
r/"~ HEWLETT
~aI PACKARD

HP-71
Owner's Manual

rJ.~ HEWLETT 71 a!!f!A PACKARO

Notice

Hewlett-Packard Company makes no express or implied warranty with regard to the pro­
gram material offered or the merchantability or the fitness of the program material for any
particular purpose. The program material is made available solely on an "as is" basis, and
the entire risk as to its quality and performance is with the user. Should the program ma­
terial prove defective, the user (and not Hewlett-Packard Company nor any other party)
shall bear the entire cost of all necessary correction and all incidental or consequential
damages. Hewlett-Packard Company shall not be liable for any incidental or consequential
damages in connection with or arising out of the furnishing, use, or performance of the
program material.

Printed in U.S.A.

rli~ HEWLETT
~a111 PACKARD

HP-71

Owner's Manual

March 1987

Reorder Number
00071-90001 Rev. E

© Hewlett-Packard Company 1983

Introducing the HP-71

Congratulations! You have purchased the HP-71, an advanced computational tool that works as easy as
a calculator but is as powerful as a computer. The rugged design and high performance of the HP-71
can substantially increase your productivity.

The HP -71 offers you the following features:

• Small sized and battery powered for maximum portability.

• A special calculator mode for performing sophisticated computations while viewing intermediate
results.

• A powerful set of BASIC functions, statements, and operators-over 230 in all. Many larger
computers don't have a set of BASIC instructions this complete.

• Advanced statistics functions that enable you to perform computations on up to 15 independent
variables.

• Recursive subprograms and user-defined functions, which are usually found in other programming
languages, now extend the power of BASIC in the HP-71.

• An advanced internal file system for storing your programs and data. The HP-71 has continuous
memory. When you turn the computer off, it retains programs and data.

• A keyboard that can be easily customized for your specific applications.

Optional extensions for your HP-71 include application modules containing prerecorded, ready-to-run
programs, a magnetic card reader for low-cost storage and retrieval, and an HP-IL interface that en­
ables you to add printers, a digital cassette drive, a video interface, a modem, and other devices to your
portable computing system.

3

Contents

How to Use This Manual ... 6

Part I: Basic Operation

Section 1: Getting Started .. 10
• Overview· Keyboard Operation
• Memory Reset. BASIC Mode. and the BASIC Prompt· The Display Window
• Setting the Time and Date • Keyboard Calculations
• Entering and Running Prewritten Programs • Redefining the Keyboard
• Display Contrast and Viewing Angle' Status Annunciators
• Recalling Commands-The Command Stack' Producing Tones
• What's Ahead' Syntax Guidelines

Section 2: Calculating with the HP-71 36
• Overview' Using CALC Mode' Arithmetic Operators' Numeric Functions
• Number Formatting' Numeric Precision' Precision of Numeric Variables
• Math Exceptions' Range of Numbers' Relational Operators
• Logical Operators • Precedence of Operators

Section 3: Variables: Simple and Array 66
• Overview 0 Features of Variables and Arrays
o Numeric Variables: Simple and Array 0 Strings

Section 4: Statistical Functions 78
o Overview 0 Declaring Statistical Arrays 0 Using the Statistical Operations
o Fitting Sample Values to Other Curves

Section 5: Clock and Calendar .. 90
o Overview 0 The HP-71 Calendar 0 The HP-71 Clock

Section 6: File Operations ... 98
• Overview 0 The Current File • The 1 .. .1 0 r k f i 1 E-

o Introduction to File Operations 0 Structure of HP-71 Memory 0 File Names
o Device Names 0 Copying Files 0 Renaming Files' Purging Files
o Merging Files 0 File Security 0 File Catalogs

Contents 5

Section 7: Customizing the HP-71 120
• Overview. Redefining the Keyboard • Program/Keyboard Interactions
• Alternate Characters • Protected Display Fields
• Reading Characters From the Display. Display Graphics
• Restricting HP-71 Use. Automatic Command Execution
• Controlling the Display

Part II: Programming the HP-71

Section 8: Writing and Running Programs 142
• Overview • Entering a New Program • Running a Program
• Interrupting a Program • Editing a Program • Using BIN and LEX Files
• Transforming Files

Section 9: Error Conditions .. 162
• Overview • Types of Errors • Error Messages • Debugging Operations
• Program Control of Errors. Warnings • Math Exceptions In Programs

Section 10: Branching, Looping, and Conditional Execution 178
• Overview • Unconditional Branching • Multiple Branching • Timer Branching
• Looping • Conditional Execution

Section 11: Flags .. 190
• Overview. Introduction to Flags. Testing Flags. Setting and Clearing Flags
• User Flags • System Flags

Section 12: Subprograms and User-Defined Functions
• Overview. Subprograms • User-Defined Functions

202

Section 13: Printer and Display Formatting 224
• Overview • Simple Formatting • Advanced Formatting
• Controlling the Display and Printer

Section 14: Storing and Retrieving Data 240
• Overview • Keyboard Data Entry • Program Data
• Data Files. Storing and Retrieving Data Sequentially
• Storing and Retrieving Data Randomly • Storing and Retrieving Arrays
• Passing Channel Numbers to a Subprogram

Appendixes and Indexes

Appendix A: Owner's Information 266

Appendix B: Accessories Included With the HP-71 282

Appendix C: Using the HP 82400A Magnetic Card Reader 284

Subject Index .. 294

Keyword Index Inside Back Cover

How to Use This Manual

The HP-71 is an advanced computational tool with more functions, statements, and operators than
many larger computers. The extensive documentation will enable you to use the HP-71 as the solution
to your scientific and business applications.

Included with the HP-71 are the following documents:

• HP-71 Owner's Manual.

This manual describes how to use the HP-71. It is written for the user who has an introductory
level of programming experience. All users should read some portions of this manual, particularly
section 1, "Getting Started."

• HP -71 Reference Manual.

The reference manual contains complete descriptions of the syntax of every statement, operator,
and function in the HP-71. After you have learned how to use the HP-71, the reference manual
will become your main source of information about individual keywords.

• HP -71 Quick Reference Guide.

This portable reference guide slips into the computer's case. It contains memory-jogging informa­
tion to help you out when the owner's manual or reference manual are not handy.

The HP-71 owner's documentation assumes you have written BASIC programs using:

• Variables and arrays.

• Subroutines.

• Branches, loops, and conditional execution statements.

• D A T A statements.

• Printers.

• I t'l PUT statements.

• Comments in program lines.

If you have never programmed in BASIC, but intend to program the HP-71, you might need to first
gain some experience in elementary BASIC programming. If you don't intend to program the HP-71
yourself, then you don't need to learn how to program to be able to use the HP-71. The computer is
designed so that if you wish, you can simply perform calculations and run prewritten programs. The
owner's manual shows you how you can do this.

6

,
,;

>

How to Use This Manual 7/8

All users should read section 1, "Getting Started" to become familiar with the computer's operation.
Other sections are optional, depending on what you want to learn about the computer's operation. The
following table indicates what you will need to read in order to learn particular skills on the HP-71.

If you want to learn how to ...
I

Read sections ...

Run a prerecorded program. 1, 6, 8*
Perform keyboard calculations. 1, 2
Perform statistical analysis. 1, 2, 4
Use the internal clock and calendar. 1, 5
Customize the HP-71. 1, 7
Write and run programs. 1, 2, 3, 6, 8, 9, 10, 11
Use advanced programming structures. 12, 13, 14
Use the HP 82400A Magnetic Card Reader. Appendix C

* Section 8 describes how to write and run programs. If you are interested in simply run-
ning programs, you need read only the parts of section 8 that show how to run a
program.

In the back of the manual you'll find a subject index followed by a keyword index on the inside back
cover for your reference.

Section 1

Getting Started

Contents
Overview ... 11
Keyboard Operation .. 11

Keys That Execute Immediately ... 12
Typing Aids .. 12
Conventions for Representing Keystrokes 13
Power On and Off (I ON I. ITJI OFF I) 13
The I END LINE 1 Key .. 13

Memory Reset. BASIC Mode. and the BASIC Prompt 13
The Display Window ... 14

Moving the Display Window (G]. CEl. [ID[E]. [ID[E)) 15
Clearing the Display (I A TIN I) ... 16
Correcting Typing Errors (I A TIN I. ITJI BACK I) 16

Setting the Time and Date .. 17
Keyboard Calculations .. 18

BASIC Mode Calculation ... 19
CALC Mode Calculation

Entering and Running Prewritten Programs
19
21

Displaying Any Program Line (~. C!J. [IDOO. [IDOO) 21
Editing Any Line (ITJI BACK I. ITJI-CHAR I. ITJ[JZ[]. ITJI-LiNE I) 21
Naming a Program File (E D I T) ... 21
Entering. Editing. and Running the 0 I,} E F.: FLO ~'J Program 22
Controlling Program Display Speed (DELA ') 26
Saving the 0 \} E R F L mJ Program (E D IT. t·j A t'1 E) 27
Running Any Program in Memory .. 27

Redefining the Keyboard (ITJI USER I. [ID11 USER I) 28
Display Contrast and Viewing Angle (C 0 tH R A S T) 29
Status Annunciators ... 30
Recalling Commands-The Command Stack ([IDI CMOS i) 31
Producing Tones (BEEP) ... 32
What's Ahead ... 33
Syntax Guidelines ... 34

10

Section 1: Getting Started 11

Overview
This section introduces:

• The keyboard.

• The display.

• Clearing memory.

• The HP-71 clock.

• Keyboard calculations.

• Entering and running a program.

• Editing a program.

• Creating user-defined keys.

• Using previously entered commands.

• Using direct-action keys.

• The beeper.

• The rest of this manual.

Keyboard Operation

Most keys on your HP-71 perform one primary and two alternate, shifted operations. The primary
operation of any key is indicated by the white or black character(s) on the top face of the key. The
alternate operations are indicated by the gold characters printed above the keys and the blue char­
acters on the lower faces of the keys.

• Th select the character or operation printed on the top face of a key, press
only that key. For example: G].

• To select the alternate character or operation printed in gold or blue,
press the like-colored prefix key ([D or [ill) and the operation key. For
example: [DI CALC I, [ill[8. You can release the prefix key before pressing
the operation key, or you can keep the prefix key pressed as you press the
operation key.

• To select uppercase letters, press the letter key. (If letter keys produce lowercase letters, first press
[DC@], then press the letter key).

• Th select lowercase letters, press [ill followed by the letter key.

12 Section 1: Getting Started

Keys That Execute Immediately

Most HP-71 keys only display characters when pressed. However, most bottom-row keys are immedi­
ate-execute keys-they perform an operation when pressed. For instance, pressing m followed by ~
executes the I BACK I operation, which erases a character in the display. This operation allows you to
easily correct typing errors. All shifted and unshifted keys are listed in this manual's index.

Typing Aids

All m -shifted keys in the top three rows are typing aids. A typing aid is a key that produces in the
display an often-used group of characters. These characters can be displayed by pressing only the typ­
ing aid key instead of all the individual character keys. For instance, to display GO::; U B with a trailing
space, you can either press ill followed by []], or press the @] @] []] []] 00 I SPC I keys. The gold
printing above each key indicates the characters each typing aid displays. The diagram below shows
how these aids are grouped logically to make them easier to use.

Immediate ---..
execution

TYPING AIDS

F 0 F.: ••• t·~ E ::.:: T loops

IF ... THEt-L.ELSE

! 1
I F THEN ELSE FOR TO

00000

User defined
keys

~
Statistics

NEXT OEF KEY ADD LR PREDV MEAN SDEV SCIR

00000000

EDIT CAT NAME PURGE FETCH LIST DELETE AUTO COPY RES ASIN ACDS ATAN LOG

~ 010 ~ ~~ ~ ~ -~ 0 ::j:? ~ ::
000000000 0000

File manipulation Program line
manipulation

Other typing aids

GROUPING OF ill SHIFTED KEYS

Calculations

Section 1: Getting Started 13

Conventions for Representing Keystrokes

Except for a few cases where keys we ask you to press are indicated in narrative style, this manual
represents keystrokes in four ways:

1. Unshifted or shifted keystrokes that display characters are indicated by those characters. For
example, * means "Press the [!] key" and $ means "Press the rn and m keys."

2. Unshifted keystrokes that do not display characters are represented by keys printed with the keys'
top-face symbols. For example, BJ means "Press the left-arrow key."

3. Keystrokes shifted with ITJ that do not display characters are indicated by ITJ followed by the keys'
gold symbols. For example, ITJI BACK I means "Press the ITJ key, then the BJ key."

4. Keys shifted with rn that do not display characters are indicated by rn followed by the keys blue
symbols. For example, rnCEI means "Press the rn key, then the [E] key."

Power On and Off (ION I, []]I OFF I)
Pressing ION I turns your HP-71 on, while pressing ITJI OFF I turns it off. To preserve battery life, the
computer turns off automatically after 10 minutes of inactivity.

The I END LI NE I Key

The I END LI NE I key acts in a manner similar to that of the RETURN key found on many computers.
When you press I END LI NE I, one or more of the following happens:

• The statement or calculation you've just typed is executed.

• The characters you've just typed are stored in memory. For example, when you enter a program
into memory, you press I END LI NE I after you type each program line into the display.

• The HP-71 may detect an error. In that case, the computer beeps and displays an error or warning
message.

Memory Reset, BASIC Mode, and the BASIC Prompt
The HP-71 has continuous memory, which means memory contents are not lost when the HP-71 is
turned off. You can clear and reset memory, however, and it's important to do so now to ensure that
examples throughout this section produce the results as shown. There are three kinds of resetting avail­
able to you, Hil T: 1, Hil T: 2, and Itn T: 3. The last one (I tn T: 3) is the one you'll use
now, since it clears main user memory, also called main RAM (random access memory). (Descriptions
of the other two resetting operations appear in the "Owner's Information" appendix, page 273.) The
following example shows you how to clear memory.

14 Section 1: Getting Started

Note: The format of the procedure below will be used often throughout this manual to detail a
series of keystrokes and resulting displays. The keystrokes follow the conventions described on
page 13. The displays that are the result of your commands and entries are shown as dis pl.;:. '::I
characters inside a "display box."

Input/Result

IONI0

HnT: 1

[]] I END LINE 1

t'1ernot-';:I Lost

>1

Press and release these two keys at the same time.

Your display shows the command for the first
type of reset. All the keys are now inactive ex­
cept for OJ, [I], []], and I END LI NE I.
Selects a type 3 reset, a memory reset.

The computer indicates memory is now clear.

Clears the display.

The :> symbol is the BASIC prompt, showing that you're in BASIC mode. You'll probably do most of
your work, such as entering and running programs, in BASIC mode. You can operate your HP-71 in one
other mode, CALC mode, which we'll introduce in a few pages. The flashing I symbol is the Replace
cursor, showing where the next typed character will replace either a blank or another character.

The Display Window
The 22-character display is a window through which you view the 96-character line. The following
keystrokes demonstrate the length of this line and show you the characters and spaces displayed by
some of the typing aids.

Input/Result

Press IT) , and while holding IT) down, press in or­
der [QJ, [}y], [[), and [[].

>IF THEN ELSE FOR I

Press and hold IT), then press the rest of the top
row keys, left to right, followed by the second row
keys (L to R) ending with Q]. That is, press and
hold IT), then press [JJ, [YJ, @], [0, @], [1], [IJ,
[n rn, [2], 0, 1]], @], [£], @], []], and Q] .

..
ETURN GOTO INPUT PRINI

Section 1: Getting Started 15

The BASIC prompt, >, occupies the first position
of the 96-character line.

Pressing []] produced a beep, indicating the 96-
character line is full. Therefore, pressing Q] did
not change the display. The left arrow at the far
left edge of the window indicates part of the line
is out of the display window to the left. The
cursor is now located at position 96.

Why is the 96th character position blank in the display shown above? What happened to the T of
P R I H T? When more than 96 characters are entered into one line, the 97th and succeeding characters
appear in the 96th character position-repeatedly overwriting that position as long as new characters
are entered. In this case, the last character is the final space of D I ::; P ,the typing aid produced by
[DQ].

Moving the Display Window (~, [B, @)[BJ, @)[EJ)

The BJ and [EJ keys allow you to scroll the display window back and forth along the line. Here is a
summary of their actions:

• BJ moves the cursor left one space at a time along the line without erasing characters. If held
down for longer than about one-half second, this key action repeats.

• [EJ moves the cursor to the right. Otherwise, [EJ and BJ act the same.

• []][E] moves the cursor immediately to the first character of the line.

• []][EJ moves the cursor immediately to one space beyond the last character of the line, or to char­
acter number 96 if the line contains 96 characters.

Input/Result

BJBJBJBJ Moves the cursor four positions to the left.

I
' . ETURH GOTO INPUT PRIN

16 Section 1: Getting Started

Note: When any character (other than a space) occupies the same location as the Replace cursor,
this manual will indicate it as shown above.

>IF THEf-i T

ETURN GOTO INPUT PRINI

Clearing the Display (I ATTN I)

Moves the cursor to the first character of the line.

The arrow at the far right edge of the display
indicates the line continues to the right.

Moves the cursor to the right end of the line.

When your HP-71 is on, the ION 1 key becomes the I ATTN 1 (attention) key. This key performs two
actions:

• When a program is not running, I ATTN 1 clears the display.

• When a program is running, I ATTN 1 halts (suspends) the program, and the SUSP annunciator turns
on.

Input/Result

I ATTN 1

>1

Clears the display.

When the display is clear, or when the cursor is not displayed, you can always type a statement, a
calculation, or program line, and then enter it into the HP-71 (by pressing I END LINE I). If the display
contains characters but no cursor, the first key pressed clears the display and performs that key's ac­
tion. (This is true except for @, [EJ, []]OO, and []]~, which produce no action in this situation.)
We'll demonstrate these actions as we progress through this section.

Correcting Typing Errors (I ATTN I, [IJI BACK I)
Two editing tools make it easy to recover from any errors you might make as you proceed:

• I ATTN 1 clears the display when no program is running.

• [Ill BACK 1 backspaces the cursor one space and erases the character in that space.

