h'ﬁ"".‘""?"m"-f"'":"ﬁ'" S—
2 G G

R g
e "'.E.'-;]-_-'-" :-:;_-.?,-,p-ﬁﬁ'w'ﬁ.i '.

HE WLETTHW PACKARD

Warranty Statement

Hewlett-Packard products are warranted against defects in materials and
workmanship. For Hewlett-Packard Desktop Computer Division products
sold in the U.S.A. and Canada, this warranty applies for ninety (90) days
from date of defivery.” Hewistt-Packard will, at its option, repair or replace
equipment which proves to be defective during the warranty period. This
warranty includes labor, parts, and surface travel costs, if any. Equipment
returned to Hewlett-Packard for repair must be shipped freight prepaid.
Repairs necessitated by misuse of the equipment, or by hardware,
software, or interfacing not provided by Hewlett-Packard are not covered
by this warranty.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. HEWLETT-PACKARD
SHALL NOT BE LIABLE FOR CONSEQUENTIAL DAMAGES.

*For other countries, contact your local Sales and Service Office to
determine warranty terms.

Operating and Programming

Hewlett-Packard 9825A Calculator

Including Memory Options 001, 002, and 003

9825A Calculator

Hewlett-Packard Desktop Comguter Division
3404 East Harmony Road, Fort Collins, Colorado 80525
(For World-wide Sales and Service Ottices see back of manual.)
Copyright by Hawlett-Packard Company 1976

Manual Summary
Overview

Key points about your calculator.

Chapter 1: Owner’s Information

Inspection, installation, and accessories to expand your calculator system.

Chapter 2: General Information

Introduces you to the calculator and its operation.

Chapter 3: Introduction to Keyboard and Programming

Information about the keyboard and programming to help the new user.

Chapter 4: The Keyboard

Operation of most of the keys, including the special function keys.

Chapter 5: Programming Instructions

Shows you most of the programming instructions in detail.

Chapter 6: Debugging

Using keys and the debugging statements to debug your programs.

Chapter 7: Commands

Commands and what they do.

Chapter 8: Live Keyboard

Gives you an explanation of live keyboard and ideas on how to use it.

Chapter 9: Tape Cartridge Operations

Shows you how to operate the tape drive and how to take care of it.

Table of Contents

Planual Summary
oo view

«haptar 1: - Owner's Information

Calculator Inspection Procedure
Equipment Supplied
Power Cords
Power Requirements
Grounding Requirements
Fuses
Initial Turn-On Instructions
Calculator Testing
Loading Printer Paper
Accessories
ROM Description
ROM Installation
Calculator Peripherals
interface Kits
Pre-recorded Programs
Service Contracts
Keyboard Magazine

Chapter 20 General Information’

Before Using the Calculator
Description of the 9825A Calculator
The Keyboard
Display and Line Length
Range
Significant Digits
Memory
Language
Error Messages
¢ hapter 3¢ Introduction to Keyboard and Programming
System Keys

Keyboard Arithmetic
Anthmetic Hierarchy

O OO s s WWN 2 =

_ s b
N - <+ O ®

13
14
14
15
16
16
16
18
18

19
20
21

iii

o Lo ol Contents

Variables

Simple Variables

r-Variables

Operating Modes

Basic Editing
Programming

Chapter 4: The Keyboard

System Command Keys
Display Control Keys

Editing Keys

Line Editing Keys
The Character Editing Keys

Calculator Control Keys

Special Function Keys
Immediate Execute Special Function Keys
Immediate Continue Special Function Keys
Keys with Multiple Statements

Chapter 5: Programming Instructions

Syntax Conventions

Variables

Simple Variables
Array Variables

r-Variables

Variable Allocation
Number Formats

The Fixed Statement

The Float Statement

Significant Digits

Rounding

The Display Statement
The Print Statement

The Enter Statement

The Enter Print Statement
The Space Statement
The Beep Statement

The Wait Statement

Ihe Stop Statement

Ihe Fnd Statement

Hierarchy

Operators

21
22
22
22
23
24

27
29
30
30
31
32
34
35
35
36

37
37
37
37
38
39
39
40
41
42
42

43
44
46
47
47
47
48
48
49
50

Assignment Operators
Arithmetic Operators
Relational Operators
{ ogical Operators
M.th Functions and Statements
General Functions
| ogarithmic and Exponential Functions
Tngonometric Functions and Statements
M.th Errors
Flags
Ihe Set Flag Statement
The Clear Flag Statement
The Complement Flag Statement
Ihe Flag Function
Hirunching Statements
Line Renumbering
l.abels
Iha Go To Statement
Absolute Go To
Relative Go To
lL.abelled Go To
The Jump Statement
Ihe Go To Subroutine and Return Statements
Absolute Go Sub
Relative Go Sub
L abelled Go Sub
Calculated Go Sub Branching
Iha i Statement
N-Way Branching
Ihe Dimension Statement
Specitying Bounds for Dimensions
The Clear Simple Variables Statement
Tho List Statement
Used and Remaining Memory

“apter o Debugging
b nding the Problem
bixing the Problem
Iho Debugging Statements
Opaeration of Trace, Stop, and Normal

The Trace Statement

Table of Contents v

50
50
51
52
53
53
55
56
57
59
59
60

61
61
61
62
62
63

63
64

65
65
66
66
67
68
68
69
70
70
71

73
73
75
75
76

vi Tabie of Contents

The Stop Statement 76
The Normal Statement 76

Chapter 7: Commands

The Run Command 79
The Continue Command 79
The Delete Line Command . 80
The Erase Command 81
The Fetch Command .. 82

Chapter 8: Live Keyboard

How Live Keyboard Works 83
Live Keyboard Math . 83
Statements in Live Keyboard 83
Subroutines from Live Keyboard 84
Special Function Keys in Live Keyboard 84
The Stop Key in Live Keyboard 85
Live Keyboard Limitations . oo o oo . 85
The Display . o . ‘ : 86
The Live Keyboard Enable Statement . 87
The Live Keyboard Disable Statement 87
Chapter 9: Tape Cartridge Operations

Specifications) v 89
Tape Structure 90
Tape Cartridge = . L : . . . 9%
Inserting the Cartridge . , . ‘ S B]
Tape Care . ; a1
The Rewind Statement ‘ , S o 92
The Track Statement ; , o S92
The Identify File Statement : . : . 93
The Find File Statement . o ... 94
The Tape List Statement ‘ S 95
Marking Tapes : , (... 96

The Mark Statement , o . 96

Determining Size to Mark a File 97

Tape Capacity o . 98

Tape Capacity Calculations o .. 98

Marking New Tapes . , 99

Marking Used Tapes . , 99
The Erase Tape Statement 101

The Record File Statement . . S) « . 102

Recording Programs
Recording Data
The Load Program Statement
The Load File Statement
Loading Programs
Linking Programs
Loading Data
The Record Keys Statement
The Load Keys Statement
The Record Memory Statement
The Load Memory Statement
The Load Binary Program Statement
File Verification
The Auto-Verify Disable Statement
The Auto-Verify Enable Statement
The Verify Statement
The Set Select Code Statement

Appendix A: Syntax

Informal Syntax
Syntax Requirements for HPL

Appendix B: Error Messages

Mainframe Error Messages

Advanced Programming ROM Error Messages
Extended |/O ROM Error Messages

General /0O ROM Error Messages

Matrix ROM Error Messages

9862A Plotter ROM Error Messages

String Variables ROM Error Messages

9885 Flexible Disk ROM Error Messages

Appendix C: Programming Hints

Appendix D: Calculator Status Conditions
Extended 1/0 Status Conditions

Appendix E: 9825A and 9820A/9821A Compatibility

Entering Programs
Running Programs

Table of Contents vii

102
102
104
104
105
106
107
108
108
108
109
109
110
110
111
111
111

113

113
117

123
123
129
130
132
134
134
135
135

137

139
140

141

141
142

viii

Table of Contents

Appendix F: Tape Cartridge Errors S L o ... 145
File Body Read Error 145
Loading a Program File : : ‘ : ... 145
Loading a Data File . 145
File Header Read Error . . S . 146
Conditioning the Tape 147
Appendix G: Table Mounting ‘ ; 149
Figures
Power Cords 3
Location of Fuse . 4
Nominal Line Voltage Settings .4
Loading Printer Paper 6
Location of ROM Siots 6
9862A X-Y Plotter A .. 8
9871A Character-Impact Printer 8
9866B Thermal Printer . . 8
9869A Card Reader . 8
9863A Tape Reader ; : ... 9
9883A High Speed Tape Reader . , e 9
9884A Tape Punch .9
9864A Digitizer 9
Interface Applications 10
The 9825A Keyboard .14
Storage Range 16
Calculating Range 16
Read/Write Memory Organization 17
Tape Structure . 90
Tape Cartridge .90
Inserting the Tape Cartridge 91
Cleaning the Tape Head and Capstan 9N

Table Mounting Diagram , o B - ... 149

R o i

g |

SO

Tables

Equipment Supplied

Arithmetic Hierarchy

Commonly Used Flowchart Symbols
Hierarchy

Arithmetic Operators

Relational Operators

Logical Operators

Live Keyboard Limitations

Tape Cartridge Specifications

File Types

Table of Typical Storage Capacities
Informal Syntax

Programming Hints

Calcutator Status Conditions
Extended /O Status Conditions

Table of Contents

21
26
49
50
51
52
85
89
93
98
113
137
139
140

ix

Overview

AR AN TR VRN TR VRN TER N YN TV - X =} - X - X %
I A ARV AT AT R R TR TR TN - YRR EE = Y
N = IR R R TR R TR LR KR IR R &t v E
[— IR AT TR TR T RNV — \-1‘.\ N =N

i | ey W R TR S

- Upper and lower case keyboard similar to a typewriter.
- Abbreviated mnemonics, multi-statement lines, and implied multiplication.
- Allows you to use the calculator while a program is running.

- Three interface slots allow your system to grow. Optional capabilities include
DMA, interrupts, and bit-manipulation.

- Two track, high-density, for fast storage and access of programs and data.

- 186-character-wide printer for hardcopy listings of programs, messages, and
data.

- 32 characters can be displayed for entering program lines, debugging, and
displaying messages.

“highl £ miing Diode

Chapter 1
Owner’s Information

This chapter covers the installation of your HP 9825A Calculator, the available accessories,
and other information that is important when you first receive your calculator.

Calculator Inspection Procedure

The individual parts of your calculator system were thoroughly inspected before they were
shipped to you. All equipment should be in good operating order. Carefully check the cal-
culator, ROMs, peripheral equipment, and other items for any physical damage sustained in
transit. Notify HP and file a claim with the carrier if there is any such damage.

Please check to ensure that you have received all of the items which you ordered and that any
options specified on your order have been installed in your calculator. Refer to the table on the
next page and check that all accessories are present.

It you have any difficulties with your system, if it is not operating properly, or if any items are
missing, please contact your nearest HP sales and service office; addresses are supplied at
the back of this manual.

Equipment Supplied

The following items are packaged with each HP 9825A Calculator. Peripheral devices and
interface cards are packaged separately; each of these has its own manual or operating note
and may also have extra items packaged with it.

>

Cnwnier's Information

Equipment Supplied

Description Quantity Part No.
Operating and Programming Manual 1 09825-90000
Quick Reference Guide 2 09825-90010
Error Booklet (under paper cover) 1 09825-90015
Blank Tape Cartridge 1 9162-0061
Utility Pac 1 09825-10000
AC Power Cord 1 (see below)
Dust Cover 1 9222-0495
Tape Head Cleaner 1 8500-1251
Special Function Key Overlays (Blank) 5 7120-4802
Spare Fuse (1.5A) 1 2110-0043
Spare Fuse (3A) 1 2110-0003
System Test Cartridge 1 09825-90035
System Test Booklet 1 09825-90031
Printer Paper 3 (see below)
Software Binder 1 9282-0563

All the equipment in the table above can be purchased by ordering HP part number 09825-
80000. When ordering paper specify six-roll packs, HP part number 9270-0479.

Power Cords

Power cords supplied by HP will have polarities matched to the power-input socket on the
calculator, as shown below.

e L = Line or Active Conductor (also called “live” or “hot")
e N = Neutral or Identified Conductor

e E = Earth or Safety Ground

WARNING

IF 1T IS NECESSARY TO REPLACE THE POWER CORD, THE
REPLACEMENT CORD MUST HAVE THE SAME POLARITY
AS THE ORIGINAL. OTHERWISE A SAFETY HAZARD FROM
ELECTRICAL SHOCK TO PERSONNEL, WHICH COULD
RESULT IN DEATH OR INJURY, MIGHT EXIST. IN ADD!-
TION, THE EQUIPMENT COULD BE SEVERELY DAMAGED
IF EVEN A RELATIVELY MINOR INTERNAL FAILURE OC-
CURED.

Owner’s Information

Power cords with different plugs are available for the caliculator; the part number of each cord
is shown below. Each plug has a ground connector. The cord packaged with each calculator
depends upon where that calculator is to be delivered. If your calculator has the wrong power
cord for your area, please contact your local HP sales and service office.

NERER o

8120-1351 8120-1369 8120-1880

S}

.
\% CALCULATOR
POWER-INPUT
SOCHET
\
SN

it
8120-2104

8120-1378"

Power Requirements

The 9825A Calculator has the following power requirements:

e Line Voltage: 100 Vac + 5%, —10%
120 Vac + 5%, —10%
220 Vac + 5%, —10%
240 Vac + 5%, —10%

Switch Selectable

e Line Frequency: 48 to 66 Hertz

e Power Consumption: 100V @ 1.7A

120V @ 1.5A
220V @ .8A
240V @ .75A

Grounding Requirements

To protect operating personnel, the National Electrical Manufacturers’ Association (NEMA)
recommends that the calculator be properly grounded. The calculator is equipped with a
three-conductor power cable which, when connected to an appropriate power receptacle,
grounds the calculator. To preserve this protection feature, do not operate the calculator from
an ac power outlet which has no ground connection.

UL and CSA approved for use in the United States of America and Canada with calculators set tor @ither 100 or 120 Vac operation,

2UL and CSA approved for use in the United States of America and Canada with calculators set for either 220 or 240 Vac operation.

3

4 Owner's Information

Fuses

For 100 or 120 Vac operation, use a 3A fuse; for 200 or 220 Vac operation use a 1.5A fuse.

WARNING 1
TO AVOID THE POSSIBILITY OF SERIOUS INJURY, DIS-
CONNECT THE AC POWER CORD BEFORE REMOVING OR
INSTALLING A FUSE.

t—IM

~ LINE SELECTOR
WARNING -

. IZ.’Z' [‘ ,

)] es25a oPTions
23228 TOTAL BYTES

Location of Fuse ‘

The figure shows the location of the fuse under the paper cover. To change the fuse, first
disconnect the power cord to the calculator. Then remove the fuse cap by pressing inward
while twisting it counterclockwise. Remove the fuse from the cap and insert the correct re-
placement fuse (either end) into the cap. Finally, put the fuse and cap back into the fuse
holder. Press on the cap and twist it clockwise until it locks in place.

Initial Turn-On Instructions

1. With the calculator disconnected from its ac power source, check that the proper
calculator fuse has been installed for the voltage in your area (see previous section).

2. Next, ensure that the two voltage selector switches under the paper cover are set for the
correct powerline voltage. The figure below shows the correct settings for each nominal
line voltage. If it is necessary to alter the setting of either switch, insert the tip of a small
screwdriver into the slot on the switch. Slide the switch so that the position of the slot
corresponds to the desired voltage, as shown below.

3A 3a
IOOV ZZOV lOOV 220v IOOV 220V 1Q0V 220V
|20V 240V |20V 240V- 120v ZQQV 120V 240V
154 leS4. leSA ‘

100 volts 120 velts 220 vol's 24Qvolrs

57811

Nominal Line Voltage Settings

The operating system module on the right-hand side of the calculator must be inserted
so that it is even with the side of the calculator.

Install the desired ROM cards and Interface Cards (see ROM installation, page 6 and
refer to the appropriate manual for interface installation).

CAUTION
ALWAYS TURN OFF THE CALCULATOR WHEN INSERTING
OR REMOVING ROMS AND INTERFACES. FAILURE TO DO
SO COULD DAMAGE EQUIPMENT.

5. Connect the power cord to the power input connector on the back of the calculator.

Plug the other end of the cord into the ac power outlet.

6. Switch the calculator on using the switch on the right-hand side of the calculator.

- co

Calculator Testing

If you wish to test your calculator, or if there is any doubt that your calculator is operating
correctly, refer to the System Test Booklet for the calculator test procedure.

Loading Printer Paper

The internal printer uses special heat-sensitive (thermal) paper. When ordering paper, specify
the six-roll pack, HP part number 9270-0479.

To load a roll of paper:

1.

2.
3.

Lift the paper cover and remove the paper spindle. Discard the oid paper core and
remove any paper left in the printer using the paper advance wheel.

Install the new roll as shown in the following figure.

Insert the free end of the paper and advance it through the printer using the paper
advance wheel.

6 Owner’s Information

Loading Printer Paper'

Accessories

This section contains general ROM information and describes the ROMs, peripherals, and
interfaces that are currently available for the 9825A Calculator.

ROM Description

Several ROMs (Read Only Memories) are available for your calculator; each provides addi-
tional language capabilities to perform specific tasks, such as plotting, controlling peripher-
als, or extending the programming capabilities of your calculator. One or more ROMs are
packaged in a ROM card.

ROM Installation

A ROM card can be plugged into any one of the four ROM slots on the bottom front of the
calculator as shown below

ROM Installation

-y

hrel turn off the calculator. Then slide the ROM, with the label right-side-up,
(] -
= goor. Press il in s0 that it is even with the front of the calculator.

Owner's Information 7

The following ROMs are available in various combinations.

String Variables ROM

This ROM enables the calculator to recognize and operate on letters and words (*'strings”) in
much the same way that it recognizes and operates on numbers. Some of the capabilities
which are provided include: single strings and string arrays, numeric value of a string of
digits, concatenation, and displaying or printing all special characters.

Advanced Programming ROM

This ROM extends the programming capabilities of the 9825A Calculator. For/next looping,
split and integer precision number storage, multiparameter functions and subroutines, and
the cross reference statement are the operations provided by the Advanced Programming
ROM.

Matrix ROM

The Matrix ROM extends the language to include statements for manipulating matrices and
arrays. Addition, subtraction, multiplication, and division of arrays, as well as inversion, trans-
position, and determinants of matrices are only some of the capabilities provided by this ROM.

9862A Plotter ROM

This ROM enables the 9825A Calculator to control the HP 9862A Plotter. Axes can be drawn
and labelled; functions can be plotted; and in the “typewriter” mode, characters can be
printed as you type them from the keyboard. More than one 9862A Plotter can be operated at
the same time.

General /O ROM

The General I/O ROM provides basic /O capability with formatting. Most 9800 series
peripherals (not the 9862A Plotter) can be controlled using this ROM. Binary 1/0, status
checking, and limited control of instruments via the HP-Interface Bus are also provided.

Extended 1/O ROM

The Extended I/0 ROM extends the I/O capability of the calculator by providing complete
HP-iB control, bit manipulation and testing, auto-starting, error trapping, and interrupt
capabilities.

I

A

8 Owner's Information

Calculator Peripherals

Each of these peripherals is available with the necessary interface cables and operating
instructions. The General /O ROM is needed to control all peripherals except the 9862A
Plotter.

HP 9862A X-Y Plotter ;

Histograms, pie charts, circuit diagrams,
linear, log-log, and polar plots — these are a
few of the things you can do with the 9862A
Plotter. The 9862A Plotter ROM provides all the
instructions needed to control the 9862A Piot-
ter with the 9825A Calculator.

Qutput Printers

If you need data output in tables, charts, or
forms, one of these printers can do the job.

The HP 9871A Character-Impact Printer pro-

. ‘ vides 132-character wide, multiple copy out-
put, and a full 96-character font. The average
printing speed is 30 characters per second.

This printer includes an additional plotting
capability.

The HP 9866B Thermal Printer is a fast (240
lines per minute) line printer. It has a 95-
character alphanumeric font with upper and
lower case, produces fully-formatted text and
tables, and has plotting capability.

Card Reader

The 9869A Card Reader provides a convenient
form of data entry from punched or marked
cards. Standard 80-column cards can be read
at up to 300 cards per minute.

Owner’s Information 9

Paper Tape Readers

Data from analytical instruments, machine
toals, and computer terminals can be entered
R directly into the calcuiator with one of these

v paper tape readers. The HP 9863A makes it
easy to read data in a wide variety of formats at
20 characters per second. The HP 9883A Tape

HP 9884A Tape Punch

Add high-speed output to your calculator with
a tape punch. This reliable, compact unit
punches tape at 75 characters per second.

HP 9864A Digitizer

Use this peripheral to read a curve, or any ir-
regular shape, as a series of discrete points
and then convert these to a series of digital x-y
coordinates. To make entries, simply trace the
shape; then the calculator can find dimensions
and area of the line or contained shape. With
the proper programs, you can directly process
graphical data, such as X-rays, blueprints,
strip-chart recordings, or cut-and-fill profiles.

HP 9885 Flexible Disk Drive

The HP 9885 Flexible Disk Drive provides a
convenient, reliable, and low-cost method of
transferring programs and data to and from the
calculator at high speeds. The 9885 is a ran-
dom access, removable, mass storage device
with a capacity of up to 468,480 bytes per disk.
The removable, low-cost flexible disks provide
unlimited storage to the user. The 9885M (Mas-
ter) Flexible Disk Drive contains a built-in con-
troller. Up to three 9885S8's (Slaves) can be
connected to each 9885M.

Reader, designed for high-speed, heavy-
volume operations, optically reads tapes at up
to 500 characters per second.

10 Owner's Information

Interface Kits

Several interfaces are available for the calculator to control and exchange data with a wide
variety of equipment other than the peripherals just described. Each interface has general
installation and configuration instructions. Typical applications are shown here:

Card Readers
Printers

- Tape Punches
E & < 16 bit duplex > Tape Readers

98032A Instrumentation Contral

” ss < BCD (input only)> Digital Vpltmeler
Electronic Counters
98033A
Any instrument having HP-IB
< HP-18 > capability. No special wiring

required.
98034A

16-Bit Duplex Interface

The HP 98032A Interface is a general purpose card providing a 16-bit parallel, character-
serial interface. The interface transfers data between the 9825A Calculator and a peripheral
device in full-duplex; that is, the interface can have valid data on the output lines and be
inputting data at the same time. The General |/O ROM is needed to control this interface.

BCD Interface

The HP 98033A BCD Interface allows the calculator to take samples from many instruments
having parallel, binary-coded-decimal (BCD) output. The interface can input data of up to ten
BCD digits, mantissa sign, exponent sign, and overload indication. The General /O ROM is
required to control this interface.

HP Interface Bus

The HP 98034A HP-IB Interface allows up to 14 HP-IB compatible instruments to be con-
nected to the calculator at one time. The General /0 ROM provides simplified control of the
interface. The Extended 1/0 ROM should be used when complete control is desired.

Owner's Information

Prerecorded Programs

Tape cartridges containing programs for solving problems from many disciplines are availa-
ble. A utility program cartridge is supplied with each calculator. For a compilete list of pre-
recorded programs and for pricing information, contact any HP sales office (addresses are
provided in the back of this manual).

Service Contracts

When you buy a Hewlett-Packard desk-top calculator, service is an important factor. If you are
to get maximum use from your calculator, it must be in good working order. A HP Maintenance
Agreement is the best way to keep your calculator in optimum running condition.

Consider these important advantages:

Fixed Cost— The cost is the same regardless of the number of calls, so it is a figure that
you can budget.

Priority Service— Your Maintenance Agreement assures that you receive priority treat-
ment, within an agreed upon response time.

On-Site Service~ There is no need to package your equipment and return it to HP. Fast
and efficient modular replacement at your location saves you both time and money.

A Complete Package— A single charge covers labor, parts, and transportation.

Regular Maintenance — Periodic visits are included, per factory recommendations, to
keep your equipment in optimum operating condition.

Individualized Agreements— Each Maintenance Agreement is tailored to your support
equipment configuration and your requirements.

After considering these advantages, we are sure you will agree that a Maintenance Agree-
ment is an important and cost-effective investment.

For more information please contact your local HP calculator sales and service office.

11

12 ranier sinformation

Keyboard Magazine

Keyboard is a periodical magazine containing general information about HP calculators and
related equipment. It includes articles and programs written by calculator users, description
of the latest equipment and prerecorded programs, programming tips, and many other items
of general interest to calculator users.

To receive your free subscription to Keyboard, merely complete the order form supplied with
the calculator.

Chapter 2
General Information

This chapter introduces some of the operating characteristics of the calculator. The keyboard,
display, and range are a few of the topics covered.

Before Using the Calculator

There are a few things you should check each time you turn on the calculator.

If the calculator is turned off:

e Set the power switch on the right-hand side of the calculator to the “1" position:

(f? :'g

e When the following display appears, the calculator is ready for use:

Lr)
If the calculator is turned on and the display is blank:

e Press @ or

If the display still remains blank, first check the power connection and fuse as described on
pages 3 and 4. Then call your HP sales and service office listed in the back of this manual.

if the calculator is on and the display shows the “lazy T", you can do keyboard operations or
arithmetic or you can enter programs and run them.

14 General Information

Description of the 9825A Calculator
The Keyboard

Special Function Keys

— \

- p— \
EEeE 00 @DE@E® 0o m o

@EEE OO0 OE@E® OOmMm e M

DO000R00ERL0 |[EPEOOD
JoJolojolololojolojole=s N elelololo
SlolofolololofelolcloloRl elololole
SJelolelololo]lolele a@@®e
> © olelels

/ \

Aiphanumeric Keys Numeric Keys

Sl

?

The 9825A Keyboard

The 9825A Keyboard is shown in the figure above. The keyboard is divided into the following
functional groups:

e Alphanumeric Keys - This area is very much like a standard typewriter keyboard. For
instance, to display a capital A, press the shift key and @ at the same time; or to
display a percent sign, %, press the shift key and @ at the same time.

o Numeric Keys - All the keys needed to enter numbers and do simple arithmetic are
located in this block. The numeric keys in the alphanumeric section of the keyboard can
also be used to enter numbers. The exponentiation and square root key, @ is located
in the alphanumeric key section.

¢ Special Function Keys - The keys in the upper right section of the keyboard, namely
through (0v), provide additional calculator abilities. These keys are explained in Chap-
ter 4.

The remaining keys provide functions, such as editing and display control, and are explained
in Chapter 4.

Keys of the same color have similar functions. For example, all the alphanumeric keys are the
same beige color; gold colored keys are control keys used to run programs, store lines, erase
programs, etc.

Below are a few more topics related to keyboard operations:
e Spacing - In general, spaces are not important. It makes no difference, for example if
you key in:
Both are interpreted the same. Spacing, however, is important when using text (charac-
ters within quotes) and when printing and displaying messages.

+ Repetition of Keys - When a key is held down, its operation is repeated rapidly. This is
an especially useful feature with the editing keys.

¢ The I Symbol - When the display is clear and awaiting inputs, the “lazy T" symbol
appears in the leftmost character of the display. This symbol also indicates the end of a
stored line.

e The Run Light - A small red light in the left end of the display lights when a program is
running. For example:

(.)

