
HP 9800 Computer Systems

Advanced
Programming ROM

For the HP 98351HP 9845

rll~ HEWLETT
~~ PACKARD

r/i~ HEWLETT
~a PACKARD

Warranty Statement

Hewlett-Packard products are warranted against defects in
materials and workmanship. For Hewlett-Packard Desktop
Computer Division products sold in the U.SA and Canada,
this warranty applies for ninety (90) days from date of
delivery * Hewlett-Packard will, at Its option, repair or replace
equipment which proves to be defective during the warranty
period. This warranty includes labor, parts, and surface
travel costs, if any. Equipment returned to Hewlett-Packard
for repair must be shipped freight prepaid. Repairs
necessitated by misuse of the equipment, or by hardware,
software, or interfacing not provided by Hewlett-Packard are
not covered by this warranty.

HP warrants that its software and firmware designated by HP
for use with a CPU will execute its programming instructions
when properly installed on that CPU. HP does not warrant
that the operation of the CPU, software, or firmware will be
uninterrupted or error free.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE. HEWLETT-PACKARD SHALL
NOT BE LIABLE FOR CONSEQUENTIAL DAMAGES.

* For other countries, contact your local Sales and Service
Office to determine warranty terms.

Advanced Programming ROM
Part No. 09845-93065

Microfiche No. 09845-96065

Hewlett-Packard Desktop Computer Division
3404 East Harmony Road, Fort Collins, Colorado 80525

Copyright by Hewlett·Packard Company 1981

•

ii

Printing History
This manual is for use with the System 35A/B or 45B/C Desktop Computers. It is a slightly

revised version of the Advanced Programming ROM Manual, part number 09845-92065.

The changes which were incorporated into this latest edition are summarized in the System 45

Manual Revision Package (pIN 09845-93099). This package outlines the changes and additions

that have been made to System 45 manuals.

New editions of this manual will incorporate all material updated since the previous edition.

Update packages may be issued between editions and contain replacement and additional pages

to be merged into the manual by the user. Each updated page will be indicated by a revision date

at the bottom of the page. A vertical bar in the margin indicates the changes on each page. Note

that pages which are rearranged due to changes on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing date changes

when a new edition is printed. (Minor corrections and updates which are incorporated at reprint

do not cause the date to change.) The manual part number changes when extensive technical

changes are incorporated.

April, 1981... First Edition; Updated pages: ii, 1, 2

re v: 4181

•

•
iii

Table of Contents

Chapter 1: Generallnformation

Overview .. 1
Equipment Supplied ... 1
ROM Installation .. 2
Lexical Tables Cartridge ... 2
Manual Requirements ... 2

Chapter 2: Data Manipulation

Introduction .. 4
Array Structure and Terminology .. 4
MAT SORT Statement ... 9

Sorting Numeric Data .. 9
Sorting String Data ... 16

MAT REORDER Statement .. 22
MAT SEARCH Statement ... 28

Searching Numeric Arrays 28
Searching String Arrays .. 32

Chapter 3: Extended Character Sets

Introduction .. 36
LEXICAL ORDER IS Statement. 36
The LEX Function ... 37
Uppercase and Lowercase Functions .. 38

Chapter 4: File Catalog Access with the HP 9835

Introduction .. 41
CAT TO Statement. .. 41

Appendix A: User-Defined Lexical Order 49

Collating Sequences .. 51
Collating Section .. 52
Uppercase/Lowercase Section ... 54
Mode Section ... 55

Accent Priority ... 55
1 For 2 Character Replacement ... 57
2 For 1 Character Replacement ... 61
"Don't Care" Characters .. 62

Advanced Programming Lexical Tables .. 63
ASCII Table .. 64
French Table .. 69
German Table ... 74
Spanish Table. 79
Swedish Table .. 84

•
iv

Chapter 1
General Information

Overview
The Advanced Programming ROM provides extended computing capabilities for your desktop

computer. This ROM enables you to perform such functions as ordering list data in numerical or

lexical order and searching lists for conditions which you specify. These features can be very

useful in the areas of mathematics, statistics, and information processing. This manual explains

and demonstrates the programming features provided by the Advanced Programming ROM.

You should be familiar with the basic operation of your system before attempting to use the

Advanced Programming ROM and this manual. Refer to the System 35 Operating and Program­

ming Manual or the System 45 BASIC Programming Manual for this information.

Equipment Supplied

HP 9835 I HP 98458 / ~
Part Number I Part Number Item
---------~ -,----"----

98336A 'I 98414A I' Advanced Programming ROM
09845-93065 09845-93065 Advanced Programming ROM Manual
09835-90448 I 09845-90448 I Advanced Programming ROM Lexical Tables Cartridge

rev:4181

AP-2 General Information

ROM Installation
The System 35 Advanced Programming ROM is plugged into a 9835 ROM drawer, which can

then be inserted into any of the four ROM slots at the lower front of the computer. Refer to the

System 35 Owner's Manual for installation procedures.

The System 45 Advanced Programming ROM is plugged into the right ROM drawer (black­

labeled ROMs). Refer to the System 45 Installation, Operation and Test Manual for installation

procedures.

Lexical Tables Cartridge

An Advanced Programming ROM Lexical Tables Cartridge is provided for use with the Advanced

Programming ROM. The cartridge contains ASCII and local language collating tables which can

be modified for particular collating applications. Descriptions of the tables and instructions for

their use are found in Appendix A.

Manual Requirements

Before using this manual or the Advanced Programming ROM, you should be familiar with the

basic operating procedures of your desktop computer as explained in the System 45 BASIC

Programming Manual or the System 35 Operating and Programming Manual.

rev:4181

•

page 9
page 2

page 28

Terms

Chapter 2
Data Manipulation

• MAT SORT (orders data records within an array)
• MAT REORDER (orders an array according to the contents of an existing

pointer array)
• MAT SEARCH (provides information about user-defined conditions within an

array)

• Record - represents data which is manipulated as a unit within an array.
• Key - a data item within a record used to identify the record for sorting purposes.
• Key specifier - a format used in a syntax to specify primary and / or secondary keys within a

record.
• Pointer array - a one-dimensional numeric array which contains the sorting order of

specified records.
• Location specifier - a format used within a MAT SEARCH statement syntax to specify the

locations to be searched.

Statement Syntax
j"iHT' '::::CIi?T' source array (key specifier> [l::substring specifier:::]

[DE:::::::] L, (secondary key specifier> [!::substring specifier::I] [:DE::::::J ..] ['re) pointer array]

!"iHT' i?!:::CH?DE:!? object array E:'/ pointer array L, dimension specifier]

l'ciHT' ::::;E:i:::H?C)··! source array <location specifier >~, condition:; variable [, starting address]

condition:

L»:::: (relational operator-expression>
:iF ... CIi:::: (relational operator-expression>

AP-4 Data Manipulation

Introduction
The statements described in this chapter are used as programming aids to manipulate data.

They concern the sorting and searching of numeric and string arrays. Each of these statements

can be executed from within a program or from the keyboard. Examples of each statement are

included to demonstrate its use.

Array Structure and Terminology
For a better understanding of the sorting and searching processes introduced in this manual, a

brief description of array structure and terminology is helpful.

The following illustration represents a two-dimensional array containing numeric data.

/'" /'" /'" /" / /

#1 j 2

7 I 3 9 2 /

I 8 3 5 4 ./

0 2 7 5 3 3

2 3 4 5

..
#2

Array X

It is dimensioned 3 rows by 5 columns as follows:

The subscripts within parentheses (3,5) are written in the order in which the array is dimen­

sioned (i.e., in the order of the numbered arrows). Throughout this manual dimensioning

assumes OPTION BASE 1 (i.e., numbering begins with 1, not 0). The dimension statement

specifies that the array name is X and that it is three rows by five columns.

An array record represents data (string or numeric) which is manipulated as a unit within an

array. For example, if you arrange a list of names in a specified order, each name is considered

a record within that list. Similarly, an array might contain a list of social security numbers. If you

arrange them in a particular order, each social security number is considered a record within

that array.

•

Data Manipulation AP-5

In the previous example, if array X is to be rearranged by rows, each row is considered a record

and ordering is performed along the first dimension. That is, the positions of the rows in

relationship to each other along the first dimension are rearranged. Likewise, if the array is to

be reordered by column, each column is considered a record and reordering is performed along

the second dimension.

In the previous illustration, assume that each row is a record (A,B, and C). If the records are to

be sorted, a key is needed to determine how each row is to be ordered in relationship to the

others. Assume that the records are to be sorted in ascending order according to the value of

the first number in each record. The first column, then, contains the keys for this sort. The

sorting process sorts the keys in ascending order along the dimension in which they lie. In so

doing, the records in which the keys lie are rearranged.

The keys selected are described by the following format:

The asterisk indicates a varying subscript. The first dimension subscript is varied over its range

of values (1 to 2 to 3) to designate a key in all three records (rows). The second dimension

subscript is fixed at 1 to indicate that the keys lie in the first column of each record.

The format (*, 1) is called a key specifier. The asterisk replaces the subscript which corres­

ponds to the dimension along which the records lie, in this case, the rows. The number 1

indicates where the key is located within each record. In this way, the key specifier indicates

how the array is partitioned into records, and where the keys are located within those records.

If all the combinations of the key specifier in the previous example are listed, a description of

the individual keys is obtained as follows.

lst Subscript 2nd Subscript Key

1 1 1st

2 1 2nd

3 1 3rd

I

AP-6 Data Manipulation

The shaded cells in the next figure represent the keys described by the key specifier.

Keys

!
./ ./ ./ ./ / ./

#1 j 2

7 I 3 9 2 /'"

I 8 3 5 4 /'"

0 2 7 5 3 3

2 3 4 5

..
#2

ARRAY X

Upon execution, the sorting process arranges the records in ascending order along the first

dimension according to the values of their respective keys. The sorted array is shown next.

L .,./ ../'
0 2 7

I 8 3

7 I 3

../' ../'
5 3

5 4

9 2

./

/'"

/'"

c

B

A

ARRA Y X AFTER SORTING

The records, or rows, are repositioned in relationship to each other according to the value of

their keys. The contents of the records are left unchanged.

Note that any corresponding numbers within the rows could be selected as keys. The column

containing the keys would be described by the key specifier to reflect the proper keys.

•

Data Manipulation AP-7

As another example, assume array Y is a three dimensional numeric array as shown.

A B

2

#3

ARRA Y Y WITH KEYS

c

3

It is dimensioned in the order of the numbered arrows (3 rows by 4 columns by 4 planes):

..

Assume that the array is divided into records (A,B,C, & D) along the third dimension, that is,

each plane is considered a record. The keys selected must also lie along the third dimension

since there must be one for each record. If the upper right number in each record is designated

as a key, the key specifier is

.... j •.• j .;,; ••• ,
'" .!. ~I ""1" ~I ,', ...

where the asterisk indicates that the third subscript is varied over its entire range of values (1

through 4). In this way, a total of four keys is described as shown.

1st Subscript 2nd Subscript 3rd Subscript Key

1 4 1 1st

1 4 2 2nd

1 4 3 3rd

1 4 4 4th

D

4

I

AP-8 Data Manipulation

The shaded cells in the following illustration represent the four keys described by the key

specifier (1,4, *).

A B

2

#3

ARRA Y Y WITH KEYS

c

3

..

If the array records are sorted in ascending order, they are rearranged along the third dimen­

sion according to the values of their keys. The following illustration represents the array Y after

it is sorted.

c A o B

ARRAY Y AFTER SORTING

Note that the records have been rearranged according to the ascending values of their keys.

•

o

4

Data Manipulation AP-9

MAT SORT Statement
Sorting Numeric Data

The MAT SORT statement is used to order data records in an array. If the data is numeric, it can

be sorted in either ascending or descending order. If the array contains string data, it can be

sorted in either lexical (alphabetical) or reverse lexical order.

Syntax:

iT'''!; ' .. :; numeric source array <key specifier>

The source array represents the array in which sorting is performed. The key specifier allows you

to specify the keys by which the records of data are sorted. If the source array is one­

dimensional, no key specifier need be included.

Example:

In this case, A is a numeric array in which sorting is performed. The key specifier indicates that

A is a three dimensional array and that its records lie along the second dimension. The position

of the asterisk within the key specifier determines which subscript is varied, and therefore, how

the array is divided into records. If the first subscript were to identify records instead of the

second, i"!i::::T' '::/::H?T i:::: <:: ':':' '! :?:, ::::' would be entered. The array in which sorting is performed can

have no more than six dimensions. Numeric sorting comparisons are performed in the IN­

TEGER mode for integer-precision arrays and in the REAL mode for short or real-precision

arrays.

The default order of sorting is ascending. In the previous example statement, the records are

sorted in ascending order. If descending order is deSired, the correct entry is

where the letters DES included after the key specifier indicate descending order.

•

AP-IO Data Manipulation

The following example serves to explain the MAT SORT process. Assume array Data is a three

dimensional numeric array containing random numbers.

#1 2

3

2 3

#3

ARRAY Data BEFORE SORTING

This illustration is a graphical representation of the array and its contents. Each record is

numbered as are its rows and columns. The numbered arrows represent the order in which the

array was originally dimensioned.

Assume that the records are to be sorted in ascending order and that the numbers in the upper

right location in each record are designated as keys. Since the records all lie along the third

dimension, the third subscript is replaced by an asterisk in the key specifier. The proper sorting

statement is

where the first two numbers indicate the upper right location of each record. The asterisk

indicates that the records are selected by varying the third subscript over its range of values (1

to 2 to 3). After the sort is performed, the array is rearranged as shown next.

Ii

Data Manipulation AP-ll

2 1 3

ARRAY Data AFTER SORTING

Note that the order of the records is changed according to the value of their keys.

A pointer array can be specified in a sorting statement to maintain a record of how the source

array should be rearranged.

Syntax:

When a pointer array is included in a MAT SORT statement, the sorting process does not

rearrange the source array. Instead, it fills the pointer array with a series of numbers represent­

ing the order of the source array records as if they were sorted. In this way, the source array is

not disturbed, but the order in which its records should be sorted is maintained for future use.

The pointer array must be a one-dimensional numeric array and it must be the same length as

the range of records to be sorted. The pointer array does not contain the contents of the

records, but rather, a series of numbers representing the order in which the records would be

sorted.

For example, assume that the sorting statement in the previous example is modified to include

the pointer array Point. The pointer array must be dimensioned to be three elements in length

to accommodate the number of records in the source array (:U ::: t,:, ,.-;- C::::::.). The sorting

statement is modified as follows:

Iii

AP-12 Data Manipulation

Upon execution, the source array remains unchanged as shown.

2 3

ARRAY Data AFTER SORTING

However, the pointer array now contains the order of the records as if they were rearranged.

2 3
2 3

POINTER ARRAY Point AFTER SORTING

Note that the numbers in the pointer array correspond to the sorted order of the records in the

previous example. However, the source array is not rearranged.

The numbers in the pointer array are the values that the varied subscript would assume in

designating each record. For example, if Data was dimensioned DIM Data (3,3, -1: 1), then

Point would contain

o I-I I
2 3

This allows the pointer array to be used for indirect reference into the original array. Thus, after

sorting this example, Data (3,1, POint(2)) = 9.

Iii

Data Manipulation AP-13

If two items described by the key specifier are identical, a secondary key specifier can be used

to complete the sort. The sorting process utilizes the order of the data described by the secon­

dary key specifier to arrange the records containing identical primary keys. Should further

identical data be described by the secondary key specifier, additional key specifiers can be

included. The asterisks must appear in the same respective positions in all related key

specifiers.

Syntax:

'3:::)"; source array < key specifier:' [,! < secondary key specifier::' ...]

Note that commas are used to separate individual key specifiers. All key specifiers in a given

MAT SORT statement must partition the array into records in the same way. That is, the

asterisk must always appear in the same position.

Referring to the previous array example, assume that the records are to be sorted using their

upper left location contents as keys. The correct sorting statement is i'ei:::::! ':::;::Y?! .: .. ':::

' ... :L '. ,: '! .:,:. >, where (1,1, *) specifies the upper left numbers as keys. An ambiguity would

develop, however, since the number" 1" appears in the keys of both records one and three.

The values of another series of keys can be used to determine which "1" should be ordered

first. Assume that the numbers in the lower right locations are described by a secondary key

specifier. The proper sorting statement is:

::: :1. ': :l. 'i :":'"';• ,; ;= ":,:. -';

#1 2

3

2 3

..
#3

ARRA Y Data WITH PRIMARY & SECONDARY KEY SPECIFIERS

I

AP-14 Data Manipulation

Since identical numbers have been encountered in records one and three, the sorting process

examines the lower right keys of the records (as described by the secondary key

specifier(3,3, *)) to complete the sort. Since the "2" of record one precedes the "9" of record

three, record one is ordered before record three. Upon execution of the sorting statement,

array Data is rearranged as shown.

3 2

ARRA Y Data AFTER SORTING

If identical items cannot be differentiated, then the relative order of the sorted records is

indeterminate (due to the nature of the sort).

The program shown next demonstrates a use of numeric sorting. A list of salespeople, their

districts, and their sales volumes is sorted according to district and volume.

OPfICII··! 1::14::;E 1 I ::::;e1 ,,·c1:. OPTIOt·4 BI°1:::;[.
DU·I ::::'il ,,·:~.peopl .,-$(9) L20], :::3..j "-:0:":: 12, ~:, 9), P.3.nk (9:;' I D-i n-,en:=. ion

! ::;·our"c.;:- .::ind poi ntE"t-· .::tr·r·a.~:..1:::."

!

*** D~i t.:::t. ~-·~:·Pt···E· ~::.E"nt :::. d i :::.1:. r' i c t!t ::::a.l E':::!. '·)01 !.AlfiE:;:', :::.::~. 'I E":::.pt~·op 1 E". .~~**

! ~1!-:':·~I~.;t~.;t:.*';I:.~~-;t;·.:0*~·*~I~***·**·****·****~I:·*'~*~I~*·~:·.;.~·;t;.·f*f··:t:··~: :~·*.;.:·*·~,*·t.,*·t.,·:.:-*·:t**··t-***·f·f

DFfTfi ::::, ::::,:Ki(), 1 , (:J;)OO , 2, 1900, 1 , 1 ~:CiO , ::::
III:ITr:I 1400, 1 , ;:~500 ,::, '300, ~::, ;:22~~10, 2, 1700
DHTf'i JILL -THm""',DOt-~ DEED':::;,PICI< HILL,:::;f1t'l :::PI4DE,I"iICi< Di'll--IGE:P
DHTH -.JOE JOt-~C:;, HHF.:P\' ~,jl-iITE, BFiPB ::::i"'lITH, H • .J. STEED

240 pF.:It·n "lm:(i,:j'; " Dr:lTH l:oOI? 1'10IffH"; i"lol··,1:.h; L._It{(1:;'
250 HdHl" ":::;HLE::;PEOPI E"; THB<1 ?:); "DI::::;TPICT"; THI::O:::::::::); ":::;fiLE:::::"; Ut·j(1)

I

2()O
270
~:::::O

29~3

3(10
310
::::2~:::1

::::::::0
::::40
:::::5~]

~:60

370
::'::::~:::1

::::'30
40(1
410

F()I;:: 1='1 TO 9
REf1I1 S::'t"i e".o:}k,;",th, 1, 1>,3::;,1 e:",O:}1onth, ;:~, I:) 1 h';p; .. ,j't. di :::.tr·; o:t

['iE<T I 1 and ".::ll """. '·,!O 'j ' .. ·;fI·'''''"

FOF: 1"=1'1"0 '3
Pf:::lt'H :::;::l'j "":",p",,op'l ""t(r >; THB (19); ::::::,'1 ,:::·".(I·'·lol· .. ,th, 1, I); TI:1:[:(::::;:,:);
PRINT ~~1""s(Month,2,I)

Data Manipulation AP-15

l,JHIT ~:;OOD

f::'I;:: I tiT F'AC;E
! l,J:::J. i t ~5 ::;.E"C ond:=;, befor-'E" (: CW'lt 'j ni...I'j nq"
1 C'I "".::;'1"" the ",0: I"",·en.

