
HP 9800 Computer Systems

BASIC Programming
For the HP 9845

rli~ HEWLETT
~r... PACKARD

Flio- HEWLETT
~~ PACKARD

Warranty Statement

Hewlett-Packard products are warranted against defects in
materials and workmanship. For Hewlett-Packard Desktop
Computer Division products sold in the U.S.A and Canada,
this warranty applies for ninety (90) days from date of
delivery. * Hewlett-Packard will, at its option, repair or replace
equipment which proves to be defective during the warranty
period. This warranty includes labor, parts, and surface
travel costs, if any. Equipment returned to Hewlett-Packard
for repair must be shipped freight prepaid. Repairs
necessitated by misuse of the equipment, or by hardware,
software, or interfacing not provided by Hewlett-Packard are
not covered by this warranty.

HP warrants that its software and firmware designated by HP
for use with a CPU will execute its programming instructions
when properly installed on that CPU. HP does not warrant
that the operation of the CPU, software, or firmware will be
uninterrupted or error free.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE. HEWLETT-PACKARD SHALL
NOT BE LIABLE FOR CONSEQUENTIAL DAMAGES.

* For other countries, contact your local Sales and Service
Office to determine warranty terms.

BASIC Programming
Part No. 09845-93000

Microfiche No. 09845-96000

Hewlett-Packard Desktop Computer Division
3404 East Harmony Road, Fort Collins. Colorado 80525

Copyright by Hewlett-Packard Company 1981

ii

Printing History
This manual is for use with the HP 9845B/C. It is a revised version of the Operating and Prog­

ramming manual, part number 09845-92000. Chapters 1 and 2 have been replaced by a shorter

version of the Beginner's Guide, part number 09845-92001. (The Beginner's Guide will no lon­

ger be available.)

New editions of this manual will incorporate all material updated since the previous edition.

Update packages may be issued between editions and contain replacement and additional pages

to be merged into the manual by the user. Each updated page will be indicated by a revision date

at the bottom of the page. A vertical bar in the margin indicates the change on each page. Note

that pages which are rearranged due to changes on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing date changes

when a new edition is printed. (Minor corrections and updates which are incorporated at reprint

do not cause the date to change.) The manual part number changes when extensive technical

changes are incorporated.

April 1981...First Edition. Updated pages: 34, 51. 58. 68. 75, 76. 78. 80. 82. 83. 85. 90. 96.
119.127. 130. 131. 140. 166. 171. 173. 176. 178.
180. 183.186.204, 210. 217. 239. 240. 242. 246.
249

August 1981...Second Edition. Updated pages: ii, 1, 14, 191, RT-21

September 1981 ... Third Edition. Updated pages: BP-98, BP-171, BP-189, RT-4, EM-4, EM-5

09845-93000. rev: 9/81

Preface
The BASIC Programming Manual is one of the manuals provided with your 9845 Computer. It is

designed to be used by all 9845 users, from those who have never programmed to those who

have programmed extensively using the BASIC language.

If you are a beginning programmer, you should read the Programming Tutorial in Chapter 2.

You can also use the Introductory Training Tape and Workbook to become familiar with your

computer.

When you are comfortable with BASIC and programming, you can find all of the 9845 main­

frame statements discussed in detail in this manual. You can also use the pocket-sized Quick

Reference as a handy gUide to the language syntax.

In general, this manual groups the various BASIC statements, functions and commands together

by topic. For example, all output statements and functions are found in Chapter 10. As much as

possible, major topics are self-contained so you don't need to read an entire chapter to extract

one idea. However, in some instances, statements that haven't been introduced are used to help

illustrate the topic being discussed; the PRINT statement is used frequently this way. It is recom­

mended that you read Chapter 1 of the Installation, Operation and Test Manual and Chapter 1 of

this manual to get acquainted with the computer. After that, you need only read about the topics

you want.

The coverage of each statement, function and command is restricted to its syntax, rules for its

usage and some ways to use it (shown in text or in an example). The example programs are not

intended to be comprehensive, but to illustrate syntax and a typical usage. In some cases, certain

lines are emphasized by a bullet (e) placed next to them.

iii

iv

v

Table of Contents

Printing History .. ii

Preface .. iii

Chapter 1: General Information

The Keyboard. 1
Alphanumeric and Numeric Keys. 1
General Purpose Keys. 1
Typing. Line Editing and CRT Display Keys. 1
Special Function Keys. 1

Resetting the Computer. 2
Logging Keyboard Operations 2

The PRINT ALL IS Statement. 2
Using the Keyboard While a Program is Running. 3

The SUSPEND INTERACTIVE Statement. 3
The RESUME INTERACTIVE Statement 4

Error Messages and Warnings. 4
9845A vs. 9845B/C 4

Chapter 2: Programming Tutorial

Where Do You Go From Here? 5
Problem Solving: Defining the Problem 6
Problem Solving: Developing a Solution. 6

Program Outlines .. 6
Flowcharts ... 7

Problem Solving: Writing the Program 8
More Examples .. 10

Chapter 3: Programming

Syntax Conventions ... 16
Programming Terms ... 16
Program Fundamentals .. 18
Entering Program lines .. 19

The EDIT LINE Command ... 19
Increment Value ... 20
Automatic Indent .. 20
Inserting lines .. 20
Deleting lines ... 21

The DEL Command .. 21

vi

Exiting the Edit Line Mode ... 22
The AUTO Command .. 22
The REN Command ... 22

Spacing .. 23
Space Dependent Mode .. 23

Remarks ... 25
The REM Statement ... 25
Comment Delimiter .. 25

The LIST Command ... 26
Available Memory ... 26
Alternate Printing Devices (LIST#) .. 26

The RUN Command and 8 .. 27
THE STEP Key ... 27

The PAUSE Statement and ([J .. 28

The CONTINUE Command and CD .. 28
Terminating Execution ... 28

The STOP Key .. 28
The STOP Statement .. 29
The END Statement ... 29
Reset ... 29

The SCRATCH Command ... 30
The SECURE Statement ... 30
Miscellaneous Statements .. 31

The WAIT Statement .. 31
The TYPEWRITER ON Statement ... 31
The TYPEWRITER OFF Statement .. 31

Chapter 4: Mathematics
Operators ... 34

Arithmetic Operators ... 34
Relational Operators ... 34
Logical Operators ... 35

AND Operator ... 35
OR Operator .. 35
EXOR Operator .. 36
NOT Operator ... 36

DIV Operator ... 37
MOD Operator .. 37

Range .. 38
Number Formats .. 38

The STANDARD Statement .. 39
The FIXED Statement .. 39
The FLOAT Statement ... 40
Rounding ... 41
Significant Digits .. 41

Math Functions and Statements .. 42
General Functions ... 42
Logarithmic and Exponential Functions .. 46
Trigonometric Functions and Statements 46

vii

Math Hierarchy ... 48
Parentheses ... 49

Math Errors-Recovery ... 50
The DEFAULT ON Statement .. 50
The DEFAULT OFF Statement .. 51

Chapter 5: Using Variables
Types .. 54
Forms .. 54
Names ... 55
Variable Breakdown ... 55
Using Variables at the Keyboard .. 56
The LET Statement ... 56

Implied LET ... 56
Array Variables ... 57

Defining the size of an array .. 58
Implicit Definition ... 58
Array Elements .. 58
Array Identifier .. 58

Declaring and Dimensioning Variables .. 59
Subscripts .. 59
The OPTION BASE Statement .. 60
The DIM Statement .. 60
The INTEGER Statement ... 61
The SHORT Statement .. 62
The REAL Statement .. 62
The COM Statement ... 63

Redimensioning an Array .. 64
The REDIM Statement ... 64

More Ways to Assign Values to Variables .. 65
The READ and DATA Statements ... 66
The MA T READ Statement ... 66
DATA Pointer ... 67
The RESTORE Statement .. 68
The INPUT Statement ... 69
The MAT INPUT Statement .. 71

Storage of Variables ... 73

Chapter 6: Array Operations
Assigning a Constant Value .. 76

1. MAT ... CON ... 76
2. MAT. .. ZER .. 76
3. MAT-Initialize ... 77

The MAT - Copy Statement .. 78
Mathematical Operations .. 79

Scalar Operations ... 79
Arithmetic Operations .. 80
Functions ... 81

Matrices and Vectors .. 82
MAT ... IDN .. 82
Matrix Multiplication ... 83
MAT. .. INV .. 85

'I,'

\

viii

MAT ... TRN ... 87
MA T... CSUM ... 87
MAT ... RSUM .. 88

Array Functions ... 89
SUM Function ... 89
ROW Function .. 89
COL Function ... 89
DOT Function ... 90
DET Function ... 90

Chapter 7: String Operations
Overview ... 94
Dimensioning a String ... 94

Explicit Dimensioning .. 94
Implicit Dimensioning .. 95

String Arrays ... 95
String Expressions .. 96
Substrings .. 96
String Concatenation (&) .. 97
Assigning a Value to a String ... 98

The LINPUT Statement .. 98
The EDIT Statement ... 99

String Variable Modification .. 100
No Substring Specifers .. 101
One Substring Specifier ... 101
Two Substring Specifiers .. 102

The Null String .. 103
String Functions ... 103

The LEN Function .. 103
The POS Function .. 104
The VAL Function .. 105
The VAL$ Function ... 105
The CHR$ Function .. 106
The NUM Function ... 107
The UPC$ Function .. 107
The LWC$ Function .. 108
The RPT$ Function ... 108
The REV$ Function ... 109
The TRIM$ Function .. 109

Relational Operations .. 110
Variable Diagram .. 111
Memory Usage .. 111

Chapter 8: Branching and Subroutines

Unconditional Branching ... 114
The GOTO Statement .. 114
The ON ... GOTO Statement ... 114
Summary .. 115

The IF ... THEN Statement ... 115
The FOR and NEXT Statements ... 117

Nesting .. 120
FOR-NEXT Loop Considerations .. 121

ix

Subroutines ... 122
The GOSUB Statement ... 122
The ON ... GOSUB Statement .. 123
Summary .. 124

The DEF FN Statement ... 125
Summary .. 126

Chapter 9: Subprograms
Why Use Subprograms? .. 128

Types of Subprograms .. 128
Terms ... 129
Parameters .. 129

Formal Parameters ... 129
Pass Parameters .. 130
Passing the Parameters ... 130
Summary .. 133

Multiple-Line Function Subprograms (DEF FN) 134
Subroutine Subprograms (SUB and CALL) 136
Subprogram Considerations .. 138

What Happens ... 138
Using the COM Statement ... 138
Variable Allocation Statements .. 140
Local Variables ... 140
Speed Considerations. ... 140
Files ... 141
Editing Subprograms ... 142

Chapter 10: Output
The BEEP Statement ... 144
The DISP Statement ... 144
Printed Output ... 146
The PRINTER IS Statement ... 146
The PRINT Statement .. 147
Output Functions .. 149

The TAB Function .. 149
The SPA Function .. 150
The LIN Function .. 151
The PAGE Function .. 152

The MAT PRINT Statement ... 153
The PRINT USING and IMAGE Statements 155

Format String .. 155
Reusing the Format String ... 155
Delimiters ... 156
Blank Spaces .. 156
String Specification ... 156
Numeric Specification .. 157

Digit Symbols .. 157
Radix Symbols ... 159
Sign Symbols ... 160
Digit Separator Symbols ... 161
Exponent Symbol ... 162

Floating Symbols ... 162
Replication .. 163

x

Compacted Specifier ... 164
Carriage Control ... 164
Field Overflow ... 165
Summary .. 166
Considerations ... 166

Advanced Printing Techniques .. 166
Overlapped Processing ... 166

The OVERLAP Statement ... 167
The SERIAL Statement ... 167

Accessing Color on the CRT .. 167
Color Using CONTROL ... , 167
Color Using CHR$... 167
Color Using the Escape Code Sequence 168

Chapter 11: Mass Storage Operations
Terms ... 170
The MASS STORAGE IS Statement ... 172
Structure .. 173

Files ... 173
Records ... 173
EOF's and EOR's ... 174

Physical Records ... 174
End-of-File and End-of-Record Marks 174

The Directory .. 175
Tape Cartridge Directory .. 175

The INITIALIZE Statement .. 176
The CAT Statement .. 177

The CAT TO Statement ... 179
Storing and Retrieving Programs .. 181

The SAVE Statement ... 182
The GET Statement .. 182
The LINK Statement .. 184
The RE-SAVE Statement .. 184
The STORE Statement .. 185
The LOAD Statement ... 186
The RE-STORE Statement .. 186

Storing and Retrieving Data ... 187
Considerations ... 187
The CREATE Statement .. 187
The ASSIGN Statement ... 188
Serial File Access ... 189
The PRINT# Statement - Serial .. 189
The READ# Statement - Serial .. 191
Random File Access .. 193
The PRINT# Statement - Random ... 193
The READ# Statement - Random .. 194
Repositioning the Pointer ... 194
The MAT PRINT# and MAT READ# Statements 194
Random vs. Serial Method .. 195
Closing a File - ASSIGN .. 196

Other Data File Operations ... 196
TYP Function .. 196
The ON END# Statement ... 197

xi

The OFF END# Statement .. 198
EOR Errors .. 198
Data Storage ... 198
The BUFFER Statement .. 199

The CHECK READ Statement .. 200
The CHECK READ OFF Statement .. 201
The PROTECT Statement .. 201
The PURGE Statement ... 202
The COPY Statement .. 202
The RENAME Statement ... 203
STORE KEY and LOAD KEY ... 203
STORE BIN and LOAD BIN ... 204
STORE ALL and LOAD ALL .. 204
The Tape Cartridge .. 205

Recording on the Tape .. 205
Write Protection .. 205
Inserting and Removing the Tape Cartridge 206
General Tape Cartridge Information ... 206
The REWIND Statement .. 207
Mass Storage Errors .. 207
Optimizing Tape Use ... 207

Chapter 12: Editing and Debugging
Debugging a Program .. 210

The TRACE Statement .. 210
The TRACE WAIT Statemen .. 211
The TRACE PAUSE Statement .. 211
The TRACE VARIABLES Statement ... 212
The TRACE ALL VARIABLES Statement 212
The TRACE ALL Statement ... 213
The NORMAL Statement ... 213

Error Testing and Recovery ... 213
The ON ERROR Statement ... 213

Error Functions .. 214
The OFF ERROR Statement .. 215

Chapter 13: Special Function Keys

Pre-defined definitions ... 218
Special Features ... 218
Typing Aids ... 220

The EDIT KEY Command ... 220
The SCRATCH KEY Command ... 225

The LIST KEY Command ... 225

Chapter 14: Program Interrupts
Introduction ... 227
Priority .. 227

Changing the System Priority .. 228
Scope of Interrupt Statements ... 228
How Interrupts Interact ... 228

ON KEY, ON KBD, and ON INT ... 228
ON ERROR and ON END ... 229

xii

Errors ... 229
When are Interrupts Active? ... 230

The DISABLE Statement. 230
The ENABLE Statement .. 230

The ON KBD Statement .. 230
Priority .. 231
ALL .. 231
ON KBD Buffer .. 231
Considerations ... 231

KBD$ Function .. 232
The OFF KBD Statement ... 234
The ON KEY # Statement. 234

Priority .. 234
Considerations ... 237
The OFF KEY Statement.. . .. 237
Summary. 238

Softkeys ... '" 238

Appendix A: Advanced Printing Techniques

Introduction
CRT Memory ..

CRT Special Features
Using Control Codes

CRT vs. Printer
Considerations.
Disabling Control Codes.

CRT Selective Addressing.
Introduction.
The Cursor.
Adressing Schemes.
Setting the Cursor Position ..

Absolute Addressing.
Relative Addressing
Combining Absolute and Relative Addressing.

Moving the Cursor.
Using Tabs.
Clearing. Inserting and Deleting Lines.
Inserting and Deleting Characters.
Rolling the Display.
Selective Scrolling (Memory Lock)

The Internal Printer.
Structure.
Rows Per Line.
Margins ..
Setting Tabs.
New Characters.
String Replacement ..
ISO'/;, Size Characters.
Underlining.
Plotting Mode ..

Summary of Escape Codes
Examples ...

· .. 2:39
· .. 239

......... 239
...... 241

· 242
242

· 243
· 243
. 243
· 244

. 244
· 245

. .. 245
.... 246

· .. 246
· .. 247

· 247
· 258

· . 248
. 248

· 24Sl
. 250

· . 250
. 250

· . 251
.251
.252

. 255
· 256

. 256
· . 257
· . 258

· 258

xiii

Appendix B: Programming Exercises .. 263

Reference Tables

Glossary 1
ASCII Character Codes. 10
Roman Extension Character Codes 11
Metric Conversion Table 12
Reset Conditions 13
Memory. 14
System 45 Compatibility 19
Graphics Firmware Differences 24

Error Messages

Subject Index

xiv

BP-l

Chapter 1
General Information

Your 9845 Desktop Computer is a high speed. versatile computing tooL You can use it to per­

form calculations and to enter and run programs written in BASIC (Beginner's All-purpose Sym­

bolic Instruction Code). The 9845 is designed for both the programmer and the system operator

since it can be used for interactive writing and debugging of programs and for entering data into a

running program.

If you have just received your computer, please refer to the Installation, Operation and Test

Manual for information about initial set-up and operation procedures. Otherwise, you can begin

using the computer by setting the power switch on the right-hand side of the machine to the ''1''

position and waiting for 9845 READY FOR USE to be displ3yed.

The Keyboard
The keyboard is the primary means for entering programs and data into the computer. This

section provides information about the functions of many of the keys. For more information

about a specific key, refer to the index.