Display and Line Length

The 9825A Calculator has a § x 7 dot matrix, 32-character display. Even though only 32
characters can be displayed at one time, up to 80 characters can be keyed into the display.
After the 32nd character, additional characters which are keyed in cause the displayed line to
shift to the left. After 67 characters are keyed, a beep indicates that only thirteen more
characters can be entered. Up to 73 characters can be stored. This includes any spaces or
parentheses which the calculator may automatically insert in the line.

16

16 General Information

Range

The tange of values which can be entered or stored is —9.99999999999 x 1098 through —1 x
1079, 0, 1 X 10799 through 9.99999999999 x 10°9. However, the range of calculations is from
—9.99999989998 x 105 through —1 x 10751, 0, and 1 x 10 -5 through 9.99999999999 x
1051,

Storage Range

—98.899599999999 x 10 -1 %1079 Q0 1 x 10~ 9.99999999999 x 109
Calculating Range

-9.99999999999 x 105" -1 x10°51" 0 1 x10-5" 9.99999999999 x 105"

out of range D within range D
The extended calculation range is useful for calculations which have intermediate results
outside of the storage range, but which have final results within the storage range. For in-
stance:

(9.2 x 1023 x 8.6 x 1080)/(1 x 1024)
When the first two values are multiplied their result is:
(7.912 x 10194)

This interknediate result cannot be stored, but the final result, 7.912 X 108°, can.

Significant Digits

All numbers are stored internally with 12 significant digits in the mantissa and a two digit

exponent. The format used to display or print numbers (such as +::d Z) has no effect on the
internal representation of a number.

Memory

The 9825A Calculator uses two types of memory: Read/Write Memory, and Read Onty Mem-
ory. Read/Write Memory is used to store programs and data. When you store a program or
data, you ""Write” into the memory. When you access a line of your program or a data element,
you “Read"” from memory; thus the term Read/Write.

General information 17

Read Only Memory differs in that it is permanent. When the calculator is turned off, the
contents of the Read/Write memory are lost, whereas the Read Only Memory is unaffected.
ROM (for Read Only Memory) cards can be plugged into the ROM slots on the front of the
calculator. This makes it possible to expand the language.

Programs and data in Read/Write memory can be saved for future use by recording the
information on the tape cartridge.

A small amount of memory is sometimes required by a plug-in ROM. This area is called
“working storage”. A1

Read/Write Memory Organization

i i
low addresses i ;

Working Storage

This boundary is fixed atturn-on e
Special Function Key Definitions

User's program

e
r1

r-variables
r2

Unused area
{Used as needed)

Execution Stack
(subroutine return pointers)

Arrays and simple variables

Loaded Binary program (if any)

Permanently fixed boundary —
Reserved for internal use (flags)

high addresses

The language used by the HP 9825A Calculator is called HPL. The basic programming unit is
the statement. Statements are typed using lower case abbreviated mnemonics, such as .
for print. Multi-statement lines can be stored by separating statements with semicolons.

Two other characteristics of this language are implied multiplication and the assignment
operator. Implied multiplication is a standard algebraic notation, such as 5X. The assignment
operator -+ points to the variable being assigned a value, such as = - [,

More mnemonics can be added to the language by adding ROM cards which plug into the
ROM slots on the front of the calculator.

Error Messages

When an error occurs, the calculator beeps and displays an error number. The number
references a description that will help pinpoint the cause of the error. For exampie:

L ErrnE @7 \] Indicates a syntax error.

If an error message is displayed during an attempt to run a program, the program line number
where the error occurs will also be displayed. For example:

[sreor LY i 3 \J Indicates that a parameter is out of range in
line 3.

Pressing after some error messages will bring the line containing the error into the display
with a flashing cursor indicating the location of the error.

A complete list of the error messages is given in Appendix B, on the inside back cover of this
manual, and in the error booklet under the top cover of the calculator.

-

Chapter 5

Introduction To
Keyboard and Programming

This chapter introduces some of the basic concepts of keyboard operation and programming
for those who are unfamiliar with the operation of the calculator. Nearly all the operations
which you perform from the keyboard can also be programmed. The operations explained in
this chapter are covered in more detail elsewhere in the manual.

System Keys

The following keys are used often for keyboard operations and programming.

@ Clears the display; the i symbol remains to show that the calculator is ready for further
instructions:

- n

(D performs the operation in the display. For example, to add 2 + 2:

Press: @@@ F—_ + 2 QJ

T A

Press: |} X U

Stores program lines in the memory. For example, to store a program line:

Type in: @@C@ L V)
Press: [—-Eﬂ_ \J

H
*The Q indicates that the following key is shifted.

19

20 Introduction

This program line will assign the value 7 to the variable A.

@ Runs the program in memory from line 0.
Keyboard Arithmetic
The six basic arithmetic operations in the 9825A are: addition (+), subtraction (), muitiplica-

To perform a math operation, such as 8 x 2, first you key in the expression as foliows:
Then press: @

To raise a number to a power, such as 82, press:

0B00) ((=4. 68

Notice that an operation such as 8-2must appear as: =1 (1.

NN
 S—

The value which is displayed after pressing the execute key is stored in a location called
“result”. This value can be used in other calculations. For example:

000t)
O@@ EEEE \)
=OOW EBENE ,

If you execute an operation involving large numbers, such as:

Introduction 21

the calculator displays the result in scientific notation, with 9 digits to the right of the decimal
point:

Lo

’ J

This is because the number is too large for the fixed 2 notation which is set when you switch on
the calculator.

Arithmetic Hierarchy

When an expression has more than one arithmetic operation, the order in which the operations
take place depends on the following hierarchy:

¥ square root performed first

T exponentiation

no operator implied multiplication

L multiplication and division

+ - addition and subtraction performed last

An expression is scanned from left to right. Each operator is compared to the operator on its
right. If the operator to the right has a higher priority, then that operator is compared to the
next operator on its right. This continues until an operator of equa! or lower priority is encoun-
tered. The highest priority operation, or the first of the two equal operations, is performed.
Then any lower priority operations on the left are compared to the next operator to the right. If
parentheses are encountered, the expression within the parentheses is evaluated before the
left-to-right comparison continues. This comparison continues until the entire expression is

evaluated. For example:

I-ie =21 T2 exponentiation

TrE implied multiplication
Tz multiplication

R evaluate parenthesis
exponentiation
division

addition

result

Variables

A variable is a name of a location where numbers are stored. There are three types of vari-
ables: simple variables, r-variables, and array variables. Array variables are discussed on

page 37.

it e

22

Introduction

Simple Variables

Twenty-six simple variables, named A through Z, are used on the 9825A Calculator. Only the
upper case letters can be used for simple variable names.

To assign a value to a variable, the assignment operator is used. For instance, to assign the
value 4.5 to N, press:

OOOGLE ®F

The number always appears on the left, and the variable appears on the right side of the
assignment operation.

Now, N can be used in calculations. For instance, to multiply N by 2, press:
00HOI0) EENE)

N is not changed. New values can be assigned to variables, such as:

H000/0HOI)

r-Variables

r-variables are designated by a lower-case “'r” followed by a number (e.g., 1Z). They are
useful for one dimensional arrays and can be used in addition to the 26 simple variables.

In the following two examples, the value 12 is assigned to r10. Then the value 20 is assigned to
the register designated by the value of r10 (this is callied indirect storage).

The value 12 is assigned to r10 directly.
The value 20 is assigned to r12 indirectly.

12+ r

U %

[y
e
ROUI N

g
't
1%

el

For more information about r-variables, see page 38.

Operating Modes

The calculator can operate in any of three modes: the calculator mode, the program mode,
or the live keyboard mode.

e In calculator mode, no program is running, and the calculator is awaiting inputs or
calculating keyboard entries.

*The Q indicates that the foliowing key is shifted.

Introduction 23

e Inthe program mode, a program is running.

¢ In live keyboard mode, you can perform many calculator operations while a program is

running.

Basic Editing

If you make a mistake while entering lines into the display, you can use the character editing
keys for changing the line.

r

A
()
For instance, suppose you want to type in this line:
10> A;12—>8B

But, instead you type:
(1e-oi 11248)

To correct this, simply press (=) until a flashing cursor & appears over the “a”.

Then type in an . To delete a “1" in 112, press (") once and press character . The
resulting display would be:

HIE S R & N N o J

with a flashing cursor on the “1" of 12. To execute the line, press: @

I
;

As another example, maybe you want to execute this line:

10 + 18 + 22

But you typed this:

e Areae e 1

24

Introduction

To insert a one in front of the 8, press the (=) key 4 times. The flashing replace cursor & will
be positioned on the 8. Next, press the (=] key. This changes the replace cursor to the insert
cursor 4. Now, type in a 1. The display will be:

1@+ 18+z; J

Note that the rest of the line shifted to the right 1 character. The insert cursor 4 will still be
flashing over the 8 indicating that more characters could be inserted if desired. To execute the
line, press @

1%
(R}

T

Programming

There are five basic steps in creating a program:
1. Define the problem.
2. Decide how the problem is best solved.
3. Write out the statements for the program.
4. Key the statements into the calculator memory.
5

Debug (correct) and run the program.

Step 1:

As a simple example, suppose you want to print the square root of each value that you enter.
Then, if the value entered is negative, print a message and continue on.

Step 2:

A common method used to solve a problem is flowcharting*. Using a few basic flowcharting
symbols, explained at the end of this chapter, we will flowchart the problem.

Flowchart:
Start
- Enter a Display
value message
Is Yes
the value
neg?
No

Take square Print the
root of value square root

*Another method suitable for simple problems is to key in a few statements and try them out.

Introduction 25

Step 3:

From the flowchart, write down the statements for the program:

Program Comments
“start”. entV V is the value to be entered. J :
if V<@; dsp “neg. V”; gto"stant” Decide if V is negative: if so, disptay the |
message and go back to the beginning.
VV-s S is the square root of the value.
prts Print the square root. :
gto “start” Go to “start” for another value. ’

Note that the second line contains three statements separated by semicolons. All of the
statements used are discussed later.

Step 4:

The next step is to clear the caiculator by executing =ruze a. Then type in the program
exactly as above, one line at a time. Press at the end of each line to store that line in the
calculator memory. If you make a mistake before you store the line, press @ and type the
line over.

Step 5:

After the program is stored, press (=) [D to get a printed listing. Then, to run the program
press @ Each time that '/ is displayed, type in a value and press . The calculator will
print the square root of each value.

g: "stort"ftent ¥

i if Y<Bidsp
"Hea, Y¥'iato
“ztart”

26 Introduction

For positive values, the program runs as expected, but if you enter a negative value you won't
see the message dispilayed. This is because the message is displayed for a very short period
of time before another display (i.e., ') appears. Use a wait statement after the display
statement in line 1. This statement causes the program to pause long enough for you to see
the message. To change the program, press: @@ . Then press the (=) key until it
is positioned on the semicolon just before the gto statement. Press and key in #ait

TG Press () to store the new line at line 1. Then press @ Here is a listing of the
completed program:

g start ient
1: if wi@idsr
"nea., MUswalt
SEfsato Tstart”
e rll‘ll_‘_|_

4: gto "stoart”

Since the program is a continuous loop, press to stop the calculator. Then, t¢ do another
program key in & " .22 4 and press . This clears out the calculator memory.

Commonly Used Flowchart Symbols

Meaning

() Program beginning or end.

Program segment; usually one statement.

Decision block indicates that a decision for a
branch is made. Usually an if statement is used
for a decision.

‘ - Flowlines indicate the program flow.

Connectors indicate that the lines going to or
®_' from them are connected.

27

Chapter 4
The Keyboard

While reading the chapter, refer to the foldout inside the back cover which shows the 9825A
Calculator Keyboard. The standard alphanumeric keys are used to enter numbers, com-
mands, and statements. The rest of the keyboard is divided into system command keys,
display control keys, line and character editing keys, special function keys, and calculator
control keys. All of these keys, except the standard alphanumeric character keys, are
explained below.

1

System Command Keys

-)
=) &~) (=)
(] (=) fod (o))

Returns the calculator and I/0O cards to the power-on state (see table in Appendix D)
without erasing programs or variables. is executed immediately when it is pressed,; it
does not have to be followed by @ All calculator activity is halted and the line number of the
current location in a program is displayed if a program is running. The reset key should be
used to reset the calculator when no other key, such as @ or , will bring the calculator to
a ready state.

Sets the print-all mode on or off. When it is pressed once, the word =1 appears in the
display. When it is pressed again, the word = f appears in the display. In print-all mode,
displayed results, executed lines, and stored lines are printed.

While a program is running in print all mode, all displayed messages and error messages are
printed. Print-all mode can be turned on or off while a program is running.

& Automatically rewinds the tape cartridge 1o its beginning. Other statements and com-
mands can be executed immediately without waiting for the cartridge to completely rewind. If
is pressed while a program is running or while a line is executing from the keyboard, the

cartridge rewinds at the end of the current line.

28 Keyboard

Executes a program, one line at a time. Then, the line number of the next line to be
executed is displayed. When () is pressed just after stopping a program, only the line
number of the next line to be executed is displayed. The next time (=] is pressed, that line is
executed.

To step from a specific line, execute a gto X, where X is the line to start stepping from. For
example, to begin stepping through your program from line 30, type in gto 30 and press @
Then use the step key.

EXD This typing aid is used to erase all or part of the Read/Write memory.

@@ Erases the entire calculator memory.

) @@ Erases only the variables.

@@ Erases all the special function keys.

@ Erases programs and variables.

) Erases the special function key represented by
“n".

The table in Appendix D lists things which are affected by the erase command.

This typing aid is used to load programs and data from the tape cartridge. For example
to load a program which is on file 3:

@@ Loads the program from file 3 into the cal-

culator.

The display shows Lt (for “load file”) when this key is pressed (see the load file statement on
page 104).

@& This typing aid is used to record programs and data on the tape cartridge. Before
recording on the tape cartridge, files must be marked (see the mark statement on page 96). In
the following example, it is assumed that the file has been marked:

@@ Record the calculator program on file 6 of the
tape cartridge.

The display shows . (for “record file”) when this key is pressed (see the record file state- ‘
ment on page 102). r

Keyboard 29

This typing aid is used to list programs, sections of programs, all special functions keys,
or individual special function keys. For example:

@@ Lists the entire program.

@@ @ Lists all defined special function keys in numer-
ical order.

Lists special function key, fo.

@@@@ Lists the program from line 20 to the end.

@@@@@ Lists the program from line 9 to 13, inclusive.
Display Control Keys

™

™
ESNES)

Brings the line with the next higher-valued line number into the display. If there are no
more lines in the program, (3) clears the display and allows new program lines to be ap-
pended to the end of the program.

n Brings the line with the next lower-valued line number into the display. If a line number is
in the display, (+) brings that line into the display. If a stop statement is executed from a
program, (+) brings the line following the line with the stop statement into the display. After a
program error, (+) brings the line containing the error into the display for editing.

B Moves the line in the display to the left. This allows all the characters in a line to be
moved into the display. Each time it is pressed, the displayed line moves 8 characters.

Moves the line in the display to the right for viewing all the characters in a line. Each
time this key is pressed the displayed line moves 8 characters.

SRS m—

N

—

30 Keyboard

m&.\‘&wb-u R

Editing Keys

}
There are two sets of editing keys; line editing keys and character editing keys. '
: " '
iine Editing Keys
(- —
(mer))

This typing aid is used to bring program lines into the display and to fetch special
function keys. For exampile:

@@@ Brings line 20 into the display.
() (00) Accesses special function key fs. If f4 is de- !
tined, its definition is displayed. Otherwise <
is displayed.
i
Deletes the program line in the display from the program. If no program line is in the ‘
display, the caiculator beeps and the key is ignored. To delete a program line, fetch the line . E

into the display and press (== .When a line is deleted from a program all subsequent line
addresses and all relative and absolute go to and go sub statements are renumbered to
reflect the deletion.

This is not the same key as the character delete key explained later. To delete several prog-
ram lines, the delete (del) command can be used. The delete command is explained on page

80.
Inserts a line into a program. The inserted line is inserted before the fetched line. The

fetched line and higher line numbers are renumbered. The (=), (+]), or (*) keys can be used
to fetch a line into the display. For example:

Toinsertthe line: [H -+ E between lines 20 and 21: TET R+13R

Press: @@ 21 ato 25

Typein: [H=+E& TA: A+1+A

Press S2i theze

When a line is inserted into a program, the branching addresses of all relative and absolute go ‘

to and go sub statements are adjusted to reflect the insertions as in line 22 above.

Keyboard 31 i !

Brings back, into the display, one of the two previous keyboard entries. Pressing
once brings back the most recent keyboard entry. Pressing it twice brings back the previous
keyboard entry.

[N,

Press after errors resulting from keyboard operations to recall the line containing the
error. For many errors, a flashing cursor indicates the location of an error in the line.

The Character Editing Keys

—)
CIRCINCON T

Lines which are fetched into the display using (+],(+),(«<J, or (=), and lines which are typed
into the display can be edited using the character editing keys.

R

Two flashing cursors are associated with these keys: the replace cursor B and the insert
Cursor +.

& Moves the flashing replace cursor &, or the flashing insert cursor 4, from its current
position in the line in the display, toward the beginning (left) of the line. If the cursor is not
visible, (=) causes the cursor to appear on the right-most character in the line.

Moves the flashing replace cursor B, or the flashing insert cursor 4, from its current
position in the display, towards the last character in the line. For a line which has just been
fetched or typed into the display, pressing causes the flashing cursor to appear on the
left-most character in the display.

Deletes individual characters which are under the insert or replace cursor. This is not
the same key as the line delete key explained previously.

The insert/replace key is used to change the flashing replace cursor to a flashing insert
cursor and vice versa. Use the (=) or (=) key to position the cursor in the display. When the
insert cursor is flashing, any characters entered from the keyboard are inserted to the left of

the cursor and the characters under and to the right of the cursor shift to the right.

When the replace cursor is flashing, any character entered replaces the existing display |
character at the location of the cursor and the cursor moves to the character on the right. f

32 Keyboard

Calculator Control Keys

OEOEREUEEEOOE

This key is an immediate execute key which runs the program in the calculator begin-
ning at line zero. All variables, flags, and subroutine return pointers are cleared when
@ is pressed. The run light at the left end of the display indicates a running program.

The table in Appendix D lists things which are affected by pressing @

Stores individual program lines. Also, when a special function key is fetched and

defined, Q is used to store the key’s definition. A program line can be a single
statement or several statements separated by semicolons. When an error occurs while at-
tempting to store a line, brings that line back into the display. A flashing cursor usually
shows where the error was encountered in the line.

“ and @ are used to obtain shifted keyboard characters, such as i+, #, and I". When
is pressed, the small light above the key lights. locks the keyboard
for shifted characters. Press @ to release shift lock.

@ Stops the program at the end of the current line. The number of the next program line to

be executed is displayed. When is pressed, list, tlist, and wait statements are
aborted but the rest of the line is executed. When is pressed in an enter statement, flag 13
is set and the enter statement is terminated.

There is also a stop statement. For details, see pages 48 and 76.

2=\ Executes the single or multi-statement line which is in the display. The two most recently
‘executed (or stored) keyboard entries are temporarily stored and can be recalled by
pressing once or twice. The result of a numeric keyboard operation which is not
assigned to a variable is stored in Result (see key). For example:

Pressing @ displays and stores the result. Pressing the execute key again repeats the same
operation.

Keyboard 33

Although multiple expressions such as:

R @

are allowed, only the result of the last expression in the line is displayed and stored in Result.
In print-all mode, both results are printed.

Automatically resumes a program from where it was stopped. When a line

number is in the display (such as after pressing) resumes the program
from that line. However, after pressing (=), or after editing the program, the program con-

tinues at line 0 when is pressed. Pressing after an error also causes the program to
continue from line 0.

In an enter statement, is pressed after entering data. If no data is entered and is
pressed, the variabie maintains its previous value and flag 13 is set. See also the continue
command on page 79.

@ Accesses the storage location of the result of a numeric keyboard operation which was
not assigned to a variable. For example:

s DO T 0
Press: @ EERE))
The answer, 18, is also stored in Result and can be used in other operations, such as:

00 e 5
Press: (1) E) J

In a program, values cannot be stored in Result; but the value in Result can be assigned to
variables or used in computations.

For example:

This is not allowed.
This assigns the value of Result +2 to the vari-
able A.

[}
i
[N
[
+
—_
T
i

-
T
1
+
[X

1
()

Clears the display. If the clear key is pressed during the enter statement, a question

mark appears in the display, indicating that an entry is still expected. If this key is
pressed after a special function key has been fetched, the key number (e.g.. ¥) appears in
the display.

o RSy 250 2 e

34 Keyboard

The assignment operator is used to assign values to variables (this is not the same as
the right arrow used for display control.) For example:

Press: Q @ @ @ @ @ This stores the square root of 5 in X.

To enter the value of &, this key is pressed. The value entered is 3.14159265360.

@ This key enters a lower case = into the display, representing an exponent of base 10.
The unshifted @ key can be used in place of . For example:

Press: @@@@ EEEE Fi \j
Press: @@@@@ | [4, BAGHREEAG:s 25 \j

Note that there is no difference between pressing and pressing @

Special Function Keys

@& E @
OO ®G®EM®

There are 12 special function keys, which provide 12 unshifted functions and 12 shifted
functions. The special function keys can be used as typing aids, one line immediate execute
keys, or as immediate continue keys.

To define a special function key, press and the special function key to be defined. Then
enter aline in the display. Press to store the definition of the key and to exit key mode. For

example:
Press: (=) (o) 13 is displayed if the key was not previously f
defined. i
}
Type-in: k1t Enters &1t in the display. i
Press: This stores =1t under fg, for use as a typing
aid.

If you decide not to define a special function key after fetching one, the key can also be
used to exit key mode. .

- A ta:: bl
- TR e il

To list all of the defined special function keys in numerical order, type in: 1i=t k and press

Keyboard

To list individual special function keys, press () and then the special function key to be
listed.

Immediate Execute Special Function Keys

If a line to be stored under a special function key is preceded by an asterisk (), it is an
immediate execute key. This means that when the key is pressed, the contents of the key are
appended to the display and the line in the display is executed automatically.

For example:

Press: Q@ Accesses f23 (shifted f11).

Type-in: *rFrt "g"s @ The asterisk makes this an immediate execute
key.

Press: This stores the line entered in the display
under faa.

Whenever @ (*x) is pressed and the display is clear, the following is printed:

T .14

Immediate execute keys are useful for executing selected segments of a program. Using the
continue command followed by a line number, you can make several entry points in your
programs. For example:

e e e, e -
: o B A

e 4
; oot 1k

Each time is pressed, the program continues at line 5, or at line 10 if is pressed.

Immediate Continue Special Function Keys

If a line to be stored as a special function key is preceded by a slash (), it is an immediate
continue key for use with the enter statement. “Immediate continue” means that when the key
is pressed, the contents of the key are appended to the display and continue is executed
automatically. Immediate continue keys are used to enter often used values in enter state-
ments. For exampie:

35

Press: (+=)(1x) Fetches special function key f1a.

This enters the value of e, the base of the
natural logarithms, into the display.

[
)
£
)

[B

Type-in: <~ 2.7 iZZEiEz8

Press: This stores the line in the display under f1o.

Whenever an enter statement is waiting for a value and the key is pressed, the approxi-
mate value for e (i.e., 2.71828182846) is entered and the program continues (see enter
statement in Chapter 5).

R R
RN

By separating statements with semicolons, several statements can be stored under one spe-
cial function key. As an example, suppose you want to convert inches to centimeters. The
following line is stored under special function key (fa).

Press: [

Type-in: #+fs cam Ry Tim. =0 200
Press: (o]

Then key in a number, such as 6, and press (o). The display will show:

37

Chapter 5
Programming Instructions

F The statements, functions, and operators explained in this chapter are all programmable.
Most of these instructions can also be used in calculator mode.

Statements can be programmed or executed. Operators and functions must be part of a
statement in order to be programmed. This means that operations, such as 10 + 32 or V63,
which can be executed from the keyboard, must be part of a statement in order to be prog-
rammed. Thus, 18+ 22 = or pri ['&3 are valid statements.

Syntax Conventions

The instructions explained throughout this manual use the following syntax conventions. A
’ complete list of syntax can be found in Appendix A.

[] - items within square brackets are optional.
it mat F 1s - items in dot matrix must appear as shown.
- three dots indicate that the previous item can be duplicated.

Variables

The calculator uses three types of variables: simple variables, array variables, and
r-variables. As variables are allocated, they are initially assigned the value 0. Simple vari-
ables, r-variables, and array variable elements require 8 bytes ™ of memory each.

Simple Variables

There can be 26 simple variables, named A through Z. A simple variable must appear in upper
case. Each simple variable can be assigned one value. For example:

.,_.
= o

— T

Z+H Assigns the value 12 to A.
t A Prints the value of A on the printer.

n

Array Variables

There can be 26 arrays, named A through Z. Array names are followed by square brackets
. which enclose the subscripts of the array (e.g., L [Z11).

*A byte is the basic unit of data in the 9825A. 8 bytes are required to store a number.

i
i
i
i

L W i e

38 Programming

Before an array element can be used, the array must be declared in a dimension (dim)
statement. This reserves memory for the array and initializes all elements in the array to zero.
In the dimension statement, each dimension of an array can be specified either by specifying
the upper bound, in which case the lower bound is assumed to be one, or by specifying both
the lower and upper bounds. For example:

dim AL 5] Reserves memory for the 20 elements of the
two-dimensional array A.

Pl-28ls-2027 Reserves memory for the 20 elements of the
two-dimensional array P. (Lower and upper
bounds specified.)

An array can have any size and any number of dimensions within the limits of the memory size
and line length. The bounds must be between —32767 and 32767.

An individual element of an array is accessed by specifying the subscripts of the element. For
example:

G Pl Badain] 4 is assigned to element 1,5,4,6 of array A.

Z2xPI-2:11 3 is assigned to element —2,1 of array P.

Another Example:

B: diwm Q016 18] Reserves memory for 100 elements of array Q.
1: 3+0[7:1] Q[7,1] is assigned the value 3.
2: 330 The value 5 is assigned to the simple variable

Q. There is no connection between the simple
variable Q and array Q[10,10].

3¢ 230011 Q[1,5]) is assigned the value 2.

r-Variables

r-variables are specified by a lower case “r” followed by a value or expression. When an
r-variable is encountered, memory is reserved for all r-variables with smaller subscripts which
have not been allocated. As r-variables are allocated, they are assigned the value 0. Thus if
r10 is assigned a value, rO through r9 are also automatically allocated and assigned the value
zero if they have not been previously allocated.

L Programming 39

Examples:
B 4+ro 4 is assigned to r-variable 0.
10 Z2+rri 2 is assigned to r-variable 4. r0= 4, therefore

2 — r4. This is known as indirect storage.

Variable Allocation

Simple variables and r-variables are allocated when a statement containing either is exe-
cuted. Array variables must be allocated using a dimension statement.

Before a variable is allocated, three cases are checked:
1. Before a variable is allocated by the dimension statement, a check is made to see if itis
already allocated. If so, an error results and execution stops.
2. When a simple variable is referenced in any other statement, a similar checkis made as
to whether it has been allocated. If not, it is allocated.

3. When an array element is referenced in any other statement, a similar check is made as
to whether the array has been dimensioned. If not, an error results.

Within one statement, variables are allocated in the same left-to-right order as they occur in
the statement.

