HEWLETT-PACKARD

HP-85B

OWNER’S MANUAL AND PROGRAMMING GUIDE

9

o~ T
T Lt

Al

—
N

Uad ead ol ad el

-‘." IL-J r".‘I | uand 'S i,

{

Printed in U.S.A.

(D Jvrat

HP-85B
Owner’s Manual
and
Programming Guide

May 1983

Reorder Number
00085-90990

©Hewlett-Packard Company 1983

Contents

Meet the HP-85 Personal Computing System 11
How to Use This Manual i i 11
An Overview of the Hewlett-Packard 85 it 14
HP-85 Key Index e e e e e e e e 15

Part I: Using Your HP-85 e 19

Section 1: Getting Started 21
Power ONn . e 21
Manual Problem Solving (“Calculator” Mode) i 22

Simple Display Editing 23
Clearing the Display e e 24
Error Messages and Warnings 25
Vanables .. e e 25
Running a Prerecorded Program i e 27
Loading a Program From the Standard Pac 27
Halting Program EXecution i e 30
Writing Your Own Programs i 31
Creating the Program e e e 32
Entering the Program i e 32
Running the Program 32
An Averaging Program e 33
Recording the Program 35
Erasing a Program From the Tape Cartridge 36
Mass Storage Options 36
HP-85A and HP-85B Programsitiiniiniinininniin e .. 36

Section 2: Keyboard, Printer, and Display Control 39

The Keyboard 39
Typewriter Keys 39
BASIC Typewriter Mode 39
Normal Typewriter Mode 40
HP-85 Character Set e e 40
Printer Control e a1
The Displayt e e 42
Entering Long EXPressions e 43
Display Editing e 44
Fast Backspacettt e 44
Deleting Characters i e 44
Inserting Characters e 45
System Self-Test i e e, 46
Resetting the Computer e 46

Section 3: Expressions and Keyboard Operations 49

Keyboard Arithmetic 49
M and DL e e 50
Arithmetic Hierarchy i e 51
Parentheses 51
The RESULT Keyt e e et et 52
1 N B 13 Vo I = 52
Standard Number Format e 53
Scientific Notation e 54
Keying In Exponents of Ten e 54
Range of Numbers 55
Variables 55
YD .o 55
FOrmMS e e 55
Simple Variables s 56
String Variables 57
String Concatenation 58

The NUll Stringo e 58
Logical Evaluation 59
Relational Operators i e e 59
Logical Operators 61
The Time FUNCHIONS e 62

Contents

Section 4: Math Functions and Statements 65
Number ARErationttt i e 65
ADSOIULE VAIUBS . .ottt ittt et e 66
integer Part of a Number i 66
Fractional Part of a Number e 66
Greatest Integer FUNCHON o e 66
Smallest Integer FUNCLION i 67
General Math FUNCHONSot i e 67
Square ROOt FUNCHION 68
Signof @a Numbero 68
Maximum and Minimum 68
The Remainder FUNCLION it e 68
USING B L 69
Epsilon and Infinity e 70
Random NUMDEISt e e e 70
Logarithmic FUNCHIONS e 71
Trigonometric Functions and Statements i 72
Trigonometric Modes 72
Trigonometric FUNCHIONS 73
Degrees/Radians CONVErSIONSvouirn oo 73
Polar/Rectangular Coordinate Conversionsc...ooveniin..n. 73
Total Math Hierarchy 75
Recovering From Math Errors oo 75
Part II: BASIC Programming With Your HP-85 77
Section 5: Simple Programming i 79
Loading and Running a Prerecorded Program oot 80
Stopping a Running Programiiiiii i 81
Listing @ Program it 81
What Is @ BASIC Program?ttt 82
L1 00 1= 1= 82
Statement NUMDEISt i e et 83
(07071071 17- Ua T < PP 83
Clearing Computer MEMONYttt e 84
Writing @ Program e 84
Entering @ Programt e 86
Automatic NUMbErNg s 86

o] o Y Vot Vo 86
Statement Length e 87
Entering Program Statements into Main Memory oo 87
Entering the Program i e 87
RUNNING @ Program e 88
Order of Program EXeCUtionttt 89
Fundamental BASIC Statements 90
< B 90

90

93

[HFLIT: Assigning Values From the Keyboard 94

B ottt e e 96
LET: ASSIGNMENTSot e 97
GOTO: Unconditional Branchingo 98
Multistatement LineSottt e e s 99
PrODIEMS o i e e 100
Section 6: Program Editing i 103
Editing Program Statements 103
Deleting Statementst 103
Adding Statements 104
Renumbering a Program i 104
Listing a Modified Program 104
Interrupting Program Execution i 105
PaAUSING .« ottt e 105
CONBINUING .« .« ot et et i e i e 106
Initializing @ Programt 107
Using FALUSE ina Program 107
Delaying Program Execution i 108
ErrOr MESSAQGES - - - o o v cet e e ettt e e 108

[0V 0) =) 1 £ 1= PN 109

3

4

Contents

Section 7: Branches and Loops 113
Conditional Branching e 113
The ELSE Option e e 116
The Computed GOTO Statement i e e 118
FRE-HERT LOOPS .ot e e e e e e e 120

Changing the Increment Value 124
Nested LOOPS e e e 125
FOR-HEXT Loop Considerationsciiuiiiniinnennnon. 126
Problems ... e e 126

Section 8: Using Variables: Arrays and Strings 129
Array CONCEPIS . o\ttt e e e 129
Declaring and Dimensioning Variables i e 131

Lower Bounds Of Arrays 131
The DIM Statement e e e, 132
Type Declaration Statements i 132
The COM Statement et e 133
About Variable Declarations 134
String EXpressions e 134
SUDSINGS . . .o e 135
Modifying String Variables 136
Replacing @ Stringt e e e 136
Replacing Partof a String i e 136
StiNG FUNCHIONS o e 138
The Length Function i i, 138

The Position Function 140
Converting Strings to Numbers 140
Converting Numbers to Stringst 142
Character CONVErsioNS ittt et 142
Numbers to Characters i i, 142
Characters to Numbers i 143
Lowercase to Uppercase Conversionooiiieananan... 143
Assigning Values to Variables ina Program 144
Assigning Values to Array Elements, 144
Initializing Variables 146
The RERD and OATAH Statements i i 147
Rereading Data: The RESTORE Statement 150
System Memory and Variable Storage i i 151
Storing Variables 151
Conserving MemoOry e e 152
Problems .. e 153

Section 9: More Branching 157

Defining @ FUNCLION e 157
Single-Line Functions 157
Multiple-Line Functions i e 159

SUDIOULINES 163

The Computed GOSLE Statement e i e e 165

Branching Using Special Function Keys 165
FE LHEEL e 166
Canceling Key AsSignmentsttt 168

The TIMers .. e 168

Problems . e 170

Section 10: Printer and Display Formatting 175
Using THR G E . e e 175
Delimiters e e e 175
Blank Spaces 176
String Specification e 176
Numeric Specification i e 177

Digit Symbols 177
Radix Symbols e 178
Sign Symbols 178
Digit Separator Symbols 179
Exponent Symbol e 179

Compacted Field Specifier i 180

Replication e 180

Reusing the TMAGE Format String i . 180

Field Overflow 181

Formatting in FEIMT/OISF USIHG Statements, 181

The THE FUNCHON e e e e e i 182

Contents 5

Redefining the Printer and the Display 183
PrODIEIMS ..ttt 184
Section 11: Graphices 189
The Graphics DiSplayt i e 189
Line Generation 190
Graphics and the Printer i 190
Clearing the Graphics Displaycoiiiiiiii i 191
Setting Up the Graphics Display i 191
The ZCHLE Statement e e 191
Unequal Unit Scaling ot 192

Equal Unit SPacingt s 193
Drawing Coordinate AXeSttt 194
Plotting Operationst 199
F I i e e 199
e 199
T 200

Drawing CUIVES i e 204
Padding the Increment LOOD 205
PrObIEMS . . .o 208
R 209
TR A 209
ProbIEmM . . . s 212
Labeling Graphs e 213
Label Directionttt e 216
Label Length e 217
Positioning Labels e e e 219
Problem 222
THFUT in Graphics MOde i i 222
ProblEM . s 229
Advanced Plotting With EFLOT ... 229
Procedure for Building the String i 230
Using the String With EFLOT 233
Condensing the String Assignment Program 235

1 o o111 5 245
Section 12: Debugging and Error Recovery 247
Tracing Program Execution e 247
Tracing BranChes e e 247
Tracing the Values of Variables i 247
Tracing All Statements and Variable Assignments 248
Canceling Trace Operationst 248
The STEP KBY . ..ottt it e e e et e i 251
Checking a Halted Program i 252
Error Testing and ReCOVery i e 252
The Error FUNCHONSot i e s 253
Some Hints About the System 255
Memory Conservation HINtsS i 256
Part III: Mass Storage Operations it 259
Section 13: Accessing Your Mass Storage System 261
INtrOdUCHiON 261
Command SUMMAIYttt i i ettt e i 262
Function SUMMAry 263
Installation of the HP-IB Interface and Disc Drives 264
Addressing Mass Storage Devices 264
The HP-IB Select Code i e 264
Device Address Switch 264
Disc Drive NUMDEIS 265
The Mass Storage Unit Specifier (msus) i i 266
The Default Mass Storage Location i .. 267
Volume Labels 267
Preparing a Tape Cartridge i 268
Initializing a Flexible Disc or Hard Disc Volume 269
More About TH I T IAL IaE L. e et 270
The Interleave Factor i 270

Establishing a New Default Mass Storage Location 271

6

Contents

Accessing Files Using the File Specifier oo 272
The File DIFECIOTY . ..ot e e 273
File TYPES . oo ittt 274
Specifying Parameters Using Expressions oo 274
Mass Storage FUNCHONS i e 274
The OIS0 FREEE Function i i e 274
The MSLISE FUNCHON .. ot e e e e e 275
The WL E FUNCHON . ..o e e e 275
Sample Program 276
Tape Cartridge Commandsot s 277
Write ProteCtion o e e e 277
Section 14: Storing and Retrieving Programs and Graphics 281
Storing @ Program e 281
Loading a Program From Mass Storageo, 283
Autostart Programs 284
Chaining Programsttt 284
Storing and Retrieving Graphics Displays i 286
Storing @ Graphics Display i 286
Retrieving a Graphics Display i 287
Storing and Retrieving Binary Programs i 287
Translating Tape-Based Programs to Disc-Based Programs 288
Section 15: File Manipulations it 291
Copying Fileso 291
Copying an Entire DISCoou it 291
Renaming Files i 292
Purging Fileso 292
Packing Files s 293
File SECUMtYo 294
Securing FileS o e 294
Removing File Security i 295
String Manipulation of BASIC Programs i 296
Section 16: Storing and Retrieving Data 299
I OTUCHION . ot ittt e e e e e 299
File RECOIASttt 299
Storage Requirementst 300
Creating Data Files i i e 301
OpeningaDataFile e 302
Mass Storage Buffers 302
ClosingaData Filec. i 303
LT T I Yoo =1 J 303
Serial Printingot 303
Reading Files Serially e 305
RANAOM ACCESS . . . i ottt i ettt ettt e e e e 306
Random Printingottt i 307
Reading Files Randomly i 309
Storing and Retrieving Arraysttt in i 310
Determining Data Types—The T%'F Function 312
Verification of Datattt e 313
Section 17: The Electronic Disct 317
I OQUCHON .. . e e 317
Electronic Disc Commands and Functions i 317
Configuring the Electronic DiSC 319
L TG Parameters ..ottt it e e i e e 321
Other Considerationsttt e 322
Sample Autostart Programo i e 323
Swapping Programst 324
Appendix A: ACCESSOTIeSttt 327
StaNdard ACCESSONES . vt i ittt ettt et e e e 327
OPtioNal ACCESSOMBS . . o .ottt et et e et ettt 327
HP-85 Application Pacst 327
HP-85B Plug-In Memory Modules 328
Series 80 INterfacesot e 328
Series 80 MOdem e 329
HP-85 Enhancements ROMS i i i 329
Other HP-85 ModUIES it e e 330

Series 80 Peripherals 330

Contents 7

HP-85 SUPPHES . .+« ettt et 331
Ordering ACCESSOMES oot ittt s 332
Appendix B: Installation, Maintenance, and Serviceiiiiiiiien, 335
INSPECtion ProceduUreeueeit i 335
Power Supply INfOrmationo ot 335
POWEE COIAS - - v vt ittt et ettt et et ettt e 335
Grounding REQUINEMENESvvttee it 336
Power REQUIFEMENTS\t e ettt et 336
FUSES oottt e e e et e e e e 336
SOIVICE o oot e e e e 337
REAr PaANEl . . oottt s 337
Initial Set-Up INStrUCLIONSt 337
installing Plug-in MOdUIBS 339
General Module Installation and Removal o i 339
Plug-ln ROM Installation and Removalt 341
THE HP-85 PHIMEE . . ot ottt et e e e e et e e et 343
=l =17 T R 344
Loading Printer Paper i 344
Printer MaiNTENANCE . . o v ot ot et et e et et e et e 346
Tape Cartridges - vo ottt 347
Rewinding the Tapettt 347
General INformMatioN oot e e 348
Inserting a Tape Cartridge i 348
Removing the Tape Cartridge oo 349
WHite ProteCHION . o o oottt e e e e 349
TAPE CAIE . ..ottt 349
TAPE Lif@ . .o 350
Tape Cartridge Rethreading« 351
Optimizing Tape USEttt 353
Operational CONSIAErationS\ v vt 353
General ClEaNING - .« ..ot e et e 353
Selecting @ WOIKSPACE ovive e 354
Potential for Radio/Television Interferenceot 354
Temperature Rangesnin ot 354
GBIVICE .+ o ettt e e e et e e 355
3] o R LR 355
TaPe DIIVE . .o 355
e T =) G 355
INtErNal TIMEE . . o oot ettt e et e e 355
ACCESSOMIES - & v o v e e e e e et e e e 356
Warranty InfOrmationeurmna 356
How to Obtain Repair Serviceoiveni e 357
Serial NUMDEE . oottt i et 357
General Shipping INStrUCHIONS 357
Further INfOrmMationottt i et et s 358
Appendix C: Reference Tables 361
Reset CONAIIONS .« .. v oottt e ettt e et et e 361
HP-85 Character and Key Codest 362
Character COTES . . .o v ittt et e e 362
Key Response During Program Executionc.oovvinnnn. 363
System Memory REqUITEMENtSottt 364
Appendix D: BASIC Summary and Syntax 367
DAt TYPES « oo v v ee ettt et e e 367
VARADIES . . .ttt e e 367
0T - o - Y T 368
130T a7= 1/« 368
REIAHONAl . .. vt ettt e 368
o 1o R 369

S 14117 [R RRRE 369
Math HIBFarchy 369
MASS STOTAGE - - - - oot v ettt iie e e e e 369
FIIES .« oot e e e e 369
File TYPES ..o ettt 370
File NBMES .« oottt e e et e 370
File SPECIfIErS . ..o\ttt 370
Mass Storage Unit Specifiers i 370
VOIUME LADEISttt e e s 371

Initializing & Mass Storage Mediuml 371

8

Contents

Special Charactersuuiiii 371
Syntax Guidelines 371
Predefined Functions 372
System Commands and BASIC Statements 374
Graphics Statements 378
Appendix E: Error MeSsages 381
Math Brrors 381
SYStEM EITOrS ..ottt 381
Program ErrOrs 382
Tape ErrOrs .. 383
Syntax Ermors 384
Mass Storage Errors 385
Electronic DiSC ErrOrs 386

Notes

Meet the HP-85 Personal Computing System

Your Hewlett-Packard 85 Personal Computer is a versatile, self-contained, personal computing device which

enables you to perform a wide variety of useful and interesting functions. To mention just a few of the special

features of your HP-85, you have the ability to:

How to Use This Manual

This handbook has been designed to enable you to use the utmost
potential of your HP-85 Personal Computer and to answer your ques-

tions concerning BASIC programming with the HP-85.

If you have just received your new HP-85 Personal Computer, read
appendix B before you attempt to operate the system. Appendix B
contains initial set-up instructions and other pertinent owner’s infor-

mation.

Perform calculations in a simple, straightforward manner—as if you had a calculator with dozens of math-

ematical and scientific functions.

Compose programs in BASIC (Beginner’s All-Purpose Symbolic Instruction Code) programming language.
The HP-85 exceeds the latest American National Standard for Minimal BASIC. In many areas, the
HP-85 includes enhancements to this standard. The built-in RAM (random-access memory) to store your

programs is 32K bytes (32,768 characters of information).

Execute BASIC programs. After you have written your programs, they may be executed, often at the touch

of one key. The HP-85 offers several typing aids to your program execution and control.

Load and store programs and data on a magnetic tape cartridge with the built-in tape drive. Thus you may

permanently store your programs to be retrieved again, whenever you wish.

Use the high-speed storage capacity of the built-in electronic disc, which initially holds 32K bytes of
programs and data, expandable up to 544K bytes.

List programs and data with the built-in thermal printer. Not only can you list programs, but you can

copy anything that appears on the display onto the printer, to record and review your results.

Perform graphics. The graphics capabilities of the HP-85 are sophisticated, yet easy to use. And again,
anything that you can “draw” on the display can be transformed to hard copy with a single

command: i

Edit, correct, and modify anything that appears on the display with tremendous ease. In fact, the HP-85
allows you to access and review 64 lines of characters on the display, and to edit them at your

convenience.

Use the HP-85B with plug-in ROMs (read-only memories) to control a variety of Hewlett-Packard

peripherals, including disc drives, printers, plotters, and instruments.

11

12 Meet the HP-85 Personal Computing System

Then familarize yourself with the HP-85 system by reading and following
through the examples in part I of this handbook—with your computer.
The best way to feel at ease with the system is to sit down with the
owner’s handbook and the HP-85 and actually key in the examples
provided in each of the sections. It won’t take long to become familiar
with the system, and it’s well worth the time you invest to obtain a more
complete understanding of your HP-85. Even if you are an advanced
programmer, you will benefit from the unique features and capabilities
of your HP-85 that are introduced in part 1.

Part II of the HP-85B Owner’s Manual and Programming Guide dis-
cusses each of the BASIC statements used with the HP-85. It also cov-
ers graphics on your HP-85 system and debugging procedures. There
are problems for you to work at the end of most of the sections in part
II and, in case you get stuck, sample solutions are given in appendix F.
Part III describes the mass storage capabilities of your HP-85B, which
enable you to use tape cartridges, flexible discs, Winchester hard discs,

and the built-in electronic disc.

If you are a beginning programmer, and you have difficulties with part II,
you may wish to refer to the HP-85 BASIC Training Pac. The pac is
designed to help you get acquainted with the HP-85 and BASIC
programming.

If you are an experienced programmer, you'll probably start program-
ming with the HP-85 as soon as you’ve read part I. You can use part II
as a reference guide to particular BASIC statements, but you’ll prob-
ably find the HP-85B Pocket Guide most suited to your BASIC refer-
ence needs. Refer to part III when you wish to begin using external

disc drives or the electronic disc.

&

&,
a"'b

Meet the HP-85 Personal Computing System 13

Where can you go next? After you've become familiar with the HP-85
itself, you may wish to enhance your programming capabilities with
specific application pacs, additional memory modules, extended ca-
pability ROMs, and peripherals. Be sure to check the accessories list
in appendix A.

Note that the terms “HP-85" and “HP-85B” are used interchangeably

throughout this manual to refer to your computer. When necessary,

distinctions will be made between the operation of the HP-85B and
HP-85A Personal Computers.

CAUTION

The inspection procedure and initial set-up instructions for the HP-85 are presented in appendix B of this
manual. Please refer there:

e If you have not inspected the HP-85.

e If there is any doubt regarding the compatibility of the system power requirements to the available

power in your area.

Do not attempt to set up the HP-85 without first becoming thoroughly familiar with appendix B; it con-
tains information that is important to avoid damaging your personal computer when it is initially set up.

14 Meet the HP-85 Personal Computing System

An Overview of the Hewlett-Packard 85

Bar

Front View

s LI LTI TN

Receptacle

Voltage Selector AC Power Connector Piug-in Module Ports Display Intensity Knob

Back View

15

Meet the HP-85 Personal Computing System

pedAsy| ouswnN

pieoghey JayumadA)

A
P -
— g > < %
+[<]l -1]lloO _
P \\|\L 2 N % X N < >
S RIS AR \Q// Z AN AN RIS AN AN AN AN AN A AR ZIN
- € rd I LdiHS X A y4 14HS
% 1% i N2 D N N
S AR AR A B S N J_ S 2R
* @ m .v w < MO0
Sdvo
% N2 1% % N\ % 2 NI N2
S AR I8 S 2 2) S S AR 2
/1116l] 8 L M ||| O |||
% | 2t | N | 2 N N Mz Sl S% N
N AR R S J . N 2\
v () anNn- = e Z L
1s3d) || | uNe | | u3say) || lavao + # ® i
% ~Ni% S SI% — 1% N2 N
~ \\4 Navar I 20 S AR AR AR AR 7 S A AR AR AR 7
H3dvd M3H | 13a SN 9| || avuo)| || (oLnvw ~ Y o oy % A
% Ml N|% 1% 1% N7 N2 N % N Z Sl NI% Sl N2 _y
g g
v 2

|[oauo) weisAg/Aeldsig

pieoqAa) G8-dH

ska)| uonound |eadg

Typewriter Keys

through (Z). Alphabetic
keys. In BASIC mode produce
capital letters, and when used
with or produce
small letters. In “typewriter”
mode produce small letters, and
when used with or
produce capital letters
(page 39).

Shift key. Used with the
alphabetic keys to get reverse
letter-case; with other keys to se-
lect alternate symbol, statement,
or command on upper half of key
(page 39).

Caps lock. Affects only the
alphabetic keys. When pressed
and locked, reverses the
lettercase of current typing mode
(page 39).

Control. Used to select
characters that are not normal
typewriting characters and to
output keycodes with decimal val-
ues below 32 (page 40).

Numerics, punctuation, symbols.
The remainder of the typewriter
keys operate like a standard type-
writer. To select the symbol on
the upper half of a key, hold

while you press the key
(page 39).

Enters an expression,
statement, or command into the
computer to be interpreted and/
or executed. Also performs a car-
riage return (page 43).

Numeric Keys

(0) through (9) Digits. () Decimal
point. Used for keying in num-
bers (page 23).

O®

Arithmetic operators: addition,
subtraction, multiplication, di-
vision, exponentiation, and integer
division, respectively (page 49).

HP-85 Key Index

Parentheses. Used to key in
numeric expressions and to en-
close the arguments of functions

(page 51).

() Comma. Separates input items
and used as a separator in func-
tions, statements, and commands
(page 53).

Recails to the display the

most recently calculated result
(page 52).

Special Function Keys

through (unshifted) and
through (shifted). Special
function keys for user-defined
functions. Must be defined in a
program (page 166).

Recalis the current labels
for the special function keys and
displays them on the CRT. Also
moves the cursor to the upper
left corner of the display (page
166).

Display Control

Positions the
cursor on the CRT display in the
direction of the arrow, without
erasing characters (page 23).

Insert/Replace. Toggles be-
tween insert mode and replace
mode. When the cursor is under a
character in replace mode, typ-
ing any character will replace the
character at the cursor position.

In insert mode, two cursors ap-
pear and the next character
typed will be inserted between the
characters marked by the cursor
locations {page 45).

Deletes the character

above the cursor (page 44).

Deletes a line from the

cursor to the end of the line (page
24).

Erases characters as it
backspaces (page 44).

16

Backspaces rapidly
(page 44).

Clears 16 lines of the dis-
play from the cursor position,
then rolls the information above
the cursor out of view and
homes the cursor (page 24).

Recalls information that
has “rolled” out of view. Pressing
rolls down information
that has most recently left the dis-
play, while rolis
up the oldest information saved on
the display (page 42).

Sets the system display
to graphics mode, showing the
current graphics display. Press
any alphanumeric key to return
to the normal alphanumeric dis-

play (page 189).

Cartridge Control

Rewinds the tape cartridge
(page 277).

Program Control

Typing aid to display
ALITO on the CRT display. The
AUTT command instructs the
computer to number program
statements automatically. You
may specify, at your option, the
beginning line number and renum-
bering interval; otherwise, the
system will number program lines
beginning with 10 and incre-
menting by 10. The #LIT com-
mand is then executed by press-

ing (page 86).

Typing aid to display
DEL E on the CRT display.
The DELETE command is used

to delete a line or a section of a
program. [iEL.ETE must be fol-
lowed by the line number, or the
first and last line number of a
section of a program to be de-
leted. The ELETE command

is then executed by pressing
(page 103).

Immediate execute key
which halts a running program
without otherwise affecting the
program. Produces an audible
beep when interrupting program
execution (page 105).

immediate execute key
used to continue execution of a
program that has been halted by
a FALIZE statement (page 106).

Initializes (allocates mem-
ory to) a program without execut-
ing it (page 107).

Executes a single program
statement. The program must
first be initialized by either F1LIH or
IHIT before you can single
step through it (page 251).

Immediate execute key
which first initializes the current
program, then executes it (page
107).

Typing aid to display
L.tAD on the CRT display. The
Li1AD command loads a speci-
fied file from mass storage.
LA D must be followed by a file
name within quotes or a string
expression that specifies the file
name. The command is then ex-
ecuted by pressing (page
28).

Typing aid to display
ZTIREE on the CRT display. The
ZTORE command stores a
specified file onto mass storage.
ZTORE must be followed by a
file name within quotes or a string
expression that specifies the file
name. The command is then ex-
ecuted by pressing (page
35).

immediate execute key
which displays one full screen of
the current program in memacry
starting at the beginning of a pro-
gram. Each successive time

is pressed, another screen
full of program lines is displayed
until the end of the program is
reached. Following the list of the
last program fine, LI =T displays
the remaining number of memory
locations (page 81).

Immediate execute key
which will list the current program
in its entirety on the system
printer. Press any key to halt the
printer listing (page 81).

Printer Control

Moves the paper one line.
If the key is held down, the pa-

per advance will repeat until the

key is released (page 42).

17

Immediate execute key
which copies the exact contents
of the display onto the internal
printer (page 41).

System Commands

Returns the computer to
its condition at power on, except
that programs are not erased
(page 486).

Performs a functional test
of the processor and built-in
peripherals {page 46).

Typing aid to display
ZIZEATOH on the CRT display.
The ZCREATOH command
clears main memory. The com-
mand is executed by pressing

(page 84).

Section 1

Getting Started

In this section, we will discuss many topics in relatively few pages so that you can:

e Do a wide variety of calculations in just a few minutes.
e Begin using the editing capabilities of the computer.

o Use the tape cartridges.

e Begin programming.

e Have some fun!

It is our intent to ‘‘get on board’" fast! For this reason, some of the more sophisticated concepts are greatly

simplified or reserved for later sections.

After working through this section, you’ll have enough background to try things on your own, which is actually the
best way to attain a good working knowledge of your personal computer. And don’t worry, you can’t damage the
HP-85 with any keyboard operation!

Power On

Before switching on the HP-85B for the first time, please observe the following precautions:

CAUTION

Do not attempt to install or use an HP 82903A 16K Memory Module in your HP-85B. The 16K memory
module is intended for the HP-85A and may cause physical damage to the circuits of the HP-85B.

Do not attempt to use a plug-in Mass Storage ROM (part number 00085-15001) in your HP-85B. The
Mass Storage ROM is designed for the HP-85A and may cause physical damage to the circuits of the
HP-85B.

Do not attempt to use HP-87 plug-in ROMs or duplicate HP-85 ROMs. For example, if your HP-85B
comes equipped with a built-in 1O ROM, then do not install a plug-in |/O ROM in a ROM drawer. Such
duplication can create error conditions and will not increase computing power.

21

22

Section 1: Getting Started

If the system is turned off:

Set the power switch, located on the rear panel of the computer, to the ON position.

When the cursor (underscore) appears after approximately 8 seconds in the upper left hand corner of the

display (the “home” position), the HP-85 is ready to use.

If a tape cartridge is present in the tape drive, the system will search for a program tape named ‘‘Autost”’
(for automatic start). The autostart routine permits the computer to load and run a program without operator
instructions. More about this later.

The system automatically runs through a self-test routine when the power is switched on. If it finds a

problem in the system circuitry, it will beep and display E¢ e 23 or Frror 1

This message means that your system is not operating properly; contact your local authorized dealer or

your nearest HP sales and service office (addresses supplied in the back of this manual).

If the system is switched on and the tape drive is not being accessed, but the display remains blank, hold
down the key, then press (RESET). This operation resets the system to a ready state (see page 46).
Also adjust the display intensity knob on the rear panel of the system. If the display still remains blank,
first check the power connection and the fuse, as described in appendix B. For further assistance, call your

nearest HP dealer or HP sales and service office.

If the system is on and the cursor is in the home position, you are ready to go!

Before we begin, make sure that the key is released to the same level as the other keys.

Manual Problem Solving (“Calculator’ Mode)

Let’s try a few simple calculations to get the feel of your HP-85.

Type in the problems as you see them under the column marked Press. You may use either the numbers and
arithmetic operators conveniently located on the right side of the keyboard or the numbers and symbols on the

typewriter part of the keyboard. When you press , the answer will appear on the line below your input.

Note: Any spacing that you use between characters, in manual calculations or in program statements, is
unimportant. When you list a program, the HP-85 adjusts the spacing of statements so that they can be
output in their most legible form.

Section 1: Getting Started 23

If you should make a mistake while typing the following problems, simply press the key to erase the incorrect
character, correct your mistake, and then continue keying in the problem.

To Solve Press

5+6 5 (+)6 (E%)
9% 8 9 (»)8 (B)
2° 2 ()9 (@)
V7921 SQR(7921) (Eh2)

Sine of 3.3 radians SIN(3.3)

The result appears below the

problem, indented one space.

The system ‘‘wakes up’’ in radians

mode. You can change it to degrees

mode by typing DEG .

Arithmetic expressions are typed algebraically—just as you would write them on paper. Functions, like SQR and
SIN, must be followed by the ‘‘argument’” (or number) enclosed within parentheses. A complete list of functions
may be found in appendix D. And, as you have seen, you must press to tell the system to solve the problem.

Simple Display Editing
Next, let’s make some intentional errors and learn how to correct them. Suppose you wish to type the expression
=%+, but by mistake, type the following (don’t press):

At this point, you realize that the #ishould have been a left parenthesis. The line could be corrected by backspacing
and retyping. Let’s save some typing time by pressing the C_:) (cursor left) key. The @ key enables you to
backspace without erasing characters that are already on the display. Press the @ key until the cursor rests under
the . Then type *.

Now finish the problem by holding down the @ (cursor right) key, until the cursor is past the = in Then

type:

The whole line should appear as:

When you press , the answer will appear (&). Parentheses specify which operations are performed first—

more about this in section 3.

As you may have guessed, just as the and @ move the cursor back and forth on the display, the (cursor
up) and @ (cursor down) keys move the cursor up and down on the CRT display. Thus, you can edit any line on
the display (and more, as we shall see later). Finally, the (home) key returns the cursor to the home position on
the display.

Forexample, using the @ key, move the cursor up the display so that it rests under the in .
problem that you solved above. Now, using the @ key, move the cursor so that it rests under the . Then type 980.

24 Section 1: Getting Started

Now the line should read:

When you press , you will be finding the square root of the new number, 9801. The answer, %, will appear

below the line you edited; the cursor will appear below the answer, ready for another problem.

Note that you did not have to move the cursor past the right parentheses in the problem above before you pressed
. The cursor may rest anywhere directly under the problem that you wish to enter into the computer. The HP-85

will read the full line, regardless of the cursor placement under the line.

Remember, what you see on the display, is what you get. If you have extra characters on the same line as you are
editing, be sure to clear them before you press . You can erase characters to the left of the cursor by pressing
and erase characters to the right of the cursor by pressing the space bar or by pressing .

Clearing the Display
The (clear to end of line) key clears a line from the cursor to the end of the line.

The keys clear the display and return the cursor to the home position. Typing i
also clears the display. Sixteen lines of the display are cleared, beginning from the line of the cursor. The

lines above the cursor are rolled up so that they are out of view. To recall them to the display after pressing
(CLEAR), press the (roll down) key.

If you have been following along with the examples, the display should look like this:

After editing and executing this line ...

... the cursor rests here.

27, you will be executing the function
again. Instead, do the following:

Type Display
5/4 o

Here, you replaced the letters I+, with % .-4. Before you can execute the expression you must clear the char-
acters © .3, 3. You can do this by pressing the space bar until the cursor moves past the right parenthesis. But

a faster and easier way to erase the characters is to press (=LINE).

Press Display

~LINE
END
LINE

Characters from cursor to end of line are
now deleted.
Result.

Section 1: Getting Started 25

Why don’t you press now, to clear the display before we continue?

Error Messages and Warnings

If you attempt an improper operation, the HP-85 beeps and displays the word or
followed by a number and short description. The error number corresponds to a particular error condition that will

help you pinpoint the error. A complete list and description of error messages is provided in appendix E.

There is no need to worry if the HP-85 returns an error or warning message—no keyboard operation is capable of
damaging the system. Furthermore, most errors can be simply and easily corrected by editing the line in which the

error occurred.

For example, executing the following expression will display an error message:

This expression is not complete because the right parenthesis has been left out. The system cannot interpret the
expression so an error message is displayed and the cursor returns to the position in the expression where the system
first detected an error—in this example, the asterisk. The cursor returns to the line you have executed when the
system interprets an attempt to enter a program statement. (Actually, the system tries to interpret a line first as a
program statement and then as an expression. If both attempts fail, the system reports the first error it finds.)

Now you may either edit and correct the line, or clear it by pressing , or clear the whole display by pressing

sHIFT) [CLEAR)

Or you can forget about the error and use the arrow keys to position the cursor elsewhere on the display.

With most errors that occur during math calculations, the system displays a warning message and a default value.
Then the cursor moves to the beginning of a new line.

For example,

Division by zero causes a warning
message and the default value to be
displayed.

The cursor moves to the beginning of a
new line.

Here, the system alerts you to the error, and then waits in a ready state for you to enter another expression.

Variables
Often it is convenient to assign values to letters and then use these letters in expressions. In programs, a letter can
have its value continually updated or changed—hence the term *‘variable.”” But you can also perform variable

arithmetic straight from the keyboard.

26 Section 1: Getting Started

Example: Suppose you receive a telegram from your archaeologist
friend, Arthur I. Factus, in South America. He’s soon joining an expedi-
tion through the rain forest and writes, ‘‘PLEASE SEND UMBRELLA
IMMEDIATELY.” You find a shallow rectangular box, 24 inches wide
by 32 inches long. What is the maximum length of an umbrella that will

fit inside the box?

You can easily determine the diagonal length of the box, using the Pythagorean theorem, d = VI2 + w2, where
d is the diagonal, [is the length of the box, and w is the width of the box.

One way to solve the problem is to type the following:

Here, you substituted the dimensions of the box for the variables in the formula. When you press , the answer,

&1, appears on the next line.

Another way to solve the problem is to assign the dimensions of the box to variable names, type in the formula, and
let the HP-85 do the substituting. A variable name can be either a letter of the alphabet or a letter followed by a
number O through 9.

First, ensure that the paper roll has been properly installed in the system, (refer to appendix B) and then type:

END
LINE

Note: To conserve power, the display turns off when the printer prints.

Then:
Press Display Printer
W =24 Assigns width of box to & = #d
w.
L =32 P Assigns Iength of box to P
L.

D=SQR(WA 2+ LA2)

END
:

Z+1L.7& % Evaluates expression and
assigns a value to D.
Fetches the value of D
and displays it.

You can assign a numeric value or the result of an expression to a variable name, as shown above. Whenever you
wish to recall the value of an assigned variable, type the variable name and press . (Although it may be extra
work for this problem, variables are extremely useful in programs in which the values of variables are always
changing.)

And you can see the printer has preserved a record of your calculation. Press the paper advance, located in the upper
right-hand corner of the keyboard, and save this printout. You are going to use it to write a BASIC program for the
HP-85. But first let’s look at a prerecorded program—one of the 15 that are included with the Standard Pac shipped
with your computer.

Section 1: Getting Started 27

With the system in print all mode, you will have a printed copy of everything that you type and that the computer
displays. If you wish to cancel print all mode, type:

END
LINE

i command returns the system from print all mode to normal display mode.

The

Running a Prerecorded Program

The Standard Pac magnetic tape cartridge shipped with your HP-85 contains 15 prerecorded programs. By using
programs from the Standard Pac (or from any of the optional application pacs available in areas like finance,
statistics, mathematics, engineering, linear programming, beginning BASIC programming, ...) you can use your

HP-85 to perform extremely complex computations just by following the directions in each pac. Let’s try running
one of these programs now.

Loading a Program From the Standard Pac

1. Before you insert the Standard Pac tape cartridge, make sure that the RECORD slide tab is in the left-most

position (as shown). This will protect your tape, so that no other programs can be accidently recorded on the
tape.

When the RECORD slide tab is in the left-most position (the opposite direction of the arrow), nothing can be
recorded on the tape; your tape is protected.

Insert the tape cartridge so that its label is up and the open edge is toward the computer. The tape drive door
will open when the cartridge is pressed against it; the cartridge can then be inserted. (To remove the tape

cartridge, you must press the eject bar. If it is pulled out without pressing the eject bar, another cartridge
cannot be inserted until the eject bar is pressed.)

28 Section 1: Getting Started

3. To load the Calendar Functions program, type:

. i+ (END
LOAD LINE

The . command instructs the computer to find the specified program on the tape cartridge and then load

it into computer memory. The CRT screen will blank out while the HP-85 is searching for and loading the

program. And an amber light, located to the left of the eject bar, will glow while the cartridge is being used to
let you know that the system’s attention has been transferred to the tape drive.

4. When the cursor returns to the display and the amber tape drive light goes out, press the key to start the
program. After you press (ru), the following should appear on the display:

F Display

Key Labels l

-t Special Function
Keys

Many of the programs in the Standard Pac use the special function keys. This is how they work. The bottom two
lines of the display correspond directly with the special function keys on the keyboard. The bottom line of the
screen displays the labels for the unshifted keys, @ through ; the line above it refers to the shifted keys,

through .

The key labels will remain on the display until they are over-written by characters that you type or that the HP-85
displays. In any case, you can always display the current labels on the screen by pressing .

With SELECT 0FT LM and the key labels displayed, you are ready to use the program.

Example: How many days are there between November 25, 1945, and July 25, 1954?

Solution: Since this may be the first time you've used the Calendar Functions program, let’s ask for help.

Section 1: Getting Started 29
For a more detailed explanation of the key functions, press .

Use @ (D1/D2—) to enter the two
dates.

Then use (A DAYS) to find the num-
ber of days between the dates.

is not used in the Calendar program.

If you wish to have a printed copy of the display as you see it, simply press .
Now let’s continue—enter the dates:

Press Display

)

This means you key in the date in the form: month (01 to 12), decimal point, day (01 to 31), year (four digits).
Press after you type the date to enter the data into the program. Thus, to enter November 25, 1945, and July 25,
1954:

Press Display
11.251945

07.251954

Now that the dates have been entered, press @ (ADAYS) to find the number of days between the dates:

Press Display

With the HP-85 finding days between dates is that easy! Should you run into difficulties using the Calendar

Functions program, refer to the user instructions in the Standard Pac.

Before we leave the calendar program for you to explore on your own, let’s use the program to generate a calendar

for January 1980 and demonstrate just some of the graphics capabilities of your HP-85. First clear the display.

30 Section 1. Getting Started

Press
Function key (PRT-CAL) requests
1,1983

a numeric entry for the month (1-12)

and year. Again, enter data into the

computer using (F2).

Here’s your chance to be creative! You can type anything that will fit on one line. If you want your heading to look
like ours, type:

END
LINE

Now, watch the HP-85 go to work as it first **draws’’ the calendar on the video display and then copies it onto the

printer. The display will blank out while the printer is in operation. When the printer has finished, you will have a
printed copy of the calendar that appears on the display:

You may want to know the names of the other programs on the Standard Pac tape cartridge. But before you can

view the tape directory (catalogue of programs on the tape), you must stop the calendar program from running,

Halting Program Execution

Press the key to halt a running program at any time and return system control from the program to the user.

(The system beeps when is pressed and the program is running.) You may resume the execution of a paused
program by pressing (continue).

Section 1: Getting Started 31

Now let’s take a quick look at the catalog of programs on the Standard Pac tape cartridge. First press
to stop the calendar program, then type:

Return the system to normal display mode again by typing

END
LINE /.

The &

about the files. We will discuss the tape filing system in more detail in part III. For now, just note the names of

T (catalog) command returns the names of the programs on the tape along with some other information

the programs in the left-most column.

You have seen from the calendar functions example how simple and how much fun it is to use your HP-85. You can

run the program again as often as you like. And you can begin using your Standard Pac, or any of the optional

application pacs, right now. Load any program stored on tape using the .{i#{!command, followed by the program
name in quotes. All you have to do to begin taking advantage of the computing power and programmability of the

HP-85 is follow simple instructions like these.

Writing Your Own Programs

If you have never written a program, you may possibly feel uneasy about programming. No need to worry! BASIC
is easy to use, yet enables you to perform many complex operations.

BASIC makes use of statements that resemble English. Once a statement is explained, its function is easy to

remember. A BASIC program is made up of numbered statements which direct the system to perform certain tasks.

Earlier, you calculated the diagonal of one side of a rectangular box, and you may have saved the printed copy with
the values and formula for the problem. Now, if you want to calculate the diagonal of several rectangles (or the
hypotenuse of any right triangle), you could repeat the procedure, using different values for the dimensions of the
sides. Or you could change the values of the variables using the editing capabilities of the HP-85.

32 Section 1: Getting Started

The easiest and fastest method, however, is to create a BASIC program that will compute the diagonal of any

rectangle.

Creating the Program

Essentially, you have already created it. When you write a program, you must ask yourself the following questions:

1. What answer(s) do I want?

2. What information do I know?

3. What method will I use to find the solution from what I know?
4.

How can the HP-85 help me solve the problem?

We want to find the diagonal of any rectangle. We know that we can use the Pythagorean theorem to compute the
diagonal given the lengths of the sides of the rectangle. Thus, we know that we must assign values to two variables
and then compute the result using the given formula. We’ll answer the other two questions below (and discuss the
details of BASIC programming in part II of this handbook).

For now, notice that each statement begins with a number and the last statement of a program is & 1. (You may

wish to clear the display before you key in the program; press .)
Entering the Program

To enter the program into the system:

1. Press and then press to clear the computer and erase previous programs from computer
memory.

2. Type the following program exactly as shown (including the statement numbers), pressing after each

statement.

Statements 10 through 40 display
the quoted text on the CRT screen.

Audio, as well as visual, prompt!
Enables you to assign values to L and W

from the keyboard.

..... o TOE e W B Computes the hypotenuse.

Prints quoted message and value of D.
Marks end of program.

Running the Program
To run the program, simply press the key. Find the length of the hypotenuse of a right triangle with sides
7.5 inches and 10 inches.

Press Display

Beep!

7.5,10

Section 1: Getting Started 33

Now the HP-85 will print the result:

You can run the program as many times as you like, simply by pressing the key.

An Averaging Program

Since you may not be sending umbrellas to South America in the near future, or calculating the hypotenuses of right
triangles or the diagonals of rectangles, let’s write a program that may be of more use to you, and then record itona

tape cartridge.

This flowchart outlines the steps in a program that enable you to enter a set of numbers and then find their average.

START

LET
S=0
N=0

KEY IN A
NUMBER (X)

rPRINT N, S/N J

END
First, we initialize the variables we will use. S will be the sum of the numbers, N determines how many numbers are
being averaged, and X represents each new number.

When you key in zero, the program stops asking for new numbers and prints the average of the numbers you

have keyed in.

Before you key in the following program, be sure to press to erase the previous program.

And let’s use the key to provide us with statement numbers automatically, so that we don’t have to type them

ourselves. Simply press and the system will display:

Then press and the system will display ? Ziand wait for you to enter a program statement. After you enter the
statement by pressing , the system will display : ;
command numbers statements beginning with 10 and in increments of 10. (You can also change the starting number

and wait for another statement to be entered. The ¥

and increment value with the #.i7 {i command, as we shall see later.) Stop auto line numbering by backspacing

END
LINE }.

over the unwanted statement numbers and typing -

34 Section 1: Getting Started

Now enter the averaging program below. From now on, we won’t be showing the key with the program

listing, but, it must be pressed after each statement. When the system displays the statement number, enter the

rest of the statement and press .

ST

FRAVERAGEE

THE HUMEER
E 'R TO EHD
FROGEAM. &
THEH 1728

SWERAGE OF
My UHUMBERS

Let’s take an example to test the program.

o,

Press for automatic
line numbering.

Remark.

Initialize variable S.

Initialize variable N.

Display quoted message.

Assign a value to X from the keyboard.
Check X to see if it is 0.

Add X to sum.

Add 1 to counter.

Go back to line 70 to enter a new
number.

Display result.

Marks end of program.
Now backspace over i and type

- to stop auto line

numbering.

Example: What is the average of the distances in light-years of the five brightest stars (aside from the sun) seen

from the earth?

Star Distance (light-years)

Sirius 8.7
Canopus 100
Alpha Centauri (Rigil Kentaurus) 44
Arcturus 36
Vega 26.5

Press Display

RUN TER

8.7

100 (B

4.4

36 (D)

26.5

0D i

Section 1: Getting Started 35

Recording the Program

Just as the programs in the Standard Pac have been recorded on a magnetic tape cartridge, you also can record your
own programs on a cartridge.
To Record Your Program:

1. Select a blank magnetic tape cartridge. Use only HP Data Cartridges with your HP-85.

2. Check to see that the slide tab is moved in the direction of the arrow (as shown). When the
slide tab is in the opposite position, your cartridge is protected; that is, you cannot record

anything on it or delete from it.

{ ?ﬂ\ CERTIFIED DATA CARTRIDGE
1 _ﬂ)] WE WL E T T AL KARD

MBS mer N FB2O0A 5 Tartuiges:

When the [RECORD= | slide tab is in the position shown, you can record programs on the tape or delete

existing programs from the tape.

3. Insert the cartridge so that its label is up and the open edge is toward the computer. (If the Standard Pac is
still in the tape drive, take it out by pressing the eject bar.)

Note: The
you wish to erase all of the existing programs on a tape.

~ command should only be performed the first time you use a new tape or when

4. Type i . This command erases the tape and in the process, sets up a ‘‘directory’” so

that your programs can be filed.

5. Now, decide what you want to name your program. Pick something that will remind you of the program—a
name no longer than six characters. However, any combination of characters may be used, except quotation
marks. Then press the key and type the name of your program enclosed within quotation marks. If you
want your program to be stored like ours, type:

END
STORE, LINE

When you press , the HP-85 records your averaging program on the magnetic tape cartridge in its own ““file.’

[}

Again, notice that the CRT display is turned off to conserve power while the cartridge is accessed.

That’s all there is to it! To record future programs on the same tape cartridge, you simply follow step 5 again.
Future programs will automatically be stored in separate files.

You can verify that your program has been stored by executing the ©HT command as we did earlier. The

information displayed will be discussed later.

36 Section 1: Getting Started

Erasing a Program From the Tape Cartridge

An averaging program may be of no use to you, so before we go on to the next section we’ll tell you how to erase a
command. First, make sure that the RECORD slide tab is in the right-most

specific program file using the ¥

position. Then:

1. Type ¥
2. Type the name of the program or file you wish to delete from the cartridge, enclosed within quotation marks.

3. Press to purge the specified file.

If ““AVERAG" was the name you used for the averaging program, simply type:

END
LINE

Your program or file will be erased, ready for something else to be stored there. You can store many long programs

on one tape, so you don’t have to purge little-used programs constantly.

Mass Storage Options

The HP-85 enables you to store and recall programs using tape cartridges, flexible discs, Winchester hard discs,
and the built-in electronic disc. Part III of this manual describes the mass storage operations available to the
HP-85.

HP-85A and HP-85B Programs

Any program that runs on the HP-85A will run on the HP-85B, with the following restrictions:
e All enhancement ROMs required for the HP-85A program must be installed in the HP-85B. (Do not
install the HP-85A Mass Storage ROM, the 16K memory module, or duplicate ROMs.)

¢ All peripherals used by the HP-85A program must be properly interfaced to the HP-85B and must be “on-

line.”

e Any binary program required by the HP-85A program must be present in HP-85B main memory. (Use the

4 command, section 14.)

)

command. (Section 14 describes the one-time

e A tape-based HP-85A program that includes mass storage statements (such as ¥ # and L

must first be translated using the

procedure.)

Notes

37

Section 2

Keyboard, Printer, and Display Control

Now that you’ve had a chance to familiarize yourself with the HP-85, let’s look at some of its features in greater
detail.

The Keyboard

As you've noticed, the keyboard is divided into the following areas:

Typewriter Keyboard

Numeric Keypad

Special Function Keys

Display Control and System Command Keys

Some of the features in each area were discussed in section 1. The rest of the display editing features will be
discussed in this section. The remaining keys are helpful in a variety of ways—as typing aids, in running pro-
grams, using the printer, and recording programs on tape. The keys are described, in appropriate places,

throughout this manual. Refer to the HP-85 key index on pages 16 and 17.

Typewriter Keys

The alphanumeric keys operate much like those on a standard typewriter keyboard. If, for instance, you want to
display the dollar sign, #, you must hold down the key while you press . You must also use the key to
select any command or symbol on the upper half of a key. But we won’t be showing the key in the keystroke
sequences in this handbook.

If the command is a shifted operation, it will appear in the upper half of the key. For instance, when you see . it
means you must hold the key down while you press .

The HP-85 keyboard differs from a standard typewriter in two major ways:

e Unshifted letters appear as capital letters on the display (unless you use the i & command, as we'll see

in a moment).

e All of the keys repeat automatically if you continue to hold them down.

BASIC Typewriter Mode

Unshifted letters initially appear as capntals on the display because the standard BASIC language requires its
“‘keywords’’ (like i

4, etc.) to be in capital letters.

A SO

In BASIC mode you can select small letters by using the or keys with the alphabetic keys.

Thus, when you press @, acapital “**A’’ appears on the display; when you press @ while holding down the
key, a small **a’” appears on the display.

39

40 Section 2: Keyboard, Printer, and Display Control

The key operates like the on a standard typewriter except that if the key is pressed and locked in BASIC
mode, alphabetics appear as small letters. Once the key is pressed, it remains locked until you press it again.
Note that only the 26 letters of the alphabet are affected by the key.

Normal Typewriting Mode

If you wish to type in *‘normal typewriting mode’” where unshifted letters produce small letters and shifted letters
~"and press , the unshifted

Whenever you type i~

case switches from small letters to capital letters or vice versa.

Programming Note: Even though standard BASIC requires “keywords” to be in capital letters, the HP-85
will interpret keywords and variables that are typed in either uppercase or lowercase letters. Thus, the
following program, typed in normal typewriting mode, is legal:

As soon as you list the program, the small letters in keywords and variable names are converted to capital
letters, but strings (quoted text) and remarks will remain as typed.

HP-85 Character Set

The HP-85 character set consists of 256 characters, 128 of which are directly accessible from the keyboard.

You can see the uppercase letters, punctuation and other typewriter symbols on the face of the keys; and you’ve seen

how lowercase letters can be accessed using , , or the i

Five more characters can be accessed with the key. Thirty-two more characters are accessed with the key.
The remaining 128 characters can be accessed with the

underscored.

The extra shifted characters are:

To access these characters,

use operators from the numeric

keypad only.

The characters are those in the first column of the table of characters in appendix C. The control char-
acters are so-called because they can be used to control the behavior of external devices, such as printers. They
are generated by holding down the key and pressing the key that is superscripted by a “c” next to the

character in the table.

shifted symbol, generate the character 4 by holding down the key and key and pressing
(@).

Section 2: Keyboard, Printer, and Display Control

When the key is latched, it is necessary to press both the key and key to generate control

characters.

Each of the characters is assigned a decimal code, from 0 through 255. These codes are useful in advanced

programming. We’'ll discuss character codes in section 8, Using Variables.

Printer Control

The HP-85’s built-in thermal printer prints 32 characters per line.

Access Cover

Printer Intensity

Paper Advance

Adjust the intensity of printed characters by rotating the printer intensity dial, located to the left of the paper

roll. The lightest setting is when the dial shows 0; the darkest setting is when the dial shows 7. You can extend

the long-term life of the printer by setting the printer intensity dial to 4 or less.

There are several ways to access the printer:

e Pressing the key produces a printed copy on the built-in thermal printer of whatever is currently
displayed on the CRT screen. The key can be pressed to copy either the alphabetics or graphics on

the display. You can also copy the alpha screen by typing:

e Executing the

.. command sets the HP-85 to print all mode; everything that you enter into

the system and every message or result that the system displays will be recorded by the internal thermal

printer.

:
Return to normal display mode by typing:

42 Section 2: Keyboard, Printer, and Display Control

Note that the CIiF"% and FRIMHT HLL commands apply to the built-in thermal printer only.

e And, of course, whenever you execute the FEIHT statement, either manually from the keyboard or in a
program, the FF IHT message will be output to the printer. FEIMT statements may be directed to an
external printer by means of a Plotter/Printer ROM, an interface between the computer and printer, and

the FEINTER 1% statement (section 10).

To advance the thermal printer paper, press the key, located in the upper right corner of the keyboard.
To advance the paper more than one line, simply hold the key down until the paper has advanced the

desired amount. To replace the paper roll, refer to appendix B.

The Display

The CRT (cathode ray tube) display consists of a 32-character by 16-line display screen and is the primary means
of editing programs, and of viewing data, keyboard entries, program listings, error messages, system comments,

and results.

You can increase the intensity of characters on the display by rotating the display intensity knob in the direction

of increasing width of the brightness symbol.

LIMITS, PART 15 OF FCC RU{:
SEE INSTRUCTIONS |
TO RADIO RECEPTION S ¢

X~RAYS GENERATED IN THIS INSTRUMENT
ARE SUFFICIENTLY SCREENED.
DIE IN DIESEM GERA TSTEHENDE
RONTGENSTRAHL IST
AUSREICHEND ABG: IRMT

ACCEL. VOLTAGE/BESCHL SPG £ 20kV

ﬂ Display Intensity Knob

BRIGHTNESS

You can display a maximum of 16 lines at any one time, but you actually have immediate access to four full

screens’ worth (64 lines) of information.

The key is used to recall information that has *‘rolled’’ out of view. There are three full screens of past history,
plus the current screen, available for rolling up or down. You’ll appreciate the key when you are writing,
reviewing, or listing lengthy programs.

When you hold down the key, information in the display will *‘roll down’” to reveal the lines most recently

lost.

When you press , information in the display will *‘roll up’’ to reveal either the oldest lines (if no previous
rolling has been done) or lines that have been rolled down (if some previous rolling has been done).

Section 2: Keyboard, Printer, and Display Control 43

Entering Long Expressions

Suppose you wish to solve a lengthy numeric expression like:

350 2. 3.5 ~5.2656 0.286
5 ({[(l +0.2[—]) —ﬂ E—(6.875 X 107%) 25,500] }+l) -1
661.5

Do you have to break the expression into parts and solve one line’s worth of the problem at a time?

No! An expression can contain as many as 95 characters (including spaces) or three full lines of the display minus
one character position for .

Before we attempt to evaluate the long expression, press one of the character keys, such as the @ key. and continue

to hold it down until it repeats across the display.

As long as you hold down the @ key, row after row of asterisks will be repeated across the display. There is no
need to press at the end of the line on the display; when the cursor reaches the end of a line. typing another

character automatically sends it to the beginning of the next line.

Now press to clear the display. As you type in the following expression, notice that when the cursor is at the
end of a line, typing automatically sends the cursor to the next line. Don’t press until you have keyed in the

entire expression.
Typing merely continues on the next line.

Now press to execute this

expression.

The answer.

The 95-character maximum length of an expression also applies to program statements (including line numbers).

For instance, in the Pythagorean theorem program in section | we typed:

END
LINE
] ENO
LINE
i END
. LINE
END
LINE

44 Section 2: Keyboard, Printer, and Display Control

But we could have entered the display message in one statement, like this:

END
LINE

Again, at the end of a line on the screen, the cursor automatically moves to the beginning of the next line. But you
must press to enter the program statement into computer memory. marks the end of an expression or

statement and positions the cursor at the beginning of a new line.

What happens when you fill the display with characters, or type more than 95 characters in an expression or
statement? The HP-85 will allow you to key in four full screens worth of characters as long as you don’t press .

But, if you try to enter an expression consisting of more than 95 characters by pressing ,i you will probably get
odd results. The system will try to interpret the most recently typed three lines of the display, yielding either an error

message or interpreting only part of what you keyed in. If you are confused, execute the ¥ command

and the system will echo exactly what it understood your line to be.

Display Editing

In section 1, we introduced the following display editing features of your HP-85:

Cursor Left These keys merely position the cursor in the
Cursor Right display without erasing characters. The vertical
Cursor Up and horizontal arrow keys repeat automatically if

i) Cursor Down you continue to hold them down.

g9 00

Home .
oLear Clears the display. L ‘iau, “
SLRATCH

Deletes a line from the cursor to the end of a line. "é;ﬂ ﬂn

SPACE The space bar moves the cursor forward one ag n ‘
space, or, if held down, repeats automatically. Lnet 1" ' "‘
If characters are already present on a line when you press the space bar, they will
be replaced with spaces.

Erases characters as you backspace. The key repeats when held down continuously.

There are three more important display editing features: (fast backspace), (delete character),

(insertireplace).

Fast Backspace

If you press both the key and the key at the same time, the cursor will rapidly backspace, erasing
characters at the same time. To protect the user from accidently erasing the whole screeen, @ B“C" moves the cursor
back to the beginning of a line, not to the home position of the display. But if you continue to hold down @ , it

will repeat rapidly, erasing the next line above.

Deleting Characters

The key enables you to delete a character from the display, without leaving a space in its place. If you hold
down the key, it repeats automatically.

Section 2: Keyboard, Printer, and Display Control 45

Example: Type, without pressing :

But what we meant, of course, is that soon we will delete =. Move the cursor with the key, so

that it rests under the # and press once.

Now move the cursor back to the beginning of the sentence, again with the @ key. Then hold down the key

to delete

And this can be deleted with the stroke of one key. Press to delete the rest of the sentence.

Example:; Change:

to:

Position the cursor under the plus sign between and %, in the first expression, then press until
' ' has been deleted. Now press to get a result of

Inserting Characters

When there is only one cursor on the display, the computer is in replace mode. In other words, when you type
characters ‘‘on top of’ characters that are already in the display, those characters are replaced by the ones you type

in.

The (insert/replace) key alternates between insert and replace mode, allowing you to insert characters in a

line that has already been typed. For instance, type the following without pressing (Fi2):

Suppose you really wanted the cosine of 2.3 radians not 3 radians. Move the cursor back under the 3 using the @
key, press , and type .. Now the display should show:

When you pressed , another cursor appeared to the left of the original cursor. The double cursor informs you
that the computer is in insert mode, and tells you that the next character typed will be inserted between the two

Cursors.

Like the single cursor, the double cursor can be positioned anywhere in the display with the arrow keys. But when
you press the second cursor will disappear.

After you have inserted the desired characters, press the @ key once again to remove the second cursor from the
display and return to replace mode.

You can insert as many characters as you wish into an expression or a program statement. But make sure that the
final expression does not extend beyond three display lines or 95 characters.

46 Section 2: Keyboard, Printer, and Display Control

If you press in insert mode, the character above the right cursor will be deleted and the system will return to
replace mode automatically.

System Self-Test
Should you feel that the HP-85 is malfunctioning, press the key while holding down the key.

This causes the system to run through an electronic check of all internal components, including main memory,

system ROMSs, enhancement ROMs, display, and printer.

If everything is working properly, the HP-85 system displays and prints the following characters at the end of
the test and then beeps:

The last two characters will vary,
depending on the contents of computer
memory.

The graphics display will be cleared, but programs and/or variables in computer memory will remain intact.

If the system is not operating properly, it will display:

T, or

nnnn where nnnn identifies a malfunctioning enhancement ROM.

If either message occurs, a problem exists in the computer’s circuitry; contact the nearest HP dealer or HP sales

and service office immediately for system repair.

Resetting the Computer

If the computer becomes inoperative due to a system or input/output malfunction, it may need to be reset. The
computer is reset and returned to a ready state by pressing while holding down (SHIFT). The display is

cleared, and the cursor is returned to the “home” position after about 5 seconds.

Resetting the computer immediately aborts all system activity. The reset operation returns the computer, as
well as some peripherals and interfaces, to a ready state. The reset operation is useful when you want to return
the system’s components to a known configuration before loading or running a program. In other words,
sets the trigonometric mode, data pointers, graphics scale and pen, timers, output devices, print all
mode, etc., to the same default state as when the system was switched on. If a program is running, any pending
or executing input/output operation is terminated and information may be lost. Note, however, that resetting

the computer will not affect the current values of program variables.

Refer to the Reset table in appendix C for a list of conditions affected by (RESET).

Notes

47

Section 3

Expressions and Keyboard Operations

In this section, we will discuss ‘‘expressions’’ and some of the components of expressions, as well as related
keyboard operations. An expression is any logical combination of numbers, characters, variables, operators, or

functions.
The section’s topics include:

e Arithmetic operators.

o Number ranges and number formats.
e Simple numeric and string variables.
e Relational and logical operators.

e Time functions.
The math functions will be discussed in section 4.

So that you’ll be familiar with operators, variables, and functions when we use them later in program statements,

we’ll discuss them in “‘calculator’’ mode (from the keyboard, not in programs) now.

Keyboard Arithmetic

You have already become familiar with the numeric keypad. Numeric entry is easy on the HP-85. The HP-85
requires only that you press after the expression is typed, in order to obtain the result.

The arithmetic operations that can be performed on the system are:

e Addition (+)
e Subtraction ()
e Multiplication ()
e Division ()
e Exponentiation (™)
e Integer division (- or 114}
e Modulo (M
To perform an arithmetic operation:

1. First key in the expression. (Either the numeric keypad or the typewriter keyboard may be used to type

numbers.)

2. Thenpress to execute the expression.
The result will appear under the line you executed.

49

50 Section 3: Expressions and Keyboard Operations

For example, multiply 8 by 3:
Press Display

8 ()3 B3
-

To raise a number to power, such as 83:

Press Display

8()3 o

1

END
LINE e

You do not need to use parentheses to raise a number to a negative power. For instance, compute 8-3:

i1

Press Display
8 ()-8 e
Resuit.
and
In addition to the usual arithmetic operators, +, —, %, .-, and ™, there are two more arithmetic operators that

may prove useful to you. These operators are i1 1%} (integer division) and (modulo). They are used just as

the other five operators are used.

Integer division (I I\ or -.) returns the integer portion of the quotient. In other words, normal division takes

place, but all digits to the right of the decimal point are truncated (not rounded) so that you only have the whole

number result. Integer division can be specified either by keying in ' or by using the symbol - for the
operator. For example:

Display
L Key in the expression.

Then press .

Given two values A and B, A 0114 E = IF{F.-EI; in other words, i/ returns the “integer part” of A

divided by B.
The

occurs, but instead of taking the whole number result as [

(modulo) operator returns the remainder resulting from a division. Like [* 1%/, a normal division

takes the remainder and returns it as

! does,

the result. For instance, when you divide 7 by 3, the division result is 2 with a remainder of 1.

return the 1 as the result of its operation, while [I ¥ would return the 2. For example:

Press Display Interpreted as
16 MOD 5 (F\D) 16 MO0 S 3*5 +1

1
—(8 MOD 3) (D) ~08 MO0 3 —[2*3) + 2]
(—8MOD 3 C-faMnn 3 (=3)*3 +1

Section 3: Expressions and Keyboard Operations 51

Given two values A and B, # M B = H- *: in other words, A minus B times the greatest
integer less than or equal to the quotient of A divided by B. A MOD 0 is A, by definition. From the definition, it

turns out that 0 < A MOD B < Bif B> 0and B < AMODB < 0if B <0.

It must be spelled out since it has no special symbol, they

Despite the fact that 71 1% can be spelled out, and ¥

are still operators and are used just as the other five operators are used.

Arithmetic Hierarchy

When an expression has more than one arithmetic operation, the order in which the operations take place depends

on the following hierarchy:

Exponentiation. Performed first.

o E, Modulo, integer division, multiplication, and division.

g Addition and subtraction. Performed last.

When an arithmetic expression contains two or more symbols at the same level in the hierarchy, the order of

execution is from left to right.

So an arithmetic expression such as 1+3%2 is equal to 7. The computer performs the multiplication before the
addition because of its hierarchy. What if, instead of computing 1+3*2, you really wanted 1+ 3 and the result times

2? Use parentheses.

Parentheses

The prescribed order of execution can be altered if you use parentheses. Using the example of 1+3 and then
multiplying the result times 2, you would type:

The answer, 8, is returned.

Note that only rounded, ¢ , parentheses may be used in numerical operations. The square brackets, , cannot be

used in mathematical calculations.

You may have more than one set of parentheses in an expression, but they must always be ‘‘paired up.”” If you leave
out a parenthesis (so that the expression can be said to be ‘‘unbalanced’’), the HP-85 will return an error message

when you press —it won’t even try to compute the answer.

When parentheses are used, they take highest priority in the mathematical hierarchy. When parentheses are nested
(i.e., when one pair of parentheses is contained inside another pair), like (5%(4—2)), the innermost quantity (4—2)

is evaluated first.

Suppose you wish to evaluate the following expression:

3 X6
(1—4)?

Key it into the computer in one line as follows:

52 Section 3: Expressions and Keyboard Operations

The computer scans an expression from left to right performing the operations of highest priority first. Thus,

the above expression would be evaluated as follows:

Subtraction (within parentheses).
Exponentiation.

Multiplication (to the left of division).
Division (before addition).

2o Addition.

Result.

Whenever you are in doubt as to the order of execution for any expression, use parentheses to indicate the order.

+. The

Using parentheses for *‘implied’”’ multiplication is not allowed. So 3(9—5) must appear as 5% &

operator, #, must be used explicitly to specify multiplication.

The RESULT Key

The value that is displayed after you press the key to execute a numeric expression is stored in a location
called “*‘RESULT."" It is obtained for use in other calculations by pressing .

For instance, what if you decided to multiply the result of our last calculation by 3.7?

Press
The key immediately displays

(=937
last result.
14 o Now 14.8 is the result.

Now suppose you wish to square this result:

Press Display

END R
LINE LA R

o Now 219.04 is the result.

" and i

The & IHTstatementand the [[

calculator mode, to have the results of calculations printed, or to output results concurrently. Both of these

statement are two important program statements. But they can also be used in

statements will be discussed further in section 5.

Section 3: Expressions and Keyboard Operations 53

If you wish to display the results of two or more equations simultaneously, use the Li “ statement and separate your

expressions with commas or semicolons. If you use commas, the results will be ‘‘spread apart,”” whereas

semicolons will cause the results to be packed together.

Examples:

Execute the statement by pressing .
Results displayed.

e i Press to display results.

Or, if you wish to output only the results of your calculations to the printer, use the statement. Press

to print results.

Examples:

T RIT

Standard Number Format

Your HP-85 has been designed so that for most computations, your results appear in an easy-to-read form, as

specified by ANSI*.

All results are calculated with the full precision of the computer. Results are displayed or printed in the following

manner unless you specify otherwise in a program statement. (Refer to section 10.)
In standard format:

e All significant digits of a number (maximum of 12 digits) are printed or displayed. For example, if you typed

it would be output as

e Excess zeros to the right of the decimal point are suppressed. For example, would be output as

e Leading zeros are truncated. For example, . is output as

e Numbers whose absolute values are greater than or equal to 1, but less than 10'? are output showing all

significant digits and no exponent.

e Numbers between -1 and 1 are also output showing all significant digits and no exponent if they can be

represented precisely in 12 or fewer digits to the right of the decimal point.

e All other numbers are expressed in scientific notation.

Let’s look at a few examples of standard format. In the following table, if you key in the number in the left

column and press , that number will be displayed in the format shown in the right column.

* American National Standards Institute.

54 Section 3: Expressions and Keyboard Operations

Number Standard Format
15.000 15

00.23500 .235

-.0547/9 -4.38415537301E-12
000987.5 987.5

1000016 1.E24

.01E4 100

120E-4 .012

Scientific Notation

In the right-hand column above, you see two numbers expressed in scientific notation. When you execute an
expression in which the result is too large or too small to be displayed fully in 12 digits, the number is displayed
with a single digit to the left of the decimal point, followed by up to 11 digits to the right of the decimal point,
followed by the letter E and an exponent of 10.

12-Digit Mantissa Sign of Exponent

——

Sign of Denotes Exponent of 10
Mantissa

For example:

Press Display

6000090000000

END
LINE

.00006*.00000009

END
LINE

Result, 5.4 X 102,

Result, 5.4 X 10712,

Keying in Exponents of Ten

You can key in number multiplied by powers of 10 (as in the last two examples in the table above), by typing

the number, then £, followed by an exponent of 10. For example, to key in 15.6 trillion (15.6 x 10!2) and
multiply it by 25:

Press Display
15.6E12*25

END
LINE

To key in negative exponents of 10, type the number, type E, and then type the negative exponent. For example,

Result.

type Planck’s constant (h)—roughly, 6.625 X 1077 erg seconds—and multiply by -50.

Press Display

6.625E-27*-50

END
LINE

Erg seconds.

Section 3: Expressions and Keyboard Operations 55

Range of Numbers

The range of values which can be entered or stored is —-9.99999999999 X 10%% through -1 X 107199, 0, and
1 X 107*% through 9.99999999999 x 104

Variables

Algebraic formulas usually contain names that represent assigned values.
These names are known as variables and, with the HP-85, specify a
location in memory where a value is stored. For instance, the formula for
the area of a circle, ¢ =7r?, contains two variables, ¢ and r. To use the

formula, you assign a value to r (radius) to solve for a.

Types

With the HP-85 you can specify either numeric variables or “character string” variables. Character strings, or
“strings” for short, can be composed of any valid characters and can be of any length—from zero characters to a
maximum limited only by available memory. But since numeric data is more often used, we will discuss numeric

variables first, then touch briefly on string variables. We’ll continue our discussion on variables in section 8.

There are three types of numeric variables allowed by the HP-85.

° .numbers are stored with the full precision of the computer. {..numbers are represented internally
with 12 digits and a three-digit exponent in the range of —499 through 499; in other words, a 12-digit number in
the range -9.99999999999 X 104 through -1.00000000000 X 107**, 0, and 1.00000000000 X 107#%
through 9.99999999999 X 10**.

o “numbers are represented internally with five digits and a two-digit exponent in the range -99 through
99; in other words, a five-digit number in the range of -9.9999 X 10% through -1.0000 X 107, 0, and
1.0000 X 10~% through 9.9999 x 10%.

o numbers are stored with five digits, with no digits following the decimal point. The range of

integers is -99999 through 99999.

All numbers are full precision (real) unless you specify otherwise. But you can conserve computer memory if you

designate &=iH " or IHTEGER numbers; refer to page 152.

Forms

There are two forms that a variable may have:

e Simple.

e Array (subscripted).

With simple variables, you assign a numeric value or expression to a name. Arrays are convenient for handling large

groups of data within a program.

56 Section 3: Expressions and Keyboard Operations

Simple variables can be assigned values either in calculator mode or within a program.

Calculator mode variables are temporary—they are cleared from memory whenever you run a program or press

or (RESET). Use them when you want to calculate immediate results from the keyboard. Other-

wise, use variables in programs, where you can use them over and over again. The following statements about

variable names and assignments apply to both calculator mode variables and program variables.

Simple Variables

On the HP-85 you can use the following for simple variable names:

e Any letter from A through Z. (Lowercase letters can be used, but they are interpreted as if they were

capital letters.)

¢ Any letter immediately followed by a digit from 0 through 9.

For instance, acceptable simple variable names are:

=1 Is the same

as #1).

In all, 286 simple variables can be named.
Variables are assigned values using an equals sign to create an assignment statement. For example, to assign 15

to A and 2*25 to X3:

Press Display

A - 15 x§ o [r—
X3=225

In the assignment statement, the variable name appears first, followed by the equals sign. The value or numeric

expression assigned to the variable appears to the right of the equals sign.

Now that some variables have assigned values, they can be used in place of numbers in math calculations:

Press Display

A/X3
AN2
X3*3

Result of 15/50.

Result of 152.

Result of 50 * 3,

Variables can be reassigned values. For instance, to change the value of A to 16, you could execute either

Moo= A+lorA o= 16,

Section 3: Expressions and Keyboard Operations 57

To recall the value of any assigned variable, simply type the variable name and press .

Press Display
A (@) 2

Value of A.
X3

Value of X3.

You can assign the same value to more than one variable in the same line by using commas to separate the

variables. For example, assign the variables A, B, C, and D the value of 100.

Press Display

A,B,C,D =100
A Verify that all variables have been
assigned the value 100.

You can use one more type of numeric variable on the HP-85—an array variable. We’ll discuss arrays in section 8.

String Variables

A character string is a series of characters like # C i £s
can be given a string variable name. The length of the string refers to i
; -
M

the number of characters assigned to the string. A string variable can

be of any length (limited only by available memory).

You can use string variables without dimensioning them (allocating
memory to them) if they contain 18 or fewer characters. If they are

statement to

longer than 18 characters, you must use a & 1f1 or

declare the length (page 131). ; . .

String variables are assigned names in the same way that numeric variables are assigned names, but the string

variable name must be followed by a dollar sign (#).

For example, acceptable string variable names are:

58 Section 3: Expressions and Keyboard Operations

In all, 286 string variables can be named. (Remember, the system interprets small letters in variable names as if

they were capital letters; thus, you could reference the same string variable

To assign HELLO to A$, and GOODBYE to B$:

Press Display
A$="HELLO"
B$="GOODBYE"
DISP A$,B8

The strings must
be enclosed with
quotation marks.

DISP A$;"~";B$

String Concatenation

*‘Concatenation’’ is the one operation allowed in string expressions. This operation causes one string to be tacked
onto the end of another. The symbol used for string concatenation is the ampersand (&). To join two strings together,

it is necessary only to interpose the ampersand.

For example, assign the following string variables the characters shown:

Press after each assignment
statement.

The string variable ES$ contains one space.

Displays the two strings joined together.

Joins strings B$ and D$ to make F$.

Since concatenation makes a string longer than its parts, be sure that the final string in a string variable assignment

is less than or equal to 18 characters in length. (Or, if the string has been dimensioned using

in a program, the final string must not exceed the length that you have designated.)

The Null String

The null string is a string that contains no characters or blanks, for example:

We define the null string here because it is referred to often.

Section 3: Expressions and Keyboard Operations 59

Logical Evaluation

In logical evaluation, expressions can be compared by using relational operators and/or logical operators. An

expression can be a constant (like . &), a variable (like £), or an arithmetic expression (like . . 1.

If the comparison is ‘true’, the value ‘1’ is returned; if the comparison is ‘false’, the value ‘0" is returned.

Relational Operators

Relational operators are used to determine the value relationship between two expressions.

Symbol Meaning

Equal to.

Less than.

Greater than.

Less than or equal to.

Greater than or equal to.

Not equal to (eitherform is acceptable).

The < symbol corresponds to the shifted @ key, * corresponds to the shifted key, and # corresponds to the

shifted key.

Be careful to note that the equals sign is used in both variable assignment statements and in relational oper-
ations. This distinction only becomes important at the beginning of an expression that could be interpreted
either way; in which case, the system will always assume that the expression is a variable assignment. To specify
a relational operation, place parentheses around the equality relational operation or place the value to the left of

the equals sign and the variable it is being compared with to the right of the equals sign.

Examples:

Assigns A the value of 3.

Both expressions perform the equality
relational operation and compare the value
of A with 3. They return values of O or 1
depending on whether A has a value of 3.
Assigns A and B the value of 3.

