HP-41CX

OWNER’S MANUAL

VOLUME 2: OPERATION IN DETAIL

Summary of Conventions Used in This Manual

Hotstion Description

(Example) P

STO Black keybox. Primary keyboard function.

Gold keybox. Shifted keyboard function. Press and release the shift key ([ll) first. These
can be on the Normal or Alpha keyboard.

Blue keybox. Nonkeyboard function. For Alpha execution: use followed by the Alpha
name spelled out on the Alpha keyboard. For User-key execution: assign the function to
the User keyboard.

ABC Blue letters. Alpha characters.

123 Gold digits or characters. Shifted Alpha characters.

Black letters in keyboxes. These are special functions, not Alpha characters, and are ac-

B tive only in special circumstances. If it is a shifted function, it is preceded by [}

]

parameter The type of parameter required for a function.

For a full description, refer to “How This Manual Represents Keystrokes,” page 16.

(D e

HP-41CX
Owner’s Manual

Volume 2

Operation in Detail

August 1983

00041-90492

Printed in Singapore © Hewlett-Packard Company 1983

Introducing Volume 2

This is the second volume of the two-volume HP-41CX Owner’s Manual. Volume 1, Basic Operation, is
an extensive introduction to most aspects of the HP-41CX. This second volume, Operation in Detail, is
an advanced, detailed examination of all aspects of the HP-41CX. Together, these two volumes form
one manual, so the page numbers in this volume continue sequentially from where those in volume 1
left off. The numbers of the sections and the parts also continue in sequence from volume 1.

“How To Use This Manual” on page 9 (volume 1) explains the scheme of this handbook and recom-
mends places to start reading. Look there for a brief overview of the two volumes. This volume (volume
2) emphasizes completeness of information and reference information. All the appendices are in this
volume, as is an index to all the functions (inside the back cover) and a comprehensive summary of all
the functions in the Function Tables (the blue-edged pages in front of the Subject Index). If you are
already familiar with the HP-41, remember to check appendix I, “A Comparison With the
HP-41C/CV.”

147

Volume 2: Operation in Detail

Contents

Part II: Fundamentals in Detail

Section 9: The Keyboard and Display 154
« The Toggle Keys * The Keyboards
* Keying In Numbers and Characters « Status Annunciators
* Numeric Display Format « Standard Displays and Messages
« Display Scrolling « Specifying Parameters * Redefining the User Keyboard
« Function Preview and Null « The Catalogs « Error Messages

Section 10: The Automatic Memory Stack 174
« Introduction « RPN Calculations « The LAST X Register
* Other Stack Operations

Section 11: Numeric Functions 184
+ Introduction * One-Number Functions * Two-Number Functions « Statistics

Part III: Memory in Detail

Section 12: Main Memory 194
» Organization « Program Memory * Alarm Memory * User Keyboard Memory
» Data Register Memory - Data Register Operations

Section 13: Extended Memory 204
« Introduction ¢ Files in Extended Memory
* Program File Operations * Creating Data and Text Files
* Pointers in Data and Text Files « Data File Operations « Text File Operations

Section 14: The Text Editor 228
* Introduction « The Text Editor Display Text Editor Operations
= Using in a Program

148

Contents

Part IV: Time Functions in Detail

Section 15: Clock and Date Functions 236
« Setting and Adjusting the Clock Time - Displaying the Clock
« Manipulating Time Values « Setting and Manipulating the Date
« Calculations With Dates - Limits and Errors

Section 16: Alarm Funetions 246
« Types of Alarms: Message, Control, Conditional « Setting Alarms
« Activation and Acknowledgment of Message Alarms
« The Alarm Catalog - Clearing Alarms From Memory » Past-Due Alarms
« Application Programs for Setting Alarms

Section 17: Stopwatch Operation 266
« The Stopwatch Keyboard - General Stopwatch Operation With Splits
= Programmable Stopwatch Functions « The Stopwatch as a Countdown Timer
« Printing Stored Splits - Example—A Stopwatch Program

Part V: Programming in Detail

Section 18: Programming Basics 280
= Loading a Program « Executing a Program Program Lines
« Nonprogrammable Operations « Positioning Within Program Memory
« Editing a Program - Clearing Programs

Section 19: Flags e 288
« Introduction - Types of Flags - Summary of Flag Status
« Flags and the X-Register

Section 20: Branching e 298
« Introduction « Branching to a Label - Calling a Subroutine
» Conditional Functions = Looping

Section 21: Alpha and Interactive Operations 308
« Introduction « The Alpha and X-Registers « Manipulating Alpha Strings
= Requesting Input « Responding to a Pressed Key - Producing Output

Section 22: Programs for Keeping Time Records 320
« Introduction « Program Examples « Using the Programs
« Files Used To Keep Time Records - Explanation of TR « Explanation of Z

149

150

Contents
Appendices
Appendix A: Error and Status Messages 354
Appendix B: More About Past-Due Alarms 360
Appendix C: Null Characters00 i . 366
Appendix D: Printer Operation 368
Appendix E: Extended Memory Modules 370
Appendix F: Time Specifications 374
Appendix G: Battery, Warranty, and Service Information 380
Appendix H: Peripherals, Extensions, and HP-IL. 392
Appendix I: A Comparison With the HP-41C/CV 398
Appendix J: Bar Code for Programs 404
Function Tables 414
Subject Index 440
Function Index Inside Back Cover
List of
Diagrams and Tables
Diagrams
The Alpha Keyboard 157
Special Keys for Specifying Parameters 165
The User Keyboard 167
Main Memory Configurations 195
The Text Editor Keyboard 231
Alarm Flowchart 249
The Active Keys on the Alarm Catalog Keyboard 256
The Active Keys on the Stopwatch Keyboard 269
Keycodes for [GETKEY] and [GETKEYX]ottt 316
Legal Configurations for Two HP 82181A Extended Memory Modules 370
Map of Extended Memory 373

The Function 376

Contents 151

Tables
The Statistics Registers 191
Time Settings 237
Clock Display Formats 239
Time ValUBS 240
Appending a Time to the Alpha Register 241
Effect of Date Formats 242
Appending a Date to the Alpha Register 243
Results of Alarm Acknowledgment 254
The Active Keys on the Alarm Catalog Keyboard 257
The Stopwatch Keyboard 268
Summary of Flag Status 293
Decimal Values and Flags 00 through 07 294
Character COOESttt 310
Past-Due Alarm ReSPONSES ittt 362
The Accuracy Factor 375
Display of a Program Instruction, 396
Memory Configuration 399
Equivalent TEBIMS 403

Contents of
Volume 1: Basic Operation

How To Use This Manual

Part I: Basic HP-41 Operation

Section 1: Using the Keyboard

Section 2: The Display

Section 3: Storing and Recalling Numbers
Section 4: How to Execute HP-41 Functions
Section 5: The Standard HP-41 Functions
Section 6: The Time Functions

Section 7: Elementary Programming
Section 8: Storing Text, Data, and Programs in Files
List of Errors

Subject Index

Function Index

Part II:
Fundamentals in Detail

Section 9

The Keyboard and Display

Contents

The Toggle Keys
The Keyboards
The Normal Keyboard
The User Keyboard i
The Alpha Keyboard
Special Keyboards
Keying In Numbers and Characters
Keying In Numbers
Keying In Characters i
Status ANNUNCIAtOrs
Numeric Display Format
Formatting Numbers
Punctuation.
Standard Displays and Messages,
Display Scrolling
Specifying Parameters
Indirect Parameter Specification
SpeCial KaySs . i T T e A L e A R Ve
Redefining the User Keyboard iiiiiiiniiiinn..
The User Keyboard Catalogo,
Restoring Normal Functions0 ...
The Top TWO ROWS e e e
Function Preview and Null
The Catalogs e e
Basic Catalog Operation
Types of Catalogs i
EROEMOSSBgas .., . e i e vt b S e e e e e e

154

Section 9: The Keyboard and Display 155

The Toggle Keys

Just below the display are four toggle keys labeled [ON], [USER], [PRGM], and [ALPHA]. They control how
the computer interprets the other keys. The toggle keys are so named because of their dual action:
when you press one, it gives a particular interpretation to the keyboard which generally continues until
you press the same toggle key again, returning the keyboard to its previous state.

The Key. This toggle key turns the computer on and off. After about 10 minutes of inactivity the
computer automatically turns itself off to prolong battery life.* While the computer is off, Continuous
Memory maintains the contents of main and extended memory and the status of certain flags. To reset
the computer (that is, to clear main and extended memory and set all flags to default status):

1. Turn the computer off.
. Hold down [«].

. Press [ON].
. Release [«].

The display will show MEMORY LOST.

=W N

The Key. This toggle key activates and deactivates the User keyboard, which is your redefined
version of the Normal keyboard. The USER annunciator appears (and flag 27 is set) when the User
keyboard is active.

The Key. This toggle key shifts the computer between Execution mode and Program mode.
When you turn on the computer, it is in Execution mode—you can execute functions and programs. In
Program mode you can write or edit programs; functions are stored as program steps to be executed
later when you run the program in Execution mode. The PRGM annunciator indicates that the com-
puter is in Program mode or that a program is running in Execution mode.

The Key. This toggle key activates and deactivates the Alpha keyboard, which includes the
blue letters on the lower face of the keys. The ALPHA annunciator appears (and flag 48 is set) when the
Alpha keyboard is active. Pressing or deactivates the Alpha keyboard.

The Keyboards

This manual shows each function name in a color that indicates how to execute that function. The
following overview of the keyboards covers this use of color and the basic purpose of each keyboard.

* Unless you execute , which sets flag 44 (Continuous On). Flag 44 is cleared each time you turn on the computer.

156 Section 9: The Keyboard and Display

The Normal Keyboard

The Normal keyboard comprises the functions printed in white on the upper face of the keys and the
functions printed in gold above the keys. This is the default keyboard—it is active after Continuous
Memory is cleared.

When you press [l the SHIFT annunciator appears, indicating that a shifted function will be executed.
The annunciator disappears when you press a second key (to execute the shifted function) or press [l a
second time (to cancel the shift command).

This manual represents an unshifted function by its name in black inside a black box, and a shifted
function by its name in gold inside a gold box. For example, is the unshifted function on the top
right key, and | ¢* | is the shifted function. This rule applies to other keyboards too; for example, [AVIEV
is a shifted function on the Alpha keyboard.

When a key has a special meaning associated with the letter on the its lower face, that key is repre-
sented by the letter in black inside a black box. For example, the keystroke sequence that produces

Z would be (-] [z], with representing the [1] key.
The User Keyboard

The User keyboard is your customized version of the Normal keyboard. You can assign a function or
global label to any key except the toggle keys or the [l shift key. You can then execute that function, or
start program execution at that global label, by pressing the redefined key on the User keyboard.

Because shifted key positions can be redefined as well, one key can execute four different functions,
depending on whether the User keyboard is active and whether the [shift key is pressed first. The
operation of the User keyboard is described on page 166.

Many functions are not on the Normal keyboard but can be assigned to the User keyboard. These are
called nonkeyboard functions. This manual represents a nonkeyboard function by its name in blue
inside a blue box.

The Alpha Keyboard

The Alpha keyboard comprises letters, functions, symbols, and digits considered as characters rather
than numbers. The blue letters and symbols on the lower face of the keys are the unshifted characters
on the Alpha keyboard. Digits 0 through 9 and the arithmetic symbols are shifted characters on the
keys where they appear on the upper face. Shown on the next page is the entire Alpha keyboard, which
includes functions and additional symbols in shifted positions.

Section 9: The Keyboard and Display

The Alpha Keyboard

A

¥ XHP - Y

[on 17 user |

X X ¥

ALPHA

[erow] aLeral

’_4 ’__J‘
[S T
S l ’

- \ 4 !‘n

= == =

| d | U |
-
fp——,

HEWLETT PACKARD

157

158 Section 9: The Keyboard and Display

There are two distinct uses for the Alpha keyboard.

e To spell out a function or global label as a parameter for , [cLP], [CopPY], , , or
(xEQ]. In such cases the characters become part of the instruction.

¢ To key characters into the Alpha register. Here they are saved until you write over them or clear
the register. The Alpha register is used to display your own messages, to specify file names and
global labels for certain functions, and to manipulate bytes of data.

This manual shows unshifted characters on the Alpha keyboard in blue, shifted characters in gold.
Note that a digit printed in gold represents an Alpha character while a digit printed in black represents
a number on the Normal keyboard.

Special Keyboards

In addition to the keyboards activated by the [USER] and [ALPHA] toggle keys, there are special key-
boards activated by functions. Some major examples are:

» The Text Editor keyboard, activated by [ED]. Based on the Alpha keyboard, this keyboard includes
commands to manipulate a text file in extended memory. The function is described in
section 14.

e The Alarm Catalog keyboard, activated by and [CATALOG | 5. These functions enable you
to examine and alter alarms in memory. Alarms are described in section 16.

e The Stopwatch keyboard, activated by and [SWPT]. Stopwatch operations are described in
section 17.

Keying In Numbers and Characters
Keying numbers into the X-register and keying characters into the Alpha register are similar processes.
In both cases:

e When you enter the first digit or character, the display shows that digit or character followed by
the input cue (_).

» The input cue indicates that the computer will append the next entry from the keyboard to the
string of digits or characters in the display.

e When the input cue is displayed, you can correct your entry by pressing [+] to delete the rightmost
digit or character.* The input cue then moves left to replace it.

o If the input cue is not displayed, entry has been terminated and the next entry from the keyboard
will start a new number or Alpha string.*

*If you key 10 digits or a two-digit exponent into the X-register, the input cue will disappear because no additional digits are
allowed. However, entry has not been terminated: your next entry will not start a new number, and pressing [«] will delete the
rightmost digit.

Section 9: The Keyboard and Display 159

Keying In Numbers

Up to 10 digits can be keyed into the X-register—additional digits will be ignored. The only keys used
for digit entry are digit keys (0] through (9], (5], (change sign), (enter exponent), and [«].
Pressing any key other than a digit entry key, ¥, or terminates digit entry—subsequent digits
will be considered a new number.

Pressing [CLx | replaces the number in the X-register with zero; if you key in another number now, it
will replace this zero. If there is only one digit in the display or if digit entry has been terminated, [«]
has the same effect as [CLx].

Entering an Exponent. To enter a number in the form a X 10°, first key in the digits and decimal
point for a and then press if the number is negative. To enter more than eight digits for a, you
must key in a decimal point somewhere to the left of the ninth digit.

Second, press [EEX]. Any digits to the right of the eighth digit will disappear but will remain internally.
Enter one or two digits for the exponent b and press if b is negative. If you press without
first entering a value for a, the computer sets a equal to 1.

Entering =. Pressing [~ | has the same effect as keying in 3.141592654 and terminating digit entry.

Keying In Characters

In Execution Mode. If the Alpha keyboard is active and you are not specifying a parameter, the
characters go into the Alpha register. For keyboard input to the Alpha register under program control,
execute before the program pauses or halts for input, and then when execution resumes.

The Alpha register can hold up to 24 characters. As you key in the 24th character, a tone sounds to
warn you that the Alpha register is full. If you key in a character when the Alpha register is full, the
leftmost character is pushed out of the Alpha register and is lost.

Character entry is terminated by (AS70), [B5T], [SST), [AVIEW], [R7S], or by deactivating the Alpha
keyboard. Character entry is restored by - | (append) or by [A5

Pressing| CL 4 | deletes all characters from the Alpha register. If character entry has been terminated, [(«]
has the same effect as [CLA |.

In Program Mode. Up to 15 characters can be stored in a program line, which will be displayed with
a leading 7. The characters that follow are entered into the Alpha register when the program is run. To
add a string of characters to the Alpha register without replacing the previous contents, begin the string
with [F |. For example, you can load more than 15 characters into the Alpha register by using two
program lines, beginning the second line with [- |. (The character | appears only when the program
line is displayed; the “append function” is executed when the program is run.)

160 Section 9: The Keyboard and Display

Note: Alpha strings appear within quotation marks when listed by a printer or video monitor. Only
program lines that begin and end with quotation marks are Alpha strings; if a listed program line is
not within quotation marks, it is a function. Don’t mistake an unfamiliar function name for an Alpha
string—be sure to press before keying in the function name.

Status Annunciators

The status annunciators appear along the bottom of the display. In addition to the USER, PRGM,
ALPHA, and SHIFT annunciators mentioned above, the following annunciators may appear.

e BAT indicates that the batteries are low. With alkaline batteries, about 5 to 15 days of operating
time remain after BAT first appears. With the HP 82120A Rechargeable Battery/Reserve Power
Pack, about 2 to 50 minutes of operating time remain. If you use the HP 82104A Card Reader or
the HP 82153A Optical Wand, the operating time remaining will be reduced. For more information
about batteries, refer to appendix G.

e GRAD or RAD indicates that the computer is in Grads or Rads mode for trigonometric and
rectangular/polar functions. If neither GRAD nor RAD appears, the computer is in Degrees mode.

¢ 0 12 3 4 indicates that the corresponding flag (00, 01, 02, 03, or 04) is set.

Some status annunciators have special meanings when is operating. They return to their previous
states when you exit [ED].

Numeric Display Format

The computer represents every number internally in the form a x 10° where a is number with nine
decimal places, 1 < |a| < 10, and b is a two-digit integer, 0 < |b| < 100. You can control how numbers
are displayed without altering their internal representation. (If you do want to alter the number in-
ternally to match the display, refer to on page 186.) The format and punctuation you specify are
maintained by Continuous Memory.

Formatting Numbers

There are three options for formatting numbers, which are selected by the functions [Fix |, [sc/], and

[Fix] n. This format displays numbers with up to n decimal places (0 < n < 9). If the integer portion
of a number requires more than (10 — n) digits, fewer than n decimal places will be displayed. For
example, the default format is [F/x] 4, which displays numbers to four decimal places; but if a number
has eight digits before the radix mark, only two decimal places will be displayed.

The last displayed digit is rounded up if the first hidden digit is 5 or greater. If the fractional portion of
a number requires fewer than n digits, trailing zeros are added. If a number is too large or too small for
the display, the format automatically and temporarily switches to n.

Section 9: The Keyboard and Display 161

n. This format displays numbers with one digit before and n digits after the radix mark
(0 < n < 9), multiplied by a power of 10. For n < 7, the number is rounded to n decimal places. A
maximum of 7 decimal places can be displayed, so [5C/ |8 or [SCI| 9 cause rounding to occur outside the
display. (These formats can be useful when numbers are printed.)

n. This format displays a number with the same digits as n, but with an exponent that is
always a multiple of three. The radix mark is moved to the right to compensate for any change in the
exponent.

Punctuation

Flags 28 and 29 control how periods and commas are used in number displays. In the U.S.A. a period is
used as the radix mark (usually called the decimal point) to separate the integer and fractional parts of
a number, and a comma is used as the separator mark between groups of digits in a large number. In
some other countries, the comma is the radix mark and the period is the separator mark.

Flag 28 determines the roles of periods and commas. The default state for flag 28 is set, which produces
the display normal for the U.S.A. Clearing flag 28 switches the roles of periods and commas to cor-
respond with usage in some other countries.

Flag 29 determines whether a separator mark is displayed, regardless of which symbol represents the
separator mark. The default state for flag 29 is set, which displays the separator mark. Clearing flag 29
suppresses all separator marks and, in the special case of [~1:] 0 format, suppresses display of the radix
mark.

Standard Displays and Messages
The computer displays either the standard display or a message. The contents of the X-register are the
standard display unless:

« The Alpha keyboard is active (and you're not keying in a parameter), in which case the contents of
the Alpha register are the standard display.

« The computer is in Program mode, in which case the current program line is the standard display.
e A program is running, in which case the program execution indicator (7) is the standard display.
Any other display is a message. Examples include the displays for the text editor (section 14), the clock
(section 15), the stopwatch (section 17), and a program’s messages for the user (section 21). Examples

covered in this section include the displays for parameter specification, function preview, the catalogs,
and error messages. Flag 50 is set when the display contains a message.

162 Section 9: The Keyboard and Display

Display Scrolling

To show more characters than the display can hold at one time, the computer “scrolls” the characters
across the display until the last character enters the display. While the characters are moving you can
press any key to bypass this process and immediately see the final display. The function whose key you
pressed isn’t executed.

Specifying Parameters

Certain functions require parameters to become complete commands. When the display shows the
function name followed by one or more input cues (_), you must enter a parameter.

» For a numeric parameter such as a register address, flag number, local numeric label, program line
number, and so on, observe how many input cues are shown and key in the desired digits. (You
might need to add leading zeros, like 042 to specify program line 42.)

s For an Alpha parameter such as a function name or global label, press to activate the
Alpha keyboard, then spell out the name or label, and then press again to complete param-
eter specification.

Indirect Parameter Specification

The parameters for most functions can be specified indirectly: rather than entering the parameter itself
in response to the input cue, you enter the address of a register (the “indirect register”) that contains
the parameter. This feature is particularly useful when the value of the parameter depends on previous
calculations in a program or when a routine is executed repeatedly to access sequential registers. In
addition, the addresses for main memory registers R ;g through R318) must be specified indirectly.

To specify a parameter indirectly:
1. Execute the function.
2. In response to the input cue, press |’ . The display will show IND _ _ after the function name.
3. Specify the indirect register.

The following examples demonstrate how indirect parameter specification works for three types of

parameters. In each example R, is the indirect register containing a parameter of 5; in the first exam-
ple 5 is simply a number, in the second example 05 is an address, and in the third example 05 is a label.

Section 9: The Keyboard and Display 163

Example. Suppose that Ry, contains 5. If you execute IND 10, the number in R;; becomes the
parameter for [TONE |. Therefore, IND 10 is equivalent to 5 when R, contains 5.

[ToNE] IND 10

* 5.
Riyy| 5

Example. Suppose that R, contains 5. If you execute IND 10, the address in R,y becomes the
parameter for [STO). Therefore, IND 10 is equivalent to 05 when R, contains 5.

IND 10
* 05.

Indirect specification of an address—called indirect addressing—is the most common use for indirect
parameter specification, and the most common use for indirect addressing is to access a series of regis-
ters by a looping routine in a program. For example, a loop containing IND 10, (1/x], IND 10
will replace the number in Ry with its reciprocal when R, contains 5 (as illustrated above). The loop
can then increment the address in Ry, from 5 to 6 and start over, this time replacing the number in Ryg
with its reciprocal and incrementing the address in R, from 6 to 7, and so on. (Loops are described in
section 20, “Branching”.)

Example. Suppose that Ry, contains 5. If you execute IND 10, the label in R;; becomes the
parameter for (XEQ]. Therefore, IND 10 is equivalent to 05 when R, contains 5.

IND 10
+ 05.

You can also indirectly specify any global label listed in catalog 1 or any programmable function or
global label listed in catalog 2, provided that the label doesn’t exceed six characters.

164 Section 9: The Keyboard and Display

Parameters can be indirectly specified for the following functions:

¢ Functions with register-address parameters.

(s10], [RCL].
(sTo] [+], (810] (=], (8T0] [x], [(8TO] [=].

b

DSE].
X<>), (ViEw], (ZREG).
* (xEQ],
o) ,LFs?], [Fe?], [Fs2c], [Fc2C).
L 3 3
e [TONE].

Special Keys

The following diagram shows the keys that have special meanings when you're specifying a parameter
for functions in catalog 3.

Section 9: The Keyboard and Display 165

Special Keys for Specifying Parameters

(

166 Section 9: The Keyboard and Display

Stack Register Addresses. To specify a stack register or the LAST X register, press [-] followed by
’ s s , or .

Program Line Numbers. To specify line numbers over 999, press [EEX]. The display will show
1___. Then key in the remaining three digits.

Single-Key Parameter Specification. For convenience, you can specify a one-digit parameter of 0
through 9, or a two- or three-digit parameter of 1 through 10, by pressing the appropriate key in the
two top rows. For example, when one, two, or three input cues are displayed, pressing enters a
parameter of 1, 01, or 001. If only one input cue is displayed, pressing enters a parameter of 0; if
two or three input cues are displayed, pressing enters a parameter of 10 or 010.

Redefining the User Keyboard

There are two functions that assign functions and global labels to the User keyboard, (assign) and
(programmable assign). Use to make assignments manually; it’s easier to use but isn’t

programmable. Use to make assignments under program control.

To make an assignment manually:
1. Execute
2. Press [ALPHA], key in the function name or global label, and press again.
3. Press the key (or I and the key) to be redefined.

To make an assignment under program control:
1. Enter the function name or global label into the Alpha register.

2. Enter the key code of the key to be redefined (according to the diagram on the facing page) into
the X-register.

3. Execute [PASN].

The following diagram shows the keycodes for the User keyboard. Note that:
e All keycodes have two digits.
o Keycodes for shifted locations are negative.
¢ You can’t redefine the toggle keys or the shift key.

¢ You can redefine the key. Your redefinition supersedes the “run” function in Execution mode
and the function in Program mode, but you can still press to stop a running program.

Section 9: The Keyboard and Display 167

The User Keyboard

ER-N-W

HEWLETT PACKARD

168 Section 9: The Keyboard and Display

When you assign a function listed in catalog 2 or 3, or a global label listed in catalog 2, the assignment
is stored in User keyboard memory. (User keyboard memory is a part of main memory and is described
in section 12.) However, when you assign a global label listed in catalog 1, that assignment is stored as
a part of the label itself. If the label is deleted from program memory, the assignment is cancelled. If
the program containing the assigned label is stored in extended memory, and if the User keyboard is
active (flag 27 is set) when the program is recalled from extended memory, the assignment stored in the
label will be reactivated.

The User Keyboard Catalog

Executing 6 displays all functions and global labels assigned to the User keyboard. The order
of display is by keycode, with smaller numbers before larger numbers (left to right and top to bottom
on the keyboard) and positive before negative (unshifted before shifted). You can stop the listing by
pressing [R/S], and then:

s Press to see the next assignment.

o Press to see the previous assignment.

o Press| to clear the displayed assignment.
» Press to restart the listing.

If there are no assignments or if the only assignment is cleared using [¥ [C], the computer displays CAT
EMPTY

Restoring Normal Functions

You can cancel the assignment to a redefined key by any one of the following methods:
» Executing , pressing twice, and then pressing the appropriate key.

o Clearing the Alpha register, entering the appropriate keycode into the X-register, and executing
(PASN].
o Pressing [when catalog 6 is halted and displays the assignment.

To cancel all assignments currently in effect, execute [CLKEYS]. Note that assignments that are stored
in global labels in extended memory will be reactivated if the User keyboard is active (flag 27 is set)
when the program is recalled.

Section 9: The Keyboard and Display 169

The Two Top Rows

There is a special type of program label, the local Alpha label, that is designed for use with the two top
rows of the User keyboard. The name of each label corresponds to an Alpha character on the top two
rows: A through E on the top row, F through J on the second row, and a through e on the shifted top
row. Section 20, “Branching,” discusses how to program with these labels; the discussion here covers
only the conditions required to execute a local Alpha label on the User keyboard. These conditions are:

e The User keyboard is active.

¢ The current program contains the local Alpha label.

¢ You haven’t redefined the key that corresponds to the local Alpha label.
These conditions combine with the general rules for the User keyboard to produce the following
priorities. When you press a key on the top two rows of the User keyboard:

1. If you have assigned a function or global label to the key, that function is executed or program
execution begins at that global label.

2. If you haven’t redefined the key and the corresponding local Alpha label exists within the current
program, execution begins at that local Alpha label.

3. If neither of the first two conditions is true, the Normal keyboard function—the one printed on (or
above) the key—is executed.

Execution of a Normal keyboard function may take significantly more time when the User keyboard is
active because the computer checks the higher priorities first. To avoid this delay when executing a
Normal keyboard function, you can deactivate the User keyboard before pressing the key or else assign
the Normal keyboard function to that key.

Function Preview and Null

You can display the current meaning of a key, without necessarily executing the resulting function, by
holding down the key. This preview is particularly helpful on the User keyboard when you’re not sure
which keys are redefined.

e If the function requires a parameter (one or more input cues appear), release the key. If you want
to cancel the function, press [(«].

o If the function doesn’t require a parameter, you can either release the key to execute the function
or else hold the key down until NULL is displayed to cancel the function.

170 Section 9: The Keyboard and Display

In addition, there are four situations when a program line is previewed. (Assume that you release the
key before NULL is displayed.)

e If the User keyboard is active and you press a key to which you've assigned a global label, that
label is displayed and program execution begins at that label.

¢ If the User keyboard is active and you press a key that corresponds to a local Alpha label in the
current program, XEQ Jabel is displayed and program execution begins at that label.

¢ If you press [R/S], the current program line is displayed and program execution begins at the
current program line.

e If you press [SST], the current program line is displayed and only the current program line is
executed.

The Catalogs

There are six catalogs that enable you to review memory contents. The | CATALOG | function is not
programmable, but there are programmable functions equivalent to catalogs 4 and 5. The rules of oper-
ation common to all catalogs are described first, followed by an overview of each catalog.

Basic Catalog Operation
Execute G n to start the listing of catalog n.

While the listing is running:
* Pressing any key except and speeds up the listing.
¢ Pressing stops the listing.
While the listing is stopped:
¢ Pressing displays the next item in the catalog.
e Pressing | 551 | displays the previous item in the catalog.
¢ Pressing restarts the listing.
¢ Pressing [«] exits the catalog.

Catalogs 4, 5, and 6 consume as much power as a running program even when the listing is stopped.
Therefore, the computer exits these catalogs after about two minutes of inactivity.

A printer in Trace mode will print a catalog listing.

Section 9: The Keyboard and Display 171

Types of Catalogs

Catalog 1: User Programs. A list of all global labels and instructions. With each [END
instruction appears the number of bytes in that program; with the permanent .END. (the final entry)
appears the number of registers available for new programs.

You can use catalog 1 to make any program the current program: press to stop the listing at that
program’s global label or instruction, and then press [«] to exit the catalog. (Page 284.)

Catalog 2: External Functions. A list of all functions and programs currently available to the com-
puter from peripheral devices and plug-in modules, plus all extended memory and time functions. A T
precedes global labels for programs to distinguish them from functions.

Functions and programs are grouped by source. Initially the catalog lists only the main entries (head-
ers) in each group. To list all entries, press to stop the listing, wait for the display to blink, and
then press [ENTER# . To return to a listing of headers only, press to stop the listing and then press
(ENTER#). (Page 394.)

Catalog 3: Standard Functions. An alphabetical listing of the standard functions of the HP-41.
This listing shows the Alpha name for each function, which may differ from the name that appears on
the keyboard. You need to know the Alpha name to assign a function to the User keyboard and to
interpret program lines.

Catalog 4: Extended Memory Directory. A list of all files in extended memory. The name, type,
and number of registers for each file is shown. After listing all existing files, the computer displays the
number of registers available for a new file. A program can execute this catalog as [EMDIR .

You can use catalog 4 to make any file the current file: press to stop the listing at the desired file,
and then press [«] to exit the catalog. (Page 206.)

Catalog 5: Alarm Catalog. A list of all alarms in alarm memory. The time, date, and message for
each alarm is shown. You can delete alarms, reset repeating alarms, and look at specific parts of the
alarm using the Alarm Catalog keyboard. A program can execute this catalog as [ALMCAT |. (Page 255.)

Catalog 6: User Keyboard Catalog. A list of all functions and global labels assigned to the User
keyboard. The name of the function or global label and the key code indicating key location is shown
for each assignment, starting at keycode 11 ([Z+]) and ending at —84 ().

You can use catalog 6 to cancel any assignment: press to stop the listing at the desired assign-
ment, and then press | [C]. (Page 168.)

172 Section 9: The Keyboard and Display

Error Messages

An operation that is illegal is never executed. If the attempted operation is a program instuction, the
computer stops program execution and displays an error message.*

e To clear the error message from the display, press [«].

¢ To execute a different function, simply press the appropriate key—you don’t need to clear the error
message first.

» To discover which instruction caused the error, press to switch to Program mode. The dis-
play then shows the program line containing the illegal operation (or an XROM number if a miss-
ing plug-in module caused a NONEXISTENT error).

A list of error and status messages appears in appendix A. Many devices that plug into the computer
have their own messages which may appear in the computer display. Refer to the literature for those
devices to learn about such messages.

* Flags 24 and 25 can prevent certain anticipated errors from stopping program execution. These flags are described on page 290.

Section 10

The Automatic Memory Stack

Contents
Introduction 174
RPN Calculations 175
Stack Lift and Stack Drop 175
UsiNg [ENTER®] . ..ot e 175
Enabling/Disabling Stack Lift 176
Order of Entry 176
Filling the Stack 177
The LAST X Register 179
Correcting Errors 179
Constant Arithmetic 180
Other Stack Operations 180
Exchanging Stack Contents 181
Rolling the Stack 181
Store and Recall 182
Register Arithmetic 182
Clearing the Stack 183
Introduction

Numeric functions use four registers called the automatic memory stack. Numbers automatically move
“up and down” in the stack when you enter numbers and perform calculations. The logic used is Re-
verse Polish Notation (RPN), which minimizes keystrokes and produces all intermediate results. If you

are unfamiliar with RPN, refer to page 20.

o The first topic in this section, “RPN Calculations,” evaluates a typical numeric expression and
describes the principles underlying use of the stack. Included is a method for constant arithmetic

based on filling the stack with a constant.

e The second topic, “The LAST X Register,” covers a special register closely related to the stack
registers. The LAST X register is used for error correction and for a second method of constant

arithmetic.

e The third topic describes other stack operations that give you more flexibility in using the stack,

again emphasizing the repeated use of a constant.

174

Section 10: The Automatic Memory Stack 175

RPN Calculations

The diagrams below show the contents of the automatic memory stack and the LAST X register fol-
lowing each step of an RPN calculation. Let x, y, 2, t, and [represent numbers in the stack initially.
The calculation evaluates the expression

32
52 — 9
lost lost lost
T| ¢ ? z ;: y |— — ? x Y: X ﬁ X
Z| z X |— — 32 X X
Y| y / / 32 |—»| 32 |—»| 32 ? 25 N 32 N X
X| x / 32 4 32 5 9
N N\ N
LASTX| ! l ! | | s ||| s | o | 16
Keys: 32 5 9 (=]

This example will be the basis for explaining how the stack works and how to use it efficiently.

Stack Lift and Stack Drop

The automatic movements of stack contents are called stack lift (moving upward in the diagram) and
stack drop (moving downward).

Stack Lift. This usually occurs when a number is moved into the X-register. The numbers in the Y-
and Z-registers are lifted into the Z- and T-registers; the number in the T-register is lost. In the exam-
ple, stack lift occurs when 32 is keyed in, when copies 32 into the Y-register, and when 9 is
keyed in.

Stack Drop. This usually occurs when a function combines the numbers in the X- and Y-registers.
The number in the Z- and T-registers are dropped into the Y- and Z-register; the number in the LAST
X register is lost. In the example, stack drop occurs when [=] and [+] are executed.

Using (ENTER#

Pressing separates two numbers keyed in one after the other (32 and 5 in the example). This
copies the number in the X-register (32) into the Y-register. The copy left in the X-register is replaced
by the next number keyed in (5) because disables stack lift.

176 Section 10: The Automatic Memory Stack

Enabling/Disabling Stack Lift

Nearly all functions enable stack lift: the stack will lift if you place a number in the X-register after
executing the stack-lift enabling function. However, four functions disable stack lift and others are
neutral.

Stack-Lift Disabling Functions. The four functions that disable stack lift are [ENTER+], ,[Z+],
and . If you execute one of these functions and then place a number in the X-register, that number

will replace the previous contents and the Y-, Z- and T-registers will not be affected. Stack diagrams
show when stack lift is disabled by shading the X-register, indicating that its contents will be replaced.

Neutral Functions. The following functions neither enable nor disable stack lift, but maintain the
previous status:

s The toggle keys ([ON], [USER], [PRGM], [ALPHA]).
o The backarrow key ([+]) during digit or character entry.

o The shift key ([1).
o Catalogs 1, 2, 3, and 6.

Order of Entry

Two major considerations affect the order in which you should enter operands. You can save many
keystrokes by observing the following rules, although sometimes you must choose between them.

Nested Terms. For expressions with terms nested in parentheses, calculate the innermost term first
and then use that result in the simplified expression. If two nested terms must be calculated before you
can combine them, the automatic memory stack saves the result of the first term while you evaluate the
second term. The example in “Polynomial Expressions” below demonstrates this rule.

Noncommutative Functions. Functions like subtraction and division are called noncommutative be-
cause the order of the operands is essential: 5 — 3 + 3 — 5, and 5 + 3 # 3 + 5. For expressions involv-
ing noncommutative functions, enter or calculate the number that must be in the Y-register before
entering or calculating the number that must be in the X-register. The previous example demonstrates
this rule twice.

o The numerator (32) is entered before the denominator (52 — 9) is calculated.

e The term 52 is calculated before 9 is subtracted from it.

Section 10: The Automatic Memory Stack 177

Filling the Stack

Note in the last three steps of the previous example how x propagates from the T-register into the Y-
and Z-registers. This consequence of stack drop can keep the Y-register filled with a constant, as dem-
onstrated in the next two examples. This technique is particularly appropriate when the constant must
be in the Y-register for noncommutative operations like (=] and [£]. (In contrast, [ASTx]| supplies the
constant in the X-register.)

Cumulative Growth. Suppose that you want to calculate the growth of a quantity that starts at a
value of 16 and increases by 50% each period. First fill the stack with the growth factor (1.5) and key
the starting value (16) into the X-register. Then press [x] to calculate the value after the first period
and press again for each subsequent period.

/ lost lost
T| ¢t z 15 |—=| 1.5 1.5 1.5 1.5 1.5
Z| :z ; y 15 |—=| 15 i: 1.5 3 1.5 : 1.5 i:\ 1.5
Y| y / x 15 |—»| 15 15 15 N 15 1.5
X| «x 1.5 15 16 24 4

N N N ™\
LAST X | 1 ! (o] [] [6] [20] [ae] [54]

Keys: 15 16 (x] x] x] x]

Polynomial Expressions. Filling the stack aids the evaluation of a polynomial, which requires sev-
eral copies of the variable. For efficiency, use Horner’s Method to rewrite the polynomial in a nested
fashion that eliminates exponents greater than 1. Suppose that you want to evaluate

xt — 223 + bx
for x = 3. First, rewrite the polynomial to eliminate the exponents.
2 — 2 + 5x= (x3 — 2x%2 + 5)x
= ((x2 — 2x)x + 5)x
= (((x — 2)x)x + 5)x

178 Section 10: The Automatic Memory Stack

Then fill the stack with the variable by pressing (3], (ENTER# |, [ENTER*], [ENTER*], and execute the
steps below. Note that the calculation begins at the innermost nested term.

/|0$t
B s
Y33] 5] /9\ NE
x| 3 2 1 i
SN\ . NN
LAST X | 1 o2] [] [s] | [s] [s] [1a]
Keys: ? =) &) 5 J

Once you are familiar with Horner’s Method you can key in the steps for a polynomial without actually
rewriting it. For example, the steps to evaluate the polynomial

ax® + bxt + cx® + dx® + ex + f

after filling the stack with the variable are:

a, E]’ b, . E]: c, - Es d, , EI: e, ’ E]; f -

e Note that coefficients (except the first and last) are followed by and [x]. (There is no previous
result to add to first coefficient, and the last coefficient isn’t multiplied by any power of the
variable.)

« If the first coefficient is 1, start with the second coefficient. (The variable is already in the X-
register.)

» For negative coefficients you may enter a positive value and substitute [=] for following that
coefficient.

» When there is no term for a power of x, just press (x]. (In effect, this enters a coefficient of 0 for
that power.)

Noncumulative Results. You can also use constant arithmetic to perform a series of unrelated
(noncumulative) operations with a constant. After each calculation, press [«] to clear the X-register
before you key in the next operand. This disables stack lift, preventing the previous result from displac-
ing the constant in the Y-register.

Section 10: The Automatic Memory Stack 179

The LAST X Register

The LAST X register holds the x-operand from the last numeric function (except [CHS]). To recall this
number to the X-register, press || 157~ . This enables you to recover from errors and to retrieve an
operand for further calculations.

Correcting Errors
One-Number Function Errors. If you execute the wrong one-number function, you can recover from
your error as follows:
1. Press [+]. This replaces the incorrect result with zero and disables stack lift.
2. Press . This recalls your operand, which replaces the zero in the X-register.
3. Continue your calculation with the correct function.
Two-Number Function Errors. If you make a mistake with a function like or (], you can use
and the inverse function ([=] or [x]) to recover. Suppose that you made a mistake in adding two

numbers. Press and then (=] as shown below. The nature of your mistake determines how you
should continue; the alternatives are listed after the diagram.

/Iost
AR N
Y| 16 z 20 z
X| 4 ;:4
N
LAsTX[¢ | [4] 4]\|_4—

Keys: =)

e If you wanted to multiply instead of add, execute again to return the stack to its original
state, and then multiply.

o If 16 was the wrong number to add, press [«] to clear 16, key in the correct number, execute
to recover 4, and then add.

e If 4 was the wrong number to add, key in the correct number and then add.

Errors with some other types of two-number functions are even edsier to correct. For example, you can
cancel the effect of by executing [7+7 |, and you can correct errors with and as you
would for a one-number function. To correct errors with other functions, determine how the function
affects the stack, and then reverse that process.

180 Section 10: The Automatic Memory Stack

Constant Arithmetic

The following example shows how to retrieve a constant for further calculations. Suppose that you
want to divide both 63 and 87 by a factor of 1.5. This constant factor is entered second (after 63) to be
in the X-register for the first calculation, and is subsequently maintained in the LAST X register.

/ lost / lost / lost / lost
T
IBranraEaNnY R nNE
I g I N g XA
y / X / 63 |—=| 63 X / 42 / 87 42
X[x | 63 63 15 2 87 15
N e N
LASTX| ¢ | | | ¢ | l z 15 15| [15]| [15]
Keys: 63 15 87 (LASTx] (=]

This technique is particularly appropriate when the constant must be in the X-register for
noncommutative operations like [-] and [+]. (In contrast, constant arithmetic using stack drop supplies
the constant in the Y-register.)

Other Stack Operations

You can consider the four stack registers as two pairs of registers. The X- and Y-registers are the center
of almost all activity, while the Z- and T-registers are like storage registers connected by stack lift and
stack drop to the more active X- and Y-registers. If you make an extra copy of a number while it’s in
the X-register or retrieve a copy from the LAST X register, you can temporarily store that copy in the
higher stack registers and retrieve it later.

To take full advantage of the Z- and T-registers, plan ahead when you’re programming a series of
calculations. Figure out where the operands must be for each step, work backwards from the final
calculation, and use the operations in the remainder of this section to link the result of one calculation
with the input for the next. This efficient use of the stack saves program memory and reduces the need
for storage registers.

Section 10: The Automatic Memory Stack 181

Exchanging Stack Contents

Exchanging the X- and Y-registers. Executing [xxy] (X exchange Y) exchanges the contents of the
X- and Y-registers. This function has several uses:

» To examine the contents of the Y-register. Press (xzy], examine the display, and then press [xxy]
again to restore the numbers to their original order. This is useful when a function returns results
to both the X- and Y-registers, as do the statistics functions and polar/rectangular coordinate
conversions.

» To switch numbers that are in the wrong order for noncommutative operations such as subtraction
and division.

¢ To rearrange the contents of the stack in combination with or (Rt]; refer to “Rolling the
Stack” below.

Exchanging X and Other Stack Registers. To exchange the contents of the X-register with a stack

register or the LAST X register, execute and then press [-] followed by (Y], (Z], (T], or [L]. Refer
to “Stack Register Arithmetic” below for an example of this function’s use.

Rolling the Stack

The (roll down) and (roll up) functions shift all stack contents without duplicating or losing
any data.

T| t X T| ¢ g z

Z| :z t Z| z |7 7 v

Y| vy z Y| vy s x

X| x y X| x |7 t

LASTX| ¢ || 1 LASTX| ¢ || !
Keys: Keys: (Rt

Note that the LAST X register is unchanged. To review all numbers in the stack, press either or
four times. Each number is displayed when it is rolled into the X-register, and the stack returns to
its original state after four shifts.

182 Section 10: The Automatic Memory Stack

Use and in combination with to exchange stack registers other than the X-register. You
can rearrange the stack in any order with these functions; here are two simple examples.

Tt |— t | y T| ¢t z |—»| z

Z| z |—]| z A Z| z y |—=| ¥y

Y| vy | x | A oz Y| vy X o

X - y N« X| x t |7 x
LASTX[¢ |— ¢ || ¢ | LASTX[¢ | ¢ -] ¢]
Keys: (x2y] Keys: (x2y]

Store and Recall

You can duplicate any number in the stack by executing or and then specifying a stack
register. Both functions result in the X-register and the specified register containing the same number.

Store. To copy the number in the X-register into a stack register or the LAST X register, press
(-] followed by (Y], (2], (T] or (L]. The number in the specified register is lost.

Recall. To copy the number in a stack register or the LAST X register into the X-register, press
[*] followed by [Y], [(Z], [T], or [L]. The number in the T-register is lost as the stack lifts (unless stack
lift is disabled).

Register Arithmetic

You can combine the number in the X-register with any stack register by pressing -1, =)
], (x][], or (-] followed by [X], [Y], (2], [T], or (L]. Remember that the order of the

operands is essential for subtraction and division; the operand in the specified register corresponds to
the operand in the Y-register for stack arithmetic. Register arithmetic in the stack differs in several
ways from normal arithmetic in the stack:

e The result is placed in the specified register.

e The X-register is unchanged (unless you specify it as the parameter).

e The LAST X register is unchanged (unless you specify it as the parameter).
» The stack doesn’t drop.

Section 10: The Automatic Memory Stack 183

The following routine cubes the number in the X-register and places the original value in the LAST X
register without disturbing the other stack registers.

lost
T| ¢ ; z |—| z |—)| z |[—| z |—»| =z
Z z / y |/ vy |—/>| vy =y |/ v
Y / x |—=| x || x [—=| x |[—=
X 4 4 |—»| 4 64
N X A
LAST X | ! 1 | l | [4 | 1ﬂ | I | 4 |
Keys: 4 x<>]JL L L

Clearing the Stack

To place zeros in the X-, Y-, Z-, and T-registers, execute [CLST | (clear stack). The LAST X register is
unchanged.

Section 11

Numeric Functions

Contents
Introduction 184
One-Number Functions 185
General Functions 185
Number-Alteration Functions 186
Trigonometric Operations 186
CONVEISIONS 187
Logarithmic and Exponential Functions 187
Two-Number Functions 187
Basic Arithmetic 188
Time Arithmetic 188
Percentages 188
Polar/Rectangular Conversions 189
Other Two-Number Functions 189
Statistics 190
Statistics Registers 190
Entering Data 191
Mean .. 192
Standard Deviation 192
Introduction

This section describes the numeric functions in the computer. All one- and two-number functions op-
erate in the stack; their actions are shown by stack diagrams. Although data for the statistical func-
tions are entered from the stack, they are accumulated in statistics registers in main memory. The
results of operations on these accumulations are then returned to the stack. Certain other functions
that involve calculations but do not necessarily return results to the stack (such as register arithmetic
and [5G) are not included here.

184

Section 11: Numeric Functions 185

There are three error conditions that can result from numeric functions.

1. If you try to calculate with an operand that is illegal for that function (such as division when
x = 0), a DATA ERROR results.

2. If you try to calculate with an operand that is not a number, an ALPHA DATA error results. Note
that a string of Alpha digits from the Alpha register is not a number.

3. If you attempt a calculation that would produce a number with magnitude greater than
9.999999999 X 10%, an OUT OF RANGE error results. (Statistical accumulations and are
exceptions.)

The computer does not execute a function that causes an error condition. Unless flag 25 is set, a DATA
ERROR or ALPHA DATA error will stop program execution (if a program is running) and display the
error message; an OUT OF RANGE error will stop execution and display the error message unless either
flag 24 or 25 is set.

One-Number Functions

One-number functions replace the operand in the X-register with the result, save the operand in the
LAST X register, and leave the Y-, Z-, and T-registers unchanged. f(x) represents the result in the
stack diagram on the left. The only exception is (change sign), shown on the right, which doesn’t
save the operand.

T| ¢t |—=| t T| t |—=
Z| z |—| =z Z| z |—| =z
Y y |—= vy Y y |— Y
X| x f(x) X| «x —X
LASTX| ¢ | | «x | LASTX| ¢ |—| @ |
One-Number Functions CHS

General Functions
Reciprocal. Executing returns the reciprocal of x.

Square and Square Root. Executing | »* | returns the square of x. Executing returns the positive
square root of x.

Factorial. For a positive integer n, executing returns n! =n(n—1)(n —2) ... 1.

186 Section 11: Numeric Functions

Number-Alteration Functions

Absolute Value and Sign. Executing [ABS] returns |x|, the absolute value of x. Executing [SIGN
returns:
1ifx =0,

—1i1fx <0, or
0 if the X-register contains Alpha data.

Integer Part and Fractional Part. These functions reduce a number to its integer part or its frac-
tional part. For example, if the X-register contains 777.888, executing [INT] returns 777 or executing
FRC | returns 0.888.

Round. Recall that the display-format functions affect only how a number is displayed, not its in-
ternal representation. To round the internal representation of the number in the X-register:

1. Set the display format to the number of decimal places that you want the rounded number to
contain.

2. Execute [RND .

For example, to round a number to the nearest integer, execute 0 and then [RND .

Trigonometric Operations

Angular Modes. The angular mode determines how the computer interprets numbers as angles. Your
choice of angular mode is maintained by Continuous Memory. These functions alter only the angular
mode; they do not alter any numbers currently in the computer.

* Execute [RAD | to select Radians mode. The RAD annunciator appears, indicating that numbers will
be interpreted as angles expressed in radians. (There are 27 radians in a circle.)

» Execute [GRAD | to select Grads mode. The GRAD annunciator appears, indicating that numbers will
be interpreted as angles expressed in grads. (There are 400 grads in a circle.)

» Execute to select decimal Degrees mode. This is the default angular mode; when neither the
RAD nor the GRAD annunciator appear, numbers will be interpreted as angles expressed in degrees.
Digits following the decimal point in the argument are interpreted as a decimal fraction of one
degree, not as minutes and seconds.

Trigonometric Functions.

« [SIN] (sine) and (arc sine).
. (cosine) and (arc cosine).

o (tangent) and (arc tangent).

Section 11: Numeric Functions 187

Conversions

Degrees/Radians Conversions. Execute (degrees to radians) to convert a number expressing
an angle in decimal degrees into the number that expresses the same angle in radians. For the inverse
conversion, execute (radians to degrees).

Hours-Minutes-Seconds/Decimal Hours Conversions. Hours and degrees can be expressed in
HMS (hours-minutes-seconds) format rather than the normal decimal format. The first two digits fol-
lowing the decimal point are interpreted as minutes, the next two digits as seconds, and any subsequent
digits as a decimal fraction of seconds. For example,

HH MMSSssss = HH hours + MM minutes + SS.ssss seconds (HMS format)
= HH + MM/60 + SS.ss/3600 (decimal format)

To convert a number in decimal format into HMS format, execute (to hours-minutes-seconds).
For the inverse conversion, execute (to decimal hours).

Decimal/Octal Conversions. To convert a decimal integer into its octal (base 8) equivalent, execute
(to octal). To convert an octal integer into its decimal (base 10) equivalent, execute [DEC] (to
decimal).

Logarithmic and Exponential Functions

Common Logarithmic and Exponential Functions. Press to calculate the common loga-
rithm (logarithm to base 10) of the number in the X-register. Press to calculate 10 raised to the
power of the number in the X-register.

Natural Logarithmic and Exponential Functions. Press to calculate the natural logarithm
(logarithm to base e) of the number in the X-register. Press |to calculate e raised to the power of the
number in the X-register.

Hyperbolic functions, inverse hyperbolic functions, and certain financial calculations evaluate the
expressions In (1 + x) and e* — 1 for arguments near zero and with results also near zero. To allow
greater accuracy in such calculations, [LN1+x] and [E+X-1] evaluate these expressions directly.

o [LNi1+X] computes In (1 + x).
e [E+X-1] computes e* — 1.

Two-Number Functions

All two-number functions use operands in the X- and Y-registers; most return a single number to the
X-register and cause the stack to drop. (Percentages and polar/rectangular coordinate conversions are
exceptions.)

188 Section 11: Numeric Functions

Basic Arithmetic
Stack diagrams for [+], (=], [x], and (%] appear in the previous section. Remember the order of entry
for subtraction and division: for x in the X-register and v in the Y-register,

* Subtraction returns ¥y — x (not x — y).

¢ Division returns y/x (not x/y).

Time Arithmetic

To add or subtract numbers that are in HMS (hours-minutes-seconds) format, use (hours-min-
utes-seconds add) or (hours-minutes-seconds subtract). The order of entry and stack drop are
identical to those for normal addition and subtraction.

Percentages

The two percentage functions use the number in the Y-register as a base and alter the number in the
X-register, expressing it in terms of the base. Note that the base number in the Y-register is unaltered
and that the stack doesn’t drop.

T t i t T t —| t

Y4 z —> z Z z — z

Y y — y Y — y

X X y/100 X X 100(x—y)/y
LAST X T x LAST X z [x|

Percent. To calculate a percentage, place the base number in the Y-register and the percent rate in
the X-register, and then execute [%].

Percent Change. To calculate the increase or decrease from one number to another, place the first
(base) number in the Y-register and the second number in the X-register, and then execute [%CH). The
increase or decrease is returned as a positive or negative percentage of the first (base) number.

Section 11: Numeric Functions 189

Percent of Total. To calculate the percentage that one number is of another number:

1. Place the total (base) number in the Y-register and the number to be converted to a percentage in
the X-register.

2. Execute [1/x].

3. Execute

4. Execute [1/x].

Polar/Rectangular Conversions

A point in a plane can be described by either polar or rectangular coordinates. Polar coordinates are r
(magnitude) and # (angle); rectangular coordinates are x (horizontal) and y (vertical). (An illustration
of these coordinates is on page 54.) Two functions, p+7 | and | z+p |, convert between polar and rectan-
gular coordinates.

 To convert polar coordinates to rectangular coordinates, execute [+ | (polar to rectangular).
» To convert rectangular coordinates to polar coordinates, execute [+ (rectangular to polar). The
resulting # will have the same sign as the y-coordinate input.

As input or output, 6 is interpreted according to the current angular mode. In the stack diagrams below,
note the order of the coordinates in the stack and that the stack doesn’t drop. Press [xzy] to see the
result returned to the Y-register.

T t [—| ¢ Tl t [—= ¢
Z| z |—=| z Z| z |— =z
Y| ¢ Y
X| r X X| x
N N
LASTX| ¢ | | r | LASTX| ! | x |
LP*R | (R*P]

Other Two-Number Functions

Raising a Number to a Power. To raise a number to a power, place the base number in the Y-
register and the power in the X-register, and then execute,*|. Stack drop is the same as for arithmetic
functions. Legal values for x depend on the value of y:

e If y is positive, x can be any number.

e If y is negative, x must be an integer.

190 Section 11: Numeric Functions

e If y is zero, x must be positive.
Any other combination causes a DATA ERROR.

Finding Roots. To calculate the nth root of a number:
1. Place the number in the Y-register.
. Place n in the X-register.

2
3. Execute .
4

. Execute

Modulo. For positive integers x in the X-register and y in the Y-register, executing calculates
the remainder when vy is divided by x (“y mod x”). For example, you can test whether y is evenly
divisible by x by executing and testing whether the result is zero. Stack drop is the same as for
arithmetic functions.