T ypewritej Keys

flJNC1'or,~~

~~~E3 

~~~~ 

DiSPlay(eyS

r- OI~PL AY -------,
Special FunctiOjKeyS

~~~c::s:Jc::s:Jcs::::J~~ 
RE,~INO REWI"JO 

T14 110 



BP-2 General Information 

Resetting the Computer 
If the computer becomes inoperative due to a system or 110 malfunction, you may need to reset 

it to return it to a ready state. This is done by holding down CONTROL, then pressing STOP. 

This is the reset operation. (Notice that RESET is indicated on the front of the STOP key.) 

Reset immediately aborts all machine activity. It is a hardware-oriented operation and returns the 

computer as well as all peripherals and HP-IB interfaces to a ready state. If a program is running, 

any pending or executing 110 operation is terminated and data may be lost. You may also lose 

data if a mass storage device is being accessed. 

NOTE 
There is a slight possibility that the reset operation will cause 

the entire memory to be scratched as if you had executed 

SCRATCH A. Use reset only if nothing else, such as pressing 

STOP, brings the machine to a ready state. 

Refer to the Reset Table in the Reference Tables section for a list of conditions affected by reset. 

Logging Keyboard Operations 
Use print all mode, to obtain a printed log of all operations that are executed from the keyboard, 

including computations, displayed results, trace messages and error messages. This provides a 

useful audit trail of previous operations for later reference - to duplicate a procedure for exam­

ple. It is also useful for displays that are longer that 80 characters, like executing five computa­

tions separated by commas. Otherwise, only the last line is displayed. 

Print all mode is set by pressing and latching the PRT ALL key, which is with the EDIT/SYSTEM 

FUNCTION keys. Print all mode is turned off by unlatching PRT ALL. 

The PRINT ALL IS Statement 
The log of keyboard operations is printed on the print all printer. This printer is the CRT when 

the computer is turned on and after SCRATCH A is executed. You can change it by executing 

the PRINT ALL IS statement, which can be done either in a program or from the keyboard. 

,_. i":' .! >i i Cii i I ':::: select code [ ;, HP-IB device address) 

The select code is a number used to access an internal or external device. 16 is the select code of 

the CRT; 0 is the select code of the internal printer. The select code of an external device is set 

on the interface card that connects the device to the computer. The HP-IB device address is set 

on a device that is connected to the computer with an HP-IB interface card. 



Alphanumeric and Numeric Keys 
Use these keys to enter letters, numbers and other characters. The alphanumeric keys work like 

those on a typewriter except that, normally, pressing a key gives you an uppercase letter, while 

holding down SHIFT and pressing a key gives you a lowercase letter. To reverse this and make 

the keys work like a typewriter, press the TYPWTR key. The E key in either the numeric or 

alphanumeric section can be used to enter an E in a number. The E indicates that an exponent 

follows, when expressing a number in scientific notation. 

General Purpose Keys 
Key 

EXECUTE 

RECALL 

RESULT 

PRT ALL 

AUTOST 

CONTROL 

Function 

Perform the operation (numeric computation, command or statement without a line num­
ber) that has been entered. 

Return any keyboard entry that was followed by STORE, CONTINUE, or EXECUTE to 
the keyboard entry area. Entries are stored into a 1296-byte (character) buffer on a last-in, 
first-out basis. Press RECALL to recall a previous keyboard entry. To move the other 
direction through the recall buffer (recalling more-recent entries) press RECALL while 
holding down SHIFT. When the recall buffer is full, each new entry causes one or more of 
the oldest entries, depending on size, to be lost. 

By pressing RESULT, the answer of the most-recently executed keyboard calculation can 
be used in another calculation. You can also type in RES to use this result function. 

When this key is latched, keyboard operations and system messages are logged. There is 
more information later in this chapter about logging keyboard entries. 

If this key is latched when the computer is switched on, the computer attempts the follow­
ing operation on the right-hand tape drive: LOAD "AUTOST",l. This allows the comput­
er to automatically load and run a program. 

This key is used with several other keys, such as TYPWTR, to provide special functions. 
These functions are discussed in this manual when appropriate. 

Typing, Line Editing and CRT Display Keys 
Key 

REPEAT 

TAB SET 

TAB CLR 

TAB 

TYPWTR 

Function 

Pressing REPEAT simultaneously with another key causes that key to be rapidly repe­
ated. 

Sets a tab at the current position of the cursor, like on a typewriter. 

Clears a tab at the position of the cursor. All tabs are cleared at power-on, reset and 
SCRATCH A. 

Moves the cursor to the next tab setting without changing any characters it moves 
across. If no characters have been keyed in, intervening character positions are filled 
with spaces (blanks). If there are no further tab settings and TAB is pressed, the cursor 
moves to the last (160th) character position in the keyboard entry area; a beep occurs 
if the cursor was to the left of position 148 prior to the tab. Tabs can be useful for 
inserting comments at the end of program lines. You can easily line up all of your 
comments by setting a tab somewhere between columns 40 and 60. 

Sets the keyboard to typewriter mode to make the keyboard identical to a typewriter 
in that uppercase letters are obtained when the SHIFT key is pressed and lower case is 
obtained without shifting. When this key is pressed, TYPWTR is displayed on the 
right-hand side of the system comments line. To exit typewriter mode, press TYPWTR 
again. Typewriter mode is programmable. 

rev:8181 





CLEAR LINE 

CLEAR 

BACKSPACE 

HOME 

SHIFT/HOME 

INS CHR 

DEL CHR 

i 

ROLL i 
ROLL t 

Clears the keyboard entry area and the system comments line of everything except 
any indicators for typewriter or space dependent mode and the run light. 

Clears the entire CRT of everything except any mode indicators, the run light and any 
INPUT, LINPUT, or EDIT prompt. 

Moves the cursor one character position to the right. If the cursor is one position to the 
right of the last character in the line, pressing this key one more time moves it to the 
first position in the line. Pressing down firmly causes rapid repetition of cursor move­
ment. 

Moves the cursor one character position to the left. If the cursor is at the beginning of 
the line, pressing this key one more time moves the cursor to the character position 
after the last character in the line. Pressing down firmly causes rapid repetition of 
cursor movement. 

Moves the cursor one position to the left, circling around to the end of the line when 
the cursor is at the beginning of the line. 

Moves the cursor to the home position which is the first position in the keyboard entry 
area. 

Moves the cursor to the character position immediately following the last character in 
the line. 

Lets you insert characters to the left of the cursor and causes the insert cursor (an 
inverse video block) to appear over the character at the position of the cursor. The rest 
of the line moves to the right. The insert mode is exited by pressing INS CHR again, 
moving the cursor, or by pressing STORE, CONTINUE, or EXECUTE. 

Deletes the character at the position of the cursor. The cursor remains in the same 
position and the rest of the line moves one position to the left as each character is 
deleted. 

Clears the keyboard entry area from the position of the cursor to the end. It also clears 
the system comments line of everything except any indicators for typewriter or space 
dependent mode and the run light. 

Moves ("scrolls") the lines in the printout area up one line. If any lines are below the 
displayed lines, pressing this key brings one line up into the bottom line of the printout 
area. Pressing down firmly causes rapid repetition. 

Pressing this key causes one line, if any, above the top line in the printout area to move 
into the top line; the lines all scroll down. Pressing down firmly causes rapid repetition. 

Performs the same operation as up arrow except that the next 10 lines are scrolled. 

Performs the same operation as down arrow except that the next 10 lines are scrolled. 

Special Function Keys 
The Special Function Keys (SFK's), marked kO through k15, provide a variety of functions such 

as entering frequently used statements and variable names with one keystroke. Many of them 

have pre-defined definitions when the computer is turned on which are printed below the keys. 

These keys are covered in Chapter 13. 





Here are some examples of the PRINT ALL IS statement -

p~: I t··IT r:1LL. I:::; la 
F:~;~: I HT FILL. :r. ::.~; 6 Printer at select code 6 

Using the Keyboard 
While a Program is Running 

General Information BP-3 

Live keyboard mode allows computations and most statements and commands to be executed 

from the keyboard while a program is running. You can even change a line of the running 

program by typing the new line and pressing STORE. You can check the value of a variable by 

typing its name and pressing EXECUTE. (However, if execution is currently in a subprogram, 

you may get an unexpected result if the variable isn't defined in that subprogram.) 

To see how live keyboard mode works, key in the following program lines, press STORE after 

each one, then press RUN. 

While the program is running, you can use the numeric keys for computations, like balancing 

your checkbook. Now change the program while it is running by typing and storing this line -

The SUSPEND INTERACTIVE Statement 
Live keyboard can be disabled by executing the SUSPEND INTERACTIVE statement -

SUSPEND INTERACTIVE 

While a program is running, any attempt to execute a keyboard operation or alter the program 

by storing a line or executing a program control command such as CONT causes a PROGRAM 

EXECUTING or SYSTEM BUSY message to appear. When live keyboard is disabled, 8 and m are disabled as well. 

Execute SUSPEND INTERACTIVE and change line 20 of the previous program back to 

:::::C: C;(}T"U :[ C!. Now run the program and try to add 2 + 2 or store a program line. 



BP-4 General Information 

The RESUME INTERACTIVE Statement 
Live keyboard can be re-enabled by executing the RESUME INTERACTIVE statement -

To do this while a program is running, you should press CD first, then press rn after you 

re-enable live keyboard. 

Error Messages and Warnings 

When an error occurs, the machine beeps and displays an error number or a warning message. 

The error number references a description that helps you pinpoint the cause of the error. For 

example, typing ;:;'i:::i CD causes C>Y:'CH?3L to be displayed. i::::i?F'CH?:; :i. indicates division by 

zero, an operation the computer can't perform. A warning message can also appear which 

describes the error. Executing:;:" ':; ./;" causes T i'iF'i?CiF:'i:::F: C:::Y:'i?E::'::; ::::; T C)··i to be displayed with 

the expression in the keyboard entry area with the cursor indicating where the parenthesis 

should be. 

If an error occurs within a running program, the machine halts and the line number in which the 

error occurred is displayed. For example, when 

is executed, i::::i :: .... },-.. ::i· it:::' 
.:.1'1' .. i: occurs, indicating TAN(n*7T 12) where n is odd. 

A complete list of the error numbers and their meanings is given in the Reference Tables, in the 

Quick Reference supplied with the computer. and also on the pull-out cards under the CRT. 

9845A Vs. 9845B/C 
The HP 9845A/B/C are known as the System 45. Information concerning the differences 

between these mainframes is found in the Reference Tables. 



BP-5 

Chapter 2 
Programming Tutorial 

The 9845 is designed to help you solve problems. You can solve simple problems by performing 

calculations from the keyboard. You can use one or more software programs provided by HP. Or 

you can write your own programs. 

Programs can involve computations. output of results. user interaction, decision making and 

other tasks. They can be as simple or as complex as you need them to be. You tell the computer 

how to solve your problem: the computer performs the complex calculations, makes the output 

look good and reduces the time needed to solve the problem. 

Programming a computer is a straightforward task with three basic steps: 

1. Define the problem. 
2. Plan the solution. 
3. Translate the plan into a program. 

This chapter is designed to familiarize you with these steps. It also provides an overview of many 

simple programming statements. If you already understand programming concepts, you can find 

information about the 9845's mainframe statements in the remaining chapters of this manual. If 

you need more information about programming. there are many good text books that teach 

programming and BASIC (Beginner's All-purpose Symbolic Instruction Code, the language that 

you use to program your 9845). Additionally, Hewlett-Packard offers a course in BASIC on 

desktop computers. 

Before you read this chapter. you should be familiar with how to operate the 9845. If you are 

not. read Chapter 1 of the Installation, Operation and Test Manual and Chapter 1 of this manual. 

Where Do You Go From Here? 
This chapter is limited to the rudiments of programming. Once you feel comfortable with the 

ideas and statements, you can explore the rest of the chapters in this manual. 



BP-6 Programming Tutorial 

Problem Solving: Defining the Problem 
The first step in using your computer to solve your problem is to define the problem thoroughly. 

Otherwise, you may not know if you have reached the solution. Here are some questions to ask 

yourself: 

• What exactly do I want to achieve? 

• What output do I want? some tables? a series of conclusions? some data computed, printed 
and stored away for later use? 

• What data is necessary to produce the output? Is the data fixed or might it vary each time 
you run the program? 

• What computations are needed? 

• When the program makes a decision, what are all the alternatives? 

• How should the program identify and handle potential errors? 

Another factor to remember in problem definition is the fact that the computer is a machine. A 

computer does only what it is told, so you must tell it everything that you want it to do. 

Example 
Here is a simple problem that we will solve: convert a Fahrenheit temperature to a Celsius 

temperature and print both temperatures. 

This is the same example used in Chapter 1 of the Installation, Operation and Test Manual. In 

this chapter, subsequent examples expand on this first one. 

Problem Solving: Developing a Solution 
Once your problem is defined, the next step in problem solving is to develop a solution to serve 

as a gUide for writing your program. One way to develop a solution is to construct a program 

outline. Another method is to develop a flowchart, which is useful for picturing the flow of a 

complex program. As you program, you will find the method that works best for you. 

Program Outlines 
A program outline is written in plain English and is similar to a topical outline for writing. Once 

you have a precise problem definition, you begin by dividing your task into smaller tasks. Then 

divide these tasks into even smaller tasks. Continue this breakdown until each task is as simple as 

possible; these simplest tasks can even be close to BASIC statements. It may seem unnecessary 

to write all these simple steps, but simple details are essential to make the computer do what you 

want it to do. Additionally, defining the simplest tasks may point out a higher-level step that 

should be modified. 



Programming Tutorial BP-7 

Program Outline Example 

Our sample problem has a simple outline: 

1. Generate a Fahrenheit temperature. 
2. Calculate the Celsius temperature. 
3. Print the values. 

a. Print text identifying the values. 
b. Print the values. 

Note that steps 3a and 3b are the two steps needed to accomplish step 3; they aren't done in 

addition to step 3. 

Flowcharts 
A flowchart is a graphic representation of the steps for the program to take. It consists of various 

symbols with instructions in them and serves as a map to the solution. However, a flowchart 

normally doesn't include details such as output or variable names. The instructions are not pro­

gram statements; they are general descriptions of the steps. Here are the basic flowchart symbols. 

Symbol 

C ___ ) 

D 
o 
o 

o 

Meaning 

Terminator: signifies the beginning or end of the program. 

Action Symbol: signifies processing, such as an arithmetic operation, that isn't rep­
resented by any other flowchart symbol. 

Decision: signifies alternate branches to two or more points in the flowchart based 
on the result of a decision. 

Input/Output: signifies any operation to an input or output device such as a printer. 

Flowline: shows the direction of the flow between symbols in the flowchart. If the 
arrowhead is omitted, flow is assumed to be from left to right and top to bottom. 

Connector: signifies an exit to or entry from some other part of the flowchart. It 
substitutes for a flowline when the direction of flow is broken. 



BP-8 Programming Tutorial 

Flowchart Example 

Here is the flowchart for our sample problem. 

Generate the 
Fahrenheit 

Temperature 

Calcu late the 
CelsIus Value 

Stop 

Problem Solving: Writing the Program 
Once you have planned a solution for your problem, your last task is to translate this plan into 

the computer's language. Each step in the plan becomes one or more statements. You put one 

statement on each line with a line number at the beginning of the line and press the STORE key 

to place the line in memory. When all the lines in the program are stored, press the RUN key to 

run the program. The computer then executes each statement in the program sequentially, unless 

the program specifies a change in program flow. 

Programming statements fall into several general categories. The following list covers some sim­

ple BASIC statements. The 9845 uses an expanded version of this list in the mainframe and 

option ROMs. 

For assigning values to variables, use LET, INPUT, LINPUT, READ and DATA. The LET state­

ment is valuable; you can use it to perform calculations and use functions like SIN or TAN. 

For outputting results, use DISP, PRINT, PRINT USING and IMAGE. Use PRINTER IS to spe­

cify where you want results printed. STANDARD, FIXED and FLOAT help you format 

numbers. 

For decision-making and controlling the line-to-Iine flow of the program, use IF... THEN, 

FOR/NEXT, GOTO and GOSUB. 



Programming Tutorial BP-9 

Of course, there are many other statements and built-in functions. They are covered in the re­

maining chapters of this manual. 

Example 
Our sample program is simple, requiring only five lines. 

. ..! .•.. = 

!:p.~: ':' F 'j:. ;::'1'(11::);; ;' 

E!···!D 

Here are some things to note: 

the CRT for output 

1. Each statement has a line number. Type and execute EDIT to enable you to enter a 
program with line numbers automatically provided and incremented by 10. 

2. Lines 10 and 20 are both LET statements (LET need not be included). LET assigns values 
to variables. A variable is a location in memory that you access with a unique name, such 
as F _temp. Rather than using simple names like X, Y and Z, you can use up to 15 charac­
ters to create meaningful names. Chapter 5 proVides more information about variables. 

3. Formulas and calculations must be put into linear form for the computer to solve. For 
example, 

7 4x9 

6+5 11 

81.35 + 72.66 

would be entered as: (7/(6 + 5) - (4*9)/11)/(81.35 + 72.66). Parentheses and mathematic­
al priority help determine the form; they are covered in Chapter 4. 

4. The PRINTER IS 16 statement specifies that the data in the PRINT statement be printed 
on the CRT. PRINTER IS 0 specifies the internal printer. A PRINTER IS statement is not 
needed before every PRINT statement; include one only when you need to set or change 
the printer. 

5. An END statement should be included to indicate the end of the program. 

6. You can put a comment on the line by putting an exclamation mark (!) after the state­
ment. Anything after that is considered a comment and is ignored when when the program 
is running: You can also put just the exclamation mark and comment after the line num­
ber. Comments enable you to put documentation with the program. Documentation is 
essential if others use your program or if you set your program aside for a time, then go 
back to it. 



BP-IO Programming Tutorial 

More Examples 
Example Two 
Let's expand the first problem to print a table of Fahrenheit to Celsius conversions from 0 0 to 

212 0 Fahrenheit on the internal printer. Additionally, modify the output so that there are only 

two decimal places. (You find you don't need the accuracy of 10 decimal places.) The program 

outline and flowchart are: 

1. Generate the Fahrenheit temperature, starting with O. 
2. Calculate the Celsius value. 
3. Print the two values. 

a. Print a heading for the table. 
b. Set two-decimal-place accuracy. 
c. Print the two values. 

4. Generate the next value. 
5. If there is another conversion to make, go back to step 2. 

As this outline is developed, we find one lower-level task that 

makes us modify a higher level. Steps 3a and 3b (print a 

heading and set the accuracy) will be repeated for every 

value. Since we only want one heading on the table and need 

set the accuracy only once, we modify the plan to be: 

1. Generate the Fahrenheit temperature, starting with O. 
2. Prepare the table. 

a. Print the heading. 
b. Set two-decimal-place accuracy. 

3. Calculate the Celsius value. 
4. Print the two values. 
5. Generate the next value. 
6. If there is another conversion to make, go back to step 2. 

The flowchart is shown on the right-hand side of the page. 

Set Two 
Decimal Places 

Start with a 
Temperature of 0 

Calcu late the 
Celsius Value 

Generate the 
Next Value 

Yes 



Programming Tutorial BP-ll 

The program now looks like: 

:. :i:~':,· i 'r 
,·;l .... : ; =:::!;;I',.' 

Here is part of the output. 

, ..... '> OJ ." 

"."i"i·-';' 

·····1.::1·" 44 

... -.t· ... :,··, . 

.L;: ,: .. " 

..... :.-: .. : .. ;",.: 

" ... ) ..... 

.. ri.: ... .:"." : 

... ri···· '::!; 

........ ,:<: ;::::':::: 

Here are some things to note about this new program. 

1. To enter this new program, execute EDIT, then edit the first program. Use the INS LN and 
DEL LN keys to insert and delete lines. Execute REN to renumber the lines by 10. 

2. FOR and NEXT keep you from having to type the calculation 213 times. You specify initial 
and final values (FirsLtemp and LasLtemp) for the loop counter, which is Temp in this 
case. The computer automatically increments Temp and repeats the loop the proper num­
ber of times. 

3. The TAB function used in lines 40 and 80 moves the printed output over so that the 
heading and the columns align nicely. 



BP-12 Programming Tutorial 

Example Three 
This example has three things added to the problem definition: 

• Omit the two decimal places on the Fahrenheit temperature; they aren't needed. 

• Allow the program user to specify how many values are converted - everyone, every other 
one, every third one, etc. 

• Store all the Fahrenheit and Celsius values onto a tape cartridge for later use. Use an array 
to hold the values until all the conversions are done. (An array is a collection of variables 
with one name.) 

The new program and part of the output are shown below . 

•.... ,.)! l-,.,' 

~0 PRINTER I~ 0 

..... .:j' .. iF·; 

: •• ~ 1 ; 

,":.,''',,'-. 
,::..::: .. ,:..i 

,····:"l::i .. i ..... 

;i" . "" .. 
" I J ..... , 

C:F~EHTF' liT'FILE" l.~:::; 

,::::i EI-,·f:D 

... -"': . 
. "', .. '" .i .. !. 

"--J.,::j." 44 
.. ... ~. ' ' .. 

-.' -.':, 

,-,6:: :I. I 
---4,44 

o tG 212; 1 to 2 

Use t~~ d~fjned function 

the file en a tape 
~r8ate a file wIth 1~ 

c· ............. the f 1 ;;;:. 



Programming Tutorial BP-13 

Here are some things to note about this new program. 

1. Lines 10 and 20 reserve space in memory for an array and a string variable. A string 
variable differs from a numeric variable in that its value consists of characters. You must 
dimension a string if you want to put more than 18 characters in it. Chapter 7 contains 
information about strings. 

2. The array is a two-dimensional array with 213 rows and two columns, specified in the DIM 
statement by (212.1:2). 212 specifies the upper bound of the first dimension. The lower 
bound is zero unless OPTION BASE 1 is specified. 1:2 specifies both the lower and upper 
bounds of the second dimension. 

3. Line 40 defines a user-defined function that is used like built-in system functions such as 
SIN. Line 90 shows the function being called. The value for Temp in line 90 is substituted 
for X in the formula in line 40. Built-in functions are covered in Chapter 4. User-defined 
functions are covered in Chapters 8 and 9. 

4. The INPUT statement in line 70 allows the program user to specify the value for a variable 
- Skip in this case. The text specified in quotes is displayed to prompt the user for the 
value he should enter. 

5. In line 80, Skip is used to specify a step or increment value for the FOR/NEXT loop to use 
instead of 1. 

6. Lines 100 and 110 store the Fahrenheit and Celsius values into the array for storage later 
onto a tape. 

7. The semicolon after Temp in line 130 suppresses the normallinefeed so that the Celsius 
value printed with two decimal places (line 150) is on the same line as the Fahrenheit 
value printed by line 130. Try removing the semicolon and running the program. 

8. Lines 220 through 260 store the table onto a tape cartridge. MASS STORAGE IS specifies 
that subsequent mass storage operations be directed to the right-hand tape drive. It is wise 
to specify this in case previous programs or users have specified a different mass storage 
device. The CREATE statement sets up a file with 15 256-byte records. Note: If you run 
this program more than once, use a different tape cartridge. change the file name or delete 
line 230; the tape cannot have the same file name used more than once. ASSIGN# opens 
and lets you access a file: it can also close the file. PRINT# copies the values in the array 
into the file. 

Example Four 
This example has a slightly different purpose: Given four values. have the program user specify 

either a Fahrenheit-to-Celsius or a Celsius-to-Fahrenheit conversion. then perform the conver­

sions and print the original and converted values. 

The program outline is: 

1. Specify the four values to be converted. 
2. Ask the user which conversion he wants to perform. 
3. Check for a proper response: if the response is improper. go to step 2. 
4. Perform the desired conversion. 
5. Print the original and converted values. 
6. If there is another conversion, go to step 4. 



BP-14 Programming Tutorial 

The flowchart is: 

Convert 
C to F 

The program and output are: 

10 PRINTER IS 0 

1~3 Fnp Counter =1 TO 4 

Yes 

Set the 
Four Values 

8 Incorrect 
Answer 

Yes 

Convert 
F to C 

No 

0('- C:·····'i:.(:::··~·F; ;? fc,j· .. · F·-··'t,() .. ·-C; Pi'- ::::.~:.:::. C:Or··iTI1··~UEii, H 
a line label or line number 

LIN prints a blank line 

! *******************~*********** N=l; Celsius to F~hrenhejt 

230 FUR Counter=l iU ~ 

.--, '-"':~ 
'::-'-.": . .' 

c::;:::,'l :::.'ji.A:::: ...... i;; 

rev: 8/81 



Chapter 3 
Programming 

page 19 • EDIT LINE (lets the program be entered and edited) 
page 21 • DEL (deletes selected program lines) 
page 22 • AUTO (numbers lines automatically as they are entered and stored) 
page 22 • REN (renumbers the program) 
page 25 • REM (inserts non-executable remarks into the program) 
page 26 • LIST (lists all or part of the program) 
page 27 • RUN (starts execution of the program) 
page 28 • PAUSE (suspends program execution) 
page 28 • CONT (resumes program execution) 
page 29 • STOP (stops the program - a logical end) 
page 29 • END (stops the program - the physical end) 
page 30 • SCRATCH (erases all or part of memory) 
page 30 • SECURE (prevents selected program lines from being listed) 
page 31 • WAIT (delays the program for a specified time) 
page 31 • TYPEWRITER ON/OFF (sets/unsets typewriter mode) 

Terms 
• Program - a set of statements that lets your computer perform a task for you. Statements are 

preceded by a line number between 1 and 32 766 and can be up to 160 characters long. 

• Edit line mode - used to enter and edit programs. 

• Space dependent mode - makes program entering easier because variables and labels can 
be typed in all capital letters. Access with 8- ~. 

• Comment delimiter - i; for inserting remarks at the end of a program line. 

• Run light - <; displayed on the righthand end of the system comments line when a program 
or operation is executing. 

Keys 
8 - enters a program line into memory. 

8 - runs the program. 

@ilil @ill] - insert and delete lines while in edit line mode. 

@ill - runs the program one line at a time. 

mE w - suspends program execution. 

rnc~, . - resumes execution where it was halted. 

8 - aborts the program and any II O. 



BP-16 Programming 

Syntax Conventions 
The following conventions are used in the statement and command descriptions found in the 

9845 manuals. 

, " ". "C···, ... ;.... ::.:: - All items in dot matrix must appear exactly as shown. 

] - Items within solid square brackets are optional. Brackets in dot matrix are part of 

the statement. 

... - Three dots indicate that the previous item can be repeated. 

- A vertical line between two parameters means "or"; only one of the two parameters can 

be included. 

/ - A slash between two parameters means "and/or"; either or both of the parameters can 

be included. 

Programming Terms 
The following terms are used throughout the manual in the descriptions of the language. 

Statement - A statement is an instruction to the computer that is assigned a unique line 

number, stored, and executed from a program. Most statements can also be executed 

from the keyboard without a line number. A statement is made up of one or more 

keywords and expressions. 

Keyword - A keyword is a word that has a special meaning in BASIC, like i:::'i:;:' I i··rr, Fe:::;: and 

I i:::, and specifies an operation to be performed or the type of information in the 

statement. A secondary keyword is a keyword which isn't the first item in a statement 

such as "Ti-H:::::': in an: :::: ... r-:···:E)··: statement. Functions and logical operators are second­

ary keywords. 

Command - A command is an instruction to the computer which is executed from the 

keyboard. Commands are executed immediately, do not have line numbers and can't 

be used in a program. They are used to manipulate programs and for utility purposes, 

such as listing key definitions. 

Constant - A fixed numeric value within the range of the computer; for example, 29.5 

or 2E12. 



Programming BP-17 

Character - A letter, number, symbol or ASCII control code; any arbitrary 8-bit byte defined 

by the C>"IF::~: function. 

Text - Any combination of characters, for example" i:::i:E:C:!!. 

Name - A capital letter followed by 0 through 14 lowercase letters, digits or the underscore 

character. Names are used for variable names, labels, function names, and subpro­

grams. 

Line number - An integer from 1 through 32 766. Line numbers are arranged in ascending 

order, but you can type main program lines in any order because they are sorted as 

they are stored. In most cases, when a line number is specified, but is not in memory, 

the next highest line is accessed. 

Label - A unique name that can be given to a program line. It follows the line number and is 

followed by a colon. In this example, ::::;!·"!c,;.,i (·e::::.! .. ~·1 t ::::. is the label -

Line Identifier - A program line can be identified either by its line number or its label, if any. 

Line 50 above could be accessed with either -

or 

100 GOTO Show results 

Main Program - The central part of a program from which subprograms can be called is 

known as the main program. When you press 8, you access the main program. The 

main program can't be called by a subprogram. 

Subprogram - A set of statements, separate from and after the main program, that performs a 

task under the control of the program segment that called it. Subprograms are covered 

in Chapter 9. 

Program Segment - The main program and each subprogram are known as program seg­

ments. 

Numeric Expression - A numeric expression is a logical combination of variables, constants, 

operators, functions, including user-defined functions, grouped within parentheses if 

needed. It has a single value. 



BP-18 Programming 

Select Code - An expression (rounded to an integer) in the range zero through sixteen which 

specifies a setting on an interface card to an I/O device. The following select codes are 

reserved and can't be set on an interface -

• 0 Optional internal thermal printer and keyboard 

• 13 Graphics option 

• 14 Optional tape drive 

• 15 Standard tape drive 

.16 CRT 

HP-IB Device Address - An expression which specifies the HP-IB address that is set on a 

device. Its range is 0 through 30. 

Program Fundamentals 
A program is a set of instructions to the computer - an ordered set of statements. Each state­

ment in a program must be preceded by a unique line number in the range 1 through 32 766. 

Program lines can be up to 160 characters long including the line number and any label. After 

each line is typed in, you enter it into memory by pressing 8. 

Pressing 8 also causes the line to be checked for syntax errors before it is stored. If there is a 

syntax error, the computer beeps and displays a message explaining the error. When the line is 

checked for syntax, parentheses may be added into expressions. This may cause the line to 

exceed 160 characters. It runs properly, but when listed, an asterisk appears after the line 

number and before the truncated line. 

Normal program execution proceeds from the lowest-numbered line to the highest-numbered 

line. While a program is running (or any keyboard operation is being performed), the run 

light - {- is displayed on the righthand end of the system comments line and an internal 

program pointer monitors which line is being executed. 



Programming BP-19 

Entering Program Lines 

There are three methods that can be used to enter line numbers and program lines. The first is 

to type the line number in manually before the statement. A second method is to use edit line 

mode to generate numbers as lines are stored. In the edit line mode, you can also insert, delete 

and change lines easily. The third way is to use the i:::H . ..irCi command to generate line numbers. 

The EDIT LINE Command 
The edit line mode lets you enter a new program or edit an existing one. It is entered by 

executing the C::U I'r L .. I i··F::: command -

l:::::U I "T· t [1. I i·iC:] [line identifier [,' increment value] ] 

Examples 

EDIT Access lowest line in memory 
'=1 C C E' :::. :::. '1 'i j'''1 I:;' 1. ~:i 0 
Access 'Routine' increment 
n E:' ! .. .l 'I 'j n E;' ::::. b ::..i ~:; 

When the EJ) I'r 1.. I i···iE: command is executed, the specified line, or the first line in memory if 

one is not specified, is displayed in line 12 of the CRT with the cursor after all the characters. 

Line 13 is also reserved for that program line. If you go into the edit line mode while a program 

is running, the program is paused. It is resumed automatically when you leave edit line mode. 

Here is a diagram of how the CRT looks in the edit line mode -

Lines 1-10 10 previous program lines (first 80 characters) 

Line 11 blank 

Lines 12 and 13 line being edited (keyboard entry area) 

Line 14 System comments line 

Line 15 blank 

Lines 16-25 10 following program lines (first 80 characters) 

1 There is a Special Function Key which is defined as "ED I T L.! r·jE". This key can be used to enter Eli I T L I r·jE. 



BP-20 Programming 

The cursor can then be moved in the line and the line edited. When the line is the way you want 

it, press 8. The next highest numbered line is then displayed in line 12. 

To edit a different line, G:J, G:J, [illi], and [R~'I can be used to move the program lines up or 

down. G:J brings the next highest line into the editing line, while G:J brings the previous line 

into the editing line. [R"§IT"'I and [illi] cause the program to roll 10 lines in the specified direction. 

Increment Value 
After the end of the program is reached, the next line number is automatically generated. It is 

greater than the previous line number by the increment value or by 10 if the increment value 

isn't specified. The increment value must be a positive integer. 

Automatic Indent 
Using the edit line mode allows you to indent program lines automatically. This is possible 

when you are adding lines at the end of the program or inserting lines (discussed next). If you 

indent a line and store it, when the next line is generated, the cursor is indented as many spaces 

as it was in the previous line. The minimum automatic indent is six spaces from the left side. 

Inserting Lines 
Lines can easily be inserted between existing program lines. 

One way is to type in the line number and line, then press 8. Another way is to use the insert 

line mode while you are in edit line mode. It is accessed by pressing [lNfLNI. 

Lines can then be inserted before the line which was in the keyboard entry area. A line number 

which is 1 greater than the previous line is generated and appears in line 12. For example, say 

the CRT looks like -

line 12 1 (jO F'F 1 tn 



Programming BP-21 

Pressing @ITNJ causes it to look like -

line 12 _ ........ _--- flashing cursor 

100 F'F: ItH 

When line 91 is stored, line number 92 is generated. This continues until the insert line mode is 

exited by one of the following -

• Pressing @ITNJ again 

• Pressing (ii]illJ 

• Rolling the program with CD, CD 

• Changing the line number 

• There is no more room between lines to insert another line. When this happens, the 

machine beeps and a warning appears -

Deleting Lines 
In the edit line mode, the line currently in line 12 is deleted from memory by pressing (ii]illJ. The 

next line is then displayed in line 12, and the rest of the lines scroll up. 

The DEL Command 

The DE::1.... (delete) command is used to delete a line or section of a program when not in the edit 

line mode. 

:DE:l ... first line identifier [;, last line identifier] 



BP-22 Programming 

If only one line identifier is specified, then only that line is deleted. Specifying two line iden­

tifiers causes that block of lines to be deleted. For example, to delete lines 40, and 100 through 

150 from a program, execute -

and 

.j i:::' ,':: 

.1 •.. ..1=::.= 

Exiting the Edit Line Mode 
The edit line mode is exited by pressing CD· @illW 8 B m or [cill'[ can also be used. 

The AUTO Command 
The i:::i! .. .J'T'Ci command allows lines to be numbered automatically as they are entered and stored. 

This saves you from having to type the line number each time you key in a statement. 

Hi . ..iT'C: [beginning line number [, increment value] ] 

If neither parameter is specified, executing !:::ii...i'T'() causes line numbering to begin with 10 and to 

be incremented by 10 as lines are stored. If only the beginning line number is specified, the 

increment between line numbers is 10. Both the line number and the increment values must be 

positive integers. Automatic numbering halts when the keyboard entry area is cleared. 

fiUTO 
AUTO 1eO 
fiUTO 100,::; 

i 

I 

J: Eo;;! 

B eq 
E:eq 

The REN Command 

i i"'j i)J 'j 

i n I,.) 'j 

'i 1""'! i,.J 'i 

Examples 

1:- h '1 [J 1 nc too. 
~ , 

" i"'J 1 ~.::l ~::! .j nc '.' , 
t !.,.! 1 00 , 'I i"'le 

!?E::l'··j [beginning line number [, increment value] ] 

1:;:' rfl E'f''',t b:) 1 ~::i 
r' i:~~' iii ro:=;' n t b::) 1. 0 
too. E'l'J"j!:;'(it b i :) ::3 

The renumber command causes the program in memory to be renumbered. This allows you to 

insert lines or to add more lines at the end. If no parameters are specified, the program is 

renumbered so that line numbering begins with 10 and is incremented by 10. If only the 

beginning line number is specified, the increment is 10. 



PEt··! 
FEH ;;:00 
PEr·1 200,20 

BE·q 
B E- ';1 
,", 

~:'q D 

n 1 .. .1 i:- i"'1 

n 1.1,1 1" i"1 
n I .• J t h 

Examples 

i 0 i nc r't;:;'i"fil:::'j"'l t ~ , 
;?O~~1 , i nc \"" ~~~. ffll:::'n 

200 , i r"IC r" em E'n 

Programming BP-23 

b:) 1. 0 
j" b ::., , i f;~l 

t i-',,; .'- !~;! 
:.~. ,:-- ,::' ..... , 

When a program is renumbered, all line references U::;CrrCi ':::>\ for example) in the program are 

adjusted automatically to reflect the new line numbers, except for a reference to a non-existent 

line. 

Spacing 
In general, spacing between characters is arbitrary; the computer automatically sets proper 

spacing into each line as it is stored into memory. Only in text, F::E}'! statements, comments, and 

blanks after line numbers and labels does spacing remain exactly as input. These blanks allow 

lines to be indented. 

Space Dependent Mode 
The space dependent mode is useful for keying in a program that has long variable names. It 

causes spaces, or lack of them, between parts of a statement to become significant when 

entering program lines. In space dependent mode, variables, subprogram names and labels can 

be typed in all capital letters or in any combination of upper and lower case, as long as the first 

letter is upper case. Keywords must be separated from other parts of the statement by one or 

more blanks or by a delimiter like a comma or a :f!:. 

Space dependent mode is entered by holding down 8 then pressing [!@liJ.l This causes the 

words ::::;i:::'HC:E:: LiE:F'E}·iI+}·i'T· to appear on the right hand side of the system comments line. 

1 Notice that SPACE DEP is indicated on the front of the TYPWTR key to show you that space dependent mode is accessed with 

B-"""· 



BP-24 Programming 

Example 

Here is an example of how a program line may be typed in normal and space dependent 

modes -

Normal Mode -

:1. C~ : t···, l: :-1:.:::. ..... ;:: .. ':·1··,', ',:::'::::; : : ... '" : : :, ;'T~ 1 F'!'·.;,. ;", :;: 1'·!'rr": ....... :,..illl::::~! .;.': .~. ':::; ':::, . : .. 

Space Dependent Mode -

Both list identically -

Here are some rules to follow when entering programs in space dependent mode -

• Any variable name that is the same as a secondary keyword cannot be entered in all 

capital letters. 

• The label of a line that is the same as any keyword cannot be entered in all capital letters. 

However, when referenced, as in a i::;C)"TCi statement, it can be entered in all capital letters, 

except after ·T!···! !::::i"-L 

• The first variable in an implied! Y::T statement cannot be entered in all capital letters if it is 

the same as a keyword. This is also the case if the implied L.Y:·T follows ·T!···jE>··L 

Example 

For example, in space dependent mode, trying to store -

:l. c~ F . ;"', T ::::: 'j 'r C) :j. ~:: i 

gives an !"!i::: ;:;:'; ;;"'1:::.1"': ...... ';:::';:::';:::":::":::' ••. ! message with the flashing cursor under theT. The com-

puter is interpreting this as an assignment statement assigning the value 1 to the variable F·e:;."··i. 

When a program is listed after it was typed in space dependent mode, all names are converted 

to their normal format: capital letter followed by lower case. 



Programming BP-25 

To exit the space dependent mode, hold down 8 and then press ~ again. 

Space dependent and typewriter modes are mutually exclusive - if one is entered while the 

other is in effect, the new one cancels the old. 

Remarks 
Many times you may want to insert comments in order to make your program logic easier to 

follow. This can be done by using the F'E:::": (remark) statement or the comment delimiter i. 

The REM Statement 

::::::::::": [any combination of characters] 

Remarks can be used to explain program lines or set off program segments. 

10 Remark: REM 
20 REM This section 
3b F'f': I HT >:: 
4~::1 PF': I HT '/ 
':il] REN 

Examples 

A label can precede 
out P tHo ~:. .,j.·I·i d~j. t .,'1. 

60 REM You can say ANYTHIHG you want in a REM statement 

Comment Delimiter 
i, the comment delimiter, can be anywhere in a program line after the line number. If it comes 

immediately folloWing the line number, it is just like a ::::E:::-': statement. All characters following a 

i are considered part of a comment unless the i is within quotes. The comment delimiter can 

also follow a command. 

Using the comment delimiter, program lines and commands can contain comments. 

I HPUT ::<, \' 

Pf,: I t··!T >::, 'y' 

Examples 

! ! ! 
f;:~ i::' q 1 • ..1 ;::' :::. t ',}.3. 1 U ;:::' :::. 

Ik·.:l. n c h 'i f >:: :::'/ 
'~H • 

i:~ ::< !::' cut 1 0 j""! :::. top :=. 
Out put i.).:~·! ue·~:· 

use TAB Kev to lne up comments 



BP-26 Programming 

The LIST Command 
The L.. I ::::;T command is used to obtain a printed listing of the program or section of the program 

in memory. The listing is output on the CRT unless another device was specified as the stan­

dard printer with PRINTER IS. An asterisk between the line number and the line signifies that 

the line is longer than 160 characters and isn't listed completely. 

L.. I ':::;.T" [beginning line identifier [~! ending line identifier] ] 

If no parameters are specified, the entire program is listed. If one line identifier is specified, the 

program is listed from that line to the end. If two line identifiers are specified, that segment of 

the program, including beginning and ending lines, is listed. 

Examples 

Lists the entire program 

Lists program beginning with line S0 

Lists lines 200 through 2S0 

Available Memory 
When the listing is complete, the amount of unused memory available for use is displayed in the 

system comments line. So if you execute ':::;C:F:!::rr·C>··i i:::! then L.. I ':::;.T", the number that is displayed 

is the total memory available for your use. This memory is expressed in bytes. 

Alternate Printing Devices (LIST #) 

The L.. I ':::;.T" command can be directed to a device other than the standard printer by specifying 

the select code of the alternate device. 

L.. I ::::;T":!:!: select code [~! HP-IB device address] [:; beginning line identifier [~! ending line iden­

tifier] ] 

L. I :3T # i t:; 
L. I :::;T #0 
L. I I'~· .::, T :1:16 
L T ,-. ·r· #1:; ~5 0 ~ .::1 I , 
L I ,-. .,.- #6 ; 1 0:::-

.:, ! '-! , 
L I :::;T :~I ;:' .. , .:;. 

L. 1 .. !,-

I L. 'j :::. i:-

L ·1 :::. t 
L. 1 :::' i:. 

I::-i,:::' 
") .~.J L. i :::. t 

L i .:: i:-

t .. 
!,..! 

t 0 
... 0 ' .. 
t n .. 

t- o 
t 0 

Examples 

CF,:T 
inter··n.::L·i pi'··i!'"lt>~·l""·· 

:::.~:' 'I ~:'C t COdE' E; 
select code 6--Line 50 on 
select code 6--1ines 15-55 



Programming BP-27 

The RUN Command and B 
Program execution can be started at the lowest-numbered line by pressing B. 

It can also be started by executing the F; .)i command -

:;::).: [line identifier] 

The line identifier must be in the main program and specifies that execution is to begin at that 

line; if no line is specified, execution begins with the first line in memory. 

Examples 

I Begin at lowest-numbered line 
Begin at line 150 
Begin at line labeled Routine 

:;>:).: causes a short pre-run initialization to occur which sets radian mode and the random 

number seed and also dimensions variables and initializes them to 0 or the null string. See the 

Reset Table in the Reference Tables for a complete list of items affected by RUN. 

During the pre-run initialization, doubly defined labels and statements defined in ROMs which 

aren't present are detected and a warning message is given. However, functions defined in 

ROMs which aren't present are not detected. 

After the pre-run phase, the program is executed. 

The STEP Key 
A program can also be run or continued by pressing @ill 

When @ill is used, the program is executed one line at a time as @ill is pressed. The next line 

to be executed is displayed in the system comments line. When using @ill to run a program 

from the beginning, a pre-run initialization takes place the first time it is pressed. Pressing @ill a 

second time executes the first program line. 



BP-28 Programming 

The PAUSE Statement and CD 
Execution can be suspended by pressing ([). The current line is completed and the program is 

halted at the next line to be executed; this line is displayed in the system comments line. Any 

current I/O operation is completed. 

A pause can also be programmed using the F:'i:::ii .. l'::::E:: statement. 

A useful application is to program a pause so that intermediate results can be checked and 

execution resumed. The F'i:::ii . ..!'::::E:: statement can't be executed from the keyboard. Press the 

PAUSE key instead. 

The Continue Command and rn 
Program execution can be resumed where it was halted by pressing rn. 
It can also be resumed by executing the C C)··iT' (continue) command -

C:()<T' [line identifier] 

The line identifier causes execution to resume at the specified line. If it is a line number that is 

not in memory, execution resumes with the next highest numbered line. C:CH···i'T· can also be used 

to start a program that was just run. No pre-run initialization takes place. 

Execution of a paused program can also be restarted at the beginning with 8 or i?i.)···L 

Terminating Execution 
All programs have a logical as well as a physical end. The logical end is that point where all 

statements have been executed the desired number of times and the program has completed 

the task for which it was designed. The physical end (highest-numbered line) of a program is 

the last (highest-numbered) line. 

The STOP Key 
Program execution can be halted before it is done by pressing 8. 

When 8 is pressed, all 1/ 0 operations are aborted and data may be lost. The program 

pointer is reset to the first line of the main program. Don't use 8 to temporarily halt a 

program you'll want to resume. Use OJ instead. 



Programming BP-29 

The STOP Statement 
The ::::;TC!F> statement can be used to indicate the logical, rather than the physical end of a 

program -

Its purpose is to tell the computer to terminate execution of the program and reset the program 

pointer. It may appear at any point in the program. Some programs have several logical ends 

and so require several '3 TCi1:::' statements. The :::::-TCH:::' statement can't be executed from the 

keyboard. Press the STOP key instead. 

The END Statement 

The physical end (highest-numbered line) of a main program is indicated by the t::.: LU 

statement -

1::::1·-.!:U also terminates program execution and resets the program pointer to the lowest-numbered 

line. It is not mandatory to have an 1::::1 1:U statement as it is in other BASIC systems; however, it is 

good programming practice. 

Reset 

The reset operation (CONTROL-STOP) can also be used to stop a running program. AllllO 

operations are aborted and data may be lost. 

It is also possible that the program and data can be destroyed just as if ':::;(··:F;:'i:::i"T·(··:i·; i:::i had been 

executed. Therefore reset should not be used for stopping a program unless pressing 8 fails 

to halt the program. 



BP-30 Programming 

The SCRATCH Command 
The····':":···: command is used to erase all or parts of memory; it can be used to erase 

programs, variables, keys, or the entire memory. lliJ is defined as a typing aid for :::;i:::::;:>rrC)··: at 
.. ; power on and ...... :" ,"',:; .r": ,:. 

Command 

.......... ;::::;:::; .. ; ..... ;: 
::; , .... ;: 

··········, .. ·:, .. ,·T· .. ···: . 
r"! 

[key number] 

... ... : .... ;:::; . .,. ..... . 
:',::; , .... ;: 

.. :::.,:: ... j j ':: [F> or '.! or C: or : ...... [key number] or QD or i:::i] 

Operation 

Erases program including DATA pointers. 

Erases the entire memory. See the Reset table in Reference Tables. 

Erases the values of all variables, including those in common. 

Erases the program, variables, binary routines, DATA pointer 

and the files table. 

Erases one or all SFK typing-aid definitions (but not control 

features) . 

Erases the values of all variables except those in common. 

Erases the typing aid definition of the specified SFK. 

The SECURE Statement 
The '::;Ci) ::;:'C statement is used to prevent selected program lines from being listed; instead, an 

asterisk appears after the line number. The secured lines execute normally, however. 

." i"i.ii?C [line identifier [., line identifier] ] 

If no line identifiers are specified, the entire program is secured. If one line identifier is 

specified, only that line is secured. Two line identifiers secure that block of lines, including the 

beginning and ending lines. 

Examples 

Secures all program lines 

Secures the line labeled Formula 

Secures lines 100 through 150 



Programming BP-31 

There is no provision made for "unsecuring" a program, so be sure to specify the line iden­

tifiers accurately. However, a secured line can be deleted or replaced, and can be listed after 

that. 

A program protected with ':::;E:Ci ... i!?E: can be reproduced onto a mass storage medium using 

:::::-1'i::H?E:, but not using ::::;i:::j')E:. 

Miscellaneous Statements 
The WAIT Statement 
The j.,F:j I'r statement is used to program a delay between the execution of two program 

statements -

j.'.lj:::i I'1' number of milliseconds 

The number of milliseconds is a numeric expression rounded to an integer in the range 

-32 768 through 32 767. A negative number defaults to a wait of zero. The delay specified by 

WAIT is only approximate. 

The j.)j:::j I'T' operation can only be interrupted by reset (CONTROL-STOP), which also stops the 

program. 

The TYPEWRITER ON Statement 
~ can be "pressed" from within a program to set the keyboard to typewriter mode, thus 

making input easier. This is done by executing the 'T";'j:::'E:I .. ,H:;:: I TT::F: C)j",j statement -

When this statement is executed, the keyboard behaves just as if [TYPWTffi had been pressed. 

The TYPEWRITER OFF Statement 
Typewriter mode can be turned off from within a program by executing theT'/F'!::::!.',H? I 'rE:!? CiF'F' 

statement -

@] 



BP-32 Programming 



Chapter 4 
Mathematics 

page 39 • STANDARD (sets standard format for output of numbers) 
page 39 • FIXED (sets fixed-point format for output of numbers) 
page 40 • FLOAT (sets floating point format (scientific notation) for output of numbers) 
page 44 • RANDOMIZE (modifies the random number seed) 
page 46 • DEG (sets degree mode for trigonometric operations) 
page 46 • RAD (sets radian mode for trigonometric operations) 
page 46 • GRAD (sets grad mode for trigonometric operations) 
page 50. DEFAULT ON/OFF (circumvents math errors with improper arguments by supply­

ing default values. DEFAULT OFF cancels this process). 

Functions 
ABS (absolute value) 
DROUND (digit round) 
FRACT (fractional part) 
INT (integer part) 
MAX (maximum value) 
MIN (minimum value) 
PI (TT) 
PROUND (power-of-10 round) 
RES (result of keyboard calculation) 
RND (random number) 
SGN (sign: +, -,0) 

Operators 
+ AND 

< OR 
/ > NOT 

SQR (square root) 
EXP (Napierian e to a power) 
LGT (common logarithm) 
LOG (natural logarithm) 
ACS (arccosine) 
ASN (arcsine) 
ATN (arctangent) 
COS (cosine) 
TAN (tangent) 
SIN (sine) 

DIV (divide, return integer portion) 
MOD (modulo) 

* <= EX OR (exclusive or) 
1\ >= 

<> 

Terms 
• Range - the range of numbers that can be entered into your computer is ± 10-99 through 

±9.99999999999x1099 and O. 

• Number format - the mode - STANDARD, FIXED or FLOAT - for output of numbers. 
STANDARD is set at power on and SCRATCH A. Internal form isn't affected. 

• Angular units - the mode - DEG, RAD or GRAD - used for results and arguments of 
trigonometric functions. RAD is set at power on, SCRATCH A, RUN or reset. 

• Hierarchy - determines the order in which multiple operations in an expression are per­
formed. 

• Parentheses - used to give a higher priority to lower-priority operations. 



BP-34 Mathematics 

Operators 

Arithmetic Operators 

The arithmetic operations that can be performed on your computer are addition (+.), subtrac­

tion (-.... ), multiplication (-:';-), division (···l exponentiation ( .. or ·:';··i·; .:,; .. ;,;. is listed .... -), integer 

division CD I'.,,'), and modulo C'li!:U). 

Relational Operators 
Relational operators are used to determine the value relationship between two expressions. 

This can be especially useful for program branching if a specified condition is true. 

Operator Meaning 

Equal to 

Less than 

Greater than 

<. ::::: Less than or equal to 

Greater than or equal to 

.... :> or :fi: Not equal to (either form is acceptable; it is listed < » 

The result of a relational operation is either a 1 (if the relation is true) or a 0 (if the relation is 

false). 

rev:4181 



Here are some examples of relational operations. 

Lo q 'j c ::::: (Fi ~E' B< C) 
IF Lc)q -, c THEt-~ 60 

40 
50 COTO 70 

Fr~:I!-'lT !'<i=i-"'.B<C> 'i~:- TPUE; 
Ft--ID 

Entering the values 3, 4, 5 results in -

(A*B<C> is FALSE; 

! Branch if A*B ::: C 
it. ... :;:. I.).::" 'j t·! I::' 'i ~:. II ; L. () 9 '1 c 

Mathematics BP-35 

The equals sign is also used in the assignment statement, as shown earlier in the chapter. In an 

assignment statement, the variable is to the left of the equals sign, the value is to the right. If the 

equals sign is used in such a way that it might be either an aSSignment or relational operation, 

the computer assumes that it is an assignment operation. For example, ::<=\'=Z assigns the 

value of Z to X and Y. ::-> Cl:::Z::' assigns the result of the operation '-(=Z to X. 

Logical Operators 
The logical operators i:::i!---i:f.:i, eiF', E:: :C:F' (exclusive or) and i---i::J"i"" are used for creating Boolean 

expressions. The expressions used with logical operators can be either relational or non­

relational. If an expression is relational (like A<B), its true or false designation is determined by 

the particular relational value. If an expression is non-relational (like A), it is true if its arithmetic 

value is any value other than 0, and false if its arithmetic value equals O. 

The result of a logical operation is either 0 (false) or 1 (true). Logical operators are especially 

useful in determining whether or not certain sets of conditions are true. 

AND Operator 

Programming Hint 

If you want to use a variable called T as the first operand in 

an i:::i!---i:U or C)F' operation, put parentheses around the T when 

entering the line. This is to avoid confusion with the 

keywords -T"C) andT"i:::H---L The computer takes out the paren­

theses after the line is stored. 

numeric expression f:I!--m numeric expression 

fir-m compares two expressions. If both expressions are true, the result is true (1). If one or both 

of the expressions is false, the result is false (0). 



BP-36 Mathematics 

OR Operator 

numeric expression OF' numeric expression 

OF' compares two expressions. If one or both of the expressions is true, the result is true (1). If 

neither expression is true, the result is false (0). 

EXOR Operator 

numeric expression E::·::ClF: numeric expression 

[::: :OF' (exclusive or) compares two expressions. If only one of the expressions is true, the result 

is true (1). If both are true, or both are false, the result is false (0). 

NOT Operator 

i···jUT numeric expression 

i·KiT returns the opposite of the logical value of an expression. If the expression is true (non­

zero), the result is false. If the expression is false (zero), the result is true (1). 

Examples 

Here are some examples of logical operations. For these examples, assume A=O, B=2, C=4, 

and 0=4. 

True. Both relational expression A<B and C=O are true. 

False. The arithmetic value of A equals 0 (false). 

True. The arithmetic value of B is not 0 (so B is true). 

True. One value is true and one value is false. 

True. A is 0 (false). 

False. NOT B is false and NOT C is false. 



Mathematics BP-37 

Here's a truth table summarizing logical operations -

A B AANDB AORB A EXOR B NOTA NOTB 

T T 1 1 0 0 0 
T F 0 1 1 0 1 
F T 0 1 1 1 0 
F F 0 0 0 1 1 

DIV Operator 
The Ii I;"i (integer division) operator returns the integer portion of the quotient. Ii I;"" is useful for 

rounding, extracting multiples of a number and checking orders of magnitude. 

Example 

For example, if a test needs to run for 451 minutes, Ii::: "/ can be used to find the number of 

whole hours the test will run -

The following formula illustrates how Ii I i,e' is calculated -

MOD Operator 
The !"IUD (modulo) operator returns the integer remainder resulting from a division. It is useful 

for testing divisibility, grouping serial data, and print control (print every Nth calculation, for 

example). Given two values X and Y, ::< iKID 'y' is equal to >:: ... - ('y' '* n··iT C:<./'/::' >. 

Example 

Referring to the 451-minute test in the previous example, !"IUD can be used to find the minutes 

remaining when 7 hours have passed -

::::: 1 

1 ~::GH (sign) and Hn (integer) are functions which are covered later is this chapter. 



BP-38 Mathematics 

Range 
The range of values which can be entered, stored, or output on your computer is 

-9.99999999999 x 1099 through -1 x -99, 0, and 1 x 10-99 through 9.99999999999 x 1999
• 

However, the range of numbers the computer can operate on during intermediate calculations 

is -9.99999999999 x 10511 ,0, and 1 x 10-511 through 9.99999999999 x 10511
. 

Storage Range Calculating Range 

Within Range 

D 
- 9.99999999999 x 1 099 ---+f'-"-"-"-..L..L.L..L..L...L..<....~ 

- 1 x 10 - 99 ----r-rr;'/777"/"T,...,...,j 

a ------~~~~~~~ 
1 x 10-99 ----r.:.....>...:.....,.."..>....>..~:......:.....>. 

9.99999999999 x 1 099 ----k"""'"''''~~~ 

Out of Range 

~ 
'/ 

Number Formats 

-9.99 

-1 

1 

999999999 x 10511 

x 10- 511 

a 
x 10- 511 

9.999 99999999 x 10511 

Three formats are available to you for displaying and printing numbers: standard, fixed 

point, and floating point (scientific notation). No matter what the format, all numbers are 

output with a trailing blank and a leading blank or minus sign. It is always a good idea to set the 

desired format at the beginning of a program to avoid unexpected results from a previously set 

format. 



Mathematics BP-39 

The STANDARD Statement 
The standard format is convenient for most computations since results appear in an easy-to­

read form. Standard format is set at power on, reset, :::;CF:fiTCH i:i, and when the :::;THi··mi=jF:D 

statement is executed -

In standard format, all significant digits of a number are output up to a maximum of twelve. 

Excess zeros to the right of the decimal point are suppressed; for example, 32.100000 would be 

output as ::::;:.::. 1. Leading zeros are truncated; for example 00223 is output 22:::::. 

In standard format, all numbers whose absolute values are between 1 and 1012 are output in 

fixed format showing all significant digits. Numbers between -1 and 1 are also output in fixed 

format if they can be represented precisely in twelve or fewer digits to the right of the decimal 

point. All other numbers are output in scientific notation as FLOAT 11. 

The FIXED Statement 
With fixed point, you specify the number of digits you want to appear to the right of the decimal 

point. For example, specifying two digits to the right of the decimal point would be useful for 

output of dollar and cent values. The F r;:<ED statement sets fixed point format -

F I ;:<ED number of digits 

The number-of-digits parameter is a numeric expression and is rounded to an integer to specify 

the number of digits to the right of the decimal point. Its range is 0 through 12. 

1 [i PEl"! Th 
:;-~ l~~i F I i::ED .-

.:::. 
3(1 PP UH II:;:: 

" 
40 FI ::·::ED [i 

5~] PF.: It·lT 118 , 
6~Zi Et·1D 

,-, "-:1 I t··1 F T i::ED ,.-
=:. , ;' ! .:~. 

::: -, I t·j F I >::ED 0 " J' 

i ~:. 

? 

? 

: 

Example 

example shows the FIXED statement 

1[,1 F I ::-::ED 

::: -, ,-.. . i ~:'i 

'3 

'"') II II II .;) •• :~ 
c .. II , '_.' II I 

2 places after decimal 

No decimal point 
Number is rounded 

Notice that the number is rounded to the specified format. Also notice that the decimal point is 

suppressed in F' I iED ~:'i. 



BP-40 Mathematics 

When fixed point is set and the absolute value of the number is greater than or equal to 1E12 or 

would require more than 17 digits to represent it, the format temporarily reverts to floating 

point. For example, in FIXED 12, 100000 is output as :). E: not 100000.000000000000. 

The FLOAT Statement 
When working with very large or very small numbers, the floating point format is most con­

venient. This format is set using the F L..i. .. ::··: i statement -

):::L..c::::rr· number of digits 

The number-of-digits parameter is a numeric expression and is rounded to an integer to specify 

the number of digits to the right of the decimal point. Its range is 0 through 11. 

A number output in floating point format follows this format -

• The leftmost non-zero digit of the number is the first digit output. If the number is nega­

tive, a minus sign precedes this digit; if the number is positive or zero, a space precedes 

this digit. 

• A decimal point follows the first digit, except in ):::.) ,::> .. , , " 

• The specified number of digits follows the decimal point. 

• Then the character E appears followed by a plus sign or minus sign and a two-digit 

exponent, representing a positive or negative power of ten. The exponent specifies the 

power of 10 by which the mantissa should be multiplied in order to express the number in 

fixed point format. 

Examples 

Here are some numbers and how they are output in various modes -

48 FOR 1=1 TO 6 



.; ;::: . 

.I. '.) 

Rounding 

Mathematics BP-41 

FL..OFiT .') 

A number is rounded before being displayed or printed if there are more digits to the right of 

the decimal point than the number format allows. In either case, the rounding is performed as 

follows: The first excess digit on the right is checked. If its value is 5 or greater, the digit to the 

left is incremented (rounded up) by one; otherwise it is unchanged. In either case, the number 

remains unchanged internally. 

Example 

uutput format dc~ n't ~ 

!::"klT! 
! . .-!"1.!_; 

A TN FIXED ~ 1.24 

Significant Digits 

e number internal I; 

Significant digits are those which determine the internal accuracy with which a numeric variable 

is represented. The number format for output has no effect on this. 



BP-42 Mathematics 

Math Functions and Statements 
Math functions available on your computer are explained in this section. Parentheses must 

enclose the numeric expression used as the argument of the function if it contains any 

operators. For example, SINA+B does not equal SIN(A+B), but equals (SIN(A) )+8. Parenth­

eses enclose the expression when listed. Examples of two functions are combined in some 

cases. 

General Functions 
FiB::; numeric expression Returns the absolute value of the expression. 

10 REM This eY~mple shows ABS function 
::::0 I HPUT I. F'R I t·iTER ::;::ELECT CODE-;:' II, A 
30 IF SGH(A)=l THEH 60 
4~l 

• ~jj~i 
• 6f:1 

PF,' I i--iT II ::::ELECT CODE C!=1,--;- T HE t-jEGfiT I ',iE" 
F'F.:IHT "FIB:::::OLUTE '/ALUE--- II;t1B':::;(t1);" --~'lIl...L BE 
PRIHTER IS ABS(A) 

?E1 Et-·ID 

SELECT CODE CAH/T BE HEGATIVE 
ABSOLUTE VALUE- 6 -WILL BE USED 

i i I-'l~- T, !I 
U·:)i:~J..! 

DF.:ClUt-m (numeric expres­

sion, number of significant 

digits ::. 

The digit round function returns the numeric expression 

rounded to the specified number of significant digits. The 

number-of-significant-digits parameter is rounded to an in­

teger. If the specified number of digits is greater than 12, no 

rounding takes place. If it is less than 1, 0 is returned. 

:Ul?C/ __ H<D is useful for checking equality to a specified number 

of digits, or standardizing internal value accuracy_ 

10 REM This example snows DROUHD function 
~~:~::1 fi:::::l ~234~:5 
30 B=:!' ;::346 

• 40 IF DROUHD(A,4)=DROUHD(B,4) THEH GOSUB 88 
• :5\:'1 PF.'IHT Ili:I::::I';A, "DROUHD (H,4):::II,Df,:OUI--;D(!:j,4) 
• 6\:'1 F'f,:It-n "B=";B, "DPoUt-m (B,4):::";Df;:OUr-m(B,4) 

7'0 :::::TOP 
:::0 F'fd ton "H At-m H flPE [Gum __ TO 4 ::; I(~tH F I cAt-n Ii I C; IT:::;:" 
'::'I>;j PETUPtj 
lOO [1--iIi 

A HHIi B HP[ EQUHL 
A= 1234~; 

:B:= 12:346 

TO 4 SIGH FICHHT DIGITS 
DPOUHIi H,4)= 12350 
DPOUHD B,4)= 12350 



Mathematics BP-43 

FF.:HCT numeric expression Returns the fractional part of the evaluated expression. (It is 

defined by this formula: expression - I [·;T expression.) 

I t·n numeric expression The integer function returns the greatest integer which is less 

than or equal to the evaluated expression. 

10 REM This program shows FRACT and INT 
;?O A=::'::;~:" 9::;:7 
::=.: ~'::l B ~: -_. 6 , ~:: :::, ? 
40 PF I t··iT "'.,,'i:1L.UE"; FiB':: 1. ~~); "FFHCT" ; TFiB (24::'; "I t';T" 

• 50 PFINT A;THB(l;? ;FRACT'::H);TAB(;?4);INT(H) 
• 60 PRINT B;TAB(12 ;FRACT(B);THB(;?4);INT(B) 

?O EHIi 

'/HL..!...IE FPF!CT 

" 74::: 

i"lf=t>:: <list of numeric expres­

sions> 

1'1 I t·j (list of numeric expres­

sions> 

I l"~T 

--, 
I 

The maximum function returns the greatest value in the list. 

The minimum function returns the smallest value in the list. 

10 REM This proqram shows MHX and MIN 
:?~~i I HPUT II FOUP ')ALUE:::; i!!! j=i, B, C, Ii 
30 PP I HT II FOI...i~~ i/AL.UE:::;: II j:i; B; C; D 

.4(1 F'Plt··IT l'j""lA::-<II"lUr'1: !';r'lf:!>:; Fi,B,C,D> 
• ::i~::1 P!~~~ I t"1T !! i-'1 11-'1 I t'lt,!!'!: II; 1'1 I r··! fi, B!! C, D> 

C0 Fi··iIi 

FOUF 'O/flL..i...iE'::;:' 



BP-44 Mathematics 

Returns an approximate value of 1T. It is represented inter­

nally as 3.1415926536 . 

'--I j .. ~ . U t::. i .. :. i ~ E F' ::::; "'M;;:; 

• 
,,'i,,! 

i:::: I::;:: "M'" ·:+.L :::', ..... 

i··'i·,'i""H; '.' '; <numeric expres­

sion~! power-of-ten position> 

• 

"',i';.!..' 

pression] 

. . : ... .. ·~i '.;' 

j"'!...li·:·- ..i •••• 

'T' ; .... 

Hr',", 
! i .. .i 

[numeric ex-

The power-of-ten round function returns the numeric expres­

sion rounded to the specified power-of-ten position. Specify­

ing - 2 is useful for output of money values . 

i-.l" it ! ; 

Returns the result of the last numeric computation which was 

executed from the keyboard. 

The random number function returns a pseudo random 

number greater than or equal to 0 and less than 1. The ran­

dom number is based on a seed set to 1T /180 at power on, 

reset, '/:>;'i:iTi:ff i:::i, and f?i . .if-.L Each succeeding use of f?f..f:U 

returns a random number which uses the previous one as a 

seed. 



'<>i numeric expression 

e;;j 

'::;':;i:;> numeric expression 

. i. l~) 

..... '; ,",,:::.' :::::::::: 

e 

J,l')[::. :1." 
I DE: .:::'" 

Mathematics BP-45 

The seed can be modified by executing the i:;::i:::!j··iLCii·'i I:?E:: 

statement. If the value of the expression is an integer, the 

value of the seed is set to a causing RND to return a each time 

it is used. To obtain a good seed, the expression should have 

as many digits to the right of decimal point as possible. A 1, 3, 

7 or 9 is the most effective final digit. If no expression is 

specified, the computer arbitrarily resets the seed to one of 

116 possible points; this is a more random selection. 

The sign function returns a 1 if the expression is positive, a if 
it is 0 and -1 if it is negative. 

'T j"'1;"';':';', 

1m i"~ i .. : i..' 

The square root function returns the square root of a non­

negative expression . 

~ .. .i: : L 



BP-46 Mathematics 

Logarithmic and Exponential Functions 

E::::·:Y> numeric expression The exponential function returns the value of the constant 

Napierian e ( = 2.71828182846 to twelve place accuracy) 

raised to the power of the computed expression. 

L.C;T numeric expression The common log function returns the logarithm (base 10) of a 

positive-valued expression. 

LJ}:::; numeric expression The natural log function returns the logarithm (base e) of a 

positive-valued expression. 

10 REM This program shows EXP, lGT, and lOG 

40 Pt~~ II···IT II r'1Ut'1BE~: II; TfiB ( 1 i~~I), II E::<P II; TriB (;~~7) !1 L.GT 11; Tl=-iB (44), II LOG 11 

• 60 
PRINT A;TAB(10),EXP(A);TAB(27),lGT(A ;TAB(44),lOG(A) 
PRINT B;TAB(10),EXP(B);TAB(27),lGT(B ;TAB(44),lOG(B) 
Et··iI) 

E:::-:;P 
;~:, 7 1 ::::::~ :::: 1 :::: 2 ::::: 4 4 
i 096, (:;331 ::i:::::44 

LCT lOC; 

Trigonometric Functions and Statements 
The trigonometric functions use the angular unit mode: degrees, radians, or grads, which is 

currently set. A trigonometric statement is used to set the angular unit mode. 

Radian mode is automatically set at power on, or when :::;Ci?f::rT"C:i--I fi, F:'Ui···I, or reset is executed 

or when a subprogram is entered. 



Mathematics BP-47 

Degree Mode 

To set degree mode, execute -

A degree is 1/ 360th of a circle. 

Grad Mode 

To set grad mode, execute -

A grad is 1/ 400th of a circle and is commonly used in Europe. 

Radian Mode 

To reset radian mode, execute -

There are 27T radians in a circle. 

Functions 

:::::C:':::; numeric expression 

:=i'T'i···i numeric expression 

C:C/::; numeric expression 

'3 I i',,! numeric expression 

Returns the principal value of the arccosine of the expression 

in current angular units. The expression must be in the range 

-1 through + 1. 

Returns the principal value of the arcsine of the expression in 

current angular units. The expression must be in the range 

-1 through + 1. 

Returns the principal value of the arctangent of the expres­

sion in current angular units. 

Returns the cosine of the angle represented by the expression 

in current angular units. 

Returns the sine of the angle represented by the expression in 

current angular units. 

Returns the tangent of the angle represented by the expres­

sion in current angular units. 



BP-48 Mathematics 

; j'i j ::::. pi '()')i' 
'i,::;;.;(""1 

! ;!'1'., ; .... i._." 

.?U 
• ;::;i;:'i 
• ':::ii:::' 

I':: ;:::: ·'i:.:V';·' 

Math Hierarchy 
The order of execution for all mathematical operations is shown here. 

When an expression has more than one operation, the order in which the computer performs 

the operations depends on the following hierarchy -

Highest Priority 

Lowest Priority 

:' parentheses 

Functions 

... (exponentiation) 

:.1111, ..... (unary minus) 

):', .... , 

. , 

All relational operators ( ... , ... , ... , .: or :in 



Mathematics BP-49 

An expression is scanned from left to right. Each operator is compared to the operator on its 

right. If the operator to the right has a higher priority, then that operator is compared to the next 

operator on its right. This continues until an operator of equal or lower priority is encoun­

tered: the highest priority operation, or the first of the two equal operations, is performed. 

Then any lower priority operations on the left are compared to the next operator to the right. 

This comparison continues until the entire expression is evaluated. 

Parentheses 
Parentheses allow lower priority operations to be performed before higher priority operations. 

When parentheses are used, they take highest priority. When parentheses are nested, like 

(;:::; .:,:.,. '::i· .... ::::' ') >, the innermost quantity < ,;:1· .. ---:? > is evaluated first. 

Example 

Here's the order of execution in solving an expression -

::::: .. : ... :=:.j: .. , ,":" .';:: ·····:::1· ::: ....... . 

..... 1 ;: .. ;/, ....... ,'-i- .. , .. : . .-' evaluate parentheses 

~+18/~ exponentiation 

'+:.;, division 
, .. ; ... ) addition 

result 

Whenever you are in doubt as to the order of execution for any expression, use parentheses to 

indicate the order. 

Using parentheses for "implied" multiplication is not allowed. So 4(5-2) must appear as 

,;:1·,"" ;:;; ....... :>;" The operator,;';, must be used to specify explicit multiplication. 



BP-50 Mathematics 

Math Errors-Recovery 
Many math errors occur due to an improper argument or overflow; if a program is running, 

execution halts. It is possible to make some of these errors non-fatal so that execution doesn't 

halt by providing a default value for the number which is out of range. Using default values may 

alter the results of computations; be aware of this when using them. 

The DEFAULT ON Statement 
The default values are enabled by executing the DEF't:iUL T m·j statement -

DEF--AULT m·j 

The errors and default values are -

Error (Number) 

Integer-precision overflow (20) 
Short-precision overflow (21) 
Full-precision overflow (22) 
Intermediate result overflow (23) 
TAN(N * PII2), N:odd integer (24) 
Zero to negative power (26) 
LGT or LOG of zero (29) 
Division by zero (31) 
X MOD Y , Y=O (31) 

Default Value 

32767 or -32768 
+ or - 9.99999E63 

+ or - 9.99999999999E99 
+ or -9. 99999999999E51 P 

9.99999999999E511 1 

9.99999999999 E511 1 

- 9.99999999999 E511 1 

+ or - 9.99999999999E51P 
o 

1 These values are used for intermediate results only. 99 is the greatest exponent for final results. 



Mathematics BP-51 

The DEFAULT OFF Statement 
Default values are disabled by executing the DE::F·!:::H...iL.."T CiF·F· statement -

Example 

Here is an example that uses JY::::Fi:::i! ... H .... T Cii··!-

Th!s program uses DEFAULT ON 
! PreJents error when 1=0 

~0 FOR 1=-5 TO 5 

..... ~:; ..... :;:~ 

3 ~- 33333333 

o 9.99999999999E+99 

:.::; :~ :.::: :.:: :.~ .. .' '.::: .:::: : ... : . '. ::; ::' .-::: 

::::; ;? 

Try changing line 20 to :UE::Fi:::H .. .l!. ... "T CiFF· and running the program again. 

rev: 4/81 



BP-52 Mathematics 



Chapter 5 
Using Variables 

A variable is a location in the memory of your computer that is assigned a value and accessed 

with a name. Algebraic formulas and other operations usually contain variables. The formula 

for the area of a circle, A=7TW, uses two variables, A and R. You solve for A by assigning a 

value to R. 

There are three types of numeric variables on your computer: full (12-digit), short (6-digit) and 

integer precisions. There is a fourth type of variable known as a string which is used to manipu­

late characters. Chapter 7 is devoted to strings. 

page 56 • LET (assigns a value to one or more variables) 
page 60 • OPTION BASE (declares 1 rather than 0 as the lower bound of array dimensions) 
page 60 • DIM (dimensions and reserves memory for full-precision arrays and for strings) 
page 61 • INTEGER (dimensions and reserves memory for integer-precision variables - sim-

ple and array) 
page 62 • SHORT (dimensions and reserves memory for short-precision variables - simple 

and array) 
page 62 • REAL (dimensions and reserves memory for real-precision variable - simple and 

array) 
page 63 • COM (reserves space in a common memory area for numeric and string variables) 
page 64 • REDIM (redimensions arrays) 
page 66 • DATA (supplies values that are assigned by READ and MAT READ) 
page 66 • READ, MAT READ (assigns values from a DATA statement to variables) 
page 68 • RESTORE (repositions the DATA pointer) 
page 71 • INPUT, MAT INPUT (lets values be assigned to variables from the keyboard) 

Terms 
• Name - a capital letter followed by 0 through 14 lowercase letters, numbers, or underscore 

characters. 

• Array - a collection of up to 32767 data items of the same type, with 1 to 6 dimensions. 

• Dimensioning - defining the number of dimensions, elements per dimension and type of an 
array. 

• Maximum size - the number of elements in an array when it is dimensioned. 

• Working size - the total amount of elements being used currently. 

• Array element - a single item of an array. 

• Array identifier - .. :,:.', following the array name, used to specify all elements of the array 
collectively in an input or output operation. 

• Subscripts - integers separated by commas and enclosed in parentheses for accessing an 
array element or dimensioning an array. 

• Implicit definition - using an array element without dimensioning the array dimensions the 
array implicitly with 10 as the upper bound of each dimension. 

• Redim subscripts - used to redimension an array and can be a numeric expression. 

• DATA pointer - an internal mechanism that indicates which value in a DATA statement is 
accessed next. 



BP-54 Using Variables 

Types 

There are three types of numeric variables available with your computer. 

• Full-precision (real) variables are represented internally with twelve significant digits and 

an exponent in the range -99 through 99. Full-precision variables don't need to be 

declared, but the F:EAL statement can be used for documentation purposes. 

• Short-precision variables are represented internally with six significant digits and an ex­

ponent in the range -63 through 63. A short-precision number is declared in a ~:;HOF.:T or 

CDt'1 statement. 

• Integer-precision variables have no digits following the decimal point. The range of 

integer-precision numbers is -32 768 through 32 767. An integer is declared in an 

I r-rn:::c;[!? or CUi"! statement. 

All numbers are full precision unless otherwise specified using a ~:;HOF:T, ItHEC£F.: or Cot'1 

statement. Any excess digits input for a number are truncated when the number is stored in 

memory. For example, if you input 12345678912365 for a full-preCiSion number, it is rep­

resented internally with 123456789123 in the mantissa. 

Short and integer-precision variables are useful for conserving memory. All calculations are 

performed with full-precision accuracy, so short and integer precision numbers are converted 

before and after an operation, which can cause operations to take more time. 

Forms 

There are two forms that any type of variable may have. 

• Simple (Nonsubscripted) 

• Array - a collection of single data items. 



Using Variables BP-55 

Names 
All variables must have a name. The name can be useful for describing what the variable is used 

for. Names must follow these rules -

• A name has between 1 and 15 characters. 

• The first character must be a capital letter. 

• The remaining characters must be lowercase letters, digits, or the underscore character 

obtained by pressing B ~. 
• String names must be followed by :$: (dollar sign). 

Examples 

Here are some examples of variable names -

!:::'.:::i.:)rfil:::'j'·'i"l:. 
,'j- er--'I:: ..... ;. 

Any name can be used simultaneously for a simple numeric, simple string, numeric array and 

string array. 

Variable Breakdown 
Variables can be classified into various categories and subsets of the categories as shown in the 

diagram below. For example, any reference to a single numeric variable includes simple 

numerics and elements of numeric arrays. -

single variable 

numeric variable 

~mple numeric 

array element 

variable 

[

ring variable 

simple string 

~substring 
Lng array element 

substring 

array variable 

numeric array 

[matrix 

vector t
ring array 

matrix 

vector 



BP-S6 Using Variables 

Using Variables at the Keyboard 
Variables can be assigned values using an equals sign to create an assignment statement. For 

example, to assign 150 to Owed and 25 to payment, enter -

,··",!, .......... ;:::::.·.i·:::·'::;Wx 
. ..i=: .. : ~ 

::::';::::w 

Now that some variables have assigned values, they can be used in place of numbers in math 

calculations -

C"i:.1:::: .···t .... : . ..::.:):::: :::: w 
w 

The LET Statement 
A simple numeric variable can be assigned a value in a program using the L..t:T statement -

[L..E·T"J simple variable [= simple variable ... J ::" numeric expression 

Implied LET 
Omitting L..E:·T is an implied l....E::T or implied assignment. 

Examples 

Assign the 0~lue of x to M 
Assign 12 to Y--use any expression 
Assign 32.17 to Datal 

If a numeric variable is used in a computation and hasn't been assigned a value, 0 is used as its 

value. 

To check the current value of a variable, you can type in its name, then press W. This can also 

be done while a program is running in live keyboard mode. You may get an unexpected result if 

a subprogram is currently executing and the variable isn't defined in the subprogram. 

The values of variables are erased by executing '::::C: F:H TC)"! ;",! (except those in common), 

SCRRTCH C,SCRRTCH R,orSCRHTCH P 



Using Variables BP-57 

Array Variables 
An array variable (array) is a collection of data items of the same type. An array can have one to 

six dimensions and up to 32767 elements. It is a convenient tool for handling related data 

items within a program. Use arrays when you have related values and need to access any of 

them at any time, when you need to sort many values, when you need to keep track of a table 

of values or when you have interrelationships between data items (a person's age, height, 

weight, phone number, and Social Security number for example). 

A one-dimensional array (also known as a vector l
) can be thought of as a column of items. The 

following represents a vector having three items; X represents one item. 

The structure of a two-dimensional array (also known as a matrix l
) is rows and columns. Here 

is a representation of a 2 by 4 (2x4) array. 

I ~ x 
x 

x 
x ~I 

The structure of a three-dimensional array can be thought of as a series of two-dimensional 

arrays. Here is a representation of a 3x2x4 array. Your computer interprets it as three 2 by 4 

arrays. 

A four-dimensional array can be thought of is a series of three-dimensional arrays. Here is a 

representation of a 2x3x2x4 array. 

A five-dimensional array is a series of four-dimensional arrays and a six-dimensional array as a 

series of five-dimensional arrays. Your arrays can be structured according to your needs. 

1 Vectors and matrices are special types of arrays. Any reference in this manual to an array also includes matrices and vectors. 



BP-58 Using Variables 

Defining the Size of an Array 

To use an array, your computer must know its size. An array can be initially defined in a 

variable declarative statement CD T t'i, C i:;'i:>::H .... , '::)'<::H?'T", or T . There, its maximum 

size is indicated by specifying the number of dimensions and size of each dimension. This is 

known as dimensioning the array. An array is limited by memory size to no more than 32 767 

items. 

When an array is dimensioned, its physical or maximum size is defined. The working size of 

an array is the total amount of elements being used. A new working size can be specified in a 

!?E:::U T t'i statement or in certain array operation statements. 

Implicit Definition 

If an array element (discussed next) is used in a program or keyboard computation, but the 

array has not been defined in a variable declarative statement, the array is then implicitly 

dimensioned. This means that an array is dimensioned having the number of dimensions 

indicated by the array element. The upper bound of each dimension is 10; the lower bound is 0 

or 1, depending on the current CF'T I Cli··! E:!:::j::::;r:::: setting. OPTION BASE is covered later in this 

chapter. 

Array Elements 
Each element in an array can be accessed by using subscripts, then used like a simple variable. 

An array element is a type of single variable. In a 2x4 array called M, M(1,2) refers to the 

element in array M which is in row 1, column 2. It can be assigned a value and used in 

calculations and other programming operations. 

Example 

,·"·F",'-:: ", ,.... .;:Lr"j ':::1; : 

Array Identifier 

