
•

-.

•

"- - -

24(1 [1=-=

*: Ft

26(1 [lP
i71.:1 I [I
~ra':' - ' •

HEWLETT-PACKARD

HP-85B
OWNER'S MANUAL AND PROGRAMMING GUIDE

iJM:
[u C B A

"" 00 '!1 ., ~J (;) .].1 "j

'II' ';;f' '" r • .:t~ t!. '7.

Printed in U.S.A.

FliO'l HEWLETT
~~ PACKARD

HP-85B
Owner's Manual

and
Programming Guide

May 1983

Reorder Number
00085-90990

©Hewlett-Packard Company 1983

Contents

Meet the HP-85 Personal Computing System 0 11
How to Use This Manual 0 11
An Overview of the Hewlett-Packard 85 000 0 0 0 0 0 0 0 0 0 0 0 0 0 14
HP-85 Key Index 0 15

Part I: Using Your HP-85 00 19

Section 1: Getting Started 0 21
Power On 00 0 0 0 0 0 0 0 0 0 0 0 21
Manual Problem Solving ("Calculator" Mode) 0000 0 0 0 0 0 000 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22

Simple Display Editing 0 23
Clearing the Display 0 24
Error Messages and Warnings 0 25
Variables 0 25

Running a Prerecorded Program 0 0 0 0 0 • 0 27
Loading a Program From the Standard Pac 0 27
Halting Program Execution 0 0 0 0 0 • 0 _ 30

Writing Your Own Programs 0 • 0 31
Creating the Program 0 32
Entering the Program 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 • 0 32
Running the Program 0 32
An Averaging Program 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 •• 0 33
Recording the Program 0 35

Erasing a Program From the Tape Cartridge 0 36
Mass Storage Options 0 36
HP-85A and HP-85B Programs 000 0 0 0 0 0 0 000 0 0 0 0 36

Section 2: Keyboard, Printer, and Display Control 0 39
The Keyboard 0 39

Typewriter Keys 0 39
BASIC Typewriter Mode 0 39
Normal Typewriter Mode 0 40

HP-85 Character Set 0 40
Printer Control 0 41
The Display 0 42

Entering Long Expressions 0 43
Display Editing 0 44

Fast Backspace 0 44
Deleting Characters 0 44
Inserting Characters 0 45

System Self-Test 000 000 0 0 0 0 0 0 0 000 0 0 0 0 46
Resetting the Computer 0 46

Section 3: Expressions and Keyboard Operations 0 49
Keyboard Arithmetic 0 49

toW [I and [I I I,} 0 50
Arithmetic Hierarchy 0 51
Parentheses 0 51
The RESULT Key 00 0 0 52

F' P I to~ T and [I I ::; F' 0 52
Standard Number Format 0 53

Scientific Notation 0 54
Keying In Exponents of Ten 0 54
Range of Numbers 0 55

Variables 0 55
Types 00 0 0 0 0 00000000 55
Forms 00 0 0 0 0 0000000 55
Simple Variables 0 56
String Variables 0 57

String Concatenation 0 58
The Null String 0 58

Logical Evaluation 0 59
Relational Operators 0 59
Logical Operators 00 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 000 61

The Time Functions 0 62

2

Contents 3

Section 4: Math Functions and Statements 65
Number Alteration 65

Absolute Values .. . 66
Integer Part of a Number 66
Fractional Part of a Number 66
Greatest Integer Function 66
Smallest Integer Function 67

General Math Functions 67
Square Root Function .. . 68
Sign of a Number 68
Maximum and Minimum .. . 68
The Remainder Function .. . 68
Using F'I 69
Epsilon and Infinity .. . 70
Random Numbers 70

Logarithmic Functions .. . 71
Trigonometric Functions and Statements 72

Trigonometric Modes .. . 72
Trigonometric Functions .. . 73
Degrees/Radians Conversions 73
Polar/Rectangular Coordinate Conversions 73

Total Math Hierarchy 75
Recovering From Math Errors .. . 75

Part II: BASIC Programming With Your HP-85 77

Section 5: Simple Programming 79
Loading and Running a Prerecorded Program 80

Stopping a Running Program .. . 81
Listing a Program 81

What Is a BASIC Program? 82
Statements .. . 82
Statement Numbers 83
Commands .. . 83

Clearing Computer Memory .. . 84
Writing a Program 84
Entering a Program .. . 86

Automatic Numbering .. . 86
Spacing 86
Statement Length 87
Entering Program Statements into Main Memory 87
Entering the Program .. . 87

Running a Program .. . 88
Order of Program Execution 89
Fundamental BASIC Statements .. . 90

f;:Ularks .. . 90
[! I ::; F'lay .. . 90
F'~:: I HT 93
I [iF' U T: Assigning Values From the Keyboard 94
BEEP .. . 96
L. E T: Assignments .. . 97
CUT 0: Unconditional Branching 98

Multistatement Lines 99
Problems 100

Section 6: Program Editing .. . 103
Editing Program Statements .. . 103
Deleting Statements 103
Adding Statements 104
Renumbering a Program 104
Listing a Modified Program 104
Interrupting Program Execution .. . 105

Pausing .. . 105
Continuing .. . 106

Initializing a Program .. . 107
Using F' AU::; E in a Program .. . 107
Delaying Program Execution .. . 108
Error Messages .. . 108
Problems 109

I

4 Contents

Section 7: Branches and Loops .. 113
Conditional Branching .. 113
The EL::::;E Option. 116
The Computed C I] T I] Statement ... 118
FI]F.:-t·jE::<T Loops .. 120

Changing the Increment Value ... 124
Nested Loops .. 125
F I] F.: -tj D:: T Loop Considerations .. 126

Problems .. 126

Section 8: Using Variables: Arrays and Strings 129
Array Concepts ... 129
Declaring and Dimensioning Variables .. 131

Lower Bounds of Arrays ... 131
The D I t'l Statement ... 132
Type Declaration Statements .. 132
The C I] t'l Statement ... 133
About Variable Declarations ... 134

String Expressions ... 134
Substrings ... 135
Modifying String Variables .. 136

Replacing a String .. 136
Replacing Part of a String .. 136

String Functions .. 138
The Length Function .. 138
The Position Function ... 140
Converting Strings to Numbers .. 140
Converting Numbers to Strings .. 142
Character Conversions .. 142

Numbers to Characters ... 142
Characters to Numbers ... 143
Lowercase to Uppercase Conversion. .. 143

Assigning Values to Variables in a Program 144
Assigning Values to Array Elements. .. 144
Initializing Variables .. 146
The F.: E A D and D A T A Statements 147
Rereading Data: The F.: E ::::; T I] F.: E Statement 150

System Memory and Variable Storage 151
Storing Variables .. 151
Conserving Memory ... 152

Problems .. 153

Section 9: More Branching. .. 157
Defining a Function .. 157

Single-Line Functions .. 157
Multiple-Line Functions ... 159

Subroutines .. 163
The Computed C I] ::::; U B Statement .. 165
Branching Using Special Function Keys 165

f:::E\' LABEL ... 166
Canceling Key Assignments ... 168

The Timers ... 168
Problems .. 170

Section 10: Printer and Display Formatting 175
Using I t'lACE .. 175
Delimiters .. 175
Blank Spaces ... 176
String Specification .. 176
Numeric Specification. .. 177

Digit Symbols .. 177
Radix Symbols ... 178
Sign Symbols .. 178
Digit Separator Symbols .. 179
Exponent Symbol ... 179

Compacted Field Specifier ... 180
Replication ... 180
Reusing the I t'lACE Format String ... 180
Field Overflow .. 181
Formatting in F' F.: I tH /D I ::::; F' US I t·j C Statements 181
The TAB Function .. 182

Redefining the Printer and the Display 0

Problems 00 0 0 0 0 0 0 0 0 0 0

Section 11: Graphics 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 000 0 0 0 0 0 0

The Graphics Display 0

Line Generation 0

Graphics and the Printer 0

Clearing the Graphics Display 0

Setting Up the Graphics Display 0

The ::; CAL E Statement 0

Unequal Unit Scaling 0

Equal Unit Spacing 0

Drawing Coordinate Axes 0

Plotting Operations 0

F"DHJP 00 0 0 0 0 0 0 0 0 0

FEf~ 00 0 0 0 0 0 0 0 0 0 0 0

F" l.. 0 Too 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 000

Moving and Drawing 0

!'W',}!=:: 00 0 0 0 0 0 0 0 0 0 0

DPf:n.,j 00 0 0 0 0 0 0 0 0 0 0

Drawing Curves 0

Padding the Increment Loop 0

Problems 00 0 0 0 0 0 0 0 0

I DbUi~'! 00 0 0 0 0 0 0 0 0 0

Problem 00 0 0 0 0 0 0 0 0 0

Labeling Graphs 0

Label Direction 0

Label Length 0

Positioning Labels 0

Problem 00 0 0 0 0 0 0 000

I to! PUT in Graphics Mode 0

Problem 00 0 0 0 0 0 0 0 0 0 0 0

Advanced Plotting With E: F" LOT 0

Procedure for Building the String 0

Using the String With E: F" LOT 0

Condensing the String Assignment Program 0

Problem 00 0 0 0 0 0 0 0 0 0

Section 12: Debugging and Error Recovery 0

Tracing Program Execution 0

Tracing Branches 0

Tracing the Values of Variables 0

Tracing All Statements and Variable Assignments 0

Canceling Trace Operations 0

The STEP Key 0

Checking a Halted Program 0

Error Testing and Recovery 0

The Error Functions 0

Some Hints About the System 0

Memory Conservation Hints 0

Part III: Mass Storage Operations

Section 13: Accessing Your Mass Storage System 0

Introduction 0

Command Summary 0

Function Summary 0 0 0 0 0 0 0 0 0 000 000 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0

Installation of the HP-IB Interface and Disc Drives 0 0 0 0 0 0 • 0

Addressing Mass Storage Devices 0

The HP-IB Select Code 0

Device Address Switch 0

Disc Drive Numbers 0

The Mass Storage Unit Specifier (msus) 0

The Default Mass Storage Location 0

Volume Labels 0

Preparing a Tape Cartridge 0

Initializing a Flexible Disc or Hard Disc Volume 0

More About I t~ I T I A LIZ E 0

The Interleave Factor 0

Establishing a New Default Mass Storage Location 0 , 0 0 0 0 0

Contents 5

183
184

189
189
190
190
191
191
191
192
193
194
199
199
199
200
203
203
203
204
205
208
209
209
212
213
216
217
219
222
222
229
229
230
233
235
245

247
247
247
247
248
248
251
252
252
253
255
256

259

261
261
262
263
264
264
264
264
265
266
267
267
268
269
270
270
271

6 Contents

Accessing Files Using the File Specifier 272
The File Directory ... 273
File Types .. 274
Specifying Parameters Using Expressions 274
Mass Storage Functions .. 274

The [I I ::; C F F.: E E Function .. 274
The t'1 ::; U ::; $ Function ... 275
The I,} 0 L $ Function ... 275
Sample Program .. 276

Tape Cartridge Commands .. 277
Write Protection ... 277

Section 14: Storing and Retrieving Programs and Graphics 281
Storing a Program ... 281
Loading a Program From Mass Storage 283
Autostart Programs .. 284
Chaining Programs ... 284
Storing and Retrieving Graphics Displays 286

Storing a Graphics Display .. 286
Retrieving a Graphics Display .. 287

Storing and Retrieving Binary Programs 287
Translating Tape-Based Programs to Disc-Based Programs 288

Section 15: File Manipulations .. 291
Copying Files ... 291
Copying an Entire Disc ... 291
Renaming Files ... 292
Purging Files ... 292
Packing Files ... 293
File Security .. 294

Securing Files .. 294
Removing File Security ... 295

String Manipulation of BASIC Programs 296

Section 16: Storing and Retrieving Data 299
Introduction .. 299
File Records .. 299
Storage Requirements .. 300
Creating Data Files .. 301
Opening a Data File .. 302
Mass Storage Buffers .. 302
Closing a Data File .. 303
Serial Access ... 303

Serial Printing .. 303
Reading Files Serially .. 305

Random Access ... 306
Random Printing .. 307
Reading Files Randomly .. 309

Storing and Retrieving Arrays .. 310
Determining Data Types-The T 'y' F' Function 312
Verification of Data .. 313

Section 17: The Electronic Disc ... 317
Introduction .. 317
Electronic Disc Commands and Functions 317
Configuring the Electronic Disc ... 319

C 0 t·~ FIG Parameters ... 321
Other Considerations .. 322
Sample Autostart Program .. 323

Swapping Programs .. 324

Appendix A: Accessories .. 327
Standard Accessories .. 327
Optional Accessories ... 327

HP-85 Application Pacs .. 327
HP-85B Plug-In Memory Modules .. 328
Series 80 Interfaces ... 328
Series 80 Modem ... 329
HP-85 Enhancements ROMs .. 329
Other HP-85 Modules .. 330
Series 80 Peripherals .. 330

Contents 7

HP-85 Supplies .. . 331
Ordering Accessories .. . 332

Appendix B: Installation, Maintenance, and Service 335
Inspection Procedure .. . 335
Power Supply Information .. . 335

Power Cords .. . 335
Grounding Requirements .. . 336
Power Requirements .. . 336
Fuses 336
Service .. . 337

Rear Panel .. . 337
Initial Set-Up Instructions 337
Installing Plug-In Modules .. . 339

General Module Installation and Removal 339
Plug-In ROM Installation and Removal 341

The HP-85 Printer .. . 343
Printer Paper .. . 344
Loading Printer Paper 344
Printer Maintenance .. . 346

Tape Cartridges .. . 347
Rewinding the Tape .. . 347
General Information .. . 348
Inserting a Tape Cartridge 348
Removing the Tape Cartridge 349
Write Protection 349
Tape Care .. . 349
Tape Life 350
Tape Cartridge Rethreading .. . 351
Optimizing Tape Use .. . 353

Operational Considerations 353
General Cleaning 353
Selecting a Workspace .. . 354
Potential for Radio/Television Interference 354
Temperature Ranges .. . 354

Service 355
Display 355
Tape Drive .. . 355
Printer 355
Internal Timer 355
Accessories 356

Warranty Information .. . 356
How to Obtain Repair Service 357
Serial Number 357
General Shipping Instructions 357
Further Information 358

Appendix C: Reference Tables .. . 361
Reset Conditions 361
HP-85 Character and Key Codes .. . 362

Character Codes 362
Key Response During Program Execution 363

System Memory Requirements .. . 364

Appendix D: BASIC Summary and Syntax 367
Data Types .. . 367
Variables .. . 367
Operators 368

Arithmetic .. . 368
Relational .. . 368
Logical 369
String .. . 369
Math Hierarchy .. . 369

Mass Storage .. . 369
Files 369
File Types .. . 370
File Names 370
File Specifiers 370
Mass Storage Unit Specifiers 370
Volume Labels 371
Initializing a Mass Storage Medium 371

8 Contents

Special Characters ... 371
Syntax Guidelines ... 371
Predefined Functions ... 372
System Commands and BASIC Statements 374
Graphics Statements ... 378

Appendix E: Error Messages .. 381
Math Errors .. 381
System Errors .. 381
Program Errors ... 382
Tape Errors .. 383
Syntax Errors ... 384
Mass Storage Errors ... 385
Electronic Disc Errors .. 386

Appendix F: Sample Solutions to Problems 389

9

Notes

Meet the HP-85 Personal Computing System

Your Hewlett-Packard 85 Personal Computer is a versatile, self-contained, personal computing device which

enables you to perform a wide variety of useful and interesting functions. To mention just a few of the special

features of your HP-85, you have the ability to:

• Perform calculations in a simple, straightforward manner-as if you had a calculator with dozens of math­

ematical and scientific functions.

• Compose programs in BASIC (Beginner's All-Purpose Symbolic Instruction Code) programming language.

The HP-85 exceeds the latest American National Standard for Minimal BASIC. In many areas, the

HP-85 includes enhancements to this standard. The built-in RAM (random-access memory) to store your

programs is 32K bytes (32,768 characters of information).

• Execute BASIC programs. After you have written your programs, they may be executed, often at the touch

of one key. The HP-85 offers several typing aids to your program execution and control.

• Load and store programs and data on a magnetic tape cartridge with the built-in tape drive. Thus you may

permanently store your programs to be retrieved again, whenever you wish.

• Use the high-speed storage capacity of the built-in electronic disc, which initially holds 32K bytes of

programs and data, expandable up to 544K bytes.

• List programs and data with the built-in thermal printer. Not only can you list programs, but you can

copy anything that appears on the display onto the printer, to record and review your results.

• Perform graphics. The graphics capabilities of the HP-85 are sophisticated, yet easy to use. And again,

anything that you can "draw" on the display can be transformed to hard copy with a single

command: i=: U F" ..,. ..

• Edit, correct, and modify anything that appears on the display with tremendous ease. In fact, the HP-85

allows you to access and review 64 lines of characters on the display, and to edit them at your

convenience.

• Use the HP-85B with plug-in ROMs (read-only memories) to control a variety of Hewlett-Packard

peripherals, including disc drives, printers, plotters, and instruments.

How to Use This Manual
This handbook has been designed to enable you to use the utmost

potential of your HP-85 Personal Computer and to answer your ques­

tions concerning BASIC programming with the HP-85.

If you have just received your new HP-85 Personal Computer, read

appendix B before you attempt to operate the system. Appendix B

contains initial set-up instructions and other pertinent owner's infor­

mation.

11

12 Meet the HP-85 Personal Computing System

Then familarize yourself with the HP-85 system by reading and following

through the examples in part I of this handbook-with your computer.

The best way to feel at ease with the system is to sit down with the

owner's handbook and the HP-85 and actually key in the examples

provided in each of the sections. It won't take long to become familiar

with the system, and it's well worth the time you invest to obtain a more

complete understanding of your HP-85. Even if you are an advanced

programmer, you will benefit from the unique features and capabilities

of your HP-85 that are introduced in part I.

Part II of the HP-85B Owner's Manual and Programming Guide dis­

cusses each of the BASIC statements used with the HP-85. It also cov­

ers graphics on your HP-85 system and debugging procedures. There

are problems for you to work at the end of most of the sections in part

II and, in case you get stuck, sample solutions are given in appendix F.

Part III describes the mass storage capabilities of your HP-85B, which

enable you to use tape cartridges, flexible discs, Winchester hard discs,

and the built-in electronic disc.

If you are a beginning programmer, and you have difficulties with part II,

you may wish to refer to the HP-85 BASIC Training Pac. The pac is

designed to help you get acquainted with the HP-85 and BASIC

programming.

If you are an experienced programmer, you'll probably start program­

ming with the HP-85 as soon as you've read part I. You can use part II

as a reference guide to particular BASIC statements, but you'll prob­

ably find the HP-85B Pocket Guide most suited to your BASIC refer­

ence needs. Refer to part III when you wish to begin using external

disc drives or the electronic disc.

Meet the HP-85 Personal Computing System 13

Where can you go next? After you've become familiar with the HP-85

itself, you may wish to enhance your programming capabilities with

specific application pacs, additional memory modules, extended ca­

pability ROMs, and peripherals. Be sure to check the accessories list

in appendix A.

Note that the terms "HP-85" and "HP-85B" are used interchangeably

throughout this manual to refer to your computer. When necessary,

distinctions will be made between the operation of the HP-85B and

HP-85A Personal Computers.

CAUTION

The inspection procedure and initial set-up instructions for the HP-85 are presented in appendix B of this

manual. Please refer there:

• If you have not inspected the HP-85.

• If there is any doubt regarding the compatibility of the system power requirements to the available

power in your area.

Do not attempt to set up the HP-85 without first becoming thoroughly familiar with appendix B; it con­

tains information that is important to avoid damaging your personal computer when it is initially set up.

14 Meet the HP-85 Personal Computing System

An Overview of the Hewlett-Packard 85

Front View

I I I I I I I lselJJ. I I , , , , ,

Voltage Selector AC Power Connector Plug-in Module Ports Display Intensity Knob

Back View

"'0
:r...
m
o
.c
>­
Q)

~
Lt)
CO

I

0-
J:

e
c
o
()

E
Q)

iii
>. en
~
Q.
(J)

(5

(J)

~
~

c
o
t5
c
:::J

LL

ni
"(3
Q)
Q.
en

,'-

w
a:U
~Z

~~
et

II ,-"

ill ~ (J)

// 0

"U w 8 a: ...J

'i' '-'\.

m
~ ",-'

ill w et
Q 9

'l ,,'\.

t~J
ij ,'-n 'l ,'-

'" //

[~ ,]
'l ,,-

'-fEf ::J-
et

'i' '\.'

8
'l "

FJ
// '"

8' "'- "'-

~ ~

B "'- "'-

II <~

B' "'- "'-

// V

illJ :.:et
ij '\.,

Meet the HP-85 Personal Computing System 15

'[Ef lSJ/ T!J to ~ <
// " // ,'. 'l " // "

[8
Ef
// ,

' "'[@] §]~8
~ '" 'l ~. ,

T~r
'l "

(]' '[8] u~8
'l "'l ~ 'l ~

EJ
'l "

t~J
'l "

'-uf " '~' " EJBE] d 11
'i' ,'- 0' "'l "// '0-

[8]
'" // '\---// [~i] J: " /1 '-' 1/ ~ 'l

~. W ~ rn 'l ,-' ~ ~ ~ ~ :::i ~
" 'l ~ ~ 0' " ~ "

[--/] //~~ !i! ~ // " //

.'" w [!]~ ~~ ~ [~-] II ,\ i ~ I B'l ~~ 1/ +11 , 'l [=_j II ",--:~ \\

/~ ~B ~ I;

~- EJ '" 'l 'l v "., []:. ~8? ,
~ ... ~

'l "a. '" // ~ // 'l ,-\ B <',----/1 Gil ~~ 1/

-0 ,\ 'l B 'l \'
'l ,,@] ~ I;

~ 1/ 'l" B B 'l ~ ~ II V
-0) ,'- 'l 0 'l ~

'l ~ B ~ 'l
~ 'l - 'l ,-' ~
8~ ~Gij ,

'l \\ B ..., ~ 'l

~ 'lll ,,~ ~~
ElG~" , // '0 > '" //
"'l II ~ [§J
[<co] ~ : 1 " r 'l ,-'-

'l ,-\ B "'l
"II 'l '-\~

[.. .,1 •• ~f1 LL f? ,
'l "a: '" //
" II/I ,,~ ~ @] B[8J@]? .'
'l '~ ~ //

" 'l 'l' ~
"/ '" " / I)---~", # C") ,,- 'l 'l

"0
C\l
Q.
>.
Q)

~

u
":B
E
:::J
Z

2
"~
Q)
Q.
>.
f--

Typewriter Keys

o through m. Alphabetic
keys. In BASIC mode produce
capital letters, and when used
with (SH I FT) or (ftg~) produce
small letters. In "typewriter"
mode produce small letters, and
when used with (SH I FT) or
(ftg~) produce capital letters
(page 39).

(SHIFT) Shift key. Used with the
alphabetic keys to get reverse
letter-case; with other keys to se­
lect alternate symbol, statement,
or command on upper half of key
(page 39).

(ftg~) Caps lock. Affects only the
alphabetic keys. When pressed
and locked, reverses the
lettercase of current typing mode
(page 39).

(CTRL) Control. Used to select
characters that are not normal
typewriting characters and to
output keycodes with decimal val­
ues below 32 (page 40).

Numerics, punctuation, symbols.
The remainder of the typewriter
keys operate like a standard type­
writer. To select the symbol on
the upper half of a key, hold
(SH I FT) while you press the key
(page 39).

CIJ?lD Enters an expression,
statement, or command into the
computer to be interpreted and/
or executed. Also performs a car­
riage return (page 43).

Numeric Keys

@) through CD Digits. 0 Decimal
point. Used for keying in num­
bers (page 23).

0800SCD
Arithmetic operators: addition,
subtraction, multiplication, di­
vision, exponentiation, and integer
division, respectively (page 49).

HP-85 Key Index

m m Parentheses. Used to key in
numeric expressions and to en­
close the arguments of functions
(page 51).

o Comma. Separates input items
and used as a separator in func­
tions, statements, and commands
(page 53).

(RESL T) Recalls to the display the
most recently calculated result
(page 52).

Special Function Keys

@ through (ill (unshifted) and
@ through @ (shifted). Special
function keys for user-defined
functions. Must be defined in a
program (page 166).

(L~~h) Recalls the current labels
for the special function keys and
displays them on the CRT. Also
moves the cursor to the upper
left corner of the display (page
166).

Display Control

CD CD 0 G G Positions the
cursor on the CRT display in the
direction of the arrow, without
erasing characters (page 23).

00 Insert/Replace. Toggles be­
tween insert mode and replace
mode. When the cursor is under a
character in replace mode, typ­
ing any character will replace the
character at the cursor position.

In insert mode, two cursors ap­
pear and the next character
typed will be inserted between the
characters marked by the cursor
locations (page 45).

(-CHAR) Deletes the character
above the cursor (page 44).

(-LI NE) Deletes a line from the
cursor to the end of the line (page
24).

(s"lA9::KE) Erases characters as it
backspaces (page 44).

16

(SH I FT) CMID Backspaces rapidly
(page 44).

(CLEAR) Clears 16 lines of the dis­
play from the cursor pOSition,
then rolls the information above
the cursor out of view and
homes the cursor (page 24).

(ROLL) Recalls information that
has "rolled" out of view. Pressing
(ROLL T) rolls down information
that has most recently left the dis­
play, while (SHIFT) (ROLLA) rolls
up the oldest information saved on
the display (page 42).

(GRAPH) Sets the system display
to graphics mode, showing the
current graphics display. Press
any alphanumeric key to return
to the normal alphanumeric dis­
play (page 189).

Cartridge Control

(REW) Rewinds the tape cartridge
(page 277).

Program Control

(AUTO) Typing aid to display
AU"T' Ci on the CRT display. The
F:I U 'r (J command instructs the
computer to number program
statements automatically. You
may specify, at your option, the
beginning line number and renum­
bering interval; otherwise, the
system will number program lines
beginning with 10 and incre­
menting by 10. The H t..! T (J com­
mand is then executed by press­
ing CIJ?lD (page 86).

(DEL) Typing aid to display
[I E L. F T F on the CRT display.
The [I E 1.... E: T E command is used
to delete a line or a section of a
program. DE!.... E T E must be fol­
lowed by the line number, or the
first and last line number of a
section of a program to be de­
leted. The DEI.... E T E command
is then executed by pressing CIJ?lD
(page 103).

(PAUSE) Immediate execute key
which halts a running program
without otherwise affecting the
program. Produces an audible
beep when interrupting program
execution (page 105).

(CO NT) Immediate execute key
used to continue execution of a
program that has been halted by
a F' AU::; E statement (page 106).

0illD Initializes (allocates mem­
ory to) a program without execut­
ing it (page 107).

(STEP) Executes a single program
statement. The program must
first be initialized by either P U t·j or
I t·j I T before you can single
step through it (page 251).

(RUN) Immediate execute key
which first initializes the current
program, then executes it (page
107).

(LOAD) Typing aid to display
LOA [I on the CRT display. The
L () A [I command loads a speci­
fied file from mass storage.
1...0 A [I must be followed by a file
name within quotes or a string
expression that specifies the file
name. The command is then ex­
ecuted by pressing ~ (page
28).

(STORE) Typing aid to display
::;n 0 PEon the CRT display. The
::; TOP E command stores a
specified file onto mass storage.
::; TOP E must be followed by a
file name within quotes or a string
expression that specifies the file
name. The command is then ex­
ecuted by pressing ~ (page
35).

(LIST) Immediate execute key
which displays one full screen of
the current program in memory
starting at the beginning of a pro­
gram. Each successive time
(LIST) is pressed, another screen
full of program lines is displayed
until the end of the program is
reached. Following the list of the
last program line, L I ::; T displays
the remaining number of memory
locations (page 81).

(P LST) Immediate execute key
which will list the current program
in its entirety on the system
printer. Press any key to halt the
printer listing (page 81).

Printer Control

~ Moves the paper one line.
If the key is held down, the pa­
per advance will repeat until the
key is released (page 42).

17

(COpy) Immediate execute key
which copies the exact contents
of the display onto the internal
printer (page 41).

System Commands

(RESET) Returns the computer to
its condition at power on, except
that programs are not erased
(page 46).

(TEST) Performs a functional test
of the processor and built-in
peripherals (page 46).

(SCRATCH) Typing aid to display
::T PAT CHon the CRT display.
The ::; CPA T C H command
clears main memory. The com­
mand is executed by pressing
~(page 84).

Section 1

Getting Started

In this section, we will discuss many topics in relatively few pages so that you can:

• Do a wide variety of calculations in just a few minutes.

• Begin using the editing capabilities of the computer.

• Use the tape cartridges.

• Begin programming.

• Have some fun!

It is our intent to "get on board" fast! For this reason, some of the more sophisticated concepts are greatly

simplified or reserved for later sections.

After working through this section, you'll have enough background to try things on your own, which is actually the

best way to attain a good working knowledge of your personal computer. And don't worry, you can't damage the

HP-85 with any keyboard operation!

Power On

Before switching on the HP-85B for the first time, please observe the following precautions:

CAUTION

Do not attempt to install or use an HP 82903A 16K Memory Module in your HP-858. The 16K memory

module is intended for the HP-85A and may cause physical damage to the circuits of the HP-858.

Do not attempt to use a plug-in Mass Storage ROM (part number 00085-15001) in your HP-858. The

Mass Storage ROM is designed for the HP-85A and may cause physical damage to the circuits of the

HP-858.

Do not attempt to use HP-87 plug-in ROMs or duplicate HP-85 ROMs. For example, if your HP-858

comes equipped with a built-in I/O ROM, then do not install a plug-in I/O ROM in a ROM drawer. Such

duplication can create error conditions and will not increase computing power.

21

22 Section 1: Getting Started

If the system is turned off:

• Set the power switch, located on the rear panel of the computer, to the ON position.

o
INPU

• When the cursor (underscore) appears after approximately 8 seconds in the upper left hand corner of the

display (the "home" position), the HP-85 is ready to use.

• If a tape cartridge is present in the tape drive, the system will search for a program tape named "Autost"

(for automatic start). The autostart routine permits the computer to load and run a program without operator

instructions. More about this later.

• The system automatically runs through a self-test routine when the power is switched on. If it finds a

problem in the system circuitry, it will beep and display E>-' (" (n" ;::::3 or I::: I" " () j'" l:L ;:,:'.

This message means that your system is not operating properly; contact your local authorized dealer or

your nearest HP sales and service office (addresses supplied in the back of this manual).

If the system is switched on and the tape drive is not being accessed, but the display remains blank, hold

down the (SHIFT) key, then press (RESET). This operation resets the system to a ready state (see page 46).

Also adjust the display intensity knob on the rear panel of the system. If the display still remains blank,

first check the power connection and the fuse, as described in appendix B. For further assistance, call your

nearest HP dealer or HP sales and service office.

If the system is on and the cursor is in the home position, you are ready to go!

Before we begin, make sure that the ~ key is released to the same level as the other keys.

Manual Problem Solving ("Calculator" Mode)
Let's try a few simple calculations to get the feel of your HP-85.

Type in the problems as you see them under the column marked Press. You may use either the numbers and

arithmetic operators conveniently located on the right side of the keyboard or the numbers and symbols on the

typewriter part of the keyboard. When you press @ill, the answer will appear on the line below your input.

Note: Any spacing that you use between characters, in manual calculations or in program statements, i~

unimportant. When you list a program, the HP-85 adjusts the spacing of statements so that they can bE

output in their most legible form.

Section 1: Getting Started 23

If you should make a mistake while typing the following problems, simply press the @ key to erase the incorrect

character, correct your mistake, and then continue keying in the problem.

To Solve

5+6

9 x 8

29

V7921

Sine of 3.3 radians

Press

5 8 6 @fJ LINE

9 0 8 @fJ LINE

2 GJ9@fJ

SQR(7921) @fJ

SIN(3.3) @fJ

Display

::::' "

The result appears below the

problem, indented one space.

The system "wakes up" in radians

mode. You can change it to degrees

mode by typing DEG (}@.

Arithmetic expressions are typed algebraically-just as you would write them on paper. Functions, like SQR and

SIN, must be followed by the "argument" (or number) enclosed within parentheses. A complete list of functions

may be found in appendix D. And, as you have seen, you must press (}@ to tell the system to solve the problem.

Simple Display Editing
Next, let's make some intentional errors and learn how to correct them. Suppose you wish to type the expression
.. ::: .. , .. I i',,! .' ':::: i:', i:;:' ,.. .. ::. i:::,:i: ,;::, , :' ;:::, .!., ::., but by mistake, type the following (don't press @fj):

At this point, you realize that the should have been a left parenthesis. The line could be corrected by backspacing

and retyping. Let's save some typing time by pressing the Q (cursor left) key. The Q key enables you to

backspace without erasing characters that are already on the display. Press the Q key until the cursor rests under

the ::. Then type ..

Now finish the problem by holding down the Q (cursor right) key, until the cursor is past the ':::; in i::i F::: ::::;. Then

type:

The whole line should appear as:

... T!) r ." : ,.:,' {
.. '", ;""', ,""

.: i:::'"

When you press (}@' the answer will appear (::::' (). Parentheses specify which operations are performed first­

more about this in section 3.

As you may have guessed, just as the Q and Q move the cursor back and forth on the display, the Q (cursor

up) and Q (cursor down) keys move the eursor up and down on the CRT display. Thus, you can edit any line on

the display (and more, as we shall see later). Finally, the CJ (home) key returns the cursor to the home position on

the display.

For example, using the Q key, move the cursor up the display so that it rests under the :::; in ':; i:' i':, ," ,:::,:::- 'i' in the

problem that you solved above. Now, using the Q key, move the cursor so that it rests underthe? Then type 980.

24 Section 1: Getting Started

Now the line should read:
",",:"" ..

When you press rJffKJ, you will be finding the square root of the new number, 980 I. The answer, ':::; '), will appear

below the line you edited; the cursor will appear below the answer, ready for another problem.

Note that you did not have to move the cursor past the right parentheses in the problem above before you pressed

rJffKJ. The cursor may rest anywhere directly under the problem that you wish to enter into the computer. The HP-85

will read the full line, regardless of the cursor placement under the line.

Remember, what you see on the display, is what you get. If you have extra characters on the same line as you are

editing, be sure to clear them before you press rJffKJ. You can erase characters to the left of the cursor by pressing

§ and erase characters to the right of the cursor by pressing the space bar or by pressing Q.

Clearing the Display

The (-LI NE) {clear to end of line} key clears a line from the cursor to the end of the line.

The (SH I FT) @&D keys clear the display and return the cursor to the home position. Typing I::: L. :::: 11::;' (E,%~)

also clears the display. Sixteen lines of the display are cleared, beginning from the line of the cursor. The

lines above the cursor are rolled up so that they are out of view. To recall them to the display after pressing

(SHIFT) (CLEAR), press the (ROLL?) {roll down} key.

If you have been following along with the examples, the display should look like this:

. i :

:, .. :', .. ;

... : .. : j'.: j:::, ::::: .'
:::::i::::

If you press rJffKJ now, with the cursor resting under the :;;;, III

again. Instead, do the following:

Type

5/4

Display

After editing and executing this line ...

... the cursor rests here .

..... ',' :,'
:", : :.: :', ,.:::. .. ' ;, you will be executing the function

Here, you replaced the letters ::; I t·~, with 5 4. Before you can execute the expression you must clear the char­

acters '::::3 , ::3 :). You can do this by pressing the space bar until the cursor moves past the right parenthesis. But

a faster and easier way to erase the characters is to press (-LI NE).

Press

(ENOl
~

Display

Characters from cursor to end of line are

now deleted.

Result.

Section 1: Getting Started 25

Why don't you press Be5now, to clear the display before we continue?

Error Messages and Warnings

If you attempt an improper operation, the HP-85 beeps and displays the word or

followed by a number and short description. The error number corresponds to a particular error condition that will

help you pinpoint the error. A complete list and description of error messages is provided in appendix E.

There is no need to worry if the HP-85 returns an error or warning message-no keyboard operation is capable of

damaging the system. Furthermore, most errors can be simply and easily corrected by editing the line in which the

error occurred.

For example, executing the following expression will display an error message:

This expression is not complete because the right parenthesis has been left out. The system cannot interpret the

expression so an error message is displayed and the cursor returns to the position in the expression where the system

first detected an error-in this example, the asterisk. The cursor returns to the line you have executed when the

system interprets an attempt to enter a program statement. (Actually, the system tries to interpret a line first as a

program statement and then as an expression. If both attempts fail, the system reports the first error it finds.)

Now you may either edit and correct the line, or clear it by pressing Q, or clear the whole display by pressing

Be5·

Or you can forget about the error and use the arrow keys to position the cursor elsewhere on the display.

With most errors that occur during math calculations, the system displays a warning message and a default value.

Then the cursor moves to the beginning of a new line.

For example,

~qqq99999999E49;

Division by zero causes a warning
message and the default value to be
displayed.
The cursor moves to the beginning of a
new line.

Here, the system alerts you to the error, and then waits in a ready state for you to enter another expression.

Variables
Often it is convenient to assign values to letters and then use these letters in expressions. In programs, a letter can

have its value continually updated or changed-hence the term "variable." But you can also perform variable

arithmetic straight from the keyboard.

26 Section 1: Getting Started

Example: Suppose you receive a telegram from your archaeologist

friend, Arthur I. Factus, in South America. He's soon joining an expedi­

tion through the rain forest and writes, "PLEASE SEND UMBRELLA

lMMEDIA TEL Y. " You find a shallow rectangular box, 24 inches wide

by 32 inches long. What is the maximum length of an umbrella that will

fit inside the box?

You can easily determine the diagonal length of the box, using the Pythagorean theorem, d = Vp + w 2, where

d is the diagonal, I is the length of the box, and w is the width of the box.

One way to solve the problem is to type the following:
......... , ,',

:t,: .. .

Here, you substituted the dimensions of the box for the variables in the formula. When you press @§D, the answer,

appears on the next line.

Another way to solve the problem is to assign the dimensions of the box to variable names, type in the formula, and

let the HP-85 do the substituting. A variable name can be either a letter of the alphabet or a letter followed by a

number 0 through 9.

First, ensure that the paper roll has been properly installed in the system, (refer to appendix B) and then type:

: ... ",, :
;'" .:. ,';;

....
; ; i ;

rENDl
~

Note: To conserve power, the display turns off when the printer prints.

Then:

Press

L = 32 @§D

Display

Assigns width of box to

W.

Assigns length of box to

L.
O=SQR(WA2+LA2) @§D ,;::.,...,,::., ······'··,··1 .'.:::,. Evaluates expression and

O rENDl
~

assigns a value to D.

Fetches the value of D

and displays it.

Printer

r"j ::::. ,f t·,- ::: ~.)" : +. : ".::::"

You can assign a numeric value or the result of an expression to a variable name, as shown above. Whenever you

wish to recall the value of an assigned variable, type the variable name and press @§D. (Although it may be extra

work for this problem, variables are extremely useful in programs in which the values of variables are always

changing.)

And you can see the printer has preserved a record of your calculation. Press the paper advance, located in the upper

right-hand corner of the keyboard, and save this printout. You are going to use it to write a BASIC program for the

HP-85. But first let's look at a prerecorded program-one of the 15 that are included with the Standard Pac shipped

with your computer.

Section 1: Getting Started 27

With the system in print all mode, you will have a printed copy of everything that you type and that the computer

displays. If you wish to cancel print all mode, type:

rEND\
~

The io.i! ! :":. i ::::: L.. command returns the system from print all mode to normal display mode.

Running a Prerecorded Program
The Standard Pac magnetic tape cartridge shipped with your HP-85 contains 15 prerecorded programs. By using

programs from the Standard Pac (or from any of the optional application pacs available in areas like finance,

statistics, mathematics, engineering, linear programming, beginning BASIC programming, ...) you can use your

HP-85 to perform extremely complex computations just by following the directions in each pac. Let's try running

one of these programs now.

Loading a Program From the Standard Pac
I. Before you insert the Standard Pac tape cartridge, make sure that the RECORD slide tab is in the left-most

position (as shown). This will protect your tape, so that no other programs can be accidently recorded on the

tape.

- "-
'-

When the RECORD slide tab is in the left-most position (the opposite direction of the arrow), nothing can be

recorded on the tape; your tape is protected.

2. Insert the tape cartridge so that its label is up and the open edge is toward the computer. The tape drive door

will open when the cartridge is pressed against it; the cartridge can then be inserted. (To remove the tape

cartridge, you must press the eject bar. If it is pulled out without pressing the eject bar, another cartridge

cannot be inserted until the eject bar is pressed.)

28 Section 1: Getting Started

3. To load the Calendar Functions program, type:

(ENi)\
~

The ;, 'i iicommand instructs the computer to find the specified program on the tape cartridge and then load

it into computer memory. The CRT screen will blank out while the HP-85 is searching for and loading the

program. And an amber light, located to the left of the eject bar, will glow while the cartridge is being used to

let you know that the system's attention has been transferred to the tape drive.

4. When the cursor returns to the display and the amber tape drive light goes out, press the 8 key to start the

program. After you press 8, the following should appear on the display:

Key Labels

KEY k5 k8 k7 \(8

LABE.... lot "1 ka "'3 "".

Display

}
Special Function

Keys

Many of the programs in the Standard Pac use the special function keys. This is how they work. The bottom two

lines of the display correspond directly with the special function keys on the keyboard. The bottom line of the

screen displays the labels for the unshifted keys, Q through GJ the line above it refers to the shifted keys, B
through B.

The key labels will remain on the display until they are over-written by characters that you type or that the HP-85

displays. In any case, you can always display the current labels on the screen by pressing @.

With ::; [: 1.1: C T II F' T J IJ 1'·1 and the key labels displayed, you are ready to use the program.

Example: How many days are there between November 25, 1945, and July 25, 1954?

Solution: Since this may be the first time you've used the Calendar Functions program, let's ask for help.

Section 1: Getting Started 29

For a more detailed explanation of the key functions, press 8CJ.

CALENDAR -UNLl Tn~~

DAYS BETWEEN DATES~~~ A~I

K3COMPUTF ~~lL N-DA_
AFTER ENTERED DATF

OF-YEAR OF ENTEREJ nOTe

i.",;::- ",
'"',' .. ' ,"

Use GJ (OI/02~) to enter the two
dates.
Then use Q (Ll DAYS) to find the num­
ber of days between the dates.

c:J is not used in the Calendar program.

If you wish to have a printed copy of the display as you see it, simply press 8t:).

Now let's continue-enter the dates:

Press Display

i··· i.' i i· .
h. c· 'r , ::::: 'T

.:.: : ••• ';; ; i •••• • :::.
;-.. :, : .

This means you key in the date in the form: month (01 to 12), decimal point, day (01 to 31), year (four digits).

Press ~ after you type the date to enter the data into the program. Thus, to enter November 25, 1945, and July 25,

1954:

Press

11.251945 ~

07.251954 ~

Display

..... ;:::. 'j ::::!'
... ' ,:, , .

L~ ~ ; r ~:::: .::.:

Now that the dates have been entered, press GJ (LlOA YS) to find the number of days between the dates:

Press Display

i:::' ,.:

With the HP-85 finding days between dates is that easy! Should you run into difficulties using the Calendar

Functions program, refer to the user instructions in the Standard Pac.

Before we leave the calendar program for you to explore on your own, let's use the program to generate a calendar

for January 1980 and demonstrate just some of the graphics capabilities of your HP-85. First clear the display.

30 Section 1: Getting Started

Press Display

(SHIFT)@

1,1983 a:D
Function key @ (PRT-CAL) requests

a numeric entry for the month (1-12)

and year. Again, enter data into the

computer using C1Jll[).

Here's your chance to be creative! You can type anything that will fit on one line. If you want your heading to look

like ours, type:

rENO\
~

Now, watch the HP-85 go to work as it first "draws" the calendar on the video display and then copies it onto the

printer. The display will blank out while the printer is in operation. When the printer has finished, you will have a

printed copy of the calendar that appears on the display:

"'::. ·:···.:.··.!.··:i··'···· :

1 .' .. : .:~

i ~ ~ ; ...

You may want to know the names of the other programs on the Standard Pac tape cartridge. But before you can

view the tape directory (catalogue of programs on the tape), you must stop the calendar program from running.

Halting Program Execution
Press the ~ key to halt a running program at any time and return system control from the program to the user.

(The system beeps when ~ is pressed and the program is running.) You may resume the execution of a paused

program by pressing 8 (continue).

Section 1: Getting Started 31

Now let's take a quick look at the catalog of programs on the Standard Pac tape cartridge. First press (PAUSE)

to stop the calendar program, then type:

l:::=~?:t:l'~"~" ilL. .. L rENO\
~

j"'! j:::j ~':'j E:

rENO\
~

i"'~ () i) : !"'! i .. ::

1:::1 jyj (J F~ 'r
: i..J L.. 'f

F: Ci C1 'r :;;;;
C:! .. Ji?i)E:
F' F' 1.... Cl'T
!J F: 1.... C) 'r
j ... j I ::::;'TC)
"T' E: !:::1 C: j"'l
C: Fl 1.... E: j"'! Li

! T !':'jE: F:
C: Ci i':'~ F ;:::: F;~:

F' F~C! c;
F'!? C) C;;

i::>F:C) C;
F'F:CfC;

F'F:CiC;
!::::F:CiC;
F' F: C) c;;

E;'/'TE:::::;
;;::: ~:::! I:::;

.... ,,:::
:: ... -.": !:::=

;;::: ~:::; (;;
;;:::::::;1:::;
::::: ::) !:::=

;;::: ::::; (;;
":::i:::::::"

;··:1:::.1 ::::=

:[:=:::

!:::',:::'
.•.. ;' . ..1

.... ,
... ;

..... !
,: •••. 1.

: ... 1:::1

; ... ;

:i. ;;:::
'i .';::
......
:1. :::j.
:!. ::::;

Return the system to normal display mode again by typing i·<> ,,, .. rENO\
~.

The C: H T (catalog) command returns the names of the programs on the tape along with some other information

about the files. We will discuss the tape filing system in more detail in part III. For now, just note the names of

the programs in the left-most column.

You have seen from the calendar functions example how simple and how much fun it is to use your HP-85. You can

run the program again as often as you like. And you can begin using your Standard Pac, or any of the optional

application pacs, right now. Load any program stored on tape using the , :::: i i i:::icommand, followed by the program

name in quotes. All you have to do to begin taking advantage of the computing power and programmability of the

HP-85 is follow simple instructions like these.

Writing Your Own Programs
If you have never written a program, you may possibly feel uneasy about programming. No need to worry! BASIC

is easy to use, yet enables you to perform many complex operations.

BASIC makes use of statements that resemble English. Once a statement is explained, its function is easy to

remember. A BASIC program is made up of numbered statements which direct the system to perform certain tasks.

Earlier, you calculated the diagonal of one side of a rectangular box, and you may have saved the printed copy with

the values and formula for the problem. Now, if you want to calculate the diagonal of several rectangles (or the

hypotenuse of any right triangle), you could repeat the procedure, using different values for the dimensions of the

sides. Or you could change the values of the variables using the editing capabilities of the HP-85.

32 Section 1: Getting Started

The easiest and fastest method, however, is to create a BASIC program that will compute the diagonal of any

rectangle.

Creating the Program
Essentially, you have already created it. When you write a program, you must ask yourself the following questions:

I. What answer(s) do I want?

2. What information do I know?

3. What method will I use to find the solution from what I know?

4. How can the HP-85 help me solve the problem?

We want to find the diagonal of any rectangle. We know that we can use the Pythagorean theorem to compute the

diagonal given the lengths of the sides of the rectangle. Thus, we know that we must assign values to two variables

and then compute the result using the given formula. We'll answer the other two questions below (and discuss the

details of BASIC programming in part II of this handbook).

For now, notice that each statement begins with a number and the last statement of a program is E:: i···i L!. (You may

wish to clear the display before you key in the program; press 8 B .)
Entering the Program
To enter the program into the system:

I. Press 88 and then press !JffKJ to clear the computer and erase previous programs from computer

memory.

2. Type the following program exactly as shown (including the statement numbers), pressing !JffKJ after each

statement.

;; , :.... :: i:;:' T .. 1 .•• j 'T"

rEND\
~

rEND\
~

Running the Program

!'" l; ... : ! : : ~ :::; :.

: :. [··.[F'

rEND\
~
rEND\
~

rEND\
~
.. rEND\
~

"!JffKJ
::!JffKJ

Statements 10 through 40 display

the quoted text on the CRT screen.

Audio, as well as visual, prompt!

Enables you to assign values to Land W

from the keyboard.

Computes the hypotenuse.

Prints quoted message and value of D.

Marks end of program.

To run the program, simply press the 8 key. Find the length of the hypotenuse of a right triangle with sides

7.5 inches and 10 inches.

Press Display

8
S[PARAT~D ~r M COMMA

r··,'····,···,··· ... r::.1::: 1.... I !-.. ! E: .

Beep!

7.5,10 !JffKJ

Section 1: Getting Started 33

Now the HP-85 will print the result:

You can run the program as many times as you like, simply by pressing the 8 key.

An Averaging Program
Since you may not be sending umbrellas to South America in the near future, or calculating the hypotenuses of right

triangles or the diagonals of rectangles, let's write a program that may be of more use to you, and then record it on a

tape cartridge.

This flowchart outlines the steps in a program that enable you to enter a set of numbers and then find their average.

LET
8=0
N=O

First, we initialize the variables we will use. S will be the sum of the numbers, N determines how many numbers are

being averaged, and X represents each new number.

When you key in zero, the program stops asking for new numbers and prints the average of the numbers you

have keyed in.

Before you key in the following program, be sure to press 88~ to erase the previous program.

And let's use the ~ key to provide us with statement numbers automatically, so that we don't have to type them

ourselves. Simply press 8~ and the system will display:

Then press @D and the system will display :!. i:::i and wait for you to enter a program statement. After you enter the

statement by pressing @D, the system will display::' Ci and wait for another statement to be entered. The

command numbers statements beginning with 10 and in increments of 10. (You can also change the starting number

and increment value with the ,::, i i'r Ci command, as we shall see later.) Stop auto line numbering by backspacing

over the unwanted statement numbers and typing rENDl
~.

34 Section 1: Getting Started

Now enter the averaging program below. From now on, we won't be showing the ({ff!fJ key with the program

listing, but, it must be pressed after each statement. When the system displays the statement number, enter the

rest of the statement and press ~.

HUTO

• :l U ~::E::!'! lfii')E::F'AGF:::l
• 2 ~~:i :::; :::: 0
• 30 j ... j::::[1

4(::: f.J I :::;F' "Et'ITEF' THE tHIt'1E:Ef;:::;,"
.. -":! U I ::::;F' "E:t··ITFF: I ~:::i I TO Ft·m"
is ;::: [) I ':::; F' "T H E: F' F: 0 G f;: A t'1 , "

• ';:" ::::: I I"~ F' U T ".'
• SU IF X = 0 THEN 120
• 9 ~:~ :::: ~:::; + >::
• 10~~j h :-.:: !"~+:\.

• :!:l Ci COTO ?i2i
'-"e, U I ::;F' "THE H',}EF:HGE OF ".:

. ! ::;:i:~ U I ::;F' "THE II .: t·~.: "t'jUt'1E:Ef;:::; "
:l4;3 U I ::;F' "I ::;" : :::; .. ···!··i

• i 50 Ff'~D

Let's take an example to test the program.

Press (SH 1FT) (AUTO) (E,~~) for automatic
line numbering.
Remark.
Initialize variable S.
Initialize variable N .

} Display quoted message.

}

Assign a value to X from the keyboard.
Check X to see if it is O .
Add X to sum.
Add 1 to counter .
Go back to line 70 to enter a new
number.
Display result .

Marks end of program.
Now backspace over :L:::: i? and type
;" ,.-', ,:::. ,.,., ,:::, , rrnD\ t ttl'
" ' ... ' ,".' " " ... UlliLI 0 S op au 0 Ine

numbering.

Example: What is the average of the distances in light-years of the five brightest stars (aside from the sun) seen

from the earth?

Star Distance (light-years)

Sirius 8.7
Canopus 100
Alpha Centauri (Rigil Kentaurus) 4.4
Arcturus
Vega

Press

(RUN)

8.7 aJ1l[)

100 aJ1l[)

4.4 aJ1l[)

36 C1JllD

26.5 aJ1l[)

o C1i!J[)

36
26.5

Display

NTEF: THE UMBEF'S,
I···IT' E f;' 'Ij'

1 .. ·1 E: F f;: C C F: f::!

4,4

o
THE A')Ef;:f'iCE '-'F·fl .. ·IF ,,::; f'; U I"I:::::! . [:0 r::- ::::;

T::),12

Section 1: Getting Started 35

Recording the Program
Just as the programs in the Standard Pac have been recorded on a magnetic tape cartridge, you also can record your

own programs on a cartridge.

To Record Your Program:

1. Select a blank magnetic tape cartridge. Use only HP Data Cartridges with your HP-85.

2. Check to see that the I REcoRD-1 slide tab is moved in the direction of the arrow (as shown). When the

I RECORD-l slide tab is in the opposite position, your cartridge is protected; that is, you cannot record

anything on it or delete from it.

When the I RECORD- I slide tab is in the position shown, you can record programs on the tape or delete

existing programs from the tape.

3. Insert the cartridge so that its label is up and the open edge is toward the computer. (If the Standard Pac is

still in the tape drive, take it out by pressing the eject bar.)

Note: The E:: i? ::::: .. .' 1:... : ::::: F:: E:: command should only be performed the first time you use a new tape or when

you wish to erase all of the existing programs on a tape.

4. Type F: i? ::::: :::>:::'r ::::: F<::: (@. This command erases the tape and in the process, sets up a "directory" so

that your programs can be filed.

5. Now, decide what you want to name your program. Pick something that will remind you of the program-a

name no longer than six characters. However, any combination of characters may be used, except quotation

marks. Then press the Q key and type the name of your program enclosed within quotation marks. If you

want your program to be stored like ours, type:

rENO\
~

When you press (@, the HP-85 records your averaging program on the magnetic tape cartridge in its own' 'file."

Again, notice that the CRT display is turned off to conserve power while the cartridge is accessed.

That's all there is to it! To record future programs on the same tape cartridge, you simply follow step 5 again.

Future programs will automatically be stored in separate files.

You can verify that your program has been stored by executing the C H T command as we did earlier. The

information displayed will be discussed later.

36 Section 1: Getting Started

Erasing a Program From the Tape Cartridge
An averaging program may be of no use to you, so before we go on to the next section we'll tell you how to erase a

specific program file using the 1 : ... : :::. C:: :::: command. First, make sure that the RECORD slide tab is in the right-most

position. Then:

1. Type :':: F' C; :::.

2. Type the name of the program or file you wish to delete from the cartridge, enclosed within quotation marks.

3. Press (}@ to purge the specified file.

If .. AYERAG" was the name you used for the averaging program, simply type:

rEND\
~

Your program or file will be erased, ready for something else to be stored there. You can store many long programs

on one tape, so you don't have to purge little-used programs constantly.

Mass Storage Options
The HP-85 enables you to store and recall programs using tape cartridges, flexible discs, Winchester hard discs,

and the built-in electronic disc. Part III of this manual describes the mass storage operations available to the

HP-85.

HP-85A and HP-85B Programs
Any program that runs on the HP-85A will run on the HP-85B, with the following restrictions:

• All enhancement ROMs required for the HP-85A program must be installed in the HP-85B. (Do not

install the HP-85A Mass Storage ROM, the 16K memory module, or duplicate ROMs.)

• All peripherals used by the HP-85A program must be properly interfaced to the HP-85B and must be "on-

line."

• Any binary program required by the HP-85A program must be present in HP-85B main memory. (Use the

L. C: I:::! L: !:::: I j"'! command, section 14.)

• A tape-based HP-85A program that includes mass storage statements (such as !: E>L>!:!: and L (J i::LJ E: I j".:j

must first be translated using the T F:: H !.! ;:::: L. H T E command. (Section 14 describes the one-time

'T F' ::::: Ii '::: L. [": : E: procedure.)

37

Notes

Section 2

Keyboard, Printer, and Display Control

Now that you've had a chance to familiarize yourself with the HP-85, let's look at some of its features in greater

detail.

The Keyboard
As you've noticed, the keyboard is divided into the following areas:

• Typewriter Keyboard

• Numeric Keypad

• Special Function Keys

• Display Control and System Command Keys

Some of the features in each area were discussed in section 1. The rest of the display editing features will be

discussed in this section. The remaining keys are helpful in a variety of ways-as typing aids, in running pro­

grams, using the printer, and recording programs on tape. The keys are described, in appropriate places,

throughout this manual. Refer to the HP-85 key index on pages 16 and 17.

Typewriter Keys

The alphanumeric keys operate much like those on a standard typewriter keyboard, If, for instance, you want to

display the dollar sign, :i:, you must hold down the 8 key while you press m, You must also use the 8 key to

select any command or symbol on the upper half of a key, But we won't be showing the 8 key in the keystroke

sequences in this handbook,

If the command is a shifted operation, it will appear in the upper half of the key, For instance, when you see e:J, it

means you must hold the 8 key down while you press ~ci~:,

The HP-85 keyboard differs from a standard typewriter in two major ways:

• Un shifted letters appear as capital letters on the display (unless you use the

in a moment),

• All of the keys repeat automatically if you continue to hold them down,

BASIC Typewriter Mode

T ::::' command, as we'll see

Unshifted letters initially appear as capitals on the display because the standard BASIC language requires its

"keywords" (like F:' i? I i'i"T, C:; C) 'r C\ I F'", 'r i",i E:l",i, etc.) to be in capital letters,

In BASIC mode you can select small letters by using the 8 or @m keys with the alphabetic keys,

Thus, when you press 0, a capital" A" appears on the display; when you press 0 while holding down the 8
key, a small "a" appears on the display,

39

40 Section 2: Keyboard, Printer, and Display Control

The @ key operates like the @ on a standard typewriter except that if the key is pressed and locked in BASIC

mode, alphabetics appear as small letters. Once the @ key is pressed, it remains locked until you press it again.

Note that only the 26 letters of the alphabet are affected by the @ key.

Normal Typewriting Mode

If you wish to type in "normal typewriting mode" where unshifted letters produce small letters and shifted letters

produce capital letters, use the system command T F'. Whenever you type T ;. and press @), the unshifted

case switches from small letters to capital letters or vice versa.

Programming Note: Even though standard BASIC requires "keywords" to be in capital letters, the HP-85

will interpret keywords and variables that are typed in either uppercase or lowercase letters. Thus, the

following program, typed in normal typewriting mode, is legal:

.... :::; ;.": i ... ~ ::::: C:

As soon as you list the program, the small letters in keywords and variable names are converted to capital

letters, but strings (quoted text) and remarks will remain as typed.

HP-85 Character Set
The HP-85 character set consists of 256 characters, 128 of which are directly accessible from the keyboard.

You can see the uppercase letters, punctuation and other typewriter symbols on the face of the keys; and you've seen

how lowercase letters can be accessed using 8, @' or the ... ; T c· command.

Fi ve more characters can be accessed with the 8 key. Thirty-two more characters are accessed with the B key.

The remaining 128 characters can be accessed with the (.. i; i:':i function; they are merely the first 128 characters

underscored.

The extra shifted characters are:

8 rKEY1
SHIFT ~ 80) 8G 80
8G

To access these characters,

use operators from the numeric

keypad only.

The (CTRL) characters are those in the first column of the table of characters in appendix C. The control char­

acters are so-called because they can be used to control the behavior of external devices, such as printers. They

are generated by holding down the (CTRL) key and pressing the key that is superscripted by a "c" next to the

character in the table.

For instance, to generate the Greek letter i;., hold down the (CTRL) key and press OD (HC). And, since @ is a

shifted symbol, generate the character'" by holding down the (CTRL) key and (SHIFT) key and pressing ~

(@,C).

Section 2: Keyboard, Printer, and Display Control 41

When the (fSg~) key is latched, it is necessary to press both the (CTRL) key and (SH I FT) key to generate control

characters.

Each of the characters is assigned a decimal code, from 0 through 255. These codes are useful in advanced

programming. We'll discuss character codes in section 8, Using Variables.

Printer Control

The HP-85's built-in thermal printer prints 32 characters per line.

Access Cover

Printer Intensity

Paper Advance

Adjust the intensity of printed characters by rotating the printer intensity dial, located to the left of the paper

roll. The lightest setting is when the dial shows 0; the darkest setting is when the dial shows 7. You can extend

the long-term life of the printer by setting the printer intensity dial to 4 or less.

There are several ways to access the printer:

• Pressing the (COpy) key produces a printed copy on the built-in thermal printer of whatever is currently

displayed on the CRT screen. The (COpY) key can be pressed to copy either the alphabetics or graphics on

the display. You can also copy the alpha screen by typing:

• Executing the F'i? T :i .. :- ''''i L. I .. command sets the HP-85 to print all mode; everything that you enter into

the system and every message or result that the system displays will be recorded by the internal thermal

printer.

Return to normal display mode by typing:

42 Section 2: Keyboard, Printer, and Display Control

Note that the C: (J F' \' and F' F.: I t·i TAL L commands apply to the built-in thermal printer only.

• And, of course, whenever you execute the F' F.: I 1"·1 T statement, either manually from the keyboard or in a

program, the F' F.: I I'if message will be output to the printer. F' F.: I H T statements may be directed to an

external printer by means of a Plotter/Printer ROM, an interface between the computer and printer, and

the F'I? I [·rr E F.: I :::: statement (section 10).

To advance the thermal printer paper, press the ~ key, located in the upper right corner of the keyboard.

To advance the paper more than one line, simply hold the ~ key down until the paper has advanced the

desired amount. To replace the paper roll, refer to appendix B.

The Display

The CRT (cathode ray tube) display consists of a 32-character by 16-line display screen and is the primary means

of editing programs, and of viewing data, keyboard entries, program listings, error messages, system comments,

and results.

You can increase the intensity of characters on the display by rotating the display intensity knob in the direction

of increasing width of the brightness symbol.

___ i'-' Intensity Knob

You can display a maximum of 16 lines at anyone time, but you actually have immediate access to four full

screens' worth (64 lines) of information.

The ffi key is used to recall information that has" rolled" out of view. There are three full screens of past history,

plus the current screen, available for rolling up or down. You'll appreciate the ffi key when you are writing,

reviewing, or listing lengthy programs.

When you hold down the ffi key, information in the display will "roll down" to reveal the lines most recently

lost.

When you press 8 ffi, information in the display will "roll up" to reveal either the oldest lines (if no previous

rolling has been done) or lines that have been rolled down (if some previous rolling has been done).

Section 2: Keyboard, Printer, and Display Control 43

Entering Long Expressions

Suppose you wish to solve a lengthy numeric expression like:

~({r. []2)3.5 ~ ~ J-5.2656})O.2H6 1
5 ~ L0 + 0.2 6~~05 - ~ L - (6.875 x IO-

fi
) 25,500J + 1 - ~

Do you have to break the expression into parts and solve one line's worth of the problem at a time'?

No! An expression can contain as many as 95 characters (including spaces) or three full lines of the display minus

one character position for @).

Before we attempt to evaluate the long expression, press one of the character keys, such as the 0 key, and continue

to hold it down until it repeats across the display.

***********+++++++++*++++++++t**

****~~~*****************~~~~+~*~

As long as you hold down the 0 key, row after row of asterisks will be repeated across the display. There is no

need to press @) at the end of the line on the display; when the cursor reaches the end of a line, typing another

character automatically sends it to the beginning of the next line.

Now press e:J to clear the display. As you type in the following expression, notice that when the cursor is at the

end of a line, typing automatically sends the cursor to the next line. Don't press @) until you have keyed in the

entire expression.

.:::: :~. ::= ::!:: ,,' '1 ! : .. ,= ··:'::::iE:·····(::::!:·

::::: ':;=!:::'

: : ... :1:::: 'r rENDl
~

. .:.: !:' .. ":';:::'.; ····'::::1
..... 'T1 •••• , • ..: ,t, ;

:, .. :::::1:::

Typing merely continues on the next line.

Now press @) to execute this

expression .

The answer.

The 95-character maximum length of an expression also applies to program statements (including line numbers).

For instance, in the Pythagorean theorem program in section I we typed:

.; ,":, : l : ·····i::::
; l"; :: .:':

t ••• : ,t, ~ :::; j ... :

44 Section 2: Keyboard, Printer, and Display Control

But we could have entered the display message in one statement, like this:

: ::

; ... [

rENDI
~

Again, at the end of a line on the screen, the cursor automatically moves to the beginning of the next line. But you

must press C@ to enter the program statement into computer memory. (fff!J marks the end of an expression or

statement and positions the cursor at the beginning of a new line.

What happens when you fill the display with characters, or type more than 95 characters in an expression or

statement? The HP-85 will allow you to key in four full screens worth of characters as long as you don't press C@.
But, if you try to enter an expression consisting of more than 95 characters by pressing C@, you will probably get

odd results. The system will try to interpret the most recently typed three lines ofthe display, yielding either an error

message or interpreting only part of what you keyed in. If you are confused, execute the F: ; .. :: :i: !' .. !'T' i:::i L .. L .. command

and the system will echo exactly what it understood your line to be.

Display Editing

In section I, we introduced the following display editing features of your HP-85:

Q Cursor Left

GJ Cursor Right

Q Cursor Up

Q Cursor Down

o Home

e3
Q
rsPAC8
~

rBACK\
~

These keys merely position the cursor in the

display without erasing characters. The vertical

and horizontal arrow keys repeat automatically if

you continue to hold them down.

Clears the display.

Deletes a line from the cursor to the end of a line.

The space bar moves the cursor forward one

space, or, if held down, repeats automatically.

~---------------

"'t "~'ro '+ v~)t ~ ~
\. " '\.,'

If characters are already present on a line when you press the space bar, they will

be replaced with spaces.

Erases characters as you backspace. The key repeats when held down continuously.

There are three more important display editing features: 8§(fast backspace), g(delete character), @
(insert/replace) .

Fast Backspace

If you press both the 8 key and the § key at the same time, the cursor will rapidly backspace, erasing

characters at the same time. To protect the user from accidently erasing the whole screeen, 8 § moves the cursor

back to the beginning of a line, not to the home position of the display. But if you continue to hold down 8 §, it
will repeat rapidly, erasing the next line above.

Deleting Characters

The g key enables you to delete a character from the display, without leaving a space in its place. If you hold

down the g key, it repeats automatically.

Section 2: Keyboard, Printer, and Display Control 45

Example: Type, without pressing rJ@:

But what we meant, of course, is that soon we will delete T' !"',! :L:!. (, ':::'. Move the cursor with the G key, so

that it rests under the F' and press (-CHAR) once.

Now move the cursor back to the beginning of the sentence, again with the Q key. Then hold down the g key

to delete .. L (; :::'. The remainder of the sentence should look like this:

"f •...• -! ••.... :

And this can be deleted with the stroke of one key. Press Q to delete the rest of the sentence.

Example: Change:

.':' . ··f··

to:

Position the cursor under the plus sign between 'j i? Ci and ':::;1, in the first expression, then press g until

.:::; ::::: :) has been deleted. Now press rJ@ to get a result of'; oj.

Inserting Characters

When there is only one cursor on the display, the computer is in replace mode. In other words, when you type

characters' 'on top of' characters that are already in the display, those characters are replaced by the ones you type

in.

The (][J (insert/replace) key alternates between insert and replace mode, allowing you to insert characters in a

line that has already been typed. For instance, type the following without pressing ClJ!l[):

-..... :
: ::":',

Suppose you really wanted the cosine of 2.3 radians not 3 radians. Move the cursor back under the 3 using the Q
key, press @, and type ::. . Now the display should show:

. ,"
..... ! . ..! ". '::::1:: :::1-

When you pressed @, another cursor appeared to the left of the original cursor. The double cursor informs you

that the computer is in insert mode, and tells you that the next character typed will be inserted between the two

cursors.

Like the single cursor, the double cursor can be positioned anywhere in the display with the arrow keys. But when

you press rJ@ the second cursor will disappear.

After you have inserted the desired characters, press the @ key once again to remove the second cursor from the

display and return to replace mode.

You can insert as many characters as you wish into an expression or a program statement. But make sure that the

final expression does not extend beyond three display lines or 95 characters.

46 Section 2: Keyboard, Printer, and Display Control

If you press g in insert mode, the character above the right cursor will be deleted and the system will return to

replace mode automatically.

System Self-Test
Should you feel that the HP-85 is malfunctioning, press the (TEST) key while holding down the (SHIFT) key.

This causes the system to run through an electronic check of all internal components, including main memory,

system ROMs, enhancement ROMs, display, and printer.

If everything is working properly, the HP-85 system displays and prints the following characters at the end of

the test and then beeps:

~i: ~.~--- The last two characters will vary,
depending on the contents of computer
memory.

The graphics display will be cleared, but programs and/or variables in computer memory will remain intact.

If the system is not operating properly, it will display:

"',r' ; j" :", j, or

., .:::= nnnn !:;~: r !"!, where nnnn identifies a malfunctioning enhancement ROM.

If either message occurs, a problem exists in the computer's circuitry; contact the nearest HP dealer or HP sales

and service office immediately for system repair.

Resetting the Computer

If the computer becomes inoperative due to a system or input/output malfunction, it may need to be reset. The

computer is reset and returned to a ready state by pressing (RESET) while holding down (SH I FT). The display is

cleared, and the cursor is returned to the "home" position after about 5 seconds.

Resetting the computer immediately aborts all system activity. The reset operation returns the computer, as

well as some peripherals and interfaces, to a ready state. The reset operation is useful when you want to return

the system's components to a known configuration before loading or running a program. In other words,

(RESET) sets the trigonometric mode, data pointers, graphics scale and pen, timers, output devices, print all

mode, etc., to the same default state as when the system was switched on. If a program is running, any pending

or executing input/output operation is terminated and information may be lost. Note, however, that resetting

the computer will not affect the current values of program variables.

Refer to the Reset table in appendix C for a list of conditions affected by (RESET).

47

Notes

Section 3

Expressions and Keyboard Operations

In this section, we will discuss "expressions" and some of the components of expressions, as well as related

keyboard operations. An expression is any logical combination of numbers, characters, variables, operators, or

functions.

The section's topics include:

• Arithmetic operators.

• Number ranges and number formats.

• Simple numeric and string variables.

• Relational and logical operators.

• Time functions.

The math functions will be discussed in section 4.

So that you'll be familiar with operators, variables, and functions when we use them later in program statements,

we'll discuss them in "calculator" mode (from the keyboard, not in programs) now.

Keyboard Arithmetic
You have already become familiar with the numeric keypad. Numeric entry is easy on the HP-85. The HP-85

requires only that you press ~ after the expression is typed, in order to obtain the result.

The arithmetic operations that can be performed on the system are:

• Addition (-1-)

• Subtraction (.....)

• Multiplication (::1::)

• Division (/)

• Exponentiation (...)

• Integer division (..... or [) I i))

• Modulo (t'I C [I)

To perform an arithmetic operation:

I. First key in the expression. (Either the numeric keypad or the typewriter keyboard may be used to type

numbers.)

2. Then press ~ to execute the expression.

The result will appear under the line you executed.

49

50 Section 3: Expressions and Keyboard Operations

For example, multiply 8 by 3:

Press Display

::::l3

~::4

To raise a number to power, such as 83
:

Press

8(J3
rENO\
~

Display

:::: ::~~

You do not need to use parentheses to raise a number to a negative power. For instance, compute 8-3 :

Press

8 (J-3
rENO\
~

Display

Result.

In addition to the usual arithmetic operators, ··i·· * , and .. , there are two more arithmetic operators that

may prove useful to you. These operators are !J J: i,' (integer division) and !'" ,", , (modulo). They are used just as

the other five operators are used.

Integer division (L) T i.} or) returns the integer portion of the quotient. In other words, normal division takes

place, but all digits to the right of the decimal point are truncated (not rounded) so that you only have the whole

number result. Integer division can be specified either by keying in !J:r i' or by using the symbol for the

operator. For example:

Press Display

1 6 DIV
...

5 ! ... L ! I !

(@ LINE

5 DIV 1 6 i:::' i i .. ;
:.,.

(@ LINE ..

5 Q 1 6
i::;'

.i. I:::: ,

(@ LINE
t·-:

Given two values A and B, P D I i.) [:

divided by B.

i:::'

':",

Key in the expression.

Then press (@.

I F' <:" H."" E: .:0; in other words, L) J: i,' returns the "integer part" of A

The !", CHJ (modulo) operator returns the remainder resulting from a division. Like U I i.}, a normal division

occurs, but instead of taking the whole number result as [) I i,) does, i'! U!:::: takes the remainder and returns it as

the result. For instance, when you divide 7 by 3, the division result is 2 with a remainder of 1. ,"1 U [J would

return the 1 as the result of its operation, while [; I:"; would return the 2. For example:

Press Display Interpreted as

16 MOD 5~ 16 !'10[; 5 3 * 5 + 1

-(8 MOD 3)CB:) -.. (;:: nOD . .::) - [(2 * 3) + 2]

-2

(-8)MOD 3 CB:) , -- ;:: :;. !'10[; :3 (-3) * 3 + 1

Section 3: Expressions and Keyboard Operations 51

Given two values A and B, H !'i C D b = ,71··-':: b :*: I:··;"T· ;:" r4 I:::' ::' >; in other words, A minus B times the greatest

integer less than or equal to the quotient of A divided by B. A MOD 0 is A, by definition. From the definition, it

turns out that 0 ~ A MOD B < B if B > 0 and B < A MOD B ~ 0 if B < o.

Despite the fact that D I I) can be spelled out, and r'i C [) must be spelled out since it has no special symbol, they

are still operators and are used just as the other five operators are used.

Arithmetic Hierarchy

When an expression has more than one arithmetic operation, the order in which the operations take place depends

on the following hierarchy:

;"!C'::::', ! i.i. '" or " ::1::,

Exponentiation.

Modulo, integer division, multiplication, and division.

Addition and subtraction.

Performed first.

~
Performed last.

When an arithmetic expression contains two or more symbols at the same level in the hierarchy, the order of

execution is from left to right.

So an arithmetic expression such as 1 +3*2 is equal to 7. The computer performs the multiplication before the

addition because of its hierarchy. What if, instead of computing 1+ 3*2, you really wanted 1+3 and the result times

2? Use parentheses.

Parentheses

The prescribed order of execution can be altered if you use parentheses. Using the example of I +3 and then

multiplying the result times 2, you would type:

", 'oj- rEND\
:' . .L··:·":··T·:: ... ~ The answer, 8, is returned.

Note that only rounded, ;:: :', parentheses may be used in numerical operations. The square brackets, iL cannot be

used in mathematical calculations.

You may have more than one set of parentheses in an expression, but they must always be' 'paired up." If you leave

out a parenthesis (so that the expression can be said to be "unbalanced"), the HP-85 will return an error message

when you press (@-it won't even try to compute the answer.

When parentheses are used, they take highest priority in the mathematical hierarchy. When parentheses are nested

(i.e., when one pair of parentheses is contained inside another pair), like (5*(4-2)), the innermost quantity (4-2)

is evaluated first.

Suppose you wish to evaluate the following expression:

Key it into the computer in one line as follows:

2 + 3 x 6
(7_4)2

;

I

52 Section 3: Expressions and Keyboard Operations

The computer scans an expression from left to right performing the operations of highest priority first. Thus,

the above expression would be evaluated as follows:

+. ::f: ;::>

+. l
Subtraction (within parentheses).
Exponentiation.
Multiplication (to the left of division).
Division (before addition).
Addition.
Result.

Whenever you are in doubt as to the order of execution for any expression, use parentheses to indicate the order.

Using parentheses for "implied" multiplication is not allowed. So 3(9-5) must appear as

operator,!, must be used explicitly to specify multiplication.

The RESULT Key

..... ':;. The

The value that is displayed after you press the @ID key to execute a numeric expression is stored in a location

called "RESULT." It is obtained for use in other calculations by pressing 8etJ.
For instance, what if you decided to multiply the result of our last calculation by 3.7?

Press

e5*3.7

rEND1
~

Display

Now suppose you wish to square this result:

Press Display

:I. ,::j. . :3::1:: :I. ,::1· . :3

;::::1. ::::;. C!,;:!

The e5 key immediately displays

last result.

Now 14.8 is the result.

Now 219.04 is the result.

The F' F: I [.j T statement and the [I I ::::: F' statement are two important program statements. But they can also be used in

calculator mode, to have the results of calculations printed, or to output results concurrently. Both of these

statements will be discussed further in section 5.

Section 3: Expressions and Keyboard Operations 53

If you wish to display the results of two or more equations simultaneously, use the [) I ~3 F' statement and separate your

expressions with commas or semicolons. If you use commas, the results will be "spread apart," whereas

semicolons will cause the results to be packed together.

Examples:

DISP PIt12 A 2/4,PIt12
1 :[::;;: . C! ::::;? :::;; :::;: ~::i ':::i :~:: :)
J'? . (:::):) :i. 1 1 ::::: ,::1· J :1.

DISP 80t4J;8Jt44;86t45;89t46

Execute the statement by pressing rffff).
Results displayed.

Press rffff) to display results.

Or, if you wish to output only the results of your calculations to the printer, use the F: !? I !··IT statement. Press rffff)
to print results.

Examples:

PRINT 222t11,528t8
PRINT 80t4J;8Jt44;86t45;89t46

2442 4224

Standard Number Format

Your HP-85 has been designed so that for most computations, your results appear in an easy-to-read form, as

specified by ANSI*.

All results are calculated with the full precision of the computer. Results are displayed or printed in the following

manner unless you specify otherwise in a program statement. (Refer to section 10.)

In standard format:

• All significant digits of a number (maximum of 12 digits) are printed or displayed. For example, if you typed

.,.::.;; ,::!. ,,::i it would be output as , : .~ (:::
:1. ;:::~.

• Excess zeros to the right of the decimal point are suppressed. Forexample,:;;::' :!. C; C ::: ::::::? would be output as

• Leading zeros are truncated. For example, is output as .. ,::: .. ::'.

• Numbers whose absolute values are greater than or equal to I, but less than 1012 are output showing all

significant digits and no exponent.

• Numbers between -1 and I are also output showing all significant digits and no exponent if they can be

represented precisely in 12 or fewer digits to the right of the decimal point.

• All other numbers are expressed in scientific notation.

Let's look at a few examples of standard format. In the following table, if you key in the number in the left

column and press rffff), that number will be displayed in the format shown in the right column.

* American National Standards Institute.

54 Section 3: Expressions and Keyboard Operations

Number Standard Format

15.000 15
00.23500 .235
-.0547119 -4.38415537301 E-12
000987.5 987.5
10000116 1.E24
.01 E4 100
120E-4 .012

Scientific Notation

In the right-hand column above, you see two numbers expressed in scientific notation. When you execute an

expression in which the result is too large or too small to be displayed fully in 12 digits, the number is displayed

with a single digit to the left of the decimal point, followed by up to 11 digits to the right of the decimal point,

followed by the letter E and an exponent of 10.

For example:

Press

60000*90000000
rEND1
~

.00006*.00000009
rEND1
~

12-Digit Ma'ltissa Sign of Exponent

, -~~'-.. ~
.: ;. .. : ,:.l. : :::) ::::: _.::: (.: :.,': ::. .1. :::::

t
Sign of Denotes Exponent of 10
Mantissa

Display

Result, 5.4 x 1012 .

Result, 5.4 x 10-12 .

Keying in Exponents of Ten

You can key in number multiplied by powers of 10 (as in the last two examples in the table above), by typing

the number, then l::::, followed by an exponent of 10. For example, to key in 15.6 trillion (15.6 x 1012) and

multiply it by 25:

Press

15.6E12*25
rEND1
~

Display

Result.

To key in negative exponents of 10, type the number, type E:, and then type the negative exponent. For example,

type Planck's constant (h)-roughly, 6.625 x 10-27 erg seconds-and multiply by -50.

Press

6.625E-27*-50
rEND1
~

Display

Erg seconds.

Section 3: Expressions and Keyboard Operations 55

Range of Numbers

The range of values which can be entered or stored is -9.99999999999 x 10499 through -I x 10-499,0, and

1 x 10-499 through 9.99999999999 x 10499 .

Variables

Algebraic formulas usually contain names that represent assigned values.

These names are known as variables and, with the HP-85, specify a

location in memory where a value is stored. For instance, the formula for

the area of a circle, (/ =rrr2, contains two variables, (/ and r. To use the

formula, you assign a value to r (radius) to solve for a.

Types

With the HP-85 you can specify either numeric variables or "character string" variables. Character strings, or

"strings" for short, can be composed of any valid characters and can be of any length-from zero characters to a

maximum limited only by available memory. But since numeric data is more often used, we will discuss numeric

variables first, then touch briefly on string variables. We'll continue our discussion on variables in section 8.

There are three types of numeric variables allowed by the HP-85.

• i? F: ::::: L.. numbers are stored with the full precision of the computer. F' F:::!.... numbers are represented internally

with 12 digits and a three-digit exponent in the range of -499 through 499; in other words, a 12-digit number in

the range -9.99999999999 x 10499 through -1.00000000000 x 10-499 ,0, and 1.00000000000 x 10-499

through 9.99999999999 x 10499
.

• :::; :···i C::;:'·T" numbers are represented internally with five digits and a two-digit exponent in the range -99 through

99; in other words, a five-digit number in the range of -9.9999 x 1099 through -1.0000 x 10-99 , 0, and

1.0000 x 10-99 through 9.9999 X 1099 .

• I i·iT" i::: C; E: i;: numbers are stored with five digits, with no digits following the decimal point. The range of

integers is -99999 through 99999.

All numbers are full precision (real) unless you specify otherwise. But you can conserve computer memory if you

designate ':::; II () f:::"T' or I ~.~ TEe [F: numbers; refer to page 152.

Forms

There are two forms that a variable may have:

• Simple.

• Array (subscripted).

With simple variables, you assign a numeric value or expression to a name. Arrays are convenient for handling large

groups of data within a program.

56 Section 3: Expressions and Keyboard Operations

Simple variables can be assigned values either in calculator mode or within a program.

Calculator mode variables are temporary-they are cleared from memory whenever you run a program or press

(SCRATCH) CEll[) or (RESET). Use them when you want to calculate immediate results from the keyboard. Other­

wise, use variables in programs, where you can use them over and over again. The following statements about

variable names and assignments apply to both calculator mode variables and program variables.

Simple Variables

On the HP-85 you can use the following for simple variable names:

• Any letter from A through Z. (Lowercase letters can be used, but they are interpreted as if they were

capital letters.)

• Any letter immediately followed by a digit from 0 through 9.

For instance, acceptable simple variable names are: H::', C:, I::: ::\ .j, ' . .! .,'!, ... :?, >0:, \'.

Note: Lowercase variable names are turned into uppercase letters by the system (e.g.,:::!::' is the same

as ,:::, :i.).

In all, 286 simple variables can be named.

Variables are assigned values using an equals sign to create an assignment statement. For example, to assign 15

to A and 2*25 to X3:

Press Display

A=15@fJ
,; : ...

X3 = 2*25 @fJ

In the assignment statement, the variable name appears first, followed by the equals sign. The value or numeric

expression assigned to the variable appears to the right of the equals sign.

Now that some variables have assigned values, they can be used in place of numbers in math calculations:

Press Display

A/X3 @fJ

Result of 15/50.

AI\'2 @fJ
.... , ") i:::,

X3 * 3 @fJ

Result of 50 * 3.

Variables can be reassigned values. For instance, to change the value of A to 16, you could execute either

H c: !=i -I- 1 or H 16.

I

Section 3: Expressions and Keyboard Operations 57

To recall the value of any assigned variable, simply type the variable name and press rJEf).

Press

A rENDI.
~

Display

O! ;::: Value of A.

Value of X3.

You can assign the same value to more than one variable in the same line by using commas to separate the

variables. For example, assign the variables A, B, C, and 0 the value of 100.

Press

A, B, C, D = 100 rJEf)
A rEND!
~

B rEND!
~

C rEND!
~

D rEND!
~

Display

Verify that all variables have been

assigned the value 100.

You can use one more type of numeric variable on the HP-85-an array variable. We'll discuss arrays in section 8.

String Variables

A character string is a series of characters like ::i: ::i:: H F ' that

can be given a string variable name. The length of the string refers to

the number of characters assigned to the string. A string variable can

be of any length (limited only by available memory).

You can use string variables without dimensioning them (allocating

memory to them) if they contain 18 or fewer characters. If they are

longer than 18 characters, you must use a D I ['1 or C Ci l'l statement to

declare the length (page 131).

String variables are assigned names in the same way that numeric variables are assigned names, but the string

variable name must be followed by a dollar sign (::!:).

58 Section 3: Expressions and Keyboard Operations

In all, 286 string variables can be named. (Remember, the system interprets small letters in variable names as if

they were capital letters; thus, you could reference the same string variable !:::i:!.::I:: with .;::! ::. :'1':.)

To assign HELLO to A$, and GOODBYE to B$:

Press

A$="HELLO"' !J.@
B$="GOOOBYE" !J.@
OISP A$,B$!J.@

OISP A$;"-"';B$!J.@

String Concatenation

Display

The strings must
be enclosed with
quotation marks.

"Concatenation" is the one operation allowed in string expressions. This operation causes one string to be tacked

onto the end of another. The symbol used for string concatenation is the ampersand (&). To join two strings together,

it is necessary only to interpose the ampersand.

For example, assign the following string variables the characters shown:

i:::ll ::::: I '!:::: t .. ! 'r 'r F: F: ,!
i3 ::\': ::::: I I [) F: !:::! C; C: i· .. j "
C:f:::: II i···iC:! . .!':::;E"
[)l:::: "::::·i \'"
E;::r,:::::: ,!

Now execute these statements:

r", T , ... ,,..
: ... ' .:. ".'"

L' : ... ; : or I::: !? F L.. \'
r", "1" tENDI
L.l·::· ~

tENDI
~

DISP Fl ~ El & Cl ~ Dl
Ci !? !:::I C; C' ! .. j F: L. i···i c:;! i':: ::.:. F" L.. \'

tENDI
~

Press !J.@ after each assignment
statement.

The string variable E$ contains one space.

Displays the two strings joined together.

Joins strings B$ and D$ to make F$.

Since concatenation makes a string longer than its parts, be sure that the final string in a string variable assignment

is less than or equal to 18 characters in length. (Or, if the string has been dimensioned using C; I i"lor C: C; 1"1 statement

in a program, the final string must not exceed the length that you have designated.)

The Null String

The null string is a string that contains no characters or blanks, for example:

j" oj ::~:: ::::: i: i j

We define the null string here because it is referred to often.

Section 3: Expressions and Keyboard Operations 59

Logical Evaluation

In logical evaluation, expressions can be compared by using relational operators and/or logical operators. An

expression can be a constant (like .? . ;::::), a variable (like E:::), or an arithmetic expression (like? . ;?:I:':; !:' F: ;: ;:::; I).

If the comparison is 'true', the value' I' is returned; if the comparison is 'false', the value '0' is returned.

Relational Operators

Relational operators are used to determine the value relationship between two expressions.

Symbol

........

Equal to.
Less than.
Greater than.

Meaning

Less than or equal to .
Greater than or equal to.
Not equal to (either form is acceptable).

The <: symbol corresponds to the shifted m key,:· corresponds to the shifted ~ key, and :l:i: corresponds to the

shifted rn key.

Be careful to note that the equals sign is used in both variable assignment statements and in relational oper­

ations. This distinction only becomes important at the beginning of an expression that could be interpreted

either way; in which case, the system will always assume that the expression is a variable assignment. To specify

a relational operation, place parentheses around the equality relational operation or place the value to the left of

the equals sign and the variable it is being compared with to the right of the equals sign.

Examples:

::: !:::I::::····;: ';

. ,·····1:::j

1'''1::::: ::: E::::::

....... 11----------------------- Assigns A the value of 3.

{

Both expressions perform the equality
....... 11---___________________ relational operation and compare the value

of A with 3. They return values of 0 or I
depending on whether A has a value of 3 .

....... 11---------------------- Assigns A and B the value of 3.

,}......--.. ----I
Both statements assign the value 0 or I to
A, depending on whether B does or does
not equal 3. You don't need to use paren­
theses since the variable name is to the left
and its value (the result of the expression
B = 3) is to the right of the equal sign.

Let's look at some examples using relational operations. First let's assign values to the variables A,B,C, and D.

!:::j,
.i-

t:::
_.

..... .. :: ...

C:.: D::::: :::~:

Press rtffKJ after each line to assign the

variable(s) the specified value .

60 Section 3: Expressions and Keyboard Operations

Now execute the following operation;.,:

.i.

:::j.

1<2

True.

2 < I

False.

2 # 3

True .

3 # 3

False.

3 = 3

True.

4=1

False.

Assigned 4 to A.

As you can see, the last statement did not assign a value of :1. (true) or i? (false) to the expression because ::::::::

is an assignment statement; so A is assigned the value of 4. To determine the value relationship between the value of

A and 4, type :::::, as shown above, or use the parentheses around this expression: (:::::::::: ':n.

Strings and string variables can also be compared using the relational operators. Each character in the string is

represented by a standard decimal code, as shown in appendix C. When two string characters are compared, the

lesser of the two characters is the one whose decimal code is smaller. For example, 3 (decimal code 51) is smaller

than 8 (decimal code 66).

Strings are compared, character by character, from left to right until a difference is found. If one string ends before a

difference is found, the shorter string is considered the lesser.

Relational operators are valuable when they are used in .L : .. 'r !"'1 E: 1"'1 statements as described in section 7.

Advanced Programming Note: Relational comparisons can be quite complex. Suppose the following

statements are used in a program:

X=69t(A=3)+287t(B=83)

C; 1. ::::: ,::!. ::j:: (r,::f.: ::::: ; I r::, II) .+. :::;::Y (I:::! t: ::::: ; I !:::: II .., .oj-. ;:::: ::!:" (!:::, ::1:: ::::: ;;
C II) +. (I:::' :,1,: ::::: [):l)

Logical Operators

Assigns 69 to X when A=3 and adds 287
when 8=83, otherwise adds nothing.

Assigns 4 for an "A" , 3 for a "8" , 2 for a
"e" and I when A$=D$.

Adds 1 to L when A$ is longer than nine
characters.

The logical operators, often called Boolean operators, are i:::i!' Li, :) i::' (inclusive or), (exclusive or), and

:'., C:"T. A value of zero is considered false. Any other value is considered true. The result of a logical operation is

either 0 or 1.

I

Section 3: Expressions and Keyboard Operations 61

• i:::i! .[Ci checks two expressions. If both expressions are true, (that is,

both non-zero), the result is true (:!). I f one or both of the expres­

sions is false (ei), the result is false (ei).

A

T

T

B

T

F

AANDB

T

F

F T F

F F F

• c, [:;:. checks two expressions. If one or both of the expressions is

true, the result is true (n. If neither ex pression is true, the result is

false (i:::i).

A

T

T

B AOR B

T T

F T

F T T

F F F

• t::.,': C,!:;:. (exclusive or) compares two expressions. If only one of the

expressions is true, the result is true (!). Ifboth are true or both are

false, the result is false (i:::i).

A

T

T

B AEXORB

T F

F T

F T T

F F F

• i···i C,T returns the opposite of the logical value of an expression. If

the expression is true (non-zero), the result is false (ei). If the

expression is false (i:::i), the result is true (:i.).

A

T

F

NOT A

F

T

We have used A and B in the truth tables to denote numeric expressions. The expressions used with logical

operators can be either relational or non-relational. In the order of execution of expressions, has higher

priority than the relational operators and the relational operators have higher priority than i:::i iii', :::::::: i::', and

::: i? If you are in doubt, use parentheses.

Here are some examples; first let's assign values to the variables A,B,C, and D.

E: :
. L) :::i·

Now execute these logical expressions:

i:::! <: E: l:::j j""! L) C. ::::: [)
:l.

j:::! !:::1 i-··i ~:::i C L)

:1.

:1.

Press (@ after each line to assign the

variables the specified values .

Since both relational expressions ;"'; <: [i;;:

and ... '"'' L\ are true, the result is true.
The expression, i'''!, is false since its arith­
metic value equals zero. The expression,

"" Li, is true. But since I;;! i·i Ci requires that
both expressions be true to return a true
result, the result is false.
The arithmetic value of i';;i is zero (false)
while the arithmetic value of E: is two
(true). Since at least one of the expressions
is true, the whole expression is true.
Both arithmetic expressions have a value
of 0 (false).
Since i: is false, is true.

Since I';;! is false and E": :: is true, the result
is true.

I

62 Section 3: Expressions and Keyboard Operations

Advanced Programming Note: The results returned from logical or relational operations, either 0 or 1, can

be used in calculations. Using the variables, A, B, C, and D again, let's evaluate S in the equation shown

below:

rEND\
~

." i··j .. ·· ... it::::: \ ... \:: "::::j:: .:. , rEND\
~

The result of the true relation (E:; .: C:) is first added to the result of the true relation (i···i CiT" L) :::: ::::0. In other

words 1 + 1 = 2. This result is then multiplied by 12 for a product of 24.

Here's a truth table summarizing logical operations:

A

T
F
F

B

F
T
F

A AND B

o
o
o

The Time Functions

AORB

o

A EXOR B

1
o

Often it is desirable to document programs, computations, and test runs

with the current time and date of execution. With the HP-85 you can set

the time and date and then recall the current time whenever you wish. You

can even use the time functions in calculations.

As soon as you tum the power on, the system timer is set to 0 and begins to

count the time in milliseconds. After it counts 86,400 seconds (24 hours),

the system timer increments the date by 1, and then starts to count

milliseconds from 0 again.

NOTA

o

You can specify the starting time and date for the system counter with the ::::: E:"T T ;'; i: statement as follows:

::::; ~::. "T "r I j"'! E: seconds since midnight., day of the year

Although the time must be set in seconds to count properly, the date can be specified any way you want-as

long as you remember that the date is an integer number that is incremented by 1 at midnight (assuming the

system timer has been set properly).

For example, you can set the timer at 8 a.m., March 16, 1983 as follows:

SETTIME 28800,83075 28800 seconds since midnight, 75th day
of 1983; date in form yyddd.

Eight o'clock in the morning is 8 hours X 60 minutes/hour x 60 seconds/minute = 28800 seconds since mid­

night. And March 16, 1983 is the 75th day of 1983.

Now the timer will increment 28800.000 by 1 every millisecond until the time is 86400 (midnight). Then it will

add 1 to 83075 and start counting seconds from 0 again.

Section 3: Expressions and Keyboard Operations 63

Since the date is just an integer number that is incremented by I every 24 hours, you can enter the date in any form

you wish, as long as the number is between I and 99999. The time parameter can be a numeric expression with a

value of 0 through 86400. If the timer is set to 86400, midnight, the system immediately increments the date and

begins counting milliseconds from 0 again.

For instance, you could have set the date and time for 8 a.m., March 16th as follows:

SETTIME 8*60*60,316 Date in form mdd.

Notice that you can use a numeric expression to set the time. We used the number 316 to specify the 3rd month and

the 16th day, but remember, the system interprets 316 as just a number to be incremented by I at midnight.

The 'T" I i"i i::: function recalls the current time in seconds since midnight, assuming the time has been set properly, or

the number of seconds since power on if the time was not set with ':::; E: TT I >"i !:::. To recall the time, type:

(END1
~

The Ci i::iT E:: function recalls the current date in the same format that you specified, or it recalls 0 if you had not set the

date with ':::i:::T"T" I i"'iE:. To recall the date, type:

(END1
~

All values for ':::: F: , '" ,... .., .. I ('i i:::, and ii i:::i T i:, are lost when you turn the power off. ... T i r::: begins counting

from 0 each time the power is turned on.

The I i"i E: and Ci i:::i'T" E: functions are programmable and can be used in numerical expressions.

For instance, to recall the time in hours, execute:

Time in seconds divided by (60
minutes/hour X 60 seconds/minute).
Result gives time in decimal hours.

Section 4

Mathematics Functions and Statements

Many predefined functions are available to you through BASIC programming language on the HP-85. But you

don't need to write a program in order to use them. Each function operates the same way, regardless of whether you

execute the function straight from the keyboard or use it as part of a program statement.

In this section:

• Each built-in math function is explained as it is used manually, in its simplest form.

• The math functions are placed in the total math hierarchy.

• Math errors are discussed in conjunction with the Ci l:::: F: :":i ' ... : 1...., C i··i statement.

A function is a prescription for doing something with a given value, or set of values, that yields a single output.

The values that are acted upon by a function are called the "arguments" or, sometimes, the "parameters." An

argument is often just a single number, but it may be a mathematical expression containing variables or other

functions.

Most of the functions on the HP-85 require only one argument, but there are a few that require two, and several

that require none.

To use any of the functions in "calculator" mode:

I. Type the function name.

2. Then type the argument, if the function requires one, enclosed within parentheses. If the function requires two

arguments, separate them with a comma.

3. Press (}j§f) to compute the result.

Appendix 0 lists all of the functions available to you with BASIC on the HP-85.

Number Alteration
There are several functions that allow you to alter numbers on the HP-85. These functions are: ':::j ':::':"', or

,...... I?, i ... :::: .. :. L .. , r" :', and T F< The table below lists the function name and argument along with the meaning of

the function. The argument X may be a number (like .. ::' ':::) , a variable (like i:::!), or a numeric expression (like

:-:;:):: (: i) i? < ::::: ::').

Function and Argument

:::::i:::;':::: <X

. :. i" <X:'
<X :::

T i··iT 'X,

i:::'i ("".,i? <X :::

, i:::. ::: L .. <X :::

Absolute value of X .

Integer part of X.

Fractional part of X.

Meaning

Greatest integer less than or equal to X.

Greatest integer less than orequal toX. (Same as

Smallest integer greater than or equal to X.

Note: T i:::' and T i···i T differ only with negative numbers.

65

...... ':X:'; relates to C F .! L. ...)

66 Section 4: Mathematics Functions and Statements

Absolute Values

Some calculations require the absolute value, or magnitude, of a number. To obtain the absolute value of any

expression, simply type f'! E: '::: .:: expression::' , where the expression may be a constant, a variable, or an arithmetic

expression. Then press CEJl[). The result will be displayed below the line you type.

Examples:

fi E: :::: < ;:::: :3 :::; ::. Press ~ to display the result 1-2351·

HE::::: <::::. ?)
:::: .. ? 1 +2.71

14- 7/l.51

Integer Part of a Number

To extract and display the integer part of a number, type IF', followed by the argument enclosed within parentheses.

Th (ENOl en press ~.

Examples:

I F' < 1. ::::: :::;: . .:1- ~:: (:;)

1. ;:::::::;:

IF'(""·4. '::,(:;)
..... ,::!.

:I.

Press @J and the integer part of the
number IS displayed.

Integer part of -4.56.

Integer part of l. 748.

When the I F' function is executed, the fractional part of the number is lost.

Fractional Part of a Number

To extract and display only the fractional part of a number, type F:' F\ followed by the argument enclosed within

parentheses. Then press ~.

Examples:

f:P < 1;:::3. ,::1·'56)
.4:::::6

F' F' (..... ,::1· . '5 (:: ::.

When you press ~, only the fractional
part of the number is displayed.

...... :::6 Fractional part of -4.56.

F' F' < :!. . .? ,::,. ::::: ::.
. ?4::::: Fractional part of l. 748.

