

,------- HEWLETT S PACKARD ---------,

Warranty Statement

Hewlett-Packard products are warranted against defects in materials and
workmanship. For Hewlett-Packard Desktop Computer Division products
sold in the U.S.A. and Canada, ttlis warranty applies for ninety (90) days
from date of delivery." Hewlett-Packard will, at its option, repair or replace
equipment which proves to be defective during the warranty period. This
warranty includes labor, parts, and surface travel costs, if any. Equipment
returned to Hewlett-Packard for repair must be shipped freight prepaid.
Repairs necessitated by misuse of the equipment, or by hardware,
software, or interfacing not provided by Hewlett-Packard ar(not covered
by this warranty.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. HEWLETT-PACKARD
SHALL NOT BE LIABLE FOR CONSEQUENTIAL DAMAGES.

"For other countries, contact your local Sales and Service Office to
determine warranty terms.

t

Operating and Programming

Hewlett-Packard 9825A Calculator

Including Memory Options 001,002, and 003

9825A Calculator

Hewlett-Packard Desktop Computer Division
3404 East Harmony Road, Fort Collins, Colorado 80525

(For World-wide Sales and Service Offices see back 01 manual.)
Copyrlghl by Hewleu-Packard Company 1976

Manual Summary
Overview

Key points about your calculator.

Chapter 1: Owner's Information

Inspection. installation. and accessories to expand your calculator system.

Chapter 2: Generallnformation

Introduces you to the calculator and its operation.

Chapter 3: Introduction to Keyboard and Programming

Information about the keyboard and programming to help the new user.

Chapter 4: The Keyboard

Operation of most of the keys. including the special function keys.

Chapter 5: Programming Instructions

Shows you most of the programming instructions in detail.

Chapter 6: Debugging

Using keys and the debugging statements to debug your programs.

Chapter 7: Commands

Commands and what they do.

Chapter 8: Live Keyboard

Gives you an explanation of live keyboard and ideas on how to use it.

Chapter 9: Tape Cartridge Operations

Shows you how to operate the tape drive and how to take care of it.

Table of Contents

r .1. I ! l ll.d Summary

I --' I t/ V le w

I 11.'pler 1: Owner's Information

Calculator Inspection Procedure

Equipment Supplied

Power Cords

Power Requirements

Grounding Requirements

Fuses

Initial Turn-On Instructions

Calculator Testing

Loading Printer Paper

Accessories

ROM Description

ROM Installation

Calculator Peripherals

Interface Kits

Pre-recorded Programs

Service Contracts

Keyboard Magazine

I 11.'l'tt~r 2: General Information

Before Using the Calculator

Description of the 9825A Calculator

The Keyboard

Display and Line Length

Range

Significant Digits

Memory

Language

Error Messages

I 1l ; 'l'tl'r 3 · Introduction to Keyboard and Programming

System Keys

Keyboard Arithmetic

Arithmetic Hierarchy

ii

x

1

2

3

3

4

4

5

5

6

6

6

8

10

11

11

12

13

14

14

15

16

16

16

18

18

19

20

21

III

IV I J: ,I, 1 COlliellts

Variables

Simple Variables

r-Variables

Operating Modes

Basic Editing

Programming

Chapter 4: The Keyboard

System Command Keys

Display Control Keys

Editing Keys

Line Editing Keys

The Character Editing Keys

Calculator Control Keys

Special Function Keys

Immediate Execute Special Function Keys

Immediate Continue Special Function Keys

Keys with Multiple Statements

Chapter 5: Programming Instructions

Syntax Conventions

Variables

Simple Variables

Array Variables

r-Variables

Variable Allocation

Number Formats

The Fixed Statement

The Float Statement

Significant Digits

Rounding

The Display Statement

The Print Statement

The Enter Statement

The Enter Print Statement

The Space Statement

T he Beep Statement

The Wait Statement

1110 Stop Statement

r he rnd Statement

t ill!rdrctlY

(lp{![ators

21

22

22

22

23
24

27

29

30
30
31

32
34

35

35

36

37

37
37
37
38

39

39

40

41

42

42

43

43

44

46

47

47
47

48

48

49

50

1" .. ·.].·.·.·.·.··-·· '"

W ee
~,,,

i·~.:'1\;.'.:~.···.·········.·· ~- '-

-">

~:f'
;~
{

Assignment Operators

Arllhmetic Operators

Holational Operators

logical Operators

M.lrtl Functions and Statements

(~eneral Functions

logarithmic and Exponential Functions

r ngonometric Functions and Statements

Molltl Errors

, Id\lS

'he Set Flag Statement

1 he Clear Flag Statement

1 he Complement Flag Statement

r he Flag Function

Hr; lIlching Statements

Line Renumbering

Labels

11111 Go To Statement

Absolute Go To

F~elative Go To

Labelled Go To

r till Jump Statement

r 110 Go To Subroutine and Return Statements

Absolute Go Sub

Relative Go Sub

ICibelied Go Sub

Calculated Go Sub Branching

r tUt It Statement

N-Way Branching

r 110 Dimension Statement

Specifying Bounds for Dimensions

1110 Clear Simple Variables Statement

r 110 L 1St Statement

Used and Remaining Memory

'i , I " 1 I , Debugging

, IIIlIIng Ihe Problem

, 1)(III~l the Problem

r tU I Debugging Statements

Operalion of Trace. Stop. and Normal

1 tIe Trace Statement

Table of Contents v

50

50

51

52

53
53
55

56

57
59
59
60

60

61

61

61

62

62

63

63

63

64

65

65

65

66

66

67
68

68

69
70

70

71

73
73
75
75

76

vi Table of Contents

The Stop Statement 76

The Normal Statement 76

Chapter 7: Commands

The Run Command 79

The Continue Command 79
The Delete Line Command 80
The Erase Command 81

The Fetch Command 82

Chapter 8: Live Keyboard

How Live Keyboard Works 83

Live Keyboard Math 83

Statements in Live Keyboard 83

Subroutines from Live Keyboard 84

Special Function Keys in Live Keyboard 84

The Stop Key in Live Keyboard 85

Live Keyboard Limitations 85

The Display 86

The Live Keyboard Enable Statement 87

The Live Keyboard Disable Statement 87

Chapter 9: Tape Cartridge Operations

Specifications 89

Tape Structure 90

Tape Cartridge 90

Inserting the Cartridge 91

Tape Care 91

The Rewind Statement 92

The Track Statement 92

The Identify File Statement 93

The Find File Statement 94

The Tape List Statement 95

Marking Tapes 96

The Mark Statement 96

Determining Size to Mark a File 97

T ape Capac ity 98

Tape Capacity Calculations 98

Marking New Tapes 99

Marking Used Tapes 99

The Erase Tape Statement 101

The Record File Statement 102

Recording Programs

Recording Data

The Load Program Statement

The Load File Statement

Loading Programs

Linking Programs

Loading Data

The Record Keys Statement

The Load Keys Statement

The Record Memory Statement

The Load Memory Statement

The Load Binary Program Statement

File Verification

The Auto-Verify Disable Statement

The Auto-Verify Enable Statement

The Verify Statement

The Set Select Code Statement

Appendix A: Syntax

Informal Syntax

Syntax Requirements for HPL

Appendix B: Error Messages

Mainframe Error Messages

Advanced Programming ROM Error Messages

Extended I/O ROM Error Messages

General I/O ROM Error Messages

Matrix ROM Error Messages

9862A Plotter ROM Error Messages

String Variables ROM Error Messages

9885 Flexible Disk ROM Error Messages

Appendix C: Programming Hints

Appendix D: Calculator Status Conditions

Extended I/O Status Conditions

Appendix E: 9825A and 9820A/9821 A Compatibility

Entering Programs

Running Programs

Table of Contents vii

102

102

104

104
105

106

107

108
108

108

109

109

110

110

111

111

111

113

113

117

123

123

129

130

132

134

134

135

135

137

139

140

141

141

142

viii Table of Contents

Appendix F: Tape Cartridge Errors

File Body Read Error

Loading a Program File .

Loading a Data File

File Header Read Error

Conditioning the Tape

Appendix G: Table Mounting

Figures

Power Cords

Location of Fuse

Nominal Line Voltage Settings

Loading Printer Paper

Location of ROM Slots

9862A X-V Plotter

9871 A Character-Impact Printer

9866B Thermal Printer .

9869A Card Reader

9863A Tape Reader

9883A High Speed Tape Reader

9864A Tape Punch

9864A Digitizer

Interface Applications

The 9825A Keyboard

Storage Range

Calculating Range

ReadlWrite Memory Organization

Tape Structure .

Tape Cartridge

Inserting the Tape Cartridge

Cleaning the Tape Head and Capstan

Table Mounting Diagram

145

145

145

145

146

147

149

. 3

. 4

4

6

6

.. 8

8

. 8

8

9

9

. 9

9

10

. 14

16

16

17

90

.. 90

91

. . 91

149

Table of Contents ix

Tables

Equipment Supplied 2

Arithmetic Hierarchy 21

Commonly Used Flowchart Symbols 26
Hierarchy 49

Arithmetic Operators 50

Relational Operators 51

Logical Operators 52

Live Keyboard Limitations 85

Tape Cartridge Specifications 89

File Types 93
Table of Typical Storage Capacities 98

Informal Syntax 113

Programming Hints 137

Calculator Status Conditions 139
Extended I/O Status Conditions 140

t~"' ___ '

j'-" '-"'-

Overview

a -a -- --------'-~
............... ,.

' ''''_'''EII~,
/ , : If: If ' ff' II ''' ! If 'II'''' It'll! 11 -- ' _Q __ _

/ ., " I I wI,' I," I I T I I Y I' U " ' II " II P II ... - , _",, " \ I' \ e
I Ifiij, " I / '. , / " I / ' "" I • " I I ., I t K I . ' ,. • ,,';' , A , ~ \' . \,. t PI

Q , .' I / ' '/' • , • " I I ... I t N I I ... : ' ~ ':' , I, ~ , I a \ . \ '. . I, \ I .\ t \~-'~'

---i~-----· ~ .1 .L . . . L. J.. _
._ .- J . L-J _____ _

- Upper and lower case keyboard similar to a typewriter.

- Abbreviated mnemonics, multi-statement lines, and implied multiplication.

- Allows you to use the calculator while a program is running.

- Three interface slots allow your system to grow. Optional capabilities include

DMA, interrupts, and bit-manipulation .

. - Two track, high-density, for fast storage and access of programs and data.

- 16-character-wide printer for hardcopy listings of programs, messages, and
data ,

• 32 characters can be displayed for entering program lines, debugging, and

displaying messages.

'1 ',/111 f 1IIIlting Diode

Chapter 1
Owner's Information

This chapter covers the installation of your HP 982SA Calculator, the available accessories,

and other information that is important when you first receive your calculator.

Calculator Inspection Procedure

The individual parts of your calculator system were thoroughly inspected before they were

shipped to you. All equipment should be in good operating order. Carefully check the cal­

culator, ROMs, peripheral equipment, and other items for any physical damage sustained in

transit. Notify HP and file a claim with the carrier if there is any such damage.

Please check to ensure that you have received all of the items which you ordered and that any

options specified on your order have been installed in your calculator. Refer to the table on the

next page and check that all accessories are present.

If you have any difficulties with your system, if it is not operating properly, or if any items are

missing, please contact your nearest HP sales and service office: addresses are supplied at

the back of this manual.

Equipment Supplied
The following items are packaged with each HP 982SA Calculator. Peripheral devices and

interface cards are packaged separately: each of these has its own manual or operating note

and may also have extra items packaged with it.

:) I If:~'C; Information

Equipment Supplied

Description Quantity Part No.

Operating and Programming Manual 1 09825-90000

Quick Reference Guide 2 09825-90010

Error Booklet (under paper cover) 09825-90015

Blank Tape Cartridge 9162-0061

Utility Pac 09825-10000

AC Power Cord (see below)

Dust Cover 1 9222-0495

Tape Head Cleaner 1 8500-1251

Special Function Key Overlays (Blank) 5 7120-4802

Spare Fuse (1.5A) 2110-0043

Spare Fuse (3A) 2110-0003

System Test Cartridge 1 09825-90035

System Test Booklet 1 09825-90031

Printer Paper 3 (see below)

Software Binder 9282-0563

All the equipment in the table above can be purchased by ordering HP part number 09825-

80000. When ordering paper specify six-roll packs, HP part number 9270-0479. .'

Power Cords
Power cords supplied by HP will have polarities matched to the power-input socket on the

calculator, as shown below.

• L = Line or Active Conductor (also called "live" or "hot")

• N = Neutral or Identified Conductor

• E = Earth or Safety Ground

WARNING

IF IT IS NECESSARY TO REPLACE THE POWER CORD, THE

REPLACEMENT CORD MUST HAVE THE SAME POLARITY

AS THE ORIGINAL. OTHERWISE A SAFETY HAZARD FROM

ELECTRICAL SHOCK TO PERSONNEL, WHICH COULD

RESULT IN DEATH OR INJURY, MIGHT EXIST. IN ADDI­

TION, THE EQUIPMENT COULD BE SEVERELY DAMAGED

IF EVEN A RELATIVELY MINOR INTERNAL FAILURE OC­

CURED.

Owner's Information 3

Power cords with different plugs are available for the calculator; the part number of each cord

is shown below. Each plug has a ground connector. The cord packaged with each calculator

depends upon where that calculator is to be delivered. If your calculator has the wrong power

cord for your area, please contact your local HP sales and service office.

~~.~
012<''''' ,""13., "",., ... ~

, ~r c~cu,.u:"
~ e POWER INPIfT

............. SOCl'.E1 .
L I

Power Requirements
The 9825A Calculator has the following power requirements:

• Line Voltage: 100 Vac + 5%, -10%

120 Vac + 5%, -10%

220Vac + 5%, -10%

240 Vac + 5%, -10%

• Line Frequency: 48 to 66 Hertz

• Power Consumption: 100V@1.7A

120V @ 1.5A

220V@ .8A

240V@ .75A

) Switch Selectable

Grounding Requirements
To protect operating personnel, the National Electrical Manufacturers' Association (NEMA)

recommends that the calculator be properly grounded. The calculator is equipped with a

three-conductor power cable which, when connected to an appropriate power receptacle,

grounds the calculator. To preserve this protection feature, do not operate the calculator from

an ac power outlet which has no ground connection.

1 UL and CSA approved for use in the United States of America and Canada with calculators Bet for either 100 or 120 Vac operation.

2UL and CSA approved for use in the United States of America and Canada with calculators set for either 220 or 240 Vac operation.

4 Owner's Information

Fuses
For 100 or 120 Vac operation, use a 3A fuse; for 200 or 220 Vae operation use a 1.SA fuse.

WARNING

TO AVOID THE POSSIBILITY OF SERIOUS INJURY, DIS­

CONNECT THE AC POWER CORD BEFORE REMOVING OR

INSTALLING A FUSE.

~J.l I::] [I ,
... LINE SELECTOR I

WARNING

IIW.l] ge2SA OPTIONS I.
~ _. 23228 TOTAI:~ay~_~ -3

Location of Fuse

The figure shows the location of the fuse under the paper cover. To change the fuse, first

disconnect the power cord to the calculator. Then remove the fuse cap by pressing inward

while twisting it counterclockwise. Remove the fuse from the cap and insert the correct re­

placement fuse (either end) into the cap. Finally, put the fuse and cap back into the fuse

holder. Press on the cap and twist it clockwise until it locks in place.

Initial Turn-On Instructions
1. With the calculator disconnected from its ac power source, check that the proper

calculator fuse has been installed for the voltage in your area (see previous section).

2. Next, ensure that the two voltage selector switches under the paper cover are set for the

correct powerline voltage. The figure below shows the correct settings for each nominal

line voltage. If it is necessary to alter the setting of either switch, insert the tip of a small

screwdriver into the slot on the switch. Slide the switch so that the position of the slot

corresponds to the desired voltage, as shown below.

~ ~A ~ ~ ~
100,,0115 120 "CIT~ 220 ~QI'~ 240 .. 011s

~

Nominal Une Voltage Settings

3. The operating system module on the right-hand side of the calculator must be inserted

so that it is even with the side of the calculator.

4. Install the desired ROM cards and Interface Cards (see ROM installation, page 6 and

refer to the appropriate manual for interface installation).

CAUTION

ALWAYS TURN OFF THE CALCULATOR WHEN INSERTING

OR REMOVING ROMS AND INTERFACES. FAILURE TO DO

SO COULD DAMAGE EQUIPMENT.

5. Connect the power cord to the power input connector on the back of the calculator.

Plug the other end of the cord into the ac power outlet.

6. Switch the calculator on using the switch on the right-hand side of the calculator.

Calculator Testing
If you wish to test your calculator, or if there is any doubt that your calculator is operating

correctly, refer to the System Test Booklet for the calculator test procedure.

Loading Printer Paper
The internal printer uses special heat-sensitive (thermal) paper. When ordering paper, specify

the six-roll pack, HP part number 9270-04 79.

To load a roll of paper:

1. Lift the paper cover and remove the paper spindle. Discard the old paper core and

remove any paper left in the printer using the paper advance wheel.

2. Install the new roll as shown in the following figure.

3. Insert the free end of the paper and advance it through the printer using the paper

advance wheel.

6 Owner's Information

Loading Printer Paper

Accessories
This section contains general ROM information and describes the ROMs. peripherals. and

interfaces that are currently available for the 9825A Calculator.

ROM Description

Several ROMs (Read Only Memories) are available for your calculator; each provides addi­

tional language capabilities to perform specific tasks, such as plotting, controlling peripher­

als, or extending the programming capabilities of your calculator. One or more ROMs are

packaged in a ROM card.

ROM Installation

A ROM card can be plugged into anyone of the four ROM slots on the bottom front of the

calculator as shown below

ROM Installation

..... ~ ~ ,,,., 'urn 0" the calculator. Then slide the ROM, with the label right-side-up,
I

- ... CIoor. Pr ... II In 80 that it is even with the front of the calculator.

Owner's Information 7

The following ROMs are available in various combinations.

String Variables ROM

This ROM enables the calculator to recognize and operate on letters and words ("strings") in

much the same way that it recognizes and operates on numbers. Some of the capabilities

which are provided include: single strings and string arrays, numeric value of a string of

digits, concatenation, and displaying or printing all special characters.

Advanced Programming ROM

This ROM extends the programming capabilities of the 9825A Calculator. Forlnext looping,

split and integer preciSion number storage, multiparameter functions and subroutines, and

the cross reference statement are the operations provided by the Advanced Programming

ROM.

Matrix ROM

The Matrix ROM extends the language to include statements for manipulating matrices and

arrays. Addition, subtraction, multiplication, and division of arrays, as well as inversion, trans­

position, and determinants of matrices are only some of the capabilities provided by this ROM.

9862A Plotter ROM

This ROM enables the 9825A Calculator to control the HP 9862A Plotter. Axes can be drawn

and labelled; functions can be plotted; and in the "typewriter" mode, characters can be

printed as you type them from the keyboard. More than one 9862A Plotter can be operated at

the same time.

General 110 ROM

The General 1/0 ROM provides basic 1/0 capability with formatting. Most 9800 series

peripherals (not the 9862A Plotter) can be controlled using this ROM. Binary 1/0, status

checking, and limited control of instruments via the HP-Interface Bus are also provided.

Extended 1/0 ROM

The Extended 1/0 ROM extends the I/O capability of the calculator by providing complete

HP-IB contrOl, bit manipulation and testing, auto-starting, error trapping, and interrupt

capabilities.

I
I
I
1

'1

8 Owner's Information

Calculator Peripherals
Each of these peripherals is available with the necessary interface cables and operating

instructions. The General I/O ROM is needed to control all peripherals except the 9862A

Plotter.

HP 9862A X-V Plotter

Histograms, pie charts, circuit diagrams,

linear, log-log, and polar plots - these are a

few of the things you can do with the 9862A

Plotter. The 9862A Plotter ROM provides all the

instructions needed to control the 9862A PIot­

ter with the 9825A Calculator.

- .. -

Card Reader

Output Printers

If you need data output in tables, charts, or

forms, one of these printers can do the job.

The HP 9871A Character-Impact Printer pro­

vides 132-character wide, multiple copy out­

put, and a full 96-character font. The average

printing speed is 30 characters per second.

This printer includes an additional plotting

capability.

The HP 9866B Thermal Printer is a fast (240

lines per minute) line printer. It has a 95-

character alphanumeric font with upper and

lower case, produces fully-formatted text and

tables, and has plotting capability.

The 9869A Card Reader provides a convenient

form of data entry from punched or marked

cards. Standard 80-column cards can be read

at up to 300 cards per minute.

Owner's Information 9

Paper Tape Readers

I f
/

;: .. ~

I .. ··.1' i

Data from analytical instruments, machine

tools, and computer terminals can be entered

directly into the calculator with one of these

paper tape readers. The HP 9863A makes it

easy to read data in a wide variety of formats at

20 characters per second. The HP 9883A Tape

Reader, designed for high-speed, heavy­

volume operations, optically reads tapes at up

to 500 characters per second .

Ii

HP 9884A Tape Punch

•
Itilij

Add high-speed output to your calculator with

a tape punch. This reliable, compact unit

punches tape at 75 characters per second.

HP 9864A Digitizer

Use this peripheral to read a curve, or any ir­

regular shape, as a series of discrete points

and then convert these to a series of digital x-y

coordinates. To make entries, simply trace the

shape; then the calculator can find dimensions

and area of the line or contained shape . With

the proper programs, you can directly process

graphical data, such as X-rays, blueprints,

strip-chart recordings, or cut-and-fill profiles.

HP 9885 Flexible Disk Drive

The HP 9885 Flexible Disk Drive provides a

convenient, reliable, and low-cost method of

transferring programs and data to and from the

calculator at high speeds. The 9885 is a ran­

dom access, removable, mass storage device

with a capacity of up to 468,480 bytes per disk.

The removable, low-cost flexible disks provide

unlimited storage to the user. The 9885M (Mas­

ter) Flexible Disk Drive contains a built-in con­

troller. Up to three 9885S's (Slaves) can be

connected to each 9885M.

Q

10 Owner's Information

I nterface Kits

Several interfaces are available for the calculator to control and exchange data with a wide

variety of equipment other than the peripherals just described. Each interface has general

installation and configuration instructions. Typical applications are shown here:

16-Bit Duplex Interface

Card Readers
Printers

rr-t\\ < > Tape Punches
~ . 16 bit duplex _ Tape Readers

'------- Instrumentation Control
9S032A

<BCD (input only)" Digital Voltmeter
. / Electronic Counters

9S033A

C1< Any instrument having HP- IB
HP· IB > capability . No special w iring

requ ired .
9S034A

The HP 98032A Interface is a general purpose card providing a 16-bit parallel, character­

serial interface. The interface transfers data between the 9825A Calculator and a peripheral

device in full-duplex; that is, the interface can have valid data on the output lines and be

inputting data at the same time. The General I/O ROM is needed to control this interface.

BCD Interface

The HP 98033A BCD Interface allows the calculator to take samples from many instruments

having parallel, binary-coded-decimal (BCD) output. The interface can input data of up to ten

BCD digits, mantissa sign, exponent sign, and overload indication. The General I/O ROM is

required to control this interface.

HP Interface Bus

The HP 98034A HP-IB Interface allows up to 14 HP-IB compatible instruments to be con­

nected to the calculator at one time. The General I/O ROM provides simplified control of the

interface. The Extended I/O ROM should be used when complete control is desired.

Owner's Information 11

Prerecorded Programs

Tape cartridges containing programs for solving problems from many disciplines are availa­

ble. A utility program cartridge is supplied with each calculator. For a complete list of pre­

recorded programs and for pricing information, contact any HP sales office (addresses are

provided in the back of this manual).

Service Contracts

When you buy a Hewlett-Packard desk-top calculator, service is an important factor. If you are

to get maximum use from your calculator, it must be in good working order. A HP Maintenance

Agreement is the best way to keep your calculator in optimum running condition.

Consider these important advantages:

• Fixed Cost- The cost is the same regardless of the number of calls, so it is a figure that

you can budget.

• Priority Service- Your Maintenance Agreement assures that you receive priority treat­

ment, within an agreed upon response time.

• On-Site Service- There is no need to package your equipment and return it to HP. Fast

and efficient modular replacement at your location saves you both time and money.

• A Complete Package- A single charge covers labor, parts, and transportation.

• Regular Maintenance- Periodic visits are included, per factory recommendations, to

keep your equipment in optimum operating condition.

• Individualized Agreements- Each Maintenance Agreement is tailored to your support

equipment configuration and your requirements.

After considering these advantages, we are sure you will agree that a Maintenance Agree­

ment is an important and cost-effective investment.

For more information please contact your local HP calculator sales and service office.

1::' s information

Keyboard Magazine
Keyboard is a periodical magazine containing general information about HP calculators and

related equipment. It includes articles and programs written by calculator users, description

of the latest equipment and prerecorded programs, programming tips, and many other items

of general interest to calculator users.

To receive your free subscription to Keyboard, merely complete the order form supplied with

the calculator.

Chapter 2
General Information

This chapter introduces some of the operating characteristics of the calculator. The keyboard,

display, and range are a few of the topics covered.

Before Using the Calculator

There are a few things you should check each time you turn on the calculator.

If the calculator is turned off:

• Set the power switch on the right-hand side of the calculator to the "1" position:

• When the following display appears, the calculator is ready for use:

I-

If the calculator is turned on and the display is blank:

• Press 8 0r 8
If the display still remains blank, first check the power connection and fuse as described on

pages 3 and 4. Then call your HP sales and service office listed in the back of this manual.

If the calculator is on and the display shows the "lazy Ttt, you can do keyboard operations or

arithmetic or you can enter programs and run them.

14 General Information

Description of the 9825A Calculator

The Keyboard
Special Function Keys

I

r-- . ..,.........-~ '-"'1 co .. \
r \

8888 00 8 888 W G W W C5J W
.---~

88 El G GJ GJ BaBEl GJ w GJ W ~ 5J

(J)G)CDCDWCDmmG)GJG)G 8@CD80
o8000080880c==J 80008
§0000000080~ 08080
80008000c)c)CD8 08888

() 8(3 '8008
I \

Alphanumeric Keys Numeric Keys

The 9825A Keyboard

The 9825A Keyboard is shown in the figure above. The keyboard is divided into the following

functional groups:

• Alphanumeric Keys - This area is very much like a standard typewriter keyboard. For

instance. to display a capital A. press the shift key and 0 at the same time; or to

display a percent sign. %. press the shift key and G) at the same time.

• Numeric Keys - All the keys needed to enter numbers and do simple arithmetic are

located in this block. The numeric keys in the alphanumeric section of the keyboard can

also be used to enter numbers. The exponentiation and square root key. C0. is located

in the alphanumeric key section.

• Special Function Keys - The keys in the upper right section of the keyboard. namely W
through ~. provide additional calculator abilities. These keys are explained in Chap­

ter 4.

The remaining keys provide functions. such as editing and display control. and are explained

in Chapter 4.

Keys of the same color have similar functions. For example, all the alphanumeric keys are the

same beige color; gold colored keys are control keys used to run programs, store lines, erase

programs, etc.

Below are a few more topics related to keyboard operations:

• Spacing - In general, spaces are not important. It makes no difference, for example if

you key in:

H+E:or 14 + B

Both are interpreted the same. Spacing, however, is important when using text (charac­

ters within quotes) and when printing and displaying messages.

• Repetition of Keys - When a key is held down, its operation is repeated rapidly. This is

an especially useful feature with the editing keys.

• The I- Symbol - When the display is clear and awaiting inputs, the "lazy Til symbol

appears in the leftmost character of the display. This symbol also indicates the end of a

stored line.

• The Run Light - A small red light in the left end of the display lights when a program is

running. For example:

Display and Line Length
The 9825A Calculator has a 5 x 7 dot matrix, 32-character display. Even though only 32

characters can be displayed at one time, up to 80 characters can be keyed into the display.

After the 32nd character, additional characters which are keyed in cause the displayed line to

shift to the left. After 67 characters are keyed, a beep indicates that only thirteen more

characters can be entered. Up to 73 characters can be stored. This includes any spaces or

parentheses which the calculator may automatically insert in the line.

15

16 General Information

Range

The range of values which can be entered or stored is -9.99999999999 x 1099 through -1 x

10-99 ,0,1 X 10-99 through 9.99999999999 x 1099 • However, the range of calculations is from

-9.99999999999 x 10511 through -1 x 10-511 ,0, and 1 x 10 -511 through 9.99999999999 x
10511 .

Storage Range

I "-----t----I ----+-----+-1 I --+-1 ------+-1]
-9.99999999999 X 1099

Calculating Range
-1 x 10-99 0 1 X 10-99 9.99999999999 X 1099

II III II
-9.99999999999 X 10511 -1 X 10-511 0 1 X 10-511 9.99999999999 x 10511

out of range 0 within range D
The extended calculation range is useful for calculations which have intermediate results

outside of the storage range, but which have final results within the storage range. For in­

stance:

(9.2 X 1023 x 8.6 x 1080)/(1 x 1024)

When the first two values are multiplied their result is:

(7.912 x 10104)

This intermediate result cannot be stored, but the final result, 7.912 x 1080, can.

Significant Digits

All numbers are stored internally with 12 significant digits in the mantissa and a two digit

exponent. The format used to display or print numbers (such as f::·::d 2) has no effect on the

internal representation of a number.

Memory

The 9825A Calculator uses two types of memory: Read/Write Memory, and Read Only Mem­

ory. Read/Write Memory is used to store programs and data. When you store a program or

data, you "Write" into the memory. When you access a line of your program or a data element,

you "Read" from memory; thus the term Read/Write.

; ;; ·h13

Generallnformatlon 17

Read Only Memory differs in that it is permanent. When the calculator is turned off, the

contents of the ReadlWrite memory are lost, whereas the Read Only Memory is unaffected.

ROM (for Read Only Memory) cards can be plugged into the ROM slots on the front of the

calculator. This makes it possible to expand the language.

Programs and data in Read/Write memory can be saved for future use by recording the

information on the tape cartridge.

A small amount of memory is sometimes required by a plug-in ROM. This area is called

"working storage".

Read/Write Memory Organization

low addresses

This boundary is fixed at turn-on -

r0
r1
r2

Permanently fixed boundary _

high addresses

Working Storage

Special Function Key Definitions

User's program

r-variables

Unused area
(Used as needed)

Execution Stack
(subroutine return pointers)

Arrays and simple variables

Loaded Binary program (if any)

Reserved for internal use (flags)

"I I t! I ;

i ! I

The language used by the HP 9825A Calculator is called HPL. The basic programming unit is

the statement. Statements are typed using lower case abbreviated mnemonics, such as F='~-t.

for print. Multi-statement lines can be stored by separating statements with semicolons.