All elements of an array (in its working size) can be specified collectively in an input or output 

operation by using the array identifier: >:: .:,:. > after the name. For example -

prints the entire array M. 

rev:4181 



Using Variables BP-59 

Declaring and Dimensioning Variables 
Five variable declarative statements - em'l, II 11·'1, Hfn::C;Ei?, ~=':;HCli?T and 1?E:fii.._ - are used to 

dimension arrays and strings and declare the precision of numeric variables. These statements 

also reserve space in memory for the specified variables when the program is run. 

Subscripts 
When you dimension an array, you declare the number and size of dimensions with subscripts. 

The rightmost subscript represents the length of a row and varies fastest. 

Subscripts are integers separated by commas and enclosed in parentheses. In addition, sub­

scripts can be numeric expressions when used in a subprogram to dimension an array. The 

range of each subscript is -32767 through 32 767, but the size of an array is limited to no 

more than 32 767 elements by memory size. 

Subscripts can specify just the upper bound for each dimension. The lower bound for each 

dimension is then O. The ClF'T; ::::i·i E:i::<;E: statement can be used to change it to 1; C:iF>T I CH< 

E: i:::i':;E: is covered next. 

Subscripts can also be used to specify the lower as well as upper bound of each dimension. This 

is done by separating the upper and lower bounds with a colon. This allows you to have more 

meaningful indexes, specifying 1967-1978 rather than 1-12, for example. 

Example 

Here are some ways to dimension a 2x4 array -



BP-60 Using Variables 

The OPTION BASE Statement 

When dimensioning arrays, you may want to specify that the default lower bound for dimen­

sions be 1 rather than O. This can be done using the OF'T I Clt·~ BH:::E statement -

This statement must come before any of the variable declarative statements used in a program. 

Then, any lower bound not specified is 1. 

If OF'']" I Cli···j Li=i::::;F~ 1. is not declared in a program, you may wish to include the statement -

for documentation purposes. 

The UF''T' I Cli"~ EH:::;E statement can't be executed from the keyboard. 

The DIM Statement 

The Ii E'! (dimension) statement is used to dimension and reserve memory for full-precision 

numeric arrays and initialize each element to O. It is also used to dimension and reserve storage 

space for simple strings and string arrays and initialize all strings to the null string. 

T, T i"i ·t ['t ] V.i.,',) em , 1 em ... 

The item can be -

numeric array <subscripts::' 

simple string i:: number of characters ::i 

string array 'subscripts::' [ i::number of characters ::i ] 

Example 

1 is lower bound for array dimensions 
2-dimensional array with 16 elements 

30 DIM Array(2,3,5, imes(5000) 
Line 30 dimensions a 3-dimensional ana 
a i-dimensional array 



Using Variables BP-61 

Remember these things when using Ii:r. 1"1 -

• The maximum number of dimensions that can be specified is six. The range of subscripts 

is -32 767 to 32 767. No array can have more than 32 767 elements. No simple string 

can be longer than 32 767 characters. The size of arrays or strings may be limited by 

available memory, however. 

• The maximum length of a string (number of characters) can be specified with any numeric 

expression except one containing a multiple-line user-defined function. 

• The D I i"1 statement must be executed via a program, not from the keyboard. Its location in 

a program is arbitrary, though it must be after any ()F'T 1m··, I:i=j::::f: statement. At pre-run 

initialization, the variables are dimensioned and initialized. 

• Ii Hi need not be used to assign space for strings with 18 characters or less or for arrays 

having upper bounds of 10 or less. These can be dimensioned implicitly. This, however, 

may use memory inefficiently by creating arrays or strings which are larger than needed. 

• A program can have more than one Ii Hi statement, but the same variable name can be 

declared only once in a program segment. Therefore, arrays of differing dimensions can't 

have the same name. 

The INTEGER Statement 

The I irri::::CT::i? statement is used to dimension and reserve memory for integer precision varia­

bles - simple and array. Integer-precision variables can be used to conserve memory; all 

calculations are performed with full-precision accuracy however, so a conversion is made 

before and after an operation, which takes more time. 

I f·nr~;EF: numeric variablel [ <subscripts::' ] [, numeric variable2 [ >:: subscripts::' ], ... ] 

Example 

30 OPTION BASE 1 
40 INTEGER X,Y(2,2) 

declares X to be an integer and Y to be an integer array of four elements. 



BP-62 Using Variables 

The SHORT Statement 

The :::)··i (}:;:: "T' statement is used to dimension and reserve storage for short-precision vari­

ables - simple and array. Short-precision variables can be used to save memory. All calcula­

tions are performed with full-precision accuracy, however, so a conversion is made before and 

after an operation, which takes more time. 

'::;HCIf,:T numeric variable! [ <subscripts) J [, numeric variablez [ <subscripts> J, ... J 

Example 

30 SHORT A(4,4),B(3,3,3),D 

declares A and B as short-precision arrays and D as a simple, short-precision variable. 

The REAL Statement 

The F:Ef1L .. statement is used to dimension and reserve memory for full-precision (real) vari­

ables - simple and array. 

F:EfiL .. numeric variable! [(subscripts) J [, numeric variablez [ (subscripts) J, ... J 

Example 

dimensions the array M and declares the simple variable N. 

Since the D H1 statement can also be used to dimension full-precison variables, the f~:EfL 

statement can be used for documentation purposes to specify which variables are full precision. 



Using Variables BP-63 

The COM Statement 
The i:::Ci(i statement is used to dimension and reserve memory for simple and array variables. 

This includes strings and all three numeric precisions. i:::::}-'i is unique because it reserves mem­

ory space in a special "common" area which allows data to be transferred to and from subpro­

grams or to other programs when each program or subprogram has corresponding C:C/'i state­

ments. 

(---nj-'i 't ['t ] __ -_ .•. 1 em ,1 em, ... 

The item can be -

simple numeric 

numeric array <subscripts> 

simple string [ l:number of characters::i ] 

string array <subscripts> [ [number of characters:J ] 

In addition, anyone of the type-words - I r-.rn:::::;r:::F:, ':::HUi?T, f;'[fiL.. - can precede one or more 

numeric variables. All variables following a numeric type word have that precision until another 

type is specified or a string is declared. 

Example 

20 COM A,B(2,4),CS,D,INTEGER E 
30 COM FS(S)[24J,G,SHORT H(S),J 

The variables A,B(2,4), D and G are all full precision. Full precision is assumed at the beginning 

of the em'! list and for numeric variables which are declared after any string. Since all variables 

following a numeric type word have that precision until another type is specified or a string is 

declared, both H(5) and J are short precision. 

The items declared in corresponding C:C:W! statements in separate programs and subprograms 

must correspond to preserve values. Each item must be of the same type - integer, short, 

full-precision and string - as the corresponding item in other em'l statements. Arrays must 

have the same upper and lower bounds for each dimension. Strings must have the same 

number of characters dimensioned. Names need not match, however. 

CCWi statements in separate programs need not have the same number of items. A shorter CUr'! 

statement in a succeeding main program causes the extra data from the first COr'! statement to 

be lost. A longer CUI-'! list in a succeeding program causes the new elements of the second C:Or'l 

statement to be initialized to 0 or the null string. 



BP-64 Using Variables 

Redimensioning an Array 
Redimensioning an array allows you to reorganize it into a more useful configuration. When an 

array is redimensioned, it is given a new working size. Any elements not included in the new 

working size are ignored, but are still part of the array. Thus, when new values are assigned to 

elements of a redimensioned array, the values of the unused elements are not changed. 

A redimensioned array must retain the same number of dimensions as orginally specified. Also, 

the total number of elements can't exceed the number originally specified. 

Redimensioning of an array can be explicitly specified in many of the array statements. 

"!m·· H~F'UT and !·':fiT ... I m··! are two examples. 

Redimensioning can also be implicitly specified in many of the array operation statements. For 

example, adding the elements of two 3x3 arrays and storing the sums in a 5x5 array causes the 

result array to be redimensioned to 3 x 3. 

The REDIM Statement 
A new working size for an array can be established by using the i?E::D I i"! statement. 

FED H'1 array variable <redim subscripts> [, array variable <redim subscripts>, ... J 

Redim subscripts have the same characteristics as dimensioning subscripts. In addition, they 

can be any numeric expression, not just an integer. If you redimension a string array, you can't 

change the string (element) length. 

Examples 

Here are some example f,ED I :"1 statements -

18 REM These are example REDIM statements 

REDIN 1(1,4,-3:1) ! Upper ~ lower bounds can be specified 
4(.1 ;:'::=;;~ 

se \1=:::: 
REDIN A(X, ),C(() Subscripts can be numeric expressions 



Using Variables BP-65 

The following program illustrates what happens when an array is redimensioned -

I All elements equal 7 

• 5C 

lCC MAT PRINT A; 
:l 10 Er··ID 

ARRAY A--NOW A bi 2 

01 
Jo 

ARRAY A--BACK TO A 3 BY ~ 

NOTE WHICH ELEMENTS CHANGED 
1 .. ~' 

I 

"';' .,,;, 

Elements in new workIng size =1 

More Ways to Assign Values to Variables 
Values can be assigned to variables during a program, either from within the program or input 

directly from the keyboard. Besides LET, you can use -

READ, MAT READ,DATA, RESTORE 



BP-66 Using Variables 

The READ and DATA Statements 
To assign values to variables from within a program, the DHT!=i statement is used with i;::EHD. 

F:Efm and DH'Hi allow you to store values in a program. The Dfi"Tti statement(s) provides 

values that are assigned to the variables. The F'Ei=m statement specifies the variables for which 

values are to be obtained from DHTti statements. F'Efm and DHTH are programmable only; they 

can't be executed from the keyboard. 

DtiTH constant or text [~ constant or text ~ ... J 
F:E:fm variable name [~ variable name~ ... J 

In the Di:rn=1 statement, text for strings can be quoted or unquoted. A constant could thus be 

interpreted as either a numeric value or as unquoted text. The location of the DfiTH statements 

within a program segment is unimportant. If there are multiple Di:rf'H statements, make sure 

they are in the order you want, since the program accesses them in order. 

The variables specified in the FEHD statement can be any single variable or an array identifier 

,;: .:,:, > following the array name. 

iO 

• 30 
• 40 

Example 

! This program shows READ and DATA statements 
DII"j Tot,,'il~,,<1:3> 

DfiTA ::::::;;:, '("(', Ap~'" j 'j , "i 00" , 9:5, ?::::!I :l ~::iO 
READ A,A$,Month$,Miles$,Totals<*) 
F'f? HH j, FI::::;'; H, "fU:;"''' ; A ,1:. ' 
PR I HT " i"jO!";t hI:::: " ; [-1 ont 1,"; ,1:., "t"1 i 1,=, ~:,:$::::: " ; [i! i 1,,",::::,$ 
PR I HT "Tot,:,!, 'I ::" < ",,)::::" ; Tot,:'!. 1 :::;, < '~,::.; 

A= 88 A$=?? 

Notice that an unquoted value in the DfrrH statement (77) can correspond to a string variable in 

the F:EHD statement (A$), It is interpreted as un quoted text in this case. 

The MAT READ Statement 
The 1"1HT FEt:m statement specifies entire arrays for which values are to be read from In:rf'H 

statements. 

i'ii:::i'T' i?E:JH) array variable [ <redim subscripts::' J [!I array variable [ <redim 

subscripts> J!I ... J 



Using Variables BP-67 

The working size of the array can be altered by including the redim subscripts. When redimen­

sioning, the total number of elements can't be greater than the number originally dimensioned. 

The number of dimensions can't change. The subscripts can be any numeric expression except 

one containing a multiple-line user-defined function (FN) reference. 

The !'li:rr i:;:EHD statement is programmable only; it can't be executed from the keyboard. 

Array elements are read in order with the rightmost subscript varying fastest. 

10 OPTION BASE 1 
20 DIM A(5,5,5) 
30 DATA 1,2,3,4,5,6,7,8,9 

• 40 

1 :;:~ 

MAT READ A(2,2,2) 
[;'! r1 T P !~~: I t·~ 'r f:i; 

Values are read in the following order -

Example 

A(l,l,l), A(1,l,2), A(1,2,1), A(1,2,2), A(2,1,1), A(2,l,2), A(2,2,l)' A(2,2,2) 

DATA Pointer 

The computer uses an internal mechanism called a DATA pointer to locate the next data 

element that is to be read. The leftmost element of the lowest-numbered :::>:::T"::::: statement in the 

current environment is read first. After this element is read and another value is required by 

the DATA pointer repositions itself one element to the right, and continues to do so each 

time another data element is read. After the last element in a :u:::rr·::::: statement is read and 

another value is required by the DATA pointer locates the next higher numbered :u:::rr::::: 
statement and repositions itself at the first element in that statement. If there are no higher­

numbered ::Y::rr::::j statements, the data pointer remains at the end of the previous T)j::::·T::::: state­

ment; any effort to read additional data results in E:::;:'::;::::::+:::::;::::. 



BP-68 Using Variables 

TheRESTORES~teme~ 

The DATA pointer can be repositioned to the beginning of any DH"T"H statement in the same 

program segment, so that values can be reused, by using the F:F:::::::T"C)F'E:: statement -

RESTORE~neidentifie~ 

If no line identifier is specified, the pointer is repositioned to the beginning of the lowest­

numbered :Ui:rr"H statement in the same program segment. 

If the specified line is not a LHTfi statement, the first J:)i::iTH statement following the specified 

line is accessed. 

Examples 

This example shows that several i?EJ:iD statements can apply to the same DHTH statement. It 

also shows that string values can be quoted or unquoted, though quotes are not part of the 

string; notice that 7.31 is a string value assigned to A$. 

lU 
• ;?O 
• :::~j 
• 4(::1 

i;:'Ff:iD I::I:~::, B 1. 
r=:: I::. t"iJ..i ;:< :$: 

::);? P~~:It··!T H::~:, B 
~:i :::; F' t;~~ I H T >:: J 

?" :::::1. 
H c; ur- :~:. 

Rsads the 4,5 and 6 
Re~ds the (.~l and the 2.69 

re v: 4181 



Using Variables BP-69 

This example illustrates use of FE::;TClF:[ and '·'iHT F:E:JiD. The values in line 30 are used as the 

values of five simple variables, then re-used as the values in array B. 

10 OPTION BASE 1 

40 FOR 1=1 TO 5 

Lines 80 and 90 give blank lines 
• 100 RESTORE ~G I Lets the data in line 30 be re-used 
• 110 MAT READ B 

:l ;;~~o PP I f··!T il fif~~F~~ti'/ :1::: II, B (~:.) ; 
i ::::~j Ei"··iD 

Here is the output -

C::::: J.~3 

C:::: l;?,,? 

... 
. .=., 

The INPUT Statement 

SQUARE ROOT OF C= 3.16227766016 
SQUARE ROOT OF C= 3.56370593624 
SQUARE ROOT OF C= 1.73205080756 
SQUARE ROOT OF C= 3.8729833462 
SQUARE ROOT OF C= 2.82842712474 

The I r·iF'UT· statement allows the user of a program to interact with the program and input 

varying data. Values in the form of expressions can be assigned to variables from the keyboard 

at the request of the program -

H;F'UT ["prompt" , J variable name [, ["prompt", J variable name, ... J 

When the::: i·iF\JT" statement is executed, a) or the prompt, if present, is displayed. The prompt 

is any combination of characters; it can be used to show the user for what variable a value is 

being requested. Each prompt applies only to the variable to its right. If no characters are 

present between the quotes, nothing is displayed. Any variable not preceded by a prompt uses 

a question mark by default. A value can then be input for each variable designated in the 

::: i···T\Jr statement. Values are entered into the computer by pressing CD or @ill 



BP-70 Using Variables 

Example 

For instance, in the statement -

·:::i.r;= ... : 
ii 

three values are requested. 

Values can be assigned individually or separated by commas in groups. Values input for strings 

can be quoted or unquoted. Quotation marks can't be input as part of the string's value. An 

unquoted value for a string can't contain a comma or exclamation point and all leading and 

trailing blanks are deleted. 

Example 

For example, the values 24, 2592 and 350 can be assigned to the variables in the example 

above in many ways; here are two -

or 

.:::=::+ .:::. C:j (~.:::z 0 ,,::: c; ~:i 0 rn rn , ••••• , .......... ,' 1M,' ~ .~...... •••• ~ 

In both cases, the .. ::' or prompt reappears after rn is pressed until all three values are input. 

Pressing rn without entering values when an input is requested causes execution to continue 

with the statement following the I i···T<Yf statement, even if additional values are still requested. 

@ill or the C:(}···i"T· command can also be used. Variables not assigned values retain their previ­

ous value. 

Example 

IHF'UT "IHFUT '/FIU.JES F·Ok H, B flhD ;'<",Fi,.B,;:-:; 
FPIHT N!.B, 

If you respond to the I r··!F'!..JT statement with -



Using Variables BP-71 

The output is as shown. Notice X retains the value 5. 

19 

The variable list can also include array identifiers. 

Example 

100 INPUT A,B(*) 

requests values for the simple variable A and the array B. 

The I i··~Pi...iT statement is programmable only; it can't be executed from the keyboard. 

The MAT INPUT Statement 
Entire arrays can be given values from the keyboard and optionally redimensioned using the 

i+lT FiF:'i...iT statement -

i'H::rr I i··iF\..iT array variable [ .: redim subscripts> ] L, array variable 

[ < redim subscripts> J~, ... ] 

When i·'i:::::"T· I i·Y\..iT is executed, a .) appears in the display line. Values in the form of numeric or 

string expressions can be entered separately, or in groups. As with the I i···iF\)! statement, 

values are stored by pressing CD or @ill or using the ::::::::><T command. 



BP-72 Using Variables 

The first array with redim subscripts is always redimensioned. Redimensioning of any but the 

first array takes place only if a value is input for at least one element in the array. 

Example 

30 MAT =(0) 

MAT INPUT Array:2,2,5),B(S),C 
60 MAT PRINT Array;B;C; 

.. ~ 0 

When this is executed, 29 separate values are requested. If 

are entered, the only values that would change are the elements of !::k·!"··.;:j') with subscripts 

(1,1,1), (1,1,2), (1,1,3), (1,1,4), (1,1,5), (1,2,1). Array B is not redimensioned because no 

elements were input for it. 

The !"FiT ::: r··iF:'i..JT statement can't be executed from the keyboard. 



Using Variables BP-73 

Storage of Variables 
To determine how many bytes a variable requires when stored in memory (storage on a mass 

storage medium is different; see Chapter 11), use the following tables. 

Simple Variable 

Full precision 

Short precision 

Integer 

String 

Array Variable 

Full precision 

Short precision 

Integer 

String 

Amount of Memory Used 

10 bytes 

6 bytes 

4 bytes 

6 bytes + length (1 byte per character, rounded up to an 

even integer) 

Amount of Memory Used l 

10 bytes + 4 bytes per dimension + 8 bytes per element 

10 bytes + 4 bytes per dimension + 4 bytes per element 

10 bytes + 4 bytes per dimension + 2 bytes per element 

12 bytes + 4 bytes per dimension + 2 bytes per 

element + length of each string (1 byte per character, 

rounded up to an even integer) 

1 See the "Memory" section of the Reference Tables. 



BP-74 Using Variables 



Chapter 6 
Array Operations 

page 76. MAT. .. CON (assigns 1 to every element in an array) 
page 76 • MAT ... ZER (assigns 0 to every element in an array) 
page 77 • MAT-Initialize (assigns a constant value to every element in an array) 
page 78 • MAT-Copy (copies all the values of one array into another) 
page 79. MAT-Scalar operation (performs an operation on every element in an array with a 

constant scalar) 
page 80. MAT-arithmetic operation (performs an operation on corresponding elements of 

two arrays) 
page 81 • MAT-function (operates on every element in an array with a system function) 
page 82 • MAT ... IDN (establishes an identity matrix) 
page 83 • MAT-matrix multiplication (performs multiplication on two matrices) 
page 85 • MAT ... INV (finds th e inverse of a matrix) 
page 87 • MAT ... TRN (finds the transpose of a matrix) 
page 87. MAT ... CSUM (finds all the column sums of a matrix) 
page 88 • MAT ... RSUM (finds all the row sums of a matrix) 

Functions 
SUM (sum of all the elements) 
ROW (number of rows) 
COL (number of columns) 
DOT (dot product) 
DET (determinant) 

Terms 

• Identity matrix - a square matrix with all elements equal to 0 except the main diagonal, 

which all equal l. 

• Scalar - a numeric expression used as a constant in mathematic operations. 

rev. 481 



BP-76 Array Operations 

Assigning a Constant Value 
Three statements allow a constant value to be assigned to every element in a previously dimen­

sioned array. 

1. MAT ... CON 
The !'!i::rT" ... C:CH···j statement assigns the value 1 to every element -

!"!i=rr' array variable ::: Cly·.j [ <redim subscripts> ] 

When executed, all elements in the current size of the array are assigned the value 1. The 

current size can also be redimensioned by including the redim subscripts. The redimensioning 

is done before the assignment takes place. 

Example 

In this example the value 1 is assigned to 9 elements of the array H -

40 MAT PR NT A; 

i i 

1 

2. MAT ... ZER 
The !'H:::rT" ... ::::l:::l? statement sets all elements in a numeric array to O. You can also redimension 

the array. 

!"iHT array variable::: ::::'EY:: [ <redim subscripts> ] 

Again, the optional redimensioning takes place before the assignment. 

Example 

This example shows MAT ... ZER 
~0 OPTION BASE 1 

Redimension array X also 
~~ MAT PRINT X; 

.'.~ 

':'.' 

15 elements of the array;:':; are assigned the value O. 
rev: 4181 



Array Operations BP-77 

3. MAT-Initialize 
The r'iAT - Initialize statement assigns the value of the numeric expression to every element in 

a numeric array. 

!'iAT array variable:::: <numeric expression) 

Example 

This example shows initial i~~tion of array 
20 OPTION BASE 1 
30 DIM Areas(2,?,2) 

• 40 MAT Arsas=(2+PI~ 

This assigns the value of 2*PI to every element in f:lr>:·.:i:::·. 

The numeric expression is evaluated once; it is converted to the numeric type (INTEGER, 

SHORT, REAL) of the array, if necessary. 

Example 

11::1 OPTION BASE value is C 
• ::::C Value of PI rounded to an integer 

3C MAT PRINT X; 
4i;~i E!-··ID 

... .. : 7.; ::::; .. .. ... 

-, .,:~ '~:1 .;:; .,:> 
... 

.. ,,:; . . 

.. .. . .. 

. :; :3 .::1 

Line 20 causes the value 3 to be assigned to every element in >-::. 



BP-78 Array Operations 

The MAT -Copy Statement 
The i·'iHT· - Copy statement copies the value of each element of a numeric array into the 

corresponding element of the result array. 

i·'iH"T· result array:::: operand array 

The two arrays must have the same number of dimensions. The number of elements in the 

result array must be greater than or equal to the number of elements in the current size of the 

operand array. 

...• , !:::' 
,.-::.:. ") 

,'-, !;::' 
,::.:: ,_.1 

•••• , 1:::' 
':::." ,_I 

Example 

The working size of array C is redimensioned to be a 2 by 2 array, then the values of array 0 are 

copied into the elements of array C. 

rev:4181 



Array Operations BP-79 

Mathematical Operations 
There are various mathematical operations that can be performed with arrays. These are 

covered next. 

Scalar Operations 
The scalar operation statement allows an arithmetic or relational operation to be performed 

with each element of an array using a constant scalar (any numeric expression). The result of 

the operation becomes the value of the corresponding element of the result array. The 

operators that can be used are -

:- or :FF 

i-'lHT result array:::: operand array operator <scalar> 

i-'lHT result array:::: <scalar) operator operand array 

Example 

In this example, each element in array c:: is multiplied by 4 and the result is stored in the 

corresponding element of array :1:::. 

10 OPTION BASE 1 
20 DIM B(3,3),C(2,2) 

FOR 1=1 TO 2 Th~s~ lOOpS assigr u~lues t 
FOP J::::: 1 TO ;? 

C(I,J):::I+.J 
i-;C>::r .J 

Each ej~m~nt In C IS multiplied 
~ 1 also r~dim~nsion~d 

':~ 0 Pl:;~~ :r. !·'·!T !5 i"'1 f:i TI~~: I: (" :: ;1 , C ("*. 

101;::1 F' f~~ :r !' .. \ T !! 1"1 i=j T !:;~~ I: I::: ii , B ( ~~. 
:1. 1 C~i E!"~D 

? 3 

8 Ii 

12 16 

4; 



BP-80 Array Operations 

The two arrays must have the same number of dimensions. The result array can't be smaller 

than the operand array. The array is redimensioned before the operation so that it has the same 

working size as the operand array. 

Arithmetic Operations 

The arithmetic operation statement allows an arithmetic or relational operation to be per­

formed with corresponding elements of two numeric arrays; the result becomes the value of the 

corresponding element in the result array. 

'·"fiT· result array::: operand array operator operand array 

Examples 

In this example, corresponding elements of arrays \:::, and :E: are added. 

18 OPTION BASE 1 

I Assigning ~~lues to A and B 
48 FOR J=1 TO 2 

r!(I,J):::::J+I 
r: < I,.J >:::::.J~~ I 

• 188 MAT Sum=A+B I EACH ELEMENT OF Sum IS ~H~ ~c~ ~~ 

CORRESPONDING ELEMENTS OF A AND B 
110 F:P I i-··IT !i t~!F:Fri\' H ~ ,! , Fi;:: ~~ >;1 !i i::iFF~:!:::!\' :B ~ .! , B (.~~ > 
:I. ~:~~ ~~! p I:;~~ I i"~ T ! I ~:::; U !-'1 0 F j:1 j::i r'~ DB: ;! , ~~~; 1...1 1'1", ( ~I:' > 
13i;) Ei···lD 

.. ~, 

4 

"~, 
::: .. 

rev: 4181 



Array Operations BP-81 

In this example, corresponding elements of arrays H()i .. W·:::. and F.3.1:. ,;:. are multiplied together 

and the result stored in array F'.3. I). 

10 OPTION BASE 1 
20 DIM ray(5),Hours(5),Rate(5) 

DATA 5.25,5.00,4.25,7.15,4.80 
DATA 40,42,28,39,40 

• 60 
MAT READ Rate,Hours 
MAT Pay=Hours.Rate 

70 REM EACH ELEMENT OF Pay ~ THE PRODUCT OF 
CORRESPONDING ELEMEN S OF Hours AND Rate 

::::~] F'f,: I t·n "PFi\' TO Hi U:; : !!, F'.::l:: .. I';: ;~. 

90 EHD 

PA'/ TCTflL::;: 
210 210 119 278.85 192 

The following operators are allowed -

+ 

. (multiply) 

-::::> or # 

:> <: 

>= <= 

Notice that multiplication is indicated by a period. An asterisk indicates matrix multiplication 

which is different and is covered later in this chapter. 

The result and operand arrays must have the same number of dimensions. The operand arrays 

must have the same number of elements in each dimension; the result array can't be smaller. 

Functions 
The function statement allows each element in the operand array to be evaluated by the 

specified function. The result becomes the corresponding element of the result array. 

1'1AT result array:::: function operand array 

The function must be a Single-argument system function like ':; I j";, fiB:::; or :::;OF. 



BP-82 Array Operations 

Example 

In this example, the square root of each element in array i:::i is assigned to the corresponding 

element in array E:. 

10 OPTION BASE 1 

.··· ... t· r '1.)'_' :,- ' .. .' , 

corresponding element of array A 

.; •.•. , 
J. .. ::: 

C" 1·.) 

;::::,::1. 

Matrices and Vectors 
Many array operations can only be performed using matrices or vectors. These are covered 

next. 

MAT .. JON 

The i·'1i::rr· ... ::: ri··; statement establishes the specified matrix as an identity matrix: all elements in 

the matrix equal 0 except those in the main diagonal (upper left to lower right), which all equal 

1. 

An identity matrix must be square (two dimensions; each dimension has the same number of 

elements); when the subscripts are included, this enables the matrix to be redimensioned 

before the identity matrix is established. 

rev: 4181 



Array Operations BP-83 

Example 

; ~, ! ! 

• '::l·U LJent,ty=IDN 4,4) 

Matrix Multiplication 
The matrix multiplication statement multiplies two matrices together. This is different from 

the multiplication of corresponding elements which was discussed previously. 

i'H:::i'T' result matrix ::::: operand matrix! .:,:. operand matrix2 

The number of columns of the first operand matrix must equal the number of rows of the 

second operand matrix. The result matrix has the same number of rows as the first operand 

matrix and the same number of columns as the second operand matrix. The result matrix can't 

be named the same as either of the operands. Here is an example -

B(3x4) * C(4x2) = A(3x2) 

Either or both of the operand matrices can also be vectors. The result matrix must also be a 

vector in this case. Here is an example -

If you have not been introduced to matrix multiplication, you might assume that corresponding 

elements are multiplied together; however, this is not the case. Assume you are multiplying 

matrix B by matrix C and storing the result into matrix A (MAT A=B*C). To determine the 

value of any element of matrix A, call it A(x,y), corresponding elements of the xth row of Band 

the yth column of C are multiplied together. The sum of the resultant products is the value for 

A(x,y). 

re v: 4, 81 



BP-84 Array Operations 

Mathematically speaking -

MATA=B*C 

N 

A(I,K) = I. B(I,J) * C(J,K) 

J = 1 

where N = the number of columns in B and rows in C 

Example 

Here's an example that uses matrix multiplication to find total sales for four bus routes using old 

and new prices -

Matrix A - Ticket Revenue by Route 

Route 

1 

2 

3 

4 

Matrix B - Ticket Prices 

Single Trip 

143 

49 

314 

82 

Round Trip 

200 

97 

77 

65 

Commuter 

18 

24 

22 

16 

Old Price New Price 

Single Trip 

Round Trip 

Commuter 

.25 

.45 

18.00 

.30 

.50 

17.00 

Matrix A, a 4 by 3 matrix, is multiplied by Matrix B, a 3 by 2 matrix, resulting in Matrix C, a 4 by 

2 matrix. 

Matrix C - Total Sales by Route 

Route 

1 

2 

3 

4 

Old 

449.75 

487.90 

509.15 

337.75 

New 

448.90 

471.20 

506.70 

329.10 



Here is the program used to perform the multiplication -

10 OPTION BASE 1 
20 DIM A(4,3),B(3,~),C(4,2) 
30 DATA 143,288,18,49,97,24,314,77,22,82,65,16 
40 DATA 0.25,0.3,O.45,0.5,18,17 

• 6!J 
?C For monetary output 

Array Operations BP-85 

Here are some things to remember when using the matrix multiply statement -

• The result matrix can't be named the same as either of the two operand matrices. 

• The number of columns of the first operand matrix must equal the number of rows of the 

second operand matrix. 

• Either or both of the operand matrices can be a vector. In this case, the result matrix must 

also be a vector. 

MAT .. .INV 
The inverse of a square matrix can be found by using the !·'ifrr ... n·v.,.' statement -

ri:::rr result matrix ::::: I i···j',/ operand matrix 

If the determinant of the operand matrix (see the I:!!::::'r function) is 0, the matrix doesn't have an 

inverse. No warning is given to indicate this condition and a meaningless inverse is calculated. 

The best way to check the inverse is to multiply the original matrix by the inverse using matrix 

mUltiplication. The result should be close to an identity matrix. 

The inverse of a matrix is useful for solving systems of equations. 

rev: 4181 



BP-86 Array Operations 

Example 

3X + 4Y = 47 

2X + 2Y = 28 

These two equations can be represented as matrices -

A B 

~ J C] 
The solution (the values of X and Y) is determined by multiplying both sides of the equation by 

the inverse of A. The following program was used to solve the system of equations -

20 OPTION BASE 1 

40 DATA 3,4,2,2,47,28 

• 70 MAT D=INV(A) 

i.I() EHI! 

MATRIX D, THE INVERSE OF MATRIX A: 

n F:i 'r~~: I: B:. THE l'/!::lL.UE~::; 0 F '.,.' i=i !"~D i" 

9 

c:; 



Array Operations BP-87 

MAT ... TRN 
The transpose of a matrix can be found by using the "ir::rr. .. TF:i"~ statement -

t'lAT result matrix == TF:t·~ operand matrix 

The transpose of a matrix has the same elements as the original, but columns become rows, 

and rows become columns. 

Example 

10 REM This example shows MAT ... TRN 
20 OPTION BASE 1 

DIM A(2,4),B(4,4) Must have ~ dimensions for 
transposing an array 

40 DATA 2,4,6,8,1,2,3,4 
50 MAT READ A I Rsads 8 values 

• 60 MAT B=TRN(A) I Redimension B 
70 PF un II OF' U::' H4HL HRRA\':"!I A (;~::. ; "TFAtY:;FO:::;ED: ", B (.:~::.; 

;? 4 

The result matrix is redimensioned, if necessary. The result and operand matrices must be 

separate matrices. 

MAT ... CSUM 
The sums of all the columns of a matrix can be found by using the !·'!:::rr ... C:::;i .. ,i i"1 statement -

1"1fH result vector::: C:::;I..Jr'j operand matrix 

Each element in the result vector is the sum of the corresponding column of the operand 

matrix. 



BP-88 Array Operations 

Example 

Th _ examp10~ shows MAT. 
20 OPTION E SE 1 

50 MAT RFAD Data 
.;;:. 

1 1 1. ::::; :;:. 

The result is redimensioned, if necessary. 

MAT ... RSUM 
The sums of all the rows of a matrix can be found by using the i":!::rr ... F"::::! ... H·': statement -

Each element in the result vector is the sum of the corresponding row of the operand matrix. 

Example 

~~ DIM Data~2,~"S0 (3) 
,=+ i:;:i D ri T r:l ;? ~ ~~;~! '7 , ::~ ;; ::::;;1 ) 

~~ MAT READ Data 
MAT Sums=RSUM([~Gd) 



i 
.L 

The result vector is redimensioned, if necessary. 

Array Functions 

Array Operations BP-89 

There are five array functions which each return a number that provides information about an 

array. These are covered next. Examples showing the array functions follow the descriptions of 

all the functions. 

SUM Function 
The :::;U"i function returns the sum of all the elements in an array. 

::::;I .. .ii"i operand array 

ROW Function 
The F:m,j function returns the number of rows in the array according to its current size. The 

number of rows corresponds to the subscript which is second from the right. 

F'm,j operand array 

COL Function 
The COL. (column) function returns the number of columns in the array according to its current 

size. The number of columns corresponds to the rightmost subscript. 

COL. operand array 

A vector as the operand array always has one column. 



BP-90 Array Operations 

DOT Function 
The D(YT function returns the inner (dot) product of two vectors. 

DC::--!"' <vector name, vector name> 

The two vectors must have the same working size. The inner product is the sum of the products 

of corresponding elements. 

A=2 
4 
6 

Example 

B=l 
2 
4 

DOT (A,B) = (2*1) + (4*2) + (6*4) = 34 

The DET Function 
The DET (determinant) function returns the determinant of the specified square matrix or of the 

last matrix which was inverted using the MAT. .. INV statement. If DET( operand matrix) results in 

zero, then the matrix doesn't have an inverse. No error is given if an inverse doesn't exist. 

DE:""!"' operand array 

If a matrix is not specified, the determinant of the last inverted matrix is returned. This method 

uses less memory because the determinant is a by-product of the inversion operation. 

Examples 

Here are some examples of array functions -

This program ~hows DET functl~, 

30 DIM A(2,2),B(2,2) 

i Invert matrIx A 
I Use determinant of matrix M 

;:::;0 F'P I r'·!T l! I H\,iEF~::;r:: OF l'=i!::!'r~~~ 1::<: 1E, :1::;:: .:~.) 
• 90 F=F I t"IT 11 DET'FPt'l J j···!fiHT OF I 1···i!=/E:::1~;~~::;E: ;i; DET (B > 

rev: 4181 



Array Operations BP-91 

Ok I C I i··iHL 

"~, 

-.5 1.5 

,--, 
,:,-

DETEkMINHNT OF INVERSE: -.5 

10 This program shows kOW, COL and SUM functions 
20 OPTION BHSE 1 
30 DIM Totals(5,5) 
40 REM Th2 following data it2ms ar2 ±~jly totals 
50 Numb2r don2: DHTH 4,2,5,6,9,7,8,10,5,16,44,15,18 

100 REDIM Totals(E,D) 

1,5,9,12,4,6,18,7,10,5,8,7,4 
This array is numb2r of widgits 
mad2 2ach day by ~ach 2mploY22 

• 11 ~j PP I t'4T f~~O~'~ < T ot.~."l :::.) ;!! E:npL.O\'E:E:::; I! 

• 12tl PF.~If·~T COL.<Tot.::i"I:::.); ,\ D!=i\'::; TE:3TED!! 

TOTHL WIDCETS MHDE IN TEST PERIOD: ~~ 



BP-92 Array Operations 



Chapter 7 
String Operations 

A string is a series of ASCII characters such as 'vABI2?&', 'Mr. Smith', or '12 Oak Drive'. A 
string can be stored in a string variable like a number is stored in a numeric variable. Strings can 
be used for friendly, conversational programs and for text processing applications. 

page 94 • LET (assigns a value to one or more strings) 
page 94 • DIM (dimensions and reserves memory for strings - simple and array) 
page 94 • COM (reserves space in a common memory area for strings - simple and array) 
page 98. READ, MAT READ, DATA, INPUT, MAT INPUT (used for assigning values to 

strings, just as for numeric variables) 
page 98 • LlNPUT (assigns any characters to a string from the keyboard) 
page 99 • EDIT (lets the current value of a string be viewed and edited) 

String Functions 
LEN (current length) 
pas (position of one string in another) 
VAL (numeric value of a string of digits) 
VAL$ (put a numeric value into a string) 
CHR$ (convert numeric value to an ASCiI 

character) 

TRlM$ (remove all leading and trailing blanks) 

Terms 

UPC$ (convert all lowercase to uppercase) 
LWC$ (convert all uppercase to lowercase) 
RPT$ (repeat a string) 
REV$ (reverse the characters in a string) 

NUM (return the number which corresponds to a 
character) 

• String name - a variable name followed by a dollar sign - ::1:. 

• Dimensioning - specifying the maximum number of characters of a string, within brack­
ets -'i 

• Implicit dimensioning - if a string is used, but not dimensioned, it is implicitly Ulmensioned to 
a maximum length of 18 characters. 

• String array - a collection of strings, with each string being one element. 

• String expression - text in quotes, string name substring, string concatenation, string func­
tiop, user-defined string function or any combination of these. 

• Substring - a part of a string made of zero or more contiguous characters, specified by 
placing substring specifiers in brackets after the string name. The three substring specifiers 
are -

Lcharacter position ::: (the character and all following) 
[beginning character position, ending character position:: (between and including the two 
characters) 
L:beginning character position, number of characters ::: (the specified length, starting with the 
character) 

• String concatenation - joining one string to the end of another using .... 

• Null string - a string that contains no characters 

• Literal - text within quotes 



BP-94 String Operations 

Overview 
Like a numeric variable, each string must have a name which is followed by a dollar sign ($) to 

differentiate it from a numeric variable. Some examples of string names are -

1:;:< ,:::. ::::. (,() ('; ::::. e :l 

'T'! t '1,::::$: 

The simplest way to assign characters to a string variable is with the LET statement -

[L..E:T] string variable [:::: string variable ... ] :::: "characters II 

Any ASCII characters except quote marks can be assigned to a string this way. The quote marks 

which enclose the characters are not part of the string. 

Example 

Dimensioning a String 
A string variable needs to be dimensioned before you use it. This can be done either implicitly 

or explicitly. 

Explicit Dimensioning 

The DIM and COM statements are used to dimension a string variable, specifying the 

maximum number of characters for the string. The value of a string can have any number of 

characters up to its maximum length. 32 767 is the longest any string can be. When a DIM or 

COM is executed, all strings are initialized to the null string, meaning they contain no charac­

ters. 

See "Variables" in Chapter 5 for the amount of memory used. 



String Operations BP-95 

When you dimension a string, you specify its maximum length in brackets l
. Here are some 

examples -

UPT lOt··! BH::=';E 1 
D I i"1 ::::; t ·3 .. !:. I~' $ [ 20 ] 
DIn !=iddr-' e:::· ~:.:$: [:::i e ] 

40 cun ~~me$[40] 
~30 ~:;TOP 

Implicit Dimensioning 

Doesn't affect string len h 
20 ch~racters maximum 

If you use a string variable without having dimensioned it in a DIM or COM statement, it is 

implicitly dimensioned. The length of an implicitly dimensioned string is 18 characters. 

String Arrays 

A numeric array is a collection of numbers; similarly a string array is a collection of strings. Each 

string is one element in the array like a number is one element in a numeric array. It can be 

dimensioned in a :D T i"! or C::CH"! statement. Every string in the array has the same maximum 

length. Like a numeric array, a string array can be implicitly dimensioned with 10 as the upper 

bound of each dimension. 

In all string operations, an element of a string array can be used just like a simple string. 

10 OPTION BASE 1 

Example 

String array: 6 elements of 25 

PHRENTHESES for ar~~y dimensions 
BRACKETS for string length 

D.::L t a. $~ < i , i ~! 1 )::;: II ~:;~::: I !I ! I rn p 'I 'j C 'j t cl i rfi I~::' n :::. i 0 t"j 0 f s· t t-· i n!;;i ·:j.r~· j""".:l.:) ; 

assign 'SKI' to 1 element (string) 
i1$<1,~~)::::1:1~1::<;?,J>::::".;t:·~E·'! fl~:.~::.·iqn ",~,,* ... , to :~: 1-::··iE:·rfit;::·n'~.~:. of ';:if'·'rH',::t::..' i~$ 

F'R I H T D.::;. t ·:::l J ( 1. , i ~. 1 ) 
nm 

Output 1 string (1 element of DataJ) 

1 Brackets can also be obtained by shifting CD and CD in the numeric keypad. 



BP-96 String Operations 

String Expressions 
Like you can with numbers, you can manipulate strings, creating a string expression. Text 

within quotes (a literal) is the simplest form of a string expression. The other forms that a string 

expression can have are discussed throughout this chapter. The kinds of string expressions 

are -

• Text within quotes 

• String variable name 

• Substring 

• String concatenation operation 

• String function 

• User-defined string function 

As with a numeric expression, a string expression can be enclosed in parentheses, if necessary. 

Substrings 
A substring lets you use any part of a string which is made up of zero or more contiguous 

characters. A substring is specified by placing substring specifiers in brackets after the string 

name. There are three forms a substring can have -

• String variable name i:character position ::i 

The character position is a numeric expression which is rounded to an integer. The 

substring is made up of that character and all following it. 

• String variable name [beginning character position!, ending character position ::i 

This type of substring includes the beginning and ending characters and all in between. 

The character positions must be within the dimensioned number of characters. The end­

ing character position must be greater than or equal to (beginning character position -1). 

For example. A$[10.9) results in no output. but A$[10.8) results in an error. 

• String variable name Lbeginning character position:; number of characters ::i 

This type of substring begins with the specified character in the string and is the specified 

length. The number of characters specified can't exceed the dimensioned length, minus 

the beginning character position. 
rev: 4181 



String Operations BP-97 

Example 

10 OPTION BASE 1 
;:~O ])11"1 !4::I;[::::::] 

note 1st haracter is a blank 
::+ 0 F' F~~ I r-·! T 110 PIC I l"~ f=! L. ~::; T F I !-.. j G :: !;;; f:!:$:, L I \"'! 1.) 

~50 PPlr'1T !'HEPE i:1!~:~E ::'~;Or··IE :::;i...jr::::;T~~:Il··~G~::;:! ~,LII··~<:l.> 

• ?~~i 

• :='::0 
!I i:::j ~~: r ;~~:, 4:] : !! ; T'HB (;~~O ) 
i! fi ~~: [ :::i ; J :] : !I ; T t':i B ( ;;~ 0 ) 

i:i~f.C2" 4] 
H~~:[:::i;::::] 

ORIGINHL STRING: CARPENTRY 

HERE ARE SOME SUBSTRINGS: 

f:!::I; [: ;::; :I : Tt?\' 
H~t.~[2,4]: 

H$ [:::;; ::::i:]: 

String Concatenation 
The string concatenation operator joins (concatenates) one string to the back end of another. 

i ;"~; 
.1. r: • .: 

string expression :\ string expression [?,: string expression ... ] 

::::i :*: :~: " 'IT' \' ;; 
:1:: ~:: :;;:: II C i:i !~~: !i 

Example 

Dimension HI and BI implicitlv 

Concatenate many strings 



BP-98 String Operations 

Assigning a Value to a String 
LET, READ, MAT READ, ENTER, INPUT and MAT INPUT are used to assign value to string 

variables. If the string to be assigned is longer than the string variable's dimensioned length, error 

18 (string too long) occurs. With the INPUT and LINPUT statements, error 18 causes the input 

routine to be repeated (the error cannot be trapped using ON ERROR). 

• ~20 
• JO 

Example 

E~amples of READ, MAT READ, DATA 

DATA Jones,Mikkelson,Miller 
Dfi Tfi II H OJ II, II J:::: .J" !I :1 !I i"'1" !I 

40 OPTION BASE 1 
50 DIM Last nameS(3)[10J.First initS(3)[5J 
6i) 

• 70 

90 

• :lOO 
lHl 
1. ~~O 

FOP 1::::1. "To 3 
PEAD Last nameS(I) 
PPINT Last nameS(I) 

1"1,:iT FEHD F i i ':;::.t '! n'i t::j:: 

PFIHT F·ir-·:;:.t 'in'itS:(':':'), 
es could be entered from the k 

IHPUT Last nameS(I) 
.ar·,d 
!"'lFiT I!·'~Pt.JT F·ir'::;:.t ii'''!'it~~: 

i 40 Ei'in 

The LINPUT Statement 
The L.. I i···iF'! . ..!''!'' statement is used to assign any combination of characters to a string variable or 

substring -

L.. I !···!F\JT ["prompt II ,] string variable or substring 

When L.. J: !···iF\Jr is executed, either a ? or the optional prompt is displayed. Characters typed in 

become the value of the string when @ill or rn is pressed. 

Example 

10 FEM This program shows LINPUT 
20 DIM SentenceS[50] 

I Substring Of SentenceS 
50 PFIHT SentenceS 

09845-93000, rev,' 9/81 



String Operations BP-99 

If the response is -

The output is -

Pressing @ill or CD without entering a value erases the current value of the string and sets it to 

the null string. 

Note that the l_ I r··IF'Ul statement allows an exclamation point or quotation mark to be included 

in the value of a string variable; this isn't possible with the HlFUT statement. 

The L. I hF'i...!T statement can't be executed from the keyboard. 

The EDIT Statement 
The current value of a string can be viewed and edited by using the ED I T statement -

ED I T ["prompt", ] string variable or substring 

When the E:I) I·r statement is executed, a .. ;', or the prompt if present, is displayed and the 

current value of the specified string appears in the keyboard entry area. 

This value can then be edited like any keyboard entry. Ct,~~R can be used to clear the line, 

allowing a totally new value to be entered, like with L.. I i···iF\JT. However, the original value can't 

be recalled. Pressing CD stores the characters displayed in the keyboard entry area for the 

value of the string. 

Example 

C:D I·T could be used to alter the names in printed output -

iO DIi·'·' O~:.[6CIJ 
~2(i O$:::::I'Ed :;:;m i t.h :::.p;:.:"nt il 

4(l 

• ~:i~?: 

60 

I t··!PUT "ilr'iOUr··iT ::;PEHT II, Do·j .j ·3.t-·~:. 

PF,: I HT 0$; Do·j ·1-3.(-:::-
ED I T " HEL,j t-·irii'1E ",0$ 

When line 50 is executed, !--iEl,j i--~FiI-'1E is displayed. Ed :::;iy:-j t i·-·: ,,,VE:-nt appears in the keyboard 

entry area. Then the character editing keys can be used to change the name. 



BP-IOO String Operations 

The limit on the length of the string being edited is 160 characters (the length of the keyboard 

entry area). So, if a longer string is specified, ERROR 37 occurs. This can be avoided by using 

substrings. 

Example 

• J i2i E Ii I T !I F "i (- :::. t 1.60 C ;"'1.::1 j'-' .:::1. C '!:. ~::' r' :::_ I! ~ f:! ::~: r i , 1. (;; i~j J 
• 4121 ED I T I! L...::i:::. t ';+0 c h';~li ··::~.C t ~:·r·:::. 11, f:!:~:: [:l6:l ] 

The EDIT statement can't be executed from the keyboard. 

String Variable Modification 
A string or substring can be modified with a string expression. For example, a part of a string 

can be changed or characters can be added or deleted. The string containing the modification is 

called the modifying string; the string being modified is the destination string. The destina­

tion string can be a string or substring. The modifying string can be any string expression. 

Example 

10 DIr'! A$CeJ 
:? ;:: H:$::::.' II CE Oi"1 E T F\' " 

B$ is destination str~ng 
fi ~:::::.:!I BO OK il 'I :~:. rf; od if:) "i nq :::. t ! .... '1 1'''i q 

If a modifying string is to be stored into a string or substring which is too short to hold it, the 

result is truncated on the right. 

Each string of a string array can be modified in the same way as a simple string by the inclusion 

of subscripts. 



String Operations BP-IOI 

No Substring Specifiers 
When the destination string has no substring specifiers, the entire destination string is replaced 

by the modifying string or substring. Its characteristics after modification are the same as those 

of the modifying string or substring. 

PP I t··iT I] B$::::: 

r:!~:::::; HELLO 
:::=:$::: j·-lE:LLO 

One Substring Specifier 

Example 

When the destination string has one substring specifier, the indicated substring is replaced by 

the modifying string or substring. The destination string can be shortened or lengthened. 

Example 

~::. t! . i n!;J 1 !::·ni~i:. h;:::·r·ll~·d ; C·3.n ", t 
go past maximum length 



BP-I02 String Operations 

Characters added to those of a string must be contiguous; that is, they must immediately follow 

the destination string without any unassigned character spaces. If they are non-contiguous, 

EF.:F.:ClF.: H:: occurs. 

Example 

2~j D:t[::::]:::::"riti<ir·lsDn" 
30 PP If··!T D~~: 

4!2! EHD 

Ei?i?UF: :I. ;:::: .j (, .j (p::,. :::::U is caused because character positions 5, 6 and 7 aren't assigned any 

characters. 

Two Substring Specifiers 

When the destination string has two substring specifiers, with either a comma or semicolon, the 

indicated substring in the destination string is replaced by the modifying string expression. The 

left-most character of the modifying string expression replaces the left-most character of the 

indicated destination substring. The next adjacent character is replaced, and so forth, until the 

indicated destination substring is filled. If the modifying string is shorter than the indicated 

destination substring, the remainder of the destination substring is filled with blanks. If the 

modifying string is longer than the indicated destination string, the remainder of the modifying 

string is truncated. 

1 (I A$=:" L.o' .... ,~·l.::tnd" 
2~~i PF.:Il···IT Fi$ 

40 
• '::0 

H:t[ 1, 4J="Hoffle" 
Pf;: II··n At: 
ri$[ 1, 4]=:"Up" 

60 PP I t·jl H$ 
• 70 

:.~:O PP I r·iT fi$ 
90 Et-·ID 

LO'·..'e·! .::tnd 
HOfllel.:::lnd 
Up 1.:'!.I'·ld 
To r(IO 1.~i. nd 

Example 

I Modifying string shorter 
!:).::t c:i 1 •• J·j t 1"'1 b'l .:j. n k :;:. 

Modifying string longer 
truncate on the right 



String Operations BP-I03 

The length of the destination string after modification either is unchanged, or is greater. When 

the value of the second substring specifier is greater than the current length of the destination 

string, the modification results in a lengthened string (within its maximum length). 

10 C$::::" Coodb':..'E"" 
2(1 F'F,: Ir··iT (:$ 

40 
C $: [5, '3]::" t i [iIE·::;." 

PPIHT C$ 

Coodb~""E· 
Goodt·j mE':::· 

Example 

The Null String 
The null string is a string which contains no characters or blanks. It can be used to erase the 

value of a string, or to check to see if a string has a value. The following examples each specify 

the null string -

l~J LET t·~$ == till 

20 M$ == A$[4,31 

All strings are initialized to the null string by a II If'I or initial CCIf'! statement or when 

:::;CF.:ATCH \,' or :::;CF.:ATCH C is executed. The null string can be used to clear a string. 

String Functions 
String functions let you manipulate a string. They are especially useful in text processing 

applications. 

The LEN Function 
The length (LEt·~) function returns the number of characters in a string expression -

LEt··1 string expression 

The current length of the string expression is returned. 



BP-104 String Operations 

Example 

This e~~mple uses LEN function to center 

38 PRINTER IS 8,WIDTH(48) 
.::1-0 fir··~~·.:i.::j:::::::;;l<E\'::;TOt·.IE i1 

C=(48-LEN(Ar~a$»/2 I Finds centering ~actor 
using printer width of 48 

,-',,-::: 
::=';:.! 

* 

The POS Function 
The position U:'C:'::::) function determines the position of a substring within a string -

F<l::: <in string expression, of string expression> 

If the second string expression is contained within the first, the value returned is the position of 

the first character of the second string expression within the first string expression. If the second 

string expression is not contained within the first string expression, or if the second string 

expression is the null string, the value returned by the function is O. If the second string 

expression occurs in more than one place within the first string expression, only the first 

occurrence is used by the function. 

Example 

This example shows the POS funct~~ 
,:::: ~::i 

These linp~ uses ~u~ to extract name from sentence 

.... . c· + ,'_,:._, 
':::I.! ',.:::: • 

• 100 End:::::PD:::;(j:i~t.~, !!~::;PE!"1Tli > 
:1. 1 !~:l ~:'p I ! .. ~ T f:! :*: r.: :~~; t.::~.! '1:. +:l , r::: r'icl·--1. J 
:l~;~O FI···ID 

F::O:::; TIOj-··! Ur" "'F!:~Ft:::'" IH ,·'L·.llr'1TE1? Pr~:!F~;<'" d 
POS TION OF 'PARKS' IN 'WINTER PARK': 0 



String Operations BP-I05 

The VAL Function 
With the value ("/fiL.) function, a string or a substring containing digits, including any exponent, 

can be used in calculations. (Normally the characters in a string are not recognized as numeric 

data and can't be used in numeric calculations.) 

;""HL. <string expression> 

The first character to be converted in a string using the \!fk. function must be a digit, a plus or 

minus sign, a decimal point or a space. A leading plus sign or space is ignored; a leading minus 

sign is taken into account. All following characters must be digits, a decimal point or an E. An E 

character after a numeric and followed by digits or a plus or minus sign and digits is interpreted 

as exponent of base 10. A decimal point following digits after an E terminates the exponent. 

Numeric data entries can be combined logically with input text. All contiguous numerics are 

considered a part of the number until a non-numeric is reached in the string. This means that a 

string can contain more than one number. The first character .of the string expression after 

leading spaces, plus signs or minus signs must be a digit or a decimal point. If the leading part of 

the string is not a valid number, EFROF' :::::;~: occurs. 

Example 

E~amples of VAL function 
F!:t:=: ii JOHE3, J:. ::::91 ;.:::'::::::::: i 1" 

• 40 PRIHT VAL(A$[10]) Using social security 
number from string 

The VAL$ Function 
The \.'fiL .. :$: function is (nearly) the inverse of the i'/j:iL .. function and returns a string representing 

the number, in the current number format (STANDARD, FIXED or FLOAT) without leading or 

trailing blanks -

'.,.'HL .. l <numeric expression> 



BP-I06 String Operations 

Example 

used by VAL$ depends on the current 0ut~~~ mode 

YAL$(120)= 1.200E+02 

The CHR$ Function 
The character U::f···H:;:):) function converts a numeric value in the range -32 768 through 32 767 

into a string character. Any number out of the range 0 through 255 is converted MOD 256 to 

that range. Any 8-bit character code can be stored in a string using the character function which 

is especially useful for accessing control codes and putting quotes into a string. 

C> .. H:;:: ::1: ;: numeric expression:' 

Example 

uSIng CHR$ function to put quotes In a string 

See the Reference Tables for the ASCII table of correspondence between characters and 

numbers in the range 0 through 127. Using this function with numbers in the range 128 

through 159 is useful for output of CRT special features (inverse video, blinking, underline); 

see Appendix A. Numbers in the range 160 through 255 are used to access national and 

drawing characters; see the Reference Tables. 



String Operations BP-I07 

The NUM Function 
The numeric U·K.if'i) function converts an individual string character to its corresponding value, 

represented decimally. 

[·it.H·'! (string expression) 

The decimal equivalent of the first character of the expression is returned. 

Example 

Using NUM function to find number In a strIng 
VAL function is used to output the number 

40 FOR 1=1 TO LEN(A$) 
IF (NUM(A$[I])}=4S) AND (NUM(A$[I]){=57) 

60 j Branch when a digit is encountered 

i ~JO Er··ID 

PHONE NUMBER STARTS IN POSITION ~~ OF A$ 
PHONE NUMBER IS: 5555555 

The Upe$ Function 
The uppercase U..iF\::::l) function returns a string with all lowercase ASCII letters converted to 

uppercase. 

UF'C$: (string expression ::. 

Example 

Using UPC$ function with INPUT response 
20 DIM Answer$[25J 
30 I HPUT II DO \'OU i'4 I ::;:H TO CO!··jT I j··jUE:·;' II, f:in::;:.:.,J,.:;·t"··$ 

.40 IF UPC:$:(Rn:::.i .. ,lI::,r·:$:>=I!!,,10 il Ti,,·IEi··4 ~::;TOP 

• 5 ~~i IF U PC ~~ (i~-1 n:::.i .. .lE:'r-·:$: ) ::---= II \' E:::; II THE r··1 9~~1 

60 BEEP 
7 [1 PP It··! T 11 I DOr'{" T U !"~DEP;:;T f!i"1D \' Oi.,JP A!"~:=;~I~E F~; r;ir"!~::;~IJE ~~ j=iGfi I H !! 

:::0 GOTO ::::~:1 

90 REM Rest of program follows ... 
1.~:'1(::i :::: TOP 

The uppercase function allows strings to be compared without regard to upper and lowercase. 

This is useful for standardizing input responses. 



BP-I08 String Operations 

The LWC$ Function 
The lowercase (LJ,jC$) function returns a string with all uppercase ASCII letters converted to 

lowercase -

L.. ~'.iC::$: 0:: string expression> 

Example 

Using LWC$ function for alphabetizing 

30 FOR 1=1 TO N 

Name$(I)=LWC$(~~me$(I» ! Puts name into lowercase 

Alphabetizing sequence would follow ... 

THE RPT$ Function 
The repeat U~:F'"T':$:) function allows a string of characters to be repeatedly concatenated -

FY'T$ <string expression, number of repetitions::' 

Example 

10 REM Using RPT$ function to box a title 

• :::::Ci PPlr··iT " ":!.:F:'FT:*:('! !!,L..E:···j(Titl,::·~:.»,l...Ii··j(l) 

4~~! p!:~~ I f··IT !; I ;i ;:~.:T 'i t 'j 1:-::' 11 I !I • 

• ~~;O FFI1"~T ;i;:~.:F~:PT:$:(;! !;,!L.EH(T·it·1i~.:·:~::»),L.Ir··!(l) 

!:,!:) Fi··iD 

ieONE WITH THE WINDi 

The number of repetitions can be any numeric expression in the range 0 through 32 767 when 

rounded. If 0 is specified, the result is the null string. The length of the result can't exceed 

32 767 characters. 



String Operations BP-I09 

The REV$ Function 
The reverse (F:E:'/l) function reverses the order of the characters in a string -

FE;"!:$: <string expression ::< 

Example 

Using REV$ to output a line of text 
without splitting a word in the middle 

20 PRINTER IS 16,WIDTH(40) 
~0 DIM Line$[80J,TempS[80] 
40 L. 'j n ~_~. :~~ [ :I. , ;? ;:::; ] :::;: ;! ::::; T ~~ I j"~ C F tJ !·'·!C T I 0 l··i :~~; f~j!:;;~ E U ::; EF U L !! 

:50 L. i j"'l ~.:. ~~ C ;;:~'~~ J ::::. I; FOF TE>< T FP OCE:::; :::; I r'~C; 1:~P FL I C f-i T I O!···i::::;;! 
TempS=REVS(LineS[1,40]) 

70 FOR 1=1 TO 40 

100 PRINT LineS[1,40-I+l Output up to blank 
110 PRINT Line$[40-I+2] Output from blank ~n 

STRING FUNCTIONS ARE USEFUL FOR TEXT 
PROCESSING APPLICATIONS 

The TRIM$ Function 
The trim ("fj:;:: H':l) function deletes leading and trailing blanks from a string -

TF: HH: <string expression) 

Example 

...... ;;:: 
,.::::::.' 

TRIMS ,~ useful for trimming INPUT responses 
40 Fr-·ID 



BP-110 String Operations 

Relational Operations - Comparing Strings 
String variables may be compared using the relational operators -

>::::: <::> or *!: 

Each character in a string is represented by a standard equivalent decimal code, as shown in 

the ASCII Table in the Reference Tables. When two string characters are compared, the lesser 

of the two characters is the one whose decimal code is smaller. For example, 2 (decimal code 

50) is smaller than R (decimal code 82). 

Strings are compared, character by character, from left to right until a difference is found. If one 

string ends before a difference is found, the shorter string is considered the lesser. For example, 

"STEVE" is smaller than both "STEVEa" and "STEVEN". 

Examples 

Here is an example which could be used to allow communication between the computer and 

the user -

10 DIM Answer$[20J 

• 3U 
• 4 (::! 

Rest (f program follows 

In some cases, such as in alphabetic sequencing problems, it is useful to compare strings for 

conditions other than "equal to" and "not equal to". For example, to arrange several different 

strings in alphabetical order, the following type of string comparison could be included in a 

program. 

20 
• 30 

1:::',-:, 
.... !'::.! 

Ii I t·! t·~.3. ri"i I:::' .1. ;:J:: r. ;;: ~;~ :1 ~ ['1.::'1. m 1;::' ~2 :$: [ ~~~ ~:'1 ] , "I" e m p ;:J:: [ ~~: E! :I 
I r'1FUT !! T~\~O r'~1::'lr'1E:=;? ,I , r·1.:~.ir~ ;:::' 1 ::t,:, Ha.m E';;2:t 
IF Namel${~ame2$ THEN 7U 
T e [;"; p ~t: ::::: t··!.:~ i";"! I:;' ;? ~t: i TEMPORARY STRIHG USED 
H.:H;"; E<~' :'!; ~, i··j.::;. [fl'::' i ::j;: 

60 Namel$=Temp$ 

JOHNSOH COMES BEFORE JOHES 



String Operations BP-ll1 

Variable Diagram 
The variable diagram below shows how string variables are related to each other and to 

numeric variables. 

single variable 

numeric variable 

~mple numeric 

array element 

variable 

E
ring variable 

simple string 

~substring 
string array element 

L substring 

Memory Usage 

array variable 

numeric array 

cmatrix 
vector f

ring array 

matrix 

vector 

In memory, a simple string uses 6 bytes + 1 byte per character in the current length (rounded 

up to an even integer). 

A string array uses 12 bytes + 4 bytes per dimension + 2 bytes per element + 1 byte per 

character (rounded up to an even integer) in each string of the array. 



BP-112 String Operations 



Chapter 8 
Branching and Subroutines 

page 114. GOTO (transfers execution to the specified line) 
page 114 • ON ... GOTO (transfers execution to one of one or more lines, depending on the 

value of the numeric expression) 
page 115 • IF ... THEN (causes branching or execution of a statement if a condition is true) 
page 117 • FOR,NEXT (form a loop of the statements between them, which is executed a 

specified number of times) 
page 122 • GOSUB (transfers execution to the subroutine that starts at the specified line) 
page 123 • ON ... GOSUB (transfers execution to one of one or more subroutines, depending 

on the value of the numeric expression) 
page 122. RETURN (last line of a subroutine; transfers execution to the line after the 

GOSUB) 
page 125. DEF FN (defines a numeric or string user-defined function) 
page 125 • FN (accesses a user-defined function) 

Terms 
• Loop - the statements enclosed by FOR and NEXT that are executed repeatedly 

FOR 

NEXT 

• Nesting - placing one loop completely within another 

FORI 
FORJ 

NEXTJ 
NEXTI 

• Subroutine - a group of statements that performs a task, is accessed with GOSUB and ends 
with RETURN 

• User-defined function - a function you define with an expression and give a name. It returns 
a value. 



BP-114 Branching and Subroutines 

Unconditional Branching 
The i::;OTCI and m"L GO TO statements provide unconditional branching by transferring control 

to a specified line" 

The GOTO Statement 
The I::;OTO statement specifies a higher or lower-numbered line in the same program segment, 

where execution is to be transferred -

GOTO line identifier 

Example 

10 PP I HT "Tf-! I ::; I::; L.I t""iE Fi" 
.20 GOTO 40 Could also s~y GOTO Line 40 

30 PFd ton "Tf-! L::; I::; L H~E :30" 

50 EHI; 

THI'::; I::; Lli""lE 10 
THI:::; I:::; LII""lE 4,:;:, 

The ON ... GOTO Statement 
The Ot"L.I::;OTO (computed GOTO) statement allows control to be transferred to one of one or 

more statements in the same program segment based on the value of a numeric expression -

m"~ numeric expression !::;OTD line identifier list 

The numeric expression is evaluated and rounded to an integer" A value of 1 causes control to 

be transferred to the first line identifier in the list; a value of 2 causes control to be transferred to 

the second line identifier in the list, and so on" 

10 
• ;:::0 

Example 

IHPUT "FULL, LOr,~ OF.: OUT--OF-""STOCK"7.'(l,;;: OF.: 3)",F.:epot-"t 
OH Peport GOTO :30,50,Problem 
PF:: I HT "FULL ::;TOCK" 

5ij PF.'WT "::::TOCf::: I::; Lm,~; IT r""iEED::; TO BE WnCHED" 
60 ::;TOP 

PF.: I r"lT "t"10 :::;TOC!< LEFT "----PE "-""OPDEF.: 1 ! ! " 



Branching and Subroutines BP-115 

If the value of the numeric expression is less than 1 or greater than the number of line identifiers 

in the list, EF.:F::OF:: 19 (improper value) occurs. 

Summary 

Here are some facts to remember concerning the (;OTO statements -

• All lines specified by C~C'TCi statements must be in the same program segment. Otherwise, 

ERROR 3 occurs. 

• If the line specified as the destination of a branch is not an executable statemenP, pro­

gram control is transferred to the first executable statement following the specified line. 

However, execution pauses at the specified line if [}ill] is being used. 

• C;UTO statements are programmable only; they can't be executed from the keyboard. 

The IF ... THEN Statement 
The IF ... THEt-·1 statement is used to proVide branching which is dependent on a specified 

condition -

I F' expression ·THE)·! line identifier 

Branching occurs if the expression evaluates logically as true. If the numeric expression has a 

value other than 0, it is considered true and branching to the specified line occurs. If it has a 

value of 0 (false), execution continues with the line following the :iT· ... ·Ti···it:}·! statement. 

Examples 

B~~nching only if R is not 0 

(;OTO 10 
PPHn fiR I:=':; HOT 0 ii:=" ; fi 

1 The following statements are declaratory, non-executable statements: COM, DATA, DEF FN, DIM, END, FN END, IMAGE, 
INTEGER, OPTION BASE, REAL, REM, SHORT, SUB, SUBEND. 



BP-116 Branching and Subroutines 

The IF', .. T!"'iEJ'~ statement is used most often with relational and logical operators. 

• 30 IF Hours>40 THEN Overtime 

6~3 GOTO ;?~:1 

? 0 0 :.) I:;" j""' t -j rn e = Overtirne=Hours-40 

• 20 IF (Psc(0) OR (Psc>16) OR (Psc=13) THEN Error 
• 30 IF (Psc=14) OR (Psc=15) THEN Error 

Lines 20 and 30 check for invalid select code 
50 PRINTER IS Psc 

Another form of the IF ... THE},! statement provides conditional execution of a statement with­

out necessarily branching -

:r. F' numeric expression 'THEJ; statement 

When the value of the numeric expression is not equal to 0 (true) the statement is executed. 

When the value of the numeric expression is 0 (false), execution continues with the following 

line. 

Example 

• :2U 
• 30 

I 



Branching and Subroutines BP-117 

All BASIC statements are allowed after T'HD'~ with the following exceptions -

FEi=IL.. 

':::;HOi?T 

The FOR and NEXT Statements 
Repeatedly executing a series of statements is known as looping. The f:-Uf~: and t··iE::<T state­

ments are used to enclose a series of statements in a FOR-NEXT loop, allowing them to be 

repeated a specified number of times. 

FOF.' loop counter ::::: initial value TC final value [::::'T'EP increment value] 

t·;c<r loop counter 

The F:CF statement defines the beginning of the loop and specifies the number of times the loop 

is to be executed. The loop counter must be a simple numeric variable. 

The initial, final, and increment values can each be any numeric expression. If the increment 

value is not specified, the default value is 1. 

Examples 

Here's an example of a FOR-NEXT loop -

FOR-NEXT 

loop 

range 

FOF:' I:::::), TO ~5 

4~D of the loop makes [
H: 

the program easier to r~ad 
::::~ ~~J 

60 

I EOUFIl...'::; 4 
I E I) LI f1 L :::; ':: 
FINISHED WITH THE LOOP; 

i Last statement of loop 



BP-118 Branching and Subroutines 

In this example, I is established as the loop counter and is set to 1 when the FOR statement is 

executed. The FOR-NEXT loop is executed 5 times - when I = 1,2,3,4 and 5. Each time the 

r·jE>::T statement is executed, the value of I is incremented by 1, the default increment value. 

When the value of I exceeds the final value (when I = 6) the loop is finished and execution 

continues with the statement following the t·jE>::T statement. 

The following examples show that differing F-ClF.: statements can perform the same task. In each 

example, the FOR-NEXT loop is executed ten times. Notice the value of the loop counter while 

the loop is executing and after it is complete . 

• 10 FOP A=2: TO 1;;-: 
20 t-~E>::T A 
:3~~1 PP I t"·iT II A::::: "; I-i 
413 Et-m 

Fl= 1-:' 

10 >:::::113 
20 '-('::::100 

.30 FOP A=X TO Y STEP 10 

40 r-1LH Fl 
50 PFntH "Fl="; A 
60 Et'~D 

A:= 110 

FOP A=10 TO 1 STEP -1 

20 f-~E>::T A 
::::0 PP I HT "fi::::"; R 
40 PHI 

Initial & final ~alues 

can be expressions 

It 'j :.:::. E'.::J.:::'::.J to 
decrement the counter 



Branching and Subroutines BP-119 

• ;;:0 FOR A=l TO 19 STEP Value of counter 1S 1,3,5, etc . 
STEP value can be expression 

4 I] P PIt··! T II f~::;: il ; I=i 
5(1 EI"~D 

Programming Hint 

An often overlooked aspect of FOR-NEXT looping is that the 

actual value of the counter when the loop is complete does 

not equal the final value. 

The advantages of using FOR-NEXT looping instead of an I F· ... ·Ti···iE>·! statement are shown in 

the following examples where the numbers 1 through 1000 are printed in succession. The 

program that uses the FOR-NEXT loop is easier to key in and uses less memory. 

I F ... Ti···iE}·i statement 

IF 1)1000 THEN End Should loop be executed again? 

Increments the counter 
I F 1<: ::::: 1. ooe THEr··l I RiCk to beginning of loop 

FOR-NEXT loop 

10 FOR 1=1 TO 1000 

Increment counter, test to see if loop should 
~c executed ag~jn, branch to start of loop 

rev: 4181 



BP-120 Branching and Subroutines 

The initial, final and increment values are calculated upon entry into the loop; the calculated 

values are used throughout execution of the loop. The following example illustrates that the 

initial, final and increment values can be changed without affecting the number of times the 

loop is repeated. 

10 H::::::.::: 

B'''''~? 

Lines 40 & 50 don't affect initial 
and final ~alues of the counter 

b0 PRINT \,A,B 

If 4 is input for the value of B, the loop is repeated 5 times and the output is -

.. ; .. ::: ... t:= 
i:::; i i ", .. ,:::. 

1-
.. 

1 ;:-~ 

:::~ 
.. '-:' (1 ,;::. ; 

1 i 
.. 

J. .. ~:::: ._" 

Nesting 

FOR-NEXT loops can be nested. When one loop is contained within another, the inner loop is 

said to be nested. The following example illustrates assigning values to an array using a nested 

FOR-NEXT loop. 

10 OPTION BASE 1 
~0 DIM (4,3) 

• ::::U 
loop controls 2nd (right) subscript 

4 

4 

1:::: 



Branching and Subroutines BP-121 

A FOR-NEXT loop can not overlap another. 

Correct Nesting 

FOP J::::4 TO 6 

!·jEi::T J 
[··il=': :-::T I 

Incorrect Nesting 

FOP I:::: 1 TO :3 
FOP J::::4 TO ;;; 

PF::IHT I,J 

HE::·::T .J 

inning of outer loop 
! Beginning of lnner lOOp 

End of lnner loop 
End of outer loop 

Beginning of outer loop 
i Beginning of Inner loop 

i End of outer loop 

In the incorrect nesting example, the I loop is activated and then the J loop is activated. The J 

loop is cancelled when !··j[i::T I is executed because it's an inner loop. When the I loop is 

completed and j··j[i::-f .J is accessed, EF.:FClF ;::: I r··i 1.... I t··iE: ~i(:j is displayed. This is because the 

J loop was cancelled and was not reactivated after the last I loop. 

FOR-NEXT Loop Considerations 
Execution of FOR-NEXT loops should always start with the ::::·CiF statement. Branching into the 

middle of a loop produces EFFUf~' i:: when [··IE:::<r is executed, because no corresponding FClF' 

statement was executed. 

Execution of a loop normally ends with the r··iE::<T statement. It is permissible to transfer control 

out of the loop using a statement within the loop. After an exit is made through this method, the 

current value of the counter is retained and is available for later use in the program. After 

leaving a FOR-NEXT loop, it is permissible to re-enter the loop either at a statement within the 

loop, or at the f<ii:;:: statement, thereby reinitializing the counter. 

The FOR and NEXT statements execute faster if the loop counter is an integer. 



BP-122 Branching and Subroutines 

Subroutines 
Many times, the same sequence of statements is executed in many places within a program. A 

subroutine allows the group of statements to be keyed in only once and to be accessed from 

different places in a program. A subroutine return pointer is kept by the system in the execution 

stack to indicate where execution is to return to when the subroutine is complete. The (~IY:;UB 

and m·L. (~CI:::!.JE: statements are used to access subroutines. 

The GOSUB Statement 
The (~O:::I.JE: statement transfers control to the subroutine which begins at the specified line in 

the same program segment -

i::;O::::UB line identifier 

A subroutine ends logically with the F:ETUF:r-·j statement -

F:ETI . ..IF:r·j 

which transfers control back to the statement immediately following the C;U:::UI: statement. 

Example 

Here is an example of accessing a subroutine from different places in a program -

Subroutine 

l.~~i IHF'UT "HOUF::::=': L'40PKED";"', Hour"::;, 
;~~ri FF~: I f'~T II TOT,:iL H OUi~~ :::; ~1~OF.:i<ED I::; 11 ; HOI,At'" :;:. 

:;::[1 

4121 
• '3121 

1;;::0 

o I.)t:;" (. t i i'f!€" = u ~~~::; 

C;OSUB Comp i B~anch to subroutine at line 
PA'-;-' tiT 5 .. ;?'5.· .. ·HOUi~: I::)"; P.::t:,-' 

around subroutine 
P.:i ~) = H 0 !j t~· ::;: . . ~~ F:~.:1 t t=:' 

o hou r··::;. ;~HOUi'-' :::"-"4~~1 
! Fi r'::::.;:' line of subroutine 

cent r'o 'I 
p:tsses to line after GOSUB 

1:;::0 Overtime=.29 
.14121 GOSUB Comp I B~anch to subroutine at line 80 

1 ~:; ~3 Fi;:~ 11"-4 T II TO T n L. P 1=1\= f~iT 6:1 i:?!O ,/H Oi.JR I:::;!I; Fl.::,!.:) 

TOTAL HOUPS WOPKED IS 4:;:: 
TOTAL PAY AT 5.25/HOUP IS 226 .. 5 
TOTAL PAY AT 6.00/HOUR IS 258.87 



Branching and Subroutines BP-123 

The ON ... GOSUB Statement 
The m·j ... C;O:::;i...iB (computed GOSUB) statement allows any of one or more subroutines in the 

same program segment to be accessed based on the value of a numeric expression -

m··! numeric expression (~CI'=;UB line identifier list 

The numeric expression is evaluated and rounded to an integer. A value of 1 causes the 

subroutine specified by the first identifier in the list to be accessed; a value of 2 causes the 

subroutine specified by the second identifier in the list to be accessed, and so on. 

Example 

10 FOR X=l TO 3 
ON X eOSUB One,Two,Three 

a different subroutine 

i STOP prevents accessing of subroutines 

'=-I ~~! T hi· .. · !::" 1::" : F'I:~~ I r-·lT II TH I !~: Ii ;::;U Br.;:: CiU T I r·il:: 11 

10~7.i PETURH 
1. 113 EHD 

F I f,":;T ::::UBf,:OUT I t·iE 
SECOHD SUBROUTIHE 
TH I i~:D ::;:UBF.:OUT I [··iE 



BP-124 Branching and Subroutines 

If the value of the numeric expression is less than 1 or greater than the number of line identifiers 

in the list, FF;~:F~'C)F' i. ':::1 occurs. 

A second subroutine can be entered before the i?l::T·i...iF:i·,,! of the first is executed. 

.... :; .... 
;,':.'=': . .' 

ti T j.' ,., 
. L ', • .1! 

~:. r:" .,'.: ,: .... ; .. 
~ i .• ,! j':. 1 '.; 

Example 

! j r.:~ :":: . 

; : l' .• :!, ,.,' 
' .. :;',.':'._"_.'.!_' GU ~nd s~broutin~ 

The subroutine at line 70 is accessed before the one at line 40 is completed. 

Subroutines can be accessed in this manner as much as available memory allows. Doing it too 

many times can cause the execution stack to become too large, thus causing a memory over­

flow. See Appendix F for more information. When a i:~E'T·i ... ii?i···i is executed, control returns to the 

line following the most recently executed C;C() ... i:E:. 

Summary 

Here are some facts to remember concerning subroutines and the C;C/:::i.JE: statements -

• A subroutine should always end with a F<:::'T·ii!?i·i statement. 

• i::;C/) .. .ir: statements are programmable only; they can't be executed from the keyboard. 

• All subroutines specified must be in the same program segment. 



Branching and Subroutines BP-125 

THE DEF FN Statement 
If a numeric or string operation has to be evaluated several times, it is convenient to define it as 

a function. This is done using the m::F FT·! statement which specifies a user-defined function, 

returns a single value as the value of the function and can be used like a system function. 

The simplest form is the single-line function which can be used to define a numeric or string 

function (there is also a multiple-line function; see Chapter 9). 

These two statements are used for defining a numeric (first syntax) and a string (second syntax) 

function -

• IEF' FT·! function name [ dormal parameter list> ] 1 ::::: numeric expression 

• DE:::::' FT·j function name ::1:: [ dormal parameter list> ] :::: string expression 

The function name must follow the rules of a valid name. The expression can include both 

parameters1 and variables. 

Once the function is defined, you reference it and supply values by using the following syntax. 

The first syntax references a numeric function, the second a string function. 

• ::::'j"'! function name [ <pass parameter list >1 ] 

• Fj"'! function name ~t: [ <pass parameter list> ] 

When the function reference, FT·!, is encountered, control is transferred to the corresponding 

IiEF' FT-i. The values of the pass parameters are substituted for the formal parameters and the 

expression is evaluated. Its value is returned as the value for the referencing syntax. See 

Chapter 9 for a more detailed explanation of parameters. 

NOTE 

Single-line functions are local to the program segment in 

which they are defined. The IiET:' FT·! statement can't contain 

a reference to itself. Otherwise ERROR 48 occurs. 

1 Parameters, formal and pass parameter lists are discussed in Chapter 9. 



BP-126 Branching and Subroutines 

Example 

Here's an example use of a single-line function. Say that a program contains these lines -

30 Expenses(I)=Room+Car+Food+G~s+Ticket 

80 Expenses(I)=Room+Car+Food+G~s+Phone 

;;~~~I [! E ',PI::; n~:, I:: ::; f, T ::= =F-' c,,' r·t -!- C ::ii" ~~ F·:, ,::.j +G.~.:: 1~:::;~' 1 r~ l::'j'''l t ·a ! 

By defining -

lines 30, 80, and 200 can be simplified -

Expenses(I)=FNExp(Ticket) 
Expenses(I)=FNExp(Phone) 

X IS FORMAL PARAMETER 

I Ticket IS PASS PARAMETER 

200 Expenses(I)=FNExp(Ski rental) 

~referencing syntax 

Summary 

Here are some facts to remember when using Single-line functions -

• The name of the function must be in the form of a valid name. 

• The expression used to define the function can contain both variables and formal 

parameters. 

• A Single-line function can't be recursive; that is, it can't contain a reference to itself. 

• Single-line functions are local to the program segment in which they are defined. That 

means that they can't be accessed from any other program segment. 



Chapter 9 
Subprograms 

page 133. DEF FN (the first line of a multiple-line user-defined function) 
page 133 • FN END (the last line of a multiple-line user-defined function) 
page 133 • RETURN (specifies the value to be returned for a function and transfers execution 

back) 
page 133. FN (accesses a user-defined function) 
page 136. SUB (the first line of a subroutine subprogram) 
page 136. SUBEND (the last line of a subroutine subprogram and transfers execution back) 
page 136. SUB EXIT (transfers execution back from a subroutine subprogram) 
page 136. CALL (accesses a subroutine subprogram) 

Terms 
• Subroutine subprogram - a separate program segment that performs a task under the con­

trol of the calling program segment. 

• Multiple-line user-defined function subprogram - a separate program segment that returns 
a single numeric or string value to the calling program segment and is used like a system 
function such as SIN. 

• Main program - the central part of a program which is accessed when you press RUN 

• Program segment - The main program and each subprogram are all known as program 
segments. 

• Formal parameters - used to define subprogram variables; can be simple variables, array 
identifiers and :iHile number. 

• Pass parameters - used to pass values from the calling program segment to the subprogram; 
can be simple variables, array identifiers numeric expressions and :i:i:file number. 

• Pass by reference - letting the formal and pass parameters share memory which lets the 
value of the calling program variable be changed within the subprogram. 

• Pass by value - letting the subprogram variables have their own temporary memory so that 
calling program variables can't be changed. Enclosing a pass parameter in parentheses lets it 
be passed by value. 

• Local variable - a variable in a subprogram that isn't in the formal parameter list or subpro­
gram COM statement. 

rev: 4181 



BP-128 Subprograms 

Why Use Subprograms? 
Many programs include various routines that require a long series of statements (such as 

routines for sorting or computing compound interest) that must sometimes be repeated many 

times using different values in one program. To avoid rewriting a routine each time it is needed, 

a subprogram can be used. 

A subprogram is a set of statements that performs a certain task under the control of the calling 

program segment. It differs from a subroutine in that it is a separate segment, coming after the 

main program. 

A subprogram enables you to repeat an operation many times, substituting different values 

each time the subprogram is called. Subprograms can be called at almost any point in a 

program, and are convenient and easy to use. They can give greater structure and indepen­

dence to a program. They can also be used to save memory through the use of local variables. 

A main program may be a sort of "skeleton" program which calls many subprograms, which, in 

turn, can call other subprograms. 

Types of Subprograms 

There are two types of subprograms . 

• The function subprogram (or multiple-line user-defined function) is designed to return a 

single numeric or string value to the calling program and is used like system functions 

such as SIN or CHR$. It is defined using the DEF FN statement. 

• A subroutine subprogram is designed to perform a specific task under the control of the 

calling program segment. It is defined using the SUB statement. A subroutine subprogram 

is similar to a subroutine subprogram in FORTRAN. 



Subprograms BP-129 

Terms 
There are a few terms which are important to know when dealing with subprograms. 

Main program - The central part of a program from which subprograms can be called is 

known as the main program. When you press 8, you access the main program. The 

main program can't be called by a subprogram. 

Program segment - The main program and each subprogram are known as program seg­

ments. Every program segment is independent of every other program segment. Sub­

programs come after the main program; that is, they have higher line numbers. 

Subprograms are called by the main program or another subprogram. See "Memory" 

in the Reference Tables for the relationship between memory allocation and subpro­

grams. 

Calling program - When a subprogram is being executed, the program segment (main pro­

gram or subprogram) which called the subprogram is known as the calling program. 

Control returns to the calling program when the subprogram is completed. 

Current environment - The program segment which is being executed is known as the current 

environment. 

Parameters 
Values are passed between a subprogram and the calling program using parameters. There are 

two kinds of parameters. Formal parameters are used in defining the subprogram. Pass 

parameters are used to pass values from the calling program to the subprogram. Each pass 

parameter corresponds to a formal parameter. 

Formal Parameters 
The formal parameter list is used in a::;; .. .' F:; or :UE::F' F'!"'! statement to define the subprogram 

variables, and to relate them to calling program variables. It can include non-subscripted 

numeric and string variable names, array identifiers and file numbers in the form: :j:!: file 

number. Parameters must be separated by commas and the parameter list must be enclosed in 

parentheses. 

Numeric type - .. .'i"ii iF' i, .... rFJ:FF' - can be declared in a formal parameter list by 

placing the type word before a parameter or group of parameters. 



BP-130 Subprograms 

Example 

Here are examples of some formal parameter lists -

278 DEF FNPay(Hours,Rate,NameS) 

D & C(*) are integers; 
A is real-precision 

578 SUB ~tore ~-ta(A,B,C,#4) Can pass fi Ie numbers 

988 SUB Get data(SHORT B(*),#7,A) 
it is after a file number 

Type words are cumulative like in a CCH : statement. For example, if ::: :··:TT::::::;:::::::::' is specified, all 

variables following it are declared as being integers until a string, a file number or another type 

word is specified. 

Pass Parameters 
The pass parameter list is used in calling the subprogram (using Ci:::!l ....... or :::::.:) and includes 

numeric and string variable names, array identifiers, numeric expressions and file numbers in 

the form: ::::: file number. Parameters must be separated by commas. The pass parameter list 

must also be enclosed in parentheses. 

All array variables in the pass parameter list must be defined within the calling program. That is, 

arrays must have been dimensioned, either implicitly or explicitly. 

Passing the Parameters 
When a subprogram is called, (with Ci:::iL..L.. or ::::: ... :) each formal parameter is associated with and 

assigned the value of the pass parameter which is in the corresponding position in the pass 

parameter list. The parameter lists must have the same number of parameters; the parameters 

must match in type - numeric or string, simple or array. 

Example 

The following example shows a formal parameter list, ( 

pass parameter lists ( lines 70 and 150). 

line 300) and two corresponding 

[ev:4/Bl 



Subprograms BP-131 

~~ INTEGER C(2,2),D(~,~ . 

• :l5U 

Notice the correspondence between pass and formal parameters. Notice also that the arrays C 

and 0 are dimensioned (line 20) before being passed. 

Parameters are passed either by reference or by value. When a parameter is passed by refer­

ence, the corresponding formal parameter shares the same memory area with the pass parame­

ter. Thus, changing the value of the corresponding variable in the subprogram changes the 

corresponding value of the variable in the calling program. 

When a parameter is passed by value, the variable defined by the corresponding formal 

parameter is assigned the value of the pass parameter and given its own temporary storage 

space in memory. Numeric and string expressions are necessarily passed by value. However, 

arrays can't be passed by value. Enclosing a pass parameter in parentheses causes it to be 

considered an expression and thus passed by value, rather than by reference. Passing by value 

prevents the value of a calling program variable from being changed within a subprogram. 

Examples 

In the following example all parameters in line 80 are passed by value; those in line 130 are 

passed by reference. 

85 1 BY REFERENCE: 
• 130 CALL Active(Y,X(1,4),A,Z,LS) 

180 SUB Act ve(A,B,C,D,FS) 
;;240 :::;U BEHD 

rev:4181 



BP-132 Subprograms 

Here is an example of similar program segments. Notice the value of X in each case. 

Pass by value 

H::: 1 
~~o 

• :::~1 

F'PIt'~T \If=: bE'fot-'e p.".:::.:::. b;:." ' ..... ::l·j' . ..I'''·:'';Fi 
C 1:1 L L. >< ( (A > ) ! p.:~. :::. :::. b:) 1.}.3, 1 U E" 

?~~f p=p+p 