Both statements assign the value O or | to
A, depending on whether B does or does
not equal 3. You don’t need to use paren-
theses since the variable name is to the left
and its value (the result of the expression
B=3) is to the right of the equal sign.

Let’s look at some examples using relational operations. First let’s assign values to the variables A,B,C, and D.

Press after each line to assign the

variable(s) the specified value.

60 Section 3: Expressions and Keyboard Operations

Now execute the following operations:

AR <2
4 True.
EoCOA 2<1
False.
B oo 2#3
True.
Lo# o0 3#3
False.
= i 3=3
] True.
= =]
False.

Assigned 4 to A.

As you can see, the last statement did not assign a value of i (true)or i (false) to the expression because
is an assignment statement; so A is assigned the value of 4. To determine the value relationship between the value of

).

A and 4, type < = £ as shown above, or use the parentheses around this expression: (

Strings and string variables can also be compared using the relational operators. Each character in the string is
represented by a standard decimal code, as shown in appendix C. When two string characters are compared, the
lesser of the two characters is the one whose decimal code is smaller. For example, 3 (decimal code 51) is smaller
than B (decimal code 66).

Strings are compared, character by character, from left to right until a difference is found. If one string ends before a

difference is found, the shorter string is considered the lesser.

Relational operators are valuable when they are used in statements as described in section 7.

Advanced Programming Note: Relational comparisons can be quite complex. Suppose the following

statements are used in a program:

Assigns 69 to X when A=3 and adds 287
when B=83, otherwise adds nothing.

Assigns 4 foran “‘A’’, 3fora ‘““B’’,2fora
““C’" and ! when A$=DS$.

Adds 1 to L. when A$ is longer than nine
characters.

Logical Operators

The logical operators, often called Boolean operators, are i & (inclusive or), (exclusive or), and

’

i. A value of zero is considered false. Any other value is considered true. The result of a logical operation is

either 0 or 1.

Section 3: Expressions and Keyboard Operations 61

) ichecks two expressions. If both expressions are true, (that is, A B AANDB
both non-zero), the result is true (1). If one or both of the expres- T T T
sions is false (&), the result is false (). T F F

F T F
F F F

o checks two expressions. If one or both of the expressions is A B AORB
true, the result is true (1). If neither expression is true, the resultis T T T
false (). T F T

F T T
F F F

° (exclusive or) compares two expressions. If only one of the A B AEXORB
expressions is true, the result is true (}). If both are true or both are T T F
false, the result is false (). T F T

F T T
F F F

) [returns the opposite of the logical value of an expression. If A NOT A
the expression is true (non-zero), the result is false (£). If the T F
expression is false (i), the result is true (1). F T

We have used A and B in the truth tables to denote numeric expressions. The expressions used with logical
i has higher

and

operators can be either relational or non-relational. In the order of execution of expressions,

priority than the relational operators and the relational operators have higher priority than

If you are in doubt, use parentheses.

Here are some examples; first let’s assign values to the variables A,B,C, and D.

Press after each line to assign the

----- & variables the specified values.

Now execute these logical expressions:

Since both relational expressions
and i are true, the result is true.
The expression, #, is false since its arith-
metlc value equals zero. The expression,
J ,, is true. But since irequires that
both expressions be true to return a true
result, the result is false

The arithmetic value of i is zero (false)
while the arithmetic value of & is two
(true). Since at least one of the expressions
is true, the whole expression is true.
Both arithmetic expressions have a value
of O (false).
Since ¥ is false, ©

& is true.

Since #iis falseand &
is true.

= is true, the result

62 Section 3: Expressions and Keyboard Operations

Advanced Programming Note: The results returned from logical or relational operations, either O or 1, can
be used in calculations. Using the variables, A, B, C, and D again, let's evaluate S in the equation shown
below:

END
LINE

The result of the true relation (£ <) is first added to the result of the true relation (|-

words 1 + 1 = 2. This result is then multiplied by 12 for a product of 24.

Here’s a truth table summarizing logical operations:

A B A AND B AORB A EXORB NOT A
T F 0 1 1 0
F T 0 1 1 1
F F 0 0 0 1

The Time Functions

Often it is desirable to document programs, computations, and test runs
with the current time and date of execution. With the HP-85 you can set
the time and date and then recall the current time whenever you wish. You

can even use the time functions in calculations.

As soon as you turn the power on, the system timer is set to 0 and begins to
count the time in milliseconds. After it counts 86,400 seconds (24 hours),

the system timer increments the date by 1, and then starts to count

milliseconds from 0 again.

~ statement as follows:

You can specify the starting time and date for the system counter with the

= seconds since midnight . day of the year

Although the time must be set in seconds to count properly, the date can be specified any way you want—as
long as you remember that the date is an integer number that is incremented by 1 at midnight (assuming the

system timer has been set properly).

For example, you can set the timer at 8 a.m., March 16, 1983 as follows:

G, BEATE 28800 seconds since midnight, 75th day
of 1983; date in form yyddd.

Eight o’clock in the morning is 8 hours X 60 minutes/hour X 60 seconds/minute = 28800 seconds since mid-
night. And March 16, 1983 is the 75th day of 1983.

Now the timer will increment 28800.000 by 1 every millisecond until the time is 86400 (midnight). Then it will

add 1 to 83075 and start counting seconds from 0 again.

Section 3: Expressions and Keyboard Operations 63

Since the date is just an integer number that is incremented by 1 every 24 hours, you can enter the date in any form
you wish, as long as the number is between 1 and 99999. The time parameter can be a numeric expression with a
value of 0 through 86400. If the timer is set to 86400, midnight, the system immediately increments the date and

begins counting milliseconds from 0 again.
For instance, you could have set the date and time for 8 a.m., March 16th as follows:

Date in form mdd.

Notice that you can use a numeric expression to set the time. We used the number 316 to specify the 3rd month and

the 16th day, but remember, the system interprets 316 as just a number to be incremented by 1 at midnight.

The

the number of seconds since power on if the time was not set with

END
LINE

- function recalls the current date in the same format that you specified, or it recalls O if you had not set the

function recalls the current time in seconds since midnight, assuming the time has been set properly. or

To recall the time, type:

The i
date with

. To recall the date, type:

END
LINE

All values for

and

- begins counting

, are lost when you turn the power off. !

from O each time the power is turned on.

The T

and functions are programmable and can be used in numerical expressions.

For instance, to recall the time in hours, execute:

) Time in seconds divided by (60
minutes/hour X 60 seconds/minute).
Result gives time in decimal hours.

Section 4

Mathematics Functions and Statements

Many predefined functions are available to you through BASIC programming language on the HP-85. But you
don’t need to write a program in order to use them. Each function operates the same way, regardless of whether you

execute the function straight from the keyboard or use it as part of a program statement.

In this section:

e Each built-in math function is explained as it is used manually, in its simplest form.

e The math functions are placed in the total math hierarchy.

e Math errors are discussed in conjunction with the statement.

A function is a prescription for doing something with a given value, or set of values, that yields a single output.
The values that are acted upon by a function are called the *‘arguments’” or, sometimes, the ‘‘parameters.”” An
argument is often just a single number, but it may be a mathematical expression containing variables or other

functions.

Most of the functions on the HP-85 require only one argument, but there are a few that require two, and several

that require none.

.

To use any of the functions in ‘‘calculator’” mode:
1. Type the function name.

2. Then type the argument, if the function requires one, enclosed within parentheses. If the function requires two

arguments, separate them with a comma.

3. Press to compute the result.

Appendix D lists all of the functions available to you with BASIC on the HP-85.

Number Alteration

There are several functions that allow you to alter numbers on the HP-85. These functions are:

© and TF. The table below lists the function name and argument along with the meaning of
the function. The argument X may be a number (like = ¥E), avariable (like #), or a numeric expression (like
).
Function and Argument Meaning

Absolute value of X.
Integer part of X.
Fractional part of X.

Greatest integer less than or equal to X.

Greatestinteger lessthan orequalto X. (Sameas i 71X 1 relatesto

Smallest integer greater than or equal to X.

T differ only with negative numbers.

65

66 Section 4: Mathematics Functions and Statements

Absolute Values

Some calculations require the absolute value, or magnitude, of a number. To obtain the absolute value of any
expression, simply type FE % < expression i, where the expression may be a constant, a variable, or an arithmetic

expression. Then press (F}g). The result will be displayed below the line you type.

Examples:

Press to display the result [—235 |

| +2.7]
|4=7/1.5]
Integer Part of a Number
To extract and display the integer part of a number, type I, followed by the argument enclosed within parentheses.
Then press .
Examples:

Press and the integer part of the
number 1s displayed.

Integer part of —4.56.

i Integer part of 1.748.

When the I function is executed, the fractional part of the number is lost.

Fractional Part of a Number

To extract and display only the fractional part of a number, type ¥, followed by the argument enclosed within
parentheses. Then press .

Examples:

FREOLZE L When you press , only the fractional
4T part of the number is displayed.

Fractional part of —4.56.

Fractional part of 1.748.

When the ¥ function is executed, the integer part of the number is lost.

Greatest Integer Function

To display the greatest integer less than or equal to a number, type M7 or F|

Section 4: Mathematics Functions and Statements 67

expression enclosed within parentheses. The greatest integer function returns the largest integer that is less than or

equal to the evaluated expression.

Examples:

123 is the greatest integer <= 123.456.

performs the same function

—7 is the greatest integer <= —6.257.

—2 is the greatest integer <= —1.743.

% (greatest integer) function.

Note the difference between the I ¥ (integer part) function and the [
© e g © yields -7

In the above examples, I 7 yields %, while |

Smallest Integer Function

To display the smallest integer greater than or equal to a number, type ..

L.(ceiling). Then type the number or

expression, enclosed within parentheses, and press .

Examples:

124 is the smallest integer >= 123.456.

—6 is the smallest integer >= 6.257.

—1 is the smallest integer >= —1.748.

General Math Functions

Several of the following functions do not require an argument. For instance, i1 always returns the 12-digit

approximation of 7. A few of the functions below require two arguments; for example, given two values,
returns the larger of the two values. The arguments, denoted by X and Y, may be numbers, numeric variables,

functions, or numeric expressions.

Function and Argument Meaning
B X Positive square root of X.
Sign of X; yields —1if X <0,0if X =0, and +1if X > 0.

Maximum: if X > Y returns X, otherwise returns Y.

Minimum; if X <Y returns X, otherwise returns Y.
Remainder of X divided by Y: X—=Y*IP(X/Y).

12-digit approximation of ; 3.14159265359.
Machine infinity (+9.99999999999E499).

Epsilon; smallest positive machine number (1E-499).

ino argument Random number; generates next number in a sequence of numbers greater
than or equal to zero and less than one.

68 Section 4: Mathematics Functions and Statements

Square Root Function

To calculate the square root of a number, use the i & function. The square root function returns the square root of a

nonnegative expression.
Examples:

When you press , the square root of
the number is displayed.

Sign of a Number

The sign function returns a 1 if the expression is positive, 0 if it is 0, and —1 if it is negative. To use the sign
i, followed by the argument enclosed within parentheses. Then press .

function, type

Examples:

Sign of a negative number is —1.

Sign of zero is 0.

Sign of a positive number is 1.

Maximum and Minimum

You’ll find the ## and | + returns the

larger of the values and ¥

{ functions very useful in BASIC programs. Given two values,

i returns the smaller. Both F I M require two arguments enclosed within

parentheses, following the function name.

Examples:

Note that the arguments must be separated
by acomma. The arguments may be num-
bers, simple variables—if the variables
are defined-—or arithmetic expressions
(including functions).

The Remainder Function

Given two values, the remainder function, , divides the first value by the second and displays the remainder.

Section 4: Mathematics Functions and Statements 69

Examples:

2 goes into 5 twice, with a remainder of 1.

4times 4.26 plus remainder .31 isequal to
17.35.

Comparing definitions, you can see that the =1t function and the | operator (page 50) are very similar. In

fact, they both yield the same results when the arguments X and Y have the same sign. But they can give

different results when X and Y are of opposite signs.

Whether you use #iiiior depends on the particular application you choose.

Example: Resolve —726° to lie between —360° and +360° by ignoring

multiples of 360°. Using the : unction, given any 8 in degrees:

— RMD (6, 360) such that —360° < 0., < 360°

0 new

O

With the ¢

i function, 6, is equal to -6

Now use the |

| operator to resolve —726° to lie between 0° and 360° by ignoring multiples of 360°. Given any

in degrees:

6 ... = 6 MOD 360 such that 0° < f,,, < 360°

new

enew = 354°

When you press , the result is
displayed.

Example: Calculate the surface area of Callisto, one of Jupiter’s 12 moons, using the formula 4 = md?. Callisto

has a diameter (d) of 3100 miles.

Area of Callisto in square miles.

Note that you don’t have to include parentheses around .

 because exponentiation is performed before

multiplication.

70 Section 4: Mathematics Functions and Statements

Epsilon and Infinity

Two functions that prove useful in programs are and .

~. Both functions simply recall a constant;
recalls the smallest positive machine number and recalls the largest machine number. They are useful in
comparisons when you want to use either a very small or a very large number, saving you the time of keying in the

numbers yourself.

Examples:

Smallest positive number that can be
output: 1 X 10749,

Largest number that can be output:
9.99999999999 X 1099,

Random Numbers

Random numbers are extremely useful in statistical sampling theory—anytime you want a sequence of events or

numbers that appear in an unpredictable order. The random number function, ¥ returns a pseudorandom

number greater than or equal to 0 and less than 1, each time it is executed.

Example:

A random number between O and | is
displayed each time RND is executed.

Whenever you turn the power on or press , the same sequence of random numbers is generated. The reason for
this is that the random number function uses the same “seed’ (i.e., the number upon which the sequencing is based)

each time it is reset.

random numbers. Or you can control the sequences of random numbers by specifying your own ‘‘seed.”’

But, by using the FF - statement, you can ‘‘scramble’’ the seed and thus, generate new sequences of

To see how this works, use the F i statement:

When you type (E®), the HP-85 defines a new seed for the random number generator, based on

the internal timing system. Now, execute the

function several times, until it becomes evident that you

have generated a new sequence of random numbers.

Section 4: Mathematics Functions and Statements 71

Each time you use the tatement in this way, a new *‘seed’” is defined, yielding a new sequence of

random numbers.

You can control the sequence of numbers by specifying the *‘seed’’ with the statement. This

enables you to regenerate the same sequence of numbers whenever you wish.

Example: Using the seed .423, generate the first three numbers of the random number sequence.

Execute the
statement.
15 random number in the sequence.

27 random number in the sequence.

31 random number in the sequence.

Whenever you wish to use the same sequence of random numbers, use the same seed. To obtain a good seed, use any
non-zero number within the range of the HP-85—the system will automatically convert the number to a seed

between O and 1. A seed of zero will generate a constant sequence of zeros.

For any non-zero seed in the given range, 5 X 10'* values are generated before the sequence repeats. (The

statement will always generate a non-zero seed if no parameter is specified.)

You are not limited to random numbers between numbers O and 1. In general, you can generate random integers
from a through b using the formula IP((b + 1 — a) * RND + a). For instance, generate a random sequence of

integers between 0 and 99, inclusive.

You could use an expression like the following:

The integer part of a random number times
100. (These are the fourth, fifth, and sixth
random numbers generated in the
sequence based on the seed above.)

Generally speaking, good statistical properties can be expected because the random number generator has been
designed to pass an important test known as the spectral test.* Of course the statistics will vary somewhat from
sequence to sequence depending on the starting seed since less than the full period will be used by you. But it should

normally be quite good if a “‘statistically significant’” sample size is considered.

Logarithmic Functions

The HP-85 computes both natural and common logarithms as well as their inverse functions. The logarithmic
functions are:

Function and Argument Meaning

log,X; natural logarithm of a positive X to the base e (2.71828182846 to 12
place accuracy).

e”; natural antilogarithm. Raises e (2.71828182846) to the power X.
log.oX; common logarithm of a positive X to the base 10.

* Donald E. Knuth, The Art of Computer Programming (Massachusetts, 1969), V.2., §3.4

72 Section 4: Mathematics Functions and Statements

Of course, the common antilog (10%) may be executed easily from the keyboard (i

Example: What is the value of log, 537

You can easily convert the logarithmic base using the following formula:

Inc _ logex

log,x =
Ina logea

So, to find the logarithm, base 2, of 53, simply execute:

log, 53.

Trigonometric Functions and Statements

Trigonometric Modes

When you are using trigonometric functions, angles can be assumed by the HP-85 to be in decimal degrees,
radians, or grads. Unless you specify otherwise with one of the trigonometric mode statements, the HP-85
assumes that all angles are in radians. When you select a trigonometric mode, the HP-85 remains in that mode
until you change it, press (RESET), or switch off the computer.

statement:

To select degrees mode, use the

There are 360 degrees in a circle.

To select grads mode, use the statement:

There are 400 grads in a circle.

To reset radians mode, press (RESET) or execute the

statement:

There are 27 radians in a circle.

Note that 360 degrees = 400 grads = 2z radians.

Section 4: Mathematics Functions and Statements 73

Trigonometric Functions

There are 12 programmable trigonometric functions provided by the HP-85, including inverses of several of the

functions and conversion functions.

Function and Argument Meaning
; Sine of X.
Arcsine of X; —1 < X = 1. In 1%t or 4" quadrant.
Cosine of X.

Arccosine of X; — 1 =< X = 1. In 15t or 2"¢ quadrant.

Tangent of X.

Arctangent of X; in 15t or 4" quadrant.

Cosecant of X.

Secant of X.

Cotangent of X.

Arctangent of Y/X, in proper quadrant; useful in polar/rectangular coordinate
conversions. ‘

Degrees to radians conversion.
Radians to degrees conversion.

All trigonometric functions have one argument, except the 7 I function, so to use them simply type the function

name and then type the numeric expression, enclosed within parentheses.
Example: Find the cosine of 45 degrees.
Sets the HP-85 to degrees mode.

Result.

Sets computer to radians mode.

Result.

Degrees/Radians Conversions
The

and radians. To convert an angle specified in degrees to radians, type

% (degrees to radians) and ¥ T i(radians to degrees) functions are used to convert angles between degrees

= followed by the angle within paren-

theses. For example, to change 45 degrees to radians:

Radians.

To convert the angle specified in radians to decimal degrees, type & T Lifollowed by the angle within parentheses.

Convert 4 radians to decimal degrees:

Decimal degrees.

Polar/Rectangular Coordinate Conversions
The

sions. Angle 6 is assumed in decimal degrees, radians, or grads, depending upon the trigonometric. mode first

(arctangent of x,y coordinate position) function can be used for polar/rectangular coordinate conver-

! i, or b i

74 Section 4: Mathematics Functions and Statements

A point P can be represented in two ways: by the rectangular coordinate position (x,y) or by the polar coordinate

position (r,6).

In the HP-85, the HT1#i: function produces an angle € represented in the following manner:

7/2 (90°)
II P I
r
7 (180°) o\ 1o (0%
—7 (—180°) 0/ x 0 (0°)
; y
II1 v
—m/2 (—90°)

To convert from rectangular (x,y) coordinates to polar (r,0) coordinates (magnitude and angle, respectively), use

the following equations:

r = \/x2 _+_",2
= FRTHZ (y,x) where —m <0 <.

To convert from polar (r,8) coordinates to rectangular (x,y) coordinates, use the following geometric properties:
X = rcosf
vy = rsin@

Example: Convert rectangular coordinates (3,4) to polar form with the angle expressed in decimal degrees.

Degrees mode selected.

r=Vx%+y2

Magnitude r.

8 = ATN2(y, x); notice that we specify
the y-coordinate value first.

Angle 6 in decimal degrees.

Section 4: Mathematics Functions and Statements 75

The A

returns the principal value of the arctangent of an expression, in other words, the value in the first or fourth quadrant.

" function is also used to find the arctangent of an expression in the proper quadrant. The i1 4 function

Example: Find the angle in the third quadrant whose tangent is 2/3. Express the angle in radians.

. X
1
v/
e — 4
(-3, -2
FHD Set radians mode.
ATHE -2, 33 0 = ATN2(y,x), where x and y are any
rectangular coordinates in the third quad-
rant with a tangent of 2/3.
- ESTIE ARG Angle 6 in radians.
(Note that HTH&~#~%" would return the arctangent of 2/3 evaluated in the first quadrant:

Total Math Hierarchy

Parentheses take highest precedence when the HP-85 computes the value of an expression. Other expressions

follow according to their placement in the following hierarchy:

Highest precedence 7 parentheses
Functions

-~ (exponentiation)

pOn, - or G

\

Lowest precedence

Recovering From Math Errors

Many math errors occur due to an improper argument or overflow. Such an error would normally halt the
execution of a running program. The HP-85 provides default values for out-of-range results that occur using the
following math functions, thus overriding the error condition and preventing the error from halting program
execution. The system will alert you to the error by displaying a warning message and, if the result is to be

output, the default value of the expression.

76 Section 4: Mathematics Functions and Statements

The default error processing condition is on when the system’s power is turned on or when the computer is

reset.

The errors and default values are:

Error (Number) Default Values

Underflow (1) 0

Integer precision overflow (2)
Short precision overflow (2)
Real precision overflow (2)

+ or — 99999
+ or — 9.9999E99
+ or — 9.99999999999E499

of n*180°% n = integer (3) | 9.99999999999E499

Coor n*90°% n = odd integer (4) | 9.99999999999E499
Zero ~ negative power (5) 9.99999999999E499
Zero " zero (6) 1
Unitialized numeric variable (7) 0
Unitialized string variable (7) * (null string)

Division by zero (8) + or — 9.9999999999E499

For instance, try to divide a number by zero:

Beeps and displays a warning message.
Answer; default value of expression.

Since the default condition is on at power on, the system beeps and displays a warning message to alert you to the

error. But the cursor moves to the next line on the display after the warning so that, essentially, the error is ignored.

The i

error processing. For instance, type:

- statement cancels the use of default values for math errors and sets the system to normal

Sets system to normal error processing.
Try dividing by zero again.
Beeps and displays an error message.

With i

, such an error would halt the execution of a running program.

To reset the system to default error processing, execute:

With

the math errors stated above do not halt the execution of a running program.

Section 5

Simple Programming

If you have read the Getting Started section of this handbook, you've already seen that by using the programming

capability of your HP-85, you save hours of time in long computations.

With your HP-85 Personal Computer, Hewlett-Packard has provided you with a Standard Pac containing 15
programs already recorded on a magnetic tape cartridge. You can begin using the programming power of the HP-85
by simply using any of the programs from the Standard Pac, or from one of the other Hewlett-Packard pacs in areas
like finance, statistics, mathematics, engineering, or linear programming. The growing list of application pacs is
continually being updated and expanded by Hewlett-Packard to provide you with a wide variety of software support.
For the advanced programmer, Hewlett-Packard will supply plug-in ROMs to give your system additional capabili-
ties and will provide peripheral devices with the necessary interfacing.

However, we at Hewlett-Packard cannot possibly anticipate every problem for which you may want to use your
HP-85. In order to get the most from your personal computer, you'll want to learn how to program the HP-85 with
BASIC programming language to solve your every problem. This part of the HP-85 Owner's Manual and
Programming Guide introduces the BASIC language, the editing features of the HP-85, and gives you a glimpse of
just how sophisticated your programming can become with the HP-85 Personal Computer.

After most of the explanations and examples in this part, you will find problems to work using your HP-85. These
problems are not essential to your basic understanding of the computer, and they can be skipped if you like. But we
urge you to work them. They are rarely difficult, and they have been designed to increase your proficiency, both in
the actual use of the features of your HP-85 and in creating BASIC programs to solve your own problems. If you
have trouble with one of the problems, go back and review the explanations in the text, then tackle it again.

In programming, there is no uniquely correct program to solve a particular problem. Any solution that yields the
correct output is the right one, but we have included sample solutions to the problems in appendix F. Thus, you'll
have programs to use, modify, and enhance—even if you’re a beginning programmer. In fact, when you have
finished working through this part and learned all the capabilities of the HP-85, you may be able to create programs

that will solve many of the problems faster, or in fewer steps, than we have shown in our illustrations.

One more thing: this handbook has been written under the assumption that most of you have had some pro-
gramming experience. If you have never written a program before, you may wish to become more familiar with
BASIC programming through the optional HP-85 BASIC Training Pac. On the other hand, many of you may be
quite experienced BASIC programmers, in which case the HP-85 Pocket Guide and appendix D, BASIC Sum-

mary and Syntax, will serve you best.
Now let’s start programming!

79

80 Section 5: Simple Programming

Loading and Running a Prerecorded Program

If you worked through Getting Started (pages 21 through 36), you learned how to create, enter, and record a

BASIC program to compute the average of a set of numbers. Now look at a more complex program.

Insert the Standard Pac tape cartridge into the tape drive as we did earlier (page 22), printed side up, open edge

toward the computer.

Next, load the Ski Game program from the Standard Pac:

. Press the (tom) key, which displays . on the CRT, or type |

2. Type the program name, enclosed within quotation marks; in this case type

3. Press to execute the

Now the system will search for the Ski Game program and load it from the tape into computer memory. The amber
tape drive light will glow while the tape drive is in operation and the display will be turned off. You can easily see
when a program has been loaded completely because the cursor will return to the display and the amber tape drive
light will stop glowing. Once the Ski Game program has been loaded into computer memory, you can test your

*skiing”” skills by trying to descend a slalom ski course without missing any of the **gates.””

The Game. The Ski Game simulates a skier descending a slalom
course, with you in control of the skis. Before you begin your descent,
the program asks you whether you wish to ski on a white or a black
background, asks you to enter a course code (any number) so that you
can ski the same course again or try a different one by specifying a diffe-
rent code, and then asks for your skiing ability. As the game begins, a

“skier”” comes shooting down the course determined by the flags. You

control the direction of the skier by tapping the special function keys

and , labelled i

The object of the game, of course, is to have a perfect slalom run in

and ¥

record time, without missing any of the gates determined by the flags.

(Record time on the most difficult course is about 9 seconds.)

After you have loaded the program, press and then press (

As soon as you press @(;)
control. After each ski run, the HP-85 will display your time and missed gates. Then you can either try the same

) or specify a new course (by

LIF) to set up the ski course.

the game begins. You're on the slope, racing against the clock—you’re in

L]

course again (by pressing the special function key corresponding to

pressing the key corresponding to :

Section 5: Simple Programming 81

Stopping a Running Program

Remember, you are in control of the HP-85. Although the Ski Game program gives you the option of stopping the
game, most of the Standard Pac programs will continue to run unless you halt the program.

Stop a running program by pressing the key or almost any other key. The program can be continued after it has
been halted by the key, by pressing (continue). Pressing almost any other key will halt the program and
perform the indicated function of the key.

Listing a Program

The HP-85 will give you a listing of any program contained in computer memory at any time, on the display or on
printer paper. To see a listing of the Ski Game program that is now loaded in the computer memory, press the
key. The key will stop the running program and list the first full screen of the program on the display.

Each successive time that is pressed, another full screen of program lines is displayed until the end of the
program is reached. Following the last line of the program, the system displays the remaining number of memory
locations.

You can obtain a printed listing of the program by pressing (printer list). The program will be
listed in its entirety, unless you press any key to halt the listing. Printed output is directed to the internal
thermal printer unless you have declared an external printer to be the current FHIMTER 1% device (page
183).

82 Section 5: Simple Programming

Now list 20 lines or so of the Ski Game program with ; your printout should look like the one shown here.

PAUSE

The built-in printer lists the program exactly as it appeared on the display except that the second and third
lines of longer statements (like 10, 20, 80, 140, 200, etc.) appear indented under the first line of the statement,
for greater readability. Also, blank lines are inserted every 60 lines (to the nearest complete line) for cutting to

place lists in 11-inch notebooks.

What Is a BASIC Program?

A program is an organized set of instructions that tells the computer to accomplish certain tasks. Once a program has
been written and loaded into computer memory, it can be executed as many times as you wish—usually at just the
touch of the key.

Statements

The instructions in a BASIC program are called statements. If you look at the Ski Game listing, you’ll see that each

statement (except assignments statements like & or ! ~1) contains one or more keywords which have a
special meaning in BASIC. They identify operations to be performed (executable statements) or give the computer

information it will need to execute other statements (declaratory statements).

Section 5: Simple Programming 83

Here are some examples of BASIC keywords:

Executable Declaratory

A major distinction is that executable statements may appear as part of statements;
declaratory statements may not. Regardless, most BASIC statements may be executed directly from the key-

board (without a statement number); exceptions are noted.

Statement Numbers

Every statement in a program must be preceded by a unique statement number. These statement numbers can be
seen on the left side of the Ski Game program listing, beginning with 10 and in increments of 10. However, state-

ments may be numbered by any integer from [through 9999.

Statements are stored, by number, in ascending order. But you can type them in any order because statements are

automatically sorted as they are entered.

Normal program execution proceeds from the lowest numbered statement to the highest numbered statement. The

order of execution can be altered, however, as we’ll see in sections 7 and 9.

The
where a program ends, but also terminates program execution. (You may also use the =
HP-85 both

statement should be the highest numbered statement in a program. It not only tells the computer

" statement; on the

+and perform exactly the same function.)

Commands

A command is an instruction to the computer that is executed from the keyboard. Commands are used to manipulate
programs and for utility purposes, such as listing programs and rewinding the tape. Most often, commands are not

used in programs. But the HP-85 will allow you to program certain commands. (Refer to table below.)

i command erases

The

command starts executing the current program in memory. Both of these commands

Probably the two most important commands are and

program memory and the
may be executed by pressing the key with the respective label or by typing the command name and pressing .
When you press the key, that command is executed immediately. But when you type the command name, or

press (which is a typing aid to display), it won’t be executed until you press .

84 Section 5: Simple Programming

Here is a listing of the system commands. They are discussed in appropriate places throughout this manual.

Non-Programmable Programmable

ALITO
COHT*
DELETE
LET
THIT*
LOARD
FEH
FLER*
SUREATOH
STORE
TEAHSLATE
UHSECURE

Clearing Computer Memory

When you loaded the Ski Game program, the program was copied from the tape into computer memory. Before you

key in a new program, you will first want to clear, or erase, the Ski Game program from the computer memory.

To clear a program from computer memory, you can either:

1. Press or type = . The

variables from computer memory.

i command deletes the current program and all
2. Load another program from a magnetic tape cartridge. When you load a program into computer memory with
the il command, the system automatically clears computer memory before the new program is loaded.
Of course, whenever the system is turned off, it loses all contents of computer memory.

Now you are going to write your own program into the computer from the keyboard, so press to clear the
HP-85 of the previous program.

Writing a Program

In Getting Started you created, entered, and ran two BASIC programs: a Pythagorean Theorem program, and
an averaging program. In this section, we’ll create, load, and run another program to show you how to use some
of the features of the HP-85.

Before we do this, we’ll define the conventions we use to describe program statements and system commands.

* The keys corresponding to these commands are immediate execute keys; i.e., when you press the key, that command is executed immediately.

Section 5: Simple Programming 85

Conventions

i« must be typed as shown, in either uppercase or

All items in :

lowercase letters.

italics Ttems in italics are the parameters that supply information to the statement or
command.

[1 Items within square brackets are optional unless the brackets themselves are in dot
matrix.

Three dots indicate that the optional items within the brackets may be repeated.

For example: T variable name, [. variable name; ...]

The statement above tells us that must be spelled as shown (but you can use either capital letters or small

letters) and at least one variable name must be specified with the I I statement. The information within the
brackets tells us that more variable names can be specified and, if they are, they must be separated by commas since

the comma is in dot matrix.

Now let’s write a program to keep track of a checkbook balance. Re-
member that in order to write a program, you must first define the

problem thoroughly. It may help to ask yourself the following questions:

1. What answer(s) or output do I want?
2. What information or inputs do I know already?

3. What method or algorithm will I use to find the solution from

what I know?

4. How can BASIC and the HP-85 help me solve the problem?

Let’s answer these questions for a simple checkbook balancing program.

1. You want to find the balance of the checking account after each check or deposit.
2. You already know the initial balance and the amount of each check or deposit.
3. You must subtract the amounts of the checks and add the amounts of the deposits to the balance.

4. Here’s a sample BASIC program, as it would appear listed on printer paper.

86 Section 5: Simple Programming

This is only one way to solve the problem. Can you think of other programs that would accomplish the same tasks?

Again, you can see that each statement is preceded by a number and each statement begins with a keyword which

identifies the type of statement. For example, this program contains 11 statements: three (remark) statements,

two it

(display) statements, two T statements, one (assignment) statement, one ¥

statement, one i statement, and one statement.

These keywords will be discussed individually after we execute the program.

Entering a Program

Before you enter the program, let’s examine three facets of entering program statements into computer memory:

automatic numbering, the spacing in program statements, and the use of the key.

Automatic Numbering

The !

the time of typing the numbers yourself.

{:command enables statements to be numbered automatically, as they are entered and stored, saving you

i [beginning statement number [, increment value]]

To cut your typing time further, the

, the word

increment value. If neither parameter is specified, executing

i-command is provided as a typing aid with the key: when you press

+ appears in the display. Then you can specify the beginning statement number and the

fcauses statement numbering to begin with 10

and be incremented by 10 as statements are stored. If only the beginning statement number is specified, numbermg

begins at that number and is incremented by 10 as program statements are stored. Press to execute the |

command. For example, executing:

Causes numbering to begin with 100 and
increment by 5.

To stop the auto numbering, backspace over the unwanted numbers and type . Auto numbering
will also be halted by any executable statement or command without a number. For instance, if, after you enter the

program, you wish to run it immediately, simply press the key.

Spacing

In general, spacing between characters is unimportant; the HP-85 automatically sets proper spacing into each

statement of a program whenever the program is listed.

Blanks are ignored in BASIC statements except when enclosed in quotes or when contained in remarks. When the

HP-85 formats a statement, blanks are inserted or deleted so that all keywords are surrounded by a blank on either
side.

For example:

Section 5: Simple Programming 87

All of the above statements are equivalent and would appear in a listing as:

The only place that a blank space should not be typed is immediately after the first letter of a keyword. If you
attempt to enter the statement, the system will interpret the first letter as a variable name and will give you an error

meéssage. For example:

Statement Length

As we mentioned earlier (page 43), program statements can be up to 95 characters long including the line

number—that’s three full lines on the video display minus one space to press (Fi2).

But if you *‘pack’” your statements by deleting all spaces between characters, be sure to take into account that the
system will automatically insert spaces around keywords when the statement is listed or edited —the statement may

be too long to be edited and reentered.

(The system will give you an error message if it does not understand.)

Entering Program Statements into Main Memory

Program statements are entered into main memory in the same way that any executable keyboard operation is
entered, by pressing (Fi2). You must press after each program statement has been typed in. Pressing
also causes the statement to be checked for syntax errors before it is stored. Should an error occur on entering a

statement, simply correct or retype the statement, then reenter it. Refer to section 6, Program Editing.

In a long statement that requires more than one line, do not press until the statement is completely typed in; the
system display will automatically wrap around onto the next line. Press only to enter a complete program
statement into computer memory.

For example:

Do not press here ...

... or here ...
§ ke p o @ ... but here.
@ And here.

Entering the Program

You can enter a program into computer memory in either of two ways:

1. By retrieving a copy of a previously stored program from a mass storage device, such as a flexible disc

drive or the built-in tape drive.

2. By typing the program statements, including statement numbers, one at a time from the keyboard, press-

ing after each statement. (Remember, you don’t need to type the statement numbers if you use

line numbering.)

88 Section 5: Simple Programming

Since we do not have a program on tape that keeps track of a running checkbook balance, we will use the second
method to enter our program.

If you have not already done so:

1. Press to erase previous programs from computer memory.

2. Press to clear the display. This is not a necessary step to writing a program, but it will increase the
legibility of the display.

3. Now, press since we want to take advantage of the automatic numbering system.

Finally, enter the checkbook balancing program by typing each statement shown in the sample program, pressing
after each statement. When you have finished entering the program, the display will look like this:

The program for keeping track of a checkbook balance is now loaded into computer memory. Notice that |

statement numbering caused the number i

I statement of the program. Simply back-

i to appear below the
1 & to erase the number, and type i L to stop i

space over

{4 statement numbering.

Running a Program

To run a program, you have only to press the key.

For example, use the program now in computer memory to balance a checkbook with an initial balance of
$1,004.25; checks written for the amounts of $14.53, $25.00, and $18.90; and deposits in the amounts of $52.50
and $120.00

Press to start program execution.

Section 5: Simple Programming 89

When a question mark appears, key in the
balance and press

Lt Then enter the checks as negative numbers
and the deposits as positive numbers.
Press after the amount to enter the

ot data to the program.

P

Press to halt program execution.

Where is the record of the checkbook balance? You’ll find that the printer has recorded the following on paper.
(Press the key to advance the paper if necessary.)

Initial balance — 14.53.
New balance — 25.00.
New balance — 18.90.
New balance + 52.50.
New balance + 120.00.

Now let’s see how the HP-85 executed this program.

Order of Program Execution

Statements are executed in order of ascending statement numbers.

statement i & GOTE , the system returned to statement &: &

successively higher-numbered statements from there. The program continued to run until you pressed - to halt
the program.

90 Section 5: Simple Programming

Fundamental BASIC Statements

Now let’s examine the statements that composed our checkbook balancing program.

iarks

Many times you may want to insert comments in order to make your program logic easier to follow. This can be

done by using the ! (remark) statement or !, the comment delimiter.

any combination of characters]

In our sample program, remarks are used to remind us that the variables A and B stand for amount of a check or a

deposit and the checkbook balance, respectively:

The comment delimiter, !, can be anywhere in a program statement after the statement number. All characters

following a ! are considered part of a comment unless the comment delimiter, !, is within quotes.

In this way, program statements can contain comments. For instance, statement in our sample program:

Comments, as you have seen, are useful only in a program listing. They do not affect program execution.

] ay

(display) statement allows text and variables to be output on the display, or the current

The

device.

[display list]

The display list can contain variable names, numeric expressions, quoted text or messages, and the

tion (covered later). These items must be separated by commas or semicolons.

In the checkbook balancing program, the following [statements appear:

DT

oy

As you have seen, when these statements are executed in a running program, they display, respectively:

Section 5 Simple Programming 91

You can combine quoted messages with variable names, but they must be separated from each other with commas or

semicolons. For example:

When these statements are executed ...

... this message is displayed.

What is the difference between using commas or using semicolons to separate items in a display list? Look at the

following examples:

Commas cause wide spacing between
display list items.

Semicolons space items close together.

Notice the difference in spacing between the items. When an item is followed by a comma, the next item will be
left-justified at either column 1 or column 22 on the display. Remember, every number has a leading blank or a
minus sign and a trailing blank for spacing. If a number contains over nine digits and would start in column 22, it

will be displayed in the first column of the next line.

When an item is followed by a semicolon, no additional blanks are inserted. For example:

All numbers are displayed with a leading
blank or minus sign and a trailing blank
for spacing.

Two or more commas after an item cause one or more character fields to be skipped.

For example:

92 Section 5: Simple Programming

When a [] % statement appears without a display list, a blank line is displayed. For example:

When the display list ends with a comma or semicolon, any future i - statement output is appended to the

current display line. For example:

When these statements are executed in
succession in a program ...

JUME 1 ... and you enter JUNE 1 for the date ...
TOOAY T% JlME 1 ... this message is displayed.

The semicolon at the end of the statement 30 causes the message ‘‘TODAY IS™ to be held in a special disp/print
buffer. The buffer does not display (or with ¥ I+, print) its contents unless:

e Another [1] % statement without a semicolon at the end of the message causes it to be output.

e An [HMHFLIT statement causes the buffer contents to be displayed or printed (as we’ll see later).

o The buffer is filled with 32 characters, in which case it is automatically output.

For instance, if statement 40 also ends with a semicolon (in the example above), an extra [1 1 ZF statement is
required to output the message:

Section 5: Simple Programming 93

If you run this program, the input prompt
i will be displayed and nothing elseappears
to happen.

i Enter the date.
! If you now execute
gy TE GLHE 1 will be displayed.

£

* statement could also have been part of the program between statements 40 and 50.

The extra i

statement allows text and variables to be printed by the HP-85’s internal printer, or by the cur-

The

rent F

% device.

THT [orint list)

Like the display list, the print list can contain variable names, numeric expressions, string expressions and

quoted text, and the THE function. All items must be separated by commas or semicolons.

Here are some examples:

FRINT X 1.15a5
FREIMT “HYPOTEMUZ ;
PRIMT "ddgl pie g trpemnt p TEEEREY
REIH
B
i Bk DL N e U EEERE
5]

£ L

94 Section 5: Simple Programming

- statement. A comma

Notice that commas and semicolons perform in the
after an item causes the next item to be left-justified in either column 1 or column 22. A semicolon after an item
7T in a statement, the paper

suppresses additional blanks. Also note that when nothing follows the word
advances one line. For more information about displaying and printed output, refer to section 10, Printer and

Display Formatting.

The Plotter/Printer ROM and a Series 80 interface enable you to direct printed output to an external printer.

: Assigning Values From the Keyboard

The " statement allows values in the form of expressions to be assigned to variables from the keyboard

at the request of a program.

- variable name, [. variable name, ...]

The " statement is programmable only; it can’t be executed from the keyboard.

[statement is executed, a question mark (") appears on the display. A value

As we have seen, when the

can then be input for each variable designated in the I statement.

Remember our first example in section 1 (page 32).

The program called for the lengths of the
sides of a right triangle.

When the program was executed, and the question mark appeared on the display, we input both values, separated by

a comma, in one line like this:

FoEL LB Separate

commas.

i values with

If we had tried to enter the values for the variables L. and W one at a time, we would have received an error message,

followed by another question mark and we’d have another chance to enter both values. An I [statement

requests all values for the variables specified to be entered at the same time.

Values for string variables can be quoted or unquoted, but an unquoted string cannot contain a comma (since

commas separate input items).
Let’s look at some examples of entering strings:

EY OMHEME IS" ME
When these lines are executed, the display shows:

YOUE HARE?

Section 5: Simple Programming 95

Now you can input up to 18 characters of your name in either of two ways;

Without quotation marks:

Since you did not leave any trailing blanks
in {115 statement 60, then {113
statement 80 packs the characters
together.

With quotation marks:

Use quotation marks if you wish to
preserve leading or trailing blanks or use
commas in your expression.

Whenever you assign character string expressions to string variables from the keyboard, you can use quotation
marks at your option. Just remember that strings do not contain leading or trailing blanks unless you specify them

explicitly with quotation marks.

Also notice where the question mark appeared in the examples above. If you place a semicolon after a message ina

" or I statement before an I statement, the semicolon suppresses the carriage return so that the

question mark appears on the same line as the message.

Thus, we could have written our checkbook balancing program like this:

Before an =117 statement, a semi-
colon at the end of a statement (or
statement) suppresses the
carriage return.

Question marks are on the same line
instead of beneath the displayed line.

Pressing without entering values when numeric input is requested causes an error. If the last
variable is a string variable, then pressing without entering a value for that variable will input the null

string (" ¥).

96 Section 5: Simple Programming

The EEEF statement is used to produce an audible tone of variable frequency and duration that can be used in

a number of ways.

EEEF [tone . duration]

- * can signal that a particular computation or program segment is
complete. It can be used to indicate audibly that the computer is ready for
input, so that the operator does not have to remain at the keyboard. And,
of course, it can be used for the sound itself; load the COMPZR program

from the Standard Pac—you can actually compose ‘‘music’’ with the

' statement.

If no parameters are specified, the frequency is approximately 2000

hertz, and duration is 100 milliseconds. By specifying parameters, you
can change the tone and the duration.

For example, we used in the hypotenuse program as an audible input prompt:

i signals the operator for input.

The EEE!
duration by executing the following statements. You can stop the sound at any time by pressing .

i statement can be executed from the keyboard. For example, try several different values for tone and

The value for the tone and duration of £ E i can be a numeric expression. Both parameters are rounded to integer

values with the FE L statement. For example, run the following program to generate ‘‘random’’ music. (We

discuss the (i and ME T statements in section 7). You can stop the program at any time by pressing .

16 FrR
26 EEEF
IE MEXT
46 EHD

To 258 This program generates a ‘‘random’’

1
THERHNO+1, 5@ sequence of 250 audible tones.
I

Section 5: Simple Programming 97

Use the following formulas to EEEF parameters that produce a particular frequency and duration.

Tone (first parameter):

-1 1 where F is desired frequency in hertz.

: where T is desired duration in seconds. (Or, simply,

when is known.)

For example, to i

& for approximately one-half second at a frequency of about 440 hertz, compute 1 and

= as follows:

So, the “ statement would be:

Beeps at approximately 440 hertz for
approximately 0.5 second.

Beeps according to the values assigned to
P1 and P2.

: Assignments

Any numeric variable can be assigned a value using an assignment statement as we have seen in section 3.
String variables can also be assigned string expressions using the assignment statement if the expression pro-
duces a string shorter than or equal in length to the size of the string variable. The keyword in an assignment

statement is L. but its use is optional.

I'] numeric variable; [. numeric variable, ...] = numeric expression

1 string variable, [. string variable, ...] = string expression

The keyword 1.

sion assigned to that variable is always to the right of the equals sign; you are “letting” the variable be changed

is a reminder that the variable name is always to the left of the equals sign and the expres-

to equal the value of the expression.

For example, the following statements are equivalent:

98 Section 5: Simple Programming

Remember that textual characters must be enclosed within quotes in a string variable assignment statement.

To check the current value of a variable, type in its name, then press . For instance, using the above values for

the variables:

Pressing after the variable name

yields its current value.

If a numeric variable is used in a computation and hasn’t been assigned a value, a warning message is displayed
and O is used as its value. Likewise, if a string variable is used before being assigned a value, a warning message
is displayed and the null string is used as its value. In general, it is good programming practice to initialize

variables (by initialize, we mean assign them their initial values) at the beginning of the program, as we did in

the averaging program (page 34).

i1 Unconditional Branching

i statement transferred program control back to

In our checkbook balancing program, you saw that the

the specified statement. This is known as an unconditional branch. & statements are programmable only;

they can’t be executed from the keyboard.

statement number

statement), control is transferred to the

If the specified statement is not an executable statement (e.g., a |

first executable statement following that statement.

" statement caused the program

As you may remember from the checkbook balancing program, the use of the

to “‘loop’” endlessly from statements 60 through 100:

Branches to statement 60.

But we also saw that it is easy to stop the program—by pressing .

L; 1 712 statements may branch to both higher numbered and lower numbered statements; for example:

Ritlod

Branches to statement 50.

Branches back to statement 30.

Section 5: Simple Programming 99

Multistatement Lines

A symbol that you may have seen in the Ski Game program listing is the “at” symbol (i#). The # symbol enables
you to type more than one statement on the same program line, thus shortening program listings and conserving
memory. Remember that you still cannot enter more than 95 characters (including the statement number) at a

time.

Examine line 70 in the Ski Game program listing:

In the program line above, four statements have been joined together on the same program line, using the same

statement number. The program could have been written like this:

Sets label direction.
Clears display.
Recalls key labels.
Displays message.

But, by using the # symbol, the program was shortened by three program lines (nine bytes). Note that most

statements and commands can be concatenated and executed directly from the keyboard. For example, typing

) causes the computer to perform the three instructions, one after

another.

There are several things you must be careful about when you type multiple statements using the same statement

number.

o If there is a 1 statement in a multistatement line, it should be the last statement. For instance:

In order to reference the print statement in line 50, the statements need to be reversed; otherwise, the

message will not be printed.

e If you join statements that involve relational tests or “decision-making” operations (like i , be

sure that you are aware of what happens when the test comes up “true” or “false.” If the test is true, all

instructions will be executed. If the test is false, all £ instructions (if any) will be executed.

e Declarations (such as i and)} can be made in multistatement lines

but they must be the last statement in the line.

¢ Anything that follows

or | is a remark. The following multistatement line may look good, but i will

never be computed!

e (Care should be taken to preserve readability with multistatement lines. For instance,

. is easily read and understood on one line. But it is possible to destroy
readablhty by packing too much into a line. Readability is important, particularly with debugging proce-

dures and documentation of your program.

100

Section 5: Simple Programming

Problems

5.1a.

5.2

5.3

5.4

5.5

5.6

Write a program to convert a temperature in Celsius degrees to Fahrenheit according to the formula
F=1.8*C+ 32. Use a |.E T assignment statement for the conversion calculation. The program should ask
for the original Celsius temperature and label the corresponding Fahrenheit temperature.

Write a second program to convert a temperature in Fahrenheit degrees to Celsius. The equation is
C = 5/9*%(F —32). Do not use the optional keyword
prompt and an output label.

= T in this program. Be sure to include an input

Janey Dair enjoys dropping her new Rebounder ball from the window of her room, delighting her friends
who watch it bounce on the pavement below. Each rebound reaches a height equal to 65% of its previous
height. Write a program that requests the height from which she drops her Rebounder, and displays the

cumulative distance it has traveled each time it touches the pavement. Use a FE EF to represent each
bounce prior to displaying the distance. The program should continue calculating the distances until it is
manually interrupted with the key. Observe the output to be sure that the total distance traveled

approaches a limit, rather than increasing indefinitely.

In preparation for writing your first novel, you want to use the HP-85 to help you choose an interesting title.
You decide to write a program that takes a noun and a proper noun as input, and prints two titles using the

following forms:

- (noun) iiF (proper noun)

11 (proper noun) L (noun)

You may not win any literary awards, but you’ll get some interesting titles.

World-famous jazz artist Bertha Blues wants to program the HP-85 to play a particular bass rhythm as an
accompaniment for a work session. The rhythm consists of the repeated sequence of notes C130.81,G196,
(G98,G196 at 120 beats per minute (0.5 seconds per note). (The numbers following the notes specify the
frequency in hertz.) Write a program that computes and prints the tone and duration parameters for the three

appropriate EEEF statements and then breaks into its rhythmical rendition.

The factorial function (x!) is defined for positive integer values of x as

x!'=xGx—Dkx-2)...1.

An algebraic approximation is given by the equation
x!=e™x* V2mx.

Write a program that, for any positive integer value of x, calculates and prints the x ! approximation using this

method. (In section 7 you will see an easy method to compute the exact factorial function.)

During his spare time, Artemas Horologos repairs watches in his home workshop. He has decided that a
program that calculates his bill would be very helpful. Write a program that requests the customer’s last
name, the number of hours Artemas has worked on a watch, and his cost for replacement parts. It should
then print an individualized repair bill itemizing the charges for parts, for labor, and the total amount due.
Artemas charges $8.50 per hour for his labor, and charges 10% more than his cost for parts.

101

Notes

Section 6

Program Editing

Often you may want to alter or add to a program that is already loaded into computer memory. The HP-85 has been

designed to make program editing as fast and easy as possible.

In this section, we will discuss program modification by adding, deleting, and editing program statements. And
we'll introduce specific program editing commands to delete blocks of program statements, list specific parts of a
program, and automatically renumber a complete program. Finally, we’ll show how to interrupt the execution of a

running program and how to continue execution at a specified statement.

Editing Program Statements

Edit program statements in the same way that you edit anything that appears on the display—with the display editing
keys.

There are two ways to edit and change a statement that is already in computer memory.

1. Recall the program into the display by using the key or by listing the program on the display. Then using
the display editing keys and cursor control keys, move the cursor to the desired statement, make the necessary

changes in the program statement, and press to enter the changed statement into memory.

2. Retype the statement, including statement number, incorporating all the changes you wish to make. Then
press to enter the statement into memory.

Remember, you can enter program statements in any order—the computer automatically sorts them by statement
number as they are entered. The last statement entered with a given statement number is the one that is used in the
program. When you edit a line or statement on the display, always check to see that there are no unwanted characters
beyond the last character in the statement. If there are, move the cursor to the end of the good line and press to

delete the unwanted characters before you press to enter the program statement.

Deleting Statements

You can delete program statements in either of two ways:

1. To delete an individual statement of a program, type the statement number and then press .

2. To delete a section of a program, it is quicker to use the command.

The command is used to delete a statement or a block of statements from a program.

= first statement number [. last statement number]

The £ command is provided on a key as a typing aid. When you press the key,

displayed.

If only one statement number is specified with the command, then only that program statement will be

deleted from program memory. If you specify both statement numbers, then that section of a program will be
deleted.

103

104 Section 6: Program Editing

Examples:

Deletes statement 30.
Deletes statement 40.
Deletes statements 60 through 90,

inclusive.

Adding Statements

Add new statements to a program merely by typing and entering them into computer memory. Be sure that the

statement number of a new statement positions it correctly in the program.

Often, it saves a good deal of typing by merely editing a similar statement of your program, changing the
statement number, and then entering the new statement into program memory by pressing (Ffl0). Note that

changing the line number in this way will not delete the original line from memory.

Renumbering a Program

The

memory.

(renumber) command is used to renumber a program that has already been entered into computer

[beginning statement number [. increment value]]

Just as with the i1 command, you can optionally specify the new starting statement number and the incre-
ment between statement numbers. If no parameters are specified, the program is renumbered so that statement
numbering begins with 10 and is incremented by 10. If no increment value is given, the statement numbers will
be incremented by 10.

Examples:

Renumbers a program so that the first
statement is numbered 10, and the state-
ments that follow are numbered in
increments of 10.

Renumbers a program, beginning with
100 and incrementing by 10.
Renumbers a program, beginning with
200 and incrementing by 5.

i command automatically renumbers an entire program, including any branches within a program. But

4 command will not change the parameters of the 1. [ori ! commands when they are included

as program statements.

If you have a very large program or you use 4in such a way that the computer reaches line 9999 before it
renumbers the whole program, then the computer will automatically start at the beginning of the program and

renumber by 1, i.e., beginning with statement | and renumbering in increments of 1.

Listing a Modified Program

Up to this point, we have discussed two ways to list a program: by using the key to list the program on the
display, or by using the key to list the program on the printer.

Section 6: Program Editing 105

But you can also type these commands from the keyboard and then specify the section of a program you wish to
have listed.

[beginning statement number [. ending statement number]]

I [beginning statement number [, ending statement number]]

If you type i. and specify one statement number before pressing (Ei2), listing begins with that statement
and continues for one screen. If two statement numbers are specified, that section of statements between and

including the two numbers is listed.

If you type " and specify one statement number before pressing , the program will be listed on the

printer from that statement number to the end of the program (or until you press a key). If two statement numbers are

specified, that section of the program is listed on the printer.

If you type either command and specify no statement numbers, and then press , the command will be executed
as if you had pressed either the or the key.

Examples:

Lists statements 40 through 90 on the
display.

Lists statements beginning with 90 and
continuing for one screen’s worth of
statements.

If the system cannot find the statement number, it will list the next higher statement up to the last statement number

you specify. For instance, if your program is numbered from 10 to 150 in increments of 10:

Lists statements 10 through 40 on the
printer.

You can list one statement by specifying the same statement number for both parameters. For example:

Lists statement 90 on the printer.

{ commands are programmable. However, will not renumber programmed

Both the !

P or

parameters.

“and F

One more function is associated with the i T commands: following the list of the last program
statement, the remaining number of memory locations (bytes) is output. We’ll discuss the system memory in section

8. For now, simply note that the number of the end of an entire program listing gives the available memory.

Interrupting Program Execution

Pausing

We have already seen that pressing halts the execution of a running program. But actually it just
suspends the execution of a running program. When you press (PAUSE), the current line is completed and the

program is paused at the next line to be executed.

As we shall see, a pause can also be programmed using the command.

106 Section 6: Program Editing

Although the specific function of is to suspend the execution of a
running program, pressing any key (except those noted below) will also
halt the execution of a running program and perform the indicated func-

tion of the key.

For instance, if you press a typewriter key, such as , the system

finishes executing the current statement, then halts and displays *“ .”

But if you happen to press during the execution of a running pro-

gram, the current statement is completed, the program is halted, and then

the system displays .. If you really want to rerun the pro-
by pressing . If you do not want to rerun the

program press to continue (see below).

gram, execute }

Note: Whenever a running program is interrupted from the keyboard, the system beeps.

The following keys will perform the indicated functions without halting the execution of a running program or

otherwise interrupting or disturbing the program:
COPY Copies the current display to the internal printer.

5 Advances the paper in the internal printer.

pg Recalls special function key labels (if any).

; ..

Sets display to graphics mode.

(o]
o
m
>
£

Clears alphanumeric display.

3
a=»
—

Rolls display contents up or down.

Continuing

If a program has been halted with the keyoraf
halted by pressing the (continue) key or by executing the

execute the i

. command, it can be resumed from where it was

command. You can press (CONT) or

T command after almost any other program halt—as long as you have not deallocated the

program. (A program would be deallocated if, for instance, you edited the program. You would then need to

initialize the program, as we will see on the next page, before continuing.)

i [statement number}

The key is an immediate execute key. Thus execution of a halted program is immediately resumed when
you press the key.

You can continue program execution at a specific statement by typing | " followed by the statement number

and then pressing (F2). For example:

LOHT =g Continues program execution at state-
ment 90.

Execution of a paused program can also be restarted at the beginning with (or), by executing

Section 6: Program Editing 107

Whenever program execution has been paused, you can perform any normal keyboard activities. For instance,
you can list the program in memory or perform some arithmetic calculations. And when you press (CONT),
program execution resumes from where it paused (unless, of course, you have cleared the program from memory

by executing (SCRATCH) or (LOAD)).

after an

Note that pressing or executing

to begin from the beginning of the program.

statement will cause program execution

Initializing a Program
The key (or

mean that the system allocates memory to all program variables, sets (initializes) variables to undefined values,

command) automatically initializes a program before running it. By “initialize” we

and sets the program pointer to the first statement of the program.

[statement number]

As with the
statement number and pressing (F). For example:

command, you can optionally specify the starting statement by typing i followed by the

Initializes and then runs a program
beginning with statement 100.

If a program has been halted with a command, computer memory remains allocated and the program

pointer is set to the statement after the one it has just executed. Pressing {or executing

) does not

allocate or initialize program variables again. Execution merely resumes from where it left off.

If, for instance, you edit a program statement after you ? the program, program variables are no longer
allocated and the program cannot be continued with or ¢

reallocate memory for variables by pressing the key (or by executing the

". You must initialize the program and

' command) before you

press (CONT). Afterwards, execution resumes from the beginning of the program—not from where
halted it.

The
resets the program to begin executing from the lowest numbered statement. Using (INIT) and (CONT) together
performs the same function as (RUN).

T command allocates memory to all program variables, initializes variables to undefined values, and

Program initialization requires that all line numbers in branching statements refer to actual program lines. If,

statement but has no line 8000, then

for example, your program has a

will occur during program initialization. Similarly, the command requires that all

branching statements reference existing program lines before renumbering will occur.

Using | ~in a Program

The

whenever the

statement can also be used in a program, as we mentioned earlier. Program execution is halted

statement is encountered in a program. The ~ statement does not cause the sys-

tem to beep when it is halted.

with or ©

Pausing is useful to control program execution. Continue a program halted by

108 Section 6: Program Editing

For example, enter the following program:

FFUTURE WALUES:

Set N (number of years) to 1.
TPresent Malue' } Ask for input.
i Print value.
] Ask for input.

Print value.

B

Calculate future value truncated to
hundredths.
Print year and amount.

Pause.
Go back to 100.

Press to continue after the
; n statement 130.

Here, ¥ “and (11T enable you to print one line at a time.

Delaying Program Execution
The

T statement is used to program a delay between the execution of two program statements.

number of milliseconds

The
maximum wait is about 27 minutes (1,666,650 milliseconds). A negative number specifies a zero wait. The
" statement can be interrupted by or almost any other key.

T parameter can be any number within the range of the HP-85 but the minimum wait is 0 and the

For instance, if you changed statement 130 in the Future Value program to:

The program would wait 3 seconds (3000 milliseconds) before it printed each future amount.

Error Messages

There are three types of errors that can occur during the development and execution of your program: ‘‘syntax’

errors, ‘‘semantic’’ errors, and ‘ ‘run-time’’ errors.

Section 6: Program Editing 109

Syntax errors may include such errors as a missing operator, a misspelled keyword, or an illegal constant or variable
name. When you press after typing in a statement, it is immediately checked for syntax errors. If the statement
contains no syntax errors, it is accepted and loaded into computer memory. If the statement contains a syntax error,
an error message is displayed and the cursor is positioned below the first character at which the system detected an

€rror.

You can correct the statement by inserting, deleting, or replacing characters as shown in section 2. I the error is not
corrected, the statement will not be stored as part of the program, but no other harm is done. Move the cursor down

the display to enter another statement or clear the line in which the error occurred.

The second type of error, a **semantic’” error, occurs when you have finished loading the program into computer
memory and you try to run it. Before the HP-85 attempts to run your program, it checks to verify that your program
“*makes sense.’’ Semantic errors include errors such as a missing statement, duplicate user-defined functions,
illegal array dimensions, etc. You are informed of all such errors before the program can be run. These errors can
usually be corrected by adding, deleting, or correcting statements; they are not difficult to find because the system

alerts you to them as soon as you try to run the program.

The third type of error occurs when the program is running. All *‘run-time’” errors interrupt a running program and
T

i1, the first eight errors listed in appendix E cause a warning message to be output, but prog-

i statement.

cause it to halt unless .
With [i
ram execution will not be halted; all other run-time errors cause the program to halt and an error message to be
displayed. With {J

{15, all run-time errors halt program execution and display an error message.

Run-time errors can include referencing a nonexistent array element, attempting to use uninitialized data,

variable mismatch, trying to write to a nonexistent file, etc.
Refer to section 12, Debugging and Error Recovery, for information on recovering from run-time errors.

Refer to appendix E for a complete list of error numbers and messages.

Problems

6.1 For problem 5.2 in the previous section, you wrote a program that computed the distance traveled by Janey
Dair’s Rebounder ball. If each rebound reaches a height of 65% of its previous height, the time interval to
the next bounce is V0.65 = 0.806=80.6% of the previous time interval. Enter your original Rebounder

program, and then modify it to incorporate a T statement that causes a delay between bounces accord-

ing to the ratio given above. Let the interval between the first two bounces be 3 seconds (3000 milliseconds).

6.2 Toillustrate the effect of an unbalanced force pulling sidewards on a moving object, physics teacher Millie
Graham has devised a simple experiment. She fastens a string to the side of a 350-gram miniature rocket
sled and secures the other end to a fixed pivot. When ignited, the rocket sled accelerates at the rate of 30
centimeters per second per second. As the sled accelerates, the string continually pulls it sidewards, and this
imbalance causes it to move in a circle of radius r (centimeters), equal to the length of the string. Ms.Graham

knows that the magnitude of this force f, exerted inwards on the sled by the string, is given by

350(30-1)*
r

f_:

110

Section 6: Program Editing

where ¢ is the time (in seconds) from when the rocket is ignited. The force, expressed in dynes, can be con-
verted to pounds by multiplying by 2.25 X 10°¢. Write a program for Ms.Graham that requests the length of
the string r and then prints the force exerted by the string (in dynes and pounds) at intervals of 1 second.
Have the program halt execution after each second’s output so that she can determine if the string’s breaking
strength (2.22 X 108 dynes, 5.0 pounds) would be exceeded. Run the program for various string lengths,

using trial and error to find the shortest length (approximately) for which the string lasts at least 10 seconds.

Notes

11

Section7

Branches and Loops

Normal program execution is in sequential order from the lowest numbered statement to the highest numbered

statement. As we have seen with the i statement, branching alters this process by transferring control to a

statement that is not in the sequential flow.

Branches, loops, and subroutines are three methods of altering the normal flow of program execution. This section

covers unconditional branching with the i statement, conditional branching with

[statements. In section 9 we will con-

, and a method of forming efficient loops with the ! and

tinue our discussion of branching with subroutines, the special function keys, and user defined functions.

Most of the programs we have discussed to this point have contained unconditional branches using the

statement. The i statement is simple and direct; it transfers program control to the statement number that you

specify. A I statement used in this way is known as an unconditional branch because it always branches

execution from the statement to the specified statement number. Now you will see how to use

statements—branching that depends on the outcome of the test.

Conditional Branching

Often there are times when you want a program to make a decision. In the averaging program in section 1, we wanted
the program to decide whether to branch to the end of the program to display the result, or whether to ask for more

numbers to include in the average. As you may recall, the branch was dependent on the outcome of a specified

statement.

condition, using the statement. The HP-85 provides several forms of the .

One of them is:

I'F numeric expression statement number

The

expression is true, the

4 statement makes a ‘*decision’’ based upon the outcome of the numeric expression. If the

part of the statement is executed. If the outcome is false, execution continues with

the statement following the statement.

For example, suppose an accountant wishes to write a program that will
calculate and print the amount of tax to be paid by a number of persons.
For those with incomes of $10,000 per year or less, the amount of tax is
17.5%. For those with incomes of over $10,000, the tax is 20%. A flow-
chart for the program might look like this:

113

114 Section 7: Branches and Loops

START

ENTER
AMOUNT OF
INCOME

IS
INCOME OVER
$10,000?

YES

COMPUTE 17.5% COMPUTE 20%
OF INCOME OF INCOME

>

/ PRINTTAX /

The diamond in the flowchart would be represented by an 1+ ... T

statement in a BASIC program. Thus a

sample solution to the problem might be:

: T 1A0BHE THEH &0 If true, then execute line 60. If false,
then go to next line in program.

“EIMT "TRHE=";1%.175

FEINT "TH:E="114%, 2

EMD

As you can see, we used a relational operation in the I -tstatement. The IF ...

often used with relational operators (=, <, », <= = ik or #), although the decision can be based on the value

of any numeric expression as we shall see later.

If the condition is true, i.e., if the income is greater than $10,000, then program control is transferred to statement
60. If the condition is false—in this case, if the income is less than or equal to $10,000—then the rest of the I

statement is ignored and the program continues at statement 40.

Now, test your program with values of $20,000 and $9,000. We ran the sample program below in print all mode by

executing the FF i..command to print all inputs and outputs.

Computed 20% of income.

Computed 17.5% of income.

Section 7: Branches and Loops 115

Remember from our discussion of the logical evaluation (page 59) that an operation is assigned the value of 1 if
it is true and a value of 0 if it is false. Thus, in an IF .. THEH statement, if the outcome of a numeric

expression has a value other than 0, it is considered true; if it has a value of 0, it is considered false.

Example: Write a program to compute !/ x. Since division by zero yields an error, use an

to check for a zero input. Then load the program and run it for values of O and 9.

Here is a sample solution to the problem:

ROCAL Y
i HUMEE R

If X is any number other than O, then the
program branches to statement 80. The
statement means the same as
| b . If X is 0, then execution
continues with statement 50.

.i.command to print all inputs and outputs.

Another form of the : statement provides conditional execution of a statement without necessarily

branching:

executable statement

" numeric expression T

Again, when the condition is true (or the value of the numeric expression is other than zero), the statement is
executed. When the condition is false (the value of the numeric expression is zero), execution continues with the

following statement.

I ¥ statements.

All executable BASIC statements are allowed to follow - 4 except for i

Statements that include the following keywords are declaratory and not executable. Trying to enter one of them

ina’

116 Section 7: Branches and Loops

Example: Write a program to make Celsius/Fahrenheit temperature conversions such that:

I. If you enter a C, the temperature is converted from Celsius degrees to Fahrenheit according to the formula
F=32+9/5*C.

2. If you enter an F, the temperature is converted from Fahrenheit to Celsius according to the formula
C =(F —32)*5/9.

3. If neither C nor F is entered, nothing is printed.

If you wrote programs for problems 5.1.a. and 5.1.b., combine them. Use the second form of the

statement in your program to determine which conversion is to be made.

Here is a listing of a sample solution:

Convert temperature to Celsius degrees.

Convert temperature to Farenheit
degrees.

Run the program to convert 0°C and 100°C to degrees Fahrenheit; 50°F and 98.6°F to degrees Celsius.

Here are the results printed from our program:

The

Option

. In the previous examples, if the numeric expression

was evaluated as false, program execution continued with the next sequential statement following the ¥

statement. But if you specify the E!:

statement, the program will

instead perform the indicated ¥ instructions. This gives you tremendous power with conditional branching;

six different forms of the I ¥ .. THEH statement are available.

I Fnumeric expression THE statement number
or
executable statement

Statement number
or
executable statement

If the numeric expression is false and FL 5FE is specified, execution is transferred to the statement number

following EL ZE or the indicated Fl.SE statement is executed.
Let’s look at an example.

Example: A quadratic equation is of the form 0 = ax® + bx + ¢. If a #0, its two roots may be found by the formulas

o= —b +Vb® — dac and o = —b — Vb?% - dac
1 = 2 =
2a 2a

Section 7: Branches and Loops 117

Write a program to compute the roots of a quadratic equation given the values of the coefficientsa, b, andc¢. Ifa is
zero, display an error message and reenter new values. If 5> — 4ac is less than zero, then the square root of that value

would give a warning message or an error. So make sure that b* — 4ac is greater than or equal to zero before you

compute the roots.

Here’s a flowchart of the problem: START

DISPLAY
A=

INPUT
A, B, AND C

NOT QUADRATIC
DOES
= 07

COMPLEX ROOTS;
CANNOT COMPUTE

DISPLAY

IS
B2 — 4AC = 07
YES

COMPUTE
ROOTS R1 AND R2

i

PRINTA B, C
R1 AND R2

In this sample solution we use two forms of the :

program and run it.

statement. Study it carefully, then load the

If A=0, displays message, then continues
to next statement. If A#O0, reads

£ i £tdand program branches

to statement 100.

If D>=0, branches to statement 120.
If D<0, displays E message
then continues to statement {10.

118 Section 7: Branches and Loops

The instruction following * in an statement may be a statement number or an executable

statement. Again, the same stipulations hold for as i {; you may use any executable statement except

T, and and you may not use declaratory statements.

Run the program to find the roots of the equation x? + x — 6 = 0. Then run the program again to test the decisions
withx + 1 =0andx?+ 2x + 2 = 0; finally the roots of 3x2+ 2x — 1 =0,

Coefficients of x2 +x — 6 = 0.

Result.

Coefficients of x + 1 = 0.
Displays message.

Asks for new input.
Coefficients of x2+ 2x + 2 = 0.
Displays message.

Asks for new values.
Coefficients of 3x2 4+ 2x — 1 = 0.

Result.
For a more efficient and accurate method of finding the roots of a quadratic equation, refer to the Polynomial
Evaluation program in your HP-85 Standard Pac.

i and clauses. If the

Note that the i symbol enables you to include multiple statements as part of

test condition is true, all 7 statements will be executed. If the test condition is false, all

(if any) will be executed.

The Computed

There is one more form of unconditional branching that you should be aware of: the |

or computed

"I} statement.

The {1+ ... 20T statement enables you to transfer program control to one of one or more statements, depend-

ing on the value of a numeric expression.

Section 7: Branches and Loops 119

The numeric expression is evaluated and rounded to an integer. A value of | causes control to be transferred to the
first statement specified in the statement list; a value of 2 causes control to be transferred to the second statement
specified in the list, and so on. A value less than | causes an error. A value greater than the number of statements in
the list also causes an error.

Essentially, the (1M ... G017 [statement is a combination of the [[statement and the 01T (Y statement.
For example:
BEOOM R OGOTO 25, 28, 156

This statement says: if R=1, go to statement 25, if R=2, go to statement 80, and if R=3, go to 150. But if R<I or
if R>3, an error would occur.

Look at the following application of an [IH ... LT Ll statement:

Example: The payroll clerk of a small firm wishes to write a program
to compute the weekly wages of the employees according to the follow-
ing payscales:

Payscale Hourly Wage
1 $4.75
2 $5.50
3 $6.25

Also, overtime must be taken into account. If the employee works more than 40 hours in the week, the remaining
hours should be multiplied by 1.5.

Sample Solution:

IHY

T CUHAGESY
MAME ,FIRST IMIT.® Since we have not dimensioned N$, the
. name can be no longer than 18
Ro WOREEDY: characters. (We’ll discuss this later.)

Computes overtime.

28 Computed [{1 branches to 140 if
P=1, 160 if P=2, and 180 if P=3.

Computes wages according to desired pay
scale.

after wages are printed for each
employee. When the program is running,

press to continue.

120 Section 7: Branches and Loops

Run the program for the following list of employees. Remember that if a comma is part of your string input, the

string expression must be enclosed within quotes (e.g., enter * . ..1. " for the first name).

Name Hours Payscale
Jones, J. 43 2
Smith, K. 52 3
Fender, L. 40 1
Morris, D. 44 2

Your printout should look like this:

Note: If the value of the numeric expression is less than one or greater than the number of statement num-
bers in the list, i v

1 1 (argument out of range) occurs.

In the following example when statement 20 is executed for the third time, the value of I exceeds the number of

statement numbers in the list.

Running the program:

Loops

Repeatedly executing a series of statements is known as looping. We have seen several loops in programs; the future

value program contained a loop—as did the checkbook balancing program.

A clear and efficient way to create loops is to use the ! “statements. The ~{!#and T statements

are used to enclose a series of statements, enabling you to repeat those statements a specified number of times.

Section 7: Branches and Loops 121

loop counter = initial value Ti} final value [ZTEF increment value]

T loop counter

The

The loop counter must be a simple numeric variable.

‘statement defines the beginning of the loop and specifies the number of times the loop is to be executed.

The initial, final, and increment values can be any numeric expression. If the increment value is not specified, the

default value is one.

loop range

The : I loop will be executed
five times: whenl—l 2,3.4,and 5. Each
time the i4i2# T statement is executed, the
value of [is incremented by 1. But when

the value of I passes the final value, that is,
when 1=6, the loop is finished, and execu-
tion contmues w1th the statement follow-

I'statement (in this case, 80).

The

statement does the following:

o It sets the loop counter to the initial value.
e It causes the HP-85 to store the final value for the loop counter.

o It tests for the exit condition by comparing the current value of the loop counter with the final value.

While the value of the loop counter is less than or equal to the final value (for a positive increment value),

execution continues at the next statement after

The

.7 statement does the following:

e It increments (or decrements) the loop counter.

. It returns control to the test condition of the

statement and thereby defines the end of the loop.

When the value of the loop counter becomes greater than the final value of the

statement (or when the
value of the loop counter becomes less than the final value when a negative increment value is used), then the

loop is exited and program control is passed to the next statement afte

122 Section 7: Branches and Loops

Example: Use a FUOE-HIEHT loop to compute and print the area of a circle with an integer radius from 15

centimeters to 20 centimeters, according to the formula A = xr2.

Notice that the initial value does not
have to be 1.

Increments R by 1.

% statement. When R exceeds 20, program execution

The loop is executed 6 times from
R=15 through R=20. When the loop is
exited, R=21.

You can also use variables or numeric expressions to specify the initial or final values.

Example: Suppose you are a widget maker. The shipping department
in the widget factory can pack widgets in a variety of ways—rarely do
two boxes contain the same number of widgets. Since widgets come in
various shapes and sizes, the value of each widget varies. But you want
to insure the box for the true value of the widgets inside. Write a prog-
ram to accept the number of widgets in a particular box and then accept
the value of each widget in the box, compute the total, and print the

value to be insured.

Your flowchart might look like this:

START

INITIALIZE TOTAL
TO ZERO

INPUT NUMBER OF
WIDGETS IN BOX
e
INPUT WIDGET
VALUE

ADD VALUE
TO TOTAL

)

LAST WIDGET
IN BOX?

PRINTTOTAL /

END

Section 7: Branches and Loops 123

Sample Program:

Here, you actually input the final valuc of
the loop

i loop range.

Now run the program for a box of five widgets, with individual values of $3.50, $4.95, $2.60. $18.50. and $5.10:

As we mentioned earlier, it is possible to use expressions in the ? statement as either the initial value or the

terminating value. For example, you could have a problem that requires you to have statements like the following:

The initial and final values of the loop counter are computed and stored when the statement is executed.

(Note that it’s not possible to change the final value from inside the loop.) Although the value of the loop

counter can be changed from within the loop, doing so is usually not recommended.