Section 1: Getting Started 17

Setting the Time and Date
The HP-71 contains an accurate quartz-crystal clock and a calendar covering several thousand years.
This clock runs whether the HP-71 is on or off, and begins running as soon as batteries are installed.
We'll show you how to set this clock to the correct date and time.

The example below assumes the date is May 20, 1984, and the time when the clock setting process
begins is 4:13 PM and 10 seconds. Read through this example to learn how to set your clock to the
correct time and date.

The HP-71 requires a year/month/day (YY/MM/DD) format for the date, and six digits must always
be entered, including leading zeros.

Example: Set the date for May 20, 1984.

Input/Result

::;ETD AT E"::: 4./(15 ./2 0"

> :::;ETDATE II 84./~~15./2~~1"1

I END LINE I

>1

DATE$ I END LINE I

84./05./20

Sets the date.

Enters the date.

Displays the date.

We'll describe a technique to set the clock with an accuracy of 1 second or better. Read the following
description, then set your clock.

Key in a time about 30 seconds ahead of the actual time and press I END LINE I when the actual time
catches up with the keyed-in time.

You don't need to clear the display before pressing the next group of keys. When the cursor is not
displayed, the next keystroke clears the screen and enters that key's character into the display.

18 Section 1: Getting Started

Input/Result

::; E TTl t'l E " 1 6 : 1 4 : ~) (1" I END LI NE 1

>1

This statement sets the time. The HP-71 clock
uses the 24-hour format, and six digits must al­
ways be entered, including leading zeros. The two
zeros following the second colon are the seconds.

Suppose the typing of this SETT I t1E command is finished at 16:13:30. Now look at a watch that
shows seconds, and get in the rhythm of counting in half seconds. At one-half second before 16:14:00,
press I END LINE I, and the HP-71 clock is set with an accuracy of a few tenths of a second. Page 92 in
Section 5 describes how to adjust the clock's setting, and page 94 describes how to adjust the clock's
speed.

The T I t'l E $ function returns the current time. Th display a changing clock, a simple program is re­
quired, such as the CLOCK program on page 131 in section 7.

Suppose you execute T I t'l E $ exactly one minute after executing SET T I t'l E:

Input/Result

T I t'lE$ I END LINE 1 Displays the time as a string, not a numeric value.

16: 15: ~)~~i This is the time you executed T I t'1 E $.

Keyboard Calculations

You can perform calculations on the HP-71 in two different modes:

• In BASIC mode, keyboard calculations are performed as they are on most BASIC language
computers. You first key in the entire expression, then press I END LI NE 1 to obtain the result.

• In CALC mode, you key in the entire expression as you do in BASIC mode, but whenever the
portion of the expression already keyed in can be evaluated, the HP-71 automatically displays the
intermediate result. You then press I END LINE 1 to obtain the final result.

The ability to monitor the progress of a calculation by viewing intermediate results provides important
advantages compared to viewing only the final result:

• You can see if the calculation is progressing as you expect, allowing you to catch errors that other­
wise might remain hidden.

• You can understand more easily and completely how an expression behaves, which is often more
useful than the final result.

Section 1: Getting Started 19

The expression we'll evaluate is:

7 + 4 - 9 x (15 - 7/3).

Th ensure that the results of calculations you display on your HP-71 look like those in this manual,
execute the following statement.

Input/Result

F I ::<2 I END LINE I

>1

BASIC Mode Calculation.

The HP-71 will now display results rounded to
two decimal places.

Example: Evaluate the expression in BASIC mode as follows.

Input/Result

7+4-9*(15-7 .. ·<3)

>7+4-9*(15-7/3)1 The expression is keyed in, ready for evaluation.

I END LINE I Evaluates the expression.

The result.

CALC Mode Calculation.

~xample: Evaluate the same expression in CALC mode.

First, set the HP-71 to CALC mode. If you make an error as you enter the expression, press ill I BACK I
enough times to erase the mistake, then complete the expression correctly.

Input/Resul t

[DICALCI

The annunciator tells you you're in CALC mode,
and the flashing Insert cursor (page 21) says that
characters will be inserted into the display from
the right edge.

20 Section 1: Getting Started

7+

7. (1(1 +. I
CALC

4-

11.(10-. I
CALC

9*(

11.~::W-9.0(q:(~ I
CALC

This display shows two CALC mode features:

As soon as you key in an operator in CALC
mode, the HP-71 accepts the most recently typed
operand and displays it in the same format as a
result.

When you key in -, the HP-71 not only enters
the 4, but evaluates and displays the intermediate
result.

• The HP -71 does not evaluate 1 1 . (H] - 9 . ~] 0, since to do so would violate operator precedence
(section 2, page 64).

• The Insert cursor shares its position with a right parenthesis, reminding you that the expression
requires a matching right parenthesis.

Input/Result

15-7 .. ···3)

11.00-9.00*(12.67'. I
CALC

I END LINE I

-103.~30 ~I

When you key in the closing parenthesis, the
flashing , reminder disappears. If an expression
includes several nested pairs of parentheses, the
closing parenthesis reminder remains until the fi­
nal pair is closed.

Evaluates and displays the final result.

Now set the HP-71 back to BASIC mode by pressing CDI CALC I. (The CDI CALC 1 keystroke is a toggle.
Pressing it switches back and forth between CALC mode and BASIC mode.)

Section 1: Getting Started 21

Entering and Running Prewritten Programs
The next few pages show you how to convert a program listing on paper into a program in memory, and
then how to execute that program. Since you might make an error as you enter program lines into the
HP-71, we'll first describe some error-correcting tools that allow you to display and edit program lines.

Displaying Any Program Line (~, [y], [IDOO, [IDOO)

When you're entering or running a program, these four keys allow any program line to be displayed for
viewing or editing. Any line brought to the display using these keys becomes the current line. Shortly,
actions of these keys will be demonstrated when you enter a program.

• [X] brings the line preceding the current line to the display, ready to edit. If held down for longer
than about one-half second, its action repeats.

• [YJ brings the line following the current line to the display, ready to edit. If held down for longer
than about one-half second, its action repeats.

• moo brings the lowest numbered line to the display, ready to edit.

• moo brings the highest numbered line to the display, ready to edit.

Editing Any Line ([Ill BACK I, [Ill -CHAR I, [Il0Z[], [Ill -LI NE I)
These four keys, when used in BASIC mode, allow you to change any displayed line:

• [DI BACK I backspaces the cursor one position and erases the character at that position. If held down
longer than about one-half second, its action repeats.

• [DI -CHAR I erases the character at the cursor and moves characters left one space to fill in the gap.
If held down longer than about one-half second, its action repeats.

• [D[J2[J switches between the Replace cursor (I) and the Insert cursor (..). A character typed when
the Replace cursor is showing replaces the character or space at the cursor. A character typed when
the Insert cursor is showing is inserted where the Insert cursor points; that is, between the char­
acter at the cursor and the character immediately to its left.

• [DI -LI NE I erases all characters starting from the character at the cursor through the right end of
the line (which might include more characters than those immediately visible in the display).

Naming a Program File (E D I T)

Note: To help you find typing aids more easily, the keystroke sequences on the next few pages will
show key symbols above the characters displayed by the typing aids. For instance, ED I T will be
shown as:

([DIIl)
EDIT.

22 Section 1: Getting Started

The HP-71 can hold many programs. Each program is stored in a location called a file, which you must
identify by a file name. A file name can be up to eight characters long. The first character must be a
letter, and the remaining characters may be letters or digits.

You'll soon enter a program into memory. First, create and name the file that will contain this program
using the ED I T statement.

Input/Result

(ITJ[IJ)
ED I T O',}E~:FLOL'J 1 END LINE 1

o I,} E F.: FLO ~,j The 0 I,} E F.: F L m,j file's catalog entry is dis­
played, and the file is now ready for the 0 I,} E ~: -
FLO ~,j program.

The right arrow in the display shows that the catalog entry continues to the right. This display in­
dicates the 0 I,} E~: FLO L~ file is an empty BASIC file. File catalogs are covered in section 6 starting on
page 117.

Entering, Editing, and Running the 0 I,} E f:;: FLO L,J Program

As you enter a program into memory, any errors you might make can be of two types:

1. Errors you catch before pressing 1 END LINE I, or errors the HP-71 recognizes as soon as you press
1 END LINE I.

2. Errors neither you nor the HP-71 recognizes until you run the program.

You might make both kinds of errors as you enter this and other programs. To help you recover from
such errors, we'll deliberately introduce one error of each type and show you how to correct each one.
(Errors and error recovery are covered in more detail in section 9).

Following this listing of the 0 I,} E R FLO ~J program, we'll show you how to enter each line (including the
two deliberate errors). Note that program lines that start with I are comments, which are ignored by
the computer when the program is run. However, the HP-71 does reproduce such comments in program
listings. The I:!! symbol joins (concatenates) statements on a single line.

10 ! OVERFLOW PROGRAM
20 REAL X,Y @ STD
30 FOR X=1 TO 20
40 Y=(X"2)"(X"2) @

DISP Y @ IF Y = MAXREAL THEN 60
50 NEXT X
60 "The largest finite positive number the

HP-71 can display is";Y

Note: If you later display (list) line 40, the first pair
of parentheses will be gone. (The HP-71 doesn't
keep such mathematically unneeded parentheses.
They're used here as an aid to understanding the
expression.)

Section 1: Getting Started 23

In the following keystroke sequence, type the spelling errors as shown. We'll correct them shortly.

InputjResult

10 ! OVERGROW ROGRAM

)10 ! OVERGROW ROGRAMI

Press GJ 11 times.

)10 ! OVERGROW ROGRAM

FL

)10 ! OVERFLOW ROGRAM

:> 1 (1 OVERFLOW .ROGRAM

p

OVERFLOW PROGRAM

I END LINE I

>1

20 F.:EAL ::-=:.' 'l I:!! STD I END LINE I

)1

We'll correct the line to read
0',) E R FLO ~,~ PRO G R A t'l.

The Insert cursor points to the position where the
next typed character will be inserted.

Enters line 10 into your program file. The
I END LINE I key acts with either the Insert or the
Replace cursor displayed at any position.

The HP-71 is ready for the next program line.

REA L :=-:: .. 'l (page 57) declares variables ::.:: and \'
to be full precision, and S T D (page 55) sets a
display format that shows numbers with full
precision.

24 Section 1: Getting Started

«(TI[]]) «(TIm)
3 ~~1 F 0 F.: ::-::= 1 TO 2 ~~1 I END LI NE I

>1

«(TI@]) «(TIOO)
@ IF Y=MAXREAL THEN 60

IF Y=MAXREAL THEN 601

I END LINE I

>1

«(TI[Y])
5 ~~1 t·j E ::-:: T ::.:: I END LI NE I

>1

6 [I "T (TIl LC I he 1 a t- 9 est fin i

The variable 'l at the end of the program line (fol­
lowing the I:!! symbol) is an implied D I ::; F' state­
ment. It means the same thing to the computer as
DIS F' '"I'. Implied D I ::; F' statements are ex­
plained further on page 67. (The HP-71 also al­
lows implied LET statements).

The first pair of parentheses will not appear when
you subsequently display this line. (Refer to the
note on page 22.)

Note the spaces given by the typing aids.
t'1 A ::-:: REA L is the HP -71 name for the largest
finite positive number it can represent.

The left arrow annunciator indicates the rest of
this line is to the left of the displayed portion.

(TIl LC I switches between the letter cases. It sets
upper- or lowercase letters as the standard for
unshifted letter keys. In either situation, a [9]­
shifted letter key produces the opposite letter
case.

Section 1: Getting Started 25

te positive number th Continues line 50.

I
' · te positive number thl

When typing the next part of line 60, use the @] shift key to type H P. (We'll explain how to correct the
17 error after we run the program.)

Input/Result

e HP-17 can display i

I

+-
· e HP-17 can display il

S ".: [Ill LC I 'l

I
' · -17 can displa':::1 is".:'"!"·1

I END LINE I

>1

Press I RUN I to execute this program.

ill I LC I switches back to uppercase.

Enters line 60 into your 0 I.} E F.: FLO ~.J file. The
complete program is now entered.

The PRGM annunciator on the right edge of the display appears, and a series of increasingly large
numbers is displayed, one after the other, including 1 . E 2 ~~1 O. The E means "exponent," so this num­
ber represents 1 X 10200• Just after you see 1. 91509351599E449, a warning message,
~.J F.: t·j L 4~] : 0 e t- flo 1 .. .1 is displayed. This means the next number in the series is larger than the
HP-71 can represent. Since this difficulty results in just a warning and not an error, the program
continues, and substitutes for the next number in the series the largest number the computer can
represent, 9. 99999999999E499.

As line 60 displays its message, you realize the model number of your computer is "71," not "17." Here's
how you enter the correction into the program after the program stops.

26 Section 1: Getting Started

Input/Result

(mOO)
FETCH 6~~1 I END LINE I

> 6~]ID I !:;P "The 1 at"g es t

I-. -17 can displ.:t'::I is".:\'1

Press [3J 20 times. Or hold down [3J until the
cursor is close to or at the 1. Then use [3J or [EJ
as needed to correctly position the cursor.

I-. -17 can displa'::I is".:'/

7 1 I END LINE I

>1

Brings line 60 to the display.

Fetching a program line positions the cursor im­
mediately after the line number to facilitate
editing. The right arrow annunciator shows the
line continues to the right.

Moves the cursor to the right end of the line.

The program is corrected.

Controlling Program Display Speed (D E L A 'r')

IDE L A 'r' line rate [.. character rate]

You have control over how many seconds a line is displayed before being replaced by the next line (line
rate), and also how fast a displayed line containing more than 22 characters scrolls from the right (the
optional character rate). You can choose a line rate and a character rate from 0 up to 8 seconds. A rate
equal to or over 8 seconds is considered infinite-no line replacement or scrolling occurs. These two
parameters are independent of each other.

Section 1: Getting Started 27

Saving the 0 I.} E F.: FLO ~.J Program (E D IT, t·~ A t'1 E)

Suppose sometime later you wanted to enter a new program, and forgot to create the new file using the
ED I T statement before keying in the program's lines. Where would those new lines go? They would go
into the same file the 0 I.} E F.: F L m·l program's lines went: into the file named CP.} E 1<: F L m·l. The lines of
your new program would overwrite the lines of the 0 I.} E 1<: FLO ~·l program, corrupting both programs.

One way to guard against such an accident is to create a new program file before keying in any lines, as
you did when you executed ED ITO I.} E 1<: FLO ~·l. A second way is to make available a scratch file named
1,.1 0 t- k f i 1 Eo, which will accept any new program lines you enter. To make the 1 .• .1 0 t- k f i 1 Eo available,
execute ED I T without specifying a file name.

Input/Result

EDITIENDLINEI

1 •• JorkfilEo

This is the first part of the catalog entry for your new file, showing that the file is an empty BASIC
file. File catalogs are covered in section 6 starting on page 117.

If a 1. • .1 0 r k f i 1 Eo exists (even if it's empty), ED I T I END LI NE I positions you at that existing 1 .• .1 0 r k f i 1 Eo,
not at a newly created 1 •• .1 0 t- k f i 1 Eo. The HP-71 can contain only one 1 •• .1 0 t- k f i 1 Eo.

You can create a new, empty 1 •• .1 0 t- k f i 1 Eo (using ED I T I END LI NE I) if you first name the existing
1.0.1 0 r k f i 1 Eo using t·j A t'1 E filename. See section 6, pages 100-102 for further information about
1.·JOt" k f i 1 Eo and t·jAt·1E.

1b summarize, when you key a program into your HP-71, it is good practice to:

1. Create a new file by executing ED I T file name.

2. Enter the program lines, test the program, and edit the program as necessary.

3. Select the 1 •• .1 0 t- k f i 1 Eo by executing E D IT.

Running Any Program in Memory

There are two ways to execute a program:

• Execute F.: U t·j file name. This works for any program .

• Press I RUN I (or execute F.: U t·n. This works only for a program located in the current file, explained
below.

-
28 Section 1: Getting Started

Running the Program in the Current File. At the moment, 1.,.1 0 r k f i 1 Eo is the current file. The
HP-71 always contains one and only one current file. When you enter a program from the keyboard, it
is automatically entered into the current file, and you can run it by pressing I RUN I or executing F.: U r·t
You can edit the program in the current file from the keyboard, as you edited CP,} E F.: F L I] ~'L

Running Other Programs. You can run any program by executing P U t·j file name. A program that is
not located in the current file must by executed in this way. When you execute such a program, it
becomes the current file, so you can edit it, and you can use the I RUN I key to repeat its execution.

Redefining the Keyboard (OJI USER I, [[)/1 USER I)
The HP-71 includes two complete and separate keyboards that share the same physical keys. The Nor­
mal keyboard, the one you've been using, performs the actions indicated by the symbols printed on and
above the keys. The User keyboard performs those same actions except where a key's operation has
been redefined--that is, user defined. There are two ways to switch between these two keyboards:

• ITJI USER I switches from one keyboard to the other. To switch back to the earlier keyboard, press
ITJ[Q§ill again .

• [[)11 USER I switches from one keyboard to the other for only one shifted or unshifted keystroke,
then the HP-71 automatically switches back to the earlier keyboard.

You can redefine the shifted and unshifted action of all but two keys. The two keys you cannot redefine
are the two shift keys themselves, ITJ and [[). Key actions can be redefined to display a typing aid of
your choice, or to execute any statement, or combination of statements, concatenated with I:!!, that are
executable from the keyboard. User defined keys can also be used to assist data entry in response to
program input requests. You can use the entire 96-character line length for your key definition. The
beginning of section 7 discusses user defined keys in more detail. We'll now lead you through creating
and using a simple key assignment.

Enter the following key definition:

Input/Result

(ITJ[[])(ITJO])
DE F K E \' "<".," T I t'1 E $" I END LI NE I

>1

Redefines [[)@ to display the current time when­
ever [[)@ is pressed from the User keyboard.

Section 1: Getting Started 29

We'll show two ways the user-defined key [[)@ can be used.

Input/Result

ITlI USER I

I"~ >.