4;:~O F'1?It·iT TI:1L<:iCI>;" FE::UL .. TS FOP !'10t·Hl·I";I'jeq··,th;l ... II'··IO::l> ; F'~"··il· .. !t
4::::0 ! .::i nE"I.!.1 hE'·:::t.cli ni;;lu
44,3 j"IHT :::OI?T' ::::;::;,'1 ',,::c. (l'lont h, 1, .j;. >, (['iont j ... " 2, .". > DE::::: TO R"lXJ,: 1 ':::O;· .. ·T,
450 ! "I:. i"'le ~::.::t 1 ~~'~::. b~) d 'j ::::."1:. r····, c t; U::;,~::,

460
47U

II; ".tT; o::t:::-'l

540

~:;9~~1

0.'.10 :::::I<'i p:
(;10
620 Ej·m

FOI? I '" ITO ')
IF" D·i:::.'I;.I'·;ct,=':::;::;.l,:::::O:}lol, .. ,tf·" i.,R:::u''',k(I» "1'l-lE}j 3kip 1 Te:':.t: H::<",

~ district c~8nged?
! I f' :::·o~ ::::.1-:: i j-) ~:I!"""'i nt t-'()i,..it·j l"""!e"
! If !''":ot, C ClI··'!'!:. i i""'iU~::'"

D i ::::."1;. t-"j (: t :~::~:~:::l ; ~::.:::. (!'l()!"'it h, 1 , R3.i"""lk < I » ! ~:;et II'j :=;.1:. r' 'j c t to rlel.!.1 ;,),3,'j UE'"

F:'ld~,jT TAL<10>~" DI:::TF:ICT";D'i,~.'I;.I··ici;.::"Fr:::'::::ULT::::" 1 Pr"'int I",e,:::,d'if";'::l"
F'F.~ I j··rr :::~::i 'I E":~:.pecf'·1 ~':'::I:: (Pal"'Ii< (I > > ; 'TFU::; (:~::CI) ;: II II ;; :::~3. 'j E':::· (['101""":"1:. i"'" ~:: ~ i?,::ink r:: I) >

The program first prints the unsorted list. The sort is performed by district using sales volume as

the secondary key specifier. If the program is run, the results shown next are obtained.

JILI. .. TAr'U!';'
Dmi DEED:::
:::: I Cf' H 11..l ..
:'::;j:::il'l ::Pf1DE
I'j ref DHriC;EP
JOE JOt·iF:::::
HHPF:\' l,JH I TE
LAF'I: ::::I'1I TH
H" J" ::::TEED

D1,::::TPICT

,'-,
")

. .::,

2

::1"'00
6000
1'300
1;;:1:11:)
:1.400
;;::~:';OU

'300
~~200

1;'00

Ii

AP-16 Data Manipulation

RES~LTS FOR MONTH 6

DISTRICT 1 RESULTS
DON DEEDS 6000
JOE JONES 2~~0

SAM SPADE 1200

RICK HIL.L
H. J. ::::TEED

DISTRICT RESULTS

DISTRICT 3 RESULTS

2;;::!J(1
l',HXi
1 ?!2iO

JIL.L TANDY 3000
NICK DANGER 1400
HARRY WHITE 900

Sorting String Data
The sorting process for string data follows that for numeric data except that ordering is lexical

rather than numeric.

Syntax:

:eli:::!'"!"" ' .. ,:! H·" r string source array <key specifier> ['rc: pointer array]

The source array in this case contains string data. The key specifier specifies which locations are

designated as keys. The optional pointer array is a one-dimensional numeric array which

contains the order in which the records should be sorted. As with numeric arrays, the source

array is not actually rearranged when a pointer array is used.

String sorting uses the LEX function on the string data to perform the ordering (see Chapter 3).

The default order is lexical (ascending), but DES can be used to specify reverse lexical (de­

scending) order. The order can also be determined by a user-defined table as described in the

LEXICAL ORDER IS section.

For example, assume array A$ is dimensioned to be a three-dimensional string array containing

three characters per element (:U I!'! l:::i:,!, <:::::' :3, ::::) i3 ::!). Assume that the middle location in the

right-hand column of each record (plane) is designated as a key. If the records are to be sorted

along the third dimension in reverse lexical order, the correct sorting statement is:

I

#1 2

3

#3

ARRA Y A$ WITH KEYS

Data Manipulation AP-17

2 3

This illustration represents the source array. The sorting process sorts the records according to

the ASCII values of the data in the key locations. The sorting process begins comparing key

characters until dissimilar characters are found. Since the first characters of all the data in the

keys are different, sorting can be performed without comparing further characters. When the

sort is complete, the array is rearranged as shown.

2 3

Note that the string data within each memory location has not been rearranged. The records,

however, have been rearranged to reflect the new order of the keys of string data. It is impor­

tant to note that strings of unequal length present no problem. Any unused dimensioned

character spaces are filled with the null string and are sorted accordingly. (Example: AB pre­

cedes ABC.)

I

AP-18 Data Manipulation

As with numeric sorting, a secondary key specifier can be used to order records which contain

identical keys. In the previous array example, assume that the characters in the upper right

locations of the records are designated as keys and that the records are to be sorted along the

third dimension in lexical order. The sorting process begins comparing characters until dissimi­

lar characters are found. After comparing all the characters in the primary keys of records one

and three, the sort recognizes identical data. The sort process could then utilize a secondary key

specifier to perform the sort. (All characters must match in order to be considered identical

data).

Assume that the data in the lower right locations is described by a secondary key specifier. The

correct sorting statement is:

#1 2

3

2 3

#3

Comparing the data described by the secondary key specifier, the sorting process would order

record three before record one since the letter "8" precedes the letter "Q" in the STANDARD

lexical order.

Upon execution of the sort statement, the array A$ is rearranged as shown.

Ii

Data Manipulation AP-19

2 3

ARRAY A$ AFTER SORTING

When sorting string data, a substring specifier can be used to describe partial key specifier

strings.

Syntax:

i"H::rr' '::/Y?T string source array :key specifier> [i:substring specifier ::i]

The optional substring specifier indicates which portion of the data string in the specified keys is

used to order the records. Referring to the previous example, assume the second and third

characters in the strings located in the lower right memory locations are designated as keys.

#1

1 2 3

..
#3

A$ KEYS WITH SUBSTRING SPECIFIER

I

AP-20 Data Manipulation

The correct sorting statement is

where [2,3] specifies that portion of each key string which begins at the second character and

ends with the third. In this example, the sorting process begins sorting the records according to

the values of the second and third characters in each key string. Sorting can be completed at

the second characters since none of them are identical. After execution of the MAT SORT

statement, the rearranged record order is 2-1-3.

A substring specifier must lie within the dimensioned length of the key string. The substring

specifier can, however, describe an unused portion of the key string. For example, assume the

following illustration represents the contents of the dimensioned length of a string.

A substring specifier such as [4;3] describes the unused portion of this string. For sorting

purposes, the unused portion of this string is the null string. The null string occurs first in any

lexical order.

Substring specifiers can be used with primary and secondary key specifiers Simultaneously, as

can descending specifiers. Example:

: •• : •••••• "1". T·:'·········

When used with multiple key specifiers, substring specifiers need not be of equal length.

A pointer array can also be included:

Note that no punctuation is included between a key specifier and its related specifiers. A

comma is included, however, between complete individual specifier entries.

The program shown next demonstrates string sorting. A list of names and phone numbers is

read into a string array and then sorted according to last name.

I

'::>iH

OPT I:ir-; I/,,:',:E
u.~ ~11Qr25jr(,2)l20]

Di::iF! F: Ie>H iF:D
DHTH t'1 I C)·H:EL.
:Dr:j'TFt Bf1F~B

DHTH Hf'IFF:','
D,'::;TH .:rUL.. I ET,"ir··ID';' , '::: 1 :::: .. -:::,:):::0
DHTH "':H!"" .. H'!L.. :=.: i::,: "'6:'»9
DFfTH l"'"IICI···1FIEL.. '::~1!:::' _·6;::::[!C1

.:::'i;~ 1 E';: t (IF''")" len···j BA:::;E"
Di rnei ·i::::· i on ::::·Oi)j·-·C~:· ,::~,r'I·~·.~i~)"

!··,~a.["(!e .a.(jd phD!"'!E"

! I"'"tl ..• lf"fiher· d:;j.t.~."

Data Manipulation AP-21

l'1Frr ~::;Or;(T" F!·"j1::)(·ie::::.:$:(:~', i) L t~~:J ~ < :1;',1> [: 1, '3] :::\::II·-·t d3.t.::j. b:/ L:J.~::·t. (~3Jf!~':·;

! i .. t::·t:· f"'j ('::;:.1:. n:i.fl!e ·:~L~:· ::::.,;::·cond::u· .. ·:) kE·:;..l~

F"I?LrfTr", (4); "THE '::OF:T'EIr DF'ECTO~"';':"; r H·j(i
f:'()F: F'".l TO

I F","int hea.ding.

F'F;: .!. ! .. j-!- F'1'"':)!"""iE":::.j ::: I ~ l > L l 0 J ; II!I ! I ; F'hOf'JI::' ::::.:$: ;:: I , 1) L 1 ~ 9] ; Ti:~n:: (;;~~O > ;
F' ;:~ I t·rr· i:::'! ... !(nE·:~~·$ < I , 2 ! F'r'" i n·~. t he :::.()r-··~. ~::'d d i t"'E"C tor"

Notice that the data are sorted by last names using the first names as a secondary key. If the

program is run, the results shown next are obtained.

1'1 ICHi::E ...
!';' ICHHPD
HHI?I?..,.'

'+1 I TH, t'1 I Uir:E,
':::F":1DE. ',:::'n·'·IU;::il...
'THr·m..,.' • JI..Jl... I E

:=::l:::: ·','{ii:::",:
::: 1 :C;··:::U4::::

91 "":"C::::CrrC!
:::':1:::: ,::;309

I

AP-22 Data Manipulation

MAT REORDER Statement
The MAT REORDER statement is used to order an array according to the contents of an

existing pointer array.

Syntax:

i'ji:::j'T' i?r:::CH?:DE:i? object array I::',.' pointer array L, dimension specifier]

The object array in this syntax is rearranged in the order specified by the contents of the pointer

array. The maximum allowable number of dimensions of the object array is six. The optional

dimension specifier selects the dimension of the object array along which records are ordered.

The dimension specifier is a number from 1 to 6 or an expression which represents this number.

If it is not specified, a value of 1 is assumed by the computer. The dimension specifier describes

the object array dimensions in the manner shown next.

:U I i"i C)t::,'i ,:,:'C 'i:. ."j.! ! ,:,i.'.) (A" B" ... " F::' '..' t" t' .' t
Dimension Specifier: 1 2 6

For example, assume that the array Point is a pointer array containing a range of values

determined by a previous sorting process as shown.

423

It is dimensioned as follows:

Also, assume that array Object is a two-dimensional object array which contains numeric data

and is dimensioned as shown.

The following illustration represents array Object.

•

/'

9

2 I

3 7
4 5

/' /' /' /'

3 8 6 2

4 5 I I

3 7 2 0

I 8 6 3

2 3 4 5

..
#2

ARRAY Object

/'

./

,/

V

A

B

C

D

Data Manipulation AP-23

If array Object is to be rearranged along the first dimension according to the contents of array

Point, the correct reordering statement is

where Object is the object array, Point is the pointer array, and 1 specifies that the object array

is reordered along its first dimension (i.e., each row is considered a record). Upon execution of

the reorder statement, array Object is rearranged as shown next.

/' ,,/ /' ,,/ /' /'

5 I 8 6 3 ,/
I 4 5 I I :/
9 3 8 6 2 ,/ ~ }
7 3 7 2 0

ARRA Y Object AFTER REORDERING

Reordered
Records

The records are rearranged in the order specified by the pointer array. Note that they are not

necessarily rearranged in ascending or descending order. There is no necessary relationship

among the records. They are merely rearranged according to the pointer array.

The pointer array must be dimensioned the same size as the dimension of the object array along

which reordering is performed. In the previous example, the pointer array Point is dimensioned

four elements in length as is the first dimension of array Object as shown next.

DIM Object(4,S), Point(4)

I

AP-24 Data Manipulation

NOTE

If the pointer array contains duplicate numbers, unpredicta­

ble results occur. Also, if the pointer array contains numbers

which are out of range for the specified dimension of the

object array, an error" sage results when reordering is

attempted.

As you may recall, a MAT SORT statement which contains a pointer array does not rearrange

the source array u""on execution. It merely fills the pointer array with the order of the records as

if they were rearranged. The MAT REORDER statement can be used to rearrange that source

array at a later time. For example,

... ii::::"-r-
' ..• ':"'. ! i..J

fills the pointer array B with the proper sorted order of records, but it does not actually

rearrange the source array A. In order to rearrange the source array, a MAT REORDER state­

ment can be used. Example:

The execution of line 100 fills the pointer array but does not rearrange the source array A. Line

200, however, does rearrange the source array according to the order defined earlier by the

MA T SORT statement.

A program is now presented that demonstrates a possible use of the MAT SORT and MAT

REORDER statements. Original$ is a one-dimensional array list of names and grade point

averages.

The program fills the array list and sorts the data both by name and grade point average.

I

Data Manipulation AP-25

+****

of the MAT SORT statemenr·~

40 +*+**

:::0
'30
1(,)0

! S@le~t OPTION BASE •

. ~.r·pj po i nt E't-· .::t.f'r'.:i:)::::."

! Pead d.B.t.:::i. 'j ty!:. t:::1 ::::,OU!·~·(;:.;:' .::jfT'.::\: ..

data in Lit~es 330-380~

110 PF.:ljH "THE Oi?lC;IrjAL ':;[C'UEHCE IS:';,LII,I(l)

1;',,)

1',,:0
190
2[1,,1
210

!'1HT ::;OFT 1...1(' 'I q 1 na.ll ,:: * > L:L ~ 11:'=;] TO:b ~ ::;;(::l!""1:. 'j i ~::.'\'. b~)

!'1HT :::;Or?T 0,' i (:!"'''' 1 :$, *) I: 1 ::::, ;::':l ::: DC::,;: ;': ;. I: 1 , 1 C lTO D

FCH? I '''j, TO C
eII:>::I»:I

j,n::::T I

! ;;w··:~i.cll::· pO'j nt ~::.; l . ..i:::~.I:::· t···~:~5.jrie::::·

! .3.::::. :~:.t=,::·cond:::l(·: i k,:::·t)::::.~

;220 j"iAT f::EOP:!JEP eli'·' i (; i ,",Ill. 'i:$ B\' B ; i;:'e-c:,r"de'(" '! ::::';; b'o-' """''':':
2::::;0 F'F;~~Ir'~T' !!i:;:~E()PDEi:;::t:~D B\' j···iHI"'iE: II ~ L.Ii···i< 1)

~~;::e

;?9(,1

DATH SMITH BILL H

DFHH ,.JOt'iF''': BUB F.'
DATA BPOWN MHPY R
DHTH SMITH GLEH L

DATA -rA'y:LOR F:R_PH E
DATH JONES BONNIE P

2,,00
;,'"OU

Print the r@Jrd@r@d l1st

! F:ectj'-':::k:'(" 'j i ::::~. b~) qi····.:ad':::· t)O i i··Y~.

using the comb~neG permltation~

Notice that the inverse permutation of pointer array B is computed. The use of this permutation

allows two sorts to be performed on the original object array thereby eliminating the need for a
duplicate array. If the program is run, the results shown next are obtained.

Ii

AP-26 Data Manipulation

::::t'1ITH BIL.L. H
JOI'~E:: BOB P
BPOL,jt·~ ['1f'1F.:'" A
:::r'1ITH CL.Et·~ C
TA"'L.OP f,:AlPH E
Jm~E:::: BOI··ltHE f;'

2,,00
;;::.00
2,,90
:~:g ::;0
::~: .. 50

PEOPDEF.:ED B'/ t¥ii'iE:

BPOL,jt·~ t'1AP'" fi
Jot·E::: BOB F.:
JOt·IE::: BOt~tH E P
:::t'II TH B I L.L. H
::::1'1 ITH C;L.Et·~ C
TA"'LOP F.:fiL.F'H E

Jot'~E:::: BOt'~IH E P
TA\'L.OF: I;::ALPH E
::::I''II TH C;L.EI·~ C
BPO(,jl·1 t'1FIP\' !'1
JOt-E:::: BOB I;::

:3 .. 50
.-, "'n::­
'.:'= \' ",)

:~:: .. ~5~j

Ja ~:;D
;;,:.90
2,,00
;;:'.00

It is important to note that several arrays can be reordered by the same pointer array. The

program shown next utilizes this feature. Several "parallel" arrays are reordered according to

the contents of a single pointer array.

10
:c:()

::::~~i

4~~i

~;£1

60
70
::::0
90
1 ,:!~::l
110
1,;::0
L:(j

140
150
160
170
1:::0
1'3(.:,1

200
210

D H1 I .::Lno 0:: 4) , Job:o..$ 0:: 4), C 1 00: k_no 0::.:+) , Ot"·dE't"· 0:: 4) , D i ['-,E'n:,,· i on S()' .. W·C';;· ."tI·",j

['1f'lT PHiD Ioj no
t'11'1T PEAD Job",.:;:
1"'lf:IT PEf:ID C'\ oc k

I poi ,·",t.;;'1"· .:Ei.n'·.a~)s.

I PE'.;:,.d ,,;c~:'Pt"·oPt"·i.:it'::,· ,jat.a i nto an .. ·.a~)s"
IL"'.ta i:" 'j n L·j nE'~: ;~:JO, 240, ":~:)[i.

ppnn TAB (5); "III t'~Ut'1BEP"; Tm,: (:::0); "JOB"; TAB <::':[1); "CLOC:fo: t'~Ut'1BEF;:"; L.HiG:);
CALL. Pt .. · i nt (: I d no 0:: ...) , Job:=.$ 0:: ...) , C'I 00:: k no (.;:.» ! C,,;, 'I 1 thE' F"t"'j nt ",.ubt·out·j nE'

... _. . I "us i nq thE' .:Ei.tTa~) d:Ei.t.a ·a:::· ~:I3.t"·.:ir'-I,::·tEr"."
PPlt-n L.lt·1(1)

Iii

Data Manipulation AP-27

i'''i~'rr FEOi?DH:' Joh:=.:$:
t'-IHT P[O~~~D[F~

'C" .. ' Ot-.d,::'r'·

B'r' Or'·d",,', 1';\,'0[·de,'· .3.·i·! .3.,"r.3.~,):::. b~,... t h,::·
r"iAT F:Eor;::DEI?

PPI!rr "
290 CHL .. I.... F'r-! I'rl:· <::

',::;IJb Fr" i i', t <::

F'OF~ I:::.~:I.

440 tiE>'
4~5U ';!,BEliI;

4

no :1::\' Or"·der·

nel (~. > , Jc)b::::.:$: ('*') , C 'J) ! C~.i.l 'I :::;.ubr·()I,At in€:'
! ·fot-· pl····i nt 'r t"i1;1 t he r···~:·()~ .. ·d,;:.:'r-·E·cl ·~=!!.r·r·,3.~:..':::, ..