For example, this program has problems:

This program would create an infinite
loop, like those we’ve seen before, except
worse since nothing is displayed or
printed. The variable I is reset below the
final value each time the program executes
the loop.

124 Section 7: Branches and Loops

Changing the Increment Value

In all of the | I loops above, the computer increments the counter by 1 each time through the loop. But

you are not limited to just 1. You can use any stepping value, positive, negative, or non-integer, with the =

parameter.

For example, suppose you wish to print the odd integers from 1 to 10. You could use a F

loop like this:

= The initial value of I is 1. Each time

. isexecuted, [is incremented by
2. In this program, 1 = 1,3, 5,7, and 9.
When I reaches 11, the loop 1$ ex1ted and
the program ends. Since the & IH’
statement in line 20 ends with a semlcolon,
an extra i1 statement completes the
print message and outputs it to the printer.

You can also decrement the loop counter.

Example: Write a program that requests a number and computes its factorial. A factorial is an integer multiplied by
all of the other integers below it (down to 1). For instance, 6! =6 X 5 X 4 X 3 X 2 X |. (Also consider limiting the

size of the number a user may give. What happens if a negative number or a noninteger is entered?)

Enter the following program into the system:

Check to make sure the number is a
positive integer.

Loop counter is decremented from N to
N—1, and so on.

Result.

Result. Remember, the computer over-
flows with numbers larger than
9.99999999999 x 1049,

Section 7: Branches and Loops 125

Let's see how the factorial of 4 was computed. After you input 4, the initial value of the FOR statement was set to 4.

So the program read the statement as:

The values for F were computed as follows:

First time through loop.

Second time through loop; P=4—1.
Third time through loop; P=3—1.
Last time through loop; P=2—1.

When the 7 statement decrements the P value to 0, the loop is exited.

Nested Loops

When one loop is contained entirely within another, the inner loop is said to be nested. A loop can be contained
within a loop that is contained within a loop ... (up to 255 nested loops), as long as the loops do not overlap cach

other.

.7 loop cannot overlap another F 1T loop, for instance:

Incorrect Nesting Correct Nesting

when |

I is executed because it’s an inner loop. When the I loop is completed and

accessed, is displayed. This is because the J loop was cancelled and was not

reactivated after the last [loop.

Run the correct nesting example now to view the looping process:

A

The J loop is completed before I is
incremented.

A

Now =2 and the program runs through
the J loop again.

A

Finally [=3; the J loop is executed once
again. When I reaches a value of 4, the
program halts.

126

Section 7: Branches and Loops

< T Loop Considerations

+: statement. Branching into the middle of
¥ if the |

Execution of a 2T loop should always begin with the !

" statement is executed

a loop (with statements like “ior [F) will produce &

before the program executed the corresponding ! statement.

Execution of a loop normally ends with a i statement. It is permissible to transfer program control out
of the loop by a statement within the loop. After an exit is made through a branch within the loop, the current

value of the counter is retained and is available for later use in the program. In this case, it is permissible to

reenter the loop either at a statement within the loop, or at the i statement (thereby reinitializing the

counter).

.1 loop will not be executed if the initial value is greater than the final value when a positive

value is used, or if the initial value is less than the final value when a negative value is used.

An often overlooked aspect of ¥ T looping is that the actual value of the counter when the loop is

complete does not equal the final value. The ! statement increments or decrements the loop counter

past the final value before the loop is exited. (We’ll see an example of this in the graphics section, Padding the

7 loop.)

Make certain that the loop counter in the [statement matches the loop counter in the corresponding

= statement. Otherwise, the program will not run as expected.

Don’t include comments (using F or i) in the same line after a " statement. Otherwise,

A7 0 MO may occur.

Problems

7.1

7.2

As an avid sports fan, you decide to write a program that will help you keep score during an important

basketball game between the Aakerville Aardvarks and the Wiggenberg Wombats. You can enter anA or W
to signify a field goal (worth 2 points) for the appropriate team, and ana orw to signify a free throw (worth |
point). The score should be printed after each entry.

The common game of **Buzz"’ offers a challenge to a person’s number skills. This version, called *‘Beep,”’
requires you to program the HP-85 to successfully complete the same game. The game consists of counting
(displaying) numbers from 1 to 100. However, for any number that is evenly divisible by 7 or contains a 7,
the display should leave a blank and the HP-85 should *‘beep.’” If the number both contains a7 and is evenly
divisible by 7, two ‘“*beeps’” should be sounded.

Hint: The *‘ones’’ digit of a two-digit integer can be found as

Here is a check to see whether you and the HP-85 can communicate using ‘‘mental’’ telepathy. Write a
program that uses the :{[irandom number generator to ‘‘pick’’ a number from | to 5, waits for 5 seconds
while ‘‘concentrating’’on the number, and then requests from you the number that comes to your mind. The
display should indicate whether your entry is correct or incorrect. After every 10 picks, the printer should
list a summary of your accuracy and indicate whether it is better or worse than that expected by chance (20%

accuracy). The random “*picks’” can be generated by

7.4

7.5

7.6

Section 7: Branches and Loops 127

Boy Scout Jeffrey Goodfellow is preparing for his compass-course test, in which he must follow several
legs of a course and attempt to be within an allowable error of the finish point. Each leg of the course is
defined by a magnetic bearing (6) to be followed and the distance (d) to be traveled. Jeffrey realizes that

each leg can be converted to northerly and easterly distances (d, and d.) according to:
d, =d X cos (8)
d. = d X sin (8)

If the northerly and easterly distances are summed for all the legs in the course, these two sums can be used

to determine the direct bearing () and distance (d;) of the finish point relative to the starting point:
6; = arctan (d /d,)

df=\/m

If he had a program to perform these calculations, Jeffrey could check his accuracy during his practice
sessions. Write a program that requests the bearing and distance for each leg of the compass course. (A
distance of zero should indicate that all of the legs have been entered.) The program should produce a listing
of the bearings and distances, and then give the direct bearing and distance of the finish point relative to the

starting point. Use the Y . X : function to compute 6; so that the proper angle is chosen. (If 6; is

negative, add 360° or use §:MOD360 to obtain the bearing in the correct form.)

~ statement.

Hint: Don’t forget the

Your medical supplies business has offices in Britain, France, and the United States. With such an arrange-
ment, you must frequently convert monetary values among the three currency systems: British pound,
French franc, and U.S. dollar. In order to facilitate these conversions, you decide to write a program to
compute them for you. Each currency system is to be denoted by a code number. The program is to be
initialized each day by entering equivalent monetary values in each currency. Each required conversion
should begin by entering the currency code and amount to be converted; the currency system and equivalent
amount is to be printed for each system. On a certain morning, 1 British pound is equivalent to 8.3981 French
francs and 1.8248 U.S. dollars. At these rates, find the equivalent values of a patient lift worth 284 British
pounds and a hospital bed valued at 1205 U.S. dollars.

The mayor of Dimsburg has directed Elmo Rumple, the town statistician, to study the problem of motorists
having to stop at all three of Dimsburg’s traffic lights. EImo confines his analysis to those motorists who are
delayed at all three lights. He assumes that each car arrives randomly at each red light, indicating that the
delay at each light is uniformly distributed between 0 and 1 minute (the duration of a red signal). The total
delay in Dimsburg is therefore the sum of the three uniformly-distributed delays. EImo wants to compute the
probability that this delay is shorter than various time intervals. From his vast experience, he knows that
this probability is given by the following function (called a distribution function).

0 forT <O
TA3/6 for0=T <1

Prob(delay < T) = S=T*(1.5—-T*(1.5-T/3)) forl ST <2
—3.5+T*(4.5-T*(1.5-T/6)) for2=T<3
1 forT =3

Help Elmo by writing a program to compute the probability of a total delay that is less than any specified
time. (Use an [1... 117 Cistatement to branch to the proper equation.)

Section 8

Using Variables: Arrays and Strings

As we mentioned earlier, there are three types of numeric variables available with the HP-85:

. (full
:numbers. A fourth type of variable deals with character strings. Numeric

precision), “and

’

variables can have two forms: simple (non-subscripted) and array (subscripted). Strings may also be subscripted,
but not in the form of an array.

In this section, we discuss array and string variables, their functions, and how to use them.

Array Concepts

An array variable (or simply, an array) is a collection of data items of the same type under one name. An array may
have one or two dimensions. For instance, a one-dimensional array (often called a vector) might be thought of as a
list of items; there may be several rows but only one column. A two-dimensional array (often called a matrix) is

like a table of values; there may be several rows and several columns of items.
Suppose we have the following list of numbers:

1

4 - .

9 We could store this list of numbers, in the
16 order shown, in a one-dimensional array.

25

If we name this set of numbers array S, we can specify the individual elements of S by using subscripts.

If numbering of array subscripts begins with 0, the elements of array S are specified as:

Subscripts Array Elements
S(0) =1 0 1
S(1) =4 1 4
S(2)=9 2 9
S(3) =16 3 16
S(4) =25 4 25

If the numbering of array S begins with [, then the elements of array S are:

Subscripts Array Elements
S(1) =1 1 1
S(2)=4 2 4
S(3)=9 3 9
S(4) =16 4 16
S(5) =25 5 25

129

130 Section 8: Using Variables: Arrays and Strings

We need to use a two-dimensional array to store the values in the following table:

Number Square Square root Factorial
1 1 1 1
2 4 141421356237 2
3 9 1.73205080757 6
This table contains 3 rows and 4 columns for a total of 12 values.
If subscript numbering begins at 0, the elements are identified as follows:
D(0,0) =1 D(0,1) =1 D(0,2) =1 D(0,3) =1
D(1,0) =2 D(1,1)=4 D(1,2) =1.41421356237 D(1,3)=2
D(2,0)=3 D(2,1)=9 D(2,2) =1.73205080757 ,3)=6
Array D
Subscript 0 1 2 3
0 1 1 1 1
1 2 4 1.41421356237 2
2 3 9 1.73205080757 6

Each element in array D is specified by its location in the array with two subscripts, separated by a comma, and
enclosed within parentheses. The first subscript designates the “‘row’” in the array; the second subscript designates
the “‘column.”’

If numbering of the subscripts begins with 1, array D would be represented:

Subscript 1 2 3 4
1 1 1 1 1
2 2 4 1.41421356237 2
3 3 9 1.73205080757 6

Thus, 9 would be represented as D(3,2); 6 would be represented as D(3,4).

Array names are the same as simple variable names; an array name may be a letter from A through Z, or a letter
immediately followed by a digit from O through 9. But whenever an array is specified, it must be followed by
subscripts enclosed within parentheses, otherwise it specifies a simple variable.

Arrays are extremely convenient for handling large groups of data within a program because a group of different
values are known under the same name. The different values (or elements of the array) are distinguished in name by
subscripts to the array name.

An array name followed by a single subscript enclosed within parentheses specifies a one-dimensional array or
an element of that array. An array name followed by two subscripts separated by a comma, both enclosed within
parentheses, specifies a two-dimensional array or an element of that array. (No more than two subscripts are
allowed.) Whether the array name is understood as the whole array or as a specific element depends on the type
of statement that is used. Declaration statements refer to the whole array; executable statements usually refer to

an array element.

Section 8: Using Variables: Arrays and Strings 131

Declaring and Dimensioning Variables

Five variable declarative statements are available to dimension arrays and strings and declare the precision of

numeric variables:

Array declarations (for example, 3} and string declarations (for example,

appear anywhere in a program, with these restrictions:

e A declaration must appear as the first reference to the array or string in the program.

. Declarations are not allowed in IF

- statements.
e If used in a multistatement line, a declaration must appear as the last statement.

e Subscripts following an array or string variable must be nonnegative integers.

Arrays and strings are limited in size only by the amount of main memory. The subscripts in a declaration

specify the maximum number of elements or characters allowed in the array or string.

Lower Bounds of Arrays

Earlier we saw that subscript numbering can begin with 0 or 1. The HP-85 assumes that all array subscripts begin at

0 unless you specify otherwise with an [

When dimensioning arrays, you may want to specify that the lowest numbered subscript be | rather than 0.

i tells the

This statement must come before any array variables are referenced in a program.

computer to begin numbering all subscripts of arrays with 1.

The real advantage to using

1 is that you can refer
to an array element directly by its position in the array without wasting
element 0. Thus, the first element in a one-dimensional array S is S(1)
rather than S(0); the second element is S(2) rather S(1) and so on. And if
array S contained 10 elements, it would be declared as S(10) rather than
S(9).

If

include the statement

% is not declared in a program, you may wish to

or documentation pur-
i is the

poses. But this is not necessary since

default array counting system at power on. There may only be one

statement in a program.

132 Section 8: Using Variables: Arrays and Strings

The JFTIOH BASE statement cannot be executed from the keyboard.

The {1111 Statement

The i

numeric arrays. It is also used to dimension and reserve storage space for strings.

[{(dimension) statement is used to dimension (allocate memory) and reserve memory for full precision

ititem [, item ..]

The item can be:

e A numeric array, with subscripts enclosed within parentheses.

e A string, with the number of characters enclosed within brackets.

The I istatement specifies the upper bound of an array and the maximum number of characters that a character

string may have.

Remember that the HP-85 assumes that the lower bound of an array is O unless you specify it to be 1 with

Declares a one-dimensional array A of

101 elements; A(0),..,A(100).

Declares a two-dimensional array B of 12
elements (4 by 3) and a character string C$
of 56 characters maximum. (Refer to our
discussion of strings on pages 57 and 58.)

With i iIthe number of elements in each dimension of a numeric array is calculated by adding
one to each upper bound subscript. Then the resulting values are multiplied together to yield the total number of

elements in a two-dimensional array.

Examples:
SOOFTION BRASE | Declares the lower bound of all arrays to
be 1.
T8 DIM AC1@ay BO3, 20, CF0Ea] Dimensions an array A with 100 elements

array B with 6 elements (3 by 2), and a
string C$ with 56 characters.

The memory allocated to a character string is not affected by ¢ In a {11 statement, the
number within brackets always refers to the number of characters allocated to the string. The maximum num-

ber of characters that may be specified for a string is limited only by the amount of main memory.

Type Declaration Statements

All numeric variables (simple and array) are assumed to be full precision variables (type i), unless they

appear in a type declaration statement. A type declaration statement specifies the type of variable,
SHORET, or INTEGER.

Section 8: Using Variables: Arrays and Strings 133

R numeric variable, [subscripts :] [. numeric variable; [« subscripts] ...]

T numeric variable, [+ subscripts:] [. numeric variable, [subscripts 3] ...]

I numeric variable; [subscripts 3} [. numeric variable, [‘subscripts 3] ...]

The i

statement dimensions and reserves memory for integer precision variables—simple and array.

The %HUIIFT statement dimensions and reserves memory for short precision variables—simple and array.

Since the [I [statement is used to dimension full-precision variables, and undeclared simple variables are assumed

to be full-precision, the FE Fi.statement is only useful for documentation purposes.

Examples:

Declares variables A and B to be integers;
declares and dimensions array C to 11
integer elements, assuming OPTION
BASE 0.
SELLFE Declares and dimensions short-precision
elements for array P; declares variables Pl
and P2 to be short-precision.
Declares array D and variable X5 to be
type REAL.

Statement

The © common,) statement is used to dimension and reserve variables to be held in common in two or more
programs. | is primarily used with the ¢ statement (section 11) to pass variables between programs.
A statement may also be used to deallocate a program before it is stored (refer to page 000).

The variables in common must agree in type and size between programs that are ded.

titem [. item ..]

The item can be:
e A simple numeric variable.
e A subscripted array.

e A string with number of characters enclosed within brackets.

In addition, any one of the type words— —may precede one or more variables.

Example:

The variables A,B(4,3), and D are full precision. Full precision is assumed at the beginning of the .

numeric variables declared after a type }

.. declaration. From left to right in a given list, all variables

134 Section 8: Using Variables: Arrays and Strings

following a numeric type word have that precision until another type word appears in the list. Thus, both H(5) and J

are short precision.

statements in separate programs that are linked with the | statement must agree in number and type

of variable. Variables held in common are reset to undefined values by executing iy

About Variable Declarations

e The

definition.

i statement must be used in a program, not from the keyboard, and may not appear within a function

[

i and ¢

e The location in a program of [} 1 type declarations is arbitrary, though they must be after an

= statement and before any other reference to the dimensioned variable. It’s good pro-

gramming practice to include an ¢ E declaration in each program segment when passing

arrays in Z{i/1 statements between the segments.

o The L

that have upper bounds of 10 or less. Thus, you do not need to use

istatement need not be used to assign memory space for strings with 18 characters or less or for arrays
with an array A(5,5) (of 25 or 36
elements depending on the lower bound) or a string C$=""SQUARES"". But array A(5,5) will be implicitly
dimensioned to be A(10,10) and string C$ will be implicitly dimensioned to have 18 characgers rather than 7

(the number of characters in **SQUARES"’). Thus, you may wish to use | 0 conserve memory with small

arrays and strings.

e A program can have more than one ? %, or type declaration statement, but the same variable name

can be declared only once in a program. Therefore, arrays of differing dimensions or variables of different
types cannot have the same name. But the same name may be used for a simple numeric, a string, and a

numeric array.

String Expressions

The simplest form of a string expression is text within quotes. This is called aliteral string and can be made up of any

characters excluding quotation marks.

For example, execute the first two statements:

This string expression contains eight
characters: two spaces and the word
STRING. Quotation marks are not in-
cluded in a literal string because they
mark the beginning and end of the
string.

The forms that a string expression can take are:
o Text within quotes.
e String variable name.
o Substring.
e String concatenation operation ().
e String function.

e Any logical combination of the above.

Section 8: Using Variables: Arrays and Strings 135

As with numeric expressions, a string expression can be enclosed in parentheses if necessary.

In this section, we discuss substrings and string functions.

Thus far, you have learned to assign a literal string to a string variable and to join two strings together using the

ampersand (%) as the string concatenator (page 58).

You have also seen that unless the size of a string variable is specified in a [I statement, it is implicitly

dimensioned to be a maximum of 18 characters in length.

The statement above dimensions string variable A$ to be a maximum of 15 characters, F$ to be a maximum of 28
characters, and H$ to be a maximum of 100 characters. Brackets (not parentheses) must surround the number of

characters to be included in the string variable.

Substrings

A substring is a part of a string made up of zero or more contiguous characters. A substring is specified by placing

subscripts in brackets after the string name. There are two forms a substring can have:

e String variable name f.character position .

The character position is a numeric expression which is rounded (not truncated) to an integer. The substring is

made up of that character and all following it.

eginning character position : ending character position .

e String variable name !

This substring includes the beginning and ending characters and all in between. The character positions must
be within the dimensioned number of characters. If the first subscript is exactly one greater than the second

subscript, the null string (**) is specified.

Example: Suppose we dimension and assign string A$ as follows:

Spaces are also characters.

Now look at the various examples of substrings of A$:

One subscript denotes a substring from
that character position to the end of the
main string.

Two subscripts denote a substring that
includes the characters in the positions
specified and all characters in between.

136 Section 8: Using Variables: Arrays and Strings

Modifying String Variables

There are a variety of ways that you can modify a string or substring by
another string or substring. For instance, a part of a string can be
changed or characters can be added or deleted. The modifying string can

be any string expression.

The length and content of a modified string depend not only on the
characteristics of the modifying string, but also on the number of sub-

scripts given for the original string.

Replacing a String

You can replace the complete string of characters with another string using an assignment statement.

For example:

Press Display

A$ = "HELLO" Assigns string to AS.
B$ = "GOODBYE” Assigns string to B$.

B$ = A$ (3N)
BS (5]

Assigns BS the expression in A$.
Recalls B$ to verify.

As you can see, B$ was reassigned the string in A$. When no subscripts are specified for either variable, the string
is completely replaced with the new string. You can also reassign string variables by typing the new string within

quotes.
For example:

Press

A$ ="HI”
AS

A$ ="BYE"

AS (&)

A string variable contains the characters

most recently assigned to it.

Recalls A$ to verify.

Replacing Part of a String

After you have assigned a character string to a variable, you can replace one substring with another substring. The
original string can be lengthened or shortened. But if you attempt to lengthen the string beyond its dimensioned

length, you will cause an error.

Section 8: Using Variables: Arrays and Strings 137

Change substrings by specifying the subscripts of the characters to be changed and the new substring.
For example:

Press Display
H$ ="HAPPENING”
H$[7] ="STANCE”
HS$ (cne

Assigns substring to H$ beginning with
character 7.

Lengthened string.

H$[5] ="ILY"
H§

Assigns substring to H$ beginning with
character 5.

New string.

If characters added to a string are not contiguous (in other words, some character positions are left unassigned),
blank spaces will fill the unassigned characters in the string.

For example:

Since the third and fourth character posi-

tions of W$ have not been assigned char-
acters, they are filled with blank spaces.

You can also replace the beginning or the middle of a string with another substring. Do this by using two subscripts
to specify the first and last character positions of the substring to be replaced.

If the new substring is shorter than the substring that you replace, the remainder of the new substring is replaced with

blanks; if the new substring is longer than the one you replace, the remainder of the new substring is truncated.
For example:
Press Display

7§ ="HEPTAGON”
z$[1,3] ="PEN"

z$ (&%)

Z$[1,4] ="HEX" (EN

z$ (B%)

Replaces characters 1 through 3 of Z$
with specified substring.

Since you replaced characters 1 through
4 with a string of length 3, the fourth

character is a blank.

Press Display

7$[1,4]= “DODEC”

zs (E)

If you try to replace four characters with

five characters, the fifth character is

truncated.

138 Section 8: Using Variables: Arrays and Strings

Another way to specify the null string is to make the first subscript one larger than the second subscript in a substring.

Thus the following statements are equivalent:

Each specifies no blanks, no characters.
(A$ and C$ must have been previously
assigned values or an error occurs.)

Be careful when adding characters to a string when the characters are not contiguous—previously added char-

acters may still be present.

Example:

Displays i

Displays .

Displays = . The middle characters
in variable A$ were never changed.

To avoid confusion, delete the end of string as follows:

Replaces characters 2 through the end of
A$ with null characters, reducing the
string length.

Now when you run the program, the string in line 60 will be displayed as expected:

String Functions

The HP-85 provides seven different functions to enable you to determine the length of a string and analyze and

manipulate its contents.

These functions are:

String Function (Parameter) Meaning

Length of string.

. String 2 Position of string 2 in string 1.

L 8tring Returns the numeric value of a string expression composed of digits.
umeric expression i | Generates a string representing the numeric value of a numeric expression.
-numeric expression: | Converts a numeric expression to the corresponding character.

Returns the decimal value of the first character of the string.

Converts all lowercase letters in string to uppercase letters.

The Length Function

The LEHM (length) function returns the number of characters in a string expression.

L.EM <string expression

Section 8: Using Variables: Arrays and Strings 139

The current length of a string expression is returned. Remember, a string variable isn’t always “full”; the length

isn’t necessarily the maximum length that you give it in a |

Examples:

Length of string **123"".
function: 3 characters

long.

Assigns string to variable A$.
Finds length of AS.

Result: 12 characters long.

Notice that the string expression may be quoted text, a string variable name, or a substring. The expression must be

enclosed within parentheses.

Example: Write a program that will let you enter a character string of up ‘ vj\
to 40 characters in length. Then, using the L. function, compute and ’ &e \
display the word with the characters in reverse order. For instance, if you & 5
input ¥ 7, the program should display
o 1: DNIM M#EC481, RFC48] Dimensions the string variables to be a
maximum of 40 characters long.
o IE RE=TY Initializes R$ to the null string.
o I [DIZP "MMWORDM: Displays a message to prompt an input.
o 4@ IHMPUT MW# Inputs a word.
o 5B FOR I=LEMIM#z» TO 1 STEF -1 Uses length of word for loop counter and
counts in reverse order.
o o RE=RELWFII. I With the string concatenator, adds char-
acters to variable R$ in reverse order.
FEOHEHET I Defines end of f T loop.
=i DISP RE# Displays reversed word.
Qe EHD

After you enter the program above, try spelling some words backwards!

The program reverses the order of the
characters in the string—including spaces
between words.

140 Section 8: Using Variables: Arrays and Strings

After a string has been modified, L. E may return unexpected results:
Example:

= AR [pe
FOLEH AR Displays .

Displays
Displays

the default size of A$.

The length of A$ has increased to 18 because

i (in line 30) is an open-ended string specifier, that is, a
substring whose beginning but not ending character position is specified. This will happen whenever open-ended

specifiers are used to replace a portion of a string that includes the last character. To avoid confusion, use a full

specifier, for example

The Position Function

The F

(position) function determines the position of a substring within a string.

©.in string expression . of string expression :

If the second string is contained within the first, the function returns the position of the first character of
the second string within the first string. If the second string is not contained within the first string, or if the
second string is the null string, the value returned by the function is zero. If the second string occurs in more

than one place within the first string, only the first occurrence is given by the function.

Examples:

Finds position of second string in first
string. Result: second string begins at
sixth character position.

Result: first occurrence of **‘AB’” within
first string.

Position of BS in AS.
Result: B$ begins at fourth character
position of AS$.

Be sure to separate the string expressions by a comma.

Converting Strings to Numbers

Normally, the characters in a string are not recognized as numeric data and can’t be used in numeric

calculations: Usually, you want to deal with strings as character information rather than numeric information.

With the “#il. (value) function the numeric value of a string or a substring of digits, including an exponent, can

be used in calculations.

. L. 8tring expression :

Section 8: Using Variables: Arrays and Strings 141

For example, suppose

If you want to obtain the numeric value rather than the literal substring of **257684321"*, you must use the B

function:

Gives numeric value ot A$ from character
10 to end of string.

This ts a number, not a string. Note that the
system indents positive numbers; i.e., the
space before the number is for the sign (if
any). Now, this number can be assigned to
a numeric variable and it can be used in
numeric calculations.

This is asubstring of AS. A$[10] is not a
numeric value. Notice that no space pre-
cedes the number to specify the sign. The
string cannot be assigned to a numeric
variable nor can it be used in numeric
calculations.

When you use the function, the first character in the string to be converted must be a digit, a plus or minus

sign, a decimal point, or a space. A leading plus sign or space is ignored; a leading minus sign is taken into account.

The remaining characters in the string or substring must be digits, a decimal point, or an . An £ character after a

numeric and followed by digits (including sign) is interpreted as an exponent of 10.

Examples:

The function outputs the number in
standard format.

A string can contain more than one number. All continguous numerics are considered a part of the number until

a non-numeric is reached in the string.
Example:

o As long as the first character is a
numeric, the function converts the
string to a number until it reaches a non-
numeric character (the %-trailing spaces
are ignored).

But you can convert the remaining
numerics in the string by subscripting
the string variable. Here we specify the
numeric value of B$ from character posi-
tion nine to the end of the string.

142 Section 8: Using Variables: Arrays and Strings

Converting Numbers to Strings

The function, you can convert a

number to a string representation of the number in standard format.

L.# function is nearly the inverse of the “/#i_ function. With the %

¥ < numeric expression

Examples:
=UALECLZE

Result of executing V$; V$=“120".

W$ = %397

X$ — “8”.

Character Conversions

If you look at the table in appendix C, you’ll see that a decimal number corresponds to every character, symbol,

and i!

and key. The numbers range from 0 through 255. There are three functions, !
enable you to convert a number to its corresponding character, convert a character to its corresponding decimal

number character code, and convert small letters to capital letters.

Numbers to Characters

The ©H
character. Any number outside the range 0 through 255 is converted MOD 256 to that range. Any number less
).

(character) function converts a numeric value in the range —32767 through 32767 into a string

than —32767 is < (the same as ©HE# 7 1 ¥); any number greater than 32767 is i~ (the same as i

CHEF < numeric expression

Examples:

CHES O35

H

One of the most used numbers is 34 (this is the decimal number for a quotation mark). Often you may want to

use the quotation mark in a iTor & * statement. Since the beginning and end of a literal message is

defined by a quotation mark, you cannot use the mark itself. Instead, use

Section 8: Using Variables: Arrays and Strings 143

Characters to Numbers

The ¥

numeric) function converts an individual string character to its corresponding decimal value.

.string expression :

Thus you can find the decimal number code of the corresponding character without having to look it up in the table

in appendix C.

If more than one character is included in the string expression, the function finds the decimal equivalent of

the first character.

Examples:

To display ::, type A while holding down

the key (A%).

the key (P).

Converts only first character of string.

Lowercase to Uppercase Conversion

The

all uppercase letters.

% (uppercase) function enables you to convert a string with lowercase letters to a string composed of

. string expression

Examples:

Assigns M$ the string shown in lowercase
letters.

Assigns N$ that string in uppercase letters.
Recalls N$.

The string need not be composed of all
lowercase letters to be converted to all
uppercase letters.

As you may have noticed from the table of characters in appendix C, lowercase letters have different decimal values

than uppercase letters. The uppercase function allows strings to be compared without regard to upper and lowercase.

144 Section 8: Using Variables: Arrays and Strings

For example, part of a program might be:

.

User may enter ¥, =, : , etc.,

and the program will branch to statement

Assigning Values to Variables in a Program

You can assign values to variables using a program statement or by an input from the keyboard. Thus far, we have
discussed the

[(assignment) statement and the " statement with regard to simple variables. This sec-

tion covers assignments to the elements of arrays, initializing variables, and three more statements that are used
for assigning values to variables:

y

-, and -. These statements are useful when you have
a large amount of data that is reused in different places in the program.

Assigning Values to Array Elements

Elements of an array are assigned values in the same manner as sim-
ple variables: from the keyboard or within a program. But a particular
element must be referenced by its subscripts. For instance, ¢ 1, =3
refers to an element in array M and may be assigned a value and used

in calculations as a simple variable.

Example:
19 OFTION 1
e 2@ [OIM My Dimensions a 3 by 4 array M.
o 20 LET Mol 5 Assigns element M(1,2) the value 10.
o A8 H=MIl, 2. You can use this element in calculations.
5@ PRINT MOL,22.A
8 EMD

If we had not dimensioned array M, it would have been implicitly dimensioned with upper bounds of 10 for each
subscript.

The program below enables you to input values from the keyboard. The *

means of manipulating array variables.

“loop is the most efficient

Section 8: Using Variables: Arrays and Strings 145

Example:

You must assign each array element its
value, individually.

Assigns the elements of array A the values
you input.

A R Then prints the array elements.

Run the program, now, with the numbers 33, 48, -16, 3, and 10.

You can see that assigning values to array
elements witha 1 T loop

is indeed faster and easier than using an
assignment statement for each element,
especially with large arrays.

Let’s see how this is done with two-dimensional arrays:

Example:

1 Lower bound of array is 1.
Dimension 3 by 5 array K.
Nested ¥ " loops.

o 1@ OFTIOMN
. .

ik

SUCOLURHT
First input all elements of row 1,
then all elements of row 2, etc.

146 Section 8: Using Variables: Arrays and Strings

There are many ways to assign array elements values within the program. The following program uses the loop

counter to produce a list of squares of consecutive integers from [to 15.

START

INITIALIZE
I LOOP

[

[sy=t1«1 |

INCREMENT

IS
LOOP
COMPLETE?

INITIALIZE
NEXT
| LOOP

/ PRIN;TS(I) /
1

INCREMENT
LOOP COUNTER

IS

LOOP
COMPLETE?

Initializing Variables

It’s good programming practice to initialize (set) variables to their starting values in a program before you use
them. All numeric variables are initialized to undefined values by |

dor THIT. Thus, if you access the variable
before it is defined, an error will occur.

As long as you assign the variable a value before it is accessed, you will not err. For instance, the following

programs on the right cause warning messages (with FARULT) or error messages (with

be performed. But a warning message is displayed to alert you to the error and the unassigned variable will

remain without a value.

Section 8: Using Variables: Arrays and Strings 147

Correct Incorrect

Error here; using T when it has not yet been assigned a value.

undefined.

Correct Incorrect

E

Error occurred here; using a variable that has not yet been
assigned a value.

If you don’t plan to assign values to all array elements in a program but want to be able to access any of them, you

can easily initialize them using - loops. For example, suppose we want to initialize all elements of

array A to O:

Initializes the elements of array A(,)
one at a time.

The and

Statements

Many programs require you to enter large numbers of data items into the computer. You can accomplish this
with the I i i f

" statements, though it may be cumbersome to do so. If you had used an

statement and decided to run the program with the same values at a later date, you would have to reenter all of

the data once again. BASIC programming language provides a more convenient means of assigning values to

variables in these instances—by using the the = and 4 statements.

148 Section 8: Using Variables: Arrays and Strings

The FEFRD and DFTH statements work together to assign values to variables within a program.

.\ variable name; [. variable name, ...]

- constant or string [, constant or string ...}

The &

variables In a Ff

“H statement specifies the variables whose values are to be assigned from within the program. The

[l statement may be simple variables, subscripted variables, or string variables, and they

must be separated by commas.

The §
the

i statement contains a list of the numbers or character strings that will be assigned to the variables in

i item must correspond

{* statement. The numbers or strings must be separated by commas. Each

i statement.

to the appropriate variable of the same type in a F

I These statements cause “NAME” to be
assigned to N$,43 to A(1), and 6 to C.

3 THEM F
"HAME ",

1 statements, text may be quoted or unquoted. Here are some restrictions on unquoted text:

¢ Leading and trailing blanks are ignored.

e Commas in the text are interpreted as delimiters between items.

number.

All &ATH jtems must be constants; for example, a variable name will be regarded simply as text. Numeric

constants may include a leading plus or minus sign and a decimal point, and may be expressed in exponential

notation with exponent E, for example, — =, Very large and very small numbers are converted to

exponential notation in the [15 TF statement when entered in the program.

The | statement. Therefore,

a

i statement is simply ignored in a program if there is no corresponding

i statements can contain

1 statement need not correspond exactly with the statement. Your |

[

Hil statement, and they can be positioned anywhere in a program. The

more items than accessed by the &

important point is that the order of I'AT# statements within a program determines the order of their use.

For example, load the following program and run it:

Extra data items are ignored.

g a8

Section 8: Using Variables: Arrays and Strings 149

The system uses an internal mechanism, called a *‘pointer,”” to locate the
data element that is to be read. The left-most element of the lowest-

numbered statement is read first. After this element is read, the
data pointer repositions itself one element to the right and continues to do

so each time another data item is read.

statement, the data pointer

After reading the last element in a
locates the next higher-numbered statement (if any) and reposi-

tions itself at the first element in that statement. But if there are no higher-

numbered i statements, the data pointer remains at the end of the

last statement; any effort to read additional data will cause a |

message to be displayed.

For example:

The

tations are equivalent:

Note: We do not change the order of the items themselves.

Assigns 4 toN.

First, assigns 9 to D and | to DI; then, 8
to D and 4 to DI; finally 7 to D and 9 to DI.

Since N=4, program tries to read more
values for D and DI, but finds no more
data available.

i statement in the last program can be entered in a variety of ways. For example, the following represen-

Even though the data items can be entered in one or several L1 #i statements, as shown above, the order in which

they appear must correspond exactly with the order in which you access them.

150 Section 8: Using Variables: Arrays and Strings

The BEAD and 1A TF statements are often used to assign values to array elements.
Example:

14 FOR I=1 TO 5

FOR J=1 TO & Notice that you must ¢
. B L S A R element one at a time.

. sLE,18, 0 [IMTH items need to be entered only
S.olE 15, once. The program can access them each
time it is run.
o
P}
]
. T, The semicolon causes printed items to

be retained in the print buffer.
The extra print statement forces a print
after each row.

s Y

You can see a number of things about [t and from the examples above:

. It doesn’t matter where the + statement is, in relation to the statement, as long as the data

items correspond to the variables in the statement in order and in type.

e More than one is executed, the

pointer moves to the next data item. There must be at least as many items in the set of - statements

as there are variables in the FEM{I statements. Extra data items are ignored.

¢ The items in a data list must be either number or strings.

e Variable assignments made with EERD and D8 TFH statements are part of a program, contrasted with

T

variable assignments made with the IMFLIT statement. Thus, the data is stored with the program and

will remain with the program until the ! T# statement, itself, is changed.

Note that TH statements should not appear in multistatement lines or in

because the [1FT#H values will not be properly accessed.

Rereading Data: The Statement

Up to this point we have been able to access i T# items only once in a program. Once the data pointer moves

past the last data item in the last DJFT#H statement, an additional statement causes
MY DIATH. Of course, if the data items have been assigned to variables, you can use the same values again by

using the variable name.

But certain programs may require some, if not all, of the data to be read more than once. BASIC provides the

TOREE statement just for this purpose:

EESTORE [statement number]

Section 8: Using Variables: Arrays and Strings 151

 statement resets the data pointer to the first item of the specified statement (or the first item of the

The Fi:

lowest-numbered {i#1T Fistatement in the program if no statement is specified) each time it occurs within a program.

For example:

As you can see, the data pointer is continually reset to 5 in the [1 statement each time ‘N’ is read and

- 1s executed.

System Memory and Variable Storage

Storing Variables

Byte is computer language for a “memory location”composed of eight bits (binary digits). It is the basic unit of
memory, equivalent to one character of information. A kilobyte is a unit of 1,024 hytes (210) and is abbreviated

as “K”

The HP-85 has 32K bytes (or 32,768 bytes) of read/write main memory; 29,905 are available for your use. Each
of the HP-85 Enhancement ROMs requires a small amount of main memory for working storage. For example,
the 1/0 ROM requires 416 bytes of main memory. Refer to appendix A for a list of HP-85 Enhancement ROMs

and their memory requirements.

Use the following tables to determine the number of bytes that variables need in order to be stored in main
memory. (Do not confuse storing in main memory with mass storage requirements. Mass storage will be dis-

cussed in part III).

152 Section 8: Using Variables: Arrays and Strings

Simple Variables Bytes of Memory
Full precision 10 bytes
Short precision 6 bytes
Integer 5 bytes
String 8 bytes + 1 byte per character
Array Variables Bytes of Memory
Full precision 8 bytes + 8 bytes per element
Short precision 8 bytes + 4 bytes per element
Integer 8 bytes + 3 bytes per element

You have already noticed that at the end of every program listing, the HP-85 displays the number of bytes

(or memory locations) remaining in system memory. Press or execute the T (initialize) command before

"so that the memory displayed will include the memory required for allocated variables.

If you do not wish to i - the entire program to recall the memory, type L. ! and then a statement number

larger than any in the current program. For instance, you could execute !
of bytes left.

to display the number

You need not have a program in memory to execute .. . If there is no program, the system merely outputs the

number of bytes available.

Conserving Memory

Large programs that involve large amounts of data sometimes need more memory than is available for use. You can

conserve memory by:

1. Limiting the use of "I statements and comments in a program. This limits program readability and doc-

umentation, but it does conserve memory.

2. Using : ~ precision array variables, whenever possible or convenient, rather than full
precision. This is a very good way to conserve memory in a program that has a lot of data and is most useful

when dealing with large arrays.

3. A third way to conserve memory is to break a program down into several sections and each
section into a different file. Then each section of the program can be brought into memory, one at a time,

using the CHA I H statement. (Refer to section 14.)

4.

Section 8: Using Variables: Arrays and Strings 153

Combine statements using ** . This reduces program readability, but it does conserve memory by three

bytes per line. For example:

is seven bytes of information while

is 10 bytes of information.

Problems

8.1

8.2

8.3

Here is your chance to invent some new words. Write a program that accepts a base string and a first-letter
string, and then prints the *‘words’” formed by combining each of the first letters with the base string,
but omitting those that would begin with a double letter.

One light-year is the distance light travels in one year—approximately 9 trillion kilometers. The distances
(in light-years) of the 27 stars within 15 light-years of our solar system are listed below. Write a program that
will group these distances into intervals of 1 light-year (0-1 through 14-15) and determine the number of stars

in each interval. After printing these results, the program should request an interval number, 1 through 15,

and print the distances for the stars in that interval. Use an array for accumulating the interval

distributions. Use a simple T variable for the actual distances and them one at a time. A

statement is necessary for the second part of the program.

STAR DISTANCES (light-years)

4.3 10.3 11.5 12.8
59 10.7 116 13.1
7.6 10.8 11.7 13.1
8.1 10.8 11.9 13.9
8.6 11.2 12.2 14.2
8.9 11.2 125 14.5
9.4 114 12.7

The world record, set in 1970, for the 30-kilometer run is 1:31:30.4 (1 hour, 31 minutes, 30.4 seconds) and
is held by Jim Adler of Britain. In 1974, Bernd Kannenberg of West Germany set a world record of 2:12:58.0
for the 30-kilometer walk. Write a program that accepts an individual’s time for a 30-kilometer course and
calculates the average speed according to

30,000 (m)

Speed (m/s) = Time (5)

The time is to be specified in hours:minutes:seconds format (including colons). Use the {i%: function to

locate the colons, and the * .function to extract the numerical values from the string. Also, use the pro-
gram to calculate the speed of Sergei Saveliev of the USSR, who set a world record of 1:30:29.38 for the
30-kilometer Nordic ski event in 1976, and for Clem Turvy on his motorcycle, covering 30 kilometers in

26:44 (26 minutes, 44 seconds).

154

8.4

8.5

Section 8: Using Variables: Arrays and Strings

Although a string variable may not be declared to be an array, it is possible to use substrings of a string
variable to achieve the effect of a *‘string array.”’ For example, if the words representing the numbers 0
through 9 are strung together with proper spacing, any one word is readily accessible by determining the
first and last substring specifiers corresponding to the word (similar to the subscript of an array element).
Using this concept and concatenation, write a program that counts from 0 to 99 in this way:

Farmer Flem Snopes wants to install irrigation sprinklers in his three strawberry patches. The table below
gives coverage diameters for a particular sprinkler design at various water pressures and nozzle options.
Write a program based on this table that asks for the width of the irrigated strip (which determines the
minimum coverage diameter) and the available water pressure at that location, and then specifies the
appropriate nozzle option. Use the program to find the nozzle options for Snopes’ east strawberry patch
(150 feet wide, 75 psi pressure), his southeast patch (140 feet wide, 75 psi pressure), and his far-north patch
(140 feet wide, 60 psi pressure).

Coverage Diameter (feet)

Nozzle

Option A B c D

Water

Pressure
(psi)

60 124 133 138 142
65 126 136 141 146
70 129 139 144 149
75 132 142 147 152
80 134 145 150 155

155

Notes

Section 9

More Branching

There’s much more to branching operations on the HP-85 than and ! The system enables
you to define your own functions and use them in programs, just as you use the built-in functions. For longer pro-
gram segments or routines that are often repeated within a program, the BASIC language provides subroutines that
can be accessed any number of times within a program. In addition, the system contains three timers that can
interrupt a program in the time intervals of your choice. Last, but not least, we’ll discuss the special function keys—

how to define them so that when pressed, they immediately cause special branching in a program.

Defining a Function

If a numeric or string operation has to be evaluated several times, it is convenient to define it as a function.

With the JEF FH (define function) statement, you can define your own functions within a program and refer-
ence them in exactly the same manner that you reference the system’s built-in functions. A function must be
defined in the same program that references the function. The definition can appear anywhere in the program,

before or after the function is referenced.

Once a function is defined, it can be used by referring to the function name. A numeric function name must
""" # followed by a numeric variable name. A string function name is a numeric function
name followed by a dollar sign, #. If the function requires an argument, then it must appear immediately after
the function name, enclosed within parentheses. The parameter may be any simple numeric or string variable
name. Array names are not allowed. The length of a string argument passed between a function and the main

program defaults to 18 characters. But you can allocate a larger string in the function definition. Refer to page
163.

Single-Line Functions

The simplest form of a function definition is the single-line function. The function is defined in one

statement with an equals sign separating the function name from the expression assigned to the function.

For example, the following program defines ¥ “ as the X2 function and then uses the function to evaluate 82.

Defines function FNX2.
Displays the value of FNX2(8).

The parameter, [, in statement 20 is a dummy variable used only in the definition. It is replaced by the actual

variable or expression when used to evaluate the function. In this case, Iis replaced by 8.

157

158 Section 9: More Branching

All user-defined functions may have, at most, one argument. The function is evaluated using that argument to re-
turn, at most, one value at a time.

But a function need not have an argument. (Recall the ¥ , and

- built-in functions.)

Examples:

-

£ and should not be included in multistatement lines.

14 statements are not allowed after THEHM or E

A function definition cannot be recursive; in other words, you may not use the function that you are defining in
the expression that defines the function or in any user-defined function referenced by that expression. But you
may use any other user-defined function that has been fully defined elsewhere in the program, and of course,

you can use any of the built-in functions in the definition.

Example: Write a program that defines function - }F to round any given number to the hundredths place. Then

< to display the square roots of 1, 1.5,2,2.5, ..., 10.

use F

Notice the use of non-integer steps.

Defines rounding function.

Displays square roots of number in left
column, rounded to hundredths place.

&
£ 5

A function definition is a declaratory statement and may be placed anywhere in the program. It merely defines the
function, and is ignored by the program unless it is referenced elsewhere by the function name.

See problems 9.1 through 9.3 at the end of this section for more examples of single-line functions.

Section 9: More Branching 159

Multiple-Line Functions

Often, a single line is not enough to define a function, especially if the function contains lengthy computations
or loops. Multiple-line functions work much like single-line functions in that the function can contain at most
one argument and return one value. Again, the function definition may be placed anywhere within the program

since, as a block of statements, it is non-executable unless it is referenced by the function name.

There are three basic parts to the multiple-line function definition:

1. The first statement is the statement. It is the only i statement that may occur within

the function definition.

2. The last statement is the Fi EHII (function end) statement.

3. At least one of the statements in the function definition should assign the function name a value.

Unlike single-line functions, the function definition is not included in the | i statement. Only the func-

tion name and argument (if any) must be declared.

The FH

(function end) statement defines the end of a multiple-line function. Its syntax is simply:

=, and should appear as the last statement if included

statements are not allowed after THEH or Ei

in a multistatement line. The FHD statement must be entered in a program before the program can be

initialized with the

" command or renumbered with the &

command.

4 and statements. But one of these

Any number of statements can be included between the [

statements should assign the final value of the function to the function name.

For example, this program defines a function that converts an integer with a decimal base to its octal equivalent.

Defines beginning of multiple line
function.

Throw away the fractional part of the
number to avoid an error.

Initializes variables N8 and 1.

Converts decimal value to octal
equivalent.

Works for both positive and negative
integers.

Assigns function name a value.
Function end.

The dots by statements 10, 100, and 110 indicate the essential parts of a multiple-line function.

Again, the program segment above only defines the function. In order to evaluate the function, you must reference

it in another part of the same program, replacing the parameter D with the desired expression.

160 Section 9: More Branching

For instance, add the following statements to the program segment above.

Notice that we used the variable J as our loop counter in program statements 2 through 4. What if we had used the

variable [in both our main program and in the function definition?

This program would only generate the first
value of FNO(I) because the value of is
changed in the function definition.

Note that variable D in the main program
would not be similarly affected. For
instance, if all of the I variables were
changed to D’s in statements | through 4,
the program would work.

Section 9: More Branching 161

The point of our discussion, here, is that all variables in the body of the function—with the exception of the
single function parameter—are global. Changing a variable value in the function will cause a corresponding
change in the main program variable. The single function parameter itself is local to the function. That is, how
the parameter is treated in the body of the function has no effect on the corresponding main program variable.

Let’s look at two examples of multiple-line functions using string variables.

Example: Write a program that formats a number with a comma in place of the decimal point. If the number is an

integer, supply two zeros to the right of the comma. Consider only numbers with absolute values that are greater
than 1 X 10" and less than 1 X 10"

L Function definition.
Checks for out-of-range numbers.

Example: Now write a program that formats a number with commas
every three digits to the left of the decimal point, using a multiple-line
string function to insert the commas. Consider only numbers with abso-
lute values less than or equal to I X 10" and greater than 1 X 107

162 Section 9: More Branching

Beginning the function FNC$.

Handling an inappropriate parameter
value.

Assigning the function a value.
Exiting the function.

Multiple-line functions are not recursive. For example, the following attempt to define a factorial function would

generate an error message.

The error occurs in attempting to use the
function name in the function definition.

Section 9: More Branching 163

Note that a statement included in the body of a multiple-line function may cause an error condition if

the function name appears in a i statement.

As we mentioned earlier, the length of a string argument passed from the main program to a function defaults to
18 characters. You can specify a larger string in the function definition by enclosing the length within brackets

following the string argument. For instance:

Allocates a string argument of 75 char-
acters for the function.

You cannot use the i I i1 statement to dimension the string argument since it is considered a “dummy” variable.

Therefore, you must allocate space for the argument within the statement itself. When you do this,

the system considers the entire 4 statement, including the allocated variable, as part of the program
line. Thus, the maximum length of the string argument in a multiple-line function is approximately 230 char-
acters and the maximum length of the string argument in a single line function is dependent on the complexity

of the expression that defines the function. If the argument is too large, the system will display

¢z, If this happens, decrease the length of the string argument until the

system accepts the statement.

Note: Although a string function may accept a string argument larger than the default length, the result-
ing string returned from the function to the main program can be no longer than 18 characters.

Refer to problems 9.4 through 9.6 at the end of this section for more examples of multiple-line functions.

Subroutines

Often, the same sequence of statements is executed more than once within a program. By using a subroutine
you can key in the group of statements only once and then access the statements from different places within
the program. If you group all of the often-used routines at the end of your program, you can make the program

easier to follow and understand.

Subroutines are similar to functions in that they can be referenced from other parts of the program. But a

subroutine is not given a name; it is referenced by a tatement and the beginning statement number of

the routine.

statement number

The

must be that of the first statement of the subroutine.

tatement transfers program control to the subroutine you wish to execute. The statement number

A subroutine can begin with any statement except For example, the subroutine might begin with

etc. The last statement of a subroutine must be a statement.

statement is

There may be more than one F 2+ statement within a subroutine. As soon as a

encountered, program control is transferred to the statement following the particular { : that referenced
the routine.

Arguments or parameters are not used to pass values from the subroutine to the main program. As with func-

164 Section 9: More Branching

tions, all variables used in subroutines are global variables; in other words, all main program variables are
accessible in both functions and subroutines. If the value of the variable is changed within a subroutine, it is
also changed in the main program.

For example:

"EHMTER MUMBER®
ITOH

16 DISF

Subroutine.

ER

When the program executes statement 40, program control is immediately transferred to statement 100. When a
4 statement is encountered, control is transferred to the line following 40. Statement 170 also transfers
control to statement 100. In this case, | ' transfers program control to the line following 170.

Subroutines may be nested, that is, a second subroutine can be entered before the statement of the

first is executed.

For example:

g DISP "EHTER HUMEER™
28 IHFUT H
ZHOIF H<E THEHW 1@
e 4E GOSUER 1086 Main program.
S8 DISF "BACE TO MAIH PROGRAM.®
: Passes control to line 1000.
28 STOR
1888 FEM #SUM FROM 1 TO H¥
1816 S=0ME(MH+L 22
1828 PRINT "SUM ="3% First subroutine.
1828 DISFE "SUM OF SOUARRES oY MM
1848 IHPUT A%

e 1ASE IF AF = "Y¥Y THEH GCOSUER 28536 Execution of a subroutine is often
1éed DISP "BACE TO FIRST SUBROUTIHE® dependent on the outcome of a test.
lzed RETURH
ZEEE REM $£5UM SZQUARES OF IMTEGER

SOFREOM 1 TO H#E
2E18 SE=OHE H+AL 2 ECREH AL 0 06
2EZa PRIMNT "sUM OF SQUARRES=":S2 Nested subroutine.
* JHIE RETURH Returns control to the statement follow-

ing the IE in line 1050.

Section 9: More Branching 165

The subroutine at line 2000 is nested within the one at line 1000. The istatement on line 2090 returns to

the line following 1050 in the first subroutine. The statement at 1200 returns to the line following

statement 40,

Subroutines can be nested as deeply as available memory allows (up to 255 levels of nesting). When a !
executed, control returns to the subroutine that was entered most recently.

See problem 9.7 to write a complete program that uses subroutines.

The Computed :: : Statement

The ! (computed =715 1E) statement enables you to access any of one or more subroutines based

on the value of a numeric expression. It operates exactly as an «

i statement except that instead of

¢ transfers control to the first statement of a

transferring program control to one statement, Lii ... !

subroutine. The T1i%H statement of the subroutine returns program execution to the statement following
the |

executed from the keyboard.

[

i statement that referenced it. The 0 ... = statement is programmable only; it can’t be

=~ statement number list

The numeric expression is evaluated and rounded to an integer. A value of 1 causes the subroutine at the first
statement number in the list to be accessed; a value of 2 causes the subroutine at the second statement number

in the list to be accessed, and so on.

All | statements in the subroutines accessed transfer program control back to the end of the statement

number list of the [k ...

E statement.

For example:

This statement means:
If X=1, then GOSUB 200.
g «————{ If X=2, then GOSUB 300.
HEST If X=3, then GOSUB 400.
OISF “DOME MITH ALL SUBROUTIHESR" Program control reaches statement 40
: i loop is completed.
R n each subroutine transfers
control to statement 30.

FOR #=1 TO

i L

r-
H
fax]

[xx]

4
il
X
—
=
g
-
5]
fn]

FRIHT H:5IH o#H }Af Subroutine 200.
FETURH
FRIMT ¥
FETLEH
FPRIMT ¥
RETURH

A

Subroutine 300.

——
A

Subroutine 400.

If the value of the numeric expression is less than one or greater than the number of statement numbers in the list, an

eITor OCCUrs.

Problem 9.8 provides another example of the use of the {if4...

Branching Using Special Function Keys

You have seen some of the many uses of the special function keys from running the programs in the Standard Pac.

166 Section 9: More Branching

The eight special function keys, @ through (unshifted), and @ through (shifted), can be

used to interrupt a running program and cause branching.

This interrupt capability is declared with an statement. The statement specifies the

branching operation that will occur when the related key is pressed.

key number [. "key label] 13 statement number

Statement number

key number [, " key label*]

The key number must be an integer from 1 through 8. The key label is a string expression which is truncated to

the first eight characters. When a user-defined key is pressed during a program run, and an # state-

ment has been declared for it, the specified branching occurs. With the currently ex-

ecuting line is completed and control branches to the specified subroutine. After the subroutine, control returns
to the line in the main program that would have been executed if the interrupt hadn’t occurred—usually the

next line in the main program.

If a program is not running, pressing a user-defined key does nothing.

The

is simply:

- statement is used to recall key labels for the user-defined keys to the display. The statement

As you can see from the statement syntax, you can optionally specify a key label in the program

definition of a key. Once defined and labeled in a program, the . statement causes the labels to

appear on the lower three lines of the display.

All eight user-defined keys can have labels defined and displayed: each one appears in a unique location on the

display, situated directly above the corresponding special function keys on the keyboard.

The (ew) key recalls all current labels, at dny time, and displays them on the bottom three lines of the display. It

performs the same operation that the statement does in a program.

Both the and the ¥

full 13 lines may be entered or displayed before the key labels are over-written.

. statement also move the cursor to the home position on the display. Thus a

. (Cursor position after }

This is a sample display with seven of the eight keys
labeled, immediately after (Y 1 #}
executed.

Section 9: More Branching 167

Perhaps the following short program can best illustrate the ease with which function keys can be defined and the

rapidity with which they are executed when pressed while the program is running.

As soon as you press , the display is cleared and the key labels are recalled:

Play a few tunes with the special function keys. The program quickly illustrates that each press of a special
: % statement, and

function key causes one execution of the : + as defined by the i
that one key interrupts another. When a defined key is pressed during a running program, the current

program line is completed before the specified branching occurs.

168 Section 9: More Branching

Notice statement 98 in the Key of C program:

¢ # statements are only active when a program is runnng, it is often necessary to have a place in

the program that does nothing but idle, waiting for a keystroke. We cannot use a = [t statement to

separate the key definitions from the subroutines; program execution would halt as soon as either statement was

encountered. Thus, a G{iTL! statement that “goes to” itself keeps the i # declaratives active in a

particular part of a program. After a F:EEF subroutine in the example, control returns to the line in the main

program that would have been executed without the interrupt—Iline 98.

declaratives are temporarily deactivated while a program is waiting for a response to an IH

statement. Pressing them on input will cause their related keycodes to appear on the input line. Key definitions

are also deactivated after is executed. They resume functioning with F I. If another pro-

gram is “chained” to the program with the i " # statements, the key definitions will no longer be active.

(Refer to the

command in section 14.)

Canceling Key Assignments
declarative holds for a key until another declarative for the same key, (SCRATCH), or

is executed.

The

i key number

The

statement cancels the definition and branching operation of the specified key.

Problem 9.9 provides another example of i statements. Refer to any of the Standard Pac programs

for more examples.

The Timers

Along with the statement and the time functions, the HP-85 provides three individual timers that

may be set to interrupt a program at the specified time interval and cause the specified branching to occur.

TIMER# statements. The {iHi # statement

Interrupt intervals for the timers are declared with

must be declared within a program.

timer number . milliseconds 1Tl statement number

statement number

O TIMERY timer number . milliseconds =

The timer number must be either 1, 2, or 3. The number of milliseconds must be a value less than |99999999 |
and greater than {.5|. The sign of the milliseconds parameter is ignored. Zero and numbers outside the given

range interrupt immediately and then wait 99999999 milliseconds before the next interrupt.

When the interrupt occurs, the currently executing line is completed and the specified branching occurs within a

program.

Section 9: More Branching 169

For example, timer #1 interrupts the program every 15 minutes to go to statement 5000 in the following pro-
gram (as long as the program is running). Note that the number of milliseconds may be expressed as a numeric

expression.

18 O TIMER#1,13

TIMER [HTERRUFPT REOUTIHE
EP 1 EEEF =20

REs!

[
(S 4 |
[]
T TN
o

jed desd
o m
T m
T
Prd e

s |

A timer interrupt will be delayed until all statements in the current line have been executed, except that:

e A timer can interrupt an IHFLIT statement before values have been assigned to the ! T variables.

e A timer interrupt can break a multistatement line after a I statement in that line.

The accuracy of a timer interrupt depends on what the HP-85 is doing at the time of the interrupt. For example,
if a timer comes due during a multistatement line with several graphics statements, then the response time for

the interrupt will be slower than if the timer comes due during a line with a single assignment statement.

The timers continue to interrupt the system after a program is halted, but the interrupt does not cause the

specified branching. The timers are deactivated when you edit the program, when (SCRATCH) or (RESET) is

pressed, or when the OFF

E# timer number

The

will occur from the specified timer until it is reactivated.

‘# statement deactivates the corresponding + statement. No further interrupts

Example: Suppose you have written a lengthy program which is ac-
tually composed of five separate tests. Set up timers to wait for an
input response from the user. If there is no response within 20 sec-

onds, go to the next segment of the program.

170 Section 9: More Branching

If the user types “*YES’’ within 20 sec-
onds, the test will be executed. If there is
no response to line 50 within 20 seconds,
the program branches to statement 800.

Lines 60, 800, and 860 disable the timer
when its function is completed.

Reset timer for second test.

And so on.

The fact that timers continue to interrupt even after the program is halted is important. Errors may occur if the

timers are interrupting so fast that the system (program) cannot get anything done. Try this:

First press , then press . When you press the first timer tries to go to statement 100 but gets interrupted
by the second timer and the second timer gets interrupted by the third, etc. Thus statement 100 may never be

executed or the system will give you an error message. You'll find that the system will list the program very slowly
RESET i

since it is being interrupted continually. Execute . , or the & tatement to halt the timers.

Refer to the Standard Pac for more examples using the timers, especially the Timer Program.

Problems

9.1.a. Define a single-line function that rounds a number at the decimal point. Evaluate the function from -5 to 5 in

intervals of 0.3.

b. Define another single-line function that rounds a given number to the thousandths decimal place. Evaluate

this function from 1 to 10 in intervals of 0.5.

9.2.a.

9.3

9.4.a.

9.5

9.6

9.7.

9.8.

Section 9: More Branching 171

Define a single-line function to compute the area of a circle given the radius of the circle according to the

formulad = 772, Evaluate this function for integer values of 350 to 360.

. Use a rounding function to display the areas of the circles with the above radii, rounded to the second digit

past the decimal place.

Define a function that computes the length of the hypotenuse of a right triangle given the lengths of the two
sides. Evaluate the function with one side equal to 5 while the other has values of 4,3,6.7. and 9.

Define a multiple-line function that converts a number with an octal base to its decimal equivalent. Test your

program with the values obtained from the opposite conversion in the program on page 148.

What if, in the octal to decimal conversion, the original number has an illegal digit, i.e., a digit greater than or

equal to 8? How would you check for an illegal digit and what value would you return for the function?

Define a multiple-line function to compute the factorial of a non-negative number. Use the function to

compute the number of ways that eight books can be arranged on one shelf.

(Method: P§=8-7-6-5-4-3-2-1)

What if, instead of eight different books, you have only four different books for each of which there are two
copies? Determine the number of distinguishable arrangements on one shelf.

!

QH

The number of arrangements =

Define a multiple-line function to round a numeric value to the hundredths place, and add either a # or a

with zeros.

Write a program that will make it easy for you to manipulate tables of data. First dimension and initialize
the elements of an array, then input values for the array elements. Include in your program three subroutines
to accomplish the following tasks. Use the subroutines to print or display the sum of the rows and columns of
your data table:

1. Write one subroutine to display or print the array.

2. Write a second subroutine that enables you to change a particular array element.

3. Write a third subroutine that finds the sum of each row, the sum of each column and the total sum.

Test your program by finding the row sums, column sums, and total sum of the data in the following

table.

12.59 13.69 14.78 ?

11.43 22.56 43.78 ?

13.52 12.78 14.98 ?
2 ? 2 l

Before you find the row sums, column sums, and total sum of the data in the table, change the value inrow I,
column 3 (14.78) to 14.67.

On his frequent transatlantic missions, chief detective Sylvester S. Py must send encoded messages to the
home office. Prior to each mission he supplies the home office with his encoding number. They, in turn,

give Sylvester the number they’ll use to encode messages sent to him.

172

9.9.

Section 9: More Branching

Write a BASIC program that uses two subroutines, one to encode messages, the other to decode messages.

Use a computed £ statement to determine which subroutine is to be accessed. Let the code number
be a seed for a sequence of random numbers that encodes the message. (This enables you to use the same
random number seed to decode the message.) Use only capital letters in input, coding, or decoding opera-

tions. Allow the user to enter one word at a time; you supply the spaces between words.

Suppose Sylvester wants to send the following message to the home office, using his code number (random
number seed) .123.

““GET ME TO THE BANK ON TIME”’

Run the program to find the encoded message. Run it again, using the same code number to decode the
message. Then decode the following message, recently received by Sylvester, using the home office code
number .3579.

**NNLSNUNVS IGPXR RQP BVE”’

Use an encoding function like

. * for the length of each word,

Write a “‘standard pac’’ program by modifying the row sum and column sum program you wrote for problem
9.7 (sample solution in appendix F) so that the subroutines are performed at the touch of a special function

key. Define the special function keys as follows:

—> Initialize array elements.

» Input values into array.

: ——— Display or print current array.

—— > Change a particular array element.

» Sum the rows, columns, and find total sum
of array.

we'll leave (**) through (™) for you to define. Additional subroutines might be *‘ADD,** add a row or
column to the array; ‘‘“HELP,”’ display the key definitions; ‘ ‘DELETE,’’ delete a row or column from the
array; or *‘AVG,”’ find the average of the values in a particular row or column.

Run the program to sum the rows and columns of some tables of your own.

173

Notes

o

Section 10

Printer and Display Formatting

You have seen that the use of commas, semicolons, and quoted text provide limited control of the format of printed

or displayed information. Three statements, and , provide the

capability of generating printed or displayed output with complete control of the format. The syntax of the state-

ments have two different forms. First, we’ll discuss zand i oo /ith

Later, we'll show that you can specify the format and the information to be formatted in the same statement. Other

topics included in this section are:

e Usingthe function.

e Redefining the printer and the display with the tatements.

Using |

The

statement specifies the format by which numbers and strings in the !

statements will be printed.

statement number [: print using list]
- statement number [: disp using list]
= format string

The statement number must refer to an I

statement. The print and disp using lists may be comprised of
simple and subscripted variable names, numeric expressions, and string expressions. Functions (including user-

defined functions) may be included in the print or disp using list, but if a multiple-line function contains

statements it may distort the output format. The items in the list are separated by commas

or semicolons. However, the commas and semicolons do not affect the format as they do in the

F statement; they merely separate the items in the list. The output is totally controlled by the format string
of the I

fier is comprised of special symbols that determine the format of a single item in the print or disp using list. The

statement. The format string is a list of field specifiers separated by delimiters. Each field speci-

symbols specify the number of digits, the placement of a comma, decimal point, or blanks—virtually anything

having to do with numeric and string output and carriage control.

Each item in the print or disp using list must correspond to an appropriate numeric or string field specifier.

Delimiters

Two delimiters are used to separate field specifiers:

A comma is used only to separate two specifiers.
A slash can also be used to separate two specifiers, but its main function is to perform a carriage return and
line feed (CR-LF).

175

176 Section 10: Printer and Display Formatting

The slash, -, can be used as a field specifier by itself; that is, it can be separated from other specifiers by a

comma. But only the slash delimiter, .-, can be directly replicated (see page 180).

3/ is equivalent to ///.

Prints *‘COST’’ and performs 1st CR-LF.
Performs 2nd CR-LF.

Performs 3rd CR-LF.

Prints * ‘DISCOUNT.”’

% - indicate that three carriage returns and line feeds are to be performed between printing 1357 and

{. Thus, two blank lines are output.

However, the following image statement would output three blank lines before printing &

Performs Ist CR-LF.
Performs 2nd CR-LF.
Performs 3rd CR-LF.
Prints *‘COST.”’

If n ~"is at the beginning of an image format string, n blank lines are output.

If n - follows a field specifier in an image format string, n—1 blank lines are output.

Blank Spaces

Specifies a blank space.

A number preceding i specifies the number of blanks; for instance, i means four blanks. (< also specifies

four blanks.)

String Specification
Text can be specified in two ways:

Text enclosed within quotation marks is printed or displayed exactly as it is quoted. You may specify quoted

literals (strings) in either the print or display list or in the i

For example:

i Specifies a single string character. A number preceding i specifies the number of characters. The

length of a string specifier is determined by the number of is that are specified between delimiters;

this corresponds to one item in the print/disp using list. When using the i string specifier, all text is
left-justified.

The above example could also have been written:

FEE 7A specifies a field comprised of seven
characters. 4X specifies a field comprised
of four blanks.

Section 10: Printer and Display Formatting 177

Or like this:

AA can also be represented as 2A.

If the string item in the print/disp using list is longer than the number of characters specified, the string is

truncated. For example:

If the item is shorter, the rest of the field is filled with blanks.

Numeric Specification

A variety of symbols can be used to specify numbers: digit symbols, sign symbols, radix symbols, separator

symbols, and an exponent symbol.

Digit Symbols

Specifies a digit position. A number preceding :: specifies the number of digit positions. If the number
of Iis to the left of the decimal point or radix specify a field larger than the numeric item, then the item
is right-justified in the field and leading zeros are replaced with spaces. If the number of iisto the right
of the decimal point or radix specify a field larger than the numeric item, then the item is left-justified
in the field with trailing zeros. If the fractional part of the numeric item is larger than the number of Iis
to the right of the decimal point or radix, then the item is rounded to fit the specified field. i is the
only digit symbol that can be used to specify digits to the right of a decimal point or radix. For

example:

""" Specifies a digit position—Ileading zeros are replaced with zeros as a fill character. You cannot use a

1o the right of a radix symbol. Again, a number preceding . specifies the number of digit positions.

For example:

An asterisk also specifies a digit position, but leading zeros are replaced with asterisks as a fill

character. You cannot use an # to the right of a radix symbol. A number preceding specifies the

number of asterisks. For example:

178 Section 10: Printer and Display Formatting

As you can see, any digit symbol, ¥, I, or i, can be used to specify the integer portion of any number. But,

you cannot mix the symbols in the manner shown below, in the first I

The : statement contains an invalid image and would cause an ¥

following image is valid:

4 " message to appear. However, the

Radix Symbols

A radix indicator is the symbol that separates the integer part of a
number from the fractional part. In the United States, this is customarily
the decimal point, as in 34.7. In Europe, this is frequently the comma as
in 34,7. One radix symbol at most can appear in a numeric specifier. ‘
Only the symbol {ican be used to specify a digit to the right of the radix ‘

indicator.

Specifies a decimal point in that position.

Specifies a comma radix indicator in that position.

i
’

Here are some examples:

Note that .879 is rounded to 0.88 since the
image specified only two digits to the right
of the radix.

Sign Symbols

Two sign symbols control the output of the sign characters +and . Only one sign symbol at most can appear in a

numeric specifier. When no sign symbol is specified, any minus sign occupies a digit position.

Specifies output of a sign: * if the number is positive, —if the number is negative.

Specifies output of a sign: - if the number is negative, a blank if it is positive.

Section 10: Printer and Display Formatting 179

For example:

The sign **floats’” with the number; for example:

your format, the minus sign will appear to the left of any leading zeros or asterisks.

Digit Separator Symbols

Digit separators are used to break large numbers into groups of digits (generally threc digits per group) for greater
readability. In the United States the comma is customarily used: in Europe, the period is commonly used.
Specifies a comma as a separator in the specified position.
Specifies a period as a separator in the specified position.

The digit separator symbol is output only if a digit in that item has already been output; the separator must

appear between two digits. When leading zeros are generated by the symbol, they are considered digits

format consisting of leading asterisks may contain separators. But

and will contain separators. An

if numbers are not output on both sides of the separator, the separator will be replaced with an asterisk.

Exponent Symbol

For example:

180 Section 10: Printer and Display Formatting

Compacted Field Specifier

A single symbol, ¥, is used to define an entire field for either a number or a string of characters. If the cor-
responding print/disp using item is a string, the entire string is output. If it is a numeric, it is output in stan-

dard number format (see page 53), except that i outputs no leading or trailing blanks. For example:

Replication

Many of the symbols used to make up image specifiers can be repeated to specify multiple symbols by placing an
integer in the range | through 9999 in front of the symbol. You have already seen some examples; the following
i PIHGE statements, for instance, all specify the same image:

iy F, L3 Hoand <

These symbols can be replicated:

In addition to symbol replication an entire specifier or group of specifiers can be replicated by enclosing it in
parentheses and placing an integer in the range | through 9999 before the parentheses. For example:

So, specifying -2 * is the same as specifying

In this manner, ¥ can be repeated:

Same as specifying & . ¥ . L

Up to 128 levels of nested parentheses can be used for replication.

Reusing the - Format String

A format string is reused from the beginning if it is exhausted before the print using list. For example:

Section 10: Printer and Display Formatting 181

Field Overflow

If a numeric item requires more digits than the field specifier provides, an overflow condition occurs. When this

happens, a warning message is displayed and the program continues. For example:

Both numbers 336.71 and —14.3, with an image of . create an overflow condition. Remember that a

minus sign not explicitly specified with Zor Firequires a digit position.

Formatting in Statements

There is another form that a statement may have, which enables you

to specify the image string and the print/disp using list in the same statement:

1S 1HG image format string [print using list]

45 1HG image format string [disp using list]

Instead of specifying the " statement number, you can include the image format string, enclosed within

quotation marks in the . statements before you specify the print/disp using list.
The image format string may be a string enclosed within quotation marks, a string variable, or any string expression

that specifies the format.

Examples:

Remember to dimension the string if it is
longer than 18 characters.

You cannot use quotation marks to specify literal text within an image format string in a

statement since quotation marks are used to define the string.

For instance, the following is not allowed and causes an

pear if you try to enter the statement:

The statement is not recognized after the second quotation mark.

182 Section 10: Printer and Display Formatting

An image format string for statement 50 could be specified in either of these ways:

You can use quoted literals in an i statement since the quotation marks do not define the complete image

format string as they do in the ¥ statement.

Here is a summary table of image symbols and their uses:

Image Symbol
Symbol Replication Purpose Comments
= Yes Blank Can go anywhere

No Text Can go anywhere
Yes Digit Fill=blanks
Yes Digit Fill=zeros
Yes Digit Fill =asterisks
No Sign “+7or"="
No Sign blank or -
No Scientific notation Format=
No Radix Output "’
No Comma Conditional number separator
No Radix Output “,”
No Decimal point Conditional number separator
Yes Characters Strings
Yes Replicate For specifiers, not symbols
No Compact Strings or numerics
No Delimiter
Yes Delimiter Output CR-LF

The main factor that must be taken into account with formatted output is the display or printer width. Especially
when dealing with numeric output, formatting should be designed so that a line of characters does not exceed the
number of characters per line (32 characters per line on the HP-85 printer or display).

The Function

statements to print or display informatin at specified

character positions. The main consideration with T is the length of a line on the printer or display.

THE < character position :

The character position may be a number as large as 32767, but you really have 1 through 32 character positions
on either the display or the built-in printer. When the character position specified is greater than the number of
columns, it is reduced MOD 32.

Section 10: Printer and Display Formatting 183

Example: The following program prints the heading for the variables X, ¥, andZ.

The first heading, starts at character position 0; the heading, i, starts at character position 15;

and the heading, starts at character position 26. Then in statement 30, the variables are printed under the

three headings. If your X, Y, and Z values were input as 11.23, 11, and 11.4, respectively, the printout would be:

Remember that a comma in a printer or display list outputs the next item in the next print or display zone. Thus, all

print or display items used with must be separated by semicolons. The ¥ & function cannot be used with the

statements.

If the ™ will occur and the

function will position the following item at column 1.

argument rounds to a value less than 1, then

Redefining the Printer and the Display

The i 1% and the ¥
the statements are most often used with peripherals, you can tell the HP-85 that the display is the printer
(i
printed rather than displayed. Or, you can define the printer as the display (F

1% statements are used to “redefine” the printer and the CRT. Although

, Errors, and Warnings will be

i); all informa-

statements will be displayed rather than printed.

tion from i , 7, and

The and 1% statements are programmable.

device number

. device number

Device Number Device

CRT
2 PRINTER

'y

For instance, execute:

Redefines the printer to be the CRT
(display); all I statements will be
displayed rather than printed.

184 Section 10: Printer and Display Formaiting

Now run the program, the message will be **printed,”’ repeatedly, on the CRT display until you press to stop

the program.

This message will be continuously
“‘scrolled”’ on the display until you press

PAUSE/ -

After pressing , press @ Your program will be listed on the display. You can return the system to normal

, Or pressing

Z to redefine the CRT. Once
that are normally displayed on the CRT are output to the printer.

output mode by typing

The same can be done with & = is executed, all messages

For instance:

Problems

10.1 While considering the variations of social and economic factors among nations of the world, you decide to
use the populations, areas, and annual gross national products (GNPs) of various nations to determine
their population densities (by dividing the population by the area) and per capita GNPs (by dividing the

10.2

Secticn 10: Printer and Display Formatting 185

GNP by the population). You would like the results to be summarized for each nation. Write a program that
requests the name, population, area (in square kilometers), and GNP (in U.S. dollars) of each nation, and
prints a summary for each nation according to the following format:

NP NS 2 VNP S R UV Y NN NS e W NS NP SO

L&/_/_/_/\MW_/\J—AMW_/;A_ANJ

The information below is available for 1977.

.] Area Annual GNP
Nation Population (sq km) (US$)
China 865,193,550 9,560,980 223,000,000,000
United States 216,817,000 9,363,123 1,781,400,000,000
Canada 23,469,142 9,976,139 195,785,000,000
Singapore 2,322,576 581 5,885,600,000
Mongolia 1,531,940 1,565,000 547,000,000
Qatar 97,792 11,000 4,044,000,000

In her studies of natural phenomena, physicist Shirley Bright encounters the extremes of length measure-
ment—f{rom the wavelengths of radiation (measured in angstroms) to intergalactic distances (measured in
light-years). In order to relate these extremes to each other, Ms. Bright would like to see how a given
measurement is expressed in a number of different units, specifically angstroms, meters, and light-years.
There are 10" angstroms in a meter and 9.460 X 10" meters in a light-year. Write a program that converts
a measurement (entered as a numerical value and a dimensional unit—A M, or L) into all three units and
prints the three values. An exponential format should be used because of the extremely large and small

numbers that are involved. The output should look like:

Use this program to express in other units the wave length of light with greatest human visibility (5560
anstroms), the length of the Humber Bridge span in England (1410 meters), the wavelength of certain
gamma rays (5.6 X 10~% angstroms), the approximate diameter of the nucleus of an atom (10™"* meters), and
the distance to the nearest galaxy (170,000 light-years).