Number Formats

Numbers can be displayed or printed in floating-point format (scientific notation) or in fixed-
point format. The calculator's internal representation of numbers is unaffected by number
formats, therefore, accuracy is not changed.

When the calculator is turned on, is pressed, or =iz o is executed, the number format
is fixed 2 (fxd 2), and for very large numbers, the calculator temporarily prints and displays in
float 9(flt 9).

40 Programming

The Fixed Statement

Syntax:

¥ i [number of decimal places]

The fixed (fxd) statement sets the format for printing or displaying numbers. In fixed-point
format, the number of digits to appear to the right of the decimal point is specified. Fixed 0
through fixed 11 can be specified.

To set the number format from floating-point to the current fixed-point setting, + :: without
parameters is executed.

When a number of the form:

A=Nx10F

where: 1<N<10,orN=0
is too large to fit in the fixed-point format, the number format temporarily reverts to the previ-
ously set floating-point (float 9 if no other fioating-point format has been set) if:

D+E=14

where: D is the number of decimal places specified in the fixed statement.

E is the exponent of the number.

i ent A

fxd Biprt
fxd liprt
fxd 2iprt
P fxd JiRrt
P oend

To illustrate the reversion to a previous float 9
setting, run this program #

LN Qa5
ju e s e

=

Lo
Mo S D

If the value 1=7%=1% is entered when A ap-
pears in the display, this is printed #

o3
Fodd o0 0N
m & &

LIRS Ry iV
=

el
Do or I vl)
DA RN
QD
o 0 0 O
D I W Y]
5 S 3O
m

e ot

@4

@1

e g A

Programming 41

For numbers too small to fit in the fixed-point format, zeros are printed or displayed for all
decimal places, with a minus sign if the number is negative. For example:

Zadzp - (

=7

I
-
(=3
In
o
s
by
RU N
| S

Here are some numbers and their output format if ¥ =7 5 is executed:

Number Fixed 3 Output

18
—.000006
~2.7532
4.5678
5.3111e3 : i
1234567891234.5 1. 8345670951 12

(float 9 previously set)

The Float Statement

Syntax:

1% [number of decimal places])

The float (flt) statement sets floating-point format which is scientific notation. When working
with very large or very small numbers, floating-point format is most convenient. Float 0 through
float 11 can be specified. To set the number format from fixed-point to the current floating-
point setting, + 1 . without parameters is executed.

A number output in floating-point format has the form:
—D.D...De-DD
e The left-most non-zero digit of a number is the first digit displayed. If the number is

negative, a minus sign precedes this digit; if the number is positive or zero, a space
precedes this digit.

¢ A decimal point follows the first digit; except in fit 0.

o A

S N i o

42 Programming

e Some digits may follow the decimal point; the number of digits is determined by the
specified floating-point format (e.g., in fit 5, five digits follow the decimal point).

e Then the character = appears, followed by a minus sign or space (for non-negative
exponents) and two digits. This is the exponent, representing a positive or negative
power of ten. The exponent indicates the direction and the number of places that the
decimal point would have to be moved to express the number in fixed-point format.

Here are some numbers as they would appear if ¥ 1 is executed:

Number Float 2 Output

-3.2

271
26.377
.000004
2.482e33

Significant Digits

All numbers are represented internally with 12 significant digits regardless of the number ‘]
format being used. To illustrate this, execute { =i = then key in the number:

(

]

The 13th and 14th digits, 8 and 9, are not stored and zeros are displayed for those digits.

Rounding

A number is rounded before being displayed or printed if there are more digits to the right of
the decimal point than the number format allows. The rounding is performed as follows: the ‘
first excess digit on the right is checked. If its value is 5 or greater, the digit to the left is 4
incremented (rounded-up) by one; otherwise it is unchanged. The number remains un-
changed internally. For instance:

B fud 2 P ‘
1t dsp 1.2355 L=)] ;
h“lit IBL:B .
2t dsrp 2,494

It oend B \)

4

Programming 43

The Display Statement

Syntax:

~d

¢ [any combination of text or expressions]

The display (dsp) statement displays numbers or text on the calculator display. Commas are
used to separate variables or text (e.g., iz Mo s M B).

Quotes are used to indicate text. To display quotes within text, it is necessary to press Q @
twice for each quote to be displayed. For example:

Type in: oz, “Saw "UHI"Y to her.”

Press: \j

Displayed lines longer than 32 characters can be viewed using the display control keys, (=)

and (= .

Numbers and text which are displayed remain in the display until another display operation
(such as enter (ent) with a prompt) clears it.

The Print Statement

Syntax:

rx + 1 [any combination of text or expressions]

The print (prt) statement is used to print numbers or text on the calculator printer. For example:

- 1T

o O
[]

ERNE Une
= e This one

If an expression is to be printed, such as:

A M I

the expression is evaluated and the equivalent value is printed (and also stored in X in this
case).

44 Programming

L]
To print a quote within text press Q @ twice for each quote to be printed. For example: ‘
¥
Type in:

Press: @ Emt “1" or "@° .
Commas are used to separate variables or text. For example: i
Typein: mrt "First"s 1s "Heuwt"s 2 ‘
[
: First 1.848 ;

Press: Mt Z.ad

When printing lines of text and values, the printout follows this format:

¢ Text followed by a numeric is printed on the same line if it fits; otherwise the text is
printed and the number is printed on the next line.

e Each line of text separated by commas begins on a new line and folds over 6n succes-
sive lines if it is longer than 16 characters.

* Numerics separated by commas are printed one per line unless the format is flt 10 or fit
11 which requires two lines each.

When =1t is specified without parameters, no operation takes place. To space one line, use
the space statement on page 47.

The Enter Statement

Syntax:

1% [prompt :] variable [+ [prompt :] variable...]

The enter (ent) statement is used to assign values to variables from the keyboard during a
program. The variable can be a simple variable, array variable, or an r-variable. For example:
d: ent O
St oent HsBL3D
r1l
When an enter statement is encountered in a program, key-in a number, variable (such as
), or expression (such as %) and press ‘

When many items are entered from the keyboard, it is often helpful to have a message called a
“prompt” displayed representing the variable being assigned a value. For instance:

e 1 R

ernt "Amount s [Firmoide

N

1t ent "Temrerat

b
-
1
-
—
Y
ii
T
iTi
s
s .
e
Pt
Vi
N
-/ |

Programming 45

If no prompt is given, the calculator uses the name of the variable as the prompt. For example:

I3t ent HITI L Leds \J

If a null quote field is given as a prompt, such as i@ =t " ":F the calculator retains any
previously displayed message, uniess a print operation is between the display statement and
the enter statement. This is useful for variable prompts using the display statement. For
example:

FIVEHYEF o
=p "J } vty L_ il 1 \j
H

r t’ 1 1
You can calculate values from the keyboard while the program waits in the enter statement.
This is done simply by entering the calculation and pressing @ If the value to be entered is

the result of pressing @ press or then press . Pressing immediately

+
3}

-a
Do)

P
n

o

DY N e |
an s» »m

m
-

before pressing causes a default condition as if were pressed without entering a

value.
Complex lines can be entered as the response to an enter statement. For instance, run this
program:

B: ent B

1% ent H

2y prt H

2% end
When the display is: [= \j
enter a value for B. Then when the display is: E_ \]
Type in: =@3 if 205 46

Then press. If the value that you entered for B is greater than 20, then £ is printed,
otherwise Zii is printed.

If is pressed without entering a value, the variable maintains its previous value and flag
13 is set. When a value is entered, flag 13 is cleared (see flags on page 59).

To terminate a program during an enter statement, press . The rest of the program line is
completed before the calculator stops.

Commands, suchas fatek or i, are not allowed during an enter statement and cause
error 03.

o e e skt s

46 Programming

The following example illustrates a unique case using the enter statement. Run the short
program:

dr dim RL2E]
18 441
2t ent IxALI] [SJ
Typein:
\)
Press: feo v

Notice that the value of | when the enter statement is encountered is used, not the entered
value of |. To use the entered value of | as the subscript, use another enter statement. For the
above example, change line 2 to:

2 oent Iyent

ALI]
Even though you can have one enter statement that enters values for several variables, only
one value can be supplied at a time. For example:

Bt ent A!B

£=7 appears in the display.

The Enter Print Statement

Syntax:

.= [prompt =] variable [: [prompt :] variable...]

The enter print (enp) statement is the same as the enter statement except that prompts and the
entered values are printed and displayed as they are encountered.

For example, type in this short program to calculate the area of a circle:

B enp "rodius"y
F

1t nRR+R

2 prt Tarea"sH

30 end

If 2 is entered for R when the program is run, the printout will be:

rodius

| gx]

12.57

]
-
m
1

)

it 5

Programming 47

The Space Statement

Syntax;
= [number of blank lines]
The space (spc) statement causes the printer to output the numiber of blank lines indicated.

The number of lines can be an expression with a range of 0 through 32767. If no parameter is
specified, one blank line is output.

Examples:
B! =rc HA+B Space the number of lines specified by A + B.
18 =pc S Space 5 lines.
2 =RC Space one line.
The Beep Statement
Syntax:

The beep statement causes the calculator to output a beep. For example, the calculator
normally beeps, displays =ror &7, and stops when the argument of the square root (I')
function is negative. In the following short program, the value entered for A is tested. If it is
negative, the calculator beeps and displays a message, but the program continues entering
values.

B: fxd 4 “stort”

1t "start"ient 4: "error"ibeep
"Araument "+ A E: dsp "I of
Zfoif A<EIILO hea. no. "
“error” B! woit 2008

30 prt rAsato 21 ato "stort

The Wait Statement

Syntax:

Lo 1t number of milliseconds

The wait statement causes a program to pause the specified number of milliseconds
(thousandths of a second). The wait statement is often used with display or enter statements to
display a message for a specified time. The number of milliseconds can be an expression. The
maximum wait is around 33 seconds, which is specified by the value 32767.

T ey

—

48 Programming

Since the wait statement takes time to be executed, small values in the wait statement are ‘
i

actually longer than a millisecond. This becomes evident in a loop which is executed many

times.

Examples:

SR Pauses for 2 seconds.

- . L Pauses for 2+ milliseconds.
2 owailt Z%]

In the next example, a display statement is followed by an enter statement. To preserve the
first display for one second, the wait statement is used.

18t dzp "Pleoze The first display remains one second betfore
gnteriwoit .
1 GaE the next display.

113 ent "wvalus
of MU

The Stop Statement

Syntax: 0

The stop (stp) statement stops program execution at the end of the line in which it is executed.
Pressing continues the program at the next program line. (™) can also be used to

“step” through the program one line at a time. If any editing is performed after the program
stops, and (=) cause the program to continue from line 0.

The stop statement can also be used for debugging. See the section on debugging state-
ments for details.

The End Statement

Syntax:

The end statement causes the program to stop like the stop statement. However, the end
statement resets the program line counter to line 0 and resets all subroutine return pointers
(see go sub statement). The end statement is usually put at the end of a program. The end
statemnent cannot be executed during an enter statement, nor in live keyboard mode.

— U

Programming

Hierarchy

In a statement containing functions, arithmetic operations, relational operations, logical opera-
tions, imbedded assignments, or flag operations, there is an order in which the statement is
executed. This order is called the hierarchy, which is:

highest priority functions, flag references, r-variables
T (exponentiation)

implied multiply

- (unary minus)

ELRNI |
RN R

all relational operators (=, =, «, <=, »=, #)

lowest priority

An expression is scanned from left to right. Each operator is compared to the operator on its
right. If the operator on the right has a higher priority, then that operator is compared to the
next operator on its right. This continues until an operator of equal or lower priority is encoun-
tered. The highest priority operation, or the first of the two equal operations, is performed.
Then any lower priority operations on the left are compared to the next operator to the right. If
parentheses are encountered, the expression within the parentheses is evaluatedbefore the
left-to-right comparison continues. This comparison continues until the entire expression is
evaluated. In the following example, Si1, Sz, Sa... indicate intermediate results:

SR=B+C -DmodE sxp (ot FI1 implied multiplication
S1=B+C~OmodE exrp (not F1 addition
S1=82 ~ Dnd E gxp Inot F evaluate parenthesis

S1 =82 ~ wmod E =wp S exp function

S1 =82 1 £ Sa implied multiplication
S1 =82 - [icd Ss mod operator

S1 =52 - Ss - subtraction

S1 =857 equality relation

Ss final result

49

50 Programming

Operators

The four groups of mathematical or logical symbols, called operators, are: the assignment
operator, arithmetic operators, relational operators, and logical operators.

Assignment Operator
Syntax:

The assignment operator is used to assign values to variables. For example:

T M The value 1.4 is assigned to the variable A.

~ -

@+ E*H The value of B is assigned to the variable A.

There are other ways to assign values to variables such as the enter (ent) statement or the load
file (Idf) statement.

To assign the same value to many variables, the assignment operator can be used as in this
example,

Multiple assignments can also take the form {25 +R1 + 1 +E (which is the same as =5 + A} A

+ 1 +E). This is called an imbedded assignment.

Arithmetic Operators

There are six arithmetic operators as follows:

+ Add (if unary, no operation) A+ Bor+A
- Subtract (if unary, change sign) A—-Bor-A
Multiply A«B
- Divide A/B
Exponentiate AB
Modulus A mod B is the remainder of A/B when

A and B are integers. A mod B is the
same as A —int (A/B)*B.

Programming

When A is much larger than B, there is a chance that a value of 0 could be returned for
ool This condition can be caught by examining the exponent of A/B when it is re-
presented in floating point notation with one digit to the left of the decimal point. If the expo-

nent is greater than 8, Firmoviti results in a value of 0.

Besides the # symbol for multiplication, implied multiplication can be used. In the following
instances, implied multiplication takes place:

e Two variables together (like AB).
e A variable next to a number (like 5A).
e A variable or number next to a parenthesis [like 5(A + B)].

A parenthesis next to a parenthesis [like (A + B) (X + Y)].

e A variable, number, or parenthesis preceding a function name (like 32 sinA).

For example:

A times B is stored in X.

5 times 5 is stored in X.

A times the sum B + C is stored in B.
5 times the absolute value of B.

Relational Operators

There are six relational operators as shown in the following table.

Symbols Meaning

Equal to.

Greater than.

Less than.
=5 Of = Greater than or equal to (either form is acceptable).
= OF A Less than or equal to (either form is acceptable).
gor < rorrd Not equal to (either form is acceptable).

The result of a relational operation is either a one (if the relation is true) or a zero (if it is false).
Thus if A is less than B, then the relational expression &< == £, is true and results in a value of
one. All comparisons are made on 12 significant digits, signs, and exponents.

51

52 Programming

The relational operators can be used in any statement which allows expressions as argu-
ments. For exampie:

Fe=E o Assignment statement. |f A and B are equal, a 1 is
stored in C; otherwise, a 0 is stored in C.

1 AEEsL If statement. If A is greater than B, then continue in the
line; but if A is less than or equal to B, go to the next
line. ’

LR AR HeR Jump statement. If A is greater than 3, jump 1 line,

otherwise jump to the beginning of the line (jmp 0).

et ALACBI+RBIACE] Print statement. If A is greater than B, the value of A is
printed. If A is less than B, then the value of B is
printed. If A equais B, then 0 is printed.

Logical Operators

The four logical operators, and, or, xor (exclusive or), and not are useful for evaluating Boo-
lean expressions. Any value other than zero (false) is evaluated as true. The result of a logical
operation is either zero or one.

Operation Syntax Truth Table
AND expression i expression Al Bf AandB
F{ F 0
Fi T 0
T| F 0
T T 1
OR expression 1 expression Al B] AorB
FI F 0
FI T 1
T| F 1
T 7T 1

2

JUEIFER X

M

Programming 53

Operation Syntax Truth Table
Exclusive OR expression o expression A | B | A xor B
F| F 0
FI T 1
Tl F 1
TI T 0
NOT risl expression A | not A
F 1
T 0
For example:
Program: Printout:
B: .1+RYE+E H ond B 8.0 .
1: rrt "H and AR or B 1.68 A
E"sR and B R =or B 1.08
21 prt "H ar BY» not H B.,88 ;
H or B
3 prt "R =zor
E"+A =or B
4 mrt "not R ‘
not A
9 end
Math Functions and Statements
The math functions and math statements are explained in this section.
i
Parentheses must enclose the argument of a function when a “+” or “~" sign precedes the

argument. In the examples, parentheses are shown only where they are required.

General Functions

Syntax Description Examples (fxd 5)
I expression Returns the square root of a non-negative &4 = 8.00000
expression. For negative expressions, see = 1.77245

the section on math errors on page §7.

_expression Determines the absolute value of the ex- abs [=3.8%1 = 3.09000
} =, 1 = 330.10000

pression.

54 Programming

Syntax

Description

Examples (fxd 5)

20T expression

it expression

fri expression

Rl L expressions
rounding specification’

dredi fexpression:

number of digits'!

“iier Llist of expressions
and arrays!

#ia:0 Llist of expressions
and arrays!

rril [-] expression

The sign function returns a —1 for negative
expressions, 0 if the expression equals 0,
and 1 for a positive expression.

Returns the largest integer less than or equal
to the expression. This is often referred to as
the “floor"” integer value of the expression.

Gives the fractional part of a number. It is
defined by: expression ~irit. expression

Returns the value of the argument rounded
to the power-of-ten position indicated by the
rounding specification.

The digit round function rounds the argu-
ment to the number of digits specified. The
leftmost significant digit is digit number 1.

Returns the smallest value in the list. An en-
tire array can be specified by substituting an
asterisk for the array subscript list (such as
EL=1).

Returns the largest value in the list. An entire
array can be specified by substituting an as-
terisk for the array subscript list (such as

2l

The random number function generates a
pseudo-random number greater than or
equal to 0 and less than 1. When the argu-
ment is positive, the starting seed is #/180
(which is .0174532825200). This seed is in-
itialized when the calculator is turned on,
sraze o is executed, or (=) is pressed.
Each subsequent access to the rnd function
with a positive argument uses a seed based
on the previous resuit of the function.

TWF DT,

prad (127,375 -2

= 127.38000
127.375 is rounded to the
nearest hundredth (10-2)

drpwd (73, 882550
= 73.06300
direed (- G3EEE 1)

= ~70000.00000

Saoeis S

= —3.00000

e odim AE3]8 2R 1]
1z SR [2T8 BR300

et

= 8.00000

i 1= 0.67822

Syntax

Description

Examples (fxd 5)

To specify a starting seed other than 7/180,
use a negative argument. The fractional part
of the absolute value of the argument is used
as the seed. To obtain a good seed use a
number less than 0 and greater than —1. The
more non-zero digits in the number, the bet-
ter. Last digits of 1, 3, 7, or 9 are preferable.

Logarithmic 2nd Exponential Functions

e

d Ce, LRIV

Note that the wait state-
ment is used instead of
an assignment state-
ment to initialize the
starting seed. Line 1
generates a random
number based on .31317
instead of w/180.

Syntax : Description Examples (ixd 5)
L expression ; The natural logarithm function calculates the T B = 8.98732
{ logarithm (base e) of a positive valued ex- ir.ddze = -5,095224
pression.
SR @xpression [The exponential function raises the constant, s o= 2.71828
‘ naperian e, to the power of the computed ; wo el = 04979
: expression. The range of the argument is
i approximately from -227.95 through
. 230.25.
Lo expression The common logarithm function calculates

t.riT expression

the logarithm (base 10) of a positive valued
expression.

The ten-to-the-power function raises the
constant, 10, to the power of the computed
expression. The range of the argument is
approximately from —99 through 99.999.
This function executes faster than: 3}

LET ex-
pression.

i

‘1 =0.00100

The math errors and default value associated with the log and In (natural log) functions are
explained in detail on page 57.

)
[

r___a

56 Programming

Trigonometric Functions and Statements

The angular units: degrees, radians, or grads, are set by statements explained in this section.
Degrees are automatically set when the calculator is switched on, =raze o is executed, or
is pressed.

This statement sets degrees for all calculations which invoive
angles. A degree is 1/360th of a circle.

e

i This statement sets radians for all calculations which involve
angles. There are 2# radians in a circle.

arad This statement sets grads for all calculations which involve
angles. A grad is 1/400th of a circle.

itz This statement displays the current angular units.

Syntax Description Examples (fxd 5)
111 expression Determines the sine of the angle rep- cear 2145 = 0.70711 w
resented by the expression in the current racdi 210 (98]
angular units. = 0.50000

CiiE eXpression Determines the cosine of the angle rep-
resented by the expression in the current
angular units.

= 0.45399

L. expression Determines the tangent of the angle rep- cemd LoD = 1.00000

resented by the expression in the current racdd ton (004

angular units. = 1.00000

=h &
= 1.00000

a2 expression Returns the principal value of the arcsine of .= = 5§3.13010

the expression in the current angular units. raci osn W8 = 092730

The range of the argument is ~1 through +1. Fradi asp .2 = 59.03345

The range of the result is —#/2 10 +m/2 (ra-

dians), —90 to +90 (degrees), or =100 to ’

+100 {(grads).

Programming 57

Syntax Description Examples (fxd 5)

E expression Returns the principal value of the arccosine dead oos -.d)
of the expression in the current angular = 113.57818
units. The range of the argument is —1 radi acs (.4
through +1. The range of the resultis 0 to » = 1‘9823_1 '
(radians). 0 to 180 {degrees), or 0 to 200 Frodi acs (-4
(grads). = 126.19798

a1 expression Calculates the principal value of the arctan- desi ath 28 = 87.13759
gent of the expression in the current angular radis atn 28 = 1,52084
units. The range of the resultis —w/2 10 +7/2 arodi ot 28 = 96.81955

(radians), ~90 to +90 (degrees), or =100 to
+100 (grads).

Math Errors

Errors 66 through 77 are displayed when a math error occurs. In this section, the default
values of math operations which result in an error are explained. Whenever a math error

occurs, flag 15 is set automatically. If you set flag 14, math operations which normally cause
an error to be displayed, result in a default value.

When printing, displaying, or storing a default value outside the storage range, the value is
converted to an appropriate value of £9.99999599999¢ 99.

srror & Division by zero, The default value is +9.99999999999e 511 if the dividend is
positive and ~9.99999999999¢ 511 if the dividend is negative. For exampie:
—%, 5o = —9.99999999999%e 511

A mod B with B equal to zero. The default value is 0. For example:

srior &7 Square root of a negative number. The default value is V' (abs (argument)). For
example:

 — —ncs
)

i
i
?
9

58 Programming

ST S
=l u
S ok
P
[W Y l
- e e ()
L I R e
(=
=4 ot

Tangent of (nx#x/2 radians);

Tangent of (nx90 degrees);

Tangent of (nx 100 grads);

where n is an odd integer. The default value is 9.9999999999%¢e 511 if n is
positive; and ~9.99999999999¢e 511 if n is negative. For example:

At L—-72 1 = —9.99999999999¢ 511
Lo 27 B = 9.99999999999%¢ 511
% t1 = 8.99999999999¢ 511

in or log of a negative number. The default is:
In {abs (argument)) or log (abs (argument))
respectively. For example:

11 =570711
t = —3.00000

In or log of zero. The default value is —9.99999999999¢ 511. For example:

I+ B = —9.999999939999e 511
; i = —9.99999999999%¢ 511

asn or acs of a number less than —1 or greater than 1. The default value is
asn (sgn (argument)) or acs (sgn (argument))
respectively. For example (in degrees):

Negative base to a non-integer power. The default value is
(abs (base)) 1 (non-integer power) For example:

Zero to the zero power (& T £&). The default value is 1.

Storage range overflow. The default value is 9.9999999989%9e 99 or
—9.99999999999¢ 99. For example:

i -+ 1 A will equal 9.99999999999¢ 99.

Programming

sreor 76 Calculation range overflow. The default value is 9.9999999999%e 511 or
—9.99999999999¢ 511. For example:

= 9,99999999999%¢ 511
—9.9999999999%¢ 511

.........

wrror 77 Calculation range underflow. The default value is zero. For example:

P E R I S S
e A S 0

Flags

Flags are programmabie indicators that can have a value of one or zero. When aflag is set, its
value is one; when it is cleared, its value is zero. There are 16 flags, numbered 0 through 15.
The following flags have special meanings:

Flag 13 -is automatically set when ks is pressed without entering data in an enter statement
or when is pressed in an enter statement. Flag 13 is automatically cleared when
data is supplied in an enter statement.

Flag 14 -when flag 14 is set, the calculator ignores math errors such as division by zero and
supplies a default value shown in the list beginning on page 57.

Flag 15 -is automatically set whenever a math error occurs, regardless of the setting of flag
14.

The Set Flag Statement
Syntax:

=+ = [flag number;...]

The set flag (sfg) statement sets the value of the specified flags to one. The flag number can
be a value or an expression. If a non-integer flag number is specified, the value is rounded to
an integer. If =¥ = is executed with no flag number specified, all flags (0 through 15) are set.
For example:

Set flag 2.
B: =f9 A+l Set the flag designated by A + 1.
13 33 18 Set flag 1 and the flag designated by X.

59

60 Programming

The Clear Flag Statement
Syntax:
o+ [flag numbers ...]

The clear flag (cfg) statement clears the specified flags to zero. The flag number can be a
value or expression. If a non-integer flag number is specified, the value is rounded to an
integer. If - =2 is executed with no flag numbers specified, all flags (0 through 15) are cleared.

Examples:

Clear flag 14.

Clear the flag designated by the vaiue of flag 2
(either flag one or flag zero will be cleared).

d: ~fa Clears ali flags.

The Complement Flag Statement
Syntax:
o+ [flag numbers ...]

The complement flag (cmf) statement changes (toggles) the value of the flags specified. If a
set flag is complemented, its new value is zero. If a cleared flag is complemented, its new
value is one. A value or expression can be given for the flag number. If a non-integer flag
number is specified, the value is rounded to an integer. To complement flags 0 through 15,
¥ is executed without paramenters.
Examples:
~at Complement flag 1.

U cmfd H-1 Complement the flag designated by X—1.

10 cwmt 323445 Complement tiags 3, 4, and 5.

Programming 61

The Flag Function
Syntax:

flag number

The flag (fig) function is used to check the value of a flag. The result of the flag function is zero
or one. One indicates a set flag; zero indicates a cleared flag.

Examples:
41 if fla2iimp 5 it flag 2 is set, jump 5 lines.
51 flalS+R If flag 15 is set, 1—A,; if flag 15 is cleared,
0—A.

Branching Statements

Branching statements are used to alter the sequential flow of a program. Branching is used for
such operations as looping through a section of a program, executing a subroutine program,
and branching to different parts of a program based on a decision (if) statement. There are
three statements used for branching: the go to (gto) statement, the jump (jmp) statement,
and the go sub (gsb) statement.

The following three types of branching may be used for both go to and go sub statements:
Absolute Branching -branch to the specified line number (such as =t 15).

Relative Branching - branch forward or backward in the program the specified number of
lines relative to the current line (such as sz -32).

Labelled Branching -branch to the indicated label. This type of branching is generally the
most convenient to use since the programmer doesn’t have to know line
numbers for a branch (such as @tz "First").

Line Renumbering

Line numbers are automatically renumbered when a program line is inserted or deleted. As
lines are inserted or deleted in a program, the line numbers of relative or absolute go to or go
sub statements are changed as required to reflect the insertion or deletion. The address in the
jump statement is not changed. The entire program is checked before any deletion is made. If
a line being deleted is the destination of a relative or absolute go to or go sub statement, an
error is displayed and no deletion occurs, unless an asterisk () is used in the delete com-
mand (see page 80).