When the F' F' function is executed, the integer part of the number is lost.

Greatest Integer Function

To display the greatest integer less than or equal to a number, type I h'T' or F' L .. C C' i?, followed by the number or

Section 4: Mathematics Functions and Statements 67

expression enclosed within parentheses. The greatest integer function returns the largest integer that is less than or

equal to the evaluated expression.

Examples:

'1 .• ' .:
• 1. :: ••••••• ,

:1. ;;::::::::

:::: .. ':'
:

I ~ ... ~ 'r = :1. : :::1. ... ' .:

..... ;;::~

123 is the greatest integer <= 123.456 .

::::: '. :... 'performs the same function
as .! i··iT.

-7 is the greatest integer <= -6.257.

-2 is the greatest integer <= -1.748.

Note the difference between the Ii:' (inteKer p({rt) function and the .!!": : or :' i" C i:;:: (greotest integer) function.

In the above examples, Ii:::';:" ,:::, .:;:0 ".. .., yields ;::::, while T r··: : ' ,:., ., , , ., yields :".

Smallest Integer Function

To display the smallest integer greater than or equal to a number, type : ... i::: j i (ceiling). Then type the number or

expression, enclosed within parentheses, and press rJff!fJ.
Examples:

C. E. I L.. ;:: :~. ;~::~ :::~: . :::1. i:::; !~:; '::

124 is the smallest integer >= 123.456.

..... j:::= -6 is the smallest integer >= 6.257 .

C. E. I 1.... <:!. '? ,::j. :;;;; "
..... :t -I is the smallest integer >= -1.748 .

General Math Functions
Several of the following functions do not require an argument. For instance, ,:::0 I always returns the 12-digit

approximation of 1T. A few of the functions below require two arguments; for example, given two values, (i j:::['::'

returns the larger of the two values. The arguments, denoted by X and Y, may be numbers, numeric variables,

functions, or numeric expressions.

Function and Argument

::::;:)i:::::::x
::::;C;i··i:::X ::

1·'I:r:-..::::X,y,

i?i"iC: :::X,y:::

i:::' I no argument

I i···i ::::. no argument

E: ::::' ::::; no argument

F' 1·'·1 ::::: no argument

Meaning

Positive square root of X.

Sign of X; yields -1 if X < 0, 0 if X = 0, and +1 if X > O.

Maximum; if X > Y returns X, otherwise returns Y.

Minimum; if X < Y returns X, otherwise returns Y.

Remainder of X divided by Y: X-Y*IP(X/Y).

12-digit approximation of 7T; 3.14159265359.

Machine infinity (+9.99999999999E499).

Epsilon; smallest positive machine number (1 E-499).

Random number; generates next number in a sequence of numbers greater
than or equal to zero and less than one.

68 Section 4: Mathematics Functions and Statements

Square Root Function

To calculate the square root of a number, use the ':::: C! I? function. The square root function returns the square root of a

nonnegati ve expression.

Examples:

Sign of a Number

When you press ~, the square root of
the number is displayed.

The sign function returns a 1 if the expression is positive, 0 if it is 0, and -I if it is negative. To use the sign

function, type :::>:::>·1, followed by the argument enclosed within parentheses. Then press ~.

Examples:

:1. Sign of a negative number is -1.

i:::i Sign of zero is O.

:1. Sign of a positive number is 1.

Maximum and Minimum

You'll find the 1'1:::::::< and ('1 I 1"·1 functions very useful in BASIC programs. Given two values, 1"1:::::>:: returns the

larger of the values and 1'1 I 1,·1 returns the smaller. Both 1"1 ::::: >: and r'l I 1'··1 require two arguments enclosed within

parentheses, following the function name.

Examples:

!",! I f'··j (::l . ~:::;., :::1· . "':1 I:::; ::=

:::1· . ~:::;

(! 1":1::-< ',,::' ,,:: ')
..... :!

The Remainder Function

Note that the arguments must be separated
by a comma. The arguments may be num­
bers, simple variables-if the variables
are defined-or arithmetic expressions
(including functions).

Given two values, the remainder function, F: 1"1 Ci, divides the first value by the second and displays the remainder.

1:;:0 1"1 C! ;: >: . 'y',.... :::: \'::j:: IF:' ;: >:.' ';' :'.

Section 4: Mathematics Functions and Statements 69

Examples:

k r'il::) .: :~:: ." :::: .. .'
2 goes into 5 twice, with a remainder of I.

4 times 4.26 plus remainder .31 isequal to
17.35.

Comparing definitions, you can see that the ~'!'1 [function and the :.,: C; L! operator (page 50) are very similar. In

fact, they both yield the same results when the arguments X and Y have the same sign. But they can give

different results when X and Yare of opposite signs.

Whether you use i?!"i C! or i"i C! C! depends on the particular application you choose.

Example: Resolve -726° to lie between - 360° and + 360° by ignoring

mUltiples of 360°. Using the i? r'E::! function, given any 0 in degrees:

fi new RMD (fi, 360) such that -360 0 < linew < 360 0

.. OJ''',. ··:;'i:.i/i

With the ;:::0 ,." i', function, Onl'w is equal to -6°.

Now use the i i ["! i"! operator to resolve -726 0 to lie between 00 and 360" by ignoring multiples of 360 0
• Given any

Ii in degrees:

linew Ii MOD 360 such that 00 < Onew < 360 0

Using F'I

The value of 7T approximated to 12 places (3.14159265359) is provided as a fixed constant in BASIC programming

language. Merely type ,:' T whenever you need it in a calculation. For example, to calculate 37T, type:

When you press (JjfjfJ, the result is
displayed.

Example: Calculate the surface area of Callisto, one of Jupiter's 12 moons, using the formula A = 7Td2
. Callisto

has a diameter (d) of 3100 miles.

Area of Call isto in square miles.

Note that you don't have to include parentheses around """:? because exponentiation is performed before

multiplication.

70 Section 4: Mathematics Functions and Statements

Epsilon and Infinity

Two functions that prove useful in programs are i::' F:: ':::; and I i··i F::. Both functions simply recall a constant; i:::: F: :::

recalls the smallest positive machine number and i··i F: recalls the largest machine number. They are useful in

comparisons when you want to use either a very small or a very large number, saving you the time of keying in the

numbers yourself.

Examples:

E: :::i '···i'···!

~':'! j:::1 ;:.' ::: :::j. ::::; ;:::; .' .L j···i 1'"

9.99999999999E499

Random Numbers

Smallest positive number that can be
output: I X 10-499 .

Largest number that can be output:
9.99999999999 X 10499

.

Random numbers are extremely useful in statistical sampling theory-anytime you want a sequence of events or

numbers that appear in an unpredictable order. The random number function, i? i··i Ci, returns a pseudorandom

number greater than or equal to 0 and less than I, each time it is executed.

Example:

F~ \' .. \ Li
::"; ::) ::::1 :!. ~) ~::~i :::~ ::::i ;:::; I::: ... ::; .. ::;

l'::~ i'··j C)
:::j. ..::~ ~:::; :: .. "', :!. ;:::; : :"i :::L :::;. <. E: :::::

:':: !' .. ! L)

A random number between 0 and I is
displayed each time RND is executed.

Whenever you tum the power on or press E:l, the same sequence of random numbers is generated. The reason for

this is that the random number function uses the same 'seed' (i.e., the number upon which the sequencing is based)

each time it is reset.

But, by using the I:::: 1:::1 I',,! L) C !"I I::::: E. statement, you can' 'scramble" the seed and thus, generate new sequences of

random numbers. Or you can control the sequences of random numbers by specifying your own "seed."

To see how this works, use the F: 1:1 r'" D U r'l I :? E: statement:

When you type I? ,:::, t··! D 0 !'1 I :::: [CEll[), the HP-85 defines a new seed for the random number generator, based on

the internal timing system. Now, execute the i:::: !···ii::) function several times, until it becomes evident that you

have generated a new sequence of random numbers.

Section 4: Mathematics Functions and Statements 71

Each time you use the i? i:::i i···i 1::) C:' i"i I::::: F statement in this way, a new' 'seed" is defined, yielding a new sequence of

random numbers.

You can control the sequence of numbers by specifying the "seed" with the I:;:' ;:::1 i·H··; :::>'!i>" F statement. This

enables you to regenerate the same sequence of numbers whenever you wish.

Example: Using the seed .423, generate the first three numbers of the random number sequence.

statement.
pI random number in the sequence.

2nd random number in the sequence.

3ro random number in the sequence.

Whenever you wish to use the same sequence of random numbers, use the same seed. To obtain a good seed, use any

non-zero number within the range of the HP-85-the system will automatically convert the number to a seed

between 0 and 1. A seed of zero will generate a constant sequence of zeros.

For any non-zero seed in the given range, 5 x 1013 values are generated before the sequence repeats. (The

::;:' i:::i i···i L:<:: i"i I:? i::: statement will always generate a non-zero seed if no parameter is specified.)

You are not limited to random numbers between numbers 0 and I. In general, you can generate random integers

from a through b using the formula IP((b + I - a) * RND + a). For instance, generate a random sequence of

integers between 0 and 99, inclusive.

You could use an expression like the following:

!:::"

I F' . :~. !~:J i;~! ::1:: !? !'··i i:J ..=

~~; '::1-

I F ;-" :L 1;::1 ~::! ::i:: 1? ! ... ~ Ci ::=

;;::;

The integer part of a random number times
100. (These are the fourth, fifth, and sixth
random numbers generated in the
sequence based on the seed above.)

Generally speaking, good statistical properties can be expected because the random number generator has been

designed to pass an important test known as the spectral test. * Of course the statistics will vary somewhat from

sequence to sequence depending on the starting seed since less than the full period will be used by you. But it should

normally be quite good if a "statistically significant" sample size is considered.

Logarithmic Functions

The HP-85 computes both natural and common logarithms as well as their inverse functions. The logarithmic

functions are:

Function and Argument Meaning

1.... C; c; .::x > 10geX; natural logarithm of a positive X to the base e (2.71828182846 to 12
place accuracy).

E. i,: F:' <X:' e'/'; natural antilogarithm. Raises e (2.71828182846) to the power X.
1.... c; 'r <X> 10glOX; common logarithm of a positive X to the base 10.

* Donald E. Knuth, The Art of Computer Programming (Massachusetts, 1969), V.2., §3.4

72 Section 4: Mathematics Functions and Statements

Of course, the common antilog (10X) may be executed easily from the keyboard (:i. C! .. ' . ').

Example: What is the value of log2 53?

You can easily convert the logarithmic base using the following formula:

10gaX' = 1m = loge\'
Ina log.,a

So, to find the logarithm, base 2, of 53, simply execute:

log2 53.

Trigonometric Functions and Statements

Trigonometric Modes

When you are using trigonometric functions, angles can be assumed by the HP-85 to be in decimal degrees,

radians, or grads. Unless you specify otherwise with one of the trigonometric mode statements, the HP-85

assumes that all angles are in radians. When you select a trigonometric mode, the HP-85 remains in that mode

until you change it, press (RESET), or switch off the computer.

To select degrees mode, use the Li t:: i:: statement:

There are 360 degrees in a circle.

To select grads mode, use the C: S: ii, C: statement:

There are 400 grads in a circle.

To reset radians mode, press (RESET) or execute the j:;) statement:

There are 211' radians in a circle.

Note that 360 degrees 400 grads 211' radians.

Section 4: Mathematics Functions and Statements 73

Trigonometric Functions

There are 12 programmable trigonometric functions provided by the HP-85, including inverses of several of the

functions and conversion functions.

Function and Argument

"',L i···i <X>
, ... ; ···;i···i (.X)
; ; ':::; ':X>
i:::l(" ':::; <X ::'

i:::ii··i <X>
i::iT·i···i '::X
........ , .. <X>
. :::;E.f"". (X ::' ... ,. ,. <X>
'·:,·""i·.; .::. <V .,X >

Conversions:

, .. .' "", <X>
i?r L) <X>

Meaning

Sine of X.
Arcsine of X; -1 ~ X ~ 1. In 1 st or 4th quadrant.
Cosine of X.
Arccosine of X; - 1 ~ X ~ 1. In 1 st or 2nd quadrant.
Tangent of X.
Arctangent of X; in 1 st or 4th quadrant.
Cosecant of X .
Secant of X .
Cotangent of X.
Arctangent of V/X, in proper quadrant; useful in polar/rectangular coordinate
conversions.

Degrees to radians conversion.
Radians to degrees conversion.

All trigonometric functions have one argument, except the r:j'r 1"·1::::: function, so to use them simply type the function

name and then type the numeric expression, enclosed within parentheses.

Example: Find the cosine of 45 degrees.

Sets the HP-85 to degrees mode.

Result.

Example: Find the sine of 2/31T radians.

F' I:::' U Sets computer to radians mode.

Result.

Degrees/Radians Conversions
The i:::;'r i? (degrees to radians) and i? T Cl (radians to degrees) functions are used to convert angles between degrees

and radians. To convert an angle specified in degrees to radians, type CiT i? followed by the angle within paren­

theses. For example, to change 45 degrees to radians:

1...1 ! i~: i .. 4 ::::; >
.? ~:::~ ~:::; :::~: ~:::i ;::;; 1 (; :::~: :::~: ~:::i O? Radians.

To convert the angle specified in radians to decimal degrees, type i?'T Ci followed by the angle within parentheses.

Convert 4 radians to decimal degrees:

Decimal degrees.

Polar/Rectangular Coordinate Conversions
The i:::!'r i···i::::: (arctangent of x,y coordinate position) function can be used for polar/rectangular coordinate conver­

sions. Angle () is assumed in decimal degrees, radians, or grads, depending upon the trigonometric mode first

selected by Li E C;, !? i::i Cl, or C;!? r::! Ci.

74 Section 4: Mathematics Functions and Statements

A point P can be represented in two ways: by the rectangular coordinate position (x ,y) or by the polar coordinate

position (r ,8).

In the HP-85, the f::! T' i···j ;:::: function produces an angle 8 represented in the following manner:

p

To convert from rectangular (x,y) coordinates to polar (r ,8) coordinates (magnitude and angle, respectively), use

the following equations:

r = Yx2 + y2

(J = ATtJ2 (y,x) where -7T < 8 ~ 7T.

To convert from polar (r ,8) coordinates to rectangular (x,y) coordinates, use the following geometric properties:

x = rcos8

y = rsin8

Example: Convert rectangular coordinates (3,4) to polar form with the angle expressed in decimal degrees.

. ;::, -+ :::j. ; ... ~ .:

H T !···I ;:::: ;: ,::!. .'3 ,

y

------~ (3,4)

r

-fL----L---'------_x

Degrees mode selected.
r = Yx2 + y2 .
Magnitude r.
8 = A TN2(y , x); notice that we specify
the y-coordinate value first.
Angle 8 in decimal degrees.

Section 4: Mathematics Functions and Statements 75

The H 'r 1"'1::::: function is also used to find the arctangent of an expression in the proper quadrant. The H T' i",i function

returns the principal value of the arctangent of an expression, in other words, the value in the first or fourth quadrant.

Example: Find the angle in the third quadrant whose tangent is 2/3. Express the angle in radians.

y

----~----~-.---------x

f,: HD
H T t·j 2 .:: -,-:2 .. .- :::: ::.

r
~---

(-3, -2)

(J

Set radians mode.
(J = ATN2(y,x), where x andy are any
rectangular coordinates in the third quad­
rant with a tangent of 2/3.
Angle (J in radians.

(Note that H T t·j (.. _. :::::."" .. _. :::;: ') would return the arctangent of 2/3 evaluated in the first quadrant:

:: ::::::: C1 C12 6 ~:::13 ::4 :::::.)

Total Math Hierarchy

Parentheses take highest precedence when the HP-85 computes the value of an expression. Other expressions

follow according to their placement in the following hierarchy:

Highest precedence

Lowest precedence

parentheses

Functions

(exponentiation)

:*",.... r'l C) [), or D I [,)

+, .-

All relational operators (:::, ':0, <:, "" '" ", '::,
F:! ti [I

Recovering From Math Errors

or *!)

Many math errors occur due to an improper argument or overflow. Such an error would normally halt the

execution of a running program. The HP-85 provides default values for out-of-range results that occur using the

following math functions, thus overriding the error condition and preventing the error from halting program

execution. The system will alert you to the error by displaying a warning message and, if the result is to be

output, the default value of the expression.

76 Section 4: Mathematics Functions and Statements

The default error processing condition is on when the system's power is turned on or when the computer is

reset.

The errors and default values are:

Error (Number)

Underflow (1)
Integer precision overflow (2)
Short precision overflow (2)
Real precision overflow (2)
1
...

C)T or I:: ':; C of n*180o; n = integer (3) ..

'; t: C or T H h n*90o; n = odd integer (4)
Zero A negative power (5)
Zero A zero (6)
Unitialized numeric variable (7)
Unitialized string variable (7)
Division by zero (8)

For instance, try to divide a number by zero:

()
', . .' ... ::::: [F: C:

-.99999999999[499

Default Values

0
+ or - 99999
+ or - 9.9999E99
+ or - 9.99999999999E499
9.99999999999E499
9.99999999999E499
9.99999999999E499
1
0
'''' (null string)
+ or - 9.9999999999E499

Beeps and displays a warning message.
Answer; default value of expression.

Since the default condition is on at power on, the system beeps and displays a warning message to alert you to the

error. But the cursor moves to the next line on the display after the warning so that, essentially, the error is ignored.

The C: E: F I:::! .. .i L.. T" C. i:::' F:' statement cancels the use of default values for math errors and sets the system to normal

error processing. For instance, type:

Sets system to normal error processing.
Try dividing by zero again.
Beeps and displays an error message.

With Ci E. F:: !:::: ! .. .i L..·r C· F' F', such an error would halt the execution of a running program.

To reset the system to default error processing, execute:

('oj·.!
' ... 'i'!

With L. E I:::
...

;
: : 'T C ~ ... ~, the math errors stated above do not halt the execution of a running program.

Section 5

Simple Programming

If you have read the Getting Started section of this handbook, you've already seen that by using the programming

capability of your HP-85, you save hours of time in long computations.

With your HP-85 Personal Computer, Hewlett-Packard has provided you with a Standard Pac containing 15

programs already recorded on a magnetic tape cartridge. You can begin using the programming power of the HP-85

by simply using any of the programs from the Standard Pac, or from one of the other Hewlett-Packard pacs in areas

like finance, statistics, mathematics, engineering, or linear programming. The growing list of application pacs is

continually being updated and expanded by Hewlett-Packard to provide you with a wide variety of software support.

For the advanced programmer, Hewlett-Packard will supply plug-in ROMs to give your system additional capabili­

ties and will provide peripheral devices with the necessary interfacing.

However, we at Hewlett-Packard cannot possibly anticipate every problem for which you may want to use your

HP-85. In order to get the most from your personal computer, you'll want to learn how to program the HP-85 with

BASIC programming language to solve your every problem. This part of the HP-85 Owner's Malll/al alld

ProRramminR Guide introduces the BASIC language, the editing features of the HP-85, and gives you a glimpse of

just how sophisticated your programming can become with the HP-85 Personal Computer.

After most of the explanations and examples in this part, you will find problems to work using your HP-85. These

problems are not essential to your basic understanding of the computer, and they can be skipped if you like. But we

urge you to work them. They are rarely difficult, and they have been designed to increase your proficiency, both in

the actual use of the features of your HP-85 and in creating BASIC programs to solve your own problems. If you

have trouble with one of the problems, go back and review the explanations in the text, then tackle it again.

In programming, there is no uniquely correct program to solve a particular problem. Any solution that yields the

correct output is the right one, but we have included sample solutions to the problems in appendix F. Thus, you'll

have programs to use, modify, and enhance-even if you're a beginning programmer. In fact, when you have

finished working through this part and learned all the capabilities of the HP-85, you may be able to create programs

that will solve many of the problems faster, or in fewer steps, than we have shown in our illustrations.

One more thing: this handbook has been written under the assumption that most of you have had some pro­

gramming experience. If you have never written a program before, you may wish to become more familiar with

BASIC programming through the optional HP-85 BASIC Training Pac. On the other hand, many of you may be

quite experienced BASIC programmers, in which case the HP-85 Pocket Guide and appendix D, BASIC Sum­

mary and Syntax, will serve you best.

Now let's start programming!

79

80 Section 5: Simple Programming

Loading and Running a Prerecorded Program

If you worked through Getting Started (pages 21 through 36), you learned how to create, enter, and record a

BASIC program to compute the average of a set of numbers. Now look at a more complex program.

Insert the Standard Pac tape cartridge into the tape drive as we did earlier (page 22), printed side up, open edge

toward the computer.

Next, load the Ski Game program from the Standard Pac:

I. Press the Q key, which displays f'i i:::: Ci on the CRT, or type 1.., C' :::: Ci.

2. Type the program name, enclosed within quotation marks; in this case type " .. ,

3. Press (Jff!D to exec ute the ;''', i:::: !'i " ':::; i< '" " command.

Now the system will search for the Ski Game program and load it from the tape into computer memory. The amber

tape drive light will glow while the tape drive is in operation and the display will be turned off. You can easily see

when a program has been loaded completely because the cursor will return to the display and the amber tape drive

light will stop glowing. Once the Ski Game program has been loaded into computer memory, you can test your

"skiing" skills by trying to descend a slalom ski course without missing any of the' 'gates."

The Game. The Ski Game simulates a skier descending a slalom

course, with you in control of the skis. Before you begin your descent,

the program asks you whether you wish to ski on a white or a black

background, asks you to enter a course code (any number) so that you

can ski the same course again or try a different one by specifying a diffe­

rent code, and then asks for your skiing ability. As the game begins, a

"skier" comes shooting down the course determined by the flags. You

control the direction of the skier by tapping the special function keys

GJ and g, labelled 1.., i:: iT and i;' T f:; i'iT.

The object of the game, of course, is to have a perfect slalom run in

record time, without missing any of the gates determined by the flags.

(Record time on the most difficult course is about 9 seconds.)

After you have loaded the program, press 8 and then press Q (':::; E:: '1' 'i :") to set up the ski course.

As soon as you press GJ (::::; , ,:: i:;:'T), the game begins. You're on the slope, racing against the clock-you're in

control. After each ski run, the HP-85 will display your time and missed gates. Then you can either try the same

course again (by pressing the special function key corresponding to i":' ,,,' ,::' C: ::::: 'T, c:J) or specify a new course (by

pressing the key corresponding to ':::; 'T ::::: i::- '1', C~).

Section 5: Simple Programming 81

\ t

\ t

Stopping a Running Program

Remember, you are in control of the HP-85. Although the Ski Game program gives you the option of stopping the

game, most of the Standard Pac programs will continue to run unless you halt the program.

Stop a running program by pressing the Q key or almost any other key. The program can be continued after it has

been halted by the Q key, by pressing 8 (continue). Pressing almost any other key will halt the program and

perform the indicated function of the key.

Listing a Program

The HP-85 will give you a listing of any program contained in computer memory at any time, on the display or on

printer paper. To see a listing of the Ski Game program that is now loaded in the computer memory, press the

Q key. The Q key will stop the running program and list the first full screen of the program on the display.

Each successive time that Q is pressed, another full screen of program lines is displayed until the end of the

program is reached. Following the last line of the program, the system displays the remaining number of memory

locations.

You can obtain a printed listing of the program by pressing (SH I FT) (P LST) (printer list). The program will be

listed in its entirety, unless you press any key to halt the listing. Printed output is directed to the internal

thermal printer unless you have declared an external printer to be the current F' I:::: I !···I 'r [r? I ::::; device (page

183).

82 Section 5: Simple Programming

Now list 20 lines or so of the Ski Game program with B; your printout should look like the one shown here.

:: ':::·F····

: :,::",
: :i. ... : :

" i:::"·:·:: ! ... i'···; :'

····,.··,'::··1 ,"" .; !:'.
:. ':: .. :;:

1":" ,i',';l::" i:
. ...:: :! : .. -

..... , C':::::Cj

",'.: ;;:::
i i : i. ... 1";

'j i :!? :' ';:::ii F' ... : :::',' i? : ..

...]

. .. l . ..\ L.1\:::. ;;

t::.i

h:'! ! ..' :'
,,::: .; :.; T L.1 j::::; : ;.!

:.: <: :l. 'T:···:E. ;-..j

The built-in printer lists the program exactly as it appeared on the display except that the second and third

lines of longer statements (like 10, 20, 80, 140, 200, etc.) appear indented under the first line of the statement,

for greater readability. Also, blank lines are inserted every 60 lines (to the nearest complete line) for cutting to

place lists in ll-inch notebooks.

What Is a BASIC Program?

A program is an organized set of instructions that tells the computer to accomplish certain tasks. Once a program has

been written and loaded into computer memory, it can be executed as many times as you wish-usually at just the

touch of the 8 key.

Statements

The instructions in a BASIC program are called statements. If you look at the Ski Game listing, you'll see that each

statement (except assignments statements like F:::::: i::) or ') ') ::::: ::.) contains one or more keywords which have a

special meaning in BASIC. They identify operations to be performed (executable statements) or give the computer

information it will need to execute other statements (declaratory statements).

Section 5: Simple Programming 83

Here are some examples of BASIC keywords:

Executable Declaratory

A major distinction is that executable statements may appear as part of statements;

declaratory statements may not. Regardless, most BASIC statements may be executed directly from the key­

board (without a statement number); exceptions are noted.

Statement Numbers

Every statement in a program must be preceded by a unique statement number. These statement numbers can be

seen on the left side of the Ski Game program listing, beginning with 10 and in increments of 10. However, state­

ments may be numbered by any integer from I through 9999.

Statements are stored, by number, in ascending order. But you can type them in any order because statements are

automatically sorted as they are entered.

Normal program execution proceeds from the lowest numbered statement to the highest numbered statement. The

order of execution can be altered, however, as we'll see in sections 7 and 9.

The statement should be the highest numbered statement in a program. It not only tells the computer

where a program ends, but also terminates program execution. (You may also use the .:::,.... statement; on the

HP-85 both and .:::; T (J F' perform exactly the same function.)

Commands

A command is an instruction to the computer that is executed from the keyboard. Commands are used to manipulate

programs and for utility purposes, such as listing programs and rewinding the tape. Most often, commands are not

used in programs. But the HP-85 will allow you to program certain commands. (Refer to table below.)

Probably the two most important commands are ::::: C: j? i:::!'r C: jj and j:::- i.! j·1. The ::::: i"': :::. i:::; ; ; i···j command erases

program memory and the j? i .. i i···i command starts executing the current program in memory. Both of these commands

may be executed by pressing the key with the respective label or by typing the command name and pressing (ffffJ.
When you press the 8 key, that command is executed immediately. But when you type the command name, or

press 8 (which is a typing aid to display::::: i:: i? ':::iT C i'~, it won't be executed until you press (ffffJ.

84 Section 5: Simple Programming

Here is a listing of the system commands. They are discussed in appropriate places throughout this manual.

Non-Programmable

AUTO
C Ot·~T*
DELETE
GET
It·~IT*

LOAD
PEt~

PUt·~*

~:;CPATCH

~:;TOPE

TPfH~~:;LATE

Ut·~~:;ECUPE

Clearing Computer Memory

Programmable

CLEAP*

COF'\'*
CI:;::'r .L :::;

C"T'!:::iF'E::
[)r:F0jtJi....'r nFWF'

F'L.. I F
t .• :;L..!...lI·::iD

t •• :; :::; r C) F;:~ E:
T r"! I 'r T f! I 2: i:::'

L..I~:;T*

L.(JHL![: I i··;

j"'! 0 F~ !",! f! L..
1:;:. [! .. ~ Fi r'! t:
PE~,j I r·W*
'::; A i,iE:

When you loaded the Ski Game program, the program was copied from the tape into computer memory. Before you

key in a new program, you will first want to clear, or erase, the Ski Game program from the computer memory.

To clear a program from computer memory, you can either:

I. Press 8 @D or type ::::; C i? i:::iT C i···i @D. The ':::; c: i? ::::i·r C i···i command deletes the current program and all

variables from computer memory.

2. Load another program from a magnetic tape cartridge. When you load a program into computer memory with

the 1.... Ci r:1 L) command, the system automatically clears computer memory before the new program is loaded.

Of course, whenever the system is turned off, it loses all contents of computer memory.

Now you are going to write your own program into the computer from the keyboard, so press 8 @D to clear the

HP-85 of the previous program.

Writing a Program

In Getting Started you created, entered, and ran two BASIC programs: a Pythagorean Theorem program, and

an averaging program. In this section, we'll create, load, and run another program to show you how to use some

of the features of the HP-85.

Before we do this, we'll define the conventions we use to describe program statements and system commands.

* The keys corresponding to these commands are immediate execute keys; i.e .• when you press the key, that command is executed immediately.

Section 5: Simple Programming 85

Conventions

All items in ' .. :''

lowercase letters.

must be typed as shown, in either uppercase or

italics Items in italics are the parameters that supply information to the statement or

command.

[1 Items within square brackets are optional unless the brackets themselves are in dot

matrix.

Three dots indicate that the optional items within the brackets may be repeated.

For example: I i···iF·' . ..!""!" variable name) [. variable name2 ... J

The statement above tells us that ::: i··i F::·!. iT must be spelled as shown (but you can use either capital letters or small

letters) and at least one variable name must be specified with the ::: i··j F> ! .. .!·r statement. The information within the

brackets tells us that more variable names can be specified and, if they are, they must be separated by commas since

the comma is in dot matrix.

Now let's write a program to keep track of a checkbook balance. Re­

member that in order to write a program, you must first define the

problem thoroughly. It may help to ask yourself the following questions:

1. What answer(s) or output do I want?

2. What information or inputs do I know already?

3. What method or algorithm will I use to find the solution from

what I know?

4. How can BASIC and the HP-85 help me solve the problem?

Let's answer these questions for a simple checkbook balancing program.

1. You want to find the balance of the checking account after each check or deposit.

2. You already know the initial balance and the amount of each check or deposit.

3. You must subtract the amounts of the checks and add the amounts of the deposits to the balance.

4. Here's a sample BASIC program, as it would appear listed on printer paper.

10 REM **CHECKBOOK BALANCE**
20 REM B IS the balance.
30 REM A IS the rheck or ~PPO~l

i: .:::i!'fi()i ... !i'·'j'l:

:::j. !;::I C I:::; FI !i I j"'j :J. 'I: :1 .. :::11 E:: .:::1:1. -:::1 n C: i::' ii

~:; 0 I!',,! F' i .. J ''I'' E:;

;:::; i~~ L. E 'r E: ::::: E:; +. I:::!

~:::! ~::! F> f;:: J [.. j T E:
:i. Cj (I C; c! or c; (; i;::J

Print new balance

86 Section 5: Simple Programming

This is only one way to solve the problem. Can you think of other programs that would accomplish the same tasks?

Again, you can see that each statement is preceded by a number and each statement begins with a keyword which

identifies the type of statement. For example, this program contains II statements: three F: E: i"i(remark) statements,

two L) I ::::: i:::' (display) statements, two I i'·! F' i iT statements, one 1.... E: "T (assignment) statement, one !:::,!? I i.i

statement, one C; eTC: statement, and one E. i·.! :::i statement.

These keywords will be discussed individually after we execute the program.

Entering a Program

Before you enter the program, let's examine three facets of entering program statements into computer memory:

automatic numbering, the spacing in program statements, and the use of the (Ji!!fJ key.

Automatic Numbering

The :::::!! T C command enables statements to be numbered automatically, as they are entered and stored, saving you

the time of typing the numbers yourself.

.--i
[beginning statement number L increment value]]

To cut your typing time further, the !:::: liT C command is provided as a typing aid with the l:) key; when you press

l:), the word :::< . .!T C appears in the display. Then you can specify the beginning statement number and the

increment value. If neither parameter is specified, executing i:::: t . .!"T C; causes statement numbering to begin with 10

and be incremented by 10 as statements are stored. If only the beginning statement number is specified, numbering

begins at that number and is incremented by 10 as program statements are stored. Press (Ji!!fJ to execute the i" i , ' .

command. For example, executing:

Causes numbering to begin with 100 and
increment by 5.

To stop the auto numbering, backspace over the unwanted numbers and type i···i c:; i? (! i:::i i (Ji!!fJ. Auto numbering

will also be halted by any executable statement or command without a number. For instance, if, after you enter the

program, you wish to run it immediately, simply press the 8 key.

Spacing

In general, spacing between characters is unimportant; the HP-85 automatically sets proper spacing into each

statement of a program whenever the program is listed.

Blanks are ignored in BASIC statements except when enclosed in quotes or when contained in remarks. When the

HP-85 formats a statement, blanks are inserted or deleted so that all keywords are surrounded by a blank on either

side.

For example:

L i::!ij! .ETI~ :::E:lC
100 LET A E: l r

Section 5: Simple Programming 87

All of the above statements are equivalent and would appear in a listing as:

The only place that a blank space should not be typed is immediately after the first letter of a keyword. If you

attempt to enter the statement, the system will interpret the first letter as a variable name and will give you an error

message. For example:

L.. .mn

Statement Length

As we mentioned earlier (page 43), program statements can be up to 95 characters long including the line

number-that's three full lines on the video display minus one space to press (CI~~)'

But if you "pack" your statements by deleting all spaces between characters, be sure to take into account that the

system will automatically insert spaces around keywords when the statement is listed or edited-the statement may

be too long to be edited and reentered.

(The system will give you an error message if it does not understand.)

Entering Program Statements into Main Memory

Program statements are entered into main memory in the same way that any executable keyboard operation is

entered, by pressing (CI~~). You must press (CI~~) after each program statement has been typed in. Pressing (CI~~)

also causes the statement to be checked for syntax errors before it is stored. Should an error occur on entering a

statement, simply correct or retype the statement, then reenter it. Refer to section 6, Program Editing.

In a long statement that requires more than one line, do not press ~ until the statement is completely typed in; the

system display will automatically wrap around onto the next line. Press ~ only to enter a complete program

statement into computer memory.

For example:

:···:r: : ;, .. ,,.

.... ... ::::i":':

:

(END\
~

;." ',:::. :
.:. ·····1:::·····

.:::i =, =:::- rn ::::': : .
: :.",::::- ; r,····

Entering the Program

(END\
~

Do not press ~ here

... or here ...

.,. but here.

And here.

You can enter a program into computer memory in either of two ways:

1. By retrieving a copy of a previously stored program from a mass storage device, such as a flexible disc

drive or the built-in tape drive.

2. By typing the program statements, including statement numbers, one at a time from the keyboard, press­

ing (CI%~) after each statement. (Remember, you don't need to type the statement numbers if you use

,:::,: ;T" C; line numbering.)

88 Section 5: Simple Programming

Since we do not have a program on tape that keeps track of a running checkbook balance, we will use the second

method to enter our program.

If you have not already done so:

I. Press 8 ~ to erase previous programs from computer memory.

2. Press B to clear the display. This is not a necessary step to writing a program, but it will increase the

legibility of the display.

3. Now, press E:) ~ since we want to take advantage of the automatic numbering system.

Finally, enter the checkbook balancing program by typing each statement shown in the sample program, pressing

~ after each statement. When you have finished entering the program, the display will look like this:

10 REM ttCHECKBOCK ~HLANCEtt
?0 REM B IS the balance.
30 REM A IS the check or deposit

.?!j T i···ii:::'!...!·r I:::!

::::: 0 L.. E T' E: ::::: E: .+ I:::!

90 PRINT B ~~lnt n~w balance
:I 0 (::1 C; Ci T' C, I:::, !:::J

11 Ci FI···IL!
:1. :?C!

The program for keeping track of a checkbook balance is now loaded into computer memory. Notice that i:::i i .. .!·-r- c
statement numbering caused the number :1. ::::: Ci to appear below the E i···i L) statement of the program. Simply back­

space over 1:? I:::! to erase the number, and type i···i C' i? \"\ F! L.. ~ to stop F! i ... i·-r- C: statement numbering.

Running a Program

To run a program, you have only to press the 8 key.

For example, use the program now in computer memory to balance a checkbook with an initial balance of

$1,004.25; checks written for the amounts of $14.53, $25.00, and $18.90; and deposits in the amounts of $52.50

and $120.00

8 Press 8 to start program execution.

': :.11,1,', ·• .. ;i::·
.I. i::,il::,i'·'j'. :::::

Check(-) or Deposit(+) Amount
=-::z

..... :!. :::1- . ~:; :::~:

Check(-) or Deposit(+) Amount

•.... ;;::~ ~:::;

Check(-) or Deposil~~) Amount

·····1;::;.9i;::1
Check(-) or Deposit(+J Amount

~:::; ;~::~. ~::;

Check f - 1 or Deposit(+

Section 5: Simple Programming 89

When a question mark appears, key in the
balance and press @.
Then enter the checks as negative numbers
and the deposits as positive numbers.
Press ~ after the amount to enter the
data to~ program.

Press Q to halt program execution.

Where is the record of the checkbook balance? You'll find that the printer has recorded the following on paper.

(Press the @ key to advance the paper if necessary.)

~::~: ;:::; ~::;:. '? ;;:~

~:::; 6 :::j .. '? ;;::~

~) :::,. ~:::: . ::::; ;;:~

~) ~) ::::; . ..:~: ::: ..

~1. :i. :t ;;;;i. :::~: ;;:::

Now let's see how the HP-85 executed this program.

Order of Program Execution
Statements are executed in order of ascending statement numbers.

1

1.1:::1

1::::i:::1

:!. l~J i;:J ~J

Initial balance - 14.53.
New balance - 25.00.
New balance - \8.90.
New balance + 52.50.
New balance + 120.00.

When you pressed 8, the HP-85 began executing instructions sequentially by statement number starting with

statement :i. !? When it reached statement :1. C! 1::'1 C: C' T· C, I;::; U, the system returned to statement I:::; C! and executed

successively higher-numbered statements from there. The program continued to run until you pressed Q to halt

the program.

90 Section 5: Simple Programming

Fundamental BASIC Statements

Now let's examine the statements that composed our checkbook balancing program.

Many times you may want to insert comments in order to make your program logic easier to follow. This can be

done by using the i::' ;:::: i'l (remark) statement or ;, the comment delimiter.

[any combination of characters]

In our sample program, remarks are used to remind us that the variables A and B stand for amount of a check or a

deposit and the checkbook balance, respectively:

10 REM **CHECKBOCK bHL.ANCE***
20 REM B 1_ the ba12~ ~

.... :::' k

The comment delimiter, i, can be anywhere in a program statement after the statement number. All characters

following a are considered part of a comment unless the comment delimiter, i, is within quotes.

In this way, program statements can contain comments. For instance, statement ') Ci in our sample program:

;:::: :, .. :

Comments, as you have seen, are useful only in a program listing. They do not affect program execution.

The r'; T " .. ,"', (display) statement allows text and variables to be output on the display, or the current f .. ··

device.

[display list]

T ('"

The display list can contain variable names, numeric expressions, quoted text or messages, and the 'r ;:::; ;:::, func­

tion (covered later). These items must be separated by commas or semicolons.

In the checkbook balancing program, the following C!::: ':::; 1:::' statements appear:

i::: U [) I ::::; 1:::' ;, C !''', ,:::, , !.: (.:> ,"', i'" [) ,:,:' i:'" e, :,:,: :i. .!: .:: + . ..'
!:::lr(!c,I ... ii""'! 'I: II

As you have seen, when these statements are executed in a running program, they display, respectively:

Section fJ. Simple Programming 91

C.; ... t·',' or DeFosl~(+ I Amount

You can combine quoted messages with variable names, but they must be separated from each other with commas or

semicolons. For example:

i''';::::: ::::;

::::;::::: :~. '? :~::. i:::: C!
L) I:;;;; F' i i 'f l,··j E: l:::i i) E: 1? 1:::\ C; E. , F' 'r i : :: : !' .. !; ~ ... j Li !"j When these statements are executed ...

THE AJE~A~~ OF THE ~ NJM8~p~ l~ ... this message is displayed.

What is the difference between using commas or using semicolons to separate items in a display list? Look at the

following examples:

:1.

... .t ... :.

i:::',:" i:::'

,.' ",.: .. ':;: .: .: . : :: ... :: ..

:1. :i.

,,:::.
: : :

i:::=i::::' ... :

. ::::: (',

Commas cause wide spacing between
display list items.

Semicolons space items close together.

Notice the difference in spacing between the items. When an item is followed by a comma, the next item will be

left-justified at either column 1 or column 22 on the display. Remember, every number has a leading blank or a

minus sign and a trailing blank for spacing. If a number contains over nine digits and would start in column 22, it

will be displayed in the first column of the next line.

When an item is followed by a semicolon, no additional blanks are inserted. For example:

..... : ... '! ... ! ;
..
i =-

.. '::"::: .':;' , All numbers are displayed with a leading
blank or minus sign and a trailing blank
for spacing.

Two or more commas after an item cause one or more character fields to be skipped.

For example:

:!. i?!j

;~::~ Ci !~::!

92 Section 5: Simple Programming

When a [I I ~:::; F' statement appears without a display list, a blank line is displayed. For example:

10 [lI~::;F'
;~~ U [I I ~::; F'
:::;: (j [I I ~::; F' "lllllllllllllll::j:: II l:t:l "
4 0 [I I ~::; F' " l ~::; C 1...1 fi I;:: I r'~ i...l T ~=; c:: 1...1 E:: I ~:::; E ::1::"
50 [I I ~:::;F' "lll::j::::!::llll::I::lllllllllll Ii
I:; 0 [) I ~::; F'
? (:j [I I ~::; F'
::::: 0 [I I ~::; F' II F' I::' I:~ I ·;:1 rl (:1 !"(: i. n 0:::: ~::' :3 I ·:l r' ':,~ I;:'

e n :i. () n :::: ·::1 n d :,:,: E,·t t i"'1 ,"?, 1":"1 ·:::1 :::: :i. d t". "
:::; 0 [I I ~::: F' "~::; l. c I ..) I::·,' ·::1 d d ,::j. 'r b :::: F' . ·f:l. ()

ur te 1/4 cup scuarinut cil.
"

When this program is executed, the following would be displayed.

lllllllllllllllllllll
l SCUARINUT SCUBISE l
lllllllllllllllllllll

F'eel and mince :3 lar~e eniens an
d set them aside.
Slcwly add 4 Tbsp. fleur te 1/4
cup seuarinut eil.

When the display list ends with a comma or semicolon, any future L) I ::::; F' statement output is appended to the

current display line. For example:

1. 0 [II ~::;F' "[r··i""l"·I:::I:;: DA'fE I!
;:::0 I i··jF'!...IT [I:I.:l
:3 0 [I I ~::; F' "T C [1I=fl I ~:::; ".;
4 f:j [I I ~:::; F' [I 1 :1;

::;(1 EH[i

.. ..iUr··iF i.
T C [I A 'r' I ~::; ... J !...! r··j E: :I.

When these statements are executed in
succession in a program ...

... and you enter JUNE I for the date ...

... this message is displayed.

The semicolon at the end of the statement 30 causes the message "TODAY IS" to be held in a special disp/print

buffer. The buffer does not display (or with F:O I:::: I 1··fT" , print) its contents unless:

• Another [I I ':::; F' statement without a semicolon at the end of the message causes it to be output.

• An I r·jF'1...1 T statement causes the buffer contents to be displayed or printed (as we'll see later).

• The buffer is filled with 32 characters, in which case it is automatically output.

For instance, if statement 40 also ends with a semicolon (in the example above), an extra [I I ~::;F' statement is

required to output the message:

1. (:1 [I I :::; F' II E: [.j T E: F: [I H T E "
IHF'i...IT D1.:f.:
[I I ::::F' "TC)Df:I\'
[lI::::P [Ill)
E: [.j [I

. _)UI··~F 1.
[I I ::: F'
TCCiH'-:"' I:::: ...)i...it·j[:I.

T I···· II
.I. .::1

Section 5: Simple Programming 93

If you run this program, the input prompt
will be displayed and nothing else appears
to happen.

Enter the date .
If you now execute
will be displayed.

L! I '::,! , the message

The extra U I ::::: F' statement could also have been part of the program between statements 40 and 50.

The i:::O I:;:: I i··rr statement allows text and variables to be printed by the HP-85's internal printer, or by the cur­

rent F'i? I i···i"T· i:::: i? I ::; device.

F' F' I ti T [print list]

Like the display list, the print list can contain variable names, numerIc expressions, string expressions and

quoted text, and the THE: function. All items must be separated by commas or semicolons.

Here are some examples:

PPII·n ~::O.:::::l, 1569.:::;;:2,9
PP I tn II H'y'POTE:I"··IU:::;E= II .: 5
F'P I t·1T IIllll 1 1 II .: "./././ " .: "I:!JI:!JI:!Jll"

PFltn
F'F: I [-iT
F'Flf·~T "llli i I", "./ / .. · · · .. 11., "I:!JI:!JI:!J#~t"

F'F: I in
I , , . ..1 .' i<, 1 .. _ , 1'1 o.:~;
F'Flr·iT I, ,J, f:::., L., 1·'1

20 81,1569 32,9
H\'F'CiTEt·iU:=':;EO" ,:::;
:*::t-:l I 1 1./././···············I:!JI:!JI:!Jll

tll iii
C~i!:!J i:!J # #

... ",

94 Section 5: Simple ProfJrammlng

Notice that commas and semicolons perfonn in the i:::' i? I i···i·r statement just like in the 1:::1 I':::; i:::' statement. A comma

after an item causes the next item to be left-justified in either column I or column 22. A semicolon after an item

suppresses additional blanks. Also note that when nothing follows the word F::O!? I !"(T" in a statement, the paper

advances one line. For more information about displaying and printed output, refer to section 10, Printer and

Display Formatting.

The Plotter/Printer ROM and a Series 80 interface enable you to direct printed output to an external printer.

I!',,! F' ! . ..! "T': Assigning Values From the Keyboard

The statement allows values in the form of expressions to be assigned to variables from the keyboard

at the request of a program.

variable name1 [, variable name2 ... J

The statement is programmable only; it can't be executed from the keyboard.

As we have seen, when the statement is executed, a question mark (:-) appears on the display. A value

can then be input for each variable designated in the statement.

Remember our first example in section 1 (page 32).

The program called for the lengths of the
sides of a right triangle.

When the program was executed, and the question mark appeared on the display, we input both values, separated by

a comma, in one line like this:

I;;::
Separate I i···i F' . .i·T" values with
commas.

If we had tried to enter the values for the variables Land W one at a time, we would have received an error message,

followed by another question mark and we'd have another chance to enter both values. An I i···i F::O ! .. .iT" statement

requests all values for the variables specified to be entered at the same time.

Values for string variables can be quoted or unquoted, but an un quoted string cannot contain a comma (since

commas separate input items).

Let's look at some examples of entering strings:

t: (:1 [I 1 ::::; F' II 'y' C, 1...1 F: I··j H i"j E. I';
.? C1 1 t·j F' I...IT 1"·1 :l
:::: ~-::1 [I I ::; F' ",'1 'y' 1"·1 ,:::, ,'1 E I ':::; " i···j J

When these lines are executed, the display shows:

Section 5: Simple Programming 95

Now you can input up to 18 characters of your name in either of two ways;

Without quotation marks:

'I' C: ! . ..i!? '···i I:::' f'l E '::'
i···iF'·····;::::,,::;
fe! 'y' i···j H f'! F I ::::; i···i F' ::::: ':::;

With quotation marks:

MY NHME IS HP-85!

Since you did not leave any trailing blanks
in [) I '::; F' statement 60, then [I I ,; F'
statement 80 packs the characters
together.

Use quotation marks if you wish to
preserve leading or trailing blanks or usc
commas in your expression.

Whenever you assign character string expressions to string variables from the keyboard, you can use quotation

marks at your option. Just remember that strings do not contain leading or trailing blanks unless you specify them

explicitly with quotation marks.

Also notice where the question mark appeared in the examples above. If you place a semicolon after a message in a

LI I ::::; I:::' or I:::' i:;:o I i··iT statement before an I i···! I:::' i .. '!T statement, the semicolon suppresses the carriage return so that the

question mark appears on the same line as the message.

Thus, we could have written our checkbook balancing program like this:

~5 !~::! I r'" F' L! "T' E:
6 !~::! D I:;;;; F' !! C: !"'i !:::' c: k i.": j'" [) !:::' F (': ::::: :L"!: j:::j i"i"! C! !) i"'j "!: i i

If this section of the program were executed, it would display:

Check or Deposit Hmount 0

Before an I i·i F' i i"T· statement, a semi­
colon at the end of a L: T .:::; ::::' statement (or
I:::' i:::o I i·iT statement) suppresses the
carriage return.

Question marks are on the same line
instead of beneath the displayed line.

Pressing (E,~~) without entering values when numeric input is requested causes an error. If the last

variable is a string variable, then pressing (E,~~) without entering a value for that variable will input the null

string (" ").

96 Section 5: Simple Programming

The E:; E: [F' statement is used to produce an audible tone of variable frequency and duration that can be used in

a number of ways.

E: [[F [tone .. duration]

13 F E. F' can signal that a particular computation or program segment is

complete. It can be used to indicate audibly that the computer is ready for

input, so that the operator does not have to remain at the keyboard. And,

of course, it can be used for the sound itself; load the COMPZR program

from the Standard Pac-you can actually compose "music" with the

E: F E F:' statement.

If no parameters are specified, the frequency is approximately 2000

hertz, and duration is 100 milliseconds. By specifying parameters, you

can change the tone and the duration.

For example, we used E: E E F' in the hypotenuse program as an audible input prompt:

10 [I I :::::P "EI···ITE:F: ::::; I LiE LFI··jCTH:::;"
::~O DI::::;P "C:F H F:ICHT TI;::IHi···!CL .. E.,"
:3 (j [I I:::; F' ":::;E F' HI? HTE: C! E:\' H C C: !"1i'" H. "
4 (:! [I I ::::; F' lI'r : .. ·1 I::: j .. j F' F: E :::; ::::; E t··j IJ L .. I ,' .. , [. !I

.50 E:[[F'
6 0 I t··1 F' 1...1 ''1'' L... I ... :
70 [1= SQF:(LA2+~A2)

:::: ~::'1 F' f~: I 1"·1 'r II H \' F' C: T E , .. j i..,i :::; E: :::::"; 1"'1
:) (I E , .. j [I

E: F [F:' signals the operator for input.

The F: E E F' statement can be executed from the keyboard. For example, try several different values for tone and

duration by executing the following statements. You can stop the sound at any time by pressing Q.

The value for the tone and duration of E: E F F' can be a numeric expression. Both parameters are rounded to integer

values with the E: F. E:F:' statement. For example, run the following program to generate "random" music. (We

discuss the F' C: I? and 1"·1 [::< '"1" statements in section 7). You can stop the program at any time by pressing Q.

10 FCF: T::::: 1 TC 250
20 E:[[F' ItF:N[I+l, 50
:~: 0 r·j E: ::< T I
40 E:r··ID

This program generates a "random"
sequence of 250 audible tones.

Section 5: Simple Programming 97

Use the following formulas to E: E E F' parameters that produce a particular frequency and duration.

Tone (first parameter):

F' :i. I:::; :!. :::;: C! I:::; ;;::: "::; ;:: :1. :i ::1:: F· ., ::. :::;: .::; ... :i. where F· is desired frequency in hertz.

Duration (second parameter);

r::.;;::: ·r::!:: i:::;:i. ::::: I:::! (;;? ':::: .. ;:: :i. :i. ::!:: F' j ."' .. i. :·:;:'::1· > where T· IS desired duration In seconds. (Or, simply,

F' ;;::: T):: r::. when r::. is known.)

For example, to E:: FE: ::::' for approximately one-half second at a frequency of about 440 hertz, compute F' :!. and

1:::' ;;::: as follows:

F':I. ;:::: ,.. .j ·1
.... , ',.1 .. i.

r" .I.

So, the C: E:. E. r::' statement would be:

L.. E:: ·r: Assignments

Beeps at approximately 440 hertz for
approximately 0.5 second.

Beeps according to the values assigned to
PI and P2.

Any numeric variable can be assigned a value using an assignment statement as we have seen in section 3.

String variables can also be assigned string expressions using the assignment statement if the expression pro­

duces a string shorter than or equal in length to the size of the string variable. The keyword in an assignment

statement is L... t::: r, but its use is optional.

[L.. F ·r] numeric variable 1 L numeric variable2 ...] ::::: numeric expression

... E:::r] string variable1 L string variable2 ...] :::: string expression

The keyword L.. t:: T is a reminder that the variable name is always to the left of the equals sign and the expres­

sion assigned to that variable is always to the right of the equals sign; you are "letting" the variable be changed

to equal the value of the expression.

For example, the following statements are equivalent:

::<::::: :I.;;::
I....E T >::::::: :1. ;;::
>:: ::::: Jl,::I·

The following statements using string variables are equivalent:

H:l.. E: :1::::::: " t:: 1...I·r·r [F: 1:::·1.... \' "
I....E:T Ht: .. E::l::::: "E:I . .J·r·rE:F:" ::,.: "F·I....\'"

98 Section 5: Simple Programming

Remember that textual characters must be enclosed within quotes in a string variable assignment statement.

To check the current value of a variable, type in its name, then press @ID. For instance, using the above values for

the variables:

,',

:l. :::::
f:j:;!::

E: !...i T ·r E F: i:::· 1... \'
[:::1':
E: i .. '!T T E F: F' L.. \'

Pressing @ID after the variable name

yields its current value.

If a numeric variable is used in a computation and hasn't been assigned a value, a warning message is displayed

and 0 is used as its value. Likewise, if a string variable is used before being assigned a value, a warning message

is displayed and the null string is used as its value. In general, it is good programming practice to initialize

variables (by initialize, we mean assign them their initial values) at the beginning of the program, as we did in

the averaging program (page 34).

C:; Ci ·r C): Unconditional Branching

In our checkbook balancing program, you saw that the C Ci T U statement transferred program control back to

the specified statement. This is known as an unconditional branch. C Ci r Ci statements are programmable only;

they can't be executed from the keyboard.

,":: ,"'i "T i'i statement number

If the specified statement is not an executable statement (e.g., a LJ ! statement), control is transferred to the

first executable statement following that statement.

As you may remember from the checkbook balancing program, the use of the C; C:"T C, statement caused the program

to "loop" endlessly from statements 60 through 100:

I:::; 0 [) I ~:::; F' i! C: i"'j ;:::' c: k (") i.": !". [i !:::' F' C: ::::: :i. ": < +. ::=

I:::! 1'(1 C: i".j !"', t II

?U I i'·,iF::'! . .!·r 1:::1

::::: ~::! 1.... E 'r E: ::::: i3 +. 1:::1

::::, U F' F: I i···1 'r E:
• :I. Ij!j C; C) T C (:: i:::! Branches to statement 60.

But we also saw that it is easy to stop the program-by pressing Q.
c; C: 'r C' statements may branch to both higher numbered and lower numbered statements; for example:

1. ~j 1.,,1.,::: r.:::

• ;:::C1
:::;:(.1
40

C; C,T C: ~:::: (::1
D I ::::; F' "I"~ E 1.<
I I"~ F' i..J T' >::

",,: (:) F' F: I 1·'·1 T ">:: E I) !...! !:::, L. ::::; ": ;:.::
• t:: ~::i c; ur C :3 !j

The c: Ci T Ci statement is the simplest form of branching.

Branches to statement 50.

Branches back to statement 30.

Section 5: Simple Programming 99

Multistatement Lines

A symbol that you may have seen in the Ski Game program listing is the "at" symbol (n. The iii symbol enables

you to type more than one statement on the same program line, thus shortening program listings and conserving

memory. Remember that you still cannot enter more than 95 characters (including the statement number) at a

time.

Examine line 70 in the Ski Game program listing:

'~LDIR 0 @ CLEAR @ KEY LABEL @
U I::;? n ::::;f::: I CAI"'lE:"

In the program line above, four statements have been joined together on the same program line, using the same

statement number. The program could have been written like this:

Sets label direction.
Clears display.
Recalls key labels.
Displays message.

But, by using the (,:i symbol, the program was shortened by three program lines (nine bytes). Note that most

statements and commands can be concatenated and executed directly from the keyboard. For example, typing

i.~' (,:, [·i ::i iii:: i"' i:::i L .. CE!JD causes the computer to perform the three instructions, one after

another.

There are several things you must be careful about when you type multiple statements using the same statement

number.

• If there is a' .. :; U ' " statement in a multi statement line, it should be the last statement. For instance:

•

In order to reference the print statement in line 50, the statements need to be reversed; otherwise, the

message will not be printed.

If you join statements that involve relational tests or "decision-making" operations (like ..,.. 'i ,: ii), be

sure that you are aware of what happens when the test comes up "true" or "false." If the test is true, all

. , ,.. instructions will be executed. If the test is false, all i:::: i instructions (if any) will be executed .

• Declarations (such as Li I i'\ v.. " ": i"H ... , ':::;,,!:! i :T and I iiT E C F:>:-j can be made in multistatement lines

but they must be the last statement in the line.

• Anything that follows fi': F:: i"i or is a remark. The following multistatement line may look good, but ii will

never be computed!

;:::' , ":, F;~ I::~' [' ...
I , ...

! 'ij [) ;;::~ ::1:: F ... , , ~'-1 : , ..

• Care should be taken to preserve readability with multistatement lines. For instance,

i .. : L .. t:: H I:;:' ;~:' f:: E: \' 1.... ,:::, E: E: L is easily read and understood on one line. But it is possible to destroy

readability by packing too much into a line. Readability is important, particularly with debugging proce­

dures and documentation of your program.

100 Section 5: Simple Programming

Problems

5.la. Write a program to convert a temperature in Celsius degrees to Fahrenheit according to the formula

F= 1.8*C + 32. Use a !.. .. E.·T' assignment statement for the conversion calculation. The program should ask

for the original Celsius temperature and label the corresponding Fahrenheit temperature.

b. Write a second program to convert a temperature in Fahrenheit degrees to Celsius. The equation is

C= 5/9*(F-32). Do not use the optional keyword L .. C.r in this program. Be sure to include an input

prompt and an output label.

5.2 Janey Dair enjoys dropping her new Rebounder ball from the window of her room, delighting her friends

who watch it bounce on the pavement below. Each rebound reaches a height equal to 65% of its previous

height. Write a program that requests the height from which she drops her Rebounder, and displays the

cumulative distance it has traveled each time it touches the pavement. Use a E:: C. E. F' to represent each

bounce prior to displaying the distance. The program should continue calculating the distances until it is

manually interrupted with the Q key. Observe the output to be sure that the total distance traveled

approaches a limit, rather than increasing indefinitely.

5.3 In preparation for writing your first novel, you want to use the HP-85 to help you choose an interesting title.

You decide to write a program that takes a noun and a proper noun as input, and prints two titles using the

following forms:

T'1"'! E. (noun) C, F: (proper noun)

T' C (proper noun) I.·., I 'r 1 .. ·1 'T' i .. ·i C (noun)

You may not win any literary awards, but you'll get some interesting titles.

5.4 World-famous jazz artist Bertha Blues wants to program the HP-85 to playa particular bass rhythm as an

accompaniment for a work session. The rhythm consists of the repeated sequence of notes C 130.8 I,G I 96,

G98,G196 at 120 beats per minute (0.5 seconds per note). (The numbers following the notes specify the

frequency in hertz.) Write a program that computes and prints the tone and duration parameters for the three

appropriate En::: E: F' statements and then breaks into its rhythmical rendition.

5.5 The factorial function (x!) is defined for positive integer values of x as

x! = x(x-1)(x-2) ... 1.

An algebraic approximation is given by the equation

Write a program that, for any positive integer value of x, calculates and prints thex! approximation using this

method. (In section 7 you will see an easy method to compute the exact factorial function.)

5.6 During his spare time, Artemas Horologos repairs watches in his home workshop. He has decided that a

program that calculates his bill would be very helpful. Write a program that requests the customer's last

name, the number of hours Artemas has worked on a watch, and his cost for replacement parts. It should

then print an individualized repair bill itemizing the charges for parts, for labor, and the total amount due.

Artemas charges $8.50 per hour for his labor, and charges 10% more than his cost for parts.

101

Notes

Section 6

Program Editing

Often you may want to alter or add to a program that is already loaded into computer memory. The HP-85 has been

designed to make program editing as fast and easy as possible.

In this section, we will discuss program modification by adding, deleting, and editing program statements. And

we'll introduce specific program editing commands to delete blocks of program statements, list specific parts of a

program, and automatically renumber a complete program. Finally, we'll show how to interrupt the execution of a

running program and how to continue execution at a specified statement.

Editing Program Statements
Edit program statements in the same way that you edit anything that appears on the display-with the display editing

keys.

There are two ways to edit and change a statement that is already in computer memory.

I. Recall the program into the display by using the ffi key or by listing the program on the display. Then using

the display editing keys and cursor control keys, move the cursor to the desired statement, make the necessary

changes in the program statement, and press (fffffJ to enter the changed statement into memory.

2. Retype the statement, including statement number, incorporating all the changes you wish to make. Then
rEND! h . press ~ to enter t e statement mto memory.

Remember, you can enter program statements in any order-the computer automatically sorts them by statement

number as they are entered. The last statement entered with a given statement number is the one that is used in the

program. When you edit a line or statement on the display, always check to see that there are no unwanted characters

bcyond the last character in the statement. If there are, move the cursor to the end of the good line and press Q to

delete the unwanted characters before you press (fffffJ to enter the program statement.

Deleting Statements

You can deletc program statements in either of two ways:

I. To delete an individual statement of a program, type the statement number and then press (fffffJ.
2. To delete a section of a program, it is quicker to use the Ci i::: L .. i:::'r i:::: command .

The i;;:::" command is used to delete a statement or a block of statements from a program.

r: ;: E:r [first statement number [, last statement number]

The :..: iii:. :....;:: : r" command is provided on a key as a typing aid. When you press the (DEL) key,

displayed.

IS

If only one statement number is specified with the 1::1 E:: L E:'r i:::: command, then only that program statement will be

deleted from program memory. If you specify both statement numbers, then that section of a program will be

deleted.

103

104 Section 6 Program Editing

Examples:

.... : .": (E'NOl

. ,:~:!::.I~

LI E:: L.. E: T' i:::
[IF: F. iF

rEND\
~

(E'NOl
~

Adding Statements

Deletes statement 30 .

Deletes statement 40.

Deletes statements 60 through 90,

inclusive.

Add new statements to a program merely by typing and entering them into computer memory. Be sure that the

statement number of a new statement positions it correctly in the program.

Often, it saves a good deal of typing by merely editing a similar statement of your program, changing the

statement number, and then entering the new statement into program memory by pressing CBZJ[). Note that

changing the line number in this way will not delete the original line from memory.

Renumbering a Program

The j:;: E:!'-·: (renumber) command is used to renumber a program that has already been entered into computer

memory.

i< i:::. i"'! [beginning statement number [.' increment value]]

Just as with the ,:::! i.": T Ci command, you can optionally specify the new starting statement number and the incre­

ment between statement numbers. If no parameters are specified, the program is renumbered so that statement

numbering begins with 10 and is incremented by 10. If no increment value is given, the statement numbers will

be incremented by 10.

Examples:

Renumbers a program so that the first
statement is numbered 10, and the state­
ments that follow are numbered in
increments of 10.
Renumbers a program, beginning with
100 and incrementing by 10.
Renumbers a program, beginning with
200 and incrementing by 5.

The i? !:::: ,' .. j command automatically renumbers an entire program, including any branches within a program. But

the F:: E: ,'.j command will not change the parameters of the F:' L .. I':::;'r or t .. I':::;'r commands when they are included

as program statements.

If you have a very large program or you use FY:>·i in such a way that the computer reaches line 9999 before it

renumbers the whole program, then the computer will automatically start at the beginning of the program and

renumber by I, i.e., beginning with statement I and renumbering in increments of I.

Listing a Modified Program

Up to this point, we have discussed two ways to list a program: by using the Q key to list the program on the

display, or by using the B key to list the program on the printer.

Section 6: Program Editing 105

But you can also type these commands from the keyboard and then specify the section of a program you wish to

have listed.

[beginning statement number [, ending statement number]]

C:' L. ::: ':::: T [beginning statement number [, ending statement number]]

If you type !. ':::: 'T, and specify one statement number before pressing (E,~~), listing begins with that statement

and continues for one screen. If two statement numbers are specified, that section of statements between and

including the two numbers is listed.

If you type i:::, L. I :::>r and specify one statement number before pressing @' the program will be listed on the

printer from that statement number to the end of the program (or until you press a key). If two statement numbers are

specified, that section of the program is listed on the printer.

If you type either command and specify no statement numbers, and then press @' the command will be executed

as if you had pressed either the Q or the B key.

Examples:

Lists statements 40 through 90 on the
display.
Lists statements beginning with 90 and
continuing for one screen's worth of
statements.

If the system cannot find the statement number, it will list the next higher statement up to the last statement number

you specify. For instance, if your program is numbered from 10 to 150 in increments of 10:

F: ~ :;: ::::; .. ~.. ;:::;: I:::: Lists statements 10 through 40 on the
printer.

You can list one statement by specifying the same statement number for both parameters. For example:

Lists statement 90 on the printer.

Both the L .. I '::>T' and e'L .. I :::>r commands are programmable. However, :?C:: will not renumber programmed

L .. i . :; 'r or :::: T ::::; 'r parameters.

One more function is associated with the and :::' L .. T ':::;r commands: following the list ()(the last program

statement, the remaining number of memory locations (bytes) is output. We'll discuss the system memory in section

8. For now, simply note that the number of the end of an entire program listing gives the available memory.

Interrupting Program Execution

Pausing

We have already seen that pressing @Q§f) halts the execution of a running program. But actually it just

suspends the execution of a running program. When you press (PAUSE), the current line is completed and the

program is paused at the next line to be executed.

As we shall see, a pause can also be programmed using the ::' i:::i tJ ::::: E:: command.

106 Section 6: Program Editing

Although the specific function of Q is to suspend the execution of a

running program, pressing any key (except those noted below) will also

halt the execution of a running program and perform the indicated func­

tion of the key.

For instance, if you press a typewriter key, such as @J, the system

finishes executing the current statement, then halts and displays" C:."

But if you happen to press 8 during the execution of a running pro­

gram, the current statement is completed, the program is halted, and then

the system displays If you really want to rerun the pro-

gram, execute 1:' i: 1'1 by pressing !Jfjf). If you do not want to rerun the

program press 8 to continue (see below).

Note: Whenever a running program is interrupted from the keyboard, the system beeps.

The following keys will perform the indicated functions without halting the execution of a running program or

otherwise interrupting or disturbing the program:

Continuing

EJ
tPAPERI
~
rKEYI
~

E)
B
ffi

Copies the current display to the internal printer.

Advances the paper in the internal printer.

Recalls special function key labels (if any).

Sets display to graphics mode.

Clears alphanumeric display.

Rolls display contents up or down.

If a program has been halted with the (PAUSE) key or a Fe.! ; i...i .:::: i:::: command, it can be resumed from where it was

halted by pressing the (caNT) (continue) key or by executing the C (J i···i T command. You can press (caNT) or

execute the C: C:; i···j·r command after almost any other program halt-as long as you have not deallocated the

program. (A program would be deallocated if, for instance, you edited the program. You would then need to

initialize the program, as we will see on the next page, before continuing.)

C C; i·j T [statement number]

The (caNT) key is an immediate execute key. Thus execution of a halted program is immediately resumed when

you press the key.

You can continue program execution at a specific statement by typing ; .. C; i···i r followed by the statement number

and then pressing CBJ][). For example:

C CI!j T :3 ~~i Continues program execution at state­
ment 90.

Execution of a paused program can also be restarted at the beginning with (RUN) (or i?i..F·i), by executing

C C) tl T 1, or by 0illIl (caNT).

Section 6: Program Editing 107

Whenever program execution has been paused, you can perform any normal keyboard activities. For instance,

you can list the program in memory or perform some arithmetic calculations. And when you press (CaNT),

program execution resumes from where it paused (unless, of course, you have cleared the program from memory

by executing (SCRATCH) or (LaAD)).

Note that pressing (caNT) or executing f": ,."" ,., .. after an E::: i r", or ,::'r' ,r", statement will cause program execution

to begin from the beginning of the program.

Initializing a Program
The (RUN) key (or F: i.J :··.i command) automatically initializes a program before running it. By "initialize" we

mean that the system allocates memory to all program variables, sets (initializes) variables to undefined values,

and sets the program pointer to the first statement of the program.

[statement number]

As with the "': T' command, you can optionally specify the starting statement by typing ,:: , 'i': followed by the

statement number and pressing CElD. For example:

Initializes and then runs a program
beginning with statement 100.

If a program has been halted with a F:' H . ..! '::::::::: command, computer memory remains allocated and the program

pointer is set to the statement after the one it has just executed. Pressing (caNT) (or executing ;: c' i< T) does not

allocate or initialize program variables again. Execution merely resumes from where it left off.

If, for instance, you edit a program statement after you F i:::i i , ,::'. r'" the program, program variables are no longer

allocated and the program cannot be continued with (CaNT) or ";, L: ·T. You must initialize the program and

reallocate memory for variables by pressing the CIillD key (or by executing the command) before you

press (CaNT). Afterwards, execution resumes from the beginning of the program-not from where

halted it.

The command allocates memory to all program variables, initializes variables to undefined values, and

resets the program to begin executing from the lowest numbered statement. Using CIillD and (caNT) together

performs the same function as (RUN).

Program initialization requires that all line numbers in branching statements refer to actual program lines. If,

for example, your program has a G C:; ::::: i.J E: :::: ;i ':::, \::' statement but has no line 8000, then

I:',,:::::: will occur during program initialization. Similarly, the !",::! command requires that all

branching statements reference existing program lines before renumbering will occur.

Using ::::. in a Program

The F'i:::i .. J ':::: E statement can also be used in a program, as we mentioned earlier. Program execution is halted

whenever the F ;:::!!... ::::: E: statement is encountered in a program. The ,,";; .;:::::::: statement does not cause the sys­

tem to beep when it is halted.

Pausing is useful to control program execution. Continue a program halted by F ,:::, i i .;:::::::: with (CaNT) (or" C' iiT).

108 Section 6: Program Editing

For example, enter the following program:

10 REM tFUTURE VALUEt
• ;2U i"~=:l

3 () D I::='; F' "P ~" e 0':' e I'''" I,j .:; 1 I) e".:
40 I !···iF'UT P

• ~::;lj F'f;: I t·rr "PI'" ,:?::::en, I,}.::. 1 ue =".: F'
(:U [lI::;F' "I!''','I:,::'!'''>,:,::::, F:.::'1:'''''.:
?U I tlPUT

• :::U F'F:Ii···!T "Int,:?!,,-;?::;:, F:.::.'!:>':' =".:1
' .. ,! ,.j F F,: I H ''1'' "F u , u!"" '? I.}.::. 1. u e fj f 1: ':?!," ;;

• 1 !:::I!:) F=: I F' 0:: F':*: 0:: 1 +·r:;. ·····r·;* 1 00:;'."" 1. 0[1

• 10 FRIt··IT "\'>,:,.:,,~_II.: r·~.:" is".: F
i ;? ~~! "·1 =: !' .. ! +. 1.

.1. ":1: i:::, F' !::I i...i ::::; E:
• 1 ,':1 I::,! C:;()T() :I. 01:;'1

1'::lj E!j[l

}

}

Set N (number of years) to 1.

Ask for input.

Print value.

Ask for input.

Print value.

Calculate future value truncated to
hundredths.
Print year and amount.

Pause.
Go back to 100.

Now run the program with a present value of $1000 and interest of 6% (.06).

8

8
8
8

F:' i.A '1: i.A !,' ,:::, i"i .:::1], ;...! I:::' 1:::1 + '1: ':::' i'"

,:"":::'.:::I!'" :t ;, .:::' :!.lj(;lj

\":::'.:::1 !." ,:::' :L :!.:!. ;:::::::':. i::::

:' ':::':::1('.::' ::. ::::: :!. 1 ':::11. i:::i:!.
\' ':::':::1 (. < :L ::::: :!. ;:::: (; ;::::. "1.';:"

Here, F:' r::!! ::::; E:: and C CII···I·T enable you to print one line at a time.

Delaying Program Execution

Press 8 to continue after the

F' I:::! ! .. .! ::::; E: in statement 130.

The :"': ,:::, I 'T statement is used to program a delay between the execution of two program statements.

I,! ! I IT number of milliseconds

The !) HIT parameter can be any number within the range of the HP-85 but the minimum wait is 0 and the

maximum wait is about 27 minutes (1,666,650 milliseconds). A negative number specifies a zero wait. The

!.'.! !:::, I 'T statement can be interrupted by (PAUSE) or almost any other key.

For instance, if you changed statement 130 in the Future Value program to:

The program would wait 3 seconds (3000 milliseconds) before it printed each future amount.

Error Messages
There are three types of errors that can occur during the development and execution of your program: "syntax'

errors, "semantic" errors, and "run-time" errors.

Section 6: Program Editing 109

Syntax errors may include such errors as a missing operator, a misspelled keyword, or an illegal constant or variable

name. When you press (fff!fJ after typing in a statement, it is immediately checked for syntax errors. If the statement

contains no syntax errors, it is accepted and loaded into computer memory. If the statement contains a syntax error,

an error message is displayed and the cursor is positioned below the first character at which the system detected an

error.

You can correct the statement by inserting, deleting, or replacing characters as shown in section 2. If the error is not

corrected, the statement will not be stored as part of the program, but no other harm is done. Move the cursor down

the display to enter another statement or clear the line in which the error occurred.

The second type of error, a "semantic" error, occurs when you have finished loading the program into computer

memory and you try to run it. Before the HP-85 attempts to run your program, it checks to verify that your program

"makes sense." Semantic errors include errors such as a missing statement, duplicate user-defined functions,

illegal array dimensions, etc. You are informed of all such errors before the program can be run. These errors can

usually be corrected by adding, deleting, or correcting statements; they are not difficult to find because the system

alerts you to them as soon as you try to run the program.

The third type of error occurs when the program is running. All "run-time" errors interrupt a running program and

cause it to halt unless [I E: F' I:::! i ... i 1.... 'r C) ! ... j is in effect or you override the errors with an C) i·j C: i? I:;:: CI I:;:: statement.

With [I E: I::: i:::li .. .l 1.... T' C) 1"·1, the first eight errors listed in appendix E cause a warning message to be output, but prog­

ram execution will not be halted; all other run-time errors cause the program to halt and an error message to be

displayed. With [I E: F' H l..i L..r CI F F', all run-time errors halt program execution and display an error message.

Run-time errors can include referencing a nonexistent array element, attempting to use uninitiali7.ed data,

i? E: I:::! CI····· Cli:::!"!"" i:::i variable mismatch, trying to write to a nonexistent file, etc.

Refer to section 12, Debugging and Error Recovery, for information on recovering from run-time errors.

Refer to appendix E for a complete list of error numbers and messages.

Problems

6.1 For problem 5.2 in the previous section, you wrote a program that computed the distance traveled by Janey

Dair's Rebounder ball. If each rebound reaches a height of 65% of its previous height, the time interval to

the next bounce is vo.65 = 0.806=80.6% of the previous time interval. Enter your original Rebounder

program, and then modify it to incorporate a:.) i:::i T 'r statement that causes a delay between bounces accord­

ing to the ratio given above. Let the interval between the first two bounces be 3 seconds(3000 milliseconds).

6.2 To illustrate the effect of an unbalanced force pulling sidewards on a moving object, physics teacher Millie

Graham has devised a simple experiment. She fastens a string to the side of a 350-gram miniature rocket

sled and secures the other end to a fixed pivot. When ignited, the rocket sled accelerates at the rate of 30

centimeters per second per second. As the sled accelerates, the string continually pulls it sidewards, and this

imbalance causes it to move in a circle ofradius r (centimeters), equal to the length of the string. Ms .Graham

knows that the magnitude of this forcej, exerted inwards on the sled by the string, is given by

350(30 ·t)2 j = --'------'--
r

110 Section 6: Program Editing

where t is the time (in seconds) from when the rocket is ignited. The force, expressed in dynes, can be con­

verted to pounds by multiplying by 2.25 X 10-6
• Write a program for Ms.Graham that requests the length of

the string r and then prints the force exerted by the string (in dynes and pounds) at intervals of I second.

Have the program halt execution after each second's output so that she can determine if the string's breaking

strength (2.22 X 106 dynes, 5.0 pounds) would be exceeded. Run the program for various string lengths,

using trial and error to find the shortest length (approximately) for which the string lasts at least 10 seconds.

111

Notes

Section 7

Branches and Loops

Nonnal program execution is in sequential order from the lowest numbered statement to the highest numbered

statement. As we have seen with the C; iiT Ci statement, branching alters this process by transferring control to a

statement that is not in the sequential flow.

Branches, loops, and subroutines are three methods of altering the normal tlow of program execution. This section

covers unconditional branching with the C>··i ... C; c>r' Ci statement, conditional branching withT i y:;

i:"" :::; C:, and a method of forming efficient loops with the i::: C! i? and i··i E:: :::"1"" statements. In section 9 we will con­

tinue our discussion of branching with subroutines, the special function keys, and user defined functions.

Most of the programs we have discussed to this point have contained unconditional hranches using the C; (i T ; ;

statement. The C:; CiT Ci statement is simple and direct; it transfers program control to the statement number that you

specify. A C:; Ci Ci statement used in this way is known as an unconditional hranch because it always branches

execution from the ; .. :; i ..) Ci statement to the specified statement number. Now you will see how to use

'T i·i C: i··i statements-branching that depends on the outcome of the test.

Conditional Branching
Often there are times when you want a program to make a decision. In the averaging program in section I, we wanted

the program to decide whether to branch to the end of the program to display the result, or whether to ask for more

numbers to include in the average. As you may recall, the branch was dependent on the outcome of a specified

condition, using the .. 'j" i···i::::: i···i statement. The HP-85 provides several fonns of the .. ; ;; ; ... i··j statement.

One of them is:

....... numeric expression i ,"j i : !' .. ! statement number

The j j ... E>·i statement makes a '"decision" based upon the outcome of the numeric expression. If the

expression is true, theT i···j E:: i···j part of the statement is executed. If the outcome is false, execution continues with

the statement following the Ii:::...r ii C i·i statement.

For example, suppose an accountant wishes to write a program that will

calculate and print the amount of tax to be paid by a number of persons.

For those with incomes of $10,000 per year or less, the amount of tax is

17 .5%. For those with incomes of over $10,000, the tax is 20%. A flow­

chart for the program might look like this:

113

114 Section 7: Branches and Loops

NO YES

The diamond in the tlowchart would be represented by an .L i'"

sample solution to the problem might be:

"T i···iE:!"-·i statement in a BASIC program. Thus a

J.~:J DI::::F' !!It·~CO!·'1E'!.:

2C [!·jF-UT I
• 3~::! I F I:> 1 O[i[i~j THEt·j 60

40 F'F:Ii···iT "HL<::::".: Il, i?5
::;0 CUTO 70
60 F'F.: I t·lT "TA>::'"".: I l , 2
70 Et·jD

As you can see, we used a relational operation in the

often used with relational operators (:::::, '., ... , -:: :::::

of any numeric expression as we shall see later.

{
If true, then execute line 60. If false,
then go to next line in program.

'r i··: E: :"': statement. The T F' . .. 'r : ... : E:: :···i statement is most

or :i:i'), although the decision can be based on the value

If the condition is true, i.e., if the income is greater than $10,000, then program control is transferred to statement

60. If the condition is false-in this case, if the income is less than or equal to $IO,OOO-then the rest of the .,.

statement is ignored and the program continues at statement 40.

Now, test your program with values of $20,000 and $9,000. We ran the sample program below in print all mode by

executing the F'i? T i··;·r \:::\ L.. L.. command to print all inputs and outputs.

8
I ! .. j C: () "'1 E '::-
20000
T'Hi:;::: 4(:100

8
I t·j C: 0 ,'" E: ,)
:~IOOO
THi::::: l~:;?~:;

Computed 20% of income.

Computed 17.5% of income.

Section 7: Branches and Loops 115

Remember from our discussion of the logical evaluation (page 59) that an operation is assigned the value of 1 if

it is true and a value of ° if it is false. Thus, in an IF... THE [.j statement, if the outcome of a numeric

expression has a value other than 0, it is considered true; if it has a value of 0, it is considered false.

Example: Write a program to compute 1/ x. Since division by zero yields an error, use an T ;::: .. , T·!···iF: i···j statement

to check for a zero input. Then load the program and run it for values of 0 and 9.

Here is a sample solution to the problem:

:1.0
::=':0
30

I::::EI"1 ::l::I::::[C: I F'I::::() CH l...::I::
[I I ::::; F' "E: t··1 TEl:::: t··1 i.J 1"1 E: E I:~: "
I I"~ F' I..J T ;:.:;
I F' ;:.:; T 1···1 E: 1"·1 ::::: 0 statement means the same as ,', :j:l: C! • ,::1· ~:'1

::::; C)
,::::(:'1

[I I :::;F' "THE: F::E:C: I F'f':C)C:Hl... OF'
[) I :=.n:. "I ::::; !..n··1 [I E: F' I 1"·1 E: [) iii "

:::::[I?O"
\

If X is any number other than 0, then the
program branches to statement 80. The

~;~:;:~·~es:::~:;~hI~t~t!~~:th~~.execution
c; C) 'r C) :::~ 0 70

:::::CI
9CI

F' I? I 1"·1 'r ":!. ".; ::-:; .: il ::::: Ii .; :1 ::-:;
[1",1 [)

Before we ran this program, we executed the

8

THE RECIPROCHL OF ZERO
I ::::; Ij r··i [) E: F' I i'··j E: i:J II!
E: r··j T' E i? r'~ 1 .. .1 I'i E:: E:: F:

...
:1 . :r. :t .j ' •• of .•... .L .i. .l .

'j :!. :1. :1. :1. :1. . t

,'0' F j' .j 'T'
.:. ! ::::1 1....! .. command to print all inputs and outputs.

Another form of the .!.!.

branching:

T ! : E:: r·j statement provides conditional execution of a statement without necessarily

.... numeric expression T i···i E: :.[executable statement

Again, when the condition is true (or the value of the numeric expression is other than zero), the statement is

executed. When the condition is false (the value of the numeric expression is zero), execution continues with the

following statement.

All executable BASIC statements are allowed to follow T ! ... ! I:. i'! except for F:: i"! F', "!:':-:'r, and statements.

Statements that include the following keywords are declaratory and not executable. Trying to enter one of them

III a 'r H Fe: ['·.1 or ;:::., :::: [clause will cause E r" r" ,", ,.,. ;:::; (:

DEF FI;
I:! I :'1
F' t; E::ili) i?E:nL..

::::I··I():::::r

: ... :' ... i"··i.

116 Section 7: Branches and Loops

Example: Write a program to make Celsius/Fahrenheit temperature conversions such that:

I. If you enter a C, the temperature is converted from Celsius degrees to Fahrenheit according to the formula

F = 32 + 9/S * C.

2. If you enter an F, the temperature is converted from Fahrenheit to Celsius according to the formula

C = (F - 32) * S/9.

3. If neither C nor F is entered, nothing is printed.

If you wrote programs for problems S.l.a. and S.l.b., combine them. Use the second form of the

statement in your program to determine which conversion is to be made.

Here is a listing of a sample solution:

10 *TEMPERATURE CONJERSIONS*

:::~~ Ci C) :i. ::::= 1:" !; E: j' .. j 'r E: F~ 'r E: !':'j F' E: I? !:::! 'r ~.j 1'::. i::: .. ' C: i!

.::j. ~?j I ~ ... \ F' tJ or 'r., [I ::\::
" 'r :::~: ;;::: ::- ::1::

• it::, it::! I::::' Ci::I': it:: " C: " 'r E: !" .j 1'" i:;: T ~ . . ! or T' , ,
!
... , ...

: : :. ...
" ; :::;:;:>+<::i ... ··,,::;::j::·r.; ", ... "

'? i~::i c; C) 'r C) ;~::: C!
;:;;; Cl E: I-··j[:)

Convert temperature to Celsius degrees.

Convert temperature to Farenheit
degrees.

Run the program to convert O°C and 100°C to degrees Fahrenheit; SO~ and 98.6~ to degrees Celsius.

Here are the results printed from our program:

T

J l;::i c! r" T ~:::; :::: .. 1. ::::.

J Ci

The : : ::::: t::. Option

There's still more to the IF ... T i·r E:!--·! statement: E: L ':::; t:::. In the previous examples, if the numeric expression

was evaluated as false, program execution continued with the next sequential statement following the

T' ! IF:: t···! statement. But if you specify the E L :::; E: option with the I F' ... 'T i···\ E:: f··l statement, the program will

instead perform the indicated [: L.. ::; [: instructions. This gives you tremendous power with conditional branching;

six different forms of the I F ...r H [: t; statement are available.

I F:'numeric expression THE: r·i statement number
or

executable statement

If the numeric expression is false and E: L.. ::; [: is specified, execution is transferred to the statement number

following [: L :::: [: or the indicated [: L ::; [: statement is executed.

Let's look at an example.

Example: A quadratic equation is of the form 0 = ax2 + bx + c. If a rfo, its two roots may be found by the formulas

-b + v'b 2 - 4ac

2a
and

-b - v'b 2 - 4ac

2a

Section 7: Branches and Loops 117

Write a program to compute the roots of a quadratic equation given the val ues of the coefficients a, b, and c. If a is

zero, display an error message and reenter new values. If b2 - 4ac is less than zero, then the square root of that value

would give a warning message or an error. So make sure that b2
- 4ac is greater than or equal to zero before you

compute the roots.

Here's a flowchart of the problem: r------~----~

IS
8 2 - 4AC ;. O? >-"':"":":::.-.J

YES

COMPUTE
ROOTS R1 AND R2

In this sample solution we use two forms of the T i:::' 'T ~ ; ro

'

:; ;.; , .. E: t .. .'::;::: statement. Study it carefully, then load the

program and run it.

; :'.. 1:::1 ::::: i;::i or l,··j F: 1",\ [) I ::::; ~:::: ;; i:::i ij .: i"oj () 'r =,;':. ;

!:::! C) F~ \:::! 'r T C:. F~ E: E: j"'\ 'r F: j? i,) !:::! L.. :, .. : E. :::'; ;; E: L. ::::; E:

~0 R2=(-R-SQR(D)~/(2*R)
'::1' ~) : ... ' !.::~ .L ! ... j T' :: 1 ... : i . ..i L. 1'" F' I C: I E: i···j 'r ::::; ::::: ;; ; !"'! ,; E; .
::::. ij F' i? T j-··i T' ::~? C) C) T' ::::; ::::: ;; : F;~: :1. " F::;?
I;::: !:::i E: i'··j [i

If A =0, displays message, then continues
to next statement. If ArfO, reads
i:::' ! :t. Ci Ci and program branches
to statement 100.
If 0> =0, branches to statement 120.
If 0<0, displays C: t .. '::: ::::: message
then continues to statement 110.

118 Section 7: Branches and Loops

The instruction following F: L.. :::; E: in an .!:. ... ·r i···i !:::: i···i statement may be a statement number or an executable

statement. Again, the same stipulations hold for F: L.. ':::; F: as ·r 1···1 E:: 1···i; you may use any executable statement except

;:: C) i?, 1···1 F::':: ·r, and Ii::: and you may not use declaratory statements.

Run the program to find the roots of the equation x 2 + x - 6 = O. Then run the program again to test the decisions

withx + I = 0 andx 2 + 2x + 2 = 0; finally the roots of3x 2 + 2x - I = O .

.1. !'" 1:::1 C~ j..J i:::j [i F: H"T' I C:
EQUATION IS OF THE

:i. .' 1.' C;
C: () E: F' ~:::. I C: I E: ~"'! 'r ::::; ::::: :I.
!:;~: C) C) 'r ::::: ::::: ;~::~ :::~:

F~: l . ..! ,' .. j
T F ,:::, () t.J !:::j [! I:;~: 1:::' 'r I C:
EQUATION IS OF THF
FORM 0=AtXA2+StX+C
E: !···I T· [i? ::::i.' E: .' C:

QUADRATIC R[[NT[R JALUES

1., ;;:::.' 2
C: Ci !yj F' L.. E: ><

Coefficients of x 2 + x - 6 = O.

Result.

Coefficients of x + I = O.
Displays message.
Asks for new input.
Coefficients Ofx2 + 2x + 2 = O.
Displays message.

Asks for new val ues.
:::;: .' ;:::' .' :i. Coefficients of 3x 2 + 2x - I = O.
CO[FFICIENTS= 3 2 -1
ROOTS= 333333333333-1 Result.

For a more efficient and accurate method of finding the roots of a quadratic equation, refer to the Polynomial

Evaluation program in your HP-85 Standard Pac.

Note that the (,j symbol enables you to include multiple statements as part of T ! ... !:::::!! and:::: L ... ::: !::: clauses. If the

test condition is true, all THE: ! ... ! statements will be executed. If the test condition is false, all E:: L. '; ::: statements

(if any) will be executed.

The Computed C; Cl "r- Cl Statement

There is one more form of unconditional branching that you should be aware of: the (J ~ i ... '::;; UTi··, or computed

C; ()T 1:1 statement.

;J '···1 numeric expression G (J T 0 statement number list

The U '··1 ... G (J T 0 statement enables you to transfer program control to one of one or more statements, depend­

ing on the value of a numeric expression.

Section 7: Branches and Loops 119

The numeric expression is evaluated and rounded to an integer. A value of I causes control to be transferred to the

first statement specified in the statement list; a value of 2 causes control to be transferred to the second statement

specified in the list, and so on. A value less than I causes an error. A value greater than the number of statements in

the list also causes an error.

Essentially, the CII···I... C; cl'r CI statement is a combination of the I I::' statement and the C; ()r CI statement.

For example:

20 ON R GOlD 25, 80, 150

This statement says: if R = I, go to statement 25, if R =2, go to statement 80, and if R = 3, go to 150. But if R < I or

ifR>3, an error would occur.

Look at the following application of an 01"·1 ... c; ()'r CI statement:

Example: The payroll clerk of a small firm wishes to write a program

to compute the weekly wages of the employees according to the follow­

ing payscales:

Payscale Hourly Wage

1 $4.75
2 $5.50
3 $6.25

Also, overtime must be taken into account. If the employee works more than 40 hours in the week, the remaining

hours should be multiplied by 1.5.

Sample Solution:

1(~1 Ff;:It··!T "t·1f:!t'IEH
;:=':0 FP I I··rr !i HClI...lP::::; H .' "i.'!!'iGE::; Ii

3U Ff;: I t·~T
,:+ [1 E::::: C1

'5 U D I ::::; F "L H ::::; T [1 H r'l E, F I I? ::::; T I t·1 IT, l'

• 60 I r·~FUT [·1:$:
?~~! D I ':;F !i i·i()! .. JP::; ~'.iOPf:::ED".:

::::: I? I t·1 F' U T H
9U IF H)40 THEN E=H-40

• i::JO !·-jl::::H--·E+E:t:l,:::;
1. 0 D I SF' l! PH'";' ::;CHL..E 1..,;2.' UP ~:)'"

;:::: !? I 1···1 F' 1 . ..1 T F
• 3'~i Ot·1 F CO·fO 14!3.' 160 1 :::~]

:i. 4U ~,j:=4, .;:'" '::;::1:: H 1
1 ~:;!j CUT·U 1 ::::~O
:i. 6ei ~'1:=:3, 5::t-:H 1

1. :::::(:j ~,)::c6, ;?:::ilH 1
1. ::! \:j F f;: I t·~ T r~ :1::
2;30 F'f;: I r·lf H.' 1.,1

• ;;:~:1. [1 rilJ::;;E
;?;~:\~j OTO olD
;:~30 t·iD

Since we have not dimensioned N$, the
name can be no longer than 18
characters. (We'll discuss this later.)

Computes overtime .

Computed r·:: '.j "T r··, branches to 140 if
P=I, 160 if P=2, and 180 if P=3.

}
Computes wages according to desired pay
scale.

........ , , :::; E after wages are printed for each

employee. When the program is running,
press (CO NT) to continue.

120 Section 7: Branches and Loops

Run the program for the following list of employees. Remember that if a comma is part of your string input, the

string expression must be enclosed within quotes (e.g., enter "1 C) i···i F: ::::; !. "for the first name).

Your printout should look like this:

:::~. :::~:

i:::' E 1"·1 [i E: i?.. L...
'::1· I:::!

r" CI F: F: I::::; .. [) .

Name

Jones, J.
Smith, K.
Fender, L.
Morris, D.

Hours Payscale

43 2
52 3
40 1
44 2

Note: If the value of the numeric expression is less than one or greater than the number of statement num­

bers in the list, F: (!'. ()!'. :i. :i. (argument out of range) occurs.

In the following example when statement 20 is executed for the third time, the value of I exceeds the number of

statement numbers in the list.

:l. U T ::::::t
.2U ON 1 GOrO 3U .. 3U .. 6U

:::~. i?! I :;::: I ::j:: ;;:::

,,::; (:j C; C) 'r C! :::: !j
T
• 1. .:::: .: . ::

Running the program:

8
I::::: 1.
I::::: ;;:::

E: 1""' I'" () I'" :i.:i. () 1"'1 J]. ('! I:::' ,:::: ~::i

I? HI··jC;r::::

Repeatedly executing a series of statements is known as looping. We have seen several loops in programs; the future

value program contained a loop-as did the checkbook balancing program.

A clear and efficient way to create loops is to use the F:' C! i? and i···j E: ;:< 'r statements. The F:' C! i? and i···i E:: ;:.;r statements

are used to enclose a series of statements, enabling you to repeat those statements a specified number of times.

Section 7: Branches and Loops 121

:::: C[F' loop counter = initial value T 0 final value [:::; T E F' increment value]

ri E : : T loop counter

The ;:: C) i:;:: statement defines the beginning of the loop and specifies the number of times the loop is to be executed.

The loop counter must be a simple numeric variable.

The initial, final, and increment values can be any numeric expression. If the increment value is not specified, the

default value is one.

:!.

!:::'
'''.1

F' i? I i'··j 'r ! j F' I 1'··j I::::; 1"'! E: [) !.I.i I 'r 1"'1
F' F~ I i',,! 'r j i I 1"'! C) j.:.l E: G~ 1 . ..l !:::l L.. ::::; i i

::::;'TC) !::::

~INISHED WITH LOOP;

The F C:; i? statement does the following:

• It sets the loop counter to the initial value.

.l.

The F: C! i? i···i F: :-:r loop will be executed
five times: when 1=1,2,3,4, and 5. Each
time the i···i C: ::-:: 'r statement is executed, the
value of I is incremented by I. But when
the value of I passes the final value, that is,
when 1=6, the loop is finished, and execu­
tion continues with the statement follow­
ing the i··iL: ::-:r statement (in this case, 80).

• It causes the HP-85 to store the final value for the loop counter.

• It tests for the exit condition by comparing the current value of the loop counter with the final value.

While the value of the loop counter is less than or equal to the final value (for a positive increment value),

execution continues at the next statement after F:' C[i?

The i i E >< T statement does the following:

• It increments (or decrements) the loop counter.

• It returns control to the test condition of the F i? statement and thereby defines the end of the loop.

When the value of the loop counter becomes greater than the final value of the ;:::. U F' statement (or when the

value of the loop counter becomes less than the final value when a negative increment value is used), then the

loop is exited and program control is passed to the next statement after [.. ~ [... · .. ·r

122 Section 7: Branches and Loops

Example: Use a F Cn;:-I··H:: >< T loop to compute and print the area of a circle with an integer radius from 15

centimeters to 20 centimeters, according to the formula A = 7rr2.

I'",UTU
• :!. 0 F(Jf;: p:::: 1.:; TO 20

20 !:::!::::F' I IF:lF:
30 PI? I I··rr "FAD I U:::::=:" .: p.: "APEt:I::,;" .: 1'",

• 40 I··![::T P
::::; U :::: T 0 F'

Notice that the initial value does not
have to be 1.

Increments R by 1.

Again, we set the initial value and the final value with the F Ci F: statement. When R exceeds 20, program execution

is transferred to the statement following the ! .. ! E::·:·f statement.

F:i . .ii···1
RADIUS= 15 AREA= 706.858347059
RADIUS= 16 AREA= 804.247719318
RADIUS= It AREA= 907 920276887
RADIUS= 18 AREA= 1017 87601976
RADIUS= 19 AREA= 1134 11494795
RADIUS= 20 AREA= 1256.63706144

The loop is executed 6 times from
R=15 through R=20. When the loop is
exited, R=21.

You can also use variables or numeric expressions to specify the initial or final values.

Example: Suppose you are a widget maker. The shipping department

in the widget factory can pack widgets in a variety of ways-rarely do

two boxes contain the same number of widgets. Since widgets come in

various shapes and sizes, the value of each widget varies. But you want

to insure the box for the true value of the widgets inside. Write a prog­

ram to accept the number of widgets in a particular box and then accept

the value of each widget in the box, compute the total, and print the

value to be insured.

Your flowchart might look like this:

NO LAST WIDGET
IN BOX?

Sample Program:

:!. ij i? E: r:"1 ::i:: j.:.i :i: Li (:; i:::' .. ~ .. ~:::: ':!:'

;~::~ iJ 'r ::::: !J
-.::= i:::f [1 I ~:::; F' :: E:: I-··j 'r E: I:;~: i···j1 1"i f:::; E: i? !! I'" ! .! T [: ,.. , j:':' 'r

'? i;) T i·.j i:::= !..J'T 1.1.1

~:::~ i~::i ""j" ::::: 'r +. !.:.!
:)i;::l !'··!E:;:·:;'T ...

Section 7: Branches and Loops 123

,: ii i?- i: :::: :T loop range.

)

Here, you actually input the final value of
the loop.

Now run the program for a box of five widgets, with individual values of $3 .50, $4.95, $2.60, $18.50. and $5.10:

ENTER NJMBER OF WIDGET-

: ~:::: ij

T01HL VALUE OF BOX~ ~~

As we mentioned earlier, it is possible to use expressions in the ,::. Ci ::::' statement as either the initial value or the

terminating value. For example, you could have a problem that requires you to have statements like the following:

or
····;···,i···:

or

.... ;:::=
' .. .';"

'T' :
. ·····i··j··· :.... :: 1'··I::!::

'T' ,",

The initial and final values of the loop counter are computed and stored when the F i"i F' statement is executed.

(Note that it's not possible to change the final value from inside the loop.) Although the value of the loop

counter can be changed from within the loop, doing so is usually not recommended.

For example, this program has problems:

This program would create an infinite
loop, like those we've seen before, except
worse since nothing is displayed or
printed. The variable I is reset below the
final value each time the program executes
the loop.

124 Section 7: Branches and Loops

Changing the Increment Value

In all of the F:' Ci 1:::: 1"'1 E:: ::-:;"T loops above, the computer increments the counter by I each time through the loop. But

you are not limited to just I. You can use any stepping value, positive, negative, or non-integer, with the ~:::;'r F: i:::'

parameter.

For example, suppose you wish to print the odd integers from I to 10. You could use a F'e) 1:;::- !···!E:::-::T- ':::;T"I:::: F:'

loop like this:

.10 FOR 1=1 TO 10 STEP 2
;;::~ (i P F: I j···i T I
:::;: i::i ! .. ~ E: ::-:; 'r I
4 (:1 ~:::: !:;~: I,'··, 'r
~::;i;::! E: j".'!J

:1.
.':;: i:::' ':::1 ! ,

You can also decrement the loop counter.