186

10.3

Section 10: Printer and Display Formatting

As an aid in maintaining an accurate record of your checking account, you decide to write a program that
takes a sequence of transactions that have occurred over a period of time and prints the status of your account
after each transaction. The program is to be initialized by entering the current date and the balance in your
account at the beginning of the period. Each deposit is entered as D, amount. Each check is entered as C,
amount . The bank charges 22 cents for processing a check if your balance at that time is less than $275; there
is no charge if your balance is at least $275. If a check (plus check charge) will overdraw your account, print
a negative balance and a special warning giving the amount of the overdraft. Your account summary should

have this format:

10.4 Aregular polygon with n sides inscribed in a circle of diameter d has a perimeter p which is given by

10.5

p =(d) (n) sin (l) .
n

As the number of sides of the polygon is increased, the polygon more closely resembles a circle, and the
ratio of its perimeter to the diameter, p/d, becomes closer to the constant 7r (which is the ratio of circum-
ference to diameter for a circle). Write a program that lists the perimeter p and the ratio p/d for a series of
polygons with n=3,4,5, and so on. Let the diameter d equal 35 units. Have the two columns start at

character positions 3 and 19.

The THE function may be used to create a graph by varying the character position for each line of
output. For example, the data below represents the average weight of a female during her first 18 years.
Write a program to produce a printed plot of this data. Each of the 19 years can correspond to a printed

line; the position of a printed symbol (such as %) can correspond to the weight.

The range of weights, plus the allowance of two spaces to

o e

print the age, suggests that the should be printed at

the position determined by 7 Z k0 It is also

Ll

helpful to print a at the position of every 10 units of
weight across the top of that plot, and a ** .’ at the position
corresponding to zero weight on each line. The plot should

resemble the following:

Section 10: Printer and Display Formatting

187

Age Weight
(years) (kilograms)
0 3.2
1 9.5
2 11.9
3 13.9
4 15.7
5 17.6
6 19.1
7 21.9
8 24.8
9 28.1
10 32.4
11 371
12 415
13 46.2
14 50.5
15 53.8
16 55.7
17 56.7
18 56.7

Section 11

Graphics

The graphics capabilities of your HP-85 truly enhance your BASIC programming power. HP-85 graphics enable
you to:

o Plot data on the graphics display, thus clarifying complex sets of information in pictorial form.

e Scale the display yourself to desired proportions.

e Generate an unlimited number of lines, curves, diagrams, and designs on the display.

e Copy anything from the graphics display to the printer with one command.

e ‘“‘Draw’’ and label graphs with ease.

e Interact with the graphics display from the keyboard.

e Execute any of the graphics commands from the keyboard or in a program.

The Graphics Display

The HP-85 provides two different display areas or modes: alphanumeric and graphics. Normally the display is in
alpha mode, but you can view the current graphics display at any time by pressing the key or by

executing the statement,

Any of the graphics statements that directly manipulate the graphics display also set the display to graphics

mode automatically. You can return to alpha mode by pressing any alphanumeric key or display control key

(such as the space bar or the key) or by executing the

To get an idea of the graphics display area available for your use, enter the following program into the computer
and then press (RUN). This program will frame (draw a box around) the CRT graphics display area that is

available to you.

First, press (SCRATCH to clear main memory of previous lines.

Clears the graphics display.
Scales the graphics display.

Draws a frame around the plotting area.

This example program (and others like it found throughout this section) is given to provide some hands-on exper-
ience with HP-85 graphics and to illustrate various statements. Each of the graphics statements will be explained at
appropriate places in the section.

189

190 Section 11: Graphics

When you run the program, the display shows:

256 useable dots

\

192 useable dots

This frames the graphics display area. You have 256 useable dots in the horizontal direction and 192 useable dots in
the vertical direction, yielding a total of 49,152 points available for plotting.

By useable dots, we mean the actual physical dots of the graphics display screen, sometimes called pixels (for
“picture elements”). As you shall see, the display may be scaled to horizontal and vertical units of your own
choosing. Points are plotted according to the current scale; they are automatically mapped onto the graphics

display screen.

Line Generation

Line generation refers to the process of producing a line on the graphics display, which is similar to drawing a line
with a pen. But the display has no actual pen. The display does have a point, referred to as *‘the pen,”” which when
moved produces a line (or row of dots) if line generation is turned on (pen down). If line generation is turned off

(pen up) no line is produced, but the point moves.

Graphics and the Printer

The general method of performing HP-85 graphics is:

1. First generate your graph or design on the graphics display using the graphics statements either from the

keyboard or within a program.

2. Then, to produce a hard copy of your graphics, simply set the display to graphics mode by pressmg - and

then press ﬂ In a program, these same operations can be performed by executing the i statement
followed by the [:f

mode.)

' statement. (need not be executed if the display is already in graphics

The HP-85 thermal printer generates the graphics display sideways to assure that it fits properly on the paper
and to enable strip charting. Note that the Plotter/Printer ROM enables you to direct graphics output to an

external plotter.

Section 11: Graphics 191

Clearing the Graphics Display

The statement clears the graphics display of any previously plotted data.
[Y-coordinate]
The ¢ E: statement clears the graphics screen from the specified Y-value to the bottom of the screen. For

instance, if the graphics display is scaled from 0 to 100 in the vertical direction, execute the following to clear

the lower half of the display:

Clears lower halt of graphics display with
vertical scale of O to 100.
clears the entire graphics screen.

If no parameter is specified, i

It is advisable to use the & statement before you begin a new plot in a program, thus assuring that you do

not plot over any previous graphics.

Execute now to clear the frame from our first graphics program. The display will change to alpha mode
when you type in a graphics statement. It reverts back to graphics mode to show the change in the graphics display

once the command is executed. The i

statement clears the graphic display to the current background
“*color’’ (more about this later).

Setting Up the Graphics Display

A program written to plot or draw lines on the graphics display usually includes some initial set-up operations to
define the plotting area. Typical set-up operations might be clearing the display and framing it, as we did earlier.
Most often, the display is scaled to the desired proportions before any plotting is done.

For instance, you might use the following group of statements to set up the graphics display.

These statements will be discussed in the
following pages.

The =

The &

- Statement

-~ statement defines the minimum and maximum values of the X (horizontal) and Y (vertical) direc-

tions for the graphics display. This enables you to specify your own units for plotting.

E x-min. x-max. y-min, y-max

The first two parameters specify the values represented by the left and right boundaries of the graphics display.
The last two parameters specify the values represented by the lower and upper boundaries of the display. If

x-max is less than x-min or y-max is less than y-min, an error occurs.

At power on or after pressing (RESET), the minimum and maximum values of both X and Y directions are 0 and
100:

SCALE B, 188,46, 188 Specifies X and Y units from 0 to 100.

The %{:HLE statement may be used to place the origin (point 0,0) on or off the graphics display.

192 Section 11: Graphics

For example, if you want to plot the average annual rainfall at a weather station for a 10-year period, the

statement might look like this:

The left edge of the graphics display area would represent the year 1968 and the right edge would represent 1978.
Rainfall would be plotted in the Y direction in volume units (e.g., inches). This enables you to plot data in years and

volume units (e.g., point 1976, 7) directly on the graphics display area.
More Examples:
Scales X and Y from O to 10.

Scales the graphics display 50 X-units
wide and 30 Y-units high.

Unequal Unit Scaling
The scaling factors for X and Y are completely independent of each other. Therefore, plots are stretched or shrunk
independently in the X and Y directions to fit the graphics display area (anisotropic scaling). An X-unit of measure

may not necessarily equal a Y-unit of measure.

Example: This program demonstrates the effects of the = - statement and unequal unit scaling on the

plotting area. Note that the length of a unit-of-measure in the X and Y direction are not necessarily equal.

Clears the graphics display.
Sets degree mode.
Specifies X and Y units-of-measure.

Moves to start of circle.

" loop to specify angle
measures of circle.

one unit of y

N ——— —
one unit of x

Because of unequal unit scaling, our *‘circle’’ is shaped like an oval; one unit of X does not equal one unitof Y.

Section 11: Graphics 193

Equal Unit Scaling
Particularly with symmetrical plots and curves, it is important to scale the display proportionately in the X and Y
directions so that one length of measure in the X direction will equal one length of measure in the Y direction

(isotropic scaling).

Since there are 256 useable dots in the horizontal direction and 192 useable dots in the vertical direction (a ratio of
four X dots to three Y dots), scale the display so that the number of dots in a unit length of X is equal to the number
of dots in a unit length of Y.

The actual ratio of intervals between dots on the display is 255 to 191. But, in most instances, you can use the fol-

lowing equation to determine the number of units in the X and Y directions for equal scaling:

X =15
where: X is the number of units in the horizontal direction and

Y is the number of units in the vertical direction.

Example: Modify the & #1 ¥ statement from the last example so that the circle is drawn in correct proportions.

One solution is to change statement 30 to read:

Scales 8 X-units by 6 Y-units; ratio of 4X
to 3Y. Yields 32 dots per unit length of X
and Y.

If you now run the modified program to generate a circle, the following will appear on the display:

-
\

one
unit
of y {

—
one
unit
of x

As long as the number of dots per unit length of X is equal to the number of dots per unit length of Y, your plots will
be drawn symmetrically in both X and Y directions.

194 Section 11: Graphics

More Examples of ‘‘Isotropic’’ Scaling:

5 A Scales 4 X-units by 3 Y-units; 64 dots
per unit length.

Scales 16 X-units by 12 Y-units; 16 dots
per unit length.

Scales 60 X-units by 45 Y-units; 4.262
dots per unit length.

Note: The exception to our rule of scaling X = 4/3Y is if you scale graphics display to the number of dots on the

graphics screen. Then you should use the actual ratio of intervals, X = 255/141Y.

Scales 255 X-units by 191 Y-units (256 X
dots by 192 Y dots).

or

Both statements scale the graphics display so that one unit length is equal to the distance between two adjacent dots.

Drawing Coordinate Axes

T

The = and Y HE 1% statements draw an X-axis and a Y-axis, respectively, on the graphics display, with

optional tic marks.

= Y-intercept]| . tic spacing[. x-min , x-max]]

- X-intercept[. tic spacing[. y-min , y-max]]

The

statement generates a Y-axis at the specified X-intercept value on the display. An intercept value must be speci-

= statement generates an X-axis at the specified Y-intercept value on the display. The *

fied with an axis statement; the remaining parameters are optional.

The X and Y tic-spacing parameters are interpreted in the current scaled units. The sign of the tic-spacing parameter

determines whether the tics will be drawn in increasing magnitude (positive) or decreasing magnitude (negative).

For example, a negative tic parameter in an : : statement means that tics will be drawn from right to left in the

intervals specified.

Example: The following program first scales the display to be 20 X-units wide (from —10 to +10) and 20 Y-units
long (from —10 to +10), then draws a pair of axes with tic marks at each scaled unit on the axes.

e 1A Clears the graphics display.

e i d, 18, -18, 1@ Scales the graphics display.

e IQ Draws an X-axis at Y-intercept 0, and
marks one tic every X-unit.

® S WX Bd Then draws a Y-axis at X-intercept 0, and

marks one tic every Y-unit.

Section 11: Graphics 195

+10 -
1t _(0,0) one unit of x
Il T 410
ks
|| one unit of y
-10 L

When the axes lie on the boundaries of the graphics display area, only half of each tic mark is shown; for example:

This is_the default scale at power on or

after ﬁ

Draws an X-axis, marking tics every 10
units; draws a Y-axis, marking tics every
10 units, then copies the display onto
paper.

10 y-units

10 x-units
e e,
1 1 A1 1 1 1 y 1

196 Section 11: Graphics

To draw axes for the weather station graph, you might execute the following statements:

Notice that the origin has been scaled
outside of the graphics display area.

[(1968,0)
L

1

1978

A positive tic parameter instructs the system to draw tic-marks, at the specified interval, from left to right on the
X-axis and from bottom to top on the Y-axis. In the example above, tics are drawn on the X-axis at 1968, 1969,
1970, ..., 1978. On the Y-axis, tics are drawn at 0, 1, 2, ..., 20.

A negative tic parameter instructs the system to draw tics, at the specified interval, from right to left on the X-axis.
If you use negative X- or Y-values, be aware of the sign of the tic parameters so that you space the tics correctly on

the axes.

The minimum and maximum parameters specify the length of the axes within the current scale of the display.

These parameters are especially useful when you want to allow space on the display for labels.

Section 11: Graphics 197

The following program illustrates the use of negative tic marks and maximum/minimum X-axis and Y-axis

specifications:

Scales the display at —10 to 2 from left to
right, and —10 to 2 from bottom to top.

Draws an X-axis at Y =0. Marks one tic
for each X-unit from the right side of the
axis to the left. Displays only that portion
of the X-axis from —8.5 to 0.

Draws a Y-axis at X=0. Marks one tic for
each Y-unit from the top of the axis to the
bottom. Displays the Y-axis from —8.5 to
0.

Frames the display with a line at each of
the graphics display boundaries.

-1 (00

If our program had been the following, using positive tic parameters, the tics would have been spaced incorrectly

as shown:

Tic parameters are positive.

198 Section 11: Graphics

-8.5 -7.5 -6.5 -5.5 -4.5 -3.5 -2.5 -1.5 -5 ’(0,0)

X
+-=5

tics start only 1718

1/2 unit from origin | -2.5

+-=3.5

+-4.5

4-55

+-6.5

As you have seen from our examples of framing the display, the axes statements may be used more than once in a
program. In fact, the easiest way to draw a vertical or horizontal line is to use an axis statement specifying the X or Y

position on the display.

For example, you might use the following program to draw and copy a grid of 10 X-units wide and 10 Y-units long.

These statements are executed 11 times.

Section 11: Graphics 199

Plotting Operations

In the following pages, we present graphics statements that enable you to control the pen’s movement and ““color™

in order to produce lines for graphic display.

The
display. Regardless of whethe

statement lifts the pen so that you can move the pen without generating a line on the graphics

- is executed from the keyboard or in a program, the statement’s form is

simply:

The pen up or pen down status can be automatically controlled by using the and

The

statement specifies whether plotting is done with white dots or black dots. Thus, enables you to

draw lines and then erase them. The syntax for the statement is:

i numeric expression

If the numeric expression is positive or zero, white dots are specified for plotting, black dots for clearing. It the

numeric expression is negative, black dots are specified for plotting. white dots for clearing. The default pen

status at power on or after pressing @ is positive (white dots on black background) and

You can think of the pen as a drawing instrument with two colors of ink—black and white—and appropriate eras-
ers for the background color. A positive pen number generates white lines on a black background. A negative pen
number selects an “‘eraser’” so that a line redrawn with a negative pen number will be erased with the color of the

background. When a line is erased, the intersecting points of any intersecting lines will also be erased.

If you clear the graphics display following the execution of a negative pen number, that portion of the display

specified by the tatement will be cleared white.

For example, enter and execute the following program:

Sets positive pen.

Clears the graphics display to black.
Specifies black plotting dots, white
clearing dots.

Clears lower half of screen to white.

200 Section 11: Graphics

The i statement makes a dot at the specified X,Y coordinate position or draws a line to that position in

current units using the current pen number.

I X-coordinate . Y-coordinate

The X and Y parameters are interpreted according to the current graphics display scale.

If the pen is up when is executed, the pen moves from the current point to the specified X,Y position,

then drops to the screen, makes a dot, and stays down. If the pen is down when T is executed, it stays down

and draws a line from the current point to the specified point. If you do not wish to draw a line, the statement

preceding - statement.

Example: Write a program to draw the figure below with these stipulations:

I~ Once the pen is down, you cannot lift it until you have finished drawing the figure.
2. You cannot cross over any line that has been drawn previously.

3. No line can be drawn twice.

Section 11: Graphics 201

Your program might look like this:

Clears graphics display.
Equal unit scale; 20X by 15Y (ratio of 4X
to 3Y).

Lifts the pen.

Start of loop to plot tigure.
Reads coordinate values.

Plots accordingly.

Reads next values until done.
X.Y coordinate positions for f

Example: Now write a program to generate a “‘twinkling’" star on the display. First plot the star, then set up a

loop to alternately erase it with the opposite pen color and plot it again.

Here’s our solution:

Moves the pen to the specified
position.

Press @to stop the program.

202 Section 11: Graphics

The star is repeat-
edly drawn and
erased until you

press (us)-

Example: Now that you have star drawing abilities, write a program to generate star clusters. Hint: Use the

function to generate random increments for a given star pattern. In general, you can generate a sequence of

random integers from a to b using the following formula: IP((b + | —a)*RND+a).

Here’s a sample solution:

Each time you run the program, you can generate a different ‘‘constellation.’” Press to stop the program,
to continue with the current display, and to begin with a clear screen.

Section 11: Graphics 203

Sample run:

Moving and Drawing

and

The most useful of the graphics statements, automatically control the pen up or down posi-

tions. We will discuss the most efficient way to use them on page 204.

The

units and leaves the pen up. This statement provides an easy way of moving the pen without drawing a line on

statement lifts the pen and then moves the pen to the specified X,Y coordinate position in current

the graphics display, regardless of whether the pen is currently up or down.

X-coordinate . Y-coordinate

The X and Y parameters are interpreted according to the current scaled units.
Example program lines:

Moves with pen up to point 2,5.
Moves with pen up to 25,50.

The

units. This statement provides an easy way of drawing a line from the current pen’s location to a new location

statement drops the pen and then draws a line to the specified X,Y coordinate position in current

regardless of whether the pen is currently up or down.

X-coordinate . Y-coordinate

The X and Y parameters are interpreted according to the current scaled units.

204 Section 11: Graphics

Example program lines:

Draws a line from current pen location to
point 2,5.

Draws a line from current pen location to
point 25,50.

Drawing Curves

The concept of incremental drawing proves extremely useful when implemented to draw curved figures. As you
know, you can approximate curves with line segments; many short line segments approximate a curve better than

several long line segments.

With HP-85 graphics, you always plot directly from one X,Y coordinate position to another, in this way generating
“‘lines”” which are actually a series of dots in a straight line. Since you do not have a pen with ink to draw a continu-
ous curve, you must evaluate the equation for a curve in small enough intervals to generate enough ‘ ‘line segments’’

to simulate the curved figure.

This can be done very easily in BASIC programming language with a | "loop using a “interval.
How small of an interval is small enough? This, of course varies with the curve you wish to display. Generally, 20 to

30 intervals provide enough points to adequately plot a curve.

Earlier in this section, we plotted a circle using a | loop using a interval. Below, we have
rewritten the program for a circle to illustrate our discussion. The first loop computes the step value; in other words,
it determines the number of points that will be used to plot the circle. As the step value becomes smaller, the figure

displayed makes a closer approximation to a circle.

ia

Scale changed to draw a larger circle.

Sets the step increment value.

Draws the circle; plots as many points as
5 * will allow.

SUMELECI We'll discuss this statement later in this
section.
Displays circle for approximately 3
seconds.

Now erases the label by selecting the

SOEL T opposite pen color and relabeling.

Enter the program and press to execute it. If you wish to have a printed copy of the figure on the display, just
press the key to copy the display. Remember you can press while a program is running without inter-

rupting program execution.

Section 11: Graphics 205

Below is the plot for I values from 4 to 30 in increments of two.

As you ran the program, you may have noticed that there were very small differences in the circle between values of

I from 24 to 30. As you become more familiar with graphing curves on the HP-85 you’ll become a better judge of the
number of intervals that are necessary to plot a curve.

If you choose an increment value that is too small, it may take the system a long time to plot the graph or curve.

You can stop program execution at any time by pressing a key, and then edit your increment values if you wish.

Padding the Increment Loop

At this point, we digress a moment from our discussion of the graphics statements to point out an important concept
about drawing lines with ¢

T loops. If you thoroughly understand the
loops, skip to the problems on page 208.

‘incrementing process with

When a fractional number of increment intervals are specified to complete a graphics figure, it is often necessary to
““pad’’ the final value of the loop counter so that the figure is drawn completely.

206 Section 11: Graphics

Example: The equation for a cardioid is:
r =a(l —cosH)
where;

r is the directed distance from the origin to a point on the curve,
a is any positive constant, and

@ is the angle measure.
Write a program that plots a cardioid of the form r=1—cos in radians mode and copies it on the printer.

Suppose your program looked like this:

Isotropic scale.
Tic marks every Y2 unit.

Sets radians.

Moves to point 0,0.

Begins plotting cardioid in increments of
0.15 radians.

Polar/rectangular coordinate
conversions.

Move to point 0,0 to plot the other half
of the cardioid.

Move to point —2.75, —1.5.
Label graph. (Again, we’ll discuss
labeling later in this section).

.‘..
-

* Type character &by pressing @

Section 11: Graphics 207

As you can see, the figure was not completely drawn. Parts of the curve closest to the value of m were omitted.

T loops:

Examine the

This loop is executed at T=0, T=0.15,
T=0.3, ..., continuing in increments of
0.15 through T=3. But when T=3+0.15
=3.15, which is greater than the final
value of the loop counter (7). the program
exits the loop. The fractional part of 7 is
not evaluated.

Similarly, the second loop does not evalu-
ate the portion of the curve closest to —
below the X-axis.

In both loops, when the absolute value of T is greater than 77, the program exits the loop.

You can correct the effect of the increment value by **padding’” the final value of the loop counter. In the cardioid

program, extend the final value that follows ¥ £fin statements 70 and 110 by 0.1, so that they read:

Add 0.1 to 7 here.

----- iR Subtract 0.1 from —7 here.

Now the full range of values for each loop will be evaluated. Run the program again to display and copy the

completed cardioid.

-+

b
f 1

4

The first loop is executed at T=3.15 because T is still less than @ + 0.1; the second loop is executed at T=—3.15

because T is greater than —7 —0.1.

208 Section 11: Graphics

Problems

12.1 Now that you’ve had some experience in graphing cardioids, write a program to display the following:

12.2 Pad the I loop in the following program to complete the sine curve.

Moves to start of curve.

Section 11: Graphics 209

12.3 Write a program to generate the curve of the SIN (X)/X from —4 to + 4. As you plot the curve, also draw

““fill’* lines from the curve to the X-axis. Be sure to check for X=0, so that you don’t divide by zero.

The

the current pen position.

= (incremental move) statement provides incremental moving capability. The origin is assumed to be

& X-increment . Y-increment

The IH#IIE statement interprets the X and Y parameters according to the current scaled units relative to a

local origin. The local origin is that of the pen position before the I

statement is executed (i.e., the
current pen position).

Thus, the I E statement moves the pen, without drawing a line, from the current pen position to that

position plus or minus the increment in each coordinate value.

Example program statements:

S TMovE 1,3 Moves the pen from current pen position

(say X,Y), one unit to the right and three
units up (or, to point X+1, Y+3).
Moves the pen from current pen position
(X,Y), five units to the left and two units
up (to point X—5, Y+2).

SEOIMOME -5,2

4 (incremental draw) statement provides incremental drawing capability. The origin is assumed to be

the current pen position.

IDRAW X-increment . Y-increment

The I | statement interprets the X and Y parameters according to the current scaled units relative to a

local origin. The local origin is that of the pen position before the

statement is executed (i.e., the
current pen position).

210 Section 11: Graphics

bistatement draws a line from the current pen position to that position plus or minus the increment

Thus, the Il

in each coordinate value.

Example program statements:

1.3 Draws a line to a point one unit to the right
and three units up from current pen
position.

Draws a line to a point five units to the left
and two units up from current pen
position.

statement are particularly useful for plotting lines or figures of similar slope and size

and 1

The i
when the exact coordinate positions are unknown.

For instance, suppose you wish to make larger tic marks on the X-axis, every five units, and on the Y-axis, every

two units. You might write a program like this.

Draws a line to a point .4 units down
from the pen.

Draws a line to a point 1 unit to the
right of the pen.

Example: Using the information from the table below, graph the
Summer Olympic records for the 100-meter freestyle swimming—men
and women—from 1948 to 1976. Instead of plotting a point, make a
“*+* symbol for each of the women’s records and **(0°" symbol for each
of the men’s records. (Since we will use this example later in the section,
you may wish to store the program on tape after you’ve entered it into

computer memory.)

Section 11: Graphics 211

Summer Olympics Winners and Records: 100-Meter Freestyle

Year Men Time (seconds) Women Time (seconds)
1948 Ris 57.3 Anderson 66.3

1952 Scholes 57.4 Szoke 66.8

1956 Henricks 554 Frazer 62.0

1960 Devitt 55.2 Frazer 61.2

1964 Schollander 53.4 Frazer 59.5

1968 Wenden 52.2 Henne 60.0

1972 Spitz 51.22 Neilson 58.59
1976 Montgomery 49.99 Ender 55.65

Equal unit scaling.

Displays X-axis from 1944 to 1978 with
tics every 4 years.

Displays Y-axis from 48 to 70 with tics
every second.

Reads men’s record in year set by loop
counter.

Go plot square.

Reads women’s record in year set by loop
counter.

Go plot cross.

Moves to year, men’s record in seconds.
Moves to a point —0.2 left and 0.2 up.
Draws top and right side of square.
Draws bottom and left side of square.

Moves to year, women'’s record in seconds.
Moves 0.3 unit up then draws line down.
Moves to a point 0.3 unit up and 0.3 unit
right, then draws line left.

212 Section 11: Graphics

n +
+ +
n +
+
] (i
0 0O +
|
O
O
O

Problem

12.4 The following program, using I

generales some interesting graphic designs based on the form of a
hyperbolic spiral. What angle increments generate the most interesting designs? Why do we include state-
ment 120? How would you modify the program to generate a spiral twice as wide?

Section 11: Graphics 213

Labeling Graphs

As you have seen from the “circle approximation” program and the “cardioid” program, you can further enhance

statement.

the legibility of data plots by labeling graphs using the i.

. String expression

Note that only string expressions may be used with the i. statement. The string expression may include
quoted character strings, string variables, string functions, substrings, and the string concatenator, . The size

of the character(s) specified with the |

. statement is the same on the graphics display as the alpha dis-

play. Examples of L. . statements that we have used already are:
Example from page 204.

Moves to point 0,0.
Then labels.

Example from page 206.

Moves to point —2.75,—1.5.
Then labels.

In each of the examples, we first direct the pen to the starting position of the label, then we specify the

expression.

Example: Enter and run the following program.

. Moves to point —0.5,0.1.
wlett-FPackard 25" Writes expression on graphics display.
1 Moves to point —0.5,—0.1.
zornal Compuisr® Writes expression.

214 Section 11: Graphics

N
B

Example: Draw and label the face of a clock. Include a subroutine to draw the hour hand and the second hand

-
g

for a time that you input. Write the program in such a way that the old time will be erased before a new time is

drawn.

Equal unit scale.
Sets degrees mode.

Draws minute marks.

Draws larger marks for 5-minute
intervals.

EAECOS

Labels the clock with hours.

Puts display in alpha mode for input.

Inputs time in form HH.MM.

Goes to subroutine to draw hands.
Pauses to display clock.

Specifies negative pen.

Gosub to erase hands.

Specifies positive pen again.

Goes back to line 150 to input new time.

Moves to middle of clock.

Shorter hour hand.

FMTVE
DEAM LSS IHOMY, 28005 0H 2 Larger minute hand.
EETUREH

Section 11: Graphics 215

Run the program for times of 5:40 and 10:15:

216 Section 11: Graphics

Label Direction

Character positions are much more flexible in graphics mode than alpha mode. Labels can be positioned either

-

vertically or horizontally by using the L. IR (label direction) statement.

< numeric expression

If the expression has a rounded integer value less than 45, labels will be positioned horizontally. If the value of
the numeric expression (rounded to an integer) is greater than or equal to 45, labels will be positioned vertically.
Thus:

Specifies horizontal labels.
Specifies vertical labels.

]
AN
T

—
L

o1
Sets display to alpha mode for displaying
input message.

Inputs label direction.

Clears graphics display.

Sets label direction.

Moves pen to point 0,0.
LOTR"&VALECD: Writes label on graphics display.

Run the program above with test values of D. Press each time you wish to enter a new label direction.

We run the program with values of 44 and 45.

tyields a horizontal label.

Section 11: Graphics 217

= yields a vertical label.

Label Length

You can think of the alpha display as a cylinder with four displays connected from top to bottom. But the graphics

display treats characters as if it were a cylinder composed of one display with the right and left edges connected:

Alpha Display Graphics Display

Thus, characters or lines do not cause the graphics display to scroll. In fact, characters will be chopped off if they
are positioned too high on the graphics display. If vertical labels are positioned too far to the left of the display, part
of the label will be written on the right boundary of the graphics display. A horizontal label longer than 32 characters

will wrap around on top of itself, one dot below the original starting position.

218 Section 11: Graphics

Example: This program illustrates the effects of the graphics display on character labels.

im I
T

fx]

fote

Horizontal label setting.
Moves to point 1,9.8.
Writes lower part of label.

P
i

Moves to point 0,0.
Writes label.

Changes label direction.
Moves to point 0.1,1.2.
Writes label.

FREEURTITES ON TOF OF ITEELFExEEs

Note that the Plotter/Printer ROM restricts label lengths to current graphics limits so that the long label in

statement 70 above would be truncated rather than overwritten.

statement. Unless otherwise

A label direction setting will remain the same until it is changed by another i.
specified, labels will automatically be positioned horizontally. As we shall see, any input in graphics mode resets

LITTF to horizontal labeling.

If a vertical label begins at the bottom of the display, a maximum of 24 characters will be written on the

graphics display. Any remaining characters will be chopped off the top of the display.

Section 11: Graphics 219

Positioning Labels

The position of a label is determined both by the . + statement and by the current pen location. Horizontal
labels begin directly above the point specified by the current pen location. Vertical labels begin directly to the left

of the specified pen location.

It is often easier to scale the display to the number of plotting dots available to specify exact label locations, from 0
to 255 in the horizontal direction (256 dots) and from 0 to 191 in the vertical direction (192). Since a character is
composed of a 5 X 7 dot character on an 8 X 12 dot field. you can easily calculate the number of dots necessary tor

a particular label.

To illustrate label starting positions, we ran the following program and then enlarged the display arca around the
labels.

Sets a horizontal direction.
Positions the label above the current pen
location.

Sets a vertical direaction.
Positions the label to the left of the cur-
rent pen location.

Let’s look at the section of the display around the labels:

1104
1051 :lll:
EEREN
100 .
951
go_ :Il:ll:l
[' -+ + +
0 5 10 15 20

A label is positioned directly above (horizontal) or to the left (vertical) of the current pen location to allow for

underscored characters (character codes 128 through 255). Since we plotted point (4,100) immediately before the

. statement, ¥ was positioned as shown above. If we had plotted or moved to (25,90) for instance the

would be positioned so that the left leg of the

ould be directly above point (25,90). And if ¥ was a vertical
twould be directly to the left of the point (25,90).

label it would be plotted so that the left leg of the !

220 Section 11: Graphics

Example: Earlier, we wrote a program to plot the men’s and women’s records for 100-meter freestyle swimming
races in the Summer Olympics from 1948 through 1976. Now let’s see how easy it is to label the graph. If you
stored the program on page 219, load it now and add statements 55 and 3000 through 4000 of the following program:

Go to the subroutine to label the axes.

Labels X-axis from 1948 through 1976
in increments of 4 years.

Labels Y-axis from 48 to 70 in
increments of 4 seconds.

Section 11: Graphics 221

Tttt Tttt trrr

F T T SR S WA W TR TR U0 WU S G S N S B G |

Horizontal labels are positioned immediately above the specified point; vertical labels are positioned immediately

to the left of the specified point.

To center the labels next to the tic marks on the axes, change statements 3030 and 3090 to read as follows:

Now run the program again:

I + +
1 4
[+
i + *
+
[3 O
I G U +
C W
L 0J B
L |
r !
- } }

Labels are centered on the tic marks.

222 Section 11: Graphics

You'll find that labels can be positioned easily at the desired location by adding or subtracting fractions of the units

that you specify.

Of course, you could calculate the exact location of the label by scaling the graphics display to the number of

plotting dots available, as we suggested earlier.

Problem

12.5 If you toss an unbiased coin a number of times, you will get all heads or all tails or more likely, some
combination of heads and tails. Test your graphics programming skills by plotting a histogram of the
theoretical probability distribution of the various numbers of heads you might obtain by tossing a fair coin
ten times. Label the number of heads along the X-axis from 0 to 10. Since you will be graphing a histogram,
center the labels under each unit on the axis. Label the probability along the Y-axis in intervals of 0.02 from
01t00.26.

Hints:
1. To find the various probabilities, evaluate each term of the binomial expansion:

n

(p+g)t = 2 Lp""q’ wherep =g = 1/2andn = 10.
= r!(n—n)!

For example, to find the probability of obtaining three heads and seven tails in 10 tosses, evaluate the

term:

10!

e (27 (12 = 0.117

2. Define a factorial function to use in the above computation.

3. Remember to allow enough space in the : iz statement for labels along the axes.

in Graphics Mode

One of the most useful features of HP-85 graphics is the system’s ability to take inputs from the keyboard while the
display remains in graphics mode. Thus, you can study the graphics display and input information to a program

without the display reverting back to alpha mode.

There is an important difference between input in alpha mode and input in graphics mode. Whereas all of the display
editing keys are active on input in alpha mode (e.g., the key causes the cursor to move right, etc.), only the
key is active on input in graphics mode—the rest of the display editing keys will display their respective key-
codes when pressed in response to input on the graphics display. Remember, the , , , , ,

, and keys are still active with graphics mode input. Refer to the table of key responses in appendix C.

Section 11: Graphics 223

Since the key is the only editing feature allowed in graphics mode, it has been given some special capabili-

ties. We’'ll discuss the backspace features in conjunction with graphics input in the following program.

Example: Write a program that generates 90 random numbers between 0 and 20 and plots them in order of

generation on a horizontal scale from 0 to 30. Using |

inputs for a graph heading, and for X- and Y-axis labels.

e s o e e “ee—. e

. statements on the graphics display, prompt for

Dimensions string input variables.
Scales X and Y units.

Draws axes.

Plots random points between 0 and 20 in
order of generation.

Moves to desired point, sets direction,
then labels.

Moves to desired input point on graphics
display, then accepts input.
Centers heading.

Then labels.

Clears previous prompt and input from
graphics display.

Prompts for next input.

Moves to desired point of question mark
appearance, then accepts input.

Centers label along Y-axis.
Changes label direction.
Labels Y-axis.

Clears previous prompt and input from
graphics display.

Inputs X-axis label.

Centers label under X-axis.
Clears prompt and input.

Then labels.

224 Section 11: Graphics

After you have entered the program, press . The graphics display shows:

The input prompt, **, appears on the graphics display if an 1 T statement is executed when the CRT display

is in graphics mode.

Since you moved to point —5,—6 on the graphics display before the input statement, the question mark appears at
point —5,—6. Now enter a heading for the data plot. If you make a typing mistake, backspace to erase and correct
the error.

When you have completed typing the heading, press . The display will remain in graphics mode while you type.

Section 11: Graphics 225

After you enter the heading, the program will prompt for the next label.

Again, the question mark appeared at point —5,—6 because we moved to that point prior to the statement.

Enter the Y-axis label and press .

226 Section 11: Graphics

Now the program prompts for the last label.

Enter the label and press .

Section 11: Graphics 227

The program centers the last input under the X-axis.

Experiment with the position of the input prompt, 7, to view the results of inputting information to the graphics

display.

For instance, if you change statement 150 to:

The first input prompt will be displayed in the lower right corner.

228 Section 11: Graphics

You can enter up to 95 characters in an IH statement, but you may not be able to distinguish all the
characters that you type. The graphics display does not scroll up when characters are typed, so characters may
“wrap” around the display on the same line and overwrite each other. In the example, the input prompt appears

at the extreme bottom right of the display, so the message will be typed on top of itself:

__

Even though you cannot distinguish the characters that have been keyed in, the system remembers up to 95

characters. So, you can still backspace to correct a character if you've made a mistake.

Depending on the position of the input prompt, the system may allow you to backspace past the question mark
(%), as in the example. After you backspace, you can enter the desired input and view the message as you input

it.

An THFUT statement in graphics mode always resets the label direction to the horizontal position so that input
messages can be read easily. The input prompt, 7, always appears on the graphics display if the CRT is in
graphics mode when an I+HF LT statement is executed. If you want to input in alpha mode, be sure to execute

the AL FHMA statement prior to the IHFLT statement.

Section 11: Grapbhics 229

Problem

12.6 ‘‘Hangman’’ is a game commonly played by youngsters (and oldsters, alike) in which one person chooses a

word and another must guess it, one letter at a time, given the length of the word. The word-chooser writes a
dash to represent each letter in the word. Whenever a letter is guessed correctly, all occurrences of the letter in
the word are written above the dash that represents the letter’s position in the word. Whenever an incorrect

guess is made, a part of the hangman’s body is drawn.

If the word is guessed before the hangman is completed, the guesser wins. If the hangman is completed before

the word is discovered, the word-chooser wins.

Write a program to simulate this game on the HP-85. So that you do not have to create string data files, write it

in such a way that one person inputs a word, the display is cleared, and another person must guess the word.

Write one subroutine to draw the scaffold and another subroutine that includes a computed £ ! statement
to determine the part of the body that is to be drawn in the case of an incorrect guess. Include six body parts

(head, left and right arms, trunk, left and right legs) and allow the guesser six incorrect guesses.

Here’s a sample graphics display where the guesser won with two guesses left and the hangman body 2/3

complete.

With the hangman program, it is essential to accept inputs in graphics mode.

Advanced Plotting With

The

(byte plot) statement enables you to plot groups of dots on the graphics display by creating a string

of characters that specify those dots. Each character in the string specifies one byte (eight bits or pixels) of

information which determines whether dots are on or off on the graphics display.

' string expression . number of characters per row

230 Section 11: Graphics

The 1T statement is not difficult to use, but it

does take some time to figure out the precise dot con-

figurations of a design or pattern. If you have played

any of the games in the HP-85 Games Pac, you’ve

probably seen i I in action. Soon you’ll be

generating figures like these using

First we will outline the procedure for building a character string fo 17, then we will discuss some examples

and byte plotting peculiarities.

Procedure for Building the String

1. Draw the figure you wish to plot.

2. Then redraw the figure in matrix form, using dot patterns instead of lines. Graph paper is useful at this

point; let each squarc cqual one dot, block, or bit of information.

3. Divide the dot figure into columns of dots and spaces, eight squares wide. View each eight blocks as a byte
of information where each block specifies a bit. If a dot is specified, the value of the block is one; if no dot is
specified, the block’s value is zero. Thus, each group of eight dots or spaces specifies a binary number that

determines a particular character.

4. Convert each binary number to its decimal equivalent. This can be done in a variety of ways; the easiest of
course, is to use a conversion table. (You can use the table of characters and binary/decimal equivalents in
appendix C.) If a table is not available, convert each eight-digit binary number to its decimal equivalent.

You may wish to use (or modify) the Base Conversions programs, listed on page 249.

Section 11: Graphics 231

5. Build the character string by assigning the character of the specified decimal value (using the ‘unction)
to the appropriate character position in the string; the easiest way to build the string is to write a program that

" statements or statements.

accepts and appends the character to the string through

6. Use this string with the ! I statement to plot the figure. Examples of the statement are:

Plots T$; 1 character per row of dots.
Plots S$; 5 characters per row of dots.

Let's take a simple example to illustrate the first five steps of the procedure. Suppose you wish to plot a solid

triangle:

Step 1. Draw the figure.

n
Step 2. Represent the figure with dots or blocks. EERE

Step 3. Since the base of the triangle is only seven dots wide we need only to place it in a four by eight dot mat-

rix.

[] Each row of this dot matrix specifies a byte
EE (eight bits) of information.
L)

Step4. Convert each row of the matrix to a decimal value.

Binary Representation Octal Vaiue Decimal Value
B 00001000 010 8
AR 00011100 034 28
HEENRE 00111110 076 6 2
Bl EEEREN 01111111 177 127

232 Section 11: Graphics

Step 5. Build the string using the 1

You should use the

This is a short string so we have manually
entered the characters. To see the string,
type the variable name, then press .

¥ function to build this string since some characters cannot be specified from the

keyboard (e.g., those with decimal values over 128), and others have special meanings when found in

association with strings (e.g., the quotation mark).

Since T$ is a short string, we built it from the keyboard. With longer strings, you might write a program
like this:

Step 6. Use the string with the

area around each F

As you can see,

floop to
the decimal values into the

appropriate character position in the

string.

B -

EER -

EEEEN -=—

EENEEERN<—

| EENR

EREAN EEENERRN
[| REANR EEEER
EREREENEER

| EER EEEERAN

statement to plot the figure. Below we have enlarged the graphics display

to illustrate the statement. Do not execute these statements now.

Plots one character per line of
-, thus producing a

triangle.

Plots two characters per line of

Plots three characters per line of

Plots four characters per line of

i plots all four characters on the same line.

i produces a triangle because it plots one character per line.

Section 11: Graphics 233

Using the String With &

Now that you have composed the string, use the

" statement to plot the figure. Enter and run the follow-

ing program—use the editing features of your HP-85 to add statements to the last program if you wish and then
renumber the program.

Scales to number of pixels on graphics
screen.

Repeats the procedure for building the
string.

Moves to point 124,100.

Creates a column of 11 triangles.

Creates a row of seven triangles.

-

. starting position;
t
point 108,80 point (124,100)

point 100,80

'L'A.A.§A F S J
i'T automatically stacks the specified string when only one pen location is specified (see lines 70
through 100 above).

i1 performs an &

* (exclusive or) with existing dots on the screen. Thus, we erased the
middle triangle by plotting it twice.

The example above illustrates most of the facts you need to know about

7. We enumerate them here:

1. For your ease in using

T, scale the display from O to 255 (256 dots in the horizontal direction) and from

0 to 191 (192 dots in the vertical direction). With this scale, you always know exactly where the dots will be
plotted.

234 Section 11: Graphics

2. The starting position of a byte plot always has an X-coordinate value that is a multiple of four on a horizontal
scale of 0 to 255.

If the current pen location does not have an X-coordinate 0,4,8,...252, the figure will be justified to the
nearest four-dot position (multiple of four using the scale above) to the left of the current pen location. The
figure is plotted with the upper left corner at the specified pen position. In our example, the statements on
the left produced the figure on the right.

point (124,100) — »

T statement is executed several times without changing the original pen location, the second
figure is plotted immediately below the first figure, the third below the second, etc. Notice that lines 70 through
100 produced a column of 11 triangles with the upper left bit of the first triangle at point 124,100. When more

than one | Fi statement is executed, one after the other, it’s as if the graphics display performs a carriage

return and tabs to the original horizontal position, to begin plotting the figure immediately below the first.

1 performs an = (exclusive or) operation between the character string you specify and the exist-
ing dots on the display. As you have seen, the middle triangle above was erased because we plotted it twice.

Let’s discuss how this occurred.

The table below illustrates all possible conditions and outcomes of the § . operation between a dot on the

screen and the same dot specified by a | T string. The third column gives the resulting dot condition; 0 means

the dot is off and 1 means the dot is on.

point(124,80)

dots off.

This aspect of

plots triangle.

Dot before Same dot specified : Resultant
EELOT by i i1 string dot condition
1(on) 0 (off) If a dot is on, specifying | for the same dot
in the ! i1 string turns the dot off.
1(on) 1(on) If the dot is on, O in the string keeps it on.
0 (off) 1 (on) If the dot is off, I turns it on.
0 (off) 0 (off) If the dot is off, O keeps it off.

display after second

|: . i atpoint(124,80)
00000000O0 00000000
00000000O0 00000000
000000O0O 00000000
000000O0O 00000000
i with & and
11 turns all ; erases triangle.

L1T becomes very important when you wish to simulate a figure moving across the graphics

display. You must know whether a 0 or a 1 will turn the dot on or off of the current display.

Section 11: Graphics 235

Condensing the String Assignment Program

Once you have defined the string, as we have done in the last two programs. you can create one assignment statement
that specifies the string for use in future programs. This will shorten your programs by at least four or five state-

ments. More important, for complicated figures, it will eliminate the long set-up time.

For instance, while the last program (page 233) is still in computer memory, type:

Execute the calculator mode statement, by pressing (fig), to display:

Now use the @ key to move the cursor back to this line and then press ; the new statement 30 will be stored.

Notice that we have used & : to specify quotes. If your T character string also contains quotes,

you must concatenate them to the string using i

If your ! T string contains underlined characters (characters with decimal values above 128), you must be
careful to avoid the underlined character with the cursor. The cursor will always erase an underline, thus changing

the character value.

Since the new statement 30 has been stored, you can delete the unnecessary statements from the program. Do so now

by executing:

Removes rest of F

statement.

Renumber the program and list it on the display:

This program, shortened by four
lines, performs exactly the same
as the program on page 241. Try it! It will
also be faster for longer strings!

grar

Note: A program that includes nonstandard characters may cause an external printer to behave un-
expectedly when the program is print-listed. A nonstandard character is defined as a character whose
decimal code is less than 32 or greater than 126. For example, the decimal code of the delta character

external printer, use the

).

function to express any nonstandard characters (for example,

Let’s look at a more difficult example to illustrate the renaming features of the " statement.

236 Section 11: Graphics

Example: Use ! 1T to plot a man in the moon. Then create another ! 7 character string to make the man

in the moon move across the screen, one byte each move.

I. First draw the figure:

2. Now redraw the figure on graph paper in matrix form. Since the moon is white, we want to light all of the
dots inside the figure except the lines drawn for the eye, nose, and cheek.

Matrix Form Binary Representation
0 00

EEEEN
~— 0000000002 =-0000O0O0OO0OOOO =

- 4 2 00000002 3+ 200000000 =+ =

—4 =4 1 4 N 000000 A 20000000 = =
el S Y o I o I o SO o S G GG o W o W o T o I o T G GG
OO_L_L_A—L_AO—L_L_l_L_Lo—L_L_L—l_L_L—Loo
OO_A—A—L_A_L—L_L_A_A_A_LO—L_A—L—L_A—L_LOO
OO—L_A—L_L_LOOO_A_A—LO_L—L_L_A—L_AOO

OOO_L_L_LO_L_A_LO_A_L_AOO_L_L_L_LOO

OOOO_L_L_L_A_A_A_L_A_L_L_A_A_A_x_LOOOO
COO0OO0O0O 4 =4 14l AL w1000 0
(e N ol oNe NN« RN e R e R e R e e N o)
CO0O0O0O0OO0O L4214 adada a000000O0

1
1
1
1
1
1
0
0
1
1
1
1
1
1
0
0
1
1
1
1
1
0

O =4 =4 4 2 0004 2O 2 2 14 1000 = a3
O_L_;_L_Aooo_x_;o_x_s_x_a_a_n_n_;_n_x_xo
O_L_A_A_LOOO_L_A_A_A_A_A_L_A_;_L_A_L_A_LO

Section 11: Graphics 237

. Divide the figure into columns of dots and spaces, eight squares wide. Our figure is 16 squares wide, so we

. Build the character string using the

24 000000000 220000000000 =
Y

divided it into two columns. Each line of each column represents one byte of information. Above, we also
converted the figure to its binary representation. For the two columns of eight squares, we also have two

columns of eight-digit binary numbers.

. Convert each eight-digit binary number to its decimal equivalent.

Binary Representation Octal Representation Decimal Value
H1obooPoMoomoo 360 000 240 | 0
1111111 1100/000/000 177 000 127 | 0
0j111/111]11/000/000 077 300 63 192
MO11H11PH11OMO0 037 360 31 240
00011111 1/111000 017 370 15 248
0000(11111[111100 007 374 7 252
00001 1T111/111110 007 376 7 | 254
00001101110 1111 006 357 6 | 239
000111101 1101/111 016 357 14 239
0/011111:00/011j111 037 037 31 31
1111111111111 177 377 127 255
11111 111111111 377 377 255 255
110100111 1/101/111 323 357 211 239
0/001[111:11011{111 017 337 15 223
00111111 1011]111 037 337 31 223
0/000/000[0101 1111 000 137 0 95
0/000/000C[11/101[110 000 356 0 238
0loo00l00O 111111100 001 374 1 252
o/t11/1111 1111000 077 370 63 248
0/111/11111/110/000 077 360 63 240
111 11/11111/100/000 177 340 127 224
11111/11100/000/000 177 000 127 0
1:110/000/00/000[/000 360 000 240 0

“function.

MOOH STRIMGE
Dimensions string to number of decimal
values.

B HE T loop to EiFilior

; “the decimal values and assigns
them to the appropriate position in the
character string.

L Data for moon string are read from
decimal value table from left to right.

238 Section 11: Graphics

6. Use this string with the 7 statement to plot the man in the moon. Append the following statements to

the end of the string building program above and then press .

Replace EHD statement with :
statement.

Moves to upper left corner of display.
{ the character string, two

characters per line.

-
J

As you can see, the man in the moon was plotted once in the upper left corner of the graphics display.

To finish the solution to the example, we must move the man in the moon across the display one byte (eight dots) at

a time.

What happens when we simply position the pen to point 8,191 —eight dots from the original starting position, and

then execute < once again? Try it!

e led Moves to point 8,191. Remember the
system reverts to alpha mode as you type a
statement and reverts back to graphics
mode when you execute it.

ME. 2 Byte plots the character string for the moon,
two characters per line.

Section 11: Graphics 239

After you execute the & T statement, the display shows:

D

W
)

: operation with existing dots on the graphics display. So, the left

As you can see, i performs an
half of the first moon remains intact, but the right half of the first moon and the left half of the second moon leave
an odd dot configuration on the display. Since the display was clear to begin with (aside from the first moon), the

right half of the second moon is plotted correctly.

This should give you an idea of what we must do in order to simulate the moon moving across the display. We must

create another character string for T—three bytes (characters) wide. The first character should erase the
left half of the first moon, the second character should plot the left half of the second moon when it is plotted on top

of the right half of the first moon, and the third character should plot the right half of the second moon.

The first and third characters are easy enough to compute. Since

with existing dots

on the display, the first character of each line of our new
original string; 1 EXOR 1 = 0 and 0 EXOR 0 = 0. The third character of each line of the new string is the
same as the second character of each line in the original string; 0 EXOR 1 = 1 and 0 EXOR 0 = 0.

T string is the same as the first character of the

The middle character of each line of our new &

moon. Since it is plotted on top of the first moon, you must specify the bit value O or I so that when an &

performed, you obtain the desired result.

If a dot is on and you want it off, specify I.
If a dot is off and you want it on, specify I.
If a dot is on and you want it on, specify 0.

If a dot is off and you want it off, specify O.

In other words, the middle character is an & between the first half and the second half of the original moon.

Graphics

Section 11:

240

Binary Representation of New Moon

Left Half
11110000‘111100

0111111101111

0011111111111

. Right Half

EXOR

(e N ool
[eNeNa
[eNoNol
(e N ool
[Nl
[N oo
O O
O O r

0
000
0600

0o
11
11

1
1

0001111111101111/11110000
000011111111011111111000

000001111 111101111111100

000001111111100111111110

000001101110100111101111

00001110111 00001/11101111

000111110000000000011111
0111111110000000/11111111
1111111100000000(1 1111111

1101001100111100/11101111

000011111101000011011111
0001111111000000(11011111

000000000101111101011111

00000000/11101110/111101110

0000000111 11110111111100

111111110001 1111111000

1111110011111111000
111110011111(11100

011111110111111100000

- -

1111000011110000/00000000

umn are the same as the binary
numbers in the second column of

The binary numbers in this col-
the original moon.

L

The binary numbers in the middle
column are the results of the

1

umn are the same as the binary
numbers in the first column of the

The binary numbers in this col-
original moon.

EXOR operation performed

between digits of the left half and
the corresponding digits of the

right half of the moon.

We already know the decimal values of the first and third column. Now find the decimal values of the numbers in the

middle column.

Decimal Value

Octal Representation

Binary Representation

OMNULOMNF~TOODOMNODMOOOVDANWLODNONINO
NN OTON AN OO MULOAOEO U N
N~ AN ANANNNANN ~— AN~ NAN AN~ Q

OMNNMNNMNMNMO-r~ O O0OOTOONOWONMNNNMNMNO
OMNNMNODOMNMNMNOUOTOOOMNNOMULNO~OMMN®
DrO OO0 NONOODONMODOr~ MM OONT—M

Orr~ 000000 T~FT O +yrrrrvrO
Orrmrmrmrmr OO0 O0 00000~ O+ v vr¥r O
O rrmrO OO0 O0O0OrrF OO T~ rrrrmvrO
OrmrmrOrrrmrr~ OO0 00T 00O T~ O v rvr0O
~Trr OO0 0000 YT O T~ 0O 00 ™ v v
—TrTrrTrrrFrr T rrrrrr OO0 0T O 00T T OO0O0 T T
—FTr s rrrr rrrrrr 00000 T T TFrEIEFEIFrEIFrEIFO - -
T O rr " rrrrrr OO0 r O YT r O

Section 11: Graphics 241

Thus, the decimal values for our second character string are:

Decimal Values

1st Character 2nd Character 3¢ Character

240 240 0
127 127 0
63 255 192
31 239 240
15 247 248
7 251 252

7 249 254

6 233 239
14 225 239
31 0 31
127 128 255
255 0 255
211 60 239
15 208 223
31 192 223
0 95 95

0 238 238

1 253 252
63 199 248
63 207 240
127 159 224
127 127 0
240 240 0

Finally, build the character string for the second moon. With the previous moon program still intact in computer

memory, make the following changes:

1. Dimension the second moon for 69 characters in statement 20.

2. Add statements 125 through 200, below, to build the second string, and statements 210 to 9999 to plot the
string.

SEM RBUILD MOOH ZTE

ODIM M4l MEFlaezld Dimensions the string variable for the

FOR I=1 T0O 4& second moon, M28$.

FEAD M } Builds the first string using !

I d=CHREEOML S statements 70 and 80.

READ M2 statements 170 through 200.
Meslk, KI=CHRFOHZ 2

HEHT K

i MOWE 8,131 } Puts the original man in the moon
128 BRLOT HME,Z in the upper left corner.

1i FEM #BUILD 2Znd MOGHX

ie FOR K=1 TO X Builds the second string using

1

1

1€

242 Section 11: Graphics

178 DARTA 248,248 ,8,

ZES, 192,31,

12y 2V.n

218 REM EHOWM 3
MOOH MOVESR
T RIGHT ACROSE DISPLAY

2z REM OAHD FROM TOP TO BOTTOM
EIGHT CORMERE®

e DIER FOR Y=121 T 8 STEF -1 Outer loop (Y) moves string from top to
bottom.

o 255 STER S Inner loop (X) moves string from left to
right.

Pl Fod P P f

s}

Now run the program to see the man in the moon move across the display from left to right and descend slowly

-
y

from row to row.

-
-

We chose to move the moon eight dots at a time in the horizontal direction. But we could have moved any number of

dots at a time. For instance, if we had moved it four dots at a time, the outer four squares of the second moon would

be the same as the first. But each of the middle four dots would have to be computed as the of that set of

four dots and the four dots preceding it.

You can stop the moon program anytime by pressing .

Section 11: Graphics 243
Finally, you may wish to condense the moon program in the same manner that we condensed the triangle program
earlier.

Since you have just executed the moon program, variable MS$ contains character data to build the first moon and

variable M2$ contains character data to build the moving moon.

After pressing to stop the program, create one assignment statement for each moon variable.

Create an assignment statement for M$ by executing:

When you execute this statement, an

assignment statement numbered 1000
will appear on the display.

Do not enter the new assignment statement into computer memory until you have displayed the characters of each
variable you wish to enter. In other words, do not press after statement 1000—the statement you've just

created—now. Doing so would deallocate all program variables so that M2$ would be undefined once again.

First, create an assignment statement for M2$ by executing:

When you executed the statements above, the system displayed the character strings composing each variable. Now
you must enter the program lines that you have created into computer memory. Many of the characters are under-

lined, so the best way to approach the statement with the cursor is from the top.

Thus, press the key so that the cursor moves directly to the “*home’” position of the display. Then, continue to
press the key until the cursor rests under 1000 in the statement you just created. Then press . Now move
the cursor with the @ key until it rests under 2000 in the second statement you created and press .

Move the cursor here, then press .

Then move the cursor here and press .

244 Section 11: Graphics

Now add the following lines to your program:

Now list your program; it should match the program listed below:

Go to 1000 to assign values to variables
m$ and M2§.

Add so that you do not inadver-
tantly access the subroutine.

Add return statement at end of subroutine.

The initial display of the moon.

These nested loops govern the motion
of the moon on the display.

information for building the
characters.

If you run the program once again, the man in the moon will move across the display as it did earlier with the

program on pages 241 and 242.

Section 11: Graphics 245

Problem

12.7

Create a scene for the man-in-the-moon using trigonometric curves for mountains, a segment of a circle fora
lake, :

scene, by creating some new

% statements for clouds, and our first triangle

! for trees. Or better yet, create your own

character strings. Here’s our scene; a sample program exists in
appendix F.

Section 12

Debugging and Error Recovery

Errors are a common occurrence in programming, ranging from mistakes in the original formulas to mistakes in

the logical flow of the program. Whenever they occur, they need to be found and corrected, and your HP-85 is

designed to make various error-checking processes as easy and convenient as possible.
The HP-85 enables you to:

» Trace the order of program execution and the changes in variable values.
e Single-step through programs.
e Check and change variable values during program pauses.

and

e Determine the cause of runtime errors with four BASIC functions

i), and recover from errors by writing your own error handling routines.

Tracing Program Execution

A convenient method of debugging logic errors in a program is to trace the order of statement execution and

and

variable assignments in a program. The HP-85 provides three tracing statements;

_, which includes

The trace statements can be programmed or executed manually from the keyboard. The trace statements are
independent of each other; thus, one or all of the trace statements can be in effect at any time, but

. includes 7

and 7

Tracing Branches

statement is used to trace the order of statement execution in all or part of a program.

If the order of program execution proceeds sequentially from the lowest numbered statement to the next higher
numbered statement, nothing is printed. But whenever a branch occurs in a program, both the statement num-

ber where the branch occurred and the number of the statement to which it branched are printed in the form:

statement number statement number

Tracing the Values of Variables

A frequent programming practice is to include a ! program statement for a variable whenever

the value of that variable is in question. However, the HP-85 enables you to trace changes in variable values

without the need for output statements by means of the statement.

= variable list

247

248 Section 12: Debugging and Error Recovery

Only program variables can be traced; attempts to trace calculator mode variables will produce an

1 error. Thus, you should use TF as a program statement only, or execute

“HE from the keyboard after initializing a program with I #

The variable list can contain simple numeric variables, string variables, and references to entire arrays. You can

trace as many variables in a program as you wish. The variable names must be separated by commas in the list.

Simple numeric variables and string variables are specified by name; subscripted (array) variables are specified
by a name followed by a set of parentheses. A comma may be included within the parentheses to specify a two-

dimensional array if desired for documentation purposes.

For example, suppose your program contains simple numeric variables A and B, arrays C(4) and D(25,3), and

string E$. To trace all of the variable assignments in your program, execute:

AT N A = Use the variable name followed by i : to
denote an array. The use of the comma
for two-dimensional arrays is optional.

Whenever a change occurs in the value of the variable(s) you are tracing, the printed trace output indicates the

statement number in which the change occurred and:

¢ The name and new value of a simple numeric variable.

» The name, subscript(s), and new value of a particular array element.

e The name of a string variable.

¢ The name in the form 7 » or #<, * and the new value of the first element of the array for statements

£).

that operate on complete arrays (e.g., i

New values are given only for simple numeric variables and array elements. Only the statement number of the
variable change and the name of the variable that changed are given for strings. When an entire array is traced,
only the new value of the first element is given, along with the statement number of the array change and the

array name.

Tracing All Statements and Variable Assignments

The

program and the value change of every variable in the program.

#il.L. statement enables you to trace the order of program execution for every statement in a

HL1. statement is often used with the key, as we’ll see shortly.

Since the tracing operations output all information to the printer, you can save paper by executing the

FEIMTER 1% 1 statement before executing the program that you are tracing.

Canceling Trace Operations

2k or the i

All trace operations are canceled by executing the

MOREMAL

Section 12: Debugging and Error Recovery 249

Example: Load and run the following Base Conversions program to find the octal representation of the binary num-

ber 10101010. Execute the T

execution.

We executed the

. command to get the listing below:

~ statement before you run the program to follow the order of program

Assigns check string.
Inputs number bases.
Inputs number in first base.

Initializes base 10 value.

Checks for illegal character.
If illegal character go to 270.
Accumulate equivalent in base 10.

Initializes output string.
Shifts one digit to the right.
Gets character.

Build string in reverse order.

Checks 1f done.
Prints input.

Prints output string.

Illegal character routine.

As you can see, the program executes the
same set of branching operations
within the § T loop. The
statement (line 90) stores the initial

and final counter values for I (1 and 8
respectively); consequently, the |
statement (line 130) returns control

seven tlmes to the statement following

Then the program executes line 150
through 190 three times (two branches
from 190 to 150) to build the character
string of its octal equivalent.

Fmally the string is output with the

! loop.

250 Section 12: Debugging and Error Recovery

The program exits the I [F=- HE T loop in statements 90 through 130 when the decimal equivalent of the original
value has been accumulated and stored in the variable N. Regardless of the base of the original number, or the base

that you convert it to, you can find the decimal equivalent of the original number by using the T H{E

statement with this program.

Usingthe TRHLE 4/ FF statement, trace variable N to find the decimal equivalent of 1321 base 4 in the process of

converting it to base 3.

First, execute HLiFFL to cancel our previous TF

L E statement.

b .. also cancels F
FRI HLL Resets print all mode.
TEARCE VAR H Traces variable N.

Decimal equivalent of 1321,;
The largest value of N.

For instance, add the following statements to the Base

You can use any of the 7

Conversions program.

W Fi# conditions have been canceled. Now

Since you've edited (deallocated) the program, the previous T

run the program to find the binary equivalent of 86,.

FREIMTHALL
FLIH
THFLUT BEAS

MUMBER IH BASE = O
ae
Trace linme 126
| . lime 1

Since the values of variables O$ and B$ do
not change between statements 85 and
135, no TERLCE k output occurs
BADE 2 for them.

Section 12: Debugging and Error Recovery 251

The STEP Key

You can execute a program one line at a time by using the key. If a program has been halted by a
statement or the key, it can be continued, one line at a time, by pressing the key. As
soon as is pressed, all the statements in the line designated by the internal program counter are ex-

ecuted, then the program halts again.

You can execute an entire program—one step at a time—by first initializing the program with the key (or

by executing I+ 17), and then by pressing to execute each program line.

Since the key does not output anything to the printer or display, it is often desirable to execute the T

.. statement so that you know what line is being executed.

Example: Execute the statement and then execute the Base Conversions program, one statement

at a time using the key. (Remember to delete statement 135, from out last example, so that the tracing operations

are not cancelled.) First initialize the program with the command.

Imtlallzes the program.
i traces all variables and

branches.
Now press the key to execute the
program one statement at a time. Be
sure to press to enter data re
quested by an " statement. Then
continue stepping through the program
by pressing the (STEP) key. If you press
the (STEP) key in response to an
statement, the keycode for

will appear. Simply backspace and enter
the data with ((fR).

252 Section 12: Debugging and Error Recovery

Checking a Halted Program

Various operations that aid in debugging can be performed on a program halted by (PAUSE), (RESET), or an
o, or before pressing (STEP) or (CONT):

e Values of variables can be checked merely by keying in the variable names followed by .

e Values of variables can be assigned or changed if statements like i %

e Most program statements can be executed without statement numbers, like

e Arithmetic operations can be performed and math functions can be executed.

, etc.

e Any system command can be executed — !

If the halted program is continued with either the or key, any of the previously mentioned operations that

affect program execution remain intact. For instance, values of variables that were changed retain their new values;

If, however, the halted program is restarted with a F LI} command, or !4 T is executed before you continue, then
the program is initialized so that all variables start with undefined values until reassigned a value in the program (or
from the keyboard). (Refer to appendix C to see what is affected by Fiil{and I
program with or after editing a line of the program; the program must first be initialized with F
THIT.

{ I 1T.) You cannot continue a

Error Testing and Recovery

Run time errors are those that occur when a program is running (for example, division by zero). The HP-85
automatically provides DEFALILT 1H values for certain error-causing situations (errors numbered 1 through
8). These DEFHALILT M values allow the computer to display a warning message rather than halting program

execution with an error message.

Section 12: Debugging and Error Recovery 253

The computer provides another way for programs to recover from run time errors without halting program

execution. The 1+ ERFF statement allows you to direct program execution to a specified recovery routine

when a run time error occurs. If an Tif E declarative is in effect, branching occurs immediately when a

run time error is detected. (Warnings 1 through 8 are regarded as errors by an declarative.)

[t line number

& line number

N I statement remains in effect during program execution until another statement

(1R statement is executed.

If the recovery routine itself contains an error, it’s possible to place the program in an endless loop. Therefore,

» statement should be placed at the beginning of the recovery routine. A program will also loop

" statement references a nonexistent line.

If branching to a recovery routine occurs during execution of a multistatement line, the remaining statements in

the line are not executed; the subroutine’s ¥ statement causes branching to the line number following

the multistatement line.

The Error Functions

Four numeric functions return information about the cause of program and system errors:

The error line function returns the line number in which the most recent program execution error

occurred.

The error number function returns the number of the most recent program execution error. Appen-

dix E contains a complete list of error numbers and messages.

The error ROM function returns the identification number of the read-only memory that generated

the most recent error.

The error select code function returns the select code number of the interface that caused an input/

output error.

The error functions can be executed either from the keyboard or (more typically) from a running program. At
power on or after a reset, the error functions return ii. Whenever an error occurs, the error functions “remem-

ber” that error until another error occurs or until the computer is reset.

254 Section 12: Debugging and Error Recovery

The EFREOM function is used to determine which read-only memory, including any optional plug-in ROMs,
generated an error. The EFF M numbers for the HP-85B built-in system ROMs are 0,208, and 209. HP-85

plug-in ROMs have the following identification numbers:

HP-85B Enhancement ROM | =~ """
Number
Advanced Programming ROM 232
Assembler ROM 40
/0 ROM 192
Matrix ROM 176
Plotter/Printer ROM 240
The ~ function returns & whenever the source of the error is not an optional interface module.
After localizing the source of a ROM or interface error with the or [function, refer to the

documentation for the ROM or interface for a listing of the error numbers and conditions for that device.

The error functions are most frequently used in F: routines to deal with run time errors.

Example: Suppose you are concerned that a certain computation will

cause a numeric overflow. If it does, you want to skip that segment of
the program and go to another part of the program. If the error is not)
a numeric overflow error, you want to display the number of the state- ‘
ment in which the error occurred and pause so that you can do some
program checks. Write the necessary statements that would carry out

these functions.

Section 12: Debugging and Error Recovery 255

In the following program, we create some obvious errors so that the order of program execution may be followed

easily.

If an error occurs, go to 100.

We turn off the error overriding condition
as soon as the error occurs, or the expected
error-causing statement is executed so
that we don’t trap out errors we’re not
prepared to handle.

If error number 2 (overflow), then go to
500.

If not an overflow, display error number
and error line.

Then pause.

If an overflow condition occurs, will skip
to this statement.

As you can see, the program checked for an overflow condition, then skipped to statement 500.

Now change statement 60 to read:

R R=mbod Creates a division by zero error.

Displays error number for division by zero
and the line number in which the error
occured, then pauses.

Since the program has paused, you may perform various program checks, or change the values of variables before

you continue.

Some Hints About the System

Occasionally, your program may not work the way you think it should, perhaps by giving erroneous results, and yet
the system does not detect any errors. The following list of things to remember about the HP-85 system may help you

in detecting program errors or user-misunderstandings.

256 Section 12: Debugging and Error Recovery

Be sure to close data files if the program halts because of an error in the midst of printing to a file. Remember
that the system uses buffers to ‘‘write’’ data to the tape and that the buffers are *‘dumped’’ only under specific
conditions (refer to page 184).

Hor LRI T, itis acalculator

If an assignment (e.g.,) is made before a program is initialized with F:!
mode variable, not known to the program. However, when an assignment is made after a program is allocated
(initialized) to a variable that is known to the program, then the assignment is made to that program variable.
If the variable is not known to the program (i.e., not referenced in the program), then it is a calculator mode

variable.

Error messages report the first error that occured; there may be others. Remember that the system tries to

interpret an expression as a statement and then as an expression. If you get an error with a calculator mode

expression, try executing the same expression in a [I I % statement. Then the system will know that it is

I statement and you’ll get a better error message. A bad expression is con-
sidered a bad statement if typed as [expression] .

The three programmable timers are extremely useful, but be aware that they interrupt the system at the
frequency you specify until they are turned off by executing , , or iFE T . Thus, for

small interrupt intervals, timers can have an adverse effect on the execution speed of the system.

The

you specify very small tic spacing that might take hours to complete.

and - ~ statements are interruptable during tic-generation by pressing —just in case

Programs are stored allocated (including the space required for dedicated variables) unless they contain

variables in common (with a 011 statement). If your program contains dimensioned variables, you may
want to add a token 01} statement (e.g., 1 T Z%) in order to deallocate the program before it is
stored.

If you reference a multiple-line functionin a ¥
{1

~ statement, you may not get the output you expect.

Should you get amemory overflow error when attempting to read a long string from a data file, break the string
into shorter substrings and write the substrings into smaller logical records. Then read the substrings back, one

at a time, into computer memory.

Memory Conservation Hints

Remarks and comments ({) take one byte per character. Use enough to document your program but don’t be

excessively wordy.

Use ITHTE

" data types for arrays whenever possible.

Use IMTE 1. constants whenever possible (e.g., 4 instead of 4.).

+ constants instead of
Explicitly dimension all arrays if the upper bound is not 10.
Explicitly dimension all strings if the maximum length is 10 or less.

Use GHFT IO E

1 if you don’t plan to use the zero’th element of your arrays.

Section 12: Debugging and Error Recovery 257

Use multistatement lines (using) when it doesn’t detract from program readability.

Use a variable assignment for program constants that occur more than once. Variable names take up less

space.
Use subroutines or functions for program sequences that occur more than once.

Try to reuse variables when possible, rather than declaring new variables.

Part III
Mass Storage Operations

Section 13

Accessing Your Mass Storage System

Introduction

Mass storage is a common means of storing and retrieving information. Mass storage media, such as tape
cartridges and flexible discs, can hold more programs and data than main memory and can store information
permanently. The tradeoff is that before the information from a mass storage device can be used by the

computer, the information must first be brought into main memory.

The HP-85 BASIC language includes a number of statements for communicating with a mass storage device
(such as a disc drive unit) which in turn accesses a mass storage medium (such as a flexible disc). Among the
operations available to you are:

e Storing programs for future use.

e Storing and retrieving graphics displays.

o Copying files from one mass storage medium to another.

e Running programs whose memory requirements exceed main memory by storing individual program seg-

ments in mass storage and recalling them into main memory one at a time.
e Creating and accessing data files tailored to your particular computing needs.

Information is stored onto and retrieved from mass storage media as files. This section discusses mass storage in

general and shows how to access any particular file in your mass storage system.
The HP-85 enables you to use a variety of mass storage media, including:

o Tape cartridges, inserted in the internal tape drive.
e Flexible discs, in 3%-inch, 5%-inch, and 8-inch sizes.

e Hard discs for increased storage and speed, such as the HP 9134A Winchester hard disc. (Note that both
flexible disc drives and hard disc drives require the installation of an HP 82937A HP-IB Interface.)

e The HP-85B electronic disc. The electronic disc is composed of special RAM circuits that collectively
serve as one or more mass storage devices. Initially, the electronic disc can store about 32K bytes of

programs and data and can be expanded to store up to more than 500K bytes.

The electronic disc is much quicker than a tape or physical disc; however, the electronic disc is available only

while the HP-85B is switched on. When the HP-85B is switched off, the contents of the electronic disc are lost.

A major theme in these sections is that all mass storage devices—with exceptions noted in the discussion—can
be considered the same from a programming point of view. For example, although the electronic disc
outperforms flexible discs, which outperform tape cartridges, all use the same commands to store and access

information.

261

262 Section 13: Accessing Your Mass Storage System

Command Summary

The HP-85 allows you to manipulate mass storage devices and files in a variety of ways. The following table

summarizes the BASIC statements and system commands that control mass storage operations.

Instruction Description Tape* | Disct | EDf | Prog** | Page
Opens a data file for reading and writing. X X X v 302
Displays the catalog entries of a mass stor- X X X v 273
age medium.
CHATH Loads a BASIC program from mass storage X X X v 284
and begins its execution.
CHECE RERD# | Verifies the validity of data printed to a disc X X v 313
file.
COMHFIG Enables the electronic disc space to be X v 319
treated as two or more disc drives.
LRy Copies a source file or storage medium to a X X X v 291
destination file or storage medium.
CREATE Creates a data file. X X X v 301
CTHRFE Conditions the magnetic tape. X v 277
ERASETARE Initializes a magnetic tape and sets up a X v 269
directory.
GET Loads and transforms a data file into a BASIC X X X 296
program file.
GLOAD Loads and displays a graphics file. X X v 287
GETORE Stores a graphics file. X X v 286
ITHITIALIZE Prepares a disc for use and establishes an X v 269
empty disc directory.
LORD Loads a BASIC program file into memory. X X X 283
LORDETH Loads a binary program file into memory. X X X v 287
Iz Sets the default mass storage location. X X X v 271
MET An abbreviation for the MAZS ZTORAGE X X X v 271
I% command.
FHCHK Packs disc files together to make more X X v 293
space.
FRIMTH Writes data items to a file on mass storage. X X X v 303
FURGE Removes files from mass storage. X X X v 292
FEADE Reads data items from mass storage files. X X X v 305
EEHAME Renames mass storage files. X X X v 292
FEWMIHD Rewinds a tape cartirdge. X v 277
SAVE Stores a BASIC program as a data file of X X X v 296
characters.

* Indicates that the instruction applies to the internal tape drive.

t Indicates that the instruction applies to flexible and Winchester disc drives.

1 Indicates that the instruction applies to the HP-85B electronic disc.

** Programmable.

Section 13: Accessing Your Mass Storage System 263

Instruction Description Tape* | Disct | EDf | Prog** | Page
SECURE Secures a mass storage file against listing, X X X v 294
editing, overwriting, or access by others.
STORE Stores a BASIC program as a program (type X X X 281
FROG) file.
STOREEIH Stores a binary program as a binary program X X X v 287
(type EF 1) file,
SWAP Swaps two BASIC programs, one in main X v 324
memory and one in electronic disc.
TEANSLATE Translates an HP-85A BASIC program that X X X 288
was created without a Mass Storage ROM
into a program that will run on the HP-85B.
WHEECUREE Removes the protection from a file that was X X X 295
secured with the SECUIRE command.
VOLUKME IS Names a specified disc or disc volume. X X v 268
Function Summary
The following functions return information about your mass storage system.
Instruction Description Tape* | Disct | EDf | Prog** | Page
DIsC FREE Returns the number of unused records on a X X v 274
disc.
Moo E Returns a string specifying the current default X X X v 275
mass storage unit specifier.
TYF Returns an integer indicating the data type of X X X v 312
the next item in a data file.
VOL# Returns the volume label of the specified X X v 275
mass storage medium.

* Indicates that the instruction applies to the internal tape drive.

t Indicates that the instruction applies to flexible and Winchester disc drives.

+ Indicates that the instruction applies to the HP-858 electronic disc.

** Programmble.

264 Section 13: Accessing Your Mass Storage System

Installation of the HP-IB Interface and Disc Drives

The following paragraphs assume that you wish to use one or more flexible or hard disc drives in your mass
storage system. Information regarding the tape drive and electronic disc resumes on page 267, with The Default

Mass Storage Location.