I 1t-"-' c:-q ,7q USER -' , "-' -" , "-'-"

>1

Here's another way to use the same redefined key:

InputjResult

[]J11 USER I [[)@

17:01:03

Activates the User keyboard.

The USER annunciator tells you the User key­
board is active.

This display represents a time of 4:59:39 PM.

The USER annunciator is off, and once again the
Normal keyboard is active.

Simply press and hold down [[), then press in or­
der the @] and [] keys.

Notice that the USER annunciator is not on. The
[ID11 USER I keystroke activates the User key­
board only for the next shifted or unshifted key­
stroke. After that next keystroke, the Normal
keyboard is automatically active again.

Display Contrast and Viewing Angle (C: C) ~ .. "~ "r~? i:::i ::::;"r)

leo t"j T F.: A ~:; T contrast value

The CO tH F.: A S T statement allows choices for contrast value, from [1 to 1 5, which control display
intensity and optimum viewing angle. CO t"j T F.: A ~:; T [1 gives the least contrast and shallowest viewing
angle, and CO t"j T F.: A S T 1 5 gives the sharpest contrast and steepest viewing angle. CO t"j T F.: A S T 1 5
also makes all the annunciators easily visible. After memory reset, contrast value is set to 9 (the default
value). You can adjust contrast value to suit your personal preference.

30 Section 1: Getting Started

InputjResult

COtHF.:AST 15 I END LINE I

o «~) ~
~ PRGM
3 SUSP
4 CALC

If you look directly down on the keyboard, you'll
see the BASIC prompt and cursor displayed with
strong contrast. If you now tilt your HP-71 away
from you, you'll see all the dots used to make
characters plus all the annunciators.

Status Annunciators

Here are brief descriptions of the HP-71 annunciators.

Annunicator Meaning

.... The line extends to the left of the display .

g [[] has been pressed, but not the second key required to complete the key
sequence.

f IT] has been pressed, but not the second key required to complete the key
sequence.

AC Reserved for future use.

BAT Low battery.

USER The User keyboard is active.

RAD The angular setting is Radians.

0 Flag 0 is set.'

1 Flag 1 is set.

2 Flag 2 is set.

3 Flag 3 is set.

4 Flag 4 is set.

«-) Reserved for future use.

-+ The line extends to the right of the display.

PRGM A program is running.

SUSP A program is suspended.

CALC The HP-71 is in CALC mode.

• Flags are covered in section 11.

Section 1: Getting Started 31

Now return your display to normal contrast. Execute:

CCltHF.:AST 9

Recalling Commands-The Command Stack (Wi CMOS I)
A list of the five most recent commands is maintained in a separate part of memory called the Com­
mand Stack. "Commands" refer to operations that have been executed by pressing I END LINE I, such as
evaluated expressions and entered program lines, statements, and functions. Any command in the
Command Stack can be displayed and executed again (by pressing I END LINE I), or edited, then executed.
The Command Stack is especially useful when repeatedly executing a series of commands, all of which
are identical or contain only minor differences.

If any of the last five commands are identical, the Command Stack maintains only the one most re­
cently implemented.

Here's how you activate and deactivate the Command Stack:

• Activate the Command Stack by pressing [[II CMOS I .
• Deactivate the Command Stack by pressing [[II CMOS I again or pressing I ATTN I.

• Deactivate the Command Stack and execute the displayed command by pressing I END LINE I.

We'll show you how to display a few of the commands you've just entered.

Input/Result

Wi CMOS I

··· .. COt·~TPA~:;T 9

··,.COt·~TPAST 15

I END LINE I

Activates the Command Stack.

The display shows your most recently executed
command, together with the Replace cursor. The
..... symbol is the Command Stack prompt. All
cursor-moving and editing keys are active.

Use the ~ and [Y] keys to move through the
Command Stack. You display progressively older
commands by pressing ~ repeatedly, and more
recent commands by pressing [Y].

This is your older command.

You can execute (by pressing I END LINE I) any
expression or statement displayed by the Com­
mand Stack, or enter any program line displayed
by the Command Stack.

32 Section 1: Getting Started

.. 91
t~~W" ··· .. COt·jTPAST 15

RAD

.. 91
t~~?tT ··· .. COHTF.:A::;T 9

RAD

I END LINE I

>1

Prod ucing Tones (1:::: 1:::: 1:::: F')

o ('~) ..
~ PRGM
3 SUSP
• CALC

o (,~) ..
~ PRGM
3 SUSP
• CALC

o ('~) ..
~ PRGM
3 SUSP
• CALC

Pressing I END LINE I executes the displayed com­
mand (C 0 t·j T F.: A S T 1 5) and deactivates the
Command Stack. CO t·j T F.: A::; T 1 5 is now your
most recently executed command.

Reactivates the Command Stack and displays
your most recently executed command.

Displays the older command.

Executes the displayed command and deactivates
the Command Stack.

The BASIC prompt shows that you have deacti­
vated the Command Stack.

The BEE F' statement produces an audible signal whose frequency and duration you can control. You
can also turn off this signal, and choose between two levels of loudness. The main application of the
beeper is to provide audible warnings.

There are five forms of this statement:

BEEF'
BEE F' frequency in hertz
BEE F' frequency in hertz., duration in seconds
BEEP Ot·j

BEEF' OFF

Section 1: Getting Started 33

Here are facts about BEE P:

• When you execute BEE P without specifying frequency or duration, a 500 Hz signal sounds for .25
second.

• You can specify frequency up to a maximum of about 4900 Hz. Frequencies as low as 150 Hz
produce recognizable tones.

• You can specify duration as long as 1000 seconds.

• You can specify both frequency and duration as numeric expressions. The HP-71 evaluates these
expressions when BEE P is executed.

• BEE P 0 t·~ enables the beeper.

• BEE P 0 F F disables the beeper.

• After memory reset, BEE P 0 t·~ is active.

• You increase the intensity of the tone by executing ~=;FLAC-25 (set flag number -25). (Flags are
covered in section 11.)

• You decrease intensity to the memory reset level by executing CFLAC-25 (clear flag number
-25).

What's Ahead

You've sampled the HP-71 in this section. There's much more information ahead, but you don't have to
read it all. If you're primarily interested in using prewritten programs, you need read only sections 6
and 8 to become familiar with the HP-71 file structure and to learn details on running programs. Read
section 2 if keyboard calculations are important to you. If you plan to solve statistical problems with­
out using prewritten programs, read sections 2 and 4.

For programming help, look at sections 2, 3, 6, and 8 through 14. You might also wish to read section 5
(clock) and section 7 (User keyboard).

Check the appendixes and the reference manual to see what's there. For example, the reference manual
contains a glossary that defines many of the terms used in this manual.

34/35 Section 1: Getting Started

Syntax Guidelines
Syntax is the way that instructions must be typed so they can be understood by the computer. The
following conventions are used throughout this manual.

D I] T t'1 A T F.: I i< T \' P E Words in dot matrix (like DE F K E '0 can be entered in lowercase or upper­
case letters. The examples in this manual show statements, functions, and
operators entered in UP P E F.: C A::; E.

italics type Items in italics are the parameters you supply, such as the file name in the
t·j A t'1 E file name statement.

[]

stacked items

Character strings can be enclosed with single or double quotes and can be
entered in lowercase or uppercase letters. (The examples use double quotes.)
In general, file names can be quoted (single or double quotes) or unquoted.
When quoted, the left quote must match the right quote. (The examples use
unquoted file names.) The HP-71 converts file names to uppercase.

Square brackets enclose optional items; for instance, DEL A 'r' line rate
[; character rate].

When items are placed one above the other, one and only one must be
chosen.

An ellipsis indicates that the optional items within the brackets can be re­
peated; for instance, ADD [coordinate value 1 [.. coordinate value 2 [... [.. co­
ordinate value 15] ...]]].

The descriptions for keywords (statements, functions, operators) that appear in this manual allow you
to use them effectively. However, these descriptions often do not include all details. Syntax descriptions
that omit some detail are labelled "simplified syntax." For a complete and detailed definition of each
keyword, refer to the "Keyword Dictionary" in the reference manual.

Section 2

Calculating with the HP-71

Contents

Overview ... 37
Using CALC Mode ... 37

CALC Mode Features .. 38
Correcting Typing Errors ... 45
Unsupported Operations ... 46
Warning Messages in CALC Mode 46

Arithmetic Operators (+, -, t, , , Dn.', \) 47
Numeric Functions ... 47

Number-Alteration Functions (A B ::;, I P, F P, I tH, FLO 0 F.:, C ElL) 48
Decimal and Hexadecimal Conversions (DTH$, HTD) 48
General Functions (P I, :::; I) P, FA C T, t'l A>::, t'l I t·l, t·w D, P t'lD,

P ED, PES, S G t·n .. 49
Logarithmic Functions (L G T, LOG, E >:: P, E >:: P 0 t·l E t·l T, LOG Pi, E ::< P t'll) .. 50
Angular Settings (PAD I At·1S, DEGF.:EES) 50
Trigonometric Functions (S I t·l, COS, TAt·l, AS I H, ACOS, ATAt·l,

DEG, F.:AD, At·1GLE) ... 51
Random Numbers (pt·W, PAt·WOtH ZE) 52

Number Formatting .. 54
Exponential Notation (E) ... 54
Standard Display Format (S T D) ... 55
Fixed-Decimal Display Format (F I ::.q 55

Scientific Display Format (S C I) ... 55
Engineering Display Format (E t·l G) 56

Numeric Precision (OPT I Ot·l pout·W) 56
Precision of Numeric Variables (PEAL, SHOPT, I tHEGEF.:) 57
Math Exceptions (I I.) L, D I.} Z, 0 I.} F, U t·jF, I t·l >q 57

Recovering From Math Exceptions (D E FA U L T 0 t·l,
DEFAUL T OFF, DEFAUL T E>::TEt-W) 58

The IEEE Proposal for Handling Math Exceptions
(+ I n f, - I n f, I H F, t·l A t·l, t·l a t·l, T PAP, ?) 59

Categories of Numbers (C LA::; S) 60

36

Section 2: Calculating with the HP-71 37

Range of Numbers (t'l I t·iF:EAL, EP::;, t·lA>::F.:EAL) 61
Relational Operators (Combinations of <:, =, >. #, ?) 62
Logical Operators (At·m, OF:, E::·::OF.:. t·WT) 62
Precedence of Operators ... 64

Overview
This section covers:

• A new way to calculate with a computer: CALC mode.

• All math operators: arithmetic, relational, and logical.

• All math functions.

• Random numbers and how to use them.

• Three ways to format a displayed number.

• The precision of displayed and stored numbers.

• The math exceptions: invalid operation, division by zero, overflow, underflow, inexact result.

• The three responses to each math exception.

• The IEEE Proposal for handling math exceptions.

Using CALC Mode
You can evaluate a numeric expression with the HP-71 within two different frameworks. Each uses the
normal algebraic precedence of operators (page 64). (For instance, terms within parentheses are evalu­
ated first.)

• BASIC mode, which is the familiar framework shared by most BASIC computers. You key in the
entire expression before any evaluation occurs, then you press I END LI NE I to evaluate the expression
and display the result.

• CALC mode facilitates evaluation in many ways not available to BASIC mode, including the dis­
play of intermediate results while the expression is being keyed in.

CAUTION

Do not insert or remove a module while CALC mode is on. Doing so will cause a memory reset (loss
of memory). Refer to section 6 for more information about the use of plug-in modules.

38 Section 2: Calculating with the HP-71

CALC Mode Features

The following list of features, some illustrated with examples, shows how you can use CALC mode to
your advantage to evaluate numeric expressions.

Complete Numeric Function Set. All HP-71 numeric functions and operators can be used in CALC
mode, including the single-statement user-defined numeric functions in the current file.

Common Variable Set. CALC mode and BASIC mode share the same set of variables. A variable
assigned a value in BASIC mode retains that value in CALC mode, and vice versa.

User-Key Assignments. You can use User keyboard key assignments in CALC mode, except for ex­
ecute-only (colon) key definitions. (Key definitions are covered in section 7.)

Unbounded Complexity in Expressions. Any numeric expression that can be keyed in and evalu­
ated in BASIC mode can also be evaluated in CALC mode.

Twelve Digit Math. Intermediate results are carried with 12 decimal digits of precision.

Assignment Statements. Variables can be assigned values and used in expressions, as the following
example shows.

Note: For this and the other examples that illustrate some of these CALC mode features, you
should be in F I ::.:: 2 display format so your displays will look like those in this manual. You cannot
execute F I ::.:: 2 while CALC mode is on, so make sure you're in BASIC mode. (If the CALC
annunciator is displayed at the right edge of the display window, press CDI CALC 1 to set BASIC
mode.) You should see the BASIC prompt (>) at the left end of your display window. If your display
is not clear, press 1 A TIN I.

Input/Result

F I ::·::2 I END LINE 1

:> I Entered numbers and results will be displayed
rounded to two decimal places.

CDI CALC 1 Sets CALC mode.

r
I

Section 2: Calculating with the HP-71 39

A=3 .. ·'2 Starts the assignment statement example.

A = 3 . ~~H:L··· 2 .. I So far, no partial evaluation has occured.
~ ___________________________________ C_A_LC~

- 5 You evaluate a partial result as soon as you
press G.

A=1.50-5" I
CALC

I END LINE I Thrminates the expression and assigns its value
to A.

-3.50 I
~L~

A

A.. I CALC

-3.50l2" I
CALC

I END LINE I

-7.0[1

Use A in an expression to confirm that it now
represents - 3 . 5 ~j .

As soon as an operator (l) is keyed in, A is re­
placed by its value.

Displays the answer.

Automatic Parenthesis Matching. For every left parenthesis you enter, the HP-71 automatically
supplies a right parenthesis. So you need not key in closing parentheses at the end of a line. However, if
you do type closing parentheses, the HP -71 accepts the correct number, and no more than the correct
number.

40 Section 2: Calculating with the HP-71

Input/Result

~:;It·j<30

I END LINE I

~I

The typing aid above the [IJ key supplies ~:; I t·j
and the left parenthesis.

The flashing right parenthesis sharing the
cursor's position represents a number of right
parentheses equal to the number of open left
parentheses you've keyed into the expression so
far. In this case, that number is one.

You did not have to press either m or rn to
evaluate this expression.

Implied Result « ». A pair of empty parentheses keyed in as part of the current expression repre­
sents the value of the last evaluated expression. The current expression then uses this current value.
The empty parentheses pair can either represent a separate term in the expression or the argument of a
function.

Input/Result

A~:;It·j<

A~:;It·l() I
CALC

I END LI NE I Pressing I END LI NE I enters the closing parenthesis,
supplies the previous result represented by the
pair of empty parentheses, and evaluates
ASIt·j<~~1. 50).

30.00 I
CALC

A = I END LINE I This demonstrates another important use of im­
plied result.

~I The previous result, 3 ~~1 • 0 ~~1, is now assigned to
the variable A.

Comma Reminder for Argument Lists. For those functions and arrays requiring two or more ar­
guments, the display indicates the minimum number of commas required in the argument field.

Input/Result

t" I t·j .:: :::

I END LINE I

2,00

t" I t·j .:: ::: .'

~I

~I

Section 2: Calculating with the HP-71 41

Key in the first argument of a t" I t·j function.

The comma sharing the cursor's position in­
dicates at least one more argument is required.

Key in the comma and the second argument.
Since the character following the ::: could be a
comma, or a continuation of the first expression
(such as another numeral), you must supply the
comma from the keyboard.

The flashing parenthesis tells you no more ar­
guments are required.

Again, you did not need to key in the closing
parenthesis before terminating the expression.

Viewing Each Step Separately ([III SST 1 or I RUN I). When you key in an expression with CALC
mode active, there are times when several terms will appear to be evaluated simultaneously. In these
situations, you can view each intermediate result separately without violating the order in which oper­
ators should act (order of precedence).

Example: Suppose you wish to evaluate log(ll) + 33.2 - 4, and you also wish to see the intermediate
result given by 33.2• (Note the typing aid ITJI LOG 1 for L [I G':: and that []]~ displays).

Input/Result

L [I G .:: 11 :;. +3 3 , 2 Since you're interested in the value of 3'····3 , 2, do
not key in - 4 yet. If you did,

2,40+3,00A3,2t I
CALC

L [I G .:: 1 1 :;. +3 3 , 2 would be evaluated as soon
as you keyed in -, and you would not see the
result given by 3 3 , 2 alone.

I RUN 1 I RUN 1 and ITJI SST 1 perform the same action with
CALC mode active.

2 .40 +33. G 3. = I Single-atep displays the value of 3 A 3 .2.

42 Section 2: Calculating with the HP-71

-4 I END LINE I

I The final answer.
~ __________________________________ c_~_c~

32.03

Example: CALC mode will not allow you to violate the proper order of operator precedence when you
single step through an expression. To illustrate this, use the expression 2 + 3l4.

Input/Result

2 +3 I RUN I Displays the intermediate result.

5 . ~~H:H' I
CALC

w Now you try to key in l, but multiplication is not
performed. Instead you see:

5 . O~~H' I
CALC

You're told multiplication should have been per­
formed before addition.

The earlier display soon replaces the warning
message.

We'll soon show you how you can easily recover from this error by activating the Command Stack.

Recovering the Complete Expression (~). When you press ~, you activate the Command
Stack. (Pressing ~ activates the Command Stack only when CALC mode is set.) The resulting display
can be of two types:

• The display shows all terms of the last evaluated expression plus the I END LI NE I symbol, .,J, indicat­
ing an expression has just been evaluated.

• The display shows all terms of the expression being keyed in whose final result has not yet been
evaluated. This Command Stack display recovers the individual operands and operators you
originally keyed into the HP-71.

In either case, you can edit the displayed expression using the Command Stack's movable cursor.

Different actions are performed by I END LINE I (Command Stack active) depending on the presence or
absence of .,J in the display. Here are those actions:

• .,J not displayed: I END LI NE I deactivates the Command Stack and displays the partially evaluated
expression, including the effects of any Command Stack editing.

• .,J symbol displayed: I END LINE I evaluates the displayed expression (including the results of any
editing), deactivates the Command Stack, and displays the final result.