fi b r:;:' f (; j •... 1::' p.:Ei. :::;. :::. b :: .. i 1,).::1. 1 U E:" : 

f=: after ~ass by value: 1 

Pass by reference 

;;~o 

• :::0 

Changes valuE' of H in calling program 

I::! bE' for' I::' t)·:::l. ~:. ::::. b I,.i r" E:' f e j'"" r:;:' n c !:::': 1 
H after ~ass by reference: 2 

Any parameters passed by value are converted, if necessary, to the numeric type - i?E:>:H __ , 

:::>·iCH?'T·, I i'<TT::CT::i? - of the corresponding parameter in the formal parameter list. For exam­

ple, say that F::' I is passed by value to an I i···i·TE:C::t:::F' formal parameter. Its value would be 

rounded to 3 when the subprogram is called. 

Those passed by reference must match exactly, otherwise ET::i?Ci\? ::::: occurs and no conversion 

is made. 



Subprograms 133 

Summary 

Here are some facts to remember concerning parameters, 

• Formal parameters are used in defining the subprogram (in the :DE::::::' F'j",j or '::::i .. n::: state­

ment) and can be simple variables, array identifiers or file numbers, 

• Pass parameters are used in the calling program U::'j"'! or ::>::iL. .. L .. statement) to pass values to 

the subprogram and can be single variables, array identifiers, expressions or file numbers, 

• The parameter list must be enclosed in parentheses and all parameters must be separated 

by commas, 

• Numeric type - I j"(T'E:CT::F\ ,::> .. jCH?'T' and \:;:O:::::i:::iL. .. - can be declared in the formal parameter 

list. 

• Parameters can be passed by reference or by value, Enclosing a pass parameter in 

parentheses causes it to be passed by value, Parameters passed by reference must match 

in numeric type, Numeric and string expressions are always passed by value, while arrays 

are always passed by reference, 



BP-134 Subprograms 

Multiple-Line Function Subprograms - DEF FN 
The multiple-line function subprogram is used to define a numeric or string function which 

returns a value (numeric or string) to the calling program. There are four syntax which are used 

with multiple-line function subprograms -

• :DE::F' F:'!··; subprogram name [ <formal parameter list::O ] 

:DE::F' Fi···i subprogram name :1: [ <formal parameter list::O ] 

The :UE:F:' F'i'--i statement is the first line of a user-defined multiple-line function subpro­

gram. The second syntax is used for defining a string function. The subprogram name 

must be a valid name. 

The FT-! i::}-!:U statement is the last statement in a multiple-line function subprogram_ 

• i:;:Y::--r-i..ii?i--; numeric expression 

i?E:"T"i.._iF:i---i string expression 

The i?!::::--r-i_..!F'i--; statement specifies the value (numeric or string) which is to be returned to 

the calling program for the value of the function. F:E::-T"! ___ !f;::!---! also transfers control back to 

the calling program. 

• FT-! subprogram name [ <pass parameter Iist::O ] 

F-i---i subprogram name :l [ <pass parameter Iist::O ] 

F:!---i is used to reference the subprogram. When it is encountered, values are passed and 

control is transferred to the subprogram. F-:--! references to multiple-line functions can't 

appear in an input or output statement or in redim subscripts. 

Examples 

Here's an example of a numeric function -

i Must dimension ar~ays to pass them 
20 fi=Pt··ID 
J~~i B:-.:::? 
40 MAT C=(8*RND) 

• '50 'y'::::Ft-jTot-al <H,I:,C<~;» 
6~J p r.;;~ I HT II TO TI=1 L I ::; II ; \= F t·~ T 0 t.:~. 'J c a.r'l ", t bf::' 'j n Pi~~~ I !-··IT s· t.::t t l::'m E'r~: t 
7'0 Et--ID 

• ::::I~i DEF Ft-lTot.-::;. -I .:: ::-::, '/ , Z (-~- > ::. i DEF Fr-; j :::- f i t"-~~-t. 1 j n~:- j n -:i [flU 1 t j P 1 e- ---

• 90 RETURN SUM(Z>+X+¥ 
• 100 FI--;Er-;D 

TOTHL IS 35.19567'28609 

line function subprogram 

I FNEND is ast. line in a multiple­
line fUnc ion subprogram 



Subprograms BP-135 

Here's an example of a string function -

10 DIM ~~me$[100],Job$[100],AS[100] 
DATA J. SMITH, ENGINEER,7,B. JONES,BANJO PLAYER,9 

30 FOR 1=1 TO 2 
40 READ NameS,JobS,Level 

• 50 A$~FNClassifyS(~ameS,Job$,Level) 
C~:i F'i?IHT A:t 
70 HE>::T I 

• 90 DEF FNClassify$(XS,Y$,Z) 
.10;;'1 I?ETUPN >:::$:::.:""'::;:; JOB I::::; I!:::.:'/~;.::-:" I.)HICH I:::; Cl!"! L.E\,IEL. "::~.:'/f!L~;.(Z) 

• 1 H.l FHEi"-lD 

J. SMITH"'S JOB IS ENGINEEP WHICH IS ON LEVEL. 7 
B. JONES"'S JOB IS BANJO PL.AYER WHICH IS ON LEVEL 9 

There can be more than one i?E::·T"i .. .!i?i···i statement in a subprogram, but only one is executed 

each time the subprogram is executed. 

Example 

10 Reg_hours=40 
20 P'::lt E::·:::::4u 'f':=:; 
30 Ovrtm rate=Pate*1.5 
4i:"j E::<t!'··.::l h·;:;t.it-·:::;.:' DHTA 5,:3,0,6 
50 FOP I~l TO 4 

r;':EfiD O'· .. 't-·t !";", 

~;~.~: '~1~; :i:::: 6 ~:; ;~:.~ ;:;:: ~: ~:~; :~:D~: :~: u ;~;~; E~ ~:'~:'~ ;:~ i~ l~) I.) ~::;; :::::--_. f~"~ ;:; ~. i~~.:~:~:::. m ::. 

i HJ 

• 13(1 

HL::T I 
EHD 
DEF FNPay(H,B,C,D) 
F'a. ~: .. I:::: A -iii. B 
IF D{=0 THEH PETUPH Pay 

140 There can be more than one PETUPH, but only one IS 

executed each time the subprogram is accessed 
• 150 PETURH F'ay+C*D 

t::' HOUF::S O"iEF::T I hi E P W' r -. 
;2;~:5 6 ;25 ,_I , , , . I .L :~~; . 

.. - H ClU P:::3 (I 'oiEF::T T t.-l C~ F' Wi' r - ;;? 1 1 ::.: ?~:; .3 .Jt.... , ~ :::; . 
0 HOUP:::3 O"iEf,:T I t"l c PA \ T :::; 1. 90 ,-- , ~ 

6 HOUPS 0'",' E F:: T T t"IE F H\' I :::3 ;::~ :.:: ~~~~ ? s:::-
J. , , Om! 

If a single-line and multiple-line function are defined with the same name and that name is 

referenced, the single-line function is accessed if it is defined within that program segment. 



BP-136 Subprograms 

Subroutine Subprograms - SUB and CALL 
Subroutine subprograms allow you to repeat a series of operations many times using different 

values or to break a large problem down into a series of smaller ones. A subroutine subprogram 

performs a specific task. 

There are four statements which are used with subroutine subprograms -

• '::)JE: subprogram name [ <formal parameter list::' ] 

The '::;i . ..i:i::: statement is the first statement of a subroutine subprogram. The subprogram 

name must be a valid name. 

The ::::;i . ..i:E:E::--·LL! statement is the last line of a subroutine subprogram and transfers control 

back to the calling program. 

The ::::;i .. .i:i:::E::, I'r statement can be used within the body of a subprogram to transfer control 

back to the calling program before ':::;iJi:::E:::--n::: is executed . 

• C>::iL..L.. subprogram name [ <pass parameter list::' ] 

The C:HL..L.. statement is used to transfer control and pass values to the subprogram. 

Examples 

Here is a simple example of a subroutine used to write a heading for data output. Notice that no 

parameters are passed . 

• 10 

• :;::0 
40 

Et·m 
j SUB is 1st 1 ine of subroutine subprogram 

PP I t··iT TfiI: (11 ), I! t'~f~t'1E II; Ti=iI:;:: ~~:?), II Al'"IOUr··IT;1 
pF.:Hn F.:PT$C' ",40) 
SUBEND I SUBEND is last line of subroutine subprogram 

it also returns control to calling program 



Subprograms BP-137 

Here is another example which manipulates the parameters and could be used to output a 

readable table supplied with a value for N (line 30) -

10 OPTION BASE 1 
20 DIM Prodnums(7),P~rc~nt(7) 
:::;:0 t'i=::; J t'iUi"'iPEf,: OF Pi~:ODUCT:::; FOF TH I:::; TF\' 
40 Pr·odn1.Am:::.: 
50 PE·t~·C E'r",t :::.: 

DATA 25,15,31,30,45,97,35 
DF1TA ;~M:7, 1 ::::, 1~], 1.;2, 1 ::::,2, ~"2;::: 

Pt-'odr'!urfl:::,':: H ::. J I?ED I r'i:::; Pr'odr'!urf!:=:, TO :rf OF 
f,:E::;TOFE P~r-'C ent :::' 
MAT FEAD Percent(N) 

! FE AD DATA FROM Percents 

100 Et'm 
• 110 SUB Table(Pr(*),F'er(*),N) 

F'FODUCT::; 

120 OPTIOH PASE 1 ! OPTIOH BASE VALUES MUST MATCH 
1 ::::0 PF: I 1"41' II PPODUC1' II, II :'; OF :::;fiLE:::; II 

140 FOF 1=1 TO N J OHE LIHE PER PFODUCT 
150 PFIHT Pr(I),Per(I) 
160 r'lE::::T I 

• 17~j ::;:;UBEtHi 

PFODUCT 

31 
:::;: ~.:l 
45 

i3 
10 
i .-, 
.I.':::, 

The '::::!,JE:E>':: I 'r statement is used to transfer control back to the calling program before '::::!.,,!I:E},iI) 

is executed, 

Example 

10 IHPUT "',inLUE:::; FOF F,,,,,te At'lD Hour"':::,", I;::, H 
2f1 PF: Hn "RnTE:"; P, "HOUP':;: If; H 

• 30 CALL ~""y(F,H) 
40 Et'~D 

• 5f1 :::;UB p,,,,,>, <>::, \'::' 

70 IF Y>40 THEH Bonus 

• '30 J Control returns to calling program 
Bonus: Extra_pay=Pay*.25 

liO PP I r'n "PA\' ~'J I TH BOI",!!..!::: I:::; : If; P,"l:;..'+E::<t r-'a, ___ p,~:) 

• 120 ::;i.../BEi"lD 

pnTE: ::;.::; HOUF::3:: 4::; 
PAY WITH POHUS IS 



BP-138 Subprograms 

Subprogram Considerations 

Entering a Subprogram 

When a subprogram is entered the following occur -

• The DATA pointer is reset to the first :Ui:::i"T"i:::! statement in subprogram. 

• Any file assignments that are not passed are cleared. 

• Any (:::i···1 l<T::\':i:l:, C)··j l<I::D, (>'.j !:::l···jI):!:, CH···j ::: i·-rr or CH"'l 1::::F:j?C)F: associated with a C;CiTCi or 

i:::;:::::'::::i.JE: is no longer active; however one C::j···j :<T::\' interrupt per key and up to 80 C::1"': :<I::D 

keystrokes are logged for processing upon return to the calling program. Interrupts as­

sociated with C::::::1....1.... remain active. 

Upon return to the calling program, all of these conditions are restored to their previous state. 

Using the COM Statement 
Values can also be passed to a subprogram with a C:(J:": statement. The list of items in the 

subprogram C:Cij"': may be a subset of the main program CCH": statement; that is, it must match up 

to some point in the main program C:Ci:"L A variable can't be an item in a subprogram C:Ci:": 

statement if it is also in the formal parameter list. 

Example 

10 OPTION BASE 1 
• 20 COM A(4,4),B,INTEGER C,D(3,3),ES[28] 

:~:O "'1FiT fj= (:5) 

'5~) nAT D::::(:3) 
60 CALL Routine 
"(f2! \' :.=Fr··iP.:ind om 

90 Ei·iI1 

! OPTIOH fH1:::;E '·)d.·j u,=.:· iYl!"L~·t rn·:i~·cn if 

• 120 
1 :3CI 

150 
.1U:l 

17121 
1 ;::::la 

·::l r~! :) '::l t~'l'''' .:"i. :) :::. P·::l :::. :;:. E=:' cf inC 0 N l·i:::. t­
COM X(4,4),Y,INTEGER Z,Q(3,3) 
PPINT X(*);Y,Z,LIH(2),Q(*); 
SUBEND '" . . 

DEF FHF.:.Oi.ndoIYI 
Cm'll(1:4,1:4) 

RETUPN I(2,2)*RHD 
Ff-1Et·m 

The lower bound can 
to make OPTION BASE 

b€::' S.pE'C if i E'ci 

t}.:i':L 1 I..~ ~:' ffj.':;i 1:. (: h 



Subprograms BP-139 

5 1::' 
") :~5 !:) 

~;::; 
"' 

r.::; ~::; ~5 

!;'~~ c r.:.~ t:::i 
'-' '.) ·u.l 

1::- r.::' c"" :i .. J .. J ",J 

? '", 

'" -::; J .,:: 

:~:; '::; '3 

"' :3 ") .,::: 
'.~' 

Arrays can be specified in a subprogram C>Y'! statement using an array identifier. This method is 

useful for editing in that if you change the dimensions of an array in a main program C:(::H'! 

statement, you won't have to edit each subprogram C:CH"i to make the dimensionality match, 

Using an array identifier also avoids an error if an array declared with C:(}"! was redimensioned 

in the calling program segment. 

Example 

OPT I ON Ilj:iSE 1 
• 2(~ COM Array(4,4),Va1ue 

:3~3 

40 t'1AT (5::' 
f~:ED I t'1 14t"-t"',::t.;:) (;:,2 ) 
CALL E:ub 

7fi Et,W 
S0 E:IJF.: BI.Ab 
90 OPTION BABE 1 

• 100 COM A(*),B 

110 MAT A=A*(B) 
120 MAT PRINT A 
1:30 :3UBEr·,ID 

10 

Ie 

fk-t"'a:/ 'i den;; 'i f j 12-['-- is ,::t. ';;Iood IA1a:,} t I) p,::t.:::';:;;, 

an art"~y. The REDIM doesn't matter 



BP-140 Subprograms 

Variable Allocation Statements 
Subprograms may also have any variable allocation statements: :U.L i'i, '::)··i(}:;::T·, and 

I i·iT"E:C:Ci? However, the variables declared may not be in the subprogram C\}"i statement or 

the formal parameter list. 

Example 

• 4(,:) 

• '50 

Within subprogram variable allocation statements, array subscripts and maximum string 

lengths can be specified with numeric expressions that can contain both constants and formal 

para meters. 

Local Variables 
All variables in a subprogram that are not part of the formal parameter list or the C:Ci(l statement 

are known as "local" variables and cannot be accessed from any other program segment. 

Storage of local variables is temporary, and is returned to main user Read/Write Memory upon 

return to the calling program. This is known as dynamic memory allocation. 

All variable names in a subprogram are independent of variables with the same name in other 

program segments. Thus, if you check the value of a variable using live keyboard while a 

program is running, you may get an unexpected result if the variable is defined differently in the 

program segment which is executing currently. 

Speed Considerations 
CALLs to subprograms cause program execution to be slower than if GOSUBs are used. Thus, in 

situations where the separate environment of a subprogram is not needed, it is advantageous to 

use GOSUB and a subroutine instead. 

rev: 4181 



Subprograms BP-141 

Files 
File numbers of files opened in the calling program can be passed to a subprogram in the 

parameter list. 

Example 

1 0 Ci~:El=iTE Ii D.:i t.:i II, 1 
• ~~~:1 A::;f;IGt·~ #1 TO i'D.::J.1:..:::.!1 

CfiLL F~:OI...it i n~:' (# 1 ) 

• -;::'0 
80 PRINT #3;RND 
';J ~J ~::;UB Et'4D 

F i 1 E- -:::..:::.:::. i =;lnmE-nt 1 :::. p.:i:::.::::.s;"d 
PRINT# is in subprogram 

Any operations, such as F'F' I i··rr·:!:i:, which involve file #3 in the subprogram will affect file #1, 

Data, in the calling program. 

File numbers can also be implicitly assigned within the calling program from within a subpro­

gram. 

Example 

1 ~:i 

• ;~:(i Cf!LL. ;:< < #4::' 
1~~EA:O #4, 1;: Fi i No ASSIGN ln call ing program 

50 EHD 

• 60 
• ?~3 

80 PRINT #2,1;RND 

When control returns to the calling program, #4 is still assigned to the file Pay. 



BP-142 Subprograms 

A file can also be implicity buffered in this manner. 

100 CALL Data(#4) 
:;::10 EI··iD 
320 SUB Data(#2) 
331;3 A:::;::; I Gj",j #;? TO IIP.:ii.) 11 

Example 

.340 BUFFER #2 i implicitly buffers #4 in calling program 
3':iO ::::i.JBEHD 

When control returns to the calling program, #4 is still assigned to Pay and it is still buffered. 

If a file is actually opened in a subprogram and wasn't passed as a parameter, it is automatically 

closed upon return to the calling program. 

Editing Subprograms 

There are two ways to add a new subprogram to a main program and any subprograms. It must 

either replace an existing subprogram or it must come after all other subprograms. You can't 

insert a subprogram between the last line of one subprogram and the first line of the next. Using 

a mass storage device and storing parts of a program can allow you to get around this and insert 

a subprogram. 

In order to delete the first line of a subprogram (the .:::,:.YE: or :UEY:' 1:::'1"·1 statement), the entire 

subprogram must be deleted. You can't combine two subprograms by deleting the :::/.':I: or 

C::::::L.L.. of the second one. 

The ::::;i.YE: statement can be edited as long as it remains a :::/.':1::: statement or is changed to a 



Chapter 10 
Output 

page 144. BEEP (outputs an audible tone) 
page 144. DISP (outputs text and variables to the display line of the CRT) 
page 146 • PRINTER IS (defines the standard printer for PRINT, PRINT USING, LIST and 

CAT operations) 
page 147 • PRINT (outputs text and variables to the standard printer) 
page 153 • MAT PRINT (prints entire arrays on the standard printer) 
page 156 • PRINT USING, IMAGE (let you format printed output exactly like you want it) 
page 167 • OVERLAP (sets overlapped processing mode) 
page 167 • SERIAL (sets serial processing mode) 

Output Functions 
TAB (tab to column - DISP and PRINT) 
SPA (skip spaces - DISP and PRINT) 
LIN (output Iinefeeds - PRINT) 
PAGE (go to the next page - PRINT) 

Terms 
• Standard printer - the printing device to which output from PRINT, PRINT USING, LIST 

and CAT is directed. At power on and SCRATCH A, it is the CRT. 

• Select code - an expression in the range 0 through 16 used to access an input or output 
device. The following select codes are reserved -
o - Internal printer and keyboard 
13 - Graphics option 
14 - Optional tape drive 
15 - Standard tape drive 
16 - CRT 

• Format string - specifies the format for PRINT USING output 

• Overlapped processing mode - allows computation and I/O to run Simultaneously. 

• Serial processing mode - computation and I/O statements do not run simultaneously, but 
are executed one at a time. 

Spacing 

- causes the item it follows in a PRINT or DISP list to be output in a 20-character field. 

- causes the item it follows in a PRINT or DISP list to be output with no additional blanks. 



BP-144 Output 

The BEEP Statement 
The IEEF:' statement is used to create a brief audible tone which can be used in a number of 

ways. 

I:F~EF' can signal that a particular computation or program segment is complete. It can also be 

used to indicate audibly that the computer is ready for input, so that the operator does not have 

to remain at the keyboard. 

Example 

Here's an example use for FEEF' -

FOP 1==1 TO ? 
• :30 BEEP I Signals user when an input IS required 

4·(;1 HWUT "DATA "/ALUE'~''', [,1< I> 
':)Cl r·1E::·::T I 
60 PP I t·1T H < '" > 
;;'0 EHI! 

In this case, a beep signals the operator when the program is ready for input. 

The DISP Statement 
The D I ::;F' (display) statement allows text and variables to be output in the display line. 

D J: ::::P [display list] 

The display list can contain the following -

variable names 

array identifiers 

numeric expressions 

string expressions 

'HiE: function! 

::::F'fi function! 

Multiple-line user-defined functions aren't allowed in the display list, alone or in an expression. 

Items in the display list must be separated by commas or semicolons. The list may end with a 

comma or semicolon, which causes the next display to be appended to the display line. Other­

wise, one display replaces the previous one. 

1 The output functions are discussed later in this chapter. 



• 20 ::::0 
40 Et'~D 

Output BP-145 

Example 

commas and semicolons 

X SQUARED EQUALS 12.25 

Notice the difference in spacing between the numbers caused by the use of a comma or a 

semicolon. When an item is followed by a comma, it is left justified in a field that is 20 

characters wide. Two or more commas after an item cause one or more character fields to be 

skipped. When an item is followed by a semicolon, no additional blanks are output after the 

item. Remember that every number has a leading blank or minus sign and a trailing blank. 

• 10 DISP 125000,,250000 

• 10 DI::;P 
~:'O Et'1D 

• 10 

.... '-.:' .'::' 
I ! II ,_, 

DI:=3P 11~1, ;2C1 , :30, 40 
l·JA I T ;2000 
DI::;;:F' 10;~!C1;313;40 

EHD 

Examples 

I 2 commas se~~rate items 

I 20-c~~racter fields 
Lets both displays be seen 
T i qht ::'..pa.c i n9 

The following lines are displayed two seconds apart. 

1 ~:i 
i 0 :20 ::'a3 40 

40 



BP-146 Output 

20 DI:::;P "TOcl.21.::..' i::;. "; 
i'iii IT 1. UOO 

The following is displayed -

and then changes to -

i More displays are appended 

If the information being displayed is longer than 80 characters, a carriage return/linefeed 

(CR-LF) is automatically output after every 80th character causing a new line to overwrite the 

previous one. Only the last line of the displayed information is visible. You can see all of the 

displayed information by setting the print all mode (press and latch I"~LI). This causes every 

display to be printed on the print all printer. 

Printed Output 
Five statements are used to control printed output: F'i? I t-fTEF: I:::;, F'F: I t'iT, !"i!:n FF I i···iT, 

F'F: I t·n I .. V::; I i"~C;, and I !·'1H(~E:. 

The PRINTER IS Statement 
The F'F: I i··nER I :::; statement defines the standard print device for the system. The CRT, select 

code 16, is standard at power on, and ':::;CFJrrCH H. 

F'i:;::::: i·-.!'TE:}, ::: ':::; select code [,' HP-IB device address] [~! I ... i::: :UTI"'I number of characters per 

line] 

All output from PI? I t·rr, F'I? I t·n u::; I t··i(~, L. I ::::;T and CHT, and syntax error messages from (~E:T' 

or L. mf::: are directed to the standard printer. 

The specified device must be an acceptable printing device, like a printer or tape punch; it may 

be any device which can accept strings of ASCII characters. 

The ~,j I liTH parameter is a numeric expression and specifies the number of characters per line 

of the standard printer. This determines when a carriage return-linefeed will be output. One is 

output when the number of characters printed equals the width of the line. Its range is 16 

through 260; 80 is the power on and default value when one isn't specified. 

I 



Examples 

In PRINTER IS @~ampl@s; don't run this 
20 PRINTER IS 1~ I Printer 1S CRT 

PRINTER IS 6,WIDTH(160) 

F l'~' 'j n t ~_::' r' 'j :::. i r"f i:. ~::' t'" r"i·:1 1 pi'''' i f'i~. E'r-' 

I Printer at select code 6 
160 Ch.::ti····.:::tC1:.f.:'r'··:::. per-' ','jnE' 

7 .-) 
! , c_ H P ._- I B p r" 'j v'; t .~. j'-' 

The PRINT Statement 
The F'F: HH statement causes text and variables to be output on the standard printer. 

F'F: I t··iT [print list] 

The print list can contain the following items -

variable names 

array identifiers 

numeric expressions 

string expressions 

TAB function 

':;F't:j function 

L .. I ~.~ function 

F'A!::;E function 

Output BP-147 

Multiple-line user-defined functions aren't allowed, alone or in an expression. All items must be 

separated by commas or semicolons. 

Examples 

10 PRINTER IS 16 
20 FOR 1=1 TO 5 

• 3~~i pr';:~It'·!T III EOUAL::;;';I 

• ::5121 
• 60 

PRINTER IS 16,WIDTH(40) 
Pf;;~IHT f~:PT::I::(il>::!I, l(i!~i> 

?O Et··ID 

I EOUHL:::; 1 
EOUHL::; ~~~ 

I EOUHL.:;::; .-', 
',) 

I EOUfiL:::; ,'i 
';-

I EOUFiL::;; t:' 

'-' 

CHHi··iCE L,.j I DTH 
pp I r··IT:~~; 1 ~:'1~:J :::: "'::;. 

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxx 



BP-148 Output 

• 10 
• 2f.1 

30 

PPII"~T !',*,,*,.;r:.!!! II; II ........... / ............... !I; 1!~·;;~·~~·~f!j!!J(§111 

Pi? nn ".:,:.*.),! jill, II .............. · .• • .... • ... · .. 11 , II \:'·:\IEt(?Cii ll 

Et-ID 

*~:*! ! ! ./ ...... /···············~·~~·~~·~I~Ci;liE 
**~: ! ! ! ............................. . 

T i qht ~:.::.p.ac i nq 
2fl-n ch.::t.r-·.:aC1:.E't-· f1 E,'l d:=:· 

Notice in the previous example that commas and semicolons cause the same spacing in the 

F'F.: I tH statement as they do in the Ii I ':W statement. A comma after an item causes it to be left 

justified within a 20-character field. A semicolon after an item suppresses any additional blanks 

other than the leading blank or sign and the trailing blank. A comma or semicolon after the last 

item in the list allows a future print list to be appended by suppressing the CR-LF. A CR-LF is 

automatically output when the ~,j I IiTH is exceeded. 

The current numeric output form (STANDARD, FIXED or FLOAT) determines how a number is 

output with both Ii I ~:;F' and F'F.: I HT. 

Example 

• 10 FL<ED 2 
20 C;O:::;UB Pt-· i nt 

30 FLO~1T:3 

4121 C;O:::UB Pt"··j nt 

.60 Print: PRINT 20;81.1596;32.9 
70 PETUF.:H 
:::~3 EI",ln 

20.00 81.16 32.90 
2.000E+Ol 8.116E+01 3.290E+01 

The variable width of the standard printer can be especially useful when outputting non­

printable characters such as escape codes. Although you can't see a non-printable character, 

the computer counts it in when it is keeping track of how many characters it has printed to a line 

and you may get a carriage return-linefeed before the line is filled with printed characters. 



Example 

Here is an example to try which uses the CRT as the output device -

1.0 . ;:::';;) PRINTER IS 16,WIDTH(160) 
FOP 1:=1 TO 40 

P r;,: I H T C HP:t .:: 129 ::. :::.; " .:,:. " :!.;C HF $ .:: 12 ::;: ::. :!.; " .:,:." ; 

Output BP-149 

CHRS(128::' and CHR$(129) access CFT special features 
50 LIne 40 prints 4 ch~racters at a tirne--160 total 
!; ~~! t·,j E ;:.:; T 
70 E:r··iD 

In this example, CHR$(129) and CHR$(128) are non-printable characters used to turn inverse 

video mode on and off. Please refer to Appendix A for more explanation of this use of CHR$. 

Output Functions 
Four output functions are available to increase formatting capabilities. TtiI: and :::;F'i:j can be 

used with both Ii I :::;F' and F'F: I t·n; L I i··~ and F'A(~E can be used only with F'F: I j.-rT". They must be 

separated from the next item in the display or print list with either a comma or a semicolon. 

However, both the comma and semicolon function identically after an output function; they 

merely serve to separate it from the next item. 

The TAB Function 
The FiB function causes the next item in the list to be output beginning in the specified 

column. 

TAD character position 

The character position can be specified by any numeric expression, except one containing a 

multiple-line function, and it is rounded to an integer. If it is less than 1, it defaults to 1. 

Example 

• 1 >~1 Ph I HT :1.4?:. Tftf (10::', "TH I::='; :::nflF:r::;; H~ THE i OTH COUJi·'ii···j" 
;;~ ~3 ! r'~ ot i c ~.:. t hE' :~:.I::·H! 'i c () 1 Oi'''i .::1. f' t E:'j"'" 14 '? 

147 THIS STARTS IN THE 10TH COLUMH 



BP-150 Output 

If the specified column has already been filled, a CR-LF is output, and then the TAB is com­

pleted. 

Example 

If the F'F: I i···iT statement in the previous example is changed to -

• 1U Pb::It·1T 147, TF:iE>::10>, "THIS :;::;THF:T:::; 1H THE 
20 Hotic@ the comma after 147 

147 
THIS STARTS IH THE lUTH COLUMH 

a CR-LF would be output after 147, since the comma causes 147 to be output in a 20-column 

field, then the tab occurs. 

When the character position specified is greater than the number of columns in the standard 

printer, it is reduced by this formula -

(character position -1) '·'IOD N + 1 

N is the number of columns specified as standard printer width. 

Example 

For example, with printer width 80 -

1~Z1 PF.:lt-H f1; TAB (10), 1; TAB <'30),~2;TAB <17~J),3 

1 

If you are printing non-printable characters and using TAB, you may get unexpected results if 

you haven't taken the non-printable characters into consideration. 

The SPA Function 
The :::;F'A (space) function is used with D I :::;F' and F'f;: I t··iT to output the specified number of 

blank spaces up to the end of the current line. 

::;;PA number of spaces 



Example 

DISP 1; SPA (10);2;SPA(10),3 

Output BP-151 

The number of spaces can be specified by any non-negative numeric expression, except one 

containing multiple-line function, and it is rounded to an integer. If it specifies more blanks than 

remain in the line, the next item begins the next line. 

Example 

10 PPHH f! +-+.11 • ... , , TAB 7~), 1/**1/; 

is printed -

** 

The LIN Function 
The L Ul function is used with F'F.: UH and causes the specified number of linefeeds to be 

output. 

L I t·j number of linefeeds 

The number of linefeeds can be specified by any numeric expression, except one containing a 

multiple-line function, and it is rounded to an integer. Its range is -32 768 through 32 767. 

Example 

A$:::;"AUGU::::T ~:::::" 

PPIHT "TODI=i'y' 1:;::; ";A$, LHH:3), "DATA Cor'iF'LETE" 
A carriage return and :3 linefeeds are 
output De~ween strings 

40 nm 

TODAY IS AUGUST 2::: 

DATA COt'1F'LETE 



BP-152 Output 

When the number of linefeeds is positive, a carriage return precedes the linefeeds. When zero 

linefeeds are specified, only a carriage return is output. This can cause some interesting printing 

on the internal thermal printer because the paper is backed up and the second line is printed on 

top of the first. When the number of linefeeds is negative, no carriage return is output; the 

number of linefeeds output equals the absolute value of the expression. Some external printers 

can't suppress the carriage return. 

Example 

10 PRINTER IS 0 
• 20 PF I f'4T II T oda.::)!i ; L I r··! (~-2 ) ; II I :::. II ; L I ! ... j ("-2>, !! ~~~;.3. t. ut~·da.:) II 

I:::. 

The PAGE Function 
The F'i:jC;r:: function can be used with F'F: I i·n and causes a form feed character to be output, so 

further printing can begin on a new page or at the top of the next form on devices that can 

understand ASCII form feed (CHR$(12) ). The formfeed action varies from device to device. 

When the standarq printer is the CRT, F'HC;F.~ clears the entire print area. 

Example 

In this example, 'RESULT' and B(*) are printed on a new page. 

1 ~?1(1 PF.: I tn II DHTA II ; L I t'4':: 2::', H'::"*" ::., PAGE, "PE::;UL T"; L I t·{.:: 2::' ; 15'::"*" ::. 



Output BP-153 

The MAT PRINT Statement 
The ['iAT F'F.: I i·n statement is used to print arrays on the standard printer. 

!"'IAT F'F.: nn array variable [, or ; [array variable, or ; ... J J 

The comma or semicolon following an item specifies open or close spacing between the ele­

ments. 

Example 

1 e OPT I OH BFI:::;E 
20 Ii Hi Fi C:::, :::: ::. 
:30 !'ltiT ti::.' (5::' 
40 PPlt·n "2~j-CHtil?tiCTEP FIELD:::;" 

e50 f'·ltiT PF:IHT ti 
6~:i F'P Hn 
70 PP H·IT "CLOSE :::;PtiC H1G /I 

e :::0 ['il=1T pr;;:It··IT H; 

20-CHHPtiCTER FIELDS 
'" ._' 

c::-._' 

CLO:::;E :::;PiiC I He; 
5 

t::­
,.J 

5 

c::-._' 

5 

r. 
'.) 

r-'._' 

r. ._' 

Hotice the semicolon/s 

5 

When an array is printed, every printed row is followed by a blank line. The last row is followed 

by two blank lines. 

When an array has more than two dimensions, the last subscript varies fastest and defines the 

length of a row. 



BP-154 Output 

Example 

10 OPTION BASE 1 
DIt'1 A(2,:3,4) 
F 0 f;': I:::: 1 TO:::: I n f f ",' c t :,:. 1::;· t .:: 1 e' f t:; s ij b :::. c t-· 'j t') t 

FOR J=l TO :3 Affects 2nd subscript 
FOR K=l TO 4 nffects 3rd (right) subscripts 

A(I,J,K)=X Assigns ~~lues to array elements 
><=>::+1 

HE:<T f< 
t'~E;:< T .J 

110 PF UH II THF.:EE·- D H1Er'1:::;; I CIi··Hk fWf,::Ffr' --. C~?,:3, 4> !I 
• 120 MAT PRINT n; 

I:;::0 Et·1D 

THREE-DIMENSIONAL AFRAY - (2,3,4) 
o 1 2 3 

4 c' ._' 6 '? 

(',> 9 1. 0 1 1. ..... 

1. ~~: 1 
.... , 1 4 1 t::" ... :' A '-' 

1 6 1 ? 1 ;::i 1 9 ., 

:2~3 ~;: 1- 22: ,,,,:,,,:. 
'::"'-' 

In this example, array A(2,3,4) is interpreted as two matrices, each 3 by 4, for output or input 

purposes. 

Arrays can also be printed by the F'F: Err statement using an array identifier, .:: 'Ie>. In the 

previous example, line 120 could be changed to -



Output BP-155 

The PRINT USING and IMAGE Statements 
Two statements, ~:'r.;:: I j'H U':; I t,~(~ and I t'HiC;E, provide the capability of generating printed 

output with complete control of the format. This is done by referencing a list of specifiers called 

a format string. The format string can be listed in an I j"ifiC;E statement, then used by referenc­

ing its line identifier in a Pi:;:: I tH 1,..1':; I t,~(~ statement. Or, the format string can be contained in a 

string expression which is used in place of the line identifier in the F'F: H.J'l U:=':; Hie:; statement. 

F'F: I i-.rr ! .. r=.; I t,~c:; string expression[; print using list] 

F'F: I !"iT i...!::; I j";C line identifier[; print using list] 

Hii:::ii::;E format string 

The print using list can contain the following items -

variable names 

array identifiers 

numeric expressions 

string expressions 

No multiple-line user-defined functions can be specified in the print using list. The items in the 

list are separated by commas or semicolons. However, the commas and semicolons have no 

effect on the printout, as in F'P I t'n or Ii I ::;P; they are used only to separate items. The output is 

totally controlled by the format string. 

The string expression in the first syntax must be a valid format string at the time of execution. It 

can be any string expression. The line identifier in the second syntax must refer to an II'FiO:;: 

statement that contains the format string corresponding to the particular F'r;:: I HT U::; I j"j(;' state­

ment. 

Format String 

The format string is a list of field specifiers separated by delimiters. It is used to specify numeric 

and string fields, blanks, and carriage control. Each numeric or string field specifier must 

correspond to an appropriate item in the print using list. Each field specifier is made up of 

various symbols and determines how a single item in the print using list is to be output. 

Reusing the Format String 

A format string is reused from the beginning if it is exhausted before the print using list. This is 

also a way to replicate fields. 



BP-156 Output 

Example 

One numeric field 
;;:~o PP I t'·IT U :::; I I··~G :!. 0 ; ;;:~5:: '? 1 , '39 r. '::1 ! T i.:.iO ni.Arnb E:'t-· :=., i m.::!.!~~E' j""E'U :::.E'd 
::::(1 Ej"~D 

Delimiters 
Three delimiters are used to separate field specifiers -

A comma is used only to separate two specifiers . 

. / A slash can be used to separate two specifiers. It also causes output of a CR-LF. 

::~ The commercial-at sign can be used to separate two specifiers. It also causes output of a 

formfeed character, starting a new page of output on devices that have this capability. 

The ./ and l~i symbols can also be used as field specifiers by themselves; that is, they may be 

separated from other specifiers by a comma. Only the ./ can be directly replicated. You could 

output three CR-LF's with / ......... or 3./ 

Blank Spaces 
A blank space is specified with -

K< specifies N blanks. Any ::-: specifier can be embedded within any other field specifier 

without delimiters. 

String Specification 
T ext can be specified in two ways -

II II A literal specifier is text enclosed in quotes. This specifier may be embedded without 

delimiters within any other field specifier. 

H ':::1 is used to specify a single string character. NH specifies N characters. The length of 

the string specifier is determined by the number of :=1' s that are specified between 

delimiters; this corresponds to one item in the print using list. 



Example 

iO 
20 

If'if:1 G E ";~'':':''', ,'1<:< " F E' :::;, i.i 1 t :::;'" 4 >::, """ ;~, " 
F'F:: I HT U::; I f',ie; 10 

30 Er·m 

This example can also be written -

Fi$:::"F::E':::;,;,A'I1:.:::," 

Output BP-157 

Blanks and 1 iterals output 

I '-"!FlGE !l .;.:.-:t:. 114::'::?A4>:;!l **!I I Literal, blank & string specified 
30 F'FIHT USIHG 20;A$ 
40 Er1D 

** 

If the string item in the print using list is longer than the number of characters specified, the 

string is truncated. 

Example 

1 !.7; PF:: I t'1T U ~:::; I t·~C; II ::) A II ; I' i-? ES tJ L T:::; II 

20 Et{D 

If the item is shorter, the item is left justified and the rest of the field is filled with blanks. 

Numeric Specification 
Numeric field specifiers can be made up of various types of symbols: digit symbols, sign 

symbols, radix symbols, separator symbols and an exponent symbol. These are covered next. 

Digit Symbols 

D Specifies a digit position. ND specifies N digit positions. Leading zeros are replaced with 

a blank space as a fill character. 



BP-158 Output 

Example 

Line 10 specifies a 5-digit field, 
2 blanks and a 2-digit field 

,:::_ Specifies a digit position. N:::: specifies N digit positions. Leading zeros are replaced with 

o as a fill character. 

Example 

IMAGE XAXXXX,AAA/ Two literal fields & blanks 
followed by CR/LF 

20 I !-'1FiGE 72:Z, 3::::, Z~~:Z i Two 3-character fields 

40 
p~~ I t··iT 1...1;::; I t'~G 1 [1; I! I II, II I ,~~,:+ II 

FOP I'.::: 1 TO :~: 

PPINT USING 20;1,1*4 
r-iE><T I 

?U EHD 

I H4 

[i~) 1 U~::)4 

00:::: 00:::: 
00::': ij12 

.,.,- Specifies a digit position. N.,.,- specifies N digit positions. Leading zeros are replaced with 

.,.,- as a fill character. 

Example 

1 ~~I I j"1tiGE ':t ~~.* ~E-"*', ~:>::, II Do 1 l.:~i.r· :::. .;;H:I.!'·'id II , >=:n n::-::, II cent::;. II,""."" 

20 ~i di gi t:::-, ;;: b-i-::1i'-lk~,-, I -i ter---:)_-!, d'j !~~-i t:=:- :3-: b-!-::;'!""-Ik:::-!, 
30 ! literal and 2 CR/LF's 
40 PPIHT USIHG 10;250,52 ! Dollars & cents are se~::;.rate 
~50 P~:II"~T U~=;I!"~C "36A " ;"(·:t;-··':::. ·:~i.t~·e !;;:.iood fOi,k. (h~:'ck pr"o'tE'cti()n)i! 
I;CJ EI···!D 

**250 Dollars and 52 cents 

(*'s are good for check protection) 



Output BP-159 

Only the symbol Ii is allowed to the right of any radix indicator symbol (discussed next). Any 

digit symbol can be used to specify the integer portion of any number but, with one exception, 

they can not be mixed. That is, for example, if Ii is used they must all be Ii. The exception is that 

the digit symbol specifying the one's place can be a Z regardless of the other symbols. 

Example 

10 IMAGE DDD.DD/***.DD I D's and *'s to left of radix 
20 IMAGE DDZ.DD/**Z.DD I like above but Z in l's place 
30 PRINT USING 10;.25,.75 
40 PRINT USING 20;.25,.75 
50 Er-1D 

Radix Symbols 

A radix indicator is used to separate the integer part of a number from the fractional part. In the 

United States for example, this is customarily the decimal point, as in 34.7. In Europe, this is 

frequently the comma as in 34,7. Only one symbol for a radix indicator, at most, can appear in 

a numeric specifier. 

Specifies a decimal point radix indicator in that position. 

F: Specifies a comma radix indicator in that position. 

Examples 

;2(1 E $:::: It E:...tt-'ope 'I 

IMAGE DDD.DD,2X,13A 
IMAGE DDDRDD,2X,6A 
PRINT USING 30;225.05,A$ 
PRINT USING 40;225.05,E$ 

225.05 United States 

Decimal point as radix 
Cc)mm.::i ·:is· r···.:=l.d·j ::{ 

~adjx must be a period in 
the print using list 



160 Output 

If the number to be output contains more digits to the right of the radix indicator than are 

specified, the number is rounded. 

Example 

H1AC;E DD. DD 2 places after decimal 
3 places after deci~al PRINT USINC; 10;25.256 

Sign Symbols 

Two sign symbols are used to control the output of the sign characters + and -. Only one sign 

symbol at most can appear in a numeric specifier. 

~:; Specifies output of a sign: + if the number is positive, - if the number is negative. 

f'1 Specifies output of a sign: - if the number is negative, a blank if it is positive. 

If the sign symbol appears before all digit symbols in a numeric specifier, it floats (see the 

section on Floating Symbols which is later in this chapter) to the left of the leftmost Significant 

digit output. 

When no sign symbol is specified and the number to be output is negative, the minus sign 

occupies a digit position. 

1 1] 'r t'1AGE J. 

2~J p~~ ItH 
::::0 pp I HT 
40 T r'iAGE .i. 

~;O 

6121 PF Hn 
~;'0 Ef.lD 

+2::i~~1 ;~~50 
·-~i .. -.J. 0 

Example 

:::::DDD, 3;:::, !'1DDD One with S, one wi n M 
USIHC; 10;250,250 Both numbers posit ve 
U::::IHi::; 10; --':;, -·10 Both nur!'!b'='r-'~~' n':;·q.,':!.·(. '·.!e 
.····:::DDDD. DD, 2::<, "t'·!on"t.hl': .. ' pj'-'ofi t" 

! S i q n f' 1 0·::1 t :::. 
USING 40;25.15,-4000.25 

+25.15 Monthly profit 
-4000.25 Monthly profit 



Output 161 

Digit Separator Symbols 

Digit separators are used to break large numbers into groups of digits (generally three digits per 

group) for greater readability. In the United States, the comma is customarily used; in Europe, 

the period is commonly used. The X symbol can also be used to cause digits to be separated 

with a blank space. 

C Specifies a comma as a separator in the specified position. 

F' Specifies a period as a separator in the specified position. 

The digit separator is output in an item only if a digit in that item has already been output; the 

separator must appear between two digits. When leading zeroes are generated by the ::: symbol, 

they are considered digits and will contain separators if specified. 

Example 

1 [I F'i;,: I r'lT "D I G I T ;:;EF'APATOP f'iOT OUTPUT I H ~:nd HUI'lFEP:" 
2[1 IMAGE DDDCDDD,2X,DDDCDDD/ 
.-,.-:. 
,.) .. .:.! 

40 
50 

F'f,: I t'1T 
! 

F'F,: HiT II EUf':OF'EAt·j '.,i::::;" fif'IEF:: I CtiH: " 

c cmma. 

6(1 I !'1FiGE DDDPDDDPDDD!! 2:=-<, II HOU~::.E·:::, i r-'! Ha.rfib'.Af·*·!~~ If 
7~:j If'IACE DDDCDDDCDDD, 2::-<, "Hou::;,es in LO' .... E,l,3.nd" ..... 
80 F'PIHT USIHC 60;21345 
90 PPIHT USIHC 7[1;19874 
10~~i I 

11(1 PF::It··IT "USIi"'iG FLAt'if:::S TO ;:::;EFAPiiTE DIGIT:::;:" 

13\~i Et··l]) 

DIGIT SEFAPATOF:: HOT OUTPUT IH 2nd HUMFEF::: 

EUF::OFEAH V~. AMEPICAH: 
21.345 Houses in Hamburg 
19,874 Houses in Loveland 

USIHC FLAHKS TO SEFAPATE DIGITS: 
[1. :::::414? 09::::4:::: O~; 

in :::;·E'C ond 



BP-162 Output 

Exponent Symbol 

E Specifies that the number is to be output in scientific notation. E causes the output of an 

E, sign of the exponent and two digit exponent. At least one digit symbol must precede 

the E symbol in a numeric specifier. 

Example 

1. 0 PF:: I t'lT i...!:;;; I j',jC; II D" DDDE" ; i :~:5" 2:5 
20 F'f;'~ I t··!T i.J ~:; I r'1G !! DDT! I> DDE II ; ~~: u :50~5 

30 nm 

Floating Symbols 
Floating symbols - ':=';, i"l, i::, or text in quotes - that precede all digit symbols (without a comma 

for separation) in a numeric specifier "float" past blanks to the leftmost digit of the number, or 

to the radix indicator. This is useful for output of monetary values so that the dollar sign is 

output next to the first digit. 

Examples 

10 i Parentheses float 
20 PRINT USING 10;2.37,10.87 
3(i ! 
40 H'IACf.: II $"DCDDDCDDD. DD I Do 'j '!.:'.d'" :c, i (:F": f1 CE·:;J.t::;:, 

50 PRINT USING 40;1736.73,42.35 
60 ! 

<:2. J?::' < 10. ::::7::' 
:*:1.,736.73 :t4~:~: II 3:=':; 

Sign symbols and text that are imbedded between digit symbols do not float. 

Here are some examples of floating and non-floating symbols -

floating 

"$"DDD.DD 
'·'iDDD. DD 

non-floating 

":$:", DDD. IiD 
D":$:"DIi. IiI! 
I)!'1DD.DD 

i::, :::;, i"l, or text imbedded in a numeric field stops the floating field. 



Output BP-163 

Replication 
Many of the symbols used to make up field specifiers can be replicated (repeated) to specify 

multiple symbols by placing an integer in the range 1 through 32 767 in front of the symbol. 

The following I !·"iH(~Es all specify the same format string -

1 0 PI~:~ I H'T' t.i;::; t··IC:~ II DDD .. DD II;; 1 ~~:3 u 4~:i 

;~:O F'FlrH U::::; t·4(:; "D:~:D";:~D";1:::::::::,,4~:i 

3(1 Pf-=~:Ii···iT U~::; 1"1G il:3D= DIl!'; 12::::;" 4~5 

12J .. 4;'5 
1 :::::3,4:5 

Example 

10 OPTION BASE i 
:::::0 Ii H1 r:j C;::, :::: ::. 
:~:O ['1 F:IT 14::;::':::2::' 

:=':;0 Er'~D 

_ . 
~~::: .-;. 

.:::' c_ 

2 ~~ 2 
-. 

;;:~ ;;::: .:::. 

Placing an integer before a symbol works exactly the same as having multiple adjacent sym­

bols. 

The following symbols can be replicated -

: : T', 
j..! 

: .... ':=:' 

!:::! 

In addition to symbol replication, an entire specifier or group of specifiers can be replicated by 

enclosing it in parentheses and placing an integer in the range 1 through 32 767 before the 

parentheses. In this manner, both K and @ can be repeated. Up to four levels of nested 

parentheses can be used for replication. 



164 Output 

10 
20 

40 
50 

Example 

H E' to. e- ·':it .. · ;::. e-~~mple-s of re-plication 
I t'iHGE ::.:':: DD ::. ! Same- as 'DD,DD,DD' OR 

.," ~:~:D , 2D , 2D ,," 
If'1FIGE 4(1<>,2(1:Ei) i Re-p]·j C.~tl:> i< .:ind (~j 

IMAGE 2(3D,(2X,2D» Pare-nthe-se-s can be- ne-ste-d 
Re-st of program follows 

Compacted Specifier 
A single symbol, f:::, is used to define an entire field for either numeric or string output. If the 

corresponding print using item is a string, the entire string is output. If it is a numeric, it is output 

in STANDARD form. K outputs no leading or trailing blanks. 

Example 

1(1 PRIHT U:::nt·lG "K.····"; "AGE::;::" 
20 IMAGE KXX,2D I Name- can be- any le-ngth 
30 FOR 1=1 TO 3 
40 READ AS,A 
50 PRIHT USING 20;HS,A 
60 t·iE::-::T I 
70 DATA Mary,10,Hilde-gard,20,Amy,15 
::::0 [t·4D 

t'lar::..' In 
H'i .: dEg:Oi.r·;j ;::0 
Am::} 1.~) 

Carriage Control 
The CR-LF normally output when the print using list is exhausted can be altered by using a 

carriage control symbol as the first item in a format string; a comma must separate it from the 

next item. 

:fI: Suppresses both the carriage return and linefeed. 

+ Suppresses the linefeed. 

Suppresses the carriage return. 



50 

Example 

I j"'if,GE #, 4- (fl, 2>:: :;. I Suppress 1inefeed 
I t'1t:!C:~E t< 
P~:II···!T U~::;IHC; iO; ll!=ill, IIBII, IICI I , liDII 

F~::II···!T U::;I!··~G 20; 11,*_***11 

EHD 

Output 165 

F'F: I rH U~:; I f';C; "+" is equivalent to F'F I tH l_ I t·~.:: 0> ; and F'f~: I t·n U~:; I t·4C; "._." is equivalent 

to FPHn L..H-iC····i. >;. 

Field Overflow 
If a numeric item requires more digits than the field specifier provides, an overflow condition 

occurs. When this happens, all preceding, correct items are output, followed by a CR-LF. The 

item which overflowed is output in STANDARD format followed by the field specifier which 

caused the overflow. Another CR-LF is output, then the rest of the print using list is output. 

Example 

1.(1 PPIr'~T U::;It'~G lJ3(DDIIDD)./11;2~511~:5,;~:5(1=;2::i,2~3112~; 

20 PPHH U3Hji:; "DD.D,DDD,DD";,"25.5,·····250 .. 5 
30 Er·m 

25 .. 50 
• ,"250. ;;:~j IiD .. DD 

• --'2:=:';0.5 DDD 

An important thing to remember is that a minus sign not explicitly specified with ~:; or r" requires 

a digit position. 

No error message occurs when a field overflow occurs, but the computer beeps. 



BP-166 Output 

Summary 
Here is a summary table of image symbols and their uses 

Image 
Symbol 

Considerations 

Ii 

r'1 
E 

F: 
F' 
A 

# 
+ 

Symbol 
Replication 

Allowed? 

Yes 
No 
Yes 
Yes 
Yes 
No 
No 
No 
No 
No 
No 
No 
Yes 
Yes 
No 
No 
No 
No 
No 
Yes 
No 

Purpose 

blank 
Text 
Digit 
Digit 
Digit 
Sign 
Sign 
Exponent 
Radix 
Comma 
Radix 
Decimal point 
Characters 
Replicate 
Carriage control 
Carriage control 
Carriage control 
Compact 
Delimiter 
Delimiter 
Delimiter 

Comments 

Can go anywhere 
Can go anywhere 
Fill = blanks 
Fill = zeroes 
Fill = asterisks 
"+" or "- " 

"~" or "-" 
Format = ESDD 
Output "." 
Conditional digit separator 
Output "," 
Conditional digit separator 
Strings 
For specifiers, not symbols 
Suppress CR-LF 
Suppress LF 
Suppress CR 
Strings or numerics 

Output CR-LF 
Output FF 

One factor that must be taken into account when creating formatted output with F'I? I t·n U:::; I t·iC 

is the printer width. When dealing with numeric output, format strings should be designed so 

that a line of characters doesn't exceed the number of characters per line of the printer. 

F'f? I tH U::; I t·jl::; does not provide carriage return-linefeeds to keep lines within the width of the 

printer. 

Advanced Printing Techniques 
Advanced printing techniques on the CRT and internal thermal printer are covered in Appen­

dix A. 

Overlapped Processing 

Your computer has a capability which can enable a program to run faster and more efficiently. 

This capability is known as overlapped processing or overlapped I/O. In overlap mode, I/O 

initiated by a program statement proceeds in parallel with the execution of subsequent program 

lines, while in serial mode the I/O is completed before the next line is executed. 

Overlap mode should be used when the amount of computation time is greater than the 

amount of I/O time. A program that has significantly more computation time will have only a 

small gain from overlap mode. A program with significantly more I/O time should be run in 

serial mode. This is because extra time is needed to queue up the pending I/O operations. This 

time is most Significant when fast peripherals are used. In overlap mode, I/O and computation 

statements should be intermixed. 
rev: 4181 



Output BP-167 

TheOVERLAPSt~eme~ 

Overlap mode is set by the (}",'E:::;:':"'H:::' statement -

If you are using ON ERROR (see Chapter 12) to trap errors, I/O errors (numbers 54-103) 

aren't trapped if overlap mode is in effect. 

The SERIAL Statement 
The computer is returned to the serial processing mode which is the default mode at power on, 

'::::i:::?i::rr:::>···i and '::::c:?i::rrCi···i i:::i by the :::::1:::::;:' I i:::i:"'. statement -

Using serial mode is recommended during program debugging to avoid confusing results. 

Accessing Color on the CRT 
There are three ways to access color for printing on the CRT -

• CONTROL and a Special Function Key 

.CHR$ 

• An escape code sequence 

The primary purpose for alphanumeric color on the CRT is to increase the visual impact of 

output on the CRT. You can store program lines that have color in them, when the colored 

characters are inside a quote field or a remark. 

Color Using CONTROL 

The CRT special features of INVERSE VIDEO, BLINKING and UNDERLINE are accessed by 

pressing CONTROL and the appropriate SFK. On the facing edge of SFKs 8 thru 15 is a colored 

oval which represents the color which can be accessed when pressing CONTROL and the SFK. 

The color remains in effect until you press CONTROL and another color SFK, or until the 

special features are cleared, which re-instates White as the color. 

Color Using CHR$ 
Color can be selected using a value of 136 to 143 as the CHR$ argument. The colors and their 

CHR$ arguments are shown in this table. 

136 137 138 139 140 141 142 143 
WHITE RED YELLOW GREEN CYAN BLUE MAGENTA BLACK 



BP-168 Output 

For example, 

results in a red A being printed on the CRT. Once you select the color it remains in effect until 

you change it with another CHR$ or an escape code sequence. 

Color Using the Escape Code Sequence 

Color can be selected for the PRINT and PRINT USING statements only, using the escape code 

sequences on the System 45. The use of escape codes does not work with the DISP statement. 

The sequence is -

F'i? I j·TT C:j···H?t:.:: :::::.?,... :::i specifier" followed by the items being printed. 

The specifiers are -

@ - Clear (Only for items A thru G) H - White 
A - Blinking I - Red 
B - Inverse Video J - Yellow 
C - Blinking and Inverse Video K - Green 
o - Underline L - Cyan 
E - Underline and Blinking M - Blue 
F - Underline and Inverse Video N - Magenta 
G - Underline, Inverse Video and Blinking 0 - Black 

For example, 

results in a green A being printed on the CRT. Once a color is selected it remains in effect until 

you change it with another CHR$ or an escape code sequence. 

Only one specifier is allowed in each escape code sequence, so to turn on additional highlights, 

you would need additional escape code sequences, as shown here. 

results in the message printed in blinking, cyan inverse video. So does -

Turning the highlights off can be done by -

or by using -

PRINT CHRt:(128)lCHRt:(136) 



Chapter 11 
Mass Storage Operations 

Mass storage lets you save programs and data on a mass storage medium, and retrieve them later. You use 
the same statements and commands to access either the internal tape cartridges or an external disc. If you 
want more information about mass storage than is covered in this manual, refer to the Mass Storage ROM 
Programming Manual. 

page 172 • MASS STORAGE IS (specifies standard 
mass storage device) 

page 176. INITIALIZE (lets a new medium be 
used) 

page 177 • CAT (lets you see what files are the 
medium) 

page 179 • CAT TO (stores catalog output into a 
string array) 

page 182 • SAVE, GET (stores and retrieves a pro­
gram as a data file) 

page 182 • LINK (retrieves a SAVEd program; saves 
variable values) 

page 184. RE-SAVE (stores a different version of a 
SAVEd program) 

page 185. STORE, LOAD (stores and retrieves a 
program as a program file) 

page 186. RE-STORE (stores a different version of 
a STOREd program) 

page 187 • CREATE (sets up a new file for storing 
data) 

page 188. ASSIGN (opens a data file for accessing 
it; closes it so it can't be accessed) 

page 189 • PRINT#, READ# (store and retrieve 
data into a data file) 

page 194 • MAT PRINT #, MAT READ# (stores 
and retrieves arrays into a data file) 

page 197. ON END#, OFF END# (sets up and 
cancels a trap for end-of-file condition) 

page 199. BUFFER (reduces device access by stor­
ing data in a buffer temporarily) 

page 201 • CHECK READ, CHECK READ OFF 
(sets up and cancels write verification) 

page 201 • PROTECT (protects a file to guard 
against accidental erasure) 

page 202 • PURGE (erases a file) 
page 202 • COpy (duplicates a file) 
page 203 • RENAME (gives a new name to a file) 
page 203 • STOREKEY, LOADKEY (stores and re-

trieves Special Function Key definitions) 
page 204 • STORE BIN, LOAD BIN (stores and re­

trieves binary routines) 
page 204 • STORE ALL, LOAD ALL (stores and re­

trieves the entire state of the memory) 
page 207 • REWIND (rewinds the tape cartridge) 

Mass Storage Function 
• TYP (determines what data type will be accessed 

next) 

Terms 
• Standard mass storage device - the device where 

mass storage operations are directed if not 
specified otherwise. It is the righthand tape drive at 
power on and SCRATCH A. 

• File - the basic unit into which programs and data 
are stored. Every file has a unique name. 

• Record - the smallest addressable unit on a 
medium. 

• Directory - the medium's record of all its file in­
formation. 

• Serial file access - accessing data items one after 
the other) 

• Random file access - accessing data in a specific 
record in the file. 

Get Started with Mass Storage 
To store a program on a tape cartridge, follow these 
steps -

1. type 
EXECUTE. 

2. insert a cartridge into the righthand tape drive. 
3. type Ci::rr; press EXECUTE. 
4. if you get ERROR 85, initialize the tape by typing 

.L!' ';":r CL' 'T :1. ':::: "; pressing EXECUTE. 
5. if you get a catalog listing, note the names; you 

can't use a duplicate name. 
6. pick a file name; with any 1 to 6 characters (ex­

cept ::, ", CHR$(O) or CHR$(255) ). 
7. type ':::: i:::; '"T:' "file name "; press EXECUTE. 

Your file is now on the tape under the file name. To 
retrieve it later, insert the tape into the righthand 
tape drive. 

1. type 
EXECUTE. 

...... ; i::·· ii. , 

2. type c:y:r "file name"; press EXECUTE. 

press 



BP-170 Mass Storage Operations 

Terms 
The following terms are used in mass storage operations -

File number - the number assigned to a mass storage data file by an i::(:<::: ::: C)··j statement so 

that the file can be accessed for data storage. Its range is 1 through 10. 

File name - Every file must be given a unique name. A file name is a one to six character string 

expression that can have any characters with the exception of a colon, quote mark, 

ASCII NULL (CHR$(O) ), or CHR$ (255). Blanks are ignored. Here are some examples 

of file names -

Select code - The computer accesses I/O devices with a select code. It is an expression 

(rounded to an integer) in the range 0 through 16. The following select codes are 

reserved by the computer and can't be set on an interface -

.0 Internal Thermal Printer and keyboard 

• 13 Graphics option 

• 14 Optional tape drive 

• 15 Standard tape drive 

.16 CRT 

Mass storage unit specifier (msus) - is used to direct operations to a specific mass storage 

device. It can be any string expression of the form -

:: device type [select code [:, controller address I 9885 unit code [:, unit code] ] ] 



Mass Storage Operations BP-l71 

The letters specifying the various mass storage device types are -

98413A/B/C Required 
Letter Device ROM Interface 

T internal tape n/a n/a 
y 7905M (removable) yes 98041 
Z 7905M (fixed) yes 98041 
C 7906M (removable) yes 98041 
0 7906M (fixed) yes 98041 
M 7910H (fixed) (98413B/C) 98034' 
p 7920M (removable) yes 98041 
X 7925M (removable) yes 98041 
F 9885M/S (flexible) yes 98032 
H 9895A (flexible) yes 98034 1 

Q 7908 (fixed) (98413C only) 98034' 

The select code can be an integer in the range 1 through 15 with 14 and 15 reserved for the 

tape drive and 13 reserved for graphics. If you don't specify a select code, the computer uses a 

default value: 15 is default for T devices, 8 for F, 7 for H devices and 12 for all others. 

The controller address specifies a hard disc controller. It can be an integer from 0 through 7. The 

default controller address is O. 

The 9885 unit code can be an integer from 0 through 3. The default unit code is O. 

The unit code can be an integer from 0 through 7. The default unit code is O. It is ignored for the 

9885 and tape cartridge. 

Here are some examples of mass storage unit specifiers -

msus 

;; .; .. ;;; 

:;" :: 

": Q7 t5" 

Explanation 

Standard tape cartridge drive 

Optional tape cartridge drive 

9885 flexible disk at select code 8 

7905A removable platter, select code 4, controller address 0, 

unit code 3 

7908 disc drive, select code 7, controller address 5. 

1 Only one other mass storage device may share this HP-1B interface. 

09845-93000. rev. 9/81 

~ 



BP-172 Mass Storage Operations 

Remember that the mass storage unit specifier can be any string expression. The following 

program segment illustrates this. 

20 Select code=7 

File specifier - A file specifier names a file and what storage device it is on. It can be a string 

expression of the form - file name [mass storage unit specifier]. Here are some 

examples -

Protect code - A protect code can be used to protect a file from accidental erasure. It can be any 

valid string expression except one with a length of zero. Only the first six characters are 

recognized as the protect code, however. 

The MASS STORAGE IS Statement 
At power on and ::::;CY::::fl<:!"l :::::, the tape cartridge drive, TIS, is the standard mass storage 

device for the system. This is the device to which all mass storage operations are directed if no 

device is specified. The default device concept is useful in creating mass storage device­

independent programs. 

The standard default device is changed by executing the 1'1::::«::; ' ... ;: i ... H:':'i:::n::::E:. I ':::; statement -

i·'ii:::;'::'··· ' .. ;; ;i·,o;.·i: J:: I ::::; mass storage unit specifier 

Examples 

E~mples of MAS; STORAGE IS 
ri,'",''' .' t (. 

Tape cartridge drive 

address 0, unit code ~ 



Mass Storage Operations BP-173 

Structure 

All mass storage operations deal with files and records, the basic components of a storage 

medium. 

Files 
Files are the basic unit into which programs and data are stored. Storage of all files is "file-by­

name" oriented; that is, all files must be assigned unique names. The form these names must 

take is covered in the "Terms" section at the beginning of this chapter. 

There are eleven types of files -

• Program files • Root (ROOT) files 

• Data files • Backup (BKUP) files Data base files 

• KEY files • Data set (DSET) files 

• STOREALL files • Assembly (ASMB) files 

• Binary program files • Option ROM (OPRM) files 

• Binary data files (Mass Storage ROM) 

Records 
Every file is composed of a varying number of records. A record is the smallest addressable unit 

on a mass storage medium. 

There are three types of records -

1. Physical records are 256-byte, fixed units which are established when a medium is 

initialized. Every file starts at the beginning of a physical record; this is an important fact 

for minimizing wasted space on a medium when creating data files. Otherwise, you need 

not be concerned with physical records. 

2. Defined records are established using the i::::i?i:::::::iTT:: statement and can be specified as 

having any number of bytes in the range 4 through 32 767 (rounded up to an even 

number). A defined record is the smallest unit of storage which you can address directly. 

3. A logical record, a user-level rather than machine concept, is a collection of data items 

which are grouped together conceptually. 

When a file is established with a ::::;Ti:::i?E or ::;i:::i\iE: statement (discussed later), the computer uses 

as many records of 256 bytes as it needs to store the program. Logical and defined records are 

not used with .: !...ib:'F· 

rev: 4181 



BP-174 Mass Storage Operations 

Using the CVEATE statement for data files, you can specify how many defined records you wish 

the file to contain and how big they should be. You don't need to be concerned with the 

correspondence between physical and defined records, except to remember that the first de­

fined record of a file starts at the beginning of a physical record. If a file doesn't go to the end of 

a physical record, space between the end of the file and the next file is wasted space. 

EOF's and EOR's 
Files and records are bounded on the storage medium by end-of-file (EOF) and end-of-record 

(EOR) marks which signify their ends. This section illustrates and describes the organization of 

files and records on a storage medium. 

Physical Records 

A storage medium is divided into 256-byte fixed physical records when it is initialized. 

) 
256 bytes- 256 bytes 

) -physical record-

End-of-File and End-of-Record Marks 

When a file is created, its end is designated by a physical-end-of-file (PEOF) mark. Any space 

between the PEOF and the beginning of the next physical record is unused space. 

physical record_I 
I 
1 

Unused space 

IIle-------.
I---------1----1 r---~:,:::: 

beginning of file PEOF (end 01 IIle) 

When a file is created using the CF.:EA1T statement (discussed later in this chapter), an end-of­

file (EOF) mark is placed at the beginning of each defined record. Each EOF mark takes two 

bytes of storage space. At the same time, a physical-end-of-record (PEOR) mark is placed at 

the end of each defined record. Numeric data items can't cross a PEOR mark. If a numeric data 

item can't fit in the space between the previous item and the PEOR mark, it is placed in the next 

record, wasting the space it couldn't fit in. 

) 
~ - physical record_ I ,"""" co,",,_, 

E 1 E I E 
0 I o I 0 
F I F I F 

defined record-r-- defined record-r----

beginning of file PEOR mark PEOR mark 

,( 

defrned record 

PEOR mark 
PEOF (end 01 IIle) 



Mass Storage Operations BP-175 

As data is written to a file, the EOF marks are over-written. An EOF mark can be printed at the 

end of the data by printing nw (see the F'F: I i·n# statement) after the data. If an EOF mark is 

not placed after the data, an end-of-record (EOR) mark automatically is. 

data items 

t 
beginning of file EOR mark PEOF (end of file) beginning of file PEOF (end of file) 

The Directory 
The directory is the storage medium's record of all of its file information; it includes each file's 

name, type, length, location and loading information. The directory information is automati­

cally revised when a file is created or purged. A spare directory is maintained on the medium in 

the event that the first becomes unreadable. You are warned with a message every time the 

spare directory is accessed if the main directory becomes unreadable. It is accessed automati­

cally by the system when necessary. Here is the message -

SPARE DIRECTORY ACCESS 

There is no provision made for recovering information stored on a medium if both directories 

are destroyed. If the main directory becomes inaccessible, it is wise to transfer all valuable data 

on the medium to another one before the spare directory is destroyed. Rewriting the main 

directory from the spare directory by adding, deleting or changing the name of a file may help 

the problem, but this is not a good solution. You should transfer your data. 

Tape Cartridge Directory 

When a tape cartridge is being used to store and retrieve information, its directory is written 

into memory the first time it is accessed. This is done to save wear on the tape and improve 

performance by accessing the directory from memory rather than from the tape. The directory 

on the tape is accessed only when it needs to be rewritten. The directory is erased from memory 

under any of the following conditions -

• Reset (CONTROL-STOP) 

• ::;CPATCH A 

• Removing the tape from the drive 



BP-176 Mass Storage Operations 

The INITIALIZE Statement 
The :i>n:T ; ; ... ;; ..... , ,:.!:::. statement enables a new mass storage medium to be used with Series 9800 

Desktop Computers by establishing and testing physical records and main and spare direc­

tories. 

A used medium can also be re-initialized; in the process, it is cleared of all information it 

contained previously. 

: i·i:., :::L. T :>:: mass storage unit specifier [,' interleave factor] 

The interleave factor is a numeric expression which defines the number of revolutions per track 

to be made for a complete data transfer and can enable faster access to the medium. It is 

ignored for all devices except the HP 9885 and 9895. See the Mass Storage ROM Manual for 

an explanation of its use. 

The I i·i IT T ::::iL .. T ;'C: operation can take place at the same time as execution of a program if the 

program doesn't utilize the mass storage device that is involved in the initialization process. If 

the program attempts to use the drive on which an initialization is in progress, program execu­

tion is suspended until the operation is complete. 

CAUTION 

WHEN INITIALIZING TWO TAPES AT THE SAME TIME, 

ONE IN EACH TAPE DRIVE, YOU MUST LEAVE BOTH 

TAPES IN THE DRIVES UNTIL THE RUN LIGHT GOES 

OUT. DO NOT REPLACE EITHER TAPE BEING IN­

ITIALIZED WITH A TAPE WHICH HAS CURRENT DATA 

ON IT; THE INITIALIZATION PROCESS MAY NOT BE 

COMPLETE AND INFORMATION COULD BE DE­

STROYED. 

Examples 

INITIALIZE :F7,5 

rev:4181 



Mass Storage Operations BP-177 

The CAT Statement 
The Ci::rr (catalog) statement outputs a listing of directory information for a storage 

medium: file names, types, and physical specifications. 

C>::iT" [selective catalog specifier / msus L, heading suppression] ] 

c>:rr':ii select code [!, HP-IB device address] [, selective catalog specifier / msus L, head­

ing suppression] ] 

The selective-catalog-specifier parameter is a string expression one through six characters in 

length. It causes only those files whose names begin with that combination of characters to be 

cataloged. 

The heading-suppression parameter is a numeric expression. If its value is 1, the heading of the 

catalog (the top two lines) is suppressed. 

The second syntax directs the catalog output to the specified device. 

40 

Ci=iT 11: or:!. ~:)!! 
Ci:iT ;;j:ib:: F::::!! 

Examples 

Catalog tape cartridge 
Catalog all files startirg with 
'Ab' on disk at select code 8 

i Catalog all files starting with 
'Dat' on disk at select code 8 
Output goes to select code 6; 
hE~djng is suppressed 

files starting with 
'0' on 9885 disk at select code 



BP-178 Mass Storage Operations 

The information for each file is printed on one line. Here is a sample catalog output. 

1 2 3 4 5 6 
NHMt=.: PRO TYPt=.: Rt=.:C,FILE BYTES/PFr HDDFt=.:::;:::; 

7 T:[ ~:; 

:::;FTi..iP 
::::;E:TUF2 

l"'10DKE\' 
1-··j E i.'~ ~< E 'y' 

,·i!:::: -, '.~' 

4; 

... 
,::.. 

1;'-

,::.. 

i 

The name given to the file when the information is stored on the medium. 

An asterisk in this column designates a protected file. 

The various file types are specified by the following: 

F'i?CH::; for a program file 

Iirrr·i:::i for a data file 

i<.i:::. (:::: for a KEY file 

i:::i1....1.... for a STOREALL file 

:E'F'F,(::; for a binary program file 

,., .. , {)T" for a data base root file 

.::: .. , i! 'for a data base backup file 

, .. ." ... ' for a data base file containing a data set 

i::(:::i·'iE: for an assembly language file 

:e:::ii::rr for a binary data file (Mass Storage ROM) 

iY:::'i?i'i reserved for additional ROM-defined file type. 

If a medium is being cataloged that was not initialized on your particular 

model of Series 9800 Desktop Computer, your computer attempts to deter­

mine what types the files are and puts a question mark after the type in the 

catalog output for all but DATA files. The type mayor may not be correct. See 

the Mass Storage ROM Manual for more information. 

4. i:'E::::::. I1...E: The number of defined records in the file. 

5. r~:/ i... ...•.. : .... :: ... .. . The number of bytes per defined record. 

The address of the physical record number with which the file begins. With 

the tape cartridge, it is the number of the first physical record. Knowing the 

length and address of files can let you find the gaps between files to see how 

much room is left on the medium. See the Mass Storage ROM Manual for 

information about other devices. 

rev: 4181 



7. msus 

8. Available 

tracks 

Mass Storage Operations BP-179 

The mass storage device on which the catalog was performed. 

The number of tracks available for use. This is most important with the 9885; 

see the Mass Storage ROM Manual. 

The CAT TO Statement 
The CHT TU statement writes the specified catalog output into a one-dimensional string array. 

This allows your programs to have access to mass storage catalogs. CAT TO can enable you to 

copy files from one medium to another under program control. It can also enable you to 

determine what the current standard mass storage device is for the system. The CH"T' 'rC) 

statement also causes the computer to revert to serial mode, temporarily. 

Ci::rr' 'ru string array identifier [, skip count [, return variable] ] [; selective catalog 

specifier / msus [, heading] ] 

The minimum length to dimension the array elements is 41 characters. Any elements not filled 

with catalog entries are filled with the null string. 

The skip-count parameter is a numeric expression which specifies the number of catalog 

entries (lines) to be skipped before information is entered into the array. 

The return-variable parameter must be a simple numeric variable. After the CAT TO opera­

tion, its value equals the number of the last catalog entry that was entered into the array. ° is 
returned as its value if there are no more catalog entries at the end of the catalog that weren't 

entered into the array. The value of the return variable, if not 0, could be used as the next 

skip-count value to obtain the next part of the catalog for another CAT TO operation. 

The selective-catalog-specifier / msus parameter is the same as for the C:HT statement. The 

selective catalog specifier affects both the skip-count and the return-variable parameters. The 

skip-count skips the indicated number of entries of the selective catalog. The return-variable 

returns the number of the last entry of the selective catalog. 

The heading parameter is a numeric expression which, when its value is anything other than 1, 

causes the second line of the standard C:HT output to be entered into the first array element. 

Otherwise, none of the heading is entered into the array. If it is omitted, the default value is 1, 

so the heading is not entered. 



BP-180 Mass Storage Operations 

Examples 

Here are some example CAT TO statements -

1 DIM Tape$(6)[41 
I~ ! These are e~ampl~ CAT TO statements 

N IS return variable 
a,d!og only files that tart 

with 'A'; enter the h~ad ng 

Here is an example that illustrates how the skip-count and return-variable parameters work. 

Assume that the medium being cataloged has many files starting with "A" on it. This pro­

gram -

creates a "window" the size of the string array around part of the catalog -

A _____ _ 

A _____ _ 

A _____ _ 

A _____ _ 

~A~========~-------------5 
A _____ _ 

A _____ _ 

A _____ _ ~-----------These entries are written into CAT$ 

~A~========~-------------N 
A _____ _ 

A _____ _ 

When this program is run, with an appropriate mass storage medium, 9 is returned a:;, the value 

for N. 

rev: 4181 



Mass Storage Operations BP-181 

Here is an example that uses :-"T::::: to copy all files on a medium to another medium -

dG FOR =8 TO = 

Storing and Retrieving Programs 
Programs can be stored onto a mass storage medium in two different ways, into two different 

types of files. 

The first type of file for storing programs is known as a data file. When a program is stored into 

a data file, it is stored as a series of strings, with one string per program line. This method is not 

the fastest method of storing and retrieving programs, but it has a significant advantage. A 

program stored into a data file can be accessed as string data items by other programs. This 

type of file can also be used by some other HP desktop computers, such as the System 35. 

Programs are stored into data files with the '::>::i\"C: and j:;:Y::<>:::i',,<::: statements and retrieved with 

a i:TT or L T :il< statement. 

The second type of file is known as a program file. When a program is stored into a program 

file, it is stored in a compiled, internal code interpretation. Storing the program also stores all 

binary routines currently in memory along with the program. This is the fastest method for 

storing and retrieving programs. Programs are stored into program files with the '::>T C+<::: and 

::;:::::: ......... T'j"":FY:: statements and retrieved with the L..C+L::: statement. 

If you get an ERROR 2 while trying to store a large program you've just run, you can try 

scratching your variables with ':::;C ,'.' ,;; .. )..i \" to free up some memory, then storing the program. 



BP-182 Mass Storage Operations 

The SAVE Statement 
The ::::;H'",'E:: statement stores the program and any subprograms in computer memory into a data 

file on the storage medium. 

'::::i:::i'</E:: file specifier [, beginning line identifier [~! ending line identifier] ] 

Execution of the :::>::i'",'!:::: statement creates a data file by "listing" the program and saving the list 

on the medium as string data, one program line per string, with a maximum length of 160 

characters. In this way, the file can be read, modified, or rewritten as string data by other 

programs. 

If you attempt to SAVE a program that has been SECUREd, the information written to the 

medium is meaningless. 

When only the file specifier is given, the entire program is saved. If the beginning line identifier 

is specified, the program from that number to the end is saved. If both line identifiers are 

specified, the program section, from the first line identifier to the second, inclusive, is saved. If 

the first line identifier is a label which is in a subprogram and execution is not currently in that 

subprogram, [=.:i?F:Cii?:::; occurs. 

10 

J~~I 8:.t:::: 11 L I FE il 

The GET Statement 

Examples 

I Saves program into /LIFE/ on 
stanc~rd mass stor~ge device 

I Saves program starting at line 40 
i nt 0 ... L.. I FE'" , .:lj"', .!'; '".: ::< 'i b 'I e d i :::;.k 

i Saves lines 100-300 of program 
'int() "'LIFE'" 

The partner of the '::>::("[ statement, the CT:--r· statement retrieves and puts into memory a 

program saved previously with the ':::;H\iE: statement, or any string data file consisting of valid 

BASIC statements preceded by line numbers, stored one line per string. 

C:T::--r· file specifier [" line identifier [, execution line identifier] ] . . 

Execution of the C;E::T statement causes the computer to read the specified data file and expect 

to find a succession of strings that are valid program lines. As the program is retrieved, each line 

is read in and syntax checked to make sure it is a valid line. If CT::--r was executed from a 

program, any tracing which was in effect is cancelled. 



Mass Storage Operations BP-183 

If no line identifiers are specified, the entire stored program is loaded into computer memory, 

destroying any programs or data (except data stored with CCn'i) in memory. 

If one line identifier is specified, the program is renumbered as it is loaded so that it begins with 

the number of the specified line of the program currently in memory. Any lower-numbered 

lines from a previous program are retained. The numbering remains the same on the storage 

medium. 

If the :;:::' was executed in a program, program execution is restarted with -

• The program line immediately following the ::::Y:T statement in the original program or with 

• the first line of the loaded program if there were no lines after the; 

these lines were destroyed by the ::;;::::1 statement. 

statement or if 

If two line identifiers are specified, program execution is restarted with the second line iden­

tifi er. 

When a program retrieved with ,:T, has an invalid line in it, the invalid line and an error 

message are listed on the standard system printer. An example of how this can occur is when a 

program is ::;::::\'E:::d with the Mass Storage ROM installed in the machine and later retrieved with 

.... when the ROM is not installed. Any lines which have mass storage unit specifiers other 

thanT ::. i:: or :: .... :!. ,:::. are listed with an error message. 

Examples 

Program in 'SMALL' is retrieved 

rev:4181 



BP-184 Mass Storage Operations 

The LINK Statement 
The i·H< statement is identical to the ' .. :iFT statement discussed previously, except that the 

current values of all variables are retained. 

iT iH< file specifier [:, line identifier [:, execution line identifier] ] 

If no line identifiers are specified, the program is loaded, destroying the current program in 

memory. 

The first line identifier specifies that the loaded program is to be renumbered and is to begin 

with the line number of the specified line. 

If two line identifiers are specified, execution begins with the second line specified. 

In effect, ::T::T performs a i:;:·!.)i operation on the loaded program, whereas L. T i·H': performs a 

1:1:><; operation, involving no pre-run initialization of variables. 

Examples 

! Program in 'LIFE' 
Program in 'LIFE' 
and renumbered to begin with 50 

Program in 'LIFE' is retrieved 
and renumbered to !-.......... "<\.; ,,". 

!_.";;: ':::i;'; 

Lxecutlon begins at line 10 in memory 

The RE-SAVE Statement 
A program stored in a data file can be loaded into memory and edited. It can then be re-saved 

into the same file using the i:::-::::: .. ··:::;::::'O/i::: statement -

.... !:::: file specifier [:, protect code] [., beginning line identifier [:' ending line iden-

tifier] ] 

The protect code is used only if the file has been protected. When no line identifiers are 

specified, the entire program is saved. When one line identifier is specified, the program is 

saved from that line to the end. When two line identifiers are specified, that block of lines is 

saved. 



Mass Storage Operations BP-185 

NOTE 

If you are attempting to RE-SAVE a program you've made 

longer and get ERROR 64, that means there is no space to 

save the new version. If you were writing to a tape cartridge, 

the old version is still there. However, if you were writing to 

any type of disk, the old version is erased. 

PE--'::;f=I'/E "LIFE" 

PE-SAVE A$,108,258 

The STORE Statement 

Examples 

i Purg~ program In 'LIFE' & sav~ 
program in m~mory into it 

program in 'LIFE' & sav~ 
curr~nt program; start at line 50 

Purg~ program in 'LIFE' & sav~ 
lin~s 100-250 of current proglam 
P~sav~ 'LIFE' WIth prot~ct 
c od~::· /:::;1·"!·" 

The ::::;TCiF:E: statement creates a program file and stores the program and any binary routines in 

memory into it. 

::;:;'T CH?E file specifier 

~::; T 0 f~~~ E j:i :1:­
:::::TOF' 

Examples 

Stor~s program into 'WAGE' on 
standard mass sto~ag~ d~vic~ 
Stores program into 'WAGE' on 
fl~xjbl~ disk at s~l~ct cod~ 8 



BP-186 Mass Storage Operations 

The LOAD Statement 
Programs saved with ::::;'T(Y :1:::: are retrieved with the ~. ('\::!L statement. 

i}!U file specifier ['! execution line identifier] 

Execution of the iiiiTi statement destroys any program, binaries and data in memory and 

loads the program and any binary routines. However, any data stored in common is preserved 

if the loaded program has a i "i,: statement. If the: 'iiiTi statement comes from the keyboard 

and no line identifier is specified, control returns to the keyboard after loading. If it comes from 

execution of a program line in memory, execution begins at the first line of the loaded program. 

NOTE 
A program which includes enhanced or color graphics 

keywords and has been STOREd on a 98458 Model 2XX or a 
9845C cannot be LOADed on a 98458 ModellXX. 

When the line identifier is specified, execution of the loaded program begins at that line. 

Examples 

i "",t::t'n ii,-'" 
l. ... : .... ~ !.i..' ; .... ! t·-;· :=:~ 0 

..... ,.:~ H ~~:::::: Ii C: 1"':,::: j.:. " ;'" ;:::: !i '._":.' 

When LOADing a program which includes statements that are enabled by more than one ROM 

(for example - TDISP, enabled by the 110 and Datacomm ROMs), be certain that your 

computer has the same ROMs as the one used when the program was STOREd. 

The RE-STORE Statement 
A program file can be loaded into memory and edited, then re-stored into the same file using 

the :;C';Ti!i;;'E; statement -

,T Cn;:E file speCifier [,' protect code] 

:;C<;[I};'[ is equivalent to F iF 'i,E followed by ';TCH, .... 

The protect code is used only if the file has been protected. 

Examples 

["_'; :: ".1:::' ... 'j:. t". !''',(::!i:;;' 

.. :,' .1,' 
'.'.'; :·r; ;,·j"ii::' 

rev: 4/81 



Mass Storage Operations BP-187 

Storing and Retrieving Data 
Data in the form of numbers and strings can be stored into a data file. This is the same type of 

file as the one created by the ::::H;,,'T~ statement, but it is created differently. You can group 

conceptually related data items together, forming what is known as a logical record. 

There are five basic data file operations -

• Creating a file - C!?E:iTT"E 

• Opening a file - i=:r:::>::: T ::~i·.! 

• Recording data - F'F' I i··iTt;: and t'H::fT F'!? I i·rr:!t, random and serial 

• Retrieving data - i?EHL# and (!HT F'!::::i:::iD:it, random and serial 

Considerations 
Before data is written onto a storage medium it is held in a buffer in the computer, then written 

to the medium when the buffer is full. You should take care to terminate your program properly 

before removing your tape or disk from the drive; otherwise data may still be in the buffer, not 

written to the medium. You can make sure this doesn't happen by closing the file, pressing 8 
or reaching a STOP or END in your program. 

The CREATE Statement 
The C!?E>fTT:: statement is used to create a data file. 

C:Y::E::i::rfE: file specifier, number of defined records [, record length] 

The number-of-defined-records parameter is a numeric expression in the range 1 through 

32767. 

The record-length parameter is a numeric expression, specifies the length of a defined record in 

bytes and is rounded up to an even integer. Its range is 4 through 32 767. If it is not specified, a 

defined record length of 256 bytes is assumed. 

The size of a file created is limited by the amount of available space on the medium. A medium 

overflow error (Ei?f,:CH:;:: ;::::4) occurs if more records are specified than the medium can hold. 

C!?E>fT"E: also puts an EOF mark in the first two bytes of every defined record. 

I 



BP-188 Mass Storage Operations 

Examples 

10 Th@s@ are e~~mple CREATE statements 
;;':~~::J Cf~:~Ef"1TE !!Df=iTFi:F;::,j, 10 Ct"··~':·.::it!:::, .::J. f'i 1~.:· na.!"(!E'd /IJFiTi4"'; 

10 records of 256 bytes 
Cre~te a file called 'U~mes'; 

15 records of 50 bytes each 

When creating data files, you must be sure that the length and number of your defined records 

suit the storage requirements of the logical records you plan to store. If the next data item in a 

list being recorded won't fit in the space between the previous item and the end of the record, 

that space will be wasted. To determine storage requirements, see the section on Data Storage 

which is later in this chapter. Attempts to store data into an insufficient amount of storage space 

results in an error. 

The ASSIGN Statement 
Data files must be opened before they can be accessed. This is done with the i:i:::;::::; I C;r··j state­

ment. The two syntax shown below are equivalent. 

i::<:<::; I C)··! file speCifier ·TChj: file number [~I return variable [,' protect code] ] 

i::<:<::; I C}·j:!:f. file numberTCi file specifier [~, return variable [,' protect code] ] 

The H:::;::<r. CJ·j statement sets up or references an existing internal files table and allows you to 

utilize data files (with F'i? I i-.;-r# and F:E){f.W statements). The files table has room for ten entries. 

All entries are cleared when a program is run, and when ':::;C:i?HTC)··i, ':::;CF:HT"C:i···i '), ::::;C:FJrn::::H C:, 

::::;C>~:HTC:i···! i:::i or reset is executed. The file number is a numeric expression; its range is 1 

through 10. The i::<::;::::; I i).! statement also assigns a file pointer used for data access to the file 

number, and positions the pointer at the beginning of the first record of the file. 

The optional return variable can be a simple numeric variable or array element and is set after 

execution to indicate various results. You can use its value to check for errors. If no return 

variable is specified, an error occurs if the file isn't found, is protected or is of the wrong type. 

Return Variable Meaning 

o File available 

1 No such file found 

2 File is protected, or wrong file type 

I 



Mass Storage Operations BP-189 

The protect code is a string expression, and is necessary only if the file was protected earlier. 

For all disks it must be the same protect code as the one to protect the file. If the file isn't 

protected, including the protect code causes an error. Using the null string as a protect code 

corresponds to an unprotected file. 

Examples 

t::i:::;;S I Gr',! :~~ 1. TO II ]).3. t.::I. il 

!:i:~~;::::; I C;1··4 II :::;C OF E::; II TO #4, P ~:·t !.Ar" !,",! 

i::!:::;:::;IG1"'! li:::;COF~E~:;!1 TO #~:; 

Line 20 illustrates a return variable. Lines 20 and 30 show that more than one number can be 

assigned to a file. 

All file numbers must be assigned prior to referencing them with PRINT #, TYP, and READ #. 

This includes subroutines and function calls which have as their parameters fill numbers. 

Serial File Access 
Serial file access is used to store or retrieve data items one after the other, without regard to 

defined records. Logical records can be longer or shorter than defined record length. For each 

data file opened, a file pointer keeps track of the data item currently being accessed. As you 

store or retrieve data, the pointer moves serially forward through the file. 

The PRINT# Statement - Serial 
The serial F<::: :U·rr·:i:!: statement records values onto the specified file from the specified variables 

or strings in computer memory. 

; .. ; I :<Tii file number:; data list [!, i:::T·iIi] 

'iTi:i file number:; E}·i:D 

The data list is a collection of items separated by commas. The items can be variables, array 

identifiers, numbers, or strings of characters. The last or only item can be E:}·UJ, which causes an 

EOF mark to be printed. Otherwise, an EOR mark is placed after the dat~ list is printed. 

Printing begins at the position of the pointer after the data item most recently stored or re­

trieved, or at the beginning of the file if nothing has been stored or retrieved, or if the pointer 

has been repositioned to the beginning of the file. 

When storing a long string, it might be too long to be contained in one defined record. In that 

·il.se, the string is automatically broken up and stored into as many defined records as it needs. 

This adds four bytes to the amount needed to store the string each time the string crosses over 

into another defined record. The parts of the string are identified as first, intermediate, or last. 

09845-93000. rev: 9/81 

I 



BP-190 Mass Storage Operations 

The length of data in the list must equal or be less than the storage space that remains in the file 

after the pointer; otherwise, an EOF error occurs, signaling that you have filled your file. Data 

can also be stored using the 1:::'1< I i···iT:!:!: statement in a file created with the :::>:::!')i:::: statement if the 

file has been assigned a number. in effect, performs a serial print onto a file. 

Examples 

C!:~:EfiTE II TE1-=-IF 11,4 
f:l:;:;:::; I Gr',! :f~::::; TO !! TE1':lP 11 " IS assigned to It 

• ~:;~J 

• ::::[':1 

Lines 50 and 60 record values for A, B, C, D, and E (*) onto file #3. This data constitutes a 

written record. The EOR which was placed after the data when line 50 was executed is overwrit­

ten when line 60 is executed. Another EOR is printed after the data in line 60. Remember, an 

EOR signifies that there is no more data between the file pointer and the end of the defined 

record. 

The serial 1:::'i? I i···iT·:!:!: statement can also be used to generate program lines into a file. Such a file 

can be retrieved with C;E::T. Here's an example -

10 CPEf=jTE 1!P!~~C;Ft="Ijj,3,~:;O 