Two other characteristics of this language are implied multiplication and the assignment

operator. Implied multiplication is a standard algebraic notation, such as 5X. The assignment

operator";" points to the variable being assigned a value, such as '5 -:> D.

More mnemonics can be added to the language by adding ROM cards which plug into the

ROM slots on the front of the calculator.

Error Messages
When an error occurs, the calculator beeps and displays an error number. The number

references a description that will help pinpoint the cause of the error. For example:

Indicates a syntax error.

If an error message is displayed during an attempt to run a program, the program line number

where the error occurs will also be displayed. For example:

Indicates that a parameter is out of range in

line 3.

Pressing 8 after some error messages will bring the line containing the error into the display

with a flashing cursor indicating the location of the error.

A complete list of the error messages is given in Appendix B, on the inside back cover of this

manual, and in the error booklet under the top cover of the calculator.

Chapter 3
I ntroduction To

Keyboard and Programming

This chapter introduces some of the basic concepts of keyboard operation and programming

for those who are unfamiliar with the operation of the calculator. Nearly all the operations

which you perform from the keyboard can also be programmed. The operations explained in

this chapter are covered in more detail elsewhere in the manual .

System Keys

The following keys are used often for keyboard operations and programming .

8 Clears the display: the f- symbol remains to show that the calculator is ready for further

instructions:

CD Performs the operation in the display. For example, to add 2 + 2:

Press: 080 '----2_+ 2 ___ -J)]

Press : CD ~d_;._0~_j ________________)~

BStores program lines in the memory. For example, to store a program line:

Type in: 0 8[0 ,--.. _" ..:,.H ____ ~J

Press: 8 Of- (-,

~----J-.J

' The ([indicates that the following key is Shifted.

19

20 Introduction

This program line will assign the value 7 to the variable A.

G Runs the program in memory from line O.

Keyboard Arithmetic

The six basic arithmetic operations in the 9825A are: addition (;.). subtraction (), multiplica­

tion (-';:), division (...), exponentiation en, and square root (f).

To perform a math operation, such as 8 x 2, first you key in the expression as follows:

880 ,--::::_.:!:. ,-_. ___ ~J

Then press: OJ 1...-...-1_:::' " C_:! C! ___ ~J

To raise a number to a power, such as 82 , press:

Notice that an operation such as 8-2 must appear as: ::H ' (._<::) .

The value which is displayed after pressing the execute key is stored in a location called

"result" . This value can be used in other calculations. For example:

8880J

8800J ,---1._;:~" !_~~ O ___ ~J

800m ~ .. ::~ i~_':iCi __ -))]

If you execute an operation involving large numbers. such as:

t

~

Introduction 21

the calculator displays the result in scientific notation, with 9 digits to the right of the decimal

point:

This is because the number is too large for the fixed 2 notation which is set when you switch on

the calculator.

Arithmetic Hierarchy
When an expression has more than one arithmetic operation, the order in which the operations

take place depends on the following hierarchy:

r square root performed first

l exponentiation

no operator implied multiplication

1 * ,.,- multiplication and division
+ .- addition and subtraction performed last

An expression is scanned from left to right. Each operator is compared to the operator on its

right. If the operator to the right has a higher priority, then that operator is compared to the

next operator on its right. This continues until an operator of equal or lower priority is encoun­

tered. The highest priority operation, or the first of the two equal operations, is performed.

Then any lower priority operations on the left are compared to the next operator to the right. If

parentheses are encountered, the expression within the parentheses is evaluated before the

left-to-right comparison continues. This comparison continues until the entire expression is

evaluated. For example:

2 +:3.:,:. Eo 'r- 21:4) (6 - 2) l2 exponentiation

;2 +. :3 -f ::::;:::, 14) ."" (1::, -. ;2) l 2 implied multiplication

2 + ::;:: .:,:. 144 ... (6 - 2) l2 multiplication

2 + 4:3;2 ."" 4 l :2

evaluate parenthesis

exponentiation

division

addition

result

Variables
A variable is a name of a location where numbers are stored. There are three types of vari­

ables: simple variables, r-variables, and array variables. Array variables are discussed on

page 37.

;-;-r
!

22 Introduction

Simple Variables

Twenty-six simple variables, named A through Z, are used on the 9825A Calculator. Only the

upper case letters can be used for simple variable names.

To assign a value to a variable, the assignment operator is used. For instance, to assign the

value 4.5 to N, press:

8088[' 0CD
The number always appears on the left, and the variable appears on the right side of the

assignment operation.

Now, N can be used in calculations. For instance, to multiply N by 2, press:

N is not changed. New values can be assigned to variables, such as:

[0888[00]
r-Variables

r-variables are designated by a lower-case "r" followed by a number (e.g., d:::). They are

useful for one dimensional arrays and can be used in addition to the 26 simple variables.

In the following two examples, the value 12 is assigned to r1 O. Then the value 20 is assigned to

the register designated by the value of r10 (this is called indirect storage).

1 .::. -+ t" 1 0 The value 12 is assigned to r10 directly.

The value 20 is assigned to r12 indirectly.

For more information about r-variables, see page 38.

Operating Modes
The calculator can operate in any of three modes: the calculator mode, the program mode,

or the live keyboard mode.

• In calculator mode, no program is running, and the calculator is awaiting inputs or

calculating keyboard entries.

'The ([indicates that the following key is shifted.

Introduction 23

• In the program mode, a program is running.

• In live keyboard mode, you can perform many calculator operations while a program is

running.

Basic Editing

If you make a mistake while entering lines into the display, you can use the character editing

keys for changing the line.

For instance, suppose you want to type in this line:

10-A; 12- B

But, instead you type:

To correct this, simply press B until a flashing cursor I appears over the "a" .

Then type in an A. To delete a "1" in 112, press B once and press character 8" The

resulting display would be:

with a flashing cursor on the "1" of 12. To execute the line, press: m
As another example, maybe you want to execute this line:

10 + 18 + 22

But you typed this :

1[1+::::+22

I fT "

24 Introduction

To insert a one in front of the 8, press the EJ key 4 times. The flashing replace cursor I will

be positioned on the 8. Next, press the B key. This changes the replace cursor to the insert

cursor ... Now, type in a 1. The display will be:

1~] + 1:::: + 22

Note that the rest of the line shifted to the right 1 character. The insert cursor" will still be

flashing over the 8 indicating that more characters could be inserted if desired. To execute the

line, press m.
Programming

There are five basic steps in creating a program:

1. Define the problem.

2. Decide how the problem is best solved.

3. Write out the statements for the program.

4. Key the statements into the calculator memory.

5. Debug (correct) and run the program.

Step 1:

As a simple example, suppose you want to print the square root of each value that you enter.

Then, if the value entered is negative, print a message and continue on.

Step 2:

A common method used to solve a problem is flowcharting*. Using a few basic flowcharting

symbols, explained at the end of this chapter, we will flowchart the problem.

Flowchart:

• Another method suitable for simple problems is to key in a f_ statements and try them out.

Introduction 25

Step 3:

From the flowchart, write down the statements for the program:

Program

"start": ent V

ifV<0j dap "!'le9' V"; gto"star"t"

prlS

qto "start. ..

Comments

V is the value to be entered.

Decide if V is negative: if so, display the

message and go back to the beginning.

S is the square root of the value.

Print the square root.

Go to "start" for another value.

Note that the second line contains three statements separated by semicolons. All of the

statements used are discussed later.

Step 4:

The next step is to clear the calculator by executing ETO.:::·E· iJ .• Then type in the program

exactly as above, one line at a time. Press 8 at the end of each line to store that line in the

calculator memory. If you make a mistake before you store the line, press 8 and type the

line over.

Step 5:

After the program is stored, press B IT) to get a printed listing. Then, to run the program

press 8. Each time that \.'? is displayed, type in a value and press 8. The calculator will

print the square root of each value.

0: "s~.o.rt.":ent V
1: if V<0;dsp

"nE··::,:!. 1",1"; '::;It. I;)

"~.to.rt "
2: rV-1-S
3: p rt S
4: ';ltC' "sto.rt"

"

I
!
)

)h Illtrnrluction

For positive values, the program runs as expected, but if you enter a negative value you won't

see the message displayed. This is because the message is displayed for a very short period

of time before another display (i.e., 'v' '::') appears. Use a wait statement after the display

statement in line 1. This statement causes the program to pause long enough for you to see

the message. To change the program, press: 888 OJ. Then press the B key until it

is positioned on the semicolon just before the 9to statement. Press B and key in , i.,J Ci. j, 't.

':; 0 O. Press 8 to store the new line at line 1. Then press 8. Here is a listing of the

completed program:

0: "::.tCl.rt":ent 1,/
1: if "/<~:1;d::.r-'

n E' ';:I. 11/ I. ; :,1) O. i t
5t1(1; '::;11.·0 "::;.tlJ.t"t."

4: '::Ito "st.(I.rt."

Since the program is a continuous loop, press 8 to stop the calculator. Then, to do another

program key in E' j'- (1.::;. ':;' G. and press OJ. This clears out the calculator memory.

Commonly Used Flowchart Symbols

(-------)
CJ

<>

Meaning

Program beginning or end.

Program segment; usually one statement.

Decision block indicates that a decision tor a

branch is made. Usually an if statement is used

for a decision.

Flowlines indicate the program flow.

Connectors indicate that the lines going to or

from them are connected.

,

Chapter 4
The Keyboard

While reading the chapter, refer to the foldout inside the back cover which shows the 9825A

Calculator Keyboard. The standard alphanumeric keys are used to enter numbers, com­

mands, and statements. The rest of the keyboard is divided into system command keys,

display control keys, line and character editing keys, special function keys, and calculator

control keys. All of these keys, except the standard alphanumeric character keys, are

explained below.

System Command Keys

8888

27

.. Returns the calculator and 1/0 cards to the power-on state (see table in Appendix D)

without erasing programs or variables. 8 is executed immediately when it is pressed; it

does not have to be followed by (l). All calculator activity is halted and the line number of the

current location in a program is displayed if a program is running. The reset key should be

used to reset the calculator when no other key, such as 8 or 8, will bring the calculator to

a ready state.

_ Sets the print-all mode on or off. When it is pressed once, the word on appears in the

display. When it is pressed again, the word off appears in the display. In print-all mode,

displayed results, executed lines, and stored lines are printed.

While a program is running in print all mode, all displayed messages and error messages are

printed. Print-all mode can be turned on or off while a program is running.

_ Automatically rewinds the tape cartridge to its beginning. Other statements and com­

mands can be executed immediately without waiting for the cartridge to completely rewind. If

B is pressed while a program is running or while a line is executing from the keyboard, the

cartridge rewinds at the end of the current line.

;11 ,
1

I ,

28 Keyboard

_ Executes a program, one line at a time. Then. the line number of the next line to be

executed is displayed. When 8 is pressed just after stopping a program, only the line

number of the next line to be executed is displayed. The next time 8 is pressed, that line is

executed.
To step from a specific line. execute a gto X, where X is the line to start stepping from. For

example, to begin stepping through your program from line 30, type in gto 30 and press m.
Then use the step key.

II1II This typing aid is used to erase all or part of the ReadlWrite memory.

88m
88m
800J
80J

Erases the entire calculator memory.

Erases only the variables.

Erases all the special function keys.

Erases programs and variables.

Erases the special function key represented by
tin",

The table in Appendix 0 lists things which are affected by the erase command.

_ This typing aid is used to load programs and data from the tape cartridge. For example

to load a program which is on file 3:

Loads the program from file 3 into the cal­

culator.

The display shows ldf (for "load file") when this key is pressed (see the load file statement on

page 104).

III This typing aid is used to record programs and data on the tape cartridge. Before

recording on the tape cartridge. files must be marked (see the mark statement on page 96). In

the following example. it is assumed that the file has been marked:

Record the calculator program on file 6 of the

tape cartridge.

The display shows n:·f (for "record file") when thiS key is pressed (see the record file state­

ment on page 102).

•

•

Keyboard 29

_ This typing aid is used to list programs, sections of programs, all special functions keys,

or individual special function keys. For example:

808m
G8088m

Lists the entire program.

Lists all defined special function keys in numer­

icalorder.

Lists special function key, fo.

Lists the program from line 20 to the end.

Lists the program from line 9 to 13, inclusive.

Display Control Keys

_ Brings the line with the next higher-valued line number into the display. If there are no

more lines in the program, GJ clears the display and allows new program lines to be ap­

pended to the end of the program .

.. Brings the line with the next lower-valued line number into the display. If a line number is

in the display, 0 brings that line into the display. If a stop statement is executed from a

program, 0 brings the line following the line with the stop statement into the display. After a

program error, 0 brings the line containing the error into the display for editing.

.. Moves the line in the display to the left. This allows all the characters in a line to be

moved into the display. Each time it is pressed, the displayed line moves B characters .

.. Moves the line in the display to the right for viewing all the characters in a line. Each

time this key is pressed the displayed line moves B characters.

~ ,
i

1

30 Keyboard

Editing Keys

There are two sets of editing keys; line editing keys and character editing keys.

Line Editing Keys

(1

EJBEJ8

.. This typing aid is used to bring program lines into the display and to fetch special

function keys. For example:

Brings line 20 into the display.

Accesses special function key f4. If f4 is de­

fined, its definition is displayed. Otherwise f4

is displayed.

_ Deletes the program line in the display from the program. If no program line is in the

display, the calculator beeps and the key is ignored. To delete a program line, fetch the line

into the display and press B. When a line is deleted from a program all subsequent line

addresses and all relative and absolute go to and go sub statements are renumbered to

reflect the deletion.

This is not the same key as the character delete key explained later. To delete several prog­

ram lines, the delete (del) command can be used. The delete command is explained on page

80.

• Inserts a line into a program. The inserted line is inserted before the fetched line. The

fetched line and higher line numbers are renumbered. The 8, 8, or GJ keys can be used

to fetch a line into the display. For example:

To insert the line: f H ..,.. E: between lines 20 and 21:

Press: 808
Type in: Hi..:' E:

Press: 8

20: A+l-:.A
21: '31.025

20: A+l-:.A
21: rA-:.E:

When a line is inserted into a program, the branching addresses of all relative and absolute go

to and go sub statements are adjusted to reflect the insertions as in line 22 above.

,

.1<
i

•

Keyboard 31 II

III Brings back, into the display, one of the two previous keyboard entries. Pressing 8
once brings back the most recent keyboard entry. Pressing it twice brings back the previous

keyboard entry.

Press B after errors resulting from keyboard operations to recall the line containing the

error. For many errors, a flashing cursor indicates the location of an error in the line.

The Character Editing Keys

Lines which are fetched into the display using 8.0,8. orB. and lines which are typed

into the display can be edited using the character editing keys.

Two flashing cursors are associated with these keys: the replace cursor I and the insert

cursor .~.

_ Moves the flashing replace cursor I. or the flashing insert cursor -41, from its current

position in the line in the display, toward the beginning (left) of the line. If the cursor is not

visible, B causes the cursor to appear on the right-most character in the line.

_ Moves the flashing replace cursor I. or the flashing insert cursor ~, from its current

position in the display, towards the last character in the line. For a line which has just been

fetched or typed into the display, pressing B causes the flashing cursor to appear on the

left-most character in the display.

_ Deletes individual characters which are under the insert or replace cursor. This is not

the same key as the line delete key explained previously.

_ The insert/replace key is used to change the flashing replace cursor to a flashing insert

cursor and vice versa. Use the B or G key to position the cursor in the display. When the

insert cursor is flashing, any characters entered from the keyboard are inserted to the left of

the cursor and the characters under and to the right of the cursor shift to the right.

When the replace cursor is flashing, any character entered replaces the existing display

character at the location of the cursor and the cursor moves to the character on the right.

--------_.----_. --------------~--

32 Keyboard

Calculator Control Keys

888§8m8888G)@

•
This key is an immediate execute key which runs the program in the calculator begin­

. ning at line zero. All variables, flags, and subroutine return pointers are cleared when

8 is pressed. The run light at the left end of the display indicates a running program.

The table in Appendix D lists things which are affected by pressing G.

Stores individual program lines. Also, when a special function key is fetched and

defined, B is used to store the key's definition. A program line can be a single

statement or several statements separated by semicolons. When an error occurs while at­

tempting to store a line, 8 brings that line back into the display. A flashing cursor usually

shows where the error was encountered in the line .

•
and • are used to obtain shifted keyboard characters, such as H, :~:, and r. When

@ is pressed, the small light above the key lights. @ locks the keyboard

for shifted characters. Press 8 to release shift lock.

e. Stops the program at the end of the current line. The number of the next program line to

be executed is displayed. When 8 is pressed, list, tlist. and wait statements are

aborted but the rest of the line is executed. When 8 is pressed in an enter statement, flag 13

is set and the enter statement is terminated.

There is also a stop statement. For details, see pages 48 and 76.

Executes the single or multi-statement line which is in the display. The two most recently

executed (or stored) keyboard entries are temporarily stored and can be recalled by

pressing B once or twice. The result of a numeric keyboard operation which is not

assigned to a variable is stored in Result (see 8 key). For example:

880m ,--4_:" 0_0 ___)]

Pressing m displays and stores the result. Pressing the execute key again repeats the same

operation. •

Keyboard 33

Although multiple expressions such as:

are allowed, only the result of the last expression in the line is displayed and stored in Result.

In print-all mode, both results are printed.

Automatically resumes a program from where it was stopped. When a line

number is in the display (such as after pressing 8> 8 resumes the program

from that line. However, after pressing 8, or after editing the program, the program con­

tinues at line 0 when B is pressed. Pressing 8 after an error also causes the program to

continue from line O.

In an enter statement. 8 is pressed after entering data. If no data is entered and 8 is

pressed, the variable maintains its previous value and flag 13 is set. See also the continue

command on page 79.

•
Accesses the storage location of the result of a numeric keyboard operation which was

not assigned to a variable. For example:

Press: 0) 8 8 ::: .~:- 6., ~]

Press: CD ! :::: " CO)]

The answer, 18, is also stored in Result and can be used in other operations, such as:

Press: 800 .. '::= (,
~r_'::·::::,,_"':". ___ .)~

Press: CD
In a program, values cannot be stored in Result; but the value in Result can be assigned to

variables or used in computations.

For example:

1: t"E'::.+2..;.·A
This is not allowed.

This assigns the value of Result +2 to the vari­

able A.

e. Clears the display. If the clear key is pressed during the enter statement, a question

mark appears in the display, indicating that an entry is still expected. If this key is

pressed after a special function key has been fetched, the key number (e.g:, f:::) appears in

the display. I
!

34 Keyboard

•
The assignment operator is used to assign values to variables (this is not the same as

the right arrow used for display control.) For example:

Press: ([CD 0 8 ([0 CD This stores the square root of 5 in X .

• To enter the value of 'Tr, this key is pressed. The value entered is 3.14159265360 .

•
This key enters a lower case e into the display, representing an exponent of base 10.

. The unshifted 0 key can be used in place of @. For example:

Press: 8@88CD
Press: 8000CD

1...--1. _" 0(_;0 CJ_O!2!J:_~i !~i U_,;::' c~_.;:! _)]

~q_'·_=_~_I(_'1~_j_0_(_jl_1_0_~_,r_:j~_:'_~_-'._3 ________)]

Note that there is no difference between pressing @ and pressing 0.

Special Function Keys

There are 12 special function keys, which provide 12 unshifted functions and 12 shifted

functions. The special function keys can be used as typing aids, one line immediate execute

keys, or as immediate continue keys.

To define a special function key, press B and the special function key to be defined. Then

enter a line in the display. Press 8 to store the definition of the key and to exit key mode. For

example:

Press: 8[9

Type-in: pn.

Press: 8

f 0 is displayed if the key was not previously

defined.

Enters Prot in the display.

This stores pn:. under fo, for use as a typing

aid.

If you decide not to define a special function key after fetching one, the 8 key can also be

used to exit key mode.

To list all of the defined special function keys in numerical order, type in: 1 i:::.t. k and press

CD·

•

Keyboard 35

To list individual special function keys, press B and then the special function key to be

listed.

Immediate Execute Special Function Keys

If a line to be stored under a special function key is preceded by an asterisk ('*'), it is an

immediate execute key . This means that when the key is pressed, the contents of the key are

appended to the display and the line in the display is executed automatically.

For example:

Press: EJ[(3J

Type-in: *' r-or-t. "fl''' , fl'

Press: 8

Accesses f23 (shifted fl1).

The asterisk makes this an immediate execute

key.

This stores the line entered in the display

under f23.

Whenever [(3J is pressed and the display is clear, the following is printed:

11 :~:. 14

Immediate execute keys are useful for executing selected segments of a program. Using the

continue command followed by a line number, you can make several entry points in your

programs. For example:

ffi: '*' c ent 5

Q;J: '*' cent 1 0

Each time 0 is pressed, the program continues at line 5, or at line 10 if ~ is pressed.

Immediate Continue Special Function Keys

If a line to be stored as a special function key is preceded by a slash (.....), it is an immediate

continue key for use with the enter statement. "Immediate continue" means that when the key

is pressed, the contents of the key are appended to the display and continue is executed

automatically. Immediate continue keys are used to enter often used values in enter state­

ments. For example:

Press: 8Q;J

Press: 8

Fetches special function key f10.

This enters the value of e, the base of the

natural logarithms, into the display.

This stores the line in the display under f10.

Whenever an enter statement is waiting for a value and the C5J key is pressed, the approxi­

mate value for e (Le., 2.71828182846) is entered and the program continues (see enter

statement in Chapter 5).

By separating statements with semicolons, several statements can be stored under one spe­

cial function key. As an example, suppose you want to convert inches to centimeters. The

following line is stored under special function key W.

Press: Elm

Press: 8

Then key in a number, such as 6, and press m. The display will show:

•

Chapter 5
Programming Instructions

The statements, functions, and operators explained in this chapter are all programmable.

Most of these instructions can also be used in calculator mode.

Statements can be programmed or executed. Operators and functions must be part of a

statement in order to be programmed. This means that operations, such as 10 + 32 or v'63,
which can be executed from the keyboard, must be part of a statement in order to be prog­

rammed. Thus, 10 + 32..:,· ::< or p-t. [;::':::: are valid statements.

Syntax Conventions
The instructions explained throughout this manual use the following syntax conventions. A

complete list of syntax can be found in Appendix A.

] - items within square brackets are optional.

oj o~. i'o', (!. t to i ::< - items in dot matrix must appear as shown.

- three dots indicate that the previous item can be duplicated.

Variables
The calculator uses three types of variables: simple variables, array variables, and

r-variables. As variables are allocated, they are initially assigned the value O. Simple vari­

ables, r-variables, and array variable elements require 8 bytes * of memory each.

Simple Variables

There can be 26 simple variables, named A through Z. A simple variable must appear in upper

case. Each simple variable can be assigned one value. For example:

~3: 12-tA
1: r.ort. R

Array Variables

Assigns the value 12 to A.

Prints the value of A on the printer.

There can be 26 arrays, named A through Z. Array names are followed by square brackets

which enclose the subscripts of the array (e.g., L C::: 1]).

·A byte is the basic unit of data in the 982SA. 8 bytes are required to store a number.

37

38 Programming

Before an array element can be used, the array must be declared in a dimension (dim)

statement. This reserves memory for the array and initializes all elements in the array to zero.

In the dimension statement, each dimension of an array can be specified either by specifying

the upper bound. in which case the lower bound is assumed to be one, or by specifying both

the lower and upper bounds. For example:

d i 1"1 R [4 , 5 J

d if', F' [- 2: i , _ .. 2 ~ 2 J

Reserves memory for the 20 elements of the

two-dimensional array A.

Reserves memory for the 20 elements of the

two-dimensional array P. (Lower and upper

bounds specified.)

An array can have any size and any number of dimensions within the limits of the memory size

and line length. The bounds must be between -32767 and 32767.

An individual element of an array is accessed by specifying the subscripts of the element. For

example:

Another Example:

r-Variables

4 is assigned to element 1,5.4.6 of array A.

3 is assigned to element - 2.1 of array P.

Reserves memory for 100 elements of array O.

0[7.1] is assigned the value 3.

The value 5 is assigned to the simple variable

O. There is no connection between the simple

variable 0 and array Q[1 0.1 0].

Q[1,5] is assigned the value 2.

r-variables are specified by a lower case "r" followed by a value or expression. When an

r-variable is encountered. memory is reserved for all r-variables with smaller subscripts which
have not been allocated . As r-variables are allocated, they are assigned the value O. Thus if

r10 is assigned a value. rO through r9 are also automatically allocated and assigned the value

zero if they have not been previously allocated.

Examples:

1: 2-:'rrO

Variable Allocation

Programming 39

4 is assigned to r-variable O.

2 is assigned to r-variable 4. rO= 4, therefore

2 -+ r4. This is known as indirect storage.

Simple variables and r-variables are allocated when a statement containing either is exe­

cuted. Array variables must be allocated using a dimension statement.

Before a variable is allocated, three cases are checked:

1. Before a variable is allocated by the dimension statement, a check is made to see if it is

already allocated. If so, an error results and execution stops.

2. When a simple variable is referenced in any other statement, a similar check is made as

to whether it has been allocated. If not, it is allocated.

3. When an array element is referenced in any other statement, a similar check is made as

to whether the array has been dimensioned. If not, an error results.

Within one statement, variables are allocated in the same left-to-right order as they occur in

the statement.

Number Formats
Numbers can be displayed or printed in floating-point format (scientific notation) or in fixed­

pOint format. The calculator's internal representation of numbers is unaffected by number

formats, therefore, accuracy is not changed.

When the calculator is turned on, 8 is pressed, or E"j""·(!.:'::.e (! is executed, the number format

is fixed 2 (txd 2). and for very large numbers, the calculator temporarily prints and displays in

float 9(flt 9).

!

~!

40 Programming

The Fixed Statement

Syntax:

f ::-:: c:i [number of decimal places]

The fixed (fxd) statement sets the format for printing or displaying numbers. In fixed-point

format, the number of digits to appear to the right of the decimal point is specified. Fixed 0

through fixed 11 can be specified.

To set the number format from floating-point to the current fixed-point setting, of >::ci without

parameters is executed.

When a number of the form:

A = N x 10 E

where: 1:e;;; N < 10, or N = 0

is too large to fit in the fixed-point format, the number format temporarily reverts to the previ­

ously set floating-point (float 9 if no other floating-point format has been set) if:

0+ E ~ 14
where: 0 is the number of decimal places specified in the fixed statement.

E is the exponent of the number.

To illustrate the reversion to a previous float 9

setting, run this program.

If the value 125eW is entered when A? ap­

pears in the display, this is printed.

0: E'nt A
1 : f' >:: d 0;prt A
.-, . .:::.. L<d U prt. A
:3 : fxd 2; p rt A
4 : fxd 3; p r t A
co • E'nd . J.

125000(,000000
1250000000000.0
1.250000000e- 12
1. 25000000~3e- 12 •. ~

Programming 41

For numbers too small to fit in the fixed-point format, zeros are printed or displayed for all

decimal places, with a minus sign if the number is negative. For example:

0: f::.::d 3;ds.F-'­
.000125; 1.,.10. i t
2000

1: f>::d 2;e:!::.p
• ~:'Hj2~j4

'--..... _!:::!" !_:::i:::}i::~_i ___)]

""----1;_::1" ~~_O ___ ~]

Here are some numbers and their output format if f: :d :::: is executed:

Number

18

-.000006

-2.7532

4.5678

5.3111e3

1234567891234.5

The Float Statement
Syntax:

Fixed 3 Output

':::::: 11 " H::n:::;

t. c~:::::4567:=:91E' 12
(float 9 previously set)

+. 3. t [number of decimal places]

The float (fit) statement sets floating-point format which is scientific notation. When working

with very large or very small numbers, floating-point format is most convenient. Float 0 through

float 11 can be specified. To set the number format from fixed-point to the current floating­

point setting, fit without parameters is executed.

A number output in floating-point format has the form:

-O.O ... Oe-OO

• The left-most non-zero digit of a number is the first digit displayed. If the number is

negative, a minus sign precedes this digit; if the number is positive or zero, a space

precedes this digit.

• A decimal point follows the first digit; except in fit O.

42 Programming

• Some digits may follow the decimal point; the number of digits is determined by the

specified floating-point format (e.g., in fit 5, five digits follow the decimal point).

• Then the character ;;::. appears, followed by a minus sign or space (for non-negative

exponents) and two digits. This is the exponent, representing a positive or negative

power of ten. The exponent indicates the direction and the number of places that the

decimal point would have to be moved to express the number in fixed-point format.

Here are some numbers as they would appear if f 1 t 2 is executed:

Significant Digits

Number

-3.2

271

26.377

.000004

2.482e33

Float 2 Output

All numbers are represented internally with 12 significant digits regardless of the number

format being used. To illustrate this, execute f:;;:d 5 then key in the number:

then press m and note the display:

The 13th and 14th digits, 8 and 9, are not stored and zeros are displayed for those digits.

Rounding

A number is rounded before being displayed or printed if there are more digits to the right of

the decimal point than the number format allows. The rounding is performed as follows: the

first excess digit on the right is checked. If its value is 5 or greater, the digit to the left is

incremented (rounded-up) by one; otherwise it is unchanged. The number remains un­

changed internally. For instance:

0: f::<d 2
1: ci s. to' 1.235;

1 •• .10. it. 101210
2: ds.r.' 2.4[14
J: end

~L_24 ____ ~J

,,--2,,_4~-::i ___ ~J

•

•

Programming 43

The Display Statement

Syntax:

':::! ::: F~ [any combination of text or expressions]

The display (dsp) statement displays numbers or text on the calculator display. Commas are

used to separate variables or text (e.g., d~:.~:, "Ho. ", f··j, E:).

Quotes are used to indicate text. To display quotes within text, it is necessary to press [GJ
twice for each quote to be displayed. For example:

Press: OJ _____ 'H_:. _'j' ,-;_ ,:::., ... _~J

Displayed lines longer than 32 characters can be viewed using the display control keys, 8
and 8.

Numbers and text which are displayed remain in the display until another display operation

(such as enter (ent) with a prompt) clears it.

The Print Statement
Syntax:

F:' (. t [any combination of text or expressions]

The print (prt) statement is used to print numbers or text on the calculator printer. For example:

One
This one

If an expression is to be printed, such as:

6.00
1. 00

the expression is evaluated and the equivalent value is printed (and also stored in X in this

case).

· ~

;~
j~
i ~1
' j

44 Programming

To print a quote within text press ([0 twice for each quote to be printed. For example:

" 'i i':i" '" .

Press: CD Ent "1" ot" "(1"

Commas are used to separate variables or text. For example:

Press: m Fit";;. ~.
t·j E' >:: t

When printing lines of text and values, the printout follows this format:

1 . (H)

2 • ~) 0

• Text followed by a numeric is printed on the same line if it fits; otherwise the text is

printed and the number is printed on the next line.