You can also use with numbers that are not positive integers. The general equation for y mod x is
y — x <y/x>, where <y/x> represents the largest integer not larger than y/x. Performing y mod x
when x = 0 returns an answer of y.

Statistics

There are two stages in performing statistical calculations. First you enter data from the stack; the
computer accumulates intermediate statistics from this data. Then you execute statistical calculations;
the computer uses the intermediate statistics to calculate the overall results, which are returned to the
stack. Basic statistical operations are described on pages 55 through 58.

Statistics Registers

The statistics registers are a block of six data registers in main memory that hold the intermediate
statistics accumulated from your data. When the computer memory is reset, the statistics registers are
Rll through R’lﬁ'

+ You can assign other storage registers to be the statistics registers by executing and specify-
ing the address of the first register in the block you select. This assignment is maintained by
Continuous Memory.

e To check the current assignment, execute [ZREG? |. The address of the first register in the block is
returned to the X-register.*

» To place zeros in all six statistics registers, execute [CL7]

* doesn’t check whether the assigned registers actually exist (that is, whether sufficient memory is allocated to data stor-
age), but only what the assigned address is.

Section 11: Numeric Functions 191

The statistics registers accumulate the following intermediate statistics from your data in the X- and
Y -registers.

The Statistics Registers

Regqister Contents
Ri4 Zx Summation of x-values.
Ry2 Zx? Summation of squares of x-values.
Ris Zy Summation of y-values.
Ris Zy? Summation of squares of y-values.
Ris Zxy Summation of products of x- and y-values.
Rqg n Number of data points accumulated. (Displayed.)

Entering Data
Accumulating Data Points. When you press [Z+]:

¢ The results of calculations using the numbers in the X- and Y-registers are added to the first five
statistics registers. If this causes the contents of a register to exceed +9.999999999 x 109, there is
no overflow error; the overflowed register contains +9.999999999 x 1099,

e The number of data points n in the sixth register is incremented and its current value is returned
to the X-register.

¢ The number previously in the X-register is saved in the LAST X register.

» Stack lift is disabled, so the next data entered will replace n in the X-register.
You can accumulate either one-value or two-value data points, as discussed in part I. If you are accu-
mulating only x-values, clear the Y-register first (0 (ENTER#]). Because and disable stack lift,
the Y-register will remain clear while you accumulate x-values.
Error Correction. To correct erroneous data that have been accumulated:

1. Re-enter the erroneous data. If you just accumulated the erroneous data, simply press to

retrieve them. (The erroneous y-value is still in the Y-register and the erroneous x-value was saved
in the LAST X register.)

2. Press . This function acts similarly to except that the results are subtracted from (rather
than added to) the first five statistics registers, and the sixth register is decremented (rather than
incremented).

3. Enter the correct data.
4. Press [Z+].

192 Section 11: Numeric Functions

Limitation on Data Values. The computer might be unable to perform some statistical calculations
if your data values differ by a relatively small amount. To avoid this, you should normalize your data by
entering the values as the difference from one value (such as the mean). This difference must then be
added back to any calculations of the mean. For instance, if your x-values were 665999, 666000, and
666001, you should enter the data as —1, 0, and 1; then add 666000 back to the relevant results.

Mean

Executing returns the arithmetic average X of the accumulated x-values to the X-register and
the arithmetic average y of the accumulated y-values to the Y-register, according to the following
formulas:

x=

2x — 2
_’ y= _X'
n n

Press [xzy] to display the resulting y-value. The number previously in the X-register is saved in the

LAST X register; the number previously in the Y-register is lost.

Standard Deviation

Executing returns the sample standard deviation s, of the accumulated x-values to the X-register
and the sample standard deviation s, of the accumulated y-values to the Y-register, according to the

following formulas:
s =\ /n2(=2) — (2x)? 4w \/E!f) — (2232
* nin — 1) ’ 4 nin — 1) ’

Press [xxy] to display the resulting y-value. The number previously in the X-register is saved in the
LAST X register; the number previously in the Y-register is lost.

Part III:
Memory in Detail

Section 12

Main Memory

Contents
Organization it 194
Program Memory 196
Program Lines 197
NUll Bytes 197
PacKing o e e 198
Alarm MemOrY ... e 198
User Keyboard Memory i e 198
Data Register Memory e 199
Allocation 199
Registers Above Rggot 199
Data Register Operations 199
Store and Recall 199
Register Arithmetic 201
Exchange e 201
Block Operations 201
Clearing Registers i e 202
Organization

Main memory contains 319 registers divided into two major groups.*

¢ One group contains the data storage registers. The number of main memory registers allocated to
data storage changes only when you execute a function to specify the allocation.

e The other group contains programs, alarms, key redefinitions, and uncommitted registers. The un-
committed registers are automatically committed to programs, alarms, and key redefinitions as
needed. However, the size of this group as a whole changes only when you change the number of
registers allocated to data storage.

* Main memory actually contains 320 registers, but program memory always contains at least one register for the permanent .END.

194

Section 12: Main Memory 195

Main Memory Configurations

Data
Registers

NN
ARV

Rog Rog
Data Data
Registers Registers
Roo Roo
—_—

Program Program
Memory Memory
.END. .END.
=

Alarm
Memory
User User
Keyboard Keyboard
Memory Memory

F'l(.v'mn')

Data
Registers

Roo

Program
Memory

.END.

Alarm
Memory

User
Keyboard
Memory

Data
Registers

Roo

Program
Memory

.END.

Alarm
Memory

User
Keyboard
Memory

196 Section 12: Main Memory

The preceding diagram illustrates five configurations of main memory—each column represents all of
main memory at one time. The leftmost column shows the default configuration, 100 registers allocated
to data storage and 219 registers for all other purposes. The columns to the right show main memory at
four later times. The computer handles most of these details automatically, but understanding main
memory will help you use it more effectively.

The first column represents the default configuration after Continuous Memory is cleared. There are
100 registers for data storage with the largest-numbered register at the top. The first register below the
data register block holds the permanent .END., which marks the bottom of program memory. The un-
committed registers below the permanent .END. are available for programs, alarms, and key
redefinitions.

The second column shows main memory after you've entered programs and assigned functions to keys.
Program memory consumes uncommitted registers as the permanent .END. is pushed down by new
program lines. User-keyboard memory consumes one uncommitted register for every two assignments.

The third column shows alarm memory after you have set alarms. The fourth column shows the result
after you allocate more registers to data storage, write more programs, set more alarms, and redefine
more keys. When all registers are committed, any operation that would consume main memory regis-
ters causes an error. If you are setting an alarm, the computer displays NO ROOM. Other operations
cause the computer to display PACKING and then TRY AGAIN.

If packing doesn’t produce a sufficient number of uncommitted registers, you'll have to reduce the size
of the data storage block or delete other memory contents. You can review the contents of program,
alarm, or User-keyboard memory by executing [CATALOG | 1, 5, or 6 respectively; also remember that
data and programs can be stored in data or program files in extended memory.

The fifth column shows the reappearance of uncommitted registers after you allocate fewer registers to
data storage and delete other memory contents.

Program Memory

When Continuous Memory is cleared, program memory contains only the permanent .END.. If you
press (][] and key in a program, each instruction is added just before the permanent .END.
which moves down to make room. As a result:

¢ The first instruction of the program you keyed in first is at the top of program memory.
¢ The last instruction of the program you keyed in most recently precedes the permanent .END. at
the bottom of program memory.

Catalog 1 shows the number of uncommitted registers along with the permanent .END. (.END.
nnn). There can be up to six bytes (nearly a full register) available in addition to nnn registers.

Section 12: Main Memory 197

Program Lines

Each function, number, or Alpha string in a program is considered to be a separate program line. The
number of program lines depends on how many functions, numbers, and Alpha strings are in the pro-
gram; the number of registers and bytes occupied by these program lines depends on the particular
functions and the lengths of the numbers and Alpha strings:

* Functions require from one to four bytes, depending on the particular function (and on the param-
eter if one is needed). The number of bytes required for each function is listed in the Function
Tables at the back of this manual.

* Functions with global labels as parameters require one byte per character in addition to their nor-
mal length.

* Numbers require one byte per digit, plus another byte for each (-], [CHS], or keyed in with the
number.

¢ Alpha strings require one byte per character, plus one additional byte for the entire string.

Null Bytes

Usually the first byte of an instruction immediately follows the last byte of the previous instruction,
but sometimes there are null bytes between instructions. Null bytes result from:

Deleting an Instruction. When you delete an instruction, the bytes it occupied are replaced by null
bytes.

Inserting an Instruction within a Program. If there are not already null bytes available where you
want to insert a new instruction, seven null bytes are inserted and all subsequent instructions bumped
down seven bytes in memory. The new instruction replaces inserted null bytes and, if the new instruc-
tion requires fewer than seven bytes, the rest of the inserted null bytes remain.

Program Lines That Are Numbers. The computer places a null byte before a string of bytes repre-
senting a number. This is done in case the previous program line is also a number. The null byte acts as
a spacer between the two program lines so they won’t be misinterpreted as a single number.

198 Section 12: Main Memory

Packing

When your program is complete, the only useful null bytes are those separating sequential program
lines that are both numbers. To eliminate unneeded null bytes, execute [GT0][-][-]. When memory is
packed, bytes within all programs move up in program memory to replace unneeded null bytes. (User-
keyboard memory is also packed as described below.) Main memory is packed when:

* You execute [PACK].
* You execute (G710 |[-] [
* You clear programs by executing [CLP | or [PCLPS].

» There are not enough uncommitted registers available to complete an operation that requires them.
Such operations are: increasing the data register allocation, entering a program line, or assigning a
function to a key.

Alarm Memory

When you set the first alarm, two uncommitted registers are consumed to define the limits of alarm
memory. (These registers are in addition to the registers consumed by the alarm itself.) They will be
released only when all alarms are cleared. The number of registers consumed by each alarm depends on
the type of alarm.

¢ Each alarm uses one register for the time and date of its next activation.
* An alarm with a reset interval requires one additional register.

¢ An alarm that uses the Alpha register requires one register for every 7 characters. (t is an ordinary
character for counting purposes.) For example, a message of 18 characters requires two registers for
the first 14 characters and one register for the last 4 characters, for a total of three registers.

User Keyboard Memory

When you assign a function to a key, that information is stored in User keyboard memory. An assign-
ment for either a function or global label in a plug-in module is also stored in User keyboard memory.
However, when you assign a global label listed in catalog 1 to a key, that information is not stored in
User-keyboard memory, but rather with that global label in program memory.

A register can hold two assignments. The first assignment requires one register; the second assignment
fits with the first assignment in that register. Similarly, each odd-numbered assignment adds another
register to the User keyboard memory, and each even-numbered assignment fills out the register.

An assignment is cancelled when you assign a different function to the same key, or if you explicitly
cancel the assignment by one of the methods on page 168. If both assignments in a register have been
cancelled and main memory is packed, that register becomes an uncommitted register.

Section 12: Main Memory 199

Data Register Memory

Allocation

Changing the Allocation. There are two functions that allocate main memory registers to data stor-
age, one for manual execution and one for program execution. Decreasing the number of registers loses
the data in the largest-numbered registers.

* You can manually change the allocation to data storage by executing and then specifying the
number of registers to be allocated.

* A program can change the allocation to data storage by placing the number of registers to be
allocated in the X-register and then executing [PSIZE],

Checking the Allocation. To check the current allocation of registers to data storage, execute
SIZE?], The total number of data storage registers is returned to the X-register.

Example. The following program routine will change the allocation only if the current allocation is
too small.

01 SIZE? Returns the current allocation to the X-register.

02 50 The number of data registers required by the program. The current
allocation (from line 01) is now in the Y-register.

03 X>Y? Is the required number of data registers greater than
the current allocation?

04 PSIZE If so, change the allocation to the required number.

Registers Above Rgg

If you allocate more than 100 registers to data storage, registers whose addresses exceed 99 can be
accessed only by indirect addressing. To emphasize this distinction, this manual shows three-digit ad-
dresses in parentheses: R(;5), for example. Unless you want to use indirect addressing in a loop or to
perform special main memory operations like register arithmetic, it’s often easier to use a data file in
extended memory.

Data Register Operations

Store and Recall

There are three sources/destinations for the data in data registers: the stack registers, the Alpha regis-
ter, and data files in extended memory. The functions that move data between the stack registers or the
Alpha register and the data registers in main memory are described in this section. All functions that
access data files in extended memory are discussed in section 13, “Extended Memory.”

200 Section 12: Main Memory

Specifying a Register as a Parameter. Most data register functions access just one register, whose
address must be specified as a parameter. You can specify a register in several ways.

¢ For Ry, through Rgg, key in the two-digit address.
¢ For convenience, Ry; through R;, can be specified with a single key in the top two rows.

o For the stack or LAST X registers, press [-] followed by (X], (Y], (2], [T], or [L].

¢ For any register to be addressed indirectly, press! | and then specify the address of the indirect
register by one of the means above.

Store. To copy data from the X-register into a data register, press and then specify the destina-
tion register. The X-register is unchanged; the data previously in the data register are lost.

Recall. To copy data from a data register into the X-register, press and then specify the source
register. The contents of the source register are unchanged. If stack lift was disabled, the recalled data
replace the contents of the X-register; otherwise the stack is lifted.

Alpha Store. To copy the six leftmost characters from the Alpha register into a data register, press
and then specify the destination register. The contents of the Alpha register are unchanged and
the data previously in the destination register are lost.

e A punctuation mark counts as one of the six characters.

» A string of digits in the Alpha register is not a number. If you store Alpha digits in a register, the
contents appear to be a number, but you can’t perform numeric operations on those contents.

o If you do want to perform numeric operations on Alpha digits in the Alpha register, you must use
to interpret the digits as a number and place the number in the X-register (page 311).

» Copying data from the Alpha register to the X-register by using is not like [RCL]—that is,
the stack does not lift and so the previous contents of the X-register are lost.

To copy more than six characters into a data register you must alter the contents of the Alpha register
before repeating | ASTO | (or you will copy the same characters again).

» To remove the six characters you already copied, execute (Alpha shift). The six leftmost
characters are shifted out of the Alpha register.

» To rotate the six characters you already copied to the right-hand end of the Alpha register, place 6
in the X-register and execute (Alpha rotate).

Alpha Recall. To copy data from a data register into the Alpha register, execute [ARCL]| and then
specify the source register. The contents of the source register are unchanged, the data are appended to
the contents of the Alpha register, and character entry is activated. If you want the copied data to start
a new message, execute | CLA | before recalling that data.

Section 12: Main Memory 201

Register Arithmetic
Register arithmetic enables you to combine a number in the X-register and a number in a data register
without recalling the stored number to the stack.

¢ Executing nn adds the number in the X-register to the number in R,,,, and then stores the
sum in R,,,,.

o Executing (=] nn subtracts the number in the X-register from the number in R,,, and then
stores the difference in R,,,,.

« Executing nn multiplies the number in the X-register by the number in R,,, and then
stores the product in R,,,.

» Executing nn divides the number in the X-register into the number in R,,, and then
stores the quotient in R,,,,.

As with (STO], the original number in Rnn is lost and the number in the X-register is unchanged. This
allows you to reuse a constant in the X-register without executing [LASTx],

Exchange

Note that and duplicate one number and lose another. To move numbers without duplicat-
ing or losing any data, execute [x<>] and specify the register whose contents you want to exchange with
the X-register.

Block Operations

You can move or swap blocks of data registers by using [REGMOVE | or [REGSWAFP |. Both use a control
number sss.dddnnn in the X-register to define the source and destination blocks, where:

¢ R, is the first (smallest-addressed) register in the source block;

* Rgyg is the first (smallest-addressed) register in the destination block;

e nnn is the number of registers in both blocks. If you don’t specify nnn, the computer assumes
nnn = 001.

The blocks can’t overlap—make sure that |sss — ddd| = nnn.

Moving Register Contents. To copy the source block into the destination block, place the control
number in the X-register and execute [REGMOVE |. As with [STO], the contents of the source block are
unchanged and the previous contents of the destination block are lost.

Swapping Register Contents. To exchange the contents of two blocks of registers, place the control
number in the X-register and execute [REGSWAP |. Which block is called the source and which is called
the destination is immaterial.

202 Section 12: Main Memory

Clearing Registers
Clearing a Single Register. To clear a single register, store zero in that register.

Clearing a Block of Registers. It's wise to begin a program by clearing the data registers used by
that program. To clear a block of registers, execute | CLRGX | (clear registers by X) with a control number
in the X-register. The control number has the form bbb.eeeii where:

* Ry (begin) is the first (smallest-addressed) register to be cleared;

* R,.. (end) is the last (largest-addressed) register to be cleared;

® i is the increment if you want only every iith register cleared. If you don’t specify ii, the computer
assumes i1 = 01.

As an example of using the optional increment, suppose you have a'4 x 4 matrix stored sequentially in
memory, row by row. You can clear any row of the matrix by specifying just the first and last addresses
in the row—you don’t need to specify an increment. But to clear a column (whose entries aren’t
sequential in memory), first specify the addresses for the first and last entries in that column, and then
set it = 04 to clear only the registers for that column.

Ry is cleared even if bbb > eee or bbb + it > eee. The sign of the control number and any excess
fractional digits are ignored.

Clearing All Registers. To clear all data registers, execute | CLAG |.

Section 13

Extended Memory

Contents
Introduction 205
Files in Extended Memory e 205
Header Information 205
Specifying a File 206
Extended Memory Directory 206
Checking File Size 208
Purging a File 208
Program File Operations 208
Saving a Program 208
Getting a Program 209
Automatic Key Redefinition 211
Checking Program Size 211
Creating Data and Text Files 211
Creating Data Files e 211
Creating Text Files 212
Resizing Files 213
Clearing Files 213
Pointers in Data and Text Files 213
Structure of Data Files 214
Structure of Text Files 214
Pointer Operations 215
Data File Operations e 216
Accessing All Data Registers 217
Accessing a Block of Data Registers 218
Accessing the X-Register 220
Text File Operations 222
Checking Available Bytes 222
Record Operations 222
Character Operations 224
Searching a File i 226
Copying Data into the Alpha Register 226
Accessing Mass Storage Files 227

Section 13: Extended Memory 205

Introduction

Extended memory is an extension of main memory, but it also has special advantages of its own. All
information in extended memory is organized into files; there are three types of files for three types of
information.

» A program in main memory can be stored in a program file. You must return the program to main
memory to execute it or edit it.

* Register contents can be stored in a data file, which is a collection of registers. A single data-file
operation can access all data registers in main memory, a block of data registers, or the X-register.
Directly accessing the X-register makes extended memory an alternative to main memory as well
as an extension of it.

e Alpha data can be stored in a text file (also called an ASCII file), which is a collection of Alpha
strings. The size and structure of text files, along with direct keyboard access to them through a
text editor, give text files an Alpha capability far surpassing main memory.

Because each file requires two registers for the computer’s use, the number of extended memory regis-
ters available for your use depends on the number of files. A single file can contain up to 124 registers
for your use; two files can contain up to 122 registers for your use; in general, n files offer 126 — 2n
registers for your use.

You can increase the number of extended memory registers by adding one or two HP 82181A Extended
Memory Modules. (These modules are described in appendix E.) Each module adds 238 registers. The
maximum number of extended memory registers is therefore 124 + 238 + 238 = 600, almost twice as
many registers as in main memory.

Files in Extended Memory

Header Information

Each file starts with a header, two registers that describe the file. Although you never access headers
directly, you should be aware of the memory space and the information involved. A header contains:

The File Name. You give each file a name when you create the file. The name can include any char-
acters except commas and a maximum of seven characters.* You enter the file name into the Alpha
register when you create the file and when you specify the file.

The File Type. A file may be a program file, a data file, or a text file. A program file is a copy of a
program in main memory; a data file is a collection of data registers; and a text file is a collection of
character strings.

* A file name can’t consist of seven bytes of decimal value 255.

206 Section 13: Extended Memory

The File Size. This is the number of extended-memory registers the file requires. For program files
the header also contains the program size in bytes.

The Pointer. Data and text files use a number called a pointer to indicate which element in the file to
access. Program files do not use pointers.

Specifying a File
You can access only one file at a time. The computer keeps track of which file you accessed last; this
file is called the current file. Only some extended memory functions can specify which file to access.
» Some functions require a file name in the Alpha register. Program-file functions and destructive
functions are examples.

+ Some functions can specify a file name in the Alpha register. If the Alpha register is empty, these
functions act on the current file.

» Some functions never specify a file name in the Alpha register. These functions act only on the
current file.

Extended Memory Directory

Both [EmDIR] (extended memory directory) and [EMDIRX] (extended memory directory by X) are
programmable functions that access the files in extended memory. The function [EMDIR], which lists all
files, is designed for interaction with the user; the function [EMDIRX], which returns information about
one specified file, is designed for automatic operations in a program.

Using [EMDIR |. For convenience you can manually execute as catalog 4. If you want to assign
it to a key or enter it as a program line, you must use the function’s Alpha name [EvDIR]. When you
execute [EMDIR]:

o The files are listed in the order that you created them.

« Each file’s name, type (P = program, D = data, A = ASCII or text), and number of registers are
shown. For example, the display for a data file ABC that occupies 20 registers is:

ABC D020

« You can speed up the listing by holding down any key except or [ON].
» You can stop the listing by pressing (R/S], and restart the listing by pressing again.

e When the listing is stopped you can go to the next file by pressing or return to the previous
file by pressing [EST|. Pressing while the last file is displayed or (257 | while the first file is
displayed has no effect.

Section 13: Extended Memory 207

You can either allow the computer to complete the listing and exit [EMDIR | automatically, or else you
can terminate yourself. If you allow the listing to run past the last file, the computer automati-
cally exits and returns the number of registers available for the next file you create. The two
registers required for a new header are included in this calculation, so you can use the total number of
registers indicated for your own data. This number is returned to the X-register, lifting the stack unless
stack lift is disabled.

When the computer automatically exits [EmDIR] it doesn’t change which file is the current file.
Alternatively, you can make any file the current file by stopping the listing with that file displayed and
then pressing [«]. This terminates [EMDIR |; the number of available registers is not returned to the X-
register.

If there are no files in extended memory the computer displays DIR EMPTY and returns the number of
available registers to the X-register, lifting the stack unless stack lift is disabled.

Using [EvDIAX). To determine the name and type of the nth file in extended memory, place n in the
X-register and execute [EMDIRx |. For example, n = 1 for the file you created first (which is also the file

displayed first by [EmDIR).
If the nth file exists:
« The name of the nth file is returned to the Alpha register.
o The file type is returned to the X-register as a two-letter code:*

PR = program file.
DA = data file.
AS = ASCII (text) file.

» n is placed in the LAST X register.

o The nth file becomes the current file.

If the nth file doesn’t exist:
¢ The Alpha register is cleared.
e Zero is returned to the X-register.
e n is placed in the LAST X register.
¢ The computer doesn’t change which file is the current file.

Note that [EmMDIRX] does not lift the stack. The input n is the absolute value of the integer part of the
number in the X-register.

* A positive integer is returned if the computer doesn’t recognize the file type.

208 Section 13: Extended Memory

Using [EMROOM]. To check how many registers are available for the next file you create, execute
[EMROOM | (extended memory room). The result takes into account two registers for one new header; if
you plan to create more than one new file, subtract two registers for each additional file. The result is
returned to the X-register, lifting the stack unless stack lift is disabled. (This is the same information
that provides if it exits automatically.)

Checking File Size

To check the number of registers in a file (excluding the header), place the file name in the Alpha
register and execute (file size). The result is returned to the X-register, lifting the stack unless
stack lift is disabled. You can check the size of the current file by clearing the Alpha register and

executing [FLSIZE .
Purging a File

To remove a file from extended memory—both its header and its contents—place the file name in the
Alpha register and execute (purge file). All later files in extended memory move up to fill the
space previously held by the purged file.

There is no current file after you execute [PURFL |, so the next extended memory function executed must
specify a file name to define a new current file.

Program File Operations

Program files are the simplest type of extended memory file. A program file comprises a two-register
header plus an exact copy of a program from main memory.

Saving a Program

You can create a file that is a copy of a program in main memory by first specifying the program to be
copied and the new file’s name in the Alpha register and then executing (save program). There
are three ways to specify the program and name the new file:

e Indicate the program to be copied by any global label in that program, fol- Alpha Register
lowed by a comma, followed by the name you want to give the new file.

label,file name

« If you want to use the global label for the name of the new file, you can place Alpha Register
only the global label in the Alpha register.

label

 If the program to be copied is the current program in main memory, you can Alpha Register
place just a comma and the name of the new file in the Alpha register.

file name

Section 13: Extended Memory 209

If a global label is in the Alpha register, [SAVEP | copies the program closest to the bottom of program
memory (that is, listed last in catalog 1) containing that global label.

The file name can include any characters except commas and a maximum of seven characters. The
eighth and all subsequent characters, or a comma and all subsequent characters, will be ignored.

Note: If the new file name (whichever of the three ways it is defined) is identical to the name of an
existing program file, the existing program file is overwritten.

Getting a Program

There are two functions, (get program) and (get subroutine), that copy a program from
extended memory to main memory. The functions both place the copied program at the bottom of

program memory, but they differ in other respects.

o [GETP | deletes the program that was at the bottom of program memory and (in some cases) makes
the first line of the recalled program the current program line.

. retains the program that was at the bottom of program memory and never alters the
current program line.

Keyboard Execution.

o If you want to replace the program at the bottom of program memory, place the name of the
program file in the Alpha register and execute The first line of the recalled program be-
comes the current program line; press to run the program.

» If you want to run the recalled program by pressing but you want to save the program at the
bottom of program memory, press | GTO | [-][-] before you execute (The null program created
by [GTO | (-] -] will be replaced.)

¢ If you want to save the last program, and especially if you're recalling several programs at once,
place the name of the program file in the Alpha register and execute This doesn’t change
which program line is the current program line.

210 Section 13: Extended Memory

Program Execution. operates in two different ways, depending on whether the program
containing is at the bottom of program memory; operates identically in either case.
This means that there are three options for a program to recall another program from extended
memory:

o If a program executes [GETSUE], the recalled program is placed at the bottom of program memory
and execution continues with the instruction following [GETSUE].

e If a program not at the bottom of program memory executes [GETFP |, the recalled program replaces
the program at the bottom of program memory and execution continues with the instruction fol-

lowing .

o If a program at the bottom of program memory executes [GETF], that program is replaced by the
recalled program and execution continues with the first line of the recalled program.

Examples. The three options above give you great flexibility to recall a program from another pro-
gram, and in many situations there is more than one option that will work. These examples illustrate
situations in which you would select a particular option. Suppose that MAIN is a program in main
memory (but not at the bottom) and that AA, BB, and CC are programs in extended memory that MAIN
calls as subroutines.

The first four examples illustrate the first two options, using[GETSUB] and [GETP | in the program MAIN.
To ensure that MAIN isn’t at the bottom of program memory you could press| G710 | (][] before execut-
ing MAIN (to create a null program), or MAIN could first use to recall a dummy program
containing only a global label and an instruction. (Recalling a dummy program could also enable
MAIN to conclude with [PCLPS], clearing the dummy program and all subroutines recalled by MAIN.)

¢ If MAIN calls AA, BB, and CC as subroutines and there is enough room in main memory for all
three programs: use three times at the start to recall AA, BB, and CC, and use as
needed to call each subroutine.

o If there isn’t enough room for AA, BB, and CC at once (and MAIN always calls them in that order):
use [GETSUB | and [XEQ] to call AA, and use [GETP | and [XEQ] to call BB and CC.

e If there isn’t enough room for AA, BB, and CC at once (and you don’t know in advance in which
order MAIN will call them): use [GETSUB], (XEQ], and [PCLPS| for each subroutine call; or place a

null program or dummy program at the bottom of program memory and then use [GETP] and
for each subroutine call.

o If AA contains a second global label DD and you want the subroutine call to begin at DD: use
to recall AA and then use DD to start the subroutine at DD.

The next two examples illustrate the first and third options, using [GETSUB | and [GETP | in the subrou-
tine AA. Assume that MAIN has recalled AA to the bottom of program memory.

o If AA branches to BB, use in AA to recall BB. This automatically clears AA and transfers
execution to BB.

o If AA calls BB as a subroutine, use [GETSUE | and [XEQ] in AA to call BB. This leaves AA intact in
program memory so that execution can return to AA after BB finishes.

Section 13: Extended Memory 211

Automatic Key Redefinition

Recall from section 10 that a global label assigned to the User keyboard contains that assignment
information. (This is true only for programs listed in catalog 1.) When copies a program into
extended memory, any current assignments are saved along with the assigned global labels. If the User
keyboard is active (that is, if flag 27 is set) when [GETSUB] or [GETP | recall a program from extended
memory, any assignments stored with that program will be reactivated.

Checking Program Size

You can check how many bytes are in a program stored in a program file by using [RCLPT | or [RCLPTA]
(These functions are primarily used with data and text files; this application with program files is
distinct from their primary purpose.) Both functions return the number of bytes to the X-register,
lifting the stack unless stack lift is disabled.

e If the program file is not the current file, place its name in the Alpha register and execute
(RCLPTA].

o If the program file is the current file, execute or else clear the Alpha register and execute
(RCLPTA].

Creating Data and Text Files

You must explicitly allocate space in extended memory for each data or text file. Before creating a file
you can check how many registers are available by executing (also available as | CATALOG | 4) or
[EMROOM |. The number returned to the X-register is the maximum number of registers you can allocate
to a new file.

Creating Data Files

Use (create file/data) to create a data file as follows.

1. Place the name of the new file in the Alpha register. The name can include any characters except
commas and a maximum of seven characters.

2. Place the number of registers you want to allocate to the file in the X-register. (Do not include
registers for the header.)

3. Execute [CRFLD .

This new file is now the current file, and its pointer is set to the first register.

212 Section 13: Extended Memory

Creating Text Files

Text files are created similarly to data files, but first you must translate the memory requirements of
your file into registers. A rough estimate is usually sufficient because you can adjust the size later; the
exact formula given here can be useful when a program creates the file.

Shown below is a text file of three records: ABC, ABCDEFGHI, and ABCDEFG. At the start of each
record is an extra byte (like creates) that indicates the length of that record. A record can
contain up to 254 characters.

Header Registers. Contain the file name, file type,
file size, and current pointer value.

3 A cl|9 B

c|D G|H|I Text-String Registers. The number of text-string
7lalBlclo F registers is the size of the file.

G| *

The “*” at the end of the file is a byte that indicates the end of the current contents of the file. (The
decimal value for this byte is 255; this is why each record must have a length less than 255.) This byte
and the bytes indicating record lengths are invisible to you; the file looks like the diagram on page 215
when you use it. The only time you must consider these extra bytes is when you create a text file.

If you know exactly how many records and characters will be in the file, you can calculate exactly how
many registers are required.

1. Add the number of records to the number of characters in all records.

2. Add 1 to the result.

3. Divide the result by 7. If there is any remainder, round up to a whole number.

Now use (create filefASCII) to create the file.

4. Place the name of the new file in the Alpha register. The name can include any characters except
commas and a maximum of seven characters.

5. Place the number of registers to be allocated in the X-register.
6. Execute [CRFLAS].

The new file is now the current file, and its pointer is set to the first character in the first record.

Section 13: Extended Memory 213

Resizing Files
You can change the number of registers allocated to a data or text file by executing (resize file)
as follows:

1. Make sure that the file to be resized is the current file.

2. Place in the X-register the number of registers to be allocated.

3. Execute [RESZFL].

The integer part of the number in the X-register becomes the new size of the current file. The pointer
is unchanged.

Increasing File Size. Before enlarging a file you can check how many registers are available by ex-
ecuting [EMDIR | or [EMROOM]. You can usually add two registers more than the result, because
and reserve two registers for a new header that isn’t required in this case. However, if the
number returned is zero, there might be two, one, or no registers left.

Reducing File Size. If you reduce the size of a file by n registers, the last n registers in the file are
lost. With a positive number in the X-register, executes only if no registers currently in use will
be lost. A register is considered in use if it:

¢ Contains a non-zero number (for data files).
e Contains characters or the end-of-file byte (for text files).
If the number in the X-register is positive and registers in use would be lost, causes a FL SIZE

ERR. For data files you can bypass this protection by a negative number in the X-register. In this case,
the last n registers are lost regardless of their contents.

Clearing Files
You can clear the contents of a data or text file without purging the header as well by executing
(clear file) as follows:
1. Place the name of the file in the Alpha register.
2. Execute [CLFL].
The cleared file becomes the current file. If it’s a data file, all registers contain zero and the pointer is

set to the first register. If it’s an text file, no records exist and the pointer is set to the first character in
the first record to be added.

Pointers in Data and Text Files

Data and text files are collections of registers and Alpha strings, respectively, with pointers that enable
you to access individual elements in those collections. The structures of data and text files are de-
scribed first, followed by pointer operations.

214 Section 13: Extended Memory

Structure of Data Files

A data file comprises two header registers and one or more data registers. The header contains the
current pointer value, which indicates the register that will be accessed next.

The diagram below shows a data file of five registers. Note that the pointer values start with 000 for
the first register and are greater by one for each subsequent register.

Header Registers. Contain file name, file type, file
size, and current pointer value.
000 data
001 data
002 data | E_)ata.neglsters. The number of data registers is the
file size.
003 data
004 data
t
Pointer
Value

Structure of Text Files

A text file comprises two header registers and one or more registers that contain your records. Each
record is a string of up to 254 characters. This means that records can be different lengths, and that
the pointer for a text file (contained in the header) has two components:

Record Pointer. The integer part of a text-file pointer is the record pointer. Its value indicates the
current record.

Character Pointer. The fractional part of a text-file pointer is the character pointer. Its value in-
dicates the current character within the current record. Functions that act on an entire record ignore
this part part of the pointer.

A text-file pointer is represented as rrr.ccc, where rrr is the record pointer and ccc is the character
pointer. In the diagram below, which shows a text file containing three records, the pointer values for
the three A’s are 000.000, 001.000, and 002.000. The pointer values for H and I are 001.007 and 001.008.
(This diagram illustrates how to interpret text-file pointers. The diagram on page 212 shows the same
file as it would actually be stored in registers.)

Section 13: Extended Memory 215

Record Pointer

Value
——
000 [A | B|C
001 A|B|C|ID|E|F|G|H]|I
002 ([A|B|[C|D|E|F|F
t t t t t t t t t
0O 0 0 0O OO O O O
0O 0 0 0 0 00O OO Character Pointer Value
0 1 2 3 4 5 6 7 8

Pointer Operations

Pointers allow you to access individual elements within data and text files. The current value of a
pointer indicates the current register or the current record and character; the pointer must be set before
you execute the function that accesses that register, record, or character.

Often you will explicitly set a pointer when you first access a file, preparing for the subsequent func-
tions that will access the indicated data. Most functions that use pointers also automatically advance
the pointer. This makes it possible to access sequential elements simply by repeating the function.

There are times when the value of a pointer doesn’t correspond to any stored information. For example,
if a function accesses the last register in a data file and then advances the pointer, the new pointer
value doesn’t correspond to a register in the file. If you repeated that function, an END OF FL error
would result.

Setting a Pointer. To set a pointer, execute (seek pointer by Alpha) or (seek
pointer).
If the desired file is not the current file, use [SEEKPTA].

1. Place the name of a data or text file in the Alpha register.

2. Place the desired pointer value in the X-register.

3. Execute [SEEKPTA].

The file named in the Alpha register becomes the current file, with its internal pointer set to the
number in the X-register. For a data file, the integer part of this number sets the register pointer. For a
text file, the integer part sets the record pointer and the first three digits of the fractional part set the
character pointer.
If the desired file is already the current file, you can either:

e Place the pointer value in the X-register and then execute [SEEKPT]; or

 Clear the Alpha register, place the pointer value in the X-register, and then execute [SEEKPTA].

216 Section 13: Extended Memory

Alpha Register

file name (or blank)

Named (or
X-Register Current) File

pointer value G pointer value

Checking a Pointer Value. You can check the current value of a pointer by using (recall
pointer by Alpha) or (recall pointer). If the desired file is not the current file, use as
follows:

1. Place the name of the file in the Alpha register.
2. Execute [RCLPTA].

The file named in the Alpha register becomes the current file. Its current pointer value is returned to
the X-register, lifting the stack unless stack lift is disabled. For a data file, the number represents the
register pointer. For an text file, the number has the form rrr.cce, where rrr is the record pointer and ccc
is the character pointer.

You can check the current pointer value for the current file by executing or by clearing the
Alpha register and executing [RCLPTA|. The pointer value is returned to the X-register as described
above. [RCLPTA | and [RCLPT | also have a secondary use with program files, described on page 211.

Data File Operations

Data files are useful as an extension of main memory and as an alternative to main memory. For
operations such as register arithmetic and indirect addressing, your data must be in main memory; but
there are also extended memory operations that can’t be duplicated in main memory. The functions
that access data registers in main memory are described first, followed by the functions that access the
X-register.

Section 13: Extended Memory 217

Accessing All Data Registers

You can copy all data registers in main memory into a data file by using (save registers), and
you can copy all or some of a data file into main memory by using (get registers). In either
direction, data moves between registers with corresponding addresses and pointer values: between Ry
in main memory and register 000 in the data file, between R, and register 001, and so on. The current
value of the pointer doesn’t affect these functions, but both functions advance the pointer just past the
last file register accessed.

Copying Data From All Main Memory Data Registers. To copy each data register in main mem-
ory into the corresponding register in a data file, place the name of the data file in the Alpha register
and then execute [SAVER]. If the desired file is already the current file, you can simply clear the Alpha
register and execute [SAVER],

If there are fewer destination registers (in the data file) than source registers (in main memory), no
registers are copied and an END OF FL error occurs. This is because expects to save the data in
all main memory registers.

Alpha Register

file name (or blank)

Main Memory Named (or Current)
Data Registers Data File

Roo data G data 000

Rmax data

218 Section 13: Extended Memory

Copying Data Into All Main Memory Data Registers. To copy the registers in a data file into the
corresponding data registers in main memory, place the name of the data file in the Alpha register and
then execute [GETR . If the desired file is the current file, you can simply clear the Alpha register and
then execute [GETR].

Starting with file register 000 and main memory register Ry, moves data between corresponding
registers until there are no further registers of one type or the other. (This is unlike [SAVER], which
causes an error if not all main memory data registers are accessed.)

Accessing a Block of Data Registers

You can move data between a block of data registers in main memory and a block of the same size in a

data file by using (save registers by X) and (get registers by X). The data file must be
the current file. The two blocks of registers are defined as follows:

e The block of registers in main memory is defined by a control number in the X-register. The con-
trol number has the form bbb.eee, where Ry, is the register that begins the block and R,,, is the
register that ends the block.

o The block of registers in the data file is defined by the current pointer value and by the control
number in the X-register. The block begins with the current register and includes the eee — bbb
registers that follow.

The data move between Ry, in main memory and the current register in the file, between Ry, 4 1 and
the next register in the data file, and so on. Both [SAVERX] and [GETRX] advance the data file’s pointer
just past the last register accessed. If there are fewer file registers (from the current register to the end
of the file) than specified for the block in main memory, no registers are copied and an END OF FL error
oceurs.

Copying Data From a Block of Main Memory Data Registers. Use to copy the contents
of a block of registers in main memory into a block of registers in a data file:

1. Be sure that the destination file is the current file and that its pointer is set to the first register to
receive data.

2. Place the control number bbb.eee in the X-register.

3. Execute [SAVERX|.

Section 13: Extended Memory

—

X-Register
bbb.eee
Current Data File
Main Memory .
Data Registers pointer=rrr
—-—'_—-n\-_- —-—-__—-\—-
Robp Jata C— data rer

HEEB data <M7“_~> data

‘—-____.- -—-_—-‘_;

—|
GETRX

219

Copying Data Into a Block of Main Memory Data Registers. Use to copy the contents of
a block of registers in a data file into a block of data registers in main memory:

1. Be sure that the source file is the current file and that its pointer is set to the first register to send

data.

2. Place the control number bbb.eee in the X-register.

3. Execute [GETRX].

220 Section 13: Extended Memory

Accessing the X-Register

You can move data between the X-register and a data file by using (save X) and (get X).
The data file must be the current file and the register to be accessed must be the current register. Both
functions advance the data file’s pointer just past the register accessed.

Storing the Contents of the X-register. Use to copy the contents of the X-register into a
data-file register:

1. Be sure that the destination file is the current file and that the destination register is the current
register.

2. Execute .

The X-register is unchanged and the previous contents of the destination register are lost. (This is

similar to J)

p——

Current Data File

pointer=rrr

X-Register &

data C::) data rer

]

Recalling Data to the X-register. Use to copy the contents of a data-file register to the X-
register:

1. Be sure that the source file is the current file and that the source register is the current register.

2. Execute [GETX].

Section 13: Extended Memory 221

The source register is unchanged; the stack lifts and the contents of the T-register are lost, unless stack
lift is disabled. (This is similar to [RCL].)

Example. Suppose that a program needs to store the stack contents before using the stack to set an
alarm, and then later needs to return those contents to the stack. This is done in three stages, listed
below as separate routines.

The first routine creates a data file named STACK; it is executed at the beginning of the program,
before the stack contains the values to be stored.

01TSTACK Places the file name in the Alpha register.
02 4 Places the number of registers in the X-register.
03 CRFLD Creates a data file named STACK containing four registers.

The second routine copies the numbers in the stack into the file; it is executed just before placing the
alarm parameters in the stack.

01TSTACK Places the file name in the Alpha register.

02 STO L Saves the contents of the X-register in the LAST X register.

03 CLX Places zero in the X-register (without lifting the stack).

04 SEEKPTA Makes STACK the current file and makes register 000 the current register.

05 X< L . Returns the contents saved in the LAST X register to the X-register
(without lifting the stack).

06 Rt These steps alternately roll the stack up and copy the current contents of

07 SAVEX the X-register into a register in the file STACK. The number ¢ (that started

in the T-register) is copied first, followed by z, y, and x. The pointer

08 Rt advances automatically, placing ¢ in 000, z in 001, y in 002, and x in 003.
09 SAVEX This order simplifies the third routine, which restores these values to the
10 Rt stack.

11 SAVEX

12 Rt

13 SAVEX

The third routine copies the numbers back into the stack; it is executed after setting the alarm.

01TSTACK Places the file name in the Alpha register.
02 CLX Places zero in the X-register.
03 SEEKPTA Makes STACK the current file and makes register 000 the current register.

222 Section 13: Extended Memory

04 GETX Recalls t to the X-register, lifts the stack, and advances the pointer.
05 GETX Recalls z to the X-register, lifts the stack, and advances the pointer.
06 GETX Recalls y to the X-register, lifts the stack, and advances the pointer.
07 GETX Recalls x to the X-register, lifts the stack, and advances the pointer.

Text File Operations

Most of the operations covered here move data between a text file and the Alpha register. Any informa-
tion in the Alpha register—characters from the Alpha keyboard or bytes created by [(XT0A]—can be
moved to and from a text file by these operations.

For simple operations it is easier to use the Text Editor ([ED]) described in the next section. If you
want to review a text file or edit it using standard characters, lets you see what you’re doing while
you're doing it. However, any program that automatically manipulates text files must use the operations
covered here.

Checking Available Bytes

Before you add data to an text file you can check how many bytes are available, using (ASCII
room). The text file must be the current file. returns the number of available bytes to the X-
register, lifting the stack unless stack lift is disabled. Remember that each new record requires one
extra byte for overhead. If there is not enough room, refer to on page 213.

Record Operations

You can append, insert, or delete a record in a text file by using (append record), [INSREC |
(insert record), or (delete record). The desired file must already be the current file. Both
(APPREC | and [INSREC | make the contents of the Alpha register a new record in that file and advance the
pointer just past the last character in the new record. This sets the pointer properly for adding char-
acters to the new record.

Appending a Record. Use to append a new record:
1. Be sure that the desired text file is the current file.
2. Place the data for the new record in the Alpha register.

3. Execute [APPREC].

Section 13: Extended Memory 223

Inserting a Record. Use [INSREC] to insert a new record:

1. Be sure that the desired text file is the current file and that the record pointer is set to the desired
position of the new record. (The value of the character pointer doesn’t matter.)

2. Place the data for the new record in the Alpha register.
3. Execute [INSREC].

Alpha Register

XyZ

Current Text File

pointer=rrr.ccc

N

N /—k

abc abc
rer defg { > Xyz rer
hi defg

A

—]

R

224 Section 13: Extended Memory

Deleting a Record. Use to delete a record:

1. Be sure that the desired text file and record are the current file and record. (The value of the
character pointer doesn’t matter.)

2. Execute [DELREC |.

The record pointer value is unchanged, but the current record is now the record that previously fol-
lowed the deleted record. The character pointer is set to 000.

Character Operations

You can append, insert, or delete characters in a record by using (append characters),
(insert characters), or (delete characters). The desired record must already be the current
record in the current text file. Both [APPCHR) and [INSCHR] add the contents of the Alpha register to the
record and advance the pointer just past the last character added. This allows you to repeat either
function immediately after placing new data in the Alpha register.

Appending Characters. Use to append characters to a record:

1. Be sure that the desired text file and record are the current file and record. (The value of the
character pointer doesn’t matter.)

2. Place the characters to be appended into the Alpha register.

3. Execute [APPCHR |.

Inserting Characters. Use [INSCHR | to insert characters in a record:

1. Be sure that the desired text file and record are the current file and record, and that the character
pointer is set to the desired position for insertion.

2. Place the characters to be inserted into the Alpha register.
3. Execute [INSCHR].

Section 13: Extended Memory 225

INSCHR

Alpha Register

Xyz

>

Current Text File

pointer=rrr.ccc

rrr | ...abecdefghi... ...abc xy zdef...

A

rrr

A

cce

1

X-Register

Deleting Characters. Use to delete characters in a record:

1. Be sure that the desired text file and record are the current file and record, and that the first
character to be deleted is the current character.

2. Place in the X-register the number of characters to be deleted.
3. Execute [DELCHR].

The character pointer value is unchanged, but the current character is now the character that pre-
viously followed the last deleted character.

226 Section 13: Extended Memory

Searching a File
You can search a text file for a particular string of characters by using (position in file) as
follows:

1. Make sure that the file to be searched is the current file.

2. Set the pointer to the position where you want the search to begin.

3. Place the target string in the Alpha register.

4. Execute [POSFL].

If the target string is found:
o The pointer is set to the first character of the string.

o This pointer value is returned to the X-register.

If the target string is not found:
« The text pointer is unchanged.
o A value of —1 is returned to the X-register.
In either case the Alpha register is unaltered, and the stack lifts unless stack lift is disabled. If the

target string was found, you can recall that part of the file to the Alpha register using the following
functions.

Copying Data into the Alpha Register
(get record) and (Alpha recall record) copy characters from a text record into the
Alpha register. They differ only in whether they first clear the Alpha register.

e clears the Alpha register before copying characters.

. appends the copied characters to the previous contents of the Alpha register.

Otherwise, the two functions follow the same procedures.
o Both start with the current character in the current record in the current file.

» Both copy sequential characters until the last character in the record is copied or until the Alpha
register is full. (This means that does nothing if the Alpha register is already full.)

o Both clear flag 17 if the last character in the record is copied or set set flag 17 if not. (For certain
HP-IL peripherals, this flag controls whether sequential outputs are considered separate lines.)

¢ Both advance the character pointer just past the last character copied.

To execute [GETREC] or [ARCLREC |, make sure that the desired file is the current file and that the
pointer is set as intended, and then execute the function. After you have processed the recalled data in
the Alpha register, you can test flag 17 to check whether there are more characters to be copied in that
record.

Section 13: Extended Memory 227

Accessing Mass Storage Files

You can make permanent copies of text files with a mass-storage device controlled by an HP 82160A
HP-IL Module. (save ASCII) copies a text file from extended memory to mass storage, and
(get ASCII) copies the file from mass storage back to extended memory. The following rules
apply to saving and recalling files:

o The destination file must exist before the source file can be copied to it. To create the destination
file on the mass storage medium, use (a function in the HP-IL module) to create a data
file. It will become a text file when:you execute [SAVEAS],

o If the destination file is smaller than the source file, as much data as possible is copied before an
END OF FL error stops program execution. You can set flag 25 (Error Ignore) if you intend to make
an incomplete copy of the source file.

o Specify the source and destination files, separated by a comma, in the Alpha register.

Alpha Register

source-file name,destination-file name

If the two files have the same name, you can place just that name in the Alpha register.

Section 14

The Text Editor

Contents
Introduction 228
The Text Editor Display i 229
The WINAOW 229
ANNUNCIALOrS 230
Text Editor ((ED]) Operations i, 230
Entering and Exiting the Text Editor 230
Default Conditions 230
The Keyboard 230
The Numeric Keypad 232
The Character Control Keys 232
The Record Control Keys i, 232
oS 233
Using iNa Program 233 ?
Introduction

This section tells you how to use the Text Editor, a tool for working with text (ASCII) files. The
discussion here assumes that you are familiar with the creation, deletion, and memory requirements of
text files as described in section 13.

Adjusting the record/character pointer was integral to the use of the text-file operations (like [APPREC],
[APPCHR], and [INSCHR |) described in section 13. This is because these operations use the Alpha regis-
ter as an intermediary, passing up to 24 characters between you and the text file. They do not allow you
to read the text file itself.

228

Section 14: The Text Editor 229

The Text Editor lets you view text files directly. It provides the means to directly type in, edit, and view
the contents of text files. The Text Editor greatly simplifies the writing and modification of text files.
However, there are two limitations to the Text Editor: its operations cannot be programmed (while
functions like can be), and you cannot use it to enter characters not on the Alpha keyboard
(which you can with [APPCHR] or [INSCHR]).*+

The Text Editor’s complete operation is described in section 8, “Storing Text, Data, and Programs in
Files.” Therefore, this section is organized for easy reference, with very short explanations. There is
also an entry for in the Function Table “Extended Memory Functions,” on page 426.

The Text Editor Display
The Window

When you execute [ED], the display becomes a 12-character window into a record within the specified
text file. The cursor (underscore) blinks alternately with a character or blank; the position of the
cursor and the record shown are determined by the current value of the record/character pointer.

The Record Number. For convenience, the left end of a record display shows a two- or three-digit
record number. This is not part of the record itself.

The Empty-Record Indicator (). An empty record is shown by a record number followed by the
“raised T” empty-record indicator, T.% This symbol appears in a newly created record, as well as in a
record that loses its last character.

Punctuation. A punctuation character (“.”, “,”, or “.”) appears to the right of a regular character
position. Therefore, a punctuation mark does not count as one of the 12 character spaces, unless there
are two or more punctuation marks in a row. (Adjacent punctuation marks are separated by the width
of a character.) Since the cursor is a full character (the underscore), it cannot occupy the same position
as a punctuation mark—so when the record/character pointer is at a punctuation mark, the punctua-
tion mark just blinks, with no cursor.

The Cursor. Except when the display shows the beginning or end of a record, the display window
surrounds the cursor and the current character in the approximate center of the window. The cursor
can be moved right as far as one character position past the end of the record. This is its position when
you are adding characters to the end of a record.

*[ED], which activates the Text Editor, is programmable, but none of its operations are. See “Using in a Program,” page 233.

1 To enter a nonstandard character (like @) in a text file, you need to enter it first into the Alpha register by using and then
enter it into the text file by using [APPCHR] or [INSCHR].

} The empty-record indicator is actually a “dummy character™ it is like a character except that it can’t be deleted when it is
marking an otherwise empty record. The T uses one byte of memory (like any other character), so an empty record is not strictly
empty. (The function will count two bytes for each empty record: one for overhead and one for the empty-record
indicator.)

230 Section 14: The Text Editor

Annunciators

The annunciators appearing in the display are redefined for the Text Editor:
¢ 1 indicates that Insert mode is active (page 232).

o ALPHA indicates that the regular Alpha keyboard (with the Text Editor control keys) is active; no
ALPHA means the numeric keypad is active (page 232).

e SHIFT and BAT have their usual meanings.

» All other annunciators remain off, regardless of their status upon entering the Editor. Their prior
status is restored upon leaving (exiting) the Editor.

Text Editor ([ED]) Operations

Entering and Exiting the Text Editor

To access a text file with the Text Editor:
1. If it doesn’t already exist, create a file of a specific name and size using [CRFLAS]. (See page 212.)

2. With the name of the desired file in the Alpha register, execute (editor). An empty Alpha
register specifies the current file.

3. The display will show the cursor on the current character in the current record (determined by the
record/character pointer). A new file starts with one empty record (numbered 000).

To exit the Text Editor, press the toggle key ([EXIT] on the keyboard). An automatic exit
occurs if you try to put more than 254 characters (the limit) in a record, or after a few minutes of
inactivity. Exiting restores all annunciators that were redefined by [ED].

Default Conditions

Each time you activate the Text Editor manually, the Alpha (rather than Numeric) keyboard is active
(ALPHA on), and Replace mode is active (new characters write over old ones). If is executed from
within a program, the status of the Alpha flag (48) remains as it was before was executed so that
the program can control which keyboard is active.

The Keyboard

An annotated diagram of the Text Editor ([ED]) keyboard is on page 231. The backplate of the
HP-41CX has a diagram of the Text Editor keyboard, and the Quick Reference Guide also contains
one. This keyboard is composed of two basic types of keys: the Alpha character keys (including digits),
and the control keys, which supply the editing functions.

Section 14: The Text Editor 231

The Text Editor Keyboard

Insert Mode Indicator

Empty Record Indicator —
A

Record Number Move Cursor Right

(rrr in pointer rrr.ccc)

Alpha Keyboard
Indicator

Cursor Indicates =———————"
Character (ccc in

pointer rrr.ccc) /
Exit From Text Editor /
Move Cursor Left ——————

K
Insert/Replace Mode """"'—_ — E\l\\ﬁo to

. Alpha/Numeric
Keyboard Toggle

Go to
"~ Record nnn

Toggle Previous Record

\Go to
Next Record

— Delete Character

Numeric Keypad
(ALPHA off)

Delete Record

Insert New Record
— Before Current
Record

Insert New Record
After Current
Record

232 Section 14: The Text Editor

The character set on the Text Editor keyboard matches the Alpha character set, including the shifted
characters and digits. This is the default character set when you execute manually.

The Numeric Keypad

Using the toggle key to extinguish the Alpha annunciator will set the numeric keypad, shown
as an insert on the keyboard diagram. The numeric keypad is for convenience when entering numbers:
it makes the digit keys, (-], and the primary, unshifted keys.* All other character keys become
inactive. Upon exiting the Text Editor, the status of the Alpha annunciator (flag 48) will be restored to
what it was before you entered the Editor.

The Character Control Keys
The annotation on the keyboard diagram (page 231) indicates all of the control keys.
Cursor Control. [+1] ([USER)), [1*] ([PRGM]), [«12] (B8 (USER]), and[{2+~ (B [PRGM]). The cursor

represents the record/character pointer. You cannot move the cursor beyond the beginning of the
record; you cannot move the cursor any further than one character position past the end of the record.

The sequence RECt | or[REC#t] will instantly move the cursor to the beginning of a long
record.

Character Addition. [INSERT] ((LBL]) toggles between Replace (character) and Insert (character)
modes. The default condition is Replace; no annunciator lit. Insert mode is signified by the 1
annunciator.

In Replace mode (the default mode), any character you key in writes over the character indicated by
the cursor. In Insert mode, a character typed in is inserted ahead of the cursor.