:::;T, t·iUR:;E j n"l.t."L is ,,'j· .. 't.,;;-I····E·j in t i",e pt"'OPH" Or'·dE·"
t I) C ("E".:~1. t ~.:. II p:::U·· ... 3."! 1 ~~. '(II ·~lt"t· ... ::i ~):::.1'

Notice that the individual object arrays are reordered by the same pOinter array. If the program

is run, the results shown next are obtained.

,?::::~2':;

41S"?
':;((::Ci
10;::5

.-... -., ,::::.
-.' I

41~5'?

',~020

i'IFii·IACEF:
C;Uf:IF'D
'f'lF' I :3T'
!';UR':;[

t·iUf;:::::';[
l'IAi'iA'~;EY:
CI.JHPD
T','F'I::;T

534

::;:::4
30?
11::=':
4?6

I

AP-28 Data Manipulation

MAT SEARCH Statement
Searching Numeric Arrays
The purpose of the MAT SEARCH statement is to provide information about user-defined

conditions within an array. This information is returned to a variable for recall and examination.

Syntax:

;'11"1 1 .:::';:::.;-.. ;1"".' ,.; source array ::location specifier> '1 condition :: variable

L starting address]

The source array represents the array in which searching is performed. The location speCifier

defines the locations within the souce array which are searched. No location specifier need be

included if the source array is one-dimensional. The condition is that value or location for

which you are searching. When the condition is satisfied, the memory content or location which

satisfies it is returned to the variable. The optional starting address specifier allows you to select

a location within the range defined by the location specifier at which you want searching to

begin. Numeric searching comparisons are performed in the INTEGER mode for integer­

precision arrays and in the REAL mode for short or real-precision arrays.

The conditions available in the MAT SEARCH process are entered in the following form:

L..C>:::: <relational operator - expression>

:!:!:! Cl ::: <relational operator - expression>
r:li···;····

The list of relational operators includes: >,<,=,#,>=,<=,<>. For an integer search, the

expression is rounded before the comparison is performed. A LOC condition causes the search

process to scan the specified locations until it finds the first value which satisfies the condition.

The default value for a relational operator is =.

A #LOC condition causes the search process to scan the specified locations and return the total

number of locations whose contents satisfy the condition.

MAX and MIN conditions do not include an argument in parentheses because they automati­

cally cause the search process to scan all specified locations to find the maximum and minimum

values. To return the result of a MAX or MIN search, a string variable-is used with string data,

and a numeric variable with numeric data.

Iii

Data Manipulation AP-29

To demonstrate the MAT SEARCH process, assume that array A is a three dimensional numeric

array containing random numbers as shown below.

2 3 4

#2

#3

ARRAY A WITH SEARCH LOCATIONS

Assume that the shaded locations are to be searched until one is found which contains a value

greater than 5. Let B represent the variable to which the result is returned.

The shaded memory locations must be described by a location specifier. Since they lie along

the third dimension, the records in which they lie are defined accordingly. The correct location

specifier is:

Note that the location specifier is written in the same format as a key specifier for a MAT SORT

statement. The subscripts are written in the same order as the array dimensions (the numbered

arrows). The first two subscripts define the upper right location, and the asterisk indicates that

the third subscript is varied over its range of values to describe all three records.

The correct search statement for this example is

where A is the source array, (1,3,*) defines the locations to be searched, LOC(>5) is the

condition, and B is the variable to which the result is returned.

After execution of the search statement, the number 3 is returned to the variable B. This is the

first record whose specified location satisfies the condition(i.e., it contains a value greater than

5). Searching begins at the location in that record described by the smallest number in the

range of varied subscripts and continues to the largest.

Iii

AP-30 Data Manipulation

If a condition is not satisfied upon completion of the searching process, a value one greater

than the upper limit of the varied subscript is returned to the numeric variable. For example, if

the specified locations in the previous example are searched for a value greater than 8, none is

found. Therefore, a value of 5 representing a number one greater than the record containing

the last searched location is returned to B. Note that if the upper limit of the varied subscript is

32767, the value returned by an unsuccessful search is - 32 768.

The location specifier initially defines the range of locations to be searched. If you do not wish

to search the entire range, a starting address specifier can be used to designate where the

search is to begin. In the previous example, assume that the search process is to scan only the

last three records. The correct search statement is

where the number 2 directs the search to begin at the specified location in the second record

and proceed to the last record. Upon execution, the number 3 indicating the third record is

returned to the variable B because the content of its specified location is the first to satisfy the

condition.

The following program is included to demonstrate a search for maximum and minimum values

and number of occurrences. The array Numbers is filled with random numbers from which the

maximum and minimum values are selected.

If this program is run, the following results are obtained.

10 ! **
2D

4D

100
110
.; , ... ~
1 ~~. ~.:.!

14~J

! ***

! ***

T~lis pr,:,grafo demonstrates the use of' the
MAT SEARCH statement to find maximum a~j

r:)inimum values within an array~ ***
! **

Uf"T I 01'-1 I:A:::;E i
IIH1 t·iu;,-,be,-·;'.(11::0

FOR 1=1 TO 11
II I ::;P "tiUr'iI:Ej?"; I ;
I !··iPUT j-·ilJfi"iber-':::. < I ::.

HE::T I

! SelE'ct the IJPTIO~~ BASE~

! Ii i j'(ien::::· 'j Drl ::~·()Ul"··(E' .::I.I····f~·a.:) =

i Es.t.'ibl i :".r-, j nplJt 'oop.
! Display erltl'~) number~

Input data to SOl~r'ce array~

L .. ()Of) to 'j ('iput r"i.:::'>::t d.::! 1:..:1 it E'm"

150 ! **
16~:1 ! *** ThE' d:it..::t u~:,~::·d if"l thi::::, e::'::.:iH:p'ie: 6, 1,9,2,C,:3,::::,9, 1, 7'~~5 -:.:-**
17'0 ! **
1::::0
1 ':'ICi
200
210

["1AT ':;EAf':CH r·jur"b.~·r"·S.':: ,,,':0, l'iAi:; I'b.'<
MAT SEARCH Nu~!bE-r~-(*),MIN;Mit1

::;e,:!(-ch for- 1'(}::t}::i mUiYi ',),:::I.'! U~~:-"
3e,::u--c h 'fot", iYl in -i rnum l.).:i 'I U~::' II

.::~'::"~':'I F'R I r'1T II 1'1 A::,:: I !'IUr'1 = II ; l·''!.:i>::, II !'1 I ~,~ II-'iUl"i ::::: II ; f'1 i !

230 Etm

Iii

Data Manipulation AP-31

Normally, a LOC search ends at the first location which satisfies the specified condition. How­

ever, additional satisfactory values may exist beyond that location. By setting the starting

address to be one greater than the content of the variable, a search can be continued from the

first location which satisfied the LOC condition. This automatically continues a search from

where a previous search left off. All satisfactory values can be obtained in this way. As an

example, assume that array B is a three dimensional numeric array containing random numbers

as shown.

~2~3~4~5
..

#3

ARRAY B

Assume that the shaded memory locations are to be searched for values greater than 2. A single

MAT SEARCH scan would stop at the second record since it is the first one encountered whose

memory location satisfies the condition.

However, by constructing a loop and using the proper starting address specifier, the search can

be made to continue through the range of specified locations. The following program de­

monstrates this feature.

10 ! *************+*********************************+**+*+****
2(1 ! *.;t:.,t-

:::C1 ! *.~; . .;t~
Th i::::. pr--'CII;,:Ii,H·.aifi derfl()j"'!:::.tr'a.t E'~::. t hE" US~3.·

of the MAT SEA~C~ statement.
40 ! ***

100
110
95
120

OPT I Oil BA'::E 1
Dlt'1 r:(~~,2,5>

! Select OPTION BASE.
! II i rn€·!·"I~~. i on nur~j€'r' i C .3Y'!""·:!i:) IL.

! found in Line 240u

I

AP-32 Data Manipulation

130 ***
14(1 ! *'*'* ::;e.:ar'c h fot-· 1 OC-:i t i on::::. of nu.mb~:'r·:::, EJr'e-.::t, t E'r' t h:I.I'''1 ~2 u ***
150 ! ***
160
1 ?,:1 ::;e·3.t-'C h: l"II'iT ::::EAPCH I: 0:: i , 2, .. ::. , LOC 0:: >2::' ; C, C+ 1
H::(1 I

1';:'0
1?,)
2(1(1

210
;2;2iJ
230
22(1

24()

IF C+1>6 THEN 260

DI'::::F' C;
L·jAIT 50'3
IF C ::::; THEH '::e·3.('ch

! T e:::·t: Ha.i.,Je all 'l OC·::i 1;. i ()n:::· DE-en ;::.e·:ir'c hE'd?
If ~)e'::::" st.e,p,

D 'j :::.p '! .::t~) iYI()::;·t. !'-'E'C ent ;::·E:'·:'tr'c h r'I::'Sl...i 1 t :='n
I l'~:l it ::::·'I·j '::Jht', ') befm-',,,' fw··'t, her oj i ",./=o'J .3.',

T E"~~. t: H::l:::. ~:·e·~r'c h I""~:'ac hE:'d la::::.t '! 0(·3. t. ion?
If not, con~inue~

250 DATA 7~4~0,1,6,2,3,4,5,6,2,1,8~7,0,9,6,3,0,4
~::60 EI'W

The variable C is initially set to zero, Line 170 begins the search routine, Since C was set to zero,

the starting address speCifier (C + 1) directs the search to begin at record one. Line 190 tests to

see if the specified locations have all been searched. (Remember, if all locations have been

searched, a number one greater than the last record searched is returned to the variable, In this

case, that number is six). If all locations have not yet been searched, line 210 displays the

contents of C (it now contains a satisfactory value), If C contains a value less than 5, the search

is not finished and line 230 directs the program to search again. Due to the nature of the

starting address specifier, the search begins this time at the next memory location beyond that

which satisfied the condition previously. In other words, the search resumes where it left off, If

you run this program, the following should be displayed:

Searching String Arrays
Searching string arrays follows the same format as searching numeric arrays.

Syntax:

i"H::rr ::::;E:i:::i!?C) .. i source array <location specifier> !' condition, variable

[!' starting address]

The source array, location specifier, condition, variable, and starting address specifier serve the

same functions for string arrays as for numeric arrays, If a relational operator is included, the

LEXICAL ORDER IS statement determines the ordering of the string data. The order can be

STANDARD (according to the ASCII table) or user-defined (see Appendix A),

Iii

Data Manipulation AP-33

For example, assume array List$ contains a list of names and dollar amounts. The program

shown next inputs the data to the source array. It then searches for a particular name and

outputs the corresponding dollar amount.

! .~.:!~.:~.

! **~.

TI"', i ~::. pi· .. ·Ci,;fH·.:~l.rH df::·fnorl~~.tf···.3.t~::·::::. the u::::.e ()f

t~1e MAT SEARCH statementc
40 ! ***++**

90
1 ~j~3
11 ~J

OF-T I m·~ BH'::;E 1
DI!", L i :;,.1$(4' [;::,'3]

F'()F [::::1 TO 4
F:EAD . i :~:·t J;:: I

IIE::T I

1 Select OF-TION BASE.
! D i ri"!en::::. 'j on ::::·Ol...lr"'(e .:~u····t ... :a:)"

E:;,·t·ab·j 'j ".f"; 1 oop for" d,;:"t ',;, entt"·',..'.
f~~E·.:!:I.d d.::~. t'~:L 'i nt 0 L i ::;. t $ ~

! Fe-.a.d nE'>::t d.:it.3. itE'rn"

150 *************~.**+**

j ')0

20~~1

~~:6;:::1

;~:7C1

*******~***

IHTH BF:m,F·[
D;::iTH Hi'j'(:::;

t:r·m

f::PAr·ii::
':;i,JE

$100
$1 ~:~U

,':;i"HTH EOE
, JUl-··n::S ED

'::;e·",,'·C h the 1,)t'·Op,,,.,.·
! por-·t i on of >::;'·:;:!.C h

::::.t f"'" i n,;;t~,

(~3.rHE' .and do 11'::Lr­
t .::t.ffiount

:t75
$:20~:J

I

AP-34 Data Manipulation

In this program a MAT SEARCH is used to find the string which contains the required name.

Once that string is found, the portion of it containing the dollar amount is displayed. Note that

the substring specifier is used in the search and display statements. If you run this program, the

following results are obtained.

Bf':m,ll'!
::::I"IITH
HAY:::;

F!~~AHi<

:t:01::
:3UE
ED

$1(10
$'?~)

$1.~50

$2('1.21

MAX and MIN values can also be obtained from a string search as demonstrated by the

program shown next.

10 ***
;;;:~(1 *.~* Thi :::. pt~·CII;W··::t.fl'I dE·mon:::.tr·.:it~::·:=· u:::·e of thE' r'1HT ::;EAf~:CH *.;t~*

~~ ! *** stat~ment in conjunction with strings= ***
40 ! ***

100
110
l~:.j

13.::1
14.::1

170
1'::::[1
1 '3~~1
2(10
~21 (1

OF'TIOtl BA:::E 1
D IP1 :::\.t"' i nq:':.E.3rc h$ (:::::. [:,:: :I

t'1RT PEAD St to. i t",,:;!:':.,,·.3.t··c hl
DfnA "ABC", "BCD", "DEF"

! ~~:;6'1€'ct thE' OPTICll"4 BA::;;E;I
1 Dirnen:,:.ion th,,· ::;.t..r·ln;~ .3.r··r·.::t;..'.

r'il::!'! ::,EARCH :::1;. to. i nq:':E'."J.(·C h$ (~;::. , r'iA>~; H$
! ::;I::;'.::lY·C Y'! ::::·tr' i ni;! .::i.f-·r",::i.\.i for-'
! fI'~:j.::< i fi'Il.,.I!'t't :;:.t r"j n!~ I,JEt. ·11.Ae"

MAT SEARCH Stringsearch$(*),MIN;B$
I :::::ear'c h st i'~"i nl;! .::ir!····a~) for-'
! rn i j'Yi i'(iUm :::.t f' i r"j!;;~ ;,).3.1 UE'II

";H:l, "tHtHt'IUt'l :::: ";B~'
! Output thE' r-·E'".u·i t~,·.

220 Er-4D

The array Stringsearch$ is filled with string data. MAT SEARCH statements are then used to

find the maximum and minimum values of the data. Note that the search statements use the

current lexical order of the data to perform the search comparisons (see LEXICAL ORDER IS

statement). If this program is run, the results shown next are obtained.

DEF

•

Chapter 3
Extended Character Sets

page 36 • LEXICAL ORDER IS (allows you to select the collating sequence for string sorts
and string comparisons)

page 36 • LEXICAL ORDER IS STANDARD (selects ASCII collating sequence)
page 37 • LEX (allows string comparisons)
page 38 • LWC$ (returns a string with all uppercase letters converted to lowercase)
page 38 • UPC$ (returns a string with all lowercase letters to uppercase)

Statement Syntax
L.E>:: I C:i:::H... (}?I)!:::i? T ':::; lexical order designator

lexical order designator: an integer array containing a local language collating table
or the word STANDARD

L.E::·:: (string expression 1 ~I string expression 2 ::.

]J:::d:. !·'!.:",·1:. (.. ! ::-:: - All items in dot matrix must be entered as shown.

[]- All items in brackets are optional.

Three dots indicate that successive parameters are allowed,

when each is separated by a comma.

AP-36 Extended Character Sets

Introduction
The statements described in this chapter are used as programming aids to define and access

comparison and case functions on the ASCII and Roman Extension Character Sets. Each of

these statements or functions can be executed from within a program or from the keyboard.

Examples of each statement are included to demonstrate its use.

LEXICAL ORDER IS Statement
The LEXICAL ORDER IS statement allows you to select the collating sequence for string sorts

and determine the results of string comparisons. It also determines the results of UPC$ and

LWC$ transformations for Roman Extension characters.

Syntax:

r"!i::::r!C:"i:::: : ... '1·· .. : .. ': :··. T ':::; lexical order designator

The lexical order designator must be an integer array containing a local language collating

table, or the word STANDARD which indicates the standard ASCII character sequence. The

following local language collating tables are available on the Lexical Tables Cartridge for use

with the Advanced Programming ROM.

FRENCH SWEDSH (Swedish)

GERMAN SPANSH (Spanish)

Refer to Appendix A for information on the lexical order collating tables.

The STANDARD lexical order designator selects the ASCII table as the collating sequence (Le.,

string sorting is performed according to ASCII values). STANDARD is the default lexical order

designator at power ON and after SCRATCH A. As such, you need not include a LEXICAL

ORDER IS statement if you wish to use ASCII as the collating sequence. RESET does not clear

the current lexical order. However, if you wish to change to STANDARD from some other

collating sequence, you can do so by entering:

LEXICAL ORDER IS STANDARD

•

Extended Character Sets AP-37

The program shown next demonstrates how a local language collating sequence is selected.

10 INTEGER A(1:400)
;?U H::;'::':I Ct·j # 1 TU "FF:Er'K~:H"

3U MHT READ #l;H
4U LEXICAL ORDER IS H(*)

Line 10 dimensions an integer array to hold the specified collating table. Here, A is chosen as

the array and is dimensioned to a length of 400 which accommodates any of the local language

character collating tables listed previously.

Line 20 assigns # 1 to the specified file on the cartridge; here, FRENCH.

Line 30 reads the contents of the file (the specified collating table) into the array.

Finally, line 40 establishes the contents of the array (which now contains the collating table) as

the lexical order.

Note that when a LEXICAL ORDER IS statement is executed, the information in the array is

transferred into an internal buffer. This allows you to use the array for something else. Care

must be taken, however, to insure that enough memory exists for the buffer when the statement

is executed. Otherwise, an error occurs.

The LEX Function
The LEX function allows you to compare two strings and determine which precedes the other

according to the current lexical order. The LEX function can be executed from the keyboard or

from within a program.

Syntax:

L.Y:::': <string expression 1:, string expression 2 ::.

The LEX function begins comparing string characters until a difference is found or until one or

both strings terminate. The function returns the number -1 if string 1 precedes string 2. If the

current lexical order cannot distinguish between the two strings, 0 is returned. The number 1 is

returned if string 2 precedes string 1.

I

AP-38 Extended Character Sets

The program shown next demonstrates the LEX function. Two strings are compared and the

result is displayed.

1 ~1 A=LE::-::':: ">':EF", "><:E:C")
20 DI:::P A
::;:.] n.fD

Notice that the program utilizes the default STANDARD lexical order. The LEX function com­

pares the strings up to their second characters since these are the first respective characters that

differ. Upon execution, the number 1 is displayed because B (string 2) precedes E (string I)

according to the current lexical order (ASCII).

The previous example program compared strings of equal length. The example program shown

next demonstrates a comparison of strings of unequal length.

1(1 A=LEi« "A", "A "::'
20 :r::=LE>::<"A", "AB"::'
::::0 DI::;:P A,B
40 Et·m

In this case, both A and Bare -1. In both comparisons, the first string terminates before the

second.

Uppercase and Lowercase Functions
The Advanced Programming ROM extends the capabilities of the mainframe uppercase

(UPC$) and lowercase (LWC$) functions to correctly handle the upper and lowercase trans­

formations of the various local language characters.

The results of the UPC$ and LWC$ functions are determined by the entries in the upper and

lowercase sections of the lexical order array for Roman Extension characters (refer to the Refer­

ence Tables). The upper and lower cases of characters in the main ASCII set are fixed.

Descriptions of the French, German, Spanish and Swedish upper and lowercase transformations

which are provided in the respective files on the cartridge are explained in Appendix A.