The initial value of I is I. Each time
1"11::::;::"T" I is executed, I is incremented by
2. In this program, I = 1,3,5,7, and 9.
When I reaches II, the loop is exited and
the program ends. Since the 1:::' I:::: I '···iT
statement in line 20 ends with a semicolon,
an extra F:' F: I 1"'1'r statement completes the
print message and outputs it to the printer.

Example: Write a program that requests a number and computes its factorial. A factorial is an integer multiplied by

all of the other integers below it (down to I). For instance, 6! = 6 X 5 X 4 X 3 X 2 X 1. (Also consider limiting the

size of the number a user may give. What happens if a negative number or a noninteger is entered?)

Enter the following program into the system:

10 REM *FACTORIAL*

40 IF FP(N)=0 AND N)=0 THEN 70

• 80 FOR P=N TO 1 STEP -1

Now run the program to find the factorials of 4 and 24.

\?\...\j"'\
F' 1:::1 C: 'r Ci F: I !:::i L.. C) F' '?

•••• , ,,1

FACTORIAL= 6. 20448401736E231

Check to make sure the number is a
positive integer.

Loop counter is decremented from N to
N -I, and so on.

Result.

Result. Remember, the computer over­
flows with numbers larger than
9.99999999999 X 10499 .

Section 7: Branches and Loops 125

Let's see how the factorial of 4 was computed. After you input 4, the initial value of the FOR statement was set to 4.

So the program read the statement as:

The values for F were computed as follows:

.... :. :~. : :~:: . ":
First time through loop.
Second time through loop; P=4-i.
Third time through loop; P=3-i.
Last time through loop; P=2-i.

When the i·.! i:: ::::T statement decrements the P value to 0, the loop is exited.

Nested Loops

When one loop is contained entirely within another, the inner loop is said to be nested. A loop can be contained

within a loop that is contained within a loop ... (up to 255 nested loops), as long as the loops do not overlap each

other.

A;:: C; i;'- i< r:'" loop cannot overlap another i:::' i ,,::-:.: !':::.: T loop, for instance:

Incorrect Nesting Correct Nesting

F:' (J i? I::::: :i. 'r ("j ".

F:C!i?1 ... ,.;. 'Tei ;:::'

In the incorrect nesting example, the I loop is activated and then the J loop is activated. But the J loop is cancelled

when i··j Ei' T

accessed, F:' ,"

IS executed because it's an inner loop. When the I loop is completed and !"E:::>(T ! is
is displayed. This is because the J loop was cancelled and was not

reactivated after the last I loop.

Run the correct nesting example now to view the looping process:

;:;: ... ! i',,!
~ ...

:i.

) ...
:i. I:

I •••• :·t

} I: ...
I:::;

:: ... c:
. ':;' ,"

) ... "T

.:" i:::' I
.':;= !::;z

The J loop is completed before I is
incremented.

Now 1=2 and the program runs through
the J loop again.

Finally I =3; the J loop is executed once
again. When 1 reaches a value of 4, the
program halts.

126 Section 7: Branches and Loops

F' () ::;:: - i···j E: ::<'r Loop Considerations

• Execution of a \:: , ,:: ::T loop should always begin with the F C:j \;' statement. Branching into the middle of

a loop (with statements like ,; ('jT Cj or T \::) will produce \:::: (,::L'? if the \' .. \ \::::'"T statement is executed

before the program executed the corresponding ,:::. C' i' statement.

• Execution of a loop normally ends with a i··j!::: :;T statement. It is permissible to transfer program control out

of the loop by a statement within the loop. After an exit is made through a branch within the loop, the current

value of the counter is retained and is available for later use in the program. In this case, it is permissible to

reenter the loop either at a statement within the loop, or at the ,:::. ("j F' statement (thereby reinitializing the

counter).

• A
. loop will not be executed if the initial value is greater than the final value when a positive

'r ,::: ,:::' value is used, or if the initial value is less than the final value when a negative :", j to:. , .. ' value is used.

• An often overlooked aspect of j::: " ",:., looping is that the actual value of the counter when the loop is

complete does not equal the final value. The statement increments or decrements the loop counter

past the final val ue before the loop is exited. (We'll see an example of this in the graphics section, Padding the
,:::. ;": ;;'- i··j ,:::., , .. , .. loop.)

• Make certain that the loop counter in the r· E, : T statement matches the loop counter in the corresponding

F C' F' statement. Otherwise, the program will not run as expected.

• Don't include comments (using F'I: ,"1 or ;) in the same line after a ,..., ; ... :: T statement. Otherwise,

t··1 C) "'114 T C: \ ... \ .:. ,'., ' .. ' ,.:. c, ,:;:. may occur.

Problems

7.1 As an avid sports fan, you decide to write a program that will help you keep score during an important

basketball game between the Aakerville Aardvarks and the Wiggenberg Wombats. You can enter anA or W

to signify a field goal (worth 2 points) for the appropriate team, and an a or w to signify a free throw (worth I

point). The score should be printed after each entry.

7.2 The common game of' 'Buzz" offers a challenge to a person's number skills. This version, called' 'Beep,"

requires you to program the HP-85 to successfully complete the same game. The game consists of counting

(displaying) numbers from I to 100. However, for any number that is evenly divisible by 7 or contains a 7,

the display should leave a blank and the HP-85 should' 'beep." If the number both contains a 7 and is evenly

divisible by 7, two "beeps" should be sounded.

Hint: The "ones" digit of a two-digit integer can be found as :l Ci ::j:: j:::' , ::'::." :j. !:::!:: or ::: j"j Ci C! :j. C!.

7.3 Here is a check to see whether you and the HP-85 can communicate using "mental" telepathy. Write a

program that uses the j:;:o i···1 [handom number generator to "pick" a number from I to 5, waits for 5 seconds

while' 'concentrating" on the number, and then requests from you the number that comes to your mind. The

display should indicate whether your entry is correct or incorrect. After every 10 picks, the printer should

list a summary of your accuracy and indicate whether it is better or worse than that expected by chance (20%

accuracy). The random' 'picks" can be generated by F' ::::: IF:' >:: 1. +- ~:; :if: i? r··1 [) ::.

Section 7: Branches and Loops 127

7.4 Boy Scout Jeffrey Goodfellow is preparing for his compass-course test, in which he must follow several

legs of a course and attempt to be within an allowable error of the finish point. Each leg of the course is

defined by a magnetic bearing (0) to be followed and the distance (d) to be traveled. Jeffrey realizes that

each leg can be converted to northerly and easterly distances (dn and de) according to:

d n = d X cos (0)

de = d X sin (0)

If the northerly and easterly distances are summed for all the legs in the course, these two sums can be used

to determine the direct bearing (Or) and distance (d r) of the finish point relative to the starting point:

If he had a program to perform these calculations, Jeffrey could check his accuracy during his practice

sessions. Write a program that requests the bearing and distance for each leg of the compass course. (A

distance of zero should indicate that all of the legs have been entered.) The program should produce a listing

of the bearings and distances, and then give the direct bearing and distance of the finish point relative to the

starting point. Use the i:::i "T'j ... j ::::: S,X) function to compute Or so that the proper angle is chosen. (If Or is

negative, add 3600 or use OrMOD360 to obtain the bearing in the correct form.)

Hint: Don't forget the Ci E: C; statement.

7.S Your medical supplies business has offices in Britain, France, and the United States. With such an arrange­

ment, you must frequently convert monetary values among the three currency systems: British pound,

French franc, and U. S. dollar. In order to facilitate these conversions, you decide to write a program to

compute them for you. Each currency system is to be denoted by a code number. The program is to be

initialized each day by entering equivalent monetary values in each currency. Each required conversion

should begin by entering the currency code and amount to be converted; the currency system and equivalent

amount is to be printed for each system. On a certain morning, I British pound is equivalent to 8.3981 French

francs and 1.8248 U.S. dollars. At these rates, find the equivalent values of a patient lift worth 284 British

pounds and a hospital bed valued at 120S U.S. dollars.

7.6 The mayor of Dimsburg has directed Elmo Rumple, the town statistician, to study the problem of motorists

having to stop at all three of Dimsburg's traffic lights. Elmo confines his analysis to those motorists who are

delayed at all three lights. He assumes that each car arrives randomly at each red light, indicating that the

delay at each light is uniformly distributed between 0 and I minute (the duration of a red signal). The total

delay in Dimsburg is therefore the sum of the three uniformly-distributed delays. Elmo wants to compute the

probability that this delay is shorter than various time intervals. From his vast experience, he knows that

this probability is given by the following function (called a distribution function).

Prob(delay < T) =

o
TA3/6
.S -T*(I.S -T*(l.S -T/3»
- 3.S+T*(4.S -T*(l.S -T/6»
I

forT < 0
forO ~ T < I
for I ~ T < 2
for 2 ~ T < 3
forT ~ 3

Help Elmo by writing a program to compute the probability of a total delay that is less than any specified

time. (Use an () t-i ... CJ:) T (:1 statement to branch to the proper equation.)

.1

Section 8

Using Variables: Arrays and Strings

As we mentioned earlier, there are three types of numeric variables available with the HP-85: i?L: :::::1.... (full

precision), '3 i··i C: i?'T", and I i··iT" E: C; i:: i? numbers. A fourth type of variable deals with character strings. Numeric

variables can have two forms: simple (non-subscripted) and array (subscripted). Strings may also be subscripted,

but not in the form of an array.

In this section, we discuss array and string variables, their functions, and how to use them.

Array Concepts

An array variable (or simply, an array) is a collection of data items of the same type under one name. An array may

have one or two dimensions. For instance, a one-dimensional array (often called a vector) might be thought of as a

list of items; there may be several rows but only one column. A two-dimensional array (often called a matrix) is

like a table of values; there may be several rows and several columns of items.

Suppose we have the following list of numbers:

j} We could store this list of numbers, in the
order shown, in a one-dimensional array.

25

Ifwe name this set of numbers array S, we can specify the individual elements ofS by using subscripts.

If numbering of array subscripts begins with 0, the elements of array S are specified as:

S(0)=1
S(1)=4
S(2)=9
S(3) =16
S(4) =25

Subscripts

0
1
2
3
4

If the numbering of array S begins with I, then the elements of array S are:

S(1) =1
S(2) =4
S(3) =9
S(4) =16
S(5) =25

Subscripts

1
2
3
4
5

129

Array Elements

1
4
9

16
25

Array Elements

1
4
9

16
25

130 Section 8: Using Variables: Arrays and Strings

We need to use a two-dimensional array to store the values in the following table:

Number Square Square root

1 1 1
2 4 1.41421356237
3 9 1.73205080757

This table contains 3 rows and 4 columns for a total of 12 values.

If subscript numbering begins at 0, the elements are identified as follows:

0(0,0) =1
0(1,0) =2
0(2,0)=3

Subscript

0
1
2

0

1
2
3

0(0,1) =1
0(1,1) =4
0(2,1) =9

1

1
4
9

0(0,2) =1
0(1,2) =1.41421356237
0(2,2) =1.73205080757

Array D

2

1
1.41421356237
1.73205080757

Factorial

1
2
6

0(0,3)=1
0(1,3)=2
0(2,3)=6

3

1
2
6

Each element in array D is specified by its location in the array with two subscripts, separated by a comma, and

enclosed within parentheses. The first subscript designates the' 'row" in the array; the second subscript designates

the "column."

If numbering of the subscripts begins with I, array D would be represented:

Subscript 1 2 3 4

1 1 1 1 1
2 2 4 1.41421356237 2
3 3 9 1.73205080757 6

Thus, 9 would be represented as D(3,2); 6 would be represented as D(3,4).

Array names are the same as simple variable names; an array name may be a letter from A through Z, or a letter

immediately followed by a digit from ° through 9. But whenever an array is specified, it must be followed by

subscripts enclosed within parentheses, otherwise it specifies a simple variable.

Arrays are extremely convenient for handling large groups of data within a program because a group of different

values are known under the same name. The different values (or elements of the array) are distinguished in name by

subscripts to the array name.

An array name followed by a single subscript enclosed within parentheses specifies a one-dimensional array or

an element of that array. An array name followed by two subscripts separated by a comma, both enclosed within

parentheses, specifies a two-dimensional array or an element of that array. (No more than two subscripts are

allowed.) Whether the array name is understood as the whole array or as a specific element depends on the type

of statement that is used. Declaration statements refer to the whole array; executable statements usually refer to

an array element.

Section 8: Using Variables: Arrays and Strings 131

Declaring and Dimensioning Variables

Five variable declarative statements are available to dimension arrays and strings and declare the precision of

numeric variables:

Array declarations (for example, ["', T ,,' i:::i"'" ,:::, C, ::.) and string declarations (for example, i"' T ::

appear anywhere in a program, with these restrictions:

• A declaration must appear as the first reference to the array or string in the program.

• Declarations are not allowed in T F" ... 'r H f: [.. [... [L .. :3 C: statements.

• If used in a multi statement line, a declaration must appear as the last statement.

• Subscripts following an array or string variable must be nonnegative integers.

Arrays and strings are limited in size only by the amount of main memory. The subscripts in a declaration

specify the maximum number of elements or characters allowed in the array or string.

Lower Bounds of Arrays

Earlier we saw that subscript numbering can begin with 0 or I. The HP-85 assumes that all array subscripts begin at

o unless you specify otherwise with an Ci F::' .,. r, ,. ' , ... , ... , ::::;:::: statement.

When dimensioning arrays, you may want to specify that the lowest numbered subscript be I rather than O.

This statement must come before any array variables are referenced in a program. Cl F' .. : .. I Cl1"··j ~:::: i:::l :::". ;-.0. :~. tells the

computer to begin numbering all subscripts of arrays with I.

The real advantage to using Ci F'r T ;"", i C: i:::i ::::; i:::: :i is that you can refer

to an array element directly by its position in the array without wasting

element O. Thus, the first element in a one-dimensional array S is S(I)

rather than S(O); the second element is S(2) rather S(I) and so on. And if

array S contained \0 elements, it would be declared as S(lO) rather than

S(9).

If Ci I:::' .. , .. T C:! i·i ,"', '::, ': ;:::. :1. is not declared in a program, you may wish to

include the statement '.' ::::. ", .. T ,"', i·j c, for documentation pur-

poses. But this is not necessary since T C i·i '::. .:,' i:: C' is the

default array counting system at power on. There may only be one

l f··.' TTl: f·.; ... ~::>:::: statement in a program.

132 Section 8: Using Variables: Arrays and Strings

The 0 F' T I 0 t·j E: A::: E statement cannot be executed from the keyboard.

The D I i"1 Statement

The !J T 1"1 (dimension) statement is used to dimension (allocate memory) and reserve memory for full precision

numeric arrays. It is also used to dimension and reserve storage space for strings.

[I I I'! item Litem ...]

The item can be:

• A numeric array, with subscripts enclosed within parentheses.

• A string, with the number of characters enclosed within brackets.

The [) T r,! statement specifies the upper bound of an array and the maximum number of characters that a character

string may have.

Remember that the HP-85 assumes that the lower bound of an array is 0 unless you specify it to be 1 with

Examples:

20 DIM 8(3,2),C$[56]

Declares a one-dimensional array A of
101 elements; A(O), .. ,A(100).
Declares a two-dimensional array B of 12
elements (4 by 3) and a character string C$
of 56 characters maximum. (Refer to our
discussion of strings on pages 57 and 58.)

With C! F'T I C! i···j E: I:::! ':::; E: 1:::1 the number of elements in each dimension of a numeric array is calculated by adding

one to each upper bound subscript. Then the resulting values are multiplied together to yield the total number of

elements in a two-dimensional array.

Examples:

Declares the lower bound of all arrays to
be 1.
Dimensions an array A with 100 elements
array B with 6 elements (3 by 2), and a
string C$ with 56 characters.

The memory allocated to a character string is not affected by C F' T I (J i···1 t:: I:=: ':::; 1::::. In a L; I 1"'1 statement, the

number within brackets always refers to the number of characters allocated to the string. The maximum num­

ber of characters that may be specified for a string is limited only by the amount of main memory.

Type Declaration Statements

All numeric variables (simple and array) are assumed to be full precision variables (type 1:;: 1::::AL), unless they

appear in a type declaration statement. A type declaration statement specifies the type of variable, i? F H L..,

::::HOF.:T, or I tHEGEF.:.

Section 8: Using Variables: Arrays and Strings 133

I [1 TEe:: t:: f;' numeric variable1 [.:: subscripts>] L numeric variable2 [' subscripts>] ...]

::::: ! ... ! C' F:'T numeric variable 1 [' subscripts>] [.' numeric variable2 [' subscripts>] ...]

F' E:>' L_ numeric variable1 [' subscripts::'] L numeric variable2 [.:: subscripts'] ...]

The I i···i·r E: C: E:!:;:- statement dimensions and reserves memory for integer precision variables-simple and array.

The ::::: H 0 F: T statement dimensions and reserves memory for short precision variables-simple and array.

And the F:: E f:,l... statement dimensions and reserves memory for full precision variables-simple and array.

Since the [I::: r'1 statement is used to dimension full-precision variables, and undeclared simple variables are assumed

to be full-precision, the !? E: 1:::1 1.... statement is only useful for documentation purposes.

Examples:

10 INTEGER A,8,[(10)

20 SHORT P(20,25),P1,P2

30 REAL \5,[1(4,4)

The C: C) :": Statement

Declares variables A and B to be integers;
declares and dimensions array C to II
integer elements, assuming OPTION
BASE O.
Declares and dimensions short-precision
elements for array P; declares variables PI
and P2 to be short-precision.
Declares array D and variable X5 to be
type REAL.

The ,: C, !'! (common) statement is used to dimension and reserve variables to be held in common in two or more

programs. ,": en'! is primarily used with the C: j"-!i'::i I ! .. ; statement (section 11) to pass variables between programs.

A''': C,!"'! statement may also be used to deallocate a program before it is stored (refer to page 000).

The variables in common must agree in type and size between programs that are ':: ! ... ! i:::i T i··ied.

C C, !'! item [, item ...]

The item can be:

• A simple numeric variable.

• A subscripted array.

• A string with number of characters enclosed within brackets.

In addition, anyone of the type words- T ' :T L .. '::; C :', '::; 1, ,)" , , or j:;:- 1:::::: i 1....-may precede one or more variables.

Example:

," :::: ""' ,,' : , :I::!L. :::H " r",
j ... ! :"' ...

The variables A ,B(4,3), and D are full precision. Full precision is assumed at the beginning of the ;"" (", ('j I ist and for

numeric variables declared after a type F;' ,:::' .. L .. declaration. From left to right in a given C C, j"j list, all variables

134 Section 8: Using Variables: Arrays and Strings

following a numeric type word have that precision until another type word appears in the list. Thus, both H(5) and J

are short precision.

C C: !'! statements in separate programs that are linked with the C: i···i i::: .,. , ·i statement must agree in number and type

of variable. Variables held in common are reset to undefined values by executing ~:::;C::FJrr·(:::!···!, F:!...!!··;, or I i'{CT" .

About Variable Declarations

• The ;" 1:!"-i statement must be used in a program, not from the keyboard, and may not appear within a function

definition.

• The location in a program of U I r'! and c: J :'1 type declarations is arbitrary, though they must be after an

Ci F"r I C) !' .. ! !:::: \:::\ ::::: [: statement and before any other reference to the dimensioned variable. It's good pro­

gramming practice to include an U F"r ::: () t~ E: 1:::1 <::: E: declaration in each program segment when passing

arrays in C: (J "'1 statements between the segments.

• The !::'! I ('i statement need not be used to assign memory space for strings with 18 characters or less or for arrays

that have upper bounds of 10 or less. Thus, you do not need to use 1:::: I 1": with an array A(5,5) (of 25 or 36

elements depending on the lower bound) or a string C$="SQUARES". But array A(5,5) will be implicitly

dimensioned to be A(I 0, 10) and string C$ will be implicitly dimensioned to have 18 characJers rather than 7

(the number of characters in . 'SQUARES' '). Thus, you may wish to use L) I i"ito conserve memory with small

arrays and strings.

• A program can have more than one 1:::1 I r'i, C: C: i"i, or type declaration statement, but the same variable name

can be declared only once in a program. Therefore, arrays of differing dimensions or variables of different

types cannot have the same name. But the same name may be used for a simple numeric, a string, and a

numeric array.

String Expressions

The simplest form of a string expression is text within quotes. This is called a literal string and can be made up of any

characters excluding quotation marks.

For example, execute the first two statements:

The forms that a string expression can take are:

• Text within quotes.

• String variable name.

• Substring.

• String concatenation operation (?).

• String function.

• Any logical combination of the above.

This string expression contains eight
characters: two spaces and the word
STRING. Quotation marks are not in­
cluded in a literal string because they
mark the beginning and end of the
string.

Section 8: Using Variables: Arrays and Strings 135

As with numeric expressions, a string expression can be enclosed in parentheses if necessary.

In this section, we discuss substrings and string functions.

Thus far, you have learned to assign a literal string to a string variable and to join two strings together using the

ampersand en as the string concatenator (page 58).

You have also seen that unless the size of a string variable is specified in a C! T !".! statement, it is implicitly

dimensioned to be a maximum of 18 characters in length.

The statement above dimensions string variable A$ to be a maximum of 15 characters, F$ to be a maximum of 28

characters, and H$ to be a maximum of 100 characters. Brackets (not parentheses) must surround the number of

characters to be included in the string variable.

Substrings

A substring is a part of a string made up of zero or more contiguous characters. A substring is specified by placing

subscripts in brackets after the string name. There are two forms a substring can have:

• String variable name !Ccharacter position::!!

The character position is a numeric expression which is rounded (not truncated) to an integer. The substring is

made up of that character and all following it.

• String variable name ii::beginning character position .' ending character position :::ii

This substring inciuJes the beginning and ending characters and all in between. The character positions must

be within the dimensioned number of characters. If the first subscript is exactly one greater than the second

subscript, the null string (;; ;;) is specified.

Example: Suppose we dimension and assign string A$ as follows:

L) I i't'! 1:::\ ::!=: Ie ;? ~:::; Jj
i:::i ::!:: ::::: i i j:::l ~:::; 'r i:;:~ :;: !" i C; Ci F' ····:1:::·

1: ... · .•. 1

Now look at the various examples of substrings of A$:

: . .;.. g'" :1.

;", ,:, ;":.::

Spaces are also characters.

One subscript denotes a substring from
that character position to the end of the
main string.
Two subscripts denote a substring that
includes the characters in the positions
specified and all characters in between.

136 Section 8: Using Variables: Arrays and Strings

Modifying String Variables

There are a variety of ways that you can modify a string or substring by

another string or substring. For instance, a part of a string can be

changed or characters can be added or deleted. The modifying string can

be any string expression.

The length and content of a modified string depend not only on the

characteristics of the modifying string, but also on the number of sub­

scripts given for the original string.

Replacing a String

You can replace the complete string of characters with another string using an assignment statement.

For example:

Press

A$ = "HELLO" (ff@
B$ = "GOODBYE" (ff@
B$ = A$ (ff@
B$ (ff@

Display

':::1::1;:

C:l
1:::::1;:

C:::I;:

!.! E: 1. I'!

II I::: C! CI [) E:; \'E II

Assigns string to A$.

Assigns string to B$.

Assigns B$ the expression in A$.

Recalls B$ to verify.

As you can see, B$ was reassigned the string in A$. When no subscripts are specified for either variable, the string

is completely replaced with the new string. You can also reassign string variables by typing the new string within

quotes.

For example:

Press

A$ ="HI" (ff@
A$ (ff@

A$ ="BYE" ~
A$ (ff@

Replacing Part of a String

Display

, \'F"

A string variable contains the characters

most recently assigned to it.

Recalls A$ to verify.

After you have assigned a character string to a variable, you can replace one substring with another substring. The

original string can be lengthened or shortened. But if you attempt to lengthen the string beyond its dimensioned

length, you will cause an error.

Section 8: Using Variables: Arrays and Strings 137

Change substrings by specifying the subscripts of the characters to be changed and the new substring.

For example:

Press

H$ ="HAPPENING" (@
H$[7] ="STANCE" (@
H$ (@

H$[5] ="ILY" (@

Display

i···j::I::

Assigns substring to H$ beginning with

character 7.

Lengthened string.

Assigns substring to H$ beginning with

character 5.

New string.

If characters added to a string are not contiguous (in other words, some character positions are left unassigned),

blank spaces will fill the unassigned characters in the string.

For example:

I.'.!:l ::::: ii C:. "
i,.j ::\:: [':::; :::ii ::::: iij j:::! C: i< ::::; Ci 1"·1 "
I ... j::\::

Since the third and fourth character posi­
tions of W$ have not been assigned char­
acters, they are filled with blank spaces.

You can also replace the beginning or the middle of a string with another substring. Do this by using two subscripts

to specify the first and last character positions of the substring to be replaced.

If the new substring is shorter than the substring that you replace, the remainder of the new substring is replaced with

blanks; if the new substring is longer than the one you replace, the remainder of the new substring is truncated.

For example:

Press

Z$ ="HEPTAGON" (@
Z$[1,3] = "PEN" (@
Z$ (@

Z$[1,4] = "HEX" (@
Z$ (@

Press

Display

::::::\::It::: 1::;::::11

::::::1::

F' E: 1···I·r j:::! C; CI "·1

" F'E:I···I"

:?::[:: It::: :I., '::i-:::II "I",' E::-:: "

:::::::\::

i"'IE:>:: I:::! C;(J ",·1

Display

Z$ [1,4] = "DODEC" (@ .:::: ::!: Ie'! ,:;:! :::. " ,"', ,.", "'

Z$ (@

Replaces characters I through 3 of Z$

with specified substring.

Since you replaced characters I through

4 with a string of length 3, the fourth

character is a blank.

If you try to replace four characters with

five characters, the fifth character is

truncated.

138 Section 8: Using Variables: Arrays and Strings

Another way to specify the null string is to make the first subscript one larger than the second subscript in a substring.

Thus the following statements are equivalent:

': :;~:: :::'. :.

) ...) ::):. ':::: F~ ::~:: r: .::l, . :::~~]j

1"'1 ::i:: =::: .. :1:: jL ~:::~ .' "';']1
Each specifies no blanks, no characters.
(A$ and C$ must have been previously
assigned values or an error occurs.)

Be careful when adding characters to a string when the characters are not contiguous~previously added char­

acters may still be present.

Example:

1. U Hl" H:I ;:::::::;:4:::67:::9"
• .:::: ;:) D I :::; F' H :,1,:

• ,':1· i:j D I ::; F' H :$:

~~:;O H:$:[~5J::::"\"!

• !.:. U C I :::F' !'il

Displays , ., '''': ,,: .? ::::: ').

Displays >,

Displays >': :::' ::::: ':i· \'. The middle characters
in variable A$ were never changed.

To avoid confusion, delete the end of string as follows:

Replaces characters 2 through the end of
A$ with null characters, reducing the
string length.

Now when you run the program, the string in line 60 will be displayed as expected:

\'

String Functions

The HP-85 provides seven different functions to enable you to determine the length of a string and analyze and

manipulate its contents.

These functions are:

String Function (Parameter) Meaning

! . E 11 'string! Length of string .
F !

..
;:::: 'string 1., string 2:;; Position of string 2 in string 1.

',,'i'Hi! . 'string:;; Returns the numeric value of a string expression composed of digits .
i)HL.. ,!,: .;: numeric expression::- Generates a string representing the numeric value of a numeric expression.
i : H I:::: :f 'numeric expression::- Converts a numeric expression to the corresponding character,
tl!.J I"! .;: string ::- Returns the decimal value of the first character of the string.
!...! F' C: :'!': , string ::- Converts ali lowercase letters in string to uppercase letters.

The Length Function

The I. E r'1 (length) function returns the number of characters in a string expression .

. I:: r1 'string expression:;'

Section 8: Using Variables: Arrays and Strings 139

The current length of a string expression is returned. Remember, a string variable isn't always "full"; the length

isn't necessarily the maximum length that you give it in a !::) ~ i·'i statement.

Examples:

Length of string ""123".
Result of ':: j-j function: 3 characters
long.
Assigns string to variable A$.
Finds length of A$.
Result: 12 characters long.

Notice that the string expression may be quoted text, a string variable name, or a substring. The expression must be

enclosed within parentheses.

Example: Write a program that will let you enter a character string of up

to 40 characters in length. Then, using the I::: j .. j function, compute and

display the word with the characters in reverse order. For instance, if you

input !: :::::r, the program should display T ::;:: C.

.10 [11['1 ~,j:H40J .. P$[40J

• 20 P$= n "

• :3 0 [I I :::W ,,~,W FW " .:
• 40 I tWUT ~H
• 5t~1 FOP I =LEt·~ (~H:;' TO 1 ::;TEF' -1

• 60 Id=fU:UHC: I .' I]

• 70 t·~E::<T I

• :::: [1 [I I ::; F' P:$:

90 Et·W

After you enter the program above, try spelling some words backwards!

Dimensions the string variables to be a
maximum of 40 characters long.
Initializes R$ to the null string.
Displays a message to prompt an input.
Inputs a word.
Uses length of word for loop counter and
counts in reverse order.
With the string concatenator, adds char­
acters to variable R$ in reverse order.
Defines end of F Ci F: - I·! E: i: T loop.
Displays reversed word.

8
i ... iCii?C)'::'
C: FI'r

The program reverses the order of the
characters in the string-including spaces
between words.

8
\' E: i.... 1.... () i ... i F:' FI C; E: ::::;
<::; E: C; I:::' F' i ... 1 C) 1.... L.. E:: \'

140 Section 8: Using Variables: Arrays and Strings

After a string has been modified, L.. E f'; may return unexpected results:

Example:

1 U ~:::*:=" Ar·HJ II

• :? U [i I ~::: F' L E rj 0: i:i :*: ::.

3~::1 HtL3J=::"T"
• .::!. U D I ~:::: F' H :1':
• ~::~r! [) I ::::;F' L..Ft·~ (A$

Displays .. ::-.

Displays i' :'1 T.

Displays :i. I:::, the default size of A$.

The length of A$ has increased to 18 because !:::I :,n:: 3:J (in line 30) is an open-ended string specifier, that is, a

substring whose beginning but not ending character position is specified. This will happen whenever open-ended

specifiers are used to replace a portion of a string that includes the last character. To avoid confusion, use a full

specifier, for example \:::1 t c: 3 ... :1: ... 1:::: II T "

The Position Function

The P :=: I::: (position) function determines the position of a substring within a string .

.... i.": ~::, ::: in string expression.. of string expression:::

If the second string is contained within the first, the F' C ~:::: function returns the position of the first character of

the second string within the first string. If the second string is not contained within the first string, or if the

second string is the null string, the value returned by the function is zero. If the second string occurs in more

than one place within the first string, only the first occurrence is given by the function.

Examples:

':: ':::'!::: "j . :1:::'; Finds position of second string in first
string. Result: second string begins at
sixth character position.

:i. Result: first occurrence of" AB" within
first string.

::::: ::/:= ::::: Ii C: () (I j:::' C! ::;;; E:: F: "
E;::/:=::::: i! ::::'C!I;;;;E ii

I'" C! I:;:; ::: i:::i::/:= .. E:; ::~: ::.

Be sure to separate the string expressions by a comma.

Converting Strings to Numbers

Position ofB$ in A$.
Result: B$ begins at fourth character
position of A$.

Normally, the characters in a string are not recognized as numeric data and can't be used in numenc

calculations: Usually, you want to deal with strings as character information rather than numeric information.

With the i,j H 1.... (value) function the numeric value of a string or a substring of digits, including an exponent, can

be used in calculations.

!) H 1.... ::: string expression:::

Section 8: Using Variables: Arrays and Strings 141

For example, suppose

If you want to obtain the numeric value rather than the literal substring of' '257684321", you must use the !) (::1:

function:

Gives numeric value of A$ from character
10 to end of string.
This is a number, not a string. Note that the
system indents positive numbers; i.e., the
space before the number is for the sign (if
any). Now, this number can be assigned to
a numeric variable and it can be used in
numeric calculations.

This is a substring of A$. A$ [10] is not a
numeric value. Notice that no space pre­
cedes the number to specify the sign. The
string cannot be assigned to a numeric
variable nor can it be used in numeric
calculations.

When you use the !) I:::: L. .. function, the first character in the string to be converted must be a digit, a plus or minus

sign, a decimal point, or a space. A leading plus sign or space is ignored; a leading minus sign is taken into account.

The remaining characters in the string or substring must be digits, a decimal point, or an F:. An C: character after a

numeric and followed by digits (including sign) is interpreted as an exponent of 10.

Examples:

!,) ::::i L.. <:: " ':H:::-··<::: il >
C!'::i· The function outputs the number in

standard format.

A string can contain more than one number. All continguous numerics are considered a part of the number until

a non-numeric is reached in the string.

Example:

E:;!:=!! 43 SCOPE ~5911

!,}Hi.... 0:: [:,tC 9 J)
:59

As long as the first character is a
numeric, the '..' i'''i L.. function converts the
string to a number until it reaches a non­
numeric character (the '::::-trailing spaces
are ignored).

But you can convert the remaining
numerics in the string by subscripting
the string variable. Here we specify the
numeric value of B$ from character posi­
tion nine to the end of the string.

142 Section 8: Using Variables: Arrays and Strings

Converting Numbers to Strings

The ') I:::! L .. 1:: function is nearly the inverse of the I,}!,,! L function. With the ',j I:::! 1.... :\:: function, you can convert a

number to a string representation of the number in standard format.

:,} !":! 1.... ::1:: 0:: numeric expression)

Examples:

!,}t·:=:I)AL..$O:: i20)
')$

! .. J :$: :::: i,) H L.. ~f. (4l ::: >
~,~ :$:

X$=VAL$O::SQR(64»
i:: ::f.:

Character Conversions

Result of executing V$; V$="120".

W$ "32".

X$ "8".

If you look at the table in appendix C, you'll see that a decimal number corresponds to every character, symbol,

and key. The numbers range from 0 through 255. There are three functions, C: H I:::: ::\::, ['-iiY"'i, and !...! '"<:: $:, that

enable you to convert a number to its corresponding character, convert a character to its corresponding decimal

number character code, and convert small letters to capital letters.

Numbers to Characters

The C ! .. j F ::f:: (character) function converts a numeric value in the range -32767 through 32767 into a string

character. Any number outside the range 0 through 255 is converted MOD 256 to that range. Any number less

than - 32767 is ,,: .. (the same as C H f,: t .: 1.)); any number greater than 32767 is t: (the same as C H I:;:: ::!:: .:: ., '-', "'.).

c: !···I I? ::)::: .:: numeric expression)

Examples:

C: 1···1 I? l .:: :::;: '::; ::>

*~
C: H F:::I:: .:: :i. ;::: 6 .'
:~::
C:HF::l':: :i. !:=.;::.
i::i

C: i···j I?:l , .;::; :.

I,

One of the most used numbers is 34 (this is the decimal number for a quotation mark). Often you may want to

use the quotation mark in a i:::' F: I j···j·r or L) I ::::; i:::' statement. Since the beginning and end of a literal message is

defined by a quotation mark, you cannot use the mark itself. Instead, use C::i-.. i 1:::- ::1::;: ", ,:.!. ',.

Section 8: Using Variables: Arrays and Strings 143

·····f : ,i,! :':::'::::' j ::

..... () : . ..!

Characters to Numbers

The j ... j ii j"j (numeric) function converts an individual string character to its corresponding dec imal val ue.

,.., , , '" ;:: string expression::'

Thus you can find the decimal number code of the corresponding character without having to look it up in the table

in appendix C.

If more than one character is included in the string expression, the ,., ' . .t!'j function finds the decimal equivalent of

the first character.

Examples:

Lowercase to Uppercase Conversion

To display,." type A while holding down

the G key (N).

To display'!, type P while holding down

the G key (PC).

Converts only first character of string.

The '.J F:' :=: :$: (uppercase) function enables you to convert a string with lowercase letters to a string composed of

all uppercase letters.

, :::: ::i:: ;:: string expression::'

Examples:

H + ::::: i ... i F' c: ::j:: >:: "'1 ::j:: ')
j ... j :$:

'lE: ':::;
l .. .l F' C: :$: ;:: " ':::; C) r'i E: I.A j"" ::::: () iii .:::' 1:::1 f) I.) i···j ,. >
~:::; C! !':'! E: l . ..i F' ::::; Ci [11 E D C) i.·.j i""

Assigns M$ the string shown in lowercase
letters.
Assigns N$ that string in uppercase letters.
Recalls N$.

The string need not be composed of all
lowercase letters to be converted to all
uppercase letters.

As you may have noticed from the table of characters in appendix C, lowercase letters have different decimal values

than uppercase letters. The uppercase function allows strings to be compared without regard to upper and lowercase.

144 Section 8: Using Variables: Arrays and Strings

For example, part of a program might be:

Assigning Values to Variables in a Program

User may enter \', ::-.. , ::-. ':::' ::::., '/ E:: ':::;, etc.,
and the program will branch to statement
80.

You can assign values to variables using a program statement or by an input from the keyboard. Thus far, we have

discussed the L.. c:·r (assignment) statement and the I i···j F> :.:"T. statement with regard to simple variables. This sec­

tion covers assignments to the elements of arrays, initializing variables, and three more statements that are used

for assigning values to variables: i:;:: E: ::::: L\ L! ::::j·r 1:::1, and F: E: ::::;·r C) i? E:. These statements are useful when you have

a large amount of data that is reused in different places in the program.

Assigning Values to Array Elements

Elements of an array are assigned values in the same manner as sim­

ple variables: from the keyboard or within a program. But a particular

element must be referenced by its subscripts. For instance, t'1 (i .' ;? ::.

refers to an element in array M and may be assigned a value and used

in calculations as a simple variable.

Example:

:[0 OF'T IOr·1 E:H:::;E 1
• ;:::0 [I I t'1 1'1<3 .. 4)
• 30 LET 1'1 (1 .. 2)::::10
• 40 H=I·1(1 .. 2) ?

50 PRINT M(1 .. 2) .. H
60 Et·W

Dimensions a 3 by 4 array M.
Assigns element M(l,2) the value 10 .
You can use this element in calculations.

If we had not dimensioned array M, it would have been implicitly dimensioned with upper bounds of 10 for each

subscript.

The program below enables you to input values from the keyboard. The F:· C) i?- i···j I::: ::-:: ·r loop is the most efficient

means of manipulating array variables.

I

Example:

IU C! TIOt··, E:H:::E :i.
.. 'I--"! D 1,1 H(5)

.3U F F 1:::1 'ro 1:)

::: i:J I',,! t:::::: T I
t:;~:'i FOF~ 1::::1 'ro ~s

• ?'i;::i FPI!··~·r ;'A(!'.: T.:)::II,:A(I)

c:n ~·.iE;:'::T

:7!:J E !"~D

Section 8: Using Variables: Arrays and Strings 145

You must assign each array element its
value, individually.
Assigns the elements of array A the values
you input.

Then prints the array elements.

Run the program, now, with the numbers 33, 48, -\6, 3, and \0.

'''=

·····16

:::~:
,",

..... :::~~ :::~;

':::1 =:: ;;::~

j:::!::: :::~: :::::·····:!.1:::;
!:::!;:: :::1':~:
!:::!::: ~:::;

Let's see how this is done with two-dimensional arrays:

Example:

• 11:3 OFT IO!"1 t::H:::;E
• ;2(! Dlt'! K<:::;., :=:'i)

3Ci FOP 1:::::i TO :::;:
4~~1 FOr::: .j= 1 TU :i
~50 D I ::=';F "f;::U~'.i".: I.: II CClLUr'1t-~" .: oJ

.60 It··iPUT t:::< I.' .J)
"1"0 i"~E::::T .. J

You can see that assigning values to array
elements with a;::' I:! i:;:'- i·i F: : "i' loop
is indeed faster and easier than using an
assignment statement for each element,
especially with large arrays.

Lower bound of array is 1.
Dimension 3 by 5 array K.
Nested !::. C F: - i···j F' loops.

First input all elements of row 1,
then all elements of row 2, etc.

146 Section 8: Using Variables: Arrays and Strings

There are many ways to assign array elements values within the program. The following program uses the loop

counter to produce a list of squares of consecutive integers from I to 15.

.. :;~ 1:::1 F' Ci F~ I ::::: :1. 'r C) :1. ~:::;

:::1- i~::i ::::; =:: T ::= ::::: I ::~:: I

:;;;; (:1.:i.
... I::: :::1'
... .':;= ~:::l
... , :::j
...

I i:::i" .. 2::::;
...

I !:::= ::::: !~:;
, ..'::

... I :::}.:)

... I

... , ::)
: :', :::::.1 .

...
I :I. U ", :l. C1C!

... , :I.
., ...
.I "! •... ,.j

.i. I::: . .!.
...

I t
... ...

1._ • :!.<.:::j .
... I :i.
...

I :I. I::~
... , :!. i:::' ... , ;;::~ ;;::~ ::::;

Initializing Variables

..... .' ::. I ,::

G?
INITIALIZE

I LOOP

IS
NQ LOOP

COMPLETE?

YES

INITIALIZE
NEXT

I LOOP

IS
NO LOOP

COMPLETE?

It's good programming practice to initialize (set) variables to their starting values in a program before you use

them. All numeric variables are initialized to undefined values by I:;:: i..H·j or I r··1 T ·T. Thus, if you access the variable

before it is defined, an error will occur.

As long as you assign the variable a value before it is accessed, you will not err. For instance, the following

programs on the right cause warning messages (with L) E F H !.J 1.... --r' C r·n or error messages (with

D F F H U L T 0 F F) to occur. With DE F H U L T ot·~ the specified computations or programming operations will

be performed. But a warning message is displayed to alert you to the error and the unassigned variable will

remain without a value.

Correct

Correct

", ··:····:;:·:1· ...

l::::; ii·'

Section 8: Using Variables: Arrays and Strings 147

Incorrect

~ .. ; .::~; ,; ; r; ', .. !

Lz~:o isi:::~sed::;as the default value of T~ but T remains

undefined.

Incorrect

[~;L ~~~~ed f::;U:i~~ :' :~:"ble th", h" not yet boen
assigned a value.

:, .:.; :"

If you don't plan to assign values to all array elements in a program but want to be able to access any of them, you

can easily initialize them using !::: C)!:;:-- !"-!!::: .. :'r loops. For example, suppose we want to initialize all elements of

array A to 0:

:!. C! !:) I 1"'1 H >:: c: ! .::). "

;:::: C! F' () !:~: I::::: i:::1 'r () I::::
:::~: D F' C! F~1 ::::: !;::l T' C! :::1·

• :::1· Cl !:::I < I "/ ::= ::::: (J

~::; 1;) i'··j E: ::< 'r !
6 I?! 1'", E ~:.:: 'r I

The !? E H D and LJ H T' f:i Statements

Initializes the elements of array AU
one at a time.

Many programs require you to enter large numbers of data items into the computer. You can accomplish this

with the I r'O! F' t..1 T or 1.... F 'r statements, though it may be cumbersome to do so. If you had used an I j"'~ ::::= i : .':'.

statement and decided to run the program with the same values at a later date, you would have to reenter all of

the data once again. BASIC programming language provides a more convenient means of assigning values to

variables in these instances-by using the the F: E: P D and U ,::, 'r ,:::, statements.

148 Section 8: Using Variables: Arrays and Strings

The F: E:: !::I [) and [) f=! T ~i statements work together to assign values to variables within a program.

f;: EJi!J variable name1 [.. variable name2 ... J

::) !:::!T H constant or string [.. constant or string ... J

The F: E: H [) statement specifies the variables whose values are to be assigned from within the program. The

variables in a F: I::: !:~ [I statement may be simple variables, subscripted variables, or string variables, and they

must be separated by commas.

The L: ! ... ! r I:::! statement contains a list of the numbers or character strings that will be assigned to the variables in

the r" [:: H !:::; statement. The numbers or strings must be separated by commas. Each r", ... , T I:'! item must correspond

to the appropriate variable of the same type in a F: [H [) statement.

• :::~: [1

r-,!!!.;
rr:.U!'i

F E: H D ti l .' f=! .:: :i. > .' C
IF C)3 THI:::N PF:INT Nl;H(l);C
[) !'i T H "fj H !'1 I::: " 4 ~3 .' 6

These statements cause "NAME" to be
assigned to N$,43 to A(l), and 6 to C.

In L H ! H statements, text may be quoted or un quoted. Here are some restrictions on unquoted text:

• Leading and trailing blanks are ignored.

• Commas in the text are interpreted as delimiters between items.

• If the first character is a digit, a plus (+), a minus (....) or a decimal point (,), the item is evaluat.ed as a

number.

All L! I::! T' ,:::! items must be constants; for example, a variable name will be regarded simply as text. Numeric

constants may include a leading plus or minus sign and a decimal point, and may be expressed in exponential

notation with exponent E, for example, - ~~ , I:::; 1. ::::; [... <~ '). Very large and very small numbers are converted to

exponential notation in the [I H T H statement when entered in the program.

The C, H T !:::! statement is simply ignored in a program if there is no corresponding :~: !::: !:::!!J statement. Therefore,

a L) r::!T f::! statement need not correspond exactly with the I:;:: !:::: I:::! D statement. Your [) ,:::! T' ;::, statements can contain

more items than accessed by the F: E H [) statement, and they can be positioned anywhere in a program. The

important point is that the order of [)!'i T H statements within a program determines the order of their use.

For example, load the following program and run it:

• .L I>; e! i:::!''!'' !:::! ,::!. c=
' ... :. ".::' J : ", ::...., ::::; ~ ::::

;2 U F' CI I:;: I ::::: :i.
.3D F;::EHU >-::

'::1· ~'::1 F !;:: It··, T ::<.; II ::::; Ci t . .! H !? ED::::: II .; ,..:, ;;:::

::='i 0 t·j E >:: 'r I
60 EI··jD

PUt·j
;2 4 :::; CI !...i fl F:: ED:::: ~:i .? 6
8.3 SClUAPED= 68.89
1.? :::;1) !...iAF:E D::::: 2::::9
1.9 ::;OUfiPED::: 3(;1.

Extra data items are ignored.

Section 8: Using Variables: Arrays and Strings 149

The system uses an internal mechanism, called a "pointer," to locate the

data element that is to be read. The left-most element of the lowest­

numbered Li i:::i'r i:::i statement is read first. After this element is read, the

data pointer repositions itself one element to the right and continues to do

so each time another data item is read.

After reading the last element in a Ci i:::i r i:::i statement, the data pointer

locates the next higher-numbered L:i i:::i T i:::' statement (if any) and reposi­

tions itself at the first element in that statement. But if there are no higher­

numbered j ... i:::i statements, the data pointer remains at the end of the

last j , ,···,·T i:::i statement; any effort to read additional data will cause a joi r',

L..i i'" T i:::, message to be displayed.

For example:

Assigns 4 to N.

}
First, assigns 9 to 0 and I to 01; then, 8
to 0 and 4 to 01; finally 7 to 0 and 9 to 01.

I:::; ;:::; [)i:::i'T'I:::1 .::j.

7R DATA 9,1,8,4,7,9

CI)
'::1·[1

Error 34 on line ?R Since N =4, program tries to read more
values for 0 and 01, but finds no more
data available.

The L) i:::j'r i:::i statement in the last program can be entered in a variety of ways. For example, the following represen­

tations are equivalent:

Note: We do not change the order of the items themselves.

or
(; U 1:::1 i:::l T' ::::1 ',+, "':'

I::> ;:::~ D !:::j'r !:::\ :!. ,! =:::'

!:::;:::l. [) i:::!'r 1:::\ :··t·,'

j:::: !;::: [I ':::1 'r j:::\ <:~!

or
,::;':) [)H'T"!:::! ,::j.,':::I, 1
,::;.;:::; [)F!T'j:::! ':::0, ,::j.,,.. :)

Even though the data items can be entered in one or several C! f::j T' H statements, as shown above, the order in which

they appear must correspond exactly with the order in which you access them.

150 Section 8: Using Variables: Arrays and Strings

The I:;:: E: H D and D H T H statements are often used to assign values to array elements.

Example:

1[1 FOI:;:: I:cl TU 5
~~:[1 FOF.: . ..1= 1 TO 5

• 30 F:EFID 1:1':: I .' , . ..1::'
40 !'~E:<T ,..I
':'::0 tjE;:'::T I

• (:0 DI=iTH 1,2,3, ':f, 5, 2, 4, 6, :::,1>3.,3, (;
, ~! , 1 ;2, 1 5 , 4, :::.' :I. ~::, 1 6 .' 2 0 , 5, 1 0, 1 5 , ~::: [1

: ;;::: ~5
,1) FOF: I:: 1 TO ~:5

;:::0 FOF ,..!=:: 1 TO ~5

• '::i ~::! t' F: I t·~ T f:!':: I, ,J)

t. UO !!E:':T ,--'
.1.10 FF.:lt··iT

J 20 tjEi:T I
j~3~::! [!!D

,::1· 1::"
I

(. ::::: 1 (1

:) .') 15

4 :I. ,::: :!. (: 2.=1

Notice that you must i) ~::. each array
element one at a time.

[) 1:::1 T H items need to be entered only
once. The program can access them each
time it is run.

The semicolon causes printed items to
be retained in the print buffer.
The extra print statement forces a print
after each row.

You can see a number of things about F: E: F! [I and Li !:::i'r H from the examples above:

• It doesn't matter where the U H T fi statement is, in relation to the I:::: I:::: 1:::1 L! statement, as long as the data

items correspond to the variables in the F: E: F! [.J statement in order and in type.

• More than one I:;:: E: H [) statement can access a [) }"I T H statement. As each !::::!:: H!:::: is executed, the L! H "T Fi

pointer moves to the next data item. There must be at least as many items in the set of U H T H statements

as there are variables in the F [fi D statements. Extra data items are ignored.

• The items in a data list must be either number or strings.

• Variable assignments made with !? E 1"'1 D and U H"T' !'::! statements are part of a program, contrasted with

variable assignments made with the It·; t' u'r statement. Thus, the data is stored with the program and

will remain with the program until the D H T H statement, itself, is changed.

Note that [i:::! T I::! statements should not appear in multi statement lines or in T I:::'

because the [) I:::! ''1'' I:::! values will not be properly accessed.

Rereading Data: The P E: :::; T 0 i? E:: Statement

'r ! ... ! L. i··i ... I !.... ':::; 1'::: statements

Up to this point we have been able to access D H T H items only once in a program. Once the data pointer moves

past the last data item in the last D H T H statement, an additional !? E H D statement causes E!"'!'" (:)!'" :::;: ,::j.

i"'! (J [) H T H. Of course, if the data items have been assigned to variables, you can use the same values again by

using the variable name.

But certain programs may require some, if not all, of the data to be read more than once. BASIC provides the

F:: F ::::; T 0 F: [statement just for this purpose:

F: [::; T 0 F E [statement number]

Section 8: Using Variables: Arrays and Strings 151

The !? F: ::::;.'1" Ci i? E: statement resets the data pointer to the first item of the specified statement (or the first item of the

lowest-numbered [) r::\ T· \:::\ statement in the program if no statement is specified) each time it occurs within a program.

For example:

;::::0
• ::::0

,::j·O

'5 I:)
60

~::;
.j I:::"
.I.1

I F· c: :1': j:!: " i··.1 !i

F: r:: :::; 'r CI F: F:
C;C)TCI I (j
F'I?::: I···i·r !:::\ .. E:
G C) 'r (J :l 1:::1

[) !:::\·r \:::\ '5 .. :t I?,
i···j"

;; 'Y= ii . . .:~: :

As you can see, the data pointer is continually reset to 5 in the i···, .:::, T· \:::\ statement each time' 'N" is read and

i? E: ::::;T Ci i? i:::: is executed.

System Memory and Variable Storage

Storing Variables

Byte is computer language for a "memory location"composed of eight bits (binary digits). It is the basic unit of

memory, equivalent to one character of information. A kilobyte is a unit of 1,024 bytes (210) and is abbreviated

as "K".

The HP-85 has 32K bytes (or 32,768 bytes) of read/write main memory; 29,905 are available for your use. Each

of the HP-85 Enhancement ROMs requires a small amount of main memory for working storage. For example,

the I/O ROM requires 416 bytes of main memory. Refer to appendix A for a list of HP-85 Enhancement ROMs

and their memory requirements.

Use the following tables to determine the number of bytes that variables need in order to be stored in main

memory. (Do not confuse storing in main memory with mass storage requirements. Mass storage will be dis­

cussed in part III).

152 Section 8: Using Variables: Arrays and Strings

Simple Variables Bytes of Memory

Full precision 10 bytes
Short precision 6 bytes
Integer 5 bytes
String 8 bytes + 1 byte per character

Array Variables Bytes of Memory

Full precision 8 bytes + 8 bytes per element
Short precision 8 bytes + 4 bytes per element
Integer 8 bytes + 3 bytes per element

You have already noticed that at the end of every program listing, the HP-85 displays the number of bytes

(or memory locations) remaining in system memory. Press c::J or execute the I i···j I ·r (initialize) command before

i ':;·r or F> i I::::;·r so that the memory displayed will include the memory required for allocated variables.

If you do not wish to 1.... I ::;·r the entire program to recall the memory, type 1.... I':::;·r and then a statement number

larger than any in the current program. For instance, you could execute L .. .L ::::' i ') '::«:::; to display the number

of bytes left.

You need not have a program in memory to execute .L ':::; T. If there is no program, the system merely outputs thc

number of bytes available.

Conserving Memory

Large programs that involve large amounts of data sometimes need more memory than is available for use. You can

conserve memory by:

I. Limiting the use of i? E: i·'! statements and comments in a program. This limits program readability and doc­

umentation, but it does conserve memory.

2. Using ::::; i··1 C! F'·r and I I···ir E: c:; E: i? precision array variables, whenever possible or convenient, rather than full

precision. This is a very good way to conserve memory in a program that has a lot of data and is most useful

when dealing with large arrays.

3. A third way to conserve memory is to break a program down into several sections and ::::: T C f;: E each

section into a different file. Then each section of the program can be brought into memory, one at a time,

using the C H A I t·~ statement. (Refer to section 14.)

Section 8: USing Variables: Arrays and Strings 153

4. Combine statements using" i:i;'''. This reduces program readability, but it does conserve memory by three

bytes per line. For example:

is seven bytes of information while

is I 0 bytes of infom1ation.

Problems

8.1 Here is your chance to invent some new words. Write a program that accepts a base string and a first-letter

string, and then prints the "words" formed by combining each of the first letters with the base string,

but omitting those that would begin with a double letter.

8.2 One light-year is the distance light travels in one year-approximately 9 trillion kilometers. The distances

(in light-years) of the 27 stars within 15 light-years of our solar system are listed below. Write a program that

will group these distances into intervals of I light-year (0-1 through 14-15) and detennine the number of stars

in each interval. After printing these results, the program should request an interval number, I through 15,

and print the distances for the stars in that interval. Use an I i···i 'r i:::: C; F: i) array for accumulating the interval

distributions. Use a simple ::>"'!C) i:;(T variable for the actual distances and i? E:><::i them one at a time. A

~::~~ C: :::.: T Ci !? E: statement is necessary for the second part of the program.

STAR DISTANCES (light-years)

4.3 10.3 11.5 12.8
5.9 10.7 11.6 13.1
7.6 10.8 11.7 13.1
8.1 10.8 11.9 13.9
8.6 11.2 12.2 14.2
8.9 11.2 12.5 14.5
9.4 11.4 12.7

8.3 The world record, set in 1970, for the 30-kilometer run is 1:31 :30.4 (1 hour, 31 minutes, 30.4 seconds) and

is held by Jim AdlerofBritain. In 1974, Bernd Kannenberg of West Germany set a world record of2: 12:58.0

for the 30-kilometer walk. Write a program that accepts an individual's time for a 30-kilometer course and

calculates the average speed according to

Speed (m/s) = 30,000 (m)
Time (s)

The time is to be specified in hours:minutes:seconds format (including colons). Use the I:::' Ci .:::; function to

locate the colons, and the :.) i:::i L.. function to extract the numerical values from the string. Also, use the pro­

gram to calculate the speed of Sergei Saveliev of the USSR, who set a world record of \:30:29.38 for the

30-kilometer Nordic ski event in 1976, and for Clem Turvy on his motorcycle, covering 30 kilometers in

26:44 (26 minutes, 44 seconds).

154 Section 8: Using Variables: Arrays and Strings

8.4 Although a string variable may not be declared to be an array, it is possible to use substrings of a string

variable to achieve the effect of a "string array." For example, if the words representing the numbers 0

through 9 are strung together with proper spacing, anyone word is readily accessible by determining the

first and last substring specifiers corresponding to the word (similar to the subscript of an array element).

Using this concept and concatenation, write a program that counts from 0 to 99 in this way:

:? L: i?C!
C!i---iE:

8.5 Farmer Flem Snopes wants to install irrigation sprinklers in his three strawberry patches. The table below

gives coverage diameters for a particular sprinkler design at various water pressures and nozzle options.

Write a program based on this table that asks for the width of the irrigated strip (which determines the

minimum coverage diameter) and the available water pressure at that location, and then specifies the

appropriate nozzle option. Use the program to find the nozzle options for Snopes' east strawberry patch

(150 feet wide, 75 psi pressure), his southeast patch (140 feet wide, 75 psi pressure), and his far-north patch

(140 feet wide, 60 psi pressure).

Coverage Diameter (feet)

Nozzle
A B C D

Option

Water
Pressure

(psi)

60 124 133 138 142
65 126 136 141 146
70 129 139 144 149
75 132 142 147 152
80 134 145 150 155

155

Notes

Section 9

More Branching

There's much more to branching operations on the HP-85 than I!:::· ... 'T" ! .. !!:::: ! .. ! and C;CiT" Ci. The system enables

you to define your own functions and use them in programs, just as you use the built-in functions. For longer pro­

gram segments or routines that are often repeated within a program, the BASIC language provides subroutines that

can be accessed any number of times within a program. In addition, the system contains three timers that can

interrupt a program in the time intervals of your choice. Last, but not least, we'll discuss the special function keys­

how to define them so that when pressed, they immediately cause special branching in a program.

Defining a Function
If a numeric or string operation has to be evaluated several times, it is convenient to define it as a function.

With the DE: F F t1 (define function) statement, you can define your own functions within a program and refer­

ence them in exactly the same manner that you reference the system's built-in functions. A function must be

defined in the same program that references the function. The definition can appear anywhere in the program,

before or after the function is referenced.

U E: F' F' ! .. ; numeric variable name [<parameter::O] [:::::numeric expression]

L.i t:. r" F !' .. ! string variable name [0:: parameter ::0] [:::::string expression]

Once a function is defined, it can be used by referring to the function name. A numeric function name must

consist of the letters F' ! ... j followed by a numeric variable name. A string function name is a numeric function

name followed by a dollar sign, :t. If the function requires an argument, then it must appear immediately after

the function name, enclosed within parentheses. The parameter may be any simple numeric or string variable

name. Array names are not allowed. The length of a string argument passed between a function and the main

program defaults to 18 characters. But you can allocate a larger string in the function definition. Refer to page

163.

Single-Line Functions

The simplest form of a function definition is the single-line function. The function is defined in one i"""i !:::: F:: , ... !' .. !

statement with an equals sign separating the function name from the expression assigned to the function.

For example, the following program defines ,::: !' .. i>: ;:::' as the X2 function and then uses the function to evaluate 82 .

10 REM tX SQUAREOt
• 20 OEF Ft·j::<2 (t·j::' :=t··ltt·j
• ::~O D I :::;p Ft·j>::~::':: ::::::.

40 Et·jD

RUtj
6·:+

Defines function FNX2 .
Displays the value of FNX2(8).

The parameter, i···i, in statement 20 is a dummy variable used only in the definition. It is replaced by the actual

variable or expression when used to evaluate the function. In this case, I"" is replaced by 8.

157

158 Section 9: More Branching

All user-defined functions may have, at most, one argument. The function is evaluated using that argument to re­

turn, at most, one value at a time.

But a function need not have an argument. (Recall the F' I, E: F> ::::;' and I j ... j F' built-in functions.)

Examples:

.L i:::! i?E: !Y! ::1:: F' :1 .. :::;;";:: .. :1., : :::::=::)j"',::::: '1: .:::!!"'j 'j:

20 DEF cNH=6. 625E-~(

U [: F F'!! statements are not allowed after T H I::: i··j or E: i . ::::: I::: and should not be included in multi statement lines.

A function definition cannot be recursive; in other words, you may not use the function that you are defining in

the expression that defines the function or in any user-defined function referenced by that expression. But you

may use any other user-defined function that has been fully defined elsewhere in the program, and of course,

you can use any of the built-in functions in the definition.

Example: Write a program that defines function ;:::. j' .. j::;:O to round any given number to the hundredths place. Then

use F j ... j j:;:' to display the square roots of I, 1.5, 2, 2.5, ... , 10.

10 REM tROJND TO 2 DECIMAL PLAC

• ;~::: ij F' C) i? .;. ::::: :!. T C) :t~) =:::; T' E F'
30 DISP I,FNR(SQR\l.

F:!...!f··i
:i.

j' .. j E:: ::<r j

[) E: F' j:::' j ... j F' (D ;::::'

:t. ::::!

2. ;:::;
:::~:

:::~: . :::i

:::!'. ::::;
~:;
i::; ~::;

~:.

6. I:::;

.• ':: I:::'
f1

;::::. ~5

::;'
9. ~=;
10

:I.
:!. . ;;::~ ;;::~

'j I:::',"',
.I ..•• ..!:::::
:i.. (' .. :::
:!.. ;;;;;/'
;;::
;:::~. :I. 2
;;::~ . 2 1::i·

.•. 1::'1:::'
I:::1 .• ..1

ON ••••••• Z

~::.

:::~
:3.0:::::
::::. 1(::

I::' '"
. . ..1 .. :

Notice the use of non-integer steps.

Defines rounding function.

Displays square roots of number in left
column, rounded to hundredths place.

A function definition is a declaratory statement and may be placed anywhere in the program. It merely defines the

function, and is ignored by the program unless it is referenced elsewhere by the function name.

See problems 9.1 through 9.3 at the end of this section for more examples of single-line functions.

Section 9: More Branching 159

Multiple-Line Functions

Often, a single line is not enough to define a function, especially if the function contains lengthy computations

or loops. Multiple-line functions work much like single-line functions in that the function can contain at most

one argument and return one value. Again, the function definition may be placed anywhere within the program

since, as a block of statements, it is non-executable unless it is referenced by the function name.

There are three basic parts to the multiple-line function definition:

1. The first statement is the :::) E: F F j"; statement. It is the only::::; E F c' j"; statement that may occur within

the function definition.

2. The last statement is the F' [.; E !'1 U (function end) statement.

3. At least one of the statements in the function definition should assign the function name a value.

Unlike single-line functions, the function definition is not included in the [) E F F j ... j statement. Only the func­

tion name and argument (if any) must be declared.

The "'!; !:!;::::; (function end) statement defines the end of a multiple-line function. Its syntax is simply:

::::: i·! [:; statements are not allowed after T Ii E t·; or E: L. ':::: I :, and should appear as the last statement if included

in a multi statement line. The F j"; t::: f"! U statement must be entered in a program before the program can be

initialized with the I j ... j I T command or renumbered with the I:;:: t::: j ... j command.

Any number of statements can be included between the U E: F' F' i···j and F i···i ':::. ,', i.e statements. But one of these

statements should assign the final value of the function to the function name.

For example, this program defines a function that converts an integer with a decimal base to its octal equivalent.

~::: U r··!;:::; ::::: i:)
.;. (j I::::::!.
::::; ij i) ::::: I F' (U·"" ;:::; ::0

• 6U N8=N8+(U-Q*8::O*I

•
• :!. (jO
• :!. i.e,

I ::::: I ::1:: 1 !~::!
IF [)i*O

F' r'~ ();,:: [,1 ;:::;
F'i"~ l:::i···ID

Defines beginning of multiple line
function.
Throwaway the fractional part of the
number to avoid an error.

Initializes variables N8 and I.

Converts decimal value to octal
equivalent.

Works for both positive and negative
integers.
Assigns function name a value .
Function end .

The dots by statements 10, 100, and 110 indicate the essential parts of a multiple-line function.

Again, the program segment above only defines the function. In order to evaluate the function, you must reference

it in another part of the same program, replacing the parameter D with the desired expression.

160 Section 9: More Branching

For instance, add the following statements to the program segment above.

i:::' i? I !"'i T' "U E: C: I i"i !:::! L .. ", " C) C 'r 1:::1 L. II

2 FOR J=128 TO 256
,.. F:' F: I i",iT' , .. .I.' j:::' i",j C) (''',! ,
,'+ i",iE:::"; T' .. ,i

8

: '.::: !:J

:!. :::~: :i.
:!. :::~: ;;:::

:I. :::~: :::~:
:i. :::~: :::1·

1 :::~: ~:::!
:I. :::~: i:::;
:!. :::~: '?
:i. :::~: : ::::

:I. :::~. Ci
:1. :::~. :1.

::::.=::.!::::.
;;::~ i;::! :::~~

;;::: :i. :::~:

;;::: :!.<'
;;::~ :!. ::::i
;;::::!. (;;
;;::::t '?
;;:::;;:::i?

Notice that we used the variable J as our loop counter in program statements 2 through 4. What if we had used the

variable I in both our main program and in the function definition?

,::i, U I::::: 1

6U N8=N8+(U-Q%8'%I
';:"(:! [!:::::()

9U IF U#U THEN 5U
:l. 0 Ij F' !"'! C! ::::: !"'! ;:::;
1. :i. ~::I F' i"j !:::: i",j Ci
:i. ;::::i::'! E:I'"i[i

This program would only generate the first
value of FNO(I) because the value of I is
changed in the function definition,

Note that variable D in the main program
would not be similarly affected, For
instance, if all of the I variables were
changed to D's in statements I through 4,
the program would work,

The program would not compute all of the values assigned by the loop counter.

[lEC: I 1"IHi.. ..

Section 9: More Branching 161

The point of our discussion, here, is that all variables in the body of the function-with the exception of the

single function parameter-are global. Changing a variable value in the function will cause a corresponding

change in the main program variable. The single function parameter itself is local to the function. That is, how

the parameter is treated in the body of the function has no effect on the corresponding main program variable.

Let's look at two examples of multiple-line functions using string variables.

Example: Write a program that formats a number with a comma in place of the decimal point. If the number is an

integer, supply two zeros to the right of the comma. Consider only numbers with absolute values that are greater

than \ X 10-11 and less than I X \()11.

10 REM *REPLRCE POINT WITH COMM
!:::!

;~::~ !~::! [) E: F' F' i'··j E: ::j:: < ~ ... j ':;

E F$=VRL$(RBS(FP(N)
40 I$=VAL$(IP(N),

Function definition .
• b~ IF ABS(N)<. 00000000001 OR AB Checks for out-of-range numbers.

S(N)~100000000000 THEN FNE$~
ii () \..J'r i..J !'" F~ 1:::\ i"'\ C;E: ;,

'? i~::i F' j"'! C j ... j [)
;:::; (i .i. i"'~ ~:::: Ll 'r Li
90 DISP D,FNE$(D)

:i. !;~i (::i C; C) T' C ;:::; ij
:1. :1. j~::j 1:::: J"'1 1:::i

8

~::i(;. ;;;;; :::;
::::; i::;. ;:::; ~~:;

.j ..;

.1.:.-;-

:i.:::j·

Example: Now write a program that formats a number with commas

every three digits to the left of the decimal point, using a multiple-line

string function to insert the commas. Consider only numbers with abso­

lute values less than or equal to \ X 1011 and greater than \ X 10-11 .

162 Section 9: More Branching

10 REM tlNSERT COMMAS
• ;:::: 1:::1 [) E: r::' F i··i C:::I=: ;:: ! .. j > Beginning the function FNC$.

i···j:!. :::::I···j

40 IF ABS(N)<=100000000000 AND
ABS(N)> 00000000001 THEN 70

80 IF Nl<M THEN 20

:i. ;;::~ c~ "="j ::::: r'i :l. Ci i? C!
:!. :::~: Ci !' .. ! E: ;:< 'f .:.

) Handling an inappropriate parameter
value.

• :!. ':::; ::::1 I::: j···i C:::I:: ::::: i···i :'1': Assigning the function a value.
• 1 C; C! i::: i··j E: i···j !::) Exiting the function.

:!. ;;:~ :::~: :::i·

:1. ;~::~ :::~: /1.

:i. ;;::~ :::~, ::.\. ::::; b (
:1. ;;::~ :::~: <. ::::i i;;;; ';::=

'.,:

:I. ;;::~ :::~: :::1· ~:::! i;;;; '? ~:::~ ~::~i. :I. ;;::~

:!. ;;::: :::~: :::1· ::::i (;: '? ~:::~~). :L;?
:!. ;;::~ :::~: .' <. ~:5 t:::; .' '? ;;;;; ~::~!. :!. ;;:::

Multiple-line functions are not recursive. For example, the following attempt to define a factorial function would

generate an error message.

20 IF \=0 THEN FNF=l ELSE FNF=x

3 I:::! F·i··j E:ioo.!i:)
'::i· U I io .. j F' i..J 'r or
5U PRINT T;FNF(T>
j:::; U C; C) or C) ,::1· I:::!

Error 42 on line 2U
F' i'oj C: 1:::1 L.. 1....

The error occurs in attempting to use the
function name in the function definition.

Section 9: More Branching 163

Note that a !:;;: E: ,:::,!:::, statement included in the body of a multiple-line function may cause an error condition if

the function name appears in a !:::: I::::; i::' or ,:::. F: T '---iT" statement.

As we mentioned earlier, the length of a string argument passed from the main program to a function defaults to

18 characters. You can specify a larger string in the function definition by enclosing the length within brackets

following the string argument. For instance:

Allocates a string argument of 75 char­
acters for the function.

You cannot use the U I i-" statement to dimension the string argument since it is considered a "dummy" variable.

Therefore, you must allocate space for the argument within the 1:::; E: i:::- F ,--j statement itself. When you do this,

the system considers the entire ::::' i:::: F- F- r-; statement, including the allocated variable, as part of the program

line. Thus, the maximum length of the string argument in a multiple-line function is approximately 230 char­

acters and the maximum length of the string argument in a single line function is dependent on the complexity

of the expression that defines the function. If the argument is too large, the system will display

,", ;:::; i::: ;:.:; i···' , , i tJ U F~ T r: If this happens, decrease the length of the string argument until the

system accepts the statement.

Note: Although a string function may accept a string argument larger than the default length, the result­

ing string returned from the function to the main program can be no longer than 18 characters.

Refer to problems 9.4 through 9.6 at the end of this section for more examples of mUltiple-line functions.

Subroutines

Often, the same sequence of statements is executed more than once within a program. By using a subroutine

you can key in the group of statements only once and then access the statements from different places within

the program. If you group all of the often-used routines at the end of your program, you can make the program

easier to follow and understand.

Subroutines are similar to functions in that they can be referenced from other parts of the program. But a

subroutine is not given a name; it is referenced by a C: :::: ::::;!..-' !:::; statement and the beginning statement number of

the routine.

-,-, ,:::- , ,E:; statement number

The ;--::' ,c; ,_J E; statement transfers program control to the subroutine you wish to execute. The statement number

must be that of the first statement of the subroutine.

A subroutine can begin with any statement except i-i E: >:: -r. For example, the subroutine might begin with F ,::: "-',

L..t::: T, r H E:!"--i, ::::- C:; !:;;:, etc. The last statement of a subroutine must be a -r, ,,:::-' , statement.

There may be more than one !? E:: T-;...! F: to; statement within a subroutine. As soon as a

encountered, program control is transferred to the statement following the particular

the routine.

, , ,r':_ ,--, statement is

that referenced

Arguments or parameters are not used to pass values from the subroutine to the main program. As with func-

164 Section 9: More Branching

tions, all variables used in subroutines are global variables; in other words, all main program variables are

accessible in both functions and subroutines. If the value of the variable is changed within a subroutine, it is

also changed in the main program.

For example:

1. (1 [I I ~=.:; F' II E: 1"·1 T E: F.: t·j U i'1 bE: I? II

;2 0 I t·j F' i..,i T t·j
3D IF N<O THE:N 10

• ,::1· Cj :::; CJ ~=.:; i...! E: :I. 1::1 (;I

91:::1 (;OTO :I. 60
100 RE:M tSUi'1 FROM 1 TO N
110 S=(Nt(N+l»/2
1 ;~~ ('! I::' F' I I··j T II ':::;!",i r"j ::::: I I .; :::;

l::5(:! 1:;:'ET! .. '!I?t··,
t 6 Cj \ .. j :::: t··1 :j:: ;::~

Subroutine.

When the program executes statement 40, program control is immediately transferred to statement 100. When a

I:::: E: 'r ! .. '! I:::: 1"·1 statement is encountered, control is transferred to the line following 40. Statement 170 also transfers

control to statement 100. In this case, I:::: E:'r ! .. '! 1:::- \' .. \ transfers program control to the line following 170.

Subroutines may be nested, that is, a second subroutine can be entered before the 1:::- E: 'T' ! .. '! I:;:: \' .. \ statement of the

first is executed.

For example:

10 D I ::;;F' "EtHEP t'Wt'lBEP"
20 I t·jPUT t·j
30 IF N(O THEN 10

• 40 GO::;UB 10(1.3
50 D I ::;p "BACK TO t'lA I t·j PF.:OGPAt'l,"

~~O ::;TOP
1000 PEM tSUM FPOM 1 TO Nt
1010 S=(Nt(N+l))/2
10;20 PPIt·jT "::;Ut'l =".: ::;
1030 D I ::;p "::;Ut'l OF ::;OUAPE::; (\' t·j)"
1 040 I t·WUT At

• 1 050 IF fit = "'/" THEt·j GO::;UB 2000
1060 D I ::;;F' "BACK TO F I P::;T ::;UBPOUT I t·jE"

120.:1 PETUF.:t·j
2000 PEM tSUM SOUAPES OF INTEGEP

::; FPOt'l 1 TO t·jt
2010 S2=(Nt(N+l)t(2tN+l))/6
2020 PP I t·jT "::;Ut'l OF SOUAF.:ES=".: :::2

Main program.

Passes control to line 1000.

First subroutine.

Execution of a subroutine is often
dependent on the outcome of a test.

)
Nested subroutine.

Returns control to the statement follow­
ing the C C ::::: U B in line 1050.

Section 9: More Branching 165

The subroutine at line 2000 is nested within the one at line 1000. The i? E:·r i .. .! i< >i statement on line 2090 returns to

the line following 1050 in the first subroutine. The ::;:'[T·! .. .ii?i···j statement at 1200 returns to the line following

statement 40.

Subroutines can be nested as deeply as available memory allows (up to 255 levels of nesting). When a

executed, control returns to the subroutine that was entered most recently.

See problem 9.7 to write a complete program that uses subroutines.

The Computed C: C, ':::: i .. .! E: Statement

The C) : ... j ••• GO:=':: t..i E: (computed G I] ':=.: U b) statement enables you to access any of one or more subroutines based

on the value of a numeric expression. It operates exactly as an Ci 1'j ... C:: (J 'r C; statement except that instead of

transferring program control to one statement, U j"; ••• ;:; () ::::: U E: transfers control to the first statement of a

subroutine. The F::: E:'r u P t·j statement of the subroutine returns program execution to the statement following

the Ci j"'! ••• C U ::: U E: statement that referenced it. The 0 H ... G Ci ::::: U E: statement is programmable only; it can't be

executed from the keyboard.

U : .. / numeric expression C: U ::: ! . ..i E: statement number list

The numeric expression is evaluated and rounded to an integer. A value of 1 causes the subroutine at the first

statement number in the list to be accessed; a value of 2 causes the subroutine at the second statement number

in the list to be accessed, and so on.

All F: ET U P fj statements in the subroutines accessed transfer program control back to the end of the statement

number list of the U !.! ... C: (J ::::: U E: statement.

For example:

•

•

i [1 FOP ::-:;::::: 1 TO 1

2(:1 Ot·j :-:; GO::::UE:
~~: 0 [.j E: ::-:: T ::<
40 [I T :=.:; F' " DOt··IE J.

100 ::;TOF'
200 PPIHT X;SIN ~~)

290 F.:E:TUF.:t·j
300 F'PINT X;X A 2;COS(X)
390 PETUPt·1
400 PPINT X;X A 3;TAN(X)
490 PETUPt·j

This statement means:

(

If X=l, then GOSUB 200.
........----- If X = 2, then GOSUB 300.

If X=3, then GOSUB 400.
Program control reaches statement 40
when the F C:; F: - :"': Ei:: 'T loop is completed.
P E: T' 1, .. 1 f;:: 1',; in each subroutine transfers
control to statement 30.

Subroutine 200.

Subroutine 300.

Subroutine 400.

If the value of the numeric expression is less than one or greater than the number of statement numbers in the list, an

error occurs.

Problem 9.8 provides another example of the use of the Ci i··j . .. C; Ci ::;:; i' E;; statement.

Branching USing Special Function Keys
You have seen some of the many uses of the special function keys from running the programs in the Standard Pac.

166 Section 9: More Branching

The eight special function keys, Q through GJ (unshifted), and B through c:J (shifted), can be

used to interrupt a running program and cause branching.

This interrupt capability is declared with an C: f"! f:: E \' fr. statement. The : i :.'5:"": ,!* statement specifies the

branching operation that will occur when the related key is pressed.

:: !! : E /1* key number [.. "key label" 1 c; c)r !=; statement number

j< F:;' 'ff key number [, "key label" 1 G C) ::::; !.J E:: statement number

The key number must be an integer from 1 through 8. The key label is a string expression which is truncated to

the first eight characters. When a user-defined key is pressed during a program run, and an ::J i···j \' off state-

ment has been declared for it, the specified branching occurs. With C) i',,! i< t::: / *r. r:: r! :::; i..J E:, the currently ex-

ecuting line is completed and control branches to the specified suhroutine. After the subroutine, control returns

to the line in the main program that would have been executed if the interrupt hadn't occurred-usually the

next line in the main program.

If a program is not running, pressing a user-defined key does nothing.

The j< ;:::. '.' ;:::, i:" ::::: L.. statement is used to recall key labels for the user-defined keys to the display. The statement

is simply:

As you can see from the i::: j"'! v r'" ,H, statement syntax, you can optionally specify a key label in the program

definition of a key. Once defined and labeled in a program, the j< :::' \' j:::i E: r:: 1.... statement causes the labels to

appear on the lower three lines of the display.

All eight user-defined keys can have labels defined and displayed: each one appears in a unique location on the

display, situated directly above the corresponding special function keys on the keyboard.

The ~ key recalls all current labels, at any time, and displays them on the bottom three lines of the display. It

performs the same operation that the i·:: , ... , i. i:::i C: E:: L.. statement does in a program.

Both the ~ and the i< C: '-:"' i···i ; ... j i··· L.. statement also move the cursor to the home position on the display. Thus a

full 13 lines may be entered or displayed before the key labels are over-written .

....... (Cursor position after i< F: '/ L.. i:::i E: F: L..)

This is a sample display with seven of the eight keys
labeled, immediately after i< C: '-:" L.. ::::: C: E: L.. has been
executed.

I:::j [I [I ~:::; T' C) i? E:
I t··1 IT·····!:::! I j···iF'i. . .!·r

Section 9: More Branching 167

Perhaps the following short program can best illustrate the ease with which function keys can be defined and the

rapidity with which they are executed when pressed while the program is running.

?C C~EAR _ KEY LABFL

~00 BEEP l?S 1~~

As soon as you press 8, the display is cleared and the key labels are recalled:

Playa few tunes with the special function keys. The program quickly illustrates that each press of a special

function key causes one execution of the: ::T" / C;! ':iF: as defined by the :: ': statement, and

that one key interrupts another. When a defined key is pressed during a running program, the current

program line is completed before the specified branching occurs.

168 Section 9: More Branching

Notice statement 98 in the Key of C program:

Since C; Ii I::: E:. ·!.':it statements are only active when a program is runnng, it is often necessary to have a place in

the program that does nothing but idle, waiting for a keystroke. We cannot use a :,:>T ,=, F' or ::::: f"! [! statement to

separate the key definitions from the subroutines; program execution would halt as soon as either statement was

encountered. Thus, a c:; (JT C) statement that "goes to" itself keeps the C ,"" ,< E: '/:f!: declaratives active in a

particular part of a program. After a E: E: F F' subroutine in the example, control returns to the line in the main

program that would have been executed without the interrupt-line 98.

f', Ii ,' :i:!: declaratives are temporarily deactivated while a program is waiting for a response to an I ,' .. , F ! . ..! ,

statement. Pressing them on input will cause their related keycodes to appear on the input line. Key definitions

are also deactivated after F' H i...1 ::::; E:: is executed. They resume functioning with F' U , .. ; or ;:::: Ci r'; T. If another pro­

gram is "chained" to the program with the 0 h ,< t::: \' # statements, the key definitions will no longer be active.

(Refer to the C ! .. , !:::, I,"" command in section 14.)

Canceling Key Assignments

The ;<":::.\:':': declarative holds for a key until another declarative for the same key, (SCRATCH), or

< ,::: :,* is executed.

! F' :~: key number

The ;''', ;:::. I:::' i< E: \. :,:,: statement cancels the definition and branching operation of the specified key.

Problem 9.9 provides another example of C " .. ! 1< E:. '-;. :!if statements. Refer to any of the Standard Pac programs

for more examples.

The Timers

Along with the :::; E: I'T :L !·1 E statement and the time functions, the HP-85 provides three individual timers that

may be set to interrupt a program at the specified time interval and cause the specified branching to occur.

Interrupt intervals for the timers are declared with ::J f'" 'T' I!"! E F' # statements. The () ,' .. , T:L i'l ::::: f;,: fi: statement

must be declared within a program.

,) !··II' I !'1 E: F: *1: timer number.' milliseconds COT 0 statement number

() !! T I !"1 E F::f~ timer number.' milliseconds c:; Ci ::; i...i E: statement number

The timer number must be either 1, 2, or 3. The number of milliseconds must be a value less than 1999999991

and greater than 1.51. The sign of the milliseconds parameter is ignored. Zero and numbers outside the given

range interrupt immediately and then wait 99999999 milliseconds before the next interrupt.

When the interrupt occurs, the currently executing line is completed and the specified branching occurs within a

program.

Section 9: More Branching 169

For example, timer #1 interrupts the program every 15 minutes to go to statement 5000 in the following pro­

gram (as long as the program is running). Note that the number of milliseconds may be expressed as a numeric

expression.

5000 TIMER INTERRUPT ROUTINE
5010 BEEP 157,50 @ BEEP 201,50

50,etC;
::5050

E:
f'~

E'
E:

E
A
r c.
[

E P
I T

!

E p

E Co
I

1 7 ::: I::'~ 0 .-

1. 0 0
"~I -::' .- r.:: (I ::::. , .::;: ",)

1 r=
") ('

t::-
,_.1 0

I:!! E: [E P .- "7 ;;:: (' 5 .:::. !

I:!! E: E [P 1 -::' ::: c::; [1 I -
I:!! E: c E P 2 0 ; 1 [1 '- 1 , 0

A timer interrupt will be delayed until all statements in the current line have been executed, except that:

• A timer can interrupt an I i··j F' i . ..! T' statement before values have been assigned to the ,r"! , ... U T variables.

• A timer interrupt can break a multistatement line after a C (J ::::; ! . ..! E, or !' .. ! E: : :'r statement in that line.

The accuracy of a timer interrupt depends on what the HP-85 is doing at the time of the interrupt. For example,

if a timer comes due during a multi statement line with several graphics statements, then the response time for

the interrupt will be slower than if the timer comes due during a line with a single assignment statement.

The timers continue to interrupt the system after a program is halted, but the interrupt does not cause the

specified branching. The timers are deactivated when you edit the program, when (SCRATCH) or (RESET) is

pressed, or when the CI F F 'r I rei E R # statement is declared.

i.J !'" ,.. '-:r 1"1 E F 'it timer number

The ::J :::. !:::. T I r'! [F # statement deactivates the corresponding C'! T I !"I E: t=: # statement. No further interrupts

will occur from the specified timer until it is reactivated.

Example: Suppose you have written a lengthy program which is ac­

tually composed of five separate tests. Set up timers to wait for an

input response from the user. If there is no response within 20 sec­

onds, go to the next segment of the program.

170 Section 9: More Branching

Ci 1"'! 'r I I""! E: F~~ :j:j:
J. !' .. j j ... l .. .i'r ;? ~::~i ::)::

'i ;.: : ;.:. Il'·.j'T ;; :::::i:::.: T .:.: ';'i

And so on.

.: ,

',,' ::

If the user types' 'YES" within 20 sec­
onds, the test will be executed. If there is
no response to line 50 within 20 seconds,
the program branches to statement 800.

Lines 60, 800, and 860 disable the timer
when its function is completed.

Reset timer for second test.

The fact that timers continue to interrupt even after the program is halted is important. Errors may occur if the

timers are interrupting so fast that the system (program) cannot get anything done. Try this:

.l. .: :1, C;C) :;;;; i .. J E;], 1:::11:::1

.: ;:::! Cii···iT" I i"ii:::: i?:i:i: :!. c; C) :;;;; t..! E; :!. j~::! Ci
::;: C! Ci '···iT I i"i E: F: :i:i: i .. :i i..J ::::: i ... 1 E; :!. I;::i ij

First press 8, then press Q. When you press 8 the first timer tries to go to statement 100 but gets interrupted

by the second timer and the second timer gets interrupted by the third, etc. Thus statement 100 may never be

executed or the system will give you an error message. You'll find that the system will list the program very slowly

since it is being interrupted continually. Execute 8, E:J, or the Ci !:::. i:::' 'r I i"i E:: i? :i:i: statement to halt the timers.

Refer to the Standard Pac for more examples using the timers, especially the Timer Program.

Problems

9.I.a. Define a single-line function that rounds a number at the decimal point. Evaluate the function from -5 to 5 in

intervals of 0.3.

b. Define another single-line function that rounds a given number to the thousandths decimal place. Evaluate

this function from I to 10 in intervals of 0.5.

Section 9: More Branching 171

9.2.a. Define a single-line function to compute the area of a circle given the radius of the circle according to the

formulaA = nr2
• Evaluate this function for integer values of 350 to 360.

b. Use a rounding function to display the areas of the circles with the above radii, rounded to the second digit

past the decimal place.

9.3 Define a function that computes the length of the hypotenuse of a right triangle given the lengths of the two

sides. Evaluate the function with one side equal to 5 while the other has values of 4,3 ,6.7, and 9.

9.4.a. Define a multiple-line function that converts a number with an octal base to its decimal equivalent. Test your

program with the values obtained from the opposite conversion in the program on page 148.

b. What if, in the octal to decimal conversion, the original number has an illegal digit, i.e., a digit greater than or

equal to 8? How would you check for an illegal digit and what value would you return for the function?

9.5 Define a multiple-line function to compute the factorial of a non-negative number. Use the function to

compute the number of ways that eight books can be arranged on one shelf.

(Method: P~ = 8·7·6·5' 4' 3·2· I)

What if, instead of eight different books, you have only four different books for each of which there are two

copies? Determine the number of distinguishable arrangements on one shelf.

The number of arrangements = _8_! -
(2!)4

9.6 Define a multiple-line function to round a numeric value to the hundredths place, and add either ar· or a

:C before the number. If the fractional part of the number is zero, fill the fractional part of the final number

with zeros.

9.7. Write a program that will make it easy for you to manipulate tables of data. First dimension and initialize

the elements of an array, then input values for the array elements. Include in your program three subroutines

to accomplish the following tasks. Use the subroutines to print or display the sum of the rows and columns of

your data table:

I. Write one subroutine to display or print the array.

2. Write a second subroutine that enables you to change a particular array element.

3. Write a third subroutine that finds the sum of each row, the sum of each column and the total sum.

Test your program by finding the row sums, column sums, and total sum of the data in the following

table.

12.59
11.43
13.52

?

13.69
22.56
12.78

?

14.78
43.78
14.98

?

?
?
?

Before you find the row sums, column sums, and total sum of the data in the table, change the value in row 1,

column 3 (14.78) to 14.67.

9.8. On his frequent transatlantic missions, chief detective Sylvester S. Py must send encoded messages to the

home office. Prior to each mission he supplies the home office with his encoding number. They, in turn,

give Sylvester the number they'll use to encode messages sent to him.

172 Section 9: More Branching

Write a BASIC program that uses two subroutines, one to encode messages, the other to decode messages.

Use a computed C; C) ':::; i...i E; statement to determine which subroutine is to be accessed. Let the code number

be a seed for a sequence of random numbers that encodes the message. (This enables you to use the same

random number seed to decode the message.) Use only capital letters in input, coding, or decoding opera­

tions. Allow the user to enter one word at a time; you supply the spaces between words.

Suppose Sylvester wants to send the following message to the home office, using his code number (random

number seed) .123.

"GET ME TO THE BANK ON TIME"

Run the program to find the encoded message. Run it again, using the same code number to decode the

message. Then decode the following message, recently received by Sylvester, using the home office code

number .3579.

"NNLSNUNYS IGPXR RQP BYE"

Hint: Use an encoding function like C:::i:::::::C:::l::;::.:C:i···ii?t:<;;::;':::i+·<i···ii ... ii"i< I::i::r:::: I:::1i";"

T i···i·r >: ;:::: 1'::;:i:: i? i···i [) >, i"i (J [) ;? ;;::; > for the length of each word, I ::1::.

9.9. Write a "standard pac" program by modifying the row sum and column sum program you wrote for problem

9.7 (sample solution in appendix F) so that the subroutines are performed at the touch of a special function

key. Define the special function keys as follows:

Ci i···i i< E: '/ :i:i::i..' "I i···i I'T" C;Ci ::::; i .. .! !:::; ---------i.~Initialize array elements.
Ci i···i i< E: \' :i:i: ;:::' " I i···j F:' i.!·T" C; C) ::::; i .. .! !:::; -------I.~ Input values into array.
Ci i···i i< E: \' :i:i: :::;: .' "C: Ci F' \' i:::i " C:; Ci ':::; i .. i i:::; -----..... ~ Display or print current array.
('! i···j i< E: \' :i:i: <., "C: i"'1 i:::i i···i C:; i::::" C; Ci ':::; i ... i 1:::; -----..... ~ Change a particular array element.
(J i···j i< E: '/ :i:i: ':::i, "':::: i ; i"-i" ; .. :; i .. .! ::::; ; . ..i E; .. Sum the rows, columns, and find total sum

of array.

We'll leave c:J through c:J for you to define. Additional subroutines might be "ADD," add a row or

column to the array; "HELP," display the key definitions; "DELETE," delete a row or column from the

array; or "A YG," find the average of the values in a particular row or column.

Run the program to sum the rows and columns of some tables of your own.

173

Notes

>1

Section 10

Printer and Display Formatting

You have seen that the use of commas, semicolons, and quoted text provide limited control of the format of printed

or displayed information. Three statements, ;"::::; :T. .. " t::) T ,:::;> :.:-::: I:··: C;, and ; ;';;:::: :::::, provide the

capability of generating printed or displayed output with complete control of the fonnat. The syntax of the state-

ments have two different fonns. First, we'll discuss ,.; :-.:, '; ':::: T i'<:; and : : ::::: I :'!C; with: i;: ""

Later, we'll show that you can specify the format and the infom1ation to be fonnatted in the same statement. Other

topics included in this section are:

• Using theT i::i C: function.

• Redefining the printer and the display with the , " , , .. r" i ':and {' :. ':::: statements.

The .L i'l i"'i;: ,.. statement specifies the format by which numbers and strings In the or

,', T ,,". r··· : ... : '-:': I!'·: ;:::' statements will be printed.

F' , ' I ,< 'r " ::::: T "'" C: statement number [,r print using list]

! . ..i .i. ;---. ' .. " i . ..i ::::' .!. ;-,·1 C; statement number [.: disp using list]

format string

The statement number must refer to an I 1', i:i C; E: statement. The print and disp using lists may be comprised of

simple and subscripted variable names, numeric expressions, and string expressions. Functions (including user­

defined functions) may be included in the print or disp using list, but if a multiple-line function contains

'",' i·' i. ,";' or [! I:::: F' statements it may distort the output format. The items in the list are separated by commas

or semicolons. However, the commas and semicolons do not affect the format as they do in the or

!'i I'::: P statement; they merely separate the items in the list. The output is totally controlled by the format string

of the I j", ::::, C:; E: statement. The format string is a list of field specifiers separated by delimiters. Each field speci­

fier is comprised of special symbols that determine the format of a single item in the print or disp using list. The

symbols specify the number of digits, the placement of a comma, decimal point, or blanks-virtually anything

having to do with numeric and string output and carriage control.

Each item in the print or disp using list must correspond to an appropriate numeric or string field specifier.

Delimiters

Two delimiters are used to separate field specifiers:

A comma is used only to separate two specifiers.

A slash can also be used to separate two specifiers, but its main function is to perform a carriage return and

line feed (CR-LF).

175

176 Section 10: Printer and Display Formatting

The slash, , can be used as a field specifier by itself; that is, it can be separated from other specifiers by a

comma. But only the slash delimiter,.· , can be directly replicated (see page 180).

450 PRINT USING 460
31 is equivalent to III.

Prints "COST" and performs 1st CR-LF.
Performs 2nd CR-LF.
Performs 3rd CR-LF.
Prints' . DISCO UNT. ' ,

The symbols :::;: ... indicate that three carriage returns and line feeds are to be performed between printing C: C: '3'r and

Ci I ::::; C: C: : . .! i··i ·T. Thus, two blank lines are output.

However, the following image statement would output three blank lines before printing C:C: '::>T.

Performs 1st CR-LF.
Performs 2nd CR-LF.
Performs 3rd CR-LF.
Prints' 'COST. "

If n ... is at the beginning of an image format string, n blank lines are output.

lfn ... follows a field specifier in an image format string, n-l blank lines are output.

Blank Spaces

Specifies a blank space.

A number preceding ;:.:: specifies the number of blanks; for instance, .::j. ::.:: means four blanks. (:::: ;:.:: ::.: ;:.:: also specifies

four blanks.)

String Specification

Text can be specified in two ways:

i! ;; Text enclosed within quotation marks is printed or displayed exactly as it is quoted. You may specify quoted

literals (strings) in either the print or display list or in the :i: i"i ::::: C:j:::: statement.

For example:

'::i· C! :i: i"! f:! C; E: ;; ::1:: ::1:: " .' .::j. ;:.:: .' ;; ::;:0 ,:", :,,:: i...! J. '1: :::: ;, .' ,::j. ;:.:: .' "
t::f: !!

50 PRINT USING 40
tt Results tt

::::! Specifies a single string character. A number preceding ::: specifies the number of characters. The

length of a string specifier is determined by the number of ::::s that are specified between delimiters;

this corresponds to one item in the print/ disp using list. When using the ::: string specifier, all text is

left -j ustified.

The above example could also have been written:

9D
10Ci
110
l::j::

!::I ~~: :::::, II i? I:;' ~:: i.A:I. i: :::: ,;
I r" H C; E "l ::j::" .. ,::j. ;:.:: .' .? j:::! .' '::i· ::.:: .' " ::1:: ::1:: Ii

PRINT USING 100 H$
F: I::' ~::: !...j:[i: :::: II

7 A specifies a field comprised of seven
characters. 4X specifies a field comprised
of four blanks.

Section 10: Printer and Display Formatting 177

Or like this:

AA can also be represented as 2A.

If the string item in the print/disp using list is longer than the number of characters specified, the string is

truncated. For example:

:1. :) (:1 I r:·1 I:::! C; E: !:::: r:!
~:;:~ E. ::::; .i. LJ !:::.

If the item is shorter, the rest of the field is filled with blanks.

Numeric Specification
A variety of symbols can be used to specify numbers: digit symbols, sign symbols, radix symbols, separator

symbols, and an exponent symbol.

Digit Symbols

Specifies a digit position. A number preceding ii specifies the number of digit positions. If the number

of Us to the left of the decimal point or radix specify a field larger than the numeric item, then the item

is right-justified in the field and leading zeros are replaced with spaces. If the number of .Us to the right

of the decimal point or radix specify a field larger than the numeric item, then the item is left-justified

in the field with trailing zeros. If the fractional part of the numeric item is larger than the number of TiS

to the right of the decimal point or radix, then the item is rounded to fit the specified field. Xi is the

only digit symbol that can be used to specify digits to the right of a decimal point or radix. For

example:

210 PRINT 0SiNG 280
280 IMAGE ~U,2X,uu. DO

;;::: ::::i i? ;;::: ~::;. ::51;::1

Specifies a digit position-leading zeros are replaced with zeros as a fill character. You cannot use a

, to the right of a radix symbol. Again, a number preceding ;' specifies the number of digit positions.

For example:

290 PRINT USING 310

An asterisk also specifies a digit position, but leading zeros are replaced with asterisks as a fill

character. You cannot usc an i to the right of a radix symbol. A number preceding ••• specifies the

number of asterisks. For example:

340 IMAGE ~*,2\,5Z,2X,50
350 PRINT USING 340

178 Section 10: Printer and Display Formatting

As you can see, any digit symbol,!,?, or :U, can be used to specify the integer portion of any number. But,

you cannot mix the symbols in the manner shown below, in the first T :'\ i:::i i:;: statement. For instance, if::: is

used to specify a digit position of a number, all of the number must be specified with Ii's, except that the

digit symbol specifying the one's place can be a :::: regardless of the other symbols. For example:

360 PRINT USING 370
, ;;::~;.; .= Li ::!:: : : :

The I (: ::::: C; C: statement contains an invalid image and would cause an I:::: (. (" C, (message to appear. However, the

following image is valid:

370 IMAGE DDD2,~~ *~~t*2

Radix Symbols

A radix indicator is the symbol that separates the integer part of a

number from the fractional part. In the United States, this is customarily

the decimal point, as in 3~. 7. In Europe, this is frequently the comma as

in 34,7. One radix symbol at most can appear in a numeric specifier.

Only the symbol ::::: can be used to specify a digit to the right of the radix

indicator.

Specifies a decimal point in that position.

F;> Specifies a comma radix indicator in that position.

Here are some examples:

<. ";::: :::~:. :1 . .' ;;::~ ::::; ,

450 IMAGE DOD. DD,2X **2 DDD,2X,~

500 PRINT USING 490

Sign Symbols

Note that .879 is rounded to 0.88 since the
image specified only two digits to the right
of the radix.

Two sign symbols control the output of the sign characters +. and Only one sign symbol at most can appear in a

numeric specifier. When no sign symbol is specified, any minus sign occupies a digit position.

~:::; Specifies output of a sign: +. if the number is positive, if the number is negative.

r'l Specifies output of a sign: if the number is negative, a blank if it is positive.

Section 10: Printer and Display Formatting 179

For example:

: ; .
.... ,:: .. ',: ... ,.",' , ;'.: .';' :: T i·, ~ ,

:L ;.,.:

: :.,', : .. i· .1. 1'1 i"'j; :; L) 1:::j i .. ,i 1..) : ;.,.:;:.:; .: ~ ... : ,,' :, . .! .' ; ... :",

The sign '"tloats" with the number; for example:

,:::"
'.) ;.', !"', ' ... ' , T ~ ~ i ... : ; : r",

..... ::::; 1? +-1:::;. !:::!

In the examples above, the sign appears immediately to the left of the number. If you use a ,or symbol in

your format, the minus sign will appear to the left of any leading zeros or asterisks.