Input/Result

rn

Section 2: Calculating with the HP-71 43

Activates the Command Stack and recalls the
original form of your expression so you can cor­
rect your operator precedence error.

I
The cursor is ready for editing use.

~ __________________________________ CA_L~C
2+3

2,00+3,00*4. I
CALC

I END LINE I

14,[H] ~I

Completes the expression and deactivates the
Command Stack.

In this case, I END LINE I displays the same
unevaluated expression.

Displays the result.

Suppose you wish to evaluate the expression 6 - 37, and key in 6 +3·····7, then evaluate it before you
realize your error (+ instead of -). As this example demonstrates, you need not reenter the complete
expression. You can activate the Command Stack, edit your expression, and reevaluate it.

Input/Result

6+3·····7IENDLINEI

~I

Displays an incorrect result.

You now realize you should have keyed in -,
not +.

Activates the Command Stack.

The I END LI NE I symbol (<:-I) indicates that you
pressed I END LI NE I just before you activated the
Command Stack.

J

44 Section 2: Calculating with the HP-71

[E] - Corrects the expression.

I END LINE 1

-21:::1.~JO

~I

~I
Evaluates the correct expression.

When the Command Stack expression displays
<;l, pressing I END LI NE 1 reevaluates the expression.

Backward Execution ([Ill BACK I). Before an expression is completed by pressing I END LINE I, terms
that had already been combined to display a partial result can be restored to their original form using
[Ill BACK I.

Example: To demonstrate the use of backward execution, suppose you key in an expression (4-:3l3),
and before evaluating it, you realize you keyed in a wrong number (8 instead of 9). You then use back­
ward execution to erase elements of the expression back to and including the wrong number (8). After
keying in the correct number (9), you complete the expression and evaluate it.

4./:::l3

0.50:*:3... I
CALC

Enters the incorrect expression.

The HP-71 displays the partially evaluated
result.

Erases operands and operators back to and
including the incorrect operand (:::) you entered.

4 . ~~1 0 I You're now ready to complete the correct
L-_________________ C_AL_C-l expression.

9:n I END LINE 1 Completes and evaluates the correct expression.

1 .33

Section 2: Calculating with the HP-71 45

Correcting Typing Errors

If you try to complete a function after you misspell its name, the HP-71 will issue a warning. After
such a warning, erase all characters of the misspelled function name using backward execution, even if
the display suggests this in unnecessary. Then type the name in correctly and complete the expression.
This example shows why this is necessary.

Example: Suppose you wished to evaluate an expression which includes A t·j G L E .;: - 5 .' 4:;' (arc tangent
of 4 .. ···-5 in the proper quadrant), and you make a typing error as you key in At·jGLE.

Input/Result

5""4 +C I] ::;.;: At'1G L E You inadvertently press [0 instead of [ill.

625 , [H~l +C 0 ::; 0:: A t'1 G L E ::0 I You don't notice your error, so you continue.
CALC

WRN:Operator Expected
CALC

~I

WRN:Operator Expected
CALC

Generates a warning message.

We'll discuss the meaning of this message
shortly. This message is soon replaced by:

You're determined to spell it right this time, so
you key in:

and see:

replaced quickly once again by:

625 , ~~1 0 +C 0 S 0:: A ::0 I What's happening?
CALC

When you typed A t'1 G L E .;:, the HP-71 searched for a function with that spelling. When it couldn't find
one, it searched for a variable name instead, and found A. After a variable name, the HP-71 expects an
operator, which t'1 G LEis not. So all characters after the A were discarded. When you typed t·j C L E .;:,
the display looked fine, but the HP-71, still looking for an operator, rejected t·j C L. E just as it had
t'1GLE. To recover from this situation, use backward execution (OJI BACK I) to erase A, then key in the
correct characters:

46 Section 2: Calculating with the HP-71

Input/Result

CDI BACK I

625 ,00 +COS 0 "'" 1

A t·j G L E .:: - 5 .' 4::0 I END LI NE I Corrects your typing error and evaluates the
expression.

624,22 "",I
Unsupported Operations

Since CALC mode is a powerful, friendly, and intelligent environment for keyboard calculations, rather
than a replacement for BASIC mode, we want you to know what operations cannot be performed in
CALC mode. CALC mode does not support:

• Strings.

• The decimal and hexadecimal conversion functions D T H $ and H T D.

• Multi-lined, user-defined functions.

• Statements, except assignment statements.

• Program lines.

Warning Messages in CALC Mode

In the following CALC mode cases, check the contents of the Command Stack before proceeding.

• You are evaluating an expression in the Command Stack and get a warning message (any kind).

• You are performing backward execution (CDI BACK I) and get a warning message.

• You press a user-defined key on the User keyboard and get a warning in response.

Note that characters coming after those that generated the warning may not have been accepted.

r
I r

I ,
!

Section 2: Calculating with the HP-71 47

Arithmetic Operators (.+., , ::i::, ./, .. C) T i,}, ~:.;;)

The HP-71 adds :.: to the usual set of BASIC arithmetic operators. This table shows how these oper­
ators are used. To reproduce the results shown in this and the following tables, execute :::;T D I END LI NE I
in BASIC mode to set ::::T D display format (discussed on page 55.)

Arithmetic Operators

Operator Operation

+ Addition

.....

D I I,}

Numeric Functions

Subtraction

Multiplication

Division

Exponentiation

Integer Division (no remainder)

The operation x:·:y returns
x percent of y.

Example with Result

5 I 25 +4: 75

5.25-4 I ?~5
t:"

: "_I

219
l e-

'-'

9./2
4,5

2·····9

512

::3 DI',) 2
i.

5\lCH3
t:" ._'

Numeric functions are built-in routines that take numeric or string information and return single val­
ues. The information acted on by a function is called the argument of the function. An HP-71 function
can operate on zero or more arguments. An argument can itself be a variable, another function, or an
entire expression, so long as it reduces to a single value at the time it's evaluated.

'Ib execute any HP-71 function from the keyboard:

1. 'JYpe the function name.

2. Type the argument, if the function requires one, enclosed within parentheses. If the function re­
quires multiple arguments, separate them with commas.

3. Press I END LINE I to compute the result.

The following topics group the HP-71 numeric functions according to their use.

48 Section 2: Calculating with the HP-71

Number-Alteration Functions (A B S, I P, F P, I t·~ T, FLO 0 P, eEl L)

The table below shows the value returned by each function from a numeric expression x. For instance,
the example for A E: ::; (x) shows that 235 is returned when x reduces to - 2 3 5.

Number Alteration Functions

Function and
Meaning Example with Result

Argument

AE:::; (x) Absolute value of x. AE:::; (-235)
235

IF'(x) Integer part of x-that portion of x to the left of the decimal IF'(10 .. ···3)
point. 3

FF'(x) Fractional part of x-that portion of the number to the right of FF'(1[1 3)
the decimal pOint (including the decimal point and sign). 133333333333

I tH (x) The greatest integer less than or equal to x. ItH(-7.23)
-:::

FLOOF.: (x) Greatest integer less than or equal to x. (Same as ItH(x).) FLOOF.:(7.23)
7

CEIL(x) Smallest integer greater than or equal to x. CEIL(7.23)
:::

Notice the difference between the IF', FLOOF.: (or I tH), and CE I L functions. Given a positive ar­
gument, I F' and FLO 0 F.: return identical values; given a negative argument, I F' and C ElL return
identical values.

Decimal and Hexadecimal Conversions ([I T H $, H T D)

These two functions cannot be executed in CALC mode. To use the result of H T [I in CALC mode,
switch into BASIC mode ([DI CALC I), execute the function to get the result, switch back to CALC
mode, then type () to automatically display the same result. This result can then be used in further
calculations.

Decimal and Hexadecimal Conversions

Function and
Meaning Example with Result

Argument

[lTH$ Converts a positive decimal number no larger than 165 - 1 [lTH$(16' . 5 _ .. :I.)

(=1048575) to a string that represents its five digit FFFFF
hexadecimal value.

HT[I Converts a one to five digit hexadecimal value to a decimal HTIJ 0::" FiC4F"::'
number. The hexadecimal value must be entered as a string. 4·:+111

~ ,
r ,

Section 2: Calculating with the HP-71 49

General Functions (PI, ::; C! F.:, FACT, t'1A::O::, t'1It·~, t'10D, Pt'1D, PED, PES,
SGt·~)

I These general functions are described in the following table, together with examples showing results

[

I produced when these functions are executed.

I
r Function and

Argument

PI

FACT(x)

~lA::<O::x.,y)

t'lIt·jO::x .. y)

t'10D 0:: x .' y)

F.:t'lDO::x .. y)

PEDO::x .. y)

F.:E:::

:::Gt·j O::x)

General Functions

Meaning

Twelve-digit approximation of 1r.

Positive square root of x.

Factorial of the positive integer x.

Maximum of two values.

Minimum of two values.

x reduced modulo y. that is x-yl I tn o::x .. ···y).

Remainder of x ·y. that is x-yl I P O::x .. ···y).

Example(s) with Result(s)

PI
3,14159265359

:::OPO:: 16,1(1)
4, [1 124:::~:::152955

FACT0::253)
5,17346[199264E499

t'lAi:: 0:: 4 ,5 .. 4,67>
4,67

MINO::-3 .. -2,999999)
-3

t'lODO::-ll.,3)
1

t'10DO::ll .. 3)
2

F.:t'1D(-11.,3)
-2

F.:t'1DO:: 11., 3)
2

Reduction of x by y, that is x-yln. where n is the PED 0:: -11.,3)
nearest integer to x 'Yo 1

Value of most recently executed expression.

PEDO::ll.,3)
-1

5+2
7

F.:ES-2
I:::'

'-'
Sign of x. Returns 1 if the argument is positive. 0 if it is SGt·j 0:: -5)
O. and -1 if it is negative. - 1

50 Section 2: Calculating with the HP-71

Logarithmic Functions (L G T, LOG, E ;:.:: F', E ::< F' 0 t·4 E t·4 T, LOG F' 1, E ;:.:: P t'll)

These logarithmic functions are described in the following table, together with examples showing re­
sults produced when these functions are executed.

Function and
Argument

LGT (x)

or LOG 1 ~~1 (x)

LOG (x)

or Lt·i (x)

E>::P (x)

E::·::POt·iEt·iT (x)

LOGP 1 (x)

E::<Pt'11 (x)

Logarithmic Functions

Meaning

log10 x. The common logarithm of a positive x
(base 10).

In x. The natural logarithm of a positive x (base e).

eX. The natural antilogarithm.

The exponent of normalized x.

Example with Result

LGT (10[1[1)
3

LOG(26)

E>::P(l)
2.71 :::2::: 1 :::2:::46

EXPONENT(1234567:::9)
:::

In(1 + x) (L 0 G (1 +x»). LOG P 1 (1 , 2345 E - Hn
Useful for accurate evaluation of LOG (x) for xl, 2 3449999992 E - 1 0
very close to 1.

eX -1 (E::-:: P (x) - 1). Useful for accurate evalu- E ::< P t'11 (, 0 0 ~~1 1)
ation of E ::< P (x) for x very close to O. 1 , ~~H~1 [H] 5 0 ~~H~11 67 E - 4

Hyperbolic functions, inverse hyperbolic functions, and certain financial calculations involve the
expressions In(l + x) and (eX) - 1 for arguments near zero. 'Th allow greater accuracy in such calcula­
tions, LOG P 1 and E ::.:: P t'11 evaluate these expressions directly.

Angular Settings (~: A D I A t·4 ::;, DE G F.: E E ::;)

After memory reset, the HP-71 assumes angles are measured in degrees. If you wish radians to be the
unit of measure for expressing angles, execute in BASIC mode F.: A D I A t·i ~:; (or
OPT I m·i At·iGLE F.:AD I At·iS). If you wish degrees to be the unit of measure, execute DEGF.:EE~:; (or
OPT IOt·i At·iGLE DEGF.:EES). Note that these statements do not convert arguments from one unit of
measure to the other. Such a conversion is done by the functions DE G and F.: AD, described below.

Section 2: Calculating with the HP-71 51

Trigonometric Functions (::; I H, COS, TAt·~, A::; I t·~, ACOS, ATAt·~, DEG, PAD,
At·~GLE)

The HP-71 provides 9 predefined trigonometric functions. It's important to keep in mind the range of
values that the inverse functions (arc sine, arc cosine, and arc tangent) return, which lie in Quadrants I
through IV. Assuming radians is the angular setting, the HP-71 represents angles as follows:

y-axis
rr

2

Quadrant II Quadrant I

rr
0<0< ; "2<O<rr

0

rr Ox-axis

Quadrant III Quadrant IV

-rr<O<-!!....
2

-!!....<O<O
2

2

52 Section 2: Calculating with the HP-71

Function and
Argument

::; I t·j (x::'

co::; (x)

TAt·j (x)

AS I t·j (x::'
or AS~j (x)

ACOS(x)
or ACS (x)

ATAt·j (x)

or ATt·j (x)

DEG(x)

PAD (x)

At·jGLE(x.,y)

Trigonometric Functions

Meaning

Sine of x.

Cosine of x.

Tangent of x.

Arc sine of x, where -1 ..:; x ..:; 1. In Quadrant I or IV.

Example with Result
(Radians Setting)

SIt·j(PI./2)
1

CO::;(O)
1

TAt·j (P I .. ···4)
1

ASIt·j(l)
1 ,57[179632679

Arc cosine of x, where -1 ..:; x ..:; 1. In Quadrant I or II. A COS (1)
~~1

Arc tangent of x. In Quadrant I or IV. AT A t·j (1)

Radians to degrees conversion.

Degrees to radians conversion.

.7:::539::: 163397

DEG(PI)
1 ::: [1

PAD(45)
17:::539::: 163397

Arc tangent of y lx, in "proper" quadrant; that is, the angle A t·j G L E (SOP (3 ::. .. 1)
between (x,y) and the positive x-axis. ,52359:::77559:::

There is an important difference between the A t·j G L E and A T A t·j functions. A t·j G L E takes two ar­
guments to find the arc tangent of their quotient in the proper quadrant. A T A t·j returns the principal
value of the arc tangent-that is, the value in Quadrant I or IV -of a single argument. For example,
At·jGLE(-3., -2) returns -146, 3~~19932474 degrees (in Quadrant III), whereas ATAt·j(-2./-3)
returns 33,690067526 degrees (in Quadrant I).

Random Numbers (F.: t·~ [I, P A t·~ [I 0 t'1 I Z E)

The F.: t·j D function (which takes no argument) generates the next number R in a sequence of pseudo­
random numbers such that 0 ..:; R < 1. Each time P t·j D is evaluated, it returns a new random number.
The starting number of a random number sequence determines the sequence of values that P t·j D will
return.

P A t·j D 0 I'j I Z E [numeric expression]

Section 2: Calculating with the HP-71 53

'lb set the starting number for the random number generator, either:

• Execute F.: A t·W0 t'l I ZE alone, which causes the HP-71 to generate the starting number, based on
the current HP-71 clock reading,

• Specify any constant or expression within the range of the HP -71 in a F.: AND 0 t'l I Z E statement,
which causes the HP-71 to start the sequence based on the value of that expression. (Specifying a
numeric expression of zero causes a constant sequence of zeros).

For instance, executing F.:At·WOt'l I ZE 423, then executing F.:t·W, returns, 6293::::5[15::::7::::2. After a
memory reset, if you repeatedly execute F.: t·w before executing F.: A t·W 0 t'l I Z E, the HP-71 will generate a
specific sequence of numbers, starting with, 52919935::::633. So if you want a different series of
numbers, execute F.: A t·j D 0 t'l I Z E before F.: t·j D.

Use the following formula to generate random integers, iI' i2, ... , ij , ... , such that S ~ ij ~ L, where S
and L represent any two real numbers.

lj= IP«L+1-:::;)lF.:t·W+S)

Example: To illustrate the rule given above, enter a F.:t·j[J expression that will return a random num­
ber in the range 1 to 100 inclusive.

Input/Result

I P (1[1[1 * F.: t·j D + 1) I END LINE I

This is the first number returned after a memory
reset, and before F.: A t·j D 0 t'l I Z E has been ex­
ecuted. (After a memory reset, the HP-71 is in
BASIC mode).

Good statistical properties can be expected from the random number generator if a statistically signifi­
cant sample size is considered.*

• The Hp· 71 random number generator passes the Spectral Test. Donald E. Knuth, The Art of Computer Programming (Massachu­
setts, I969),voI.2,section 3.4.

54 Section 2: Calculating with the HP-71

Number Formatting
Numbers are always stored in the HP-71 to 12 digits, but you can display numbers in anyone of four
formats: ::nD, F I ::'::d, :::;C Id, and H1Gd. The parameter d specifies the number of fractional digits
(F I ::'::d) or one less than the number of significant digits (SC Id, Et·1Gd). The results of 1 ~::H]""'2 dis­
played in each format are:

STD: 50
FI::·:: 2: 5[1.0[1
SCI 2: 5. [10El
H1G 2: 5[1. OEO

Each of these number formats is described in more detail below, following the discussion of exponential
notation.

Exponential Notation (E)

Exponential, or scientific, notation is a short-hand system to express numbers too large or too small to
fit the display normally-that is, numbers that can't be expressed adequately with 12 digits. The
number

-.00000000000123456789012

expressed in exponential notation is:

Single digit
to the left

From Oto 11 Two or three
digits to the digits for the

of decimal point. right of decimal exponent

~ :oint. A , /

·····.L : ;:::: .. :: ,:+ ::) f:::: ,.. t ::::i i;::j :I. ;? 1::::i. ;;;::

Negative si9y I
(If number is
less than 0). Decimal

point.

/ ~
The symbol E:.
indicating a
power of 10.

Negative sign
(if number is
a fraction).

Exponential representations have two parts: the base part, which consists of significant digits, and the
exponent, which consists of an integer power of ten.

You can enter numbers in any form. However, the HP-71 will display a number in exponential notation
only when it's required by the number format in use, as the following examples show.

Example: Execute F I ;:.:: 2 in BASIC mode.

Input/Result

1 E 1 2 - 1 ~J [1 [1 I END LI NE I

999999999~::H:HJ .

