The value cod 1\ nrc; 1 for the
status area; 2 for the stack/command line area; 4 for the menu area.

29: Interactive Programs 523

• HALT suspends program execution at the location of the HALT
command and turns on the HALT annunciator. Calculator control is
retwned to the keyboard for normal operations. Program execution is
reswned by executing CONT (or SST).

For example, when you execute the following program:

« "ABC-DEF-GHI" CLLCD 1 DISP 3 FREEZE HALT»

the display looks like this:

ABC
DEF
CHI

(The - in the previous program is the calculator's representation for the
., (newline) character once a program has been entered on the stack.)

The INPUT Command

INPUT is used to prompt for data input when the programmer does not
want the user to have access to stack operations. Consider the following
program:

« "Variable naMe?" ":VAR:" INPUT »

When this program is executed, the display looks like:

"~Gi
(IfDME)

Variable name?

1. The stack area is blanked, and the contents of the string from
level2, Variable nar~e?, are displayed at the top of the stack
area. The string from level 2 is called the prompt string.

524 29: InterllCtive Programs

2. The contents of the string from levell, : VAR: , are displayed in the
command line. The string from level 1 is called the command-line
string. Program-entry mode is activated and the insert cursor is
positioned after the string. The program is now suspended for data
input.

3. Program execution is continued by pressing IENTERI, which returns
the contents of the command line to the stack as a string, called the
result string.

The following program, VSPH, calculates the volume of a sphere. VSPH
first calculates 413?f, then prompts for the radius of the sphere and
completes the calculation. Because a partial calculation is already on the
stack, VSPH protects the stack by executing INPUT to prompt for the
radius. INPUT sets Program-entry mode when program execution pauses
for data entry. Subsequent commands are not executed immediately­
instead, they are listed in the command line until the user presses IENTER!.

hlrgumento
1: 1: volume

Program:

4 a / 1T '* ·H~UI"1

flU

It·lPUT

Results

Comments:

Starts the calculation.

Builds the prompt string, displayed
at the top of the stack area.

Builds the command-line string. In
this case, the string is empty, so the
command line will be empty.

Displays the stack-area prompt,
positions the cursor at the start of
the command line, and suspends the
program for data input (the radius of
the sphere).

29: InterKtiv. Programs 525

OBJ-+

3 A ..

IENTERI rJ VSPH ISTOI

Converts the result string into its
component object-a real number.

Cubes the radius and completes the
calculation.

Stores the program in VSPH.

Example: Prompting for Data with INPUT. Execute VSPH to
calculate the volume of a sphere of radius 25 meters.

Select the VAR menu and start the program.

IVARIMSPH / PRG
(HOME)

Key in radius

• miIlIl1!I1HlIlmIlrnm __

To show how INPUT protects the stack, press ~IDROpl.

PRG
(HDME)

Key in radius

DROP •
m:rnJ I

DROP is listed in the command line, but is not executed, so the partial
calculation in level 1 is protected.

Press ~ TTNI to restore the command line. Then key in the radius and
continue program execution.

IATTNI
2.5IENl1ffi

IJJ~~i!iJi84694971

Options for the INPUT Command. In its general form, the levell
argument for INPUT is a list that specifics the contcnt and interprctation
of the command line. The list can contain one or more of the following
parameters, ill allY order.

• The command-line string, whose contents arc placed in the command
line for prompting when the program pauses.

526 29: Interactive Programs

• Either a real number, or a list containing two real numbers, that
specifies the initial cursor position in the command line:

• A real number n at the nth character from the left end of the first
row (line) of the command line. A positive n specifies the insert
cursor; a negative n specifies the replace cursor. 0 specifies the
end ofthe command-line string.

• A list that specifies the initial row and column position of the
cursor: the first number in the list specifies a row in the
command line (1 specifies the first row of the command line); the
second number counts by characters from the left end of the
specified line. 0 specifies the end of the command-line string in
the specified row. A positive row number specifies the insert
cursor; a negative row number specifies the replace cursor.

• One or more of the parameters ALG, a, or V, entered as unquoted
names:

• ALG activates Algebraic/Program-entry mode.

• ex ([ru ~](Al) specifies alpha lock.

• V verifies if the characters in the result string, without the "
delimiters, compose a valid object or objects. If the result-string
characters do not compose a valid object or objects, INPUT
displays the I n'.)a 1 i d S'::Int ax warning and prompts again for
data.

The INPUT Default State. You can choose to specify as few as one of
the level 1 list parameters. The default states for these parameters are:

• Blank command line.

• Insert cursor placed at the end of the initial command line string.

• Program-entry mode.

• Command-line string not checked for invalid syntax.

If you specify only a command-line string for the level 1 argument, you do
not need to put it in a list. For example, the previous program, VSPH,
specifies an empty command-line string for the level 1 argument.

29: Interactive Programs 527

Building the Command-Line String. After the user inputs data to
the command line and presses IENTERJ to resume program execution, the
contents of the command line are returned to level 1 as the result string.
To process the input, the program may at some point execute OBJ-- to
convert the result string to a valid object or objects. The program can
accomplish this by specifying a command-line string of known form and
then taking appropriate action after the result string is returned to level 1:

• The program can specify an empty command-line string. In this case,
the result string consists only of the input. The program VSPH on
page 525 uses this method.

• The program can specify a command-line string whose characters
form the tag and delimiters for a tagged object. (See page 87 for a
discussion of tagged objects.) In this case, the input completes the
tagged object. The program TIN PUT on page 529 uses this method.

• The program can specify a command-line string whose characters
form a message. In this case, the program subtracts those characters
from the result string to leave only the input in the string in string
form. The program SSEC on page 531 uses this method.

In the first two cases, the V parameter can also be specified as part of the
level 1 argument to specify that INPUT reprompt for data if the contents
of the result string are not valid objects.

The following program, TIN PUT, executes INPUT to prompt for the
inner and outer radii of a torus, then calls TORSA (chapter 25, page 481)
to calculate its surface area. TIN PUT prompts for a and b in a two-row
commarld line; the level 1 argument for INPUT is list that contains:

• The command-line string.

• An imbedded list specifying the initial cursor position.

• The V parameter to check for invalid syntax in the result string.

The command-line string forms the tags and delimiters for two tagged
objects. The list does not specify the entry mode, so Program-entry mode
is selected by default.

Arguments

1 : I \0 area

Program:

"Key in a, b"

{

":a:.:b:" (1 0) V

)

INPUT

OBJ~

Resuns

Comments:

Builds the level 2 string, displayed at
the top of the stack area.

Starts the level I list argument.

The level I list contains a command­
line string. a list, and the verify­
syntax specification. (To key in the
string, press ~~ ~Ell a ~
~8 ~~ b. After you press
(ENTERI to put the finished program
on the stack, the string will be shown
on one line, with the • character
indicating the newline character.)
The imbedded list positions the
insert cursor in row I just after :.:1:.
V specifies to check for invalid
syntax in the result string.

Ends the level I list argument.

Displays the stack string and
command-line string, positions the
cursor as specified by the list in the
level I argument, and, by default,
sets Program-entry mode. Then
suspends program execution for
data. Checks the resultant string for
syntax errors.

Converts the string into its
component objects (in this case, two
tagged objects).

29: Interactive Programs 529

TORSA

IENTERI rJ TINPUT ISTOI

Calls TORSA to calculate the surface
area.

Stores the program in TINPUT.

Example: Prompting for Data with Input. Execute TINPUT to
calculate the surface area of a torus of inner radius a = 10 em and outer
radius b '" 20 em.

Select the V AR menu and start the program.

IVARITIHPU PIIG
(HOME)

Key in a, b

Key in the value for a and press [!) to move the cursor to the next prompt
in the command line. Then key in the value for b.

10 [!) 20

Continue program execution.

IENTERI

PJlG
{ HOME)

Key in a, b

11 : 29613. 881328331
um!11Wl1!Jil!lm1mlll'ilDr_

The following program executes INPUT to prompt for a social security
number, then extracts in string form the first three digits and last four
digits from the result string. The level-1 argument for INPUT specifies:

• A command-line string.

• The replace cursor positioned at the start of the prompt string (-1).
The replace cursor lets the user "fill in" the command line string,
using ~ to skip over the dashes in the social-security number.

• By default, Program-entry mode.

• By default, no verification of object syntax-the dashes in the social­
security number are not valid characters outside the string delimiters.

530 29: Interactlye Programs

Arguments Re uhs

2: 2: " first three digits"
1 : 1 : "last four digits"

Program: Comments:

"Ke'::1 in S. S. #" Builds the level 2 string, displayed at
the top of the stack area.

»

{ "

I~~PUT

DUP 1 3 SUB
SWAP
8 11 SUB

" -1)

IENTmJ r:J SSEC (STOI

Builds the level 1 argument for
INPUT. (Key in 3 spaces between
the first "delimiter and the first - ,
two spaces between the two -'s, and
4 spaces between the last - and the
ending II delimiter.)

Suspends the program for data.

Copies the result string, then extracts
the first three and last four digits in
string form.

Stores the program in SSEC.

Labeling Program Output

A descriptive tag or message can make program output more
recognizable.

29: Interactlye Programs 531

Using Tagged Objects as Data Output

You can label a program result using the -+TAG command. -+TAG
(IPRGJ IOBJ +HAG) takes two arguments: any object from level 2,
and a name, string, or real number (the tag) from levell.

The following program TrAG is identical to TIN PUT, except that it tags
the result.

Program:

"Key in a, b"

{ ":<~:.:b:" {1 (1) II }

INPUT OBJ~

TORSI=!

'AREA'

~TAG

IENf® r:J TTAG ISTOI

Comments:

Builds the tag, in this case a name.

Joins the tag to the object in level 2,
the program result, to create the
tagged object.

Stores the program in TrAG.

Example: Using a Tagged Object for Data Output. Execute
TrAG to calculate the area of a torus of inner radius a = 1.5 and b =
1.85.

Select the VAR menu and start the program. Supply the values for a and b
and continue program execution. The answer is returned as a tagged
object to the stack.

IVARI TTAG
1.5 [!) 1.85
@illR1

532 29: Interactive Programs

1: AREA: 11.5721111683
Dm!Jllm!JmaJlEBlmBbm

Using String Commands to Label Data Output

You can use string commands and DISP to label and display an object
that has been returned to levell of the stack:

1. Convert the object to a string with -+STR (lPRGI i'OB'ij?7

ffSTR§).
2. Enter a labeling string on the stack.

3. Swap the two strings on the stack, then concatenate them (SWAP
+).

4. Display the resultant string (n DISP).

The following program TSTRING is identical to TINPUT, except that it
converts the program result to a string and appends a labeling string to it.

Program:

«

"Key in a, b"

{ ":a:.:b:" {I 0} V }

It~PUT OBJ7

TORSA

7STR

"Ar-ea = "
SWAP +

CLLCD 1 DISP 1 FREEZE

IENT:§D r:J TSTRING ISTol

Comments:

Converts the result to a string.

Enters the labeling string.

Swaps the positions of the two
strings on the stack and adds them.

Displays the resultant string, without
its delimiters, in line 1 of the display.

Stores the program in TSTRING.

29: InteractiYe Programs 533

Example: Labeling Data Output. Execute TSTRING to calculate
the area of the torus in the previous example (a = 1.5, b = 1.85).

Select the VAR menu and start the program. Supply the values for a and b
and continue program execution. The labeled answer is displayed in the
status area.

IVARI TSTRI
1.5 [!] 1.85
IENTERI

Area = 11.57211 116B3

4=
~~
2:
1 :
IImIIRBDm!llI'BCImIElmmJ

Pausing to Display Data Output

The WAIT command (IPRGICTRt..{ INXTI WAIT) suspends program
execution for x seconds, where x is a positive real number from level 1.
You can use WAIT with DISP to display messages during program
execution - for example, to display intermediate program results.

WAIT interprets arguments 0 and -1 differently-see "Commands That
Return a Key Location" on page 539.

Using Menus in Programs

Applications menus like the SOLVE and PLOT menus, as well as the
VAR and CST menus, can be activated and used in a program as they are
during normal keyboard operations.

Displaying a Built-In Menu

To display a built-in menu in a program, execute the MENU command
(IPRGI .. CTRL INXTI t'lEt·W) with the numeric argument that
corresponds to that built-in menu. The table in Appendix D lists all the
HP 48 menus and their corresponding menu numbers. For example, 20
t'lH1U al~tivates page 1 of the MODES menu. You can specify a particular
page of a menu by supplying the argument in the form xx.w, where XX is
the menu number, and W is the page number.

534 29: Interactive Programs

The following program activates the third page of the MODES menu and
asks you to set the angle mode.

« 20.03 MENU "Select An91e Mode" PROMPT»

RCLMENU (~IMODESIINXTI ~CI..M)returns the menu number of
the currently displayed menu.

Custom Menus in Programs

In chapter 15 you learned how to build a custom menu by supplying a list
argument for MENU. In programs, you can construct custom menus to:

• Emulate built-in applications like the HP Solve application .

• Prompt you to make decisions.

Emulating Built-In Applications. The following program, EIZ,
constructs a custom menu to emulate the HP Solve application for
capacitive electrical circuits.

Application of Ohm's law to this circuit results in the following e:xpression:

where

E is the circuit voltage.
I is the circuit current.
Z is the circuit impedance.

E = IZ

Because the voltage, current, and impedance are complex numbers, you
cannot use the HP Solve application to find solutions. The custom menu
in EIZ assigns a direct solution to the left-shifted menu key for each
variable, and assigns store and recall functionality to the unshifted and
right -shifted keys - the key actions are analogous to the HP Solve
application.

2St: Interactiye Programs 535

Program:

DEG
-15 SF -16 SF 2 FIX

{

}

{ "E" { « 'E' STO»
« I Z * DUP 'E' STO
"E" ~TAG
CLLCD 1 DISP
1 FI<:EEZE »
« E » } }

{ "I" { « 'I' STO»
« E Z / DUP 'I' STO
"I" ~TAG
CL CD 1 DISP
1 FPEEZE »
« I » } }

{ "Z" { « 'Z' STO »
« E I / DUP 'Z' STO
"Z" ~TAG

CLLCD 1 DISP
1 FREEZE »
« Z » } }

t·lEt·1U

IENTERI rl EIZ ISTOI

536 29: Interactive Programs

Comments:

Sets Degrees mode. Sets flags -15
and -16 to display complex numbers
in polar form. Sets the display mode
to 2 Fix.

Starts the list for the custom menu.

Builds menu key 1, labeled
When you press the object
in level 1 is stored in variable E.
When you press ~", E ;';J' the
product of I and Z is calculated,
stored in variable E, and displayed as
a tagged object. When you press
(r~E\{E i , the object stored in E is
returned to level 1.

Builds menu key 2.

Builds menu key 3.

Ends the list.

Displays the custom menu.

Stores the program in EIZ.

Example: Emulating a Built-In Application. A lO-volt power
supply at phase angle 0" drives an RC circuit. A current of .37 A at phase
angle 68° is measured. What is the impedance of the circuit?

Select the VAR menu and start EIZ.

IVAR]EIZ

Key in the value for the voltage.

~K] 10 1l!1[4] 0

I .. -----~---

..
Store the value for the voltage. Then key in and store the value for the
current. Solve for the impedance.

~IDJ .37 ~[4] 68
:2: (27.03,~-6a.ee)

1=
3:
2=
1= ..

If the current amplitude is doubled and the impedance remains constant,
what is the complex voltage?

~[]] .74 ~[4] 68

Recall the value of Z to the stack.

=E= (20.00,~-1.36E-10)

4:
3:
2=
lil.g= -!!Ij-!!!!I!!!-~!!1!!!!!!!!!!!!!!!!!!!!!!!_111

Prompting for a Choice. A custom menu can prompt the user to
make a decision during program execution.

The program WGT in this section calculates the weight of an object in
either English or SI units. WGT builds a custom menu that prompts the
user to select the desired unit system. Here is the defining list for the
custom menu:

2St: InIMac:1I"e Progr.... 537

{

}

{ "ENGL" « "ENTER Mass
in LB" PF.:ot'lPT

{ ":3 I" ,~: "Et·lTER 1'1.::155

in KG" PF.:Ot'lPT

If you store this list in variable LST, program WGT is simply:

Program:

LST l'lEtlU

IENTERI B WGT ISTOI

Comments:

Displays the custom menu stored in
LIST.

Stores the program in WGT.

The custom menu defined by WGT remains active until you select a new
menu, so you can do as many calculations as you want.

Note that the custom menu defined by WGT (and the custom menu
defined by EIZ) is automatically stored in variable CST, rep/acing the
previous custom menu-when you press ICSTI after the program ends,
the menu defined by WGT is displayed.

Example: Using a Custom Menu to Make a Choice. Use WGT
to calculate the weight of an object of mass 12.5 kg.

Select the IVAR I menu and start the program.

IVARI L,JGT Imm .. _ --I
Select the SI unit system.

::::;1

538 29: Interactive Programs

ENTER Mass in KG

4:
3:
2:
1: mm _

Key in the mass and continue program execution.

12.5 ~ICONTI I~ 122. 631 ----
Building a Temporary Menu

The TMENU command (~IMODESIINXTI'I')t1E'N ?)worksjust like
MENU, except that list arguments do not replace the contents of CST and
so leave the current custom menu unchanged. Note that the temporary
menu remains active until a new menu is selected, even after the program
ends. To programmatically restore the previous menu, execute e t'lH~U.

The program « LIST H1HlU » is similar to WGT, except that it builds
a temporary menu to prompt for the unit-system choice.

Commands That Return a Key Location

The WAIT Command with Argument 0

If you supply 0 as the argument for WAIT, the command suspends
program execution until a valid keystroke is executed. It then returns the
three-digit location number that defines where the key is on the keyboard
and restarts program execution. (See section "Making User-Key
Assignments" on page 217 in chapter 15.)

(Note that~, ~,[ill, [ill~, or [ill~ do not by themselves
constitute a valid keystroke.)

The WAIT Command with Argument -1

The WAIT command with argument - 1 works just like it does with
argument 0, except that the currently specified menu is also displayed.
This lets you build and display a prompting menu while the program is
paused. (Note that a menu built with MENU or TMENU is not normally
displayed until the pr gram end or is halted with HALT.)

29: Interactive Programs 539

The KEY Command

A program can prompt for a simple "yes-no" decision using the KEY
command in an indefmite loop, and a comparison test. (Indefmite looping
structures are covered in chapter 27. Tests are covered in chapter 26.)
When the loop begins, KEY simply returns a false result (0) to level!
until a key is pressed. Once a key is pressed, KEY returns the two-digit
location number that defines where the key is on the keyboard and
returns a true result (1) to level!. For example, when you use KEY in an
indefinite loop and press I ENTER I, KEY returns 51 to level 2 and true
result 1 to levell.

The foUowing program segment returns 1 to level! if ill is pressed, or (1

to level! if any other key is pressed:

« . .• DO UNT I L KEY END 95 SAME • •• »

(Note that KEY returns only a two-digit location number RowCoIumn,
unlike WAIT, which returns a three-digit location number that identifies
shifted and alpha keys. Thus, if you press the ~ key, KEY returns 71,
while WAIT does not interpret ~ itself as a valid keystroke.)

Turning the HP 48 Off from a Program

The OFF command turns the HP 48 off. If executed from a program, the
program will resume when the calculator is turned back on.

540 a: In Kllv. Prog, ...

30
Error Trapping

When you attempt an invalid operation from the keyboard, the operation
is not executed and an error message is displayed. For example, if you
execute + with a vector and a real number on the stack, the HP 48 returns
the message:

+ Errot-:
Bad ArgUMent Type

and, assuming that Last Arguments is enabled, returns the arguments to
the stack. In a program, the same thing happens, but program execution is
also aborted. Consider the following program:

« "KE·l I t·l a At·m b" "" I t·lPUT OBJ~ + »

If you execute this program and supply a vector and a real number at the
prompt, the program displays the Bad At-guf'"lent T'::Ipe error message
and aborts execution at the + command. To supply new arguments, you
must restart the program. For a short program like the one above, this
method of error recovery presents little problem. However, when
executing a program that performs time consuming calculations, or that
has numerous stops for intermediate data entry, it may be inconvenient to
restart the program at the beginning each time an error occurs.

30: Error Trapping 541

You can enable a program to continue execution after an error has
occurred by building an envr trap. You can construct an error trap with
one of the following conditional structures:

.IFERR. .. THEN ... END .

• lFERR. . . THEN . . . ELSE ... END.

The IFERR command is located on page 3 of the PRG BRCH menu.

The following commands enhance error-trap structures:

Error Trapping Commands

Keys Programmable Description
Command

IPRGI CTRL (page 3):

DOERR DOERR Executes a user-specified error. The
calculator behaves just as if an
ordinary error has occurred -If the
error is not trapped In an IFFER
structure, DOERR displays a message
and abandons program execution.

ERR~~ ERRN Returns the error number, as a binary
integer, of the most recent error.
Returns #0 if the error num er was
cleared by ERRO.

ERR~h ERRM Returns the error message (a sltring)
for the most recent error. Returns
empty string if the error number was
cleared by ERRO.

ERRO ERRO Clears the last error number, so that a
subsequent execution of ERRN
returns #(1. Also clears the last error
message.

542 30: Error Trapping

The IFERR ... THEN ... END Structure

Th(: syntax of IFERR. .. THEN ... END is

I FERR trap-clause THEN error-clause END

If an error occurs during execution of the trap-clause, the error is ignored,
the remainder of the trap-clause is discarded and program execution
jumps to the error-clause. The commands in the error-clause are executed
only if an error is generated during execution of the trap-clause.

As a typing aid, press ~IFERR to key in:

IFERF:
THEN
Et~D

Example: An IFERR ... THEN ... END Structure. Recall the
following program from chapter 27, page 512.

c WHILE DUP TYPE 3 == REPEAT I+ END »

The program takes any number of vectors or arrays from the stack and
adds them to the statistics matrix. However, the program errors if a vector
or array with a different number of columns is encountered. In addition, if
on~y vectors or arrays with the same number of columns are on the stack,
the program errors after the last vector or array has been removed from
the stack.

In the following version, the program simply attempts to add the level 1
object to the statistics matrix until an error occurs. At that point, it
"gracefully" ends by displaying the message Dot-~E.

30: Error Trapping 543

Program: Comments:

«

IFERR Starts the trap-clause.

WHILE Starts the test-clause ofthe nested
loop.

1 1 is a true result, so executes the
loop-clause until an error occurs.

REPEAT Starts the loop clause.

i:+ Adds the vector or array to the
statistics matrix.

END Ends the nested loop.

THEN If an error does occur on execution
ofE+ .. .

"DONE" 1 DISP . . . displays the message Dot~E in the
1 FREEZE status area.

END Ends the error trap.

»

The IFERR ... THEN ... ELSE ... END Structure

The syntax of lFERR . . . THEN . .. ELSE . . . END is:

I FERR trap-clause THEN error-clause ELSE normal-clause END

If an error occurs during execution of the trap-clause, the error is ignored,
the remainder of the trap-clause is discarded and program execution
jumps to the error-clause. If no error occurs, execution jumps to the
normal-clause at the completion of the trap-clause.

544 30: Error Trapping

As a typing aid, press ~lFERR to key in:

IFERR
THEN
ELSE
Et·m

Example: An IFERR ... THEN ... ELSE ... END Structure. The
following program prompts for two numbers, then adds them. If only one
number is supplied, the program displays an error message and prompts
again.

Program:

DO

" KEY I N a A~m b 10 10 10

INPUT 08.J-+

UtHIL

IFERR

+

THEt~

ERRt1 5 D I SP
2 WAIT
e

ELSE

1

Et·m

Comments:

Begins the outer loop.

Prompts for two numbers.

Starts the test clause

Starts the error trap.

Adds the contents of levels 1 and 2.

If an error occurs ...

... executes ERRM to display the
Too Few At"'gur'lent s error
message for two seconds, then leaves
e (false) on the stack for the outer­
loop END.

If an error does not occur ...

... leaves 1 (true) on the stack for
the outer-loop END.

Ends the error trap.

30: Error Trapping 545

END

User-Defined Errors

Ends the outer loop. If the error trap
left 0 on the stack, this END returns
program execution to tbe. prompt for
numbers. Otherwise, the program
ends.

You may want to generate an error in a program when an error would not
normally occur. For example, you might want an error to occur if the sum
of the two numbers on the stack is greater than 10. You can do this with
the DOERR command. DOERR causes a program to behave exactly as if
a normal error has occurred during execution. The DOERR error can be
trapped in an IFERR structure; if it is not, program execution is
abandom!d at the location of the DOERR command. DOERR takes one
argument from the stack, either:

• A string, in which case the string is used as the message. (ERRM
returns this string, and ERRN returns #70000h.)

• A real number or binary integer, in which case the corresp nding
built-in error message is displayed. (ERRM and ERRN return the
corresponding error message and number, respectively.) 0 DOEF.:F.: is
equivalent to IA TTNI; that is, program execution is aborted and no
message is displayed. (In this case, the values returned by ERRM and
ERRN are unchanged from their previous values.)

The following program aborts execution if there are three objects in the
level 1 list.

OBJ-*
IF 3 ~3At1E

THEN "3 OBJECTS IN LIST" DOERR
Et·m

In this program, DOERR abandons program execution. Alternatively, you
can execute DOERR in the trap-clause of an error trap to enable
program execution to continue.

546 30: Error Trapping

More Programming Examples

The programs in this chapter demonstrate programming concepts
introduced in the previous chapters. Some new concepts are also
introduced. The programs are intended to both improve your
programming skills and provide supplementary functions for your
calculator.

31

At the end of each program, the checksum and the program size in bytes
are listed. The checksum is a binary integer that uniquely identifies the
program based on its contents. To verify that you've keyed the program in
correctly, execute the BYTES command (~IMEMORYI B'lTE:::) with
the program name in level 1. The checksum for the program is returned
to level 2, and its size in bytes is returned to level 1. (If you execute
BYTES with the program object in levell, before storing the program in
its name, you'll get a different byte count returned to level 1.)

31: Mor. Programming Examples 547

Fibonacci Numbers

This section includes three programs - two demonstrate an approach to
the foUowing problem:

Given an integer n, calculate the nth Fibonacci number F" , where:

• FIB 1 is a user-defined function that is defined recursively - its
defIning procedure contains its own name. FIB1 is short.

• FIB2 is a user-defined function with a definite loop. It's longer and
more complicated than FIB1, but it's faster.

The third program, FIBT, calls both FIB1 and FIB2, and calculates the
execution time of each subprogram.

FIB1 (Fibonacci Numbers, Recursive Version)

Arguments Result.

Techniques.

• IFTE (If-Then-Else function). The defining procedure for FIB 1
contains the conditional function IFTE, which can take its argument
either from the stack or in algebraic syntax. (FIB2 uses the
conditional structure IF ... THEN ... ELSE ... END.)

• RI~cursion. The defining procedure for FIB1 is written in terms of
FIB1, just as F" is defined in terms of F" -1 and F" -2'

548 31: Mor. Programming &l ••

Program:

IFTE(n:fl,

n,

FIB1(n-l)+FIB1(n-2»

»

®ll:® B FIB1 ISTOI

Checksum:
Bytes:

41467d
113.5

Comments:

Defines local variable n.

Begins the defining procedure, an
algebraic expression.

Ifn~1. ..

... thenF n =n ...

... else Fn = Fn -1 + Fn -2·

Ends the defining procedure.

Enters the program, then stores it in
FIBl.

Example. Calculate F6• Calculate FlO using algebraic syntax.

First calculate F 6.

IVARl
6 FIB!

Next calculate FlO using algebraic syntax.

B FIBl~[]] 10 leVALI

31: IIore Progr lng Ex pl.. 541

FIB2 (Fibonacci Numbers, Loop Version)

Argumenls Results

1: FII

Techniques .

• IF ... THEN ... ELSE ... END. FIB2 uses the program-structure form
of the conditional. (FIB1 uses IFTE.)

• START ... NEXT (definite loop). To calculate FII ,FIB2 starts with Fo
and Fl and repeats a loop to calculate successive Fj's.

Program:

IF n 1 £,.

THEN n

ELSE

o 1

2 n

START

DUP

ROT

+

Comments:

Creates a local variable.

Begins the defining procedure, a
program.

Ifn~l ...

... then FII = n.

Begins the ELSE clause.

Puts Fo and Fl on the stack.

From 2 ton ...

... does the following loop:

Makes a copy of the latest F (initially
Fl)'

Moves the previous F (initially Fo) to
levell.

Calculates the next F (initially F2).

550 31: More Programming Examples

NEXT

SWAP DROP

END

@it~ B FIB2 ISTOI

Checksum:
Bytes:

51820d
89

Repeats the loop.

Drops Fit-I'

Ends the ELSE clause.

Ends the defming procedure.

Ends the program.

Enters the program, then stores it in
FIB2.

Example. Calculate F6 and FlO' Note that FIB2 is faster than F1Bl.

Calculate F6•

IVAR]
6 FIB2

Calculate FlO'

10 FIB2

FIBT (Comparing Program-Execution Time)

FIB 1 calculates intermediate values Fi more than once, while F1B2
calculates each intermediate Fi only once. Consequently, FIB2 is faster.
The difference in speed increases with the size of n because the time
required for FIB] grows exponentially with n, while the time required for
F1B2 grows only linearly with fl.

The diagram below shows the beginning steps of FIB] calculating FlO'
Note the number of intermediate calculations: 1 in the first row, 2 in the
second row, 4 in the third row, and 8 in the fourth row.

31: Mor. Programming Examples 551

F~FlO
;/ 9 ~

Fa

Fa F7 F7
;/

Fs

I 1\ 1\ 1\
F7 Fs Fs Fs Fs Fs Fs F4

FIBT executes the TICKS command to record the execution time of FIBl
and FIB2 for a given value of n.

Arguments Results

3 : Fn

2 : FIB 1 execution time: z
1: n 1 : FIB2 execution time: z

Techniques.

• Structured programming. FIBT calls both FIBl and FIB2.

• Programmatic use of calculator clock. FIBT executes the TICKS
command to record the start and finish of each subprogram.

• Interactive programming. FIBT tags each execution time with a
descriptive message.

Program:

DUP TICKS SWAP FISl
SWAP TICKS S~·JAP

- B-tR 81'32 /

Comments:

Copies n, then executes FIBl,
recording the start and stop time.

Calculates the elapsed time, converts
it to a real number, and converts that
number to seconds. Leaves the

552 31: More Programming Examples

»

"FIB1 TH1E"
-HAG

ROT TICKS SWAP FIB2
TICKS

SWAP DROP SWAP
- B-tR 8192 /

"FIB2 TIME"
"*TAG

IENTERJ [:J FIST ISTOJ

Checksum:
Bytes:

2224&1
135

answer returned by FIB 1 in level 2.

Tags the execution time.

Executes FIB2, recording the start
and stop time.

Drops the answer returned by FIB2
(FIBl returned the same answer).
Calculates the elapsed time for FIB2
and converts to seconds.

Tags the execution time.

Stores the program in FIBT.

Example. Calculate F13 and compare the execution time for the two
methods.

Select the VAR menu and do the calculation.

IVARI
13

(HDME CH.iO)

3; 233
2= FIBt TIME= 33.8876_
1: FIB2 TIME:

. 127B75195312
nmfilllDDGID.D2lIIC1!E

F13 is 233. FlB2 takes 0.13 seconds to execute. FIB1 takes 33.9 seconds.
(Your results may differ depending on the contents of memory in your
calculator.)

31: IIor. Programming Examples 553

Displaying a Binary Integer

This section contains three programs:

• PAD is a utility program that converts an object to a string for right­
justified display.

• PRESERVE is a utility program for use in programs that change the
calculator's status (angle mode, binary base, and so on).

• BD/SP displays a binary integer in HEX, DEC, ocr, and BIN bases.
It calls PAD to show the displayed numbers right-justified, and it calls
PRESERVE to preserve the binary base.

PAD (Pad with Leading Spaces)

PAD converts an object to a string and, if the string contains fewer than 23
characters, adds spaces to the beginning.

When a short string is displayed with DISP, it appears left-justified; its first
character appears at the left end of the display. The position of the last
character is determined by the length of the string. By adding spaces to
the beginning of a short string, PAD moves the position of the last
character to the right. When the string (including leading spaces) is 23
characters long, it appears right-justified; its last character appears at the
right end of the display. PAD has no effect on strings that are longer than
22 characters.

Arguments Results

1 : object 1 : "object"

Techniques.

• WHILE ... REPEAT ... END (indefinite loop). The WHILE clause
contains a test that determines whether to execute the REPEAT
clause and test again (if true) or to skip the REPEAT clause and exit
(if false).

• String operations. PAD demonstrates how to convert an object to
string form, count the number of characters, and concatenate two
strings.

554 31: More Programming Example.

Program:

~STR

WHILE

REPEAT

Sl·lAP +

HID

Checksum: # 38912d
Bytes: 61.5

Comments:

Makes sure the object is in string
form. (Strings are unaffected by this
command.)

Begins WHILE clause.

Does the string contain fewer than
23 characters?

Begins REPEAT clause.

Adds a leading space.

Ends REPEAT clause.

Enters the program, then stores it in
PAD.

PAD is demonstrated in the program BDISP.

PRESERVE (Save and Restore Previous Status)

Given a program on the stack, PRESERVE stores the current calculator
(flag) status, executes the program, and then restores the previous status.

Arguments Results

1 : «: program ' 1: (result of program)

1: I program name ' 1 : (result of program)

31: lIor. Programming Examples 555

Techniques .

• RCLF and STOF. PRESERVE uses RCLF (recall/lags) to record the
current status of the calculator in a binary integer and STOF (store
/lags) to restore the status from that binary integer .

• Local·variable structure. PRESERVE creates a local variable
structure to remove the binary integer from the stack briefly; its
defining procedure simply evaluates the program argument, then puts
the binary integer back on the stack and executes STOF.

Program:

RCLF

EVAL

f STOF

IENTERJ [:J PRESERVE ISTOI

Checksum:
Bytes:

II 21528d
46.5

Comments:

Recalls the list of two 64-bit binary
integers representing the status of
the 64 system flags and 64 user flags.

Stores the list in local variable f.

Begins the defining procedure.

Executes the program placed on the
stack as the level 1 argument.

Puts tbe list back on the stack, then
restores the status of all flags.

Ends the defining procedure.

Enters the program, then stores it in
PRESERVE.

PRESERVE is demonstrated in the program BD/SP.

556 31: IIore Progr mlng Exampl ..

BDISP (Binary Display)

BDISP displays a (real or binary) number in HEX, DEC, ocr, and BIN
bases.

Arguments Results

1 : # n 1 : # n
1 : n 1: n

Techniques.

• IFERR •.. THEN •.• END (error trap). To accommodate real­
number arguments, BDISP includes the command R-+B (real-to­
binary). However, this command causes an error if the argument is
already a binary integer. To maintain execution if an error occurs, the
R-+B command is placed inside an lFERR clause. No action is
required when an error occurs (since a binary number is an
acceptable argument), so the THEN clause contains no commands.

• Enabling lASTARG. In case an error occurs, lASTARG must be
enabled to return the argument (the binary number) to the stack.
BDISP clears flag - 55 to enable the lASTARG recovery feature.

• FOR ••• NEXT loop (definite loop with cOUDter). BDISP executes a
loop from 1 to 4, each time displaying n (the number) in a different
base on a different line. The loop counter (namedj in this program) is
a local variable. It is created by the FOR ••• NEXT program structure
(rather than by a -+ command) and it is automatically incremented by
NEXT.

• Unnamed programs as arguments. A program defined only by its «

and» delimiters (not stored in a variable) is not automatically
evaluated; it is simply placed on the stack and may be used as an
argument for a subroutine. BDISP demonstrates two uses for
unnamed program arguments.

1. BDISP contains a main program argument and a call to
PRESERVE. This program argument goes on the stack and is
executed by PRESERVE.

31: IIor. Programming Examples 557

2. There are four program arguments that "customize" the action
of the loop. Each program argument contains a command to
change the binary base, and each iteration of the loop evaluates
one of these arguments.

When BDISP creates a local variable for n, the defining procedure is
an unnamed program. However, since this program is a defining
procedure for a local variable structure, it is automatically executed.

Required Programs .

• PAD (page 555) expands a string to 23 characters so that DISP shows
it right·justified .

• PRESERVE (page 556) stores the current status, executes the main
nested program and restores the status.

Program: Comments:

«

«

DUP

-55 CF

IFERR

R~B

THEN

Et~D

~ n

«

CLLCD

« BIN »

Begins the main nested program.

Makes a copy of n.

Clears flag - 55 to enable
LASTARG.

Begins error trap.

Converts n to a binary integer.

If an error occurred ...

.. , do nothing (there are no
commands in the THEN clause).

Creates a local variable n.

Begins the defining program for the
local variable structure.

Clears the display.

Writes the nested program for BIN.

558 31: lIor. Programming Exampl ••

« OCT »

« DEC »

« HEX »

1 4

FOR j

EVAL

n -+STR

PAD

j DISP

NEXT

a FREEZE

PRESERVE

ffiH:TERI EI BDISP ISTcl

Checksum:
Bytes:

18055d
191

Writes the nested program for ocr.
Writes the nested program for DEC.

Writes the nested program for HEX.

Sets the first and last counter values.

Starts the loop with counter j.

Executes one of the nested base
programs (initially the one for
HEX).

Makes a string showing n in the
current base.

Pads the string to 23 characters.

Displays the string in the jtb line.

Increments j and repeats the loop.

Ends the defining procedure.

Freezes the status and stack areas.

Ends the main nested program.

Stores the current status, executes
the main nested program, and
restores the status.

Enters the program, then stores it in
BDISP.

31: Mor. Programming Examples 559

Example. Switch to DEC base, display 11100 in all bases, and check that
BD/SP restored the base to DEC.

Clear the stack and select the MTH BASE menu. Make sure the current
base is DEC and enter II 100.

~ICLRI
IMTH 1?aaSea,
aec;
~[~J100 (ENTERI

Execute BD/SP.

(VARI aD:x·se fi 64h
lB0d
fi 1440

1100100b

Return to the normal stack display and check the current base.

IATTNI
IMTHIBAS~

Although the main nested program left the calculator in BIN base,
PRESERVE restored DEC base.

To check that BD/SP also works for real numbers, try 144.

IVARI
144 BIJISP

Median of Statistics Data

This section contains three programs:

• SORT orders the elements of a list.

• LMED calculates the median of a sorted list.

tt 9Bh : ~~a~
tt lB01BB09b

• MEDIAN uses SORT and LMED to calculate the median of the
current statistics data.

560 31: IIor. Programming Exampl ••

SORT (Sort a List)

SORT sorts a list of real numbers into ascending order.

Arguments Resubs

1 : { list } 1 : { sorted list }

Techniques.

• Bubble sort. Starting with the first and second numbers in the list,
SORT compares adjacent numbers and moves the larger number
toward the end of the list. This process is done once to move the
largest number to the last position in list, then again to move the next
largest to the next-to-last position, and so on.

• Nested definite loops. The outer loop controls the stopping position
each time the process is done; the inner loop runs from 1 to the
stopping position each time the process is done.

• Nested local-variable structures. SORT contains two local-variable
structures, the second inside the defining procedure (a program) of
the first. This nesting is done for convenience; it's easier to create the
first local variable as soon as its value is computed, thereby removing
its value from the stack, rather than computing both values and
creating both local variables at once.

• FOR ... STEP and FOR ... NEXT (definite loops). SORT uses two
counters: - 1 STEP decrements the counter for the outer loop each
iteration; NEXT increments the counter for the inner loop by 1 each
iteration.

31: lIor. Programming Examples 561

Program:

«

DUP SIZE 1 - 1

FOR j

1 j

FOR k

k GET! '* nl

«

GET! '* n2

DROP

IF nl n2 >

THEt·~

k n2 PUT!

nl PUT

Comments:

From the next-to-Iast position to the
first position ...

· .. begins the outer loop with
counterj.

From the flrst position to the jth
position ...

· .. begins the inner loop with
counter k.

Gets the kth number in the list and
stores it in a local variable nl'

Begins the defining procedure (a
program) for the outer local variable
structure.

Gets the next number in the list and
stores it in a local variable n2'

Begins the defining procedure (a
program) for the inner local variable
structure.

Drops the index returned by GETI.

If the two numbers are in the wrong
order ...

· .. then does the following:

· .. puts the second one back in the
kth position;

· .. puts the kth one back in the next
position.

Ends THEN clause.

562 31: More Programming Example.

t·1EXT

-1 STEP

IENT!@ B SORT ISTOJ

Checksum:
Bytes:

15011d
144

Example. Sort the list { 83125 }.

Ends inner defining procedure.

Ends outer defining procedure.

Increments k and repeats the inner
loop.

Decrements j and repeats the outer
loop.

Enters the program, then stores it in
SORT.

Select the VAR menu, key in the list, and execute SORT.

IVAR]

(5J[Q]8 Ispcl 3 ~
1 l§P::£I 2 Ispcl5 IENTERJ
!:;ORT

LMED (Median of a List)

Given a sorted list, LMED returns the median. If the list contains an odd
number of elements, the median is the value of the center element. If the
list contains an even number of elements, the median is the average value
of the elements just above and below the center.

E Arguments

1: { sorted list)

Results

1: median of sorted list

31: IIor. Programming Ex ples 563

Techniques .

• FLOOR and CEIL. For an integer, FLOOR and CEIL both return
that integer; for a noninteger, FLOOR and CEIL return successive
integers that bracket the non- integer.

Program:

DUP SIZE

1 + 2 /

"* p

DUP

p FLOOR GET

SWAP

p CEIL GET

+ 2 /

(ENTERl r:J lMED (STOt

Comments:

Copies the list, then finds its size.

Calculates the center position in the
list (fractional for even-sized lists).

Stores the center position in local
variable p.

Begins the defining procedure (a
program) for the local variable
structure.

Makes a copy of the list.

Gets the number at or below the
center position.

Moves the list to levell.

Gets the number at or above the
center position.

Calculates the average of the two
numbers at or near the center
position.

Ends the defining procedure.

Enters the program, then stores it in
LMED.

564 31: IIore Programming Examples

Checksum:
Bytes:

3682d
77

Example. Calculate the median of the list you sorted using SORT.

Put the list on the stack if necessary, select the VAR menu, and execute
LMED.

~[]J 1 235 BIENTERI
I VARJ X~1J}'

MEDIAN (Median of Statistics Data)

MEDIAN returns a vector representing the medians of the columns of the
statistics data.

b Arguments Re uRs

~ ________________________ L-l _: __ [_X_I_X_2_ .. _._X_m_J __________ --J

Techniques .

• Arrays, lists, and stack elements. MEDIAN extracts a column of data
from EDAT in vector form . To convert the vector to a list, MEDIAN
puts the vector elements on the stack and then combines them into a
list. From this list the median is calculated using SORT and LMED.

The median for the mth column is calculated first, and the median for
the first column is calculated last, so as each median is calculated, it is
moved to the stack level above the previously calculated medians.

After all medians are calculated and positioned correctly on the stack,
they're combined into a vector .

• FOR ••• NEXT (definite loop with counter). MEDIAN uses a loop to
calculate the median of each column. Because the medians are
calculated in reverse order (last column first), the counter is used to
reverse the order of the medians.

31: More Programming Example. 565

Required Programs .

• SORT (page 562) arranges a list in ascending order.

• LMED (page 564) calculates the median of a sorted list.

Program:

«

RCL};

DUP SIZE

OBJ~ DROP

~ n M

'!DAT' TRN

1 1'1

FOR j

!-

Comments:

Puts a copy of the current statistics
matrix WAT on the stack for
safekeeping.

Puts the list { n m } on the stack,
where n is the number of rows in
WAT and m is the number of
columns.