Ii

Extended Character Sets AP-39

The UPC$ function can be used to obtain a proper LEX comparison if it is not known if the two

strings are in the same case (i.e., if "ABC" should equal "abc"). Example:

NOTE

If a program containing UPC$ or LWC$ statements is

STORE'd in your computer when an Advanced Pro­

gramming ROM is installed, and is then LOAD' ed into your

computer when an Advanced Programming ROM is not in­

stalled, a MISSING ROM error message occurs.

If a program is STORE'd in your computer when no Ad­

vanced Programming ROM is installed, and is then LOAD' ed

into your computer when an Advanced Programming ROM

is installed, no error message results. However, if any lexical

statements are added, the current UPC$/LWC$ lines must

be re-STORE'd in order for the Advanced Programming

ROM to affect them.

It is suggested that you SAVE rather than STORE programs

which will be switched between those computers which have

an Advanced Programming ROM and those which do not.

I

•
AP-40 Extended Character Sets

Chapter 4
File Catalog Access

with the HP 9835

Introduction
The CAT TO statement described in this chapter is provided by the Advanced Programming

ROM for the HP 9835; it is a mainframe statement in the HP 9845B/C. CAT TO allows your

program to read mass storage catalogs. This statement can be executed from the keyboard or

from within a program. Examples are given to explain the statement and its parameters.

CAT TO Statement
The CAT TO statement is used to write a mass storage catalog into a one dimensional string

array. This allows your program to have immediate access to mass storage catalogs. This

feature allows you to copy files from one medium to another under program control.

Syntax:

C:H"T· ·Tei string array < .:,:. > [:, skip count [:, return variable]] [:; "selective

catalog specifier / msus "[:, heading specifier]]

The catalog entries are read into the string array. The elements of the string array must be

dimensioned to be at least 41 characters to accommodate a catalog file entry.

The skip count parameter allows you to skip the specified number of catalog file entries before

you begin recording them in the string array. The default skip count is O.

The return variable indicates whether the string array is filled before the specified catalog

entries are exhausted. Upon execution, 0 is returned to the variable if the number of catalog

entries to be recorded is equal to or less than the number of array strings. Any strings not filled

with catalog entries are filled with the null string. If there are more catalog entries to be entered

than there are array strings, the position in the catalog of the last recorded entry is returned to

the variable. If you do not include a return variable, this information is lost.

AP-42 File Catalog Access with the HP 9835

The selective catalog specifier consists of a string expression or a group of from one to six ASCII

characters (excluding a colon) which identify particular file entries to be recorded. Spaces

within these characters are deleted. Only those file entries whose names begin with the (non­

blank) characters of the specifier are recorded in the string array. If no selective catalog

specifier is included, the CAT TO process attempts to record all catalog entries. If a selective

catalog specifier is given, the skip count and return variable refer to the selective catalog

entries.

The mass storage unit specifier (msus) indicates the mass storage unit in which the catalog is

located. Typically, this specifier is used to select a mass storage unit which is different from the

one selected by a MASS STORAGE IS statement.

The heading specifier is a numeric expression which, when its value rounds to anything other

than 1, causes the second line of the catalog (the heading) to be recorded in the first array

element (string). The heading indicates the mass storage unit and the number of available

tracks. The default value for the heading specifier is 1. (Note that this default is opposite that of

the CAT statement.)

Note that within the CAT TO syntax there are two groups of optional parameters which are

separated by a semi-colon. Within either group the first parameter must be specified if you wish

to use the second. The groups themselves, however, can be included independently.

The following example program demonstrates the CAT TO statement. Assume that the data

shown next represent the catalog of mass storage unit T15 (tape drive).

UULJif,"
"'!fi: :1'!IH
t·lT!)~::Tl.

i"iTFiT,>
L,i:::::<Fi;'U
Lj:J en,;::

'UHTH

DnTfi
Di:,TI:,
DATA
DHTfi

4

•

File Catalog Access with the HP 9835 AP-43

The following program records the file entries in the string array List$. The contents of List$ are

then output.

.. :1;_'

"i .,;i; I r+~ '::,,:;>~;:f",' F'~'''' -j (it j"'~;::'i}(:i

':::'f?I'iT! ::,' .. ,: :". F','" "'," i" :,,' (. i ,.",.,: "H·,..· .. '· .. ·

Notice that the CAT TO statement assumes its optional default parameters since none are

specified.

If the program is run, the results shown next are obtained.

::-':;i::";:'i::":j ... j

':'t'!'T ~,,: ...
fE,'I!'·····

.···.i:::;(.

":1:::;,:::

'::::1:::;,:::

5
12

Notice that the heading does not occupy the first element of the array. This is because the

heading specifier assumes a default value of l. Line one of the catalog is never recorded in the

string arrray because it is the same in every catalog.

The effects of the optional parameters can be demonstrated by modifying the CAT TO statement in the

original program. For example, by setting the skip count to 2, the CAT TO process begins recording

entries at the third file entry instead of the first as shown next.

40 CAT TO List$(*>,2

•

AP-44 File Catalog Access with the HP 9835

This causes the process to skip down two file entries before it begins recording them in the string array.

DATABS is the first file entry in the string array when this statement is executed as shown next.

..... "''"i''

.. i:::;(,

By including a return variable you can easily learn whether all specified catalog entries are

recorded in the string array. The original program is modifi ~d to include a return variable as

shown next. The string array is shortened to exclude a few catalog entries.

In this program, the skip count parameter is set to 0 so as to start recording file entries from the

first one. Upon execution, the results shown next are obtained.

This indicates that the fifth file entry was the last one recorded in the string array. Since the

string array was shortened, it cannot accommodate all program entries. Notice that DOLARS is

the last file entry in the string array.

•

File Catalog Access with the HP 9835 AP-45

Although the selective catalog specifier and the msus are grouped together within a parameter,

they can be used separately. The selective catalog specifier is used to record selected file entries

in the string array. For example, to record only those files whose names begin with the letter S,

the CAT TO statement in the original program is modified as follows.

The semi-colon indicates that the S belongs to the second group of parameters. Notice that the

selective catalog specifier is entered within quotes. If this CAT TO statement is executed within

the original program, the following results are otained .

.... '""" ~:. 12

Notice that List$ contains only that file entry whose name begins with the letter S. The selective

catalog specifier used in this example could also be written as a string expression. For example,

the program lines

::::[1 Z$="::;"
4[1 CAT TO List$(*>;Z$

would yield the same results.

The msus is typically used to override the current mass storage unit default. The mass storage

unit used in the original program can be changed to a disk drive by modifying the CAT TO

statement as follows.

A colon precedes the msus to differentiate it from the selective catalog specifier.

The last parameter in the CAT TO syntax is the heading specifier. The original example did not

record the heading in the string array. The heading is recorded in the first element of the string

array if the heading specifier rounds to anything but 1. Example:

•

AP-46 File Catalog Access with the HP 9835

In order to include a heading specifier, a selective catalog specifier or a msus must precede it.

Here, a space between quotes (used as a selective catalog specifier) fulfills this syntax require­

ment without actually specifying any particular file entries. Spaces are deleted within a selective

catalog specifier. A null string (two quotes without a space) does not fulfill this requirement.

The heading specifier 0 causes the heading to be recorded in the first string of the array. If this

line is executed within the original program, the following results are obtained.

DO .. Y:H:"':':
h'{<I'iFi DRTH

r:(:::TA

7

4

;;~

The parameters of the CAT TO statement can be used to create a "window" around a specified

portion of the catalog. For example, assume that the figure shown next represents a catalog

containing several file entries whose names begin with the letter P.

P1

P2

P3
P4

P5

P6

If the string array A$ is dimensioned three elements, then a statement such as

Ii

File Catalog Access with the HP 9835 AP-47

would record only three of the P file entries. The selective catalog specifier selects only the P

file entries to be recorded. The skip count further limits the number of recorded P file entries by

skipping two of them. Finally, the size of the string array limits the total number of file entries

that can be input. The figure shown next indictes the "window" containing the recorded file

entries.

-- Skip 2

-- N =5
P6

Upon execution, A$ contains only file entries P3, P4, and P5. The variable N equals 5 because

the fifth P file entry was the last one recorded.

As another example, notice how the CAT TO statement is used in the following program to

copy files from one mass storage unit to another.

UP'T]

I I':
::::;e'l ("C:

Ii
! :;:; I~~:' "f"

,:;:,::,"J,d
In"j t oj

, "':::- "" :""'" "':;::::t 9 '::,.::;:;:' i',

"::~""'i:',:,:o J. ":::.,:t;::,u:,:)'

Line 50 allows you to enter the mass storage devices you are using. Line 140 contains the copy

statement for files based on the string array contents from the CAT TO statement (line 80). You

can easily modify this program to copy selective files which suit your needs.

I

•
AP-48 File Catalog Access with the HP 9835

Appendix A
User-Defined Lexical Order

It is recommended that you use the existing collating tables as they appear on the tape car­

tridge. However, an experienced programmer can create a lexical order table to accommodate

his particular application. The following information describes the procedures involved. A

knowledge of binary and octal numbers is necessary to utilize these procedures.

To modify a local language collating table, it is first input to an integer array. Once in the array,

the specified table can be accessed for modifications.

Along with the local language tables, a special ASCll table ("ASCll") is included on the

cartridge for the purpose of modifying the ASCll collating sequence. The LEXICAL ORDER IS

STANDARD statement automatically uses the standard ASCll sequence. But in order to modify

it, the "ASCll" file on the cartridge may be input to an integer array in the same manner as is a

local language table. Example:

1\':1
20
::::\':1
4~J
5(1

60
i'[1

:::[1
'30
100
110
120
1::::0
14()

**
*** This pt"c";W',"'ii' sE'o:;Irnent i '11 us,tl""',,,,tE'S. the

LEXICAL ORDER IS s.tatE~ent. ***
**

nHECEY B (400::'
A:::;::;IGI'l #1 TO "A:::;CII"
r'1f1T F.:EAD #1;B

I Us.er modifications..
!

LE>< ICI=tL. OPDEF.: I:::; B 0::;;::'

::::e'l ec t OPT! m'l BA~:;E"

D·im~:·n:::.iclrl inte91!,;·r· a.r·r·.::i~:}11

I SE' 'I ec t ASC I I f i 1 e.
RE',,,,d in thE' A:::;CI I tat,"! E',

I E s.t:~,b 1 i ;:,h C ont E'nt :", of
",rra~/ B ,,,,~', lE·~<ic.",l m"dEY'.

150 Et'm

Line 90 inputs the "ASCII" file contents to the integer array B. Lines 100 through 120 represent

the user modifications to the ASCII table, and line 130 establishes the modified table as the

lexical order. Notice that in order for the table in the given array to dictate lexical comparison

results, a LEXICAL ORDER IS statement must be included after any modifications to the array

have been made.

I

AP-49

AP-50 Appendix A

Once a LEXICAL ORDER IS statement has been executed, the integer array can be used for

other purpos~s. Be sure, however, to save all necessary modifications on the tape cartridge

before using the array for other purposes. The program lines shown next can be used to

maintain a copy of the lexical table modifications for the previous example.

100 1=i!::;:3IGt·j #3 TO "t·jEW'
1 H~I ['1AT PI': un #::::; B

The lexical order tables give you the capability to define the collating sequence (collating

section), define the uppercase/lowercase transformation of Roman Extension characters

(UPC / LWC section), and prescribe "special handling" of certain characters (mode section).

The lexical table with its individual sections is an integer array organized as shown in the

following ill ustration.

1 Total Length

2 Mode Section Length

3

Collating Section
(Length = 256)

258

259
UPC/LWC Section

(Length = 96)
354

355
Mode Section
(Length = N)

354 +N

Each element of the lexical table consists of 16 bits. This arrangement can accommodate one

number or an integer combination of two (unsigned) numbers as shown next.

Bit 15 o Bit 15 8 7 o

Si g Y'L..I ! _____ --'
Bit ' ___ --'-___ -'

z x y

•

Appendix A AP-51

If one number is stored, a binary two's complement storage format is used. In this manner, each

element has the ability to contain two distinct values.

The first element of the array contains the complete length of the lexical table. This length is

354 plus the number of elements (N) needed in the user-defined mode section (see explanation

of mode section).

The second element of the array contains N, the length of the mode section of the table. Once

the length of the mode section is defined, the first two elements of the array table can be filled

with the proper information.

Elements 3 - 258 of the table contain the actual collating sequence and the appropriate poin­

ters into the mode section, if one exists.

Elements 259-354 define the uppercase/lowercase transformations for characters in the Roman

Extension set (refer to the ASCII and Roman Extension charts in the Reference Tables).

The mode section consists of elements 355 to (354 + N) and provides facilities for handling

certain special case characters.

Collating Sequences
When the lexical order is STANDARD, the ASCII codes define the collating sequence. Thus, A

lexically precedes B (i. e., LEX(" A", "B") is -1) because the ASCII code for A is 65, the ASCII

code for B is 66, and 65 is less than 66.

For computer processing, each character has been assigned an ASCII code. The ASCII codes

are fixed, however, and cannot be changed to reflect a new user-defined lexical order. The

lexical order tables give you the capability of redefining the lexical order by assigning each

character a sequence number. Characters are still represented internally by their ASCII codes,

but a lexical comparison compares sequence numbers rather than ASCII codes. Now, LEX

("A", "B") is -1 if the sequence number of A is less than the sequence number of B. For

example, the strings "ABC" and "XYZ" are stored in the computer as strings of ASCII codes:

ASCII code ASCII code ASCII code ASCII code ASCii code ASCII code
for A for B for C for X for Y for Z

Ii

AP-52 Appendix A

The calculation of LEX ("ABC", "XYZ") involves a comparison of sequence numbers:

Sequence # for A

Sequence # for B

Sequence # for C

Sequence # for X

Sequence # for Y

Sequence # for Z

By properly assigning each character a sequence number, you can define any lexical ordering

of the characters.

Collating Section
The collating section of the lexical order table (elements 3-258) defines the actual collating se­

quence by assigning a sequence number to each character. There are 256 possible 8-bit charac­

ter codes (refer to the ASCII and Roman Extension charts in the Reference Tables). The user­

defined sequence number for the character with ASCII code 0 goes in element 3 of the lexical

table (element 1 of the collating section), sequence number for character with ASCII code 1 goes

in element 4 of the lexical table (element 2 of the collating section), and so on.

For example, the letter A has ASCII code 6510. When an A is encountered, the manipulation

routine goes to the 66th position of the collating section to fetch a sequence number. Note that

the sequence number is fetched from the collating section element number equal to the ASCII

value of the character + 1. This is because the first character in the collating section is null, and

its ASCII value is zero. Usually, the sequence number equals the ASCII value. However, if a

different collating order is selected, the sequence number may differ from the ASCII value.

In addition to the sequence number, each entry of the collating section may contain a pointer

into the mode section of the lexical table. If no pointer is specified, 0 is entered. The mode

section contains instructions governing special case letters. The pointer number indicates in

which position of the mode section a special case is handled.

The sequence number and mode pointer number for each character are combined to form a

single integer entry in the lexical table:

Bit 15 8 7 0

I Sequence # Mode Pointer # I

Ii

Appendix A AP-53

Assume that A is a special case letter with the sequence number 65. Also, assume that the

special case is handled· in position 1 of the mode section. The collating section entry containing

this information is represented by:

Bit 15 8 7 0

Array Element 68

t t
Sequence # Pointer #

The actual content of this entry is 16 64bo. The number is obtained as shown next.

Binary
t

Octal
t

Decimal

65
I I

01000001 00000001
LJ L.J L......J LJ L.J

4 0 4 0 18

6 6 4 1 10

Both the sequence number (65) and the pointer number (1) are combined to form one integer

value within the table element, in this case, 16 64bo.

An alternate method of converting the binary and octal elements of the lexical table entries to

integer form is given below. For example, if the sequence number you are using is greater than

127, you may find it more convenient to use the formulas shown next.

X and Yare each 8-bit unsigned integers.

Z is a I6-bit signed integer formed by concatenating the bit patterns of X and Y.

Bit 15 8 7

x y

z

1. Given X and Y, calculate Z:

Z = X*256 + Y - (X>I27)*65 536

2. Given Z, calculate X and Y:

X = INT(Z/256) + (Z<0)*256

Y = Z MOD 256

o

Ii

AP-54 Appendix A

Uppercase / Lowercase Section
Elements 259-354 of the lexical table are used for uppercase/lowercase information for

characters residing in the Roman Extension Set. Data contained in these elements is in the

form:

Bit 15

Uppercase
Character

8 7

Lowercase
Character

o

The UPC/LWC section contains an element for each character with an 8-bit code of 160

through 255. The first element of the UPC/LWC section (element 259 of the lexical table)

contains the upper /lowercase for the character with 8-bit code 160, the next element contains

the transformations for the character with 8-bit code 161, and so on.

The purpose of this section of the lexical table is to allow you to define the upper and lowercase

versions of each letter in the Roman Extension Set for use by the UPC$ and LWC$ functions.

All characters in the main ASCII table have fixed upper and lowercases, and as such, are not

changed. If both the uppercase and lowercase 8-bit codes in the table are ° for a given

character, the character is unchanged by the UPC$ and LWC$ functions.

For example, if a word containing a lowercase e (code 19710) is to be converted by French

conventions, the accent is omitted when the letter is converted to uppercase. That is, e~E. But

under German conventions, an umlaute in the letter remains so that a~A. Therefore, for

French, the 38th entry of the uppercase/lowercase section (296th entry of the table) is

E e

Array Element 296 69 10 197 10 I

while the 45th entry in the German uppercase/lowercase section is

A a

Array Element 303 121610 120410 I

Appendix A AP-55

Mode Section
The mode section (starting at element 355) of the lexical table handles special case characters.

The three special cases shown next are possible.

• Accent Priority

• 1 For 2 Character Replacement

• 2 For 1 Character Replacement

Accent Priority

You may specify the priority of letters with accent marks. Example:

A •

e<e<e<e<e

The symbol «) means "precedes alphabetically". In this case, these letters have the same

sequence number in the collating section, but different pointer numbers. That is, each has an

individual entry in the mode section.

An accent priority requires only one entry in the mode section (some special cases require more

than one). The format of the mode section entry for this special case is:

Bit 15 8 7 6 o

o Priority

The zero indicates that the eight bits of this special case mode entry are not used, and must

contain zero (0) so as not to be confused with one of the other special cases. A 1 must be

present in bit seven to indicate that this special case is an accent priority. The remaining bits

describe the user-defined priority number.

•

AP-56 Appendix A

For example, assume that the letter e in the collating section has a pointer number which

specifies the first entry of the mode section (or element 355 of the table). Also, assume that this

mode entry assigns a priority of 2 to the letter e. The collating and mode sections contain the

information shown next.

Array Element 200 Sequence # of e 11 (Mode Pointer)]

355 0 11 L 2 (1 st Mode Section Entry) L-__ ~ ____ ~.~~ ____ ~

Bit 7

The following scheme is used to find the correct mode section entry.

Bit 8-15 7 0-6
Int
1 2

" Binary 0000000 010000010
t L...J L...J L...J

Octal 2 0 20

+ Decimal 3 0 '0

13010 is the proper entry for the mode section element. Bits 6 through 0 are used to describe

the priority number. Bit 7 is always 1 for an accent priority special case. Bits 15 through 8 are

not used, but must contain zeros to insure proper results.

Note that the value of an accent priority entry in the mode section is always 128 plus the

assigned priority. This means that the maximum accent priority is 127.

Accent priority mode section entries assign a relative priority to characters having the same

sequence number. The accent priority is used only to distinguish two otherwise identical strings

which differ only in their accent marks.