• Each line of text separated by commas begins on a new line and folds over on succes­

sive lines if it is longer than 16 characters.

• Numerics separated by commas are printed one per line unless the format is fit 10 or fit

11 which requires two lines each.

When Pt-;:, is specified without parameters, no operation takes place. To space one line, use

the space statement on page 47.

The Enter Statement
Syntax:

E-ry!:. [prompt,] variable [, [prompt,] variable ...]

The enter (ent) statement is used to assign values to variables from the keyboard during a

program. The variable can be a simple variable, array variable, or an r-variable. For example:

4~ E·tH 0
5: E·t"it A,E:[3],

t- 1 1

When an enter statement is encountered in a program, key-in a number, variable (such as

(':~:[!), or expression (such as T':)) and press 8.
When many items are entered from the keyboard, it is often helpful to have a message called a

"prompt" displayed representing the variable being assigned a value. For instance:

~): E'nt "A('·loL~nt.",
A

1: 0;' n \. " T e' I'" P 0;' r 0. t
ure·",T

J

•
•)ci'

t

•

,
t

I
~-

.'

Programming 45

If no prompt is given, the calculator uses the name of the variable as the prompt. For example:

:3: E·nt. A [7]

If a null quote field is given as a prompt, such as 1'~1: en1:-""; Fi the calculator retains any

previously displayed message, unless a print operation is between the display statement and

the enter statement. This is useful for variable prompts using the display statement. For

example:

7: 1976..,.'·nf::·::a [1
::: : d ::. p 'I.J IJ 1 ':t, II ~ \1
'3: ent ""~A

You can calculate values from the keyboard while the program waits in the enter statement.

This is done simply by entering the calculation and pressing GJ If the value to be entered is

the result of pressing Q), press 8 or 8 then press 8. Pressing [) immediately

before pressing 8 causes a default condition as if 8 were pressed without entering a

value.

Complex lines can be entered as the response to an enter statement. For instance, run this

program:

(1 · ent. E: · 1 · ent. A · 2 · p t"t A · .-, · E·nd .;., ·
When the display is: "--.E:_? ____ ~]

enter a value for B. Then when the display is: ,,--H_? ____)]

Then press 8. If the value that you entered for B is greater than 20, then 40 is printed,

otherwise 20 is printed.

If 8 is pressed without entering a value, the variable maintains its previous value and flag

13 is set. When a value is entered, flag 13 is cleared (see flags on page 59).

To terminate a program during an ente~ statement, press 8. The rest of the program line is

completed before the calculator stops.

Commands, such as -f",;:,tch or t"un, are not allowed during an enter statement and cause

error 03.

46 Programming

The following example illustrates a unique case using the enter statement. Run the short

program:

0: dil"; R[20]
1: 4-*1
2: ent I~A[l]

Type in: ::::

Press: 8

I..-I_? ____ ~J

Notice that the value of I when the enter statement is encountered is used, not the entered

value of I. To use the entered value of I as the subscript, use another enter statement. For the

above example, change line 2 to:

2: E'nt I;E'nt
A [!]

Even though you can have one enter statement that enters values for several variables, only

one value can be supplied at a time. For example:

0: e'nt A~ 8

type in a value for A when a fl') appears in the display and press 8, then do the same when

E:';' appears in the display.

The Enter Print Statement
Syntax:

'::: i ,F::' [prompt :' J variable [:, [prompt, J variable ... J

The enter print (enp) statement is the same as the enter statement except that prompts and the

entered values are printed and displayed as they are encountered.

For example, type in this short program to calculate the area of a circle:

0: e·t1r.o "fo.diu::.",
P

1: 11PF.:.;.-A
2: r-art lI(1.r':·IJ."~A

:~:: E'fld

If 2 is entered for R when the program is run, the printout will be:

ro.diu::.
2
O. r E' iJ. 12.57

•

•

F

Programming 47

The Space Statement
Syntax;

c:· F:' .::: [number of blank lines]

The space (spc) statement causes the printer to output the nuniber of blank lines indicated.

The number of lines can be an expression with a range of 0 through 32767. If no parameter is

specified, one blank line is output.

Examples;

0: s.p.:. A+8 Space the number of lines specified by A + B.

Space 5 lines.

2: sr.-c Space one line.

The Beep Statement
Syntax:

The beep statement causes the calculator to output a beep. For example, the calculator

normally beeps, displays E'n-or 67, and stops when the argument of the square root (f)

function is negative. In the following short program, the value entered for A is tested. If it is

negative, the calculator beeps and displays a message, but the program continues entering

values.

0: f::{d 4
1: "s.t,'lr,.":€·nt.

"Ar'CJI,,~I\'IE'nt.", A
2: if A<0;'3t.1)
"error"

3: prt. rA;'CJtl)

" ::;, t. (I. r t. "
4: "e'rrc,r":bE'E'P
5: dsp lOr of

ne'CJ. t"ll)."

Eo: I.~I o. i t. 2 [u::H3
7: ';ltCI ";:.to.rt"

The Wait Statement
Syntax:

1.,-' :J. :i. ,t· number of milliseconds

The wait statement causes a program to pause the specified number of milliseconds

(thousandths of a second). The wait statement is often used with display or enter statements to

display a message for a specified time. The number of milliseconds can be an expression. The

maximum wait is around 33 seconds, which is specified by the value 32767.

I
i

48 Programming

Since the wait statement takes time to be executed, small values in the wait statement are

actually longer than a millisecond. This becomes evident in a loop which is executed many

times.

Examples:

Pauses for 2 seconds.

Pauses for 2*1 milliseconds.

In the next example, a display statement is followed by an enter statement. To preserve the

first display for one second, the wait statement is used.

Syntax:

1(1: d::.p "PIE"'l::·E·
E·nte·r";I ... I'lit
1.~H~H)

11: E·t"Jt "')I).ll~E·

The first display remains one second before

the next display.

The Stop Statement

The stop (stp) statement stops program execution at the end of the line in which it is executed.

Pressing 8 continues the program at the next program line. 8 can also be used to

"step" through the program one line at a time. If any editing is performed after the program

stops, 8 and [3 cause the program to continue from line O.

The stop statement can also be used for debugging. See the section on debugging state­

ments for details.

The End Statement

Syntax:

The end statement causes the program to stop like the stop statement. However, the end

statement resets the program line counter to line 0 and resets all subroutine return pointers

(see go sub statement). The end statement is usually put at the end of a program. The end

statement cannot be executed during an enter statement, nor in live keyboard mode.

1

•

Programming 49

Hierarchy

In a statement containing fUnctions, arithmetic operations, relational operations, logical opera­

tions, imbedded assignments, or flag operations, there is an order in which the statement is

executed. This order is called the hierarchy, which is:

highest priority functions, flag references, r-variables

"t' (exponentiation)

implied multiply

.•. (unary minus)

all relational operators (::::, >, ", <::::: ::'::;-c, #)

flUI.

.r P.,,]

lowest priority

An expression is scanned from left to right. Each operator is compared to the operator on its

right. If the operator on the right has a higher priority, then that operator is compared to the

next operator on its right. This continues until an operator of equal or lower priority is encoun­

tered. The highest priority operation, or the first of the two equal operations, is performed.

Then any lower priority operations on the left are compared to the next operator to the right. If

parentheses are encountered, the expression within the parentheses is evaluated ,before the

left-to-right comparison continues. This comparison continues until the entire expression is

evaluated. In the following example. 8,. 82, 83 ... indicate intermediate results:

2A = E: + C - [i f"lod E E'::<P (not F) implied multiplication

8, = E: + C - D f·:od E E'::<P (not F) addition

8, ::: 82 _. D i"':i:,d E E'::<P (not F) evaluate parenthesis

8, :::: 82 .- D ('Icd E e::<p 83 exp function

8, :::: 82 - D i"';c:d E 8" implied multiplication

8, =82- D ;":c:d 85 mod operator

8, ::: 82 -- 86 subtraction

8, :::: 87 equality relation

86 final result

50 Programming

Operators
The four groups of mathematical or logical symbols, called operators, are: the assignment

operator, arithmetic operators, relational operators, and logical operators.

Assignment Operator
Syntax:

expression·, variable

The assignment operator is used to assign values to variables. For example:

.i. I: :::i· .. ~. i···l The value 1.4 is assigned to the variable A.

The value of B is assigned to the variable A.

There are other ways to assign values to variables such as the enter (ent) statement or the load

file (Idf) statement.

To assign the same value to many variables, the assignment operator can be used as in this

example.

Multiple assignments can also take the form (;25..;. A) + 1 ..;. E: (which is the same as 25 ..,.. A; A

-+ 1 -:r E:). This is called an imbedded assignment.

Arithmetic Operators

There are six arithmetic operators as follows:

.+ Add (if unary, no operation)

Subtract (if unary, change sign)

Multiply

Divide

'1"' Exponentiate

(iicd Modulus

A + Bar +A

A - B or-A

A*B

AlB
AB
A mod B is the remainder of AlB when

A and B are integers. A mod B is the

same as A -int (A/B)"B. •

Programming 51

When A is much larger than B. there is a chance that a value of 0 could be returned for

f:i (' ! c! dE:. This condition can be caught by examining the exponent of AlB when it is re­

presented in floating point notation with one digit to the left of the decimal point. If the expo­

nent is greater than 8. r"i ('! (:,,::.1 E: results in a value of O.

Besides the 'o': symbol for multiplication. implied multiplication can be used. In the following

instances. implied multiplication takes place :

• Two variables together (like AB).

• A variable next to a number (like SA).

• A variable or number next to a parenthesis [like 5(A + B)).

• A parenthesis next to a parenthesis [like (A + 8) (X + Y)).

• A variable. number, or parenthesis preceding a function name (like 32 sinAl.

For example:

A times B is stored in X.

5 times S is stored in X.

A times the sum B + C is stored in 8.

S times the absolute value of B.

Relational Operators

There are six relational operators as shown in the following table.

Symbols

:::C .,:- or :::-.

. _ .. ::: or :::

fj: or'" > or : .. :.

Equal to.

Greater than .

Less than.

Meaning

Greater than or equal to (either form is acceptable) .

Less than or equal to (either form is acceptable).

Not equal to (either form is acceptable) .

The result of a relational operation is either a one (if the relation is true) or a zero (if it is false) .

Thus if A is less than 8 , then the relational expression i::(:: ::::: E:: , is true and results in a value of

one. All comparisons are made on 12 significant digits, signs, and exponents.

52 Programming

The relational operators can be used in any statement which allows expressions as argu­

ments. For example:

if FL> E: ; ...

... , .j "\ P A:>:3

Assignment statement. If A and B are equal. a 1 is

stored in C; otherwise. a 0 is stored in C"

If statement. If A is greater than B. then continue in the

line; but if A is less than or equal to B. go to the next

line .

Jump statement. If A is greater than 3. jump 1 line.

otherwise jump to the beginning of the line Ump 0).

Pt-t A(A>E:) +BfA<B) Print statement. If A is greater than B. the value of A is

printed. If A is less than B. then the value of B is

printed. If A equals B. then 0 is printed.

Logical Operators
The four logical operators. and. or. xor (exclusive or). and not are useful for evaluating Boo­

lean expressions. Any value other than zero (false) is evaluated as true. The result of a logical

operation is either zero or one.

Operation Syntax Truth Table

AND expression (if"tCl expression A B A and B

F F 0

F T 0

T F 0

T T

OR expression C f" expression A B A or B

F F 0

F T 1

T F

T T

Programming 53

Operation Syntax Truth Table

Exclusive OR expression ::-::c, [" expression A B A xor B

F F 0

F T

T F 1

T T 0

NOT A not A

F 1

T 0

For example:

Program:

~]: .1-tAHj-tE:
1: prt "A (I.nd

B",A (I.nd B
2: F='rt. "A I)~- B",

A 0 r E:
:3: prt "A >~or

B",A >::or E:
4: Pt"t. "not. R",

nc.t. R
5: E'nd

Printout:

A and B
A 0 r E:
A ::<or B
not. A

Math Functions and Statements

0.00
1. 00
1. 00
0.00

The math functions and math statements are explained in this section.

Parentheses must enclose the argument of a function when a "+" or "-" sign precedes the

argument. In the examples. parentheses are shown only where they are required.

General Functions
Syntax

f expression

ic.L ::: expression

Description

Returns the square root of a non-negative

expression. For negative expressions. see

the section on math errors on page 57.

Determines the absolute value of the ex­

pression.

Examples (fxd 5)

f64 = 8.00000

fir = 1.77245

o.b:::. (-::::.09) = 3.09000

;J.b:::: 33~3" 1 = 330.10000

; q

54 Programming

Syntax

:::,::;n expression

'l nt expression

+ i' C:, expression

Description

The sign function returns a -1 for negative

expressions. 0 if the expression equals O.

and' for a positive expression.

Returns the largest integer less than or equal

to the expression . This is often referred to as

the "floor" integer value of the expression.

Gives the fractional part of a number. It is

defined by: expression - i n t expression

Examples (txd 5)

::;::,:;n (-1::::) = -1.00000

::;:':It"I (1 = 0.00000

::;,3n :::':4 = 1.00000

i nt ~::. 71.:::: = 2.00000

int 1<:.:~4 1 = -4.00000

f t"c :2. ? i::: = 0.71800

f n:. (-:::: . 24) = 0.76000

p n-,d (expression, Returns the value of the argument rounded r-.n-,d (127. :375, - ;2)

rounding specification ! to the power-of-ten position indicated by the

rounding specification.

= 127,38000

127.375 is rounded to the

nearest hundredth (10- 2)

,:j ('('Fj expression ~

number of digits)

The dig it rou nd tu nction rounds the argu- cknd f 73. ~~1E.25, 5)

ment to the number of digits specified. The = 73.06300

leftmost significant digit is digit number 1.
,.. - 70000.00000

diTld (.055, 1) = 0.06000

;'Iin (list of expressions Returns the smallest value in the list. An en- ~3: di ,.·" Ii [3]; 2-:<fi [1 J

and arrays I tire array can be specified by substituting an 1: 9..,..li [:::J ;>i:i C3 J
asterisk for the array subscript list (such as i'li n U::j en) = 2.00000

E: ['*]). (;'! in:: ~~ ~ ::; '1 "':"::;1 4-"j

= -3.00000

dist of expressions Returns the largest value in the list. An entire 0: di i'" Ii [;:J; 2..:,.1i [lJ

and arrays) array can be specified by substituting an as- 1: 9..:,.1i [2J; :3..:,.8 [~: J

'["I'::! [-) expression

terisk for the array subscript list (such as ('iiJ,;:':' :ri U· J i = 9,00000

E: [>:J). l'i;::::-: (5~ 4 ~ ... > ;::::
= 8.00000

The random number function generates a !"'nd 1 = 0,67822

pseudo-random number greater than or

equal to 0 and less than 1, When the argu-

ment is positive. the starting seed is n-/180

(which is .0174532925200). This seed is in-

itialized when the calculator is turned on .

,:;;'nJ.:::. "" ;J, is executed. or EJ is pressed ,

Each subsequent access to the rnd function

with a positive argument uses a seed based

on the previous result of the function,

•

Syntax Description

To specify a starting seed other than 7Ti 180,

use a negative argument. The fractional part

of the absolute value of the argument is used

as the seed. To obtain a good seed use a

number less than 0 and greater than -1. The

more non-zero digits in the number, the bet-

I ter . Last digits of 1,3,7, or 9 are preferable.

:~l)g9.rjth mic ~nd Exponential Functions

Syntax

L ;' , expression

::.:;:: expression

'. '.J: expression

tn 'i' expression

Description

The natural logarithm function calculates the

logarithm (base e) of a positive valued ex­

pression.

The exponential function raises the constant,

naperian e, to the power of the computed

expression. The range of the argument is

approximately from -227 .95 through

230.25.

The common logarithm function calculates

the logarithm (base 10) of a positive valued

expression .

The ten-to-the-power function raises the

constant, 10, to the power of the computed

expression. The range of the argument is

approximately from -99 through 99.999.

This function executes faster than: :L CiT ex­

pression.

Examples (fxd 5)

Note that the wait state­

ment is used instead of

an assignment state­

ment to initialize the

starting seed. Line 1

generates a random

number based on .31317

instead of 7Ti180 .

Examples (fxd 5)

'I !' , :; :0[11 = 8.98732

1 n • O~j26 = -5.95224

.;:: : :r:· 1 = 2.71828

':::";.;:r:- i:"'"':~;:' = .04979

10'':1 :;::(15.2 ... 2.48458

1 O J " ~~1U49 = -2.30980

5 t.nl2 - 500.00000
t.n1" (-"'3 } = 0.00100

The math errors and default value associated with the log and In (natural log) functions are

explained in detail on page 57.

56 Programming

Trigonometric Functions and Statements

The angular units: degrees, radians, or grads, are set by statements explained in this section.

Degrees are automatically set when the calculator is switched on, enJ.:;o·e 0. is executed, or

(3 is pressed.

d~:'';"i This statement sets degrees for all calculations which involve

angles. A degree is 1/360th of a circle.

i"'cd This statement sets radians for all calculations which involve

angles. There are 21T radians in a circle.

,;:vu.d This statement sets grads for all calculations which involve

angles. A grad is 1/400th of a circle.

uni i:.~: This statement displays the current angular units.

Syntax

:::. i n expression

.»:. expression

L '.:'/i expression

,::;':::;.;-; expression

Description

Determines the sine of the angle rep­

resented by the expression in the current

angular units.

Determines the cosine of the angle rep­

resented by the expression in the current

angular units.

Determines the tangent of the angle rep­

resented by the expression in the current

angular units.

Returns the principal value of the arcsine of

the expression in the current angular units.

The range of the argument is -1 through + 1.

The range of the result is -'1T12 to +'1T12(ra­

dians), -90 to +90 (degrees), or -100 to

+100 (grads).

Examples (fxd 5)

= 0.50000

= -0.89101

::: 0.86603

:: 0.45399

c\.:;·:::];' t 'J.n 4'3 = 1.00000

t"(l.d; 1;. (J.n (fl.··A)

= 1.00000

= 1.00000

d,,,",;,; 0.5["; ,,:::: = 53.13010

f'G.':':!; ':I.::::.n • E: :: 0.92730

·'3t'(1.o:H 0.:=.1""1 • t: = 59.03345

•

•

Syntax

(i.e.:::. expression

,:lrn expression

Description

Returns the principal value of the arccosine

of the expression in the current angular

units. The range of the argument is -1

through + 1. The range of the result is 0 to 11'

(radians). 0 to 180 (degrees), or 0 to 200

(grads).

Calculates the principal value of the arctan­

gent of the expression in the current angular

units. The range of the result is -11'/2 to +11'12

(radians), -90 to +90 (degrees), or -100 to

+100 (grads).

Math Errors

Programming 57

Examples (fxd 5)

d~"~; o.e:.::· (_ .. " 4)

= 113.57818

t-(l.d; (I.C::· (-. 4)

= 1.98231

'7.fr~o.d; (I.G:::· :: -.4)

= 126.19798

de"==!; (l.tn 2~:1 = 87.13759

n:1.(;I.; iJ.tn2(1 = 1.52084

·==!t-o.d; o.tn 2[1 = 96.81955

Errors 66 through 77 are displayed when a math error occurs. In this section, the default

values of math operations which result in an error are explained. Whenever a math error

occurs, flag 15 is set automatically. If you set flag 14, math operations which normally cause

an error to be displayed, result in a default value.

When printing, displaying, or storing a default value outside the storage range, the value is

converted to an appropriate value of ±9.9999999999ge 99.

I:::"'n:f f-j::, Division by zero. The default value is +9.9999999999ge 511 if the dividend is

positive and -9.9999999999ge 511 if the dividend is negative. For example:

-- '::i " ::; 0 == - 9. 9999999999ge 511

A mod B with B equal to zero. The default value is o. For example:

EP-C(67 Square root of a negative number. The default value is V (abs (argument)). For

example:

r­
.j

I'
'r
II'i , !

Ii Ill
li.
!\
i)

i
I,
f~1
:.1.'

I'

I[
!

58 Programming

>.::n·cr-· t:,;;:;: Tangent of (nx'7T/2 radians);

Tangent of (nx90 degrees);

Tangent of (nx 100 grads);

where n is an odd integer. The default value is 9.9999999999ge 511 if n is

positive; and -9.9999999999ge 511 if n is negative. For example:

l"o.d; t (I.n (-i1·.····Z) = -9.9999999999ge 511

dl::"::;; t !J.n 2?,~~1 = 9.9999999999ge 511

.:~ ," c. ,~1 ~ t c. i'! :? C C = 9. 9999999999ge 511

':c' I (.()!." «:~ In or log of a negative number. The default is:

In (abs (argument)) or log (abs (argument»

respectively. For example:

.' ... :>:: .,. :: = 5.70711

, ' .. .i :::r ! ?C! 1: = -3.00000

,:::f !"CT ';:"0 In or log of zero. The default value is -9.9999999999ge 511. For example:

::. ,''', Ci = -9.9999999999ge 511

:[<:>::! !? = -9.9999999999ge 511

en"CH" 71 asn or acs of a number less than -1 or greater than 1. The default value is

asn (sgn (argument» or acs (sgn (argument»

respectively. For example (in degrees):

de-':;:J; (i.e:;:· (1.5) = 0

ErTel'" 72 Negative base to a non-integer power. The default value is

(abs (base» i (non-integer power) For example:

~: fTC I'" 7:::: Zero to the zero power (0 '1" ~::l). The default value is 1.

':'((C!" 74 Storage range overflow. The default value is 9.9999999999ge 99 or

-9.9999999999ge 99. For example:

:: :L e C ;?i .,:. (i ';;; 3;:; :i':" i:::I; A will equa19.9999999999ge 99.

f -1.::' 2::i) 't' '5 ..,. Eo; 8 wilt equal -9.9399999999ge 99.

':;:iTer" 75 Storage range underflow. The default value is zero. For example:

\

•

Programming 59

'::":"T,:,(,t, Calculation range overflow. The default value is 9.9999999999ge 511 or

-9.9999999999ge 511. For example:

.: ::. ':::' ') (::!) .. ! .. ':::' = 9.9999999999ge 511

..... 1. e <>:::,:: "1"? = - 9. 9999999999ge 511

ei'I"C,i" .;:' , Calculation range underflow. The default value is zero. For example:

Flags
Flags are programmable indicators that can have a value of one or zero. When a flag is set, its

value is one; when it is cleared, its value is zero. There are 16 flags, numbered 0 through 15.

The following flags have special meanings:

Flag 13 - is automatically set when 6 is pressed without entering data in an enter statement

or when 8 is pressed in an enter statement. Flag 13 is automatically cleared when

data is supplied in an enter statement.

Flag 14 -when flag 14 is set, the calculator ignores math errors such as division by zero and

supplies a default value shown in the list beginning on page 57.

Flag 15 - is automatically set whenever a math error occurs, regardless of the setting of flag

14.

The Set Flag Statement

Syntax:

:"::.t"':::j [flag number, ...]

The set flag (5fg) statement sets the value of the specified flags to one. The flag number can

be a value or an expression. If a non-integer flag number is specified, the value is rounded to

an integer. If ::::/::;; is executed with no flag number specified, all flags (0 through 15) are set.

For example:

Set flag 2.

0: sf-=;! A+l Set the flag designated by ~ + 1.

Set flag 1 and the flag designated by X.

•

60 Programming

The Clear Flag Statement

Syntax:

., •. ':,OJ [flag number q ••• J

The clear flag (cfg) statement clears the specified flags to zero. The flag number can be a

value or expression. If a non-integer flag number is specified, the value is rounded to an

integer. If c.f .:::] is executed with no flag numbers specified, all flags (0 through 15) are cleared.

Examples:

:3: cf·'3 fl''::12

The Complement Flag Statement

Syntax:

iei f [flag number, ... J

Clear flag 14.

Clear the flag designated by the value of flag 2

(either flag one or flag zero will be cleared).

Clears all flags.

The complement flag (emf) statement changes (toggles) the value of the flags specified. If a

set flag is complemented, its new value is zero. If a cleared flag is complemented, its new

value is one. A value or expression can be given for the flag number. If a non-integer flag

number is specified, the value is rounded to an integer. To complement flags 0 through 15,

CI';+ is executed without paramenters.

Examples:

Complement flag 1.

Complement the flag designated by X -1.

Complement flags 3, 4, and 5.

•

Programming 61

The Flag Function

Syntax:

flag number

The flag (fig) function is used to check the value of a flag. The result of the flag function is zero

or one. One indicates a set flag; zero indicates a cleared flag.

Examples:

If flag 2 is set, jump 5 lines.

If flag 15 is set, 1-+A; if flag 15 is cleared,

D--+A.

Branching Statements

Branching statements are used to alter the sequential flow of a program. Branching is used for

such operations as looping through a section of a program, executing a subroutine program,

and branching to different parts of a program based on a decision (if) statement. There are

three statements used for branching: the go to (gto) statement, the jump Gmp) statement,

and the go sub (gsb) statement.

The following three types of branching may be used for both go to and go sub statements:

Absolute Branching -branch to the specified line number (such as '':1"1:.0 10).

Relative Branching - branch forward or backward in the program the specified number of

lines relative to the current line (such as ·':I:E.b -,3).

labelled Branching - branch to the indicated label. This type of branching is generally the

most convenient to use since the programmer doesn't have to know line

numbers for a branch (such as ''3'(0 "Fi t-:E·t ").

Line Renumbering
Line numbers are automatically renumbered when a program line is inserted or deleted. As

lines are inserted or deleted in a program, the line numbers of relative or absolute go to or go

sub statements are changed as required to reflect the insertion or deletion. The address in the

jump statement is not changed. The entire program is checked before any deletion is made. If

a line being deleted is the destination of a relative or absolute go to or go sub statement, an

error is displayed and no deletion occurs, unless an asterisk (*) is used in the delete com­

mand (see page 80).
An error message is not displayed when the line containing a label name in a gto statement is

I f

62 Programming

If a line becomes too long due to line renumbering, the line number for the:.' line will appear

followed by a '-::' when the line is displayed or listed. For example:

Line 8 was stored with 73 characters.

Inserting a line at line 7 causes line 8 to be renumbered such that the branch is to line 100. The

line will appear as:

To view the entire line, delete an appropriate line to recover the original line numbering. The

fact that a line is too long to display or list does not affect the operation of the program when

the program is run.

More information on line renumbering is in Chapter 6.

Labels
Labels are characters within quotes located either at the beginning of a line, after a go to or go

sub statement, or after a run or continue command. Labels at the beginning of a line must be

followed by a colon.

Labels are used for branching and for remarks within a program. When used for branching,

the label in the go to or go sub statement is compared to the line labels in the program until a

match is found. Then, at the end of the line, a branch is made to the line containing the label.

The first time a branch is made to a label, the program is scanned beginning at line 0 until a

matching label is found. From then on, the branch is directly to the line with that label. When

comparing labels for branching, a comparison is made on aI/ characters in the label, including

blanks.

Labels are often used to make remarks in a program for documentation purposes.
For exam pie:

7: IIAt"'E'tJ,H:

Note that a colon must follow a label even if nothing else is in the line.

The Go To Statement
The go to (9tO) statement causes program control to transfer to the location indicated. When a

line contains more than one go to statement, only the last one encountered is executed.

•

Programming 63

Absolute Go To

Syntax:

-:::it '::: line number

An absolute go to statement is used to branch to the indicated line. The line number must be

an integer (such as 5 or 13).

When an absolute or labelled go to statement is executed from the keyboard in calculator

mode, the program line counter is set to the specified line number. To view the line. press the

GJ key.

Relative Go To
Syntax:

':,,1',:. 0 + number of lines

':,it C: -'" number of lines

A relative go to statement is used to branch forward (+) or backward (-) the specified number

of lines, relative to the current line. The number of lines must be an integer.

Examples:

20: ':;It-o +1

21 ~

........... .;:.::..

. -.. -..

.::. .:'l •

'::;I t. ()
'::It. 0

Labelled Go To
Syntax:

':,j t c label

.-. -.:"

Go forward 1 line.

Go back 3 lines.

Go to the beginning of the current line .

A labelled go to statement is used to branch to the line with the indicated label (see section on

labels). This is the most convenient type of branching since no line numbers have to be

considered.

64 Programming

Example:

Go to the line labelled by "Avg.".

When a labelled go to statement is executed from the keyboard in calculator mode, the

program line counter is set to the specified line number. To view the line, press the 8 key.

Multiple go to statements in a line are useful for N-way branching when used with an if

statement. N-way branching is explained on page 68.

The Jump Statement
Syntax:

.: i":::> number of lines

The jump (jmp) statement allows branching from the current line by the number of lines

specified. This statement is similar to the relative go to statement except that the number of

lines can be an expression. If the number of lines is positive, the branch is forward in the

program. If the number of lines is zero, the branch is to the beginning of the current line. If the

number of lines is negative, the branch is backward in the program. If the number of lines is

not an integer, then it is rounded to an integer.

The go to statement executes faster than the jump statement. The jump statement can only be

at the end of a line, otherwise error 07 is displayed when you try to store or execute the line.

Examples:

1 ':3 ; j FI P A

':3:3= ••• ;.jil'rp(8+

i-tE:) >2(1

Jump forward 10 lines.

Jump the number of lines designated by the

value of A.

Jump forward 2 lines if 2==2; otherwise jump to

the beginning of the current line.

Increment B and jump to the next line if B is

greater than 20; otherwise jump to the begin­

ning of the current line.

Programming 65

The Go To Subroutine and Return Statements
The go to subroutine (9sb) statement allows branching to subroutine portions of a program.

Subroutines are useful when the same routine will be executed many times and called from

different places in the program. A return painter is set up when the go sub statement is

executed. This painter points to the next line after the line containing the go sub statement.

The return (ret) statement returns the program execution to the painter location. The return

statement is the last statement executed in the subroutine and must be the last statement in a

line. The depth of subroutine nesting is limited only by the amount of available memory. Each

subroutine return pointer requires eight bytes of memory. Subroutines should be entered only

by a 9sb statement and should be exited only by a ret statement.

When a line contains more than one go sub statement, only the last one encountered is

executed. There are three types of go sub statements: absolute, relative, and labelled.

Absolute Go Sub
Syntax:

:"i :::;. b line number

An absolute go sub statement is used to go to the subroutine at the specified line number. The

line number must be an integer.

Example:

7: ~:::.b 15

11:1. ... ' . t"et

Relative Go Sub
Syntax:

:::, .. ' ..,. number of lines

',.' ,:: ,," .. number of lines

Go to the subroutine at line 15.

End subroutine with return statement (program

returns to line 8).

A relative go sub statement provides forward (+) or backward (-) subroutine branching the

specified number of lines, relative to the current line number. The number of lines must be an

integer.

Examples:

Syntax:

.,.
I •

::<:.::::: label

+5 Go to the subroutine at line 12.

Go to the subroutine at line 5.