An error message is not displayed when the line containing a label name in a gto statement is

box_

62 Programming

If a tine becomes too long due to line renumbering, the line number for the* line will appear
followed by a = when the line is displayed or listed. For example:

Line 8 was stored with 73 characters.

Inserting a line at line 7 causes line 8 to be renumbered such that the branch is to line 100. The
line will appear as:

]

K

To view the entire line, delete an appropriate line to recover the original line numbering. The
tact that a line is too long to display or list does not affect the operation of the program when
the program is run.

More information on line renumbering is in Chapter 6.

Labels

Labels are characters within quotes located either at the beginning of a line, after a go to or go
sub statement, or after a run or continue command. Labels at the beginning of a line must be
followed by a colon.

Labels are used for branching and for remarks within a program. When used for branching,
the label in the go to or go sub statement is compared to the line labels in the program until a
match is found. Then, at the end of the ling, a branch is made to the line containing the label.
The first time a branch is made to a label, the program is scanned beginning at line 0 until a
matching label is found. From then on, the branch is directly to the line with that label. When
comparing labels for branching, a comparison is made on all characters in the label, including
blanks.

Labels are often used to make remarks in a program for documentation purposes.
For example:

o
rage
-
foam

]

L

=,
L
T

Note that a colon must follow a label even if nothing else is in the line.

The Go To Statement

The go to (gto) statement causes program control to transfer to the location indicated. When a
line contains more than one go to statement, only the last one encountered is executed.

Programming 63

Absolute Go To
Syntax:

=4 0 line number

An absolute go to statement is used to branch to the indicated line. The line number must be
an integer (such as 5 or 13).

When an absolute or labelled go to statement is executed from the keyboard in calculator j
mode, the program line counter is set to the specified line number. To view the ling, press the

(3 key.

Relative Go To P
Syntax:

=1 -+ number of lines

2 - number of lines b
4

A relative go to statement is used to branch forward (+) or backward (—) the specified number
of lines, relative to the current line. The number of lines must be an integer. i

Examples:
2T ata +1 Go forward 1 line.
21s 39ta -3 Go back 3 lines.
E? :: '; ¥ g Go to the beginning of the current line.

Labelled Go To
Syntax:

=1 label
A labelled go to statement is used to branch to the line with the indicated label (see section on

labels). This is the most convenient type of branching since no line numbers have to be
considered.

64 Programming

Example:

gt UL, Y Go to the line labelled by "Avg.”.

When a labelled go to statement is executed from the keyboard in calculator mode, the
program line counter is set to the specified line number. To view the line, press the (*) key.

Multiple go to statements in a line are useful for N-way branching when used with an if
statement. N-way branching is explained on page 68.

The Jump Statement

Syntax:

i i number of lines

The jump (jmp) statement allows branching from the current line by the number of lines
specified. This statement is similar to the relative go to statement except that the number of
lines can be an expression. If the number of lines is positive, the branch is forward in the
program. If the number of lines is zero, the branch is to the beginning of the current line. If the
number of lines is negative, the branch is backward in the program. If the number of lines is
not an integer, then it is rounded to an integer.

The go to statement executes faster than the jump statement. The jump statement can only be
at the end of a line, otherwise error 07 is displayed when you try to store or execute the line.

Examples:
18: Jmp 18 Jump forward 10 lines.
9 Jmr A Jump the number of lines designated by the
value of A.
2R dmp (2=2)12 Jump forward 2 lines it Z=2; otherwise jump to

the beginning of the current line.

RERE- eee .Jnmr (B+ Increment B and jump to the next line if B is
1+B1>28 greater than 20; otherwise jump to the begin-
ning of the current line.

Programming 65

The Go To Subroutine and Return Statements

The go to subroutine (gsb) statement allows branching to subroutine portions of a program.
Subroutines are useful when the same routine will be executed many times and called from
different places in the program. A return pointer is set up when the go sub statement is
executed. This pointer points to the next line after the line containing the go sub statement.
The return (ret) statement returns the program execution to the pointer location. The return
statement is the last statement executed in the subroutine and must be the last statementin a
line. The depth of subroutine nesting is limited only by the amount of available memory. Each
subroutine return pointer requires eight bytes of memory. Subroutines should be entered only
by a gsb statement and should be exited only by a ret statement.

When a line contains more than one go sub statement, only the last one encountered is
executed. There are three types of go sub statements: absolute, relative, and labelled.

Absolute Go Sub

Syntax:

An absolute go sub statement is used to go to the subroutine at the specified line number. The
line number must be an integer.

Example:

|
as
1]

i

[
—
on

Go to the subroutine at line 15.

—
o
.
-
m
Ead

End subroutine with return statement (program
returns to line 8).

Relative Go Sub
Syntax:

+ number of lines

- number of lines

A relative go sub statement provides forward (+) or backward (—) subroutine branching the
specified number of lines, relative to the current line number. The number of lines must be an
integer.

Examples:

Go to the subroutine at line 12.

=
o]
n
o
+
a

=k -3 Go to the subroutine at line 5.

]
(1]

)

Syntax:

=iz label

A labelled go sub statement is used to branch to the subroutine at the indicated label. This is
the most convenient form of subroutine branching since no line numbers need to be consi-
dered.

Example:
dr o o32sbh "subl” Go to the subroutine at the line labelled by

“sub1”.

Multiple go sub statements in a line are useful for N-way branching when used with the if
statement. N-way branching is explained on page 68.

By using the jump statement and the go sub statement together, calculated branching to
subroutines is possible. This form of subroutine branching is called the calculated go sub and
has the form:

- dummy location & = expression

The dummy location can be a line number, + or — a number of lines, or a label, but the
calculator branches to the subroutine designated by the computed jump expression. For

example:

B oent M

Iy gsb "H"idme H

25 pri end”

Ir "E"iend

47 pr1 "sublts
et

20 omrt Tzyb2Ts
et

£ ORPL TaubIt
et

If a 3 is entered for N, the program branches to the subroutine at line 4.

Syntax:

Programming

The If Statement

i { expression

The if statement is used to branch based on a logical decision. When an if statement is
encountered, the expression following it is evaluated. If the computed expression is zero
(false), program control resumes at the next program line (unless the preceding statement
was a go to or go sub statement as explained later under N-Way Branching). If the computed
expression is any other value, it is considered true, and the program continues in the same
line. The if statement is most often used with expressions containing relational operators or

flags.

Example:

Whenever A and B are equal, 7 =t is displayed. All other times, &

D
2r ato "zero”
21 YonstideEe
"H=E
4: =tp

Enter a value for A and B.

it A=B, go to “one"; otherwise go to 'zero”.

At label "one", display Fi=i3

then stop.

At label “zero", display #i#i; then end the

program.

o is displayed.

The if statement can be used with other statements besides the go to statement used in the
above exampie. The previous example could be shortened to:

B ent AeE

1t if A=EBEidse
"A=B"iztr

1 dse "HE#B"

3% end

Note that no go to statements are used.

67

68

Programming

N-Way Branching

The if statement used with a go to or go sub statement makes it possible to branch to any of
several locations. This type of branching is referred to as n-way branching, and has the
following forms:

If the first if statement is false, then the branch is determined by the first go to or go sub
statement. If the first if statement is true, the second go to or go sub statement determines the
branch. Go to and go sub statements can be mixed in the same line.

When a line contains more than one go to or go sub statement, only the last one encountered
is used. An if statement whose expression is zero can abort execution of the remainder of a
line (before subsequent go to or go sub statements are encountered).

Example:

If X is less than or equal to 30, the program branches to line 24. If X is greater than 30 and less
than or equal to 40, the branch is to line 32. If X is greater than 40, the branch is to the line
labelled “max"”.

The Dimension Statement

Syntax:

“ritem [= items ...]

item may be: simpie variable
array variable idimension [: dimension:...]]

The dimension (dim) statement reserves memory for simple and array variables, and initializes
the indicated variables to zero. r-variables can not be dimensioned in a dimension statement.

Programming 69

In the dimension statement, the dimensions of an array can be specified by expressions. For
example:

B: ent Hselsrd
1t dim AIMsIs Variables are used to specify dimensions.
BIr2lsCL3s2%H]

Variables are allocated in the order that they appear. If a variable is allocated already, an error
results. All the variables dimensioned in any one dimension statement are stored in a contigu-
ous block of memory. This is important when recording data.

Dimension statements may appear anywhere in a program but any dimension statement can
only be executed once during a program. The number of dimension statements is limited by
memory size. The number of dimensions and the size of the dimensions of an array is limited
only by memory size and line length. For example:

By dim HIZsZs s Reserves 128 array elements.
222 2]
1t dim ML18B68] Reserves 1000 array elements.

Specifying Bounds for Dimensions

A dimension may be specified by giving lower and upper bounds. The lower bound must be
specified before the upper bound. The two are separated by a colon. The bounds must be in
the range from —32767 through 32767. For example:

B: dim S[~-3210, Reserves 12 array elements.
4:6]

This statement reserves the same amount of memory as:

gy dim XI[4s53] Reserves 12 array elements.
The elements of array S are referenced as:

S[-3.4] S[-3,5] S[-3,8]
S[~2,4] S[-2,5] S[-2.8]
S[~1.4] S[~1,5] S[-1.6]
S[0.4] S[0.5] S[0,6]

If a lower bound is not specified, as in X[4,3], it is assumed to be 1, the same as X[1:4,1:3).

70 Programming

The Clear Simple Variables Statement

Syntax:

The clear simple variables (csv) statement clears any allocated simple variables to zero. The
clear simple variables statement does not de-allocate variables. Therefore, an error results
when the following line is executed:

g PAficzwsdim R Not allowed. Cannot allocate A twice.

The List Statement

Syntax:

i [beginning line number [ending line number]]
special function key

The list statement is used to obtain a printed listing of a stored program, section of a program,
or special function keys. If no parameter follows the list statement, the entire program is listed.
If one line number is specified, the program is listed from that line to the end. If two line
numbers are specified, the program segment between the two line numbers is listed. To list all
of the special function keys, execute Li=t k (for list keys). When list is followed by pressing
an individual special function key, then only that key is listed (this is not programmable). The
list statement must be the last statementin a line.

Examples:

Lists the entire program.

List lines 10 through 15.

Listline 4.

List the special function keys.

List special function key 10 (not programma
ble).

At the end of a listing, a checksum is printed. This checksum is useful for detecting intc:

changed or omitted lines and characters. Any difference in the programs generates a differcni
checksum. In the foliowing two programs, only the characters % in line 1 are interchange:t!
Note that the checksums are different. There is no change in checksum from machine Io
machine, with different memory sizes, nor with different ROMs.

Programming

g ent H

1t prt “sart.

ot e

21 prt "iz"sTH " TH
21 end

23748

\ Different /

Checksums

Used and Remaining Memory

After a list operation, two numbers are displayed. The first number is the total length of the
program in bytes*. This number doesn'tinclude variables, subroutine return pointers, etc. The
second number is the unused memory in bytes. For example:

Program Length Unused Memory

1
]
't

15

%

P

1

(in bytes)

*A byte is the basic unit of data in the 9825A. B bits make up one byte. 8 bytes are required to store a number.

71

72 Programming

Chapter 6
Debugging

Debugging is the process of refining a program by editing, correcting, and updating. Like
programming, it is a creative process. Many operations are involved such as deleting and
inserting lines and changing, inserting, and deleting characters. Selective tracing and selec-
tive stopping are useful for locating lines which require changes. (=] is useful for going
through a program one line at a time, This chapter explains some of the steps in editing a

pragram.

Finding the Problem

The first step in debugging is to find the lines which require changes. This can be done in
several ways. One way is to step through a program by pressing (== once for each line to be
executed. Then check the results after each executed program line.

Another way is to use the trace, stop, and normal statements. When program lines are traced,
the line number, and variables and flags which are assigned values are printed. This allows
you to monitor program activity in individual program lines. Using the stop statement, the
program can be stopped whenever a specified program line is encountered. The normal
statement is used to terminate tracing and stopping. Stop, trace,and normal statements arg
axplained latar.

Fixing the Problem

The next step in debugging is fixing the problem. In many cases, this is as simple as changing
one character. Fixing the problem could, however, require rewriting many program lines.

To madify characters within a line, fetch the line by pressing the [==] key followed by the line
number of the line requiring the change. Then press . The line will appear in the display.
Next press either (==, if the change is closer to the end of the display, or (=], if the change is
closer to the front. Once a flashing cursor is over the location needing correction, you can
gither insert characters, delete characters, or write over the existing characters. To insert
characters, press the [==) key. This changes the flashing @ to a flashing 4. Characters that are
typed-in are inserted at the left of this cursor. To delete characters, press character =] for
each character to be deleted. To replace characters, be sure the 8 cursor is in the display (if
the 4 is in the display, press [==) to get 8) and then enter the necessary characters.

74

Debugging

To modify lines within a program, use the key or the (*) and () keys to bring the line
into the display. To delete the line, press the line =) key.

If a line being deleted has a line number referenced by a go to or go sub statement, an error 36
wili occur. Either execute the delete command with the optional asterisk () parameter (see
page 80), or adjust the line reference in the go to or go sub statement accessing that line. In
the following example, line 25 is to be deleted; but line 25 is referenced from line 27. Two
alternatives are shown.

Program section:

25 rrt "nunber”
s M

26t 1f M=IZPiszte

27: HW+lsHNiato 23
Alternative 1:
Type in:
Press:‘{zgh‘\ . .

N Deletes line 25 only. The go to statementin line
27 still addresses line 25.

Aiternative 2:
Change line 27 to: 271 M4l+Miato 25

Then fetch line 25 and press line (=),

e
inel

or execute =

Toinsert a line, fetch the line that the inserted line is to precede. Then type the new line into the
display and press the line key to store it. All the lines from the fetched line on are
automatically renumbered (incremented by one). When a line is inserted, the line references
of go to or go sub statements are incremented to reflect the new line numbering. If the line
being inserted contains an absolute go to or go sub statement, it is assumed that the line
numbers reference the lines before they are renumbered. Thus, if a line inserted before line 30
contains a =t 4= statement, it will be renumbered to =t 4+, (The old line 45 is renumbered
to line 46.)

In this example, a line is inserted between lines 14: prt "Fumber
14 and 15 ¢ af dows"sD

15%: atao 19

Debugging 75

First, fetch line 15, then type the line to be in-
serted into the display # L«;, FLOTrdmbe e of wes ks Ty W Sj

Then press the line key. The display will
bey :

G=r 0

To see where the line was inserted, exe-

K}

cute: Ii=t s i

14: rrt "nmumber
af davs"sD

15¢ prt "number
of weekz"al
18 ato 2§

Note that the line number in the go to statement in line 16 is incremented since old line 19 is
now line 20.

The branching address of the jump statement is not affected by adding or deleting lines in a
program.

The Debugging Statements

The trace, stop, and normal statements are used for debugging programs. The three state-
ments have dual roles in that their action depends upon whether any parameters are
specified.

Operation of Trace, Stop, and Normal

To effectively use the trace, stop, and normal statements, the internal operation should be
understood. There is one master flag which enables and disables overall tracing and stop-
ping. In addition, each line has two flags. The trace flag enables and disables tracing of the
line. The stop flag enables and disables selective stopping at a line. These flags are unrelated
to flags O through 15, which are explained in Chapter 5.

76 Debugging

The Trace Statement
Syntax:

1.+ [beginning line number [: ending line number]]

The trace (trc) statement sets the master trace flag. If line numbers are specified in the trace
statement, then the individual line trace flags are set on the designated lines. One line number
specifies that line only and two line numbers specify the block of lines from the beginning line
number through the ending line number.

During the execution of the program, a specific line is traced if both the master trace flag and
the individual line trace flags are set. When a line is traced, the number of the line is printed as
well as information describing any variable assignments and flag operations (involving flags 0
through 15).

The Stop Statement
Syntax:

=1 F» beginning line number [ending line number]

The stop (stp) statement with line numbers sets the master trace flag and stop flags on the
designated lines.

Before each program line is executed, the stop flag for that line is checked. if this flag and the
master trace flag are set, the program is stopped before the line is executed. The number of
the current program line is displayed when the program is stopped. Execution of the program

will continue from this line if or (™) is pressed (see description of and () keys).

The Normal Statement
Syntax:

o1 [beginning line number [+ ending line number]]

The normal (nor) statement clears the trace and stop flags of the lines specified by the line
numbers. If no line numbers are specified, the normal statement clears the master trace flag.

The use of a master trace flag in addition to individual line trace and stop flags makes it easy to
enable or disable selective tracing or stopping of parts of a program. This process is shown in
the following example.

Debugging 77

A 100 line program contains three sections in which critical operations are performed. These
sections can be traced by executing the following statements:

o Sad

T
[]

L

T

LI %

¢
3R

]
Jo
bal]

+ o
e

.}

b
LR

The program is run and the tracing printout indicates that line 45 contains an error. The line is
modified and o1 is executed to clear the master trace flag. The program is again run, but this
time the assignments are not printed. At the conclusion of the program it-becomes obvious
that the program still contains an error. The three critical sections of the program are again
traced by executing t . This sets the master trace flag so that the lines 5-15, 40-50, and
70-85 are traced (the trace bits are still set on these lines). After the program is totally
debugged, the individual line trace flags are cleared by executing rizr Bs 3333,

The individual line trace and stop flags are not normally stored on the cartridge when a
program is recorded by the record file statement. These flags can be recorded on the tape
cartridge along with the program by including the optional debug ("DB") parameter in the
record file statement. The master trace flag is not recorded. To have the program automati-

cally trace the lines when the program is loaded back into the calculator, put trc in line 0 to set
the master flag.

Chapter 7
Commands

There are five commands explained in this chapter. Commands differ from statements in that
they can be executed only from the keyboard. Commands cannot be stored as part of a
program.

The Run Command
Syntax:

1417 [line number or label]

The run command clears all variables, flags, and subroutine return pointers and then starts
program execution. If a line number or label is specified, the program begins execution at the

specified line number or label. Since @ is an immediate execute key equivalent to " iitn 5

. the word "1.:¢: must be keyed in to run from aline number or label.
Examples:
LT @ Run beginning at line 0. This is the same as
pressing @
e S @ Run, beginning at line 20.
e St hird” Run, beginning at the label “third".

The Continue Command
Syntax:

=it [line number or label]

The continue key (cont) command continues the program without altering variables, flags, or
subroutine return pointers. If no line number is specified, then the program continues from the
current position of the program line counter. When a line number or label is specified, the
program continues at the specified line or label. If the program has been edited or an error has
occurred since the program ran, continue without parameters causes execution to begin at
line 0. Since is an immediate execute key equivalentto <.t (A , the word it
must be keyed in to continue at a line number or label.

80 Commands

Examples:
Sk CD Continue from current position of program line
counter. This is the same as pressing .
oot @ Continue from line 3.
LS A W T @ Continue from the label "“loop”.
The Delete Line Command
Syntax:

«is 1 beginning line number [ending line number] =]

The delete (del) command is used to delete lines or sections of programs. When one line
number is specified , only that line is deleted. When two line numbers are specified, all lines in
the block are deleted. To delete an entire program, and |leave the variables, =1 & 2339 can
be executed.

Examples:

Delete line 28.
Delete lines 13 through 20.

Delete program from line 18 to the end. (This
does not affect variables.)

An attempt to delete lines that are destinations of relative or absolute go to or go sub state-
ments (except labels) will cause error 36. To delete these lines, the delete command with the
optional asterisk parameter can be used. When the asterisk is used, any go to or go sub
statements which reference deleted lines are adjusted to reference the first line after the
deleted section. For example to delete line 24 in this program segment:

22 ent Uyif
=gratc 24

23 H+T+TsC+1+0Ca
aro 22

24: rrt "Huwa,
Uzoge" s T-C

25 prt "Total

Uzaae"sT

ot

Type-in: el =2, =

Press: @

Commands

Press: @@@@@@ 241 mro "Total

Syntax:

Usase"sT

The Erase Command

rags [oor s or b or special function key]

The erase command is used to erase programs, variables, and special function keys as shown

below,

Command

Meaning

Erases program and variables.

Erases everything (like switching the calculator
off and then on again).

Erases all variables.

Erases all special function keys.

Erases the indicated special function key.

See Appendix D for things affected by the erase command.

81

- +1 [line number or special function key]

The fetch command brings individual program lines into the display. This is useful for editing
lines or for viewing individual program lines. Fetching a special function key displays the

detinition of the key or { followed by the key number if the key is undefined. Executing fetch
alone, fetches line 0.

Examples:

Fetch line 10.

fat ok (o) Fetch special function key ().

Chapter 8
Live Keyboard

The calculator's live keyboard mode provides additional power for executing single or multi-
statement lines while a program is running. Among other things, you can perform math opera-
tions, monitor program activity, and alter program flow in live keyboard mode. Two statements
described in this section permit the live keyboard mode to be turned on or off.

How Live Keyboard Works
While a program is running, a live keyboard operation is executed as follows:
e The live keyboard operation is keyed into the display and @ is pressed.
e Atthe end of the current program line, the live keyboard line is executed.

e The live keyboard operation is executed entirely before the program continues.

Live Keyboard Math

Any math operations can be executed from live keyboard. Thus, when a program is running
and a few calculations need to be made, key in the operation and press @

Statements in Live Keyboard

Math operations are just a small part of what can be done from live keyboard. If you want a
listing of the current program, press @@

To check a variable in the program, key in the variable name, such as F or E [41 and press
. The current value of the variable will be displayed.

To change a variable from live keyboard, enter the new value and assign it to the variable to be
changed. For example to reset a counter such as ©: + 1 +iZt0 0, key in & + (- and press @

Parts of a program can be executed from live keyboard as subroutines using the ..
statement. For example, the following section of a running program is used to monil..
variables used in the program:

i "check"iprt

i
RrBsCaDsret

By executing =zt "rhugc k", the values of the variables are printed and control returi
program.

After a subroutine is finished, control returns to the main program when the return (rch «
(stp) statement is executed or when a stop flag at the beginning of a line is encountcii

Although the special function keys fo through fza cannot be defined from live keyboii |
can be used from live keyboard. In this example, the special function keys are used to ..l
flow of the running program.

The special function keys are defined as follows:

e

The program is:

a: "Hait"idse

Wwaitima"twait
1883imp F
1+ ato "first”
2f 3ato "zecond”
4 ato "third”
41 "first"iprt
"first"sasFs
atao "HWaoit”
51 "zecond” 1.

NS
"zecond"rB+Fa
ato "Hait"

P "third"irrt
"third"y@+Fs
ato "Hait"

E|

Live Keyboard 85

When the program is run, it iz is displayed until one of the immediate execute (line
preceded by) special function keys is pressed. Then the program branches to the line where
either first, sscond, or third is printed. Although this is a simple example, it shows
one way that special function keys can be used in live keyboard mode.

The Stop Key in Live Keyboard

If is pressed during a live keyboard operation, the live keyboard operation is stopped, but
the program continues. Pressing a second time will stop the program.

Live Keyboard Limitations

Operations that modify the stored program or special function keys and operations that di-
rectly affect the execution of the program are not allowed in live keyboard mode. These
operations include the following:

Mnemonic Error
Commands:
run error 03
cont error 03
fetch error 03
erase error 03
del error 03
Statements:
ent error 13
end error 09
gto (allowed in a live key-
board subroutine) error 09
dp error 64
idk error 64
Idf (program file) error 64

In addition, the following keys cause a beep and are ignored when pressed in live keyboard
mode.

® 28 =8 O -

TR

R R T

86 Live Keyboard

The Display

Lines which are typed in live keyboard mode will disappear from the display if the running
program uses the display. The live keyboard line is re-displayed after each keystroke so that
the line with the new character added can be seen.

If the running program continually uses the display, the live keyboard lines will not be visible
while the line is being typed. In this case, the line that is currently being typed, or the line
accessed by can be held in the display by pressing (+*) or (3). These keys will suspend
the running program for one second and display the line. |f the key is kept depressed, the
program will be halted for one second after it is released. After the line is executed, the () or
() key will not re-display the line unless is pressed first. For example, suppose the
following program is running in the calculator:

B: dsp "Liue

kKevboard“iwait
i8a
i1t 9to B

When the following line is typed in live keyboard, it will not be visible:

pre 25 +H

Press () or() and the line will be displayed for about one second. When @ is pressed,
the line will be executed and 5 will be stored in A and printed.

Resuits of calculations performed in live keyboard disappear from the display if a running
program uses the display. The (*) or () keys only hold the live keyboard line in the display
and not the result of the execution of a line. The result can be held in the display by appending
a wait statement to the end of the line (e.g. 158 + 125 wnit 16966),

A special function key can be defined to preserve the displayed result long enough to be
viewed as in this example:

Press:
Typein: & s it

Press:

As you type in a calculation such as =i, press instead of @ The result of the calcula-
tion will remain in the display for about one second.

Live Keyboard 87

The Live Keyboard Enable Statement

Syntax:

The live keyboard enable (lke) statement enables the live keyboard mode. For example:

21 lkes Enable live keyboard.

Live keyboard is automatically enabled when the calculator is turned on, =52 o is executed,
or (=) is pressed. To disable live keyboard, the live keyboard disable (Ikd) statement is used.

The Live Keyboard Disable Statement

Syntax:

The live keyboard disable (Ikd) statement disables live keyboard mode. For example:

B: 1lkd The first line of this program disables live
keyboard.

To re-enable live keyboard during a program it is necessary to execute the live keyboard
enable (lke) statement from the program.

. (==}, and (=) are the only keys recognized while a program is running with live keyboard
disabled.

During cartridge operations, the keyboard is disabled and all keys except (=] are ignored.

R TTITIT L

88

1 we Keyhoard

4

Chapter 9

Tape Cartridge Operations

The tape cartridge used with the 9825A Calculator is a high quality, high density, digital
storage medium. The structure, care, and use of the tape cartridge are detailed in this chap-

ter.

Specifications

Typical data transfer rate

(the rate at which information is loaded from or
recorded on the tape cartridge)

Typical access rate

(the rate at which information passes over the
tape head when searching for a file)

Typical rewind time

(from end to end)

Typical erase time

(one entire track)
Usable tape length (typical)

Number of tracks

2750 bytes per second

14300 bytes per second

19 seconds

40 seconds

42.67 meters (140 ft.)

89

90 Tape Cartridge

Tape Structure

The structure of the tape is diagrammed below:

Track 0 0 1 2 3 4 5
00 o0 o0 o o o000
Track 1 0 1 2 3 || 4]i5l|6
I .
Beginning of Tape /r Files End of Tape

[:] Data or Program
[Inter File Gap

An individual file has the following format:

File i File File
Gap File Header Body Gap

1file »

D Data or Program
[J inter File Gap

Tape Cartridge

The tape cartridge, shown below, is used to store programs, data, and the defined special
function keys.

To record on the tape cartridge, the record ‘
slide tab must be in the rightmost position, that Vo 7 o

=S weEo08 Dapg

is, in the direction of the arrow (as shown). & o FacXiTs oG

Inserting the Cartridge

Tape Cartridge 91

Insert the tape cartridge so that the label on the cartridge faces the back of the calculator as

shown.