Puts n and m on the stack. Drops the
list size.

Creates local variables for n and m.

Begins the defining procedure (a
program) for the local variable
structure.

Transposes WAT. Now n is the
number of columns in EDAT and m
is the number of rows. (To key in the
! character, press [[!][ID, then delete
the parentheses.)

Specifies the first and last rows.

For each row, does the following:

Extracts the last row in WAT.
Initially this is the mth row, which
corresponds to the mth column in
the original WAT. (To key in the ~­
command, press ~ISTAT I
~:i ~:+- ii · · .)

566 31: IIore Programming Eumplea

OB.J-+ DROP

n -+LIST

SORT

L~lED

j ROLLD

t~EXT

r~ -+ARRY

»

S~~AP

STOi:

»

IENTmJ rJ MEDIAN (STol

Checksum:
Bytes:

19502d
129.5

Puts the row elements on the stack.
Drops the index list { n }, since n is
already stored in a local variable.

Makes an n-element list.

Sorts the list.

Calculates the median of the list.

Moves the median to the proper
stack level.

Increments j and repeats the loop.

Combines all the medians into an
m-element vector.

Ends the defining procedure.

Moves the original EDAT to level 1.

Restores EDAT to its previous value.

Enters the program, then stores it in
MEDIAN.

Example_ Calculate the median of the following data.

18 12
4 7
3 2
11 1
31 48
20 17

The:re are two columns of data, so MEDIAN will return a two-element
vector.

:11: More Programming Example. 567

Enter the matrix.

~IMATRlxl
181ENTERJ 12IENTERJ~
4 IENTERI 7 IENTERI
3 lENTERI2 lENTERI
11 lENTER!1 lENTER!
31 lENTER!48 lENTER!
20 IENTERI 17 (ENTERI
lENTERJ

Store the matrix in EDAT.

Calculate the median.

1: [[18 12 J
['17]
[32]
[11 1]

ImJl!IIBlIImIllI1III3tmm1mB

IDAT(6)-[28 17]
IDAT(7)=
4:
3:
2=
1:
Iiml6HlCImlmHl6EII1lml

The medians are 14.5 for the first column and 9.5 for the second column.

Expanding and Collecting Completely

This section contains two programs:

• MULTI repeats a program until the program has no effect on its
argument.

• EXCO calls MULTI to completely expand and collect an algebraic.

568 31: IIor. Programming Exampl ••

MULTI (Multiple Execution)

Given an object and a program that acts on the object, MULTI applies the
program to the object repeatedly until the object is unchanged.

Arguments Results

2: object 2:
1 : ~ program ::t 1 : resulting object

Techniques.

• DO ... UNTIL ... END (indefinite loop). The DO clause contains
the steps to be repeated; the UNTIL clause contains the test that
determines whether to repeat both clauses again (if false) or to exit (if
true).

• Programs as arguments. Although programs are commonly named
and then executed by calling their names, programs can also be put
on the stack and used as arguments to other programs.

• Evaluation of local variables. The program argument to be executed
repeatedly is stored in a local variable. It's convenient to store an
object in a local variable when you don't know beforehand how many
copies you'D need.

Recall from page 98 that an object stored in a local variable is simply
put on the stack when the local variable is evaluated. MULTI uses the
local variable name to put the program argument on the stack and
then executes EV AL to execute the program.

Program: Comments:

Creates a local variable p containing
the program from level 1.

Begins the defining procedure (a
program) for the local variable
structure.

31: IIore Progr.mmlng Ex.mpl.. 569

DO

DUP

p EVAL

DUP

ROT

UtHIL

SAME

END

IENTERI r:J MULTllsTOI

Checksum:
Bytes:

34314d
56

Begins the DO clause.

Makes a copy of the object, now in
levell.

Applies the program to the object,
returning a new version.

Makes a copy of the new version of
the object.

Moves the old version to levell.

Begins the UNTIL clause.

Tests whether the old version and the
new version are the same.

Ends the UNTIL clause.

Ends the defining program.

Ends the program.

Puts the program on the stack, then
stores it in MULTI.

MULTI is demonstrated in the next programming example.

EXCO (Expand and Collect Completely)

Given an algebraic object, EXeo executes EXPAN repeatedly until the
algebraic doesn't change, then executes COLCf repeatedly until the
algebraic doesn't change. In some cases the result will be a number.

570 31: More Programming Examples

Arguments Results

1 : I algebraic' 1 : I algebraIc'
1 : I algebraic I 1 : z

Techniques .

• Subroutines. EXeD calls the progIant MULTI twice. It is more
efficient to create program MULTI and simply call its name twice
than write each step in MULTl two times.

Required Programs.

• MULTI (page 569) repeatedly executes the programs that EXCO
provides as arguments.

Program:

« EXPAt~ »

t1UL TI

« COLCT »

t1UL TI

®flERI r:J EXeO ISlcl

Comments:

Puts a program on the stack as the
levell argument for MULTI. The
program executes the EXP AN
command.

Executes EXPAN until the algebraic
object doesn't change.

Puts another program on the stack
for MULTI. The program executes
the COLCf command.

Executes COLCf until the algebraic
object doesn't change.

Puts the program on the stack, then
stores it in EXCO.

31: lIor. Programming Exampl.. 571

Checksum: :# 48OO8d
Bytes: 65.5

Example. Expand and collect completely the expression:

3r(4y +z)+(8r -5z)2

Enter the expression.

B3~X~
~[D] 4 ~ Y 1±1 Z [E 1±1
~lDJ 8 ~ X B 5 ~ Z
[E~2
IENTERJ

Select the V AR menu and start the program.

IVARJ <EXCO 1:

Expressions with many products of sums or with powers can take many
iterations of EXPAN to expand completely, resulting in a long execution
time for EXCO.

Finding the Minimum or Maximum Element
of an Array

This section contains two programs that find the minimum or maximum
element of an array:

• MNX uses a DO ... UNTIL ... END (indefinite) loop .

• MNX2 uses a FOR ... NEXT (defInite) loop.

572 31: lIor. Programming Exampl ••

MNX (Finding the Minimum or Maximum Element of
an Array-Technique 1)

Given an array on the stack, MNX finds the minimum or maximum
element in the array.

Argumenb ResuHs

2: [[array]]
1 : ((arrayJ J 1 = z (maximum element of array)

2: ((array]]
1 : [[array]] 1 : Z (minimum element of array)

Techniques.

• DO ... UNTIL ... END (indefinite loop). The DO clause contains
the sort instructions. The UNTIL clause contains the system-flag test
that determines whether to repeat the sort instructions.

• User and system flags for logic control:

• User flag 10 defines the sort: When flag 10 is set, MNX finds the
maximum element; when flag 10 is clear, it finds the minimum
element. You determine the status of flag 10 at the beginning of
the program.

• System flag - 64, the Index Wrap Indicator flag, determines when
to end the sort. While flag -64 is clear, the sort loop continues.
When the index invoked by GETI wraps back to the first array
element, flag - 64 is automatically set, and the sort loop ends.

• Nested conditional. An IF ... THEN ... END conditional is nested in
the DO . .. UNTIL ... END conditional- it determines:

• Whether to maintain the current minimum or maximum element,
or make the current element the new minimum or maximum.

• The sense of the comparison of elements (either < or » based
on the status of flag 10.

• Custom menu for making a choice. MNX builds a custom menu that
lets you choose whether to sort for the minimum or maxlmum
element. Key 1, labeled MAX, sets flag 10. Key 2, labeled

tilW ", clears flag 10.

31: Mor. Programming Examples 573

• Logical function. MNX executes XOR (exclusive OR) to test the
combined state of the relative value of the two elements and the
status of flag 10.

Program: Comments:

«

{

{ "MAX"
« 10 SF CaNT :.)

{ "MIN"
« 10 CF cotn :.)

)

TMENU
"Sort for MAX or MIN?"
PROMPT

1 GET!

DO

ROT ROT

GET! 4 ROLL DUP2

IF

> 10 FS? XOR

THEN

Begins the defIning list for the option
m enu.

Builds menu keys II "6~0 to set flag
10 and continue program execution,
and 'tMIN T to clear flag 10 and
continue program execution.

Ends the defining list for the
temporary option menu.

Displays the temporary menu and a
prompt message.

Gets the first element of the array.

Begins the DO loop.

Puts the index and the array in levels
1 and 2.

Gets the new array element, moves
the current minimum or maximum
array element from level 4 to levell.
Then copies both elements.

Begins the conditional.

Tests the combined state of the
relative value of the two elements
and the status of flag 10.

If the new element is either less than
the current maximum or greater than
the current minimum ...

574 31: IIore Programming Exampl ••

SWAP

END

DROP

U~ITIL

-64 FS?

EHD

SWAP DROP 0 MENU

»

Checksum:
Bytes:

57179d
210.5

... swaps the new element into level
1.

Ends the conditional.

Saves the current minimum or
maximum and drops the other
element off the stack.

Begins the UNflL clause.

Tests if flag - 64 is set. If flag - 64 is
clear, executes the DO clause again.

If flag - 64 is set, ends the loop.

Swaps the index to levell, then
drops it off the stack. Restores the
last menu.

Enters the program, then stores it in
MNX.

Example. Find the maximum element of the following matrix:

Enter the matrix.

~IMATRlxl
12 [ENTER I 56 IENTERI ~
45lENTERI1 IENTERI
9 [ENTER I 14 IENTER I
@iTERI

[

12 56]
45 1
9 14

1: ([12 56]
[15 1]
[9 14]]

rmRIlSDa8ImDlmilJGlD

31: IIor. Progr.nunlng Ex pl.. 575

Select the V AR menu and execute MNX.

Find the maximum element.

Sort tor MAX or MIH?

2:
1= [~ 4~ ~6)]

t 9 14]] Gl!HIIIII::JI_,;;",;;",---_

2: [[12 56] [45 1. ..
1: 56
1mIII Rll!IIIWIiIGID

MNX2 (Finding the Minimum or Maximum Element
of an Array-Technique 2)

Given an array on the stack, MNX2 finds the minimum or maximum
element in the array. MNX2 uses a different approach than MNX; it
executes OBJ to break up the array into individual elements on the
stack for testing, rather than executing GETI to index through the array.

Arguments Results

2: [[array]]
1 : [[array]] 1: z (maximum element of array)

2: [[array]]
1 : [(array]] 1: z (minimum element of array)

Techniques.

• FOR ... NEXT (definite loop). The initial counter value is 1. The
final counter value is nm - 1 where nm is the number of elements in
the array. The loop-clause contains the sort instructions.

• User flag for logic control. User flag 10 defines the sort: When flag 10
is set, MNX2 finds the maximum element; when flag 10 is clear, it
fmds the minimum element. You determine the status of flag 10 at the
beginning of the program.

• Nested conditional. An IF ... THEN ... END conditional is nested in
the FOR ... NEXT loop - it determines:

576 31: IIor. Programming Exampl ••

• Whether to maintain the current minimum or maximum element,
or make the current element the new minimum or maximum .

• The sense of the comparison of elements (either < or » based
on the status of flag 10 .

• Logical function. MNX2 executes XOR (exclusive OR) to test the
combined state of the relative value of the two elements and the
status of flag 10.

• Custom menu for making a choice. MNX2 builds a custom menu that
lets you choose whether to sort for the minimum or maximum
element. Key 1, labeled ;:¥l1AX " sets flag 10. Key 2, labeled
V;H:lifl t; , clears flag 10.

Program: Comments:

«

{

{ "t1AX"
.s: 10 SF Cotn » }

." "MIN" ~

.s: 10 CF Cotn » }

}

TMENU
"Sort for MAX or MIN?"

PROMPT

DUP

OBJ-'

1

SWAP OBJ~

Begins the defining list for the
temporary option menu.

Builds menu keys MAX to set flag
10 and continue program execution,
and J11.ft to clear flag 10 and
continue program execution.

Ends the defining list for the option
menu.

Displays the temporary menu and a
prompting message.

Copies the array.

Returns the individual array
elements to levels 2 through nm + 1,
and returns the list containing n and
m to levell.

Sets the initial counter value.

Converts the list to individual
elements on the stack.

31: IIor. Provramralng Exampl_ S77

DROP * 1 -

FOR n

DUP2

IF

> 10 FS? XOR

THEN

SWAP

DROP

t~EXT

o t1ENU

»

IENTERI I:J MNX2 ISTOI

Checksum:
Bytes:

12277d
200.5

Drops the list size, then calculates
the fmal counter value (nm - 1).

Starts the FOR ... NEXT loop.

Saves the array elements to be tested
(initially the last two elements).
Establishes the last array element as
the current minimum or maximum.

Begins the conditional.

Tests the combined state of the
relative value of the two elements
and the status of flag 10.

If the new element is either less than
the current maximum or greater than
the current minimum ...

. . . swaps the new element into level
1.

Ends the conditional.

Saves the current minimum or
maximum (and drops the other
element off the stack).

Ends the FOR ... NEXT loop.

Restores the last menu.

Enters the program, then stores it in
MNX2.

578 31: IIor. Progr mlng Ex pl ..

Example. Use MNX2 to find the minimum element of the matrix from
the previous example:

Enter the matrix.

~IM"TRIXJ
12 [tri!ffil56(ENTER! [!]
45 (ENTERJ1 (ENTERJ

9 ®im!l 141ENTERI
(ENTERJ

[
1256]
45 1
9 14

Select the VAR menu and execute MNX2.

Find the minimum element.

·.·.·. MIH

1; [[12 56 J
[45 1]
[9 11]]

IEIIIIIDIIII-'BmIIImiiIUDII

Sort for MAX or MI H?

2=
1 = [~ 12 56] 15 1]

9 11]] mIlIDD3I __ _

2: [[12 56] [45 1...
1: 1
Illm'lmilEIlII!IJiJlm!lrmI:lfJJ:rnm

Verification of Program Arguments

The Iwo utility programs in this section verify that the argument to a
program is the correct object type .

• NAMES verifies that a list argument contains exactly two names.

• VFYverifies that the argument is either a name or a list containing
(:xactly two names. It calls NAMES if the argument is a list.

You can modify these utilities to verify other object types and object
contf:Ot.

31: More Programming Examples 579

NAMES (Does the List Contain Exactly Two
Names?)

If the argument for a program is a list (as determined by wy), NAMES
verifies that the list contains exactly two names. If the list does not contain
exactly two names, an error message is displayed in the status area and
program execution is aborted.

Arguments He.un_

1 : { valid list } 1 :

status-area error Message
1: { invalid list } 1 :

Techniques.

• Nested conditionals. The outer conditional verifies that there are two
objects in the list. If there are two objects, the inner loop verifies that
they are both names.

• Logical functions. NAMES uses the AND command in the inner
conditional to determine if both objects are names and the NOT
command to display the error message if they are not both names.

Program:

IF

08 .. .1-+

DUF'

2 SAME

Comments:

Starts the outer
IF ... THEN ... ELSE ... END
structure.

Returns the n objects in the list to
levels 2 through (n + 1), and returns
the list size n to levell.

Copies the list size.

Tests if the list size is 2.

580 31: lIor. Programming Examples

THEN

DROP

IF

TYPE 6 SAt'lE

SWAP TYPE 6 SAt'1E

m~D

NOT

THEt·l

If the list size is 2 ...

. .. moves the objects to levels 1 and
2.

Begins the inner IF ... THEN ... END
structure.

Tests if the fIrst object is a name. If
so, returru a true result (1). If not,
returns a false result (0).

Moves the second object to levell,
then tests if it is a name.

If both results are true, returns a
true result (1). If either or both
results are false, returns a false result
(0).

Returns the opposite result.

If the opposite result is true (if the
objects are not both names) ...

"List nee d s two nar')€'s " .. . displays an error mes.c;,agc and
DOERR aborts program execution.

Et~D

ELSE

DROPN
"Illegal list size"
DOERR

END

IENT~ ~ NAMES ISTOI

Ends the inner conditional.

If the list size is not 2 ...

... drops the list size, displays an
error message, and aborts program
execution.

Ends the outer conditional.

Enters the program and stores it in
NAMES.

31: IIor. Programming Examples 581

Checksum:
Bytes:

40666d
141.5

NAMES is demonstrated in program VFY.

VFY (Verify Program Argument)

Given an argument on the stack, VFYverifie6 that the argument is either
a name or a list that contains exactly two names.

Arguments Results

1 : ' name ' 1 : ' name'
1 : (valid list) 1 : { vafld list }

status-a~ea e~~o~ r~essage

1 : { frrvalld list) ! : (Invalid list)

siatus-a~ea e~ro~ r~essage

1 : Invalid object 1 : Invalid object

Techniques.

• Utility programs. VFYby itself has little use. However, it can be used
(with minor modifications) by other programs to verify that specific
object types are valid arguments.

• CASE ... END (case structure). VFYuses a case structure to
determine if the argument is a list or a name.

• Structured programming. If the argument is a list, VFY calls NAMES
to verify that the list is valid.

• Local variable structure. VFY stores its argument in a local variable
so that it may be passed to NAMES if necessary.

• Logical operator. VFYuses NOT to display an error message.

Required Programs.

• NAMES (page 580) verifies that a list argument contains exactly two
names.

582 31: lIor. Programming Exam pl ••

Program:

DUP

DTF~G

~ ar9

Comments:

Saves the original argument.

Removes any tags from tbe
argument for subsequent testing.

Stores the argument in local variable
argo

Begins the defining procedure (a
program) for the local variable
structure.

efiSE Begins the case structure.

ar9 TYPE 5 SAME Tests if the argument is a list.

THEN If the argument is a list ...

ar9 NAMES ... puts the argument back on the
stack, and calls NAMES to verify that
the list is valid.

END Ends the first case. (If the first case
was true, leaves the case structure. If
the first case was false, goes to the
next case.)

ar9 TYPE 6 SAt'1E NOT Tests if the argument is a name, then
inverts the test result.

THEN If the argument is not a name (and
not a list) ...

II Not nar'·,e or 1 i st II ••• displays an error message and
DOERR aborts program execution.

E~ID Ends the second case.

END Ends the case structure.

31: IIor. Programming Example. 583

IENTER] rJ VFY ISTOI

Checksum: # 14621d
Byt a: 135.5

Ends the defining procedure.

Enters the program, then stores it in
VFY.

Example. Part 1. Execute VFY to test the Validity of the name
argument PAT.

Put the name PAT on the stack. Select the VAR menu and execute VFY.

rJ PAT IENTERI
IVARI ' .VFY'\

The argument is valid and is simply returned to the stack.

Part 2. Execute VFY to test the validity of the list argument { PAT
DIANA TED}.

Put the names DIANA and TED on the stack. Convert the three names
now on the stack to a list.

rJ DIANA IENTERI
B TED IENTER I
3 IPRGIQ,64\ ,t l"IST

111 {PAT OIA A TEO }I
rnDIDDmDWWmmumJ

Execute VFY. Since the list contains too many names, the error message is
displayed and program execution is aborted.

584 31: Mor. Programming Exampl ••

Illegal list size

~;
2=
1= {PAT DIANA TED }
W!IIlIIEDlI11:1DlEmt:ItImED

Bessel Functions
3ta.

The real and imaginary parts of the Bessel function/II (xe ..) are denoted
Ber,. (x) and Bei,. (x). When n = 0,

y

-10

User-defined function BER calculates Ber(x) to 12 significant digits.

~ -Arguments i Results

Techniques_

• Local variable structure. BER consists solely of a local variable
structure and so has two properties of a user-defmed function; it
takes numeric or symbolic arguments from the stack or in algebraic
syntax. Because BER uses a FOR ... STEP loop, its defining
procedure is aprogram. (Loop structures are not allowed in algebraic
expressions.) Therefore, unlike a user-defined function, BER is not
dillerentiable.

31: IIore Progr ... lng Ell .. p'" 585

• FOR ... STEP loop (definite loop with counter). Successive terms in
the series are calculated with a counter-controlled loop. When the
new term does not change the series value within the 12-digit
precision of the calculator, the loop ends. The final counter value
(9.0 x l(499) ensures that enough terms will be calculated.

• Nested conditional. The IF ... THEN ... ELSE ... END conditional
within the definite loop sets the step value n for the loop counter. As
long as the newly calculated series value does not equal the old series
value, the step value n is set to 2. When the new series value does
equal the old series value, the step value is set to a number larger
than the final value of the counter, ending the defInite loop. In
essence, the nested conditional makes the outer loop work like a
DO ... UNTIL ... END (indefInite) loop.

Program:

1

2 9.E499

FOR j

DUP

'(-1)A(j/2)*
(X/2)A(2*j)
/SQ(j!)' EVAL

+

Comments:

Creates local variablex.

Begins the defining procedure (a
program) for the local variable
structure.

Writes the first term of the series.

Sets the counter for the
FOR ... STEP loop.

Begins the loop.

Saves the current value of the series
(initially 1).

Calculates the next term of the
series.

Adds the next term to the current
value of the series to calculate the
new value of the series.

586 31: lIor. Programming Exampl ••

IF

DUP ROT ~

THEN

2

ELSE

9.1E499

END

STEP

Checksum:
Bytes:

#872d
148

Example. Calculate Ber(3).

IVAI3]

3 .Bf; .. R .

Calculate Ber(2) in algebraic syntax.

r:J i.BER (5)[]] 2
I EVAIl

Begins the conditional.

Tests if the new series value is not
equal to the old series value.

If the new and old values are not
equal ...

. . . specifies n = 2.

If the new and old terms are equal
(to 12-digit precision) ...

... specifies n = 9.1E499

Ends the conditional.

Specifies the step value based on the
conditional.

Ends the defining procedure.

Enters the program, then stores it in
BER.

11: .751734182714)
DBm:mIlDmllBllllllIJll_

31: IIor. Programming Example. 587

Animation of Successive Taylor's
Polynomials

This section contains three programs that manipulate graphics objects to
display a sequence of Taylor's polynomials for the sine function.

• SINTP draws a sine curve, and saves the plot in a variable.

• SE1TS superimposes plots of successive Taylor's polynomials on the
sine curve plot from SINTP, and saves each graphics object in a list.

• TSA displays in succession each graphics object from the list built in
SEITS.

Drawing a Sine Curve and Converting It to a
Graphics Object

SINTP draws a sine curve, returns the plot to the stack as a graphics
object, and stores that graphics object in a variable.

I, : Arguments I, : Results

Techniques.

• Programmatic use of PLOT commands to build and display a
graphics object.

Program:

'X' PURGE
'SIN(X)' STEQ

-2 2 YRNG

ERASE DRA~J

Comments:

Makes X a formal variable, then
stores the expression for sin x in EQ.

Sets the y-axis display range.

Erases PIeT, then plots the
expression.

588 31: IIor. Programming Exampl ..

PICT RCL 'SINT' STO

~TERI B SINTP ISTol

Checksum:
Bytes:

61373d
78.:5

Returns the resultant graphics object
to the stack and stores it in SINT.

Stores the program in SINTP.

Superposition of Successive Taylor's Polynomials

SETTS superimposes successive Taylor's polynomials on a sine curve and
stores each graphics object in a list.

G -Arguments Resutt.

1._: ______________________ ~1_: ____________________ ~

Techniques.
• Structured programming. SETTS calls SINTP to build a sine curve

and convert it to a graphics object.

• FOR ... STEP (definite) loop. SETTS calculates successive Taylor'S
polynomials for the sine function in a definite loop. The loop counter
serves as the value of the order of each polynomial.

• Programmatic use of PLOT commands. SETTS draws a plot of each
Taylor's polynomial.

• Manipulation of graphics objects. SETTS converts each Taylor'S
polynomial plot into a graphics object. Then it executes + to combine
each graphics object with the sine curve stored in SINT, creating nine
new graphics objects, each the superposition of a Taylor's polynomial
on a sine curve. SETTS then puts the nine new graphics objects, and
the sine curve graphics object itself, in a list.

31: liar. Programming Exampl.. 589

Program:

SINTP

17 1 FOR x

X 'X' DUP
SIN SWAP ROT TAYLR
STEQ ERASE DRAW

PICT RCL snn +

-2 STEP

SINT 1'21 ,*LIST
'TSL' STO

IENTERI CJ SETTS ISTOI

Checksum:
Bytes:

5841d
136.5

Comments:

Plots a sine curve and stores the
graphics object in SINT.

For each value of local variable x ...

... plots the Taylor's polynomial for
the sine curve (where x is the order
of the polynomial).

Returns the plot to the stack as a
graphics object and executes + to
superimpose the Taylor series on the
sine curve stored in SINT.

Decrements the loop counter (the
order of the Taylor's polynomial) by
2 and repeats the loop.

Puts the sine curve graphics object
on the stack, then builds a list that
contains that graphics object and the
nine graphics objects created in the
FOR ... STEP loop. Stores the list in
TSL.

Stores the program in SETTS.

590 31: More Programming Examples

Animation of Taylor's Polynomials

TSA displays in succession each grapbics object created in SETTS.

Arguments Resuh.

Techniques.

• Passing a global variable. Because SETTS takes a long time to
execute (approximately six minutes), TSA does not call SETTS.
Instead, you must first execute SETTS to create the global variable
TSL containing the list of graphics objects. TSA simply executes that
global variable to put the list on the stack .

• FOR ... NEXT (definite loop). TSA executes a definite loop to
display in succession each graphics object from the list.

Program:

TSL

OBJ~

1 SWAP FOR s

ERASE ~LCD
1 WAIT

t·1EXT

Comments:

Puts the list TSL on the stack.

Puts the 10 graphics objects from the
list and the list count on the stack.

For s from 1 to 10 ...

... clears the display, converts the
level-1 graphics object to a display
image, and shows it for one second.

Stores the program in TSA.

31; More Progr lng Example. 591

Checksum:
Bytes:

39562d
51

Example. Execute SETTS and TSA to build and display in succession a
series of Taylor's polynomial approximations of the sin function.

Set Radians mode. Execute SE1TS to build the list of graphics objects.
SETTS takes about six minutes to execute. Execute TSA to display each
plot in succe ion. The d i play shows TSA in progress.

~IRADI (if necessary)
IVAAI Se:J''fS

TSfl

Programmatic Use of Statistics and Plotting

Program PIE prompts for single variable data, stores that data in the
statistics matrix WAT, then draws a labeled pie chart that shows each
data point as a percentage of the total.

Argumems I, : Results

1 :

Techniques.

• Programmatic use of PLOT commands. PIE executes XRNG and
YRNG to define x- and y-axis display ranges in user units, executes
ARC to draw the circle, and LINE to draw individual slices.

• Programmatic use of matrices and statistics commands.

• Manipulation of graphics objects. PIE recalls PICT to the stack and
executes GOR to merge the label for each slice with the plot.

• FOR ... NEXT (definite) loop. Each slice is calculated, drawn and
labeled in a definite loop.

592 31: More Programming Example.

• CASE ... END structure. To avoid overwriting the circle, each label
is offset from the midpoint of the arc of the slice. The offset for each
label depends on the position of the slice in the circle. The CASE ...
END structure assigns an offset to the label based on the position of
the slice.

• Preservation of current calculator flag status. Before specifying
Radians mode, PIE saves the current flag status in a local variable,
then restores that status at the end of the program.

• Temporary menu for data input.

Program:

RCLF ~ f I a'3S

<:

<: "SLICE" :;+)

<: }
<: "CLEAR" CL};)

<:) {)
<: "DRA~~" CONT)

:>

Tt1ENU

"Ke':;! values into
SLICE, .DRA~~
restarts prograM."
PROt-lPT

Comments:

Recalls the current flag status and
stores it in variable flags.

Sets Radians mode.

Begins the defining list for the input
menu.

Defines key 1. Key 1 executes E + to
store each data point in WAT.

Defines keys 2 and 3. Key 3 clears
WAT.

Defines keys 4, 5, and 6. Key 6,
labeled DRAW continues program
execution after data entry.

Ends the defining list.

Displays the temporary menu.

Prompts for inputs. The • is the
calculator's representation of the .,
character (~B) after the
program has been entered on the
stack.

31: Mor. Programming Elmmpl.. 593

ERASE 1 131 XRt'~G

1 64 YRNG CLLCD

"Please wait •..•••
Drat-ring Pie Chart"
1 DISP

(66,32) 20 0 6.28
ARC

PICT RCL -+LCD

RCU: TOT /

DUP 100 *

-+ prcnts

«

2 1T -+NUt1 * * (1

-+ prop angle

«

prop SIZE OBJ-+
DROP Sl·lAP

FOR x

(66,32) pt-OP x GET
'angle' STO+

angle COS LASTARG
SIN R-+C 20 * OVER +
LIt~E

Erases the current PICT and sets
plot parameters.

Displays "drawing" message.

Executes ARC to draw the circle.

Displays the empty circle.

Recalls the statistics data matrix,
computes totals, and calculates the
proportions.

Converts the proportions to
percentages.

Stores the percentage matrix in
prcnts.

Multiplies the proportion matrix by
2",.

Stores the proportions in prop and
initializes angle to O.

Sets up start and finish for
FOR. .. NEXT loop.

Begin FOR clause.

Puts the center of the circle on the
stack and gets the xth value from the
proportion matrix.

Computes the endpoint and draws
the line for the xth slice.

5SM 31 : IIor. Programming Ea:ampl ..

PICT RCL

angl e pt-OP x GET
2 / - DUP
COS LASTARG SIN R~C
26 '* (66,32) +

SWAP DUP
CASE

1.5 ~

THEN

DROP

Et·m

DUP 4.4 ~

THEt~

DROP 15 -

END

5 <
THEt·l

(3,2) +

Et~D

END

prcnts x GET

1 Rt·1D

~STR ":~" +

Recalls PIeT to the stack.

For labeling the slice, computes the
midpoint of the arc of the slice.

Starts the CASE ... END structure to
determine the offset value for the
label.

From 0 to 1.5 radians .. .

· .. doesn't offset the label.

From 1.5 to 4.4 radians ...

· .. offsets the label 15 user units left.

From 4.4 to 5 radians ...

· .. offsets the label 3 units right and
2 units up.

Gets the xth value from the
percentage matrix.

Rounds the percentage to one
decimal place.

Converts the percentage to a string
and adds % to the string.

31: IIor. Progra lng Examples 595

1 -+GROB

GOR DUP PICI SIO

·KCD

t-lE XT

{) PVIEl·J

f 1 ''''9$ STOF

::;' 2 t'lEHU

(ENTERI tJ PIE ISIOI

Checksum:
Bytes:

8706d
758.5

Converts the string to a graphics
object.

Adds the label to the plot and stores
the new plot.

Displays the plot with the new slice
and label.

Displays the finished plot.

Restores the original flag status.

Displays the VAR menu. (Note that
the user must first press IATTNI to
clear the plot.)

Enters the program and stores it in
PIE.

Example. The fruit inventory at Joe's grocery includes 983 oranges, 416
apples, and 85 bananas. Draw a pie chart to show each fruit's percentage
of total inventory.

Start PIE.

(VARI PIE

596 31: lIor. Programming Examples

Ke~ values into SLICE
DRAW restarts prograM.

~!
2:
1 =
EimJ r.m:m omJ

Clear the current statistics data. (The prompt is removed from the
display.) Key in the new data and draw the pie chart.

CLEAR
983 SClCE
416~;tlCE

85 SLICE
DRAW

"h
\D5.7~

Animation of a Graphical Image

Program WALK shows a man walking across the display. It animates this
custom graphical image by incrementing the image position in a loop
struclure.

Results I Arguments
ru:---------------------+-l-:--------------------~

Techniques.

• Use of a custom graphical image in a program. (Note that the
programmer derives the full information content of the graphical
image before writing the program by building the image interactively
in the Graphics environment and then returning it to the command
line.)

• FOR . .. STEP definite loop to animate the graphical image. The
{:nding value for the loop is MAXR. Since the counter value cannot
{:xceed MAXR, the loop executes indefinitely.

Program:

GRaB 9 15 E300
140015001C001400E300
8000C110AA0094009000
41 002200141028013

ERASE { # 0d # 0d)
PVIEW

{ # 0d # 25d)
PIeT OVER Man GXOR

5 t'lAXR FOR i

i 131 MOD R-*B

25d 2 -*LI 81

PICT OVER Man GXOR

PICl ROT Man GXOR

Comments:

Puts the graphical image of the man
in the command line. (Note that the
hexadecimal portion of the graphics
object is a continuous integer
E300 •.• 2800. The linebreaks do
not represent spaces.)

Creates local variable man
containing the graphics object.

Clears PICT, then displays it.

Puts the first position on the stack
and turns on the fIrst image. This
readies the stack and PICT for the
loop.

Starts FOR . .. STEP loop to generate
horizontal coordinates indefinitely.

Computes the horizontal coordinate
for the next image.

Specifies a fixed vertical coordinate.
Puts the two coordinates in a list.

Displays the new image, leaving its
coordinates on the stack.

Turns off tbe old image, removing its
coordinates from the stack.

5 STEP

»

IENTeR) rl WALK ISTol

Checksum:
Byte.:

/I 4342d
236 . .5

Increments the horizontal rdinate
by S.

Stores the program in WALK.

umple. Send the man out for a long walk.

Select the VAR menu and execute WALK.

Wb 11 be tires, press IATTNI to take him bome (and end the program).

I I ' ~ --= ~ = .. __ - . I. _ ...

Pa
Printing, Data Transfer, and
Plug-Ins

32
Printing

This cbapter describes bow to use your HP 48 with an HP 82240B
Infrared Printer, with an HP 82240A infrared printer, and with prinlers
that connect to the serial port.

Printing with an HP 822408 Printer

You can send information from your HP 4S to an HP 82240B Infrared
Printer via the infrared port. Refer to the printer manual for instructions
about how to operate the printer and how to position the printer relative
to the liP 48.

6CtZ 32: PrInting

PRINT Commands

Key Programmable Description
Command

IONIiMTHI When IONI and IMTHI are pressed
simultaneously and then released, the
current display is printed.

r.ctIIPRINT\ PRl Prints the object In level 1.

~IPRINTI:

PRl: PR1 Prints the object In level 1.

1'RSl"- PAST Prints all objects on the stack start ing
with the object in the highest level.

PR'S;TC PRSTC Prints all objects on the stack in
compact form, starting with the object
in the highest level.

PRLCI) PRLCD Prints the current display.

PR VAR PRVAR Searches the current path for the
specified variables, and prints the name
and contents of each variable. The
variables are specified either by name
or in a list in level 1.

el< CR Causes printer to do a carriage-
return/line-feed, printing the contents, if
any, of the printer buffer.

DELAY DELAY Sets the delay time, 5 6.9 seconds,
between sending lines of information to
the printer.

OLDPR OLDPAT Remaps the HP 48 character set to the
HP 82240A Infrared Printer.

32: Printing 603

Print Formats

Multiline objects can be printed in multiline format or compact format.
Multiline printer format is similar to multiline display format, with the
following exceptions:

• Strings and names that are more than 24 characters long are
continued on the next printer line.

• The real and imaginary parts of complex numbers are printed on
separate lines if they don't fit on the same line.

• Arrays are printed with a numbered heading for each row and with a
column number before each element. For example, the 2 x 3 array

[
1 2 3]
456

would be printed like this:

Array dimensions

+
Row Array { 2 3 }
number ... Row 1

{

1 J 1
Column 2] 2
number 3] 3

Row 2
1] 4
2] 5
3] 6

Compact printer format is the same as compact display format: Multiline
objects are truncated and appear on one line only.

The PRSTC command prints the stack in compact form. All other print
commands print in multiline format.

604 32: PrInting

Basic Printing Commands

Printing the Display. To print an image of the display under any
condition without using the PRINT menu: •

1. Press and hold IONI.

2. Press and release IMTHI (the key with "PRINT" written above it).

3. Release IONI.

Note

A low-battery condition may result in consistent failure of
the IONIIMTHI printing procedure. If you notice consistent
failure, replace your calculator batteries to remedy the
situation.

00000
--~--occoc

00000
cooooo
C:=Jocoo
00000
coooo
00000
DDoe

The PRLCD command (~IPRINTI PREeD) also prints an image of the
display.

• Thel:l!: lr:ey.:tTOkc.~ u2 the cur1'eJ1t DElA Y SC:Hing. Aiso, if)lOu a rt printing to th s",rial
port to capture graphics data on your printer, the serial port must be open (the
OPENIO command) before these keystrokes are executed.

32: Printing 605

Printing the Contents of Level 1 of the Stack. PR1 (~IPRINTI
PR1) prints the contents oflevel1 in multiline printer format. All

objects except strings are printed with their identifying delimiters. Strings
are printe:d without their "delimiters. PR1 can be executed also by
pressing 1~lpRINTI.

Printing the Stack. PRST (~IPRINTI PRST) prints all objects on
the stack, starting with the object in the highest leve~ in multiline printer
format (except for graphics objects, which print the same as they are
displayed).

PRSTC (~IPRINTI PRSTC) prints all objects on the stack, starting with
the object in the highest level, in compact printer format.

Printing Variables. PRVAR (~IPRINTI PRVAR) searches the
current path for the variables that you have specified, and prints the name
and cont<:nts of each variable in multiline printer format. PRVAR takes
one argument from the stack: either one name or a list containing om: or
more names. (PRVAR also prints backup objects.)

Printing a Text String

You can print any sequence of characters by entering a string object that
contains l:he characters and executing PR1. The printer prints the
characters without the quotation marks and leaves the print head at the
end of the print line. Subsequent printing begins on the next line.

Printing a Graphics Object

Like other objects, you can print a graphics object either by putting the
graphics object in level 1 and executing PR1, or, if the graphics object is
stored in a variable, by entering the variable name and executing PRVAR.
Graphics objects wider than 166 dot columns are printed in 166-column
wide segments down the paper, separated by a dashed line. For example,
a 350-column wide graphics object would be printed in two 166-column
segments and one 18-column segment.

606 32: Printing

Double Space Printing

To select double-space printing (one blank line between lines), set flag
- 37. To return to single-space printing, clear flag - 37.

Setting the Delay

The DElAY command lets you specify how long the HP 48 waits between
sending lines of information to the HP 82240B Infrared Printer. DElAY
takes a real number from level 1 that specifies the delay time in seconds.
If you do not specify a delay, it is automatically set to 1.8 seconds. The
maximum delay is 6.9 seconds.

A shorter delay setting can be useful when the HP 48 sends mUltiple lines
of information to your printer (for example, when printing a program).
To optimize printing efficiency, set the delay just longer than the time the
printhead requires to print one line of information.

If you set the delay shorter than the time to print one line, you may lose
information. Also, as the batteries in the printer lose their charge, the
printhead slows down, and, if you have previously decreased the delay, you
may have to increase it to avoid losing information. (Battery discharge
wiU n t cause the printhead to slow to more than the 1.8 second de fault
delay setting.)

The HP 48 Character Set

The table in appendix C lists each HP 48 character and its corresponding
character code. Most of the characters in the table can be directly typed
into the display from the Alpha keyboard. For example, to display $,

type ~ [5]~. (The Alpha keyboard is presented in chapter 2.) Any
character in the table can be displayed by typing its corresponding
character code and then executing the CHR command. The syntax is
char# CHR. Certain characters in the table in appendix C are not on the
Alpha keyboard. To display one of these characters, you must type its
character code and execute CHR.

The HP 82240B Infrared Printe can print any characLer from th HP 48
character set.

32: PrInting 607

Sending Escape Sequences and Control Codes

You can select various printer modes by sending escape sequences to the
printer. An escape sequence consists of the escape character-character
27 - followed by additional characters. When the printer receives an
escape sequence, it switches into the selected mode. The escape sequence
itself isn't printed.

Printer owner's manuals generally describe the escape sequences and
control codes recognized by the printer.

Use CHR and + to create escape sequences and use PRI to send them to
the printer.

Example. These characters send information to the HP 82240B printer
to turn on Underline mode, underline the string HELLO, and then turn
off Underline mode:

27 CHR 251 CHR + "HELLO" +
27 CHR + 250 CHR + PR1

Accumulating Data in the Printer Buffer

You can print any combination of text, graphics, and objects on a single
print line by accumulating data in the printer's buffer.

Normally, each print command completes data transmission by
automatically executing the CR (carriage right) command, which tells the
printer to do a carriage-returnjline-feed. Then the printer prints the data
currently in its buffer and leaves the print head at the right end of the
print line.

You can disable the automatic execution of the CR command by setting
flag - 38, the Line-feed flag. Data from subsequent print commands is
accumulated in the printer buffer and is printed only when you manually
execute CR. When flag - 38 is set, follow these three rules:

• Execute CR (~IPRINTI to print the accumulated data.
(Alternately, send character 4 or character 10.)

• Print the data in the buffer before you accumulate more than 200
characters. Otherwise, the buffer fills up and subsequent characters
are lost.

608 32: PrInting

• Allow time for the printer to print a line before sending more data.
The printer requires about 1.8 seconds per line.

Clear flag - 38 to restore normal operation of the print commands.

Printing with an HP 82240A Infrared Printer

You can use your HP 48 calculator with an HP 82240A Infrared Printer,
executing the same print commands that you would use for an
HP 822408. However, the character set in the HP 82240A Infrared
Printer does not match the HP 48 character set:h

• 24 characters in the HP 48 character set are not available in the
HP 82240A Infrared Printer. (From the table in appendix C, these
characters are numbers 129, 130, 143-157, 159, 166, 169, In, 174, 184,
and 185.) The HP 82240A prints a I in substitution.

• Many characters in the extended character table (character codes 128
through 255) do not have the same character code. For example, the
4(character has code 171 in the HP 48 and code 146 in the
HP 82240A Infrared Printer. Uyou want to use the CHR command
to print extended characters with an HP 82240A Infrared Printer, first
execute OLDPRT. OLDPRT adds a remap string to tbe PRTPAR
variable, which changes the character code of each byte to match the
codes in the HP 82240A Infrared Printer character table. (If you
want to print a string containing graphics data, OLDPRT must not be
in effect.)

If you executed OLDPRT to print with an HP 82240A Infrared Printer,
and then want to print to an HP 822408 Infrared Printer, you should first
purge the reserved variablePRTPAR. (You can first copy its contents to
another variable if you want to save the settings for later use.) This resets
the print parameters so that the character set matches the HP 822408.
(PRTPAR is described on page 611.)

32: Printing 609

Printing to the Serial Port

You can print to a serial printer via the HP 48 serial port. Once the
HP 48 is connected to the printer:

1. Set flag - 34, the Printing Device flag.

2. Check that flag - 33, the I/O Device flag is clear. (The default is
clear.) •

3. Set the HP 48 baud rate, parity, and translation code appropriately
for your printer. These can be set using the I/O SETUP menu,
described on page 617.

4. If your printer uses XON/XOFF handshaking, edit (or create)
[OPAR to set transmit pacing 1= O. The reserved variable [OPAR is
described on page 618.

5. If the number of characters that fit on one line on your printer is
not 80, edit PRTPAR to contain the correct number as the third
element in its list. (See the next section for information on
PRTPAR.)

6. If your printer requires a line termination sequence other than
carriage-return/line-feed, edit PRTPAR to contain that sequence as
the fourth element in its list. The reserved variablePRTPAR is
described in the foUowing section.

You can execute any of the print commands described in this chapter with
a serial printer. However, note that:

• The maximum line length to print is specified in the reserved variable
PRTPAR (described next) .

• You cannot print a graphics object.

• Setting both f1n~ -33 and -34 would enable infrared serial dall! ttansmissio n.. i'Tinting
with an HP 822AOB Infrared Printer when these flags are set will not work-the
HP 822408 would likely print blots.

610 32: PrlnUng

The PRTPAR Variable

When you first print information with a command from the PRINT menu,
the UP 48 automatically creates the PRTPAR variable. PRTPAR is a
reserved variable containing a list that specifies how the UP 48 works with
the printer. The list contains, in order, the following objects:

• A real number that specifies the delay time, in seconds. If you have
not previously executed DELAY, the delay time is automatically set to
1.8 seconds in PRTPAR.