For example, assume e and e have the same sequence number and each has been assigned an

accent priority; e has priority 5, and e has priority 2. The routine to calculate LEX ("e"," e")
first compares the sequence numbers of e and e.

Since the sequence numbers are the same (and each character has been assigned an accent

priority), the accent priorities are next compared. Five is greater than 2, so LEX (" e" ,"e") is 1

(i.e., e> e, or e comes after e alphabetically).

Ii

Appendix A AP-57

A character which is not assigned an accent priority in the mode section lexically precedes any

other character with the same sequence number and which has an accent priority. For example,

assume e and e have the same sequence number, but that e has been assigned an accent

priority in the mode section while the mode pointer of e is O. Since e has not been assigned an

accent priority, LEX ("e", "e") is -1, or e precedes e alphabetically.

In the following example, the two strings have the letter e (but with different accent marks) as

the first character. Since the last characters of each string differ, a mismatch is encountered

without using any accent priority information from the mode section.

LEX ("ez"," ea") = -1

In the next example, both letters in one string match those in the other; the only difference

being the accent marks on the first letters. In this case, the strings match and accent priority

information is used to make a distinction. If the accent priority for e has been specified to be less

than the accent priority for e, the results would be:

LEX ("eb"," eb") = 1

1 For 2 Character Replacement

Another special case that you can specify is a 1 for 2 character replacement. This specifies that

for collating purposes, a given combination of two characters is to be treated as a single

character. That is, two characters are assigned a single sequence number.

An example of this are the letters "CH" together in the Spanish standard collating sequence.

The correct alphabetical sequence in Spanish is A, B, C, CH, D ... All words beginning with C

followed by any letter other than H come before words beginning with C followed by H.

Therefore, the two letters CH can be taken as a single letter coming between C and D in the

alphabetical sequence.

The string "CHA" is to be stored as

ASCII Code ASCII Code ASCII Code

for C for H for A

but for collating purposes, the sequence numbers fetched for this string would be:

Sequence # for CH

Sequence # for A

I

AP-58 Appendix A

The mode section format is:

Seq # of 2-character Uppercase of
combination 2nd character

Seq # of 2-character Lowercase of
combination 2nd character

0 12810

The front, or upper part of the first (and possibly second) entry, contains the sequence number

of the 2-character combination. The last, or lower part of the entry, contains the ASCII value of

the 2nd character.

Usually an entry for both the uppercase and lowercase versions of the 2nd character are

specified. This is to catch both occurrences of the given character combination; for example,

CH and Ch. However, this is not required. If the special 1 for 2 character replacement is to

specify CH only (and not Ch), the lowercase entry would be omitted.

In the case that both an uppercase and lowercase entry appears, the sequence numbers in the

upper part can be the same in both entries. They are the same in the Spanish table. However,

different sequence numbers for each combination are acceptable also.

No matter how many entries are given, the last entry for this special case is equal to an octal

200, or a decimal 128. It is a terminator that indicates there are no further character combina­

tions.

When a lexical calculation on a string encounters a character with a mode pointer to a mode

entry of this type, the next character in the string is compared one-by-one with the possible

second characters given in the mode entries. If a match is found, the two characters together

are represented by the single sequence number given in the corresponding mode table entry. If

no match is found, the first character is assigned the sequence number given in its collating

section entry and processing continues with the next character in the string. Note that "don't

care" characters in the string are not regarded as such for this type of replacement.

For example, the sequence numbers fetched for the string "CAH" (even if "A" is a "don't­

care" character) would be:

Sequence # for C

Sequence # for A

Sequence # for H

•

Appendix A AP-59

Note that this special case does not cause any actual substitutions to be made in a string

containing CH; CHA is still stored as:

ASCII Code ASCII Code ASCII Code

for C for H for A

This means that for collating purposes, the character pair CH causes a single sequence number

to be fetched.

Consider again the example of CH for Spanish. Assume that the letter C has sequence number

67 and 0 has sequence number 68. To include the combination CH, a new sequence number

must be created between 67 and 68. To do this, the collating sequence is rearranged so that C

has sequence number 67 and 0 has 69. Sequence number 68 is reserved for CH and the

remaining sequence numbers are adjusted accordingly.

Assume that the 4th, 5th, and 6th elements in the mode sequence contain the information

governing the CH special case. The mode sequence entries for this example are shown next.

Array Element 70

71

358

359

360

67

69

Sequence # for CH

Sequence # for CH

0

4

H] (4th Mode Section Entry)

h

128 10

Numerically, the mode section entries for this example would contain:

68 72

68 104

0 128

Note that 72 is the ASCII value for uppercase Hand 104 is the ASCII value for lowercase h.

•

AP-60 Appendix A

Whenever a C is encountered in collating and H or h immediately follows in the string, the pair

of characters (CH or Ch) is assigned a single sequence number. Processing the string "CHA"

would fetch the sequence numbers:

Sequence # for CH

Sequence # for A

In the original example, the actual contents of the mode sequence entries are:

4th Mode Section Entry:

Binary
t

Octal

+ Decimal

5th Mode Section Entry

Binary
t

Octal
t

Decimal

68 72
I I I I
01000100 01001000

LJ LJ L-...J LJ LJ
4 2 1 1 08

7 4 8 010

68 104
j j

01000100 01101000
L-J L-J L-..J L-J L-J

4 2 1 5 0 8

7 5

Therefore, lexical table element 358 (1 + 1 +256+96+4) contains 1748010, element 359 con­

tains 17 51210, and element 360 contains the terminator value 12810.

It is possible to specify additional character replacements for the same character. For example,

if the combination CZ were to follow CH in the previous example, the mode section would be

expanded to include the additional characters as shown below.

Sequence # for CH H

Sequence # for Ch h

Sequence # for CZ Z

Sequence # for Cz z

0 128

The terminator does not occur until all additional characters have been included.

I

Appendix A AP-61

2 For 1 Character Replacement

The third special case is a 2 for 1 character replacement. This type of mode entry specifies that

a single character is to be assigned two sequence numbers for lexical comparisons. For exam­

ple, the letter A in German is alphabetically equivalent to AE (or Ae). In a lexical comparison,

A is assigned two sequence numbers; the sequence number for A and the sequence number

for E (or e).

In general, if the mode entry specifies that a character is to be assigned two sequence numbers,

the first sequence number is given in the normal collating section of the table. The second

sequence number is given in the mode table entries. The format of the mode table entries is

shown next.

Bit 15 8 7 0

Sequence # of
2nd character (upper) 0

Sequence # of
2nd character (lower) 0

Since there is only one number required for this case, the second portion of the element (bits

7 -OJ is not used, and must be set to zero to avoid confusion.

Note that mode entries of this special case require no terminator element. For example, assume

A is a special case character that is alphabetically equivalent to AE (or Ae), and that the special

case for A is handled in the first entry of the mode section. The collating section entry for A
(which is character code 216) and the mode section entry are shown next.

Array Element 219

355

356

Sequence # for A

Sequence # for E

Sequence # for e

1 (Mode Pointer) -

0 --- (1st Mode Section Entry)
,

0

Assuming that the sequence numbers of A, E, and e are the same as their ASCII values, the

following illustration represents the numerical contents of the table entries.

219

355

356

65'0

6910

101,0

1

0

0

1664110

17664'0

25856'0

I

AP-62 Appendix A

Note that the sequence number for A in the collating section is equal to the sequence number

for A. Differentiation occurs in the mode section information. That is, A probably will have no

mode section pointer, while A will. The sequence difference between A and A, then, is handled

by A's entry in the mode section.

The choice between lower and uppercase for the second sequence number is determined by

the case of the character immediately following the special case letter. For AN, A is equivalent

to AE. For An, A is equivalent to Ae. The character A alone is equivalent to AE.

This special case does not cause any actual substitutions to be made in a string. In the previous

example, the string" An" is stored as:

ASCII CODE
for A

ASCII Code
for n

For collating purposes, the sequence numbers fetched for the string" An" would be:

"Don't Care" Characters

Sequence # for A

Sequence # for e

Sequence # for n

There is a fourth special case which doesn't require a mode section entry. This is the "don't

care" special case where the specified character is to be ignored for collating purposes. An

example of such a case is the hyphen in hyphenated words.

A character is ignored alphabetically if it has a sequence number of 255 in the collating section.

That is, wherever a "don't care" condition exists in the collating section, simply enter 255 as

the sequence number in that element.

Note that once a character is specified to be a "don't care" character, it is always treated as if it

did not appear for collating purposes. For example, if the hyphen is designated as a "don't

care" character, then "user-defined" would be collated as "userdefined", and, consequently,

"-2" would be collated as "2". Therefore, consideration should be given to the desired results

before a character is designated as a "don't care" condition.

It should also be noted that the null string precedes a string containing only a "don't care"

character. That is, if A$ = "" and B$ = "-", then A$ precedes B$ even if the hyphen is a

"don't care" character.

Ii

Appendix A AP-63

Advanced Programming Lexical Tables
The following listings are the Advanced Programming lexical tables. The tables are recorded on

the Lexical Tables Cartridge under the names ASCII, FRENCH, GERMAN, SWEDSH and

SPANSH. For your convenience, backup tables are included on the cartridge under the names

BKUPAS, BKUPFR, BKUPGR, BKUPSW and BKUPSP.

Ii

AP-64 Appendix A

111111111111111
~r:;C I I TABLE

111111111111111

EtHF.:'/ #1
EtHF.:'(#2

LENGTH OF COLLATING TABLE = 354
LENGTH OF MODE TABLE = 0

------------- COLLATING SECTION -------------

Et~TRYTCOLL 'ICHAF.: I CHAF.:
I Et~TF.:'/ CODE

3 1 0 NUL
4

6
7
:::

10
1 1
12
1:;:

14
15
16
17
H:
1'3
20
21
.-, .-:.

23
24

26
.-,,
.:::. ..

2'3
30
::;: 1

34
.-, t:'
.;. ,_I

3'3
40
41
42
43
44

45
46
47
4:::
4':;'

2

4

6
7
:::

10
1 1
1 .-, .:::.

14
15
16
17
H:
1'3
20
21
22

24
.-, c:-o::. ,_I

26
27

2'~

32

·-,e
.;. ,_I

36
37

40
41
42
43
44
45
46
47
4 :::

2

4

.;
7

'3
10
1 1
12
13
14
15
16
17
H:
1'3
20
21
22
23
24
25
26
27
2:::

32

34
35
36
37

3':;'

40
41
42
43
44
45
46
47

::;OH
::; T ><

ET>':
EOT
E t~ C!
ACf<
BEL
B ::;
HT
LF
',,iT

FF
CF.:
::;0
::; I
DLE
DCl
DC2
D 1-: :::

DC4
t~ A f<
::; '/ t·~

ETB
CAt·~

Et'1
::;UB
E::;C
F:::;

$
...•

*
+

2

4

7

10
1 1
12
13
14
15
16
17
H:
1'3
20
21
22

24
.-, c:-
.:::. ,_I

26
27

2'~

30
::;: 1

32

34
.-, c-
• .:' ,_I

36

3'3
40
41
42
43
44
45
46
47

Et~TF.:'(ICOLL'ICHAF.: ICHAF.: 1::;Ect.ODE
ENTF.:Y CODE # PTF.:

51 4'3 48 0 48 0
t:' .-.
,-'':::'

54
",,::-,_1._'
56

59
60
61
62

64
65
66
67

70
71
-, .-, .. .:::.
...., .-, ... ;.
74

76
77

::::0
::: 1

:::3

,-, t:'
':1._'

'31
92

95
96
97
9::::

50
51
J::'" .-,
,_I'::'

I:" .-,
,_I.':,

54
"'''' ,_1._'

56
"'..,
,_I "

C',-, ,_I.:.

59
60
61
62

64
65
66
6"7

6'3
70
71
..., .-,
" .:::. ..., .-,
" .;,

74

79

'34
95
96

4'::'
5(1

51
C" .-,
'-'':::'
C" .-,
,_I.;.

54
"'''' ,_I ,_I

56
"'..,
,_I "

60
61
62
63
64
65
66
67

6'3
70
71
7'''') , .:..
-, .-,
" .; .
74

76
77

79
:::0

81

92

':;'4

95

2

4

6
7

<:

:>
?
1:!1

A
B
C
D
E
F

H
I
J
K
L
t'1
t~
I]

P
C!
F.:

4':;'
50
51

54

59
60
61
62
63
64
65
66
67

69

...., .-, .. .:::.

74

76
77

'~2

93

95

•

Appendix A AP-65

---------- COLLATING SECTION - CONT ----------

ENTRY!COLL. !CHAR ! CHAR
Et'~TR'(CODE

10(1
101
102
103
104
105
106
107
10:::
1 (19
110
1 1 1
112
113
114
1 15
116
117
1 t:::
119
120
121
122
123
124
125
126
127
12:::
1 ,~,,::.

1 ':::0
131
132
13::::
134
135
136
1:::7
13:::
139
140
141
142
143
144
145
146

9:::
'3'3

100
101
102
103
104
105
106
107
10:::
1 (1 '3
110
1 1 1
112
1 1 3
114
115
116
117
11 :::
119
120
121
122
123
124
125
126
127
12:::
129
130
131
132
133
134
135
136
1;;:7
1 :::: :::
139
140
141
142
143
144

':;'6

'37

9'3
1 (n:1

Hl1
102
103
1 ~:14
105
106
1 ~:17
10:::
109
110
111
112
1 13
114
115
116
11 7
11 :::
11 '3
120
121
122
123
124
125

.:0,

to

d

f

J
k
1

n
o

t

I)

1,1,1

z

126 ".'
127 DEL
12::: CLR
l·~,q I',,.'

130 BL
131 !'.,i-B
132 UL
133 I',,.'-U
134 BL-U
135 I-B-U
136
137
13:::
139
14(1
141
142
143

!
::;EC! It'10DE
PTR

'36
'37

1 (n]

101
102
10::::
104
105
106
107
1 ~]:::
109
110
1 1 1
112
113
114
115
116
117
11:::
11 '3
120
121
122
123
124
125
126
127
12:::
129
130
131
1 :32
1 :;:3
1 ::::4
135
1 ::::6
1 ::::7
1 :::: :::
1 :;: '3

140
141
142
143

ENTRYICOLL'ICHARICHAR1SE6IMODE
ENTRY CODE # PTR

147 145 144 144 0
14::: 146 145 145 0
149 147 146 146 0
150 14::: 147 147 0
151 149 14::: 14::: 0

153
154
155
156
157
15:::
159
160
161
162
163
164
165
166
167
16:::
16'3
1 7~:1
171
172
173
174
175
176
177
17:::
179
1 ::: 0
1 ::: 1
1:::2
1 ::: 3
1 ::: 4
1 ::: 5
1 ::: 6
1 ::: 7
1 ::: :::
1 ::: 9
1 '30
191
1 q ,~,

193
1 '34

150
151
152
153
154
155
156
157
15 :::
15'3
160
161
162
163
164
165
166
167
16 :::
169
170
171
172
173
174
175
176
177
17:::
179
180
H: 1
1 :::2
1 ::: 3
1 :::4
1 ::: 5
1 ::: 6
1 ::: 7
1 ::: :::
1 :::9
190
191
1 '::. ,~,

149
150
151
152
15:;:
154
155
156
157
15:::
15'3
160
161
162
163
164
165
166
167
16:::
169
1 7~]
171
172
173
174
175
176
177
17:::
179
1 ::: [1

1:::1
1 ::: 2
1 :::3
1 ::::4
1 :::5
1 :::6
1 ::: 7
1 ::::::
1 ::: 9
190
191

14'3
150
151
152
153
154
155
156
157
15:::
159
160

A 161
:t 162
1:1 163
CI 164
A 165
~ 166
1:1 167

16:::
169
170
171
172

E 17:;:
I~I 174
(175

176
A 177
.:0, 17:::
':' 179
I; 1 ::: [1

S. 1::::1
t·~ 1 ::: 2
Pi 1 ::: :;:

1:::4
0::.. 1 :::5
i:! 1 ::: 6
£ 1:::7
::: 1 ::: :::
:~: 1 ::: '3
~. 190

1 '3 1

I

AP-66 Appendix A

---------- COLLATING SECTION - CONT ----------

ENTP'/ICOLLoICHAP I CHAP
Et·jT~:"'" CODE

195
1 '36
1 '37
1 '3 :::
19'3
200
201
202
203
204
205
206
207
20:::
20'3
210
211
212
21:::::
214
215
216
217
21:::
219
220
221
.-, .",:, .-,
.::....::....:...

223
224
.-, .-, C,"
~.::.._I

226
''''),-:.-::,
'::"'':'''1

22:::
229
230
231
'",,: .. :' ,,,')
.::... '-'0:...

2'- ::::

2 4
2 5
2 6
2 7
2 :::
2_9
2 4 ~=1

241
242

1 '33
1 '34
195
196
197
19 :::
199
200
201
202
203
204
205
206
207
20:::
20'3
210
211
212
213
214
215
216
217
21:::
21 '3
22 ~=1
221
222

224
225
226
.-:.,-:,"'7
':"'':'''1

22:::

230
231
232

235
236
.-, -,...,
.:;. . ..:. I'

23:::
239
240

1 q.~,

1 '33
194
195
196
1'37
1 '3 :::
1 '39
200
2(11
2~J2

203
204
205
206
207
20:::
20'3
210
211
212
213
214
215
216
217
21:::
21'3
220
221
222
223
224
225
226
,-, .-,-,
':::"'::"f

22:::
229
230
2:::: 1
232
.-: .. :' ':.
.::... '-' '-'
234
235
236
.-, .-,...,
.::, . .: ...
. ",:, .: .. :' .:.. ,_, I_'

.:1

(I

o

f:::

I
::;EC! It'10DE
PTP
1 q.~, 0

193 0
1'34 0
195 0
1 '36 0
1 '37 0
1'3::: 0
1'3'3 ~J

200 0
201 0
202
203
204
205
206
207
2~=1 :::
2(19
210
211
212
213
214
215
216
217
21:::
21'3
22(1
221
222
22:~:

224
.-, .-, C'
.::..::. ,_I

226
--:""')7
':"'':'''1

22:::
22'3
230
231
232
23:~:

234
235
2::::6
.-, .-,....,
.:;. . .: ...
23:::

ENTPYICOLLo ICHAPICHAPI~EC!IMODE
ENTPY CODE # PTP

243 241 240 240 0
244 242 241 241 0
245 243 242 242 0
246 244 243 243 0
247
24:::
24'3
25[1
251
252
253
254
.-, II:" c­o::. ,_I ,_I

256
257
25:::

245
246
247
24:::
249

251
.-, C' .-,
.::. ,_I'::'

253
254
.-, C' C'
.::. ,_I._I

256

244
245
246
247
24:::
24'3
25[1
251
.-, C' .-,
.::. ,-''::'
.-, C" .-,
.::. ,_I.':'

254
.-, C' II:" .::. ,_1._,

244
245
246
247
24:::
249
250
251
.-, C' .-,
.::. ,-''::'

253
254
.-, C" r::: .::. ,_1._'

•

Appendix A AP-67

---------- UPPERCASE/LOWERCASE SECTION ----------

ENiRYIU/L ICHARICHARIUPPERILOWER
ENTRY CODE CASE CASE

259 1 16[1
260 2 161 A A a
261

263
264
265
266
267
26:::
26'~

270
271
.-, -:0 .-,
'::'1''::'

'-:,7':' .:... I ,_,

274
275
276
277
27:::
279
2 :::: [1
2 ::: 1
2:::2

2:::5
2:::6
2:::7
2 ::! !::
2:::9
2 ';' ~=1

291
2'32
293
294
295

297
2'31:::
299
::;:0 [1
301
;:[12
30:;:
:;:04
3(15
306

4
'" '-'
6
7
:::
9

10
1 1

12
1 3
14
15
16
17
1:::
19
20
21

24
,-, I:"
.::. ,_I

26
.-, -:0
.::. ..