A labelled go sub statement is used to branch to the subroutine at the indicated label. This is

the most convenient form of subroutine branching since no line numbers need to be consi­

dered.

Example:

3: ·'3s.b "s,IJbl" Go to the subroutine at the line labelled by

"sub1",

Multiple go sub statements In a line are useful for N-way branching when used with the if

statement. N-way branching is explained on page 68.

By using the jump statement and the go sub statement together. calculated branching to

subroutines is possible. This form of subroutine branching is called the calculated go sub and

has the form:

'::i ::.:;. 1:::: dummy location:: j i'i F::' expression

The dummy location can be a line number. + or - a number of lines. or a label. but the

calculator branches to the subroutine designated by the computed jump expression. For

example:

~} : E"nt H
1 : ''3 s, b "j I~'I r. . H • :':1 ~
,-, : Fo' rt " end .. .:::.
.-, : " I.} " : E'nd .':1 1"1

4 : p rt " s,uto 1 " ,
ret

5: pr't "s.ub211;
ret

6 : P t" t. "::;, u b :3 " ;
r E' \.

If a 3 is entered for N, the program branches to the subroutine at line 4.

e!

Programming 67

The If Statement

Syntax:

i :: expression

The if statement is used to branch based on a logical decision. When an if statement is

encountered, the expression following it is evaluated. If the computed expression is zero

(false), program control resumes at the next program line (unless the preceding statement

was a go to or go sub statement as explained later under N-Way Branching). If the computed

expression is any other value, it is considered true, and the program continues in the same

line. The if statement is most often used with expressions containing relational operators or

flags.

Example:

i: if A=E:;':;Itc,
II onE' II

2 : ';:1 t Cr II Z E" r I) II

"A=E:"
4: ;;:. t p

5 : II Z E' t" CJ II : d s F.)

"A#E: "
Eo: E'nd

Enter a value for A and B.

If A=B, go to "one"; otherwise go to 'zero".

At label "one", display H=E:; then stop.

At label "zero", display ::)fi:E:; then end the

program.

Whenever A and B are equal, Fi ::: f3 is displayed. All other times, Hl* E: is displayed.

The if statement can be used with other statements besides the go to statement used in the

above example. The previous example could be shortened to:

~~1: E'nt A~E:
1: if A=E:;d::.p

UA=8";:;.tP
2: d::.r.o "A#E:"
::;:: E' nd

Note that no go to statements are used.

68 f)rO'Jrarnming

N-Way Branching

The if statement used with a go to or go sub statement makes it possible to branch to any of

several locations. This type of branching is referred to as noway branching, and has the

following forms:

or
.; i·
.t. ! .,. ;

If the first if statement is false, then the branch is determined by the first go to or go sub

statement. If the first if statement is true, the second go to or go sub statement determines the

branch. Go to and go sub statements can be mixed in the same line.

When a line contains more than one go to or go sub statement, only the last one encountered

is used. An if statement whose expression is zero can abort execution of the remainder of a

line (before subsequent go to or go sub statements are encountered).

Example:

2t1:"9tCl 24; if
:>::>-:3f,; "3t (I 32; if
::0,40; "3to "1"'la>~"

2 1 :

If X is less than or equal to 30, the program branches to line 24. If X is greater than 30 and less

than or equal to 40, the branch is to line 32. If X is greater than 40, the branch is to the line

labelled "max".

The Dimension Statement
Syntax:

.... :i. ;'! item [, item ~ ...]

item may be: simple variable

array variable [dimension [; dimension, ...]]

The dimension (dim) statement reserves memory for simple and array variables, and initializes

the indicated variables to zero. r-variables can not be dimensioned in a dimension statement

Programming 69

In the dimension statement, the dimensions of an array can be specified by expressions. For

example:

0: €,t"tt. t..J,I,r2
1: dil'", AU~,IJ,

B [r2J , C [:;:, 2*t·n
Variables are used to specify dimensions.

Variables are allocated in the order that they appear. If a variable is allocated already, an error

results. All the variables dimensioned in anyone dimension statement are stored in a contigu­

ous block of memory. This is important when recording data.

Dimension statements may appear anywhere in a program but any dimension statement can

only be executed once during a program, The number of dimension statements is limited by

memory size. The number of dimenSions and the size of the dimensions of an array is limited

only by memory size and line length. For example:

Reserves 128 array elements.

Reserves 1000 array elements.

Specifying Bounds for Dimensions

A dimension may be specified by giving lower and upper bounds. The lower bound must be

specified before the upper bound. The two are separated by a colon. The bounds must be in

the range from -32767 through 32767. For example:

(1: dil", ~;[-:=::0,
4: 6]

Reserves 12 array elements.

This statement reserves the same amount of memory as:

Reserves 12 array elements.

The elements of array S are referenced as:

8(-3,4]

8[-2,4)

8[-1,4]

8[0,4)

8[-3,5)

8(-2,5]

8[-1,5]

8[0,5]

8(-3,6]

8[-2,6]

S[-1 ,6J

8[0,6)

If a lower bound is not specified, as in X[4,3], it is assumed to be 1, the same as X[1 :4,1 :3].

I
1.\

I

i
I'

I

I
I

70 Programming

The Clear Simple Variables Statement
Syntax:

The clear simple variables (csv) statement clears any allocated simple variables to zero. The

clear simple variables statement does not de-allocate variables. Therefore, an error results

when the following line is executed:

Syntax:

Not allowed. Cannot allocate A twice.

The List Statement

i .. :' • [beginning line number [~! ending line number]]

. t. special function key

The list statement is used to obtain a printed listing of a stored program, section of a program,

or special function keys. If no parameter follows the list statement, the entire program is listed

If one line number is specified, the program is listed from that line to the end. If two line

numbers are specified, the program segment between the two line numbers is listed. To list all

of the special function keys, execute 1 j. ::'-t k (for list keys). When list is followed by pressing

an individual special function key, then only that key is listed (this is not programmable). The

list statement must be the last statement in a line.

Examples:

1 i:.:::.t k

Lists the entire program.

List lines 10 through 15.

List line 4.

List the special function keys.

List special function key f10 (not programma

ble).

At the end of a listing, a checksum is printed. This checksum is useful for detecting int(~1

changed or omitted lines and characters. Any difference in the programs generates a diffewill

checksum. In the following two programs, only the characters r- 'i:. in line 1 are interchange! I

Note that the checksums are different. There is no change in checksum from machine II!

machine, with different memory sizes, nor with different ROMs.

[1: E·nt.

1: r.ort.
O:If" .. ~t·~

2: r.ort.
3: E'nd
*2:~:740

t·~ ..
..

;:. 'l r t. .
i ;: . " rt·~ ~

Used and Remaining Memory

Different
Checksums

Programming 71

~1 : E' n t. H
1 . p r t. " ;:. '::t t r • .

I:' f
.. H ,

2: f-o rt
.. i ::. .. ft·~ ,

:3 : E'nd
*2 :37]6

After a list operation, two numbers are displayed. The first number is the total length of the

program in bytes*. This number doesn't include variables, subroutine return pointers, etc. The

second number is the unused memory in bytes. For example:

Program Length Unused Memory

(in bytes)

·A byte Is the basic unit of data in the 9825A. 8 bits make up one byte. 8 bytes are required to store a number.

I'
!

. ,I
; ,

I

! .

I
J

i
1

I.

, l

72 Programming

6 Chaptelr

Debugging

Debugging s Ihe pocess, 0 ' refining a progUlffl by editing , co rrecting, and updating , UkJe

programmingl. it is a cn::!8tive p ocess, Many operallons ar'e i:nvolved such as deletlngl and

inserting lines a.nd changltng, inseding. and deleting characte'rs. Selective trac ·ng and selec­

live Slo,p,plong are usefull ' or looa ing I rileS which require changes. B Is useful 'for goillg

through a pr'ogram o:ne Ioina at a time, Trl,is Chapter explains s.ome of the ,steps lin ediUng a

program.

Flinding the Problem
The first step, in debugg g' is t,o f~nd the l ines Which reql!Ji e changes, This can be done in

se ,eral ways.. One ay lis to step hrough a p lfogram by pressing 8 once for &ach Illne to be

executed, Then che.ckl,he results aUer each e)(eco'\ed program line.

Anoltier way is to use the trace. stop, and normal statem.ents. When program lines are traced ,

Ihe line numbe'f , and variables and nags hich are a.ssigi"'ied values are printed, Th is al lows

you 10 monitor program ac tivity in individua. program l irtes , IUIS in'g the stop statemen1, 1he

program can be stopped whenever ,a specified program line is ,encountered, The normal

statement is used to termina1e tra'Ging and stopping . Stop, raoe.and n.ormal statemerns are

expl alned la,tElil".

Fiixing the Probleml
The next s1ep in ,debugging is ix.ng the problem, In many cases, this is as simple as ,changingl

one character. Fixing the problem coo le. however, require r,ewrit~ng many program lines.

o modify cha rac lers within a line. ,etch he ine by pressing the [=:] key followed by the line

number of the Iline, requiring the change'. Then pr'ess m. Ttie lline wi ll ,appea n the d isplay.

Next press either 8. if the change s closer '10 the endl of the display, or 8, i ' jtl,e change is

c loser to Hie fron t. Once 9.. tlashing oursor is over the locati'on needing correction, you can
either insert ,chwacters. ,delete characters. or wnt,s oV'erit1e e':dstingo characters. To, insert

characters:, pfess · he (3 key. Tn S change's the i lashing,. to ,e '[lashing , Ctlaracters that are

typed-in are inserted at the left ,of this cursor, To delete characters. precssoharactoe r =:J'Ior

e'Bc'l11 clla r,a:ctef to be deleted . To replee£!' cnar,aoters, be sure the . cursor is in ~'he d spllay 01

the ~ is in the' d~s 'plB.Y, press 8 to get I and then enter !he necessary c'haracters.

73

..'d Deougging

To modify lines within a program, use the EJ key or the 8 and CO keys to bring the line

into the display. To delete the line, press the line ~ key.

If a line being deleted has a line number referenced by a go to or go sub statement, an error 36

will occur. Either execute the delete command with the optional asterisk (*) parameter (see

page 80), or adjust the line reference in the go to or go sub statement accessing that line. In

the following example, line 25 is to be deleted; but line 25 is referenced from line 27. Two

alternatives are shown.

Program section:

Alternative 1 :

Type in :

i -;--'"

Press :LLi

Alternative 2:

Change line 27 to:

26: if t·~=27;E.tp
27: tHl~N;9t..c. 25

Deletes line 25 only. The go to statement in line

27 still addresses line 25.

Then fetch line 25 and press line 8,
or execute dei :~ ::i .

To insert a line, fetch the line that the inserted line is to precede. Then type the new line into the

display and press the line 8 key to store it. All the lines from the fetched line on are

automatically renumbered (incremented by one) . When a line is inserted, the line references

of go to or go sub statements are incremented to reflect the new line numbering. If the line

being inserted contains an absolute go to or go sub statement, it is assumed that the line

numbers reference the lines before they are renumbered . Thus. if a line inserted before line 30

contains a :;1;. 045 statement, it will be renumbered t0 3t 0 46, (The old line 45 is renumbered

to line 46,)

In this example, a line is inserted between lines

14 and 15.

14: prt "nIJf"lbe'r
of do,'/ ::, " ~ 0

15: ·;:It.) l 'j

First, fetch line 15, then type the line to be in­

serted into the display.

Then press the line B key. The display will

Debugging 75

be. ['--1_5_i-_______ ~J

To see where the line was inserted, exe-

i 4: F:' r t 'n IJ "'I b E' r'
of do, '/:=,", D

15: prt. "nIJf"lbO:'r
(It' 1 ••• IO:·E·k::.",l~

1 E, : ''3 t (0 2 ~j

Note that the line number in the go to statement in line 16 is incremented since old line 19 is

now line 20.

The branching address of the jump statement is not affected by adding or deleting lines in a

program.

The Debugging Statements
The trace, stop, and normal statements are used for debugging programs. The three state­

ments have dual roles in that their action depends upon whether any parameters are

specified.

Operation of Trace, Stop, and Normal

To effectively use the trace, stop, and normal statements, the internal operation should be

understood. There is one master flag which enables and disables overall tracing and stop­

ping. In addition, each line has two flags. The trace flag enables and disables tracing of the

line. The stop flag enables and disables selective stopping at a line. These flags are unrelated

to flags 0 through 15, which are explained in Chapter 5.

76 Debugging

The Trace Statement
Syntax:

t t- C [beginning line number [, ending line number))

The trace (trc) statement sets the master trace flag. If line numbers are specified in the trace

statement, then the individual line trace flags are set on the designated lines. One line number

specifies that line only and two line numbers specify the block of lines from the beginning line

number through the ending line number.

During the execution of the program, a specific line is traced if both the master trace flag and

the individual line trace flags are set. When a line is traced, the number of the line is printed as

well as information describing any variable assignments and flag operations (involving flags 0

through 15).

The Stop Statement
Syntax:

:;:. t P beginning line number [, ending line number]

The stop (stp) statement with line numbers sets the master trace flag and stop flags on the

designated lines.

Before each program line is executed, the .stop flag for that line is checked. If this flag and the

master trace flag are set, the program is stopped before the line is executed. The number of

the current program line is displayed when the program is stopped. Execution of the program

will continue from this line if 8 or B is pressed (see description of 8 and B keys).

The Normal Statement

Syntax:

no ,.- [beginning line number [, ending line number]]

The normal (nor) statement clears the trace and stop flags of the lines specified by the line

numbers. If no line numbers are specified, the normal statement clears the master trace flag.

The use of a master trace flag in addition to individual line trace and stop flags makes it easy to

enable or disable selective tracing or stopping of parts of a program. This process is shown in

the following example.

Debugging 77

A 100 line program contains three sections in which critical operations are performed. These

sections can be traced by executing the following statements:

t roc· :~, 15

The program is run and the tracing printout indicates that line 45 contains an error. The line is

modified and no t- is executed to clear the master trace flag. The program is again run, but this

time the assignments are not printed. At the conclusion of the program it·becomes obvious

that the program still contains an error. The three critical sections of the program are again

traced by executing t n: .. This sets the master trace flag so that the lines 5-15, 40-50, and

70-85 are traced (the trace bits are still set on these lines). After the program is totally

debugged, the individual line trace flags are cleared by executing nor ~), 9999.

The individual line trace and stop flags are not normally stored on the cartridge when a

program is recorded by the record file statement. These flags can be recorded on the tape

cartridge along with the program by including the optional debug ("DB") parameter in the

record file statement. The master trace flag is not recorded. To have the program automati­

cally trace the lines when the program is loaded back into the calculator, put trc in line 0 to set

the master flag.

Chapter 7
Commands

There are five commands explained in this chapter. Commands differ from statements in that

they can be executed only from the keyboard. Commands cannot be stored as part of a

program.

The Run Command
Syntax:

\---I_An [line number or label]

The run command clears all variables, flags, and subroutine return pointers and then starts

program execution. If a line number or label is specified, the program begins execution at the

specified line number or label. Since G is an immediate execute key equivalent to 1--- i_A (1 0 m, the word (-i __ H--, must be keyed in to run from a line number or label.

Examples:

Run beginning at line O. This is the same as

pressing G-
Run, beginning at line 20.

Run, beginning at the label "third".

The Continue Command
Syntax:

c- 0 (: t [line number or label]

The continue key (cont) command continues the program without altering variables, flags, or

subroutine return pOinters. If no line number is specified, then the program continues from the

current pOSition of the program line counter. When a line number or label is specified, the

program continues at the specified I ine or label. If the program has been edited or an error has

occurred since the program ran, continue without parameters causes execution to begin at

line O. Since 8 is an immediate execute key equivalent to con1:- 0 m, the word C01-"'-!:­

must be keyed in to continue at a line number or label.

80 Commands

Examples:

......... .,. m
1 ••• ·Lij" I I.' W

·~;m ·····W
"::.OC!p" m

Continue from current position of program line

counter. This is the same as pressing 8.
Continue from line 3.

Continue from the label "loop".

The Delete Line Command
Syntax:

i::' e::' beginning line number [~ ending line number] [, .,;,.]

The delete (del) command is used to delete lines or sections of programs. When one line

number is specified, only that line is deleted. When two line numbers are specified, all lines in

the block are deleted. To delete an entire program, and leave the variables, de 1 ~J, ':;;9'3'3 can

be executed.

Examples:

Delete line 28.

Delete lines 13 through 20.

Delete program from line 18 to the end. (This

does not affect variables.)

An attempt to delete lines that are destinations of relative or absolute go to or go sub state­

ments (except labels) will cause error 36. To delete these lines, the delete command with the

optional asterisk parameter can be used. When the asterisk is used, any go to or go sub

statements which reference deleted lines are adjusted to reference the first line after the

deleted section. For example to delete line 24 in this program segment

22: E"t"lt Ui if
U=0; .:;n. (I 24

23: U+T.;.-T;C+l.;.-C;

24: r.'rt "A'.)'':!.
U::;.;J.·3e", T C

25: F='rt "Tot.(!.l
Uso.·3e·",T

Type-in: dE' 1 24, *"
Press: mI'

Press: 800008m

22: ent U;if
U:::0;9tO 24

2~:: U+T-tT;C+l"'C;
"3to 22

24: prt· "TotOol
UsOoge",T

The Erase Command
Syntax:

,::- : .. :".::: c· [c. or !.! or k or special function key]

Commands 81

The erase command is used to erase programs, variables, and special function keys as shown

below.

Command Meaning

Erases program and variables.

Erases everything (like switching the calculator

off and then on again).

Erases all variables.

Erases a/l special function keys.

Erases the indicated special function key.

See Appendix D for things affected by the erase command.

Syntax:

f ':~"1:. .::" t"""j [line number or special function key]

The fetch command brings individual program lines into the display. This is useful for editing

lines or for viewing individual program lines. Fetching a special function key displays the

definition of the key or f followed by the key number if the key is undefined. Executing fetch

alone, fetches line 0

Examples:

Fetch line 10.

Fetch special function key CGJ.

Chapter 8
Live Keyboard

The calculator's live keyboard mode provides additional power for executing single or multi­

statement lines while a program is running . Among other things, you can perform math opera­

tions, monitor program activity, and alter program flow in live keyboard mode. Two statements

described in this section permit the live keyboard mode to be turned on or off.

How Live Keyboard Works

While a program is running, a live keyboard operation is executed as follows :

• The live keyboard operation is keyed into the display and OJ is pressed.

• At the end of the current program line, the live keyboard line is executed.

• The live keyboard operation is executed entirely before the program continues.

Live Keyboard Math

Any math operations can be executed from live keyboard. Thus, when a~ogram is running

and a few calculations need to be made, key in the operation and press W'

Statements in Live Keyboard

Math operations are just a small part of what can be done from live keyboard. If you want a

listing of the current program, press GOJ.
To check a variable in the program, key in the variable name, such as A or E: [4J and press

OJ. The current value of the variable will be displayed.

To change a variable from live keyboard, enter the new value and assign it to the variable to be

changed. For example to reset a counter such as C + 1 -;.. C to 0, key in ~J -;.. C and press OJ.

95

Parts of a program can be executed from live keyboard as subroutines using ttll' 'I'

statement. For example, the following section of a running program is used to ril!)llll,

variables used in the program:

11: "ChE·C.k":pt"t
A, B, C, [J; fE·t.

By executing ·:':i::;:.b "ch':':'ck", the values of the variables are printed and control retulll I

program.

After a subroutine is finished, control returns to the main program when the return (ret) ",

(stp) statement is executed or when a stop flag at the beginning of a line is encounll!l"!

Although the special function keys fo through f23 cannot be defined from live keybo; II' I

can be used from live keyboard. In this example, the special function keys are used to .ill,"

flow of the running program.

The special function keys are defined as follows:

The program is:

[1: "~'Jo.it.":d::.F-'
"t,,1IJ, i t. i n'3" ; 1.,.10. i t
1 ~:1(1; .j r'IP F

1: '3tQ "first"
2: '=3t .. o II sE'cclr,d II
3: "!Ito "third"
4: "fi~-::.t":r.'rt
"f i t"::.t"; ~3~F;
';:Ito "~4IJ.it"

5: IIS€'c.clr"j": t-1rt
"::.E'cond"; .~HF;
·~to "~'Jo.it"

E,: "third":pt"t.
"t-hi rd"; E1~F;
"!Ito "~,J'J.it"

Live Keyboard 85

When the program is run, 1 .. .ICl.i tin=:.< is displayed until one of the immediate execute (line

preceded by *) special function keys is pressed. Then the program branches to the line where

either f i no.t., ;::.E'cond, or t.hi n::l is printed. Although this is a simple example. it shows

one way that special function keys can be used in live keyboard mode.

The Stop Key in Live Keyboard
If 8 is pressed during a live keyboard operation. the live keyboard operation is stopped. but

the program continues. Pressing 8 a second time will stop the program.

Live Keyboard Limitations
Operations that modify the stored program or special function keys and operations that di­

rectly affect the execution of the program are not allowed in live keyboard mode. These

operations include the following:

Mnemonic

Commands:

run

cant

fetch

erase

del

Statements:

ent

end

gto (allowed in a live key-

board subroutine)

Idp

Idk

Idf (program file)

Error

error 03

error 03

error 03

error 03

error 03

error 13

error 09

error 09

error 64

error 64

error 64

In addition. the following keys cause a beep and are ignored when pressed in live keyboard

mode.

8 BS

5

t

~
i

I
f

f
I

r

86 live Keyboard

The Display
Lines which are typed in live keyboard mode will disappear from the display if the running

program uses the display. The live keyboard line is re-displayed after each keystroke so that

the line with the new character added can be seen.

If the running program continually uses the display, the live keyboard lines will not be visible

while the line is being typed. In this case, the line that is currently being typed, or the line

accessed by B can be held in the display by pressing 8 or 0. These keys will suspend

the running program for one second and display the line. If the key is kept depressed, the

program will be halted for one second after it is released. After the line is executed, the 8 or

8 key will not re-display the line unless 8 is pressed first. For example, suppose the

following program is running in the calculator:

(1: d::.ro "Lil.)E'

KeYboard";wait
100

1: "9to B

When the following line is typed in live keyboard, it will not be visible:

Press 8 or8 and the line will be displayed for about one second. When CD is pressed,

the line will be executed and 5 will be stored in A and printed.

Results of calculations performed in live keyboard disappear from the display if a running

program uses the display. The GJ or GJ keys only hold the live keyboard line in the display

and not the result of the execution of a line. The result can be held in the display by appending

a wait statement to the end of the line (e.g. 10 + 12; I .. J(I.i 1:. 1(j~Z10).

A special function key can be defined to preserve the displayed result long enough to be

viewed as in this example:

Press: 8m
Type in: ':':;: I.'.! (). j, t :1. U;::i ij

Press: 8
As you type in a calculation such as 5*6, press m instead of CD. The result of the calcula­

tion will remain in the display for about one second.

Live Keyboard 87

The Live Keyboard Enable Statement
Syntax:

The live keyboard enable (Ike) statement enables the live keyboard mode. For example:

Jl: Ike· Enable live keyboard.

Live keyboard is automatically enabled when the calculator is turned on, E" rO.:::.E" o. is executed,

or 8 is pressed. To disable live keyboard, the live keyboard disable (lkd) statement is used.

The Live Keyboard Disable Statement
Syntax:

The live keyboard disable (Ikd) statement disables live keyboard mode. For example:

(1: 1 kd The first line of this program disables live

keyboard.

To re-enable live keyboard during a program it is necessary to execute the live keyboard

enable (Ike) statement from the program.

8, B, and 8 are the only keys recognized while a program is running with live keyboard

disabled.

During cartridge operations, the keyboard is disabled and all keys except 8 are ignored.

-

R8 l ive Keyboard

Chapter 9
Tape Cartridge Operations

The tape cartridge used with the 9825A Calculator is a high quality, high density, digital

storage medium. The structure, care, and use of the tape cartridge are detailed in this chap­

ter.

Specifications
Typical data transfer rate

(the rate at which information is loaded from or

recorded on the tape cartridge) 2750 bytes per second

Typical access rate

(the rate at which information passes over the

tape head when searching for a file) 14300 bytes per second

Typical rewind time

(from end to end) 19 seconds

Typical erase time

(one entire track)

Usable tape length (typical)

Number of tracks

40 seconds

42.67 meters (140 ft.)

2

89

(;
i

90 T ape Cartridge

Tape Structure
The structure of the tape is diagrammed below:

Track 0 0

00 00 o 0 OH------lu."...-...,....a.'--..u".---l..&,-r---..~~'r____l 0 0 0 0

Track 1 0

Beginning of Tape /114·-----Files -----~ End of Tape

o Data or Program

o Inter File Gap

An individual file has the following format:

~ File File File

\ Gap File Header Body Gap

114 .. 1----------1 file---------~·I
o Data or Program

o Inter File Gap

Tape Cartridge
The tape cartridge, shown below, is used to store programs, data, and the defined spec'ial

function keys.

To record on the tape cartridge, the record

slide tab must be in the rightmost position, that

is, in the direction of the arrow (as shown).

T ape Cartridge 91

Inserting the Cartridge
Insert the tape cartridge so that the label on the cartridge faces the back of the calculator as

shown,

Inserting the Tape Cartridge

Tape Care

Cleaning the Tape Head and Capstan

92 Tape Cartridge

Dirt and dust are by far the greatest cause of cartridge related-errors. Several basic precau­

tions can reduce such problems substantially.

• Clean the tape head and capstan (drive wheel) of the tape transport after at least every

eight hours of use, or more frequently in dirty environments.

• Rewind the cartridge after each use.

• Keep the tape transport door clean.

• Keep the cartridge in the plastic container supplied with it.

Two other factors can affect the reliability of the tape cartridge. Strong magnetic fields can

erase data and programs stored on the cartridge. Physical damage to the tape, such as

wrinkled or folded tape can also cause record and load problems. A back-up copy should be

maintained for critical programs or data on a separate tape cartridge. ./

Refer to Appendix F for information on tape error recovery.

The Rewind Statement
Syntax:

The rewind (rew) statement is used to rewind the tape cartridge to its beginning. This state­

ment has the same function as 8. Operations which do not use the tape cartridge can take

place while the tape rewinds. To stop a tape while it is rewinding, press the tape cartridge

ejection bar. The rewind statement must be executed before marking a new tape (see page

99).

The Track Statement
Syntax:

t !." k track number

The (trk) statement sets track a or track 1 of the tape cartridge. When the track statement is

executed, any following cartridge operations are performed on that track. Track a is automati­

cally set whenever the machine is switched on, 8 is pressed, or E'f";J.:::·E· o. is executed. The

track does not change when the cartridge is removed nor when G is pressed.

The track number can be an expression with a value of 0 or 1, only.

•

• ..

\1

•

Syntax:

CAUTION

THE TRACK IS AUTOMATICALLY SET TO 0 WHEN 8 IS

PRESSED, E·r"CI.:::.E" o. IS EXECUTED, OR WHEN THE CAL­

CULATOR IS SWITCHED ON. UNLESS A SUBSEQUENT

TRACK STATEMENT SPECIFIES TRACK 1, CARTRIDGE

OPERATIONS WILL BE PERFORMED ON TRACK O. IF YOU

ARE UNAWARE OF THIS, YOU COULD LOSE IMPORTANT

PROGRAMS OR DATA.

The Identify File Statement

T ape Cartridge 93

:i. <:::1 f [file number [, file type [, current file size [, absolute file size [, track number]]]]]

The identify file (idf) statement is used to load the contents of the current file header into the

return variables specified. After the identify file statement is done, the tape is positioned in

front of the file just identified. Thus, the tape is positioned for easy loading or recording of the

identified file.

All five of the parameters are optional return variables. That means that a value is returned to

the variable specified when the statement is executed. If one variable is specified, as in:

:leif Fl, then only the file number is returned. Two variables must be specified to get the file

type; three variables to get the current file size in bytes; four variables to get the absolute file

size in bytes; and five variables to get the track number. The return variables can be any

variable type.

The file type can be one of the following:

o null· file

binary program

2 numeric data

3 string or string and numerics

(String Variables ROM required)

4 memory file (from record memory

statement)

5 key file

6 program file

"A null file has an absolute size of zero.

94 Tape Cartridge

The tape position becomes unknown when a tape cartridge is inserted into the tape drive, the

track is changed, B is pressed, or E·t-O.::::E· (J. is executed. If the tape position is unknown

such as after switching tracks, at least one return variable must be specified or error 45 will

occur.

Example:

1 cj f f-i .. E: , i

Syntax:

_.
- , [I , E Identify the current file and return the file

number, file type, current file size, absolute file

size, and track number to A, S, C, D, and E,

respectively.

Return the current file size to A.

The Find File Statement

f ':::1 f [file number]

The find file (fdf) statement is used to find the specified file on the current track of the tape

cartridge. The tape is positioned at the beginning of the file specified. The file number can be

an expression. A find file statement without parameters finds file O. Other statements can be

executed while the find file statement is executing.

NOTE

If a file number which does not exist is specified, the next

cartridge statement executed (except find file or rewind) will

result in error 65.

Examples of the find file statement:

Find file 8.

4: fdf R [:=:] Find the file specified by the value of A [3].

"

T ape Cartridge 95

The Tape List Statement
Syntax:

t .L :~. ::::. t

The tape list (tlist) statement is used to identify the files on the tape cartridge. Starting from the

tape's current position, the track, file number, file type, current file size in bytes, and absolute

file size are printed as shown below.

Track----. t rk 1 Current file size

4:3 2~ Absolute file size
File number • # 0

File type ---- 6
#1

46 76

2 3~34 40(1
.:. '-'

(1 (1

The file type can be one of the following:

o null* file

1 binary program

2 numeric data

3 string or mixed string an numeric

data (String Variables ROM must

be present or loading this file will

give error SO).

4 memory file (from record memory

statement)

5 key file

6 program file

"A null file has an absolute size 01 zero.

If 8 is pressed while tlist is being executed, the tlist will terminate. Otherwise it willll.lll.\' ,

the last file (null file) is reached.

A convenient way to determine the current track setting is to execute "tlist" then pw.·.

Alternately, use the identify file statement as in: i c:: f ''1'' ~I T, 'r" T'~,'r (;.

Syntax:

. k number of files" file size in bytes [, return variable]

The mark (mrk) statement reserves file space on the tape cartridge. A file must be reserved

before a program or data can be recorded. One file more than the number of files specified is

marked. This file is the null file and is used as the starting point when marking more files. The

null file has an absolute size of zero.

The file size is specified in bytes. If an odd number of bytes is specified, one more byte is

automatically marked. For example, if 111 bytes are specified, 112 bytes are marked.

In order to mark files, the position of the tape must be known. If the pOSition is unknown,

execute a find file, or rewind statement to position the tape where you are going to start

marking. Executing a mark statement where the first two parameters are zero (e.g., mrk 0,0) is

a special case and is explained in Appendix F.