• A string that represents the current remapping of the UP 48 extended
(:haracter set. The string can contain as many characters as you want
to remap, with the first character in the string being the new
(:haracter 128, the second being the new character 129, and so on.
(Any characters outside the string length will not be remapped.) If
you have not previously executed OLDPRT, the string is empty; if you
have executed OLDPRT, the string contains the character remapping
for the UP 82240A Infrared Printer.

• A real number that specifies the line length, in number of characters,
for serial printing. This parameter does not affect infrared printing.
The default is 80 characters.

• A string that represents the line termination method for serial
printing. This parameter does not affect infrared printing. The
default is carriage-return /line1eed (control characters 13 and 10).

You can edit any parameter in the list. The delay time, however, can be
set more easily using the DELAY command: Enter the delay number (6.9
or less) on the stack and execute DELAY (~IPRINTIINXTI DEJ"'AY).

32: Printing 611

33
Transferring Data to and from the
HP48

This chapter covers:

• Transferring data from one HP 48 to another using the infrared port.

• Transferring data between the HP 48 and a computer using the serial
port. (For this operation, you need the Serial Interface Kit
appropriate for your computer. For more information, see your
Hewlett-Packard dealer.)

• Ol.her serial I/O operations.

The HP 48 uses Kermit me transfer protocol to transfer data and to
correct transmission errors between two HP 48 calculators, or between an
HP 48 and a computer. Kermit protocol was developed at the Columbia
University Center for Computing Activities.

The calculator commands needed to accomplish Kermit data transfer are
built into the HP 48. Therefore, you can transfer data from one HP 48 to
another by simply lining up the two infrared ports and executing the
proper commands, which are described in this chapter.

To transfer data to and from a computer, the computer must be running a
program that implements Kermit protocol. Also, there must be a cable
connecting the HP 48 and the computer. Details about the cable
connection are covered later in this chapter. (Kermit protocol and a

612 33: Transferring Data to and from the HP 48

special serial cable are required for this operation and are available from
your Hewlett-Packard dealer as part of a Serial Interface Kit to match
your c.omputer.)

If you want additional information on Kermit protoco~ a book by Frank
da Cruz, KERMIT, A File Transfer Protocol, is available in many
bookstores or can be ordered. •

The HP 48 provides additional serial I/O commands for non-Kermit data
transfers. These commands are for specialized I/O operations-for
example, printing directly from the HP 48 to a serial printer.

Types of Data You Can Transfer

The unit of information that is transferred using Kermit protocol is called
afile. In the HP 48 world, a file can consist of:

• A named object (variable, backup object, etc.).

• An entire directory. When you transfer a directory, the contents of all
the subdirectories under that directory are also transferred.

• All of user memory-all the variables you've created, the user-key
a..c;signments, and the Alarm Catalog.

In all cases, a copy of the data is sent to the receiving device and stored as
a file (variable) in the current directory.

When you transfer a directory or all of user memory between an HP 48
and a computer, the data is sent as a single file, and you cannot
conveniently access the contents of the individual variables in that file.
For this reason, a directory transfer to a computer should be done mainly
for ar,;hiving purposes. When the purpose of a file transfer is to use the
file at its destination (for example, to edit a program on your computer),
you should transfer the contents of the individual variable. If you put the
variable names in a list and use the SEND command to transfer the data,
the variables can then be accessed individually.

• da Cruz, Frank. 1987. KERMIT, A File Transfer Protocol. Bedford, MA: Digital Press.

33: Transferring Oua liD and fro. the HP ... 613

When you transfer a directory from one HP 48 to another, it is installed in
the destination machine as a normal directory. This means that it can be
manipulated just like other directories and its variables are all accessible.
Transferring a directory from one HP 48 to another is a good way to
transfer a set of related objects - for instance, a set of programs,
variables, printer configurations, etc. - all ready to be used together by
the destination HP 48.

The I/O Menu

The commands for Kermit protocol and serial operations are contained in
the I/O menu. The serial commands are covered at the end of the
chapter.

Kermit Protocol Commands

Key Programm ble Description
Command

~ [IZQ1 (pages 1 and 2) :

SE"R SEND Sends the contents of one or more
variables to another device. SEND
takes an argument from level 1 - the
variable name, or a list of names
(namel name2, •••). (See the
paragraph Immediately following this
table for more Information.)

- RIiC~ RECV Tells the HP 48 to wait to receive a
variable from another Kermit protocol
device.

SERV~ SERVER Puts the HP 48 Into Kermit Server
mode. (Also executed by pressing
~[!ZQ] .)

614 33: Tranafwrlng D to and fro .. the HP ...

Kermit Protocol Commands (continued)

Keys Programmable Descripllon
Command

~1l~"T KGET Gets one or more variables from a
server device. KGET takes an
argument from level 1 - the name of
the requested variable, or a list of
names (name. name2 '") . (See
the paragraph Immediately following
this table for more Information.)

~~IS FINISH Issues the Kermit FINISH command to
a server device to terminate Server
mode.

SETU Pw Displays the SETUP menu for setting
I/O parameters.

Ji~PlL RECN Same as ECY ,except that it takes
a name argument. The received file is
stored using that name.

Pm PKT Provides the ability to send a Kermit
command "packer' to a server. It
takes the packe data field as a string
In level 2 and the packet type as a
string In level 1. For example.
"D" "G" PKT sends a " generic
directory" command.

Kim KERRM Returns the text of the most recent
Kermit error.

JJR:El'fr OPENIO Opens the serial port using the I/ O
parameters In IOPAR.

CeOSE CLOSEIO Closes the serial port. clears KERRM,
and clears the Input buffer.

33: Transferring Data to and fro. the HP 48 615

You can also use SEND and KGET to rename a variable when it's
transferred by including a sub list for that variable in the main list. The
first element in the sublist is the existing variable name and the second
element is the new name. For example, executing the SEND command
with the list { {name! name2} name3 name4 } as an argument would
result in name3 and name4 being sent under their own names and name!
being sent under the new name of name2.

Local and Server Modes

There are two Kermit protocol configurations for transferring data from
an HP 48 to another HP 48 or computer:

• Local/Local. Both machines are controlled locally from their own
keyboards, and Kermit commands can be issued by either machine.
Data is transmitted by issuing a SEND command from the sender's
keyboard and a RECV or RECN command from the receiver's
keyboard .

• Local/Server. One machine is controlled locally and the other
machine is a server. The server passively waits for instructions or data
from the sender. A server:

• Receives data when a sender executes a SEND command.

• Transmits data when it receives a KGET command.

• Ceases to be a server when it receives a FINISH command.

Local/Server mode is most useful when you wish to transfer a number of
variables from different directories; the local device can issue repeated
"send" or "get" commands to which the server responds.

818 33: Transferring 0 ... to .nd fro .. the HP 48

Setting the I/O Parameters

The SETUP Menu

Pressing$;J;t£Pf{ displays the current I/O parameter settings and a menu
for changing them. If the displayed settings are overwritten by the stack
or other information, press ffijlREVIEWI to redisplay them.

SETUP Menu

Key. Programmable Description
Command

ffijOlQ] SEt UP:

~R->--W{\i Switches between IR Onfrared) and
Wire (serial) modes. In IR mode, 110
output Is directed to the Infrared port.
In Wire mode, I/ O output goes to the
serial port.

FfSCll Switches between ASCII and binary
transmission modes (see page 629).

Bllur:>I BAUD Steps through 1200.2400. 4800, and
9600 baud. The default transfer rate is
9600 baud.

~timt PARITY Steps through odd (1) . even (2), mark
(3), space (4), and no (0) parity. The
default is no parity.

33: Transferring Data tD and fro .. the HP 48 617

SETUP Menu (continued)

Key. Programmable De.cription
Command

C~SI'\ CKSM Steps through checksum (error
detection) options. The CKSM set is
the type of checksum requested when
Initiating a SEND. Choices are 1 (1-
digit arIthmetic checksum). 2 (2-dlgit
arithmetic checksum). and 3 (3-digit
cyclic redundancy check, or CRC).
The default Is 3; IR transmissions
should use 3.

;IRAN TRANSIO Steps through the character translate
code options. Choices are 0 (no
translation). 1 (translate character 10
to characters 13 and 10),2 (translate
characters 128 through 159). or 3
(translate characters 128 through
255). The default Is 1. (See page 626
for more Informatlon.)

The BAUD, PARITY, CKSM, and TRANSIO commands can be used in
programs by preceding the command with the number representing the
appropriate choice.

The IOPAR Variable

The reserved variable IOPAR stores the I/O parameters needed to
establi.,h a communications link with a computer. IOPAR contains a list
consisting of these elements:

{ baud parity receive-pacing transmit-pacing checksum
translate-code)

618 33: Transferring Data to and fro ... the HP 48

IOPAR is created in the HOME directory the first time you transfer data
or open the serial port (QPE]-[X). It is automatically updated whenever
you change the settings using the commands in the I/O SETUP menu.

The Parity SeHing. If the parity setting is positive, it is used on both
transmit and receive. If it is negative, it is used only on transmit, and
parity is not checked during receive. The menu key eaRlT steps
through only positive choices, but you can make the parity negative by
putting the negative parity number on the stack, keying in the command
PAR ITY, and pressing IENTERl. You can also edit/OPAR, which contains
the current I/O parameter settings, to make the parity element negative.

Receive Pacing and Transmit Pacing. Receive pacing and transmit
pacing are not used by Kermit protocol. They can, however, be used in
other serial I/O transfers- for instance, printing with a serial printer. A
non-zero value for receive pacing causes the HP 48 to send an XOFF
signal when its receive buffer is getting full, and then an XON signal when
it can take more data. A non-zero value for transmit pacing causes the
HP 48 to stop transmitting if it receives an XOFF signal and wait for an
XON signal to continue. The default settings for both these IOPAR
elements is 0, which means "don't send XON/XOFF signals, and ignore
any t.hat are received."

Transferring Data between Two HP 48's

Before beginning the transfer:

1., On the sender, switch to the directory where the variables are
located. Use the 10 SETUP menu to set IR and binary transfer
modes and to set the CKSM to 3.

2. On the receiver, use the 10 SETUP menu to set IR transfer mode.
Then, switch to the directory to which you want the data sent.

33: Transferring Da .. to and frOID the HP 48 619

3. Line up the infrared ports by lining up the ~ marks (near the
Hewlett-Packard logo just above the display). The calculators
should be no farther apart than 2 inches.

)0 I
PO It <-~ 00 411

~~ II

To transfer data using the local/local configuration:

1. On the receiver, do either of the following:

• Execute RECV (~[!ZQ]gECY;:)to store the variable under
the name given by the sender.

• If you want to change the variable name, enter a new name and
execute RECN (~[!ZQ] INXTJ.RECN). When the object is
received, it will be stored using that name.

2. On the sender, enter the name of the variable or directory to be
sent and execute SEND (~[!ZQ] "$Ef4t:£d). (For variables in the
same directory, you can enter a list of variables and SEND them all
at once.)

3. To transfer additional variables or lists of variables, repeat the
previous two steps.

To transfer data using the local/server configuration:

1. On the HP 48 that will be the server, execute SERVER (~lIZQ] or
~ [!ZQ]$E!R\fE).

620 33: Transferring Data to and frOID the HP 48

2. On the other, "locally controlled" HP 48:

• To send a file to the server, enter the variable name and
execute SEND (~[ilQ]$EN[)D. (To send the variable using
a different name, or to send several variables from the same
directory, use a list argument as described on page 616.)

• To receive a file from the server, enter the variable name and
execute KGET (~[ilQ]KSe'E2D. (To have the variable
stored locally using a different name, or to receive several
variables together, use a list argument as described on page
616.)

3. To transfer additional variables or lists of variables, repeat step 2.

4. To end the session, execute FINISH (~[ilQ] EiIiNJS) on the
locally controlled machine.

Transferring Data between a Computer and
the HP 48

Tht:re are many reasons to transfer information between a computer and
your HP 48-you might want to back up all of your calculator's user
memory; you might want to edit a calculator program on your computer;
or you might want to write a program on your computer and then run it
on your calculator. Whatever the reason, the first step involves making a
physical connection.

Cable Connection

Before transferring data between a computer and your calculator, you
mu'>t connect the HP 48 to the computer via the serial cable in the Serial
Intt:rface Kit for your computer. (If you need information on what Serial
Intt:rface Kit is right for your computer, or if you don't have an Interface
Kit, see your HP dealer.)

1. Connect the computer end of the serial cable to the serial port on
the computer. (If you need instructions for this, consult your
computer documentation.)

33: Transferring Data to and from the HP 48 621

2. With the calculator right -side up and the HP logo on the cable
connector facing up, connect the cable to your calculator. You
should feel the connector lightly snap into place.

Not quite flush

Note that when the cable is fully connected, the case around the
connector is not quite flush with the calculator case.

Transferring Data

Before beginning the transfer:

1. On the HP 48, display the I/O SETUP menu (~OZQ] SETUP)
and read the status message. If necessary:

• Set Wire transmission mode by pressing 'c t'~?W" .

• Select ASCII or Binary transmission mode by pressing
}3S:Plil i. (See page 629 for guidelines on selecting the mode to
use.)

• Set the HP 48 transfer rate by pressing l l3f.H.!t:>& until it
matches the rate expected by the Kermit program running on
the computer.

• Set the HP 48 parity by pressing aaR:I'f' until it matches the
parity expected by the Kermit program running on the
computer.

• Set the checksum CCKSM)-type 1 is the fastest-and set the
character translate code (TRaN). (See page 618 for
guidelines on what translate code settings to use.)

622 33: Tranaferrlng Data to and fro. the HP 48

2. On both the HP 48 and the computer, switch to the directory where
the variables (flies) are located and to the directory to which you
want the variables (flies) sent.

3. Open the HP 48 serial port by executing OPENIO (~UZQ] INXTJ
Q:e~NI). This step is not necessary for most connections, but it will
prevent difficulties caused by the inability of certain devices to
communicate with a closed port.

4. Run the program on the computer that implements Kermit
protocol. If you are transferring data in binary mode, and if the
Kermit program on the computer has a binary mode setting
command, you should execute it on the computer.

To transfer data using the local/local configuration:

1. On the receiver, issue the "receive" command:

• If the HP 48.is the receiver, execute RECV (~UZQ]
REO,,), or enter a variable name and execute RECN
(~UZQ] INXTJRECN.).

• If the computer is the receiver, issue the command on the
computer to receive a file.

2. On the sender, issue the "send" command:

• If the HP 48 is the sender, key in the argument (variable name
or variable list as described on page 616) and execute SEND
(~UZQ])SENIJ).

• If the computer is the sender, issue the command on the
computer to send a flIe.

3. To transfer additional variables or variable lists, repeat steps 1 and
2.

4. Optional: To conserve battery power, execute CLOSEIO (ffijUZQ]
CLOSE) when finished.

33: Transferring DIda to and trot. the HP 48 623

To transfer data using local/server configuration:

1. If your computer will be the server, make sure it is able to execute
the Kermit "server" command.

2. Set server operation on the device that will act as server:

• If the HP 48 is to act as server, execute SERVER (~[!lQ] or
~ [jZQ]SERV).

• If the computer is to act as server, execute the command on the
computer to make it the server.

3. On the locally controlled device:

• To send a file to the server, issue the appropriate "send"
command. (SeeSEfJ[)(on page 614 if the HP 48 is the
sender.)

• To receive a file from the server, issue the appropriate "get"
command. (See IKqEj" on page 615 if the HP 48 is the
receiver.)

4. To transfer additional variables, repeat step 3.

5. To end the session, execute the "finish" command on the locally
controlled machine. (If the HP 48 is locally controlled, press
~1[iZQJ FlfJlS.)

6. Optional: To conserve battery power, execute CLOSEIO (~UZQ]
ClEOSE) on the HP 48 when finished.

Backing Up All of HP 48 Memory

The ARCHIVE and RESTORE commands provide the ability to back up
all variables, user key assignments, and alarms in calculator memory onto
your computer.

To backup all of user memory:

1. Follow the instructions in "Before Beginning the Transfer" on page
622.

2. Enter the object : 10: name, where name is the file name that will
contain backed up memory. For example, : 10: AUG 1 will back up
memory into a file namedAUGl.

3. Issue the Kermit RECEIVE command on the computer.

4. Execute ARCHIVE (~IMEMORYIINXTIINXTI flRCHl) to send
the data to the PC. (Regardless of the ASCIIjbinary setting,
ARCHIVE uses binary transmission.)

To copy backed up user memory into the HP 48:

Caution

Use the RESTORE command with care; restoring backed
up user memory completely erases current user memory
and replaces It with the backup copy.

1. FoUow the instructions in "Before Beginning the Transfer" on page
622.

2. Transfer the computer file to the HP 48 the same way you transfer
any other file.

3. Place the name of the file on the stack (for example, I AUG 1 I) and
press ~IRCLI. This recalls Back up HOMED I R to level!.

4. Execute RESTORE (~IMEMORYIINXTIINXTI RESTO).

If you want your current flag settings archived when you back up all of
memory, execute RCLF and store the result in a variable before you
archive memory. Then, after you archive and restore memory, you can
recall the contents of the variable and execute STOF to make the flag
settings active again.

33: Transferring D to and frolll the HP 48 625

Character Translations (TRANSIO)

The HP 48 character set contains certain characters that cannot be
displayed using most computer software packages. These characters fall
into two groups:

• Characters with "character numbers" in the range 128 through 159
cannot be displayed without special software designed to support the
HP48.

• Characters with character numbers in the range 160 through 255 can
be displayed by computer software that supports the ISO 8859
character set.

The translate code lets you choose what happens to these characters when
they are transmitted from the HP 48 to a computer. You set the translate
code using the TRANSIO command. (See J RAH/ in the table on page
618 for a description of the four translate codes.)

The following table shows the conversions for many of the characters with
numbers above 127. For characters not in the table, the conversion is to
'JOO(, where xxx is the three-digit character number.· This conversion
makes it possible for you to use your computer editor to type and display
these characters.

• 'Va ll elU1 ::lIsa IW: Ibis oonvetsion for bllraelcrs in the tAb le MId (OJ eh etc,", 0 llll'OU I
127, making it easier to edit in control characters or in an escape sequence on your
computer. The HP 48 will not generate the xxx sequences, but it will recognize them.

626 33: Transferring Dat8 to and fro. 111. HP 48

I/O Character Translations

Char. HP48 PC Char. HP48 PC
Number Char. Char. Number Char. Char.

ll8 .4 \<) 147 e \Ge
129 x \x- 148 f'J \Gn

130 'iI \'V 149 8 \Gh

131 ..; \"1/ 150 A \GI
132 J \.S 151 p \Gr
133 E \GS 152 (J \Gs
134 • \I> 153 .,. \Gt

135 "II" \pl 154 w \Gw

136 a \d 155 fj. \GD

137 .s \<= 156 n \PI

138 > \> = 157 n \GW

139 f \=/ 158 • \[]
140 Q \Ga 159 00 \00

141 - \-> 171 • \«
142 \<- 176 a \ 0

143 \Iv 181 I" \Gm

144 j \I 187 » \> >
145 "'f \Gg 215 X \.x
146 6 \Gd 216 0 \0/

247 \:-

To avoid any ambiguity during translation and reverse translation:

• When data is transferred/rom the HP 48 with a translate code of 2 or
3, any occurrence of the '. character is replaced by '. '.. For example,
A'.-)8 is translated to A'.',-)8. This prevents the reverse
translation to A-:.B when the data is transmitted back to the HP 48.

33: Transferring Data to and from the HP 48 627

I

I

I

• When data is transferred to the HP 48 with a translate code of 2 or 3,
character sequences beginning with 'are unchanged unless any of
the following:

• They match a sequence in the table.

• The 'is followed by three decimal digits in the range 000
through 159 for translate code 2.

• The 'is followed by three decimal digits in the range 000
through 255 for translate code 3.

For example, 'Ga and '215 are translated to 0(and x,
respectively, but 'Gx and '267 are not translated.

More About File Names

In general, the file naming conventions for computers are different than
the name requirements for HP 48 variables. When a file is transferred
from a computer to the HP 48, the following difficulties may arise due to
the computer file name:

• The file name contains characters not allowed in a variable name­
for example, AB# or {ABC}. In this case, the HP 48 terminates the
transfer and sends an error message to the computer.

• The file name matches a built-in command-for example, SHlor
DUP. In this case, the HP 48 appends a number extension to the
name-for example, SIN.1.

• The name matches a variable name in the current directory. In this
case, to avoid overwriting your variable a number extension is added
to the name. (However, if flag - 36 is set, the variable will be
ov{:rwritten.)

Also, an HP 48 file can have a name that is incompatible with the name
requirements of the computer software. Transferring such a file can
result ill a transfer error.

Always check the filenames before a transfer to make sure they are
compatible with the receiving system's requirements. If they are not
compatible, change the names appropriately.

628 33: Transferring Data to and from the HP 48

Errors

Executing the KERRM command (I~](jZQ] INXTIKiRRiD displays the
text of the most recent Kermit error packet.

ASCII and Binary Transmission Modes

The HP 48 Kermit protocol provides two transfer modes - ASCII and
Binary. To get the fastest transfers, you generally should use Binary mode
to transfer data from one HP 48 to another, and ASCII mode to transfer
data between the HP 48 and a computer.

A receiving HP 48 treats all files as ASCII unless they match the special
encoding generated for HP 48 binary files. The calculator will
automatically switch to binary receive mode for files with this encoding.

ASCII Mode. You must use ASCII mode if you want to display, edit, or
print your HP 48 file using a computer.

When data is sent from the HP 48 to a computer in ASCII mode:

• The data is converted from its internal HP 48 format to a sequence of
c:haracters.

• If the translate code is set to 1, 2, or 3, all line-feed (LF) characters
are converted to carriage-return/line feed sequences (CR/LF).

• If the translate code is set to 2 or 3, some or all of the characters with
c:haracter numbers greater than 127 are translated into displayable
c:haracter sequences.

• The character sequence %%HP: modes ; is added at the beginning
of the data, where modes is a series of characters that describes
c:ertain calculator mode settings - the translate, angle, and fraction­
mark settings - when the transfer occurred. When this sequence is
present, you don't have to set the corresponding modes on the
receiving HP 48 when you send the data back.

When data is received by the HP 48 using ASCII mode:

• The data is translated (compiled) into the HP 48 internal format.

• If the translate code is set to 1, 2, or 3, all CR/LFs are converted to
LFs.

33: Transferring Data 10 and frOIll the HP 48 629

• So that the receiving calculator can accurately reconstruct the object
being sent by the computer, any modes specified at the beginning of
the data are set temporarily in the calculator for the duration of the
transfer. If a mode is not specified, the receiving calculator uses its
current mode setting.

If you created data (a program, for instance) on your computer, or if
you substantially changed data that originally came from your
calculator, you may need to include at the beginning of the data the
characters %%HP: modes ;, where modes is a series of
characters-T(), A(), and/or F()-representing the translate code,
angle mode, and/or fraction mark. Inside the parentheses are the
characters you choose:

• T (translate code) can be followed byO (no translation), 1
(translate CR/LF to LF and vice versa), 2 (translate CR/LFs and
character numbers 128 through 159), or 3 (translate CR/LFs and
character numbers 128 through 255).

• A (angle mode) can be followed by D (degrees), R (radians), or
G (grads). If the data contains an angle in degrees, radians, or
grads, you should include A(D), A(R), or A(G), respectively.

• F (fraction mark) can be followed by . (period) or , (comma). If
it differs from your calculator's setting, the fraction mark used in
the data being sent should be included by F(.) or F(,).

For example, at the beginning of the data the sequence %%HP: A (D)

will cause the angle mode to be set to degrees during the transfer;
%~~HP: T(2) A (G) F (,) will cause the translate code to be set to 2,
the angle mode to be set to grads, and the fraction mark to be set to
comma.

A translate code of T(1) is the normal requirement (and also the
system default). You should use T(2) or T(3) only when characters in
their respective ranges are being translated according to the table on
page 618. You should use T(O) only for string objects, or objects
containing string objects, where the string contains binary data.

630 33: Transferring Data to and from the HP 48

Binary Mode. In Binary mode, no character conversions are performed.
Therefore, the files received from the HP 48 cannot be displayed by the
computer. However, if data is being transferred for backup purposes
only, Binary mode may be preferable because it is faster, since the data
does not require as much processing.

The HP 48 automatically uses Binary mode when transferring libraries,
transferring backup objects, or archiving all of user memory.

Sending Commands to a Server (PKT)

The F'KT command (~l!ZQ] INXTlPKT) provides the ability to send
and receive data other than HP 48 objects to a remote server. It is
partic:ularly useful for sending Kermit commands-for example,
Directory (D) or Erase (E).

The PKT command takes two string arguments from the stack - the data
field of the packet in level 2, and the packet type in levell. For example,
executing the sequence II D II II G II PKT sends a request for a directory
listing.

A server issues one of the following responses to the PKT command:

• An acknowledging message, which is returned to stack level 1.

• An error packet. The HP 48 briefly displays the contents of the error
packet. It can be retrieved by executing KERRM (~l!ZQ] [NXTI
'KERR/).

33: Transferring Data to and from the HP 48 631

Serial Commands

, When using the commands described below to transfer
data to or from an HP 48 at 9600 baud, make sure the

Caution ticking clock Is not In the display. If the clock Is in the
display, it may Interrupt a transfer or corrupt the data

being transferred. The clock display Is described on page 439 In
chapter 24, "Time, Alarms, and Date ArIthmetic."

Serial I/O Commands

Keys Programmabl Description
Command

~UZQ) (page 3):

XliIi XMIT Sends a string In level 1 without Kermit
protocol. Once the enUre string Is
sent, a 1 Is returned to level 1; if the
entire string failed to transmit, a e is
returned to level 1 and the unsent part
of the Input string Is returned to level
2. Execute ERRM to see the error
message.

632 33: Tr r.mng Data to and fro. the HP ...

Serial I/O Command. (continued)

Key. Programmable DescdpUon
Command

SRECV SRECV Receives x characters (argument x is
taken from level 1). The characters
are returned as a string to level 2,
along with a 1 (successful receive) or
o (unsuccessful receive) to level 1. If
the Input buffer contains fewer than x
characters, the HP 48 wU/ wait the
number of seconds specified by the
STIME command (the default is 10
seconds) . (If the level 2 number
returned by the BUFlEN command
(see 8UFL E below) is used as the
argument for SRECV, no waiting will
occur because x will exactly match the
number of characters in the input
buffer.) In the event of an
unsuccessful receive, executing
ERRM returns the error message
associated with the failure.

~1:;ME STIME Sets the serial transmit/ receive
timeout to x seconds (argument x is
taken from level 1). The value for x
can range from 0 to 25.4 seconds. If 0
Is used, no timeout will occur (which
could result In excessive battery
drain).

SBj'{K- SBRK Sends a serial BREAK

33: Transferring Data to and frOID the HP 48 633

Keys

BlJEt.E

Note

Serial I/O Commands (continued)

Programmable Description
Command

BUFLEN Returns the number of characters In
the HP 48 Input buffer to level 2, along
with a 1 (no framing error or UART
overrun) or a 13 (framing error or
UART overrun) to level 1. If a (3 is
returned, the number of characters
returned to level 2 represents the part
of the data received before the error.
Therefore, that number can be used to
determine where the error occurred.

Even though XMIT, SRECV, and BUFLEN check the send
and receive mechanisms, the integrity of the data is not
checked. One method to insure that the data sent is the
same as the data received involves appending a checksum

to the end of the data being sent, and then verifying that checksum at the
receiving end.

XMIT, SRECV, and SBRK automatically open the IR/serial port using
the current values of the first four [OPAR parameters (baud, parity,
receive pacing, and transmit pacing) and the current IR/wire setting (set
usingIR,igWin the I/O SETUP menu).

634 33: Transferring Data to and from the HP ...

34
Using Plug-in Cards and Libraries

This chapter covers:

• The types of memory and plug-in cards.

• Installing and removing plug-in cards.

• Using RAM cards to expand user memory or to back up data.

• Using application cards and libraries.

Types of Memory

Plug-in cards increase the amount of HP 48 memory. The HP 48 has two
types of memory:

• Read-only memory, or ROM, is memory that cannot be altered. The
HP 48 has 256K bytes of built-in ROM that contains its command set.
You can expand the amount of ROM by installing plug-in application
cards.

• Random-access memory, or RAM, is memory you can change. You
can store data into RAM, modify its contents, and purge data. The
HP 48 contains 32K bytes of built-in RAM. You can increase the
amount of RAM by adding plug-in RAM cards.

34: Using Plug-In Cards ... d Ubrarl.. &35

Installing and Removing Plug-In Cards

The HP 48 has two ports for installing plug-in cards, designated port 1 and
port 2. Port 1 is closest to the front of the calculator; port 2 is closest to
the back. Cards can be installed in either port.

,
Caution

The calculator must be turned off while you are installing
or removing plug-in cards. Otherwise, all of user
memory could be erased.

Also, whenever a card is Installed or removed, the HP 48 executes a
system halt, causing the contents of the stack to be lost.

To install a plug-in card:

1. If you are installing a new RAM card, first install its battery (see
"Installing the Battery in a New RAM Card," page 639) and set the
write-protect switch to the desired position (see "Setting the Write­
Protect Switch" on page 641).

2. Tum off the calculator. Do not press IONJ until you've completed the
installation procedures.

&:M 34: Using Plug-In Cards and Ubrarl_

3. Remove the port cover at the top of the calculator by pressing down
against the grip area and then pushing in the direction shown.
Removing the cover exposes the two plug-in ports.

4. Select an empty port for the card - either port may be used.

5. Position the plug-in card as shown. The triangular arrow on the
card must point down, toward the calculator. Make sure the card is
lined up properly with a port opening and not positioned half in one
port and half in the other.

f i

6. Slide the card firmly into the port until it stops. When you first feel
resistance, the card has about 1/4" to go to be fully seated.

7. If desired, repeat steps 4 through 6 for another card.

8. Replace the port cover by sliding it on until the latch engages.

34: Using Plug-In Cards ... d Ubrarl.. 637

9. If the card is a RAM card, you must decide how you want to use it
(see page 642):

• If you want to use the RAM card to increase user memory,
execute the MERGE command as described on page 643.

• If you want to use the RAM card as independent memory,
execute the MERGE command as described on page 643 and
then the FREE command as described on page 649.

To remove a plug-in card:

If the plug-in card you want to remove is a RAM card that
contains merged memory, you must free the merged

Caution memory before removal. Failure to do so would
probably result In loss of data stored in user memory.

See "Freeing Merged Memory" on page 649 for instructions.

1. Thrn off the calculator. Do not press ION I until you've completed the
removal process.

2_ Remove the port cover.

3. To remove a card, press against the grip as shown and slide the card
out of the port.

4. Replacetbe port cover.

638 34: Using Plug-In Cards and Ubrarl ..

RAM Cards

RAM cards let you increase the amount of RAM in your HP 48. Each
card contains a battery that preserves its contents when the calculator is
off or when the card has been properly removed from the calculator.

RAM cards are good tools for:

• Expanding user memory.

• Backing up or hiding important data.

• Exchanging data between two HP 48 calculators.

• Storing prototype application programs that will eventually be made
into ROMs.

"Uses for RAM Cards" on page 642 covers these tasks.

Preparing the Card for Installation

Installing the BaHery in a New RAil Card. Before a new RAM
card is installed, the battery that came with it must be installed in the
card.

Caution

Do not use this procedure for rep/acing a battery in a
RAM card - it could cause loss of memory in the RAM
card. Appendix A contains instructions for replacing
RAM card batteries on page 663.

34: Using Plug-In Cards ..ad Ubrarles 639

To install Lhe bauery in a new RAM card:

1. Remove the battery holder from the card by inserLing a thumbnail
or small screwdriver into the groove and pulling in the direction
shown.

2. The grooved side of the battery holder is marked wiLh the symbol
and the word UP. Insert the batLery into the holder with its + side
UP1 and then slide the holder into the card.

640 34: Using Plug·1n Card. and Ubrarl ..

3. Write the date of installation on the card using a fine· point,
permanent marker. The date is important for determining when to
replace the battery.

Battery orientation
symbol

Write installation
date here

Write contents
here

4. Set an alarm in the calculator for 1 year from the date of installation
to remind you to replace the battery. (Depending on the use, the
battery should last between 1 and 3 years. When the battery needs
replacing, a display message will appear if the card is in the
calculator. You are setting this alarm in case the card is not in the
calculator when the battery gets low.) Setting alarms is covered in
chapter 24, and replacing RAM-card batteries is covered in
appendix A.

SeHing the Write-Protect Switch. The write-protect switch lets you
protect the contents of the RAM card from being accidentally overwritten
or erased. The switch has two positions:

• Read-only. The c nlents ofthe RAM card can be read, but cannot
be changed or erased .

• Read/write. You can write information to the RAM card and erase
its contents.

34: Using Plug-In Carda and Ubrarles 641

• Caution

To avoid loss of user memory:

• Always turn off the calculator before changing the
write-protect switch on an installed card.

• Do not write protect a RAM card containing merged
memory; the memory should be freed first (see page 649).

You can operate the write-protect switch while the card is installed;
however, the switch labels are not visible.

Read only setting

Back side of card

Uses for RAM Cards

A RAM card can be used in one of two ways:

• It can be merged with built-in memory. This enables you to expand
the amount of user memory available (up to 288K bytes) for creating
variables and directories, putting objects on the stack, etc.

• It can provide a place independent of user memory in which to back
up important data. You can copy individual objects or entire
dire<:tories to a RAM card in much the same way as you would back
up computer files to a disk. After you've copied the data, you can
remove the card and store it in a safe place, or, as a way of
transferring data, install the card in another HP 48.

642 34: Using Plug-In Cards and Ubrarles

You can install one or two RAM cards, and you can use either or both of
them for either purpose. However, you cannot use a single card for both
merged and independent memory at the same time.

The following diagram illustrates a system containing two RAM cards­
one containing merged memory and the other containing independent
memory.

User
memory

Built-in
momory

Plug-In
RAM card

Plug-In
RAM card

,
~

J

Merged
memory

Independent
memory

Using RAM Cards to Expand User Memory
(Merged Memory)

Before you can use an installed RAM card to expand user memory, you
must execute the MERGE command to merge its memory with built-in
memory.

Before you execute the MERGE command, the write-protect switch on
the RAM card must be in the read/write position. (See page 641 for how
to set the write-protect switch.)

MERGE takes a port number as its argument. For example, the
keystrokes 1 ~IMEMORYIINXTlINXTI MERCmerge the plug-in
memory installed in port 1 with built-in memory.

34: Using Plug-In Cards and Ubr.rl.s 643

Tmru j Built-In Bui -in user U8EJr usor
memory momory MERGE memory

•)
Total

--..... --- user
Ind&- memory

pendent
Morged momory

of memory
new
card

When you merge a RAM card that contains backup objects, those objects
are moved to a special port, called port O. (See page 647 for a description
of port 0.)

You should never remove a RAM card that contains
merged memory. Doing so will cause loss of data stored

Caution in user memory. Before you can remove the RAM card,
you must free the merged memory. (See "Freeing

Merged Memory" on page 649 for Instructions.) If you accidentally
remove a card with merged memory and see the message
Rep 1 ace RAM, Press ot~, you can minimize memory loss by
leaving the calculator on, reinserting the card in the same port, and
then pressing IONI.

Using RAM Cards for Backup (Independent
Memory)

The HP 48 uses a special object type, the backup object, to store backed­
up data. A backup object contains another object, its name, and its
checksum. Simply put, a backup object contains a variable or dire(:tory
and its checksum.

644 34: Using Plug-In Cards and Ubrarles

An independent-memory RAM card that contains the backup objects can
be removed from the HP 48 and either stored for later use or transferred
to another HP 48.

Backing Up Objects into Independent Memory

Backup objects can exist:

• In independent memory (port 1 and/or port 2).

• In a portion of user memory called port 0 (see page 647).

To create a backup object, execute the STO command with two
arguments - the object to be backed up in level 2, and a backup identifier
in level 1. A backup identifier has this form:

: port#: name

where port# is the port number (0, 1, or 2) and name is the name under
which the backup copy will be stored.

Example: Backing Up a Program. To back up a program named
PG 1 into independent memory in port 1, recall the program to the stack
by evaluating the sequence 'PG l' RCL, and then store the object as a
backup object in port 1 byevaluating : 1 : PG 1 STO.

User PG1 , PG1' RCL PG1 , PG1'
mE!mory l:PGl STO PURGE

1: PG1 1: PG1 Independent
memory
(port 1)

The backup object in the previous example happens to have the same
name as the original object, but the two names could be different.

Note that a directory and its subdirectories can be backed up in a single
backup object.

34: Using Plug-In Card. and Ubrarl.s 645

Example: Backing Up a Directory and Its Subdirectories.
Suppose your HOME directory contains a subdirectory named CHEM,
which in turn contains several subdirectories. To back up the entire
directory structure of CHEM in a backup object named BCHEM, recall
the directory to the stack by evaluating the sequence I CHEM I RC L, and
then store it in the backup object byevaluating : 1: BCHEM STD.

Accessing Backup Objects

You can recall, evaluate, and purge the contents of backup objects. You
can also obtain a listing of all the backup objects in a given port.

Recalling Backup Objects. The LIBRARY menu can be used to
recall the contents of backup objects. Pressing ~ILlBRARYI followed by
PORl0, PORT!, or PORTZ displays a menu of backup objects and
libraries in that port. To recall the contents of a backup object to the
stack, simply press ~ and then the menu key for the desired backup
object.

The RCL command can also be used to recall the contents of a backup
object to the stack. For example, evaluating the sequence
: 1: BPGl RCL recalls the object stored in l:BPGl.

Evaluating Backup Objects. To use the LIBRARY menu to
evaluate the contents of a backup object, press ~ILlBRARYI followed by
PORTO, PORT 1, or PORT2. Then, simply press the menu key for the
desired backup object.

Also, when the argument of EVAL is a backup name, the contents of the
backup object is evaluated. For example, executing the sequence
: 1: BPGl EVAL evaluates the program stored in backup object l:BPGl.
(EVAL also takes a list of backup objects as its argument to evaluate
more than one at a time.)

Purging Backup Objects. To purge a backup object, use the backup
name as the argument of PURGE. For example, executing the sequence
: 1 : BPG 1 PURGE purges the backup object. (PURGE can take a list of
backup objects as its argument to purge more than one at a time.)

646 34: Using Plug-In Cards and Ubrarl.s

Using Wildcards to RCL, EVAL, and PURGE. The character &
can be used as a wildcard to replace the port number in the arguments
used by ReI.., EVAL, and PURGE. (8. is the left-shifted alpha key above
IENTER).) When the HP 48 encounters the wildcard with these
commands, it searches port 2, 1, 0, and then main memory for the
accompanying backup object (the first occurrence of the name is used).
For example, evaluating the sequence : 8.: BPG 1 PURGE causes the HP
48 to search port 2, 1, 0, and then main memory for the nrst occurrence of
BPG 1 and then delete it.

Listing Backup Objects. The PVARS command (~IMEMORYI
INxTl eyaRS) can be used to display a list of objects in the specified
port. It takes as its argument a port number 0, 1, or 2. It returns to level
1 the type of memory contained in the port (" RQto1", II SYSRAt'1" , or a
number representing the amount of free independent RAM); and to level
2 it returns a list of backup objects and library identification numbers
(both tagged with the port number).

Also, you can use the LIBRARY menu to display a menu of backup
objects and libraries in a given port. Simply press ~ILlBRARYI followed
by PQRTIa, PORII, or PORTZ to see the desired menu.

Backing Up Object into User Memory (Port 0)

The HP 48 lets you create backup objects in user memory. The portion of
user memory used for backup objects and libraries is called "port 0."
There are several reasons you might want to back up data into user
memory:

• You want to "hide" data; that is, you want certain data to be in user
memory, but you don't want the variable(s) to appear in any
directory.

• You want to "free" a RAM card being used for merged memory, and
instead use it for independent memory. (See "Freeing Merged
Memory" on page 649).

You create a backup object in user memory the same way you create
other backup objects, except you specify port 0 as the port number.

34: Using Plug-In Cards ... d Ubrarl.s 647

User {I NUMl~~G~; ~~~ NUM' 'HUHI 'PURGEbJ
memory 'h

.,. 1--__ ""'" ...
Port 0 O:NUM1 O:NUM1

The su.e of port 0 is dynamic - it grows and shrinks to accommodate its
contents.

Backing Up All of Memory

The ARCHIVE command ([5JIMEMORVIINXTIINXTI RRCHl) creates a
backup object named : portH: name in independent memory containing
a copy of:

• The entire HOME directory.

• User key assignments.

• The alarm catalog.

It takes a name tagged by a port number (0, 1, or 2) as its argument. For
example, executing the sequence : 2: JUN12 ARCHIVE creates backup
object : 2: JUt~ 12.

The RESTORE command ([5JIMEMORVIINXTIINXTI ~E$j"P) retrieves
the data backed up by the ARCHIVE command. It, too, takes a name
(when! the corresponding object is a directory) tagged by a port number
as its argument. For example, executing the sequence
: 2: JUN 12 RESTORE retrieves the HOME directory backed up above .

• Caution

Executing RESTORE overwrites the entire contents of
user memory with the contents of the backup object.

648 34: Using Plug-In Cards and Ubrarl_

If you want your flag settings to be saved when you back up all of memory,
recall them to the stack (using RCLF) and store them in a variable before
executing ARCHIVE. After you RESTORE memory, you can reactivate
the flag settings by recalling the contents of that variable to the stack and
executing STOF (store flags).

Freeing Merged Memory

Freeing merged memory converts it to independent memory. Merged
memory must be freed if:

• You want to remove the RAM card from its port.

• You want to use the RAM card as independent memory, rather than
user memory.

The FREE command (~IMEMORYIINXTIINXTI ;FREE)frees the
merged memory in a specified port. It takes two arguments - a list in
level 2, and the port number in level 1.

The list can be empty, in which case the merged memory is simply freed,
or it can contain one or more names or library identifiers. If the list is not
empty, FREE moves the named backup objects and libraries from port 0
into lhe newly-freed card. For example, executing the sequence
{ t~UM 1 ADD3 } 1 FREE frees the merged memory in port 1 and
makes it independent memory. At the same time, the backup objects
NUMl andADD3 in port 0 are moved to port 1.

---~

O:NUMl
O;ADOO

CHUM1 ADD3} 1 FREE

--------l .. ~ l :NUMl
l:ADD3

34: Using Plug-In Cards and Ubrarl.s 649

To free merged memory, first execute MEM to determine the amount of
available memory (press ~IMEMORYI " ME'M \). If the amount of
available memory is greater than or equal to the amount of memory on
the card you are going to free, you are ready to execute the FREE
command.

If MEM returns a value less than the amount of memory on the card,
executing FREE without any preparation would return an error, since
your stored data would not fit into the amount of user memory remaining
after the merged memory was freed. To avoid an error, you can do any of
the following:

• Purge unneeded variables from user memory.

• Back up data into another RAM card installed in the other port and
thf:n purge the original variables.

• Back up data into port 0 (built-in memory) and then use the level-2
arb'1lment of the FREE command to move that data into the freed
mf:mory. Here's a step-wise procedure for doing this:

1. Determine the amount of data that must be moved into the
memory that you'll be freeing. For example, if you'll be
removing a 128K RAM card, and the amount of user memory
available is 1261(, you must move at least 2K of variables.

2. Back up the variable in port O. For xample, to back up CALC]
into port 0, recall its contents to the stack and execute
: 121: CALCl STO.

3. Purge the variable from user memory (for example,
I CALC I PURGE).

4. If necessary, back up and purge additional variables and
directories.

5. When you've backed up enough data, you are ready to execute
the FREE command. The level-2 argument must be a list
containing the names of the variables and directories you've
backed up into port O.