Disc drives must be connected to your HP-85 by means of the HP 82937A HP-IB Interface. Refer to the

instructions with your interface and disc drives for complete installation instructions.

Addressing Mass Storage Devices

In each mass storage operation involving a physical disc, such as listing the catalog of a flexible disc, the HP-85
accesses a particular disc in a particular disc drive. There are three ways you can specify the individual disc to

be accessed in a mass storage command:

o Use the mass storage unit specifier (or msus) to identify the disc drive where the disc is located, for

example, ZAT " 07F&@".

o Use the volume label of the disc, for example, ZFHT . EEH". This is a one-character to six-character
name (EEH) attached to the disc itself.

e Use the current default mass storage location of your computer system, for example, i

>+7T alone. This is

the location the HP-85 will automatically search if you supply neither a msus nor a volume label in a mass

storage command.

In order to use the mass storage unit specifiers of discs effectively, you need to know how to combine the select

code of your HP-IB interface, the device address of the disc drive unit, and the disc drive number.

The HP-IB Select Code

Each interface connected to your HP-85 must be identified by its own unique interface select code. The interface

select code allows you to address an individual interface to which a particular device is attached.

The select code on the HP-IB interface has been factory preset to 7, but may range from 3 through 10. The

examples in this manual assume an HP-IB select code of 7.

Device Address Switch

Since each HP-IB interface can accept up to eight mass storage units, each unit on the interface must have a
unique device address. This device address is then used to access a particular disc drive. The device address is
set using the device address switch located on each unit. Each unit has a factory preset device address, typically
zero (refer to the operator’s manual for your unit). Since each device on a particular interface must have a
different device address, it may be necessary to reset the device address of a unit before configuring it to the
computer. The following table lists switch positions for changing an HP 82900-Series 5%-Inch Flexible Disc

Drive address.

Section 13: Accessing Your Mass Storage System 265

1 Sw;tch 3 Value
on on on 0
on on off 1
on off on 2
on off off 3
off on on 4
off on off 5
of off on 6
off off off 7

The examples in this manual assume you have an HP 82901M Flexible Disc Drive, which is a unit with two
drives. The device address for this unit is preset to 0, and the examples in this manual assume the switch has

remained set to 0.

Disc Drive Numbers

Disc drive numbers identify individual drives at a particular device address. A maximum of four drives can be

connected at any one address. Disc drive numbers are fixed at the factory and may range from 0 through 3.
The HP 9121-Series 3%-Inch Flexible Disc Drives have the following drive numbers:

HP 91218 Flexible Disc Drive (single disc) DRIVE 0

HP 9121D Flexible Disc Drive (dual disc) DRIVE 0, DRIVE 1

The HP 9133 Combination Flexible Disc/Winchester Disc Drives have the following drive numbers:

HP 9133A (3%-inch flexible disc/four-volume 5MB hard disc) DRIVE 0/DRIVE 0, DRIVE 1,
DRIVE 2, DRIVE 3

HP 9133A Option 010 (3'%-inch flexible disc/single-volume 5MB DRIVE 0/DRIVE 0

hard disc)

HP 9133B (3%-inch flexible disc/single-volume 10MB hard disc) DRIVE 0/DRIVE 0

The HP 9134 Winchester Disc Drives have the following drive numbers:
HP 9134A (four-volume 5MB hard disc) DRIVE 0, DRIVE 1,
DRIVE 2, DRIVE 3
HP 9134A Option 010 (single-volume 5MB hard disc) DRIVE 0

HP 9134B (single-volume 10MB hard disc) DRIVE 0
The HP 9135A Combination Flexible Disc/Winchester Disc Drives have the following drive numbers:

HP 9135A (5%-inch flexible disc/four-volume 5MB hard disc) DRIVE 0/DRIVE 0, DRIVE 1,
DRIVE 2, DRIVE 3

HP 9135A Option 010 (5%-inch flexible disc/single-volume 5MB DRIVE 0/DRIVE 0
hard disc)

266 Section 13: Accessing Your Mass Storage System

The HP 82900-Series 5%-Inch Flexible Disc Drives have the following drive numbers. (The drive numbers

appear on the front panel of each unit.)

HP 82902M Flexible Disc Drive (single master) DRIVE 0

HP 82901M Flexible Disc Drive (dual master) DRIVE 0, DRIVE 1
The HP 9895A 8-Inch Flexible Disc Drives have the following drive numbers.

HP 9895A Option 010 (single disc) DRIVE 0

HP 9895A (dual disc) DRIVE 0, DRIVE 1

For information about drive numbers of other Hewlett-Packard disc drives, refer to the instructions for those

devices.

The Mass Storage Unit Specifier (msus)

The mass storage unit specifier (msus) is a character string that combines the HP-IB select code, the address of

the disc drive unit, and the drive number to specify the location of a particular disc on which a file is located.

Tape drive (" : T") Electronic disc (" ' D E&)

T

T

HP-IB interface
(select code 7)

Drive numbers

= Disc drive unit (address 0)

msus " DyVAaa" msus " DyEL"

The msus has the form:

" : device type [interface select code device address drive number]*

All msus character strings begin with a colon (:).

The device type identifies the type of mass storage device being accessed, [1 or « for disc.

Section 13: Accessing Your Mass Storage System 267

Examples: The following quoted strings are valid mass storage unit specifiers:

renveLy tapyazn R S
Disc drive unit Disc drive unit Disc drive unit Disc drive unit
Select code 7 Select code 7 Select code 7 Select code 7
Device address 0 Device address 0 Device address 0 Device address 0
DRIVE 0 DRIVE 1 DRIVE 2 DRIVE 3
The mass storage unit specifier of the electronic disc is ¥ : ODEEE" or " :ci@dE ",

The msus of the tape drive is simply " : T" or "1 t".

Note that a conflict between a disc drive and an HP-IB printer will result if the two share the same device
address. For example, a printer whose HP-IB address is 701 (as in the FREINTER I[% ¥l declaration) will

conflict with a disc drive whose mass storage unit specifier is " :

7 1@ ", The reason is that the second digit of
the disc msus— 1 —specifies an identical device address to that of the printer. To avoid this problem, ensure

that the switch settings of the disc drive unit are set to a device address other than 1.

The Default Mass Storage Location

When the HP-85 is switched on or reset, it establishes a default mass storage location. The default mass storage
location is where the HP-85 searches for files during mass storage operations when no mass storage location is

explicitly provided.

The internal tape unit is set as the default mass storage location when no disc drives are accessible. If one or
more disc drives are connected and powered, then the HP-85 automatically searches the HP-IB interface having

the lowest select code for the disc drive unit having the lowest device address. The lowest numbered drive at

that location is designated the default mass storage address (typically, *

") whenever the computer is

switched on or reset.

The default drive can be changed by executing a Az =

ment is discussed later in this section.

Throughout this manual, DRIVE 0 at device address 0 on an interface with select code 7 is assumed to be the

default mass storage location, so that " : IF&E " is the default msus.

Volume Labels

Volume labels provide a convenient way to specify a particular disc.

A volume label is a name up to six characters in length that you assign to a disc when the disc is initialized or by
executing a % 1L IIME 1% statement. The volume label is stored on the disc and remains the disc’s name until
a new volume label is assigned to the disc. Once a volume label has been assigned to a disc, the disc can be
accessed using its msus or its volume label. Note that some Winchester disc drives, such as the HP 9134A, are

partitioned into four volumes and may accept four volume labels.

268 Section 13: Accessing Your Mass Storage System

An assigned volume label has the form:

— v——"
String up to six characters in length

Period preceding the string

where A is any character. To avoid confusion, you should not use a period (.), a colon (:), or a quotation mark

(") as the first A character in the string.

At power on, the electronic disc is named " . E[1". Tape cartridges are not allowed volume labels; they are

accessed using the " : T" msus.

The syntax of the WOLLME 1% statement is:

. " irmsus” -
L L oo 1
AOLUME . old volume label " 1= "“new volume label

Note that the new volume label is not preceded by a period. However, once the volume label has been assigned,

the string of characters (AAAAAA) that comprise the volume label must be preceded by a period.

When a volume label is used to access the medium on which information is stored, the system searches the discs

currently in the system until the disc with that volume label is found. (If the search fails to find the specified

volume label, the computer returns Error 125 ¢ WOL = and sends an “interface clear” message to the
devices connected to the HP-IB interface.) Because of this search operation, it may take more time to access a
file using the volume label than by using the msus. The HP-85B always begins a volume label search at the

electronic disc and continues in ascending order of msus values.

Examples:
VOLUME " 0F@aay Is "mMypIsce Assigns volume label *
the disc located at msus * :
VOLUME " . MyDISCT I3 "A-R" Renames the disc formerly labeled
R fto YL H .
VOLUME “:Deaa" IS “SFEEDYH Renames the electronic disc

Preparing a Tape Cartridge

Information about files on a tape cartridge is contained in the tape directory. The tape directory is automatically
set up by the HP-85 at the beginning of the tape, providing you with an easily accessible “table of contents” of

recorded programs and data files. The directory can hold the names of, at most, 42 files. At your request, it

Section 13: Accessing Your Mass Storage System 269

directs the HP-85 to the exact tape location of recorded programs and data. You need to set up the tape direc-
tory—or initialize the tape—the first time you use a new tape with the HP-85 or whenever you wish to set up a

new directory on an old tape whose contents you no longer want.

CAUTION
Do not attempt to remove the cartridge while the tape is in motion or while the tape drive light is on.
Damage to the tape and its contents may result.

CAUTION

sure that nothing of value resides on the tape to be initialized or that you have a backup copy of that

information.

The syntax for the command is simply:

SETHFE

You must initialize any tape being used for the first time and any recorded tape that is to be erased for re-use. If
you execute THT on a tape and a RERD or SEARLH error appears in the display, the tape probably needs to
be initialized. (For recurring F EfD errors with a tape that has been initialized, refer to the Tape Care and Tape

Life paragraphs of appendix B.)

To set up the tape directory, make sure that the slide tab is in the rightmost position and then
initialize the tape with the EFRZETAFE command.

Initializing a Flexible Disc or Hard Disc Volume

Each empty flexible disc or hard disc volume must be initialized before it is used for the first time. The

%L I #E command sets up a file directory and clears and tests the disc.
Note that the electronic disc is automatically initialized when the HP-85B is switched on.
Optional parameters in the IHITIAL IZE statement can be used to:

e Establish a volume label.
e Specify the amount of space allocated to the disc directory.

e Specify how the physical records on the disc are to be numbered.

The initialization process takes about one minute for a 3V-inch flexible disc and 2 minutes for a 5%-inch
tain whether or not a disc has been previously initialized, insert the disc into DRIVE 0 and type CAT (FRD).
After a delay of some seconds, the message Error 138 : [DISC will indicate that the disc has not been

initialized.

270 Section 13: Accessing Your Mass Storage System

The syntax of the IHITIAL IZE statement is:

“ imsus”

IHITIALIZE [“new volume label" [, old volume label"

[. directory size [. interleave factor]]]]

You cannot use a period (.), colon (:), or quotation mark (") as the first character in the new volume label.

You may not specify a null string as the new volume label.

Note: Make certain you thoroughly understand the syntax of the I

statement before
using it. Remember that the first parameter is a new volume label and that the second parameter
specifies the disc to be initialized. If the disc to be initialized is not the default drive, you must assign
a volume label to it during the initialization process.

More About IHITIHL

[

[y

In the THITIALIZE command, each optional parameter must be preceded by all the optional parameters
listed before it. For instance, the directory size must be preceded by both a new volume label and a msus or old

volume label.

The new volume label is the new name assigned to the physical disc being initialized. If the disc being initialized

is located in the default drive, the volume label, if omitted, defaults to ten blanks.

The msus or old volume label is the existing label or msus of the disc being initialized. If this parameter is
omitted, the default disc specified by the MAZS STORAGE I5 statement is used.

The directory size specifies the number of records to be allocated on the disc for the file directory. Each record

holds directory information for eight files. The default value is 14 records (or 14 X 8 = 112 files).

The Interleave Factor

The interleave factor is an integer specifying how physical records on the disc are numbered. When the factor is
1, 2, 3, ... etc., records are numbered consecutively, by every other record, every third record, ... etc. The default
value for the interleave factor is 5. Consult documentation accompanying your disc drive unit for the range of

permissible values.

The ability to renumber records on a disc by specifying an interleave factor allows you to control the efficiency

of your disc drives and to minimize the time required to access mass storage files.

The interleave factor affects how many revolutions of the disc are necessary to transfer information to and from
mass storage. Because it takes a finite amount of time to perform accessing operations, and because the disc is
spinning rapidly, it is possible that a full revolution might be required to access successive records on the disc.
By placing a physical separation between records, the appropriate interleave factor can minimize the number of

wasted revolutions.

The performance of your mass storage system during a particular application can be improved by adapting the
interleave factor to the structure of your data. Since there is no easy way to compute the best interleave factor
for a particular data configuration, the simplest way to determine the most efficient interleave factor is by trial

and error.

Section 13: Accessing Your Mass Storage System 271

One method for testing interleave factors involves copying data files accessed by a program from a “master” disc
to a “test” disc that has been initialized to a different interleave factor. Then, time the execution of the program
using the computer’s internal timer. You may initialize the test disc repeatedly using a different interleave
factor each time, 7iF the same data onto the disc (remember, the data was lost when the disc was

reinitialized), and rerun the program to compare execution times.

Examples:
IHITIALIZE Initializes the disc at the default loca-
tion; no volume label is assigned.
THITIALIZE “"HEW",":DVZG" Initializes the disc at " : ¥ Z " and
assigns volume label " . H
IHITIALIZE “"HEMWER®,".0LD",15.2 Initializes disc * . {1.[1" and assigns
new volume label " . HEWER". The

directory consists of 15 records; the
interleave factor is 2.

Note that attempting to execute IHITIALIZE on a tape or on the electronic disc will result in a

{iHLLY error message.

Establishing a New Default Mass Storage Location

At power-on or after a reset, the computer automatically establishes the disc drive having the lowest numbered

msus as the default mass storage device or the tape drive (if no disc drive is accessible). The

STORAGE 1% command allows you to specify an alternative default address for mass storage

operations.

" imsus"
" . volume label

STORAGE IS

If the volume label is specified, the drive at which that disc is located is designated the default address.

Once a default drive is set up, the system automatically uses that drive when accessing files unless you specify

otherwise.
Examples:
MASS STORAGE IS " . ASR" The default is set to the drive containing
the disc with volume label " . Fi.-F ™.
STORAGE IS ":Qpvalt The default is set to msus " : 71",
STORAGE 15 ", EDM The default is set to the electronic disc.
The HP-85 offers an abbreviation for the MASS STORAGE IS command to save typing time.

b “imsus"
" . volume label"

272 Section 13: Accessing Your Mass Storage System

Examples:
M1 " D7aan The default is set to msus * : 1 .
M=l " EDY The default is set to the electronic disc.
The M=1 command works identically to MASZ ZTORAGZE I %, If you include the abbreviation %I in a

program line, the complete spelling will appear when the program is listed. (Note that if a multistatement
program line exceeds 95 characters when listed, only the first 95 characters in the line can be edited and

subsequently re-entered in the program.)

Accessing Files Using the File Specifier

Data and programs are stored on a mass storage disc in files. By assigning each file a name, you can access
previously stored information by applying filing commands and BASIC statements to the file name or file

specifier.

The file specifier consists of two parts: a one- to ten-character file name, and a volume label or msus (tape file
names are limited to six characters). The volume label or msus identifies the tape or the particular disc drive on

which the file is located. The file name distinguishes any one file from others stored on the same medium.

The form for the file specifier is:

1 msus

file name [. volume label]

When the volume label or msus is omitted, the computer automatically accesses the default device established

by the configuration of the system or specified by a MAZS = 1% command. The volume label or

msus must be included if the file is located elsewhere than on the default mass storage device.

Examples:
PRUAREE EDC The file named & = 1s on the elec-
tronic disc.
PHUAEE:DTEA" The file named is on the device
having msus *
ROoDCop TR The file named is on the tape.

The following example establishes a default mass storage device and then accesses a file located there.

Az STORAGE IS ":DFal" Establishes a mass storage default
device.

CEEATE "FRESZUREES®", S Creates a five-record data file named
FEESZURES on the disc at msus

The only characters that cannot be used in the file name portion of a file specifier are period (.), colon (:), and

quotation marks ("). The period is reserved as the volume label prefix, the colon is the msus prefix, and the
quotation mark is used to delimit strings. File names longer than 10 characters are truncated to 10 characters

for discs, and six characters for tapes.

Section 13: Accessing Your Mass Storage System 273

The File Directory

Each flexible disc maintains a catalog, or directory, of the files stored on it. The THT command outputs the

contents of the file directory to the computer display.

The syntax of the CAT statement is:

" imsus”
-
"L . volume label™]
If you have previously initialized a disc as " . H¥D 1=, you can now obtain a file directory of that disc by

executing AT ML MWDIIZON

ToWalume 3 MYDISC
Hames Tupes Butes Feo

-

" T" will list the tape directory. DAT " ED® or AT *:l@&E" will list the electronic disc

catalog.

Once you have stored programs and created data files on a mass storage medium, the file directory will look

similar to one of the following listings:

Disc Directory:

Wolume 1 MYDISC

Tupe Butes Feos
OATH 52 5
FPROG 206 z
ML L ZEE 1
FARMIHGS ARTH TEG P
Tape Directory:
TYFE EBYTES RECS FILE
OGATH 51z 1 1
OATH 512 1 z
FROG 25E = 7
F RO 256 3 &)

This is the name assigned to the file as part of the file specifier.

There are five types of files: IR T, program (F F:i1i:), binary program (ki G
extended (% %)

tz= | The number listed is the number of bytes per file record. Discussed in section 16.

), ML, and

Feos This is the number of records in the file. Discussed in section 16.

In addition, a tape directory shows a F ILE column, indicating the location number of each file in the tape.

You can terminate a catalog listing at any time by pressing any key.

274 Section 13: Accessing Your Mass Storage System

File Types

As mentioned in the discussion of file directories, five types of files may be used with a mass storage system.

Each file type is created and retrieved by different procedures, summarized in the following table.

File Type Description

FROG Contains program. Information is stored using the = T ZFE command and retrieved using the
L.OAD command. Program files are discussed in section 14.

ODRTH Contains numeric and string data. File is created by the CRERTE statement. Data is stored by
the FRIHT# statement and retrieved by the FEFA# statement. Data files are discussed in
section 16.

BFGH Contains binary program. Information is stored using the ZTIREEIH command and retrieved
by the L ZRDEIH command. Binary program files are covered in section 14.

HULL Empty file. Null files are created when individual files are purged. Packing the disc removes null
files from the disc directory. Null files are discussed in section 15.

FEEE Extended files, usually files containing graphics displays. Information is stored using the
S TORE command and retrieved using the GL 1A D command. Graphics files are discussed in
section 14.

Specifying Parameters Using Expressions

String expressions are commonly used in mass storage commands to supply parameter values. Use the

ampersand (#:) to concatenate string expressions in mass storage commands.

Examples:

e TR FE="HuFile" Assigning F # a file name.

e 5B DE=".07@1" Assigning ['# an msus.

o TH ME=" EOM Assigning %/# a volume label.

o DO TOPY F#HiDF T FFilV¥ Copying MwF i 1 & from source disc

"L OFE1LY to electronic dise YL EDV.

Mass Storage Functions

The HP-85B provides four mass storage functions: 0150 FREE, MSUS#, WOL#, and TYF. (The TYF fune-
tion is used for data file operations and is discussed in section 16.)

The 11 %0 FEEE Function

The DIZC FREE function causes the HP-85B to search the directory of a specified disc and return two

integer values:
e The number of unused records on the disc.

o The size of the largest unused space on the disc.

The syntax is:

o) , ; P imsus™
ODI=C FREE numeric vary, numeric var, [_. " volume Iabe/”]
The 0152 FREE function does not apply to tape cartridges; if a tape is specified, a DI ST CHL"Y error will

occur.

Section 13: Accessing Your Mass Storage System 275

The two numeric variables may be either simple variables or array elements. When 01 %0 FREE is executed,
numeric var; is set equal to the total free space on the disc, measured in 256-byte records; numeric var, is set
equal to the largest single block of space on the disc, in 256-byte records. The two variables will have equal

values when there are no “holes” (or HUILL files) on the disc.

The " :msus® or " .volume label* parameter, if supplied, specifies the flexible disc, hard disc volume, or elec-
tronic disc that is to be examined. If no disc is specified, the HP-85B accesses the current

STORAGE 1% device.

The computer requires 1 or 2 seconds to access the directories of physical dises using DI %0

wards, the values of the two numeric variables can be checked and used from the keyboard or from an executing

program.
Examples:

ODIss FREE ALE Reads the total number of free records
into A and the size of the largest unused
block into B from the current default
disc.

NISC FREE 3.7, .MyDIsCY Returns available space information
from the disc labeled M550, in
variables S and T.

OI=s0 FEEE #.%., " Deagagn Returns available space information

from the electronic disc. At power on,
with no additional memory modules, the
electronic disc will show 124 records of
storage.

Note that using the DI S FREE function involves two steps: First, you execute the function; second, you

check the values returned in the numeric variables.

. Function

Z# function returns either a two-character or five-character string that indicates the msus of the

current i STORAGE 153 device.

The syntax is simply:

For example, if you have previously typed M51 " :O7z@" (), then MEUE#E COTEA,

If the MESS STORAGE 1S device is the tape, MSLISE returns : T; if it is the electronic disc, Muils
returns @ 555, The colon (@) is part of the string. Note that M55 ¥ does not require a mass storage access.
The /1. % Function

The (L% function accesses a specified disc directory and returns a six-character string that indicates the

volume label of the disc.

276 Section 13: Accessing Your Mass Storage System

The syntax is:

VOLEC" imsus” &

The " :msus" parameter may be any suitable string expression.

Examples:
VOLECO" DFaa" Returns the volume label of the disc in
drive D700.
WOLFECT Daaat s Returns the volume label of the elec-
tronic disc.
WOLFCHMSUSF Returns the volume label of the current
!“i ._.1 g ol A B I Sl W S,

...... % device.

The %L ¥ function does not apply to tape cartridges; if a tape is specified, a [i i ¥ error will occur.

The character string from %L # will not include the period (.) of the volume label and will be padded with

* . volume label" : is

trailing blanks if the volume label has fewer than six characters. The form %/

allowed but redundant.

Note that "L ¥ requires a mass storage access to the specified msus address.

Sample Program

The following file copy program demonstrates the use of the DI S FREEE, pif , and 4 # functions.
1é P FILE COPY UTILITY
o 20 ME=MIUSE Saves the msus of the current
MADES % device in M.
o TE O MI1E WZE=VOLECMED Saves the onglnal volume label in both
‘4 and Urs
48 OISP "FILEHAME TO CORY"
S8 IHFUT F#
8 SOURCE DISC
FEODISP "FREOM DISC "aWlE:" Oy oMo
HEOIHFUT AF
o G IF UPCEIAFLL 1 Jx="%" THEH 164 If the source disc is not the default disc,
ELSE DISF "FROM WHAT DISC ., FLEHA get the source volume label.

SE":E CIMFUT Wi

1[”3 P OESTIMATION DISC
118 DISP "ToO OISC " u2E;" Oy HIv
1: IMFUT A#F

e 128 IF UFCHFCAFLCL,1d0=" "r’ " THEH 14 If the destination disc is not the default
B ELZE DISP "TO HHHT OIsC, FLEAS disc, get the destination volume label.
E"s@ IMPUT VE#
14@ U COPY OFPERATION
156 Add the period (.) to the source and
148 . 2 destination volume labels.

o 174 = Tl IF FH' E IS Uz Set the destination disc as default disc.
1240 . FREE R.E

e 150 AxB THEM FPRCE If there are any Ui L files on the

destination disc, pack the disc.

ZER COFY FEaMls TO F#
218 ' FIMISH FROGEAN

Section 13: Accessing Your Mass Storage System 277

A
m ™

C"CATALOG OF "omMzldsE© Catalog of destination disc will show the

copied file.
. STORAGE IS M# Restore the original MASE STORAGE
1% device.
REEF 46,208 @ OISP THBOTI;"d-
QOHE =t

EHD

function will cause an interface error if the following conditions occur:

e An I/O ROM and an interface are installed in the computer, and

e The i ¥ function appears in a FF IHT statement, and

e Printer output is directed to an external printer.

To avoid the interface error, assign a string variable (such as %' 1 %) the value of /(1L ¥ and then include the

variable name rather than the ‘1L # function in the #F I T statement.

Tape Cartridge Commands

The following programmable commands are applicable only to HP-85 tape cartridge operation.

This function conditions the magnetic tape cartridge by running it forward to the end of the tape and then back

to the beginning of the tape. Programs and data on the tape are not affected by the T " operation.

This function is similar to the IHITIAL IZE command. ~ sets up a directory on the tape car-

tridge. All previous information on the tape is destroyed.

This simply rewinds the magnetic tape cartridge to the beginning of the tape. Pressing also
causes the HP-85 to rewind the tape.

Write Protection

Tape cartridges and flexible discs may be write-protected to protect the media against accidental initializing,

erasing, and altering.

The slide tab on a tape cartridge, when moved against the direction of the arrow, causes
the tape to be write-protected. A plastic or an adhesive tab on a flexible disc may be used to write-protect the

disc. Refer to the documentation for your disc drive for write protection information.

278 Section 13: Accessing Your Mass Storage System

Note that there is no way to write-protect the electronic disc or a Winchester hard disc.

If the computer attempts to record on a write-protected medium, a = I TE FEOTECT error will occur and no
recording will be done. The HP-85 will not allow new files to be created or old files to be purged. Write-

protection will have no effect on data access during read operations (such as cataloging and loading operations).

Refer to the File Security paragraphs in section 15 for other forms of program and data protection.

279

Notes

Section 14

Storing and Retrieving Programs and Graphics

Information in this section covers how to store and retrieve programs using a mass storage system. Use of

chaining to expand the capability of the computer in running large programs is also covered.

Storing a Program
The =

& command is used to store the program currently in main memory on a mass storage medium.
attaches a specified name to the program, creates a program file with that name, and then stores the
program in the program file using the computer’s unique language. The stored program remains in main mem-

ory until scratched, or until another program is loaded.

is not programmable. The command may be typed in, or you may use the typing aid (STORE).

The proper form of the %

~ command is:

“file specifier"

The proper form for file specifiers is covered in section 13.

Examples:

COUARE MYOISor Names the program in main memory
QUAKE, and stores the program in a
program file located on the mass storage
medium with volume label

W

Remember that you can use either a volume label or msus in a file specifier.

STORE "RUAREE:DTVGar Has the same effect as the previous
example if * . ¥

DISCY is in drive

The more descriptive the file name, the easier it will be to remember the contents of the file.

You may omit the volume label or msus portion of the file specifier if the program is to be stored onto the

default mass storage medium.

PLomMyDIsoH Assigns the default mass storage device.
(Assume that the volume label was pre-
viously assigned.)

281

282 Section 14: Storing and Retrieving Programs and Graphics

If you do not have much experience with mass storage systems, you might want to practice storing (and later in
this section, retrieving) a program. The following program converts a speed input in one of four units to any of

the other four units. The four units are:

Fo5 feet per second
MFH miles per hour
EM.-H kilometers per hour
M3 meters per second

The example shows the steps used to store the “FEE[IS program on a disc named ‘ in drive

"o 0Faant, If you have not yet initialized a disc, do so now in Drive 0 of your unit.

IHITIALIZE "MYDISCH,".07FG@ar Note that the msus is optional here,
since DRIVE 0 is the default device. Be
certain that the proper disc is in the
proper drive!

Now, obtain a file directory of the disc by typing AT (FR).

CHRHT ".WyDrsct
L VMolume I MYOISC
Hame Tupe Butes Fecz
Type in the program as shown.
18 DISF "EMTER SPEED, CUREEHT U
UHITS™®
28 IHFUT S, uUsf
28 DISP “"COMUWERSIOHM UHITSY:
48 IHFUT ULl#
50 51=5
£ROIF UE="F 5 THEH 1i@
YEOIF UE="MPH" THEMW 134
28 OIF UEk="EM-H" THEH 156G
S S1=214%32.281 0 Mes TO F-
laa IF Ul=’ =% THEHW 1388
118 Si=%1%.¢ = L Fs5 TO MFH
1zg IF U1$=“HFH‘ THEH 128
138 S1=351%1.868% | MPFH TO EM-H
148 IF Ulg="EM-H" THEH 1g@
158 S1=S14%. 2778 | EMesH TO MeoS
e IF UlgF="M- 5" THEH 1320
17a GOTO 9@
188 PRIMT USIHG 196 S, Uf,21.01#
128 IMAGE ED,ED,H}HHHH,”=”,tD=ED
LE L HAAR
288 EMD

To store the program, type (or use the typing aid):

ZTORE "SPEEDS . MvwDISC!

Section 14; Storing and Retrieving Programs and Graphics 283

The red pilot light on DRIVE 0 will be on during the storing process. When the light goes off, the program

SPEEDS has been stored on disc " . M¥OISZ". To see the updated file directory, execute "HT from the
keyboard.

CHT P oMYDISCE

L Yolume I3 MYDIZC

Hame Tups Bdates Fecs

SFEEDE FROG 256 z

The directory shows that SPEEDS has been stored in a program file three records in length. Each record
contains 256 bytes.

Z. T stores the program on a tape cartridge. = TR E

Typing =

stores the program in the electronic disc.

The :

was stored previously. For instance, after storing SPEEDS, you may edit the program in main memory, and

command can be used to store a program in main memory Over a program on mass storage that

then re-execute:
STORE “SPEELDS . MYDIZC®

The new, edited version will be stored, replacing the first version. Because of this “overlay” capability, you must
be careful in storing a new program mnot to accidentally assign to it the name of another program file, thereby

overwriting a previously stored program that you still need.

Note that the HP-85 will ignore any keyboard instruction following a = £ command and the # statement

concatenator.

If a program is paused (with FFUSE or (PAUSE)) and then stored on a tape cartridge (with =

program variables will be set to null values. Always save a program on tape before or after you run the program.

Loading a Program From Mass Storage

Once a program has been stored on a mass storage medium, a copy can be retrieved into computer memory with

the i

i command. Like S TORE, the LA command is not programmable. The proper form is:

FlT “file specifier®

The file specifier must correspond to a program in mass storage. Attempting to L.

results in Ervror &7 1 FILE HAME.

{t a nonexistent program

When L

loaded. Variables that were assigned in calculator (keyboard) mode are also scratched.

It is executed, any program or data currently in main memory is scratched before the new program is

If you stored the program SPEEDS, you can now retrieve it. But first, you may want to scratch the contents of

firm that the program is no longer in main memory.

284 Section 14: Storing and Retrieving Programs and Graphics

Now, execute:

LOAD "SPEEDS MYOISC" or LOAD "SFEEDS:DFEAY or LOAD "5

concatenator.

Autostart Programs

The autostart feature enables the HP-85 to load and run a tape-based program at power on.

When the HP-85 is switched on, it searches the tape directory for a BASIC file named Fiws t .. If the file is

found, the program is automatically loaded into main memory and executed.

Chaining Programs
The THAIH statement allows you to load a stored program into computer memory from a running program.

When CHAIH is executed in a program:

¢ The current BASIC program and any data in main memory are scratched. Specified data may be pre-

scratched when CTHFIH is executed.

¢ The program specified in the THAIHM statement is immediately loaded into main memory from mass

storage.

¢ The newly-loaded program is executed automatically.

Note that, unlike the L 0AT command, ZHF IH is programmable. The proper form for the statement is:

CHAIM "file specifier"

The 0111 statement is used to preserve variable definitions between programs. All variables not included in the

231 statement are scratched when the chained program is loaded.

The form of the i1 statement is:

0N ftem [dtem]

Refer to the discussion of 11 in section 8 for additional information.

011 statements in both the initial and the chained program must agree in the number and type of variable.

When passing arrays between programs, take particular care that the option bases of the two programs agree.

An important function of chaining is that it enables you to execute a program too large for main memory by

separating the program into two or more parts. While the two programs that follow are relatively small, they

Section 14: Storing and Retrieving Programs and Graphics 285

provide an example of using CHHAIH and C 011, The first program computes yearly earnings for a company from
quarterly earnings over a ten year period from 1970 through 1979. The EARNINGS program then chains to a

program that draws a bar graph of the yearly earnings.

First, enter and store the DRAWGRAPH program to draw the bar graph.

18 BEEPR

e DFTION BASE 1

LERAFE

4@ COM O IHTEGER woild», REAL ECS, Preserves specified variables.

Yoloa-3, Yo 1l@y 4l -ZEA00, Establishes scaling factor.
ST I B S B= I 3 \ Draws axes
YOl 1eRgR, B, 18E8RA ’
5]
1 7o 18
MOWE Yolx+, 6, 286800
LABEL MALFOYOI N Labels X-axis.
HEXT 1
MOWE Yolorx-2, 16048
LREEL "EARMHIMGZ-THOUWSAMDZ"
LOIE @
Ok M=lRREE To Zeoes STER 2 Labels Y-axis.
MOVE Yolox—-1, H-Z84a
LABEL WALFOCH- 108G

HE=T M
FoR I=1 TO 18
MOVE Yolx. @

A ODRAM YoIo,EqS, I @ DRAM YOI Draws bar graph.
+1,ECH, Iy B DRAW Yoli+l, 8
238 MEHT I
EHD

Now, store the DRAWGRAPH program on the electronic disc.
STORE “DREAHGREAFH:DaoA”
As long as the HP-85 is powered, the DRAWGRAPH file is accessible from the electronic disc.

Next, execute Z5RATZH, and enter the EARNINGS program for computing the yearly earnings:

Preserves specified variables.

Computes yearly earnings.

o Q0 T] e

B OHEHT I
o3 CHAIH "ORAMGRAFH:D@@E" Loads DRAWGRAPH.
166 EHD

286 Section 14: Storing and Retrieving Programs and Graphics

If you'd like to run the set of programs more than once, be certain to store EARNINGS now since it will be

scratched when statement 90 is executed.

Now, execute EARNINGS. You will be asked to enter quarterly earnings for years 1970 to 1979. Enter any
values you like, but keep in mind that the Y-axis for the bar graph runs from $0 to $100,000.

When you push after the last data entry, you will hear a beep as statement 10 in DRAWGRAPH is
executed, and the bar graph will be drawn on the CRT. When program execution is completed, you may list the

current program in memory if you'd like.

Note that the [:HH I statement may be executed directly from the keyboard to load and run a program in one
step. Because the {111 statement does not apply to calculator variables, a program chained from the keyboard

cannot access calculator variable values.

Storing and Retrieving Graphics Display

The computer allows you to store the contents of the computer’s graphics display onto a disc and to retrieve the
display without re-executing the display-generating program. The operation of loading a stored dis'play into the

computer’s graphics display leaves variable assignments and the program currently in computer memory intact.
The two commands used to store and retrieve graphics displays access graphics (#%%%) files.

Storing a Graphics Display

The contents of the computer’s graphics display is stored onto a disc by executing the

CZTORE "file specifier

The L5TORE command does not apply to tape cartridges; if a tape is specified, a [MY error occurs.
Example: To store the previously generated bar graph, execute:

CSTORE "BARGREAFH.WYDISCY

As in program storing, the contents of a graphics file can be altered by executing G5 TOFEE with the same file

specifier and a different graphics display.

The contents of the graphics display has now been copied into the file named BARGRAPH located on the disc
with volume label ", M OIS ", We could have chosen to store the display as part of the program. Inserting
the Z=TORE command after line 230 of the DRAWGRAPH program accomplishes this.

As in program storing, the contents of an extended file can be altered by executing &5 TORE with the same file

specifier and a different computer graphics display.

Section 14: Storing and Retrieving Programs and Graphics 287

Retrieving a Graphics Display

Once a graphics display has been stored with a =5 T JRE command, it can be retrieved by executing a L OAD

command, either from the keyboard or within a program. The proper form of =L 0AD is:

LLOADl “file specifier”

The file specifier must be the name of a previously-GSTOREd extended file. The LR command does not

apply to tape cartridges; if a tape is specified, a DI %2 ML error will occur.

Execution of GLOAL places a copy of the graphics display contained in the extended file into the computer’s
graphics display. The contents of the computer’s graphics display at the time GLOMAD is executed will be
scratched as the stored display is retrieved. As GL AL is executed, the computer automatically switches to

graphics mode, and you can see the stored display appear on the CRT.
Example:

GLOAD "BRRGEAFH:DY@Q" Loads and displays the contents of the
graphics file in drive " : I7EE".

Storing and Retrieving Binary Programs

Some of the programs in the application pacs are binary programs. They function like a ROM by enlarging the
“yocabulary” and capability of the HP-85, except that they are loaded from mass storage. The command that

accomplishes loading of binary programs is L JALE I H. The statement has the form:

LOADEIW “file specifier”

{_[ATETH loads a binary program without altering existing data or programs in main memory. Only one bi-

nary program can be in main memory at a time.

If a binary routine is to be added to a BASIC program, you must first [(tFi[l the main program and then add
the binary program using L. ADE IH. If you load the binary program first, it will be scratched when the main

program is loaded.

In order to list, edit, or translate a program that uses a binary routine, the binary program must be present in

main memory.

Binary programs are stored using the command = TOFREEIH, which has the form:

STORERIN “file specifier

288 Section 14: Storing and Retrieving Programs and Graphics

Translating Tape-Based Programs to Disc-Based Programs

Programs that were originally written for the HP-85A may need to be translated in order to take advantage of

HP-85B disc-access capabilities.

For instance, suppose you have a program stored on tape that was written on the HP-85A without the Mass
Storage ROM installed. The program reads a data file, performs a number of calculations, creates a new data
file, and then prints results of the calculations onto the new file. When this program is executed on the HP-85B,
the program will continue to read, create, and write tape-based data files, even if the default mass storage

medium is a disc.

Programs written on the HP-85A without the Mass Storage ROM installed must be translated before they can
utilize a disc system. After a program loaded from the tape system is translated, the program is compatible with

the requirements of the HP-85B electronic disc and physical disc devices.

A tape-based program is translated by loading the program into main memory and then executing the

nonprogrammable TEHAMHZLATE command, which has the form:

TEAMZLATE

Translation time is roughly proportioned to the size of the original program. A beep signifies that the transla-

tion is completed.

If the tape-based program described previously was translated and then executed, the program would read the
appropriate data file from the default mass storage device, perform the computations, and store the results in a
data file created on the default mass storage device. If the data file being read had been stored initially on tape,

it would be necessary to CIIF'Y it onto the default mass storage device before running the program.

The translated program can be stored onto a disc or back onto the tape simply by executing = 7T7iFE with an

appropriate file specifier. Note that the translated program may grow in size due to the translation process.

Note: If the HP-85A program uses a binary program, that binary program must be present in main mem-

ory before the translation can occur. Otherwise, a BIH FREOG P - error will occur when the
TREHAHZLATE command is executed and the resident BASIC program will be scratched from main

memory.

289

Notes

Section 15

File Manipulations

Your mass storage system enables you to perform a variety of device and file manipulations, including:

e Copying files from one storage medium to another with the COF' command.
e Changing the names of files with the REHAME command.
e Erasing files with the FLUEGZE command.

+ Rerecording the files on a disc with the FACE command for more efficient use of mass storage space.

e Protecting files against viewing, editing, overwriting, and use by others with the E and

with the GET command.

All filing commands can operate on tape cartridges, flexible discs, hard discs, and the electronic disc, except
when noted. In addition, most filing commands are programmable.
Copying Files

Any file not secured against copying can be copied from one storage medium to another. The 1% command

copies the specified file and adds the name of the copied file to the destination medium’s file directory.

COFY “source file specifier” T " destination file specifier”

The destination file can be given the same or a different file name. If the destination file name already exists on

the destination medium, the computer returns Er r oy &3 ¢ [UF HAME,

You cannot copy a file secured against copying (type 1 security). If you attempt to do so, no error is generated,

but the secured file is not copied to the destination medium. (File security is discussed later in this section.)

Example: The following statement copies the file named %FEE on disc with volume label " . MY DTS

into a new file named “EL Q5 ITY on the disc having volume label * . FREAMHE".
CORY U"SPEEDS.MyDISCY TO "WELOCITY . FRAME"

Copying an Entire Disc

The ©0OFY command can be used to copy all the files on a specified medium to another medium. The source

disc’s files are added to the destination disc without affecting the original contents of the destination medium.

S * . source volume label" T ", destination volume label"
= L] . . .
", source msus" " 1 destination msus"

291

292 Section 15: File Manipulations

If duplicate file names are encountered during copying, Ev+ or & - is generated, and the

copy operation terminates. All files copied up to the termination remain intact.

Files secured against copying (type 1 security) are not copied when the entire contents of one disc are copied to

another disc. The secured file is simply ignored, and no error is generated.

If there is not enough space on the destination medium to hold all the files being copied, the copy operation

terminates after the last file to fit on the destination medium, and E¢ + v results. Copying
also terminates when the directory space on the destination storage medium is exhausted, generating

Evror 124 1 FILES. Files copied before generation of the error remain intact.

“ to the

Example: The following statement copies the entire contents of the disc located at msus *

electronic disc.

COPY "iDFEL Too "L ED"

Renaming Files

Any file, regardless of its type, can be given a new name using the FF i command:

EEHAME "old file specifier” T "new file name"”

The old file specifier must correspond to a currently-existing file specifier. When the command is executed, the
name of the file as listed in the file directory is changed. Thereafter, the file must be accessed using the new

name.

Example:

FEHAME "AGEZ.MYDISC" TO BIRTHOATE® Renames

All the files on a given storage medium must have unique names. Trying to rename a file to the same name as

an existing file causes a [1L1F (licate) HAME error.
Remember that the Y OILIUIME IS command is used to rename entire disc volumes.

Purging Files

The FIIFGE statement prevents further access to a file and removes the file name from the directory.

FURGE "“file specifier" [.]

The file specifier can correspond to an existing file of any type.

When a file is purged with no . & in the command, the file name is removed from the file directory, and HLil |

is substituted for the type of file in the T & column of the directory. The Hiili. file space is available for

future use, and will be used the first time you create another file of any type that fits into the available space.

When , & is appended to the file specifier, the specified file and all files after it on the storage medium are
purged. The directory does not create HIILL files; the directory will contain a listing for only those files up to

(and not including) the file specified in the FLIFZE command.

Section 15: File Manipulations 293

Exampb&'wadbwmgdhmnmmsﬁmwthemmﬂmofmngngaﬁh.TheMeDDDHUHBEHSiswpbwdby
a HULL file.

AT ot pYDIEC”

T o dolume 1 MYDISC

Tupe Butes Recs
FROG 2he =
CARTH =H 3
OOOHUIMEBERS FREOG 256 z
EVERMIL FROG 25 1
TESTS OHATH 2O 1
SERIAL FROG ZEE 4
FURGE "ODOHUIMEBERSZ MYDISOY
CHT " MyvDIsCH
T Yolume 10 MYDIZO
Ha Tupe Bt Fecs
SPEEDS FROG = A
ODATAL [ATH 3
HULL = =
FROG = 1
[ETH = 1
FROG = =3

Now, the last two files in the directory, TEZTZ and SERIFL, will be purged:

FURGE "TESTS . pYDISCY, 8
CAT " oMYLDIZC!

oW

dro MYRIRO

Ham Tups Fecs
SPEEDS FROG 3
ODARTHI ORTH 3

HITLL =
EVEMI FROG 1

Don’t purge files until you're certain you won’t be needing them! A purged file is irrecoverable.

Packing Files

The FRTY statement removes HIIL L files generated when files are purged.

* . volume label*

FHOE
[" imsus"

]

Note that both physical disc files and electronic disc tiles may be packed but that tape files may not.

294 Section 15: File Manipulations

Example:

FRCE " . MYyDIZCH
CAT " HYDISCY

L Yolume T MYDISC

Volume Tupe EBut Focs
SPEEDS FROG z 3
ODATAIL DATH : 2
EVEMI FROG 250G 1

The time required to pack a disc varies with the number and size of files on the disc and on the number, size,

and location of purged (M!L.1.) files on the disc. The operation may take several minutes.

Important: Take care not to interrupt a disc packing operation. Any interruption can leave the disc directory

and files in an indeterminate state and may cause the loss of all or part of the disc contents.

File Security

Files can be secured to prevent program files from being listed, duplicated, or overwritten, and to prevent data
files from being overwritten or copied. You can also remove a file name from the directory listing without

creating a MLIL L file; the file can still be accessed by anyone who knows its name.

Securing Files

The ZECLUREE command places various types of security on files.

mECURE “file specifier' . "security code" . security type

The file specifier must refer to an existing file of the proper type.

The security code is a quoted string or a string expression that becomes associated with the file for security
types 0 and 1. Only the first two characters of the security code string are actually used; uppercase and
lowercase letters can be used interchangeably. If the string has only one character, the second character is a

blank.

The security type is an integer from 0 through 3, and designates the type of security:

Security .
Type File Type Effect

0 FROG Protects file against L I =T, FLIZT, and editing operations. The file can be
loaded, run, and traced. The file name remains in the file directory.

1 FEOG, EFGHM | Same as type 0, but also protects the file against duplication. An attempt to
store the program in another file generates an error.

2 FEOG, EFGH | Prevents the file from being overwritten. Attempts to store or print# to the file

ORTH generate Erraor 2Z @ SECLRED. However, the file can be duplicated.

3 All types File name is removed from the directory. The file can still be accessed by anyone

knowing its name.

Section 15: File Manipulations 295

A security type greater than 3 is reduced MOD 4 to the range 0 through 3.

You can secure a file with more than one security type by executing more than one ZEZLIFE command for the

same file. However, a file cannot be secured for both types 0 and 1 security simultaneously.

Regardless of the type of security specified, a file can always be purged.

Examples:
SECURE Y"EVEHL . MYyDISCT, "HOLIST". B Establishes file security type 0. "HI" is
the security code.
SECURE "EUEHL . MYWDISCH, "STOREHOTY 2 Establishes file security type 2. The

security code is significant for types 0
and 1 only. (The file can be
LHSECURED with any security code.)

Type 3 security has the following effect on the file directory:

SECURE “SPEEDS MYDISCY,"DOMWNTLATT, 3
CRT " .MyYDIZCH

'olume 1 MYDISC
Tups
FROG
ORTH
FROG

[N RS O Tt

The name “FEEDE is removed from the file directory.

Removing File Security

The Li *F command cancels previously established file security.

fa
)

LHSECURE “file specifier” . “security code® . security type

The security type (0 through 3) must correspond to the security type previously established with a
command that you wish to cancel. For types 0 and 1 security, the security code must match the security code
established by the SELUFE command. Any two characters can be used for the security code for types 2 and 3

security.

Examples:

UHSECURE "EVEML . MYDISCU,"HO". 8 Removes previously established type 0
security. The security code matches the
SECURE command.

UHZECURE "SPEEDS MwWDRISCH, "ORY, 3 Restores the file name SFEES to the
file directory. The security code need not
match the ZEZLJEE command.

296 Section 15: File Maniputations

String Manipulation of BASIC Programs

The ZAYE and ZET commands enable you to store programs on mass storage as character & files (rather

and

than FEOG files) and to bring string data files into main memory as BASIC programs. You can use &

GET to transfer HP-85B programs to and from other computers, as in data communications applications.

The programmable ZH'E command has the form:

SHYE "file specifier" [, beginning line number [. ending line number]]

The file specifier may refer to a new or existing file on any mass storage medium. The messages
SAVE IH FROGHESS and DOME will indicate the start and end of the S 5L F
a [ATH file of 256-byte records.

operation. The result will be

When ZRVE is executed, the BASIC program in HP-85B main memory is saved in a data file in the form of
character strings, one string per program line. When no optional parameters are specified, the entire program is
saved. If a beginning line number is included, program lines from that number to the end are saved. If beginning
and ending line numbers are specified, that portion of the program is saved. = E may be used on a program

that references a binary program or plug-in ROMs, but the binary program or ROMs must be present during the

Programs stored in the form of data strings are retrieved using the nonprogrammable 3§ T command, which has

the form:

ET 'file specifier"

When a ET command is executed, the HP-85B accesses the specified data file, expecting to find a succession
of valid program lines in string form. The stored lines are read into main memory as program lines without

scratching program lines already there. If a retrieved program line has the same line number as a line already in

main memory, the retrieved program line overwrites the original line. If encounters a string it cannot

1% device

properly interpret as a Series 80 BASIC program line, the line is printed on the current !

and entered in main memory as a program remark (with the | symbol).

Although GET is designed to retrieve data files created by the SF'F command, data files originating in other

ways (for instance, created by another BASIC program) can be retrieved. The data files must consist of:

e Character strings of up to 96 characters.
* A carriage return character (CHR ¥ 13 1) as the last character of each string.
e A valid line number from 1 through #73% and one or more Series 80 BASIC statements in each string.

e A null string (" ") as the last item in the file.

The messages GET IHM FEOGRESZS and DOME will indicate the start and end of the & T operation. The

result will be an ordered sequence of lines in main memory, in the form of program statements and remarks.

297

Notes

L

Section 16

Storing and Retrieving Data

Introduction

The discussion of file types in section 13 pointed out that mass storage enables you to create and use five
different types of files, one of which is the It/ T # file. This section covers the five operations necessary to store
and retrieve data. Except when noted, the discussion applies to all mass storage media, including tapes, physical

discs, and the electronic disc:

Creating data files.

e Opening a previously created data file.

e Storing data (printing data to the file).

e Retrieving data (reading data from the file).

¢ Closing the data file.

There are two methods for accessing data files: serial access and random access. Serial access stores and re-
trieves data sequentially, and is useful when the complete data list is to be stored and retrieved as a unit.
Random access allows you to access portions of the data. Since data is accessed somewhat differently with serial

and random access, serial storing and retrieving is discussed separately from random storing and retrieving.

Files created in mass storage consist of one or more records. The size of the records can be varied to accom-
modate the storage requirements of the data. Before covering how to create data files of different sizes, we will

first discuss file structure and storage requirements.

File Records

When a data file is created in mass storage, the size of the file is set by specifying the number of records in the
file and the length of the records. A record is the smallest addressable location on a mass storage medium such
as a disc or tape. Record length is specified in bytes (such as 256 bytes per record), and all records in a particu-

lar file are the same length.

Two types of records are available: physical and logical. These two types make it possible to match the structure

of data to the file in which it is stored, thus using storage space most efficiently.

Physical Records—Physical records are always 256 bytes in length and are set up automatically when pro-
gram, graphics, or data files are created. All files begin at a new physical record. The 256-byte physical record is
the smallest addressable storage unit unless a different size addressable unit, called a logical record, is
established.

Logical Records—Logical records are specified for a file when an addressable unit of length other than 256
bytes is desired. The file will still begin at the start of a physical record; within the file, however, the divisions

between physical records are ignored and a logical record may straddle two or more physical records. When a

299

300 Section 16: Storing and Retrieving Data

data file is created without specifying logical records, the automatically-created physical records become logical

records.

The following diagrams illustrate two files consisting of logical records. The first file contains five records, each
100 bytes long. Note that the file utilizes two physical records and that there are 12 bytes of unusable space,

since any new file must begin at a new physical record. The divider between the two physical records is ignored.
logical records (in bytes)

100 100 100 100 100 12 unusable

e, et e, e e, ettt oo,

e

256 256 256 256 256

physical records (in bytes)

The next diagram illustrates a file consisting of two 500-byte logical records. The divisions between physical
records within the logical records are ignored; however, 24 bytes are not usable, since any new file must start at

a new physical record.

logical records (in bytes)

500 500 24 unusable
! i
! i
1]
1]
! !
256 256 256 256

physical records (in bytes)

Storage Requirements

File and record sizes should be specified with the space requirements of the data in mind. The following chart

describes the amount of space necessary to store numeric and string data.

Variable Type Space Requirements

Simple numeric | 8 bytes (regardless of FEAL, SHIRET, or IHT E precision).

Simple string 3 bytes + 1 byte per character + 3 bytes each time the string crosses into a new
logical record.

Numeric array Per array element: 8 bytes (regardless of #E AL, ¢

= precision).

Note that the requirements differ from the amount of storage in main memory. For example, a ¥ L. numeric

variable requires 10 bytes of main memory. Any number of any type requires eight bytes of mass storage.

You can use these space requirements to set up files to match your data. For instance, suppose you would like to
create a file for storing the last and first names, social security number, and salary of a dozen employees. You

would like each employee’s information in a separate record.

Section 16: Storing and Retrieving Data 301

item Type of Data Bytes
last name 12-character string 3+12 =15
first name 10-character string 3+ 10 =18
social security | 11-character string 3+ 11 =14
salary numeric (type FEHL) 8
50

A file can then be created consisting of twelve 50-byte records. When logical records are created, any otherwise
wasted space (in this case, 168 bytes) is also allocated into logical records if possible. The 168 bytes form an

additional three records added to the file automatically, with 18 unusable bytes.

12 records 3records unusable

o -

— v T

3 physical records

Creating Data Files
The

e g
L

“file specifier . number of records [. record length]

The number of records specifies how many logical records the file will contain, and must be an integer from 1
through 32,767. The record length is the number of bytes in each record, and must be an integer from 4 through
32,767. The default value for the record length is 256 bytes, the size of a physical record. The total number of
bytes, obtained by multiplying the number of records by the record length, must not exceed the storage capacity

of the mass storage medium. Remember that all records in a given file will be of the same length.

Example: The following statement creates a data file named £ Ml = for storing the identification and

salary information for the 12 employees, as discussed above.

L

CREATE “EMFPLOYEES . MYDISC®, 12,58

RN

Creates a data file with 12 logical records
of 50 bytes each. (Actually, 15 records
will be set up, as discussed in Storage
Requirements).

Since the information for each employee is stored in its own record, it can be accessed and updated separately
from the data for other employees. If you create this file on * . MY 1T 2" and then execute UH T, the file will
be listed.

302 Section 16: Storing and Retrieving Data

L Yolume 1 MYDISC
Hame Tups Eutes Feoos
EMFLOYEES ORTH SE 15

If it were preferable to always store and retrieve information for all employees at once, a file containing one

record could be set up.

Creates a file of one 600-byte record.

,_

fx]
o
ficx]

28 CREATE "EMPLOYEES MYDISCY, 1.6

Opening a Data File

Once a data file has been created, it must be opened before it can be accessed to store data. Opening a data file
assigns to it a buffer through which data flows from the computer to the disc and from the disc to the computer.

The A== IGH# statement is used to open a data file:

ASo IGH# buffer number T 'file specifier™

The file name must be the name of a previously created data file. The buffer number is a number that rounds to
an integer from 1 to 10. Once a buffer has been assigned to a file, that buffer remains assigned to the file until

the same buffer number is assigned to a different file, or until the file is closed.

Main 284-byte Mass Storage
- - :
Memory Buffer File

Mass Storage Buffers

A mass storage buffer is a 284-byte location in main memory that is allocated whenever a file is opened. The
purpose of the buffer is to decrease access time and to reduce wear of the mass storage medium by accumulating

data being transferred between the computer and a mass storage medium.

Data accumulated in a mass storage buffer is transferred to the disc whenever one of the following conditions
oceurs:

e The buffer is full. A buffer can hold 256 bytes of data.

¢ The buffer is reassigned to a different file.

. FHUSE, STOP, or EMD is executed.

¢ Program execution is interrupted.

o The file is closed.

e Another logical record is accessed using a random access REFLi# or FFEIHT# statement.

e A FPRIHT# statement is executed from the keyboard.

Section 16: Storing and Retrieving Data 303

Example:

56 ASSIGH#® 1 TO "EMPLOYEES . MYDISCE Opens EMFLOYEES file and assigns to
it buffer #1.

Up to 10 buffers may be in use at a given time.

Closing a Data File

When you've completed a data transfer to or from a file, you should close the file. The FZ% [LH# statement

accomplishes this:

ASSIGH# buffer number T ¥

The buffer number must agree with the buffer number assigned to the file when it was opened.
Example: To close EMFLIYEES previously opened in statement 50, above, execute:

2E8 ASSIGH# 1 TO #

[y}

When a buffer is closed, any data in it is transferred to the mass storage medium. If a program error causes a
halt while data is in the buffer en route to mass storage, all the data in the buffer will be printed to the file. The

file remains open and thus does not need to be reopened before program execution is continued.

If a mass storage error causes a halt during program execution, data in a buffer en route to mass storage is lost

unless the file is closed from the keyboard. When the file is closed, the data will be transferred to mass storage.

Serial Access

Serial access is used when a quantity of data is to be stored and retrieved sequentially, and updated as one unit.
The entire file itself becomes the smallest addressable unit of storage. This is true even if the file being accessed
consists of more than one logical record; in serial access, data is stored and retrieved without regard to record

divisions within the file.

Serial Printing

Data is stored into a file serially using the serial FRE I HT# statement, which has the form:

FRIMT# buffer number: print# list

The buffer number (1-10) must have been previously assigned to a data file. The print# list itemizes the data you
wish to store, and may include numbers, quoted text, numeric variables, string variables, numeric and string

expressions, and numeric array names. Items in the print# list are separated by commas.

The computer uses a pointer to locate and access data items. When a file is opened, the file pointer is placed at

the beginning of the file, and data serially printed to the file are stored starting at the beginning of the file. The

304 Section 16: Storing and Retrieving Data

pointer moves through the file sequentially as the print# list is stored. When the entire print# list has been
recorded, the pointer remains at the end of the recorded data, and an end-of-file marker indicates the position of
the last recorded data. Execution of a subsequent FE IHT# statement with the same buffer records the new
print# list at the end of recorded data and moves the end-of-file marker to the end of the newly recorded data.
The pointer will continue to move sequentially through the file until the pointer is moved to the beginning of a
specified logical record using a random FRIHT#/RERA# statement, or until the file is closed or reassigned

with an AZ= IGH# statement.
Examples: The following illustrations demonstrate movement of the file pointer during serial printing.
Opening the file:

ASEIGH# 1 TO "FILE.HYDISCM

logical records

Y N

A File pointer at the beginning of the data file.

Printing three items to the file:
FEINT# 1: R.B,C

end-of-file marker

A B |C

Printing three additional items to the file:
FEIHNT# 1: DO,E.F

end-of-file marker

A B|C D|E F

The movement of the file pointer and end-of-file marker influence the way in which serial files are updated. If,
after entering a long list of data items serially, the pointer is returned to the beginning of the file using a
random READ#/FPRINT# statement or an ASSIGH# statement, a new serial FEIMHT# statement will
record new data items over the old ones. However, an end-of-file marker is placed at the end of the new data

items. The result is that the entire old data list is lost.

Section 16: Storing and Retrieving Data 305

Example: The following program uses serial access to store check register data for the PDQ Music Company.
The company opens a new file each day, and records the company to which a check has been written as string

% and the amount of the check as numeric variable H.

® CREATE "HOUS , CHECKEZ®, 4 Creates file of four 256-byte records.
e | GH# 1 TO "HOWS, CHECES® Opens the file.
DIW CECz47

DISF "COMPAMY HAME, AMOUNT O
FooOoHECE"™;

IHFUT %A

IF A= THEH =Z4d

[Prints company name and amount of
check to the file serially.

. CEHOMARE® Tags a string to the end of the file.

» L To % Closes file.

When the program is run, it prompts for company name and amount of the check until zero is input as the
amount. If file capacity is exceeded before program execution ends, the computer returns an error announcing

an attempt to print at the end of the file.

COMFANY HAME. AMOUMT OF CHECET
du's Securitg, £3, 85

FAMY HAME,. AMOUNT OF CHECKE?
Bee's Pest Co., 28,00

AHY MAME, AMOUNT OF CHECE?

Tenkey - CFR, 45,22
SEHY MAME, ARMOUNT OF CHECE?
Frowugh said %l

sote: When a string serially printed to a file crosses from one record to another, an additional three
bytes are needed for the string header, which identifies the portion of the string contained in the new
record.

Reading Files Serially

Data that has been stored onto a mass storage medium must be retrieved, or read, back into main memory

before it can be used. Reading data from a file transfers a copy of the data through a buffer into main memory.

When data is retrieved serially, the entire file contents is accessed sequentially, ignoring any record divisions.

statement:

14 buffer number : read# list

The buffer number must match the number previously assigned to the file with an H L H# statement. The
read# list need not exactly match the print# list used to store the data. However, data items being read must

agree in type (string versus numeric) with the contents of the file.

306 Section 16: Storing and Retrieving Data

Example: Data printed to file by the statement:

FEINTH# 1: H.B,C#

can be retrieved by the statement:

FEAD® 1; Q.R.5%

During serial reading, the pointer moves through the file sequentially, much as with serial printing. At the

conclusion of the read# list, the pointer remains positioned after the last item read. An attempt to read data

when the pointer has encountered the end-of-file marker generates an error.

Example: If you used the preceding program to create a data file for a check register, you can use the following

program to read the file, print its contents, and sum the day’s check payments.

e 18 ASSIGH# 1 TO "HOWS,CHECKS®
2@ DI CECA40
e il Z=0@
e 4 READH 1 C#F
e T IF CE="EHDOMARE" THEH 188
e B RERD# 1 : A
VEOPREINT USIHG 126 ; Cf.8
2E S=D4f
e S0 CGOTO 4@
1688 ASSIGH# 1 TO #
118 FPREINT UWSIHG E
128 IHAGE ZF 5
1728 IMAGE = 126,50
LoD
146 EMD
Teddy's Security &
Frit ee'z Pezt o o
Bert Tenkeg - LCFA 4
TOaTAL = =1lz.8v

In the above program, the file pointer moves through the data file as both

Opens data file.

Initializes sum of day’s checks.
Retrieves company name.
Checks for the end of file.
Retrieves amount of check.

Branch to retrieve another company
name.

H1H statements are executed

repeatedly. If statement 50 were omitted, the FE H [# statement in line 60 would eventually encounter the end-

of-file marker, generating an error.

Note: Data read from mass storage initially is stored in a temporary memory iocation before being trans-

ferred to memory allocated to the variable. If you receive an unexpected memory overflow error while

attempting to read# a long string from a data file, you will need to break the string into substrings and

print# the substrings into logical records using random access. The substrings can then be read back

into main memory one at a time.

Random Access

Random access enables you to print to, read from, or update a portion of a data file by accessing individual

logical records. Since size is specified in the CTREATE statement and can be as small as four bytes, random

access allows you to update small portions of data without affecting the rest of the file.

Section 16: Storing and Retrieving Data 307

Random Printing

The random FF IHT# statement has the syntax:

FEIHTH# buffer number . record number [print# list]

The buffer number must match the buffer assigned to the file by an A% % I GH# statement. The record number
must be less than or equal to the total number of logical records in the file. The print# list contains all the items

to be printed to the record, separated by commas.
The random FF I+HT# statement operates somewhat differently from the serial PR IHT# statement:

o Because random printing accesses a particular record, the record number must be specified in the

statement.

e When a random FFRIHT# statement is executed, the file pointer moves to the beginning of the specified
record. The print# list is printed to the record and an end-of-record marker is placed after the last print#

item.

e In random printing, the contents of the file buffer is transferred to its destination each time another

record is accessed.

e Record divisions are not ignored in random access operations. The print# list must not exceed the storage
capacity of the logical record. Er ror &3 ¢ REAMDOM OVF or ERROR V2 RECORED indicates

that you are attempting to print too much data to the record.

¢ The file pointer is moved to the beginning of a random record by executing a random FE IHT# statement
without a print# list.

Example: The following illustrations demonstrate movement of the file pointer during random printing.

Opening the file:
ASSIGH# 1 T "FILE.MYDISCH

A file pointer
Printing data to record #3:
PRINT# 1.3: A.B

end-of-record-marker
1 2 3 '/ 4 5

A B

LTI

308 Section 16: Storing and Retrieving Data

Printing data to record #2:
FREIMTH# 1,2: ©

1 2 3 5
Moving file pointer to the beginning of record #5:
FEIMT# 1.5
1 2 3 5
A
file pointer

Example: The following program creates and accesses a 20-record data file for storing exam scores. Each of the

30-byte records can contain the name of a student and the student’s exam score. The string

numeric value & are entered into otherwise empty records.

e DISP "HAME OF HEW E=AM FILE®
26 ITHFUT E#
28 DISP "HUMBER OF STUDEHMTS™
48 IHFUT H
=8 CRERTE EF,.Z20, 306
B ASSIGH® 1 TO Ef
YEOFOR I=1 TO H
28 DIk "STUDEWHT #":I1:". SCORE®
THFUT Z%.G
FRINTH# 1.1 LG

HE=T 1

144
158

o 1o 5 1T
i OIizP "DOHE .
10E EHD

. and

Creates data file of 20 30-byte records.
Opens data file.

Prints data to record 1.

Fills otherwise empty records.

Closes data file.

The program requests the file name and number of students, creates the specified file, and then accepts student

data.

Section 16: Storing and Retrieving Data 309

HAME OF HEW E&SAM FILEST
CsElisEHEZ OVOL
HUMBER 0OF STUDEHWHTS®

STUDEHNT # 1 . SCORE?

BILL FOLD, 7B
STUDEHT # & , SCORET
GREEG GAROUS, €5
STUDEHT # 3 . SCORE?

CLARA EEHNT, 22

THRHE YO,
OOMHE .

Data is entered into the file as shown below.

I_
s
+#r
[}
in}
r

.. etc.

-~

30 bytes 30 bytes 30 bytes

Reading Files Randomly

Random access reading is accomplished with the random read statement:

i1 # buffer number . record number [: read# list]

The differences between the random read statement and serial read statement are analogous to the differences

between the two types of FEIHT# statements:

e The statement must include the record number you wish to access.
¢ The file pointer automatically moves to the beginning of the specified logical record.

e Logical record divisions are not ignored. An attempt to read past the end of a logical record generates
Tz o RECORD.

Evror

e The file pointer can be moved to the beginning of the record by executing the statement without a read#
list.

As with serial reading, the read# items must agree in data type (numeric versus string) with the stored data;
however, number precision need not agree. If a read# numeric variable has less precision than the print# vari-

able, the number is rounded when entered in the read# variable.

Example: The following program allows you to correct any previous entries to the student exam file and to add

additional entries to records containing = » &, The program requests the record number of the data you
wish to alter, displays the current contents of the record, and provides for replacing that data with the corrected

information.

310 Section 16: Storing and Retrieving Data

19 DISF "HAME 0OF FILE TO CORREC
T":
28 IMPUT E#
o B HAZSSIGH# 1 TO E#F Opens data file.
43 DISF
S8 DISF "RECORD TO BE CHARHGED":
E8 IHFUT R
F8 IF E=8 THEH 135@
e I READ# 1.FR : SF.06 Reads contents of specified record.
S8 OISR "STUDENT IS ";:s5s
18g DIsSP “"SCORE =":0G
118 DIsP “"HEW IMFO (HAWME,.SCORE:2®
128 ITHFUT S%,G Accepts new information.
128 PEIMTH# 1.R SE,G Overwrites existing information in the
148 COTO 43 record.
156 DISF & DISP "THAME You.,®
e 15E HASSIGH# 1 TO % Closes data file.
178 DISF “DoOHE ., ™
186 EMDO

We use the program to modify two records of the 0%z 11 -EXZ file created in the previous example.

HAME 0OF FILE T8 CORRECTY
CE2llrsExzD7al

FECORD TO BE CHAMGED?

STUDEMT I

S GREG GRRIOUS
SCOREE = &5
HEW IHFO (HAME,SCOREX Y
ECGRE GIOUS, 4%

FECORD TO EE CHAMGED?
4

STUDEHT I3
SCOREE = A
HEW IHFO CHAME,SCORE»?
FHYLLIZS E, 188

FECORD TO EE CHAMGED?
&

THAME 50U,
OOHE

Storing and Retrieving Arrays

Entire arrays can be stored and retrieved using an array addressing format with the serial or random FREIHT#
and REFRD# statements. The proper array addressing formats for one-dimensional and two-dimensional

numeric and string arrays are:

One-dimensional array—array name .
Two-dimensional array—array name « : or array name«. ,
t
The comma is optional, for

documentation purposes only.

Section 16: Storing and Retrieving Data 311

Examples:
FERD# 1: FREEGC: Reads one-dimensional array FFE
serially.
FRIMTHE 2,4 AMPEC, 3 Stores two-dimensional array AFF ¥ into

record 4 of specified file.

In the case of two-dimensional arrays, the array elements are retrieved item by item without regard to

dimensionality, with the second subscript varying more rapidly, that is, by rows.

Array elements of this 3 by 4 array are

A(1,1)——A(1,2) —A(1,3) —A(1 '4)1 accessed by rows

I7—>A(2,1 j}—»A(2,2) ——»A(2,3) —»A(2,4) j

L»A(3,1 }———»A(3,2) ——»A(3,3) ——»A(3.4)

Since array elements are stored on mass storage linearly, they may be retrieved with or without an array format,
and any combination of upper limits can be used that accesses the desired number of elements. For instance, a 3
by 4 array stored in a file assigned buffer #1 might be retrieved by any of the following sets of statements
(assuming OFTIOH BASE 1)

DIM Bogd, 3k OIM Boo, 22
READE 1: BC,2 RERDE 1 BO,:

If the array specified in the FERDI# statement has fewer elements than the stored array, only those elements
allowed by the REFRD# array will be retrieved.

Example: The following program creates a data file named F1IHT % and stores into it the array At I..13 in

which the integer part of the number equals the I value and the fractional part of the number equals the .

value.
J=1|Jd=2jJd=3[Jd=4]|J=5
I=1 1.1 1.2 1.3 14 1.5
1=2 21 22 23 2.4 25
1=3 31 3.2 3.3 3.4 3.5
| =4 41 42 4.3 44 45
18 OPTIOW BRSE 1
e Bt SHORT A4, G Dimensions 4 by 5 array of SHURET
I FOR I=1 TO 4 precision.
4@ FoR J=1 TO 5
2@ OACl,Jr=l+ds18
FE DISP ACI, Jn; Assigns values to array elements.
78 MEST
2@ DISF
2@ HEXT I
o 1WH CREATE "FPOIWTZ",ZB,8 Creates data file.
e 115 ASSIGH# 1 TO "POIMTE" Opens data file.
e 128 FRIMTH# 1 : Hu,Z Prints entire array to data file.
e 1736 AZSIGHH# 1 TO X Closes data file.
148 DISPE @ QISP "OOHE"
158 EMHD

312 Section 16: Storing and Retrieving Data

The following program retrieves all the elements of array A+ I . ./ and displays the value of the elements for
which I = ..

-
ux)

OFTICOH BASE 1

SHORT Aod, 53

HSZIGHE 1 TO "POIMTES®
FERDE 1 : ACH

FagR I=1 70 4

= 10
ML

MO 0T) T L e]) e
R R B)

B DISF ARCIDLTD

B OHEST I

B OAZSIGH# 1 TO %
B OEHD

RUN):

ind ol o

Lo
Joo] o

An undefined simple numeric variable, simple string variable, or numeric array element is printed to a file as &
or the null string (" "); a HLILL. DATH warning is generated during the F= I HT# operation. When a null data
item is accessed during a REFL# operation, the numeric or string REAI# variable will be set to zero or to the

null string. However, it’s best to avoid storing uninitialized data on mass storage.
When these conditions exist in a program:

e OFTIOM ERZE 1 has been specified, and
e A KERLD operation is performed on a numeric array (for example, EFEAD# 1 ; 84 3), and

¢ The number of array elements in the ['H TH file is greater than the dimensioned size of the array program

variable

-then the program itself may be altered. Make certain that you dimension array variables at least as large as

your array variables on mass storage.

Determining Data Types—The 7 i Function

The T%F function allows you to determine the data type of the next item in a data file. The function also

allows you to determine whether the file pointer is at the end of the record or at the end of the file.

TYF < buffer number:

|
The buffer number must correspond to the buffer assigned to the file being accessed. The T*%F function returns

an integer from 1 to 10 according to the following table.

Section 16: Storing and Retrieving Data

Type Value

Data Type

[{ole I - NVL N \V B

—_
o

Number

Full String
End-of-File
End-of-Record
Start of String
Middle of String
End of String

313

When you are using the T'F function, the pointer can be moved through the file in much the same way as it is

moved in serial and random printing and reading. One difference is that record divisions are not ignored when

the pointer is moved serially.

Examples: We will use the T F function to access data items in the file named FGE %, which is organized

into logical records as shown below:

»
(&)1
[o2]

Hank

Doy 25 FPlulzormings 18

Now, the following statements are executed from the keyboard:

Verification of Data

T
....1.; HE
R
LaEHE
REEILEY
1.3

"AGES . MYDISC"

Opens FAGES file.
Moves pointer to beginning of record 1.

Next item is a full string (Ei11).
Moves pointer past first item in record 1.

Next item is a number (:

Moves pointer past 2nd item in record 1.

Next item is the end of record 1.
Moves pointer past first item in record 3.

Next item is the end of record 3.

Moves pointer past first two items in record 4.

Next item is the start of a string (F 1 11).
Moves pointer to beginning of record 5.

Next item is the end of a string (=or mirdE).

Moves pointer to beginning of record 6.

Next item is the end of the data file.

The "HECE READ# statement is used to verify that data printed to a disc data file has been properly re-
corded onto the disc. When CHEDK FEERD# is activated, an immediate FEFD# operation is performed on

any data printed through the specified buffer. If the two lists do not match, indicating failure of the storage

medium (disc) itself, the computer returns Er+ ot

REEAD WFY (read verify).

314 Section 16: Storing and Retrieving Data

CHECE EEAD# buffer number

The CHECE FKERD# statement does not apply to tape cartridges; if a tape is specified, a [I I ST CHL'Y error

will occur.

CHECK RERD# errors are rare. If you encounter one, you may wish to compare your F= IHT# statement to
the contents of the data file. Then try re-executing the FE IHT# statement, since the failure which generated
the error may have been momentary. If you obtain another CHECFE FERD# error, it is likely that the disc has
failed.

CHECE FEERD# is turned off by the CHECE RERD OFF# statement:

CHECE REARD OFF# buffer number

Examples:
CHECE READ# 1 Verifies all data printed to buffer #1.
CHECE RERD OFF# 1 Turns off THELE REERD# for buffer

#1.

315

Notes

Section 17

The Electronic Disc

Introduction

The HP-85B electronic disc is a built-in mass storage device consisting of all random-access computer memory
in excess of 32K bytes. The electronic disc is designed for high-speed mass storage operations to and from main
memory, up to six times faster than flexible disc operations. If, for example, you ‘copy a number of BASIC

programs to the electronic disc, you can load and run any of the programs almost instantaneously.

With no memory modules installed in the HP-85B, the electronic disc provides 32K bytes of storage. Up to four
128K memory modules can be added to increase the storage capacity of the electronic disc to 544K bytes, the
equivalent of two 5%-inch or 3'-inch flexible discs. (Refer to appendix B for information regarding the installa-

tion of memory modules.)

Don’t confuse electronic disc storage (initially 32K bytes) with main memory storage (always 32K bytes). The
electronic disc provides secondary storage. Consequently, programs on the electronic disc must first be brought

into main memory before they can be executed and are limited in size by main memory.

From the programmer’s point of view, the electronic disc is identical to any other disc device. You use the same

commands from the keyboard and from BASIC programs to control both electronic and physical discs.

Unlike flexible discs and hard discs, the electronic disc provides storage only while the computer is switched on.

CAUTICN
Never end a session with the HP-85B by leaving important files on the electronic disc. When power to the
computer is switched off, the entire contents of the electronic disc is lost. Always maintain backup copies
of important files on permanent mass storage media.

Electronic Disc Commands and Functions

The following table summarizes HP-85B mass storage commands and functions as they apply to the electronic
disc. Complete descriptions of these commands and functions can be found in sections 13 through 16. Two
3 |'_':'.