Character Deletion. [«] deletes the character indicated by the cursor; the characters on the right
shift left to fill the gap. If the cursor is past the last character in the record, pressing [«] deletes the
last character. If there is only one character left and it is deleted, the T (the empty-record indicator)
appears.

The Record Control Keys

Record Addition. [+REC+] (VIEW]) and ((R/8]) insert an empty record before or after the
current record. The T empty-record indicator is displayed. (+7EC+ | and also terminate Insert

mode if it was active.)

.

* The [-] key will record either “.” or “,” depending on the current radix mark convention (flag 28).

Section 14: The Text Editor 233

Record Deletion. [-REC| ((CLx) deletes the current record. The cursor (the record/character pointer)
moves to the first character of the next record unless the deleted record was the last one, in which case
the cursor moves to the first character of the previous (now the last) record.

Moving Among Records. ([S5T)) and[REC+] ((EST]) move the cursor (the pointer) to the
first character of the next or previous record, respectively. The cursor will not move beyond the first or
last record (the display just blinks if you try).

5TO | nnn moves the cursor to the first character of the indicated record, which must be specified by
three digits. Like the usual[G70], this is a parameter function that cues you for a three-digit input.

To locate the last record quickly, use a very large number with GT0], such as[GT0O] 999.

Errors

NO ROOM (with a beep) occurs when there is no more memory space in the file to add more characters
or records. This is just a warning message, lasting about 1 second. There is no other effect. If you need
more room in the file, allocate more registers using [RESZFL], page 213.

REC TOO LONG occurs if you try to exceed the maximum record length (254 characters). This causes
the HP-41 to exit the Text Editor. (Just re-execute to recover your place.)

FL NOT FOUND occurs if you execute when the contents of the Alpha register do not correspond to
the name of an existing file.

NAME ERR occurs if you execute when the Alpha register contains an illegal name, such as “ ” or
seven bytes of decimal value 255 (EEEEEEE).

FL TYPE ERR occurs if you execute when the contents of the Alpha register specify a non-text file.

Using in a Program

As mentioned in the beginning of this section, is programmable, though its control operations are
not. Therefore, to use [ED] in a program there must be a user present to respond and enter or edit the
necessary text when the program executes [ED].

234 Section 14: The Text Editor

 01TSECRETS
02 ED

01 AON
02TSECRETS
030
04 SEEKPTA
05 ED
06 AOFF

All you need to do in the program is put the name of the desired file in
the Alpha register and execute [ED]. Program execution will automatically
stop, showing the Text Editor display. (If there is no response within a
couple of minutes, the Text Editor will time-out—that is, be cancelled, and
the program will continue running.)

However, it is more complete to ensure as well that the Alpha keyboard is
on ([AON]), if having it on is desirable, and that the cursor (alias
record/character pointer) is at the desired location. Lines 06 and 07 set
the record/character pointer to record 000, character 000. (Pointer
operations are in section 13.)

A program that executes will stop to wait for input. When text entry or modification is complete,
press to continue the program, not [R/S]. Remember that means to the Text Editor.

To make an automatic, programmed modification to a text file, you must use programmable functions

like [INSCHR] and [APPREC]. (See section 13.)

Part IV
Time Functions in Detail

Section 15

Clock and Date Functions

Contents
Setting and Adjusting the Clock Time iiiuann.. 237
Setting the Time With [SETIME] 237
Adjusting the Time With [(T+X] 238
Adjusting the Accuracy With [CORRECT |c..ioo... 238
Displaying the ClocK 238
Turning the Clock On ([CLOCK] and@ [ON])ooiiiiiio ... 238
Clock Display Formats ([CLK24], [CLK12], [CLKT], [CLKTD]) 239
Manipulating Time Values 240
Recalling the Current Time Value ((TIME])ccoiiiiieioi.. 240
Appending a Number in Time Format to the Alpha Register ((ATIME]) 240
Appending a 24-Hour Time Value to the Alpha Register ((ATIME24]) 241
Setting and Manipulating the Date 241
Date Formats ((MDY], [DMY]) 242
Setting the Date ((SETDATE]) e e 242
Recalling a Current Date Value ((DATE])ooiiiiiiiiin. . 242
Appending a Number in Date Format to the Alpha Register ((ADATE]) 243
Calculations With Dates i 243
Valid Dates 243
Date Arithmetic ([DATE®])ottt e e e e e 244
The Number of Days Between Dates ((DDAYS]) 244
Day of the Week ([DOW]) i it 244
Limits and Errors 245
LimMIES .. e 245
ErrOrS 245

Included within the HP-41CX is a crystal-based clock and a variety of time-based functions. The clock
runs even when the computer is off. This section covers those time functions related to clock time and
dates. Many of these functions are discussed with examples in section 6; the discussion in this section
is structured for ease of reference and for completeness. These functions are also summarized in the
Function Table “Time Functions.” Many of the time functions are used in section 22, “Programs for
Keeping Time Records.”

236

Section 15: Clock and Date Functions 237

The clock is maintained separately from the rest of the computer functions and Continuous Memory.
Therefore, clearing Continuous Memory does not reset the time or stopwatch, though it does clear all
alarms and the month/date format. The details are listed under “Effects of Clearing Memory, Power
Interruption, and Low Power” in appendix F.

There are two important appendices that elaborate on aspects of the time functions: appendix B,
“More About Past-Due Alarms,” and appendix F, “Time Specifications.” Appendix B is of interest if
you set many alarms, and appendix F is of interest regarding the accuracy of the timer and the
variables of power consumption.

Setting and Adjusting the Clock Time

1. Use to initially set the clock time. Use [SETDATE | to set the date.

2. Use to account for errors made with and time zone changes. (If it is necessary, this
will change the date, too.)

3. Wait at least a week, then use to correct for time “drift” (inaccuracy).

If setting or adjusting the time or date causes any alarms in memory to be bypassed, then two tones
sound and those alarms become past-due. Refer to “Past-Due Alarms,” section 16.

Setting the Time With [SETIME Time Settings
The function sets the internal clock with a precision to | Clock Time Setting
hundredths of a second. While setting the hours, use the Midnight 0
conventions shown in the table to the right.
1 (a.m.) 1
To set the time: 2 2
1. Place the time in the form +HH.MMSSss into the : :
X-register. 10 10
11 11
2. Execute [SETIME .
o Noon +12
The time is set when you release the last key that executes
(SETIME). The maximum precision in manually setting the time 1pm. or13:.00 —1or13
is about 0.1 second. For greater precision, you can adjust the 2 or 14 —2o0r 14
time using [T+x], below. : :
10 or 22 —10 or 22
11 or 23 —11 or 23
Midnight 0

238 Section 15: Clock and Date Functions

Adjusting the Time With

The (time plus X) function increments or decrements the current time according to the number
in the X-register. Use to alter the time due to local time changes (time zones, daylight savings) or
inadequate precision in setting the time. Do not use to accommodate inaccuracy in the
timekeeping of the timer. To correct accumulated error in the time, use [CORRECT], below.

To increment or decrement the time:
1. Place the time change (positive or negative) in the form +HHHH.MMSSss into the X-register.

2. Execute [T+x].

If the time change specified moves the current time into a different day, also changes the date.
(“Setting the Date” is discussed later in this section.)

Adjusting the Accuracy With

The (correct accuracy factor) function both corrects the time setting and adjusts the accuracy
factor. The accuracy factor compensates for time deviations due to normal variations in power, tem-
perature, and manufacture, and continues to make those adjustments in the future. Therefore,
is not for correcting one-time anomalies in the time (see [T+x], above). (In order to reduce
the error introduced by keystroke imprecision, the time span between uses of should be 1
week or more.)

The mechanics of this function are explained in detail in appendix F (“Time Specifications”), but the
basic operation is:

1. Place the correct time in the form HH.MMSSss in the X-register.

2. Execute at the appropriate instant. (The time you specify (step 1) will become the cor-
rected time at the instant that is executed.)

This sets the time and adjusts an internally calculated accuracy factor based on previous executions of
[SETIME], [CORRECT], and other functions. The clock runs from the corrected time at a rate regulated by
the newly calculated accuracy factor. (See appendix F.)

Displaying the Clock

Turning the Clock On ([CLock] and M (ON))

s Pressing [or executing will display the running clock. Only is programmable.

e The sequence [turns the HP-41CX off before displaying the clock. This resets flags 12
through 20, as explained in section 12.

e Pressing [«] clears the clock display and returns the display to the X-register. Pressing most other
keys (including [ON]) clears the clock display and executes that function.

Section 15: Clock and Date Functions 239

The exact composition of your clock display depends on the various clock-display formats, discussed
under the next heading.

Note: The clock display consumes a higher than usual amount of power. See “Power Consump-
tion" and “Low Power” in appendix G.

As mentioned in section 19, the user flags 12 to 20 are reset each time the computer is turned on.
Executing affects these flags in the same way as turning on the computer because the computer
turns off momentarily before displaying the clock. However, does not shut the HP-41 off, so if
you want to avoid the resetting of flags 12 to 20, use [CLOCK]. For convenience, can be assigned
to a User key.

Clock Display Formats ([CLk24], [CLK12], [CLKT |, [CLKTD])

You can choose the format of the clock display. The settings you choose are maintained even when
Continuous Memory is reset, and until there is an interruption in power (like prolonged battery re-
moval). The default display shows the time only, using a 12-hour clock (using a.m. and p.m.). These
conventions can be changed as follows:

12- Versus 24-Hour Clock. Executing (clock, 24-hour) sets a 24-hour clock display. Executing
(clock, 12-hour) sets a 12-hour clock display. Note that these functions do not affect how you
must input clock-time values, nor how time values for time calculation functions are output. See the
chart “Time Settings” on page 237. In other words, these functions affect the format of the clock
display but not that of the X-register.

Time Only Versus Time and Date. Executing (clock time) sets the clock display to show the
time only. Executing (clock time and date) sets the clock display to show the time and the date.
The exact display of the date depends on the month-and-day convention, as explained under “Date
Formats,” later in this section.

For instance, assuming a month/day format for 3:15 p.m. on a January 21st:
Clock Display Formats

Format

3:15:00 PM | 3:15 PM 01/21
15:15:00 15:15 01/21

The date display suppresses the seconds portion of the time display.

Note: A time-date display ([CLKTD]) consumes less power than a time-only display ([CLKT]) be-
cause the time-date display updates itself only once a minute, while the time-only display updates
itself every second.

240 Section 15: Clock and Date Functions

Manipulating Time Values

A value representing the current time can be recalled to the X-register using [TIME]. A number already
in the X-register can be converted to a time display format and appended to the Alpha register using
[ATIME] or [ATIME24].

Recalling the Current Time Value ([TIME])

The function [TIME | places a number representing the current time into the X-register, lifting the stack
(unless stack lift is disabled). The number is given in a 24-hour format, with six decimal places (hun-
dredths of seconds): HH.MMSSss. You need to set [F1X |6 to see all six places. Midnight is zero.

In addition, if is executed manually, you see a message display showing the time value according
to the 12-hour or 24-hour format in effect (this is not the X-register). Pressing [«] clears the message
display and displays the X-register.

At 5:05:24 p.m. ([FIxX]6), executing manually, followed by (], results in:

Time Values

=]
(temp. display) (X-register)

5:05:24 PM 17.052400
17:05:24 17.052400

Format

Appending a Number in Time Format to the Alpha Register ([ATIME])

The (Alpha time) function appends the number in the X-register to the contents of the Alpha
register in the current clock display format: [CLKi2] or [CLK24]. This function is useful for programs
involving the time of day.

To indicate a value for elapsed time, use [ATIME | with [CLK24], or use (the following topic). In
these cases, there will be no AM or PM or alteration of numbers from 13 to 23.

The integer (hours) part of the number in the X-register determines how the number is formatted in
the Alpha register:

. accepts any number in the range —100 < x < 100. The negative sign is ignored except for
—1 through —11, which are interpreted as post-meridian times, as indicated in the chart “Time
Settings” on page 237.

s If |x| < 23, the number is formatted according to the current [CLKi2] or [CLK24) format setting.

o If|x| = 24, no AM or PM are used. (A minus sign is ignored.) This is so you can output a value for
an elapsed time, such as 30:12:00 (30 hours and 12 minutes).

For instance, assuming [Fix | 6:

Section 15: Clock and Date Functions

Appending a Time to the Alpha Register

Value in Appends to Alpha Register
X-Register in in
-1 11:00:00.00 PM | 23:00:00.00
—15.25 3:25:00.00 PM | 15:25:00.00

30.125633 | 30:12:56.33 30:12:56.33

241

s The number appended to the Alpha register is truncated (not rounded) according to the current
numeric display setting:

Ex. [SE0. (ENE Appends to Alpha Example: 10.0937_
i Register (10:06:37 AM in [CLKi2])
0 HH 10 AM
1or2 HH:MM 10:06 AM
3or4 HH:MMSS 10:06:37 AM
5 or more HH:MMSSss 10:06:37.00 AM

If there is not enough space left in the Alpha register to accommodate its existing contents plus the

characters appended by [ATIME |, the leftmost characters in the Alpha register are lost to make room for
the new characters appended on the right.

If the X-register contains a number outside the range —100 < x < 100, executing [ATIME | causes a
DATA ERROR.

Appending a 24-Hour Time Value to the Alpha Register ([ATIME24])

The function (Alpha time, 24-hour) operates like except that the number appended to
the Alpha register is always expressed either in 24-hour format or as elapsed time. The current clock
display format has no effect.

Setting and Manipulating the Date

Functions included in this topic are date formatting, setting the date, recalling the date, and
appending a number in date form to the Alpha register.

242 Section 15: Clock and Date Functions

Date Formats ([mDY], [DMY])

The default setting for the date format is month/day/year. The formatting functions
(month/day/year) and (day/month/year) set the date format to the month/day or the day/month
convention. This setting is the only time format to be reset when Continuous Memory is reset.

The following table shows how the computer interprets numeric input as dates and how date output is
formatted.

Effect of Date Formats

Format X-Register Display and
Setting | Input/Output Printer Output

MM.DDYYYY | MM/DD or MM/DD/YY | Clear
OMY] | DD.MMYYYY | DD.MM or DD.MM.YY Set

Flag 31

When entering dates you can omit leading and trailing zeros. For example, a number representing May
6, 1990 can be entered as 5.06199. The appropriate leading and trailing zeros do appear in message-type
displays of the date.

Setting the Date ([SETDATE])
To set the date:

1. Put the date in the X-register according to the current date format (see above), using the form
MM.DDYYYY or DD.MMYYYY. As mentioned above, you can omit leading and trailing zeros.

2. Execute [SETDATE .
The HP-41 can be set to any date from January 1, 1900 to December 31, 2199.

If the format of the date you enter does not correspond to the current month-and-day setting, no error
message will result unless the date interpreted from your input is actually an invalid date. If setting the
date causes any alarms to become past-due, two tones will sound. Refer to “Past-Due Alarms” in sec-
tion 16.

Recalling a Current Date Value ([DATE])

The function returns a number representing the current date to the X-register, lifting the stack
(unless stack lift is disabled).

e The number recalled to the X-register will be in the form MM.DDYYYY or DD.MMYYYY, depending
on the date format setting.

¢ In addition, if is executed manually, a message display shows the date and day of the week in

the form MM/DD|YY DAY or DD.MM.YY DAY, where DAY is a three-letter abbreviation for the day of
the week. (For the years 2000 to 2199, the date display is MM/DD/YYYY:DA or DD.MM.YYYY DAY.)

Section 15: Clock and Date Functions 243

Press [+] to return the X-register to the display.

Appending a Number in Date Format to the Alpha Register ([ADATE])

(Alpha date) appends the number in the X-register in date format to the current contents of
the Alpha register.

o The input should be of the form MM.DDYYYY or DD.MMYYYY, depending on the date format. The
valid input range is |x| < 100, so that you can represent periods of elapsed calendar time up to
99.999999 (months or days).

» The appended number is converted to the form MM/DD/YYYY or DD.MM.YYYY. (A minus sign is
ignored.) Leading and trailing zeros are shown.

» The appended number is truncated (not rounded) according to the current numeric display setting:

Appending a Date to the Alpha Register

Example: 6.11196

(Fix],[sci],(ENG] Appends to Alpha Register (June 11, 1960 in [V57))

0 MM or DD 06

1or2 MM,/DD or DD.MM 06/11
3or4 MM/DD/YY or DD.MM.YY 06/11/60

5 or more MM/DD/YYYY or DD.MM.YYYY 06/11/1960

Notice that when only two year digits appear, they are the last two year digits.

Calculations With Dates

There are three functions that perform calculations with dates.
. adds or subtracts a number of days from a given date and determines the resulting date.
. calculates the number of days between two given dates.
o calculates the day of the week for a given date.

Valid Dates

» The only valid input and output dates for these calculations are from October 15, 1582 (the begin-
ning of the Gregorian calendar) through September 10, 4320.

e The input (MM.DDYYYY or DD.MMYYYY) must be positive. If there are any digits after the YYYY,
they must be zeros.

The errors DATA ERROR and DATA ERROR Y can result if data input is invalid. An invalid result for
DATE+ | will cause OUT OF RANGE.

244 Section 15: Clock and Date Functions

Date Arithmetic ([DATE+])
(date plus) calculates a new date given the old date (in the Y-register) and the number of days
to add or subtract (in the X-register).

1. Enter the known date (MM.DDYYYY or DD.MMYYYY).

2. Enter the number of days to add to or subtract from that date. Use a positive number for addition,
a negative number for subtraction. Only the integer part of this number is used.

3. Execute [DATE+]. The stack drops, placing the resulting date in the X-register in the form
MM.DDYYYY or DD.MMYYYY. (The previous contents of X are saved in the LAST X register.)

The Number of Days Between Dates ([DDAYS))

Given a date in the X-register and a date in the Y-register, (delta days) finds the difference, in
days, between those two dates. The date in Y is subtracted from the date in X.

1. Enter the first (earlier) date (MM.DDYYYY or DD.MMYYYY), then the second one. (If the first date
entered is the later one, the result will be negative.)

2. Execute [DDAYS]. The stack drops, placing the number of days of difference into the X-register.
(The second date is saved in the LAST X register.)

Day of the Week ([Dow])

The function (day of week) converts the date in the X-register (MM.DDYYYY or DD.MMYYYY) into
a value for its day of the week.

1. Enter the date.

2. Execute [DOW].

3. The value in the X-register is converted to a number from 0 (Sunday) to 6 (Saturday). (The date is
saved in the LAST X register.)

If this function is executed manually, a message display appears with a three-letter abbreviation for the
day of the week. To see the X-register (with the numeric day-of-week value), press [«].

Section 15: Clock and Date Functions 245

Limits and Errors
Limits
All time and date functions except [/[ON] are programmable.

Clock Time: Minute-values (MM) and second-values (SS) are valid from 00 to 59 only. (Values for
hundredths of a second (ss) run from 00 to 99, as usual.)

Dates: The date setting can be any date from January 1, 1900 (the default date) to December 31, 2199.

Calendar Functions: For calculations involving dates, any date from October 15, 1582 (the beginning
of the Gregorian calendar) through September 10, 4320 is valid.

Display: Since the time is kept to hundredths of a second, a [71 |6 display format is necessary to see
the full result of some functions.
Errors

DATA ERROR occurs if the input for a time function is not in the proper format or is not within the
valid range. ([ADATE], [ATIME], [ATIME24], [CORRECT), ([DOW], [SETAF], [SETDATE], [SETIME], [SETSW],

(T+x])

The error OUT OF RANGE occurs if the result of a time function would fall outside the valid range.
([7+x), [DATE+))

Section 16

Alarm Functions

Contents
Types of Alarms: Message, Control (tt), Conditional (t) 247
Message Alarms 247
Control Alarms (1) 248
Conditional Alarms (1) e 248
Setting Alarms ([XYZALM) . ..ot 250
Parameters for [XYZALM | 250
EXamples .. . 251
Recalling Alarm Parameters to the Stack ((RCLALM]) 252
Activation and Acknowledgment of Message Alarms, 253
The Activation Cycle 253
The Acknowledgment Procedure 254
Simultaneous AIarMS 255
The Alarm Catalog ([ALMCAT], [CATALOG|5), 255
Clearing Alarms From Memory i 258
Clearing a Message Alarm as It Goes Off 258
General Clearing Operations iiuiiunieainanaa. 258
Clearing Repeating Control Alarms 259
Past-Due AIarms 259
Creating Past-Due Alarms 260
Bypassed Past-Due Alarms 260
Automatic Reminder of Past-Due Alarms 260
Activation of Past-Due Alarms 260
Application Programs for Setting Alarms, 262
Using a Program to Set an Alarm (SETALM) 262
Setting an Alarm Relative to the Current Time (ALMREL) 263

246

Section 16: Alarm Functions 247

Alarm operations in the HP-41CX are quite versatile: depending on the parameters you supply, an
alarm can be simply a personal reminder (an audible alarm with a message), or it can be a sophisticated
control device to start the execution of a program at a certain time. In any case, an alarm will not
interrupt the execution of a function in progress, but waits until that one function (including a func-
tion being executed by a program) is finished before going off.*

There are three distinct types of HP-41 alarms, but they are all set in a similar manner. Once set,
alarms are stored in main memory along with programs and key assignments. Section 6, “Time Func-
tions”, offers an introduction to alarms, with examples. These functions are summarized in the Func-
tion Table “Time Functions”.

A program executed by an alarm can affect the status of the flags or the various registers, as any other
program can. This means you might want to make provisions in the called program to restore affected
data you might need for other calculations.

Types of Alarms: Message, Control (tt), Conditional (t)

The three different alarm types and their operation are outlined in the flowchart on page 249. Of these
three alarms, one is used like an alarm clock (the message alarm) and two are used to execute programs
(the control alarm and the conditional alarm, the latter being a “non-interrupting” control alarm).

Message Alarms

A message alarm is handy as an appointment reminder. This type of alarm produces a series of tones
and flashes the message placed in the Alpha register when the alarm was set. The message can be up to
24 characters long. If the alarm is set with an empty Alpha register, a display of the current time and
date flashes instead.

This kind of alarm goes off whenever its time arrives—whether the computer is on or off or executing a
program. Remember, however, that no alarm interrupts the function currently in progress.

A message alarm needs to be acknowledged, otherwise it becomes past due (retained in memory as an
unacknowledged alarm). (Past-due alarms are discussed fully in this section under “Past-Due Alarms”
and in appendix B.) A message alarm replaces any previous message in the display, but otherwise has
no effect on the computer’s operation or status, including the stack registers, the data storage registers,
and the Alpha register.

* This includes the very “long” functions of indefinite duration: running catalogs, catalogs 4 to 6 at all times, the Text Editor
((ED]), and the stopwatch ([SW]). Alarms will not activate during these operations. but will wait and go off afterwards.

248 Section 16: Alarm Functions

Control Alarms (tt)

A control alarm executes the program or the programmable catalog-2 function specified by tt global
label or tt catalog-2 function name in the Alpha register when the alarm is set.* It will execute a pro-
gram starting at a global label, or, if no label or name follows the two up-arrows, at the current pro-
gram line. When the set time arrives, the specified program or function is executed, whether the HP-41
is on or off, as soon as any currently operating function is done.

If a control alarm comes due while a program—including a program started by another control alarm—
is running, that currently running program will be temporarily suspended while the program or
catalog-2 function referenced by the interrupting, control alarm is executed.t The computer runs the
called program as a subroutine of the interrupted one, using one subroutine level. (Subroutines and
subroutine levels are explained in section 20, “Branching”.)

A control alarm does not get acknowledged; it simply activates and then clears or resets itself.

Conditional Alarms (t)

A conditional alarm, like a control alarm, will execute the program or programmable catalog-2 function
specified in the Alpha register. However, it is a non-interrupting control alarm in that it will only take
effect if the computer is off or the clock is displayed.

o If a program is running when a conditional alarm comes due, the alarm sounds a pair of tones and
becomes past due.

o If the computer is on (no program running, no clock displayed) when the alarm comes due, the
alarm becomes a message alarm, and does not execute the specified program or function. (The
alarm becomes past due if it is not acknowledged, just like a message alarm.)

Therefore, whether a conditional alarm acts like a control alarm is dependent upon the computer being
off. This is useful if you want a program to be automatically executed anytime except when you're in
the process of performing other calculations or programs on the HP-41. A conditional alarm that acts
as a control alarm does not get acknowledged; a conditional alarm that becomes a message alarm needs
acknowledgment.

* For a description of catalog-2 functions, refer to “Cataloguing the New Functions” in appendix I.

1 Program interruption occurs following execution of whatever function is in the process of being executed when the alarm comes
due. Also, the alarm will not interrupt until stack lift is enabled.

The alarm type is deter-
mined by the presence in
the Alpha register of
two, one, or no up-arrows
(t) when is ex-
ecuted. This chart shows
what each type does
when it comes due.

Below are comments on
possible outcomes:

An alarm that has come
due is either cleared from
memory, reset accord-
ing to its repeat interval,
or becomes past due.

A control alarm will al-
ways be cleared (or
reset if it is a repeating
alarm). It will never be-
come past due.

A repeating alarm will

be reset only if it causes
program execution or is
acknowleged. An alarm
which is past due will
not be reset.

R

—

Alarm Flowchart

Section 16: Alarm Functions

Control
Alarms

Conditional
Alarm

ttglobal label tglobal label

Will
interrupt
a running
program.

(HP-41CX sounds
of an inter- HP-41CX sounds tones ﬂ""(;‘m
e Drogam & o tones then tine & date)
, then
S
with the current
program line.
by
/
Al is YES
pe:ltm due By .?
Y
nepee\mg YES YES
alarm?
NO

Alarm is
cleared

If a program was interrupted for an alarm, the interrupted program now resumes.

249

250 Section 16: Alarm Functions

Setting Alarms ([XYZALM])

The single, programmable function (X, Y, Z alarm) is used to set all three types of alarms.
The function uses the data present in the X-, Y-, and Z-registers and the Alpha register. Time
values can be as precise as tenths of a second.
1. Load the X-, Y-, Z- and Alpha registers with the required parameters (see below). The contents of
the Alpha register will determine whether the alarm is of type message, control, or conditional.

2. Execute [XYZALM |,

An illegal input results in a DATA ERROR message, specifying the register with the faulty data (DATA
ERROR X, etc.). A pair of tones sounds if the alarm is set to a past time, or if any bypassed past-due
alarms are in memory.

Parameters for | XYZALM

T Alpha message | Message
P or empty | Alarm

repeat | (HHHH.MMSSs
interval | or Q)

(MM.DDYYYY or
DD.MMYYYY or 0)

tt global | Control
label Alarm

Alpha

Y date

Alpha t global | Conditional

X | time | (HH.MMSSs) label Alarm

Z-Register: Alarm Repeat Interval. The interval after which the alarm will repeat itself.
1 second < interval < 10,000 hours. A repeating alarm—an alarm whose repeat interval is not zero—
resets its future activation time according to the repeat interval and the original activation time (as
also explained under “Activation and Acknowledgment of Message Alarms”, page 253).

For no repetition, the Z-register must contain zero.

Note: A repeating control alarm of very short repeat interval (less than 10 seconds) can be difficult
to cancel. See “Clearing Alarms from Memory,” page 258.

Y-Register: Alarm Date. The date for the alarm to activate. Valid dates are from January 1, 1900
through December 31, 2199.

For the current date, use zero.

Section 16: Alarm Functions 251

X-Register: Alarm Time. The time of day for the alarm to go off (“activate”), from 0 to +23.59599
(one-tenth second before midnight). (Remember negative numbers from 1 to 11 mean p.m. See the
table “Time Settings” in section 15.)

Alpha Register: Message Alarm. An Alpha string of up to 24 characters; an empty Alpha register
will produce a time/date display with the alarm.

Alpha Register: Control Alarm. |+][+ |global label or [+ || + | catalog-2 function name or just [+][+].*
The label or name specified can have up to six characters (even though labels in program memory can
have up to seven characters)—any more characters are simply ignored (even though the listing in the

alarm catalog shows all characters).t

You can have a control alarm execute a program starting other than at a global label by putting only
the two up-arrows (tt) in the Alpha register. Then, the alarm will trigger program execution beginning
at the current line in the current program at the time the alarm comes due. This type of specification
could be used, for instance, to set a program to resume execution at the same point it suspended itself
with an instruction.

Alpha Register: Conditional Alarm. [+ | global label or [+ | catalog-2 function name. The label or
name specified can have up to seven characters.

As with control alarms, you can set a conditional alarm to start program execution at the current line
in the current program—rather than at a global label—by placing only the up-arrow (1) in the Alpha
register, without a label or function name.

Examples
T | emprﬂ | message l | message]
4 0 Alpha 0 0.15
Y 0 8.31199 0
X 1.01 —10 11
Executing will Will set a nonrepeating Will set a 15-minute re-
set a nonrepeating message message alarm for 10:00 peating message alarm,
alarm for 1:01 a.m. on the p.m. on August 31, 1990. starting at 11:00 a.m. on
current date. The “mes- the current date.
sage” will consist of the
time and date.

*The [+ is on the Alpha keyboard above the key (as shown on the backplate).

t To set a control alarm to execute a program or function that has a seven-character label or name, create a short “calling”
program to execute the program or function you want, then set the alarm to execute the calling program.

252 Section 16: Alarm Functions

T | 11TEST | | +TEST |

Y4 0 Alpha

Y 0 0

X| 102 14.02
Will set a nonrepeating Will set a nonrepeating
control alarm for 1:02 a.m. conditional alarm for 2:02
on the current date. The p.m. on the current date.
alarm will call and execute The alarm will execute
program TEST. It will program TEST only if the
temporarily interrupt a run- HP-41 is off or displaying
ning program, if necessary. the clock.

Recalling Alarm Parameters to the Stack ([RCLALM])

The function [RCLALM | (recall alarm) recalls the parameters of a stored alarm to the stack and Alpha
registers, from which a program can examine and alter these values. Or, you can save the recalled values
in other registers or in mass storage. If you wanted to delete most of vour alarms but save a few, you
could use [RCLALM | to save particular alarm values before using [CLRALMS] to delete all alarms (“General
Clearing Operations”, page 258).

[RCLALM] recalls to the X-, Y-, Z-, and Alpha registers the parameters of the alarm specified by the
absolute value of the integer part of the number in the X-register. The number of the alarm cor-
responds to its chronological order as listed in the alarm catalog (see “The Alarm Catalog” page 255).
Legitimate alarm numbers are from 1 to 253. A number greater than the number of existing alarms
causes NO SUCH ALM (no such alarm).

T Alpha string | Message or
] I label or
Z | repeat interval Alpha tt globa
P P t global label
Y date
X time HH.MMSSss

The output format is the same as the input format for [xvzaLMm], except that the time is always re-
turned in a 24-hour format as HH.MMSSss. The month/day format corresponds to the current setting.
The contents of each register correspond to the register contents when was executed for that
alarm.

Executing [RCLALM | saves the alarm number (from the X-register) in the LAST X register, and lifts the
previous contents of the Y-register into the T-register.

Section 16: Alarm Functions 253

Activation and Acknowledgment of Message Alarms

Message alarms, including conditional alarms that become message alarms, follow a characteristic pat-
tern of activation. They must be acknowledged (as described below) during the activation cycle, other-
wise they become past due.

* Acknowledging a nonrepeating alarm shuts it off and clears it from memory.

» Acknowledging a repeating alarm shuts it off and resets its activation time to its next future occur-
rence. One or more multiples of the repeat interval are added to the original alarm time, not the
time of acknowledgment.

Unacknowledged (past-due) message alarms are retained in memory: they are automatically reactivated
when the computer is turned off, and set off warning tones whenever the computer is turned on. (Refer
to “Past-Due Alarms.”)

Control alarms, as well as conditional alarms that become control alarms, are self-acknowledging—
they simply execute the program or catalog-2 function indicated, and then automatically clear them-
selves from memory (or reset themselves if they are repeating alarms).

The Activation Cycle

When a message alarm comes due, the following procedure starts:

1. It sounds a pair of tones and displays the first 12 characters of its Alpha string or the time and
date (if no Alpha string was given for the alarm). (A conditional message alarm displays t global
label or t function name,)

This phase lasts about 1 second, and the keyboard is inactive during this time.

2. The display begins flashing. Starting now through step 3, you can acknowledge the alarm (by press-
ing almost any key—refer to the following topic).

3. After the display flashes five times, the audible alarm starts again, sounding up to 16 pairs of
tones.

4. If the alarm is not acknowledged by this time, it becomes past due. (Refer to “Past-Due Alarms.”)
If it is a repeating alarm, it is not reset.

Unacknowledged Alarm
Halts and Becomes a
Past-Due Alarm

\J

(((eM((®))) ——

254 Section 16: Alarm Functions
Alarm Activates, . .
Sounds 2 Tones Flashing Alarm Display
Up to 16 Pairs of Tones Sound
Time (((oN)((=)) ((@NMA((e)) (ONMN((®)) o & »
Keyboard Press Key to Acknowledge
Deactivated and Halt Alarm

When a message alarm is acknowledged, the above activation cycle stops. For a message of more than
12 characters, the ensuing display depends on the method of acknowledgment (below).

The Acknowledgment Procedure

While the display is flashing, and before the long series of tones is complete, you can acknowledge a
message alarm by one of the following methods. Use these same procedures to acknowledge past-due
alarms when they are automatically reactivated.

Results of Alarm Acknowledgment

Key Pressed

(+] or [ON]

STO

Any Other Key

Halts alarm.

Immediately clears the alarm
display.

Clears the alarm.t

Halts alarm.

Display persists for 3 seconds
after release of key.”

Pressing key again prolongs the
display another 3 seconds.

Retains the alarm as past-due.

Halts alarm.

Display persists for 3 seconds
after release of key.”

Pressing key again prolongs the
display another 3 seconds.

Clears the alarm.t

3 seconds.

* If there are more than 12 characters, the first 12 are shown while the key is held down,

1 If it is a repeating alarm, it is reset and not cleared.

then the remaining characters are shown for

Section 16: Alarm Functions 255

Be sure to wait until the alarm message has cleared before executing another function. Otherwise, you
can delay the clearing of the alarm message.

Repeating Alarms. The new setting for a repeating alarm is determined by adding the repeat inter-
val to the alarm time, not to the acknowledgment time.

If you use to acknowledge a repeating alarm, the alarm will not be reset—just retained as a past-
due alarm. (The repeat interval is still maintained in the alarm catalog.) If a past-due repeating alarm
is reset, it will not reset to a past time.

To clear from memory (delete) a repeating message alarm during its activation cycle, press [[C).

Delay of Activation. If an alarm comes due while an earlier message alarm is going off, the second
alarm is delayed until the first one has been acknowledged or completes its activation cycle.

Simultaneous Alarms

If more than one alarm is set to exactly the same time, each alarm will activate in the order in which it
was set. However, a control alarm will interrupt a program triggered by a control or conditional alarm.
A message alarm will temporarily suspend the program executed by a previous control alarm (but, as
noted in the previous paragraph, it waits for any other alarm activation cycles to finish).

If more than one simultaneous or overlapping alarm is a control alarm, successive alarms will interrupt
the programs triggered by preceding alarms and execute their specified programs before the preceding
programs can run. A conditional alarm will neither interrupt a program nor wait for completion; it
simply sounds a pair of tones and becomes past due. Simultaneous alarms go off in the same sequence
as past-due alarms, as explained in appendix B.

The Alarm Catalog ([ALMCAT], [CATALOG | 5)

The alarm catalog and the Alarm Catalog keyboard (the keyboard redefined for specific alarm catalog
operations) are activated by either executing (alarm catalog) or pressing [CATALOG | 5. Only
is programmable. For manual execution, [CATALOG] 5 is faster to execute.

The features of the alarm catalog are:
o It provides a list of all alarms currently kept by the HP-41 in memory (including past-due alarms).

o It lists the alarms in order of activation time, from earliest to latest. (The position of a repeating
alarm is adjusted each time it is reset.)

o Each alarm listing shows first the time and date of the alarm, then any Alpha string (a message or
tt/t label call).

e When it finishes listing the last alarm, it exits the alarm catalog and returns to a display of the X-
register.

256 Section 16: Alarm Functions

The Active Keys on the
Alarm Catalog Keyboard

Section 16: Alarm Functions 257

e Its execution enables stack lift.

» Like other catalogs, it can be stopped and restarted with [R/S].* Once stopped, you can step
through the catalog entries using or [B5T] (the display just blinks when you hit the
end/beginning of the catalog with /[BsT]).

¢ While the alarm catalog is stopped, the keyboard is redefined as the Alarm Catalog keyboard.

The following keys are defined to perform the following operations on the Alarm Catalog keyboard
while the alarm catalog listing is interrupted. These keys do not represent characters from the Alpha
keyboard, so do not use [ALPHA]. Notice that the letter keys relate to the meaning of their Alarm
Catalog function; for example, for time.

The Active Keys on the Alarm Catalog Keyboard

Key(s) Operation

Returns the activation time of the currently displayed alarm.

- Returns the current time.

(0] Returns the activation date of the currently displayed alarm.

(R] Returns the repeat interval of the currently displayed alarm.

(R] Resets the currently displayed alarm to its next future occurrence as determined by its repeat
interval.

(™M] Displays the Alpha string (message or tt/t label call), if any, of the currently displayed alarm.

.| Clears (deletes) the currently displayed alarm from memory.

(«] Exits the alarm catalog and Alarm Catalog keyboard and returns to a display of the X-register.

Turns the computer off; cancels the alarm catalog.

If the computer is halted in the alarm catalog, and no key is pressed for about 2 minutes, the computer
automatically exits the alarm catalog.

Although is programmable, the individual Alarm Catalog keyboard operations are not. If
is executed from a program, that program resumes after the alarm catalog has been exited.

* General aspects of operation common to all catalogs are given in section 9. Pressing any other key besides or during
the running catalog will speed up the listing.

258 Section 16: Alarm Functions

Clearing Alarms From Memory

Control alarms (including conditional alarms that become control alarms) clear themselves automati-
cally after going off. Message alarms (including conditional alarms that become message alarms) are
cleared by acknowledging them. In addition, there are general clearing operations for clearing one or
more future and/or past-due alarm. Finally, agility is needed to cancel a repeating control alarm that
has a very short repeat interval.

Clearing a Message Alarm as It Goes Off

If a message alarm is going off, acknowledging it will halt it and clear it from memory, unless it is a
repeating alarm. In the case of a repeating message alarm in the process of going off, [[C] will halt it
and clear it from memory.

General Clearing Operations
There are various ways to delete any future and past-due alarms (that is, alarms that are not currently
going off), as well as repeating control alarms.

o The easiest way to delete any one such alarm is with [l}[C] on the Alarm Catalog keyboard (catalog
5; see the previous topic), but this method is not programmable.

The other alarm-clearing functions—[CLRALMS |, [CLALMA], and [CLALMX | —are programmable. The lat-
ter two are especially useful if you want to have a program set a repeating alarm and then clear it later.

Clearing All Alarms ([CLRALMS]). [CLRALMS] (clear alarms) deletes all alarms from memory. It is
sometimes used in conjunction with (page 252) to delete all alarms, thereby recovering alarm
memory space, after having individually recalled each alarm and stored its parameters.

Clearing an Alarm by Its Alpha String ([CLALMA]). [CLALMA] (clear alarm by Alpha) deletes the
first alarm whose Alpha string matches the string in the Alpha register.

If there are no alarms with duplicate Alpha strings (that is, messages or t1/t label calls), then[CLALMA]
is the most foolproof way to clear an alarm. If more than one alarm has the same Alpha string, then
only the first of them (as they are listed in the alarm catalog) will be cleared.

If the Alpha register is empty when [CLALMA | is executed, then deletes the first alarm that has
no message.

NO SUCH ALM results if there is no alarm with the given Alpha string.

Section 16: Alarm Functions 259

Clearing an Alarm by Its Ordinal Number ([CLALMX]). [CLALMX] (clear alarm by X) deletes the
alarm specified by the number in the X-register. The number refers to the ordinal position of the alarm
in the alarm catalog.

Duplicate alarm Alpha strings pose no problem. However, you should keep in mind that an alarm’s
number can change (increase or decrease) anytime another alarm is set, reset, goes off, or is cleared.

takes the absolute value of the integer part of the number in the X-register to be the alarm
number. If, for example, the contents of X are 5.1 when is executed, then the fifth alarm in the
catalog would be cleared.

If x =0 or x > 999, then DATA ERROR results when is executed.

NO SUCH ALM results if there is no alarm of the given number.

Clearing Repeating Control Alarms

Usually, a repeating control alarm can be cleared using the above methods. However, if a control alarm
has a repeat interval shorter than about 10 seconds (1 second is the minimum), it can be difficult to
delete it from memory because of the time it takes to do so. That is, the alarm might be able to repeat
and reset itself before you could cancel it, although CATALOG]| 5 can be executed quickly.

There are two other ways around this time limitation:

o Assign to a key on the User keyboard, so that it can be executed with one keystroke. The
alarm catalog condition is all part of one function, so no alarm will interrupt it. You can then use
@ (C] to cancel the alarm in question.

e Use the “two-key rollover” technique to execute 5 or another clearing function. By
depressing the next key before releasing the previous key, the HP-41 keyboard is kept operating
without a break. The alarm will not go off because it keeps waiting for the break between functions
or keys. Using two-key rollover, there is always a function or key execution in progress. (The alarm
keeps waiting for the end of a function, so it does not become past due.)

In a program, use an alarm-clearing function ([CLALMA] or [CLALMX]) to clear any repeating control
alarm.

Past-Due Alarms

A past-due alarm is any alarm in memory having an alarm time that is earlier than the current time.
The following information provides a basic description of past-due alarm operation. When more than
one past-due alarm accumulates, there are rules governing the order of their automatic activation.
These are described in appendix B, “More About Past-Due Alarms.”

260 Section 16: Alarm Functions

Creating Past-Due Alarms

A past-due alarm normally results if:
« A message alarm activates (goes off) without being acknowledged, or is acknowledged using [STO].
¢ A conditional alarm (t) activates while the HP-41 is running a program.
e A conditional alarm (t) activates as a message alarm (because the HP-41 is not off), which is then
not acknowledged.

Note that a control alarm cannot normally become a past-due alarm since it always activates when its
time comes due, then automatically clears or resets itself. However, a control alarm can become past
due if its time is bypassed.

Bypassed Past-Due Alarms

A bypassed (also called unactivated) past-due alarm results if:
s Any future alarm is bypassed due to a change in the time.

e Any alarm is initially set to a past time.

This type of past-due alarm should be rare. It is the only type of past-due alarm for control alarms.

Automatic Reminder of Past-Due Alarms

Whenever you turn the HP-41 on, a pair of tones will sound if any past-due alarms exist. This is
strictly a reminder; the alarms are not activated—so they have no effect—and they cannot be
acknowledged.

The automatic reminder also sounds if you change the time or execute when any bypassed
past-due alarms exist or are created.

Activation of Past-Due Alarms
Whenever you try to turn the HP-41 off or use [(not), the HP-41 automatically activates

past-due alarms.*
Automatic activation starts with the earliest alarm:
¢ Past-due message alarms go off.

s Past-due control alarms execute their designated programs.f

* After executing [CLOCK |, subsequently pressing will not activate any remaining past-due alarms.
+ The automatic activation of a control or conditional alarm momentarily turns off the HP-41 first. For this reason, no other past-
due alarms—except bypassed ones—will activate subsequently, until you press or I again. See appendix B.

Section 16: Alarm Functions 261

* A past-due conditional alarm activates automatically as a control alarm (if there are no preceding
past-due control alarms).* In this way, if the end of a program automatically turns off the HP-41
(using the instruction), then any conditional alarm that came due while the program was
running will automatically be executed when the program shuts off the computer.

Refer to appendix B for information about the automatic activation of multiple past-due alarms.

Automatic Clearing/Reset of Automatically Activated Past-Due Alarms. When a past-due
message alarm is automatically activated, acknowledging it will clear it from memory—or reset it if it
has a repeat interval. ((ON] will halt but not clear/reset an activating past-due alarm. See “Halting the
Activation of Past-Due Alarms,” below.)

A past-due control or conditional alarm that is automatically activated will also automatically clear (or
reset, if it’s a repeating alarm) itself. A repeating alarm is reset to the future using multiples of the
repeat interval added to the original alarm time.

After acknowledgment of past-due message alarms, the HP-41 will complete the function that triggered
the automatic activation; that is, it will shut off or display the clock.

Halting the Automatic Activation of Past-Due Alarms. If you press during the automatic
activation cycle of a past-due message alarm, this aborts the entire series and cycle of past-due alarm
activation. The alarm is not acknowledged. The unacknowledged and unactivated past-due alarms re-
main past due.t This provides a means of stopping what could be a long activation series so you can
regain control of the computer but save the alarms. (This is also handy if you inadvertently set the
time ahead and your future alarms become past due.)

If you press during the activation of a past-due control or conditional alarm, this will shut the
HP-41 off, stopping whatever program that a control or conditional alarm had started. (This will trig-
ger the activation of any remaining past-due alarms.) The interrupted control/conditional alarm will
be cleared or reset, since it was activated.

Activating a Past-Due Conditional Alarm ([ALmMnOW]). You can activate a single past-due con-
ditional (or control) alarm—the earliest (oldest) one in memory—by executing (alarm now).

While a program is running, it is possible for a conditional (t) alarm to come due and therefore become
past-due. You can check for and activate one such alarm—or have the program do it—by executing
[ALMNOW], provided there are no other past-due conditional or control alarms in memory. If executed
from a program, operates as a subroutine.

* The automatic activation of a control or conditional alarm momentarily turns off the HP-41 first. For this reason, no other past-
due alarms—except bypassed ones—will activate subsequently, until you press or @ again. See appendix B.

+ Using to halt an automatic activation cycle will also cancel the activation of any other alarm that happened to come due
(for the first time) during the automatic, past-due activation cycle.

262 Section 16: Alarm Functions

Application Programs for Setting Alarms

To use the following programs, first key them from the listings into program memory. There are bar-
code versions of these programs in appendix J, “Bar Code for Programs.” If you have an HP 82153A
Wand, you can record these programs quickly from the bar code.

Using a Program to Set an Alarm (SETALM)

If you have trouble remembering exactly how to set a particular alarm, then the following program,
SETALM, will help you. SETALM provides an easy way to set any kind of alarm, prompting you for the
necessary input and placing that information into the correct register.

Input (when prompted): The alarm time, a message (for a message, control, or conditional alarm),
the alarm date, and the alarm repeat interval, if any.

Result: A message, control, or conditional alarm will be set.

User Instructions:

1. Execute SETALM ([SETALM]).

2. In response to the prompt TIME?, enter the alarm time in HH.MMSS format. (If no response, the
program ends.)

3. In response to the display MESSAGE?, enter a message (for a message alarm), or [+ |[+ | global label
(for a control alarm), or [+ |global label (for a conditional alarm). If you want a message alarm to
display only the time and date, just press [R/S].

4. In response to the display DATE?, enter the date in MM.DDYYYY or DD.MMYYYY format. If you want
the current date, just press [R/S].

5. In response to the display RESET?, enter the repeat interval in HHHH.MMSS format. If you do not
want a repeating alarm, just press [R/S].

This program will alter any information you had in the stack and the Alpha register before running
this program, and it clears flag 22.

Program Listing

01+LBL “SETALM"

02 CF 22 Clears flag 22, the numeric data input flag.

03 “TIME?” Stops and asks for the alarm time. If you do not enter a time (flag 22
04 PROMPT tests clear), then the program ends. (After entering the time, restart the
05 FC?C 22 program with [R/S].)

06 RTN

Section 16: Alarm Functions 263

07 “DATE?” Stores the message DATE? in the T-register and the message RESET? in
08 ASTO T the Y-register.*

09 ‘RESET?"

10 ASTO Y

11 “MESSAGE?"

Displays the message MESSAGE? from the Alpha register and stops for

12 AVIEW Alpha input. (Clears the Alpha register—MESSAGE? still displayed—
13 CLA activates the Alpha keyboard, and stops.) If you enter no message, the
14 AON alarm will display the time and date since line 13 clears the Alpha

15 STOP register.

16 AOFF

17 VIEW T Displays DATE? and stops for input.*

18 STOP

19 FC?C 22 If you do not enter a date (no numeric input; flag 22 tests clear), 0 is used
200 (current date).

21 VIEW Z Displays RESET? (lifted from Y-register) and stops for repeat interval.*
22 STOP

23 FC?C 22 If no repeat interval entered, 0 is used.

24 0

e x> 7 Brings the time (which has been lifted into the Z-register) back to the X-
26 XYZALM register and sets the alarm.*

27 END

Setting an Alarm Relative to the Current Time (ALMREL)

The following program example illustrates several programming techniques—including extensive stack
manipulation—to create an all-purpose program (ALMREL) to set an alarm relative to the current time.
This is useful when you want to set an alarm for a certain period of time from the present, rather than
for a particular clock time.

Input (when prompted):

1. The time “offset” (the number of hours, minutes, seconds from the present) as HHHH.MMSS. Note
this can represent more than one day.

2. Alpha string for alarm (message or t1/t label call).

Result: A message, control, or conditional alarm.

* The functions [ASTO |, [AVIEW], and are parameter functions, and display two input cues when executed: for example,
X< > __. Press [-][Z] to specify the Z-register as a parameter.

264 Section 16: Alarm Functions

User Instructions:

1. Execute ALMREL ([ALMREL]).
2. In response to the display + HH.MMSS?, enter the time offset HHHH.MMSS, then press [R/S].
3. In response to the display MESSAGE?, enter alarm Alpha string (or nothing), then press [R/S].

Program ALMREL begins to calculate the alarm time when you press after MESSAGE?. The time
offset can be as short as 0000.0003 (3 seconds) or as long as 9999.595999. The program checks for and
rejects non-numeric or negative input for HH.MMSS. (Flag 22 is set when numeric data is entered.)

This program will alter any information you had in the stack and the Alpha register before running
this program, and it clears flag 22.

Program Listing

01+LBL “ALMREL"
UZ2CF 22

038 “+ HH.MMSS?”
04 PROMPT

05 FC?C 22
06 RTN

07 X<0?
08 RTN

09 “MESSAGE?”
10 AVIEW

11 CLA

12 AON

13 STOP

14 AOFF

15 TIME
16 HMS+

17 ENTER?
18 ENTER?

19 24
20 /
21 INT

22 DATE
23 X<>Y
24 DATE+

Clears flag 22 so it can be tested later.
Stops and prompts for time offset. (Restart the program with [R/S]).

Tests for non-numeric input.
If non-numeric (flag 22 is clear), start over!

Tests for negative input.
If negative, start over!

Stops after asking for input for the alarm’s Alpha string. The program
clears the Alpha register and activates the Alpha keyboard (AON), then
deactivates it (AOFF) when you restart the program. If you want a
message, just type it in and press [R/S]. If not, just press [R/S].

Recalls current time.
Adds current time to offset time.

Puts sum (the new time, in hours) in X-, Y-, and Z-registers.

Finds the number of whole days away the new time is (the whole days of
time offset).

Recalls the current date.

Days of offset in X; current date in Y.

Finds the new date for the alarm: the sum of the current date and the
number of offset days.

Section 16: Alarm Functions 265

25 LASTX Recalls the number of offset days and converts that figure to hours. That
26 24 figure is then subtracted from the total number of offset hours in Z,

27 * vielding the number of hours of offset beyond whole days. This value

28 8ST— Z represents the time for the alarm.

29 CLX Puts zero in the X-register and copies zero into the T-register. After the
30STO T roll-down, this will represent the repeat interval (none) in Z. The new
31 RDN time (from Z) moves into Y; the new date (from Y) moves into X.

A2 X<>Y Date into Y; time into X. The stack is now set up to set the alarm.

33 XYZALM

34 END

Section 17

Stopwatch Operation

Contents
The Stopwatch Keyboard ([SW]) 266
The Stopwatch Display 267
Stopwatch Keyboard Operations 268
The Register Pointers 270
General Stopwatch Operation With Splits 271
The Display During Split-Taking 271
Register-Pointer Limit 271
Recalling Splits ([RCL]) .. .ottt 272
Viewing Delta Splits ([ASPLIT]) - ...t 272
Programmable Stopwatch Functions 273
Starting and Stopping the Stopwatch ([RUNSW |, [STOPSW]) 273
Setting and Recalling the Current Stopwatch Time ([SETSW], [RCLSW]) 273
Setting Up the Stopwatch and the Stopwatch Pointers ([SWPT]) 274
The Stopwatch as a Countdown Timero, 274
Printing Stored Splits 275
Example—A Stopwatch Program (SPLITS) 275

The stopwatch function, (or [SWPT]), encompasses an entire mode of operation. It turns the HP-41
into a stopwatch and redefines the keyboard for stopwatch operations. The internal timer used for the
stopwatch is separate from the clock. The stopwatch can run even when it’s not displayed, and even
when the HP-41 is off. It can continue to run unimpeded while you execute other functions or
programs.

An introduction to stopwatch operation, with examples, is presented in section 6. These functions are
also summarized in the Function Table “Time Functions.”

The Stopwatch Keyboard ([sw])

The HP-41CX comes with a keyboard overlay, which marks all the active functions on the Stopwatch
keyboard. A diagram of the keyboard is also included below and in the Quick Reference Guide. Any key
not identified on the overlay and diagram is inactive as long as the Stopwatch keyboard is in effect.

266

Section 17: Stopwatch Operation 267

e Executing or activates the stopwatch display and redefines the keyboard. resets
the register pointers to zero and sets the display to show regular splits; sets the pointers as
you specify them (page 274).

e Pressing deactivates the Stopwatch keyboard, but does not automatically stop a running
stopwatch. The display returns to the X-register. This operation is not programmable.

. will turn the HP-41 off (and deactivate the Stopwatch keyboard), even if the stopwatch is still
running. It will not stop the stopwatch.

Although and are programmable, none of the operations on the Stopwatch keyboard are
programmable. There are other programmable stopwatch functions discussed later in this section.

The Stopwatch Display
While the Stopwatch keyboard is active, the display has the form:

shown only when display is static

HH:MM:SS.ss*Rnn
| N
Elapsed Time Register Address
(to hundredths of a second) (for storage of next spilit)

Note: The stopwatch display consumes as much power as a running program. Refer to “Power
Consumption” in appendix G. The HP-41CX will not automatically turn off (time out) as long as the
Stopwatch keyboard is active.

The elapsed time shown in the display does not clear whenever you activate and deactivate the
Stopwatch keyboard. (Just as deactivating the Stopwatch keyboard does not stop a running time,
either.) However, activating the Stopwatch keyboard with does reset the pointer display to)-R00.

Pressing resets the stopped stopwatch to 00:00:00.00. When the stopwatch time passes
99:59:59.99, it automatically starts again from zero. There is no stopwatch function to clear stored
times (splits). A time stored in a register will replace any previously stored value there. To put zero in a
register, store a zero time in it, or, outside of the stopwatch, use to clear more than one register.

Pressing any undefined Stopwatch key will freeze the display while the key is depressed without halt-
ing the stopwatch itself. This will show you the elapsed time to tenths of a second. Only when the
stopwatch is halted does it show the full eight digits.

268 Section 17: Stopwatch Operation

Stopwatch Keyboard Operations

The following operations comprise the Stopwatch keyboard, which is activated by the execution of
or [SWPT . In addition, executing resets both storage () and recall (=) pointers to zero, and makes
Regular Split Storage mode the default mode of operation (-R00).

The Stopwatch Keyboard

Key Operation

Run/stop. Starts and stops the stopwatch; does not reset the stopwatch or the regis-
ter pointers. (Also cancels Recall mode.)