Digit Separator Symbols

Digit separators are used to break large numbers into groups of digits (generally three digits per group) for greater

readability. In the United States the comma is customarily used; in Europe, the period is commonly used.

Specifies a comma as a separator in the specified position.

Specifies a period as a separator in the specified position.

The digit separator symbol is output only if a digit in that item has already been output; the separator must

appear between two digits. When leading zeros are generated by the? symbol, they are considered digits

and will contain separators. An T ;,;, : format consisting of leading asterisks may contain separators. But

if numbers are not output on both sides of the separator, the separator will be replaced with an asterisk.

.. ..:.1. ::::.
;.; ;::::.; :

. ... ,.: .' :: :: ... ,.; .: """"': ;::::
,": :, ..

"':';"',: ...
;",:"'r'"

,":1..':', .. ,':! ~:::i C' : :: ... ,", : L.. Ci.,

Exponent Symbol

; ... Specifies that the numeric field that contains 1:::: is to be output in scientific notation. C causes the output of

an C:, the sign of the exponent (+ or -), and a three-digit exponent. At least one digit symbol must pre­

cede the 1:: symbol.

For example:

~8 IMAGE DOD. DOE

180 Section 10: Printer and Display Formatting

Compacted Field Specifier

A single symbol, f:::, is used to define an entire field for either a number or a string of characters. If the cor­

responding print/disp using item is a string, the entire string is output. If it is a numeric, it is output in stan­

dard number format (see page 53), except that f::: outputs no leading or trailing blanks. For example:

20 PRINT ~SING ~~

90 IMAGE K,2\,K,K,K

Replication

Many of the symbols used to make up image specifiers can be repeated to specify multiple symbols by placing an

integer in the range I through 9999 in front of the symbol. You have already seen some examples; the following

I i"! i:::i C; C: statements, for instance, all specify the same image:

545 IMAGE u~u. 20

These symbols can be replicated: L\ : , ::, ::1:' .' ,

In addition to symbol replication an entire specifier or group of specifiers can be replicated by enclosing it in

parentheses and placing an integer in the range I through 9999 before the parentheses. For example:

40 IMAGE UU. 0,6(000. DO)
50 IMAGE ~~ 0,4(2\,7*Z 0,2(2\,0

So, specifying:3 Ci 1::) :' is the same as specifying Ci L), Ci Ci , Ci Ci.

In this manner, !: can be repeated:

Same as specifying l . ,: i< . .' !':" i'"

Up to 128 levels of nested parentheses can be used for replication.

Reusing the I i"i i:::i C;; !:::: Format String

A format string is reused from the beginning if it is exhausted before the print using list. For example:

': i:::'i:::'
.1. •••••••••

..... :::::
I:::.· .. .' .

:i. '::; ,,::; I i"" Fi C; E: [) [) L!. iJ [)
25. 71 ~~. 90 14.23

Section 10: Printer and Display Formatting 181

Field Overflow

If a numeric item requires more digits than the field specifier provides, an overflow condition occurs. When this

happens, a warning message is displayed and the program continues. For example:

, ; ;'.: T ~ :::: I 1",1 C; 'f ::::' ;:::: "'i:"

; ::.j.

; ;:';"';;,.;" " :····r···
: .. :. '" L":;;

Warnins 2 on line 160

Both numbers 336.71 and -14.3, with an image of i::) 1:::1 L)L.)· create an overt1ow condition. Remember that a

minus sign not explicitly specified with ::::; or i"i requires a digit position.

Formatting in F' F? T j ... j "T'I Ci T ::::; F' 1 . ..! ::::; I!',,! C; Statements

There is another form that a F'i? T :·.iT : ... ::::; I ' i C; or 1:::1 I':::: 1::' 1 1 ' ... ; .L !-: 1.:, statement may have, which enables you

to specify the image string and the print/disp using list in the same statement:

F' P I t~ T U ::; I [.j C image format string [.: print using list]

[I I ;:;:; F I...! i:; I [··1 C image format string [.: disp using list]

Instead of specifying the I r'j:::::C;::::: statement number, you can include the image format string, enclosed within

quotation marks in the i:::' i:;:o I i···i·r ... r", T ''': 1·.' ... : .. ; .L i""-i :::; statements before you specify the print/disp using I is!.

The image format string may be a string cnclosed within quotation marks, a string variable, or any string expression

that specifies the format.

Examples:

;? i;::i F' i? I ~"'! 'r l . ..l ~:::; I ,',·1 C; ;; :::~: L:i. ;;::~ [) ;!

.: ::::; i:::: .' ,::1· ;;::~. ::::;

310.12 56.00 42.50

'.::::::)

. :::: ;:::: ;:::' .:. :::~:. :::::. ;;::~

Remember to dimension the string if it is
longer than 18 characters .

You cannot use quotation marks to specify literal text within an image format string In a

' .. .' .. .' .' i···i C; statement since quotation marks are used to define the string.

For instance, the following is not allowed and causes an E: ,." .
pear if you try to enter the statement:

The statement is not recognized after the second quotation mark.

. ! ... , , , i:;> .:::; message to ap-

182 Section 10: Printer and Display Formatting

An image format string for statement 50 could be specified in either of these ways:

Or:

You can use quoted literals in an ; !! ,::, ,.: statement since the quotation marks do not define the complete image
l:::: ~:": .,. ,- . ,'::,: .. : :. : i .. .! ':::; ::: i ·i ! .. :; statement. format string as they do in the :', .:. :'; : .

Here is a summary table of image symbols and their uses:

Image Symbol
Symbol Replication Purpose

Yes Blank
No Text

r"i Yes Digit
.. ';:

Yes Digit :
'.:,' Yes Digit

No Sign
r"! No Sign
i··· No Scientific notation

No Radix
No Comma
No Radix
No Decimal point
Yes Characters
Yes Replicate
No Compact
No Delimiter
Yes Delimiter

Comments

Can go anywhere
Can go anywhere
Fill=blanks
Fill=zeros
Fill =asterisks
"+" or"-"
blankor "-"
Format = F '::; :::: ,'L'
Output "."
Conditional number separator
Output ","
Conditional number separator
Strings
For specifiers, not symbols
Strings or numerics

Output CR-LF

The main factor that must be taken into account with formatted output is the display or printer width. Especially

when dealing with numeric output, formatting should be designed so that a line of characters does not exceed the

number of characters per line (32 characters per line on the HP-85 printer or display).

The 'r ::::: C: Function

Thef f:! E: function is used with the F' F' I r·i T and D I ::::: i:::O statements to print or display informatin at specified

character positions. The main consideration with T P E: is the length of a line on the printer or display.

r H E: 0:: character position ::.

The character position may be a number as large as 32767, but you really have 1 through 32 character positions

on either the display or the built-in printer. When the character position specified is greater than the number of

columns, it is reduced MOD 32.

Section 10: Printer and Display Formatting 183

Example: The following program prints the heading for the variables X, Y, andZ.

The first heading, , .. ,,) F ;:;> ;:::; :::; F:, starts at character position 0; the heading, i'e: F: : i···i, starts at character position 15;

and the heading, ((F: C: T ::::: i'''(' starts at character position 26. Then in statement 30, the variables are printed under the

three headings. If your X, Y, and Z values were input as 11.23, II, and 11.4, respectively, the printout would be:

1"1"\ E: !:::j j ... j

:1. J

Remember that a comma in a printer or display list outputs the next item in the next print or display zone. Thus, all

print or display items used with'!" :::: E: must be separated by semicolons. The'!" :::: E: function cannot be used with the
r": ;-0': T k=

... :.:::

If the 'T' ;:::; ::::; argument rounds to a value less than 1, then i.'·i ."j :." ; n-:::;

function will position the following item at column 1.

'r ::::: :::; will occur and the r ;::; F'

Redefining the Printer and the Display
The F i:;> . ;:::- I::=; and the C: I:;:: "T' .L ::::: statements are used to "redefine" the printer and the CRT. Although

the statements are most often used with peripherals, you can tell the HP-85 that the display is the printer

(C: 1:::- 'r ::::.); and all display messages from U.!. ::::- : , :; • c· ;:::. ; i',:,: T 1'·1 ;::::, I .. T ',:: "T, Errors, and Warnings will be

printed rather than displayed. Or, you can define the printer as the display U::· T ',::: i); all informa-

tion from F F' ::: :": T", F:- ~::- T i··.i"T •• :::. " i··i::: , ; .. L. T :,:,:'T', and T F: i:::i C: E: statements will be displayed rather than printed.

The I:::' .: .•. ;.; 'r ;:::. F:' T ::::: and C !~. T T .::; statements are programmable.

F: i:;:- T i·.iT'::: r;:- T ::::; device number

;"": F;:- 'r T :::,; device number

Device Number

1
2

For instance, execute:

1. i;j F'F I i'··IT'
:;::: 0 F P I 1"·1 'r i! ::1:: ::j:: ::i:: ::1:: ::i:: ::j:: ::1:: ::1:: ::!:: ::j:: ::!:: ::i:: ::1:: ::t-: i i

:3 i;:J r' !:;:~ I j"~ T' Ii ::j:: j ... j C) j.:.j C: F~ T I ::::; ::i::!;

j::::p I i···iT
C;; C) 'f ()

Device

CRT
PRINTER

Redefines the printer to be the CRT
(display); all r:· (:;:: T i"1 T statements will be
displayed rather than printed.

184 Section 10: Printer and Display Formatting

Now run the program, the message will be "printed," repeatedly, on the CRT display until you press g to stop

the program.

8

: :j:: : :!:: ::~:: ::i:: ::1:: : :j:: ::1:: ::1:: ::i:: ::i:: : :!:: ::1:: : :j:: ::j::

::j:: !' .. j () i. I.! C: i? 'r I:;;;; ::1::

·.:.··.:.··.:.··.i.··.:.··.:.··.1.··.:.··.i.··.:.··.1.··.i.··.J.··.i.·
,-j', ,'j', ,-j', "j', "j', ·t· .'i'. ·t· "j'. ,'j', "j" "!" ,-j" "j"

::1:: 1'··j Ci ~.'.j C: I? 'r T =:::. ::j::

::j:: F> !:;~~ I !-.. j 'r F: !? ::1::
::l::::!::::j::::j::::!::::j::::!::::!::::j::::j::::j::::j::::j::::j::

::\:: ::j:::*::t::::j::::j:: ::1:: * ::!::::!;:::j::::j::::~::::!::
::i:: I-··j C) i.I ,! C: !:;~~ ''I'' T ~:::; ::j::

This message will be continuously
"scrolled" on the display until you press

g.

After pressing g, press Q. Your program will be listed on the display. You can return the system to normal

output mode by typing F> i? I i···i 'r E: i? .L ':::; :::::, or pressing EJ.
The same can be done with C: i?'r T C· ::::' to redefine the CRT. Once T i :, .. ; ;;::: is executed, all messages

that are normally displayed on the CRT are output to the printer.

For instance:

C: F~ "r I ::::; ;;::~
[i I::::; F: !! ::;:; () F: < ;:::~ (::; "" ::::: !! ; :::::!) 1"1:: ="" ::::; !:::; ""

These statements cause the following to be printed:

Again, return the system to normal output mode by executing C: i?'r

H 1.. 1.. and C Ci F' \' statements are unaffected by the F' F: T i"--l'T E: F:

'j b . iREsET\ Th .L .:::- .!., or y pressIng~. e

T ::::; and C: F;:'r T ':::; statements:

i:::! i ... 1.. and C: Ci ::::' \' always transfer the information from the display to the printer.

If you are using a Plotter/Printer ROM and an external printer whose address is 701, then executing

I:::' F' T h T E ~~: I ::::; ? 01 will cause all subsequent F'i:;:: T t··! T statements to be directed to the printer.

Problems

10.1 While considering the variations of social and economic factors among nations of the world, you decide to

use the popUlations, areas, and annual gross national products (GNPs) of various nations to determine

their population densities (by dividing the population by the area) and per capita GNPs (by dividing the

Section 10 Printer and Display Formatting 185

GNP by the population). You would like the results to be summarized for each nation. Write a program that

requests the name, population, area (in square kilometers), and GNP (in U.S. dollars) of each nation, and

prints a summary for each nation according to the following format:

~~'~~~~I I . ,. .
, I

.. ,:::: i':",.', " , '" 'i'" , (i t". II

.':' (; .: ("j i ::-; . F': t,", ;0", • :': ••. :': -:!:: : :: :: :