6SO 34: U.'ng Plug-In Card. and Ubrarl ••

Using Application Cards and Libraries

A library is an object that contains named objects that can act as an
extension to the built-in command set. You cannot view or change the
contents of a library. Libraries can exist in application cards, or they may
be copied into RAM. However, libraries cannot be created by the HP 48.

Libraries are identified by:

• A library identifier, which has the form : partll : libraryll. The
libraryll (library number) is a unique number associated with the
library. The library identifier is used as the argument of commands
that work with library objects .

• The library name, which is a sequence of characters. The library
name appears in the LIBRARY menu when the library is attached to
a directory on the current path.

Attaching a Library to a Directory

To use a library, it must be attached to a directory in user memory. The
aUac:hment may happen automatically when you install an application
card, or you may have to do it yourself. Consult the owner's
documentation accompanying your application card (or RAM-based
library) for information about attaching the library.

If the library is not attached automatically, you must use the ATIACH
command (~IMEMORYIINXTI R'f'il'Re) to attach it. ATIACH requires
a library number as its argument.

This is no limit on the Dumber of libraries that can be attached to the
HOME directory. Only one library at a time can be attached to a
particular subdirectory.

34: Using Plug-In Card. and Ubrarl.. 651

Accessing Ubrary Operations (The LIBRARY Menu)

The UBRARY lIenu. Pressing ~ILIBRARYI displays the LmRARY
menu, which contains the names of the libraries on the current directory
path. To display a menu of the operations in a library, press the
appropriate key. For example, if you have the HP Solve Equation Library
installed in your calculator, pressing ~ILlBRARYI iil l 'S displays a
menu of all the operations in that library.

Accessing Ubraries Attached to Subdirectories. The rules for
accessing libraries attached to various subdirectories are the same as the
rules for accessing variables in those directories. For example, suppose
your HP 48 has the following directory structure and attached libraries:

----...,--------,
I

HOME PROO M EaUN G Library A Library B

I --- - --,

PROG FNCT MATH STAK Library C

I - -----~

I

MATH APAY TRG A Library 0

When HOME is the current directory, pressing ~ILlBRARYI displays the
menu of its attached libraries - IIS i When PROG is the
current directory, pressing ~ILlBRARYI displays a menu of its attached
library, as well as the other libraries on the current path,

Like variables, library operations can be accessed if the library is attached
to the current directory or to a directory in the current path. For
example, since libraries A and B are attached to HOME, their operations
can be accessed from any directory. You can access the operations in
library C when PROG or MATH are the current directory. However, you
cannot access the operations in library D when PROG is the current
directory.

652 34: Ualng Plug-In Carda and Ubrarl.a

Additional Commands Tbat Access Ubrarles

Library Commands

Keys Programmable Description
Comm nd

IS101 STO Stores a library object from lellel 2 Into
Independent memory In the port
specified In Jellel1.

~~ RCL Takes a library identifier
(: porf# = library:ff) as Its argument and
recalls the specified library to the stack.

~lpURGEI PURGE Takes a library identifier
(: pOrf#: librarylf) as its argument and
purges the specified RAM-based
library.

~IMEMORYI (page 2):

PVARS PVARS Takes a port number as its argument
and dIsplays a list of the backup
identifiers and library identif iers In the
specified port.

LIBS UBS DIsplays a list contaInIng the names,
library number, and port number of all
the libraries attached to the current
dIrectory.

ATTAe ATTACH Takes a library number as Its argument
and attaches the specified library to the
current directory.

IJETAC DETACH Takes a library number as Its argument
and detaches the specifIed library from
the current directory.

34: Using Plug-In Cards and Ubrarl.. 653

Appendixes and Indexes

A
Support, Batteries, and Service

Calculator Support

You can obtain answers to questions about using your calculator from our
Calculator Support department. Our experience has shown that many
customers have similar questions about our products, so we have provided
the following section, "Answers to Common Questions." If you don't find
the answer to your question there, contact us at the address or phone
number on the inside back cover.

Answers to Common Questions

Q: The calculator doesn't tum on when I press IONI. What's wrong?

A: There may be a simple problem that you can solve immediately, or the
calculator may require service. See "Testing Calculator Operation" on
page 665.

Q: I'm not sure whether the calculator is malfunctioning or if I'm doing
something incorrectly. How can I verify that the calculator is operating
properly?

A: Refer to "Testing Calculator Operation" on page 665 in this appendix.

Q: The «(0) annunciator stays on even when the calculator is turned off. Is
anything wrong?

A: This indicates a low-battery condition in the calculator or a RAM card,
or an alarm that is past due. To determine what is causing the «(0)

annunciator to stay on, turn the calculator off and then on. A message in
the display will identify the problem. Refer to "Changing Batteries" in
this appendix (page 661) or to "Setting Alarms" in chapter 24 (page 443).

656 A: Support, Batterf .. , and Service

Q: How can I determine how much memory is left in the calculator?

A: Press ~IMEMORYl t. MEM The number of bytes of available
memory will appear at the lower right corner of the display. An empty
memory should show approximately 30000 (bytes of internal RAM).

Q: How do I clear everything from the calculators memory?

A: Perform the following steps:

1. Press and hold IONI.

2. Simultaneously press and release both of the outer keys in the top
row (the menu keys with A and F next to them).

3. Release IONI.

The calculator will beep and the Tr-y To Recover- Mer'lor-y? prompt
will be displayed. Press clear user memory; the Mer'lor-'~
Clear message will appear in the display.

Note

This procedure will not clear the contents of a plug-in
RAM card unless that RAM is merged with the calculator's
main memory.

Q: How do I change the number of decimal places the HP 48 displays?

A: Perform the following steps:

1. Go to page 1 of the MODES menu: press ~IMODESI.

2. Press the number of decimal places you want (0 - 11).

3. Press the menu key for the display format you desire 0: 'FIXM\
or ;U::Nt; t).

Refer to "Display Modes" in chapter 2 (page 57).

A:. Support, a.a.t ... and Service 157

Q: My numbers contain commas as decimal points. How do I restore
periods?

A: Perform the following steps:

1. Go to page 4 ofthe MODES menu (press
~IMODESIINXTlINXTlINXTl).

2. Press the rEM • • ';: radix toggle menu key. (The. should disappear
from the menu key.)

Q: mtat does an "E" in a number (for example, 2.5IE -13) mean?

A: Exponent of 10 (for example, 2.51 x 10-13). Refer to "Display Modes"
(page 57) in chapter 2.

Q: mten I take the sine of 1r in Degrees mode, why do I get I SIN (IT) I

instead of a number?

A: The calculator is in Symbolic Result mode; I SIN (IT) I is the
symbolic answer. Press !C!JI+NUMI to convert I SIN(lT) I to its
numerical equivalent of .0548 ... up to 11 decimal places. You can also
press ~S~Mir!l on page 1 of the MODES menu to change to Numerical
Results mode and prevent symbolic evaluation.

Q: mtat does "object" mean?

A: "Object" is the general term for aU elements of data the HP 48 works
with. Numbers, expressions, arrays, programs, and so on, are aU types of
objects. Refer to chapter 4, "Objects," for a description of the object
types accepted by the calculator.

Q: mtat do three dots (...) mean at either end of a display line?

A: The three dots (called an ellipsis) indicate that the displayed object is
too long to display on one line. To view undisplayed portions of the
object, use the ~ or (E cursor keys.

658 A:. Support, Batlerl ... ad Service

Q: The calculator beeps and displays Bad ArguMent Type. What's
wrong?

A: The objects on the stack aren't the correct type for the command you
are attempting. For example, executing~!I"U~rXT£ (in page 2 of the PRG
DB] menu) with a number in stack levels 1 and 2 causes this error.

Q: The calculator beeps and displays Too Few ArgUMent s. What's
wrong?

A: There are fewer arguments on the stack than required by the
command you are attempting. For example, executing ill with only one
argument or number on the stack causes this error.

Q: The calculator beeps and displays a message different from the two listed
abm'e. How do I find out what's wrong?

A: Refer to "Messages" in appendix B.

Q: I can't find some variables that I used earlier. Where did they go?

A: You may have been using the variables in a different directory. If you
can't remember which directory you were using, you'll need to check all
the directories in your calculator.

Q: Sometimes my HP 48 seems to pause for a few seconds during a
calculation. Is anything wrong?

A: Nothing is wrong. The calculator does some system cleanup from time
to time to eliminate temporary objects created from normal operation.
This cleanup process frees memory for current operations.

Q: During nonnal operation, the printer prints several lines quickly, then
slows down. Why?

A: The calculator quickly transmits a certain amount of data to the
printer, then slows its transmission rate to ensure that the printer can
keep up.

Q: How can I increase the printing speed of my HP 82240B Infrared
Thennal Printer?

A: Use an agc adapter with your HP 82240B printer so that the printer
can print faster. Also, set the calculator delay to match the print speed
(see "Setting the Delay" on page 607).

A: Support" B8tterle., and Service 659

Environmental Limits

Calculator 0 To maintain product reliability, avoid getting the calculator
wet and observe the following temperature and humidity limits:

• Operating temperature: (f to 45°C (32" to 113°F).

• Storage temperature: -20" to 65°C (-4° to 149"F).

• Operating and storage humidity: 90% relative humidity at 4O"C
(104°F) maximum.

Plug-In Cardso The environmental limits for Hewlett Packard plug-in
cards are:

• Operating temperature: (f to 45°C (32° to 113°F).

• Storage temperature: -20° to 60°C (-4° to 14O"F).

• Storage temperature for RAM card data retention: (f to 6(fC (32° to
14O"F).

• Operatin~ and storage humidity: 90% relative humidity at 4O"C
(104°F) maximum.

When to Replace Batteries

When a low-battery condition exists, the ('01) annunciator remains on, even
when the calculator is turned off. When the calculator is turned on during
a low-battery condition, Warn i ng: LowBat () is displayed for
approximately 3 seconds. LowBat (P 1) refers to port 1, LowBat (P2)
refers to port 2, and LowBat (S) refers to the calculator (system)
batteries.

Replace the RAM card battery or the calculator batteries as soon as
possible after the ('01) low-battery annunciator and warning message
appear. If you continue to use the calculator while the ('01) annunciator is
on, the display will eventually dim and you may lose calculator and RAM
card data.

660 A: Support, Batterle •• and Service

Under typical use, a RAM card's battery should last between 1 and 3
years. Be sure to mark the card with the battery-installation date, and, in
case the RAM card is not in the calculator when the battery needs
replacement, set an alarm for 1 year from that date to remind you to
install a fresh battery. RAM cards do not come with a battery installed.

Changing Batteries

Battery Types

Calculator BaHerie •. Any brand of size AAA batteries. Be sure that
all three batteries are of the same brand and type.

The use of rechargeable batteries is not recommended because of their
lower capacity.

Plug-In RAM Card BaHeries. 3-Volt 2016 coin cell.

Changing Calculator Batteries

These instructions are for changing calculator batteries. The instructions
for replacing RAM card batteries start on page 663.

, Whenever you remove batteries from the calculator, be
sure the calculator is off and do not press the IONI key

Caution until the new batteries are installed. If you press IONI
when batteries are not in the calculator, you may lose all

of calculator memory.

1. Thrn the calculator off. You may lose memory in the calculator and
plug-in RAM cards if the calculator batteries are removed when the
calculator is on.

A: Support, aatterle., and Service 661

2. Have three, fresh batteries (of the same brand and type) at hand.
Wipe off both ends of each battery with a clean, dry cloth.

3. Remove the calculator battery-compartment door by pressing down
and sliding it 011 away from the calculator. Be careful not to press
the calculator's IONI key. Refer to the following illustration:

4. Thrn the calculator over and shake the batteries out. Once the
batteries are out, you should replace them with fresh batteries
within 2 minutes to protect against memory loss.

G
Warning

Do not mutilate, puncture, or dispose of batteries in
fire. The batteries can burst or explode, releasing
hazardous chemicals. Discard used batteries
according to the manufacturer's Instructions.

66Z A: Support, Batterl •• , and Service

5. Avoid touching the battery tenninals. Batteries are easier to install if
the negative (plain) ends are inserted first, and if the center battery
is installed last.

Position the batteries according to the outlines in the bottom of the
battery compartment. Refer to the following illustration:

• • • • • • •
I I

10,
I ~ ~~m" ±C ~

~ ~i - ~ - +,~ I ~ I

6. Replace the battery-compartment door by sliding the tabs on the
door into the slots in the calculator case.

7. Press IONJ to turn the calculator 00.

Changing a RAM Card Battery

1. Turn the calculator over and remove the plastic cover over the
plug-in card ports (on the display-end ofthe calculator).

A:. Support, a.u.rs ... and Service 663

2. With the RAM card in port 1 or 2, tum the calculator on .

• Since RAM cards run off the calculator batteries when
the calculator Is IONI, you should replace a card's battery

Caution only when the card is In the calculator and the calculator
Is turned on. RAM memory may be lost if you remove a

RAM card battery when the calculator Is off, or when the card is not
installed in the calculator.

3. Place your index finger in the recess near the exposed end of the
RAM card - this prevents removal of the card from the calculator
when you remove the card's battery holder. Now insert the
thumbnail of your free hand into the nail grip in the black plastic at
the left side of the end of the card and pull the battery holder out of
the card.

664 A: Support, BatIMI d s.rvlce

4. Remove the old battery from the plastic battery holder.

Warning

00 not mutilate, puncture, or dispose of batteries in
fire. The batteries can burst or explode, releasing
hazardous chemicals. Discard used batteries
according to the manufacturer', instructions.

5. Install a fresh, 3-Volt 2016 coin cell in the plastic battery holder and
reinsert the battery holder (with battery) into the RAM card. Be
sure to install the battery with the side marked "+ " toward the front of
the card.

6. Mark the card with the battery-installation date, and, in case the
RAM card is not in the calculator when its battery needs replacing,
set an alarm for 1 year from that date to remind you to change it.

7. Replace the plug-in port cover.

Testing Calculator Operation

Use, the following guidelines to determine whether the calculator is
functioning properly. Test the calculator after every step to see if
operation has been restored. If your calculator requires service, refer to
page 674.

The calculator won't turn on or doesn't respond when you
press the keys.

1. Make sure that three fresh batteries are correctly installed in the
calculator.

2. If the display is blank, press and hold IONI; press and release [±]
several times until characters become visible; then release IONI. If
no characters appear in the display, the calculator requires service.

3. If a halted program won't respond when you press IA TTNI, try
pressing (ATINl again.

A: SuPPOrt. aau.ra_. and Service 665

4. If the keyboard is "locked," perform a system halt as follows:

8. Press and hold IONI.

b. Press and release the third key from the left in the top row
(the menu key with C next to it).

c. Release IONI.

The empty stack display should appear.

5. If the display appears garbled, perform a memory reset as follows:

a. Press and hold IONI.

b. Press and hold both of the outer keys in the top row (the
menu keys with A and F next to them).

c. Release all three keys.

The calculator will beep and display the message Try To
Recover MeMory? at the top of the display. Press ""YES ' to
recover as much memory as possible.

If these steps fail to restore operation, the calculator requires service.

The calculator responds to keystrokes, but you suspect it's
malfunctioning.

1. Run the self-test described in the next section. If the calculator fails
the self-test, it requires service.

2. If the calculator passes the self-test, you may have made a mistake
operating the calculator. Reread appropriate portions of the
manual and check "Answers to Common Questions" (page 656).

3. Contact the Calculator Support department. The address and
phone number are listed on the inside back cover.

Me A: SuPPOrt. BattwI .. , and S-Vlce

Self-Test

If the display turns on, but the calculator does not seem to be operating
properly, run the diagnostic self-test:

1. Press and hold IONI.
2. Press and release the second key from the right in the top row (the

menu key with E next to it).

3. Release IONI.

The diagnostic self-test tests the internal ROM and RAM, and
generates various patterns in the display. The test repeats
continuously until it is halted.

4. To halt the self-test, perform a system halt as follows:

8. Press and hold IONI.
b. Press and release the third key from the left in the top row

(the menu key with C next to it).

c. Release ION I.

The empty stack display should appear.

The diagnostic self-test should be successfully completed before running
any of the tests described in the following sections.

If the self-test indicates an internal ROM or RAM failure (if I Rot1 OK
and I RAM OK are not displayed), the calculator requires service.

Keyboard Test

This test checks all of the calculator's keys for proper operation.

To run the interactive keyboard test:

1. Press and hold IONI.
2. Press and release the third key from the right in the top row (the

menu key with D next to it).

3. Release IONI.

A: Support, Batteri .. , and S-Vlce 667

4. Press and release the second key from the right in the top row (the
menu key with E next to it). KBD 1 will appear in the upper left
comer of the display.

5. Starting at the upper left comer and moving left to right, press each
of the 49 keys on the keyboard. If you press the keys in the proper
order and they are functioning properly, the calculator emits a
high-pitch beep at each press of a key. When the 49th key (l±l)
has been pressed, the displayed message should change to KBD 1
OK.

If you press a key out of sequence, a five-digit hexadecimal number
wilt appear next to KBD 1. Reset the keyboard test (do steps 1
through 3 above), and rerun the test.

If a key isn't functioning properly, the next keystroke displays the
hex location of the expected and the received location. If you
pressed the keys in order and got this message, the calculator
requires service. Be sure to include a copy of the error message
when you ship the calculator for service.

6. To exit the keyboard test, perform a system halt as follows:

8. Press and hold ION!.

b. Press and release the third key from the left in the top row
(the menu key with C next to it).

c. Release IONI.

The empty stack display should appear.

668 A: Support, BatterIes. and Service

Port RAM Test

The port RAM test non-destructively tests the ports and the installed
plug-in RAM cards. (Plug-in RAM-card memory is preserved.)

To run the port RAM test:

1. Check that a plug-in RAM card is properly installed in port 1
and/or port 2.

2. Verify that the switch on each card is set to the "read/write"
position:

Read only setting

Back side of card

3. Thrn the calculator on.

4. Press and hold IONI.

5. Press and release the fourth key from the left in the top row (the
menu key with D next to it).

6. Release IONI.

A vertical line will appear at bOth sides and at the center of the
display.

A: Support, BatterI_. and Service 669

7. Press and release 00.

RAM 1 and/or RA~12 will appear at the top left corner of the display
and the size of the corresponding plug-in RAM card (32K or
128K) will appear at the top right corner of the display. OK will
appear to the right of RAM 1 and/or RAM2 when the port RAM
test has been successfully completed. A failure message (for
example, RAt-11 000(2) will be displayed for each port that does
not contain a plug-in RAM card or if a card's read/write switch is in
the "write-protect" position. This message should be ignored.

If OK does not appear for a RAM card set to read/write, the card
should be moved to the other port and the test rerun. IF OK still
doesn't appear, the RAM card should be replaced with a new one.

8. To return to normal calculator operation, perform a system halt as
follows:

8. Press and hold IONI.
b. Press and release the third key from the left in the top row

(the menu key with C next to it).

c. Release ION I.

The empty stack display should appear.

IR Loop-Back Test

This test checks the operation of the send and receive infrared sensors
and their associated circuits.

To run the IR Loop-Back test:

1. Press and hold IONI.

2. Press and release the fourth key from the left in the top row (the
menu key with D next to it).

3. Release IONI; a vertical line will appear at both sides, and at the
center of the display.

4. Be sure that the plastic plug-in card cover is in place and that it
covers the clear lamp bulbs in the top end of the calculator.

670 A: Support, Batteries, and Service

c

c
c
c
c , , , , ,
C ,
~

5. Press IEVALI.

I RLB will appear at the top left corner of the display.

OK will appear to the right of I RLB if the calculator passes this test.

If OK does not appear, the calculator requires service.

6. To return to normal calculator operation, perform a system halt as
follows:

8. Press and hold IONI.

b. Press and release the third key from the left in the top row
(the menu key with C next to it).

c. Release ION I.

The empty stack display should appear.

Serial Loop-Back Test

This test checks the operation of the send and receive circuits of the serial
interface at the top of the calculator.

To run the Serial Loop-Back test:

1 .. Press and hold IONI.

2 .. Press and release the fourth key from the left in the top row (the
menu key with D next to it).

3.. Release ION I; a vertical line will appear at both sides, and at the
center of the display.

4. Temporarily connect (short) the middle two pins (pins 2 and 3) of
the 4-pin serial connector at the top end of the calculator. Be
careful not to bend or severely jar the pins.

5. Press IpRGI.

U_LB will appear at the top left corner of the display.

OK will appear to the right of U_LB if the calculator passes this test.

If OK does not appear, the calculator requires service.

Note

If you inadvertently short pins 1 and 2 or pins 3 and 4 of the
serial connector, the loop-back test will return
U_LB 00001 or U_LB 00002 (test-failed message), but
you will not damage the calculator.

6. To return to normal calculator operation, perform a system halt as
follows:

a. Press and hold IONI.
b. Press and release the third key from the left in the top row

(the menu key with C next to it).

c. Release IONI.

The empty stack display should appear.

672 A: Support" a.tlerI .. , mid S-Wlce

Limited One-Year Warranty

What Is Covered. The calculator (except for the batteries, or damage
caused by the batteries) and calculator accessories are wan-anted by
Hewlett-Packard against defects in materials and workmanship for one year
from the date of original purchase. If you sell your unit or give it as a gift,
the warranty is automatically transferred to the new owner and remains in
dIed for the original one-year period. During the warranty period, we
will repair or, at our option, replace at no charge a product that proves to
be defective, provided you return the product, shipping prepaid, to a
Hewlett-Packard service center. (Replacement may be made with a
newer model of equal or better functionality.)

This warranty gives you specific legal rights, and you may also have other
rights that vary from state to state, province to province, or country to
country.

What Is Not Covered. Batteries, and damage caused by the batteries,
are not covered by the Hewlett-Packard wan-anty. Check with the battery
manufacturer about battery and battery leakage wan-an ties.

This warranty does not apply if the product has been damaged by accident
or misuse or as the result of service or modification by other than an
authorized Hewlett-Packard service center.

No other express warranty is given. The repair or replacement of a
product is your exclusive remedy. ANY OTHER IMPLIED
WARRANTY OF MERCHANTABILITY OR FITNESS IS LIMITED
TO THE ONE-YEAR DURATION OF THIS WRITTEN
WARRANTY. Some states, provinces, or countries do not allow
limitations on how long an implied warranty lasts, so the above limitation
may not apply to you. IN NO EVENT SHALL HEWLETT-PACKARD
COMPANY BE LIABLE FOR CONSEQUENTIAL DAMAGES.
Some states, provinces, or countries do not allow the exclusion or
limitation of incidental or consequential damages, so the above limitation
or exclusion may not apply to you.

Products are sold on the basis oC specifications applicable at the time of
manufacture. Hewlett-Packard shall have no obligation to modify or
update products, once sold.

A: Support, Batterle., and Service 673

Consumer Transactions in the United Kingdom. This warranty
shall not apply to consumer transactions and shall not affect the statutory
rights of a consumer. In relation to such transactions, the rights and
obligations of Seller and Buyer shall be determined by statute.

If the Calculator Requires Service

Note

If the contents of your calculator's memory are important,
you should back up the memory on a plug·in RAM card,
another HP 48, or a computer before sending in the
calculator for repair.

Hewlett-Packard maintains service centers in many countries. These
centers will repair a calculator, or replace it with the same model or one
of equal or better functionality, whether it is under warranty or not.
There is a service charge for service after the warranty period.
Calculators normally are serviced and reshipped within 5 working days.

• In the United States: Send the calculator to the Corva1lis Service
Center listed on the inside of the back cover.

• In Europe: Contact your Hewlett-Packard sales office or dealer, or
Hewlett-Packard's European headquarters (address below) for the
location of the nearest service center. Do not ship the calculator for
service without first contacting a Hewlett-Packard office.

Hewlett-Packard SA.
150, Route du Nant-d'Avril
P.O. Box CH 1217 Meyrin 2

Geneva, Switzerland
Telephone: 022780.81.11

• In other countries: ContaCt your Hewlett-Packard sales office or
dealer or write to the Corvallis Service Center (listed on the inside of
the back cover) for the location of other service centers. If local
service is unavailable, you can ship the calculator to the Corvallis
Service Center for repair.

674 A:. Support, a.lterle., .nd Service

Regulatory Information

U.S.A. The HP 48 generates and uses radio frequency energy and may
interfere with radio and television reception. The calculator complies
with the limits for a Class B computing device as specified in Subpart J of
Part 15 of FCC Rules, which provide reasonable protection against such
interference in a residential installation. In the unlikely event that there is
interference to radio or television reception (which can be determined by
turning the HP 48 off and on or by removing the batteries), try the
following:

• Reorienting the receiving antenna.

• Relocating the calculator with respect to the receiver.

For more information, consult your dealer, an experienced
radio/television technician, or the following booklet, prepared by the
Federal Communications Commission: How to Identify and Resolve
Radio-TV Interference Problems. This booklet is available from the U.S.
Government Printing Office, Washington, D.C. 20402, Stock Number
004-000-00345-4. At the first printing of this manual, the telephone
number was (202) 783-3238.

West Germany. This is to certify that this equipment is in accordance
with the Radio Interference Requirements of Directive FrZ 1046/84. The
German Bundespost was notified that this equipment was put into
circulation, the right to check the serie for compliance with the
requirements was granted.

878 A: Support, a.u.rt .. , and Service

All shipping, reimportation arrangements, and customs costs are your
responsibility.

Service Charge. Contact the Corvallis Service Center (inside back
cover) for the standard out-of-warranty repair charges. This charge is
subject to the customer's local sales or value-added tax wherever
applicable.

Calculator products damaged by accident or misuse are not covered by
the fIXed charges. These charges are individually determined based on
time and material.

Shipping Instructions. If your calculator requires service, ship it to
the m:arest authorized service center or collection point.

• Include your return address and a description of the problem.

• Include proof of purchase date if the warranty has not expired,

• Illclude a purchase order, check, or credit card number plus
expiration date (VISA or MasterCard) to cover the standard repair
charge.

• Ship your calculator postage prepaid in adequate protective packaging
to prevent damage. Shipping damage is not covered by the warranty,
so we recommend that you insure the shipment.

Warranty on Service. Service is warranted against defects in materials
and workmanship for 90 days from the date of service.

Service Agreements. In the U.S., a support agreement is available for
repair and service. For additional information, contact the Corvallis
Servi(:e Center (see the inside of the back cover).

A:. Support, BatterI .. , and Service 675

B
Messages

This appendix lists selected HP 48 messages.

In the following tables, messages are first arranged alphabetically by name
and then numerically by message number.

lIessages Listed Alphabetically

Message lIeaning # (hex)

Acknowledged Alarm acknowledged. 619

Autoscaling Calculator Is autoscallng)(- 610
and/or y- axis.

Awaiting Server Indicates Server mode active. coe
CMd.

Bad ArguMent Type One or more stack arguments 202
were Incorrect type for
operation.

Bad ArguMen Va lue Argument value out of 203
operation's range.

Bad Guess (es) Guess(es) supplied to HP A01
Solve application or ROOT lie
outside domain of equation.

B: ag.. 677

,

lIessages Listed Alphabetically (continued)

lIelsage Meaning # (hex)

Bad Packet. Block Computed packet checksum COl
check doesn't match checksum In

packet

Can't Edit Null Attempted to edit a string 102
Char. containing character "0".

Circular Reference Attempted to store a variable 129
name into itself.

Connectin9 Indicates verifying IR or serial COA
connection.

Constant? HP Solve application or A02
ROOT retumed same value at
every sample point of current
equation.

Copied to stack ~STK:: copied selected 623
equation to stack.

CUrren equation: Identifies current equation. 608

Deletin9 Colul'ln MatrixWriter application Is 504
deleting a column.

Deletin9 Row MatrixWriter appifcation Is 503
deleting a row.

Directory Not Name of existing directory 12A
Allowed variable used as argument

Directory Attempted to store a directory 002
Recursion Into itself.

El"lpty catalo9 No data In current catalog 600
(Equation, Statistics. Alarm)

671 B: ug_

lIessages Listed Alphabetically (continued)

lIessage lleanlng # (hex)

Enter alarM, Alarm entry prompt. 61A
press SET

Ent er eqn I press Store new equation In EO. 60A
NEW

Ent.er value (ZOOM Zoom operations prompt 622
out if)1), press
ENTER

Ext reMUI"I Result returned by HP Solve AD6
application or ROOT Is an
extremum rather than a root.

HALT Not Allowed A program contaInIng HALT 126
executed whne MatrlxWriter
application, DRAW, or HP
Solve application active.

I/O setup r~enu Identifies I/O setup menu. 6le

I I"Ip 1 iei <> ot

IMPlici t 0 on

Incol"'lple e
Subexpressi on

Inconsistent Units

I nf ini te Result

Insert. i n9 Co 1 Ul'ln

Implicit parentheses off.

Implicit parentheses on.

[E, 00, or IENTERI pressed
before all functJon arguments
supplied.

Attempted unit conversion
with Incompatible units.

Math exception: Calculation
such as 1/0 Infinite result.

MatrlxWriter application is
Inserting a column.

207

208

206

802

305

504

B: M ge. 679

lIessages Listed Alphabetically (continued)

Message Me ning # (hex)

Inserting Row MatrlxWrlter application Is 503
Inserting a row.

Insufficient Not enough free memory to 001
MeP'lory execute operatlon.

Insufficien ~ A Statistics command was 603
Data executed when WAT did not

contain enough data points
for calculation.

I nt et-rupt ed The HP Solve application or A03
ROOT was Interrupted by
I ATTN I.

Invalid Array I ENTER I returned object of 502
Elel'lent wrong type for current matrix.

Invalid Card Data HP 48 does not recognize 008
data on plug-In card.

Invalid Date Date argument not real 001
number In correct format, or
was out of range.

I nva lid Defi nition Incorrect structure of 12C
equation argument for
DEFINE.

Invalid DiMension Array argument had wrong 501
dimensions.

680 B: g ..

lIessages Listed Alphabetlc.lly (continued)

II ssage lIeanlng # (he]()

Invalid EQ Attempted operation from 607
GRAPHICS FCN menu when
EO did not contain algebraic,
or, attempted DRAW with
CONIC plot type when EO did
not contain algebraic.

Invalid IOPAR IOPAR not a list, or one or C12
more objects In list missing or
invalid.

Invalid NaMe Received Illegal filename, or C17
server asked to send Ulega!
filename.

Invalid PPAR PPAR not a list, or one or 12E
more objects In list missing or
invalid.

Invalid PRTPAR PRTPAR not a list, or one or C13
more objects In list missing or
invalid.

Invalid PTYPE Plot type Invalid for current 620
equation..

Invalid Repeal Alarm repeat Interval out of D03
range.

Invalld Server Invalid command received COs
CMd. while in Server mode.

Invalid Syntax HP 48 unable execute tENTERI 106
or STR- due to Invalid object
syntax.

B: sag.. 681

Messages Listed Alphabetically (continued)

lIessage lIeanlng # (hex)

Invalid TiMe Time argument not real 002
number In correct format, or
out of range.

Invalid Unit Unit operation attempted with 801
invalid or undefined user unit.

Invalid User Type or structure of object 103
Fund ion executed as user-oefined

function was Incorrect.

Invalid I Da a Statistics command executed 601
with Invalid object stored In
WAT.

Invalid }: Data Non-Unear curve fit attempted 605
LN(Neg) when WAT matrlx contained

a negative element.

Invalid I Dat.a Non-linear curve fit attempted 606
LH(0) when WAT matrix contained

a 0 element.

Invalid IPAR rPAR not list, or one or more 604
objects in list missing or
invalid.

LAST Cr'lD Disabled ILAST CMD) pressed while 125
that recovery feature
disabled.

LAST STACK ILAST STACK) pressed while 124
Disabled that recovery feature

disabled.

LASTARG Disabled LASTARG executed while that 205
recovery feature disabled.

682 8: ag ..

lIessages listed Alphabetically (continued)

lIessage lIeaning #- (hex)

Low Battery System batteries too low to C14
safely print or perform I/O.

t'ler'lory Clear HP 48 memory was cleared. 005

NaMe Conf 1 i ct Execution of I (where) 13C
attempted to assign value to
variable of integration or
summation index.

l·laMe the equation, Name equation and store it in 60B
press HlTER EO.

I-la r ... e the stat Name statistics data and 621
data, press EIHER store it in mAT.

I-legat i ve Underflow Math exception: Calculation 302
returned negative, non-zero
result greater than - MINR.

I-le, Current SatzYR, DRAW, or RCeQ 104
Equation executed with nonexislent

EO.

Ho current Plot and HP Solve application 609
equation status message.

I-le, ROOM in Por-t Insufficient free memory in OOB
specified RAM port.

I~o Roor ... to Save Not enough free memory to 101
Stack save copy of the stack. LAST

STACK is automatically
disabled.

B: sag.. 683

lIe ... ge. Li.ted Alphabetically (continued)

lIessage

No ROOM to Show
Stack

No stat data 0

plot

II nlng

Stack objects displayed by
type only due to low memory
condition.

No data stored In WAT.

fI. (hex)

131

60F

Non-Er'lpt y Att.emp ed to purge non- 128
D ired ory empty directory.

~lon-":ea 1 Resu 1 t Execution of HP Solve 12F
application, ROOT, DRAW, or
f returned result other than
real number or unit.

~lonex istent Alan'} Alarm list did not contain 004
alarm specified by alarm
command.

None>: i st ent !DAT Statistics command executed 602
when roAT did not exist.

Obj ec:t Discarded Sender sent an EOF (Z) COF
packet with a "0" In the data
field.

Obj ect I n Use Attempted PURGE or STO 009
Into a backup object when its
stored object was in use.

Obj ect Not in Port Attempted to access a OOC
nonexistent backup object or
library.

(OFF SCREEN) Function value, root, 61 F
extremum, or intersection was
not visible In current display.

&84 B: _

lIessages Listed Alphabetically (continued)

lIess ge lleaning # (hex)

Out of MeMOr ':l One or more objects must be 135
purged to continue calculator
operation.

Overf low Math exception: catculatlon 303
returned result greater In
absolute value than MAXA.

Packet .. Indicates packet number C10
during send or receive.

Pari t y Error Received bytes' parity bit COs
doesn't match current parity
setting.

Por Closed Possible II R or serIal COg
hardware failure. Run self-test.

Port. No Ava ilable Used a port command on an OOA
empty POrt. or one containing
ROM Instead of RAM.

Attempted to execute a server
command that itself uses the
I/O port.

Positive Under low Math exception: Calculation 301
returned positive, non-zero
result less than MINR.

Power Lost Calculator turned on following 006
a power loss. Memory may
have been corrupted.

B: 9.. 685

lIes .. ges Usted Alphabetically (continued)

lIessage lIeanlng # (hex)

Processing COMMand Indicates processing of host C11
command packet

Pro oco l Error Received a packet whose C07
length was shoner than a null
packet.

Maximum packet length
parameter from other
machine Is Ulegal.

Receive Buffer Kermit: More than 255 bytes C04
Oven·un of retries sent before HP 48

received another packet.

SRECV: Incoming data
overflowed the buffer.

Receive Error UART overrun or framing C03
error.

Receiving Identifies object name while COE
receiving.

Retrl,l # Indicates number of retries COB
while retrying packet
exchange.

Sele,=t a r ... odel Select statistics curve fitting 614
model.

Seled plot type Select plot type. 60C

Select repe .~t Select alarm repeat interval. 61B
interval

686 8: g ••

lIessages Listed Alphabetically (continued)

lies age lie ning -# (hex)

Seonding Identifies obJect name while COD
sending.

Sign Reoveorsal HP Solve application or AOS
ROOT unable to find point at
which current equation
evaluates to zero, but did find
two neighboring points at
which equation changed sign.

Til"leout Printing to serial port: CO2
Received XOFF and timed out
waiting for XON.

Kermit: Timed out waiting for
packet to amve.

Too Few ArgUMents Command required more 201
arguments than were
available on stack.

Transter Failed 10 successive attempts to C06
receive a good packet were
unsuccessful.

Unable to Isolate ISOL failed because specified 130
name absent or contained In
argument of function with no
Inverse.

Undefined Local Executed or recalled local 003
NaMe name for which

corresponding local variable
did not exist

B: Mess.gas 687

lIes .. ges Listed Alphabetically (continued)
,

lIes.age lleanlng :# (hex)

Undefined NaMe Executed or recalled global 204
name for which
corresponding variable does
not exist.

Undefined Resul t Calculation such as 0/ 0 304
generated mathematically
undefined result.

Undefined XLIB Executed an XLiS name when 004
t'lar~e specified library absent.

l·Jrong ArgUMent User-deflned function 128
Coun evaluated with an Incorrect

number of parenthetical
arguments.

>~ and y-ax is ZOOM . Identifies zoom option. 627

;{ ax i s ZOOM . Identifies zoom option. 625

;< a x is zooc~ Identifies zoom option. 624
l.oJ / AUTO .

'd a x is ZOOM . Identifies zoom option. 626

ZERO Result returned by the HP A04
Sofve application or ROOT Is
a root (a point at which
current equation evaluates to
zero) .

q n Identifies no execution action 61E
when El!: EC~S pressed.

688 B: g ••

Message. Usted Numerically

(h x) Me ... ge

Genenll Me ... ge.
001 Insufficient MeMory
002 Directory Recursion
003 Undefined Local NaMe
004 Undefined XLIB NaMe
005 t'1eMOry Clear
006 Power Lost
008 Inval id Card Data
009 Objec In use
OOA Por Not available
006 No Rool'! in Port
ooe Object Not in Port
101 No ROOM to Save Stack
102 Can't Edit Null Char.
103 Invalid User Function
104 No Current Equation
106 Invalid Syntax
124 LAST STACK Disabled
125 LAST CND Disabled
126 HALT Not Allowed
128 Wrong ArgUMent Count
129 Circular Reference
12A Directory Not Allowed
128 Non-EMpty Directory
12C Invalid De'ini ion
12E Invalid PPAR
12F Non-Real Resul

B: sag.. 689

Messages Listed Numerically (continued)

#" (hex) lIessag

General lIessage. (continued)
130 Unable to Isolaie
131 No ROOM o Show Stack

Out-o'-liemory Prompts
135 Out of ~leMory

13C NaMe Conflict

Stack Errors
201 Too Few ArguMents
202 Bad AI-guMent Type
203 Bad Ar9ur~ent Value
204 Undefined Hal'll?
205 LASTARG Disabled

EquationWriter Application lIessages
206 InCOMplete Subexpression
207 r!,'plici t () off

208 IMPl ici t o on

Floaling-Point Error
301 Positi ve Underflo,,",
302 Negative Under low
303 Overflo,,",
304 Undefine-d Resul
305 In inite Result

Array Messages
501 Inva lid DiMension
502 Invalid Arra~ EleMent
503 Deleting Row
504 DeleLing Colur'ln
505 lnserting Row

690 B: g ••

Messages Listed Numerically (continued)

(hex) Message

Anay Messages (continued)
506 Inserting ColuMn

Statistic.llenage.
601 Invalid I Data
602 Nonexistent IDAT
603 Insuff icient I Data
604 Invalid IPAR
605 Invalid I Data LN(Neg)
606 Invalid I Da a LN(0)

Plot. I/O, Time nd HP Solve Application Messages
607 Invalid EQ
608 Current equation:
609 No current equation.
60A Enter egn, press NB~
606 NaMe the equation, press ENTER
GOC Select plot type
600 EMpty catalog
60F No Statistics data to plot
610 Autoscaling
614 Select a Model
619 Acknowledged
61A Enter alarM, press SET
61B Selec repeat interval
61C I/O setup MenU
610 Plot type:
61E II ..

61F <OFF SCREEN)
620 Invalid PTYPE
621 t~ar~e he sta data, press ENTER

B: sages 691

Messages Listed Numerically (continued)

(hex) lie ge

Application Messages (continued)
622 Enter value (ZOOI"l out if)0, press

EHTER
623 Copied to stack
624 x axis ZOOI"l w AUTO
625 x axis ZOOI'l.
626 y axis ZOOM.
627 x and y-axis zoor~.

A01 Bad Guess(es)
A02 Constant?
ADa Interrupted
A04 Zero
AOS Sign Reversal
A06 Extrel'lUM

Unit lIanagement
801 Invalid Unit
802 Inconsis ent Uni s

592 B: _

lIessages Usted Numerically (continued)

(hex) lies ge

I/O and Printing
COl Bad Packet Block check
CO2 TiMeout
C03 Receive Error
C04 Receive Bu fer Overrun
COS Parity Error
COS Transfer Failed
C07 Pr-otocol Error
COB I nva lid Server Cr~d

C09 Por Closed
COA Connecting
COB Retry #

COC Awaiting Server CMd.
COD Sending
COE Receiving
COF Object Discarded
Cl0 Packet. #"

~1 Processing COMMand
C12 Invalid IOPAR
C13 Invalid PRTPAR
C14 I / O: Batt Too Low
C15 EMP Y Sack
C17 Invalid NaMe

TIme lIessages
001 Invalid Date
002 Invalid TiMe
003 Invalid Repeat
D04 Nonexis en AlarM

B: sag.. 693

c
HP 48 Character Codes

Most of the characters in the HP 48 character set can be directly typed
into the display from the Alpha keyboard. For example, to display $,

type (g) ~11l. (The Alpha keyboard is presented in chapter 2.) Any
character in the set can be displayed by typing its corresponding character
code and then executing the CHR command. The syntax is char# CHF.:.
Certain characters in the set are not on the Alpha keyboard. To display
one of these characters, you must type its character code and execute
CHR.

The character tables on the following pages show the HP 48 characters
and their corresponding character codes. (This set, except for character
numbers 128 through 159, is based on the ISO 8859 Latin 1 character set.)

Note

If you fmd that a character you frequently use is not
available on the primary or alpha keyboards (see chapter 2
for all the available characters), you can assign that
character to the user keyboard for easy access. See

"Making User Key Assignments" on page 217 for more information.

.... C: HP", Character Cod_

Character Codes (128 - 255)

NUll CHR NUll CHR NUll CHR NU CHR

128 160 J 92 A ~24 .a
129 'i 161 i 193 A 225 a I

130 \l 162 .t 1':14 A 226 a
13 1 ,f 163 £ 195 227 a
132 164 i:1 196 tit 228 .\it
133 ... 165 ¥ 197 A 22';:; ,!!,

134 • 166 1 198 IE 230 1

135 IT 167 - 199 9- 23 1 ~

136 ~ 168 200 ~ ~32 e
137 6 169 § 201 E ?', .-:,,:.

.:::. -.' e
138 ~ 17B : 202 ~ 234 ~

139 "'- 171 « 203 E 235 e
141I1 v: 172 ~ 204 1 266 ~

141 ~ 173 - 2121"1 237 1
142 ~ 174 8 20E. t 23:3 i
143 ~ 175 - 207 I 2'='9 i
144 176 a 20E1 f) 240
145 'Y 177 ! 2139 I 2 1 ;;
146 0 178 ~ 2 113 b ?

'- 2 0
147 E 179 3 2 11 6 2 3 6
148 180 - 212 (. 244 .:.
149 9 18 1 t.I 2 13 5 2 '" Co '-'

150 \ 10 -:' '-''- 11 214 1:- 246 c'
151 f' 18:::: . 215 >~ 247
1 c:- -:. ._1.:.- iI 1:::4 ~ 216 ¢ 24:::: ¢

15:3 ~ 1:::5 1 217 I:' 249 Ij

154 (0) 1::::6 :2 21::: ,j 25(1 Ij

155 .::. 1 .:.?
I_I I :::: . 219 I~I 251 IJ

156 n 1:::::: !';4 220 L' 252 --
I.,)

157 fJ 189 1_' 221 -r- 25::: I~ .':
1 co.-. ,_1.=. I 190 1,:; 222 1 254 !"'