Resets a halted stopwatch to 00:00:00.00. Does not affect the register pointer. (If Re-
call mode is set, cancels it and does not reset the stopwatch.)

; Deactivates the Stopwatch keyboard. This will not stop a running stopwatch.

Stores the current stopwatch time in the indicated data storage register (*-Rnn), and
increments the pointer. (Also cancels Recall mode.)

Recall. Toggles between Recall mode and Storage mode. Recall mode displays the
split stored in the indicated register (=Rnn). (Recall mode is also cancelled by [R/S],
[sPLIT], and [CLEAR].)

Delta split. Toggles between Delta Split mode (D) and Regular Split mode (R). Delta

Split mode displays the difference between the most recent split and the split in the
preceding register. This display changes with each execution of [SPLIT]. Can also be
used in Recall mode. Delta Split mode is also cancelled when Stopwatch keyboard is
deactivated.

Digit Keys* Used only to specify storage register addresses (nn, or nnn with | Gnon). Keying in a
number moves the register pointer to that address. Be sure to specify both or all three
digits, as required.

SSTJ* Single step. Moves the register pointer to the next register without taking a split.
[BST]* Back step. Moves the register pointer to the previous register without taking a split.
Register number. Suppresses/restores the display of the register pointer. Toggle

switch.
(Rnnn | Changes the register-pointer display from two digits to three digits (and back) in order

to display Ryigg) 10 R(a1g). Toggle switch.

Any Other Key Pressing any other key freezes the last stopwatch time in the display for as long as the
key is depressed. The stopwatch itself continues to run.

* These functions will change the register pointer whether the stopwatch is running or halted.

Section 17: Stopwatch Operation 269

The Active Keys on the
Stopwatch Keyboard

e
. . | |
- o Em Em
- e = =
= s @ @

HEWLETT PACKARD

270 Section 17: Siopwatch Operation

The Register Pointers Split Storage

The register pointers, represented in the display as Rnn Rnn Store split.
and Dnn, give the address, nn, of the current data storage >Dnn Store split; display difference.
register.

Split Recall

The R means regular split; the D means delta split (the dif-
ference between two splits). The + means splits will be
stored; the = means splits (or delta splits) will be

=Rnn Recall split.
=Dnn Recall split difference.

displayed.

The Current Register. The register pointers always reset to 00 following the execution of (even
though the time does not reset to zero). The current register, nn, has the following functions:

¢ With »Rnn (storing regular splits), nn represents the register into which the next split taken
([SPLIT]) will be stored.

e With +Dnn (storing delta splits), nn represents the storage register for the next split and it repre-
sents the second of two successive registers whose difference will be found and displayed (using

(8PLIT)).

e With =Rnn (recalling regular splits), nn represents the register whose contents are currently being
displayed. (The display is static, though the stopwatch itself might be running.)

e With =Dnn (recalling delta splits), nn represents the second of two successive registers whose dif-
ference is being displayed. (The display is static, though the stopwatch might be running.)

Changing the Register Pointers. The - (storage) register pointer advances automatically every time
you take a split. You can also change it manually, using (SST], [EST/, and the digit keys as shown in
“The Stopwatch Keyboard”. The = (recall) register pointer is changed manually only.

Note: The register pointers for split Storage () and Recall modes (=) are maintained separately,
while the Regular Split (R) and the Delta Split modes (D) are different display modes for the same
register pointer. Both the - and the = register pointers are reset to 00 by [Sw].

Three-Digit Display of the Register Pointer ([Rrnnn]). The register-pointer display will automati-
cally switch from two digits to three digits when it advances from Rgg to R(jqq). To switch the display
manually between the two- and three-digit display, use [Fnon . (If you switch back to a two-digit pointer
display when the current register has three digits, the leftmost register digit will be dropped.) A three-
digit pointer display suppresses the rightmost digit in the display of the stopwatch time, though it is
retained internally.

Suppression of the Register-Pointer Display. Pressing suppresses (and restores) the dis-
play of the register pointer, though the register pointer is maintained internally. This allows you to view
the obscured rightmost time digit in the cases when the register pointer has three digits or the
stopwatch time is negative.

Section 17: Stopwatch Operation 271

General Stopwatch Operation With Splits

Splits (stopwatch timings) taken on the HP-41 are automatically stored in sequential data storage
registers, the same registers you use for regular data storage. Sequential splits are stored as accu-
mulated times unless you reset the stopwatch to zero ([CLEAR]). You can store as many splits as you
have storage registers available. Any other data already in the current register is replaced when a split
is taken, just as any stored splits can be accessed and replaced when you use those same registers
without the Stopwatch keyboard.

Splits are displayed as HH:MM:SS.s or HH:MM:SS.ss, but they are stored as HH.MMSSss. Therefore, if
you have stored a split in a register, then exit the Stopwatch keyboard, the contents of that register will
be HH.MMSSss. Conversely, if a register contains a value that is not a split, and those contents are
recalled with the Stopwatch keyboard, the HP-41 will attempt to display that value in the form
HH:MM:SS.ss. If it can’t—because HH > 99—then ERROR =Rnn results. (Values of MM and SS greater
than 59 do not cause errors.) To clear ERROR =Rnn, move the pointer to a register with a valid split.
Pressing will cancel Recall mode.

There is a diagram of the modes of stopwatch operation on page 76 in section 6.

The Display During Split-Taking

While the key is held down during Regular Split mode (Rnn), the stopwatch display shows the
split that was just taken and the register it was stored into. (The stopwatch itself does not stop). When
you release [SPLIT], the running display resumes and the register pointer advances.

If Delta Split mode is active (Dnn), operation is the same as usual. However, the display while
is being held down is different: it shows the difference between the split just taken and the split
in the previous storage register. The register shown is the location of the split just taken. (Refer also to
“Viewing Delta Splits,” below.)

Register-Pointer Limit

If the current register-pointer (Rnn or Dnn) is moved—either automatically or manually (but not with
| BST |)—to the last available data storage register or beyond, the HP-41 beeps. (This is true whether the
stopwatch is running or not.)

Furthermore, if the stopwatch is in Recall mode (=) when the pointer is moved to a nonexistent regis-
ter, this will cancel the Stopwatch keyboard and display NONEXISTENT. This also occurs during Stor-
age mode () if the execution of attempts to store a split in a nonexistent storage register.

272 Section 17: Stopwatch Operation

Recalling Splits ([RCL])

Pressing toggles the stopwatch and its display between Recall mode (=) and Storage mode (). In
Recall mode, the display shows the contents stored in the indicated register. A running stopwatch will
continue to run during Recall mode. To view the splits stored in other registers, just change the register
pointer (using [SST], [257 |, or the digit keys).

When you press again, or press [SPLIT], [R/S], or [CLEAR], the display returns to the regular
stopwatch. Remember that the register pointers for split storage and split recall are maintained sepa-
rately, so as the display transfers between Storage () and Recall (=) modes, the respective pointer
address (nn or nnn) will take up where you last left it. (Refer to “The Register Pointers.”) This allows
you, for instance, to take several splits, switch to Recall mode (with the stopwatch running or stopped)
to review the splits you just stored, then switch back to regular Storage mode to resume storing splits in
the register that follows the last one you used for split storage.

Viewing Delta Splits ([aSPLIT))

Pressing activates Delta Split mode: the stopwatch display shows delta splits (D) rather than
regular splits (R).

o A delta split is the difference between the current split (the one in Dnn) and the split in the im-
mediately preceding register.

o If the register pointer is D00, then the delta-split display just shows the current split.

Delta Split mode allows you to display the difference between two splits without interrupting a running
stopwatch. It can be used during split Storage (-Dnn) or split Recall (zDnn) modes.

Using Delta Split mode with either or allows you to compare quickly the difference be-
tween two related time measurements. Using delta splits also allows you to take timings that do not
overlap at all but are too close together to have time to reset the stopwatch. For instance, you could
store both the start- and the stop-times of a series of closely spaced, non-overlapping events, so that
you would end up with a series of paired start- and stop-times. By recalling the split difference, you'd
see the actual time of the event.

Storage Versus Recall. Delta splits are neither stored nor recalled, they are calculated. Pressing
takes regular splits even when Delta Split mode is active (-Dnn), but the frozen display (while
the key is down) shows delta splits. “Recalling” splits in Delta Split mode (=Dnn) does not
really recall delta splits, it displays delta splits calculated from stored splits.

Therefore, Delta Split mode does not alter the operation of either or (Recall mode); it just
means that any static display you see represents a delta split and not a regular split. (The running
stopwatch display is not affected.)

Section 17: Stopwatch Operation 273

Negative Delta Splits and Errors. If the second of two adjacent splits is not larger than the first,
then the display depends on whether splits are being stored or recalled: if splits are being stored
(»-Dnn), then the delta-split display shows just the contents of the current register; if delta splits are
being recalled (-Dnn), then ERROR -Dnn results.

Note: To clear ERROR =Dnn or ERROR =Rnn, change the register pointer address. (Pressing
will cancel Recall mode without clearing the error condition.)

If, during Recall mode in Delta Split mode (~Dnn), one of the two registers involved contains a value
that does not fit the form HH.MMSSss (see page 271), then ERROR ~Dnn results.

Programmable Stopwatch Functions

There are six programmable stopwatch functions: the two that activate the Stopwatch keyboard ([(sw]
and [swpT)) and four others ([RUNSW], [§T0PSW |, [SETSwW), and [RCLSW) to manipulate the stopwatch
when the stopwatch keyboard is not active. You can use these latter four functions to set up the
stopwatch or run an internal timer during the execution of a program. (You cannot execute these func-
tions from the Stopwatch keyboard.)

Any stopwatch times that you put into or recall into the X-register should be of the form
+HH.MMSShh.

Starting and Stopping the Stopwatch ([RUNSW], [STOPSW)

Run Stopwatch. [RUNSW | starts the stopwatch running.

Stop Stopwatch. [STOPSW | stops the stopwatch.

Setting and Recalling the Current Stopwatch Time ([SETsw], [RCLsw)

Set Stopwatch. sets the stopwatch to the time (+HH.MMSSss) specified in the X-register.

Any specified time outside the range —99.595999 to +99.595999 is invalid and will cause a DATA ER-
ROR. Any digits beyond the ss places are just ignored.

seTsw | will not stop a running stopwatch, but it will reset its time as specified.

Recall Stopwatch. [RcLsw] recalls the current stopwatch time to the X-register in the form
HH.MMSSss, lifting the stack (unless stack lift is disabled).

274 Section 17: Stopwatch Operation

Setting Up the Stopwatch and the Stopwatch Pointers ([SWPT])

The function (stopwatch and pointers) acts like (SW], but in addition sets the stopwatch point-
ers. This allows a program to set the pointers to avoid taking splits that will write over other data
stored by the program.

Using [SWPT]:

» Upon activating the Stopwatch keyboard, the storage register-pointer (*-Rnn, ~Dnn) and the recall
register-pointer (=Rnn, =Dnn) are set as specified by the sss.rrr value in the X-register.

» Upon deactivating the Stopwatch keyboard, the current pointer values are returned to the X-regis-
ter in the form sss.rrr. The input sss.rrr value is saved in the LAST X register.

The output value of sss can be used to figure how many splits were taken, assuming splits were taken in
sequential registers and the split-storage register pointer was not manually changed.

Combined Pointer Value in X-Register

+sss.rrr
Pointer Address/ Pointer Address
for Split Storage for Split Recall
(1, 2, or 3 digits) (must be 3 digits)

A positive or zero value specified for sss.rrr sets Regular Split mode (*Rnn); a negative value for sss.rrr
sets the stopwatch to Delta Split mode (~Dnn).

(To set the stopwatch to Delta Split mode and also set both pointers to zero, specify a number between
—0.001 and zero. If, when the Stopwatch keyboard is deactivated, both pointers are set to zero and
Delta Split mode is in effect, the value —0.0000001 will be returned to the X-register.)

In the unlikely case that upon deactivating the Stopwatch keyboard one pointer is undefined, the
pointer value (sss or rrr) returned to the X-register will be zero. (This can happen if the Stopwatch
keyboard is deactivated while the register pointer address is incomplete.)

The Stopwatch as a Countdown Timer

If the stopwatch is set to a negative time (use [SETSW]) and then runs, it will set off a timer alarm
when it reaches 00:00:00.00.

e If the Stopwatch keyboard and display are not active, the timer alarm will sound like a message
alarm and display TIMER ALARM. You can stop the alarm by pressing any key, but acknowledg-
ment is not necessary as this alarm is not stored in memory and cannot become past due.

e If the Stopwatch keyboard is active, then the timer alarm will merely sound two tones (the
stopwatch display is not interrupted).

Section 17: Stopwatch Operation 275

In neither case will the running stopwatch automatically stop; the stopwatch starts counting up after
passing through zero. To stop the stopwatch, use [STOPSW] (not from the Stopwatch keyboard) or
(from the Stopwatch keyboard).

Printing Stored Splits

If you have an HP 82143A Printer or an HP 82162A HP-IL Printer and want to print out a stored
split, you can do so with the function (section 15) in conjunction with the function
(print Alpha; see your printer or HP-IL manual). You cannot print out splits while the Stopwatch
keyboard is active.

Since split differences (delta splits) are not stored, they must be recalculated if you want to print them
out. You can do this using the function (not from the Stopwatch keyboard):

1. Recall the later split value from its storage register.

2. Recall the earlier split value from its storage register.

3. Execute [HMS-].

4. Clear the Alpha register, if desired.

5. Execute [ATIMEZ24].

6. Execute [PRA].

To print out regular splits, just skip steps 1 through 3 and recall the desired split value.

Example—A Stopwatch Program (SPLITS)

The following program sets up the stopwatch in preparation for taking timed splits, activates the
Stopwatch keyboard, and—when the Stopwatch keyboard is deactivated—prints out a specified group
of stored splits. (A printer must be attached for this program.) The splits are printed out in the format
HH:MM:SS.ss. The value recalled from each register must be less than 100, otherwise an error results.

To use the following program, first key it from the listing into program memory. There is a bar-code
version of this program in appendix J, “Bar Code for Programs.” If you have an HP 82153A Wand, you
can record this program quickly from the bar code.
Input (when prompted):

1. The number of the first register from which you want a split to be printed.

2. The number of the last register from which you want a split to be printed.

Result: A list of each storage register, from the first to the last, and the value stored in it. The value
will be printed in time format.

276

User Instructions:

Execute SPLITS ([SPLITS]).

In response to the stopwatch display, start taking as many splits as desired. You can start from any

1.
2.

Section 17: Stopwatch Operation

register you want, but the splits must be taken in sequential registers.

3. When done taking splits, press

4. In response to the message FIRST REG?, enter the first register whose contents (split) you want
printed. If you want to start from Rgg, you don’t have to enter a number. Press [R/S].

Program Listing

01eLBL "“SPLITS”
02 STOPSW

030
04 SETSW

05 SW

06 “FIRST REG?"
07 PROMPT

08 “LAST REG?"

09 PROMPT
10 ADV

11 RCLFLAG
12 X<> 2

13+LBL 00
14 FIX 0
15 CF 29
16 “R”

17 100

18 X<=Y?
19 GTO 01
28 "F "

21 SQRT

22 X>Y?
23 “+0O"

. In response to the message LAST REG?, enter the last register whose contents you want printed.
Then press [R/S].

Makes sure stopwatch is stopped.

Resets stopwatch to 00:00:00.00.

Turns on Stopwatch keyboard. After the desired number of splits is taken
and the Stopwatch keyboard is cancelled, the program continues.

If no other number is entered, the first register will be Ry, (owing to the
zero in line 03).

Moves printer paper.

Saves the current flag settings in the Z-register.

No fractional part for a register number.

In combination with (71| 0, this suppresses the radix mark.

Starts to form output string (R for register).

Lines 17 through 23 are for the output format: if the register number is
less than 100, then insert a space between the R and its number. If the
register number is less than 10, then add a zero in front of the register
number. This will result in a printed output with all register numbers and
their contents aligned.

Section 17: Stopwatch Operation 277

24+LBL 01

25 RDN Brings number of first register into X.

26 ARCL X Takes the register number in X and appends a copy of that number to the
string in the Alpha register.

27 “‘+ ="

28 RCL IND X Recalls the value from the register whose address is in X.

29 FIX 6

30 ATIME24 Appends that value in time format to the Alpha register.

31 PRA Prints the entire string in the Alpha register.

32 RDN Increments the number of the first register by one and continues the

331 program if the number of the first register is still less than or equal to the

34 + number of the last register.

35 X<=Y?

36 GTO 00

37 RCL Z Restores the original flag settings, which include the display formats.

38 STOFLAG

39 CLX Clears the X-register.

40 END

Sample Output: Following is an example of a printer output for splits taken in registers Ry, through
Rlo.

XEQ “SPLITS-
FIRST REG?
RUN
LAST REG?
18, 6a08 RUN

R 88 =08:98:97.52
R 81 =60:98:09.35
R 82 =08:88:18.28
R 83 =68:86:12.24
R 64 =08:88:13.99
R 85 =80:08:87.86
R 66 =B8:86:85.98
R 67 =08:06:10,54
R 63 =08:88:12.76
R 89 =08:008:13.77
R 18 =89:88:17.39

vis npEE WOl ABwWGERE ST et

R AL

' i Jeg
3 B - .))

Py

Part V:
Programming in Detail

Section 18

Programming Basics

Contents
Loading @ Program 280
Keying In a Program 280
Copying @a ROM Program i, 281
Enlarging Program Memory i 281
Executing a Program 282
Program Lines 282
Nonprogrammable Operations it 283
Positioning Within Program Memory 283
Using [GTO | [- o 283
Using Catalog 1 284
Single Stepand Back Step 284
Other Methods 285
Editing a Program 285
Deleting Instructions 285
Inserting Instructions 286
Clearing Programs 286
USING [CLP] ottt e e e e e e 287
Using I S ST PR IR S PP UoL: o S 287

Loading a Program

Keying In a Program

l. Press to select Program mode.

2. Press (-]] to set the computer to the bottom of program memory.
3. Press|LEL | followed by a global label.
4

. Key in instuctions using the Normal, User, and Alpha keyboards just as you would in Execution
mode.

5. Press (-]] to complete the program (optional).

280

Section 18: Programming Basics 281

Pressing [GT0 | [-] -] has the following effects:

¢ Main memory is packed, ensuring that the maximum number of registers will be available for the
next program, key redefinition, or alarm.

* An [END] instruction is inserted to complete the last program, creating a null program (consisting
of the permanent .END.) at the bottom of program memory. (One reason to press|G70 | [-][-] after
loading a program is to give the program its own [END] instruction, so that catalog 1 will display
the number of bytes in the program.)

¢ The computer is positioned to this null program and displays 00 REG nnn where nnn indicates the
number of registers available for a new program. As you key in instructions, they become a new
program at the bottom of program memory.

The number of available registers also appears with the permanent .END. If the last program line is
displayed, you can press to see .END. REG nnn. To then continue adding instructions, simply key
them in. To then review your program:

¢ Press to set the computer to the first line of your program.
e Press | 557] to set the computer back to the last line keyed in.

Copying a ROM Program

If you want to alter a program that is in ROM (read-only memory) such as an application module, you
must first copy the program into program memory. To do so, execute [COPY | and specify any global label
in the ROM program. A copy of the ROM program is then added to the bottom of program memory.

Enlarging Program Memory

If there is not enough room in memory to store an instruction being added or a program being copied,
the computer displays PACKING and then TRY AGAIN. If you try again but TRY AGAIN appears a second
time, do one or more of the following steps to increase the number of registers available for program
instructions:

¢ Check how many registers are allocated to data storage using [51ZE? |, and then allocate fewer regis-
ters using [SIZE | or [PSIZE |.

* Delete complete programs, using [CLP | or [PCLPS]. (You can first use to save copies of these
programs in extended memory.)

¢ Clear one or more alarms.

¢ Cancel User-keyboard assignments other than global labels listed in catalog 1, then execute [FACK
or [GTO| [J (.

282 Section 18: Programming Basics

Executing a Program

You can execute a program by ensuring that the computer is in Execution mode and then performing
one of the following:

e Pressing and specifying a global label in the program. Execution starts with that global label

« Assigning a global label to a key and then pressing that key when the User keyboard is active.
Execution starts with that global label.

« Positioning the computer to the beginning of the program and then pressing [R/S]. Execution
starts with the current program line.

» Positioning the computer to the beginning of the program and then pressing [SST]. Only the cur-
rent program line is executed and the computer is positioned to the next program line. This single-
step execution is most useful when you're trying to isolate an error in a program. By checking the
result after each instruction is executed, you can find where the program goes wrong.

» Positioning the computer to the beginning of the program, setting flag 11, and turning off the
computer. When you next turn it on, the computer automatically runs the program starting at the
current program line.

» Setting a control alarm to execute the program at a specified time.

The PRGM annunciator appears in the display while a program is running. Unless a function like
[AVIEW] displays a message, or a function like activates a special keyboard and display, the program
execution indicator (-) appears in the display; each time the program executes a label, the program
execution indicator moves one position to the right.

Program Lines

In Program mode the computer displays one line of program memory at a time. Lines are created
automatically as you key in instructions. Each line is assigned a number to indicate its position within
the program, and each separate program has its own set of line numbers. Each line contains a complete
instruction consisting of:

¢ A function.
e An Alpha string of up to 15 characters.
« A complete number of up to 10 digits, or up to 10 digits plus a two-digit power of 10.

For details about keying in Alpha strings and numbers, refer to section 9, “The Keyboard and Display.”

In a displayed program line, the symbol T indicates that the characters following comprise an Alpha
string or (if preceded by XEQ, GTO, or LBL) a global label. To enter a function into a program line
using its Alpha name you must press first. Otherwise, the computer won’t recognize the Alpha
characters as a function name, but will treat them as an Alpha string and enter them into the Alpha
register when it executes that program line.

Section 18: Programming Basics 283

Nonprogrammable Operations

The following operations are not programmable, but some can be accomplished by other means.
Programmable alternatives are shown in parentheses following the nonprogrammable operation.

¢ Destructive operations:

(], (DEL].

[CLP] (but [PCLPS] is programmable).

» Positioning operations:
Lerol@a 0, (erol(, (s81), (BT

» All catalogs (but [EMDIR] and [ALMCAT | are programmable).

« Toggle keys:
(but is programmable).

(PRGM].
(but a program can set or clear flag 27).
[ALPHA] (but [AON | and [AOFF | are programmable).

e Other nonprogrammable functions:
(copY], [ON], [PACK], [R/S] (to Tun a program).
[ASN] (but is programmable).
(51ZE | (but [PSIZE | is programmable).

Positioning Within Program Memory

There are several methods of positioning the computer within Program memory. Some enable you to go
to any program in memory (that is, to any global label) while others enable you to go to any line within
a program. Some work only in Execution mode, while others work only in Program mode. Only one

function, [GTO | [-], can do either job in either mode.

Using [GT0|[]
In Program or Execution mode:

» To position the computer to any global label, press [G170][-] and specify the global label. The search
for the label begins with the last global label (as listed by catalog 1) and proceeds upward in mem-
ory, stopping at the first matching label encountered.

» To position the computer to line number nnn of the current program, press (G0 | [-] nan. If nnn
exceeds the line number of the last line in the program, the computer is positioned to the last line.
To position the computer to line 1nnn (the line number exceeds 999), press (G10 |[-] (EEX]. When
the computer displays GTO .1___, key in nnn.

284 Section 18: Programming Basics

Using Catalog 1
In a few cases you can’t use |[G10/ [] to position the computer to the desired program. Such cases
include:

» The program contains no global labels.

® The desired label is duplicated later in program memory, so that (-] always finds the duplicate
label first.

» You've forgotten the exact spelling of the global label.

You can position the computer to any global label or [END | statement in program memory using catalog
1 in Program or Execution mode as follows:

1. Press 1 to display all global labels and statements in program memory.
2. To speed up the listing, press any key other than or [R/8].

3. Press to halt the listing at the desired global label or statement.

4. To display the next item or the previous item in the catalog listing, press or 85T/,
5. Press [«] to position the computer to the displayed item.

If a program doesn’t contain any global labels, follow the five steps above to position the computer to
the program’s [END | statement. (When two statements appear sequentially, the second state-
ment belongs to a program without global labels.) You should then insert a global label at the start of
the program by pressing | G10 | [-] 000 and then (in Program mode) keying in the global label.

Single Step and Back Step

In Program mode you can position the computer to the next program line or to the previous program
line by pressing or BST |,

* Press to position the computer to the next program line. If the current program line is the
last program line, pressing positions the computer to the first program line (line 01).

* Press to position the computer to the previous program line. If the current program line is
the first program line (line 01), pressing positions the computer to the last program line.

01 LBLTABC
Pressing when the computer is . Pressing [557 | when the computer is
positioned at the bottom of the pro- . positioned at the top of the program
gram moves the calculator back to . moves the calculator to the end of
the beginning of this program. . this program.
16 END

Section 18: Programming Basics 285

Other Methods

When the computer is in Execution mode you can position it within program memory by using any of
the following methods:

Positioning to a Global Label. Press 70 | and specify the global label.

Positioning to an Assigned Global Label. If a global label is assigned to a key, hold down that
redefined key while you press [R/S], and then release the redefined key.

Positioning to a Numeric Label in the Current Program. To position the computer to [& | nn,
press nn. The computer searches for nn (as described in section 20, “Branching”) and stops
at the first matching label encountered.

Positioning to the Top of the Current Program. To position the computer to line 00, press [F71 .
The computer displays 00 REG nnn, indicating that there are nnn registers available; if you key in an
instruction, that instruction becomes line 01. This is the easiest way to add an instruction at the very
beginning of a program.

Editing a Program

All program editing—both deleting and inserting instructions—takes place in Program mode.

Deleting Instructions

Deleting Single Lines. To delete a single instruction, position the computer to the desired program
line, and then press [«]. That program line is deleted, the computer is positioned to the previous line,
and the line number of each subsequent instruction is reduced by one.

When deleting a few lines, start with the last (largest-numbered) line to be deleted. In the example
below, suppose that you want to delete lines 02 through 04. At left, the computer is positioned to line
04. Pressing [+] deletes line 04 and positions the computer to line 03; pressing [«] again deletes line 03
and positions the computer to line 02; and pressing [+] a third time deletes line 02 and positions the
computer to line 01.

01 LBLTAREA

02 Xt2 01 LBLTAREA

03 PI 02 Xt2 01 LBLTAREA
Currant. Program 04 % 03 PI 02 X12 01 LBLTAREA
Line (displayed)

05 END 04 END 03 END 02 END

286 Section 18: Programming Basics

Deleting Multiple Lines. To delete a long sequence of instructions:
1. Position the computer to the first (smallest-numbered) line to be deleted.

2. Execute (delete).

3. Specify the number of lines to be deleted. To delete more than 1000 lines, press (EEX]. When the
computer displays DEL 1__ __| key in the remaining three digits.

In the previous example, lines 02, 03, and 04 are deleted one by one. Alternatively you could position
the computer to line 02 and execute 003. This deletes lines 02, 03, and 04, leaving the computer
positioned to the previous line (line 01). The line number of each subsequent instruction is reduced by
three.

If you execute nnn when there are fewer than nnn program lines following the current line, the
current line and all subsequent lines except are deleted.

Inserting Instructions

To insert an instruction in a program, position the computer to the existing line that you want the new
line to follow, and then key in the new instruction. (If you just deleted an instruction using [«] and now
you're replacing it, the computer is already properly positioned.) The new instruction becomes the cur-
rent line, and the line number of each subsequent instruction is increased by one.

When inserting several instructions, start with the first (smallest-numbered) line to be inserted. Sup-
pose that you want to restore the instructions deleted in the previous example. At left, the computer is
positioned to line 01. As each instruction is keyed in, it is inserted after the previous current program
line and becomes the new current program line.

01 LBLTAREA
01 LBLTAREA 02 Xt2

01 LBLTAREA 02 Xt2 03 PI
Current Program 01 LBLTAREA 02 X12 03 PI 04 %
Line (displayed)
02 END 03 END 04 END 05 END

Clearing Programs

There are two functions that clear programs. (clear program) clears one program and is not
programmable; (programmable clear programs) can clear several programs and is programmable.

Section 18: Programming Basics 287

Using

Execute [CLP | and specify any global label in the program to be cleared. The computer then:

1. Searches upward through program memory for the specified global label, beginning with the last
global label (as listed by catalog 1).

2. Deletes all instructions (line 01 through [END]) in the first program encountered that contains the
specified global label.

3. Packs main memory.

Executing and pressing without specifying a global label clears the current
program.

Using

To clear a program and all subsequent programs in program memory:
1. Place any global label from the program into the Alpha register.
2. Execute [PCLPS].

Executing when the Alpha register is empty clears the current program and all subsequent
programs.

Section 19

Flags

Contents
INtrodUCHiON 288
Types of Flags 289
User Flags (00 through 10), 289
Control Flags (11 through 29) 289
System Flags (30 through 55) i 291
Summary of Flag Status 292
Flags and the X-Register i 292
Flags and Numbers as Bytes 294
USINg (X< >F | ..o 295
Multiple Copies of Flags e 295
Using [RCLFLAG | @nd [STOFLAG |« oottt 296
Introduction

A flag has only two states, set and clear. These states can be interpreted as “on/off” (like a switch), as
“yes/no” (like a decision), or as “1/0” (like a binary digit, or bit). The computer has 56 flags, grouped
into three types according to use.

User Flags. You can both test and alter user flags. Their status is altered only by your instructions.

Control Flags. You can both test and alter control flags. The computer resets some control flags to
default status each time you turn it on, and alters some in the course of operation.

System Flags. You can test system flags but you can’t alter them.

You can set and clear flags 00 through 29, which are the user and control flags.
« To set a flag, press and then specify the flag number.
« To clear a flag, press and then specify the flag number.
You can test flags 00 through 55 by pressing and then specifying the flag number. The display

shows YES if the flag is set, or NO if the flag is clear. Flag tests like are used primarily to control
program execution, as described in section 20, “Branching.”

288

Section 19: Flags 289

Types of Flags
User Flags (00 through 10)

The user flags are solely for your own use; what they mean depends entirely on how you use them. For
example, a program can ask whether the user wants English or metric units, and then store the user’s
response as the status of one user flag. Afterwards, whenever the program needs to check which units
to use, it can test that user flag.

The state of each user flag is maintained by Continuous Memory. Once you set or clear a user flag, its
status is fixed until you alter it. When any of the first five flags is set, the corresponding annunciator
(0, 1, 2, 3, or 4) appears in the display.

The first eight flags (00 through 07) can be interpreted as the eight bits in a byte, and that byte can be
transformed into a number in the X-register. This process is discussed after the control and system
flags.

Control Flags (11 through 29)

The control flags have specific meanings to the computer, listed below. The status of these flags repre-
sent certain operating conditions and options. You can alter these flags to indicate your choice of
options; the computer alters some of these flags to indicate conditions, which you can then check by
testing the flags.

Flag 11: Automatic Execution. Flag 11 allows a program to run automatically. If you set flag 11
before you turn off the computer, the following will happen when you next turn it on:

o A tone sounds.

e Program execution begins from the current program line.

o Flag 11 is cleared.
Flags 12 through 20: External Device Control. These flags direct the operation of external de-
vices that are controlled by the computer. All flags for external device control are cleared each time you

turn on the computer. The precise meaning of these flags depends on the particular devices that are
present; refer to the appropriate manuals for details.

Flag 21: Printer Enable. Flag 21 allows your program to control how functions like and
are executed, depending on whether an output device is present. For details, refer to appendix
D, “Printer Operation.”

290 Section 19: Flags

Flags 22 and 23: Data Input. These flags allow a program that prompts for input to determine the
the user’s response.

o Flag 22 is set when numbers are keyed into the X-register.
o Flag 23 is set when characters are keyed into the Alpha register.

These flags are cleared automatically only when you turn on the computer. If you intend to test these
flags, you should clear them before prompting for the response.

Flags 24 and 25: Error Ignore. Normally, an error condition halts program execution. These flags
allow you to avoid unnecessary program halts and to use error conditions as a programming tool.

o If flag 24 is set, the computer ignores all OUT OF RANGE errors. This error normally results from
any calculation (except statistical accumulations) that produces a number x such that
|x| > 9.999999999 x 10%. If flag 24 is set, +9.999999999 x 10% is returned as an approximation
to the correct answer, and program execution continues.

Flag 24 is cleared each time you turn on the computer. Once you set flag 24, it remains set until you
explicitly clear it or turn off the computer. If you want to branch to your own error subroutine
rather than use +9.999999999 x 10% as an approximation, use flag 25.

o If flag 25 is set, the computer ignores only one error of any kind and then clears flag 25. The
command that caused the error is not executed. Flag 25 is cleared each time you turn on the
computer.

If both flags 24 and 25 are set, an OUT OF RANGE result will be handled by flag 24—flag 25 will
not be cleared. Note that if flag 25 is set but not flag 24, an OUT OF RANGE result will not cause
+9.999999999 x 10 to be placed in the appropriate register.

You can detect an error by setting flag 25 just before a command and, just after the command,
testing if flag 25 was cleared. (Generally you should test and clear flag 25—it’s dangerous to ignore
unanticipated errors.) This enables a program to branch rather than stop execution in case of an
error.

Flag 26: Audio Enable. When flag 26 is set, [5EEr |, [TONE], alarms, and the stopwatch produce
audible tones. Flag 26 is set each time you turn on the computer. (This is the only control flag whose
default status is set.) You can silence the computer by clearing flag 26.

Flag 27: User Keyboard. Flag 27 is set when the User keyboard is active—that is, when the USER
annunciator is displayed. A program can check or alter this flag exactly as you can check the annun-
ciator or press [USER]. Flag 27 is maintained by Continuous Memory.

Flags 28 and 29: Display Punctuation. These flags control the use of periods and commas in
numeric displays and are maintained by Continuous Memory. For details, refer to “Display Format” in
section 9.

Section 19: Flags 291

Program Examples. The programs TR and Z in section 22 use flags 22 and 23 (Data Input) when
prompting the user with default values for time, date, or job name. The user can either key in an
alternative value and then press [R/S], or else confirm the displayed value by simply pressing [R/S]. To
determine whether the user keyed in an alternative value, the programs clear the appropriate Data
Input flag before prompting and then test it afterwards. If the user keyed in an alternative value before
pressing [R/S], the Data Input flag will be set.

The programs use flag 25 (Error Ignore) when accessing records in the text file TRECS. To access all
records without knowing the number of records in advance, the programs contain loops that act on one
record, set flag 25 before accessing the next record, and then test flag 25 afterwards. If there isn’t
another record, an error occurs and flag 25 is cleared, so the program can tell whether to exit the loop
by testing flag 25.

System Flags (30 through 55)

The system flags are primarily for internal use by the computer; their utility to the user is limited. You
can test system flags, but several always test clear. You can’t directly alter individual system flags, but
you can save and restore the status of those that represent user options. Listed below are ways you can
use some of the system flags.

Flags That Represent Options. You can save and restore certain options that are encoded by the
computer as flags. This allows a program that sets options to restore the previous conditions when it is
completed. The functions to do so, [RCLFLAG | and [STOFLAG |, are described at the end of this section.

Some external devices controlled by the computer use system flags to represent options relating to
those devices; refer to the appropriate manuals for details. The following system flags represent options
in the computer:

» Flag 31 represents the date format, described on page 242.

o Flags 36 through 39 represent the number of displayed digits, described on pages 160 and 161.

» Flags 40 and 41 represent the display format, described on pages 160 and 161.

» Flags 42 and 43 represent the angular mode, described on page 186.
Flags That Represent Conditions. The following flags provide information that is useful for some
programs:

o Flag 44 is set when (continuous on) is executed.

o Flag 48 is set when the Alpha keyboard is active—that is, when the ALPHA annunciator is
displayed.

292 Section 19: Flags

® Flag 49 is set (and the BAT annunciator is displayed) when battery power is low. A long-running
program can occasionally test flag 49 and execute if flag 49 is set. Otherwise, if a program
continues to run when battery power is low, the memory contents of the computer can be affected.

® Flag 50 is set when a message is displayed.

* Flag 55 is set if a printer is present. This flag works with flag 21 (Printer Enable); their interaction
is described in appendix D, “Printer Operation.”

Summary of Flag Status

The chart on the next page indicates flag status when Continuous Memory has been cleared (“Reset”)
and whenever you turn on the computer (“Turn-On”). In addition to clear and set, there are two flag
states coded as follows:

M = Maintained by Continuous Memory.
? = Dependent on other conditions.

Flags and the X-Register

There are three reasons to move data between the flags and the X-register:
1. To save and restore options such as display format, which are encoded by the computer as control
or system flags.
2. To keep multiple copies of a group of user flags, with only one copy active as flags at one time.

3. To transform information represented by user flags into a number, and vice versa.

There are two ways to move data between the flags and the X-register:

. (X exchange flags) exchanges the status of flags 00 through 07 with a number from 0
through 255 in the X-register. Thus, the status of flags 00 through 07 can be saved as a number and
later restored (by again), or the number can be used in other ways (like calculations or
branching). However, cannot affect control or system flags.

J (recall flags) and (restore flags) can save and restore flags 00 through 43, so
they can handle user, control, or system flags. However, they can’t transform flag status into a
number.

In summary, only [RCLFLAG| and [STOFLAG] can save and restore control and system flags, and only
can transform the status of user flags into a usable number, but either can be used for multiple
copies of user flags. First described is and its use for multiple copies of user flags, followed by
[RCLFLAG] and [STOFLAG] and a comparison of their use for multiple copies of user flags.

Section 19: Flags 293

Summary of Flag Status

Flag Number Flag Name Status at Reset, at Turn-On

00-10 User Flags Clear M
11 Automatic Execution Clear Clear

12-20 External Device Control Clear Clear
21 Printer Enable ? ?
22 Numeric Data Input Clear Clear
23 Alpha Data Input Clear Clear
24 Range Error Ignore Clear Clear
25 Error Ignore Clear Clear
26 Audio Enable Set Set
27 User Keyboard Clear M
28 Display Puncuation Set M
29 Separator Mark Set M
31 Date Format Clear M
36 Number of Digits Clear M
37 ” Set M
38 ” Clear M
39 ” Clear M
40 Display Format Set M
41 ” Clear M
42 Angular Mode Clear M
43 " Clear M
44 Continuous On Clear Clear
48 Alpha Keyboard Clear Clear
49 Low Battery ? ?
50 Message Clear Clear
55 Printer Existence ? ?

294 Section 19: Flags

Flags and Numbers as Bytes

A byte, as a quantity of information, is the key to the correspondence between flags and numbers. A
byte comprises eight bits, or binary digits: 00010100, 10001100, 00100000, and 00001111 are examples of

bytes.

¢ A byte can be interpreted as eight flags, each 0 or 1 being the status of a particular flag.
e A byte can also be interpreted as a number, the sum of powers of 2.

By interpreting flags 00 through 07 as a byte and then interpreting that byte as a number, you can
translate the status of eight flags into a unique number from 0 through 255. Conversely, you can specify
the status of all eight flags at once by specifying a number from 0 through 255 and then translating it
into the status of flags 00 through 07.

Decimal Values and Flags 00 through 07

Flag
Number 07 06 05 04 03 02 01 00
Fla Set Set Set Set Set Set Set Set
Sta% s or or or or or or or or
u Clear | Clear | Clear | Clear | Clear | Clear | Clear | Clear
7 6 5 4 3 2 1 0
Binary 2 2 2 2 2 2 2 2
Value or or or or or or or or
Zero Zero Zero Zero Zero Zero Zero Zero
. 128 64 32 16 8 4 2 1
3;‘3213' or or or or or or or or
Zero Zero Zero Zero Zero Zero Zero Zero

Example. Below are four particular bytes, each shown with its corresponding flag status and decimal
value. Any flag from 00 through 07 that is not indicated as set is clear.

Flags That Are Set Byte Decimal Value
04, 02 00010100 16 + 4 = 20
07, 03, 02 10001100 128 + 8 + 4 = 140
05 00100000 32
03, 02, 01, 00 00001111 | 8 + 4 +2 + 1 =15

Section 19: Flags 295

Using

When you execute [X< >F|:

» The status of flags 00 through 07 is transformed into a number from 0 through 255 and placed in
the X-register.

¢ The number in the X-register, which must be from 0 through 255, is transformed into the status of
flags 00 through 07. The sign and fractional part of the number in the X-register are ignored.

Multiple Copies of Flags

You can effectively increase the number of user flags by saving and restoring the status of the actual
flags. When you save the current status of the actual flags, you create a “frozen” copy of those flags.
You can later restore the actual flags to the status that was frozen in the copy, even though you might
have used the actual flags for something entirely different in the meantime. In particular, you could
have cleared the flags, encoded a new set of data in them, and saved the resulting flag status. This
would give you two copies of the flag status, representing two distinct sets of data.

The following steps demonstrate this process. The first set of data is encoded by setting flags 00 and 02
(“first flag status”) and is saved in Rgg; the second set of data is encoded by setting flags 01 and 03
(“second flag status”) and is saved in Ry,.

010 Clear flags 00 through 07.

02 X<>F

03 SF 00 Set the first flag status.

04 SF 02

050 Move the first flag status to the X-register and clear flags 00 through 07.

06 X<>F

07 STO 00 Save the first flag status in Ryy.

08 SF 01 Set the second flag status.

09 SF 03

10 RCL 00 Recall the first flag status to the X-register.

11 X<>F Move the second flag status to the X-register and restore the first flag
status.

12 STO 01 Save the second flag status in Rg,.

This doubles the effective number of flags by encoding twice as much information, and you can create
more copies as needed for additional sets of data. However, you can access only one set of data at a
time. When you need to access a different set of data, you must store the current flag status and recal!
the desired flag status before you can test or manipulate the actual flags.

296 Section 19: Flags

Example. Suppose that a program calls five subroutines and that each subroutine employs several
flags. Before calling any subroutines, the program can create a copy of the initial flag status for each
subroutine and store each copy in a separate register. Then whenever a subroutine is called, it can start
by restoring its own flag copy, test and manipulate the flags, and finally save the current flag status as
its updated flag copy. In this way, the program can call subroutines in any order and any number of
times, and the subroutines won’t interfere with each other’s operation.

Example. Suppose you're analyzing the incomes of individuals by sex, age, and education. This can be
encoded by flags as follows:

Sex: Flag 00 set = female, clear = male.
Age: Flag 01 set = age < 20.
Flag 02 set = 20 < age < 35.
Flag 03 set = 35 < age < 50.
Flag 04 set = 50 < age.
Education: Flag 05 set = High school.
Flag 06 set = College.
Flag 07 set = Graduate Studies.

Each individual can now be characterized by two numbers: by a number from 0 through 255 represent-
ing the status of flags 00 through 07; and by income.

To accumulate statistical data on a subset of the entire group of individuals, a program can test the flag
copy for each individual in succession, accumulating only the incomes of those in the subset. For exam-
ple, if the subset is defined as all men—regardless of age and education—you would restore the actual
flags to correspond to the flag copy for each individual, test flag 00, and accumulate that individual’s
income if flag 00 is clear.

However, suppose that the subset is defined as women between 35 and 50 with a graduate degree.
Because this definition involves all eight flags, you don’t need to test separate flags; you can simply test
the number that represents the status of all 8 flags. “Woman between 35 and 50 with a graduate de-
gree” corresponds to flags 00, 03, and 07 set, which corres;ionds to a decimal value of 137. You would
test the decimal value for each individual’s flag copy and accumulate that individual’s income if the
decimal value equals 137.

Using [RCLFLAG] and [STOFLAG |

You can save the status of flags 00 through 43 using (recall flags) and then restore some or all
of them using (restore flags). These two functions are useful only as a pair; the result of
can be used only by [STOFLAG], and [STOFLAG] works only on data obtained by [RCLFLAG].

Using [RCLFLAG], When you execute [RCLFLAG], the status of flags 00 through 43 is recalled to the X-
register. This flag data can then be stored in a register in main or extended memory. (The display of the
status data is meaningless.) Like [RCL], raises the stack unless stack lift is disabled.

Section 19: Flags 297

Using [STOFLAG]. You can use to restore all or some of flags from 00 through 43:
* To restore flags 00 through 43, recall the flag-status data to the X-register and execute [STOFLAG |.

® To restore a block of flags bb (begin) through ee (end), recall the flag status data as above and then
place the control number bb.ee in the X-register. (This lifts the flag status data to the Y-register.)
Then execute [STOFLAG].

Like [STO], doesn’t change the stack. If bb = ee, only flag bb is restored.

Example. Suppose that a program rounds numbers to the nearest integer (requiring a instruc-
tion and a display format of | ©/*| 0), but you want the user’s choice of display formats to be in effect
otherwise.

1. After input is completed with the user’s choice of display format, use to recall the status
of flags 00 through 43 to the X-register, and then use nn to store the flag-status data in R,,,,.

2. Use [F1X]0 to specify “no decimal places.”
3. Use to round the number in the X-register.

4. Before starting output, execute nn to recall the flag data, enter 36.41 to specify flags 36
through 41 (the display format flags), and then execute to restore flags 36 through 41 to

their previous status.

required.

Multiple Copies of Flags. You can use [RCLFLAG] and [STOFLAG | rather than to handle mul-
tiple copies of flags, with the following differences.

* Each flag group can be any block of the user flags, including the entire block of flags 00 through 10.
(For each flag group must be flags 00 through 07.)

* You can’t use the flag data obtained by except to restore the actual flags to their previous
status. (The last example for using illustrated a way to directly use the number obtained by
(X<>F]).

Section 20

Branching
Contents
INtrodUCHION e 298
Branching to a Label 299
Global Labels 299
Global Label Searchest 299
Local Labels e 299
Local Label Searches it 300
Bytes for a Instruction 300
Calling @ Subroutine 301
The Subroutine Return Stack 302
Global-Label Subroutine Searches i 303
Bytes for an Instruction 303
Conditional FUNCHIONS e 303
Flag Testso 304
COMPAFISONS . . . oottt e e et e e e e e e 304
LOOPING - . oottt e 305
Looping Using Conditional Functions 305
Loop-Control FUNCHIONS i 306
Introduction

Branching occurs whenever program execution jumps to an instruction other than the next program
line—that is, whenever program steps are not executed sequentially. Two types of functions cause
branching:

» Executing label or label causes program execution to branch to the specified label.
» Executing a flag test, comparison, or loop control function can cause program execution to skip the
next program line, depending on whether a certain condition is true.

Often these two types of functions are used together: a flag test can be followed by label, so that
the status of the specified flag determines whether program execution branches to the specified label.
This section describes the use of first, next, conditional functions (flag tests and compari-
sons) next, and looping last.

298

Section 20: Branching 299

Branching to a Label

The only purpose of labels is to serve as targets for branching instructions. The two basic types of
labels are global labels, which can be accessed from any program in program memory, and local labels,
which can be accessed only from inside their own program. Any label other than a local Alpha label can
be specified indirectly as well as directly.

Global Labels

Global labels consist of up to seven Alpha characters including digits. Commas, periods, and colons are
not allowed. Single letters from A through J and from a through e are called local Alpha labels and
can’t be used as global labels. However, other single letters or digits are legal global labels. Global labels
require four bytes of program memory plus one additional byte for each character.

Programs are identified by their global labels. Functions that act on entire programs (like and
SAVEP |) require a global label to specify the program. At the same time, a global label also identifies a
particular line in a program—namely itself. You can branch to different parts of a program from out-
side that program if it contains several global labels; any one of these global labels can serve to identify
the entire program.

Global Label Searches

When the computer executes | G70 | followed by a global label, it first searches within program memory.
The search begins with the last global label (as listed by catalog 1) and proceeds upward through pro-
gram memory, stopping at the first label that matches the specified label. The search is in the opposite
order from the catalog 1 listing. If there are two global labels using the same characters, the higher
label (listed first by catalog 1) is never found because the search always stops at the lower label.

If the computer reaches the top of program memory without finding the specified label, it then searches
in catalog 2. If a program in a plug-in module or peripheral device includes the specified global label,
execution is transferred to the module or device and continues from that label.

Local Labels

Local labels are the internal markers in a program, used for branching within the current program. The
three types of local labels are described first, followed by how the computer searches for local labels.

Local Numeric Labels. There are two types of numeric labels, one for branching a limited distance
and another for branching any distance within a program.

* Labels 00 through 14 are short-form numeric labels, requiring only a single byte of program mem-
ory. Use them only when the distance in program memory from the| G0 | instruction to the label is
112 bytes or less.

* Labels 15 through 99 are long-form numeric labels, requiring two bytes of program memory. They
can be used for branching any distance within a program.

300 Section 20: Branching

Local Alpha Labels. Local Alpha labels require two bytes of program memory and can be used for
branching any distance within a program. They are designed for manual execution: when the User
keyboard is active, a local Alpha label is automatically assigned to each key on the top two rows (as
described in “The Top Two Rows” in section 9). You can then use these keys to execute the correspond-
ing local Alpha labels in the current program.

Program Example. The program Z in section 22 displays CLEAR D, J? E, which is a menu offering
three alternatives. You can press [D] to clear days, press (J] to clear a job, or press [E] to exit. When you
press one of these keys, program execution starts at the corresponding local Alpha label.

Local Label Searches

Searches for local labels occur only within the current program. To find a local label, the computer first
searches sequentially downward through the current program, starting at the instruction. If the
specified label is not found before reaching the end of the program, the computer continues the search
from the beginning of the program.
A local label search can consume a significant amount of time, depending on the length of the current
program. To minimize the search time, the computer records the distance in program memory from the
instruction to the specified local label when the instruction is first executed. This elimi-
nates the search time for subsequent executions of that instruction.

Program Example. To conserve program memory, the program X in section 22 uses short-form local
numeric labels wherever possible. Because there are 15 short-form labels and 28 places to use them, Z
uses short-form labels 00 through 03 more than once. This is made possible by restricting the use of
labels 00 through 03 to forward branches (where the [G70 | instruction precedes the [LEL | instruction).
Although LBL 00 appears in five distinct program lines, each GTO 00 is intended for the next LBL 00 in
the program and so no confusion occurs.

In contrast, short-form labels 04 through 14 are used for reverse branches (where the | 70 | instruction
follows the [L5L] instruction). Because the computer must search from the [GT0 | instruction to the
bottom of the program and then from the top of the program to the [L5L | instruction, each of these
labels appears only once to avoid confusion.

Bytes for a C10O Instruction
The number of bytes of program memory required by a | G70 | instruction depends on which type of
label is specified:

° A instruction specifying a global label of n characters requires 2 + n bytes.

e A[GT0]instruction specifying a long-form numeric label or a local Alpha label requires three bytes.

e A [GTO]instruction specifying a short-form numeric label or an indirect address requires two bytes.

Section 20: Branching 301

Calling a Subroutine

A program instruction consisting of followed by a label is a special type of branch named a

subroutine call. label and label are similar in that:
¢ Both transfer program execution to the specified label.
» All types of labels that can be specified for [c70| can also be specified for [XEQ].

A subroutine call is special because of what occurs after has transferred execution to the specified
label: the next or instruction executed will return program execution to the instruction that
follows the instruction, as illustrated below.

Program ABC branches to program DEF, so Program ABC calls program DEF as a subrou-

execution stops when the instruction is tine, so execution returns to ABC when the
encountered at the end of DEF. instruction is encountered at the end of
DEF.
01 LB+LTABC /01 LB+LTDEF 01 L?LTABC /01 L?LTDEF
10 GTOTDEF 46 END 16 XEQTDEF 46 END
11 STO 01 11 STO O1=—
30 END 30 END

Using subroutines saves space in program memory. The instructions in the subroutine appear only
once, but they can be executed any number of times both within a program and (if the subroutine
begins with a global label) from any number of programs.

Either or causes execution to return to the instruction following the subroutine call. How-
ever, marks the end of the program and thus affects local label searches and functions that act on
entire programs; marks only the end of a subroutine within a program. In the following program
terminates the subroutine and | ¢ terminates program execution. (In practice, there would be

no reason to execute lines 22 through 29 as a subroutine because they are executed only once.)

01 LBLTABC

10 XEQ 00
11 STO O1=

20 RTN
21 LBL 00
22 SIN

30 END

302 Section 20: Branching

If you call ABC as a subroutine from another program, execution returns to the calling program when
20 RTN is executed. That is, if a program calls a subroutine that calls a second subroutine, the second
subroutine is completed and execution returns to the first subroutine; then the first subroutine is com-
pleted and execution returns to the calling program.

Alternatively, you can ensure that execution will stop at line 20, even if ABC is called as a subroutine,
by entering 20 STOP. Press in Program mode to enter a instruction.

The Subroutine Return Stack

When an instruction calls a subroutine, the computer remembers the location in program mem-
ory of that instruction, so that execution can return there when the subroutine is completed.
While the subroutine is being executed, this return location is stored in the subroutine return stack.
When the subroutine is completed and execution returns to the instruction, the location of the
instruction is removed from the subroutine return stack.

Subroutine Limits. When a subroutine calls another subroutine, all pending return locations in the
subroutine return stack are “pushed up” in the stack. The subroutine return stack can hold six pending
return locations, so the computer can return from subroutines up to six levels deep.

LBLTMAIN LBL 01 LBL 02 LBL 03 LBL 04 LBL 05 LBL 06
x!o 03/
XEQ 01 XEQ 05
XEQ 02 XEQ 04 l\ XEQ 06
RTN H¥:\ RTN H¥:\ RTN R¥:\ RIN

Loss of Subroutine Returns. Pending return locations are lost from the subroutine return stack
under the following conditions.

« If there are already six pending return locations in the subroutine return stack when a subroutine
is called, the earliest return location is lost from the stack. In this case, program execution never
returns to the instruction that called the first subroutine; instead, excution halts when the
first subroutine is finally completed because there are no further return locations in the stack.

« All pending return locations are lost when you manually execute a program. Therefore, if you stop
a program ABC in the middle of a subroutine and manually execute a program DEF, it will be
impossible to resume ABC. This rule also applies if an alarm executes DEF while ABC is stopped.
Whether executed by an alarm or by you, DEF need not be a different program from ABC; for
example, executing a local Alpha label by pressing a key on the User keyboard clears the subroutine
return stack.

Section 20: Branching 303

Global-Label Subroutine Searches

When the computer executes followed by a global label, it first searches the contents of program

memory just as it does for . However, if the specified label isn’t found in program memory, the
next stages of the search caused by differ from the search caused by [¢T0|. The order of the

complete search caused by corresponds to the numbers of catalogs 1, 2, and 3.

Searching Catalog 1. The search begins with the last global label (as listed by catalog 1) and pro-
ceeds upward through program memory, stopping at the first label that matches the specified label.
Execution then resumes at that matching label.

Searching Catalog 2. If the specified label isn’t found in program memory, the computer then
searches catalog 2 for a global label or function name that matches the specified label. (Refer to appen-
dix H for a detailed explanation of the contents of catalog 2.) Execution then resumes at that matching
label, or the function with the matching name is executed.

Searching Catalog 3. If the specified label isn’t found in catalog 2, the computer then searches cata-
log 3 for a function whose name matches the specified label. If such a function is found, it is executed,;
otherwise a NONEXISTENT error occurs.

Bytes for an Instruction
The number of bytes of program memory required by an instruction depends on which type of
label is specified.

e An instruction specifying a global label of n characters requires 2 + n bytes.

¢ An instruction specifying a local label requires three bytes.

e An instruction specifying an indirect address requires two bytes.