I
~~~~--~ 

The information below is available for 1977. 

Nation Population 
I--A~e-;----I Annual GNP ! 

(sq km) I (US$)~ 
China 865,193,550 9,560,980 I 223,000,000,000 
United States 216,817,000 9,363,123 

I 

1,781,400,000,000 I 
Canada 23,469,142 9,976,139 195,785,000,000 
Singapore 2,322,576 581 

I 
5,885,600,000 I 

Mongolia 1,531,940 1,565,000 547,000,000 I 
Qatar 97,792 11,000 I 4,044,000,000 I 

--~~~. 

10.2 In her studies of natural phenomena, physicist Shirley Bright encounters the extremes of length measure­

ment-from the wavelengths of radiation (measured in angstroms) to intergalactic distances (measured in 

light-years). In order to relate these extremes to each other, Ms. Bright would like to see how a given 

measurement is expressed in a number of different units, specifically angstroms, meters, and light-years. 

There are 1()1° angstroms in a meter and 9.460 x 1()15 meters in a light-year. Write a program that converts 

a measurement (entered as a numerical value and a dimensional unit-A,M, or L) into all three units and 

prints the three values. An exponential format should be used because of the extremely large and small 

numbers that are involved. The output should look like: 

t .... L C;!···!'T ······'(1 .. :' .. i·;·::·· .. 

•• ...... t .•.• i .. j.··,:.··. 

t; . 
:t,", ..... j •. [ •.. :: ••. 

Use this program to express in other units the wave length of light with greatest human visibility (5560 

anstroms), the length of the Humber Bridge span in England (1410 meters), the wavelength of certain 

gamma rays (5.6 x 10-3 angstroms), the approximate diameter of the nucleus of an atom (10-14 meters), and 

the distance to the nearest galaxy (170,000 light-years). 



186 Section 10: Printer and Display Formatting 

10.3 As an aid in maintaining an accurate record of your checking account, you decide to write a program that 

takes a sequence of transactions that have occurred over a period of time and prints the status of your account 

after each transaction. The program is to be initialized by entering the current date and the balance in your 

account at the beginning of the period. Each deposit is entered as D, amount. Each check is entered as C, 

amount. The bank charges 22 cents for processing a check if your balance at that time is less than $275; there 

is no charge if your balance is at least $275. If a check (plus check charge) will overdraw your account, print 

a negative balance and a special warning giving the amount of the overdraft. Your account summary should 

have this format: 

10.4 A regular polygon with n sides inscribed in a circle of diameter d has a perimeter p which is given by 

p =(d)(n) sin (:). 

As the number of sides of the polygon is increased, the polygon more closely resembles a circle, and the 

ratio of its perimeter to the diameter, p/d, becomes closer to the constant 1T (which is the ratio of circum­

ference to diameter for a circle). Write a program that lists the perimeter p and the ratio p/d for a series of 

polygons with n=3,4,5, and so on. Let the diameter d equal 35 units. Have the two columns start at 

character positions 3 and 19. 

10.5 The T Fi E: function may be used to create a graph by varying the character position for each line of 

output. For example, the data below represents the average weight of a female during her first 18 years. 

Write a program to produce a printed plot of this data. Each of the 19 years can correspond to a printed 

line; the position of a printed symbol (such as l) can correspond to the weight. 



The range of weights, plus the allowance of two spaces to 

print the age, suggests that the ":i::" should be printed at 

the position determined byT j:j i:::: ,.:;: + i,.i ... :?'. It is also 

helpful to print a "+" at the position of every 10 units of 

weight across the top of that plot, and a " . " at the position 

corresponding to zero weight on each line. The plot should 

resemble the following: 

.+. . .... + ..................... + ...................... , ................ ·······i······· .... .. .... j .. 

:i. 

Section 10: Printer and Display Formatting 187 

Age Weight 
(years) (kilograms) 

0 3.2 
1 9.5 
2 11.9 
3 13.9 
4 15.7 
5 17.6 
6 19.1 
7 21.9 
8 24.8 
9 28.1 

10 32.4 
11 37.1 
12 41.5 
13 46.2 
14 50.5 
15 53.8 
16 55.7 
17 56.7 
18 56.7 





Section 11 

Graphics 

The graphics capabilities of your HP-85 truly enhance your BASIC programming power. HP-85 graphics enable 

you to: 

• Plot data on the graphics display, thus clarifying complex sets of information in pictorial fonl1. 

• Scale the display yourself to desired proportions. 

• Generate an unlimited number of lines, curves, diagrams, and designs on the display. 

• Copy anything from the graphics display to the printer with one command. 

• "Draw" and label graphs with ease. 

• Interact with the graphics display from the keyboard. 

• Execute any of the graphics commands from the keyboard or in a program. 

The Graphics Display 

The HP-85 provides two different display areas or modes: alphanumeric and graphics. Normally the display is in 

alpha mode, but you can view the current graphics display at any time by pressing the (GRAPH) key or by 

executing the statement, c:; i? !:::, F' !.-j. 

Any of the graphics statements that directly manipulate the graphics display also set the display to graphics 

mode automatically. You can return to alpha mode by pressing any alphanumeric key or display control key 

(such as the space bar or the CD key) or by executing the F! .... F' i"" ,:::, statement: 

To get an idea of the graphics display area available for your use, enter the following program into the computer 

and then press (RUN ). This program will frame (draw a box around) the CRT graphics display area that is 

available to you. 

First, press (SCRATCH) C1JJlD to clear main memory of previous lines. 

• i 0 CCL.EAF.: 
• ~::O ::;CAL.E Ci .. :!. 00., f::i .. :I. 0~~1 

30 XAXIS 0 @ XAXIS 100 
40 YAXIS 0 @ YAXIS 100 
:i(j EHD 

Clears the graphics display . 
Scales the graphics display . 

Draws a frame around the plotting area. 

This example program (and others like it found throughout this section) is given to provide some hands-on exper­

ience with HP-85 graphics and to illustrate various statements. Each of the graphics statements will be explained at 

appropriate places in the section. 

189 



190 Section 11: Graphics 

When you run the program, the display shows: 

256 useable dots 

192 useable dots 

This frames the graphics display area. You have 256 useable dots in the horizontal direction and 192 useable dots in 

the vertical direction, yielding a total of 49,152 points available for plotting. 

By useable dots, we mean the actual physical dots of the graphics display screen, sometimes called pixels (for 

"picture elements"). As you shall see, the display may be scaled to horizontal and vertical units of your own 

choosing. Points are plotted according to the current scale; they are automatically mapped onto the graphics 

display screen. 

Line Generation 

Line generation refers to the process of producing a line on the graphics display, which is similar to drawing a line 

with a pen. But the display has no actual pen. The display does have a point, referred to as "the pen," which when 

moved produces a line (or row of dots) if line generation is turned on (pen down). If line generation is turned off 

(pen up) no line is produced, but the point moves. 

Graphics and the Printer 

The general method of performing HP-85 graphics is: 

1. First generate your graph or design on the graphics display using the graphics statements either from the 

keyboard or within a program. 

2. Then, to produce a hard copy of your graphics, simply set the display to graphics mode by pressing e:J and 

then press e5. In a program, these same operations can be performed by executing the C; i? i:::i F> i···i statement 

followed by the CJJ F::' ';' statement. (C; i? ::::: F:> i .. ·i need not be executed if the display is already in graphics 

mode.) 

The HP-85 thermal printer generates the graphics display sideways to assure that it fits properly on the paper 

and to enable strip charting. Note that the Plotter/Printer ROM enables you to direct graphics output to an 

external plotter. 



Section 11: Graphics 191 

Clearing the Graphics Display 
The C: L.. ;::: Fi ::;:: statement clears the graphics display of any previously plotted data. 

C; C L. F Fi F: [V-coordinate] 

The ;~; C:: L .. iC:: H ~:: statement clears the graphics screen from the specified Y -value to the bottom of the screen. For 

instance, if the graphics display is scaled from 0 to 100 in the vertical direction, execute the following to clear 

the lower half of the display: 

Clears lower half of graphics display with 
vertical scale of 0 to 100. 

If no parameter is specified, ... , :::: : .. ::::: i:i:< clears the entire graphics screen. 

It is advisable to use the C; C: 1....:::::::: i? statement before you begin a new plot in a program, thus assuring that you do 

not plot over any previous graphics. 

Execute C:; C 1....::::: i:::i:< now to clear the frame from our first graphics program. The display will change to alpha mode 

when you type in a graphics statement. It reverts back to graphics mode to show the change in the graphics display 

once the command is executed. The C; C: 1. C: i:::i:< statement clears the graphic display to the current background 

"color" (more about this later). 

Setting Up the Graphics Display 

A program written to plot or draw lines on the graphics display usually includes some initial set-up operations to 

define the plotting area. Typical set-up operations might be clearing the display and framing it, as we did earlier. 

Most often, the display is scaled to the desired proportions before any plotting is done. 

For instance, you might use the following group of statements to set up the graphics display. 

:!. i;) i .. :i 1...: 1.... F i:::! !:;:~ 

;~::~ ij ::::; C: j:::j 1.... !:::: ..... :!. i;::i.= :~. Ci .' ..... :1. i;::l., :!. 1;::1 

The ::::; C: l:::i L. 1:::: Statement 

These statements will be discussed in the 
following pages. 

The ;::; C:: H L. E:: statement defines the minimum and maximum values of the X (horizontal) and Y (vertical) direc­

tions for the graphics display. This enables you to specify your own units for plotting. 

; ... ; ; : H .... Ex-min.' x-max.' y-min.' y-max 

The first two parameters specify the values represented by the left and right boundaries of the graphics display. 

The last two parameters specify the values represented by the lower and upper boundaries of the display. If 

x-max is less than x-min or y-max is less than y-min, an error occurs. 

At power on or after pressing ( RESET), the minimum and maximum values of both X and Y directions are 0 and 

100: 

Specifies X and Y units from 0 to 100. 

The :::: C i'i L.. E statement may be used to place the origin (point 0,0) on or off the graphics display. 



192 Section 11: Graphics 

For example, if you want to plot the average annual rainfall at a weather station for a IO-year period, the ':::; f:': i:::i L, 

statement might look like this: 

SCALE 1968,1978,0,~0 

The left edge of the graphics display area would represent the year 1968 and the right edge would represent 1978. 

Rainfall would be plotted in the Y direction in volume units (e.g., inches). This enables you to plot data in years and 

volume units (e.g., point 1976, 7) directly on the graphics display area. 

More Examples: 

::::; C: i:::, L.. r:: i~::!.J :~. i?! .: i~::!.: :!. iJ 
SCALE -30,~0,-10,~ 

Unequal Unit Scaling 

Scales X and Y from 0 to 10. 
Scales the graphics display 50 X-units 
wide and 30 Y-units high. 

The scaling factors for X and Yare completely independent of each other. Therefore, plots are stretched or shrunk 

independently in the X and Y directions to fit the graphics display area (anisotropic scaling). An X-unit of measure 

may not necessarily equal a Y-unit of measure. 

Example: This program demonstrates the effects of the :::>... L .. C: statement and unequal unit scaling on the 

plotting area. Note that the length of a unit-of-measure in the X and Y direction are not necessarily equal. 

• 10 GCLE:AP 
• 2:0 DE:G 
• 30 SCALE: -2,2,-4,4 

32 i DPAW A CIRCLE: 
• 40 1"1UI,)[: 1" (;j 

50 FUR A=O TU 360 STEP 15 
60 DPAW CUS(A),SIN(A) 
70 rjE:::<T A 
:=.:: C1 E: t'j D 

v 
~ 

one unit of Y { 

---one unit of x 

Clears the graphics display. 
Sets degree mode. 
Specifies X and Y units-of-measure . 

Moves to start of circle. 

} ~~:~:~~~~~::~~':i~~~:. to specify angle 

~ 
/ 

Because of unequal unit scaling, our . 'circle" is shaped like an oval; one unit of X does not equal one unit of Y. 



Section 11: Graphics 193 

Equal Unit Scaling 

Particularly with symmetrical plots and curves, it is important to scale the display proportionately in the X and Y 

directions so that one length of measure in the X direction will equal one length of measure in the Y direction 

(isotropic scaling). 

Since there are 256 useable dots in the horizontal direction and 192 useable dots in the vertical direction (a ratio of 

four X dots to three Y dots), scale the display so that the number of dots in a unit length of X is equal to the number 

of dots in a unit length of Y. 

The actual ratio of intervals between dots on the display is 255 to 191. But, in most instances, you can use the fol­

lowing equation to determine the number of units in the X and Y directions for equal scaling: 

where: 

x = 4/3y 

X is the number of units in the horizontal direction and 

Y is the number of units in the vertical direction. 

Example: Modify the ::::; C!:! L.. C: statement from the last example so that the circle is drawn in correct proportions. 

One solution is to change statement 30 to read: 

: ::+ . ..... :::~: .' Scales 8 X-units by 6 Y-units; ratio of4X 
to 3Y. Yields 32 dots per unit length of X 
and Y. 

If you now run the modified program to generate a circle, the following will appear on the display: 

'\ 
~ / 

one I unit 
of y --one 

unit 
of x 

As long as the number of dots per unit length of X is equal to the number of dots per unit length of Y, your plots will 

be drawn symmetrically in both X and Y directions. 



194 Section 11: Graphics 

More Examples of "Isotropic" Scaling: 

SCALE -5,55, -~,40 

Scales 4 X-units by 3 Y-units; 64 dots 
per unit length. 
Scales 16 X-units by 12 Y-units; 16 dots 
per unit length. 
Scales 60 X-units by 45 Y-units; 4.262 
dots per unit length. 

Note: The exception to our rule of scaling X = 4/3Y is if you scale graphics display to the number of dots on the 

graphics screen. Then you should use the actual ratio of intervals, X = 255/191 Y. 

or 

Scales 255 X-units by 191 Y-units (256 X 
dots by 192 Y dots). 

Both statements scale the graphics display so that one unit length is equal to the distance between two adjacent dots. 

Drawing Coordinate Axes 

The :'JL: I ::::; and ..,.'~:!:< I '::; statements draw an X-axis and a Y-axis, respectively, on the graphics display, with 

optional tic marks. 

'/ ;:::!" T <::; Y-intercept[.' tic spacing[.' x-min.' x-max]] 

'/ i:::: : .. : I ::; X -interceptL tic spacingL y-min, y-max]] 

The :'<F1:o: I ::::; statement generates an X-axis at the specified V-intercept value on the display. The 

statement generates a Y-axis at the specified X -intercept value on the display. An intercept value must be speci­

tied with an axis statement; the remaining parameters are optional. 

The X and Y tic-spacing parameters are interpreted in the current scaled units. The sign of the tic-spacing parameter 

determines whether the tics will be drawn in increasing magnitude (positive) or decreasing magnitude (negative). 

For example, a negative tic parameter in an i' i:::i; ; I ::::; statement means that tics will be drawn from right to left in the 

intervals specified. 

Example: The following program first scales the display to be 20 X-units wide (from - 10 to + 10) and 20 Y-units 

long (from - 10 to + 10), then draws a pair of axes with tic marks at each scaled unit on the axes. 

• 10 eeL.EAF.: 
• 20 ::;CAL.E -10, 10, --1'~1.' 10 
• 30 :'<f'l:'< I :::; 0, 1 

'5 0 C: () F' '/ 
61:::1 Fr·j[l 

Clears the graphics display . 
Scales the graphics display . 
Draws an X-axis at Y-intercept 0, and 
marks one tic every X-unit. 
Then draws a Y-axis at X-intercept 0, and 
marks one tic every Y -unit. 



Section 11: Graphics 195 

+10 

(0,0) one unit of x 

-10 +10 

lone unit of y 

-10 

When the axes lie on the boundaries of the graphics display area, only half of each tic mark is shown; for example: 

," ,":, .... 

}10 v-units 

(0,0) 10 x-units ---

This is the default scale at power on or 
after ~. 
Draws an X-axis, marking tics cvery 10 
units; draws a Y-axis, marking tics every 
10 units, then copies the display onto 
paper. 



196 Section 11: Graphics 

To draw axes for the weather station graph, you might execute the following statements: 

:I. 1:::1 c; C: L.. E:: i:::i F' 
;:::: I:::! ':::; C: ::::, 1.... E: 

• :3 [I ;:.:; ':::1 >:; I ~:::; 

• o::!. 0 \' i:::i ::.:: I::::; 

20 

(1968,0) 

Notice that the origin has been scaled 
outside of the graphics display area . 

1978 

A positive tic parameter instructs the system to draw tic-marks, at the specified interval, from left to right on the 

X-axis and from bottom to top on the Y-axis. In the example above, tics are drawn on the X-axis at 1968, 1969, 

1970, ... , 1978. On the Y-axis, tics are drawn at 0, 1,2, ... ,20. 

A negative tic parameter instructs the system to draw tics, at the specified interval, from right to left on the X-axis. 

If you use negative X- or Y-values, be aware of the sign of the tic parameters so that you space the tics correctly on 

the axes. 

The minimum and maximum parameters specify the length of the axes within the current scale of the display. 

These parameters are especially useful when you want to allow space on the display for labels. 



Section 11: Graphics 197 

The following program illustrates the use of negative tic marks and maximum/minimum X-axis and Y-axis 

specifications: 

• .. :;' , "i"'i c', ::: ;:::; 1:), .1., ..... ;:::: ."" 1"'i 

... • i ... j: .:. :::.1 
.... ..... : -" ~ 

·····:1. i? 

Scales the display at -10 to 2 from left to 
right, and -10 to 2 from bottom to top . 

Draws an X -axis at Y =0. Marks one tic 
for each X-unit from the right side of the 
axis to the left. Displays only that portion 
of the X-axis from -8.5 to O . 
Draws a Y-axis at X =0. Marks one tic for 
each Y -unit from the top of the axis to the 
bottom. Displays the Y-axis from -8.5 to 
O. 

Frames the display with a line at each of 
the graphics display boundaries. 

-8.5 -8 -7 -6 -5 -4 -3 -2 -1 ~AO,O) 
x 

-1 

-2 

-3 

-4 

-5 

-6 

-7 

-8 
-8.5 

Y 

If our program had been the following, using positive tic parameters, the tics would have been spaced incorrectly 

as shown: 

:!. i;::i C; C: L. ~:::: l:::j !? 
20 SCALE -10,2,-10,2 
:::~~ i;::i ,:':, i"'i: ': .;. ::::; 1;::1.=:!.., ..... ;:::~. ::::;.' (i 
:::j. i~::i '/ rj ;::; :;: ~:::; (:I.::i..: ..... ~:::;. ~:::;., Ci 
::::i 1;::1 ;"': !':'!; ; ,;: :::.: "::1 i'i;i ,:':, !",!,:.:; .L ::::; ..... :!. 1;) 

} Tic parameters are positive. 

60 YHXIS -10 2 VAllo 2 



198 Section 11: Graphics 

-8.5 -7.5 -6.5 -5.5 -4.5 -3.5 -2.5 -1.5 -.5 ,¥(O,O) 
x 

~ 
tics start only 

-.5 

-1.5 

1/2 unit from origin -2.5 

-3.5 

-4.5 

-5.5 

-6.5 

-7.5 

-8.5 

Y 

As you have seen from our examples of framing the display, the axes statements may be used more than once in a 

program. In fact, the easiest way to draw a vertical or horizontal line is to use an axis statement specifying the X or Y 

posi tion on the display. 

For example, you might use the following program to draw and copy a grid of 10 X-units wide and 10 Y-units long. 

} These statements are executed 11 times. 
{"'I'·'zf":' .. ' 
!.! !["" ! 

E:i···j!:J 



Section 11: Graphics 199 

Plotting Operations 

In the following pages, we present graphic~ statements that enable you to control the pen's movement and' 'color" 

in order to produce lines for graphic display. 

The F> ,.... statement lifts the pen so that you can move the pen without generating a line on the graphics 

display. Regardless of whether :::: E: i···i i..J F' is executed from the keyboard or in a program, the statement's form is 

simply; 

r··,r"',.;' : ... 

The pen up or pen down status can be automatically controlled by using the 

statements. 

The F: F:: i'i statement specifies whether plotting is done with white dots or black dots. Thus, F :::. ii enables you to 

draw lines and then erase them. The syntax for the statement is; 

:::> i:::: i···i numeric expression 

If the numeric expression is positive or zero, white dots are specified for plotting, black dots for clearing. If the 

numeric expression is negative, black dots are specified for plotting, white dots for clearing. The default pen 

status at power on or after pressing ~ is positive (white dots on black background) and ::::' r:: i-..i i : ,". 

You can think of the pen as a drawing instrument with two colors of ink-black and white-and appropriate eras­

ers for the background color. A positive pen number generates white lines on a black background. A negative pen 

number selects an . 'eraser" so that a line redrawn with a negative pen number will be erased with the color of the 

background. When a line is erased, the intersecting points of any intersecting lines will also be erased. 

If you clear the graphics display following the execution of a negative pen number, that portion of the display 

specified by the C; C : .... I:::: i:::i::::: statement will be cleared white. 

For example, enter and execute the following program: 

GCL.EHf;: 
• 40 F' E I',; ..... :1 

Sets positive pen. 
Clears the graphics display to black. 
Specifies black plotting dots, white 
clearing dots. 
Clears lower half of screen to white. 



200 Section 11: Graphics 

The F" f";'r statement makes a dot at the specified X, Y coordinate position or draws a line to that position in 

current units using the current pen number . 

... ..... X-coordinate, Y-coordinate 

The X and Y parameters are interpreted according to the current graphics display scale. 

If the pen is up when ;::, L.. Ci"T' is executed, the pen moves from the current point to the specified X, Y position, 

then drops to the screen, makes a dot, and stays down. If the pen is down when ::::' L.. CiT" is executed, it stays down 

and draws a line from the current point to the specified point. If you do not wish to draw a line, the statement 

preceding ;:::' L .. Ci 'T" should be a::::' ::::: :": ii F:' or (: Ci ;) ::::: statement. 

Example: Write a program to draw the figure below with these stipulations: 

I. Once the pen is down, you cannot lift it until you have finished drawing the figure. 

2. You cannot cross over any line that has been drawn previously. 

3. No line can be drawn twice. 



Your program might look like this: 

: ',.j.' ::::" 9., :t (::f., 1 :t .' .L ::::.,' '::::,' ,", ... j 

Section 11: Graphics 201 

Clears graphics display. 
Equal unit scale; 20X by 15Y (ratio of 4X 
t03Y). 
Lifts the pen. 
Start of loop to plot figure. 
Reads coordinate values. 
Plots accord ingl y. 
Reads next values until done. 
X,Y coordinate positions for F" i·iT. 

Example: Now write a program to generate a "'twinkling" star on the display. First plot the star, then set up a 

loop to alternately erase it with the opposite pen color and plot it again. 

Here's our solution: 

10 PEN 1 @ GCLEAR 
20 SCALE -10,10,-~. 10 
:::~; Ci F'::::::!. 

<. i?i F' E: ~"'! L! F' 
::::~ i? ~:::: E: !-.. ! F' 

:~. Ci F~ E: ~:::; 'r Ci F~ E:: 
I:::~ ij C; Ci 'r Ci ::::; i? 

Press Qto stop the program. 

. " 
T .' :: ... :1.. : .. , . 

Moves the pen to the specified 
position. 



202 Section 11: Graphics 

The star is repeat­
edly drawn and 
erased until you 
press Q. 

Example: Now that you have star drawing abilities, write a program to generate star clusters. Hint: Use the 

:< :"·1 Ci function to generate random increments for a given star pattern. In general, you can generate a sequence of 

random integers from a to b using the following formula: IP( (b + I -a )*RND+a). 

Here's a sample solution: 

:l. i;::i ~:::: E: i-··j :l. (~~: c; C: 1.... t ... : ;; 

20 SCALE 0,20,0'1~ 

::::1 I:::! ::;:0 F: ::::;'r Ci ):;:0 F: 
::.I:::IC! C:CI'lC) ::::: I:::! 
:). :i. I:::! L:I I:::: T' ::::: !:::i, C!, :!. : .::::,., CI, Ci , . ,:.j. , ;:::' , :L . ,:::. 

, CI, ij 

:!. U :!.!j \1 :!. ::::: :!. :::~: ::1:: !? j-.. j [) 

:I. Cl ;;:~ !j F: E: 'r ! ... j? ~"'! 

Each time you run the program, you can generate a different "constellation." Press Q to stop the program, 

8 to continue with the current display, and 8 to begin with a clear screen. 



Section 11: Graphics 203 

Sample run: 

Moving and Drawing 

The most useful of the graphics statements, r"": F::' ::::: i",': and i"'i ("; automatically control the pen up or down posi-

tions. We will discuss the most efficient way to use them on page 204. 

The :",,:,:) F": statement lifts the pen and then moves the pen to the specified X, Y coordinate position in current 

units and leaves the pen up. This statement provides an easy way of moving the pen without drawing a line on 

the graphics display, regardless of whether the pen is currently up or down. 

'" ;,:) EX-coordinate, V-coordinate 

The X and Y parameters are interpreted according to the current scaled units. 

Example program lines: 

•••• , ~:.; ,', 1 ; "/ i::. 

'/l::. 

Moves with pen up to point 2,5 . 
Moves with pen up to 25,50. 

The r", ,:;;, C""", statement drops the pen and then draws a line to the specified X,Y coordinate position in current 

units. This statement provides an easy way of drawing a line from the current pen's location to a new location 

regardless of whether the pen is currently up or down. 

c, ::;:' '''' ": X-coordinate, V-coordinate 

The X and Y parameters are interpreted according to the current scaled units. 



204 Section 11: Graphics 

Example program lines: 

Drawing Curves 

Draws a line from current pen location to 
point 2,5. 
Draws a line from current pen location to 
point 25,50. 

The concept of incremental drawing proves extremely useful when implemented to draw curved figures. As you 

know, you can approximate curves with line segments; many short line segments approximate a curve better than 

several long line segments. 

With HP-85 graphics, you always plot directly from one X, Y coordinate position to another, in this way generating 

""lines" which are actually a series of dots in a straight line. Since you do not have a pen with ink to draw a continu­

ous curve, you must evaluate the equation for a curve in small enough intervals to generate enough "line segments" 

to simulate the curved figure. 

This can be done very easily in BASIC programming language with a i:::' Ct i?- i···i E:: :-::T' loop using a :::::T' C F'interval. 

How small of an interval is small enough? This, of course varies with the curve you wish to display. Generally, 20 to 

30 intervals provide enough points to adequately plot a curve. 

Earlier in this section, we plotted a circle using a i:::-C:t i?- i··F:::::: 'T' loop using a :::::T' i:::: i:::' interval. Below, we have 

rewritten the program for a circle to illustrate our discussion. The first loop computes the step value; in other words, 

it determines the number of points that will be used to plot the circle. As the step value becomes smaller, the figure 

displayed makes a closer approximation to a circle. 

:to DEC; 
::~O PEt1 

• 30 :::C!=tLE .. · .. 4./3,4./3, ""'1 .. 1. 
40 SET INCREMENT VALUE 

• ~:)!j FUI? 1""4 'f(J 30 :::TEF' 2 
(:0 ::::"":360./ I 
70 NUW DRAW A CIRCLE 
:::: 0 !"1 0 I,} E 1., ~:j 

90 FOR A=O TU 360 STEP S 
100 DRAW CUS(A),SIN(A) 
110 1··1E::o:r H 
1?O ['1U ',}E 0,0 

• 1 :;:0 LFH::E:l ... n I::: II :~:')!=tL$ (I) 

1~=';0 PE:t·1 ..... 1. 
:!. (:0 1'10 ',}E [1,0 

170 LABEL.. II 1::= II :~.:',}HL$ ( I ) 
1 :::::0 F'Et1 1 
190 !··IE::r 
:::00 E:I··1D 

Scale changed to draw a larger circle. 

Sets the step increment value. 

We'll discuss this statement later in this 
section. 
Displays circle for approximately 3 
seconds. 

) 

Now erases the label by selecting the 
opposite pen color and relabeling. 

Enter the program and press 8 to execute it. If you wish to have a printed copy of the figure on the display, just 

press the e:J key to copy the display. Remember you can press e:J while a program is running without inter­

rupting program execution. 



Section 11: Graphics 205 

Below is the plot for I values from 4 to 30 in increments of two. 

-.-- ./' 

.... \, 

.. / .... 

As you ran the program, you may have noticed that there were very small differences in the circle between values of 

I from 24 to 30. As you become more familiar with graphing curves on the HP-85 you'll become a better judge of the 

number of intervals that are necessary to plot a curve. 

If you choose an increment value that is too small, it may take the system a long time to plot the graph or curve. 

You can stop program execution at any time by pressing a key, and then edit your increment values if you wish. 

Padding the Increment Loop 

At this point, we digress a moment from our discussion of the graphics statements to point out an important concept 

about drawing lines with F' Ci ::;:'- :"': ::::: ;:':;'T" loops. If you thoroughly understand the .... "T C: , " incrementing process with 

loops, skip to the problems on page 208. 

When a fractional number of increment intervals are specified to complete a graphics figure, it is often necessary to 

. 'pad" the final value of the loop counter so that the figure is drawn completely. 



206 Section 11: Graptlics 

Example: The equation for a cardioid is: 

r = a( I -cosO) 

where; 

r is the directed distance from the origin to a point on the curve, 

a is any positive constant, and 

o is the angle measure. 

Write a program that plots a cardioid of the form r = I -cos 0 in radians mode and copies it on the printer. 

Suppose your program looked like this: 

• ~.. (:1 ~:::; C f! !... [: ..... :::~:" 1 , -- ~~ .' 2 

i::~ (1 i"1 0 i,) E [i.' Ci 
• '?U FCF: T:=U TCi F'T :::TEP 

f~ [! !:;:~ ::::: :I. ..... C () ::::; ( 'r ) 
• 9U DRAW RtCCSCT),RtSINCT) 

~u FCR T=U TC -PI STEP 
~.~o i"=-' l-"CO':; C T) 
4U DRAW i"tCCSCT),RtSIN(T) 

~! " ' .. ' T 'T' 1'1 C. .... , 1 [ 

• 60 nO;,,!E -'2, .. · .. :5, ..... :i. "'; 
• '?[i L!=jbEL !!r:::::l ..... c:o::::flIi 

* Type character I:! by pressing 8 0· 

Isotropic scale. 

Tic marks every '/2 unit. 

Sets radians. 
Moves to point 0,0. 
Begins plotting cardioid in increments of 
0.15 radians. 

Polar/rectangular coordinate 
conversions. 

Move to point 0,0 to plot the other half 
of the cardioid. 

Move to point -2.75, -1.5. 
Label graph. (Again, we'll discuss 
labeling later in this section). 

I 



Section 11' Graphics 207 

As you can see, the figure was not completely drawn. Parts of the curve closest to the value of 1T were omitted. 

Examine the r::' ("; F;:'- !' .. ! ;:::., :'T" loops: 

T ... 'T' ..•...... 

; .... 
.j !:::' 

" ,:::' 

This loop is executed at T=O, T=O.IS, 
T=O.3, ... , continuing in increments of 
0.15 through T=3. But when T=3+0.15 
=3.15, which is greater than the final 
value of the loop counter (1T), the program 
exits the loop. The fractional part of 1T is 
not evaluated. 
Similarly, the second loop docs not evalu­
ate the portion of the curve closest to -1T 

below the X-axis. 

In both loops, when the absolute value ofT is greater than 1T, the program exits the loop. 

You can correct the effect of the increment val ue by .. padding" the final val ue of the loop counter. I n the card ioid 

program, extend the final value that follows T Ci in statements 70 and 110 by 0.1, so that they read: 

• j i'" i-:: 'r ..... ":i 'T' ... + . • , , ... ! . .. , ... 

• :i. ::::' Ci F:;; ;.,.' 'T ..... 'T ("; ..... ; .. .' .!. ..... 

.; !::'. 

.L· . ..l 

.; ,. ... 

Add 0.1 to 1T here. 

Subtract 0.1 from-1Therc. 

Now the full range of values for each loop will be evaluated. Run the program again to display and copy the 

completed cardioid. 

The first loop is executed at T = 3.15 because T is still less than 1T + 0.1; the second loop is executed at T = - 3.15 

because T is greater than -1T -0.1. 



208 Section 11: Graphics 

Problems 

12.1 Now that you've had some experience in graphing cardioids, write a program to display the following: 

12.2 Pad the F: Ci i?- i·i i:::: :.: 'T' loop in the following program to complete the sine curve. 

10 PEN 1 @ GCLEAR 
c0 SCALE 0,2*PI -1.6 

Moves to start of curve. 
70 FOR \=0 TO 2*~I ~T'EP ~I/20 



Section 11: Graphics 209 

12.3 Write a program to generate the curve of the SIN (X)/X from -47T to + 47T. As you plot the curve, also draw 

"fill" lines from the curve to the X-axis. Be sure to check for X=O, so that you don't divide by zero. 

The I i"j :::' i,} E (incremental move) statement provides incremental moving capability. The origin is assumed to be 

the current pen position. 

:L r'i C) ,.} EX-increment, V-increment 

The I i"i C) ') E: statement interprets the X and Y parameters according to the current scaled units relative to a 

local origin. The local origin is that of the pen position before the :L r'i C! i.} E: statement is executed (i.e., the 

current pen position). 

Thus, the I r'i U '...' E statement moves the pen, without drawing a line, from the current pen position to that 

position plus or minus the increment in each coordinate value. 

Example program statements: 

1., :3 

I r'10',}E t:" .-, 
- .~.1 .' ,::. 

Moves the pen from current pen position 
(say X,Y), one unit to the right and three 
units up (or, to point X+l, Y+3). 
Moves the pen from current pen position 
(X,Y), five units to the left and two units 
up (to point X-5, Y+2). 

The I [! r;:: H ~',i (incremental draw) statement provides incremental drawing capability. The origin is assumed to be 

the current pen position. 

I D F.: H ~',i X-increment.' V-increment 

The I D F.: H l'~ statement interprets the X and Y parameters according to the current scaled units relative to a 

local origin. The local origin is that of the pen position before the I L) i? ,:::, ~,! statement is executed (i.e., the 

current pen position). 



210 Section 11: Graphics 

Thus, the I [I 1? ::::1 \ ... 1 statement draws a line from the current pen position to that position plus or minus the increment 

in each coordinate value. 

Example program statements: 

Draws a line to a point one unit to the right 
and three units up from current pen 
position. 
Draws a line to a point five units to the left 
and two units up from current pen 
position. 

The I \"\ Ci!,) E: and I L) 1? I:::! 1".1 statement are particularly useful for plotting lines or figures of similar slope and size 

when the exact coordinate positions are unknown. 

For instance, suppose you wish to make larger tic marks on the X-axis, every five units, and on the Y-axis, every 

two units. You might write a program like this. 

10 PEN 1 ~ GCLEAR 
20 SCALE -2 .. 30 .. -6 .. 6 
30 XAXIS 0 .. 1 .. 0 .. 30 
'::1·0 \'::::1::':: I ':::; CI .. :1. 

50 FOR X=0 TO 30 STEP 5 

• ';:" I:) I [I \:;,' ::::: 1",\ ~::i.. ...... <. 
:;;;; ~) i"~ E:: ;:.:; "r ::< 
9 I;) F" 0 !:;~~ \' ::::: ..... (;; "r C) i:::= 

ei U (! () !,) E: ...... ':::;.. \' 
• :!. CI I [) F: 1:::1 1 ... 1 :!... 1::1 

::::: U \"·1 E i:; 'r \' 

Draws a line to a point .4 units down 
from the pen. 

Draws a line to a point 1 unit to the 
right of the pen. 



Section 11: Graphics 211 

Example: Using the information from the table below, graph the 

Summer Olympic records for the 100-meter freestyle swimming-men 

and women-from 1948 to 1976. Instead of plotting a point, make a 

.. +" symbol for each of the women's records and "'0" symbol for each 

of the men's records. (Since we will use this example latcr in the section, 

you may wish to store the program on tape after you've entered it into 

computer memory.) 

Summer Olympics Winners and Records: 100-Meter Freestyle 

• 
• 

• 

• 

Year Men Time (seconds) 

1948 Ris 57.3 
1952 Scholes 57.4 
1956 Henricks 55.4 
1960 Devitt 55.2 
1964 Schollander 53.4 
1968 Wenden 52.2 
1972 Spitz 51.22 
1976 Montgomery 49.99 

10 REM * GO-METER FREESTYLE SUM 
MER u YMPICS 1948-1976* 

;::::i;;:i CCL..E:H 
SCALE 1940,1978,42,70,5 

\' A ::< I ~:; :I. ::::! 4 :::1'" 1 .' ,:+ f: .' '? [1 

FOR 1=1948 TO 1976 STEP 4 
PEAc) t'1 

• ;:::: Ci C; ::J :::; U E: i i~i U I:::: 
• :30 RERD ~'.i 

:!.:!. 0 r··!!:.::<T 
120 DATA 57,3,66,3,57,4,66,8,55, 

2,60,51,22,58,59,49,99,55,65 
1. 3Ci ::=';TOF' 
100U REM *PLOT SOURRE* 

• 1. U4C1 
1050 

I DRi1~'1 ,,::i·, U I~ I URR~'l U, _. ,4 
I DF:H~'l --',4., U !~; I DF:H~'1 Ci" ,:+ 
F'ETURrJ 

2UOO REM *PLOT CROSS* 
• 2010 t'!O!,)E I, I.·.j 

• ~-:~ ri ;? 0 I 1"1 0 I,) F [i" ::3 !:~ I D P A I.'~ [1" - : 6 
• 2U30 li"iO',jE ,3,,:3 I~ IDF:A~'i -, !:::., 0 

;? Ci ,::j. 0 !~: E T U f;~: t·j 
:3000 Er';D 

Women Time (seconds) 

Anderson 66.3 
Szoke 66.8 
Frazer 62.0 
Frazer 61.2 
Frazer 59.5 
Henne 60.0 
Neilson 58.59 
Ender 55.65 

Equal unit scaling. 
Displays X-axis from 1944 to 1978 with 
tics every 4 years. 
Displays Y-axis from 48 to 70 with tics 
every second. 
Reads men's record in year set by loop 
counter. 
Go plot square. 
Reads women's record in year set by loop 
counter. 
Go plot cross. 

Moves to year, men's record in seconds. 
Moves to a point -0.2 left and 0.2 up. 
Draws top and right side of square. 
Draws bottom and left side of square. 

Moves to year, women's record in seconds. 
Moves 0.3 unit up then draws line down. 
Moves to a point 0.3 unit up and 0.3 unit 
right, then draws line left. 



212 Section 11: Graphics 

+ + 

+ + 
+ + 

+ 
0 0 

0 0 + 
0 

0 
0 

0 

Problem 

12.4 The following program, using I L):? i:::i 1.'.:, generates some interesting graphic designs based on the form of a 

hyperbolic spiral. What angle increments generate the most interesting designs? Why do we include state­

ment 120? How would you modify the program to generate a spiral twice as wide? 

:I. (1 [)EC; 
;:::: !j C: 1.... E: H F: 

i···j ()" .; 
,:j. U I ! ... \ F' i .. .! T F' :,1,: 
,,:; C! I F· F' ::1:: ::::: " 'y' E: ::::; ;, T 1···j E: I··; F' E: i···j ..... :1. E:: 1.... '3 E: 

6U SCHlE: -36UUU.'36UU0.'-36000.'36 
!::: (::1 D 

? U [I I ::::; F' "i:::j i···j c:: 1.... E: I i···1 c: I:;,' E: i·'1 E: 1···1 T i) i:::, 1.... i...i I::: ! I 

::::: (::1 I i···j F'i..iT· ,:::, 
9 0 C; C: 1.... E I:::! 1:;:-
00 !·'IC)i"iE: U.' U 
1U FOR I=O TO 36UU0 STEP H 
2U IF H>9U THEN J=2tI ELSE J=I 
30 IDRHW JtC:OS(I).'JtSIN(I) 
'::1· Ci \ .. ; E: i:: T· I 
'50 r::::I··jD 

8 

I I··j i) E: F: ':::: E: i,) I D r::: 0 : '/ E: ::::; C! I;:: , ... j C) '::. 
'lE::::; 
HNGlE: INCF:EME:NT VHlUE? 
9:1. 



Section 11: Graphics 213 

Labeling Graphs 

As you have seen from the "circle approximation" program and the "cardioid" program, you can further enhance 

the legibility of data plots by labeling graphs using the L. i'i E: !:::: L statement. 

L.. i::: E: E:: !.. .. string expression 

Note that only string expressions may be used with the i. P :::::::::: L. statement. The string expression may include 

quoted character strings, string variables, string functions, substrings, and the string concatenator, :::.:. The size 

of the character(s) specified with the L. ~1 E E:!.... statement is the same on the graphics display as the alpha dis­

play. Examples of L. i:::1 [: E I. statements that we have used already are: 

• :I. ::::C !'10 ''}E (j .. ~~i 

• 130 LABEL ":r.:::::" :~.:')fiL.:*,':: I::' 

• 2C SCALE -3,1,-2,2 

• 16~J f'10'.}E -;2, ?~::i, ··1 ,~:i 

• 1.70 L!~[:EL. "r=1··-c:o::::8" 

Example from page 204. 

Moves to point 0,0. 
Then labels. 

Example from page 206. 

Moves to point -2.75,-1.5. 
Then labels. 

In each of the examples, we first direct the pen to the starting position of the label, then we specify the 

expression. 

Example: Enter and run the following program. 

1 0 CCLEFIF.: 
;20 :::CAL.E ····1,1 .. -1,1 

• 30 !·'lC!i,}E ····,5, ' 1 
• 4~3 LABEL "H~::" ... ll e ~ t ····P.:lc:k ·:It· d :::5" 
• ~:iO !·'10 1,}E ····.5,·-, 1 
• 60 L.AEEL "P,,,·r· son.:ll Corilpu t er " 

Moves to point -0.5,0.1. 
Writes expression on graphics display. 
Moves to point - 0.5, - O.I. 
Writes expression. 



214 Section 11: Graphics 

::::,;." 

Example: Draw and label the face of a clock. Include a subroutine to draw the hour hand and the second hand 

for a time that you input. Write the program in such a way that the old time will be erased before a new time is 

drawn. 

40 i FACE OF CLOCK 
50 FOR M=0 TO 360 STEP 6 
60 MOVE SIN(M),COS(M) 

• 70 IDRAW SIN(M)/50,COS(M)/50 
80 IF M MOD 5 THEN 100 

• 90 IDRAW SIN(M)/15,COS(M)/15 
1 ~::!0 r!E::T r'l 
110 FOR 1=1 TO 12 
:i. ;:::(:) !"1(:)')E :I., :::;::t-:::: I f'1 (30l I ,1, ::;;:lCO::; (:::;: 

Oll) 
130 LABEL VAL$(I) 
1,:+0 !~E::T I 

• 1 ~;Ci ALPHA 
1 6 0 0 I ::: P "I ! .. j F' U "T' T I r-1E::.: H H , f'H'l I! 

• l?U It·!PtiT T 
• l ::::0 (:;O:::;I...!B 1000 
• 1. ~::i (:) F' H I..J :::; F 

• ;:::00 PEt··1 ·····1 
• ,:::::[ 0 CO::::;I...!!::: :I. 000 
• ;::::;:::U F'E!··I :I. 

• ;:30 COTI) 1. ~::;O 

1000 REM lDRAW HANDS OF CLOCKl 
• :l.Oi.~:::i I'IO''}F 0,0 

1020 H=:3iJl I F' ('r) 
1030 M=6lFP(T)l100 

• 1040 DF:H~'~ ,?l::;It·j(H+f'l/1.~::)" ?lCO::::( 

1 (I 

• 1 0 
:I. C1 

0 
0 
0 

H +f'1..-,·1::::) 
f'10''}E 0,0 
DRH~'~ ,9l::; I t·j (f'l) , ' 9leO::; (!'1) 
r;:FTURt·j 

Equal unit scale. 
Sets degrees mode. 

Draws minute marks. 

Draws larger marks for 5-minute 
intervals. 

) Label, th, dock with hom,. 

Puts display in alpha mode for input. 

Inputs time in form HH.MM. 
Goes to subroutine to draw hands. 
Pauses to display clock. 
Specifies negative pen. 
Gosub to erase hands. 
Specifies positive pen again. 
Goes back to line 150 to input new time. 

Moves to middle of clock. 

Shorter hour hand. 

Larger minute hand. 



Section 11: GraphicS 215 

Run the program for times of 5:40 and 10: 15: 

8 

;"', 

\ " " / 

./ 

./ .~ "-

! " \ 
I" 

\" " / 

./ 

./ 

/ " '\ 



216 Section 11: Graphics 

Label Direction 

Character positions are much more flexible in graphics mode than alpha mode. Labels can be positioned either 

vertically or horizontally by using the L. D I F: (label direction) statement. 

" ".;:' numeric expression 

If the expression has a rounded integer value less than 45, labels will be positioned horizontally. If the value of 

the numeric expression (rounded to an integer) is greater than or equal to 45, labels will be positioned vertically. 

Thus: 

Example: 

1~~1 ::;CALE -10:, :l0., -·1[1,10 
• :::>::1 HL.F'HFi 

;:~I;::I iJT:::;P "EtHEP A r·Wr'1BEF FPOr'1 0 
THi?UI...iCH :)0" 

• ,:+U I r·jFUT D 
• :~,\:; FEr··1 1. !E! GCLEHF 
• 60 L..DIP D 

70 \·'IC)',}[ 0:, 0 
• ::::0 LJiE:f::L. "············_·L.D I P" ::.:',}AUt: (D) 

90 FAU::;f:: 
1 ~~!O CO TO 20 

Specifies horizontal labels. 
Specifies vertical labels. 

Sets display to alpha mode for displaying 
input message. 

Inputs label direction. 
Clears graphics display. 
Sets label direction. 
Moves pen to point 0,0. 
Writes label on graphics display. 

Run the program above with test values of D. Press 8 each time you wish to enter a new label direction. 

We run the program with values of 44 and 45. 

8 
ENTER H NUMBER FROM 0 THROUGH 90 

':' ,. ... 
..... ..... ..... L .. L) .: :' 

. L) I \:;:. ,::\ . .::\. yields a horizontal label. 



Section 11: Graphics 217 

8 

1... Ci T i: ,j ':: yields a vertical label. 

Label Length 

You can think of the alpha display as a cylinder with four displays connected from top to bottom. But the graphics 

display treats characters as if it were a cylinder composed of one display with the right and left edges connected: 

Alpha Display Graphics Display 

Thus, characters or lines do not cause the graphics display to scroll. In fact, characters will be chopped off if they 

are positioned too high on the graphics display. If vertical labels are positioned too far to the left of the display, part 

of the label will be written on the right boundary of the graphics display. A horizontal label longer than 32 characters 

will wrap around on top of itself, one dot below the original starting position. 



218 Section 11 Graphics 

Example: This program illustrates the effects of the graphics display on character labels. 

1. [1 CCLEAF: 
;::>0 :::::Cf=!L .. E 0.' 10.' (:'I.' 10 

• 30 L..DIP (1 

• 40 !"iDi'}E 1, ::1, :::: 
• ~5(:i L .. HE:FL.;; UF'F'EF: HHLF CHOF'F'E[) 

• 61] t'il)'')[ 0,0 
• / U L .. I:! E: F !.... r; l :*: ::j:: :*: ~,~ f::: I T [ ::: 0 r'~ T (J F 0 F 

I SFLFlllllllllWRITES 
F' IT":::::El. .. Flllll;; 

,"',!.; 
1...!I'1 

,,",1"", 
i I...i r' 

Horizontal label setting. 
Moves to point 1,9.8. 
Writes lower part of label. 

Moves to point 0,0. 
Writes label. 

Changes label direction. 
Moves to point 0.1,1.2. 
Writes label. 

****WRITES ON TOP OF ITSELF***** 

Note that the Plotter/Printer ROM restricts label lengths to current graphics limits so that the long label in 

statement 70 above would be truncated rather than overwritten. 

A label direction setting will remain the same until it is changed by another 1....! iT! : statement. Unless otherwise 

specified, labels will automatically be positioned horizontally. As we shall see, any input in graphics mode resets 

L .. [) I F to horizontal labeling. 

If a vertical label begins at the bottom of the display, a maximum of 24 characters will be written on the 

graphics display. Any remaining characters will be chopped off the top of the display. 



Section 11: Graphics 219 

Positioning Labels 

The position of a label is determined both by the ii T i;:' statement and by the current pen location. Horizontal 

labels begin directly above the point specified by the current pen location. Vertical labels begin directly to the left 

of the specified pen location. 

[t is often easier to scale the display to the number of plotting dots available to specify exact label locations, from 0 

to 255 in the horizontal direction (256 dots) and from 0 to 191 in the vertical direction (192). Since a character is 

composed of a 5 x 7 dot character on an 8 x 12 dot field, you can easily calculate the number of dots necessary for 

a particular label. 

To illustrate label starting positions, we ran the following program and then enlarged the display area around the 

labels. 

. ......... , 
: :', .... . 

·:::=i::::, .... ;-::! 
:: .. ' " 

.. ,' . 

.'. i?Ci , .... ,ii::::r·i :: r'" H 
.... 

Let's look at the section of the display around the labels: 

110 

105 

100 

95 

••• 
• • • • ••••• • • • • • • 

•• •• • • • 
• • • • • • 90 •••••••• 

o 5 10 15 

Sets a horizontal direction. 
Positions the label above the current pen 
location. 

Sets a vertical direaction. 
Positions the label to the left of the cur­
rent pen location. 

I' 
20 

A label is positioned directly above (horizontal) or to the left (vertical) of the current pen location to allow for 

underscored characters (character codes 128 through 255). Since we plotted point (4,100) immediately before the 

L .. i···ii::;i··· L. statement, i:::i was positioned as shown above. If we had plotted or moved to (25,90) for instance the ..... 

would be positioned so that the left leg of the i:::i would be directly above point (25,90). And if i::i was a vertical 

label it would be plotted so that the left leg of the i would be directly to the left of the point (25,90). 



220 Section 11: Graphics 

Example: Earlier, we wrote a program to plot the men's and women's records for lOO-meter freestyle swimming 

races in the Summer Olympics from 1948 through 1976. Now let's see how easy it is to label the graph. If you 

stored the program on page 219, load it now and add statements 55 and 3000 through 4000 of the following program: 

10 REM t100-METER FREESTYLE SUM 
MER OLYMPICS 1948-1976 

30 SCALE 1940,1978,42,70 ~ 
<. i;::i ;:.:; I:::j >:~ I ~:::; 'i· ::::; .= ;::j. " :1.~) ::t :;:~. : '! <:~! ';::= ;;:;; 

50 YAXIS 1944,1,~8,70 

60 FOR 1=1948 TO 1976 STEP 4 

20 DATA 57 3,663,57.4,66.8,55. 
~,62,55.2,612,53 4,59.5,52. 
2,60,51 22,5~.~~,49. 99.55.65 

:1. Ci :t 1;::1 ~':'i C! i) E: I.: !':'! 
10201MOVE . ~ .~ 
1030 IORAW4,0 2 lORA) O,- ~ 

2000 REM tPLOT CROSSt 

;;::~ !;::12 ,;::1 I i';'i (J i) E: ij". :::~: i:!~: I [)!? !:::! !.:.! i;::!" . I:::; 
;;::~ ~) :::~: ~::i I j':" C! I,) E: :::~:'" :::~: !:~!~ I [1 !? j:::j j.:.i ...... i:::;., i? 

3020 FOR X=1948 TO 1976 STEP 4 
:::~: (:1 :::~: (I I"'! (I :,) E: >::., :::1· :::~: 

3040 LABEL VAL$~X) 

3060 REM tLABEL Y-AXISt 

3080 FOR Y=48 TO 70 STEP 0 
:::;: Ci ::::1 Ci I'" C! ;) E: :i. ::::; '::i· 1, \' 
3100 LABEL VAL$(Y) 

Go to the subroutine to label the axes. 

} 
Labels X-axis from 1948 through 1976 
in increments of 4 years. 

} 

Labels Y-axis from 48 to 70 in 
increments of 4 seconds. 



Section 11: Graphics 221 

+ + 

+ 
i-

+ 
+ 

~ C 
c-

D + L._ 

1-': 
D 

[J 
[J 

Horizontal labels are positioned immediately above the specified point; vertical labels are positioned immediately 

to the left of the specified point. 

To center the labels next to the tic marks on the axes, change statements 3030 and 3090 to read as follows: 

::< +-. ::::;.= .. :;. :::~; 

Now run the program again: 

+ + 

-+ + 
+ 

+ 
.-:1 [J 

c- r + U 1---': 

L1 
[J 

U 
0 

Labels are centered on the tic marks. 



222 Section 11: Graphics 

You'll find that labels can be positioned easily at the desired location by adding or subtracting fractions of the units 

that you specify. 

Of course, you could calculate the exact location of the label by scaling the graphics display to the number of 

plotting dots available, as we suggested earlier. 

Problem 

12.5 If you toss an unbiased coin a number of times, you will get all heads or all tails or more likely, some 

combination of heads and tails. Test your graphics programming skills by plotting a histogram of the 

theoretical probability distribution of the various numbers of heads you might obtain by tossing a fair coin 

ten times. Label the number of heads along the X-axis from 0 to 10. Since you will be graphing a histogram, 

center the labels under each unit on the axis. Label the probability along the Y-axis in intervals of 0.02 from 

o to 0.26. 

Hints: 

I. To find the various probabilities, evaluate each term of the binomial expansion: 

r=O 

n! ----,- pn-rqr wherep = q = 1/2 andn = 10. 
r! (n-r)! 

(p +q)11 = 

For example, to find the probability of obtaining three heads and seven tails in 10 tosses, evaluate the 

term: 

1O! 
3! 7! 

2. Define a factorial function to use in the above computation. 

3. Remember to allow enough space in the ::::; C: i:::i L.. i:::: statement for labels along the axes. 

I i···i F' i...i·r in Graphics Mode 

One of the most useful features ofHP-85 graphics is the system's ability to take inputs from the keyboard while the 

display remains in graphics mode. Thus, you can study the graphics display and input information to a program 

without the display reverting back to alpha mode. 

There is an important difference between input in alpha mode and input in graphics mode. Whereas all of the display 

editing keys are active on input in alpha mode (e.g., the GJ key causes the cursor to move right, etc.), only the 

~ key is active on input in graphics mode-the rest of the display editing keys will display their respective key-

d h d . . h h· d· I R b h rCoPYi rPAPER\ f"""I ~ rKEY\ co es w en presse m response to mput on t e grap ICS ISP ay. emem er, t e L..J' ~, ~, L..J' ~, 

ffi, and B keys are still active with graphics mode input. Refer to the table of key responses in appendix C. 



Section 11: Graphics 223 

Since the (!pAACc"E) key is the only editing feature allowed in graphics mode, it has been given some special capabili­

ties. We'll discuss the backspace features in conjunction with graphics input in the following program. 

Example: Write a program that generates 90 random numbers between 0 and 20 and plots them in order of 

generation on a horizontal scale from 0 to 30. Using L. HE:::: L.. statements on the graphics display, prompt for 

inputs for a graph heading, and for X-and Y-axis labels. 

• 
• 

~ REM tRANDOM DATA PL.OT AND L.A 
bEL.:i 

10 DIM H$[32J,Y$[14J,X$[27J 

lP PEN 1 @ GCL.EAR 

51? \'A::<1'::; :::1,:1. .. U, 20 
(;;j !:',:i::ihDOr'l I ZE 
?Cl FOP 1::::1 TCJ 90 
r: 0 \' :::: ~:~ i~:~ :*: F: t··! D 
::?-O PEr'~UF 
O(~ F'LO"T" 1 ..... 3., '.,.' 
i.ei r'~E>:~T 

;~:::o !'1C!)E ..... :::).' ·····4 
-~:Gi LDI~~ (I 

:[ '::i·U L.!~iF'EL. "Ei···!TEF.: HE:HD I riG" 

1 :)!j r'i:::) E H t, :2:? 
• :?C1C i._A:::: EL. H:f 
• ;21 ~~! GCL..EfiP -1 

,??O !'10!'}E ·-··~:i., ·····4 
• o:::.:3U L.AbEL. "L.A!:::!::::!.... \'--A>:; I ::::; ! t'iA>=: 14 

C H A !~~ ::; ::. ;; 
~::4U !'1(:)i')E ·····'::,-6 
::::5C1 I r'~PUT \'::f. 
26U \'::::L..E:!···i':: \'$::' 
27U Yl=lU~IhT(Y/2)tlU/7 
2::;::U nUi,)E: --'1, '/:[ 

• ~:::':H.l L.DIP 30 
• ~:;:U''::; L..i:iE:E::L.. \'$: 

• 31.lj GCL..EHP ·-1 
:.: :? I:::! f'l () ;,j E _ ... ~:; , -.. ;:; 
32:0 L.DIP 0 
::;:4~:j L..fibEL.. "1'~O~'i L. fiE:E:L. >::'-1=1:: I ::: .: !'1H::: 

:::~: :::i !~:) t=1 0 i.} E .. - ~5 .' -- ::: 

• 3t:~3 I t·jPUT ::<:f 
.3 "? [i ;:< ::= L. E: !···i ( ::< :$: ) 

• 380 Xl=12-IhT(X/2)t32/35 
• ::~:::'Ij CCLFF!P -'-2 

4UO !·,!C!i.)F ::<:!.., ·····3 
• 41.1;:1 LAE:E:L. >:::$: 

420 E!··~[I 

Dimensions string input variables. 
Scales X and Y units. 

} Draws axes. 

} 
) 
} 

) 

Plots random points between 0 and 20 in 
order of generation. 

Moves to desired point, sets direction, 
then labels. 

Moves to desired input point on graphics 
display, then accepts input. 

Centers heading. 

Then labels. 
Clears previous prompt and input from 
graphics display. 
Prompts for next input. 

} 
Moves to desired point of question mark 
appearance, then accepts input. 

} Centers label along Y-axis. 

Changes label direction. 
Labels Y-axis. 
Clears previous prompt and input from 
graphics display. 

Inputs X -axis label. 

Centers label under X-axis. 
Clears prompt and input. 

Then labels. 



224 Section 11: Graphics 

After you have entered the program, press 8. The graphics display shows: 

.. . .. 

The input prompt, '::', appears on the graphics display if an T i',,! F:':' . .!·r statement is executed when the CRT display 

is in graphics mode. 

Since you moved to point - 5, -6 on the graphics display before the input statement, the question mark appears at 

point -5, -6. Now enter a heading for the data plot. If you make a typing mistake, backspace to erase and correct 

the error. 

When you have completed typing the heading, press ~. The display will remain in graphics mode while you type . 

.. 

. .. 

,"': r",,",;, :; ;;','; 
... : ... ; L .. ',,':::::":;' 



Section 11: Graphics 225 

After you enter the heading, the program will prompt for the next label. 

i:;:: , 1 ~ ! ~ ... = .. ': ;'; r", c; '"]"' ,", ; ... 1... .. J j ,;. : ... :, ... '; .... : : . 

.. 
.. 

. . . .. 

; ... ;; ... :: ..... ! ... ~ c; r": ..... 

Again, the question mark appeared at point -5, -6 because we moved to that point prior to the: !., r" t.rr statement. 

Enter the Y-axis label and press CfID. 

.. 

. .. 

..... . , ...... : ..... . 
. ..... ;.:; ,'.;; i,-i' ,' .. 



226 Section 11: Graphics 

Now the program prompts for the last label. 

.' 
.' 

' .. 

Enter the label and press rIm. 

,;, : .. .' ', .. L .. j ,", 

.' 
.' 

' .. 



Section 11: Graphics 227 

The program centers the last input under the X-axis . 

.. 
. . 

.. 

. .. 

Experiment with the position of the input prompt, '::', to view the results of inputting information to the graphics 

display. 

For instance, if you change statement 150 to: 

The first input prompt will be displayed in the lower right comer. 

.. 

. . . .. 



228 Section 11: Graphics 

You can enter up to 95 characters in an I i···i F' i...! T statement, but you may not be able to distinguish all the 

characters that you type. The graphics display does not scroll up when characters are typed, so characters may 

"wrap" around the display on the same line and overwrite each other. In the example, the input prompt appears 

at the extreme bottom right of the display, so the message will be typed on top of itself: 

.. 
.. 

. .. 

Even though you cannot distinguish the characters that have been keyed in, the system remembers up to 95 

characters. So, you can still backspace to correct a character if you've made a mistake. 

Depending on the position of the input prompt, the system may allow you to backspace past the question mark 

(':"), as in the example. After you backspace, you can enter the desired input and view the message as you input 

it. 

.. 

. .. 

An I r·~ F' ! . ..!·r statement in graphics mode always resets the label direction to the horizontal position so that input 

messages can be read easily. The input prompt, '), always appears on the graphics display if the CRT is in 

graphics mode when an I t·j F' U T statement is executed. If you want to input in alpha mode, be sure to execute 

the Fll .. P H 1''1 statement prior to the I t·j F' U T statement. 



Section 11: Graphics 229 

Problem 

12.6 "Hangman" is a game commonly played by youngsters (and oldsters, alike) in which one person chooses a 

word and another must guess it, one letter at a time, given the length of the word. The word-chooser writes a 

dash to represent each letter in the word. Whenever a letter is guessed correctly, all occurrences of the letter in 

the word are written above the dash that represents the letter's position in the word. Whenever an incorrect 

guess is made, a part of the hangman's body is drawn. 

If the word is guessed before the hangman is completed, the guesser wins. If the hangman is completed before 

the word is discovered, the word-chooser wins. 

Write a program to simulate this game on the HP-85. So that you do not have to create string data files, write it 

in such a way that one person inputs a word, the display is cleared, and another person must guess the word. 

Write one subroutine to draw the scaffold and another subroutine that includes a computed r:, ""1" C: statement 

to determine the part of the body that is to be drawn in the case of an incorrect guess. Include six body parts 

(head, left and right arms, trunk, left and right legs) and allow the guesser six incorrect guesses. 

Here's a sample graphics display where the guesser won with two guesses left and the hangman body 2/3 

complete. 

With the hangman program, it is essential to accept inputs in graphics mode. 

Advanced Plotting With E:; F:' L.. Ci 'r 
The [:::: F' L. C)'f (byte plot) statement enables you to plot groups of dots on the graphics display by creating a string 

of characters that specify those dots. Each character in the string specifies one byte (eight bits or pixels) of 

information which determines whether dots are on or off on the graphics display. 

E: F L. c)r string expression.' number of characters per row 



230 Section 11: Graphics 

The E:: F' L.. c!'r statement is not difficult to use, but it 

does take some time to figure out the precise dot con­

figurations of a design or pattern. If you have played 

any of the games in the HP-85 Games Pac, you've 

probably seen E:::! 'I ("iT' in action. Soon you'll be 

generating figures like these using F:: F: L. .. ;''';'r 

• • • ." • • ." • ." ." 

III • III • ." III • III III ." 

." • III • • ." • • III • 

." • • ." III • • III • • 

." • III III III • ." III • III 

1 o 1,------, 

First we will outline the procedure for building a character string for C: i::: L.. C! 'r, then we will discuss some examples 

and byte plotting peculiarities. 

Procedure for Building the String 

I. Draw the figure you wish to plot. 

2. Then redraw the figure in matrix form, using dot patterns instead of lines. Graph paper is useful at this 

point; let each square equal one dot, block, or bit of information. 

3. Divide the dot figure into columns of dots and spaces, eight squares wide. View each eight blocks as a byte 

of information where each block specifies a bit. If a dot is specified, the value of the block is one; if no dot is 

specified, the block's value is zero. Thus, each group of eight dots or spaces specifies a binary number that 

determines a particular character. 

4. Convert each binary number to its decimal equivalent. This can be done in a variety of ways; the easiest of 

course, is to use a conversion table. (You can use the table of characters and binary/decimal equivalents in 

appendix C.) If a table is not available, convert each eight-digit binary number to its decimal equivalent. 

You may wish to use (or modify) the Base Conversions programs, listed on page 249. 



Section 11: Graphics 231 

5. Build the character string by assigning the character of the specified decimal value (using the f': ff f?:f:: function) 

to the appropriate character position in the string; the easiest way to build the string is to write a program that 

accepts and appends the character to the string through ::: f",f f::: : : 'r statements or f? f:::: ::::: Ci and Ci ::::: 'r ::::: statements. 

6. Use this string with the C: r::' L., CiT statement to plot the figure. Examples of the statement are: 

E; F' L. c:; 'r "T' .:i:: .' :!. 
E; F' 1.... C) 'r :;:;; ::1:: .' ::::; 

Plots T$; I character per row of dots, 
Plots S$; 5 characters per row of dots. 

Let's take a simple example to illustrate the first five steps of the procedure. Suppose you wish to plot a solid 

triangle: 

Step I. Draw the figure. 

Step 2. Represent the figure with dots or blocks. • • •• ••••• ••••••• 

Step 3. Since the base of the triangle is only seven dots wide we need only to place it in a four by eight dot mat­

rIX. 

• •• •• • •• •• 
• •• 
•• • 

Each row of this dot matrix specifies a byte 
(eight bits) of information . 

Step 4. Convert each row of the matrix to a decimal value. 

• •• • • •• • • •• •• • • • 

Binary Representation 

o 0 o 0 1 000 
o 0 o 1 1 1 0 0 
o 0 1 1 1 1 1 0 
o 1 1 1 1 1 1 1 

Octal Value 

010 
034 
076 
177 

Decimal Value 

8 
2 8 
6 2 
2 7 



232 Section 11: Graphics 

Step 5. Build the string using the C i···i i? ::i:: function: 

T$=CHR$(8)tCHR$(28)tCHR$(62)tCHR 
::1;: ( :!. ::::,.?) 

This is a short string so we have manually 
entered the characters. To see the strin , 
type the variable name, then press E,~~ . T:l 

• :!. ~::! 
;~::~ ~) 

:::~~ i;) 
,::l·i;::i 
i:::" ,":, 
.... !=::.! 

You should use the C: i···i F' ::i:: function to build this string since some characters cannot be specified from the 

keyboard (e.g., those with decimal values over 128), and others have special meanings when found in 

association with strings (e.g., the quotation mark). 

Since T$ is a short string, we built it from the keyboard. With longer strings, you might write a program 

like this: 

D I j"" "r :~:: I[ :::1· :::Ii 
~:::. C! F~ I::::: :!. or C) :::i· 

PE:f::i[) i) 

T :l ii::: I .. I :::ii ::::: c: i···i F':l .:: i,) ) } 
Dimensions the variable. 
Uses a i:::· Ci F'- i···i C: :-:: "T loop to i? E:: i:::i Ci or 
I:···: F' i.!·r the decimal values into the 
appropriate character position in the 
string . 

Step 6. Use the string with the C: i:::O L.. Ci·r statement to plot the figure. Below we have enlarged the graphics display 

area around each i3 i::: L. C)·r to illustrate the statement. Do not execute these statements now. 

••• .... .. 1--- .. 

........... 1--­

•••••• ....... 1--- i··· 

• ••••• ••• ••••••• 

• ••••••• ••• • •••• 

• ••• • •••• 

Plots one character per line of 
·r ::i:: ::::: " ..... (,:: :> i···· " , thus producing a 
triangle . 

Plots two characters per line of 
--r"::j:. ":::: :: /::(=::"> ~ .... il 

Plots three characters per line of 
"r t: :::: ;; /:: i):: .> ~.... ;: 

Plots four characters per line of 

• •••••• -..... --'Vv--... ~ -.... _-,v,-_-'.J ~ .... ____ ... .J--_-., ___ ,; 

As you can see, C: i:::' L.. C)"T· ·r ::,:: .. :i. produces a triangle because it plots one character per line. C. F' i (:).T" 

·r ::i::, '::i· plots all four characters on the same line. 



Section 11: Graphics 233 

Using the String With E: F L.. (J T 

Now that you have composed the string, use the F: F" .... statement to plot the figure. Enter and run the follow­

ing program~use the editing features of your HP-85 to add statements to the last program if you wish and then 

renumber the program. 

• 

• 

10 PEN 1 @ GCLEAR 

:::': :? I'" U i"': I'"'' 1. "T' Ci 4 
,':i·l? i?i'=.:!::!D ') 
::5Ci T:f.[ I.' .l .J. :C:I···!!:~~¥ < i"r 0) 

60 r·~!::>::T 

1 U:;:-j [·ii'=.:i:T I 
Fe!"': >': "" ::. i:::: u 'r c ,':1· ::::: 

i:::: r'i (J I) !:=.: i':, ::: U 
1~1 E:PLCiT' T:t,:i. 

U DATA 8,28 62,127 
i 0 EHD 

Scales to number of pixels on graphics 

} 

screen. 

Repeats the procedure for building the 
string. 

) 
Moves to point 124,100 . 

Creates a column of 11 triangles. 

point 108,80 starting position; 
~ . _______ point (124,100) 

point 100,80", "" i · ... · ........ t ........... 

Note: 

1. , ... , .. L. .. i'T" automatically stacks the specified string when only one pen location is specified (see lines 70 

through 100 above). 

2. !::::F>L..Ci·T" performs an !:::.,., i1) (exclusive or) with existing dots on the screen. Thus, we erased the 

middle triangle by plotting it twice. 

The example above illustrates most of the facts you need to know about i:::' .::: L.. Ci ·T. We enumerate them here: 

I. For your ease in using E: F' 1.... CiT, scale the display from 0 to 255 (256 dots in the horizontal direction) and from 

o to 191 (192 dots in the vertical direction). With this scale, you always know exactly where the dots will be 

plotted. 



234 Section 11: Graphics 

2. The starting position of a byte plot always has an X-coordinate value that is a multiple of four on a horizontal 

scale of 0 to 255. 

If the current pen location does not have an X-coordinate 0,4,8, ... 252, the figure will be justified to the 

nearest four-dot position (multiple of four using the scale above) to the left of the current pen location. The 

figure is plotted with the upper left corner at the specified pen position. In our example, the statements on 

the left produced the figure on the right. 

. ? C! i"! () I,) E: :I. ;:::' ,::i· .' :!. I:::! CI 
:::; [I E: i:::' L.. CI 'r T·::I::.':I. 

point (124,100)~· • ••• ••••• ••••••• 
3. If the i:::: F> i . C)'r statement is executed several times without changing the original pen location, the second 

figure is plotted immediately below the first figure, the third below the second, etc. Notice that lines 70 through 

100 produced a column of II triangles with the upper left bit of the first triangle at point 124,100. When more 

than one i:::: i:::' 1.... cI'r statement is executed, one after the other, it's as if the graphics display performs a carriage 

return and tabs to the original horizontal position, to begin plotting the figure immediately below the first. 

4. i:::: F' 1.... cI'r performs an E:::: C! i? (exclusive or) operation between the character string you specify and the exist­

ing dots on the display. As you have seen, the middle triangle above was erased because we plotted it twice. 

Let's discuss how this occurred. 

The table below illustrates all possible conditions and outcomes of the E:: ::: C! i:;:: operation between a dot on the 

screen and the same dot specified by a C: F: 1.... C!'r string. The third column gives the resulting dot condition; 0 means 

the dot is off and I means the dot is on. 

Dot before Same dot specified 
by i:::: F' 1.... CI "T stri n9 

E::: : C! i?: Resultant 
dot condition 

1 (on) o (off) 

1 (on) o 1 (on) 

o (off) 1 (on) 

o (off) o o (off) 

Here's what happened to the middle triangle: 

I point(124,80) 

t..O 0 0 0 0 0 0 0 
o 0 0 0 0 000 
o 0 0 0 0 000 
o 0 0 0 0 0 0 0 

c; C: L. E: I:::! F: with 
F:' C:I"··j :L turns all 
dots off. 

first i:::: F' i . c!'r ·r:l.'.L 
at point (124,80) 

o 000 1 000 
0001 00 
o 0 1 1 
o 1 1 1 

1 1 0 
1 1 1 

Since CI E: ::: C! F;,: :!. = :!. 

and I:::! E:: ::: C! i? CI= U; 
plots triangle. 

If a dot is on, specifying I for the same dot 
in the E:: F> 1.... C:;"T' string turns the dot off. 
If the dot is on, 0 in the string keeps it on. 

If the dot is off, I turns it on. 

If the dot is off, 0 keeps it off. 

display after second 
i··'; :.... :1. at point (124,80) 

o 000 0 0 0 0 
o 000 0 0 0 0 
00000 000 
o 0 0 0 0 000 

Si nce :!. C: ::.:: C! F: :i. = 1:::1 and 
c! c: ;:.:: C! i? 1:::1= I:::!; erases triangle. 

This aspect of E:: F' i . cI'r becomes very important when you wish to simulate a figure moving across the graphics 

display. You must know whether a 0 or a I will turn the dot on or off of the current display. 



Section 11: Graphics 235 

Condensing the String Assignment Program 

Once you have defined the string, as we have done in the last two programs, you can create one assignment statement 

that specifies the string for use in future programs. This will shorten your programs by at least four or five state­

ments. More important, for complicated figures, it will eliminate the long set-up time. 

For instance, while the last program (page 233) is still in computer memory, type: 

Execute the calculator mode statement, by pressing ( E,~~ ), to display: 

Now use the Q key to move the cursor back to this line and then press ~; the new statement 30 will be stored. 

Notice that we have used C)··: F:-::::: , ":;',:j> to specify quotes. If your ., :':. c>r character string also contains quotcs, 

you must concatenate them to the string using (":! ! i) ':i:: ," """ 

If your :::::F'i .... Ci·T string contains underlined characters (characters with decimal values above 128), you must be 

careful to avoid the underlined character with the cursor. The cursor will always erase an under! ine, thus changing 

the character value. 

Since the new statement 30 has been stored, you can delete the unnecessary statements from the program. Do so now 

by executing: 

,:::',.::; 
T:::'=,' ' ... ':: . .' 

tENDl 
~ 

Renumber the program and list it on the display: 

10 PEN 1 ~ GCLEAR 
20 SCALE O,255,O,191 
.. :~: !:::! 'r ::1=: ::::: ;; /:, 0:: :> ~.... ;! 

<. iJ !"="! Ci i) E: :1. ;;::~ :::! .. ' .L i:::i i:::1 

::::i i? F' C) F~ T ::::: :J. 'r c! :J. :!, 
(; i?i E~ F' L.. () 'r 'r ::1:: .' :!. 

80 FOR \=100 TO 148 STEP .. 
:::~l (:1 (I Ci t) E: >::., ;:::; (I 
:1. i;::i i;::i I:::; F' L.. C) 'r 'r ::!:: : 1 
:!. J i;::i i',,! E: ;:':;"T' ;.< 
J ;;::~ ~::i E: i···j [) 

Removes rest of I::: i!: '- i:::: :::: loop. 

Deletes L> ,'T !"! statement. 

This program, shortencd by four program 
lines, perfonns exactly the same ,"': 'T" 

as the program on page 241. Try it! It will 
also be faster for longer strings! 

Note: A program that includes nonstandard characters may cause an external printer to behave un­

expectedly when the program is print-listed. A nonstandard character is defined as a character whose 

decimal code is less than 32 or greater than 126. For example, the decimal code of the delta character 

(,:::,) is 8, and may be interpreted by some printers as an instruction to backspace. If you are using an 

external printer, use the C: ! ... ! f;:: ~:: function to express any nonstandard characters (for example, 

Let's look at a more difficult example to illustrate the renaming features of the E F'i ........ statement. 



236 Section 11: Graphics 

Example: Use E:: F:' L .. C)'r to plot a man in the moon. Then create another C: F:' L.. Cl'r character string to make the man 

in the moon move across the screen, one byte each move. 

I. First draw the figure: 

2. Now redraw the figure on graph paper in matrix form. Since the moon is white, we want to light all of the 

dots inside the figure except the lines drawn for the eye, nose, and cheek. 

Matrix Form 

•••• ••••••• •••••••• ••••••••• 
••••••••• ••••••••• 
•••••••••• 
••••••••• 

•••••••••• ••••• • •••• ••••••••••••••• 
•••••••••••••••• ••• • •••••••• ••••••••••• •••••••••••• •••••• •••••• ••••••• ••••••••••• 

•••••••••• 
•••••••••• 
••••••• •••• 

Binary Representation 

111000000 0 0 0 0 0 0 
01111 1 0 0 0 0 0 0 0 0 
001 1 1 1 1 1 000 000 
00011 0000 
000011 000 
000001 00 
000001 1 0 
o 0 000 1 010 
0000101 1 101 
000 1 100 0 1 1 
o 11 11 11 
1111 1 111 
11010011111 
o 000 1 1 1 1.1 1 
0001111111 
000 0 0 0 0 001 
o 0 0 0 0 0 001 

1 1 1 
1 0 1 
o 1 1 
o 1 1 
011 

o 1 1 0 
1 1 1 0 0 
1 1 0 0 0 

o 0 0 0 000 1 1 
0011 1 1 
001 1 0 000 

10000 0 
1 1 1 1!0 0 0 0 0 0 0 0 
00 0 0;0 0 0 0 000 0 

o 1 
o 1 
1 1 



Section 11: Graphics 237 

3. Divide the figure into columns of dots and spaces, eight squares wide. Our figure is 16 squares wide, so we 

divided it into two columns. Each line of each column represents one byte of information. Above. we also 

converted the figure to its binary representation. For the two columns of eight squares, we also have two 

columns of eight-digit binary numbers. 

4. Convert each eight-digit binary number to its decimal equivalent. 

Binary Representation 

1 1 0:0 0 010 010 0 010 0 0 
o 1 1 1 111 1 1 0 010 0 010 0 0 
00111111111110001000 
0001111111111101000 
00001 '1 111111 11000 
0000011 1!1111 11100 
0000011 111111111 0 
0000011 01111011111 
0000111 01111011111 
0010111 10010111111 
01i111,1111111111111 
11111111 1'11111111 
111010 1 011j, 1110111 
0010011111111101111 
001011111111101111 
001000100001101111 1 
0010001000 1 111 0111 0 
00100010011111111100 
0011111111111111000 
00!11111 111101000 
01111111 11111001000 
o 111 111 1 10010001000 
1 1'1 010000010001000 

Octal Representation 

36000 0 
177 000 
07730 0 
037 360 
017 370 
007 374 
007 376 
006 357 
016 357 
037 037 
177 377 
377 377 
323 357 
01733 7 
03733 7 
000 137 
000 356 
001 374 
077 370 
077 360 
17734 0 
17700 0 
360 000 

Decimal Value 

240 0 
2 7 0 
6 3 1 9 2 
3 1 2 4 0 

5 248 
7 2 5 2 
7 254 
6 239 

1 4 239 
3 1 3 1 
2 7 255 

255 255 
211 239 

1 5 2 2 3 
3 1 223 

o 9 5 
o 238 
1 252 

6 3 248 
6 3 240 
2 7 224 
2 7 0 

240 0 

5. Build the character string using the (" l"'l l?:l:: function. 

10 REM tSUILD MOON STRINGt 
• ~:C D I j"! I"'I::~[ 46 J 

30 FOR 1=1 TO ~6 

~0 DATA 15,223,31,223,0,95,0,~~ 

Dimensions string to number of decimal 
values. 

} ~!~~,~;:,~:~1~~~!'~;~~~:::;;,~~~;"' 
Data for moon string are read from 
decimal value table from left to right. 



238 Section 11: Graphics 

6. Use this string with the F:' 1.... CJ'r statement to plot the man in the moon. Append the following statements to 

the end of the string building program above and then press 8. 

• (:I ::::C:I:iL.E 0 .. 255 .. [1 .. 191 
OPEN 1 @ celEAR 

• :I 0 ,"10',}E 0 .. 191 
• 1 (:J BF'L.OT r'!$ .. 2 

(:j Ei'~D 

Replace E ,'., D statement with ':: c:: H 1.... F' 

statement. 
Moves to upper left corner of display. 
r:::: F' L. C)'r the character string, two 
characters per line. 

As you can see, the man in the moon was plotted once in the upper left corner of the graphics display. 

To finish the solution to the example, we must move the man in the moon across the display one byte (eight dots) at 

a time. 

What happens when we simply position the pen to point 8, 191-eight dots from the original starting position, and 

then execute C:·' t .. ! " r'i ::i:: , ::::' once again? Try it! 

Moves to point 8,191. Remember the 
system reverts to alpha mode as you type a 
statement and reverts back to graphics 
mode when you execute it. 
Byte plots the character string for the moon, 
two characters per line. 



Section 11: Graphics 239 

After you execute the :.: .. Cl 'r statement, the display shows: 

As you can see, l:::: 1::: .. C)T performs an 1:::'",.:' l'i 1) operation with existing dots on the graphics display. So, the left 

half of the first moon remains intact, but the right half of the first moon and the left half of the second moon leave 

an odd dot configuration on the display. Since the display was clear to begin with (aside from the first moon), the 

right hal f of the second moon is plotted correctly. 

This should give you an idea of what we must do in order to simulate the moon moving across the display. We must 

create another character string for C: 1::' 1.. i::::--1"-three bytes (characters) wide. The first character should erase the 

left half of the first moon, the second character should plot the left half of the second moon when it is plotted on top 

of the right half of the first moon, and the third character should plot the right half of the second moon. 

The first and third characters are easy enough to compute. Since E: F L .. c:;r performs an F >: C' F' with existing dots 

on the display, the first character of each line of our new E: j:::' L.. C, 'T string is the same as the first character of the 

original string; 1 EXOR 1 = 0 and 0 EXOR 0 = O. The third character of each line of the new string is the 

same as the second character of each line in the original string; 0 EXOR 1 = 1 and 0 EXOR 0 = O. 

The middle character of each line of our new C: 1:::' L .. Ci'r must be computed such that it produces the left half of the 

moon. Since it is plotted on top of the first moon, you must specify the bit value 0 or I so that w hen an ;:;' C' F' is 

performed, you obtain the desired result. 

If a dot is on and you want it off, specify I. 

If a dot is off and you want it on, specify I. 

If a dot is on and you want it on, specify O. 

If a dot is off and you want it off, specify O. 

In other words, the middle character is an C:::: Ci 1:::: between the first half and the second half of the original moon. 



240 Section 11: Graphics 

Binary Representation of New Moon 

Left Half: EXOR Right Half 

0000 1 11 1 1000000000000 
10111 1 1 1 0 0 000 000 
111 1 1 1 1 1 0 0 0 0 0 0 

1 1 
o 1 1 1 
o 0 1 1 
00011 011 
o 0 001 1 101 1 
o 0 0 0 0 1 1 101 1 
000001 11 11001 1 

o 000 
1 000 

o 0 
o 

000001 01 01001 01 1 
o 0 001 0 1 1 100 001 1 1 101 1 1 
00011 1 0 0 0 0 0 0 0 0 0 001 1 
0111111 100 0 0 000 1 1 1 1 1 
1 1 1 1 1 1 1 100 0 0 0 0 0 0 1 111 
11010011001111001 1011 
o 0 001 1 111 101 000 0 1 011 1 
000 1 111 1 1 100 0 0 0 0 1 101 1 1 
o 0 0 0 0 0 000 1 0 1 1 1 1 101 011 1 
000000001 10111011101 10 
000000011 1111011 1 100 
001 1 0001 1 111000 
001 1 100 1 1 1 100 0 0 
011 1001111 11100000 
o 1 1 1 1 110 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 
1 1 000 0'1 1 1 1 0 0 0 0 0 0 00 0 0 0 0 

---.--.... V J 

The binary numbers in this col­
umn are the same as the binary 
numbers in the first column of the 

The binary numbers in the middle L The binary numbers in this col-
column are the results of the umn are the same as the binary 
EXOR operation performed numbers in the second column of 

original moon. between digits of the left half and the original moon. 
the corresponding digits of the 
right half of the moon. 

We already know the decimal values of the first and third column. Now find the decimal values of the numbers in the 

middle column. 

Binary Representation Octal Representation Decimal Value 

11110000 360 240 
o 1 1 1 1 177 127 
1 1 1 1 1 377 255 

011 357 239 
1 0 1 1 367 247 
1 1 0 1 1 373 2 5 1 
1 1 0 0 1 3 7 1 249 
o 1 001 3 5 1 233 

11100001 341 225 
o 0 0 0 0 0 0 0 000 0 
10000000 200 2 8 
o 0 0 0 0 0 0 0 000 0 
00111 100 074 6 0 
1 1 o 1 000 0 320 208 
1 1 00000 0 300 192 
o 1 011 1 1 137 9 5 

1 0 1 1 1 0 356 238 
1 1 1 1 o 1 375 253 

1 0 0 0 1 307 199 
1 0 0 1 317 207 
001 1 1 237 159 

o 1 1 1 1 1 177 127 
1 1 1 1 o 0 0 0 360 240 



Section 11: Graphics 241 

Thus, the decimal values for our second i:::; i::" T" character string are: 

1 51 Character 

240 
127 
63 
31 
15 

7 
7 
6 

14 
31 

127 
255 
211 

15 
31 
o 
o 
1 

63 
63 

127 
127 
240 

Decimal Values 

2nd Character 

240 
127 
255 
239 
247 
251 
249 
233 
225 

0 
128 

0 
60 

208 
192 
95 

238 
253 
199 
207 
159 
127 
240 

3rd Character 

0 
0 

192 
240 
248 
252 
254 
239 
239 

31 
255 
255 
239 
223 
223 

95 
238 
252 
248 
240 
224 

0 
0 

Finally, build the character string for the second moon. With the previous moon program still intact in computer 

memory, make the following changes: 

I. Dimension the second moon for 69 characters in statement 20. 

2. Add statements 125 through 200, below, to build the second string, and statements 210 to 9999 to plot the 

string. 

10 REM %SUILD MOON STRING% 
• 20 DIM M$[46J,M2$[69J 

30 FOR 1=1 TO 46 
40 READ r'11 
i:5Ci 1'1$[ I , I ]:::CHR:t.:: 1"11 ) 

7 0 D 1=1 T !=1 :: 4 ° , 0, i.;? 7 .' ~~1 6 3, 1 9 2 , 3 1, 2 
40,15,248,7,252,7,254,6,239, 
1 4 .' 2:3 9 .t 3 J. .' ::::: 1 " 1 27 .' ~~ 5 5 .' 255 .' 2:5~) 
211,239 

80 DATA 15,223,31,223,O,95,O,23 
:::.,1, ~::~:;2, 63, ~:::4:::, 63,240 .. 127, 2:? 
4., 1:?7., 0, ?40, ° 

90 SCALE 0,255,0 .. 191 
100 PEN 1 @ GCLEAR 
i 10 1'10 1,}E ~~1, 1:31 
120 SF'L.OT 1'1$.,2 
125 REM %8UIL.D 2nd MOON% 
130 FOR K=1 TO 69 
140 READ r'I2 
150 M2$[K,K]=CHR$(M2) 
160 [·jE;:'::T K 

Dimensions the string variable for the 
second moon, M2$. I !~~~d;:~:s ;~ta~~i~~. using ii i' T " 

} 
Puts the original man in the moon 
in the upper left corner. 

} ~~:~::~~ ,;~~~~,~~~~g 2~~ng C pc 



242 Section 11: Graphics 

170 DATA ~~40,~~40,0, 127., 127,0.,t::3, 
255,192.,31,239.,240,15,247,24 
:::.,7.,251., 2~52 

180 DATA 7,249,254,6,233,239,14, 
;?;?~:;, ~:::39, 31 , '3.,31, 127., 12::::.,2':.::5, 
255,0,255,211,60,239 

190 DATA 15,20:::, ;?23., 31, 19~::, 223, 0 
,95,95,0,23::::,238,1,253,252,6 
:':;:., 1. :~'9., 24::: 

200 DATA 63,207,240,127,159,224, 
127,127,0,240,240,0 

210 REM tNOW SET UP LOOPS SO THE 
MOON MOVES FROM LEFT 
TO RIGHT ACROSS DISPLAY 

220 REM AND FROM TOP TO BOTTOM 
F.: I GHT CORt·jERt 

- ;:::30 FOR '/=191 TO ° ::nEP -1 

-240 FOR X=O TO 255 STEP 8 
250 1"10 i)E ;:":., \' 
;:::60 BPLOT 1"1:?::[::, 3 
27,3 t·iE:,-:;T ;:.': 
2 ::: '~1 t·j E :',,; T \' 
99~=l:j Et·W 

Outer loop (Y) moves string from top to 
bottom. 
Inner loop (X) moves string from left to 
right. 

Now run the program to see the man in the moon move across the display from left to right and descend slowly 

from row to row. 

We chose to move the moon eight dots at a time in the horizontal direction. But we could have moved any number of 

dots at a time. For instance, if we had moved it four dots at a time, the outer four squares of the second moon would 

be the same as the first. But each of the middle four dots would have to be computed as the E: :'.:; Ci i:;:: of that set of 

four dots and the four dots preceding it. 

You can stop the moon program anytime by pressing Q. 



Section 11: Graphics 243 

Finally, you may wish to condense the moon program in the same manner that we condensed the triangle program 

earlier. 

Since you have just executed the moon program, variable M$ contains character data to build the first moon and 

variable M2$ contains character data to build the moving moon. 

After pressing Q to stop the program, create one assignment statement for each moon variable. 

Create an assignment statement for M$ by executing: 

When you execute this statement, an 
assignment statement numbered 1000 
will appear on the display. 

Do not enter the new assignment statement into computer memory until you have displayed the characters of each 

variable you wish to enter. In other words, do not press @D after statement 1000-the statement you've just 

created-now. Doing so would deallocate all program variables so that M2$ would be undefined once again. 

First, create an assignment statement for M2$ by executing: 

When you executed the statements above, the system displayed the character strings composing each variable. Now 

you must enter the program lines that you have created into computer memory. Many of the characters are under­

lined, so the best way to approach the statement with the cursor is from the top. 

Thus, press the CJ key so that the cursor moves directly to the "home" position of the display. Then. continue to 

press the GJ key until the cursor rests under 1000 in the statement you just created. Then press @D. Now move 

the cursor with the GJ key until it rests under 2000 in the second statement you created and press @D. 

Move the cursor here, then press @D. 

j:;~~ ::1:: ::: :::~; :::~. ::: 

.. ;~~ ij (1 i;) j'" ;;::: ::1:: ::::: i i .. E:.I:: '!ij to .. I···· 'ii! :?1::~.~ ~:{.!:1.E:: .~j~ ... ~:.t.::::: j:::i .. :n: ... .L j:::i .. ~:::.~~;; 1'''1 

... L.C! 'T' .. :;;;U:::!}~ 'i!! ~:~:~ !···· ... ::!LI::~J::: -itl:::~.;:::; < .. C! ·~j~· .. E~ . .- fL~ ...... '!Ii .......... 'i!i..t::U::i =:>.::~:~ .. .L 
Then move the cursor here and press @D . 

'';> . .1:;,::::: ;'?Lu:::: !····.tt.:::. !H .. j.... ·!i!j::::.E: 'I!i i i 

Since you have now added variable assignment statements for M$ and M2$ to the program, you can delete all of the 

i:;:' E: j:::j L) and Ci j:::j'r j:::j statements. Execute: 

[) E: 1.... E: T E: :::~: !~::!., ;;;;; i;::i 
\:J E:: L.. E: 'r E: :i. ;;::: ::::; .' ;;::: :1, i;::i 



244 Section 11: Graphics 

Now add the following lines to your program: 

Now list your program; it should match the program listed below: 

10 REM %BUILD MOON STRING% 
20 DIM M$[46],M2$[69] 
90 SCALE O,255,O,191 

100 PEN 1 @ GCLEAR 

210 REM %NOW SET UP LOOPS SO THE 
MOON MOVES FROM LEFT TO 
RIGHT ACROSS THE DISPLAY 

220 REM AND FROM TOP TO BOTTOM 

~6~ FOR Y=191 to ° STEP -1 
;;::~ :::1· !~::! F:' C) i? ~.: ::::' c! 'r ('1 ;? ::::; ~j ::::: 'T i:::' F' :;;:; 

:::::70 rlEi::T '.' 
2:::::0 HE::::T \' 
:;::90 :::TOF' 

.1 U I::! ::::1 I"'i :l ::::: " r::. "i! i··- "I! ,) .C~.}~ E::. ':i~' .:::;. i:::; ... : ... i:::; .Z r'" .(:L ."( .c!.}: ~I ! .... .!::::..f.:::. 

• ;;::~ 0 i~:! !;:) !"I"I ;;::: :~:: ::::: i! .. E:.E: .i!I , .. - !.... 'ii! '?.!::::.!i!; t~ .. !:::U:::: ·~i~· . .!.!.L::::: j:\.:!L .. : .. i::\~:::~.I; 1""1 

... :L.Ci ·"( .. :~iD ~I "I! ~:~:~ f··· ... ::!l.i::::.i::: ·,~..i:::: .. :3 <.C! ·I .. L_ ~:::U]i; ..• _ <ii •.•.• ..... <ij 

Go to lOOO to assign values to variables 
m$ and M2$. 
Add ':::;'r C) i:::' so that you do not inadver­
tantly access the subroutine. 
Add return statement at end of subroutine. 

The initial display of the moon. 

These nested loops govern the motion 
of the moon on the display. 

String information for building the 
E: F 1.... Ci T characters . 

If you run the program once again, the man in the moon will move across the display as it did earlier with the 

program on pages 241 and 242. 



Section 11: Graphics 245 

Problem 

12.7 Create a scene for the man-in-the-moon using trigonometric curves for mountains, a segment of a circle for a 

lake, :-:: \:::\ ;:':: T ':::; statements for clouds, and our first triangle E:: F:' L.. Ci'r for trees. Or better yet, create your own 

scene, by creating some new E>· L..c::-r character strings. Here's our scene; a sample program exists in 

appendix F. 

.1~_ _----
---..,.. __ -...r--

-------- '" ---~--
-...------.::; -----------

jt ----

~-

---"1._-
---'" - i -. 

~- t " ~'--
t1 

--..... 

it i ti i'--" f-~ 
- --

-..---
-"'------





Section 12 

Debugging and Error Recovery 

Errors are a common occurrence in programming, ranging from mistakes in the original formulas to mistakes in 

the logical flow of the program. Whenever they occur, they need to be found and corrected, and your HP-85 is 

designed to make various error-checking processes as easy and convenient as possible. 

The HP-85 enables you to: 

• Trace the order of program execution and the changes in variable values. 

• Single-step through programs. 

• Check and change variable values during program pauses. 

• Determine the cause of runtime errors with four BASIC functions (t::: F ,"': L" C' ;:::- ,:;:, i",;, ;::: i:::- ,:;: ,", ;';, and 

t::: :;:- i';: ':::; C:), and recover from errors by writing your own error handling routines. 

TraCing Program Execution 

A convenient method of debugging logic errors in a program is to trace the order of statement execution and 

variable assignments in a program. The HP-85 provides three tracing statements; 'f i:;:' , ,,!::::, 'T F' i:::i '::: i':: ,,!,, i:::-, and 
."'. : ......... (" .. . 

i:::, L, L" which includes 'r;:::- ,:::, C E and 'r', r", , ' r' ,,i ,:::!; 

The trace statements can be programmed or executed manually from the keyboard. The trace statements are 

independent of each other; thus, one or all of the trace statements can be in effect at any time, but 

, r', ,:::, , ' ,.. ,:::, i ,L, includes 'r ,< hi .. , E: andr ;:::-,:::, C t':: 

TraCing Branches 

The T F: H C E: statement is used to trace the order of statement execution in all or part of a program. 

If the order of program execution proceeds sequentially from the lowest numbered statement to the next higher 

numbered statement, nothing is printed. But whenever a branch occurs in a program, both the statement num­

ber where the branch occurred and the number of the statement to which it branched are printed in the form: 

r'" !"l ' .. ' , 1-. I!',,! C statement number T ,"', statement number 

TraCing the Values of Variables 

A frequent programming practice is to include a L:! -:::: ;:::- or F' .... ' T !"'! 'r program statement for a variable whenever 

the value of that variable is in question. However, the HP-85 enables you to trace changes in variable values 

without the need for output statements by means of the T!< , .. " ' .. ,: ,:::, ,) ,:::, !:::- statement. 

247 



248 Section 12: Debugging and Error Recovery 

Only program variables can be traced; attempts to trace calculator mode variables will produce an 

I [',·1 ') !'::! l... I [J F' I:::! F: H 1"1 error. Thus, you should use 'r I? H C E !) I:::!!:::: as a program statement only, or execute 

T I? I:! C E ') H F: from the keyboard after initializing a program with I i"; I'r or k i...1 r;. 

The variable list can contain simple numeric variables, string variables, and references to entire arrays. You can 

trace as many variables in a program as you wish. The variable names must be separated by commas in the list. 

Simple numeric variables and string variables are specified by name; subscripted (array) variables are specified 

by a name followed by a set of parentheses. A comma may be included within the parentheses to specify a two­

dimensional array if desired for documentation purposes. 

For example, suppose your program contains simple numeric variables A and B, arrays C(4) and D(25,3), and 

string E$. To trace all of the variable assignments in your program, execute: 

, E:t Use the variable name followed by ;;: ::. to 
denote an array. The use of the comma 
for two-dimensional arrays is optional. 

Whenever a change occurs in the value of the variable(s) you are tracing, the printed trace output indicates the 

statement number in which the change occurred and: 

• The name and new value of a simple numeric variable. 

• The name, subscript(s), and new value of a particular array element. 

• The name of a string variable. 

• The name in the form H .:: ) or H 0:: ) and the new value of the first element of the array for statements 

that operate on complete arrays (e.g., k E i::'!!:::: :~:). 

The form of 'T!:;;: !:'! C: E !) I:::! I? output is: 

"!" I:::: I:::! C:f::: l... I i"; E statement number variable name [ :: subscripts) 1 [:0:0: value 1 

New values are given only for simple numeric variables and array elements. Only the statement number of the 

variable change and the name of the variable that changed are given for strings. When an entire array is traced, 

only the new value of the first element is given, along with the statement number of the array change and the 

array name. 

Tracing All Statements and Variable Assignments 

The T!:;;: I:::! eEl:::! 1.. .. L.. statement enables you to trace the order of program execution for every statement in a 

program and the value change of every variable in the program. 

The T!:;;: I:::! C: E: !'::! 1..1.. .. statement is often used with the ( STEP) key, as we'll see shortly. 

Since the tracing operations output all information to the printer, you can save paper by executing the 

F:' P I 1'1'r E: !? I ::::: :!. statement before executing the program that you are tracing. 

Canceling Trace Operations 

All trace operations are canceled by executing the :::::!: F: H 'T' C: I .. ·! or the i···i C P [.,[ 1:::1 1.... command: 



Section 12: Debugging and Error Recovery 249 

Example: Load and run the following Base Conversions program to find the octal representation of the binary num­

ber 10101010. Execute the 'r i? I:::! c: E, statement before you run the program to follow the order of program 

execution. 

10 REM tNUMBER BASE CONVERSION 
20 DIM B$[16],I$[24],0$[24] 

• :::;: i;:j E: ::1:: ::::: " ij :!. ;;::: 3 '::i, ':::: C .? ::::: :::" A E: C f.:i i::: F' " 
<, i;:! D I ::::; !:::o "I i"·i F' i...l 'r E: I:::! ::::; E, 0' l...l 'r F' i."iT i3 F! ':::; 

E: " 

90 FOR 1=1 TO LEN(I$) 

1 ::;: ~::i i",j E i:: 'r I 
• 1,:l0 C)::I;::::::" " 

• 1 C i;) !:::' ::::: E: ;;:::::1:: F' F:O >:: !"'! ) +, :!, 
• 1 '? U C ::!:: ::::: Oi ::1': ::~,: E:: :l ii::: i:::' , i:::'] 

21U FOR I=LEN(O$) TO 1 STEP -1 
220 PRINT 0$[1,1]; 
;;::: ::::: I;::! ~"! r:::: i:: 'r I 

;;::~ ::::: f;:J F= F;~ I 1···j 'r 
;;::: I:::; i;::i ::::;'TCi FI 
;;::~ '? ~::! I::; !:::: E: F= 

;;::: ~) ~) F= i? I ~···i 'r 
:::~: ~~i ~::i C;; C) T C: 6 1;::1 

:::~: :I. ij E: i···j Li 

I 
Assigns check string. 

Inputs number bases. 

Inputs number in first base. 

Initializes base 10 value. 

Checks for illegal character. 
If illegal character go to 270. 
Accumulate equivalent in base 10. 

Initializes output string. 
Shifts one digit to the right. 
Gets character. 
Build string in reverse order. 

Checks if done. 
Prints input. 

} Pdn" output "ring. 

I IIl",1 ,haca,", mutine. 

We executed the F'!? I i'·rT 1:::1 L, L., command to get the listing below: 

INPUT BASE, OUTPUT BASE0 

NUMBER IN BASE 2 0 

Trace line l~U te lUU 
'r i'"" .::j c: !;;;: :I. :1. j"'! !;;;: :l. .::~: ~::! 'l' C :i. ~::i ~::i 

Trace line l~U te 10U 

Trace lIne 12U te l0U 

Trace line 1:0 ,~ 15U 
1 (::1 t Ci :[ tJ 1 0 E: I:::! ~:::; E ;;:: 
Trace line 230 to 220 
Trace line 230 to 220 

As you can see, the program executes the 
same set of branching operations 
within the F' f", F' - r',! E: ::< T' loop. The F: C:; F;) 

statement (line 90) stores the initial 
and final counter values for I (1 and 8, 
respectively); consequently, the r'; E:.i:' 'r 
statement (line 130) returns control 
seven times to the statement following 
the F C:; f;:: statement (line 100). 

Then the program executes line 150 
through 190 three times (two branches 
from 190 to 150) to build the character 
string of its octal equivalent. 
Finally, the string is output with the 
i:::' C, !?- i',l E: i:r loop. 



250 Section 12: Debugging and Error Recovery 

The program exits the F' C I?-I··j E: ;:.:: T'loop in statements 90 through 130 when the decimal equivalent of the original 

value bas been accumulated and stored in the variable N. Regardless of the base of the original number, or the base 

that you convert it to, you can find the decimal equivalent of the original number by using the T' F: r::! c: E: I) i:::!:? 

statement with this program. 

Using the ''1'' I? 1:::1 C E. i) r:ll? statement, trace variable N to find the decimal equivalent of 1321 base 4 in the process of 

converting it to base 3. 

First, execute ",·1 C: I? 1"1 1:::1 L .. to cancel our previous 'T' i? ::::1 C E statement. 

1··jC F:I'·11:::II.... 
F' F: I 1',,"'1" ,:::1 1.... 1.... 

TF:fICE. '.,1fll? I',,' 
f~: 1...1 !···I 

INPUT BASE, OUTPUT BASE0 
4,J 
NUMBE.F: IN BASE. 4 0 
1J::=': 1. 
Trace line 80 N=0 
Trace line 120 N=1 
Trace line 120 N=7 
Trace line 120 N=J0 
Trace line 120 N=121 
Trace line 150 N=40.JJJJJJJJJJ 
Trace line 180 N=40 
Trace line 150 N=lJ.JJJ33JJJJJ 
Trace line 180 N=IJ 
Trace line 150 N=4.J333JJ3JJJJ 
Trace line 180 N=4 
Trace line 150 N=1.JJJJJ3JJJJ3 
Trace line 180 N=1 
Trace line 150 N=.JJJJJJJJJ3JJ 
Trace line 180 N=0 

1::::~;21 E:A:::E ,::j. 

111.11. E:~~I:::;E::3 

,"': 0, F' :": I:::! L .. also cancels F':? I:',,: 'T' ,:::,!. ' ... 
Resets print all mode. 
Traces variable N. 

Decimal equivalent of 13214 ; 

The largest value of N. 

You can use any of the ''1'' F' , ! C E statements in a program. For instance, add the following statements to the Base 

Conversions program. 

85 TF:ACE. VAF: C$,B$,N 
1J5 NOF:MAL & PF:INT ALL 

Since you've edited (deallocated) the program, the previous T !~: I:::; C: E: ;,) ,:::, ::;:: conditions have been canceled. Now 

run the program to find the binary equivalent of 86g. 

F'r,,: I t··IT HI.... !.. .. 
F:1...1 t·j 

INPUT BHSE., CUTPUT BHSE:0 

NUMBE:F: IN BHSE. 9 0 
::::6 

Trace lIne 120 N=8 
Trace line 120 N=78 

:::::6 E:W=';E 
100111 (1 E:F,:::;E ;::: 

Since the values of variables 0$ and B$ do 
not change between statements 85 and 
135, no T F: ACE: I) FI I? output occurs 
for them. 



Section 12: Debugging and Error Recovery 251 

The STEP Key 

You can execute a program one line at a time by using the (STEP) key. If a program has been halted by a 

., i! ; . ..! ::::::::: statement or the ( PAUSE) key, it can be continued, one line at a time, by pressing the ( STEP) key. As 

soon as (STEP) is pressed, all the statements in the line designated by the internal program counter are ex­

ecuted, then the program halts again. 

You can execute an entire program-one step at a time-by first initializing the program with the 0illD key (or 

by executing T Ii IT), and then by pressing ( STEP) to execute each program line. 

Since the ~ key does not output anything to the printer or display, it is often desirable to execute the'!"!? I:::! C E. 

1:::1 L. L .. statement so that you know what line is being executed. 

Example: Execute the 'TT>+::::!:::: 1:::1:.. .... statement and then execute the Base Conversions program, one statement 

at a time using the ~ key. (Remember to delete statement 135, from out last example, so that the tracing operations 

are not cancelled.) First initialize the program with the :!:!'--!!'T command. 

'T' 
o. -:::;; •••• =: .. : 

"r ............ ,:::: 

'r .. ",:::: 

:," .:::l ('0 

: .... :::;:::!:::' 
j'·.l! .. ,il .: .... ! ... t··,: 

::.;: .... =:: •• 

.... ;; ; ... : 

'T .:::;' .... =:::' 

....... : 

j' .:::;: .... ': •• : 

'T' ... : ... : 
!'"" ::::; .... 

·r· ........... ,:::: 

•••• 1. j'! ; .. :: ::::~ C: 

ri :::, 

V', .... 

; ;::::' 

;,:::' 

l";=:::' 

l"""l::::' 

'f' .... :::LL·': 

,'; i,'; .;. .... ::::; 1? 
; :; ; ; i ... i,..l 1 

,,';,'; 
; ;': 

:·::::::Cl 

I:," 

+ " 

. : L ; '; ::::: >~ 

.:::.-.; -!' ..... 

.. :::'::'= -:- . 
:. : ... : 

Initializes the program. 
'r F;=: 1:::1 C: F' ~:::~ L.. L.. traces all variables and 
branches. 
Now press the (STEP) key to execute the 
program one statement at a time. Be 
sure to press (CI~~) to enter data re 
quested by an .i. i"i r" statement. Then 
continue stepping through the program 
by pressing the (STEP) key. If you press 
the ( STEP) key in response to an .,. i·.i i:::· i...i·r 
statement, the keycode for ( STEP), i), 
will appear. Simply backspace and enter 
the data with ( f,~~ ). 



252 Section 12: Debugging and Error Recovery 

: , .... :: ; ... ' .i. 1 1""'1 i:::' :1, ;:::~ i? l'··i ::::: e~ 

T~acp line 180 to 190 
T-~~~ line 190 ~o 200 

'T' .... : ', .. .:. :1. i (:' 

J. ]. !' " j !:::' 
J ,l, j' -1 i:::' ;;::~ :1. ij 'I: c; ;;::~ ;;::~ iJ 'T' ... :: : ... : 

... :j ; ... : :1. 'j ;. - !:::, I:::: :;::~ !;::i 'j- (", ;;::~ :::~~ Ci 
]. j- i !:::, .... ':, l>! I ::::: ;;::~ 

1 ]. j- , 
J '1 j-- : .... ? i;::l "i: c! ;:::~ .::: !:::i 

]. :L !' -i i:::' ;;::~.::;: C:i I ::::: .:. 

'T' .... :', 
Irace line 230 1=0 
i ~ace line ~~0 to ~40 

Checking a Halted Program 

Various operations that aid in debugging can be performed on a program halted by (PAUSE ), (RESET), or an 

1::: (' ( ;:; I'" , or before pressing ( STEP) or ( CONT ): 

• Values of variables can be checked merely by keying in the variable names followed by (@. 
• Values of variables can be assigned or changed if statements like H;:: ':::; " ;;::: ::. ::::: '? or E:::::: (:1 are executed. 

• Most program statements can be executed without statement numbers, like F:' F: 1 1"'1 ''1'', 1::) 1 ':::; F:' or C CI F' '/. 

• Arithmetic operations can be performed and math functions can be executed. 

• Any system command can be executed - F' F: I !',rf ,::H_, i.._, eli:::: C;, C; i? ,:::, el, or i? ,:::,1:::1, etc. 

If the halted program is continued with either the 8 or E:) key, any of the previously mentioned operations that 

affect program execution remain intact. For instance, values of variables that were changed retain their new values; 

a [I [C; statement causes the program to calculate angles in degrees, etc. 

If, however, the halted program is restarted with a ,? 1...1 "'·1 command, or 11"'1 I 'r is executed before you continue, then 

the program is initialized so that all variables start with undefined values until reassigned a value in the program (or 

from the keyboard). (Refer to appendix C to see what is affected by !?!...i!",! and I i"'! I 'f.) You cannot continue a 

program with E:) or 8 after editing a line of the program; the program must first be initialized with !? l...i r"! or 

I ['" I 'T. 

Error Testing and Recovery 

Run time errors are those that occur when a program is running (for example, division by zero). The HP-85 

automatically provides [I E F R U L T 0 t·j values for certain error-causing situations (errors numbered 1 through 

8). These [I E F R 1,,1 L T 0 t'j values allow the computer to display a warning message rather than halting program 

execution with an error message. 



Section 12: Debugging and Error Recovery 253 

The computer provides another way for programs to recover from run time errors without halting program 

execution. The U i"--! E F.: F.: 0 I? statement allows you to direct program execution to a specified recovery routine 

when a run time error occurs. If an Ci h [F.: F.: Ci I? declarative is in effect, branching occurs immediately when a 

run time error is detected. (Warnings 1 through 8 are regarded as errors by an C) i···1 ,,:: F;:' F;> f"; ;:;> declarative.) 

it f.j E F: F: C F: G C) T C) line number 

.n Ci !.; E: i? i~: Cl F' statement remains in effect during program execution until another statement 

eplaces it or until an U F F ::::: F:: F 0 F.: statement is executed. 

If the recovery routine itself contains an error, it's possible to place the program in an endless loop. Therefore, 

an U F F t::: f;:: i? U F: statement should be placed at the beginning of the recovery routine. A program will also loop 

endlessly if an Cl I',,! E i? i:::: U I:::: statement references a nonexistent line. 

If branching to a recovery routine occurs during execution of a multistatement line, the remaining statements in 

the line are not executed; the subroutine's !? E T U F.: [.j statement causes branching to the line number following 

the multi statement line. 

The Error Functions 

Four numeric functions return information about the cause of program and system errors: 

The error line function returns the line number in which the most recent program execution error 

occurred. 

The error number function returns the number of the most recent program execution error. Appen­

dix E contains a complete list of error numbers and messages. 

F,' F: F;:: :::; i"i The error ROM function returns the identification number of the read-only memory that generated 

the most recent error. 

The error select code function returns the select code number of the interface that caused an input/ 

output error. 

The error functions can be executed either from the keyboard or (more typically) from a running program. At 

power on or after a reset, the error functions return (J. Whenever an error occurs, the error functions "remem­

ber" that error until another error occurs or until the computer is reset. 



254 Section 12: Debugging and Error Recovery 

The E F: F: 0 ~'1 function is used to determine which read-only memory, including any optional plug-in ROMs, 

generated an error. The E P P CI ~'1 numbers for the HP-85B built-in system ROMs are 0,208, and 209. HP-85 

plug-in ROMs have the following identification numbers: 

HP-85B Enhancement ROM 
E: F: F: Ci \""j 
Number 

Advanced Programming ROM 232 
Assembler ROM 40 
I/O ROM 192 
Matrix ROM 176 
Plotter/Printer ROM 240 

The ::::: F: i : ::::: C function returns ij whenever the source of the error is not an optional interface module. 

After localizing the source of a ROM or interface error with the E i:::: i? Ci i"j or i:::: F' F: :::: C function, refer to the 

documentation for the ROM or interface for a listing of the error numbers and conditions for that device. 

The error functions are most frequently used in (J i---j !:: F::: I:::: (J F: routines to deal with run time errors. 

Example: Suppose you are concerned that a certain computation will 

cause a numeric overflow. If it does, you want to skip that segment of 

the program and go to another part of the program. If the error is not 

a numeric overflow error, you want to display the number of the state­

ment in which the error occurred and pause so that you can do some 

program checks. Write the necessary statements that would carry out 

these functions. 



Section 12: Debugging and Error Recovery 255 

In the following program, we create some obvious errors so that the order of program execution may be followed 

easily. 

:I. U i···j:::::I.. E,::i· 1::11:::1 

:::: I::! [) I ~:::; F) i···i 
::~ (:1 r"! ::::: :I. . E 4 (:! I? 
4 I:::! U]: ':::;F' i"'i 

- 5U ON ERROR GOTO lUU 
;::: 1::1 f::: :::: r"!::!:: !'1 

- ';:"(::1 UFF' CF:i?CIF: 
;;;;; i;::i Li I ~::; FI 1< 
~:~; ~~j C C) T C: :::; 1 !~:! 

-:I. (::1(:1 CFF' EF:F:CI!? 
-110 IF ERRN=2 THEN 5U0 

- :I. :::;:U 
• ~:: !::::!~i 

F:F'L .. 
F=!:::!ij::::;E 
D I :;;;; F= !! j:::! F~ F~ I i) E:: Li ':::j or :;;;; or H 'r E: ~':1 E: 1"'/ "T' 
i···it.Jr'!!::::!:::i? '::: U 1:::1 " 

Ei···iD 

Now run the program: 

:I. . E,::i·I:::!(:i 
ARRIVEU AT STATEMENT 

If an error occurs, go to 100. 
We tum off the error overriding condition 
as soon as the error occurs, or the expected 
error-causing statement is executed so 
that we don't trap out errors we're not 
prepared to handle. 
If error number 2 (overflow), then go to 
500. 
If not an overflow, display error number 
and error line. 
Then pause. 
If an overflow condition occurs, will skip 
to this statement. 

As you can see, the program checked for an overflow condition, then skipped to statement 500. 

Now change statement 60 to read: 

And run the program again: 

!;:: U i',,! 
1. . E4(~I:::1 
1. . E,::!· (:I() 

E !? f,: f"! ::: ;:::: E F: !? L.. ..... i:::: 1:::1 

Creates a division by zero error. 

Displays error number for division by zero 
and the line number in which the error 
occured, then pauses. 

Since the program has paused, you may perform various program checks, or change the values of variables before 

you continue. 

Some Hints About the System 
Occasionally, your program may not work the way you think it should, perhaps by giving erroneous results, and yet 

the system does not detect any errors. The following list of things to remember about the HP-85 system may help you 

in detecting program errors or user-misunderstandings. 



256 Section 12: Debugging and Error Recovery 

• Be sure to close data files if the program halts because of an error in the midst of printing to a file. Remember 

that the system uses buffers to "write" data to the tape and that the buffers are' 'dumped" only under specific 

conditions (refer to page 184). 

• If an assignment (e.g., ... J::::: ~:) is made before a program is initialized with !? t..! ,' .. , or I ,' .. j I 'r, it is a calculator 

mode variable, not known to the program. However, when an assignment is made after a program is allocated 

(initialized) to a variable that is known to the program, then the assignment is made to that program variable. 

If the variable is not known to the program (i.e., not referenced in the program), then it is a calculator mode 

variable. 

• Error messages report the first error that occured; there may be others. Remember that the system tries to 

interpret an expression as a statement and then as an expression. If you get an error with a calculator mode 

expression, try executing the same expression in a D I ::::; F) statement. Then the system will know that it is 

looking at an expression in a [) I ::::; I:::' statement and you'll get a better error message. A bad expression is con­

sidered a bad statement if typed as [expression] ~. 

• The three programmable timers are extremely useful, but be aware that they interrupt the system at the 

frequency you specify until they are turned off by executing 8, ~, or Ci F:' F' 'r I j'ij E: j:;:: ~*. Thus, for 

small interrupt intervals, timers can have an adverse effect on the execution speed of the system. 

• The i'i'! :.: I ::::; and \':::::: I ':::; statements are interruptable during tic-generation by pressing ~-just in case 

you specify very small tic spacing that might take hours to complete. 

• Programs are stored allocated (including the space required for dedicated variables) unless they contain 

variables in common (with a CO t'1 statement). If your program contains dimensioned variables, you may 

want to add a token C CH'i statement (e.g.,:i. CO 1"1 Z 9) in order to deallocate the program before it is 

stored. 

• If you reference a multiple-line function in a F'i? I ! ... j T' or C! I ::::; F' list, and the function contains a F:' I:;:: I r··,·r or 

[) I ::::; F' statement, you may not get the output you expect. 

• Should you get a memory overflow error when attempting to read a long string from a data file, break the string 

into shorter substrings and write the substrings into smaller logical records. Then read the substrings back, one 

at a time, into computer memory. 

Memory Conservation Hints 

• Remarks and comments ( i) take one byte per character. Use enough to document your program but don't be 

excessively wordy. 

• Use I ,··rr E: C; E F: and ::::; !··H::, I::::"T' data types for arrays whenever possible. 

• Use I t·rrFC;E!? constants instead of 1::::[1:::11.... constants whenever possible (e.g., 4 instead of 4.). 

• Explicitly dimension all arrays if the upper bound is not 10. 

• Explicitly dimension all strings if the maximum length is 10 or less. 

• Use 0 F' T I (H,,' [: H ::::; [ :1. if you don't plan to use the zero'th element of your arrays. 



Section 12: Debugging and Error Recovery 257 

• Use multi statement lines (using f'n when it doesn't detract from program readability. 

• Use a variable assignment for program constants that occur more than once. Variable names take up less 

space. 

• Use subroutines or functions for program sequences that occur more than once. 

• Try to reuse variables when possible, rather than declaring new variables. 





Part III 
Mass Storage Operations 





Section 13 

Accessing Your Mass Storage System 

Introduction 

Mass storage is a common means of storing and retrieving information. Mass storage media, such as tape 

cartridges and flexible discs, can hold more programs and data than main memory and can store information 

permanently. The tradeoff is that before the information from a mass storage device can be used by the 

computer, the information must first be brought into main memory. 

The HP-85 BASIC language includes a number of statements for communicating with a mass storage device 

(such as a disc drive unit) which in turn accesses a mass storage medium (such as a flexible disc). Among the 

operations available to you are: 

• Storing programs for future use. 

• Storing and retrieving graphics displays. 

• Copying files from one mass storage medium to another. 

• Running programs whose memory requirements exceed main memory by storing individual program seg­

ments in mass storage and recalling them into main memory one at a time. 

• Creating and accessing data files tailored to your particular computing needs. 

Information is stored onto and retrieved from mass storage media as files. This section discusses mass storage in 

general and shows how to access any particular file in your mass storage system. 

The HP-85 enables you to use a variety of mass storage media, including: 

• Tape cartridges, inserted in the internal tape drive. 

• Flexible discs, in 3lj2-inch, 5l,,\i-inch, and 8-inch sizes. 

• Hard discs for increased storage and speed, such as the HP 9134A Winchester hard disc. (Note that both 

flexible disc drives and hard disc drives require the installation of an HP 82937A HP-IB Interface.) 

• The HP-85B electronic disc. The electronic disc is composed of special RAM circuits that collectively 

serve as one or more mass storage devices. Initially, the electronic disc can store about 32K bytes of 

programs and data and can be expanded to store up to more than 500K bytes. 

The electronic disc is much quicker than a tape or physical disc; however, the electronic disc is available only 

while the HP-85B is switched on. When the HP-85B is switched off, the contents of the electronic disc are lost. 

A major theme in these sections is that all mass storage devices-with exceptions noted in the discussion-can 

be considered the same from a programming point of view. For example, although the electronic disc 

outperforms flexible discs, which outperform tape cartridges, all use the same commands to store and access 

information. 

261 



262 Section 13: Accessing Your Mass Storage System 

Command Summary 

The HP-85 allows you to manipulate mass storage devices and files in a variety of ways. The following table 

summarizes the BASIC statements and system commands that control mass storage operations. 

Instruction Description 

H::::;:::; I Ct·J# Opens a data file for reading and writing. 

CHT Displays the catalog entries of a mass stor-
age medium. 

CHH I tJ Loads a BASIC program from mass storage 
and begins its execution. 

':HECf::: F:EHD# Verifies the validity of data printed to a disc 
file. 

C: CIIJ FIe Enables the electronic disc space to be 
treated as two or more disc drives. 

CO F' \' Copies a source file or storage medium to a 
destination file or storage medium. 

CPEHTE Creates a data file. 

C:THF'E Conditions the magnetic tape. 

[PH:::;[HiF'E Initializes a magnetic tape and sets up a 
directory. 

GE:T Loads and transforms a data file into a BASIC 
program file. 

C;L()HD Loads and displays a graphics file. 

C; ::::; T () P E Stores a graphics file. 

It·!ITIHLIZE Prepares a disc for use and establishes an 
empty disc directory. 

l_ 0 ~i D Loads a BASIC program file into memory. 

LO~~i[lE: I t·J Loads a binary program file into memory. 

t'IH:::;::::; 
::::;1 CI P I:i G E I:::; Sets the default mass storage location. 

t'l :::: I An abbreviation for the t'1 H :::; ::; ::;TOPHC[ 
I ::; command. 

F' H C f< Packs disc files together to make more 
space. 

r:.p I tJT# Writes data items to a file on mass storage. 

F'I.JPGE Removes files from mass storage. 

PEHD# Reads data items from mass storage files. 

PEtJHt'1[ Renames mass storage files. 

PE~'l I tW Rewinds a tape cartirdge. 

:::;H',![ Stores a BASIC program as a data file of 
characters. 

• Indicates that the instruction applies to the internal tape drive. 

t Indicates that the instruction applies to flexible and Winc~ester disc drives. 

l Indicates that the instruction applies to the HP-85B electronic disc . 

•• Programmable. 

Tape* Disct EDt Prog** Page 

X X X v 302 

X X X v 273 

X X X v 284 

X X v 313 

X v 319 

X X X v 291 

X X X v 301 

X v 277 

X v 269 

X X X 296 

X X v 287 

X X v 286 

X v 269 

X X X 283 

X X X v 287 

X X X v 271 

X X X v 271 

X X v 293 

X X X v 303 

X X X v 292 

X X X v 305 

X X X v 292 

X v 277 

X X X v 296 



Section 13: Accessing Your Mass Storage System 263 

Instruction Description Tape* 

::;ECUPE Secures a mass storage file against listing. X 
editing. overwriting. or access by others. 

:=';TDPE Stores a BASIC program as a program (type X 
F' P 0 G) file. 

:::;TDPEE: I t·j Stores a binary program as a binary program X 
(type E: F' G t'1) file. 

::; (,~ Fi F' Swaps two BASIC programs. one in main 
memory and one in electronic disc. 

TF: Fi t·L':; L ATE Translates an HP-85A BASIC program that X 
was created without a Mass Storage ROM 
into a program that will run on the HP-85B. 

Utj::;ECUPE Removes the protection from a file that was X 
secured with the :::; E C U F.: E command. 

1,)OLUt'1E Ie-'-' Names a specified disc or disc volume. 

Function Summary 

The following functions return information about your mass storage system. 

Instruction Description 

[11:::;[ FPEE Returns the number of unused records on a 
disc. 

t'1::;U::;$ Returns a string specifying the current default 
mass storage unit specifier. 

T \' F' Returns an integer indicating the data type of 
the next item in a data file. 

I,)OL$ Returns the volume label of the specified 
mass storage medium. 

• Indicates that the instruction applies to the internal tape drive. 

t Indicates that the instruction applies to flexible and Winchester disc drives. 

:j: Indicates that the instruction applies to the HP-85B electronic disc . 

• , Programmble. 

Tape* 

X 

X 

Disct EDt Prog** Page 

X X v 294 

X X 281 

X X v 287 

X v 324 

X X 288 

X X 295 

X X v 268 

Disct EDt Prog** Page 

X X v 274 

X X v 275 

X X v 312 

X X v 275 



264 Section 13: Accessing Your Mass Storage System 

Installation of the HP-IB Interface and Disc Drives 

The following paragraphs assume that you wish to use one or more flexible or hard disc drives in your mass 

storage system. Information regarding the tape drive and electronic disc resumes on page 267, with The Default 

Mass Storage Location. 

Disc drives must be connected to your HP-85 by means of the HP 82937 A HP-IB Interface. Refer to the 

instructions with your interface and disc drives for complete installation instructions. 

Addressing Mass Storage Devices 
In each mass storage operation involving a physical disc, such as listing the catalog of a flexible disc, the HP-85 

accesses a particular disc in a particular disc drive. There are three ways you can specify the individual disc to 

be accessed in a mass storage command: 

• Use the mass storage unit specifier (or msus) to identify the disc drive where the disc is located, for 

example, CAT ": [1700". 

• Use the volume label of the disc, for example, CAT ", F E r'~ ". This is a one-character to six-character 

name (E: E t·~) attached to the disc itself. 

• Use the current default mass storage location of your computer system, for example, C AT alone. This is 

the location the HP-85 will automatically search if you supply neither a msus nor a volume label in a mass 

storage command. 

In order to use the mass storage unit specifiers of discs effectively, you need to know how to combine the select 

code of your HP-IB interface, the device address of the disc drive unit, and the disc drive number. 

The HP-IB Select Code 

Each interface connected to your HP-85 must be identified by its own unique interface select code. The interface 

select code allows you to address an individual interface to which a particular device is attached. 

The select code on the HP-IB interface has been factory preset to 7, but may range from 3 through 10. The 

examples in this manual assume an HP-IB select code of 7. 

Device Address Switch 

Since each HP-IB interface can accept up to eight mass storage units, each unit on the interface must have a 

unique device address. This device address is then used to access a particular disc drive. The device address is 

set using the device address switch located on each unit. Each unit has a factory preset device address, typically 

zero (refer to the operator's manual for your unit). Since each device on a particular interface must have a 

different device address, it may be necessary to reset the device address of a unit before configuring it to the 

computer. The following table lists switch positions for changing an HP 82900-Series 51,04-Inch Flexible Disc 

Drive address. 



Section 13: Accessing Your Mass Storage System 265 

Switch 
Value 

1 2 3 

on on on 0 
on on off 1 
on off on 2 
on off off 3 
off on on 4 
off on off 5 
of off on 6 
off off off 7 

The examples in this manual assume you have an HP 82901M Flexible Disc Drive, which is a unit with two 

drives. The device address for this unit is preset to 0, and the examples in this manual assume the switch has 

remained set to O. 

Disc Drive Numbers 

Disc drive numbers identify individual drives at a particular device address. A maximum of four drives can be 

connected at anyone address. Disc drive numbers are fixed at the factory and may range from 0 through 3. 

The HP 9121-8eries 31/2-Inch Flexible Disc Drives have the following drive numbers: 

HP 91218 Flexible Disc Drive (single disc) DRIVE 0 

HP 9121D Flexible Disc Drive (dual disc) DRIVE 0, DRIVE 1 

The HP 9133 Combination Flexible Disc/Winchester Disc Drives have the following drive numbers: 

HP 9133A (31fz-inch flexible disc/four-volume 5MB hard disc) 

HP 9133A Option 010 (31/2-inch flexible disc/single-volume 5MB 

hard disc) 

HP 9133B (31/2-inch flexible disc/single-volume 10MB hard disc) 

The HP 9134 Winchester Disc Drives have the following drive numbers: 

HP 9134A (four-volume 5MB hard disc) 

HP 9134A Option 010 (single-volume 5MB hard disc) 

HP 9134B (single-volume 10MB hard disc) 

DRIVE O/DRIVE 0, DRIVE 1, 

DRIVE 2, DRIVE 3 

DRIVE O/DRIVE 0 

DRIVE O/DRIVE 0 

DRIVE 0, DRIVE 1, 

DRIVE 2, DRIVE 3 

DRIVE 0 

DRIVE 0 

The HP 9135A Combination Flexible Disc/Winchester Disc Drives have the following drive numbers: 

HP 9135A (5%-inch flexible disc/four-volume 5MB hard disc) 

HP 9135A Option 010 (5%-inch flexible disc/single-volume 5MB 

hard disc) 

DRIVE O/DRIVE 0, DRIVE 1, 

DRIVE 2, DRIVE 3 

DRIVE 0 /D RIVE 0 



266 Section 13: Accessing Your Mass Storage System 

The HP 82900-Series 5',4-Inch Flexible Disc Drives have the following drive numbers. (The drive numbers 

appear on the front panel of each unit.) 

HP 82902M Flexible Disc Drive (single master) DRIVE 0 

HP 8290lM Flexible Disc Drive (dual master) DRIVE 0, DRIVE 1 

The HP 9895A 8-Inch Flexible Disc Drives have the following drive numbers. 

HP 9895A Option 010 (single disc) DRIVE 0 

HP 9895A (dual disc) DRIVE 0, DRIVE 1 

For information about drive numbers of other Hewlett-Packard disc drives, refer to the instructions for those 

devices. 

The Mass Storage Unit Specifier (msus) 

The mass storage unit specifier (msus) is a character string that combines the HP-IB select code, the address of 

the disc drive unit, and the drive number to specify the location of a particular disc on which a file is located. 

Tape drive (" : T " ) 
~r----""""", 

Electronic disc (" : [10 0 ~~1 " ) 

/ -- Disc drive unit (address 0) 

msus " : [1700" msus " : [I 7 0 1 " 

The msus has the form: 

" : device type [interface select code device address drive number]" 

All msus character strings begin with a colon ( : ). 

The device type identifies the type of mass storage device being accessed, [I or d for disc. 



Section 13: Accessing Your Mass Storage System 267 

Examples: The following quoted strings are valid mass storage unit specifiers: 

" , I:::: 7 C1 0 " 

Disc drive unit 
Select code 7 
Device address 0 
DRIVE 0 

",[1701" 

Disc drive unit 
Select code 7 
Device address 0 
DRIVE 1 

",[1702" 

Disc drive unit 
Select code 7 
Device address 0 
DRIVE 2 

The mass storage unit specifier of the electronic disc is " , [10 C1 (:1" or " , dO 0 Ij " 

The msus of the tape drive is simply " , T" or" t". 

II : d'?O::3 II 

Disc drive unit 
Select code 7 
Device address 0 
DRIVE 3 

Note that a conflict between a disc drive and an HP-IB printer will result if the two share the same device 

address. For example, a printer whose HP-IB address is 701 (as in the F' F: I r··!"IF F I::::;? 1::1:1. declaration) will 

conflict with a disc drive whose mass storage unit specifier is " : [17 10 " . The reason is that the second digit of 

the disc msus-l-specifies an identical device address to that of the printer. To avoid this problem, ensure 

that the switch settings of the disc drive unit are set to a device address other than 1. 

The Default Mass Storage Location 

When the HP-85 is switched on or reset, it establishes a default mass storage location. The default mass storage 

location is where the HP-85 searches for files during mass storage operations when no mass storage location is 

explicitly provided. 

The internal tape unit is set as the default mass storage location when no disc drives are accessible. If one or 

more disc drives are connected and powered, then the HP-85 automatically searches the HP-IB interface having 

the lowest select code for the disc drive unit having the lowest device address. The lowest numbered drive at 

that location is designated the default mass storage address (typically, : [) .;:: ~.! " .. ' ") whenever the computer is 

switched on or reset. 

The default drive can be changed by executing a 1'1 Fl ::; ::=.; ::; T Ci F' I:::! GEl ':::; command. The syntax for that state-

ment is discussed later in this section. 

Throughout this manual, DRIVE 0 at device address 0 on an interface with select code 7 is assumed to be the 

default mass storage location, so that " : [l 700" is the default msus. 

Volume Labels 

Volume labels provide a convenient way to specify a particular disc. 

A volume label is a name up to six characters in length that you assign to a disc when the disc is initialized or by 

executing a i,} 0 L U !'1 E I ::; statement. The volume label is stored on the disc and remains the disc's name until 

a new volume label is assigned to the disc. Once a volume label has been assigned to a disc, the disc can be 

accessed using its msus or its volume label. Note that some Winchester disc drives, such as the HP 9134A, are 

partitioned into four volumes and may accept four volume labels. 



268 Section 13: Accessing Your Mass Storage System 

An assigned volume label has the form: 

II ,AAAAAA II 

r String up to six ct""acte" In length 

Period preceding the string 

where A is any character. To avoid confusion, you should not use a period ( , ), a colon ( ; ), or a quotation mark 

( ") as the first A character in the string. 

At power on, the electronic disc is named " , ED". Tape cartridges are not allowed volume labels; they are 

accessed using the " : T" msus. 

The syntax of the I,} 0 L U r'1 E I ::; statement is: 

, ,... I I' .- " : msus " 
'.' 1...1 L .- 1'1f.: ", old volume label" I ::; "new volume label" 

Note that the new volume label is not preceded by a period. However, once the volume label has been assigned, 

the string of characters (AAAAAA) that comprise the volume label must be preceded by a period. 

When a volume label is used to access the medium on which information is stored, the system searches the discs 

currently in the system until the disc with that volume label is found. (If the search fails to find the specified 

volume label, the computer returns E t- t- .:. t- 1 ~:: 5 ',} 0 L U 1'1 E and sends an "interface clear" message to the 

devices connected to the HP-IB interface.) Because of this search operation, it may take more time to access a 

file using the volume label than by using the msus. The HP-85B always begins a volume label search at the 

electronic disc and continues in ascending order of msus values. 

Examples: 

1,}OLUr'1E ", W/D I SC" I::; "A .. ···P" 

',)OLur'1E ": DOOO" IS" ::;PEED\'" 

Preparing a Tape Cartridge 

Assigns volume label ;; , r'i \' D I ':::: C:;; to 
the disc located at msus ;; ; L)'? (I ~~i p 

Renames the disc formerly labeled 
" ,i"1''i'D I ::::c::;; to ,I:~.····i:;:';;. 

Renames the electronic disc 
, :::;F'E:ED'/" 

Information about files on a tape cartridge is contained in the tape directory. The tape directory is automatically 

set up by the HP-85 at the beginning of the tape, providing you with an easily accessible "table of contents" of 

recorded programs and data files. The directory can hold the names of, at most, 42 files. At your request, it 



Section 13: Accessing Your Mass Storage System 269 

directs the HP-85 to the exact tape location of recorded programs and data. You need to set up the tape direc­

tory-or initialize the tape-the first time you use a new tape with the HP-85 or whenever you wish to set up a 

new directory on an old tape whose contents you no longer want. 

CAUTION 

Do not attempt to remove the cartridge while the tape is in motion or while the tape drive light is on. 

Damage to the tape and its contents may result. 

CAUTION 

The E F: P ::; E T Fi F' 1::: command renders all previously recorded information on the tape inaccessible. Make 

sure that nothing of value resides on the tape to be initialized or that you have a backup copy of that 

information. 

The syntax for the command is simply: 

You must initialize any tape being used for the first time and any recorded tape that is to be erased for re-use. If 

you execute CPT on a tape and a F: E P [I or ::; E P F: C H error appears in the display, the tape probably needs to 

be initialized. (For recurring F: E P [I errors with a tape that has been initialized, refer to the Tape Care and Tape 

Life paragraphs of appendix B.) 

To set up the tape directory, make sure that the I RECORD .... I slide tab is in the rightmost position and then 

initialize the tape with the E F: P ::; E T P F' E command. 

Initializing a Flexible Disc or Hard Disc Volume 

Each empty flexible disc or hard disc volume must be initialized before it is used for the first time. The 

I r··! I ·r I Fi L.. I Z E command sets up a file directory and clears and tests the disc. 

Note that the electronic disc is automatically initialized when the HP-85B is switched on. 

Optional parameters in the I t·~ I TIP LIZ E statement can be used to: 

• Establish a volume label. 

• Specify the amount of space allocated to the disc directory. 

• Specify how the physical records on the disc are to be numbered. 

The initialization process takes about one minute for a 31/2-inch flexible disc and 2 minutes for a 5114-inch 

flexible disc. Any information stored on the disc is erased by the I HIT I Fi L I ::: E command. If you are uncer­

tain whether or not a disc has been previously initialized, insert the disc into DRIVE 0 and type Cf~ T ~. 

After a delay of some seconds, the message E ( to .:. to 1 ::3 0 

initialized. 

[I I::; C will indicate that the disc has not been 



270 Section 13: Accessing Your Mass Storage System 

The syntax of the I tj I T I A LIZ E statement is: 

I tj I T I A LIZ E [" new volume label" [, 
" :msus" 

" ,old volume label" [.' directory size [.' interleave factor]]]] 

You cannot use a period ( , ), colon ( : ), or quotation mark (") as the first character in the new volume label. 

You may not specify a null string as the new volume label. 

Note: Make certain you thoroughly understand the syntax of the I ! .. ~ IT I P L I ::::: [ statement before 

using it. Remember that the first parameter is a new volume label and that the second parameter 

specifies the disc to be initialized. If the disc to be initialized is not the default drive, you must assign 

a volume label to it during the initialization process. 

More About I ! .. ~ I T I H L.. I 2: E 

In the I t·j I T I A LIZ E command, each optional parameter must be preceded by all the optional parameters 

listed before it. For instance, the directory size must be preceded by both a new volume label and a msus or old 

volume label. 

The new volume label is the new name assigned to the physical disc being initialized. If the disc being initialized 

is located in the default drive, the volume label, if omitted, defaults to ten blanks. 

The msus or old volume label is the existing label or msus of the disc being initialized. If this parameter is 

omitted, the default disc specified by the t'1 A::; ::; ::; T 0 F.: AGE I ::=.; statement is used. 

The directory size specifies the number of records to be allocated on the disc for the file directory. Each record 

holds directory information for eight files. The default value is 14 records (or 14 x 8 = 112 files). 

The Interleave Factor 

The interleave factor is an integer specifying how physical records on the disc are numbered. When the factor is 

1, 2, 3, ... etc., records are numbered consecutively, by every other record, every third record, ... etc. The default 

value for the interleave factor is 5. Consult documentation accompanying your disc drive unit for the range of 

permissible values. 

The ability to renumber records on a disc by specifying an interleave factor allows you to control the efficiency 

of your disc drives and to minimize the time required to access mass storage files. 

The interleave factor affects how many revolutions of the disc are necessary to transfer information to and from 

mass storage. Because it takes a finite amount of time to perform accessing operations, and because the disc is 

spinning rapidly, it is possible that a full revolution might be required to access successive records on the disc. 

By placing a physical separation between records, the appropriate interleave factor can minimize the number of 

wasted revolutions. 

The performance of your mass storage system during a particular application can be improved by adapting the 

interleave factor to the structure of your data. Since there is no easy way to compute the best interleave factor 

for a particular data configuration, the simplest way to determine the most efficient interleave factor is by trial 

and error. 



Section 13: Accessing Your Mass Storage System 271 

One method for testing interleave factors involves copying data files accessed by a program from a "master" disc 

to a "test" disc that has been initialized to a different interleave factor. Then, time the execution of the program 

using the computer's internal timer. You may initialize the test disc repeatedly using a different interleave 

factor each time, CO F' \' the same data onto the disc (remember, the data was lost when the disc was 

reinitialized), and rerun the program to compare execution times. 

Examples: 

I t·j I T I AL. I ZE 

It·jITIAL.IZE "t·1Er-i",": D72[1" 

I ti I T I AL. I ZE "t'lEl,JEP" ", OL.D" 15,2 

Initializes the disc at the default loca­
tion; no volume label is assigned. 

Initializes the disc at " : [)?? U" and 
assigns volume label " , I··! E I,i " . 

Initializes disc " , U !_. [I" and assigns 
new volume label " , [1 I: !,.! E:!? " . The 
directory consists of 15 records; the 
interleave factor is 2. 

Note that attempting to execute I t·j I T I A L. I Z I: on a tape or on the electronic disc will result in a 

!:::i I ::::: C Ci tl i_ \' error message. 

Establishing a New Default Mass Storage Location 
At power-on or after a reset, the computer automatically establishes the disc drive having the lowest numbered 

msus as the default mass storage device or the tape drive (if no disc drive is accessible). The 

n !"i ::: ::: ::: TOP AGE I ::; command allows you to specify an alternative default address for mass storage 

operations. 

T ,-. 
1·:' 

" :msus" 
" ,volume label" 

If the volume label is specified, the drive at which that disc is located is designated the default address. 

Once a default drive is set up, the system automatically uses that drive when accessing files unless you specify 

otherwise. 

Examples: 

t'lW:;::; ::;TOPAGE I::; ": D7[11" 

t'lA::;::; ::;TOPAGE IS", ED" 

The default is set to the drive containing 
the disc with volume label " , H./ F: " . 

The default is set to msus " : [I? C1 I " . 

The default is set to the electronic disc. 

The HP-85 offers an abbreviation for the t'l A::; ::; ::; TOP AGE I ::; command to save typing time. 

" :msus" 
" ,volume label" 



272 Section 13: Accessing Your Mass Storage System 

Examples: 

t'1:::; I ": [1700" 

t'1 :::; I ", E [I " 

The default is set to msus : [J ';:" C! ~~i " 

The default is set to the electronic disc. 

The t'l ::; I command works identically to t'l A::; ::; :=.:; T 0 F.: AGE I :::;. If you include the abbreviation r'i :::; I in a 

program line, the complete spelling will appear when the program is listed. (Note that if a multi statement 

program line exceeds 95 characters when listed, only the first 95 characters in the line can be edited and 

subsequently re-entered in the program.) 

Accessing Files Using the File Specifier 

Data and programs are stored on a mass storage disc in files. By assigning each file a name, you can access 

previously stored information by applying filing commands and BASIC statements to the file name or file 

specifier. 

The file specifier consists of two parts: a one- to ten-character file name, and a volume label or msus (tape file 

names are limited to six characters). The volume label or msus identifies the tape or the particular disc drive on 

which the file is located. The file name distinguishes anyone file from others stored on the same medium. 

The form for the file specifier is: 

"file name [ : msus ] " 
, volume label 

When the volume label or msus is omitted, the computer automatically accesses the default device established 

by the configuration of the system or specified by a t'1 H :::; ::; ::; T U f~: ACE I ::::; command. The volume label or 

msus must be included if the file is located elsewhere than on the default mass storage device. 

Examples: 

"OUAKE,E[I" 

"OUAf:::E: [17[10" 

"t'10[lCOt'1: T" 

The file named :) U A i< !::: is on the elec­
tronic disc. 

The file named :) t..! H f::: E is on the device 
having msus ;; : D 7 tl ;,3 ;; • 

The file named 1'1 U U C: (J r'i is on the tape. 

The following example establishes a default mass storage device and then accesses a file located there. 

'" ,_I 

Establishes a mass storage default 
device. 

Creates a five-record data file named 
F' F.: E ::; :::; t..i F: E ::; on the disc at msus 
" : [17 Ci :l ;;. 

The only characters that cannot be used in the file name portion of a file specifier are period ( , ), colon ( : ), and 

quotation marks ("). The period is reserved as the volume label prefix, the colon is the msus prefix, and the 

quotation mark is used to delimit strings. File names longer than 10 characters are truncated to 10 characters 

for discs, and six characters for tapes. 

I 



Section 13: Accessing Your Mass Storage System 273 

The File Directory 

Each flexible disc maintains a catalog, or directory, of the files stored on it. The CAT command outputs the 

contents of the file directory to the computer display. 

The syntax of the CAT statement is: 

II :msus" 
i=:fH [" ,volume label" 

If you have previously initialized a disc as " , ['1 ";"' [I I ::: e", you can now obtain a file directory of that disc by 

executing CJi T ", t'l \' [I I:=':; C " . 

r.: i,}O 1 ume J: t'1\'[1 I SC 

c:: i=i"T' ": T" will list the tape directory. C AT II, ED II or CJrr : [)!j U 0" will list the electronic disc 

catalog. 

Once you have stored programs and created data files on a mass storage medium, the file directory will look 

similar to one of the following listings: 

Disc Directory: 

r.: i,}O 1 ume J: t'1'/[I I SC 

TEf'1PDATA 
LEH:::;T::;O 

Tape Directory: 

t'1At'1E T\'PE 
O:::::U [lATA 
::;COOT [lATFi 
::::4··-C PPOC 
Au t 0 s t PPOG 

Column 

t··I·::!i'(;e This is the 

T l:::Ipe 

DATA 
PPOC 
t·WLL 
DATA 

E:\'TE::; 
t:' 1 2 _I 

'" 1 2 -I 

256 
256 

Pees 
t::Co 
"-' '-' '" ._.1 

256 2 
256 
500 2 

PEC::; FILE 
1 1 
1 2 
- "7 .:::. ! 

::3 4 

name assigned to the file as part of the file specifier. 

'r!;) F' I::~ There are five types of files: [lATA, program (pF:CG), binary program 
extended (llll). 

[; ':::i "i: I::~ :::. The number listed is the number of bytes per file record. Discussed in 

F: e c ::; This is the number of records in the file. Discussed in section 16. 

(E: F C; 1'1), I···I!.!L. I.., and 

section 16. 

In addition, a tape directory shows a F I L E column, indicating the location number of each file in the tape. 

You can terminate a catalog listing at any time by pressing any key. 



274 Section 13: Accessing Your Mass Storage System 

File Types 

As mentioned in the discussion of file directories, five types of files may be used with a mass storage system. 

Each file type is created and retrieved by different procedures, summarized in the following table. 

File Type Description 

F'POG Contains program. Information is stored using the ::; TOP E command and retrieved using the 
LOA [I command. Program files are discussed in section 14. 

[lATA Contains numeric and string data. File is created by the C PEA T E statement. Data is stored by 
the F' P I t·~ T # statement and retrieved by the PEA [I # statement. Data files are discussed in 
section 16. 

E: F' G t'1 Contains binary program. Information is stored using the ::; TOP E E: I t·i command and retrieved 
by the LOA [I E: I t·~ command. Binary program files are covered in section 14. 

tWLL Empty file. Null files are created when individual files are purged. Packing the disc removes null 
files from the disc directory. Null files are discussed in section 15. 

llll Extended files, usually files containing graphics displays. Information is stored using the 
G ::; TOP E command and retrieved using the G LOA [I command. Graphics files are discussed in 
section 14. 

Specifying Parameters Using ExpreSSions 

String expressions are commonly used in mass storage commands to supply parameter values. Use the 

ampersand (() to concatenate string expressions in mass storage commands. 

Examples: 

• 50 F$="t'1':lFi Ie" 
.. 60 [1$=": [1701" 
• 70 I.}$=", E[I" 
• :::0 COF'\' F$t:[I$ TO F$KI,)$ 

Mass Storage Functions 

Assigning F:t a file name. 
Assigning [I:t an msus . 
Assigning I) $ a volume label. 
Copying t'1':1 F i 1 e from source disc 
" : [I? 0 1 " to electronic disc " , E [I " . 

The HP-85B provides four mass storage functions: [I I ::; C F f;: E E, t'1 ::; U ::; $, I,) 0 L $, and T \' F'. (The T \' F' func­

tion is used for data file operations and is discussed in section 16.) 

The D I ::::; C F PEE Function 

The [I I ::; C F PEE function causes the HP-85B to search the directory of a specified disc and return two 

integer values: 

• The number of unused records on the disc. 

• The size of the largest unused space on the disc. 

The syntax is: 

. ," :msus" 
[I I ::; C F PEE numeric var 1.' numertc var 2 [ ,,' / / b /,,] .. ,voume a e 

The [I I ::; C F PEE function does not apply to tape cartridges; if a tape is specified, a [I I ::; C 0 t·~ L '/ error will 

occur. 



Section 13: Accessing Your Mass Storage System 275 

The two numeric variables may be either simple variables or array elements. When [J I::='; C F F.: E E is executed, 

numeric var 1 is set equal to the total free space on the disc, measured in 256-byte records; numeric var 2 is set 

equal to the largest single block of space on the disc, in 256-byte records. The two variables will have equal 

values when there are no "holes" (or t·WLL files) on the disc. 

The;; : msus;; or " ,volume label" parameter, if supplied, specifies the flexible disc, hard disc volume, or elec­

tronic disc that is to be examined. If no disc is specified, the HP-85B accesses the current 

t,! H :::: ::: :,:; T 0 F.: AGE I ::; device. 

The computer requires 1 or 2 seconds to access the directories of physical discs using [J I :::,; C F I:;:: E: E:. After­

wards, the values of the two numeric variables can be checked and used from the keyboard or from an executing 

program. 

Examples: 

[lISC FF.:EE A.,B 

[I I :::C FF.:EE ::; .. T .. " , W/[J I ::;C" 

[I I :='::C FF.:EE ::"; .. \' .. " : [1000" 

Reads the total number of free records 
into A and the size of the largest unused 
block into B from the current default 
disc. 

Returns available space information 
from the disc labeled !"! '/ [J I :::,; C:, in 
variables Sand T. 

Returns available space information 
from the electronic disc. At power on, 
with no additional memory modules, the 
electronic disc will show 124 records of 
storage. 

Note that using the [J I ::: C F PEE function involves two steps: First, you execute the function; second, you 

check the values returned in the numeric variables. 

The j"! ::::; U ::::; ::!:: Function 

The !'1 ::; U ::: $ function returns either a two-character or five-character string that indicates the msus of the 

current t,! H ::=.; ::; ::; TOP ACE I ::; device. 

The syntax is simply: 

For example, if you have previously typed t'1 ::; I ": [J 7 2 0" aJJlD, then t'1 ::=.: U :,:;:j:: will return : U? 2 C1. 

If the f'1 A::; ::: ::; TOP t'i eEl S device is the tape, t'1 SUS $ returns : T; if it is the electronic disc, t'1 ::=.; 1...1 :::,; ;j:: 

returns : [J [1 [1 (1. The colon ( : ) is part of the string. Note that t'1 :::; U :::; $ does not require a mass storage access. 

The 5,,.! 0 L.:$: Function 

The !,) 0 L $ function accesses a specified disc directory and returns a six-character string that indicates the 

volume label of the disc. 



276 Section 13: Accessing Your Mass Storage System 

The syntax is: 

I,} 0 L $ ( " : msus" ) 

The " : msus" parameter may be any suitable string expression. 

Examples: 

I.}OL$ 0:: " : [I 7 [H] " ) 

I.}OL$ 0:: " : [1000" ) 

Returns the volume label of the disc in 
drive D700. 

Returns the volume label of the elec­
tronic disc. 

Returns the volume label of the current 
r=1 A:::; ::::; ~:::; T U F: H C; E: I ::::; device. 

The 1.,10 L. $ function does not apply to tape cartridges; if a tape is specified, a [) I':::: C:: ;=. i i L.. \' error will occur. 

The character string from I.} 0 L $ will not include the period ( , ) of the volume label and will be padded with 

trailing blanks if the volume label has fewer than six characters. The form ') (J L.. ::!:: 0:: " ,volume label;;" IS 

allowed but redundant. 

Note that I,} 0 L $ requires a mass storage access to the specified msus address. 

Sample Program 
The following file copy program demonstrates the use of the [I I ::: C F k [ [, !.,! :::: U '::: :'1::, and '.) C) L.. ¥ functions. 

10 I FILE COpy UTILITY 
• 20 r'l$=r'E:U:::$ 

.30 Vl$,V2$=VOL$(M$) 

40 [l1:::P "FILEt-lAr'1E TO COP'-,-·".: 
50 I t·WUT F$ 
60 I :::OUPCE [I I :::C 
70 [I I :::p "FPOr'1 [I I :::C ".: I.} 1 $.:" 0:: 'y' ..... t·1) 
" . , 
:::0 I t·WUT A$ 

.90 IF UPC$O::A$[ 1,1 ]) = "'-,-. " THEt·1 100 
EL:::E [I I :::p "FPCIr'1 ~·mAT [I I :::C, PLEA 

::::E".:(~ IHPUT 1·}l$ 
100 I [lESTIHATIOH [lISC 
110 [lISP "TO [lI:::C ".: 1.}2$.:" 0::·"" ..... t·1)" 

120 I t'1PUT A$ 
• 130 IF UPC$(A$[ 1 ,.1 ]) = "'-,-. " THEt'1 14 

o EL:::E [I I :::p "TO ~·lHAT [I I :::C.. PLEAS 
E" ,: I:!, I t'WUT 1.}2$ 
140 I COPY OPEPATIOH 
150 1.}l$=". "::,:''}1$ 
160 1.}2$="." t '.}2$ 

• 170 r'1A:::::: :::TOF.:AGE I::: 1.}2$ 
180 [lISC FPEE A,8 

• 19[1 IF A> 8 THEt-i PACK 

200 COPY F$tVl$ TO F$ 
210 I FINISH PPOGPAM 

Saves the msus of the current 
r'l Fi ::: :::: :::::T () k H G E: .i.::" device in I"! :1:: • 

Saves the original volume label in both 
i.} 1.:'1:: and ,.} 2 ¥ . 

If the source disc is not the default disc, 
get the source volume label. 

If the destination disc is not the default 
disc, get the destination volume label. 

} Add the period ( , ) to the source and 
destination volume labels. 
Set the destination disc as default disc. 

If there are any t·,! U L L files on the 
destination disc, pack the disc. 



~:~ ;::: (') [i I ::; F' 
230 [iISF' "CATALOG OF ".: t'1SUS$.:" :::; 

240 CAT 
• ~::50 ['1A::;::: ::;TOPAGE I::; tH 

~::t;0 E:EEF' 40 .. 20 I:!! [i I ::;F' TAE: 0:: 7::'.: " ".'­
DOt·iE _ .. _---"> 

;27 0 Et-i [i 

Section 13: Accessing Your Mass Storage System 277 

I 
Catalog of destination disc will show the 
copied file. 

Restore the original 1'11:! ::::; ::::; :::; T (J P Ii G E 
I ::=.; device. 

The i) U L.. ~:: function will cause an interface error if the following conditions occur: 

• An 1/0 ROM and an interface are installed in the computer, and 

• The i"i U L..:*- function appears in a F' P I r'~ T statement, and 

• Printer output is directed to an external printer. 

To avoid the interface error, assign a string variable (such as !,}:!.:;t.;) the value of !) (J L.. :!:: and then include the 

variable name rather than the ',j 0 L.. $ function in the F' f;' I !···I"T· statement. 

Tape Cartridge Commands 

The following programmable commands are applicable only to HP-85 tape cartridge operation. 

This function conditions the magnetic tape cartridge by running it forward to the end of the tape and then back 

to the beginning of the tape. Programs and data on the tape are not affected by the C: r 1:::1 F' E: operation. 

This function is similar to the I !··i I T I Ii L I :~ E: command. E F: A::::: E: r H F' E sets up a directory on the tape car­

tridge. All previous information on the tape is destroyed. 

This simply rewinds the magnetic tape cartridge to the beginning of the tape. Pressing (SHIFT) (REW) also 

causes the HP-85 to rewind the tape. 

Write Protection 

Tape cartridges and flexible discs may be write-protected to protect the media against accidental initializing, 

erasing, and altering. 

The I RECORD-i slide tab on a tape cartridge, when moved against the direction of the I RECORD-i arrow, causes 

the tape to be write-protected. A plastic or an adhesive tab on a flexible disc may be used to write-protect the 

disc. Refer to the documentation for your disc drive for write protection information. 



278 Section 13: Accessing Your Mass Storage System 

Note that there is no way to write-protect the electronic disc or a Winchester hard disc. 

If the computer attempts to record on a write-protected medium, a ~,~ F.: I T E F' F: () T F C T error will occur and no 

recording will be done. The HP-85 will not allow new files to be created or old files to be purged. Write­

protection will have no effect on data access during read operations (such as cataloging and loading operations). 

Refer to the File Security paragraphs in section 15 for other forms of program and data protection. 



279 

Notes 





Section 14 

Storing and Retrieving Programs and Graphics 

Information in this section covers how to store and retrieve programs using a mass storage system. Use of 

chaining to expand the capability of the computer in running large programs is also covered. 

Storing a Program 

The ',:,:"T C) F E command is used to store the program currently in main memory on a mass storage medium. 

':::'r (J:? E: attaches a specified name to the program, creates a program file with that name, and then stores the 

program in the program file using the computer's unique language. The stored program remains in main mem­

ory until scratched, or until another program is loaded. 

T" (J j:;:: E: is not programmable. The command may be typed in, or you may use the typing aid ( STORE). 

The proper form of the ::,; T C F [ command is: 

':::; "T i .. : I:"~ ;... " file specifier" 

The proper form for file specifiers is covered in section 13. 

Examples: 

Names the program in main memory 
QUAKE, and stores the program in a 
program file located on the· mass storage 
medium with volume label 

Remember that you can use either a volume label or msus in a file specifier. 

Has the same effect as the previous 
example if ,1'1 " [! I':: C" is in drive 

; LJ! 0 ~j ;;. 

The more descriptive the file name, the easier it will be to remember the contents of the file. 

You may omit the volume label or msus portion of the file specifier if the program is to be stored onto the 

default mass storage medium. 

l'lA::;::; ::;TOFACE I::; ", f'1'/[I I ::;C" 
::;TOFE "C<UAf:::E" 

281 

Assigns the default mass storage device. 
(Assume that the volume label was pre­
viously assigned.) 



282 Section 14: Storing and Retrieving Programs and Graphics 

If you do not have much experience with mass storage systems, you might want to practice storing (and later in 

this section, retrieving) a program. The following program converts a speed input in one of four units to any of 

the other four units. The four units are: 

F.' ~:; 
t'W H 
ft'1.··H 
t'1."" ~:; 

feet per second 
miles per hour 
kilometers per hour 
meters per second 

The example shows the steps used to store the ::; PEE D ::::; program on a disc named " , !'1 \' [) T ::::: C::" in drive 

" : [1700 ". If you have not yet initialized a disc, do so now in Drive 0 of your unit. 

I [.j I T I AL I ZE "t'1\'D I ::;C" .' " : D700" 

Now, obtain a file directory of the disc by typing CAT CIJIlD. 

CAT", W/DI~:;C" 
[ 1,)01 uri,e J: t'1\'D I ::;C 

Type in the program as shown. 

10 D I ::;p "EtHEF.: ::;PEED.. CUF.:F.:EtH 1..1 

Ut·j IT::;" 
::0 I t·jPUT ::; .. U$ 
~:;:O D I ::;p "Cot·jI.,IEF.:::; I Ot·j ut·j IT::;" .: 
40 ItWUT Ul$ 
50 :::; 1 =::; 
60 IF U$=" F.···::;" THEt·j 11.3 
70 IF U$=" t'1PH" THEt·j 130 
:::0 IF U$="Kt'1..-·H" THEt·j 150 
90 81=81*3,281 1 M/8 TO F/8 
100 IF Ul$="F .. ···::;" THEt·j 1:::0 
110 81=81*,6818 1 F/8 TO MPH 
120 IF U 1 $=" t'1PH" THEt·j 1 :::0 
130 ::; 1 =::; 1 * 1 ,6[19 1 t'1PH TO Kt'1..-··H 
140 IF U 1 $=" Kt'1.····H" THEt·j 1 :::0 
150 81=81*,2778 1 KM/H TO M/8 
16.3 IF U 1 $=" t'1..-··::;" THEt·l 1 :::0 
170 GOTO 90 
180 PF.:INT U8ING 190; 8 .. U$ .. 81 .. Ul$ 
190 It'1AGE 6D,3D .. ::< .. AAAA .. "=",6D,3D 

, >::, AAAA 
200 Et'lD 

To store the program, type (or use the typing aid): 

Note that the msus is optional here, 
since DRIVE 0 is the default device. Be 
certain that the proper disc is in the 
proper drive! 



Section 14: Storing and Retrieving Programs and Graphics 283 

The red pilot light on DRIVE 0 will be on during the storing process. When the light goes off, the program 

SPEEDS has been stored on disc " , t'1 \' [I I ~:; C ". To see the updated file directory, execute C f:1 T from the 

keyboard. 

CAT ", W/[I I ~:;C" 
[ !,)o 1 urne J: t'1\'[1 I ~:;C 
[·jame 
~:;F'EE[I::: 

T':~F'e 
F'F.: DC 256 :3 

The directory shows that SPEEDS has been stored in a program file three records m length. Each record 

contains 256 bytes. 

T . ,". "r' "', ,"', ,_. ",.'. F' f.-I·-I··· ,-.. T" (UlO\ t th t t·d ,-··r ("1 r" , .... ypmg .:;. ; I.) G. c. ':'. .::. ::: .. ..1 .:';. U!):,!gJ sores e program on a ape car n ge .. :, ! .... ':. Co 

stores the program in the electronic disc. 

The ::::: Tel:::: E command can be used to store a program in main memory over a program on mass storage that 

was stored previously. For instance, after storing SPEEDS, you may edit the program in main memory, and 

then re-execute: 

The new, edited version will be stored, replacing the first version. Because of this "overlay" capability, you must 

be careful in storing a new program not to accidentally assign to it the name of another program file, thereby 

overwriting a previously stored program that you still need. 

Note that the HP-85 will ignore any keyboard instruction following a::; T 0 F' E::: command and the ;:~ statement 

concatenator. 

If a program is paused (with F' fi U ::; E or Cf'ADSE)) and then stored on a tape cartridge (with ' .. : T ()!:::: E), all 

program variables will be set to null values. Always save a program on tape before or after you run the program. 

Loading a Program From Mass Storage 

Once a program has been stored on a mass storage medium, a copy can be retrieved into computer memory with 

the L.'() H D command. Like ~:::: T U FE, the L 0 H [i command is not programmable. The proper form is: 

. C) !'i D " file specifier" 

The file specifier must correspond to a program in mass storage. Attempting to L. Ci 1:::1 [I a nonexistent program 

results in E [" t- 0 [' 6 ? 

When L C! H IJ is executed, any program or data currently in main memory is scratched before the new program is 

loaded. Variables that were assigned in calculator (keyboard) mode are also scratched. 

If you stored the program SPEEDS, you can now retrieve it. But first, you may want to scratch the contents of 

main memory just to prove to yourself that L Of! [I really works. Execute ~::; C F f:i T CHand then l. .. I ~:::;"T to con­

firm that the program is no longer in main memory. 



284 Section 14: Storing and Retrieving Programs and Graphics 

Now, execute: 

L 0 H [I "::: F' E E [I ::: , t'1 \' [I I::: C" or L 0 H [I "::: F' E: E [I ::: : D? Ij l,j" or L. (11:1 [J "<: F' [ E [I :: " 

The red pilot light on DRIVE 0 will light up while the program is being loaded. When the light goes off, 1.... I :: T 

the program to confirm that it is in main memory. 

Note that the HP-85 will ignore any keyboard instruction following a I.. C) I:::' [I command and the (;:1 statement 

concatenator. 

Autostart Programs 

The autostart feature enables the HP-85 to load and run a tape-based program at power on. 

When the HP-85 is switched on, it searches the tape directory for a BASIC file named I"'! ...! 1 e, ::c:: .1;. If the file is 

found, the program is automatically loaded into main memory and executed. 

Chaining Programs 

The C H H I ~j statement allows you to load a stored program into computer memory from a running program. 

When C H H I ~j is executed in a program: 

• The current BASIC program and any data III malll memory are scratched. Specified data may be pre­

served between two programs by including a c: 0 t'1 statement in both programs. A binary program is not 

scratched when C H H I ~.j is executed. 

• The program specified in the C H H I ~.~ statement IS immediately loaded into malll memory from mass 

storage. 

• The newly-loaded program is executed automatically. 

Note that, unlike the L. 0 H D command, C H A I ~.j is programmable. The proper form for the statement is: 

C H A I ~.j "file specifier" 

The C 0 t'1 statement is used to preserve variable definitions between programs. All variables not included in the 

CO t'1 statement are scratched when the chained program is loaded. 

The form of the CO t'1 statement is: 

C 0 t'1 item [, item ... ] 

Refer to the discussion of C 0 t'1 in section 8 for additional information. 

CO t'1 statements in both the initial and the chained program must agree in the number and type of variable. 

When passing arrays between programs, take particular care that the option bases of the two programs agree. 

An important function of chaining is that it enables you to execute a program too large for main memory by 

separating the program into two or more parts. While the two programs that follow are relatively small, they 



Section 14: Storing and Retrieving Programs and Graphics 285 

provide an example of using C HAl tj and CO t,t The first program computes yearly earnings for a company from 

quarterly earnings over a ten year period from 1970 through 1979. The EARNINGS program then chains to a 

program that draws a bar graph of the yearly earnings. 

First, enter and store the DRAWGRAPH program to draw the bar graph. 

10 BEEF' 
:::::0 (JPT I Otj E:A~:;E 

:,~o CCLEAF: 
- ,I 0 C 0 1'1 1 tj TEe E F: 'I' 0 1 0 ), F: E ALE , 5, 

10' 
-50 SCALE Y(1)-3,Y'10)+1,-30000, 

100000 
,::0 ::'::fi::I~:; 0.,1, \" 1), \'0 10) +1 
';:"0 '1'1=1::< 1 ~:; 'y" 1 ::', 10000,0., 100000 
:,: 0 1._ D I F: 3 0 
90 FUP 1=1 TO 10 
100 MOVE Y(I)+,6,-30000 
110 LABEL VAL$'Y'I» 
1 ~:: 0 tj E :: T 1 
130 MOVE Y(1)-2, 1000 
140 LfiBEL "EAF:tj 1 t·jG~:;-THOU~:;At·j[l~:;" 
150 I .. _DIF: 0 
160 FOF: N=10000 TO 30000 STEP 2 
0000 
1 ? 0 t'1 0 ',,1 E \' ( 1 ) - 1, t·j - 3 0 0 0 
180 LABEL VAL$'N/1000) 
1 3 0 tj E :: T tj 
~~O FOF: 1=1 TO 10 
~::: 1 0 t'1 0 I,} E \' ( 1 ) , 0 
2 2 0 D F: A [,j 'y' ( 1 :), E '5, 1 r~ [I F: A [,j \" 1 ) 
+1, E(5, 1:) I~ DF:A[,j \" 1) +1,0 
230 t·jE::T 
~::40 EtjD 

Now, store the DRA WGRAPH program on the electronic disc. 

Preserves specified variables. 

Establishes scaling factor. 

} Draws axes. 

Labels Y-axis. 

} Dmw' be< ,mph. 

As long as the HP-85 is powered, the DRA WGRAPH file is accessible from the electronic disc. 

Next, execute ':: C F: ATe H, and enter the EARNINGS program for computing the yearly earnings: 

i 0 OF'T I ON BA~:;E 

- 20 CCit'1 IrHEGEF: 'y'( 10), F:EAL E(5, 
i 0 :;, 
30 FOF: 1=1 TO 10 
40 \"1:= 1363 +1 
50 D 1 ~:;F' "EtHEF: OUAF:TEF:L'!, EAF:r·~ I t~ 

FOP ;; ,: \' ( I > 
60 It-WUT E'l, I,E'2, I),E'3, I),E 
::: 4, I :;, 

- '( 0 E::: 5, I :;, = E ::: 1 , I ) +E , 2, I :;, +E ::: 3, I :;, + 
E::: 4 l' 
:::0 E T I 

- 30 H I t·j ''[IF:A[,JGF:AF'H: [1000" 
100 E [I 

Preserves specified variables. 

Computes yearly earnings. 

Loads DRA WGRAPH. 



286 Section 14: Storing and Retrieving Programs and Graphics 

If you'd like to run the set of programs more than once, be certain to store EARNINGS now since it will be 

scratched when statement 90 is executed. 

Now, execute EARNINGS. You will be asked to enter quarterly earnings for years 1970 to 1979. Enter any 

values you like, but keep in mind that the Y-axis for the bar graph runs from $0 to $100,000. 

When you push CBllD after the last data entry, you will hear a beep as statement 10 in DRA WGRAPH is 

executed, and the bar graph will be drawn on the CRT. When program execution is completed, you may list the 

current program in memory if you'd like. 

Note that the C H R I t-~ statement may be executed directly from the keyboard to load and run a program in one 

step. Because the CO t'1 statement does not apply to calculator variables, a program chained from the keyboard 

cannot access calculator variable values. 

Storing and Retrieving Graphics Display 

The computer allows you to store the contents of the computer's graphics display onto a disc and to retrieve the 

display without re-executing the display-generating program. The operation of loading a stored display into the , 
computer's graphics display leaves variable assignments and the program currently in computer memory intact. 

The two commands used to store and retrieve graphics displays access graphics (:t: :*: :*: :t:) files. 

Storing a Graphics Display 

The contents of the computer's graphics display is stored onto a disc by executing the G ::::; T () F: E command. 

C ::; T 0 F: E can be executed both in a program or from the keyboard. 

C ::n 0 F: E "file specifier" 

The C ::; T 0 f;: E command does not apply to tape cartridges; if a tape is specified, a U I::::; C C t-j L \' error occurs. 

Example: To store the previously generated bar graph, execute: 

As in program storing, the contents of a graphics file can be altered by executing G ::; T U!? E: with the same file 

specifier and a different graphics display. 

The contents of the graphics display has now been copied into the file named BARGRAPH located on the disc 

with volume label " , W/ [I I ::; C ". We could have chosen to store the display as part of the program. Inserting 

the C ::; T 0 F: E command after line 230 of the DRA WGRAPH program accomplishes this. 

As in program storing, the contents of an extended file can be altered by executing C ::; T 0 f;: E with the same file 

specifier and a different computer graphics display. 



Section 14: Storing and Retrieving Programs and Graphics 287 

Retrieving a Graphics Display 

Once a graphics display has been stored with a G ::; TOP E command, it can be retrieved by executing a G '- 0 A [I 

command, either from the keyboard or within a program. The proper form of G LOA [I is: 

C '- 0 A [I "file specifier" 

The file specifier must be the name of a previously-GSTOREd extended file. The C lOA D command does not 

apply to tape cartridges; if a tape is specified, a [I I ::; C 0 t·j L \' error will occur. 

Execution of G LOA D places a copy of the graphics display contained in the extended file into the computer's 

graphics display. The contents of the computer's graphics display at the time C L 0 H [I is executed will be 

scratched as the stored display is retrieved. As G L 0 H [I is executed, the computer automatically switches to 

graphics mode, and you can see the stored display appear on the CRT. 

Example: 

GLOA[I "E:APGPAF'H:D700" 

Storing and Retrieving Binary Programs 

Loads and displays the contents of the 
graphics file in drive " : [).? U C1 " • 

Some of the programs in the application pacs are binary programs. They function like a ROM by enlarging the 

"vocabulary" and capability of the HP-85, except that they are loaded from mass storage. The command that 

accomplishes loading of binary programs is L 0 H D E: I t·j. The statement has the form: 

L 0 H [I E: I t·j "file specifier" 

L. U A [I E: I t·j loads a binary program without altering existing data or programs in main memory. Only one bi­

nary program can be in main memory at a time. 

If a binary routine is to be added to a BASIC program, you must first L 0 H [I the main program and then add 

the binary program using L 0 H D E: I t·j. If you load the binary program first, it will be scratched when the main 

program is loaded. 

In order to list, edit, or translate a program that uses a binary routine, the binary program must be present in 

main memory_ 

Binary programs are stored using the command ::; TOP E E: I t-j, which has the form: 

::; TOP E E: I t·j "file specifier" 



288 Section 14: Storing and Retrieving Programs and Graphics 

Translating Tape-Based Programs to Disc-Based Programs 

Programs that were originally written for the HP-85A may need to be translated in order to take advantage of 

HP-85B disc-access capabilities. 

For instance, suppose you have a program stored on tape that was written on the HP-85A without the Mass 

Storage ROM installed. The program reads a data file, performs a number of calculations, creates a new data 

file, and then prints results of the calculations onto the new file. When this program is executed on the HP-85B, 

the program will continue to read, create, and write tape-based data files, even if the default mass storage 

medium is a disc. 

Programs written on the HP-85A without the Mass Storage ROM installed must be translated before they can 

utilize a disc system. After a program loaded from the tape system is translated, the program is compatible with 

the requirements of the HP-85B electronic disc and physical disc devices. 

A tape-based program is translated by loading the program into main memory and then executing the 

nonprogrammable T F.: A H ::; L ATE command, which has the form: 

T F: f'i to~ ::::; L f'i T E 

Translation time is roughly proportioned to the size of the original program. A beep signifies that the transla­

tion is completed. 

If the tape-based program described previously was translated and then executed, the program would read the 

appropriate data file from the default mass storage device, perform the computations, and store the results in a 

data file created on the default mass storage device. If the data file being read had been stored initially on tape, 

it would be necessary to C 0 F' \' it onto the default mass storage device before running the program. 

The translated program can be stored onto a disc or back onto the tape simply by executing :::; or (J F.: E with an 

appropriate file specifier. Note that the translated program may grow in size due to the translation process. 

Note: If the HP-85A program uses a binary program, that binary program must be present in main mem­

ory before the translation can occur. Otherwise, a E: I to~ F F.: 0 G ['! I::::; c:; error will occur when the 

T F.: f'i t~ ::; L ATE command is executed and the resident BASIC program will be scratched from main 

memory. 



289 

Notes 





Section 15 

File Manipulations 

Your mass storage system enables you to perform a variety of device and file manipulations, including: 

• Copying files from one storage medium to another with the C Ci F' \' command. 

• Changing the names of files with the F.: E t·j A ['1 [ command. 

• Erasing files with the F' U F.: C [ command. 

• Rerecording the files on a disc with the F' A C f::: command for more efficient use of mass storage space. 

• Protecting files against viewing, editing, overwriting, and use by others with the (:,; [ C 1 . ..1 I:::: I:: and 

1 . ..1 t·~ :,::: [ C U F.: 1=.:: commands. 

• Saving BASIC programs as character data files with the ::;,; H'') [ command and retrieving the data files 

with the G [T command. 

All filing commands can operate on tape cartridges, flexible discs, hard discs, and the electronic disc, except 

when noted. In addition, most filing commands are programmable. 

Copying Files 

Any file not secured against copying can be copied from one storage medium to another. The CO F' \' command 

copies the specified file and adds the name of the copied file to the destination medium's file directory. 

i_' CI P \' "source file specifier" TO" destination file specifier" 

The destination file can be given the same or a different file name. If the destination file name already exists on 

the destination medium, the computer returns [t- r .:. t- 6 ::3 DUF' !·!Hr'iE. 

You cannot copy a file secured against copying (type 1 security). If you attempt to do so, no error is generated, 

but the secured file is not copied to the destination medium. (File security is discussed later in this section.) 

Example: The following statement copies the file named ::; F' E ED::='; on disc with volume label " , r'! '/ U I:=':; C " 

into a new file named I,} [ L 0 CIT \' on the disc having volume label " , F F.: !::I !··.I !< II • 

COF'\' "SF'EED::;, t'1\'D I ::;C" TO "',}ELOC I T\' , FF.:At·n=::" 

Copying an Entire Disc 

The C 0 F' \' command can be used to copy all the files on a specified medium to another medium. The source 

disc's files are added to the destination disc without affecting the original contents of the destination medium. 

CO F' \' 
" ,source volume label" 

" ,source msus " 
TO 

" ,destination volume label" 
" : destination msus " 

291 



292 Section 15: File Manipulations 

If duplicate file names are encountered during copying, E ~- ~- 0 t- t:::3 D U F' [, P f'! E is generated, and the 

copy operation terminates. All files copied up to the termination remain intact. 

Files secured against copying (type 1 security) are not copied when the entire contents of one disc are copied to 

another disc. The secured file is simply ignored, and no error is generated. 

If there is not enough space on the destination medium to hold all the files being copied, the copy operation 

terminates after the last file to fit on the destination medium, and Fr' ["" c; ( :l ;::: ;:::; F !...! L.. L.. results. Copying 

also terminates when the directory space on the destination storage medium IS exhausted, generating 

F I L E ::;. Files copied before generation of the error remain intact. 

Example: The following statement copies the entire contents of the disc located at msus 

electronic disc. 

COF"r' ":D701" TO ",ED" 

Renaming Files 
Any file, regardless of its type, can be given a new name using the F.: E [.; !:i r'! !:::: command: 

F: E tl P t'1 E "old file specifier" TO" new file name;; 

r", ... :' ,':, i to the 

The old file specifier must correspond to a currently-existing file specifier. When the command is executed, the 

name of the file as listed in the file directory is changed. Thereafter, the file must be accessed using the new 

name. 

Example: 

Renames !'i G E: ,:::: on ,;';', .,. c· ..... to 

All the files on a given storage medium must have unique names. Trying to rename a file to the same name as 

an existing file causes a D U F' (licate) t·l A t'1 E error. 

Remember that the I.) 0 L U t'1 E I ::; command is used to rename entire disc volumes. 

Purging Files 

The F' U F.: G E statement prevents further access to a file and removes the file name from the directory. 

F' U F: C E "file specifier" [, 0] 

The file specifier can correspond to an existing file of any type. 

When a file is purged with no .' 0 in the command, the file name is removed from the file directory, and H U L !.... 

is substituted for the type of file in the T '"I P e column of the directory. The [·1 U L L file space is available for 

future use, and will be used the first time you create another file of any type that fits into the available space. 

When, 0 is appended to the file specifier, the specified file and all files after it on the storage medium are 

purged. The directory does not create t·l U L L files; the directory will contain a listing for only those files up to 

(and not including) the file specified in the F' U F.: C E command. 



Section 15: File Manipulations 293 

Examples: The following directories show the results of purging a file. The file 0 D D ~.j U r'l E: E P ::; is replaced by 

a j"'! U L.. L file. 

CAT", W/DI::;C" 

SF'EEDS 
DATAl 
ODD t·j U r'l E: E F: ::; 
E',}Et'j 1 
TESH:; 
::;EP I AL 

T':::Ipe 
F'F:OG 
DATA 
F'POG 
F'F:OG 
DATA 
F'POG 

256 
:::0 

256 
256 
256 
256 

Pees 
3 

2 
1 
1 
4 

F'UPGE II ODDt'Wr'lE:EP::; ,W/D I ::;C" 
CAT", W/DI::;C" 

t·j.~fi'!e 

::; F' E ED::; 
DATAl 

T':::Ipe 
F'POG 
UfnA 
t·jULL 
F'POG 
DATA 
F'POG 

c~56 ::3 
:::0 :3 

256 2 
256 1 
256 1 
256 4 

Now, the last two files in the directory, T E ::: T ::: and ::::; E F: I!:::: L., will be purged: 

F'UPGE "TE:::T::;, W/D I ::;C" .' 0 
CAT ", r'l\'[1 I ::;C" 

[ I ,)0 1 l)ff!E' J r'l\'[i I ~:; r: - -
t·j.~f!'!e T':~pe E: ':::I ~ es 
::; F' E ED::: PPOG 256 
DATA 1 DATA :::0 

t·jl JLL 256 
E I,} Et·j 1 F'POG 256 

Pees 
::3 
-:;0 
-
2 
1 

Don't purge files until you're certain you won't be needing them! A purged file is irrecoverable. 

Packing Files 
The F' A C f< statement removes t·j U L L files generated when files are purged. 

, volume label"] 
" :msus" 

Note that both physical disc files and electronic disc files may be packed but that tape files may not. 



294 Section 15: File Manipulations 

Example: 

PACf::: ", W/D I :::C" 
CAT", W/DI:::C" 

[ ',,I 0 1 ume J: t'1\'D I :::C 
'.}o 1 ulne T'::Ipe B'::I~ 
:;:WEED::: 
DATAl 
E''}Et·j 1 

PPOG 2 
DATA 
PPOG 2 

The time required to pack a disc varies with the number and size of files on the disc and on the number, size, 

and location of purged (t·W L L) files on the disc. The operation may take several minutes. 

Important: Take care not to interrupt a disc packing operation. Any interruption can leave the disc directory 

and files in an indeterminate state and may cause the loss of all or part of the disc contents. 

File Security 

Files can be secured to prevent program files from being listed, duplicated, or overwritten, and to prevent data 

files from being overwritten or copied. You can also remove a file name from the directory listing without 

creating a t·j U L L file; the file can still be accessed by anyone who knows its name. 

Securing Files 

The ::: E CUP [ command places various types of security on files. 

:,: Fell P E "file specifier" .' "security code".' security type 

The file specifier must refer to an existing file of the proper type. 

The security code is a quoted string or a string expression that becomes associated with the file for security 

types 0 and 1. Only the first two characters of the security code string are actually used; uppercase and 

lowercase letters can be used interchangeably. If the string has only one character, the second character is a 

blank. 

The security type is an integer from 0 through 3, and designates the type of security: 

Security 
File Type Effect 

Type 

0 F' P 0 G Protects file against L I ::: T, P L I ::: T, and editing operations. The file can be 
loaded, run, and traced. The file name remains in the file directory. 

1 F' P 0 G, E: F' G t'1 Same as type 0, but also protects the file against duplication. An attempt to 
store the program in another file generates an error. 

2 F'POG, E:PGt'1 Prevents the file from being overwritten. Attempts to store or print# to the file 
DATA generate E t- t- 0 t- 22 ::: E CUP F D. However, the file can be duplicated. 

3 All types File name is removed from the directory. The file can still be accessed by anyone 
knowing its name. 



Section 15: File Manipulations 295 

A security type greater than 3 is reduced MOD 4 to the range 0 through 3. 

You can secure a file with more than one security type by executing more than one :",: E C U I~: 1:: command for the 