1 E 1 2 + 1 ~:::nJ [1 I END LI NE I

l.[1I~JE12

Standard Display Format (S T [I)

I ::nD

Section 2: Calculating with the HP-71 55

In F I >:: 2 format, this number is displayed with­
out exponential notation, since it's less than 1012•

Numbers whose magnitude exceeds 1 x 1012 - 1
are always displayed in exponential notation.

In standard display format, numbers are displayed with the smallest number of digits consistent with presenting maximum accuracy. The result of 1 2 is displayed as . 5, while 1 .. .<3 is displayed as .333333333333. Numbers too large or too small to be viewed with maximum accuracy without exponents are displayed in exponential notation.

Fixed-Decimal Display Format (F I ::.::)

I F I ::.:: # digits

In fixed-decimal display format, numbers are displayed rounded to the specified number of digits (# digits) past the decimal point. The range of values for # digits is 1::1 through 11. Numbers too large or too small to be viewed in the current fixed format are displayed in scientific format. In F I ;:.:: 2 display format, the result of 1./ 3 is displayed as [1 . 33.

Scientific Display Format (::; C I)

, I :::(: I # digits

In scientific display format, numbers are displayed with an exponent. The base part shows the speci­fied number of digits (# digits) past the decimal point, while the exponent shows as few digits as the number permits. The range of values for # digits is [1 through 1 1. In ::: C I 2 display format, the result of 1./3 is displayed as 3. 33E-l.

56 Section 2: Calculating with the HP-71

Engineering Display For mat (E t·~ G)

I E t·l G # digits

In engineering display format, numbers are displayed as they are in scientific format, except exponents
are shown in multiples of three, and the specified number of digits (# digits) refers to the number of
digits to the right of the leading digit. The range of values for # digits is [1 through 1 1. In E t·l G 2
display format, the result of 1 .. ·<3 is displayed as 333, E-3.

The HP-71 performs calculations internally using 15 significant digits. The results of these calcula­
tions are then rounded to 12 digits for storing and display. This rounding can be done in any of four
round-off settings given by OPT IOt·l F.:OUt·W:

• 0 P T I 0 t·l F.: 0 U t·W t·l E A F.: rounds to the 12-digit value nearest to the 15-digit internal result of the
calculation, and in case of a tie, it rounds to the value with the even last digit.
OPT I 0 t·l F.: 0 U t·W t·l E A F.: is in effect after a memory reset. Entered F.: E A L numbers (page 57) over
12 digits long always round according to OPT Iot·l F.:OUt·W t·lEAF.:, regardless of the round-off
setting in effect. For example, when the 13 digit number 1.234567890125 is entered, the display
shows 1 , 234567 ::: 9 ~~11 2. The number is not rounded up to show 3 as a final digit; rather,
OPT IOt·l F.:OUt·W t·1EAF.: causes rounding to the value with the even last digit (2).

• 0 P T I 0 t·l F.: 0 U t·l D Z E F.: 0 rounds towards zero.

• OPT I Ot·l F.:OUt·1D PO::: rounds up.

• OPT I Ot·l F.:OUt·1D t·1EG rounds down.

Calculation results stored in variables whose types are ::; H 0 F.: T and F.: E A L are rounded according to the
current round-off setting. Results stored in I t·l T E G E F.: type variables are rounded to the nearest digit,
with ties always rounding up in absolute value. F.: E A L, ::: H 0 F.: T, and I t'l T E G E F.: precision variables are
introduced on the next page and also discussed under "Declaring Arrays" in section 3.

If the current display format causes less than 12 digits to be displayed, the displayed result of a cal­
culation is always rounded to the nearest displayable value, with ties always rounding up in absolute
value.

Section 2: Calculating with the HP-71 57

Precision of Numeric Variables (F: E:: r::! L.., ::::; i···i C) i< "T', T i···i 'r i:::: C; C: i<)

Besides declaring the name and value of a numeric variable (section 3), you can declare its precision­
that is, the number of digits used by the HP-71 to store its value. In arrays, the fewer digits used, the
less memory is used to store variable values. Three types of precision are offered: PEA l, S H [I F.: T, and
ItHEGEP.

• PEAL variable values are stored with the full precision of the HP-71. They cover the range of
values from -t'1Ai<PEAl through t'1A:>::PEAl. Numbers with PEAL precision are represented in­
ternally by 12 digits and a three-digit exponent.

• ::;H[lPT variable values cover a slightly narrower range, -9.9999 x 10499 through 9.9999 x 10499•

Accordingly, S H [I P T numbers are represented internally by five digits and a three-digit exponent.

• I tHEGEF.: variable values lie between -99999 and +99999. I tHEGEP numbers are stored with
five digits and no exponent.

Math Exceptions (T i) L.., l::) i) Z:, Ci i) F' , : :: : :
i . ..! r··i i'" ,

During a calculation, various operations can result in unusual results, depending on the values of the
terms involved. Such exceptions include the square root of a negative number, division by zero, results
too large or too small for the HP-71 to represent, and results that cannot be represented exactly in a
12-digit, floating-point format. Associated with each math exception is a flag that is set by the HP-71
whenever an exception is encountered. These flags remain set until you clear them. Each of these flags
can be accessed by its number or by its name. You can clear and set the math exception flags in the
same way as any flag, except that flag names can be used as well as flag numbers.

For more information on flags, refer to section 11. And for information on when math exception flags
are set, refer to "IEEE Proposal For Handling Math Exceptions" in the reference manual.

The following table summarizes these five math exceptions, and subsequent topics in this section dis­
cuss how you can control the HP-71 responses to such exceptions.

Math Exceptions

Flag
Exception Examples

Name Number

Invalid operation II,}l -:=: ACOS(2), l[lG(-23),
(-14)·····(-1 .. ···3)

Division by zero [I I,} Z -7 1 :::7./0, TAt·~ (9(1)

Overflow [lI,}F -6 FACT (254), 10:t:1E499

Underflow Ut'~F -5 E::·::P (-1 149) , 1 .. ···3E499

Inexact result I t·~ ;:.:: -4 1 .. ···3, 1 +1 E-5[1

58 Section 2: Calculating with the HP-71

Recovering
DEFAULT

From Math
E::-::TEt'~D)

Exceptions (DEFAUL T

The HP-71 provides three ways to recover from math exceptions:

o t·~, DEFAULT OFF,

• 0 E F A U L TON is active after a memory reset. With 0 E FA U L TON active, the occurrence of a
division by zero, overflow, or underflow exception causes a warning message, and the calculation
continues using default values. The occurrence of an invalid exception halts the calculation.

• With 0 E F A U L T 0 F F active, when any math exception occurs, except inexact result, an error
results and the calculation stops. In this case, the 0 t·j E P F.: 0 F.: statement (page 172) can be used to
recover from math exceptions.

• With DEFAUL T E::-nEt~D active, the HP-71 supplies a special set of default values for math
exceptions, which is described beginning on the next page.

Regardless of the DE F A U L T setting, an inexact result is always rounded according to the round-off
setting in effect (page 56).

Assuming a DE G F.: E E ::; setting, the DE F A U L T 0 t·j warning conditions and default values are:

Warning Number
(ERRN) and
Exception

1, UNF

2, OVF

3, DVZ

4, DVZ

5, DVZ

6

8, DVZ

12, DVZ

Default Values Supplied in Response to Math Exceptions
(DEFAUL T Ot·j Active)

Warning Condition

Underflow; that is, a nonzero result between
-EPS and +EPS.

Overflow:

• For I NT E G E R variables.
• For S H 0 R T variables.
• For REA L variables.

EXPONENT (e)

TAN is infinite, caused by an argument equal to
an odd multiple of 900

•

Zero raised to a negative power.

Zero raised to a power of zero. *

Division by zero.

LN(e)

Default Value
(Degrees Setting)

13

±99999
±9,9999E499
±9,99999999999E499

-9,99999999999E499

±9,99999999999E499

±9,99999999999E499

1

±9,99999999999E499

-9,99999999999E499

* a A a and I N F A a do not set a math exception flag, but they do halt a calculation with an error if 0 E F A U L T 0 F F is
active.

Section 2: Calculating with the HP-71 59

The IEEE Proposal for Handling Math Exceptions (+ I n f, - I n f, I t·~ F, t·~ A H,
Nat·~, TPAP,?)

At the time the design of the HP-71 was completed, the IEEE Computer Society was in the process of
defining a standard for floating-point arithmetic. The two main aspects of the IEEE proposal that
pertain to decimal arithmetic are accuracy of arithmetic results and exception haridling. The HP-71
meets the specifications of the IEEE Radix Independent Floating-Point Proposal, as it existed when
this design was fixed.

Associated with each math exception flag is a trap that "traps" a particular exception and specifies a
particular action to be taken, as summarized in this table.

Actions Corresponding to Math Exception Trap Values

Trap Value Trap Action

~] Suspend execution with an error message.

1 For U t·j F, 0 I,} F, and D I,} Z, supply default
values shown in the table above. For I I,} L,
suspend execution with an error message.
For I t·j :>::, supply rounded result.

'71
"- Supply IEEE default values.

T RAP is a function that either returns the current trap value or sets a new trap value for a specified
math exception flag .

. exception flag # .
H: A P (. [.. new trap value p

exception name

Examples:

TRAP (D',}Z .. [1)

H:AP (D',}Z .. 1)

TRAP([I'.}Z .. 2)

Causes the HP-71 to suspend execution with an
error message in response to the division-by-zero
exception.

Causes the HP-71 to supply the default value
9,99999999999E499 in response to the
division-by-zero exception.

Causes the HP-71 to supply the IEEE default
value I n f or - I n f in response to the
division-by-zero exception.

I
!:

...

60 Section 2 Calculating with the HP-71

This table shows the trap values set by each of the three DE F A U L T choices for each of the five math
exceptions.

Math Exception Trap Values Set By DE F A U L T Choices

Default II.}L DI.}Z OI.}F Ut·jF I t·j >::

DEFAULT OFF ~:::1 [1 C1 C1 1
DEFAULT Ot·j 1 1 1 1 1
DEFAULT E::·::TEt·jD 1 2 2 2 .-. .:::.

The special responses to trap values of 2 include ± I n f (infinity) and t·j.:l t·j (not a number). In f is the
TF.:AP 2 value supplied for an overflow exception (OI.}F) or a division by zero exception (DI.}Z), and
t·j a t·j is the T F.: A P 2 value supplied for an invalid operation exception (I I.} L). I t·j F is a no-argument
function that returns I n f, which behaves like mathematical infinity in subsequent calculations. t·j A t·j
is a no-argument function that returns a signaling t·j a t·j, which can be used to initialize any
uninitialized data so that the I I.} L flag will be set whenever this data enters into a calculation. The
"IEEE Proposal For Handling Math Exceptions" section in the reference manual covers the I t·j F and
t·j A t·j functions and these T PAP 2 math exception responses, and also includes a further discussion of
how the HP-71 meets the provisions of the IEEE Proposal.

In addition, the reference manual discusses the relational operator '), which returns 1 (true) when one
or both of the expressions being compared are unordered; that is, one or both are t·j a t·j.

Categories of Numbers (C LA::; ::;)

The inclusion of T F.: A P 2 default values for math exceptions extends the normal range and type of
numbers. This extended range is divided into six classes. Class 3 includes normalized numbers from
E P S to t'l A::·:: PEA L inclusive. The other five classes cover zero, denormalized numbers (between zero
and EP:::;), infinity, and t·jat·j (quiet and signaling). The CLm:;:::; function returns a signed number
showing the class and sign of the argument. Program control is the main application for C LA:::; :::;. The
HP-71 Reference Manual discusses CLASS in more detail.

I

Section 2: Calculating with the HP-71 61

The following diagram shows the range of values that can be entered and stored (the shaded areas
indicate values that can't be represented on the HP-71.):

-t'1A::·::F.:EAL

-9.99999999999E499

-HJF I
+ +

I I

-t'1 I t-lREAL

-0.00000000001 E -499
t'1l t·jF.:EAL

0.00000000001 E - 499

10,
-EP::;

-1.E-499

t
1.E-499

I III I
Denormalized

Numbers

t'1A ::< F.: E A L

9.99999999999E499

!

All numeric operands are represented by a sign, a 12-digit base part, and an exponent ranging from
- 4 9 9 through 499 inclusive. Most numbers have a nonzero leading digit. These are called
normalized numbers. For example, the number -1234.56 is displayed in SCI 1 1 format as
-1 ,23456000(1(10 E3. The smallest normalized number is called EP:3 (1 , 0 ~3 ~3(1~30~3 0 0 0 0 E - 49 9).

The largest normalized number is called t'1 A::-:: F.: E A L (9 , 99999999999 E 4 9 9).

The HP-71 displays very small numbers, whose normal exponents are less than -499, as denormalized
numbers, with one or more leading zeros. For instance, with the trap value (page 59) for the underflow
flag (page 57) set to 2 (TF.:AP(UNF., 2», EPS 1(100 is displayed in S(:l11 format as
o , (10 1 (1 (1 [1 (1 0 0 [1 0 E - 4 99. The smallest positive denormalized number is called t'1 I t·j F.: E A L

(0, 1313~3000[H3[H31 E-499). Smaller values generally underflow to zero.

Entered numbers or results smaller than the smallest positive normalized number the HP-71 can re­
present (EP!:;) may produce an underflow condition. Numbers or results larger than the maximum
positive finite number the HP-71 can represent (t'1A;'::F.:EAL) produce an overflow condition. These
conditions either suspend a calculation with error messages or continue the calculation with various
default values (such as values between EP::; and t'1 I t·jF.:EAL as explained above). These errors and
default values are discussed on pages 57-60 beginning with the topic "Math Exceptions."

62 Section 2: Calculating with the HP-71

Relational Operators (Combinations of ' .. ,

Relational operators compare the values of two expressions and return a 1 if the comparison is true,
and a ~~1 if the comparison is false. That is, the relational operators operate on numeric and string
values to return Boolean values. (Strings are covered in section 3, "Variables: Simple and Array".) The
new? relational operator is described in the HP-71 Reference Manual in the section "IEEE Proposal
For Handling Math Exceptions."

Relational
Operator

>

>=

<

<=

<>

Examples of Relational Operators

Meaning

Greater than?

Greater than or equal to?

Less than?

Less than or equal to?

Less than or greater than?

Not equal to?

Unordered?

Example(s) with Result(s)

1> -1
1

3,14>=PI
o

3,14<PI
1

-EP::; <=0
1

.=.. ':",,:- .=.. 5 <> 2
o 1

t·~ a t·~ < > t·~ a t·j
o

3#3 5#2
o 1

t·ja t·j# t·j.:lt·j
1

45?-12 s':.'t·ja t·j
o 1

The equal sign (=) is used in both variable assignment statements and in relational expressions. When­
ever an entry can be interpreted either way, the HP-71 assumes the entry is a variable assignment.

The four logical operators operate on Boolean values to return Boolean values. The logical operators
interpret all nonzero numeric operands as 1, or true, and operands equal to zero as 0, or false. A t·m,
01':, and E:=-:: 0 F.: return a value of 1 if the relationship between operands is true and a value of ° if the
relationship is false. t·j 0 T, a unary operator, returns the opposite value (0 or 1) of a single operand.

Section 2: Calculating with the HP-71 63

Logical Operators

Logical
Operator

Evaluation Examples with Results

AHD Both expressions true (that is, nonzero)? 3 At·m 4
1

OF.: Either expression true?

91 At·m 4-4
(1

3 OR ~~1

1

~] OF.: 6-:::: +2
(1

E::·::OR One or the other expression true-but not both? This is the
equivalent of 0:: A At·jD t·jOT B", OF.: 0:: B At·jD t·jOT A::O.

3 E ::.:: 0 F.: ~]

1

HOT Is the expression false (that is, zero)?

5 E::-::OF.: 5
[1

t·WT 5#31
1

t·WT 23
(1

Relational and logical operators may be used to compare numeric constants (3 [I F.: (1), variables
. (A At-lD B), functions (SIt·jO::A::O At·m C[lS0:: A::O), and larger expressions.

Example: If A = 0 and B = 20, then:

! Input/Result

[HOT A At·m 0:: B <50-B::O I END LINE I

·1L...--_1
--------'

Enters an expression with logical, relational, and
arithmetic operators.

The expression evaluates "true."

64/65 Section 2: Calculating with the HP-71

Precedence of Operators
The list below shows HP-71 operators in their order of precedence, from highest to lowest.

The operations with higher precedence are performed first. Expressions are evaluated from left to right

for operators at the same level.

1. Expressions within parentheses. Nested parentheses are evaluated from the inside out.

2. Functions, such as ::; I t·j, LOG, and FA CT.

3

4. Unary -, logical t·WT. The minus sign in -A is the unary - operator, which changes the sign of A,

whether A is positive or negative.

5. :*:, , ;':, [I I I,..'.

6. +,-.
7. Relational operators: Combinations of <, =, >, #, and '~'.

8. Logical A t-W •

9. Logical 0 P, D:: 0 P.

Section 3

Variables: Simple and Array

Contents
Overview ... 66
Features of Variables and Arrays ... 67

Sharing Variables Between Keyboard and Programs 67
Reclaiming Memory (D E ::; T F.: 0 'y') .. 67

Numeric Variables: Simple and Array 68
Setting the Lower Bound of Arrays (0 P T I 0 H BAS E) 68
Declaring Arrays (D I t'1, PEAL, ::;HOF.:T, I tHEGEP) 69

Strings ... 71
Quoted Strings ... 72
String Variables: Simple and Array (D I t'1, OPT I Ot·~ BASE) 72
String Concatenation (8.:) ... 73
Substrings ... 73
String Functions (LEt·~, POS, ',)AL, STP$, HUt'1, CHF.:$, uppe!) 74
Relational Operators (<, =, > ,#, ?) 77

Overview
This section covers:

• Special features of the HP-71 BASIC language relating to quoted strings, string functions, and
variables, both numeric and string.

• Simple variables, numeric and string.

• Array variables, numeric and string.

• Manipulation of strings.