29
30
31

34
.-, I:"
. .:. ,_I

36

39
40
41
42
43
44
45
46
47
4::::

162
163
164
165
166
167
16:::
169
170
171
172
173
174
175
176
177
1 "/ ':' I ,_,

179
1 ::::0
1 :::: 1
1:::2
1 :::: 3
1 :::: 4
1 :::: 5
1 ::::6
1 :::: 7
1 :::: ::::
1 ::::9
1 ';' ~=1
1 ':11
192
1 'OJ :::

194
195
1 ';'6
l'n
19::::
199
2[10
201
202
203
204
2~j5

206
207

:t

. ::..

£

:t

A
A

,~ .

£

A
t

u
A
t

U
A
E
I~I
(I

.::,.

£

ENTRYIU/L !C,HARICHARIUPPERILOWER
ENTRY CODE CASE CASE

307 49 20::: A A a
30::: 50 209 I
309 51 210 0 0 0

310 52 211 ((~

311 53 212 a A a
312 54 213 :t
31::;:
314
315
316
317
::;: 1 :::
319
320
321
322
.:' .--: .. :'
'-'':'' '-'

324
:325
326
.: .. -:.-::,
'_''::'' I

32:::
32'3
330
331
.:' ,,: .. -:.
'-' '-'':''

334
3:~:5

:~::~: 6

:~: :;! :::

340
341
342
343
344
345
346
347
::;:4:::
349
:3 5 ~:1
351
.-, C' .-,
.;. ,_I'::"
.-, C' .-,
.;. ,_I .;.

354

59
60
61
62
63
64
65
66
67

..., .-,
I" .::.

-:0 .-,
f·':'

74
.... '" I' ,_I

76
77

:::7

::: 'j

90
'31
';'2

95
96

214
215
216
217
21:::
219
22[1
221
222
223
224
225
226
.-, '-,-:0
';::'':::''f

228
229
2:;:[1
231
232
233
234
235
236
237
.-: .. :. ': .
.:.. '-' '-'
2::;:9
240
241
242
243
244
245
246
247
24::::
24';'
25(1
251
.-, C' .-,
,:::".J .::..

253
254

I:' .' f::

Ii

AP-68 Appendix A

Et,iTF.: ... ·

'*

------------- MODE SECTION -------------

T\'PE DE:::;CF.: I PT I Ot·i

1111111111 T ... ·PE DETAIL:::; 1111111111

255 = Don't care

ACCENT PF.:IOF.:ITIES --

TWO FOF.: ONE F.:EPLACEMENTS

ONE FOF.: TWO F.:EPLACEMENTS --

•

EtHP'!, # 1
EtHP'!, #2

I I 111111 1111 1111
FPEt~CH TABLE

1111111111111111

LENGTH OF COLLATING TABLE = 374
LENGTH OF MODE TABLE = 20

------------- COLLATING SECTION -------------

Appendix A AP-69

ENTPYICOLL'ICHAP I CHAR
Et'~TP\' CODE I

':;EO It'10DE
PTP

ENTPYICOLL'ICHAPICHARISEOIMODE
ENTPY CODE # PTP

3 1 0 NUL
4

6
7

':I
10
1 1
12
1~:

14
15
16
17
H:
1 '3
20
21
.-, .-,
0:..':'"

23
24
,-,~

.:::. ,_I

26
.-, " .:::. ..

34

.-, ...,

. .: ...

40
41
42
43
44
45
46
47
4:::
4'3
50

2

4
'" ,-'
6
7

9
10
1 1
12
13
14
15
16
17
1 :::
19
20
21
22
23
24

26
27

29
30
31

34
.-, c-
. .: •• _1

36
.-, -., . .:.,'

40
41
42
43
44
45
46
47
4::::

2

4
5
6
7

';l

10
1 1
12
13
14
15
16
17

1 ';l
20
21

23
24
25
26
27
.-, ,-,
.:::. ':'

32

34
35
36
.-,,
. .:,,'

40
41
42
43
44
45
46
47

:::;OH
:::; T ::<
ET::<
EOT
Et,~O

ACf:::
BEL
B::;
HT
LF
',,iT
FF
C~:

::;0
::; I
DLE
DCl
DC2
Dr::::

DC4
t~ Af:::
:::; '/ t,~

ETB
CAt,~

Hl
::;UB
E:::;C
F::;

$
.,.~

+

2

4
'" '-'
6
7

10
1 1
12
1 ':, '-'

14
15
16
17
1:::
19
20
21
22
23
24
.-, C'
.:::. ,_I

26
27

2'~

32

34
.-, c::'"
. .:. ,_I

36
37

39
4[1

41
42
4:~:

44

46
47

'0

C" .-,
'-'':::'
II:' .-,
,_I.':'

54
"'''' ,_I ,_I

56
"'-,
,_I "

5'~

60
61
62

64
65
66

69

...., .-,
" .:::.
73
74
75
76

7'~

:::0
::: 1

,-, C'
,:, ,_I

:::7
::: :::
I:: '31

95
':16

50
51
52
C' .-,
,_I.":,

54

56

59
60
61
62

64
65
66
67

70
71
-, .-,
" .:::.

74
-, .,
" ,_I

76
77

:::0
81

:::3

::: I::

9[1

91

'n
9::::
94
95
96

4 q

50
51
52
C' .-,
,_I.':'

54
., c:'
,_I ... J

56

5:::
5'31
6[1

61
62

64
65
66
67

69
7 ~2t
71
..., .-,
i' .:::.

-, .-. ... ,:.
74

76
77

::::0
::: 1

90
':I 1
92

94
95

2

4
.,
'-'

7

<:

?
1]1

A
B
C
D
E
F

H
I
J
f:::

L
t'l
t,~

o
P
o
P

'i

z

]
.....

4'3
50
51

64
65

69
7 ~2t
71
..., .-, .. .:::.

:::0

'-'4
.,
'-'
6

'35

•

AP-70 Appendix A

---------- COllATING SECTION - CONT ----------

"E7rTF.:\',1 COll -ICHAP I CHAP
** I Et'~TP'/ CODE

100
101
102
103
104
105
106
107
1 ~::n::
109
110
1 1 1
112
113
114
115
116
117
1 U::
1 1 '31
120
121
122
123
124
125
126
127
12:::
1 ,~ .. ~

130
L:1
132
1:;::;:
134
135
136
1:::7
1 :~: :::
1 :;: '31
140
141
142
143
144
145
146

97
9:::
'31'31

100
1 01
102
103
104
105
106
107
10:::
10'31
110
1 1 1
112
1 L:
114
115
116
117
1 1 :::
119
120
121
122
123
124
125
126
127
12:::
12'31
130
1 :;: 1
132
133
1 :~: 4
135
136
137
13:::
1 :~: '31
140
141
142
143
144

96
':;'7

100
101
102
103
104
1(15

1 ~=16
107
10:::
109
110
111
112
113
114
115
116
117
11 :::
119
120
121
122
12:~:

124
125
126
127
12 :::
1 ,~, q

130
1 3 1
1 :::2
1 3

4
co
,_I

6
7

1 J:::
139
14(1
141
142
143

,':1

b

f

j
k

n

;:.

I.)

1.,.1

I

z

"'.'

DEL
ClP
I 1,/

Bl
II",I-B

Ul
II,/-U

Bl-U
I-B-U

I ~:;EO It'10DE
** PTP
101 0
102
103
104
106
Hl7
10:::
109
110
111
112
113
114
115
116
1 1 :::
119
120
121
122
123
124
125
126
127
12:::
1 ,~ .. ~

133
134
135
136

[1

o
o
(1

o
o
o
o
o
o
o
o
o
o
o
o
o

ENTPY1COll-1CHAP1CHAP1SE01MODE
** ENTPY CODE ** PTP

147 145 144 0 0
14::: 146 145 0 0
149 147 146 0 0
150 14::: 147 0 0
151 149 14::: 0 0
152
153
154
155
156
157
15:::
15'31
160
161
162
163
164
165
166
167
16:::
169
170
1 71
172
173
174
175
176
177
17:::
179
1 ::: 0
1 ::: 1
1:::2
1:::3
1 ::: 4
1 ::: 5
1:::6
1:::7
1 ::: :::
1 ::: 9
190
191
192
1 '31 3
194

150
151
152
153
154
155
156
157
15 :::
159
160
161
162
163
164
165
166
167
16:::
169
170
171
172
173
174
175
176
177
17:::
179
1 '=:0
1 1

2

4
co
,_I

6
7
:::
'31

1 :::I ~=1

191
192

14'31
150
151
152
153
154
155
156
157
15:::
15'31
160
161
162
163
164
165
166
167
16:::
169
17(1
171
172
173
174
175
176
177
17:::
179
1:::0
1 ::: 1
1 ::: 2
1:::3
1 ::: 4
1 :::5
1 :::6
1 ::: 7
1::::::
1 :=: q

190
1 '311

A
i

.~.

£

65

1 ':' -:> "_, I

1 3 :::
1 :;: '31
140
141

71
:::2

142
143

65
102
144

69
105

::: 1
11 7
145
146
147
14 :::
149
150
151
152

I

Appendix A AP-71

---------- COLLATING SECTION - CONT ----------

ENTF'\' ICOLL °ICHAF' I CHAF'
E~·~TF.:\' CODE

195 193 lQ? a
196 194 193 e
197 195 194 6
198 196 195 u
199
200
201
202
203
204
2(15
206
207
20:::
20'3
210
211
21 ;;-,
213
214
215
216
217
21:::
21 '3
220
221
222
223
224
.-, .-, c-
0:::..':::" ,_I

226
'~I ''':, "7
':"':"'1

22:::
22'3
230
231
.-:' .:' .-::.
.:.. '-'':'"

23:~:

234
.-, .-, I:'
.::. . .:, ,_I

2:~:6

237

240
241
242

197
19 :::
19'3
200
201
2 ~~12
2(13
204
2[15
206
2~)7

20 :::
2 ~~1 '3
210
211
212
213
214
215
216
217
21:::
219
220
221
222
223
224
225
226
227

229
230
231
232
233
234
.-, ,-, I::"
.:::.. .,:, '-'
2:36
'''') .,:."'7
.:... ,_, I

23:::

240

196
1 '37
1 '3:::
1 '3 '3
20~~1

201
202
2(13
2(14

206
2[17
2[18
2~~19

2 1~)
211
212
213
214
215
216
217
21:::
219
22(1
221
222
223
224
225
226
227
.-, .-, ,-,
.:::...::. ':'

22'3
23[1
231
232
.-, .-, .-,
.::,.,: .. .:.
234
235
236
.-, '-,-:0
.:::..,:.j'

23'~

.~

.~

IJ

.~

.~

I ~:;EO It'10DE
PH:
102 0
1(17 (1
1 1::: 0
124 0
102
107
11:::
124
102
107
1 1:::
124
102
107
1 n:
124

65
1 1 1

65
102
1 1 1
11:::
1 ~)2

65
1 1 1

::: ';.t

71
1 1 1
122

o
~)

o
o
o
~~1

o
o
o
~~1

o
o
~:1

o
o
o
o

ENTF'YICOLLo ICHAF'ICHAF'ISEQ
ENTF'Y CODE #

243 241 240 0
244 242 241 0
245 243 242 0
246 244 243 0
247
24:::
24'3
250
251
252
253
254
.-, II:' C'
.::. ,_I._I

256
257
25:::

245
246
247
24:3
249
25[1
251
.-, II:' .-,
.::. '-'':::''

253
254

256

244
245
246
247
24:::
24'3

251
252
253
254
255

-
t'10DE
PH:

Ii

AP-72 Appendix A

---------- UPPERCASE/LOWERCASE SECTION ----------

L 0 (,J ERE t~ T F: '{ L 0 (,J E R Et~TR'{

** 259
C W:; E ** C A:::; E

.~~~-L~~~----J~~~~~~-++~~--~--~~~:~~_c~--,,--~
307

260
261
262
263
264
265
266
267
26:::
26'3
270
271
.-,"",:, .-,
'::"1' .:::.

.-:. -::' .: .

.:.. I ,_,

274
275
276
'-:''''?7
':"1 I

27:::
2?'~

2:::0
2 ::: 1
2:::2
.-: .. : .. :'
.:.. '-' '-'

2:::5
2:::6
2:::7
2 ::: :::
2:::'j

2'30
2'91
292

2';'4

297
2'3 :::
2'j '3
::: 00
:::01
302
303
::: 04
305
::06

2

4
c:-
._I

6
7

'3
10
1 1

12
1 :::
14
15
16
17
1:::
1'3
20
21
22

24
.-, c::
.:::. ,_I

26
27

.-, c:-
• .:. ,_I

3'3
40
41
42
4::::
44
45
46
47
4:::

162
16::::
164
165
166
167
16 :::
16'3
1 7 ~=1
171
172
173
174
175
176
177
17:::
17';'
1 :::0
1:::1
182
1 ::: 3
1 ::: 4
1 ::: 5
1 ::: 6
1 :::7
1 ::: :::
1 ::: ';'
1 ';'0
1 ';' 1
1 ';'2
1'33
1'34
1'35
1'36
1'37
1 '3 :::
1 '3 '3
200
201
202
203
204
2~:15

206
207

A
:t

(

I~

N

£

I.~

A
:t

(

I~.

£

A
E
o
U
A
E
o
U

A
E
o
U
A
E
o
U

.)

,::,.

£

::::0:::
30'3
310
::: 11
:::: 12
313
314
315
316
:::: 1 7
31:::
31 '3
320
321
.-, .-, .-,
. .: . ..:::..:::.
.:. '''':, ':.
'-'':'' '-'
324
325
326
327

329
330
331

335

3::::7

340
341
342
343
344
345
346
347
34:::
34'3
::::5(1

351
352

354

5[1

51
C' .-,
,_I .:::.

C" .-,
,_I • .:,

54

59
60
61
62

64
65
66
67

6'~

70
71
72

74

76
.. I

7'3
:::0
::: 1
,-, .-,
,~,::"

::: :::
::: '3

20'3
210
211
212
21 ::::
214
215
216
217
21:::
21'3
220
221
222
22::::

224
225
226
227

22'~

230
231
2::::2
.-:' .:' .:.
.:.. '-' '-'
234
2::::5
236
.-, .-,...,
'::"'':'1'

23:::
23'~

240
241
242
243
244
245
246
247
24:::
24'3
250
251
.-, C' .-,
':::'._I~

25::::
254
255

f£
A
I

.",

Ii

------------- MODE SECTION -------------

ENTRY MODE TYPE DESCRIPTION
** Et4TF.:\'

355 1 TWO FOR ONE CHARACTER REPLACEMENT
356 2 TWO FOR ONE CHARACTER REPLACEMENT

1111111111 riPE DETAIL::; 1111111111

-- DON'T CARES -­
[1 - ASCII

-- ACCENT PRIORITIES --

-- TWO FOR ONE REPLACEMENTS

Et4TR'/ ** REPLACEt'1EtH

f:: = ::;.::;. = ::;.::;.

ONE FOR TWO REPLACEMENTS

45 = Don't c ·:tt-·",·

I

Appendix A AP-73

AP-74 Appendix A

1111111111111111
GEPI'lAt,~ TABLE

1111111111111111

E t~ T P'{ # 1
EtHP'{ #2

LENGTH OF COLLATING TABLE = 374
LENGTH OF MODE TABLE = 20

------------- COLLATING SECTION -------------

ENTRYICOLL·ICHAR I CHAR
Et~TP\' CODE

3 1 0 NUL
4
C'

'.'
6
7
:::

10
1 1
12
13
14
15
16
17
H:
19
20
21

24
'-,1::"
.:::.. ,_I

26
,-, ...,
.::.,'

29

34
.-, c:-
• .:' ,_I

36

3:::

40
41
42
43
44
45
46
47
4 :::
4';!
50

2

4

6
7
:::

10
1 1
12
13
14
15
16
17
H:
19
20
21
22

24

26
'''':'7 .:;.,

2:::
2'~

34
.-, c:­
. .:. ,_I

36
37
:::: :::
39
40
41
42
43
44
45
46
47
4:::

2

4
C'

'.'
6
7

1[1

1 1
12
13
14
15
16
17
1:::
19
20
21
22

24

26
.-, ..., .::.,'

2';"

32
.-, .-, . .:,.;,

34
35
::;:6
.-, ..., . .:.,

40
41
42
43
44
45
46
47

::;OH
::; T >::
ET:::
EOT
Et,~O

ACf:::
BEL
B ::;
HT
LF

FF
CP
::;0
::; I
DLE
DCl
D I·' ,~,

DC3
DC4
t~Af:::

::; \' t,~

ETB
CAt,~

EI'l
::; U B
E::;C
F::;

$

...•

+

I
::;EO 1I'10DE
PTP

o [1

1 ~)

2 0

4
C'

'.'
6
7
:::

10
1 1
1

,.,
.:::.

1 ':' '.'

14
15
16
17
1:::
19
20
21
22

24
25
26
27

29
30
31
32

34
.-, c-
.;, ,_I

36
,-, ...,
'':'1'

:~: :::

40
41
42
43
44
45
46
47

ENTRYICOLL·ICHAPICHAPISEOIMODE
ENTPY CODE # PTR

51 49 4::: 0 4::: 0
52
C' .-,
,_I.':'

54

C' -,
,_I ..

5:::
5'3
60
61
62
6:;:

64
65
66
67
6:::

70
71
..., .-,
f .:::..
..., .-,
" .;,.

74
-,C'
a' ,_I

76
77

82

::: :::
::: ';"

'32

';!4
95
'36
'37

50
51
C' .-,
,_I'::;'

C" .-,
,_I.:"

54
C' C' ,_1._'
56
C' -,
,_I ..

C" ,-, ,_I.:.

5'3
60
61
62

64
65
66

6';!
70
71
..., .-,
" a::. ..., .-,
" .; .
74
~ C'
... ,_I

76
77
7:::

::: :~:
:::4
,-, C'

':"-'

:::7

::: '3
90
';!1
';!2

94
'35
96

40::'.1
50
51
C' .-,
,_I'::'

C" .-,
,_I.':'

54
C' C' ,_1._,
56
C'-,
,_I (

59
6[1

61
62
6::;:

64
65
66
,. -,
t'I'

6:::

70
71
..., .-,
f .::.

74

76
77

79

:::1

C'

'.'
6
7

94
'35

2

4
C'

'.'
6
7

<

.-::'

I!I
A
B
C
D
E
F

H
I
J
f:::
L
1'1
t,~

o
P
o
F.:

4';!
50
51
52

54

59
60
61

64
65
71
..., .-,
" .:::..

74
-, C'
I' ,_I

79

:::6
:::7

95
96
'37

S 9:::
T 99
U 100
"", 1 02
~J 103
>:: 104
\' 105
Z 106

107
10:::
109
110
11 1

Ii

I

Appendix A AP-75

---------- COLLATING SECTION - CONT ----------

ENTRYICOLL'ICHAR I CHAR
** Et'~TR\' CODE

100
101
102
103
104
105
106
107
1 ~=1 :::
109
110
1 1 1
112
1 1 3
114
115
116
117
1 H:
11 '3
120
121
122
123
124
125
126
127
12 :::
129
130
1 3 1
132
133
134
135
136
137
1 :::: :::
1:::9
140
141
142
14::::
144
145
146

'37
9:::
99

100
101
102
103
104
105
106
107
10:::
109
110
11 1
112
113
114
1 15
116
11 7
1 H:
119
120
121
122
123
124
125
126
127
12:::
129
130
1 3 1
132
1 :~:3

134
135
136
137
1 :::: :::
139
140
141
142
143
144

'317

9'3
HW
101
102
1 ~71 :::
104
105
106
Hl7
1 ~=1 :::
109
110
1 1 1
112
1 1 3
114
115
116
117
1 U::
119
120
121
122
123
124
125
126
127
12:::
129
130
131
1 ::::2

133
134

.:to

to

oj

f

9
h

j
k

rfl

n

p
q
t-

::.