same file. However, a file cannot be secured for both types 0 and 1 security simultaneously. 

Regardless of the type of security specified, a file can always be purged. 

Examples: 

:::ECUF.:E II E',)E['j 1 , t'1\'D I SC II .. II :::TOPE[·jOT II .. ;2 

Type 3 security has the following effect on the file directory: 

:::ECUPE II :::PEED::: , t'1\'D I :::C II .. II Dot-ncAT ".. ::3 
CAT ", t-1'"i'D I :::,:C II 

[ 1,)01 urne J: t'1 ''I' D I :::C 

DATAi 
E !,)E [-j 1 

Type Bytes Pees 
PROG 256 3 
DATA 80 ::3 
F'POG 256 

The name :::: F' [E D ::: is removed from the file directory. 

Removing File Security 

Establishes file security type O. II t-I U" IS 

the security code. 

Establishes file security type 2. The 
security code is significant for types 0 
and 1 only. (The file can be 
1.1 t--I:::: E C I.I!:::: E D with any security code.) 

The U tool :::: [C U R E command cancels previously established file security. 

i...! t1 ::: E CUP E II file specifier II .. II security code".. security type 

The security type (0 through 3) must correspond to the security type previously established with a :: E C:: I..J P [ 

command that you wish to cancel. For types 0 and 1 security, the security code must match the security code 

established by the ::: E CUP E command. Any two characters can be used for the security code for types 2 and 3 

security. 

Examples: 

l..It-j:::ECUPE II :::PEED:::, t'1 ''I' D I :::C II .. II Of::: II .. ::3 

Removes previously established type 0 
security. The security code matches the 
:,::: E C U F: E: command. 

Restores the file name :::: F' I: [ D :,:,: to the 
file directory. The security code need not 
match the :=.:: [ C U F: E command. 



296 Section 15: File Manipulations 

String Manipulation of BASIC Programs 

The ::; A I,} E and C E T commands enable you to store programs on mass storage as character !:J i:::i"T' H files (rather 

than F'F.:OC files) and to bring string data files into main memory as BASIC programs. You can use '::A i'}i:::: and 

c:; E T to transfer HP-85B programs to and from other computers, as in data communications applications. 

The programmable ::; A I,} E command has the form: 

::::; H 1",1 E "file specifier" [.' beginning line number [.' ending line number]] 

The file specifier may refer to a new or existing file on any mass storage medium. The messages 

::; H ,,,, E I t,~ F' F.: 0 C F.: E ::; ::; and [I 0 t,~ E will indicate the start and end of the :=.:: H i,,i E operation. The result will be 

a [I H T H file of 256-byte records. 

When :::; H I,} E is executed, the BASIC program in HP-85B main memory is saved in a data file in the form of 

character strings, one string per program line. When no optional parameters are specified, the entire program is 

saved. If a beginning line number is included, program lines from that number to the end are saved. If beginning 

and ending line numbers are specified, that portion of the program is saved. :::; FI i,) E may be used on a program 

that references a binary program or plug-in ROMs, but the binary program or ROMs must be present during the 

:::; H I,} E: operation. 

Programs stored in the form of data strings are retrieved using the nonprogrammable G E: T command, which has 

the form: 

c:; ET "file specifier" 

When aCE T command is executed, the HP-85B accesses the specified data file, expecting to find a succession 

of valid program lines in string form. The stored lines are read into main memory as program lines without 

scratching program lines already there. If a retrieved program line has the same line number as a line already in 

main memory, the retrieved program line overwrites the original line. If ;~: E T encounters a string it cannot 

properly interpret as a Series 80 BASIC program line, the line is printed on the current F' F.: I I"; 'r i:::: i:::: I ::: device 

and entered in main memory as a program remark (with the ! symbol). 

Although C E T is designed to retrieve data files created by the ::: H I) E: command, data files originating in other 

ways (for instance, created by another BASIC program) can be retrieved. The data files must consist of: 

• Character strings of up to 96 characters. 

• A carriage return character (C H F.: $ .:: 1 :3 :;') as the last character of each string. 

• A valid line number from 1 through :3:3:3:3 and one or more Series 80 BASIC statements in each string. 

• A null string (" ") as the last item in the file. 

The messages C E T I t,~ F' F.: 0 C F.: E ::; ::; and [I 0 t,~ E will indicate the start and end of the G E 'r operation. The 

result will be an ordered sequence of lines in main memory, in the form of program statements and remarks. 



297 

Notes 





Section 16 

Storing and Retrieving Data 

Introduction 

The discussion of file types ill section 13 pointed out that mass storage enables you to create and use five 

different types of files, one of which is the [I A T A file. This section covers the five operations necessary to store 

and retrieve data. Except when noted, the discussion applies to all mass storage media, including tapes, physical 

discs, and the electronic disc: 

• Creating data files. 

• Opening a previously created data file. 

• Storing data (printing data to the file). 

• Retrieving data (reading data from the file). 

• Closing the data file. 

There are two methods for accessing data files: serial access and random access. Serial access stores and re­

trieves data sequentially, and is useful when the complete data list is to be stored and retrieved as a unit. 

Random access allows you to access portions of the data. Since data is accessed somewhat differently with serial 

and random access, serial storing and retrieving is discussed separately from random storing and retrieving. 

Files created in mass storage consist of one or more records. The size of the records can be varied to accom­

modate the storage requirements of the data. Before covering how to create data files of different sizes, we will 

first discuss file structure and storage requirements. 

File Records 

When a data file is created in mass storage, the size of the file is set by specifying the number of records in the 

file and the length of the records. A record is the smallest addressable location on a mass storage medium such 

as a disc or tape. Record length is specified in bytes (such as 256 bytes per record), and all records in a particu­

lar file are the same length. 

Two types of records are available: physical and logical. These two types make it possible to match the structure 

of data to the file in which it is stored, thus using storage space most efficiently. 

Physical Records-Physical records are always 256 bytes in length and are set up automatically when pro­

gram, graphics, or data files are created. All files begin at a new physical record. The 256-byte physical record is 

the smallest addressable storage unit unless a different size addressable unit, called a logical record, is 

established. 

Logical Records-Logical records are specified for a file when an addressable unit of length other than 256 

bytes is desired. The file will still begin at the start of a physical record; within the file, however, the divisions 

between physical records are ignored and a logical record may straddle two or more physical records. When a 

299 



300 Section 16: Storing and Retrieving Data 

data file is created without specifying logical records, the automatically-created physical records become logical 

records. 

The following diagrams illustrate two files consisting of logical records. The first file contains five records, each 

100 bytes long. Note that the file utilizes two physical records and that there are 12 bytes of unusable space, 

since any new file must begin at a new physical record. The divider between the two physical records is ignored. 

logical records (in bytes) 

100 100 100 100 100 12 unusable 

I I I I I 
I I I I I 
I I I I I 
I I I I I 
I I I I I 
I I I I I 
I I I I I 

~""--""v"'--""~""--""v"'--""'-"~"'--""v---"~"'--""v'"--"" ~"'--""v"'--"" 
256 256 256 256 256 

physical records (in bytes) 

The next diagram illustrates a file consisting of two 500-byte logical records. The divisions between physical 

records within the logical records are ignored; however, 24 bytes are not usable, since any new file must start at 

a new physical record. 

logical records (in bytes) 

500 500 24 unusable 

... -
II 

~"'--""v"'--"" ~""--""v"'--""'~~"'--""v"'--""''' '---v---" 
256 256 256 256 

physical records (in bytes) 

Storage Requirements 

File and record sizes should be specified with the space requirements of the data in mind. The following chart 

describes the amount of space necessary to store numeric and string data. 

Variable Type 

Simple numeric 

Simple string 

Numeric array 

Space Requirements 

8 bytes (regardless of f;: E A L., ::: H 0 F T, or It··! TEe E: k precision). 

3 bytes + 1 byte per character + 3 bytes each time the string crosses into a new 
logical record. 

Per array element: 8 bytes (regardless of f;: E!'i L., '::: , ... , (J f:,: T, or I,,··!·r F C; F!? precision). 

Note that the requirements differ from the amount of storage in main memory. For example, a :::::::::: A L. numeric 

variable requires 10 bytes of main memory. Any number of any type requires eight bytes of mass storage. 

You can use these space requirements to set up files to match your data. For instance, suppose you would like to 

create a file for storing the last and first names, social security number, and salary of a dozen employees. You 

would like each employee's information in a separate record. 



Section 16: Storing and Retrieving Data 301 

Item 

last name 

first name 

social security 

salary 

Type of Data 

12-character string 

1 O-character string 

11-character string 

numeric (type F: E A L) 

Bytes 

3 + 12 = 15 

3 + 10 = 13 

3+11=14 

8 

50 

A file can then be created consisting of twelve 50-byte records. When logical records are created, any otherwise 

wasted space (in this case, 168 bytes) is also allocated into logical records if possible. The 168 bytes form an 

additional three records added to the file automatically, with 18 unusable bytes. 

, 
I I 

I I 
I I I I 

I I I 
I I I I 
I I I I 
I I I I 
I I I I 

v 

12 records 3 records unusable 

I 
I 
I 
I 
I 

" . ....... , 
I I , 

I I I I I I I I I I I 
I I I I I I I I I I 
I I I I I I I I I I 
I I I I I I I I I I 
I I I I I I I I I I 
I I I I I I I I I I 

~~ 

3 physical records 

/' 

Creating Data Files 

The C: ::;,: ::::: I:::! T E statement allocates space on a mass storage medium for the specified data file. 

F: E: ::::: 'T E ;; file specifier;;.' number of records L record length] 

The number of records specifies how many logical records the file will contain, and must be an integer from 1 

through 32,767. The record length is the number of bytes in each record, and must be an integer from 4 through 

32,767. The default value for the record length is 256 bytes, the size of a physical record. The total number of 

bytes, obtained by multiplying the number of records by the record length, must not exceed the storage capacity 

of the mass storage medium. Remember that all records in a given file will be of the same length. 

Example: The following statement creates a data file named [:-'1 F' i . C) 'y' F E :~; for storing the identification and 

salary information for the 12 employees, as discussed above. 

Creates a data file with 12 logical records 
of 50 bytes each. (Actually, 15 records 
will be set up, as discussed in Storage 
Requirements) . 

Since the information for each employee is stored in its own record, it can be accessed and updated separately 

from the data for other employees. If you create this file on ,1'1 'y' D I :::; C" and then execute C f'l T, the file will 

be listed. 



302 Section 16: Storing and Retrieving Data 

[ I,} 0 lume J: t'1\'D I :::C 
Name Type Bytes Pees 

EMPLOYEES DATA 50 15 

If it were preferable to always store and retrieve information for all employees at once, a file containing one 

record could be set up. 

30 CF.:EATE "Et'1PLO\'EES, Wr'D I :::C" .. 600 Creates a file of one 600-byte record. 

Opening a Data File 
Once a data file has been created, it must be opened before it can be accessed to store data. Opening a data file 

assigns to it a buffer through which data flows from the computer to the disc and from the disc to the computer. 

The A:::: :::: I G t·j # statement is used to open a data file: 

W:: :::: I C t·j # buffer number TO" file specifier" 

The file name must be the name of a previously created data file. The buffer number is a number that rounds to 

an integer from 1 to 10. Once a buffer has been assigned to a file, that buffer remains assigned to the file until 

the same buffer number is assigned to a different file, or until the file is closed. 

Main .... • 284-byte ... • Mass Storage 
Memory Buffer File 

Mass Storage Buffers 
A mass storage buffer is a 284-byte location in main memory that is allocated whenever a file is opened. The 

purpose of the buffer is to decrease access time and to reduce wear of the mass storage medium by accumulating 

data being transferred between the computer and a mass storage medium. 

Data accumulated in a mass storage buffer is transferred to the disc whenever one of the following conditions 

occurs: 

• The buffer is full. A buffer can hold 256 bytes of data. 

• The buffer is reassigned to a different file. 

• P AU::: E, ::: TOP, or E t·j D is executed. 

• Program execution is interrupted. 

• The file is closed. 

• Another logical record is accessed using a random access F.: E A [I # or P F.: I t·~ T # statement. 

• A P P I t·j T # statement is executed from the keyboard. 



Example: 

Up to 10 buffers may be in use at a given time. 

Closing a Data File 

Section 16: Storing and Retrieving Data 303 

Opens E t'1 F' L 0 \' E E ::; file and assigns to 
it buffer #1. 

When you've completed a data transfer to or from a file, you should close the file. The H ::; ::::; I C t·~ # statement 

accomplishes this: 

A::; ::; I C; t·~ # buffer number T 0 l 

The buffer number must agree with the buffer number assigned to the file when it was opened. 

Example: To close E t'1 F' L 0 \' E E ::; previously opened in statement 50, above, execute: 

200 ASSIGN# 1 TO l 

When a buffer is closed, any data in it is transferred to the mass storage medium. If a program error causes a 

halt while data is in the buffer en route to mass storage, all the data in the buffer will be printed to the file. The 

file remains open and thus does not need to be reopened before program execution is continued. 

If a mass storage error caw;es a halt during program execution, data in a buffer en route to mass storage is lost 

unless the file is closed from the keyboard. When the file is closed, the data will be transferred to mass storage. 

Serial Access 
Serial access is used when a quantity of data is to be stored and retrieved sequentially, and updated as one unit. 

The entire file itself becomes the smallest addressable unit of storage. This is true even if the file being accessed 

consists of more than one logical record; in serial access, data is stored and retrieved without regard to record 

divisions within the file. 

Serial Printing 

Data is stored into a file serially using the serial F' F.: I t·~ T # statement, which has the form: 

F' F.: I t·~ T # buffer number.: print # list 

The buffer number (1-10) must have been previously assigned to a data file. The print# list itemizes the data you 

wish to store, and may include numbers, quoted text, numeric variables, string variables, numeric and string 

expressions, and numeric array names. Items in the print# list are separated by commas. 

The computer uses a pointer to locate and access data items. When a file is opened, the file pointer is placed at 

the beginning of the file, and data serially printed to the file are stored starting at the beginning of the file. The 



304 Section 16: Storing and Retrieving Data 

pointer moves through the file sequentially as the print# list is stored. When the entire print# list has been 

recorded, the pointer remains at the end of the recorded data, and an end-of-file marker indicates the position of 

the last recorded data. Execution of a subsequent F' F.: I t·j T # statement with the same buffer records the new 

print# list at the end of recorded data and moves the end-of-file marker to the end of the newly recorded data. 

The pointer will continue to move sequentially through the file until the pointer is moved to the beginning of a 

specified logical record using a random F' F.: I tH # I F.: E A D # statement, or until the file is closed or reassigned 

with an A::; ::; I G t·j # statement. 

Examples: The following illustrations demonstrate movement of the file pointer during serial printing. 

Opening the file: 

W=.;:=':; I Gt·j# 1 TO "F I LE , W-r'D I ::;C" 

logical records 

i " 

.. File pointer at the beginning of the data file. 

Printing three items to the file: 

F'PltH# 1.: A .. B .. C 

end-of-file marker 

A B 

Printing three additional items to the file: 

F'PltH# 1.: D .. E .. F 

end-of-file marker 

A B c o E 

The movement of the file pointer and end-of-file marker influence the way in which serial files are updated. If, 

after entering a long list of data items serially, the pointer is returned to the beginning of the file using a 

random F.: E A D # IF' F.: I t·j T # statement or an A::; ::; I G t·j # statement, a new serial F' F.: I t·~ T # statement will 

record new data items over the old ones. However, an end-of-file marker is placed at the end of the new data 

items. The result is that the entire old data list is lost. 



Section 16· Storing and Retrieving Data 305 

Example: The following program uses serial access to store check register data for the PDQ Music Company. 

The company opens a new file each day, and records the company to which a check has been written as string 

C t and the amount of the check as numeric variable A. 

" 1. 0 CPEATE "t·W I,}5, CHECK::;" .. 4 
.. ?O A::;::; I Gt·j# 1 TO "t·WI'}5, CHECf:::::;" 

30 [I HI Ct[?4 J 
40 

;:::;/] 
,. ~3 (:I 

'il 100 

D I ::; P "C CIt'l P A t·j \' t·j A t'l E, 
F CHECK".: 
ItiPUT Ct .. A 
I F I"! :::: 0 THE t·j 9 [1 

F'PIHT# 1 C:t .. A 
CO TO 40 
PPltH# 1 
I"! ::; ::; I C t·j # 

"Et·mt'IAPt::: " 
TO l 

At'10Ut·jT 0 

Creates file of four 256-byte records. 
Opens the file. 

Prints company name and amount of 
check to the file serially. 
Tags a string to the end of the file. 
Closes file. 

When the program is run, it prompts for company name and amount of the check until zero is input as the 

amount. If file capacity is exceeded before program execution ends, the computer returns an error announcing 

an attempt to print at the end of the file. 

COMPANY NAME .. AMOUNT OF CHECK0 
T,.?dd'::J I:::: ::;ecur i t '::J.. 6:::,85 
COMPANY NAME .. AMOUNT OF CHECK0 
h··, t Bee':::. PE:':::' t Co,.. 9:::,00 
COMPANY NAME .. AMOUNT OF CHECK0 
b':::'r-t Tenke'::J _.- CPA .. 45,?? 
COMPANY NAME .. AMOUNT OF CHECK0 
F n C!)o::J h :::'.:l i d.. 0 

NOle When a string serially printed to a file crosses from one record to another, an additional three 

bytes are needed for the string header, which identifies the portion of the string contained in the new 

record. 

Reading Files Serially 

Data that has been stored onto a mass storage medium must be retrieved, or read, back into main memory 

before it can be used. Reading data from a file transfers a copy of the data through a buffer into main memory. 

When data is retrieved serially, the entire file contents is accessed sequentially, ignoring any record divisions. 

Data stored both serially and randomly can be retrieved serially. Serial reading is accomplished by the F: [I::I!J:~ 

statement: 

!:;~~! : H D # buffer number.: read# list I 
I 

The buffer number must match the number previously assigned to the file with an !"! :,,; ::::; I c; ti '* statement. The 

read# list need not exactly match the print# list used to store the data. However, data items being read must 

agree in type (string versus numeric) with the contents of the file. 



306 Section 16: Storing and Retneving Data 

Example: Data printed to file by the statement: 

PPItH# 1.: A,B,C$ 

can be retrieved by the statement: 

PEAD# 1.: O,P,':;$ 

During serial reading, the pointer moves through the file sequentially, much as with serial printing. At the 

conclusion of the read# list, the pointer remains positioned after the last item read. An attempt to read data 

when the pointer has encountered the end-of-file marker generates an error. 

Example: If you used the preceding program to create a data file for a check register, you can use the following 

program to read the file, print its contents, and sum the day's check payments. 

• 

• 
• 
• 
• 

• 

1 0 
20 
30 
40 
50 
60 
70 
:=-:0 
90 

1 00 
1 1 0 
1 20 
1 30 

1 40 

H:::;::; I Gt·j# 1 TO "t·W',}5, CHECKS" 
D I t'1 C $[ 24 ] 
::;::::0 
PEAD# 1 C$ 
IF C$=" Et·Wt'1AF.:K" THEt·~ 100 
PEAD# 1 A 
PPINT USING 120 C$,A 
::;=::; +A 
GOTO 40 

A::;::;IGt·~# 1 TO ;f: 

PPINT USING 130 S 
IMAGE 20A,2X,5D,DD 
It'1AGE /, .:'":.:,, "TOTAL =".,12::-::, 5D 
,DD 
Et·W 

Teddy's Security 
Ant Bee's Pest Co, 
Bert Tenkey - CPA 

9:::.00 
45,22 

TOTAL = 

Opens data file. 

Initializes sum of day's checks. 
Retrieves company name. 
Checks for the end of file. 
Retrieves amount of check. 

Branch to retrieve another company 
name. 

In the above program, the file pointer moves through the data file as both F.: E: F! !J :1* statements are executed 

repeatedly. If statement 50 were omitted, the PEA D # statement in line 60 would eventually encounter the end­

of-file marker, generating an error. 

Note: Data read from mass storage initially is stored in a temporary memory location before being trans­

ferred to memory allocated to the variable. If you receive an unexpected memory overflow error while 

attempting to read# a long string from a data file, you will need to break the string into substrings and 

print# the substrings into logical records using random access. The substrings can then be read back 

into main memory one at a time. 

Random Access 

Random access enables you to print to, read from, or update a portion of a data file by accessing individual 

logical records. Since size is specified in the C PEA T E statement and can be as small as four bytes, random 

access allows you to update small portions of data without affecting the rest of the file. 



Section 16: Storing and Retrieving Data 307 

Random Printing 

The random F' P I t·~ T # statement has the syntax: 

F' P I t·~ T # buffer number.. record number [.: print # list] 

The buffer number must match the buffer assigned to the file by an A:::; :::; I G t·~ # statement. The record number 

must be less than or equal to the total number of logical records in the file. The print# list contains all the items 

to be printed to the record, separated by commas. 

The random F' P I t·~ T # statement operates somewhat differently from the serial F' P I H T # statement: 

• Because random printing accesses a particular record, the record number must be specified III the 

statement. 

• When a random F' P I t·~ T # statement is executed, the file pointer moves to the beginning of the specified 

record. The print# list is printed to the record and an end-of-record marker is placed after the last print# 

item. 

• In random printing, the contents of the file buffer is transferred to its destination each time another 

record is accessed. 

• Record divisions are not ignored in random access operations. The print# list must not exceed the storage 

capacity of the logical record. E r t- (I r 69 P A t·i D [I t'1 [I I,) F or E P P I] P ? .-::, F: [: C: I] I? [I indicates 

that you are attempting to print too much data to the record. 

• The file pointer is moved to the beginning of a random record by executing a random F' F: I I···IT" # statement 

without a print# list. 

Example: The following illustrations demonstrate movement of the file pointer during random printing. 

Opening the file: 

A:::;:::; I Gt·~# 1 TO "F I LE , WiD I SC" 

2 3 4 5 

.. file pointer 

Printing data to record #3: 

F'PItH# 1..3; A.,E; 

end-of -record- rna rker 
2 3 1 4 5 



308 Section 16: Storing and Retrieving Data 

Printing data to record #2: 

F'P1tH# 1 .. 2.: C 

2 3 4 5 

Moving file pointer to the beginning of record #5: 

F'P1tH# 1 .. 5 

2 3 4 5 

.. 
file pointer 

Example: The following program creates and accesses a 20-record data file for storing exam scores. Each of the 

30-byte records can contain the name of a student and the student's exam score. The string and 

numeric value 0 are entered into otherwise empty records. 

20 I tWUT E$ 
30 [I I :::F' "t'Wr'1E:EP OF ::;TU[lnn::;".: 
40 I t·iFUT tj 

• 50 CPEATE E$ .. 20 ... 30 
• 60 A::;::; I Gt'i# 1 TO E$ 

70 FOP 1=1 TO t·j 
::::0 [lI::=';F' "::;TU[lEtH # " , T ' " .' ':'.' .' 

~::)o I ['iFLIT ::::;$ .. G 
• 00 FF.:ltH# 1., I 

lO t·iE::<T I 
20 [I I :::F (~ [I I :::::F' "THAt·n::: \'OU," 
.. :' ;:_, F Ci !~: ,_J :::: I T C 2 0 

14[1 F'F'1 HT;l: 1 ,J : II ::<>::::<>::>:: II .. [1 

150 t·jE::<T ,J 
• 160 H:::;::: I Gt·j# 1 TO l 

1 -;::'0 [I I :::F "[lOt·jE," 
1 :::0 Et·j[l 

Creates data file of 20 30-byte records. 
Opens data file. 

Prints data to record 1. 

Fills otherwise empty records. 

Closes data file. 

The program requests the file name and number of students, creates the specified file, and then accepts student 

data. 



Section 16: Storing and Retrieving Data 309 

NAME OF NEW EXAM FILE0 
C::;211 ..... E>::2 : D70 1 
NUMBER OF STUDENTS0 
::3 
::;TuDEtn # 
BILL FOLD .. 
::::TUDEtn # 2 ::;CORE'~' 

GPEG GAPOUS.. 66 
STUDENT # 3 SCORE0 
CLARA KEtn.,:::9 

T H F! t·~ f::: \' 0 U , 
DOt·~E , 

Data is entered into the file as shown below. 

~"""---"v---" 
30 bytes 30 bytes 

Reading Files Randomly 

'-------~v~------~" 30 bytes 

Random access reading is accomplished with the random read statement: 

i? E 14 [I # buffer number .. record number [.: read# list] 

... etc. 

The differences between the random read statement and serial read statement are analogous to the differences 

between the two types of F' R I t·~ T # statements: 

• The statement must include the record number you wish to access. 

• The file pointer automatically moves to the beginning of the specified logical record. 

• Logical record divisions are not ignored. An attempt to read past the end of a logical record generates 

Fr" r c)r 72 RECOF.:D. 

• The file pointer can be moved to the beginning of the record by executing the statement without a read# 

list. 

As with serial reading, the read# items must agree in data type (numeric versus string) with the stored data; 

however, number precision need not agree. If a read# numeric variable has less precision than the print# vari­

able, the number is rounded when entered in the read# variable. 

Example: The following program allows you to correct any previous entries to the student exam file and to add 

additional entries to records containing >:: ::< >:: ::< >::, [1. The program requests the record number of the data you 

wish to alter, displays the current contents of the record, and provides for replacing that data with the corrected 

information. 



310 Section 16: Storing and Retrieving Data 

1;] D I :::;p "t'jAt'1E OF FILE TO COF.:PEC 
T" .: 

20 I t-lPUT E$ 
• 30 AS:::; I Gt·j# 1 TO E$ 

40 DISP 
5[1 D I :::;P "PECOPD TO BE CHAt·jGED".: 
60 I t-lPUT P 
70 IF p=o THEN 150 

• ::::0 PEAD# 1 .. P .: :::;$., G 
90 D I :::;p "STUDEt·jT IS".: :::;$ 

1 00 D I :::;P ":::;COPE =".: G 
110 D I :::;P "t·jE~'~ I t·1FO 0:: t·jAt'1E .. :::;COPE) " 

• 120 I t·1PUT :::;$ .. G 
• 130 PF.:ItH# 1 .. P .: :::;$., G 

140 GOTO 40 
15;] DI:::;P I~ DI:::;P "THAt-H::: \'OU," 

• 16~=1 A:::;S I Gt·j# 1 TO l 
170 D I :::;P "DOt·jE," 
1 ::::0 Et·jD 

Opens data file. 

Reads contents of specified record. 

Accepts new information. 
Overwrites existing information in the 
record. 

Closes data file. 

We use the program to modify two records of the C :::; 2 1 1 ..... E ::< 2 file created in the previous example. 

NAME OF FILE TO COPPECT? 
C::;211 ..... E::<2 : D70 1 

PECOPD TO BE CHANGED0 
2 
STUDENT IS GPEG GAPIOUS 
::;COPE = 66 
NEW INFO O::NAME .. SCOPE)0 
EGPE G IOU::; .. 4::: 

PECOPD TO BE CHANGED0 
4 
STUDENT IS XXXXX 
::;COPE = 0 
NEW INFO O::NAME .. SCOPE)0 
PH\'LL I ::; E .. 100 

PECOPD TO BE CHANGED? 
~) 

THAt·jf::: '/OU, 
DOt·jE, 

Storing and Retrieving Arrays 

Entire arrays can be stored and retrieved using an array addressing format with the serial or random F' P I t·j T' # 

and PEA D # statements. The proper array addressing formats for one-dimensional and two-dimensional 

numeric and string arrays are: 

One-dimensional array-array name 0:: ::-

Two-dimensional array-array name 0:: ::. or array name 0:: 

The comma is optional, for 

documentation purposes only. 



Examples: 

PEAD# 1.: FPEC!'::) 

F'P I tH# 2.,4.: At'1F'$'::.,) 

Section 16: Storing and Retrieving Data 311 

Reads one-dimensional array F PEl) 
serially. 

Stores two-dimensional array A t'1 F' $ into 
record 4 of specified file. 

In the case of two-dimensional arrays, the array elements are retrieved item by item without regard to 

dimensionality, with the second subscript varying more rapidly, that is, by rows. 

A(l,l ) -.A(1,2) .. A(1,3) .. A(l ,4)J 
Array elements of this 3 by 4 array are 
accessed by rows. 

I .. A(2,1) "A(2,2) .. A(2,3) -.A(2,4)] 

L:A(3,1) -.A(3,2) -.A(3,3) .. A(3,4) 

Since array elements are stored on mass storage linearly, they may be retrieved with or without an array format, 

and any combination of upper limits can be used that accesses the desired number of elements. For instance, a 3 

by 4 array stored in a file assigned buffer #1 might be retrieved by any of the following sets of statements 

(assuming 0 F' T I 0 t·j B W:; E 1): 

[IIi·'] [:(3,4) 
I?EAD# 1.: B ( 

DU1 B(4 .. 3) 
PEAD# 1.: B ( 

Dlt'1 B(6 .. 2) 
PEAD# 1.: B ( 

[I I 1'1 c( ::::. 
F:FAD:!:F [: ( 

If the array specified in the PEA D # statement has fewer elements than the stored array, only those elements 

allowed by the PEA D # array will be retrieved. 

Example: The following program creates a data file named F' 0 I t·j T ::::; and stores into it the array H 0:: I .. , . ..1::' in 

which the integer part of the number equals the I value and the fractional part of the number equals the ,...\ 

value. 

J = 1 

1=1 1.1 
1=2 2.1 
1=3 3.1 
1=4 4.1 

10 OPT I Ot·j BA::::;E 1 

• 2(1 SHOrn A (4., 5) 
30 FOP 1=1 TO 4 
40 FOP ,J= 1 TO I::" ._' 
50 A( I .. ,J ) = I +,J./ Hi 
60 D I ::::; P A( I .' ,J) .' 
70 t·jE::<T -I 
:::::0 D I ::::; P 
9 ~~1 t·jE;:.::r 

• 1 ~~10 CPEATE "PO I tH::::;" .. 2~~1 .. ::::: 
• 110 A::::;::::; I C;t·j# 1 TO "F'O I tH::::;" 
• 120 PF.:ltH# 1 A( .. ) 
• 130 A::::;S I Gt·j# 1 TO l 

140 D I ::;p (!! D I :3P "Dot·jE" 
150 nw 

J = 2 J = 3 

1.2 1.3 
2.2 2.3 
3.2 3.3 
4.2 4.3 

J = 4 J = 5 

1.4 1.5 
2.4 2.5 
3.4 3.5 
4.4 4.5 

Dimensions 4 by 5 array of :::; H (J I? T 
precision. 

Assigns values to array elements. 

Creates data file. 
Opens data file. 
Prints entire array to data file. 
Closes data file. 



312 Section 16: Stonng and Retrieving Data 

The following program retrieves all the elements of array A ( I , ,J) and displays the value of the elements for 

which I = ,J. 

10 OPTION BASE 1 
20 :::;HOFT A(4,,5) 
30 A:::;:::;IGt~# 1 TO "F'OIt~T:::;1 

40 f;:EA[I# 1 A () 
50 FOF I=l TO 4 
60 [lI:::;P Ad,!) 
70 t~E:<T I 
:::0 A::;:::; I Gt,~# 
90 Et,W 

(RUN ): 

, 1 

"7 "7 -._, , "-' 

4,4 

TO l 

An undefined simple numeric variable, simple string variable, or numeric array element is printed to a file as ~~1 

or the null string ( II "); a t,~ U L L [I AT A warning is generated during the P P I t,~ T # operation. When a null data 

item is accessed during a FE A [I # operation, the numeric or string PEA D # variable will be set to zero or to the 

null string. However, it's best to avoid storing un initialized data on mass storage. 

When these conditions exist in a program: 

• 0 P T I 0 t,~ B A:::; E 1 has been specified, and 

• A f;: E A [I operation is performed on a numeric array (for example, PEA D # 1 A':: ::.), and 

• The number of array elements in the [I A T A file is greater than the dimensioned size of the array program 

variable 

-then the program itself may be altered. Make certain that you dimension array variables at least as large as 

your array variables on mass storage. 

Determining Data Types-The 'r \' F::' Function 
The T \' F' function allows you to determine the data type of the next item in a data file. The function also 

allows you to determine whether the file pointer is at the end of the record or at the end of the file. 

T \' F' (buffer number) 

The buffer number must correspond to the buffer assigned to the file being accessed. The T \' P function returns 

an integer from 1 to 10 according to the following table. 



Section 16: Storing and Retrieving Data 313 

Type Value Data Type 

1 Number 
2 Full String 
3 End-of-File 
4 End-of-Record 
8 Start of String 
9 Middle of String 

10 End of String 

When you are using the T \' P function, the pointer can be moved through the file in much the same way as it is 

moved in serial and random printing and reading. One difference is that record divisions are not ignored when 

the pointer is moved serially. 

Examples: We will use the T \' P function to access data items in the file named He E::::,;, which is organized 

into logical records as shown below: 

2 3 4 5 6 
r-----~----~, .r---__ ~ ____ ~, ,~----~----~, r~----~----~ 

[::i.]130 Phyllis 31 Hank 

Now, the following statements are executed from the keyboard: 

H~:=';~:; I Gt'i# 1 TO "AGE~:;, W/D I ~:;C" 
F:EfW# 1, 1 
T\'P(1) 

::::: 

F.:EAD# 1.: tH 
T\'P<l) 

1 
!~:EriD# 1.: A 
T\'P(1) 

4 

F:EAD# 1,3.: tH 
T\'P(1) 

4 

F:EHD# 1,4.: tH, A 
T'/P(1) 

::: 

F.:EAD# 1,5 
T\'P(1) 

10 

r-n=':AD# 1,6 
T\'P(1) 

Verification of Data 

Opens H G E ~:::; file. 
Moves pointer to beginning of record 1. 

Next item is a full string (E: :i. l. 1). 

Moves pointer past first item in record 1. 

Next item is a number (:::;:0). 

Moves pointer past 2nd item in record 1. 

Next item is the end of record 1. 

Moves pointer past first item in record 3. 

Next item is the end of record 3. 

Moves pointer past first two items in record 4. 

Next item is the start of a string (I"" 11..-1). 

Moves pointer to beginning of record 5. 

N ext item is the end of a string (:::::.:. t- rf! :i. rnA ::::). 

Moves pointer to beginning of record 6. 

Next item is the end of the data file. 

The C H E C t::: PEA D # statement is used to verify that data printed to a disc data file has been properly re­

corded onto the disc. When C H E C f::: PEA D # is activated, an immediate PEA D # operation is performed on 

any data printed through the specified buffer. If the two lists do not match, indicating failure of the storage 

medium (disc) itself, the computer returns E t- t- .:. r 127 PEA D 1,,1 F \' (read verify). 



314 Section 16: Storing and Retrieving Data 

C H E C K PEA D # buffer number 

The C H E C K PEA D # statement does not apply to tape cartridges; if a tape is specified, a D I ::; C 0 t·j L \' error 

will occur. 

C H E C K PEA D # errors are rare. If you encounter one, you may wish to compare your F' F.: I t·~ T # statement to 

the contents of the data file. Then try re-executing the F' F.: I t·j T # statement, since the failure which generated 

the error may have been momentary. If you obtain another C H E C K PEA D # error, it is likely that the disc has 

failed. 

CHECf::: PEAD# is turned off by the CHECK PEAD OFF# statement: 

C H E C K PEA D 0 F F # buffer number 

Examples: 

CHECK PEAD# 1 

CHECK PEAD OFF# 

Verifies all data printed to buffer #1. 
Turns off C H E C f::: PEA D # for buffer 
#1. 



315 

Notes 





Section 17 

The Electronic Disc 

Introduction 

The HP-85B electronic disc is a built-in mass storage device consisting of all random-access computer memory 

in excess of 32K bytes. The electronic disc is designed for high-speed mass storage operations to and from main 

memory, up to six times faster than flexible disc operations. If, for example, you copy a number of BASIC 

programs to the electronic disc, you can load and run any of the programs almost instantaneously. 

With no memory modules installed in the HP-85B, the electronic disc provides 32K bytes of storage. Up to four 

128K memory modules can be added to increase the storage capacity of the electronic disc to 544K bytes, the 

equivalent of two 51/4-inch or 31/2-inch flexible discs. (Refer to appendix B for information regarding the installa­

tion of memory modules.) 

Don't confuse electronic disc storage (initially 32K bytes) with main memory storage (always 32K bytes). The 

electronic disc provides secondary storage. Consequently, programs on the electronic disc must first be brought 

into main memory before they can be executed and are limited in size by main memory. 

From the programmer's point of view, the electronic disc is identical to any other disc device. You use the same 

commands from the keyboard and from BASIC programs to control both electronic and physical discs. 

Unlike flexible discs and hard discs, the electronic disc provides storage only while the computer is switched on. 

CAUTION 

Never end a session with the HP-85B by leaving important files on the electronic disc. When power to the 

computer is switched off, the entire contents of the electronic disc is lost. Always maintain backup copies 

of important files on permanent mass storage media. 

Electronic Disc Commands and Functions 

The following table summarizes HP-85B mass storage commands and functions as they apply to the electronic 

disc. Complete descriptions of these commands and functions can be found in sections 13 through 16. Two 

additional commands used to control the electronic disc will be discussed in this section, CUr··! F· I I::; and ::::: ! ... ! !"II::· . 

At power on, the HP-85B establishes an empty directory on the electronic disc, with msus " : [J ~=1 00" and 

volume label " , E [J " . 

317 



318 Section 17: The Electronic Disc 

Command or Function 

',}CILUt'lE I::; 

t'l::;U::;$, ''}OL$ 

CHT 

:::;TOF.:E, LOHD 

G::;TOPE, GLOHD 

::;TUFE::E: I t·j, LOHDE: I tj 

CHH I!j 

C I] F' \' 

F:EHHt'lE 

F'UFCE 

F'HCK 

CFEHTE, FI::;::; I Gt·j#, F'F: I tH#, 
F:EHD#, CHECK F:EHD#, T\'F' 

:::;FCUF:E 

IJtj::;ECUF:E 

:::;H',}E 

GFT 

D I :::;C FF:FE 

Description 

Sets the electronic disc as the default mass storage device for 
the system. 

Changes the volume name of the electronic disc. 

Returns msus of current f'l H ::; ::=.; ::; T 0 F: H eEl ::::; device and 
volume label of specified msus. 

Displays file entries from the electronic disc. 

Stores and loads BASIC programs (type F' F~: I] G) to and from 
the electronic disc. 

Stores and retrieves graphics displays as extended files (type 
tt:t:t). 
Stores and loads binary programs (type E F' G t,·!) to and from 
the electronic disc. 

Loads and runs BASIC programs from the electronic disc 
while preserving CO t'l{mon) variable values and resident binary 
program, if any. 

Copies files to the electronic disc from another mass storage 
medium, or from the electronic disc to another medium. 

Renames individual files on the electronic disc. 

Purges unwanted files from the electronic disc. 

Closes up the gaps left by purged files (type !···I U L L). 

Creates, opens, prints to, and reads from data files (type 
[I AT A) on the electronic disc. 

Secures electronic disc files against listing, editing, and 
access. 

Removes the security from electronic disc files. 

Saves BASIC programs as data files consisting of character 
strings. 

Retrieves data files as BASIC programs. 

Returns the amount of available storage on the electronic disc. 

Prog* 

Note that the I t·j I T I A LIZ E command does not apply to the electronic disc and causes a [I I ::::; C ot·j L \' 

error. The electronic disc is automatically initialized at power on. 

File names for the electronic disc, as for physical discs, may consist of one to ten characters, excluding periods 

( , ), commas (., ), and double quotation marks ("). 

File specifiers for the electronic disc consist of the file name followed by the msus or volume label of the elec­

tronic disc, for example, "L i n e a t- F.: eo::; : [1000" and "T '.'.1 0 ~,~ .""::1 An.", 1 , E [I" . 

• Programmable. 



Examples: 

CAT ",ED" 
COP'"!"' ": T" TO ": DO~jO" 

DI::;C FF.:EE A., B .. ", ED" 

',)OLUI'lE ", ED" I::; "::;PEED'.,'" 

',)OL$':: " : [HjOO" ) 

PUPGE "OldFile:dOOO" 

PACK ": DOCH~1" 

The electronic disc may not be write-protected. 

Section 17: The Electronic Disc 319 

Sets the electronic disc as the 
1'1 A::; :::; ::; T 0 F.: AGE I ::; device. 

Catalogs the files on the electronic disc. 

Copies all the files from the tape car­
tridge to the electronic disc. 

Returns in variable A the total number 
of unused records on the electronic disc, 
and returns in B the largest number of 
unused contiguous records. 

Renames the electronic disc 
,:::;F'EED\' ". 

Returns the volume name of the elec­
tronic disc. 

Purges 0 1 .:::1 F i 1'::;0 from the electronic 
disc. 

Packs the files on the electronic disc. 

Electronic disc errors are listed in appendix E. The E F.: F.: 0 1'1 number of an electronic disc error will be either 0 

or 209. 

If you press the (RESET) key, the 1'1 A::; ::; ::; TOP AGE' I ::; device will be reset to the physical disc drive with the 

lowest msus or else to the tape drive (if no disc drive is connected and powered). However, resetting the system 

will not disturb the contents of the electronic disc. 

Configuring the Electronic Disc 

The C 0 t·j FIG command enables you to partition the electronic disc into two or more distinct disc volumes. 

Although the storage capacity of the resulting volumes is the same as the original electronic disc, executing 

C: 0 t·j FIG is analogous to adding disc drives to your mass storage system. 

For example, if your application involves chaining among program segments while collecting quantities of data, 

then you can configure the electronic disc into two volumes, one for the program files and one for the data files. 

At the end of the session, you can copy just the data files to a permanent storage medium. 

The HP-85B requires at least 32K bytes of electronic disc memory for each electronic disc volume. Because the 

initial size of the electronic disc is 32K, you must install one or more plug-in memory modules in order to take 

advantage of the CO t·j FIG command. 

CO t·j FIG is programmable. The complete syntax is: 

C 0 t·W I G [" new volume label" 
, " :msus" 

" ,old volume label" [ .. directory size [ .. disc size]]]] 



320 Section 17: The Electronic Disc 

Example: Assuming that electronic disc memory is 160K bytes (with the installation of a 128K memory mod­

ule), configure the electronic disc into two volumes of sizes 64K and 96K. 

160K 

o 
Ii : E:: [) .. 

/ 
CDt·WIG "FIF.::::;T" .. ", ED" .. 4, 64 

96K 

o 

In this example, C 0 t·j FIG splits the electronic disc into two volumes. The first volume is 64K bytes, has a new 

volume label of " , F I F.: ::; T ", and inherits the msus of the original (" : D ('I C1 C1 "). The second volume is 96K 

bytes (190K-64K), is named with six blanks, and has an msus one greater than the original (" : DO U 1. "). 

Note: The CO t·j FIG command can be applied only to an empty electronic disc volume, that is, to a 

volume with no file entries in its directory. Otherwise, a D I F.: E C T 0 F.: \' error will occur and the config­

uration of the electronic disc will remain unchanged. 



Section 17: The Electronic Disc 321 

C: C) ! ... ! F· I c:; Parameters 

The parameters for the co t·j FIG command are as follows: 

new volume label 

" :msus" 
" ,old volume label" 

directory size 

disc size 

Specifies the name of the first volume of the two resulting volumes. (The second volume 
is named with six blanks.) May be a string variable or expression. 

Specifies which electronic disc volume is to be configured. At power on, there is only 
one electronic disc volume available (" : [I [100" or " , ED"). May be a string variable 
or expression. If C m·w I G is applied to a non-electronic disc device, then an 
E [I 0 t·j L \' error occurs. 

Sets the directory size (in records) of the first volume of the two resulting volumes­
that is, the number of files that may be stored on that volume. Each record corresponds 
to eight file entries. In the example, a directory size of 4 records allows 32 (4 x 8) files 
to be stored on the volume. The directory itself occupies 1K bytes (4 x 256 bytes/ 
record) of storage on the volume. May be a numeric variable or expression that rounds 
to a positive integer; otherwise, an I t·j I.) A LID F' fi F: n 1'1 error will occur. 

Sets the size (in kilobytes) of the first volume of the two resulting volumes. In the 
example, 64 as the disc size allocates 64K bytes to the specified volume. May be a 
numeric variable or expression but must round to a multiple of 32 (32, 64, 96, 128, ... ); 
otherwise, an I t·j I,) A L I [I F' A F: A 1'1 error will occur. 

The second unnamed volume after the split inherits the amount of memory not used by the first volume. In the 

example, this is 96K bytes (160K-64K). The msus of the second volume is one greater than the original msus. In 

the example, the msus of the second volume is " : [10 0 1 " . 

The directory size of the second volume is 1 record for every 16K bytes of storage on that volume. In the 

example, the directory size of the second unnamed volume is 6 records (96K/16K), or 1536 bytes (6 x 256 

bytes/record), large enough for 48 files (6 x 8 files/record). 

Example: After the previous configuration, split the second volume (96K bytes) into two smaller volumes of 

64K and 32K bytes. Name the 64K-byte volume " , t·j E [,j II and allow it a directory size of 10 records (for 8 x 

10, or 80 files). 

96K 

o 

/ 
COt·WIG "t·jE[,j" ": [1001" .. 10,64 



In this example, Co t·j F I C splits the unnamed electronic disc volume " : [10 0 1 " into two volumes. The first 

volume is 64K bytes, has a new volume label of " , t·j E ~,j " , inherits the msus of the original (" : [10[1 1 " ), and is 

created with a directory size of 10 records. The second volume is 32K bytes (96K-64K), is named with six 

blanks, has an msus " : [1002" (one greater than the original), and has a directory size of 2 records (32K/ 

16K), or 512 bytes (2 x 256 bytes/record), large enough for 16 files (2 x 8 files/record). 

Although the Co t·w I C command is normally used with all four parameters, the default values for the param­

eters are as follows: 

new volume label If not specified, results in six blanks as the name of the first volume. 

" : msus " If not specified, causes the current t'1 W:; ~:; ~:; T 0 F.: ACE I ':; device to be configured, 
" ,old volume label" which must be an electronic disc volume. 

directory size If not specified, causes the resulting volumes to have a directory size of one 256-byte 
record (to allow 8 file entries) for every 16K bytes of storage. 

disc size If not specified, causes the resulting volume to use all of the available storage of the 
original. In eifect, causes no split to occur. 

Remember that C 0 t·j F I C may be applied only to empty electronic disc volumes. 

Examples: 

COt·jF I C 

COt·w I C "E[l2" 

Cot·w I C "E[l3" ": [1000" 

COt·jFIC "E[l3" .. ": [1000" .. 15 

Cot·WIC "E[l4" .. ", E[l3"., 4 .. 32 

Other Considerations 

Renames the current t'1 A::: ::: 
~::; T 0 F.: AGE I ::: electronic disc volume 
to six blanks. Directory size is 1 record/ 
16K bytes of storage. 

Renames the current 
t'l A ~:::; ~::; ::; T 0 F.: F"1 eEl ~::; electronic disc 
volume to ,E:. [I :=: " . Directory size is 1 
record/16K bytes of storage. 

Renames electronic disc volume 
" : [I [1 [1 [1" to ;; , E:. [I::; !I. Directory size 
is 1 record/16K bytes of storage. 

Renames electronic disc volume 
" : [I [1 [1 C1" to " , F [I ::; !I • Directory size 
is 15 records. 
Configures " , E:. [I ::;!I into two volumes. 
The first is named !I , E [14 " , has a 
directory size of 4 records, and has total 
size of 32K bytes. All four parameters 
must be included to cause the split. 

Two records (or 512 bytes of memory) are required for each electronic disc volume in your system. This is in 

addition to the number of records used for the electronic disc directory. 

You can use the [I I ~:; C F P E F function to determine the amount of file storage provided by an electronic disc 

volume. For example, if you've executed CO t·j F I C ", [I i seA" .. " : [1000 " .' 4 .' ~E:, then the memory of 

volume " , [I i seA" will be allocated as follows: 

Storage for files (returned by [I I ~:; C F PEE) = 122 records. 

Memory for each electronic disc volume 

Directory size (for 4 x 8, or 32 files) 

Total storage (32K bytes/(256 bytes/record» 

2 records. 

4 records. 

128 records. 



Section 17: The Electronic Disc 323 

You can configure an electronic disc volume to a size larger than its current size if an empty, succeeding volume 

(or volumes) exists to provide room for it to grow. For example, if volume " : DO 0 0" is 32K bytes and volume 

II : DO 0 1" is 128K bytes, then Co t·W I G "B I G G E P " , " : DO 0.] " , 4 , 64 causes volume " : D [1 0 0" to 

grow to 64K bytes and volume " : DO 0 1 " to shrink accordingly to 96K bytes. Both volumes must be empty; 

otherwise, a DIP E C TOP '/ error will occur. 

Sample Autostart Program 

The following program shows the use of the co t·i FIG and CO F' \' commands in a tape-based Autostart 

program. 

10 
20 

Tape-based Autost program 
D I ~:;F' "Lo.:ld in'::) pt- 0'::) t- ams, F' I ea 
se 1 •• .I.:;j i 1: , • , II 

• 30 Cot·jFIC "F'POG~:;", " ,ED", 1.,64 

40 FOP 1=1 TO 5 
5.] PEAD F$ 
60 COF''"!"' F:$: TO F$:~.:", F'POG~:;" 

?~1 tiD::T I 
80 DATA F'rogl,F'rog2,F'rog3,F'rog4 

.' F't- 0'::) 5 
• 90 ',}OLUt'1E ": DOO 1" I ~:; "DATA" 

IJ.O BEEF' 40,40 I~ DISF' I~ D1~:;F' "Pe 
.:ldE:::!I" 

• 120 CHA I t·j "F't- 0'::) 1 , F'POG~:;" 

130 Et·j[I 

Configures the electronic disc into two 
volumes. The first is named 
" , F' F: () C ':;" and consists of 64K bytes. 

l ~~~::::'~'~i: :o~:,~:;;· ~;~~~GS··. 
Names second electronic disc volume 
II , DI:i"rA;'. 

Sets I! , [I H T !:::!" as default mass storage 
location. 

Chains to the first electronic disc 
program. 

At the conclusion of the last program (for example, F't- 0':;.1 5), the following statements can be included: 

9000 Save DATA files on tape 
9010 CLEAP @ BEEF' 40,40 
9020 D I ~:;F' "P I e·:lse i nser t DATA C·:l 

r t t- i dg e , " 
9030 D I ~:;F' "Pt- ess [Cot·n ] I,.lhen r e·:l 

dE:::!, " 
904~1 F'AU~:;E 

9050 D I ~:;P I~ D I ~:;F' "Thank s, ~:;a',/ i n9 

DATA F1LE~:;, , ," 
• 9060 COF''"!"' ", DATA" TO ": T" 

9070 BEEF' 4~1., 40 
90:::0 D I SF' I~ D I ~:;F' "<. 
9~190 Et·j[I 

Done -->" 

Copies entire contents of electronic disc 
volume " , D H T H" to the tape. 



324 Section 17: The Electronic Disc 

Swapping Programs 

The ~:; (,~ A F' command enables you to store the currently executing program on the electronic disc while simulta­

neously chaining to another electronic disc program. 

~:; (,~ A F' "incoming file specifier".. "new ED file name" 

The new ED file name is the name that the currently executing program in main memory will acquire on the 

electronic disc; it must be an unused file name. The incoming file specifier may reference any BASIC program on 

the electronic disc. 

Example: 

991 0 S('~AF' "I t·j : [1000" .' "OUT" Stores the currently executing program 
on electronic disc volume " : [i 0 0 0" as 
OUT while chaining to the I t·j program 
from the same volume. 

Note that no msus or volume label should be attached to the new ED file name. The outgoing BASIC program 

will be stored on the same electronic disc volume as the incoming program. 

As with the C H A I t·j command: 

• ~:;('~AF' can be applied only to BASIC files (type F'ROC). 

• ~:; (,~ A F' preserves the value of CO t'1 (mon) variables for the use of the incoming program. 

• ~:; (,~ A F' preserves any resident binary program in main memory. 

• ~:; (,~ A F' begins execution of the incoming program at the lowest-numbered statement. 

Unlike the C H A I t·j command: 

• ~:; (,~ A F' applies only to electronic disc files. Trying to swap a program from a physical disc medium will 

result in an E [i 0 t·j L \' error message. 

• ~:; (,~ A F' stores the executing program on the electronic disc; C H A I t·j simply overwrites the program in 

main memory. 

• ~:; (,~ A F' can be executed only from a running program and not from the keyboard. 

~:; (,~ A F' manages the incoming program and outgoing program so that only one copy of each is maintained in the 

computer-either in main memory or on the electronic disc. When ~:; (,~ A F' is executed, the electronic disc space 

previously occupied by the incoming program is given over to the outgoing program. Consequently, the size (in 

records) of the outgoing program must be equal to or smaller than the size of the electronic disc program; 

otherwise, a ~:; I Z E t'1 I ~:; t'1 ATe H error will occur. 

Note that it is not possible to swap binary programs or to swap subprograms created with the Advanced Pro­

gramming ROM. 



325 

Notes 





Appendix A 

Accessories 

Standard Accessories 

Your HP-85 comes equipped with one each of the following standard accessories: 

Accessory 

• HP-85 Owner's Manual and Programming Guide 

• HP-85 Pocket Guide 

• Standard Pac, including: 

Instruction Manual 

Preprogrammed Tape Cartridge 

• Registration Card 

• Service Card 

• Accessory Data Sheet 

• Users' Library Form 

• Roll of Thermal Printer Paper 

• Power Cord 

• Fuses and Fuse Cap Holders 

Part Number 

00085-90990 

00085-90992 

00085-13119 

00085-90003 

00085-12099 

750 milliamperes fuse (for 115 Vac-nominal line voltage) and U.S. style fuse cap holder 

T400 milliamperes fuse (for 230 Vac-nominal line voltage) and European style fuse cap holder 

• Three-Ring Binder and Dividers 

Optional Accessories 

In addition to the standard accessories shipped with your HP-85, Hewlett-Packard also makes available the 

following optional accessories. These have been created to help you maximize the usability and convenience of 

your personal computer. 

HP-85 Applications Pacs 

Each pac offers one or more BASIC programs in a particular field or discipline prerecorded on a tape cartridge 

and flexible disc. Each pac comes complete with a detailed instruction manual and handy pac binder that carries 

up to four cartridges and discs and the instruction manual. 

327 



328 Appendix A: Accessories 

HP-85B Plug-In Memory Modules 

• HP 82908A 64K Memory Module 

Each 64K memory module adds 65,536 bytes of random-access memory to the storage capacity of the 

HP-85B electronic disc. 

• HP 82909A 128K Memory Module 

Each 128K memory module adds 131,072 bytes of random-access memory to the electronic disc. 

Up to four memory modules of either type may be installed in the HP-85B. 

CAUTION 

Do not attempt to install or use an HP 82903A 16K memory module in your HP-85B. The 16K memory 

module is intended for the HP-85A and may cause physical damage to the circuits of the HP-85B. 

Series 80 Interfaces 

• HP 82937A HP-IB Interface 

The HP-IB is an easy-to-use hardware and software interface system that permits bidirectional, asyn­

chronous communication among a wide variety of peripherals, including external disc drives, printers, 

plotters, and instruments. It implements the IEEE 488-1978 Standard Digital Interface for Programmable 

Instrumentation and allows the HP-85 to communicate with as many as 14 HP-IB devices per interface, 

with a total of up to 20 meters of cable. 

• HP 82939A Serial Interface 

The serial interface is the RS-232C compatible interface for the HP-85. It provides bit-serial asyn­

chronous data communication and is a common means of communicating with a printer or with other 

microcomputers and mainframes. With the I/O ROM and data communications software, the serial inter­

face enables data transfer at speeds of up to 9600 baud. 

• HP 82938A HP-IL Interface 

The HP-IL interface is a bit-serial, low power interface that enables communication with up to 30 devices 

connected in series on a two-wire Hewlett-Packard Interface Loop, including printers, video interfaces, 

instruments, and HP-41C and HP-75C computers. 

• HP 82940A G PIO Interface 

The GPIO interface is a general purpose byte (8-bit) or word (16-bit) oriented interface. The parallel 

interface is commonly used with printers, paper tape readers, paper tape punches, card readers, and spe­

cial instrumentation. 

• HP 82941A BCD Interface 

The BCD interface supports interfacing with binary-coded instrumentation, including voltmeters, 

multimeters, medical equipment, and weighing systems. 



Appendix A: Accessories 329 

• HP 82949A Printer Interface 

The parallel interface enables the HP-85 to drive printers requiring a standard parallel Centronics-type 

interface. It is an output-only interface that ends with a standard Amphenol-type, 36-pin connector. 

• HP 82966A Data Link Interface 

The data link interface enables the HP-85 to function ih DSN/DL multidrop data communication net­

works hosted by HP 1000 or HP 3000 Computers. The interface implements I/O ROM functions and han­

dles Data Link protocol. (The HP 3074A Data Link Adapter is required to make the electrical connection 

to the link.) 

Series 80 Modem 

The plug-in HP 82950A Modem is a serial, asynchronous, full-duplex modem that enables the HP-85 to connect 

directly to a standard telephone line. The modem is compatible with Bell 103/113 modems and operates at 

speeds of 100 up to 300 baud. 

HP-85 Enhancement ROMs 

Enhancement ROMs (read-only memories) are used to integrate peripherals into an extended HP-85 system 

and to enhance the capabilities of HP-85 as a computing tool. Each ROM adds approximately 8K bytes of 

permanent memory to the HP-85 BASIC operation system. 

• The HP 82936A ROM Drawer 

One ROM drawer is used to hold up to six ROMs and fits any of the four computer ports. 

• Plotter/Printer ROM (00085-15002) 

The Plotter/Printer ROM enables you to interface your HP-85 with Hewlett-Packard high-resolution 

graphics plotters and full-width line printers. It also adds several graphics enhancements to the standard 

HP-85 screen graphics. (Requires 373 bytes of main memory.) 

• I/O ROM (00085-15003) 

The I/O ROM provides all the statements and functions necessary to access the features of each of the 

Series 80 interfaces. It is particularly useful for instrument control and data communications applications. 

(Requires 416 bytes of main memory.) 

• Matrix ROM (00085-15004) 

The Matrix ROM provides a powerful set of statements and functions for working with numeric arrays­

both matrices (two-dimensional arrays) and vectors (one-dimensional arrays). (Requires 69 bytes of main 

memory.) 

• Advanced Programming ROM (00085-15005) 

The Advanced Programming ROM adds a variety of capabilities to the HP-85, including string arrays, 

subprograms, alpha cursor control, keyboard control, time functions, program flags, and program editing 

aids. (Requires 91 bytes of main memory.) 



330 Appendix A Accessones 

• Assembler ROM (00085-15007) 

The Assembler ROM enables you to write assembly language programs for the HP-85. Assembly language 

programs are assembled into binary programs which may be accessed from mass storage or made a perma­

nent part of your system with PROMs and EPROMs. The Assembler ROM allows you to create new 

BASIC keywords, to redefine existing keywords, to expand I/O control, and even to take control of the 

HP-85 operating system. Note that some familiarity with assembly language programming is required. 

(Requires 124 bytes of main memory.) 

Other HP-85 Modules 

• HP 82967A Speech Synthesis Module 

The speech synthesis module enables the HP-85, with a minimum amount of additional equipment, to 

output speech. The module's linear predictive coding (LPC) technique generates high quality speech at 

moderately low data transfer rates. The module is capable of speech generation, but does not provide voice 

recognition. 

• HP 82928A System Monitor 

The system monitor enables you to set break points in assembly language programs, to examine and 

modify the contents of main memory, and to single-step through assembly language programs. It is useful 

as a tool for debugging binary programs. 

• HP 82929A Programmable ROM Drawer 

The programmable ROM drawer contains two sockets that accommodate one or two PROMs or EPROMs 

for permanently storing assembled binary (and optionally, BASIC) programs. The Assembler ROM, sys­

tem monitor, ROM drawer, and documentation provide you with a complete assembly language software 

development package. 

• HP 82929A, option 001 Hybrid BASIC ROM Development System 

The hybrid BASIC ROM development system provides the BASIC program, binary programs, and docu­

mentation necessary to produce hybrid ROMs. A hybrid ROM is a PROM or EPROM in an HP 82929A 

Programmable ROM Drawer that can permanently store both binary and BASIC programs. 

Series 80 Peripherals 

Contact your local sales and service representative or Hewlett-Packard directly for information regarding HP-85 

compatible printers, plotters, disc drives, and instruments. 



Appendix A Accessories 331 

HP-85 Supplies 

HP-85 Carrying Case (HP 82933A) 

With its stylish, leather-like exterior, made of durable, easy-to-clean vinyl, the lightweight HP-85 carrying case 

provides you with a convenient means of transporting your computer safely. Inside the case, molded foam liners 

conform exactly to the contours of the HP-85, providing maximum shock absorption. Designed to carry the 

computer, enhancement plug-in modules, and power cord, the carrying case also has an exterior-accessible 

pouch that will hold two instruction manuals, a roll of paper, and several tape cartridges. The case is secured 

with a three-sided zipper and is fitted with a double-web handle with keeper, providing a suitcase-type grip. 

Dimensions: 

23 centimeters (9 inches) thick 

48 centimeters (19 inches) wide 

56 centimeters (22 inches) high 

Blank Tape Cartridges (HP 98200A) 

Hewlett-Packard blank tape cartridges are available in packages of five each. 

Tape Cartridge Binder (HP 82932A) 

The tape cartridge binder provides you with a convenient way to both store and transport your HP-85 tape 

cartridges and one instruction book. Available in vinyl, the case measures 29 cm (11.5 in) high, 28 cm (11 in) 

wide, and 5 cm (2 in) deep, and has space for four Hewlett-Packard tape cartridges. 

Thermal Printer Paper (HP 82931A) 

Each pack gives you two rolls of special HP-85 thermal printer paper. Roll length: 120 meters (400 feet). 

Three-Ring Manual Binder and Dividers (HP 82935A) 

Additional HP-85 manual binders are available, enabling you and members of your staff to organize your HP-85 

system user's manuals conveniently. The binder, measuring 29 cm (11.5 in) high, 28 cm (11 in) long, and 6.5 cm 

(2.5 in) wide, includes sheet lifters and a set of dividers. 



332 Appendix A: Accessories 

Ordering Accessories 

Contact your local authorized HP Series 80 dealer or your nearest sales and service facility for further informa­

tion on ordering and purchasing accessory items. If you are unable to locate your local dealer, you can obtain 

that information by contacting: 

In the United States: 

In Europe: 

Other countries: 

Hewlett-Packard 

Portable Computer Division 

1000 N.E. Circle Blvd. 

Corvallis, OR 97330 

Toll-free number (8 a.m. to 4 p.m., Pacific Time) 

Call (800) 547-3400 (except Oregon, Alaska, and Hawaii) 

Oregon, Alaska, Hawaii: Tel. (503) 758-1010 

TTY users with hearing or speech 

impairments, please dial (503) 758-5566 

Hewlett-Packard S.A. 

7, rue du Bois-du-Lan 

P. O. Box 

CH-1217 Meyrin 2 

Geneva 

Switzerland 

Hewlett-Packard Intercontinental 

3495 Deer Creek Rd. 

Palo Alto, California 94304 

U.S.A. 

Tel. (415) 857-1501 



333 

Notes 





Appendix B 

Installation, Maintenance, and Service 

The following information covers the initial set-up of your HP-85 Personal Computer and includes other information 

that is important when you first receive the computer. 

Note: Become thoroughly familiar with the information in this appendix before attempting to operate your 

HP-85. 

Inspection Procedure 

Your HP-85 is another example of the award-winning design, superior quality, and attention to detail in engineering 

and construction that have marked Hewlett-Packard electronic instruments for more than 30 years. Each Hewlett­

Packard computer is precision crafted by people who are dedicated to giving you the best possible product at an 

affordable price. 

Your HP-85 computer was thoroughly inspected before shipping and should be ready to operate after completing 

the set-up instructions. Carefully check the computer for any physical damage sustained during shipment. Do not 

tum the power on if the CRT display shows any cracks. Notify your dealer and file a claim with any carriers involved 

if there is any such damage. 

Please check to ensure that you have received all of the standard accessories included with the HP-85. Review the 

list of standard accessories in appendix A. If any accessory items are missing, please contact the dealer from whom 

you purchased the computer. If your computer was purchased directly from Hewlett-Packard, please contact the 

office through which your order was placed. 

Power Supply Information 

Power Cords 

Power cords supplied by HP have polarities matched to the power-input socket on the machine, as shown below. 

• L=Line or Active Conductor (also called "live" or "hot") 

• N = Neutral or Identified Conductor 

• E=Earth ground 

WARNING 

Use only the HP-85 power cord specified by Hewlett-Packard for your area. 

If it is necessary to replace the power cord, the replacement cord must have the same polarity as the original. I 

Otherwise a safety hazard from electrical shock to personnel might exist. In addition, the equipment could be 

extensively damaged. 
--- ._-------------' 

335 



336 Appendix B: Installation, Maintenance, and Service 

Power cords with different plugs are available for the HP-85; the part number of each cord is shown below. Each 

plug has a ground connector. The cord packaged with the machine depends upon where the machine was 

delivered. If your equipment has the wrong power cord for your area, please contact your local authorized HP-85 

dealer or HP sales and service office for information on how to obtain the proper cord. 

U.K. 

~
U'S' grounded' 

8120-1378 

~~ 
N 

Grounding Requirements 

Australia 

8120-1369 

Denmark 

~~ 

Europe grounded 

8120-1689 

Switzerland 

~~8120-2104 
\~~ 
~ 

It ~N 
L E 

Computer 
Power-Input 

Socket 

To protect operating personnel, the National Electrical Manufactures' Association eNEMA) recommends that all 

equipment not double insulated be properly grounded. The HP-85 is equipped with a three-conductor power cable 

which, when connected to an appropriate power receptacle, grounds the machine. To preserve this protection 

feature, do not operate the machine from a power outlet which has no earth ground connection. 

WARNING 

To avoid the possibility of any injury, disconnect the ac power cord before installing or replacing a fuse. 

Power Requirements 

The HP-85 has the following power requirements: 

Fuses 

Line Voltage 

115 Vac Nominal 

230 Vac Nominal 

Line Frequency 

Power Consumption 

100/117 Vac 

220/240 Vac 

50/60 Hz 

40 Watts Nominal 

For 100/117 Vac operation, set the voltage selector switch to 115V and use a 750mA fuse; for 220/240 Vac 

operation, set the voltage selector switch to 230V and use a T400mA fuse. 

* UL and CSA approved for use in the U.S. and Canada with machines set for 115 Vac operation. 



Appendix B: Installation, Maintenance, and Service 337 

Service 

WARNING 

High voltages are present inside the HP-85, There are no customer serviceable parts inside the HP-85, In 

case of any difficulty or malfunction with your HP-85 contact your nearest authorized HP-85 dealer or HP 

repair facility, 

For specific warranty and service information, refer to pages 355 through 359. 

Rear Panel 

Understanding the rear panel layout and features of your HP-85 computer is important for safe and efficient opera­

tion, The rear panel contains the following: 

1, Line Voltage Selector Switch, 6, Display Brightness Control. 

2, Fuse Receptacle, 7, Module Plug-in Ports with Covers, 

3, Ground Information, 

4, Power Cord Receptacle, 

5. ON-OFF Switch, 

8, Worldwide Saftey Approval 

Nomenclature, 

9, Serial Number Plate, 

, f I I I I I I I I I I , , , , \ \ \ 

Initial Set-up Instructions 

1. Disconnect the power cord and make sure the ON/OFF switch is OFF, 

6 

2, Ensure that the voltage selector switch located on the rear panel of the computer is set for the voltage range of 

the nominal line voltage in your area, 

CAUTION 

Check the selector switch before applying power, Damage to the computer will occur if the selector switch is 

set to 115 volts ac, and 230 volts ac is applied to the power input connector. 



338 Appendix B: Installation, Maintenance, and Service 

If it is necessary to alter the setting of the switch, insert the tip of a small screwdriver or coin into the slot on the 

switch. Slide the switch so that the position of the slot corresponds to the desired voltage as shown below. The 

computer is shipped with the voltage selector in the 230 Vac position. 

WARNING 

Before installing or replacing a fuse, be sure that the computer is disconnected from any ac power source. 

Otherwise, a chance of electrical shock to personnel exists and the new fuse might be immediately 

overloaded. 

3. Next install the proper fuse. 

The computer's fuse receptacle is located on the rear panel. (See photograph below.) A 750 rnA fuse is 

required for 115 Vac operation and a T400 rnA fuse is required for Vac operation. 

The photograph shows the location of the fuse receptacle on the rear panel. To install or replace the fuse, first 

disconnect the power cord from the machine. Install or replace the proper fuse in the fuse cap holder (either 

end of the fuse can be inserted into the cap). Now, install the fuse and fuse cap into the fuse receptacle by press­

ing the cap inward and at the same time turning it clockwise until it locks in place. 

4. Now, connect the power cord to the power input receptacle on the back of the computer. Plug the other end 

of the cord into the ac power outlet. 

5. Switch the HP-85 on using the switch on the upper left side of the rear panel. A cursor (underscore) 

should appear in the upper left corner of the CRT display within 7 to 8 seconds. Each time the power is 

turned on, the system performs a self-test operation. When the cursor appears on the screen, the HP-85 is 

ready to go to work. 



Appendix B: Installation, Maintenance, and Service 339 

The brightness of the display can be adjusted using the Brightness knob on the lower right side of the rear panel. 

Should the cursor not appear or the words F i" (. (::' t.. ::::: ::;:: ::::; E. 1... F' ..... 'T' F '3 1 appear on the display, tum the 

machine off, then on again. Should the problem persist, contact your local authorized HP-85 dealer or HP sales 

and service office. 

Installing Plug-In Modules 

Your HP-85 is designed with four module ports on the rear panel. The ports are numbered I through 4 from the top. 

Before shipping from the factory, each port is fitted with a removable protective cover. It is recommended that each 

port be kept covered when not in use. 

First we will discuss general module installation and removal, then we will discuss the installation of plug- in ROMs 

into a special ROM drawer module. 

WARNING 

Do not place fingers, tools, or other foreign objects into the plug-in ports. Such actions may result in minor 

electrical shock hazard and interference with pacemaker devices worn by some persons. Damage to plug­

in port contacts and the computer's internal circuitry may also result. 

General Module Installation and Removal 

The HP-85 plug-in modules may be installed or removed as often as your needs require. To install modules, observe 

the following procedures. 

1. Read all documentation accompanying each module for user instructions, warnings, and any limitations. 

CAUTION 

Always switch off the machine and any peripherals involved when inserting or removing modules. Use 

only the plug-in modules designed by Hewlett-Packard specifically for the HP-85B. Failure to do so either 

could damage equipement. 

2. Tum off your HP-85 system. If an interface module is to be installed, or is already in use, switch off any 

peripheral devices involved. 

CAUTION 

If a module jams when inserted into a port, it may be upside down or designed for another port. Attempting 

to force it further may result in damage to the computer or the module. 



340 Appendix B: Installation, Maintenance, and Service 

To insert a plug-in module: 

I. Remove the protective cover from the plug-in port to be used. 

Note: Most plug-in modules can be inserted in any of the four ports. However, examine the documentation 

included with each module for any instructions regarding the use of a specific plug-in port. If it is intended that 

a module fit into a particular port, it can be inserted only in that port. 

2. With the label right-side-up, insert the contact end of the 

module into the port and push until the module seats firmly 

with its stops against the port's edge. A slight up and down 

motion may be necessary to start the module moving in the 

tracks of the port. The tracks are keyed to prevent upside­

down module insertion. 

To remove a plug-in module, observe the following procedure: 

1. Switch off your HP-85 system and any connected 

peripherals. 

2. Firmly grasp and pull the module free of the port. Store the 

module in its original container or where it will be safe from 

damage to the contacts. 



Appendix B: Installation, Maintenance, and Service 341 

3. Replace the port cover. 

CAUTION 

Up to four different modules can be installed in the HP-85 at any time, including one or more 64K or 128K 

memory modules. However, do not install any of the following in the HP-85B: 

• HP 82903A 16K Memory Module. The 16K memory module is designed for the HP-85A and may 

damage HP-858 circuits. 

• Mass Storage ROM (00085-15001). The Mass Storage ROM is designed for the HP-85A and will 

cause the HP-858 to malfunction. 

• Duplicate HP-85 ROMs. For example, if your HP-858 comes equipped with a built-in I/O ROM, then 

do not install an I/O ROM in a ROM drawer. Such duplication can create error conditions and will 

not increase computing power. 

• Any ROM or module designed for the HP-86 or HP-87, such as the Plotter ROM for the HP-86/87 

or the HP 82900A Auxiliary Processor Module. HP-86/87 ROMs are indicated by an 00087 -1500X 

part number and by orange lettering (rather than yellow lettering) on the ROM cover. Such action 

will not damage the HP-85 but will cause the computer to malfunction. 

Plug-In ROM Installation and Removal 

The ROM drawer is a particular plug-in module that contains six rectangular slots for individual plug-in ROMs, 

each fitted with its own protective cap. 

Any HP-85 plug-in ROM will fit in any of the six positions in the ROM drawer. Be sure to read all documentation 

accompanying each plug-in ROM for user instructions, warnings, and any limitations. Remember that duplicate 

ROMs will not increase your computing power and may even create error conditions. 



342 Appendix B: Installation, Maintenance, and Service 

To insert a plug-in ROM into the ROM drawer: 

I. Remove the protective cap from the desired plug-in slot in the ROM drawer as follows: 

• Insert the eraser end of a pencil into the circular hole on the 

underside of ROM drawer. 

• Press with the pencil until the cap snaps off. 

CAUTION 

Do not touch the spring-finger connectors in the ROM drawer with your fingers or insert tools or other foreign 

objects. Static discharge could damage electrical components. 

2. Inside each plug-in slot in the ROM drawer you can see two 

rows of spring-finger connectors. These connectors corres­

pond to the two rows of holes on the underside of the ROM 

plug. ROMs can be inserted in only one direction. Insert the 

ROM plug into the slot with its label up and its beveled edge 

toward the connector side of the ROM drawer. Push the 

ROM into place so that the top of the plug is flush with the top 

of the ROM drawer. 

Note: Leave the cap on any slot in the ROM drawer that is not in use. 

3. When all of the desired plug-in ROMs have been inserted into the ROM drawer, the module may be installed 

into a plug-in port on the rear panel of the HP-85 as described under General Module Installation and 

Removal. 



Appendix B: Installation, Maintenance, and Service 343 

To remove a plug-in ROM from the ROM drawer: 

1. First remove the ROM drawer as described under General Module Installation and Removal. 

2. Insert the eraser end of a pencil into the hole on the underside 

of the ROM drawer corresponding to the ROM you wish to 

remove, just as you did to remove the protective cap. Push 

gently with the pencil until the ROM pops out. 

3. Replace the protective cap over the slot in the ROM drawer. 

The HP-85 Printer 

The printer in your HP-85 is a thermal printer that uses a moving print head to print on a special heat-sensitive paper. 

When the print head is energized, it heats the paper beneath it. The heat causes a chemical reaction in the paper, 

which then changes color. The printer, designed expressly for the HP-85, prints quickly and quietly at 2.6 lines 

per centimeter (6.7 lines per inch) at about two lines per second. 

Graphics output is uni-directional and, therefore, approximately half the normal print speed. 



344 Appendix B: Installation, Maintenance, and Service 

Printer Paper 

Because the printer in your HP-85 is a thermal printer, it requires special heat-sensitive paper. You should use 

only the Hewlett-Packard thermal paper available in 400-foot long rolls from your nearest authorized HP-85 

dealer or HP sales and service center, or in the U.S., by mail from: 

Hewlett-Packard 

Portable Computer Division 

1000 N.E. Circle Blvd. 

Corvallis, Oregon 97330 

Because of the special heat-sensitive requirements of the paper, impact printer paper will not work in the 

HP-85. Also, since different types of thermal paper vary in their sensitivities and abrasiveness, the use of ther­

mal paper other than that available from Hewlett-Packard may result in poor print quality and excessive 

printhead wear. 

CAUTION 

Use only Hewlett-Packard paper in your HP-85 computer. Failure to do so may result in excessive print head 

wear. 

The heat-sensitive paper used in your HP-85 should be stored in a cool, dark place. Discoloration of paper may occur 

if it is exposed to direct sunlight for long periods of time, if storage temperatures rise above 65°C (l49°P), if the 

paper is exposed to excessive humidity or to acetone, ammonia, alcohols, or other organic compounds, or if you 

attempt to erase anything on the paper. (Exposure to gasoline or oil fumes will not harm your HP-85 paper supply.) 

Printed paper from your HP-85 will last 30 days or more without fading under fluorescent light, but to ensure the 

permanence of your records, you should store printed paper at room temperature in a dark place away from direct 

sunlight, heat, or fumes from organic compounds. 

Loading Printer Paper 

Printed paper is loaded by using the following procedure. To perform the following steps, the computer must be 

switched ON. 

I. Open the hinged access cover by gently lifting the front 

edge of the cover up and back until it stops. 



Appendix B: Installation, Maintenance, and Service 345 

2. Remove the empty paper core with the roll guides from the 

paper well by pulling gently until the roll guides are released 

from their sockets. Discard the old paper core but save the 

roll guides at either end of the paper core. Remove any paper 

remaining from the previous roll by pressing the @ key 

until the remaining paper stops moving. Then lift the paper 

out of the printer mechanism. 

3. Discard the first 1-1/2 turns of the new roll to insure that no 

glue, tape, or other foreign matter is on the paper. Make 

sure that the leading edge of the paper is straight and cleanly 

cut or folded. A crooked or jagged leading edge will not en­

gage properly in the paper advance rollers. 

4. Insert the cylindrical ends of the roll guides into the core of 

the paper roll, aligning the tabs of the roll guides vertically. 

Using both hands to hold the roll guides in place, rest the 

paper roll on the paper well. Make sure that the leading edge 

of the paper is positioned to unroll forward from the bottom. 

Press inward on the roll guide tabs while pushing down on the 

paper roll, until the guides snap into place. 

5. Pull approximately 6 inches of paper out of the roll and 

evenly insert the leading edge over and into the grey throat 

of the paper feed. Continue manually feeding the paper until 

it halts. Press and hold the paper advance key until the 

leading edge of the paper passes the top edge of the clear 

plastic tear bar. Close the hinged access cover, keeping the 

paper clear. 



346 Appendix B: Installation, Maintenance, and Service 

If the paper feeds properly through the printer mechanism but no printing appears on the tape when the printer is 

operated, the paper roll is probably inserted backwards. The paper is chemically treated and will print on one side 

only. 

Printer Maintenance 

The printer in your HP-85, like the rest of the computer, is crafted for engineering excellence and is designed to 

give trouble-free operation with a minimum of maintenance. All moving parts in the printer mechanism have self­

lubricating qualities. No lubrication, cleaning, or servicing of the mechanism is ever required. Setting the printer 

intensity dial to 5 or more for long periods of time may affect the long-term performance of the printhead. You can 

extend the life of the printer by setting the printer intensity dial to 4 or less. 

CAUTION 

You should never attempt to insert a tool, such as a screwdriver, knifeblade, pencil, or other foreign object 

into the printer or its mechanism. Such actions can damage the platen, as well as other parts of the printer 

mechanism and will void your warranty. 

If the printer paper should become jammed and fail to feed properly, first tear the jammed paper loose from the 

rest of the roll, then clear it by grasping the leading edge of the paper and pulling itforward through the printer 

mechanism while holding down the ~ key. Discard any lengths of paper damaged by tears or creases. Then reload 

as described above. 

If the printer paper should become jammed with the leading edge 

below the tear bar, remove the clear plastic tear bar to reach the 

leading edge. Tear the jammed paper loose from the rest of the roll 

and pull it forward through the printer mechanism. 

Before you replace the tear bar, reload the paper. Hold the paper 

back against the platen to ensure that the platen face will be 

properly located behind the tear bar. Then slide the tear bar back 

into place. 



Appendix B: Installation, Maintenance, and Service 347 

After every few months, if you notice a decrease in the resolution of thermal printer output, you can clean the 

printhead according to the following instructions: 

1. Set the printer intensity dial to 7, the darkest setting. 

2. From the keyboard, type F' Hl - 1 I~ GeL E A F: a:D, which will switch the HP-85 to graphics mode 

and turn on all the pixels (picture elements) of the display screen. 

3. Press (SHIFT) (COpY) to copy the display to the thermal printer. 

4. Return the printer intensity dial to its previous setting. 

The process of copying the all-white display to the thermal printer at high intensity causes the heating elements 

of the printhead to be exercised and cleaned. You may find that the printer prints more crisply in subsequent 

use. 

Tape Cartridges 

The tape cartridges used with the HP-85 computer are high-quality digital storage media. This section covers 

use, specifications, and care of tape cartridges. 

Rewinding the Tape 

The ~key or i? F. i.'.: I i···iCi statement rewinds the tape to its beginning. Press 8~or type i? F L' I i',! ;"'! (@to 

rewind the tape. 



348 Appendix B: Installation, Maintenance, and Service 

General Information 

Rewind time 

Initialization time 

Search speed 

Read/write speed 

Tape length 

Number of tracks 

Typical tape capacity 

Tape directory capacity 

Typical access rate (search speed) 

Typical transfer rate 

Typical tape life (continuous use) 

Typical error rate* 

Inserting a Tape Cartridge 

29 seconds 

15 seconds 

60 inches per second 

10 inches per second 

43 meters (140 feet) 

2 independent tracks 

780 program records (l95K bytes) 

850 data records (21OK bytes) 

42 files (directory entries) 

7,800 bytes/second 

650 bytes/second 

50 to 100 hours 

< I in 108 bits (that's less than one in every 100 million!) 

Insert the tape cartridge so that its label is up and the open edge is toward the computer. 

The tape drive door opens when the cartridge is pressed against it; the cartridge can then be inserted. 

* This is dependent on the cleanliness of the tape head, tape care, and the cleanliness of the environment. 



Appendix B: Installation, Maintenance, and Service 349 

Removing the Tape Cartridge 

The cartridge may be removed by pressing the bar below the tape drive. The tape drive will partially eject the 

cartridge so that you can remove it freely the rest of the way. 

CAUTION 

Do not attempt to remove the cartridge while the tape is in motion. Damage to the tape may result. 

Write Protection 

You may protect your cartridge against write (::; T (I F: E or F' FIt·! T #) operations by sliding the I RECORD- I slide 

tab toward the center of the cartridge. To record on the cartridge, the tab must be in the opposite position, in 

the direction of the arrow. 

Tape Care 
The cartridge tape drive may develop a buildup of oxide on the recording head after extensive use. As dirty tape 

drives are one of the most common cause of cartridge-related errors, the following basic precautions are aimed at 

reducing the risk of cartridge problems in your HP-85. 

• Clean the tape head and the tape drive capstan at least as often as every 8 hours of cumulative tape use, or more 

frequently in dirty environments. Use a cotton-tipped swab dampened with isopropyl alcohol, wiping the tape 

head and the capstan with a light lateral (back-and-forth) motion (not a heavy scrubbing or up-and-down 

motion). 

Capstan 

Head 

The head is the shiny surface on the right rear of the drive. 

After using the head cleaning solution, wipe the tape head clean of any residue or lint with a dry cotton swab 

using a lateral motion (not an up-and-down motion). Be sure the head is dry before inserting a cartridge in the 

drive. It is a good idea to clean the head before making an important recording. 



350 Appendix B: Installation, Maintenance, and Service 

• Remove the tape cartridge when you are not using the computer. If a cartridge is left in, a flat spot may develop 

on the rubber wheel of the tape drive capstan in the tape drive of your HP-85. This condition will cause errors 

when using the tape. The dent is only temporary, and may be corrected by "conditioning" the tape, as 

described below. 

As a normal operating guideline, it is a good practice to run tapes through a conditioning process after every 6 to 8 

hours of use. "Conditioning" a tape means to run the tape forward to the end of the tape, reverse it, and run the tape 

backward to the beginning of the tape. This is done by inserting the tape cartridge to be conditioned, and executing 

the C TfH::'[ (condition tape) command. C'Tf:H:::'[ will not affect any programs or data on the tape. 

rENO\ 
~ 

Conditioning is necessary for smooth, continuous operation of the cartridge. (By warming up the tape drive capstan, 

conditioning also helps to remove a dent caused by leaving a cartridge in the drive.) Whenever a cartridge has been 

subjected to sudden environmental changes (such as being transported by air), you should condition the tape before 

use. Also if a !? E: f:1 [) error occurs while reading a particular cartridge, it may be due to uneven tension on the tape. 

Conditioning restores proper tension, and the tape will operate smoothly. If F: F ::::: C! errors still occur after condi­

tioning, try cleaning the tape head as described above. 

• Keep the cartridge in the plastic container supplied with it. 

• Never eject the tape cartridge while it is moving. Damage to information can be severe if a write or directory 

operation is in progress. 

CAUTION 

Strong magnetic fields can erase programs and data stored on tape. Where conditions warrant, keeping 

cartridges in a metal box, such as a card index, will help protect tapes from potential sources of magnetic 

damage. 

Physical damage to tapes, such as wrinkles or folds, can cause recording and reading problems. 

Tape Life 

The tape cartridge has a typical life span of 50 to 100 hours of cumulative use. Environmental conditions of 25°C 

(77°F) and 20 to 50% relative humidity are most favorable for long tape life. A high duty cycle (percent of time the 

tape is accessed during the total time the computer is in use), high turning resistance, and continuous use for long 

periods oftime (112 to 3 hours) contribute to heat buildup in cartridges and decrease tape life. Because tape cartridges 

eventually wear out, it is always a good practice to maintain back-up copies of vital programs and data using 

cartridges specifically reserved for this purpose. 

If i:;:' E:: ::::: C! errors begin to occur frequently when using a tape cartridge, it is advisable that steps be taken to prevent 

the loss of information stored on the tape. The first step is to clean the tape as discussed previously in this section. If 

this does not alleviate the problem, the next step is to transfer the information to a new medium and retire the worn 

tape. Continued use could cause loss of information or damage to the tape drive itself. 

::::; T FI 1.... 1.. .. errors (signifying tape transport error caused by motor overload) can occur when either the tape drive or 

the cartridge itself fails. To determine the source of the problem; a different cartridge can be inserted. If :::; T' H L..t. .. 

errors stop l"lccuring, assume the cartridge itself is bad and replace it. If :::; T' fi 1.. .. 1.... errors continue to occur, the drive 

may require servicing. In this case, contact your HP dealer for assistance. 



Appendix B: Installation, Maintenance, and Service 351 

Tape cartridges that have reached the end of their useful life exhibit some specific danger signals: 

I, The oxide starts breaking loose from the mylar backing of the magnetic tape, 

2. The cartridge drive belt becomes loose, evidenced by the tape winding unevenly on the tape reels. This 

condition can be seen through the top of the cartridge. (Slight unevenness is common; you should be 

concerned when the tape is uneven by a quarter of the width of the tape.) 

3. The drive pulley of the tape cartridge contains dark spots due to slippage. In severe cases, the cartridge may 

stall and the capstan will wear a flat spot on the drive pulley. 

4. The cartridge rattles rather than making a constant hum when any tape movements occur. 

5. You begin to get recurring i? E>HJ errors or ~:::;'r i:::1 L .. L .. errors. 

If any of the above five danger signals occur, you should replace the cartridge at once. If you continue to use a 

cartridge under these circumstances, there is a chance that you could lose all the information on your cartridge and 

that you could damage the tape transport itself. 

CAUTION 

Ignoring i? E: i:::i C), ::::;'r I:::! L .. L .. , E C, F', or ::::; [::::1 i? C ! ... ! errors in C: i···j E!? F: C:!? routines is not recommended. 

These errors can signify tape transport problems. Overriding any of them could easily damage the transport. 

Tape Cartridge Rethreading 

If the tape runs off of the cartridge reel, it either signifies a tape transport problem or the light path in the cartridge is 

being obstructed. Do not block the light window of the cartridge, because the tape will not operate properly. Tape 

rethreading is difficult and is not recommended unless the data recorded on the runoff tape must be recovered. 

Instead, if tape runoff occurs, it is recommended to replace the entire tape cartridge. The rethreading procedures 

contained in this paragraph are for rethreading tape onto the tape cartridge's left tape hub. If a tape runoff condition 

occurs from the right tape hub, use the left-hand instructions and change all counterclockwise directions to clock­

wise directions. This procedure requires the use of a small Pozidrive screwdriver. Rethread tape onto the left tape 

hub as follows: 

CAUTION 

Whenever the tape cartridge top cover is removed, the spring-loaded door and spring can easily slide off the 

door pivot post. To prevent loss of parts, ensure that door is always completely seated on its pivot post as 

long as the tape cartridge top cover and backplate are separted. 



352 Appendix B: Installation, Maintenance, and Service 

a. Remove tape cartridge top cover by re­

moving four screws from backplate with 

Pozidrive (small Phillips-head) screw­

driver. 

b. As shown in figure A, rethread loose end 

of tape around right tape guide, past belt 

drive pulley, outside front guide pin, and 

around left tape guide so that 

approximately 1-3/4 inches of tape is clear 

of guide. 

c. Hold tape cartridge as shown in figure B, 

so that right hand can be used to rotate belt 

drive pulley and left hand can be used to 

maintain tape tension at tape guide. 

d. Moisten inside surface of free end of tape 

and, while maintaining tape tension at left 

tape guide, rotate belt drive pulley coun­

terclockwise to wrap free end of tape 

around left tape hub until tape reaches 

point where drive belt touches tape hub. 

e. While maintammg tape tension, use any 

small round-tipped tool to trap free end of 

tape between drive belt and left tape hub as 

shown in figure C. 

f. Rotate belt drive pulley counterclockwise 

until tape is wrapped several times around 

left tape hub past first set of tape holes 

(approximately 2 feet). Check the tape pul­

leys to be sure they are not riding up. 

g. Replace tape cartridge top cover on 

backplate and secure in place with four 

screws. 

h. Condition tape in accordance with the in­

structions contained under Tape Care 

(page 349). 

/ 

'-

BELT 

LEFT 
TAPE 

LEFT 

BACKPLATE 

PIVOT TAPE 
POST GUIDE 

GUIDE 

Figure A 

PULLEY 

Figure B 

Figure C 



Appendix 8: Installation, Maintenance, and Service 353 

Optimizing Tape Use 

A tape cartridge has two tape tracks with a variable number of records available in consecutively numbered files on 

each track, depending on the nature of your program and data storage requirements. The first file on track A and the 

first file on track B are both at the same end of the tape. This can cause a situation in which one file spans two 

tracks, making access to this file both time-consuming and wearing to the tape. 

Track A DIRECTORY t FILE 1 I FILE 2 I 1 FILE J 

Track B FILE J I FILE J + 1 I I FILE N - 1 I FILE N 

When this happens, it is a good idea to first label the file spanning both tracks as a "dummy" and then store the pro­

gram or data again, using the following procedure: 

i.... C! !:::, [) "file" 

1? E i"" I:::! ,"1 E "file" T' C! "D!..,i i"i i"1 \' " 

~:::;T c:,!? E. "file II 

The file named [I U t'1 t'1 \' will then span both tracks and will not be accessed. However, the ::::; T 0 F: E command 

causes the same program or data to be stored under the desired file name on the second track, immediately after 

the end of file [I U t'1 t'1 \'. Now, when the computer accesses the program or data material in this file, the time loss 

and additional wear to the tape cartridge caused by running back and forth between tape tracks is avoided. 

Operational Considerations 

General Cleaning 

Disconnect the HP-85 from its ac power source before cleaning. 

The HP-85 can be cleaned with a soft cloth dampened either in clean water or in water containing a mild detergent. 

Do not use an excessively wet cloth, nor allow water inside the computer. Do not use any abrasive cleaners, es­

pecially on the tape cartridge window or the CRT screen. 

The tape head should be cleaned after a maximum of 8 hours of use; refer to Tape Care, page 349. 



354 Appendix B: Installation, Maintenance, and Service 

Selecting a Workspace 

HP-85 computers are designed to operate on a flat, hard surface such as a desk or table top. Any workspace you 

choose for your HP-85 should allow the following minimum clearance dimensions for adequate air circulation 

around and within the instrument: 

15 cm (6 in) both sides 

15 cm (6 in) rear panel 

15 cm (6 in) overhead 

CAUTION 

Always keep the top of the computer free of books, papers and other materials to avoid obstructing the air 

circulation vents built into the cover. 

Potential for Radio/Television Interference 

The HP-85 generates and uses radio frequency energy and may cause interference to radio and television 

reception. Your computer complies with the specifications in Subpart J of Part 15 of the FCC Rules for a 

Class B computing device. These specifications provide reasonable protection against such interference in a 

residential installation. However, there is no guarantee that interference will not occur in a particular 

installation. If the HP-85 does cause interference to radio or television reception, which can be determined 

by turning the computer off and on, you can try to eliminate the interference problem by doing one or more 

of the following: 

• Reorient the receiving antenna. 

• Change the position of the computer with respect to the receiver. 

• Move the computer away from the receiver. 

• Plug the computer into a different outlet so that the computer and the receiver are on different branch 

circuits. 

If necessary, consult an authorized HP dealer or an experienced radiol television technician for additional 

suggestions. You may find the following booklet, prepared by the Federal Communications Commission, 

helpful: How to Identify and Resolve Radio- TV Interference Problems. This booklet is available from the 

U.S. Government Printing Office, Washington, D.C. 20402, Stock No. 004-000-00345-4. 

Temperature Ranges 

Temperature ranges for the HP-85 computer are: 

Operating 

Storage 

5° to 40°C 40° to 105T 

_40° to 65°C _40° to 150T 



Appendix B: Installation, Maintenance, and Service 355 

Service 

If at any time you suspect that the computer is malfunctioning, the following information will help you determine 

whether or not servicing is needed. If you are not familiar with the first part of this appendix, review it before 

proceeding with this section. 

Display 

If the CRT display blanks out or becomes erratic, or if the computer fails to respond to keyboard commands, tum the 

computer off and check the following: 

I. Ensure that the voltage selector switch is set to the correct nominal line voltage for your area (l15 Vac or 

230 Vac). 

2. Ensure that the correct fuse is installed for the power supply in your area (750mA for 115 Vac; 

T400mA for 230 Vac); and that the fuse is intact. 

3. Unplug the power cord and inspect the power contacts on both power cord and the computer. Clean them if 

necessary. 

4. Make sure that the power cord is securely plugged into both the computer and an earth-grounded ac outlet. 

5. Adjust the brightness control on the computer's rear panel for optimum display clarity. 

If, after step 5, the display fails to respond properly, service is required. (Refer to warranty information on the 

following pages.) 

Tape Drive 

If a'::; T ::::: L .. L .. error appears on the display, or if the tape transport fails to operate, check the following: 

I. Remove and examine the tape cartridge for defects. If any are found, discard the cartridge. 

2. Clean the tape head as described under Tape Operations earlier in this appendix. 

3. Test the tape transport using a fresh tape cartridge. 

If, after step 3, the tape transport fails to operate properly, servicing is required. (Refer to the following warranty 

information. ) 

Printer 

If the thermal printer fails to operate properly, follow the procedures outlined under Printer Operation in this 

appendix. If the printer continues to malfunction, servicing is required. (Refer to the following warranty 

information. ) 

Internal Timer 

The HP-85 internal timer was checked at the factory to meet an initial accuracy of within I second per hour. Because 

of the effects of temperatures variations, aging, shocks, and vibrations on its quartz-crystal time standard, the HP-85 

timer accuracy may vary slightly. 



356 Appendix B: Installation, Maintenance, and Service 

Accessories 

If you are not certain whether the problem is caused by the HP-85 itself or by an accessory in the system, try to 

isolate the problem: 

1. In any order, turn off the HP-85 and all peripherals connected to the HP-85. 

2. Remove all modules inserted in the HP-85, including memory modules, ROM drawers, and interfaces. 

3. Turn the HP-85 on and verify the proper operation of the computer by itself. 

4. Turn the HP-85 off again and install a single memory module, ROM in a ROM drawer, interface, or other 

module. 

5. Turn on the corresponding peripheral (if any) and then turn on the HP-85. Verify the proper operation of 

this particular system configuration. 

6. Repeat steps 4 and 5 until either the system is fully operational or until the problem has been localized to 

one device. 

7. If you suspect that a device connected to the system is malfunctioning, follow the service instructions in 

the owner's manual for that device. 

Warranty Information 

The complete warranty statement is included in the information packet shipped with your HP-85. Please retain 

this statement for your records. 

If you have any questions concerning this warranty, please contact the authorized HP-85 dealer or the HP 

sales and service office from which you purchased your HP-85. Should you be unable to contact them, 

please contact: 

In the U.S.: 

In Europe: 

Hewlett-Packard 

Portable Computer Division 

1000 N.E. Circle Blvd. 

Corvallis, Oregon 97330 

Tel. (503) 758-1010 

Toll Free Number (8 a.m. to 4 p.m., Pacific Time): 

Call 800/547-3400 (except in Alaska and Hawaii). 

Hewlett-Packard S.A. 

7, rue du Bois-du-Lan 

P.O. Box 

CH-1217 Meyrin 2 

Geneva 

Switzerland 

Tel. (022) 82 70 00 



Other countries: 

Appendix B: Installation, Maintenance, and Service 357 

Hewlett-Packard Intercontinental 

3495 Deer Creek Rd. 

Palo Alto, California 94304 

U.S.A. 

Tel. (415) 856-1501 

For world-wide HP sales and service offices, please refer to the back of the manual. 

How to Obtain Repair Service 

Not all Hewlett-Packard facilities offer service for the HP-85. For information on obtaining service in your area, 

consult the service information included in the information packet shipped with your HP-85. Or contact your 

authorized HP dealer or the nearest Hewlett-Packard sales and service facility. (Addresses are listed in the back 

of the manual.) 

If your HP-85 malfunctions and repair is required, you can help assure efficient servicing by following these 

guidelines: 

1. Describe the configuration of the HP-85 exactly as it was at the time of the malfunction; i.e., any plug-in 

modules and tape cartridges in use at that time should be noted. 

2. Write a description of the malfunction symptoms for Service personnel, indicating whether the malfunc­

tion occurs intermittently or constantly. 

3. Save printouts or any other materials that illustrate the problem area. 

4. Have on hand a sales slip or other proof of purchase to establish warranty coverage period. 

Serial Number 

Each HP-85 computer carries an individual serial number on the plate in the upper right-hand corner of the rear 

panel. It is recommended that owners keep a separate record of this number. Should your unit be lost or stolen, the 

serial number is often necessary for tracing and recovery, as well as any insurance claims. Hewlett-Packard does not 

maintain records of individual HP-85 owner's names and unit serial numbers. 

General Shipping Instructions 

Should you ever need to ship your HP-85, be sure it is packed in a protective package (use the original shipping 

case), to avoid in-transit damage. Such damage is not covered by the warranty. Hewlett-Packard suggests that the 

customer always insure shipments. 



358 Appendix B: Installation, Maintenance, and Service 

Further Information 
Computer design and circuitry are proprietary to Hewlett-Packard and service manuals are not available to 

customers, 

Should other problems or questions arise regarding repairs, please call your nearest Hewlett-Packard sales and 

service facility or your authorized HP-85 dealer. 

Note: Not all Hewlett-Packard repair facilities offer service for HP-85 computers, However, you can be sure 

that service may be obtained in the country where you bought your computer. 

If you happen to be outside of the country where you bought your computer, contact the nearest authorized HP-85 

dealer or the local Hewlett-Packard center. All customs and duties are your responsibility. 



359 

Notes 





Appendix C 

Reference Tables 

Reset Conditions 

The following table shows the status of specific functions when the indicated commands are executed. Parenthe­

ses in the POWER ON column indicate the values when the system is turned on. "P" designates a function 

restored to POWER ON values. "-" designates a function unchanged from its status prior to executing the 

command. "U" designates that variables are assigned undefined values, except those in C [I t'1mon. 

Power On (RESET) ::;CPATCH (RUN) CHA I t·~ @IT) (CONT) 

Program variables (none) - P U U U -
Calculator variables (none) P P P P P P 
Result (zero) P P - - - -
Trigonometric Mode (PAD) P - - - - -
Typing Mode (BASIC) - - - - - -
F'F.: I tH ALL mode (off) P - - - - -
Output device (F'P I tHEP I c· '-' 2 P - - - - -

CPT I':' '-' 1 ) 
Special function key (none) P P P P P -

definitions 
A::; ::; I G t·~ # numbers (none) P P P P P -
Default values (DEFAUL T o t·~) P - - - - -
System timer 

TIME (zero) - - - - - -
DATE (zero) - - - - - -

Random Number Seed P - - - - -
KE\' LABEL (none) P P P P P -
[I t·~ T I t'1 F.: F.: (off) P P P P P -
o t·~ EPPOP (off) P P P P P -
TPACE (off) P P - - - -
TPACE ',}AP (off) P P - U - -
TF.:ACE ALL (off) P P - - - -
Binary programs (none) - P - - - -
::;CALE (0., 1 [10., 0., 100) P - - - - -
ROMs (initialize) P - - - - -
F' E t~ (positive) P - - - - -
F'Et·~UF' (up) P - - - - -
Last plotted point (0 .. 0) P - - - - -
LDIP (horizontal) P - - - - -
A::: ::: I G t·~ # buffers (none) P P P - P -
CO t'1 mon variables (none) - P P - P -
t'1 A::: ::: :::TOF.:AGE (tape drive, or P - - - - -

I ::: device II : T 11)* 

• If one or more external disc drives are connected and powered, the drive with the lowest disc device address (typically, " : [170 C1 ") is set as the 
r'l A::; ::; ::; T CI F.: AGE I ::; device. 

361 



362 Appendix C: Reference Tables 

HP-85 Character and Key Codes 
A numeric code is attached to each HP-85 character and keystroke. Each of the characters in the table below 

has a complementary underscored character with a decimal value 128 larger than its given decimal value. The 

C H F: $ function enables you to access the underscored characters. For example, C H F: $: ( ? 4 + 1 2 ::::) is ::1. 

Character Codes 

ASCII Char. Key Binary Dec Char. Binary Dec Char. Binary Dec Char. Binary Dec 

NUL • @c 00000000 0 SPACE 00100000 32 IS:! 01000000 64 ... G:mJs 01100000 96 
SOH ,~, AC 00000001 1 I 00100001 33 A 01000001 65 a 01100001 97 

STX BC 00000010 2 " 00100010 34 E: 01000010 66 b 01100010 98 
ETX N CC 00000011 3 # 00100011 35 C 01000011 67 ': 01100011 99 
EOT o. DC 00000100 4 ;: 00100100 36 [I 01000100 68 d 01100100 100 
ENQ f., EC 00000101 5 ...• 00100101 37 E 01000101 69 e 01100101 101 

ACK ~ FC 00000110 6 :~.: 00100110 38 F 01000110 70 f 01100110 102 " 
BEL i:. GC 00000111 7 00100111 39 G 01000111 71 'OJ 01100111 103 

BS .. HC 00001000 8 00101000 40 H 01001000 72 h 01101000 104 

HT 'J IC 00001001 9 00101001 41 I 01001001 73 i 01101001 105 

LF ·t· JC 00001010 10 l 00101010 42 ,J 01001010 74 .i 01101010 106 

VT i", KC 00001011 11 + 00101011 43 f< 01001011 75 k 01101011 107 

FF " LC 00001100 12 .' 00101100 44 L 01001100 76 1 01101100 108 

CW MC 00001101 13 - 00101101 45 t,t 01001101 77 m 01101101 109 

SO T NC 00001110 14 00101110 46 11 01001110 78 n 01101110 110 

SI fi OC 00001111 15 00101111 47 CI 01001111 79 0 01101111 111 
DLE 8 pC 00010000 16 ~3 00110000 48 F' 01010000 80 F' 01110000 112 

DC1 if QC 00010001 17 1 00110001 49 C! 01010001 81 q 01110001 113 
DC2 (~~ RC 00010010 18 2 00110010 50 F: 01010010 82 ,- 01110010 114 

DC3 A SC 00010011 19 :3 00110011 51 ~=', 01010011 83 s: 01110011 115 

DC4 (J TC 00010100 20 4 00110100 52 T 01010100 84 t 01110100 116 

NAK H UC 00010101 21 5 00110101 53 U 01010101 85 u 01110101 117 

SYN I], VC 00010110 22 6 00110110 54 I,) 01010110 86 '.. .. 01110110 118 

ETB I~I WC 00010111 23 7 00110111 55 ~'J 01010111 87 1 •• .1 01110111 119 

CAN 1:1 XC 00011000 24 ::: 00111000 56 ;:.:: 01011000 88 01111000 120 

EM 0 yC 00011001 25 9 00111001 57 'y' 01011001 89 '. 01111001 121 

SUB Ij ZC 00011010 26 : 00111010 58 ~ 01011010 90 z 01111010 122 "-

ESC if [c 00011011 27 .' 00111011 59 [ 01011011 91 fi 0 sn 01111011 123 
FS (~~ \c 00011100 28 00111100 60 01011100 92 : 01111100 124 

GS :2 ]c 00011101 29 = 00111101 61 ] 01011101 93 .. an 01111101 125 

RS £ AC 00011110 30 00111110 62 01011110 94 =0sn 01111110 126 

US C 00011111 31 ,';:, 00111111 63 01011111 95 I- GJsn 01111111 127 

• Displayed as a blank. 

C Indicates that the ( CTRL) key is held down while the letter or symbol key is presed. (The assumption is that the c:mR) key is in the up position.) 

S Indicates that ( SH I FT) is held down while the letter or symbol key is pressed. 

n On the numeric keypad. 



Appendix C: Reference Tables 363 

Key Response During Program Execution 
Decimal codes above 128 are assigned to program, editing, and system control keys. The table below describes 

the response of the system when the specified key is pressed during the execution of a running program and its 

response to an I t·~ F' U T statement. 

Key 
Response in Response in 

Decimal Value ALPHA Mode Graphics Mode 

@ ~ ~ 128 
@J ~ I~.I 129 
(ill - ..... 130 >:: _.-
(ill N N 131 
(ill 0: 0: 132 
(ill f.:; f.:; 133 
(ill r r 134 
(ill Pi Pi 135 

( REW) ~ L!: 136 
(COpy) AIL AIL 137 
~ AIL AIL 138 

CRESill AIL AIL 139 
ClliID !::: ~ 140 
(RUN) -- .. _. _ .. 141 

( PAUSE) AIL AIL 142 
(CONT) I I 143 
(STEP) 8 8 144 
(TEST) ~ ~.;! 145 

( CLEAR) AIL AIL 146 
( GRAPH) AIL AIL 147 

( LIST) ,j. (I. 148 
(p LST) H ~i 149 
G:mJ AIL AIL 150 

not used 151 
not used 152 
~ A A 153 
CImD A A 154 

(SHIFT)~ A ~ 155 
G A (~: 156 
G A :;:: 157 ..... 

( ROLL.) AIL AIL 158 
( ROLLT) AIL AIL 159 
(-LINE) A 160 ..... 

CD A ! 161 
m A _ .. 162 
aD A # 163 

( -CHAR) A ! 164 
5) A ~.~ 165 -.. 

(RESLT) A ~ 166 
not used 167 

( DEL) I I 168 - --
(STORE) I I 169 .:... _ ... 
(LOAD) l l 170 

not used 171 
(AUTO) L L 172 

(SCRATCH) - - 173 _ .. 

A Indicates that the specified key is active on I t·1 F' U T. In other words, when the input prompt ('~') appears, the keys designated by A perform their 
respective functions. All other keys output their respective character codes. 

L Indicates that the specified key is live (i.e., performs its expected function) during the execution of a running program. All other keys halt a 
running program and then perform the indicated function. 



364 Appendix C: Reference Tables 

System Memory Requirements 

Total HP-85B main memory = 32,768 bytes 

Normal system requirements = 2,863 bytes 

Available for user programs = 29,905 bytes 

Total electronic disc memory 

(no memory modules installed) 

Reserved for " , E [I" volume and 

= 32,768 bytes 

directory information (default values) = 1,024 bytes 

Available for file storage = 31,744 bytes 

Item Main Memory Required 

Program line with line number 4 bytes plus memory for keyword and parameters 

l!:t statement concatenator 1 byte 

A::; ::; I G t·j # buffer 284 bytes/open data file 

Interface modules No extra memory required 

ROMs 
Advanced Programming ROM 91 bytes 
Assembler ROM 124 bytes 
I/O ROM 416 bytes 
Matrix ROM 69 bytes 
PlotterjPrinter ROM 373 bytes 

Variables (calculator and program) 
Simple numeric variables 

PEAL 10 bytes/variable 
:::HOPT 6 bytes/variable 
I tHEGEP 5 bytes/variable 

Numeric array variables 8 bytes/array variable plus 
PEAL 8 bytes/element 
::;HOPT 4 bytes/element 
I tHEGEF.: 3 bytes/element 

String variables 8 bytes/string plus 
1 byte/character 



365 

Notes 





Appendix D 

BASIC Summary and ~yntax 

The HP-85 BASIC language consists of: 

• Numeric and string data types. 

• Numeric, string, and numeric array variables. 

• Operators and functions that operate on numbers, strings, and variables to create numeric and string 

expressions. 

• Reserved words (or keywords) that are used with numeric and string parameters to form program 

statements. 

• Numbered statements entered in memory as program lines. 

• System commands that control the operation of the HP-85 and peripherals. 

All expressions can be evaluated from the keyboard or from programs. Most statements and commands can be 

executed either from the keyboard or used in programs; exceptions are noted. 

Data Types 

Type Precision Range 

PEAL 12 digits ± 9.99999999999 ± E499 

::;HOF:T 5 digits ±9.9999±E99 

I t·jTECEP 5 digits ±99999 

Character String - 0-255 

Variables 

Simple Numeric Variables: ti 1, B, C::3 

The name consists of a letter or a letter and one digit. PEA L precision IS assumed unless :::; 1···1 () PI" or 

I t·j T E C E P type is declared. 

Numeric Array Variables: H 1 ( 5 Ci .. ~5 ), B':: ;::~ Ij .' ;::~ 121 ::., C::3;:: :!. U ::. 

The name consists of a letter or a letter and one digit. An array name can be the same as a simple variable 

name used elsewhere in the program, but a one-dimensional array cannot have the same name as a two­

dimensional array. Arrays contain numeric elements only. Subscripts dimension the row or row and column in 

[I I t'1, CO t'1, or type (F: E A L, I t·j T E C E P, ::; HOP T) declaration statements. The lower bound of an array sub­

script is 0 unless 0 F' T I 0 t·j E: A::; E 1 is specified before all array refrences. The default upper bound for row 

and column subscripts is 10. 

367 



368 Appendix 0: BASIC Summary and Syntax 

Subscripts reference a particular array element in non-declaratory statements with three exceptions. Entire 

arrays (either one- or two-dimensional) may be referenced in T PAC E I.}A P, P P I t·n #, and PEA D # state­

ments by specifying the array name followed by a pair of parentheses and no subscripts (e.g., C 30:: ::'). A comma 

may be enclosed within the parentheses for documentation purposes to specify a two-dimensional array (e.g., 

A 1 0:: .' ::'). This notation enables you to trace, write onto mass storage, or read from mass storage all elements of 

the specified array. 

String Variables: A 1 $, B $, C 3 $ 

The name consists of a letter or a letter and one digit followed by a dollar sign. The default length is 18 

characters unless otherwise specified in a co t'1 or D I t'1 statement. The maximum length of a string is limited 

only by available memory. Dimension strings in a D I t'1 or CO t'1 statement by specifying the variable name 

followed by the length enclosed within brackets: A 1 $ [ 25 J, B $ [ 4 1 5 J, C 3 $ [ 5 J. 

Substrings: A 1 $[ 2.,25 J, B$[ 5 J, C3$[::3 .. ::3] 

Substrings are specified by one or two numbers (or expressions) enclosed within brackets. One number specifies 

a beginning character; the substring extends to the end of the string. Two numbers separated by a comma 

specify beginning and ending character positions, respectively. 

Strings can be compared with the relational operators and can be concatenated with the ::.: operator. 

Operators 

Arithmetic 

+ Add 

Subtract 

l Multiply 

Divide 

Exponentiate 

t'10D Modulo: A t'10D B=A-Bl I t·jT 0:: A .. ···B::. 

..... or D I I,) Integer divide: A D I I,) B = I P 0:: A ./ B ::. 

Relational 

Relational expressions return the values 0 for false and 1 for true. 

Equal to 

Greater than 

<: Less than 

"> = Greater than or equal to 

<: = Less than or equal to 

<: > or # Not equal to 

String values can also be compared with relational operators. Strings are compared using decimal values, 

character by character, from left to right until a difference is found. If one string ends before a difference is 

found, the shorter string is considered the lesser. 



Appendix 0: BASIC Summary and Syntax 369 

Logical 

Logical expressions return the values [1 for false and 1 for true. Nonzero values are considered true; zero values 

are considered false. 

ArW 

OF.: 

E >:: 0 F.: 

tjOT 

Truth Table 

A B A AND B A OR B A EXOR B 

T T 1 1 0 
T F 0 1 1 
F T 0 1 1 
F F 0 0 0 

String 

String concatenator. 

Math Hierarchy 

( ::= Performed First 

Functions 

::f:, .... , r'10D, ..... or D I I,} 

+', .-

Relational operators (:::, >, <:, .. :.::: -=-- ::: or #) 

Performed Last 

NOT A 

0 
0 
1 
1 

Expressions are evaluated from left to right for operators at the same level. Operations within parentheses are 

performed first. Nested parentheses are evaluated inward out. 

Mass Storage 

Files 

Files are blocks of information that are: 

• Stored outside of HP-85 main memory, and 

• Identified and manipulated by name. 



370 Appendix D: BASIC Summary and Syntax 

File Types 

There are five types of HP-85 files, indicated as follows in the CAT (alog) entry: 

F' P [I C A BASIC program that may be loaded into main memory with L [I A D and executed with P U r·L 

D A T A A data file that may be opened with A:=; ::; I G t·~ # and accessed with F.: E A D # and F' F.: I t·~ T # statements. 

:f III An extended file, including a graphics file that may be loaded and displayed with C L U AD. 

E: F' C t'1 A binary program file that may be accessed with L [I A D E: I t·~. 

til...! L L A gap in the medium left by a purged file; removed with F' A C f:::. 

File Names 

Each file is identified on a particular mass storage medium by a unique file name, consisting of one to ten 

characters (one to six characters for tape files). Longer file names are truncated at the sixth or tenth character. 

Any character may be used, excluding periods ( , ), colons ( : ), and quotation marks ("). 

File Specifiers 

A file specifier identifies the name of a file as well as its location in the mass storage system. The file specifier 

consists of two parts: a file name and an msus or a volume label. 

" file name [ : msus ] " 
, volume label 

The entire file specifier must be quoted but may be manipulated as a character string (assigned to a string 

variable, concatenated with another string, etc.). 

If no msus or volume label is appended to the file name, then the HP-85 searches for the file on the current 

t'1 H ::; ::; ::n [I F.: H eEl ::; device. 

Mass Storage Unit Specifiers 

The mass storage unit specifier, or msus, is a character string that specifies a particular mass storage device. The 

msus for disc drives consists of the following: 

: device type select code device address drive number 

• • • All msus This is the select This is the drive 
strings 
begin 
with a 
(colon). 

code of the HP-IB 
interface that 
connects the disc 
unit to the HP-85. 

number you wish to 
access. 

This tells the system 
which storage device you 
are using. 

D = Disc (any charac­
ter other than T 
specifies disc), 

This matches the 
setting of the device 
address switch on 
the disc unit you 
wish to access. 



Appendix 0: BASIC Summary and Syntax 371 

Example: The following msus specifies disc ([I), select code 7, device address 0, and drive number (.1. 

;;:[1700" 

The msus of the electronic disc is " : [I O~] 0 ". The msus of the HP-85 tape unit is simply " : T " . 

Volume Labels 

The volume label is the name of a flexible disc, a hard disc volume, or the electronic disc, recorded on the 

medium itself. (Tapes may not be given volume labels.) Volume labels may consist of one to six characters, 

excluding periods ( , ), colons ( : ), and quotation marks ("). 

Volume labels may be established with the I t·1 I T I A LIZ E command and changed with the i,,; CI L. !..J r'! [: I :,,: 

command. Initially, the volume label of the electronic disc is II , [: [I " . 

Initializing a Mass Storage Medium 

Each tape or physical disc must be initialized at least once to set up a file directory and clear the disc. Flexible 

and hard discs are initialized with the I t·1 I T I A LIZ E command; tapes are initialized with the !. 1:;:0 H ',: IT !'::! F" [ 

command; the electronic disc is initialized automatically at power on. 

Special Characters 

I~ Enables multi-statement lines. 

100 CLEAR @ KEY LABEL 

Remark follows. 

110 [lI:::W C [lispl.3'::1 cost, 

I t·j F' U T prompt. Input items are expected. 

String delimiters. Mark beginning and end of literal text. 

120 F'R I t·n "t'1EAt·j" .. " t'1O[lE" 

Separates statement parameters and input items. 

AUTO 5[1.. 1 [1 

:t Indicates a string variable or function. 

300 A$=CHR$ < >::) 

Separates statement parameters. 

6:::::0 [I I ::::F' A.: B.: C 

Syntax Guidelines 

F'R I tH 

X,S$ 

Items in [I [I T t'1 A T R I ::< T \' F' E may be entered in uppercase or lowercase letters. 

Items in italic type are the parameters that supply information to the function, statement or 

command. 

Items may be entered without regard for spacing, except that the first two letters of a 

keyword must not be separated. 



372 Appendix 0: BASIC Summary and Syntax 

Brackets enclose optional items. 

" : msus " When items are stacked, either one (but not both) may be used. 
" ,volume label" 

An ellipsis indicates that the optional items within the brackets may be repeated. 

Most parameters (such as tone and duration in the BEE P statement and file specifier in the C H A I t·~ command) 

may be specified by numeric or string expressions (for example, BEE P T 1 .. D 1 and C H A I t·~ F $). Exceptions 

are array sizes in dimensioning statements and statement numbers in system commands; both require positive 

integer parameters. 

Predefined Functions 

Page 

A B ::; .:: X::. Absolute value of X. 66 

fi C ::; .:: X ::. Arccosine of X, in 1st or 2nd quadrant. 72 

A ::; t·~ .:: X::. Arcsine of X, in 1st or 4th quadrant. 72 

f'i T t·~ .:: X::. Arctangent of X, in 1st or 4th quadrant. 72 

A T t·~ 2 .:: Y .. X::. Arctangent of Y IX, in proper quadrant. 73 

eEl L .:: X) Smallest integer > = X. 67 

CHF.:$'::X::' Character whose decimal character code is X, O<=X<=255. 142 

co::; .::X::. Cosine of X. 72 

COT':: X ::. Cotangent of X. 72 

C ::; C .:: X) Cosecant of X. 72 

D ATE Julian date in format yyddd (assumes system timer has been set 63 

properly). 

D I::; C F F.: E EX .. Y [., S$] Returns in X the number of unused records on the disc specified by S$, 274 

and returns in Y the largest number of unused contiguous records. 

DTF.: .::X) Degree to radian conversion. 73 

Smallest machine number (1 ,E-499). 70 

EF.:F.:L Line number of latest error. 253 

Number of latest error. 253 

EF.:F.:Or'1 Identification number of the ROM that issued an error message. 253 

Select code number of the interface that issued an error. 253 



[;:'::F' (X) 

FLOOF.: (X) 

FF'(X) 

I t·~ F 

I tn (X) 

IF'(X) 

L. E t·~ (S$) 

LUC(X) 

t'IA::-=: <X .. Y) 

!'1 I t·~ (X, Y) 

r!Ut'1 (S$) 

r, T 
r .!. 

F'O::;(S1$ .. S2$) 

Pt'1D(X, Y) 

F.:TD (X) 

:::;EC (X) 

::::OP (X) 

TAt·i (X) 

TH1E 

Appendix 0: BASIC Summary and Syntax 373 

Same as I tn (X) (relates to CE I L). 

Fractional part of X. 

Largest machine number (9 , 999::" 9 9 9 9 9 9 9 E 4 :::.' 9). 

Largest integer < =X. 

Integer part of X. 

Length of string S$. 

Log to the base 10 of X, X>O. 

Natural logarithm, X>O. 

If X> Y then X, else Y. 

If X < Y then X, else Y. 

Msus of current t'1 A:::; SST 0 P AGE I S device. 

Decimal character code of first character of S$. 

3, 14159265359 

Searches string S1 $ for the first occurrence of string S2$. Returns 

starting index if found; otherwise, returns o. 

Remainder of X/V: X - Y lIP (X/V> 

Next number, X, in a sequence of pseudo-random numbers, 0< =X <1. 

Radian to degree conversion. 

Secant of X. 

The sign of X: -1 if X<O, 0 if X=O, and 1 if X>O. 

Sine of X. 

Positive square root of X. 

Skips to specified column (in D I :::; F' and F' F.: II·n statements only). 

Tangent of X. 

Time in seconds since midnight (assumes system timer has been set 

properly) or since power on. 

Page 

71 

67 

66 

70 

67 

66 

138 

71 

71 

68 

68 

275 

143 

69 

140 

68 

70 

73 

72 

68 

72 

68 

182 

72 

63 



374 Appendix D: BASIC Summary and Syntax 

T..,.'F' (X) Type of the next item of specified data file. 

UF' C$ (S$) Converts all lowercase alphabetic characters in S$ to uppercase. 

',}AL (S$) Returns the numeric equivalent of the string S$. 

I,} A L $ (X) String equivalent of X. 

',.'OL$ (S$) Volume label of the specified disc. 

System Commands and BASIC Statements 

A::; ::; I G t·j # buffer number T 0 file specifier 

A:::; :::; I G t·j # buffer number T 0 l 

AUT 0 [beginning statement number [.. increment value] 

E: E E F' [tone.' duration] 

" 'msus" f-:AT [' ] 
- " ,volume label" 

C H A I t·j "file specifier" 

C H E C f:: F.: E A D [0 F F] # buffer number 

CLEAF.: 

CO r'l common variable Jist 

, " ,ED msus" 
CO t·j FIG [" new volume label" [ . [ directory size [ disc size]]]] 

.' " ,ED volume label" .' .' 

CO t·j T [statement number] 

COF""!, "source file specifier" 

COF'''''' 
" : source msus " 

" ,source volume label" 

TO" destination file specifier" 

" : destination msus" 
TO 

" ,destination volume label" 

C F.: EAT E "file specifier"., number of records [.. record length] 

C F.: T I :::; device number 

CTAF'E 

D A T A data list 

DEFAULT OFF 

DEFAULT Ot·j 

Page 

312 

144 

140 

142 

275 

302 

303 

86 

96 

273 

284 

313 

23 

133 

319 

106 

291 

291 

301 

183 

277 

147 

76 

76 



Appendix D: BASIC Summary and Syntax 375 

Page 

D E F F t·j numeric variable name [.:: parameter::'] [= numeric expression] 157 

DE F F t·j string variable name [.:: parameter::'] [=string expression] 157 

DEC 72 

DEL E T E first statement number [.. last statement number] 103 

D I t'1 dimension list 131 

[I I ::::; F' [display list] 91 

D J :::; F' U :::; I [.j C image format string [.: disp using list] 181 

!J I ::; F' U :::; I t·j C statement number [.: disp using list] 175 

83 

269 

40 

Ft·j Et·W 159 

F 0 F: loop counter = initial value T (I final value [:::; T E F' increment value] 121 

C E T "file specifier" 296 

C; l... (I f1 D "file specifier" 287 

c; U ::; U E: statement number 163 

C (I T (I statement number 98 

GPA[I 72 

C ::::; T 0 F: E "file specifier" 286 

r F . . THEt.j statement number [El :::;E statement number ] 
J.. numenc expressIon executable statement(s) ... ... executable statement(s) 

116 

I f'! ACE image format string 175 

107 

I t·; I T I A LIZ E [" new volume label" [ ".''' I: msus
l 

'b' I" [.' catalog size [, interleave factor]]]] 
.' ,voume a e 269 

I t·W U T variable name) [.. variable name2 ... ] 94 

I [.j TEe E P numeric variable.' [.:: subscripts::'] [.' numeric variable2 [.:: subscripts::.] ... ] 132 



376 Appendix D: BASIC Summary and Syntax 

Page 

kE\' LABEL 166 

[L E T] numeric variable1 [ .. numeric variable2 ",] = numeric expression 97 

[L E T] string variable1 [., string variable2 .. ,] = string expression 97 

[L. E T] F t·j variable name = expression 159 

L. I ::; T [beginning statement number [ .. ending statement number]] 105 

L CI A [I "file specifier" 283 

L. () f'i D B I t·j "file specifier" 287 

271 

" :msus" 
1"1 ::; I [" ,volume label"] 271 

t·j E :'< T loop counter 121 

41,86 

OFF EPPClP 253 

() F F f: E \' # key number 168 

OFF T I 1"1 E P # timer number 169 

o t·j E P F.: CI F.: G CI ::; U B statement number 253 

CI H E F.: F.: CI F.: GOT 0 statement number 253 

o t·j numeric expression G CI ::; U B statement number list 165 

CI t·j numeric expression GOT 0 statement number list 118 

o t·j f< E \' # key number [.. key label] GO SUB statement number 166 

CI t·j k E \' # key number [.. key label] G CI T 0 statement number 166 

o tj T I 1"1 E F.: # timer number.. milliseconds G CI ::; U B statement number 168 

o t·j T I 1"1 E F.: # timer number., milliseconds GOT CI statement number 168 

131 

F' A 1-: K [ ": msus " ] 
- . ", volume label" 

293 

107 



Appendix 0: BASIC Summary and Syntax 377 

F L I ~:; T [beginning statement number [.' ending statement number]] 

F' P I t·j T [print list] 

F' PItH # buffer number.: print# list 

F' PI t·j T # buffer number.' record number [.: print# list] 

FPltH ALL 

P F: I t·j T E P I ~:; device number 

P P I t·j T U ~:; I t·j G image format string [.: print using list] 

F P I t·j T U ~:; I t·j G statement number [.: print using list] 

F U F: G E "file specifier" [., [1] 

FAD 

!? A t·W 0 t'1 I Z E [numeric expression] 

I? E A D variable name1 [.. variable name2 ... ] 

!? E A D # buffer number.: read # list 

i? E A D # buffer number.' record number [.: read# list] 

F: E fi L numeric variable1 [.:: subscripts::'] [.. numeric variable2 [.:: suscripts )] ... ] 

FE t'1 [any combination of characters] 

F: E t·j [first statement number [ ,increment value]] 

F: E t·j FH'1 E "old file specifier" TO" new file name" 

F E ~:n 0 F.: E [statement number] 

F:ETUF.:t·j 

P U t·j [statement number] 

~::; A I,) E "file specifier" 

:::;CF.:ATCH 

~:; E C U F.: E "file specifier", "security code".' security type 

::; E TTl t'1 E seconds parameter.' date 

Page 

105 

93 

303 

307 

41 

183 

181 

175 

292 

72 

70 

147 

305 

309 

132 

90 

104 

292 

150 

163 

277 

107 

296 

107 

294 

62 



378 Appendix D: BASIC Summary and Syntax 

Page 

::; HOP T numeric variable1 [.:: subscripts::'] [.. numeric variable2 [( subscripts::'] ... ] 132 

::;TOF' 83 

::; TOP E "file specifier" 281 

::; TOP E E: I t·j "file specifier" 287 

::; ~,j A F' "incoming file specifier" .. "new ED file name" 324 

TPACE 247 

TPACE ALL 248 

T PAC E I,) A P variable1 [.. variable2 ... ] 247 

288 

u t·j ::::; E CUP E "file specifier".. "security code"., security type 295 

',}OLUr'1E " :msus" 
" ,volume label" 

I ::::; "new volume label" 268 

~,j A I T number of milliseconds 108 

Graphics Statements 

fiLF'HA 189 

E: F' LOT character string., number of characters per line 229 

[J F.: A ~,j x-coordinate .. y-coordinate 203 

CCLEAP [y] 191 

CPAF'H 189 

I [J P A ~,j x-increment.. y-increment 209 

I r'1 0 I,} Ex-increment.. y-increment 209 

LA E: E L character string 213 

L [J I P numeric expression 216 

r'1 0 I,} Ex-coordinate.. y-coordinate 203 

F' E t·j numeric expression 199 

F' E t·j U F' 199 



j::> L. Ci T x-coordinate., v-coordinate 

::::: C: H /..., Ex-min.. x-max.. v-min, v-max 

:: H >:: :r. ::=.: v-intercept [ .. tic length [, x-min .. x-max]] 

\' H:: [ ::: x-intercept [, tic length [.. y-min.' v-max]] 

Appendix 0: BASIC Summary and Syntax 379 

Page 

200 

191 

194 

194 





Appendix E 

Error Messages 

The following errors are generated by the HP-85 operating system and have an E F.: F.: 0 t'1 number of O. 

Error 
Number 

2 

3 

4 

"" ._' 

6 

7 

Error Condition 

Math Errors (1 thru 13) 

Underflow: expression underflows machine 
Overflow: 
• Expression overflows machine 
• Attempt to store value >99999 or < -99999 in I tH E e E F.: variable. 
• Attempt to store value >9.9999E999 or < -9.9999E99 in :::; HOrn 

variable. 

COT or esc of n*180o; n=integer. 

TAt·l or :::;EC or n*90o; n=odd integer. 

Zero raised to negative power. 

Zero raised to zero power. 

Null data: 
• Uninitialized string variable, or missing string function assignment. 

Default Values 
(errors 1-8 only) with 

DEFAULT Ot·l 

o 
± 9.99999999999E499 

±99999 
±9.9999E99 

9.99999999999E499 

9.99999999999E499 

9.99999999999E499 

• Uninitialized numeric variable, or missing numeric function 0 
assignment. 

::: Division by zero. 

Negative value raised to non-integer power. 

1 0 Square root of negative number. 

1 1 Argument (parameter) out of range: 
• AH12 (~3., 0). 
• ASt·l or AC:::;t·l (-1 <n< +1). 
• Ot·l expression eOTO/eOSUB; expression of range. 

1 2 Logarithm of zero. 

1 ::3 Logarithm of negative number. 

14 Not used. 

System Errors (15 thru 25) 

± 9.99999999999E499 

Remaining errors do 
not default. 

15 System error; correct by reloading program, pressing (RESET), or turning system off, then on 
again. 

16 

17 

l Co 
'-' 

Continue before run; program not allocated. 

FOF.: nesting too deep; more than 255 active FOF.:-t·lD::T loops. 

eo SUB nesting too deep; more than 255 nested subroutines. 

381 



382 Appendix E: Error Messages 

Error 
Number 

1.9 

2::~: 

;:::,::1· 

Error Condition 

Memory overflow: 
• Attempting to F: U t·j a program that requires more than given memory. 
• Attempting to edit too large a program; delete a nonexisting line to deallocate program, then edit. 
• Attempting to load a program larger than available memory. 
• Attempting to open a file with no available buffer space. 
• Attempting any operation that requires more memory than available. 
• Attempting to load or run a large program after a ROM has been installed. ROMs use up a 

certain amount of memory. Refer to the appropriate ROM manual. 
Not used. 

ROM missing; attempting to F: i .. .iI"·j program that requires ROM. An attempt to edit program with 
missing ROM will usually ~:::; C I;;: I::I"T· C H memory. 

Attempt to edit, list, store, or overwrite a ~:::; E C 1...1 F: Ed program. 

Self-test error; system needs repair. 

Too many (more than 14) ROMS. 

Two binary programs; attempting to load a second binary program into memory (only one binary 
program allowed in memory at any time). 

;::: (:; thru ;;::::) Not used. 

Program Errors (30 thru 57) 

J C! C F'·r I C t··1 E: I:::' ~:::; [ error: 
• Duplicate C: F' TIC, ! .. ~ F: H ~:::; F declaration. 
• C: F:' T· I C: I···j r3 fl ~:::; [ after array declaration. 
• C: F'·r I C: r··1 E: 1:::1 ~::; F parameter not ~::I or :I.. 

:::;: 1. C H f::1 J I··j error; C H f=1 I i···ito a program other than BASIC main program: e.g., C H ,:::, I i···j ing to a binary 
program. 

3 ;::: C C: !"'mon variable mismatch. 

::~::3 [I fi T H type mismatch: 
• F: [H [) variable and [11:::1 T· H type do not agree. 
• F: E H [I:j:j: found a string but required a number. 

::;;: ,::1· No D f:l·r H to read: 
• F: [ H [I and [I H T H expired. 
• F: [ ~::; T· C I:;:: [ executed with no [I H ·r fl statement. 

:3 ~:; Dimensioned existing variable; attempt to dimension a variable that has been previously declared or 
used. Move [I I 1"'1 statement to beginning of program and try again. 

:3 I:::; Illegal dimension: 
• Illegal dimension in default array declaration. 
• Array dimensions don't agree; e.g., referencing 

A(2) when A(5,5) is dimensioned or referencing 
A(O) when C F' TIC t··1 E: fi ~::; E 1 declared. 

:;;: ? Duplicate user-defined function. 

J ::::: Function definition within function definition; needs F t·j E: t··1 [I. 

J 9 Reference to a nonexistent user-defined function: 
• Finding F· t·j E t·j [I with no matching [I E: F· F t·j . , 
• Exiting a function that was not entered with a function call after branching to the middle of a 

multi-line function. 



Error 
Number 

... .:,: ... 

Appendix E: Error Messages 383 

Error Condition 

Illegal function parameter; function parameter mismatch (e.g., declared as string, called as numeric). 

F·,··j:::::; user-defined function assignment. Function assignment does not occur between [) [F' F',···, 
and F' i"" [ ",·1 U. 

Recursive user-defined function. 

Numeric input wanted. 

Too few inputs. Less items were given than requested by an T iot r: i i'r statement. 

Too many inputs. More items were given than requested by an T;;;" .... statement. 

i···1 [::< 'r missing; F' C: F: with no matching !···i E ::< 'T". 

F' C F: missing; i···j E: >:: 'r with no matching F' C: I::::. 

['-,·1 D statement necessary. 

Null data; uninitialized data. 

Binary program missing; attempting to !:::: i .. H··! program that requires binary program. An attempt to edit 
will usually ~:::; C!:::: ffr C H memory. 

F: [; T i . ..! F: ,' .. j without C; Ci ::::; i..3 E: reference. 

Illegal I i'-! H C; E format string; unrecognized character in I t'H::1 C; E . 

Illegal F'!:::: It··! T i...l~:::; I",,! C: 
• Data overflows I i"1 f:! C; [ declaration. 
• Numeric data with string I "'1 f~ c; E. 
• String data with numeric I ,''-, H C~ E. 
• F' F: I i"~ 'r !...i ~:::; I , .. j C; image format string is not correct. 

Illegal 'T ':::j i:::: argument. With [I F F:' j:::1 i.J 1.... 'r C! ""1. an illegal T' Fi E: argument gives a warning message 

and defaults to 'r ::::j E: .;: :I. >. 
Array subscript out of range. 

String variable overflow; string too big for variable. 

Missing line; reference to a nonexistent statement number. 

~~i ::::: thru ~:i 9 Not used. 

Tape Errors (60 thru 75) 

;::; U The mass storage medium is write-protected. 

6 i. Attempting to create/record more than 42 files on tape. 

6 ;? Cartridge out when attempting a tape operation. 

6 :::~ Duplicate file name for F:: E t·j H t'1 [or C F: E H'r E. 

64 Empty file; attempting to access file that was never recorded (e.g., tape was ejected before program 
was stored but after name was written in directory). Refer to F' U F: C E. 



384 Appendix E: Error Messages 

Error 
Number 

Error Condition 

End of tape: 
• Tape run-off; check cartridge. 
• Tape is full. 
• Not enough space to C r.;:: E f=1 T' E data file. 

t.: t.: File closed: 
• Attempting I:::: E H [I W F' F: 1 i"~ 'r :fF to file that has not been opened with H ::::; :::; I C; i",l :ft 
• Attempting to close a closed file (warning only). 
• Tape has been ejected and reinserted. 

6 '? File name: 
• Name does not exist when attempt to L .. c: F! [I, f:! ::::; ::::; I C; !"" :i:j:, L .. Ci HUE: I!"'!, F'!.J!? C; I::, 

F: E t',l f:II"1 E, or ::::; F c: ! .. ,l I:::: F. 
• Name not in quotes. 
• Attempt to ! i",l I;' i;! an open file, 

(; ::::: File type mismatch: 
• Attempting to treat program as data file, or vice versa. 
• Attempting to treat binary program as BASIC main program file, or vice versa. 
• Attempting to treat data as binary program, or vice versa. 

C; :) Random overflow; attempting to F: E H [I :1:1/ F' I:;:: I f',l T j* beyond existing number of bytes in logically­
defined record with random file access. 

'? (:.1 I:::: E: H [I error; system cannot read tape. 

? 1. End-of-File; no data beyond EOF mark in data file. 

'?2 Record: 
• Attempting to I:::: [ H [I #/ F' F: Il"j T :1=1= to record that doesn't exist; e.g., F: I::: H D *F :!..' 1.::::!j when 

only 100 records in file. 
• Attempting to I:::: E 1:::1 [I t.J-1 F'r;:: I ['j ''I'' 1t at end of file, 
• Lost in record: close file to release buffer. 

? ::~~ Searches and does not find: 
• Bad tape cartridge; may have been exposed to magnetic field. 
• Cannot find directory, tape may need to be initialized. 

?4 Stall; either bad tape cartridge or transport problem, refer to Tape Operations, appendix B. 

? ':; Not an HP-85 file; cannot read, 

? 6 thru ? :::, Not used. 

Syntax Errors (80 thru 92) 

:::: C1 Right parentheses, ), expected. 

::: 1. Bad BASIC statement or bad expression. If it is an expression, try it again with [I I :::; F' <expression> 
to get a better error message. 

::: 2 String expression error; e,g" right quote missing or null string given for file name. 

::::::3 Comma missing or more parameters expected (separated by commas). 

:::: 4 Excess characters; delete characters at end of good line, then press (ff@. 
:::: 5 Expression too big for system to interpret. 



Error 
Number 

Illegal statement after THE t·j. 

Bad D I t'1 statement. 

Bad statement: 
• C ot'1 in calculator mode. 

Error Condition 

• User-defined function in calculator mode. 
• I [.j F' U T in calculator mode. 

Appendix E: Error Messages 385 

::: 9 Invalid parameter: 
• 0 [.j f::: E \' # less than 1 or greater than ::::. 
• Attempt to T F: ACE a calculator mode variable. 
• F' F: I [.~ T E F: I ::; or C F: T I ::; with invalid parameter. 
• C F: EAT E with invalid parameters. 
• A::; ::; I C [.j #, F' F: I [.j T #, or F: E A D # with buffer number other than :I through :I O. 
• Random F.: E A D # to record O. 
• ::; E TTl t'1 E with illegal time parameter. 
• 0 [.j T I t'1 E F: #, 0 F F T I t'1 E F: # with number other than 1, ;?, or ::3. 
• ::; CAL E with invalid parameters. 
• AUT 0 or F: E [.j with invalid parameters. 
• L I ::; T with invalid parameters. 
• DEL E T E with invalid parameters. 
• I,} A L $ with non-numeric parameter. 
• CO t·j FIe with a nonpositive directory size or a disc size that is not a multiple of 32. 
• Any statement, command, or function for which parameters are given but they are invalid. 

J 0 Line number too large; greater than 9999. 

9 1 Missing parameter; e.g., DEL E T E with missing or invalid parameters. 

:::1 c: Syntax error. Cursor returns to character where error was found. 

The following errors are generated by the system's mass storage ROM and have an E F:!:;:: () r'! number of 208. 

Error 
Number 

1. 10 

111 

1. 1 c: 
129 

Error Condition 

A plug-in interface module failed its self-test and requires service. 

An invalid input/output operation was performed. Use the E F: F: ::=.; C: function to determine which 
interface generated the error. 

The mass storage ROM failed its self-test. The HP-85B unit requires service. 

The storage medium may be damaged. If possible, copy its files to another storage medium 
immediately. 
The storage medium is not initialized, the drive door is open, or the drive number specified is not 
present. 

The specified interface is not present, the specified device is not present or is switched off, or a 
system hardware failure has occurred. 



386 Appendix E: Error Messages 

The following errors are generated by the system's electronic disc ROM and have an E F.' F.' (J 1'1 number of 209. 

Error 
Error Condition 

Number 

1 1 2 The electronic disc ROM failed its self-test. The HP-85B unit requires service. 

:l 2 :3 A command intended for a physical disc only (such as I t·j I T Ii::! L.. I Z E or F' 1:::1 C f:::) was attempted 
on the tape cartridge or the electronic disc. 

1 24 Attempt to :::; r,j A F' in a program from the electronic disc whose disc space is too small to accom­
modate the program from main memory. 

1 2:~ A command intended for the electronic disc only (such as C I] H F I c:;) was attempted on a physical 
disc or the tape cartridge. 

1 2':' The mass storage unit specifier (such as " : dO 0 2 ") of a nonexistent electronic disc volume was 
specified. 

1 2 "7 An out-of-range error occurred during an electronic disc access. Reconfigure the electronic disc or 
switch off the computer and try again. 

1. 2 ::: Attempt to CO t·j F I G(ure) an electronic disc volume that is not empty of all files. 



387 

Notes 





Appendix F 

Sample Solutions to Problems 

Section 5 

Problem 5.1 

(a) 1 (1 F..Et'1 ICElS I U~; TO F~IHJ;:Et~HE IT 
2(1 OI:::;P "CElr,:IU:::; TENP".; 
30 ItlF'UT C 
40 lET F=I.8tC+32 
50 PRINT C;"C EQUALS ";F;"F" 
60 nm 

Display: 

CEl:::; I us TEt1F"~' 
1 5 
C El:3 I ur,; TEt1P? 
-113 

Printer: 

15 C EQUALS 59 F 

-10 C EQUALS 14 F 

(b) 1(1 REN tFAHREtlHEIT TO CEl:3IUS 
20 OISP "FAHRENHEIT TEMP", 
3£1 I t·lF'UT F 
4£1 C=5,'9:t:(F-32) 
50 PRINT FJ"F EQUALS ";C,"C" 
6li:1 END 

Display: 

FAHRENHEIT TENp0 
59 
FAHRENHEIT TENp0 
14 

Printer: 

59 F EQUALS 15 C 

14 F EQUALS -10 C 

Flowchart: 

389 



390 Appendix F: Sample Solutions to Problems 

Problem 5.2 

10 REM tREBOUNDER 
20 DISP 'HEIGHT RELEASED" 
3[1 I t·lPUT H 
40 [i~H 

5~3 BEEP 
60 [lI:::P [I 

7(:1 H~. 65lH 
8[1 D=D+2:t:H 
90 GDTO 5(1 

10(1 nm 

Display: 

EIGHT F:ELEA':,ED 

O~::1 

1 (1~~1 
230 
314 5 
369 425 
405 12t';2:::~ 
42::: 3:320625 
443 415:::40625 
453 22~;:12964[16 
459 59.3192Gf~:.::j 
463 735::~75232 
466 42::: L?39C11 
46::: 1 7:'::2~::0536 
469 315::::::2343 
47~;:1 055~23527 

Problem 5.3 

1 (1 POl lBOOf: T I TU;:':: 
20 [lISP "NOUN, PROPER NOUN"; 
30 I t1F'UT H$, F't 
40 PRINT "THE ";NS;" OF ";PS 
5[1 PPItH "TO".i Pt.;" ~~ITH THE" 

ta 
6(1 GOTG ~::(1 
7(i nw 

Display: 

NOUN, PROPER NOUN0 
ANIMALS, AUSTRALIA 
NOUN. PROPER NOUN0 
ICEBERGS, ICELAND 
NOUN, PROPER NOUN? 
ATHLETES, THE OLYMPICS 
NOUN, PROPER NOUN~ 

Printer: 

THE ANIMALS OF AUSTRALIA 
TO AUSTRALIA WITH THE RNIMRLS 
THE ICEBERGS OF ICELAND 
TO ICELRND WITH THE ICEBERGS 
THE ATHLETES OF THE OLYMPICS 
TO THE OLYMPICS WITH THE 
ATHLETE::: 

Flowchart: 

/ 
INPUT / 

L ______ H_E~IG-H-T--~ 
l 

LET DISTANCE 
TRAVELED = HEIGHT 

.+ 
/ BEEP / 

+ 

/ DISPLAY / DISTANCE 
TRAVELED 

+ 
COMPUTE 

NEW HEIGHT, 
DISTANCE TRAVELED 

I 

Flowchart: 

.----~ 
INPUT NOUN, 

PROPER NOUN 



Problem 5.4 

10 REM BASS RH'(THM 
20 Fl=6 3062,c,llt98)-134,11 
3':1 [11 = 19::, 
40 F2=6 30625/(11tI3081)-134' 

11 
tI3'" :0:1 50 D2= 

6(1 F3=6 
7t1 D3=..: 
:=:0 [I I c,.p 

3062 5 (11tI96'-134'11 
t196 
" F",," [I" .. Fl,,[ll .. F2 .. [l2 .. F 

3,[13 
9'" BEEP F2" D2 

1 ')(i GEEF' F3, [13 
11(1 BEEP FJ,[l1 
12'3 BEEF' F3 .. D3 
13(1 (;OTO 9(1 
14121 EH[I 

Display: 

F 
556 52 
412' :::, 
"',,:. If 

Problem 5.5 

IJ 
49 
S5.4ti5 

1121 REM lFACTORIAL ApPROX 
20 [lI:,:F' ":., = ",; 
30 I t~FUT :.< 
4121 F=EXF'(-X)tX'XtSQR(2tPItX) 
50 PEItH F, :.<:' " I" 
6121 GOTO 20 
70 Er·m 

Display: 

::.:: '-:. 

J 
>:: '-::' 

" ;-:; c· 

1 e 
' .. ' '-:;0 ;"-, 

.5 e 
~: 0:;' 

Printer: 

5.:::362 9 914 
710.07 1 46 5 
359869 18 4 e 
3 0363 4 93 4E64 0 

Appendix F: Sample Solutions to Problems 391 

Flowchart: 

Flowchart: 

/ 

CALCULATE 
TONE AND BEEP 

PARAMETERS 

PRINT 
TONE AND BEEP 

PARAMETERS 

~ 
INPUT / NUMBER 

l 
COMPUTE 

FACTORIAL 
APPROXIMATION 

PRINT 
APPROXIMATION, 

NUMBER 



392 Appendix F: Sample Solutions to Problems 

Problem 5.6 

10 ~EM tWATCH REPAIR 
2(1 D I ~:.F' II CU~:;TOMEF'''.: 

3'3 ItlF'UT tH 
40 DISP "HOURS WORKED, PARTS co 

':. T" 
5(1 ItlPUT H· P 
60 l=:3 5lH 
7';1 F' 1 = 1 . IH' 
:3<3 PR I t-n 
90 PRINT "ITEMIZED REPAIR BIll 

".:t·a 
100 PRINT" PARTS S",PI 
110 PRINT" lABOR SOil 
120 PRINT "TOTAL CHARGE S";Pl+L 
13<3 END 

Display: 

c: U::. T ,Jr'lE F:'c, 

~·l H HlP L E 
HOURS WORKED, PARTS COST 
,'') 

2~'J12(H) 

Printer: 

I TEt'1IZED REPFIIR 
PAF:T:,: :t 
LAE:OR :t 

TOTAL CHt"IF:GE :t 

Section 6 

Problem 6.1 

I L. j·lH I t'lPlE 
7 

1. 5 
4 ~ 

10 REt'1 lREBO;J~iDEF.: 
20 DISP "HEIGHT RELEASED" 
3'" INPUT H 

Flowchart: 

35 T=3000 ~.~----------------------.----------
40 D=H 
50 BEEF' 
60 DE:P D 
65 ~.J A IT T ~ ... ~--------------------------------
713 H=. 65:t:H 
80 D=D+2:t.H 
85 T = . :3(16*T .... --------------------------------
9'3 GOTD 50 

113€1 HlD 

INPUT 
CUSTOMER'S 

NAME 

INPUT 
NUMBER OF HOURS, 

PARTS COST 

CALCULATE 
CHARGE FOR 

PARTS, LABOR 

PRINT NAME, 
CHARGES FOR 
PARTS, LABOR, 

TOTAL 

( END) 

Added line. 

Added line. 

Added line. 



Problem 6.2 

10 REM tCENTRIFUGAL 
2(1 T=(1 
30 DISP "STRING LENGTH"; 
4~) It1PUT F: 
50 F=350t(30tT,A2/R 
60 PRINT "SECONDS =";T 
70 PRINT "DYNES =";F 
80 PRINT "POUNDS ="; .00000225*F 
90 PRItH 

100 PAIY3E 
110 T=T+l 
120 GOTO 5(1 
130 END 

Display: 

STF: I tlG LEt·lGTH ,., 
14 

Printer: 

:::ECOt·W:,: = (1 
DYNE::: = (1 
POUt·W::' = (1 

:3ECC,t·j[I::, = 1 
[I,·!t-1E::: = 225tW 
POUHO~:; = .0506,::5 

:3ECOt·j[I::, = 2 
[lYt·1E::: = :3 (1(1 (H) 

POUtWS = .2025 

:::ECOt·W:,' = 3 
DYt·1E::' = 2(1250(1 
POUNDS = .455625 

SECCltll):,' " 4 
[lYt·1E::: = 36(H30(1 
POUt·W::' = :31 

SECClt·l[::,; = 5 
Dyt~E:3 = 5625(1£1 
POUNDS = 1.265625 

SECOND::' ~ 6 
DYNE:::; = :3 i 00[1(1 
POUND:::: = 1. :3225 

:3ECO~W::; = l 
[lYt~ES = 11 ~325£10 
POUNDS = 2.4:30625 

:3Eco~ms = :3 
DYNE::: = ~44~3~300 
POUND:::; = 3.24 

SECO~W::; = :3 
DY~lE:3 = 1 :322500 
POUNDS = 4.100625 

SECCltW:::: = 10 
DY~IE::: = 2250000 
POUND:3 = 5.0625 

Section 7 
Problem 7.1 

10 F~nl lE:A!;:I<ETBfiLL 
20 A., ~'J=D 
3(1 P~:ltH " A ~'l " 
4(1 PPItH 
5(1 It-lPUT (:$ 
6~3 IF C$=IIAII THEtl 
7(1 IF C$="l·Jli rHEt·l 
80 IF C$=lIo3 ll THEt-l 
90 IF C$= II 1.0.1 II THEt-! 

10(1 PPIiH A;W 
1 10 GOTO 5~3 

120 Eem 

A=A+2 
~~=~l+2 
A=A+l 
~,J=W+ 1 

Appendix F: Sample Solutions to Problems 393 

Flowchart: 

COMPUTE 
FORCE IN 

DYNES,POUNDS 



394 Appendix F: Sample Solutions to Problems 

Problem 7.1 (Cont) 

Display: 

.-:. 

A 

A 
''::' 

A 
'-:. 

A 
.:;. 

" ,:;. 

l' 
.:;. 

Printer: 

A 

2 
4 
4 
4 
6 
: ::: 
~~ 

9 
9 

',J 

0 
(1 

2 
-
3 
? 
"3 
:s 
f, 

Problem 7.2 

18 RE~ rBE~p GRME 
20 FOP X=I TO 18G 
3(1 ~;=O 
40 IF FP' :,·:.·c\#~:; THEH ;'0 
5'3 BEEF' 
6(1 B= 1 
cO IF IOlFP(X/10'=;' THEN 100 
80 IF IP(X/l0)=7 THEN 100 
9~3 GO TO 120 

100 BEEF' 
110 '=~=1 
120 IF 5=0 THEN OI5P X ELSE OISP 
130 tlD:T >': 
140 EtlD 

Display: 

1 t: 
19 

Problem 7.2 

Flowchart: 

IS 
X NOT 

MULTIPLE 
OF 7? 

DOES 
ONES 
DIGIT 
=7? 

NO 

DOES 
TENS 
DIGIT 
=7? 

NO 

IS 
DISPLAY 

INDEX 
RESET 

? 

YES 

YES 

YES 

YES 



Problem 7.3 

10 FEr-1 :*1 ELEF'ATI1'" 
2~3 F:, ~,j~(1 
3~:1 ~'I:;F' "ErHEP 1 TO 5 EACH T H1E 

413 FOP I = 1 T.) 10 
50 P=INT(I+5*PND) 
6(1 ~IRIT 5~3l10 

70 It-lF'UT N 
80 IF N=P THEN 170 
~H3 ~j=I~+ 1 

100 DISF' "INCOPRECT" 
1 113 HE:n I 
120 R=100tR/(P+W) 
130 PPINT A;"% ACCUPACY" 
140 PPINT " FOP";P+W;"PICKS" 
150 IF A)20 THEN PPINT "**TELEPA 

THY**" ELSE PPINT "JUST GUES 
SIHG II 

160 GOTO 4(1 
170 F=P+l 
180 OISF' "COPPECT" 
1 9'3 (;.='TO 110 
2130 Et-m 

Display: 

EtHER i TO ~, 

2 
I t-lC 0 F.: F: E C T 
,-, 

1 
COF.:F~EC-r 
r:.' 

4 
I HCOF~:ECT 

'-::. 

:. 
I tKOR~:ECT 
'-::' 
2 
CORF.:ECT 

3 
I t-lCOP;;:EC," 
'-::' 
:i 
II-lCOFRECT 

'-::' 

1 
I tKOPRECT 
') 

2 
II-lCOPF.:E.C"'-

'-::' 

:::: 
CORPECT 
,-;:. 

Printer: 

E.ACH TIt1E 

30 ;; RCCURI1C'y' 
FOR 1 (1 PICI'::; 

**TELEPATH .... ':tt 

Appendix F: Sample Solutions to Problems 395 

Flowchart: 

LET NUMBER 
CORRECT. 

INCORRECT ANSWERS = 0 

FOR I = 1 TO 10 

GENERATE 
RANDOM PICK 

WAIT 
5000 MILLISECONDS 

DOES 
GUESS 
= PICK? 

NO 

YES 

INCREMENT 
NUMBER INCORRECT 

DISPLAY 
"INCORRECT" 

PRINT 
DISCOURAGING 

MESSAGE 

YES 



396 Appendix F: Sample Solutions to Problems 

Problem 7.4 

10 REM tCOMPASS COURSE 
2~:::1 DEG 
3(1 t·1, E=O 
40 DISP "BEARH1G .. DI:,;TAt·lCE".; 
50 It~PUT B .. D 
60 IF 0=0 THEN 110 
70 t~=t·j+D:t.CO::; 0:: 8::-
80 E=E+D*:SItH8) 
90 PRINT "BEAR";B;" DIST";O 

100 GOT!) 40 
1111 A=ATI'j2 0:: E, tn 
120 X=SQR(N:t.N+E:t.E) 
130 IF A{0 THEN A=A M D 360 
140 PPItH "DIRECT ROU E" 
150 PRINT" BEARING" A 
160 PRINT" DISTANCE" X 
170 PRItH 
180 GOTO 30 
190 Et'lD 

Display: 

BEARING, DISTANCE0 
E:5 .. 350 
BEARING, OISTANCE0 
190 .. 4 (H:1 
BEARING, OISTANCE0 
265.125~3 
BEARING, DISTANCE0 
20 .. 5(1 
BEARING. DISTANCE" 
(1,0 

BEAPING, DISTANCE? 

Printer: 

BEAR 25 DIST 350 
BEAR 190 DIST 400 
BEAR 265 OIST 250 
BEAR 20 DI::.T 50 
DIRECT F.DUTE 

BEARING 172.045343208 
DISTANCE 341.508929443 

Flowchart: 

START 

SET NORTH, 
EAST SUMS = 0 

NO 

INCREMENT 
NORTH AND 
EAST SUMS 

YES 

DETERMINE 
DIRECT BEARING, 

DISTANCE 

< O? 

NO 



Problem 7.5 

lR PEM ~CUPPENCY EXCHANGE 
2(:) D I '::F' "EtHEF: CODE, AtH f'"OF'3 

':;\':=;TS II 

30 [i I ',:p "1 =E:P., 2=FF: .. 3= U,::," 
4 0 I t·w UTe 1 , A 1, C 2, A 2 .. C 3, A 3 
')':' D I :::p 
60 D I '::,P "CODE, AtH TO C Otl',}EPT 

O. O='~;TI=IP > 11 

;'0 It-WUT C A 
80 IF C~0 THEN STOP 
90 PEM tDETEPMINE PEFEPENCE 

1~j(1 ClH C GO TO 11(1 .. 130) 15~3 
110 P~Al 
120 I:;OTO 16~3 
130 P=A2 
I'H3 GOT':' 1613 
150 F:=A3 
16'3 ',}j=AlAI P 
1 ;"3 ',}2=AlA2.··F: 
18':' ',}3=AlA3.· .. P 
190 PPINT "EQUIVALENT AMOUNTS'" 
200 PPINT "8F:. POUND ";Vl 
210 PPINT "FP. FPANC ";V2 
220 PPINT "US DOL LAP ";V3 
23'3 PF:ItH 
24~:::1 coro 5(1 
25~::1 EHD 

Display: 

ENTEP CODE AMT FOP 3 SYSTS 
I=BF: .. 2·"FF:. -::=11':: 

,::, 

1; 1.' 2 .. 8 39'::' 1 .. :::.' 1 . ','248 

CODE .. AMT TO CONVEPT (0 .. 0=STOP) 
,-:;. 

CODE, AMT TO CONVEF:T (0,0=STOP) 
? 

CODE, AMT TO CONVEPT (0,0=STOP) 
? 
l:;:1 , ~3 

Printer: 

EQUIVALENT AMOUNTS 
BR POUt'l[I 2':::4 
FR. FF:ANC 2385.0604 
US DOLLAR 518 2432 

EQUIVALENT AMOUNT3 
BR. POUND 660346339325 
FR FRANC 5545.65459228 
US DOLLAR 12'35 

Appendix F: Sample Solutions to Problems 397 

Flowchart: 

C = 1 

INPUT 
CODES AND 
EQUIVALENT 

VALUES 

C=3 

COMPUTE 
BRITISH, FRENCH, US 

AMOUNTS 



398 Appendix F: Sample Solutions to Problems 

Problem 7.6 

10 REM 'OIMSCURG DELAY 
20 [11::;1" "TOTAL DELAY It~ t1HWTE:; 

II T 

30 It-!F'UT T 
40 IF T\0 THEt-! ~u 
50 IF T>=3 THEt-! 160 
60 I=IF'(T)+1 
70 Ot-! I GOTO 100.120.140 
8(1 F'=O 
913 (;OTO 1?~3 

11)(1 P=T"3"6 
110 GOTO 17(1 
128 p= 5-T*(1 .5--T*(1 5-T/3» 
1 30 GOTO 170 
140 1"=-35+T*(45-T*(1 5-T/6)) 
150 GOTO 170 
160 P=1 
170 PR I ~n "FOP DELAY LESS THAt·j"., 

T 
1 80 P~: I tH" PR08AB I L I TY 1:3 "; P 
190 PRItn 
2130 I::;OTO 20 
c: 1(1 HID 

Display: 

TOTAL [lELA",' III t1 I tlUTE::;~' 
0 
.J 

TOTAL DELAY It. t1 I t'lUTE::;~' 
1 .J 

TOTfiL OELA'r' HI t1 I tlUTE::;~' 
2 
TOTAL DELAY Itl t1 I t·lUTES? 

Printer: 

FOR DELAY LESS THAN .5 
PROBAB I LIT 'i 1:3 

2 0833333333~E-2 

FOR DELAY LESS THAN .5 
PROBABILITY IS 5 

FOR DELAY LESS THAt-! 2 
PR08ABILITY IS 83333333332 

Flowchart: 

~-------------~ 

1= 1 

COMPUTE 
PROBABILITY FOR 

0,;; DELAY < 1 

/ 
iNPUT / 

__ DELAY . 

IS 
DELAY 
< O? 

NO 

COMPUTE 
PROBABILITY FOR 

1 ,;; DELAY < 2 

COMPUTE 
PROBABILITY FOR 

2,;; DELAY < 3 



Section 8 

Problem 8.1 

10 REM tINVENTAWORD 
20 DIM 8S[20~,F'[20~,W'[21~ 
30 DI~:;F' "BASE ~:;TRH1G"; 
40 I ~!F'UT B. 
50 IF LEN(8$)=0 THEN STOP 
60 0$=8$[1, 1~ 
70 OISP "FIRST-LETTER STRING"; 
80 INPUT F$ 
90 IF LENCFS)=0 THEN 30 

100 FOR 1=1 TO LENCFS) 
110 IF FS[I, I~=OS THEN 140 
120 WS=FS[I,I~&B$ 
130 PRINT ~J$ 
140 NEXT I 
150 GOTO 7t1 
1613 END 

Display: 

E: A':; E '~Tf? HiG" 
LU8 
F IP'=;T-LETTEP 
GBLF 
F IP':;T-LETTE~: 
[lZ 
F IP"';T-LETTEF.: 

Printer: 

(;LUB 
t:LUE: 
FLUB 
OLUE: 
:::LUE: 

:=; TP 1 tiC'" 

',;TF.: 1 NC'" 

:,;TF: I t1G? 

Appendix F: Sample Solutions to Problems 399 

Flowchart: 

.------~ 

YES 

INPUT 
BASE 

STRING 

IS 
STRING YES 
LENGTH >---~ 

= O? 

DETERMINE 
(FIRST) BASE 

LETTER 

IS 
STRING 
LENGTH 

= O? 

NO 

FOR I = 1 TO 
LENGTH OF FIRST­

LETTER STRING 

IS 
FIRST-LETTER 

= BASE-LETTE 
? 



400 Appendix F: Sample Solutions to Problems 

Problem 8.2 

10 REM tSTAP OISTA~CES 
;;::(1 C'F'Tlotl 8Fr3E 1 
30 INTEGER N(15) 
40 SHORT [I 
50 [lATA 4 3,5.9,7.6,8.1,8.6,8 9 

.. 9.4 .. 10.3,10.7,1&.:3 .. H1.B .. ll 
2 .. 11.2 .. 114.,115.,11.6 

6& DATA 11 7. 11 .9 .. 12.2., 12.5 .. 12 . 
7 .. 12.8,13.1.13 1,139,14.2,1 
4 5 

70 FOR 1=1 TO 15 
B0 t·l(I)=(1 
90 NE:n I 

100 FOR 1=1 TO 27 
110 r;:EAO 0 
120 J=IP([J:' 
130 NCI)=N('J)+1 
140 ND:T I 
150 PRINT "INTERVAL STARS" 
160 FOR 1=1 TO 15 
170 PPINT 1-1.;"-".;1.:" ";N(I) 
18& ND<T 1 
190 F'RItH 
200 OISP "INTER'v'AL"; 
210 HIPUT K 
220 IF K=& THEN STOP 
230 PRINT "INTERVAL";K-l;"-";K 
240 IF N(K)=& THEN 37& 
250 RESTORE 
26& IF K=1 THEN GOTO 32121 
270 FOR 1=1 TO K-l 
280 FOR J=1 TO NCI) 
290 READ D 
31210 NEXT J 
310 HEXT I 
32121 FOR 1=1 TO NCK) 
33121 READ 0 
34121 PRINT D 
350 t~EXT I 
360 GOTO 19& 
370 PRINT" NO STARS" 
380 GOTO 190 
39121 END 

Display: 

I NTEF:',)AL,' 
H1 
I NTEf':'.)AL'-·· 
(1 

Printer: 

1 tHER',}fiL 
(, - 1 
1 - 2 
2 '3 
3 - 4 
4 - 5 
5 - 6 
.:. - 7 
(' - ::: 
::: - :.71 

9 - 10 
1 [1 11 
11 - 12 
12 .- 13 
13 14 
14 15 

'e, TA F:':: 
~::1 

~3 
(1 

"3 
1 

7 
4 
"3 
2 
o 

I tHEf':''}AL 9 .. 10 
10.3 
10.7 
10 ::' 
10. ::: 

Flowchart: 

SET INTERVAL 
COUNTS = 0 

READ EACH DISTANCE, 
DETERMINE 

INTERVAL INDEX, 
INCREMENT 

INTERVAL COUNT 

IS 
NUMBER 

= O? 

IS 
INTERVAL 

COUNT 
= O? 

IS 
INTERVAL YES 
NUMBER 

1? 

READ ALL 
DISTANCES BEFORE 

INTERVAL 

READ, PRINT 
EACH DISTANCE 

IN INTERVAL 

I 



Problem 8.3 

10 REM *30-~M SPEEDS 
20 DI':;F' "30--Kr'l TIr-1E"; 
3(1 ltlF'UT T$ 
40 IF LENCT$I=(1 THEN STOP 
512"1 C 1 .' ,:: .. :~=c.::1 
60 H .. r1 .. '=;=13 
7[1 Cl=POS<T:t!" II) 
80 IF Cl=(1 THEN 14(1 
90 C2=PO':;(T$[Cl+1] .. " ")+Cl 

100 IF C2=Cl THEN 190 
110 IF [1=1 THEN 130 
120 H=VAL(T$[I .. Cl-1]) 
130 M=VAL(T$[Cl+l .. C2-1]) 
140 S=VALCT$[C2+1]) 
150 U=3(1000/(S+60*(M+60*H» 
160 DISP I'SPEED (m/s) =";V 
1 70 [, I ':;F' 
l:3ta (;OTO 2[1 
19t1 (:1=(1 
200 GOTO 130 
2113 Et·m 

Display: 

1:31:3~J.4 
':;PEED ::m/s) 

3~1-Kf'l T I t'lE'O' 
2: 12: 58 U 
':;PEED "m.···s;. 

30-·n'l Tir'lE'" 
1 : 3[1 : 29 3::; 
'3PEED '-flt/;:;;) 

30-f,'f'l T Ii'lE'" 
26,44 
SPEED (.r,'····S,:. 

5.52549278186 

1 ::: . 7032418953 

Appendix F: Sample Solutions to Problems 401 

Flowchart: 

START 

IS 
LENGTH 

= O? 

YES 

YES 

INITIALIZE 
PARAMETERS 

FIND FIRST 
COLON LOCATION 

FIND SECOND 
COLON LOCATION 

DETERMINE 
NUMBER OF HOURS 

DETERMINE 
NUMBER OF MINUTES 

DETERMINE 
NUMBER OF SECONDS 

CONVERT TIME 
TO SECONDS, 

COMPUTE SPEED 

YES 



402 Appendix F: Sample Solutions to Problems 

Problem 8.4 

IIC1 f"'cr'l I': OUI1T IIIC; 
20 [dt'l (·H[6'n 
30 (.J:r=" ZEPO OIIE HolD THREE 

FOUP FIVE ~IX SEVEN EIG 
HT InllE " 

40 FOP 1=0 TO .~ 

50 FOP J=O TO 9 
60 f=I+6tI 
70 IF 1=0 THEN NS="" ELSE NS=WS 

n .. I.+5] 
t:~j V=I+6tJ 
90 NS=NStWS[f,f+51 

1(,1» DI':P 11$ 
110 I,E>:T J 
120 NE>;T I 
13(1 UlD 

Problem 8.5 

10 PEM tSPPINKLEP 
20 OPTION BASE 1 
3(1 DIN [1(5 .. 4) 
40 FOR 1=1 TO 5 
50 READ 0(1, I)O(I,2).D(I,3),D( 

r. 4) 
6~) DATA 124,133,13'3,142 .. 126,136 

,141,146.,129,139.,144 .. 149 
70 DATA 132,142.,147,152.134.145 

.,15~3 .. 155 
:::(1 ND:T I 
9~j rU="ABCO" 

100 PRINT "FT PSI NOZZLE" 
110 DI::;P "(·lIDTH., PRES~:URE"" 
120 INPUT (oJ., F' 
130 PR ItiT 
140 F'RI~lT ~j.,P; 
150 .J= t1It~ (5, IF"(P·5-11);-
160 IF J(l THEN PRINT" TOO LO~" 

It GOTO 11 (1' 
170 FOR 1=1 TO 4 
180 IF W(=D(J.I) THEN 220 
190 I~D:T I 
200 PRINT " TOO WIDE" 
210 GOTO 110 
220 PRINT" NOZZLE ";N$[I.Il 
230 GO TO 110 
240 END 

Display: 

(,j][lT H., PRE 3:::URE '0' 

15(1 .. 75 
I,j IDTH, i"kE:::::,UFE'~ 

140.,75 
(~I DTH, f-PE:,:::;LWE'! 
140.· 61) 
WIDTH, PPESSURE0 

Printer: 

FT F'::: j llOZZLE 

150 -:or.=- IlOZZLE .. ".) 

14(1 7S IW:::ZLE 

140 60 I·WZZLE 

0 

E: 

D 

Display: 

ZER,J 
mlE 
HoW 
THREE 
FOU~: 
F I ',,IE 
::: I :.< 
'::: E ',,I E I·! 
EIGHT 
InNE 
OI'IE 
OI·IE 
OI'IE 
O~IE 
IJ 1·1 E 
OIIE 

:::ERO 
OIIE 
Tl·JO 
THPEE 
FOUR 
F l',}E 

Flowchart: 

READ 
ARRAY OF 

DIAMETERS 

DETERMINE 
PRESSURE 

INDEX 

PRINT 
"TOO LOW" 

PRINT 
NOZZLE 

SIZE 



Section 9 

Problem 9.1 

(a) 1[1 F:Et'1 
2~) DEF 
30 FOR: 
40 D I :::f' 
5~:::1 tIE:, T 
60 EHD 

Display: 

- 5 
- 4 7 
- 4 4 
- 4 1 
- 3 : 
- 3 5 
- 3 .2 
-. 2 9 
- 2 .: 
- 2 ~: 

--2 
-1.7 
-·1 .4 
-1 . 1 
-- . ::: 

-.2 
. 1 
,4 
.{ 

.6 
9 

2 2 
2 5 
2 ::' 
3 1 
:3 4 
3 (' 

4 
4 3 
4 6 
4 9 

l~:OUtl 
rHR'D 
1=-5 

I Ftt 
I 

~~ 1 
--

0 5 
( I ) 

FAD l:~:t 
ItlT (D+ 

:::TEP 

~ 
-,_I 

--5 
-4 
-4 
-4 

-3 
-3 
-3 
-2 
-2 
-2 
-1 
-1 
-1 

~:1 
(1 
(1 

o 
1 
1 
1 
2 

2 
:3 
3 
"3 
3 
4 
4 
4 
5 
~ ._' 

5) 
:3 

(b) 1~) REt'1 H.OUtlD TO 3 DECH1AL F'LAC 
E':: 

2(1 DEF FNP2,(D) = IrlT(D:t1000+. 5) 
/1000 

30 FOR i=l TO 10 STEP .5 
40 DISP I,FHR3'SQR(I» 
5(1 tlE>:T I 
6~) DID 

Display: 

c 
'-' 

2 
2 ~ ._' 
3 
3 5 
4 
4 ::5 
5 
~ '-' 
6 
6 r;:,.-

'-' 
7 
7 '-' 
8 
e '-' 
9 
9 ~ 

'-' 
1 0 

225 
414 

· ::i ::.1 
· 732 
· :::71 

.121 
236 
345 
449 

.55 

.646 
739 

· :=::2:3 
.915 

.0:::2 

.162 

Appendix F: Sample Solutions to Problems 403 

Problem 9.2 

(a) 1£1 F:E~1 lAf,:EA 
20 DEF FHC(R) = PIlRlR 
30 FOR 1=350 TO 360 
40 DI~;P I, FtK( I) 
50 t·ID:T I 
60 EtlD 

Display: 

35(1 
3:::4::'45 1 OO(11::'~ 
3~'l 
3:::70~ I .? ,::; 65 1 :. 
352 

353 
3914 7~j (1. :::9-;-:"2 
354 
393b91 ::;249~-;-' 
355 
.?,9591~-I 21411:~~7 
356 

357 

35::: 

359 

(b) 10 F:Et'i lROI_:t:[' t' 
20 DEF FHC(P' lRlR 
30 FOP 1=350 T (1 
40 DISP I,FNR( N I') 
50 t·IE>·:T I 
60 DEF FNR(N) = INT(Nl1(1(1+.5)/1 

0(1 
70 Etm 

Display: 

3~2 
.35~~, 

354 
3~,~ 

356 
35~7 

35::: 
359 

Problem 9.3 

~:::4:::45 
3:::::704'? "36 

"?~1470 ,.:.:.. 
3936~·q :::2 
395919 21 
39::: 152 :::9 
400292 :::4 
402639 0::: 
404:::9 i (, 
·W71:;0 41 

1121 REM tFINO HYPOTEHUSE 
20 ltlF'LT :: 
313 ClEF F~IA':i<} = :30F:(>':l:'<+'I't.'I' ... 
40 FOP 1=1 TO 5 
50 ItlF'UT 'I' 
6121 DISF' FtIAC< ... 
70 t,n:T I 
8~) HID 



404 Appendix F: Sample Solutions to Problems 

Problem 9.3 (Cont) 

Display: 

'-::. 

:; 

4 
.; 40312423743 ,-, 

.3 
5 

6 
7 81024967591 

::;: 60232526704 
'-::.' 

9 

Problem 9.4 

(a) 10 REM *OC1AL TO OECIMAL FN 
21) DEF FNDeO) 
30 0=100000000000 
40 ~=;=tl 
5(1 )<=IPo:.O.'·O:' 
60 S=':::t.:3+:X: 
7(1 o=o->a:[1 
80 D=D.· 10 
90 IF D}=1 THEN 50 

113121 f'HD=':; 
110 Ftl EtW 

(b) 10 REM *OCT~L TO D~CIMAL FN 
20 DEF FtiD'O) 
30 D=100008000000 
40 ~=;=0 
5':) ;<=IP(O./[I) 
60 IF Xj=S OR X(O THEH DISP "IN 

PUT POSITIVE OCTAL" @ FND=0 
I! GOTO 12(1 

70 :3=':;:4::8+::< 
80 O=O<Od:D 
9€1 D=::I./ 1 (1 

100 IF D}=1 THEN 50 
11(1 FtID=~:. 
120 Ftl EtW 
130 DISP "INPUT OCTAL NUMBER"; 
140 I~lF'UT 18 
150 OISP Ft·We r:::~:, 
160 (;OTO 1413 
17(1 EtiD 

Display: 

INPUT OCTAL NUMBER0 
213(1 

128 

2(11 
129 

21]:=: 
INPUT POSITIVE OCTAL 

I) 

-H.l 
INPUT POSITIVE OCTAL 

255 
173 

217 
143 

':.' 

Problem 9.5 

113 PEM *FACTOPIAL FN 
20 It·W T >< 
313 D I ::; >: .. Ft·lF e >.:) 
4(1 GOT 1 (1 

51) OEF FtiF'A) 
60 F=1 
713 FOP P=A TO 1 STEP -1 
8(1 F=FlP 
90 t·jD:T F-

10(1 FtlF=F 
111) FN HW 
120 HlD 

Display: 

';" 

6 

6 40237370574E15 
'-::. 

12 
12 

.::. 

Problem 9.6 

72(1 

10 pal l outm TO 2 DECrt'lAL PLAC 
ES At·j ADD '$' 

20 ClEF F R2f: D:' 
30 N=INT 0*180+5)/1130 
413 IF FP N)=O THEN FNR2f="."&VA 

LI(N) ".00" ELSE FNR2.="."LV 
ALt(N 

513 FN Et·j 
60 OISP INPUT NUMERIC VALUE"; 
70 INPUT t·j 
80 OISP FNR2.(N) 
90 GOTO 70 

100 ENO 

Display: 

INPUT NUMERIC VALUE~ 
134 9876 
.134 99 

15(1 
$150.00 
? 



Problem 9.7 

10 REM tARRAY ROUTINESf 
;olj OPT I Ot~ BA::;E 1 
30 D HI A' 11 ,6:-
40 OISP "MAX ARRAY SIZE IS 10 R 

OWS BY 5 COLUMNS" 
58 OISP "NUMBER ROWS.COLUMNS" 
60 It~PUT Rl,Cl 
7121 REM tINITIALIZE ARRAY 
80 R2=Rl+l @ C2=Cl+l 
90 FOR R=l TO R2 

100 FOR [=1 TO C2 
liB A(R.,C)=I) 
120 ND:T C 
1313 NDn ~: 
140 REM ~ENTER DATA, ONE VALUE A 

T A TIME, BY ROW. 
150 FOR R=1 TO Rl 
160 OISP "INPUT DATA IN ROW";R 
170 FOR C=1 TO Cl 
180 INPUT AeR,C) 
190 ~lD:T C 
200 t·1E:on R 
210 OISP "00 YOU WANT TO SEE THE 

DATA TABLE BEFORE SUMMING ( 
'l OF.: H) II.; 

220 HlF'UT A$ 
230 IF A$="N" THEN 310 
2413 GO~;UB 378 
250 OISP "ANY CHANGES (Y OR N'"; 
260 HlF'UT B$ 
270 IF B$="N" THEN 310 
2813 GO::;U8 510 
298 OISP "MORE CHANGES"; 
30121 GOTO 260 
310 GOSUB 56(1 
320 GOaLl8 37(1 
33(1 OISP "CHANGES", 
34121 INPUT C$· 
350 IF C$="Y" THEN 280 
36121 STOP 
370 REM tCOPY ARRAY 
38121 OISP "COPY TABLE ON PRINTER 

OR DISPLAY (P OR D)"; 
390 IHPUT Z$ 
4121(1 IF Z$="P" THEN CRT IS 2 
41121 D I :3P 
420 OI':;P 
43121 FOR R=1 TO R2 
44121 FOR C=1 TO C2 
45121 OISP A(R,C); 
460 ~lDn C 
47121 OI':;P 
480 ~lG:T R 
49121 CRT IS 
51218 RETURt·l 
51121 REM tCHANGE ELEMENT 
520 OISP "ENTER ROW. COLUMN. VAL 

UE" 
538 I~lF'UT R .. C .. V 
54121 A(R,C)=V 
55tl F'ETUF'tl 
56121 REM tSUM EACH ROW AND PLACE 

SUM IH LAST COLUMN 
570 FOR R=1 TO Rl 
580 FOR (=1 TO Cl 
590 A(R~(·2)=A(R!C2)+A(R~C) 
613(1 t·1D<T C 
618 tlE:n R 
628 REM 'SUM EACH COLUMN AND PLA 

CE SUM IN LAST ROW. 
38 FOR C=1 TO Cl 
4121 FOR R=1 TO PI 
50 A(R2!C)=A(R2!C)+A(R!C) 
60 tlE><T R 
70 t~E:on C 
80 REM tFINO SUM OF VALUES IN L 

RST ROW (OR COLUMN) 
90 FOR C=1 TO Cl 
00 A(R2,C2)=A(R2.C2)+R(R2.C) 
10 t·1E:':T C 
20 OISP "SUMMING COMPLETEO" 
3121 RETUF.:t~ 

Appendix F: Sample Solutions to Problems 405 

Flowchart: 

NO 

NO 

INPUT NUMBER OF 
ROWS, COLUMNS 

ADD 1 TO ARRAY 
DIMENSIONS FOR SUMS 

INITIALIZE ARRAY 
ELEMENTS TO ZERO 

VIEW 
ARRAY BEFORE 

SUMMING? 

YES 

GOSUB A 

ANY 
CHANGES? 

YES~------------. 

GOSUB B 

MORE 
CHANGES? 

'-------------. NO 
GOSUB C 

GOSUB A 

YES 

YES 



406 Appendix F: Sample Solutions to Problems 

Problem 9.7 (Cont) 

Display: 

r'lm: APRA',' ':: I ZE I ~o: 1 (1 POW:, E:',' 
OLUI'IH:: 
~IU~18EF: F:OW::, C,JLUI'1tI:c: 
,-, 

INPUT DATA IN ROW 1 

12 53 

1 4 " ~ :~: 

HWUT OriTA Itl ROI'J ~-:: 

1 1 ,E, 
-

5t: 
' .. ' 
43 I c> 
I I-IF'UT OAl A llj ~:OI'J " 

12 ;-'::: 

14 :;.:=: 
DO YOU I,JAiH TO ~:,E[ fHE DATi'! TflBL 
E BEFORE SUMMING (Y OR H)0 , 
COPY TA8L~ OH PRINTER OR DISPLAY 

(P IJ~~ [I)') 

o 

12 ':9 1 '3 6:~ 
11 43 22 Sf. 
13 52 12 7:;:: 
(\ (1 t1 (1 

CHAt.~GE':; .:: I_!. Atr)' 
'l 

1 4 
4 3 
1 4 

OF: 

7::: '.) 

78 ~) 

9::: ~::1 

1'1':' '? 

ENTER ROW, COLUMN, VALUE 
.::.. 

1,3,,140;7 
1'lORE CHAI'IG[~::'c' 
I·j 
SUMMING OMPLETED 
COPY TAB E ON PRINTER OR DISPLAY 

(P OF: D 'c, 
R 
CHANGES'c' 
H 

Printer: 

1 2 59 1 i.9 
1 1 4 3 2 56 
1 3 ~.-, 1 78 "_I':" 

37 54 4 03 

14.67 40.95 
43 _ 7::: ( f . f ( 

14.9841,28 
{,:'.43 160 

Flowchart (subroutines): 

SUBROUTINE A 

COpy 
ARRAY ON 
PRINTER? 

SUBROUTINE B 

ASSIGN ARRAY 
ELEMENT NEW 

VALUE 

SUBROUTINE C 

FIND ROW SUMS 
AND PLACE IN 
LAST COLUMN 

FIND COLUMN SUMS 
AND PLACE IN 

LAST ROW 

FIND TOTAL 
SUM 

YES 

I CRT IS 2 I 
I 



Problem 9.8 

18 GIM I$[32],F$[1],Mf[2800l 
29 DISF "CODE OR DECODE C OR D 

30 I t~PIJT Fi 
48 IF F$=",='" THEti L=l EL':'E L=2 
58 OISP "CODE NUMBER PLEASE" 
6(1 IrWL'T ':' 
713 ;;,Rt'WOt'l I:E '3 
:38 r'l$=";; 
9121 [I I SF' "T'I'PE r1E'::":'AGE ONE I·JORD 

AT A TIME. TYPE 't' TO END N 
E':;~:;AGE II 

11219 OISP "GIVE ME YOUR MESSAGE" 
110 INPUT IS 
128 IF I.="t" THEN 160 
130 ON L GOSUB 1889,2999 
140 N$=t1$:!.,C$:!.," " 
150 I='OTO 119 
160 DISP N$ 
17(1 Et-m 
1000 REN tENCODING ROUTINE 
1010 C$="" 
1020 FOR 1=1 TO LEN(IS) 
1030 C$=CS&CHR$(65+(NUMCIS[I.I]) 

+INT(26*RNO» MOD 26) 
1 040 ~1E>a I 
1050 RETUR~1 
2090 REN tDECODING ROUTINE 
2010 CS="" 
2029 FOR 1=1 TO LEN IS) 
2030 CS=CS&CHR$(65+ NUM(I$[I, 11) 

-INT(26*RND» 00 26) 
2040 NE:~T I 
2059 RETURN 

Appendix F: Sample Solutions to Problems 407 

Flowchart: 

L = 1 

ADD CODED WORD 
AND SPACE TO 

MESSAGE STRING 



408 Appendix F: Sample Solutions to Problems 

Problem 9.8 (Cont) 

Display: 

CODE OR DECODE: C OR D 
'-:-.' 

C 
CODE NUMBER PLEASE ., 

123 
TYPE MESSAGE ONE WORD AT A TIME. 

TYPE 't' TO END MESSAGE 
GIVE ME \OUR MESSAGE 
s· 
GET 
.:;. 

t'lE 
r:;. 

TO 
'-::' 

THE. 
.,":. 

BA~lk 

T It'He 

l 
EWV se p~ YGB ZSMD NQ VWMS 

COGE OP OECGDE: C OR 0 
.-:. 

D 
CODE NUMBER PLEASE 

12.:; 
riPE t'lE::;SAGE 

TYPE 'I.' TO 
G I '.}E t'lE 'lOUP 
0:,.' 

PF: 
s· 
' .... eE: 
~. 

ZS~1D 
.-::' 

t·lI) 
,':' 

',}~lt'l':; 
,-, 

t 

NE WOPD AT A TIME. 
t·lD t1E'3:3AGE 
E::,:;AGE 

GET ME TO THE BANK ON TIME 

CODE OR DECODE. C OP 0 
.::. 

o 
CODE NUMBEP PLEASE 
.";. 

TYPE MESSAGE ONE WOPD AT A TIME.. 
TYPE 'f' TO END MESSAGE 

GIVE ME YOUP MESSAGE 
':.:' 

Nt~L SNUcW '0 
,-, 

I GP):: R 
':.:. 

FWP 
.-: .. 
BVE 

:t 
SYLVESTEP WHERE ARE YOU 

Flowchart (subroutines): 

SUBROUTINE A 

ENCODE WORD 
USING ENCODING 

FUNCTION 

SUBROUTINE B 

DECODE WORD 
USING DECODING 

FUNCTION 



Problem 9.9 

10 REM tFN V ROUTINESt 
20 OPT I m'l BA 1 
3(1 D I t1 A':: 2[1 .. 
40 CLEAP 
5Q' 0;.1 t::E '/It L" HlI T" GOSUB 12'3 
60 ,Jt·l KE.YIt 2 .. " HlF'UT" GO::::U8 23(1 
70 ON KEY It 3 .. "COPY-A" GOSUB 320 
80 ON KEYIt 4 .. "CHANGE" GOSUB 46~ 
90 ON KEYIt 5 .. "SUM" GOSUB 510 

100 KEY LABEL 
110 GOTO 110 
120 DISP "NUMBER POWS .. COLUMNS" 
130 INPUT Rl .. Cl 
140 REM tINITIALIZE ARRAY 
150 R2=Rl+l ~ C2=Cl+l 
160 FOP R=1 TO R2 
170 FOR C=1 TO [2 
180 A'~F: .. C;'=0 
190 t·1D:T C 
213[1 NEi<T ~: 

210 DISP "ARRAY INITIALIZED. NOW 
INPUT YOUR DATA." 

220 RETURN 
230 REM tENTEP DATA .. ONE VALUE A 

T A TIME .. BY ROW. 
2413 FOR R=1 TO PI 
250 DISP "INPUT DATA IN ROW";R 
260 FOP C=1 TO Cl 
270 H1PUT A'::R, C> 
280 Ncn C 
290 t·lcn ~: 

3130 DISP "ARRAY IS FILLED. DATA 
INPUT COMPLETE." 

31[1 RETUPN 
320 REM ~COPY ARRAY 
330 DISP "COPY TABLE ON PPINTER 

OP DISPLAY (P OR D)"; 
34t' II'lF'UT Z$ 
350 IF ZS="P" THEN CRT IS ;2 
36'3 ['I:;::P 
370 [lI~:F' 
380 FOR P=1 TO R;2 
390 FOR C=1 TO C2 
4130 [lISP Aep .. c'; 
410 t·1E:'<T C 
420 DI:::P 
4313 1'1C<T R 
4413 CPT IS 
450 RETURN 
460 REM tCHANGE ELEMENT } 
470 DISP "ENTER ROW .. COLUMN .. VAL 

UE" 
480 INPUT R,C,V 
490 A'::P .. C)=V 
500 F:ETURN 
510 REM tSUM EACH ROW AND PLACE 

SUM IN LAST COLUMN. 
5213 FOP P=1 TO PI 
53(1 FOR C=1 TO Cl 
5413 A(R,C2)=A(R .. C2)+A(R .. C' 
55(1 t·lcn C 
560 NEi-:T R 
570 REM tSUM EACH COLUMN AND PLA 

CE SUM IN LAST ROW. 
580 FOR C=1 TO Cl 
590 FOR R=1 TO Rl 
680 A(R2,C>=ACR2.C>+A(R,C) 
610 t~EXT R 
6213 t·1E)n c 
630 REM tFIND SUM OF VALUES IN L 

AST ROW lOR COLUMN) 
640 FOR C=1 TO Cl 
650 A(R2,C2)=A(R2 .. C2)+A(R2,C) 
66(1 ND:T C 
670 DISP "SUMMING COMPLETED" 
68£1 RETUPN 

:=:U~1 
ItHT It·WUT COP·t'-A CHANGE 

Appendix F: Sample Solutions to Problems 409 

Array initialization routine on Q. 

Input data routine on GJ. 

Display or print array on GJ. 

Change array element on GJ . 

Find sum of rows, columns, and total on B. 

The key labels appear on the display and the program 

waits for you to press a special function key. In this pro­

gram, you must initialize the array before you do anything 

else. So, first press Q and answer the question that 

appears on the display for summing the rows and columns 

of some tables of your own. 



410 Appendix F: Sample Solutions to Problems 

Section 10 

Problem 10.1 

10 REM tNATIONAL SUMMARIES 
20 PRINT USING 30 
30 IMAGE" POPULATION",5X,"ARE 

A POP [lEN::;".' 
40 PRINT USING 50 
50 IMAGE 7X,"ANNUAL GNP",5X, "GH 

P.·PER~;" .... 
60 PRINT USING 70 
70 IMAGE 32(11_11) 
:30 OISP "t'lATION" 
9~3 INPUT ~u: 

100 IF LEN(NI)=0 THEN STOP 
110 DI::;P "POP, AREA, Gt·jp".: 
120 HlPUT P,A G 
130 PRINT USING "K.//" NI 
140 PPIrlT U:3It.G 15(1, P.,A;P.··A 
150 IMAGE X.2(3DC3DC30),2X.DCDDZ 

D' 
160 F'P ItH IY:; H1G 170 .' G _, G----P 
170 Il'lAGE I" ,DC3DC3DC3DC3D, " 

I", 2DC3D/--
1:::0 GOTO :::0 
19(1 END 

Display: 

iH'!': I (11-1 
,', 

CHINA 
POP, RFER, GtW':' 
865193550, 9560980J 223000000000 
t-1AT Ie.N 
,', 

utn TE[I ::' -j'ATE.:3 
F'OP, AREA.. Gt-w':' 
21681 7(a::H.:.1.· 9363123" 1 7:::: 14~::H:::1€H'::H)"~0 ~1 
t-HnIO~l .-, 
CFtt-1ROR 
POP, RREA, GI-1F":' 
23469142,9976139,19578500000e 
t-1RT lOti 
'-::' 

::. I ~lGfiPUF_ t: 
pop, fWER, GI-lF"~' 

2322576,581,5885600000 
~lATION 
.::' 
MOt-1GOL! R 
POP, RREA, Gt-W'~' 

1531940,1565000,547000000 
HAT ION 
? 
l~lATAR 
POP .. AREA, G~lF"~' 
97792,11800,4044000000 
NATION 
'J 

Printer: 

POPULAT I 011 AREA POP DEHS 

A t-H-l U A L G t-W 

CHII-lA 

90.5 

I 223,088,000,000 I 258 

23.2 

11,7S1,400,088,000 I 8,216 

CAt-lHDA 

23 .. 463 .. 1429.,976 .. 139 2_4 

~; I t-lGAF'O~:E 

2 .. 2:~:2.'576 581 3 .. 997.5 

$ 2.,534 

,'101-lGDl_ I A 

_0 

54?! 00(1 .. O~3[1 $ 357 

C! AT HR 

9 (",79.2 11 .' (1~30 :::! 9 

I 4,044,000,000 141,353 



Problem 10.2 

10 REM tEXTREMES 
20 PRINT USING 30 
30 IMAGE "ANGSTROMS METERS 

LIGHT -'T'ERr;:~S II 
40 PRINT USING 50 
50 IMAGE 32(11_11) 
60 DI:::P "Ut·j"T:~' tl .. t'L L" 
70 DISP "VALUE comma UNITS"; 
:;::(1 I ~lPUT >0:. US 
9(1 IF US="M" THEN 170 

10(1 IF US="L" THEN 190 
110 A=:O: 
120 t1=A·100(1I~1I]0(100[' 
130 L=t·V9.46EI5 
14(1 PRINT USING 150 A;M;L 
150 IMAGE ?(O 30E.X) 
16~) (;OTO 7~3 

170 A=XS10000800000 
lPO GOTO 120 
190 A=Xt9 46EI5*10(10000000(1 
20[: GOTO 120 
2:13 Et·lD 

Display: 

ut-lI T:::: H· t·1. L 
VALUE comma UNITS? 
556(1 .. Ii 
VALUE comma UNITS7 
141 (I .• t'1 
VALUE comma UNITS0 
5 6E-T. fi 
VALUE comma UNITS? 
lE-14. t1 
VALUE comma UNITS? 
1 7(10~)O.' L 
VALUE comma UNITS? 

Printer: 

ME;ER~ LIGHT-YEARS 

5 560E+0a3 ~.560E-00~ 5 877E-02J 

410E+013 1.410E+803 1 490E-013 

5 600E-uu3 5 ~60E-013 ~.920E-029 

.000E-004 1 000E-014 1 057E-03~ 

6'''':::E+031 I. ':;0:::E+021 1 700E+O<35 

Appendix F: Sample Solutions to Problems 411 

Flowchart: 

~--~ 
INPUT 

MEASUREMENT VALUE, 
UNIT 

YES 
>-c.=.::""1 A = VALUE X 10'0 

YES A = VALUE x 
9.460 x 1015 X 1010 

A = MEASUREMENT VALUE 

M = A/1010 

L = M/9.460 X 1015 

PRINT 
A,M,L 



412 Appendix F: Sample Solutions to Problems 

Problem 10.3 

10 F'Ul tCHEC.f:It!G F1eCT 
2(1 DI':;P "PEFEREt·ICE DATE".; 
30 I t·lPUT T$ 
4(1 D I ::;p "BEG I WI I tlG BALAtICE"; 
5~) HlPUT B 
60 PPINT "SUMMARY FOP ";T$ 
70 PRINT USING 80 
80 IMAGE /" CHECVS CHG DEPOSI 

E; BALRtKE" 
90 PPINT USING 100 

180 IMAGE 32("_") 
110 PRINT USING "/24X,DCDDZOD" 

; B 
12(1 DISP "TRAN::;ACTION (C.D). A~1T 

130 I ~lPUT C$, A 
140 IF C$~"C" THEN 170 
15[1 IF C$="D" THE~I 250 
160 ::;TOP 
1 70 F~EP'=; 
181) IF B <275 THEtI F=. <:2 
19(1 B=B--A-F 
<:80 PF.:ItH U~.HIG 210 .; A.;F,B 
210 It1AGE DCDDZ.OD,2i-~, .DD, lliC.DC 

DDZ DD 
220 IF 8{0 THEN PPINT USING 230 

.; -B 
230 IMAGE /"**WAPNING $",***2 

DO," OVEPDPAFT**"/ 
240 GO TO 12[1 
<:50 B=B+A 
260 PPINT USING 270 J AlB 
270 IMAGE 12X,2(2X,DCDDZ.DO) 
28(1 (;OTO 12(1 
290 END 

Display: 

PEFEPEt·ICE DAlE'-' 
JUt'IE 1979 
BEGINNING BALANCE0 
1827.41 
TRANSACTION (C,O) AMT0 
(:,850. ~)Ij 
TRANSACTION «(:,0), AMT0 
(: .. 54.79 
TRANSACTIOt·! (C,[I). A~1T·j 
[1 .. 55.45 
TRANSACT I Ot·j «(:, D:;, AMy'·) 
(:,185.49 
TRANSACTION «(:,D), AMT? 
D,255.00 
TRANSACTION (C,O), AMT? 

Printer: 

SUMMAP~ FOR JUNE 1379 

CHECK:; 

::::50 t10 
54 7:" 

BFlLAt·jCE 

1,027.41 
177.41 
122.40 

~55.45 177 .. ::5 
-;0 • :::6 

.t:.HJAF.:t·j I NG $***7 86 OVER[lPAFT** 

255 ~~h3 247. 14 

NO 

Flowchart: 

IS 
BALANCE 

< 275? 

YES 

CHECK CHARGE = 0.22 

CALCULATE 
NEW BALANCE 

< O? 

YES 

PRINT 
OVERDRAFT 

WARNING 

IS 
CODE 

CALCULATE 
NEW 

BALANCE 

NO 



Problem 10.4 

1 (1 PEt,i t ~,,~:~,('!::;,=;~ ': 

2[1 FAD 
30 F'F:ltH " n'" TAE":~').' "F", TAE"24 

40 F'F:I!H 

t:o D=-35 
70 P=DtNtSINCPI H' 
,='0 PF I tH N.' TRE'" 2" P, TAE' C 1 ,=, ... p. 0 
90 tj=t'j+l 

1 (:10 I::;OTO 7 (1 

110 EtiD 

Printer: 

n f> 

90.93266739;-'5 
4 

5 
J 0::: . '=:62419151 

6 
105 

7 

9 
1 ~:::17 73634514:=: 

1 [1 
10::: 15594:::(131 

11 
108. 467~]343:::4 

12 
1 ~):::. 7(r399:3::'4.3 

13 
1 ~3::: :::::::3627251 

14 
IB9. ~13525?b3:3 

15 
109.153637679 

Section 12 

Problem 12.1 

2.59807621136 

2.82842712475 

2 93:::9;;:626146 

:::. ~)371:361 ?383 

2:.06146745:391 

3.07:31:312:3994 

3.09016994374 

3 . t199~35:312526 

3.10582854123 

~3. 11110363574 

3 . 115293~37537 

3.11867536226 

10 RE~ t~ARDIOIO 
2t1 PEtl 1 lJ! GCLEflP 
30 SCALE -3,1,-2 .. 2 
4t1 PHD 
50 FOP 1=0 TO 2tPI STEP PI/25 
60 t'1I)VE 0 .. (1 
70 R=I-COSO) 
80 DRAW RrCOSCT) .. prSINCT) 
90 NDn T 

100 END 

Appendix F: Sample Solutions to Problems 413 

Problem 10.5 

1~ REM tWEIGHT PLOT 
2[1 i)RTfl~, 2 .. :) 5.·11.3.'i3 9 .. 1~!.7., 

176 .. 19.1 .. 21 9 .. 24 ::::_.2~: 1.32 

30 DATA 53 8.'55.7~56 7.56 7 
4A PRINT USING 50 ; 0.10,20;30; 

40.i 50 
50 IMAGE 2X .. D .. X .. 5C3X .. 2D) 
60 PRINT USING 70 
7~::1 IMAGE II +11., 5( 11 ____ +11) 

30 FOR 1=0 TO 13 
90 READ ~J 

100 PRINT VAL$(I);TA8C3);"+";TAB 
c:;+W .. ··2).; "tH 

110 t·iE:>n 
120 Et,D 

Printer: 

u 10 20 30 ~D 50 
~-----+----4-----+----+----+ 

+ .l. 
+ l 
+ 
+ 
+ 
+ 
+ 
+ 

+ 
i-:)+ 
1+ 
~~~ + 
3+
4+
5+
6+
7+