Inserting the Tape Cartridge

Tape Care

Cleaning the Tape Head and Capstan

92 Tape Cartridge

Dirt and dust are by far the greatest cause of cartridge related-errors. Several basic precau-
tions can reduce such problems substantially.

e Clean the tape head and capstan (drive wheel) of the tape transport after at least every
eight hours of use, or more frequently in dirty environments.

e Rewind the cartridge after each use.

e Keep the tape transport door clean.

e Keep the cartridge in the plastic container supplied with it.
Two other factors can affect the reliability of the tape cartridge. Strong magnetic fields can
erase data and programs stored on the cartridge. Physical damage to the tape, such as

wrinkled or folded tape can also cause record and load problems. A back-up copy should be
maintained for critical programs or data on a separate tape cartridge. /

Refer to Appendix F for information on tape error recovery.

The Rewind Statement

Syntax: .

The rewind (rew) statement is used to rewind the tape cartridge to its beginning. This state- ,
ment has the same function as [~~). Operations which do not use the tape cartridge can take

place while the tape rewinds. To stop a tape while it is rewinding, press the tape cartridge

gjection bar. The rewind statement must be executed before marking a new tape (see page 1
99).

The Track Statement

Syntax:
% ¢ K track number

The (trk) statement sets track O or track 1 of the tape cartridge. When the track statement is t'
executed, any following cartridge operations are performed on that track. Track 0 is automati-
cally set whenever the machine is switched on, (=) is pressed, or =z i is executed. The
track does not change when the cartridge is removed nor when @ is pressed.

The track number can be an expression with a value of 0 or 1, only.

Tape Cartridge 93

CAUTION

THE TRACK IS AUTOMATICALLY SET TO 0 WHEN (=] IS
PRESSED, =ruozs o IS EXECUTED, OR WHEN THE CAL-
CULATOR IS SWITCHED ON. UNLESS A SUBSEQUENT
TRACK STATEMENT SPECIFIES TRACK 1, CARTRIDGE
OPERATIONS WILL BE PERFORMED ON TRACK 0. IF YOU
ARE UNAWARE OF THIS, YOU COULD LOSE IMPORTANT
PROGRAMS OR DATA.

The ldentify File Statement

Syntax:

i ¢4 [file number [, file type [: currentfile size [absolute file size [; track number]]]]]

The identify file (idf) statement is used to load the contents of the current file header into the
return variables specified. After the identify file statement is done, the tape is positioned in
front of the file just identified. Thus, the tape is positioned for easy loading or recording of the
identified file.

All five of the parameters are optional return variables. That means that a value is returned to
the variable specified when the statement is executed. If one variable is specified, as in:
irif , then only the file number is returned. Two variables must be specified to get the file
type; three variables to get the current file size in bytes; four variables to get the absolute file
size in bytes; and five variables to get the track number. The return variables can be any

variable type.

The file type can be one of the following:

0 null*file

1 binary program

2 numeric data

3 string or string and numerics
(String Variables ROM required)

4 memory file (from record memory
statement)

5 keyfile

6 program file

*A null file has an absolute size of zero.

94 Tape Cartridge

The tape position becomes unknown when a tape cartridge is inserted into the tape drive, the
track is changed, (=) is pressed, or =razs o is executed. If the tape position is unknown
such as after switching tracks, at least one return variable must be specified or error 45 will

occur.
Example:
Lodt e Be Ow D E Identify the current file and return the file
number, file type, current file size, absolute file
size, and track number to A, B, C, D, and E,
respectively.
iod¥ He Hae H Return the current file size to A.
The Find File Statement
Syntax:
foif [file number]
The find file (fdf) statement is used to find the specified file on the current track of the tape ‘

cartridge. The tape is positioned at the beginning of the file specified. The file number can be
an expression. A find file statement without parameters finds file 0. Other statements can be
executed while the find file statement is executing.

NOTE
If a file number which does not exist is specified, the next
cartridge statement executed (except find file or rewind) will
result in error 65.

Examples of the find file statement:

Find file 8.
4 fdf AL3] Find the file specified by the value of A[3].

Tape Cartridge 95

The Tape List Statement

Syntax:

The tape list (tlist) statement is used to identify the files on the tape cartridge. Starting from the
tape’s current position, the track, file number, file type, current file size in bytes, and absolute
file size are printed as shown below.

Track ——— t r k 1 Current file size
File number ——— # 1 L
S ; Absolute file size

File type & 432 SEE
#1
3 45 =
$z
2 JEd 484

ol
L]
-
Doy)

The file type can be one of the following:

null* file

binary program

numeric data

string or mixed string an numeric
data (String Variables ROM must
be present or loading this file will
give error SQ).

4 memory file (from record memory

statement)
5 keyfile
6 program file

w N = O

A null file has an absolute size of zero.

if is pressed while tlist is being executed, the tlist will terminate. Otherwise it will .t w!
the last file (null file) is reached.

A convenient way to determine the current track setting is to execute “tlist” then pre:..
Alternately, use the identify file statement as in: FTe T Te Te T8 7 (P

Syntax:

i+ konumber of files : file size in bytes [return variable]

The mark (mrk) statement reserves file space on the tape cartridge. A file must be reserved
before a program or data can be recorded. One file more than the number of files specified is

marked. This file is the null file and is used as the starting point when marking more files. The
null file has an absolute size of zero.

The file size is specified in bytes. If an odd number of bytes is specified, one more byte is
automatically marked. For example, if 111 bytes are specified, 112 bytes are marked.

In order to mark files, the position of the tape must be known. If the position is unknown,
execute a find file, or rewind statement to position the tape where you are going to start
marking. Executing a mark statement where the first two parameters are zero (e.g., mrk 0,0} is
a special case and is explained in Appendix F.

The number of files and the file size can both be expressions. If a return variable is specified,
the file number of the Iast usable file marked is stored in it. If the value of the return variable is
positive, all the files specified were marked. If the value is negative, an end-of-tape (eot)
condition occurred before all the requested tiles were marked. In either case, the absolute
value of the return parameter is the last usable file marked. The null file is one file beyond.

Example:

A tape is to be re-marked for 3 files with a length of 320 bytes each on track 0. The following
short program performs this operation.

B: rew Rewind the cartridge.

1t trk H Set to track O.

S oMk 32328 E Mark 3 files, 320 bytes long.
a1 oert E+i Erase the rest of track 0.

4: end End the program.

Tape Cartridge

The tapo will be positioned at the beginning of file 3 and the resulting tape structure will be:

{L
A
Track 0 0 1 2 3 Erased Tape
/£
Heginning /l.———FileS e _Null Fiie
of Tape
Then, 2 files with a length of 80 bytes are to be marked. Execute: i+ k s S
New tape structure:
New Files
/1L
Jr
Track O 0 1 2 3 4 |5 Erased Tape
l'
K 7
Beginning 1 ;
/ Files N Null File
of Tape
To mark 2 files, 300 bytes long beginning at file 4, execute: + o <& i f e ZEIE

Determining Size to Mark a File

Program Files

When marking a file for a program which is currently in the calculator, execute 11zt —1. The
number in the left-hand portion of the display is exactly the number of bytes needed to record
the program. It is advisable to mark the file larger to accommodate any future program
changes.

Data Files

Data files require 8 bytes for each data element to be recorded. For example, to record data
which is stored in the variables A and B, mark a file 16 bytes long.

.Special Function Key Files
Special function key files require 1 byte for each character under the keys, pius 2 bytes for

each defined key. If the number of bytes for each key is odd, add one byte. The sum for all
keys is the minimum size to mark the file.

97

98 Tape Cartridge

Memory Files

For a memory file (using record memory statement), mark the file for the size of your cal-
culator's memory as listed below:

8192 bytes for standard calculator
16384 bytes for Option 001
24576 bytes for Option 002
32766 bytes for Option 003

Tape Capacity
Table of Typical Storage Capacities

File size Typical number of Bytes per
(bytes) files per track track
50 827 41350
100 656 65600
250 404 101000
500 239 119500
750 170 127500
1000 131 131000
2500 56 140000
5000 28 140000
7500 19 142500
10000 14 140000

Due to the overhead required by each file, the number of bytes per track is not the same for
different size files.

Tape Capacity Calculations

The number of files which can be stored on the tape cartridge depends on the size of the file.
Using the following calculations, the number of files that can be stored on the tape cartridge
can be calculated.

L= 1.278 + .209 int (A/256 + .999) + .0105A
where: A = absolute file size in bytes.
L = length of the file in inches.
a) For typical capacity per track:
Number of files per track = int (1665/L)
b) For minimum capacity per track:
Number of files per track = (1498/L)

i
|

Tape Cartridge

The following program can be used to mark more files and calculate the percentage of a track

used.

Br rewrf=d #

1t ent "Tracks
B oor 17"Tetrk
T

2t ent "Hew tarpe
T oYes=1 Ho=a"aH

3y if Hiata "Mar
K

d: B+FsL

S50 fdf Fiidf Hs
HsH:H

£: 1f HA=@iato
"Mark"

Yi ask "L"

o B+LsLiF+1Fs
ato 5

97 "MarkTitert
"% oof Tape"

18 prt ° Mork
ed s LolEES®1 0BG
i

1i: if rA:=1Ga;
rrt "HAH11l Morked
"Yato “out”

12y ent "Mark

are files?

-3
T
1
"
—
o
o
(]
H
[xn]
-
-
o

Marking New Tapes

= R
of filez"21H»

16 ent """ 131%

GB+bl+ri

178 1f [rlslaess

Zle=1liprt "Too

loma. .. " s "That

1z 5"y Z2%1383%

ato Couyt "

187 ri=sLimrk I
Vit R{AYd=e

A8 Marked"s

ato Vot
19: ato "HMark"
o i “out"idsme

1
1
"That = ig”?end

Since no files are marked on a new tape, the rewind statement must be used to position the
tape before marking files. For example, to mark 4 files 200 bytes long on a new tape, execute

the following:

Marking Used Tapes

When re-marking a used tape, it is possible that some old files may remain on the tape. These
files can be accessed accidentally by changing tracks. For example, suppose track 0 has 4

files of 1000 bytes and track 1 has 2 files of 1500 bytes:

Track 0 0 1

Track 1 0

99

100 Tape Cartridge

Then track 0 is re-marked from the beginning to contain 2 files of 200 bytes each:

TrackQ | 0] 1]2 1 2 3 4 é

Track 1 0 1 2

(O oidinvaiid files

If the tape is positioned at file 1 on track 1, and * i ¥ is executed, the tape will be positioned
in an old section of tape. Accessing file 1 on track 0 will result in using old file 1.

With slightly different conditions, it is possible to have missing files rather than multiple files.
For example, suppose that track 0 has 4 files of 1000 bytes each:

Track O 0 1 2 3 4 J

tis executed, the tape would have a gap of missing

Ifthe tape is rewound and vk 15 -
files:

missing files
e <

Track O ¢} 1 4)

To remove the old files, use the erase tape (ert) staternent. For the first example:
P Rewind the tape on track 0.

B M Mark 2 files, 200 bytes each.

Erase the tape starting at the null file.

CAUTION
WHEN MARKING OVER A PREVIOUSLY MARKED TAPE,
USE THE ERASE TAPE STATEMENT TO REMOVE OLD
FILES.

&

Tape Cartridge

The Erase Tape Statement

Syntax:

7% file number

The erase tape (ert) statement is used to erase everything on the current track starting from the file

number specified. It is usually executed after a mark statement (see Marking Used Tapes on page
99). The erase tape statement:

1. Positions the tape in front of the file specified.

2. Marks that file as a null file.

3. Then, erases the track from the null file to the end of the track.
4.

Finally the tape is positioned in the file gap in front of the null file.

The file number can be an expression.

For example, a tape has the following structure on track 1:

L
77

Track 1 0 1 2 3 4 Erased Tape or Old Files

77

Files Null File

To erase everything on track 1 starting at, and including file 3, the following program is used:

—

bk ;

SR

o

—+

o= o
- wm

s T
[

After running this program, the tape’s structure is:

JL
77
Track 1 0 1 2 3 Erased Tape
—fF
' je———— Files ———» k Null File

Track 0O is not altered.

101

102 Tape Cartridge

The Record File Statement

The record file statement is used to store both data and programs. The syntax for each is
explained below.

Recording Programs

Syntax:

<1 [file number [+ beginning line number [+ ending line number]] ["SE" or "IE"]]

To record a program or a section of a program the record file (rcf) statement is used. If no file
number is specified, the file is assumed to be file zero. If no line numbers are specified, the
entire program is recorded on the specified file. If the beginning line number is specified, then
the program from that line number to the end is recorded. If both line numbers are specified,
that program section is recorded from the first line number to the second line number, inclu-
sive.

The file number and ending line number parameters can both be constants, variables, or ' ‘
expressions. The beginning line number can be a constant, or expression (such as 1A), but

must not be a variable. Using a variable as in r=f 1:# records the value of “A” as data. To

record the program beginning at the line whose value is A, use rf 1s 1A,

If “ZE" (for secure) follows at the end of the statement, the program is secured when stored
on tape. When the secured program is loaded back into the calculator, the program cannot be
listed or displayed, but can be re-recorded on a tape cartridge. !

When "[i2" (for debug) foliows at the end of the statement, any trace or stop flags are
recorded with the program (see page 77).

The tape file must be marked before recording a program. The file size must be greater than or
equal to the size of the program being recorded.

Example:

-
v

Record the program on file 8, starting at line 3

“.
-
i
-
o
-
o

through the end.

Recording Data

Syntax:

ot file number = data list

Tape Cartridge

The record file (rcf) statement is used to record data when this syntax is used. The data list can
consist of simple variables, array variables, or r-variables. r-variables are stored in a different area
in memory which is not contiguous with array or simple variables (see page 17). Due to this,
r-variables cannot be mixed with simple or array variables in the record file statement.

To record an entire array, the array name is followed by an asterisk in brackets. For example:

e PO e A

Record the entire array S on file 2.

Simple and array variables must appear in the data list in the same order as allocated. If the

variables appear in a dimension statement, then they must appear in the same order in the
record file statement.

Example:
B: dim ALIB.18] The array A is allocated 100 elements (800
bytes).
1: @=+s The variable X is allocated 8 bytes.
2 B+l Doesn't affect memory allocated to X.
3 121 The variable | is allocated 8 bytes.
-rI rof SaAL%]sws The array A, and variables X and | are re-

corded in the same order as allocated (con-

tiguously) on file 5 (total of 102 numbers or 816
bytes).

If one r-variable is specified in the data list, all r-variables from rO to that r-variable are
recorded. |f two r-variables are specified, all r-variables from the first through the second are
recorded.

Considerations for Recording Data

When recording data on the tape cartridge, the variables being recorded must be listed in the
same order as they are allocated in memory. For example:

103

104 Tape Cartridge

In the program, the variables A and B are allocated outside a dimension statement. Variables
C. X, Y, and Z are allocated in a dimension statement. But, if B were allocated before A in the
program, line 15 would cause error 56 to be displayed since the variables must be listed in the
same order as they are allocated. Because lines are not necessarily executed in numerical
order, it is sometimes difficult to know the order in which variables are allocated. For this
reason, when a group of simple or array variables is to be recorded on a single file, it is
recommended that they all be allocated in one dimension statement.

The Load Program Statement

Syntax:

i» [file number [+ line numbery [line numberz]]]

The load program (idp) statement is used to load a program from the specified file on the
current track and run it automatically. The automatic run implies that all variables are erased,
all subroutine return pointers are cleared, and all flags (0 through 15) are cleared.

When the file number only is given, the program is loaded from the file, beginning at line zero,
and the program automatically runs from line zero. If the file number and the first line number
are specified, the program is loaded from that file, beginning at the specified line number and
runs from that line number. When all three parameters are specified, the program is loaded
from the specified file number beginning at the first specified line number and is run beginning
at the second specified line number. If no parameters are specified, zeros are assumed for all
three. All three parameters can be expressions.

If a program is loaded at the end of an existing program, go to and go sub branching line
numbers are not renumbered.

The load program statement can only be stored as the last statement in a line. This statement
is not allowed in live keyboard mode nor during an enter statement.

Examples:

Loads the program from file 2 beginning at line
0 and runs from line 0.

g o Loads the program from file 8 beginning at line
2 and runs fromline 2.

Loads the program from file 16 beginning at
line 3 and runs from line 0.

The Load File Statement

The load file (ldf) statement is used to load both data and program files into the calculator
memory.

CAUTION

THE LDF STATEMENT LOADS THE PROGRAM OR VARI-
ABLE AREA OF MEMORY DEPENDING ON THE FILE TYPE
ACCESSED. BUT THE LDP AND RCF STATEMENTS LOAD
OR RECORD A SPECIFIED PART OF MEMORY DEPEND-
ING ON THE STATEMENT. THUS, WITH THE LDF STATE-
MENT IT IS POSSIBLE TO ACCIDENTALLY LOAD A PROG-
RAM WHEN THE INTENT WAS TO LOAD VARIABLES OR
VICE VERSA.

Loading Programs

Syntax:

i+ [file number [« line numbers [+ line numberz]]]

The load file (Idf) statement loads programs from the specified file on the current track into the
calculator memory.

This statement is like the load program (ldp) statement except that Idf can be used to continue a
program, while the Idp statement causes the program to run.

From the Keyboard

This statement is executed from the keyboard as follows: When no parameters are given, the
program on file zero is loaded, beginning at line 0. If the file number is given, that file is loaded
beginning at line 0. If the file number and a line number are specified, then that file is loaded
beginning at the specified line number. When all three parameters are given, the specified file
s loaded beginning at the first line number, and the program automatically continues at the
second line number (all variables are preserved whereas Idp destroys the old variables; see
continue command page 79).

If a program is loaded at the end of an existing program, go to and go sub branching line
numbers are not renumbered.

In a Program

The Idf statement is executed in a program as follows: When no parameters are specified,
the program on file zero is loaded beginning at line zero and continues at line zero. If the file
number is specified, then the program is loaded from the specified file beginning at line zero
and continues at line zero. When the file number and a line number are given, the specified file
is loaded beginning at the specified line number and the program continues from that line

Tape Cartridge

[———

106 Tape Cartridge

number. When all three parameters are given, the statement is executed the same as from the
keyboard. That is, a “continue” is performed from the second line number. All three paramet-
ers can be expressions.

This statement is not allowed in live keyboard mode nor during an enter statement to load a
program file. However, the Idf staterment can be used to load a data file in live keyboard.

Example:
Load file 1 beginning at line 0 (executed from
keyboard).
12: 1ldf 2 Load file 2 beginning at line 0 and continue
from line 0.

Linking Programs

Programs too long to store in the calculator memory can be segmented and stored in separate
files on the tape cartridge. Each segment can be loaded as needed by the program, and,
using the Idf statement, variables, flags, and subroutine return pointers can be preserved for
each segment.

In the following basic example, three segments are used. Each segment is loaded as it is
needed by the program. The first segment loads the second and the second loads the third.

Program Segment on file O By omrt "rile BT
7+H
1e 1df |
Program Segment on file 1 » B: oprt "file 173
prt H
1 ldyf 2
Program Segment on file 2 § B mri file 2"
1y end
Press: @@O file @
tile 1
Z.1418

)
—
pt
m
(X

Tape Cartridge 107

Lot [file number [datalist]]

The load file (idf) statement loads data from the specified file on the current track. The data list
goritains the names of variables separated by commas. r-variables cannot be in the same load
Nle statement with simple and array variables.

I no list is specified, data begins filling the r-variables from rO until all the data has been loaded. If
one r-variable is specified, then the data begins filling r-variables from that r-variable until all the
data has been loaded into higher r-variables. If two r-variables are specified, the data starts filling

from the first location specified (lower r-variable) to the second, higher, r-variable. If there is more
~ data than available or specified r-variables, no data is loaded.

When simple or array variables are specified, data begins filling the first variable until all
. variables have assigned values. If there is more data than variables, no data is loaded. If there

I8 less data than variables, the data is [oaded until all data is used. Variables must be contigu-
ous.

Examples:

Tredd e mde w18

Load r2 through r10 from data file 4.
Load the data file designated by r12 into the
variable A and array B.

Toeda e o i) i
1 [0 1 S A A T s O O]

Array and r-variable Recording

Array variables are recorded in the opposite order of r-variables. Thus, if r-variables are
recorded, then loaded back into an array, they will be in the opposite order. For example:

B 1=xrliy2sris N
Tarai4ardiSears r5- A[1] S.8088
1: rj'x;.’r" E}-[r']fn r4— A[2] 4.0888
20 odim HIG -~ o e
St ldf ByAL#] 13- ALS] J.Buan
dr {1 ro— A[4] Z.808480
St prt AlIlYdnme r1— A[5] 1.8808
[T+1=21156E G.0080
5t enc r0— A[6] .

Inline 1, r-variables 0 through 5 are recorded on file 0. Then in line 3, the array A is loaded from file
0. A[6] is loaded first; A[1] is loaded last.

108 Tape Cartridge

The Record Keys Statement
Syntax;
ek [file number]
The record keys (rck) statement is used to record all the special function keys on the specified

file on the current track. If the file number is omitted, file zero is assumed. The file number can
be an expression. The specified file must be marked before the record keys statement is

executed.
Examples:
- Record the special function keys on file 2.
2 rock ALLZ2] Record the special function keys on the file de-
signated by the 12th element of array A.
The Load Keys Statement
Syntax:

ik [file number]

The load keys (ldk) statement is used to load the special function keys exactly as they were
recorded from the specified file on the current track. If the file number is omitted, file zero is
assumed. The file number can be an expression. Executing the load keys statement from the
keyboard causes subroutine return pointers to be reset and causes the program counter to
reset to line zero.

This statement is not allowed in live keyboard nor during an enter statement.

Example:

Lodk 4 Load the special function keys from file 4.

H
ES

The Record Memory Statement

Syntax:

w4 [file number]

The record memory (rcm) statement records the entire read-write memory (program, data,
keys, pointers, etc.) on the specified file on the current track of the tape cartridge.

~namber is omitted, file 0 is assumed. The file number can be an expression.

~nce of a binary program in memory is a special case. The information supplied with
ity program explains the calculator operation when the record memory statement is
ol

{file number]

vl memory (Idm) statement is used to load a previously recorded memory file. When the
toeition is complete, the calculator is in the same state it was in when memory was

1ot I the file number is omitted, file 0 is loaded.

<« was running when the record memory statement was executed, that program will
- with the next statement after the record memory statement when the load memory

ant s executed,

< ordd memory and load memory statements can be executed from live keyboard or from

- il lunction key. The record memory statement can be used to "“freeze” the state of the

-+ without interrupting the running program. These statements can be especially useful in
~vhere frequent power interruptions occur.

" number can be an expression.

{file number]

ik binary program (Idb) statement loads binary programs* into the calculator’s read/
~ mumory from the specified file on the current track of the tape cartridge. Binary prog-
« .1 be loaded over other binary programs of equal or greater length at any time.

~ e number is specified, file 0 is assumed. The file number can be an expression.

nples

Load the binary program from file 2.

w i (noqram is a machine language program which cannot be listed or displayed.

110 Tape Cartridge

Since binary programs occupy a special place in memory, certain rules must be followed
when loading them:

1. Any binary program can be loaded at any time (from the keyboard or a running prog-
ram) provided there is room in memory for it and no simple or array variables are
allocated.

2. Once simple or array variables are allocated, a binary program cannot be loaded
unless space has been allocated for it by a previous binary program load operation.

The following procedure is suggested: Before any simple or array variables are referenced,
load the largest binary program file that will be needed. Then any variables can be allocated
and other binary programs can be loaded without concern about room for the binary program.

File Verification

File verification is used to compare a tape file against the calcutator memory to detect record-
ing errors without losing the information in memory. If you get a verify error (error 44), try
re-recording the file. Repeated verify errors on a file may indicate damaged tape.

File verification requires a stronger tape signal than load; thus, it increases confidence that a
file will load properly at a later time.

When the calculator is turned on, =raze o is executed, or (=) is pressed, the calculator
automatically verifies files on all record operations. Two statements are used to control au-
tomatic verification.

The Auto-Verify Disable Statement
Syntax:

The auto-verity disable (avd) statement turns off file verification. For example:

12: aud Turn-off automnatic file verification.

Tape Cartridge 111

The 2uto-Verify Enable Statement

_ﬂ'u' b

Praaato verify enable (ave) statement turns on automatic file verification. After au.i= is exe-
«ote ool record operations are automatically followed by a verify. When the calculator is
vooedon, (o) is pressed, or =raze o is executed, automatic file verification is again ena-

Turn on Automatic file verification.

the Venty Statement

ST

(return variable]

"o venty (viy) statement is used to compare a tape file with the calculator memory. If the
- voulator memory is identical to the tape file, the value of the return variable is 0 after the

retation. 1f the two are different, the return variable is one. If no return variable is specified
Al the memory and tape file are not identical, error 44 occurs. The return variable can be
«thet a simple variable, array variable, or r-variable.

"t vernily statement can follow any record operation except the record memory (rcm) state-
~wnt The record memory statement followed by viy will result in error 44. Memory files can
+vy be verified using automatic verification.

“aththe verify statement, you can selectively verify files. This can be useful to save time when
-ecording many files. Another important use is recovery from verify errors using the return
arable parameter.

“haeslatlement does not alter the calculator memory.

The Set Select Code Statement

The set select code (ssc) statement is provided for possible future access to peripherals and
~hould not be used at the present time. Select code 1 is used by the internal cartridge.

112 Tape Cartridge

Appendix A

Syntax

Two sets of syntax are given in this appendix. The first set is the informal syntax used through-

out the manual. The second is a language description syntax of HPL.

Informal Syntax

Syntax

:. expression

= expression
|expression] -+ expression
expression il expression

- expression
expression -+ variable
1 expression

= [flag number : ...}

i [flag number = ...}

1% [line number or label]
on expression

= 1 beginning line number
[: ending line number][=]
. ritem[= item = ...] where item is:
simple variable
array variable idimension
[= dimension = ...]

expression .“expression

i iexpression » number of digits

Name Page
Absolute value function 53
Arccosinefunction ool 57
Addition operator (orunary plus) 50
ANDoperator, 52
Arcsinefunction il 56
Assignmentoperator 50
Arctangent function 57
Auto-verify disable statement 110
Auto-verify enable statement 111
Beepstatement.............. i, 47
Clear flag statement 60
Complement flag statement 60
Continuecommandoo.... 79
Cosinefunction o il 56
Clear simple variables statement 70
Degrees statement.................ccouunnn. 56
Deletecommandt 80
Dimension statement 68
Divisionoperatoroiiiiiiiiin 50
Digit rounding function 54

Syntax

i [any combination of text or
expressions]

=+ [prompt =] variabie [« [prompt :]
variable...]