The number of files and the file size can both be expressions. If a return variable is specified,

the file number of the last usable file marked is stored in it. If the value of the return variable is

positive, all the files specified were marked. If the value is negative, an end-of-tape (eot)

condition occurred before all the requested files were marked. In either case, the absolute

value of the return parameter is the last usable file marked. The null file is one file beyond.

Example:

A tape is to be re-marked for 3 files with a length of 320 bytes each on track O. The following

short program performs this operation.

t1 : r E'I . .)

1 . t r k .
'':1 : 1"1 r io' '- '.
.-,
.,:. : E" rt
4 : E'nc:l

[t

:3 , :320
~.:: + 1

, 1,,1 ,

Rewind the cartridge.

Set to track O .

Mark 3 files, 320 bytes long.

Erase the rest of track O.

End the program.

..

•

T ape Cartridge 97

will be positioned at the beginning of file 3 and the resulting tape structure will be:

1 f.lCK 0 o 2 3

ilc'tjlnnlflg /1 t--------FFileS ----.-I-I '- Null File

()f Tape

Erased Tape

files with a length of 80 bytes are to be marked. Execute: ;"1 ,.- k ;::~ , ::: 0

structure:

Track 0 o

Beginning /1 ~---­
of Tape

Files

New Files

2 3 4 5 Erased Tape

------<·~I '- Null File

2 files, 300 bytes long beginning at file 4, execute: f cli" ,;:1·:; J (k ;::~ , 3013

ining Size to Mark a File

ng a file for a program which is currently in the calculator, execute 1 i::::i:. --1. The

in the left-hand portion of the display is exactly the number of bytes needed to record

ram, It is advisable to mark the file larger to accommodate any future program

Data Files

Data files require 8 bytes for each data element to be recorded, For example, to record data

which is stored in the variables A and B, mark a file 16 bytes long .

. Special Function Key Files

Special function key files require 1 byte for each character under the keys, plus 2 bytes for

each defined key. If the number of bytes for each key is odd, add one byte, The sum for all

keys is the minimum size to mark the file.

96 T ape Cartridge

Memory Files

For a memory file (using record memory statement), mark the file for the size of your cal­

culator's memory as listed below:

8192 bytes for standard calculator

16384 bytes for Option 001

24576 bytes for Option 002

32766 bytes for Option 003

T ape Capacity
Table of Typical Storage Capacities

File size Typical number of

(bytes) files per track

50 827

100 656

250 404

500 239

750 170

1000 131

2500 56

5000 28

7500 19

10000 14

Bytes per

track

41350

65600

101000

119500

127500

131000

140000

140000

142500

140000

Due to the overhead required by each file, the number of bytes per track is not the same for

different size files.

Tape Capacity Calculations
The number of files which can be stored on the tape cartridge depends on the size of the file.

Using the following calculations, the number of files that can be stored on the tape cartridge

can be calculated.

L = 1.278 + .209 int (A/256 + .999) + .0105A

where: A = absolute file size in bytes.

L = length of the file in inches.

a) For typical capacity per track:

Number of files per track = int (1665/L)

b) For minimum capacity per track:

Number of files per track = (1498/L)

•

•
j
j

•
T ape Cartridge 99

The following program can be used to mark more files and calculate the percentage of a track

used.

(1: t- E' 1 ... 1 ; f ::< d (1

1: E' nt "TrlJ.c.k~
(1 (I r 1 ,-;:, " ~ T ; t r k
T

2: -=. n t "t'l e 1.,.1 t O. F-' e
,~, 'y' E' :;:. = 1 t·~ (I = (1 " , t·j

:;:: if H;'::;Ito "t'lllt­
k"

4: l::H-F-1-L
5: telt F; idf A~
A~A,A

6: if A=l~1;':HO
"t'l (I. r k "

7: ·::;I:;:.b " L"
:::: c!+L~L;F+l~F;

'3t (I 5
9: "t'10.rk":prt

"~.~ of TOF-'e"
10: prt t'10.rk

E' d " , L."" 1 to 6 5 .;.:. 1 0 0 ~
r (1

ii: if rO>=100;
F-' r t "A I 1 t'l o. r k E' d
II ; .~ t CI II (I 1..4 t. It

12: €'r,t. "~lark
fiji) re f i 1 t?::.?
'/ >:. :;:. = 1 r·l (I = l~1 " , t'1

Marking New Tapes

1 :~: : i f t'1 = 0 ; '3 t 0
"out"

1 4: E' n t. " L E' n '3 t h
of filE:::. ",A;
'::;1:;:. b " L"

15: d::. p "t·iIJi'·lbE·r
of filE,:;:.",A,
" 1 c,n'3? "

lE,: €'nt "",1;1*
C!+L~r1

17: if (rl 1665~
Z»=l;prt. "Too
lorl·3 ... " ~ "Tho.t
i:::. ~·; " ,Z';':'10l::1;

'::;It. I) "I)ut"
1:::: rj~L;i"lrk I,

A, F.~; if P<0; d::.p
" 1 (1 0 ~,; t'1 o. r- k E' d " ;
'::;Ito "c1ut"

1 9 : '::;1 t CI "t'1 o. r k "
2~:1: lI out ll:dsF:1

"Tho.t':;:. it";end
2 1: ,. L " : 1 . 2 7 ::: +

.209 i nt (A / 25E,+

.999) +. 01f)5A-1-0;
r-='t

Since no files are marked on a new tape, the rewind statement must be used to pOSition the

tape before marking files. For example. to mark 4 files 200 bytes long on a new tape. execute

the following :

:.··;:::-i 1

Marking Used Tapes

When re-marking a used tape. it is possible that some old files may remain on the tape, These

files can be accessed accidentally by changing tracks, For example, suppose track 0 has 4

files of 1000 bytes and track 1 has 2 files of 1500 bytes:

100 Tape Cartridge

Then track 0 is re-marked from the beginning to contain 2 files of 200 bytes each:

I T"ok tl +11 2

I 'I 3

141 ~ Track 1 0

o Old invalid files

If the tape is positioned at file 1 on track 1, and t d:: ~] is executed, the tape will be positioned

in an old section of tape. Accessing file 1 on track 0 will result in using old file 1.

With slightly different conditions, it is possible to have missing files rather than multiple files.

For example, suppose that track 0 has 4 files of 1000 bytes each:

If the tape is rewound and ;"'; j""' ,,' :1. :' :3 Ci iJ i? is executed, the tape would have a gap of missing

files:
~ missing files

To remove the old files, use the erase tape (ert) statement. For the first example:

Rewind the tape on track O.

Mark 2 files, 200 bytes each.

Erase the tape starting at the null file.

CAUTION

WHEN MARKING OVER A PREVIOUSLY MARKED TAPE,

USE THE ERASE TAPE STATEMENT TO REMOVE OLD

FILES.

/

•

/

-i. '

\
\

•

Tape Cartridge 101

The Erase Tape Statement
Syntax:

.... file number

The erase tape (art) statement is used to erase everything on the current track starting from the file

number specified. It is usually executed after a mark statement (see Marking Used Tapes on page

99), The erase tape statement:

1. Positions the tape in front of the file specified.

2. Marks that file as a null file.

3. Then, erases the track from the null file to the end of the track.

4. Finally the tape is positioned in the file gap in front of the null file.

The file number can be an expression.

For example, a tape has the following structure on track 1:

,

Track 1 0 1 2 3 4 Erased Ta pe or Old Files

/, I t...~---- Files------.t-1 '---- Null File

To erase everything on track 1 starting at, and including file 3, the following program is used:

0
=

t. r k
1 : E' t"t. .:*

'-'
':1 : E'nd '-

After running this program, the tape's structure is:

£

I r,,,k1 I 0 1 1 2 1
3

1
. ----------4fr-------~ I- Files -I '-- Null File

J

Erased Tape

Track 0 is not altered.

-

I

I
I

102 Tape Cartridge

The Record File Statement

The record file statement is used to store both data and programs. The syntax for each is

explained below.

Recording Programs

Syntax:

f"cf [file number [, beginning line number [, ending line number)] [, "~:;E" or "DB"]]

To record a program or a section of a program the record file (rcf) statement is used. If no file

number is specified, the file is assumed to be file zero. If no line numbers are specified, the

entire program is recorded on the specified file. If the beginning line number is specified, then

the program from that line number to the end is recorded. If both line numbers are specified,

that program section is recorded from the first line number to the second line number, inclu­

sive.

The file number and ending line number parameters can both be constants, variables, or

expressions. The beginning line number can be a constant, or expression (such as 1A), but

must not be a variable. Using a variable as in t-cf i, A records the value of "A" as data. To

record the program beginning at the line whose value is A, use t-cf 1, iA.

If "::£" (for secure) follows at the end of the statement. the program is secured when stored

on tape. When the secured program is loaded back into the calculator, the program cannot be

listed or displayed, but can be re-recorded on a tape cartridge.

When "DE:" (for debug) follows at the end of the statement, any trace or stop flags are

recorded with the program (see page 77).

The tape fite must be marked before recording a program. The file size must be greater than or

equal to the size of the program being recorded.

Example:

7: ref 8,3

Recording Data

Syntax:

j'" c. f file number, data list

Record the program on file 8, starting at line 3

through the end.

Tape Cartridge 103

The record file (ref) statement is used to record data when this syntax is used. The data list can

consist of simple variables, array variables, or r-variables. r-variables are stored in a different area

In memory which is not contiguous with array or simple variables (see page 17). Due to this,

r-variables cannot be mixed with simple or array variables in the record file statement.

To record an entire array, the array name is followed by an asterisk in brackets. For example:

Record the entire array S on file 2.

Simple and array variables must appear in the data list in the same order as allocated. If the

variables appear in a dimension statement, then they must appear in the same order in the

record file statement.

Example:

0: dif', A[l(f~l~JJ

1: 0..;.::<

:3: 1..;.1
4: ref 5,A[*J,;·::,

I

The array A is allocated 100 elements (800

bytes).

The variable X is allocated 8 bytes.

Doesn't affect memory allocated to X.

The variable I is allocated 8 bytes.

The array A, and variables X and I are re­

corded in the same order as allocated (con­

tiguously) on file 5 (total of 102 numbers or 816

bytes).

If one r-variable is specified in the data list, all r-variables from rO to that r-variable are

recorded. If two r-variables are specified, all r-variables from the first through the second are

recorded.

Considerations for Recording Data

When recording data on the tape cartridge. the variables being recorded must be listed in the

same order as they are allocated in memory. For example:

(1: ~nt A
1: 2*A·H:

•
•
•

15: ref A,B,C:,::<,

-
104 Tape Cartridge

In the program, the variables A and B are allocated outside a dimension statement. Variables

C, X, Y, and Z are allocated in a dimension statement. But, if B were allocated before A in the

program, line 15 would cause error 56 to be displayed since the variables must be listed in the

same order as they are allocated. Because lines are not necessarily executed in numerical

order, it is sometimes difficult to know the order in which variables are allocated. For this

reason, when a group of simple or array variables is to be recorded on a single file, it is

recommended that they all be allocated in one dimension statement.

The Load Program Statement
Syntax:

[file number [,' line numberl [, line number2]] J

The load program (Idp) statement is used to load a program from the specified file on the

current track and run it automatically. The automatic run implies that all variables are erased,

all subroutine return pointers are cleared, and all flags (0 through 15) are cleared.

When the file number only is given, the program is loaded from the file, beginning at line zero,

and the program automatically runs from line zero. If the file number and the first line number

are specified, the program is loaded from that file, beginning at the specified line number and

runs from that line number. When all three parameters are specified, the program is loaded

from the specified file number beginning at the first specified line number and is run beginning

at the second specified line number. If no parameters are specified, zeros are assumed for all

three. All three parameters can be expressions.

If a program is loaded at the end of an existing program, go to and go sub branching line

numbers are not renumbered.

The load program statement can only be stored as the last statement in a line. This statement

is not allowed in live keyboard mode nor during an enter statement.

Examples:

Loads the program from file 2 beginning at line

o and runs from line O.

Loads the program from file 8 beginning at line

2 and runs from line 2.

Loads the program from file 16 beginning at

line 3 and runs from line O.

The Load File Statement
The load file (Idf) statement is used to load both data and program files into the calculator

memory.

CAUTION

THE LDF STATEMENT LOADS THE PROGRAM OR VARI­

ABLE AREA OF MEMORY DEPENDING ON THE FILE TYPE

ACCESSED. BUT THE LDP AND RCF STATEMENTS LOAD

OR RECORD A SPECIFIED PART OF MEMORY DEPEND­

ING ON THE STATEMENT. THUS, WITH THE LDF STATE­

MENT IT IS POSSIBLE TO ACCIDENTALLY LOAD A PROG­

RAM WHEN THE INTENT WAS TO LOAD VARIABLES OR

VICE VERSA.

Loading Programs

Syntax :

[file number [~, line number, [, line number2]]]

Tape Cartridge 105

The load file (Idf) statement loads programs from the specified file on the current track into the

calculator memory.

This statement is like the load program (Idp) statement except that Idf can be used to continue a

program, while the Idp statement causes the program to run.

F rom the Keyboard

This statement is executed from the keyboard as follows: When no parameters are given, the

program on file zero is loaded, beginning at line O. It the file number is given, that file is loaded

beginning at line O. It the file number and a line number are specified, then that file is loaded

beginning at the specified line number. When all three parameters are given, the specified file

IS loaded beginning at the first line number, and the program automatically continues at the

second line number (all variables are preserved whereas Idp destroys the old variables; see

continue command page 79).

If a program is loaded at the end of an existing program, go to and go sub branching line

!lumbers are not renumbered.

In a Program

The Idf statement is executed in a program as follows: When no parameters are specified ,

the program on file zero is loaded beginning at line zero and continues at line zero. If the file

number is specified, then the program is loaded from the specified file beginning at line zero

and continues at line zero. When the file number and a line number are given, the specified file

IS loaded beginning at the specified line number and the program continues from that line

1
I
j

•
106 Tape Cartridge

number. When all three parameters are given. the statement is executed the same as from the

keyboard. That is. a "continue" is performed from the second line number. All three paramet­

ers can be expressions.

This statement is not allowed in live keyboard mode nor during an enter statement to load a

program file. However. the Idf statement can be used to load a data file in live keyboard.

Example:

1:.3: Idf 2

Linking Programs

Load file 1 beginning at line a (executed from

keyboard).

Load file 2 beginning at line a and continue

from line O.

Programs too long to store in the calculator memory can be segmented and stored in separate

files on the tape cartridge. Each segment can be loaded as needed by the program. and.

using the Idf statement. variables. flags. and subroutine return pointers can be preserved for

each segment.

In the following basic example. three segments are used. Each segment is loaded as it is

needed by the program. The first segment loads the second and the second loads the third.

(1 : p n. " i 1 E' [1 " . T , Program Segment on file 0 •
11-:' A

1 : 1 elf

[1 : p n. " f i 1 E' i .. ; Program Segment on file 1 •
p n A

1 : 1 elf 2

Program Segment on file 2 • ~3 · p n. " f i 1 E' 2 .. · j · end ·
f 1 1 E' 0 .L

f i 1 .::" 1
Press: 80ma

- 1 4 1 6 - .
,;. i 1 E' 2 ,

Tape Cartridge 107

oading Data

tax:

[file number [,i data list]]

ne load file (Idf) statement loads data from the specified file on the current track. The data list

er; lains the names of variables separated by commas. r-variables cannot be in the same load

fli. slatement with simple and array variables.

If no list is specified, data begins filling the r-variables from rO until all the data has been loaded. If

on. ,-variable is specified, then the data begins filling r-variables from that r-variable until all the

dill has been loaded into higher r-variables. If two r-variables are specified, the data starts filling

from the first location specified (lower r-variable) to the second, higher, r-variable. If there is more

dlla than available or specified r-variables, no data is loaded.

When simple or array variables are specified, data begins filling the first variable until all

vlrlables have assigned values. If there is more data than variables, no data is loaded. If there

II less data than variables, the data is loaded until all data is used. Variables must be contigu­

oua.

bamples:

Array and r-variable Recording

Load r2 through r10 from data file 4.

Load the data file designated by r12 into the

variable A and array B.

Array variables are recorded in the opposite order of r-variables. Thus, if r-variables are

,ecorded, then loaded back into an array, they will be in the opposite order. For example:

(1 : 1 -1 t- 1 ; 2..:r r 2 ;
3-:rr];4";"r4;5~t"5

1.: ref ~),r5

2: elir'l A[6]
:::: ; 1 d f (1, A [·n

5: F-'rt A[I];.jr'·IP
(I + 1 ~ I) > 6

6: e'nd

r5- A[1]

r4- A [2]

r3- A [3]

r2- A.[4]

r1- A [5]

rO- A [6]

5.00fW
4.0000
::::.0000
2.€1000
1.0000
0.0000

In line 1. r-variables 0 through 5 are recorded on file O. Then in line 3, the array A is loaded from file

O. A[6] is loaded first; A[1] is loaded last.

•
108 Tape Cartridge

The Record Keys Statement
Syntax:

.... ::: k [file number]

The record keys (rck) statement is used to record all the special function keys on the specified

file on the current track. If the file number is omitted, file zero is assumed. The file number can

be an expression. The specified file must be marked before the record keys statement is

executed.

Examples:

3: rck AC12J

Record the special function keys on file 2.

Record the special function keys on the file de­

signated by the 12th element of array A.

The Load Keys Statement
Syntax:

::. .:::i k [file number]

The load keys (ldk) statement is used to load the special function keys exactly as they were

recorded from the specified file on the current track. If the file number is omitted, file zero is

assumed. The file number can be an expression. Executing the load keys statement from the

keyboard causes subroutine return pOinters to be reset and causes the program counter to

reset to line zero.

This statement is not allowed in live keyboard nor during an enter statement.

Example:

Load the special function keys from file 4.

The Record Memory Statement
Syntax:

". C f"! [file number]

The record memory (rem) statement records the entire read-write memory (program, data,

keys, pointers, etc.) on the specified file on the current track of the tape cartridge.

-

•

•

•

II. Illlber is omitted, file 0 is assumed. The file number can be an expression.

"II!;e of a binary program in memory is a special case. The information supplied with

,1111 y program explains the calculator operation when the record memory statement is
, I

Ilile number]

" j Illemory (Idm) statement is used to load a previously recorded memory file. When the

1"'1; ilion is complete, the calculator is in the same state it was in when memory was

/'" J If the file number is omitted, file 0 is loaded .

. , Ii· II Tl was running when the record memory statement was executed. that program will

;,. With the next statement after the record memory statement when the load memory

""lilIS executed .

" ." I j memory and load memory statements can be executed from live keyboard or from

Iii Junction key. The record memory statement can be used to "freeze" the state of the

'II wlltlout interrupting the running program. These statements can be especially useful in

.vI II !re frequent power interruptions occur.

, j,' 1IIImber can be an expression.

[file number]

"'I/ I)inary program (Idb) statement loads binary programs * into the calculator'S read!

1111 ~llIory from the specified file on the current track of the tape cartridge. Binary prog­

, .111 be loaded over other binary programs of equal or greater length at any time .

. , llil' Illimber is specified, file 0 is assumed. The file number can be an expression .

Load the binary program from file 2.

,,; I '''',!Iam is a machine language program whicr, cannot be listed or displayed.

,

•
110 Tape Cartridge

Since binary programs occupy a special place in memory, certain rules must be followed

when loading them:

1. Any binary program can be loaded at any time (from the keyboard or a running prog­

ram) provided there is room in memory for it and no simple or array variables are

allocated.

2. Once simple or array variables are allocated, a binary program cannot be loaded

unless space has been allocated for it by a previous binary program load operation.

The following procedure is suggested: Before any simple or array variables are referenced,

load the largest binary program file that will be needed. Then any variables can be allocated

and other binary programs can be loaded without concern about room for the binary program.

File Verification
File verification is used to compare a tape file against the calculator memory to detect record­

ing errors without losing the information in memory. If you get a verify error (error 44), try

re-recording the file. Repeated verify errors on a file may indicate damaged tape.

File verification requires a stronger tape signal than load; thus, it increases confidence that a

file will load properly at a later time.

When the calculator is turned on, E·f'G::::·e o. is executed, or El is pressed, the calculator

automatically verifies files on all record operations. Two statements are used to control au­

tomatic verification.

The Auto-Verify Disable Statement

Syntax:

The auto-verify disable (avd) statement turns off file verification. For example:

] 2: IJ. t •• 1 .:j Turn-off automatic file verification.

Tape Cartridge 111

1'1, '\111\)-Verify Enable Statement
~.,,,, ,.

t h' "JI. I verify enable (ave) statement turns on automatic file verification. After (1.'",'';::- is exe­

• "~' I ,ill record operations are automatically followed by a verify. When the calculator is

I,,> ,',1 "II, io .. J is pressed, or ,:::'r"O,:::.;:::- (1, is executed, automatic file verification is again ena-

Turn on Automatic file verification.

I! II' V ('rify Statement

' " '11 0

r return variable]

r '" v!.'rdy (vfy) statement is used to compare a tape file with the calculator memory. If the

1 ' I Ji.llor memory is identical to the tape file, the value of the return variable is 0 after the

1,"I,III(Hl If the two are different, the return variable is one. If no return variable is specified

" I II the memory and tape file are not identical, error 44 occurs. The return variable can be

,'!I"'I .1 Simple variable, array variable, or r-variable.

"'" vl~rlly statement can follow any record operation except the record memory (rem) state­

. "'i! 1 tle record memory statement followed by vfy will result in error 44. Memory files can

"V l)f! verified using automatic verification,

,', d II ti,l) verify statement, you can selectively verify files. This can be useful to save time when

',., 111.iH1Q many files, Another important use is recovery from verify errors using the return

"III,II11e parameter,

"",, ';I;tlement does not alter the calculator memory,

The Set Select Code Statement
I III' :;el select code (sse) statement is provided for possible future access to peripherals and

,I iC "lid not be used at the present time. Select code 1 is used by the internal cartridge,

I
112 Tape Cartridge

Appendix A
Syntax

Two sets of syntax are given in this appendix. The first set is the informal syntax used through­

out the manual. The second is a language description syntax of HPL.

Informal Syntax
Syntax

expression

expression

I expression] .+. expression

expression (:1.1"": (:i expression

expression
expression .. :,. variable

, expression

,1 [flag number " .. oJ
. [flag number ~ .. 0]

t [line number or label]

<c:. expression

L beginning line number

[" ending line number][:' ""]

'OJ item[~ item ~ ...] where item is:

simple variable

array variable [dimension

[i dimension :; .. oj ::J

Name Page

Absolute value function 53

Arccosine function ... 0 • 0 0 0 •••• 0 0 0 ••••• 0 0 0 •••• 57

Addition operator (or unary plus) 0 0 0 •••• 0 •• 0 00 0 50

AND operator . 0 • 0 • 000 •••• 0 0 0 0 0 0 •••••••• 0 • 00, 52

Arcsine function 0 0 0 0 •• 0 0 0 0 0 •• 0 0 0 0 • 0 • 0 • 0 0 •• 0 0 0 56

Assignment operator 0 0 •••• 0 0 ••• 0 0 • 0 • 0 0 0 0 0 0 0 0 • 50

Arctangent function o' 0 • 0 0 0 0 • 0 0 • 0 0 •• 0 0 0 0 0 0 • 0 0 0 57

Auto-verify disable statement 00 •• 0 •••• 0 0 0 • 00.110

Auto-verify enable statement 0 • 0 0 •••• 0 0 • 0 0 0 0 0 0111

Beep statement 0 • 0 0 0 0 0 • 0 • 0 0 •••• 0 0 •• 0 0 0 0 0 • 0 0 • 0 47

Clear flag statement 0 ••• 0 ••••••• 0 0 ••••• 0 ••••• 60

Complement flag statement ... 0 0 0 0 •• 0 • 0 ••••• 0 0 60

Continue command . 0 0 • 0 0 • 0 •• 0 0 0 0 • 0 • 0 ••• 0 0 0 •• 79

Cosine function .. 0 0 0 • 0 0 • 0 0 0 • 0 0 0 0 0 •••• 0 0 0 • 0 •• 0 56

Clear simple variables statement 0 0 0 • 0 0 0 0 0 0 0 0 • 0 70

Degrees statement 0 ••• 0 0 •••• 0 0 ••••••• 0 • 0 ••••• 56

Delete command . 0 • 0 0 •• 0 0 0 0 0 0 0 0 0 ••• 0 ••• 0 0 0 •• 80

Dimension statement 0 • 0 0 0 0 0 0 0 0 • 0 • 0 0 0 • 0 0 0 •••• 0 68

expression o/expression Division operator 0 0 • 0 0 0 •••••• 0 ••••••••••••••• 50

,"",::: ::expression:, number of digits) Digit rounding function 000000 •••• 0 0 0 •••• 0 0 0 • 0 • 54

113

Syntax

,i: I:> [any combination of text or

expressions]

Name

Display statement ... , , , , .. , , , .. , ..

End statement, , , , .. , , , . , , . , ... , , , . . , .

,:::. i""! F' [prompt ;'] variable [., [prompt .,] Enter print statement. , , , ,

variable ...]

,::> in,"i- [prompt :'] variable[" [prompt "]

variable ...]

expression : expression

... • ,:! .. :::. ,:::- ['::;' or :.' or k or special

function key]

file number

expression ::-:: c, (. expression
n. '. ':: expression

expression' expression
' ... !! [file number]

.:: '::"j c· !.,! [line number or special

function key]
...•• flag number

[number of decimal places]

.... c: expression

.,1 [number of decimal places]

expression :> expression

expression ... ::::: expression

expression :.- expression

.:: .. :::. i::. line number

n,::.!::< label

.. : .. n: .. number of lines

'.". :::> ':n: ··n number of lines

::::;- ::::: line number

. number of lines

n •• number of lines

.; .n; j [file number [.; file type [,. current

file size [:, absolute file size

[;: track number]]]]]

expression

:i. i""i t expression

number of lines

, ,..: ,': [file number]

Enter statement

Equal to operator

Erase command ,',

Erase tape statement 1 (l I

Exclusive OR operator I

Exponential function , ~ l'

Exponentiation operator :)11

Find file statement ~I·l

Fetch command '. e:'

Flag function ., 61

Float statement 4 1

Fraction function , ... , 54

Fixed statement .. , , 40

Grads statement , , 56

Greater than operator , 51

Greater than or equal to operator 51

Greater than or equal to operator 51

Absolute go sub statement 65

Labelled go sub statement 66

Relative go sub statement 65

Relative go sub statement 65

Absolute go to statement 63

Labelled go to statement , , 63

Relative go to statement 63

Relative go to statement 63
Identify file statement 93

If statement 67

Integer function 54

Jump statement '64

Load binary program statement 109

number [:; data list]]

number [!; line number,

1- . number2]]]

number [~ line number,

number2]]]

, < expression

, <:::: expression

= <: expression

Inning line number

nne number]]

n 1"1 oel expression

u8r of files" file size [, return

... Ift;llrJ '* expression

1IIt.lcri) (expression)

:j:j: expression

<::> expression

..... Ii.~" ... l 0 t- expression

y ~.xpression ~ rounding speci­.... _-)

.-.f combination of text or
.Ions)

r"' • .,umber ~ data list

number [, beginning line num­
L .ending line number]]
'SE"or "DE:"]

Syntax 115

Name P~e

Load file statement (Data file) 107

Load file statement (Program file 105

Load keys statement 108

Load memory statement 109

Load program statement , 104

Less than operator. 51

Less than or equal to operator 51

Less than or equal to operator. 51

List keys statement 70

List special function key 70

List statement 70

Live keyboard disable statement 87

Live keyboard enable statement 87

Natural logarithm function 55

Common logarithm function. 55

Maximum value function. 54

Minimum value function 54

Modulus operator. 50

Mark statement 96

Multiplication operator (explicit) 50

Multiplication operator (implicit; mnenomic). 51

Normal statement 76

Not equal to operator

Not equal to operator

.............. 51

.............. 51

Not equal to operator 51

NOT operator. 53

OR operator. 52

Power-of-ten rounding function 54

Print statement 43

Radians statement. 56
Record file statement (Data file) 102

Record file statement (Program) 102

•
116 Syntax

Syntax

" k [file number]

r c. (:'; [file number]

(" (;,:::1 [....] expression

1"" i .. ·ll"", [line number or label]

::: 'r:' ',:i [flag number:' ...]

::::. '::i (', expression
:::;. :L !''', expression

:::. F:'C· [number of blank lines]

r expression

:::,. :::;. ;:::. select code

.:::. t. F:::

:::;. t P beginning line number [!! ending

line number]
[expression] expression

'j:. C'. (', expression

...... ::::.'1:.

Name Page

Record keys statement 108

Record memory statement 108

Return statement 65
Rewind statement 92

Random number function 54

Run command 79

Set flag statement 59

Sign function 54

Sine function 56

Space statement 47

Square root function 53

Set select code statement 111

Stop statement 48

Stop statement (for debugging) 76

Subtraction operator (or unary minus) 50

Tangent function 56

Tape list statement 95

. r: , Ten-to-the-power function 55

t !., c [beginning line number [, ending Trace statement 76

line number]]

\ ... k track number Track statement 92
.. -, 'j'

:.A r j .L Units statement 56

'.j', '. [return variable] Verify statement 111

' .• J C'. i t number of milliseconds Wait statement 47

,

(Line)

(Statements)

(First)

(Second)

(Type 1) •

•

LEGEND

: := "is defined as ... "

() enclose an element of HPL

(Statements)

Label: (Statements)

End-of-line

(First) End-of-line

(Second) End-of-line

(Type 1)

(First) ; (Type 1)

- (Type 2)

(First) ; (Type 2)

(Assignment)

(Group 1)

(Group 2) (Value)

(Group 3)

(Group 3) (Value)

(Group 4)

(Group 4) (Expression list)

(Group 5)

(Group 5) (I/O list)

(Group 6)

(Group 6) (Value)

(Group 6) (Value) I (Value)

(Group 7)

(Group 7) (Cartridge I/O list)

(Group 8) Integer

(Group 8) Label

(Group 9) (ent list)

dim (dim list)

mrk (mrk list)

vfy

vfy (Variable)

idf

idf (Variable list)

I I ", Syntax

I
(Group 1) :: - M

.~

,", , ..
'00
~

grad

lilll.

" ..
,~

'"
dill

unk.