~~~ 0 !:1 ~::; S T C; !"4 ~* :I. T C) !! F' f;~ C; f~: r," ;! 

F'F: I i··n· :fj: 1. ; ii :::::U
CE T Ii FP C;ft~ r"! !!

When this program is run, the output is -

Executing 1. I :::::"T' produces -

EHD"

•

Mass Storage Operations BP-191

The READ# Statement - Serial
The serial j?E><U:j:j: statement retrieves values for variables and strings of characters from the

specified file. In serial mode, EOR marks are ignored and the file pointer skips to the next

record to find data.

j;'j:::>H)~ file number:; variable list

Before you can re-use data which has been stored in a data file with a j:::'j:::: I (!'T'j* statement, you

must read the data back into computer memory. The data is not erased from the file; it is merely

copied into the variables speCified in the same order in which it was stored with the j::)F:::: 1·rr·:f1:

statement. Therefore, variables do not have to have the same names specified in the FF: Fn~*

statement, but they must be of the same type. Reading begins after the last item printed or read

on the specified file. To begin reading from the beginning of the file, you must reposition the

pointer or do another H::::;::::;::: C>L

In order to retrieve all of the information stored, your F'E:::::::f:f!: statement(s) data list must match

in number and type (string vs. numeric) the 1:::'j:::: I j··j·T":i1: statement(s) data list previously stored. If

the 1:;'::::: LU :j:j: statement list specifies more data items than were originally stored, an EOR (or EOF

if E::l"-::U was printed) error occurs, meaning there is no more data.

Data that is read must correspond to the type _ numeric or string _ that was printed. Precision (for

numeric data items) is automatically converted for short to real, but not for real to short. You can also

print an array and read back simple variables or other arrays, and vice versa.

Data in the form of strings can be read from a file created with the ::::;:::(/E statement. This can be

done by reading a series of as many strings as there are program lines. Each string must be long

enough to contain the program line. Dimensioning the strings to 160 characters ensures this.

Examples

10 F=2.17598824
;;~i2i C::::::?:;
::~~O pp I r'~T II FULL. "-'FI:;:~E:C I :::; I O!··~ ~ ;! , L. It',,! (1) , 11 F' :.-.::!I ; F , II c=.~.:;! ; C

r_":",-:,
.• ..!!-.;.l ti:=;:~:; I CH j.t:l TO

PF~~I!"4T *fl. ;F'!,C

11' .. "",' II ,',,",

CrG~te a 4-record file

Record values Of F & C into file

Values are read from full-

i l~] pp I !"~T II ;::;i"'10r~~T "-'PI~:~EC I :::; I Ol-··j:: II, L:r. r'~ (1. >, !; :E;:::-.: II; B;1 II D::=,.: II; D
:(;;~:O Ej···lD

rev: 8/81

BP-192 Mass Storage Operations

FULL ····PPEC I :=.:; I Ot·i:
F::::: 2" 1 ;:':'59:::::::;?4
SHOF.:T ···PPEC I ::; I OH:
J:::::: ~:::, 17':599

c= :3

Ii:::: :3

Notice that value of F is rounded when used as the value for B.

However, an overflow or underflow can occur. This is illustrated by the following program.

•
·1 t::"
1--'

C;:';:::'
.~.l")

fj::;;::::; I C;J--·I # 1. TO II :<>: II

F'PII···IT #1 ;~::, ':iE':;!'3
:::;HORT i=i
l::i~::;:=; I C;I"~ ~*;~: TO l!:"!'

PEiiD #~"2;f:1

PFI!···iT ii
6':; [HD

File crsated in last example
I Prints full-precision number

Reads short-precision numoer

This causes E:i?i?UF' ;2 i H·; L.. U;E: 4U to be displayed and a beep to occur. To avoid the error,

LE:Fi:::H ... ii ·r Ui··; can be executed. Then the default value is used.

Here's an example of corresponding serial F'F:: J: i··FT:!:!: and F:E::i:::iJ:ni: operations -

1. ~::i F I ><ED ~~

20 OPTIOH J::iiSE 1
31;:, Ii I r'1 Fl(24)

AS:::~IGH #i TO !I="."; .. =II

F'FIHT #1;X,Y,A(+)

80 DIM C(12),D(12)
':'-0 i~i::;:::; I GH :!:!:6 TO II ::<>< II

• 100 FEiiD #6;C(*),D(+),E,F

I iissign values to A
This file created in
t;::' .~.i f~' l 'j 1~1' i'~' IS' ::< a. rlt p 'I E'

I Print 26 values

Notice that 26 items are printed and 26 are read; they don't need to match as far as simple or

array variable goes. Arrays are stored as a series of single data items with no regard to dimen­

sionality.

I

Mass Storage Operations BP-193

Random File Access
Random file access is used to store or retrieve data items from a specific defined record.

Random file access requires you to specify with a numeric expression, the defined record you

wish to access. The pointer is positioned at the beginning of that defined record.

The PRINT # Statement - Random
The random Ft::' I i··rr# statement is like the serial F'F' I f·rr:fl: statement except that it records data

onto the file starting at the beginning of the specified record. However, EOF marks at the end of

records aren't ignored. The data can't be larger than the record.

F'F: I i···iT# file number, defined-record number[; data list [, FJ--!D]]

i:::'i? I i··rT":j:j: file number, defined-record number [; EJ--!D]

The data list is identical to that used in the serial F'F: J: t·iT# statement. The random F'i:;' I t··!T#

statement records data into the specified record of the file. Printing starts at the beginning of the

specified defined record. Any previous data in the record is overwritten. Any data not overwrit­

ten because the new logical record is shorter is inaccessible via that pointer. Specifying E!·m

causes an EOF mark to be printed after the data or at the beginning of the record {second

syntax}.

The written record set down by the list{s} of data must fit in the defined record, otherwise an

EOR error occurs. If you attempt to specify a defined record number greater than the number

specified in the Cf;:'E::::rrT:: statement, an EOF error occurs.

When no data list or i:::i·n::: is specified, an EOR is printed in the first two bytes of the record,

which makes the data in that record inaccessible.

10
20

• 30
• 40
• '5i~"!

H:::;:::;ICH #1. Hi ";:':;:.::"
n ::::: B :;::: C ::: Ii ::::: r~:~ l"~ Ii
PFlr·;T # ,1;f:!,B-·;;:
PRINT # ,2;C/2,D+3
pp I r'~T # , ::::

Example

I This file created earlier

Print 2 v~lues in record 2
Print EOF in 1st word of

Records 1 and 2 each have two values in them. Record 3 has an EOR in the first word.

•

BP-194 Mass Storage Operations

The READ# Statement - Random
The random i?EJlD:!=i: statement is like the serial i?E:y:u::::!t statement except that reading of data

into the computer begins at the beginning of the specified defined-record and won't read past

an EOR or EOF mark.

F:Y:><D:f!: file number" defined record number [:; variable list] . .

Again, as in the serial i?E:HDF! statement, the variables into which you read values do not

necessarily have to have the same names or precision type specified in the F'F' Ir<Yt\: statement.

If the number of items making up the data list is greater than the data in the defined record, an

EOR error occurs.

Example

Examples of and om READ#
~2 ;:i

• ·.:::U i Read 2 w~lues from

• 4U

These two operations retrieve the data stored in the previous example.

Repositioning the Pointer

If the data list is omitted, the pointer is repositioned to the beginning of the specified record. To

reposition the pointer to the beginning of a file (for use with serial file access) execute -

The MAT PRINT# and MAT READ# Statements
Entire arrays can be stored and retrieved, using either serial or random access, by use of the

i'ii::rr· F'f': :\:i--rr·:!:f and !·'!f::iT" i:;:'EY::Ii:fl: statements.

!'ii::fT F'i? :U··iT":fl: file number [, defined record number]:; array variable

[,' array variable ...] [, E!{U] . .

i·'H::rr· F:E:>:n:i:f!: file number [~, defined record number]:; array variable

[(redim subscripts::'] [, array variable ['redim subscripts::'] , ...]

I

Mass Storage Operations BP-195

Arrays are stored and retrieved element by element without regard to dimensionality with the

last subscript varying fastest.

20 OPTION BASE 1

• CO

• ::::U

MAT PRINT #1,3;A,B
r'lfiT F'P II-··!T ri; B;
MAT READ #1,3;!,r,L

9U MAT PRINT X;Y;Z;

212 212 ~l~ 212

Example

~l Ie created esrller

.. ;;~::., ,: .. , (~~~"

Arrays can also be printed and read with the F'i:;:: I i··r!":!:!: and i?E>{iJ~: statements. Lines 60 and 80

above could also read -

Random vs. Serial Method
The decision to choose random or serial methods depends upon the structure of the data which

is to be recorded and retrieved. Serial file usage makes the most efficient use of the storage

medium by packing all data tightly in the file. However, the data must be retrieved from the

beginning of the file and therefore an item in the middle of a file cannot be accessed until all

data coming before it is accessed. Random file usage is less efficient in its use of the storage

medium but it provides access to data at various points (logical records) within the file without

previously accessing the data which comes before.

I

BP-196 Mass Storage Operations

Closing a File
The H::::;:::; I ::::;i"; statement is also used to close a file; any subsequent attempts to access that file

number results in an error. It is recommended that a file always be closed when you are done

accessing it during a program segment. The two syntax shown below are equivalent.

i::i::::;::::;:[C}·i .:,: 're) :i:!: file number

i::r::;':::; I C)··i:M: file number TU .:,:.

Other Data File Operations
The other operations which can be performed with data files are -

• determining data type - ""["'"iT' function

• trapping EOR and EOF conditions - Cli···j Fj-·i:D~*

• determining data storage requirements

• buffering a file - I:i . .iFFFY:!=i:

The TYP Function
The type function is used to determine what type of data the pointer will access next.

T,-:"'F' < [-] file number>

The possible values for the function and their meanings are -

Value Meaning

o Option ROM missing or data pointer lost.
1 Full-precision number.
2 Total string
3 End-of-file mark
4 End-of-record mark
5 Integer-precision number
6 Short-precision number (If short precision was

not expected, 6 indicates lost data pointer)
7 Unused
8 First part of a string
9 Middle part of a string
10 Last part of a string

If the file number is negative, the data pointer doesn't move. If it is positive, the pointer moves

forward until it is positioned at something other than an EOR mark. In effect, a negative file

number causes a random read. A positive file number causes a serial read, ignoring EOR marks.

I

Mass Storage Operations BP-197

The ON END# Statement
Normally, encountering an EOF or EOR during a random access i;::Ei:-iD# or H~' I j···iT# operation

or encountering an EOF during serial access causes the program to stop. The CIt··j D··iD# state­

ment is a declarative l which causes a branching operation to occur when an EOF or EOR is

encountered.

i ... Ii···! E>iD# file number ::~ClTCi line identifier

C:i···j D··iD# file number ::~():::;i..iP line identifier

cn···j t:J·!D~: file number C!::jL..L. subprogram name

Specifying Cli···! EJ-ID disables OVERLAP mode for that file. The routine branched to should

service the EOF or EOR condition.

Example

10 DIM A(S,S),B(S,S),0(100)
20 NAT A::::: (;:i)
30 ['lr:IT :t::=(::::)
40 CF,:EflTE II DATA 1",4
;:iO CPEATE" DAHi2" , 4
6(~1 i=IS;::;IGt·~ *n TO "bATA1"
70 w:::=.n Ct·j #4 TO "DAHi;~:"

80 PPINT #3;14(+) I Print 36 values
90 PRINT #4;B(+) Print 36 ~~lues
lOO ::j:::;:::U:;t··j #1 TO "DHHH"

• 110 ON END #1 COTO Peposition
120 FOP 1=1 TO 44
130 REHD #1;Q(I)
140 PRINT 0(1);
1 ::i Cl H t::~ ::.:: T I
16~;j '::TOP

• i 70 t?~:·l:)o::~. it i (In: 1=1:::;:::; I Gt·~ # 1 TO II DtiTi=i:;2 11

180 This subroutine opens another data file to
access more ~~lues when 1=37

1'30 GOTO 13e

When an EOF is encountered while reading values, another file, ":u:::rr·i:::::?" is opened and used.

t::! iU is suspended during an I iT , ... 'T" 1.... I i··iF'i . ..! i or i::::D IT" response request. (::::··i i::::i···iD can

always interrupt i:::::··i ,d·; I ii"T" and C)·i i:T::':' routines. CH··i E>iIi can interrupt an CH·i i::::i?i?Cii?

routine if they are declared in the same program segment.

1 More information about interrupt branching can be found in Chapter 14.

I

BP -198 Mass Storage Operations

The OFF END# Statement
An Oi"""! E}~]J:!* declarative is deactivated with the C)F"F" E>m1t statement. C!F:"j:::" EJ-.LD also reacti­

vates OVERLAP mode for the file if it had been in effect previously.

C)FT" E)"jI):I* file number

EOR Errors
To recover from EOR errors, you can either shorten the data in precision or amount, or purge

and recreate the file with the defined records longer or more numerous.

Example

The following example illustrates a condition in which an EOR condition is generated.

l~::i C!?EHTE Ei::;Hl..JH ';, ~~:, 11::;
;:::~l::J !::i:::;:::;IGt··! #:1. TO 'I:::;HU!···I!!

40 j=i ~t.:::-.:: !Il::! Be liEF GH T. J!<L r"! r'~OPO I~:~ I!

50 PRINT #1,1;A$! A$ s too ong for record
1::;0 Ei"~D

Execution causes an EOR condition (ERROR 60); A$ is longer than the record. The EOR

condition can be avoided by increasing the number of bytes in "SHUN" or changing line 50 to

read F'i? I i<Ttl: :i., fH:.

The following example shows how an EOF can be generated .

.ll~., CFE1=lTE I! I !:/! ... !t::~~~;:::;!; , ~5, 1 rj
~~: I:::! j::! :::; ::::; I G i"~ :i=f: ~? TO; i I ;'/ ! .. ~ E ~~~; :::; !!

30 DIM B$(6)[2]
40 FOR 1=1 TO 6
50 B$(I)=CHR$(!~~~

60 PRINT B$(I)
Trying to print too much data

An EOF is generated when I = 6, B$(6) is "after" the end of file IVNESS.

Data Storage
When storing data, it is possible to optimize the use of your storage medium by minimizing the

amount of unused space. The best way to do this is to create your files so they are suited to the

amount of data you wish to store and to storage medium capacities.

Ii

Mass Storage Operations BP-199

The following tables indicate how many bytes are needed to store various variables on a mass

storage medium.

Single Variable

Full precision

Short precision

Integer precision

String

Array Variable

Full precision

Short precision

Integer precision

String

8 bytes

4 bytes

4 bytes

1 byte per character + 4 bytes + 4 bytes each time string

crosses into a new defined record.

8 bytes x dimensioned number of elements

4 bytes x dimensioned number of elements

4 bytes x dimensioned number of elements

4 bytes per element + total needed for all strings as defined

above.

By summing up how many bytes of storage your data requires, you can tailor your file and

defined record lengths to suit your needs and minimize waste. However, keep in mind that a file

always begins on a new physical record. If a file requires a total of 520 bytes (2 physical records

plus 8 bytes), 248 bytes are unused, and therefore, are wasted space.

The BUFFER Statement
The E:i. .. T::::T:::? statement is used to attach a buffer from user Read/Write Memory to a file

number to reduce device wear and increase efficiency by reducing device transfers.

The::::! .. .iFT:·:::::F' statement allocates buffers from the main user Read/Write Memory by attaching

a 256-byte, semi-permanent buffer to the specified file number. ::::'i? L·-rT"it statements cause

transfers to the buffer (rather than to the actual medium); when the buffer is full, its contents

are dumped to the medium. :?E><U:i:!: statements fetch data from the buffer until it is exhausted;

the buffer is then refilled from the medium.

Buffering files is most advantageous if all files being accessed on a specific device are buffered.

See the Mass Storage ROM Manual for more information on buffering and its implications.

•

BP-200 Mass Storage Operations

A buffer that is assigned to a file number is also dumped under these conditions -

• i::r:<::; I CJ-!ing that number to a different file

All buffers are dumped when any H::::;::::; I C}·j is done.

A buffer is returned to main Read/Write Memory under these conditions -

• Reset

• Closing the file

• Returning from the subprogram in which the file being buffered was opened.

The I:i . ..iFT:·EF: statement can't be executed from the keyboard.

The CHECK READ Statement
The C:i .. j[C>< i?Ei:::iI:: statement is used to verify information written to a storage medium.

' .. ··L.!t::·:' .. ·; ;:::'~:';::;r; [.M. f'l b]
, , iI · ... ·,··. ,"., , 1.1 .. ' 11' 1 e num er

When no file number is specified, all storage operations are verified. The file number causes

only F'i? J: i'iT:~: operations to that file to be verified. This is a bit-for-bit comparision.

Ci .. ·iEJ)·: 1?E:i::fD has the additional function of forcing transfer to the medium of the current data

record after every F'F' I i-.rr:M: operation. However, the :1::: i ... !F·FT:: i:;:: statement has precedence over

C:i .. ·j[C):: 1?EJH::. The data record is verified only when the buffer allocated by the E:i .. iFTT:i?

statement is dumped to the actual medium.

The C) .. !!:::Ci< :;::EHD operation reduces the speed of operations and increases wear on the tape

cartridge. Use only when necessary.

I

Mass Storage Operations BP-201

The CHECK READ OFF Statement
The CHE:C< FEJW operation can be cancelled by executing the C:Ht:~C>::: !:;:'E~m:! C::F'F' statement.

The PROTECT Statement
The F'!:;:'CrrECT statement is used to guard a file against accidental erasure, especially with disks.

The file specifier must specify an established file on a device.

The protect code is any valid string expression except the null string. Only the first six charac­

ters are recognized as the protect code.

Examples

These are e~~mples of PROTECT statement
2~::i Pf;;~OTECT !'DATA!!,D.::t.t~:·$:

3~j PPOTECT!I t'1!:~i"'1E::;: F:::; II, II ;:.:;::<>:; II

4121 Er·jD

NOTE

For tape cartridges, the directory doesn't retain the protect

code itself, but only notes the fact that you have protected

the file. For all other mass storage devices, the protect code

itself is kept in the directory. A file on the tape cartridge can

be purged using any protect code; it need not be the one it

was protected with.

•

BP-202 Mass Storage Operations

The PURGE Statement
The F\)?C;C: statement eradicates any file (program, data, etc.) by removing its name from the

name table in the directory, thereby preventing any access to the file.

F'i .. H?CT:: file specifier [~I protect code]

The protect code is necessary only if the file was previously protected. The records of the file

are then returned to "available space", being combined with adjacent available records, if any.

Examples

10
~20 FUf~:GE!! TE!"'IF!1
:.::~~i F'UF:~CE jj E>::Tf~~fi: F;::~!!

40 File was protected
at some other time

The COpy Statement
The C:CiF'\' statement is used to copy the information in a file into another file.

CCiF ;' source file specifier 'rei destination file specifier [, protect code]

The protect code is necessary only if the source file is protected.

Execution of the C(}:::";' statement causes all records of a file to be copied. The first file specified

can be of any type. A check of the name of the destination file is made; an error is given if the

name is present. If not, a file of the same characteristics as the source file is created. The same

storage medium can be both source and destination. If an option ROM file is copied to or from a

tape cartridge, its type is changed to 'OPRM'.

Examples

These are examples Of COpy statement

Can be same medium

at some other time

The CC)F:";' statement is very useful for duplicating a storage medium. Each file can be copied

individually, thus duplicating the entire medium.

Mass Storage Operations BP-203

The RENAME Statement
The i?EJ·H:::!i·'iE: statement is used to give a file a different name.

i":: i:::. i H:::i!"iE: old file specifier 'Tei new file name [~! protect code]

Examples

exanples of RENAME

TO 1; F I f··IHL..!1 ~ i;'TP I fIL;;

STORE KEY and LOAD KEY
The typing-aid definitions of all special function keys can be stored onto a mass storage

medium using the ':>Ti);::i: i:Y:\' statement.

This creates a "KEY" file.

The stored definitions can be loaded back into the keys by executing the '''ii:::::U .i::.'

statement -

Examples

::::;~::! ;::;TO~:E i<E\' !! f~i T Ii:::;: F~:::!!
40 u:u:rn t:..L'" !! TEYiP<'/!!
'50 L..OfHl i<E:':"' !! f1 I D:::::: F::::: l!

;::,u Fi···iD

I

BP-204 Mass Storage Operations

STORE BIN and LOAD BIN
All binary routines currently in memory can be recorded separately from programs using the

':TC:j! I: I ij statement.

:::>r<> . i.... .: .. '.: (.j file specifier

Stored binary routines are retrieved and added to current binary routines using the i Ci!:::iIi E: I i··j

statement.

Examples

amples of STOREBIN and LOADBIN

STORE ALL and LOAD ALL
The entire user Read / Write Memory state: programs, variables, keys, binaries, CRT dis­

play - can be stored into a special memory file. The files table is not stored into the STORE

ALL file, however.

The file created by the ':T!'!i?F statement is very large; the minimum is 38 records.

::i[l... can't be executed during execution of a subprogram.

Memory can be returned to the state it was in previously by using the L ' ': , H .. t... statement.

L .. C>{U l:::n .t file specifier

All files being used when the corresponding ::::;"; ... '····r··· !:::!L. ... was executed must be reassigned.

NOTE
In order to LOAD ALL a STORE ALL file, your computer
must be identical (options and memory size) to the one used

when the STORE ALL was executed.

Examples

REM These are eamples of STOREALL and LOADALL

rev:4181

I

Mass Storage Operations BP-205

The Tape Cartridge
This section covers general information for using the tape cartridge for mass storage opera­

tions.

For heavy usage of mass storage files, such as nonconsecutive file sorts or data base manage­

ment applications, flexible disks or hard discs are recommended for optimum performance and

reliability.

The standard tape drive is on the right hand side of the computer and is the default mass

storage device at power on and <::;i':i?i i i C)··i i::::' Its mass storage unit specifier is :T15. The

optional tape drive is on the left hand side of the computer. Its mass storage unit specifier is

:T14.

NOTE

Occasionally when using the tape cartridge. unexpected

high-speed movements may occur. Ignore these: they in no

way affect usage. but merely assure proper tape tension.

Recording on the Tape
To record on the tape cartridge, the record tab must be in the rightmost position, in the

direction of the arrow (as shown).

Write Protection

If the record tab is moved to the left, no information can be written to the tape. Information can

only be read from the tape.

I

BP-206 Mass Storage Operations

Inserting and Removing the Tape Cartridge
Insert the tape cartridge so that its label is up and the open edge is toward the computer. Both

the drive window and the door beneath it open when the cartridge presses on the lower door;

the cartridge can then be inserted.

To remove the tape cartridge, press the eject bar. If it is pulled out without pressing the eject

bar, another cartridge can't be inserted until the eject bar is pressed.

General Tape Cartridge Information
Mass storage unit specifier

Tape capacity

Rewind time

Initialization time

Tape length

Number of tracks

Access rate (search speed)

Transfer rate

Typical tape life

Typical error rate l

:T15 (standard tape drive)

:T14 (optional tape drive)

847 user-accessible physical records (216832 bytes)

42 files (directory entries)

19 seconds

3 minutes

42.67m (140 feet)

2 independent tracks

11 770 bytes / second

1 438 bytes / second

50-100 hours

< 1 in 107 bytes

1 This is dependent on the cleanliness of the tape head. tape care. and the cleanliness of the environment.

I

Mass Storage Operations BP-207

The REWIND Statement
The i:;:'E::i.'.j I i'{U statement rewinds the tape to its beginning.

FY:::.'.) Ii{U [mass storage unit specifier]

If no parameter is specified, the default device is used. If it is not a tape cartridge, the statement

is ignored. There is also a Special Function Key to rewind each of the tape cartridges.

Operations which do not involve the tape cartridge can take place while the tape rewinds.

Mass Storage Errors
When using the tape cartridge, wear caused by contact between the tape and the read/write

head can occur. If at any time, the tape makes rattling sounds while moving, or error 84,87,88

or 89 or a ':::;F'i:::n?E Ii :U;:Y::C:TC:!?';' i:::iC:CE::::::;':::; warning begin to occur frequently, it is advisable that

steps be taken to prevent the loss of information stored on the tape.

The first step is to clean the tape head and capstan as discussed in the Installation, Operation,

and Test Manual. If this does not alleviate the problem, the next step is to transfer the informa­

tion to a new medium, retiring the worn tape. Continued use could cause loss of information or

damage to the tape drive itself.

!:::i?i?C!i? ::::::!. can occur when either the tape drive or the cartridge itself fails. To determine the

source of the problem, a different cartridge can be inserted. If i::::i:;:'i?Ci)? ::::: :). stops occurring,

assume the tape itself is bad and replace it. If E::):;::F:Ci)? ::::::i. continues to occur, the drive itself is

bad. In this case, call your HP Sales and Service Office for assistance.

Optimizing Tape Use

The tape cartridge used with a Series 9800 Desktop Computer has two tracks with 426 records

on each track. Records are numbered consecutively; record 0 and record 426 are both at the

same end of the tape, on different tracks. Thus, records 425 and 426 are at opposite ends of the

tape. This can cause a situation in which one file spans two tracks, making access time­

consuming and wearing to the tape.

Record #0 Record #425

+ t

1------+-11 --------l))'>------------L........I 1

t
Record #426

I

BP-208 Mass Storage Operations

To avoid this situation, you can create a dummy file in record number 425, making it impossi­

ble for one file to span two tracks. The following set of operations can be used on a tape with no

files on it to create this dummy file.

10 This program should be used on an unused tape
~;:O CPEJiTE" FI" ~ 4;:'~!:j

:30 Ci~:E f1TE !1 DUI'li'! \'!! ~ 1
4(1 PUPGE "FI"

The file /DUMMY/ stays on the tape as a place

The file :U! . .H"'?'"!';' will be in record number 425; the first five records on the tape are used by the

directory which is why file A is created with only 420 records.

I

Chapter 12
Debugging and Error Testing

page 210. TRACE (monitors branching in all or part of a program)
page 211 • TRACE WAIT (causes a delay after each statement that causes output)
page 211 • TRACE PAUSE (pauses the program at a specified line)
page 212 • TRACE VARIABLES (monitors changes in the values of one to five variables)
page 212 • TRACE ALL VARIABLES (monitors all variables in all or part of program)
page 213 • TRACE ALL (monitors all branching and variable changes)
page 213 • NORMAL (cancels all tracing operations)
page 213. ON ERROR (causes branching when an error occurs during program execution)
page 215 • OFF ERROR (cancels the ON ERROR condition)

Error Functions
ERRL (line number of last error)
ERRN (number of last error)
ERRM$ (message of last error)

BP-210 Debugging and Error Testing

Debugging a Program
Tracing a program is a convenient method of debugging the logic errors in the program. There

are two types of tracing statements - three which trace the logic flow (

:::::: .L.) and three that trace variable assignments (T":?:::::C::::::: ',i:::::::;:: .,., " ..

: :'.; ;' ; :::L.L.. of a running program. Only one of each type can be : :'.; ;' ;
: ; :'

: ::',.:.

.. , .. ,.::::" .. :

in effect at one time. A subsequent one cancels the previous one. Output from TRACE opera­

tions goes to the system comments line. When tracing, it is advisable to set the print all mode

(press and latch ~) and specify a printer other than the CRT as the print all printer (with

PRINT ALL IS) so that; ;·:'l'·'j!,J:::. outputs are more permanent.

Tracing statements can be programmed or executed from the keyboard. They do not increase

program Read/Write Memory requirements when executed from the keyboard or from the

program. If you are tracing a program and execute a GET operation, the tracing will be

cancelled.

Tracing operations cause the computer to temporarily revert to SERIAL mode even if OVERLAP

is in effect. TRACE, TRACE ALL. and TRACE VARIABLES also slow down program execution.

The TRACE Statement
TheT":?:::::C:E:: statement is used to trace program logic flow in all or part of a program. When any

branching occurs in a program, both the line number of the line where the branch is from, and

the line number of the line where the branch is to are output.

Ti?::::n:::i:::: [beginning line identifier [,; ending line identifier]]

When a branch occurs, the output is -

If no line identifiers are specified, all branches in the program are monitored. When one line

identifier is specified, tracing doesn't begin until that line is executed. When both line identi­

fiers are specified, tracing begins when the first line you specify is executed and continues

(regardless of where the program is executing), then stops when the second line you specify is

executed.

rev:4181

•

Debugging and Error Testing BP-211

The TRACE WAIT Statement
The iT'!:::!!::>::: i.,.H:::: I"T statement is used in conjunction with any other 'TT::::+::::C: statement. It causes

a specified delay to occur after each statement which causes a trace output. It is useful for

monitoring and examining trace output as it occurs.

: »';' ... :1:::: ;:.,:: :::'T number of milliseconds

The delay is specified by a numeric expression in the range -32 768 through 32767 which

indicates the number of milliseconds after each trace printout. A negative number defaults to

zero.

The TRACE PAUSE Statement
To check whether or not a line in a program is reached, or to monitor the number of times a

specified line is executed, use the Ti?::::!!::::::::: F':::f .. L:::;::::: statement.

TT>+::::::: F<+ . ..i:::::E::: [line identifier [!, numeric expression]]

If no parameters are specified, execution pauses when this statement is executed; the next line

to be executed is then displayed. This allows you to pause a running program and know where

it is paused, which is not possible with the F<::!i .. .!::::;i:::: statement.

When only the line identifier is specified, the running program stops when execution reaches

the specified line, but before the line is executed. When the numeric expression is specified, it is

rounded to an integer, call it N. The program stops when the specified line is reached for the

Nth time; the line isn't executed. Execution can be resumed with that line by pressing rn.
Every subsequent time the line is encountered, the program pauses before the line is executed.

This type of tracing can be disabled by letting the line identifier be one that is not a line

identifier in memory. The most efficient way is to let it be a lower number than the lowest

numbered line in memory.

•

BP-212 Debugging and Error Testing

The TRACE VARIABLES Statement
To trace changes in values of variables without using an output statement, use the

'Ti?i:::iC:E:: '"ii:::H? I i:::U:::L..F:::::; statement.

The variable list can contain simple numeric and string variables, and array identifiers; there

can be one to five items separated by commas, The value of any variable which changes is

printed, The output is -

'ri?!:::iC:E: L.. I i··jE:: line number~! variable name [<subscripts> }:::: value

The line number is the line in which the change occurred, If the change comes from a live

keyboard operation, the line number is replaced by i<E:'";'E:Cii:::iF'Ii, The new value of the variable

is indicated, In the case of an array, the values of the subscript(s) at the time are printed

following the name,

When an entire array changes value, the printout is -

Tracing variables also detects changes in subprograms of variables passed by reference, For

example, suppose -

TRACE VARIABLES A,B

is executed and i:::i is passed by reference to a subprogram, If the corresponding variable in the

subprogram is changed, a trace message for !:::loccurs,

The TRACE ALL VARIABLES Statement
To trace all variables with the ability to specify lines, use the 'Ti?i:::n::::E: i:::iL .. L .. ',ii:::ii? :U::i:E\ ... E:::::; state­

ment.

·r;:::.':::" .. ··;:::· e,;; ' . .le,;:::' T e'T'; ;:::'0:::' [b ' , I' 'd t'f' [d' I' 'd t'f']]
,,".' " , '" ' '" ,," .. ,., !.!.." ,' eglnnlng Ine I en I ler ~! en Ing Ine I en Iler

When no line identifiers are specified, all variables are traced throughout the program, When

one line identifier is specified, tracing begins after that line is executed, The ending line iden­

tifier causes tracing to stop after that line is executed,

I

Debugging and Error Testing BP-213

This method of tracing can be turned off by letting the first line identifier be a line identifier

which is not in memory such as an undefined label or line number which is lower than the

lowest line number in memory.

The TRACE ALL Statement
To trace both program logic and variables, use the TT>::iC:i:::: i:::i 1.... 1.... statement. This statement

allows, in effect, concurrent execution of Ti?i:::n:::E and 'TF'i:::iC:E:: i:::i 1.... 1.... "i:::H? T i:::::ULJ:::::::;.

Either 'part' of the Ti?i:::i:::::E: i:::i 1.... 1.... mode can be altered without cancelling the other part. For

example, if TT:Y:iC:E:: \,'i:::H? T i:::::U1..Y:-:::; i::i, E: is executed after Ti?i:::iC::::: tracing of all variables is

cancelled, and only A and B are traced, but theTT:y:n:::E:: part of Ti:;::i:::!!:::E: i:::i1...1... is not affected.

Although the volume of printout is high, Ti?i:::iC::::: ::::i 1.... 1.... is useful if a logic problem in a program

hasn't been isolated with selective tracing.

The NORMAL Statement
All tracing statements are cancelled by executing ':::;i::i?i:::iTi i···i:::"::>?i:::rTi)..' i'i, :::;:::>?i::rrCi···i ... ,

:-.:i:'.::, :1

Error Testing and Recovery
The ON ERROR Statement
Run-time errors are those which occur only when a program is running. Dividing by zero is an

example. A run-time error normally halts execution. Through use of the i)··i EJ::-F'CH? statement,

run-time errors can be caught when they occur and execution can continue with the specified

line. The Cii< :::::F:F'CiF' statement specifies a branching which takes place after an error occurs.

Interrupt branching and how iiii E::F'i?CH:;:' relates to other interrupts are covered in Chapter 14.

''''.' , ... "'-!',,'i ik' C;C<::;i.JE: line identifier

: ..)··i :'::':'::':?C:i:;:: i ... i···i:... subprogram name!

1 Can't pass parameters

•

BP-214 Debugging and Error Testing

An eii< CYY:'!}:' ... C::::H L statement is active in the program segment where it is declared and in all

program segments called by that segment. i:}··i E.."'" ,",,:, i .. J . .!: i . ..! or i:::;i::»::!::' is active only in the

program segment where it is declared. Execution of another i;r'" :Y:'!::H? statement cancels the

previous one.

When a run-time error occurs and the i ii-' , ... ,.,: i": ' .. .'i ' condition has been established, execution is

transferred to the specified line. Then the E: and F:i?i:'i'i:,i, functions (discussed next)

could be tested, error recovery procedures or ":U T. i:::}'i :»," could be executed.

NOTE

When a program is running in OVERLAP mode, Cii"~ EFYCi!?

won't trap most 1/0 errors (54-103). It is advisable to use

SERIAL mode when trapping errors with CII"'! ET'F'OF:.

If i:::;i::i'rCi is specified and the recovery routine contains an error, it is possible to program into an

endless loop. It can be stopped by pressing OJ or 8. If i;;::/):1:: or C::::H ... L. is specified and the

routine contains an error, the normal error message is displayed and execution stops.

If the ;::): i:::Y::i:'C>::' statement specifies a C;C<):E: or computer priority is set at the highest

level until ::::::::i :i:>i or '::l. .. :E'E:: 'T'r is executed. This means that the routine can only be inter­

rupted by an (Y< i:::i<Iii:i which is declared in the same program segment as C)·i i:::i,')r"

or is in the subprogram called by C)-.! i .. : ., ,... .,;:::: ;.

A routine accessed with C:c:: rCi can be interrupted because system priority isn't changed. Please

refer to Chapter 14 for more information about interrupts.

Error Functions

One string and two numeric functions can be used with eii< i:: .. , >:i .. .!i"':.

·····c:;
:".: ...

The error line function returns the line number in which the

most recent program execution error occurred.

The error number function returns the number of the most

recent program execution error.

The error message string returns the most recent program

execution error message, a combination of E:Y'i?L .. and CY:'i:·:.

I

Debugging and Error Testing BP-215

The OFF ERROR Statement

Example

1.0 Thi ~:- pt"-09(---;:;.rf! U~~-I::-::;- OH f:~PPOf,: to dE-t.e-ct '_)_3_i""---j ou:::­
mass st.o~~9E- E-rrors and display an appropriate-

20 message if one occurs
30 ON EPPOR CO TO Recovery1
4~~1 Tf"":)=1
::5~~! Fr" 'j nt :

1 rn7j
lEi

1.4[1
1. ~:;O

i?O E:30:
'j ot:~
.!. '_'0:_'

.'-, '':,,-..

..-.:. ~~! ;~.i

,'-, C::' ,-:,
,:::. ,_, !~J

2?O

CPEf:iTE II D~::ITfi II, ~~::5

fi::::;::::;ICh #1 TO II Di=i-fFl II

FOF~~ 1:::1 TO ::;0
F'Plr-~T :i=f1;Pt-1D

t--IE>::T I
Fi? I t-iT II DATFi FP I j--1TED Or--! F I L.E II

::;TOP
I Check for errors :30, :33, and 89

IF EPRN=:3e THEH E8e
IF ERPN=:33 THEH E:33
IF ERRh=:39 THEh E:39
GO TO E>:: 'j t ! Error was nonE- of thE- above-
PR I t--IT !! PUT THE TriPE I 1-;. THEH PI;,:E::::;::::; COt-iT I t-;UE II

BEEF'

FP II-1T !! Tl:iF'E I::::; I,JF.: I TI::: F'f"OTECTED. II

PF:: It-H "UI---IPI~:OTECT THE THPE, THE!--j F'F.:E::;:;'::; cm-n I r-RJE!l
DEEP
F'riU:::::E
CO TO Pr' 'j nt
IF Try<3 THEN Print. 3 t.rie-s at writ.in9
Tt-·~) ::::Tt"':) + 1
F'PIHT "Ci~H-;---T l,HdTE OH THF'E DUE TO CHEct< f';::EFiD EF::f?OP"
Pf? I t--iT "I !-j::=';EF.:T f:!!--;OTHEF TflPE HHD Pf,:E';':::; cOI-·rr I i-·{UE!!
BEEP

Hnothe-r e-rror occurre-d

Ii

BP-216 Debugging and Error Testing

Some errors are not trappable using the ON ERROR statement. These errors include -

• Syntax errors (not run-time errors)

• Errors occurring when statements are executed via live keyboard

• Errors detected by the I/O processor when in OVERLAP mode

• Mass storage operation errors using LOAD, STORE, GET, SAVE, LINK, LOAD ALL,

STORE ALL, STORE BIN, LOAD BIN, RE-SAVE and RE-STORE.

The following errors are not trappable -

1

16

55

83

2

40

56

5

41

57

14

42

58

Some of the errors which cannot be trapped in the OVERLAP mode can be trapped if you run

the program in SERIAL mode.

Some of the mass storage errors (such as Error 80) can be trapped by doing an ASSIGN

statement for a known data file on the medium, as shown here -

could trap an Error 80 if the file CHAMP exists on that particular medium and it is not installed

into its drive.

The ASSIGN statement can be deactivated by -

after the ON ERROR is tested.

•

Chapter 13
Special Function Keys

The Special Function Keys (SFK's), marked kO through k15, provide a variety of uses: typing
aids for frequently used statements, commands, operations and other series of keystrokes,
program interrupting capability and accessing CRT special features.

page 220 • EDIT KEY (lets you define a Special Function Key as a typing aid of up to 78
keystrokes)

page 225. SCRATCH KEY (erases the typing-aid definitions of one or all Special Function
Keys)

page 225 • LIST KEY (lists the typing aid definitions of one or all Special Function Keys)

CRT Special Features
To access the CRT special features, hold down 8, then press any of these

kO (inverse video)
kl (blinking)
k2 (underline)

Repeat the procedure to clear the mode.

rev:4181

BP-218 Special Function Keys

Pre-defined Definitions
These keys have the following definitions at power on or after ~:;CF:ATCH A is executed.

Key Function

Inverse video mode

Blinking mode

Underline mode

~ (DEE X ~ PE~'l I !··m" : T 14" (if optional tape drive present)

~ (DE~ ~ PE~.JIr·m": T1':;"

~1-E1· ~ • ...J

@ LOAD

~ ':·H-"E ~._I. I.'

~ '-·TI-IDE ~ .=, _r:.

~
~ EDIT

@ EDIT LIt·1E

~ LI'-·T ~ .:-

Special Features
The CRT special features - inverse video. blinking and underline - can be used alone or

combined. Each mode is entered by holding down 8. then pressing the specific key.

Example

For an example of blinking. hold down 8. then press QD

Now type in .:,:..:,:..:,:..:,:. I I I I.

To add inverse video to blinking. hold down 8. then press [ill

and type in ####.

Special Function Keys BP-219

Each mode is exited by pressing 8 and the specific key again or by pressing any of the

CLEAR keys. To get back to normal mode in the previous example, hold down 8 and press
CI2:J CE1J ,

These special features are very useful for highlighting text which is output to the CRT in

programs. Strings can be displayed or printed to the CRT with any combination of the special

features.

Example

This example shows underline.

.... ,,-:,

.~:: 1::1

CONT'L & K2 were pressed
before 'N' was typed and

be sure quotes aren't under! i

HI inking, Inverse video and under! ine can
emphasize ~evt. They can be used separately

Note

Entering any combination of special feature modes adds one

character to the length of the string, as does exiting the spe­

cial features mode. For example, the length of -

is 11 characters.

If you use a special feature in an output or F:Et'I statement, or

in a comment, make sure you enter at least one character

that has no special features before storing the line. Other­

wise, the entire program is in that mode after that point in the

program when listed.

1 <1 specifies a blank which Is a character.

Ii

BP-220 Special Function Keys

Typing Aids

Keys 6 through 15 are defined at power on and ::;CPATCH A as typing aids so that frequently

used operations can be entered with a single key stroke. These definitions are indicated below

the appropriate key.

Hint

If you press a defined SFK and get an unexpected

i.Y-.!:DE:Y:· I i··iE::Li i<E::\' message, check the shift lock key.

You can save your key definitions for later use with the STORE KEY statement and retrieve

them with LOAD KEY. These two statements are discussed in the mass storage chapter.

The EDIT KEY Command
There are 32 special function keys - 16 unshifted, 16 shifted - available to be defined as

typing aids. The initial definitions of keys 6 through 15 are not permanent, but can be edited, or

erased and redefined. These definitions were listed previously in this chapter.

NOTE

The CRT special feature definitions are permanent. They are

separate from the typing-aid definitions.

To define or edit a key, execute -

ED I T t:::E\' key number

or type in -

EDIT

(Key 12 can be used if it still has its power-on definition)

and press the key to be defined.

The computer is now in the edit key mode with the key number displayed at the top of the CRT

and any current definition displayed. Any keys on the keyboard, up to 78 keystrokes, can be

entered to define a particular key, with these exceptions -

•

Special Function Keys BP-221

In addition, the SFK itself may not be used in its own definition; this would cause an endless

recursion.

Pressing the SFK that is being defined a second time stores the keystrokes as the definition and

returns the computer to the normal mode. Pressing it immediately after the edit key mode was

entered defines that key as null if that key had no previous definition. 8 can be pressed at

any time to abort the editing of the key; no new definition is stored and any previous definition

remains.

Most of the examples that follow relate to and build upon each other.

Examples

For example, let's say you are keying in a program that has many F'F: I i··;-r statements. It would

be handy to define key 0 as F:'F: I r·il. Key in CD I T.

Then press CELl.

To store the definition, press CELl.

Now if you wanted to type in: F'l? Il·rr- ;:.::, \', four keystrokes can accomplish this:

CELl0GJG)'

One SFK definition can be used to define another. For example, say that au is defined

Key 2 could by defined to be F'F: n·n F'.::.'), H by entering the edit key mode for key 2, then

pressing CELl au, 0

then storing the definition by pressing ULl.

Pressing ULl now enters F'F: HiT F'.:::t.,), H.

1 A. Indicates a blank space

I

BP-222 Special Function Keys

An SFK can also be defined so that it performs an operation immediately. This is accomplished

by having the last entry in the definition be one of the special terminator keys -

Only one of these keys can be used in a key definition and it must be the last entry in the

definition. A terminator key can be the 79th keystroke used to define an SFK.

Examples

In the previous example, aLl is defined as F>:? n··:T· ::::"::;;":'.'!' : .. ·L To define CED as an immediate-

execute operation to execute ::::':? I i···i·'!"

aLl CD.
, j ... :, enter the edit key mode for key 3. Then press

Then store the definition by pressing CED .

Now when you press CED, the values of Pay and H are automatically printed.

As another example, say that you are writing a program which uses the above variables Pay

and H and you want the values printed many times throughout the program. By defining CliJ

to be -

the entire line F'F.: I tH F'.::t,') ~ H can be automatically stored after a line number by pressing key 4

following the line number.

If two or more SFKs that each contain a terminator key as part of their definition are used to

define another SFK, execution stops with the first terminator key.

Example

For example, suppose key 16, key 17 and key 18 are defined as follows -

i<E,-:"' 1?
F'PI!'-rr "i<l?"

~:::E'/ 1 ::;!
HN'!<!:::'::) 16
, f:::E·::..' 1?

•

Special Function Keys BP-223

Pressing key 18 results in -

The character editing keys ~ ~ ~ ~ can be used to edit an SFK definition, or can be

entered as part of an SFK definition. They must be pressed while 8 is held down to be

entered as part of the key definition.

Examples

For example, to change the previous definition of CliJ, F'F: un F'a l
,..', H to Ii I:::W F'a l

,..', H, first

enter the edit key mode for CliJ which was defined as F'F: I tH.

is displayed. Press ~ six times to position the cursor under the P. Now type in Ii I ::;F'.

To delete the T, press ~.

To store the new definition, press CliJ

The definition of key 2 is automatically altered because key ° is part of its definition.

Here's an example of using @"iii] in a key definition. The definition of key 0, Ii I::;F'a, can be

changed to include quote marks and an insert cursor so that only the text need be entered into

the display statement. Enter the edit key mode for key 0. Key in two quote marks, then hold

down 8 and press ~ and ~. Now press key ° to store the definition.

Now you can press key 0, type in the text you wish to display, and execute or store the line.

Many of the keys on the keyboard, such as 8, ~, CD and OJ do not have a directly

printable character, but instead cause some action to occur when pressed. To represent these

keys in the edit key mode, each key has a unique keycode that indicates its action and is

displayed on a separate line.

I

BP-224 Special Function Keys

When any of these keys is pressed for part of an SFK definition, the previous parts of the

definition roll up; the keycode for the key just pressed appears on the line above the cursor,

with the cursor in the entry area ready for another key.

When editing keycodes, the four editing keys G:J G:J ~ iNSCHRI appear to have a slightly dif­

ferent function. Using G:J to move the cursor back into previously defined parts causes the

display to roll down. G:J causes it to roll up. iNSCHAj allows keystrokes to be inserted above

(before) a keycode entry.

Example

For example, let's say you wanted to define G1Q] to set three tabs each three spaces apart but

defined it to be -

._.F.: i qht ·':H··re!I .. .!

--F.: 'j (jht ·:ii·T· 0 I .. .!

····F i !:;Iht ·:ir--r-·()I ... I

·--T.:ib :::·,:::·t

--F: i (~h1:. dtT·Ui .. .!

'-'F i ,:~h t ·:H-· r" o I .. .!