15'3 ()) 191 (.. 22::: ~; '-,C"C' .::, ._1._' I~

696 C: HP 48 Character Cod ••

Character Codes (0 - 127)

HUM CHR NUM CHR NUM CHR NUll CHR

0 • 32 64 e 96 ,
1 • 33 ! 65 A 97 a
2 • 34 " 66 B 98 b
3 • 35 :It 67 C 99 c
4 • 36 $ 68 D 11313 d
5 • 37 % 69 E 101 e
6 • 38 to 713 F 102 f
7 • 39 , 71 G 103 9
8 • 413 (72 H 104 h
'3 • 41) 73 I 105 i

1£1 • 4'-' .::. * 74 J 1B6 j
11 • 43 + 75 I(107 k
12 • 44 , 76 L 108 1
1-::' .' • 45 - 77 to! 109 1'1

14 • 4E, . 78 N 110 n
15 • 47 / 7'3 0 111 'j

lE. • 48 0 ::::0 P 112 p

17 • 4'3 1 81 Q 113 q

18 • 50 .-,
.::. I-I~'

':I~ R 114 r
19 • 51 .:. ,-,'-, (". 115 s oj O·:J .:;0

20 • .,. .-,
._1'::' 4 84 T 116 t

21 • 5::: .,.
.' 85 U 117 u

22 • 54 6 86 II 118 v
:23 • .,..,.

.J.J 7 87 W 119 w
24 • 56 ::: 88 X 120 x
25 • 57 9 89 Y 121 y

:26 • 58 : 913 Z 122 z
:27 • 59 , 9 1 [123 {

28 • 60 < 92 , 124 I
29 • E,1 = 93 J 125 }

:30 • E.2 > 94 "" 126 '"
:31 ... 63 ? 95 - 127 •

C: HP 48 Ch:ter Cod.. 695

D
Menu Numbers

The following table lists the HP 48 built-in menUli and the corr~ponding
menu numbers.

lIenu/l lIenu Name lIenu /I lIenu ame

0 Last Menu 19 I/O SETUP
1 CST 20 MODES
2 VAR 21 MODES Customlzatlon

3 MTH 22 MEMORY

4 MTH PARTS 23 MEMORY Arithmetic

5 MTHPROB 24 UBRARY
6 MTH HYP 25 PORTO
7 MTHMATR 26 PORT,

B MTHVECTR 27 PORT 2
9 MTH BASE 28 EDIT
10 PRG 29 SOLVE
11 PRG STK 30 SOLVE SOLVR
12 PRG OBJ 31 PLOT
13 PRG DISP 32 PLOTPTYPE
14 PRG CTRL 33 PLOT PLOTA
15 PRG BRCH 34 ALGEBRA
16 PRGTEST 35 TIME
17 PRINT 36 TIMEADJST
18 I/O 37 TIMEALRM

D: uNu..... .97

Menu /I Menu Name Menu # Menu ame

38 TIME ALRM APT 49 UNITS FOACE
39 TIME SET 50 UNITS ENAG
40 STAT 51 UNITS POWR
41 STAT MODL 52 UNITS PRESS
42 UNITS Catalog 53 UNITS TEMP
43 UNITS LENG 54 UNITSELEC
44 UNITSAAEA 55 UNITSANGL
45 UNITS VOL 56 UNITSUGHT
46 UNITS TIME 57 UNITS RAD
47 UNITS SPEED 58 UNITS VISC
48 UNITS MASS 59 UNITS Command

698 D: Menu Hum

E
Listing of HP 48 System Flags

This appendix lists the HP 48 system flags in functional groups. All flags
can be set, cleared, and tested. The default state of the flags is clear,
except for the Binary Integer Wordsize flags (flags - 5 through -10).

System Flags

Flag Description

Symbolic Uath Flags
- 1 Principal Solution.

Clear. QUAD and ISOL return a result representing all
possible solutions.
Set QUAD and ISOL retum only the principal solution.

- 2 Symbolic Constants.
Clear: Symbolic constants (e, i, K, MAXR, and MINR) retain
their symbolic form when evaluated, unless the Numerical
Results flag - 3 is set.
Set: Symbolic constants evaluate to numbers, regardless of
the state of the Numerical Results flag - 3.

- 3 Numerical Results.
Clear: Functions with symbolic arguments, Including
symbolic constants, evaluate to symbolic results.
Set: Functions with symbolic arguments, including symbolic
constants, evaluate to numbers.

- 4 Not used.

E: Ustlng 01 HP 48 System Flags 699

System Flags (continued)

Flag Description

Binary Integer lIath Flags
- 5 Binary Integer Wordslze.

thru Combined states of flags -5 through - 10 set the wordslze
from 1 to 64 bits.

- 10

Binary Integer Base.
- 11 HEX: -11 set. - 12 set.
and DEC: - 11 clear. - 12 clear.
- 12 OCT: - 11 set, - 12 clear.

BIN: - 11 clear, - 12 set.

- 13
and Not used.
- 14

Coordinate Sy.lem Flags
- 15 Rectangular: - 15 clear, - 16 clear.
and Polar/Cylindrical: -15 clear, - 16 set.
- 16 Polar/Spherical: -15 sel, - 16 set.

Trigonometric Angle Mode Flags
- 17 Degrees: - 17 clear, -18 clear.
and Radians: - 17 set, - 18 clear.
-18 Grads: -17 clear. - 18 set.

Complu Mode Flag
- 19 Clear.-.V2 and ~ImJ create a 2-dlmenslonal vector from

2 real numbers.
Set-N2 and ~ImJ create a complex number from 2 real
numbers.

70D E: U •• n .. of HP 48 Sy Flag.

System Flags (continued)

Flag Description

Math Exception-Handling Flags
- 20 Underflow exception.

Clear. Underflow exception returns O.

Set: Underflow exception treated as an error.

- 21 Overflow Exception.

Clear: Overflow exception returns ±9.99999999999E499.
Set: Overflow exception treated as an error.

-22 Infinite Result Exception.

Clear. Infinite result exception treated as an error.

Set Infinite result exception returns ± 9.99999999999E499.

-23 Negative Underflow Indicator.

- 24 Positive Underflow Indicator.

- 25 Overflow Indicator.
- 26 Infinite Result Indicator.

When an exception occurs, corresponding flag (- 23
through - 26) is set, regardless of whether or not the
exception Is treated as an error.

-27

thru Not used.

-29

E: u of HP 48 SJ." Flag. 701

System Flags (continued)

Flag Description

Plotting and Graphics Flags

- 30 Function Plotting.

Clear: For equations of form y :: ((x) . only t(x) Is drawn.

Set For equations of form y :: I(x) I separate plots of y and
t{x) are drawn.

- 31 Curve Filling.

Clear. Curve filling between plotted points enabled.

Set Curve fIlling between plotted points suppressed.

- 32 Graphics Cursor.

Clear: Graphics cursor always dark.

Set: Graphics cursor dark on light background and light on
dark background.

1/0 and Printing Flags
- 33 I/ O Device.

Clear. 1j0 directed to serial port.

Set I/O directed to IR port.

- 34 Printing Device.

Clear: Printer output directed to IR printer.
Set: Printer output directed to serial port H flag - 33 Is clear.

- 35 I/O Data Format.

Clear. Objects transmitted in ASCII form.
Set: Objects transmitted In memory image form.

- 36 RECV Overwrite.
Clear: Jr file name received by HP 48 matches existing
HP 48 variable name, new variable name with number
extension is created to prevent overwrite.
Set If f ile name received by HP 48 matches existing HP 48
variable name, existing variable is overwritten.

702 E: UsUng of HP 48 System Flags

System Flags (continued)

Flag Description

I/O and Printing Flag. (continued)
- 37 Double-Spaced Printing.

Clear: Single-spaced printing.

Set: Double-spaced printing.

- 38 Unefeed.

Clear: Unefeed added at end of each print line.

Set: No IInefeed added at end of each print line.

- 39 I/O Messages.

Clear: I/ O messages displayed.

Set: I/O messages suppressed.

Time -.anagement Flags
- 40 Clock Display.

Clear: Ticking clock displayed only when TIME menu
selected.

Set: TIcking clock displayed at all times.

- 41 Clock Format.
Clear. 12-hour clock.
Set: 24-hour clock.

- 42 Date Format.

Clear. MM/DDfYY (month/day!year) formal
Set: DD.MM.VY (day.month.year) format

- 43 Repeat Alarms Not Rescheduled.

Clear. Unacknowledged repeat apPOintment alarms
automatically rescheduled.
Set: Unacknowledged repeat appoIntment alarms not
rescheduled.

E: U.tlnl of HP ... S, F.... 703

System Flags (continued)

Flag Description

Time Management Flags (contJnu d)
-44 Acknowledged Alarms Saved.

Clear. Acknowledged appointment alarms deleted from
alarm list
Set Acknowledged appointment alarms saved In alarm list

Display Format Flags
-45 Number of Declmal Digits.

thru Combined states of flags - 45 through - 48 sets number of
decimal digits in Fix, Scientific, and Engineering modes.

- 48

Number Display Format.

-49 Standard: -49 clear, -SO clear.
and Fix: - 49 set, - 50 clear.
- 50 Scientific: - 49 clear, - 50 set.

Engineering: - 49 set, -SO set.

- 51 Fraction Mark.
Clear. Fraction mark Is . (period).

Set Fraction mark Is, (comma).

- 52 Single-Une Display.
Clear: Display gives preference to object In level 1, using up
to four lines of stack display.
Set: Display of object In leval 1 restricted to one line.

-53 Precedence.
Clear: Certain parentheses in algebraic expressions
suppressed to Improve legibility.
Set: All parentheses in algebraic expressions displayed.

-54 Not used.

704 E: U.Ung of HP C8 s, Flag.

System Flags (continued)

Aag Description

IIlacelianeous Flags
- 55 Last Arguments.

Clear: Operation arguments saved.
Set Operation arguments not saved.

- 56 Error Beep.
Clear. Error and BEEP-command beeps enabled.
Set Error and BEEP-oommand beeps suppressed.

- 57 Alarm Beep.
Clear: Alarm beep enabled.
Set: Alarm beep suppressed.

- 58 Verbose Messages.
Clear: Prompt messages and data automatically displayed.
Set: Automatic display of prompt messages and data
suppressed.

- 59 Fast Catalog Display.
Clear: Equation Catalog (and messages In SOLVE, SOlVR,
PLOT, and PLOTR menus) show equation and equation
name.
Set Equation Catalog (and messages in SOLVE, SOLVR,
PLOT, and PlOTR menus) show equation name only.

- 60 Alpha Lock.
Clear: Alpha lock activated by pressing ~ twice.
Set Alpha lock activated by pressing (g) once.

- 61 User-Mode Lock.
Clear: l -User mode activated by pressing ~IUSRI once.
User mode activated by pressing [!i)IUSRI twice.
Set User mode actiVated by pressing (5)IUSRJ once.

E: Ustlng of HP 48 Systaaa Flags 705

System Flags (continued)

Flag DescrlpHon

Miscellaneous Flags (continued)
- 62 User Mode.

Clear: User mode not active.

Set User mode active.

- 63 Vectored fENTERI.
Clear: [ENTERI evaJuates command line.

Set User-deflned [ENTERI a~ctivated.

- 64 Index Wrap Indicator.
Clear: Last execution of GEn or PUll did not Increment
Index to first element.

Set Last execution of GETI or PUTI did Increment Index to
first element.

706 E: U.Unl of HP 48 s, Flag.

Operation Index

This index contains reference information for all operations in the HP 48.
For each operation, this index shows:

Name. Key. or Label. The name, key, or menu label associated with
the operation. Operation names appear as keys or menu labels.

Description. What the operation does (or its value if a unit).

Type. The type of operation is given by one of the following codes.

Type Code De crption

0 Operation. An operation that cannot be Included in
the command line, in a program, or in an algebra/c.

C Command. An operation that can be included In
programs but not In algebralcs.

F Function. A command that can be Included in
algebraJcs.

A Analytic Function. A function for which the HP 48
provides an inverse and derivative.

U Unit.

Keys. The keys to access the operation. Keystroke sequences preceded
by " ... " can be accessed through more than one menu - to see the
keystrokes represented by the " ... ", refer to the listing in this index for
the operation that immediately follows the " ... ". Operations in multi­
page menus show the applicable menu page number. Operations that are
not key-accessible are identified by "Must be typed in."

OperaUonlndex 707

Page. Where the operation is described in this manual.

The entries in this index are arranged as follows:

What operation does
Page where
operation described

Keys to access operation

ATANH Arc hyperbolic tangent
A IMTHI ffJ'm fD' A1'l -4----'

chain Chain, length (20.1168402337 m).
U I!iIIUNITSI LEHG p.3 CHa

Type code
Name of operation

Menu page

137

Value 01 a unll

Operations whose names contain both alpha and special characters are
listed alphabetically; operations whose names contain special characters
only are listed at the end of this index.

Name, Key
or Label

DeSCription
Type, Keys

a Are, area (100 rn2).
U [!i]~ R

A Ampere, electric current (1 A).
U ~IUNITSI p.2 ~

Angstrom, length (1 x 10- 1 m).
U ~IUNITSI ~ E~G... p.4 ,R

708 OpendIon Inda

Page

Name, Key De.criplion Page
or ubel Type, Key.

f ~B Associate left. 405

0 IEIleQUATIONI ~ ~2S ~

~j@*-+A Executes i ~A~ until no change In 410
subexpression.

0 IEIleQUATIONI ~ RU[E-S
[[!] i~= ~~'

,;!~ ,8 ':.,,",: Associate right 405
0 IEIleQUATIONI ~ f(DLES F' 11 .,.-",

~~ Executes A-t until no change In 410
subexpresslon.

0 ~IEQUATIONI ~ R1Jl.,1r:S
[[!];::

. ">'".".- ..

ASS Absolute value. 148
IMTHI PART.S ~S~

IMTHI ~1Al1t:;;: p.2 ~~~

F IMTHI \lEU! ~ " Fj 8"S~

ACK Acknowledges displayed past due alarm. 447

C ~ITIMEI FlCK
ACKALL Acknowledges all past due alarms. 447

C ~ITIMEI AQK8;

OperaUonlndez 709

Neme. Key Description Page
or Label Type, Key.

ACOS Arccosine. 140
A 8:ilIACOSJ

ACOSH Arc hyperbolic cosine. 137
A IMTHJ tn'A ffC}LSH

acre Acre. area (4046.872.60987 nt).
U ~IUNITSI ··~p.2 ::BJ;KE';

R[fJST Selects TIME ADJST (adjust) menu.
a ~ITIMEI aQJ"SI

~BE- Add fractions. 409
0 ~IEauAnoNI Bl R:5EB --BE-"'.,

8:ilIALGEBRAI Selects ALGEBRA menu.
0 ~IAlGEBRAI

~IALGEBRAI Selects Equation Catalog. 259

0 ~IALGEBRAI

ALOG Common (base 10) antilogarithm. 137
A 8:il110'1

710 Operation Index

Name. Key Description Page
or lJIbel Type. Keys

lfmRti Selects TIME ALRM (alarm) menu.
0 ffi)lT1MEI AL~M:

AND Logical or binary AND.
IMTHI e: - ~ p.4 Rlf 210

F (PRGI I ~A.L 1 6ij[)k- 493

~GC" Selects UNITS ANGL menu.
0 ~IUNITSJ p.3 AHGl

APPLY Returns evaluated expresslon(s) as
argument(s) to unevaluated local name.
F ~IAlGEBRAI p.2 f1P~~

ARC Draws arc In PIer from 01 to 82 with center 339
al (>t,y) and radius r.
C (PRGJ J):S~l ARCo

ARCHIVE Makes backup copy of HOME directory. 648
C ffillMEMORvl p.3 M~ -

arcmln Minute of arc, plane angle.
(4.62962962963 x 10- 5)

U ~(UNrTSI p.3 _ ftC BRCMI

arcs Second of arc, plane angle.
(7.71604938272 x 10- ,,)
u ~luNITsl p.3 NGL A~CS "

O atlon Index 711

Name, Key Description Page
or ubel Type, Keys

n · Calculates and displays area under 308
function graph between two x·values
specified by the mark and cursor; returns
area to stack.

0 ... "iEeH;-· ~A

"Af{~ Selects UNITS AREA menu.
0 ~IUNITSI J1~~

ARG Returns polar angle 9. 166
F IMTHI PARi;TS :aRG

RRG Enables/disables LASTARG recovery. 221

0 ~IMOOESI p.2 R

ARRY-+ Returns array elements to stack.

C Must be typed In. I

-+ARRY Combines numbers Into array_ 90

C IpRGI IOB'a~ ..t.£lRR

AS-en I Switches between ASCII and binary mode. 617

0 ~[!ZQ] S.EJUR ASCl"i

ASIN Arc sine. 140

A ~IASINI

ASINH Arc hyperbolic sIne. 137
A [flATHI _HVP- as NH

712 ~nlnd ..

Name, Key Description Page
or Label Type, Keys

ASN Makes a single user-key assignment 217
C [[!)IMODESI ASH:.:

ASR 1-blt arithmetic shift right. 210
C IMTHI rBASE.. p.3 ssc

ATAN Arc tangent. 140
A ffi.l[ATANI

ATANH Arc hyperbolic tangent 137

A IMTHI J:elr ~

atm Atmosphere, pressure (101325 kg/m'~)
U ~[UNITsl p.2 PR~S ~J1'E

ATIACH Attaches specIfied library to current 651
directory.
C ~IMEMORYI p.2 8ll:RC

IATTNI (ION!) Aborts program execution, aborts 54
command line; exits special environments;
clears messages.
0 [Qffi

AU Astronomical unit, length
(1.495979 x 1011 m).
U ffi.l [UNITS I LENtip.2 ~

O~onlndes 713

Name, Key Description Page
or Label Type,Keys

AUTO Scates y-axis. 293

... eUIIR JiUTO
C ~[PlOTI crro

=AUTtJ'" Scales y-axis; then plots equation. 295
... el!OT~ AUTO ~

0 ~[PlOTI AUTO
AXES Sets specified coordinates of axes 320

Intersection; stores labels .
... PlOiR p.3 H)(ES

C ~IPlOTI p.3 RXE-£
~~8)1E,1> Recalls axes Intersection to stack. 319

. .. RlffiTR p.3 ~ fIX ~
0 [[!J[PlOTI p.3 [[!J R -

mazeM Switches clock between AM and PM. 442
0 ~[TIMEI SET A,IP

Switches alarm time between AM and PM. 444
0 ~ITlMEI ALR~ lVPfif"

b Bam, area <1 x 10-25 m2}.
U ~[UNITSI .J3BEA B~J

bar Bar, pressure (100000 kgjm·sl) .
U ~[UNITSI p.2 F'RESs:' :BBlC

BAR Selects BAR plot type. 328
C . . . ~l'P~ BAR

714 ()pentIon IndeJr

Name, Key Description Page
or label Type, Keys

BARPLOT Draws bar plot of data In mAT. 378

C ~ISTATI p.3 aRRPL

BASE Selects MTH BASE menu.

0 IMTHI BASE

BAUD Sets one of four available baud rates. 617

C ~[!ZQ] SaLlE ~AUJL

bbl Barrel, volume (.158987294928 ffiJ).
U ~IUNITSI ~~ p.4 BBl

BEEP Sounds beep. 523

C IPRGI CTRL sp.3 BEEP

-~~~ Enables/disables error BEEP. 221

0 l5lIMOCESI SEE?
BESTFIT Selects statistics model yielding largest 377

correlation coeH Icient (absolute value) and
executes LA.
C ~ISTATI p.4 ltD 1>1.:' BEST

BIN Sets bInary base. 208

IMTHI gFtS'E S'Hf
C 15l tttU>'ES p.4 ~B":Imll

BINS Sorts elements In Independent variable 382
column of mAT Into N + 2 bins (up to a
maximum of 1048573 bins).

C ~ISTATI p.2 BINS

OperaUonlndex 715

Name. Key Description Page
or u.bel Type, Key.

BLANK Creates blank graphics object 343
C (PRG] ;cosPl_ p.3 ~l43Ji.

BOX Draws box with opposite corners def !ned 339
by specified coordinates.
C (PRG] =DSPL BOX

aox Draws box with opposite comers defined 337
by mark and cursor.

... D'R"RLorp.2 l~l1R~

.. • troTO- p.2 "l30~
0 ~IGRApHI p.2 BQX 0

8q Becquerel, activity (1 1 /s).
U ~(UNITS] p.3 RFlCT 8Q=

BRCH Selects PRG BRCH (program branch)
menu.
0 IPRGI aRCH

Btu International Table Btu, energy
(1055.05585262 kg·m2 Is'-)
U ~luNITsl p.2 = [STU I

bu Bushel, volume (.03523907 m").
U (ElIUNITS] ~~ p.4 eu

BUFLEN Returns number of characters In serial 634
buffer.
C ~l!ZQ] p.3 BUF"cr

716 Operation Inde.

Name, Key De criplion Page
or Label Type, Keya

BYTES Returns object size (In bytes) and 101
checksum for object.
C ~IMEMORYI aY1rES

B-+R Binary-la-real conversion. 210

C IMTHI -BRS&l-p.2 - B fi,

c Speed of light (299792458 m/s).
U ~IUNlTsl S~EEl> p.2 ~C-

C Coulomb, electric charge (1 As).
U ~IUNITSI p.2E1:-t::C;; - c-

°C Degrees Celsius, temperature.
U ~IUNITSI p.2 FtEMP QC

~

cal Calorie. energy (4.1 B6 kg·m2 Isl)
U ~IUNlTsl p.2ENRGcc J::Ak

CASE Begins CASE structure. 498

C IPRGI BRCH CflS~

~ CASE Types CASE THEN END END. 498
0 IPRGI ~~-C ~ J;'fiS~

[[!] CRSE Types THEN END. 498
0 IPRGI -BKCfC~ CASE

Operadonlnde. 717

Name, Key Description Page
or LAbel Typ • Key.

MCfFf Selects Equatlon Catalog. 259

~IPLOTI G-AT%w
~ISOLVEI J:ff

0 ((!] IALGEBRA I

Selects STAT Catalog. 370
0 ~ISTATI CAT
Selects Alarm Catalog. 449

~~ C"A-

0 Il!JIT1MEI

eel Candela, luminous Intensity (1 cd).
U ~luNlTsl p.3 CfCH'r p.2 ~CD

CEIL Returns next greater integer. 148

F IMTHI PARTS p.3 CEU.,
I

Cfflr Redraws graph with center at cursor 302
position .

. . . ~1t ~

. . . ~AOTI:.1 - CENT-

0 ~IGRAPHI -CENT

718 Operation Index

Name, Key Description Page
or Label Typ • Key.

CENTR Sets center of plot display at specified 295
~,y} coordinates.

... PLOTR p.2 .tE
C u:tJIPLOTI p.2 . £~

~ GE·NT Recalls plot-center coordinates to stack. 293

... E · - p.2~ E~

0 [i!)IPLOTI p.2 ~rc- L
CF Clears specified flag. 516

IPRGI ~'ISS~ p.3 C~

C ~IMODESI p.2 -C~

%CH Returns % change from level 2 to level 1. 138

F IMTHJ PARTS p.2 ~~~

chain Chain. length (20.1 168402337 m).
U ~IUNITSI ~LEN~p.3 .{}HRrN'

CHR Converts character code to one-character 90
string.
C IPRG] ~Og~ p.3 . ~~

Ci Curle, activity (3.7 x 1010 1 /s).
U ~IUNITS] p.3 JUH2~ -.:,cr

OperaUonlnd.. 719

Name, Key Description Page
or Label Type, Key.

eUCL Draws clrde with center at the mark and 337
radius equal to the distance from cursor to
mark.

... DRAW p.2 C'~ce

... ~BJJ=I,fL p.2 (}nrCl:'

0 ~IGRAPHI p.2 C.lRCL

CKSM Selects one of three available checksum 618
error-detecl schemes.

C ~I!ZQ] SETUP CKS
CLEAR Clears stack. 64

C ~ICLRI

lelRI In EquatlonWriter entry mode, clears 230
screen.

0 ~IEaUATIONI ~IClRI

Clears PIer. 303
... DRAN ~IClRI
... .EUIO ~IClRI

0 ~IGRAPHI ~IClRI

L Ct.K Switches ticking clock display on and off. 221

0 ~IMODESI p.2 GL: .. =

720 Operationlnde.

Name, Key Description Page
or Label Typ • Keys

CLKAOJ AcIds specified number of clock ticks to 443
system time.
C ~ITIMEI AQ~I p.2 AKBn

CLLCO Blanks stack display. 520
C IPAGI _~_~4P.4 CLI,.,..9D

CLOSEIO Closes I/O porl 615
C ffill!ZQJ p.2 Q:1.ra-SE

ClX Purges statistical data in mAT. 368

C ffillsTATI CJ..~:i

CLUSR Purges all user variables.
C Must be typed in.

CLVAR Purges all user variables. 115
C ~lpUAGEI

cm CentJmeter, length (.01 m).
U ffilluNITSI LENG % eM

=CMD~ Enables/disables last command line 221
recovery.
0 ffillMODESI p.2 CMD

cm"2 Square centimeter, area (1 x 10- 4 rol) .
U ~!uNlTsl ~ RllEA'= Cf1""2

OperaUonlndex 721

Name, Key Description P ge
or Label Type, Keye

cm"3 Cubic centimeter, volume (1 x 10- 6 m).

U ~IUNlTsl VOL CM""9

cm/s Centimeters per second, speed (.01 mjs).

U ~IUNITSI SPE~I) ,.o~S

,JU'I.cr SWitches curve filling on and off. 221

0 ffillMODESI p.2 =.1LIiC;i6

CNRM Calculates column norm of array. 359
C IMTHI HFlTR p.2 CNRM

.+DjJL Inserts a row of zeros at current column in 351
MatrixWriter application.

0 ~!MATR1XI p.2 +COL

----=---CO~ Deletes current column In MatrlxWriter 351
application.

0 [[t]!MATRIXI p.2 -Cal

COLer Collects like terms In expression. 395
C ~IAlGE8RAI COLc:T

COLeT Collects like terms In specified 402
subexpression.

0 ffillEQUATIONI ~ RlJLES ~Ql.JiJ

COLI: Specifies dependent and Independent
columns In WAT.
C Must be typed In.

722 Oparlltlon Inde.

N me. Key De crlptlon
I Page I

or Label Type. Keys ,

COMB Returns number of combinations of n Items 147
taken m at a time.

F IMTHI PR.DS COMB

CON Creates constant array. 359

C IMTHI -MR-TR~ ~G:.01L

CONIC Selects CONIC plot type. 327
C ... P,Il(~E CONIC

CONJ Returns complex conjugate. 166
F IMTHJ PARTS COi'lJ

CONT Continues halted program. 520
C ~ICONTI

CONVERT Converts unit object to dimensions of 194
specified compatible unit.

C ~1IDillID calW-
COORD DIsplays cursor coordinates at bottom left 302

of display.
... D"Rt=lW COORD
. . ' - AUTO- COORD

0 ~IGRAPHI COORD

OP4Wadonlndex 723

N me, Key Description Page
or l..JIIbel Type, Keys

CaRR Calculates correlation coefficient of 377
statistical data In mAT.
C ~ISTATI p.4 J:D&~

cos Cosine. 140

A Icosl
COSH Hyperbolic cosine. 137

A IMTHI ,R)'P ~OSH ',

COY Calculates covariance of statistical data In 377
mAT.
C ~ISTATI p.4 CDV'

CR Causes printer to do carriage retum/ llne 608
feed.
C ~IPRINTI CR

CRDIR Creates a directory. 120

C ~IMEMORYI C~D1-R

CROSS Cross product of 2- or 3-element vector. 353
C IMTHI Y:EtTR CROSS

ICSTI Selects CST (custom) menu. 212
a ICSTI

CST Returns contents of CST variable. 213
a ~IMODEsl CST

724 OperaUon Indu

Ham. Key Description Page
or lIIbel Typ • Key.

cl Carat, mass (.0002 kg) .
U ~IUNITSI J1fiSS p.2 '" ,oQ~

CTRC Selects PRG CTRL (program control)
menu.
0 (PRG) crrR·=

cu US cup, volume (2.365882365 x 10- 4 mJ).
U ~IUNITSJ "VOL ," p.3 ell

C--+PX Converts user-unit coordinates to pixel 324
coordinates.
C IPRGJ IlSPLlli P·2 c. pX

C--+R Separates complex number Into two real 91
numbers.
C (PRGI "ro1fJ: pg.2 C~R-

d Day, time (86400 s).
U ~IUNITSI TI'1 c8C1) .

(gQ) Assembles or takes apart a complex 160
number or 20 vector.
0 ~(gQ]

~ Assembles or takes apart a 3D vector. 173
0 [ct]~

OperaUonlndex 725

Name, Key Description Page
or ~bel Typ J Keys

.D Distribute left. 406

0 ~[EaUATloNII3) R\JI!~ +-0,-

~,~.fi .. tr Executes ~D- until no change In 410
subexpresslon.
0 ~IEaUATIONI ~ Rat:SS

[[!]~tf

[)+ Distribute right 406
0 ~IEaUATIONI ~ RULES

~ ~~ Executes ' D+ until no change In 410
subexpresslon.
0 ~IEaUA nONI ~ RULES
~:.. D-t:

DATE Relurns system date. 455
C ~ITJMEI p.2 ::DA TE

DATE + Returns new date from specified date and 454
number of days.
C ~ITIMEI p.2 ()'fU~~

-.DATE Sets specified system date. 441

C ~IT1MEI _~~ ~-D.aL

)DRTE Sets spec If led alarm date. 445
0 ~ITIMEI ALRM }'DA1£

Dl1'r Sets alarm repeat interval to n days. 445
0 ~ITIMEI -R ~ "RPT ~A't

726 O,.atlon Ind_

Nam ,Key crip ion P e
r Label Type. Key.

ruiUG Hafts program execution before first 484
object.

0 IPRGI RL" DBUG-

DDAYS Returns number of days between two 455
dates.

C ~ITIMEI p.2 fl[)]{%S

DEC Sets decimal base. 208

IMTHI BRS - -~D-E~

C ~ M-Ol7ES p.4 _D~C -

DECR Decrements value of specified variable. 513
C ~IMEMORYI ~CR

DEFINE Creates variable or user-defined function. 107
C ~IDEFI 151

-+DEF Expands trigonometric and hyperbolic 409
functions in terms of EXP and LN.

0 ~IEaUATIONI ~ RULES :¥:DEF

DEG Sets Degrees mode. 139
C ~IMODESI p.3 DEC

loal Deletes character under cursor. 75
0 [DELI

Operation Index 727

Name, Key
or ubel

+DEl

DEL ..

Description Page
Type, Key.

Erases area whose oppostte comers are 337
defined by mark and cursor.

... DBR~ p.3 [)[L

... JIU" p.3 OE~

o ~IORAPH] p.3 DEL

Deletes all characters from cursor to start 68
of word.

(5)IEDITt =-~ -

o ... £DIT DEb.:
Deletes all characters from cursor to start 68
otline.

(5)IEDIT] [r!] ~DEL
o ... ~b~ DE L

Deletes all characters from cursor to start 68
of next word.

~IEDIT] tiEl 'tm
o . .. ~_DA-£L. D Et 'J

Deletes all characters trom cursor to end of 68
line.

(5)IEDIT] [r!] DEL ..
o ... ED ~ [r!] DEL ..

728 Operation Index

Name, Key Descriplion Page
or Label Type,Key.

DELALARM Deletes alarm from system alarm list 453

C ~InMEI -Bt~p.2 O.$LAL

DELAY Sets delay time between lines sent to 607
printer.
C ~IPRINTI p.2 I) -RV

DELKEYS Clears specified user-key assignment 219

C ~IMODESI ~~&eIr

DEPND Specifies name of dependent plot variable. 316

. .. RLor~ p.2 .JlEP---.f:il
C ~IPLOTI p.2 D"EPtl

~ QEeJ'I~ Recalls dependent plot varlabte to stack. 316

... P-~!l't p.2~j)EPN

0 ~IPLOTI p.21C!] L1EW

DEPTH Returns number of obJects on stack. 78

C IpAGI ~ ~ Il6:E:-Di
DET Determinant of a matrix.. 360

C IMTHI -MR-lR= 1>£1
DETACH Detaches specified library from current 653

directory.
C ~IMEMORYI p.2 D~~AC

Operation Index 729

Name, Key Description P ge
or Label Type,Key.

D"LI'IV Double Invert. 401

0 ~IEQUATIONI ~ RULES DINV
DISP Displays object In specified display line. 523

IPRGI -OSPLp.4 O!Se:-
C IPRGI CiRLp.2 Drsp -

~D~EG Double negate. 400
0 I5IIEQUATIONI ~ RUI:~S- - ~I>IEG

DO Begins Indefinite loop. 510

C IPRGI 1BRCH DO
~ no Types DO UNTIL END. 510

0 IPRGI ~B CW~ DO

DOERR Aborts program execution and displays 546
specified message.

C IPRGI ~p.3 IlllrRR --- ---
DOT Dot product of two vectors. 353

C IMTHI VECTR DOT -

730 Operation Index

N me. Key Descripllon Page
or Label Typ • Keys

DOT+ Tums on pbcels as cursor moves. 337

... j)RRW- p.2 ~OQJ+

... BUrD p.2 ~Q_T..!...

0 ~IGRAPHI p.2 O'or1-

oor Tums off pixels as cursor moves. 337

... j)~AFJ p.2 =l!Q1-~

... -RUT(j p.2 I1D4-
0 ~IGRAPHI p.2 POI-

DRAW Plots equation without axes. 292
.. . PLOTR DRAt·'

C I!!]lpLorl DRRIol

DRAW Plots equatlon with 8}(8S. 296
.. . PLOiR =-ORRW

0 I!!]lpLon DRAW:::

ORAX Draws axes. 319
. .. FLOTR p.3 DRAX

C I!!]lpLorl p.3 J:>Ri1W

OperaUonlndex 731

, K cr" i P
or Label Type, Keys

DROP Drops object In level 1; moves all remaining 64
objects down one level.

C ~IOROpl

DROPN Drops n objects from stack. 78

C IPRGJ ;;,$TK pg.2 DRPN
D~PN Drops all objects from stack at and below 71

pointer.

0 .. , 3f. l"K p.2 DRPN

DROP2 Drops first two objects from stack. 78

C IPRGI ST pg.2 DROP2

DSPL Selects PRG DSPL (program display)
menu.

0 IPRGI DSe.L_

DTAG Removes all tags from object 91

C IPRGI ~'roa~ pg.2 D-TAG

DUP Duplicates object In level 1. 65
C IPRG] S1K pg.2 J:)UP

DUPN Dupl1cates n objects on stack. 78

C IPRGI STK pg.2 DUPN

~D1JP~ Duplicates aU objects on stack from pointer 71
through stack level 1.

0 . , , "'T' ~ p.2 '-I)UPN

732 Operation Index

Name, Key De.c::rlptlon Page
or Label Type, Keys

DUP2 Duplicates objects In level 1 and le\lel 2. 78
C IPRGI ---.:.STK= pg.2 JlUP2:;;

dyn Dyne, force (.00001 kg·m/SZ).

U ~IUNITSI p.2 FORCE DYJi

D-+R Degrees-to-radlans conversion. 142
F IMTHI YECTR p.2 P-+R.o,

e Symbolic constant e (2.71828182846). 144

F rru f±il~
'ECFta Copies object in current level to command 71

line.

0 ... 1'S1 ECHO-

EDEll Returns contents of EO to command line 256
for editing.

~IPLOTI EDfm
0 ~ISOLVEI ECEQ

Operation Index 733

Name, Key Description Page
or lJIbel Type, Key.

IEDIT I When command line not active. caples 66
Isvsl-1 object Into command line and
selects EDIT menu.
When command line active, selects EDIT 68
menu.

o ~IEDtTI
Selects EDIT menu. 350
o ~[MATRIXI ~IEDITI
Returns equation to command line and 242
selects EDIT menu.
o ~IEaUATIONI ~IEDITI

Edits current stack level. 72

o ... "'STlC~IEDIT\

Copies selected equation Into command
line and selects EDIT menu.

~~ ~A ~I1JL
~ISOLVEICflT e:or~T

o ~IALGESRAI j:Q.LT

Caples subexpresslon Into command line
and selects EDIT menu.
o (5)IEauATIONI ~ EDtT

Caples selected matrix to MatrlxWriter
application.
o ~ISTAT! CAT ED IT

259

244

371

Edits current matrix cell. 351
a [[!]IMAmlxl EDIT'
Displays selected alarm and selects ALRM 450
(alarm) menu.
o I5lITIMEI CRT EDIT

734 Operation Index

Name, Key D criptlon Page
or Label Type, Key.

EDITE Copies statistical data In roAT to 368
MatrlxWrfter application.
0 ~[STATI EOru

EEX Types E or moves cursor to existing 47
exponent In command line.

0 [EExl

li~~ Selects UNITS ELEC (electrical) menu.
0 ~IUNlTsl p.2 EL:EC

erg Erg, energy (.0000001 kg·m2 /sl)
U ~IUNITSI p.2 EJiR~_ fffiG_

ELSE Begins ELSE clause. 496

C [PRGI ~C p.3 t::LSE

END Ends program structures. 494

C [PRGI ::-~p.2 m;n),

ENG Sets display mode to Engineering. 58
C ~IMOOESI E~

=eFlRC Selects UNITS ENRG (energy) menu.
0 ~tUNITSI p.2 . ~

tENTER I Enters contents of command line. If no 99
command line Is present, executes DUP
0 (ENTER I

Oper..Uonlnde. 735

Name, Key Description Page
or Label Type, Key.

lENTRYI Switches A1gebralc- and Program-entry n
modes.
0 ~IENTRYI

lEQUATIONI Selects EquatlonWrlter application.
0 ~IEQUATIOfJl

~ Adds selected equation to list In EO. 272

I5IIPLOTI ~al'~ Q+

~ISOLVEI ~AJ' EtH
0 reB lALGEBRA I ~--Qr

~~Q1- Removes the last entry from the list In EO. 272

I!i)IPLOTI ""-' __ - ~ EQ~

~ISOLVEI ~~ (5)4(H-*

0 ~IA[GEBRAI ~

EQ-+ Separates equation Into left and right sides. 91
C IPAGI OBJ E~ --

ERASE Erases PIer. 292
.. . PLOTR E~ASE

C ~IPLOTI ERASE

736 Operation Index

N me, Key Deacrlpllon Page
or label Type. Key.

ERRM Retums last error message. 542

C IPRGI ~T_R~ p.3 ERl(Jir

ERRN Returns last error number. 542

C IPRGI q-TRL p.3 FR&l:L

ERRO Clears last error number. 542
C IPRGI ~CARL p.3 ERRta

eV Electron volt, energy
(1.60219 x 10- 19 kg·m2 /Sl)
u ~IUNJTsl p.2 ENRG -- p.2 -~_ L " _ '""" ~

EVAL Evaluates object 98
C [EVALI

~EKE-C'= Sel.s alarm execution action. 444

0 (5)ITIMEI .ALRM: ~-X5m
Recalls alarm execution action to stack. 444
0 [5j[TIMEI ALRM ~ ~EC,-

£)tEes Shows a1arm-execution action. 450
~InMEI CAr E _EC,.S

0 ~IT1MEI ~tC9'

Operadonlndex 737

Name. Key Description Page
or Label Type,Key.

EXIT Exits Selection environment 399

0 ~IEauATIoNI ~ E~rT

Exits FCN (function) menu. 308

0 ... 'FeN EXI -
Exits ZOOM menu. 305

0 ... ZQP/1 EXI;I

EXP Constant e raised to power of object In 137
levell.

A ~~
EXPAN Expands algebraic object. 396

C ~IALGEBRAI EXP
EXPFIT Sets curve-fitting model to exponential. 377

C ~ISTATI p.4 "10Dl . Ei{f'B

EXPM Natural exponential minus 1 (ft - 1). 137

A IMTHJ ~_P p.2 ~~-

EXPR Highlights subexpression for which specifIed 247
object Is top leveJ function.

0 ~IEQUATIONI ~ E}{E~ 398

E~eJG Returns expression value or equation values. 265
0 . ,. SO..a¥R EXPR=

EXTR Moves graphics cursor to nearest extremum, 308
displays coordinates, and returns them to
stack.

0 ... FeN EXJR -
~E"" Replace power-product with power-of- 408

power.

0 BllleQUATIONI ~ RULES
~E A

738 Operlltion IndeJ[

Name, Key Deacription Page
or Label Type, Key.

i;.E ;() Replace power-of-power with powar- 408
product
0 ~IEaOAT10NI ~ RULE$ EO

F Farad, capacitance (1 A"·s"/kg·~.
U ~IUNITSI p.2 ECE"C ·:/F

DF Degrees Fahrenheit, temperature.
U ~IUNITSI p.2 IEMl\ ~-..

FftST Switches displaying equation names only 260
and names plus contents of equations.
0 ... ~1UL p2 FAST

fath Fathom, length (1 .82880365761 m).
U ~IUNITSI 4LENG p.3 J!ftI-H

fum Board foot, volume (.002359737216 mJ).
U ~IUNITSI ~Qr.:- p.4 - FBM

fc Footcandle. Illuminance
(.856564n4909 cd/m2)
U ~IUNITSI p.3 OGFrT Fe

FGN Selects GRAPHICS FCN (function) menu.
... RAW ~FCH

... -AUro -..£t._
0 ~IGRAPHI F'CN

OperaUonlndex 739

Name, Key Description Page
or Label Typ • Key.

Fe? Tests if specified flag Is clear. 516

IPRGI ~E-aT p.3 Fe?'""
C ~IMODESI p.3 FC~

Fe?C Tests if specified flag Is clear, then clears it. 516

IPRGI 'TES _ p.3 ~C?C
C ~IMOOESI p.3 ~(l

Fdy Faraday, electric charge (96487 A·s).
U [!iJIUNlTsl p.2 ~ELEC.::;;:: p . 2 ~y

fermi Fermi, length (1 x 10 -15 m).
U ~IUNITSI ~ G p.4 FERt11

ANDALARM Returns first alarm due after specified time. 454
C ~ITIMEI R p.2 f~l~QF

FINISH Terminates Kermit server mode. 615

C ~[iZQ] F'HI~S

FIX Selects Fix display mode. 58
C ~IMODESI : .: -

flam Footlambert, luminance
(3.42625909964 cd/m2)
U ~IUNITSI p.3 CnS HT FLAt1

740 O.,....on Index

Name, Key Description Page
or Label Type, Key.

FLOOR Next smaller Integer. 148
F lMIHl PAR~-S p.3 FtrOo~

~l ' Switches period and comma fraction mark. 58

0 ~ MOCes p.4 -~

FOR Begins definite loop. 506

C IPRG1 "BRett,:;: ~R
~~OR Types FOR NEXT. 506

0 IPRG1 -gRCi1 ~ ~aR

~ FOR Types FOR STEP. 508
0 IpRel "E-Rm1 [C!] ,fOR

F01<l:E Selects UNITS FORCE menu.
0 ~luNrTsl p.2 FO&~E

FP Returns fractional part of a number. 148

F IMTHl Fffi-t$ p.3 _ FP

FREE Replaces object In RAM with new copy of 649
object
C ~IMEMORYI p.3 FREE~

FREEZE Freezes one or more of three display areas. 344
C IPRGI =D_S£~p.4 FRErn 523

Operadonlndex 741

N me, Key Description Page
or Label Type,Keys

FS? Tests If specified flag Is se 516

[PRGI i!1!TEST p.3 ff"FiS~

C ([!JIMODESI p.3 - -SP->.==

FS?C Tests If specified flag Is set, then clears it. 516

IPRG] MTESti$p.3 ~ESo~

C Il:!JIMODESI p.3 F$2Q.,

ft International foot. length (.3048 m).
U ~[UNITSI L~NG'; o=:~~

ft"2 Square foot, area (.09290304 m2).
U ~IUNITSI -gRER- -fTN~

tr3 Cubic toot. volume (.028316846592 rn3).