66

Section 3: Variables: Simple and Array 67

Features of Variables and Arrays
The HP-71 BASIC language includes some features that may not be familiar to those who havp worked
with other versions of BASIC. The more important of these are listed here, and page references are
given for those features discussed later in more detail.

• Array and string dimension limits can be expressions.

• I,}AL and STRt evaluate numeric expressions and return the result as a numeric value or a string
(page 76).

• Variables are shared between keyboard use and programs (see below).

• Default variable values (~~1 or " ") are automatically returned without warning when an unassigned
variable is used from the keyboard or in a program (page 68).

• Variables can be destroyed and the memory they use reclaimed (page 67).

• A simple and an array variable cannot share the same name (page 68).

• The I~ symbol concatenates statements in one line (page 146).

• Multiple assignment statements (such as A., B .' C = 1 0 ~3) are not allowed. However. one prOgrSim
line can assign values to several variables using concatenation (for cxampl<l,
A= 1 00 I~ B= 1 0[1 I~ c= 1 [H:J !~ D=35).

• LET can be omitted from assignment statements.

• D I SF' can be omitted from display statements except after THEH or EU;;E (page 226).

• Both I and " can be used in D I :::; F' and F' P I t·j T statements.

Sharing Variables Between Keyboard and Programs

• When you run a program, the variables used by that program may contain values assi~nerl to them
from the keyboard or from a previously run program.

• If you don't want your program's variables to have previously assigned values, you can cancel your
variables' assignments using DES T P 0 'r' or, for simple variables only, dimension your variables usint=
D I t'1, F: E A L, S H 0 F.: T, or I tH E G E P. You can use these keywords in your program or from the
keyboard. To ensure your array variables do not have previously assigned values, you must us€
DES T F: 0 'lor assign each element a new value.

Reclaiming Memory (D E :::; T P 0 \')

The [I E '::n R 0 \' statement allows you to recover the memory allocated to a variable, to f.1everal
variables, or to all variables.

[I E ::; T F.: 0 ' variable [.. variable ...]
DESTPO\' ALL

68 Section 3: Variables: Simple and Array

Examples:

DESTROY C4S,W,R2

DE:::;TRO\' ALL

The variables C 4 S, ~,~, and R 2 no longer exist, the
user memory previously devoted to them is re­
leased, and the variable names are available for
other uses.

All variables are destroyed, and all memory pre­
viously allocated to them can now be used for
other purposes.

Numeric Variables: Simple and Array

A variable or array can be named with a letter alone or a letter followed by a single numeral, 0 through
9. Some examples are: A, ~,n, F7. Simple numeric variables and arrays share the same name choices.
For instance, if a variable A is assigned a value, say 5, the letter A cannot be used as the name of an
array.

A nonexistent variable is. one that has neither been assigned a value nor declared to have I t·~ T E G E P,
::: HOP T, or REA L precision, either in a program or from the keyboard. If an attempt is made to recall
the value of a nonexistent numeric variable, a zero is returned without a warning or error message or
beep. However, the variable still does not exist.

If you attempt to recall an element of a nonexistent array, whose row and column numbers (subscripts)
are within the BASIC default dimensions (10), a zero is returned without a warning or error message or
beep.

If an array reference has a row or column number larger than that given by the array's dimensions,
either a Subsct- i p t error is given and the program halts (TF.:AP (I ',}L, 0::' or TRAP (I ',}L., 1 :;.

active), or a ::::ubsct- i p t warning is given, t·~.:;t·~ is returned and the program continues
(TPAP (I ',}L, 2:;' active).

Setting the Lower Bound of Arrays (0 P T I [I t·~ •.. ; H :._; j-.-- - _ .. -)
=- . .. - _.

All HP-71 array subscripts begin at 0 or 1, depending on whether OPT I Or·j BA:::':E [lor
OPT I 0 r'~ B A:::: E 1 is active at the time the array is created.

OPT I CJt·j BASE £1
OPT I ot·~ BASE

Section 3: Variables: Simple and Array 69

Once an 0 F' T I 0 t·j B A:::: E statement is executed from the keyboard or in a program, it stays active
until another 0 F' T I 0 t·j BAS E statement is executed or until a memory reset occurs. Memory reset
sets 0 P T I 0 t·j BAS E (1. The argument for the 0 F' T I 0 t-1 BAS E statement can be any numeric
expression that evaluates to either 0 or 1, but the most common forms for 0 F' T I 0 t·j B A:::: E are those
shown above.

Example: The following program segment illustrates the action of 0 F' T I 0 t·j B A:::: E

10 OPTION BASE 0

20 DIM A(5,5)

30 OPTION BASE 1

40 DIM B(5,5)

Any array declared after this statement is
executed will have 0 (or 0,0) as the lowest
numbered subscript.

Since array A has 6 rows and 6 columns, it has a
total of 36 elements.

Any array declared after this statement is
executed will have 1 (or 1,1) as the lowest
numbered subscript.

Since array B has 5 rows and 5 columns, it has a
total of 25 elements.

The execution of line 30 does not affect the lower bound of array A. It still has 36 elements.

Declaring Arrays (0 I t'1, PEAL, SHOPT, I t·~TEGEP)

An array declaration not only defines the highest numbered subscript(s) of the array, but it also defines
the precision of the array's elements. If the array did not previously exist, an array declaration also
initializes all elements to zero. D I t'l and F.: E A L both declare F.: E A L precision numeric variables. How­
ever, only D I t'l can declare string variables, as described on page 72.

70 Section 3: Variables: Simple and Array

Examples: These examples assume the arrays do not already exist.

I,·; TEe E F.: C::::':: 7.. 1 0)

Both arrays have real precision. Assuming
OPT I 0 t·j E: A::; E 1 is active, array A has five
elements, and array S has 225 elements. All
elements in each array are initialized to zero.

Assuming 0 P T I 0 t·j E: A::; E ~:;:1 is active, array C::::
has I t·j T E G E F.: precision and 88 elements, all
initialized to zero. The lowest numbered element
is (0,0).

Default Array Dimensions: (10) or (10,10). The HP-71 assigns dimensions (10) or (10,10) to a
nonexistent array when an assignment statement stores a value into a nonexistent element. If one
index of this element is beyond 10, an error occurs. All other elements are assigned the value zero. Each
element has real precision.

Examples: The array in each of the following examples has not been dimensioned.
::! P T I Ci t·) E: A S E [1 is set.

D<-;::':3):::,) Since neither of the indices .:: 7 .. ::::::. is greater
than 10, the array is dimensioned (10,10) and is
given 121 elements. Element 7 .. :::: is assigned the
real value I,}, and all other elements are assigned
the value zero.

Since the array element in this assignment state­
ment has an index greater than 10, no array is
created, and no value is stored.

Changing Array Dimensions Under Program Control. The HP-71 can redimension an array
during program execution. This allows you to design a program whose arrays automatically change size
IO accomodate changing amounts of data. Redimensioning is done with any of the same four statements
that declare initial dimensions: D I t'l, F.:EAL, ::;HOF.:T and I tHEGEF.:.

Note: Wnen redimensioning an array, declare the same precision that the array currently has.
Otnerwise, all array values will be lost.

Section 3: Variables: Simple and Array 71

If an array's dimensions are reduced, some elements will of course be lost. Otherwise, existing elements
remain intact, although they will probably appear to have been rearranged. Array element values are
stored row-by-row. That is, the first row, last column value is followed by the second row, first column
value. If an array's dimensions are expanded, all new elements are initialized to zero.

Example: Array A is declared as D I t'1 (:3 .. :3 ::., and contains values 1 through 9 arranged as shown.

Row 1

Row 2

Row 3

Column
1

1

4

7

Array A

Column
2

2

5

8

Column
3

3

6

9

After D I t'1 A (5 .. 2::' is executed, the array's values are rearranged as shown:

Row 1

Row 2

Row 3

Row 4

Row 5

Column
1

1

3

5

7

9

Column
2

2

4

6

8

0

The additional element A(5,2) is assigned the value zero.

Strings

A string can be a quoted collection of characters, or a variable or expression representing such a collec­
tion of characters. The HP-71 supports one-dimensional string arrays and offers a powerful set of
string functions. These are all discussed below.

72 Section 3: Variables: Simple and Array

Quoted Strings

Quoted strings can be enclosed by a pair of single or double quotation marks, as shown in the following
example. A quoted item must be enclosed by a pair of single or double quotes; the quote symbols cannot
be intermixed.

PF.:It·1T '''p.:lt".:ldise Lost" 1 •• J·:lS I .. Jt" i t ten b'::I .John t'li 1 ton. '

When a file name is used as a parameter in a BASIC statement, quotes can be omitted.

String Variables: Simple and Array (D I t'1, 0 P T I (I t·i E: Fi ::; E)

String variable names consist of a letter, an optional numeral, and a dollar sign. Some examples: R $,

C 4 $ and .J 7 $. A simple string variable and a string array cannot share the same name.

Default Value-The Null String (" "). The null string, represented by "" or ' " is the value re­
turned for a reference to a nonexistent string variable. It is also the value given to a string variable
when it is first created. The null string contains no characters, and can't be printed or displayed.

Declaring Dimensions (D I t'l, OPT I Ot·l BW:;E). The D I t'l statement is used to declare, in square
brackets, the greatest number of characters (including spaces) a string variable can represent. D I t'l is
also used to declare, in parentheses, the highest numbered element in a string array. D I t'l initializes all
string variables to the null string, except for previously dimensioned string arrays.

OPT I 0 t·l B R ~:; E not only sets the lower bound of numeric arrays, but of string arrays as well.

Only one-dimensional string arrays are allowed.

" ""'p"'"'' ,yo<"
D I t'l variable list

Examples:

DH1 R3H25J

DIt'1 C$(15)[4[1J

Dimensions a simple string variable to have a
maximum length of 25 characters.

Assuming 0 P T I 0 t·l B R S E 1 is active, declares
a string array to have 15 elements, each with a
40 character maximum length. Each element is
assigned the null string.

Section 3: Variables: Simple and Array 73

Default Dimensions. If a string variable's length is not declared with D I t'1, the HP-71 sets its maxi­
mum length to 32 characters. I] P T I I] t·j B A:::; E has no effect on string length or position.

If a string array's dimension is not declared with D I t'1 before its use in an assignment statement, the
array's dimension is automatically set to 10. The number of elements in such an automatically
dimensioned string array will be 10 or 11, corresponding to I] P T I ot·j B A:::; E 1 or
OPT I m·j BASE O.

Example: 0 P T I 0 t·j BAS E 0 is set when this statement is executed.

DH1 F5$(4) String array F 5 $ has 5 elements, and the maxi­
mum length of each element is 32 characters.

Changing Array Dimensions Under Program Control. D I t'1 can also be used to change the
dimensions of an existing string array. For the original string values to remain unaltered, the maximum
string length for each element must remain unchanged. If the string length dimension of the
redimensioned array is changed, all elements bec~e null strings. If the redimensioned array has fewer
elements, some string values will be lost. If the redimensioned array has more elements, the additional
elements will be initialized to the null string.

Example: Assume 0 P T I 0 t·j BAS E 0 is in effect.

Dlt'1 ~'l$(F.:)

String Concatenation (t:)

This statement changes the dimension of arrary
~u to the current value of the variable F.:. Since
no string length is specified, the maximum string
length becomes 32 characters.

'!\vo or more string variables or quoted strings, in any combination, can be joined together to form a
new single string using the concatenation operator :L

Substrings

A substring is a portion of a quoted string or string variable made up of one or more adjacent char­
acters. The null string can also be a substring.

Specifying Substrings. A substring is specified by a subscript or subscripts enclosed within square
brackets following the string.

Examples:

A$=" ALAF.:t'1" [::3]

B$=TH 4 .. 9]

Assigns to A $ the substring from the third
through the last character.

Assigns to B $ the fourth through the ninth char­
acters of T $.

74 Section 3: Variables: Simple and Array

Assigning Values to Substrings. You can assign any string expression directly to a substring of a
variable.

Examples:

',,'$[I., ,J]=" teacup"

Assigns ~=; $ to the fifth element of array t'1 $ start­
ing at position seven. Any characters that pre­
viously existed, starting at position seven, are
deleted from t'1 $ (5). If this t'1 $ element
originally had fewer than seven characters, say
four, three blanks would be inserted between the
original fifth element and the start of S $.

This statement expands or contracts the part of
I,,' $ from positions numbered I through ,J so
that " tea cup" will fit into it exactly. Any char­
acters that previously existed from I through ,J
are deleted, including the characters at positions
I and ,J.

String Functions (LEt'i, PO::;, '.}AL, ::;TP$, t·iUt·l, CHP$, UPPC:$:)

The HP-71 BASIC language includes a flexible set of string functions that allows you to create, analyze
and manipulate strings. The following four numeric functions analyze strings, returning a numeric
result:

Numeric Functions

Function Action

L E t·j (string) Returns the number of characters in a string.

PO::; .:: string 1., string 2 Returns the position of string 2 in string 1. The optional numeric expres-
[.. numeric expression]) sion specifies the search start position.

I,,' A L .:: string) Evaluates the string as if it were a numeric expression and returns the
value of that expression.

t·j U t'1 .:: string) Returns the character code of the first character in the string.

Section 3: Variables: Simple and Array 75

The following three string functions return a string result:

String Functions

Function Action

::n P $.:: numeric expression::' Evaluates the numeric expression and returns the result as a string.

C H P $.:: numeric expression::' Returns the character whose character code equals the value of
numeric expression.

UP F.: C $.:: string::' Converts all lowercase letters in the string to uppercase letters.

Substring Position (P 0 ::;). This two- or three-argument function returns the position of a substring
within a string. The first argument specifies the string being searched, while the substring is specified
by the second argument. An optional third argument specifies the character position where the search
is to begin.

If the second string is not contained within the first string, the value returned by the function is zero.
Without the optional third argument, only the first occurrence of the substring is given by PO::;.

Input/Resul t

PO::;':: " CHI C AGO" .' "G 0 " ::. I END LI NE I

PO S .:: " CHI C AGO" .. "::; TOP" ::. I END LI NE I

A$=",JAIL"I:!! B$="AIL" IENDLINEI

PO::;':: A$.. B$::' I END LINE I

PO:::;':: "TEt·HlE::;::;EE" .' "E" .' 3::' I END LINE I

Returns 6, the starting position of "G 0" within
"CHICAGO".

Returns [1, since the substring does not occur in
the string being searched.

Returns 2, showing that "A I L" begins at posi­
tion two in ",J A I L "

Returns 5, the first E whose position number is 3
or higher.

The first E is ignored, since its position number is lower than 3. The function begins its character-by­
character comparison with the character (t·n located at position 3. This comparison continues to posi­
tion five, where a match is found. The function then returns 5, the position of the first E whose
position number is three or higher.

76 Section 3: Variables: Simple and Array

String-to-Numeric Conversion (I.)AL). This function converts a string expression containing a
valid numeric expression into a numeric value. The numeric expression can include variables, functions,
and operators. Note that I.) A L evaluates a string expression as though it were a numeric expression.

In summary, I.) A L evaluates the following as though they were numeric expressions:

• Quoted strings of characters, such as "4 7 ::3" or "t·1l2::3".

• The characters represented by string expressions, such as A $ or E: $ t: " l" :~.: C $.

Any characters following the first valid numeric expression are ignored. If the first character in the
string cannot be interpreted as part of a numeric expression, an error results.

Input/Result

C$="FACT(62)·····O.5"I:!:!FI::-::2IENDLINEI

I.)AL (C$) I END LINE I Returns 5 . 6 1 E 4 2. Since C $ represents a valid
numeric expression, I.) A L (C $) evaluates the
expression and returns its result.

Example: An example of the I.) A L function's power is the following program to compute the integral,
using the trapezoidal rule, of an arbitrary function you enter from the keyboard. (Execute
ED ITT F.: A P I t·j T to open a file for this program, then enter it and try it out.)

1 0 ! Trapezoidal rule integration

20 DIM F$[90],L,U,X,T,S,1

30 INTEGER N

40 INPUT "f(X)=";F$

50 INPUT "Lower limit=";L

60 INPUT "Upper limit=";U

70 INPUT "Number of trapezoids=";N

80 X=L @ T=VAL(F$)/2

90 S = (U-L)/N

100 FOR 1=1 TO N-1

110 X=L+I*S @ T=T+VAL(F$)

120 NEXT I

130 X=U @ T=T+VAL(F$)/2

1401=T*S

150 DISP "Integral:"il

The expression you enter here must use >:: as the
variable of integration.

Evaluate at lower limit.

Evaluate at points in middle.

Evaluate at end point.

When you run this program, lines 80, 110 and 130 evaluate the function that you entered at line 40.

Section 3: Variables: Simple and Array 77

After keying in this program, execute F I ::< 2, then press 1 RUN I. When the f < :":) = display prompts
you for your function, enter ::<·····2 +::<. Note that your function must use ::.:: as the independent variable.
Next respond to the other prompts by entering 1 as the lower limit, 5 as the upper limit, and 1 0 as the
number of trapezoids the program will use to approximate the integral. You will then see

I n t e';:! t" .:tl: 53, 44 This approximates the true integral of 531fa.

Increasing the number of trapezoids makes the integral more accurate, but increases calculation time.

Numeric-to-String Conversions (::nF.:$). This function evaluates a numeric expression and con­
verts the result into a string, according to the current display format.

Input/Result

STP$(2+6 .. ···7) IENDLINEI

2186 S T P $ first evaluated 2 +6./7, then converted it
to a string (shown in F I ::.:: 2 display format).
The string 2 , ::: 6 cannot be used in calculations.

Converting a Character to Its Character Code (HUM). Your HP-71 uses a set of 256 characters.
The factory-defined set is shown in your reference manual. Each character has its own character code
(0 through 255). Ninety-five characters (character codes 32 through 126) are standard printable charac­
ters as defined by the American Standard Code for Information Interchange (ASCII). HUM returns the
character code as a numeric value (not a string) for the first character of its string argument.

Converting a Character Code to Its Character (CHR$). This is the inverse of HUM. It converts a
character code to its corresponding character. C H R $ accepts any arithmetic expression as its argument,
and, if needed, subtracts or adds a multiple of 256 to the rounded result to get a number in the range
0-255. It then converts that number to the corresponding ASCII character. Thus, C H P $ (600) re­
turns X, because MOD (600,256) returns 88, the code for X.