11 and %4

additional commands used to control the electronic disc will be discussed in this section, ik F

At power on, the HP-85B establishes an empty directory on the electronic disc, with msus ™ D@si” and

volume label " . EDN".

317

318

Section 17: The Electronic Disc

Command or Function Description Prog*
MASE STORAGE 15, MSI Sets the electronic disc as the default mass storage device for v
the system.

MOLUME Iz Changes the volume name of the electronic disc. v
Mollsg, VOLF Returns msus of current FASZE STORAGE 1% device and v
volume label of specified msus.

CHT Displays file entries from the electronic disc. v

STORE, LOAD Stores and loads BASIC programs (type FROG) to and from
the electronic disc.

GETORE, GLORD Stores and retrieves graphics displays as extended files (type v
FEEE),

STOREERIH, LORDEIH Stores and loads binary programs (type £ F z1%) to and from v
the electronic disc.

CHATH Loads and runs BASIC programs from the electronic disc
while preserving [Z11{(mon) variable values and resident binary v
program, if any.

LRy Copies files to the electronic disc from another mass storage v
medium, or from the electronic disc to another medium.

FEHAME Renames individual files on the electronic disc. v

FURGE Purges unwanted files from the electronic disc. v

FRCK Closes up the gaps left by purged files (type FiiilL). v

LEERTE, ASSIGHE, FEIMT#, | Creates, opens, prints to, and reads from data files (type v

READH®, CHECK REERD#, T¥F | DATHA) on the electronic disc.

SECURE Secures electronic disc files against listing, editing, and v
access.

HHEECUREE Removes the security from electronic disc files.

SAME Saves BASIC programs as data files consisting of character v
strings.

GET Retrieves data files as BASIC programs.
Returns the amount of available storage on the electronic disc. v

Note that the IHITIALIZE command does not apply to the electronic disc and causes a OIS DHLY

error. The electronic disc is automatically initialized at power on.

File names for the electronic disc, as for physical discs, may consist of one to ten characters, excluding periods

(), commas (,), and double quotation marks (").

File specifiers for the electronic disc consist of the file name followed by the msus or volume label of the elec-

tronic disc, for example, "L inearFeg: DEGE" and " TwoMawAral (EDY.

* Programmabie.

Section 17: The Electronic Disc 319

Examples:
Msl " Dgag Sets the electronic disc as the
MASS STORAGE 1% device.
[N - Catalogs the files on the electronic disc.

COPY " T TO " DE

.,_
=
ooy
[

1
A

Copies all the files from the tape car-
tridge to the electronic disc.

DISC FREE A, E," . ED" Returns in variable A the total number
of unused records on the electronic disc,
and returns in B the largest number of
unused contiguous records.

UDLUME Y. ED" IS “SPEEDY® Renames the electronic disc
YORRFEEREDY .

Voo pEaat o Returns the volume name of the elec-
tronic disc.

FURGE "OldFile:d@gg” Purges 01 cF i le from the electronic
disc.

FRHCOE " Doaa” Packs the files on the electronic disc.

The electronic disc may not be write-protected.

Electronic disc errors are listed in appendix E. The EF R number of an electronic disc error will be either 0
or 209.

If you press the key, the MASE STORAGE 15 device will be reset to the physical disc drive with the
lowest msus or else to the tape drive (if no disc drive is connected and powered). However, resetting the system

will not disturb the contents of the electronic disc.

Configuring the Electronic Disc

The COHEIG command enables you to partition the electronic disc into two or more distinct disc volumes.

Although the storage capacity of the resulting volumes is the same as the original electronic disc, executing

For example, if your application involves chaining among program segments while collecting quantities of data,
then you can configure the electronic disc into two volumes, one for the program files and one for the data files.

At the end of the session, you can copy just the data files to a permanent storage medium.

The HP-85B requires at least 32K bytes of electronic disc memory for each electronic disc volume. Because the
initial size of the electronic disc is 32K, you must install one or more plug-in memory modules in order to take

advantage of the COMF IG command.

" imsus"

COMFIG ["new volume label" | old volume label"

[. directory size [. disc sizell]]

320 Section 17: The Electronic Disc

Example: Assuming that electronic disc memory is 160K bytes (with the installation of a 128K memory mod-

ule), configure the electronic disc into two volumes of sizes 64K and 96K.

COMFIG "FIRST®, ™. EDY, 4,64

In this example, COHF IG splits the electronic disc into two volumes. The first volume is 64K bytes, has a new
volume label of " . FIFEEZT", and inherits the msus of the original (" : IG5 #), The second volume is 96K

bytes (190K-64K), is named with six blanks, and has an msus one greater than the original (" : &g *).

Note: The CUIMF I= command can be applied only to an empty electronic disc volume, that is, to a
volume with no file entries in its directory. Otherwise, a D IREC TR error will occur and the config-
uration of the electronic disc will remain unchanged.

Section 17: The Electronic Disc 321

i Parameters

The parameters for the C{1#HF I 5 command are as follows:

new volume label
imsus®

" . old volume label"

directory size

disc size

Specifies the name of the first volume of the two resulting volumes. (The second volume
is named with six blanks.) May be a string variable or expression.

Specifies which electronic disc volume is to be configured. At power on, there is only
one electronic disc volume available (" : DREE" or " . ED"). May be a string variable
or expression. If COHF IG is applied to a non-electronic disc device, then an

EO OHLY error occurs.

Sets the directory size (in records) of the first volume of the two resulting volumes—
that is, the number of files that may be stored on that volume. Each record corresponds
to eight file entries. In the example, a directory size of 4 records allows 32 (4 X 8) files
to be stored on the volume. The directory itself occupies 1K bytes (4 X 256 bytes/
record) of storage on the volume. May be a numeric variable or expression that rounds
to a positive integer; otherwise, an IHVAL IO FAEMAM error will oceur.

Sets the size (in kilobytes) of the first volume of the two resulting volumes. In the
example, 64 as the disc size allocates 64K bytes to the specified volume. May be a
numeric variable or expression but must round to a multiple of 32 (32, 64, 96, 128, ...);
otherwise, an IHUALID FAREAM error will occur.

The second unnamed volume after the split inherits the amount of memory not used by the first volume. In the

example, this is 96K bytes (160K-64K). The msus of the second volume is one greater than the original msus. In

the example, the msus of the second volume is " :DE&E 1",

The directory size of the second volume is 1 record for every 16K bytes of storage on that volume. In the

example, the directory size of the second unnamed volume is 6 records (96K/16K), or 1536 bytes (6 x 256

bytes/record), large enough for 48 files (6 x 8 files/record).

Example: After the previous configuration, split the second volume (96K hytes) into two smaller volumes of
64K and 32K bytes. Name the 64K-byte volume “ . HEL " and allow it a directory size of 10 records (for 8 x

10, or 80 files).

COMFIG “HEW", " 0BQ1", 18,4

322 Section 17 The Electronic iisc

In this example, COHF I G splits the unnamed electronic disc volume " : [18£ 1" into two volumes. The first

created with a directory size of 10 records. The second volume is 32K bytes (96K-64K), is named with six

blanks, has an msus " :OEEZ " (one greater than the original), and has a directory size of 2 records (32K/
16K), or 512 bytes (2 x 256 bytes/record), large enough for 16 files (2 x 8 files/record).

Although the COHMF IG command is normally used with all four parameters, the default values for the param-

eters are as follows:

new volume label If not specified, results in six blanks as the name of the first volume.

rmsus " If not specified, causes the current MASZ ZTORAGE 15 device to be configured,
" . old volume label" which must be an electronic disc volume.

directory size If not specified, causes the resulting volumes to have a directory size of one 256-byte
record (to allow 8 file entries) for every 16K bytes of storage.

disc size If not specified, causes the resulting volume to use all of the available storage of the
original. In effect, causes no split to occur.

Remember that C0OHF 115 may be applied only to empty electronic disc volumes.

Examples:

COMFIG Renames the current MF:
STOREAGE IZ electronic disc volume
to six blanks. Directory size is 1 record/
16K bytes of storage.

COWMFIG "EDZ2® Renames the current
MAmz 27 = IZ electronic disc
volume to * . ', Directory size is 1
record/16K bytes of storage.

COMFIG "EDRZ", ":Dapa" Renames electronic disc volume
" DEEE" to " . EDE". Directory size
is 1 record/16K bytes of storage.

COMFIG "EDZ",":D@ea", 15 Renames electronic disc volume
T OEEET to "L EDEY. Directory size
is 15 records.

COMFIG "EQO4"," EDZ", 4,32 Configures " . EQZ" into two volumes.

The first is named " . Ei24 " has a
directory size of 4 records, and has total
size of 32K bytes. All four parameters
must be included to cause the split.

Other Considerations

Two records (or 512 bytes of memory) are required for each electronic disc volume in your system. This is in

addition to the number of records used for the electronic disc directory.

You can use the DI %12 FREE function to determine the amount of file storage provided by an electronic disc

volume. For example, if you've executed COMFIG * . DiscA®™, " :DE@aE", 4,

then the memory of

volume ", [li=cH" will be allocated as follows:

Storage for files (returned by I I 5 FREEE)= 122 records.
Memory for each electronic disc volume = 2 records.

4 records.

Directory size (for 4 x 8, or 32 files)

Total storage (32K bytes/(256 bytes/record)) = 128 records.

Section 17: The Electronic Disc 323

You can configure an electronic disc volume to a size larger than its current size if an empty, succeeding volume
(or volumes) exists to provide room for it to grow. For example, if volume " : DE@EE " is 32K bytes and volume
anEELY is 128K bytes, then COHFIG "BIGGER", " 0D@EE" ., 4, 54 causes volume " :[iEkid" to
grow to 64K bytes and volume " : DE& 1" to shrink accordingly to 96K bytes. Both volumes must be empty;

otherwise, a DIFECTIREY error will occur.

Sample Autostart Program

The following program shows the use of the COHFIG and COFY commands in a tape-based Autostart
program.
18 | Tape-hazed Auiost progyam
28 DISF "Loading proarams. Plea
Ze o walit. . "
o IH COMFIG “RPROGES".".ED".1,&24 Configures the electronic disc into two
volumes. The first is named
*FREOGSY and consists of 64K bytes.
40 FOR I=1 TO 5
=@ READ F#
aE COPY F: TO FHeY PROGSH Copies each of five tape files to
Ta MEST I electronic disc volume " . FREOGEY,
@ [DATA Progl,PreoaZ, Progi,FProgd
SFProal
o GG MILUME ":@al" IS "DARTA" Names second electronic disc volume
nOTETE
e 18E MAZE STORAGE IS ".DATA® Sets ¥ . OATH" as default mass storage
location.
118 BEEF 48,40 @ DISP @ DISP "FEe
gl
o 123 CHAIM “Progol. FPROGSM Chains to the first electronic disc
program.
136 EHD

At the conclusion of the last program (for example, F'r o3 5), the following statements can be included:

SAEE 1 Sawve DATH files on tape
2pif CLERR @ BEEF 48,48
GEze DISE Y"Pleasse inszert DATH ca

riridas, "
SEZE OISP "Press [COHTI when resa

d o, H
SEd4E PAUSE
a@sa DISF @ DISF "Tharnks, Sawing

DARTA FILES., .. "
o JEEHR COFY "L DATA" TO ":TE Copies entire contents of electronic disc
volume " . IFTH" to the tape.

QETE BEEF 48,48
SaeEe DIsPE @8 DISP "d-- Doneg —--2"
SQRIE EMD

324 Section 17: The Electronic Disc

Swapping Programs

The = lAF command enables you to store the currently executing program on the electronic disc while simulta-

neously chaining to another electronic disc program.

ZHAF "incoming file specifier' ., "new ED file name"

The new ED file name is the name that the currently executing program in main memory will acquire on the
electronic disc; it must be an unused file name. The incoming file specifier may reference any BASIC program on

the electronic disc.

Example:

Seia SHAP tIM DBt oty Stores the currently executing program
on electronic disc volume " : [IHH&Y as
0T while chaining to the IH program
from the same volume.

Note that no msus or volume label should be attached to the new ED file name. The outgoing BASIC program

will be stored on the same electronic disc volume as the incoming program.

As with the ZHH I M command:

SHAF can be applied only to BASIC files (type FE).
e SLAF preserves the value of TIf1(mon) variables for the use of the incoming program.

¢ ZHAF preserves any resident binary program in main memory.

ZHHAF begins execution of the incoming program at the lowest-numbered statement.
Unlike the ©HAIH command:

e ZLAF applies only to electronic disc files. Trying to swap a program from a physical disc medium will

result in an ED OHL Y error message.

e ZLAF stores the executing program on the electronic disc; ZHM I simply overwrites the program in

main memory.

e SLAF can be executed only from a running program and not from the keyboard.

Ll AF manages the incoming program and outgoing program so that only one copy of each is maintained in the
computer—either in main memory or on the electronic disc. When ZIAF is executed, the electronic disc space
previously occupied by the incoming program is given over to the outgoing program. Consequently, the size (in
records) of the outgoing program must be equal to or smaller than the size of the electronic disc program;

otherwise, a ZIZE MIZMATLH error will occur.

Note that it is not possible to swap binary programs or to swap subprograms created with the Advanced Pro-

gramming ROM.

325

Notes

Appendix A

Accessories

Standard Accessories

Your HP-85 comes equipped with one each of the following standard accessories:

Accessory Part Number
e HP-85 Owner’s Manual and Programming Guide 00085-90990
o HP-85 Pocket Guide 00085-90992
e Standard Pac, including: 00085-13119

Instruction Manual 00085-90003
Preprogrammed Tape Cartridge 00085-12099

e Registration Card

e Service Card

o Accessory Data Sheet

e Users’ Library Form

* Roll of Thermal Printer Paper
¢ Power Cord

e Fuses and Fuse Cap Holders
750 milliamperes fuse (for 115 Vac-nominal line voltage) and U.S. style fuse cap holder

T400 milliamperes fuse (for 230 Vac-nominal line voltage) and European style fuse cap holder

e Three-Ring Binder and Dividers

Optional Accessories

In addition to the standard accessories shipped with your HP-85, Hewlett-Packard also makes available the
following optional accessories. These have been created to help you maximize the usability and convenience of

your personal computer.

HP-85 Applications Pacs

Each pac offers one or more BASIC programs in a particular field or discipline prerecorded on a tape cartridge
and flexible disc. Each pac comes complete with a detailed instruction manual and handy pac binder that carries

up to four cartridges and discs and the instruction manual.

327

328

Appendix A: Accessories

HP-85B Plug-In Memory Modules

HP 82908A 64K Memory Module

Each 64K memory module adds 65,536 bytes of random-access memory to the storage capacity of the
HP-85B electronic disc.

HP 82909A 128K Memory Module

Each 128K memory module adds 131,072 bytes of random-access memory to the electronic disc.

Up to four memory modules of either type may be installed in the HP-85B.

Do not attempt to install or use an HP 82903A 16K memory module in your HP-85B. The 16K memory
module is intended for the HP-85A and may cause physical damage to the circuits of the HP-85B.

CAUTION

Series 80 Interfaces

HP 82937A HP-IB Interface

The HP-IB is an easy-to-use hardware and software interface system that permits bidirectional, asyn-
chronous communication among a wide variety of peripherals, including external disc drives, printers,
plotters, and instruments. It implements the IEEE 488-1978 Standard Digital Interface for Programmable
Instrumentation and allows the HP-85 to communicate with as many as 14 HP-IB devices per interface,

with a total of up to 20 meters of cable.

HP 82939A Serial Interface

The serial interface is the RS-232C compatible interface for the HP-85. It provides bit-serial asyn-
chronous data communication and is a common means of communicating with a printer or with other
microcomputers and mainframes. With the I/O ROM and data communications software, the serial inter-

face enables data transfer at speeds of up to 9600 baud.

HP 82938A HP-IL Interface

The HP-IL interface is a bit-serial, low power interface that enables communication with up to 30 devices
connected in series on a two-wire Hewlett-Packard Interface Loop, including printers, video interfaces,
instruments, and HP-41C and HP-75C computers.

HP 82940A GPIO Interface

The GPIO interface is a general purpose byte (8-bit) or word (16-bit) oriented interface. The parallel
interface is commonly used with printers, paper tape readers, paper tape punches, card readers, and spe-

cial instrumentation.

HP 82941A BCD Interface

The BCD interface supports interfacing with binary-coded instrumentation, including voltmeters,

multimeters, medical equipment, and weighing systems.

Appendix A: Accessories 329

. HP 82949A Printer Interface

The parallel interface enables the HP-85 to drive printers requiring a standard parallel Centronics-type

interface. It is an output-only interface that ends with a standard Amphenol-type, 36-pin connector.

. HP 82966A Data Link Interface

The data link interface enables the HP-85 to function in DSN/DL multidrop data communication net-
works hosted by HP 1000 or HP 3000 Computers. The interface implements I/0 ROM functions and han-
dles Data Link protocol. {The HP 3074A Data Link Adapter is required to make the electrical connection
to the link.)

Series 80 Modem

The plug-in HP 82950A Modem is a serial, asynchronous, full-duplex modem that enables the HP-85 to connect
directly to a standard telephone line. The modem is compatible with Bell 103/113 modems and operates at
speeds of 100 up to 300 baud.

HP-85 Enhancement ROMs

Enhancement ROMs (read-only memories) are used to integrate peripherals into an extended HP-85 system
and to enhance the capabilities of HP-85 as a computing tool. Each ROM adds approximately 8K bytes of
permanent memory to the HP-85 BASIC operation system.

. The HP 82936A ROM Drawer

One ROM drawer is used to hold up to six ROMs and fits any of the four computer ports.

e Plotter/Printer ROM (00085-15002)

The Plotter/Printer ROM enables you to interface your HP-85 with Hewlett-Packard high-resolution
graphics plotters and full-width line printers. It also adds several graphics enhancements to the standard

HP-85 screen graphics. (Requires 373 bytes of main memory.)

e 1/0 ROM (00085-15003)

The I/0 ROM provides all the statements and functions necessary to access the features of each of the
Series 80 interfaces. It is particularly useful for instrument control and data communications applications.

(Requires 416 bytes of main memory.)

e Matrix ROM (00085-15004)

The Matrix ROM provides a powerful set of statements and functions for working with numeric arrays—
both matrices (two-dimensional arrays) and vectors (one-dimensional arrays). (Requires 69 bytes of main

memory.)

e Advanced Programming ROM (00085-15005)

The Advanced Programming ROM adds a variety of capabilities to the HP-85, including string arrays,
subprograms, alpha cursor control, keyboard control, time functions, program flags, and program editing

aids. (Requires 91 bytes of main memory.)

330

Appendix A: Accessories

Assembler ROM (00085-15007)

The Assembler ROM enables you to write assembly language programs for the HP-85. Assembly language
programs are assembled into binary programs which may be accessed from mass storage or made a perma-
nent part of your system with PROMs and EPROMs. The Assembler ROM allows you to create new
BASIC keywords, to redefine existing keywords, to expand I/O control, and even to take control of the
HP-85 operating system. Note that some familiarity with assembly language programming is required.

(Requires 124 bytes of main memory.)

Other HP-85 Modules

HP 82967A Speech Synthesis Module

The speech synthesis module enables the HP-85, with a minimum amount of additional equipment, to
output speech. The module’s linear predictive coding (LPC) technique generates high quality speech at
moderately low data transfer rates. The module is capable of speech generation, but does not provide voice

recognition.

HP 82928A System Monitor

The system monitor enables you to set break points in assembly language programs, to examine and
modify the contents of main memory, and to single-step through assembly language programs. It is useful

as a tool for debugging binary programs.

HP 82929A Programmable ROM Drawer

The programmable ROM drawer contains two sockets that accommodate one or two PROMs or EPROMs
for permanently storing assembled binary (and optionally, BASIC) programs. The Assembler ROM, sys-
tem monitor, ROM drawer, and documentation provide you with a complete assembly language software

development package.

HP 82929A, option 001 Hybrid BASIC ROM Development System

The hybrid BASIC ROM development system provides the BASIC program, binary programs, and docu-
mentation necessary to produce hybrid ROMs. A hybrid ROM is a PROM or EPROM in an HP 82929A
Programmable ROM Drawer that can permanently store both binary and BASIC programs.

Series 80 Peripherals

Contact your local sales and service representative or Hewlett-Packard directly for information regarding HP-85

compatible printers, plotters, disc drives, and instruments.

Appendix A: Accessories 331

HP-85 Supplies

HP-85 Carrying Case (HP 82933A)

With its stylish, leather-like exterior, made of durable, easy-to-clean vinyl, the lightweight HP-85 carrying case
provides you with a convenient means of transporting your computer safely. Inside the case, molded foam liners
conform exactly to the contours of the HP-85, providing maximum shock absorption. Designed to carry the
computer, enhancement plug-in modules, and power cord, the carrying case also has an exterior-accessible
pouch that will hold two instruction manuals, a roll of paper, and several tape cartridges. The case is secured
with a three-sided zipper and is fitted with a double-web handle with keeper, providing a suitcase-type grip.

Dimensions:

923 centimeters (9 inches) thick
48 centimeters (19 inches) wide
56 centimeters (22 inches) high

Blank Tape Cartridges (HP 98200A)

Hewlett-Packard blank tape cartridges are available in packages of five each.

Tape Cartridge Binder (HP 82932A)

The tape cartridge binder provides you with a convenient way to both store and transport your HP-85 tape
cartridges and one instruction book. Available in vinyl, the case measures 29 cm (11.5 in) high, 28 c¢m (11 in)

wide, and 5 cm (2 in) deep, and has space for four Hewlett-Packard tape cartridges.

Thermal Printer Paper (HP 82931A)

Each pack gives you two rolls of special HP-85 thermal printer paper. Roll length: 120 meters (400 feet).

Three-Ring Manual Binder and Dividers (HP 82935A)

Additional HP-85 manual binders are available, enabling you and members of your staff to organize your HP-85
system user’s manuals conveniently. The binder, measuring 29 cm (11.5 in) high, 28 cm (11 in) long, and 6.5 cm

(2.5 in) wide, includes sheet lifters and a set of dividers.

332 Appendix A: Accessories

Ordering Accessories

Contact your local authorized HP Series 80 dealer or your nearest sales and service facility for further informa-

tion on ordering and purchasing accessory items. If you are unable to locate your local dealer, you can obtain

that information by contacting:

In the United States:

In Europe:

Other countries:

Hewlett-Packard

Portable Computer Division
1000 N.E. Circle Blvd.
Corvallis, OR 97330

Toll-free number (8 a.m. to 4 p.m., Pacific Time)
Call (800) 547-3400 (except Oregon, Alaska, and Hawaii)

Oregon, Alaska, Hawaii: Tel. (503) 758-1010

TTY users with hearing or speech

impairments, please dial (503) 758-5566

Hewlett-Packard S.A.
7, rue du Bois-du-Lan
P. 0. Box

CH-1217 Meyrin 2
Geneva

Switzerland

Hewlett-Packard Intercontinental
3495 Deer Creek Rd.

Palo Alto, California 94304
US.A.

Tel. (415) 857-1501

333

Notes

Appendix B

Installation, Maintenance, and Service

The following information covers the initial set-up of your HP-85 Personal Computer and includes other information

that is important when you first receive the computer.

Note: Become thoroughly familiar with the information in this appendix before attempting to operate your
HP-85.

Inspection Procedure

Your HP-85 is another example of the award-winning design, superior quality, and attention to detail in engineering
and construction that have marked Hewlett-Packard electronic instruments for more than 30 years. Each Hewlett-
Packard computer is precision crafted by people who are dedicated to giving you the best possible product at an

affordable price.

Your HP-85 computer was thoroughly inspected before shipping and should be ready to operate after completing
the set-up instructions. Carefully check the computer for any physical damage sustained during shipment. Do not
turn the power on if the CRT display shows any cracks. Notify your dealer and file a claim with any carriers involved

if there is any such damage.

Please check to ensure that you have received all of the standard accessories included with the HP-85. Review the

list of standard accessories in appendix A. If any accessory items are missing, please contact the dealer from whom
you purchased the computer. If your computer was purchased directly from Hewlett-Packard, please contact the

office through which your order was placed.

Power Supply Information

Power Cords

Power cords supplied by HP have polarities matched to the power-input socket on the machine, as shown below.

e L=Line or Active Conductor (also called ‘‘live’” or ‘‘hot’’)
e N=Neutral or Identified Conductor

e E=Earth ground

WARNING
Use only the HP-85 power cord specified by Hewlett-Packard for your area.
If it is necessary to replace the power cord, the replacement cord must have the same polarity as the original.

Otherwise a safety hazard from electrical shock to personnel might exist. In addition, the equipment could be
extensively damaged.

335

336 Appendix B: Installation, Maintenance, and Service

Power cords with different plugs are available for the HP-85; the part number of each cord is shown below. Each
plug has a ground connector. The cord packaged with the machine depends upon where the machine was
delivered. If your equipment has the wrong power cord for your area, please contact your local authorized HP-85

dealer or HP sales and service office for information on how to obtain the proper cord.

U.K.
8120-1351

Australia Europe grounded
8120-1369 % 8120-1689

D
U.S. grounded* ensr:‘:(r)kzgse _
8120-1378 Q \ Switzerland

8120-2104

\ E Computer
N Power-Input
L L N Socket

Grounding Requirements

To protect operating personnel, the National Electrical Manufactures’ Association (NEMA) recommends that all
equipment not double insulated be properly grounded. The HP-85 is equipped with a three-conductor power cable
which, when connected to an appropriate power receptacle, grounds the machine. To preserve this protection

feature, do not operate the machine from a power outlet which has no earth ground connection.

WARNING

To avoid the possibility of any injury, disconnect the ac power cord before installing or replacing a fuse.

Power Requirements

The HP-85 has the following power requirements:

Line Voltage

115 Vac Nominal 100/ 117 Vac

230 Vac Nominal 220/240 Vac
Line Frequency 50/60 Hz
Power Consumption 40 Watts Nominal

Fuses

For 100/ 117 Vac operation, set the voltage selector switch to 115V and use a 750m A fuse; for 220/240 Vac

operation, set the voltage selector switch to 230V and use a T400mA fuse.

* UL and CSA approved for use in the U.S. and Canada with machines set for 115 Vac operation.

Appendix B: Installation, Maintenance, and Service 337

Service

WARNING

High voltages are present inside the HP-85. There are no customer serviceable parts inside the HP-85. In
case of any difficulty or malfunction with your HP-85 contact your nearest authorized HP-85 dealer or HP

repair facility.

For specific warranty and service information, refer to pages 355 through 359.

Rear Panel

Understanding the rear panel layout and features of your HP-85 computer is important for safe and efficient opera-

tion. The rear panel contains the following:

1. Line Voltage Selector Switch. 6. Display Brightness Control.

2. Fuse Receptacle. 7. Module Plug-in Ports with Covers.

3. Ground Information. 8. Worldwide Saftey Approval
Nomenclature.

4. Power Cord Receptacle.

5. ON-OFF Switch. 9. Serial Number Plate.

IR R RN

7

Initial Set-up Instructions
1. Disconnect the power cord and make sure the ON/OFF switch is OFF.

2. Ensure that the voltage selector switch located on the rear panel of the computer is set for the voltage range of

the nominal line voltage in your area.

CAUTION

Check the selector switch before applying power. Damage to the computer will occur if the selector switch is
set to 115 volts ac, and 230 volts ac is applied to the power input connector.

338 Appendix B: Installation, Maintenance, and Service

If it is necessary to alter the setting of the switch, insert the tip of a small screwdriver or coin into the slot on the
switch. Slide the switch so that the position of the slot corresponds to the desired voltage as shown below. The

computer is shipped with the voltage selector in the 230 Vac position.

~ LINE
VOLTAGE

~ LINE

VOLTAGE

WARNING

Before installing or replacing a fuse, be sure that the computer is disconnected from any ac power source.
Otherwise, a chance of electrical shock to personnel exists and the new fuse might be immediately

overloaded.

3. Next install the proper fuse.

The computer’s fuse receptacle is located on the rear panel. (See photograph below.) A 750 mA fuse is

required for 115 Vac operation and a T400 mA fuse is required for Vac operation.

£ 750mA /115, ¥ Z3-T400mA /230V
REMPLACER PAR REPLACE WITH
UN FUSIBLE DE SAME RATING/

MEME TYPE TYPE FUSE ONLY

MADE IN U.S.A.

The photograph shows the location of the fuse receptacle on the rear panel. To install or replace the fuse, first
disconnect the power cord from the machine. Install or replace the proper fuse in the fuse cap holder (either
end of the fuse can be inserted into the cap). Now, install the fuse and fuse cap into the fuse receptacle by press-
ing the cap inward and at the same time turning it clockwise until it locks in place.

4. Now, connect the power cord to the power input receptacle on the back of the computer. Plug the other end
of the cord into the ac power outlet.

5. Switch the HP-85 on using the switch on the upper left side of the rear panel. A cursor (underscore)

should appear in the upper left corner of the CRT display within 7 to 8 seconds. Each time the power is

turned on, the system performs a self-test operation. When the cursor appears on the screen, the HP-85 is

ready to go to work.

Appendix B: Installation, Maintenance, and Service 339

The brightness of the display can be adjusted using the Brightness knob on the lower right side of the rear panel.

" appear on the display, turn the
machine off, then on again. Should the problem persist, contact your local authorized HP-85 dealer or HP sales

and service office.

Installing Plug-In Modules

Your HP-85 is designed with four module ports on the rear panel. The ports are numbered 1 through 4 from the top.
Before shipping from the factory, each port is fitted with a removable protective cover. It is recommended that each

port be kept covered when not in use.

First we will discuss general module installation and removal, then we will discuss the installation of plug-in ROMs

into a special ROM drawer module.

WARNING

Do not place fingers, tools, or other foreign objects into the plug-in ports. Such actions may result in minor
electrical shock hazard and interference with pacemaker devices worn by some persons. Damage to plug-
in port contacts and the computer’s internal circuitry may also result.

General Module Installation and Removal

The HP-85 plug-in modules may be installed or removed as often as your needs require. To install modules, observe

the following procedures.

1. Read all documentation accompanying each module for user instructions, warnings, and any limitations.

CAUTION
Always switch off the machine and any peripherals involved when inserting or removing modules. Use
only the plug-in modules designed by Hewlett-Packard specifically for the HP-85B. Failure to do so either
could damage equipement.

2. Tumn off your HP-85 system. If an interface module is to be installed, or is already in use, switch off any

peripheral devices involved.

CAUTION

if a module jams when inserted into a port, it may be upside down or designed for another port. Attempting
to force it further may result in damage to the computer or the module.

340 Appendix B: Installation, Maintenance, and Service

To insert a plug-in module:

1. Remove the protective cover from the plug-in port to be used.

Note: Most plug-in modules can be inserted in any of the four ports. However, examine the documentation
included with each module for any instructions regarding the use of a specific plug-in port. If it is intended that

a module fit into a particular port, it can be inserted only in that port.
5

2. With the label right-side-up, insert the contact end of the
module into the port and push until the module seats firmly
with its stops against the port’s edge. A slight up and down
motion may be necessary to start the module moving in the
tracks of the port. The tracks are keyed to prevent upside-

down module insertion.

To remove a plug-in module, observe the following procedure:

1. Switch off your HP-85 system and any connected
peripherals.
2. Firmly grasp and pull the module free of the port. Store the

module in its original container or where it will be safe from

damage to the contacts.

Appendix B: Installation, Maintenance, and Service 341

3. Replace the port cover.

CAUTION
Up to four different modules can be installed in the HP-85 at any time, including one or more 64K or 128K
memory modules. However, do not install any of the following in the HP-85B:

e HP 82903A 16K Memory Module. The 16K memory module is designed for the HP-85A and may
damage HP-85B circuits.

e Mass Storage ROM (00085-15001). The Mass Storage ROM is designed for the HP-85A and will
cause the HP-85B to malfunction.

¢ Duplicate HP-85 ROMSs. For example, if your HP-85B comes equipped with a built-in /O ROM, then
do not install an /O ROM in a ROM drawer. Such duplication can create error conditions and will
not increase computing power.

e Any ROM or module designed for the HP-86 or HP-87, such as the Plotter ROM for the HP-86/87
or the HP 82900A Auxiliary Processor Module. HP-86/87 ROMs are indicated by an 00087-1500X
part number and by orange lettering (rather than yellow lettering) on the ROM cover. Such action
will not damage the HP-85 but will cause the computer to malfunction.

Plug-In ROM Installation and Removal

The ROM drawer is a particular plug-in module that contains six rectangular slots for individual plug-in ROMs,

each fitted with its own protective cap.

Any HP-85 plug-in ROM will fit in any of the six positions in the ROM drawer. Be sure to read all documentation
- accompanying each plug-in ROM for user instructions, warnings, and any limitations. Remember that duplicate

ROMs will not increase your computing power and may even create error conditions.

342 Appendix B: installation, Maintenance, and Service

To insert a plug-in ROM into the ROM drawer:

1. Remove the protective cap from the desired plug-in slot in the ROM drawer as follows:

e Insert the eraser end of a pencil into the circular hole on the
underside of ROM drawer.

o Press with the pencil until the cap snaps off.

CAUTION

Do not touch the spring-finger connectors in the ROM drawer with your fingers or insert tools or other foreign
objects. Static discharge could damage electrical components.

2. Inside each plug-in slot in the ROM drawer you can see two
rows of spring-finger connectors. These connectors corres-
pond to the two rows of holes on the underside of the ROM
plug. ROMs can be inserted in only one direction. Insert the
ROM plug into the slot with its label up and its beveled edge
toward the connector side of the ROM drawer. Push the
ROM into place so that the top of the plug is flush with the top
of the ROM drawer.

Note: Leave the cap on any slot in the ROM drawer that is not in use.

3. When all of the desired plug-in ROMs have been inserted into the ROM drawer, the module may be installed
into a plug-in port on the rear panel of the HP-85 as described under General Module Installation and

Removal.

Appendix B: Installation, Maintenance, and Service 343

To remove a plug-in ROM from the ROM drawer:

1. First remove the ROM drawer as described under General Module Installation and Removal.

2. Insert the eraser end of a pencil into the hole on the underside
of the ROM drawer corresponding to the ROM you wish to
remove, just as you did to remove the protective cap. Push

gently with the pencil until the ROM pops out.

3. Replace the protective cap over the slot in the ROM drawer.

The HP-85 Printer

The printer in your HP-85 is a thermal printer that uses a moving print head to print on a special heat-sensitive paper.
When the print head is energized, it heats the paper beneath it. The heat causes a chemical reaction in the paper,
which then changes color. The printer, designed expressly for the HP-85, prints quickly and quietly at 2.6 lines

per centimeter (6.7 lines per inch) at about two lines per second.

Graphics output is uni-directional and, therefore, approximately half the normal print speed.

344 Appendix B: Installation, Maintenance, and Service

Printer Paper

Because the printer in your HP-85 is a thermal printer, it requires special heat-sensitive paper. You should use
only the Hewlett-Packard thermal paper available in 400-foot long rolls from your nearest authorized HP-85

dealer or HP sales and service center, or in the U.S., by mail from:

Hewlett-Packard
Portable Computer Division
1000 N.E. Circle Blvd.
Corvallis, Oregon 97330

Because of the special heat-sensitive requirements of the paper, impact printer paper will not work in the
HP-85. Also, since different types of thermal paper vary in their sensitivities and abrasiveness, the use of ther-
mal paper other than that available from Hewlett-Packard may result in poor print quality and excessive

printhead wear.

CAUTION

Use only Hewlett-Packard paper in your HP-85 computer. Failure to do so may result in excessive print head
wear.

The heat-sensitive paper used in your HP-85 should be stored in a cool, dark place. Discoloration of paper may occur
if it is exposed to direct sunlight for long periods of time, if storage temperatures rise above 65°C (149°F), if the
paper is exposed to excessive humidity or to acetone, ammonia, alcohols, or other organic compounds, or if you

attempt to erase anything on the paper. (Exposure to gasoline or oil fumes will not harm your HP-85 paper supply.)

Printed paper from your HP-85 will last 30 days or more without fading under fluorescent light, but to ensure the
permanence of your records, you should store printed paper at room temperature in a dark place away from direct
sunlight, heat, or fumes from organic compounds.

Loading Printer Paper

Printed paper is loaded by using the following procedure. To perform the following steps, the computer must be
switched ON.

1. Open the hinged access cover by gently lifting the front
edge of the cover up and back until it stops.

Appendix B: Installation, Maintenance, and Service 345

2. Remove the empty paper core with the roll guides from the
paper well by pulling gently until the roll guides are released
from their sockets. Discard the old paper core but save the
roll guides at either end of the paper core. Remove any paper
remaining from the previous roll by pressing the key
until the remaining paper stops moving. Then lift the paper
out of the printer mechanism.

3. Discard the first 1-1/2 turns of the new roll to insure that no
glue, tape, or other foreign matter is on the paper. Make
sure that the leading edge of the paper is straight and cleanly
cut or folded. A crooked or jagged leading edge will not en-

gage properly in the paper advance rollers.

4. Insert the cylindrical ends of the roll guides into the core of
the paper roll, aligning the tabs of the roll guides vertically.
Using both hands to hold the roll guides in place, rest the
paper roll on the paper well. Make sure that the leading edge
of the paper is positioned to unroll forward from the bottom.
Press inward on the roll guide tabs while pushing down on the
paper roll, until the guides snap into place.

5. Pull approximately 6 inches of paper out of the roll and
evenly insert the leading edge over and into the grey throat
of the paper feed. Continue manually feeding the paper until
it halts. Press and hold the paper advance key until the
leading edge of the paper passes the top edge of the clear
plastic tear bar. Close the hinged access cover, keeping the

paper clear.

346 Appendix B: Installation, Maintenance, and Service

If the paper feeds properly through the printer mechanism but no printing appears on the tape when the printer is
operated, the paper roll is probably inserted backwards. The paper is chemically treated and will print on one side
only.

Printer Maintenance

The printer in your HP-85, like the rest of the computer, is crafted for engineering excellence and is designed to
give trouble-free operation with a minimum of maintenance. All moving parts in the printer mechanism have self-
lubricating qualities. No lubrication, cleaning, or servicing of the mechanism is ever required. Setting the printer
intensity dial to 5 or more for long periods of time may affect the long-term performance of the printhead. You can
extend the life of the printer by setting the printer intensity dial to 4 or less.

CAUTION

You should never attempt to insert a tool, such as a screwdriver, knifeblade, pencil, or other foreign object
into the printer or its mechanism. Such actions can damage the platen, as well as other parts of the printer

mechanism and will void your warranty.

If the printer paper should become jammed and fail to feed properly, first tear the jammed paper loose from the
rest of the roll, then clear it by grasping the leading edge of the paper and pulling it forward through the printer
mechanism while holding down the key. Discard any lengths of paper damaged by tears or creases. Then reload

as described above.

If the printer paper should become jammed with the leading edge
below the tear bar, remove the clear plastic tear bar to reach the
leading edge. Tear the jammed paper loose from the rest of the roll

and pull it forward through the printer mechanism.

Before you replace the tear bar, reload the paper. Hold the paper
back against the platen to ensure that the platen face will be
properly located behind the tear bar. Then slide the tear bar back

into place.

Appendix B: Installation, Maintenance, and Service 347

After every few months, if you notice a decrease in the resolution of thermal printer output, you can clean the

printhead according to the following instructions:

1. Set the printer intensity dial to 7, the darkest setting.

9. From the keyboard, type FEH -1 & GCLERR (E), which will switch the HP-85 to graphics mode

and turn on all the pixels (picture elements) of the display screen.

3. Press to copy the display to the thermal printer.

4. Return the printer intensity dial to its previous setting.

The process of copying the all-white display to the thermal printer at high intensity causes the heating elements
of the printhead to be exercised and cleaned. You may find that the printer prints more crisply in subsequent

use.

Tape Cartridges

The tape cartridges used with the HP-85 computer are high-quality digital storage media. This section covers

use, specifications, and care of tape cartridges.

Rewinding the Tape

The key or i

rewind the tape.

i statement rewinds the tape to its beginning. Press or type ¥

348 Appendix B: Installation, Maintenance, and Service

General Information

Rewind time
Initialization time
Search speed
Read/write speed
Tape length

Number of tracks
Typical tape capacity

Tape directory capacity

Typical access rate (search speed)
Typical transfer rate

Typical tape life (continuous use)

Typical error rate*

Inserting a Tape Cartridge

29 seconds

15 seconds

60 inches per second

10 inches per second

43 meters (140 feet)

2 independent tracks

780 program records (195K bytes)
850 data records (210K bytes)
42 files (directory entries)
7,800 bytes/second

650 bytes/second

50 to 100 hours

<1 in 10® bits (that’s less than one in every 100 million!)

Insert the tape cartridge so that its label is up and the open edge is toward the computer,

The tape drive door opens when the cartridge is pressed against it; the cartridge can then be inserted.

* This is dependent on the cleanliness of the tape head, tape care, and the cleanliness of the environment.

Appendix B: Installation, Maintenance, and Service 349

Removing the Tape Cartridge

The cartridge may be removed by pressing the bar below the tape drive. The tape drive will partially eject the
cartridge so that you can remove it freely the rest of the way.

CAUTION

Do not attempt to remove the cartridge while the tape is in motion. Damage to the tape may result.

Write Protection

You may protect your cartridge against write (5 TORE or FEIHT#) operations by sliding the slide
tab toward the center of the cartridge. To record on the cartridge, the tab must be in the opposite position, in
the direction of the arrow.

Tape Care

The cartridge tape drive may develop a buildup of oxide on the recording head after extensive use. As dirty tape

drives are one of the most common cause of cartridge-related errors, the following basic precautions are aimed at
reducing the risk of cartridge problems in your HP-85.

e Clean the tape head and the tape drive capstan at least as often as every 8 hours of cumulative tape use, or more
frequently in dirty environments. Use a cotton-tipped swab dampened with isopropyl alcohol, wiping the tape

head and the capstan with a light lateral (back-and-forth) motion (not a heavy scrubbing or up-and-down
motion).

Capstan
Head

The head is the shiny surface on the right rear of the drive.

After using the head cleaning solution, wipe the tape head clean of any residue or lint with a dry cotton swab
using a lateral motion (not an up-and-down motion). Be sure the head is dry before inserting a cartridge inthe

drive. It is a good idea to clean the head before making an important recording.

350 Appendix B: Installation, Maintenance, and Service

e Remove the tape cartridge when you are not using the computer. If a cartridge is left in, a flat spot may develop
on the rubber wheel of the tape drive capstan in the tape drive of your HP-85. This condition will cause errors
when using the tape. The dent is only temporary, and may be corrected by ‘‘conditioning’’ the tape, as
described below.

As a normal operating guideline, it is a good practice to run tapes through a conditioning process after every 6 to 8
hours of use. *‘Conditioning’’ a tape means to run the tape forward to the end of the tape, reverse it, and run the tape

backward to the beginning of the tape. This is done by inserting the tape cartridge to be conditioned, and executing

the UV HFE (condition tape) command. i}

END
LINE

Conditioning is necessary for smooth, continuous operation of the cartridge. (By warming up the tape drive capstan,

- will not affect any programs or data on the tape.

conditioning also helps to remove a dent caused by leaving a cartridge in the drive.) Whenever a cartridge has been
subjected to sudden environmental changes (such as being transported by air), you should condition the tape before

Conditioning restores proper tension, and the tape will operate smoothly. If i

tioning, try cleaning the tape head as described above.

e Keep the cartridge in the plastic container supplied with it.

o Never eject the tape cartridge while it is moving. Damage to information can be severe if a write or directory

operation is in progress.

CAUTION

Strong magnetic fields can erase programs and data stored on tape. Where conditions warrant, keeping
cartridges in a metal box, such as a card index, will help protect tapes from potential sources of magnetic
damage.

Physical damage to tapes, such as wrinkles or folds, can cause recording and reading problems.

Tape Life

The tape cartridge has a typical life span of 50 to 100 hours of cumulative use. Environmental conditions of 25°C
(77°F) and 20 to 50% relative humidity are most favorable for long tape life. A high duty cycle (percent of time the
tape is accessed during the total time the computer is in use), high turning resistance, and continuous use for long
periods of time (1/2 to 3 hours) contribute to heat buildup in cartridges and decrease tape life. Because tape cartridges
eventually wear out, it is always a good practice to maintain back-up copies of vital programs and data using

cartridges specifically reserved for this purpose.

rrors begin to occur frequently when using a tape cartridge, it is advisable that steps be taken to prevent
the loss of information stored on the tape. The first step is to clean the tape as discussed previously in this section. If
this does not alleviate the problem, the next step is to transfer the information to a new medium and retire the worn

tape. Continued use could cause loss of information or damage to the tape drive itself,

= THL. L. errors (signifying tape transport error caused by motor overload) can occur when either the tape drive or
the cartridge itself fails. To determine the source of the problem, a different cartridge can be inserted. If =T FIL. L.
errors stop occuring, assume the cartridge itself is bad and replace it. If ‘=T Fil. L. errors continue to occur, the drive

may require servicing. In this case, contact your HP dealer for assistance.

Appendix B: Installation, Maintenance, and Service 351

Tape cartridges that have reached the end of their useful life exhibit some specific danger signals:

1. The oxide starts breaking loose from the mylar backing of the magnetic tape.

2. The cartridge drive belt becomes loose, evidenced by the tape winding unevenly on the tape reels. This
condition can be seen through the top of the cartridge. (Slight unevenness is common; you should be
concerned when the tape is uneven by a quarter of the width of the tape.)

3. The drive pulley of the tape cartridge contains dark spots due to slippage. In severe cases, the cartridge may

stall and the capstan will wear a flat spot on the drive pulley.

If any of the above five danger signals occur, you should replace the cartridge at once. If you continue to use a
cartridge under these circumstances, there is a chance that you could lose all the information on your cartridge and

that you could damage the tape transport itself.

CAUTION

Ignoring K * routines is not recommended.

These errors can signify tape transport problems. Overriding any of them could easily damage the transport.

Tape Cartridge Rethreading

If the tape runs off of the cartridge reel, it either signifies a tape transport problem or the light path in the cartridge is
being obstructed. Do not block the light window of the cartridge, because the tape will not operate properly. Tape
rethreading is difficult and is not recommended unless the data recorded on the runoff tape must be recovered.
Instead, if tape runoff occurs, it is recommended to replace the entire tape cartridge. The rethreading procedures
contained in this paragraph are for rethreading tape onto the tape cartridge’s left tape hub. If a tape runoff condition
occurs from the right tape hub, use the left-hand instructions and change all counterclockwise directions to clock-
wise directions. This procedure requires the use of a small Pozidrive screwdriver. Rethread tape onto the left tape

hub as follows:

CAUTION

Whenever the tape cartridge top cover is removed, the spring-loaded door and spring can easily slide off the
door pivot post. To prevent loss of parts, ensure that door is always completely seated on its pivot post as
long as the tape cartridge top cover and backplate are separted.

352

Appendix B: Installation, Maintenance, and Service

Remove tape cartridge top cover by re-
moving four screws from backplate with
Pozidrive (small Phillips-head) screw-

driver.

. As shown in figure A, rethread loose end
of tape around right tape guide, past belt
drive pulley, outside front guide pin, and
around left tape guide so that
approximately 1-3/4 inches of tape is clear

of guide.

BELT DRIVE / GUIDE BELT

o BELT
y.d

PIN

GUIDE
ROLLER

N

/‘\

PIVOT TAPE DRIVE
POST GUIDE

Hold tape cartridge as shown in figure B,
so that right hand can be used to rotate belt
drive pulley and left hand can be used to

Figure A

maintain tape tension at tape guide.

Moisten inside surface of free end of tape
and, while maintaining tape tension at left
tape guide, rotate belt drive pulley coun-
terclockwise to wrap free end of tape
around left tape hub until tape reaches
point where drive belt touches tape hub.

While maintaining tape tension, use any

small round-tipped tool to trap free end of

DRIVE
PULLEY

tape between drive belt and left tape hub as

shown in figure C.

Rotate belt drive pulley counterclockwise

Figure B

until tape is wrapped several times around
left tape hub past first set of tape holes
(approximately 2 feet). Check the tape pul-

leys to be sure they are not riding up.

. Replace tape cartridge top cover on
backplate and secure in place with four

SCIrews.

. Condition tape in accordance with the in-

structions contained under Tape Care
(page 349).

Figure C

Appendix B: Installation, Maintenance, and Service 353

Optimizing Tape Use

A tape cartridge has two tape tracks with a variable number of records available in consecutively numbered files on
each track, depending on the nature of your program and data storage requirements. The first file on track A and the
first file on track B are both at the same end of the tape. This can cause a situation in which one file spans two

tracks, making access to this file both time-consuming and wearing to the tape.

Track A DIRECTORY FILE 1 FILE 2 v e FILE J

Track B FILE J FILEJ + 1 o« . e FILEN - 1 FILE N

When this happens, it is a good idea to first label the file spanning both tracks as a *‘dummy’’ and then store the pro-

gram or data again, using the following procedure:

The file named DM will then span both tracks and will not be accessed. However, the = TOEE command
causes the same program or data to be stored under the desired file name on the second track, immediately after
the end of file [Y. Now, when the computer accesses the program or data material in this file, the time loss

and additional wear to the tape cartridge caused by running back and forth between tape tracks is avoided.

Operational Considerations

General Cleaning

Disconnect the HP-85 from its ac power source before cleaning.

The HP-85 can be cleaned with a soft cloth dampened either in clean water or in water containing a mild detergent.
Do not use an excessively wet cloth, nor allow water inside the computer. Do not use any abrasive cleaners, es-

pecially on the tape cartridge window or the CRT screen.

The tape head should be cleaned after a maximum of 8 hours of use; refer to Tape Care, page 349.

354 Appendix B: Installation, Maintenance, and Service

Selecting a Workspace

HP-85 computers are designed to operate on a flat, hard surface such as a desk or table top. Any workspace you
choose for your HP-85 should allow the following minimum clearance dimensions for adequate air circulation

around and within the instrument:

15 cm (6 in) both sides
15 cm (6 in) rear panel

15 ¢m (6 in) overhead

CAUTION

Always keep the top of the computer free of books, papers and other materials to avoid obstructing the air
circulation vents built into the cover.

Potential for Radio/Television Interference

The HP-85 generates and uses radio frequency energy and may cause interference to radio and television
reception. Your computer complies with the specifications in Subpart J of Part 15 of the FCC Rules for a
Class B computing device. These specifications provide reasonable protection against such interference in a
residential installation. However, there is no guarantee that interference will not occur in a particular
installation. If the HP-85 does cause interference to radio or television reception, which can be determined
by turning the computer off and on, you can try to eliminate the interference problem by doing one or more

of the following:

e Reorient the receiving antenna.

¢ Change the position of the computer with respect to the receiver.

® Move the computer away from the receiver.

® Plug the computer into a different outlet so that the computer and the receiver are on different branch

circuits.

If necessary, consult an authorized HP dealer or an experienced radio/ television technician for additional
suggestions. You may find the following booklet, prepared by the Federal Communications Commission,
helpful: How to Identify and Resolve Radio-TV Interference Problems. This booklet is available from the
U.S. Government Printing Office, Washington, D.C. 20402, Stock No. 004-000-00345-4.

Temperature Ranges

Temperature ranges for the HP-85 computer are:

Operating 5°t040°C 40°to 105°F
Storage -40°t0 65°C ~40°to 150°F

Appendix B: Instaliation, Maintenance, and Service 355

Service

If at any time you suspect that the computer is malfunctioning, the following information will help you determine
whether or not servicing is needed. If you are not familiar with the first part of this appendix, review it before

proceeding with this section.

Display
If the CRT display blanks out or becomes erratic. or if the computer fails to respond to keyboard commands, turn the
computer off and check the following:
1. Ensure that the voltage selector switch is set to the correct nominal line voltage for your area (115 Vac or
230 Vac).

2. Ensure that the correct fuse is installed for the power supply in your area (750mA for 115 Vac;
T400mA for 230 Vac); and that the fuse is intact.

3. Unplug the power cord and inspect the power contacts on both power cord and the computer. Clean them if

necessary.
4. Make sure that the power cord is securely plugged into both the computer and an earth-grounded ac outlet.

5. Adjust the brightness control on the computer’s rear panel for optimum display clarity.

If, after step 5, the display fails to respond properly, service is required. (Refer to warranty information on the
following pages.)

Tape Drive

Ifa i {_error appears on the display, or if the tape transport fails to operate, check the following:

I. Remove and examine the tape cartridge for defects. If any are found, discard the cartridge.
2. Clean the tape head as described under Tape Operations earlier in this appendix.
3. Test the tape transport using a fresh tape cartridge.

If, after step 3, the tape transport fails to operate properly, servicing is required. (Refer to the following warranty

information.)

Printer

If the thermal printer fails to operate properly, follow the procedures outlined under Printer Operation in this
appendix. If the printer continues to malfunction, servicing is required. (Refer to the following warranty

information.)

Internal Timer

The HP-85 internal timer was checked at the factory to meet an initial accuracy of within | second per hour. Because
of the effects of temperatures variations, aging, shocks, and vibrations on its quartz-crystal time standard, the HP-85
timer accuracy may vary slightly.

356 Appendix B: Installation, Maintenance, and Service

Accessories

If you are not certain whether the problem is caused by the HP-85 itself or by an accessory in the system, try to

isolate the problem:

1. In any order, turn off the HP-85 and all peripherals connected to the HP-85.
2. Remove all modules inserted in the HP-85, including memory modules, ROM drawers, and interfaces.
3. Turn the HP-85 on and verify the proper operation of the computer by itself.

4. Turn the HP-85 off again and install a single memory module, ROM in a ROM drawer, interface, or other

module.

5. Turn on the corresponding peripheral (if any) and then turn on the HP-85. Verify the proper operation of

this particular system configuration.

6. Repeat steps 4 and 5 until either the system is fully operational or until the problem has been localized to

one device.

7. If you suspect that a device connected to the system is malfunctioning, follow the service instructions in

the owner’s manual for that device.

Warranty Information

The complete warranty statement is included in the information packet shipped with your HP-85. Please retain
this statement for your records.

If you have any questions concerning this warranty, please contact the authorized HP-85 dealer or the HP
sales and service office from which you purchased your HP-85. Should you be unable to contact them,
please contact;

In the U.S.:

Hewlett-Packard

Portable Computer Division
1000 N.E. Circle Blvd.
Corvallis, Oregon 97330
Tel. (503) 758-1010

Toll Free Number (8 a.m. to 4 p.m., Pacific Time):
Call 800/547-3400 (except in Alaska and Hawaii).

In Europe:

Hewlett-Packard S.A.
7, rue du Bois-du-Lan
P.O. Box

CH-1217 Meyrin 2
Geneva

Switzerland

Tel. (022) 82 70 00

Appendix B: Installation, Maintenance, and Service 357

Other countries:

Hewlett-Packard Intercontinental
3495 Deer Creek Rd.

Palo Alto, California 94304
U.S.A.

Tel. (415) 856-1501

For world-wide HP sales and service offices, please refer to the back of the manual.

How to Obtain Repair Service

Not all Hewlett-Packard facilities offer service for the HP-85. For information on obtaining service in your area,
consult the service information included in the information packet shipped with your HP-85. Or contact your
authorized HP dealer or the nearest Hewlett-Packard sales and service facility. (Addresses are listed in the back

of the manual.)

If your HP-85 malfunctions and repair is required, you can help assure efficient servicing by following these

guidelines:
1. Describe the configuration of the HP-85 exactly as it was at the time of the malfunction; i.e., any plug-in
modules and tape cartridges in use at that time should be noted.

2. Write a description of the malfunction symptoms for Service personnel, indicating whether the malfunc-

tion occurs intermittently or constantly.
3. Save printouts or any other materials that illustrate the problem area.

4. Have on hand a sales slip or other proof of purchase to establish warranty coverage period.

Serial Number

Each HP-85 computer carries an individual serial number on the plate in the upper right-hand corner of the rear
panel. It is recommended that owners keep a separate record of this number. Should your unit be lost or stolen, the
serial number is often necessary for tracing and recovery, as well as any insurance claims. Hewlett-Packard does not

maintain records of individual HP-85 owner’s names and unit serial numbers.

General Shipping Instructions

Should you ever need to ship your HP-85, be sure it is packed in a protective package (use the original shipping
case), to avoid in-transit damage. Such damage is not covered by the warranty. Hewlett-Packard suggests that the

customer always insure shipments.

358 Appendix B: Installation, Maintenance, and Service

Further Information
Computer design and circuitry are proprietary to Hewlett-Packard and service manuals are not available to

customers.

Should other problems or questions arise regarding repairs, please call your nearest Hewlett-Packard sales and

service facility or your authorized HP-85 dealer.
Note: Not all Hewlett-Packard repair facilities offer service for HP-85 computers. However, you can be sure

that service may be obtained in the country where you bought your computer.

If you happen to be outside of the country where you bought your computer, contact the nearest authorized HP-85

dealer or the local Hewlett-Packard center. All customs and duties are your responsibility.

359

Notes

Appendix C

Reference Tables

Reset Conditions

The following table shows the status of specific functions when the indicated commands are executed. Parenthe-
ses in the POWER ON column indicate the values when the system is turned on. “P” designates a function
restored to POWER ON values. “—” designates a function unchanged from its status prior to executing the

command. “U” designates that variables are assigned undefined values, except those in [UIMmon.

Power On SCRATCH|(RUN) | CHATH | (ONIT
Program variables (none) — P U U u —
Calcuiator variables (none) P P P P P P
Result (zero) P P —_ — — _
Trigonometric Mode (FALD) P _ —_ —_ — _
Typing Mode (BASIC) — — — _ — —
FEIMT ALL mode (off) P — — —_ — —
Output device (FEIHTER Iz 2 P —_ — — — —
CET IZ 1)

Special function key (none) P P P P P _

definitions
ASEIGH# numbers (none) P P P P P —
Default values (CEFAULT OH) P _ — — - _
System timer

TIME (zero) — — — — — —_—

DATE (zero) — — — — — —
Random Number Seed P — — — — —
EEY LABEL (none) P P P P P —_
oM TIMER (off) P P P P P —
OH ERROR (off) P P P P P -
TRACE (off) P P - — - -
TEACE WAR (off) P P _— W] — -
TEACE HLL (off) P P — — - —
Binary programs (none) — P — —_ — —
SCALE (a8, 188,48, 180) P — — — — —
ROMs (initialize) P — — — - —
FEH (positive) P — — — — —
FEMHLF (up) P _ — — — _
Last plotted point (9. &) P — — — — .
LOIE (horizontal) P — — — — —
ASSIGH# buffers (none) P P P — P —
0Mmon variables (none) —_ P P — P _
MAZS STORAGE (tape drive, or P — — — —_ —_

1% device T

* |f one or more external disc drives are connected and powered, the drive with the lowest disc device address (typically, " : [") is set as the

MASS STORAGE 1% device.

361

362

has a complementary underscored character with a decimal value 128 larger than its given decimal value. The

Appendix C: Reference Tables

HP-85 Character and Key Codes

A numeric code is attached to each HP-85 character and keystroke. Each of the characters in the table below

CHE# function enables you to access the underscored characters. For example, CHEF {74 +1 255 is .
Character Codes

ASCIl Char. Key Binary Dec Char. Binary Dec | Char. Binary Dec Char. Binary Dec
NUL 4 @° 00000000 0 SPACE 00100000 32 [E} 01000000 64 ~ (GEDS 01100000 96
SOH : AC 00000001 1 ! 00100001 33 A 01000001 65 E 01100001 97
STX i BC 00000010 2 ! 00100010 34 B 01000010 66 2] 01100010 98
ETX i C¢ 00000011 3 # 00100011 35 " 01000011 67 - 01100011 99
EOT S D¢ 00000100 4 ¥ 00100100 36 o 01000100 68 2| 01100100 100
ENQ £ EC 00000101 5 " 00100101 37 E 01000101 69 =] 01100101 101
ACK z FC 00000110 6 00100110 38 F 01000110 70 £ 01100110 102
BEL 4 G¢ 00000111 7 ' 00100111 39 [01000111 71 a 01100111 103
BS *1- HE 00001000 8 v 00101000 40 H 01001000 72 k 01101000 104
HT T I 00001001 9 K 00101001 41 I 01001001 73 i 01101001 105
LF + JC 00001010 10 ¥ 00101010 42 J 01001010 74 i 01101010 106
vT KC¢ 00001011 11 + 00101011 43 K 01001011 75 k 01101011 107
FF It LC 00001100 12 00101100 44 L 01001100 76 1 01101100 108
CR* MCE 00001101 13 - 00101101 45 M 01001101 77 ri 01101101 109
SO T NC 00001110 14 00101110 46 H 01001110 78 £ 01101110 110
Sl o O¢ 00001111 15 00101111 47] 01001111 79 o 01101111 111
DLE =] pc 00010000 16 5] 00110000 48 F 01010000 80 < 01110000 112
bC1 fE Qc 00010001 17 1 00110001 49 el 01010001 81 q 01110001 113
DC2 RC 00010010 18 z 00110010 50 R 01010010 82 r 01110010 114
DC3 A s¢ 00010011 19) 00110011 51 E 01010011 83 = 01110011 115
DC4 a T¢ 00010100 20 4 00110100 52 T 01010100 84 T 01110100 116
NAK A Uc 00010101 21 5 00110101 53 i 01010101 85 1 01110101 117
SYN d ve 00010110 22 & 00110110 54 W 01010110 86 01110110 118
ETB i wC 00010111 23 7 00110111 55 i 01010111 87 1 01110111 119
CAN & X¢ 00011000 24 = 00111000 56 “ 01011000 88 01111000 120
EM i Y¢ 00011001 25] 00111001 57 7 01011001 89 o 01111001 121
suB [g 00011010 26 00111010 58 Z 01011010 90 s 01111010 122
ESC i3 [o0001101t 27 00111011 59 C 01011011 91 n (SN 01111011 123
FS 3 \C 00011100 28 00111100 60 01011100 92 | 01111100 124
GS & © 00011101 29 = 00111101 61 a 01011101 93 + (=8N 01111101 125
RS ~C 00011110 30 00111110 62 01011110 94 | Z GOSP 01111110 126
us _€ 00011111 31 00111111 63 - 01011111 95 |+ (3" o1111111 127

*

s

Displayed as a blank.

Indicates that the key is held down while the letter or symbol key is presed. (The assumption is that the (F25%) key is in the up position.)

Indicates that is held down while the letter or symbol key is pressed.

On the numeric keypad.

Appendix C: Reference Tables 363

Key Response During Program Execution
Decimal codes above 128 are assigned to program, editing, and system control keys. The table below describes
the response of the system when the specified key is pressed during the execution of a running program and its

response to an IHFLT statement.

Response in Response in .

Key ALPHA Mode | Graphics Mode | Decimal Value
.| 1 128
2 2 129
= 130
i fi 131
a i 132
£ E 133
r r 134
i F 135
& & 136
COPY AL AL 137
AL AL 138
A/L AJL 139
INIT ¥ ¥ 140
N B 141
AL AL 142
i i 143
B] 144
TEST 0 145
AJL AL 146
AJL A/L 147
g g 148
B A 149
AL AL 150
not used 151
not used 152
A A 153
() A A 154
SHIFT A £ 155
A 156
A 157
AL AL 158
AL AL 159
A L 160
A 161
A 162
A # 163
A ¥ 164
® A ;:; 165
A E 166
not used 167
DEL 4 A 168
b : 169
* 170
not used 171
172
SCRATCH - = 173

A Indicates that the specified key is active on IHFLUT. In other words, when the input prompt (') appears, the keys designated by A perform their
respective functions. All other keys output their respective character codes.

L Indicates that the specified key is live (i.e., performs its expected function) during the execution of a running program. All other keys halt a
running program and then perform the indicated function.

364 Appendix C: Reference Tables

System Memory Requirements

Total HP-85B main memory =

Normal system requirements

32,768 bytes
2,863 bytes

Available for user programs

Total electronic disc memory

(no memory modules installed)

Reserved for

= 29,905 bytes

.EC" volume and

directory information (default values) =

32,768 bytes

1,024 bytes

Available for file storage

31,744 bytes

Item

Main Memory Required

RZSTGEH# buffer
Interface modules
ROMs

Assembler ROM
1/0 ROM
Matrix ROM

FEAL
SHORT
INTEGER

FEAL

SHORET

IMTEGER
String variables

Program line with line number
2 statement concatenator

Advanced Programming ROM

Plotter/Printer ROM

Variables (calculator and program)
Simple numeric variables

Numeric array variables

4 bytes plus memory for keyword and parameters
1 byte

284 bytes/open data file

No extra memory required

91 bytes
124 bytes
416 bytes
69 bytes
373 bytes

10 bytes/variabie
6 bytes/variabie
5 bytes/variable

8 bytes/array variable plus
8 bytes/element
4 bytes/element
3 bytes/element

8 bytes/string plus
1 byte/character

365

Notes

Appendix D

BASIC Summary and Syntax

The HP-85 BASIC language consists of:

¢ Numeric and string data types.
e Numeric, string, and numeric array variables.

e Operators and functions that operate on numbers, strings, and variables to create numeric and string

expressions.

o Reserved words (or keywords) that are used with numeric and string parameters to form program

statements.
e Numbered statements entered in memory as program lines.

e System commands that control the operation of the HP-85 and peripherals.

All expressions can be evaluated from the keyboard or from programs. Most statements and commands can be

executed either from the keyboard or used in programs; exceptions are noted.

Data Types

Type Precision Range
EEAL 12 digits | +9.99999999999 +E499
SHORT 5 digits +9.9999+E99
IMTEGER 5 digits +99999
Character String — 0-255

Variables

Simple Numeric Variables: 1, &,

Ll

The name consists of a letter or a letter and one digit. REFAL precision is assumed unless ZHOET or

IHTEGER type is declared.

s

Numeric Array Variables: F1 <58, 50, BoZE,

The name consists of a letter or a letter and one digit. An array name can be the same as a simple variable
name used elsewhere in the program, but a one-dimensional array cannot have the same name as a two-
dimensional array. Arrays contain numeric elements only. Subscripts dimension the row or row and column in
DIM, COM, or type (REFAL, IMTEGER, SHORT) declaration statements. The lower bound of an array sub-
script is 0 unless CFTIOH ERTE 1 is specified before all array refrences. The default upper bound for row

and column subscripts is 10.

367

368 Appendix D: BASIC Summary and Syntax

Subscripts reference a particular array element in non-declaratory statements with three exceptions. Entire
arrays (either one- or two-dimensional) may be referenced in TRHCE WAR, FEINTH#, and RERD# state-
ments by specifying the array name followed by a pair of parentheses and no subscripts (e.g., 27). A comma
may be enclosed within the parentheses for documentation purposes to specify a two-dimensional array (e.g.,
F1:,). This notation enables you to trace, write onto mass storage, or read from mass storage all elements of

the specified array.

String Variables: H1#, B¥, C3#F

The name consists of a letter or a letter and one digit followed by a dollar sign. The default length is 18
characters unless otherwise specified in a -1 or 11 1 statement. The maximum length of a string is limited
only by available memory. Dimension strings in a ['I 1 or T statement by specifying the variable name
followed by the length enclosed within brackets: H1$L =251, BEC415], CEFC5 1.

Substrings: A1$C2, 250, B¥CS 1, 03503, 37

Substrings are specified by one or two numbers (or expressions) enclosed within brackets. One number specifies
a beginning character; the substring extends to the end of the string. Two numbers separated by a comma

specify beginning and ending character positions, respectively.

Strings can be compared with the relational operators and can be concatenated with the # operator.

Operators
Arithmetic
+ Add
- Subtract
E3 Multiply
Divide
Exponentiate
Moo Modulo: A MIO E=A-EBXIHT<H-E>

~ or O IY Integer divide: A [IW E=IF:IA-E:

Relational

Relational expressions return the values 0 for false and 1 for true.

= Equal to
k Greater than
Less than
= Greater than or equal to
L= Less than or equal to

Zx or # Not equal to

String values can also be compared with relational operators. Strings are compared using decimal values,
character by character, from left to right until a difference is found. If one string ends before a difference is

found, the shorter string is considered the lesser.

Appendix D: BASIC Summary and Syntax 369

Logical

Logical expressions return the values @ for false and 1 for true. Nonzero values are considered true; zero values

are considered false.

ZERENL

nE

ERDRE

HOT

Truth Table

Al B| AANDB| AORB| AEXORB | NOT A
T| T 1 1 0 0
T|F 0 1 1 0
FIT 0 1 1 1
F|F 0] 0 0 1

String

String concatenator.

Math Hierarchy

0 Performed First

Functions

¥, o, MOD, wor DIW

SERN

" —

Relational operators (=, », <, »=, <=, <& or #)

AR v

OF, EsOR Performed Last

Expressions are evaluated from left to right for operators at the same level. Operations within parentheses are

performed first. Nested parentheses are evaluated inward out.

Mass Storage

Files

Files are blocks of information that are:

e Stored outside of HP-85 main memory, and

e Identified and manipulated by name.

370 Appendix D: BASIC Summary and Syntax

File Types

There are five types of HP-85 files, indicated as follows in the [:F T(alog) entry:

FROG A BASIC program that may be loaded into main memory with L 2 and executed with R I1iH.
OATA A data file that may be opened with AZ S I GZH# and accessed with FEFL# and FF I HT# statements.
¥¥%% An extended file, including a graphics file that may be loaded and displayed with L &80,

EFZM A binary program file that may be accessed with L GFDE T H.

HULL A gap in the medium left by a purged file; removed with FHZE.

File Names

Each file is identified on a particular mass storage medium by a unique file name, consisting of one to ten
characters (one to six characters for tape files). Longer file names are truncated at the sixth or tenth character.

Any character may be used, excluding periods (.), colons (:), and quotation marks ().

File Specifiers

A file specifier identifies the name of a file as well as its location in the mass storage system. The file specifier

consists of two parts: a file name and an msus or a volume label.

1 msus

file name [. volume label

]II

The entire file specifier must be quoted but may be manipulated as a character string (assigned to a string

variable, concatenated with another string, etc.).

If no msus or volume label is appended to the file name, then the HP-85 searches for the file on the current
MASZS STORAGE IS device.

Mass Storage Unit Specifiers

The mass storage unit specifier, or msus, is a character string that specifies a particular mass storage device. The

msus for disc drives consists of the following:

:device type select code device address drive number

)
All msus This is the select This is the drive
strings code of the HP-IB number you wish to
begin interface that access.
with a : connects the disc
(colon). unit to the HP-85.
This tells the system This matches the
which storage device you setting of the device
are using. address switch on
the disc unit you
[l = Disc (any charac- wish to access.

ter other than T
specifies disc).

Appendix D: BASIC Summary and Syntax 371

Example: The following msus specifies disc ([}, select code ¥, device address &, and drive number .

i : D 1 K

facn]
o
ot

The msus of the electronic disc is ¥ : L&A

-

7. The msus of the HP-85 tape unit is simply * : T".

Volume Labels

The volume label is the name of a flexible disc, a hard disc volume, or the electronic dise, recorded on the
medium itself. (Tapes may not be given volume labels.) Volume labels may consist of one to six characters,

excluding periods (.), colons (:), and quotation marks (").

Volume labels may be established with the IHITIAL IZE command and changed with the WOLLUME [=
command. Initially, the volume label of the electronic disc is * . EL1".
Initializing a Mass Storage Medium

Each tape or physical disc must be initialized at least once to set up a file directory and clear the disc. Flexible

and hard discs are initialized with the IHITIAL I 7F command; tapes are initialized with the I

TRFE

command; the electronic disc is initialized automatically at power on.

Special Characters

[Enables multi-statement lines.

188 CLERR @ KEY LHEEL

t Remark follows.
iita OISk C ! Displag cost,

IHFUT prompt. Input items are expected.

i

String delimiters. Mark beginning and end of literal text.
126 PRIMT “HMEAM","HMODE"
Separates statement parameters and input items.

AUTO S8, 18

3 Indicates a string variable or function.

2E8 AF=CHREF =2

Separates statement parameters.
G OISP AXEBE:C

e B

Syntax Guidelines

FREINMT Items in OOT MATREI® TYFE may be entered in uppercase or lowercase letters.

X,S% Items in italic type are the parameters that supply information to the function, statement or
command.

R P Items may be entered without regard for spacing, except that the first two letters of a

keyword must not be separated.

372 Appendix D: BASIC Summary and Syntax

[1] Brackets enclose optional items.

" 1msus" When items are stacked, either one (but not both) may be used.
“ . volume label"

An ellipsis indicates that the optional items within the brackets may be repeated.
Most parameters (such as tone and duration in the EEEF statement and file specifier in the ZHFR I+ command)
may be specified by numeric or string expressions (for example, EEEF T1,01 and CHRIM F#). Exceptions

are array sizes in dimensioning statements and statement numbers in system commands; both require positive

integer parameters.

Predefined Functions

Page
ABZOX: Absolute value of X. 66
AR CX s Arccosine of X, in 1st or 2nd quadrant. 72
ASH X Arcsine of X, in 1st or 4th quadrant. 72
ATHIX Arctangent of X, in 1st or 4th quadrant. 72
ATHZOY, X Arctangent of Y/X, in proper quadrant. 73
CETLOX: Smallest integer > =X. 67
CHEFOX: Character whose decimal character code is X, 0<=X< =255, 142
COSoXs Cosine of X. 72
COToX: Cotangent of X. 72
CECoXh Cosecant of X. 72
DARTE Julian date in format yyddd (assumes system timer has been set 63

properly).

OIS FREE X.Y[.S$] Returns in X the number of unused records on the disc specified by S§, 274

and returns in Y the largest number of unused contiguous records.

ODTROX: Degree to radian conversion. 73
EFS Smallest machine number (1 . E-433), 70
EREL Line number of latest error. 253
EREH Number of latest error. 253
ERERDHM Identification number of the ROM that issued an error message. 253

ERRESC Select code number of the interface that issued an error. 253

EuPoXs

FLOOREOX?

FEOXS

THF

IHT X

TFOX

LEMH(S$:

LGTOX

LG OXs

MA=SOX, Y2

MIMOX.Y:

RERREE:

HUMOSS

-1
o

Fl50S1$,828

EHDOX, Y

FHO

ETOCXS

SECOX

SEHOX

SIHOX

SERECX

THE N

THHOX

TIME

Appendix D: BASIC Summary and Syntax

X

Same as IMT X (relates to CETIL).
Fractional part of X.

Largest machine number (7. 333335333 333E433),
Largest integer <=X.

Integer part of X.

Length of string S$.

Log to the base 10 of X, X>0.

Natural logarithm, X>0.

If X>Y then X, else Y.

If X<Y then X, else Y.

Msus of current MASE STORAGE 1% device.

Decimal character code of first character of S$.

Searches string S7$ for the first occurrence of string S2§. Returns

starting index if found; otherwise, returns 0.

Remainder of X/Y: X ~ Y & IFIX/Y2

Next number, X, in a sequence of pseudo-random numbers, 0 <=X<1.

Radian to degree conversion.

Secant of X.

The sign of X: —1 if X<0, 0 if X=0, and 1 if X>0.

Sine of X.

Positive square root of X.

Skips to specified column (in D I3F and FRIMT statements only).
Tangent of X.

Time in seconds since midnight (assumes system timer has been set

properly) or since power on.

373

Page

71

67

66

70

67

66

138

71

71

68

68

275

143

69

140

68

70

73

72

68

72

68

182

72

63

374 Appendix D: BASIC Summary and Syntax

TR X Type of the next item of specified data file.

HFCFE0SE Converts all lowercase alphabetic characters in S$ to uppercase.
VAL CS$ Returns the numeric equivalent of the string S$.

VHLFOX String equivalent of X.

WOL 08§ Volume label of the specified disc.