Conditional Functions

Flag tests and comparisons are conditional functions. They express a proposition that is true or false
depending on current conditions, and their effect depends on whether the proposition is currently true
or false.

e If you manually execute a conditional function, the computer displays YES if the proposition is
currently true or NO if the proposition is currently false.

o If a program executes a conditional function, the result follows the rule: DO IF TRUE. The program
line that follows the conditional function is executed if the proposition is currently true, or else is
skipped if the proposition is currently false. That is, DO the next instruction IF the proposition is
TRUE.

304 Section 20: Branching

Is Flag 01 Set?

___/-
If YES (flag 01 is set): + + If NO (flag 01 is clear):
Continue with the next line. FS? 01 Skip one line before resuming execution.
(Do If True.) + :I
L.___./-
Flag Tests

The following functions can test any flag.
nn Is flag nn set? (00 < nn < 55)

nn Is flag nn clear? (00 < nn < 55)

Two functions test and then clear a flag. They can’t act on system flags (30 through 55) because you
can’t alter system flags.

nn Is flag nn set? Clear flag nn. (00 < nn < 29)
nn Is flag nn clear? Clear flag nn. (00 < nn < 29)

Comparisons

Comparing X with Zero. The following five functions compare the number in the X-register with
Zero:

Comparing X with Y. The following five functions compare the number in the X-register with the
number in the Y-register.

Two of these functions, '~ -7 |and [X# Y7, can compare Alpha data as well as numeric data. Executing

any of the three other functions with Alpha data in the X- or Y-register causes an ALPHA DATA error.

Section 20: Branching 305

Comparing X with Indirect Y. There are six functions that compare the contents of the X-register
with the contents of a register specified in the Y-register. The specified register can be any main mem-
ory register (Ry, through R(s,9)) or the stack or LAST X registers. Place the address from 00 through
319 or the single letter X, Y, Z, T, or L in the Y-register. The functions are:

(X=NN7) X#NN?) X>=nNn7] X>WN?)

These functions can compare any combination of Alpha and numeric data. Alpha strings are compared
on the basis of character codes, allowing Alpha data to be alphabetized. Alpha data are considered to be
strictly greater than numeric data.

Looping

A loop is a sequence of instructions that starts with a label and ends with a branch back to that label.
The simplest case is an infinite loop such as the following program.

01 LBLTLOOP
02 BEEP

03 GTOTLOOP
04 END

Once started, this program would run until the batteries expired. Infinite loops should generally be
avoided, but loops that repeat themselves until some condition is met are a powerful programming tool.

Looping Using Conditional Functions

When you want to perform an operation until a certain condition is met but you don’t know exactly
how many times to repeat the operation, you can create a loop with a conditional function just before
the [GTO | instruction. For example, the following program subtracts one from a number, tests the result,
and repeats the loop if the result is positive. As soon as the number is reduced to zero (assuming that
the original number was positive), the program exits the loop and beeps.

01 LBLTABC
021

03 —

04 X>0?

05 GTOTABC
06 BEEP

07 END

306 Section 20: Branching

Program Example. The sample programs TR and Z in section 22 use loops with conditional func-
tions to access extended memory. When many records in the file TRECS need to be processed in a
certain way but the number of records in the file varies, the loop that processes each record uses the
Error Ignore flag (flag 25) to exit when all records have been processed.

o After each record is processed, flag 25 is set. This means that when the next error occurs, the
computer will clear flag 25 but will not halt program execution.

o With flag 25 set, the program attempts to access the next record, and then tests flag 25. If flag 25
has been cleared, this means that there are no further records (an END OF FL error occurred) and
so the program exits the loop. If flag 25 is still set, this means that the next record does exist and
so the loop is repeated to process this record.

One particular example of this technique can be found in the program Z. Lines 351 through 362 form a
loop that accesses each time record. Within this loop, lines 354 through 360 attempt to set the pointer
to the next time record; if on line 358 causes an error, | -1 | 12 on line 360 terminates the
loop.

Loop-Control Functions

When you want to execute a loop a specific number of times, you can use special functions for that
purpose instead of the conditional functions in the previous examples. These special functions are [<
(increment, skip if greater) and (decrement, skip if equal). Both functions use a control number in
a register to control looping. This register can be a data register in main memory, a stack register, or
the LAST X register; it can be specified indirectly as well as directly.

iiiii is the current counter value. Each time | 5G| or is executed, iiiii is incremented (for
digits.

fff is the final counter value. Each time 5G| or increments or decrements iiiii, the
resulting value of iiiii is compared with the value of fff. The part fff must consist of three digits like

100, 020, or 009.

cc is the increment/decrement value. If cc is 00 (or unspecified), the computer uses a default
value of 01 instead. If specified, cc must consist of two digits like 30 or 03.

When the computer executes , it first increments iiiii by cc, and then tests if the resulting value of
iiiii is greater than fff. If it is, the computer skips the next instruction.

When the computer executes [DSE], it first decrements uiii by cc, and then tests if the resulting value of
itiii is equal to (or less than) fff. If it is, the computer skips the next instruction.

Section 20: Branching 307

Program Example. The program ¥ in section 22 uses loops with loop-control functions to access a
block of sequential data registers. When the registers are filled with data recalled from extended mem-
ory, they are accessed in order of increasing addresses. When the data are displayed, the registers are
accessed in order of decreasing addresses. (The order of the data must be reversed to display the data
chronologically).

To fill the registers in order of increasing addresses, = uses (on line 213) to increment the loop-
control number (in Rgz). To display the data in the reverse order, = uses (on lines 231 and 259) to
decrement the loop-control number.

Z defines the initial and final counter values to be the addresses of the first and last registers in the
block. Then each time the loop is executed, the integer part of the loop-control number is the address
of the register to access. This use of the loop-control number for indirect addressing (on lines 209, 212,
228, and 254) depends on the following initial value for the loop-control number:

* fff is equal to the address of the last register to be indirectly addressed.
e No value is specified for cc, so a default value of 01 will be used.

Section 21

Alpha and Interactive Operations

Contents
INtrodUCHION s 308
The Alpha and X-Registers i 309
Translating Characters and Numbers 309
Retrieving a Number from the Alpha Register 311
Manipulating Alpha Strings 312
Searching and Rotating the Alpha Register 312
Finding the Length of a String , 313
Example of Alpha Manipulations i 314
Requesting INpUt 314
USING [PROMPT | ..ttt e e e 314
USING [PSE | + vttt e e e e e e e e e e 315
Responding to a Pressed Key i, 317
USING [GETKEY | oo oo e ettt e et e e e e e e e e e 317
USING [GETKEYX] . oo ettt e e e e e e e 317
Producing OUtPUL 318
Using =372 S 318
Using =77 T 319
USING [PSE | oottt e e e e e e e 319
Using AN [BEEP | o 319
Introduction

This section covers two aspects of the Alpha register: advanced manipulations of data in the Alpha

register, and the interaction between the user and a program.

e Advanced Alpha register manipulations enhance the standard uses of the Alpha register (such as
messages to be displayed and data for text files), and also provide additional characters and the

ability to store arbitrary bytes of data.

o Interaction between the user and a program involves the functions that display a message and the

functions that interpret the user’s response.

308

Section 21: Alpha and Interactive Operations 309

The Alpha and X-Registers

There are three ways to move data between the Alpha register and the X-register:

1. Executing | X copies the contents of the X-register into the Alpha register; X copies six
characters from the Alpha register into the X-register. (Digits placed in the X-register by [A570]
are characters and cannot be used in computations.) The functions | ~~ and , which in

general access data registers, are discussed in section 12, “Main Memory.”

2. Executing [XTOA] (X to Alpha) translates a number in the X-register into a character in the Alpha
register, and executing (Alpha to X) translates the Alpha character back into its decimal
equivalent in the X-register.

3. Executing (Alpha number) searches the Alpha register for a string of digits and returns the
string to the X-register as a number. This is the only way to retrieve digits from the Alpha register
in a form usable in computations.

Translating Characters and Numbers

The Alpha register can hold a greater variety of characters than can be displayed by the computer, and
the display can show a greater variety of characters than you can key in from the Alpha keyboard. The
functions [ATOX] and [XTOA] enable you to use the full capabilities of the Alpha register and the display.

Numbers and Characters as Bytes. Recall from section 19 that a byte corresponds both to the
status of flags 00 through 07 and to a number from 0 through 255. A byte also corresponds to a char-
acter in the Alpha register. Although some bytes cannot be distinguished as characters in the display,
they are distinct in the Alpha register itself. The ability of the computer to work with bytes is particu-
larly valuable for controlling peripheral devices.

The null byte 00000000, which corresponds to the decimal value 0, has a special meaning in the Alpha
register. Because of this, under some circumstances you can’t retrieve a null byte from the Alpha regis-
ter. These restrictions are discussed in appendix C, “Null Characters.” All other bytes can be freely
stored, manipulated, and recalled from the Alpha register.

Using [x70A]. With a number from 0 through 255 in the X-register, execute to append the
corresponding byte to the right-hand end of the Alpha register. The X-register is unchanged. If the X-
register contains an Alpha string, executing appends that string to the Alpha register. Note that
a string of Alpha digits in the X-register is appended as those digits, not as the corresponding byte.

The following table shows all the characters that can be displayed, some of which are not available
from the Alpha keyboard. To append any of these characters to the Alpha register, place the decimal
value in the X-register and execute [XTOA]. All decimal codes from 128 through 255 produce the
“starburst” display (all display elements lit). The table also shows the ASCII display characters (but
not control characters) for the corresponding decimal values.

310 Section 21: Alpha and Interactive Operations

Character Codes

Code ASCIl Display | Code ASCIl Display | Code ASCIl Display | Code ASCIl Display
0 - 32 space 64 @ e 96 X T
1 * 33 ! ! 65 A A 97 a o
2 B 34 " " 66 B B 98 b h
3 ® 35 # H 67 C C 99 c [t
4 A 36 $ % 68 D M 100 d o
5 % 37 % % 69 E E 101 e c
6 b 38 & 5 70 F F 102 f B
7 B 39 : : 71 G e 103 g B
8 B 40 (¢ 72 H H 104 h B
9 B 41) ; 73 I I 105 [B

10 B 42 * X 74 J o 106 j B
11 B 43 + + 75 K K 107 k B
12 M 44 , 76 L L 108 | ®
13 i 45 - - 77 M M 109 m B
14 [46 . . 78 N N 110 n B
15 B 47 / ’ 79 o]] 111 0 B
16 B 48 0 a 80 P F 112 p]
17 [} 49 1 { 81 Q] 113 q B
18 ® 50 2 c 82 R K 114 r B
19 B 51 3 3 83 S = 115 s B
20] 52 4 Y 84 T T 116 t B
21] 53 5 5 85 U U 117 u B
22] 54 6 [86 Y v 118 v [
23] 55 7 7 87 w W 119 w [
24 B 56 8 =] 88 X X 120 X ®
25 B 57 9 9 89 Y Y 121 y B
26 B 58 : : 90 z z 122 z B
27 B 59 ; , 91 [C 123 { B
28 B 60 < l 92 \ \ 124 I B
29 I3 61 = = 93] 3 125 } B
30 ® 62 > Ky 94 ~ A 126 ~ L
31 ® 63 ? 2 95 _ - 127 =

Section 21: Alpha and Interactive Operations 31

Using [ATOX]. When you execute [ATOX], the decimal value of the leftmost byte in the Alpha register is
placed into the X-register. This byte is then lost as the contents of the Alpha register shift left, and the
stack lifts unless stack lift is disabled. If the Alpha register is empty, executing returns a value
of zero.

Any null bytes at the left-hand end of the Alpha register are ignored by [ATOX]. A null byte embedded
in an Alpha string will effectively disappear when shifted or rotated into the leftmost position. How-
ever, you can detect when a null byte disappears by comparing the length of the Alpha string before and
after shifting or rotating the Alpha register, as described in “Finding the Length of a String” below.

Program Example. The programs TR and X in section 22 use [XTOA] and [ATOX] to encode the num-
ber of hours worked each day on a job. Bytes with decimal values from 1 through 240 represent from .1
through 24.0 hours. This is a very compact way to store data; seven bytes, representing a week’s data,
consume one extended-memory register in the text file TRECS. The alternative of storing each day’s
hours in one register of a data file would offer greater accuracy but would consume seven times the
memory.

Retrieving a Number from the Alpha Register

The function scans the Alpha register for Alpha digits. If a string of digits is found, it is placed
in the X-register and flag 22 (Numeric Data Input) is set. The result in the X-register is a number
usable for calculations. If no digits are found, the X-register and flag 22 are unchanged.

If you place two numbers in the Alpha register without separating them, might not distinguish
them. For arbitrary characters in the Alpha register, first identifies and then evaluates the digit
string.
The string is identified as follows:

° searches from the left end of the Alpha register.

e Characters are ignored until a digit is encountered. If there are immediately preceding radix marks
(as currently defined by flag 28) or minus signs, they are considered as part of the string.

¢ All subsequent minus signs, radix marks, and up to 10 digits are considered as part of the string.

e E’s (for “exponent”) are considered as part of the string only if there are subsequent digits in the
string.

e The separator mark (as currently defined by flag 28) is considered as part of the string only if flag
29 (digit grouping) is set.

B considers the string to be complete when any character not considered as part of the string
is encountered.

. stops searching when it encounters the null byte if digits have been encountered.

312 Section 21: Alpha and Interactive Operations

When a string is identified, evaluates it as follows:
e A simple string of digits, for instance 12345, is simply that number, 12345.

o The first E encountered causes the subsequent (one or two) digits to be considered as an exponent.
All subsequent E’s are ignored. If there are already more than eight digits in the string, an E is
ignored unless there is a radix mark preceding the eighth digit.

e The resulting number in the X-register is positive if there are an even number of minus signs in
the string and negative if there are an odd number of minus signs. If an E defines an exponent, this
rule applies separately to the exponent string.

e The first radix mark encountered divides the integal and fractional parts of the number in the X-
register. All subsequent radix marks are ignored. All radix marks after an E are ignored.

e All separator marks are ignored. (Separator marks are considered as part of the string—and ig-
nored—only if flag 29 is set; if flag 29 is clear, considers the string complete if a separator
mark is encountered.)

Manipulating Alpha Strings

There are many sources for the characters in the Alpha register. The information might come from
your own text files, from an HP-IL peripheral device, or from the Alpha keyboard. Whatever the
source, you can combine the fundamental operations described below to perform complex manipula-
tions on that information.

Searching and Rotating the Alpha Register
Recall that the three functions that move data from the Alpha register to the X-register all work from
the left end of the Alpha register:

e [A5TO| X copies the six leftmost bytes into the X-register.

. translates the leftmost byte into a number in the X-register.

o identifies the leftmost complete digit string and translates it into a number in the X-

register.

To use all the data in the Alpha register, you can rotate the contents to place a specific byte or string at
the left end. To do so, first locate the desired data using (position in Alpha) and then relocate
that data to the left end using (Alpha rotate).

Searching the Alpha Register. searches the Alpha register for a target specified in the X-
register. A number representing the position of the target is returned to the X-register; the target
specification is saved in the LAST X register. The Alpha register is unchanged.

Section 21: Alpha and Interactive Operations 313

The target can be:
e The decimal value of a byte (0 through 255); or
e An Alpha string placed in the X-register by (2570 X.

Positions in the Alpha register are counted from left to right, starting with position 0. The position of
an Alpha string is defined as the position of the first character in the string. If the target is found, the
number representing the target’s position replaces the target specification in the X-register. If the tar-
get is not found, a value of —1 replaces the target specification in the X-register.

Executing [POSA] finds only the first occurrence of a target. If the target is the null byte (decimal value
0), only a null byte that follows a non-null byte will be found.

Rotating the Alpha Register. Executing rotates the contents of the Alpha register by the
number of positions given in the X-register. Rotation is to the left if the number in the X-register is
positive, or to the right if the number is negative. Only the current contents are rotated, not all 24
positions in the Alpha register. Note that executing immediately after rotates the target
to the left end of the Alpha register (assuming the target was found).

Any null bytes that are rotated to the left end of the Alpha register effectively disappear. You can check
if null bytes have disappeared by keeping track of the length of the string in the Alpha register.

Finding the Length of a String

Executing returns the number of characters in the Alpha register to the X-register. The Alpha
register is unchanged, and the stack lifts unless stack lift is disabled. The following situations suggest
ways to use in conjunction with other Alpha manipulations:

e If you are rotating the Alpha register several times to retrieve numbers with [ANUM], you can use
to determine when you've completed one full rotation. When the total number of positions
rotated equals the number of characters, the contents have returned to their original order.

¢ If you are moving bytes to the X-register with and processing them with a subroutine, you
can use first to determine the required number of iterations.

* If you shift or rotate Alpha strings that contain embedded null bytes, you can use to detect
how many (if any) null bytes disappear. Compare the length of the string before and after you shift
or rotate the string; if there are fewer characters afterwards, one or more null bytes have
disappeared.

314 Section 21: Alpha and Interactive Operations

Example of Alpha Manipulations

Suppose that a peripheral device places two digit strings, separated by a space, into the Alpha register.
This example shows how to retrieve the two numbers, placing the first digit string in the X-register and
the second in the Y-register. The comments on the right assume a combined digit string of
“123.45 678.90” in the Alpha register.

01 ANUM The first digit string, 123.45, is placed in the X-register. The contents of
the Alpha register are unchanged.

02 32 The decimal value for a space, 32, is placed in the X-register to be the
operand for the next two steps. 123.45 is lifted into the Y-register.

03 XTOA A space is appended to the end of the second digit string. This ensures that

the two digit strings won’t be joined when the contents rotate. The Alpha
register now contains “123.45 678.90 ”.

04 POSA The number 6, the position of the space separating the two digit strings,
replaces 32 in the X-register.

05 AROT The contents of the Alpha register rotate 6 positions to the left. The Alpha
register now contains “ 678.90 123.45".

06 ANUM The second digit string, 678.90, is placed in the X-register. 6 is lifted into
the Y-register and 123.45 is lifted into the Z-register.

07 RCL Z The number 123.45 is recalled to the X-register and 678.90 is lifted into the
Y -register.

Requesting Input
There are several functions and combinations of functions that request input from the user. In compar-
ing the alternatives there are two issues:

1. Is program execution stopped until a response is given, or does execution eventually continue even
if no response is given?

2. What types of response are possible?

The alternatives below are described in terms of these two issues.

Using

When is executed, the computer displays the contents of the Alpha register and stops execu-
tion. The displayed message should indicate the type of response that is expected: numeric input, Al-
pha input, a procedure, a keystroke that the program will interpret, or many other possibilities. Before
considering the specific examples below, note that there are only two ways to restart program execution:

Section 21: Alpha and Interactive Operations 315

¢ You can press to restart execution beginning with the program line that follows [PROMPT |; or

* You can branch to a local Alpha label by pressing the corresponding key in the top two rows.
Execution resumes at the local Alpha label.

Program Examples. The programs TR and = in section 22 use for a variety of purposes.
The most common purpose is to ask you to confirm a displayed number (time or date) or Alpha string
(job name). You can respond in two ways: either key in an alternative value and press [R/S], or simply
press to confirm the displayed value. The programs use flags 22 and 23 to determine whether you
keyed in an alternative value.

« If you key a number into the X-register, flag 22 (Numeric Data Input) is set. This flag can be tested
later to check whether a number was entered.

e If you key an Alpha string into the Alpha register, flag 23 (Alpha Data Input) is set. This flag can
be tested later to check whether an Alpha string was entered.

For example, when TR asks which job you're starting (lines 135 through 146), it clears flag 23 before
prompting and later tests whether flag 23 was set. In addition, the program executes (Alpha on)
before [PROMPT |, and (Alpha off) after [PROMPT], so that the Alpha keyboard will be active while

execution is halted.

When TR attempts to enlarge the text file TRECS but there are no extended memory registers available,
it uses to display NEED ROOM and halt execution (lines 230 and 231). Your response should

be a procedure, namely reducing the size of some other file. After you do so and press [(R/S), TR tries
again to enlarge TRECS.

The program Z uses to display CLEAR D, J? E and halt execution (lines 303, 304, and 305).
When you press [D], (J], or (E], execution resumes at the corresponding local Alpha label (LBL D on
line 341, LBL J on line 308, or LBL E on line 363).

Using

You can use (pause) much like [PROMPT], but with the following differences:

. delays execution for slightly less that a second. Keying in a number or Alpha string during a
pause causes the pause to be repeated; executing a function halts program execution.

e Normally, displays the X-register. To display a message that is in the Alpha register, either
[AVIEW] or must precede [PSE .

A string of consecutive instructions allows more time to begin a response. Each time is
executed, the PRGM annunciator blinks once. Digit and character entry are terminated at the end of
each pause; if you key in a few digits, wait for more than a second, and then key in more digits, the two
groups of digits will be treated as two separate numbers.

316 Section 21: Alpha and Interactive Operations

Keycodes for and

—R-F-F ¥
- E-F-¥-F-
SR-Y-¥-¥ -
— o 2 o
o 3 =
-
o @ m

e]
—acx

o oo

T HEWLETT PACKARD

GETKEY] returns a positive keycode to the X-register. Pressing [l returns a keycode of 31.

returns a positive or negative keycode to the Y-register. Pressing I first returns a negative
keycode for the second key pressed.

Section 21: Alpha and Interactive Operations 317

Responding to a Pressed Key

Two functions, [GETKEY | and [GETKEYX], wait for you to press a key and then return a keycode repre-
senting the key you pressed. The diagram on the facing page shows the keycode for each key.

Using [GETKEY

Executing delays program execution up to 10 seconds. If you press a key within 10 seconds,
returns the appropriate keycode to the X-register, lifting the stack unless stack lift is disabled.
If you don’t press a key, returns zero. To display a message while waiting, a program can place
the message in the Alpha register and execute EW | before executing [GETKEY |.

Note that all values returned by are valid values for local numeric labels. You can use
and IND X to branch to the subroutine appropriate to the user’s response. This technique is some-
what like local Alpha labels, but it doesn’t clear the subroutine return stack. First associate each re-
sponse with a letter and find the keycode of that letter’s key. Then start each response’s subroutine
with a numeric label that is the keycode for that letter’s key. If you want the user to press for “yes”
or [N] for “no,” start the subroutine for “yes” with | L5L|71 and the subroutine for “no” with 41.
Then follow [GETKEY] with [XEQ] IND X. When is executed and the user presses or [N],
either 71 or 41 is returned to the X-register and IND X will execute the appropriate subroutine.

Using [GETKEYX
is similar to but includes the following features:

Variable Interval. A number SS.s in the X-register, |SS.s| < 99.9, specifies how many seconds
waits for a response.

Shifted and Unshifted Keycodes. returns a keycode to the Y-register. Pressing [fol-
lowed by another key produces a negative value of the second key’s keycode. Pressing [restarts the
specified interval; if you don’t press a second key within the second interval, returns zero
indicating that no key was pressed.

Character Codes. returns a character code (if appropriate) to the X-register, according to
the table on page 310. If flag 48 is set (the Alpha keyboard is active), a character code is returned for
keys with characters on the Alpha keyboard. If flag 48 is clear, a character code is returned for the digit
keys, the radix-mark key, and [CHS]. For all other cases returns zero to the X-register. Note
that a key has different character codes depending on flag 48: keycode 52 corresponds to the letter R
(character code 82) on the Alpha keyboard, and to the digit 7 (character code 55) on the Normal
keyboard.

318 Section 21: Alpha and Interactive Operations

Action on Key Up or Key Down. The sign of the number SS.s in the X-register determines whether
the computer will act when the key is pressed or when the key is released:

e If SS.s = 0, the computer acts when the key is released. This is the simpler option; the function on
the key is never executed and there will be one response each time a key is pressed.

e If SS.s < 0, the computer acts when the key is pressed down, making repeating keys possible. For
example, a program can contain a loop that places —.01 in the X-register, executes [GETKEYX], calls
a subroutine according to the user’s response, and then starts over. Executing with a
small negative value for SS.s asks, Is there a key down now? If the user holds down a key, the loop
containing [GETKEYX | would call the appropriate subroutine over and over until the key is released.

Releasing the key produces the normal effect of pressing the key; but remember that only and
have any effect while a program is running.

lifts the contents of the Y- and Z-registers into the Z- and T-registers, and moves the inter-
val SS.s from the X-register to the LAST X register, as illustrated below.

lost

T t / z
y 4 z /

/ y
Y[vy
X| SSs

\

LASTX| 1 sss |

Producing Output

The following functions allow the computer to display a message and generate audible signals.

Using [AViEW]

When a program executes | AVIEW |, the computer displays the contents of Alpha register until
(clear display) clears the display or another message is displayed. Executing [AVIEw | might also stop
program execution, depending on the status of flags 21 (Printer Enable) and 55 (Printer Existence) as

described in appendix D.

Section 21: Alpha and Interactive Operations 319

Using

To display the contents of R, without recalling the register’s contents to the X-register, execute _
nn. The register to be viewed can also be specified indirectly,. When a program executes nn, the
computer displays the contents of R, until clears the display or another message is displayed.
Like , VIEW |’s operation is affected by flags 21 and 55.

Using

can be used to briefly display a message. When is executed, program execution halts for
slightly less than a second.

o If the display already contained a message (rather than the program execution indicator), this
message remains displayed.

e If there was no message in the display and the Alpha keyboard is active, the contents of the Alpha
register are displayed.

e Otherwise, the contents of the X-register are displayed.

Using and

Executing n produces a single audible tone with a pitch specified by the value of n. The lowest
pitch is produced when n = 0, the highest when n = 9.

Executing [produces a fixed sequence of four tones.

Section 22

Programs for Keeping Time Records

Contents
Introduction 320
Program Examples 321
Using the Programs 321
Loading the Programs i 321
Creating the Files 321
Using TR ... 323
USiNg Z ... 325
Files Used To Keep Time Records iiiiiiinon.. 328
Text File TRECS 329
Data File LAST 330
Explanation of TR 330
Registers and Flags Used by TR i 331
Program Listing for TR 332
Explanation of Z 339
Registers and Flags Used by = i, 339
Program Listing for £ 340
Introduction

This section contains programs that can help you keep track of how you spend your time. Instructions
appear below under “Using the Programs” and are followed by an explanation of each program. When
you understand what these programs do, you can study the annotated program listings to understand
how they work.

Although you may never need to write programs as involved as these, you may find some of the tech-
niques useful in your own applications. Each program is divided into major parts that correspond to
major aspects of the program’s operation. Each major part is then divided into routines—sequences of
program lines that perform a basic task. You can learn a great deal about the individual functions in a
routine by observing how they work together to perform the task, and you may find some of these
routines useful in your own programs.

320

Section 22: Programs for Keeping Time Records 321

Program Examples

Sections 19, 20, and 21 refer to these programs to illustrate certain programming functions and tech-
niques. The topics discussed in these “Program Examples” include:

» Data Input and Error Ignore flags (“Control Flags” in section 19).

[]

Local Alpha labels and local label searches (“Local Labels” in section 20).

Looping using conditional functions and using loop-control functions (“Looping” in section 20).

Efficient storage of data (“Translating Characters and Numbers” in section 21).
Program/user interaction (“Using [PROMPT]” in section 21).

Using the Programs

There are four processes involved in keeping track of your time:
o Loading the programs TR (time records) and X (summary).

o Creating the files that will hold the information. You will need to do this only once, unless you
later clear or purge these files or reset the computer.

¢ Updating the information. You will need to do this each time you start or stop working on a job.
e Summarizing the information. You can do this whenever you want a record of how you've spent

your time.

The steps you should follow for each process are given below.

Loading the Programs

This section contains listings for the programs TR and Z. To key in the programs, follow the instruc-
tions under “Loading a Program” in section 18.

Bar code for the programs appear in appendix J, “Bar Code for Programs.” To enter the programs
using an HP 82153 Wand, follow the instructions in the owner’s manual for the wand.

Creating the Files

Creating the File LAST. This data file will hold three values describing the situation when you last
started or stopped working: last job, the name of the job you started or stopped; last time, the time of
day; and last date. To begin keeping time records you need to create this file and give initial values for
the time and date.

1. Key LAST into the Alpha register.
2. Key 3 into the X-register.

3. Execute [CRFLD . This creates a data file named LAST that contains three registers. The pointer is
set to the first register.

322 Section 22: Programs for Keeping Time Records

4. Key 1 into the X-register.

5. Execute 02. The initial value for last time will be 1.

6. Execute [DATE|. This returns the current date to the X-register. (The contents of the X-register
differ from the resulting display.)

7. Execute 03. The initial value for last date will be the current date.

8. Key 1.003 into the X-register.

9. Execute [SAVERX . This copies the contents of Ry;, Ryy, and Ry3 into LAST. (The initial value for
last job will be the current contents of Ry;. You will replace this with a real name when you first
execute TR.)

Creating the File TRECS (time records). This text file will contain a pair of records for each job that
you work on. To begin keeping time records you need only to create this file; the updating program TR
will automatically create the necessary records within TRECS.

1. Key TRECS into the Alpha register.

2. Calculate j (w + 1), where j is the number of jobs and w is the number of weeks for which you want
to keep records. This is an estimate of the number of registers TRECS will require; it can be a
rough estimate because the program TR will automatically add registers to TRECS if necessary. Key
this estimate into the X-register.

3. Execute [CRFLAS|. This creates the text file TRECS containing the estimated number of registers.

Creating the First Records. Next you need to execute TR once to create a pair of records in TRECS
for your first job. (One record is for the job’s name; the other record is the job’s time record.) Unless
you're really starting work on that job now, you’ll want to repeat TR immediately to indicate that you're
stopping. No elapsed time will be recorded if you stop within three minutes of when you started.

1. Execute TR.

2. When the computer displays JOB NAME = ?, key in the name of your first job and press [R/S].
(You don’t need to press before or after keying in the name.)

3. When the computer displays START job?, where job is the job name you just keyed in, press
to confirm.

4. When the computer asks NEW JOB?, press [R/S]. This confirms that the name you keyed in isn’t a
misspelled existing name. The computer now creates the pair of new records for your job.

5. When the computer asks START NOW?, press to confirm.
When zero returns to the display, you have successfully completed your first execution of TR. You can
indicate that you're stopping now by repeating TR.

6. Press to start TR again. (Executing TR twice in a row is common when you stop work on one
job and immediately start on another.)

7. When the computer displays STOP NOW?, press to confirm.

Section 22: Programs for Keeping Time Records 323

When zero returns to the display, you're ready to use TR according to the rules for general use that
follow.

Using TR

Execute the program TR each time that you start or stop work on a job. The program will offer you
different choices depending on whether you're starting or stopping; these choices are described below
under “Starting Work” and “Stopping Work.” The following instructions apply to both situations.

General Instructions.
» There are three variables that appear in the instructions for starting and stopping:

Last job is the name of the job that you started or stopped when you last executed TR. This value
changes only when you key in a different job name.

Last time is the time of day that you started or stopped most recently. This value changes each
time you execute TR. (The time you start is stored as a negative number; a value of 1 is stored
when you stop. When you next execute TR, the sign of the stored value of last time indicates
whether you started last time and so are stopping now, or vice versa.)

Last date is the date that you started or stopped most recently. This value is handled automati-
cally by TR.

» When the computer displays a question, it is usually indicating a default value for a name or time.
To confirm the displayed value, just press (R/S]. To select an alternative value, key in that value
before you press [R/S].

o To key in the time of day, you can use either a 24-hour format:
HH.MM = HH hours (0 < HH < 24) and MM minutes (0 < MM < 60)
or else you can enter a time between noon and midnight as a negative number:
—HHMM = 12 + HH hours (0 < HH < 12) and MM minutes (0 < MM < 60)

o If the computer displays JOB NAME = ?, key in a job name and press [R/S]. (You don’t need to
press [ALPHA].) The computer now assumes that you're starting work on that job. This will occur
only the first time you execute TR or if you just cleared the pair of records in TRECS for last job.

e If the computer displays NEED ROOM, reduce the size of an extended memory file other than LAST
or TRECS by two or more registers, and then press [R7S]. This will occur when the computer it is
unable to enlarge TRECS because there are no registers available in extended memory.

324 Section 22: Programs for Keeping Time Records

Starting Work.
1. Execute TR.
2. When the computer displays START last job?, you can either:

» Press to confirm that you’re starting again on the same job as last time. The computer
then skips to step 4.

« Key in an alternative job name and press [R7S]. (You don’t need to press [ALPHA].) If you key
in the name of an existing job—one that you've already used with TR—the computer skips to

step 4.

3. If the computer doesn’t recognize the job name you keyed in, it displays NEW JOB? You can then
either:

» Press to confirm that you keyed in the name of a new job. The computer will create a
new pair of records in TRECS for this new job.

» Key in an existing job name and press [R/S]. (You don’t need to press [ALPHA].) If you
misspelled the job name in step 2, this is your chance to correct your error.

4. When the computer displays START NOW? you can either:
» Press to confirm that you're starting now.
» Key an alternative starting time into the X-register and press [R/S].

The program is done when the display shows zero.

Stopping Work.
1. Execute TR.
2. a. If today’s date is the same as last date, the computer displays STOP NOW? You can then either:
¢ Press to confirm that you're stopping work now.
» Key an alternative stopping time into the X-register and press [R/S].
b. If today’s date differs from last date, the computer displays PAST 24:007 You can then either:

s Press to confirm that you worked past midnight. The computer then updates the job’s
time record for the day you started (from last time through midnight); changes the values
for last time and last date to indicate that you started work at 00:00 hours on the next day;
and then goes back to step 2a or 2b.

« Key an alternative stopping time into the X-register and press [R/S]. (You would do this if
you stopped work the same day you started, but forgot to execute TR.)

3. If you keyed in a stopping time that is earlier than the starting time, the computer displays START
> STOP and goes back to step 2a or 2b.

The program is done when the display shows zero. If you're starting on a different job now, you can
press to execute TR again.

Section 22: Programs for Keeping Time Records 325

Using 2

The program Z has two stages, summarizing and clearing. The computer first asks for the dates you
want summarized and produces the summary; then you are offered the options of clearing time records
for all jobs before a specified date or else clearing an entire job.

You can summarize any period for which time records exist, including parts of the entire period. For
example, suppose that you accumulate time records for a month. During that month you could summa-
rize each week on Monday of the following week. At the start of the following month you could then
summarize the past month, clear the time records for that month, and start the cycle again.

Instructions for the two stages appear under “Summarizing Time Records” and “Clearing Time
Records.” The following instructions apply to both stages.

General Instructions.

e There are two variables that appear in the instructions for summarizing and clearing.

Earliest date is the date of the oldest time record to be summarized or cleared. The default value
is the earliest date for which time records exist. When you’re summarizing you can specify a
later date (as long as it isn’t later than most recent date).

Most recent date is the date of the latest time record to be summarized or cleared. The default
value is the most recent date for which time records exist. When you’re summarizing or clearing
you can specify an earlier date (as long as it isn’t earlier than earliest date).

» When the computer displays a question involving a date, it is indicating the current value for
earliest date or most recent date. To confirm the displayed date, just press [R/S]. To select an alter-
native date, key in that date before you press [R/S].

o If the computer displays ILLEGAL DATE, the number you keyed in either represents a date before
earliest date or after most recent date, or else it isn’t a valid date at all. In the latter case, be sure
you're using the date format ([DMY | or [MDY]) currently in effect.

Summarizing Time Records.
1. If you're using an HP 82143A or HP 82162A printer, switch the printer to MAN (manual mode).
2. Execute Z. (* is [on the Alpha keyboard.)
3. When the computer displays FROM earliest date?, you can either:
e Press to confirm this date.

e Key a later date into the X-register and press [R/S]. The computer will then repeat this step to
confirm the later date.

4. When the computer displays THROUGH most recent date?, you can either:
o Press to confirm this date.

e Key an earlier date into the X-register and press [R/S]. The computer will then repeat this
step to confirm the earlier date.

326

5. If the computer displays PACKING (perhaps very quickly) and TRY AGAIN, press [R/S]. This will
occur if the program attempted to allocate more main memory registers to data storage than the
number of free registers available. If the automatic packing freed enough registers, the program will
run smoothly after you press (R7S]; but if there are still too few free registers available, the com-

Section 22: Programs for Keeping Time Records

puter will repeat the message TRY AGAIN. In this case you should either:

o Execute Z again (starting over with step 1), specifying a shorter summary period than before.

e Clear a program, alarms, or User keyboard assignments; execute or [GTO|[-][%); and then
execute 2 again (starting over with step 1), specifying the same summary period as before.

6. The computer produces a summary of time records for the period you have specified. The following
sample shows a printed summary. If no printer is present, the computer displays each line of the
heading for about one second; each subsequent line is displayed until you press (R/S], giving you an

opportunity to copy the summary.

TIME RECORDS
from

Earliest date ——»id

FeB1-83

through

Most recent date ——»H7 15

]

=~ m

[o I v

(I o]

50
Y

R

Mondays

[kn] [B T e B e B oy

]
Lo T o T T 0 B v |
I I RN
IR

."-.] :‘-.j

o T o B

- ", ", " W, W, . ",
[B T i B B B n | =
DoV BN I B (s SR) (R Y] Tl =

.,

R
N f

aoa] T

—
S

oo

Iy I O
EZo0d on on = [

[acn]

- Daily hours for JOB 1.

oS =
O

L,

Ha o] Ty
=

=) n

A,
44, 1 -=Total hours for JOB 1.

S

Section 22: Programs for Keeping Time Records 327

JOEBE 2
BF @81 a.a8)
5 By v) q@.a
BY A3 B,a
(S 5 1) 2.1
BY -85 1.2
BY HE 1.4
By -8y 2.2
Mondays B Ba = .2 Daily hours for JOB 2.
BT -@3 B8
AT ~1@ &, 8
67 .-11 1.7
BY-12 5.3
A7 .~173 I
B7 14 2.6
A7 ~1% 7.8 J
TOTAHL 47, 2 -=-Total hours for JOB 2.
SUMMARY
BY -8 2.2
roaz B, 8
A7 <83 6,8
A7 .84 2.5
A7 -85 2.3
5 g 5 T 2.2
A7 a7 2.2 .
A7 <03 f.a '
A7 .-106 .0
B 11 2.8
B 12 5.9
B7-13 g.1
6714 2.1
G715 2.5)
TOTHL 21 .4 -=Total hours for JOB 1

and JOB 2 combined.

328 Section 22: Programs for Keeping Time Records

Clearing Time Records.

7. When the summary is completed, the computer displays CLEAR D, J? E. This is a menu that offers
three choices; indicate your choice by pressing (D], (J], or [(EJ.

(0] = Clear days. When the computer displays THROUGH most recent date? you can either:

¢ Press to confirm the displayed date. The computer will clear the time records for all jobs
for this date and earlier, then return to the menu CLEAR D, J? E.

s Key an earlier date into the X-register and press (R/S]. The computer will ask you to confirm
the earlier date.

= Clear job. When the computer displays NAME OF JOB?, key in the name of the job to be
cleared and press [R/S]. (You don’t need to press [ALPHA].)

s If the computer finds a job with the name you keyed in, it clears both the name and the time
record for that job, then returns to the menu CLEAR D, J? E.

o If the computer doesn’t find a job with the name you keyed in, it displays NO SUCH NAME and
returns to the menu CLEAR D, J? E.

(E] = Exit. This restores the previous flag status (and the options it represents) and then termi-
nates Z.

8. Press G0 |[-][-] or else execute a different program. This is necessary because the (D], (J], and [E]
keys will act as described above as long as Z is the current program and the User keyboard is
active.

Files Used To Keep Time Records

Two extended memory files are used to keep time records. One is an text file named TRECS which
contains a pair of records for each job. The other is a data file named LAST which contains information
from the last time you started or stopped working.

Section 22: Programs for Keeping Time Records 329

Text File TRECS

TRECS holds the name and time record for each job in a sequential pair of records, as shown in this
diagram.

Record Number Record Contents
000 Name of the first job.
001 Time record for the first job.
002 Name of the second job.
003 Time record for the second job.
n Name of the n/2 + 1 job.
n+ 1 Time record for the n/2 + 1 job.

Each character in a time record is a byte whose decimal value represents the number of hours you
spent on that job for a particular day. The first byte represents the hours for the current day and each
subsequent byte represents the hours for each preceding day. This arrangement allows time records to
be of different lengths—the nth byte in each time record represents the same day for a different job.
The time record for an older job, one for which you have records for a longer period, will be longer than
a time record for a newer job. When you create a new job, its pair of records is added to the end of
TRECS. This means that the first job in TRECS is the oldest job, and its time record is as long or
longer than any other.

The number of hours per day is calculated to one decimal place. This value, multiplied by 10, is the
decimal value of the byte that encodes those hours. The following table shows some examples of this
system of encoding.

Time Time Byte
(hours/minutes) | (decimal hours) | (decimal value)
3 hrs. 20 min. 3.3 33
5 hrs. 30 min. 5.5 55
7 hrs. 0 min. 7.0 70
10 hrs. 42 min. 10.7 107
13 hrs. 15 min. 13.3 133

There are two bytes that are exceptions to this system.

* Because a null byte (decimal value = 0) can disappear in the Alpha register, “no hours” is encoded
by the byte having a decimal value of 254.

» The last byte in each time record is an extra “end of time record” byte having a decimal value of
255.

330 Section 22: Programs for Keeping Time Records

Data File LAST

The second file used to keep time records is a data file named LAST which holds information about the
last time that you started or stopped working on a job.

Register Number Register Contents
000 Last job = Name of the last job started or stopped.
001 Last time = Time when you last started or stopped.
002 Last date = Date when you last started or stopped.

Last job. Job names are limited to six characters because they must fit in a register. If you start and
stop work several times on the same project, you won’t need to specify its name each time you start
because its name is stored in LAST. One job’s name shouldn’t be identical to the beginning of another
job’s name. For example, if one job is named ABCD, don’t name another job ABC. (However, you can
name another job BCD.)

Last time. The updating program TR stores a negative value for last time when you've started working
and a positive value when you've stopped. This will indicate whether you're starting or stopping work
when you next execute TR. If you always remember to execute TR when you actually start or stop work,
you’ll never need to key in the time.

Last date. When the date siwored in LAST differs from the current date, “no hour” bytes are automati-
cally added to the time record for each job. This keeps the time records properly ordered by date.

The program TR copies the contents of these three registers in LAST into Ry, through Rgy; in main
memory whenever you start or stop work. The program uses these values in its operation, updates these
values, and then copies the updated values back to LAST.

Explanation of TR

The program TR contains several major parts.

o The main routines recall the contents of LAST from extended memory, evaluate what should be
done, execute the appropriate routines, and copy the updated values into LAST in extended
memory.

» The routines for stopping work ask when you stopped, calculate the number of hours you worked,
update the appropriate time record in TRECS, and update last time.

Section 22: Programs for Keeping Time Records 331

* The routines for a new date add a byte representing “no hours” to each time record and update last
date.

* The routines for starting work ask which job you’re starting, when you're starting, and then update
last job and last time.

In addition there are three minor subroutines at the end of TR to search TRECS for a specified job
name, to convert a time value, and to enlarge the file TRECS.

Registers and Flags Used by TR

The program TR uses the following data storage registers and user flags in its operation. Refer to these
tables as you read the program listing.

Registers and Their Contents for TR

Register Number Register Contents
00 Flag status at start.
01 Last job.
02 Last time.
03 Last date.
04 Decimal value of byte representing number
of hours worked.

Conditions Represented by User Flags in TR

Flag Number Condition Represented by Flag
01 Clear = Job name found in TRECS.
Set = Job name not found in TRECS.
02 Clear = Stopping work now.
Set = Starting work now.
03 Clear = Same date (last date = current date).
Set = New date (last date + current date).

332 Section 22: Programs for Keeping Time Records

Program Listing for TR

Main Routines. These routines recall data from the last time you executed TR, determine what to do
this time, execute the appropriate routines, store the updated data, and conclude the execution of TR.

01+LBL “TR”

Lines 01 through 26 recall last job, last time, and last date. Lines 02

02 SIZE? through 05 ensure that there are at least five registers allocated to data
035 storage. Lines 06 through 09 save a copy of the current flag status

04 X>Y? before selecting the display format and clearing the Printer Enable flag.
05 PSIZE Lines 10 through 14 copy last job into Ry, last time into Rgy, and last
06 RCLFLAG date into Ryg. (These values have been stored in the file LAST since you
07 STO 00 last executed TR.) Lines 15 and 16 select TRECS as the current file in
08 FIX 1 extended memory. Line 17 calls a subroutine on line 194 that checks if
09 CF 21 TRECS still contains the job name last job and, if so, lines 18 and 19
10 “LAST” branch to line 27. If you cleared last job from TRECS since you last

Mo executed TR, lines 20 through 23 prompt you for a valid job name.

12 SEEKPTA Lines 21 and 23 automatically activate and deactivate the Alpha keyboard.
13 1.003 Line 24 changes last name to the name you keyed in, and lines 25 and
14 GETRX 26 set last time to indicate that you stopped last time (and so are starting
15 “TRECS” this time).

16 RCLPTA

17 XEQ 50

18 FC? 01

19 GTO 20

20 ‘JOB NAME = ?

21 AON

22 PROMPT

23 AOFF

24 ASTO 01

251

26 STO 02

Section 22: Programs for Keeping Time Records 333

27+LBL 20 Lines 27 through 52 direct the remainder of TR’s execution. Lines 28

28 CF 02 through 31 clear flag 02 if you're stopping work, or else set flag 02 if

29 RCL 02 you're starting work. (If you started work last time, TR stored a negative

30 X>0? value for last time; if you stopped work last time, TR stored a value of 1 for

31 SF 02 last time.) Lines 32 through 36 clear flag 03 if last date is the current

32 CF 03 date, or else set flag 03 if last date differs from the current date. Lines 37

33 RCL 03 through 42 direct overall execution of the program. If you're stopping

34 DATE work, lines 37 and 38 call 'the subroutine which begins. on line 58. If one

35 X=Y? or more days haye pass?ed since you last exec_uted TR, lines 39 and 40
branch to a routine beginning on line 106 (which adds another byte to each

36 SF 03 time record and then branches to line 27). If you’re starting work, lines

37 FC? 02 41 and 42 call the subroutine that begins on line 135. Lines 43 through

38 XEQ 01 51 conclude the execution of TR. Lines 43 through 47 copy the current

39 FS? 03 values for last job, last time, and last date into the file LAST, to be saved

40 GTO 30 until you execute TR again. Lines 48 and 49 restore the previous flag

41 FS? 02 status (and the options it represents), and line 50 clears the flag-status

42 XEQ 40 data from the X-register. Line 51 stops program execution and line 52

43 'LAST branches to line 01; this enables you to repeat TR simply by pressing [R/S].

44 0

45 SEEKPTA

46 1.003

47 SAVERX

48 RCL 00

49 STOFLAG

50 CLX

51 STOP

82 GTO "TR”

Stopping Work. These routines update the time record for last job when you stop work. Normally
only the second and third routines will be executed; the first routine is an error routine, and the fourth
routine is executed only when you stop work on a different date from when you started.

53+LBL 00 Lines 53 through 57 display an error message. If you key in a stopping
54 “START > STOP” time that is earlier than the time you started, line 72 branches here to
55 TONE 5 display an error message before beginning again.

56 AVIEW

57 PSE

58+LBL 01 Lines 58 through 63 determine the time you stopped work. If you're

59 FS? 03 stopping work on a different day from when you started, lines 59 and 60
60 GTO 03 branch to line 96. Lines 61, 62, and 63 ask if you're stopping at the

61 TIME current time and then stop execution; if you key in an alternative time, it
62 “ STOP NOW?" replaces the current time in the X-register.

63 PROMPT

334

64«LBL 02
65 X<07?
66 XEQ 60
67 X=07?
68 24

69 RCL 02
70 HMS+
71 X<0?
72 GTO 00
73 HR

74 RND

75 10

76 *

77 STO 04
78 XEQ 50
79 GETREC
80 ATOX
81 RCL 04
82 +

83 254

84 X=Y?
85 MOD
86 CLA

87 XTOA
88 RCLPT
89 INT

90 SEEKPT
91 1

92 DELCHR
93 INSCHR
94 STO 02
95 RTN

96¢LBL 03
97 24
98 “ PAST 24:007?"
99 CF 22
100 PROMPT
101 FS? 22
102 GTO 02
103 XEQ 02
104 0
105 STO 02

Section 22: Programs for Keeping Time Records

Lines 64 through 95 update the byte for last date in last job’s time
record. If you keyed in a negative time to indicate “p.m.,” lines 65 and 66
call a subroutine on line 216 that converts the time to a 24-hour format.
If the stopping time is midnight, lines 67 and 68 place 24 in the X-
register. Lines 69 and 70 subtract the time you started from the time
you stopped: line 69 recalls last time, which in this case is the time you
started and so is negative; then line 70 adds the time you stopped and
(the negative of) the time you started, which calculates the number of
hours worked. If the result is negative, lines 71 and 72 branch to an
error routine on line 53. Lines 73 through 77 store the number of hours
worked as a byte value: lines 73 and 74 convert the number from hours-
minutes-seconds format to a decimal number with one decimal place; lines
75 and 76 convert this decimal number to a byte value; and line 77 stores
the byte value in Rg,. Line 78 calls a subroutine on line 194 that locates
the time record for last job, and then lines 79 and 80 place in the X-
register the decimal value of the first byte, which represents the hours
worked previously on last date. To this byte value lines 81 through 85
add the byte value for hours just worked; lines 83, 84, and 85 adjust the
result in case the previous byte value was 254 (“no hours”). Lines 86 and
87 place in the Alpha register the byte whose value is in the X-register.
Lines 88, 89, and 90 locate the byte for last date, and lines 91, 92, and
93 replace the old byte with the updated byte. Line 94 stores a value of 1
in last time. Line 95 returns execution to line 39 if the updating process
is complete; if you worked past midnight and this updates only through
midnight, execution returns to line 104.

Lines 96 through 105 ask if you worked past midnight. Line 60
branches here if you're stopping work on a different day from when you
started. Lines 97 through 100 ask if you worked past midnight; if you
key in an alternative time, it replaces 24 in the X-register and lines 101
and 102 branch to line 64. Line 103 calls a subroutine on line 64 that
updates the byte for last date in last job’s time record, from the time you
started until midnight; then lines 104 and 105 give last time a value of
zero to indicate starting at midnight.

Section 22: Programs for Keeping Time Records 335

Adding Bytes for a New Date. When you execute TR for the first time each day, the program
executes these routines to add one byte to the start of each job’s time record. This is necessary to
maintain the proper correspondence between a byte’s position in a time record and the date it
represents.

106+LBL 30 Lines 106 through 115 ensure that there are enough bytes available in
107 ASROOM TRECS to add one byte to each time record. Line 107 returns n, the
108 2 number of available bytes. Suppose that these n bytes were added to the
109 * time records for the first n jobs; then the n + 1 job is the first that won’t
110 SF 25 receive a byte. Lines 108 and 109 return 2n, which is the pointer value
111 SEEKPT for the name_of the n + 1 job. Lines 110 and 111 check if there actually
112 FOIC 25 is an n + 1 job name; if not, there are enough bytes available and lines

. 112 and 113 branch to line 116. Line 114 calls a subroutine on line 221
1:‘3 2;3 _% that enlarges TRECS, and line 115 branches to line 106.
115 GTO 30
116+LBL 04 Lines 116 through 122 prepare to add one byte to each time record.
117 CLA Lines 117, 118, and 119 place the byte for “no hours” in the Alpha
118 254 register. Lines 120 and 121 set the pointer to the first character position
119 XTOA in the first time record. Line 122 sets the Error Ignore flag; the program
120 1 will execute the loop that follows until an error clears this flag.
121 SEEKPT
122 SF 25
123¢+LBL 05 Lines 123 through 134 add one byte to each time record. Line 124
124 INSCHR inserts the byte for “no hours” at the current pointer position. Lines 125,
125 2 126, and 127 attempt to set the pointer to the first character position
126 + in the next time record. If there is another time record, lines 128 and 129
127 SEEKPT branch to line 123. When all time records have received a byte, lines 130
128 FS? 25 through 133 add one day to last date to reflect the new byte added to each
129 GTO 05 ti}ne record. Line 134 branches to line 27. (The updated value of last date
130 RCL 03 will be compan‘ad to the current date, and the program will execute these
g routines again if necessary.)
132 DATE+
133 STO 03
134 GTO 20

Starting Work. These routines determine which job and what time you're starting work. If you're
starting the same job you worked on last time, the first routine is executed. If you key in the name of
an existing job—one that you've already used with TR—the second and third routines are also executed.
If you key in the name of a new job, the fourth, fifth, and sixth routines are also executed. In all cases
the last routine is executed to determine the starting time.

336

135¢LBL 40
136 “START *
137 ARCL 01
138 “} 7"

139 CF 23
140 AON

141 PROMPT
142 AOFF
143 FS? 01
144 GTO 07
145 FC? 23
146 GTO 11

147+LBL 06
148 ASTO 01

149¢LBL 07
150 XEQ 50
151 FC? 01
152 GTO 11

153+LBL 08
154 CF 23

155 “ NEW JOB?”

156 AON

157 PROMPT
158 AOFF
159 FS? 23
160 GTO 06

161+LBL 09
162 CLA
163 ARCL 01
164 SF 25
165 APPREC
166 FS?C 25
167 GTO 10
168 XEQ 70
169 GTO 09

Section 22: Programs for Keeping Time Records

Lines 135 through 146 ask if you're starting the same job that you last
worked on. Lines 136 through 141 display START /ast job? Lines 140
and 142 automatically activate and deactivate the Alpha keyboard. If
you were prompted for a valid job name in the initial routine because the
stored value for last job wasn’t valid, lines 143 and 144 branch to line
149. If you just confirmed that you're starting last job, lines 145 and 146
branch to line 183. (If you keyed in an alternative job name now,
execution continues with the next routines.)

Lines 147 and 148 make the job name you keyed in the provisional
value of last job.

Lines 149 through 152 check the alternative job name. Line 150 calls
a subroutine on line 194 that clears flag 01 if the job name exists in
TRECS. If the name exists, lines 151 and 152 branch to line 183.

Lines 153 through 160 check that you intended to key in the name of a

new job. Lines 154 through 157 display NEW JOB? Lines 156 and 158
automatically activate and deactivate the Alpha keyboard. If you key in a

job name (because you had previously misspelled the name of an existing
job), lines 159 and 160 branch to line 147.

Lines 161 through 169 create a record containing the name of the new
job. Lines 162 and 163 place the name in the Alpha register. Lines 164
through 167 try to append the name to TRECS and then, if successful,
branch to line 170. If there isn’t enough room in TRECS to append the
name, line 168 calls a subroutine on line 221 that enlarges TRECS, and
then line 169 branches to line 161 to try again.

170+LBL 10
171 CLA
172 254

173 XTOA
174 1

175 +

176 XTOA
177.SF 26
178 APPREC
179 FS?C 25
180 GTO 11
181 XEQ 70
182 GTO 10

183+LBL 11
184 TIME
185 “ START NOW?”
186 PROMPT
187 X<07?
188 XEQ 60
189 24

190 MOD
191 CHS
192 STO 02
193 RTN

194+LBL 50
195 CLA
196 ARCL 01
197 SF 01
198 0

199 SEEKPT

Section 22: Programs for Keeping Time Records 337

Lines 170 through 182 create a time record for the new job. Lines 171
through 176 place a “no hours” byte and an “end of time record” byte in
the Alpha register. Lines 177 through 180 try to append these bytes to
TRECS and then, if successful, branch to line 183. If there isn’t enough
room in TRECS to append the new time record, line 181 calls a subroutine
on line 221 that enlarges TRECS, and then line 182 branches to line 170
to try again.