(Gtcup Z) :: . ~
• -"
*'.~

(Grcup 3) -'" ..
'"
'" .. -..
,=
'"

(Group 4) " . d, ..
'"

(Gloop 5) : :- "" on
(Group 6) :: - ~

."
",

(Groop T) : :- .,
'"

Syn tax 119

(Group 8) - gsb

gsb +
gsb -

gto

gto +
gto -

(Group 9) - enp

ent

j~'.; (Type 2) - jmp (Value)

ret

(Group 10)

(Group 10) (Expression list)

(Group 10) 0 0 - Idp

list

(Value) (Expression)

(Assignment)

(Assignment) - (Expression) - (Variable)

(Assignment) - (Variable)

(Expression) - (Conjunction)

(Expression) or (Conjunction)

(Expression) xor (Conjunction)

(Conjunction) - (Denial)

(Conjunction) and (Denial)

(Denial) (Relation)

not (Relation)

(Relation) 0 0 (Sum) (Relational operator) (Sum)

00 (Sum)

(Relational Opo) 00 - :/I

<>

><

<=

=<

>=

=>

<

>

I
--------................. ...

120 Syntax

(Sum)

(Term)

(Negation)

(Factor)

(Exponentiation)

(Primary)

(Variable)

(Function)

(Term)

(Sum) + (Term)

(Sum) - (Term)

- (Negation)

(Term) * (Negation)

(Term) / (Negation)

(Term) mod (Negation)

(Factor>

+ (Factor)

- (Factor)

(Exponentation)

(Factor) 1* (Exponentiation)(I· means Implied multiply)

- (Primary)

(Exponentiation) t (Primary)

(Variable)

number

res

((Value))

(Function) (Primary)

drnd ((Value) , (Value))

prnd ((Value) , (Value))

min ((Cartridge I/O list))

max ((Cartridge 110 list))

Simp/.e variable

Array variable [(Expression list)]

r (Primary)
abs
acs

asn

atn

cos

exp
frc
fig
int
In
rnd
sgn
log
sin
V
tan
tnt

Syntax 121

(Variable list) · . - (Variable)

(Variable list) , (Variable)

(Expression list) · . - (Value)

(Expression list) , (Value)

(dim list) · . - (dim item)

(dim list) , (dim item)

(dim item) · . Simple variable

Array variable [(Bounds list)]

(Bounds list) · . - (Bounds)

(Bounds list) , (Bounds)

(Bounds) - (Value)

(Value) : (Value)

(ent list) - (Variable)

(ent list) , (Variable)

Prompt, (Variable)

(ent list) , Prompt, (Variable)

(mrk list) - (Value) , (Value)

(Value) , (Value) , (Variable)

(Cartridge I/O list) · . - (Value)

(Cartridge I/O list) , (Value)

(Cartridge I/O list) , Array Variable [*]

(I/O list) · . - (I/O item)

(I/O list) , (I/O item)

(I/O item) : := (Value)
"Text"

I I
122 Synlu

I

I I

I
I

t

"

Appendix B
Error Messages

An error in a program sets the program line counter to line O. but does not affect variables. or

subroutine return pointers, Pressing 8 will continue the program from line 0, Execute the

continue command with a line number to continue at any desired line (such as: ':':),

Mainframe Error Messages
,:;:"", n::. i'" O~J System Error

• Memory error occurred,

• Operating system error,

• Component failure; service required, Contact your nearest HP sales and ser­

vice office listed in the back of this manual.

,:,' (1'" (:I "" 1? 1. Unexpected peripheral interrupt. Occurs only when a peripheral is being used.

Press EJ to recover.

i::,' (' i'" ()!'" Ci;~~ Unterminated text. The line of text must have an ending quote.

i~:' t !",C) (12!::::~ Mnemonic is unknown. This error is usually caused by typing errors, such as .:::!()

••. ' •• , instead of <::! ' •• '; or by attempting to execute a command in live-keyboard

mode or during an enter statement.'

1",' 1'"1" ;::. ," C: 4 System is secured. This error is generally caused by trying to list orfetch lines in

a secured program.

,::,' j'" ((::;r" ij::; Operation not allowed - line cannot be stored or executed with line number.

This can be caused by pressing Q]. 8. or line B with a fetched line in the

display.

i::,' (!'" (:I [" 1;}:::, Syntax error in number. For example. executing:

e I'" (' O!'" i?? Syntax error in input line. For example:

'See 9665 Disk ROM error messages also

"These errors give a cursor when the recall key is pressed. showing location of error,

123

124 Error Messages

':co' f"' :.,. () (. :>::; Internal representation of the line is too long (gives cursor sometimes).

!:>,... ,... () ;.,. The gto, gsb, or end statement is not allowed in the present context. For exam­

ple, attempting to execute an end statement during an enter statement. '

"c' (" !.- 0 !.,. 1. 0* The gto or gsb statement requires an integer. For example:

':;:1 t c ::~ :::: • 4 is not allowed

e r" "-0 (. 1. 1. Integer out of range or integer required. Must be between -32768 and +32767.

For example:

Integer out of range.

Integer constant required.

I::'Y 1'-01"" 1.;2 The line cannot be stored. It can only be executed. Expressions such as V32 or

fig A or 2*B must be part of a statement to be stored .V32-+A or prt fig A or jmp

2*B are statements and can be stored. For example:

;:::' + ? CD This is acceptable.

;~:: +- ;~~ 8 This is not allowed (can't store expression).

'::0' :-- ,.- c r 1. :.::: Enter (ent) statement is not allowed in present context. For example, I::' n 1:- ::< is

not allowed from the keyboard, only from a program.

e ,." 1"" ;::; !" :1. ,::1 Program structure destroyed. This can be caused by pressing EJ while a

program is being modified or loaded. It is advisable to record data then execute

''::' to. :::. E" C. to recover.

,:::' r .t.:' Printer out of paper or printer failure.

e (!""' C) 1'- 1. (, The String Variables ROM is not present for the string comparison, or the argu­

ment in a relational comparison is not allow'" j. For example, if the String Vari­

ables ROM is not in the calculator: if" E: " -::: " A" results in error 16.

'co' !.,. 1'" C) (" :: .. ;.~ Parameter is out of range. For example, the following are not allowed.

e:- j" C) 1'- :L? Incorrect parameter. For example:

':: r (. C) (" '1 ':::, Bad line number. For example:

'See Advanced Programming ROM error messages also.

"These errors give a cursor when the recall key is pressed, showing the location of error.

,
f

•

A ROM or binary program is missing. As a result, the line cannot be recon­

structed. This error usually occurs when fetch or list is executed or when GJ or

GJ is pressed. The number to the right of the error number in the display

indicates the missing ROM. In the program mode, the ROM number is not

displayed, but replaced by line number.

ROM Number '

in Display I
1

,"'

,'-,

ROM

Binary Program

String Variables

Extended I/O

Advanced Programming

Matrix

9862A Plotter

General 1/0

9885M Disk ROM

••... i. Line is too long to store. This can occur when blanks or parentheses are auto­

matically added. For example, parentheses are automatically added when stor­

ing the line: t G. f'", ;:::~ '"'i' ::::: which will appear in a listing as: t (1 n :: ;:::~ :: '"',. ::::i.

... '. ,',' '.' ;::::;? Improper dimension specification. For example, this error occurs when the

lower bound of a subscript is greater than the upper bound. Also, if the String

Variables ROM is not in the calculator and a string is dimensioned this error

results.

.... ,::::::.,. : ... ,',,' The Simple variable has already been allocated. For example:

The array has already been dimensioned. For example:

,,:. :- .. Dimensions of array disagree with subscripts. For example:

....... '''.; ... Subscript of array element is out of bounds.' For example:

Undefined array. All arrays must appear in a dimension (dim) statement before

being used elsewhere.

The return (ret) statement has no matching gsb statement.

Cannot execute the line because a ROM or binary program is missing. For

example, executing the pIt statement without a Plotter ROM~

'See Advanced Programming ROM error messages also.
-- --"--- I~"

125

•
126 Error Messages

,:::".- :---0 i'" ::=,:i? Special function key has not been defined~

E' t- r 0 ;.- :3 i Non-existent program line. For example,:::i t () 9 in a 5 line program .

.. . C:' (.:::::' Improper data type. A number is required.'

'::: r r C) j""' :::::::::: Data types don't match in an assignment statement.

~::. f" (. C) 1'" :<,:+ Display overflow due to pressing a special function key. Only 80 characters can

be entered into the display.

':::. (," e, (::>5 Improper flag referenced (there is no such flag). For example:

'::- (.... , '.:>:::, Attempt to delete the destination of a gto or gsb statement. Operation not

performed.

Display buffer overflow caused by display (dsp) statement.

;,,:. ,''', c, i"::'::::: Insufficient memory for subroutine return pOinter. 1

e ," ,." (I i'" .. ; ' ... 1 Insufficient memory for variable allocation or binary program. No allocation

takes place.

, '_" ':::'U Insufficient memory for operation. For example. attempting to store a line with

insufficient memory available. 1

-........ :-) No cartridge in the tape transport.

'::: , , ':L::: Tape cartridge is write protected. Slide the record tab to the other position for

recording, marking, or erasing.

Unexpected Beginning-of-Tape (BOT) or End-of-Tape (EOT) marker encoun­

tered; or a tape transport failure.

'::., (. '::: (" ·::!·4 Verify has failed (see File Verification page 110).

':::. (" ,." 0 r" 4 '::; Attempted execution of idf statement without parameters when tape position is

unknown, or attempted execution of mrk statement when the tape pOSition is

unknown.

':::': :

Read error of file body. The partition containing the error is lost (see Appen­

dix F).

Read error of file head (see Appendix F).

'::: ,." (C) (" c:!';:? The end of tape was encountered before the specified number of files were

marked.

'::, '.' C (,::;. ':::' File is too small.

'See Advanced Programming ROM error messages also.
2See 9885 Disk ROM error messages alsO.

Error Messages 127

., I"' () i" ':; ,::! The Idf statement for a program file must be the last statement in the line:

E':' !.,. !." (I (~5:t A ROM or binary program is present but was not when the memory was re­

corded. Remove the ROM indicated by the number to the right of the error

number in the display, and re-execute the load memory (Idm) statement. When

in the program mode, the line number is given instead of the ROM number:

: ... : r ' .. J ::::.

ROM Number I
in Display

.i

ROM

Binary Program

String Variables

Extended 1/0

Advanced Programming

Matrix

9862A Plotter

General 1/0

9885M Disk ROM

The ROM or binary program indicated by the number to the right of the error

number was present when the memory was recorded but is now missing. Insert

the indicated ROM and re-execute the load memory (Idm) statement.2

ROM Number I
in Display

: .. !.

ROM

Binary Program

String Variables

Extended 1/0

Advanced Programming

Matrix

9862A Plotter

General I/O

9885M Disk ROM

Negative parameter in cartridge statement. For example:

Binary program to be loaded is larger than present binary program and vari­

ables have been allocated.

;':' ,. Illegal or missing parameter in one of the cartridge statements.

'C:' i Data list is not contiguous in memory for one of the cartridge statements.

'See 9885 Oisk ROM error messages also.

•

128 Error Messages

'~:T ;." () j'" .•. " Improper file type. For instance, this can occur when trying to load a program

from a data file or key file.

,::: " ';.o; Invalid parameter in ref statement; "':::: F " or .. Ll!::: ' expected.

,:;:. (. j'" C! (;::;':::, Attempt to record a program, or special function keys which do not exist.

,::,' l' 'c, j'" ;::/::i Attempt to load an empty file or the null file (type = 0).

, . .o C' ((,:t The line referenced in an Idf or Idp statement does not exist. If the line contain­

ing the Idf or Idp statement has been overlaid by the load operation, the line

number in the display may be incorrect.

,::> (,. '.oJ!' .. Specified memory space is smaller than cartridge file size.

':::' ,." (. (:; (. ':::.:.::; Cartr~dge load operation would overlay subroutine return address in program;

load not executed~

'::' j" ;." ,"', ,." (,,::j. Attempt to execute Idk, Idf (program file). or Idp during live keyboard or enter

statement.2

':::, " ::::' 1",:~,::) File not found, or the file specified in the previous find file (fdf) statement does

not exist.

For errors 66 through 77, the default value is used and no error is displayed if you set flag 14.

'::> ,. r '.:.' r ':' i::> Division by zero. The default value is + or - 9.9999999999ge 511. A mod B with

B equal to zero. The default value is O.

,:::, 'm" ,:::,'? Square root of a negative number. The default value is V (abs (argument».

e 1", ' ... ' , ... Tan (n*1T12 radians);

Tan (n*90 degrees):

Tan (n*100 grads):

where n is an odd integer.

The default value is +9.9999999999ge 511, for n > O.

The default value is -9.9999999999ge 511, for n < O.

':::, .. '"J r (,') In or log of a negative number. The default value is In (abs (argument)) or log

(abs (argument».

=- ," In or log of zero. The default value is -9.9999999999ge 511.

asn or acs of number less than -1 or greater than + 1. The default value is asn

(sgn (argument» or acs (sgn (argument».

':::' r C, , ' Negative base to a non-integer power. The default value is (abs (base» t
(non-integer power).

2 See 9665 Disk ROM error messages also.

-

Zero to the zero power (otO). The default value is 1 .

Storage range overflow. The default value is + or-9.9999999999ge 99.
•••• , "i
:" :...;"

Storage range underflow. The default value is O.

",:' :" 1'''() i'" ':::' Calculation range overflow. The default value is + or -9.9999999999ge 511.

Calculation range underflow. The default value is O.

Advanced Programming ROM Error Messages
Relational operator in for statement not allowed. No closing apostrophe in sub­

program name.

':::' "" , , ,i ,:::L A for statement has no matching next statement.

':~' i' :,,}" \:::\::. A next statement encountered without a previous for statement.

,::: ", i"':::, i'" '-!.:; Non-numeric parameter passed as a p-number.

':::' r V' C",,... ,:::,,::j, No return parameter for a function subprogram.

':::" ;' , '" No functions or subroutines running. Improper p-number reference.

'c,' (,'"()1''' j:::j,::;, Attempt to allocate local p-numbers from the keyboard.

,:::. f" f"() rOo i::r? Wrong number of parameters in fts. stf. fti. or itf function. Parameter for stt or itt

must be a string (not a numeric). Parameter for stt or itt contains too few charac­

ters.

Overflow or underflow in fts function or overflow in fti function.

,,',"', ", "j'.:' String Variables ROM miSSing for stf or itf functions.

These mainframe errors have additional meaning when the AP ROM is installed.

'::: ;' (' C' 1'" Cl':~ Attempt to execute a next statement from keyboard while for/next loop with

same variable is executed in program or from program while for/next loop with

same variable is executed from keyboard. Attempt to call a function or sub­

routine from keyboard.

,:::. (j" ' ... '! ;:;>;;, A p-number reference is negative .

.;:, ;,,, ,," ,''', ,..,,:::0 Non-numeric value in for statement or non-numeric parameter in fts or fti func­

tion.

Memory overflow during function or sUbroutine call.

,:,:' j" j' ,"', j'" ,::! i'l Memory overflow while using for statement or while allocating local p-numbers.

1
130 Error Messages

Extended I/O ROM Error Messages

• Extended I/O operation executed when a General I/O ROM is not installed.

• HP-IB Error under interrupt: When an HP-IB interrupts with status clear and

the ERR bit in the status byte is set, select code 0 is logged in. At the end-of­

line service routine, this error is issued.

Wrong Number of Parameters:

• Bit manipulation functions do not have 2 parameters.

• The on err statement does not have a label.

• The oni statement has less than 2 parameters.

• The polc or rqs statement has less than 2 parameters.

• The ttr statement has less than 2 parameters.

• The cmd statement with bus address has no second parameters.

• The equ or dev statement has an odd number of parameters.

• New buffer allocation with less than 3 parameters.

'::: (":) E·' i:::.,::: Improper Buffer, Device or Equate Table Usage:

• Attempt to add a name in a buffer device or equate table list when that name

already exists.

• Buffer, device, or equate name is a null string.

• Attempt to declare multiple listeners with one of the entries not addressing a

98034A Card, or not all on the same HP-IB.

• Read status of multiple listeners.

• Multiple listeners name list ends in a comma.

• Attempt to read to, or write from, a busy buffer.

• Entry in buffer, device, or equate table not found.

Wrong Parameter Type:

• Parameter of ctbl statement is not a string variable.

• Numeric parameter found when string parameter expected.

• String parameter found when numeric parameter expected.

• Mask parameter in bit function has more than 16 characters.

Error Messages 131

• Null string found for required string parameter.

Timeout Error: Specified time ran out without response from peripheral.

Buffer Overflow or Underflow:

• Attempt to read from an empty buffer or write to a full buffer.

• Attempt to transfer to or from an empty buffer .

... ; .. ,. Parameter Overflow:

• Decimal parameter not in range of from - 32768 thru32767 with flag 14 clear.

• Octal parameter not in range of from 0 thru 177777 with flag 14 clear.

• Octal representation contains an 8 or a 9.

• Extended bus address not in range of from 0 thru 31 decimal.

• Buffer type not in the range of from 0 thru 4.

• Negative parameter for buffer size specification.

• Allocating a string as a buffer: After taking 16 characters for working storage,

no room left in the string for buffer area.

• Abort byte in eir statement, interrupt enable byte in eir, or character parame­

ter in tfr statement is more than 8 bits: i.e., not in range of from 0 thru 255

decimal or from 0 thru 377 octal.

Parity Failure: Parity bit of character read does not match specified parity type

1. 2. or 3.

i" Improper Interrupt Procedure:

• Attempt to execute an iret statement that is not in a running program, or when

no interrupt service routine is active.

• A new program was loaded after an interrupt occured and before the end-of­

line service branch, and the service routine was overlayed.

• A new program was loaded from an interrupt service routine and the inter­

cepted line (destination of the iret statement) was overlayed.

• Attempt to transfer a DMA (type 4) buffer with a 98034A HP-IB Interface.

• Attempt to address a select code or a buffer that has not completed the

transfer operation. Attempt to read or write with a busy buffer or select code.

e i'- i'-C) i'" E:9 Illegal HP-IB Operation:

• Attempt to address the HP-IB while calculator is not active controller.

•
132 Error Messages

• Illegal HP-IB command sequence.

• Attempt to request service on· an HP-IB when calculator is active controller.

The Extended I/O ROM adds these meanings to General I/O error messages G4 and G9:

.. Improper Select Code:

• Select code parameter of an eir or oni statement is not in range of from 2 thru

15.

• Parameter of an iot or ios statement is not in range ot from 0 thru 15.

• Attempt to declare a device name for select code 0 or 1.

• Transfer statement source and destination parameters specify two buffers or

two peripherals, rather than one buffer and one peripheral.

• HP-IB control statement used with non-HPIB select code or buffer.

• H~-IB control statement select code specifies bus when only addressed de­

vice allowed or addressed device when only bus allowed.

Improper Hardware Configuration: HP-IB bus functions addressed to non-HP-

18 interface card or empty slot.

General I/O ROM Error Messages
Incorrect format numbers:

• Format number in format statement not in range of O=s;n=S;9.

• Referenced format number not executed.

,:::- (.. ,._. , .. , Referenced format statement has an error:

• Incorrect format spec.

• Numeric overflow in format statement.

,:::. 1" , ,. . . Incorrect I/O parameters:

• Parameter not number or string.

• Negative parameter with f ~::: numeric spec.

• Numeric parameter with c· edit spec.

• Binary parameter not in range of -32768~n~32767.

• More than one parameter for read binary or read status function.

• Missing parameter or a non-numeric parameter for write control statement.

" (:,, ' .. :: '" Incorrect select code:

• Select code is non-numeric or greater than 4 digits.

• Select code is greater than 2 digits for read status.

o Select code is not in range from 0 through 16.

~ Select code 1 allowed only for read status.

• HP-IB address code not in range from 0 through 31.

• Read from select code 0 not allowed.

':::' I'" !.- () rOO C; ;:::; Incorrect read parameter:

• Constant in read list.

• String not filled by read operation.

• Numeric parameter references c, format spec .

,::. ," !" ,"", : ,; "' , Incorrect parameter in conversion statement:

... . ;." ! : :." .

• More than 20 parameters.

• Odd number of parameters.

• Non-numeric parameter.

• Parameter not in range 0~nE;127 .

Unacceptable input data:

• More than one decimal point or "E" read.

• 511 characters read without a LF.

• "E" with no leading digit.

• More than 158 numeric characters read.

Peripheral device down:

• Incorrect status bits.

· 8 cancelled operation .

Interface hardware problem:

o Improper HP-IB operation,

• Empty 1/0 slot.

Error Messages 133

• Select code does not match interface card (e.g., wrt 711 when a 98032A is set

to 7, or wrt 6 when 98034A is set to 6).

• Write Sontrol addressed to a 98034A HP-IB Card .

•
134 Error Messages

Matrix ROM Error Messages
1::;' in .. , 't' (j:1. * Syntax error.

, ' .. .' , i"i ;::' Improper dimensions. Array dimensions are incompatible with each other or are

incompatible with the stated operation.

':::':-- (C (. l"'r::; Improper redimension specification: New number of dimensions must equal

original number; new size cannot exceed original size.

:":,::1· * Operation not allowed. An array which appears to the left of - cannot also

appear on the right.

1::' i'- (.:; \.- f'15 Matrix cannot be inverted. Computed determinant equals O.

9862A Plotter ROM Error Messages
.... ;'C,!" ' ,., Wrong state. Statements executed out of order. (See Appendix in ROM manu­

al) .

.. ' ,. ;.' ::::.,. , ... ::::' Wrong number of parameters.

':::. !""' i c; r F'~:' Wrong type of parameters. Parameters for a label statement must be expres­

sions, text, or string variables. (String Variables ROM is required to use strings.)

';;' 1"", '._' i p,::!. Scale out of range. Maximum value is less than or equal to the minimum value.

':::. :." :.' ':::. (. F '::; Integer out of range. Pen control parameter is out of the range -32768 to

+32767 or the select code is not 0 nor in the range of 2 through 15.

i':' j' ,.,. c:' (. F' C Character size out of range. Width or Height in letter statement is zero or there is

an integer overflow in csize calculations or results .

... ,. i'C::' , Not used.

'::: ! i" ' i;' 1"" ':::' Axes origin off scale. X, Y specified for axis statement doesn't fallon plotter

surface.

If the error message F' L. T D OL·H-~ occurs, check all plotter connections and be sure the

plotter is switched on and the CHART HOLD key is activated.

'These errors give a cursor when the recall key is pressed. showing location 01 error.

String Variables ROM Error Messages

Invalid set of strings in data list of load file (Idf) statement.

Improper argument for string function or string variable.

Error Messages 135

More parameters than expected for string function or string variable.

Accessing or assigning to non-contiguous string. num function of null string.

Trying to find the value of non-numeric string or null string. Exponent too large.
Exponent format invalid (e.g., 1e + +5).

. ,-. co
i:::"; : : ... :: "'1. j Invalid destination type for string assignment.

.... , j-"' ,", ,." ::::; 1::, Parameter is zero, negative, exceeded dimensioned size. Invalid sequence of
parameters for string variable.

e (" j""' 0 (. :::;? String not yet allocated .

.... ,"Ci!""' ::::e String previously allocated.

Maximum string length exceeded; additional string length must be specified in
dim statement.

9885 Disk ROM Error Messages
Hardware Errors

E' r- to 0:1 t- d (1 Firmware/driver out of synchronization. More than six defective tracks in a row.
(Press 8)

.::- (r- (; r d 1 All drives in system not powered.

E' t- to 0 t- d 2 Door opened while disk is being accessed.

E' r- t" 0 t- d:::: Disk not in drive or no such drive number.

E' r to 0 r d 4 Write not allowed to protected disk.

E' r 1'"0 t" c15 Record header error. (Use Error Recovery Routine)

E' t" t" 01'- d Eo Track not found. (Use Error Recovery Routine.)

E' !"- to 0 !.- (:I? Data checkword error. (Use Error Recovery Routine)

e j'- (() r" d ;:; Hardware failure. (Press B)
;;'c' i""" to (; t- d'3 Verify error due to drive problem. Marginal data. (Reprint data)

Software Errors

':::' r- ,." U r D (1 Improper argument.

E' t" t- 0 t- D 1 Argument out of range.

,:::. (.- !.- (; r- D 2 Improper file size (negative, 0 or >32767).

,::;. 1'- r" c, :.- L :~: Invalid file name.

'::' i'- i'- ,=':- D 4 File not found.

e !.- r- () (. D ::i Duplicate file name.

E' t- t- 0 t- D Eo Wrong file type .

• ". r- r ;:; r- D? Directory overflow.

E' t" t-;:. t- D :::: Insufficient storage space on disk.

E' t- t- 0 t" D 9 Vuify error due to cable, calculator or drive problem. Bad data (Reprint data.)

136 Error Messages

,:,,' ,- ,-,:; rOO F ~~J File overflow when read or print executed.

e :,- 1" 0 f" F 1. Bootstraps not found. (Reload bootstraps)

E- t- t- 0 t- F 2 String read but wrong data type encountered.

€:. r t-.:. rOO F :::: Attempt to read data item but type doesn't match.

1::' :". (" « (F 4 Availability table overflow. (Repack)

Attempt C) n end b rOO 0. n Co h from other than running program.

Unassigned data file pointer.

e t- r CI (F 7 Disk is down so line cannot be reconstructed.

".::' (. r" () j'- F ~::: Disk is down and 8 pressed.

"::' (" t c. (f- ') System error. (Save files individually and reinitialize)

These mainframe errors take on additional meaning when the Disk ROM is installed.

I:;:' 1'- (< j'" 12::3 Mnemonic not found because disk may be down.

e r (" C r" ;;::~ 9 Line can't be executed because ROM (usually String) is missing.

E' (. j""' 0 t- :::: i Line not found.

e rOO r D j'- :; [1 Ci €:. t or c h G, i n should be last statement in a line.

e j'" 1'- () j" r:; 1. ROM now installed which wasn't when :;:. o. !.) e ;"'1 was executed.

ROM now missing which wasn't when savem was executed.

Disk load operation would overlay ''3:::' b return address so load not executed.

E" r- r (I t- 64 '::;1 E' t, c. h (). i n or ''3 E' t k not allowed from live keyboard mode or during an
';:' n t statement.

These errors may result during the binary Initialization and Error Recovery Routines.

e 1'- rOO c. (E: (3 Wrong syntax, argument out of range or variable not properly dimensioned.

E;' (. ,.- « f" E: i More than six defective tracks on the disk.

r;:, ,.. " E:? Verify error. Boots on the disk not identical to boots on the cartridge.

e r' r" (:. (" E: :::: d t t- k, tin i t or 1 t t- k not allowed because error information lost or error
not d5, d6, d7 or d9.

e 1'- tOO 0 :." E: 4 Attempt to access record for error correction which isn't part of data file.

t: t·· rOO () j" E::::; Improper string length (inconsistent with length given in header).

e ,.,. :.- (; :.,. E: 6 Not enough space in calculator buffer for data item or item can't be placed in
this part of buffer.

e [" (CI:--- t::;... Missing disk or String ROM.

e :., roo erE: :::; Track still bad after tin it.

Appendix C
Programming Hints

There are usually several ways to write a program or section of a program to perform a specific

job, and the programmer is often faced with the choice of which of several methods to use.

Usually the goal is to save program space and execution time and at the same time maintain

readability. However, these goals are sometimes conflicting and the programmer must decide

which is the overriding concern.

This appendix is not intended to discuss programming techniques in general but to describe a

collection of hints for the programmer who wishes to save space or time. While by no means

complete, this list describes some of the trade-offs which are "machine dependent" and

therefore not necessarily obvious.

In most cases, the time savings are small and are not observable unless the statement is

executed thousands of times. The space savings usually only amount to a few bytes. To check

the amount of space used by a statement, execute::' i ::::1; .. -- i after storing the statement.

Method Method
Requiring With

Less Faster
Program Execution

Method A Method B Storage Time

Simple Variables r-variables A A

r-variables one-dimensional array Same A
variables

Multiple statements per One statement per line A A
line

gto +5 gto 5 Same Same

gto -5 gto 5 Same Same

gto "5" (one or two char- gto 5 Same Same
acter label)

gto +5 jmp 5 (Note 1) B A

v'X Xi·S A A

XX 1 Xi2 (Note 2) A Same

137

138 Programming Hints

Method Method
Requiring With

Less Faster
Program Execution

Method A Method B Storage Time

implied multiply explicit multiply Same Same

7T 3.14159 ... A A

ifflg2=1 if fig 2 B B

if fig 2=0 if not fig 2 B B

if A#O if A B B

if (A<B) or (B<C) if (A<B) + (B<C) Same A

if (A<B) and (B<C) if (A<B) * (B<C) Same A

J+5-+K; K-3-L (J+5-+K)-3-L B B

J+ 1-J; if J<5 if (J+ 1-J)<5 B B

Specify lower bounds for Use default lower bounds. B Same
array dimensions.

Use simple variable as a flag (Note 3) B
flag (as 1-A).

Using both tracks alter- Using one track at a time, Same A
nately. sequentially.

Note 1: For computed branching, only jump statement can be used.

Note 2: XfY is done by repeated multiplication if Y is an integer.

Note 3: If only one test is made, the flag method takes less room. If two tests are made, both methods

are the same. For more than two tests, the simple variable method takes less room.

Appendix D
Calculator Status Conditions

The following table shows the calculator status conditions when the indicated operations are

performed. For details about the status condition of modes, variables, etc., see the appro­

priate section in the manual.

Operation

I Erase all I
I Continue

I ,
i I

! or I
I

Power I I after

I Reset on Erase Run editing Continue

Variables R

I
X R R X X

Flags 0 through 15 I R X R R X X

I I
I

I

Result R X I X X I X X

I i I
Binary program I R i X X X X X

I
I \ I

Subroutine return pointers R I R R R R I X

I
I

Print-all mode R R X X X I X
I
I I i Verify mode ! R

I

R X X X X I

! I

Live keyboard mode I R R X X X X

Secure mode I R X R X X X

I
i I

Cassette select code R
I

R X X X I X

I
I Cassette track I R R X X X X I I

I
Angular units for trig functions R R X X X

I

X

Fixed/Float setting

I
R R X X X X

I
I

Random number seed R
I

R X X X

I
X

I

I Trace mode I R I R X X X X
I

R Restored to power-on value

X Unchanged

139

~!
; r

140 Status Condition

Extended I/O Status Conditions
The following table shows status conditions for various Extended 1/0 operations and modes.

Notice that the Erase, Erase All-Power on, and Run columns from the previous table are

combined into one column here. R = restored to power-on state; X = unchanged.

Calculator Operation

Power On Reset Continue Continue

Extended I/O ROM Erase (after edit) (after Stop)

Operation or Mode Erase All

Run

Conversion and parity tables R X X X

Binary mode (reset to decimal) R X X X

1/0 buffer area R X X X

Service name list R X X X

Equate name list R X X X

Buffer select code for tfr R R R X

Interrupt parameters R R R X

Error recovery routine R R R X

Timeout routine R X X X

Appendix

9825A and 9820A/9821 A Compatibili

In general, any program which is used with the HP 9820A/9821 A Calculators can be e

into the HP 9825A Calculator with only minor changes, such as changing E (enter exnnr,hnt\

and statement mnemonics to lower case.