U ~IUNITSI flfOL _ ::.FT"3

flUS Survey foot, length (.304800609601 m).
U ~luNrrsl =. ENG"p.3 iFJ-U'S~

ttls Feet/second, speed (.3048 mjs) .
U ~IUNITSI SPEED FT/S

ft.lbf Foot-poundf, energy
(1 .35581794833 kg· m2 js2).
U ~IUNITSI p.2 =-ENRG FT*-LB·

742 O on Ind ..

Name, Key De criplion Page
or Label Type, Keys

FUNCTION Selects FUNCTION plot type. 327

C ... PT 't' PE FUNC
F ex-) Displays value of function at K-vaJue 308

specified by cursor. Returns function value
to stack.

0 ... FeN p.2 FOO

F~ Plots first derivative of function, replots 309
function, and adds derivative to EO.
0 .. . FCN p.2 F' -

g Gram, mass (.001 kg).

U I5IIUNITsl NAS~ t:r=

ga Standard freefall. acceleration
(9.80665 m/sl).

U I5IluNITsl SPEED p.2 =bA
gal US gallon, volume (.003785411784 m3) .

U ~[UNlTsl VOL p.2 GRk

galC Canadian gallon, volume (.00454609w).

U ~IUNlTsl .JLQ~ p.2 GA[~

galUK UK gallon, volume (.004546092 mJ
).

U ~IUNITSI VOL p.2 GRCU

GET Gels element from array or list 91

C (PRGI OB'J p.4 GET

Operation Index 743

Name, Key Description Page
or Label Type,Keys

GETI Gets element from array or list and 92
increments index.

C IPRGI OBJ p.4 GETI
gf Gram-force (.OO980665 kg·m/s2) .

U [5JIUNITsl p.2 FORCE GF
GOA Superposes graphics object onto 343

graphics object.

C IPRGJ DSPL p.3 GOR~

GO - Sets top-to-bottom entry mode. 357

0 u:t]IMATRlxl GO",

GOot Sets left-to-right entry mode. 351

0 ~IMATRIXI GO-t

GRAD Selects Grads mode. 139

C [5JIMODESI p.3 GRAD

grad Grade, plane angle (.0025).

U ~IUNITSI p.3 ANGL GRAD
grain Grain, mass (.00006479891 kg).

U (5JIUNITsl 11 f1 S$ p.2 GRA I N

GRAPH Enters Graphics environment. 301

C [5IIGRA~HI

IGRAPHI Invokes scrolling mode.

[5JIEQUATIONI [5JIGRAPHI 229

... DRAW [5JIGRAPHI 303

.. , AUTO [5JIGRAPHI

0 [5] IGRAPHI [5JIGRAPHI

744 Operdon Index

Name. Key Description Page
or ubel Type, Key.

-GRDa Converts object into graphics object. 342
C IPRGI DSPl p.3 ~GRO

GXDR Superposes Inverting graphics object onto 343
graphics object.
C IPRGI DSPd".. p.3 ~GXOB

Gy Gray, absorbed dose (1 ml /SE'J. I

U ~IUNlTsl p.3 :;&all:;: ---=Gi'=='"
h Hour, time (3600 s).

U fBlluNrTsl TIME H

H Henry, inductance (1 kg·ml/Al.s2).
U [!i]IUNITsl p.2 :ECEC p.2 ~

• H Adjusts vertical plot scale . 319

C ... P1:0iR p.3 ~

ha Hectare, area (10000 ml).
U ~IUNITSI -ARE p.2 ~Flii

HALT Halts program execution. 484
C IPAGI ~U=~

..,.~- - 523

HEX Sets hexadecimal base. 208
IMTHI ...§8~E'; ~.~

C ~IMODESI p.4 jiE~

OperaUonlndex 745

Name, Key Description Page
or Label Type, Key.

HISTPLOT Draws histogram of data In WAT. 378

C [!i)ISTATI p,3 IitSIe
HISTOGRAM Selects HISTOGRAM plot type. 326

C .. . PTYPE p.2 .H1ST

HMS+ Adds in HMS format. 142

C [!i) ITIMEI p.3 HMS-.f 457

HMS- Subtracts in HMS formal 142

C ~ITIMEI p.3 Ht1~ 457

HMS-+ Converts from HMS to decimal format 142

e ~ITIMEI p.3 HMS~ 456

--+HMS Converts base 10 number to HMS 142
format.

e [5]ITIMEI p.3 ~HMS 456

HOME Selects HOME directory. 122

C ~tHOMEI

HOUR Sets alarm repeat interval to n hours. 445
0 l5lITIMEI l1CRIof - RP,

HOOR-
hp Horsepower, power

(745.699871582 kg·rn2 /S3).
u ~IUNITSI p.2 P"OI-lIL ~p

liR+ Increments time by one hour. 443

0 ~ITIMEI AOJST HR+
HR- Decrements time by one hour. 443

0 [!i)ITIMEI ADJST HF~-

746 Op ration Indo

Name, Key Description Page
or Label Typ , Keys

HYP Selects MTH HVP (math hyperbolic) menu.
0 lMIHJ jiVe-

Hz Hertz, frequency (1 Is).
U ~IUNITSI T'rnE >HZ

I Symbolic constant I. 144
F (g] ~ lesT!

ION Creates identity matriX of specified size. 360
C IMTHI M -- LDll-

IF Begins lest clause. 494

C IPROI BRea If"' ~
(5) rF' Types IF THEN END. 494

0 IPRGI BRCH (5) r

~ lF Types IF THEN ELSE END. 496

0 IPROI BRet-L,~ A~

Op4W.uo n lndea 747

Name. Key Description Page
or Label Type, Keys

IFERR Begins test clause. 543

C [PRO I '. B ReFlii p.3 ·IJ5Eg;R
~lFERR Types IFERR THEN END. 543

0 [PRGI ~RCH p.3 ~ 1-fiE~
~IFERR Types IFERR THEN ELSE END. 545

0 [PRol BRCH p.3 ([!]IEERR~

1FT IF-THEN command. 500
C [PRol ~. p.3 IF1:

IFTE IF-THEN-ELSE function. 500

F [PRol BRCH p.3 4' F:TE

1M Returns Imaginary part of complex number 166
or array.
F [MTHI PARTS M.

in Inch, length (.0254 m).
U ~[UNlTsl LENa .•••. , •••• ,1N

in"2 Square Inch, area (.00064516 rrtZ) .
U [5]IUNlTsl FIRER I N"2

In"3 Cubic Inch, volume (.000016387064 m3) .

U ~IUNlTsl \lDL .,INA 3

748 Operation Index

N me. Key Description P ge
or Label Type. Key.

INCR Increments value of specified variable. 513

C ~IMEMORYI INCR
INDEP Specifies Independent variable in a plot 294

... p ".ariB I tillER
C ~IPLOTI nlDEP

~nlDEP Recalls independent variable to stack. 293
... eEcrrR ~IRDEPm

0 ([!]IPLoTi ~ ND~P

lnHg Inches of mercury, pressure
(3386.38815789 kg/m·s2).

U ~IUNlTsl p.2 R- E £= p.2 .IHHU

InH20 Inches of water, pressure (248.84 kg/m·s2).

U ~IUNITSI p.2 PJf~~ p.2 INH20

INPUT Suspends program execution. displays 524
message, and waits for data.

C IPAGI CJ;RL p.2 1 HPu::r

HIS SwItches between Insert/ replace character. 68

0 ~IEDITI ~

Operadonlnde. 749

Ham Key Description Page
or l.JIbel Type,Keys

INV Reciprocal. 61
A [lli]

IP Integer part of real number. 148
F IMTHI eBRiS p.3 p-

lRZR Switches IR and Wire transmission modes. 617
0 [!i)[ZQ] SETUP" olR71L

IBECT Moves graphics cursor to closest 308
Intersection In two-functton plot, displays
Intersection coordinates, and returns
coordinates to stack.
0 ... ~CN " tSEC"L

ISOL Isolates variable on one side of equation. 389
C I5IIA[GEBRAI =tSJ)L

~[llQ] Selects I/O (Input/output) menu.
0 ffi][ZQ]

rr!J[ilQJ Selects Kermit server. 624
0 ~[!ZQ]

J Joule, energy (1 kg'nr' /~).

U ~IUNITSI p.2 -e'NRG J

K Kelvins, temperature (1 K) .
U ~luNITSI p.2 TEMP 1('

750 Operation Inde.

Name, Key Description Page
or Label Type. Keys

kcal KlIocalorle. energy (4186 kg· m2/s2)
U ffi]IUNITSI p.2 ENRIJ€ - I{ AL

KEE~ Clears all levels above current level. 72
0 . •. ;7:;> _[J\.c~ p.2 KEEf ",

KERRM Returns text of most recently-recelved 615
KERMIT error packet.
C ffi] [lZQJ p.2 ERR

KEY Returns number Indicating last key 540
pressed.
C IPRGI i CJRC?p·2 \ KEY;

KEYS Removes manu labels. 302
... tit' p.3 , I{E-;y-g;

... AUTO p.3 ~ S
0 [!i]IGRAPHI p.3 1<e: tS

kg Kilogram. mass (1 kg).
U ffi]IUNITsl MASS ~

KGET Gets data from another devIce. 615

C ffi][lZQJ KGE"f'

KILL Aborts all suspended programs. 484
C IPRGI CTRL tHl..L,

O~.uonlnd.x 751

N me, Key Description Page
or Label Type, Key.

kip K1lopound·force (4448.22161526 kg·m/sl).
U £!iJIUNITsl p.2 ~eE 71fIP:

km Kilometer, length (1 km).

U £!iJIUNITsl LENG p.2 Kf1

km"2 Square kilometer, area (1 krrr).

U ~[UNITSI :aRER p.2 ~_,.

knot Nautical miles per hour, speed
(.514444444444 m/s).

U ~IUNITSI SEEED KffOi-
kph Kilometers per hour, speed

(.277777777na mjs).
U £!iJIUNITsl SR-EED KPH"i

I Uter, volume (.001 m3
) .

U ~[UNJTsl C D '"i5i P·2 -k fj

LABEL Labels axes with variable names and 320
ranges .

... RLOTR p.3 LH&.~
C ~IPlOTI p.3 i::tllrSt

752 Operation Ind ..

Name, Key Description Page
or l.JIbel Type, Key.

LAB.EL Labels axes with variable names and 302
ranges.

... DRAW ifABE[1'

. • . ~fUTO LaBEL
0 ~IGRAPHI I!B·SEL

lam Lambert. luminance
(3183.09886184 cd/rol).
U ~IUNITSI p.3 ~lGHT p.2 LAM

LAST Returns previous argument(s) to stack.

C Must be keyed In.

LASTARG Returns previous argument(s) to stack. 64
C ~ILAST ARGI

[LAST CMDI Displays previous contents of command 77
line.

0 6llLAST CMol

ILAST MENUI Selects last displayed page of previous 57
menu.

0 [[t]ILAST MENUI

ILAST STACK I Restores previous stack. 74
0 ~ILAST STACKI

Operationlnde. 753

Name. Key Description Page
or b e l Type, K ys

Ib Avoirdupois pound, mass (.45359237 kg) .

U [!i]IUNrTsl MASS LS t

Ibf Pound-force (4.44822161526 kg· m/ft) .
U ffilluNITSI p,2 FORCE LBF

Ibt Troy pound, mass (.3732417 kg) ,

U ~IUNITSI :J1A,SS'" .•••• B1;;'7

LCo.-. Returns graphics object to stack 344
representing stack display.

C [PAnl OBPC-p.4 'UCD'*~

-LCD Displays specified graphics object In stack 343
display.

C [PRGI DSPL p.4 • L.:=CD

-CErlG Selects UNITS LENG (length) menu.

0 ffilluNITSI i.:ENG-

LEVEL Enters current level number Into level 1. 72

0 .. . 1-STK p.2 LEVEL

IlIBRARYI Selects LI BRARY menu.
0 ~IUBRAAYI

754 Operation Inde.

Name. Key D .crlption Page
or Label Type. Key.

UBS Usts alilibrarles attached to current 653
directory.

C ~IMEMORYI p.2 "L3fBS

LiGHT Selects UNITS UGHT menu.

0 ~IUNITSI p.3 L..:"1Glfli

UNE Draws line between coordinates in levels 1 339
and 2.

C IPROI ' [)SP~ LINE
(LINE Draws line from mark to cursor. 337

... ",-~A~C p·2 LIN~

... =AOTO=p.2 t:H~E'"

0 ~IGRAPHI p.2 l..JNE
ruNE Returns best-fit line for data in mAT 376

according to selected statistical model.

C ~ISTATI p.3 };L I N~

UNFIT Sets curve-fitting madelIa linear. 377

C ~ISTATI p.4 rrn~ ~ W

LlST-t Returns list elements to stack.

C Must be typed In.

-UST Combines specified objects into list. 92
C IPRGI ,QEQ +12~' ::;&1'

OperaUon lndex 755

Name, Key Description Page
or Label Type, Key.

"LIST Combines objects trom level 1 to current 71
level into a list.

0 .. . ~1"& +LIST

1m Lumen, luminous flux
(7.95n4715459 x 10-2 cd).
U ~IUNlTsl p.3 LI GHT LM

LN Natural (base e) logarithm. 61

A ~~
LNPl Natural logarithm of (argument 1). 138

A IMTHI R'r'P p.2 LNPl

LOG Common (base 10) logarithm. 137

A ~llOGI

LOGFIT Set curve-f lttlng model to logarithmic. 3n
C ~ISTATl p.4 MODL LOG

LA Calculates linear regression. 376

C ~ISTATI p.4 LR

lx Lux, illuminance
(7.95n4715459 x 10- 2 cd/ m2).
U 8:i)luNlTs l p.3 L.JCHT L.X

Jyr Ughr year, length
(9.46052840488 x lOiS m).

U ~JUNITSI ENG p.2 _L-Y~

L* Replace Jog-of-power with product-of- 408
log.

0 ~IECUAnONI ~ fWr-ni L*

LO Replace product-of-log with I09-of- 408
power.

0 [!i] IECUATIONI ~ RU LES L'\:-)

756 Opendlon Ind_

Name, Key De.crlption Page
or Label Type, Keys

"'"
Merge-factors-left. 406 -
0 ~IEaUATIONI ~ ReI.: S +M

~ +M Executes +M until no change In 410
subexpresslon.

0 ~IEaUATIONI ~ ~jJl!~S

~ ~.

-'t1;t t;Qi Merge-factors-nght. 407
0 ~IEa[jATIONI ~ RUL'tS -M~

[[!]JIf+ Executes 11- until no change In 410
subexpresslon.
0 ffillEQUATIONI ~ ULES
~ M.y-

m Meter, length (1 m).

U ffillUNITSI 1EEb!~ d'1_

m"2 Square meter, area (1 m'!).

U ~IUNITSI IR'EA M~-

m"3 Cubic meter (Stere), volume (1 m~) .

U ~IUNITSI L . H~3
MANT Mantissa (decimal part) of number. 148

F IMTHI ~"R£S p.3 M'ANT

Op4Wadonlndex 757

N me. Key Descriplion Page
or ubel Typ I K y.

J1AR~ Sets mark at cursor position. 302
. .. '1>RAW p.3 MARK
... AUTO p.3 MARK

0 (5JIGAAPHI p.3 MARK
MFtSS Selects UNITS MASS menu.

0 (5JIUNITsl M"R-S-S'"

tMATCH Match-and-replace, beginning with 415
subexpressions.
C ~IALGEBRAI p.2 ::fl1M

~MATCH Match-and-repiace, beginning with top- 415
level expression.
C (5JIALGEBRAI p.2 ';:-~tAT

MATR Selects MTH MATR (math matrices) menu.
0 IMTHI ~1fiT

IMATRlxl Selects Matrtxwrtter application.
0 [[!] IMA TRIXI

MAX Maximum of two real numbers. 148

F IMTHI BARTS p.2 MA >G'

758 Operldlon Ind.ll

Name. Key Description Page
or Label Type. Key.

MAXA Maxlmum machine-representable real 144
number (9.99999999999E499).
F IMTHI PA~LS p.4 ltAXR

MAXE Maximum column vaJues In statistics matrix 374
InWAT.
e ffijlsTATI p.2 f1R~

MEAN Calculates mean of statistical data In WAT. 374
e ffijlSTATi p.2 .t1gea

MEM Bytes of available memory. 101

e ~IMEMORVI MEM
ffijlMEMORVI Selects MEMORY menu.

0 ~IMEMORVI

[(!)IMEMORVI Selects MEMORY Arithmetic menu.
0 ~IMEMORYI

MENU Displays bunt·ln or custom menu.
[(!)IMODESI -11EMU 213

c IpAGI.CIRt.. p.2 .11,g/jU 534

O~onlndex 75'

Name, Key Description Page
or Label Type, Key.

MERGE Merges plug-In RAM card memory with 643
main memory.

C ~!MEMORYI p.3 J1SR1f'

I" Micron. length (1 x 10-6 m).

U ~IUNITS] lEN~- p.4 - 1J:

MeV Mega electron volt. energy
(1.60219 x 10-13 kg·ml/sl).

U ~IUNITSI p.2 ; ENRIl p.2 filtV

mho Mho, electric conductance (1 A2.~ /kg·m2).

U [!iJ!UNITSI p.2 ElEe p.2 $0

mi International mile. length (1609.344 m).

U ~!UNITS) LENG p.2 =m=-
mi"'2 International square mile. area

(2589988.11034 ml).

U [!iJIUNITS] .fiRE'Ff"'p.2 1,11,2

mil Mil. length (.0000254 m).
U [!iIlQRIT§] lENG p.4 .. J,!JL~

min Minute. time (60 s).

U (5)!UNITS) ' I:nt~ ~M IN

MIN Minimum of two real numbers. 148
F IMTHJ PBJUS p.2 -MtH ·

760 ~onlnd ..

Name, Key OeserlpUon Page
or Label Type~ K ys

MIN Sets alarm repeat Interval In minutes. 445
0 ~ITIMEI ALRH PT HIN

MINA Minimum machine-representable real 144
number (1.00000000000E4").
F IMTHI e.BRIS p.4 MINR~

HIN+ Increments system time by one minute. 443
0 ~ITIMEI R[)JST MIN ...

M I N.:- Decrements system time by one minute. 443
0 ~ITIMEI R[)JST M1N-

MINE Finds minimum column values In statistics 374
matrix In WAT.
C ~ISTATI p.2 MIl'll:

miUS US statute mile, length (1609.34721869 m).

U ~IUN(TSI LENG p.3 MIUS
miUS"'2 US statute square mile, area

(258998.47032 m2).
U ~IUNITSI RREA- p.2 MIUS~

mm Millimeter, length (.001 m).

U ~IUNITSI LENG 11M

mmHg Millimeter of mercury (torr). pressure
(133.322368421 kg/m·s2).
U (5)IUNITSI p.2 PRES-S- l1l1H

Op4WaUonlnde. 761

Name, Key Description Page
or Label Type. Key.

ml MUllllter (cubic centimeter), volume
{1 x 10- 6 m~ .

U ~IUNITSI ~O~ p.3 -!1"'-
fit!.: .1 Switches multi-line and slngle-line display. 221

0 ~IMODESI p.2 life
MOD Modulo. 148

F IMTHI PA~ p.2 MOD-'

~IMODES I Selects MODES manu.
0 ~IMODESI

~IMODESI Selects MODES Customlzation menu.
0 ~IMODEsl

NataL Selects STAT MODL (statistics model) 377
menu.
0 ~ISTATI p.4 MODL

mol Mole. mass (1 mol).
U ~IUNITSI iliHS'S- p.3 110L

Mpc Megaparsec, length
(3.08567818585 x 10ZZ m).
U ~IUNJTSI ~~p.2 t1PC_

mph Miles per hour, speed (.44704 m/s).
U ~IUNITSI SP-EIID ~'fPR"'"

Op4W.uon Index

N me, Key Description Page
or Label Type, Keys

IMTHI Selects MTH (math) menu.
0 IMTHI

MI'D Switches date display format. 442

0 ~lnMEI ~S = ~I'D

m/s Meters per second, speed (1 m/s).
U ~IUNITSI SPEEO .J1,lS

N Newton, force (1 kg·m/SZ).
U ~IUNlTsl p.2 FORC:"E tq

NE Returns number of rows In mAT. 383

C ~ISTATI p.S HI

NEG Negate. 134

A (+/-1

~.w Takes algebraic or matrix trom stack,
prompts for name, stores named algebraic
In EQ. or named matrix In mAT.

~(PLoTI ~ 257
~ISOLVEI NEW

0 ~ISTATI -NEW 368

NEWOB Oecouples object from list or variable
name.
C [5JIMEMoRVI p.2 T'fmO

NEXT Ends a definite-loop structure. 502
C (PRGI BFfCIrp.2 ~HEXT 506

Op4Wadonlndex 763

Neme. Key Description Page I

or Label Type. Key.

liE~T Displays but does not execute next one or 484
two objects In suspended program.

a IPRGI C1RL= rIEL
nml Nautical mile, length (1852 m).

U ~IUNITSI ·,LENG p.3 Nt'l

HQHE cancels alarm repeat Interval and returns 445
to TIME ALRM menu.

a ~ITIMEI 8LRM'" ~+ - UNt.

NOT logical or binary NOT.

(PRGI J£§~ 493
F IMTHI BffSE: p.4 ~OT 210

NUM Returns character code of first character in 92
string.

C IPAGI as.) p.3 - NUM

I .. NUMI Evaluates algebraic to number. 127

C ~I .. NUMI

NJrEG! Rotates list of equations In EO.
... SOL~R NXEQ 272

0 . .. FCJif p.2 NXEQ 309

INXTI Selects ne~ page of menu. 56
0 INxrl

764 OperaUonlnd ••

Name, Key DescrlpUon Page
or Label Typ • Key.

*,OBJ Selects PRG OBJ (program object) menu.

0 IPRGI 090

OBJ- Returns object components to stack. 93
C I PRG I -~a..B..!.L !!laJ~

OCT Sets octal base, 208

IMTHI B'FrS mrCl0'
C ~ ~10DES p.4 ~ OOn:;

IOFFI Turns calculator off. 25
0 ~IOFFI

OFF Tums calculator off. 540
C IPRGI :;;.Q;,rRL:* p.3 =O£L

OLDPRT Remaps HP 48 character set to match HP 603
82240A Infrared Printer.

C ~IPRINTI p.2 ct:n.ae

IONI Turns calculator on. 25
0 IONI

O~aUonlnd.K 765

N8me. Key D acrIption Pag
or label Typ • K y.

OPENIO Opens serial port. 615
C ~l!ZQ] p.2 OPEN I

OR logical or binary OR.
IMTHJ ~B.SE p.4 D1L- 210

F IPReJ - 'f- O~ 493

ORDER Rearranges VAR menu In order specified in 113
list.

C ~IMEMORYI ORDER

ORQER Puts selected equation at top of Equation 260
Catalog list.

~IPLOTI CAL p.2 ORDER
~ISOLVEI ~~ar.:.. p.2 QRDER

0 ~IALGEBRAI p.2 ORDEI<
Puts selected statistical data at top of 372
Statistics Catalog Jist.
0 ~ISTATI CAT p.2 ORDEB

OVER Duplicates object in level 2 In level 1. 79

C IPRGl ~ST -OVER

oz Ounce. mass (.028349523135 kg).
U ~IUNITSl MaSS O~

766 O..-atlon Ind_

Name. Key Description Page
or ubel Typ • Key.

ozfl US fluid ounce, volume
(2.95735295625 x 10- .5 1'J'rl).
U [5J[UNITsl ~oa p.3 W2EL

ozt Troy ounce, mass (.031103475 kg).

U ~[UNITSI Mff~p.2 ~&-r

ozUK UK fluid ounce, volume
(2.8413075 x 10-s m3).

U ~luNlTsl ~{j~ p.3 ~~

P Paise, dynamic viscosity (.1 kgjm's)

U [5jIUNlTsl p.3 ~~ ~

Pa Pascal, pressure {1 kg/m'~

U ffillUNITSI p,2 PRSSS =:.~~~ ='

PARAMETRIC Selects PARAMETRIC plat type. 327
C ... P'k'fPE l'FlRFr

PARITY Selects one at 5 possible parity settlngs. 617

C ~fiZQ] SSTIJP P-ARI T

EBlU~ Selects MTH PARTS menu.

0 lMTHI p-Rlns

PATH Returns list contaInIng path to current 120
directory.

C ffillMEMORVI PATH

Operadonlnde. 767

Ham. K ey o acription Page
or lJIbel Typ t Key.

pc Parsec, length (3.08567818585 x 1016 m).
U ~IUNITSI -L"E~ p.2 ""

--
-

PDIM Changes size of Pier. 325
... ~ p.3 ITPl)-lffl

C [f!JlpLOr] p.3 PD,tMt
Ii:~rp Dl M:: Recalls size of PIer to stack. 319

. . . P1:CkTR p.3 ~~ W
0 ~IPLOTI p.3ll!l:pnm~

pdl Poundal, force (.138254954376 kg·m/sl).
U ~IUNlTsl p.2 EOIiCE .JW L=

PERM Permutations. 147
F IMTHI JmJl~ ~~l!tl

PGDIR Purges specified directory. 123

C [5]!MEMORVI p.3 PGj)lR

ph Phot, Illuminance (795,774715459 cd/rrf)
U [5]IUNITSI p.3 r:=:I1tFr-r -~-rr=

761 Operllllon Index

Name, Key Description Page
or Label Type, Keya

PICK Copies object In level n to level 1. 79

C (PRG) STI([Rt"CK

Pl~~ Copies object In current level 10 level 1. 71

0 ... »n JU ~ .~
PICT Returns PIer to level 1. 341

C (PRe) DSPL PlOT,·:·

PIXOFF Turns off specified pixel In PIer. 339

C (PRGI DSPL p.2 PI>.!OF

PIXON Turns on specified pixel in PICr. 339

C (PRG) =I)SPL p.2 P 1 >:0"1'1

PIX? Tests whether specified pixel In Plcr is on 339
or off.

C (PRG1 =rrs:!!C p.2 lffX?f

pk Peck, volume (.0088097675 mJ) .

U ~(UNITS) ",yOL p.4 t~

PKT Sends KERMIT commands to a server. 615
C ~[iZQJ p.2 p~

Operadonlndex 769

Name, Key Description Page
or Label Type,Keys

IPLOTI Selects PLOT menu.

0 [!i)lpLorl

Selects PLOT PLOTR menu.

0 {[!]IPLorl

PLOT Makes the selected entry the current 371
statistical matrix and displays the third
page of the STAT menu.

0 ~ISTAn CAT PLOT

PLOTR Selects PLOT PLOTR menu.

~[PlOTI PLOTR

~lpLon CAT PLOTR

[[!JIALGEBRAI PtOTR

0 ~ISOLVEI CA T PLOTR

PMAX Sets upper-right plot coordinates.

C Must be typed in.

PMIN Sets lower-left plot coordinates.
C Must be typed in.

IpOLARI Switches rectangular and polar 158
coordinates.

0 [[!JlpOLAAI

POLAR Selects POLAR plot type. 327
C ... PT,(PE POL Ar<:

n o Operauon Indu

Name. Key Descrlplion Page
orubel Type. Key.

POS Returns the position of substring In string 93
or object In list.
C IPRIlI ~B~ p.3 .,;,aClS':-

E'-Q~R Selects UNITS POWR (power) menu.
0 ~IUNlTsl p.2 e::PO~RS

PREDV Predicted value.
C Must be typed In.

PREDX Returns predicted value for independent 376
variable, given value of dependent variable.
C ~ISTATI p.4 PREDX

PREDY Returns predicted value for dependent 377
variable, given value of Independent
variable.
C ~IST"'TI p.4 PRED'f

~E.SS Selects UNITS PRESS (pressure) menu.
0 ~tUNITSI p.2 &Pl<£S

I.!iltPREVI Selects previous page of menu. 56
0 ~IPREVI

IC!JIPREVI Selects first page of menu. 56
0 ~tPREVI

OperaUonlndex 771

N me-, K ey

or Label

PRLCD

PROMPT

PRST

PRSTC

Description
Type, Keys

Selects PRG (program) menu.

o IPRGI

Selects PRINT menu.

o ~IPR'NTI

Prints display.

C ~IPR'NTlPRf$PP

o Simultaneously press IONIIMTHI

Selects MATH PROS (probability) menu.

o IMTHI {PEOS

Displays prompt string in status area and

halts program execution.

C IPRGI ' PTRLT p.2 SPROJ1Y

Prints all objects on stack.

C ~IPRINTI rfEB.~iEd

Prints all objects on stack in compact

format.

C ~IPR'NTI RRSTJ~

T72 OperatIon Index

Page

603

521

603

603

Name. Key De.scripUon Page
or Label Type, Key.

PRVAR Prints name and contents of one or more 603
variables Qncludlng port names).
C I!:ilIPRINTI PRlI1'iR

PR1 Prints object In level 1. 603

~IPRINTI ~Rak
c ~IPRINTI

psi Pounds per square Inch, pressure
(6894.75729317 kg/m' s2) .

U [5]IUNITsl p.2 PR § ~-&l-=-

pt Pint, volume (.000473176473 m;J).

U [5]IUNITSI _Y~OL p.2 § RT

IU/(PE Selects PLOT PTYPE menu.

[5]IPLOTI PrB-H
... PLOTJ< p.2 PI-

0 ~IPLOTI p.2 PTVPE

PURGE Purges one or more specified variables. 114

C ~lpURGEI

IpURGEI Purges one or more specified variables. If 114
only one untagged variable specified,
saves previous contents for recovery by
LASTARG.

0 I!:illpURGEI

O~onlndex 773

N.me. Key D .criplion Page
or lJlbel Type, Key.

~ac Purges selected equation. 260

~ISQLVEI CFI -:- p.2 P-tJRG=
~IPLQTI caL p.2 :!P---UR~

0 !i:!J1ALGEBAAI ~c:ay- p.2 'PtIRG
Purges selected statfstlcal matrix. 372

0 ~ISTATI CA~ p.2 PURe.
Purges selected alann. 450

~ITIMEI eAr ~tJRG'=
0 ~ITIMEI ;RURGE

PUT Replaces element In array or list. 94

C lPRGI ~O~ p.4 P-.llr=

Pun Replaces element In array or list and 94
Increments Index.

C IPROI ~a.: ~ p.4 1:1't. _

PVARS Returns list of current backup objects and 647
libraries within a port.
C ~IMEMORYI p.2 PVRRS

PVIEW Displays PleT with specff led pixel at 342
upper-left comer of display.

C [PRGI ,=JAS~L fDLIEW.

774 Operation Index

Nam • Key O.scription Page
or label Type. Key

PWRFIT Set curve-fitting model to Power. 377

C [5JISTATJ p.4 MOI>J.,; ~ t,;JR
PX-C Converts pixel coordinates to user-unit 324

coordinates.

C IPRGI '"DSPt; p.2 X!C

-to Converts number to fractional equivalent 134

C ~I .. QI
QUAD Flnds solutions of first or second order 391

polynomial.

C I!ilIALGEBRAI QUAil
QUOTE Returns argument expression unevaluated.

F ~IALGEBRAI p.2 QUOT
qt Quart, volume (.000946352946 m3) .

U ~IUNITSI VOl- p.2 I1T
-a,.. Calculates and compares quotients ot 134

number and number /ff.
C [!i)IALGEBRAI p.2 Q,r

r Radian, plane angle (.1591549343092).

U ~IUNITS I p.3 "all R
R Roentgen, radiation exposure

(.000258 A-s/kg).

U [5JIUNlTs l p.3 ~1\ - p.2 R

Operation Index 775

Name, K Y Desctiption Page
or Label Type, Keys

oR Degrees Rankine, temperature.
U ~IUNITS I p.2 E1'1P "': R

rad Rad. absorbed dose (.01 rri'-/51) .
U ~IUNITSI p.3 _RtlD RAI>:"

RAD Sets Radians mode. 139

C ~IMODESI p.3 -R8D
IRADI Switches Radians and Degrees mode. 30

0 ~IRAOI

:::RAD Selects UNITS RAD (radiation) menu.
0 ~ IUNITS I p.3 RS ~

RAND Returns random number. 147

C IMTHI PJWB R'AI'ID

RATIO Prefix form of / used by EquatlonWriter
application.
F Must be typed In.

776 Operation Inde.

Ham t Key DUCT'ptlon Page
or Label Type, Key.

RCEQ Returns equation In EO to level 1. 256

~~ ~=S='lEQ-
~ISOLVEI ~ StEQ
... PL01:R ~ l:)RAW=-

C ~IPLOTI ~ .. P..R~H...

RCL Recalls object stored In specified variable 110
to stack.
C ~IRCLI

IRCLI Inserts algebraic from level 1 Into 246
EquatJonWriter equation.
0 ~IRCLI

RCLALARM Recalls specified alarm from system alarm 453
list.
C ~ITJMEI A~RM p.2 RCLAL

RCLF Returns binary Integer representing states 518
of system flags.
C ~IMOOESI p.2 RCLF

RCLKEYS Returns list of current user-key 220
assignments.
C ~IMOOESI .:RC~

RCLMENU Returns menu number of current menu. 535
C ~IMOOESI p.2 ~J:t'C

O~onlnd.x 777

Name, Key Description Page
or Label Typ • K y.

RCu.:: Recalls current statistical matrix in WAT. 368
C ~ISTATI~ STO~

RCWS Recalls binary Integer word size. 207
C IMTHI BASE fRCWS-

rd Rod. length (5.0292100584 m).
U (5}IUNITSI LEN p.3 -':-RDF ~

RDM Redimensions array. 360

C IMTHI Mara,. RDt1

RDZ Sets random number seed. 147

C IMTHI PRQB RDZ

RE Returns real part of complex number or 166
array.
F IMTHI PARTS RE

RECN Wait.s for stack-specified data from remote 615
source running Kermit software.
C [5J [!lQ] pol R~Crr

RECV Walts for sender-specified data from 614
remote source running Kermit software.
C [5J[iZQI :rev ...

778 Operation Ind • •

Name, Key Description Page
or ubel Typ • Key.

rem Rem, dose equivalent (.01 rtr-/s2).
U ~IUNITSI p.3 ~JUi[) REN

REPEAT Begins REPEAT clause. 512

C [PAGI j3RCIr p.2 REPEA

REPL Replaces portion of object with another like
object.

[PAGI OBJ p.3 ;:R'E~L- 95
C [PAGI [tSR~ p.3 ~R£pL 343

REPL Replaces portJon of PICTwith level-1 341
graphics object.

... DRAW p.3 R"El'

. .. -sure p.3 R£PL
0 ~IGAAPHI p.3 REEJ;:

s:EEr Replaces specifIed subexpresslon with 247
algebraic from stack.

0 ~IEaUATIONI ~ REPL 398

Operation Index 779

Name, Key Description age
or Label Type, Key.

RES Sets spacing between plotted points. 321

... PkOTR p.2 rRES ~

C ~IPLOTI p.2 ~H

~ RES~ Recalls spacing to stack. 318

... PLOTR p.2 tJ:tJ ES
0 ~IPLOTI p.2 ~ R"ES

RESET Resets plot parameters In PPAR In the 323
current directory to their default states and
erases and resizes Ple T.

. .. PLOTR p.2 I<~~t't

0 ~IPLOTI p.2 ~

RESTORE Replaces HOME directory with backup 648
copy.

C ~IMEMORYI p.3 RE&TD

780 Operation Inde.

Name, Key Description Page
or Label Type, Keys

IREVIEWI Displays stallstlcal data In mAT.
a (5)ISTATI ~IREVlEwl 368
Displays current equation and plot
parameters .

... PLOTR ~IREVIEWI 294

[[!)IPLOTI ~lREV1EWI

... :J>Rft_ . ~IREVIEWI

... FWT ~IREVIEWI

a I51IGRAPHII51IREVIEWI 303
Displays current equation.
0 ~ISOLVEI ~IREVIEWI 256

~IPLOTI ~IREVIEWI 290
Drsplays current equation and values of 265
SOLVR variables .
0 ... $1) _ ~IREVlEWI

Displays unit names corresponding to 191
selected menu.
0 ~rnH!IID ... ~IREVIEWI
Displays pending alarm. 439
0 ~ITIMEI ~IREVIEWI

In other menus: Usts operation names and 112
types.
0 ~IAEVIEWI

O~nlnd.x 781

Name, Key Descrtpllon Page
or Label Type, Key.

Rl Rotates left by one bit. 211

C IMTHI 1iaS~ p.2 Rl _

RLB Rotates left by one byte. 211

C IMTHI ~S(; p.2 :&DC
AND Rounds fractional part of number Of name. 148

F IMTHI PARtS p.4 RHt>
RNRM Calculates row norm of array. 360

C IMTH! l'tATR" p.2 RNRM
ROLL Moves object In level (n + 1) to level 1. 79

C (PRel sr~ jtQ~,

~QLL Rolls object In current level to level 1. 71

0 .. , ~.s~~~

ROlLO Moves object In level 2 to level n. 79

C (PRe] STK ROLLI>

RD~j) Moves object In level 1 to current level. 71

0 .. . "ffSiIC ROLLI>

ROOT Solves for unknown variable In equation. 256

C ~ISOLVEI ROOT

782 Operation Inde.

am ,Key Description Page
or label Type, Keys

-FUH1I: Moves graphics cursor to Intersection of 30B
function plot and x-axIs, displays value of
root, returns value to stack.

0 ~IGRAPHI FeN @ROCLt

ROT Moves obJect In leval 3 to leval 1. 79
C IPRGI l,S;;T~c.; rao:r=

+-ROW Inserts row of zeros at current row. 351

0 ~IMA'fAlxl p.2 =- ow::
-RO~I Deletes current row. 351

0 ~IMATRlxl p.2 ~ROW=

RPT Selects TIME ALRM RPT (alarm repeat)
menu.

0 ~lTIMEI RLRt1 ::R~.r::

RR Rotates right by one bit 211

C IMTHI RSE"'p.2 "" .R · i

RRB Rotates right by one byte. 211
C IMTHI B'ASE~" p.2 .&BiL

RSD Calculates correction to solution of system 362
of equations.

C IMTHI J'tBIR RSD

RULES Activates RULES transformation menu for 398
specified object
0 ~IEaUATIONI ~ RI.!L£S

Operationlnde. 783

Name, Key Description Page
or Label Type, Keys

A-B Real-to-blnary conversion. 210

C IMTHI ~p.2 R-lt8

R-+C Real-to-complex conversion. 95

C IPAGI J,K;U~ - pg.2 IU-c-
R-O Radians-to-<:tegrees conversion. 142

F IMTHI 'lECTR p.2 "'" -}l}"

':&~ Selects Polar/Cylindrical mode. 171

[MIffJ 'i ~I R R".lZ:
0 ~ IMODESI p.3 R.la

R~.! Selects Polar/Spherical mode. 171

IMTHI VEC1R R,u
0 ~ IMODESI p.3 R.!.! I

s Second. time (1 s).
U ~IUNrTsl JJJ1E s=

S Siemens, electric conductance
(1 A2·sl/kg·m2).
U ffi]IUNrTsl p.2 ElEC p.2 S

784 Operation Index

N me, Key DeBcriptJon Page
or Label Type,Key.

SAME Tests two objects for equality. 492
C IPRGI TEST t ~SRME=

sb StUb. luminance (10000 cd/ml)
U ~IUNITSI p.3 IQHT S8~

SBRK Sends serial break. 633
C [!i)(!lQ] p.3 ~a~

SCALE Sets scale of PLOT axes. 295
... PL.OTR p.2 SC-FtL~

C ~IPLOTI p.2 SCALE

~SCALE Recalls scale to stack. 294
... EJ..l'T p.2 Ii!) ~CA~E

0 Ii!)IPLOTI p.2 ~ SllflLE;;

SCATRPLOT Draws scatter plot of statistical data in 379
WAT.
C ffillsTATl p.3 S~B!B;

SCATIER Selects SCATIER plot type. 328
C ... f};:rltliE p.2 SJ::R~rJ

OperaUonlndex 785

Name', Key Description Page
or Label Type,Keys

SCI Selects Scientific display mode. 58

C (5JIMODEsl SCI

SCLE Autoscales data in roAT for scatter plot.

C Must be typed in.

SCONJ Conjugates contents of variable. 116

C ~IMEMORYI p.2 SCOH

SDEV Calculates standard deviation. 374

C (5JISTATI p.2 SDE \,I

SEC Sets alarm repeat interval to n seconds. 445

0 ~ITlMEI ALPt'l F.:PT ::;EC

SEC+ Increments current time by 1 second. 443

0 (5JITIMEI AD . ..JST SEC+

::;EC- Decrements current time by 1 second. 443

0 ~ITlMEI AD . ..JST SEC-

SEND Sends contents of variable to another 614
device.
C ~[!ZQJ SEt'l[:O

SERVER Puts HP 48 into Kermit Server mode. 614
(5JUZQ] SEF.:'·.·'

C ~UZQ] .

786 Operation Index

N.me. Key Description Page
or ubel Typ ,Key.

~:I Selects TIME SET menu.
0 ~ITIMEI SEr

SET Sets a/arm. 445

0 ~ITIMEI ALRM; S ET

SETUP Selects I/O SETUP menu.
0 ~[iZQ] mDP

SF Sets specified flag. 516
(PRGI I'E-Sl p.3 Sf

C lC!lIMODEsl p.2 SE'='

SHOW Reconstructs expression to resolve implicit 394
variable name.
C ~IALGEBRAJ =SROW

SIGN Retums sign of number. 149

F IMTHJ PART1> SEN'

SIN Sine. 140

A ISINJ

SINH Hyperbolic sine. 137

A IMTHJ :EYP Sl bIB =

Op4Wationlndex 787

Neme, Key Decription Page
or Label Type~ Keys

SINV Replaces contents of variable with Its 116
Inverse.
e ~IMEMORYI p.2 SHIV

SIZE Finds dimensions of list. array. string.
aJgebralc object. or graphics object.

(PRG\ OB.r p.3 Sf'ZE 95
e IPRGI OSPL p.2 SlZE 342

+SKIP Moves cursor left to next logical break. 68

~IEDITI ~ SK I P
0 ... TOn- ~SKIP

SKIP~ Moves cursor right to next logical break. 68
[!i) I EDIT! S Jot lf~

0 ... EDIT SK!P+

SL Shifts left by one bit. 211
C IMTHI g-R"SE p.3 SL

788 Operation Inde.

Name, Key DeserlpHon Page
or ubel Type. Keys

SLB Shifts left by one byte. 211
C (MTHI BRS~p.3 ~~

StJOru;: Calculates and displays slope of function at 30e
cursor position, returns slope to stack.
0 ... 2nK ~L.OP£

slug Slug, mass (14.5939029372 kg) .
U !5JIUNITSI MSS 'SL.Ue

SNEG Negates contents of variable. 116

C [[!]!MEMORVI p.2 SNE:G

(SOLVEI Selects SOLVE menu.
0 IElISOLVEI

SOLVR Selects SOlVA menu.
IElISOLVEI SOJ..VR
!5JISOLVEI ___ J::~ SOl. .. VR
~ISOLVEI

(5]1 PLOT I Z,C'RT';;; SO£.VR
0 [[!]IALGEBRAI SOLYR

(spcl Types a blank space in command line.
0 Ispcl

SPE~D Selects UNITS SPEED menu.
0 IEl(UNITSI SPf;E(>

Operation Index 789

Name. Key Description Page
or Label Type. Keys

sa Returns square of level-1 object. 134
A ~~

SR Shifts right by one bit 2"
C IMTHJ eRSrp.3 ~~R

sr Steradian, solid angle
(7.95774715459 x 10-2).