1% [prompt =] variable[: [prompt :]
variable...]

expression = expression

= [« or »2 or i or special
function key]

@1 file number

expression o1 expression

I Er expression

expression i expression
¢ o1 [file number]

¢t [line number or special
function key]

¢ . = flag number
. = [number of decimal places]

. expression
[number of decimal places]

expression - expression
expression = expression
expression . expression
=1 line number

label

“+ number of lines

- number of lines
line number

label

“+ pumber of lines

----- number of lines

file number [= file type [= current
file size [: absolute file size
[= track number}]]]]

.7 expression

il expression

t w10 number of lines

[file number]

Name P
Display statement
Endstatement 1
Enter printstatement, i
Enter statement |
Equaltooperator
Erasecommand

Erase tape statement 101
Exclusive OR operator 5

Exponential function

Exponentiation operator Lt
Find file statement Ol
Fetchcommand 8"
Flag function 61
Float statement L. 4
Fractionfunction oot 54
Fixed statement 40
Grads statementl 56
Greaterthanoperator 51
Greater than or equal to operator 51
Greater than or equaltooperator.............. 51
Absolute go sub statement 65
Labelled go sub statement 66
Relative go sub statement 65
Relative go sub statement 65
Absolute goto statement 63
Labelled goto statement 63
Relative goto statement 63
Relativegotostatement 63
ldentify file statement 93
statementc. i 67
Integerfunction 54
Jumpstatement 64
Load binary program statement 109

number [« data list]]
fle number [« line number,
'y line numberz]])
number]
number]
number [:line number,
numberz]1]
_ % expression
7= gxpression

= < @xpression

i special function key
1, [Deginning line number
i ng ne number]]

gsIon
. “prvGSion

jon il expression

g ton ¥ expression
1) (expression)

numiber]]

on H expression

il o expression

iof < expression

4 wnniBS8SION

wral D1 I @XPression

N, }

" .y combination of text or
e s 8iONS]

we NUMbDEr = data list

: HE:.;', ending line number])
r, SEvor "DE']

thet of expressions and arrays
tumt of expressions and arrays !

numuwer of files :file size [= return

" toeginning line number [:ending

. waXpression :rounding speci-

number [:beginning line num- Record file statement (Program f

Name

Load file statement (Data file) ..
Load file statement (Program file

Load keys statement
Load memory statement
Load program statement

Less thanoperator
Less than or equal to operator ..
Less than or equal to operator ..
List keys statement
List special function key comman
List statement
Live keyboard disable statement
Live keyboard enable statement

Natural logarithm function
Common logarithm function
Maximum value function
Minimum value function
Modulus operator
Mark statement

Multiplication operator (explicit) .
Multiplication operator (implicit; 1
Normal statement
Not equal to operator
Not equal to cperator
Not equal to operator
NQToperator.................
ORoperator
Power-of-ten rounding function

Print statement

Radians statement
Record file statement (Data file)

Syntax

.............

115

116 Syntax

Syntax

= [file number]
{file number]

[] expression

[line number or label]
[flag number: ...]

"1 expression

1 expression

. [pumber of blank lines]
I” expression

i E0 select code

= 1 £ beginning line number [+ ending
line number]

[expression] — expression

LT expression

i . [beginning line number [: ending
line number]]
.+ i track number

+ [return variable]
41 1 % number of milliseconds

Name Page
Record keys statement 108
Record memory statement » .108
Returnstatementoivvenn.. 65
Rewind statement, 92
Random number function 54
Runcommandccoiiiiiiiienninennnn. 79
Setflag statementol 59
Signfunctionl 54
Sinefunction i 56
Spacestatement........... ... e, 47
Square root function 53
Set select code statement 111
Stopstatement i 48
Stop statement (for debugging) -............. 76
Subtraction operator (or unary minus) 50
Tangentfunction............................. 56
Tape list statementcooiniinnnn.. 95
Ten-to-the-power function 55
Tracestatement 76
Track statement, 92
Unitsstatement L, 56
Verify statement 111
Wait statement L 47

(Line)

{Statements)

(First)

{Second)

(Type 1)

LEGEND
: := “is defined as..."”

() enclose an element of HPL

(Statements)
Label : (Statements)

End-of-line
(First) End-of-line
{Second) End-of-line

(Type 1)
(First) ; (Type 1)

(Type 2)
(First) ; (Type 2)

(Assignment)

{(Group 1)

{Group 2) (Value)

(Group 3)

{Group 3) (Value)

{(Group 4)

(Group 4) {Expression list)
{Group 5)

(Group 5) (I/O list)

{Group 6)

{Group 6) (Value)

{Group 6} (Vaiue) , (Value)
(Group 7)

{Group 7) (Cartridge 1/O list)
(Group 8) Integer

(Group 8) Label

(Group 9) (ent list)

dim {(dim list)

mrk {mrk list)

vfy

vy (Variable)

idf

idf (Variable list)

, 118 Syntax

{Group 1) (= avd

{Group 2)

{Group 3}

{Group 4)

{Group 5)

{Group 6)

{Group 7)

ave
beep
Csv
deg
end
grad
listk
Ikd
[ke
rad
rew
tlist
units

L - [y

tri
wait

D= i

fit
fud
Idb
Idk
Idm

rcm
spc

cmf

sfg

ti=m dsp

prt

s o= hor

stp
trc

= |df

rof

Syntax 119

(Group 8) := gsb
gsb +
gsb —
gto
gto +
gto —

(Group 9) = enp

ent

E (Type 2) .:= jmp (Value)

4 ret

(Group 10)

(Group 10) (Expression list)

(Group 10) (= |dp

list

(Value) .= (Expression)
{Assignment)

(Assignment) ;= (Expression) = {Variabie)
(Assignment) — (Variable)
(Expression) ::= (Conjunction)

{Expression) or {Conjunction)

{Expression) xor {Conjunction)
{Conjunction) ::= {(Denial)

{Conjunction) and (Denial)

{Denial) ::= (Relation)
not (Relation)

(Relation) ;.= (Sum) (Relational operator) (Sum)
ci= (Sum)

I
*

(Relational Op.)

vV A
\

120 Syntax .

{(Sum)

(Term)

{Negation)

(Factor)

i (Exponentiation)

(Primary)

(Variable)

{Function)

(Term)

{Sum) + (Term)

{Sum) — (Term)
{Negation)

(Term) * (Negation)
{Term) / (Negation)
(Term) mod (Negation)
{Factor)

+ (Factor)

-~ (Factor)
(Exponentation)
(Factor) I* {Exponentiation)(I* means Implied multiply)

{Primary)
{Exponentiation) 1 (Primary)

(Variable)

number

mw

res

((Value))

(Function) {Primary)
drnd ((Value) , (Value))
prnd ((Value) , (Value))

min ({(Cartridge /O list))

max ((Cartridge VO list))

Simple variable

Array variable [(Expression list)]

r {Primary)
abs
acs

asn
atn
cos

exp
frc
fig
int
In
rnd
sgn
iog
sin
v“"
tan
tnt

| {Variable list)
(Expression list)
{dim list)

{dim item)
{Bounds list)
(Bounds)

(ent list)

{mrk list)

{Cartridge I/O list)

(/0 list)

(/O item)

{Variable)
(Variable list) , (Variable)

(Value)
{Expression list) , (Value)

(dim item)
{dim list) , (dim item)

Simple variable
Array variable [(Bounds list)]

(Bounds)
{Bounds list) , {Bounds)

(Value)
{Value) : (Vaiue)

(Variable)

{ent list) , (Variable)
Prompt, (Variable)

(ent list) , Prompt , (Variable)

{Value) , (Value)
{Value) , (Value) , (Variable)

(Value)
{Cartridge /O list) , (Value)
{Cartridge /O list) , Array Variable [*]

(/O item)
/0 list)y , (1/O item)

(Value)
“Text”

Syntax

121

122 Syntax

Appendix B

Error Messages

An error in a program sets the program line counter to line 0, but does not affect variables, or
subroutine return pointers. Pressing \#} will continue the program from line 0. Execute the
continue command with a line number to continue at any desired line (such as:).

Mainframe Error Messages

4L System Error
* Memory error occurred.

* Operating system error.

* Component failure; service required. Contact your nearest HP sales and ser-
vice office listed in the back of this manual.

7 E11 Unexpected peripheral interrupt. Occurs only when a peripheral is being used.
Press to recover,

Unterminated text. The line of text must have an ending quote.

o 3 Mnemonic is unknown. This error is usually caused by typing errors, such as =

mode or during an enter statement!

Systemis secured. This error is generally caused by trying to list or fetch lines in
a secured program.

=rromy 35 Operation not allowed — line cannot be stored or executed with line number.

This can be caused by pressing , o | OF line with a fetched line in the
display.

Syntax error in number. For example, executing:

Syntax error in input line. For example:

2See 9885 Disk ROM error messages also.

*These errors give a cursor when the recall key is pressed, showing location of error.

124 Error Messages

internal representation of the line is too long (gives cursor sometimes).

= The gto, gsb, or end statement is not allowed in the present context. For exam-
ple, attempting to execute an end statement during an enter statement. *

LE™ The gto or gsb statement requires an integer. For example:

@t o=, 4 is not allowed

1
1
fruncde

Integer out of range or integer required. Must be between —32768 and +32767.
For example:

Integer out of range.
integer constant required.

zrror 12 Theline cannot be stored. It can only be executed. Expressions such as V32 or
flg A or 2+B must be part of a statement to be stored NV32-Ao0r prtflg A or jmp
2+B are statements and can be stored. For example:
P This is acceptable.

I This is not allowed (can't store expression).

= o 13 Enter (ent) statement is not allowed in present context. For example, =it i is
not allowed from the keyboard, only from a program.

= 14 Program structure destroyed. This can be caused by pressing (=) while a
program is being modified or loaded. It is advisable to record data then execute
£ 1o s E to recover.

- 1% Printer out of paper or printer failure.

L2 The String Variables ROM is not present for the string comparison, or the argu-
ment in a relational comparison is not allow~ 3. For exampile, if the String Vari-

[N w T

ables ROM is not in the calculator: i+ "E" <"H" results in error 16.

vy 17 Parameter is out of range. For example, the following are not allowed.

F A

LH

oo

Incorrect parameter. For example:

'See Advanced Programming ROM error messages also.
“These errors give a cursor when the recall key is pressed, showing the location of error.

1
)
D
o
w
4N
[{®}
W
¢4}

A ROM or binary program is missing. As a result, the line cannot be recon-
structed. This error usually occurs when fetch or list is executed or when (+) or
() is pressed. The number to the right of the error number in the dispiay
indicates the missing ROM. In the program mode, the ROM number is not
displayed, but replaced by line number.

ROM Number
in Display | ROM
1 : Binary Program
f String Variables
Extended /O
Advanced Programming

Matrix

9862A Plotter
General I/O
9885M Disk ROM

Line is too long to store. This can occur when blanks or parentheses are auto-
matically added. For example parentheses are automatically added when stor-
ing the line: & a1 -+ which will appear in a listing as: @ sy L2018

Improper dimension specification. For example, this error occurs when the
lower bound of a subscript is greater than the upper bound. Also, if the String
Variables ROM is not in the calculator and a string is dimensioned this error
results.

The simple variable has already been allocated. For example:

The array has already been dimensioned. For example:

Dimensions of array disagree with subscripts. For example:

Subscript of array element is out of bounds For example:
AlmHLIET Bl i

Undefined array. All arrays must appear in a dimension (dim) statement before
being used elsewhere.

The return (ret) statement has no matching gsb statement.

Cannot execute the line because a ROM or binary program is missing. For
example, executing the plt statement without a Plotter ROM?

'See Advanced Programmnng ROM error massages aiso.

~cecnman alon

N
[41]

126 Error Messages

------ Special function key has not been defined?

Non-existent program line. For example, =i 1. ¢ *# in a 5 line program.

Improper data type. A number is required.1

Data types don’t match in an assignment statement.

Display overflow due to pressing a special function key. Only 80 characters can
be entered into the display.

Improper flag referenced (there is no such flag). For example:

WO S Y
F]

Attempt to delete the destination of a gto or gsb statement. Operation not
performed.

Display bufter overflow caused by display (dsp) statement.

S . , 1
Insutficient memory for subroutine return pointer.

Insutficient memory for variable allocation or binary program. No allocation
takes place.

Insufficient memory for operation. For example, attempting to store a line with
insufficient memory available. '

No cartridge in the tape transport.

Tape cartridge is write protected. Slide the record tab to the other position for
recording, marking, or erasing.

Unexpected Beginning-of-Tape (BOT) or End-of-Tape (EOQT) marker encoun-
tered; or a tape transport failure.

Verify has failed (see File Verification page 110).

~mr 45 Attempted execution of idf statement without parameters when tape position is
unknown, or attempted execution of mrk statement when the tape position is
unknown.

Read error of file body. The partition containing the error is lost (see Appen-
dix F).

Read error of file head (see Appendix F).

The end of tape was encountered before the specified number of files were
marked.

File is too small.

1See Advanced Programming ROM error messages also.
2See 9885 Disk ROM error messages also.

Error Messages

The |df statement for a program file must be the last statement in the line.

=i =1 A ROM or binary program is present but was not when the memory was re-

corded. Remove the ROM indicated by the number to the right of the error
number in the display, and re-execute the load memory (Idm) statement. When
in the program mode, the line number is given instead of the ROM number?

ROM Number

ROM

in Display

Binary Program

String Variables
Extended 1/O
Advanced Programming
Matrix

9862A Plotter

General I/O

9885M Disk ROM

The ROM or binary program indicated by the number to the right of the error

number was present when the memory was recorded but is now missing. Insert
the indicated ROM and re-execute the load memory (Idm) statement.?

ROM Number

ROM

in Display

2See 9885 Disk ROM error messages also.

Binary Program

String Variables
Extended /O

Advanced Programming
Matrix

9862A Plotter

General I/O

9885M Disk ROM

Negative parameter in cartridge statement. For example:

Binary program to be loaded is larger than present binary program and vari-
ables have been allocated.

lilegal or missing parameter in one of the cartridge statements.

Data list is not contiguous in memory for one of the cartridge statements.

127

128 Error Messages

Improper file type. For instance, this can occur when trying to load a program
from a data file or key file.

Invalid parameter in rcf statement; =i " 7 expected.
Attempt to record a program, or special function keys which do not exist.
Attempt to load an empty file or the null file (type = 0).

The line referenced in an Idf or Idp statement does not exist. If the line contain-
ing the Idf or Idp statement has been overlaid by the load operation, the line
number in the display may be incorrect.

Specified memory space is smaller than cartridge file size.

Cartridge load operation would overlay subroutine return address in program;
load not executed?

Attempt to execute Idk, Idf (program file), or Idp during live keyboard or enter
statement?

File not found, or the file specified in the previous find file (fdf) statement does
not exist.

For errors 66 through 77, the default value is used and no error is displayed if you set flag 14.

- Division by zero. The default value is + or — 9.99999999999¢ 511. A mod B with

B equal to zero. The default value is 0.

" Square root of a negative number. The default value is V' (abs (argument)).

=i Tan (n«/2 radians);

Tan (n+90 degrees);

Tan (n«100 grads);

where n is an odd integer.

The default value is +9.99999999999¢ 511, forn > 0.
The default value is —9.99999999999e 511, forn < 0.

In or log of a negative number. The default value is In (abs (argument)) or log
(abs (argument)).

In or log of zero. The default value is —9.99999999999%¢ 511.

asn or acs of number less than —1 or greater than + 1. The default value is asn
(sgn (argument)) or acs (sgn (argument)).

¥ Negative base to a non-integer power. The default value is (abs (base)) 1

(non-integer power).

2See 9885 Disk ROM error messages also.

.

¥
A
5

iy

" Zero to the zero power (010). The default value is 1.
Storage range overflow. The default value is + or—9.99999999999¢ 99.

"% Storage range underflow. The default value is 0.

. Calculation range overflow. The default value is + or —9.99999999999¢ 511.

#ro ©7 Caleulation range underflow. The default value is 0.

Advanced Programming SOM Error Messages

Relational operator in tor statement not allowed. No closing apostrophe in sub-
program name.

A for statement has no matching next statement.

A next statement encountered without a previous for statement.
Non-numeric parameter passed as a p-number.
No return parameter for a function subprogram.

No functions or subroutines running. Improper p-number reference.

Attempt to allocate local p-numbers from the keyboard.

sreor HY Wrong number of parameters in fts, stf, fti, or itf function. Parameter for stf or itf
must be a string (not a numeric). Parameter for sff or itf contains too few charac-
ters.

Overflow or underflow in fts function or overfiow in fti function.

String Variables ROM missing for stf or itf functions.

These mainframe errors have additional meaning when the AP ROM is installed.

Attempt to execute a next statement from keyboard while for/next loop with
same variable is executed in program or from program while for/next loop with
same variable is executed from keyboard. Attempt to call a function or sub-
routine from keyboard.

A p-number reference is negative.

Non-numeric value in for statement or non-numeric parameter in fts or fti func-
tion.

Memory overfiow during function or subroutine call.

Memory overflow while using for statement or while allocating local p-numbers.

130 Error Messages

Extended I/O ROM Error Messages

¢ Extended /O operation executed when a General /0O ROM is not installed.

* HP-IB Error under interrupt: When an HP-IB interrupts with status clear and
the ERR bit in the status byte is set, select code 0 is logged in. At the end-of-
line service routine, this error is issued.

Wrong Number of Parameters:
* Bit manipulation functions do not have 2 parameters.

* The on err statement does not have a label.

* The oni statement has less than 2 parameters.

* The polc or rgs statement has less than 2 parameters.

* The tfr statement has less than 2 parameters.

* The cmd statement with bus address has no second parameters.
* The equ or dev statement has an odd number of parameters.

* New buffer allocation with less than 3 parameters.

Improper Buffer, Device or Equate Table Usage:
* Attempt to add a name in a buffer device or equate table list when that name
already exists.

* Buffer, device, or equate name is a null string.

* Attempt to declare multiple listeners with one of the entries not addressing a
98034A Card, or not all on the same HP-IB.

* Read status of multiple listeners.
* Multiple listeners name list ends in a comma.
* Attempt to read to, or write from, a busy buffer.

* Entry in buffer, device, or equate table not found.

Wrong Parameter Type:
* Parameter of ctbi statement is not a string variable.

* Numeric parameter found when string parameter expected.
» String parameter found when numeric parameter expected.

* Mask parameter in bit function has more than 16 characters.

d a
F TN

Error Messages

« Null string found for required string parameter.

Timeout Error: Specified time ran out without response from peripheral.

Buffer Overfiow or Underflow:
< Attemnpt to read from an empty buffer or write to a full buffer.

+ Attempt to transfer to or from an empty buffer.

Parameter Overflow:
» Decimal parameter notin range of from —32768 thru-32767 with flag 14 clear.

« Octal parameter not in range of from Q thru 177777 with flag 14 clear.
» Octal representation contains an 8 or a 9.

» Extended bus address not in range of from 0 thru 31 decimal.

» Buffer type not in the range of from O thru 4.

= Negative parameter for buffer size specification.

» Aliocating a string as a buffer: After taking 16 characters for working storage,
no room left in the string for buffer area.

< Abort byte in eir statement, interrupt enable byte in eir, or character parame-
ter in tfr statement is more than 8 bits; i.e., not in range of from 0 thru 255
decimal or from 0 thru 377 octal.

Parity Failure: Parity bit of character read does not match specified parity type
1,2, 0r3.

Improper Interrupt Procedure:

+ Attempt to execute an iret statement that is not in a running program, or when
no interrupt service routine is active.

* A new program was loaded after an interrupt occured and before the end-of-
line service branch, and the service routine was overlayed.

+ A new program was loaded from an interrupt service routine and the inter-
cepted line (destination of the iret statement) was overlayed.

» Attempt to transfer a DMA (type 4) buffer with a 98034A HP-IB Interface.

» Attempt to address a select code or a buffer that has not completed the
transfer operation. Attempt to read or write with a busy buffer or select code.

rror B3 lllegal HP-IB Operation:

» Attempt to address the HP-IB while calculator is not active controller.

131

132 Error Messages

* lllegal HP-IB command sequence.

* Attempt to request service on an HP-IB when calculator is active controller.
The Extended 1/0 ROM adds these fneanings to General I/O error messages G4 and G9:

Improper Select Code:

+ Select code parameter of an eir or oni statement is not in range of from 2 thru
15.

* Parameter of an iof or ios statement is not in range of from 0 thru 15.

Attempt to declare a device name for select code Q or 1.

* Transfer statement source and destination parameters specify two buffers or
two peripherals, rather than one buffer and one peripheral.

HP-IB control statement used with non-HPIB select code or buffer,

HP-IB control statement select code specifies bus when only addressed de-
vice allowed or addressed device when only bus allowed.

Improper Hardware Configuration: HP-IB bus functions addressed to non-HP-
IB interface card or empty slot.

General I/O ROM Error Messages

=+ 1 Incorrect format numbers:
* Format number in format statement not in range of O0=<n=<9.

* Referenced format number not executed.

Referenced format statement has an error:
* |ncorrect format spec.

* Numeric overflow in format statement.

Incorrect 1/0 parameters:
* Parameter not number or string.

Negative parameter with + = numeric spec.

* Numeric parameter with :. edit spec.

¢ Binary parameter not in range of —32768<n=<32767.

* More than one parameter for read binary or read status function.

* Missing parameter or a non-numeric parameter for write control statement.

Error Messages

Incorrect select code:
+ Select code is non-numeric or greater than 4 digits.

« Select code is greater than 2 digits for read status.
< Select code is not in range from 0 through 16.

- Select code 1 allowed only for read status.

» HP-IB address code not in range from 0 through 31.

« Read from select code 0 not aliowed.

Incorrect read parameter:
« Constant in read list.

+ String not filled by read operation.

* Numeric parameter references . format spec.
Incorrect parameter in conversion statement:
* More than 20 parameters.

* Odd number of parameters.
* Non-numeric parameter.
* Parameter not in range 0=n=127.

Unacceptable input data:
* More than one decimal point or “'E” read.

» 511 characters read without a LF.
* “E" with no leading digit.

* More than 158 numeric characters read.
Peripheral device down:
* Incorrect status bits.

. cancelled operation.

Interface hardware problem:
» Improper HP-1B operation.

* Empty |/O slat.

* Select code does not match interface card (e.g., wrt 711 when a 98032A is set
to 7, or wrt 6 when 98034A is set to 6).

« Write Zontrol addressed to a 98034A HP-IB Card.

133

134 Error Messages

Matrix ROM Error Messages

* Syntax error.

Improper dimensions. Array dimensions are incompatible with each other or are
incompatible with the stated operation.

Improper redimension specification: New number of dimensions must equal
original number; new size cannot exceed original size.

i * Operation not allowed. An array which appears to the left of — cannot aiso

appear on the right.

Matrix cannot be inverted. Computed determinant equals 0.

9862A Plotter ROM Error Messages

Wrong state. Statements executed out of order. (See Appendix in ROM manu-
al).

Wrong number of parameters.

Wrong type of parameters. Parameters for a label statement must be expres-
sions, text, or string variables.(String Variables ROM is required to use strings.)

Scale out of range. Maximum value is less than or equal to the minimum value.

Integer out of range. Pen control parameter is out of the range -32768 to
+32767 or the select code is not 0 nor in the range of 2 through 15.

Character size out of range. Width or Height in letter statement is zero or there is
an integer overflow in csize calculations or results.

Not used.

Axes origin off scale. X, Y specified for axis statement doesn’t fall on plotter
surface.

If the error message FL.T ©[iiilik occurs, check all piotter connections and be sure the
plotter is switched on and the CHART HOLD key is activated.

*These errors give a cursor when the recall key is pressed, showing location ot error.

Error Messages

String Variables ROM Error Messages

=& Invalid set of strings in data list of load file (Idf) statement.

improper argument for string function or string variable.

More parameters than expected for string function or string variable.
Accessing or assigning to non-contiguous string. num function of null string.

Trying to find the value of non-numeric string or null string. Exponent too large.
Exponent format invalid (e.g., 1e + +5).

=% Invalid destination type for string assignment.

<& Parameter is zero, negative, exceeded dimensioned size. Invalid sequence of
parameters for string variable.

* String not yet aliocated.
i String previously allocated.

% Maximum string length exceeded; additional string length must be specified in
dim statement.

9885 Disk ROM Error Messages

Hardware Errors

rror od Firmware/driver out of synchronization. More than six defective tracks in a row.
(Press (=)

oy ol All drives in system not powered.

grror o Door opened while disk is being accessed.

g o o2 Disk notin drive or no such drive number.

= ror od Write not allowed to protected disk.

= o D Record header error. (Use Error Recovery Routine)

er o o Track not found. (Use Error Recovery Routine.)

zrror oY Data checkword error. (Use Error Recovery Routine)

o oS Hardware failure. (Press ()

% Verify error due to drive problem. Marginal data. (Reprint data)

Software Errors

@rrar [Improper argument.

=rror 01 Argument out of range.

e o 12 Improper file size (negative, 0 or >32767).

% Invalid file name.

File not found.

1% Duplicate file name.

= Wrong file type.

= ror 07 Directory overflow.

o 8 Insufficient storage space on disk.

=rvor (1% Verify error due to cable, calculator or drive problem. Bad data (Reprint data.)

135

136 Error Messages

i
o

opio

a2

o3 o E

File overflow when read or print executed.

Bootstraps not found. (Reload bootstraps)

String read but wrong data type encountered.

= Attempt to read data item but type doesn't match.

flow. (Repack)

: Attempt oy s sl B 1 from other than running program.
: Unassigned data file pointer.

Disk is down so line cannot be reconstructed.

. Disk is down and pressed.

* System error. (Save files individually and reinitialize)

These mainframe errors take on additional meaning when the Disk ROM is installed.

1Tt

Mnemonic not found because disk may be down.

* Line can’t be executed because ROM (usually String) is missing.

Line not found.

i Getoor oo 1 should be last statement in a line.,

ROM now installed which wasn’t when = w42 was executed.

=2 ROM now missing which wasn't when savem was executed.

.. Disk load operation would overlay 2 = i return address so load not executed.

rror &4 set, chainor 351 K not allowed from live keyboard mode or during an
=111 statement.

it

1

it

T I ST E T o T

i

These errors may resuit during the binary Initialization and Error Recovery Routines.

g i
LB BT e i

v EE Wrong syntax, argument out of range or variable not properly dimensioned.
s O More than six defective tracks on the disk.
s . Verity error. Boots on the disk not identical to boots on the cartridge.

\ grror BD dtrk tinit oor 14 vk not allowed because error information lost or error
not d5, d6, d7 or d9.

Attempt to access record for error correction which isn't part of data file.

i Improper string length (inconsistent with iength given in header).

- Not enough space in calculator buffer for data item or item can't be placed in
this part of buffer.

" Missing disk or String ROM.
‘; 2o B Track still bad after ©. 111 1.,

Appendix C

Programming Hints

There are usually several ways to write a program or section of a program to perform a specific
job, and the programmer is often faced with the choice of which of several methods to use.
Usually the goal is to save program space and execution time and at the same time maintain
readability. However, these goals are sometimes conflicting and the programmer must decide
which is the overriding concern.

This appendix is not intended to discuss programming techniques in general but to describe a
collection of hints for the programmer who wishes to save space or time. While by no means
complete, this list describes some of the trade-offs which are “machine dependent” and
therefore not necessarily obvious.

In most cases, the time savings are small and are not observable unless the statement is
executed thousands of times. The space savings usually only amount to a few bytes. To check
the amount of space used by a statement, execute 1 izt ~1 after storing the statement.

Method Method
Requiring With
Less Faster
Program Execution
Method A Method B Storage Time
Simple Variables r-variables A A
r-variables one-dimensional array Same A
variables
Multiple statements per One statement per line A A
line
gto +5 gto 5 Same Same
gto -5 gto 5 Same Same
gto “5” (one or two char-| gto 5 Same Same
acter label)
gto +5 jmp 5 (Note 1) B A
VX X1.5 A A
XX | X712 (Note 2) 1 A 1 Same

e ———.