I,)

1 •• .1

z

"'.'

DEL
CLR
I'·.·'
E:L
I'· ... - E:
UL
1'· ... -1.1
E:L-U

135 I-E:-U
136
137
13:::
139
140
141
142
143

I
::;EO It'IODE
** PTR
112 0
113 0
12C1
121
123
124
129
130
131
132
137
1 '3:::
139
140
141
143
14:::
14'3
150
151
152
153
157
15 :::
159
160
161
162
163
164
165

o
C1
o
~=1
o
C1
o
o
[1

o
o
o
o
o
o
o
o

ENTRYICOLL'ICHARICHARISEOIMODE
** ENTRY CODE ** PTR

147 145 144 0 0
14::: 146 145 0 0
149 147 146 [1 0
150 14::: 147 0 0
151 149 14::: 0 0
152
153
154
155
156
157
158
15'3
160
161
162
163
164
165
166
167
16:::
16'3
170
171
172
173
174
175
176
177
17:::
17'3
1 :::0
1:::1
1:::2
1 ::: 3

184
1:::5
186
1 ::: 7
1:::8
1 :=: q

1'30
191
192
1'33
1'34

150
151
1 I:" .-,
... ,-''::'

153
154
155
156
157
1 5:::
159
16C1
161
162
163
164
165
166
167
16:::
169
170
171
172
173
174
175
176
177

17'3
1 :::0
1::: 1
182
1 ::: 3
1 :::4
1:::5
1 ::: 6
1 ::: 7
1:::8
1 :=:':;1
1'30
1 '3 1
1'32

149
150
151
152
153
154
15~,

156
157
15:::
159
160
161
162
163
164
165
166
167
16:::
16'3
17 C1
171
172
173
174
175
176
177
17:::
17'3
1 :::0
1:::1
1 ::: 2
183
1:::4
1 ::: 5
1:::6
1 ::: 7
1::: :::
1 :::9
1 '3C1
191

91
101

6'3
77
92

166
167
16:::
169
170

'33
171
172

70
1 1 '3
173

73
1 .-.. -. .::..::.

::: '3'
Pi 142

174
I~. 175
i=! 176
£ 177
::: 17:::
:;: 179

1 ::: 0
1:::1

I

AP-76 Appendix A

---------- COLLATING SECTION - CONT ----------

ENTRYICOLLo [CHAR [CHAR
** Et·1TF.:\' CODE

195
196
197
1 ':;' :::
1 ':;'9
200
201
202
203
2~:14

2[15
206

2~] :::
20'3
210
211
212
213
214
215
216
217
21:::
21':;'
220
221
222
22J
224
.-, .-, C"
.::..::. ,_I

226
227
22:::
229
230
231
232

234
2:~:5

2:~:6

2::::7
23:::
239
240
241
242

1 ':;' 3
1':;'4
1':;'5
196
197
1 ':;':::
199
20(1
2[11
202
2[13
2[14
2 ~~15
206
2 ~:17
20:::
209
210
211
212
213
214
215
216
217
21:::
219
22~:1

221
222
22::::

224
225
226
.-, .-,...,
.:::....::. ..
22:::
22'~
2-0
2
2 2
2 :~:

2 4
2 5
2 6
2 7
23:::

240

1 '::. .~,

1 ':;' 3
194
195
1 '::' r==;

197
19:=:
1':;'9
200
201
2[12
2 ~]::::
2~:14

205
206
207
2[1:::
209
210
211
212
213
214
215
216
217
21:::
21':;'
220
221
222
22::::
224
.-, .-, C"
.::...:::. ,_I

226
.-, .-. ..., .::..::.,

22:::
229
2::::~]

2 ;:: 1
2 2

2 4
2 5
2 6
2 7
2 :::

.:;

.:;

.:;

.:;

If
.:;

f::

I
::;EC! Ir'10DE
** PH:
11::: 0
127 0
146 0
156 0
116 0
1 .-, c­o::. ,_I

144
154
117
126
145
155
113
12:::
143
153

67
135

94
66

115
133
147
114

65
134

90
100

76
136
151

~]

o
o
o
o
o
[1

o
o
o
~:1

o
o
o
o
o
o

c-._'

7

ENTRY[COLLojCHARlCHARlSEQlMODE
** ENTRY CODE ** PTR

243 241 240 0 0
244 242 241 0 0
245 243 242 0 0
246
247
24:::
249
25[1
251
252
.-, t:" .-,
.::. ,_I . .:.

254
.-, C" C"

.::. '-"-'
256
.-, C"...,
.::. ,_I "

25:::

244
245
246
247
24:::
24':;'

251
.-, C" .-,
.::. '-''::'
.-, C' .-,
.::. ,_1.;'-

254
.-, C" C" .::. ,_1._'
256

24;~:

244
245
246
247
24:::
24':;'
25(1
251
.-, C" .-.
.::. ,-''::'

253
254
.-, II::" C" .::. ,_1._'

•

Appendix A AP-77

---------- UPPERCASE/LOWERCASE SECTION ----------

ENTRYIU/L ICHARICHARIUPPERILOWER
ENTRY CODE CASE CASE

25'3 1 160
260 2 161
261
262
263
264
265
266
267
26:::
26'3
270
271
.-, -, .-,
':::"i'::'

273
274
275
276
277
.-, -:0 ,-,

.::. " ':'
27'31
2:::0
2 ::: 1
2:::2

2:::6
2:::7
.-, I-' ,-,
'::;'Q':,

2:::'~

2'30
2'31

2'33
2'34

2'~:::

300
301
302
303
304
:;: ~:15

306

4
I::-

'-'
6
7

'3
10
1 1
12
13
14
15
16
17
1 :::
1'3
20
21
22
23
24
25
26
27

2'3
30
31

34
.-,~

. .:. ,_I

4(1
41
42
43
44
4 ~:;
46
47
4:::

162
16:~:

164
165
166
167
16:::
16'3
170
171
172
173
174
175
176
177
178
17'3
1 :::(1

1:::1
1 :::2
183
184
1 ::: 5
1 :::6
1 ::: 7
1 ::: :::
1 ::: '3
1 '30
1 '31
1 ,::, ':.,

1'33
1'34
1'35
1'36
1'317
198
19'3
2 ~](1
2(11
202
2(13
204
2~]5

206
207

A
j:

,~.

£

A
A

.::..

£

A
E

U
A
t

':.

o

,::..

£

Et~TR'I' IU/L ICHAR ICHAR IUF'PERr--O~'~EF:
ENTRY CODE CASE CASE

307 4'3 20::: A A:. -
308 50 20'3 I
30'3 51 210 0 0 0

310 52 211 I I ~

311 53 212 a A a
312 54 213 j:

313 55 214 0 0 0

314
315
316
317
31 :::
31'3
320
321
322

324
.-, .-. c::-
. .: • .::. ,_I

326
327
.-, .-, I-, . .:,.:::. ':'
329
3 3 ~:1
3 :31
.-, .-, .-,
..:, . .:'.:::.

334
335

337

340
341
342
343
344
345
346
347
:;:4:::
~:4'3

351
352
353

56

E:" ,-,
,_I C.

5';'

60
61
62
63
64
65
66
67

.., .-, .. .:::.

74

, ,
7:::

84

'30
'31
'32

'34
'35

215
216
217
21:::
21'3
220
221
.-:. '",,: .. -,
223
224
225
226
.-:. '"":'"7
':"':"1

22:::
22'3
230
231
,"':, ,,:. ,"':,
.:.. '-'':''

23::::
234
235
236
237
2:::::::

240
241
242
243
244
245
246
247
24:::
249
25(1
251
.-, C' .-,
.:::. ,_I'::'

.-, C" .-,

.:::. ,_I.':'

254
.-, C' Ie"
.::. ,_I._I

f::
i
f::

Ii

AP-78 Appendix A

------------- MODE SECTION -------------

._ .. _. __ .-
Et~TP'(t'10DE T\'PE DE::;CP I PT I Ot~
Et·~TP\'

.-, ~ C"

.;, ,_I ,_I 1 TL,JO FOP Ot·~E CHAf:::ACTEP
J56 2 TL,JO FOP Ot~E CHAPACTEf:::
]~5 7 :::: TL,JO FOP Ot·~E CHAPACTEP
35::: 4 TL,JO FOP Ot·~E CHAPACTEP
359 c-._' TL'JO FOP Ot·~E CHAPACTEP
360 6 TL,JO FOP Ot·~E CHAPACTEf:::
361 -::' TL,JO FOP Ot~E CHAPACTEP ,
362 ::: TL,JO FOP Ot-~E CHAf:::ACTEf:::
]63 '3 TL,JO FOP Ot~E CHAPACTEf:::
364 10 TL,JO FOP Ot·~E CHAPACTEP
365 1 1 TL,JO FOP Ot·~E CHAPACTEP
366 12 TL,JO FOP Ot~E CHAPACTEP
'~:67 1 .:' ._' TL,JO FOP Ot·~E CHAPACTEP
:::6::: 14 TL,JO FOP Ot·~E CHAPACTEP

I I I I I I I I I I T'(PE

-- DON'T CAPES --

-- ACCENT PPIOPITIES

-- TWO FOP ONE PEPLACEMENTS ----
Et~ T f:::'(# PEPLACEt'1EtH

c-._'
7

1 1
1~:

R = AE = Ao:
00:·
Uo:·

ONE FOP TWO PEPLACEMENTS

PEPLACEt'1EtH
PEPLACEt'1EtH
PEPLACEt'1EtH
PEPLACEt'1EtH
PEPLACEt'1EtH
PEPLACEt'1EtH
PEPLACEt'1EtH
PEPLACEt'1EtH
PEPLACEt'1EtH
PEPLACEt'1EtH
PEPLACEt'1EtH
PEPLACEt'1EtH
PEPLACEt'1EtH
PEPLACEt'1EtH

DETA I L::;

204
206
207
216
21:::
21'3
'"':, .-, .-,

I I I I I I

•

I I I I

Appendix A AP-79

11111111111111111
::;F'At~ I ::;H TABLE

11111111111111111

EtHP'{ # 1
EtHP\' #2

LENGTH OF COLLATING TABLE = 374
LENGTH OF MODE TABLE = 20

------------- COLLATING SECTION -------------

ENTPYICOLL·ICHAP I CHAP
Et'~TP\' CODE

3 1 0 NUL
4

6
7

10
1 1
1 .-, .:::.

1 ·c,
'-'

14
15
16
17
H:
1 '3
20
21
.-:' .-,
.:....::...

24
.-, C"

.:::. '-'
26
.-, -:0 .::. {

34

36

40
41
42
43
44
45
46
47
4 :::

49
:1[1

2

4
t:'

'-'
6
7
:::
9

10
1 1
12
13
14
15
16
17
H:
1 '3
20
21
.-, .-,
0::..::..

24
.-, c:-
o:::. ,_I

26
27
.-, ,-,
.:::.0

32

34
.-, II::'
• .:. ,_I

3'3
40
41
42
43
44
45
46
47
4:::

2
::;:
4
t:'

'-'
6
7
:::
'3

10
1 1
12
13
14
15
16
17
t::::
1'3
20
21
22
23
24

26
27

2'3
30
31
32

34
.-, c-
• .:. ,_I

.:. '7
,_, I

40
41
42
43
44
45
46
47

::;OH
::; T ::-::
ET::·::
EOT
Et·~O

Aef::.
BEL
B::;
HT
LF
',/T

FF
CP
::;0
:::;1

DLE
DCl
DC2
DC:~:

DC4
t'~RK
::; '{ t·~

ETB
CAt~

Et'l
::;UB
E::;C
F::;

F.,,:' " -'

...•

+

I
::;EO It'10DE
F'TF.:

2

4
t:'

'-'
6
7
:::
'3

1(1

1 1
12
13
14
15
16
17
t::::
1'3
20
21
22

24
.-, C"

.::. '-'
26
27

2'3
30
31

34

36

3:::

40
41
42
4~:

44
45
46
47

ENTPYICOLL·ICHAPICHAPISEOIMODE
ENTPY CODE # F'TP

51 4'3 48 0 48 0
52
C" .-,
,_I.':'

54

59
60
61
62

64
65
66
67

69
70
71
-=" .-,
" .::..
-:0 .-,:.
74

77

79
:::0
::: 1

:::7
::: :::

'30
'31

'34
95
'36
97
'3 :::

50
51
C' .-,
'-''::''
C" .-,
,_I.':'

54
t:'t:'
,_I ,_I

56

5'31
60
61
62
63
64
65
66
67

6'3
7[1

71
-:0 .-,

" .::., .-,
" . .:.

74

76
77

:::2
:::3

92

95
'36

4 q

50
51
C" ,-,
,_I'::"

C" .-,
,_I.':'

54

59
60
61
62

64
65
66
67

70
71
-, .-, .. .::..
-,. ,-,:.
74

76

:::0
81

84
I-' c­,:, ,_I

'315

2

4
t:' ._'

6

:::

.(

=
>
?
l!i
A
B
C
D
E
F

H
I
.J
f::.
L
t'l
t~

o
F'
o
F.'

T
U
'",1

'{

z

4'3
50
51
52
C' .-,
,_I.':'

54

56

59
60
61
62
63
64
65

67
69
7[1

71
""":'.-,
f .:::.
""':" .-,
" . .: .
74

76
77
79
:::0

::: :~:

::: '3

'~2

100
101
102

I

AP-80 Appendix A

Et~TF:'(

*' 9';'

100
101
1 (12
103
104
105
106
107
10:::
10'3
110
1 1 1
112
113
114
115
116
117
11:::
11 '3
120
121
122
123
124
125
126
127
12:::
1·:' q

130
1 3 1
1 :~: 2
133
134
135
136
137
1~: :::
13'3
140
141
142
143
144
145
146

'~ :::
9'3

1 ~~10
101
102
103
104
105
106
107
11::1 :::
1 ~~19
1 H1
1 1 1
112
113
114
115
116
117
11:::
11 '3
120
121
122
123
124
125
126
127
12:::
12'3
1 :~: 0
1 3 1

132
133
134
1 :~: 5
136
137
1 3 :::

13'3
140
141
142
143
144

---------- COllATING SECTION - CONT ----------

,~",
.·1

'3 :::
99

100
H11
H12
1 ~~1 3
104
1 ~~15
1 (16
H17
10:::
1 ~~1 '3
1 H1
1 11
112
113
114
115
116
11 7
11 :::
119
12~J

121
122
123
124
125
126
127
12:::
129
130
1 3 1
132
133
134
135
1 :~: 6
137
1 3 :::

13'3
140
141
142
1 4 :~:

.:iI.

to

oj

f

J
k

ffI

n

t

1 •• .1

z

"'.'

DEL
ClF:
1 ',/
Bl
1',/_ B
Ul
1 ',/ -u
Bl-U
I-B-U

104
1 ~~15
106
108
109
110
1 1 1
112
113
114
115
116
1 H:
119
121
122
123
124
125
126
127
12:::
12'3
130
1 3 1
132
133
134
135
136

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

t'l 0 DEE t~ T F: \'
PTP *'

o
o
o
7

14('
14:::
149
150
151
152
153
154
155
156
157
15:::
159
160
161
162
163
164
165
166
167
16 :::
16'3
170
171
172
173
174
175
176
177
17:::
179
1 ::: 0
1 ::: 1
1 ::: 2
1 ::: 3
1 ::: 4
1 ::: 5
1 ::: 6
1 ::: 7
1 ::: :::
1 ::: '3
190
1 '3 1 .
192
193
194

147
148
149
150
151
152
153
154
155
156
157
15:::
159
160
161
162
163
164
165
166
167
16 :::
169
170
171
172
173
174
175
176
177
17:::
17'3
1 :::0
1::: 1
1 ::: 2
1 ::: 3

1:::4
1:::5
1 :::6
1 :::(
1 ::: :::
1 ::: '3
190
191
1 q .:'

145
146
147
148
14'3
150
151
152
153
154
155
156
157
15:::
159
160
161
162
163
164
165
166
167
16:::
169
170
171
172
173
174
175
176
177
17:::
17'3
1 ::: ~~1

H:1
1 ::: 2
1 ::: 3
1 :::4
185
1 ::: 6
1 ::: 7
1::: :::
1 ::: '3
1 '30
191

.::,.

£

65
74

1 .-,.,. .; ...
1 3 :::

139
140
141

70

142
143

65
104
144

106
::: 1

120
145
146
147
14:::
149
150
151
152

t'10DE
PH:

Iii

I

Appendix A AP-81

---------- COLLATING SECTION - CONT ----------

ENTRYICOLL. [CHAR I
** Et'~TR\' CODE

195 1'33 192
196 1'34 1'33
1'37 1'35 1'34
19::: 1'36 195
199
200
201
202
203
204
205
206
2 ~=17
20:::
209
210
211
212
21 :~:

214
21 :i
216
217
21:::
219
220
221
.-:,.-:"-:.
.:....::...:..

22::::
224
.-, .-, &::'
~.:::. ,_I

226
.-:,.-:'-::'
':"'':'''1

22:::
229
2::::0
231
2::::2
.",:, .:' .:.
.:... '-' '-'

234
.-, .-, t=-o::. .,:. ,_I

236
.-, .-,-:0
'::"':'1'

23:::

240
241
242

197
1 '3 :::
1 '3 '3
200
201
2 ~=12
203
204

206
207
20:::
209
210
211
212
213
214
215
216
217
21:::
21 '3
220
221
222
.-:. ,"':, .:.
.:....:.. '-'

224
225
226
.-. '-,-:0 .:::..:::.,

22:::
229
2-0
2
2 2
2 3
2 4
2 5
2 6

.-:' .: .. :'

.:.. '-' '-'

239
240

196
1 '37
1 '3:::
199
200
201
202
203
204

206
207
20:::
209
210
211
212
213
214
215
216
217
21:::
219
220
221
222
223
224
.-, .-, I:"
.:::..:::. ,_I

226
'"') '''') 7
'::"'::"1

22:::
22'3
2 0
2 1
2 2
2 3
2 4
2 5
2 6
2 7
.-, :::

2 9

CHAR

.:l,

.:l,

t£
.:l,

j ::;EI) Ir'10DE
** PH:
104 0
10'3
121
127
104
1 [19

121
127
104
10'3
121
127
104
109
121
127

65
1 1 3

65
104
1 1 3
121
104

65
1 1 3

::: :::
70

1 1 ::::
125

o
~=1

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

ENTRYICOLL'jCHARICHARjSEQIMODE
** ENTRY CODE ** PTR

243 241 240 0 0
244 242 241 0 0
245 243 242 0 0
246
247
24:::
249
250
251
.-, c:- .-,
.::. ,_I'::'

25:;:
254
.-, C' I:"
.::. ,_I ,_I

256

25:::

244
245
246
247
24:::
24'3

251
252
.-, C' .-,
.::. ,_I.':'

254
.-, I:" It:'
.::. ,_I ,_I

256

243
244
245
246
247
24:::
24'3
250
251
.-, C" .-,
.::. ,_I':':'

253
254
.-, C' C"
.:::. ,_I ,_I

I

AP-82 Appendix A

---------- UPPERCASE/LOWERCASE SECTION ----------

ENTRYIU/L ICHARICHARIUPPERILOWER
ENTRY CODE CASE CASE

25'3 1 160
260 2 161 A A a
261 3 162 i i
262
26::::

264
265
266
267
26:::
26'3
27~]

271
272
273
274

276
'''')77
':"1 I

27';'
2 :::0
2 ::: 1
2:::2
2::::;:

2:::6
2:::7
2::::::
2:::9
29(1
291
2'32

294
2'35

297
29:::
2'~':;'

300
3(11
3(12
3(13
.::: (14
::::05
3 ~~16

4
c-
'-'
6
7
:::
'3

10
1 1

12
13
14
15
16
17
1:::
19
20
21
22

24

,-, ...,
.::0 ..