U ~IUNITSJ p.3 ,Bli~ _ SR--

SRB Shifts right by one byte. 211

C IMTHI -SFlSr::f p.3 SR8

SRECV Reads specified number of characters from 633
I/O port.
e ~[!ZQ] p.3 SR~'¥ .

SST" Single-steps through suspended program. 484

0 IPRGJ CTRb ~S

~sn, Single-steps through suspended program 486
and Its subroutines.
0 IPRGI CT~L 1551:: ~

st Stereo volume (1 mJ).
U ~IUNITSJ VOL -sr

St Stokes, kinematic viscosity (.0001 ml Is)
u ~IUNITS J p.3 VISe' S1"

790 Operation Inde.

Name, Key Description Page
or Label Type. Keys

START BegIns definite loop. 502
C IPRGJ BRC'F1 $-TA

~

~SJARI: Types START NEXT. 502
0 IPRGI ¥'BRCH ~S-TAR.J'ii

([t)START Types START STEP. 504
0 IPRGI -gRmf'~ III :'If

~(STATI Selects STAT (statistics) menu.
0 [5JfillIl

~lsTATI Selects page 2 of STAT menu.
0 ~ISTATI

STO Selects Standard display mode. 58
C [5JIMODEsl -_SoT

STEP Ends def Inlte loop_ 504
C IPRGJ SROH p.2 ~mEJ? ~ 508

OperaUonlnde. 791

Name. Key Description Page
or Label Type, Keys

STEa Stores laval 1 equation In EO. 267

~IPLOTI ~iEtt
. . . PLOTR £!i)'T>:RA~
[£tJIPLOTI ~~DRlIW.

C ~ISOLVEI ~I'L

STIME Sets serial transmit/receive timeout. 633

C ~[!ZQ] p.3 STHlE

STK Selects PAG STK (program stack) menu.

0 IPRGI C;:ST4CE

STT< Switches Last Stack recovery on and off. 221

0 ~IMODESI p.2 .~

ltS,.T!C Selects Interactive Stack.
... ED-1T ~~
[5]IEDITI 'T1IS1;~ 70
~IVISITI ::iarx::

0 ~IMATRIXI p.2 -- 1ST 351

792 Opentlon Ind_

Name, Key Description Page
or Label Type, Keys

... S TK Copies selected equation to level 1. 260

<CAT' p.2 'tSJK
o ~IALGEBRAI p.2 'Z't:s:IK
Copies selected matrix to level 1. 371
o (5)lsTATt f;'?CA]'7"; tt;STK :
Copies selected alarm to level 1. 450

~ITIMEI -: eA7fm ,~"""'"

o ~ITIMEI +SIK
Caples selected matrix element 10 level 1. 351
o ~IMATRlxl p.2 ,-tSTK

STO Stores object In variable. 107
C ISTOI

ISTOI Stores object In variable and saves 107
previous contents of variable for recovery
byLASTARG.
o ISTOI

ISTo) Returns EquatJonWrlter equation or Pier to 229
stack.
o [STOI 303

STOALARM Stores level 1 alarm in system alarm list. 453

C ~ITIMEI ?RI4RMAp·2 SIOSI4
STOF Sets state of system and user flags. 518

C [[!]IMODESI p.2 {SIOS?>

STOKEYS Makes multiple user-key assignments. 217
C [[!]IMODEsl .SIOK

Op4WaUonlndez 793

Name. Key De crlptlon P ge
or Label Type. Keys

STO+ Adds specified number or array to 115
contents of specified variable.

C ~IMEMORYI ~T_O+

STO- Subtracts specified number or array from 116
conlents of specified variable.

C ~IMEMORYI $10;-
STD. Multiplies contents of specified variable by 116

specified number.
C ~IMEMORYI $IO

STOI Divides contents of specified variable by 116
specified number.

C ~[MEMORYI STO/
STOE Stores current statistics matrix in WAT. 368

C ~ISTATI SIal
STR-t Converts string to component objects.

C Must be typed In.

-STR Converts object Into string. 95

C IPRGI '<OBJ "STR

STWS Sets binary Integer worcJslze. 207
C IMTHI £lASE s'nl

SUB Extracts specified portion of list or string,
or graphics object

IPRGI OB _ p.3 SUs.-= 96

C IPRGI IDSPu~ p.3 - SUB 343

7'!M Operdon Inde.

Name, Key Description Page
or Label Type,Keys

SUB Returns specified portion of PICTto stack. 341

... DRflH i p.3 tSUB<

. . . Al.JTOp.3 SU.B
a ~[GRAPHI p.3 -~tJB _

sue= Returns specified subexpresslon to stack. 398

a ffilleQuATIoNI ~ SOB

$v Sievert, dose equivalent (.01 ml /82)

U ~luNITsl p.3 ' RR,I> SV
SWAP Exchanges objects in Ie els 1 and 2. 63

C ~ISWAPI

~ SYM Switches Symbolic and Numerical Results 144
mode.
a ffillMODEsl ' SYJ1

SYSEVAL Evaluates system object. Use only as
specified by HP applications.
C Must be typed in.

O~onlnd.x 795

Name, Key Description Page
or Label Type. Key.

t Metric ton, mass (1000 kg).

U ~IUNITSI MRS~ p.2 T

T Tesla, magnetic flux (1 kg/M).
U ~IUNITSI p.2 c p.2 T

I~ Move term left. 402

0 ~IEguATloNI BJ RJJLE$ -" T
Executes - until no change In 410
subexpresslon.

0 ~IEgUATIONI ~ R.OLES

~ +-i
, ",T~~ , Move term right 402

0 (5]IEgUAT10NI ~ RULES T--+

~ Tot Executes T oJ , until no change In 410
subexpresslon.

0 ~IEaUATIONI ~ RULES
~ !+C

%T Returns percent fraction that level-' is of 138
lellel-2.

F IMTHJ PilRIS p.2 ~T_

-TAG Combines objects In levels 1 and 2 to 96
create tagged object.
C IpRGI ~8J ~i--AG

TAN Tangent. 140

A ITANI

796 Operation Index

N me"> Key Description Page
or Label Typ • Keys

TANH Hyperbolic tangen . 137

A IMTHI J "8 _TAHH

TAYLR Calculates Taylor's polynomial. 426

C ~IALGEBRAI -tR'tl R

tbsp Tablespoon, volume
(1.47867647813 x 10- 5 rnl).
U ~IUNITsl YO - p.3 TBS-P

TE:l1.& Selects UNITS TEMP (temperature) menu.

0 ~IUNITSI p.2 -TEN~-=

TEST Selects PRG TEST (program test) menu.

0 IPRGI T~r:

TEXT Displays stack display. 344

C IPRGI DSPG p.4 TEl<T

THEN Begins THEN clause. 494
C IPRGJ BRCH p.2 ~nfgN

therm EEC thermo energy (105506000 kg·m2/s-)
U [5JIUNITSI p.2 EffRQ <p.2IHER

TICKS Returns system time as binary Integer In 456
units of clock ticks.

C [!l]lnMEI p.2 TI CI(;S

OP4Wadon lndex 797

Name, Key De crlpUon Page
or label Typ ,Key.

TIME Returns current tlme as a number. 456
C ffi)lnMEI p.2 1M£:

~IT1MEI Selects TIME menu.

0 8i!ITIMEI
~ITTMEI Selects Alarm Catalog. 449

0 ~lnMEI

TIME Selects UNITS TIME menu.
0 ffi)~ TtME

-TIME Sets system time. 442

C ffi)lTIMEI SE.L TrM

> iI ME Sets alarm time. 445

0 [!i)ITIMEI 81Ji. &lIME

TUNE Switches pixels on line defined by 339
coordinates In levels 1 and 2.

C IPRGI DS~-L wINE

798 Operation Index

Name, Key Description Page
or Label Type, Key.

T-m~E Switches pbcels on and off on line between 337
mark and cursor.

... DRfHt ,p.2 /"Ie

... j1UTO p.2 ~N"E

0 ~IGRAPHI p.2 TLZme
TMENU Displays Ilst-deflned menu but does not 539

change contents of CST.
C u:!JIMODESI p.2 rrHE}r

ton Short ton, mass (907.18474 kg).
U ~IUNITSI f1 Fl$~ p.2 ON

tonUK Long (UK) ton, mass (1016.0469088 kg).
U ~IUNITSI ~RSJ; p.2 :r-oWU

torr Torr (mmHg), pressure
(133.322368421 kg/ms2).
U ~IUNlTsl p.2 PRESS :r;ORB

TOT Sums each column of matrix in WAT. 374
C ~ISTATI p.2 < 1;(1 T

TRANSIO Selects one of three character translation 618
settings.
C ~HlZQJ SETUP, N

Op4Wadonlndex 799

Name, Key D cription Page

or Label Type, Key.

<!FRO* " Expands trigonometric and hyperbolic 409

functions of sums and differences.

o ffijlEQUATIONI ~ RQ1.,;ES ,TRG'*

TRN Transposes matrix.
360

C IMTHI KMflTR ,Yiir RJ'lg;;

TRNC Truncates (rounds down) number in level 2 149

as specified In level 1.

F IMTHI PARTS p.4 "TRHC>

TRUTH Selects TRUTH plot type. 327

C . .. P[YPE 'TRUTH

tsp Teaspoon, volume

(4.92892159375 x 10-6 m3).

TSTR

TVARS

TYPE

U ffijlUNITsl ;,;:,V.Cu';;/ P.3 'fI SB,

Converts date and time in number form to

string form.

C ffijlTIMEI p.2 ;t STR5

Returns variables containing specified

object type.

C ffij'"IMo.=Eo;M"'O""Ry"'l p.2 TVARS

Returns type-number of argument object.

IpRGI ' Oe .. ,Pc p.2 'TYPE

C IPRGITE$T Jl'YPE

u Unified atomic mass (1.66057 x 10-27 kg) .

U [5]IUNITSIMRSSi p.3

800 Operation Index

455

98

97

Name, Key Description Page
or Label Type, Keys

UBASE Converts unit object to SI base units. 196
F ~IUNITSJ UBASE

UFACT Factors specified compound unit. 199
C ~IUNITSJ UFACT

-+UNIT Combines objects In levels 1 and 2 to 96
create unit object.

IPRGI '· OBU '.·.··. p.2 +UNIT
C ~IUNITSJ +UFnT

~IUNITSJ Selects UNITS Catalog menu.
0 ~IUNITSJ

[!£]IUNITSJ Selects UNITS Command menu.
0 ((!]JUNITSJ

UNTIL Begins UNTIL clause. 510
C JPRGJ 7SRCHp.2 UNTIL

UPDIR Makes parent directory the current 122
directory.
C ffi)~

JusRI Turns User mode on and off. 216
0 ~IUSRJ

UTPC Returns probability that chi-square random 384
variable is greater than x.
C IMTHJ eROS) p·2 2ll.:rec '

O~.uonlnd.x 801

Name, Key Description Page
or Label Type, Keys

UTPF Returns probability that Snedecor's F 384
random variable is greater than x.
C IMTHI PF.:OE: p.2 UT PF

UTPN Returns probability that normal random 384
variable is greater than x.
C IMTHI PROE: p.2 UT PN

UTPT Returns probability that Student's t random 384
variable is greater than x.
C IMTHI PF.:OB p.2 UT P

UVAL Returns scalar of specified unit object. 206

F ~IUNITSI U"iAL

V Volt, electrical potential (1 kg· J1Y IA-S') .

U ~IUNITSI p.2 ELEC :d

VAR Calculates variance of statistical data
columns in EDAT.

C Must be typed in.

~@ Selects VAR (variables.) menu. '12
0 IVARI

l-'· ... AF.: Makes the selected entry the current 371 I

statistical matrix and displays the second
page of the STAT menu.

0 ~ISTATI CAT l-'y'AF~

2-VAR Makes the selected entry the current 371
statistical matrix and displays the fourth
page of the STAT menu.
0 ~ISTATI CAT 2-'· ... "F:

VARS Returns list of variables in current directory. 113

C ~IMEMORYI '·.·'AF.: !:;

802 Operation Index

Name, Key Description Page
or Label Type, Keys

VEC Switches vector and array modes, 351
0 ~!MATRIXI 'VEG

VECTR Selects MTH VECTR (math vector) menu.
0 IMTHI VEe R

'0/ lEW Copies level 1 object Into appropriate 67
environment for viewing.
0 [!]
Copies object in current level into 73
appropriate environment for viewing.
0 ... ;t·STK V lEt·j
Displays selected equation. 260
0 ... CAT V I E~~
Displays selected matrix. 372
0 ~(5TATI CAT V I E~~
Displays selected alarm. 450
0 ~(TIMEI CAT V I E~~

~ VIE~·J Copies object stored in variable in the 71
current level into appropriate
environment for viewing.
0 . . . -t-STK riB V I EL·J

VISC Selects UNITS VISC (viscosity) menu.
0 ~(UNIT51 p.3 VISe

oo51TI If argument is name, copies contents of 66
associated variable into command line for
editing. If argument is a stack level
number, copies object in that level into
command line for editing.
0 riB(VISIT!

Operation Index 803

Name, Key D ri lion P e
or Label Type, Key.

VOL Selects UNITS VOL (volume) menu.
0 ~IUNITSI VO~_

VTYPE Returns type number of object stored in 97
local or global name.
C IPRGI OBJ p.2 V-IYPE

-V2 Combines two real numbers Into a 2-D 167
vector or complex number.
C IMTHI VECTR p.2 2+va

-V3 Combines three real numbers Into 3-D 183
vector.
C IMTHI Y£CTR p.2 ~3-

V-+ Separates 2- or 3-element vector according 167
to current angle mode.
e IMTHJ ~ECTR p.2 -

W Watt, power (1 kg·rril 153)
~IUN1TSI p.2 P"OWR W

U ~IUNITSI p.2 -~ -JJ
.w Adjusts horizontal plot scale. 319

e ... PLOTR p.3 ~w

WAIT Halts program execution for specif led 534
number of seconds or until key pressed.
e IPRGJ o,rRL p.2 l!fllL

Wb Weber, magnetic flux (1 kg·mZ IA'S'")'
U ~[UNITSI p.2 t EJ..~(:!U p.2 xx.· ••• WBii .•

804 Operation Index

Name, Key Description Page
or Label Type, Key.

401EEK Sets alarm repeat Interval to n weeks. 445
o ~ITIMEI I Bt:Rr:r;,"'~d " ?WEfK

WHILE Begins Indefinite loop. 512
C IPRGI BReI{ &<f1:i"IJ.tE

~WHILE Types WHILE REPEAT END 512
o IpRGlaR,(!t1, 8WHl~E

.·· WJr>:+ .•.. Increases column width and decrements 351
number of columns.
o ~IMATRlxIHlP'f(

,+-W 1 D Decreases column width and increments 351
number of columns.
o ~IMATRlxl ?fW:II)

•. ...•.••.. i X' Selects x-axis zoom. 305
o . . . ZZOOt1UV;VXF@X

EX Returns sum of data in independent 383
column in WAT.
C ffiJlSTATI p.5

EX"2 Returns sum of squares of data in 383
independent column in WAT.
C ~ISTATI p.S :llXB).22

XAUTO Selects x-axis zoom with autoscaling. 305
o ... zoor1 XAUTO

OperaUonlnde. 805

Name, Key Description Page
or label Type, Key.

XCOL Specifies Independent-variable column In 376
matrix In roAT.

C I!iJ I ST "T1 p.3 iX~:QI.Z';
~ }(COL Recalls Independent-variable column 376

number to stack.

o I!iJlsTATI p.3 ~8COJ..i ,

XMIT Without Kermit protocol, performs serial 632
send of string.

C I!iJ [lZQ] p.3 >Xt1X£11
XOR logical or binary exclusive OR.

IMTHI SAS5;J p.4 " gof~" 211
F IPRGI 1=m.. i ¥QgL 493

XPON Returns exponent of number. 149

F IMTHI ea T$ P.3XBON

XRNG Specifies x-axis display range. 295

. .. ~ 0 TI~ XghlJlx

C liBlPLorl /XRH~
~XRNG Recalls x-axis display range to stack. 293

. .. e J4'O[g ~s8ghltl>;
o ~IPLOTI ~F8gllfi)

80& OperaUonlnd ••

Name, Key Description Page
or label Type, Keys

XROOT Returns level 1 root of the real number in 134
level 2.
A 1l£)!W

>~Il Selects x- and y-axis zoom. 305
0 . . . ZOON XY

;<'l2 Selects Rectangular mode. 171
IMTHJ VECTR X'('Z

0 [!ilIMODESI p.3 ::.;: '.,-' 2

EX.Y Returns sum of products of data in 383
independent and dependent columns in
mAT.
e [!ilISTATI p.5 :'}: ~< * Ii

'l Selects y-axis zoom. 305
0 . . . ZOOt1 Y

"£Y Returns sum of data in dependent column 383
inmAT.
e ~ISTATI p.5 : \'

l;Y"2 Returns sum of squares of data in 383
dependent column in mAT.
e [!ilISTATI p.5 : ·/ ····· 2

O~ationlnd.x 807

Name, Key Description Page
or Label Type, Keys

VeaL Selects Indicated column of WAT as 376
dependent-variable column for two-
variable statistics.

C ~ISTATI p.3 't'Epm
~ ~'{~OL Recalls dependent·varlable column number 376

10 stack.

0 (!l]ISTATI p.3 ~"--iC-OC

yd International yard, length (.9144 m).

U IBJIUNITSI LEliG- W YO ~

yd"2 Square yard, area (.83612736 m2).
U ~IUNITSI ~.fL 'r'D"'2

yd"3 Cubic yard, volume (.764554857984 m').
U ~IUNITSI ~¥O~ YO~

yr Year, t1me (31556925.9747 s).

U ~IUNrTsl TlMt '." 'I R "

108 Op.-atlon Inde.

Name, Key Descriplion Page
or Label Type,Keys

YRNG Specifies y-axis display range. 293
... Pi..;Q;J'R hYiNG?

c ~IPLOTI .,j'IUIG"
~YRNG Recalls y-axis display range to stack. 293

· . . Pl"'OTR l~l' YRNG
o ~IPLOTI ~YRNG

ZPBO X Zooms in to box whose opposite corners 306
are defined by mark and cursor.

, .. , PJ~flH : ~ tBOX
.. . RUT 0 Z.-:SOX

o ~IGRAPHIZ:;I3 .Q.X
~ZSSOX Zooms to box, autoscaling y-axis. 306

· . · ;PR8WF ~Z#I3(),~
· .. i;8Q,[() ~4~I3Q~

o ~IGRAPHI ~Z+'130~

Op4Wadonlnde. 809

Name, Key Description Page
or Label Type, Keys

20011 Selects GRAPHICS ZOOM menu. 304
... DRAW "ZOjlM..
... flUIO ~OOM

0 ~IGRAPHI 70:01'2;;;

+ Adds two objects. 90
A [±]

(+1-1 If cursor Is on a number, changes sign of 47
manUssa or exponent of that number.
Otherwise. acts as NEG key.

e ~
~ Switches cursor style between super- 302

Imposing and Inverting cross.

... PRAJ.t.p.3 +r-<

.. . fl f.JitLp·3 +;-

0 ~IGRAPHI p.3 ,+;-

;,fIlE]" Add and subtract 1. 402
0 [5]IEQUATIONI ~ RULES ~"t='1

- Subtracts two objects. 134

A G

810 Oper..don'ndex

Name, Key Description Page
or Label Type, Keys

Double negate and distribute. 407
0 ~IEQUATIONI ~ RULES - .()

* Multiplies two objects. 134
A ~

*'1'; Multiply by 1. 401
0 ~IEauATloNI ~ RUt::r::S

/ Divides two objects. 134
A @

... /:r' Divide by 1 . 401
0 ~IEaUATIONI ~ RVt.r::$

"- Raises number to specified power. 134
A ll:]

: ";.·1i Raise to power 1. 401
0 ffillEQUATIONI ~ RU1ZI;S

< "Less-than" comparison. 491
IPRGI "rES.T p.2 <

F (2][5)00

Operation Inde. 811

Name, Key Description Page
or Label Type, Keys

S "Less-than-or-equal" comparison. 491
IpRGI TES.EIp.2 " ",:,':"::",, .

F [g]~OO

> "Greater-than" comparison. 491
IPRGI "'Tn"Gi p.2 ,• .. ,',.':"," ",', ...

F [Q]~I!I

> "Greater-than-or-equal" comparison. 491
(PRGI TESTp.2 ~

F rru~ oo
= "Equals" function. 129

A 1!lJ8
-- "EquaJlty" comparison. 492

IPRGI j'E$T'i p.2 ,,'::,', ,",
F ~S ill

812 Operation Index

Name, Key De.crlptlon Page
or Label Type,Key.

F "Not-equaJ" comparison. 492
(PRG) rfE;ST ' p.2 .' ;S;"

F (gJ~(Q)

(g] Turns alpha-entry mode on and off. 52
0 (g]

[]) Switches implicit parentheses on and off. 237
0 ~(EQUAnONI ~[)]

~ Returns equation to stack as string. 230
0 ~IEQUATIONI ~~

0 Degree. plane angle
(2.11111111118 x 10-3) .

U ~JlUNlTsl p.3 ANGL"'
! Factorial. 147

IMTHI P.ROtt
F (g] ~ IDELI

Op4WaHon lnd.. 813

Name, Key Description Page
or Label Type, Keys

I Integral. 428

A ~)[ll

a Derivative. 419
A ~)(ID

n Ohm, electric resistance (1 kg·m2/A2·sJ).

U ~luNlTsl p.2 SLEI? n
% Returns level 2 percent of level 1. 138

A IMTHI PARTS p.2 %

,.. Symbolic constant 11" (3.14159265359). 144
F ~GD

E Summation. 423
F ((BOO

E+ Adds data point to matrix in mAT. 368

C ~ ISTAT! "t+i '"

E- Subtracts data point from matrix in mAT. 368
C ~ (STA TI (5) }: +

vi Returns square root of level-1 object. 134
A [{TI

I Appends local name, or variable of 416
integration, and its value to evaluated
expression.
F [5]IALGEBRAI p.2 I

814 OperaUon Ind ••

Name. Key
or Label

De.cripUon
Type. Keys

Page

Double-Inven and distribute. 407

o ~IEaUATIONI ~ RULES W)
Switches between 12-hour and 24-hour
display formats.

o ~ !TIMEI SE 1'2.>'24

Parenthesize neighbors.

o ~IEaUATIONI ~ RUI.3tS rl-'

442

403

Expand-subexpresslon-Ieft. 404

o 8:iJIEauATIONI ~ ROCES '(to

Executes =,~ untU no change In
subexpression.