Relational Operators (-(, =, >, :I*,?)

These operate on string variables as well as on numeric variables. The HP-71 makes string variable
comparisons using the character code for each string character. For instance, if A $ = II A II and
B$= II B ", the expression A$> B$ returns 0 (false), since the code for A (65) is not larger than the code
for B (66). For similar reasons, all of the following are true: II A II < II AB ", II A II < II A ", II ABC II < II B II ,

and II 2:3 4 II < II 7 II • Note that the equals sign (=) can be used in both variable assignment statements
and in relational expressions. The HP-71 interprets an entry involving the equals sign as an assign­
ment statement wherever possible.

Section 4

Statistical Functions

Contents

Overview ... 78
Declaring Statistical Arrays r=; T AT, C un AT) 78
Using The Statistical Operations ... 79

Adding Data Points to Arrays (A D D) 80
Deleting Data Points from Arrays (D F.: 0 P) 81
Summing Data Points (TOTAL) ... 82
Calculating Means (t'l E A t'l) ... 83
Calculating Standard Deviations r:W E I.}) 83
Calculating Sample Correlations (C 0 F.: F.:) 84
Fitting a Linear Regression Model (L F.:) 84
Calculating Predicted Values (p F.: E D I.}) 85

Fitting Sample Values to Other Curves 86

Overview

This section covers:

• The use of the HP-71 statistical statements and functions in a linear regression example.

• How data can be fit to a straight line model.

• The use of these statements and functions, together with suitable transformations, in exponential,
logarithmic and power curve examples.

A special one-dimensional array is used to store the data (the point coordinates) to be used for statisti­
cal calculations. :::; TAT creates and dimensions this array, and C L :::; TAT clears the data previously
stored in a statistical array.

78

Section 4: Statistical Functions 79

~:; TAT array name [.:: # variables::']

This statement dimensions a one-dimensional statistical array to the appropriate size for a specified
number of up to 15 variables. The array name can be any standard numeric variable name. STAT can
also select a previously dimensioned statistical array to be the current statistical array. The # variables
is optional only if S TAT selects a previously dimensioned statistical array. The array dimensioned by
S TAT has base option zero regardless of the 0 P T I 0 t·j BAS E currently in force. All numbers are
stored with PEA L precision.

I CLSTAT

This statement clears (sets to zero) all elements of the currently specified statistical array.

Using the Statistical Operations
Example: The following table lists the consumer price index change (CPI), the producer price index
change (PPI), and the unemployment rate (UR), all in percentages, for the United States over a 12-
year period.

The goal is to enter the CPI, PPI and UR data into the HP-71 and to calculate some simple statistics.

To get the results in the form shown in the following pages, use F I ;:.:: 2 display format.

Data for Statistical Example

Year CPI PPI UR

1968 4.2 2.5 3.6
1969 5.4 3.9 3.5
1970 5.9 3.7 4.9
1971 4.3 3.3 5.9
1972 3.3 4.5 5.6
1973 6.2 13.1 4.9
1974 11.0 18.9 5.6
1975 9.1 9.2 8.5
1976 5.8 4.6 7.7
1977 6.5 6.1 7.0
1978 7.6 7.8 6.0
1979 11.5 19.3 5.8

80 Section 4: Statistical Functions

Your first step is to declare a statistical array in which to accumulate the data's summary statistics.
Note that this one-dimensional array will not store the entered data, but only the summary statistics
that are updated each time data is added or dropped. Since you wish to accumulate summary statistics
for three variables (CPI, PPI and UI):

Input/Result

::nAT ::;'::::3::' I END LINE I

CLSTAT I END LINE I

Creates and dimensions a statistical array::; for 3
variables.

Clears array::;.

If another array S already existed, S TAT S'::::3::' would only redimension array S, and the array
elements could contain unexpected data. 'Ib be safe, clear an array (with C L S TA T) after declaring it,
unless you wish to use the previous array's data.

Adding Data Points to Arrays (A D D)

ADD [coordinate value 1 [., coordinate value 2 [... [.. coordinate value 15]. ..]]]

This statement adds a data point, consisting of up to 15 matched coordinate values-numbered from 1
to 15 (one for each variable)-to the current data set represented by the current statistical array.

Example (continued): On a two-dimensional plot, a point is often defined in terms of its x, y coordi­
nates. Similarly, the data point for 1968 is defined in terms of the three coordinates of that data point,
CPI, PPI, and UR. You will accumulate in your array the summary statistics for the 12 data points,
corresponding to the 12 years 1968 through 1979. You enter the first nine data points as follows:

Input/Result

ADD 4, 2 .. 2 , 5 .' ::3 ,6 END LI NE I
ADD 5, 4 .. ::3 , 9 .' ::3 ,5 END LI NE I
ADD 5, 9 .. ::3 , 7 .. 4 ,9 END LINE I
ADD 4,::3.,::3,::3 .. 5 ,9 END LI NE I
ADD ::3,::3., 4 , 5 .' 5 , 6 I END LI NE I
ADD 6, 2.. 1::3 , 1 .' 4 , 9 I END LI NE I
ADD 1 1 .' H: , 9 .' 5 , 6 I END LI NE I
ADD 9, 1 .' 9 , 2., B , 5 I END LINE I
ADD 5, ::: .. 4 , ::: .. 7 , 7 I END LI NE I

Data point for 1968.

Data point for 1969.

Data point for 1970.

Data point for 1971.

Data point for 1972.

Data point for 1973.

Data point for 1974.

Data point for 1975.

Data point for 1976.

Here you realize you made a mistake; the 4 , ::: should have been 4 , 6. 'Ib correct the error, use D F.: elF'.

Section 4: Statistical Functions 81

Deleting Data Points from Arrays (D P (I F')

The D POP statement is used to delete data points from the array. You'll see how to execute this state­
ment, and, alternatively, how the HP-71 Command Stack can be employed to make the correction even
easier.

Note: Use only one of the following two methods for correcting data points when working through
this example. Otherwise, your results won't match those shown in the example.

Method One: Using D F.: 0 P to Delete Data Points.

DPOP [coordinate value 1 [.. coordinate value 2 [... [.. coordinate value 15). ..]]]

This statement deletes (drops) a data point, consisting of up to 15 matched coordinate values, numbered
1 to 15, from the summary statistics maintained in the current statisticaf array.

Example (continued): You proceed as follows to correct your error:

Input/Result

[IF.: 0 P 5. ::: " 4 . ::: " 7 . 7 I END LI NE I

ADD 5.::: " 4 . 6 .. 7 . 7 I END LINE I

Removes the incorrect data point from the sum­
mary statistics.

Enters correct data point for 1976.

Method Two: Using the Command Stack to Change Data Points. Alternatively, by editing an
ADD statement with the Command Stack active, an incorrect data point can be removed from the
current statistical array and the correct data point can be added.

Example (continued): Here's the procedure for correcting your error using the Command Stack.

Input/Result

[[]I CMOS I

,ADD 5.::: .. 4.8 .. 7.7

DPOP

,DROP5.8 .. 4.8 .. 7.7

Activates the Command Stack.

The Command Stack displays the most recent
command, * ready for editing.

Replaces ADD with D F.: 0 P.

• This keystroke sequence assumes the error has not been corrected,

82 Section 4: Statistical Functions

I END LINE I

,OROP5.8,4.8,7.7

,ADD 5.8,4.8,7.7

Press [E] 10 times.

,ADD 5.8,4.8,7.7

Deletes the incorrect data point from the array
and deactivates the Command Stack.

Activates the Command Stack again.

The Command Stack displays your DR 0 F'
statement.

Display the earlier command.

Positions the Replace cursor at the incorrect
numeral.

6 I END LINE I Corrects the error.

Now enter the rest of your data points:

ADD 6. 5 .' 6 . 1 , 7 I END LI NE I
ADD 7. 6 , 7 . ::: .' 6 I END LI NE I
ADD 1 1 . 5, 1 9 . 3 , 5 . S I END LI NE I

Summing Data Points (TOTAL)

Data point for 1977.

Data point for 1978.

Data point for 1979.

The TOTAL function sums one coordinate's values (one variable's values) for all data points. For in­
stance, if each of your data points had two coordinates (variables), say x and y, you would use TOT A L
to sum all the x values and then use TOT A L again to sum all the y values.

ITO TAL [0:: variable #)]

This function returns the total of the coordinate or variable values for the specified variable # in the
current statistical array. If the optional variable # is omitted, the function returns the total of the
values for the first variable (or "variable #1"). If [1 is specified for variable #, TOTAL returns the num­
ber of data points in the array.

Section 4: Statistical Functions 83

Example (continued): Using TO TA L, display the sample totals for variable #1 (CPI), variable #2
(PPI), and variable #3 (UR).

Input/Result

TOTAL':: 0;' I END LINE I
TOTAL':: 1 ;. I END LINE I
TOTAL':: 2;' I END LINE I
TOTAL'::::3::' I END LINE I

Calculating Means (t'l E A t'4)

I t'l E A t·j [.:: variable #::.]

Displays 12,00, the total number of samples.

Displays ::: 0 , ::: [I, the total of the CPI values.

Displays 96 , 90, the total of the PPI values.

Displays 69 , [10, the total of the UR values.

This function returns the mean of the values for the specified variable # in the current statistical array.
The default value for variable # is 1.

Example (continued): You use t'lEAt'j in this example as follows:

Input/Result

t'lEAt·j':: 1 ::. I END LINE I
~lEAt·j(2::' I END LINE I
t'lEA t·j '::::3::' I END LINE I

Displays 6 , 7::3, the mean of the CPI values.

Displays ::: , [1:::, the mean of the PPI values.

Displays 5 , 75, the mean of the UR values.

Calculating Standard Deviations (~:; DEI,})

I S DEI,} [.:: variable #::.]

This function returns the sample standard deviation of the coordinate or variable values for the speci­
fied variable # in the current statistical array. The default value for variable # is variable #1.

84 Section 4: Statistical Functions

Example (continued): Use SDE',,I to calculate your sample standard deviations,

Input/Result

~:WE'.}':: 1 ::. I END LINE I

SDE',,I':: 2::' I END LINE I

~:; D E 1,,1 .:: 3::' I END LI NE I

Displays 2 , 6 1 , the standard deviation of the CPI
values.

Displays 5 , 95, the standard deviation of the PPI
values.

Displays 1 , 4 :::, the standard deviation of the UR
values.

Calculating Sample Correlations (C 0 P P)

leo p P .:: variable # 1 .' variable #2::'

This function returns the sample correlation of the values for the two specified variables (variable # 1
and variable #2) in the current statistical array.

A correlation involving a constant is undefined. If you tried CO F.: F.: .:: ~~1., 1 ::., for instance, you'd hear a
beep and see I n "l ali d S tat 0 p .

Example (continued): Determine the three sample correlations among CPI, PPI, and UR.

Input/Result

cOP P .:: 1 .' 2::' I END LI NE I

COP P .:: 1 .' 3::' I END LI NE I

CO F.: F.: .:: 2 .. 3::' I END LI NE I

Displays [1 , ::::::, the correlation between CPI and
PPI values.

Displays 0,33, the correlation between CPI and
UR values.

Displays ~3 , 1 4, the correlation between PPI and
UR values.

Fitting a Linear Regression Model (L P)

L F.: variable # 1 .. variable # 2 [.. variable [.. variable]]

This statement specifies the current linear regression model. You specify the dependent variable as
variable #1 and the independent variable as variable #2. The LF.: statement then computes the inter­
cept and slope for that model. If you supply the first optional variable (any valid variable name is
acceptable), the HP-71 stores the intercept in that variable. If you supply the second optional variable,
the HP-71 stores the slope in that variable.

Section 4: Statistical Functions 85

The calculation of predicted values (using P F.: E D I.), explained below) does not use these two optional
variables. Their use simplifies the recovery of the model's slope and intercept. If these optional
variables are not used, slope and intercept can be recovered as follows, since P F.: E D I.} recalculates slope
and intercept each time it's executed.

P F.: E D I.} ([1) returns the intercept, a.
PF.:ED'.} (1) - PF.:ED'.} (~~1) returns the slope, b.

You can fit a straight line by the method of least squares to any pair of variables by using the L F.:
statement. The only restriction is that the independent variable not have a sample standard deviation
of zero.

Example (continued): Suppose you wish to fit a straight line between the consumer price index
change (variable #1) and the producer price index change (variable #2), where the CPI is the dependent
variable and the PPI is the independent variable. That is, you wish to fit the line

CPI = a + b * PPI

to the data, determining values for the parameters a (intercept) and b (slope). Since the independent
variable, PPI, does not have a standard deviation of zero (you determined above that
:3DE'.) (2) = 5.95), you can use the LF.: statement. Use two optional variables, A and B, as ar­
guments three and four, which will hold the values for the parameters a and b.

Input/Result

L F.: 1 " 2 .. A .. B I END LI NE I

A I END LINE I
E: I END LINE I

Calculating Predicted Values (P P ED'.})

I PF.:ED'.} (argument)

Determines the best-fit straight line for the 12
(PPI,CPI) points, and stores the intercept in A
and the slope in B.

Displays the intercept 3 . 6 1 .

Displays the slope ~~1 • 39.

This function returns the predicted value of the dependent variable based on the current linear regres­
sion model and the value of the independent variable specified as the argument. You must execute L F.: to
specify the dependent and independent variables before executing P F.: E D I.}.

86 Section 4: Statistical Functions

Example (continued): Now predict CPI values for PPI values of 4, 5, 6 and 7.

Input/Result

PF.:ED'.) 0:: 4::0 I END LINE I

PPED'.) 0:: 5::0 I END LINE I

PPED'.) 0:: 6::0 I END LINE I

PF.:E[I'.) 0:: 7::0 I END LINE I

Displays 5 . 1 6, the predicted CPI value for
PPI = 4.

Displays 5 . 54, the predicted CPI value for
PPI = 5.

Displays 5 . 93, the predicted CPI value for
PPI = 6.

Displays 6 . 32, the predicted CPI value for
PPI = 7.

Fitting Sample Values to Other Curves
Using suitable transformations, exponential, logarithmic, and power curves can be fitted to data in the
standard linear regression form

y = a + bx.

The following table gives these transformations.

Transformations to Linear Regression Form

Name of Untransformed For y, For a, For x, Transformed
Curve Equation Use: Use: Use: Equation

Linear y=a+bxx y a x y=a+bxx

Exponential y = a x e(bXx) In(y) In(a) x In(y) = In(a) + b x x
(a>O)

Logarithmic y = a + b x In(x) y a In(x) y = a + b x In(x)

Power y=axxb In(y) In(a) In(x) In(y) = In(a) + b x In(x)
(a > 0)

Example: Suppose the following values for x and y, obtained during an experiment, have been given to
you for analysis. You plan to determine how well each of the four curves-linear, exponential, logarith­
mic, or power-fit the data.

Data for Transformation Example

x .1 1.3 4.7 9.0 17.9 24.4

Y 16.69 13.51 7.498 3.662 .7170 .3271

Section 4: Statistical Functions 87

To facilitate entering data into a statistical array, arrange it in the following table, with each sample
column labeled by name and number.

Rearranged Data for Transformation Example

Variable #

1 2 3 4

Variable

x In(x) y In(y)

Observation Variable Value

1 .1 -2.303 16.69 2.815
2 1.3 .2624 13.51 2.603
3 4.7 1.548 7.498 2.015
4 9.0 2.197 3.662 1.298
5 17.9 2.885 .7170 -.3327
6 24.4 3.195 .3271 .-1.117

Now create and dimension your statistical array and enter your data:

Input/Result

:::;T ATE 0:: 4::' I END LI NE I

CUHAT I END LINE I

ADD .1,-2.303,16.69,2.815
I END LINE I
ADD 1..3,.2624 .. 13.51 .. 2.603
I END LINE I
ADD 4.7, 1 .54:::: .. 7.498 .. 2.015
I END LINE I
ADD 9, 2 . 1 97 , 3 . 662.. 1 . 29:::: I END LI NE I
ADD 17.9,2.885 ... 717 .. - . 3327
I END LINE I
ADD ::::4.4 .. 3.195 ... 3271,-1.117
I END LINE I

Dimensions a new array. (This statement would
select and dimension array E if it already
existed).

This would clear array E if it already existed.
While this step is not necessary in many cases,
it's a good habit to develop to ensure against new
data being intermingled with old data in the
same array.

Enters the first observation.

Enters the second observation.

Enters the third observation.

Enters the fourth observation.

Enters the fifth observation.

Enters the sixth observation.

88 Section 4: Statistical Functions

Determine the appropriate correlations to see if any of the models can be excluded from further consid­
eration. Execute the correlation functions shown below and see the indicated results. The arguments of
the correlation functions are the variable numbers from the table immediately above. The transforma­
tion table on page 86 shows what variables to correlate for each type of curve.

For instance, the transformation to fit a logarithmic curve in linear regression form uses (from the
table on page 86) In(x) for x and y for y. The next table (page 87) shows In(x) is variable 2 and y is
variable 3. So the appropriate correlation function in this example for a logarithmic curve in linear
regression (straight line) form is COl': I': (2 .' 3).

For the exponential, logarithmic, and power curves, you're checking to see how well the transformed
data fits a straight line. If one or more of these curves has a reasonably high correlation, you might
then use the F'I':ED',) function to predict dependent variable values (y or In(y)), given independent
variable values (x or In(x)). The last step would then be to transform In(y) values back to y values using
the E ::< F' function.

Correlations Resulting From Transformation Example

Type of Curve

Linear
Exponential
Logarithmic
Power

Correlation
Function

COF.:F.:(l,3)
COF.:F.:(1.,4)
COI':l': (2.,3)
COI':l': (2., 4)

Result

-~:::1 , 90
-1 ,00
-0,96
-0, ::::4

None of the correlations is very low. Note that all the transformed curves (straight lines) have negative
slopes, as shown by their negative correlations.