32
:::::;:
34
.-, c-
. .:. ' ... '

3'3
4(1
41
42
43
44
45
46
47
4:::

163
164
165
166
167
16:::
16'3
17(1
1 71
172
17::::
174
175
176
177
17:::
17'3
1 :::(1
1:::1
1 :::2
1:::3
1 :::4

1:::6
1 ::: 7
1::::::
1 :::9
1 '30
191
192
193
194
1 '35
196
1'3<7
19:::
199
200
201
202
2(13
2(14

2(16
2(17

·a

I~.

£

·a

·a

u

·a
E'

A
A

,::,.

£

A
E
o
U
A
E
o
U
A
E
o
U
H
E
I~I
CI

·a
·a

.::..

£

·a

I_~

·a

o

·a

ENTRYIU/L ICHARICHARIUP~ERILOWER
ENTRY CODE CASE CASE

3(17 49 20::: A A a
3(1::: 5(1 2(19 I
3(19 51 21(1 0 0 0

310 52 211 ((~

311 53 212 a A a
312 54 213 I
313 55 214 0 0 0

314 56 215 ~ (~

315 57 216 H H a
316 5::: 217 I
317 59 21::: b b b
.:: 1 :::

1 '3
2(1
21
.-.. -,
.:::..::.

24
.-, t:"
.::. ,_I

.326
327
32:::
32'3
:::3 (1

31

:::::;:
34
.-, c=
. .:. ,_I

'_ 36
.:,.:' -::' ,_, ,_, I

339
34(1
341
342
343
344
345
346
347
34:::
34'3
35[1
351
.-, I:" .-•
. .: 1.::,

::::53

354

6(1
61
62

64
65
66
67
68
6'31
70
71
72
73
74
75
76
... I'

:::2
::: ::::
:::4

:::6

93
'34
';'5

219
22(1
221
222
223
224
225
226
.-, .-,...,
.::..::..
.-, .-, I-' .:::. .::,,=.
22':;'
23~~1

231

."'; .. :' .:'

.:.. '-' '-'
234
235
2::::6
'-:":'7 .:.. ,,_, I

238
2::::'3
24(1
241
242
243
244
245
246
247
24:::
24'3

251
.-, C" .-,
.:::. ,_I.::,

.-, C' .-,

.::. ,_I.,:.

254
.-, C' C' .::..J ,_I

(I

E:
o
E:
I
f::

•

------------- MODE SECTION -------------

Et~ TP',' t'10DE T'/PE DE::;CP I PT I Ot·~

Et'~TP'r'
.-, c:- C"
.;. ,_I ,_I 1 Ot'~E FOP T~'JO CHAF.:ACTEP PEPLACH1EtH
:~:56 2 Ot'~E FOP T~'JO CHAPACTEP PEPLACH1EtH
:~:57 .:.

'.' ;0; TEPt'l I t'~ATOP ~'JOF.:D * 35::: 4 Ot'~E FOP T~,JO CHAPACTEP PEPLACH1EtH
::::5'~ ~

'.' Ot'~E FOP T~'JO CHAF.:ACTEP PEPLACH1EtH
360 6 ;0; TEPt'llt'~ATOP ~,JOPD ;0;

361 -::' Ot'~E FOP T~'JO CHAF.:ACTEP PEPLACH1EtH ,
362 ::: Ot'~E FOP T~,JO CHAPACTEP PEPLACEt'lEtH
363 "::I * TEPt1 I t'~ATOP ~'JOPD ;0;

364 10 Ot·jE FOP T~'JO CHAPACTEf': f':EPLACEt'lEtH
365 1 1 Ot'~E FOP T~'JO CHAPACTEf': PEPLACEt'lEtH
366 12 '* TEPM I t·jATOF.: ~,JOPD *'
367 1 .:' '.' T~,JO FOP Ot'~E CHAPACTEP PEPLACEt'lEtH
36::: 14 T~,JO FOP Ot·jE CHAPACTEP PEF'LACEt'lEtH

1111111111 T'r'F'E DETAIL::; 1111111111

-- DON'T CAPES --

-- ACCENT F'PIOPITIES

-- TWO FOP ONE PEF'LACEMENTS

EtjTP'/ # PEPLACEt'lEtH

1 ':, '.' f:: = ::;.::;. = ::;.::;. 222

ONE FOP TWO PEF'LACEMENTS

Et~TP'" #

2
4
~

'.'
7

10
1 1

PEPLACEMENT AND SEQUENCE NUMBEP

CH = 6:::
Ch = 6:::
LL

...,. ,-,
I' ':.

L 1 = -::' ':. , '.'

c H 1 07
c h = 1 07
1 L 1 1 -::' ,
1 1 1 1 -::' ,

Ii

Appendix A AP-83

AP-84 Appendix A

11111111111111111
:::~'~ED I SH TABLE

11111111111111111

EtHf;:\' # 1
Et~H:\' #2

LENGTH OF COLLATING TABLE = 374
LENGTH OF MODE TABLE = 20

------------- COLLATING SECTION -------------

Et~Tf;:',.ICOLL ° I CHAP 1 CHAf;:
EtHP'r'icODE

3 1 0 NUL
4
c::-
'-'
6
7

10
11
12
13
14

22
23
24
.-, c:.­
.::. '.'
26
'-:'"7 .0. ,

2'3
::::0
31

34

36
.-, ...,
. .:.,'

39
40
41
42
43
44
45
46
47
4:::
4'3
5 ~:1

2

4
c::-
'-'
6
7
:::
9

H1
1 1
12
13
14
15
16
17
18
19
20
21
22

24
25
26
27

2'::t

32

36
.-, ...,
. .:' ..

40
41
42
43
44
45
46
47
4:::

2

4
c::-
'-'
6
7
:::

10
1 1
1

,-,
.::.

1 ':' '-'

14
15
16
17
18
19
2~J

21
22

24
25
26

2:::

31

34
.-, c-
. .:. '.'
36

:;::::

4[1

41
42
43
44
45
46
47

:::OH
ST>::
ET>::
EOT
E t,~ 0

ACk
BEL
B:::

HT
LF
","T
FF
CP
:::0
::: I
DLE
DCl
D I-~'
D 1-: :::

DC4
t~AK

S \' t,~
ETB
CAt,~

Et'l
:::UB
E::::C
F:::

$
~ .. ,

+

1

:::E01 t'10DE
PH:

2

4
c::-
'-'
6
7
:::
'3

10
1 1

12
13
14
15
16
17
18
19
20
21
22
23
24
.-, c:­
o::. '.'

26
27
.• , ,.,
.:::.c·

32

34
.-, c:-
.,;:. '.'

3:::
39
40
41
42
43
44
45
46
47

ENTPYICOLLolCHAP1CHAPjSE01MODE
ENTPY CODE # PTP

51 49 48 0 48 0
II:' .-,
,.1'::"

C' .-,
,.1.':,

54
c::-c::-
,.1 .• '

56
C" ...,

'.' "

5:::

62

64
65
66
67

69
70
71
"'7 .• , .. .::.
7':'
I '.'

74
...,c­
.. '.'
76

:::0
81

::::;:

:::5

'32

94
'35
96

'3 :::

50
31
52
C" .• , '.' .;,

54
c::-c::-'.".'
56
57

5';"

60
61
62
6:3
64
65
66
67

70
71
-;0 .-,

" .::.
-;0 ,-,

" . .: .
74
...,c::­
.. '.'

77

79
:::0
::: 1

:::5

::: :::

';"2

95
96

49

C" .-,

'.' '.:'
54
c::-c-
,.1 .• '

56

60
61
62
6:3
64
65
66
67

F'~ .' .'
70
71
72
7:3
74

77

7'3

82

:::'3

';"2

'35

2
::::
4
c::-
'-'
6
7
:::

....

=
.>
.-:;.

III
A
B
C
D
E
F

H
I
J
k
L
t"
t,~

o
P
o
P

\'
z

4 q

50
51
C' ,-,
'.'0::..
C" .-,
,.'.':'

54

56

59
60
61
62

64
65
66
67
6:::

70
71
72
73
74
...,c::­
.. '.'
76
77
..., ,.,
" .:.

:::6

:::9
'30
91

1 1 1

112
113
114
115

•

Et4TF:'/

99
100
101
102
10J
104
1 ~:15
106
107
10:::
10':;'
110
1 1 1
112
11 J
114
115
116
1 1 7
1 H:
1 1 ':;'

120
121
122
123
124
125
126
127
12 :::
12':;'
1JO
1 J 1
1 :~: 2
1::::
1::4
1~: 5
1::6
1::7
1 J :::
1::9
140
141
142
1 4~:
144
145
146

100
101
102
1 ~:1 ::
104
105
106
107
10:::
10':;'
1 le1
1 1 1
112
1 1 3
114
115
116
11 7
1 H:
119
120
121
122
12J
124
125
126
127
12:::
1 ":.'q

1 :~:O
1 :: 1
1::2
l::J
1::4
1::5
lJ6
1 ~~: 7
13:::
139
140
141
142
143
144

---------- COllATING SECTION - CONT ----------

'37

100
101
1 [12
103
104
105
106
107
108
109
1 le1
11 1
112
113
114
115
116
117
1 H:
119
12 ~]
121
122
123
124
125
126
127
128
1:'''=<
130
131
132
1 :~:3
lJ4
135
136
137
13:::
139
140
141
142
143

"01

to

d
E'

f
I;)

h

j
k

m
n
Ij

p
q
r"
::;.

I,)

1 •• .1

z

,",'

DEL
ClF:
I I,,.'

Bl
I',,.'-B

Ul
I',,.'-U

Bl-U
I-B-U

117
1 H:
119
120
122
123
124
125
126
127
12 :::
1 ":.'q

130
Dl
132
133
134
135
136
137
13:::
13':;'
140
141
142
143
169
170
171
172

~:1

o
o
o
o
~:1

~:1

o
o
o
o
o
o
~:1

o
[1

o

t'10DE Et"4TF:','
F'TF.: #

147
148
149
150
151
152

154
155
156
157
15:::
159
160
161
162
163
164
165
166
167
16 :::
169
170
1 71
172
17J
174
175
176
177
178
179
180
1:::1
1 ::: 2
1 ::: J
184
185
1 ::: 6
1 ::: 7
1 ::: :::
1 ::: ':;'
190
1 ':;' 1
1 q":.,

193
194

147
14 :::
14':;'
15[1
151
152
153
154
155
156
157
158
15':;'
160
161
162
16::
164
165
166
167
16 :::
169
170
171
172
1 7 :~:

174
175
176
177
17:::
17':;'
1 ::: 0
1 ::: 1
1:::2
1:::3
1 ::: 4
1 ::: 5
1 ::: 6
1 ::: 7
1 ::: :::
1::: ':;'
1 9~:1
191
1 q":.,

145
146
147
14:::
149
1 5~:1
151
152
153
154
155
156
157
15:::
15':;'
160
161
162
163
164
165
166
167
16 :::
169
ln1
171
172
173
174
175
176
177
17:::
17':;'
1 :::[1
1::: 1
1:::2
1:::3
184
1 ::: 5
1:::6
187
1 ::: :::
1 :::':;'
190
1 ':;'1

.;:..

£

Appendix A AP-85

o
[1

[1

o
o
~]

~]

o
[1

o
o
o
o
[1

o
o

94
102
1 ~:1 3
10':;'

'35
1 O~]
104
173
174
175
176
177
lell
105
178
179

97
15~:1

1:::0
98

151
108
164
1:::1
1 :::2
1 ::: 3
1 :::4
1 ::: 5
1 ::: 6
1 ::: 7
1 ::: :::

t'10DE
F'TF.:

•

AP-86 Appendix A

---------- COLLATING SECTION - CONT ----------

ENTRYICOLLo ICHAR I
Et~TF.:'i' CODE

1'35 1'33 1'32
1':~6 1'34 1'33
1'37 1'35 1'34
1'3::: 1'36 1'35
1'3'3 1'37 1'36
2~=n) 1'3::: 1'37
201 1'3'3 1'3:::
202
203
204

206
207
20:::
20'3
210
211
212
213
214
215
216
217
21:::
21 '3
220
221

223
224
225
226
.-:,.-:.",::,
":"'::"1

22:::
22':;'

230
2:::1

232
,,") .: .. :'
.::... '-' '-'

234
235
236
237
23:::
2::: '3
240
241
242

200
201
202
203
204
2[15
206
207
20:::
20'3
210
211
212
2 1 :~:
214
215
216
217
21:::
21'3
220
221

223
224
225
226
'-:"-:'"7
':"':"1

22:::
22':;'

230
2~: 1
232

234
235
236
2:~:7

::::'3
40

1 '3'3
200
201
2[12
203
204
2[15
206
207
2[1:::
20'3
210
211
212
21:::
214
215
216
217
21:::
21 '3
22[1
221
222
223
224
225
226
.-, .-,-,
.:::...::..,'

22'3
2:::~=1

2 1
2 2

2 4
2 5
2 6
2 7
2 :::
2 9

CHAR

a.

.:t,

u
.:t,

I~i

A

.:t,

I:' .'

I
::;EO It'10DE
PTR
14::: 0
153 0
161 0
167 [1

146 0
122 0
15'3 0
165
147
152
160
166
14'3
154
162
16:::

'33
157
107

'32
145
155
163
144

'36
156
106
lH1

'3 '3
15:::
136

o
~=1

o
o
[1
o
o
o
o
o
o
o
o
o
o
o
o

Et'~TR'{ ICOLLolCHAR ICHAR I::;EO I t'10DE
ENTRY CODE # PTR

243 241 240 0 0
244 242 241 0 0
245 243 242 0 0
246 244 243 0 0
247
24:::
24'3
25[1
251
.-, I:" .-,
.:::. ,_I'::'

2S3
54

56

245
246
247
24:::
24'3
25[1
251
.-, I:" .-,
.:::. '-'':::''

253
254
255
256

244
245
246
247
24:::
24'3
25(1
251
.-, c:- .-,
.:::. ,_'':::'
.-. c:- .-, .:::.. ,_,.;"

254
.-, c:- c­o::. ,_I ,_I

Ii

Appendix A AP-87

---------- UPPERCASE/LOWERCASE SECTION ----------

ENTRYIU;L ICHARICHARIUPPERILOWER
ENTRY CODE CASE CASE

25'3 1 16~]

260 2 161 A A a
261 :::: 162 t t
262
263
264
265
266
267
26:::
269
270
271
.-,..., .-,
.::;. .. .::;.
.-,..., .-,
.::. f·':'

274
275
276
277
'-:'7':' .:.. I ,_,

279
2:::0
2 ::: 1
2:::2

2:::5

2:::7
2 ::: :::

2'90
291
2'32
29:::
2'34
295
296
297
29:::
2'~'3

:::00
:::01
:::02
:::0::::
:::04
305
:::06

4
.,.
"_I

6
7
:::
9

10
1 1
12
1 ::::
14
15
16
17
H:
1 '3
20
21
.-, .-,
.:::..::.

23
24
.-, t::"
.:::.,.J

26

34
.-, c::-
. .:' ,_I

37
3:::
3'3
40
41
42
4:::
44
45
46
47
4:::

16::::
164
165
166
167
16:::
169
170
171
172
17::::
174
175
176
177
17:::
179
1:::0
1 ::: 1
1 :::2
1 :::::::
1 :::4
1:::5
1 ::: 6
H:7
1 ::: :::
1:::9
190
191
1 q"~,

1 '3::::
194
1 '35
1%
197
1 '3 :::
1-=l-=l

2~]0

2[11
202
20::::

04
05
06
07

(

.:to

.::..

£

.:to

IJ

.:to

E'

I_~

.:to

(

A
A

(.

£

g,

o
(

.:to

a

£

.:to

.:to

.:to

ENTRYIU/L ICHARICHARIUPPERILOWER
ENTRY CODE CASE CASE

::::07
30:::
::::09
310
.- 1 1

12
1::::
14
15
16

_17
31:::
319
320
321
322

324
325
326
.-, .-,-:"
. .: • .:::, f

:;:2'3
3::::0
3::::1

.-, .-, .-,

. .:, . .: .. .:'

:;::;:5

3::::9
340
341
342
343
344
:;:45
346
347
::::4:::
34'3
350
351
.-, C" .-,
. .:, ,_I':::'

.-, c:- .-,

. .:, ,_I . .:.

354

t::" .-.
,_I':::'

C' .-,
,_I.':'

54
.,..,. ,_1._'

56
.,."" ,_I,'

59
60
61
62
6:3
64
65
66

69
70
71
72

74
75
76
77

2

-' 4
-, .,.
':-0,_'

:::6
:37

94
95

20:::
209
21[1
211
212
213
214
215
216
217
21:::
219
220
221
222
22:~:

224
225
226
.-, .-,-:'1
.:::...:::..,'

22';"
2 3 ~~1
231

."'; .. :' .:.

.:.. '-' '-'
234
2:~:5

2:36

'"'; .. :,.:. .;.. ,_, I_'

240
241
242
243
244
245
246
247
24:::
249
250
251
252
25:3
254
.-, co C'
.:::.. ,_I ,_I

A

.:to

A
I

t£
A
t

.:to

I

AP-88 Appendix A

Et·~TF.:\'

**
.-, C" c­
. .:' ,_, ,_I

356

------------- MODE SECTION -------------

t'10DE
Et'~TI<:\'

2
TWO FOF.: ONE CHAF.:ACTEF.: F.:EPLACEMENT
TWO FOF.: ONE CHAF.:ACTEF.: F.:EPLACEMENT

1111111111 T\'PE DETAILS 1111111111

DOt·~ .. ' T CAI<:E~:; --

ACCENT PF.:IOF.:ITIES

-- HJO FOI<: Ot'~E F.:EPLACEr'lEtH_~:.;;...; __

Et·~TF.:\' ** F.:EPLACEt'lEtH ASCII

I:: = ::.::. = ::.::. 222

-- ONE FOF.: TWO F.:EPLACEMENTS

Your Comments. Please ...

Your comments assist us in improving the usefulness of our publications; they are an important
part of the inputs used in preparing updates to the publications.

In order to write this manual, we made certain assumptions about your computer background.
By completing and returning the comments card on the following page you can assist us in
adjusting our assumptions and improving our manuals.

Feel free to mark more than one reply to a question and to make any additional comments.

Please do not use this form for questions about technical applications of your system or re­
quests for additional publications. Instead, direct those inquiries or requests to your nearest HP
Sales and Service Office.

If the comments card is missing, please address your comments to:

HEWLETT-PACKARD COMPANY
Desktop Computer Division
3404 East Harmony Road
Fort Collins, Colorado 80525 U.S.A.

Attn. Customer Documentation
Dept. 4231

All comments and suggestions become the property of Hewlett-Packard.

Ii

Scan Copyright ©
The Museum of HP Calculators

www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