o ~IEaUATIONI ~&Ul,.:.fES
~~~'r 

Distribute prefix function. 

o ~IEaUATIONI ~ RU --: 

Expand-subexpresslon-right. 
o ~IEQUATloNJ ~ RU UrS ... ) -
Executes - _'.* until no change In 
subexpresslon. 

o ~IEaUATIONI ~ ~j..~S 
~ .J)=-

410 

405 

404 

410 

Commute arguments. 404 

o ~IEaUATIONI ~RUl::E$ 

Op.raUonlnde. 815 



Name. Key Description Page 
or Label Type. Keys 

-+ Creates local variables. 473 

C ~~ 

~ Left shift key. 52 
0 ~ 

~ Right shift key. 52 
0 ~ 

(!] In command line. deletes character to left 47 
of cursor. 
0 [!) 
Deletes contents of current S1ack level. 72 
0 ... _snc (!] 

00 In multi-line command line: Moves cursor 75 
up one line. 

In Interactive Stack: Moves pointer up one 72 
level. 

In Graphics environment: Moves cursor up 303 
one pixel. 

In scrolling mode: Moves window up one 229 
pixel. 
In MatrixWriter application: Moves cell 350 
cursor up one row. 

In EquatlonWriter application: Starts 229 
numerator. 

In Selection environment: Moves cursor up 399 
one object. 

In catalogs: Moves pointer up one entry. 
0 00 

816 OptW.uonlnd .. 



Name. Key Description Page 
or Label Type. Keys 

~OO In mUlti-line command line: Moves cursor 75 
to top line. 
In Interactive Stack: Moves pointer to 72 
highest numbered stack leVel. 
In Graphics environment Moves cursor to 303 
top edge of PIer. 
In MatrtxVVrlter application: Moves cell 350 
cursor to top element or current column. 
In Selection environment: Moves cursor to 399 
topmost object. 
In catalogs: Moves pointer to top of list 
0 ~[I) 

~[I) In catalogs: Moves pointer up one page. 
In Interactive Stack: Moves pointer up 4 72 
levels. 
0 ~li1 

Operadonlndex 817 



Name, Key 
or Label 

Description 
Type, Keys 

In multl-line command line: Moves cursor 
down one line. 

Page 

75 

In Interactive Stack: Moves pointer down 72 
one level. 
In Graphics environment: Moves cursor 303 
down one pixel. 
In scrolling mode: Moves window down 229 
one pixel. 
In MatrixWriter application: Moves cell 350 
cursor down one row. 
In EquationWriter application: Ends 229 
subexpression. 
In Selection environment: Moves cursor 399 
down one object. 
In catalogs: Moves pOinter down one 
entry. 
o [!] 
In mUlti-line command line: Moves cursor 
to bottom line. 

75 

In Interactive Stack: Moves pointer to 72 
level 1. 
In Graphics environment: Moves cursor to 303 
bottom edge of PleT. 
In MatrixWriter application: Moves cell 350 
cursor to last element of current column. 
In EquationWriter application: Ends all 229 
subexpressions. 
In Selection environment: Moves cursor to 399 
bottommost object. 
In catalogs: Moves pOinter to end of list. 
o ~][!] 

818 ~.donlnd •• 



Name, Key Description Page or Label Type, Keys 

ffiJ[!J In catalogs: Moves pointer down page. 
In Interactive Stack: Moves pointer down 4 72 
levels. 
0 ~(!) 

Bl In command line: Moves cursor one 75 
character left. 
In Graphics environment: Moves cursor 303 
one pixel left. 
In scrolling mode: Moves window left one 229 
pixel. 
In MatrixWriter application: Moves cell 350 
cursor one column left. 
In EquationWriter application: Activates 398 
Selection environment. 
In Selection environment: Moves cursor 399 
one object left. 
0 ~ 

BiJ~ In EquationWrher application and Graphics 229 
environments: Invokes scrolling mode. 

([<SlIGRAPHi) 0 ~~ (ffiJIGRAPHI) 303 

Operadonlndex 819 



Name, Key 
or Label 

Description 
Type, Keys 

In command line: Moves cursor to start of 
current line. 

Page 

75 

In Graphics environment: Moves cursor to 303 
left edge of PleT. 
In MatrIxWrlrer application: Moves cell 350 
cursor to first element of current row. 
In Selection environment: Moves cursor to 399 
leftmost object. 

o ~~ 
~ In command line: Moves cursor one 75 

character right. 
In Graphics environment: Moves cursor 303 
one pixel right. 
In scrolling mode: Moves window right one 229 
pixel. 
In MatrixWrlter application: Moves cell 350 
cursor one column right. 
In EquationWrlter application: Ends 229 
subexpression. 
In Selection environment: Moves cursor 399 
one object right. 
o lE 

120 Operation Inde. 



Name. Key Description Page 
or Label Type, Key. 

~1EI In command line: Moves cursor to end of 75 
current line. 

In Graphics environment Moves cursor to 303 
right edge of PleT. 
In MatrtxWrlter application: Moves ceU 350 
cursor to last element of current row. 

In EquatlonWrlter application: Ends all 229 
subexpresslons. 

I 

In Selection environment: Moves curSOr to 399 
rightmost object 
0 ~1EI 

o ..... atlo Index 821 





Index 

A 
aborting with the attention key 

command line, 54 
environments, 54 
programs, 54 

absolute value 
of a matrix, 360 
of a Dumber, 148 
of complex numbers, 166 
of vectors, 177 

accented characters, generating, 
53 

accuracy 
in solving systems of equations, 

362 
of fraction conversion, 136 
of 11",140 

adding 
a stack value to a variable, 115 
in the EquationWriter 

application, 231 
numbers, 134 

ADJST menu, 443 
Alarm Catalog, 449 

operations, 450 
alarms 

acknowledging, 446 
appointment, 445 
commands, 450 
control, 448 

execution action, 444 
lost after recovering memory, 

102 
past due, 447 
recovery from short-interval 

repeating alarms, 448 
repeating, 444, 445 
rescheduling, 447 
reviewing and editing, 449 
saving, 447 
setting, 443 
turning the beeper off, 447 
unacknowledged, 447 
used in programs, 453 

alert annunciator, 48 
algebra, 386-417 

adding fractions, 409 
building and moving 

parentheses, 403 
collecting terms, 395, 402 
commutation, association, and 

distribution, 404 
comparing methods for isolating 

a variable, 393 
expanding products and powers, 

396 
expanding trigonomet.ric 

functions, 409 
general and principal solutions, 

393 

Index 823 



isolating a variable, 389 
limitations, 390 
moving terms, 402 
multiple execution of Rules 

transformations, 410 
rearrangement of exponentials, 

408 
rearranging terms, 394 
Rules transformations, 397 
Selection environment, 398 
showing hidden variables, 394 
solving equations for a variable, 

386 
solving quadratic equations, 390 
symbolic solutions, 388 
universal transformations, 400 
user-defined transformation, 

414 
ALGEBRA menu, 389, 395 
Algebraic-entry mode, 76 

annunciator, 48, 84 
entering unit objects, 189, 191 

Algebraic/Program-entry mode, 
77 

algebraics, 125 - 130 
are mathematical expressions, 

85 
collecting terms, 571 
compared to programs, 125 
differentiation, 419 
disassembling, 90 
evaluation, 125 
evaluation of terms, 128 
mode for keying in, 76 
mode for keying into programs, 

77 
nested parentheses in, 128 
object type number, 97 
parentheses are highest 

precedence in, 128 
precedence of operators, 128 
rearranging terms, 397 

824 Inde. 

replacing in the EquationWriter 
application, 248 

short for algebraic objects, 85 
simplification process, 128 
stepwise evaluation, 126 
using comparison functions in, 

492 
using complex numbers, 164 
using complex numbers in, 161 
using logical functions in, 493 
using unit objects in, 191 
viewing in the EquationWriter 

application, 241 
alpha key 

activates alpha keyboard, 25 
press twice for alpha lock, 53 

alpha keyboard, 52 
alpha keyboard annunciator, 48 
alpha left-shift keyboard, 50 
alpha lock, 53, 222 
alpha right-shift keyboard, 50 
Alpha-entry mode, 52, 53, 222 
ALRM menu, 444 
ALRMDAT reserved variable, 

contains data for an alarm, 
108 

am/pm time format, 442 
analytic functions, are a subset of 

functions, 42 
and 

with binary integers, 210 
with tests, 493 

angle, in complex numbers, 157 
angle conversion functions, 142 
angle modes, 139, 170,350 

selecting, 139 
angle units, 198 
animation 

of custom graphical image, 597 
of Taylor's polynomials, 588 



\ 
\ 

annunciators 
are displayed in status area, 48 
complete list of, 48 
share "territory" with messages, 

48 
answers to common questions, 656 
anti derivative, 428 
application cards, 651 
appointment alarms 

acknowledging, 446 
unacknowledged,447 

approximation 
of symbolic constants, 144 
of the definite integral, 432 

arc cosine, 140 
arc hyperbolic cosine, 137 
arc hyperbolic sine, 137 
arc hyperbolic tangent, 137 
arc sine, 140 
arc tangent, 140 
archiving memory, 624, 648 
area, beneath a plotted curve, 308 
arguments, on the stack, 61 
arithmetic 

with a matrix and a vector, 356 
with complex arrays, 357 
with complex numbers, 156 
with dates, 454 
with time, 456 
with unit objects, 200 
with variables, 115 
with vectors, 353 

arithmetic and general math 
functions, 134 - 135 

arrays, 83, 346-364 
assembling, 90 
(:ommands for, 360 
complex, 357 
dimension (size), 90 
entering using the command 

line, 350 
printing, 604 

ASCII Transmission mode, 617, 
629 

assembling 
complex numbers, 160, 166 
unit objects, 206 
vectors, 173, 183 

assigning user keys, 217 
association, algebra, 404 
attention key, 25 

halts current activity, 54 
Automatic Alpha Lock mode, 222 
automatic off, happens after 10 

minutes, 25 
autoscaling a plot, 295 
available memory, number of 

bytes of unused user 
memory, 101 

axes 

B 

labeling, 320 
specifying coordinates of 

intersection, 320 

backing up directories, 645 
backspace editing 

in EquationWriter application, 
241 

in the command line, 75 
backup objects, 645, 646 

in custom menus, 213 
object type number, 97 
store objects in plug-in memory, 

89 
bar over menu label, indicates a 

directory, 118 
bar plot, 379 

from Plot application, 336 
from Statistics application, 379 

base 
binary integers, 207 
selecting, 208 

base 10 antilogarithm, 137 

Index 825 



base 10 logarithm, 137 
base e (natural) antilogarithm, 137 
b se e (natural) logarithm, 137 
base marker, 2JJ7 

entering, 208 
BASE menu, 82, 2JJ8, 210 
batteries, 25, 660 

changing, 661 
for plug-in RAM, 638, 661 
for the HP 48, 661 

baud rate 
during printing, 610 
setting, 617 

beeper, turning off for alarm, 447 
beeping, from a program, 522 
Bessel functions, 585 
best fit line, 376 
binary arithmetic, 207 - 211 
binary base marker, 82 
binary integers, 82, 2JJ7 

base,2JJ7 
bits displayed, 208 
calculations, 209 
displaying, 208, 554 
entering, 208 
internal representation, 2JJ8 
logic commands for, 210 
object type number, 97 
wordsize, 2JJ7 

binary to real conversion, 210 
Binary Transmission mode, 617, 

629 
Black Gold Ltd, 27 
blue keys, 25, 50 
boolean logic commands, 210 
box, drawing, 337 
brackets, used to enter vectors, 

172 
BRCH menu, 494, 501 
bubble sort, 561 
buffer length, serial I/O, 632 
buffered keystrokes, 48 
buffered printing, 608 

826 Index 

built-in commands, 90 
object type number, 97 
use 2.5 bytes, 101 

built-in constants, 144 
built-in functions, 90 

compared to user-defined 
functions, 150 

object type number, 97 
built-in menu, displaying, 534 
built-in unit objects, 193 
busy annunciator, 48 
bytes command, returns 

checksum, 101 

c 
cable connection, PC to HP 48, 

621 
calculus, 418-436 

complete differentiation, 421 
differentiation, 419 
differentiation of user-defined 

functions, 422 
how the HP 48 does symbolic 

integration, 429 
numerical integration, 432 
summations, 423 
symbolic integration, 428 
Taylor'S polynomial 

approximation, 431 
capital letters, 50 
carriage-return, dumping the print 

buffer, 603 
CASE ... END program structure, 

497 
Catalogs 

Alarm, 449 
Equation, 253, 258 
Review, 112 
Statistics, 370 

centering a plot, 295 
chain calculations, using the stack, 

62 



changing sign 
of a number, 47, 134 

changing the contents of a 
variable, 111 

character codes, 694 - 696 
character sets 

printing the HP 48 character 
set,6Q7 

printing with the Infrared 
Printer,6Q9 

remapping the infrared printer, 
6Q3 

translating during input/output, 
626 

characters 
converting numbers to 

characters, 90 
determining their numeric 

value, 90 
entering special characters, 50 
generating accents, 53 

checksum, 547 
sed to verify objects, 101 

with input/output, 617 
chi-squared test, 384 
circle, drawing, 337 
clearing 

alarms, 450 
aU variables in a directory, 115 
flags, 222,516 
last error, 542 
memory (press three keys), 101 
messages from the display, 48 
objects when out of memory, 

103 
the stack, 64 
user key assignments, 219 
using the attention key, 25 

clock 
adjusting, 443 
commands, 441 
recording execution time, 552 

closing serial port, 614 

collecting terms, 395 
algebra, 402 

column norm, of a matrix, 359 
combinations, calculating, 147 
comma, as fraction mark, 58 
command arguments on the stack, 

61 
command line, 75 - 77 

cancelling with the attention 
key, 54 

editing in the EquationWriter 
application, 242 

entering and editing text, 46, 75 
entering arrays, 349 
keying in numbers, 47 
middle section of the display, 45 
recovering previous command 

lines, 77 
scrolls after 21 characters, 46 

command-line string, building, 528 
commands 

are a subset of operations, 42 
as objects, 90 
defined,42 
of one argument, 61 
of two arguments, 62 

common (base 10) antilogarithm, 
137 

common (base 10) logarithm, 137 
common variables, 105 
commutation, algebra, 404 
compact format, of printed output, 

6Q4 

comparison functions, 491 
in algebraics, 492 

complement, of a binary integer, 
210 

complex arrays 
arithmetic with, 357 
commands for, 357 
object type number, 97 

Index 827 



complex numbers, 81, 156 -168 
allowed in algebraics, 161 
arithmetic with, 156 
arrays of, 357 
as the result of real-number 

operations, 163 
assembling, 160, 166 
changing angular modes, 157 
commands, 166 
compared to real numbers, 161 
compared to l s, 166, 167, 

184 
conjugating, 166 
converting to real, 166 
disassembling, 90, 160, 166 
display form, 158 
entering, 158 
j (the imaginary number), 165 
in expressions, 164 
internal representation, 158 
object type number, 97 
printing, 604 

complex to real, disassembling, 90 
conditional structures 

in programs, 494, 499 
CONIC plot type, 327 
conic plots, 329 
conjugating 

complex arrays, 357 
complex numbers, 166 
contents of a variable, 115 

connected plotting, 299 
constant matrix, calculating, 359 
constants, symbolic, 144 
consumer price index, 364 
continuing program execution, 483 

after error, 541 
continuous memory, not affected 

by IONI / IOFFI, 25 
contrast, adjusting, 25 
control alarms, setting, 448 
control codes, printing, 607 
convergence, testing a series, 424 

828 Inde. 

conversion, temperature, 197 
converting 

binary to real, 210 
complex array to real array, 357 
complex to real, 90, 166 
compound unit to SI base units, 

196 
date to number, 454 
date to string, 454 
degrees to radians, 142 
HM to number, 456 
number to date, 454 
number to HMS, 456 
numbers to characters, 90 
objects to a string, 554 
objects to strings, 90 
pixel coordinates to user-unit 

coordinates, 324 
radians to degrees, 142 
real array to complex array, 357 
real numbers to fractions, 136 
real to binary, 210 
real to complex, 90, 166 
unit objects, 193, 194 
units, 188, 195 

coordinate mode, changing, 171 
coordinate pairs, can be 

represented by complex 
numbers, 81 

coordinate systems for plots, 323 
correcting typing mistakes, 47 
correlation, 377 
cosine, 140 
cotangent, creating a user-defined 

function for, 151 
counted strings, are counted 

sequences of characters, 86 
covariance, 375, 376 
cross product, 176, 353 
CST menu, 213 

unit-object conversion in, 195 



CST reserved variable 
contains data for custom menus, 

108,213 
CfRL menu, 483 
current directory, 119 
current directory path, is displayed 

in status area, 48 
current path, 119 
cursor keys, 27 
custom menus 

conversion of units, 195 
creating, 213 
in programs, 535 
menu labels, 213 
shifted actions, 215 

Customer Support, 656 
customizing the calculator, 212-

223 
modifying the shift keys, 215 
setting modes, 220 
user key assignments, 216 
using system flags, 222 

Cylindrical mode, 170 
annunciator, 170 

D 
darker contrast, 25 
data output, 531 

labeling with string commands, 
532 

dates 
arithmetic with, 454 
changing format, 442 
commands, 441 
(:onverting to numbers, 454 
wnverting to strings, 454 
day/month/year date format, 

442 
month/day/year date format, 

442 
setting, 441 

day/month/year date format, 442 

days, between two dates, 455 
debugging 

programs, 483 
subroutines, 486 

decimal base marker, 82 
decimal numbers, 82, 207 
decimal places, number displayed, 

58 
decrementing 

the program loop counter, 513 
time, 443 

defining 
user-defined functions, 151 
variables, 107 

definite loops, 501 
degrees, converting to radians, 142 
Degrees mode, 139 
delaying the print cycle, 603, 607 
deleting 

matrix row or column, 352 
tag from tagged object, 90 
user key assignments, 219 

delimiters 
I I delimits algebraic objects, 

85 
[ ] delimits arrays, 83, 173, 347 
( ) delimits complex numbers, 

81, 158 
{ } delimits lists, 86 
<r. » delimits programs, 86, 468 
" "delimits strings, 86 

: delimits tagged objects, 87 
I I prevents evaluation of a 

variable, 84, 112 
# delimits binary integers, 82, 

207,208 
= delimits equations, 129 
_ delimits unit objects, 88, 187 

delta days, number of days 
between dates, 454 

Inde. 829 



dependent variable 
not used for function plots, 299 
plotting range for, 319 
used for conic plots, 329, 333 
used in statistics, 376 

depth of stack, determining, 78 
derivatives 

in the EquationWriter 
application, 233 

keying into the command line, 
420 

plotting, 308 
user-defined, 422 
user-defined prefix is "der", 108 

determinant, calculating, 359 
differentiation 

in one step, 421 
of algebraic expressions, 419 
of built-in functions, 150 
of user-defined functions, 150 
stepwise, 419 

dimensionless units, 198 
directories 

concepts, 118 
contained in a variable, 110 
creating, 120, 123 
current directory, 119 
determining all variables of a 

specific type in, 98 
directory path, 119 
HOME directory, 118 
new variables are added to the 

current directory, 121 
object type number, 97 
parent directory, 119 
purging, 123 
recalling, 123 
searching directories for a 

variable name during 
evaluation, 121 

switching up a level, 122 
directory path, 119 

is displayed in status area, 48 

830 Indell 

disassembling 
complex numbers, 160, 166 
objects, 90 
unit objects, 206 
vectors, 173, 184 

disconnected plotting, 299 
display 

adjusting contrast, 25 
clearing messages, 48 
is divided into three sections, 45 
status area, 48 

display modes 
changing, 59 
control format used to display 

numbers, 57 
displaying an object, from a 

program, 523 
distribution, algebra, 404 
dividing 

a variable by a stack value, 115 
a vector into a matrix, 355 
in the EquationWriter 

application, 231 
numbers, 134 

do error, error trapping, 542 
dot product, 176, 353 
double-space printing, 606 
DO ... UNTIL. .. END program 

structure, 510 
dropping 

the stack, 64, 71, 78 
duplicate variable names, allowed 

in different directories, 121 
duplicating 

E 

level 1 in the stack, 65, 71 
objects on the stack, 78 

e, is a built-in constant, 144 
echoing stack contents, 71 
EDIT menu, 68 



editing 
equations in the EquationWriter 

application, 240 
in the command line, 75 

elapsed time, calculating, 457 
Engineering mode, 58 
enter key, 25 

duplicates levell, 65 
entry modes 

for entering matrices, 351 
four types, 76 

environmental limits, plug-in 
cards,660 

environments 
Alarm Catalog, 449 
are cancelled with the attention 

key,54 
Equation Catalog, 258 
Graphics, 286, 300 
Interactive Stack, 70 
Selection, 244, 398 
Statistics Catalog, 371 

EQ reserved variable 
contains the current equation, 

108,253,286 
equal to, comparison test, 491 
Equation Catalog, 253, 258 

commands, 259 
creating a list of equations, 274 
exiting, 262 
linking equations, 272 
reordering, 259 

equation to stack, disassembling, 
90 

equations 
(:an be arguments to a function, 

129 
contain an "=" sign, 12..9 
editing in the EquationWriter 

application, 242 
general and principal solutions, 

393 
linking, 272 

solving for a variable, 386 
solving quadratics, 389 
solving with the Plot application, 

266 
used to create a user-defined 

function, 151 
EquationWriter application, 24, 

227-250 
addition, subtraction, and 

multiplication, 230 
backspace editing, 241 
building unit objects, 204 
command line editing, 242 
creating equations, 230 
derivatives, 233 
division and fractions, 231 
editing equations, 240 
editing subexpressions, 243 
exponents, 232 
how it is organized, 228 
implicit parentheses, 229 
inserting objects from the stack, 

246 
integrals, 234 
keyboard operation, 229 
numbers and names, 230 
powers of 10, 233 
replacing subexpressions, 247 
Selection environment, 243 
square root and x-th root, 232 
summations, 235 
unit objects, 235 
using parentheses, 233, 236 
viewing algebraics and unit 

objects, 240 
where function, 236 

erasing P1CT, 292, 323 
error me...sa&es, are displayed in 

status area, 48 
error recovery, from accidentally 

purging a variable, 115 

Index 831 



errors 
clearing last, 542 
continuing program execution 

after, 541 
error message, 542 
error number, 542 
error trapping commands, 542 
returning most recent Kermit 

error, 614 
trapping, 541 
user-defined, 546 

escape sequences, printing, (fJ7 

etcetera key 
used to enter accented 

characters, 53 
used to enter special characters, 

54 
Euclidean norm, calculating, 359 
evaluation 

is affected by results mode, 127 
of a variable, 109 
of a variable containing a 

program, 110 
of algebraics, 125, 126 
of local variables, 476, 569 
of string contents, 90 
of symbolic constants, 145 
of variables prevented by 

quoting, 84, 112 
the precedence of operators 

determines the order of 
evaluation of terms, 128 

evaluation of variables, searching 
directories for the variable 
name, 121 

exclusive or 
with binary integers, 210 
with tests, 493 

executing 
commands and functions from 

the stack, 61 
programs, 472 
user-defined functions, 152 

832 Index 

expanding products and powers, 
396 

exponent 
display format, 58 
extracting from a number, 148 
in the EquationWriter 

application, 232 
keying in, 47 

exponential functions, 137 
exponentials, rearrangement using 

algebra, 408 
expressions 

F 

do not contain an "=", 129 
using complex numbers in, 164 

F test, 385 
factorial, 147 
factoring unit expressions, 199 
false, result of a test, 490 
FCN menu, 308 
Fibonacci numbers, 548 
file names, PC versus HP 48, 628 
files, sending and receiving, 614 
finishing server mode, 614 
finite series, 423 
first order equation, solving for x, 

392 
Fix mode, 58 
flags, 515 

complete list of, 699 
I/O Device, 610 
Line-feed,608 
Printing Device, 610 
recalling and storing, 518, 556 
setting, clearing, and testing, 

222,516 
that control the evaluation of 

symbolic constants, 145 
formal variable, does not contain 

an object, 152 



format 
of numbers in the display, 57 
of printed output, 604 

FOR. .. NEXT loop, 506 
FOR ... STEP loop, 508 
fraction approximation, of a 

number, 134 
fraction conversion 

ac:curacy of result, 136 
functions, 136 

fraction mark, 58 
fractional part, math function, 148 
fractions 

adding using algebra, 409 
in the EquationWriter 

application, 231 
free memory, number of bytes of 

unused user memory, 101 
freeing memory, 649 
freezing part ofthe display, 523 
frequencies, in statistical samples, 

374 
Frobenius norm, calculating, 359 
function arguments on the stack, 

61 
FUNCfION plot type, 327 
function plots, 328 
functions 

analyzing in the Graphics 
environment, 306 

angle conversion, 142 
are a subset of commands, 42 
as objects, 90 
built-in, 150 
creating user-defined functions, 

151 
defined, 42 
math,132-149 
on the keyboard, 134 - 135 
plotting, 328 
user-defined, 150 
using equations as arguments, 

129 

using symbolic arguments, 149 
future date, calculating, 455 

G 
general solutions, of an equation, 

393 
geometric series, 424 
getting files, input/output, 614 
getting the n-th array element, 90 
global names, object type number, 

97 
global variables, 105 
Grads mode, 139 

annunciator, 48 
Graphics environment, 300 

adding graphical elements to 
P/CTin,337 

analyzing pl - tted functions in, 
306 

introduced, 286 
stack-related operations, 3412 
zoom operations in, 304 

GRAPHICS FeN menu, 308 
graphics objects 

in programs, 342 
introduced, 287 
manipulating on the stack, 342 
object type number, 97 
printing, 606, 610 
size, 90 
stack form, 340 
store pictures, 87 

GRAPHICS ZOOM menu, 305 
greater than, comparison function, 

491 
greater than or equal to, 

comparison function, 491 
grea est integer; math function, 

148 
Greek letters, entering from the 

keyboard, 50 

Indell 833 



H 
halt annunciator, 48 
halting 

programs with the attention key 
54 ' 

programs with the HALT 
command, 483, 523 

the root-finder, 277 
hexadecimal base marker, 82 
hexadecimal nurnbers, 82, 207 
hidden variables, showing, 394 
histogram plot 

from Plot application, 336 
from Statistics application, 378, 

382 
HMS format, 456 
HOME, is power-on directory, 48 
HOME directory, 118, 124 

selecting, 122 
HP Solve application, 24, 250-282 

choosing guesses, 266 
consists of two menus, 253 
customizing the SOLVR menu 

269 ' 
editing equations, 256 
entering a new equation 257 
finding solutions of pro~ams, 

275 
how it works, 276 
interpreting results, 279 
multiple solutions, 266 
no solution found, 282 
plotting solutions, 266 
recalling equations, 256 
sign reversal, 280 
solving equations, 254, 256 
solving expressions, 254 
solving pr grams, 254 
specifying an equation from the 

Equation Catalog, 258 
specifying the current equation, 

255 

834 Inde. 

storing equations, 256 
used with Plot application 252 . ' usmg unit objects with, 267 
verifying solutions, 265 

humidity, effect on calculator, 660 
HYP menu, 137 
hyperbolic cosine, 137 
hyperbolic functions, 137 
hyperbolic sine, 137 
hyperbolic tangent, 137 

I 
~ (the imaginary number), 144, 165 
Ideal gas equation, 185 
identity matrix, calculating, 359 
IFERR. .. THEN ... ELSE ... END 

error trap for programs, 544 
IFERR. .. THEN ... END error 

trap for programs, 542 
Iff if-then-end function, 499 
IFfE if-then-else function, 500 
IF ... THEN ... ELSE ... END 

structure for programs, 496 
IF ... THEN ... END structure for 

programs, 494 
imaginary part, 166 

of a complex array, 357 
immediate execution of variables 

112 ' 
Immediate-entry mode, 76 

entering unit objects, 188 
incrementing 

t~e program loop counter, 513 
tIlDe, 443 

indefinite loops, 510 
independent memory, 642 
independent variable 

plotting range for, 319 
specifying for plots, 294 
statistics, 376 



Infrared Printer, 602, 609 
character sets, 607, 609 
testing, 670 

Infrared Transmission mode, 617 
input 

options, 526 
prompting for data input, 524 

input/output, 612-634 
Binary/ASCII modes, 629 
cable connection, 621 
commands for, 614 
downloading data, 612 
HP 48 to HP 48, 613, 619 
Kermit file transfer protocol, 

612 
loeal/local configuration, 620 
local/server configuration, 620 
PC to HP 48, 621, 623 
serial commands for, 632 
serial loop back test, 671 
setting I/O parameters, 617 
translating character codes, 626 
types of data allowed, 613 

inserting, matrix row or column, 
351 

insufficient memory, error 
message, 103 

integer part, math function, 148 
integrals 

in the EquationWriter 
application, 234 

keying into command line, 428 
integrand, approximation, 431 
integration 

accuracy factor, 433 
from the stack, 436 
how the HP 48 does it, 429 
numerical, 432 
symbolic, 428 

interactive programs, 519 - 540 
beeping, 522 
building a temporary menu, 539 

building the command-line 
string, 528 

displaying a built-in menu, 534 
displaying objects, 523 
free1.lng part of the display, 523 
halting programs, 523 
labeling program output, 531 
options for the input command, 

526 
prompting for data input, 524 
prompting for input, 520 
returning a key location, 539 
using custom menus, 535 
using string commands to label 

data output, 532 
using tagged objects as data 

output, 531 
Interactive Stack, 70 - 75 

activating, 70 
exiting, 74 
operations, 71 
viewing objects in, 73 

internal representation 
binary integers, 208 
vectors, 171 

International System of Units (SI), 
187 

mverse 
of a matrix, 354 
of a number, 134 
of a variable, 115 

inverse hyperbolic cosine, 137 
inverse hyperbolic sine, 137 
inverse hyperbolic tangent, 137 
I/O Device flag, 610 
I/O menu, 614, 632 
I/O SETUP menu, 617 
[OPAR reserved variable 

stores I/O parameters, 108, 618 
isolating a variable, algebra, 389 
iterative refinement, solving 

systems of equations, 362 

Inde. 835 



J 
Joe's grocery, 596 

K 
keeping the stack, 71 

Kermit file transfer protocol, 612 

Kermit modes, server/local, 616 

Kermit protocol commands, 614 

key assignments, user keyboard, 

217 
key location, returning, 539 

keyboard 
blue keys, 50 

clearing key assignments, 219 

entering letters, 52 

entering special characters, 54 

Greek letters, 50 

has six levels, 25, 50 
keying in a program, 470 

keying in accented characters, 

53 
keying in dates, 441 

keying in delimiters, 55 

keying in numbers, 47 

keying in statistics data, 369 

keying in time, 442 

keying in vectors, 172 

lowercase letters, SO, 52 

number pad, SO 
orange keys, SO 
queues 15 keystrokes, 48 

redefining, 216 

shift keys, 52 

special characters, SO 

uppercase letters, SO, 52 

using backspace to erase 

mistakes, 47 

keyboard functions, 134 -135 

keyboard layout, 26 
keystroke queue, 48 

836 Index 

L 
labeling 

data output with string 

commands, 532 

plot axes, 320 
program output, 531 

largest real number, 81 

last argument 
restores arguments after 

insufficient memory 

condition, 103 

used to recover purged variable, 

115 
last argument key, 64 

last command key, 77 

last menu key, 57 

left-shift annunciator, 48, 52 

left-shift key, 52 

activates left-shift keyboard, 25 

length, of a vector, 353 

less than, comparison function, 

491 
less than or equal to, comparison 

function, 491 

letters 
entering, 52 
generating accents, 53 

lowercase, 52 
uppercase, 52 

levels of the stack, 46 
returning current level number, 

71 
library commands, 653 

LIBRARY menu, 651 

library objects, 651 

attaching to a directory, 651 

contain commands and 

operations, 89 

object type number, 97 

lighter contrast, 25 
line, drawing, 337 

line length, during printing, 610 



line termination, during printing, 
610 

linear equations, 357 
accuracy of solution, 362 

linear regression, 377 
line-feed, dumping the print 

buffer, 603 
Line-feed flag, 608 
linking equations in the Equation 

Catalog, 272 
listing the stack, creates a list of 

objects, 71 
lists 

are sequences of objects, 86 
assembling, 90 
creating a subset, 90 
mode for keying in, 77 
number of elements (size), 90 
object type number, 97 
position of an object in, 90 
put replaces n-th element, 90 
replace a sub-list, 90 

Local mode, 616 
local names, object type number, 

97 
local variables, 105 

evaluation, 476 
scope of definition, 476 
used in programs, 473 

local/local configuration 
HP 48 to HP 48, 620 
PC to HP 48, 623 

local/server configuration 
HP 48 to HP 48, 620 
PC to HP 48, 624 

logarithmic functions, 137 
logic commands, 210 
logical. function.s, 493 

in algebraics, 493 
loops, 501 

decrement loop counter, 513 
DO ... UNTIL ... END, 510 
FOR. .. NEXT, 506 

FOR. .. STEP, 508 
increment loop counter, 513 
START ... NEXT, 501 
START ... STEP, 504 
WHILE ... REPEAT ... END, 

511 
low battery (alert) annunciator, 48 
low memory, 102, 103 
low-battery condition, replacing 

batteries, 660 
lowercase alpha lock, 53 
lowercase letters, SO, 52 

M 
magnitude, of complex numbers, 

157 
mantissa 

display format, 58 
extracting from a number, 148 
keying in, 47 

mark, defines a position in PICT, 
302 

math functions, 132 - 149 
with vectors, 177 

MATR menu, 359 
matrices, 83 

adding and subtracting. 354 
are arrays, 345 
arithmetic with vectors, 355 
commands for, 359 
complex, 357 
determinant of, 359 
dividing by a vector, 355 
editing, 350 
identity, 359 
keying in, 346 
norms of, 359 
product of, 354 
put replaces n-th element, 90 
reciprocal, 354 
redimensioning, 359 

Inde. 837 



scalar multiplication, 354 
transposing, 359 

MATRIX menu, 346 
MatrixWriter application, 346 

deleting row or column, 351 
entering arrays, 350 
entering statistical data, 370 
entry modes for entering 

matrices, 351 
inserting row or column, 351 

maximum, math function, 148 
maximum value, of a sample, 374 
MAXR, is a built-in constant, 144 
mean, of a sample, 374 
median 

of a list, 563 
of statistics data, 560 

memory 
amount used by objects, 101 
archiving, 624, 648 
backing up, 624 
cancelling clearing operation, 

102 
checksum of an object, 101 
clearing, 101, 102 
expanding, 100 
freeing merged memory, 649 
insufficient memory, 103 
low-memory conditions, 102 
no room for last stack, 102 
no room to show stack, 103 
not affected by (ONI / (OFFI, 25 
number of bytes unused, 101 
out of memory, 103 
RAM and ROM, 100, 635 
restoring backed up user 

memory, 625 
MEMORY Arithmetic menu, 115 
MEMORY menu, 101 
menu descriptions 

ALGEBRA, 389, 395 
CST, 213 
EDIT,68 

838 Index 

GRAPHICS FCN, 308 
GRAPHICS ZOOM, 305 
IjO, 614, 632 
I/O SETUP, 617 
LlBRAR Y, 651 
MATRIX, 347 
MEMORY, 101 
MEMORY Arithmetic, 115 
MODES, 57 
MODES Customization, 220 
MTH,133 
MTH BASE, 82, 208, 210 
MTHHYP,137 
MTH MATR, 359 
MTH PARTS, 138 
MTH PROB, 147, 383 
MTH VECTR, 142, 172, 183 
PLOT, 290 
PLOTR,292 
PRG BRCH, 494, 501 
PRG CTRL, 483 
PRGOBJ,90 
PRG STI(.78 
PRG TEST, 491 
PRINT, 603 
SOLVE, 253, 256 
SOLVE SOLVR, 253, 263 
STAT, 367 
STAT MODL, 376 
TIME, 440 
TIME ADJST, 443 
TIME ALRM, 444 
TIME RPT, 445 
TIME SET, 441 
UNITS Catalog, 187, 188, 193 
UNITS Command, 187 
VAR, 106, 112, 118 

menu keys, 55 
menu labels 

bar indicates a directory, 118 
describe menu keys, 45, 55 
in custom menus, 213 
variable names, 106, 108 



menus 
bar indicates sub-menu, 56 
cycling multiple pages, 56 
define menu keys, 55 
leaving, 56 
selecting, 56 
selecting next and previous, 56 
switching to last menu, 57 
used in programs, 534 

merged memory, 642 
messages, 6n - 693 

are displayed in status area, 48 
clearing from the display, 48 
share "territory" with 

annunciators, 48 
minimum, math function, 148 
minimum value, of a sample, 374 
MINR, is a built-in constant, 144 
mod (modulo), math function, 148 
mode, changing, 77 
m e types 

Algebraic-enuy, 76, 190 
Algebraic/program-entry, n 
Alpha-entry, 52, 53, 222 
ASCII Transmission, 617, 629 
Automatic Alpha Lock, 222 
Binary Transmission, 617, 629 
Cylindrical, 170 
Degrees, 139 
Engineering, 58 
Fix, 58 
Grads, 139 
Immediate-entry, 76 
Infrared Transmission, 617 
Local, 616 
Numerical Results, 127, 144 
Polar, 81,157,170 
Program-entry, 77, 470 
Radians, 139 
R(~ctangular, 81, 157, 170 
Scientific, 58 
Server,614,616 
Spherical, 170 

Standard, 58 
Symbolic Evaluation, 223 
Symbolic Results, 127, 144 
User, 216, 223 
Wire Transmission, 617 

model, in Statistics application, 
376 

modes 
changing, 554 
changing coordinate mode, 171 
for printing, 607 
reset by clearing memory, 101 
selecting, 220 
setting, 57 
using system flags to set, 222 

MODES Customization menu, 
220 

MODES menu, 57 
modes of entry, four types, 76 
MODL menu, 376 
month/day/year date format, 442 
most significant bits, binary 

integers, 208 
moving, the stack pointer, 71 
moving terms, algebra, 402 
MTH BASE menu, 82, 208, 210 
MTH HYP menu, 137 
MTH MATR menu, 359 
MTH menu, 133 
MTH PARTS menu, 138 
MTH PROB menu, 147, 384 
MTH VECfR menu, 142, 171, 

183 
multiline format, of printed 

output, 604 
mUltiplying 

a variable by a stack value, 115 
in the EquationWriter 

application, 230 
numbers, 134 

Ind.. 831 



N 
names 

are used to identify variables, 84 
contained in a variable, 110 
in the EquationWriter 

application, 230 
reviewing unit names, 191 

naming variables, 108 
natural (base e) antilogarithm, 137 
natur~ (base e) logarithm, 137 
negating 

complex numbers, 166 
contents of a variable, 115 

negative numbers, keying in, 47 
nested loops, 561 
nested parentheses, in algebraics 

128 ' 

nesting, user-defined functions 
153 ' 

next key, selects next menu, 56 
no room for last stack, error 

message, 102 
no room to show stack, enoc 

message, 103 
normal distribution, 385 
not 

with binary integers, 210 
with tests, 493 

number pad, of the keyboard, 50 
numbers 

converting to a character, 90 
converting to date, 454 
display modes, 57 
in the Equation Writer 

application, 230 
internal representation, 57 
keying into the command line 

47 ' 
numerator, in the EquationWriter 

application, 229 
numerical constants 144 
numerical integrati~n, 432 

840 Inde. 

accuracy factor, 433 
Numerical Results mode, 127, 144 
numerical value of a character, 90 

o 
OBJ menu, 90 
object to string, converting, 90 
object type number, 97 

determining, 97 
object types, 80, 97 

arrays, 83 
backup objects, 89 
binary integers, 82 
built-in commands, 90 
built-in functions, 90 
complex numbers, 81 
counted strings, 86 
directories, 89 
graphics objects, 87 
library objects, 89 
lists, 86 
matrices, 83 
names, 84 
programs, 85 
real numbers, 81 
strings, 86 
tagged objects, 87 
unit objects, 88 
vectors, 83 
XLIB names, 89 

objects 
are delimited by punctuation 

characters, 55 
checksum, 101 
disassembling, 90 
inserting from the stack into the 

Equation Writer application, 
246 

manipulation commands for 90 . . ' 
Vlewmg and editing, 66, 67 
viewing in the Interactive Stack 

73 ' 



'. 

octal base marker, 82 
octal numb rs, 82, W7 
off key, 25 
on key, 25 

becomes the attention key, 54 
one-argument commands, 61 
one-dimensional vectors, 83 
opening serial port, 614 
operations, defined, 42 
or 

with binary integers, 210 
with tests, 493 

orange keys, 25, 50 
out of memory, 103 
output, 531 
over-determined systems, 363 
overflow, real numbers, 81 

p 
11', is ;Ii built-in constant, 144 
pacing (receive/transmit), setting, 

619 
packet, sending commands to a 

server, 614 
packets, sending commands to a 

server, 631 
pain:d-sample statistics, 375 
PARAMETRIC plot type, 327 
parametric plots, 331 
parent directory, 119 
parentheses 

are highest precedence in 
algebraics, 128 

delimit complex numbers, 81 
used in algebra, 403 
used to enter complex numbers, 

158 
using in the EquationWriter 

application, 229, 233, 236 
parity 

during printing, 610 
setting, 617, 619 

PARTS menu, 138 
past due alarms, 447 
path, returning current directory 

path, 120 
PC file names versus HP 48 file 

names,628 
PC to HP48 

cable connection, 621 
Input/Output, 621 

percent calculations, with unit 
objects, 202 

percent change, calculating, 138 
percent of total, calculating, 138 
period, as fraction mark, 58 
permutations, calculating, 147 
photometric units, 198 
pi,14O 
picking an object from stack, 78 
picking stack contents, 71 
PICT 

adding graphical elements to, 
336 

changing the size of, 325 
erasing, 292 
erasing and restoring to its 

default size, 323 
stack manipulation of, 341 

pixel coordinates in plots, 323 
plane angles, 198 
Plot application, 24, 283 - 344 

contains two menus and special 
environment, 286 

data elements in, 286 
structure of, 286 
used with HP Solve application, 

252 
PLOT menu, 290 
PLOT PLOTR menu, 292 
plot types, 327 

BAR, 329, 336 
CONIC, 327, 328 
FUNCTION, 328, 329 
HISTOGRAM, 328, 336 

Index 841 



PARAMETRIC, 327, 333 

PC>lJ\Jt,327,330 

SCATfER, 328, 336 

TRUTH, 327, 333 

plotting 
analyzing plotted functions, 307 

axes labels and intersection, 320 

conic plots, 329 

connected and disconnected 

plotting, 300 

coordinate systems for, 324 

function plots, 328 

how DRAW plots points, 298 

paired-sample statistics, 375 

parameters stored in PPAR, 322 

parametric plots, 332 

plotting range of independent 

and dependent variables, 

320 
polar plots, 331 

programs and user-defined 

functions, 335 

refinement options for, 318 

resetting plot parameters, 292 

resetting plot parameters and 

erasing PICr, 323 

resolution, 321 

single-sample statistics, 374 

size of PICr, changing, 325 

specifying independent variable, 

294 
specifying plot parameters, 291 

specifying the center and scale, 

295 
statistical data from the Plot 

application, 335 

statistics, 379 

status message indicates plot 

parameters, 291 

the derivative of a plotted 

function, 308 

truth plots, 333 

842 Inde. 

two or more equations, 300 

unit objects in, 335 

user-unit and pixel coordinates, 

323 
what the HP 48 can plot, 283 

with autoscaling, 295 

with specified y-axis range, 295 

working with difficult plots, 314 

x-axis display range, 295 

y-axis display range, 295 

zoom operations, 304 

zoom-to-box, 306 

zoom-to-box with autoscaling, 

306 
plotting range 

specifying, 319 

valuable for parametric and 

truth plots, 321 

plug-in cards, 635 

environmental limits, 660 

installing and removing, 636 

plug-in RAM, 100 

plug-in RAM batteries, 661 

plug-in RC>M, 100 

polar angle, 166 

Polar mode, 81, 157, 170 

annunciator, 157, 170 

PC>lJ\Jt plot type, 328 

polar plots, 331 

Polar /Cylindrical Coordinates 

mode, annunciator, 48 

Polar/Spherical Coordinates 

mode, annunciator, 48 

population statistics, 375 

port RAM test, 669 

position of object in list, 90 

power conservation, automatic off 

after 10 minutes, 25 

power-on directory, is HOME, 48 

powers of 10, in the 

Equation Writer application, 

233 



PPAR reserved variable 
contains Plot parameters, 108, 

321 
precedence of functions 

in algebraics, 128 
in unit objects, 191 

precision, of displayed number, 58 
predicted value, 376 
prefixing user-defined units, 206 
previous key 

right-shift goes to first page, 56 
selects previous menu, 56 

previous results, used in chain 
calculations, 62 

PRG BRCH menu, 494, 501 
PRG CTRL menu, 483 
PRG OBJ menu, 90 
PRG STK menu, 78 
PRG TEST menu, 491 
primary (unshifted) keyboard, 25, 

50 
principal solutions, of an equation, 

393 
PRINT menu, 603 
printing 

accumulating data in the buffer, 
608 

an.d the HP 48 character set, 607 
double spacing, 606 
escape sequences and control 

sequences, 607 
graphics objects, 606, 610 
modes, 607 
PRTPAR contains printer 

parameters, 610 
setting the delay, 607 
strings, 606 
testing. 670 
the display, 605 
the stack, 606 
to the serial port, 609 
variables, 606 

Printing Device flag, 610 

printing, 602 - 611 
PROB menu, 147,383 
probability, 147 
producer price index, 364 
product of matrices, 354 
products and powers, expanding, 

396 . 

program execution, continuing 
after error, 541 

program-entry annunciator, 470 
Program-entry mode, n, 470 

annunciator, 48 
entering unit objects, 188 

programming examples, 547 - 599 
programs 

aborting with the attention key, 
54 

are sequences of commands, 85, 
468 

as arguments, 569 
calculating execution time, 551 
CASE ... END structure, 497 
com pared to algebraics, 125 
conditional structures, 494 
continuing execution, 483 
data input commands for, 520 
DO ... UNTIL. .. END structure, 

510 
editing, 472 
evaluating variables containing 

programs, 110 
evaluation of local names, 476 
executing, 472 
finding solution with the HP 

Solve application, 275 
FOR. .. NEXT structure, 506 
FOR. .. STEP structure, 508 
halting. 483 
IF. .. THEN ... ELSE . .. END 

structure, 496 
IF ... THEN ... END structure, 

494 
input/output, 519 

Inde. 843 



keying in, 470 
loop structures, 501 
mode for keying in, T7 
object type number, 97 
plotting, 334 
scope of local variables, 476 
single-step execution, 483 
START ... NEXT structure,.501 
START ... STEP structure, 504 
suspending execution with the 

WAIT command, 534 
that act like user-dermed 

functions, 478 
that manipulate data on the 

stack, 479 
used by other programs, 582 
using alarms in, 453 
using custom menus in, 535 
using local variables in, 473 
using subroutines in, 480 
using tests in, 490 
WHILE ... REPEAT ... END 

structure, 511 
working with graphics objects, 

342 
prompting for input, 520 
PRTPAR reserved variable 

contains printer parameters, 610 
contains printing parameters, 

108 
pseudo-random number, 147 
punctuation characters, as 

delimiters, 55 
purging 

alarms, 450 
backup objects, 646 
directories, 123 
objects when out of memory, 

103 
variables, 114 

put element into array, 90 

844 Inde. 

Q 

quadratic equations 
solving, 389, 390 

queued keystrokes, 48 
quotes, used to prevent evaluation 

of a variable, 112 

R 
radians, converting to degrees, 142 
Radians mode, 139 

annunciator, 48 
radix mark. See fraction mark 
RAM 

also known as user memory, 100 
can be expanded with plug-in 

cards, 100 
memory which can be altered, 

100 
(random-access memory), 635 

RAM cards, 638 
batteries, 638 
expanding user memory, 643 
installing and removing, 636 
used for backup, 644 
write-protect switch, 641 

random number, selecting, 147 
range of values, real numbers, 81 
real arrays, object type number, 97 
real numbers, 81 

compared to complex, 161 
converting to complex, 166 
converting to fractions, 136 
display format, 58 
MAXR and MINR, 144 
object type number, 97 
overflow, 81 
range of values, 81 
underflow, 81 

real part 
of a complex array, 357 
of a complex number, 166 

real to complex, assembling, 90 



rearranging terms, the Rules 
transformations, 397 

recalling 
contents of a variable, 110 
flags, 518 
user key assignments, 220 

receive pacing, setting, 619 
receiving data, serial I/O, 614 
receiving strings, serial I/O, 632 
reciprocal, of a unit object, 201 
recover memory, cancelling 

clearing operation, 102 
recovering 

last arguments, 64 
previous command lines, 77 

Rectangular mode, 81,157,170 
annunciator, 158 

recursion, calculating Fibonacci 
numbers, 548 

rede.fming the keyboard, 216 
redimensioning a matrix, 359 
registers, variables used instead of, 

105 
regulatory information, 676 
reordering 

Equation Catalog, 259 
Statistics Catalog, 371 
the VAR menu, 113 

repair,674 
replace part of a list or string, 90 
replacing batteries, 660 
rescheduling alarms, 447 
reserved variables, 108 
resetting 

memory, 101 
plot parameters, 292, 323 

resolution 
how it affects statistical plots, 

321 
specifying for plots, 320 
speeding up plots by increasing, 

321 

restoring backed up user memory, 
625 

results, on the stack, 61 
Review Catalog. 112 
right-shift annunciator, 48, 52 
right -shift key, 52 

activates right-shift keyboard, 25 
right -shift keyboard, 50 
rolling the stack, 71, 78 
ROM 

can be expanded with plug-in 
cards, 100 

memory which cannot be 
altered, 100 

(read-only memory), 635 
ROM cards, installing and 

removing, 636 
root 

finding the square or x-th root 
of a number, 134 

of a plotted function, 308 
root-fmder 

halting. 277 
in the HP Solve application, 276 
intermediate guesses, 278 
using initial guesses, 277 

rotate commands, with binary 
integers, 210 

rotating the stack, 78 
rounding errors, solving systems of 

equations, 361 
rounding numbers, 148 
row norm, calculating, 359 
RPT menu, 445 
rules of precedence, in algebraics, 

128 
Rules transformations, 397-417 

examples, 400 
executing a transformation, 399 
exiting a RULES menu, 400 
selecting, 399 

Index 845 



s 
sample statistics, 374 
scalar multiplication, matrices 354 . ' scaling a plot, 295 
scatter plot 

from Plot application, 336 
from Statistics application, 378 

Scientific mode, 58 
scientific numbers, keying in 

exponent and mantissa, 47 
scope of local variables, 105, 476 
scrolling 

of the command line, 46 
the stack, 66 

EDAT reserved variable 
contains current statistical 

matrix, 108, 369 
seed for random number, 147 
Selection environment, 243, 398 

editing subexpressions, 244 
self-test, 667 
sending a serial break, 632 
sending data, serial I/O, 614 
separating variable names by type, 

98 
serial cable, PC to HP 48, 621 
serial I/O commands, 632 
serial loop-back test, 671 
serial port 

configuring for printing, 610 
opening and closing, 614 
printing, 609 

Server mode, 614, 616 
starting and fmishing, 614 

Servicc,674 
testing calculator operation, 665 

SET menu, 441 
selling 

display I/O parameters, 614 
flags,222 
serial I/O timeout, 632 

SETUP menu, 617 

846 Inde. 

shift commands, with binary 
integers, 210 

shift keys, 25, 52 
in custom menns, 215 
press twice to cancel, 52 

short-interval repeating alarms, 
448 

showing hidden variables 394 . ' 
Sign 

changing the sign of a number, 
47 

determining, 148 
of a unit object, 203 

significant digits, 58 
simplification of algebraics 128 
sine,14O ' 
single-sample statistics, 374 
single-step 

execution of a program, 483 
program operations, 483 

Size 

of a graphics object, 90 
of a list or string, 90 
of an array (dimension), 90 
ofPICT, 325 

slope, of a plotted function, 308 
smallest integer, math function, 

148 
smallest real number, 81 
Snedecor's F test, 384 
solid angles, 198 
SOLVE menu, 253, 256 
SOLVE SOLVR menu, 263 
Solver-list, naming, 270 
solving 

for a variable, 388 
quadratic equations, 389, 390 
sy!ittems of equations, 356 

SOLVR menu, 253, 263 
customizing, 269 

EP AR reserved variable 
contains Statistical parameters, 

108,378 



special characters 
entering from the keyboard, 50 
table of, 54 

Spherical mode, 170 
square matrix, inverting, 354 
square root 

in the Equation Writer 
application, 232 

of a number, 134 
squaring a number, 134 
stack 

clearing, 64 
commands, 78 
dropping, 64 
duplicating level I, 65 
Graphics environment 

operations, 341 
inserting level 1 into the 

EquationWriter application, 
246 

is a sequence of storage 
locations, 46, 60 

levels,46 
lost after recovering memory, 

102 
no room to show, 103 
one-argument commands, 61 
ordinary calculations, 61 
printing, 606 
recovering last arguments, 64 
splitting equations, 90 
stores graphics objects, 87 
swapping levels 1 and 2, 63 
two-argument commands, 62 
using previous results, 62 
viewing and editing objects, 67 
viewing and editing variables, 67 

&tack display, is dividerl into three 
sections, 45 

stack pointer, moving, 71 
stack to array, assembling, 90 
stack to list, assembling, 90 
stack to tag, assembling, 90 

stack to unit. assembling. 90 
standard deviation, 374, 375 
Standard mode, 58 

START ... NEXT dermite loops, 
501 

START ... STEP defmite loops, 
504 

STAT menu, 367 
STAT MODL menu, 376 
statistics 

dependent variable, 376 
designating the current matrix, 

369 
editing data, 370 
entering data, 368, 369 
independent variable, 376 
manipulating data, 368 
paired-sample statistics, 375 
plotting samples, 378 
population statistics, 375 
sample statistics, 374 
summation commands, 383 

Statistics Catalog, 370 
operations, 371 
reordering, 371 

statistics, 364 - 385 
status area 

displays current path, 119 
of the display, 48 

stepwise differentiation, 419 
STKmenu, 78 
storage locations 

the stack, 46, 60 
storing 

flags, 518 
user keys, 217 
variables, 107 

strings 
are sequences of characters, 86 
combining, 90 
counted strings, 86 
executing contents of, 90 
from an object, 90 

In.... 847 



making a subset, 90 

number of characters (size), 90 

object type number, en 
position within another string. 

90 
printing, 604, 606 

replacing a sub-list, 90 

Student's t test, 384 

subdirectories, 118 

can be manipulated like other 

variables, 124 

creating, 120 

evaluating its name to switch to 

it, 122 
subexpressions 

completed with cursor keys in 

the EquationWriter 

application, 1:19 

defmed, 243, 395 

editing in the EquationWriter 

application, 243 

replacing in the EquationWriter 

application, 247 

the Selection environment, 398 

subroutines, 480 

single-step execution, 486 

subset of a list or string, 90 

subtracting 

a stack value from variable, 115 

in the EquationWriter 

application, 230 

numbers, 134 

summation statistics, 383 

summations, 423 

calculated from the stack, 426 

entering, 423 

in the EquationWriter 

application, 235 

suspending a program, 534 

swapping levels in the stack, 63 

switching to the parent or HOME 

directory, 122 

symbolic arguments, used in 

functions, 149 

symbolic constants, 144 

converting to values, 144 

e,l44 
evaluation, 145 

; (the imaginary number), 144, 

165 
11',140,144 

Symbolic Evaluation mode, 223 

symbolic integration, 428 

symbolic math, 24 

Symbolic Results mode, 127, 144 

syntax 
of an integral, 428 
of variable names, 108 

unit objects, 187 

user-defmed function, 154 

system flags, 222, 515 

complete list of, 699 

systems of equations, 356 

accuracy of solution, 361 

over-determined, 362 

under-determined, 362 

T 
ttest, 384 
tagged objects 

are labeled objects, 87 

as data output, 531 

assembling from the stack, 90 

deleting the tag, 90 

disassembling, 90 

object type number, 97 

useful for labeling, 88 

tangent, 140 

Taylor's polynomials 

approximation of the integrand, 

431 
computing for an algebraic, 426 

translating point of evaluation, 

427 



temperature, effect on calculator, 
660 

temperature conversion, 197 
temporary menu, used in 

interactive programs, 539 
temporary variables, 105 

used in programs, 473 
TEST menu, 491 
test statistics, 383 
testing 

calculator operation, 665 
flags, 222, 516 
Infrared Printer, 670 
keyboard operation, 667 
port RAM test, 669 
s(~lf-test, 667 
serial loop back test, 671 

text, entering and editing in the 
command line, 46 

ticks, 457 
system time as a binary integer, 

456 
time 

adjusting, 443 
am/pm time format, 442 
changing format, 442 
commands,441 
n~quired to execute a program, 

551 
setting, 442 
twelve-hour time format, 442 
twenty-four hour time format, 

442 
TIME ADJST menu, 443 
TIME ALRM menu, 444 
time arithmetic, 456 
TIME menu, 440 
TIME RPT menu, 445 
TIME SET menu, 441 
tim(~out 

automatic off after 10 minutes, 
25 

setting, 632 

total, of a sample, 374 
translating characters, 

input/output, 626 
translating input/output, 617 
translation mode, during printing, 

610 
transmit pacing 

during printing, 610 
setting, 619 

transmitting, serial I/O, 632 
transmitting annunciator, 48 
transpose, calculating, 359 
trigonometric functions, 140 

expanding using algebra, 409 
trigonometric operations, with unit 

objects, 203 
true, result of a test, 490 
truncating numbers, 148 
TRUTH plot type, 327 
truth plots, 333 
twelve-hour time format, 442 
twenty-four hour time format, 442 
two-dimensional points, caD be 

represented complex 
numbers, 81 

two-dimensional vectors, 83 
type 

u 

returning object type number, 
97,493 

under-determined systems, 363 
underflow, real numbers, 81 
unemployment rate, 364 
unit objects 

are numbers combined with 
unit, 88 

assembling from the stack, 90 
disassembling, 90 
in custom menus, 213 
in HP Solve application, 267 

Index 849 



in the EquationWritet 
application, 235 

object type number, 97 
plotting with, 335 
syntax, 187 
viewing in the EquationWriter 

application, 240 
unit vector, 176 

for complex numbers, 166 
U nits application, 24, 185 - 206 

arithmetic operations, 203 
assembling unit objects, 206 
building unit objects using the 

EquationWriter application, 
204 

built-in units, 193 
comparing unit objects, 202 
conversion to SI base units, 196 
creating unit objects, 188 
creating unit objects in the 

command line, 190 
dimensionless units of angle, 

198 
disassembling unit objects, 206 
entering and editing unit 

objects, 188 
factoring expressions, 199 
ideal gas equation, 185 
International System of Units 

(SI),187 
percent calculations, 202 
photometric units, 198 
powers of ten prefixes, 192 
precedence of functions, 191 
prefixing user-defined units, 206 
raising a unit object to a power, 

201 
reciprocal of a unit object, 201 
reviewing unit names, 191 
temperature conversion, 197 
trigonometric operations, 203 
unit conversion, 188 
unit object arithmetic, 200 

850 Index 

unit object conversion, 194 
unit object conversion in the 

CST menu, 195 
unit -object conversion, 193 
UNITS Catalog menu, 187, 188 
user-dermed units, 205 
using unit objects in algebraics, 

191 
UNITS Catalog menu, 187, 188, 

193 
UNITS Command menu, 187 
units of angle, 198 
unused memory (free memory), 

101 
up one directory, 122 
upper tail probabilities, 384 
uppercase letters, SO, 52 
user flags, 515 
user flags arIDunciator, 48 
user keyboard, 216 

clearing key assignments, 219 
customizing operations, 220 
editing key assignments, 220 
making key assignments, 217 
reactivating a key, 219 

user keyboard active annunciator, 
48 

user memory, 100 
User mode, 216, 223 
user-defined derivatives, 422 

are prefixed by"der", 108 
user-defined errors, 546 
user-defined functions, ISO-ISS 

are actually programs, 154 
compared to built-in functions, 

ISO 
creating, 151 
executing, 152 
nesting, 153 
plotting, 334 

user-dermed menus, 213 
user-defined transformations, 414 
user-defined units, 205 



user-key assignments, lost after 
recovering memory, 102 

user-unit coordinates in plots, 323 

v 
value of symbolic constants, 144 
VAR menu, 106, 112, 118 

reordering, 113 
variable, menu labels give name, 

108 
variables, 105 - 117 

arc~ named storage locations, 
105 

arithmetic with, 115 
can store directories, 118 
changing the contents of a 

variable, 111 
common variables, 105 
containing a directory object, 

123 
creating, 106, 107 
ddining, 107 
duplicate names, 121 
error recovery from accidentally 

purging, 115 
evaluating a variable's name, 

109 
evaluating variables containing 

programs, 110 
global variables, 105 
immediate execution, 112 
in custom menus, 213 
in other directories, 121 
local variables, 105 
memory used by, 101 
menu labels, 106 
names, 84, 108 
new variables are added to the 

current directory, 121 
printing, 606 
purging, 114 

purging all variables in a 
directory, 115 

recalling contents, 110 
reordering the VAR menu, 113 
reserved variables, 108 
returning object type number of 

object stored in a variable, 
97 

Review Catalog, 112 
scope of local variables, 105 
searching for variable name 

during evaluation, 121 
separating variable names by 

object type, 98 
stored in variables, 394 
storing, 107 
temporary variables, 105 
that contain directories, 110 
that contain names, 110 
using global variables, 106 
using its contents, 109 
using quoted versus unquoted 

variable names, 112 
viewing and editing, 67 

vectors,83,170-185 
absolute value, 176 
are arrays, 345 
arithmetic with, 353 
arithmetic with matrices, 355 
assembling, 173, 183 
calculations, 176 
commands, 183 
compared to complex numbers, 

166, 167, 184 
complex, 357 
cross product, 176, 353 
disassembling, 173, 183 
display modes, 350 
dividing into a matrix, 355 
dot product, 176, 353 
getting the n-th vector element, 

90 
how they are displayed, 170 

Index 851 



internal representation, 171 
keying in, 172 
length, 353 
put replaces n-th element, 90 
unit vector, 176 

VECfR menu, 142, 171, 183 
viewing stack contents, 71 

w 
wait 

suspending program execution, 
534 

using the argument 0, 539 
Warranty, 673 
where function, 416 

in the EquationWriter 
application, 236 

WHILE ... REPEAT . . . END, 511 
wildcards, with backup objects, 

646 
Wire Transmission mode, 617 
word, certain operations use the 

concept of, 68 
wordsu.e, binary integers, 'lff7 
write-protect switch 

in RAM cards, 641 
installing plug-in cards, 636 

x 
x-axis display range, specifying, 

295 
XLIB names 

are objects provided by plug-in 
cards,89 

object type number, 97 
XONjXOFF handshaking, during 

prio iog, 610 
XONjXOFF pacing, 619 
xor 

with binary integers, 210 
with tests, 493 

852 Indu 

x: test, 384 
x-th root, in the EquationWriter 

application, 232 

y 

y-axis display range, specifying, 
295 

z 
ZOOM menu, 305 
zoom operations, 304 
zoom-to-box, 306 
zoom-to-box with autoscaling, 306 











----
--

-



Contents 

Part 4: Programming 

Page 468 25: Programming FU~ldamentals 

488 26: T~sts and Cor.ditional Structures 

501 27: Loop Structures 

515 28: Flags 

519 29: Interactive Programs 

541 30: Ermr Trapping 

547 31: More Programming Examples 

Part 5: Printing, Data Trabtfer, and Plug-Ins 

60~ 32: Printing 

612 33: Transferring Dat~ to and from the HP 48 

635 34: Using Plug-in Cards and Libraries 

Appe"ndixes "and Indexes 

656 A: Support, BaHeries, lind Service 

677 B: lIessages 
694 " C: HP 48 Character Codes 

697 D: lIenu Numbers and Menu lIaps 

699 E: Listing of HP 48 System Flags 

107 Operation Index 

823 Index 

Flio- HEWLETT 
a:a PACKARD 

Reonler Number 

ooo.u-90003 

UUU''8--~OO7B EnglIsh 

Princed In C<lnada 7/90 



 
 
 
 
 
 
 
 
 

Scan Copyright © 
The Museum of HP Calculators 

www.hpmuseum.org 
 

Original content used with permission. 
 

Thank you for supporting the Museum of HP 
Calculators by purchasing this Scan! 

 
Please to not make copies of this scan or 
make it available on file sharing services.