The following is a list of subtle differences between the 9820A/9821 A and the 9825A

culators. The list is divided into two sections; those differences which occur when AntArirln

program and those which occur when running the program.

Entering Programs

• A line label must be followed by a colon. The 9820Al9821 A requires a semicolon.

• Parentheses must be used to indicate which relational operator to apply first:

:i. f H ::::: E: :::: C: ~ must be entered as: 1 '1' i. C, ::::: E;::: :::-" C::, on the 9825A (not the

same as

• Storing a line with an end statement does not delete higher numbered lines in mArnn,rv

on the 9825A.

• r ::i is not allowed on the 9825A; use r :: F: :: .

• The enter (ent) statement is syntax checked by the 9825A Calculator. The items i an

enter statement must be text or variables. Expressions, such as ':::' j''', t H !:::! .. : .. E: not

allowed on the 9825A; the equivalent on the 9825A would be E' n t Fi; Fi ~i -:. B.

• A string of unary operators such as ;:.:: is not allowed on the 9825A.

• File sizes in the mark statement are given in bytes instead of registers. Therefore, i? j-=:

l!, >:: in the 9821 A becomes ;", j'" k 1.!' ;::::::-=: in the 9825A.

• Linking programs is done differently on the 9825A; c'r c :.::; i.. .. 1:1 F~ '(becomes ',,:, '

\' !' >< on the 9825A.

• A +E: -;t C +>:; -;t \' on the 9820A/9821 A must be typed as ! ,:, ii' ... , ' ...) .. j .. '" the

9825A.

142 Compatibility

• E>··\:, on the 9820A/9821 A must be written 1,,:,,·_·':;:,.

• The TBl function of the 98~OA/9821A Math Block has been replaced as follows:

9820A/9821A 9825A

Function Replacement

TBlO units

TBL1 deg

TBl2 rad

TBl3 grad

TBl4 no replacement

TBl5 csv

TBl6 cfg

Running Programs

• Relational comparisons are made to 12 significant digits on the 9825A. The 9820AI

9821 A rounds to 10 significant digits and then compares. The 9825A equivalent

of: if;:':: ::: '/;; is: :L f d (TId (;:-:;, 1 iJ) == d "-nd f \', 1. 3).

• Floating point numbers are rounded on the 9825A instead of truncated as on the

9820A/9821 A when an integer value is required.

Some implications of this are shown in these examples for the 9825A:

1. r(4.9) refers to r5

2. jmp 2.9 is the same as jmp 3.

3. sfg 5.95 is the same as sfg 6 (and similarly for cfg, fig, and cmf).

• A gto or gsb to a label requires an exact match in the 9825A instead of a match on the

last 4 characters as on the 9820A/9821 A.

• The 9820A/9821 A returned a 0 for 0 t O. On the 9825A, 0 t 0 results in error 73 (default

is 1).

• A number, expression, or statement are valid replies on the 9825A. However, if ~::. i"'i t ::::1

is the enter statement and a statement such as 1. 0 .. <::: is entered. flag 13 is set and A

retains its previous value. For example. no value is entered by the enter statement and

flag 13 is set in the following.

Print statement.

;? .. :; ..) Assignment statement.

Compatibility 143

These are valid entries:

:: Expression.

Imbedded assignment.

• Flag 13 is cleared when a number or expression is supplied during an enter statement.

• On the 9820A/9821 A Calculators, if the run program key is pressed without entering a

value for: ~::·nt~: (;:.:; -I- l-t;:<) I the value for X would not be incremented and RX

would not be modified. On the 9825A, the expression, (>:: .+.:l. .. :<:-:: :: , is executed even if

no value is entered.

• The 9825A's integer (int) function is defined as the largest whole number less than or

equal to the argument. The 9820A/9821A definition is the largest whole number less

than or equal to the absolute value of the argument, with the sign of the result being the

same as the sign of the argument.

• On the 9825A, if an error occurs during the execution of a statement, the entire line is

aborted. On the 9820A/9821 A the rest of the statements in the line are performed.

• Implied storage to Z is replaced by implied storage to result (res). Z is no longer

different from other simple variables. A statement with implied storage cannot be stored

- a variable must be given explicitly. A program can access the value of result (res), but

the value in res cannot be altered by the program.

• Branching to the line which is numbered one higher than the last line of the program no

longer treats that line as if it were an end statement.

• Flags are not cleared by the end statement on the 9825A.

• The stop (stp) statement does not destroy subroutine return information.

• On the 9825A, the identify file (idf) statement always positions the tape before the

header of the identified file. Thus, repeated idf statements do not advance the tape.

Also an idf statement followed by a mrk statement marks the identified file (any informa­

tion on the identified file will be lost).

i ~

f
144 Compatibility

Appendix F
Tape Cartridge Errors

File Body Read Error
If a file body read error (error 46) occurs, first clean the tape head and drive wheel as

explained on page 92. Then, execute the statement which caused the error again. If an error

still occurs, the next step depends on the type of file being loaded.

It will be informative at this pOint to explain something about the file structure of the tape. A file

is made up of one or more "partitions". This structure makes it possible to recover portions of a

file even though a loading error has occured. Error 46 indicates that one or more partitions

may be erroneous.

\ File
Header Partition Partition Partition File (

) Gap Gap

}

1oII1·~--------11i1ee----------~·1

Loading A Program File

If error 46 occurs while loading a program file, one or more program lines may be lost. The

place where this error occured is indicated by a line of asterisks (.;.;.) inserted in the program at

the point where the program lines are missing. These lines can be replaced by referring to a

previous listing.

Note that go to and go sub statement addresses are not adjusted during this editing. Thus, it

may be necessary to re-adjust the go to and go sub addresses after inserting the lost lines.

Loading a Data File
If error 46 occurs while loading numeric data, the partition in question is marked by a single

number replaced by':;' r. ??????????? E· (10 (in float 11 format). A partition in a numeric

data file always contains 32 numbers. With one entry replaced by ? ????????':;'??E·
1:::i (;1, there are 31 numbers remaining which may be incorrect. To determine the bounds of the

affected partition:

145

146 Tape Cartridge Errors

• For r-variables, tre 31 higher numbered r-variables may be incorrect.

• For simple and array variables, determine the order in which the variables in question

were allocated (see dimension statement). From the element that is replaced by
,,~, " ,,~, '::. '::' ':> '? ,::. '~:' '::. ,~, '? ';:' .;", U '?, go from right to left in the parameter list of the dimension

statement. For an array in the list, the first element in the lost partition will have the

largest subscripts. Decreasing the leftmost subscript first for an array reveals the mis­

sing values. For example, a partition is lost and the dimension statement was:

0: dif'l A~E;,C,
[1[3,10)

The value 0[3,10] contains question marks. All questionable values can be accessed in this

order:

0[3,10J, 0[2,10], 0[1,10], 0[3,9], 0[2,9],

0(1,9], 0[3,8J, 0[2,8], 0[1,8]' 0[3,7J,

0[2,7]. 0[1,7], 0[3,6], 0[2,6], 0[1,6],

0[3,5], 0[2,5], 0[1,5], 0[3,4], 0[2,4],

0[1,4]' 0[3,3], 0[2,3], 0[1,3]' 0[3,2],

0[2,2], 0[1,2]' 0[3,1], 0[2,1], 0[1,1],

C, B

File Header Read Error
If a file head read error (error 47) occurs, proceed as follows:

1. Clean the tape head and drive wheel as explained in the section on "Tape Care" on

page 91. This may solve the current read error and prevent future read errors.

2. Execute the statement that caused the error again.

CAUTION

RE-MARKING A FILE HEADER IS A "LAST RESORT" OP­

ERATION, SINCE ALL INFORMATION ON A FILE WITH A

RE-MARKEO HEADER IS LOST AND THAT FILE CAN NO

LONGER BE USED. HOWEVER, THIS DOES PERMIT YOU

TO ACCESS FILES BEYOND THE BAD FILE.

3. If, after steps 1 and 2, the error still occurs, re-mark the tape-file header.

To re-mark the head of file N (file which cannot be loaded), execute:

Positions the tape.

Re-marks file header of file N.

Tape Cartridge Errors 147

For file 0, execute:

Positions the tape .

Re-marks file header of file O.

After the file header has been re-marked the absolute size of the file is 2 bytes.

Conditioning the Tape

Repeated operations over a short length of tape (usually less than 4000 bytes or 5 ft.) can

cause slack. (Extreme changes in temperature can also cause this.) The outer layer of tape

can slip and rub on the cartridge, causing damage to the tape. If operation continues , the tape

may jam and be ruined .

NOTE

This condition is most likely to occur if exclusive use is made

of one file or two adjacent files near the beginning or end of

tape.

If a particular application requires such operation, this slack can be prevented by moving the

tape periodically 15 feet or more toward midtape. For example, for a tape with 80 files where

only files 0 and 1 are used, execute the following program segment after every 200 operations

on file 0 or 1:

Tape Life

1 '-I •
C' • fdf 8~3

1 '3 : r E· 1.,.1

The tape cartridge does not have an infinite life span. Many factors increase wear and de­

crease life . A high resistance to turning and continuous use for long periods of time (V2 to 3

hours) both result in increased temperature in the cartridge. High humidity, high temperature

(above 45°C, 113°F for the cartridge itself) and a high duty cycle (percent of the time the tape

is accessed during the total time the 9825A is used) all increase wear.

148 rape Cartridge Errors

Several things start haJ,J.:>ening to the cartridge which are danger signs:

• The tape begins to wear out and lose information.

• The capstan develops dark bumps due to slippage.

• The cartridge can stall, causing the capstan to wear a flat spot on the drive pulley.

• The cartridge sounds rattly, rather that making a constant hum when the tape moves.

• Errors 43 (indicating tape transport failure), 46 and 47 occur more frequently.

If any of these occur, replace the cartridge at once. /f you continue to use it, you could lose all

the information on the tape and damage the drive itself.

CAUTION

NEVER OVERRIDE,," (' i'- 0 i'" 4 :~; IN YOUR PROGRAMS. BY

OVERRIDING A TRANSPORT ERROR, YOU CAN EASILY

DAMAGE THE TRANSPORT AND BE FORCED TO RE­

PLACE IT.

149

Appendix G
Table Mounting

Your calculator can be mounted to the top of a desk or table by following these steps:

1. Drill 5 holes in the top of your desk or table to accommodate #6-32 (National Coarse)

screws according to the diagram below.

2. Remove the Phillips head #6-32NC screws that hold the rubber feet to the bottom of the

calculator.

3. Use screws that are V2 inch longer than the thickness of the table top. This V2 inch allows

for the thickness of the rubber feet and the hole for the screw in the bottom of the

calculator.

ref to rear
r"~~ r-5

.
92O

---.-- -,-
1.500 1.500

T t + + ----L

10.705

1 + + T 7.300
ref to front 7.300

~
front of calculator -L

.460 I· 10.920 + I· .460

=

HEWLETT i& PACKARD

SALES & SERVICE OFFICES

AFRICA, ASIA, AUSTRALIA

HOHG KONG A.n"'yhc.al''''tdtcalOnIy Sa.mldt &. Co_IHong Kong) LtG
PO 80.2'97 YOirooa ... -H Itt·Packarl1 LkI WedlUl Supphn HZ ltd

COntllltghl Centre KumiglYi .40$11'1, SCIef1htIC DIV15I'01l

AMGOlA 39th Floor Blue S1,r ltd
HICklfuni 8ullOil'lQ: 79 Cirlton Gore Ad __ Newmartl.t

T.'.efrl Conn.lugfrl Road Central' 2134 lI:oolmblkk.am High HOld
411'1 FloOr PO 80112'34
J·4. Tsukub, AucJtland

Empres.a TK-OIufJe Hong Kong " • .ora.600034 f::~:~s::ml 36C
Tel 7~·285

EQu'~menIOs lei H-~55291'5 Tel 82056 ClbleDENTA,l Auckland
Electncos. SA R l Teie:r: 74766 SCHMC H)(Tele. !).CI·379

R ~rbo$l Rodngue~, ·U·) tn Cabtti SCHMIDTCO Hono Ji(onO c. ... SlUEST~R KENVA Ma~Yhul,' Mt\1iCJI Only

WI .. " Post;,I. 604.87 INOlA TechmCJ/ EftoQl'*""lf'II! Medical Supplies 'tZ 1I1i

Luenda INDONESIA ServlCes(EA)Ud PO BoII994
Ttl 3S51~ Blue Star lid BERCA lneonnlilo P T PO Bo. 11311 '47-161 TOI)' SI
CleMI!' T£lECTRA luanda Kisiun BuiIGln.g'S PO 80x 496iJirt Naif'obl W".ington TAIWAN Jimsn_h1iAd Jl~.AbdlJl r.4UfS 62' Tel 85(}-7gg
AUSTRALIA ~:2:-~i~<rnl J • ..., .. T,I 5577261556762 lelell. 3858 HNI.n·PKlIn:I fir Eullfll
HI!W+eft'PKurd AUJtrilli Ttl 4036; 4988"i..4;255.356OJe

CiDie PROTON Clble DENUL. WeilmOfOIl RHODESIA
hl.,n Brindl

Ply lid TelelI001·2156 JKT 42895 MediCi] Only AnllyhcalJUediulOnly field T edlnlUl Siles ~ Cht'1':=rYtlst Road
31-'1 Joseph 51TH'!. Cable BlU£FROST Cable BEReA-CON InletnlllCJ.n11 "tfll0l0~E A.)Ud .5 Kelv'lJl Road MontI
Bt.ckbIMn. VfctDnl 3130 S;ut Stilr lid P D 80119012 MecliUI Sup~n N 1 lief

PO Ho.3458 Ta.eI
BfRCA. Indone~ P t PO 801 J09 Tei 18191lS0·,c PO Box 36 SinlS 6J Jl Riya Gubeno

N,trob! Airpor1 239 Slitlmort RGid ~:'j~~I, (5 ~nn) Ci~e HEWP",CK TAIPf:l Oooca.t.r bat. VlctOliI 3109 4 ",,.2 Vir Si'tirk;l(~'h.rg tIM,,,",, Ctlri.let'lurch
Tel 89-63$1 Prabn.lldt!\'! f.jr:~&a Tel 336055156 Tel 892-019 Tete. RH .122 Hewlen-pac:u,d Fit hsl ltd
T!'It. 31-02"

~~";'t"~~~02\
T l!Ie. 2220 112230 1 ~bt. Oe~T"'l Cnns1Church SnrtGAPOAE

TII n BtVlCI"I
C~Dle HEWPARO UeItloumt ISRAEL Clble INTAERIO Nairobi 68·2. Chung Chertg 3n:1 "NC1

Hewien·P .. C rd Austr"'" TN.Ol'-A093 ElectroniCS & Enogintetlll.g Of" I<OREA
_n.ll~IUIIMed .. :al Only Htwll'It-P,cklr(I Slno.""r.

~:i'O~um31a-K"CltlSiu'" Ply lid Cable FROSTBlUE .al MolorDlllSfil,llId MedlC.J1 Supplies ~ 1 lid
11~~:FlO'd 31 Bridge SlrH'! Blu, St.lr lid '7, Kr@lTII!'netSItl SlrMt Simsung Elec1rOOocs Co. ltd 303 Grut Kin'll Slrtrt An.atvtICJIO",1y

~o:rcJ' ~"fr:? Blcto lSO. 2·K" PO 80.233 "'I,utlClr.ll PO 90.58
Pymblo Bilrw:l 80. HOuse PO. 80.250'6 Dunedin

~~~~ 
S.an k.lng Instruments Ca. l" 

He. Soulh Wiles. 2'073 PTibhadfYI 
T __ ,,'IfI. 

THP1VJlg·Flo, CI'Iung-Ku Tel 88-817 No 26. Vyng SuI AoaG 
T~ "9-6566 Tel 38913 T_ 
T.el 21561 ~~lJ~~02S Telex 33568 

Seoul CII:Jte DENTAL Dunedin T .... HPSG RS 21486 Tel 3715171-<4 (5.nes) 
Cabll HEWPAAO Sydn" Telel 011-3751 t.bl@' BASTEL TII-AVI'" t~;2~~~' NIGERtA 

C.l~ HEWP~K, Singapore T ele. 22'894 SAN)(WAH(i 

Hewttn-Packard AuS1r.ll".II C .. Dle BlUESTAR JAPAH !;.Ible ELEKSTAR Stool Tne EHlctronl(S SOUTH MRfeA C.II:Ile SANKWANG TAIPEI 

15rtr~"1i1 Road 
Blue Star lie YOII;OOa.t-H.wllft-Plcurd lItl MALAYSIA 

Instrumlnt.atlons lid Hew\MI·p",qrd SawttI AlrlCa T"MZANlA 
7H,1(,SCr", On.hl 8c.llldin~ Tekntl( Mutu Sdn 8111:1 

N68I770 Oyo AOid IPIy~" ~=~ ...... 0 IE A). ltd P.rtt ... S_A. 506l P,O 80x S06 59-1 VO\IO(IO l-Chomt OIuHVn Hous.e Prrf,te WtnCtywood 
T,. 272·$911 ~:lb~r3%.1~~~ 151 

? lOfOng 13o'SA PIU ~02 s.nOton, tans ..... ' 2144 c.. ....... 100 001 SedN>n 13 PO 80.16' 
T_ 82536 ~DEl T1!I23-Q131 

,bed.n Hewl.n·PaCkird Centre 0., _Salaam 
Ciblt~ HEWPARD ADELAID Telc):, 021·7555 Telex 232·2024YHP ..... RKET ~:~~r~=-ngor Tel 61577 o,pnn. SI,H'!. W'ndywood. Tel 21251 Ert 265 
Hewten·pu:Urd Austra'" Cil)le BlUEST ... R TOj( 23-724 T •• ,. 31231 TEll Nlgerloll Sandton, T'.IInsvul2tU Tellx ,cl030 

:\,ltd 
Cabl. VHPW .. RKH Tele. M" 37605 Ciblt TH£TElllb.ld.ilrl Til 802-10408 

1., 11i1l9~hw.' 
Slut Stir lid 

y.,., .... ·HIWIIlt·Pac\110 Ltd PrOlIll£~in ..... no: The EIlc:I,onlcs In:slru",,""- Tell ..... 182 TH .. H..AND 
NedIMd.. _,,_ fiOD9 7", 6111t1 FIoo< 

Chuo BIdQ .. 41'f1 Roo, PO Bo-o 1911 tlDns Ltd c.... HEWPAC~ JIlHANIlESSURG UNIMESA Co . lid 
Bn,ancl.ln House Lot 259. Sltok RGId ~Ati 1o,~~o, RCYd, "ushln SeMCt Dtpirtmfftt E!tom RhWdI 1u1kilno TO! 86-54S5 91 Nlhru PJace ~~oo~-=~~~~ T .... 93859 PE.TH ~~~~~Sar"'" H .... ·PICQrd Sou", AhiQ 2S3! Sukutn\Jill Ayt 

CitH HEWPARD PERTH 
New DelttII1002. 

0.. .... 532 ~-THETEll ~os P6~X~~25 ~:"A~311. 3830331 T~ 63<110 & 63S1G6 
Ttl 06-:WC-6021 CaI>It PAOTH ENG 

fointltt-PloCt¥d AlIstrIJII T~u' 031·2.63 Gl'1m..,.. Soanmon. 2018 c. ... UNIMESA a ..... k 
~ .. c. ... BlUESTA. VOkOQIWO-_I1I-"-<dlld MOZAMBIQUE PAKISTAN 

121 . o.itnStrlll Blut Star Ltd NioIuimoluitdtng AN, Gonc.It¥n. It,a Musrtlo' Comp.Jny. Ltd ~~!i~1nSIOn3. UOAMIA 
F,_.~. T 2110i &aut! Sill' House 24 KIm! Slsar;il'N-eho 162. 1 lp1. 14 ,,"v. 0 Lui$ Oo~Ch.-nOtn Til 6)6."8119 

MlGlc,aI Only 
T" 95-2733 11111" M,aQariltl AOid ~~~~r~~,.~' .50 

Cilq Post" t07 Abdullatl Hlroon Road T .... '-1391 ItI1emlbonll AlrJCho(E,A). Ud . 
Tele. 62650 Clnb.", ~::n=- SIO 025 t:'2ro,'f~ K_3 

KftMft·Pldurd Sou", Alnca 
PO 80.2577 

CobI. HEWPAAD CANBERRA YOkogJR-HewtItt·Plc:katdlld TIM 511027, !l1m7 Ka ...... 

Hewlett Packar(l ",US1TDI Title. 043-.430 ;~~~s~:::~~\o 
Teltx &-203 NEGON Mo TlMx· 28~ p6~_g~ Ttl 54388 

Ply ,/0 Ciblt BlUESTAR Cibit NEGON Cablt COOPERATOR Ki"Cho! C,ablt INUERIO K,am,*, 
How.ud Place. Cape PrD"llnee. 74$0 

5th Floor BlIJtSlarUd K.JnlOawi-ku HEw ZEALAND MusnllD & t::o-ml)lny. lid Prne ParI! Cen.r •. For.t DOYf l .... " 
T each'-5 UOM)() Buillllng .. ee.hl ..... r.n YOkoham •. 221 Htw"".PlCkMd (H Z.) lid 38 B $.lllellttt Town P'MIancb. c.,. Pr~nct!. 1405 ~ b ~~lmill.)lt4 4950· ... 99 8ou1'lOlrt SUHt xlUt/1618 W.t\.ItrNI Gindhl Rd Til 04~312-1252 PO 80x 90443 ~;~~f:~ Tel S3-79~ Ittu 9 
~r~~~~4 4000 Outtn~ Coc"Un &82 016 Tllu: 312-32'04 YHP YOI( Caunenl)' Pld Tett.- 51-0006 Lu ..... 

Ttl 3206!:U;t18' ,32282 ~~~~~::K"'(d lid r:..1:;11~ 
C,tI'.· FfMUS Aitll!.liplndl 

S,r"tlce Dl9ol1nmen1 
Ttl 73793 

C.bll. HEWP",RD Brisbin!!' Tti.ex 0185-514 PHIUPP'NES Htwlen·Paeq'e! SOUth AlrlCi 
c...bll! lR.JAYlU.luUkoll 

GUAM Cab~ Bt.UfSTAR 105. ~t-l.s.n-no-ml(u Gablt HEWPA(II.: WeilInllf0tl Tl1e Ofll.lnt! "<Iv.llncl!d pb~i;~ MedllCiI/Po~ktt ~culilor~ Ont~ Ellul Slit Ll4 r~~Q~~~~~~ HewMn·PIc:U'O (N,l) ltd S,SltfYl, Cof'potltKlfl cmtEllAIIEAS NOTUSTID.CCKTACT 
Guam MIdieIISUP=. Inc '·1·11111 Plikur"9i Pi"Otes$lONll Ctmrt AICOHOWH Ovtrporr. DurNn 4017 --~ Eosollu'/dont. oorn 210 s...;.",oo.o_ VoIoogIw.-H_-I'Ic ..... d lI. 267 P .... ra'lfl HIogtwrl, Amorwo (Of MIf, •• 51, ~1:~o.Id 

3200_ ... 
P &0."1 

____ 500003 

lnout luIkIing Be_ 5'092 L~SP' VII~t!, M~kJtl PaIoAlo.~rMJI)t 

r~rn~~~,~91' T., 10126, 70'27 , 348-3. A$ahl-Cho_ l-ChQrne r:~:r, MllTo "lnUa ~n,.OO' Tel 1415J.~HS01 
c...~ SlUHROST ~~~~2~:::S211 2,c3 

Ttl 85·35·81,115-34·91 Te! 88-7478 TWX 9H)·3]3.1261 
cab .. EARMeD GU.lm Ti!Ie. 015-459 C.lbll! HEWP",CIi(.A.uckllOO Tt* 3274 ONLINE Tetex 15-"~ c.tJIt HfWPOCI( Palo ... 

CANADA 

..... ERTA ONTARIO 
Htwlltt-P.cklrd ICatlldll) lid Hewlt!n,P,cllMd (GinMI,a1 ltd 
, '62OA - ,68th Strll1 lO2Q Motrlson Or 
Edmon'onT5~ 3T9 Ott .... K1H eK7 
Tel (403) 452·)670 MAN'ToeA T~ 1613) '20-648J QU£I!U!C 
TWX 61(}.831-2'31 BRITISH COLUMBaA HewletT-Plewa {CItIId.l} Lid HOY'" SCOTIA TWX ~1G-S63·1616 Htwlen-Packard IC.III\IdI) lid 

~~n'~.IIf:: tft·n~) lta 
Hl!wlen·P .. ckard (Canldl) ltd 513 C!fItury SI Hewlen·PlclQrd ICinaoll) lid Hew4tn·Packird (Cinaol) lid 27~ Hyml)S 81v<1 
837 f CordO'tii Sirtet SI .J¥nes 800 Wmdm,jI RO«:l 61177 Gor .. .., D(,'te Point. Cia.,.. H9R ,ij7 

f:".:J1 rl5'j.~~~J Vanc~ V6A 3A2 r.{nri~:t;~~8 O_rtmouth 838 III "I"i"~ L~Y lM8 Tel (51.) &97.4232 fOR CAN .. DtAH .. RE .... NOT USTfD 

f~Isr,~~~:~~ T. 190~) 469-]'20 TWX 610-"22-3022 ConlJci Htwiea·PaCkJrClICinadil 
T .. 16IO-821·6I-if1 TWX 61~671-353' TWX 610-211-... 482 HfX ;lJ~~~~~:;~ TLX 05--821521 HPCL lie! In MfSSISS.Iu'Ol 

CENTRAL AND SOUTH AMERICA 

MEJ:.CO 
liewl.en,P,ckilrd Mt.~Ciloni 
S_ de C V 
Av Ptnlfrfco $our ftto 6S01 
TlPfl)fn, XGd'llmdCtl 
..... kon 0 F 

ARGENTINA H!Wien· P lekar d ClO BI nil ECUADOR Tel 905·&7&·450[) ~AU 

Hrwlett·PKiri.lrO ArVtOhn.l Ie C lId,a Cilculator50nlW' Hfw(d-PaCk.,ct Mt:ianl f:'"e.!:,:':.~C.I S A SA RUi Padre cn.s. 32 ComputlOofiS y EQU.M SA d.CV VENEZUEL .. 
A~ Lundlro N AItm 122· 12 

~o;;~i2~J~S621 
ElreelrClrucos AYe Cot\SbtliCl6n No ll&<f S.IIn ISlGnl Ca.II 1030 Htwttn·P.I(;kard d. Ytfllllietl 

l00lat.anos ...... P 0 eo_ 6423 CO 
~.::";~2N~11_M 

U",.' CA 
lei ]1-6063 .•. S.6 and 7 C.tRe HeWPACK Potro Alegr, COlO"'. 

EIOy "'It.ro .'824,3 Piso Ttl "'·<4325 PO 110.50933 
T"tli Ill •• 3",A CIGV ""00 T .... 1)38..410 c-. ElMEO lIml c..'iIoCIS 105 
Clbj@ HfWPACK AAG HI'Mftt-PKUtd dO 81'SlI InslrumentaClCkl Ttl 453412 Los Auas None 

lEe ltd' Hen"" A. L.ngtbl" &. K .... S "' Teltl( 02-2113 S.l9111 Ed HfCAMGUA PUEfnO MCO lIT'lnS~SII 
BOLIVlA Ru.II SIQ .... roll C.mpos, 53 Carr., 7 NO 48·15 Colitite Sl911 .. -(N1'0 ROfItna TIt;n G Htwltn·PlCkard' Inltf· MltfIC41S e"'l.ao SIogrt! 
C .... I K.ilvlln S A CoI)IC.lb.ln., _A4, .. aZ17 AplrlMo Postll 689 Puerto RICO Br.nch antl:f C_~.101 
CJoIIt Pol"'" 11X1 20000-"10 "- J ...... ro BogoI_, IDE IEL SALVADOR .fOlhcl(I T,r;n C,IK 172 Tt( 3S-00·11 120 tints) 

4 PO 80.500 T. /57-&0-9<-0001021) Tel 69-88-77 InSfrurnen1lclon y PrDU"ml~'O ~~~. 23AI2.13"5-4 
No 203 Urb Counlry CM) Tilt. 25'46 HEWPACK 

laP .. T ... x 391·212-.I9()5 HEwp·BR CiOIt ,URIS 8o.got' Ehrctron.co dt el S .. ' .... dol CarOllnl 00924 Caole HEWP"'CK C"'Ki5 
Tel 415.30,5.3221 C,aDlt HEWPACK Ttle. 0..-.00 8l1lt".IIr d@ los ~t'Des It·48 Clble AOTEP.AN MolIn.lgul Ttl !1KJ9! 762·7255 
TeIt_ ewe 8x 5298 lIT 356OOl12 Alo de j3n"ro 

COSTA FUCA 
San salv.dor fltl, .. J.t505" 

FOA " .. EAS NOT U5TED. CONT .. CT: 
C~~@ I(AVll~ r~ Z511!1 PANAMA 

CHIlE C.tnhhU IAsl.IIHlCe'f1st! S A E leelronlCO e.llllKll S A URUGUAV Hewlcn'Picurd 
BRAZIL c..1C.lon, y Me1c.IIHe ltd .. A~ .. 'a2 CaUeS GUATEMALA P 0 Bo~ 4929 P,DIO f.rr.llOO S A Inlef·AmtllC.lS 
H@..,ltn-p,j(~lrd do 8rolls.l AlolImed .. ~-OI 807 San Pedro de Monl!S dt Du IPES'" C,alle S.mu@1 Lew,s ComerCliI e In(JuSln.l1 3200 HI/I",tw "' .... 
I to C ltoJ C"'SIHI211! Apilrlltlo 'OI~9 ""enldoll l.ll Rt/ormoll l·U. Cuided de P.No"", A¥tnlo1. Uilhl 2877 Palo Alto CaIIlornl.ll 94J0.4 
A ... enu:ll RIO N~fO 9NJ ~:n~=~31 San JON 10".9 Tel 64·2700 CIIS,)I. af Coneo 310 Ttl (415, .9]-1501 
Alpnil ... llte Tel 24·38-2'0 24·m~· 1 9 GU_'e",ala Ctty Ttll. 3.133 ,OJ Cu'undil Mom .. edeO rwx 910·313.'260 
Q6.400a,,-uet'lsP T~I!I 3520001 C~LMtT felt_ 2361 (JAlGUR CR t~ 63621 &4186 CJin.llllof\t Ttl 40·3102 C .. blt HEWP"CI( P,iO Ano 
Ttt ~~·3222 Cabll!" CALMEr &ilntligo CibJe G"'LGUR l@leJ 4192 Trll!lro Gil CI1». ElECTRON P.llr1ol1moi ~tMe RAOIUW Monltv.d@o hlt_ O).t·8300 O~·~93 



!" 

EUROPE, NORTH AFRICA AND MIDDLE EAST 
AUSTIIIA POLAIOD ~·PICUrd Gn.m_b.H 
_"''l2 HftIfn·Pac:kard GmoH 

BlUt'o Inktfmaql TtdtftIClntI 

po boa 7 Werk GfoettioOtn 
~·Pldllfd 

SWEDEN 
. · 1205V~ 

U1 Staw~ 2. 6P 

1~ 102221 3S'62' '.27 
litw4,tI· PacUrd france Ohmstnsse6 OO-9S0W..awa H~·p~d SwtrlQt AS 

table HEWPAK Vwnn, .oenCt R.Qlion&lt D· 7500 t<.,tsn •• 4' ITAl,V 101 39S962JJ9S 187 En'VMt$v.n 1·3 
P~rcentr. CIt" 1:41)1«' ~~:O~~~~265~~ 06 H ... ttt·P'CklrClltllot..,. ... S.p'" telc .. a12.~h'j)lpI Foc' 

t .... : 75913 htwpIk I Chemin 6e I~ lAQi*'t . 20 VL' AmeriGo Vnpuco 2 S·'61 20 Bromme 20 

r 
NLGIUII f-31JOD TaulouM-l. ..... ' Hntllt-Pacurd GmbH CIS"'" postale *5 

UNIPAA Tel ((MIl 730 05 50 

Htwttft-PKQClltnlilul lMI&1I4l) "'2 Tec;hnllc:t'lts Bun ~umnbltCJ \-lOl00 Milll .. l*,oOOSWiadczainy CIbIt : MEASURUIENTS 

S " .(N ,Y CatMt: HEWPACK 51957 NlUmeytr StT go T,!: 121 625' 1'0 h .... , ~~OK~j= =:=.r SllS$ T~~~i ..... ttt·PlcQrd Lid 

Av,nu. CI. CoP~.r1. 1 TM:.. 510957 
~d8~,~is6::a,85 

Cable : H£WPACIUT M~ WfdQt House 

~~~mlU~=. ~tft- PJCwCl France Tt6el . 32046 
00-800 W .. u ... H n·p"itarCi S".,'ge AS 799, london AtiId
Tel)6190 GS- Thornton ttI

"'oenc' RIolonat. t"'I 06~3 seo Hf'IIt1lft·P'e\lfa 111l1li'" S g ,., Telex 814643 O~sIr. Vlnter~l.ill 22
~~"~,~R~:~;03/11 t~~I~O~At~:~ ~~USsels ".fopon pnnObal Ot HfWl,"'PlClUlrd GmrM-i VII Pltt,o JrhtonteMi 40 1~1Cl"::o.ue Spnttu

s-702 40 0tWr0

i ~IISetIIt-M"'lOnlflt lecnf\lSOles Buero Mundlrn ~~31,:',=~)
1,. ' IOl91 140720 Telu !M5825

t
TeI,1: 23494 pilOOlrn lHu

~~.3ii,\~~" Untelhac.hinger SUISse 211 Pi.ac. Komuny Patv111111 6 Htwtrn-P~d S".,-Igt A8 C ___
ISAR Cemlt Ttl ('9) &6 q 81 go...OOl LOeb ~f.~':,I'f:~':,. F.....,.