Lines 183 through 193 ask you the starting time. Lines 184, 185, and
186 display START NOW?; if you key in an alternative time, that time
replaces the current time in the X-register. If you keyed in a negative time
to indicate “p.m.,” lines 187 and 188 call a subroutine on line 216 that
converts the time to 24-hour format. If you keyed in 24 to indicate
midnight, lines 189 and 190 change this value to zero. Lines 191 and
192 make the starting time the new value of last time, negative to indicate
it’s a starting time. Line 193 returns execution to line 43.

Searching TRECS for a Job. The program calls this subroutine for two purposes: lines 17 and 150
call it to determine whether a job exists, and line 78 calls it to locate a job known to exist.

Lines 194 through 199 prepare to search TRECS for a job name. Lines
195 and 196 place the job name in the Alpha register. Line 197 sets flag
01 to indicate that the job name hasn’t been found; the next routine will
clear flag 01 if it finds the name. Lines 198 and 199 set the pointer to the
first character in the first job name in TRECS.

338

200¢LBL 12
201 POSFL
202 X<0?
203 RTN
204 ENTER
505 INT

206 1

207 +

208 SEEKPT
209 X<>Y
210 2

211 MOD
212 X#0?
213 GTO 12
214 CF 01
215 RTN

216+LBL 60
217 ABS
218 12

219 +

220 RTN

221+LBL 70
222 “TRECS”
223 FLSIZE
224 1

225 +

226 SF 25
227 RESZFL
228 FS?C 25
229 RTN

230 “ NEED ROOM’
231 PROMPT
232 GTO 70
233 END

Section 22: Programs for Keeping Time Records

Lines 200 through 215 search TRECS for the job name. Line 201
searches TRECS, starting at the current pointer location. If the job name
isn’t found, lines 202 and 203 return execution to line 18 or 151 with
flag 01 still set. Lines 204 through 208 set the pointer to the first
character in the next record, which generally will be the job’s time record.
However, bytes in a time record might spell out the name by coincidence.
To check whether line 201 actually found a job name, lines 209 through
212 check whether the pointer value returned by line 201 is the first
character in an even-numbered record. If not, line 213 branches to line
199. Lines 214 and 215 clear flag 01 to indicate that the job name exists,
and then return execution to line 18, 79, or 151.

Converting to 24-Hour Format.

Lines 216 through 220 convert a negative number (representing a time
after noon) into 24-hour format. The program calls this subroutine on
lines 66 and 188.

Enlarging TRECS. The program calls this subroutine when there isn’t enough room in TRECS to add
a byte to each time record or to append a new record for a new job.

Lines 221 through 233 add one register to TRECS. This subroutine is
called by lines 114, 168, and 181. Lines 222 through 225 calculate the
desired total number of registers. Lines 226 through 229 try to change
the size of TRECS to the desired total and then, if successful, return
execution to line 115, 169, or 182. If there isn’t a register available in
extended memory, lines 230 and 231 display an error message and stop
execution. After you reduce the size of another file and press [R/S], line
232 branches to line 221 to try again.

Section 22: Programs for Keeping Time Records 339

Explanation of =

The program X first determines the desired summary period and produces the summary, and then en-
ables you to clear an entire job or clear all time records for a specified period.

Registers and Flags Used by =

The program 2 uses the following data storage registers and flags in its operation. Refer to these tables
as you read the program listing.

Registers and Their Contents for =

:i?:r:: Register Contents
Roo Previous flag status.
Ro1 1.ccc, where ccc = character-pointer value for most recent date.
Rgz Most recent date to be summarized or cleared.
Roa Earliest date to be summarized or cleared.
R { Temporary storage for dates.
04 nn = Address of greatest-addressed register used.
Ros Loop-control number.
Ros Total hours for single job.
Ro7 Total hours for all jobs combined.

Ros most recent date.
: Daily hours for { :

earliest date.

Each of the numbers in Ryg through R, has the form xxx.yyy. The integer part is a byte value repre-
senting xx.x hours for one job. The fractional part is a byte value representing yy.y hours for all jobs
combined.

Conditions Represented by User Flags in =

Flag Number Condition Represented by Flag

00 Clear = Prompting for summarizing.
Set = Prompting for clearing.

01 Clear = Date keyed in is legal.
Set = Date keyed in is illegal.

340 Section 22: Programs for Keeping Time Records

Program Listing for =

01+LBL “SIGMA” Lines 01 through 07 form the initial routine. Lines 02 and 03 store the
02 RCLFLAG current flag status in Rgg. Line 04 disables the printer (if present). Lines
03 STO 00 05 and 06 place in Ry, the pointer value for first job/most recent date.
04 CF 21 Line 07 indicates that the program is summarizing now.

05 1

06 STO 01

07 CF 00

Determining the Dates. These routines determine the period to summarize. If you later choose to
clear days, the program uses most of these routines again to determine the period to clear. The status of
flag 00 indicates whether the program is summarizing or clearing.

08¢LBL 20 Lines 08 through 32 calculate the default dates. (When the program is

09 FIX 4 clearing, line 343 calls this part of the program as a subroutine.) Lines 10

10 “LAST" through 13 recall last date. If the program is summarizing now, lines 14

11. 2 and 15 make last date the default value for most recent date in Ry; if the

12 SEEKPTA program is clearing now, the most recent date summarized remains in Rgy

13 GETX as the default value. In either case, last date remains in the stack to

14 FC? 00 calculate earliest date. To make this calculation, lines 16 through 27

15 STO 02 locate the “end of time record” byte (decimal value 255) in the first time
: record and use that character-pointer value to calculate the difference in

16 “TRECS days between last date and earliest date. (Remember that the first time

171 record is the oldest time record.) Lines 16 through 26 return the number

18 SEEKPTA of bytes that precede the end-of-record byte. When line 27 subtracts this

19 255 number from 1 (left on the stack from line 17), the result is negative to

20 CLA indicate going backwards in time. Line 28 then calculates earliest date.

21 XTOA Line 29 makes this date the default value in Ry, and line 30 places this

29 CLX date in Ry, to appear in the first prompt. If the program is clearing, lines

23 POSFL 31 and 32 branch to line 45; if the program is summarizing, execution

24 FRC continues to the next routine.

251 E3

26 *

27 —

28 DATE+

29 STO 03

30 STO 04

31 FS? 00

32 GTO 00

33¢LBL 04
34 “ FROM"
35 RCL 04
36 XEQ 01
37 FC? 22
38 GTO 00
39 XEQ 02
40 FC? 01
41 GTO 04
42 RCL 03
43 STO 04
44 GTO 04

45¢LBL 00
46 RCL 04
47 STO 03
48 RCL 02
49 STO 04

50+LBL 05
51 * THROUGH”
52 RCL 04
53 XEQ 01
54 FC? 22
55 GTO 00
56 XEQ 02
57 FC? 01
58 GTO 05
59 RCL 02
60 STO 04
61 GTO 05

62¢LBL 01
63 AVIEW
64 PSE

65 “

66 ADATE
67 L7

68 CF 22
69 PROMPT
70 RTN

Section 22: Programs for Keeping Time Records M

Lines 33 through 44 prompt you for the earliest date to summarize.
Lines 34 through 36 ask if the date in R4 is the date you want, calling
the subroutine on line 62. If you accept the date in Ry, lines 37 and 38
branch to line 45. If you key in an alternative date, line 39 calls the
subroutine on line 71 to test your date. (This subroutine places your date
in Ry, and then clears flag 01 if your date is legal or else clears flag 01 if
your date is illegal.) If your date is legal, lines 40 and 41 branch to line
33 to ask you to confirm your date. If your date is illegal, lines 42, 43, and
44 place the default value in Ry, again and then branch to line 33.

Lines 45 through 49 link the prompting routines. Lines 46 and 47
replace the default value for earliest date with the date you selected. Lines
48 and 49 place the default value for most recent date in Ry, to appear in
the first prompt.

Lines 50 through 61 prompt you for the most recent date to summarize
or clear. Lines 51 through 53 ask if the date in Ry, is the date you want,
calling the subroutine on line 62. If you accept the date in Ryy, lines 54
and 55 branch to line 93. If you key in an alternative date, line 56 calls
the subroutine on line 71 to test your date. If your date is legal, lines 57
and 58 branch to line 50 to ask you to confirm your date. If your date is
illegal, lines 59 through 61 place the default value in Ry, again and then
branch to line 50.

Lines 62 through 70 prompt you for dates. This subroutine is called by
lines 36 and 53. Lines 63 and 64 display the contents of the Alpha
register (THROUGH or FROM). Lines 65, 66, and 67 place the date and a
question mark in the Alpha register. Line 68 clears the Numeric Input
flag (so the program can test whether you keyed in an alternative date).
Line 69 displays the contents of the Alpha register and stops execution.
Line 70 returns execution to line 37 or 54.

342 Section 22: Programs for Keeping Time Records

71+LBL 02
72 CF 01
73 STO 04
74 RCL 02
75 SF 25
76 DDAYS
77 FC7C 25
78 GTO 03
79 X<07?
80 GTO 03
81 RCL 03
82 RCL 04
83 DDAYS
84 X<0?
85 GTO 03
86 RTN

87+LBL 03

88 “ILLEGAL DATE"
89 AVIEW

90 TONE 5

91 SF 01

92 RTN

93+LBL 00

94 RCL 04

95 RCL 02

96 DDAYS

97 .1

98 %

99 ST+ Of
100 FS? 00
101 RTN
102 RCL 03
103 RCL 04
104 STO 02
105 DDAYS
106 8
107+
108 STO 04
109 1
110 %
1116
12 +

Lines 71 through 86 test your date. This subroutine is called by lines 39
and 56. Line 72 clears flag 01. (If your date is illegal, the program will
branch to line 87 and set flag 01.) Line 73 places your date in Ry4. Lines
74, 75, and 76 calculate how many days your date is before last date. If
you keyed in a number that doesn’t represent a date, line 76 causes an
error and lines 77 and 78 branch to line 87. If your date is later than last
date, lines 79 and 80 branch to line 87. Lines 81, 82, and 83 calculate
how many days your date is after earliest date. If your date is earlier than
earliest date, lines 84 and 85 branch to line 87. If your date passes all
three tests, line 86 returns execution to line 40 or to line 57, with flag 01
clear to indicate that your date is legal.

Lines 87 through 92 handle illegal dates. Lines 88, 89, and 90 display
an error message and sound a tone. Lines 91 and 92 return execution to
line 40 or to line 57, with flag 01 set to indicate that your date is illegal.

Lines 93 through 112 conclude date selection. Lines 94 through 99
update the pointer value in Ry for first job/most recent date, reflecting your
choice of the most recent date to summarize or clear. If the program is
clearing now, lines 100 and 101 return execution to line 344. Lines 103
and 104 replace last date in Ry, with your choice of most recent date.
Lines 102, 103, and 105 calculate the difference in days between the
earliest and most recent dates to be summarized; this difference defines
the block of registers needed for summarizing. Note that Ryg is the
smallest-addressed register in the block containing daily hours. Lines
106, 107, and 108 place nnn in Ry,, where R,,,,, is the largest-addressed
register in the block. Lines 109 through 112 calculate 6.nnn, which
represents the block of registers that will contain daily and total hours.

113+LBL 06
114 SF 25
115 CLRGX
116 FS?C 25
117 GTO 01
118 RCL 04
1191

320 1

121 PSIZE
122 X<>Y
123 GTO 06

124+LBL 01
125 SF 12
126 CF 13
127 SF 21
128 ADV
129 ADV
130 “TIME RECORDS”
131 SF 25
132 PRA
133 FS?C 25
134 GTO 02
135 CF 21
136 AVIEW
137 PSE

Section 22: Programs for Keeping Time Records 343

Preparing for the Summary. These routines clear registers and produce the summary heading.

Lines 113 through 123 clear the registers for daily and total hours. Lines
114 and 115 attempt to clear the block of registers. If there are enough
registers allocated for the entire block—that is, if R,,, exists—lines 116
and 117 branch to line 124. Otherwise, lines 118 through 121 allocate
nnn + 1 registers, line 122 returns 6.nnn to the X-register, and line 123
branches to line 113.

Lines 124 through 137 begin the summary heading. Lines 125 and
126 select double-width and upper-case print modes. Line 127 sets the
Printer Enable flag. Lines 128 and 129 advance the printer two lines.
Line 130 places the title in the Alpha register. Line 131 sets the Error
Ignore flag to prepare for line 132, (print Alpha), which is a printer
instruction. If a printer prints the title, lines 133 and 134 branch to line
138. If no printer is present or if your printer is turned off, line 135
clears the Printer Enable flag (so that |~/] doesn’t stop execution); and
lines 136 and 137 display the title.

344 Section 22: Programs for Keeping Time Records
138+LBL 02 Lines 138 through 154 complete the summary heading. Line 139 selects
139 SF 13 lower-case print mode. Lines 140 through 145 display (print) from
140 “ FROM® earliest date; lines 146 through 151 display (print) through most recent
141 XEQ 03 date. Lines 141, 145, 147, and 151 call a subroutine on line 155 that
142« » displays (prints) the contents of the Alpha register. Line 152 selects
143 RCL 03 upper-case print mode. Line 153 sets the Printer Enable flag; this
144 ADATE ensures that subsequent |/ VIEW instructions will gither print the summary
145 XEQ 03 entries or else stop execution so that you can write down each displayed
146 * THROUGH" entry. Line 154 branches to line 161.
147 XEQ 03
148 " "
149 RCL 02
150 ADATE
151 XEQ 03
152 CF 13
153 SF 21
154 GTO 00
155¢LBL 03 Lines 155 through 160 display (print) one line of the heading. This
156 ADV subroutine is called by lines 141, 145, 147, and 151. Line 156 advances the
157 AVIEW printer (if present). Line 157 displays the contents of the Alpha register;
158 FC? 21 if a printer is present and turned on, the contents of the Alpha register are
159 PSE Qrinted as well. If no printer is pFesent or if your printer is turn'ed off, _
160 RTN lines 158 and 159 prolong the display. (Flag 21 was cleared on line 135 if

the printer instruction caused an error.) Line 160 returns execution
to line 142, 146, 148, or 152.

Recalling Time Records. These routines test if a job has data for the summary period and then
recall those data from extended memory. The program executes the first short routine only once; the
second routine, once for each job; and the last two routines, once for each day for each job.

161+LBL 00 Lines 161 through 164 prepare to access the first job. Line 162 selects
162 FIX 1 the numeric format for output. Lines 163 and 164 set the pointer in
163 CLX TRECS (the current file) to the first character of the first record, which is
164 SEEKPT the first letter of the first job name.

165¢LBL 07
166 RCL 04
167 A

168 %

169 8

170 +

71 S0 05
172 CLX

173 STO 06
174 GETREC
175 RCLPT
176 INT

177 RCL 01
178 +

179 .001

180 +

181 SF 25
182 SEEKPT
183 FC?C 25
184 GTO 10
185 ADV
186 ADV

187 AVIEW
188 LASTX
1064 —

190 SEEKPT
191 GETREC

192+LBL 08
193 254

194 ATOX
195 X>Y7?
196 GTO 02
197 X+07?
198 GTO 01
199 GETREC
200 GTO 08

= A Ry

Section 22: Programs for Keeping Time Records 345

Lines 165 through 191 prepare to recall one job’s time record from
extended memory. Lines 166 through 171 place the loop control
number 8.nnn in Rys. Lines 172 and 173 clear Ry, which will accumulate
the total hours for this job. Line 174 recalls the job’s name to the Alpha
register. Before displaying (printing) the job’s name, the program checks
that this job’s time record contains data for the summary period. Lines
175 through 178 calculate the pointer value for most recent date in this
record. (If the record doesn’t contain a byte for most recent date, it doesn’t
contain any data for the summary period.) Lines 179 and 180 advance
the pointer value one character to ensure that the end-of-time-record byte
isn’t mistaken for data. Lines 181 through 184 attempt to set the
pointer to this pointer value and, if there isn’t a byte there, branch to line
243. (If this job is too new for the summary period, all jobs that follow are
also too new.) Lines 185, 186, and 187 advance the printer twice and
display (print) the job’s name. Lines 188, 189, and 190 set the pointer
to most recent date, and line 191 recalls up to 24 bytes from this job’s
time record to the Alpha register.

Lines 192 through 200 recall and test each byte. This routine and the
following one form a loop. Lines 193 and 194 return 254 to the Y-
register and the decimal value of a byte to the X-register. (For sequential
executions of this routine, line 194 moves bytes from the Alpha register
into the X-register in the order that the bytes followed in extended
memory.) When the “end of time record” byte (decimal value 255) appears,
lines 195 and 196 exit the loop by branching to line 215. Lines 197 and
198 branch to line 201 unless the Alpha register was empty. If the Alpha
register is empty and the “end of time record” byte hasn’t appeared, there
are more bytes in this time record to recall from extended memory; line
199 recalls up to 24 more bytes and line 200 branches to line 192.

346

201+LBL 01

202 X=X7

203 CLX

204 ST+ 06
s ST+ 07
206 .1

207 %

208 +

209 RCL IND 05
210 FRC

211+

212 STO IND 05
213 ISG 05

214 GTO 08

215¢LBL 02
216 8.007
217 RCL 05
218 INT
2198

200 —

221 +

222 STO 05
223 RCL 02
224 LASTX
225 CHS
226 DATE +

Section 22: Programs for Keeping Time Records

Lines 201 through 214 store each day’s byte value in main memory.
Lines 202 and 203 change any “no hour” bytes (decimal value 254) to a
decimal value of zero. Lines 204 and 205 add the byte value to Ry (total
hours for this job) and Ry; (total hours for all jobs). For a byte value of
nnn, lines 206, 207, and 208 return nnn.nnn to the X-register. Lines
209 and 210 recall .ppp, where ppp is the accumulated byte value for all
jobs on this day. Lines 211 and 212 place nnn.qqq in the register for this
day, where ggg = nnn + ppp. Lines 213 and 214 increment the loop-
control number and, unless the summary period has been completed,
branch to line 192.

Displaying (Printing) Each Job’s Summary. After each job is recalled from extended memory to
main memory, the following routines display (print) that job’s summary before recalling the next job.

Lines 215 through 226 prepare to display (print) the daily hours for
this job. Line 216 enters a loop-control number representing a single
execution of the next routine: accessing only Ryg (for only most recent
date). Lines 217 through 220 calculate how many registers above Rgg
(for days before most recent date) received data for this job. (The job may
not have had data for the beginning of the summary period.) The result m
is used twice. First, lines 221 and 222 place a loop-control number
(8 + m).007 in Rys, where Rg ,, is the largest-addressed register that
received a byte value for this job. (Line 217 recalls the final value of the
loop-control number from the previous routine; the register that the
previous routine accessed last will accessed first by the next routine.)
Second, lines 223 through 226 subtract m days from most recent date;
the result is the earliest date to be summarized for this job.

227+LBL 09

228 RCL IND 05

229 INT

230 XEQ 00
231 DSE 05
232 GTO 09
233 RCL 06
234 XEQ 01
235 RCLPT
236 INT

237 1

238 +

239 SF 25
240 SEEKPT
241 FS?C 25
242 GTO 07

243+LBL 10
244 RCL 04
245 .007
246 +

247 STO 05
248 ADV
249 ADV

250 “SUMMARY”

251 AVIEW
252 RCL 03

253+LBL 11

254 RCL IND 05

255 FRC
256 1 E3
257 *

258 XEQ 00
259 DSE 05
260 GTO 11
261 RCL 07
262 XEQ 01
263 GTO 03

Section 22: Programs for Keeping Time Records 347

Lines 227 through 242 display (print) the summary for this job. The
program executes a loop from line 228 through line 232 once for each day.
Lines 228 and 229 recall the byte value of the hours for this job on this
day. Line 230 calls a subroutine on line 264 that displays (prints) the date
and hours. Lines 231 and 232 decrement the loop-control number and,
if there are more days, branch to line 227. Line 2338 recalls the byte value
of the total hours for this job, and line 234 calls a subroutine on line 278
that displays (prints) TOTAL and the hours. Lines 235 through 240
attempt to set the pointer in TRECS to the name of the next job. If there
is another job in TRECS, lines 241 and 242 branch to line 165.

Displaying (Printing) the Final Summary. After summarizing all jobs, the program displays
(prints) a final summary of total hours for each day and total hours for the entire summary period.

Lines 243 through 252 prepare to display (print)) the final summary.
Lines 244 through 247 store nnn.007 in Ry, where R,,,,, is the register
containing the daily hours for earliest date. Lines 248 and 249 advance
the printer twice. Lines 250 and 251 display (print) SUMMARY. Line
252 recalls earliest date.

Lines 253 through 263 display (print) the final summary. The program
executes a loop from line 254 through line 260 once for each day. Lines
254 through 257 recall the byte value of the total hours on this day, and
line 258 calls a subroutine on line 264 that displays (prints) the date and
hours. Lines 259 and 260 decrement the loop-control number and, if
there are more days to summarize, branch to line 253. Line 261 recalls
the byte value of the total hours for the entire summary period, and line
262 calls a subroutine on line 278 that displays (prints) TOTAL and the
hours.

348 Section 22: Programs for Keeping Time Records

Subroutines for Displaying (Printing). These three routines display (print) the date, TOTAL, and
the hours respectively. The program calls the first and second as subroutines, both of which transfer
execution to the third, which finally returns execution to the next line after the subroutine call.

264+LBL 00 Lines 264 through 277 place the date in the Alpha register. This

266 X<>Y subroutine is called by lines 230 and 258; it expects the appropriate date in

266 1 the Y-register and the byte value for the daily hours in the X-register.

267 RCL Y Lines 265, 266, and 267 place the date in X- and Z-registers, 1 in the Y-

268 “ register, and the byte value in the T-register. Lines 268, 269, and 270

269 ADATE place the date in the Alpha register. Lines 271, 272, and 273 advance the
Sl printer if the date is a Monday. Line 274 rolls 1 into the X-register, the

270 “F date into the Y-register, and the byte value into the Z-register. Line 275

271 DOW calculates the succeeding date (preparing for the loop’s next execution).

272 X=Y? Line 276 returns the byte value to the X-register (where it was before this

273 ADV routine). Line 277 branches to line 280.

274 RDN

275 DATE+

26 X<>Y

277 GTO 02

278+LBL 01 Lines 278 and 279 place TOTAL in the Alpha register. This subroutine is

279 “TOTAL ” called by lines 234 and 262.

280¢LBL 02 Lines 280 through 292 append the hours to the Alpha register and

281 10 display (print) the combined contents. Lines 281 and 282 convert the

282 | byte value to hours and tenths of hours. Lines 283 through 288 ensure

283 LASTX that the hours will be printed right-justified. Line 289 appends the hours

284 X>Y? tq the Alpha register and line 290 displays (prints) the combined contents.

285 “ Line 291 recalls the next date to the X-register (preparing for the loop’s

next execution). Line 292 returns execution to the line 231, 235, 259, or

286 X1t2 263.

287 X>Y?

288 “+ 7

289 ARCL Y

290 AVIEW

291 RCL Z

292 RTN

i
Section 22: Programs for Keeping Time Records 349

Clearing Days or Jobs.

293+LBL 03 Lines 293 through 302 prepare to display the clearing menu. Line 294
294 CF 21 clears the Printer Enable flag. Lines 295 through 301 cancel any

295 CLA assignments to the [D], [(E], and (J] keys. Line 302 activates the User
296 14 keyboard.

297 PASN

298 15

299 PASN

300 25

301 PASN

302 SF 27

303+LBL 12 Lines 303 through 307 display the clearing menu. Lines 304 and 305
304 “CLEAR D, J? E” prompt you to press (D] (clear days), (clear a job), or [E] (exit). (When
305 PROMPT you press one of these keys, execution starts at the corresponding label.) If
306 TONE 5 you mistakenly press [R/S], line 306 sounds a tone and line 307

307 GTO 12 branches to line 303.

Clearing a Job.

308+LBL J Lines 308 through 316 prepare to clear a job. Lines 309 through 312
309 CF 23 prompt you for the name of the job that you want to clear. Lines 311 and
310 “NAME OF JOB?" 313 automatically activate and deactivate the Alpha keyboard. If you press
311 AON without entering a name, lines 314 and 315 branch to line 303.
312 PROMPT Line 316 provides the pointer value for the beginning of TREC as an
313 AOFF initial value for the next routine.

314 FC?23

315 GTO 12

316 CLX

350

317+LBL 13
318 SEEKPT
319 POSFL
320 X<07?
321 GTO 00
322 2

323 MOD
324 X=07?
325 GTO 01
326 RCLPT
327 INT
328 1

329 +

330 GTO 13

331+LBL 00

332 TONE 5

333 “NO SUCH NAME”
334 AVIEW

335 PSE

336 GTO 12

337+LBL 01

338 DELREC
339 DELREC
340 GTO 12

Clearing Days.

341+LBL D
342 SF 00
343 XEQ 20
344 1.001
345 RCL 01
346 X<Y?
37T X<>¥Y
348 CLA
349 255
350 XTOA

Section 22: Programs for Keeping Time Records

Lines 317 through 330 locate the job to be cleared. Lines 318 and 319
search TRECS for the job you named in the Alpha register, starting the
search at the pointer value in the X-register. If the name doesn’t exist in
TRECS, lines 320 and 321 branch to an error routine on line 331. If the
pointer value returned by line 319 is valid for a name, lines 322 through
325 branch to line 337. If the pointer value is not valid (that is, if bytes in
a time record spell the name by coincidence), lines 326 through 330
calculate the pointer value for the next record and branch to line 317.

Lines 331 through 336 are an error routine. Line 332 sounds a tone;
lines 333, 334, and 335 display an error message; and line 336 branches
to line 303.

Lines 337 through 340 clear the job from TRECS. Line 338 clears the
job’s name and line 339 clears the job’s time record. Line 340 branches to
line 303.

Lines 341 through 350 prepare to clear days. Lines 342 and 343 call
a subroutine on line 08 that determines the earliest and most recent dates
to clear. (The primary purpose of the subroutine on line 08 is to
determine the summary period; setting flag 00 modifies the subroutine’s
operation to determine the clearing period.) Lines 344 through 347
return 1.ccc, where ccc is the character-pointer value for the most recent
date to clear. Line 344 enters the minimum value—at least one day’s byte
must be left in each time record—and line 345 recalls the value that
corresponds to the most recent date you chose to clear. Lines 346 and 347
place the greater of these values in the X-register. Lines 348, 349 and
350 place 255 in the X-register and the “end of time record” byte in the
Alpha register.

351+LBL 14
352 DELCHR
353 INSCHR
354 X<>Y
355 2

356 +

357 SF 25
358 SEEKPT
359 FC?C 25
360 GTO 12
361 X<>Y
362 GTO 14

Exiting Z.

363+LBL E
364 RCL 00
365 STOFLAG
366 CLX

367 END

M o dan Rl e S |

Section 22: Programs for Keeping Time Records 351

Lines 351 through 362 clear days from each job’s time record. The
program executes this loop once for each time record that contains data for
the clearing period. Line 352 clears all bytes in the summary period, and
line 353 inserts a new “end of time record” byte. Lines 354 through 358
try to set the pointer to the byte for the most recent date to clear in the
next job’s time record. If there isn’t a byte at that location, lines 359 and
360 branch to line 303. (This will occur when there are no further
records or when this and all following jobs have no data for the clearing
period.) Line 361 returns 255 to the X-register and line 362 branches to
line 351.

Lines 363 through 367 conclude =. Lines 364 and 365 return the flags
to their previous status. Line 366 clears the flag-status data from the
X-register.

ETr SN I GO

L

TEEL o i

L

AES 1T

R T C T S NIY v 'SR TRL ¥ 5 I SRk SRR Cow

R I R L AT - SEYY ¥ | T i e '

. . . o - BRI

Appendices

Appendix A

Error and Status Messages

This appendix lists all error and status messages given by the HP-41CX.

When an illegal operation is attempted on the HP-41, the operation is not performed and an error
message appears in the display. To clear the display, press [+]. If the error was caused during a running
program, switch to Program mode to see the offending program line.

Some messages are marked as status messages. A status message is for your information and does not
indicate an error condition.

The variables x, y, and z below refer to the contents of the X-register, the Y-register, and the Z-register,
respectively.

Display Functions Meaning

ALPHA DATA Mathematical
Time . " g
Eiandkil Mliasss Nonnu.m:ehl:xc .daﬁa ;v(as u.sed for anunctéon r§eed1n_gf
Aire 4line numeric data: the X-register (or Y- or Z-register, i

faetion OliiE relevant) contains Alpha data.

numeric data

Sy ERn } Part of the program file has been lost.
GETSUB
DATA ERROR Mathematical Illegal math operation with the given operands (di-
vision by zero, square root of a negative number).
Time Invalid number in the X-register.
%] x < 0 and y = 0, or x is noninteger and y < 0.
x < —9999.595999 or x > 9999.595999, or MM or
SS§ > 59.
x=100rx <0.
n=0.

354

Appendix A: Error and Status Messages 355

Display

DATA ERROR
(continued)

Meaning
|| > 10737418234, or x is noninteger.

o
Q

ool v Tl Ix|1x||912| |® m|w|n n o >
3|3 |= mA#OImzHBé» =
e 3 N vi=gle F 2EE g e g
S| = o OEEE B g
x =]

B

w

7\

m

x is noninteger, or any digit in x is an 8 or a 9.
x < 0 or is noninteger.

y=0.
|n| = 10.

x = 100.

CLRGX
SEEKPT - x > 999,
SEEKPTA

x = 0. (Attempted to create a file zero registers
long.)

EMDIRX

(9]
5
-
<
x

- x =0 or x > 999.

W (Dl
= [»]||O
ON;
2 3
3 <

[

x (or y, if x is a range of flags in the form bb.ee) was

not obtained by executing [RCLFLAG].

X#NN?

=

>
A
z
=z
b -

4
z
=1

| Y-register contains Alpha data other than X, Y, Z,
T, or L, or y > 999,

>
A
1
g
=z
~

X>=NN?

DATA ERROR X x is an invalid or negative date, or the year portion

uses more than four digits.
XYZALM x = 24 or is not a valid HH.MMSS value.

DATA ERROR Y ¥ is an invalid or negative date, or the year portion

uses more than four digits.

SERCERGE
|3 > P
=<(|m =< =2
w||+ w S5

XYZALM

356 Appendix A: Error and Status Messages

Display
DATA ERROR Z

DUP FL
(duplicate file)

END OF FL
(end of file)

END OF REC
(end of record)

ERROR=Dnn*

(delta split error in R,,)

ERROR=Rnn*

(split error in R,;)

FL NOT FOUND
(file not found)

FL SIZE ERR
(file size error)

FL TYPE ERR
(file type error)

Functions

XYZALM

Extended
Memory

Extended
Memory

APPCHR
APPREC

GETAS
SAVEAS

SEEKPT

=

» w
Z||Zz
I I m w|lw
3 22
— Of|D
>

SW

Extended
Memory

RESZFL

Extended
Memory

Meaning
The z-value =>10,000 hours or is not a valid
HHHH.MMSS value.

A file of the same name already exists in extended
memory. Text, data, and program files cannot use
the same names. (The named file becomes the cur-
rent file.)

A nonexistent pointer address was used during an
attempt to position the pointer in a file, or read,
write, or delete within a file. (With and
[SEEkPTA] the named file becomes the current file,
although the file and pointers are not changed.)

Not enough room to add the character or record.

File transfer not completed because the end of the
destination file was encountered before the end of
the source file. Part of the file was transferred.

The end of the record was encountered during an
attempt to position the character pointer.

The number stored in R,, or R,, ; is not in
HH.MMSS format; or the split stored in R,, is
smaller than the split stored in R, _; .

The integer portion in R, exceeds 99.

The file specified (which might be the current file)
does not exist in extended memory. (After purging a
file there is no current file.)

The new size specified (x) is smaller than the cur-
rent size, and would eliminate some data (see page
213).

The file specified (which might be the current file)
is of the wrong type for the function attempted.

* This error message is for information only, and does not have the effect of a true error condition. Refer to section 17.

Display

KEYCODE ERR
(keycode error)

MEMORY LOST

NAME ERR
(file name error)

NO
NO DRIVE
(no drive device present)

NONEXISTENT

NO ROOM

Functions

Extended
Memory

SAVEP

Flags
Conditionals

Memory
Conditionals

STOFLAG

Extended
Memory

Appendix A: Error and Status Messages 357

Meaning
The key specified (by keycode) is not assignable.

Continuous Memory has been cleared and reset.
No file name specified (the Alpha register is

empty), or the Alpha register contains seven bytes
of decimal value 255 (illegal).

memory.

}The named program does not exist in main

} Status message. The result of a flag test or con-

ditional test is false.

} No HP-IL module is plugged in, or no mass storage

device is on the interface loop.

. One or more registers specified do not exist in data
storage.

The label (of a program) specified or called does
| not exist. (If the function used requires a global la-
bel, then specifying a local one also causes this

error.)

The function called does not exist. For alarms, the
function called must be a programmable catalog-2
function. If a catalog-2 function is called, its source
device must be attached to the HP-41.

One or more flags specified are outside the range 0
to 43.

There is not enough room in extended memory for
the program or file specified.

There is not enough room in main memory for the
specified program.

(When executed as a program instruction.) Not
enough room remaining in main memory.

358 Appendix A: Error and Status Messages

Display

NO ROOM
(continued)

NO SUCH ALM
(no such alarm)

NULL

OUT OF RANGE

PACKING
TRY AGAIN

PRIVATE

RAM

Functions

XYZALM

Text Editor*

Alarms

Card Reader

Custom ROMs

CorPY

Meaning

Not enough room in extended memory to increase
the file size.

Not enough room in uncommitted memory to set
the alarm; or, the maximum number (253) of regis-
ters for alarm storage would be exceeded.

No room left to add more characters or records.

The alarm specified does not exist.

Status message. The function was cancelled by
holding its key down.

A number has exceeded the computational or
storage capability of the HP-41. Overflow =
+9.999999999 99.

The resulting date is outside the allowed calendar
range.

Status message. Packing program memory; repeat
the operation just attempted. If TRY AGAIN appears
again, then there is not enough space in main mem-
ory to carry out the operation. Try to resize

((sizE)).

Packing program memory; repeat the operation. If
TRY AGAIN repeats, then then there is not enough
space to resize.

Attempting to view a private program; refer to the
owner’s handbook for the HP 82104A Card Reader.

Attempting to copy into RAM a program whose
global label (as specified) is already in RAM (main
memory).

* This error message is for information only, and does not have the effect of a true error condition. Refer to section 14.

Display
REC TOO LONG

ROM

YES

Functions

Text Editor

Flags
Conditionals

Appendix A: Error and Status Messages 359

Meaning

Attempted to exceed the maximum record length
(254). (Deactivates the Text Editor if it was active.)

Attempting to alter or access a program that is in
ROM (read-only memory, as in an application
module).

Status message. The result of a flag test or con-
ditional test is true.

Appendix B

More About Past-Due Alarms

Contents
Conditions That Cause Execution of Past-Due Alarms 361
Off/Clock Condition 361
Alarm Condition 361
Past-Due Alarm Responses in the Alarm Condition 362
Mode Changes 362
Interruption of a Past-Due Alarm by Another Past-Due Alarm 363
Alarms and Subroutine Levels 363
Example of a Past-Due Alarm Sequence 363

When an alarm becomes past-due for one of the reasons described in section 16 under “Past-Due
Alarms,” it is maintained in memory until it is activated or until you delete it. This operation reminds
you of an alarm that has not been allowed to serve its intended purpose. If you allow several past-due
alarms to accumulate in memory, sequences of automatic past-due alarm activations can occur. (If any
bypassed past-due alarms are in memory, the order in which past-due alarms activate can become com-
plex.) If you plan to use past-due alarms or simultaneous alarms in your applications, the information
in this appendix will be helpful. Simultaneous alarms activate in the same sequence as past-due
alarms.

If past-due alarms are present, they will automatically begin to activate whenever you turn off the
computer or press [[ON]. This operation is to remind you that one or more past-due alarms exist. For
the same reason, if an alarm comes due while any bypassed past-due alarms exist, all of the bypassed
past-due alarms will activate ahead of the alarm that came due.* This appendix describes the rules
governing the activation sequences in these two cases. (Refer to section 16 for a description and clas-
sification of past-due alarms.)

* A bypassed past-due alarm, as defined in section 16, is an alarm that never went off (never activated) because it was set to the

past or because it was bypassed due to a time-change function ([SETIME], [SETDATE], (T+X], or [CORRECT)).
360

Appendix B: More About Past-Due Alarms 361

Conditions That Cause Execution of Past-Due Alarms

Turning off the computer or displaying the clock with M initiates the off/clock condition. If any
past-due alarms exist when this condition occurs, the computer attempts to activate all of them, begin-
ning with the earliest alarm. If any past-due control or conditional alarm is encountered, the computer
turns off momentarily—which aborts the off/clock condition—then turns back on in the alarm con-
dition described under the heading, “Alarm Condition.” The control/conditional alarm is then ex-
ecuted in the alarm condition.

Off/Clock Condition

In the off/clock condition:

o As long as no past-due control/conditional alarms are encountered, any past-due message alarms will
go off in chronological order, beginning with the earliest alarm time. Each alarm will finish its
activation cycle before the next alarm activates. Such alarms will not interrupt each other.

o If the key is pressed when a past-due message alarm goes off, the alarm halts without being
acknowledged and the computer turns off or displays the clock.

e If no control/conditional alarms are past-due, and is not pressed during activation, the com-
puter turns off or displays the clock after activating all the past-due alarms.

Alarm Condition

The alarm condition is initiated when:
e A future alarm comes due.

* A past-due control or conditional alarm (from the off/clock condition) starts a program or executes
a function.

In the alarm condition, the computer activates only the bypassed past-due alarms in memory, begin-
ning with the earliest alarm and proceding in chronological order of the alarm times. Other past-due
alarms are ignored and remain in memory. When a future alarm comes due while there are bypassed
past-due alarms, the computer switches to this alarm condition and the future alarm becomes, in es-
sence, a bypassed past-due alarm. It will be activated in its turn, after all of the earlier bypassed past-
due alarms are activated.

362 Appendix B: More About Past-Due Alarms

Past-Due Alarm Responses in the Alarm Condition

Listed below are terms used in the rest of this appendix to describe modes of the computer that affect
alarm response.

Past-Due Alarm Responses

Alarm Computer Mode
Type off Clock Keyboard Running
Conditional | Runs program. | Runs program. | Tone series and flashing | Sounds two tones and
(1) display. becomes past-due.
Control Runs program as a sub-
(t1) Runs program. routine of current
' program.
Message Tone series and flashing display.

¢ Off: the computer is turned off.

e Clock: the clock is displayed.

» Keyboard: the computer is turned on but is not displaying the clock or running a program.
¢ Running: A program is running.

The above table summarizes the computer’s response when an alarm comes due in each of the modes
described above.

When the alarm condition occurs, the computer’s response to the various bypassed past-due alarms is
determined by the current mode of the computer and by the alarm type.

Mode Changes

The program or function specified by an activating control or conditional alarm can change the com-
puter operating mode:

« If any control or conditional alarm starts a program, the computer immediately switches to Run-
ning mode. (The mode change occurs before the first program instruction is executed.)

« A function executed by a control/conditional alarm can also change the mode. For example, if the
clock is displayed when an alarm that executes the printer function (print X) activates, the
computer will change from Clock mode to Keyboard mode. Similarly, if the computer is executing a
program when an alarm that executes the function activates, the computer will change
from Running mode to Clock mode.

Appendix B: More About Past-Due Alarms 363

Interruption of a Past-Due Alarm by Another Past-Due Alarm

* A program started by any past-due control or conditional alarm will be temporarily suspended by
any subsequent bypassed past-due alarms before the first program instruction is executed.

¢ A message alarm or a function started by a past-due control/conditional alarm cannot be inter-
rupted by a bypassed past-due alarm.

Alarms and Subroutine Levels

Any program alarm that interrupts a previous program alarm will operate as a subroutine. If there are
several past-due control alarms that execute programs (which is unlikely, since any past-due control
alarm would be a bypassed past-due alarm), then several subroutine levels will be used.

Example of a Past-Due Alarm Sequence

Suppose that the computer is turned off, the current time is 9:59 a.m., and the following four alarms
are set:

Alpha

Register Time Status
MESSAGE1 4:00 a.m. | Past-Due
tABC 5:00 a.m. | Bypassed Past-Due
ttXYZ 6:00 a.m. | Bypassed Past-Due

MESSAGE2 | 10:00 a.m. | Set to a Future Time

Note: The situation given in this example is unlikely, since bypassed past-due alarms do not occur
in most applications. However, this mix of alarms helps to illustrate additional aspects of alarm
response.

When the current time reaches 10:00 a.m. the MESSAGE2 alarm causes the Alarm condition to occur.
Because there are bypassed past-due alarms, the following sequence OCCurs:

1. Alarm tABC (the oldest bypassed past-due alarm) starts program ABC. (This is the first alarm to
activate. The earlier MESSAGE1 alarm is not a bypassed past-due alarm and therefore will not be
activated.)

2. Alarm ttXYZ immediately suspends program ABC and starts program XYZ as a subroutine.

364 Appendix B: More About Past-Due Alarms

3. Alarm MESSAGE2 (which is now a bypassed past-due alarm) immediately suspends program XYZ,
begins flashing MESSAGE2 in the display, and, if not acknowledged from the keyboard, begins
sounding a series of tones.

4. After alarm MESSAGE?2 is acknowledged (or finishes its cycle), program XYZ is executed. Control
then returns to program ABC (assuming that program XYZ did not stop or turn off the computer or
use too many subroutine levels).

5. Program ABC is executed.

If program XYZ turns off the computer (by executing [OFF |), program ABC will not be resumed. Since
alarm tABC has already activated, it no longer exists in memory.

If alarm XYZ had been a conditional alarm it would have activated only by sounding a pair of tones and
becoming a regular past-due alarm (since alarm tABC would have switched the computer to Running
mode). Refer back to the table of “Past-Due Alarm Responses” and to “Mode Changes”. As a general
guideline, whenever a past-due control or conditional alarm activates and starts a program, any subse-
quent past-due conditional alarm(s) will activate only by sounding the pair of tones and becoming past
due alarm(s).

If the computer had been in Keyboard mode rather than off, alarm tABC would have activated like a
message alarm, displaying tABC. Program XYZ would then have started (but not as a subroutine), have
been interrupted by alarm MESSAGE2, and finally have been executed.

tliby
¢ .
i
By
s _ [
. I8 ;
.
BETRTS
: . Voo B
P b
el e

LAl e S A R T

thatlnongs graad o om0tz L
&

TN LA T his AREISE EH ot od 1G] bae o eshon 1ruanas o0 atniosgestien i

8aE

Appendix C

Null Characters

Contents
Null Characters and the Alpha Register 366
Treatment of Null Characters 366

Null Characters and the Alpha Register

The null character is the ~ (overbar) and corresponds to character code 0.*t Normally the computer
does not generate null characters. However, under certain conditions, you can place null characters in
Alpha data strings.

Since the null character is not commonly generated, the HP-41 uses the null character as a special
indicator. As a result, nulls in the Alpha register occasionally cause unexpected displays, as described
in this appendix.

Treatment of Null Characters

The distinction between the Alpha register and the Alpha display is important when considering the
treatment of nulls.

e The Alpha register is always 24 characters long; when it is “empty” it actually contains 24 null
characters. As characters enter the Alpha register from the right side, they displace nulls. Any
leading nulls (either that you entered or that were already there) remain, but they are ignored by
computer operation.

e The Alpha display consists of the characters in the Alpha register after the leading nulls. It starts
with the first (leftmost) non-null character and displays all others to the right, including any
embedded or trailing nulls.

The HP-41 and its functions always consider that an Alpha string starts at the first non-null character,
ignoring leading nulls. Nulls embedded between non-null characters are retained. However, if the Alpha
string is rotated until an embedded null becomes a leading null, that null and any immediately follow-
ing nulls will be lost.

* The null character has nothing to do with the NULL message (which occurs when a function is being cancelled).
t A displayed null is printed as + (which corresponds to character codes 0 and 10) by the HP 82143A and HP 82162A Printers.

366

Appendix C: Null Characters 367

Appending Characters. If you append a character to the Alpha register (using [|- |, the append key
on the Alpha keyboard), the display will differ from the actual contents of the Alpha register if the last
character (before appending) was a null.

If the last character in the Alpha register is a null, then—while you enter characters to append—the
HP-41 acts like the register is empty, and displays only the characters that you are appending. (The
input cue (_) is present in the display while you append characters.) However, the Alpha register itself
properly retains the original string and combines it with the appended string.

You can view the full, appended contents by pressing [AviEW | or (ALPHA]. (Remember that lead-
ing nulls are never displayed.)

Deleting Characters While Appending. If you use | | |or [A=CL | and the last character in the Alpha
string is a null, using to delete the rightmost character will clear the entire Alpha register. This is
because when a null character gets deleted the computer figures that it has encountered the leading
nulls that precede a string, and it concludes that the register is empty—so it clears everything.

Alpha Strings in Data or Stack Registers. If you store an Alpha string containing nulls in a data
or stack register, none of the nulls will be displayed when you view (or print) the contents of that

register (as with [vicw] or [RCL]). However, if you recall those contents to the Alpha register and then
view them ([ARCL]), all the characters in the Alpha data string will be displayed (except, of course,

leading nulls).

If you print out the Alpha string contents of a data or stack register, only the characters to the left of
the first null (the first null from the left) are printed. Any characters to the right of that first null are
not printed.

An embedded null in an Alpha string in the X-register signals the end of the string for which the
function (position in Alpha) will search to match in the Alpha register. (That is, the computer
will match only that portion of the X-register string that is to the left of the first null.)

File Names. Any null embedded in a file name in the Alpha register is ignored by functions using that
file name.

Appendix D

Printer Operation

Contents
Paper Advance 368
Controlling Program Execution and Display With Flags 21 and 55 368
The Time and Date on Program Listings 369

Paper Advance

The programmable function (advance) causes the printer paper to advance one line. If no printer
is attached to the HP-41, has no effect at all. also has no effect if the printer is attached but
off, or if flag 21 (below) is clear during a running program.

Controlling Program Execution and Display With Flags 21 and 55

Flag 21 (printer enable) and flag 55 (printer existence) are set or cleared automatically by the computer
each time it is turned on. Normally, then, they are either both cleared or both set: set if a printer is
attached, and cleared if no printer is attached.

By using the [ViEw] or [AviEw | functions and manipulating flag 21 (which can be changed by the user;
55 cannot), you can control the display of messages and results during program execution; that is,
whether execution stops to show the result or merely displays the result and continues.

The status of flags 21 and 55 determine how and W | affect a running program. When their
status is the same—the usual, default case—operation is normal:

o If no printer is present, ~ |l or [AviEwW | causes the specified register or the Alpha register to be
displayed until a later display command places new data in the display. /| and do not
halt program execution.

o If a printer is present and turned on, the HP-41 acts as above and, in addition, the displayed data
are printed.

There are two reasons to use [vicw | and [AVIEW | in a program. 1) A message can tell you what the
program is doing—for example, which subroutine is being executed. However, there is no need for a
permanent record of these messages. 2) Other messages give you the results of the program, and you
probably want a record of these results. If you don’t have a printer, you’ll need to halt program execu-
tion when results are displayed so you can write them down.

368

Appendix D: Printer Operation 369

Note that the normal operations above don’t halt program execution (to write down data) if a printer is
not present, and they record all VIEWed data or messages if a printer is present. By clearing or setting
flag 21 before executing or » you can control whether the program stops while displaying
data and messages regardless of whether a printer is present.

¢ Clear flag 21 to display but not record messages. If flag 21 is clear when or is
executed, and no printer is present or it is off, the messages and results are displayed and program
execution is not halted. This is the first type of normal operation above.

If a printer is present and turned on, the message is displayed but not printed, and program execu-
tion is not halted.

* Set flag 21 to record results—whether by printer or by hand. If flag 21 is set when or
£w |is executed, and if no printer is present or the printer is off, program execution halts so you
can write down the displayed result. Press to resume program execution.

If a printer is present, the result is printed and program execution is not halted. This is the second
type of normal operation above.

Therefore, with a printer connected you can still choose whether to print all displays or not. With no
printer connected you can choose whether to halt execution or not for displayed results and messages.

The Time and Date on Program Listings

If a program is printed on an HP-IL printer (HP 82162A) using the HP 82160A HP-IL Module func-
tions or [LIST|, the time and date appear in the display and are printed at the head of the pro-
gram listing. (The time and date in the display are not in the X-register; press [«] to return to the X-
register.)

Appendix E

Extended Memory Modules

Contents
Using the Modules 370
Legal Configurations 370
Installing the Modules 371
Removing the Modules 371
Map of Extended MemMOry it 372

Using the Modules

CAUTION

Always turn off the computer before inserting or removing any modules. Otherwise, the computer
might be damaged or its operation might be disrupted.

The HP 82181A Extended Memory Module is identified by the legend X MEMORY on the module.

Legal Configurations

If you add only one extended memory module to your computer, the module can be installed in any of
the four ports in the computer. Follow the steps for installation that are given below.

If you add a second extended memory module, the modules must be arranged in one of the following
configurations. Don’t install one above the other.

Legal Configurations for Two HP 82181A Extended Memory Modules

X MEMORY | X MEMORY

X MEMORY | X MEMORY

X MEMORY X MEMORY
X MEMORY X MEMORY

370

Appendix E: Extended Memory Modules 371

Installing the Modules

To insert an extended memory module:
1. Turn off the computer!
2. Hold the computer with the keyboard facing up.
3. Remove the cover from the port to be used.
4. Hold the module so that “X MEMORY” reads right side up.
5. Gently insert the module straight into the port.

You will feel the module snap into place when it’s properly seated.

Removing the Modules

To remove an extended memory module:
1. Turn off the computer!
2. Use your fingernail to gently extend the extractor handle.

3. Grasp the handle and pull the module straight out of the
computer.

4. Replace the cover on the open port.

The information in an extended memory module is lost when the module is removed from the com-
puter. You can lose all data in two extended memory modules even if you remove only one of the two
modules. To avoid this, observe the following rules when choosing which of two modules to remove.

¢ If one module was installed and used before the second module was installed, remove the second
module rather than the first.

* If both modules were installed at the same time, remove the module in port 2 or port 4 rather than
the module in port 1 or port 3. (The numbering of the ports is shown on the bottom of the
computer.)

372 Appendix E: Extended Memory Modules

Before removing an extended memory module you can calculate which files will be lost. To save an
important file you can purge earlier files until the following procedure shows that your important file
will be saved:

1. Check the number of registers in each file using [EMDIR |, described on page 206.
2. For each file, add two extra registers for the header.

3. Add the total registers in the second file to the total registers in the first file to calculate the
“address” of the end of the second file.

4. Add the total registers in each subsequent file to the previous total, calculating the “address” of the
end of each file.

All files that end at an “address” exceeding 364 are lost when you remove one of two extended memory
modules; all files that end at an “address” exceeding 126 are lost when you remove both memory
modules.

Map of Extended Memory

Shown below is a map of extended memory in a computer with two extended memory modules in-
stalled. The top block represents the 126 registers of extended memory built into the computer. File 1 is
entirely inside the computer, so it is saved even if both extended memory modules are removed.

The middle block represents the 238 registers in the first extended memory module (the module used
first or else the module in port 1 or 3). If you remove this module, files 2, 3, and 4 are lost.

The bottom block represents the 238 registers in the second extended memory module (the module used
second or else the module in port 2 or 4). If you remove this module, files 3 and 4 are lost.

Extended Memory
Built Into the
Computer

First Extended
Memory Module

Second Extended
Memory Module

Appendix E: Extended Memory Modules

Map of Extended Memory

(

126

364

File 1. This file is entirely
inside the computer.

File 2. This file is lost when
the first extended memory
module is removed.

File 3. This file is lost when
the second extended mem-
ory module is removed.

File 4.

Unused Registers
Available for
New Files

373

Appendix F

Time Specifications

Contents
The Accuracy Factor 374
Correcting the Time With the Accuracy Factor ((CORRECT]) 375
Recalling, Setting, and Clearing the Accuracy Factor 376
Accuracy Factor Calculation 377
Specifications for Time Precision and Accuracy 377
PrECiSION . . . 377
ACCUTACY oo ottt e e e e e e e e 378
StopwatCh . .. 378

The Accuracy Factor

The programmable, time adjustment functions allow you to correct the current time setting and to set
and monitor the clock accuracy factor.

Like most timekeeping devices, the accuracy and precision of the HP-41 timer can be affected by vari-
ations in power supply, temperature, and manufacturing processes. While the effects of these variations
are small, you might want to use the built-in accuracy factor to help compensate for the conditions
affecting the time, if these conditions will be fairly constant. The accuracy factor (used with the
| CORRECT |, [RCLAF |, and [SETAF | function) is meant to compensate over the long term for variations
from the ideal, and not to compensate for anomolous conditions (such as exposure to freezing tempera-
tures for several days). In the latter case, just reset the time ([T+x]) instead, if necessary.

The clock in the HP-41CX is basically the same as the clock in a quartz crystal watch. The accuracy of
the HP-41CX clock, when adjusted with the accuracy factor, is similar to that of a quartz crystal watch.
The unadjusted accuracy of the HP-41CX clock is not quite as good as that of a quartz crystal watch,
but is better than that of a spring watch.

374

Appendix F: Time Specifications 375

The accuracy factor is the time interval (in sec- The Accuracy Factor

onds) at which one pulse (of approximately

9.8 x 1075 second duration) is added to or sub- Accuracy

tracted from the clock’s 10240 Hz time base. The Factor, n Etfect

table at the right shows the accuracy factor limits (seconds)

and format. +99.9 Adds/subtracts Increasing
An accuracy factor of —10.5 would cause one pulse + :0 1 gn:egg:]sdes every 2:2:533 of
to be subtracted every 10.5 seconds. An accuracy - ')
factor of 0.1 would cause one pulse to be added ev- 0.0 | Default No correction.

ery 0.1 second.

You can determine the appropriate accuracy factor automatically with the function or by
calculation.

For information concerning timer precision and accuracy, see “Specifications for Time Precision and
Accuracy”.

Correcting the Time With the Accuracy Factor ([CORRECT])

The (correct the time) function sets the time that you specify and automatically adjusts the
accuracy factor. When you place a time value (HH.MMSShh) in the X-register and execute [CORRECT]:

* The clock is set to the specified time in the same way that it is when you execute (SETIME].

 The accuracy factor is automatically adjusted using an internal calculation based on drift* and the
time span since [SETIME |, [SETDATE |, [SETAF | (set accuracy factor), or was last executed.
The timer then begins to alter automatically and continuously the clock time base according to the
newly adjusted accuracy factor.

When you execute manually, the precision of the timesetting operation will vary with your
keystroke execution. Execution takes place when the key that executes is released.t The
time span between the most recent execution of [SETIME], (SETDATE], [SETAF], or (CORRECT | and the
subsequent execution of must be long enough to render keystroke precision error insignifi-
cant. In most cases this time span should be a minimum of 30 hours. Greater increases in the time
span between executions of increase the probability of a more reliable accuracy factor.}

* Drift is deviation from the correct time due to variations in power supply, temperature, and material variables. The value that the
timer uses for drift is the difference between the current clock time and the new clock time (specified in the X-register) at the

moment that you execute [CORRECT].