--F: i (:jI·"";"1:. ·:itT·OI .. .!

"-T:i[) :::.,::-1:.

To change the T:ib ,:.'1 e·:it-· to T:ib :::.>~·t and delete one of the last four F.:'j '~1ht .:H··"(·()I .. .!S, do the

following -

Enter the edit key mode for G1Q]. The flashing cursor will be in the line under the last T,'1b :::.,::-t.

Now press -

ten times to position T:ib C:'I '::'.:it"". in the cursor line. Now press -

four times to position a ~::'j l:;Iht ·:irru l .. .! in the cursor line. Now press -

to delete that entry.

Finally, press G1Q].

•

Special Function Keys BP-225

The SCRATCH KEY Command
To erase a specified key definition, type in -

(or press ~ if it still has its power-on definition) then press the key you wish to erase.

To erase the typing-aid definitions of all special function keys, execute -

[.... 1::
: .. : :

Erasing all SFK definitions adds 160 bytes (138 bytes if your System 45 has no lefthand tape

drive) to the power-on value of space available in Read/Write Memory, since the initial SFK

definitions use 160 (138) bytes.

The LIST KEY Command
All or selected SFK typing-aid definitions can be listed. Executing this command -

causes all typing-aid definitions to be listed on the standard printer. (see F:'i? T i···iTEf::: ::: ':::, Chap­

ter 10). To specify a different device on which the listing is to occur, execute -

L.. J: ':::T <E'/*F select code [, HP-IB device address]

A single key can be listed by executing -

L.. L::-T" !·:::E:\' [#select code [, HP-IB device address],] SFK number

or

Here are some examples of L.. I '=:;T <[':"' commands -

L '=;]" i< E'" ii'C
L "::' T f:: F";, j*6, ,~.

L '3T !·:'E'l :f~6, ;=;:

L ::::."j- ::: .. :;,l, ilk ~::.::,; -,-

L sts all keys - HP-IB prInter

I

Ii

BP-226 Special Function Keys

Chapter 14
Program Interrupts

Introduction
Your computer has five interrupt declarative statements that enable program interrupt condi­

tions to be specified in a program. The specified interrupt conditions cause a GOTO, GOSUB

or CALL branching to occur. The five interrupt statements allow interrupts to come from -

• a Special Function Key (or·; f:EO

• any key on the keyboard (CIi"'! i·::r:Ii)

• a program error (CIi"; fJ?F:C1i?)

• an end-of-file condition (C)ri [I·m)

• a peripheral device (m·; I r'iT)

This chapter covers or·; fn::\', CIi"; <ED and general information about the five statements and

how they are related. m·j Ef,;:YCII? is covered in Chapter 12, CIi"; Ei···!D in Chapter 11 and or·; II··n

in the 1/ 0 ROM Manual.

Any program interrupt, be it a keystroke, error, end-of-file, or peripheral interrupt, occurs while

some line of the program is executing. Branching that is enabled by an interrupt declarative

occurs when the program line is complete and is known as an end-of-line branch. Thus, more

than one interrupt can occur during statements that take a long time to execute like ~'~H I T or

!'lHT. .. n··i'o,,'. These are known as simultaneous interrupts.

Priority
Priority determines whether or not a program can be interrupted and also in what order

simultaneous interrupts are handled.

At power on, the priority of the computer is set to O. All operations then assume this priority.

The ON declaratives specify a higher priority so that a program can be interrupted. A routine

can only interrupt the program if it has a higher priority than the current priority.

In the CH··i 1<1::\', en··; <I:D and Cli·; I f··iT statements, you can specify priority in the range 1

through 15. If you don't specify it, it defaults to 1.

The m·i EJm and CIi"; [FPCi!? statements have an implied priority of 16. Thus, they can always

interrupt a program.

BP-228 Program Interrupts

Changing System Priority
When an interrupt is declared with Ci:::iL..L.. or i:::;i::/) . .iE:, system priority is set to the specified

priority when the branching occurs. When C:;i::rr'Ci is specified, system priority is not changed.

Since i:::;C::'TCi doesn't change system priority, another lower priority interrupt can interrupt as

soon as the line specified by C;i::::TCi is executed. Thus, you should use i:::;i::::'TCi in an interrupt only

if you don't care if the program doesn't return to where it was when the interrupt occurred or if

the interrupt routine is interrupted.

When the routine entered with i .. O!·i!....!.... or i::::i:Y::::i. . .iE: is exited system priority is set back to what is

was before the interrupt.

Scope of Interrupt Statements
An interrupt declarative with C>::i!.!.. is active within the program segment it is declared in and

within any subprogram called by that segment. An interrupt declarative with i:::;Crrc! or C;Ci:::::i .. .iE: is

only active within the particular program segment. Branching to a subprogram suspends i:::;C::'TCl

and i:::;i:Y::::i.YE: interrupts until the program exits back to the program segment in which they were

defined. Interrupts relating to those C;CiT"Ci and C:;::Y::::iYE: interrupts are logged (one for each

declarative), then processed upon return.

How Interrupts Interact
Interrupt declaratives can be split into two groups: one containing CH"': :<T::\', Cl:"': :::::E::D and C:::"':

I :':T, the other containing C:::·: ::::}.:J::i and CH··: :::::::::::::::Ci::::'. This distinction is made because priority

for the latter two is always implicitly the highest; for the former group, it can be specified.

ON KEY, ON KBD and ON INT
Here are some facts about (>.: :<E:'/, CH··: :::::::::D and C>": I i··rr interrupts -

• C;::Y::::i.YE: interrupt routines can't be entered again with a repeat of their interrupt until

::::':::::·Ti .. i!:::::··.: is executed .

• Another interrupt with a higher priority can interrupt an interrupt routine in progress. The

lower-priority routine is completed when the higher one is done if the higher one specified

i:::;Ci'::::i.YE: or Ci:::i!..!. .. A lower-priority interrupt can't interrupt a higher-priority one; it is

executed when the higher is done.

I

Program Interrupts BP-229

• If simultaneous interrupts with the same priority are recorded, CH"'! !<E::U takes precedence

over Cli··! Lrr' and C/·! ::>rr takes precedence over Cli··! i<E:'";'. Multiple i:}"'! !<E:,";' interrupts

with the same priority are handled in descending key number order. Multiple C)!··! I !-!"T"

interrupts with the same priority are handled in descending select code order.

• To activate C),,! !<T::,!' declarations after C)! !<I::::::: has been executed, CiFT: !<I:::U must be

executed.

• If C),,! ! :E::U is cancelled with i):" j.. !<:E:U while an C)!'i i<I:::U interrupt routine is executing,

any C)·! !<T::,!' with a high enough priority can interrupt the C)··i i<I:::U interrupt routine.

ON ERROR and ON END
C)·i i::::!?!?(}? and C)·i !:::}·iLi have an implied priority of 16, meaning they can interrupt at any time.

Here are some facts.about how they are related -

• An Cli···i E::i:;:o!:;:oCH? routine can interrupt an Cl!·i !:::}·!D routine if they are both declared in the

same program segment or if CIi"'! E:F:!?C)!:;:o is declared with CJ::jL..!.... in a subprogram which also

calls the Ci!"·! E:l-'::U routine.

• An iy··.j E::i--i:D routine can interrupt an C)·i !::::!:;:oF\}? routine if they are declared in the same

program segment. If C)!'··! E::F>\Y? specifies C!"'! E}'::U can only interrupt the error

subprogram if j::<::;':::; I C}! and C),,! E:l-iIi are re-specified in the subprogram. This must be

done since file assignments in a calling program aren't active when a subprogram is called.

Errors

If the line or subprogram specified in C)!'·! !<E::'":', (}'.! !<I:::U or Cli··! !<T:,":' doesn't exist, the specified

interrupt causes an error when it occurs. The line number in the error message won't be the line

number of the C),,! statement, but will be the line number of the line that was executing when the

interrupt occurred.

I

BP-230 Program Interrupts

When are Interrupts Active?
At power on and '3C::i?:::::"T·Ci···i :::::, all interrupt statements are activated. You can suspend inter­

rupts using the Ii I :::>{E:L..i:::: statement.

The DISABLE Statement
Any Cij··.j j< E::'"!-' , (y ... j j<::::::D and (} .. j I j-i"T" declaratives in any program segment are suspended by

executing the :U I ::::;::::iE:L.T:: statement -

One C)··j j.y::'";' interrupt per key, up to 80 keystrokes for C)j··j j::::E:D and one CH···j I j··rr interrupt per

select code can be logged, but the interrupt routines are not executed until declaratives are

reactivated. Then interrupts are serviced according to priority.

The ENABLE Statement
CH""1 ~<E:'/ and C)1"-·j I ~·..j"r declaratives are reactivated by executing the ~:::}·H:::!I\ ... E statement -

The ON KBD Statement
The Cij·.j j<I::U (on keyboard) statement allows the keyboard to be used like an external input

device, operating on an interrupt service level. It is used to keep track of which keys on the

keyboard are pressed. This is useful in terminal emulator applications and applications where

you want to override the normal operation of a key or keys. When cn···j j·::::j::::Li is executed, the

peripheral keyboard mode is set. This also disables live keyboard mode and any (} ... j j<T::\'

statements.

CH··j j<I::J:) [priority] C::::rrCi or C:Ci::::;i . ..iE: line identifier [, ::::iL.L..]

en···j j<::::::D [priority] C::::iL..L.. subprogram name! [, ::::iL..L..]

All keys that are pressed are logged into an ON KBD buffer except the following -

CD CD (R~tl ~ IT~RI 8TOP 8ONTROl - 8TOP (reset) @!ill and (PRf!illJ , " " ,

The (} ... j j.: I:::U statement can be executed only within a main program, not within a subprogram

or from the keyboard. If you put an Cij···j j·:::E:J::! statement in a subprogram, !::::F:j?C)j? :iJ}::j· occurs.

Executing another C)j···j j::]::::U statement cancels the previous one.

1 Can't pass parameters.

I

Program Interrupts BP-231

Priority

Priority determines when interrupts are handled. An interrupt can only interrupt the program if

its priority is higher than the current system priority. The priority parameter is a numeric

expression in the range 1 through 15. If it is not specified, 1 is used as the default value. C:;::Y::::i .. FJ:::

and Ci:::H L.. set system priority to the specified level. C;CirCi leaves system priority unchanged.

ALL

The i::L .. L.. parameter specifies that all keycodes are trapped except 8-8 (reset), ~,and
I§illil

ON KBD Buffer
When an C)i···i i<ETi statement is executed, an 80-keystroke buffer is established to hold key

codes for the keys that are pressed. When a key is pressed, its keycode is placed into the buffer.

When the buffer is full and a key is pressed, the computer beeps to advise you of this.

The buffer is emptied every time the \<E:D~!: function (discussed later in this section) is used.

Considerations
Here are some facts that should be taken into account when using cn···j j·::::!:::D-

• D I :::>:rV E: and E>-\i:::U:::L..E: suspend and reactivate en···j j<:E:D. Up to 80 keystrokes are logged

for later processing when :D I ':::;i:iE:L...E: is in effect.

• A i:::'i:::i!. . .!::::;E:, ·TF'i:::n::::E: F>::ii .. .i:::::E::: or '::::TCiF' statement in the program cancels the C)i···i i<E:D condi­

tion.

• Any type of I i···iF'i.Jr or !:::::D I·r statement temporarily disables C)i···i i<i::::D. The values input do

not go into the KBD buffer. The values in the keyboard buffer are saved and restored

when the input is complete.

• C)··i i<i::::U has priority over any C)i···i :<1::::'":' statement.

•

~

BP-232 Program Interrupts

KBD$ Function
The i< " :>i: function returns the entire contents of the buffer set up by C): i<I:::U. Its maximum

length is 80 characters. Every time i·:I:::U::i: is referenced in a statement, the current buffer

contents are put into i<I:::L<i: and the buffer is emptied. Thus, if you want to process the contents

of the buffer, the first reference to iI::U:i must store the contents of i<I::U:i: into another string
variable.

The null string is returned as the value of i:I:::U::i: when the buffer is empty or when peripheral

keyboard mode is no longer set because i:Y:::T: i<I:::U was executed.

For all ASCII keys pressed, the value in KBD$ is that character (See the Reference Tables for

ASCII characters). For non-ASCII keys (CD or QLJ for example), the keycode should be

interpreted using the NUM function to get a meaningful numeric interpretation of the keycode.

For non-ASCII keys, two values are returned. The first is 255 which indicates non-ASCII. The

second value is indicated in the following table. If 8 is held down when the key is pressed,

64 is added to the value. If 8 is held down, 128 is added to the value.

Key Decimal Value Key Decimal Value

SFK #0 0 LEFT ARROW 22

SFK #1 1 RIGHT ARROW 23

SFK #2 2 UPARROW 24

SFK #3 3 DOWN ARROW 25

SFK #4 4 ROLL UP 26

SFK #5 5
ROLL DOWN 27

SFK #6 6
HOME 28

SFK #7 7
CLEAR 29

SFK #8 8
CLEAR TO END 30

SFK #9 9
DELETE CHAR 31

SFK #10 10 INSERT CHARACTER 32

SFK #11 11 DELETE LINE 33

SFK #12 12
INSERT LINE 34

SFK #13 13
RECALL 35

SFK #14 14
TAB 36

SFK #15 15
TAB SET 37

STEP 16
TAB CLEAR 38

PAUSE 17
TYPEWRITER 39

RUN 18
BACKSPACE 50

CONT 19
RESult 51

STORE 20
STOP 52

EXECUTE 21
CLEAR LINE 53

I

Program Interrupts BP-233

Examples

Here are some example uses of Ci!'1 1<}: U and 1·:}::Ii::i' -

10 I This program traps keystrokes, determines ASCII or
non-ASCII and prints its keycode

20 DIM KeysS[80J
:::::0

• 40
r::;o

r:;t Of)C oel.::' :::::~52
ON KED GOSUE Service kbd

• 80 Service kbd: KeysS=KEDS

I Let program trap keys

I Save all keys now in ONKED buffer •

110
i2e IF NUM(KS)=255 THEN Non ascii
1 :::; ~::i
140
1 ~;(1 t"10 i"'! .:~. ::::·c i i : I::::: J ·oj-.l ! ~::; k 'i P Oi.)~::·i"'· t i'''l ~ .. ~. non "'''!=i::;C I I i i"'ld i c -::1. t ()r-'"
160 KS=KeysS[I;iJ

F'F:: I r'~ T 11 t·~ on "-!4:::;C I Ike~); k ~.:·::..lC OdE:' 'j :::. Ii ; i··4Ur·1 < t< $)
IF HUM(KS)=Stopcode THEN STOP I Trap STOP

190 He::t ke',):
;~~ ~~i ~~i

HEXT I I Advance to the next key.

ASCII key - T, keycode s 84
ASCII Key - P, keycode s 82
ASCII key - A, keycode ~ 65
ASCII key - P, keycode s 80
ASCII key - P, keycode s 80
ASCII key - I; ~eycode s 73
ASCII ~ey - H; keycode c 78
ASCII key - G, keycode s 71

ASCII key - K, keycode ~ 75
ASCII key - E; keycode s 69
ACClr key - I, keycode s 89
ACCI! k~y - S, keycode ~ 83

Hon-ASCII key, keycode s 5~

I Done processing keys.

I

BP-234 Program Interrupts

The OFF KBD Statement
The (}:::'F' l<:E::U statement cancels a previously executed (}"'1 l<I:D statement and peripheral

keyboard mode, thus allowing r"i!-..l 1<T::\: and live keyboard to be active. It also clears the CH-··j l<::j::;:D

buffer.

The ON KEY # Statement
The 32 special function keys can be used to interrupt a running program and cause branching.

This branching capability is useful for a program which requires user intervention. Each key can

be defined to cause a specific branch, so that the user can steer the program the way he wants

it. For example, a 'menu' of various routines can be displayed and accessed using special

function keys. Here is where a blank key overlay can be used.

This interrupt capability is declared with an eH"l i<E:';"':i:i: statement which specifies the branching

operation and the related SFK.

CH···i i·:::1::::'·(l:l: key number [, priority] i:::;CfT"Ci or i:::;i:y::::i.JE: line identifier

CH··j l.:]:::\'::j* key number [, priority] C>:::H L.. subprogram name1

The key number is an integer in the range 0 through 31. When a key is pressed and an

(:)'1 i<E:"(!:f has been declared for it, the specified branching occurs if the specified priority

exceeds current system priority. System priority remains unchanged if c:;crr'::::: is specified and is

changed to the indicated priority if C:;Ci'::::i.JE: or c>::n L.. is specified.

Priority
The priority determines the order in which multiple interrupts are handled. The range of

priority is 1 through 15. If it is not specified, it is assumed to be 1. An interrupt routine can only

interrupt the program if it has a higher priority than the current system priority.

1 Parameters can't be passed.

•

Program Interrupts BP-235

Example

Here's an example that illustrates CH·l l<T::'!':l:l: and priority -

10 ************** INTERRUPT WITH KEYS **************
PRESS KEYS 4,3,2 AND

ON KEY #1,4 GOSUB Boss
ON 0Er #2,3 GOSUB Phone
ON KEY #3,2 GOSUF Spouse
ON K~T #4,1 GOSUB Coffee

60 PRINTER IS 16

2nd highest priority

I Lowest priority

;::;(i FP I t··IT :3Pfi < ;~~~~) ;; 1101"-1 'r:::E\' #2,:? CO~::~UI~ Fi'''lOr''lf:' if
9~;:! pr~:~ I r'~T :::;Pi=l;:: ~:~~i~:!); lj Or·i t<E'/*F3, 2 GO:::;L.l1: ::;poU::'~.E·I;

1 01;:) Fl~:~ I !-··iT' ::; F f=i < ~;:O ::: ; IIOH i< E~\: #4, i C;O ~::;U:B C ()f f ,::.~~.;I

110 PRINT LIN(S)

150 *************** INTERRUPT ROUTINES *****************

;~~ 1 (~i
2;;~i~J
.... ,.-.,'-:.
t::. -.:' ;.~.!

FC)P :[:::1 TO :I.Ci
Pl~:~I!···IT !!!<E\' i'!;I;TFi:B<15>;'Ii""IE"!:::,t i .• .:itj·"l th~::' bo~ .. :·:=.!l

FOP J:::::l TO 10

FOP t<::::l TO lU

r·iEi<T f:
PETUPH

;;:::~~:(:~ CO'ff'~::·,::·: FOF L..:::::l TO 10
;29~:'i PF I t··iT I! !<E\' 4 II; L; TFiB < 1 ~5); II Dr- i ["Ik c ()f·rl~:·~::·!!
300 NEXT L
310 PETUPN

•

BP-236 Program Interrupts

KE\'
I<E\'
!<E\'
I<E\'

t:::E\'

f::E'j"'

4
:::;
.;:.~

'1 .,

1
:l

5

f::E'";' 'c. '3
f:::E\' ;;~ 10

i<E'/ :~:: :3
t<E'/ :3 4

KE'/ 4 ,:::.
!<E\' 4
!<E\' 4 4
!<E\' 4 ""':;

I<E\' ,+ .
i r.::".)
;".!_ •. I 4

...
d

4 9
4 1

J. (i

ON t:::EY#1,4 GOSUB Boss
ON t:::EY#2,:3 GOSUB Phone
ON t:::EY#:3,2 GOSUB Spouse
ON t:::EY#4,1 GOSUB Coff@@

Ta k on the phone
M@@t with the boss

r'!'::'E't
1"1 ~::'E:'t

j·'i'.:.·et
i"'lee·\.

I.,J it h t h!~.:·

i.,J it h th!::'

I.I} it i"'j t i·"! I::'
i,IJ 'j t h t h,:;,

bo:::.:::·
bos:::.
bo::::·~~.

bo:::·~:·
be:::.:::.

M@@t with the boss
T.:'i. 'I k , -, r ; t h ~-~ P h 0 j I::' .- , I

C , n t h ;:::' p h 0 1""! E'

0 r i i:- f-; i;::' r-' h 0 r' ; ~::'
c , f" i t t·· ; E' (, n 0 n ~:'
, .- i'-I

,. n E:' t""' h () j""'l ~.::. --' '.'
_.

j""' ~ t j'''1 t:' p h 0 i'-I ~::' ! . ..!

c , r-; t i·"! E:' p t" ! () i"'j I:;:'
, -, r"! i:- I"'j E=:' p h (: F" E' .- , I

T,~_1. 1 k C , f"! t h i::' !'=' h 0 n ;.~:'

.Uf"'! n c off;;:.:·~:·
Iii""i (; C of·fe,:::·
Ii!""" j n coffee

If multiple (} .. ! !'T::'";':!::: declaratives have the same priority, the declarative with the highest key

number is given preference when two keys are logged as simultaneous interrupts.

I

Program Interrupts BP-237

Considerations
l<T::\':~:l: statements which specify C;C! r<::l or C;l:Y::>.J:E~ are active only in the program segment in

which they were declared. A ii iLL interrupt is active in the program segment in which it was

declared and in all subprograms called by that segment. ;::)i ,-;"':i:i declaratives are suspended

while a program is waiting for a response to an T ;.;; . ..i i , !. . .L; :: .. i.Y"\" or E:::U IT statement and after

:::> i:::ii. 1':>:::: is executed.

If an ;::)i i·Y:> , ,in: or Ci i!. .. L. routine has not been completed and that key is pressed again,

the key won't be acknowledged until the first routine is completed when its i:;>i::: ! ... T:::··j or

':::" . ..'';::';:::.;··;.Li is executed.

If a special function key has both :<j:::>':::i and typing aid definitions, the CHi \<i:::;'jj has

precedence while the program is running. Remember, waits caused by ;.:;:: " ;

I :T\.!"\", and :::::: "\" temporarily suspend the ii: so any typing aid definition is active at

that time.

THE OFF KEY Statement
The i!i"-i :::::::> ::::: declarative holds for a key until another declarative for the same key,

executed -

•

BP-238 Program Interrupts

Summary
Here are some facts to remember when using (:)'i kT:;"

• The range of priority is 1 through 15.

• System priority is not changed when C;CiT"Ci is specified.

• :. kT:'-;' declaratives are temporarily deactivated by I i·iF\ . .! r, 1... I i···T\"!T", i::::U I'T" and i:::'::::!i .. r::;E::.

• An CH·i i:T::';' declarative is permanently deactivated by another CH···i i:T::'-;' for that particular
key, :::.; ::;>;:::: :·C:;. , ... , , , .:" , ; .. ,. ... , O:::;("'::::"::::"T'(), O::::i ::<: ... : ;";""" iF:', 8 or CiF:'F' ,.'::::

for the key.

Softkeys
The softkeys are used with the ON KEY statement. Complete information covering the use of

Softkeys as an interactive graphics device is contained in Chapter 13 of the Color Graphics

Manual.

I

Appendix A
Advanced Printing Techniques

Introduction
This appendix introduces you to the more advanced printing capabilities of the CRT and the
internal thermal printer.

Some of the special capabilities are accessed by using various ASCII* control characters. See
the ASCII table in the Reference Tables for a complete list of ASCII characters. Another
capabilities allows the CRT special features: inverse video. blinking. underline. and color modes
to be accessed in a program rather than using the CONTROL key. A third capability uses
escape codes to address any location on the CRT selectively. The escape code sequences are
compatible with those used by HP 2640-series terminals. A fourth capability uses escape codes
to access capabilities of the internal printer which allow you to generate new characters
replace any character. print 150%characters and more.

Many of the examples in this appendix are meant to be tried because it is impossible to show
many of the CRT capabilities on the printed page.

A summary of escape code sequences can be found at the end of this appendix.

CRT Memory
Every line that is printed to the CRT is stored in the CRT memory. This memory can hold 50
80-character lines. Fewer longer lines or more shorter lines can be stored. When the memory
becomes full, each new line printed to the CRT causes the oldest line in memory to be lost. All
lines in CRT memory can be viewed with CO, CO, @ICiJ, or @ICiJ. The CRT memory is cleared
with @IiliJ, a formfeed character (F ::;, I iiT "'i? I iiT:::,ii·j!, ';\ "? I: :'T Ci·{? :j: ': j;:") or
with

CRT Special Features
The special features: blinking, underline, inverse video, and color can be accessed in a pro­
gram by using the CHR$ function or escape code sequence within an output statement. Any
time a mode is accessed or cleared. one character is added to the length of what is output,
though it is an unprinted character. This is a point to remember when dimensioning strings.
Any combination of the features can be accessed by outputting -

CHR$ (n)

Where n is an integer in the range 128 through 143 and specifies which combination of features
is to be accessed. 144 through 159 are equivalent to 128 through 143. 160 through 255 are for
the Nationalized and Drawing characters .

• American Standard Code for Information Interchange.

rev:4lS1

Ii

BP-239

BP-240

~

Appendix A

The following tables show which numbers provide access to which features:

IV
IV IV BL BL

CLR IV BL BL UL UL UL UL

128 129 130 131 132 133 134 135
144 145 146 147 148 149 150 151

White Red Yellow Green Cyan Blue Magenta Black

136 137 138 139 140 141 142 143
152 153 154 155 156 157 158 159

The following escape code sequence can also be used to access the special features -

";::::.,,:::x

X can be -

X Result X Result

::.: CLR H White
: ... : BL I Red

J Yellow
CLR - Clear IV, BL, and UL

IV
... IV,

,5 • .' UL
UL,
UL,

....
UL, :

BL
K Green
L Cyan
M Blue

BL N Magenta
IV 0 Black

IV - Inverse Video
BL - Blinking
UL - Underline

IV, BL

NOTE

The highlight features (lV, BL, and UL) are independent of

the color features. Therefore, setting a highlight does not

change the color and setting a color does not change the

highlight.

All special features accessed with CHR$ remain in effect until specifically cleared. This can be
done with the CLR feature above (for IV, BL, and UL) or by pressing the CLEAR key. Those
accessed with the escape code sequence remain in effect until the end of the line or until
another one is specified. At the end of a line, the highlight is cleared and the color set to white,
if the escape code sequence was used.

Examples

Here are some examples to try -

10 PRINTER IS 16
.--,(::! Pl~:: I !···iT !"THE FC)L.L.O~·~ I !··~G L. I t-·IE:::; :::;HOH: 1

;

:30 F'PI!···!T;; E>::Hr"lPLE:::; C)F 'T'HE \"j=iPIOtJ::::; CF'r FEr!TUI~:~E:::3!'

rev:4lS1

I

Appendix A BP-241

The following example illustrates the differing effects of commas and semicolons -

10 PRINTER IS 16

;::;0 Pi? It··! T !f C: o rfifi"j·:l. .:~j. f t ;::'j'"" t u r-' n i i"i I;;i f' ;::'·::L t i . ..if"" !::;' () n ~ Ii
90 PRINT CHR$(129),A$;CHR$(132),A$;CHR$(128)

110 PRINT CHR$(129);A$;CHR$(132);A$;CHR$(128)

150 PRINT CHR$(129),A$,CHR$(132),AS,CHRS(128)
1(;0 FF;~:Ir··!T !;~::;!::'IY!'icolon .:~:. .. ft!:::·r-· tur'niJ'''iq fe.:l.tl . ..!r'e ()n: J1

170 PRINT CHRS(129);A$,CHRS(132);AS,CHR$(128)
1. ;;:;0 El"~D

Using Control Codes
ASCII characters are letters, numbers, characters and codes which each correspond to a unique
7 -bit byte pattern. Each character also has equivalent decimal, binary and octal representa­
tions. The first 32 are control codes which pass control information between devices such as a
carriage return or !inefeed.

The control codes can be accessed for output using 8 or the C)··H?:'i': function. A two-letter

symbol specifies the control code. To determine what keys can be used with 8 to obtain a

control code, use the ASCII table in the Reference Tables. By following the line all the way

across from the desired code, the two or three keys which produce the desired character when

pressed with 8 can be determined. For example, LF (Iinefeed) can be obtained by pressing

8 with either 8CD, 0,80, or 0· The DEL character is the only one that can't

be obtained using 8.
Basic control operations on your computer utilize five control codes which affect output to the
CRT or internal thermal printer. Here are the codes and their various results -

Control Code CRT (DISP) CRT (PRINT) Internal Printer

BELL Beep Beep Nothing
BS(backspace) Back up and replace Back up and replace Backup and replace
LF (line feed) Nothing Generate line feed only Generate line feed only
FF (form feed) Clear display line Clear printout area and Search for top-of-form

CRT memory
CR (carriage-return) Clear display line Return to beginning of line Print; roll back one line

With the exception of the control codes described above, HT (horizontal tab, i:::i·H:;:::!'(':::;)) and
ESC (escape code, C)·H?:'>:::'?)) which are discussed later in this appendix; all other control
codes are ignored by your computer.

I

BP-242 Appendix A

Example

Command Output

: :: ..
1· ,; Clears CRT

,::::'; ;.;":'. .;:::' (", .. .! . .'i ' ... ·

;-";-:: ; ," :'i···ii··:: . ····,T·,,···
; :.! .. ,:

iii···

CRT vs. Printer
There are a few cases where executing the same operation on the CRT and internal thermal
printer produces differing results. These incompatiblities occur when printing iii:; or

On the CRT, backspace causes the previous character to be cleared and replaced. On the
internal printer, if the character fol\owing the Ei" is an underline (CHR$ (95)), the previous
character is not cleared.

Examples

Operation Result-CRT Result-Internal Printer

: F::' ';': :

""r::, Lr-·;;

The carriage return character also causes slightly different results on the CRT and the internal
printer. On the CRT, previous characters are cleared. On the printer, they are over-printed.

Examples

Operation Result-CRT Result-Internal Printer

.':' .r!-.i

, ,., .. ".,. "i:::i":::\!" i···j

8lliJ

Considerations
Control codes used within a BASIC statement are executed even when a program is listed. This
can produce some undesirable results. For example, try listing these program lines -

........ r kj'T'
:: "::::: \ " ,,';;

!,.,i,.

Thus, a program listing will be more readable if control codes are generated with the ::> H:;:: ::i:
function.

rev:4181

•

Appendix A BP-243

Disabling Control Codes
All control codes can be disabled (their action won't be performed) and viewed using the
following escape code sequence -

The only control code which is then recognized is CR (carriage return). When one is encoun­
tered, iF; is printed and a carriage return-linefeed is executed. To see how this works, output

, then list the program in the previous section.

The control codes are re-activated using [cill R) or the following escape code sequence -

All control features and escape code sequences are cleared, the display and printer reset, and
CRT memory cleared using [C@OR) or the following escape code sequence -

If is in effect, has no effect.

CRT Selective Addressing
Introduction
The top twenty lines of the CRT are known as the printout area. All lines printed to the CRT are
stored in CRT memory which was discussed at the beginning of this appendix. Through the use
of escape code sequences, any line in CRT memory can be selectively addressed and modified.

The operations available are as follows -

• Cursor Positioning
Absolute addressing
Relative addressing
Backspace
Space
Up
Down
Set tab
Clear tab
Tab
Home position - first row
Home position - row after last row

• Display Positioning
Roll up
Roll down
Next page
Previous page
Memory lock

• Editing
Delete line
Insert line
Clear to end of line
Clear to end of screen
Insert character
Delete character

Selective cursor addressing and the other operations which are covered in the rest of this
appendix are very useful for form filling and text processing applications. It is recommended
that you use F:'i? I i·rr· t . .!::::; I i·r::; with :i* in the format string to output the escape code sequences to
avoid unexpected carriage return/ linefeeds which can occur from length added to the output.

There are two example programs at the end of this appendix which combine many of the
operations to manipulate output.

I

BP-244 Appendix A

The Cursor
Any location on the screen can be addressed and a non-visible cursor specified as being there.
(This cursor is not the same as the flashing cursor which is present in normal keyboard usage.)
This cursor refers to a logical print position in CRT memory where the next character will be
printed. In this appendix, the word "cursor" always refers to the logical print position.

Addressing Schemes
The printout area is addressed using rows 0 through 19 and columns 0 through 79. The
following drawing illustrates this -

CRT memory is addressed using columns 0 through 79. The number of rows depends on line
length. The maximum number of lines was covered at the beginning of this appendix. The
following drawing illustrates addreSSing of CRT memory -

o
I
2
3
4
5

In this drawing, line 6 of the CRT memory is positioned on line 0 of the printout area.

•

Appendix A BP-245

Setting the Cursor Position
The cursor can be set to any character position in the 20 lines of the printout area using
absolute or relative addressing, or a combination absolute and relative addressing.

Absolute Addressing

The cursor can be set to an absolute row and column position with any of the following escape
code sequences -

nn (" nn i ...

, ,:' :::, nn c nn i?

';::: .. :::L nn '.' nn C:
'\:: :::.:-:::L nne n n

Here are some gUidelines for using these escape code sequences -

• nn specifies a one or two-digit number which is used to specify the row and column
number. The digits preceding the R(r) specify the row number of CRT memory. The digits
preceding the Y(y) specify the row number of the printout area. The digits preceding the
C(c) specify the column number.

• The end of the escape code sequence is signified with a capital letter. Previous letters in
the sequence are lower case.

• The first column of the printout area is addressed using O. The maximum column address
is 79; if anything greater is specified, 79 is used.

• The first row of either CRT memory or printed output is addressed using O.

• If R is used to specify CRT memory and the specified row is not on the CRT screen, the
display will roll up or down as necessary.

• When Y is used to specify lines of the printout area, the range of rows is 0 through 19. If a
number < 0 is specified, line 0 is accessed. If a number> 19 is specified, line 19 is
accessed.

The cursor can be moved within a row by omitting the R and preceding digits. Here is the
escape code sequence -

nn i····

Similarly, the cursor can be moved within a column by omitting C and preceding digits. Here
are the escape code sequences -

nn i?
nn .,..

Moves the cursor to row 25, column 60.
Moves the cursor to column 60, row 17.
Moves the cursor to row 15, current column.
Moves the cursor to column 30, current row.
Moves the cursor to row 7 of
the printout area, current column

I

BP-246 Appendix A

Relative Addressing

The cursor can also be repositioned using relative addressing. From its current position, the
cursor can be moved up (negative number) or down (positive number), left (negative number)
or right (positive number). Here are the escape code sequences to use -

S nn !' S nn (00

.;::;. S nn c S nn i?
S nn S nn C
S nn ':: S nn '.'

''';:::;::.:-;::;.S nn (00.

S nn ,.,.
S nn"

Here are some gUidelines for using these escape code sequences -

• nn specifies a one or two digit number which is used to specify the number of rows and / or
columns the cursor is to move. The digits preceding the R(r) or Y(y) specify the number of
rows; the digits preceding the C(c) specify the number of columns.

• The end of the escape code sequence is specified with a capital letter. Previous letters are
lowercase.

• S specifies a sign: + or -. A plus sign (+) specifies right or down. A minus sign (-)
specifies left or up.

• If the number of columns specified is greater than the number of columns remaining after
the cursor in the current line, the cursor is positioned in the first column (negative move­
ment specified) or in the last column (positive movement specified). If the number of rows
specified in the negative direction is greater than the current row, the cursor is positioned
in the first row.

Examples

Combining Absolute and Relative Addressing

Moves the cursor down 8 rows, left
10 columns from its current position.

Moves the cursor right 7 columns, up
11 rows from its current position

Moves the cursor up 8 rows from its
current position

Moves the cursor right 10 columns
from its current position.

The cursor can be positioned to a new position using a combination of absolute and relative
addressing.

Examples

Moves the cursor to column 60 and down
8 rows from its current row.

Moves the cursor to row 10 and left 15
columns from its current position.

rev: 4/81

•

Moving the Cursor
The following escape code sequences can also be used to move the cursor -

Move cursor up one row
Move cursor down one row
Move cursor right one column
Move cursor left one column
Move cursor to row after last row of CRT memory, first column

",:C; Move cursor to first column, current row
Moves the cursor to first row of CRT memory, first column

'T T Move the cursor to next set tab position.

Appendix A BP-247

These escape code sequences can be used very easily by defining Special Function Keys to set
the cursor position, then move it up, down, left, and right.

cause the cursor to "wrap around" when the edge of the screen is reached. When
the cursor is being moved to the right it wraps around on to the next line. When the cursor is
being moved to the left, it wraps around onto the previous line. can be used to return the
cursor for normal printing after using cursor-moving escape code sequences. and cause
the lines to scroll, if necessary.

Example

Here is an example using cursor moving to fill in blanks in a form letter.

10 PRINTER IS 16
20 DIM NameS[25J,MagazineS[50J

• 4!a MOVES CURSOR TO LEFT
• 5Ci

Using Tabs
The following escape code sequences are used to set and clear tabs -

: i. Sets a tab at the column of the cursor
Clears a tab at the column of the cursor
Clears all tabs

The cursor can be moved to the next tab setting using :::::: or the control code H ... (horizontal
tab) which can also be accessed using ::::i'{?::>:') >. If no tabs are set a TAB moves the cursor to
the beginning of the next line. Tabs remain set until they are cleared with reset Iill@ or
or

I

BP-248 Appendix A

Clearing, Inserting and Deleting Lines
The following escape code sequences can be used in editing lines -

Clears the screen from the cursor position (remainder of the line and all lines follow­
ing)
Clears the remainder of the line from the cursor position
Inserts a blank line before the cursor line. Cursor remains on same line of CRT and
all following lines move down
Deletes the cursor line and closes up the gap. Cursor remains on same line of CRT,
and all following lines roll up

These escape code sequences are very useful for text processing applications.

Inserting and Deleting Characters
The following escape code sequences can be used for inserting and deleting characters -

Deletes the character at the cursor position
Turns on the insert character mode. Characters can be inserted to the left of the
cursor. Insert mode remains in effect until it is cleared with
Turns off the insert character mode

Example

reset, [lillJ or

• ,:..:~O Pf~: I r··lT C Hi:;;~ $: (;;;:~? > g.:!! (.::t:l r-1. ;;~C !! ; PPT ~t (C HP:$: (~;:? ::: :::.:!1 F' l! , :3) ;
• ::)l;~i FP T H T C HP :~:. (;~-~'? > ::~.: Ii G!HE~'~ ril"1D I 1"1 FE: Oi'/ED ;1 ; C HP ~~: (~~~? ::. t:;j l~:~ !!

60 Er'·lD

Rolling the Display
The display in the printout area of the CRT can be rolled using the following escape code
sequences -

Rolls the printout up one line (like CD)
Rolls the printout down one line (like CD)
Rolls the printout area up 20 lines (next page)
Rolls the printout area down 20 lines (previous page)

When using the escape code sequence with Sand T to roll the printout, the cursor stays in the
same line of the CRT. Using any of the roll keys moves the cursor also. When using the escape
code sequence with U and V, the cursor is positioned to the upper left hand corner of the CRT.
The printout can only be rolled as far as the lines in memory; it can't be rolled past the existing
lines to unused lines. You can't roll all existing lines off the screen.

These escape code sequences are useful for accessing a line that is not currently displayed,
then moving the cursor in that line.

I

Appendix A BP-249

Selective Scrolling (Memory Lock)
Through use of an escape code sequence, it is possible to "freeze" a selected number of the
upper lines of the CRT in place. The roll keys and escape code sequences used for rolling the
display then have no effect on these lines. This is useful for keeping selected lines, such as the
heading of a table, on the CRT while other lines are rolled up or down. This can be done with
the following escape code sequence -

Freezes all lines which are above the cursor line.
(lowercase L)

The remaining bottom lines can scroll up or down without moving the frozen lines. However,
absolute row addressing is d!sabled when memory lock is on. Output of a formfeed character
won't clear the frozen lines. ;,f··f positions the cursor to the first unfrozen line.

When memory lock is on, the cursor can't be positioned using R to address a row of memory. Y
must be used to address a line of the printout area. When the printout is rolled using the U and
V escape code sequences, the cursor is positioned to the first unlocked line.

The frozen lines remain frozen until cleared with [CI@),

code sequence -
or by using the following escape

Unfreezes the lines which were frozen previously.

F!? Ii··iT !! IE il

• ::::0
!! II

;
i"

Example

il ;;

40 FOR \=0 TO 2*PI STEP . 1
50 PRINT \,SIN(\),COS(\},TAN(:

70 Er··ID

Highlights. Color and Screen Addressing (Enhanced Graphics ROM)
When screen addressing is used to re-access a previously printed line, the previously printed
highlight/color is preserved until a new highlight/color is specified. If a line is re-accessed, but
to the right of previously printed characters. then the currently active highlight/color is used.

Program results:

98458 Graphics ROM

9845C Graphics ROM

Enhanced Graphics ROM

rev:4181

•

BP-250 Appendix A

The Internal Printer
The internal thermal printer has additional capabilities, differing from some of those on the
CRT, which allow you to generate new characters, replace any character with a string, set and
clear tabs, alter margins, plot in plotting mode and print 150% size characters. These
capabilities are all accessed by using an escape code (CHR$(27)) and parameters. Keep in
mind that the escape codes remain in effect until they are deactivated. This can be done with

or reset. Some of the following features also have an escape code sequence which specifi­
cally clears it.

Structure
The internal printer prints up to 80 printable characters per line. Each character is formed from
a 5 x 7 dot matrix contained within a 7 x 12 dot matrix.

:r------+----t. f_--+-----+l_--+-f i_ -~~
I ! I -Ascenders

I

~-
I

I~---

,
r- -

:-

"-----

I
I
I

----j-+--+-- ...l

Basic I

_5 x 7 ~ t-~- ~
I

-- ----'
I
I

The two rows above the 5 x 7 dot matrix are used for ascenders such as an umlaut. The two
descender rows are used for "legs" of lower case letters like p and y. The last row is used for
underline.

Rows Per Line
The number of rows of dots per line (from baseline to baseline) of printing can be altered from
the normal 12. Vertical spacing is set by outputting -

is a lower case "L". dd specifies one or more octal digits representing the number of rows of
dots. Each row of dots represents 1/77 of an inch of vertical spacing.

The range of the digits is 0 through 126 (176 octal). Default is twelve.

Ii

Appendix A BP-251

Example

After runnlng the e~~mple, try listing

!n.··· ;., ,., ;

Margins
When perforated paper is used, the top margin is normally set to approximately %" below the
perforation. This amount can be altered by outputting -

! ddT

is a lowercase "L". dd are octal digits specifying the number of 1/77" rows below the
perforation as being the top margin.

The range of the digits is 0 through 127 (177 octal). 0 causes the perforations to be ignored; a
line could conceivably be printed on top of the perforation on 2 pages. Default is 36.

The bottom margin has a width in the range. 79 to 1.19 centimetres.

Example

line to be prjn~~d on top of ~he perforat on

Setting Tabs
Horizontal tabs can be set by outputting -

A tab is set at the current character position. It is used by outputting a TAB code, CHR$(9).

If no tabs are set or no more remain in the current line, a CR-LF is executed by the printer when
a TAB code is received. Two horizontal tab anomalies are associated with string replacement;
see the section on String Replacement.

All horizontal tabs are cleared with -

I

BP-252 Appendix A

New Characters
Up to nine new characters which are not part of the standard or alternate character sets can be
defined to replace another character.

A new character is defined by specifying a character to represent it and specifying up to eight
8-bit byte patterns to define the character. Bits one through seven of each byte are printed; bit
o is used as a control bit and is specified by a subscripted X.

2

3

Byte 4

Number 5

6

7

8

Bit Number
76543210

X1

X2

X3

X4

Xe

X7

Xs

t

Special Row

Row 1 or 8

Row 2 or 9

Row 3

Row 4

Row 5

Row 6

Row 7

5 Columns

of Standard Control Bits

5 x 7 Dot Matrix

These eight bytes are used to define up to twelve rows of dots for the new character. Byte one
defines a special row which can be printed in any of five row positions. Bytes two and three
define the first two rows of a standard 5 x 7 dot matrix; either or both can be moved to define
the two rows below the 5 x 7. Control bits are set when they equal one. This is used to
determine where bytes one, two and three are printed.

:--r-- -:-Byte 1 pattern ifX1 set.*
~-r--~~-+--~~~

: ~Byte 1 pattern if X4 set.

I
L

:-Byte 2 pattern if X2 not set.
,!L---+----l

:..--Byte 3 pattern if X3 not set.
.L-~~ __ ~~~~~~~

--1---Byte 4 pattern.

:..-- Byte 5 pattern.
r--7f-----J

~Byte 6 pattern.