138 Programming Hints

T T Method T Method
Requiring With
Less Faster
Program Execution

Method A Method B Storage Time
implied muitiply explicit multiply Same Same
™ 3.14159... A A
if flg2=1 if fig 2 B
iffig2=0 if not fig 2 B B
if A#0 it A B B
if (A<B) or (B<C) if (A<B) + (B<C) Same A
if (A<B) and (B<C) if (A<B) » (B<C) Same A
J+565—K; K~3—L (J+5—K)—-3—L B B
J+1—=J; if J<5 if (J+1—=J)<b B B
Specify lower bounds for | Use default lower bounds. B Same
array dimensions.
Use simple variable asa | flag (Note 3) B
flag (as 1—A).
Using both tracks aiter- Using one track at a time, Same A
nately. sequentially.

Note 1: For computed branching, only jump statement can be used.
Note 22 X{Y is done by repeated multiplication if Y is an integer.

Note 3: Ifonly one testis made, the flag method takes less room. If two tests are made, both methods
are the same. For more than two tests, the simple variable method takes less room.

Appendix D

Calculator Status Conditions

The following table shows the calculator status conditions when the indicated operations are
performed. For details about the status condition of modes, variables, etc., see the appro-
priate section in the manual.

1

x
I

Operation
Erase all
or Continue
Power after
on Reset | Erase | Run | editing Continue
Variables R X R R X X
Flags O through 15 R X R R X X
Result R X X X X X
Binary program R X X X X X
Subroutine return pointers R R R R R X
Print-ali mode R R X X X X
Verifty mode R R X X X X
Live keyboard mode R R X X X X
Secure mode R X R X X X
Cassette select code R R X X X X
Cassette track R R X X X X
Angular units for trig functions R R X X X X
Fixed/Float setting R R X X X X
Random number seed R R X X X X
Trace mode R R X X X X

Restored to power-on value
Unchanged

140 Status Condition

Extended I/O Status Conditions

The following table shows status conditions for various Extended 1/Q operations and modes.
Notice that the Erase, Erase All-Power on, and Run columns from the previous table are
combined into one column here. R = restored to power-on state; X = unchanged.

LRSI SR

Calculator Operation
Power On | Reset | Continue Continue

Extended /O ROM Erase (after edit) | (after Stop)
Pl Operation or Mode Erase All
¢ Run

i Conversion and parity tables
Binary mode (reset to decimal)
1/0 buffer area

Service name list

i Equate name list
*) Buffer select code for tfr
i Interrupt parameters
Error recovery routine

D 1 TV D WV DT XV ITWD
X D D TV X X X X X
X 1D IV D X X X X X
X X X X X X X X X

Timeout routine

Appendix E

9825A and 9820A/9821A Compatibili

.ty

In general, any program which is used with the HP 9820A/3821A Calculators can be entgred
into the HP 9825A Calculator with only minor changes, such as changing E (enter expongnt)

and statement mnemonics to lower case.

The following is a list of subtle differences between the 9820A/9821A and the 9825A

Cal-

culators. The list is divided into two sections; those differences which occur when entering a

program and those which occur when running the program.

Entering Programs
e A line label must be followed by a colon. The 9820A/9821A requires a semicolon.

e Parentheses must be used to indicate which relational operator to apply first:

> ¥ must be entered as:

same as i i

= i.: on the 9825A (not|the

e Storing a line with an end statement does not delete higher numbered lines in memory

on the 9825A.

o [—Fiis not allowed on the 9825A; use [i ~Fi 1.

e The enter (ent) statement is syntax checked by the 9825A Calculator. The ltems in an

enter statement must be text or variables. Expressions, such as %
allowed on the 9825A,; the equivalent on the 9825A would be =1+ Hi HHA + I

e A string of unary operators such as -~ - is not allowed on the 9825A.

. Flle sizes in the mark statement are gwen in bytes instead of registers. Therefore, |
1 ¥ inthe 9821A becomes . in the 9825A.

e Linking programs is done differently on the 9825A; i:
'« on the 9825A.

e F+E I+ + ' onthe 9820A/9821A must be typed as | i
9825A.

Y becomes it

not

= on the

142 Compatibility

e -~ on the 9820A/9821A must be written 1 &~

e The TBL function of the 9820A/9821A Math Block has been replaced as follows:

9820A/9821A 9825A
Function Replacement

TBLO units

1 TBL1 deg

% TBL2 rad

TBL3 grad

8 TBL4 no replacement

TBLS csv
TBL6 cfg

Running Programs

e Relational comparisons are made to 12 significant digits on the 9825A. The 9820A/
9821A rounds to 10 significant digits and then compares. The 9825A equivalent

off i¥ A o= Yiisr iv ddrrd [H: 181 =ddrad i 180,

e Floating point numbers are rounded on the 9825A instead of truncated as on the
9820A/9821A when an integer value is required.

Some implications of this are shown in these examples for the 9825A:

1. r(4.9) refersto r5

2. jmp 2.9is the same as jmp 3.

3. sfg 5.95 is the same as sfg 6 (and similarly for cfg, flg, and cmf).

; .‘5{‘ e A gto or gsb to a label requires an exact match in the 9825A instead of a match on the
last 4 characters as on the 9820A/9821A.

L e The 9820A/9821A returned a 0 for 0 1 0. On the 9825A, 0 1 O resuits in error 73 (default
ol is 1).

: . e A number, expression, or statement are valid replies on the 9825A. However, if &4 &
s i is the enter statement and a statement such as i i

4.7 is entered, flag 13 is set and A
. retains its previous value. For example, no value is entered by the enter statement and
| flag 13 is set in the following.

Print statement.

Assignment statement.

Compatibility 143

These are valid entries:

Expression.

Imbedded assignment.

Flag 13 is cleared when a number or expression is supplied during an enter statement.

On the 9820A/9821A Calculators, if the run program key is pressed without entering a
value for: it F{x+1-+x1, the value for X would not be incremented and RX
would not be modified. On the 9825A, the expression, i+ 1 5 1, is executed even if
no value is entered.

The 9825A's integer (int) function is defined as the largest whole number less than or
equal to the argument. The 9820A/9821A definition is the largest whole number less
than or equal to the absolute value of the argument, with the sign of the result being the
same as the sign of the argument.

On the 9825A, if an error occurs during the execution of a statement, the entire line is
aborted. On the 9820A/9821A the rest of the statements in the line are performed.

Implied storage to Z is replaced by implied storage to result (res). Z is no longer
different from other simple variables. A statement with implied storage cannot be stored
- a variable must be given explicitly. A program can access the value of result (res), but
the value in res cannot be altered by the program.

Branching to the line which is numbered one higher than the last line of the program no
longer treats that line as if it were an end statement.

Flags are not cleared by the end statement on the 9825A.
The stop (stp) statement does not destroy subroutine return information.

On the 9825A, the identify file (idf) statement always positions the tape before the
header of the identified file. Thus, repeated idf statements do not advance the tape.
Also an idf statement followed by a mrk statement marks the identified file (any informa-
tion on the identified file will be lost).

=

144 Compatibility

Appendix F

Tape Cartridge Errors

File Body Read Error

If a file body read error (error 46) occurs, first clean the tape head and drive wheel! as
explained on page 92. Then, execute the statement which caused the error again. If an error
still occurs, the next step depends on the type of file being loaded.

It will be informative at this point to explain something about the file structure of the tape. Afile
is made up of one or more “partitions”. This structure makes it possible to recover portions of a
file even though a loading error has occured. Error 46 indicates that one or more partitions
may be erroneous.

File - . - File
Gap Header Partition Partition Partition Gap

I|= 1 file

Ll
-
Loading A Program File

If error 46 occurs while loading a program file, one or more program lines may be lost. The
place where this error occured is indicated by a line of asterisks (%) inserted in the program at
the point where the program lines are missing. These lines can be replaced by referring to a
previous listing.

Note that go to and go sub statement addresses are not adjusted during this editing. Thus, it
may be necessary to re-adjust the go to and go sub addresses after inserting the lost lines.

Loading a Data File

If error 46 occurs while loading numeric data, the partition in question is marked by a single

number replaced by 7. TR T e B (in float 11 format). A partition in a numeric

B M R T T W T W Y

data file always contains 32 numbers. With one entry replaced by &, 7770 7T e
£iLd, there are 31 numbers remaining which may be incorrect. To determine the bounds of the
affected partition:

146 Tape Cartridge Er-r‘ors

prmmmr

a3 e For r-variables, the 31 higher numbered r-variables may be incorrect.

, e For simple and array variables, determine the order in which the variables in question
‘ were allocated (see dimension statement). From the element that is replaced by
B N go from right to left in the parameter list of the dimension
statement. For an array in the list, the first element in the lost partition will have the
largest subscripts. Decreasing the leftmost subscript first for an array reveals the mis-
sing values. For example, a partition is lost and the dimension statement was:

L E Brodim AaBoalo

DLy 18]
| } The value D[3,10] contains question marks. All questionable values can be accessed in this
' . order:
D[3,10], D[2,10], D[1,10], D[3,9], D[2,9],
1! D[1,9], D[3,8], D[28], D[1.8], D[37]
il D271, D[1,7], D[36], D[26], D[16]
D[3,5], D[2,5], D[1,5], D[3,4], D[24],
E“ D[1,4], D[3,3], D[23], DO[1,3, D[32]
D[2.2], D0O[1,2], DO[3,1], D[21], D[1.1],
' ; C, B
File Header Read Error

If a file head read error (error 47) occurs, proceed as follows:

1. Clean the tape head and drive wheel as explained in the section on “Tape Care" on
page 91. This may solve the current read error and prevent future read errors.

2. Execute the statement that caused the error again.

CAUTION
RE-MARKING A FILE HEADER IS A “"LAST RESORT" OP-
ERATION, SINCE ALL INFORMATION ON A FILE WITH A
RE-MARKED HEADER IS LOST AND THAT FILE CAN NO
LONGER BE USED. HOWEVER, THIS DOES PERMIT YOU
TO ACCESS FILES BEYOND THE BAD FILE.

3. |If, after steps 1 and 2, the error still occurs, re-mark the tape-file header.

To re-mark the head of file N (file which cannot be loaded), execute:

Positions the tape.
Re-marks file header of file N.

Tape Cartridge Errors

For file 0, execute:

Il Positions the tape.
; Re-marks file header of file 0.

After the file header has been re-marked the absolute size of the file is 2 bytes.

Conditioning the Tape

Repeated operations over a short length of tape (usually less than 4000 bytes or § ft.) can
cause slack. (Extreme changes in temperature can also cause this.) The outer layer of tape

can slip and rub on the cartridge, causing damage to the tape. If operation continues, the tape
may jam and be ruined.

NOTE
This condition is most likely to occur if exclusive use is made
of one file or two adjacent files near the beginning or end of
tape.

If a particular application requires such operation, this slack can be prevented by moving the
tape periodically 15 feet or more toward midtape. For example, for a tape with 80 files where
only files 0 and 1 are used, execute the following program segment after every 200 operations
onfileQor1:

Tape Life

The tape cartridge does not have an infinite life span. Many factors increase wear and de-
crease life. A high resistance to turning and continuous use for long periods of time (Y2 to 3
hours) both result in increased temperature in the cartridge. High humidity, high temperature
(above 45°C, 113°F for the cartridge itself) and a high duty cycle (percent of the time the tape
is accessed during the total time the 9825A is used) all increase wear.

147

148 Tape Cartridge Errors

Several things start happening to the cartridge which are danger signs:

» The tape begins to wear out and lose information.

¢ The capstan develops dark bumps due to slippage.

The cartridge can stall, causing the capstan to wear a flat spot on the drive pulley.

e The cartridge sounds rattly, rather that making a constant hum when the tape moves.

e Errors 43 (indicating tape transport failure), 46 and 47 occur more frequently.

s If any of these occur, replace the cartridge at once. If you continue to use it, you could lose all
the information on the tape and damage the drive itself.

CAUTION
NEVER OVERRIDE =+ v+ 472 INYOURPROGRAMS. BY
OVERRIDING A TRANSPORT ERROR, YOU CAN EASILY
DAMAGE THE TRANSPORT AND BE FORCED TO RE-
PLACE IT.

149

Appendix G

Table Mounting

Your calculator can be mounted to the top of a desk or table by following these steps:

1. Drill 5 holes in the top of your desk or table to accommodate #6-32 (National Coarse)

screws according to the

diagram below.

2. Remove the Phillips head #6-32NC screws that hold the rubber feet to the bottom of the

calculator.

3. Use screws that are 2 inch longer than the thickness of the table top. This Y2 inch allows
for the thickness of the rubber feet and the hole for the screw in the bottom of the

calculator.

11 .840——-—-J
l-—5.920—-
ref to rear
[(k]
1.500 1.500
+ + + |+
1 :
| |
| 1
| |
| |
10.705 \ :
| I
' :
i 1
] I
1 1
1
-+ + |
7.300 : : 7
ref to front .] 300
L) front of calculator . J
.460 LL 10.920 l I .460

3

HEWLETT Ihﬁ" PACKARD

SALES & SERVICE OFFICES

AFRICA, ASIA, AUSTRALIA

ANGOLA

Telactra

Empresa Técmca de
£quipamentos
Electrcos. SAR L

R Barbosa Rodngues, 421 0T

Caa Postal. 6487

Luanda

Tel 35515/6
Cable TELECTRA Luanda

AUSTRALIA
Hewlett-Patkard Australia
L

Pty
3)-¢1 Joseph Street
Blackburn. Victona 3130
PO 8ox 36
Doncaster East. Victona 3109
Tel. 89-6351
Teiex 31-024
Cabie HEWPARD Metbourne
Hewlett-Packard Austraka

Pty Lt
31 Briage Sireet

ble

Pymi

New South Wales, 2073
Tel 449-6566

Tetex' 21561

Cabie: HEWPARD Sydney
Hewien-Packard Austraha

HONG KONG
Schmidt 8 Co.(Hong Kong) Ltg
P.Q Bax 297
Connakght Centre
Floor

Connaught Road. Centrai
Hong K

Te). H-255291.5

Telex 74766 SCHMC HX

Cable. SCHMIDTCO Hong Kong

INDIA

Biue Stac Lid
Kastun Builtings
Jamshedy Tala Rd

Telex: 001-2156
Cable BLUEFROST
Blue S(av L

umz vir Siumr Marg
Prabhadev:

Bambae) Am 025

Tei 45 A 87

Teiex 011-4093

Cable. FROSTBLUE

Blue Star Ltd

Band Box House
Pr:bludwv

Cable: BLUESTAR

Blue Star Ltd

2/34 Kodambakkam High Road
Madras 500034

Tel 82056

Tetex 041-379

Cadie. BLUESTAR
INDONESIA
BERCA indonesia P T

P.Q Box 496:Jxt
JLN.AM\:I Muis 62

m 4g369 49886.49255 356038

Ca!m BERCACON

BERCA Indonesia P t

63 JL Raya Guoeny

Surabaya

Tel 443

ISRAEL

Elactromes & Engineenng Div
01 Motorola Istael Ltg

17 Kremenetski Street

P 0 Bc 25016

TH 36973

Telex 33569

Cable BASTEL Tel-Avv
JAPAN

Yokogawa-Hewlett-Packard Lid
Kumagdya Asah
Hacknum Burlding
4th Fioor
:')‘-4, Tsukuba s
ui 8. Satama 360

Te 48e-De-6363
KENYA
Techmcal Enqunserning

Services(E A L1
P 0 Bo: 8

Tel 557726/556752

Medlcll 0 nly

nlgmational AesaholE A)19
Box 19012

Natrobi Airport

Nairobi

Tel 336055/56

Tetex 22201:22301

Cable INTAERIO Nairodi

KOREA

Samsung Electromes Co., Ltd

20th FI Dony anﬂ Blag 250. 2.KA

? PO Box 2775

aepyung-Ro. Chung-Ku

Seoul

J
12' {23) 61
Telex 72575
Cabie ELEKSYAR Seaul

Analytical’Madical Only

Medrcal Supphes N.Z Ltd
Scientitic Dvision

79 Carhton Gore Rd.. Newmarket
PO Box 12

Auckland

Tel 75-28%

Cabie DENTAL Auckiand
Anatytical: Medical Only
Medical Sunpl-es NZ Ld
PO Box

147-161 Toly SI

Telex 3858

Cable DENTAL. Wellingtan
Analytical/Medical Only
Medicat Supp«n NZ L
PO Box 3l

229 sunmou Road
?nl?lchun:n

Cabie DENTAL. Chrnistchurch
AnalyhicaltMadical Only
Medical Supplies N 2 "Ltd
303 Great King Sireet

P 0. Box 233

Dunedin

Tel 88-817
Cable DENTAL. Dunedin

NIGERIA
The Electronis

RHODESIA

Field Techoucal Sales
45 Ketvin Road North
PO Box 3458

Salisbur
Tel 70521'1 (5 hnes)
Telex RN 4122

SINGAPORE
Hewtet-Packard Singapore
Ple) Lid
Depot Road
Alexlndra P.0. Box 58

Tol -2355
Teiex HPSG RS 21486
Catée HEWPACK. Singapore

SOUTH AFRICA
Hewhett-Packard Soum Alnca

TAIWAN

Hewtett-Packard Far Eas! Lto.
Tawan Branch

39 Cnun’ Hsag wm Road

Tﬂ‘v

Cabie NEWPACK TAIPEI

Hewlett-Paciard Far East Lid

B e 0 1
-2, Chus 3ra. Road

l(lohdw"% i

Tel (07) 242318-Kaohswng

Anawt

No. 20. Yung Su

Toipel

Tel 3715I71-4 (5 hnes)

Telex 22894 SANKWANG
Cable’ SANKWANG TAIPE|

ical Onty
San Kwang Instruments Ca . L1d .
Roag

Instrumentations Lid
Blue Star L1¢ Yokogawa- Nuwlm Packard Lia 68177 R TANZANIA
|sn'mnm Roag 7 Hare s«m Ohashi Bulai r kmk “ NEB/770 Dyo Road {Pty.). Medscal
Parkside, 5. 59-1 Yo CMme e utu Sdn Bhd 1seun House Private Wendywood Internan
e 272-5911 B0 o S0 00 001 Sy, Tokya 151 2 Loong 1316 PMB 5402 Sandton. Transvadl 2144 s Bo;"'z""'“" (EA). LW
Tetex: 82536 ADEL et z:wm Tel 03-370-2281 Pm,, Sele L ; Hewlet-Packard Centre Der os Ssisam
Cable- HEWPARD ADELAID Telex 021.7655 Telex 232-2024YHP MARKET 4ot ‘y;‘-” gor r::-f'gt;m TEIL Nogersa Ds:v'-m S"L‘Iﬂ W'ﬂfr;ggd m 21251 Ext. 265
"M"[t?ﬂurd Austrahd Cable BLUESTAR Cabie vnﬁzﬂnm Telex MA 37605 Catie THETEIL Ibacan Tol 80210408
rang oty [y~ Yokogrr-Hevian Paciard Lig Byt Enpaserng Tho Electionics Insirumenta- e SEWPALK JOHANNESBURG umusu . L.
8. WA Bhandan House Lol 259. Satok Road 144 Agege Motor Rcad. Myshin Service Department fcom Aesasech Bu
{:nwsg‘e?s PERT 9 ity Place s ::W':::'_'w i"""“" me #ucm . Sarswek E& :g.m 6645 nm Packard South Ainca "&Summ Ave
Cable' HEWPARD PERTH Tel 634770 & 635166 Osaka 532 Catve PR : Tel- 632367, 3930338
0 Australa Gt RvieTae :dmmwu?: ‘ Packard Ltd MOZA ot nms’:::f“ - Gramiey, Sangion, Cable UNIMESA Banghok
Lid - {
osgony Stree Blue St Lo Nakamo Buiding AN, Goneaives. Lia Mushio & Company. 10 ;’.‘,m"'m""%"""“"" 3 UGANDA
m T 2608 tar House 24 Karmi Sasaima-cho 162.1 Apt 18 Av. D Luis Dosman Ch Tol 63551885 Meoical Only
Tu 952733 |mu uaoamn nm Nakamura-ku. N-?oy. 450 Cllu Posw 107 Abdutlah Havwn Road Totex §-2399 lnl-mmmﬂ Aoud-o((A) L,
2650 Canberra Ban Tel' (052) 571-5171 Lou Karachi-3 PO Box 2
cm- szmnn CANBERRA Tel Yokogawa-Hewlett-Packsrd Lid Tor zn'yszl"‘3 2’3&0 L] su‘fm 512927 Heset Packacd South Ainea K:ﬂ;;;-e
ewlett T - T 2894
M e Austaa T S San b Fa . Tae WEGON o HapenaToR Karacr 4 3:% T2 oronce, 7egy T WTAERIO Kamoal
Sth Floos Blue Star Lid Kanagawa-ku NEW ZEALAND Mushio & W‘N"v e Pne Pack Cerics, Forest Drm, ZAMBIA
Teachers Unwon Building Mecaksti Mandra Yokohama, 22t m-»n me NZ)ua 38B. Sateis Cape Prownce, 7avs A Tibury (Zamva) L.
95 499 Boundary Strast 001678 ,,,,,m, Gandn Rd Tel 045-312:1252 P.0 Bo Fawsiping: | TS0 thy 9 PO Box
Hilt. 4000 Gueensiand Cocnin 887 0 Telex: 382-3204 YHP YOK me, ,,,“ Tel 41924 Teiex §7.0006 useha
R 2060, 32180 32282 Yokoge HewlriPacxg L Wellington Cavie: FEMUS Rawalping: Service Department ARG
Cabie. HEWPARD Brisbane Toes 0085318 Mo Hirsy Bukding Te 877199 PHILIPPINES Hewlett-Packarg Soum Atnica Che ARIAYIE, Lusaa
GUAM Cable BwESTAR 105. Chame-1.5a0-n0-maru Cable. HEWPACK Weilington The Onkne Agvanced {Pty). Lto
Meccal/Pocket Caiculators Only Blue Star L1g. Mita_ (barag: 310 vewien-Packard (N.2) Lto Systems Corporation P 0. Box 37009 OTHER AREAS NOT LISTED, CONTACT
Guam Medical Sup) 141971 Tol -25-7470 Pakuranga Professional Centre Rico House verport, Ourban 4067 Hewlett-Packard iomarcontnental
-Iang oom 210 i vmm.nmmua Lbg ZST Pswrangs Highway AmDesoI cor Herrera Str
P.0 Box Secundersbed 500 Inove Buddi x 51092 Legaspr Village, Makati 641 Ridge Road Palg Alto. Caltorngg
Tamuni %SH Tel 70126, 70127 1348-3. Asahi-cha_ 1-chome "ok Melro Manila n. 4 Tel (415) 490-1501
Tel 6454513 Cable: BLUEFROST i, Kanagawa 243 T 569- Tl 85-35-81 B5-34-91 Tei 88-7478 TWX 910-373- 1267
Cabie gaugu Guam Tetex 015-459 52-24-0452 Cabie NEWPACK Auckang Tebex 3274 ONLINE eiex 6-7954 HEWPACK Palo
ALBER TARIO
Hewiett-| P;mw (Canada) Ltd Hewdett-Packard {Canada) Ltd
116204 - Street 1020 Motnson Or
oA AT
) 452- MANITOBA (613) QUEBEC
YWX £10-833-2431 BRITISH COLUMBIA Hewien Paouid (Canada) Lo NOVA SCOTIA TWX B10-5631636 Hewlen-Packard Canada) Lig
Hewiett-Packard {Canada) Ltd 513 Csn Hewden-. Pacnrd 1Canaoa) Ltg 275 Hymus Biva

ewlett-Packard (Canada) Lo
T e St o

837 £ Cordova Street

l(l] windmull R

Hewtet1-Packard (Canada) Ltd
6877 Goreway Drive
i

Caigary T2H 2H8 Vancouver V6A 3R2 Wmnl A3H OL8 moum 535 |u Mississ Ldv 1M8 Tet (514) 597.4232 FOR CANADIAN AREAS NOT LISTED
Tei (403) 253-2713 Tel (BO4) 254-0531 Tet (2&1’756-750‘ ru (902) 41 Tel (416} 678-9430 T 0-422. Canlact Hewlett- Fackard (Canada)
Twz. 610-021- 641 TWX' 610-922-5059 TWX 61 531 ™X mzn uuz «rx TWK G10-492-4246 TLX 05-821521 HPCL Uig o0 Mississauga
MEXICO
Hewlett-Packarg Mexicana
SA deCv
Av Penlénca Sur No 6501
Tepepan.)(ocmmnlm
T”e\“g B?B 4500
ARGENTINA Hewlett-P: ECUADOR PERU
Hewlett-Packaig Argentnia [lovett Packard 0o Brasi Caiculators Ooty Hewlen-Packard Mexcana. Companiz Eecuo Meaca § A
SA nu, Padre mm 32 Computasaras v Equepos S5A geCvV L0s Flamencos 14 VENEZUELA
Av Leandro N Alem 822 - 12 90000-Port Elecirgnicas Ave Constitucion Mo 2184 5*" Wi Casa ‘ Hewtett-Packarg de Venezuela
To T 0R 36w 7 AR ‘I;am” s oy Ao 21894 3 P gt A Tt £ sor 30033
K 5.6 ang 0
Teies 122443 AR CIGY Cable HEWPACK Potto Alegre COLOMBIA Quitg T ELIMED Lma Caracas 105
Cable HEWPACK ARG Hewiett-Packard do 8rasil instrumentacion Tel ‘534 Los Rurces Norte
1EC_Lida Henei & Langetask BXerSA Telex 02-2713 Sagia Eo NICARAGUA PUERTO RICO 3a Transwersal
BOLIVIA Rua Siquesra Campas. 53 Carrera 7 No 48-7 Cable Sagita-Ourto Roberta Terdn G Hewlen-Packarg Iatec Amenicas oo Segre
Casa Kaviin § A Copacabany Apartadg Afreo P Apartado Postal 689 Puerto Rico Branc Office Carscan 07
Calke Potos’ 1130 20000-Alc de Janeiro Bogots, 1 EL SALVADOR Evhtia Terdn Cae 272, ¥ 35.00-11 120 knes)
Box Tel 257-80-94- DOD IUZH Tel 59-88-77 Instrumentacion y Procesamienta Me No 203 yrd Ommlry Civd 1“" 25146 HEWPACK
La Paz Telex 391-212-1905 HEWP-8 Cadle AARIS Bogotd Electronico de el Saivador Tel 25014 2341223454 Caroina 00924 Cavle MEWPACK Caracas
Tet 41530.53221 Cabie HEWI Telex 044.400 Bulevar Oe los Heroes 11-48 Cavle ROTERAN Managua z::. nlm];l5 70652 7255
N
lelex CWC BX 5298 (1T 2560082 Rio de Janewo COSTA RICA oo PANAA FOR AREAS NOT LISTED. CONTACT:
CHILE Cienbifica Castarncense § A Electrmico Baiboa. S A URUGUAY Hewteht-Packard
BRAZIL Calcagni y Mucme Lm Avenda 2 Calle GUATEMALA PO Box 4929 Pablo ferrando 5 A Inter- Ammus
Hewlett-Packard do Brasd Alameda 580-01 San Pedro de Montes de Oca IPESA Calie Samuel Lews Comarc:al ¢ Industrial 3200 Hilvwew Ave
1eC Liga Casila 2118 Apantado 10153 mmna La Relorma 3-48 t:u-m o- Panams Averida lidha 2877 Palo Alto Canlorni 94304
Avemda Ro Negro 980 Santi 1 San Jose 2on, Tel 64-2700 Casiia de Correo 370 Tel (415) 493-1501
Alphavitie Tel 398613 Tei 24-38-20 24-08-19 Gullomal! City Telex :ua:m: cU:um TWX 910-373-1260
06400Baruer SP Telex 3520001 CALMET Tewa 2367 GALGUR CR Tel 5627 64786 Cana Te, 40-3102 Cable HEWPACK P3lo Alto
Tel 429-3222 Cable CALMET Santiago Cable GALGUR Teiex 4192 Teieiro Gu Cabie ELECYRON Panama Cable RADIUM Mantevideo Teiex 034-8300. 034-8493