T Approximately +0.1 second is the maximum keystroke precision for most users. You can reduce precision error by executing

CORRECT | as a function assigned to a key instead of by CORRECT [ALPHA]. This is because the computer takes less
time to internally locate and execute a function assigned to a single key.

% The longer you wait to execute [CORRECT], the smaller the error due to keystroke variation becomes in proportion to any error
resulting from a combination of all error factors. A practical time span for many applications is 1 week.

376 Appendix F: Time Specifications

Note: The function uses the calculated drift to determine the accuracy factor. For this
reason, if you wish to use to improve the long-term accuracy of the timer, you should
not use to remove time errors due to normal drift, because the alteration would not be de-
tected by the function. For this reason, using to correct errors due to normal drift
may result in a less reliable accuracy factor.

The accuracy factor adjustment performed by depends in part upon the difference between
the current time setting and the new time setting at the moment that you execute [CORRECT]. If the
time has not been previously set using [SETIME |, executing can result in an unfavorable accu-
racy factor. However, once the time has been initially set using [SETIME], you can use as
often as is practicable.

The Function

SETIME CORRECT CORRECT
Executed Executed Executed
I } i » Time
Time span used for Time span used for
accuracy factor accuracy factor
calculation by first calculation by the second
CORRECT|. CORRECT]|.

Remember that increasing the time span between execution of [SETIME | or [CORRECT | and execution of
the next will result in a more precise accuracy factor.

Recalling, Setting, and Clearing the Accuracy Factor

The (recall accuracy factor) function recalls the current accuracy factor to the X-register. The
stack is lifted in the same way as when you recall a number from a data storage register.

The (set accuracy factor) uses the value x put in the X-register to set the accuracy factor. The
accuracy factor represents a time interval in seconds, as explained at the beginning of this section. The
accuracy factor is either rounded to the nearest tenth of a second (SS.t) or set to zero, as follows:

» The accuracy factor will be set to 0.0 if x =0 or x > [99.95|.

o The accuracy factor is set to 0.1 if 0 < x < 0.1 (x # 0) and is set to —0.1 if —0.1 < x < 0.

o If the value x in the X-register is in the range 0.1 < x < 99.949 or —99.95 < x < —0.1, the accu-
racy factor will be rounded to a +88.t format.

When you execute [SETAF |, the timer begins to automatically and continuously alter the clock time
base according to the accuracy factor you specified.

Appendix F: Time Specifications 377

To clear the accuracy factor, place 0 in the X-register and execute [SETAF].

If you know that the HP-41 will have an interruption of power (such as removing the batteries), then
you might want to recall the accuracy factor, write it down, and then use it to reset the accuracy factor
when the power supply is normal again.

Accuracy Factor Calculation

The [CORRECT | function provides a convenient means to correct the timer’s time base (through auto-
matic calculation of the average accumulated error). However, if you want to establish an accuracy
factor over a relatively short period of time (such as a 36-hour interval), any keystroke error that
occurs when you execute can have a more significant effect than when is executed
after longer intervals. By calculating the accuracy factor yourself, then entering it using [SETAF], you
can often implement a more effective accuracy factor over a shorter interval than you could by using
(CORRECT]. Also, if you alter the drift by executing [T+x], the accuracy factor that results from subse.-
quently executing is likely to be wrong. Thus, where drift has been altered by [T+x], the best
method of determining an effective accuracy factor would be by performing your own calculation.

You can calculate the accuracy factor using the following formula:

AF = — 101240
—— — ———— ER
IAF 86400 CRRupa
Where: IAF = initial accuracy factor

(If IAF is zero, substitute “0” for 1/IAF.)
ERRspd = the current error in seconds per day
(A “slow” clock has a negative error, and a “fast” clock has a positive error.)
10240 = clock internal time base pulse rate
86400 = the number of seconds in a day

After you calculate an accuracy factor, it should be rounded to one decimal place, then set using the

function.

Specifications for Time Precision and Accuracy

Precision

Timesetting from the keyboard can be performed with a precision of about 0.1 second, but this can be
less precise, depending upon human response time. The current clock setting can be adjusted with a
precision of up to 0.01 seconds through use of the function.

378 Appendix F: Time Specifications

Accuracy

A crystal-stabilized time base provides accuracy control for the timer. As with any crystal-based
timepiece, actual stability at any time is a function of operating temperature and voltage variations. If
the computer is subjected to a consistent daily pattern of environmental conditions, the total inaccu-
racy can be made negligible through appropriate application and maintenance of the accuracy factor.
The overall accuracy of the timer at 25°C is +3.02 seconds per day (+35 ppm), not to change with age
more than an additional +1.30 seconds per day (15 ppm).

Stopwatch

The precision for stopwatch time and difference between splits is +0.01 seconds. For maximum accu-
racy, splits should be taken at intervals of no less than 0.08 seconds; otherwise, an error due to delays
in internal processing time could result. Rapidly pressing the keys on the Stopwatch keyboard can
cause temporary suppression of all or part of the stopwatch display, but does not affect stopwatch
timekeeping ability.

Appendix G

Battery, Warranty, and Service Information

Contents
The Input/Output Ports e 381
Batteries and Power Use 381
Power Consumption 381
Power Consumption by Peripheral Devices 382
Effects of Clearing Memory, Power Interruptions, and Low Power 382
Low-Power Indication 383
Battery Replacement and Installationo i 383
Verifying Proper Operation i i 385
Limited One-Year Warranty 386
What We WIll DO 386
What Is Not Covered s 386
Warranty for Consumer Transactions in the United Kingdom 386
Obligation to Make Changes B 387
Warranty Information 387
S BIVICE . .o 388
Obtaining Repair Service in the United States 388
Obtaining Repair Service in Europe 388
International Service Information il 389
Service Repair Charge 389
Service Warranty 389
Shipping Instructions 390
Further Information 390
Technical ASSIStanCe 390
Dealer and Product Information Ll 391
Temperature Specifications 391
Potential for Radio and Television Interference (For US.A. Only) 391

380

Appendix G: Battery, Warranty, and Service Information 381

The Input/Output Ports

Keep the caps on the input/output ports whenever nothing is plugged into them.

CAUTION

Do not insert your fingers or any object other than an HP module or plug-in accessory into an
input/output port. Doing so could interrupt Continuous Memory and possibly damage the computer.

Batteries and Power Use

The HP-41 is powered by four batteries. Depending on how it is used, the HP-41 can operate up to six
months or more on a set of alkaline batteries. The batteries supplied with the computer are alkaline N
cells, but a rechargeable battery pack (nickel cadmium cells) can also be used.

The total number of operating hours supplied by the batteries depends greatly on what kinds of oper-
ations you do and how much you use peripheral devices. Without using peripheral devices, a set of four
fresh alkaline batteries will provide about 45 to 85 hours of continuous program running (the most
power-consuming kind of computer use—refer to “Power Consumption,” below). When only the display
is on and no operations are being performed, much less power is consumed.

The actual lifetime of the batteries depends on how often you use the HP-41 and its peripherals,
whether you use the HP-41 more for running programs or more for manual calculations, and which
functions you use. Next to using peripheral devices, the most power-consuming operations are: running
programs, displaying/running the stopwatch, using the catalogs, and displaying the clock. Catalogs 4, 5,
and 6 draw as much power as a running program even when they are stopped (which is why they cause
a faster time-out than usual).

If the computer remains turned off, a set of fresh batteries will preserve the contents of Continuous
Memory for as long as the batteries would last outside of the computer—about 1% years for alkaline
batteries.

Power Consumption
The actual rate of power consumption depends upon how the HP-41 is being used at any given time.
There are three basic power consumption modes:

» Operating: high current drain (5 to 20 mA). This corresponds to running a program, a catalog, or
the Text Editor; displaying the stopwatch; or performing an operation (pressing a key).

382 Appendix G: Battery, Warranty, and Service Information

e Idle: moderate current drain (0.5 to 2.0 mA). This mode corresponds to the display being on,
including the display of the clock. If the clock shows only the time ([CLKT]), it consumes more
power than if it shows the time and date ([CLKTD]). ([CLKT] updates the display more frequently.)

e Off: low current drain (0.01 to 0.05 mA). Exists when the computer is off. The timer’s precision
oscillator runs continuously to maintain the clock and, if running, the stopwatch.

While the computer is turned on, typical computer use is a mixture of idle time and operating time.
Therefore, the actual lifetime of the batteries depends on how much time the computer spends in each
of the three modes.

A freshly charged HP 82120A Rechargeable Battery Pack has a capacity of 656 mAH (milliampere-
hours). A fresh set of alkaline batteries provides approximately 500 mAH.
Power Consumption by Peripheral Devices

When you use peripheral devices that draw power from the HP-41 batteries (such as the card reader or
the optical wand), total battery life will be reduced considerably. If you use peripherals frequently, it is
recommended that you power the HP-41 with an HP 82120A Rechargeable Battery Pack.

Effects of Clearing Memory, Power Interruptions, and Low Power

Clearing Memory. Resetting Continuous Memory ([+]/[ON]) does not affect:
e The clock and its format settings for versus [CLK24 | and [CLKT | versus [CLKTD .
e The stopwatch.

Resetting Continous Memory does:
¢ Clear all of main and extended memories.
e Clear all alarms.
e Clear all User function assignments.

» Reset all flags to their initial, power-on settings. See the table “Summary of Flag Status” in section
19.

¢ Reset the allocation of registers in main memory to 100 registers for data storage.

Refer also to “Continuous Memory” in section 1 for information about clearing and resetting memory.

Appendix G: Battery, Warranty, and Service Information 383

Temporary Power Interruption. A power interruption (including taking the batteries out) of suffi-
cient duration can cause a power reset, which clears Continuous Memory and affects the time, date, and
alarms. If affected, the time and date reset to 12:00 a.m. on January 1, 1900. Various other errors will
be introduced into timer operation. For this reason it is recommended that after any power interrup-
tion you check the status of the current time and date. If the time and date are correct, then the
integrity of the time data has been preserved. If the time and/or date are not correct, then do the
following:

1. Reset the time and date ([SETIME | and [SETDATE]).
2. Reset the clock display formats, if they are not correct ([CLK12] or [CLK24], [CLKT] or [CLKTD]).
3. Initialize the stopwatch (set to zero), and stop it if it is running (do 0 [SETSW][STOPSW).

Low Power. When battery power is too low to operate the clock display, executing [CLOCK] or [
will turn off the computer. (The clock will continue to keep time internally.) In most cases, this will
not occur until the BAT annunciator is lit.

Low-Power Indication

The BAT (battery) annunciator appears in the display when the available battery power is running low.
If a peripheral is in use, disconnecting it (after turning off both the HP-41 and the peripheral) will
significantly extend battery life.

With alkaline batteries installed (and no peripheral attached):

¢ The computer can be used for about 2 to 7 hours of continuous program running after BAT first
appears.*

e If the computer remains turned off, the contents of its Continous Memory will be preserved for
about a month after BAT first appears.

Battery Replacement and Installation

The batteries supplied with the HP-41, as well as the alkaline batteries listed below for replacement,
are not rechargeable.

WARNING

Do not attempt to recharge the batteries; do not store batteries near a source of high heat; do not
dispose of batteries in fire. Doing so may cause the batteries to leak or explode.

* Note that this is the time available for continuous operation. If you are using the computer for manual calculations—a mixture of
the idle and operating modes—the computer can be used for a much longer time after the BAT first appears.

384 Appendix G: Battery, Warranty, and Service Information

The following batteries are recommended for replacement in your HP-41:

Eveready E90* Mallory MN9100 VARTA 7245
National AM5(s) Panasonic AM5(s)

The contents of the computer’s Continuous Memory are preserved for a short time while the batteries
are out of the computer (provided that you turn off the computer before removing the batteries). This
allows you ample time to replace the batteries without losing data or programs. If the batteries are left
out of the computer for an extended period, the contents of Continuous Memory may be lost.

To install new batteries, use the following procedure:

1. Be sure the computer is off.

2. Holding the computer as shown, push up on the battery
holder until it pops out.

3. Remove the batteries from the battery holder.

CAUTION

In the next step, replace all four batteries with fresh ones. If you leave an old battery inside, it may
leak. Furthermore, be careful not to insert the batteries backwards. If you do so, the contents of

Continuous Memory may be lost.

* Not available in the United Kingdom or Republic of Ireland.

Appendix G: Battery, Warranty, and Service Information 385

4. Insert the new batteries by matching the position of their
polarity marks to those on the battery holder. If any of the
batteries are inserted backwards, the computer will not turn
on.

5. Insert the battery pack into the computer such that the ex-
posed ends of the batteries are pointing toward the
input/output ports.

6. Push the upper edge of the battery pack into the HP-41 until
it goes no further. Then snap the lower edge of the holder
into place.

7. Turn the computer on. If for any reason memory has been cleared (that is, its contents have been
lost), the display will show MEMORY LOST. Pressing any key will clear this message from the
display.

Verifying Proper Operation
If it appears that the computer will not turn on or otherwise is not operating properly, review the
following steps.

1. Be sure that all the batteries are inserted with the correct polarity and that the battery contacts
are not dirty.

2. If the computer does not respond to keystrokes, try to reset it as follows: press and hold the
and keys simultaneously, then release them. Turn the computer on, if necessary, and test
for a response to keystrokes.

3. If there is no response, remove and reinsert the battery pack.
If the computer still does not turn on, install fresh batteries.

If this does not suffice, remove the battery pack and let the computer discharge overnight. When
you reinstall the batteries and turn the computer on, if the display shows MEMORY LOST, then
memory and the computer have been cleared and reset.

386 Appendix G: Battery, Warranty, and Service Information

4. If the computer still does not respond to keystrokes, remove the battery pack and short the end
battery terminals inside the HP-41 together. Only momentary contact is required. Replace the bat-
teries. The contents of Continuous Memory will be lost, and you might need to press the key
more than once to turn the computer back on.

5. If there is still no response, the computer requires service.

Limited One-Year Warranty

What We Will Do

The HP-41 is warranted by Hewlett-Packard against defects in material and workmanship for one year
from the date of original purchase. If you sell your unit or give it as a gift, the warranty is automatically
transferred to the new owner and remains in effect for the original one-year period. During the war-
ranty period, we will repair or, at our option, replace at no charge a product that proves to be defective,
provided you return the product, shipping prepaid, to a Hewlett-Packard service center.

What Is Not Covered

The batteries or damage caused by the batteries are not covered by this warranty. However, certain bat-
tery manufacturers may arrange for the repair of the computer if it is damaged by the batteries. Con-
tact the battery manufacturer first if you computer has been damaged by the batteries.

This warranty does not apply if the product has been damaged by accident or misuse or as the result of
service or modification by other than an authorized Hewlett-Packard service center.

No other express warranty is given. The repair or replacement of a product is your exclusive remedy.
ANY OTHER IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS IS LIMITED TO
THE ONE-YEAR DURATION OF THIS WRITTEN WARRANTY. Some states, provinces, or coun-
tries do not allow limitations on how long an implied warranty lasts, so the above limitation may not
apply to you. IN NO EVENT SHALL HEWLETT-PACKARD COMPANY BE LIABLE FOR CON-
SEQUENTIAL DAMAGES. Some states, provinces, or countries do not allow the exclusion or limita-
tion of incidental or consequential damages, so the above limitation or exclusion may not apply to you.

This warranty gives you specific legal rights, and you may also have other rights which vary from state
to state, province to province, or country to country.

Warranty for Consumer Transactions in the United Kingdom

This warranty shall not apply to consumer transactions and shall not affect the statutory rights of a
consumer. In relation to such transactions, the rights and obligations of Seller and Buyer shall be
determined by statute.

Appendix G: Battery, Warranty, and Service Information 387

Obligation to Make Changes

Products are sold on the basis of specifications applicable at the time of manufacture. Hewlett-Packard
shall have no obligation to modify or update products once sold.

Warranty Information

If you have any questions concerning this warranty, please contact:
e In the United States:

Hewlett-Packard Company
Portable Computer Division
1000 N.E. Circle Blvd.
Corvallis, OR 97330, U.S.A.
Telephone: (503) 758-1010
Toll-Free Number: (800) 547-3400 (except in Oregon, Hawaii, and Alaska)

e In Europe:

Hewlett-Packard S.A.

150, route du Nant-d’Avril

P.O. Box
CH-1217 Meyrin 2
Geneva
Switzerland
Telephone: (022) 83 81 11
Note: Do not send computers to this address for repair.

e In other countries:

Hewlett-Packard Intercontinental
3495 Deer Creek Rd.
Palo Alto, California 94304
U.S.A.
Telephone: (415) 857-1501
Note: Do not send computers to this address for repair.

388 Appendix G: Battery, Warranty, and Service Information

Service

Hewlett-Packard maintains service centers in most major countries throughout the world. You may
have your unit repaired at a Hewlett-Packard service center any time it needs service, whether the unit
is under warranty or not. There is a charge for repairs after the one-year warranty period.

Hewlett-Packard handheld computer products normally are repaired and reshipped within five (5)
working days of receipt at any service center. This is an average time and could vary depending upon
the time of year and work load at the service center. The total time you are without your unit will
depend largely on the shipping time.

Obtaining Repair Service in the United States

The Hewlett-Packard United States Service Center for handheld and portable computer products is
located in Corvallis, Oregon:

Hewlett-Packard Company
Service Department
P.O. Box 999
Corvallis, Oregon 97339, U.S.A.

or

1030 N.E. Circle Blvd.
Corvallis, Oregon 97330, U.S.A.

Telephone: (503) 757-2000
Obtaining Repair Service in Europe

Service centers are maintained at the following locations. For countries not listed, contact the dealer
where you purchased your computer.

AUSTRIA EASTERN EUROPE
HEWLETT-PACKARD Ges.m.b.H. Refer to the address listed under Austria.
Kleinrechner-Service

Wagramerstrasse-Lieblgasse 1

A-1220 Wien (Vienna)

Telephone: (0222) 23 65 11 FINLAND

GERMANY
HEWLETT-PACKARD GmbH
Kleinrechner-Service
Vertriebszentrale

Berner Strasse 117
Postfach 560 140

BELGIUM

HEWLETT-PACKARD BELGIUM SA/NV
Woluwedal 100

B-1200 Brussels

Telephone: (02) 762 32 00

DENMARK
HEWLETT-PACKARD A/S
Datavej 52

DK-3460 Birkered (Copenhagen)
Telephone: (02) 81 66 40

HEWLETT-PACKARD OY
Revontulentie 7

SF-02100 Espoo 10 (Helsinki)
Telephone: (90) 455 02 11

FRANCE

HEWLETT-PACKARD FRANCE
Division Informatique Personnelle
S.A.V. Calculateurs de Poche
F-91947 Les Ulis Cedex
Telephone: (6) 907 78 25

D-6000 Frankfurt 56
Telephone: (611) 50041

ITALY

HEWLETT-PACKARD ITALIANA S.P.A.
Casella postale 3645 (Milano)

Via G. Di Vittorio, 9

1-20063 Cernusco Sul Naviglio (Milan)
Telephone: (2) 90 36 91

Appendix G: Battery, Warranty, and Service Information 389

NETHERLANDS SPAIN SWITZERLAND
HEWLETT-PACKARD NEDERLAND B.V. HEWLETT-PACKARD ESPANOLA S.A. HEWLETT-PACKARD (SCHWEIZ) AG
Van Heuven Goedhartlaan 121 Calle Jerez 3 Kleinrechner-Service
NL-1181 KK Amstelveen (Amsterdam) E-Madrid 16 Allmend 2

P.O. Box 667 Telephone: (1) 458 2600 CH-8967 Widen
Telephone: (020) 472021 Telephone: (057) 31 21 11
NORWAY SWEDEN UNITED KINGDOM
HEWLETT-PACKARD NORGE A/S HEWLETT-PACKARD SVERIGE AB HEWLETT-PACKARD Ltd
P.O. Box 34 Skalholtsgatan 9, Kista King Street Lane
Oesterndalen 18 Box 19 GB-Winnersh, Wokingham
N-1345 Oesteraas (Oslo) $-163 93 Spanga (Stockholm) Berkshire RG11 5AR
Telephone: (2) 17 11 80 Telephone: (08) 750 2000 Telephone: (0734) 784 774

International Service Information

Not all Hewlett-Packard service centers offer service for all models of HP computer products. However,
if you bought your product from an authorized Hewlett-Packard dealer, you can be sure that service is
available in the country where you bought it.

If you happen to be outside of the country where you bought your unit, you can contact the local
Hewlett-Packard service center to see if service is available for it. If service is unavailable, please ship
the unit to the address listed above under “Obtaining Repair Service in the United States.” A list of
service centers for other countries can be obtained by writing to that address.

All shipping, reimportation arrangements, and customs costs are your responsibility.

Service Repair Charge

There is a standard repair charge for out-of-warranty repairs. The repair charges include all labor and
materials. In the United States, the full charge is subject to the customer’s local sales tax. In European
countries, the full charge is subject to Value Added Tax (VAT) and similar taxes wherever applicable.
All such taxes will appear as separate items on invoiced amounts.

Computer products damaged by accident or misuse are not covered by the fixed repair charges. In these
situations, repair charges will be individually determined based on time and material.

Service Warranty

Any out-of-warranty repairs are warranted against defects in materials and workmanship for a period
of 90 days from date of service.

390 Appendix G: Battery, Warranty, and Service Information

Shipping Instructions

Should your unit require service, return it with the following items:
o A completed Service Card, including a description of the problem.

o A sales receipt or other proof of purchase date if the one-year warranty has not expired.

The product, the Service Card, a brief description of the problem, and (if required) the proof of pur-
chase should be packaged in the original shipping case or other adequate protective packaging to pre-
vent in-transit damage. Such damage is not covered by the one-year limited warranty; Hewlett-Packard
suggests that you insure the shipment to the service center. The packaged unit should be shipped to the
nearest Hewlett-Packard designated collection point or service center. Contact your dealer for assis-
tance. (If you are not in the country where you originally purchased the unit, refer to International
Service Information above.)

Whether the unit is under warranty or not, it is your responsibility to pay shipping charges for delivery
to the Hewlett-Packard service center.

After warranty repairs are completed, the service center returns the unit with postage prepaid. On out-
of-warranty repairs in the United States and some other countries, the unit is returned C.0.D. (cover-
ing shipping costs and the service charge).

Further Information

Service contracts are not available. Computer product circuitry and design are proprietary to Hewlett-
Packard, and service manuals are not available to customers.

Should other problems or questions arise regarding repairs, please call your nearest Hewlett-Packard
service center.

Technical Assistance

The keystroke procedures in this manual are supplied with the assumption that the user has a working
knowledge of the concepts and terminology used. Hewlett-Packard’s technical support is limited to
explanation of operating procedures used in the manual and verification of answers given in the exam-
ples. Should you need further assistance, you may write to:

Hewlett-Packard Company
Portable Computer Division
Customer Support
1000 N.E. Circle Blvd.
Corvallis, OR 97330

Appendix G: Battery, Warranty, and Service Information 391

Dealer and Product Information

For dealer locations, product information, and prices, please call (80{)) 547 3400. In Oregon, Alaska, or
Hawaii, call (503) 758-1010.

Temperature Specifications

e Operating: 0° to 45°C (32° to 113°F)
e Storage: 0° to 45°C (32° to 113°F).

If the batteries are removed, or if clock accuracy is not a concern, then the storage temperature tolerances
for the HP-41 are:*

—20° to 60°C (—4° to 140°F)

Potential for Radio and Television Interference (For U.S.A. Only)

The HP-41 generates and uses radio frequency energy and, if not installed and used properly, that is, in
strict accordance with the manufacturer’s instructions, may cause interference to radio and television
reception. It has been type tested and found to comply with the limits for a Class B computing device
in accordance with the specifications in Subpart J of Part 15 of FCC Rules, which are designed to
provide reasonable protection against such interference in a residential installation. However, there is
no guarantee that interference will not occur in a particular installation. If your HP-41 does cause
interference to radio or television reception, you are encouraged to try to correct the interference by
one or more of the following measures:

e Reorient the receiving antenna.

¢ Relocate the computer with respect to the receiver.

e Move the computer away from the receiver.
If necessary, you should consult your dealer or an experienced radio/television technician for additional
suggestions. You may find the following booklet prepared by the Federal Communications Commission

helpful: How to Identify and Resolve Radio-T'V Interference Problems. This booklet is available from the
U.S. Government Printing Office, Washington, D.C.20402, Stock No. 004-000-00345-4.

* If the clock’s operation is affected by temporary exposure to extreme temperature, do not reset it using the accuracy factor; use
instead (that is, simply reset the time, and do not adjust the accuracy factor). As explained in appendix F, the accuracy
factor compensates for the effects of fairly constant conditions, and should not be used to compensate for conditions that will
fluctuate irregularly.

Appendix H

Peripherals, Extensions, and HP-IL

Contents
HP-41 Peripherals 392
HP 82104A Card Reader i, 392
HP 82143A Printer 393
HP 82153A Optical Wand 393
EXtensions 393
HP 82181A Extended Memory Modules 393
Application Pac Modules 393
Hewlett-Packard Interface Loop (HP-IL) and Peripherals 394
XROM Functions and XROM Numbers 394
Catalog 2: The Catalog of External Functions 394
Programs Versus Functions in External ROM 395
How XROM Functions are Displayed as Program Instructions 395
Duplicate XROM Numbers, 397

The HP-41 handheld computer becomes a controller for a computing system when it is connected to
HP peripheral devices and extensions. In addition, the Hewlett-Packard Interface Loop (HP-IL) Mod-
ule can integrate the HP-41 and up to 30 other devices in a serial communications loop.

Four input/output (I/O) ports are provided on the computer for plugging in system extensions—one
device per port. (The HP-IL module uses one port, but each additional HP-IL peripheral does not—it
just hooks up by cable to the module or another HP-IL device.)

HP-41 Peripherals
HP 82104A Card Reader

The card reader can record programs, data registers, and key assignments from the HP-41 onto mag-
netic cards. In turn, programs, registers, and assignments recorded on magnetic cards can then be
loaded into the main memory of an HP-41 by the card reader.

392

Appendix H: Peripherals, Extensions, and HP-IL 393

The card reader provides quick storage and loading of information (no keying in instructions!). All
programs from the Users’ Library come with magnetic cards. Furthermore, the card reader can also
read cards of HP-67 and HP-97 programs, automatically translating them into the internal code used
by the HP-41.

HP 82143A Printer

The printer prints instructions and programs quietly on 24-character-wide thermal paper. The printer
can produce upper- and lower-case alphabetic characters, digits, and double-wide characters. There are
several printing modes, so you can determine what kinds of output will be printed. This lets you, for
instance, check long calculations or diagnose programming problems.

HP 82153A Optical Wand

The wand reads programs encoded in HP bar code, and stores them in the main memory of the HP-41.
This is much faster and more accurate than manual key entry; data and individual functions can also
be read from bar code into the computer. All Users’ Library programs and HP Solutions Books for the
HP-41 come with bar code versions of their programs.

Extensions

HP 82181A Extended Memory Modules

An extended memory module provides an additional 238 storage registers (1,666 bytes) of extended
memory to the HP-41 (the HP-41CX comes with 124 registers of extended memory). You can add one
or two extended memory modules. For more information, refer to appendix E, “Extended Memory
Modules.”

Application Pac Modules

The application pac modules are prewritten ROM (read-only memory) software for solving specific
problems in specific fields (like Circuit Analysis and Financial Decisions). You can add up to four
application pac modules. The programs and functions contained in the application module are listed by
catalog 2.

394 Appendix H: Peripherals, Extensions, and HP-IL

Hewlett-Packard Interface Loop (HP-IL) and Peripherals

By plugging the HP 82160A HP-IL Module into one of the HP-41 ports, you can create a serial inter-
face loop containing up to 30 other HP-IL-compatible devices. The HP-41 itself acts as the controller
for the loop, monitoring and controlling the activity of the other devices. With its timekeeping ca-
pabilities, the HP-41CX can conduct timed data collection by HP-IL devices and provide automatic
output of results. The HP-IL module contains the functions necessary to manipulate HP-IL printing
and mass storage peripherals.

Among the HP-IL peripherals are devices for mass storage, video display, printing, plotting, and
measurement. In addition, the HP 82183A Extended I/O Module extends the function set of the HP-IL
module for I/O device control, and the HP 82184A Plotter Module provides advanced plotting capabili-
ties (including bar code formulation). Check with your authorized HP dealer for a complete and up-to-
date list of current HP-IL products.

XROM Functions and XROM Numbers

Every user-accessible function or program provided by an HP-41 peripheral or extension is considered
an “external ROM” (XROM) function. Catalog 2 (below) makes a list of each external device. It can
also list every individual function of a source device. Every external ROM function is identified in-
ternally by a two-part, XROM number.

Catalog 2: The Catalog of External Functions

Catalog 2 (see also “The Catalogs,” section 9) is a listing of all XROM functions/programs by device.*
For the HP-41CX, catalog 2 shows only the names of the source devices (the “ROM headers”) until you
stop the catalog and press [ENTER#). This starts a listing of the individual functions and programs
supplied by the last device whose name was displayed. To return to the listing of source devices, stop

the catalog again and press [ENTER® .

and [557 | work as for other catalogs. and [257 | will not cross from the header list to the
function list (only does this). When a catalog listing of individual functions reaches the end of
the list for that device, the listing goes on to the next source header and the functions for that device.

* Some internal functions, such as time functions and extended memory functions, are also part of catalog 2. Refer to “Time
Functions” and “Extended Memory and Extended Functions” in appendix I.

Appendix H: Peripherals, Extensions, and HP-IL 395

Programs Versus Functions in External ROM

An operation in ROM in an applications or extension module or in a peripheral is provided either as a
program or as a function. A program can be copied into user memory, then listed and altered, etc. A
function, on the other hand, cannot be viewed—only used. When you list out catalog 2, the computer
differentiates the two with the “raised T” in front of programs:

SECUR 1B <«—— ROM header (device identification)
TBONDS
TSTOCK <«—— program

TATP
JDAY <«—— function
TBEP

How XROM Functions Are Displayed as Program Instructions

When an external function is written into a program instruction, the display of that instruction de-
pends on whether or not the module containing that function is currently plugged in to the HP-41, and
whether that XROM function is presented as a program or a function.

The XROM number identifies an XROM function by its device (ROM identification number) and its
location within that device (function number).

If the necessary module is not plugged in, then the HP-41 has no knowledge of any of its XROM
functions—unless a function was assigned to a User key, in which case its XROM number is known
because it was assigned to that key. Similarly, if a module is removed after one of its functions has been
entered in a program, the computer identifies the “missing” function by its XROM number.

396 Appendix H: Peripherals, Extensions, and HP-IL

Therefore:

e If the computer currently has access to an XROM function, then it will be entered into a program
line as either

label for an external function, or
XROMT/abel for an external program.

This is also the result if a User-defined key is used to enter the program instruction.

e XROM number, number replaces the /abel or XROMT/abel display of a program instruction when the
relevant module is removed. The XROM number remains only as long as its module is missing; that
is, the original display is restored when the module is reconnected. This is also the result if a User
key is used with the relevant module unplugged.*

¢ If the relevant module is not connected and you do an Alpha execution of an XROM function for a
program line, then the program line will read simply

XEQTiabel , just like a call for a program in main memory.

When the module is subsequently restored, the program line does not change, and remains
XEQT/abel

Display of a Program Instruction

A. If the relevant module is plugged in, or a User key is used:

XROMT/abe/ (program)

unplug module ——

or <«— plug module back in ——

XROM nn,mm

label (function)

(This program instruction uses two bytes of memory.)

B. If the relevant module is not plugged in, and a User key is not used:

plug in module ————

XEQT/abel .
<«——— unplug again

XEQT/abel

(This program instruction uses two bytes plus one byte per character in the label.)

* An external function can only be assigned to a User key when the module containing it is connected to the HP-41. Otherwise, the
error message NONEXISTENT results.

Appendix H: Peripherals, Extensions, and HP-IL 397

Execution Time. Although the instruction XEQT"/abe/—entered when the module was out—will work
when the module is back in to execute the specified external function/program (case B, above), this
instruction is not really equivalent to XROMT/abel or label (case A, above). Case B is less efficient and
will take longer to execute, for the following reason: an XROM call (including simply /abel for an
XROM function) goes directly to catalog 2 to search for that particular XROM function. An XEQT/abe/
command, on the other hand, first goes to catalog 1, searching through all the user programs.* When it
doesn’t find the particular label there, it goes on to catalog 2 to continue the search.

Memory Space. An XROMT/abel or /abel instruction (case A) requires two bytes of memory, while an
XEQT/abel instruction requires two bytes plus one byte per character in the label.

Duplicate XROM Numbers

All plug-in ROM modules have ROM identification numbers, and some of them are duplicated. Avoid si-
multaneously using any ROM modules with duplicate ROM identification numbers. Even though they are
internal (not plug-in) functions for the HP-41CX, all extended memory functions and extended functions
use the XROM identification 25, and all time functions use the XROM identification 26. (None of the other
internal functions have XROM numbers.)

* This brings up the interesting point of what happens if you have a user program in main memory with the same global label as
the name of an XROM function or program. Since the search for XEQT/abel always starts with catalog 1, it will always execute
the user program, and not the XROM function. This feature allows you to copy a program from an external ROM module into
main memory, modify it, and then execute the modified version rather than the ROM module version even when the module is
plugged in.

Ty

Appendix |

A Comparison With the HP-41C/CV

Contents
AN OVEIVIEW . 398
Cataloguing the New Functions 399
The Owner's Manual 399
Memory Configuration 399
Catalog Operation 400
Catalogs 1, 2, and 3 400
New Catalogs: 4, 5, and 6 400
Time FUNCHIONS 400
Extended Memory and Extended Functions 401
Extended Memory Functions 401
Extended FUunctions 402
New Terminology Used in This Manual 402

This appendix defines the differences between the HP-41CX and the HP-41C/CV so that you can
quickly learn to use the HP-41CX if you are already familiar with the HP-41C/CV. If you have exper-
ience with the HP-41C or HP-41CV, then you already know much about the operation of the
HP-41CX.

Programs written for the HP-41C/CV (including plug-in modules) are fully compatible with the
HP-41CX. Programs written for the HP-41CX, however, are not necessarily compatible with the
HP-41C/CV.

An Overview

The HP-41CX computer is based on the HP-41CV (which is like an HP-41C but with five times as
much main memory space). It includes all the functions and memory space from the HP 82182A Time
Module and the HP 82180A Extended Functions/Memory Module, plus additional alarm, stopwatch,
extended memory, and other functions. The catalogs operate slightly differently compared with the
HP-41C/CV, and the initial memory allocation is different: 100 registers for data storage. A point-by-
point comparison is given below, including page references to explanations of features in this manual.

398

Appendix I: A Comparison With the HP-41C/CV 399

Cataloguing the New Functions

The HP-41CX functions are catalogued such that all new functions (functions not in the HP-41C/CV)
are listed in catalog 2, the external-functions catalog, leaving catalog 3, the standard-functions catalog,
unchanged from the HP-41C/CV. They are categorized in this way for consistency with previous pro-
ducts: the standard function set remains unchanged, and the time functions and extended functions are
in catalog 2, as they are when they are supplied by the time module and extended functions/memory
module. Therefore, all time and extended memory/extended functions in the HP-41CX use the XROM
numbers (external ROM numbers; see appendix H) from the original modules for identification to the
computer. The ROM identification number for all extended memory/extended functions is 25; the
ROM identification for all time functions is 26. (Do not use a plug-in ROM module if it duplicates one
of these identification numbers.)

The Owner’s Manual

The owner’s manual has also been completely rewritten for the HP-41CX. Many explanations in the
previous literature (for the HP-41C/CV and for the two modules) have been changed, updated, and
clarified. To this aim, some terminology used in this book is new, especially in the areas of program-
ming, memory, and alarms. (See the table “Equivalent Terms” at the end of this section.) The printing
conventions for shifted and nonkeyboard functions have also been changed. (See the inside of the front
cover.)

Memory Configuration
The allocation of memory in the HP-41 computers is shown below.

Memory Configuration

Main Memory Total
Device Initial Configuration Extended
Total Mem
Data Storage | Uncommitted* emory
HP-41CX | 319 | 100 (Rgg—Rgg) 219 124
HP-41CV | 319 | 273 (Rgo-Ra72) 46 0
HP-41C 63 17 (Rgo—R1s) 46 0
* Memory for program instructions, alarms, and User function assignments are all
drawn from the uncommitted registers. See section 12 for more information.

400 Appendix I: A Comparison With the HP-41C/CV

Catalog Operation

While an HP-41CX catalog is listing its contents, pressing any key besides and will speed up
the listing. (With the HP-41C/CV, this would slow down the listing.)

All the catalogs are summarized in section 9 under “The Catalogs.”

Catalogs 1, 2, and 3

The display for catalog 1 now shows the number of bytes for each program (page 171). The display for
catalog 2 is quite different, being broken up into function groups. (See “Time Functions” and “Ex-
tended Memory and Extended Functions” in appendix 1.) Catalog 3 remains the same.

New Catalogs: 4, 5, and 6

The HP-41CX has three new catalogs. They all use power at the same rate as a running program, even
when stopped, unlike catalogs 1, 2, and 3. They therefore will automatically terminate in 2 minutes (1
minute when the battery power is low) when they are stopped.

The new catalogs blink at the end of the listing when you try to use [SST], just as they blink at the
beginning of the catalog when you try to use [257]. (In the HP-41C/CV, at the end of the listing
terminates the catalog function.)

Catalog 4: The Extended Memory Directory (Page 206). A listing of all files in extended mem-
ory can be accessed with either [CATALOG| 4 or [EMDIR]. [CATALOG] 4 is not programmable, however,
while is. The function is essentially the same function as in the extended
functions/memory module, except that now will start and stop it, and [BST | will step through
it, and a printer will only print it in Trace mode.

Catalog 5: The Alarm Catalog (Page 255). A listing of all alarms in memory can be accessed with
either [CATALOG] 5 or [ALMCAT]. [CATALOG| 5 is not programmable, however, while is. The
function is essentially the same function as in the time module, except that if there are no
alarms in memory, the display shows CAT EMPTY.

Catalog 6: User Key Assignments (Page 168). A listing of all User key assignments for functions
and global labels is given in order of keycode. Pressing [will cancel a particular key assignment.

Time Functions

Part V (“Time Functions in Detail”) contains all of the time functions in the HP-41CX: “Clock and
Date Functions” (15), “Alarm Functions” (16), and “Stopwatch Operation” (17). In addition to the set
of time functions included in the time module, there are more alarm operations, especially alarm-
clearing procedures, and one extra stopwatch function:

Appendix I: A Comparison With the HP-41C/CV 401

» A repeating message alarm can be cleared from memory by pressing [[C] to acknowledge it while
the alarm is going off. (Page 255.)

e There are programmable alarm-clearing functions (clear alarm by Alpha), (clear
alarm by X), and (clear all alarms). (Page 258.)

e The programmable function (recall alarm) will recall the parameters of an alarm to the
stack and Alpha register. (Page 252.)

¢ The minimum repeat interval for an alarm is 1 second instead of 10 seconds. (Page 250.)
¢ The stopwatch can be activated and the stopwatch pointers set with the programmable function
(stopwatch and pointers). (Page 274.)

Those functions taken from the time module are listed in catalog 2 under —TIME 2x (time functions,
revision 2x). The new time functions are in catalog 2 under —CX TIME (HP-41CX time functions).

Extended Memory and Extended Functions

The HP-41CX includes extended memory, extended memory functions, and extended functions, most of
which are from the extended memory/functions module, and some of which are completely new. These
capabilities are:

e 124 registers of extended memory for program, data, and text (ASCII) files.

¢ Functions for creating and operating on files in extended memory (extended memory functions).

¢ Functions that manipulate flags, data, and Alpha strings (extended functions).

e New conditional tests for branching (extended functions).

e Miscellaneous additional functions (extended functions).

The functions taken from this extended functions/memory module are catalogued in the HP-41CX in
catalog 2 under the header —EXT FCN 2x (extended functions, revision 2x). The new, HP-41CX ex-
tended memory functions and extended functions are listed in catalog 2 under —CX EXT FCN
(HP-41CX extended functions).

Extended Memory Functions

Section 13 (“Extended Memory”) and section 14 (“The Text Editor”) cover extended memory and the
manipulation of files in extended memory: that is, the extended memory functions. The particular
functions listed below are those new to the HP-41CX: the new extended memory functions.

The Text Editor is a major innovation in the HP-41CX. The function (editor) redefines the key-
board and display so that you can call up a text file and watch the contents of a record as you work on
it, instead of having to manipulate text via single operations in the Alpha register. The keyboard for
the text editor is reproduced on the backplate of the HP-41CX. This keyboard includes the Alpha
character set. (The backplate on the HP-41C/CV shows only the Alpha keyboard.)

402 Appendix I: A Comparison With the HP-41C/CV

The other new extended memory functions are:

o (ASCII room) and (extended memory room), to return the amount of memory
space left in an ASCII (text) file (page 222) or in extended memory (page 208).

. (extended memory directory by X), to recall the name and type of a certain file, and make
it the current file (page 207).

. (resize file), to change the size of a text or data file (page 213).

Extended Functions

The extended functions in the HP-41CX fall into the three general categories outlined below. Some of
these functions were part of the extended functions/memory module. Those that were not are called
the HP-41CX extended functions, as indicated below. They are listed in catalog 2.

Functions That Manipulate Flags, Data, and Alpha Strings. The HP-41CX includes functions
from the extended functions/memory module to manipulate flags, data, and Alpha strings in and be-
tween registers. All functions for manipulating data are in section 12, “Main Memory.” Functions to
manipulate flags are in section 19, “Flags.” Functions to manipulate Alpha data are in section 21,
“Alpha and Interactive Operations.”

Conditionals. The conditionals are new extended functions, allowing you to compare the value in the
X-register with the value in any other data register. See section 20, “Branching.”

Miscellaneous. The miscellaneous extended functions taken from the extended functions/memory
module are:

. (programmable assign) and (clear key assignments) in section 9, “The Keyboard and
Display.”

o (memory size?) and (programmable size) in section 12, “Main Memory.”

. (programmable clear programs) in section 18, “Programming Basics.”

. in section 21, “Alpha and Interactive Operations.” This function halts program execution

until a key is pressed, and that key’s keycode can be used to branch to a particular subroutine.

The new, HP-41CX miscellaneous extended functions are:

. (statistics registers?) in section 11, “Numeric Functions.”

. (clear registers by X) in section 12, “Main Memory.”

. (get key by X) in section 21, “Alpha and Interactive Operations.”

New Terminology Used in This Manual

Many terms and names used in this manual are not the same as those used in previous literature for
the HP-41 and its modules. If you are used to the previous terms, refer to the following list.

Appendix |: A Comparison With the HP-41C/CV 403

Equivalent Terms

HP-41CX

HP-41C/CV, Modules

Comments

Alpha execution

Alpha name

bypassed past-due alarm

conditional alarm
control alarm

current file

flags:
user (00-10)
control (11-29)

input cue

keyboards:
Alarm Catalog
Alpha
Normal
Stopwatch
User

modes:
Regular Split
Delta Split
Recall (splits)
Storage (splits)

registers above Rgg

text files

uncommitted registers

display execution

display execution name
unactivated past-due alarm
noninterrupting control alarm }

interrupting control alarm
working file

general-purpose user (00-10)
special-purpose user (11-20)

prompt

modes

operations

extended storage registers

ASCII files

program registers, program
memory

@ (GT0]

To emphasize the difference be-
tween conditional and control
alarms.

User flags are strictly those de-
fined by the user; control flags
are defined by the HP-41. How-
ever, you can alter any of the
user and control flags (but not the
system flags, 30-55).

Avoids confusion with the
function.

These particular conditions are
characterized by redefined
keyboards.

These conditions define a mode
of operation rather than a particu-
lar operation or function.

Avoids confusion with registers
in extended memory.

This part of memory stores more
than just programs.

All shifted functions are gold.
See inside front cover.

Contents

SETALM
ALMREL

SPLITS
TR

Appendix J

Bar Code for Programs

SETALM (from section 16)
Program registers needed: 11

ROW 1

ROW 3 (7:9)

ROW 4 (10:

ROW 5 (13 :

ROW 6 (23 : 27)

ALMREL (from

(1:3)

section 16)

Program registers needed: 11

OW 1

(continued)

404

Appendix J: Bar Codes for Programs 405

ALMREL (continued)

ROW 6 (29 :

SPLITS (from section 17)
Program registers needed: 14

ROW 2 (3:5)

ROW 3 (5:
ROW 4 (9: 19)
ROW 5 (20 :

ROW1 (1:3)

406 Appendix J: Bar Codes for Programs

TR (from section 22)
Program registers needed: 70

ROW 1 (1:

ROW2 (6:12

ROW 3 (12

ROW 4 (15:

ROW 7 (32:38)

ROW 8 (39:43)

ROW 10

AR
TR

(continued)

Appendix J: Bar Codes for Programs 407

TR (continued)

ROW 17 (

ROW 18

RO!
RO

(continued)

408 Appendix J: Bar Codes for Programs
TR (continued)

ROW 27 (155:163)

RO

ROW 29 (169:177)

ROW 30 (177 : 183)

ROW 31 (184 :185)
' I
ROW 32 (185:194)

ROW 33 (194 : 202)

ROW 34 (203 : 2

ROW 35 (214: 2

ROW 36 (|

Appendix J: Bar Codes for Programs 409

% (from section 22)
Program registers needed: 100

ROW1 (1:7)

ROW 4 (18 : 25)

(continued)

410 Appendix J: Bar Codes for Programs

Z (continued)

ROW 14 (88:90)

D
-—O

RO
1]

RO!

HOW18 (118:126)

ROW 19 (127 : 130)
ROW 20 (130: 135)

ROW 24 (147 : 153)

ROW 25 (153

O
A
I|||II||||||I|||||I|I 00

(continued)

Appendix J: Bar Codes for Programs 411

Z (continued)

ROW 27 (174:181)

O
O
ROW 29 (190:197)
e
ROW 30 (198 : 205)
e
ROW 31 (206: 214)
i
ROW 32 (214:222)
T
ROW 33 (223: 231)
i

A

ROW 35 (239 : 245)
O

ROW 36 (246 : 251)
0

lFtOWST (252 : 259)
O

1

O

ROW 39 (267 : 274)

OO

ROW 40 (275 : 279)

O O

(continued)

412 Appendix J: Bar Codes for Programs

Z (continued)

ROW 41 (279 :288)

O
|||||I||III|||I|||||I||||||IIIIIIIII|||I|I|||II|IIIIII|II||IIIIII|II|II|I||II|||||I||||I|I||||||||I|||I||I|||I|||II||||III|||II||II|
IIIII||||II||I|III|||I|||I|||I|I||I|I||II|||||I||||||I|||I|||I|I|I||I|||I||I|II|I||||I||I|l||||||II|I||II||I|IIII|I|||I|||||||I|IIII
||||IIIIIIIIIII|II|||III|||IIIIIIIIIIIII|I|II|||II|I||II|||||||I|I|I|||||I|I|I|II|||I||||||I|I|I||||||II||||I|||I||II|I|I||IIIIIIII|
||I|III|I||||III||I|I|I|I|I|I||||||I|I|I|II|I|III|I|IIIIII|||||I|II|IIII||||||||||II||IIII|II|IIIII|I|I||II||IIIIIIIIIII|||I|IIII|II
|I|I||I||||||III|IIIIII|||II||I||III|IIIII|I|||I|I||I||||||I||IIII|I|||II|||I||||||I||I|II|I||IIII|II|||I||IIIIIIII|||I|||I|||III|I|
e
		I		IIII		I	III	I							I			I							I	IIII	I		I	II	I	I	IIIIIIIII			I				I	I		II	III				I	II	II									I	I						I	IIIII			I					I													
				I	I					I								I	I			I				IIIIIIIII	I					I	IIIII						III		I		IIII		I						I					I			I	I	I	I				II	I		I									l										
	IIIIIIIIIIIIIIII	III			III					I	I	IIIII	I			I	I	IIIIII	I			I		II	IIII	I		I					I					I	I	I	III		I		II	II	I		II	II		II	II	IIII	II																																	
O
IlI||I||I|||l||||I||||I|||||I||||I|I|||II||III|||II||||III||||||I||||I|I|||||I|IIII|I||II||IIIIIII|||||IIII|II|II||I||II||I|I||II|I|
O
A

Function Tables

Function Tables

Contents
Introduction 414
Locating @ FUnCtion 414
Explanation of Table Entries 414
System/Format Functionsl 416
Clearing FUNCLIONS i 418
Stack/Data Register Functions 420
Numeric FUNCLIONS 423
Extended Memory Functions 425
Time FUNCHIONS e 429
Editing FUNCHIONS e 431
Functions That Direct Program Execution 432
Alpha FUNCHIONS e 436
Interactive FUNCHIONS 438
Introduction

These ten tables describe the functions in the computer. Each table describes functions with common
characteristics, and some functions appear in more than one table. Most tables include the information
found in “Explanation of Table Entries”; the table for extended memory functions includes special
entries described with that table.

Locating a Function
» To find a function that performs a particular operation, look through the function table whose title
describes the desired type of operation.

« To find out what a function does when you know only its name, refer to the Function Index inside
the back cover. The last page reference listed will direct you to the proper function table.

Explanation of Table Entries

Alpha Name. This is how the the function is named in catalog 2 or 3, in a program listing, and when
you hold down a key for function preview. This is how you must specify the function to assign it to the
User keyboard; if the function has no entry in this column, you can’t assign it to the User keyboard.

414

Function Tables 415

Keyboard Name. This is how the function is indicated on the Normal or Alpha keyboard. (If the
entry is printed in gold, you must press [l before the appropriate key.) If the function has no entry in
this column, you must use and the Alpha name or else assign the function to the User keyboard.

IND. An “I” in this column indicates that you can indirectly specify the parameter for this function.
To do so, enter the function and press [l ; IND will then appear in the display following the function
name. Then specify the register holding the address of the register to access.

Stack. This shows how the function affects the automatic memory stack.

L = LAST X. The previous contents of the X-register are copied into the LAST X register.

+ = The stack drops. The contents of the Z-register are copied into the Y-register and the contents
of the T-register are copied into the Z-register.

t = The stack lifts. The contents of the X-, Y- and Z-registers are copied into the Y-, Z-, and T-
registers respectively; the previous contents of the T-register are lost. (This assumes that stack
lift was previously enabled.)

E = Stack lift enabled. If the next function executed shows “t” in the “Stack” column or if you key
in a number, the stack will lift. (Almost all functions enable stack lift.)

D = Stack lift disabled. If the next function executed shows “t” in the “Stack” column or if you key
in a number, the new number in the X-register replaces the previous contents and the stack
doesn’t lift. (Only [CLx|, (ENTER®], (Z+], and [-] disable stack lift.)

N = Neutral. Stack lift is neither enabled nor disabled; the previous status is maintained.
Flags. These are the flags that affect or are affected by the function’s operation.

Bytes. This is the number of bytes of program memory required when the function is used in a pro-
gram. If the function has no entry in this column, it is not programmable.

Page. These are references to this volume. For references to volume 1, “Basic HP-41 Operation,” see
the Function Index inside the back cover.

416 Function Tables

System/Format Functions

Most of these functions involve options that remain in effect indefinitely: display formats, angular
mode, main memory allocation, User-keyboard assignments, and so on. Included are certain system
operations such as the toggle keys and the catalogs.

Alpha

Keyboard

format with n + 1 digits.

Name Name Description IND | Stack | Flags | Bytes | Page
Activates/deactivates Alpha 48 155
keyboard.

Deactivates Alpha keyboard. 48 1 159
AON Activates Alpha keyboard. E 48 1 159
ASN [ASN] Assigns specified function or 166

global label to specified key on
User keyboard.
n \LOG | n | Executes catalog n,
1<n<§6.
Catalogs 1, 2, 3, 6. N 170
Catalog 4 ([EMDIR]). E (2) 206
Catalog 5 ([ALMCAT)). E 3 (2) 255
nn nn Clears flag nn, | E nn 2 288
00 < nn < 29.

Selects 12-hour clock display. E 239

Selects 24-hour clock display. E 239

Clears all assignments on E 168

User keyboard.

Selects time-only clock E 2 239

display.

Selects time-and-date clock E 2 239

display.

Selects decimal Degrees an- E 42-43 1 186

gular mode.

Selects day-month-year date E 31 2 242

format.

n n Selects engineering display | E 36-41 2 161

Function Tables 417
System/Format Functions (continued)
Alpha Keyboard .
Name Name Description IND | Stack | Flags | Bytes | Page
n [Fix]n Selects fixed-point display | E 36-41 2 160
format with n decimal places.
Selects Grads angular mode. E 42-43 186
MDY Selects month-day-year date 31 2 242
format.
Turns computer on/off. 11-26, 155
45-55
Selects continuous on 44 155
(disables time-out).
Assigns function or label E 2 166
specified in Alpha register to
User keyboard by key code
specified in X-register.
Enters/exits Program mode. N 155
Allocates n main memory reg- E 2 199
isters for data storage, n
specified in X-register.
RAD Selects Radians angular E 42-43 1 186
mode.
Recalls status of flags 00 t, E 2 296
through 43.
n sCl|n Selects scientific display for- | E 36-41 2 161
mat with n decimal places.
nn SF | nn Sets flag nn, 00 < nn < 29. | E nn 288
nn Assigns statistics registers to | E 2 190
R, through R, ; 5.
Returns address of first t, E 2 190
currently defined statistics
register.
nnn Allocates nnn main memory E 199
registers for data storage.

418 Function Tables

System/Format Functions (continued)

Alpha Keyboard A
Name Name Description IND | Stack | Flags | Bytes | Page
Returns number of main t, E 2 199
memory registers currently
allocated for data storage.
Restores status of flags 00 E 00-43 2 296
through 43 using flag-status
data in X-register, or:
Restores status of flags bb E bb-ee 2 296
through ee specified by bb.ee
in X-register using flag-
status data in Y-register.
Activates/deactivates User N 27 155
keyboard.
Clearing Functions
To interpret this table, refer to “Explanation of Table Entries” on page 414.
Alpha Keyboard .
Name Name Description Stack | Flags | Bytes | Page
(«] When input cue () is displayed, * 158
clears last digit or character entered.
When digit or character entry is ter- 159
minated, clears X-register or Alpha
register in Execution mode; deletes 285
displayed program line in Program
mode.
When message is displayed, clears N 50
message.
[+] down, Clears all of computer’s memory 00-55 155
[oN], except for clock time and date.
[(«Jup
CLA CL/ Clears Alpha register. E 1 159
* When pressing [+] clears the X-register, stack lift is disabled. Otherwise, [+] is neutral.

Function Tables 419
Clearing Functions (continued)
Alpha Keyboard -
Naine Name Description Stack | Flags | Bytes | Page
Clears first alarm whose message E 2 258
matches target in Alpha register.
Clears nth alarm listed by [ALMCAT |, E 2 259
n specified X-register.

CLD Clears message from display. E 50 1 318
Clears file named in Alpha register. E 213
Clears all assignments on User E 168

keyboard.
label Clears the program in main memory E 286
containing specified global label.
Clears all alarms. E 2 258
Clears all data storage registers in E 1 202
main memory.
Clears every iith register from Rppp E 2 202
through Rgge in main memory,
bbb.eeeii specified in X-register.
Cl Clears statistics registers. E 1 190
Clears automatic memory stack. E 1 183
Clx Clears X-register. D 1 159
nnn Deletes nnn program lines, starting N 286
with displayed line.
Deletes n characters specified in E 2 225
X-register from record in current text
file, starting at current pointer.
Deletes current record in current E 2 224
text file.
Clears program in main memory E 2 286
containing global label specified in
Alpha register and all programs that
follow it.
Purges file named in Alpha E 2 208
register.