~Byte 7 pattern.
~----71'~7!'--+~

:..--- Byte 8 pattern.
~~~~~~~~~ 
~ ~{ Byte 1 pattern If Xe set and X2 not set. : I ':l1{ Byte 2 pattern If X2 set. 

~ __ L _J -------1----~14 Byte 1 pattern If X7set and X3 not set 
L Byte 3 pattern If X3 set 

Byte 1 pattern If Xs set and no underline. 

* If the number of rows per line is less than twelve. byte 1 pattern is printed in the first row above the standard 5 x 7 when XI is 
set. 

• 



Appendix A BP-253 

The syntax used to define a new character is -

The (; specifies that this is a new character definition. 

dd specifies one, two or three octal digits; the letter following them defines their purpose. 

The digits preceding the c are the octal digits representing the character which is to be replaced 
by the character being defined. 

The bytes being defined by their octal equivalent are represented as shown -

Letter Byte 

p 1 
q 2 
r 3 
s 4 

5 
u 6 
v 7 
w 8 

The last letter in the sequence must be a capital letter. Thus, if bytes 7 and 8 are not specified, 
the ' .. ! must be capitalized. 

It is not necessary to define all of the bytes. Thus, byte four can be left undefined by omitting 
the:,:, and preceding digits. However, if these bytes were previously defined in another new 
character, the old byte definitions remain. clears old definitions. 

Example 

Here is an example which ill ustrates new character definition. Say that you wanted to print the 
formula for solving quadratic equations, Y= -B± { (BA2-4AC)/2A. The ± and { 
symbols can be generated quite easily. 

The first step is to block out the characters being defined. 

+ 
~--r--

- - - - - - - - -, 
I 

, 

~ I 
I I 

I 
I .' I 
I I 
~ -- - _ -J 
I • I 
I , 
L 

m--
I
-- l

--
- - -, 

I 
I 

I I , 
I ~ 

I l: • • I 

I I 

---J 
I I 
I I 

I • • 1 ••• 

, 
I 

I I ,- .' , 

I , 
, 

~ r' . - r-- .=---, r-._-I --; ,-
I 
I ; I 
"---- •• I •• • I 
I I , 

I f- I 
I I 
I --- -- f- - ----' ,-
, • I 
, I 

r-

~. ~ 
I I 
I I ,-
I 

' .. I 
I I 

I • I 
I I , 

I 

: , 
I , , I 

I 
-----j - r-- t-- --

I I 

~ ----t- I 

~ __ I~_- __ 1 __ 
- __ I __ J __ J 

I 1- I 

I I 
I i I I 

I , J 1 I' ~ __ L ________________ J 



BP-254 Appendix A 

The second step is to determine the 7 -bit pattern and octal representation. The control bit is 
shown in parentheses. 

+ 
r-- - - _. - - - --r -- --, 
I I 
I I 

r-- - - - - - - - - - - --, 
I I 
I I 

I r I I 
I 

I • I 
I I 

L ..J 

Bit Pattern Octal 

0001000(0) 20 

I 
I I 

>-- I 
I • • • I 
I I 
L-_ ....J 

Bit Pattern 

0001110(0) 
I • I 

~ 
I 

• • • • • I 
I I 
I 
I 

_.--< 
, • I 

I I 

0001000(0) 20 

0111110(0) 174 

0001000(0) 20 

I • I 
I I 

I • I 
I I 

f-- --r---r-~ 
I • I 

I I 

0001000(0) 

0001000(0) 

0001000(0) 
I • I 
I 

__ ,- I 
I-

0001000(0) 20 I • • I 
I I 
I-

0101000(0) 
I 

I 

I 

~ 
I •• ••• I 

I I 
I 

0111110(0) 174 

I •• I 

~ 
I 

- • I 
I I 
I 

0011000(0) 

0001000(0) 
I I 

·fi I · I ~ ±_ -------------_J 

I I 

~ I-- --f-- f--
I 

I I 
I I 

~ __ L __ 
I 

__ J ___ I 
- -- - .. - _ ---' 

Next, determine characters which the defined characters will replace. 

• replace % with { 

• replace I with ± 

This program prints the formula Y= -B± { (BA2-4AC)/2A. 

10 DIM AS[80],BS[80] . ::::;:) 
• 40 

Hl:::El:!-: II :!.:n4~:;c ::::4 
B:j:::::El:::" II :!.:n4-?c 2!? 

60 PRINTER IS 0 

Hl & BS define square root 
and plus-minus signs 

90, which utilizes the new 
c h.;:::. r" .:::t. c t !:;' r-· :::. , 'j :::. E=:' >:: 1:::' C i.A t ;:;:' d 

Octal 

34 

20 

20 

20 

120 

60 

20 

77 bytes of memory are reserved for new character definition and string replacement (discus­
sed next). Each new character uses 8 bytes of memory. Thus, a maximum of nine new charac­
ters can be defined at one time; an additional definition replaces the last character defined. 

I 



Appendix A BP-255 

String Replacement 
Any character can be replaced by a string. The syntax is -

The digits preceding the ': are the octal equivalent of the character which is being replaced. The 
digits preceding the L .. are the octal equivalent of the length in characters of the replacing string. 

If a character is both redefined and replaced, the replace takes precedence over the definition. 
Of course, a character can be in the string it is replaced by and if it is redefined, is printed 
redefined. 

Example 

~0 PRINTER IS 0 

i Clear al I control codes 

~HARACTER REPLACEMENT 

.J ;-:' .... ;<. +. J I L.L 

Remember, 77 bytes total are available for new characters and string replacement. Also, the 
maximum number of string replacements would be 25 single-character replacements. Each 
string replacement requires 2 bytes plus one for each character in the string. Thus, a maximum 
string length is 75 characters for replacement. Any additional attempts at replacement are 
ignored. 

Two anomalies are associated with string replacement and horizontal tab. If ", is contained in a 
replace string and no tabs are set, the printer will keep searching for a tab, feeding paper as it 
goes. Reset (CONTROL-STOP) must be used to abort this. 

The second anomaly arises when an " immediately follows a replace stling definition. It is 
ignored if it is the next character specified to be output after the replace string definition. 

I 



BP-256 Appendix A 

150% Size Characters 
Any character can be printed 150% of the normal character size. The syntax used to accomplish 
this is -

To get back to normal size characters, use this sequence -

Example 

10 PRINTER IS 0 

Underlining 
Any characters can be underlined by using the following syntax -

<).c:i underline indicator 

An underline indicator is a character used in the above sequence both to begin the underlining 
and to turn it off. The following table shows the various underline indicators and their function. 

Underline 
End Underline 

10 PRINTER IS 0 

FINAL NOTICE 

Characters 

0, E, F, G, L, M, N, 0 
@, A, B, C, H, l, J, K 

Example 

Underlining and 150% characters can be used at the same time. Underlining can also be 
accessed with CHR$(132) and turned off with CHR$(128). 

• 



Appendix A BP-257 

Plotting Mode 
In plotting mode, the next 70 8-bit byte patterns define the dot pattern for the row. To access 
the plotting mode, output -

Example 

Here is an example of using the plotting mode to plot the sine function. 

This program illustrates plotting mode 
20 NOTE: It has to do a lot of number-

crunching and takes a while to , .... , ~., -, 
: ',,'!;l 

.... , .. -. 

. ~.: i-':', 

DEG 
E :::. C ·:::1. PI;::' C (; d t=:' 

C 'i ,:" .. "j. r" p r" j nt,,,· r--. 
80 DIM A$(360)[72] 
90 FOR 1=1 TO 360 

• lUO 
A$(I)[3,72J=RPT$(CHR$(0),70) 

130 FOR 1=1 TO 360 
140 A$(I)[33+INT(30+SIN(I» 33+INT(30+SIN(I»]=CHR$(127) 

1 Use bit r8ttern for CHR$(127J 

--

< 0 1. 1 1 1. 1 1 :1.) ::~.: l"i'l·::l k ;:::' ::::. in!::' I}.i.:::a.!.) e 

-------------------. ---. 

--

-. -. . -.­•• --------
--------

--
------------

-------------.-... - -­.-

-. ---------------------
------

I 



I: 

BP-258 Appendix A 

Summary of Escape Codes 
For 

Escape Code For Internal 
Sequence Action CRT Printer 

~ ESCA Moves cursor up one row V 

ESC B Moves cursor down one row V 

ESCC Moves cursor right one column V 

ESC D Moves cursor left one column V 

ESC E Resets the printer and CRT - V 
clears control features 

ESC F Moves cursor to row after last row V 
of CRT memory, first column 

ESC G Moves cursor to first column, 
current row V 

ESC H Moves cursor to first row V 
of CRT memory, first column 

ESC I Moves cursor to next tab setting V 

ESCJ Clears screen from cursor V 
(rest of line and all lines following) 

ESCK Clears line from cursor position V 

ESC L Inserts a blank line before cursor line V 

ESCM Deletes cursor line and closes up gap V 

ESCP Deletes character at cursor position V 

ESCQ Turns on insert character mode; V 
inserts to left of cursor 

ESC R Turns off insert character mode V 

ESC S Rolls printout up one line (like ~) V 

ESCT Rolls printout down one line (like ~) V 

ESC U Rolls printout up 20 lines (next page) V 

ESC V Rolls printout down 20 lines V 
(previous page) 

ESCY Disables control codes and V V 
allows them to be viewed 

ESCZ Reactivates control codes V V 

ESCI Freezes all lines above cursor line V 
(lowercase L) 

ESC m Unfreezes the lines which V 
were frozen previously 

ESC 1 Sets a tab at column of the cursor V 

ESC2 Clears a tab at column of the cursor V 



Appendix A BP-259 

ESC 3 Clears all tabs V 
ESC&a Addresses the cursor V 

ESC &d Accesses CRT special features V V 

ESC &k Outputs 150% size characters V 

ESC &1 Sets dots per line or top margin V 
(lowercase L) 

ESC &n Defines a new character V 

ESC &0 Specifies a string replacement V 

Examples 

The first example listed is used to move blocks of text. The second example should be run to 
see how it lets you manipulate a table. 

Example 1 

This program uses CRT addressing to move blocks ot text 

PPIt··:TF:r;:: I~::; 1(: sets CRT as printer 
F'F,' I HT F:'fiC;t::; 

.t.; ':..' Th s sectIon puts ~aragra s n rl order ************ 
1~0 EcS=CHRS(27) 

IMAGE for PRINT USIHG 
210 PRINT USING Il;ES& ~y 

turn on memory lock 
roll remaining lines 

"')40 PP T i·,·IT t)~::; I i-··Ie;; T 1 ; Ec :$:;;~.:!; rn!' turn off memory lock 
;:~~ ::) 1:::i F'!? T !-.~ T t.J ~::; I 1-"1 G I. 1 ;; F ;.- :f: ! ,-I ! move cursor to 1st row, 

29C PF,: I :-rr ij:;:; I He I:l; E::J;:::. "::::f;'" 
JOi~] Pi? I f-·iT !'.J:~~; I j-··le; I1.;a Ec ~::;~.: i) 'i Ii turn on memory lock 
:'~; :I. i;) F' F~: I ! .. ~ T U :::; I r··l G I:!.; ~:~ F'T:.1:. ;:: E c :.f ;::.: !i :;:;; 5! :::: > 

:3 ~;:: 0 P!~:: I !···1 T i . ..! :;;:; I I···j G T 1 ; E: c :$: ;::.; II rn !; 

:.:;:.:;~::j F'J? I i"~T i.J~:; I HG I:!.; Ec ::!:::~.:;! H;! move cursor to 1st row, 

I 

~ 



BP-260 Appendix A 

Example 2 

10 ! f"j"j ~:. p i'~' 0 q r~··:i r!l ij ::;. ;::' :::. i.).:l. j .... i 0 I . ..! :::. C f~~ T -:::1. d (1 i'~' e ::::. :::- 'j n 9 0 I:) e 1···· ·:::L t '1 () 1"1 :::. 

to cr~~te and manipulate a tabel. Each line of the 
table is numbered to reflect the line number of CRT 

40 
for number output 
C!~~T 1:::. pr·inter· 

60 DIM Expenses(17,4),Accounts$(17) i arrays for types and $~s 
DHTfi 25,40,22.38,75,100,205.75,82,172.30,20,7.50,75.36,49 

2000,827,40,1537,7,O,50.75,41,5000,4700,5130,4900,50,2° 

iOO 
1 H:i 

IifiTFi 
:D!~Ti:i 

DiiTH 
~~:~~~ 4~~~~:~:::~~:f~~~~1~:~~~~~~t~~;~~ 5~~!~f1~~~6 
30.75,69.85,22,50,237,845,99,49,5,15,75,O,40,99,1275,83 
Travel,Motels,Off. suppjies,Machines,Entertainment, 

DriTH 
Dr:iTH 

Overtime,Desks,Printing,Postage,Hccts 
14(:' 
1. ~:; f:j 

Miscellaneous,Rental cars,Hdvertising,Fees,Tooling 
['iiiT i?E:HD E 
Ec ~~~:CHP $ (;?? 

1 "(' 0 E :;f:::Cf-if?S: (2? ) :!.:" :\.::i " 
1. ::::1:::; T~'..~~::::Ec $::,. II 1. 'i 

190 T$::;::CHP~~:('::~> 

2i21 [1 Iii::" '! :$::::Ec :t:~.: i; 1"1 !! 

;;~~~;;:, F' c,'1 J:::Ec :j;:~.:" \i" 
230 11: IMHGE I,K 

set tab at cursor position 

delete cursor line 
insert blank I ine above 

roll printout down 
image for PRINT USING 

240 Heading: THIS SECTION OUTPUTS THE HEHDING *************** 
2~:ie Fl~;~II···IT 11 (J 11;PF·T::r(!!·~!;,?r.:;),L,I!"·!(1),11 l'!,Llr·.}(l),!i ;;::;! 

Ii ~ ~~ F T :~:: ( ,I ~€ . • 1 1! ? i:;; ) 
290 L$=CHP$(124) . '! i.)l:;'i.-·t i (.3. '1 b.:~1.i·-· for- :::,p.::1.c i nq 

F'F: I i···iT 
f)P I t·n 
PF: I ilT . - . 

I put memory lock on 
THIS SECTION OUTPUTS THE TABLE ******************** 

set tab at cursor position 
:::: ~:; 0 p f~~ I H T U :::; I i···1 C; I 1. ; E::;:: go; II ::::; 9 C II ;~.: T ~:. ~t 
:.:i I:. ~~i P I:;~~ I t··l 'r tJ ::; It··! C; I:t; E:$: t: ! i ~::; 4 C ! 1 :~,: T ::::' ~~: 
.. ;,.' i:J Pi~~~ I l··~·r U~::; I !"~G I 1 ; E :$:t: Ii t:: 9C Ii ;~.; T ::::. :~:: 

reposition cursor to row? 

400 FOP 1=1 TO 1? these loops print table 

out put f i qU('E:'S, 
PPINT T$;Expenses(I,J); T$ tabs to next setting 

F'PI!···!T 
L .. in!::' :::: L .. i r'jl::' -+-], output line number Of CRT 

! THIS SECTION riLLOWS NUMBERS TO BE CHHNGED ******** 

• 



590 X=Expenses(Row-6,Rep) 

610 IF Row)19 THEN Roll 
" 

630 PRINT RPTS(TS,R@p);X;SPA(S) 

Appendix A BP-261 

I Rep is for tabbing purposes 

move cursor to right lIne 
tab to proper column, 

go to next section 
I back to start of this section 

THIS SECTION COMPENSATES FOR ROWS ) 19 ********* 
6'~00 PP I i···!T U :::; I l"~G :r. 1 ; !~:~ FT :$: (E c :*:g: 11 :::; ii , F:~Oi.:J·~·' 1 9 ::: p() :=.:. i t 'j on V" ()i.:J if"! i,g· 01 .. ) 19 
?OO PP H·iT U:;:; I r·k; Ii.; E $::"" 1 '::'1\'" pC'~'· it .j on ,= w···::::·Oi···· i I···; f"·OI ... , 1 ':) 
?10 PRINT PPTS(T$,Rep);X;SPA(5) tab to proper column, 

I THIS SECTION LETS A LINE BE MOVED *********** 

??O L1S=VAL$(Ll) 
780 L2$=VAL$(L2) 
(~~ PRINT USING Il;Rol$ 
:::;00 IF (Ll>19> OP <L;;~>l'3) THEH Pol'i2 
810 IF Ll{L2 THEN L2S=VAL$(L2-1) 

830 PRINT USING Il;Del$ 
:::::40 PPIHT U':::IHC; Ii ;E$:i.L2S<."'/" 
850 PRIHT USING 11;lnsl$ 

U:::::It'4G il#, nIi,K!!;L1.,!i 
FPTS:(1i 

880 FOF 1=1 TO 4 

930 PFINT USIHG Il;Pol$ 
':'::140 FF~:Ii···iT U:3II···lG 11 ;iE:*:t'i?:/OC!! 
950 FOF I=? TO 23 
960 F'F:~ I t·iT l..J:?~; I 1···!G !I DD!I ;; I 
'37U i··iE:·:T 
'::~:=;~:'1 Ii I SP 

roll printout down 

I make up for deletion of Ll 
I move cursor to line moving 

delete line being moved 
move cursor to L2 

! insert blank line above L2 

I for shorter names 
I reprint the deleted line 

position cursor to lne 
renumber all lines from ( 

j PROGFAM STOPS HEFE ****** 
i EITHEF OF BOTH LINES ) THAN 19 

lU10 IF (Ll)19) AND (L2{=19) THEN Rl 
l~~~ IF (Ll{=19) AHD (L2)19) THEN F2 

1050 Ll$=VAL$ Ll-4 
1060 L2$=VALS L2-4 
10?0 IF Ll{L2 THEN L2$=VAL$(L2-5) 
1. 0;:::0 GO TO :::;;;~i~:l 

both Ll and L2 ) 19 

I compensates for rolling 

make up for deleted line 

I 



I 

BP-262 Appendix A 

! Ll)19 AND L2 =19 

move cursor to that line 

130 PRINT USING 11 RolS j roll printout down 

1?2: j L..:i.<:::: 1. 9 
put cursor in line moving 

170 PRINT USING 11 DelS delete line being moved 
i···· (::1 i! -J .:;:1 ::::. t 'j i l·ut E' t () '; i !""l !;-~. J. '3l 

190 L2S=VALS(L2-4) compensates for r31 lIng 



Appendix B 
Programming Exercises 

Exercises 
This appendix contains several exercises to let you practice creating flowcharts. program outlines 

and programs. The solutions are at the end of the appendix. 

Exercise 1 
Construct a flowchart to output all odd numbers between 35 and 50. 

Exercise 2 
Construct a program outline to calculate and print a compound interest table for $1000 of initial 

principal, 6% interest and 100 periods. A compound interest table has two columns of numbers. 

The first is the compounding period; the second is the new principal amount after compounding 

the interest for that period, which is obtained by multiplying the previous principal by the interest 

rate, then adding that product to the previous principal. Repeat this procedure for as many 

periods as you want. 

Exercise 3 
Modify the previous program outline to allow the user to input the initial principal, interest and 

number of periods and to repeat the procedure if he wants. 

Exercise 4 
Write a program which computes the straight-line distance between two points. Then input the 

x,y-coordinates of both points. (The distance formula is J (X j -X2)2 + (Y j -Y2)2.) 

Exercise 5 
Write, store and execute a program which prints the numbers 35 to 50 using the PEAD and 

DATA statements. 

I 

BP-263 



BP-264 Appendix B 

Exercise 6 

Write, store and execute a program which has three sets of numbers (three numbers in each 

set). Corresponding numbers in the first two sets are added together, and the resulting sum is 

multiplied by the corresponding number in the third set. Read in the sets using F'EAD state­

ments. The numbers are: 

1stset = [4,17,-3] 2nd set [8,4,-2] 3rd set [12.1,7.33,5] 

Exercise 7 

Write, store and execute a program which calculates withholding tax. Withholding tax depends 

upon both the salary amount and the number of exemptions. Taxable income is the salary less 

$14.40 for each exemption. The actual amount withheld is $6.60 on the first $105, plus 18% of 

the taxable income above $105. Display both the tax withheld and net salary (salary minus 

withholdings). 

Exercise 8 

A mathematician, Karl Friedrich Gauss, developed a theorem that said the sum of the numbers 

from 1 to some other number, say n, could be represented by the equation S = n(n+1)/2. It 

holds for the number 3 certainly, because 1 +2+3=6 and 3(3+ 1)/2 = 6, but does it hold for 

all numbers? Write and run a program which will count (1,2,3,4'00')' add up the numbers as it 

counts, and compare the sums to the results predicted for the formula for each number. Display 

the results on the CRT. Are you in an infinite loop? Does the formula hold as far as you let it 

run? 

Exercise 9 

Write and run a program which computes the standard deviation of a sequence of numbers. 

The user should be able to enter the sequence. The formula for standard deviation is 

a= 

I 



I 

Appendix B BP-265 

Answers to Exercises 

Exercise 2 
1. Set the principal, inrerest rate and number of periods. 

2. Print the table heading. 

3. Generate and print the period number. 

4. Compute and print the principal ((Principal*Rate) + Principal). 

5. If there is another compounding period, go to step 3. 

Exercise 3 
Add this step to the program outline for Exercise 2: 

6. If another table is desired, go to step 1. 

1 
MOD is an operator. 



I 

BP-266 Appendix B 

Exercise 4 

10 I HF'UT ":'< 1 .::t.nd \' 1 " , i': 1 , \' 1 
20 I t·WUT ">2 ·:;.nd '/2", ><2, '/2 
:::(:1 :::;tt-·.:;.iqht 1 ine-=:::;OP«><1-:'<2)·2+(\'1-\'2)·2) 
40 F'P I tH - :::;tr:;. i 9ht 1 i ne-
50 Etm 

8 (example inputs where Xl =4, YI =5, X2=7, Y2 =8) 

4.2426406::::711 

Exercise 5 
10 DATA 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50 
20 PEAD A,B,C,D,E,F,G,H,I,J,K,L,M,H,O,F' 
30 F'PIHT A;B;C;D;E;F;G;H;I;J;K;L;M;H;O;F' 
40 am 

8 
35 :::6~:? 3::::::':" 40 41 42 43 44 45 46 47 4::::: 49 513 

Exercise 6 
10 DATA 4,17,-3 
20 DATA ::::,4,-2 
30 DATA 12.1,7.33,5 
413 PEAD A,B,C,D,E,F,G,H,I 
50 :'<=(A+D)*G 
60 \'= (B+E >*H 
70 Z=(C+F>*I 
80 F'P I tH ><, \' , Z 
':"0 Et·m 

8 
145.2 153.93 

The program can be rewritten from line 50 as: 

5~3 F'F.:nn (A+D>H:;, (]::+E>*H, (C+F>*I 
60 EHD 



Appendix B BP-267 

Exercise 7 

10 Fn<ED 2 
20 I t·lPUT ":::::.:.. l.:..t-·~: .. '" , :::::.:..l.:..t-·~,.-" "L·,:empt ion;::·" , E: :er,-,pt ion;::· 
:3e T.:..:,·::b.:";::.E·=:::::.:..l.:..r·')-E::-::E·r"pt i on;::.*14. 4 
40 O' .... E·t-·t .. :..:,<=T:..>,:tc:..;::.E·-105 
50 T:..::·::=6. 6+0'·.-'Ert .. :..::<*. 1::::: 
60 F'PItH "T:..>:: ~,jithhE·l.j :t";T:..:,<,"t·~E·t. :::::.:..l.:"t-·~:) ·$";::::;.:..l.:..t-·~)-T"->:: 

70 Et·m 

8 (example inputs) 

Net S.:..la~) $ 229.83 

Exercise 8 

1 0 f1""i~'''''(:'' 

20 t~=t'1+1 

:30 A=t'~+A 

40 DI::::;F' t'1; 
50 IF N*<N+1),2=A THEN 90 
60 DI:::::F''' I n'.}.:..1 i d TheCot-'em" 

:::::0 DI::::;F' A, ''''/:..1 id ThE'ot-'em" 
'30 C;OTO 30 
100 Etm 

With the System 45 Desktop Computer, you can eliminate line 10 because variables are preini­

tialized to zero. However, initializing variables to zero is a wise procedure to follow in general 

programming. 

Exercise 9 

8 

10 ;'<=t·l=>': b.:..t-·=O 
20 I NF'UT-- "t·~,,·:,<t. numbEr in the ;::·equE·nc e", 'y' 
'.:;:0 F'PIt·n "Pt"·E·' .. -,iou;::.l') E·ntEred";'y' 
4~::1 bat-·+'y' 
50 
60 t·j=t·j-t-1 
70 It·lPUT "Entet-· 1 fot-· r"m-·,,· nw,-,b"r 'in thE' "·E·q'-Jetxe; ent·Er 0 if done",fi 
80 IF A=l THEN 20 
'30 :::;i ':::jr,-,:..=:::::OP< <:";_.;,.,: b:..r" ·2····lD.··· 0'j-1)::-
100 PP ft.n "::::;t .. andat-·:j d,,·' .... i.a t i on" ; ::::; i o;Ir,-,,,-
110 Et·m 

Previously entered 45 
Previously entered 89 
::::;tandat-·,j dE",) ·i.at. i on 31.1126'3:::::::;:722 

Ii 



I 



Reference Tables 

Glossary 

Absolute plotting - Plotting to a coordinate which has its X and Y values specified in the 

current user units. 

Angle - The vector which a line or label is drawn, represented in degrees, radians, or grads, 

counter-clockwise from the horizontal. 

Anisotropic - The X and Y units are not displayed as equal to each other. 

Array identifier - An array name followed by (*) used to access all elements in an array 

collectively. 

Axes - plural of axis. 

Axis - A line drawn within the Cartesian coordinate system along either the horizontal (X) 

direction or the vertical (Y) direction. 

Byte - A group of 8 binary digits (bits) operated upon as a unit. 

Calling program - When a subprogram is being executed, the program segment (main pro­

gram or subprogram) which called the subprogram is known as the calling program. 

Control returns to the calling program when the subprogram is completed. 

Character - A letter, number, symbol, or ASCII control code; any artitrary 8-bit byte defined by 

the CHR$ function. 

Clipping area - The area which restricts the pen movement whenever lines are drawn in UDUs. 

Command - An instruction to the computer which is executed from the keyboard. Commands 

are executed immediately, do not have line numbers and can't be used in a program. 

They are used to manipulate programs and for utility purposes, such as listing key defini­

tions. 

Ii 

RT-l 



RT -2 Reference Tables 

Constant - A fixed numeric value within the range of the computer; for example, 29.5 or 2E12. 

Controller address - An integer from 0 through 7 which specifies the address of a hard disc 

controller. 0 is the default address. 

Current environment - The program segment which is being executed. 

Current units - The mode of X,Y reference which is in effect; may be GDUs, UDUs or Metric 

(mm). 

Cursor - The device which is used to obtain digitizing information. 

Data base - A set of data which is accessible by the computer and upon which a program may 

perform operations. 

Defined record - The smallest unit of storage on a mass storage medium which is directly 

addressable. A defined record is established using the eRE ATE statement and can be 

specified as having any number of bytes in the range 4 through 32 767 (rounded up to 

an even number). 

Digitizing - The process of obtaining an X,Y coordinate pair based on the location of the 

cursor. 

Display line - Line 22 of the CRT is used to display output generated by DIS P, and any 

IN PUT prompt or question mark. 

Edit key mode - When a Special Function Key is being defined as a typing aid. See 

EDIT KEY. 

Edit line mode - When the program in memory is being edited. See ED I T LINE. 

File name - A one to six character string expression with the exception of a colon, quote mark, 

ASCII NULL (CHR$(O)). or CHR$(255). Blanks are ignored. 

File number - The number assigned to a mass storage data file by an ASS I G N statement. Its 

range is 1 through 10. 

File pointer - The current position within a file where data is about to be read or written. 

File specifier - A string expression of the form: file name [mass storage unit specifier J. 

• 



Reference Tables RT-3 

Files - The basic unit into which programs and data are stored. Storage of all files are "file-by­

name" oriented; that is, each file must be assigned a unique name. 

Formal parameter - Used to define subprogram variables and can be non-subscripted vari­

ables, array identifiers or files specified by #file number. A type word can come before 

parameters to specify numeric type. Parameters must be separated by commas; the para­

meter list must be enclosed in parentheses. 

GDUs - Graphic Display Units. An X,Y reference system which at default defines the CRT to 

extend from X minimum = 0 to X maximum = 123.127753304, Y minimum = 0 to Y 

maximum = 100. 

Handshake - A signal exchange between the computer and external device to communicate 

data ready and data accepted information. 

Hard clip - The physical limits of the plotting device, beyond which no line can be drawn. 

HPGL - The low-level instruction set used with HP input and output devices. 

HP-IB device address - A numeric expression which specifies the HP-IB address that is set on a 

device. Its range is 0 through 30. 

Input - A data transfer from an external device to the computer. 

Interleave factor - Defines the number of revolutions per track to be made for a complete data 

transfer on a 9885 or 9895 Disc. It is specified in an I NIT I A LIZ E statement. 

Isotropic - The X and Y axes units are displayed as equal to each other. 

Keyboard entry area - Lines 23 and 24 of the CRT are accessible only through keyboard 

inputs. Every line that is typed in is displayed in this area. The first position in line 23 is 

known as the "home" position of the cursor. As the 148th character is keyed in, a beep 

indicates that only 12 more characters can be entered. 

Label - A unique name given to a program line. It follows the line number and is followed by a 

colon. 

Line identifier - A program line can be identified either by its line number (G 0 T 0 150) or its 

label, if any, (GOTO Routine). 

Ii 



RT -4 Reference Tables 

Line number ~ An integer from 1 through 32 766. In most cases, when a line number is speci­

fied, but is not in memory, the next highest line is accessed. 

Live keyboard mode ~ Numeric computations and most statements and commands can be 

executed from the keyboard while a program is running. Program lines can be stored 

also. The running program is temporarily paused while a keyboard operation is ex­

ecuting. 

Local variable ~ A variable in a subprogram that isn't declared in the formal parameter list or 

COM statement; it can't be accessed from any other program segment. Storage of local 

variables is temporary and returned to user Read/Write Memory upon return to the call­

ing program. 

Logical record ~ A collection of data items which are conceptually grouped together for mass 

storage operation. It is a user-level rather than a machine concept. 

Main program ~ The central part of a program from which subprograms can be called is known 

as the main program. When you press RUN, you access the main program. The main 

program can't be called by a subprogram. 

Mass storage unit specifier (msus) ~ Any string expression of the form 

: device type [select coder , controller address 19885 unit code [ , unit codell] 

The letters specifying the various mass storage device types are ~ 

Device 
Type Code 

T 
y 

z 
C 
D 
M 
p 

F 
H 
Q 

Device 

Internal tape cartridge 
7905M removeable disc 
7905M fixed disc 
7906M/H removeable disc 
7906M/H fixed disc 
7910H fixed disc (984138 ROM only) 
7920M/H removeable disc 
7925M/H removeable disc 
9885M/S flexible disc 
9895A flexible disc 
7908 drive 

Medium ~ The material on which data is actually being kept and stored (as distinct from the 

device, which does the actual reading and writing). Tape cartridges and disc packs are 

examples of "media". 

Metric units ~ A unit of measure mode where everything is referenced in millimetres. 

09845-93000. rev: 9181 

I 



Reference Tables RT-5 

Mnemonic - An abbreviation or acronym that is easy to remember. 

Module - In programming, a program segment which performs a specific, independent program 

task. 

Msus - The abbreviation for mass storage unit specifier. 

Name - A capital letter followed by 0 through 14 lower case letters, digits or the underscore 

character. Names are used for variable names, labels, function names, and subprogram 

names. 

Naming convention - A pattern or system for assigning names to variables or files so that some 

manner of consistency or predictability is maintained. 

Numeric expression - A logical combination of variables, constants, operators, functions, in­

cluding user-defined functions, grouped with parentheses if needed. 

On-line - Capable of being accessed by the computer; usually means a device which is physi­

cally connected, functioning properly, and in communication with the mainframe. 

Origin - The coordinate point at which a plotting operation begins. 

Output - A data transfer from the computer to an external device. 

Parity - A means of flagging data transmission errors by setting the eighth bit to produce an 

even or odd number of set bits in a data word. 

Pass parameter - Used in calling a subprogram to pass values to the subprogram and can be 

variables, array identifiers, expressions or files specified by #file number; any variable 

can be enclosed in parenthesis causing it to be passed by value. 

Pen - The device which is used to draw or plot lines, and to label characters. 

Physical record - A 256-byte, fixed unit which is established when a mass storage medium is 

initialized. Every file starts at the beginning of a physical record; this is an important fact 

for optimum device use. Otherwise, you need not be concerned with physical records. 

Pixel - Picture element - the smallest unit of resolution on the CRT. 

Plotted point - The point which has been plotted or drawn to. 

I 



RT-6 Reference Tables 

Plotting coordinates - The X,Y coordinate pair which specifies a plotting point. 

Plotting space - The area within which plotting can occur. 

Pointer - The method used to position the cursor, or to select a type of cursor. 

Printout area - Lines 1 through 20 of the CRT are similar to a printing device. When the 

machine is switched on, this area is the standard system printer to which output from 

PR I NT, PR I NT US I NG, CAT and LIST is directed. It is also, at power-on, the print all 

printer when in the print all mode. 

Priority - A number in the range 1 through 15 which determines whether or not and in what 

order interrupts are serviced. The priority of the interrupt must be higher than current 

system priority to be serviced. 

Program segment - The main program and each subprogram are known as program segments. 

Every program segment is independent of every other program segment. 

Protect code - Any valid string expression except one with a length of zero. Only the first six 

characters are recognized as the protect code. however. 

Read Only Memory (ROM) - Permanent memory which can't be changed or erased. Option 

ROMs are used to expand the language and capabilities of the computer. 

Read/Write Memory (RWM) - Used to store programs, data and related information. The in­

formation in Read/Write Memory can be changed and is lost when the computer is shut 

off. 

Record 110 - Input/output operations concerned exclusively with the smallest addressable unit 

of storage (records). 

Redim subscripts - Numeric expressions separated by commas and enclosed in parentheses. 

Reflected plot - A plot produced by interchanging either the X minimum and X maximum 

coordinates, the Y minimum and Y maximum coordinates, or both X and Y coordinate 

pairs to change the plot. 

Relative plotting - Plotting which specifies plotting from an origin rather than to a specific X,Y 

coordinate. 

I 



Reference Tables RT-7 

Scalar - A numeric expression used as a constant in mathematical operations. 

Select code - An expression (rounded to an integer) in the range 0 through 16 which repre­

sents an interface address. The following select codes are reserved by the system and 

can't be set on an interface: 

• 0 Internal thermal printer and keyboard 

• 13 Graphics 

• 14 Left tape drive 

• 15 Right tape drive 

.16 CRT 

Slant - The angle at which a character is drawn, represented in clockwise degrees, radians, or 

grads from the vertical. 

Snapshot - Current state at a particular time. 

Soft clip - The limits of the plotting device which restrict pen movement for lines drawn in 

UDU's. 

Special Function Keys (SFK's) - These keys can be defined or redefined for use as typing aids 

for statements, variable names or other series of keystrokes which are used often. Many 

of them have pre-defined definitions. Any of the special function keys can also be de­

fined to have program interrupt capability. 

Stack - A portion of memory used to temporarily hold information for processing in a particular 

order. 

Standard mass storage device - The device to which all mass storage operations are directed if 

no device is specified. It is the righthand tape cartridge at power on and can be changed 

using the MASS STORAGE I S statement. 

Standard printer - The printer to which all P R I NT, P R I NT US lNG, CAT and LIS T output is 

directed if no device is specified. At power on, it is the CRT. It can be changed using the 

PR I NTER I S statement. 

Statement - An instruction to the computer telling it what to do while a program is running. A 

statement can be preceded by a line number, stored and executed from a program. Most 

statements can also be executed from the keyboard without a line number. 

I 



RT-8 Reference Tables 

String expression - As with numbers, you can manipulate strings, thus forming a string func­

tion. The different forms of a string expression are text within quotes, string variable 

name, substring, string concatenation operation, string function, and user-defined string 

function. 

Subprogram - A set of statements, separate from and after the main program, that performs a 

task under the control of the calling program segment. SUB and CAL L or DE F F Nand 

F N are used to define and access a subprogram. 

Subroutine - A set of statements, within a program segment, that performs a task. The GDSUB 

and RET URN statements control subroutines. 

Subscript - An integer used to specify the range of an array dimension. A single subscript is 

used to specify the upper bound of a dimension; two subscripts separated by a colon are 

used to specify the upper and lower bounds of a dimension. A comma is used to separate 

the subscripts for each dimension. 

System comments line - Line 25 of the CRT is reserved for error messages, mode indicators, 

and the run light: ~:~:~ Results of keyboard operations, such as 3 + 5 EXECUTE or >< EX­

ECUTE, also appear in this line. 

System design - The specification and implementation of a program or set of programs to 

accomplish a given purpose. 

Text - Any combination of characters; for example "ABC". Text can be quoted (literal) or 

unquoted. 

UDUs - User Defined Units. Defined by the program to whatever X and Y units of measure 

which are convenient. 

Unit code - The address set on a hard disc drive; it can be an integer from 0 through 7. 0 is the 

default code. It is ignored for the 9885 and tape cartridge. 

The 9885 unit code is the address set on a 9885 disc drive; it can be an integer from 0 

through 3. 0 is the default code. 

• 



Reference Tables RT-9 

Variable - A name which is assigned a value and specifies a location in memory. Variables can 

be classified into various categories and subsets of the categories as shown in the diagram 

below. For example, any reference to a single numeric variable includes simple numerics 

and elements of numeric arrays. 

single variable 

numeric variable 

cmPle numeric 

array element 

variable 

b
ring variable 

simple string 

~substring 
string array element 

L substring 

Word - Two bytes; a group of 16 binary digits (bits). 

array variable 

numeric array 

[matrix 

vector 

string array 

tmatrix 

vector 

Ii 



HT-lO Reference Tables 

ASCII Character Codes 
ASCII 

EQUIVALENT FORMS 
ASCII 

EQUIVALENT FORMS 
ASCII 

EQUIVALENT FORMS 
ASCII 

EQUIVALENT FORMS 

Char. Binary Oct Hex Dec Char. Binary Oct Hex Dec Char. Binary Oct Hex Dec Char. Binary Oct Hex Dec 

NULL 00000000 000 00 0 space 00100000 040 20 32 @ 01000000 100 40 64 
, 

01100000 140 60 96 

SOH 00000001 001 01 1 I 00100001 041 21 33 A 01000001 101 41 65 a 01100001 141 61 97 

STX 00000010 002 02 2 " 00100010 042 22 34 B 01000010 102 42 66 b 01100010 142 62 98 

ETX 00000011 003 03 3 # 00100011 043 23 35 C 01000011 103 43 67 c 01100011 143 63 99 

EOT 00000100 004 04 4 $ 00100100 044 24 36 D 01000100 104 44 68 d 01100100 144 64 100 

ENQ 00000101 005 05 5 % 00100101 045 25 37 E 01000101 105 45 69 e 01100101 145 65 101 

ACK 00000110 006 06 6 & 00100110 046 26 38 F 01000110 106 46 70 f 01100110 146 66 102 

BELL 00000111 007 07 7 00100111 047 27 39 G 01000111 107 47 71 9 01100111 147 67 103 

BS 00001000 010 08 8 ( 00101000 050 28 40 H 01001000 110 48 72 h 01101000 150 68 104 

HT 00001001 011 09 9 ) 00101001 051 29 41 I 01001001 111 49 73 i 01101001 151 69 105 

LF 00001010 012 OA 10 * 00101010 052 2A 42 J 01001010 112 4A 74 J 01101010 152 6A 106 

VT 00001011 013 OB 11 + 00101011 053 2B 43 K 01001011 113 4B 75 k 01101011 153 6B 107 

FF 00001100 014 OC 12 , 00101100 054 2C 44 L 01001100 114 4C 76 I 01101100 154 6C 108 

CR 00001101 015 00 13 - 00101101 055 20 45 M 01001101 115 4D 77 m 01101101 155 6D 109 

SO 00001110 016 OE 14 00101110 056 2E 46 N 01001110 116 4E 78 n 01101110 156 6E 110 

51 00001111 017 OF 15 / 00101111 057 2F 47 0 01001111 117 4F 79 0 01101111 157 6F 111 

OLE 00010000 020 10 16 0 00110000 060 30 48 P 01010000 120 50 80 P 01110000 160 70 112 

DCl 00010001 021 11 17 1 00110001 061 31 49 Q 01010001 121 51 81 q 01110001 161 71 113 

DC2 00010010 022 12 18 2 00110010 062 32 50 R 01010010 122 52 82 r 01110010 162 72 114 

DC3 00010011 023 13 19 3 00110011 063 33 51 5 01010011 123 53 83 , 01110011 163 73 115 

DC4 00010100 024 14 20 4 00110100 064 34 52 T 01010100 124 54 84 t 01110100 164 74 116 

NAK 00010101 025 15 21 5 00110101 065 35 53 U 01010101 125 55 85 u 01110101 165 75 117 

SYNC 00010110 026 16 22 6 00110110 066 36 54 V 01010110 126 56 86 v 01110110 166 76 118 

ETB 00010111 027 17 23 7 00110111 067 37 55 W 01010111 127 57 87 w 01110111 167 77 119 

CAN 00011000 030 18 24 8 00111000 070 38 56 X 01011000 130 58 88 x 01111000 170 78 120 

EM 00011001 031 19 25 9 00111001 071 39 57 Y 01011001 131 59 89 Y 01111001 171 79 121 

SUB 00011010 032 lA 26 00111010 072 3A 58 Z 01011010 132 SA 90 , 01111010 172 7A 122 

ESC 00011011 033 lB 27 , 00111011 073 3B 59 [ 01011011 133 5B 91 { 01111011 173 7B 123 

FS 00011100 034 lC 28 < 00111100 074 3C 60 \ 01011100 134 5C 92 I 01111100 174 7C 124 

GS 00011101 035 1D 29 ~ 00111101 075 3D 61 1 01011101 135 5D 93 } 01111101 175 7D 125 

RS 00011110 036 IE 30 > 00111110 076 3E 62 A 01011110 136 5E 94 - 01111110 176 7E 126 

US 00011111 037 IF 31 ? 00111111 077 3F 63 01011111 137 SF 95 - DEL 01111111 177 7F 127 

Use this table to determine what keys can be used with the CONTROL key to obtain a control 
code. First, find the desired code in the first column. Then read across that line to find the two or 
three keys which produce that character when pressed with CONTROL. For example, LF 
(linefeed) can be obtained by pressing CONTROL with one of the following: 

• * 
.J 
• SHIFT J 

The DEL character is the only one that can't be obtained using the CONTROL key. 

I 



Roman Extension Character Codes 

ASCII 
EQUIVALENT FORMS 

Char. Binary 

CLEAR 10000000 

IV 10000001 

BL 10000010 

IV BL 10000011 

UL 10000100 

IV lIL 10000101 

BL III 10000110 

IV BL UL 10000111 

Wflll<' 10001000 

R,'d 10001001 

y",llow 10001010 

Clre!!Tl 10001011 

Cy'dll 10001100 

Blul' 10001101 

Md':lentd 10001110 

Bldck 10001111 

CLEAR 10010000 

IV 10010001 

BI 10010010 

1\/ Bl 10010011 

UL 10010100 

IV UL 10010101 

BL III 10010110 

IV BL UL 10010111 

I)v'hlll' 10011000 

R," 10011001 

Yelio\.\.' 10011010 

(jrl'1!1l 1001 1011 

CI,.',m 10011100 

IV - Inverse video 
BL - Blinking 
UL - Underline 

Octal Decimal 

200 128 

201 129 

202 130 

203 131 

204 132 

205 133 

206 134 

207 135 

210 136 

211 137 

212 138 

213 139 

214 140 

215 141 

216 142 

217 143 

220 144 

221 145 

222 146 

223 147 

224 148 

225 149 

226 150 

227 151 

230 152 

231 153 

232 154 

233 155 

234 156 

ASCII 
Char. 

Blu.' 

:-'1"'ll'III,1 

lil"ck 

H 

I 

I~I 

'-' 

H 

E 

I~I 

t 

1:1 

i 

-

H 

a 

0 

, 

'i 

N 

ii 

I 

c 

Q 

£ 

.:. 

;:: 

EQUIVALENT FORMS 
ASCII 

EQUIVALENT FORMS 
ASCII 

Binary Octal Decimal Char. Binary Octal Decimal Char. 

10011101 235 157 2 10111110 276 190 

10011110 236 158 10111111 277 191 1 

10011111 237 159 • 11000000 300 192 • 
10100000 240 160 .. 11000001 301 193 r 

10100001 241 161 " 11000010 302 194 T 

10100010 242 162 u 11000011 303 195 -
10100011 243 163 .. 11000100 304 196 , 
10100100 244 164 • 11000101 305 197 i 

10100101 245 165 6 11000110 306 198 I 

10100110 246 166 u 11000111 307 199 + 
10100111 247 167 a 11001000 310 200 r 
00101000 250 168 E 11001001 311 201 r 

00101001 251 169 ,) 11001010 312 202 T 

00101010 252 170 U 11001011 313 203 -

10101011 253 171 a 11001100 314 204 1 

10101100 254 172 • 11001101 315 205 1 

10101101 255 173 6 11001110 316 206 t 

10101110 256 174 u 11001111 317 207 ~ 

10101111 257 175 A 11010000 320 208 ~ 

10110000 260 176 " 11010001 321 209 L 

10110001 261 177 '.?; 11010010 322 210 J. 

10110010 262 178 [ 11010011 323 211 + 
10110011 263 179 " 11010100 324 212 J 

10110100 264 180 , 11010101 325 213 .. 
10110101 265 181 0 11010110 326 214 J 

10110110 266 182 :f 11010111 327 215 -
10110111 267 183 R 11011000 330 216 .. 
10111000 270 184 , 11011001 331 217 L 

10111001 271 185 d 11011010 332 218 .L 

10111010 272 186 U 11011011 333 219 + 
10111011 273 187 E 11011100 334 220 ~ 

10111100 274 188 , 11011101 335 221 
,. 

10111101 275 189 f:: 11011110 336 222 " 

Reference Tables RT·ll 

EQUIVALENT FORMS 

Binary Octal Decimal 

11011111 337 223 

11100000 340 224 

11100001 341 225 

11100010 342 226 

11100011 343 227 

11100100 344 228 

11100101 345 229 

11100110 346 230 

11100111 347 231 

11101000 350 232 

11101001 351 233 

11101010 352 234 

11101011 353 235 

11101100 354 236 

11101101 355 237 

11101110 356 238 

11101111 357 239 

11110000 360 240 

11110001 361 241 

11110010 362 242 

11110011 363 243 

11110100 364 244 

11110101 365 245 

11110110 366 246 

11110111 367 247 

11111000 370 248 

11111001 371 249 

11111010 372 250 

11111011 373 251 

11111100 374 252 

11111101 375 253 

11111110 376 254 

11111111 377 255 

Decimal values 160 through 255 access the Nationalized and Drawing Characters. 

I 



RT-12 Reference Tables 

Metric Conversion Table 

English Units Metric Units 

Length 
mil micrometre (micron) 
inch millimetre 
foot metre t 
mile (int!.) kilometre 

Area 
inch2 millimetre2 

foot2 metre2 

mile2 kilometre 2 

acre hectare 
(U.S. survey) 

Volume 
inches3 millimetres3 

feet3 metres3 

ounces centimetres3 

(U.S. fluid) 
gallon litre ~ 
(U.S. fluid) 

Mass 
pound (avdp.) kilogram 
ton (short) ton (metric) 

Force 
ounce (force) dyne 
pound (force) newton 

Pressure 
psi pascal 
inches of Hg millibar 
(at 32°F) 

Energy 
BTU (1ST) Calorie 

(kg, thermochem.) 
BTU (1ST) watt-hour 
BTU (1ST) joule § 
ft·lb joule 

Power 
BTU (lST)/hr watt 
horsepower watt 
(mechanical) 
horsepower watt 
(electric) 
ft·lb/s watt 

Temperature 
°Rankine kelvin 
°Fahrenheit °Celsius 

-(:( Exact conversion 
t Conversion redefined in 1959 
:j: Conversion redefined in 1964 
§ Conversion redefined in'1956 

Note: The preferred metric unit for 
force is the newton; for pressure, the 
pascal; and for energy, the joule. 

Sources 

Prefix 

exa 
peta 
tera 
giga 
mega 
kilo 
hecto 
deka 

To convert from To convert from 
English to Metric, Metric to English, 

multiply by: multiply by: 

2.54 x 10 1,:,- 3.937007874 x 10-2 

2.54 x 101,:,- 3.937007874 x 10-2 

3.048 x 10-1,:,- 3.280839895 
1.609344,:,- 6.213711922 x 10-1 

6.4516 x 102,:,- 1.550003 100 x 10-3 

9.290304 x 10-2,:,- 1.076391042 x 101 

2.589988 110 3.861 021 585 x 10-1 

4.046873 x 10-1 2.471044 

1.6387064 x 104
,:,- 6.102374409 x 10-5 

2.831684659 x 10-2 3.531466672 x 101 

2.957353 x 10 1 3.381 402 x 10-2 

3.785412 2.641 721 x 10-1 

4.5359237 x 10-1,:,- 2.204 622 622 
9.0718474 x 10-1,:,- 1.102311 311 

2.780 138510 x 104 3.596943090 x 10-5 

4.448221 615 2.248089431 x 10-1 

6.894757293 x 103 1.450377377 x 10-4 

3.3864 x 101 2.952 9 x 10-2 

2.521644007 x 10-1 3.965 666 831 

2.930710702 x 10-1 3.412 141 633 
1.055055853 x 103 9.478171 203 x 10-4 

1.355817948 7.375621 493 x 10-1 

2.930710702 x 10-1 3.412 141 633 
7.456998716 x 102 1.341 022090 x 10-3 

7.46 x 102,:,- 1.340482574 x 10-3 

1.355817948 7.375621 493 x 10-1 

1.8,:,- 5.555555556 x 10-1 

°C=("F-32) 11.8,:,- OF = (oC x 1.8) +32,:,-

Symbol Multiplier Prefix Symbol Multiplier 

E 10 18 deci d 10-1 

P 1015 centi c 10-2 

T 1012 milli m 10-3 

G 109 

M 106 
micro I.t 10-6 

nano n 10-9 

k 103 

h 102 
pico p 10-12 

femto f 10-15 

da 101 atto a 10-18 

American Society for Testing and Materials (ASTM), "Standard for Metric Practice". Reprinted from Annual 
Book of ASTM Standards. 

U.S. Department of Commerce, National Bureau of Standards, "NBS Guidelines for the Use of the Metric 
System" Reprinted from Dimensions/NBS. (October 1977). 

• 



Reference Tables RT-13 

Reset Conditions 
The following table shows the status of various conditions when the indicated operations are 
performed. 

Variables 
RESult 
Subroutine return pointers 
Angular units 
Numeric output mode 
Random number seed 
Standard printer 
Printall printer 
Standard mass storage device 
SFK definitions 
Processing mode 
Live keyboard mode 
Binary routines 
Files table 
DATA pointers 
ERRL,ERRN 

- means unchanged 

SCRATCHA 
or 

Power On 
(Value) 

R (none) 
R (0) 
R (none) 
R (RAD) 
R (STANDARD) 
R(1T/180) 
R (select code 16) 
R (select code 16) 
R (:T15) 
R (Initial) 
R (SERIAL) 
R (INTERACTIVE) 
R (none) 
R (none) 
R (none) 
R (0,0) 

R means restored to power on values 

Reset 

R 
R 
R 
R 

R 

R 
R 
R 

SCRATCH 

R 

R 
R 
R 
R 

R 

R 
R 
R 

RUN 

R 

R 
R 

R 

R 
R 
R 

CO NT 

• 



RT-14 Reference Tables 

Memory 

This section delves into the structure, organization and use of User Read/Write Memory. It is 
not intended to be a complete explanation of memory, but to explain it as it relates to pro­
gramming operations. 

Read/Write Memory 
The System 9845 Desktop Computer uses two types of memory: Read/Write Memory and 
Read Only Memory (ROM). Read/Write memory is used to store programs and data. When you 
store a program or data, you "write" into the memory. When you access a line of your program 
or a data element, you "read" from memory, thus the term Read/Write. Read/Write memory is 
temporary; it can be changed or erased. The contents of Read/Write memory are lost when the 
computer is shut off. 

Programs and data in Read/Write Memory can be saved for future use by recording the 
information on a tape cartridge or other storage medium. 

Memory Test and Loss 
Each time the computer is switched on, the Read/Write memory is automatically tested. If a 
block of memory is found to be defective, you are warned with a message. This results in less 
memory that is available for your use. You can still use the computer and may not need the 
defective memory, depending on your application. To determine how much memory is avail­
able for your use, execute SCRATCH A, then LIST. This displays the amount in bytes. Any 
decrease in size would be in an increment of approximately 8 192 bytes. Call your HP Sales 
and Service Office for assistance. 

Read Only Memory 
Read Only Memory differs from Read/Write Memory in that it is permanent. When the compu­
ter is turned off, the Read Only Memory is unaffected. Each option ROM is inserted into one of 
the drawers in the sides of the machine, making it possible to expand the language and 
capabilities. A small amount of Read/Write Memory is used by some option ROMs. This area is 
called "working storage". The working storage used by each ROM is listed in the Installation, 
Operation, and Test Manual. 

Ii 



Reference Tables RT-15 

Conserving Memory 
Large programs that involve large amounts of data can sometimes require more memory than 
is available for use. This section presents some ways to conserve memory usage when writing a 
program and using data. 

One way to use less memory in a program is to limit the use of :?C}: statements and comments in 
the program. This limits program readability and documentation, but does conserve memory 
usage and decrease program execution time. 

The use of subprograms can also conserve memory. Variables used within subprograms either 
share memory space with calling program variables or use memory only temporarily. So rather 
than creating new variables for various routines, thus using more memory, a subprogram can 
be used. In addition, the use of many short program segments, rather than a few large seg­
ments, results in better memory packing efficiency. 

The use of ·::;:··-H:Y:;:·T and T :·rrTl CT' precision variables, rather than full precision, is a good way to 
conserve memory in a program that has a great deal of data. This technique is most useful when 
dealing with large arrays. However, it has two limitations: all calculations are performed with 
full-precision accuracy, so T :'iT::1;::::;:' and ·:::t:CH?T precision variables must be converted before 
and after the operation. This slows down execution. Another limitation can arise when invert­
ing a matrix that is not full precision; the results will almost never be entirely accurate due to 
rounding errors during calculation. 

A fourth way to conserve memory is to break a program down into several sections and····'······ 
each section in a different file. This is known as overlaying. Each section can be brought into 
memory using L.. T :<i<. This operation preserves the values of variables, but erases each section 
of the program as another one is linked in. 

Memory Organization 
Read/Write Memory is divided into blocks. Blocks are 64K bytes long. The following diagram 
illustrates the blocks of memory. There can be up to seven blocks l , depending on the amount 
of memory installed in your computer. 

32K 

Block 0 

Reserved by 
the System 

bytes 1------1 

64K ~ 
bytes r-----i 

LL--.---.J 

Block 1 

• • • 

Block 6 

Dimensioned 

Variables 2 

,------

Common 

1 Odd-numbered memory blocks are used by the operating system and are not part of User Read Write Memory. 

2 The amount of memory taken by dimensioned variables can change depending on your program. 

I 



RT-16 Reference Tables 

The division of memory into blocks imposes limitations on programs and variables. The limita­
tions are -

• No main program or subprogram can be larger than one block of memory. A IOOO-line 
program typically fills one half of a 64K block. 

• No main program or subprogram can cross a block boundary. That is, the main or sub­
program must be contained entirely in one block of memory. 

This limitation may cause you to get an unexpected memory overflow error, t:J':i·' ,,::., , .... , 

though executing ! .... T 'if:;!"" indicates there is ample memory available. The reason for this is 
that the available memory is not all in the same block. 

To avoid this situation, it is advisable to organize your program into a short main program 
and a series of short subprograms, rather than use long program segments. This works 
well because a block can contain more than one subprogram. Additionally, a program can 
consist of a main program and subprograms in several different blocks. 

• No simple numeric or string variable or array element can cross a block boundary. Arrays 
of long strings and long simple strings can cause an unexpected memory overflow or 
waste large amounts of memory. For example, suppose you are allocating memory to 
some variables in a :U I !"'! or C:iY·'! statement. Suppose that there is a 25K-byte string 
following a numeric variable, but only 10K bytes left in the block after the numeric 
variable is allocated memory space. The string will have to be stored in the next block, 
thus wasting 10K bytes of memory. Thus, the order of large strings in :U :!: !.,! or C:CH·'! state­
ments can affect the amount of memory needed to run a program. 

• Each time an array crosses a block boundary, six bytes of memory are added to the total 
amount needed to store the array. 

• The execution stack and any binary routines must be contained in block O. You could get 
a memory overflow when the other blocks are not full if the execution stack gets too large. 
This can be caused by recursive subprogram calls and intermediate results involving long 
strings. Some program restructuring may be necessary. 



2 

Reference Tables RT -17 

Simplified Read/Write Memory Organization 

(high addreses) 

reserved for internal use 

used for Option ROM Read/Write 
1 

binary routines 

calling environment execution stack 

current environment execution stack 

free memory 
- used as needed -

buffers 
SFK definitions 

First subprogram 
symbol table 

First Subprogram 

Main program symbol table 

Main Program 

Value area 

Common 

(low addresses) 

1 This boundary is fixed at power-on. 

2 This information must be in Block O. 

This area is used for system configuration in­
formation - printer select code, for example. 

The amount used by each ROM is listed in the 
Installation, Operation, and Test Manual. 

Binary routines are added to existing ones as 
they are loaded into memory using , ....... , , ... .! .':::.!.':. 

The execution stacks are the way the computer 
keeps track of where program execution is. 
They contain DATA pointers, subroutines re­
turn pointers, i::CH;'-i·F:::::T matching, and other 
indicators for program execution. The current 
environment execution stack also contains a 
program pointer to monitor which line is being 
executed currently. The size of an execution 
stack varies during program execution. 

Buffers for 1/ 0 and mass storage operations 
use Read/Write Memory. SFK defintions use 
160 (138 if there is no lefthand tape drive) 
bytes at power-on. 

Each symbol table contains variable names, 
any variable attributes (integer precision, array, 
etc.), and a value pointer which points to the 
value of the variable. 

Each successive subprogram and its symbol 
table comes "after" (have a higher address 
than) the previous one. 

Contains the values for all main and subpro­
gram variables. 

Contains the values of all variables declared in 
COM statements. 

I 



Ri-18 Reference Tables 

DMA and FHS NOFORMAT Transfers 
The purpose of this section is to explain the organization of User Read/Write memory as it 
relates to DMA and FHS NOFORMAT transfer rates. 

If a DMA or FHS NOFORMAT transfer is to achieve the maximum transfer rate, the variable 
that the data is entered into or output from must reside totally within one memory block. The 
following gUidelines ensure that a variable used for a DMA or FHS NOFORMAT transfer 
resides totally within one memory block. 

• The variable is a simple string or simple numeric variable, or 

• The variable is a real, short, or integer numeric array that uses less than 32 720 words! of 
memory. The variable MUST be the first variable declared in the main program. There 
must be NO memory declared for use by a special ROM (e.g. Assembly Development 
ROM). 

The following is useful in determining the size and impact of variable allocation. 

• No simple variable or array element can cross a block boundary. Arrays of long strings 
and long simple strings can also cause an unexpected memory overflow or waste large 
amounts of memory. For example, suppose you are allocating memory to some variables 
in a DIM or COM statement. Suppose that there is a 25K byte character string following a 
numeric variable, but only 10K bytes left in the block after the numeric variable is allo­
cated memory space. The string will have to be stored in the next block, thus wasting 10K 
bytes of memory. Thus, the order of large strings in DIM or COM statements can affect the 
amount of memory needed to run a program. 

• Each time an array crosses a block boundary, six bytes of memory are added to the total 
amount needed to store the array. 

Storage of Variables 
To determine how many bytes variables require when stored in memory, use the following 
tables. 

Simple Variable 

Full precision 
Short precision 
Integer 
String 

Array Variable 

Full precision 

Short precision 

Integer 

String 

Amount of Memory Used 

10 bytes 
6 bytes 
4 bytes 
6 bytes + length (1 byte per character, 
rounded up to an even integer) 

Amount of Memory Used 

10 bytes + 4 bytes per dimension 
+ 8 bytes per element 
10 bytes + 4 bytes per dimension 
+ 4 bytes per element 
10 bytes + 4 bytes per dimension 
+ 2 bytes per element 
12 bytes + 4 bytes per dimension 
+ 2 bytes per element + length 
of each string 
(1 byte per character. rounded 
up to an even integer) 

1 Note that array overhead takes up to 17 words for one-block arrays 



Reference Tables RT-19 

System 45 Compatibility 
HP Compatible BASIC 
The BASIC language as implemented on your HP 9845 is an enhanced form of HP Compatible 
BASIC. HP Compatible BASIC consists of statements, functions, operators, and commands that 
are implemented in HP BASIC machines. HP Compatible BASIC is implemented on the HP 
9845 as Level I. Level I refers to the highest performance computational products. Thus, any 
program consisting entirely of Level I BASIC language can be transported to any Level I BASIC 
machine. 

Below is a list of HP Level I BASIC. Contact your HP Sales and Service Office to obtain informa­
tion concerning the transporting of programs between machines. 

Operators 
+ 

> 
< 

/ ~ 

" ~ 

DIV < 
MOD 

Statements 
ASSIGN 
BEEP 
CALL 
COM* 
COpy 
CREATE 
DATA 
DEFFN 
DEG 
DIM 
EDIT 
END 
FIXED 
FLOAT 
FNEND 
FOR 
NEXT 
GOSUB 

> 

GOTO 
GRAD 
IF 
INPUT 
INTEGER 
LET 
LINPUT 

AND 
OR 
NOT 
EXOR 

& 

MAT array = array 

Functions 
ABS ERRL 
EXP ERRN 
INT ERRM$ 
LGT 
LOG COL 
MAX DET 
MIN DOT 
RND ROW 
SGN SUM 
DROUND 
PROUND 
FRACT TYP 
PI 
SQR 

MAT array = array + - * / . = < > # < ~ > ~ array 
MAT. .. CON 
MAT array = (num. exp.) 

LWC$ 
REV$ 
UPC$ 
CHR$ 
LEN 
NUM 
POS 
RPT$ 
TRIM$ 
VAL 
VAL$ 

MAT array = (num. exp.)+ - * / = < > # < ~ > ~ array 
MAT array = array + - * / = < > # < ~ > ~ (num. exp.) 

LIN 
SPA 
TAB 
PAGE 

SIN 
COS 
TAN 
ASN 
ACS 
ATN 

• The type words INTEGER, SHORT and REAL are the only ones which can be specified in a C 01'1 statement or formal 
parameter list. Arrays are limited to 6 dimensions. 

I 



RT-20 Reference Tables 

MAT ... INV MAT PRINT# ON ... GOTO RANDOMIZE SHORT 
MAT ... TRN MAT READ OPTION BASE READ STANDARD 
MAT ... IDN MAT READ# PAUSE READ# STOP 
MAT. .. ZER OFF END PRINT REAL SUB 
MAT ... CSUM OFF ERROR PRINT# REDIM SUBEXIT 
MAT ... RSUM ON END PRINT USING REM SUBEND 
MAT INPUT ON ERROR PURGE RESTORE WAIT 
MAT PRINT ON ... GOSUB RAD RETURN 

9845A Vs. 9845B/C 
Listed below are differences between the 9845A and 9845B/C which affect operating and prog­
ramming: 

• The operating system of the 9845B/C is internal, leaving all eight slots in each ROM drawer 
free for option ROMs. 

• The range of memory sizes on the 9845A is 16-64 K-bytes. This is increased on the 9845BI 
C to approximately 56-449 K-bytes. 

• The greatest line number available on the 9845A is 9999. The greatest line number avail­
able on the 9845B/C is 32766. 

• The size of the recall buffer is increased from 344 bytes (on the 9845A) to 1296 bytes (on 
the 9845B/C). 

• When using a tape cartridge for mass storage operations, the directory of the tape is stored 
in Read/Write Memory of the 9845B/C. This reduces tape wear because the directory on 
the tape doesn't have to be accessed every time a tape read or write operation takes place. 

• Four additional syntax were added to the 9845B/C: CAT TO, ON KBD, OFF KBD, and 
KBD$. 

• On the 9845B/C, all alternate characters, both nationalized and drawing, are accessed using 
the CHR$ function. On the 9845A, only some of the nationalized characters are available, 
and are accessed using the shift-in and shift-out control codes. 

• The only types of mass storage files which are compatible between the 9845A and the 
9845B/C are the DATA and BOAT files. The 9845B/C cannot interpret any other 9845A 
files. 

• Programs that contain a large number of binary routines or recursive algorithms may cause 
a memory overflow error when run on the 9845B/C, although they don't on the 9845A. 

• LOAD ALL is programmable on the 9845B/C. It is not on the 9845A. 

• The printout area of the CRT on the 9845B/C can be addressed directly. A complete de­
scription of this capability appears in Appendix A of the BASIC Programming manual. 

• Some of HP's software will run only on particular models of the System 45. If you have 
questions about software compatibility, refer to the System 45 Pricing Information brochure 
(PIN 5953-45720) or call your HP Sales and Service Office. 

• 



Reference Tables RT-21 

File Compatibility 
The 9845B/C can interpret mass storage files created on other HP desktop computers. The files it 
can interpret are: 

• DATA and BOAT type files from the System 35 or the 9845A. 

• KEYS files from the System 35. 

9845A Graphics ROM vs. 9845B Graphics ROM 
9845B graphics differs from 9845A graphics in the following ways: 

• CSIZE incorporates a character slant as its third parameter. 

• GLOAD and GSTORE reside in the 9845B Graphics ROM and in the 9845A Mass Storage 
ROM. 

• LDIR and PDIR both incorporate a run, rise parameter as a means of specifying an angle. 

• The line types are slightly different. The 9845B has a line type 10 with a major tick mark. 

• When using the LABEL or LETTER statement, the linefeed distance on the 9845B/C is 15/16 

of the distance of a !inefeed on the 9845A. This is one dot for default character size. 

9845B Graphics ROM vs. 9845C Graphics ROM 
Listed below are differences between the 9845B Graphics ROM (for the 9845B Model 150 or 
190) and the 9845C Graphics ROM: 

• With the 9845C Graphics ROM, the CURSOR and DIGITIZE statements use the ARROW 
KEYS as the default graphics input device, rather than the plotter as with the 9845B 
Graphics ROM. The status strings for these statements also differ between ROMs. Refer to 
the CURSOR statement in the Color Graphics manual for more specific information. 

• When using the 9845C Graphics ROM, and both the ALPHA and GRAPHICS statements 
are enabled, it may be difficult to tell which characters are PRINTed (alpha raster) and 
which characters are LABELed or LETTERed (graphics raster) when the CSIZE is at default 
(3.3 GDUs). 

• GCLEAR with the 9845C Graphics ROM clears only the soft clip area of graphics memory 
for all active memory planes. GCLEAR with the 9845B Graphics ROM clears the entire 
graphics memory. 

• When using GLOAD and GSTORE, the System 45C needs 3*(455 rows)*(35 words per 
row) elements to store the entire graphics memory contents. The contents are stored as a 
word of memory 1, a word of memory 2, and a word of memory 3. The System 45B Model 
1501190 needs (455 rows)*(35 words per row) + 1 (pointer) to store the complete graphics 
memory contents. Refer to the GLOAD or GSTORE statements in the Color Graphics 
manual for exact array sizes. 

• The 9845C Graphics ROM uses eight pen numbers, while the 9845B Graphics ROM uses 
five. The difference is most noticeable when using an external, multi-pen plotter. A PEN 5 
statement is interpreted as PEN 0 with the 9845B Graphics ROM and as PEN 1 with the 
9845C Graphics ROM. A negative pen always acts as PEN - 1 with the 9845B Graphics 
ROM. A negative pen with the 9845C Graphics ROM erases different memory planes, de­
pending upon the pen number. Refer to the PEN statement in the Color Graphics manual 
for more information. 

rev: 8/81 

I 



RT -22 Reference Tables 

• With the 9845B Graphics ROM, specifying a second plotter turns off the first plotter. With 
the 9845C Graphics ROM, specifying a second plotter leaves both plotters active. The plot­
ters remain active until they are turned off by a PLOTTER IS OFF statement. 

• When using the 9845B Graphics ROM, the cursor type is determined by: Cursor Type MOD 
2. If the result is 0, the small blinking cross is used. If the result is 2, the large full screen 
cross-hair is used. When using the 9845C Graphics ROM, the cursor type is determined by: 
Cursor Type MOD 4. If the result is 0, the pointer is not affected by any other graphics 
statements until another POINTER statement with a different cursor type is executed. If the 
result is 1, a full screen cross-hair is displayed. If the result is 2, the small cross is displayed. 
If the result is 3, the small blinking alpha cursor is displayed. 

• When using the 9845B Graphics ROM, the status string for WHERE is one character (pen 
up/down). The status string for the 9845C Graphics ROM is three characters (pen up/down 
and region). Refer to the WHERE statement in the Color Graphics manual for more in­
formation. 

• A text string highlighted using the 9845B Graphics ROM results in only the first character 
being highlighted when transported to a System 45C with the 9845C Graphics ROM. 

• The Katakana character set on the System 45C contains a yen sign instead of the backslash 
character on the System 45B. 

9845C Graphics ROM vs. 
Enhanced Graphics ROM 

Listed below are differences between the 9845C Graphics ROM (for the System 45C) and the 
Enhanced Graphics ROM (for the System 45B Model 200/250/290 or the System 45C): 

• The Enhanced Graphics ROM provides the following capabilities which are not provided by 
the 9845C Graphics ROM: 
• Rubber banding (POINYER type = 4,5, or 6) 
• Fast tracking (GRAPHICS INPUT IS TABLET) 
• Fast alpha 

• The Enhanced Graphics ROM provides some capabilities that work only on a System 45B 
Model 200/250/290 and not on a System 45C (refer to the Monochromatic Graphics manu­
al for more information): 
• Fast erasing 
• Arcs and circles 
• Rubber banding with no background loss 

• Programs which have been STOREd on a computer which has the 9845C Graphics ROM 
can be LOADed on a computer which has the Enhanced Graphics ROM, and vice versa. 
The only exceptions in program execution are: 
• "type" = 4, 5, or 6 in POINTER statement 
• "graphics input identifier string" = TABLET in the GRAPHICS INPUT IS statement 
• PLOTTER IS HPGL specifies 8 pens with Enhanced Graphics ROM and 4 pens for 9845C 

Graphics ROM 
• GLOAD and GSTORE do not work between color and monochromatic CRTs. 

• You can LOAD ALL any STORE ALL files between the System 45B Model 200/250/290 
and the System 45C, as long as both computers have the Enhanced Graphics ROM, the 
same options, and the same memory sizes. 

• The two ROMs give different results if you use alphanumeric highlights with screen address­
ing and overprinting in your programs. 

Ii 



Reference Tables RT-23 

• The following keywords have no effect when executed on a System 45B Model 200/2501 
290: 
• DEGAUSS 
• CONVERGE 
• MEMORY 
• GSTAT(5,6, or 7) 

• The Monochromatic Graphics manual explains how statements which specify colors and 
memory planes are executed on a System 45B Model 200/250/290 (monochromatic CRT). 

Standard Processor vs. Enhanced Processor 
The HP 9845B/C Models 200. 250. and 290 are equipped with an "enhanced processor". The 
HP 9845B/C models 100, 150, and 190 are equipped with the "standard processor". 

The increased speed of the enhanced processor is due to "microcoding" the parts of the operat­
ing system where the language processor spends most of its time for a typical computational 
program. These microcode routines run from five to fifteen times faster than the standard proces­
sor routines. The result is an overall speed increase of about three times, depending on the 
particular program. (The enhanced processor has very little effect on assembly language pro­
grams or I/O-intensive programs.) 

Most of the microcode routines affect the Arithmetic Logic Unit (ALU) of the language processor. 
Thus. speed increases are most noticeable when a program is spending almost all of its time 
computing and there are no I/O or assembly language operations being done. 

Because of differences in program structure and application, it is difficult to determine the speed 
increase which you may see with the enhanced processor. However, it is possible to get an idea 
of how much faster the individual routines run. The System 45 Computer Specifications brochure 
includes run times for the math and trigonometric routines (for both the standard and enhanced 
processors) . 

Maximizing Performance 
There are some general guidelines to follow to make your programs run as fast as possible, 
regardless of the processor that your desktop computer has. Here are a few of them: 

• Use full-precision (REAL) variables for math operations. 

• Use integer-precision (INTEGER) variables in FOR-NEXT loops. 

• Use integer-precision (INTEGER) variables for array subscripts. 

• Do not use short-precision (SHORT) variables. 

• Use GOSUBs instead of CALLs whenever possible. 

• Turn off TRACE and TRACK when not needed. 

I 



RT -24 Reference Tables 

Statement 

ALPHA 

AREA COLOR 

AREA INTENSITY 

AXES 

CUP 

CONVERGE 

CSIZE 

CURSOR 

DEGAUSS 

DIGITIZE 

DRAW 

Graphics Firmware Differences 

Graphics ROM 
documented in manual 

HP pin 09845-91050 
HP pin 09845-91051 

Not implemented 

Not implemented 

Not implemented 

No difference 

No difference 

Not implemented 

No difference 

Status string is 1 character 
long 

Not implemented 

Status string is 1 character 
long 

No difference 

9845C Graphics ROM 
documented in manual 

HP pin 09845-92050 

Enables alphanumeric area 

Selects fill from Color Cylin­
der model 

Selects fill from R,G,6 cube 
color model. 

No difference 

No difference 

Allows convergence to be 
performed 

No difference 

Status string is maximum of 
40 characters. 
HP 9111 string is same as 
HP 9874. 
Additional clipping and 
tracking information added 
to all status strings. 

Performs CRT degaussing 

Status string is maximum of 
40 characters. HP 9111 
string is same as 9874 char­
acters 1-6 

Additional clipping and 
tracking information added 
to all status strings. 

No difference 

Enhanced 
Graphics ROM 

documented in manual 
HP pin 09845-93050 
HP pin 09845-92051 

Enables alphanumeric area 

On 98456, uses only the 
luminosity value for fill. 
On 9845C, works the same 
as 9845C Graphics ROM. 

On 98456, uses the largest 
of the three values for fill. 
On 9845C, works the same 
as 9845C Graphics ROM. 

No difference 

No difference 

On 98456, not im­
plemented. 
On 9845C, works the same 
as 9845C Graphics ROM. 

No difference 

Status string is maximum of 
40 characters. 
HP 9111 has different string 
contents. 
Additional clipping and 
tracking information added 
to all status strings. 

On 98456, not im­
plemented. 
On 9845C, works the same 
as 9845C Graphics ROM. 

Status string is maximum of 
40 characters. HP 9111 
string is same as 9874 char­
acters 1-6. 
Characters 7-8 are menu 
item key values. 

Additional clipping and 
tracking information added 
to all status strings. 

No difference 

• 



Statement 

DUMP GRAPHICS 

EX[T ALPHA 

EXIT GRAPH[CS 

FRAME 

GCLEAR 

GLOAD 

GRAPH[CS 

GRAPH[CS 
[NPUT [S 

GRAPH[CS [NPUT 
... [SOFF 

GRAPH[CS [NPUT 
... [SON 

GR[D 

GSTAT 

GSTORE 

IPLOT 

KEY LABELS 

LABEL 

LABEL KEY # 

Graphics ROM 
documented in manual 

HP pin 09845-91050 
HP pin 09845-91051 

Externa[ devices not allowed 

Not implemented 

No difference 

No difference 

Clears entire CRT graphics 
memory 

16381 elements required 
for full-screen display 
Column and row pointer is 
NOT allowed 

No difference 

Not implemented 

Not implemented 

Not implemented 

No difference 

Not implemented 

16381 elements required 
for full-screen display 
Column and row pointer is 
NOT allowed 

No difference 

Not implemented 

No difference 

Not implemented 

9845C Graphics ROM 
documented in manual 

HP pin 09845-92050 

External devices allowed 
with # specifier 

Disables alphanumeric area 

No difference 

No difference 

Clears only the CRT 
graphics memory within the 
soft clip area 

47 775 elements required 
for full-screen display 
Column and row pointer is 
allowed 

No difference 

Allows as devices 
array name (*) 
ARROW KEYS 
DlG[T[ZER 
HPGL 
LIGHT PEN 

Deactivates device 

Activates device 

No difference 

Returns value based upon 
index 

47 775 elements required 
for full-screen display 
Column and row pointer is 
allowed 

No difference 

Transfers softkey labels to a 
string variable 

No difference 

Labels specified softkey with 
string expression 

Reference Tables RT -25 

Enhanced 
Graphics ROM 

documented in manual 
HP pin 09845-93050 
HP pin 09845-92051 

External devices allowed 
with # specifier. 

Disables alphanumeric area 

No difference 

No difference 

Clears only the CRT 
graphics memory within the 
soft clip area 

On 9845B, 15 925 elements 
required for full-screen dis­
play 
Column and row pointer is 
allowed 
On 9845C, works the same 
as 9845C Graphics ROM. 

No difference 

Allows as devices 
array name (*) 
ARROW KEYS 
DlGlTIZER 
HPGL 
LIGHT PEN 
TABLET 

Deactivates device 

Activates device 

No difference 

Returns value based upon 
index 

On 9845B, 15 925 elements 
required for full-screen dis­
play 
Columna and row pointer is 
allowed 
On 9845C, works the same 
as 9845C Graphics ROM. 

No difference 

Transfers softkey labels to a 
string variable 

No difference 

Labels specified softkey with 
string expression 

• 



RT-26 Reference Tables 

Statement 

LABEL KEYS 

LABEL USING 

LAXES 

LDIR 

LETTER 

LGRID 

LIMIT 

LINE TYPE 

LOCATE 

LORG 

MAT A!PLOT 

MAT APLOT 

MAT ARPLOT 

MAT !PLOT 

MAT PLOT 

MAT RPLOT 

MAT SYMBOL 

MEMORY 

MOVE 

MSCALE 

Graphics ROM 
documented in manual 

HP pin 09845·91050 
HP pin 09845·91051 

Not implemented 

No difference 

Not implemented 

No difference 

No difference 

Not implemented 

No difference 

No difference 

No difference 

No difference 

Not implemented 

Not implemented 

Not implemented 

Not implemented 

Not implemented 

Not implemented 

Not implemented 

Not implemented 

No difference 

No difference 

9845C Graphics ROM 
documented in manual 

HP pin 09845·92050 

Labels all softkeys with 
string expression 

Enhanced 
Graphics ROM 

documented in manual 