{

"

EUROPE, NORTH AFRICA AND MIDDLE EAST

AUSTRIA
Hewlett-Packard Ges m.b. B

POLAND
Buuro informacy Technmicznej
Hewiett-Packard

Handelska 52 Hewiett-Packard GmbH
PO box 7 Werk Gr U1 Stawls 2, 6P 3&‘.‘"’5&.‘1 Sverige AB
A-1205 Vienna Hewlet-Packard France Ohmstrasse 6 00- E 13
Tel (0222} 351621 ta 27 Agence Regh D-7500 Karigruke 41 ITALY Tel 395962/395187 i
cable. HEWPAK Vienna Péricanira de 12 Capre Tel* (0721) 69 40 06 Hiwieft-Packarg Italiand 5.p A Telex. 8124 53 hapa pl 5-161 20 Bromma 20
7** 75923 hewpak 3 emin de la Cégidre. Telex. 07-825707 Vi3 Amerigo Vespucti 2 UNIPAN Tei (08) 730 05 50
TS0 TouladseLe Mis Hewiet:Packara G pazets postae 3 é&f;‘ Doswadczany Coblt, MEASUREMENTS Hewiert-Packard Lig
"“""' ackard Bonolux Cine lczwmu s1gs7 Nme gy, amod 1 I 229 fome s:mx Racy har 3 Kaodom 1155 Tee 10721 Yodoe beuse
Amm ul Col-Ven. 1, Telex §1095 D-8500 Nurem! 00-800 W, Hewletr-Packacd Sverige AB - Thornt:
Groenkraagiaan) Hewlen- wau France T 109") 55 30 83785 "‘" 320‘5 Tel 36190 Ostra Vintergalan 22 SB b CRl?l‘(L“u
& 1170 Brussels Agence Régionaie Telex 06 Hewlett-Packarg itakana S p A Telex 81 46 43 02 4 1:1"(n su 01038
Tel' (02) 672 22 40 Adropont pnncipal de Hewigtl- P.cnrd GmdH Via Pretro Maronceli 40 zm-&y Naprawcze Sprzety Tei- {013 14 07 20 Telex: 9468
Cavie. PALOBEN Brussels Warsple Mangnane Technisches Buero Munchen (ang. Vi Visentin) Medyczneg Hewtett-Packarg Sverige AB
Telex 23 494 paiaten bru 13721 Mari Untefachinger Strasse 28 +33100 Pedove Plac Komuny Paryskiey 6 Frotafisgatan 30 Hewlett-Packard L1d
AUS Ter (9789 1336 ISAR Cmm Tel (49) 66 ¢8 83 90-007 Lads 5-421 37 Vastra Frélunda /o Makro
fx‘{{m gabte "‘g""‘c" MARGN D 812 Ottobeunn | T‘“" 41612 Hewpacks Tet 334:41, 33783 Tel (031) 49 09 50 South Senvce wholesae Centre
X. Ti 10727 v ma Ot Wear industrial Estate
3 Cecgonias. & Xenopoulos R Hewie:Packrd France G2l KEWPACKSA Mincen vmn PmLm Hahana § p A PORTUOAL @ rem :::1“"““ Bromma Ofice eea andustal B
A 3 d - Town. Cou Durham
‘ ""“" Ecupamentos € Euunm s L A
ot B P‘W O Rocheter r."';“‘m"""":u“.o Berka T:s 100,332 04 D ""“"X“ Tocvesssoe 20 0 o Washeguon 46agoT e 57758
e i‘frl“o"'m PANDENS 4 Rennes Céon Keith Strasse 2-4 X 32046 3 Milano c,,‘?,m Mm urich Hewlett-Packard Lt
wh 499435332 D-1000 Berkn 30 m-mt Packar akana S p A To usﬁuwu Tel (O1) 730 52 40730 18 21 e N
CZECHOSLOVAXIA EWPALK 7412 Tet: (030) 24 90 86 Via G, Armetin 10 Lisbon o lane o
a Provorm Telen: 7. Telex: 18 3405 hpbin ¢ £00143 Roma Toiex 1 Fotee 53993 rowg e mo’oma;-o‘ W0 148
Yme Ustavu v Bechowiach
CER DS Bachovion u Prany Hemien: "“‘"" France oneece Toe b & mgw Hewten-Packars (schwea) AG Telex: 57385
0! J
Temay T e de 12 Robertsau B Catie HEWPACKIT ““"“s . {nercambio Mundia de Comkroo En-1215 Le L?m...s.m- Hewiett-Packard L1d
000 ruboucr GR-Athens 133 Hewlen-Packard ltahana S p. rl Tel: (022) 96 03 22 1. Wallace Way
Inshitute of Medical Bionks Tel (88) 35 23 202 Te 3237731 l:orso Giovanm Lanza Av A A.de Aguir 138 Cadle HEWPACKAG Geneva Y
kumny Uistay Lekarske) Bromky Telex: 890141 031 Torino a0l Yhis o uchin
ol ' Cabis. HEWPACK STREG Catia- RAKAR Athons Ta 00T ea S asssssaon pO dox 27t Teiex' 27 333 hpag ch
CS-88346 Bratislava-Kramare \oion.packard France e 21 %9 62 i g0 MacicalCacuttors Only o 18053 21 317 SYRIA i) ‘0‘52‘ Seaase704
Toi 4:551/45-541 Agence Rdgronae A o apathanassiou & Co. Hewlen-Pickarg iaana 5 5.0 Cable NTERCAMBIO Lisoon Madcalcacaator only Tohx. & " |
DOA Gentre Vayban Marni 17 Vu Pnnaoe N-eola RUMANIA m“m'
Entwickiungsiabor der TU 201. rue Colbert GR - A £95126 Catanta Rewiet Packars Ropeazariama S ATTE il Ere i
Forschungsinsbtut Meinsberg A2 Tel 522 1915 o1 (035) su N Salcescu 16 SYR-Oamsscus Dublin 12
DDR-7. T 59000 L 1 “ . Cable" INTEKNIKA Athens Hewleft-Packard itahana S.p A ucharest Tl 16367. 19697, 14268 Tel. Dubkn 508458
T.w;;dh;lndwnm 12': :20) 51441 Tolex: 21 5329 INTE GR :/30 :‘mzeﬂoo Vespuca, 9 1.. nsmanmas Cable: SAWAH, Damascus Telex. 30439
Tobex: 112145 et Pk France Y O elas L. Tel. (081) 33 77 11 hryired TuRKey ysse
Export Contact AG Zuarich m Aares Paris-Nord 52 Skoouta Street Hewlet-Packard tahans §.5.4. R ap— ;m Enginesring Bursau Reesonion DMhee USSR
[e sl Rue Ga L4 Commane de Pars GR - Athens 135 5230 Vi, M o T aagir 0¢ Cad B Pokrovsy Boulevrd 417-KW 12
360 Beran D i Lo Blanc Mesnil Cadax IS ETALAK sthens Tel: (osu 87 B-0ul peol Dimirie Pomoe: & TRt Woscow 101000
Ta- fa7a12 Tel (D1) 931 88 50 Tolex: 21-4893 ETAL GR Kuw, Bucharest-Sectorul 2 Cabie mmmou Istanbul T 92 hewpak su
Telex 111889 v M-Knaldvyl Tagog & Tei 1264 30 T2
DENMARK GERMAN FEDERAL MTA Contracting Co Tolex: 11718 Motica YUGOSLAVIA
Hewer REPUBLIC Muszerugy ¢s Méréstechniar P 0. Box 8305ah SAUDI ARABIA EMA °'"' iskra-standardHewdett-Packard
‘Birkarsd Hewleti: Packar¢ GmbM il Kuwl Moders Elctione: Extabhahment iunencishc Kokekot Sickes Midencons V1) :
w (o@) hes Vortnebszentrale Franktun 10 Tox' 2481 areeg K B oy ooy, S (wead ofhcs) Adalale Sokak 4176 Teo, 31 58 7532 16 74 ;
17 ""7 P.0. Box 228 TR-Ankara
Pt 80 1 e 420338 Cable: VISCOUN Tot- 175622 Telex: 31583
e s ot ¥4 postiach s Totw: 22 51 14 Luxemeuna oo ;||7:+3:2201 Jnaca ooy SOCIALIST COUNTMIES
{ewiett Paciard A5 ™ M") 50 04-1 iceL AN -Packard Benhux Cable: ELECTRA Yimaz Ozyurek NOT SHOWN PLEASE
Naw Cable; HEWPACKSA Frankturt Medical Onty A My P.0. Box 2728 {Service centsr) Milli Mudataa Cad No. 16/ CONTACT:
DE-8000 Sutvatnorn I og11) 3004 Emg::nqrmnmlnc Av-nu- o cow-n 1, Rivadh @ eaos2 Koy Pmo uw Ges.mbH
Telex a’eﬂ,‘ o Idu oc 13m npttmet |s.n. ;..u‘ k " Cabie: RADUFCO To- 25 03 09 1208 ¥
Cadle Hewlet-Packarg GmbH Te (02) 632 54 40 SPAIN Teien 42576 ozex tr w (om) 3§ 1a 27
FINLAND Tochnisches Buera Btingen Tibia ELOING Reykiavik Cavle PALOBEN Brussets Hewiett. Packard Espahola. 5.4 UNITED cae
Hewlent-Packard gv mfmnmmu g M ‘“ ' no-; . & m ;::car: Ltd. ruu m] i
ROSat T (07031 ’ Mo %"‘ o St ;::;n zcasslgom (10 beas) GB- Winreran, Wokingham g yeapyon
Jolel Mirernad Avan 190. Bivd. Bralern Roudani RG11 SAR ACT: i
B A OY Wetsinki Teiex °72‘5”° bon PO, Box 2172419 Cassbiance Hewlett.Packard Espaficla, SA. Tel: {0734) 7847 74° Hewies-Packard $.4. i
* O et Hewiont-Packird GmbH 1A-Tehran Toi: 25-16-76/25-00-99 Mianesado 71:23 Cable Hewpie London - 1
Telex: 12-1563 M $ Technisches Bueso Dussakdort Tol: 851082.7 Catve: Gerep-Casa E-Barcelons 17 Telex 8471787 East Operaton
FRANCI Emanuet Levtze St 1 (Soustern) Telex 2125 74 brm v Teiex. 23739 Te @) zoJ 6200 (5 hnes) HewettPacars L1g 35, Kolakatiom Street
. -Packard atia oL
am Pon'uum France B oy aigort 11 RAQ WETMERLANDS Bt s S Tostu wause GA-Kihasia-
o Tokex: 005786 533 hpdd 0 Hewat acars T Co gl i oo} Ay Ramdn'y Caa 0 Road Te 8003377354020
' Martsoor Houven A A Towx: 2
1:: iy o s b g e NS o et Taioen) 928 6472 HEWPACKSA A
Cable: HEWPACK Yodmwnnn Telex: 2485 * o (020) 47 20 21 Yo 64 44 54158 Toiex: 668068 FOR OTHER AREAS
Tel (040) 24 138 Cable: HEWPACDAD, Cable: PALOBEN m - Espaola 5.A. NOT LISTED CONTACT
Hewlett-Packard France Cable MgWPACKSA Hamburg Baghdad (raq Telex 13 216 hepa nl Edificio Alva 1l 7° Hewett-Packard Lid Hewiett-Packard S A
oncy Regionale T 21 63 032 habh d E-Bi Lygon Court 7. rue du Bois-du-Lan
Agency R wer. IRELAND Tel: 23 83 06723 82 06 Herpward Rise Bax
Chemun s Moues Hewlett-Packarg GmbH Hewietl-Packard Ltd Hewiett-Packarg Norge A3 Cakculators On) Dudiey CH-1217 Meyrin 2 - Genava
A, T v, hamover o summ ; Bovres ewien Packart Expuios 5.0, Habesowen,
T m’l‘n 8125, ‘n";'\oﬁo'o Honnover 91 Berks. AGIT sag N1344 Ha Gran Via Fernando E| Caidico, 67 mn(nﬁhs":o' ¢l.§|2‘ 8sD Te: (ozz 02 7000
X Tel: (0511) 48 60 01 Toi: (0734} 78 47 74 Tel: (02) 53 83 60 E-Vatencie-§ : by
Tobex: 3 \:::‘7: tony Tdu(. 092 3259 Tolex: 847178/848179 ohox: 18621 hpnas A Tel: 326 67 28/326 85 55 Telex: 339105 Tm 22 lﬁ
MHAWAR MICHIGAN
A ot 2875 So_ Kiop Strew 23855 Ressarch Drive 10535 Harwn O
Tel' (114) 446-6165 Honohsu Farmingion " 42024 Houston 77036
646 W North Market Bivg Tel (808) 95"‘55 o Q13 Tel (713) 776-6400
ALABAMA Sacramento 95834 Telex' 723-705 724 West Cantre Ave. 205 Bily Mitchell Road
8290 Inesbury D SE Tel (918 929-7222 WLINOS ikt 156 Wyatt Drive OKLAH Sen Antonia 78226
R e 02 9606 Aeco Drve st Yulme- or {606) 323-8362 Las Cruces 83001 gxLAMOMA Tl (sul 4348249
Tel' (205) 881-4591 P 0. Box 23333 meadows MINNESOTA Tet: (505) 526-2484 Okiahoma City 73132
Meaical Only rs." ‘:;‘:9;'73?‘230 e ‘3 6_25?,“;922% ZWON Prior vt TWX® 910-9963-0550 Tl (405) 721-0200 mo smn 3270 west Sueet
o -2, . Paut
228 W_ Valley Ave . ‘7) 27932 B NEW YORK OREGON » City 84119
Room 220 & Automation Lane 7250 SW Lower Boones e ez
Birmingham 35200 S50 Soum o1 Ot Parksy 7301 Norh Shadsiand Ave Mssissiep Computer Pack Ferry Roxd VIRGINA
m {) 942-208172 Englewood 8011 Indlanapoliet5250 Al 12205 Tuslatin 97062 PO Box 12778
T (303 - ey Tel. (317)842-1000 enace only Tei. (5{8) 458-1550 Tel (503) 820-3350 No 7 Kager Enec. Canter
TWX. 810-260-1797 s 201 South Avenve Sute 212
e Maygn 5t conmECTICyT 1OWA SSOUR! Pougkespsie 12601 PENNSYLVAMA 23502
Tel. (602) 244-1361 New raven 065 2415 Hewz Road U131 Colora e T a0 L‘.:.M"’fsm Teh(804) 461-4025/6
2424 East Aragon Ra Tel. (203) 389-6551 towa City 52240 ansas City 64137 : : o (412} 782-0400 P.0 Box 9669
Tucson 85706 TWK: 710-465-2029 Tel: 1319) 338-9486 T “g.&m 2000 650 Plfmg"" gg Otfice Park 1021 81 Avenve 234 ings Road
borsdion P e B 3010 Mo oty 1024 Exocutive Parkway 716) 220-9950 N ot hraasie soabs " Ter (804 285-131
. x
Mecal Seomce Oy 2606 W Oakiand Park Bhvd Atuason Square B e 8300 3?-3‘.‘-”1%% Roxa "'"?2‘5&% 1000 WASHMGTON
3 e 11 o
Bty St o RS van e A thuson Square NEBRASKA Tl e SOUTH CAROLINA 12031t Aee S €
WAL s T e oo e SOOLTmpnies Sy
Ter (G040 396.0863 LouisiaNA Fa 4 AL AN Tor (803) 762 6493 T i
Omal ~WE!
uao E 09'2'30"'0' e v 8177 ot B 07 3225°39 Wilkams ouevard Tel (402) 392-0948 9904351 TENnEsSEE Nedhoa At Sy
T T 8701000 Ortando 32809 s 303201 NEW JERSEY NORTH CAROLINA Modion Sanvice an Charjeston
3939 Lankersium Boulevard o (105 858 2500 y W 120 Century Rg Tody on S188 e ceet N ey 50 Tel (304) 345-1640
x lmc MARYLAND Paramus 07652 5%
Norih 91604 Migh Point 27262 WISCONSIN
Tel (213) 4771282 Pensacots 2575 6707 Whitestons Aoad Ta (201 265 5000 Tel' (919) 8858101 3027 Vanguarg Or 9004 West Lincoln Ave
TWX 910-499-2671 Tel (904) 476-8422 707":3’3?)" 021 %r 710-990-4957 omio Dyector s Paus West Alis 53277
Brook Prot) Mem 541-
sy s gEopa e 716 Rezsisr ot S s o Rl ot
2 Choke Cherry Road Eatontown 07724 FOR U.S. AREAS NOT LISTED.
gttt Tttty R o e e, Eo e
Tel (213] 970-7500 TWX 8107664890 Tat (301) 948-6370 EXIC TWX 8104239430 Te (6151 244-544 peatstyou Mllania_ Gearga
WX 710.828-9684 New mExico 330 Progress g o (B15) North Hollywood Gaiornia
“Los Angeles Maaical Service Only PO Box 11634 on 4 TEXAS Rockwiie Marvtand Roiking Mesoows
Tel (213) 776-7500 Auru-u 30903 MASSACHUSETTS Staton € Tel [(313) 858-8202 80 Box 1270 ilinows Thew complete
3003 Scott Boulevard Tel' [404) 736-0582 32 Namoen Ave 11300 Lomas BM; NE 1040 K»ngsmnll Parkway 201 € Aapano Rd addresses are hsted above
Santa Clars 95050 PO Bar 2103 Lezington 02171 ue 87123 2 Richacd
Tel (408) 2497000 Warner Robins 3109 T (T 561 2980

TWX: 910-338-0518

Tel. (912) 922-0449

TWX 710-326-6904

H
18 ¢ &_ 2-1330
TWX 910-989-1185

Columbus 4.
Tel (B14) 436- 1041

iIson
Tei (214) 231-6101

“Service Only we

152

Index 153

Subject Index

Absolute branching 61
Absolute value (abs) 53
Accessrate (tape) 89
ACCeSSOrNeScoviiiinniinn.... 6
Acs (arccosing), 57
Addition (+)....................... 20, 50
Advanced ProgrammingROM 7
Allocation (variables) 39
Andoperator, 52
Angularunitscoiieiels, 56
Arccosing (8CS) ...vvvv v iiin i 57
Arcsine(asn)o i, 56
Arctangent(atn) 57
Arithmetic oLl 20
Arithmetic hierarchy 21
Arithmetic operators 50
Array variables 37
recording 107
Asnf(arcsine) 56
assignment operator 18, 34, 50
n(arctangent) 57
Auto-verify disable (avd) 110
Auto-verify enable (ave) 111
() 23,31,73
BCD interface (98033A) 10
Beepstatement 47
Binary program 109
Blanklinescooa.L 47
Bounds (dimension) 69
Bracketsl 37
Branching 61
N-WaY ... 68
Byte 37

Calculatedgosub 66
Calculatingrange 16
Calculatormode 22
Cardreadersovnno.. 8

Clearflag(cfg)c..oo... 60
Clear simple variables (csv) 70
Common logarithm (log) 55
Complementflag (cmf) 60
Compatibility (9820A/9821A

and9825A)l 141
................................. 33

with enter statement 45
Continue (cont) 79, 139

immediate 35
CosiNe(COS) ...ttt 56
Csv (clear simple variables) 70
Data transfer rate (tape) 89
Debug ("DB")covviiinn... 77,102
Debuggingciiiiiii 73
Defaultvalues 57
Degrees(deg) ..., 56
Delete(del) 61, 80
character 23,31,73
) 1T T Y 30, 74
Digitroundingcoo... 54
Digitizer (9864A)c..t. 9
Dimensionbounds 69
Dimension (dim) 68
Displaycooovvi i 15

livekeyboard 86
Display (Sp)covvviiiii e 43
Display control keys:

OO 29, 74, 86

CO D s 29
Division (/) v......cociiiv it 20, 50
Dsp (display) 43
Editing 23
Endstatement 48
Enp (enterprint), 46
Enter(ent) e 44
(enterexponent) 34
Enterprint(enp)c.coiint 46
Equalto(=)covva 51
Equipment supplied 1
() 28
Erase.......coovvviiinnenninnnn. 81,139

154

Index

Erasetapefert)ccovunt. 101
EBrrors ..ol inside back cover
math o 57
MesSagesoovvvennnnn. 18, 123
tape cartridge (errors 46 and 47) .. 145
Ert(erasetape) 101
Exclusiveor(xor) 53
.............................. 19, 32
Executiontime 137
Exponential (€xp) 55
Exponential functions 55
Exponentiation (1) 50
Extended /OROM 7,140
Fdf (findfile).......................... 94
.............................. 30,73
Fetcht 82
Filesize 93, 95,97
File verification110
Findfile(fdf) 94
Fixed(fxd)c it 40
Fixed-point 39
Flag (fig) function 61
Flags ... 59
debugging..............., 75
flag13........ 59
flag14t 57,59
flag1s 57,59
Float {fit)c..cvv it 41
Floating-point......................... 39
Flowchartsymbols 26
Formats L. 39
(forward) 23,31,73
Fraction (frc) 54
Fuses i 4
Fxd (fixed) 40
General /OROM 7
Gosub(gsb) 65
calculated, 66
Goto(gto) 62
Grads(grad), 56
Greaterthan (>)t 51
Greater than or equal to (>=or =>) ... 51
Grounding 3
Gsb(gosub) il 65
Gto(goto)oviii e 62

Hierarchyco.... 21, 49
Hints........... ... 137
HP-IB interface (98034A) 10
HPL ... 18
*
Identify file (idf) 93
L P 67
Immediate continue keys 35
Immediate execute keys 35
Implied multiplication........... 18, 21, 51
.............................. 30,74
(=) (insert/replace) 24,31,73
Inspection 1
integer(int)................... ..ol 54
Interfaces 10
[]

Jump (Imp) ... 64
Key repetition oot 16
Keyboard 14,19, 27

foldout back of manual
Keyboard Magazine 12
Labelled branching 61
Labelsccoovviiiiiiiiii.. 62
Language (HPL) 18
Lazy T(F).ooverneii e 13, 15
Ldb (load binary program) 109
Ldf (load file) 104
Ldk (load keys)ccocviiiuinnn 108
Ldm (load memory) 109
Ldp (load program) 104
Lessthan (<) i 51
Less than orequalto (<=or =<) 51
Linelengtht 15
Line renumbering 61
Linking programs 106
G 29
List oo e 70

Livekeyboard 23,83
limitations 85
Live-keyboard disable ((kd) 87
Live-keyboard enable (lke)............. 87
.................................. 28
Load binary program (idb) 109
Loadfile (Idf) 104
data............ ... i, 107
programcciiiiiin.., 105
Load keys (IdK) 108
Load memory (Idm) 109
Load program (Idp) 104
Logarithm:
common(log) 55
natural (In) 55
Mark (mrk) ... 96
Marking:
fieheaderc.. L., 146
newtapescovivvnnunnn 99
usedtapes0... 99
Mathfunctions 53
Matrix ROM 7
Maximum value (max) 54
Memory i 16
LU 1 Ve [71
Minimum value (min) 54
Minussign (=) i 50
Modulus{(mod) 50
Mountingc.iiii, 149
Mrk(mark) 96
Multiplication 21, 49, 50
implied 18, 21, 51
N-way branching...................... 68
Natural logarithm (In) 55
Normal (nor) ..., 75
Notequalto (#, ><,<>) 51
Notoperatorcoovii... 53
Nullfile............................... 96
Operating System 5
Operatorsccooiiieiiiinnnnn. 50
Oroperatorooviviiiiiiiiinnns 52

Index

Peripherals 8
ED1C) T e 34
Plotter (9862A)covvv. ... 8
Plotter ROM (9862A) 7
Plussign o, 50
Powercords 2
Power-of-ten-rounding (prnd) 54
Power requirements 3
Prerecorded programs 1
Print(prt) ... 43
Prnd (power-of-ten-rounding) 54
(printall) 27
Printerpapercviiin.. 5
Printers (peripheral) 8
Programming 24
Prompt 44
Prt . e 43
QUOLBSo 43
R-variables 22,38
recordingol 107
Radians(rad)ccoovivinnnn.. 56
Random number (rnd) 54
Range ...l 16
Ref (recordfile) 102
Rck (record keys)coiivnnnnn 108
Rcm (record memory) 108
Read Only Memory (ROM) 5,16
Read/Write Memory (RWM) 16
.............................. 31, 86
.................................. 28
Recordfile(ref) 102
data.......... i 102
Programsvveenvnnnvnenrnns 102
Recordkeys (rck) 108
Record memory (rcm) 108
Recordtab a0
Relationai operators:
= > <, >=, <=, % 51
Relative branching™.................... 61
Remarks il 62
Res ... i 20, 33

R

IO - honn 2 S

S v A P . 4

156

Index

Return(ret) 65
.................................. 27
Rewind(rew)ccuuen 92
Rnd (random number) 54
ROMS .. 6
Roundingciiitt. 42
power-or-ten (prnd) 54
digit(dmd)cooiiii 54
.......................... 20, 32. 139
Run ... 79,139
Runlight 15
Scientific notation (fit) 39
Secure ("SE”) ... i 102
Servicecontracts 11
Setflag(sf@)...............oo i 59
Setselectcode(ssc)................. 111
Sfg(setflag).............. .ot 59
Sgn(sign) ... 54
(=) 32
.................................. 32
Sign(sgn) ... 54
Significant digits 16, 42
Simple variables 22, 37
Sine(sin) 56
16-Bit Duplex Interface (98032A) 10
Space (SPC) ...ttt 47
Spacing 15
Special functionkeys 14, 34
inlivekeyboard 84
immediate continue 35
immediate execute 35
multiple statement 36
Squareroot (V').........ovviinn... 21,53
Ssc (setselectcode) 111
Statement 37
Status conditions 139
) 28,73
.................................. 32
inlivekeyboard 85
Stop(stp)48
debuggingoiiann. 75
Storage (program) 17,137
Storagerange 16, 57

o) 19, 32

Subroutines 65
fromlive keyboard 84
Subtraction 20, 50
Syntax e 113
conventions 37
informal 113
requirements forHPL 117
Tangent(tan) 56
Tape . . 89
CaAPACHY + v 98
CaMCttt N
cartridge ... 90
inserting ..ot 91
length ...t 89
marking [P 96
specifications 89
structurecooviiiiiie 90
Tapellist (thist)cc.... 95
Tape Punch (9884A) 9
Ten-to-the-power (tnf) 55
Testing ..ot e 5
TeXt. . e e 43
Tlist (tape list) ...t 95
Tn?t (ten-to-the-power) 55
Trace (trc) ... ovi e 75
Track (trk)cooii 92
Trigonometric functions 56
Turn-ono 4,13,139
Units 56
Variable allocation 39
Variablesoot 21,37
Verification (tape file) 110
Verify (vy) ... o 111
Voltagecovv i e 3
Voltage selector switches 4
Wait ... 47
Xor (exclusiveor) 53

Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