420 Function Tables

Stack/Data Register Functions

These functions manipulate the stack or the data storage registers, or take one of those registers as a
parameter. (For functions that transfer data between data files in extended memory and the stack or
main memory data registers, refer to “Extended Memory Functions” on page 425.) To interpret this
table, refer to “Explanation of Table Entries” on page 414.

Alpha Keyboard _—
D P
Name Name escription IND | Stack | Flags | Bytes age

nn ASTO | nn Copies six leftmost | E 2 200
characters in Alpha register
into R,,.

nn [ARCL | nn Appends contents of R,, to I E 28,29, 2 200
Alpha register. 36-41

Clears all data storage E 1 202
registers.

Clears every iith register from E 2 202
Rppp through Rgge, bbb.eeeii
specified in X-register.

CLE cLz] Clears statistics registers 1 190

Clears automatic memory 1 183
stack.

CLX CLx Clears X-register. D 159

nn For iiiii.fffcc in Ry, | E 2 306
decrements iiiii by cc and skips
next program line if
iiiii — cc < fff.

[ENTER® | [ENTER%] Copies number in X-register t,D 1 175
into Y-register and lifts stack.

nn ISG| nn For iiiii.fffcc in R,,, | E 2 306
increments iiiii by cc and skips
next program step if
iiiii + cc > fff.

[LasTX] [LASTx] Recalls number in LAST X t, E 1 179
register.

Allocates n main memory reg- E 2 199
isters to data storage, n speci-
fied in X-register.

Function Tables 421
Stack/Data Register Functions (continued)
Alpha Keyboard -
IND k
Name Name Description N Stac Flags | Bytes | Page
Rolls up stack. E 1 181
nn nn Recalls contents of R,,. I t, E * 200
Rolls down stack. E 181
Copies contents of one block E 2 201
of nnn registers (starting with
Rsss) to another block of nnn
registers (starting with Rgqg),
sss.dddnnn specified in X-
register.
Swaps contents of one block E 2 201
of nnn registers (starting with
Rgss) with another block of
nnn registers (starting with
Rygq): SSs.dddnnn specified
in X-register.
Accumulations for statistics. L,D 1 191
Corrects statistics L,D 1 191
accumulations.
nn Assigns statistics registers to | E 2 190
R,, through R,, 4 5.
Returns address of first cur- t,E 2 190
rently defined statistics
register.
nnn Allocates nnn main memory E 199
registers for data storage.
Returns number of main t, E 2 199
memory registers currently al-
located for data storage.
nn nn | Adds number in X-register to | E 2 201

number in R,, and places re-
sult in Rp,.

*1f 00 < nn < 15, requires 1 byte; otherwise, requires 2 bytes.

422 Function Tables

Stack/Data Register Functions (continued)

Alpha Keyboard "
Name Name Description IND | Stack | Flags | Bytes | Page

nn (=] nn | Subtracts number in I E 2 201
X-register from number in R,
and places result in R,,.

nn (x] nn | Multiplies number in | E 2 201
X-register by number in R,
and places result in R,,.

nn nn | Divides number in X-register I E 2 201
into number in R, and places
result in R,,.

nn nn Copies contents of X-register | E * 200
into R,,.

VIEW | nn VIEW | nn Displays contents of R,,. I E 21,50, 2 319

55

nn Exchanges contents of I E 2 201
X-register with contents of R,,.

Exchanges number in E 00-07 2 295
X-register with status of flags
00 through 07.

(x<>Y]) [x2y] Exchanges contents of E 1 181
X-register with contents of Y-
register.

*1f 00 < nn < 15, requires 1 byte; otherwise, requires 2 bytes.

Function Tables 423

Numeric Functions

All numeric functions are programmable, requiring one byte of program memory. The operation of

trigonometric functions and rectangular/polar coordinate conversions depends on the angular mode
(flags 42 and 43). To interpret this table, refer to “Explanation of Table Entries” on page 414.

::’mh: Ke::;:rd Description Stack | Page

y + x. L+E | 188
=] =] y — X. L,{,E 188
(] x] y X X. L+E | 188
ylx. L+E | 188
1/x Reciprocal. L,E 185
(10%] Common exponential. L,E 187
|x| (Absolute value). L.E 186
COs™] Arc (inverse) cosine. L,E 186
(SINT] Arc (inverse) sine. LE 186
[TANT] Arc (inverse) tangent. L,E 186
CHS Change sign. E 185
cos Cosine. L.E 186
Degrees to radians conversion. L.E 187
Octal to decimal conversion. L,E 187
EX (e*] Natural exponential. LE 187

E+X-1 Natural exponential for arguments close to zero. L,E 187

x! (Factorial). L.E 185
Fractional part. L,E 186
Decimal hours to hours-minutes-seconds conversion. L,E 187
Hours-minutes-seconds add. L+E | 188
Hours-minutes-seconds subtract. L+E | 188
Hours-minutes-seconds to decimal hours conversion. L.E 187
Integer part. L.E 186
Natural logarithm. L,E 187
LN1+X Natural logarithm for arguments close to 1. LE 187

4

N

& Function Tables

Numeric Functions (continued)

:meh: Ke':':;:rd Description Stack | Page
LOG LOG Common logarithm. L,E 187
Means of accumulated x- and y-values. L,E 192
y mod x (Remainder). L,+.E 190
Decimal to octal conversion. LE 187
P=R Polar to rectangular conversion. L.E 189
(%] x percent of y. L.E 188
Percent change from y to x. L.E 188
1 [=] Pi (3.141592654). +,E 159
Radians to degrees conversion. L.E 187
Rectangular to polar conversion. LE 189
Round. LE 186
[SDEV] Standard deviations of accumulated x- and y-values. L,E 192
Accumulations for statistics. L,D 191
-] Accumulations correction. L,D 191
SIN SIN Sine. L.E 186
(SIGN] Sign of x. L.E 186
[SaRT) Square root. L,E 185
Tangent. L,E 186
x? Square. LE 185
YtX (%] y raised to the x power. L,+,E 189

Function Tables 425

Extended Memory Functions

All extended memory functions are programmable, requiring two bytes of program memory. To inter-
pret this table, refer to “Explanation of Table Entries” on page 414 and to the following explanation of
the special entries for this table.

File Types. Functions with an entry in this column act only on files of the indicated type.
P = Program file.
D = Data file.
A = Text (ASCII) file.
File Name. Functions with an entry in this column act on a file that is specified as indicated.
Yes = You must place the name of the desired file in the Alpha register.

OK = You may place the name of the desired file in the Alpha register, or you may clear the Alpha
register to specify the current file.

No = This function acts only on the current file.

Pointer Used. Functions with an entry in this column act according to the current value of the
indicated pointer.

RRR = register pointer (for data files).
rrr.ccc = record/character pointer (for text files).

rrr. = record pointer only (for text files).

Alpha File . File | Pointer
Name Types Description Name | Used Stack | Flags | Page
A Appends contents of Alpha reg- No rer. E 224
ister to end of current record.
A Appends contents of Alpha reg- No E 222
ister to end of current file as new
record.
A Appends current record (starting No rrr.ccc E 17 226
at pointer to Alpha register.
A Returns number of bytes avail- No t,E 222
able in current file.

4

N

6 Function Tables

Extended Memory Functions (continued)

Alpha File . File Pointer
Name Types Description Name | Used Stack | Flags | Page

A,D | Clears file named in Alpha Yes E 213
register.

A Creates text file named in Al- Yes E 212
pha register containing n regis-
ters, n specified in X-register.

D Creates data file named in Al- Yes E 211
pha register containing n regis-
ters, n specified in X-register.

A Deletes n characters from No rrr.ccc E 225
record (starting at pointer), n
specified in X-register.

A Deletes current record. No rer. E 224

A Activates Text Editor keyboard OK rrr.ccc E 26,28, | 228
and display. 48

Lists directory of extended mem- E 206
ory. Press and then [«] to
terminate the listing and make
the displayed file the current file.
If allowed to finish, returns the t,E
number of available extended
memory registers.

Finds the nth file listed by LE 207
(EMDIR], n specified in X-regis-
ter; returns file name to Alpha
register and file type to X-register.

Returns number of registers t,E 208
available for a new file.

AD,P | Returns number of registers in OK t,E 208
file.

A Copies mass storage file to ex- Yes E 227
tended memory file named in Al-
pha register.

Extended Memory Functions (continued)

Function Tables

427

Alpha File . File Pointer
k | FI P
Name Types Description Name | Used Stac ags age

P Replaces last program in pro- Yes E 27 209
gram memory with file named in
Alpha register.

D Copies corresponding registers OK E 217
from file to main memory.

A Copies record (starting at No rrr.ccc E 17 226
pointer) to Alpha register.

D Copies file registers (starting at No RRR E 218
pointer) to Ry, through Rgge,
bbb.eee specified in X-
register.

P Copies file named in Alpha reg- Yes E 27 209
ister to bottom of program
memory.

D Copies current register to No RARR t,E 220
X-register.

A Inserts contents of Alpha regis- No rrr.ccc E 224
ter, starting at character pointer.

A Inserts contents of Alpha regis- No rrr. E 222
ter as new record.

A Searches file for target speci- No rrr.ccc t,E 226
fied in Alpha register and re-
turns pointer value for match
(—1 if no match).

A,D,P | Purges file named in Alpha Yes E 208
register.

A,D | Returns pointer value for current No rrr.ccc t,E 216
file. RRR

P Returns number of bytes in No t,E 211

current program file.

4

N

8 Function Tables

Extended Memory Functions (continued)

X-register.

Alpha File L File Pointer
Name Types Description Name | Used Stack | Flags | Page
A,.D | Returns pointer value. OK rrr.ccc t,E 216
RRR
P Returns number of bytes in OK t,E 211
program.
A,D | Resizes current file to n regis- No E 213
ters, n specified in X-register.
A Copies extended memory file Yes E 227
named in Alpha register to mass
storage file named in Alpha
register.
P Copies program named in Al- Yes E 208
pha register to file named in Al-
pha register.
D Copies all main memory OK E 217
registers to file.
D Copies contents of Ry, through No RRR E 218
Reee in main memory to file (start-
ing with current file register),
bbb.eee specified in X-register.
D Copies number in X-register to No RRR E 220
current file register.
A,D | Sets pointer for current file to No E 215
number in X-register.
AD | Sets pointer to number in OK E 215

Time Functions

To interpret this table, refer to “Explanation of Table Entries” on page 414.

Function Tables

429

Alpha A
D
Name escription Stack | Flags | Bytes | Page

Appends number in X-register to Alpha register in E 31, 2 243
current date format. 36-39

Lists alarms in chronological order. Can be E 31 2 255
executed manually as [CATALOG | 5.

Activates the oldest past-due control or E 2 261
conditional alarm.

Appends number in X-register to Alpha register in E 36-39 2 240
current time format.

Appends number in X-register to Alpha register in E 36-39 2 241
format.

Clears first alarm whose message matches con- E 2 258
tents of Alpha register.

Clears nth alarm listed by [ALMCAT |, n specified E 2 259
in X-register.

Selects 12-hour time display format. E 2 239

Selects 24-hour time display format. E 2 239

Selects time-only display for clock. E 2 239

Selects time-and-date display for clock. E 2 239

Displays clock. E 31 2 238
If executed by pressing [l (ON], turns computer E 12-26,
off and on, then displays clock. 44-55

Clears all alarms. E 2 258

Sets time and adjusts accuracy factor. E 2 238

Returns number for current date. t,E 31 2 242

Calculates new date from date in Y-register and L,+E 31 2 244
number of days n in X-register. New date is later if n
is positive, earlier if n is negative.

4

w

0 Function Tables

Time Functions (continued)

Alpha

Name Description Stack | Flags | Bytes | Page
Calculates the difference in days between dates in L,+E 31 2 244
X- and Y-registers. Difference is positive if date in
Y-register is earlier, negative if date in Y-register is
later.
DMY Selects day-month-year date format. E 31 242
DOW Returns day-of-week number (0 = Sunday, L.E 31 244
6 = Saturday) for date number in X-register.
Converts number in X-register from decimal hours L.E 1 187
format to hours-minutes-seconds format.
Adds number in X-register to number in Y-register L4,E 1 188
in hours-minutes-seconds format.
Subtracts number in X-register from number in Y- L+,E 1 188
register in hours-minutes-seconds format.
Converts number in X-register from hours- LE 1 187
minutes-seconds format to decimal hours format.
Selects month-day-year date format. E 31 242
Recalls clock accuracy factor. t.E 376
Recalls [xYZALM |-type parameters for nth alarm L.t,E 31 2 252
listed by [ALMCAT |, n specified in X-register. *
Returns stopwatch time. t,E 2 273
Runs stopwatch. E 2 273
Sets clock accuracy factor. E 2 376
Sets clock to date specified in X-register. E 31 2 242
Sets clock to time specified in X-register. E 2 237
Sets stopwatch to starting time specified in E 2 273
X-register.
Stops running stopwatch. E 2 273
Activates Stopwatch keyboard and display. E 26 266

* Copies the contents of the Y-register into the T-register, regardless of whether stck lift is enabled.

Function Tables 431
Time Functions (continued)
Alpha .
|
Name Description Stack | Flags | Bytes | Page
Sets the stopwatch store and recall pointers by L.E 26 2 274

sss.rrr in X-register, and activates Stopwatch key-

board and display; returns current pointer values

when Stopwatch keyboard is deactivated.

T+X Adjusts clock time by increment in X-register. E 238
Returns number for current time. t,E 240
Sets alarm for time in X-register, date in E 31 250

Y-register, repeat interval in Z-register, and
message or global label in Alpha register.

Editing Functions

These are non-programmable functions that are executed in Program mode. They help you write or
edit your programs. Like the toggle keys [ON], [USER], and [ALPHA], these functions don’t require you to
return to Execution mode for execution. To interpret this table, refer to “Explanation of Table Entries”

on page 414.
Alpha Keyboard I
Name Name Description Flags | Page
3] When input cue (_) is displayed, clears last digit or 285
character entered; otherwise, clears displayed program
line.

ASN ASI Assigns specified function or global label to specified 166

key on User keyboard.

BST (BS Displays preceding program line. 284
n CATALOG | n | Executes catalogn, 1 <n < 6. 170
label Clears program in main memory containing specified 286

global label.
label Copies ROM program containing specified global 281
label to program memory.

432 Function Tables

Editing Functions (continued)

Alpha Keyboard -
Name Name Description Flags | Page
nnn Deletes nnn program lines, starting with displayed 286
line.
[ero]] Goes to specified line number or global label. 283
‘c10[J[) | Goes to bottom of program memory; packs program 281
memory and creates null program.
Selects continuous on (disables time-out). 44 155
Packs program memory. 198
nnn Allocates nnn main memory registers for data 199
storage.
SST SST Displays next program line. 284

Functions That Direct Program Execution

These are functions that can halt program execution or cause program lines to be executed other than
sequentially. To interpret this table, refer to “Explanation of Table Entries” on page 414.

Alpha Keyboard i
Name Name Description IND | Stack | Flags | Bytes | Page
AVIEW [AVIEW] Displays contents of Alpha E 21,50, 1 318
register; if flag 21 is set and 55
flag 55 is clear, stops pro-
gram execution.
Stops program execution and E 3 2 238
displays the clock.
nn For iiiii.fffcc in Ry, I E 2 306
decrements Jjiiii by cc and skips
next program line if
iiiii — cc < fff.
END Marks end of program. E 3 301
nn Tests flag nn (00 < nn < 55) | E nn 2 304
and skips next program line un-
less flag nn is clear.

Function Tables 433
Functions That Direct Program Execution (continued)
Alpha Keyboard A
Name Name Description IND | Stack | Flags | Bytes | Page
nn Tests flag nn (00 < nn < 29), 1 E nn 2 304
clears flag nn, and then skips
next program line unless flag
nn was clear.
nn FS7nn Tests flag nn (00 < nn < 55) 1 E nn 2 304
and skips next program line
unless flag nn is set.
(Fs?2C]nn Tests flag nn (00 < nn < 29), 1 E nn 2 304
clears flag nn, and then skips
next program line unless flag
was set.
GETP Replaces last program in E 27 2 209
memory with program file
named in Alpha register. If
last program calls new pro-
gram (and is replaced),
execution transfers to first line
of new program.
(GTO]/abel | [G70 |label | Transfers execution to | E * 300
specified global, numeric, or lo-
cal Alpha label.
nn 15Gnn For iiiii.fffcc in R,,, increments | E 2 306
iiiii by cc and skips next pro-
gram step if iiiii + cc > fff.
LBL LI Global, numeric, or local E 1 299
Alpha label.
OFF Turns off the computer. N 11-26 1 292
44-55
Displays contents of the E 50 1 314
Alpha register and stops
execution.
*If 00 < nn < 14 or parameter is indirectly specified, requires 2 bytes; if parameter is global label of m characters, requires 2 + m
_bytes; otherwise, requires 3 bytes.
11f 00 < nn < 14, requires 1 byte; if parameter is global label of m characters, requires 4 + m bytes; otherwise, requires 2 bytes.

4

w

4 Function Tables

Functions That Direct Program Execution (continued)

Alpha Keyboard A .
D
Name Name Description IN Stack | Flags | Bytes | Page

F Returns execution to line fol- E 1 301
lowing instruction that
called this subroutine.

R/S Stops execution. E 302

nn VIEW] nn Displays contents of R, and, | E 21,50, 2 319
if flag 21 is set and flag 55 is 55
clear, stops execution.

x=07 Skips next instruction unless E 1 304
number in X-register = 0.

Skips next instruction unless E 1 304
number in X-register #= 0.

Skips next instruction unless E 1 304
number in X-register < 0.

X <=0? Skips next instruction unless E 1 304
number in X-register < 0.

Skips next instruction unless E 1 304
number in X-register > 0.

X=Y? X Skips next instruction unless E 1 304
contents of X-register =
contents of Y-register.

Skips next instruction unless E 1 304
contents of X-register +
contents of Y-register.

Skips next instruction unless E 1 304
number in X-register < number
in Y-register.

[(x<=¥7] [(x<y7] Skips next instruction unless E 1 304
number in X-register < number
in Y-register.

[X>¥7] [x>y7] Skips next instruction unless E 1 304
number in X-register > number
in Y-register.

Function Tables 435
Functions That Direct Program Execution (continued)
Alpha Keyboard -
Descr n IND | Stack | Flags | Bytes | Pa
Name Name escriptio t g y ge
Skips next instruction unless E 2 305
contents of X-register =
contents of R,,, nn specified
in Y-register.
Skips next instruction unless E 2 305
contents of X-register #
ontents of R,,, nn specified
in Y-register.
Skips next instruction unless E 2 305
contents of X-register <
contents of R,,, nn specified
in Y-register.
X <= NN? Skips next instruction unless E 2 305
contents of X-register <
contents of R,,, nn specified
in Y-register.
X > NN? Skips next instruction unless E 2 305
contents of X-register >
contents of R,,, nn specified
in Y-register.
X >= NN? Skips next instruction unless E 2 305
contents of X-register =
contents of R,,, nn specified
in Y-register.
label label | Calls specified global, | E * 301
numeric, or local Alpha label as
subroutine.
(If you specify a function, re-
fer to the table entry for that
function.)
* If label is specified indirectly, requires 2 bytes; if local label is specified, requires 3 bytes; if global label of m characters is specified,
requires 2 + m bytes.

436 Function Tables

Alpha Functions

These functions involve moving data into and out of the Alpha register, and manipulating the data in
the Alpha register. Not included are functions that use the Alpha register for a file name. To interpret
this table, refer to “Explanation of Table Entries” on page 414.

to Alpha register in current time
format.

Alpha Keyboard A
1
Name Name Description ND | Stack | Flags | Bytes | Page

Appends subsequent N 159
characters to Alpha register.

ADATE Appends number in X-register E 31, 2 243
to Alpha register in current 36-39
date format.

Returns number of characters t,E 2 313
in Alpha register.

ANUM Returns first digit string in t.E 22,28, 2 311
Alpha register. 29

AOFF Deactivates Alpha keyboard. 48 1 159

AON Activates Alpha keyboard. 48 159

ARCL | nn nn Appends contents of R, to | 28,29, 2 200
Alpha register. 36-41

Appends record (starting at E 17 2 226
pointer) to Alpha register.

Rotates contents of Alpha reg- E 2 313
ister by n places, n specified in
X-register. Rotates left for
positive n, right for negative n.

ASHF Shifts six leftmost characters E 1 200
out of the Alpha register.

[AsTO] nn nn Copies six leftmost characters | E 2 200
in Alpha register into R,,.

ATIME Appends number in X-register E 36-39 2 240

Function Tables 437
Alpha Functions (continued)
Alpha Keyboard .
Name Name Description IND | Stack | Flags | Bytes | Page

Appends number in X-register E 36-39 2 241
to Alpha register in
format.

Shifts leftmost byte out of t, E 2 311
Alpha register and returns its
decimal value to X-register.

(AVIEW] Displays contents of Alpha E 21,50, 1 318
register. 55

CLA (CLA] Clears Alpha register. E 159

Copies record (starting at E 17 2 226
pointer) to Alpha register.

Searches Alpha register for L, E 2 312
target in X-register and returns
position of match (—1 if no
match).

PROMPT Displays contents of Alpha E 21,50, 1 314
register and stops program 55
execution.

Converts number in X-register E 2 309
to equivalent byte and appends
it to Alpha register.

4

w

8 Function Tables

Interactive Functions

To interpret this table, refer to “Explanation of Table Entries” on page 414.

Alpha Keyboard .
Name Name Description IND | Stack | Flags | Bytes | Page
Advances paper (if printer is E 21,55 1 368
present).
B Sounds four tones. E 26 1 319
Waits up to 10 seconds for a t,E 2 317
. key to be pressed; returns key
code (0 if no key is pressed).
Waits up to SS.s seconds for L,t,.E | 28,48 2 317
a key to be pressed, SS.s *
specified in X-register; re-
turns keycode to Y-register
and character code to X-
register.
PROMPT Displays contents of Alpha E 50 1 314
register and stops execution.
PSE Delays execution for about E 1 315
one second.
n Sounds tone n, 0 < n < 9. | E 26 2 319
* Copies the contents of Y- and Z-registers into the Z- and T-registers respectively, regardless of whether stack lift is enabled.

Indexes

Subject Index

Page numbers in bold type indicate primary references; page numbers in regular type indicate secon-
dary references. Also, page numbers in italic type are in volume 1, while page numbers not in italic type

are in volume 2.

A

Absolute value, 186
Accuracy, clock, 238, 374, 378
Accuracy factor, 374-377
formula for, 377
recalling, 376
setting, 376
Addition, 51
Addressing, 37, 162
indirect, 162
Alarm
activation, 253
catalog. See Catalog 5
Catalog keyboard, 256-257
Catalog keyboard, 71-73
condition, 361
date, 68, 250
display, 253
example, 69
levels, 363
message, 68, 247, 251
modes, past-due, 362
number, 252, 255, 258
reminder, 260
repeat interval, 68, 250
setting, program for, 261, 263
time, 68, 251
tones, 253
types, 247, 249
Alarms
acknowledging, 69, 247, 248, 253, 254
automatic activation of past-due, 260
bypassed, 260
clearing, 69, 258, 259, 261
halting, 69, 258
memory requirements of, 198
message, 247
past-due. See Past-due alarms
recalling, 252
setting, 250-251
simultaneous, 255
unactivated, 260

440

ALMREL program, 263
ALPHA, 15, 230
Alpha character set, 14, 24, 232
Alpha characters
clearing, 26
entry, 26, 27
copying, 200
displayable, 309
nonstandard, 309
in programs, 94
translating to number, 309, 311
Alpha digit string, defined, 311
Alpha digits, 26, 200, 309
calculating with, 200
searching for, 309, 311
Alpha display, 27, 161
scrolling, 27
of null characters, 366
Alpha entry, 159
Alpha execution, 4445, 282

Alpha keyboard, 14, 15, 24, 155-156, 157, 159, 230

in Execution mode, 159

flag, 291

in Program mode, 159
Alpha labels, 169
Alpha names, 44

when entering programs, 282
Alpha parameter specification, 162

Alpha register, 27, 158, 206, 222, 226, 312

and alarms, 250, 251
appending date to, 243
appending time to, 240-241
appending to, 226

capacity of, 27, 159
clearing, 160

copying into X, 309
copying to, 226

displaying, 318

displaying in a program, 94
manipulating data in, 308
message alarms and, 68
null characters in, 366

recalling, 96
rotating, 200, 313
searching for a string, 312-313
searching for digits, 309, 311
shifting, 200
Alpha strings, 26, 86, 117, 159-160, 197, 213, 309,
366
alarm, 258
comparing, 305
of digits, 311
entering, 27
finding length of, 313
manipulating, 402
with nulls, 367
in programs, 93, 282
searching for, 226
Alternate functions, 14, 15
Angular conversion, 53, 187
Angular modes, 53, 186, 291
Angular-mode flags, 291
Annunciators, 34, 160
Append key, 27, 159
Appending characters, 159, 367
Application module programs, 107-108, 281
Application pacs, 393
running, 83
Arc cosine, 54
Arc sine, 54
Arc tangent, 54
AREA program, 86, 91, 93, 96, 99
Arithmetic, 16, 21, 50-51, 188. See also Calcula-
tions, Noncommutative operations
in data storage registers, 40-42, 201
with time, 65, 188
with vectors, 59
ASCII characters, 310
ASCII files, 113. See also Text files
Assigning functions to keys, 46, 156, 166
Audio-enable flag, 290
Automatic memory stack. See Stack
Automatic-execution flag, 289
Average, 58, 192

B

Base conversion, 187
BAT, 34, 160, 230, 383
Batteries, 381, 382
installing, 384
recommended, 384
life, 381
pack, 382
power, 34, 160

Subject Index

Branching, 88
around a line, 298, 304
bytes required for, 300
functions for loops, 306
to a label, 298, 301
in loops, 305
Byte count, 98
Bytes
as Alpha characters, 309
in Alpha register, 309
available in a text file, 222
end-of-file, 212
as flag status, 294
null, 309
as numbers, 294, 309
in a program, 211
Bytes required
for branching, 300
for labels, 299
for program lines, 197
for subroutines, 303

C

441

Calculations, 16, 21, 175, 176. See also Constants,
calculating with

with dates, 66
with nested terms, 176
noncommutative, 22, 176, 180, 181
overflow or underflow. See Overflow; Underflow
in the stack, 180, 182
with time, 64

Cancelling functions, 169

Catalog 1, 98-99, 100, 171, 196, 284
searching, 299, 303

Catalog 2, 171, 248, 394, 399
and alarms, 251
extended functions in, 401
searching, 299, 303
time functions in, 401

Catalog 3, 171, 399
searching, 303

Catalog 4, 125, 171, 206, 400

Catalog 5, 71-73, 171, 196, 255, 400
stepwise execution of, 71

Catalog 6, 48, 168, 196, 400

Catalogs, 170
HP-41CX and HP-41C/CV compared, 400
operation of, 400
power consumption, 170, 400

Changing sign, 18, 159, 185

442 Subject Index

Character. See also Alpha characters; Text-file
characters
clearing, 20
codes, 310, 317
entry. See Alpha character entry
pointer. See Record/character pointer
text, 212
CIRCLE program, 96-97, 99
Circuit example, 55
Clear flag, 288
Clearing
Alpha display, 26
Alpha register, 160
assignments to User keyboard, 47, 168
alarms, 258, 259, 261
data registers, 38, 202
the display, 19, 20, 93, 159, 160, 319
memory, effects of, 382
programs, 102-103, 286-287
the stack, 183
the statistics registers, 56, 190
stopwatch times, 75, 267
Clock
accuracy, 238, 374, 378
adjusting, 64, 238
correcting, 238
displaying, 61, 238
during low power, 383
format, 239
mode, 362
times, 63, 237
Comparing Alpha data, 304, 305
Comparing X
with indirect Y, 305
with Y, 304
with zero, 304
Comparison functions, 303, 304

Compatability, HP-41CX and HP-41C/CV, 398

Computer operation, verifying, 385
Conditional alarm, 251, 248, 260, 261
Conditional functions, 303

extended, 402

for loops, 306
Conditional test, 104

Configurations for extended memory modules, 370

Constant factors, 180

Constants, calculating with, 24, 177-178, 180

Continuous Memory, 14, 28-29, 155
resetting, 29, 382

Continuous-on feature, 155

Continuous-on flag, 291

Control alarms, 248, 251, 259, 260, 261
during programs, 248

Control keys (Text Editor), 120
Conversion
angular, 53, 187
base, 187
of coordinates, 54, 189
time, 65, 187
Coordinate conversion, 54, 189
Copying programs from application modules,
107-108, 281
Correcting errors, 16
in calculation, 179
in display, 159
Cosine, 54
Countdown timer, 274
Cubing x, 183
Cumulative growth, calculating, 177
Current file, 115, 206, 208
changing, 115, 126, 207
Current program, 85
clearing, 287
Current program line, 85, 100, 282
executing, 91
viewing, 92, 284
Cursor, 118, 229, 230, 232
Cursor control, 120, 232
Customized functions, 109
Customized keys, 156

D

Data. See also Data files
exchanging between registers and a file, 218
entry, 92

file pointer, 220. See also File pointer; Register

pointer

file registers, 213

input, 95

input flags, 290

manipulation, 402

output, 92, 95, 96

storage registers. See Registers
Data files, 123-124, 205, 215, 216

clearing, 213

copying to a, 123, 217, 218, 220

creating, 211

name, 211

recalling from a, 123-124, 218, 219, 220
Date format, 242

format flag, 291
Dates

adding, 66, 244

difference between, 67, 244

recalling, 66, 242

setting, 62, 242
valid, 242, 243, 245
Day of week, 67, 244
Dead computer, 385
Debugging, 91
Decimal degrees, 53, 65, 187
Decimal point, 161
Decimal-octal conversion, 187
Default keyboard, 156
DEG, 53, 186
Degrees
converting, 53, 187
minutes-seconds, 53, 65, 187
mode, 53, 186
Deleting. See also Clearing
characters after appending, 367
program lines, 100-101, 285
Delta days, 67, 244
Delta split, 78-79, 270
example, 79
mode, 270, 271, 272
“storing” and “recalling,” 272
Digit. See also Alpha digits
clearing, 20
entry keys, 18, 159
grouping, 35, 161
separation, 35, 161
Directory
of alarms. See Catalog 5
of extended memory. See Catalog 4
of external functions. See Catalog 2
of files. See Catalog 4
of programs. See Catalog 1
of standard functions. See Catalog 3

of User-keyboard assignments. See Catalog 6

Display. See also Clearing; Message; Program;
Scrolling; Parameter-function display
characters, 310
clearing the, 19, 20
format flags, 291
formats, 31
of key’s meaning, 169
message, 161
of null characters, 366
punctuation flags, 290
standard, 161
Division, 51
Drift, time, 375
Dummy character, 229

Subject Index 443

E

Embedded nulls, 311, 366
Empty-record indicator, 118, 121, 229
END instruction, 89, 98, 281
moving to, 284
Engineering-notation display, 33, 161
Entry termination, 17, 18
Error
conditions, 171
displays, 34, 171
ignore flags, 290, 306
messages, 171, 354
messages, clearing, 20
Errors
correcting in calculations, 179
file, 127
with numeric functions, 185
overriding an, 290
program, 98
with Text Editor, 233
time, 245
Exchanging x and y, 181
Executing functions, 17, 44-45
Execution. See Current program; Functions; Pro-
gram; Subroutine
Execution mode, 15, 83, 155, 282
Exponential
common, 51
functions, 187
natural, 51
Exponents, 159, 161
in program lines and printer listings, 19, 32
using, 18
Extended functions, 399
catalog, 394. See also Catalog 2
Extended Functions/Memory Module, 399
Extended memory
directory, 125. See also Catalog 4
files in, 205. See also File(s)
functions, HP-41CX and HP-41C/CV compared,
401-402
map of, 373
registers available in, 206-208, 211
Extended Memory Modules, 370-373
installing and removing, 371
External-device-control flags, 289
External functions
catalog. See Catalog 2
execution time of, 397
and program lines, 396
program memory for, 397
External ROMs (XROMs), 394

444 Subject Index

F specifying in a group, 295
. storing, See Flag status, restoring

gﬁ?og:;’ asls% l!"islgs transforming into a number, 292, 295

catalog. See Catalog 4 Flag tests, 303, 304

errors, 127 Formats 3 6

header. See Header alng'tll(lag 15 2’3;8

memory. See Memory, files in Soc 62 949

name, 116, 205, 206 date, 62, 14 1'6{2}912 o1

name, determining, 207 F 1sp1ay,) ,

pointer, 115, 126, 206, 213, 214, 217 ormu’a

: F 1 H f 216 for mean, 192 oo
gg;gz:? ?;;f,f:gmﬂ% ocation of, for standard deviation, 192
pointer’ setting’ 215 Fractional part of a number, 186

size, 206 Function preview, 48, 169

size, changing, 213

size, determining, 208 G

type, determining, 207 Global labels, 86, 87, 88, 248, 282, 299
Files, 205-206. See also Current file; Data files; File; and alarms, 251
Program files; Text files automatically assigned to User keyboard, 211
allocating registers for, 212 branching to, 299
changing allocation of registers, 213 displaying all, 98, 284
clearing, 213 duplicated, 284
creating, 211, 211 inserting, 284
memory requirements of, 205, 212 missing, 100, 284
purging, 208 moving to a, 100, 283, 284, 285
recalling from mass storage, 227 moving to an assigned, 285
registers in, 206, 208 searches for, 299, 303
resizing, 213 GRAD, 53, 160, 186
saving in mass storage, 227 Grads mode, 53, 186
searching for an Alpha string, 226
specifying, 206 H
types of, 113, 205 R
Fixed decima_al-place display, 31, 160 ggﬁgii:ﬁ;ﬁ?&}f?& 205, 208, 212, 214
Flag annunciators, 289 HP-IL (Hewlett-Packard Interface Loop), 394
Flag manipulation, 402
Flags I
control, 288, 289 - -
for program control, 288 Indirect addressing, 162, 2_00)
setting and clearing, 288 Indirect parameters, functions with, 164
setting and clearing, 35 Initializing programs, 108
status at reset and turn-on, 293 Input cue, 18, 30, 38, 158
system, 291 Insert mode (Text Editor), 121, 230, 232
testing, 288, 298, 304 Inserting program lines, 102, 286
testing and clearing, 304 Integer part of a number, 186
types of, 288 Interference, radio and television, 391
user, 288, 289 Intermediate results, 20
user, effectively increasing, 295 Intermediate statistics, 191
user, saving status of, 295 Inverse
Flag status cosine, 54
recalling. See Flag status, saving functions, 179
represented as a byte, 294 sine, 54
restoring, 292, 296 tangent, 54

saving, 292, 295, 296

K

Key rollover, 259
Keyboard

conventions, 15, 156

function, 44

mode, 362
Keyboards, HP-41CX, 158
Keycodes, 46, 166
Keystroke

notation, 16

precision, 375

program responding to, 317

L

Labels, 299-300. See also Global label; Local
Alpha label; Local label; Numeric label
bytes required for, 299
searching for, 287, 299, 300, 301, 303
LAST X register, 23, 175, 179, 180, 181, 185
Leading nulls, 366
Length of Alpha string, 313
Line numbers, specifying, 166
Loading programs. See Programs, entering
Local Alpha labels, 88, 169, 300
Local label, 87, 88, 299, 300
searching for, 300, 301
Logarithm
common, 51, 187
natural, 51, 187
Loop control, 298, 305, 306
number, 306
Low-power condition, 383
Low-power flag, 292

M

Main memory, 36, 194
alarms in, 196, 198
allocation of, 194-196, 199, 281
available for data registers, 199
default configuration of, 196
key redefinitions in, 196, 198
programs in, 196, 197

Manual, organization of, 9

Mass storage
copying files from, 227
saving files in, 227

Mean, 58, 192

Memory
allocation of, 36
available for files, 125
available for programs, 89, 281
distribution of, 399

Subject Index

extended, available, 125
files in, 113
HP-41CX and HP-41C/CV compared, 399
main, 36, 194
programs in, 84, 85, 99
stack. See Stack
text files in, 114
Message
alarms, 247, 251
displays, 30, 34, 161
flag, 292
Messages, 158
clearing, 94
creating, 95
in programs, 94, 282, 308, 314, 318, 319
Modules, missing, 395
Modulo, 190
Multiplication, 51

N

445

Negative numbers, I8, 159
Noncommutative operations, 22, 176, 180, 181
Nonkeyboard functions, 44, 156
Nonprogrammable functions, 283
Normal keyboard, 14, 15, 155, 156
NULL, 48, 169
Null bytes in a program, 197, 198
Null characters, 311

in Alpha register, 309, 366

and appended characters, 367

deleting, 367

display of, 366

in file names, 367

in a string, 366, 367
Null program, 281
Number, translating to Alpha character, 309
Numbers, 159

entering, 17, 18, 158, 175, 176
Numeric

displays, 31, 160

functions, errors with, 185

keypad (Text Editor), 118, 230, 232
Numeric labels, 88, 299, 317

branching to, 299

long-form, 299

moving to a, 285

short-form, 299
Numeric parameter specification, 162

special keys for, 165-166

446 Subject Index

O

Octal-decimal conversion, 187

Off mode, 362

Off/clock condition, 361
One-number functions, 17, 50, 184
Operating modes, 15

Qut-of-range result, 24, 290
Overflow, 24, 42, 56

P

Packing memory, 85, 89, 196, 198, 281
Parameter functions, 20, 30, 38
display for, 31
Parameter specification, 30, 158, 162, 200
indirect, 162
special keys for, 165-166
Partial key sequence, 31
Past-due alarms, 260-261
activation of conditional, 261
automatic activation of, 260, 361-363
bypassed, 360
clearing, 261
computer modes and, 362
execution of, 361
Percent change, 51, 52, 188
Percent of total, 189
Percentage, 51, 52, 188
Peripherals, description of, 392
Permanent .END., 86, 89, 98, 196, 281
Pi, 19, 159
Pointer. See File pointer; Program pointer; Record/
character pointer
Polar coordinates, 54, 189
Polynomial expressions, calculating, 177
Position
in program memory, changing, 283-285
of string in Alpha register, 312-313
of string in text file, 226
Power consumption, 381
by peripherals, 382
Power function, 51, 52, 189
Power interruption, effects of, 382
Power on and off, 14, 155
Prefix key, 20. See also Parameter functions
PRGM, 83, 90, 155, 282, 316
Program mode, 155
Primary functions, 14, 15, 16
Printer
advancing paper, 368
enable flag, 289
existence flag, 292
listing with time and date, 369
during programs, 368

Prior data entry, 92
Product information, 391
Program. See also Current program; Program

execution; Program file; Program line; Programs
automatic execution of a, 289
boundaries, 87
branching, 298
catalog. See Catalog 1
clearing a, 102-103, 286-287
compatability with HP-41C/CV, 398
copying from application modules, 107-108, 281
copying to a file, 124
correcting, 91, 98
data entry, 92
debugging a, 91
displaying results of a, 369
editing, 91, 98, 285-286
entering, 89, 280
errors, 98
executing a, 90, 282
executing a recalled, 209-210
input, 95
interrupting a, 92, 93, 319
memory. See Memory, programs in
messages, 94, 282, 308, 314, 318, 319
mode, 15, 83, 87, 285
in a module, 395
moving to a, 100, 283-285
moving to beginning of a, 285
name, 86
name, missing, 100, 284
output, 92, 95, 96
pause, 93, 316, 319
pointer, 85
pointer, moving, 100, 283-285
preview, 170
prompts, 95
restarting a, 93
results, displaying, 93
running a, 90, 282
saving in a file, 124, 208
stopping a, 93
storing a, 89, 280
text-file operations in a, 222
user interaction with a, 317
using the Text Editor in a, 233
viewing stepwise, 91, 100, 284
size, determining, 211

Program execution

automatic, 282
halting, 368

indicator, 90, 161, 282
with printer, 368

repeating, 90
returning from a subroutine, 301
stepwise, 91, 282
with User keyboard, 282
Program file, 124-125, 205, 208-211. See also File
creating a, 124, 208
“getting” a, 124, 209
name, 208
recalling a, 124, 209
“saving” a, 124, 208
Program line, 84, 85, 197, 282. See also Current
program line
deleting a, 100-101, 285
inserting a, 102, 286
memory requirements for a, 197
moving to a, 100, 283
number, 282
skipping a, 298, 304
Programs
clearing, 102-103, 286-287
displaying all, 98, 284
Prompts, 95, 314
Purging a file, 208

Q

QUAD program, 105
Quadratic formula program example, 103ff.
Questions, technical, 390

R

RAD, 53, 160, 186
Radians, 53, 186
converting, 53, 187
mode, 53, 186
Radix mark, 35, 160, 161, 290
Rainfall example, 57
Raised T. See T
Recall mode, 272
Recalling
alarms, 252
Alpha characters, 200
numbers, 37, 123, 182, 200, 218, 219, 220
Reciprocal, 51, 185
Record, 113-114, 121, 212, 214, 222, 229
appending, 222
deleting, 224
deleting (Text Editor), 121, 233
inserting, 223
inserting (Text Editor), 121, 232, 121
length, maximum, 230, 233
moving to a (Text Editor), 233
number, 229
recalling a, 226

Subject Index 447

Record/character pointer, 113-114, 115, 213-216,
214, 228-230
Rectangular coordinates, 54, 189
Redefining keys, 46, 156, 166
limits on, 166
Register
address, specifying, 200
arithmetic, 40-42, 201
contents, displaying, 39, 319
copying to a file, 220
pointer, 213, 215, 216
recalling from a, 220
specification, 164
Registers. See also Stack registers; LAST X register;
Alpha register
above Rgg, 199
accessing blocks of, 218, 219
allocation of, 199, 281
available for data, 199
available for files, 125, 206-208, 211
available for programs, 89, 281
available for programs, increasing, 281
blocks, copying contents of, 201
blocks, swapping contents of, 201
changing allocation of, 199
checking allocation of, 199
copying to a file, 123, 217
data, clearing, 38, 202
data storage, 36, 194
exchanging contents of, 39-40, 201
exchanging with data file, 218
file, 212, 214
in a file, 206, 208, 213
recalling from a file, 123-124, 218, 219
statistics. See Statistics registers
uncommitted, 36, 194
uncommitted, remaining, 196
Regular Split mode, 270, 271
Remainder, 190
Repair, shipping for, 390
Repair service, 386, 388
Repeating alarms, 255, 258, 259
Replace mode (Text Editor), 121, 230, 232
Reverse entry, 17
Rigil Centaurus example, 24
Roll down/up stack, 181
ROM (read-only memory), 281
ROM modules, 393, 397
Root, finding, 190
Rounding a number, 186
RPN (Reverse Polish Notation), 16, 174
Running mode, 362

448 Subject Index

S

Saving data in a file, 123, 217, 218, 220
Scientific-notation display, 32, 161
Scrolling 28, 162
SECRETS file, 114, 116, 121
Separator mark, 35, 161, 290
Service centers, 388
Set flag, 288
SETALM program, 261
SHIFT, I6, 156, 230
cancelling, 16, 156
Shift key, 15, 156
Shifted functions, 15, 16, 156
Sign of a number, 186
Silas Farmer example, 41-42
Simultaneous alarms, 360
Sine, 54
Sizing main memory, 199
Software modules, 393
Solar eclipse example, 67
Split differences, 270
viewing, 272
Split Recall mode, 77, 270
Split Storage mode, 77, 270
Splits, 76-77, 270
errors with, 273
negative delta, 273
printing, 275
recalling, 270, 272
storing, 270
taking, 271
SPLITS program, 276
Square, 51, 185
Square root, 51, 185

Stack, 20, 21, 174-175, 185. See also Subroutine

return stack

calculating in the, 180

clearing the, 183

drop, 175

filling the, 177

lift, 175

lift, disabling, 176

lift, enabling, 176

lift, neutral, 176

operation, with numeric functions, 184

registers, 20, 21, 175, 180

registers, addressing, 166

register arithmetic in the, 182

registers, exchanging, 181, 182

rolling the, 181
Standard deviation, 58, 192
Standard-functions catalog. See Catalog 3
Starburst display, 309

Statistical data
correcting, 57, 191
summing, 55-56, 191
Statistics registers, 55, 190
assigning, 56, 190
clearing, 56, 190
location of, 56, 190
overflow of, 5§6-57, 192
Status messages, 354
Stepwise program
execution, 91, 282
viewing, 91, 100, 284
Stopwatch
display, 267, 270, 271
errors, 80
examples, 77-78
finding time differences, 78-79
keyboard, 75, 266, 268, 269
keyboard, activating, 268
memory requirements of, 78
modes, 76
pointers, 270, 272
pointers, changing the, 270
pointers, displaying, 270
pointers, limit of, 271
pointers, setting, 274
precision, 378
program, 275
programming the, 273
register-pointers, 77, 79, 80
registers, 270, 272
resetting the, 75, 267
starting and stopping the, 75, 268, 273
time, recalling, 273
time, setting, 273
as timer, 274
times, clearing, 75, 267
timings, 76-77, 271
Storing
Alpha characters, 200
numbers, 37, 123, 182, 200, 217, 218, 220
Strings. See Alpha strings
Subroutines, 301-302
bytes required for, 303
calling, 301, 317
ending, 301
and keycodes, 317
recalling programs as, 209-210
returning from, 301-302
return stack, 302
Subtraction, 51
Summation of data, 55-56, 191
correcting, 57, 191

T

T 93, 118, 121, 159, 171, 229, 282, 395
T-register, 20, 175, 179, 180
Tangent, 54
Technical support, 390
Temperature specifications, 391
Terminology, HP-41CX and HP-41C/CV compared,
403
Text
deleting, 225
editing, 113ff.
recalling, 226
storing, 224
Text Editor, 117ff.
activating, 117, 230
annunciators, 117, 230
automatic deactivation, 230
deactivating, 117, 230
display, 118, 229, 230
keyboard, 119-120, 231
timing out, 230
Text file, 113ff., 205, 215, 216, 222, 228
clearing a, 117, 213
creating a, 116, 212
name, 212
purging a, 117
recalling from a, 226
recalling from mass storage, 227
resizing a, 116
saving in mass storage, 227
Text-file characters, 113, 114, 120, 212, 229
adding (Text Editor), 120, 232
appending, 224
deleting, 225
deleting (Text Editor), 120, 232
inserting, 224
nonstandard, 229
searching for, 226
Text-file pointer. See File pointer; Record/character
pointer
Text-file records. See Records
Text punctuation, 229
Time
accuracy, 238, 374
adding and subtracting, 65, 188
adjusting, 64, 238
conventions, 61, 239
converting, 187
correcting, 238
displaying, 238
drift, 375
errors, 245
functions, 399

Subject Index 449

functions, HP-41CX and HP-41C/CV compared,
400-401

Module, 399

precision, 377

recalling, 64, 240

setting, 63, 237

values, 237
Time-functions catalog, 394
Times, valid, 245
Toggle keys, 14, 155
Tones, 94, 260, 319
Trailing nulls, 366
Trigonometry, 53-54
Two-number functions, 51, 187

U

Uncommitted registers. See Registers
Underflow, 24, 42
USER, 47, 155
User functions, 46-47
assigning, 46, 156
cancelling, 47
catalog. See Catalog 6
executing, 47
viewing, 48
User keyboard, 14, 15, 46-47, 88, 155, 156, 166, 198
cancelling assignments on, 168, 171
catalog. See Catalog 6
flag, 290
global labels automatically assigned to, 211
making assignments to, 166, 168
priorities, 169

\Y

Vector arithmetic, 59
example, 109

VECTOR program, 109ff.

Viewing
the Alpha register, 318
program results, 93
register contents, 39, 319

W

Warranty, 386
service, 389

450 Subject Index

X

Y

X-register, 20, 30, 40, 1568-159, 175, 179, 180
exchanging contents of, 201
exchanging with flag status, 292, 295
exchanging with Y, 39
recalling into, 179, 182
storing from, 182

XROM
functions, 394, 395
number, 394, 395, 399
number, and program lines, 396
number, duplicate, 397
programs, 395

Y-register, 20, 175, 179, 180
exchanging with X, 39

Z

Z-register, 20, 175, 179, 180

Function Index

For each function, its Alpha name is given first (in blue), and its keyboard name follows (in black or
gold), although not all functions have both an Alpha name and a keyboard name. (These conventions
are explained on the inside of the front cover.)

Each function has up to three page references. The first one, in italics, is for volume 1. The second one
is for volume 2. The third one, in boldface, is for the Function Tables, a summary in volume 2 of all

functions

Function Pages Function Pages
= 19, 158, 418 241, 429
27, 159, 436 311, 437
({E3)] 51, 188, 423 ((AVIEW]) 94, 318, 437
== 51, 188, 423 ((BEEP)) 94, 319, 438
) (=) 51, 188, 423 ((85T)) 91, 284, 431
(E3)) 51, 188, 423 ([CATALOG]) n 170, 416
(O7x)) 51, 185, 423 ((CF]) nn 35, 288, 416
() 51, 187, 423 ([crs)) 18, 185, 423
ABS 186, 423 ((Ca)) 26, 159, 437
((cos™)) 54, 186, 423 CLALMA 258, 429
ADATE 243, 429 259, 429
368, 438 94, 318, 419
ALENG 313, 436 CLFL 117, 213, 426
71, 255, 429 61, 239, 429
261, 429 61, 239, 429
24, 155, 416 47, 168, 416
311, 436 61, 239, 429
159, 436 671, 239, 429
159, 436 67, 238, 429
224, 425 102, 286, 431
222, 425 69, 258, 429
([ARCL]) nn 96, 200, 436 38, 202, 420
226, 425 38, 202, 420
313, 436 [ez] ([ex]) 56, 190, 420
200, 436 183, 420
[asIN] ([BIN1)) 54, 186, 423 o] ([Cx)) 19, 159, 420
([ASN]) name, key 46, 166, 416 107, 281, 431
ASROOM 222, 425 CORRECT 238, 429
([(AST0]) nn 200, 436 (cos) ([cos)) 54, 186, 423
(FANT) 54, 186, 423 116, 212, 426
240, 429 123, 211, 426

Function Pages
53, 187, 423
66, 242, 429
66, 244, 429
67, 244, 430
187, 423
53, 186, 416
101, 286, 432
225, 426
224, 426
62, 242, 430
DOW 67, 244, 430
nn 306, 432
117, 228, 426
(EEX] 18, 159,
125, 206, 426
207, 426
208, 426
89, 301, 432
[ENG) ([ENG)) n 33, 161, 416
[ENTER®] ([ENTER®]) 17,175, 420
(<)) 57, 187, 423
E¢X-1 187, 423
51, 185, 423
FC?] nn 304, 432
nn 304, 433
((FIx)) n 31, 160, 417
208, 426
FRC 186, 423
304, 433
nn 304, 433
227, 426

Function Pages
317, 438
317, 438
124, 209, 427
123, 217, 427
226, 427
218, 427
209, 427
124, 220, 427
GRAD 53, 186, 417
([GT0)) label 100, 300, 433
[:) nnn or label 283, 432
Blo} 89, 281, 432
HMS 53, 187, 430
53, 188, 430
HMS— 53, 188, 430
53, 187, 430
(INSCHR] 224, 427
INSREC 222, 427
186, 423
(sG] ((iS&]) nn 306, 433
(ZsT2)) 23, 179, 420
[LBL] ([LBL]) label 88, 299, 433
() 51, 187, 423
187, 423
((tog)) 51, 187, 424
62, 242, 430
58, 192, 424
190, 424
187, 424
292, 433
155, 417
14, 155, 417
((P=R]) 54, 189, 424
198, 432
166, 417
PCLPS 103, 286, 419
(=D 51, 188, 424
%CH 517, 188, 424
(=) 19, 159, 424
312, 437
226, 427
87, 155, 417
95, 314, 438

PSE 93, 315, 438

Function Pages Function Pages
199, 417 ([(557)) 91, 284, 432
117, 208, 427 (501 [#]) nn 40, 201, 421
181, 421 sT-) ((ST0) [(5)) nn 40, 201, 422
53, 187, 424 (@) [x]) nn 40, 201, 422
(E=F)) 54, 189, 424 (0] [=]) nn 40, 201, 422
R/S 93, 166, 434 (s70] ((8TG)) nn 37, 200, 422
53, 186, 417 296, 418
([(REL) nn 37, 200, 421 (R73)) 93, 302, 434
376, 430 273, 430
252, 430 75, 266, 430
296, 417 274, 431
216, 427 64, 238, 431
216, 428 (Oan]) 54, 186, 424
273, 430 64, 240, 431
(D) 181, 421 n 319, 438
201, 421 47, 155, 418
201, 421 ([(VIEW)) nn 39, 319, 422
116, 213, 428 x*2] (7)) 51, 185, 424
186, 424 (=) 304, 434
[RTN] ([RTN)) 90, 301, 434 304, 434
273, 430 304, 434
227, 428 304, 434
124, 208, 428 304, 434
123, 217, 428 =Y (z=2)) 304, 434
218, 428 304, 434
123, 220, 428 304, 434
(5e1) ((5c0) n 32, 161, 417 (=7 304, 434
58, 192, 424 Y (G=22)) 304, 434
215, 428 305, 435
115, 215, 428 305, 435
376, 430 305, 435
62, 242, 430 305, 435
63, 237, 430 305, 435
273, 430 305, 435
([5F)) nn 35, 288, 417 nn 40, 201, 422
(=) 55, 191, 424 295, 422
(=) 57, 191, 424 (22 39, 181, 422
nn 56, 190, 417 ([XEQ)) label 45, 301, 435
56, 190, 417 309, 437
(EW) 54, 186, 424 67, 250, 431
186, 424 () 51, 189, 424
nnn 199, 417
199, 418
(=) 51, 185, 424

9: The Keyboard and Display (page 154)
10: The Automatic Memory Stack (page 174)
11: Numeric Functions (page 184)
12: Main Memory (page 194)
13: Extended Memory (page 204)
14: The Text Editor (page 228)
15: Clock and Date Functions (page 236)
- 16: Alarm Functions (page 246)
17: Stopwatch Operation (page 266)
18: Programming Basics (page 280)
19: Flags (page 288)
20: Branching (page 298)
21: Alpha and Interactive Operations (page 308)
22: Programs for Keeping Time Records (page 320)

Error and Status Messages (page 354)

More About Past-Due Alarms (page 360)

Null Characters (page 366)

Printer Operation (page 368)

Extended Memory Modules (page 370)

Time Specifications (page 374)

Battery, Warranty, and Service Information (page 380)
Peripherals, Extensions, and HP-IL (page 392)

A Comparison With the HP-41C/CV (page 398)

Bar Code for Programs (page 404)

ﬂﬁ HEWLETT

PACKARD

Portable Computer Division
1000 N.E. Circle Bivd., Corvallis, OR 97330, U.S.A.

European Headquarters HP-United Kingdom
150, Route Du Nant-D’Avril (Pinewood)

P.O. Box, CH-1217 Meyrin 2 GB-Nine Mile Ride, Wokingham
Geneva-Switzerland Berkshire RG11 3LL

00041-90492 English Printed in Singapore 8/83

Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