HP pin 09845·93050 
HP pin 09845·92051 

Labels all softkeys with 
string expression 

No difference No difference 

Draws axes with labeled ma- Draws axes with labeled ma-
jor tick marks 

No difference 

No difference 

Draws grid with labeled ma­
jor tick marks 

No difference 

No difference 

No difference 

No difference 

Plots array contents as X,Y 
increments to current pen 
position in APUs 

Plots array contents as X,Y 
coordinates in APUs 

Plots array contents as X,Y 
coordinates relative to an 
origin in APUs 

Plots array contents as X,Y 
increments to current pen 
position in current units. 
Optional FILL 

Plots array contents as X,Y 
coordinates in current units. 
Optional FILL 

Plots array contents as X,Y 
coordinates relative to an 
origin in current units. 
Optional FILL 

Plots array contents as a 
specially defined labeled 
character with optional FILL 

Assigns specified color to the 
memory plane 

No difference 

No difference 

jor major tick marks 

No difference 

No difference 

Draws grid with labeled ma­
jor tick marks 

No difference 

No difference 

No difference 

No difference 

Plots array contents as X,Y 
increments to current pen 
position in APUs 

Plots array contents as X,Y 
coordinates in APUs 

Plots array contents as X,Y 
coordinates relative to an 
origin in APUs 

Plots array contents as X,Y 
incremen ts to current pen 
position in current units. 
Optional FILL 

Plots array contents as X,Y 
coordinates in current units. 
Optional FILL 

Plots array contents as X,Y 
coordinates relative to an 
origin in current units. 
Optional FILL 

Plots array contents as a 
specially defined labeled 
character with optional FILL 

On 9845B, no effect on 
program execution. 
On 9845C, works the same 
as 9845C Graphics ROM 

No difference 

No difference 

I 



Statement 

OFF GKEY 

ON GKEY 

PDIR 

PEN 

PENUP 

PLOT 

PLOTTER IS 

PLOTTER. .. IS OFF 

PLOTTER. .. IS ON 

Graphics ROM 
documented in manual 

HP pin 09845-91050 
HP pin 09845-91051 

Not implemented 

Not implemented 

No difference 

Selects pen from stall based 
on a modulo operation 
(pen 5 = 0 
pen 9 = 4) 

No difference 

No difference 

Allows only 
GRAPHICS 
9872A 
INCREMENTAL 
as identifier strings 
Deactivates any active 
plotter. 
Multiple plotters are not 
allowed 

No difference 

Turns off 
previous plotter 

9845C Graphics ROM 
documented in manual 

HP pin 09845-92050 

Disables end-of-line branch 
when button is pressed on 
the graphics input device 

Reference Tables RT-27 

Enhanced 
Graphics ROM 

documented in manual 
HP pin 09845-93050 
HP pin 09845-92051 

Disables end-of-line branch 
when button is pressed on 
the graphics input device 

Enables end-of-line branch Enables end-of-line branch 
when button is pressed on 
the graphics input device 

No difference 

Selects pen from stall based 
on a modulo operation 
(pen 5 = pen 1 
pen9 = pen 1) 

No difference 

No difference 

Allows only 
GRAPHICS 
9872A 
INCREMENTAL 
HPGL 
array name (*) 
as identifier strings 
Also allows individual mem­
ory planes as plotters 
Does NOT deactivate any 
active plotters. 
Multiple plotters are allowed 

No difference 

Does not turn 
off previous plotter 

when button is pressed on 
the graphics input device 

No difference 

Selects pen stall based on 
the PLOTTER IS identifier 
string 
9872A implies 4 pen plotters 
(pen 5 = pen 1 
pen 9 = pen 1) 
HPGL implies 8 pen plotters 
(pen 5 = pen 5 
pen 9 = pen 1) 

No difference 

No difference 

Allows only 
GRAPHICS 
9872A 
INCREMENTAL 
HPGL 
array name (*) 
as identifier strings 
Also allows individual mem­
ory planes as plotters, but 
on 98458 the plots are re­
plotted onto the one 
memory. 
Does NOT deactivate any 
active plotters. 
Multiple plotters are allowed 

No difference 

Does not turn 
off previous plotter 

• 



RT-28 Reference Tables 

Statement 

POINTER 

POLYGON 

RATIO 

RECTANGLE 

SCALE 

SETGU 

SETUU 

SHOW 

TRACK 

TRACK 

UNCLIP 

WHERE 

.. IS OFF 

.. ISON 

Graphics ROM 
documented in manual 

HP pin 09845-91050 
HP pin 09845-91051 

Type is either large (odd 
value) or small blinking 
(even value) 

Not implemented 

No difference 

Not implemented 

No difference 

No difference 

No difference 

No difference 

Not implemented 

Not implemented 

No difference 

Status string is 1 character 
long 

The other differences between the computers are: 

9845C Graphics ROM 
documented in manual 

HP pin 09845-92050 

Type can be any of four: 
o = off 
1 = large 
2 = small 
3 = underline 
remaining values are taken 
modulo 4 
color of marker can also be 
specified 

Draws regular polygon. with 
approximations for circles. 
Optional FILL 

No difference 

Draws rectangle with option­
al FILL 

No difference 

No difference 

No difference 

No difference 

Stops tracking on specified 
plotter 

Enables plotter's marker to 
echo the movement of the 
graphics input device's 
cursor. 
Tracking to an array is 
allowed 

No difference 

Status string is 3 characters 
long 

Enhanced 
Graphics ROM 

documented in manual 
HP pin 09845-93050 
HP pin 09845-92051 

Type can be any of seven: 
o = off 
1 = large 
2 = small 
3 = underline 
4 = Rubber Band for mem­
ory 1 
5 = Rubber Band for mem­
ory 2 
6 = Rubber Band for mem­
ory 3 
remaining values are taken 
modulo 7 
color of marker can also be 
specified for 9845C. 

Draws regular polygon. On 
9845B, figures between 60 
and 32 767 sides are drawn 
with hardware arc generator. 
Optional FILL 

No difference 

Draws rectangle with option­
al FILL 

No difference 

No difference 

No difference 

No difference 

Stops tracking on specified 
plotter 

Enables plotter's marker to 
echo the movement of the 
graphics input device's 
cursor. 
Tracking to an array is 
allowed 

No difference 

Status string is 3 characters 
long 

1. A text string highlighted on the System 45B and then transported to a System 45C results in only the 
first character being highlighted on the System 45C. 

2. The Katakana character set on the Enhanced Graphics ROM and the 9845C Graphics ROM contain 
yen signs instead of the backslash character on the 9845B Graphics ROM. 

I 



2 

3 

5 

6 

7 

8 

8 

10 

11 

1 '7 
"-

13 

14 

15 

16 

Error Messages 

Missing ROM or configuration error. Also, check to see if all option ROMs are 
installed properly. Perform the System Exerciser if the problem persists. 

Memory overflow; subprogram larger than block of memory. Also check to see if 
your arrays are too large to fit in memory. If you are programming in assembly 
language, you may have specified an lCOM which is too large for your current 
availabe space. 

Line not found or not in current program segment. Check the spelling of line 
labels and line identifiers. 

Improper return. Branched into the middle of a subroutine. 

Abnormal program termination; no END or STOP statement. 

Improper FOR/NEXT matching. 

Undefined function or subroutine. Check spellings. 

Improper parameter matching. Check the parameter lists in SUB and CALL, and 
DEF FN and FN statements to see if they match in number and type. 

Improper number of parameters. Check the number of arguments used in an FN 
or CALL reference. In assembly language, the number of arguments pass by an 
ICALL statement exceeds the number of parameter declarations in the sub­
routine entry section. 

String value required. 

Numeric value required. 

Attempt to redeclare variable. Once a variable name has been declared in a DIM, 
COM, REAL, SHORT or INTEGER statement, it can't be redeclared in that 
program segment. 

Array dimensions not specified. You must dimension the array, either explicitly 
or implicitly. 

Multiple OPTION BASE statements or OPTION BASE statement preceded by 
variable declarative statements. 

Invalid bounds on array dimension or string length in DIM, COM, REAL, SHORT 
or INTEGER statement. Strings can't be longer than 32767 characters. The 
range of array subscripts is - 32 767 through 32 767. 

Dimensions are improper or inconsistent; more than 32 767 elements in an 
array. Check for wrong number of subscripts in an array reference. Check any 
matrix multiplication for proper sizes. An FREAD operation requires a receiving 
array to have the same number of dimensions as the array stored in the BDAT 
file, and that the number of elements be sufficient to hold the entire data. String 
length (in the case of string arrays) must also be consistent. Check the current 
dimensions of the receiving array in the program. 

EM-l 



EM-2 Error Messages 

17 

18 

19 

20 

21 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

Subscript out of range. 

Substring out of range or string too long. Check substring specifiers against 
length of string. 

Improper value. Check numbers being entered, especially their exponents. 

Integer precision overflow. The range is - 32 768 through 32767. An expres­
sion used in the syntax in one of your statements was out of range when rounded 
to an integer. Check the values of the variables used. 

Short precision overflow. Short-precision numbers have six significant digits and 
an exponent in the range - 63 through 63. 

Real precision overflow. Full-precision numbers have twelve significant digits 
and an exponent in the range - 99 through 99. 

Intermediate result overflow. 

TAN (n*7T/2), when n is odd. 

Magnitude of argument of ASN or ACS is greater than 1. 

Zero to negative power. 

Negative base to non-integer power. 

LOG or LGT of negative number. 

LOG or LGT of zero. 

SQR of negative number. 

Division by zero: or X MOD Y with Y = o. 
String does not represent valid number or string response when numeric data 
required. Check any use of VAL function and its argument. Check for correct 
spelling of variable name. 

Improper argument for NUM, CHR$, or RPT$ function. 

Referenced line is not IMAGE statement. Check the line identifier in the PRINT 
USING statement. 

Improper format string. 

Out of DATA. Make sure READ and DATA statements correspond. Use RE­
STORE if appropriate. 

EDIT string longer than 160 characters. Try using a substring. 

I/O function not allowed. TYP and other I/O functions aren't allowed in any I/O 
statement like DISP or PRINT. Place the value into a variable. 

Function subprogram not allowed. An FN reference isn't allowed in any I/O 
statement, or in redim subscripts. Place the value into a variable. 

Improper replace, delete or REN command. SUB and DEF FN can only be 
replaced by another SUB or DEF FN. They can only be deleted if the rest of the 
corresponding subprogram is deleted. A renumbering may cause out-of-range 
line numbers if completed, so an error occurs: check increment value. 

First line number greater than second. 

Attempt to replace or delete a busy line or subprogram. Typically, this is caused 
by trying to delete an input statement that is still requesting values. 

Ii 



43 

44 

45 

48 

47 

48 

49 

50 

51 

52 

53 

54 

55 

58 

57 

58 

59 

80 

81 

82 

83 

Error Messages EM-3 

Matrix not square. The dimensions of an identity matrix or of one used to find an 
inverse or determinant must be the same size. 

IlJegal operand in matrix transpose or matrix multiply. The result matrix can't be 
named the same as one of the operands. 

Nested keyboard entry statements. 

No binary in memory for STORE BIN or no program in memory for SAVE. There 
are no binaries currently in memory or there are no program lines in memory 
between the limits you specified. Check line numbers in SAVE against program 
in memory. 

Subprogram COM declaration is not consistent with main program. Check num­
ber. type and dimensions of variables. 

Recursion in single-line DEF FN function. Only subprograms can be called recur­
sively. 

Line specified in ON declaration not found. 

File number less than 1 or greater than 10. 

File not currently assigned. Execute an ASSIGN statement for the file, or check 
the accuracy of the file number used. LOAD ALL destroys all prior assignments. 

Improper mass storage unit specifier. Check the values of the select code, unit 
code and controller address. 

Improper file name. A file name can have 1-6 characters and can't contain a 
colon, quote mark, NULL or CHR$(255). 

Duplicate file name. Choose another name or PURGE the old one. In some 
instances. RE-SAVE or RE-STORE may be an alternative statement to use. 

Directory overflow. There is a maximum number of files that a mass storage 
medium can hold. A file will have to be removed to add another. 

File name is undefined. Check the spelling. 

Mass Storage ROM is missing. Check to see that the ROM is installed properly. 
Perform the System Exerciser if the problem persists. 

Improper file type. Use LOAD for PROG files, ASSIGN and GET for DATA files, 
and LOAD KEY for KEYS files. 

Physical or logical end-of-file found. Attempting to READ# or PRINT# past the 
end of the file. If you are in serial mode, you have run out of data. If you are in 
random mode, you are reading a record beyond the reserved file length, or 
specified record number is too large. Compare the data list to the file size. This 
error can be trapped with the ON END statement. 

Physical or logical end-of-record found in random mode. Attempting to read 
more data out of a single defined record than are actually there. Compare the 
data list to the record size. 

Defined record size is too small for data item. You can either PURGE and 
CREATE the file with longer records or regroup the data being recorded. 

File is protected or wrong protect code specified. Check to see that the protect 
code is included and spelled properly. 

The number of physical records is greater than 32767. That's the limit: use 
something smaller. 

I 



EM-4 Error Messages 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

Medium overflow (out of user storage space). A file can't be set up because there 
isn't enough contiguous storage capacity on the medium. Use another medium, 
PURGE some of the files on the present medium, or try to repack (as explained in 
the Mass Storage ROM Manual.) 

Incorrect data type. Each file must be read from the medium in the same way it 
was written. Check to make sure that you are not trying to retrieve a numeric 
data file as a program (with GET or LINK). This error may also occur if the wrong 
type of array variable is used when reading a BOAT -type file. Use TYP to find out 
what kind of data the computer is trying to read. 

Excessive rejected tracks during a mass storage initialization. The medium can't 
be initialized. Medium wear on flexible discs, or a marginally-performing hard 
disc drive is usually the reason for this. With hard discs, it is recommended that 
the appropriate disc diagnostic tests be run for the drive involved. (Consult the 
operating and installation manual for the drive.) If the medium is a flexible disc, 
use a different one. 

Mass storage parameter less than or equal to O. Check values of variables. 
Record numbers, record lengths and number of defined records must be positive 
numbers. 

Invalid line number in GET or LINK operation. This occurs only if the first line of 
a DATA-type file does not begin with a line number. This error should be ex­
pected only if the DATA file does not contain a program, or if the program in the 
file was created by another program and not by a SAVE or RE-SA VE instruction. 

Format switch on the disc off. Turn it on for disc initialization to proceed. 

Not a disc interface, or wrong device type. You are either using the wrong msus or 
are trying to reference the wrong type of device. Check for correspondence of 
device types. If they check out, your interface may be malfunctioning. 

Disc interface power off. Turn it on. If it is already on, the interface may be 
malfunctioning. 

Incorrect controller address or controller power off. If the former, change the 
address setting or change the program reference. 

Additionally, this error can occur if the disc drive (7908 disc drive only) is temporari­
ly occupied servicing a disc drive front panel request such as LOAD (cartridge), 
UNLOAD, STORE or RESTORE. 

If all is in order, suspect that the controller or its interface is malfunctioning. See the 
peripheral's manual for location of the address switches. 

Incorrect device type in mass storage unit specifer. Check all your device settings 
and program references. 

Drive missing or power off. Check your device settings and make sure that the 
device is receiving power. 

Disc system error. Possible power difficulties in interface or controller. If neces­
sary, reset the computer. 

Incorrect unit code in mass storage unit specifier. Check all your device settings 
and program references. 

Disc system error. 

Interface error. Either the wrong type of interface card exists or no interface card 
exists at the select code specified with the mass storage unit specifier. This error is 
also generated if the interface card is not both the system controller and the active 
controller. 

09845-93000. rev: 9/81 

Iii 



79 

80 

81 

82 

83 

84 

85 

8G 

87 

88 

89 

90 

91-99 

100 

101 

102 

103 

104 

105-109 

110 

111 

112 

113 

114 

Error Messages EM-5 

Reserved for future use. 

Cartridge out or door open. Also check to see if the interface is connected 
properly and if the device is ready. 

Mass storage device failure. Possible power failure. Check the data cable con­
nection or recycle power to the drive. 

Mass storage device not present. Check mass storage unit specifier. When using 
flexible discs, check that the unit number is not greater than 3. 

Write protected. Check the write-protection device on the medium or drive. If it 
is the result of an INITIALIZE statement to an HP 7906 Disc Drive with the 
write-protect switch off, then reset the computer (CONTROL STOP) 

Record not found or disc not formatted properly. A bad spot has been encoun­
tered on the medium. You either have to avoid this area of the medium by 
creating a "dummy" file to avoid attempts to use it, or you have to re-initialize 
the medium. (Remember, however, that initialization makes all previous data on 
the medium inaccessible.) 

When using the 7908 disc drive, this error may also indicate that an attempt was 
made to address a record outside of the disc address space. 

Mass storage medium is not initialized or data structure destroyed. Each medium 
must have been initialized using the INITIALIZE statement. If you are certain that 
the medium has been initialized, then you have a system failure. 

Not a compatible mass storage medium. The cartridge or disc must be initialized 
on a system compatible with your computer. 

Record address error; information can't be read. Hardware failure. Check for a 
dirty read head. Perform the System Exerciser if the problem persists. 

Read data error. Hardware failure. Check for a dirty read head. 

CHECK READ error. Result of a print verification did not agree with the contents 
of memory. This occurs only when CHECK READ has been enabled on the file, 
and after four attempts to write correctly to the file. Check connection on data 
lines and interface cables. 

Mass storage system error. Principal cause for this error is "data overrun" (the 
computer not supplying or receiving data as fast as the disc. Check the disc 
installation manual for the proper cabling, etc., and retry the operation. 

Reserved for future use. 

Item in print using list is string but image specifier is numeric. 

Item in print using list is numeric but image specifier is string. 

Numeric field specifier wider than printer width. 

Item in print using list has no corresponding image specifier. 

ON KBD or TOPEN not allowed in subprogram. 

Reserved for future use. 

Graphics device specification not recognized. Check spelling of "GRAPHICS", 
"9872A" or "INCREMENTAL". 

Graphics device has not been specified. Check select codes. 

Graphics hardware not installed. 

LIMIT specifications out of range. 

HP 98036 Interface Card improperly configured. 

09845-93000. rev: 9/81 

I 



EM-6 Error Messages 

115 

118 

117-148 

150 

151 

152 

153 

154 

155 

158 

157 

158 

158 

180 

181 

182 

183 

184 

185 

188 

187 

188-183 

184 

185 

188 

187 

188 

188 

180 

TDISP not allowed unless peripheral keyboard active. 

TOPEN is active on another select code. 

Reserved for future use. 

Improper select code. 

A negative select code was specified that does not match present bus addressing. 

Parity error. 

Either insufficient input data to satisfy enter list. or attempt to ENTER from 
source into source. or enter count exhausted without linefeed. 

Integer overflow, or ENTER count greater than 32 767 bytes or 16383 words. 

Invalid interface register number. (Can only specify 4-7.) 

Improper expression type in READIO, WRITEIO, or STATUS list. 

No linefeed was found to satify / ENTER image specifier, or no linefeed record 
delimiter was found in 512 characters of input. 

Improper image specifier or nesting image specifiers more than 4 levels deep. 

Numeric data was not received for numeric enter list item. 

Repetition of input character more than 32 768 times. 

Attempted to create CONVERT table or EOL sequence for source or destination 
variable which is locally defined in a subprogram. 

Attempted to delete a nonexistent CONVERT table or EOL sequence. 

110 error, such as interface card not present, device timeout, interface or 
peripheral failure (Interface FLAG line = 0.). STOP key pressed, or improper 
interface card type. 

Transfer type specified is incorrect type for interface card. 

A FHS or DMA transfer with no format specifies a count that exceeds the size of 
the variable, or an image specifier indicates more characters than will fit in the 
specified variable. 

A NOFORMAT FHS or DMA type transfer does not start on an odd numbered 
character position, such as A$[3]. 

Interface status error, TRL Character or an EOI was received on an HP-!B Inter­
face before ENTER list or image specification was satisfied. 

Reserved for future use. 

Improper argument for OCTAL or DECIMAL function or assembled location. 
The OCTAL function has a range from - 65535 to + 65535. The DECIMAL 
function has a range for its arguments from - 177 777B to + 177 777B. 

Break Table overflow. 

Undefined BASIC label or subprogram name used in !BREAK statement. 

Attempt to write into protected memory; or, attempt to execute instruction not in 
ICOM region. 

Label used in an assembled location not found. 

Doubly-defined entry point or routine. 

Missing ICOM statement. 



181 

182 

183 

184 

185 

188 

187 

188 

183 

200-208 

207 

208 

208 

210 

211 

212 

213 

214 

215-217 

218 

218 

220 

221 

222 

223 

224 

225 

Module not found. 

Errors in assembly. 

Error Messages EM-7 

Attempt to move or delete module containing an active interrupt service routine. 

!DUMP specification too large. Resulting dump would be more than 32 768 
elements. 

Routine not found. 

Unsatisfied external symbols. 

Missing COM statement. 

BASIC's common area does not correspond to assembly module requirements. 

Insufficient number of items in BASIC COM declarations. 

Reserved for future use. 

Binaries not allowed in LOAD SUB file. Do LOAD, SAVE, SCRATCH A, GET 
and STORE on the file to get rid of binaries. However, the loaded program may 
not run after the binaries are removed. 

Volume not mounted. Mount it and execute a VOLUME DEVICES ARE state­
ment. 

Operation not allowed on tape. Only the BKUP file used in DBBACKUP and 
DBRECOVER is allowed on tape. 

Bad status array. It must be defined as integer precision with ~ 10 elements. 
Check spelling and current size. 

Improper data base speCified or data base not open. Improper name, or perform­
ing data base operation with invalid name. 

Data set not found. Check set name or number and make sure it is on the volume 
specified in the schema. 

Reserved for future use. 

Data base requires creation. Perform a DBCREATE. 

Reserved for future use. 

Volume name not part of data base. Check spelling. 

Out of available memory for a DBOPEN, DBBACKUP or DBRECOVER. Out of 
read/write memory if executed from main program. Out of special area if ex­
ecuted from subprogram. so perform the DBOPEN in the main program. 

Improper or illegal use of maintenance word. Check spelling and leading or 
trailing blanks. 

Data set not created. 

Reserved for future use. 

Improper backup file. In DBRECOVER, backup file has incorrect information in 
header or no primary DBBACKUP/RECOVER currently in progress (for secon­
daryoperation). 

Incomplete backup file. More than one volume in backup; probably mounted in 
the wrong order. Start the recovery over. 

Improper utility version number in root file. Rerun Schema Processor to generate 
new root file. 

I 



EM-8 Error Messages 

226 

227 

228 

229 

230 

231-232 

233 

23L1 

235 

236 

237 

238 

239 

2L10-299 

300 

301 

302 

303 

30Ll 

305 

306 

307 

308 

309 

310 

311 

312 

313-329 

330 

331 

332 

Corrupt data base - must purge and redefine. Purge root file and run Schema 
Processor. 

Corrupt data base - all sets require erasure. When erasing a detail data set, 
ensure that all related master data sets are on-line. 

Data sets cannot be re-created without root file. 

Operation not allowed while DBOPEN current. Perform a DBCLOSE mode 1. 

Improper set list in DBBACKUP, DBCREATE, DBERASE, DBPURGE or dupli­
cate sets in the set list. 

Reserved for future use. 

Required data set root file not mounted. Mount it and perform a VOLUME 
DEVICES ARE. 

Referenced line not a PACKFMT statement. Make sure line identifier is correct 
and that it references a PACKFMT statement. 

Reserved for future use. 

Insufficient length in a PACK statement, or insufficient current length in an 
UNPACK. Insufficient length in a DBBACKUP or DBRECOVER statement. 

List length >32767 in PACK or UNPACK. Array in PACKFMT too large. Make 
sure it is the correct variable; redimension if necessary. 

Numeric conversion error. Improper real number found. Check PACKFMT to 
make sure a REAL or SHORT variable, not INTEGER is being unpacked. 

UNPACK requires a source string of greater length. 

Reserved for future use. 

CCOM area not allocated. 

Not allowed when channel is active. 

CMODEL statement required. 

Not allowed when trace is active. 

Too many characters in CWRITE. 

New CCOM size not allowed when channel is active. 

HP 98046 Interface Card failure. 

Insufficient CCOM allocation. 

Illegal character in CWRITE of non-TRANSPARENT data. 

Not allowed for this CMODEL. 

CCONNECT statement required. 

Not allowed while Data Comm is suspended. 

Improper CSTATUS array. 

Reserved for future use. 

Lexical table size exceeds array size. 

Improper pointer array* 

Non-existent dimension specified in MAT REORDER. 

I 



333 

334 

335 

33G 

337 

338 

338 

340 

341 

342 

343 

344 

345 

34G 

347 

348 

Pointer array contains out-of-range subscript value. 

Pointer array length does not equal number of records. 

Pointer array is not one-dimensioned. 

Error Messages EM-9 

Number of records (plus twice the number of secondary keys plus twice the 
number of substrings) exceeds 16383. 

Subscript extends beyond dimensioned maximum length. 

Subscript out-of-range in key specifier. 

Starting location is an out-of-range subscript value. 

Lexical table is too small to include all characters. 

Main lexical table length plus mode section length does not equal specified table 
length. 

Array is not one-dimensioned or is not integer. 

Lexical mode section pointer out-of-range. 

Lexical table length exceeds 16 383. 

Data type of expression in CASE does not match type of expression in SELECT. 
Verify that when the SELECT argument is a numeric expression, the CASE 
argument(s) is a numeric expression. Or verify that when the SELECT argument 
is a string expression, the CASE argument(s) is a string expression. 

INDENT parameter out of range. (0 to 72 accepted) 

Structured construct has improperly matched statements. Verify that you are 
matching WHILE and END WHILE, REPEAT and UNTIL, LOOP and END 
LOOP, IF and END IF (only one ELSE is permitted), or SELECT and END 
SELECT (only one CASE ELSE is permitted). Also verify that the CASE ELSE 
occurs only after all CASE statements for a given SELECT construct. 

Attempt to execute looping statement when no matching WHILE, REPEAT, or 
LOOP is active. Use the INDENT command to determine if you forgot to use a 
WHILE, REPEAT, or LOOP when writing your program. Use XREF to determine 
if there are any GOTOs or GOSUBs branching into your structured loops. 

* This error occurs when data is lost in the process of reordering the array. If this error does not occur. it does not necessarily 
imply that the pointer array contains a permutation. 

S}' 5 t e frl Err 0 r octal number; octal number 

This indicates a fatal error detected by the system firmware. It may have been caused by electro­
magnetic interference, a hardware failure, a firmware error, or an improper command. If reset 
(CONTROL STOP) does not bring control back, the machine must be turned off, then on again. 
If the problem persists, contact your local HP Sales and Service Office. 

• 



EM-lO Error Messages 

110 Device Errors 
Two error messages can occur when attempting to direct an operation to an 110 device that is 

not ready for use. A printer which is out of paper or no device at a specifed select code are 

examples. The first message that appears is -

I/O ERROR ON SELECT CODE select code 

If the condition is not corrected, the machine beeps intermittently and the following message 

replaces the first -

I/O TIMEOUT ON SELECT CODE select code 

The 110 device can be made usable by correcting the error (loading paper, or changing the 

select code, for example), then executing the READY# command 

REA D Y # select code 

This command readies the 110 device and the operation which was attempted is attempted 

again. The select code must be specified by an integer. 

If you get an 110 error on select code 0 and the printer is not out of paper, call your Sales and 

Service Office. 

In some cases, such as an interface which is not connected, READY # for that select code may 

not solve the 110 error. In this case, STOP should be pressed to regain control of the computer. 

Be sure to turn the power off before inserting an interface. After the problem is remedied, the 

operation or program can be tried again. 

If you get an 110 error and you have an ON KBD statement in effect, you must press STOP to 

gain control of the computer. Otherwise, the READY # command will be trapped by ON KBD. 

CSTATUS Element 0 Errors 
10 Timeout before connection 

11 Clear to Send line false or missing clock 

100 Channel MEMLIMIT overflow 

1 0 1 Illegal protocol from remote 

102 Input buffer overflow 

103 Internal buffer overflow 

104 Autodisconnect forced 

105 RETRIES count exceeded 

108 NOACTIVITY timeout 

200 98046 buffer overflow 

Iii 



DD 

EN 

Ev 
1\ 

LT 

MO 

RN 

SO 

TP 

UN 

9()(L999 

Assembly-Time Errors 
Doubly-defined label 

END instruction missing; or module name does not match. 

Expression evaluation error. 

Literal pools full or out of range. 

ICOM region overflow. 

Operand out of range. 

Argument declaration pseudo-instruction out of sequence. 

Incorrect type of operand used. 

Undefined symbol. 

Reserved for user. 

IMAGE Status Errors 

Error Messages EM-ll 

The following are possible values and meanings of the condition word (first element of the 

status array). After an error, the status array is as follows-

Element Description 

1 Condition word is non-zero 
2-4 No change 
5 DBOPEN mode 
6 Statement identification number 
7 Program line number 
8 0 
9 Value of the mode parameter 

10 Integer-for system use only 

Each statement has an identification number. 

Number Statement 

401 DBOPEN 
402 DBINFO 
403 DBCLOSE 
404 DBFIND 
405 DBGET 
406 DBUPDATE 
407 DBPUT 
408 DB DELETE 

• 



EM-12 Error Messages 

Condition 
Word Value Error Description 

o Successful execution - no error. 

- 1 Improper data base name; already have read-write access to the data base. 

- 10 You may not open additional data bases; five are already opened. 

- 11 Bad data base name or preceding blanks missing. Don't change the first two 
characters. Data base may not be open. 

-1 LI DBPUT, DBDELETE and DBUPDATE not allowed in DBOPEN mode 8. 

- 21 Bad password - grants access to nothing or not to that set. Check spelling. Data 
item, data set, or volume nonexistent or inaccessible. Check spelling and 
DBOPEN password. Volume references must be numeric for DBINFO. 

- 22 Detail data set required. 

- 23 You lack write access to this data set. 

- 2 LI DBPUT or DBUPDATE not allowed on Automatic Master. Check correctness of 

-31 

-52 

-7L1 

-81 

-82 

-8L1 

-85 

11 

12 

13 

15 

16 

17 

18 

Lll 

Ll3 

set reference. 

Improper mode in data base statement. DBGET mode 5 bad - specified data set 
lacks chains. 

Item specified is not an accessible key item in the specified set. Bad ((1 

parameter - must be "@ ; " or "@ "or" @ " . 

Root file name in disc directory and name in root file are different. Make sure 
root file not moved or renamed. 

Root file version not compatible with current IMAGE/45 statements. Incorrect 
version of Schema Processor used. 

Data base requires creation. 

Data or structure information lost. Data base must be erased or redefined. 

Cannot DBOPEN while a DBBACKUP or DBRECOVER is going on. 

End of file on serial DBGET; no entries following the current record. 

Negative record number on directed DBGET. Check record number and spell­
ing. 

Record number greater than capacity on directed DBGET. Check record number 
and spelling. 

End of chain encountered. 

The data set is full. 

No current record or the current record is empty; make sure that a current record 
is defined for this set. There is no chain for the key item value. There is no entry 
with the specified key value. 

Broken chain. Must UNLOAD the data base. 

DBUPDATE will not alter a key item. Make sure correct key item values are in the 
correct places in the buffer string. 

Duplicate key item value in master not allowed. 

I 



Error Messages EM-13 

LILI Can't delete a Master entry with non-empty detail chains. 

50 Buffer string is too small for requested data. Redimension if necessary. 

53 Argument parameter type incompatible with key field type (DBGET, mode 7 or 
DBFIND) or current length of string argument is less than the string length of the 
key item value. 

80 Data set's volume is not on line; or set not created. 

8 LI Corrupt data base successfully opened in mode 8. 

1 xx There is no chain head for path xx. 

3xx The automatic master for path xx is full. 

Llxx The master data set for path xx is not on-line (Applies to DBPUT and DBDELETE 
for detail data sets). 

500 Root file volume isn't mounted. 

5xx Needed volume on-line; created data set xx isn't there. 

• 



• 



Operating and Programming Index 1 

Operating and Programming 
Index 

This subject index is for the following manuals: 

Installation. Operation and Test (09845-93005) 
W Workbook (09845-93090) 
GW Graphics Workbook (09845-93091) 
BP BASIC Programming (09845-93000) 
RT Reference Tables 
EM Error Messages 

a 
ABS (absolute value) .............. BP-42 
Absolute plotting. . . . . . . . . . . . . . . . . .. RT-1 
Absolute value (ABS) .............. BP-42 
Access rate (tape) ................ BP-206 
Accessories supplied. . . . . . . . . . . . . . . .. 1-10 
Accessories kits . . . . . . . . . . . . . . . . . . . .. 1-10 
Accuracy of calculations ............ BP-54 
ACS (arccosine) ................... BP-47 
Action symbol ..................... BP-7 
Addition ......................... BP-34 
Air filters. cleaning ................... 1-38 
ALPHA .......................... GW-4 
Alphanumeric keys ............ I-U-3.BP-1 
Alternate line types ................ GW-8 
AND operator . . . . . . . . . . . . . . . . . . .. BP-35 
Angle ............................. RT-1 
Angular units ..................... BP-47 
Anisotropic. . . . . . . . . . . . . . . . . . . . . . .. RT-1 
Arccosine (ACS) .................. BP-47 
Arcsine (ASN) .................... BP-47 
Arctangent (ATN) ................. BP-47 
Arithmetic: 

Functions ..................... BP-42 
Hierarchy ..................... BP-48 
Keyboard ..................... BP-34 
Operations ........ 1-2. W-7,BP-8,BP-34 

Array: 
Dimensioning ..... BP-58,BP-59,BP-64 
Functions ..................... BP-89 
Identifier ................. BP-58.RT-1 
String ........................ BP-95 
Variables ... BP-13,BP-57,BP-58.BP-76 

Arrow keys ........................ BP-1 
ASCII character codes. . . . . . . . . . . . .. RT -10 
ASN (arcsine) ..................... BP-47 

ASSIGN ............ W-25,BP-188,BP-196 
Assigning a data file .. W-25,BP-188.BP-196 
Assigning values to variables ....... I-2.BP-8 
Assignment (LET and 

implied) ............... 1-2.BP-56,BP-94 
ATN (arctangent) .................. BP-47 
Audible output (BEEP) ............ BP-144 
AUTO (line numbering) ............ BP-22 
Automatic indent .................. BP-20 
Automatic start for programs ...... I-5,W-37 
AUTOST ...................... I-5.W-37 
AUTOST key .................. W-2.BP-1 
AXES .......................... GW-30 
Axes ............................. RT-1 
Axis .............................. RT-1 

b 
BACKSPACE key .................. BP-1 
Bar charts ....................... GW-22 
BASIC language .............. BP-1.RT-19 
BASIC User's Club .................. 1-36 
BEEP .......................... BP-144 
Binary Coded Decimal Interface 

exerciser . . . . . . . . . . . . . . . . . . . . . . . .. 1-83 
Binary programs ................. BP-204 
Blinking mode ............ BP-218.BP-239 
Bounds (of array dimensions) ....... BP-59 
Brackets [ 1 ............... BP-16,BP-95 
Branching ....................... BP-114 

End-of-line .................. BP-227 
Looping ..................... BP-117 
With SFKs ............ BP-227.BP-230 

BUFFER (files) ................... BP-199 
Buffering. implicit ................ BP-142 
Byte .............................. RT-1 

I 



2 Operating and Programming Index 

c 
Calculating range. . . . . . . . . . . . . . . . .. BP -38 
Calculations, accuracy of ........... BP-54 
CALL .......................... BP-136 
Calling program ............. BP-129,RT-l 
Cartridge Tape Unit exerciser .......... 1-76 
Carrying cases, computer. . . . . . . . . . . .. 1-11 
CAT (catalog) ........... 1-5,W-17,BP-I77 
CAT TO ........................ BP-179 
Characters .................. BP-17,RT-l 

Defining new ................. BP-252 
Foreign ....................... RT-ll 
Nationalized and Drawing ....... RT-ll 
Non-printable ................ BP-149 

CHECK READ ................... BP-200 
CHECK READ OFF .............. BP-201 
CHR$ (character function) ......... BP-I06 
Circles .......................... GW-12 
Cleaning: 

Air filters ....................... 1-38 
Computer ...................... 1-37 
light pen. . . . . . . . . . . . . . . . . . . . . .. 1-38 
Tape drives ..................... 1-37 

CLEAR key ........................ BP-l 
CLEAR LINE key ................... BP-l 
Clearing the CRT. . . . . . . . . . . . . . . . . .. BP-l 
Clearing the keyboard entry area. . . . .. BP-l 
CLIP .................... GW-39,GW-41 
Clipping area . . . . . . . . . . . . . . . . . . . . .. RT-l 
CLR~END key .................... BP-l 
Closing a file . . . . . . . . . . . . . . . . . . .. BP -196 
COL (column) .................... BP-89 
Color Graphics exerciser. ......... 1-45.1-52 
Color printing .................... BP-167 
Colored pens ..................... GW-8 
COM (common) ............. BP-63,RT-15 

In subprograms ............... BP-138 
Comma (for spacing) ............. BP-144 
Command ................... BP-16,RT-l 
Comment delimeter (!) ........ BP-9,BP-25 
Comments within a program ......... BP-9 
Common logarithm ................ BP-46 
Compatibility, System 45 . . . . . . . . . .. RT -19 

BASIC ....................... RT-19 
File ................... BP-240,RT-21 
Graphics firmware . . . . . . . . . . . .. RT -24 
9845A vs. 9845B/C . . . . . . . . . . .. RT -20 
9845A graphics vs. 9845B 

graphics .................... RT-21 
9845B graphics vs. 9845C 

graphics ............. RT-22,RT-24 

9845C graphics vs. enhanced 
graphics .............. RT-22,RT-24 

Standard vs. enhanced processor .. RT-23 
Computed GOSUB ............... BP-123 
Computed GOTO ................ BP-1l4 
Concatenation (& - string) .......... BP-97 
Connector symbol .................. BP-7 
Conserving memory ............... RT-15 
Constant .................... BP-16,RT-2 
CONT (continue) command ......... BP-28 

With INPUT ................... BP-70 
CONT key ............. W-4,BP-28,BP-76 
Control codes ................... BP-241 

Disabling .................... BP-243 
CONTROL 

key .... W-36,BP-l,BP-23,BP-218,RT-10 
Controller address ........... BP-170,RT-2 
CONVERGE ....................... 1-29 
Convergence panel ................... 1-8 
Convergence procedure .............. 1-28 
Coordinates ...................... GW-5 
COpy (files) ..................... BP-202 
Copying an array .................. BP-78 
COS (cosine) ..................... BP-47 
CREATE (data files) ......... W-24,BP-187 
CRT ........................... 1-8,1-16 

Accessing .................... BP-146 
Display area .................... 1-16 
Installation ...................... 1-13 
Intensity control .............. 1-8,1-15 
Keyboard entry area .............. 1-16 
Memory ..................... BP-239 
Pull-out cards .................... 1-8 
Print area ....................... 1-16 
Selective addressing. . . . . . . . . .. BP-243 
Softkey label area ................ 1-16 
Special features ....... BP-218,BP-239 
System comments area ........... 1-16 

CSIZE .......................... GW-14 
Current environment. ........ BP-129,RT-2 
Current units ...................... RT-2 
Cursor. ........................... RT-2 

Moving. . . . . . . . . . . . . . . . . . . . .. BP-247 
Selective addressing. . . . . . . . . .. BP-243 



d 
DATA (with READ) ..... BP-8.BP-66.BP-98 
DATA pointer ..................... BP-67 

Repositioning ................. BP-68 
Data (on a mass storage device) .... BP-187 

Amount of storage needed ..... BP-198 
Data base . . . . . . . . . . . . . . . . . . . . . . . .. RT-2 
Debugging ...................... BP-21O 
Decision-making within a program ..... BP-8 
Decision symbol. ................... BP-7 
DEFAULT OFF ................... BP-51 
DEFAULT ON .................... BP-50 
Default values .................... BP-50 
DEF FN (define functions): 

Multiple line .......... BP-128,BP-134 
Single line ................... BP-125 

Defined record ....... BP-173,BP-187,RT-2 
Defining a function ........ BP-125.BP-134 
Defining special function keys W-14,BP-220 
DEG (degrees) .................... BP-47 
DEGAUSS ......................... 1-31 
DEL (delete line) .................. BP-21 
DEL CHR key ..................... BP-1 
DEL LN key ................ BP-11,BP-21 
Deleting characters .......... BP-1, BP-248 
Delimiter: 

Coma ....................... BP-144 
Comment (!) .................. BP-25 
PRINT USING ............... BP-156 
Semicolon ............. BP-13,BP-144 

DET (determinant) ................ BP-90 
Device type (mass storage) .... BP-171,RT-4 
Digit rounding (DROUND) .......... BP-42 
DIG[T[ZE ....................... GW-35 
Digitizer exerciser . . . . . . . . . . . . . . . . . .. [- 74 
Digitizing .......................... RT-2 
DIM (dimension) ................... BP-60 
Dimensioning an 

array ........ BP-58,BP-59.BP-64.BP-95 
Dimensioning a string. . . . . . . . . . . . .. BP-94 
Directory . . . . . . . . . . . . . . . . . . . . . .. BP-175 
D[SABLE (interrupts) ............. BP-230 
Disc Drive exercisers ......... 1-68,[-69,[-78 
DISP (display) .............. BP-8,BP-144 
Display exerciser ................ [-45.1-48 
Display keys ................. [-1,[-3.BP-1 
Display line. . . . . . . . . . . . . . . . . . . . . . .. RT-2 
DIV (integer divide) ................ BP-34 
Division (I) ....................... BP-34 

By zero ....................... BP-50 

Ii 

Operating and Programming Index 3 

DOT (inner product) ............... BP-90 
Dot matrix in syntax ............... BP-16 
DRAW ........................... GW-6 
Drawing characters . . . . . . . . . . . . . . .. RT-11 
DROUND (digit round) ............. BP-42 
DUMP GRAPH[CS ................ GW-4 
Dynamic memory allocation ........ BP-140 

e 
e (Napierian) . . . . . . . . . . . . . . . . . . . .. BP-46 
E key ............................. BP-1 
EDIT ............................ BP-11 
ED[T (string) ...................... BP-99 
ED[T KEY (SFKs) ................ BP-220 
Edit key mode ..................... RT-2 
EDIT LINE (programs) ............. BP-19 
Edit line mode . . . . . . . . . . . . . . . . . . . .. RT-2 
Edit/system command keys ........ [-l,BP-1 
Editing: 

Keyboard lines ................ BP-11 
Programs ..................... BP-19 
SFKs ....................... BP-220 

ENABLE (interrupt) .......... BP-230 
END ....................... BP-9.BP-29 
End of file (EOF) marks ........... BP-174 
End of line branching ............. BP-227 
End of program (logical and physical) .. BP-29 
End of record (EOR) marks ........ BP-174 
Enhanced Graphics exerciser ...... [-45.[-56 
Equal to ( =) ..................... BP-34 
Erasing memory ................... BP-30 
ERRL (error line) ................. BP-214 
ERRM$ (error message) ........... BP-214 
ERRN (error number) ............. BP-214 
Errorfunctions ................... BP-214 
Error messages and warnings .... BP-4.EM-1 
Error. system ...................... EM-9 
Errors: ......................... BP-198 

Assembly time ................ EM-11 
[mage status .................. EM-11 
110 device .................... EM-10 

Escape code sequences ........... BP-245 
Summary .................... BP-258 

EXECUTE key ................. W-4.BP-1 
Execution stack ................... RT-17 
EXOR operator ................... BP-36 
EXP (exponential) function ......... BP-46 
Exponential function ............... BP-46 
Exponentiation (A or **) ........... BP-34 
Expression, numeric .......... BP-17.RT-5 



4 Operating and Programming Index 

f 
Field specifiers ................... BP-155 
File: 

Buffer. . . . . . . . . . . . . . . . . . . . . .. BP -199 
Closing. . . . . . . . . . . . . . . . . . . . .. BP -196 
Compatibility ........... BP-240,RT-21 
Name .................. BP-170.RT-2 
Number ................ BP-170,RT-2 
Opening ..................... BP-188 
Pointer ................. BP-188,RT-2 
Purging ................ W-18,BP-202 
Specifier. ............... BP-172,RT-2 
Structure .................... BP-173 
Table ....................... BP-188 

File types .................. BP-173,RT-3 
Assembly language ............ BP-178 
Backup ..................... BP-178 
Binary data ........... BP-173,BP-178 
Binary program BP-173,BP-178,BP-204 
Data .......... BP-178,BP-181.BP-187 
Data set ..................... BP-178 
KEY ................. BP-178,BP-203 
Option ROM ................. BP-178 
Program .............. BP-178,BP-181 
Root. ....................... BP-178 
STORE ALL (memory) .. BP-178,BP-204 

FILL ........................... GW-22 
Final value (FOR) ................ BP-117 
FIXED (fixed point) ..... BP-8,BP-38,BP-39 
FLOAT (scientific 

notation) ............ BP-8.BP-38,BP-40 
Flowcharts ........................ BP-7 
Flowline symbol. . . . . . . . . . . . . . . . . . .. BP-7 
FN (function reference) ..... BP-125.BP-133 
FN END ........................ BP-134 
FOR/NEXT .... BP-8,BP-11.BP-117,BP-121 

Nesting ...................... BP-120 
Foreign characters. . . . . . . . . . . . . . . .. RT-11 
Formal parameters ........... BP-129,RT-3 
Format string .................... BP-155 
Formatted output ................ BP-155 
FRACT (fractional part) .......... " BP-43 
FRAME ......................... GW-10 
Full-preciSion numbers (REAL) . BP-54.BP-62 
Functions ......................... BP-8 

Array ...................... " BP-89 
Defining .............. BP-125,BP-134 
Error. ....................... BP-214 
In computations ................ W-10 
KBD$ (keyboard) ............. BP-232 
Math ....................... " BP-42 

Output ...................... BP-14SJ 
String ....................... BP-103 
User-defined .... BP-13,BP-125,BP-134 

Fuses .......................... 1-2U-22 

9 
GCLEAR. ....................... GW-10 
GDUs ...................... GW-18,RT-3 
GET ........................... BP-182 
Glossary . . . . . . . . . . . . . . . . . . . . . . . . .. RT-1 
GOSUB ................... BP-8,BP-122 

Computed ................... BP-123 
GOTO ..................... BP-8,BP-114 

Computed ................... BP-114 
GRAD ........................... BP-47 
GRAPHICS ....................... GW-4 
Graphics: 

Display units (GDUs) ..... GW-18,RT-3 
Exerciser ................... 1-45.1-52 
Firmware differences ........... RT-24 
Tablet exerciser .................. 1-70 
Training program ............... GW-1 

Greater than (» .................. BP-34 
Greater than or equal to (~) ........ BP-34 
GRID ........................... GW-32 
Grounding requirements. . . . . . . . . . . . .. 1-24 

h 
Handshake. . . . . . . . . . . . . . . . . . . . . . .. RT-3 
Hard clip. . . . . . . . . . . . . . . . . . . . . . . . .. RT-3 
Heading suppression (CAT) ........ BP-l77 
Hierarchy, arithmetic ............... BP-48 
HOME key ........................ BP-1 
Home position (cursor) .............. BP-1 
HP-GL ........................... RT-3 
HP-IB device address ......... BP-18,RT-3 
HP-Interface Bus exerciser ............ 1-84 
HP Compatible BASIC ............. RT-19 
HP Sales and Service offices .......... 1-93 

Ii 



• 
1 

Identifier, array ............... BP-58,RT-l 
Identifier, line ................ BP-17,RT-3 
Identity matrix .................... BP-82 
IF...THEN .................. BP-8,BP-115 
IMAGE (with PRINT USING) .. BP-8,BP-155 

Summary .................... BP-166 
Implicit dimensioning: 

Array ........................ BP-58 
String ........................ BP-95 

Increment value. . . . . . . . . . . . . . . . . .. BP-20 
Incremental Plotter Interface exerciser .. 1-87 
Indent, automatic .................. BP-20 
Initial value (FOR) ................ BP-117 
INITIALIZE ................... 1-4,BP-176 
Initializing a tape. . . . . . . . . . . . . . .. 1-4, W -19 
INPUT .... BP-8,BP-13,BP-69,BP-70,BP-98 
Input ............................. RT-3 
Input/output symbol ................ BP-7 
INS CHR key ...................... BP-l 
INS LN key ....................... BP-11 
Inserting characters . . . . . . . . . . . . . . . .. BP-l 
Inserting lines. . . . . . . . . . . . . . . . . . . .. BP-11 
INT (integer part) .................. BP-43 
INTEGER ........................ BP-61 
Interface: 

Exercisers . . . . . . . . . . . . . . . . . . . . .. 1-81 
Select codes . . . . . . . . . . . . . . . . . . .. 1-20 
Connecting an ................... 1-19 

Interleave factor ............. BP-176,RT-3 
Interrupt (program) ............... BP-227 

Interaction ................... BP-228 
Simultaneous ................ BP-227 
Types ....................... BP-227 

Introductory training program . . . . . . . .. W-l 
Inverse matrix .................... BP-85 
Inverse video mode ............... BP-218 
110 device errors. . . . . . . . . . . . . . . .. BP-290 
110 slots ........................... 1-19 
Isotropic . . . . . . . . . . . . . . . . . . . . . . . . .. RT-3 

k 
KBD$ .......................... BP-232 
Keyboard .................. l-l,W-4,BP-l 

Arithmetic .................... BP-34 
Entry area ................. 1-16,RT-3 
Operations ...................... , 1-2 

Keyboard Magazine .................. 1-36 
Keyword ......................... BP-16 

Secondary .................... BP-16 

• 
Operating and Programming Index 5 

I 
LABEL ......................... GW-37 
Label. ..................... ' BP-17,RT-3 
LDIR ........................... GW-14 
LEN (length) .................... BP-I03 
Less than «) . . . . . . . . . . . . . . . . . . . . . BP -34 
Less than or equal to (~) ........... BP-34 
LET ............ BP-8,BP-54,BP-94,BP-98 

Implied ....................... BP-56 
LETTER ........................ GW-14 
LGT (common log) ................ BP-46 
light pen ........................... 1-8 

Cleaning ....................... 1-38 
Connector ...................... 1-21 
Installation. . . . . . . . . . . . . . . . . . . . .. 1-16 

LIMIT .................... GW-39,GW-41 
LIN (linefeed) .................... BP-151 
line identifier ............... , BP-17,RT-3 
line length. . . . . . . . . . . . . . . . . . . . . .. BP -18 
line numbers ............ BP-8,BP-9,RT-4 

Auto numbering (AUTO) ........ BP-22 
Range ........................ BP-17 
Renumbering (REN) ............ BP-22 
Using EDIT LINE .............. BP-19 

line types, alternate ............... GW-8 
LINK ........................... BP-184 
LINPUT ................... , BP-8,BP-98 
LIST ............................ BP-26 
LIST# ........................... BP-26 
LIST KEY (SFK definitions) ........ BP-225 
literal ........................... BP-96 
live keyboard mode ........... BP-3,RT-4 
LOAD .......................... BP-186 
LOAD ALL. ..................... BP-204 
LOAD BIN ...................... BP-204 
LOAD KEY ..................... BP-203 
Local variables .............. BP-140,RT-4 
LOCATE ................. GW-26,GW-41 
LOG (natural log) ................. BP-46 
Logarithm: 

Common (LGT) ............... BP-46 
Natural (LOG) ................. BP-46 

Logging keyboard operations ......... BP-2 
Logical operators .................. BP-35 
Logical records .............. BP-173,RT-4 
Loop counter .............. BP-11,BP-117 
Looping ........................ BP-117 
LORG .......................... GW-37 
LWC$ (lowercase) ................ BP-I08 



6 Operating and Programming Index 

m 
Main program ......... BP-17,BP-129.RT-4 
Mainframe exercisers ................ 1-4S 
Manuals ........................... 1-33 

Package. . . . . . . . . . . . . . . . . . . . . . .. 1-34 
Structure ....................... 1-36 

Margins ......................... BP-2S1 
Mass storage errors. . . . . . . . . . . . . .. BP-207 
MASS STORAGE IS .............. BP-l72 
Mass storage unit specifier .... BP-170,RT-4 
MAT...CON (constant) ............. BP-76 
MAT-copy ....................... BP-78 
MAT...CSUM (column sum) ......... BP-87 
MAT-function ..................... BP-81 
MAT...IDN (identity) ............... BP-82 
MAT -initialize ..................... BP-77 
MAT INPUT ................ BP-71.BP-98 
MAT...INV (inverse) ............... BP-87 
MAT-multiplication ................ BP-83 
MAT-operation ................... BP-80 
MAT PRINT ..................... BP-lS3 
MAT PRINT # ................. " BP-194 
MAT READ ................ BP-66,BP-98 
MAT READ # ................... BP-194 
MAT...RSUM (row sum) ............ BP-88 
MAT-scalar operation .............. BP-99 
MAT...TRN (transpose) ............. BP-87 
MAT...ZER (zero) ................. BP-76 
Matrices ........................ , BP-82 

Identity ....................... BP-82 
Inverse ....................... BP-8S 
Multiplication .................. BP-83 
Transpose of .................. BP-87 

MAX (maximum) . . . . . . . . . . . . . . . . .. BP-43 
Maximizing performance. . . . . . . . . . .. RT -23 
Medium ........................... RT-4 
Memory ......................... RT-14 

Allocation, dynamic ......... " BP-140 
Available for use ............... BP-26 
Conserving ................... RT-IS 
DMA and FHS NOFORMAT 

transfers .................... RT-18 
Erasing ....................... BP-30 
Exerciser . . . . . . . . . . . . . . . . . .. I -4S,I -4 7 
Lock ........................ BP-249 
Loss ......................... RT-14 
Organization ...... RT-14,RT-lS,RT-17 
Read/Write ......... I-2,I-9,RT-6,RT-14 
Storing .................... " BP-204 
Test ..................... I-26,RT-14 
Types of. ..................... RT-14 
Working storage ............... RT-14 

Metric conversion table ............. RT-12 
Metric units ....................... , RT-4 
MIN (minimum) ................... BP-43 
Minus sign (-) .................... BP-34 
Mnemonic ......................... RT-S 
MOD (modulo) ................... BP-37 
Module. . . . . . . . . . . . . . . . . . . . . . . . . .. RT-S 
MOVE ........................... GW-6 
MSCALE ....................... , GW-18 
Msus ...................... BP-170,RT-S 
Multiple-line function 

subprogram ............ BP-128,BP-134 
Multiplication (*) ................. , BP-34 

n 
Name ................. BP-17,BP-SS,RT-S 
Naming convention ................. RT-S 
Napierian e ....................... BP-46 
Nationalized and Drawing characters.. RT-11 
Natural logarithm (LOG) ............ BP-46 
Nested FOR/NEXT loops ......... , BP-120 
NEXT .......................... BP-117 
Non-printable characters .......... BP-149 
NORMAL. ...................... BP-213 
Not equal to « > or #) . . . . . . . . . . .. BP-34 
NOT operator .................... BP-36 
Null string ....................... BP-I03 
NUM (numeric) ................. , BP-I07 
Number formats for output. . . . . . . . .. BP-38 
Numeric: 

Expression ............. " BP-17,RT-S 
Keys .................. " I-l,I-2,BP-l 
Variable ...................... BP-S4 

o 
OFF END ....................... BP-198 
OFF ERROR .................... BP-21S 
OFF KBD ....................... BP-234 
OFF KEY ....................... BP-237 
Offices, HP Sales and Service . . . . . . . .. 1-93 
ON END ........................ BP-197 
ON ERROR ..................... BP-213 
ON ... GOSUB .................... BP-123 
ON ... GOTO ..................... BP-114 
ON INT. ........................ BP-227 
ON KBD ................. BP-227,BP-230 
ON KEY ................. BP-227,BP-234 
On-line ........................... RT-S 

Ii 



• 
Operating and Programming Index 7 

Opening a file ................... BP-188 Pointer. . . . . . . . . . . . . . . . . . . . . . .. RT-6 
Operating procedures ................. I-I DATA ........................ BP-67 
Operators ........................ BP-34 File ........................ , BP-188 

Arithmetic .................... BP-34 Program ...................... BP-18 
Logical. ...................... BP-35 Repositioning (file) ........... , BP -194 
Relational .................... BP-34 POLYGON ............... GW-12,GW-24 
String ........................ BP-97 POS (position) .................. , BP-I04 

OPTION BASE . . . . . . . . . . . . . . . . . .. BP-60 Power: 
OR operator ...................... BP-36 Co~ ........................... I~4 
Origin . . . . . . . . . . . . . . . . . . . . . . . . . . .. RT-5 Cord connector .................. 1-21 
Output .................... BP-143,RT-5 Requirements. . . . . . . . . . . . . . . . . .. 1-23 
Output functions. . . . . . . . . . . . . . . .. BP-149 Switch ...................... 1-8,1-25 
Output of numbers ................ BP-38 Power-of-ten rounding (PROUND) ... BPA4 
Outputting program results ........... BP-8 Precision (accuracy) ............... BP-54 
OVERLAP ...................... BP-167 For calculating ................. BP-54 
Overlaying ....................... RT-15 For conserving memory ......... RT-15 

Pre-run initialization ............... BP-27 

p PRINT ..................... BP-8,BP-147 
PRINT # ................ BP-189,BP-193 
PRINT ALL IS ..................... BP-2 

PAGE .......................... BP-152 PRINT USING .............. BP-8,BP-155 
PAPER ADVANCE key ............... 1-27 Print all mode ................ W-29,BP-2 
Pa per, internal printer. . . . . . . . . . .. I-11,I -27 PRINTER IS ........ IA,BP-8,BP-9,BP-146 

Installation ..................... 1-27 Printer: 
Paper Tape Punch exerciser. _ ......... 1-78 
Paper Tape Reader exerciser .......... 1-78 
Parameters ...................... BP-129 

Addressing ................... BP-250 
Exercisers ...... I-45,I-5U-70,l-7U-76 
Internal .............. I-8,l-27,BP-146 

Parentheses ...................... BPA9 
Parity. . . . . . . . . . . . . . . . . . . . . . . . . . . .. RT-5 
Pass by reference ................ BP-131 
Pass by value .................... BP-131 

Paper ..................... , 1-11,1-27 
Margins ..................... BP-251 
Select Code ........ , IA,I-20,W-9,BP-2 
Standard . . . . . . . . . . . . . . . . . . . . .. RT-5 

Pass parameter ............. BP-129,RT-5 Printout area. CRT . . . . . . . . . . . . . . . .. RT-6 
PAUSE .......................... BP-28 
PDIR ........................... GW-12 

Priority .................... BP-227.RT-6 
Processors, standard vs. enhanced ... RT-23 

Pen .............................. RT-5 
PENUP .......................... GW-6 
Performance, maximizing ........... RT-23 
Peripheral exercisers ................. 1-67 

Program ......................... BP-18 
Control keys ..................... I-I 
Editing ........................ BP-9 
Outline ........................ BP-6 

Peripherals ......................... 1-32 Pointer ....................... BP-18 
Physical records ............. BP-173,RT-5 
PI. .............................. BPA4 
Pie charts ................. GW-12,GW-25 
Pixel ............................. RT-5 
PLOT ........................... GW-6 
Plotted point. ...................... RT-5 
Plotter exerciser ..................... 1-73 

Running ...................... BP-27 
Segment. ......... BP-17,BP-129,RT-6 
Writing .................... , I-3,BP-8 

Program flow, controlling ............ BP-8 
Programming tutorial. ............... BP-5 
Prompt .......................... BP-69 
PROTECT ...................... BP-201 

PLOTTER IS "GRAPHICS" ........ GW-I0 Protect code ......... BP-I72.BP-201,RT-6 
Plotting: 

Absolute ....................... RT-l 
Coordinates. . . . . . . . . . . . . . . . . . .. RT-6 

PROUND (power-of-ten round) ...... BPA4 
PRT ALL key ................. BP-l,BP-2 
PURGE ......................... BP-202 

Space ......................... RT-6 
Plus sign (+ ) .................. BP-34 

Purging files ................ W-18,BP-202 



8 Operating and Programming Index 

r 
Random file access . . . . . . . . . . . . . .. BP -193 
Random number (RND) .......... " BPA4 
Random number seed ............ " BP-44 

Scrambling ................. " BPA5 
RANDOMIZE ................... " BP-45 
Range: 

Calculating .................. " BP-38 
Line numbers ............... " BP-17 
Various variable precisions .... " BP-54 
Storage .................... " BP-38 

RAD (radian) ..................... BP-47 
READ (with DATA) ..... BP-8.BP-66.BP-98 
READ # ................. BP-191.BP-194 
Read Only Memory (ROM) ..... RT-6.RT-14 
Read/Write Memory ..... I-2.1-9.RT-6.RT-14 
Reading data from a file ............. W-27 
READY # ..................... " EM-I0 
REAL ..................... BP-54.BP-62 
Real Time Clock Interface exerciser .... 1-85 
Recall buffer. . . . . . . . . . . . . . . . . . . . . .. BP-l 
RECALL key ...................... BP-l 
Record lIO . . . . . . . . . . . . . . . . . . . . . . .. RT-6 
Recording data in a file .............. W-26 
Records ........................ BP-173 

Defined ......... BP-173.BP-187.RT-2 
Logical ................. BP-173.RTA 
Physical ................ BP-173.RT-5 

RECTANGLE .................... GW-22 
REDIM (redimension) ............ " BP-64 
Redim subscripts ............. BP-64.RT-6 
Redimensioning an array . . . . . . . . . .. BP-64 
Reference tables. . . . . . . . . . . . . . . . . . .. RT-l 
Reflected plot. . . . . . . . . . . . . . . . . . . . .. RT-6 
Relational operators ............. " BP-34 
Relative plotting. . . . . . . . . . . . . . . . . . .. RT-6 
REM (remark) .................... BP-25 
Remarks in program lines ...... BP-9.BP-25 
REN (renumber) ................ " BP-22 
Renumbering lines ................. BP-22 
RENAME (file) ................... BP-203 
REPEAT key ....................... BP-l 
RE-SAVE ....................... BP-184 
Reset ...... W-35.BP-2.BP-14.BP-29.RT-13 
RE-STORE ...................... BP-186 
RESTORE (with READ. DATA) .... " BP-68 
RES (result) function ....... I-2.BP-1.BPA4 
Result buffer .................... " BP-34 
RESULT key .............. I-2.BP-l,BP-34 
RESUME INTERACTIVE ............ BPA 
RETURN: 

With DEF FN ................. BP-134 
With GOSUB ................ BP-122 

Return variable .................. BP-188 
REV$ (reverse) .................. BP-I08 
REWIND ........................ BP-207 
RND (random number) ............. BPA4 
ROLL keys ........................ BP-l 
Rolling the display ................ BP-248 
ROM ....................... RT-6,RT-14 

Drawers ..................... 1-8.1-17 
Installation ...................... 1-18 

ROM Revision exerciser .......... 1-45.1-65 
Roman Extension Character Codes. .. RT -11 
Rounding ........................ BP-41 

Digit (DROUND) ............... BPA2 
Power-of-ten (PROUND) ........ BP-44 

ROW ............................ BP-89 
RPT$ (repeat) ................... BP-I08 
RS-232 Interface exerciser ............ 1-86 
RUN ............................ BP-27 
RUN key .......................... W-4 
RUN light ..................... I-8,BP-18 
Run-time error trapping ........... BP-125 

s 
Sales and Service offices. . . . . . . . . . . . .. 1-93 
SAVE .......................... BP-182 
SCALE .................. GW-18.GW-41 
Scalar . . . . . . . . . . . . . . . . . . . . . . . . . . .. RT -7 
Scientific notation (FLOAT) . . . . . . . .. BP-38 
SCRATCH ....................... BP-30 
SCRATCH A ..................... BP-30 
SCRATCH C . . . . . . . . . . . . . . . . . . . .. BP-30 
SCRATCH KEY ........... , BP-30.BP-225 
SCRATCH P . . . . . . . . . . . . . . . . . . . .. BP-30 
SCRATCH V . . . . . . . . . . . . . . . . . . . .. BP-30 
Secondary keyword ................ BP-16 
SECURE (program lines) ........... BP-30 
Select codes ...... I-20,BP-18,BP-170,RT-7 
Selective addressing (CRT) ........ BP-243 
Selective catalog specifier. . . . . . . . .. BP -177 
Semicolon (for spacing) ..... BP-13.BP-144 
SERIAL (mode) .................. BP-167 
Serial file access .................. BP-189 
SFKs ......... I-l,W-14.BP-1.BP-217.RT-7 
SGN (sign) ....................... BPA5 
SHIFT key ........................ BP-l 
SHORT. . . . . . . . . . . . . . . . . . . . . . . . .. BP-62 
SHOW ......................... GW-18 
Significant digits ................... BP-41 

In computations ............... BP-54 
Simple variables ................... BP-54 
Simultaneous computations ............ 1-2 
Simultaneous interrupts ........... BP-227 

I 



SIN (sine) ........................ BP-47 
Sixteen-Bit I/O Interface exerciser ...... 1-82 
Slant ............................. RT-7 
Snapshot. . . . . . . . . . . . . . . . . . . . . . . . .. RT-7 
Soft clip. . . . . . . . . . . . . . . . . . . . . . . . . .. RT -7 
Softkeys .......................... " 1-8 
SPA (space) ..................... BP-150 
Space dependent mode ....... W-28,BP-23 
Spacing between characters ...... I-2,BP-23 
Spare directory .................. BP-175 
Special function keys 
(SFKs) ........ l-l,W-14,BP-l,BP-217,RT-7 

Defining as typing aids .... W-14,BP-220 
Erasing definitions ............ BP-225 
Listing definitions ............. BP-225 
Pre-defined definitions ......... BP-218 
Program interrupts ..... BP-227,BP-234 
Special features ............... BP-218 

Split plots ....................... GW-26 
SQR (square root) . . . . . . . . . . . . . . . .. BP-45 
Stack ............................. RT-7 
STANDARD output format. .... BP-8,BP-39 
Standard mass storage device .. RT -7, BP -172 
Standard printer. . . . . . . . . . . . . . . . . . .. RT -7 
Statements ............. BP-8,BP-16,RT-7 
STEP key ................... W-30,BP-27 
Stepping through a program . . . . . . .. BP-27 
STOP ........................... BP-29 
STOP key ........................ BP-28 
Storage of variables: 

In memory ........ BP-38.BP-73.RT-18 
On mass storage devices ....... BP-199 

Storage range ..................... BP-38 
STORE ......................... BP-185 
STORE ALL. .................... BP-204 
STORE BIN ..................... BP-204 
STORE KEY .................... BP-203 
STORE key ................... I-3,BP-18 
Storing a program line ............... " 1-4 
Storing a program on tape ....... I-4,BP-13 
String: 

Array ........................ BP-95 
Expression ............... BP-96,RT-8 
Functions .................... BP-I03 
Operators ..................... BP-97 
Variable ...................... BP-13 

Strings ........................... BP-93 
Comparing .................. BP-110 
Concatenation ................. BP-97 
Dimensioning (explicit) .......... BP-94 
Dimensioning (implicit) ......... BP-95 
Maximum size. . . . . . . . . . . . . . . .. BP-94 
Relational operations .......... BP-110 

Operating and Programming Index 9 

SUB ........................... BP-I36 
SUBEND ....................... BP-I36 
SUBEXIT ....................... BP-136 
Subprograms .. BP-17,BP-128,BP-138,RT-8 

Conserving memory with. . . . . . .. RT -15 
Function subprograms .. BP-128,BP-134 
Subroutine subprograms 

(SUB) .............. BP-128,BP-136 
Subroutine return pointers ......... BP-122 
Subroutines (GOSUB) ....... BP-122,RT-8 
Subscripts ................... BP-59,RT-8 
Substring . . . . . . . . . . . . . . . . . . . . . . .. BP-96 
Substring specifier ................. BP-96 
Subtraction ( - ) ................... BP-34 
SUM ......... " ................. BP-89 
SUSPEND INTERACTIVE. . . . . . . . . .. BP-3 
Symbol table ..................... RT-17 
Symbols, flowchart ................. BP-7 
Syntax conventions ................ BP-16 
System comments line .............. , RT-8 
System error . . . . . . . . . . . . . . . . . . . . .. EM-9 
System exerciser cartridges ........... 1-41 
System exerciser summary table ....... 1-91 

t 
TAB (output function) ....... BP-ll,BP-149 
TAB key .......................... BP-l 
TAB CLR key ...................... BP-l 
TAB SET key ...................... BP-l 
Tab capabilities .................... BP-l 

Using escape codes .... BP-247,BP-251 
Table, attaching computer to a ........ 1-12 
TAN (tangent) .................... BP-47 
Tape cartridge: 

Access rate .................. BP-206 
Blank .......................... 1-11 
Capacity .................... BP-206 
Care ........................... 1-39 
Catalog .................... I-5,W-17 
Inserting and removing ........... 1-31 
Length of. . . . . . . . . . . . . . . . . . .. BP-206 
Optimizing use . . . . . . . . . . . . . .. BP-207 
Specifications ................ BP-206 
Unprotected .......... I-3,W-l,BP-205 
Write-enabled ......... I-3,W-l,BP-205 
Write protection ....... I-3,W-l,BP-205 

Tape drives .......................... 1-8 
Cleaning ....................... 1-37 

Tape exerciser .................. 1-45,1-50 
Terminator symbol . . . . . . . . . . . . . . . .. BP-7 

I 



10 Operating and Programming Index 

Testing the computer ................ 1-41 
Text. ....................... BP-17,RT-S 
Thermal printer, internal ........... I-S,I-27 
TOP OF FORM key. . . . . . . . . . . . . . . . .. 1-27 
TRACE ......................... BP-210 
TRACE ALL. .................... BP-213 
TRACE ALL VARIABLES ......... BP-212 
TRACE PAUSE .................. BP-211 
TRACE VARIABLES ............ " BP-212 
TRACE WAIT ................... BP-211 
Tracing variables ................... W-33 
Tracing program execution .......... W-33 
Training tapes ............ 1-32,W-3,GW-3 
Transpose of a matrix ............. , BP-S7 
Trigonometric functions ........... , BP-46 
TRIM$ ......................... BP-10S 
Truth table ...................... , BP-37 
TYP (data type) .................. BP-l96 
TYPEWRITER OFF ............... ' BP-31 
TYPEWRITER ON ................ , BP-31 
Typewriter keys ................. 1-1,BP-1 
Typewriter mode ................... BP-1 
TYPWTR key ...................... BP-1 

u 
UDUs (User-Defined Units) .... GW-1S,RT-S 
UNCLIP ........................ GW-39 
Unconditional branching .......... BP-114 
Underline mode ........... BP-21S,BP-231 
Unit code .................. BP-171,RT-S 

9SS5 ....................... BP-171 
Unpacking the computer ............... 1-9 
UPC$ (uppercase) ................ BP-107 
User-defined function BP-13,BP-125,BP-134 
User-defined units (UDUs) .... GW-1S, RT-8 

• 

v 
VAL (value) function .............. BP-105 
VAL$ .......................... BP-105 
Value area ....................... RT-17 
Variables ...... 1-2,BP-9,BP-13,BP-53,RT-S 

Array ...... BP-13,BP-57,BP-58,BP-76 
Assigning values to ....... BP-56,BP-65 
Breakdown ............ BP-55,BP-111 
Forms ........................ BP-54 
Local .................. BP-140,RT-4 
Names. . . . . . . . . . . . . . . . . . . . . .. BP-55 
Numeric ...................... BP-54 
Precision ..................... BP-54 
Ranges ....................... BP-54 
Return ...................... BP-188 
Simple. . . . . . . . . . . . . . . . . . . . . .. BP-54 
Storage ........... BP-38,BP-73,RT-18 
Types ........................ BP-54 

Vectors .......................... BP-57 
Verification (file) ................. BP-200 
Vertical line (in syntax) ............. BP-16 
Voltage selector switch ........... 1-21,1-22 

w 
WAIT ........................... BP-31 
WIDTH ......................... BP-146 
Word ............................. RT-9 
Working storage ................... RT-14 
Write protection (tape 

cartridge) .............. 1-3,W-1,BP-205 



 
 
 
 
 
 
 
 
 

Scan Copyright © 
The Museum of HP Calculators 

www.hpmuseum.org 
 

Original content used with permission. 
 

Thank you for supporting the Museum of HP 
Calculators by purchasing this Scan! 

 
Please to not make copies of this scan or 
make it available on file sharing services.