l

:1

414 Appendix F: Sample Solutions to Problems

Problem 12.2

10 REM tPAO SINE CURVE
20 GCLERF.:
30 SCRLE 0,2tPI,-1,1
4(1 XA>': I~' 0, PI .···4
50 'lA;<IS ~3., 5
60 F..AD
7~} t'10VE -3,~}

80 FOP X=O TO 2tPI+ 3 STEP PI/2
o

90 DRAW X.SIN(X)
100 t·jD:T ,,:
110 END

Display:

.---"-

\"'"

\'" ,
\,

" --+--_.-+--. +----~---+---t

"""

\.

Problem 12.4

,,/
./

Problem 12.3

1'~ PE~l IF ILL. '=' I tl (:':) .. ,::
20 G(L.EAF.:
30 PAD
40 ':'CAL.E -4H'T, 4t.PI, - ~., 1.5
5f1 'r'A~-.::I~::; O· 5
6(1 >':A:·:I '=' (l.PI·/tO
70 FOP X=-4tPI TO 4tPI STEF PI

2~}

80 IF X=-4tPI THEN MOVE X,SIN~X

90 IF X=0 THEN 130
1 (1(1 DRAI·J :':., S I t..J' ><) /:<
110 t'1O\}E >',,0
120 DRAW X,SIN(X)/X
130 NE:n :":
140 END

Display:

Run two programs back to back. The ':::: C: i:::i L .. E:: statement in the first program would be:

The ::::: c: ::::: L. i:::: statement in the second program would be:

hH ~CALE O,36000,-36000 ~c000

Before you run the second program, copy the graphics screen onto the printer. When you copy the graphics from

the second program, without advancing the paper, you will have a spiral twice as wide as the original design.

Problem 12.5

10 REM tOI TRIBUTION OF HEAOSt
20 GCLEAR PEN 1
30 3CALE - 5 .. 11 .. -.015,26
40 i<A~<I::; (1, L 0.,11
50 YAXIS 0) 02~01 .26
60 REM tLABEL X-AXISt
70 LDIR ~)
8(1 FOR X=(1 TO 10
90 MOVE X+.3.-.015

100 LABEL VALS(X)
110 ND':T ><
120 REM tLABEL Y-AXISt
130 FOR Y=0 TO .26 STEP .02
140 MOVE -1.S,Y-.01
150 LABEL VALley)
16(1 t·jE:,n 'j

170 REM ¥PLOT HISTOGRAMt
18(1 t·j=10
19~3 p, 0= . 5
200 ~RINT "II HEAOS","PPOBABILITY

21 (1
22~1

230

240
250
260
270
2:3~3
290
3(10
3H3
32~3
33(1
340
350
3613

Display:

26
24

.22

.2

1 :::

,16
, 14

12
.1

Printer:

~10VE (1,0
FOR P=~3 TO 1 ~j
D=FA(N-P'tPARtFNFfN'-(FNF(R)
tFt~F' 1-1 -p ') -.
PRINT P.INT(OtI000+ 5)/1000
DRAW F:,O
IDPmi 1,O
HE:H R
OPA~i 11.,0
OEF Ft~F(>D
F=1
FOR I=X TO 1 STEP -1
LET F=FlI
t·len I
FNF=F
FN END
Et·j[J

II HEFID':,
o

PF: BABILIT\'
01

1 1
2 44

1 " 4 ~=15
46
0:,
17
,H

9 1
01

Appendix F: Sample Solutions to Problems 415

Problem 12.6

10 REM tt*t HANGMAN tttt
2(1 DIM X(I(1),O$[25],P$[25],A$[2

8],QS[52],C$[I],GS[I],B$[26]
30 INTEGER Y(140)
40 Q$='iabcdef9hljklmnopqrtsuvw~

vzABCOEFGHIJKLMNOPQRTSUUWXYZ

5~~1 I 1 = 1
60 GCLEAR ~ CLEAP
70 SCALE -5,35,-10,20
80 [lEG
9(1 OISP "HAVE A FPIEND ENTER A

WOPO--AT MOST 23 CHARACTERS,
SPACES NOT ALLOWEO--NO PEEKI
Nt:; I!"