HtwIen-PKUrd ltd

f

~r::,.IOS , J;enopouioS Rd
C.J.bIt: H[WPACK IrUAG,. D·80'201t_ 1 ... 1. 41612 HtwPICki T,t: lJ4 ... , . 337·83 ClO "'.10
T"t: 4,OnO 1If 10891 601 30 6117 """"'only T~ 103'1 009 50 South $tMt;t wl'lOlHMt Ctncrr

P.O. IIoa 11'l2 ·P ... ak" C*e. HEWPACKSA WIindWI HftMft·PacQrd 11~ SpA PORTUGAL T 10n1 'NI8IomtnlOtftce WUI Industnal Est.t

ey.- r.=-_ .. T 1I'l24!1115 ~~~~. 1
htectt .. Emcnu lKnltl .. .WITZEIILAJID Willl\lnQtOft

'et· 4562t12t _·_GmIIH E~tos ENaflCOS 5.1.1" _ '_I_,AG f:'==-=~Ie 1:*0' O""01IICS P.wlfHlS B.P. 112' '~"oe.-tin TM (050) 132 04 :."i:. ~c:' fOMlCl 103 lurc:MrSlrISU 10
T : 3018 f-3501~ CMb. Itlim Slraut 2'"

T : 3204t ... _ P.O 307

~!I!I.k::,~'741'2 D· 'OOO_30
_ · __ S." p·LJebon 1 C"'H'l2~ _ _·_Ud

CZICHOSI..O¥AIUA T": (030) !. 10 III ViJG . _'O ~1~~~~2L_ Ttl 10', 730 'l2 4OflJO 112'
'O. __ s. Y)'YQ1cM' Pr __

'lin 740912 1_: 'I 3005""" d 1·00143_ c.. HPAG CH GB·~

r ~~=~:.=" HrIw'tn·PacIlltCl ffanct T'I.IO&) ~."
'1It1..12Stt T SJI33_", WIll yCMUhirl WF' DIAl

~R~ObertYU
GllnCI r ... x 615'. _-'_dl_,AG

TM 100nSI 504112

'" 8993 ~1 Ko$W K¥.,..,.,.rs C~ HEWPACKIT Aom.1 -- T I. : 557355
' 121333 OIl . Ornirou SlrNl: Inllftlmblo "undi~ dt COmtrCIO ""1t.et.I 8Ioc '9

Intbtult of MldicalBionc ~n>;,) ~l1~~1' GR· 133 l1ewIen·PJCbrd II.,N S . .,.A SUi ~~ ,~ '1~~ L~ '01'220."'. H .. IItt-Pltbrd lid

'i)"Skumny Ustaow lKlrskI, 8tQniky T ... : 8901., Tet 3237731 COt'SO GIovlnt'lllaRlI ;VOA':O~12~~I.t 133 CaDit HlWPACkAG Geneva
, . WlllactWr,

Jldtovl e Cabl, : HEwPAC)(STRBG CatMt: RAMA AtMrnl 1·1031 Tonna GB·HMchi"

cs. .. 346 0-I<_ Tlllx: 21 5t 62 rut or Tot· 101116122'5/6S11301 p- liMon , 27 33J hPiQ Ch Krrts

Til : 44·551145-$41 HtwIttt-Packara Fflnce

~·~p"'hanalllcKl • Co
MICIlc.aIICliCUlatDl's()q1y ~'~LfiA~~~:O lisbon

SYRIA T~ 10.621 'l212'ile704

DOf1I =~y:t;a" ~1rI·PlCqrtll~N S.p.A Uedic.l!CllCuialOf only , &2SNI

Entwtddung-..ot .,. TU DmcItn 201. fVI Colbert "_TIl ,7 V," PnnClClt Nicoll '3 GJC
RUMANIA

_.,ea H __ lIIt

GR · A_'03 1·95'26t..- PlIC.J.lm, 1;'~-E.-bO:.';)OXsiMbtUt ",,,,,,berg Entr .. A2 Tel 52'21915 T'I '(09$) 37 ~ 04 Htwtlft·PadIIrd ~IrIMIfI\II B' 2301 F·59000 Ute C.IbIf ' Ih'TEKNIKA Amet\s Hf'WIlft-PacUrG IflilMII S.p A
8d .N. Slk:escu 16 SYR· Dam-.cue Dub"" 12

W.ktl'MMtnlllrMnliberl 'II : (201 51 14 Till." 21 5J?9 IHTE GR .""- Ttl 16361. 1S1&97 . 14268 TtlO~n~se
Til: 31661 'MJ. : 8207 VII Amer5puco. 9 Tel 15a023/U8U~
,..,.: 112145 -.-- -Only 1-10142 1111n:: 10440 c.* SAWlH. D1mnclJs Trltl.. 3043i

~~AGZIlOrid!

eor.,d· ___ T __ Ud
'II. t0l1) 77 11

I.I.R .U.C. TUMEY --"'gOo< -- Sl. __

_ ·'-d_S.p.' - .. -.. ~~,E4~-
- .p......,

~"'5 AIM .. La Commune 1M Pans GR - A~')!i V~f . _. '" I"..... R_ 0Ik0 USSII

'040 BP. J\lO T_ 362 11972.)63 JalO
~::~'~7 ~':::-o!:'::'"''':'' ~ =- Pok,.".,py IOuIilvltd 4/11· I(W 12

'tI· 42·74 ·12
f·9JIS3"' __ ~ C*oHALU_ _'0'000

r 111889 Tol 10')93' M 50 T_' 2'·4e93 flAt GR
KUWAIT

__ 1

ToI: .. 404l) 'eI·294·2024

ItUOIGAIOY Aj ·KNitdryI TrlOlng & 'eI: 1264 JO CiIMe· TElEMAl'IOfIt IJ1Inbui 'lit.· 7815....". '" OE_ afAMAlil F£OI.RAL MT. T,,": \1118 T_. 2_ -rzc-AtS ~E_UC",.- p .~~aa~~
'AUDI .. 1IlA8tA -.....

YUGOSLAVlA

=~ _·",..,.G_ SzOl9*i ,,-- f A Isltta·stanoant..+ • .,.ett·PllCU'd
litodem ElIClromc E,*~ WiklroKt¥lJaMI

Tot 10211'11140 ytrtfltbSllf'ltr .. Ftank'hIn lentn Krt 67 Ttl · 42"'1""11121 KMlQArbdulANSIf .(..-otIct)

_sllkK __

~~3~mI67~ 1:*0: HEWPACI< AS ~111 13t1 VI
=~~~kI P.O 1m

__ ,"e

PoSt'lICft 5eO 1010 TM .2 OJ 31 TR·_ T.: 37401 __
'M: 22 5114

_.
T,,: 175822 T,,: 31SIJ

:1

_.-.oAtS 0-6000 Fr •,. Y LUII'-UIIQ T ... 3117H322O'

~=~
,.: (0&11) 50 04·1 IC.LAIm HftotItI·PDInt 8tn11u1l CI*. ELECTRA =-o.::r. IOC\AUIIT C_
C*o HfWPAQ(SA , rt II_Only S . ~ ."' . V

PO Boa 2128, __) HOTSHOWN,.....

ToO: 10&)112 1'11/1 Tol 10&11150 04·'
~=~"=I"" ~~=:l"'·" ~-

MIl. M_CaII No. 1611 CONTACT:

l::': ~::'A~:Sk C_ HfWPACKSA '- Tol 629H1232
KIZiIoy ~'O"t;~ GII.m.b.H

T · 04 1324; "Dftmll'
~S~R~'C"20" - lHOBru Cabt.: RAOUFCO

TR·A

HeoMetf·Packltl! GmbH I." (02) 672 22 40
1M: 2S 03 at 1.-1205 V ArAtna

\'INLAND Ttchnlthl 8"' ... 0 8ObII...,. cao..: ELDING Rf'IkI,Ivtk c..b~ P'LOBEN B"' IP_ TIIa : '2516 ozti 1r Tet · (Q2221 35 11 21 10 21
H ·PICUrd OY Herrtnl)lfgerstraull1D

"'AN
T : 23 ... HewtIIlt·PICUrd EspiIIoII. S.1..

" .. HO IUNGOOIII
C""'OIEWP .. _

OU_n1io~ 0.70J().~._, CIllo 3 _ .PldlardLIII

T __

:i l

P.O. 10.$ Till : (07031.Lc56 . , ttIwtIn·PIctn IrlJl ltd ~O E·_16
~~=.~-.-Sf·002l1 _ 2' C.IbIoi. HEP __ No'3._S. '*. T~ ' I"41e 21 0111'0_, _Oil yy

TM: IIOI_' T : 012157»,., Awtnut '10, _ T : 23$15. Sorts RGl15AR :IfWW.mrnMrACl': C-. HEWPACI«)'_ -.-- P.O. ItoI .,n419 ~
_·_E_. S~

TM: (0134) 7147 14 '
T · 12-1563 MfWJA Sf 'R -T~ TM' 2S-,a.7Ii2S-1O-" _U. ii l«;hntlCha au"o Qu,HIdor'I' '11 . 851012·7 ~Go<~

Mi&IrMuda 11·21 =·~~LOftIoft ---.AAIICI ENnuel·Ltotn-S1r 1 (s..teml E·8erc:.torM 17 £1st ()oetatonl
HtwtIft·PlICbrd FrlnQl 0"'000 OU........, 11 TIth 21 25 7. ktWm " T_ 23m 1~. 131 203 6200 IS , 35. KoIolOb'Oftt sa, .. a- .. _ 'III: (021'.9)"11 IfIAQ NU"IIILNoDS , ~ 52603 "pM I _ ·'_LIII Plaba • ..-.nou __ 110. '

T : _S33_d _·_T_eo
_ ·_d __ .Y. :;::...-:-c::":** S.' "UiIgIt HcIvM.

GR·' __ . _

\:'~)'~~ --- '''''-ClOy V"' __ '2' ::=...- TM : 1OI0331~42t

~~~ ... ~HnDwg r~~~7 P.O .... 11/17 
E __ . _r. 

1 ..... 2'_ 
I:*oH(WPACko...., .... ·"34_ E·_~ o..rw. WA14 lMJ 

C*o- _ACkSA __ 

T .... : _ 
V~~OH~' =::~~* ~~:'l..~~ TM'&4"_ TM: 10&')121 &422 

Htw4reCI·Pidclrd ftlftCl =-=l~S.A 
rllll : I6ION 'Ofl on.lI 4_ 

cable H~WPACKSA HlmbUfi &.Ql'lClad Iraq T ... x 13 21e heCN nI NOT L1STU) COIrTACT 
~"CYR"_ ~t1-Paduir(llld KewItft·PKIwd S.A 
.. • Slquin" T ..... 21 63 032 "pM d IAILAND -.wAY E-BiIbeo-1 

~r..:.';:'!1'... 7. rut du Boil·du· lln 
tnfftlln dis MouiIa Hotw6eu·PK*atd Gm~ HIWt.l1·Pldwd ltC! HNleft·PaeUrd NOf'9I AJS T,' 23 13 01!123 82 0& PO 10, 
BP '82 

T __ ..... Honn_ 
0"10 StrOol lMIo .... ...,,3 CIiaI-'On~ 0 .. ..,_ CH-1217 y.ym 2 . o.n.v. 

' ·19130 IMIIIy Am Gr0lStftWWl6 GB·W'_,WIlIdoQMm 80., .. _"'-_Es~.S. ' . - . -~7~~~~Si..., 0·3000_11 Sorts.RGlISAR N·'3'-1 ........ G ... V~ _ ..... EI C.II_. IT WOI1 ""~"Ie2ISD ~~112~~~~_ TM (0511) .. 10 0' I" 10/3.411147 1. TM. 1021 S3 13 10 E·V8ttJnc ... T~ : 102" S60 1t11 
T ..... 3' 0& 17 T .... : 012 3m T .... &41178/341119 r .... : 1~1 ftptIU n TM l2e IT 2IIJ26 15 ~ r .... l3t'05 T_' 224111 

UNITED STATES 
KAWAI 

_ .... 
;:~'mt .:1.6165 ="I(j~~'" 

2385S R __ d'! Ori0r9 

f:C;';f:7&-: ... l()!iJS HIfWM1 Dr 

AL ......... 
6-(6W HQIth ........ 1tvo r" '*1 9S~~.~5 HOUMon 71036 

1290-.000 . S! SecrarMnto tsll' T_· m·105 n~ West c.ntr."VI 'II 1113) 17&-6400 

POlo •• 207 ToII916192t-7!12 I..L"oes K~4t002 
1~ ... nOrirwl 2OSBoIy""""'_ 

Hun' ........ 3S102 960ft Atto Dnvt 5201 TotMtw Of T~ f6O\i1 lZ:HJ62 OKLA-.. s.n AntoNo 11116 
.... c.-IIOO' Tel ISI2,"l-4 ·I2<1' 

Ttl ~~) 11' ·4591 PO. 80l nu3 R .... i'1!?_601108 _IOTA ~1sr.~~~50 
PO 80.32008 

-Only 
$on 0I0g0 91123 ~(.3~,~~~_= 2400 N PriOf"''It ~~~2~.~31l2 UTAH 

24'S W VIMty AItt 'tI : (114) 219-3200 St. , ..... 55113 2160 Sou1fI 3210 Wtsl Slrllt 

Aoom 220 COlORADO .-A ..... To I~'II 636-0100 NEW YOAK 
OfIIGON ..... UII. City 14119 , 

6 AutOl'Nltion LInt 

~'~~t'::;J~~ 560Q 5o!J1'tI UtSIiet Pltkwly 1301 Nor1tl ShaclNnCI A'tC! ....... '1>101 Computer Park 11890 SW lQllllNl' 8ooI'Ia 'el (801 1 972-4711 

Eng .... ood 10110 ~clr3~~~SO 'JIICtl8rOft ~~II~~~'~ 
ferryRtMd V~QIIrI'" 

AIIIZONA Tel tJ03111'·34S~ rlilldi(~,~Hr~ 
T",.a.t;1n 97062 PO 80. 121711 

~::=tSI CONNECTlCUT 
TWX 11G-2fiO.1T91 201 SOuth A~Ut 

1 .. 15031 e2(l.)350 No 7 MOfIf hK. c.n", 
12 luOIf On .. IOWA M,SSatM, r;,~~~~~~' PIlNNSYLyA .... Sultl 212 

lt1 , li!I(2) 244-'.)61 ..... HhM0652~ 2~1~ Hili'll ROId 11131 Co6ofIdo A.,. 111 Ziti. DIM! 
_ ... 13502 

?~':::~AII Tol. (203)3''''55' _CIIy~2240 
::(m~~7 

lWlt S'fl.25J.5tII' ..... -..,'5231 T"(804) '61·402~ 

TWX l1f1.oeS-21121 TM 13'1) 3."16 650 _ H. 0tIc0 Port< 101 14'2)112-0«00 PO.80.JM6e 
hi, (6(2) 294 ·314B 

FLORIDA KIENTUCK,Y TWX: 1'~711-2011 fm'~3~9950 '021 81h AYfI'UI ~~::'hs,r."'A'" 
' ""ANSAS p ,0 eo_ 24210 Mldtcal ani., , 024 htcuh-vt PIrtrWI, I!;lflQ of PrUl-Sii Industrlll Pitt 

T. '1I04121S-343' 
..... eM SoMa 0"", 2806 W. Oakland Park Bt..cI Arkln50n SQuirt St. Loui_ 6314' sasa bst MOIoy Roaa KI, of Pry .... li4[)6 

PO Sol. 5646 Ft.~dII"3331' ~! :br:~~ Sq.wr 
Ttl (]UI 818·0200 S,r:'3211 ~2J~~~~ WASHWGT~ 

.. "" S'"""" Tol IJOSI731 ·2020 Nl.BflASlC.A iW1P;~~~:~ 
BeIWIleId 0ftIc. P\ 

L ..... "oek 122'~ ·.Jadr.IMJnV1I" 
LOUie¥Ullt C02111 

~:~~~ 
SOUTH CAAOL\NA 1203· 114tt1 AWl S E 

let (501 ) 376-1844 
~1GI1c:.~ 

1 .. ISr02) 4S6-1~73 1 CtMswaysPar1tWnl 69041-(1 '" Trtnnotm Roid 

__ !11004 

CAUF()qNA LOUtSiAHA s..,110 W~"791 Col ........ moo ~~I~l>.!ttn~ 
~~~~:. o;~pe AWl 

PO 80.1 13910 PO 80_!40 a..-Y'06 ,,,. (516~ 1·0000 let 18031 712·6493

61 71 uuEtItnol Ot 3219-39 W6.ams IouIrtvMd f .. (402) 392·0141 TWX: 11 99().4951
"1'if l.f -WfST VlRGINtA

'et !714187().10C10 onendo 32109 1(~7Q06J
Nll!W (y MORTH C OL ·Knoxv.n~ tHOC.JI NtvtICII Only

39J9l.iMtrshlm aou...-.d Ttl· (J05c) 1159-2900 Tet (504) 443-&201
W 1 ZO Cenlu-ry Rd P.O. Box 51lVJ ~(~S~r:~~

CherfrHton

;':i;,W117 .~ 91604
P .O. 80_ 1112'fi AyL..AHO ,.-ue 076S2 1923 ~orth Mm Str.et ttl 13041 lAS-I640

'enMCOIII 32575 6701 WP\«estc:ne Road ~~(1?~~~.~ " PoInt 27262 WISCONSIN
1'WX 91C1 .. 4i9-2671 Ttl (tcW) .. 7r,...~22 8dimrote 21207 'III ' (9,9) 3M-1I101 3021 vanguard Or 9004 ¥inl l.ncoln Avt'

5-400 Ww Aoste:tlns 8t¥<I Q£OAQIA
Ttf 1301) 9ot,·5of,OO Cty1U1 BIOO« Prot,ulO"'IlI 0Hl0

Oll' tc:to r" s PIau W",A*.~22 7

P O 90.92105 P.O 80. 105005 TWX 710-862·9'57 6uIIOIno 16500 Sprague Ro..ad ~~)\!~~70 TI'I (,,'41!>Cl ·M!IO

WOrld Wty PO$III Ctnter A " ... J014e 2 C"OIi;~ Che"., Road EMomOW" 0712<1 Ctltv.tand '30

~:'I~t~~ 'el. (404) 95!t-1500 Rock .. \Io~O TOII101I \42·'~ lei 12'6) 2.3-7300" "0" U .S. AfIIIll.,AS HOT LISTED

TW ... ·lll0-7SO-"lIiO ~~(.1f,l~t~~~~ N~WMUICO
TWX lI1D·HJ·94JO r:'(t,5~«~~~~

Conti,1 tf'Ilt rt9~llloIlIU

· L .. A MMJltII: SIt'YICt On.., 1lO Proal"! Ad
.",rts(you AUAnf, Geolg'.

PO Bo. """
Nonh HOIIVWOOG C,.,tOIl')I,

Tel 12131 716·7500 ;~"f'~7~~ .. ASSACHUSErr-B StaflCll"l E Deyton 450449 TEXAS Roc_ville MirytintJ ROIling WUOO*'

3003 Saln SolJlic¥lrci 32 Hirtwell Ave " 300 loml\ SlYd • E T,I (513) 8!)1J.&202 PO 80" 1270 mll\(),sTI'Itt'~ltt

S. "t. Ct.,.. tsOSO PO 8012103 ~:I::~i"&6~~j~ t~~r,~~2J 100&1 K,ngsmllJ Pirnuy 201 £ AfaplhO Ad id<Jft$Sts A" "~I." .bo .. ,
T .. (Q) 241-1000 W ftotMna 31098 Columbus .3229 AicMldaon 7~O
TWX : 910-338-05111 1M 19'21 922·0449 TWX 710-326-69G4 TWX ' 91~geg."85 Tel (6141436-1041 Tri \2 14) 231 -6101 'S-"iee Only ,''"

,

I

•

Index 153

Subject Index

a Clear flag (cfg) 60
Clear simple variables (csv) 70

Absolute branching 61
Absolute value (abs) 53
Access rate (tape) 89
Accessories 6
Acs (arccosine) 57

Common logarithm (log) 55
Complement flag (cmf) 60
Compatibility (9820A/9821 A

and 9825A) 141

8·.... 33
Addition (+) 20.50 with enter statement 45
Advanced Programming ROM 7
Allocation (variables) 39

Continue (cont) 79. 139
immediate 35

And operator 52 Cosine (cos) 56
Angular units 56 Csv (clear simple variables) 70
Arccosine (acs) 57
Arcsine (asn) 56
Arctangent (atn) 57 d
Arithmetic 20
Arithmetic hierarchy 21
Arithmetic operators 50
Array variables 37

recording 107
Asn (arcsine) 56

~ assignment operator 18. 34. 50
Ii. n (arctangent) 57
Auto-verify disable (avd) 110
Auto-verify enable (ave) 111

Data transfer rate (tape) 89
Debug ("DB") 77.102
Debugging 73
Default values 57
Degrees (deg) 56
Delete (del) 61. 80
8 character 23, 31, 73
Elline 30, 74
Digit rounding 54
Digitizer (9864A) 9
Dimension bounds 69

b
Dimension (dim) 68
Display 15

live keyboard 86

EJ '" 23, 31. 73
BCD interface (98033A) 10
Beep statement , .. " ... 47
Binary program , 109
Blank lines 47
Bounds (dimension) 69

Display (dsp) .. , 43
Display control keys;

8 8 29. 74. 86
88 29

Division (I) 20.50
Dsp (display) 43

Brackets 37
Branching 61

n-way 68 e
Byte 37 Editing 23

End statement 48

c
Calculated go sub 66
Calculating range 16
Calculator mode 22
Card readers 8

8 19.33

Enp (enter print) 46
Enter (ent) 44

@ (enter exponent) 34

Enter print (enp) 46
EQual to (=) 51
Equipment supplied '" 1
8 28
Erase " .. , 81,139

154 IllClex

Erase tape (ert) 101
Errors inside back cover

math 57 h
messages 18, 123
tape cartridge (errors 46 and 47) ., 145

Hierarchy 21, 49
Hints 137

Ert (erase tape) 101
Exclusive or (xor) 53 m 19,32

HP-IB interface (98034A) 10
HPL 18

•
Execution time 137
Exponential (exp) 55 1
Exponential functions 55
Exponentiation (t) 50

Identify file (idf) 93
If 67

Extended I/O ROM 7, 140 I mmediate continue keys 35

f
Immediate execute keys 35
Implied multiplication 18, 21, 51
B 30,74

Fdf (find file) 94
8 3o, 73
Fetch 82
File size 93, 95, 97

El (insert/replace) 24,31, 73
Inspection 1
Integer (int) 54
Interfaces 10

File verification 110 •
Find file (fdf) 94
Fixed (fxd) 40 J
Fixed-point 39
Flag (fig) function 61
Flags 59

debugging 75

Jump Ump) 64

k
flag 13 59
flag 14 57,59 Key repetition 15
flag 15 57,59 Keyboard 14,19,27

Float (fit) 41 foldout back of manual
Floating-point 39 Keyboard Magazine 12
Flowchart symbols 26
Formats 39
G (forward) 23,31,73 1
Fraction (frc) 54
Fuses 4
Fxd (fixed) 40

Labelled branching 61
Labels 62
Language (HPL) 18

g Lazy T (f-) 13, 15
Ldb (load binary program) 109
Ldf (load file) 104

General I/O ROM 7 Ldk (load keys) 108
Go sub (gsb) 65 Ldm (load memory) 109

calculated 66 Ldp (load program) 104
Go to (gto) 62 Less than «) 51
Grads (grad) 56
Greater than (» 51

Less than or equal to «= or ==<) 51
Line length 15

Greater than or equal to (>= or =» ... 51 Line renumbering 61
Grounding 3
Gsb (go sub) 65
Gto (go to) 62

Linking programs 106
8 · .. ·.· 29
List 70
List keys (Iistk) 70

Index 155

Live keyboard 23, 83
limitations 85

Live-keyboard disable (Ikd) 87
Live-keyboard enable (Ike) 87
8 28

p
Peripherals 8

GJ (pi) 34
Load binary program (Idb) 109
Load file (Idf) 104

data 107

Plotter (9862A) 8
Plotter ROM (9862A) 7
Plus sign 50

program 105 Power cords 2
Load keys (ldk) 108
Load memory (Idm) 109
Load program (Idp) 104
Logarithm:

common (log) 55

Power-of-ten-rounding (prnd) 54
Power requirements 3
Prerecorded programs 11
Print (prt) 43
Prnd (power-of-ten-rounding) 54

natural (In) 55 8 (print all) 27
Printer paper 5

m Printers (peripheral) 8
Programming 24

Mark (mrk) 96
Marking:

Prompt 44
Prt 43

file header 146
new tapes 99
usedtapes 99 q

Math functions 53 Quotes 43
Matrix ROM 7
Maximum value (max) 54
Memory 16 r

usage 71
Minimum value (min) 54
Minus sign (-) 50
Modulus (mod) 50
Mounting 149
Mrk (mark) 96

R-variables 22, 38
recording 107

Radians (rad) 56
Random number (rnd) 54
Range 16

Multiplication 21, 49, 50 Rcf (record file) 102

implied 18,21,51 Rck (record keys) 108
Rcm (record memory) 108

n Read Only Memory (ROM) 5, 16
Read/Write Memory (RWM) 16
El 31,86

N-way branching 68 8 28
Natural logarithm (In) 55 Record file (rcf) 102
Normal (nor) 75 data 102
Not equal to (#, ><, <» 51 programs 102
Not operator 53 Record keys (rck) 108
Null file 96 Record memory (rcm) 108

Record tab 90

o Relational operators:
=, >, <, >=, <=, # 51

Operating System 5
Operators 50
Or operator 52

Relative branching' 61
Remarks 62
Res 20,33
8 27, 139

156 Index

8~.. 33
Return (ret) 65
8 27
Rewind (rew) 92
Rnd (random number) 54
ROMs 6
Rounding 42

Subroutines 65
from live keyboard 84

Subtraction 20, 50
Syntax 113

conventions 37
informal 113
requirements for HPL 117

power-or-ten (prnd) 54
digit (drnd) 54

8 20.32.139

Run 79. 139
Run light 15

t
Tangent (tan) 56
Tape 89

capacity 98
care 91

s cartridge 90
inserting 91

Scientific notation (fit) 39
Secure ("SE") 102
Service contracts 11
Set flag (sfg) 59
Set select code (ssc) 111
Sfg (set flag) 59
Sgn (sign) 54

8 32

length 89
marking 96
specifications 89
structu re 90

Tape list (tlist) 95
Tape Punch (9884A) 9
Ten-to-the-power (tnt) 55
Testing 5
Text , 43

Q \.::J 32

Sign (sgn) 54
Significant digits 16.42
Simple variables 22. 37

Tlist (tape list) 95
Tnt (ten-to-the-power) 55
Trace (trc) 75
Track (trk) 92
Trigonometric functions 56

Sine (sin) 56 Turn-on 4, 13, 139
16-Bit Duplex Interface (98032A) 10
Space (spc) 47
Spacing 15 u
Special function keys 14. 34

in live keyboard 84
Units 56

immediate continue 35
immediate execute 35 v
multiple statement 36

Square root (V) 21, 53
Ssc (set select code) 111
Statement 37
Status conditions 139
(3 28.73

8'0' 32
in live keyboard 85

Stop (stp) ' 48

Variable allocation 39
Variables 21,37
Verification (tape file) 110
Verify (vfy) 111
Voltage 3
Voltage selector switches 4

w
debugging 75 Wait 47

Storage (program) 17, 137
Storage range 16, 57

8 19,32 x
String Variables ROM 7 Xor (exclusive or) 53

Scan Copyright ©
The Museum of HP Calculators

www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