System Commands and BASIC Statements
HZS I GH# buffer number T file specifier

RS IGH# buffer number T %

ALUTO [beginning statement number [, increment value]

EEEF [tone. duration]

H

rmsus]
. volume label"'

CHT [,
CHATIH "file specifier"

CHECE RERD [OFF) # buffer number
CLEAR

. " ED msus*®

COMF IS ["new volume label" | v ED volume Iabe/“["

directory size [, disc size]]]]

COMT [statement number]

COFY "source file specifier" T "destination file specifier
COEY " 1 source msus" T " 1 destination msus"
o " . source volume label" - "', destination volume label"

CEERATE “file specifier" . number of records [. record length]
CRET 1% device number

CTRFPE

DATH data list

DEFRULT OFF

CEFALULT OH

Page
312

144

140

142

275

302

303

86

96

273

284

313

23

133

319

106

291

291

301

183

277

147

76

76

Appendix D: BASIC Summary and Syntax 375

Page

DEF FH numeric variable name [« parameter 1] [=numeric expression] 157
DEF FH string variable name [« parameter] [=string expression] 157
DEG 72
DELETE first statement number [. last statement number) 103
D11 dimension list 131
D 1%F [display list] 91
ODISF USIHG image format string [: disp using list] 181
DISP USIHG statement number [: disp using list] 175
ERD 83
269

FLIF 40
FH EHD 159
F{R loop counter = initial value T final value [STEF increment value] 121
GET “file specifier" 296
GLOAD “file specifier" 287
LUEUE statement number 163
LOTO statement number 98
GRAD 72
GETORE “file specifier' 286
LF numeric oxrossin THEN , ST LS (61 S e)
ITHMAGE image format string 175
ITHIT 107
IHITIALIZE ["new volume fabel" [., * MY’ I catalog size [, interleave factor]]]] 269

. ' .volume label
IHFUIT variable name, [, variable name, ...] 94

IMTEGER numeric variable . [subscripts] [. numeric variable, [< subscripts] ...] 132

376 Appendix D: BASIC Summary and Syntax

Page
EEY LAEEL 166
(LET] numeric variable, [, numeric variable, ...] = numeric expression 97
[L.ET] string variable, [. string variable, ...] = string expression 97
[lLET] FH variable name = expression 159
L.1%T [beginning statement number [, ending statement number]] 105
LOARD “file specifier 283
LOADEIH "file specifier" 287
MASE STORAGE 15[, vo,u',"nseufabe,] 271
510 um aber] 271
HE®T loop counter 121
HOREMAL 41, 86
OFF ERROE 253
OFF EEY# key number 168
OFF TIMER# timer number 169
OH ERROR GOSUE statement number 253
OH ERREOR GOTO statement number 253
1M numeric expression GiEIIE statement number list 165
1M numeric expression 1T statement number list 118
M KEY# key number [. key label] G0SIIE statement number 166
UM KEY# key number [. key label] 51T statement number 166
OH TIMER# timer number . milliseconds G15UE statement number 168
IH TIMER# timer number, milliseconds GOTU statement number 168
OFTIOH BAZE 1ora 131
FACE [, x;;/’u’r’r'lzufa';e/”] 293

FRUZE 107

Appendix D: BASIC Summary and Syntax 377

Page
FLLI=ZT [beginning statement number [, ending statement number]] 105
FEIMT [print list] 93
FRIHT# buffer number: print# list 303
FFIHT# buffer number . record number [: print# list] 307
FREINT ALL 41
FRIMTER 1% device number 183
FRIMT LSIHG image format string [: print using list] 181
FRINT USIHG statement number [: print using list] 175
FURGE “file specifier" [, &] 292
FEAD 72
FEAMOOMIZE [numeric expression] 70
REHAL variable name, [. variable name; ...] 147
FEADY buffer number : read# list 305
FERD# buffer number . record number [: read# list] 309
RE AL numeric variable, [subscripts] [numeric variable, [< suscripts] ...] 132
FEM [any combination of characters] 90
REHM [first statement number [. increment value]] 104
REHAME “old file specifier T *new file name" 292
FEZTORE [statement number] 150
RETURH 163
REWIHD 277
F Lt [statement number] 107
SZRVE “file specifier” 296
SORATOH 107
SECURE “file specifier”,”security code” , security type 294

SETTIHME seconds parameter, date 62

378 Appendix D: BASIC Summary and Syntax

Page
SHORET numeric variable; [subscripts 1] [. numeric variable, [subscripts :] ...] 132
STOF 83
ZTORE "file specifier” 281
STOREEBIH "file specifier” 287
ZWRF “incoming file specifier" ., "new ED file name*" 324
TEHACE 247
TEHCE HLL 248
TEACE AR variable; [. variable, ...] 247
TEAHZLATE 288
UHZECURE "file specifier" . "security code" , security type 295
WOLUME |, V';;uﬂi"z;el,, IS "new volume label" 268
HAIT number of milliseconds 108
Graphics Statements
ALFHA 189
EFLOT character string, number of characters per line 229
DERL x-coordinate . y-coordinate 203
GLCLEAR [y] 191
GREAFH 189
I0RAW x-increment . y-increment 209
IHMOVE x-increment ., y-increment 209
L.AEEL character string 213
LO IR numeric expression 216
MOYE x-coordinate , y-coordinate 203
FEH numeric expression 199

FEMLF 199

Y X-min . X-max. y-min, y-max

. y-intercept [, tic length [, x-min . x-max]]

: x-intercept [. tic length [. y-min, y-max]]

Appendix D: BASIC Summary and Syntax 379

Page
200
191
194

194

Appendix E

Error Messages

The following errors are generated by the HP-85 operating system and have an EEFE M number of 0.

Error Default Values
Number Error Condition (errors 1-8 only) with
DEFARLLT OH
Math Errors (1 thru 13)
Underflow: expression underflows machine 0
2 Overflow: +9.99999999999E499
» Expression overflows machine
« Attempt to store value >99999 or <—99999 in IHTEGEFR variable. +99999
o Attempt to store value >9.9999E999 or < —9.9999E99 in ZHIET +9.9999E99
variable.
3 COT or ©EC of n*180° n=integer. 9.99999999999E499
4 THH or ZEC or n*90°% n=odd integer. 9.99999999999E499
5 Zero raised to negative power. 9.99999999999E499
£ Zero raised to zero power. 1
¥ Null data:
« Uninitialized string variable, or missing string function assignment. e
« Uninitialized numeric variable, or missing numeric function 0
assignment.
5] Division by zero. +9.99999999999E499
o Negative value raised to non-integer power. Remaining errors do
not default.
1@ Square root of negative number.
i1 Argument (parameter) out of range:
e ATHZ L&, B,
e ASH or RCEH (—1<n<+1).
e M expression GixTO/GOSUE; expression of range.
1z Logarithm of zero.
132 Logarithm of negative number.
14 Not used.
System Errors (15 thru 25)
15 System error; correct by reloading program, pressing (RESET), or turning system off, then on
again.
e Continue before run; program not allocated.
17 FiF nesting too deep; more than 255 active FIR-HE T loops.
1 Z0ELIE nesting too deep; more than 255 nested subroutines.

381

382 Appendix E: Error Messages

Error
Number

Error Condition

1=

S

21

Memory overflow:

o Attempting to F:LIl a program that requires more than given memory.

e Attempting to edit too large a program; delete a nonexisting line to deallocate program, then edit.
e Attempting to load a program larger than available memory.

e Attempting to open a file with no available buffer space.

e Attempting any operation that requires more memory than available.

e Attempting to load or run a large program after a ROM has been installed. ROMs use up a
certain amount of memory. Refer to the appropriate ROM manual.

Not used.

ROM missing; attempting to F LI program that requires ROM. An attempt to edit program with
missing ROM will usually =R AT CH memory.

Attempt to edit, list, store, or overwrite a %k LIFE Ed program.

Self-test error; system needs repair.

Too many (more than 14) ROMS.

Two binary programs; attempting to load a second binary program into memory (only one binary
program allowed in memory at any time).

Not used.
Program Errors (30 thru 57)
“”TTPH

BASE

after array declaration.
- parameter not Eor 1.

L-HF I Herror; THH I Fto a program other than BASIC main program: e.g., & H# I Fing to a binary
program.

o EERD#found a stnng but requwed a number

No LI THto read

Dimensioned existing variable; attempt to dimension a variabie that has been previously declared or
used. Move LiI11statement to beginning of program and try again.

llegal dimension:

o lllegal dimension in default array declaration.

e Array dimensions don't agree; e.g., referencing
A(2) when A(5,5) is dimensioned or referencing
A(0) when CFTIOH EASE 1 declared.

Duplicate user-defined function.

Function definition within function definition; needs FrH EM
Reference to a nonexistent user-defined function:

e Finding FiH EHI with no matching DEF FH .,

e Exiting a function that was not entered with a function call after branching to the middle of a
multi-line function.

Appendix E: Error Messages 383

NE:\‘:)rer Error Condition

63 lllegal function parameter; function parameter mismatch (e.g., declared as string, called as numeric).
1

4 Recursive user-defined function.

3 Numeric input wanted.

4 Too few inputs. Less items were given than requested by an I statement.

45 Too many inputs. More items were given than requested by an i statement.

¥ =T missing; F 1 F with no matching HEx= T.

4 F R missing; HE ¥ T with no matching FCF.

4 E [} statement necessary.

B

£

Null data; uninitialized data.

Binary program missing; attempting to F: ! program that requires binary program. An attempt to edit

will usually =M T H memory.

legal FFIMT L LA

e Data overflows I FiFisE declaration.
Numeric data with string I IHGE

String data with numeric L I1AGE.

FRIMNT LS IHGimage format string is not correct.

lllegal T #iE: argument. With [T M, anillegal T HE argument gives a warning message

and defaults to T :

Array subscript out of range.

String variable overflow; string too big for variable.

Missing line; reference to a nonexistent statement number.
Not used.

Tape Errors (60 thru 75)

The mass storage medium is write-protected.

Attempting to create/record more than 42 files on tape.
Cartridge out when attempting a tape operation.
Duplicate file name for REHAME or CRERTE.

Empty file; attempting to access file that was never recorded (e.g., tape was ejected before program
was stored but after name was written in directory). Refer to FLIFGE.

384 Appendix E: Error Messages

Error Error Condition
Number
e End of tape:
e Tape run-off; check cartridge.
e Tape is full.
e Not enough space to FEHTE data file.
£ File closed:
e Attempting FE R F R THT # to file that has not been opened with F55 G H
e Attempting to close a closed file (warning only).
e Tape has been ejected and reinserted.
£y File name:
o Name does not exist when attempt to .0 FHLD, M LD
FEMAME, or &
e Attemptto i an open file.
E i File type mismatch:
e Attempting to treat program as data file, or vice versa.
e Attempting to treat binary program as BASIC main program file, or vice versa.
e Attempting to treat data as binary program, or vice versa.
£ Random overflow; attempting to FE HIHY FE T HT # beyond existing number of bytes in logically-
defined record with random file access.
IS F:E ALl error; system cannot read tape.
71 End-of-File; no data beyond EOF mark in data file.
i Record:
e Attempting to EERLI#HFEIMTH# to record that doesn’t exist; e.g., FEMII#H 1. 1ZE when
only 100 records in file.
e Attempting to FE R F R TH T # at end of file.
e Lostin record: close file to release buffer.
P Searches and does not find:
e Bad tape cartridge; may have been exposed to magnetic field.
e Cannot find directory, tape may need to be initialized.
) Stall; either bad tape cartridge or transport problem, refer to Tape Operations, appendix B.
f Not an HP-85 file; cannot read.
7 thru 7% Not used.
Syntax Errors (80 thru 92)
HE Right parentheses,), expected.
2 Bad BASIC statement or bad expression. If it is an expression, try it again with i I = <expression>
to get a better error message.
E String expression error; e.g., right qucte missing or null string given for file name.
A Comma missing or more parameters expected (separated by commas).
= Excess characters; delete characters at end of good line, then press .

Expression too big for system to interpret.

Appendix E: Error Messages 385

Error

Number Error Condition

llegal statement after THEH.
Bad [111 statement.

Bad statement:

o 01 in calculator mode.

« User-defined function in calculator mode.
e IHFUIT in calculator mode.

E]

Invalid parameter:

o M KEY# less than 1 or greater than .

o Attempt to TEHRLCE a calculator mode variable.

eFRIMNTER IZ or CET I% with invalid parameter.

e ZRERTE with invalid parameters.

e HEEIGHS, FRIMTH#, or EEAL# with buffer number other than 1 through 141

e Random REFRD# to record 0.

¢ ZETTIME with illegal time parameter.

oI TIMER#, OFF TIMEFR# with number other than 1, =, or =.

e AL E with invalid parameters.

e ALIT or REM with invalid parameters.

e I =T with invalid parameters.

e NELETE with invalid parameters.

e YA # with non-numeric parameter.

e T0IHF I with a nonpositive directory size or a disc size that is not a multiple of 32.
e Any statement, command, or function for which parameters are given but they are invalid.

HE Line number too large; greater than 9999.
21 Missing parameter; e.g., DELETE with missing or invalid parameters.

Syntax error. Cursor returns to character where error was found.

The following errors are generated by the system’s mass storage ROM and have an EFRi

i1 number of 208.

Error

Number Error Condition

1

e
-
o

A plug-in interface module failed its self-test and requires service.

1311 An invalid input/output operation was performed. Use the ERF S function to determine which
interface generated the error.

112 The mass storage ROM failed its self-test. The HP-85B unit requires service.

122 The storage medium may be damaged. If possibie, copy its files to another storage medium
immediately.

1358 The storage medium is not initialized, the drive door is open, or the drive number specified is not
present.

131 The specified interface is not present, the specified device is not present or is switched off, or a
system hardware failure has occurred.

386 Appendix E: Error Messages

The following errors are generated by the system’s electronic disc ROM and have an EFR &5 number of 209.
Error Error Condition
Number
11z The electronic disc ROM failed its self-test. The HP-85B unit requires service.

123 A command intended for a physical disc only (such as IHITIFL IZE or Ff

SF ‘i) was attempted
on the tape cartridge or the electronic disc.

124 Attempt to ZLIFAF in a program from the electronic disc whose disc space is too small to accom-
modate the program from main memory.

125 A command intended for the electronic disc only (such as [HF 11:) was attempted on a physical
disc or the tape cartridge.

12e The mass storage unit specifier (such as " : it
specified.

32 ") of a nonexistent electronic disc volume was

12v An out-of-range error occurred during an electronic disc access. Reconfigure the electronic disc or
switch off the computer and try again.

1&g Attempt to L 0HF IG(ure) an electronic disc volume that is not empty of all files.

387

Notes

Appendix F

Sample Solutions to Problems

Section 5
Problem 5.1
(@) 1@ RENM #CELSIUS TO FAHRENHELT Flowchart:
56 ?i_ C ’
48 L spoe3e
og ERINT LitE S START

INPUT
TEMPERATURE

Display: :
CONVERT
CELSIUS TEMPS TEMPERATURE
15
CELSIUS TEMPY {
o PRINT BOTH
TEMPERATURES

{

Printer: (STOP)

1% © EGUALES sa F

=18 T EQUALS 14 F

(b)

n F:'F EQUARLS Micaoe

U Gl)
& S

Display:

FHHFENHEIT TEMF?

FRHFEHHEIT TEMP?
14

389

390 Appendix F: Sample Solutions to Problems

Problem 5.2

t

FEM YTREBOUHDER

DISF "HEIGHT FELERSED"
THFUT H

i=H

[RS R R S R I VN N
PR RO

—

Display:

HEIGHT RELERZED
1

Problem 5.3

A REM FBEOGOH TI
DISF "HOUH.
THFUT H¥.F#
FEIHT "THE ":H%:;" OF ";P%
FRIMNT "TO ":F£:" WITH THE "
RE]

9 GOTG 2@

@ EHD

L HOUH "

Display:

HOUN, FPEOFPER HOUMN?
ANIMALS . AUSTRALIA
NOUN, PROPER HOUN?
ICEBERGS ., ICELAND

NOUN, PROPER HOUN?
ATHLETES. THE OLYMFICS
NOUN., PEOFER HOUH7?

Printer:

THE AHIMALS
TO AUSTRALIA
THE ICEBERGS
TO ICELAMD M
THE RATHLETES
T THE 2LYHMF
ATHLETES

OF AUSTERLIA
WITH THE RAHIMALS
OF ICELAMND
ITH THE ICEBERGS
OF THE OLYMPICE
ICE WITH THE

Flowchart:

START

/

INPUT
HEIGHT

/

{

TRAVELED = HEIGHT

LET DISTANCE

-1
Y

/

BEEP /

!

DISPLAY
DISTANCE
TRAVELED

{

DISTANCE TRAVELED

COMPUTE
NEW HEIGHT,

l

Flowchart:

START

Y

INPUT NOUN,
PROPER NOUN

i

b

PRINT
TWO TITLES

Problem 5.4

Display:

s b B
FANE TR
S

BEEF F1.01

SOTO o
EHD

Problem 5.5

16
26
&
415
%]

T W r
(sl (RNl

—d T
hogi

Display:

Printer:

REM %FH_|1R;HL

GaTn =8
EHD

M LF1.01.F2.DEF

S 11%1965-134-11

AFFROY

AR CZKPIHE S

1]

LA T
T 1

1

Appendix F: Sample Solutions to Problems

Flowchart:

START

CALCULATE
TONE AND BEEP
PARAMETERS

PRINT
TONE AND BEE
PARAMETERS
GENERATE
FOUR-NOTE
SEOUENCE

Flowchart:

START

e

INPUT
NUMBER

COMPUTE
FACTORIAL
APPROXIMATION

{

PRINT
APPROXIMATION,
NUMBER

R

391

392

Appendix F: Sample Solutions to Problems

Problem 5.6
te REM ¥WATCH REFAIR
20 OISF “"CUSTOMER™:
I IHPUT M3
48 OISF "HOURS WORKED. FARTS 0
T
S8 IHFPUT H.F
ol L=2 S3FH
7a Fil=1.1%F
2 FRINT
33 FREINT "ITEMIZED EREFAIE BILL :
"o HE
¢ FRINT " FARTS £"iFL
3 FRINT “ LABOR UL

[P
Ced P v 0
PRt

PEIMT "TOTAL CHARGE $":F1l+L
EMD

Display:

CUZTOMER?

WH

IMFLE

HOURS WOREED. FARTS COST

Printer:

s

S SER G)<}

BILL: HHIMPLE

Section 6

Problem 6.1

y LA ST

LN wd) T es
=

B DR Bl

,.
D00 0 =) T
=

FEM #REBOUMIER
OISk "HEIGHT RELEASED"
HFLT H

Flowchart:

START

INPUT
CUSTOMER'S
NAME

{

INPUT
NUMBER OF HOURS,
PARTS COST

{

CALCULATE
CHARGE FOR
PARTS, LABOR

!

PRINT NAME,
CHARGES FOR
PARTS, LABOR,
TOTAL

Y

I

N

~

Added line.

O=0+2%H
T=.300kT =

Added line.

GOTO 59
EHOD

Added line.

Appendix F: Sample Solutions to Problems 393

Problem 6.2
{9 BEW ¥CLEHTRIFUGAL Flowchart:
2B 1=
S8 OISF "STRING LEHGTH":
4@ IH r
Sp F=358: T
2o PRINT : START
76 PRI : .
20 E R A225%
9@ PRINT
1@8 PRUSE INITIALIZE
1ba carh se TIME
138 END
Display:
STRIMG LLEHGTH?
14 >
COMPUTE
Printer: FORCE IN
DYNES, POUNDS
SECOMOS = & ‘
DfHE! 9
POLHDS = & / PRINT /
SECOMDE = 1 TIME, FORCE
OYHES .

FOUR

SECOMOS
OYHE?:

PAUSE

i

FOURD:

SECOH INCREMENT
O HE

POUHOS TIME

L

SECONDE
DYHES

SECOHMOS
DYHES

FOUNDE

Section 7
Problem 7.1

REM #EBASKETEALL
A.ki=R

FREINT " & H"
FRIMT
IHPFUT C#

i

THEH
THEH
THEM

A ARV
—_t
sl

FRINT AW
GOTD S&
EMD

F3 = S0 0 =T KN g L Pa e

SR
ha DA

CE="A" THEH A=A+Z

W=k+2
A=A+1
W=W+1

394 Appendix F: Sample Solutions to Problems

Problem 7.1 (Cont) Problem 7.2
‘ Flowchart:
Display:
P START
g —[FOR X=17T0 100 |
A
! RESET
: DISPLAY INDEX
i IS
a X NOT
MULTIPLE
o OF 77
Printer: / BE+EP 7
A WM SET
DISPLAY INDEX
s B
4 @ %~
4z
4

Problem 7.2

14 YES
g
i B . v
48 AT #E THEH VA
Sa / _ BEEP /
?g »=7 THEH 1@@
=T 7 THEH 188 SET
el
166 DISPLAY INDEX
11le S
123 IF S=i THEHW DISF ¥ ELSE DISP
128 HEST X
14w EMO
Display: IS
DISPLAY YES
1 INDEX
z RESET
3 ?
4
6 DISPLAY
& DISPLAY X
cl BLANK
1 LINE
1z
17 -
15 /
LE — NEXT X |
y
.

Problem 7.3

FEM YTELEFATHY
F.W=8
DISF “ENTEF

[XYW
o IS

)

TO 3 ERCH TIME

FOR I=1 ToO 14
F=IMTCL+2¥RMNO
WATIT SaEa

IHFUT H

IF M=F THEH 17Va
b=+ 1

OISk “"IMCORRECT"

TSRS
& T

gD

A=108%F CR+H?

FRINT A: "X RACCURRCY"

FRINT “ FOR":R+b: "FICKS"

IF A-z2B THEM PRIWT “"¥¥TELEFA
THY%#" ELSE FRINT *JUST GUES

. e
[, I RV AR W [SvExy)
BB Y

SING"
168 GOTO 4@
178 R=R+1
188 DISF “CORRECT®
199 GJTO i@
288 EWMD
Display:

ENTER 1 TO 3 EACH TIME
IHCARRECT

1

CORRECT

1

IHMCORRECT

THEORRELT

EDERECT

[HCORREST

o
]

IHEORRECT
1
IHCORRECT
el
}HCDREECT

CORRECT

Printer:

Appendix F: Sample Solutions to Problems 395

Flowchart:

START

LET NUMBER
CORRECT,
INCORRECT ANSWERS = 0

{

DISPLAY
INSTRUCTIONS

-

> FORI=1T010 |

{

GENERATE
RANDOM PICK

{

WAIT
5000 MILLISECONDS

!

INPUT
GUESS

INCREMENT
NUMBER INCORRECT

\

INCREMENT
NUMBER CORRECT

“INCORRECT"

!

¥ DISPLAY
/ DISPLAY J “CORRECT"

PRINT
ACCURACY

IS
ACCURACY

~d U

YES

> 20%7?

PRINT
DISCOURAGING
MESSAGE

*4

PRINT
ENCOURAGING
MESSAGE

396 Appendix F: Sample Solutions to Problems

Problem 7.4

REM *COMPRSE COURSE

Q]
i
[

M, E=i

INFUT E.D
IF DO=& THE
H=H+D¥CO5
E=E+D¥S

GOTO 44

A=ATHZCE. 12
A=ZORIHEN+EXE

IF A<@ THEHW A=A MOD
PEINT "DOIRECT ROUTE"
FREINT " EBERRIHG ":A
PEIMT " DISTAMCE" X
FRINT

GOTO 3o

EHD

WD 0~ Ty LN ek T e (S0 40 00 N T L il P

DN ALB N AR LA R AR AR

[S

HG

. ODISTAHCE?
DISTARHCE?

 DISTANCE?
9

e R aa R gl AR an}

! ODISTRMCE?
&R, 58
BEARIHG. DISTAMCE?
@,n

BERRIHG. DISTANCE?

Printer:

OIST 254
OIZT 4aa
DI=T 254

ODIST 5@

ROUTE
17

-

ODISTAKCE 34

OISF "BERARIMNG. OIZTAMCE":

HCE
FEINT “BEAR";B;" DIST":D

Flowchart:

START

——————

SET NORTH,
EAST SUMS = 0

INPUT
BEARING,
DISTANCE

IS

YES

DISTANGE YES
=07
INCREMENT
NORTH AND
EAST SUMS
PRINT
BEARING,
DISTANCE
Y
DETERMINE
DIRECT BEARING,
DISTANCE

ADD 360°
TO BEARING

L

IS
BEARING
< 07?7

NO

PRINT
DIRECT

BEARING,
DISTANCE

Problem 7.5

4
5

RS |

)

=T N Gl Tl e

Suux]

LT S

FEM ®CURFEMCY EXCHAMGE
"EMTEFR CODE. AMT FOR 2

! "= EPJ
IHFHT Ci.AL.

"CODE .
Toapa"

IlellT C.H

IF C=8 THEHM STOP

FEM $DETERMIME FEFEREHCE
OH T OGOTO 116,138,154
R=A1

h“T“ 169

R RUDA R

o

Tl PR T R

FFIHT "ER .
FRIMT “"FR.

FOLND "1
FRAME "iv2

FRIHT "US DOLLAR "y
FRINT
S4 GOTO 58
5@ EMD
Display:
EWTER CODE. AMT FOR 3 SY5TS
1=BF. Z=FR.2=0%
1:1. T.1.8248
CODE. AMT TO COHVERT (8. @=STOF

CODE. AMT TO COHVERT <@.

Ay

=4

]
Il

STOP

128

l..ﬂ

CUDE; AMT TO COHVERT (B, 8=STOP:

|_,|

)

Printer:

Ef
EF .
FR.

WIWALENT
FOUMDO
FREARMHC

DoOLLAR

GUTWALENT

FOUMD
. FRAHC
LoLLAR

=T
[OO e -4
o U g

AMT TO COHVERT «

Appendix F: Sample Solutions to Problems 397

Flowchart:

START

INPUT
CODES AND
EQUIVALENT

VALUES

REFERENCE = | | REFERENCE =
BRITISH VALUE| |[FRENCH VALUE

REFERENCE =
US VALUE

]

l .
]

COMPUTE
BRITISH, FRENCH, US
AMOUNTS

{

PRINT
BRITISH, FRENCH,
US AMOUNTS

398

Appendix F: Sample Solutions to Problems

Problem 7.6

S

) b
o

Y

=Ty B e SN0 00 T LR Y

Fa) Toll s et
-0
hogv iy

REM ¥DIMSEBEURG DELRY
OIZF "TOTAL DELAY IWN MINUTES

IMFUT T

IF T<8 THEH 258

IF Tix=3 THEMW 1£a
I=IFeTa+]

O 1 GOTO 180, 12A.148
F=8

GOTO 178

F=T- =

X}

GATO 17E

F=-2 S+T#04 S-T#c1 S-T 850
GOTO 17

P=1

FRINT “FOR DELAY LESS THAM":
T

AN B A R AR IR IAA RN

FRINT ©
PRINY
GOTO 4
EHND

FREOEBRBILITY I3":P

Display:

TOTHL DELRY I MINUTE=?

TOTAL DELAY IM MIMUTES?

TOTAL DELAY IM MIHUTES?

THL ODELAY IH MIHUTES?

Printer:
FOR DELAY LESS THAW .5
FROBAEILITY I3
2. 2 2 -z

Fo

R ODELAY LEZZ
PROBAEBILITY I3 .95

FOR DELAY LEZS THAM

FROBEREILITY IS

Flowchart:

START

>y

INPUT
DELAY

PROBABILITY| __
=0

PROBABILITY |, |

=1

!
YES
NO
YES
NO

COMPUTE INDEX
= |P (DELAY) + 1

/

COMPUTE
PROBABILITY FOR||PROBABILITY FOR||PROBABILITY FOR
0 < DELAY < 1

COMPUTE

1< DELAY < 2

COMPUTE

2 =< DELAY < 3

1 o<

¥

Y

PRINT
DELAY,
PROBABILITY

T

Section 8

Problem 8.1

Display:

FEM $INVEHTRUWORD

DIM BFE20],.F$SLEOT. NSE21T
OI=F "BASE STRING":
IMFUT B$

IF LEMCB$ =B THEH STOF
D¥=B$C1.11

OISP “FIRST-LETTER STRIHMGY:
INFUT F3$

IF LEMCF$2=0 THEN Z8@

FOR I=1 TO LEM{F$>»

IF F$L1.13=0% THEHW 148
WE=F$CI.I1JLBS

A PRINT WH$
HEAT 1

GOTO ra
END

BERZE STRIMHGY

LLUE

FIRS
GELF
FIRE

2]

Printer:

GLUE
ELLE
FLUE
OLUEB
ZLUE

T-LETTER STRIMG?
T-LETTER STRIHG?

FIRST-LETTER ZTRIHGY

Appendix F: Sample Solutions to Problems

Flowchart:

START
—

INPUT
BASE
STRING

DETERMINE
(FIRST) BASE
LETTER

1=

YES
STOP

INPUT
FIRST-LETTER
STRING

*
NO

FORI=1TO
—| LENGTH OF FIRST-
LETTER STRING

)}

FORM WORD BY
CONCATENATION

399

400 Appendix F: Sample Solutions to Problems

Problem 8.2
Flowchart:
18 REM ¥STRRE DISTAMCES
Z@ UPTION BASE 1
36 IMTEGER HC1S3
48 SHORT O
Se DATH 4 3.5 .%.7.6.8.1.5.6.8.9
:_4A13.: 18.7.18. 8,185, 11 .
2.11.2.11.4.11.5.11.%
6@ DATA 11.7.11.9.12.2.12.5,12.
Fo12.8,13.1.13.1,17.9,14.2.1
4.5
7@ FOoR I=1 TD 15 START
SE HOl)=@
9B HEXT I
i@ FOR I=1 TO 27
114 REARD © SET INTERVAL
128 J=IF<D» COUNTS = 0
138 HCJr=HCd3+1 =
148 HENT I ;
156 PRINT “IMTERVAL STARS"
2% aF I= 0 1s
136 FRINT I-10%20. 00 oD READ EACH DISTANCE,
188 HEXT I DETERMINE
M FEIH
200 DISP "INTERNAL™; INTERVAL INDEX,
216 IMPUT K INCREMENT
226 IF K=8& THEM STOF INTERVAL COUNT
236 PRIMT "IHTERWAL"K-1:"-":K
248 IF H{K»=8 THEM 3I7@
256 RESTORE

1]
-1
®

318 MEXT I

6@ IF K=1 THEM GODTO 22# PRINT

z FOR I=1 TO K-t

28R ng J=1 TO HOID ////INTERVALS
Z9@ RERD D COUNTS
209 HEXT J

328 FOR I=1 TQ HO{K>
332 REHD Dl INPUT
358 HEXT 1" INTERVAL
268 GOTO 196 NUMBER
378 FRINT * HO STARS"
380 GOTO 196
399 END
1S
NUMBER
) = 07
Display:
IHTERUAL ¢
ig
gHTrF“HL? IS
“ INTERVAL
COUNT
= 07
Printer: [
IHTERWAL STRRS
6 - 1 5]
1 -z)
2 - 3 a
I~ 4 1
4 - 5 1
5 - & 5]
£E- 7 !
g5 - =
3 - 1a 4
%;1 - 11 7 READ ALL
R 1 DISTANCES BEFORE
12 - 14 z INTERVAL
14 - 15 a +‘
READ, PRINT
IHTERYAL 3 - 14 EACH DISTANCE
a7 IN INTERVAL
ia 2 {
1@, 8 -

Problem 8.3

b

FEM #Z0—-KM SFECEDS
DIZF "Z2a--kEM TIME":
IHFUT T#

IF LEH TI- # THEHW STAF
[

AR

= CTEL
THEH 1451

VO T e e P e
MUNAEMUIDARRY

C1=1 THEH 1?£
=UALCT#01.C1-110
UHL T$[|1+1 el

DAIBAID-)

I:I/::l'_n.?IHH|7|HIfII

] L0) e

G
l_.,lITll =y}
Ci=n
GOTO 139
EHD

R e el

oA O]

— 0 00

Display:

8- }F’l TIHE
S

FEED ~L'm--"€.f.- = 5

LA
&
[ng
&
[xa)
L]
I
]
[x}
;
.
L

28-ki WINE
125

SeeEn 7 7EAZ4E9ITES
20-kn TINES

1:38:2

SPEED tmr3y = 5. SE549:TE186

Ze—kM TIMET
2644
SFEED fmrz) = 15, TRIZ41S553

Ze-kKM TIME?

Appendix F: Sample Solutions to Problems 401

Flowchart:

START

Y

INPUT
TIME

YES

STOP

INITIALIZE
PARAMETERS

!

FIND FIRST
COLON LOCATION

IS
FIRST
LOCATION
= 07

_YES

FIND SECOND
COLON LOCATION

{

SECOND
LOCATION
= FIRST?

IS
FIRST

LOCATION
=17

YES

SET FIRST
LOCATION = (

YES

DETERMINE
NUMBER OF HOURS

| «
Y

DETERMINE
NUMBER OF MINUTES

!
y

DETERMINE
NUMBER OF SECONDS

{

CONVERT TIME
TO SECONDS,
COMPUTE SPEED

v
DISPLAY
SPEED

402 Appendix F: Sample Solutions to Problems

Problem 8.4

FEM FUOUHTING

ODIM WELERT

WE=" ZERO IHE THD THREE
FOUR FIVE SIX SEVEN EIG

HT HINE "

FaR I=a 70 3

1 TO 3

Gl =

™

- T £
]

.

i THEM H$="" ELZE H$=W$

N R 7R |

DN RV A RS o]
)% S S O

O
)

Problem 8.5

FEM $#5FREIHELER
OFTION B
oM Dos,
FOR I=1 TO 5
FEAD O0I, 10 .00T.20,0C1.35.00¢
I.49%

N i =
& D

x4
o]
=
T
-
I

=l
[av]
-
I
-
I

HE="ABCD™
FEINT " FT (]
DIZF "WIOTH. P
IMFUT W.F

FRINT

FREINT WiF;

J= MIN (5. IPCP-S-1132

IF J<1 THEH PRINT " TOO LOW"
G070 118

FOR I=1 TO 4

IF W<=0¢J. 1> THEN ZzZ9

HE®T 1

PEINT * TOO WIDE"®

GOTO 11@

FRIMT " NOZZLE ";H$LI.ID
GOTO 118

END

21 HOZZLE!
RESSURE™

[A I NN SR RN R a]
RS20 I

b b b s

Bl N = DO 0
QIO

PP D P B e b s

Display:

WIODTH. FRESSURE?
158,73

WIDTH. FPRESD
143,75
WIDOTH,
146 .64
WIDTH.

LURE?

Printer:

m
-

FSI MOZZLE

p
b
o

Fio oHoZzZLE ©

—

H
5
= %
T
o

7S OHOZZLE B

MOZZLE O

Display:

ZERD

OME

TUWI

THREE

FIVE

SEVEH

EIGHT

HIMHE

OME TERD

OHE OHE

OME THO

OME THREE

OHE LR

OHE FIWE
Flowchart:

START
READ
ARRAY OF
DIAMETERS
i

INPUT
WIDTH,
PRESSURE

PRINT
WIDTH,
PRESSURE

DETERMINE
PRESSURE
INDEX
YES PRINT
“TOO LOW"
NO
| FOR NOZZLES A
THROUGH D
PRINT
NOZZLE
SIZE

L{ NEXT NOZZLE |

PRINT
“TOO WIDE”

‘:

Appendix F: Sample Solutions to Problems 403

Section 9

Problem 9.1 Problem 9.2

T RADIXE (a)
IMTOD+ . 50
& =TER 3

REM FAR
DEF FHCOR:
FORE I=3256 T0
DISE T.FHCOT:
HE=T 1

EHD

| !
o e O S RN TR LY [N R A, W

B

(b)

g
=

[y Y

LA B e B e] Gad Gl T T P s e e S
D)

R3S OO OO R VRN XY 3N

i
-
[

(b)

-
Y
el
m
=

FROUND TO T DECIMAL FLAX .

ES Display:
F FHRZCOr = IHTiD¥100a+ S

]

Y]
=
o]
m
i

FOR i=1 TO
DISFE I.FHE
HEXT 1

EHD

1 STEF .5
20 O]

DA

z
4
5
[

;f 3 Problem 9.3

5.5

[~ FEEM #FIHD HYFOTEMUSE
H ITHRFLT =

DEF FMATH

o= SRR

AT RN D

I
2 4 FOR I=t TO %
2 S ITHFPUT %
e &8 DISP FHACH
2.5 FE OHERT I
1 28 EMD

404 Appendix F: Sample Solutions to Problems

Problem 9.3 (Cont) Problem 9.5

Display: 1A REM ¥FACTORIAL FH

IHFUT
DISE . FHF
LOTO 1A
OEF FHF<A?
F=1
FOR P=f TO 1 STEP -1
F=F%F
HEXT P
FHF=F
FH EHD
END
Display:
s TEE
Problem 9.4
(a) 18 REM #0CTAL TO DECIMAL FH
28 DEF FHNDCOT :
30 D=102Q6052R2006 1z
40 12 AFEARLE AR
So 00 i
68 p 18
e 18
30
an THEH Sb
1Ra FHO=7%
119 FH EHO
(b) FEEM $OCTAL TO DECIMAL FH
DEF FH :
0= 1 0OEEERE
:3 THEH DISF "IN
OCTALY @ FNOD=A
e
=1e)
an
180 =1 THEH 5@
118 FHO=5
1260 FH EHD
120 OISF "INFUT OCTAL HUMEER®; Problem 9.6
148 IMFUT IS
158 DISF FHOCIS)
16@ GOTO 148 16
178 END
2
20
48
Display:
Sa
689 DISF "INFUT HUMERIC U "
IHFUT OCTAL HOMBER? S INPUT H ALUE
z 36 DISF FHRZ$ (i)
R GOTo 76
18@ END
FOSITIWE OCTAL
e Display:
INFUT FOSITIYE OCTRAL
[
o IMPUT HUMERIC WYALUE?
255 134 2278
172 $1324 93
217 158
e $158 . ag

Appendix F: Sample Solutions to Problems 405

Problem 9.7

Flowchart:

19 REM FARREAY REOUTIHESY
; OFTION E 1

e 0OIM Acit,
48 DISF "MAY ARRAY SIZE IS 18 R START
OksS BY 5 COLUMHS"

Se QISP "HUMBER ROMS, COLUMNS®
8 INFUT R1.01
TH OREM ¥IMITIALIZE ARRAY INPUT NUMBER OF
gR RIZ=R1+1 @ C2=01 ROWS, COLUMNS
94 FOR R=1 TO
188 ; =
11
1268 T @ ADD 1 TO ARRAY
Lae AT R _ . DIMENSIONS FOR SUMS
14@ REM $ENTER DATA. OHE WALUE A
T A TIME. BY ROM }
156 FOR R=t T0O R1
168 DISF “IMFUT DATA IN ROW":R INITIALIZE ARRAY
l7m PR C=1 T0 C ELEMENTS TO ZERO
128 IdFUT AR, 0O
19@ MEXT © ;
20@ NEXT
21l F 00 YOU WAMT TO SEE THE INPUT ARRAY
ORATA TAELE BEFORE SUMMING < VALUES
Y¥OOR Mt
THFUT H$;
THEH 318

S CHAMGES <Y OF H3" VIEW
THFUT B$

_apn 1 210 ARRAY BEFORE
EehE ain EM 21E SUMMING?

“MHFE CHANGES™;

GOSUB A |

FENM %COPY ARRAY
5P "COPY TAELE OM PRINTER
i1 At CF DR DO
] THEW CRT I% 2
FOR R=1 TO ES

\Jv‘i
DISP ACR.C) 7 GOSUB B]

HERT ©
MORE
CHANGES?

DISF

HEXT R

CRT 1% 1

FETL 1 NO

REM #3UM EACH ROW AND PLACE [GOSUB C 1
SUM IM LAST COLUNH.

FOR R=1 TO R1

'
%T?_?kf (RLC r47 GOSUB A AJ
¥

FEM £SUM EACH COLUMH AHOD FLA
ZUM OIW LAST ROW.

W0 00 = T L g = RN
PR O DN

RETURH

REM ¥CHAMGE ELEMENT

DISF "ENTER ROW. COLUMH. VAL
UE"

IHPUT R.C.4

ACR.Ci=V

o R R

my=
DD

Ananen e
D |
2w S

ro= D W
DO D AR

[t

]

1l

I

el

bl

£

+

o o]

eal

[o SR TR R R

MORE
CHANGES?

HEXT @
REM ¥FIMD =M OF YALVES IH L
H“T FOW COR C

DT Om T
[o TN e W I N |
o U

T C
OISF “"SUMMIMG COMPLETED"
RETURHN

R R

WPy = &0
AR

406

Appendix F: Sample Solutions to Problems

Probiem 9.7 (Cont)

Display:
MAX ARRAY SIZE 15 16 FOMS BV 5 0
DLLMHE
MUMEER ROWS . COLUMHE
INFUT DATA IH ROW 1

14 72

IMFUT DHTH IH ROW &

11.43

OATA IH RO 2

14 as
0O o WAMT TO SEE THE DATA THEL
E EEFORE SUMMIMG <Y OF N7

oy
COPY TRELE 0OH FRIWTER OR DISPLRY
P UR On7

o
1z
11
13
5] i@
AHY CHAHGES oY OF H> 7

¥

EWTER R, COLUMH. YALLE
1.3.14 &7

MORE CHAMGEST

H

SUMMING COMPLETED

COPY TABLE OH FRINTER OF DISFLAY
CF OR D%

o

CHAMGES?

H

Printer:

14 67 4@ 95
43.7% 7V.°F7
14.25 41.28
T3.43 1so

Flowchart (subroutines):

SUBROUTINE A

COPY
ARRAY ON
PRINTER?

YES

DISPLAY
ARRAY
Y
| CRT IS 1]

RETURN

SUBROUTINE B

LG

/

INPUT ROW, COLUM
NEW VALUE

i

%

ASSIGN ARRAY
ELEMENT NEW
VALUE

RETURN

SUBROUTINE C

16

FIND ROW SUMS
AND PLACE IN
LAST COLUMN

!

FIND COLUMN SUMS
AND PLACE IN
LAST ROW

!

FIND TOTAL
SUM

RETURN

Problem

Pt
L

RESDA I S |
MUY

WO 0 =T
TS T

D0 I e b e b s ke e
DRO® DROO NG LGN =D
—_DE W=D S S @
OHD DEDEQ

M,

R
M
D)

283

9.8

CIM I#CZ23.F$C10. MEL260HR]
DIZF "CODE OFR DECODRE: © OR D
IMFIIT F3

IF F#="C" THEHM L=1
ODizPp "CODE HUMEER F
ITHFUT =
ERHDOMIZE =

fE=n
OISF "TYPE MESSAGE OME MWORD
AT A TIME. TYPE '#%' TO EMD N
ESSAGE"
OISk "GIWE ME
IHFUT I%

IF I#="%" THEHM 18
OH L GOSUE 1885, 2800
ME=MELCEa" "
GOTD 11@

OISF M¥E
EHD

REM KEHCODIMNG
Cg=nu

FiR I=1 To LEHCI$)
CE=C3LCHRECSS+INUM(ISEI, I
+INTC26XREND Y > MOD 253

HEXT 1

RETURH

REM #DECODING ROUTINE

Cg=nn

FOR I=1 7O LEHMCI$>
CH$=CH+&CHRE(SS+INUMCTISLI. I
—IHT(2a¥RHOM> MDD 262

MEXT 1

RETUREH

ELSE L=z
LERsE"

ASE

s

YOUR MESTAGE"

FEOUT IHE

Appendix F: Sample Solutions to Problems 407

Flowchart:

START

DIM WORD STRING,
MESSAGE STRING

{

ENCODE
MESSAGE?

I L=2 Bl
INPUT CODE
NUMBER

!

RANDOMIZE USING
CODE NUMBER

1
Y

INPUT ONE WORD
OF MESSAGE

DISPLAY
CONVERTED
MESSAGE

END

ADD CODED WORD
AND SPACE TO
MESSAGE STRING

408 Appendix F: Sample Solutions to Problems

Problem 9.8 (Cont)

Display: Flowchart (subroutines):

CoDE OFR DECOOE: © OF [

En:nm: MUMEER PLEASE SUBROUTINE A
123
TYFE MESSAGE OME WORD AT A TIME .
_TYFE k' To EWD MESSAGE ENCODE WORD
31\.5 ME YOUR MESSAGE USING ENCODING
cer FUNCTION
ME
To RETURN
THE
§HNh
O
jmg
Z.{
EWY SC SR OYGE ZSWD M@ WHME

SUBROUTINE B
COGE OF DECGOE: T GR G DECODE WORD
D USING DECODING
CODE HUMBER PLERSE FUNCTION
1z
TYPE MESSAGE OHE MORD AT A TIME . d
TYFE ‘4’ TO EHD MESSAGE RETURN

GIYE ME YOUR MESSAGE
ELL

He

UHME

*
GET ME TO THE EBAME OH TIHME

CoObE OF GECODE: C GR D

il
CODE HUMEER FLEASZE

?V HGE OME WORD AT A TINME .
T" T EMD MESSAGE
GIVE ME YOUR MESSAGE

IGPHR

ROF
BVE

%
SYLYESZTER WHERE ARE v0OU

Appendix F: Sample Solutions to Problems 409

Problem 9.9

YFH

TOUT THES

FEN

SUIMITY GOSUE
SUIMPUTY GOSUE
SUCORY-R" GOSUR 32
"CHANGE" GOSUE 46
SUEUMT GOSUBR S1@

e LD 00 Ty L el P
DA RN

Y
EEY LAEBE
GOTO 114
ODISF "NUMBER ROMS., COLUMHE" W
IHFLUT R1.C1
PEN $INITIHLI”E AREARY

L Array initialization routine on @

AR A R T AU

1
1
1
1
1
1
1
1
1
i

= W00 T U B L)

[N

DISP “ARRAY TNITIALIZED. HOM
INFUT YOUR DATA .

RETURN

REM %EHTER CATA. OHE VALUE A
T A TIME, EY ROMW.)
FOR R=1 TO R1

DISF "IMFUT DATA IM ROWY:R
FOR =1 T0O]

IMPUT HOR, O > Input data routine on .

29@ HEXT R
3@e DISP “ARRAY IS FILLED. DATA
IMPUT COMPLETE.™
318 RETURH
aze *Y ARRAY A
33a JFY TABLE OH PREIMTEER
CF QR Do“;

THEHM CRT I3 Z

o Lo Lo L) Led)
- B e K Y F o A [N
U AR

R . Display or print array on .
428
438
440

450 RETURH
46@ REM $CHAHGE ELEMEMT
478 DISP "EHTER ROW. COLUMN, WAL

e
azm THPUT R0,y Change array element on '
498 AL, 0=V

589 RETURN

S1@ REM #5UM EACH ROW AHMD FLACE

SUM IM LAST COLUMN. W
528 FOR R=1 TO Ri
538 =1 TO 1
549 ACR,C23+AIR.
s5@
Sca 3
S7a REN #SUM EACH COLUMN AND PLA

CE SUM IM LAST ROW.
588 FOR C=i TO C1
96 1 T0 R1 ; [:]
2oe R heE e AR oo > Find sum of rows, columns, and total on .
618 HEXT F
€28 HEXT ©
630 REM ¥FIND SUM OF VALUES IH L

AST ROM COR COLUMNY

CEY+RIRE.)

HEXT C

DISF “SUMMING COMFLETED”

RETURM

The key labels appear on the display and the program
waits for you to press a special function key. In this pro-
gram, you must initialize the array before you do anything
else. So, first press @ and answer the question that
________________________________ appears on the display for summing the rows and columns

S
INIT IMFUT COPY-A CHAHGE of some tables of your own.

410 Appendix F: Sample Solutions to Problems

Section 10

Problem 10.1
it REM $HATIOHAL SUMMARIES
200 FRINT USIHG 28
29 IMAGE * POPLLATION" .S, "ARE

A FOF DENZ".-

4@ FRINT MG 58

S& IMAGE "AHHUAL GHF“. SH. "GN
F-PER
FRINT MG 76
IMAGE)

ODISF "HRTIOH"
THPUT M$

R It I x4
IS S &SR

1@ IF LEH¢HE =90 THEM STOF
11 DISF “POF. AREA. GHPY;
126 IMFUT P.R.G
138 FRINT USING K.~ <" ; N§
147 FRINT USING RGPS
158 IMAGE ¥
i
156 FRINT USING 17O & GiGoP
17a GE " #".DC20CE0CE0CIO0. ¢
L 2OCEDS
LOTO =6
END
Display: Printer:
HATIOM FORULATION BRER POP DENS
: FNHURL GHF SHF . PERS
CHINR —— 77 TTTTTTTTTTTTTTTTo
¥ 365,133,558 %, S6@, 298 8.5
UMITED =7
FOF. ARERA. § BoE. aEA § 253
21681 7HAN, REEIP
HATIOH HNITED STATES
2
Z1E.S817.088 2. 353,123 23z
23459142, 9976139, 19572500804 £1.751,400, 000,008 § B, 21
HAT IOH

IMGHFUORE
FOF. ARER

NATI

MOMGOLIA
POF, RREH.

o
o
-4
on

HATION

J
w
I
oY

GATAR
FOF. ARER. GHMF?

FEPIZ. 110840, 4044000004
HATIOH 1,331,240 1,565, 0pg 1.8
?

Appendix F: Sample Solutions to Problems 411

Problem 10.2
Flowchart:
HMETERS
COHITS: ALM.LT
TYRLLUE comma UMITS": START
; (g3
2 UE="M" THEH 1748 >y
14 v L% THEH 198
i1 INPUT
1z
158 L=Mr3 46E15 MEASUREMENT VALUE,
149 PRIMT USIHG 158 & AsMab UNIT
158 IMAGE Z2¢0.30E. x> 1
1 GO0TO 7@
1 1ERGOAAEA0R
1 G 122 o - YES
‘-:-\' GDTG-.-1.3:3-_‘.E15#.lwﬁr_maiaat_ﬂ.ua I A = VALUE X 101"4}—
Zi@ EHD
NO
YES A = VALUE X
9.460 x 10% x 10™] |
NO
[A= MEASUREMENT VALUE |
1
Y
Display: r M = A/10]
[L= Mm9.460x 10 |
WHITS: .M. L
‘-.-'HL___ L_IE RCUTE UHITES PRINT
g' : comma DHITST A M L
LHITS? l

5. &E

WALUE comma UHITS?
1E-14.H#

WRLUE camms UHITS?
17888 i

515 L
WALUE commas MHITES?

Printer:

412

Problem 10.3
18 BEN FCHECKIHG ACCT
2B DISF "REFEREHCE DATE"
36 IHFUT Ts
48 DISP "BEGIMHING BALAHCE"
S IMFUT B
56 PRINT fOFOR Y TH
78 FRINT
38 IMAGE ; : CHG DEPOSI
TS BALANCE
9@ FRINT USING 10
183 IMAGE _y
118 FRINT USIHG 244, 00002 00"
=
126 OISP “TRAMSACTION .00, AMT
136
14a
15
16
170
196
196
208 PR JSIMG 218 5 AGFLE
219 I[MASE OCOOZ 00,29, .00, 117,08
ooZ . oo
228 IF B« PRINT USING 236
220 IMAGE ~"FEMARHING £°, 4%42
OO, " OYERDRAFTH%" -
Zam GOTA 12R
50 E=E+R
2e@ PRINT USING s AUE
278 IMAGE 12%.2 OCODZ . o0
228 |_,|1T“ 126
9% END
Display:
DATE?
BEhIHHIHu ERLANCE?
CC.D3, AMTY
CCLDy. AMT?
fPHH«H{TluH CCLD3. AMTH
0,55 45 .
TRAHSACTION <C.D3. AMTY
£,185 4%
TRANSACTION ¢C.D¥. AMT?
0,255, B
TRANSACTION (C.D3, AMT?
Printer:
SUMMARY FOR JUHE 1373
CHE DEFOSITS BALANCE

Appendix F: Sample Solutions to Problems

Flowchart:

START

INPUT
DATE,
BALANCE

{

PRINT
DATE,
HEADINGS

~{
INPUT

CODE,
AMOUNT

YES
[CHECK CHARGE = 0]

IS
BALANCE
< 2757

| CHECK CHARGE = 0.22 |
1

|
CALCULATE

NEW BALANCE

/& /

PRINT
CHECK,
CHARGE,
BALANCE

IS
BALANCE
< 07

PRINT
OVERDRAFT
WARNING

'

CALCULATE
NEW
BALANCE

Problem 10.4

T £

Printer:

[
[L N e

[y

F=OtHESIHNORI

FRINT H:THE
H=H+1
CoTo i
EMD
P~ o

Section 12

Problem 12.1
14 REM ®¥CTARDICIOD
28 FEH 1 ® GCLER
i LE -2.1.-
46 R
5@ FOR T=8 TO 2%FI STEF FI-Z25
68 MOUE @
78 E=1-C0
28 ORAM R#* L Tr REESINCTY
39 HEXT T
188 END

Appendix F: Sample Solutions to Problems

Problem 10.5
18 REM iME
28 UA K
17 1
4, 1.
@ O b
B F‘
3

e

i THB

F =
A
=~
m
&
=
—

Printer:

[Lol ST iy y St Ny SR B O R LY (gt

e = d T N G

-

Vi

1o el

L o5
e b e e et s

4+ ++ + 4+ 4+
2

P
i

413

414 Appendix F: Sample Solutions to Problems

Problem 12.2 Problem 12.3

10 FEM #FTLL STHOS. M
R GILERAR
: k]
4@ 4 SAEPTL4EPT . - 5015
S8 s .05
ci & CFLB
RG] ~4%FI TO 4%F1 STEF FI-
g@ 3 STER PI-2
26 —44F1 THEN MOUE 3. S1HLY
9@ DREAN H. STHOM:
186 MEXT ¥ g THEH 1
118 END 1868 ORAWN 1L SINCH
118 MOVE .80
128 ORAM #.5
138 NEXT ¥
148 END
Display: Display:
g 13
. ;
Problem 12.4

Run two programs back to back. The

. statement in the first program would be:

The

statement in the second program would be:

Before you run the second program, copy the graphics screen onto the printer. When you copy the graphics from

the second program, without advancing the paper, you will have a spiral twice as wide as the original design.

Problem 12.5

P

EpR ® FEH 1

T

i
3
4
s
z
9
a

1

11
12
13
14
1%
1€
17
1a
13
28

g

L =R TO
MOWE -1.3.°7 :
LHBEL WALFIY
HE®T

REM ®#PLOT HISTOGRAMX%
H=1
F

az

c

SRR

MOVE &.@&
FOE

FFHF O M-R
PEIMT R.IHT(DH19844+ S~
DrRAW K. D

IDEAL 1.8

HEAT R
OrAMW 11.4@
OEF FHFIZ»
F=1

FOR I=x TO 1 STEF -1
LET F=Fi%I

REM #DISTRIEBUTION OF HERDE®

FRINT "# HERDS"."FROBAEILITY

FiHy - CFHF R)

1

=
i)

» —t — ; T
H ® 1 2 3 a4 85 & 7 & E)
Printer:

HERDE

=]

!

4

,’5

1@

[
o)

Eogn|
DA

LI RN W) |

0D D

@@

ad P et (S0 CO) Ty LA B G PO
PR DA DDA DR

!
1
i
1
1
1
i
1
1
1
2

R I NN -
o bbb

498 D$L¥. XK1=
506 R$LCY. M=
518 ! BLANK 0QUT OCCURREMCES OF L

Appendix F: Sample Solutions to Problems

Problem 12.6

REM ®X¥d HAMGMAM ¥ii%
ODIM (130, 0$C25 . KSL2ST. AFL2

£3.0%C52]1.C$C13 . GFC1T, BFLEL]
INTEGER ¥i142)

RE="agbcdetahiikimnorartsuy
»ZABCDEFGHT JKLMHOPARTSUNVKEY S

It=1
GCLEARR @ CLERE

SCALE -5.35.-184.28

DEG

ODIZP “"HRAYE A FRIEND ENTER R
WORD-—-AT MOST 23 CHARACTERS.
SPACES HOT ALLOWED--MO FEEKT
WG

DISF “"WORD™;

IHFUT R¥

IF POSCA%. """ #@ THEM 104
CLEAR CLEAR ALPHA DISFLAY
GOSUBR 538 ' DRAW SCRFFOLD
L=LENCA$?
Li=12-IMTL<22%1 .25
R$L1.253="
O+L1
B$L1.

ML

d=a
o$sCL . LY=" -

MOVE L1.-2

LABEL 0%

MOVE -5.-4 ® GOLERR -2
LABEL “HWHAT IS YOUR GU
MOMVE -5.-5 ® GCLERR -4
LABEL OU HAVE “SVAL$IE-CO&
* GUESSES LEFT" ® MOVE -5.-82
Cg=von

IMPUIT C#

H=POSiQF.CE2
THEM ZzZ56
& THEHW 37a

C$=R4C%. %1

X=POS(B$,C33

IF ¥=A THEN 43@

DISP "vOU TURKEY! ¥OU ALREAD
¥ GUESSED THAT! NOW TRY AGAI
Mo

456 BEEF

418 WAIT 4894

426 GOTO 284

438 BEL I+C+13=C%

446 ¥=POS{RE.CE>

4568 IF ¥=8 THEN 74P

46@ H=1

47 J=J+1

488 ! CHECK T0 SEE IF THE 3AME L

ETTER OCCURE MORE THAM ONCE .

ETTERS TD CHECE FOR MORE.

520 XONY=K

530 X=POS(R$.C$)
548 IF ®=06 THEN 5&0
556 B$L 1+C+13=C$

M=N+1

GOTO 47a

FOR I=1 TO H

MOVE L1.-1

FOR I4=1 TQ X<{Ix-1
IMOVE 1.27.@

HEXT I4

LAEBEL C#

! RESTORE WORD T ORGINAL FO
M.
RECKIT . X1 21=CH

MEXT I
IF J4<L THEMN 2Z8@
BEEF

DISP D" AW SHUCKS! You HI
(L

(Continued on next page.)

415

416 Appendix F: Sample Solutions to Problems

Problem 12.6 (Cont) Problem 12.7 (Cont)
TAA WAIT 1699 s
71@ GRAPH e
720 WAIT 2008 o
738 GOTO 828 H
748 DISP C$:" ——WRONG! (111" i1
756 WAIT 4G9 i
TER C=0C+1 i
776 GOSUE 93@ Pyl
780 IF C<6 THEM 289 flom BELT &
798 BEEP =
206 PRINT "HA HA'! T WIN!!1® =
21@ PRINT "BY THE WAY. THE WORD
WAS RS !
228 OISP D0 ¥OU WANT TO PLAY AG 1
AIN (Y H»o" h
230 INFUT C3 i
248 IF UPCH:CEI="Y" THEN 5@ .
asm IF UPCSCCEI="H" THEN &7@ !
269 GOTO 24 s
a7@ END i
289 | DRAW SCAFFOLD !
256 GCLEAR 1
apa PENLP h
21@ MOVE 8.1 't
3z IDRAW —1.8 @ IORAW 8,18 :
33a .® @ IDRAW @,-3 @ IDR

a

g

5]

]

%]

[

r

@

a

@

@

@

%]

a
_ @ MO
249 IDRAN —6.8 @ IDRAW @.-17 FEh .
9508 IMOVE ©.14 ® IDRAW 3,3 B GOSUE @68
96A IMOVE 1.9 ® IDRAW -4,- @ MOUE =d4@.124
97@ RETURN @ GOSUE IR
386 ON C GOTOD 99@.1139,1179,1218 a
a
a
@
%]
&
a
@
@
@
@
@
a
@
a
5]

21250, 1386

MOVE .
GOSUE ’UBB

228 | DRAM THE HEAD

1668 Y=C05(45) T

e hoeE” REM ¥ORAW CLAOUOS
1220 MOVE 14,15 XFi1S 199.0.158

1838 FOR I=1 TO 2 e

1849 IDRAW -Y.-?
1854 IDRAW -X,-Y
18ed IDRARL X.-Y
1673 IDRAMW Y,-%
18862 ¥=-¥ @ Y=-¥
1999 NEXT 1

1tad IMOVE B.-
1118 I10RAKW B,-.2
1129 GOTO 1348
1133 ¢ DRAW THE LEFT ARM.
1140 MOVE 14.12 .5

XAXIS
MAXIS 21325
KARIS 17@.8.145
®KAXIS 185.8,
LOTO 5eaa

FOR I=1 T0O 2
BPLOT T#.,1

NEXT I

FRETURN

3@l FOR I=1 To 4

fd P = O Pl = (R L0 00 =] T N e o= iR 00

[OV % Rl T) Vo S ey S S OV A Y
TDRTANANL DB S B LD BB

2 5 28163 BPLOT T#.1
1158 IDRAW -3,-2.5 = ‘
1168 GOTO 1349 3029 MEXT 1
1178 | DRAW THE RIGHT ARM. 20328 RETURN -
1186 MOME 14.12.5 SBRR REM ¥EBFLOT MAM IH MODHX
1199 IDRAW 2.-2.5 5818 DIM MSC4€].M23L63]
1z@@ GOTO 134@ 5828 MOVE B, 131
1218 ! DRAW THE TRUNK 583 GOSUE 5148
1226 MOVE 14.12.5 3848 BPLOT M$.Z
1223 I0FAW B.-4.5 S@856 REM XMOVE MOOH
1248 GOTO 1240 3064 FOR Y=191 TO @ STEP -1
1258 | ORAW THE LEFT LEG Se7e FOR <=8 Ta 255 STEP ©
1268 MOVE 14.2 SazE WAIT 1008
1278 IDRAW -3,-5 SA9E MOVE .Y
12688 IDRAW -1.,9 5188 BPLOT M2$.3
1298 GOTO 1348 S1iG HOVE M.Y
1388 | DRAW THE RIGHT LEG Siz@ NEXT ¥
1312 MOYE 14,8 S132Z08 HEXT ¥
1226 IDRAW 3.-5 5148 M$="edr 47R%edxR [RIMorofirEE
1334 IDRAW 1.8 ESol S 4 A0l ?x7el A4
1348 RETURN 5158 M2$="ppAFF47ECSardfusAg izl

loTand4¥hAbE 4RSS <oRP _SE_4__4
(TiCE R PR il g B gl TR B

Problem 12.7 316a RETURN

EEM YCREATE LAWDESCHPE
FEM 1 © GCLEAR

d

e o S N e L
OO+ DD DG

-

Sp QS N g G P S

CEG

SCALE 0. 255.5, 191
FEEM #DPHu MUUNTHINS
PEHLIP

FOR R=-15 T 255 =
FLOT A+15.58%(COS(

NE=T R
FEMLIP
FOF E=
FLOT F

LA IDAREE AN A A DANA]

Index

Bold page numbers denote primary references; regular page numbers denote secondary references.

A

AES (absolute value), 65, 66

Accessories, 327-332

A% (arccosine), 72

Active keys, 363

Adding statements, 104

Addition (+), 49

Advanced plotting (see EFL1T), 229-245

Allocating memory to program variables, 107

ALFHA, 189

Alpha display, 217

Ampersand (%), 58

Ak operator, 61

Antilogarithm, 71

Area of circle program, 121

Argument, 65

Arithmetic, 49

Arithmetic hierarchy, 51

Array concepts, 129-130
Lower bound, 131
One-dimensional, 129
Subscripts, 129
Two-dimensional, 130

Array elements, 130
Assigning values to, 144-146
Tracing, 247-248
Array variables, 55
Storing and retrieving, 310-312
Arrow keys (cursor positioning), 23, 44
(arcsine), 72
f 1GH#, 302-303
Assigning values to program variables, 97-98, 144-151
From the keyboard with IHFLUT, 94-95
With LET, 97-98
With EERALD and DR TH, 147-151
Assigning values to variable names, 56
Assignments, 97-98
“At” symbol (i#), 99
HTH (arctangent), 72
FTHZ (arctangent of x,y coordinate position), 72, 73-75
AL TO (automatic statement numbering), 33, 86
key, 33, 86
Futo=s1 (autostart program), 22, 284, 323
Averaging program, 33
Axes drawing programs, 194-198

B
Backing up discs, 291-292 Man in the moon example, 236-244
key, 44 Moving a figure on the graphics display, 239-242

Fast backspace ((SHIFT) (%)), 44

Backspace with graphics mode input, 222, 223, 228
Backwards spelling program, 140
Base conversions program, 249
BASIC language, 82-83, 367-379
Predefined functions, summary, 372-373
Statements, syntax summary, 374-379
Syntax guidelines, 85, 371-372
BASIC programming, introduction, 82-90
BASIC typewriter mode, 39
EEEF, 96-97
Chime program, 168
Key of C Major program, 167
Binary programs, 287
Blank spaces, 176
EFLOT (byte plot), 229-245
Condensing the string assignment program, 235

C

Procedure for building the string, 230-232
Using the string with EFLOT, 233-234
Brackets, 51, 132, 135
Branching, 113- 127 157-171
Computed ©: :
Computed 07T,
Conditional (IF.
Defining functions, 157 163
FLRE-HEXT loops, 120-126
Special function keys, 166-168
Subroutines, 163-165
Unconditional (Z07T0), 78, 118-120
Brightness, display, 42, 339
Buffer, 302-303
Buffer number, 302, 303, 304
Bytes, 105, 151, 152, 256, 300, 364

), 113-118

Calculator mode, 22, 49, 56
Calendar Functions program, 28
Canceling key assignments, 168
Capital letters, 39
key, 39-40
Cardioid program, 206-207
Carriage return and line feed, 175-176
ZHT (catalog), 31, 273-274
Cathode ray tube (see also, CRT), 14, 22, 42, 189-190
ZEIL (ceiling), 65, 67
Celsius/Fahreinheit conversion program, 116
CHAIH, 284-286
Character codes, 362
Character conversions, 142-144
CHE%, 142

{1, 148
‘iFl ¥, 143

Character set, 40, 362
Character strings, 55
Checkbook balancing program, 85
Checkmg a halted program, 252

b READ#, 313
¥ (character) function, 40, 138, 142-143
Clrcle approximation program, 204
Circle program, 192-193
Cleaning, general, 353
CLEARR, 24, 83
key, 24, 43, 106, 222
Clear to end of line ((=LINE)) key, 24
Clearing main memory, 84

418 index

Clearing the display, 24
Clearing the graphics display, 191
Clock label program, 214
Closing a data file, 303
1t (common), 131, 133
Comma, 53, 91, 175
Insert commas program, 162
Replace decimal point with comma program, 161
Commands, 83-84, 262-263, 317-318
Electronic disc, 317-318
Mass storage, 262-263, 317-318
Non-programmable, 84
Programmable, 84
Syntax summary, 374-377
Common antilogarithm, 72
Common logarithm, 71
Compacted field specifier, k. (with IMAGE), 180
Computed GiZUE, 1656
Computed G270, 118-120
Concatenation operator, % (string), 58
Conditional branching, 113-118
Conditioning the tape, 277
CHHF LG (configure), 319-323
Conservmg memory, 152-153, 256

D

COHT (continue), 106, 107-108

(CONT) key, 31, 106, 107-108

Control characters, 40, 262

Control ((CTRL)) key, 40
SOFY, 41, 190, 291-292

kaey, 41, 106, 190, 222

Copying files, 291

Copying discs, 291-292

% (cosine), 72

T (cotangent), 72

1TE, 301

Creating a data file, 301-302

Creating a program, 32, 84-85

CRT (cathode ray tube) display, 14, 22, 42
Brightness control knob, 337, 339
Graphics display, 189-190, 191, 217
Service, 355

T 1%, 183-184

(cosecant), 72

CTHFE (condition tape), 277

(control) key, 40

Cursor, 21, 44

Cursor positioning keys, 23, 44

Curves, 204-207

I'H (with FEARD), 147-150

Data cartridges (see also tape cartridge), 35
Data file (see also, file), 299-314

Data precision, 55, 367

Data storage, 300-301

Data verification, 313

TE, 63

ebuggmg and error recovery, 247-256
Decimal character codes, 40, 362

Decimal to octal conversion program, 159-160
Decisions with branching, 113-118
Declaratory statements, 82, 83, 115
Declaring and dimensioning variables, 131-134
F FH (define function), 157, 159
Default error processing, 75-76, 109
Default mass storage location, 264, 267, 271
DEFAULT OFF, 76, 109

ALILT OH, 76 109

Default values for math errors, 75, 381

[(degrees), 72

Degrees/radians conversions, 73

Delaying program execution, 108

Delete (m typing aid key, 103
Delete character ((-CHAR)) key, 44
Delete line ((=LINE)) key, 24, 44
Deleting program statements, 103-104

E

Delimiters, 175
Device addresses, 183-184, 264
Disc drive switch, 264
Device codes, 183-184
Digit separator symbols (with
Digit symbols (with IM#HGE), 177
[+111 (dimension), 131-132
Directory, file, 273
Disc drives, 264-267
Device addresses, 264-265
Drive numbers, 265-266
DIzl FREE, 274-275, 276
DIse (display 91-93
DISF USING, 175, 181-182
Display, 14, 22, 42-45
Brightness control, 42, 337, 339
Editing, 42-45
Formatting, 175-187
Graphics, 189-190, 191, 217
Service, 355-356
[1I% (integer division) or -, 50
Division (), 49
Dot matrix, 85, 219, 371
DREAL, 203
Drawing coordinate axes, 194-198
Drawing curves, 204-207
TE (degrees to radians), 72, 73

E (exponent), 54, 179

eX, 71

Editing keyboard lines, 44-45

Editing programs, 103-109

Eject bar, 28

Electronic disc, 11, 261, 317-324
Commands and functions, 317-318
Configuring, 319-323
Errors, 321, 386

ELZE, 116-118

EHO, 32, 83

key, 34, 87

End of file and record marks, 303, 304, 307, 308
Errors, 306, 307, 309

Entering long expressions, 42

Entering program statements into main memory, 87

" Entering a program, 32, 85-88

EFZ (epsilon), 67, 70

Equal to (=), 59

ERERZETHFE, 35, 268, 277

Erasing a program, 36, 292-293

EREL (error line), 253, 254-255

EFFEH (error number), 253, 254-255

ERELM (error ROM), 253-254

ERE - (error select code), 253-254

Error messages, 25, 108-109, 381-386
Summary, 281-386

Error recovery functions, 253

Error testing and recovery, 252-256

Executable statements, 82-83, 115

E#0F operator, 61, 233, 239

ExF (e* natural antilogarithm), 71

Exponent, 54

Exponent symbol (with IMAGE), 179

Exponentiation (™), 49, 50

Exponents of ten, 54

Expressions, 49

Expressions and keyboard operations, 49-63

F

Index

Factorial program, 124
Fast backspace ((SHIFT) (&K)), 44
File, 261-262, 369-370
Closing a, 303
Creating a, 301
Data, 299-314
Directory, 273-274
Name 272
2 L, 274
Number 273
Opening a, 302
Pointer, 302
Random access, 306-310
Securing a, 294-295
Serial access, 303-306
Specifier, 272
Type, 274

(function end), 159
(with HE=T), 121

FOR-HEXT loops, 120-126, 205-207
Considerations, 126
Padding the increment, 205-207
STEF, 121, 124-125
Format of numbers, 53
Formatted output, 91-94, 175-187
THE function, 182-183
With IHF , 175- 181
Wlthm FREINT/OLSR
F (fractional part), 65, 66
Frame graphics display program, 189
Function keys, special, 166-168
Functions, 65
Error, 253
Math, 65-76
Multiple-line, 159-163
Single-line, 157-158
String, 138-144
Summary, 372-374
User-defined, 157-163
Fuse, 336
Future value program, 107

_#iF (graphics clear), 191
296
, 287
, 286
Getting started, 21-36
, 163
Computed, 165
i, 98
Computed 118-120
i (grads mode), 72
189

H

key, 106, 189
Graphics, 189-245
Display, 189-190, 217
IHFUT in graphics mode, 222-229
Printer and, 190
Statements, syntax summary, 378-379
Storing and retrieving, 286-287
Greater than (), 59
Greater than or equal to (=), 59
Greatest integer functions, 65, 66-67
Grounding requirements, 336

Halted program, checking a, 252

Halting program execution, 31, 83, 105, 106
Hierarchy, arithmetic, 51

Hierarchy, math, 75

Home ((X)) key, 23

1

Home position, 22
HP-85A programs, 36, 288
HP-IB interface, 264, 328
Select code, 264
Hypotenuse program, 32

(incremental draw), 209-212
4, 113-118
i.. ELZE, 116-118

Format string, 175

Field overflow, 181

Reusing the format string, 180
Replication, 180

Summary table, 182
(incremental move), 209
infinity), 67, 70

(initialize) program, 107
(NIT) key, 107

In al set up mstructlons, 337-339

Imtlahzmg a disc, 269 271
Initializing a program, 107

K

(with FRIHT/DISF USIHG), 175-182

Initializing variables, 147
IHFUT, 94-95

In graphics mode, 222-229
Input prompt (*7), 94, 224, 228
Insert commas program, 162
Insert mode, 45
Insert/replace ((%)) key, 45
Inserting characters, 45
Inspection procedure, 335
IHT (greatest integer), 65, 67
IMTEGER, 55, 131, 132-133
Integer division (114 or -.), 50
Interfaces, 264, 328-329
Interleave factor, 270-271
Interrupting program execution, 105-108
I ¥ (integer part), 65, 66

Key codes, 362

y index, 16-17

; LABEL, 166

- key, 106, 166, 222

Key labels, examples, 28, 166, 167

Key number in M FKE'Y# statements, 166
Key of C Major program, 167

Key response during program execution, 363

In AL FHA mode, 106, 222, 363

In ZFEAFH mode, 222-223, 363
Keyboard, 39
Keyboard arithmetic, 49
Keyboard, printer, and display control, 39-46
Keying in exponents of ten, 54
Keys, special function, 165-168
Keywords, 39, 40, 82-83

> statements, 181-182

420 tndex

L

LAEBEL, 213
Labeling graphs, 213-222
Label direction, 216
Label length, 217
Label positioning, 219-222
Language (BASIC), 11, 82-83, 367-379
LOIF (label direction), 216
I.EH (length), 138-140
Length of a string variable, 57
Length of statement, 42
Length of expression, 42
Less than (<), 59
Less than or equal to (=), 59

LET FH, 159

LT (log to base ten), 71

Line generation, 190

Line numbers (see also, statement numbers), 83
Line voltage selector switch, 336, 337

M

LIZT, 105
key, 81, 104
Lists of numbers, 129
Literal strings, 134
Live keys, 106, 363
LOAD, 28, 80, 283-284
LOADEIH, 287
key, 28, 80
Loading a program from the Standard Pac, 27
Loading a prerecorded program, 80, 283-284
L0 (natural logarithm), 71
Logarithmic functions, 71-72
Logical evaluation, 59-62
Logical operations, 60-62
Logical record, 299
Loops, 98, 120-126
Loop counter, 121
Nested, 125
Lower bounds of arrays, 131

Man in the moon EFLOT program, 241-244
Manual problem solving, 22
MASZS STORAGE 1=, 271-272
Mass storage operations, 261-324

Commands, 262-263

Functions, 263

Introduction, 261

Media, 261
Mass storage unit specifier (msus), 264, 266-267
Math hierarchy, 75

Mathematics functions and statements, 65-76, 372-374

Matrices, 129

1A% (maximum), 67, 68

Memory, 105, 151-153, 256
Conserving, 152-153, 256
Main, 151, 152

N

Remaining, 105
ROMs, 329-330
MIH (minimum), 67, 68
Minus sign (—), 49
MO0 (modulo), 50
Modifying string variables, 135-137

Module installation and removal, general, 339-342

Modulo (M), 50

MOVE, 203

Mz1, 271-272

msus, 264, 266-267

Mol E, 275, 276

Multiple-line functions, 159-163
Multiplication (%), 49, 50
Multistatement lines, 99

Natural antilogarithm, 71

Natural logarithm, 71

Nested loops, 125

HE=T, 121

Non-programmable commands, 84
Normal typewriting mode, 40
MOEMHL, 27, 41, 86, 248

Not equal to (<> or #), 59

HOT operator, 61

HULL file, 274, 293

O

Null string (" "), 58

HUM (numeric), 138, 143

Number alteration, 65

Number base conversions program, 249
Number entry, 49

Numbers, range of, 55

Numbers, standard format, 53

Numeric expression, 49, 367, 369

Numeric specification (with IMAGE), 177-179
Numeric variables, 55

OFF EREOR, 263
OFF KEY#, 168
OFF TIMER#, 169
O EREOR, 253
Ok

OH L GOTO, 118-120
OH TIMER#, 168
ON/OFF switch, 337, 338

P

Opening a data file, 302

Operators, 49

Operators, summary, 368-369

OFTION BARSE, 131

K operator, 61

Order of execution
Expressions, 52
Math operators, 75
Program, 90

FRCE, 293-294

Packing files, 293-294

Padding a FOR-HEXT loop, 205-207
Paper, loading printer, 344-346
key, 41, 42, 106, 222
Parentheses, 51

Payroll program, 119

FAHIIZE, 107-108

key, 31, 81, 105-106
FEHM, 199

FEHLIF, 199

Physical record, 299

FI,67 69

FLIZT (printer list), 105

FLOT, 200

Plot figure without lifting pen program, 201
Plot “twinkling” star program, 201
Plot star clusters program, 202
Plotting operations, 199-203

Plug-in module installation, 339-340
Plug-in ROM, 341

Plus sign (+), 49

Index 421

Pointer, repositioning, 306 Intensity dial, 11
Polar/rectangular coordinate conversions, 73-75 Maintenance, 346-347
{5 (position), 138, 140 Paper, 344
Positioning labels, 219-222 Paper loading, 344-346
Power cords, 335-336 Service, 355
Power on, 21 FRIMTER I%, 183-184
Power requirements, 336 Printer list ((PLST)) key, 81
Power supply, 335-337 Problems, examples at end of sections, 100, 109,
Power switch, 21, 337, 338 126-127, 153-154, 170-171, 184-187, 208-209,
Powers, 49, 50 212, 222, 229, 245
Precision (accuracy), 55, 367 Problems, sample solutions, 389-416
Prerecorded programs, 79, 80 Program editing, 103-109
FRINT, 93-94 Programmable commands, 84
FRIMT ALL, 26, 41, 43 Programs, storing, 281-283
FEIMT and DI 5F, 52 Programs, retrieving, 283-284
THT USTHG, 175 181-182 Protecting (securing) files, 294-295
IHT#, 303, 307 Protecting a tape cartridge, 35
Printer, 41, 343-347 FLREGE, 36, 292-293
Access, 41 Purging files, 292-293

Formatting, 175-187

Q

Quadratic roots program, 117 Quotation marks (¥), 32, 58, 95, 120, 134, 176, 181-182
Question mark (%), 94

R
#AD (radians), 72 BEEHAME, 202
Radix symbols (IMAGE), 178 Renaming files, 292
Random data plot program, 223 Repair policy, 3567-358
Random file access, 306-309 Replace decimal point with comma program, 161
Random number seed, 70 Replace mode, 45
Random numbers, 70-71 Replication (with I , 180
Random reading, 309 Rereading data, 150-151
Random writing, 307 Reset conditions, 361
FRHDOMIZE, 70-71 key, 46
Range of numbers, 55 Resetting the computer, 46
Range, computing, 53 FESTORE (with F 3, D , 150-151
Range of numbers, 55 Result ((RESLT)) key, 52
READ (with DATH), 147-150 Resuming program execution, 106
Read only memory (ROM), 151 Retrieving a program (w1th LA, 283-284
FEEAD#, 305, 309 BETLRM (with | LiE), 163, 164, 165
Read/write memory (RAM), 151, 152, 364 Reverse letter-order program, 140
FERAL, 55, 131, 132-133 EEWIND, 277
Rear panel, 14, 337 B (remainder), 67, 68-69
Reciprocal program, 115 M (random number), 67, 70-71
slide tab, 27, 35, 277 key, 42, 106, 222
Recording a program, 35, 281-283 ROM drawer, 341-343
Records, 299-300 ROM installation and removal, 341-343
Logical, 299 ROMs, available, 329-330
Physical, 299 Roots of quadratic equation program, 117
Recovering from math errors, 75-76 Round to two decimal places program, 158
Rectangular/polar coordinate conversions, 73-75 FETD (radians to degrees), 72, 73
Redefining the printer and the display, 183-184 FLH, 83, 107
Reference tables, 361-364 key, 28, 88, 107
Relational operations, 59-60 Running a program, 32, 88, 107
FEM (remark), 90 Running a prerecorded program, 27, 80
Remainder function (FM), 68-69 Run-time errors, 109

FEH (renumber), 104

S
Sample problems (see Problems)

CEATCH, 32, 83, 84

Sample solutions, 389-416 m key, 83, 84

LZAVE, 296 -7 (secant), 72

Saving programs, 296 ECURE, 294-295

SZCARLE, 191 Security type 294, 295

Scaling the graphics display, 191-194 Security code, 294, 295
Equal unit scaling, 193 Seed, random number, 70
Unequal unit scaling, 192 Select codes, 183-184

Scientific notation, 54 Self-test, 45

422 Index

Self-test error, 46
Semantic errors, 109
Semiicolons, 53, 91

Stopping a running program, 81
TORE, 281-283
JREEIH, 287

Serial file access, 303-306 key, 35, 281

Serial number, 357 Storing and retrieving data, 299-314

Serial number plate, 357 Storing entire arrays, 310-312

Serial reading, 305-306 Storing variables, 152

Serial writing, 303-305 String allocation in user-defined functions, 157, 163
Service, 355-356 String conversions, 141-144

Set -up instructions, 337-339 Characters to numbers (L), 143

: TIHE, 62 Lowercase to uppercase (L!FLC#), 143
Z1GH (sign), 67, 68 Numbers to strings (AL ¥F), 142
m key, 39 Numbers to characters (ZHE %), 142
Shifted characters, 40 Strings to numbers (4HL), 141
Shipping instructions, 357 String concatenation, 58

SHORET, 55, 131, 132-133 String comparisons, 60

Sign of a number (=(:H), 68 String expressions, 134-144

Sign symbols (with IMAGE), 178-179 Strmg functions, 138-144

Simple display editing, 23 , 138, 142-143

Simple programming, 79-100 =M, 138 140

Simple variables, 55, 56-57 i, 138, 143

Z1H (sine), 72 :, 138, 140

Single-line functions, 157-158 ., 138, 141-142

Ski game, 80 -1 #, 138, 142

Slash (.}, 49, 175-176 | , 138, 143

Small letters, 40 Stnng mampulatlon of BASIC programs, 296
Smallest integer function, 67 String modification, 135-137

Solutions to sample problems, 389-416 String specification (with IMAGE), 176-177
Space bar, 44 String variable, 57

Spaces, 176 Length, 132, 134

Spacing, 22 Name, 57

Spacing of program statements, 86 Subroutines, 163-165

Special characters, 371 Subscripts, 129, 131, 135

Special function keys, 28, 165-168 Arrays, 129-130, 132

* (square root), 67, 68 Strings, 134-135
Standard number format, 53 Substrings, 135
Standard Pac, 27, 327 Subtraction (~), 49
Star clusters program, 202 Summer Olympic Swimming Records program, 211, 220
Statement, 82 ¢, 324
Statement length, 87 Swapping electronic disc programs, 324
Statement numbers, 83 Syntax conventions, 85, 371
Automatic numbering (FLIT), 86 Syntax errors, 108
Renumbering (R EH), 104 Syntax guidelines to commands and BASIC statements,
Statements, syntax summary, 374-379 371-372
- F increment value, 121, 124-125 System errors, 45-46, 381-382
(STEP) key, 251 System hints, 255-256
1F, 83 System self-test, 45
T
THE, 182-183 key, 45
Tables, 129 THEHM, 113
THH (tangent), 72 Tic spacing, 194, 196
Tape care, 349-350 TIME, 63
Tape cartridge, 35, 347-353 Time functions, 62-63
Inserting, 348 Timer number, 168
Preparing, 268-269 Timers, 168-170, 355
Removing, 349 TEALE (trace program branches), 247
Rethreading, 351-352 Canceling trace operations, 248

Specifications, 348
Tape directory, 273 ; F (trace variables), 247-248
Tape drive, service, 355 TEAHZL HTI— 288
Tape drive light, 28 T ranslatlng HP 85A programs, 36, 288

Fll., 248

Tape eject bar, 28 Triangle EFLOT program, 233
Tape file, 35 Trigonometric modes, 72
Tape life, 350-351 Trigonometric functions and statements, 72-75
Tape storage medium, 347-353 Truth table, 62
Conditioning, 350 Twinkling star program, 201
General information, 348 Type declarations, 132-133
Initializing, 268-269 IHTEGER, 133
Optimizing use, 353 FEML, 133
Write protection, 277 SHOET, 133
Tax program, 113-114 Type of file item (T F), 312-313
Temperature range, 354 Types of variables, 55

Temperature conversion program, 116 Typewriter keys, 39

U

Index

423

Unconditional branching, 98, 118-120
COTO, 98
OH .. GOT4, 118-120
OH ... GOSUE, 165

\Y

UHZECURE, 295

UFC# (uppercase), 138, 143

User-defined functions, 157-163
String allocation in, 157, 163

WHL (numeric value), 138, 141-142
WAL # (character value), 138, 142
Variable forms, 55
Variable types, 55
Variables, 55
Array, 55
Arrays and strings, 129-154
Declaring and dimensioning, 131
Memory storage, 152

W-Z

Numeric, 55-57, 131-132
Simple, 55, 56-57
String, 57
Summary, 367-368
Vectors, 129
Voltage selection, 336, 337-338
VWOL#, 275-276
VWOLUME I3, 268
Volume labels, 264, 267-268

WAIT, 108

Warranty, 356-357

Warranty information toll-free number, 356
Widget program, 122-123

Workspace, 354

Write protection, 35, 277-278
Writing a BASIC program, 84

AAEIE 194
X2 program, 157
YHE1E 194

roduct Line Sales/Support Key

ey Product Line

A Analytical

M Components

c Computer Systems Sales only

H Computer Systems Hardware Sales and Services
S Computer Systems Software Sales and Services
|3 Electronic Instruments & Measurement Systems
M Medical Products

P Medical Products Primary SRO

1S Medical Products Secondary SRO

4 Personal Computation Products

Sales only for specific product line

Support only for specific product line

APORTANT: These symbols designate general product line capa-
lity. They do not insure sales or support availability for all
roducts within a line, at all locations. Contact your local

ales office for information regarding locations where HP

upport is available for specific products.