100 DI:3P "l~OFW".;

11(1 INPUT AS
120 IF POS(AS,"")110 THEN 1(1(1
130 CLEAP I CLEAR ALPHA DISPLAY
140 GOSUB 880 I DRAW SCAFFOLD
15(1 L=LEt~ (AS)
160 Ll=12-INT(L/2)tI25
1713 R$[1,,25]= II II

180 0$[1.25]=""
19(1 B$[1 .. 26]=""
2(1(1 P$=AS
21(1 C=0
22(1 J=O
23(1 D$[I,L]="-------------------

24(1 t'10\.JE L 1, -2
25(1 LABEL OS
26(1 MOVE -5,-4 ~ GCLEAP -2
270 LABEL "WHAT IS YOUR GUESS0"
28(1 MOVE -5,-6 ~ GCLEAP -4
290 LABEL "you HAVE "&VAL$(6-C)&

" GUESSES LEFT" ~ MOVE -5,-8
30"3 C$=II_II
311:) IHPUT C$
320 X=POS 0:: QS, C$:)
33(1 IF X=0 THEN 280
34(1 IF X>26 THEN 370
350 ::<=X+26
360 C$=QS[X, >;]
370 :'<=POS (B$., CS)
380 IF X=0 THEN 43(1
390 DISP "YOU TURKEYI YOU ALREAD

Y GUESSED THATI NOW TPY AGAI
1-1 "

4(1(1 BEEP
41 (1 l,lA IT 4000
42(1 GOTO 280
430 B$[J+(:+I]=C$
440 X=POS(PS .. CS)
459 IF X=(1 THEN 749
46(1 t~= 1
470 .J=J+l
4S0 I CHE(:K TO SEE IF THE SAME L

ETTER OCCURS MORE THAN ONCE
490 osn:., X]=C$
500 R$[X .. >;]=" "
51(1 I BLANK OUT OCCURRENCES OF L

ETTERS TO CHECK FOP MORE
52(1 X(N)=X
530 X=POSCR$,CS)
54(1 IF X=0 THEN 5S9
550 B$[J+C+l]=(:$
560 N=N+l
57(1 GO TO 470
580 FOR 1=1 TO N
599 MOVE Ll,-1
600 FOR 14=1 TO X(I}-1
610 IMO',IE 1.27,0
620 NEXT 14
639 LABEL (:$
640 I RESTORE WORD TO ORGIHAL FO

R~l
5(1 RS[XO::I),X(I)]=C$
6(1 1-1E)<T I
70 IF J{L THEN 28(1
89 BEEP
90 OISP 0$;" AW SHUCKSI YOU WI

N! II

(Continued on next page.)

416 Appendix F: Sample Solutions to Problems

Problem 12.6 (Cont)

7013 ~~AIT 1131313
710 GRAPH
7213 ~~A I T 3131313
7313 GO TO 8213
740 DISP C$;" --WRONG I !! I I I"
7513 WAIT 4013
760 C=C+1
7713 GOSUB 9813
7813 IF C{6 THEN 2813
790 BEEP
81313 PRINT "HA HAil I WINIII"
810 PRINT "BY THE WAY. THE WORD

~~AS ".; RI
8213 DISP "DO YOU WANT TO PLAY AG

AIN (y/t.l)'~'"

B3~) INPUT CI
B413 IF UPCI(CS)="Y" THEN 513
850 IF UPCS(CS)="N" THEN 870
B613 GOTO 840
870 END
B80 I DRAW SCAFFOLD
890 GCLEAR
900 PENUP
910 MOVE 8 .. 1
9213 lORAN -I.e @ IDRAW 13.1B
9313 IDRAW 7.0 @ IDRAW 13.-3 @ lOR

AW 8.2
9413 lORAN -6.8 @ IDRAW 8.-17
958 IMOVE 13.14 @ IORAW 3.3
968 IMOVE 1.0 @ IDRAW -4.-4
978 RETURN
9813 ON C GO TO 998.11313.11713.1210

. 12513. 1300
990 lORAN THE HEAD
10130 Y=COS(45)
1€110 :'':=I-Y
18213 MOVE 14.15
10313 FOR 1=1 TO 2
10413 IDRAW -Y.-X
1050 IDRAW -X.-Y
113613 I DRA~J >(.-Y
1070 IDRAW Y.-:~

113813 X=-X @ Y=-Y
10913 NE~:T I
11013 IMOVE 0 .. -2
11113 IDRAW 13.-.2
11213 GOTO 13413
11313 I DRAW THE LEFT ARM.
11413 MOUE 14 .. 12.5
11513 IDRAW -3.-2 5
11613 GOTO 13413
1170 I DRAW THE RIGHT ARM.
11813 MOVE 14 .. 12.5
11913 IDRAW 3.-2.5
121313 GOTO 13413
12113 I DRAW THE TRUNK
12213 MOUE 14 .. 12.5
12313 IDRAW 13.-4.5
12413 GO TO 1340
12513 I DRAW THE LEFT LEG
12613 MOUE 14.8
12713 IDRAW -3.-5
12813 IDRAW -I.e
12913 GO TO 13413
13130 I DRAW THE RIGHT LEG
13113 MOVE 14.8
13213 IDRAW 3 .. -5
13313 IDRAW 1 .. 13
1 3413 RETUR~1

Problem 12.7

10 REM tCREATE LANDSCAPE
1888 PEN t e GCLEAR
1010 DEC;
11320 SCALE 0,255,O,191
1030 REM tDRAN MOUNTAINS
le4~3 PUIUP
11358 FOR A=-15 TO 255 STEP 15
1060 PLOT A+15,58t(COS(180,255tA
)+1)

1070 NDn A
10B8 PEt·lUP
1898 FOR B=186 TO 255 STEP 15
1188 PLOT R .. 188*SIN(98/255*B)+18

Problem 12.7 (Cont)

1110 t·1E:":T E:
1120 REM tORAN LAKE
113ij >;A>n::; 10.· 0., 1;' .. 190
1140 H=100/TAN(10)+18
1150 R=188/SIN(10)
1 160 PEtlUP
1170 FOR C=170 TO 190 STEP 1
1180 PLOT RtSIN(C)+98 .. RtCOS(C)+H
119~] ND':T C
1280 REM tPLOT TREES
1210 TS=CHRI(8)&CHRS(28)&CHRI(62

::0 :!,CHf;:1 (127::0
1220 FOR X=4 TO 248 STEP 60
1230 t10' . ..'E >': .. ,~:,
124(1 C;OSUE: 2880
1 250 t~Dn :'<
1268 FOR X=52 TO 208 STEP 48
127(1 t·10' . ..'E ><: .. 29
1288 GO::;U8 38~38
1290 t·1E)<T :x:
13t2W ~10' . ..'E 15 .. 35
13113 C;0:::;U8 3(1013
1328 MO' . ..'E 11)1) .. :34
1330 C;O:;:;UB 2138~3
13413 MO'.}E 4 .. 116
1351) C;O::;:UB 31)013
1361) MOVE 198 .. 15
13713 GOSU8 31)\)1)
1381) MOVE 24:3 .. 124
1390 C;OSUB 20~)0
1401) MOVE 241) .. 124
1410 C;O:::;UB 3(11)0
14213 MO'.'E 221) .. 5(1
14313 C;OSUB 3080
14413 MO'.}E 200 .. 613
14513 C;OSUB 31)00
1460 REM *DRAW CLOUDS
1470 XAXIS 190 .. 0 .. 150 .. 250
14:30 XAXIS 1:35 .. 13 .. 140 .. 253
1490 XAXIS 180 .. 0.13\) .. 255
15\)\) XAXIS 175.\) .. 135 .. 250
1510 XAXIS 170 .. 8 .. 145 .. 245
152\) XAXIS 165 .. \).15\) .. 225
153\) C;OTO 5000
2080 FOR 1=1 TO 3
20 P) BPLOT TS .. 1
2021) t~Dn I
2030 RETURN
3080 FOR 1=1 TO 4
3010 BPLOT TS .. 1
31320 ~IEXT I
3030 F:ETURN
513138 REM *BPLOT MAN IN MOON*
51310 DIM M$[46J .. M2$[69J
5020 MO'JE 13 .. 191
50313 GOSUB 51413
513413 BPLOT ~1$.. 2
513513 REM *MOVE MOON
5060 FOR Y=191 TO 13 STEP -1
50713 FOR X=O TO 255 STEP 8
513:3(1 ~JA I T 1,;:'00
5(191) MOVE)< .. l'
5101) BPLOT ~12S .. 3
5111:1 t10'.}E >(.. l'
5120 ND:T ?':
513(1 NE~;T
51413 MI=" E..1f- 1?~l!1E..t!>.n.Lnz.r Q.:r'Q.)~*H:..t

tS'-'l_:il_~_ ~tl.(.1..?!>.?EJ- J-1E.. ~"
5151) M2$=" E:..E.. ~f-f-1?~l!1Q.Eh.!z.ntLlfi::::.:.r

l...Q..ra.Q..'il~l!1f-.!I::..I::.~I::..S.<Q.tL.l!1L~ __ ~
tlll.6 ±..L.~. G2:;.? Q£)-LI- f- ~ E:..E.. ~ "

5168 RETUR~1
51 7(1 Et~D

Index

Bold page numbers denote primary references; regular page numbers denote secondary references.

,:iE:":: (absolute value), 65, 66
Accessories, 327-332
Ae:::; (arccosine), 72
Active keys, 363
Adding statements, 104
Addition (+), 49
Advanced plotting (see E: F' LOT), 229-245
Allocating memory to program variables, 107
,=!LF'HA,189
Alpha display, 217
Ampersand (:~.), 58
m·w operator, 61
Antilogarithm, 71
Area of circle program, 121
Argument, 65
Arithmetic, 49
Arithmetic hierarchy, 51
Array concepts, 129-130

B

Lower bound, 131
One·dimensional, 129
Subscripts, 129
Two-dimensional, 130

Backing up discs, 291-292
em) key, 44

Fast backspace ((SHIFT)cm), 44
Backspace with graphics mode input, 222, 223, 228
Backwards spelling program, 140
Base conversions program, 249
BASIC language, 82-83, 367-379

Predefined functions, summary, 372-373
Statements, syntax summary, 374-379
Syntax guidelines, 85, 371-372

BASIC programming, introduction, 82-90
BASIC typewriter mode, 39
E:EEP, 96-97

Chime program, 168
Key of C Major program, 167

Binary programs, 287
Blank spaces, 176
E: F' LOT (byte plot), 229-245

Condensing the string assignment program, 235

c
Calculator mode, 22, 49, 56
Calendar Functions program, 28
Canceling key assignments, 168
Capital letters, 39
~ key, 39-40
Cardioid program, 206-207
Carriage return and line feed, 175-176
CAT (catalog), 31, 273-274
Cathode ray tube (see also, CRT), 14, 22, 42, 189-190
;: ElL. (ceiling), 65, 67
Celsius/Fahreinheit conversion program, 116
CHA I [·1,284-286
Character codes, 362
Character conversions, 142-144

CHP:t, 142

417

Array elements, 130
Assigning values to, 144-146
Tracing, 247-248

Array variables, 55
Storing and retrieving, 310-312

Arrow keys (cursor positioning), 23, 44
~i:::;['l (arcsine), 72
A:::; :::; I C; [.j #, 302-303
Assigning values to program variables, 97-98, 144-151

From the keyboard with I !.j F:' !.J T, 94-95
With LET, 97-98
With pEf''![I and [li:n-H, 147-151

Assigning values to variable names, 56
Assignments, 97-98
"At" symbol (I!"), 99
AT [.j (arctangent), 72
AT [1;:: (arctangent of x,y coordinate position), 72, 73-75
AUT 0 (automatic statement numbering), 33, 86
(AUTO) key, 33, 86
A I_~ 1: (0 S 1: (autostart program), 22, 284, 323
Averaging program, 33
Axes drawing programs, 194-198

Man in the moon example, 236-244
Moving a figure on the graphics display, 239-242
Procedure for building the string, 230-232
Using the string with E: F' LOT, 233-234

Brackets, 51, 132, 135
Branching, 113-127, 157-171

Computed C; 0 :::; U E:, 165
Computed CDlO, 118;120
Conditional (I F ... THt::tLEL':';[), 113-118
Defining functions, 157-163
FOP-[·lD,:T loops, 120-126
Special function keys, 166-168
Subroutines, 163-165
Unconditional (CCnCi), 78, 118-120

Brightness, display, 42, 339
Buffer, 302-303
Buffer number, 302, 303, 304
Bytes, 105, 151, 152, 256, 300, 364

[itH'1, 143
UF'Ct, 143

Character set, 40, 362
Character strings, 55
Checkbook balancing program, 85
Checking a halted program, 252
CHECf< f":EAD#,313
C: H f,: $: (character) function, 40, 138, 142-143
Circle approximation program, 204
Circle program, 192-193
Cleaning, general, 353
CLEAF::, 24, 83
(CLEAR) key, 24, 43, 106, 222
Clear to end of line ((-LINE)) key, 24
Clearing main memory, 84

418 Index

Clearing the display, 24
Clearing the graphics display, 191
Clock label program, 214
Closing a data file, 303
COI'l (common), 131,133
Comma, 53, 91,175

Insert commas program, 162
Replace decimal point with comma program, 161

Commands, 83-84, 262-263, 317-318
Electronic disc, 317-318
Mass storage, 262-263, 317-318
Non-programmable, 84
Programmable, 84
Syntax summary, 374-377

Common antilogarithm, 72
Common logarithm, 71
Compacted field specifier, f: (with I ~'1AGE), 180
Computed GO::: U E:, 165
Computed COTO, 118-120
Concatenation operator, :~ .• (string), 58
Conditional branching, 113-118
Conditioning the tape, 277
i:CHH:: I C (configure), 319-323
Conserving memory, 152-153, 256

;: 0 ~H (continue), 106, 107-108
(CONT) key, 31, 106, 107-108
Control characters, 40, 262
Control ((CTRL)) key, 40
COF'''''', 41, 190, 291-292
(COpY) key, 41, 106, 190, 222
Copying files, 291
Copying discs, 291-292
CO:::: (cosine), 72
C:: 0 T (cotangent), 72
CFEI:nE,301
Creating a data file, 301-302
Creating a program, 32, 84-85
CRT (cathode ray tube) display, 14, 22, 42

Brightness control knob, 337, 339
Graphics display, 189-190, 191, 217
Service, 355

eFT 1:::,183-184
(:::::(: (cosecant), 72
C Tfi F' E (condition tape), 277
(CTRL) (control) key, 40
Cursor, 21, 44
Cursor positioning keys, 23, 44
Curves, 204-207

D __ ___
Df:iTI:j (with PEAD), 147-150
Data cartridges (see also tape cartridge), 35
Data file (see also, file), 299-314
Data precision, 55, 367
Data storage, 300-301
Data verification, 313
DHTE,63
Debugging and error recovery, 247-256
Decimal character codes, 40, 362
Decimal to octal conversion program, 159-160
Decisions with branching, 113-118
Declaratory statements, 82, 83, 115
Declaring and dimensioning variables, 131-134
D [F F t~ (define function), 157, 159
Default error processing, 75-76, 109
Default mass storage location, 264, 267, 271
D[FAULT OFF,76,109
iH:FAULT Ot~, 76, 109
Default values for math errors, 75, 381
[iEC (degrees), 72
Degrees/radians conversions, 73
Delaying program execution, 108
[la.ETE, 103
Delete «DEL)) typing aid key, 103
Delete character « -CHAR)) key, 44
Delete line « -LINE)) key, 24, 44
Deleting program statements, 103-104

E

I': (exponent), 54, 179
eX, 71
Editing keyboard lines, 44-45
Editing programs, 103-109
Eject bar, 28
Electronic disc, 11, 261, 317-324

Commands and functions, 317-318
Configuring, 319-323
Errors, 321, 386

[L:::[, 116-118
I':t~D, 32, 83
a:D key, 34, 87
End of file and record marks, 303, 304, 307, 308

Errors, 306, 307, 309
Entering long expressions, 42
Entering program statements into main memory, 87
Entering a program, 32, 85-88
EF'::: (epsilon), 67,70
Equal to (=), 59

Delimiters, 175
Device addresses, 183-184, 264

Disc drive switch, 264
Device codes, 183-184
Digit separator symbols (with I !Y! A;::: to:), 179
Digit symbols (with 11'1 fi;::; E), 177
D I ~'1 (dimension), 131-132
Directory, file, 273
Disc drives, 264-267

Device addresses, 264-265
Drive numbers, 265-266

[I I :::C FPEE, 274-275, 276
D I :::F' (display), 91-93
D I :::F' U:::: I ~'~C;, 175, 181-182
Display, 14, 22, 42-45

Brightness control, 42, 337, 339
Editing, 42-45
Formatting, 175-187
Graphics, 189-190, 191, 217
Service, 355-356

D I I,} (integer division) or "., 50
Division (..), 49
Dot matrix, 85, 219, 371
[I F.: A ~,~, 203
Drawing coordinate axes, 194-198
Drawing curves, 204-207
DTP (degrees to radians), 72, 73

EPA:::[TAF'E, 35, 268, 277
Erasing a program, 36, 292-293
E P P L (error line), 253, 254-255
E F.: P t·l (error number), 253, 254-255
E P P 0 ~'1 (error ROM), 253-254
E F.: F.: ::: C (error select code), 253-254
Error messages, 25, 108-109, 381-386

Summary, 281-386
Error recovery functions, 253
Error testing and recovery, 252-256
Executable statements, 82-83, 115
E:-: CIF.: operator, 61, 233, 239
E : •.• : F' (eX, natural antilogarithm), 71
Exponent, 54
Exponent symbol (with H1 A C E), 179
Exponentiation (", ..), 49, 50
Exponents of ten, 54
Expressions, 49
Expressions and keyboard operations, 49-63

F
Factorial program, 124
Fast backspace « SH 1 FT)(s"tASKE)), 44
File, 261-262, 369-370

Closing a, 303
Creating a, 301
Data, 299-314
Directory, 273-274
Name, 272
r~UU_., 274
Number, 273
Opening a, 302
Pointer, 302
Random access, 306-310
Securing a, 294-295
Serial access, 303-306
Specifier, 272
Type, 274

F IF", 40
F UU~:., 65, 67
F ,159
F:" E>·i [) (function end), 159
, F: (with rlD:n, 121

G

CC: L_Ei:iF: (graphics clear), 191
CtoT,296
C u::; ~i D, 287
C:; '::; T c! ,:;: E, 286
Getting started, 21-36
C; (:: co; U to!, 163

Computed, 165
C;U'TC,98

Computed, 118-120
;:; I:Ji D (grads mode), 72
r:;f~:~H;'H, 189

H

Halted program, checking a, 252
Halting program execution, 31, 83, 105, 106
Hierarchy, arithmetic, 51
Hierarchy, math, 75
Home (0) key, 23

I UF'H~'.I (incremental draw), 209-212
I Fe ... THFti, 113-118
Ii:: ... THHj ... FL.::;F, 116-118
T ,'l::j(;t:: (with F'P I trIjD I !:;p U!:; I HG), 175-182

Format string, 175
Field overflow, 181
Reusing the format string, 180
Replication, 180
Summary table, 182

I i'H:: ',,' E: (incremental move), 209
I ,i F (infinity), 67, 70
I ! .. j I T (initialize) program, 107
CillID key, 107
Initial set-up instructions, 337-339
I [j I T I f1L. I :::F, 269-271
Initializing a disc, 269-271
Initializing a program, 107

K

Key codes, 362
Key index, 16-17
fE: \' LJ, E: E L, 166
GmJ key, 106, 166, 222
Key labels, examples, 28, 166, 167
Key number in 0 [.j f< E 'y' # statements, 166
Key of C Major program, 167
Key response during program execution, 363

FClF.:-r·jD':T loops, 120-126,205-207
Considerations, 126
Padding the increment, 205-207
!:;TEF', 121, 124-125

Format of numbers, 53
Formatted output, 91-94, 175-187

T A E: function, 182-183
With I r"IACE, 175-181

Index 419

Within F' F: I tn /i:) I ':; f=- 1..1 c,; I I'H; statements, 181-182
F F' (fractional part), 65, 66
Frame graphics display program, 189
Function keys, special, 166-168
Functions, 65

Error, 253
Math, 65-76
Multiple-line, 159-163
Single-line, 157-158
String, 138-144
Summary, 372-374
User-defined, 157-163

Fuse, 336
Future value program, 107

(GRAPH) key, 106, 189
Graphics, 189-245

Display, 189-190,217
I H F IJ T in graphics mode, 222-229
Printer and, 190
Statements, syntax summary, 378-379
Storing and retrieving, 286-287

Greater than (», 59
Greater than or equal to (>,,), 59
Greatest integer functions, 65, 66-67
Grounding requirements, 336

Home position, 22
HP-85A programs, 36, 288
HP-IB interface, 264, 328

Select code, 264
Hypotenuse program, 32

Initializing variables, 147
I 11FUT, 94-95

In graphics mode, 222-229
Input prompt C'), 94, 224, 228
Insert commas program, 162
Insert mode, 45
Insert/replace « ~Npl)) key, 45
Inserting characters, 45
Inspection procedure, 335
I rrr (greatest integer), 65, 67
I tHEGEF.:, 55,131,132-133
Integer division ([I I ') or), 50
Interfaces, 264, 328-329
Interleave factor, 270-271
Interrupting program execution, 105-108
I F' (integer part), 65, 66

In A L F' H H mode, 106, 222, 363
In C F: A F' H mode, 222-223, 363

Keyboard, 39
Keyboard arithmetic, 49
Keyboard, printer, and display control, 39-46
Keying in exponents of ten, 54
Keys, special function, 165-168
Keywords, 39, 40, 82-83

420 Index

L

LfjE:EL,213
Labeling graphs, 213-222

Label direction, 216
Label length, 217
Label positioning, 219-222

Language (BASIC), 11, 82-83, 367-379
L D I F.: (label direction), 216
LEt~ (length), 138-140
Length of a string variable, 57
Length of statement, 42
Length of expression, 42
Less than (<:), 59
Less than or equal to (<: =), 59
LET, 97-98
l .. ET Ft~, 159
U; T (log to base ten), 71
Line generation, 190
Line numbers (see also, statement numbers), 83
Line voltage selector switch, 336, 337

M
Man in the moon E:F'LOT program, 241-244
Manual problem solving, 22
~'1 fj ~:; ~:; ~:; T 0 PA GEl ~:;, 271-272
Mass storage operations, 261-324

Commands, 262-263
Functions, 263
Introduction, 261
Media, 261

Mass storage unit specifier (msus), 264, 266-267
Math hierarchy, 75
Mathematics functions and statements, 65-76, 372-374
Matrices, 129
r'1 A >: (maximum), 67, 68
Memory, 105, 151-153, 256

N

Conserving, 152-153, 256
Main, 151, 152

Natural antilogarithm, 71
Natural logarithm, 71
Nested loops, 125
~~ D: T, 121
Non-programmable commands, 84
Normal typewriting mode, 40
!.~ 0 P ~'1 A L, 27, 41, 86, 248
Not equal to « .. ,. or #), 59
t·WT operator, 61
HULL file, 274, 293

o
OFF EPPOP,253
OFF f:E\'#, 168
OFF T I ~'1EP#, 169
OH EPPOF\ 253
o t~ f:: E \' #, 166
o t·~ ... G 0 ~:; U E:, 165
OH ... GOTO, 118-120
Ot~ T I ~'1EF.:#, 168
ON/OFF switch, 337, 338

P

F' A C V, 293-294
Packing files, 293-294
Padding a F 0 F.: - t·j D': T loop, 205-207
Paper, loading printer, 344-346
~ key, 41, 42, 106, 222
Parentheses, 51
Payroll program, 119
F' A U ~:; E, 107-108
(PAUSE) key, 31, 81, 105-106
F'n~, 199
F'EtWF',199

LI ~::;r, 105
(LIST) key, 81, 104
Lists of numbers, 129
Literal strings, 134
Live keys, 106, 363
LOAD, 28, 80, 283-284
LOA[lE: I t·~, 287
(LOAD) key, 28, 80
Loading a program from the Standard Pac, 27
Loading a prerecorded program, 80, 283-284
LOG (natural logarithm), 71
Logarithmic functions, 71-72
Logical evaluation, 59-62
Logical operations, 60-62
Logical record, 299
Loops, 98, 120-126

Loop counter, 121
Nested, 125

Lower bounds of arrays, 131

Remaining, 105
ROMs, 329-330

~'1 I t~ (minimum), 67, 68
Minus sign (-), 49
~'1OD (modulo), 50
Modifying string variables, 135-137
Module installation and removal, general, 339-342
Modulo (['1 0 [I), 50
~'1O',}E, 203
~'1 ~:; I, 271-272
msus, 264, 266-267
~'1 ~:; U ~:; $, 275, 276
Multiple-line functions, 159-163
Multiplication en, 49, 50
Multistatement lines, 99

Null string (" "), 58
t·~ U ~'1 (numeric), 138, 143
Number alteration, 65
Number base conversions program, 249
Number entry, 49
Numbers, range of, 55
Numbers, standard format, 53
Numeric expression, 49, 367, 369
Numeric specification (with H1AGE), 177-179
Numeric variables, 55

Opening a data file, 302
Operators, 49
Operators, summary, 368-369
OF'T I Ot·~ E:A~:;E, 131
OP operator, 61
Order of execution

Expressions, 52
Math operators, 75
Program, 90

Physical record, 299
F' I, 67, 69
F'L I ~:; T (printer list), 105
F'LOT,200
Plot figure without lifting pen program, 201
Plot "twinkling" star program, 201
Plot star clusters program, 202
Plotting operations, 199-203
Plug-in module installation, 339-340
Plug-in ROM, 341
Plus sign (+), 49

Pointer, repositioning, 306
Polar/rectangular coordinate conversions, 73-75
f" 0 ::; (position), 138, 140
Positioning labels, 219-222
Power cords, 335-336
Power on, 21
Power requirements, 336
Power supply, 335-337
Power switch, 21, 337, 338
Powers, 49, 50
Precision (accuracy), 55, 367
Prerecorded programs, 79, 80
F' f;' I f1 T, 93-94
F'P I fH ALL, 26, 41, 43
F' F: I ,.j T and D I ::; F', 52
F"FIWr U:::HiG, 175, 181-182
f" F.: I ,i T #, 303, 307
Printer, 41, 343-347

Q

Access, 41
Formatting, 175-187

Quadratic roots program, 117
Question mark en 94

R
F: fi [I (radians), 72
Radix symbols (Ii'1AGE), 178
Random data plot program, 223
Random file access, 306-309
Random number seed, 70
Random numbers, 70-71
Random reading, 309
Random writing, 307
F:HrWU!'1IZE,70-71
Range of numbers, 55
Range, computing, 53
Range of numbers, 55
i;:EfiD (with DATA), 147-150
Read only memory (ROM), 151
r;:E:AD#, 305, 309
Read/write memory (RAM), 151, 152, 364
f;:EAL, 55,131,132-133
Rear panel, 14, 337
Reciprocal program, 115
[RECORD-I slide tab, 27, 35, 277
Recording a program, 35, 281-283
Records, 299-300

Logical, 299
Physical, 299

Recovering from math errors, 75-76
Rectangular/polar coordinate conversions, 73-75
Redefining the printer and the display, 183-184
Reference tables, 361-364
Relational operations, 59-60
r;:E!'1 (remark), 90
Remainder function (F.:I'1[I), 68-69
F: [0 [1 (renumber), 104

s
Sample problems (see Problems)
Sample solutions, 389-416
::: ,i ;,,.' E, 296
Saving programs, 296
:::; CAL E, 191
Scaling the graphics display, 191-194

Equal unit scaling, 193
Unequal unit scaling, 192

Scientific notation, 54

Intensity dial, 11
Maintenance, 346-347
Paper, 344
Paper loading, 344-346
Service, 355

F' PI ,H E PI::;, 183-184
Printer list ((P LST)) key, 81

Index 421

Problems, examples at end of sections, 100, 109,
126-127, 153-154, 170-171, 184-187, 208-209,
212,222,229,245

Problems, sample solutions, 389-416
Program editing, 103-109
Programmable commands, 84
Programs, storing, 281-283
Programs, retrieving, 283-284
Protecting (securing) files, 294-295
Protecting a tape cartridge, 35
F' U F.: G E, 36, 292-293
Purging files, 292-293

Quotation marks (H H), 32,58, 95, 120, 134, 176, 181-182

F: [0 Ii A 1"1 E, 292
Renaming files, 292
Repair policy, 357-358
Replace decimal point with comma program, 161
Replace mode, 45
Replication (with I I'H,!GE), 180
Rereading data, 150-151
Reset conditions, 361
(RESET) key, 46
Resetting the computer, 46
PE:::;TOPE (with PEHD, Df:rT'!:n, 150-151
Result ((RESLT)) key, 52
Resuming program execution, 106
Retrieving a program (with 1..0':1[1),283-284
PETUF,i (with ;::;O'c;UE:), 163, 164, 165
Reverse letter-order program, 140
PEL,j I rW, 277
P I'W (remainder), 67, 68-69
PrW (random number), 67, 70-71
(ROLL) key, 42, 106, 222
ROM drawer, 341-343
ROM installation and removal, 341-343
ROMs, available, 329-330
Roots of quadratic equation program, 117
Round to two decimal places program, 158
P T D (radians to degrees), 72, 73
F.:UH, 83,107
(RUN) key, 28, 88, 107
Running a program, 32, 88, 107
Running a prerecorded program, 27, 80
Run-time errors, 109

:'::CF.:f'!TCH, 32, 83, 84
(SCRATCH) key, 83, 84
:::: E C (secant), 72
'::; [0 C U F: E, 294-295
Security type, 294, 295
Security code, 294, 295
Seed, random number, 70
Select codes, 183-184
Self-test, 45

422 Index

Self-test error, 46
Semantic errors, 109
Semicolons, 53, 91
Serial file access, 303-306
Serial number, 357
Serial number plate, 357
Serial reading, 305-306
Serial writing, 303-305
Service, 355-356
Set-up instructions, 337-339
':;t:TT I t'lE, 62
':; C t~ (sign), 67, 68
(SHIFT) key, 39
Shifted characters, 40
Shipping instructions, 357
';liOF:T, 55, 131, 132-133
Sign of a number (::; C t·n, 68
Sign symbols (with H1AGE), 178-179
Simple display editing, 23
Simple programming, 79-100
Simple variables, 55, 56-57
'; I I~ (sine), 72
Single-line functions, 157-158
Ski game, 80
Slash (), 49, 175-176
Small letters, 40
Smallest integer function, 67
Solutions to sample problems, 389-416
Space bar, 44
Spaces, 176
Spacing, 22
Spacing of program statements, 86
Special characters, 371
Special function keys, 28, 165-168
';,; I) I~: (square root), 67, 68
Standard number format, 53
Standard Pac, 27, 327
Star clusters program, 202
Statement, 82
Statement length, 87
Statement numbers, 83

Automatic numbering (A U T 1:1), 86
Renumbering (PEt·n, 104

Statements, syntax summary, 374-379
'; T [f:' increment value, 121, 124-125
(STEP) key, 251
';TOr:',83

T
fm::, 182-183
Tables, 129
T re! f1 (tangent), 72
Tape care, 349-350
Tape cartridge, 35, 347-353

Inserting, 348
Preparing, 268-269
Removing, 349
Rethreading, 351-352
Specifications, 348

Tape directory, 273
Tape drive, service, 355
Tape drive light, 28
Tape eject bar, 28
Tape file, 35
Tape life, 350-351
Tape storage medium, 347-353

Conditioning, 350
General information, 348
Initializing, 268-269
Optimizing use, 353
Write protection, 277

Tax program, 113-114
Temperature range, 354
Temperature conversion program, 116

Stopping a running program, 81
':;TOF.:E,281-283
3TOF.:EE: I t1, 287
(STORE) key, 35, 281
Storing and retrieving data, 299-314
Storing entire arrays, 310-312
Storing variables, 152
String allocation in user-defined functions, 157, 163
String conversions, 141-144

Characters to numbers (tW t'1), 143
Lowercase to uppercase (U F' C $), 143
Numbers to strings ('...'AL:t), 142
Numbers to characters (CHP$), 142
Strings to numbers ('.}AL), 141

String concatenation, 58
String comparisons, 60
String expressions, 134-144
String functions, 138-144

CHf'::$, 138, 142-143
LErj, 138-140
flU!'I, 138, 143
PC!:::;, 138, 140
I.,'f:IL_., 138, 141-142
I,,'Hl3, 138, 142
Uf"C:$, 138, 143

String manipulation of BASIC programs, 296
String modification, 135-137
String specification (with Hi A G E), 176-177
String variable, 57

Length, 132, 134
Name, 57

Subroutines, 163-165
Subscripts, 129, 131, 135

Arrays, 129-130, 132
Strings, 134-135

Substrings, 135
Subtraction (._), 49
Summer Olympic Swimming Records program, 211, 220
',:; I,j l":! F', 324
Swapping electronic disc programs, 324
Syntax conventions, 85, 371
Syntax errors, 108
Syntax guidelines to commands and BASIC statements,

371-372
System errors, 45-46, 381-382
System hints, 255-256
System self-test, 45

(TEST) key, 45
THn~, 113
Tic spacing, 194, 196
T HiE, 63
Time functions, 62-63
Timer number, 168
Timers, 168-170, 355
TPACE (trace program branches), 247

Canceling trace operations, 248
TF:ACE fjll,248
T F.: H C E I.} f1 F.: (trace variables), 247-248
TF:r'irl'::;UHE,288
Translating HP-85A programs, 36, 288
Triangle E: F' L 1:1 T program, 233
Trigonometric modes, 72
Trigonometric functions and statements, 72-75
Truth table, 62
Twinkling star program, 201
Type declarations, 132-133

I tHEGEP, 133
F.:Er'iL,133
':;HeWT,133

Type of file item (T"'F'), 312-313
Types of variables, 55
Typewriter keys, 39

U
Unconditional branching, 98, 118-120

GOTO,98
O~1 GOTO, 118-120
O~1 ... CO~:;UE:, 165

v
I,,' A L (numeric value), 138, 141-142
1,,'!''1L$ (character value), 138, 142
Variable forms, 55
Variable types, 55
Variables, 55

Array, 55
Arrays and strings, 129-154
Declaring and dimensioning, 131
Memory storage, 152

W-Z
~'!R I T, 108
Warranty, 356-357
Warranty information toll-free number, 356
Widget program, 122-123
Workspace, 354

U~1~:;ECUF:E, 295
UPC$ (uppercase), 138,143
User-defined functions, 157-163

String allocation in, 157, 163

Numeric, 55-57, 131-132
Simple, 55, 56-57
String, 57
Summary, 367-368

Vectors, 129
Voltage selection, 336, 337-338
1,}OL$,275-276
1,}OLUr'1E I ~:;, 268
Volume labels, 264, 267-268

Write protection, 35, 277-278
Writing a BASIC program, 84
:'.,;W.,; I ~:;, 194
)(2 program, 157
'y'R :'.,; I ~:;, 194

Index 423

'roduct Line Sales/Support Key
ey Product Line
A Analytical
M Components
C Computer Systems Sales only
:H Computer Systems Hardware Sales and Services
:S Computer Systems Software Sales and Services
E Electronic Instruments & Measurement Systems
M Medical Products
IP Medical Products Primary SRO
IS Medical Products Secondary SRO
P Personal Computation Products

Sales only for specific product line
Support only for specific product line

!PORTANT: These symbols designate general product line capa­
ility. They do not insure sales or support availability for all
roducts within a line, at all locations. Contact your local
ales office for information regarding locations where HP
upport is available for specific products.

IP distributors are printed in italics.

INGOLA
'electra
'mpresa Tecnica de Equipamentos
l1ktricos, S.A.RL
I. Barbosa Rodrigues, 4 I-I D T.
:aixa Postal 6487
UANDA
-el: 35515,35516
',M,P

~RGENTINA
lewlell·Packard Argentina S.A.
\ venida Sanla Fe 2035
!arlinez 1640 BUENOS AIRES
'el: 798-5735, 792-1293
'elex: 17595 BIONAR
;able: HEWPACKARG
\,E,CH,CS,P

liotron S.A.C.l.M, e I.
I v Paseo Colon 221, Piso 9
1399 BUENOS AIRES,
Tel: 30-4846, 30·1851
Telex: 17595 BIONAR
~

'ate S.A. I.C.l.Electronica
(enezuela 1326
1095 BUENOS AIRES
Tel: 37·9020, 37-9026/9
Telex: 9234 FA TEN AR

II.USTRALIA

II.delaide, South Australia
Office
~ewlell-Packard Auslralia Lid.
153 Greenhill Road
)ARKSIDE, S.A. 5063
Tel: 272·5911
Telex: 82536
~able: HEWPARD Adelaide
~" ,CH,CM"E,MS,P

Brisbane, Queensland
Office
Hewl~II·Packard Auslralia Lid.
49 Park Road
MILTON, Queensland 4064
Tel: 229-1544
Telex: 42133
Cable: HEWPARD Brisbane
A,CH,CM,E,M,P
Effective November 1, 1982:
10 Payne Road
THE GAP, Queensland 4061
Tel: 30·4133
Telex: 42133

Canberra, Australia
Capital Territory
Office
Hewlell-Packard Australia Lid.
121 Wollongong Sireet
FYSHWtCK, A.C.T. 2609
Tel: 80 4244
Telex: 62650
Cable: HEWPARD Canberra
CH,CM,E,P

Melbourne, Victoria Office
Hewlell-Packard Australia Lid.
31·41 Joseph Street
BLACKBURN, Victoria 3130
Tel: 877 7777
Telex: 31·024
Cable: HEWPARD Melbourne
A,CH,CM,CS,E,MS,P
Perth, Western Australia
Office
Hewlell-Packard Australia Lid.
261 Stirling Highway
CLAREMONT, W.A. 6010
Tel: 383-2188
Telex: 93859
Cable: HEWPARD Perth
A,CH,CM"E,MS,P
Sydney, New South Wales
Office
Hewlell-Packard Australia Lid.
17·23 Talavera Road
P.O. Box 308
NORTH RYDE, N.S.W. 2113
Tel: 887·1611
Telex: 21561
Cable: HEWPARD Sydney
A,CH,CM,CS,E,MS,P

AUSTRIA
Hewlell-Packard Ges.m.b.h.
Grollenhofstrasse 94
Verkaufsburo Graz
A·8052 GRAZ
Tel: 291·5-66
Telex: 32375
CH,E"

Hewlell·Packard Ges.m.b.h.
Stanglhofweg 5
A-4020 LlNZ
Tel: 0732 51585
CH

Hewlell-Packard Ges.m.b.h.
Lieblgasse 1
P.O. Box 72
A·1222 VtENNA
Tel: (0222) 23·65·11·0
Telex: 134425 HEPA A
A,CH,CM,CS,E,MS,P

SALES & SUPPORT OFFICES

BAHRAIN
Green Salon
P.O. Box 557
BAHRAIN
Tel: 255503·255950
Telex: 84419
P
Wael Pharmacy
P.O. Box 648
BAHRAIN
Tel: 256123
Telex: 8550 WAEL BN
M, E

BELGIUM
Hewlell-Packard Belgium S.A./N.v.
Blvd de la Woluwe, 100
Woluwedal
B·1200 BRUSSELS
Tel: (02) 762·32·00
Telex: 23-494 paloben bru
A,CH,CM,CS,E,MP,P

BRAZIL
Hewlell-Packard do Brasill.e.C.
Llda.
Alameda Rio Negro, 750
Alphaville 06400 BARUERI SP
Tel: (11) 421·1311
Telex: 01 133872 HPBR-BR
Cable: HEWPACK Sao Paulo
A,CH,CM,CS,E,M,P

Hewlell-Packard do Brasill.e.C.
Llda.
Avenida Epitacio Pessoa, 4664
22471 RIO DE JANEtRO-RJ
Tel: (21) 286·0237
Telex: 021-21905 HPBR-BR
Cable: HEWPACK Rio de Janeiro
A,CH,CM,E,MS,P"

CANADA

Alberta
Hewlell-Packard (Canada) Lid.
210,7220 Fisher Street S.E.
CALGARY, Alberta T2H 2H8
Tel: (403) 253-2713
A,CH,CM,E" ,MS,P"

Hewlell-Packard (Canada) Lid.
11620A-168th Street
EDMONTON, Alberta T5M 3T9
Tel: (403) 452-3670
A,CH,CM,CS,E,MS,P"

British Columbia
Hewlell-Packard (Canada) Lid.
10691 Shellbridge Way
RICHMOND,
British Columbia V6X 2W7
Tel: (604) 270·2277
Telex: 610-922-5059
A,CH,CM,CS,E" ,MS,P"

Manitoba
Hewlell-Packard (Canada) Lid.
380-550 Century Street
WINNtPEG, Manitoba R3H OY 1
Tel: (204) 786-6701
A,CH,CM,E,MS,P"

New Brunswick
Hewlell-Packard (Canada) Lid.
37 Sheadiac Road
MONCTON, New Brunswick E2B 2VQ
Tel: (506) 855·2841
CWo

Nova Scotia
Hewlell-Packard (Canada) Lid.
P.O. Box 931
900 Windmill Road
DARTMOUTH, Nova Scotia B2Y 3Z6
Tel: (902) 469·7820
CH,CM,CS,E" ,MS,P"

Arranged Alphabetically by Country

Ontario
Hewlell-Packard (Canada) Lid.
552 Newbold Street
LONDON, Ontario N6E 2S5
Tel: (519) 686-9181
A,CH,CM,E" ,MS,P"
Hewlell·Packard (Canada) Lid.
6877 Goreway Drive
MtSSISSAUGA, Ontario L4V 1M8
Tel: (416) 678-9430
A,CH,CM,CS,E,MP,P

Hewlell-Packard (Canada) Lid.
2670 Queensview Dr.
OTTAWA, Ontario K2B 8K 1
Tel: (613) 820-6483
A,CH,CM,CS,E" ,MS,P"

Hewlell-Packard (Canada) Lid.
220 York land Blvd., Unit #11
WILLOWDALE, Ontario M2J 1 R5
Tel: (416) 499-9333
CH

Quebec
Hewlell-Packard (Canada) Lid.
17500 South Service Road
Trans-Canada Highway
KIRKLAND, Quebec H9J 2M5
Tel: (514) 697-4232
A,CH,CM,CS,E,MP,P"

Hewlell-Packard (Canada) Lid.
Les Galeries du Vallon
2323 Du Versont Nord
STE. FOY, Quebec G1N 4C2
Tel: (418) 687-4570
CH

CHILE
Jorge Calcagni y Cia. Ltda.
Arturo Burhle 065
Casilla 16475
SANTIAGO 9
Tet.- 222-0222
Telex: Public Boolh 440001
A,CM,E,M

Olympia (Chile) Ltda.
Av Rodrigo de Araya 1045
Casilla 256-V
SANTIAGO 21
Tet.- 2-25-50-44
Telex: 340-892 OL YMP CK
Cable.' Olympiachile Santiagochile
CH,CS,P

CHINA, People's Republic
of
China Hewlett-Packard Rep. Office
P.O. Box 418
lA Lane 2, Luchang St.
Beiwei Rd., Xuanwu District
BEIJING
Tet.- 33-1947, 33-7426
Telex: 22601 CTSHP CN
Cable: 1920
A,CH,CM,CS,E,P

COLOMBIA
Instrumentaci6n
H. A. Langebaek & Kier S.A.
Carrera 7 No. 48-75
Apartado Aereo 6287
BOGOTA 1, DE
Tel: 287-8877
Telex. 44400 INST CO
Cable: AARIS Bogota
A,CM,E,M,PS,P

COSTA RICA
Cientifica Costarricense S. A.
A venida 2, Calle 5
San Pedro de Montes de Dca
Apartado 10 159
SAN JOSE
Tet.- 24-38-20, 24-08-19
Telex: 2367 GALGUR CR
CM,E,MS,P

CYPRUS
Telerexa Ltd.
P.O. Box 4809
14C Stassinos Avenue
NICOSIA
Tet.- 62698
Telex: 2894 LEVIDO CY
E,M,P

DENMARK
Hewlell-Packard A/S
Datavej 52
OK -3460 Birkerod
Tel: (02) 81-66-40
Telex: 37409 hpas dk
A,CH,CM,CS,E,MS,P
Hewlell-Packard A/S
Navervej 1
DK-8600 SILKEBORG
Tel: (06) 82-71-66
Telex: 37409 hpas dk
CH,E

ECUADOR
CYEDE Cia. Ltda.
Avenida Eloy Alfaro 1749
Casilla 6423 CCI
OUITO
Tet.- 450-975, 243-052
Telex: 2548 CYEDE ED
A,CM,E,P
Hospilalar S.A.
Robles 625
Casilla 3590
OUITO
Tet.- 545250. 545-122
Telex. 2485 HOSPTL ED
Cable: HOSPITALAR-Quilo
M

EGYPT
Inlernalional Engineering Associales
24 Hussein Hegazi Sireet
Kasr-el-Aini
CAIRO
Tel: 23829, 21641
Telex: lEA UN 93830
CH,CS,E,M
Informalic For Syslems
22 Talaal Harb Sireel
CAIRO
Tel. 759006
Telex: 93938 FRANK UN
CH,CS,P
Egyplian Inlernalional Office
for Foreign Trade
P.OBox 2558
CAIRO
Tel.' 650021
Telex: 93337 EGPOR
P

EL SALVADOR
IPESA de EI Salvador S.A.
29 A venida Norle 1216
SAN SALVADOR
Tel. 26-6858, 26-6868
Telex: Public Booth 20107
A,CH,CM,CS,E,P

FINLAND
Hewlell-Packard Oy
Revontulentie 7
SF-02100 ESPOO 10
TeL (90) 4550211
Telex: 121563 hewpa sf
A,CH,CM,CS,E,MS,P
Hewlell-Packard Oy
Aatoksenkatv 1O-C

0 SALES & SUPPORT OFFICES Hewlett-Packard Ltd. Blue Slar Ltd.
West End House 41 Band Box House

Arranged Alphabetically by Country High Street, West End Prabhadevi

(h~ SOUTHAMPTON BOMBAY 400 025

Hewlett-Packard GmbH Hampshire S03 30Q Tel: 422-3101 SF-40720-72 JYVASKYLA Hewlett-Packard France
Tel: (703) 886767 Telex: 011-3751 Tel: (941) 216318 Paris Porte-Maillot Technisches BUro Mannheim
Telex: 477138 Cable: BLUES TAR CH 15, Avenue De L'Amiral Bruix Rosslauer Weg 2-4
CH A,M

Hewlett-Packard Oy F-75782 PARtS 16 0-6800 MANNHEtM
Blue Slar Ltd. Hewlett-Packard Ltd. Kainvuntie 1-C Tel: (1) 502-12-20 Tel: (0621) 70050

King Street Lane Sahas
SF-90140-140ULU Telex: 613663F Telex: 0462105

41412 Vir Savarkar Marg A,C,E WtNNERSH, Wokingham Tel: (981) 338785 CH,MS,P
Berkshire RG 11 5AR Prabhadevi

CH Hewlett-Packard France Hewlett-Packard GmbH
Tel: (0734) 784774 BOMBAY 400 025 2 Allee de la Bourgonette Technisches BUro Neu Ulm

Tel: 422-6155
FRANCE F-35100 RENNES Messerschmittstrasse 7 Telex: 847178

Telex: 011-4093
Hewlett-Packard France Tel: (99) 51-42-44 0-7910 NEU ULM A,CH,E,M

Cable: FROSTBLUE
Z.I. Mercure B Telex: 740912F Tel: 0731-70241

A,CH,CM,CS,E,M
Rue Berthelot CH,CM,E,MS,P· Telex: 0712816 HP ULM-O

GREECE Blue Slar Ltd.
F-13763 Les Milles Cedex Hewlett-Packard France A,C,E·

Kostas Karaynnis S.A. Kalyan, 19 Vishwas Colony
AIX-EN-PROVENCE 98 Avenue de Bretagne Hewlett-Packard GmbH 8 Omirou Street Alkapuri, BORODA, 390 005
Tel: (42) 59-41-02 F-76100 ROUEN Technisches BUro NUrnberg ATHENS 133 Tel: 65235
Telex: 410770F Tel: (35) 63-57-66 CW ·,CS Neumeyerstrasse 90 Tel: 3230303,3237371 Cable: BLUE STAR
A,CH,E,MS,P· Hewlett-Packard France 0-8500 NURNBERG Telex: 215962 RKAR GR A
Hewlett-Packard France 4 Rue Thomas Mann Tel: (0911) 52 20 83-87 A,CH,CM,CS,E,M,P Blue Star Ltd.
Boite Postale No. 503 Boite Postale 56 Telex: 0623 860

PLAISIO S.A. 7 Hare Street
F-25026 BESANCON F-67200 STRASBOURG CH,CM,E,MS,P

G. Gerardos CALCUTTA 700 001
28 Rue de la Republique Tel: (88) 28-56-46 Hewlett-Packard GmbH 24 Stournara Street Tel: 12-01-31
F-25000 BESANCON Telex: 890141F T echnisches BUro MUnchen ATHENS Telex: 021-7655
Tel: (81) 83-16-22 CH,E,MS,P· Eschenstrasse 5 Tel: 36-11-160 Cable: BLUESTAR
CH,M Hewlett-Packard France 0-8028 TAUFKtRCHEN Telex: 221871 A,M
Hewlett-Packard France Pericentre de la Cepiere Tel: (089) 6117-1 P Blue Star Ltd.
Bureau de Vente de Lyon F -31081 TOULOUSE Cede x Telex: 0524985 133 Kodambakkam High Road
Chemin des Mouilles Tel: (61) 40-11-12 A,CH,CM,E,MS,P MADRAS 600 034
Boite Postale 162 Telex: 531639F GUATEMALA Tel: 82057
F-69130 ECULLY Cede x A,CH,CS,E,P· GREAT BRITAIN IPESA Telex: 041-379
Tei (7) 833-81-25 Hewlett-Packard Ltd. Avenida Reforma 3-48, Zona 9 Cable: BLUESTAR Hewlett-Packard France Trafalgar House GUA TEMALA CITY Telex: 310617F A,M Immeuble Peri centre Navigation Road Tel: 316627,314786 A,CH,CS,E,MP F-59658 VILLENEUVE D'ASCQ Cedex Blue Star LId.

ALTRtNCHAM Telex: 4192 TEURO GU Bhandari House, 7th/8th Floors Hewlett-Packard France Tel: (20) 91-41-25 Chesire WA 14 1NU A,CH,CM,CS,E,M,P
9 1 Nehru Place Immeuble France Evry Telex: 160124F Tel: (061) 928-6422 NEW DELHI 110 024 Tour Lorraine CH,E,MS,P· Telex: 668068 HONG KONG Tel: 682547 Boulevard de France

A,CH,CS,E,M Hewlett-Packard Hong Kong, Ltd. Telex: 031-2463 F-91035 EVRY Cedex GERMAN FEDERAL Hewlett-Packard Ltd. G.P.O. Box 795 Cable: BLUES TAR Tel: (6) 077-96-60
REPUBLIC Oakfield House, Oakfield Grove 5th Floor, Sun Hung Kai Centre A,CH,CM,CS,E,M Telex: 692315F

E Hewlett-Packard GmbH Clifton 30 Harbour Road Blue Star Ltd.
Technisches BUro Berlin BRtSTOL BS8 2BN, Avon HONG KONG 15116:C Wellesley Rd. Hewlett-Packard France Keithstrasse 2-4 Tel: (027) 38606 Tel: 5-8323211 PUNE411011 5th Avenue Raymond Chanas 0-1000 BERLIN 30 Telex: 444302 Telex: 66678 HEWPA HX Tel: 22775 F-38320 EYBENS Tel: (030) 24-90-86 CH,M,P Cable: HEWPACK HONG KONG Cable: BLUE STAR Tel: (76) 25-81-41 Telex: 018 3405 hpbln d Hewlett-Packard Ltd. E,CH,CS,P A Telex: 980124 HP GRENOB EYBE A,CH,E,M,P (Pinewood) CET Ltd. Blue Star Ltd. CH
Hewlett-Packard GmbH Nine Mile Ride 1402 Tung Way Mansion 2-2-4711108 Bolarum Rd. Hewlett-Packard France
Technisches BUro BOblingen EASTHAMPSTEAD 199-203 Hennessy Rd. SECUNDERABAD 500 003 Centre d' Affaire Paris-Nord Herrenberger Strasse 110 Wokingham Wanchia, HONG KONG Tel: 72057 Biltiment Ampere 5 etage
0-7030 BOBLINGEN Berk shire, 3RG 11 3LL Tel: 5-729376 Telex: 0155-459 Rue de la Commune de Paris Tel: (07031) 667-1 Tel: 34463100 Telex: 85148 CET HX Cable: BLUEFROST Boite Postale 300 Telex: bbn or Telex: 84-88-05 CM A,E F-93153 LE BLANC MESNIL A,CH,CM,CS,E,MP,P CH,CS,E Schmidt & Co. (Hong Kong) Ltd. Blue Star Ltd. Tel: (01) 865-44-52
Hewlett-Packard GmbH Hewlett-Packard Ltd. Wing On Centre, 28th Floor T.C. 71603 Poornima Telex: 211032F
T echnisches BUro Dusseldorf Fourier House Connaught Road, C. Marulhankuzhi CH,CS,E,MS
Emanuel-Leutze-Strasse 1 257-263 High Street HONG KONG TRIVANDRUM695 013 Hewlett-Packard France 0-4000 DUSSELDORF LONDON COLNEY Tel: 5-455644 Tel: 65799 Parc d' Activites Cadera Tel: (0211) 5971-1 Herts., AL2 1HA, SI. Albans Telex: 74766 SCHMX HX Telex: 0884-259 Quartier Jean Mermoz
Telex: 085/86 533 hpdd d Tel: (0727) 24400 A,M Cable: BLUES TAR Avenue du President JF Kennedy A,CH,CS,E,MS,P Telex: 1-8952716 E F -33700 MERIGNAC
Hewlett-Packard GmbH CH,CS,E ICELAND

INDONESIA Tel: (56) 34-00-84
Vertriebszentrale Frankfurt Hewlett-Packard Ltd Elding Trading Company Inc.

BERCA Indonesia P. T. Telex: 550105F
Berner Strasse 117 Tradax House, St. Mary's Walk Hafnarnvoli- Tryggvagotu

P.O.Box 4961JKT. CH,E,MS
Postfach 560 140 MAIDENHEAD P.O. Box 895

JI. Abdul Muis 62 Hewlett-Packard France
0-6000 FRANKFURT 56 Berkshire, SL6 1ST IS-REYKJAVIK

JAKARTA 32 Rue Lolhaire
Tel: (0611) 50-04-1 Tel: (0628) 39151 Tel: 1-58-20, 1-63-03

Tel: 373009 F-57000 METZ
Telex: 04 13249 hpffm d CH,CS,E,P M

Telex: 46748 BERSAL IA Tel: (8) 765-53-50 A,CH,CM,CS,E,MP,P Hewlett-Packard Ltd. Cable: BERSAL JAKARTA CH
Hewlett-Packard GmbH Quadrangle INDIA P Hewlett-Packard France
T echnisches BUro Hamburg 106-118 Station Road Blue Star Ltd. BERCA Indonesia P. T. Immueble Les 3 B
Kapstadtring 5 REDHILL, Surrey Sabri Complex II Floor Wisma An/ara Bldg., 171h floor Nouveau Chemin de la Garde
0-2000 HAMBURG 60 Tel: (0737) 68655 24 Residency Rd. JAKARTA Z.A.C. de Bois Briand
Tel: (040) 63804-1 Telex: 947234 CH,CS,E BANGALORE 560 025 A,CS,E,M F-44085 NANTES Cede x
Telex: 021 63 032 hphh d Tel: 55660 BERCA Indonesia P. T. Tel: (40) 50-32-22 Hewlett-Packard Ltd. Telex: 0845-430 CWo A,CH,CS,E,MS,P Avon House P.O. Box 1741SBY.

Cable: BLUESTAR JI. Kutei No. 11 Hewlett-Packard France Hewlett-Packard GmbH 435 Stratford Road A,CH,CM,CS,E
Zone Industrielle de Courtaboeuf Technisches BUro Hannover SHIRLEY, Solihull SURABAYA
Avenue des Tropiques Am Grossmark t 6 West Midlands B90 4BL Tel: 68172
F-91947 Les Ulis Cedex ORSAY 0-3000 HANNOVER 91 Tel: (021) 745 8800 Telex: 31146 BERSAL SB
Tei (6) 907-78-25 Tel: (0511) 46-60-01 Telex: 339105 Cable: BERSAL -SURABA YA
Telex: 600048F Telex: 092 3259 CH A·,E,M,P
A,CH,CM,CS,E,MP,P A,CH,CM,E,MS,P

IRAQ Hewlett-Packard Italiana S.p.A. Yokogawa-Hewlett-Packard lid. MALAYSIA Hewlett-Packard Nederland BY 0 Hewlett-Packard Trading SA Via Turazza 14 3-29-21 Takaido-Higashi Hewlett-Packard Sales (Malaysia) Bongerd 2
Service Operation 1-35100 PADOVA Suginami-ku TOKYO 168 Sdn. Bhd. NL 2906VK CAPPELLE, AID Ijessel
AI Mansoor City 9B/3/7 Tel: (049) 664888 Tel: (03) 331-6111 1st Floor, Bangunan British P.O. Box 41 (h~ BAGHDAD Telex: 430315 Telex: 232-2024 YHPTOK American NL2900 AA CAPElLE, Ijssel
Tel: 551-49-73 A,CH,E,MS A,CH,CM,CS,E,MP,P' Jalan Semantan, Damansara Heights Tel (10) 51-64-44
Telex: 212-455 HEPAIRAQ IK Hewlett-Packard lIaliana S.p.A. Yokogawa-Hewlett-Packard lid. KUALA LUMPUR 23-03 Telex: 21261 HE PAC NL
CH,CS Viale C. Pavese 340 Daiichi Asano Building 4F Tel: 943022 A,CH,CS

1-00144 ROMA 5-2-8, Oodori, Telex: MA31011
IRELAND Tel: (06) 54831 UTSUNOMIYA, 320 A,CH,E,M,P'
Hewlett-Packard Ireland lid. NEW ZEALAND
82/83 Lower Leeson St.

Telex: 610514 Tochigi Protei Engineering Hewlell-Packard (N.Z.) lid.

DUBLIN 2
A,CH,CM,CS,E,MS,P' Tel: (0286) 25-7155 Lot 319, Satok Road 169 Manukau Road

Tel: (1) 60 88 00 Hewlett-Packard Italiana S.p.A. CH, CS, E P.O.Box 1917 P.O. Box 26-189

Telex: 30439 Corso Svizzera, 184 Yokogawa-Hewlett-Packard lid. Kuching, SARAWAK Epsom, AUCKLAND

A,CH,CM,CS,E,M,P 1-10149 TORtNO Yasudaseimei Yokohama Tel: 53544 Tel: 687-159
Tel: (011) 74 4044 Nishiguchi Bldg. Telex. MA 70904 PROMAL Cable: HEW PACK Auckland

Cardiac Services Ltd.
Telex: 221079 3-30-4 Tsuruya-cho Cable: PROTELENG CH,CM,E,P'

Kilmore Road
CH,E Kanagawa-ku A,E,M

Artane Hewlett-Packard (N.Z.) lid.

DUBLIN 5 JAPAN
YOKOHAMA, Kanagawa, 221

MALTA
4-12 Cruickshank Street

Tel: (01) 351820 Yokogawa-Hewlett-Packard lid.
Tel: (045) 312-1252 Kllbirnie, WELLINGTON 3
CH,CM,E Philip Toledo Ltd.

PO Box 9443 Telex: 30439 Inoue Building Notabile Rd.
M 1-21-8, Asahi-cho MRtEHEL

Courtenay Place, WELLINGTON 3

ATSUGt, Kanagawa 243 JORDAN Tel' 44747, 45566
Tel: 877-199

ISRAEL Tel: (0462) 28-0451 Mouasher Cousins Company Telex: 649 Media MW
Cable: HEWPACK Wellington

Eldan Electronic Instrument Ltd. CM,C',E P.O. Box 1387 P
CH,CM,E,P

P.O. Box 1270
Yokogawa-Hewlett-Packard lid.

AMMAN Northrop Instruments & Systems
JERUSALEM 91000

T owa Building
Tel: 24907, 39907 MEXICO Ltd.

16, Ohalia v St.
2-2-3, Kaigandori, Chuo-ku

Telex: 21456 SABCO JO Hewlett-Packard Mexicana, S.A. de 369 Khyber Pass Road
JERUSALEM 94467 CH,E,M,P P.O. Box 8602
Tel. 533221,553242 KOBE, 650, Hyogo C.V.

Tel: (078) 392-4791 Av. Periferico Sur No. 6501 AUCKLAND
Telex: 25231 ABIPAKRD IL

C,E KENYA Tepepan, Xochimilco Tel' 794-091
A ADCOM Ltd., Inc., Kenya MEXICO D.F. 16020 Telex 60605
Electronics Engineering Division Yokogawa-Hewlett-Packard lid. P.O.Box 30070 Tel: 676-4600 A,M
Motorola Israel Ltd. Kumagaya Asahi Yasoji Bldg 4F NAtROBI Telex: 17-74-507 HEWPACK MEX Northrop Instruments & Systems 3-4 Chome Tsukuba 16 Kremenetski Street Tel: 331955 A,CH,CS,E,MS,P Ltd.
P.O. Box 25016 KUMAGAYA, Saitama 360 Telex: 22639 110 Mandeville SI.
TEL·AVIV 61899 Tel: (0485) 24-6563 E,M

Effective November 1, 1982:
CH,CM,E Hewlett-Packard Mexicana, SA de PO. Box 8388

Tel: 3-338973
C.V. CHRISTCHURCH

Telex: 33569 MotillL YOkogawa-Hewlett-Packard lid. KOREA Ejercito Nacional #570 Tel: 486-928
Cable: BASTEL Tel-Aviv Asahi Shinbun Dai-ichi Seimei Bldg., Samsung ElectroniCS Compuler Colonia Granada Telex: 4203
CH,CM,CS,E,M,P 2F Division 11560 MEXtCO, D.F. A,M

4-7 Hanabata-cho 76-561 Yeoksam-Dong
ITALY KUMAMOTD-SHI,860

CWO Northrop Instruments & Systems
Kangnam-Ku

Hewlett-Packard lIaliana S.p.A. Tel: (0963) 54-7311 C.P.O. Box 2775 Hewlett-Packard Mexicana, SA de Ltd.

Traversa 99C CH,E C.V. Sturdee House
SEOUL

Via Giulio Petroni, 19 Yokogawa-Hewlett-Packard lid. Tel: 555-7555, 555-5447 Rio Volga 600 85-87 Ghuznee Street

1-70124 BARI Shin Kyoto Center Bldg. 5F Telex.' K27364 SAMSAN Pte. Colonia del Valle P.O. Box 2406

Tel: (080) 41-07-44 MONTERREY, N.L. WELLINGTON

M
614 Siokoji-cho A,CH,CM,CS,E,M,P

Tel: 78-42-93, 78-42-40, 78-42-41 Tel. 850-091
Nishiiruhigashi, Karasuma

Telex: 038-2410 HPMTY ME Telex: NZ 3380
Hewlett-Packard lIaliana S.p.A. Siokoji-dori, Shimogyo-ku KUWAIT

CH A,M
Via Martin Luther King, 38/111 KYOTO 600 AI-Khaldiya Trading & Contracting
1-40132 BOLOGNA Tel: 075-343-0921 P.O. Box 830 Safat

Effective Nov. 1, 1982

Tel: (051) 402394 CH,E KUWAIT
Ave. Colonia del Valle #409 NORTHERN IRELAND

Telex: 511630 Yokogawa-Hewlett-Packard lid. Tel: 42-4910,41-1726
Col. del Valle Cardiac Services Company

CH,E,MS Mito Mitsui Building Telex: 22481 Areeg kt
Municinio de garza garcia 95A Finaghy Road South

Hewlett-Packard lIaliana S.p.A. 1-4-73, San-no-maru CH,E,M
MONTERREY, N. V. BELFAST BT 10 OBY

Via Principe Nicola 43G/C MtTO, Ibaragi 310 Photo & Cine Equipment
ECISA Tel: (0232) 625-566

1-95126 CATANtA Tel: (0292) 25-7470 P.O. Box 270 Safat
Taihe 229, Piso 10 Telex' 747626

Tel: (095) 37-10-87 CH,CM,E KUWAIT
Polanco MEXtCO D.F. 11570 M

Telex: 970291 Yokogawa-Hewlett-Packard lid. Tel: 42-2846,42-3801
Tel: 250-5391

C,P Sumitomo Seimei Nagoya Bldg. Telex: 22247 Matin-KT
Telex: 17-72755 ECE ME

NORWAY
Hewlett-Packard lIaliana S.p.A. 2-14-19, Meieki-Minami, P

M
Hewlett-Packard Norge A/S

Via G. Di Vittorio 9 Nakamura-ku MOROCCO
Folke Bernadottes vei 50

1-20063 CERNUSCO SUL NAVtGlIO NAGOYA, 450 Aichi LEBANON
Dolbeau

P.O. Box 3558
Tel: (2) 903691 Tel: (052) 571-5171 G.M Dolmadjian

81 rue Karatchi
N-5033 FYLlINGSDALEN (Bergen)

Telex: 334632 CH,CM,CS,E,MS Achrafieh
CASABLANCA

Tel: (05) 16-55-40
A,CH,CM,CS,E,MP,P Yokogawa-Hewlett-Packard lid. P.O. Box 165.167

Tel: 3041-82, 3068-38
Telex: 16621 hpnas n

Hewlett-Packard lIaliana S.p.A. Chuo Bldg., 4th Floor BEtRUT
Telex. 23051, 22822

CH,CS,E,MS
Via Nuova San Rocco a 5-4-20 Nishinakajima, Tel: 290293

E H,ewlett-Packard Norge A/S
Capodimonte, 62/ A Yodogawa-ku MP" Osterndalen 18
1-80131 NAPLES OSAKA,532

Gerep
PO Box 34

Tel: (081) 7413544 Tel: (06) 304-6021 LUXEMBOURG 2 rue d'AgadJr
N-13450STER'AS

Telex: 710698 Telex: YHPOSA 523-3624 Hewlett-Packard Belgium SA/NY Boile Postale 156
Tel: (02) 17-11-80

A,CH,E A,CH,CM,CS,E,MP,P' Blvd de la Woluwe, 100 CASABLANCA
Telex: 16621 hpnas n

Hewlett-Packard lIaliana S.p.A. Woluwedal Tel: 272093, 272095
A,CH,CM,CS,E,M,P

Viale G. Modugno 33 Yokogawa-Hewlett-Packard lid. B-1200 BRUSSELS Telex: 23 739

1-16156 GENOVAPEGlI 1-27-15, Yabe, Tel: (02) 762-32-00 P OMAN
Tel: (010) 68-37-07 SAGAMIHARA Kanagawa, 229 Telex: 23-494 paloben bru Khimjil Ramdas
Telex: 215238 Tel: 0427 59-1311 A,CH,CM,CS,E,MP,P NETHERLANDS

P.O. Box 19
E,C YOkogawa-Hewlett-Packard lid. Hewlett-Packard Nederland B. V.

MUSCAT Shinjuku Dai-ichi Seimei 6F Van Heuven Goedharllaan 121
2-7-1, Nishi Shinjuku NL 1181KK AMSTELVEEN

Tel. 722225, 745601

Shinjuku-ku, TOKYO 160 P.O. Box 667
Telex: 3289 BROKER MB MUSCA T

Tel: 03-348-4611-5 NL 1180 AR AMSTELVEEN P

CH,E Tel: (20) 47-20-21
Telex: 13216
A,CH,CM,CS,E,MP,P

0 SALES & SUPPORT OFFICES Hewlett-paCkard Espanola SA Middle Easl Electronics
clo Costa Brava 13 Ptace Azme

Arranged Alphabetically by Country Colonia Mirasierra Boite Postate 230B

(h~ E-MADRID 34 DAMASCUS
Tel: (1) 734-8061, (1) 734-1162 Tel: 334592

Suhail & Saud Bahwan Soquimica SINGAPORE CH,CS,M Telex: 11304 SA TACO SY
P.o. Box 169 A v. da Liberdade, 220-2 Hewlett-Packard Singapore (Pty.) Hewlett-Packard Espanola S.A. M,P
MUSCAT 1298 LISBON Codex Ltd. Av Ram6n y Cajal 1-9
Tel: 734201-3 Tel: 5621811213 P.O. Box 58 Alexandra Post Office Edificio Sevilla 1, TAIWAN
Telex: 3274 BAHWAN MB Telex: 13316 SABASA P SINGAPORE, 9115 E-SEVILLA 5 Hewlett-Packard Far East Ltd.

Telectra-Empresa Tecnica de 6th Floor, Inchcape House Tel: 64-44-54, 64-44-58 Kaohsiung Office
PAKISTAN Equipmentos £lectricos S.aJ.I. 450-452 Alexandra Road Telex: 72933 2/F 68-2, Chung Cheng 3rd Road
Mushko & Company Ltd. Rua Rodrigo da Fonseca 103 SINGAPORE 0511 A,CS,MS,P KAOHSIUNG
1-8, Street 43 P. D. Box 2531 Tel: 631788 Hewlett-Packard Espanola SA

Tel: 241-2318, 261-3253
Sector F-811 P-LiSBON 1 Telex: HPSGSO RS 34209 CH,CS,E
tSLAMABAD Tel: (19) 68-60-72 Cable: HEWPACK, Singapore

C/Ramon Gordillo, 1 (Entlo.3)
Hewlett-Packard Far East Ltd. E-VALENCIA 10 Tel: 26875 Telex: 12598 A,CH,CS,E,MS,P Tel: 361-1354, 361-1358 Taiwan Branch

Cable: FEMUS Rawalpindi CH,CS,E,P Dynamar International Ltd. 5th Floor
A,E,M Unil 05- 11 Block 6

CH,P
205 Tun Hwa North Road

Mushko & Company Ltd. PUERTO RICO Kolam Ayer Industrial Estate
SWEDEN

TAIPEI
Dosman Chambers Hewlett-Packard Puerto Rico SINGAPORE 1334

Hewlett-Packard Sverige AB
Tel:(02) 751-0404

Abdullah Haroon Road P.O. Box 4407 Tel: 747-6188 Cable:HEWPACK Taipei
KARACHt 0302 CAROLINA, Puerto Rico 00628 Telex: RS 26283

Sunnanvagen 14K
A,CH,CM,CS,E,M,P

Tel: 511027,512927 Calle 272 Edificio 203 CM
S-22226 LUND
Tel: (046) 13-69-79 Ing Lih Trading Co.

Telex: 2894 MUSKD PK Urb. Country Club
Telex: (854) 17886 (via SPANGA 3rd Floor, 7 Jen-Ai Road, Sec. 2

Cable: CDOPERA TOR Karachi RIO PIEDRAS, Puerto Rico 00924 SOUTH AFRICA
office) TAIPEI 100

A,E,M,P' Tel: (809) 762-7255 Hewlett-Packard So Africa (Pty:) Ltd.
CH Tel: (02) 3948191

A,CH,CS P.O. Box 120 Cable: INGLIH TAIPEI
PANAMA

Howard Place Hewlett-Packard Sverige AB
A

Electronico Balboa, S.A. QATAR Pine Park Center, Forest Drive, Vastra Vintergatan 9

Nasser Trading & Contracting Pinelands S-70344 OREBRO THAILAND
Calle Samuel Lewis, Ed. Alta

P.o.. Box 1563 CAPE PROVINCE 7405 Tel: (19) 10-48-80 Unimesa
Apartado 4929

DOHA Tel: 53-7954 Telex: (854) 17886 (via SPANGA 30 Pat pong Ave., Suriwong
PANAMAS
Tel: 64-2700 Tel: 22170,23539 Telex: 57-20006 office) BANGKOK 5

Telex: 3483 ELECTRDN PG Telex: 4439 NASSER DH A ,CH ,CM ,E ,MS ,P CH Tel: 234 091, 234 092

A,CM,E,M,P M Hewlett-Packard So Africa (Pty.) Ltd. Hewlett·Packard Sverige AB Telex: 84439 Simonco TH

Foto Internacional, S.A. Computearbia P.O. Box 37099 Skalholtsgatan 9, Kista Cable: UN/MESA Bangkok

Colon Free Zone P.o. Box 2750 92 Overport Drive Box 19 A,CH,CS,E,M

Apartado 2068 DOHA DURBAN 4067 S- 16393 SPANGA Bangkok Business Equipment Ltd.

COLON 3 Tel: 883555 Tel: 28-4178, 28-4179, 28-4110 Tel: (08) 750-2000 515-6 Dejo Road

Tel: 45-2333 Telex: 4806 CHPARB Telex: 6-22954 Telex: (854) 17886 BANGKOK

Telex: 8626 IMPDRT PG P CH,CM A,CH,CM,CS,E,MS,P Tel: 234-8670, 234-8671

P Eastern Technical Services Hewlett-Packard So Africa (Pty.) Ltd. Hewlett-Packard Sverige AB Telex: 87669-BEQUIPT TH
P.o.. Box 4747 6 Linton Arcade Frotallisgat~n 30 Cable: BUSIQUIPT Bangkok

PERU DOHA 511 Cape Road S-42132 VASTRA-FROLUNDA P

Cra Electro Medica S.A. Tel: 329 993 Linlon Grange Tel: (031) 49-09-50 TRINIDAD & TOBAGO
Los Flamencos 145, San Isidro Telex: 4156 EASTEC DH PORT ELIZABETH 6001 Telex: (854) 17886 (via SPANGA Caribbean Telecoms Ltd.
Cas/lla 1030 Tel: 041-302148 office) 501 A Jerningham A venue
LIMA 1 SAUDI ARABIA CH CH,E,P P.o.. Box 732
Tel: 41-4325, 41-3703

Modern Electronic Establishment
Hewlett-Packard So Africa (Pty.) Ltd. PORT-Of-SPAIN

Telex: PUb. Booth 25306 Hewlett-Packard Division
P.O. Box 33345 SWITZERLAND Tel: 62-44213, 62-44214

A,CM,E,M,P P.o.. Box 281
Glenstantia 0010 TRANSVAAL Hewlett-Packard (Schweiz) AG Telex: 235,272 HUGCD WG

Thuobah 1 st Floor East Clarastrasse 12 A,CM,E,M,P

PHILIPPINES
AL-KHOBAR

Constantia Park Ridge Shopping CH-4058 BASLE

The Dnline Advanced Systems Tel: 864-46 78 Centre Tel: (61) 33-59-20 TUNISIA

Corporation Telex: 671 106 HPMEEK SJ Constantia Park A Tunisie Electronique

Rico House, Amorsolo Cor. Herrera Cable: ELECTA AL-KHDBAR PRETORIA Hewlett-Packard (Schweiz) AG 31 A venue de la Liberte

Street CH,CS,E,M,P Tel: 982043 Bahnhoheweg 44 TUNIS

Legaspi Village, Makati Modern £lectronic Establishment Telex: 32163 CH-30 18 BERN Tel: 280-144

P.o.. Box 1510 Hewlett-Packard Division CH,E Tel: (031) 56-24-22 E,P

Metro MANtLA P.O. Box 1228
Hewlett-Packard So Africa (Pty.) Ltd. CH Corema

Tel: 85-35-81,85-34-91,85-32-21 Redec Plaza, 6th Floor
Private Bag Wendywood Hewlett-Packard (Schweiz) AG 1 ter. A v. de Carthage

Telex: 3274 DNLlNE JEDDAH
SANDTON 2144 47 Avenue Blanc TUNtS

A,CH,CS,E,M Tel: 644 38 48
Tel: 802-5111, 802-5125 CH-1202 GENEVA Tel: 253-821

Electronic Specialists and Telex: 402712 FARNAS SJ
Telex: 4-20877 Tel: (022) 32-48-00 Telex: 12319 CABAM TN

Proponents Inc. Cable: ELECTA JEDDAH
Cable: HEWPACK Johannesburg CH,CM,CS M

69D-B Epifanio de los Santos CH,CS,E,M,P
A,CH,CM,CS,E,MS,P Hewlett-Packard (Schweiz) AG TURKEY Modern Electronic Establishment Avenue

Hewlett Packard Division
19 Chemin Chiiteau Bloc Teknim Company Ltd.

Cubao, QUEZON CITY
P.o.. Box 2728 SPAIN CH-1219 LE LlGNON-Geneva Iran Caddesi No. 7

P.O. Box 2649 Manila Hewlett-Packard Espanola S.A. Tel: (022) 96-03-22 Kavaklidere, ANKARA RtYADH Tel: 98-96-81,98-96-82,98-96-83
Tel: 491-97 15, 491-6387

c/Entenza, 321 Telex: 27333 hpag ch Tel: 275800
Telex: 40018,42000 ITT GLOBE E -BARCELONA 29 Cable: HEWPACKAG Geneva Telex: 42155 TKNM TR
MACKAY BDDTH Telex: 202049 MEERYD SJ Tel: (3) 322-24-51, 321-73-54 A,E,MS,P

CH,CS,E,M,P E
P Telex: 52603 hpbee Hewlett-Packard (Schweiz) AG E.M.A.

SCOTLAND
A,CH,CS,E,MS,P Allmend 2 Medina Eidem Sokak No.4116

PORTUGAL
Hewlett-Packard Ltd. Hewlett-Packard Espanola SA CH-8967 WIDEN Yuksel Caddesi

Mundinter
Royal Bank Buildings c/San Vicente SIN Tel: (57) 31 21 11 ANKARA

Intercambio Mundial de Comercio
Swan Street Edificio Albia 11,7 B Telex: 53933 hpag ch Tel: 175622

S.aJ.I E-BtLBAO 1 Cable: HPAG CH M
P.o.. Box 2761 BRECHtN, Angus, Scotland

Tel: (4) 23-8306, (4) 23-8206 A,CH,CM,CS,E,MS,P
A v. Anlonio Augusto de Aguiar 138 Tel: (03562) 3101-2

A,CH,E,MS UNITED ARAB EMIRATES
P-LiSBON CH SYRIA Emitac Ltd.
Tel: (19) 53-21-31,53-21-37 Hewlett-Packard Ltd. Hewlett-Packard Espanola S.A. General Electronic Inc. P.o.. Box 1641
Telex: 16691 munter p SOUTH QUEENSFERRY Calle Jerez 3 Nuri Basha SHARJAH
M West Lothian, EH30 9GT E-MADRID 16 P.o.. Box 5781 Tel: 354121,354123

GB-Scotland Tel: (1) 458-2600 DAMASCUS Telex: 68136 Emitac Sh
Tel: (031) 3311188 Telex: 23515 hpe Tel: 33-24-87 CH,CS,E,M,P
Telex: 72682 A,CM,E Telex: 112161T1KAL SY
A,CH,CM,CS,E,M Cable: ELECTRDBDR DAMASCUS

E

INITED KINGDOM Hewlett-Packard Co. Hewlett-Packard Co. Kan8a8 Hewlett-Packard Co. G ee: GREAT BRITAIN
P.O. Box 15976 (95813) 6425 N. Pensacola Blvd. Hewlett-Packard Co. P.O. Box 27307
4244 So. Market Court, Suite A Suite 4, Building 1 1644 S. Rock Road 1024 Executive Parkway

IORTHERN IRELAND SACRAMENTO, CA 95834 P.O. Box 12826 WICHITA, KA 67207 ST. LOUIS, MO 63141 (1Pl iCOTLAND
Tel: (916) 929-7222 PENSACOLA, FL 32575 Tel: (316) 684-8491 Tel: (314) 878-0200
A' ,CH,CS,E,MS Tel: (904) 476-8422 CH A,CH,CS,E,MP

INITED STATES Hewlett-Packard Co. A,MS
Kentucky Effective September 1982:

• Iabama
9606 Aero Drive Hewlett-Packard Co. Hewlett-Packard Co . 13001 Hollenberg Drive

ewlett-Packard Co.
P.O. Box 23333 5750B N. Hoover Blvd., Suite 123 10300 Linn Station Road BRIDGETON, MO 63044

00 Century Park South
SAN DIEGO, CA 92123 TAMPA, FL 33614 Suite 100 Nebra8ka

uite 128
Tel: (714) 279-3200 Tel: (813) 884-3282 LOUISVILLE, KY 40223 Hewlett-Packard

IRMtNGHAM, AL 35226
CH,CM,CS,E,MP A • ,CH,CM,CS,E" ,M' Tel: (502) 426-0100 7101 Mercy Road

el: (205) 822-6802 Hewlett-Packard Co. Georgia A,CH,CS,MS Suite 101, IBX Building
H,MP 2305 Camino Ramon "C" Hewlett-Packard Co. Loui8iana OMAHA, NE 68106

ewlett-Packard Co.
SAN RAMON, CA 94583 P.O. Box 105005 Hewlett-Packard Co. Tel: (402) 392-0948

.0. Box 4207
Tel: (415) 838-5900 ATLANTA, GA 30348 8126 Calais Bldg. CM,MS

290 Whitesburg Drive, S.E.
CH,CS 2000 South Park Place BATON ROUGE, LA 70806

UNTSVILLE, AL 35802 Hewlett-Packard Co. ATLANTA, GA 30339 Tel: (504) 467-4100
Nevada

el: (205) 881-4591 P.O. Box 4230 Tel: (404) 955-1500 A",CH"
Hewlett-Packard Co.

H,CM,CS,E,M' Fullerton, CA 92631 Telex: 810-766-4890 Suite 0-130

363 Brookhollow Drive A,CH,CM,CS,E,MP Hewlett-Packard Co. 5030 Paradise Blvd.
.la8ka SANTA ANA, CA 92705 P.O. Box 1449 LAS VEGAS, NV 89119

Hewlett-Packard Co. KENNER, LA 70062 Tel: (702) 736-6610 ewlett-Packard Co. Tel: (714) 641-0977 P.O. Box 816 (80903)
577 "C" Street, Suite 252 A,CH,CM,CS,MP 160 James Drive East MS"
NCHORAGE, AK 99501 Hewlett-Packard Co.

2531 Center West Park way DESTAHAN, LA 70047
Suite 110 Tel: (504) 467 -4100 New Jer8ey el: (907) 276-5709 Suite A AUGUSTA, GA 30904

W 5553 Hollister A,CH,CS,E,MS Hewlett-Packard Co.
Tel: (404) 736-0592 W 120 Century Road

.rizona SANTA BARBARA, CA 93111 MS Maryland PARAMUS, NJ 07652
ewlett-Packard Co. Tel: (805) 964-3390

Hewlett-Packard Co. Hewlett-Packard Co. Tel: (201) 265-5000
336 East Magnolia Street Hewlett-Packard Co.

200-E Montgomery Cross Rds. 7121 Standard Drive A,CH,CM,CS,E,MP
HOENIX, AZ 85034 3003 Scott Boulevard

SAVANNAH, GA 31401 HANOVER, MD 21076
SANTA CLARA, CA 95050 Tel: (301) 796-7700 Hewlett-Packard Co.

el: (602) 273-8000 Tel:(912) 925-5358 60 New England Av. West
,CH,CM,CS,E,MS Tel: (408) 988-7000

CH" Telex: 710-862-1943
A,CH,CM,CS,E,MP Eff. Dec. 1, 1982 PISCATAWAY, NJ 08854

ewlett-Packard Co. Hewlett-Packard Co. 3701 Koppers SI. Tel: (201) 981-1199
424 East Aragon Road Hewlett-Packard Co.

P.O. Box 2103 A,CH,CM,CS,E 5703 Corsa Avenue BALTIMORE, MD 21227
UCSON, AZ 85706

WESTLAKE VILLAGE, CA 91362 WARNER ROBINS, GA 31099 Tel: (301) 644-5800
el: (602) 889-4631 1172 N. Davis Drive New Mexico
H,E,MS" Tel: (213) 706-6800

WARNER ROBINS, GA 31093
A,CH,CM,CS,E,MS Hewlett-Packard Co.

E',CW,CS'
Tel: (912) 923-8831 Hewlett-Packard Co. P.O. Box 11634

.rkan8a8 2 Choke Cherry Road ALBUQUERQUE, NM 87112
ewlett-Packard Co. Colorado E

Hewlett-Packard Co . ROCKVILLE, MD 20850 11300 Lomas Blvd.,N.E.
. 0. Box 5646

24 Inverness Place, East
Hawaii Tel: (301) 948-6370 ALBUQUERQUE, NM 87123

rady Station
ENGLEWOOD, CO 80112

Hewlett-Packard Co. A,CH,CM,CS,E,MP Tel: (505) 292-1330
ITTLE ROCK, AR 72215

Tel: (303) 771-3455
Kawaiahao Plaza, Suite 190

Ma88achu8ett8 Telex: 910-989-1185
11 N. Filmore 567 South King Street
ITTLE ROCK, AR 72205 Telex: 910-935-0785 HONOLULU, HI 96813 Hewlett-Packard Co. CH,CS,E,MS

el: (501) 664-8773, 376-1844 A,CH,CM,CS,E,MS Tel: (808) 526-1555 32 Hartwell Avenue
New York

IS Connecticut A,CH,E,MS LEXINGTON, MA 02173
Hewlett-Packard Co.

:aiifornla Hewlett-Packard Co. lIIinoi8
Tel: (617) 861-8960

5 Computer Drive South A,CH,CM,CS,E,MP
ewlett-Packard Co. 47 Barnes Industrial Road South Hewlett-Packard Co. ALBANY, NY 12205
9 South Hill Dr. P.O. Box 5007 211 Prospect Road, Suite C Michigan Tel: (518) 458-1550
RISBANE, CA 94005 WALLINGFORD, CT 06492 BLOOMINGTON, IL 61701 Hewlett-Packard Co. Telex: 710-444-4691
el: (415) 330-2500 Tel: (203) 265-7801 Tel: (309) 662-9411 23855 Research Drive A,CH,E,MS
H,CS A,CH,CM,CS,E,MS CH,MS" FARMINGTON HILLS, MI 48024 Hewlett-Packard Co.
ewlett-Packard Co. Florida Hewlett-Packard Co. Tel: (313) 476-6400 P.O. Box 297
621 Canoga Avenue Hewlett-Packard Co. 1100 31 st Street, Suite 100 A,CH,CM,CS,E,MP 9600 Main Street
ANOGA PARK, CA 91304 P.O. Box 24210 (33307) DOWNERS GROVE, IL 60515 Hewlett-Packard Co. CLARENCE, NY 14031
el: (213) 702-8300 2901 N.W. 62nd Street Tel: (312) 960-5760 4326 Cascade Road S.E. Tel: (716) 759-8621
,CH,CS,E,P FORT LAUDERDALE, FL 33307 CH,CS GRAND RAPIDS, MI 49506 Telex: 710-523-1893
ewlett-Packard Co. Tel: (305) 973-2600 Hewlett-Packard Co. Tel: (616) 957-1970 CH
060 Clinton Avenue CH,CS,E,MP 5201 T ollview Drive CH,CS,MS Hewlett-Packard Co.
RESNO, CA 93727 Hewlett-Packard Co. ROLLING MEADOWS, IL 60008 Hewlett-Packard Co. 200 Cross Keys Office
el: (209) 252-9652 4080 Woodcock Drive, #132 Tel: (312) 255-9800 1771 W. Big Beaver Road FAIRPORT, NY 14450
IS Brownett Building A,CH,CM,CS,E,MP TROY, MI 48084 Tel: (716) 223-9950
ewleH-Packard Co. JACKSONVILLE, FL 32207 Indiana

Tel: (313) 643-6474 Telex: 510-253-0092
.0. Box 4230 Tel: (904) 398-0663 Hewlett-Packard Co.

CH,CS CH,CM,CS,E,MS
430 East Orangethorpe C',E',MS" P.O. Box 50807 Minne80ta Hewlett-Packard Co.
ULLERTON, CA 92631 Hewlett-Packard Co. 7301 No. Shadeland Avenue Hewlett-Packard Co. 7641 Henry Clay Blvd.
el: (714) 870-1000 1101 W. Hibiscus Ave., Suite E210 INDIANAPOLIS, IN 46250 2025 W. Larpenteur Ave. LIVERPOOL, NY 13088
H,CM,CS,E,MP MELBOURNE, FL 32901 Tel: (317) 842-1000 ST. PAUL, MN 55113 Tel: (315) 451-1820
,ewlett-Packard Co. Tel: (305) 729-0704 A,CH,CM,CS,E,MS Tel: (612) 644-1100 A,CH,CM,E,MS
20 S. Kellogg, Suite B E' A,CH,CM,CS,E,MP Hewlett-Packard Co.
iOLETA, CA 93117 Hewlett-Packard Co. Iowa No. 1 Pennsylvania Plaza
el: (805) 967-3405 P.O. Box 13910 (32859) Hewlett-Packard Co. Mi88i88ippi

55th Floor
:H 6177 Lake Ellenor Drive 1776 22nd Street, Suite 1 Hewlett-Packard Co.

34th Street & 8th Avenue
ORLANDO, FL 32809 WEST DES MOINES, IA 50265 P.O. Box 5028

NEW YORK, NY 10119 lewlett-Packard Co. Tel: (515) 224-1435 1675 Lakeland Drive
400 W. Rosecrans Boulevard Tel: (305) 859-2900

CH,MS" JACKSON, MS 39216 Tel: (212) 971-0800
AWNDALE, CA 90260 A,CH,CM,CS,E,MS

Hewlett-Packard Co. Tel: (601) 982-9363 CH,CS,E',M'
'.0. Box 92105 2415 Heinz Road MS
OS ANGELES, CA 90009 IOWA CITY, IA 52240
el: (213) 970-7500 Tel: (319) 351-1020

Mi880url
elex: 910-325-6608 CH,E',MS

Hewlett-Packard Co.
:H,CM,CS,MP 11131 Colorado Avenue

lewlett-Packard Co. KANSAS CITY, MO 64137

200 Hillview Avenue
Tel: (816) 763-8000

ALO ALTO, CA 94304 A,CH,CM,CS,E,MS

el: (415) 857-8000
:H,CS,E

0 SALES & SUPPORT OFFICES Guillermo Kraft del Uruguay S.A. ZIMBABWE
Av. Lib. Brig. Gral. Laval/eja 2083 Field Technical Sales

Arranged Alphabetically by Country MONTEVIDEO 45 Kelvin Road, North

~~ Tel: 234588, 234808, 208830 P.8. 3458
Telex: 22030 ACTOUR UY SALISBURY
P Tel: 705231

Hewlett-Packard Co. Pennsylvania Hewlett-Packard Co. Telex: 4-122 RH
250 Westchester Avenue Hewlett-Packard Co. 417 Nolana Gardens, Suite C VENEZUELA C,E,M,P
WHITE PLAtNS, NY 10604 1021 8th Avenue P.O. Box 2256 Hewlett-Packard de Venezuela C.A.
CM,CH,CS,E King of Prussia Industrial Park McALLEN, TX 78501 3A Transversal Los Ruices Norte

Hewlett-Packard Co. KING OF PRUSSIA, PA 19406 Tel: (512) 781-3226 Edificio Segre

3 Crossways Park West Tel: (215) 265-7000 CH,CS Apartado 50933

WOODBURY, NY 11797 Telex: 510-660-2670 Hewlett-Packard Co. CARACAS 1071

Tel: (516) 921-0300 A,CH,CM,CS,E,MP P.O. Box 1270 Tel: 239-4133

Telex: 510-221-2183 Hewlett-Packard Co. RICHARDSON, TX 75080 Telex: 25146 HEWPACK

A,CH,CM,CS,E,MS 111 Zeta Drive 930 E. Campbell Rd. A,CH,CS,E,MS,P

PITTSBURGH, PA 15238 RICHARDSON, TX 75081 Cotimodio S.A.
North Carolina Tel: (412) 782-0400 Tel: (214) 231-6101 Este 2 - Sur 21 No. 148
Hewlett-Packard Co. A,CH,CS,E,MP A,CH,CM,CS,E,MP Apartado 1053
4915 Water's Edge Drive

Hewlett-Packard Co. CARA CAS 10 10
Suite 160 South Carolina

P.O. Box 32993 Tel: 571-3511
RALEIGH, NC 27606 Hewlett-Packard Co. Telex: 21529 COLMODtO
Tel: (919) 851-3021 P.O. Box 21708 SAN ANTONIO, TX 78216

M
C,M Brookside Park, Suite 122 1020 Central Parkway South

Hewlett-Packard Co. 1 Harbison Way SAN ANTONIO, TX 78232
Tel: (512) 494-9336

P.O. Box 26500 COLUMBIA, SC 29210
CH,CS,E,MS

5605 Roanne Way Tel: (803) 732-0400

GREENSBORO, NC 27450 CH,E,MS Utah
Tel: (919) 852-1800 Hewlett-Packard Co. Hewlett-Packard Co.
A,CH,CM,CS,E,MS Koger Execulive Center P.O. Box 26626

Ohio
Cheslerfield Bldg., Suile 124 3530 W. 2100 South Headquarters offices GREENVILLE, SC 29615 SAL HAKE CITY, UT 84119 Hewlett-Packard Co. Tel: (803) 748-5601 Tel: (801) 974-1700 If there is no sales office listed for your area,

9920 Carver Road
CINCINNATI, OH 45242

C A,CH,CS,E,MS contact one of these headquarters offices,

Tel: (513) 891-9870 Tennessee Virginia NORTH/CENTRAL MEDITERRANEAN AND
CH,CS,MS Hewlett-Packard Co. Hewlett-Packard Co. AFRICA MIDDLE EAST
Hewlett-Packard Co. P.O. Box 22490 P.O. Box 9669 Hewlett-Packard S.A. Hewlett-Packard S.A.
16500 Sprague Road 224 Peters Road 2914 Hungary Spring Road 7 Rue du Bois-du-Lan Mediterranean and Middle East
CLEVELAND, OH 44130 Suite 102 RICHMOND, VA 23228 CH- 1217 MEYRIN 2, Switzerland Operations
Tel: (216) 243-7300 KNOXVILLE, TN 37922 Tel: (804) 285-3431 Tel: (022) 98-96-51 Atrina Centre
Telex: 810-423-9430 Tel: (615) 691-2371 A,CH,CS,E,MS Telex: 27835 hpse 32 nfissias Ave.
A,CH,CM,CS,E,MS A',CH,MS

Hewlett-Packard Co. Cable: HEWPACKSA Geneve Maroussi, ATHENS, Greece
Hewlett-Packard Co. Hewlett-Packard Co. 3106 Pelers Creek Road, N.W. Tel: 682 88 11
962 Crupper Ave. 3070 Directors Row ROANOKE, VA 24019 ASIA Telex: 21-6588 HPAT GR
COLUMBUS, OH 43229 MEMPHIS, TN 38131 Tel: (703) 563-2205 Hewlett-Packard Asia Ltd. Cable: HEWPACKSA Athens
Tel: (614) 436-1041 Tel: (901) 346-8370 CH,E" 6th Floor, Sun Hung Kai Center
CH,CM,CS,E' A,CH,MS

Hewlett-Packard Co. 30 Harbor Rd. EASTERN USA

Hewlett-Packard Co. Hewlett-Packard Co. 5700 Thurslon Avenue G.P.O. Box 795 Hewlett-Packard Co.

P.O. Box 280 230 Greal Circle Road Suite 111 HONG KONG 4 Choke Cherry Road

330 Progress Rd. Suile 216 VIRGINIA BEACH, VA 23455 Tel: 5-832 3211 Rockville, MD 20850

DAYTON, OH 45449 NASHVILLE, TN 32228 Tel: (804) 460-2471 Telex: 66678 HEWPA HX Tel: (301) 258-2000

Tel: (513) 859-8202 Tel: (615) 255-1271 CH,MS Cable: HEWPACK HONG KONG

A,CH,CM,E' ,MS MS" MIDWESTERN USA
Washington CANADA Hewlett-Packard Co.

Oklahoma Texas Hewlett-Packard Co. Hewlett-Packard (Canada) Ltd. 5201 Tollview Drive
Hewlett-Packard Co. Hewlett-Packard Co.

15815 S.E. 37th Street 6877 Goreway Drive ROLLING MEADOWS, IL 60008
P.O. Box 32008 Suire 310W

BELLEVUE, WA 98006 MISSISSAUGA, Ontario L4V 1M8 Tel: (312) 255-9800
Oklahoma City, OK 73123 7800 Shoalcreek Blvd.

Tel: (206) 643-4000 Tel: (416) 678-9430
1503 W. Gore Blvd., Suile #2 AUSTIN, TX 78757

A,CH,CM,CS,E,MP Telex: 610-492-4246 SOUTHERN USA
LAWTON, OK 73505 Tel: (512) 459-3143 Hewlett-Packard Co.
Tel: (405) 248-4248 E Hewlett-Packard Co. EASTERN EUROPE P.O. Box 105005
C Hewlett-Packard Co.

Suite A Hewlett-Packard Ges.m.b.h. 450 Interstate N. Parkway

Hewlett-Packard Co. Suite C-110 708 North Argonne Road Lieblgasse 1 ATLANTA, GA 30339

P.O. Box 32008 4171 North Mesa SPOKANE, WA 99206 P.O.Box 72 Tel: (404) 955-1500

OKLAHOMA CITY, OK 73123 EL PASO, TX 79902
Tel: (509) 922-7000 A-1222 VIENNA, Austria
CH,CS Tel: (222) 2365110 WESTERN USA

304 N. Meridian Avenue, Suire A Tel: (915) 533-3555, 533-4489

OKLAHOMA CITY, OK 73107 CH,E',MS" West Virginia Telex: 1 3 4425 HEPA A Hewlett-Packard Co.

Tel: (405) 946-9499 Hewlett-Packard Co. Hewlett-Packard Co. NORTHERN EUROPE 3939 Lankersim Blvd.

A' ,CH,E' ,MS 5020 Mark IV Park way 4604 MacCorkle Ave., S.E. Hewlett-Packard S.A.
LOS ANGELES, CA 91604

Hewlett-Packard Co. FORT WORTH, TX 76106 CHARLESTON, WV 25304-4297 Uilenstede 475
Tel: (213) 877-1282

Suile 121 Tel: (817) 625-6361 Tel: (304) 925-0492 NL-1183 AG AMSTELVEEN OTHER INTERNATIONAL
9920 E. 42nd Street CH,CS' A,MS The Netherlands

TULSA, OK 74145 Hewlett-Packard Co. P.OBox 999 AREAS

Tel: (918) 665-3300 P.O. Box 42816
Wisconsin NL-1180 AZ AMSTELVEEN Hewlett-Packard Co.

A" ,CH,CS,M' HOUSTON, TX 77042
Hewlett-Packard Co. The Netherlands Intercontinental Headquarters

10535 Harwin Street
150 S. Sunny Slope Road Tel: 20 437771 3495 Deer Creek Road

Oregon HOUSTON, TX 77036
BROOKFIELD, WI 53005 PALO ALTO, CA 94304

Hewlett-Packard Co. Tel: (414) 784-8800 OTHER EUROPE Tel: (415) 857-1501
1500 Valley River Drive

Tel: (713) 776-6400 A,CH,CS,E' ,MP Hewlett-Packard S.A. Telex: 034-8300
Suite 330

A,CH,CM,CS,E,MP 7 Rue du Bois-du-Lan Cable: HEWPACK
EUGENE, OR 97401 Hewlett-Packard Co. URUGUAY CH-1217 MEYRIN 2, Switzerland

Tel: (503) 683-8075 3309 67th Street Pablo Ferrando S.A.C. e L. Tel: (022) 98-96-51

C Suite 24 Avenida Italia 2877 Telex: 27835 hpse

Hewlett-Packard Co.
LUBBOCK, TX 79413 Casil/a de Correo 370 Cable: HEWPACKSA Geneve
Tel: (806) 799-4472 MONTEVtDEO (Offices in the World Trade Center)

9255 S. W. Pioneer Court M Tel: 80-2586 WtLSONVILLE, OR 97070
Telex· Public Booth 901 Tel: (503) 682-8000
A,CM,E,M A,CH,CS,E' ,MS 15 Aug 19825952-6900

Scan Copyright ©
The Museum of HP Calculators

www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