P distribulors are printed in italics.

\NGOLA

electra

mpresa Técnica de EqQuipamentos
léctricos, SAR.L.

. Barbosa Rodrigues, 41-1 DT.
aixa Postal 6487

UANDA

el 35515,35516

M,P

\RGENTINA
lewlett-Packard Argentina S.A.
wvenida Santa Fe 2035
fartinez 1640 BUENOS AIRES
‘el: 798-5735, 792-1293
‘elex: 17595 BIONAR

able: HEWPACKARG
E,CH,CS,P

Jiotron SA.C.IM. e |

\v Paseo Colon 221, Piso 9
1399 BUENOS AIRES,

el: 30-4846, 30-1851
elex: 17595 BIONAR

f

ale S.A. I.C.I.Electronica
/enezuela 1326

1095 BUENOS AIRES

Tel: 37-9020, 37-9026/9
Telex: 9234 FATEN AR

o]

AUSTRALIA

Adelaide, South Australia
Dffice

{ewlett-Packard Australia Lid.
153 Greenhill Road

PARKSIDE, S.A. 5063

Tel: 272-5911

Telex: 82536

Cable: HEWPARD Adelaide
A*,CH,CM, E MS,P

Brisbane, Queensland
Office

Hewlett-Packard Australia Ltd.
A9 Park Road

MILTON, Queensland 4064
Tel: 229-1544

Telex: 42133

Cable: HEWPARD Brisbane
A,CH.CM,E.M,P

Effective November 1, 1982:
10 Payne Road

THE GAP, Queensiand 4061
Tel: 30-4133

Telex: 42133

Canberra, Australia
Capital Territory
Office

Hewlett-Packard Australia Lid.
121 Wollongong Street
FYSHWICK, A.C.T. 2609

Tel: 80 4244

Telex: 62650

Cable: HEWPARD Canberra
CH,CMEP

Melbourne, Victoria Office
Hewlett-Packard Australia Ltd.
31-41 Joseph Street
BLACKBURN, Victoria 3130
Tel: 877 7777

Telex: 31-024

Cable: HEWPARD Melbourne
ACH,CM,CSEMS,P

Perth, Western Australia
Office

Hewlett-Packard Australia Lid.
261 Stirling Highway
CLAREMONT, W.A. 6010

Tel: 383-2188

Telex: 93859

Cable: HEWPARD Perth
A,CH,CM, EMS.P

Sydney, New South Wales
Office

Hewlett-Packard Australia Lid.
17-23 Talavera Road

P.0. Box 308

NORTH RYDE, N.S.W. 2113
Tel: 887-1611

Telex: 21561

Cable: HEWPARD Sydney
A.CH,CM,.CS EMSP

AUSTRIA
Hewlett-Packard Ges.m.b.h.
Grottenhofstrasse 94
Verkaufsburo Graz

A-8052 GRAZ

Tel: 281-5-66

Telex: 32375

CHE"

Hewlett-Packard Ges.m.b.h.
Stanglhofweg 5

A-4020 LINZ

Tek 0732 51585

CH

Hewlett-Packard Ges.m.b.h.
Liebigasse 1

P.0. Box 72

A-1222 VIENNA

Tel: (0222) 23-65-11-0
Telex: 134425 HEPA A
A,CH,CM,CS EMS,P

SALES & SUPPORT OFFICES [,

BAHRAIN

Green Salon

P.0. Box 557
BAHRAIN

Tel: 255503-255950
Telex: 84419

P

Wael Pharmacy

P.0. Box 648
BAHRAIN

Tel: 256123

Telex: 8550 WAEL BN
ME

BELGIUM

Hewlett-Packard Belgium S.A/N.V.
Blvd de la Woluwe, 100
Woluwedal

B- 1200 BRUSSELS

Tel: (02) 762-32-00

Telex: 23-494 paloben bru
A,CH,CM,CS E MP P

BRAZIL

Hewlett-Packard do Brasil 1.e.C.
Lida.

Alameda Rio Negro, 750
Alphaville 06400 BARUERI SP
Tek: (11) 421-1311

Telex: 01 133872 HPBR-BR
Cable: HEWPACK Sao Paulo
A,CH,CM,CSEM,P
Hewlett-Packard do Brasil l.e.C.
Ltda.

Avenida Epitacio Pessoa, 4664
22471 RIO DE JANEIRO-RJ

Tel: (21) 286-0237

Telex: 021-21905 HPBR-BR
Cable: HEWPACK Rio de Janeiro
A,CH,CMEMSP"

CANADA

Alberta

Hewlett-Packard (Canada) Ltd.
210, 7220 Fisher Street S.E.
CALGARY, Alberta T2H 2H8
Tel: (403) 253-2713

A CHCME" MSP*
Hewlett-Packard (Canada) Ltd.
11620A-168th Street
EDMONTON, Alberta T5M 3T9
Tel: (403) 452-3670
A,CH,CM,CS E MS,P*

British Columbia
Hewlett-Packard (Canada) Ltd.
10691 Shellbridge Way
RICHMOND,

British Columbia VEX 2W7
Tel: (604) 270-2277

Telex: 610-922-5059
A,CH,CM,CS,E* MS,P*

Manitoba

Hewlett-Packard (Canada) Ltd.
380-550 Century Street
WINNIPEG, Manitoba R3H 0Y1
Tel: (204) 786-6701
A,CH,CMEMS,P*

New Brunswick
Hewlett-Packard (Canada) Ltd.

37 Sheadiac Road

MONCTON, New Brunswick E2B 2vQ
Tel: (506) 855-2841

CH**

Nova Scotia

Hewlett-Packard (Canada) Ltd.
P.0. Box 931

900 Windmill Road

DARTMOUTH, Nova Scotia B2Y 326
Tel: (302) 469-7820
CH,CM,CS,E* MS P*

Arranged Alphabetically by Country [’5/}

Ontario

Hewlett-Packard (Canada) Ltd.
552 Newbold Street

LONDON, Ontario N6E 2S5

Tel: (519) 686-9181
ACHCME" MSP"
Hewlett-Packard (Canada) Ltd.
6877 Goreway Drive
MISSISSAUGA, Ontario L4V 1M8
Tel: (416) 678-9430
A,CH,CM,CS E,MP,P
Hewlett-Packard (Canada) Ltd.
2670 Queensview Or.
OTTAWA, Ontario K2B 8K1

Tel: (613) 820-6483
A.CH,CM,CSE* MSP*
Hewlett-Packard (Canada) Lid.
220 Yorkiand Bivd., Unit #11
WILLOWDALE, Ontario M2J 1R5
Tel: (416) 499-9333

CH

Quebec

Hewlett-Packard (Canada) Ltd.
17500 South Service Road
Trans-Canada Highway
KIRKLAND, Quebec H9J 2M5
Tel: (514) 697-4232
A,CH,CM,CS EMPP*
Hewlett-Packard (Canada) Lid.
Les Galeries du Vallon

2323 Du Versont Nord

STE. FOY, Quebec GIN 4C2
Tel: (418) 687-4570

CH

CHILE

Jorge Calcagni y Cia. Lida.
Arturo Burhle 065

Casilla 16475

SANTIAGO 9

Tel: 222-0222

Telex: Public Booth 440001
ACMEM

Olympia (Chile) Ltda.

Av. Rodrigo de Araya 1045
Casilla 256-V

SANTIAGO 21

Tel: 2-25-50-44

Telex: 340-892 OLYMP CK
Cable: Olympiachile Santiagochile
CH.CS,P

CfHINA, People’s Republic
o

China Hewlett-Packard Rep. Office
P.O. Box 418

1A Lane 2, Luchang St.

Beiwei Rd., Xuanwu Disirict
BEIJING

Tel: 33-1947, 33-7426

Telex: 22601 CTSHP CN

Cable: 1920

ACH.CMCSEP

COLOMBIA
Instrumentacion

H. A. Langebaek & Kier S.A.
Carrera 7 No. 48-75
Apartado Aereo 6287
BOGOTA 1, D.E.

Tel: 287-8877

Telex: 44400 INST CO
Cable: AARIS Bogola
ACMEMPS.P

COSTA RICA

Cientifica Costarricense S.A.
Avenida 2, Calle 5

San Pedro de Montes de Oca
Apartado 10159

SAN JOSE

Tel: 24-38-20, 24-08-19
Telex: 2367 GALGUR CR
CM.EMS.P

CYPRUS

Telerexa Ltd.

P.0. Box 4809

14C Stassinos Avenue
NICOSIA

Tel: 62698

Telex: 2894 LEVIDO CY
EMP

DENMARK
Hewlett-Packard A/S
Datavej 52

DK-3460 Birkerod

Tel: (02) 81-66-40
Telex: 37409 hpas dk
ACH,CM,CSEMS,P
Hewleti-Packard A/S
Navervej 1

DK-8600 SILKEBORG
Tel: (06) 82-71-66
Telex: 37409 hpas dk
CHE

ECUADOR

CYEDE Cia. Lida.
Avenida Eioy Alfaro 1749
Casilla 6423 CCI

auito

Tel: 450-975, 243-052
Telex: 2548 CYEDE ED
ACMEP

Hospitalar S.A.

Robles 625

Casilla 3590

uiTo

Tel: 545250, 545-122
Telex: 2485 HOSPTL ED
Cable: HOSPITALAR-Quito
M

EGYPT

International Engineering Associales
24 Hussein Hegazi Street
Kasr-el-Aini

CAIRO

Tel: 23829, 21641
Telex: IEA UN 93830
CHCSEM

Informatic For Systems
22 Talaat Harb Street
CAIRO

Tel: 759006

Telex: 93938 FRANK UN
CHCS,P

Egyplian International Office
for Foreign Trade
P.0.Box 2558

CAIRO

Tel: 650021

Telex: 93337 EGPOR

P

EL SALVADOR

IPESA de El Salvador S.A.
29 Avenida Norte 1216
SAN SALVADOR

Tel: 26-6858, 26-6868
Telex: Public Booth 20107
A,CHCM,CS,E.P

FINLAND
Hewlett-Packard Oy
Revontulentie 7
SF-02100 ESPOO 10
Tel: (90) 455-0211
Telex: 121563 hewpa sf
A,CH,CM,CS EMS,P
Hewiett-Packard Oy
Aatoksenkatv 10-C

2

O

SALES & SUPPORT OFFICES

Arranged Alphabetically by Country

SF-40720-72 JYVASKYLA
Tel: (941) 216318

CH

Hewlett-Packard Oy
Kainvuntie 1-C
SF-80140-14 ouLU

Tel: (981) 338785

CH

FRANCE
Hewleti-Packard France
Z.|. Mercure B

Rue Berthelot

F-13763 Les Milles Cedex
AIX-EN-PROVENCE

Tel: (42) 59-41-02
Telex: 410770F
A,CHEMS,P*
Hewlett-Packard France
Boite Postale No. 503
F-25026 BESANCON

28 Rue de la Republique
F-25000 BESANCON

Tel: {81) 83-16-22
CHM

Hewlett-Packard France
Bureau de Vente de Lyon
Chemin des Mouilles
Boite Postale 162
F-69130 ECULLY Cédex
Tel: (7) 833-81-25
Telex: 310617F
A,CH,CS,EMP
Hewlelt-Packard France
Immeuble France Evry
Tour Lorraine
Boulevard de France
F-91035 EVRY Cédex
Tel: (6) 077-96-80
Telex: 692315F

E

Hewlett-Packard France

5th Avenue Raymond Chanas
F-38320 EYBENS

Tel: (76) 25-81-41

Telex: 980124 HP GRENOB EYBE
CH

Hewlett-Packard France
Centre d'Affaire Parig-Nord
Batiment Ampére 5 etage
Rue de la Commune de Paris
Boite Postale 300

F-93153 LE BLANC MESNIL
Tel: (01) 865-44-52

Telex: 211032F

CH,CS,EMS

Hewlett-Packard France

Parc d'Activites Cadera
Quartier Jean Mermoz
Avenue du President JF Kennedy
F-33700 MERIGNAC

Tel: (56) 34-00-84

Telex: 550105F

CH,E.MS

Hewlelt-Packard France

32 Rue Lothaire

F-57000 METZ

Tel: (8) 765-53-50

CH

Hewlett-Packard France
Immuebie Les 3 B

Nouveau Chemin de la Garde
Z.A.C. de Bois Briand
F-44085 NANTES Cedex

Tel: (40) 50-32-22

CH**

Hewlett-Packard France
Zone Industrielle de Courtaboeuf
Avenue des Tropiques
F-91947 Les Ulis Cédex ORSAY
Tel: (6) 907-78-25

Telex: 600048F
ACH.CM,CS,EMPP

Hewlett-Packard France
Paris Porte-Maillot

15, Avenue De L'Amiral Bruix
F-75782 PARIS 16

Tel: (1) 502-12-20

Telex: 613663F

CHMS,P

Hewlett-Packard France

2 Allee de la Bourgonette
F-35100 RENNES

Tel: (99) 51-42-44

Telex: 740912F
CH,CM,E,MS,P*
Hewlett-Packard France
98 Avenue de Bretagne
F-76100 ROUEN

Tel: (35) 63-57-66 CH* *,CS
Hewlett-Packard France

4 Rue Thomas Mann
Boite Postale 56

F-67200 STRASBOURG

Tel: (88) 28-56-46

Telex: 83014 1F
CH,EMSP*
Hewlett-Packard France
Pericentre de la Cépiere
F-31081 TOULOUSE Cedex
Tel: (61) 40-11-12

Telex: 531639F
ACHCSEP"
Hewiett-Packard France
Immeuble Péricentre
F-59658 VILLENEUVE D'ASCQ Cedex
Tel: (20) 91-41-25

Telex: 160124F
CHEMSP*

GERMAN FEDERAL

REPUBLIC
Hewlett-Packard GmbH
Technisches Biiro Berlin
Keithstrasse 2-4

D-1000 BERLIN 30

Tel: (030) 24-90-86

Telex: 018 3405 hpbin d
ACHEMP
Hewlett-Packard GmbH
Technisches Biiro Biblingen
Herrenberger Strasse 110
D-7030 BOBLINGEN

Tel: (07031) 667-1

Telex: bbn or
A,CH,CM,CS,EMP.P
Hewlett-Packard GmbH
Technisches Biiro Dusseldorf
Emanuel-Leutze-Strasse 1
D-4000 DUSSELDORF

Tel: (0211) 5971-1

Telex: 085/86 533 hpdd d
A.CH,CSEMSP
Hewlett-Packard GmbH
Vertriebszentrale Frankfurt
Berner Strasse 117
Postfach 560 140

D-6000 FRANKFURT 56

Tel: (0611) 50-04-1

Telex: 04 13249 hpftm d
A,CH,CM,CS,EMP,P
Hewlett-Packard GmbH
Technisches Biiro Hamburg
Kapstadtring 5

D-2000 HAMBURG 60

Tel: (040) 63804-1

Telex: 021 63 032 hphh d
A,CH,CS,EMS,P
Hewlett-Packard GmbH
Technisches Biiro Hannover
Am Grossmarkt 6

D-3000 HANNOVER 91

Tel: (0511) 46-60-01
Telex: 092 3259
A,CHCMEMS,P

Hewlett-Packard GmbH
Technisches Buro Mannheim
Rosslauer Weg 2-4

D-6800 MANNHEIM

Tel: (0621) 70050

Telex: 0462105

ACE

Hewlett-Packard GmbH
Technisches Biiro Neu Uim
Messerschmittstrasse 7
D-7910 NEU ULM

Tel: 0731-70241

Telex: 0712816 HP ULM-D
ACE*

Hewlett-Packard GmbH
Technisches Biiro NUrnberg
Neumeyerstrasse 80
D-8500 NURNBERG

Tel: (0911) 52 20 83-87
Telex: 0623 860
CH,CM,E,MS.P
Hewlett-Packard GmbH
Technisches Biiro Minchen
Eschenstrasse 5

D-8028 TAUFKIRCHEN

Tel: (089) 6117-1

Telex: 0524985
A,CH,CM,E.MS,P

GREAT BRITAIN
Hewlett-Packard Ltd.
Trafalgar House
Navigation Road
ALTRINCHAM

Chesire WA14 1NU

Tel: (061) 928-6422
Telex: 668068
ACHCSEM
Hewleti-Packard Ltd.
Oakfield House, Oakfield Grove
Clifton

BRISTOL BS8 2BN, Avon
Tel: (027) 38606
Telex: 444302

CHM,P
Hewlett-Packard Ltd.
(Pinewood)

Nine Mile Ride
EASTHAMPSTEAD
Wokingham

Berkshire, 3RG11 3LL
Tel: 3446 3100

Telex: 84-88-05
CH,CS,E
Hewlett-Packard Lid.
Fourier House

257-263 High Street
LONDON COLNEY

Herts., AL2 1HA, St. Albans
Tel: (0727) 24400
Telex: 1-8952716
CH,CSE
Hewlett-Packard Ltd
Tradax House, St. Mary's Walk
MAIDENHEAD

Berkshire, SL6 1ST
Tel: (0628) 39151
CH,CSEP
Hewlett-Packard Ltd.
Quadrangle

106-118 Station Road
REDHILL, Surrey

Tel: (0737) 68655
Telex: 947234 CH,CS,E

Hewlett-Packard Ltd.
Avon House

435 Stratford Road
SHIRLEY, Solihull

West Midlands B90 4BL
Tel: (021) 745 8800
Telex: 339105

CH

Hewlett-Packard Ltid.
West End House 41
High Street, West End
SOUTHAMPTON
Hampshire S03 30Q
Tel: (703) 886767
Telex: 477138

CH

Hewiett-Packard Ltd.
King Street Lane
WINNERSH, Wokingham
Berkshire RG11 5AR
Tel: (0734) 784774
Telex: 847178
ACHEM

GREECE

Kostas Karaynnis S.A.

8 Omirou Street

ATHENS 133

Tel: 32 30 303, 32 37 371
Telex: 215962 RKAR GR
ACHCM.CS.EMP
PLAISIO S.A.

G. Gerardos

24 Siournara Street
ATHENS

Tel: 36-11-160

Telex: 221871

P

GUATEMALA

IPESA

Avenida Reforma 3-48, Zona 9
GUATEMALA CITY

Tel: 316627, 314786

Telex: 4192 TELTRO GU
ACHCM.CS.EMP

HONG KONG

Hewlett-Packard Hong Kong, Ltd.

G.P.0. Box 795

5th Floor, Sun Hung Kai Centre
30 Harbour Road

HONG KONG

Tel: 5-8323211

Telex: 66678 HEWPA HX
Cable: HEWPACK HONG KONG
E.CH,CS,P

CET Lid.

1402 Tung Way Mansion
199-203 Hennessy Rd.
Wanchia, HONG KONG

Tel: 5-729376

Telex: 85148 CET HX

cM

Schmidt & Co. (Hong Kong) Ltd.
Wing On Centre, 28th Floor
Connaught Road, C.

HONG KONG

Tel: 5-455644

Telex: 74766 SCHMX HX

AM

ICELAND

Eiding Trading Company Inc.
Hafnarnvoli-Tryggvagolu
P.0. Box 895

IS-REYKJAVIK

Tel: 1-58-20, 1-63-03

M

INDIA

Blue Star Lid.

Sabri Complex Il Floor
24 Residency Rd.
BANGALORE 560 025
Tel: 55660

Telex: 0845-430
Cable: BLUESTAR
ACHCMCSE

Blue Siar Ltd.

Band Box House
Prabhadevi

BOMBAY 400 025

Tel: 422-3101

Telex: 011-3751
Cable: BLUESTAR
AM

Blue Star Ltd.

Sahas

414/2 Vir Savarkar Marg
Prabhadevi

BOMBAY 400 025

Tel: 422-6 155

Telex: 011-4093
Cable: FROSTBLUE
ACHCM,CS.EM

Blue Slar Ltd.

Kalyan, 19 Vishwas Colony
Alkapuri, BORODA, 390 005
Tel: 65235

Cable: BLUE STAR

A

Blue Star Lid.

7 Hare Street
CALCUTTA 700 001
Tel: 12-01-31

Telex: 021-7655
Cable: BLUESTAR
AM

Blue Star Lid.

133 Kodambakkam High Road
MADRAS 600 034

Tel: 82057

Telex: 041-379
Cable: BLUESTAR
AM

Blue Star Ltd.
Bhandari House, 7th/8th Floors
91 Nehru Place

NEW DELHI 110 024
Tel: 682547

Telex: 031-2463
Cable: BLUESTAR
A,CHCM,CS,EM

Biue Star Lid.

15/16:C Wellesiey Rd.
PUNE 411011

Tel: 22775

Cable: BLUE STAR

A

Blue Star Ltd.
2-2-47/1108 Bolarum Rd.
SECUNDERABAD 500 003
Tel: 72057

Telex: 0155-459

Cable: BLUEFROST

AE

Biue Star Lid,

T.C. 7/603 Poornima
Maruthankuzhi
TRIVANDRUM 695 013
Tel: 65799

Telex: 0884-259

Cable: BLUESTAR

E

INDONESIA

BERCA Indonesia P.T.
P.0.Box 496/JKT.

J. Abdul Muis 62
JAKARTA

Tel: 373009

Telex: 46748 BERSAL 1A
Cable: BERSAL JAKARTA
P

BERCA Indonesia P.T.
Wisma Antara Bldg., 17th floor
JAKARTA

ACSEM

BERCA Indonesia P.T.

P.0. Box 174/SBY.

J. Kutei No. 11

SURABAYA

Tel: 68172

Telex: 31146 BERSAL SB
Cable: BERSAL-SURABAYA
ALEMP

IRAQ

Hewlett-Packard Trading S.A.
Service Operation

Al Mansoor City 98/3/7
BAGHDAD

Tel: 551-49-73

Telex: 212-455 HEPAIRAQ IK
CH,CS

IRELAND
Hewlett-Packard Irefand Lid.
82/83 Lower Leeson St.
DUBLIN 2

Tel: (1) 60 88 00

Telex: 30439
A,CH.CM,CS EMP
Cardiac Services Ltd.
Kilmore Road

Arlane

DUBLIN 5

Tel (01) 351820

Telex: 30439

M

ISRAEL

Eldan Electronic instrument Ltd.
P.O. Box 1270

JERUSALEM 91000

16, Ohaliav St.

JERUSALEM 94467

Tel: 533 221, 553 242

Telex: 25231 AB/PAKRD IL

A

Elecironics Engineering Division
Molorola Israel Lid.

16 Kremenelski Slreet

P.0. Box 25016

TEL-AVIV 67899

Tel: 3-338973

Telex: 33569 Motil IL

Cable: BASTEL Tel-Aviv
CH,CM.CS.EMP

ITALY

Hewlett-Packard Italiana S.p.A.
Traversa 99C

Via Giulio Petroni, 19

1-70124 BARI

Tel: (080) 41-07-44

M

Hewlett-Packard ltaliana S.p.A.
Via Martin Luther King, 38/111
1-40132 BOLOGNA

Tel: (051) 402394

Telex: 511630

CH,E.MS

Hewlett-Packard ltaliana S.p.A.
Via Principe Nicola 43G/C
1-95126 CATANIA

Tel: (095} 37-10-87

Telex: 970291

CP

Hewlett-Packard ltaliana S.p.A.
Via G. Di Vittorio 9

1-20063 CERNUSCO SUL NAVIGLIO
Tel: (2) 903691

Telex: 334632
A,CH,CM,CS,EMPP
Hewlett-Packard Italiana S.p.A.
Via Nuova San Rocco a
Capodimonte, 62/A

1-80131 NAPLES

Tel: (081) 7413544

Telex: 710698

ACHE

Hewlett-Packard ltaliana S.p.A.
Viale G. Modugno 33

1-16156 GENOVA PEGLI

Tel: (010) 68-37-07

Telex: 215238

EC

Hewlett-Packard ltaliana S.p.A.
Via Turazza 14

1-35100 PADOVA

Tel: (049) 664888

Telex: 430315

A,CH.EMS

Hewlett-Packard ltaliana S.p.A.
Viale C. Pavese 340

1-00144 ROMA

Tel: (08) 54831

Telex: 610514
A,CH,CM,CS E MS,P*
Hewlett-Packard italiana S.p.A.
Corso Svizzera, 184

1-10149 TORINO

Tel: (011) 74 4044

Telex: 221079

CHE

JAPAN
Yokogawa-Hewlelt-Packard Lid.
Inoue Building

1-21-8, Asahi-cho

ATSUGI, Kanagawa 243

Tel: (0462) 28-0451

CM,C*E
Yokogawa-Hewlett-Packard Lid.
Towa Building

2-2-3, Kaigandori, Chuo-ku
KOBE, 650, Hyogo

Tel: (078) 392-4791

CE

Yokogawa-Hewlett-Packard Ltd.
Kumagaya Asahi Yasoji Bidg 4F
3-4 Chome Tsukuba
KUMAGAYA, Saitama 360

Tel: (0485) 24-6563

CH,CM,E
Yokogawa-Hewlett-Packard Lid.

Asahi Shinbun Dai-ichi Seimei Bldg.,

2F

4-7 Hanabata-cho
KUMAMOTO-SHI,860

Tel: {0963) 54-7311

CHE
Yokogawa-Hewlett-Packard Ltd.
Shin Kyoto Center Bldg. 5F
614 Siokoji-cho

Nishiiruhigashi, Karasuma
Siokoji-dori, Shimogyo-ku
KYOTO 600

Tel: 075-343-0921

CHE
Yokogawa-Hewlett-Packard Lid.
Mito Mitsui Building

1-4-73, San-no-maru

MITO, Ibaragi 310

Tel: (0292) 25-7470

CH,CM,E
Yokogawa-Hewlett-Packard Ltd.
Sumitomo Seimei Nagoya Bldg.
2-14-19, Meieki-Minami,
Nakamura-ku

NAGOYA, 450 Aichi

Tel: (052) 571-5171
CH,CM,CS E MS
Yokogawa-Hewlett-Packard Lid.
Chuo Bldg., 4th Floor

5-4-20 Nishinakajima,
Yodogawa-ku

OSAKA, 532

Tel: (08) 304-6021

Telex: YHPOSA 523-3624
A,CH,CM,CS,EMP.P*
Yokogawa-Hewlett-Packard Ltd.
1-27-15, Yabe,

SAGAMIHARA Kanagawa, 229
Tel: 0427 59-1311
Yokogawa-Hewlett-Packard Ltd.
Shinjuku Dai-ichi Seimei 6F
2-7-1, Nishi Shinjuku
Shinjuku-ku, TOKYO 160

Tel: 03-348-4611-5

CHE

Yokogawa-Hewlett-Packard Ltd.
3-29-21 Takaido-Higashi
Suginami-ku TOKYQ 168

Tel: (03) 331-6111

Telex: 232-2024 YHPTOK
A,CH,CM,CS,EMP.P*
Yokogawa-Hewlett-Packard Ltd.
Daiichi Asano Building 4F
5-2-8, Oodori,

UTSUNOMIYA, 320

Tochigi

Tel: (0286) 25-7155

CH, CS, E
Yokogawa-Hewlett-Packard Lid.
Yasudaseimei Yokohama
Nishiguchi Bidg.

3-30-4 Tsuruya-cho
Kanagawa-ku

YOKOHAMA, Kanagawa, 221

Tel: (045) 312-1252

CH,CM,E

JORDAN

Mouasher Cousins Company
P.0. Box 1387

AMMAN

Tel: 24907, 39907

Telex: 21456 SABCO JO
CHEMP

KENYA

ADCOM Lid., Inc., Kenya
P.0.Box 30070

NAIROBI

Tel: 331955

Telex: 22639

EM

KOREA

Samsung Electronics Compuler
Division

76-561 Yeoksam-Dong
Kangnam-Ku

C.P.0. Box 2775

SEOUL

Tel: 555-7555, 555-5447
Telex: K27364 SAMSAN
ACH.CM,CSEMP

KUWAIT

Al-Khaldiya Trading & Contracting
P.0. Box 830 Safat
KUWAIT

Tel: 42-4910, 41-1726
Telex: 22481 Areeg ki
CHEM

Photo & Cine Equipment
P.0. Box 270 Safat
KUwaAIT

Tel: 42-2846, 42-3801
Telex: 22247 Malin-KT
P

LEBANON
G.M. Dolmadjian
Achrafieh

P.0. Box 165.167
BEIRUT

Tel: 290293
MP**

LUXEMBOURG

Hewlett-Packard Belgium S.A/N.V.

Blvd de la Woluwe, 100
Woluwedal

B-1200 BRUSSELS

Tel: (02) 762-32-00
Telex: 23-494 paloben bru
A,CH,CM,CS,EMP.P

MALAYSIA

Hewlett-Packard Sales (Malaysia)
Sdn. Bhd.

1st Floor, Bangunan British
American

Jalan Semantan, Damansara Heights
KUALA LUMPUR 23-03

Tel: 943022

Telex: MA31011

ACHEMP*

Protel Engineering

Lot 319, Satok Road

P.0.Box 1917

Kuching, SARAWAK

Tel: 53544

Telex: MA 70904 PROMAL
Cable: PROTELENG

AEM

MALTA

Philip Toledo Ltd.
Notabile Rd.

MRIEHEL

Tel: 447 47, 455 66
Telex: 649 Media MW
P

MEXICO

Hewlett-Packard Mexicana, S.A. de
cv.

Av. Periferico Sur No. 6501
Tepepan, Xochimilco

MEXICO D.F. 16020

Tel: 676-4600

Telex: 17-74-507 HEWPACK MEX
A,CHCS EMSP

Effective November 1, 1982:
Hewlett-Packard Mexicana, S.A. de
CV.

Ejercito Nacional #570

Colonia Granada

11560 MEXICO, D.F.

CH**

Hewlett-Packard Mexicana, S.A. de
C.v.

Rio Volga 600

Pte. Colonia del Valle

MONTERREY, N.L.

Tel: 78-42-93, 78-42-40, 78-42-41
Telex: 038-2410 HPMTY ME

CH

Effective Nov. 1, 1982

Ave. Colonia del Valle #409

Col. del Valle

Municinio de garza garcia
MONTERREY, N.V.

ECISA

Taihe 228, Piso 10

Polanco MEXICO D.F. 11570

Tel: 250-5391

Telex: 17-72755 ECE ME

M

MOROCCO
Dolbeau

81 rue Karatchi
CASABLANCA

Tel: 3041-82, 3068-38
Telex: 23051, 22822
E

Gerep

2 rue d’Agadir

Boite Postale 156
CASABLANCA

Tel: 272093, 272095
Telex: 23 739

P

NETHERLANDS
Hewlett-Packard Nederland B.V.
Van Heuven Goedhartlaan 121
NL 1181KK AMSTELVEEN

P.0. Box 667

NL1180 AR AMSTELVEEN

Tel: (20) 47-20-21

Telex: 13 216

A,CH,CM,CS E,MP.P

Hewlett-Packard Nederfand B.V.
Bongerd 2 3

NL 2906VK CAPPELLE, A/D liesse! []

P.0. Box 41

NL2900 AA CAPELLE, ljssel
Tel: (10) 51-64-44

Telex: 21261 HEPAC NL
A,CH,CS

NEW ZEALAND
Hewlett-Packard (N.2.) Lid.
169 Manukau Road

P.0. Box 26-189

Epsom, AUCKLAND

Tel: 687-159

Cable: HEWPACK Auckland
CH,CMEP*
Hewlett-Packard (N.Z.} Ltd.
4-12 Cruickshank Street
Kilbirnie, WELLINGTON 3

P.0. Box 9443

Courtenay Place, WELLINGTON 3
Tel: 877-199

Cable: HEWPACK Wellington
CH.CMEP

Northrop Instruments & Systems
Lid.

369 Khyber Pass Road
P.0. Box 8602

AUCKLAND

Tel: 794-091

Telex. 60605

AM

Northrop Instruments & Systems
Lid.

110 Mandevilie St.

P.0. Box 8388
CHRISTCHURCH

Tel: 486-928

Telex: 4203

AM

Northrop Instruments & Systems
Lid.

Slurdee House

85-87 Ghuznee Streel

P.O. Box 2406
WELLINGTON

Tel: 850-091

Telex: NZ 3380

AM

NORTHERN IRELAND
Cardiac Services Company
95A Finaghy Road South
BELFAST BT 10 OBY

Tel: (0232) 625-566

Telex: 747626

M

NORWAY
Hewlett-Packard Norge A/S
Folke Bernadottes vei 50
P.0. Box 3558

N-5033 FYLLINGSDALEN (Bergen)
Tel: (05) 16-55-40

Telex: 16621 hpnas n
CH,CS.E.MS
Hewlett-Packard Norge A/S
QOsterndalen 18

P.0. Box 34

N-1345 OSTER°AS

Tel: (02) 17-11-80

Telex: 16621 hpnas n
ACHCMCSEMP

OMAN

Khimjil Ramdas

P.O. Box 19

MUSCAT

Tel: 722225, 745601

Telex: 3289 BROKER MB MUSCAT
P

<]

3

SALES & SUPPORT OFFICES

Arranged Alphabetically by Country

Suhail & Saud Bahwan
P.0. Box 169

MUSCAT

Tel: 734 201-3

Telex: 3274 BAHWAN MB

PAKISTAN

Mushko & Company Lid.
1-8, Sireet 43

Secior F-8/1

ISLAMABAD

Tel: 26875

Cable: FEMUS Rawalpindi
AEM

Mushko & Company Lid.
Oosman Chambers
Abdullah Haroon Road
KARACHI 0302

Tel: 511027, 512927
Telex: 2894 MUSKO PK
Cable: COOPERATOR Karachi
AEMP"

PANAMA

Electrénico Balboa, S.A.
Calle Samuel Lewis, Ed. Alfa
Apartado 4929

PANAMA 5

Tel: 64-2700

Telex: 3483 ELECTRON PG
ACMEMP

Folo Internacional, S.A.
Colon Free Zone

Aparlado 2068

COLON 3

Tel: 45-2333

Telex: 8626 IMPORT PG

P

PERU

Cia Electro Médica S.A.

Los Flamencos 145, San Isidro
Casilla 1030

LiMA 1

Tel: 41-4325, 41-3703

Telex: Pub. Booth 25306
ACMEMP

PHILIPPINES

The Online Advanced Systems
Corporalion

Rico House, Amorsolo Cor. Herrera
Street

Legaspi Village, Makati

P.O. Box 1510

Metro MANILA

Tel: 85-35-81, 85-34-91, 85-32-21
Telex: 3274 ONLINE

ACHCS.EM

Electronic Specialists and
Proponents Inc.

690-8 Epifanio de los Santos
Avenue

Cubao, QUEZON CITY

P.0. Box 2649 Maniia

Tel: 98-96-81, 98-96-82, 98-96-83
Telex: 40018, 42000 ITT GLOBE
MACKAY BOOTH

P

PORTUGAL

Mundinter

Intercambio Mundial de Comércio
Sarl

P.0. Box 2761

Av. Antonio Augusto de Aguiar 138
P-LISBON

Tel: (19) 53-21-31, 53-21-37
Telex: 16691 munter p

M

Soquimica

Av. da Liberdade, 220-2
1298 LISBON Codex

Tel: 56 21 81/2/3

Telex: 13316 SABASA P
Telectra-Empresa Técnica de
Equipmentos Eléctricos S.a.r.l.
Rua Rodrigo da Fonseca 103
P.0. Box 2531

P-LISBON 1

Tel: (19) 68-60-72

Telex: 12598

CH,CS,E.P

PUERTO RICO
Hewlett-Packard Puerto Rico
P.0. Box 4407

CAROLINA, Puerto Rico 00628
Calle 272 Edificio 203

Urb. Country Club

RIO PIEDRAS, Puerto Rico 00924
Tel: (809) 762-7255

ACHCS

QATAR

Nasser Trading & Contracting
P.0. Box 1563

DOHA

Tel: 22170, 23539
Telex: 4439 NASSER DH
M

Computearbia

P.0. Box 2750

DOHA

Tel: 883555

Telex: 4806 CHPARB

P

Eastern Technical Services
P.0. Box 4747

DOHA

Tel: 329 993

Telex: 4156 EASTEC DH

SAUDI ARABIA

Modern Electronic Establishment
Hewlelt-Packard Division

P.0. Box 281

Thuobah

AL-KHOBAR

Tel: 864-46 78

Telex: 671 106 HPMEEK SJ
Cable: ELECTA AL-KHOBAR
CHCS.EMP

Modern Electronic Establishment
Hewilell-Packard Division

P.O. Box 1228

Redec Plaza, 6th Floor

JEDDAH

Tel: 644 38 48

Telex: 402712 FARNAS SJ
Cable: ELECTA JEDDAH
CH,CS,EM,P

Modern Electronic Establishment
Hewilett Packard Division

P.O. Box 2728

RIYADH

Tel: 491-97 15, 491-63 87
Telex: 202049 MEERYD SJ
CHCSEMP

SCOTLAND
Hewlett-Packard Ltd.
Royal Bank Buildings
Swan Street

BRECHIN, Angus, Scotland
Tel: (03562) 3101-2

CH

Hewleti-Packard Lid.
SOUTH QUEENSFERRY
West Lothian, EH30 9GT
GB-Scotland

Tel: (031) 3311188
Telex: 72682
A.CH,CM,CS.EM

SINGAPORE
Hewlett-Packard Singapore (Pty.)
Ltd.

P.0. Box 58 Alexandra Post Office
SINGAPORE, 9115

6th Floor, Inchcape House
450-452 Alexandra Road
SINGAPORE 0511

Tel: 631788

Telex: HPSGSO RS 34209
Cable: HEWPACK, Singapore
ACH,CSEMS,P

Dynamar Infernational Ltd,

Unit 05-11 Block 6

Kolam Ayer Industrial Estate
SINGAPORE 1334

Tel: 747-6188

Telex: RS 26283

cM

SOUTH AFRICA

Hewlett-Packard So Africa (Pty:} Ltd.

P.0. Box 120

Howard Place

Pine Park Center, Forest Drive,
Pineiands

CAPE PROVINCE 7405

Tel: 53-7954

Telex: 57-20006
ACH,CMEMS,P

Hewlett-Packard So Africa (Pty.) Lid.

P.0. Box 37099

92 Overport Drive

DURBAN 4067

Tel: 28-4178, 28-4179, 28-4110
Telex: 6-22954

CH,CM

Hewlett-Packard So Africa (Pty.) Ltd.

6 Linton Arcade

511 Cape Road
Linton Grange

PORT ELIZABETH 6001
Tel: 041-302148

CH

Hewlett-Packard So Africa (Pty.) Ltd.

P.0. Box 33345

Glenstantia 0010 TRANSVAAL

1st Fioor East

Constantia Park Ridge Shopping
Centre

Constantia Park

PRETORIA

Tel: 982043

Telex: 32163

CHE

Hewiett-Packard So Africa (Pty.) Ltd.

Private Bag Wendywood
SANDTON 2144

Tel: 802-5111, 802-5125
Telex: 4-20877

Cable: HEWPACK Johannesburg
A,CH,CM,CS,E MS,P

SPAIN

Hewlett-Packard Espafiola S.A.
c/Entenza, 321

E-BARCELONA 29

Tel: (3) 322-24-51, 321-73-54
Telex: 52603 hpbee
ACH,CSEMSP
Hewlett-Packard Espariola S.A.
c/San Vicente S/N

Edificio Albia I,7 B

E-BILBAO 1

Tel: (4) 23-8306, (4) 23-8206
A,CH,E,MS

Hewlett-Packard Espafiola S.A.
Calle Jerez 3

E-MADRID 16

Tel: (1) 458-2600

Telex: 23515 hpe

ACME

Hewlett-Packard Espafiola S.A.
c/o Costa Brava 13

Colonia Mirasierra

E-MADRID 34

Tel: (1) 734-8061, (1) 734-1162
CH,CS M

Hewlett-Packard Espafiola S.A.
Av Ramén y Cajal 1-9

Edificio Sevilla 1,

E-SEVILLA 5

Tel: 64-44-54, 64-44-58
Telex: 72933

A,CSMSP

Hewlett-Packard Espafiola S.A.
C/Ramon Gordillo, 1 (Entlo.3)
E-VALENCIA 10

Tel: 361-1354, 361-1358
CH,P

SWEDEN

Hewlett-Packard Sverige AB
Sunnanvagen 14K

$-22226 LUND

Tel: (046) 13-69-79 o
Telex: (854) 17886 (via SPANGA
office)

CH

Hewlett-Packard Sverige AB
Vastra Vintergatan 9
S-70344 OREBRO

Tel: (19) 10-48-80 o
Telex: (854) 17886 (via SPANGA
office)

CH

Hewlett-Packard Sverige AB
Skalholtsgatan 9, Kista

Box 19 |

§-16393 SPANGA

Tel: (08) 750-2000

Telex: (854) 17886
A,CH,CM,CS EMS,P
Hewlett-Packard Sverige AB
Frotalisgatan 30
$-42132 VASTRA-FROLUNDA
Tel: (031) 49-09-50 o
Telex: (854) 17886 (via SPANGA
office}

CH,E,P

SWITZERLAND
Hewlett-Packard (Schweiz) AG
Clarastrasse 12

CH-4058 BASLE

Tel: (61) 33-59-20

A

Hewlett-Packard (Schweiz) AG
Bahnhoheweg 44

CH-3018 BERN

Tel: (031) 56-24-22

CH

Hewlett-Packard (Schweiz) AG
47 Avenue Blanc

CH-1202 GENEVA

Tel: (022) 32-48-00
CH,CM,CS

Hewiett-Packard {Schweiz) AG
19 Chemin Chéteau Bloc
CH-1219 LE LIGNON-Geneva
Tel: (022) 96-03-22

Telex: 27333 hpag ch

Cabie: HEWPACKAG Geneva
AEMSP

Hewlett-Packard (Schweiz) AG
Allmend 2

CH-8967 WIDEN

Tel: (57) 31 21 11

Telex: 53933 hpag ch

Cable: HPAG CH
A.CH,CM,CSEMS,P

SYRIA

General Electronic Inc.

Nuri Basha

P.0. Box 5781

DAMASCUS

Tel: 33-24-87

Telex: 11216 ITIKAL SY

Cable: ELECTROBOR DAMASCUS
E

Middle East Eleclronics
Place Azmé

Boite Postale 2308
DAMASCUS

Tel: 334592

Telex: 11304 SATACO SY
MP

TAIWAN

Hewlett-Packard Far East Lid.
Kaohsiung Office

2/F 68-2, Chung Cheng 3rd Road
KAOHSIUNG

Tel: 241-2318, 261-3253
CH,.CS,E

Hewieti-Packard Far East Lid.
Taiwan Branch

Sth Floor

205 Tun Hwa North Road
TAIPEI

Tel:(02) 751-0404
Cable:HEWPACK Taipei
A,CH,CM,CS,EM,P

Ing Lih Trading Co.

3rd Floor, 7 Jen-Ai Road, Sec. 2
TAIPE! 100

Tel: (02) 3948191

Cable: INGLIH TAIPE!

A

THAILAND

Unimesa

30 Patpong Ave., Suriwong
BANGKOK 5

Tel: 234 091, 234 092
Telex: 84439 Simonco TH
Cable: UNIMESA Bangkok
ACHCS.EM

Bangkok Business Equipment Ltd.
5/5-6 Dejo Road

BANGKOK

Tel: 234-8670, 234-8671
Telex: 87669-BEQUIPT TH
Cable: BUSIQUIPT Bangkok
P

TRINIDAD & TOBAGO
Caribbean Telecoms Lid.
50/A Jerningham Avenue

P.O. Box 732

PORT-OF-SPAIN

Tel: 62-44213, 62-44214
Telex: 235,272 HUGCO WG
ACMEMP

TUNISIA

Tunisie Electronique

31 Avenue de la Liberte
TUNIS

Tel: 280-144

EP

Corema

1 ter. Av. de Carthage
TUMIS

Tel: 253-821

Telex: 12319 CABAM TN
M

TURKEY

Teknim Company LId.
Iran Caddesi No. 7
Kavaklidere, ANKARA
Tel: 275800

Telex: 42155 TKNM TR
E

EMA.

Medina Eidem Sokak No.41/6
Yuksel Caddesi

ANKARA

Tel: 175 622

M

UNITED ARAB EMIRATES
Emitac Lid.

P.0. Box 1641

SHARJAH

Tel: 354121, 354123

Telex: 68136 Emitac Sh
CH.CS.EMP

INITED KINGDOM
ee: GREAT BRITAIN
JORTHERN IRELAND
COTLAND . _ .

INITED STATES

labama
ewleft-Packard Co.

00 Century Park South
uite 128

RMINGHAM, AL 35226
el: (205) 822-6802
H,MP

ewlett-Packard Co.

.0. Box 4207

290 Whitesburg Drive, S.E.
UNTSVILLE, AL 35802
el: (205) 881-4591
H,CM,CS.EM*

laska

ewlelt-Packard Co.

577 “C” Street, Suite 252
NCHORAGE, AK 99501

el: (907) 276-5709

He

rizona

ewlett-Packard Co.

336 East Magnolia Street
HOENIX, AZ 85034

el: (602) 273-8000
,CH,CM,CS,E,MS
ewlett-Packard Co.

424 East Aragon Road
UCSON, AZ 85706

el: (602) 889-4631
HEMS**

rkansas

ewlett-Packard Co.

.0. Box 5646

rady Station

TTLE ROCK, AR 72215

11 N. Filmore

TTLE ROCK, AR 72205

el: (501) 664-8773, 376-1844
S

;alifornla
ewlett-Packard Co.
9 South Hill Dr.
RISBANE, CA 94005
el: (415) 330-2500
H,CS
ewlett-Packard Co.
621 Canoga Avenue
ANOGA PARK, CA 91304
el: (213) 702-8300
.CH,CS,EP
ewlett-Packard Co.
060 Clinton Avenue
RESNO, CA 93727
el: (209) 252-9652
IS

ewlett-Packard Co.

.0. Box 4230

430 East Orangethorpe
ULLERTON, CA 92631
el: (714) 870-1000
H,CM,CS E,MP
ewlett-Packard Co.

20 S. Kellogg, Suite B
OLETA, CA 93117

el: (805) 967-3405

H

ewleti-Packard Co.
400 W. Rosecrans Boulevard
AWNDALE, CA 90260
.0. Box 92105

0S ANGELES, CA 90009
el: (213) 970-7500
elex: 910-325-6608
H,CM,CS,MP
ewlett-Packard Co.
200 Hillview Avenue
ALO ALTO, CA 94304
el: (415) 857-8000
H,CS,E

Hewlett-Packard Co.
P.0. Box 15976 (95813}
4244 So. Market Court, Suite A

- SACRAMENTO, CA 85834

Tel: (916) 929-7222
A*,CH,CSEMS
Hewlett-Packard Co.
9606 Aero Drive

P.0. Box 23333

SAN DIEGO, CA 92123
Tel: (714) 279-3200
CH,CM,CS,E.MP
Hewlett-Packard Co.
2305 Camino Ramon “C”
SAN RAMON, CA 94583
Tel: (415) 838-5900
CH,CS

Hewlett-Packard Co.
P.0. Box 4230

Fulierton, CA 92631

363 Brookhollow Drive
SANTA ANA, CA 92705
Tel: (714) 641-0977
A,CH,CM,CS,MP
Hewlett-Packard Co.
Suite A

5553 Hollister

SANTA BARBARA, CA 93111
Tel: (805) 964-3390
Hewlett-Packard Co.
3003 Scott Boulevard
SANTA CLARA, CA 95050
Tel: (408) 988-7000
A,CH,CM,CS,E . MP
Hewiett-Packard Co.
5703 Corsa Avenue
WESTLAKE VILLAGE, CA 91362
Tel: (213) 706-6800
E*,CH*,CS*
Colorado
Hewlett-Packard Co.

24 Inverness Place, East
ENGLEWOOD, CO 80112
Tel: (303) 771-3455
Telex: 910-935-0785
A,CH,CM,CS,EMS

Connecticut
Hewlett-Packard Co.

47 Barnes industrial Road South
P.0. Box 5007

WALLINGFORD, CT 06492

Tel: (203) 265-7801
A,CH,CM,CS,EMS

Florida

Hewlett-Packard Co.

P.0. Box 24210 (33307)
2901 N.W. 62nd Street
FORT LAUDERDALE, FL 33307
Tel: (305) 973-2600
CH,CS.E.MP
Hewlett-Packard Co.

4080 Woodcock Drive, #132
Brownett Building
JACKSONVILLE, FL 32207
Tel: (904) 398-0663
C*E"MS**
Hewlett-Packard Co.

1101 W. Hibiscus Ave., Suite E210
MELBOURNE, FL 32901

Tel: (305) 729-0704

E*

Hewlett-Packard Co.

P.0. Box 13910 (32859)
6177 Lake Ellenor Drive
ORLANDO, FL 32809

Tel: (305) 859-2900
A,CH,CM,CS,E.MS

Hewiett-Packard Co.
6425 N. Pensacola Blvd.
Suite 4, Building 1

P.0. Box 12826
PENSACOLA, FL 32575
Tel: (304) 476-8422
AMS

Hewilett-Packard Co.
57508 N. Hoover Bivd., Suite 123
TAMPA, FL 33614

Tel: (813) 884-3282
A*,CHCM,CS,E* M*

Georgia
Hewlett-Packard Co.
P.0. Box 105005
ATLANTA, GA 30348
2000 South Park Place
ATLANTA, GA 30339
Tel: (404) 955-1500
Telex: 810-766-4890
A,CH,CM,CS.E,MP
Hewlett-Packard Co.
P.0. Box 816 (80903)
2531 Center West Parkway
Suite 110

AUGUSTA, GA 30904
Tel: (404) 736-0592
MS

Hewlett-Packard Co.
200-E Montgomery Cross Rds.
SAVANNAH, GA 31401
Tel:(912) 925-5358

CH**

Hewlett-Packard Co.

P.0. Box 2103

WARNER ROBINS, GA 31099
1172 N. Davis Drive
WARNER ROBINS, GA 31093
Tel: (912) 923-8831

E

Hawaiil

Hewlett-Packard Co.
Kawaiahao Plaza, Suite 190
567 South King Street
HONOLULU, HI 96813

Tel: (808) 526-1555
A,CH.EMS

Ilinois

Hewlett-Packard Co.

211 Prospect Road, Suite C
BLOOMINGTON, IL 61701
Tel: (309) 662-94 11
CHMS**

Hewlett-Packard Co.

1100 31st Street, Suite 100
DOWNERS GROVE, IL 60515
Tel: (312) 960-5760

CH,CS

Hewlett-Packard Co.

5201 Tollview Drive
ROLLING MEADOWS, IL 60008
Tel: (312) 255-9800
A,CH,CM,CS,E MP

Indiana

Hewlett-Packard Co.

P.0. Box 50807

7301 No. Shadeland Avenue
INDIANAPOLIS, IN 46250

Tel: (317) 842-1000
A,CH,CM,CS E.MS

lowa

Hewlett-Packard Co.
1776 22nd Street, Suite 1
WEST DES MOINES, A 50265
Tel: (515) 224-1435
CH.MS**

Hewlett-Packard Co.
2415 Heinz Road

10WA CITY, IA 52240

Tel: (319) 351-1020
CHE* MS

Kansas
Hewlett-Packard Co.
1644 S. Rock Road
WICHITA, KA 67207
Tel: (316) 684-8491
CH

Kentucky
Hewlett-Packard Co.
10300 Linn Station Road
Suite 100

LOUISVILLE, KY 40223
Tel: {502) 426-0100
A,CH,CSMS

Louisiana
Hewlett-Packard Co.
8126 Calais Bldg.
BATON ROUGE, LA 70806
Tel: (504) 467-4100
A**CH**
Hewieti-Packard Co.
P.0. Box 1449
KENNER, LA 70062
160 James Drive East
DESTAHAN, LA 70047
Tel: (504) 467-4100
A,CH,CS EMS

Maryland
Hewlett-Packard Co.
7121 Standard Drive
HANOVER, MD 21076
Tel: (301) 796-7700
Telex: 710-862-1943
Eff. Dec. 1, 1982
3701 Koppers St.
BALTIMORE, MD 21227
Tel: (301) 644-5800
A,CH,CM,CS E.MS
Hewiett-Packard Co.
2 Choke Cherry Road
ROCKVILLE, MD 20850
Tel: (301) 948-6370
A,CH,CM,CS E.MP

Massachusetts
Hewlett-Packard Co.
32 Hartwell Avenue
LEXINGTON, MA 02173
Tel: (617) 861-8960
A,CH,CM,CS E MP

Michigan
Hewlett-Packard Co.
23855 Research Drive
FARMINGTON HILLS, MI 48024
Tel: (313) 476-6400
A,CH,CM,CS,E,MP
Hewlett-Packard Co.
4326 Cascade Road S.E.
GRAND RAPIDS, Mi 49508
Tel: (616) 957-1970
CH,CSMS
Hewiett-Packard Co.

1771 W. Big Beaver Road
TROY, MI 48084

Tel: (313) 643-6474
CH,CS

Minnesota
Hewlett-Packard Co.
2025 W. Larpenteur Ave.
ST. PAUL, MN 55113

Tel: (612) 644-1100
A,CH,CM,CS,E.MP

Mississippi
Hewlett-Packard Co.
P.0. Box 5028
1675 Lakeland Drive
JACKSON, MS 39216
Tel: (601) 982-9363
MS

Missouri
Hewlett-Packard Co.
11131 Colorado Avenue
KANSAS CITY, MO 64137
Tel: (816) 763-8000
A,CH,CM,CS EMS

Hewlett-Packard Co.
P.0. Box 27307

1024 Executive Parkway
ST. LOUIS, MO 63141
Tel: (314) 878-0200
A,CH,CS,E.MP

Effective Seplember 1982:

13001 Holienberg Drive
BRIDGETON, MO 63044

Nebraska
Hewlett-Packard

7101 Mercy Road
Suite 101, IBX Building
OMAHA, NE 68106

Tel: (402) 392-0948
CM,MS

Nevada
Hewlett-Packard Co.
Suite D-130

5030 Paradise Blvd.
LAS VEGAS, NV 89119
Tel: (702) 736-6610
MS**

New Jersey
Hewlett-Packard Co.
W120 Century Road
PARAMUS, NJ 07652
Tel: (201) 265-5000
A.CH,CM,CS EMP
Hewleti-Packard Co.
60 New England Av. West
PISCATAWAY, NJ 08854
Tel: (201) 981-1199
A.CH,CM,CS,E

New Mexico
Hewlett-Packarg Co.

P.0. Box 11634
ALBUQUERQUE, NM 87112
11300 Lomas Bivd..N.E.
ALBUQUERQUE, NM 87123
Tel: (505) 292-1330
Telex: 910-989-1185
CH,CS,EMS

New York
Hewlett-Packard Co.
5 Computer Drive South
ALBANY, NY 12205
Tel: (518) 458-1550
Telex: 710-444-4691
A,CHEMS
Hewlett-Packard Co.
P.0. Box 297

9600 Main Street
CLARENCE, NY 14031
Tel: (716) 759-8621
Telex: 710-523-1893
CH

Hewlett-Packard Co.

200 Cross Keys Office
FAIRPORT, NY 14450
Tel: (716) 223-9950
Telex: 510-253-0092
CH,CM,CS,EMS
Hewlett-Packard Co.
7641 Henry Clay Blvd.
LIVERPOOL, NY 13088
Tel: (315) 451-1820
A,CH,CM,E.MS
Hewlett-Packard Co.

No. 1 Pennsylvania Plaza
55th Floor

34th Street & 8th Avenue
NEW YORK, NY 10119
Tel: (212) 971-0800
CH,CSE* M*

O

SALES & SUPPORT OFFICES

Arranged Alphabetically by Country

Hewleti-Packard Co.
250 Westchester Avenue
WHITE PLAINS, NY 10604
CM,CH,CS,E
Hewlett-Packard Co.

3 Crossways Park West
WOODBURY, NY 11797
Tel: (516) 921-0300
Telex: 510-221-2183
A,CH,CM,CS,EMS

North Carolina
Hewlett-Packard Co.
4915 Water’s Edge Drive
Suite 160

RALEIGH, NC 27606

Tel: (919) 851-3021
CM

Hewlett-Packard Co.
P.0. Box 26500

5605 Roanne Way
GREENSBORO, NC 27450
Tel: (919) 852-1800
A,CH.CM,CS,E MS

Ohio
Hewleft-Packard Co.
9920 Carver Road
CINCINNATI, OH 45242
Tel: (513) 891-9870
CH,CS,MS
Hewlett-Packard Co.
16500 Sprague Road
CLEVELAND, OH 44130
Tel: (216) 243-7300
Telex: 810-423-9430
A,CH,CM,CS,E,MS
Hewlett-Packard Co.
962 Crupper Ave.
COLUMBUS, OH 43229
Tel: (614) 436-1041
CH,CM,CS.E*
Hewlett-Packard Co.
P.0. Box 280

330 Progress Rd.
DAYTON, OH 45449
Tel: (513) 859-8202
A,CH,CM,E* MS

Oklahoma
Hewlett-Packard Co.

P.0. Box 32008

Oklahoma City, OK 73123
1503 W. Gore Blvd., Suite #2
LAWTON, OK 73505

Tel: (405) 248-4248

c

Hewlett-Packard Co.

P.0. Box 32008
OKLAHOMA CITY, OK 73123
304 N. Meridian Avenue, Suite A
OKLAHOMA CITY, OK 73107
Tel: (405) 946-9499

A* CHE* MS
Hewiett-Packard Co.

Suite 121

9920 E. 42nd Street
TULSA, OK 74145

Tel: (918) 665-3300

A** CHCSM*

Oregon
Hewlett-Packard Co.
1500 Valiey River Drive
Suite 330

EUGENE, OR 97401
Tel: (503) 683-8075

[

Hewlett-Packard Co.
9255 S. W. Pioneer Court
WILSONVILLE, OR 97070
Tel: (503) 682-8000
ACHCS,E* MS

Pennsylvania
Hewiett-Packard Co.

1021 8th Avenue

King of Prussia Industrial Park
KING OF PRUSSIA, PA 19406
Tel: (215) 265-7000

Telex: 510-660-2670
A,CH,CM,CS,E,MP
Hewlett-Packard Co.

111 Zeta Drive
PITTSBURGH, PA 15238
Tel: (412) 782-0400
A,CH,CS EMP

South Carolina
Hewlett-Packard Co.

P.0. Box 21708
Brookside Park, Suite 122
1 Harbison Way
COLUMBIA, SC 29210

Tel: (803) 732-0400
CH,EMS

Hewlett-Packard Co.
Koger Executive Center
Chesterfield Bidg., Suite 124
GREENVILLE, SC 29615
Tel: (803) 748-5601

c

Tennessee
Hewlett-Packard Co.
P.0. Box 22490

224 Peters Road
Suite 102

KNOXVILLE, TN 37922
Tel: (615) 691-2371
A* ,CHMS
Hewlett-Packard Co.
3070 Directors Row
MEMPHIS, TN 38131
Tel: {301) 346-8370
A,CHMS
Hewlett-Packard Co.
230 Great Circle Road
Suite 216

NASHVILLE, TN 32228
Tel: (615) 255-1271
MS**

Texas
Hewlett-Packard Co.
Suite 310W

7800 Shoalcreek Blvd.
AUSTIN, TX 78757

Tel: (512) 459-3143

E

Hewiett-Packard Co.
Suite C-110

4171 North Mesa

EL PASO, TX 79902
Tel: (915) 533-3555, 533-4489
CHE" MS**
Hewlett-Packard Co.
5020 Mark IV Parkway
FORT WORTH, TX 76106
Tel: (817) 625-6361
CH,CS*
Hewilett-Packard Co.
P.0. Box 42816
HOUSTON, TX 77042
10535 Harwin Street
HOUSTON, TX 77036
Tel: (713) 776-6400
A,CH,CM,CS.E.MP
Hewlett-Packard Co.
3309 67th Street
Suite 24

LUBBOCK, TX 79413
Tel: (806) 799-4472
M

Hewlett-Packard Co.

417 Nolana Gardens, Suite C
P.0. Box 2256

MCcALLEN, TX 78501

Tel: (512) 781-3226

CH,CS

Hewlett-Packard Co.

P.0. Box 1270

RICHARDSON, TX 75080

930 E. Campbell Rd.
RICHARDSON, TX 75081

Tel: (214) 231-6101
A,CH,CM,CS.E,MP
Hewlett-Packard Co.

P.0. Box 32993

SAN ANTONIO, TX 78216
1020 Central Parkway South
SAN ANTONIO, TX 78232

Tel: (512) 494-9336

CH,CS E,MS

Utah

Hewlett-Packard Co.

P.0. Box 26626

3530 W. 2100 South
SALT LAKE CITY, UT 84119
Tel: (801) 974-1700
A,CH,CS EMS

Virginia

Hewlett-Packard Co.

P.0. Box 9669

2914 Hungary Spring Road
RICHMOND, VA 23228

Tel: (804) 285-3431
A,CH.CS,EMS
Hewlett-Packard Co.

3106 Peters Creek Road, N.W.

ROANOKE, VA 24019

Tel: (703) 563-2205
CHE"*

Hewlett-Packard Co.
5700 Thurston Avenue
Suite 111

VIRGINIA BEACH, VA 23455
Tel: (804) 460-2471
CHMS

Washington
Hewilett-Packard Co.
15815 S.E. 37th Street
BELLEVUE, WA 98006
Tel: (206) 643-4000
A,CH.CM,CS.EMP
Hewlett-Packard Co.
Suite A

708 North Argonne Road
SPOKANE, WA 99206
Tel: (509) 922-7000
CH,CS

Waest Virginia
Hewlett-Packard Co.

4604 MacCorkle Ave., SEE.
CHARLESTON, WV 25304-4297
Tel: (304) 925-0492

AMS

Wisconsin
Hewlett-Packard Co.

150 S. Sunny Slope Road
BROOKFIELD, WI 53005
Tel: (414) 784-8800
ACH,CSE* MP

URUGUAY

Pablo Ferrando S.A.C. e L.
Avenida llalia 2877

Casilla de Correo 370
MONTEVIDEO

Tel: 80-2586

Telex: Public Booth 901
ACM.EM

Guillermo Kraft del Uruguay S.A.
Av. Lib. Brig. Gral. Lavalleja 2083
MONTEVIDEO

Tel: 234588, 234808, 208830
Telex: 22030 ACTOUR UY

P

VENEZUELA

Hewiett-Packard de Venezuela C.A.

3A Transversal Los Ruices Norte
Edificio Segre

Apartado 50933
CARACAS 1071

Tet: 239-4133

Telex: 25146 HEWPACK
A,CH,CS,EMSP
Colimodio S.A.

Este 2 - Sur 21 No. 148
Apariado 1053
CARACAS 1010

Tel: 571-3511

Telex: 21529 COLMODIO
M

ZIMBABWE

Field Technical Sales
45 Kelvin Road, North
P.B. 3458

SALISBURY

Tel: 705 231

Telex: 4-122 RH
CEMP

Headquarters offices
If there is no sales office listed for your area,
contact one of these headquarters offices.

NORTH/CENTRAL

AFRICA

Hewlett-Packard S.A.

7 Rue du Bois-du-Lan
CH-1217 MEYRIN 2, Switzerland
Tel: (022) 98-96-51

Telex: 27835 hpse

Cable: HEWPACKSA Geneve

ASIA

Hewlett-Packard Asia Ltd.

6th Fioor, Sun Hung Kai Center
30 Harbor Rd.

G.P.0. Box 795

HONG KONG

Tel: 5-832 3211

Telex: 66678 HEWPA HX
Cable: HEWPACK HONG KONG

CANADA

Hewlett-Packard {Canada) Lid.
6877 Goreway Drive
MISSISSAUGA, Ontario L4V 1M8
Tel: (416) 678-9430

Telex: 610-492-4246

EASTERN EUROPE
Hewlett-Packard Ges.m.b.h.
Liebigasse 1

P.0.Box 72

A-1222 VIENNA, Austria

Tel: (222) 2365110

Telex: 1.3 4425 HEPA A

NORTHERN EUROPE
Hewlett-Packard S.A.
Uilenstede 475

NL-1183 AG AMSTELVEEN
The Netherlands

P.0.Box 999

NL-1180 AZ AMSTELVEEN
The Netheriands

Tel: 20 437771

OTHER EUROPE
Hewlett-Packard S.A.

7 Rue du Bois-du-Lan

CH-1217 MEYRIN 2, Switzerland
Tel: (022) 98-96-51

Telex: 27835 hpse

Cable: HEWPACKSA Geneve
(Offices in the World Trade Center)

MEDITERRANEAN AND

MIDDLE EAST
Hewlett-Packard S.A.
Mediterranean and Middle East
Operations

Atrina Centre

32 Fifissias Ave.

Maroussi, ATHENS, Greece

Tel: 682 88 11

Telex: 21-6588 HPAT GR
Cable: HEWPACKSA Athens

EASTERN USA
Hewlett-Packard Co.
4 Choke Cherry Road
Rockville, MD 20850
Tel: (301) 258-2000

MIDWESTERN USA
Hewiett-Packard Co.

5201 Tollview Drive
ROLLING MEADOWS, IL 60008
Tel: (312) 255-9800

SOUTHERN USA
Hewlett-Packard Co.

P.0. Box 105005

450 Interstate N. Parkway
ATLANTA, GA 30339

Tel: (404) 955-1500

WESTERN USA
Hewlett-Packard Co.
3939 Lankersim Blvd.
LOS ANGELES, CA 91604
Tel: (213) 877-1282

OTHER INTERNATIONAL

AREAS

Hewlett-Packard Co.
Intercontinental Headquarters
3495 Deer Creek Road
PALO ALTO, CA 94304

Tel: (415) 857-1501

Telex: 034-8300

Cable: HEWPACK

15 Aug 1982 5952-6900

Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