You decide to model the data with the curve having the highest correlation, the exponential curve.
You'll first use the L I': statement to specify the linear regression model ("best fit" straight line) cor­
responding to the transformed exponential curve data. Once that model is established, you'll be able to
use the F'I':ED',) function to predict some additionalln(y) values, as well as to check on several In(y)
values transformed from the original data.

Input/Result

L F.: 4, 1 .' A .' B I END LI NE I

A I END LINE I
B I END LINE I

Specifies a linear regression model with In(y)
(variable #4) as the dependent variable and x
(variable #1) as the independent variable. The
intercept will be stored in A and the slope in B.

Displays the intercept 2 , :::: o.
Displays the slope - 0 , 1 7.

Section 4: Statistical Functions 89

Now you're ready to predict some values. You want to predict In(y) values for the following x-values:
-10, -5,0,20, and 30. For x = 0, the predicted In(y) value should equal the intercept A. Finally, you'll
transform In(y) values back to y-values. As a check, you also want to use some x-values equal to the
data values you were given, and see how close the predicted y-values come to the corresponding data y­
values.

Input/Result

PF.:E[JI,} (-10) I END LINE I

E::<P (RE::;)

Displays 4 , 45, the predicted In(y) value for
x = -10.

Displays the result of e4.45, where 4.45 is the pre­
dicted In(y) value just obtained.

This is the predicted y-value given by y = a x e(b xx)

for an x-value of -1 0, where a and b have the val­
ues E ::< P .:: A::O and B. (You calculated A and B
above with the L R function).

Predict the other y-values in the same way and display the following results.

Predicted Values Resulting From Transformation Example

>:: -5 0 4.7 9 20 24.4 30

Predicted In(y) 3.63 2.80 2.02 1.31 -0.51 -1.24 -2.17
Predicted y 37.53 16.40 7.53 3.70 0.60 0,29 0.11

The In(y) value for x = ~J is 2 , ::: [1, which is equal (as it should be) to the intercept A. Also, the predicted y
values above corresponding to the data x-values 4 , 7, 9, and 24 , 4 are reasonably close to the actual data
y-values shown in the table on page 86.

Section 5

Clock and Calendar

Contents

Overview ... 90
The HP-71 Calendar r=;ETDATE, DATE, DATE$) 90
The HP-71 Clock .. 91

Setting the Clock r=;ETT H1E, AD.JAB:::;) 92
Reading the Time (T I t'lE, T I t'lE$) 94
Adjusting Clock Speed (SE TT I t'lE, AD.JU ST, AF,

E>::ACT, PESET CLOC K) ... 94

Overview

This section covers:

• Setting and reading the calendar.

• Setting and reading the clock.

• Improving the accuracy of the clock.

Th HP 71 C I d (..... r····T" r", , 'T' ; e - a en a r .:::, !:::. ! !...; r"! ! !:::.,

Dates from January 1, 0000 to December 31, 9999 are accepted by the HP-71, but dates before October
15, 1582-before January 1, 1752 for English speaking countries-do not relate directly to our current
Gregorian calendar.

SETDATE numeric date
SETDATE date string

This statement sets the date on the HP-71 clock as either an integer or a string. The numeric date is
entered as YYDDD or YYYYDDD, where YY or YYYY = year and DDD = the day number in that year. The
day number ranges from 001 through 365 (or 366 for leap years), and is always entered as three digits
including leading zeros as necessary. The form of the date string is "YYjMMjDD" or "YYYYjMMjDD,"
and includes zeros as necessary to create an eight- or ten-character string.

90

Section 5: Clock and Calendar 91

The actions of DATE and DATE$ (explained below) are unaffected by the way you enter the date. The
two methods (numeric date or date string) are provided to make it easier for you to enter the date.

Examples: Both these statements set the date to March 7, 1985. Note the leading zero in the three­
digit numeric day number, and the leading zeros in both the month and day characters in the date
string.

:3ETDATE :::5066

:3ETDATE ":::5-(13 .. ···07"

I DATE

This function returns the date as a number in the form YYDDD, where YY = the last two digits of the
year and DOD = the day number in that year.

Example: Assume the date is March 7, 1985.

Input/Result

DATE I END LINE I

I DATE$

Returns :::5~~166, showing that March 7, 1985, is
the 66th day of the year.

This function returns the date in the form "YY/MM/DD", where YY = year, MM = month, and
DD = day.

Input/Result

DATE$ I END LINE]

The HP-71 Clock

Returns::: 5 (13 .. d~i7, the same date (March 7,
1985) presented as a string.

The HP-71 provides you with a versatile set of statements and functions to set and adjust your quartz­
controlled clock and to change its speed. Once you learn how to use each of these keywords, you'll find
it easy to change your clock's setting in response to time zone and other time changes, and to maintain
your clock's accuracy to within a few seconds over weeks or months.

There is one statement, AD.J A B:3 (adjust absolute), that adjusts the clock without introducing any
speed correction factor. Two statements, SET T I t'1 E and AD.J U S T, set or adjust the clock and in­
troduce speed correction factors. These factors are accumulated between two executions of the E ;:.:: ACT

statement, and are used when the second E ;:.:: ACT statement is executed. Finally, one function, A F

(adjustment factor), both introduces and executes speed correction factors. However, when AF is exe­
cuted, the clock setting remains unchanged. The following table gives an overview of these

92 Section 5: Clock and Calendar

statements. Then, each keyword is discussed more fully.

Keywords to Adjust and Correct Clock

Clock Clock Setting Speed Correction Speed Correction
Setting and Speed-Error Based on Error Based on

Only Accumulation Accumulation Argument

AD,JABS SETT I t'lE Ei<ACT AF
AD,JU::;T

Setting the Clock (::;ETT I t'1E, AD.JABS)
When first using your HP-71 clock, or after a clock reset: you should use 8ETT I ME to set the clock.
However, once you execute EXACT, don't use SETT I ME again unless you also want to accumulate a
speed correction factor.
AD ,J A B S sets the clock without accumulating a speed correction factor. Its argument is a time incre­
ment, like 15 seconds or "-1 : [H] : 00" (adjust the clock back one hour). AD,JAB::; is useful for
operations like time zone changes.

Initial Setting (SETT I t'lE).

SET T I t'l E seconds since midnight
:3 E TTl t'l E time string

The HP-71 clock can be set using a numeric expression (seconds since midnight) whose value ranges
from 0 through 86399. The system clock can also be set using a time string of the form "HH:MM:SS,"
where HH is hours in the 24 hour format, MM is minutes and SS is seconds. Leading zeros must be
included as necessary to maintain an eight-character string.

A technique for setting your HP-71 clock is given under "Setting the Time and Date," page 17.

After a clock reset, if 8 E TTl ME is executed bfore E X ACT is executed, no part of the 8 E TTl ME
adjustment is accumulated for speed correction; the adjustment is used only to set the clock. Once
E X ACT is executed, however, the entire adjustment is still used to set the clock, but any part of the
adjustment other than full hours and half hours is also accumulated as a speed correction factor. t The
next time EXACT is executed, this factor is used to change the clock's speed.

* A clock reset occurs after either a memory loss or reset, or when you execute RESET CLOCK.

t Therefore, if you want to adjust time for time zone change, you can use SET TIM E . If you reset for an even hour, no error will be
accumulated. But if you reset the time by one hour and three minutes, the three minutes will be accumulated for error correction.

Section 5: Clock and Calendar 93

In summary:

• After a clock reset, execute SET TIM E before E X ACT to set your clock initially.

• After E ;:.:; ACT is executed, use ~:; E TTl t·, E to simultaneously:

1. Change the clock because it's running fast or slow, and

2. Accumulate a speed correction factor that will be converted to a speed change by the next
execution of E ;:-:; ACT.

Examples: The following statements are executed following a memory reset, but before E ;:.:; ACT has
been executed.

SETTIME 8%3600+15%60

~:;ETT I t'lE "0:::: 15 : ~~10"

SETTlt'lE "18: [18: ~35"

Setting Adjustment (AD.JABS).

AD.J A E: S adjustment in seconds
AD .J A B ~:; adjustment string

Sets the clock to 8:15 AM, the number of seconds
for 8 hours plus the number of seconds for 15
minutes.

Also sets the clock to 8:15 AM.

Sets the clock to five seconds past 6:08 PM.

The adjustment in seconds can be any numeric expression including one or more variables. Both a
positive and a negative change is accepted. The adjustment string is in the form "HH:MM:SS" or
"-HH:MM:SS." Leading zeros must be included as necessary to maintain an eight or nine character
string. The entire adjustment is treated like a time zone change; no part is accumulated as a speed
correction factor.

Example: Suppose you discover that the watch you used to initially set your HP-71 clock was 43
seconds slow. You execute this statement to add 43 seconds to the HP-71 clock:

AD.JAB~:; 43

You're flying from New York to Chicago. You execute this statement to change your clock to Central
Standard Time:

Sets time back 3600 seconds (1 hour).

You continue your journey from Chicago to Denver. 1b change your clock to Mountain Standard Time,
you execute this statement:

Sets time back 1 hour.

94 Section 5: Clock and Calendar

Reading the Time (T I t'lE, T I t'lE$)

I T I t'lE

This function returns the time as a number expressed as seconds since midnight. It can be used in
numeric expressions as can any numeric function.

Example: Suppose you construct a program to time the durations of a series of experiments, all start­
ing at the same time. The following statement assigns to T the starting time (seconds since midnight)
of this series.

230 T=T I t'lE

Line 780 in your program (below) is triggered by the completion of your first experiment. It assigns to
E 1 the duration of the first experiment in seconds. Suppose your experiments began at 9:00 AM
(32,400 seconds since midnight), and the completion of your first experiment occured at 10:30 AM
(37,800 seconds since midnight). E 1 would be assigned the value 5400 (seconds), the duration of your
first experiment.

7:::0 E 1 =T H1E-T

I TH1E$

This function returns the time of day as a string with the form "HH:MM:SS," expressed in the 24-hour
format.

Adjusting Clock Speed e:; E TTl t'l E, A D ,J U ::; T, A F, E ::.:: ACT,
PESET CLOCt<)

The circumstances under which each of these keywords can be used most effectively are explained
below.

Speed Correction. Normally, each of these keywords is used in the following situations:

• SETT I t'lE: except for setting your clock after memory reset, use ::;ETT I t'lE if you want its entire
argument to change the clock's setting. and any "minor" portion of its argument-the portion
other than full hours and half hours-to be accumulated as a speed correction factor

• AD.J IY:. T: use AD.J U S T if you want its entire arlWment to be added to or S1] btracted from the
clock's current setting, and the "minor" portion of its argument-the portion other than full hours
and half hours-to be accumulated as a speed correction factor.

• A F: use A F only if you do not want to change the clock's setting, but do want the entire arlWment
to change the clock's speed without waiting for the next executioD of E i·: ReT.

Section 5: Clock and Calendar 95

The syntax for SET T I t'1 E is shown and explained on page 92.

AD ,J U ::; T seconds
AD ,J U S T adjustment str;ng

This statement allows you to reset your computer's clock for different time zones, for daylight savings
time, etc., while at the same time accumulating a small amount of time (no larger than ±15 minutes)
for a later speed correction. This speed correction is made the next time E ::< ACT is executed. The
argument can be seconds, expressed as a numeric expression that, when evaluated, can range between
-360,000 and 360,000 seconds (100 hours). The argument can also be an adjustment string in the form
"HH:MM:SS" or "-HH:MM:SS," where zeros are used to maintain an eight or nine character string.

Example: You're about to cross from Central to Eastern time. You know your clock has lost one
minute since you set it accurately 4 months ago. You now wish to:

1. Set your clock ahead one hour.

2. Accumulate a speed correction factor to compensate for the clock's slowness.

3. Reset your clock to compensate for the lost minute.

1b perform all three operations at once, you execute the following:

AD,JUST "01 :~J1 :0[1" IENDLINEI

I A F .:: new adjustment factor::'

The adjustment factor changes the clock's speed. It is the number of seconds that pass before the clock
adds (positive) or subtracts (negative) one second to or from its reading. The AF function always re­
turns the current value of the adjustment factor. If A F is executed with a new adjustment factor, the new
value replaces the current adjustment factor. A F with its optional argument sets an adjustment factor
directly (as opposed to AD,JUSTand ::;ETT I t'lE), and does not require the execution of E::<ACT.

Example: The new adjustment factor changes the clock's speed in the following way. (For this example,
assume the current adjustment factor is 24000.)

Input/Result

AF':: -2::::::0~J::' I END LINE I Displays 240 0 f~1, the current adjustment factor,
and sets a new adjustment factor (-28800).

After a period about 56 seconds long (28,800/512) has passed following the execution of this function. a
small fraction of a second (1/512) will be subtracted from the clock's reading.

96/97 Section 5: Clock and Calendar

Correcting Accumulated Speed Errors.

IE':':' H- 1-' T I I _" I

This statement is used to improve the accuracy of the clock's speed. The first execution of E ::.:: ACT
following a memory reset defines the beginning of an adjustment period. Each subsequent execution of
E ::.:: ACT defines the end of the current adjustment period and the beginning of the next adjustment
period. All clock speed corrections accumulated by the execution of ::; E TTl 1'1 E and AD ,J U ::; T during
the current adjustment period (normally weeks or months long) are used to define a new adjustment
factor when E ::.:: ACT is executed. (Remember that SET T I t'l E and AD ,J U ::; T do not define an adjust­
ment factor; that is, they do not change the clock's speed. They only accumulate speed corrections.)
The new adjustment factor defined when D::ACT is executed is used by the HP-71 as described in the
A F discussion directly above.

Since E :": ACT is used to improve the accuracy of the clock's speed, you should execute it only when you
are sure the clock's reading is correct.

Cancelling the Speed Adjustment Factor .

I PE::::ET CLOCK

This statement clears the adjustment factor and resets the clock's speed to that in effect after a mem­
ory reset. No seconds will be added to or subtracted from the clock's reading as a speed correction until
A F or E ::.:: ACT is executed again.

Section 6

File Operations

Contents

Overview ... 98
The Current File .. 100
The 1 .. .1 0 to k f i 1 e .. 1 00
Introduction to File Operations .. 101
Structure of HP-71 Memory .. 103

Two Types of Memory: RAM and ROM 103
Main RAM and Independent RAM 104
Declaring Independent RAM (FPEE POPT) 105
Reclaiming Independent RAM (CLA I t'1 POPT) 107
Obtaining Memory Information (t'1Et'1, ~=:Hm,j POPT) 107

File Names .. 109
Characteristics of File Names .. 109
Default Files ... 110
Reserved Words ... 110

Device Names ... 110
Characteristics of Device Names 111
Default Devices .. 111
File Search Order .. 112

Copying Files (COP\') ... 112
Renaming Files (F.:Et·jAt'1E) .. 115
Purging Files (F'UPGE) .. 115
Merging Files (t'1EPGE) ... 116
File Security ... 117

Protecting a File's Contents C=; E CUP E, U t·j SEC U F.: E) 117
Controlling File Access (F'F.: I I,)ATE) 117
Using Both SECUF.:E and PF.: II,)ATE 118

File Catalogs (CAT ALL) ... 118

Overview

The HP-71 retains programs and data in memory in the form of files. The computer can contain sev­
eral files at one time, each with its own name. This section discusses how to manage files. It does not
cover the specifics of creating and adding information to files. (That is covered in other sections as
noted.)

98

Section 6: File Operations 99

This section describes the operations that are common to all HP-71 files. More specifically it describes:
• The current file.

• The 1 .. .1 0 t" k f i 1 e.

• How HP-71 memory is structured.
• Copying files.

• Renaming files.

• Purging files from memory.

• Protecting files.

• Finding out which files exist in memory.

If you are simply going to run programs from plug-in modules, you don't need to read this section. But, if you are going to use programs or information stored on magnetic cards, or plan to use HP-IL devices, you should read this section.

If you want to create, add information to, or use the following types of files, refer to the indicated sections:

• BASIC Files.
This type of file contains a BASIC program. These are described in section 8, "Writing and Run­ning Programs."

• BIN and LEX Files.
Files of both types are written in HP-71 machine language. A BIN file can be executed as a subprogram. A LEX file can add BASIC keywords to the computer. These file types are described in section 8, "Writing and Running Programs."

• DATA Files.
DATA files contain numeric and string data and are used by programs for data storage. DATA files are described in section 14, "Storing and Retrieving Data."

• TEXT Files.
This is a special type of data file whicb is used for transferring information between the HP -71 and other computers. BASIC files can be transformed into TEXT files so that they can be transferred to other computers. Similarly, TEXT files can be transformed into BASIC files. TEXT files are described in section 14, "Storing and Retrieving Data."

• KEY Files.
KEY files contain the key redefinitions that you create. Several KEY files can reside in the computer's memory at the same time, however, only one can be active at any given time. These are described in section 7, "Customizing the HP-71."

• SDATA Files.
SDATA files are data files that can be sent to and received from an HP-41 Handheld Computer. These are discussed in section 14, "Storing and Retrieving Data."

100 Section 6: File Operations

The Current File
More than one file can reside in the HP-71. At any time, one file is designated the current file. A file
can be edited only when it is the current file. Also, the current file is the default file (the file used when
one isn't specified) on which the computer performs many file operations.

The following functions and statements change the current file designation:

• ED I T.

• F.:Ut·t

• CHAlt·t

• FF.:EE POF.:T.

• CLA I t'1 POF.:T.

• PUF.:GE (only when the current file is purged).

• Inserting or removing a RAM or ROM module from a port.

• TF.:At·j~:;FOF.:t·1 (only when the current file is transformed into a non-BASIC file).

The HP -71 maintains a program file called 1 •• .1 0 t· k f i 1 e, which is a scratch file. The 1 •• .1 0 t" k f i 1 e
becomes the current file when you:

• First install batteries.

• Reset the HP-71 (I t·j IT: 3).

• Purge the current file.

• Execute ED I T without specifying a file name.

• Transform the current file into a non-BASIC file.

• Insert or remove a RAM or ROM module from a port.

• Execute F F.: E E P 0 F.: T or C L A I t'1 P 0 F.: T.

For more information about using the 1 •• JOt" k f i 1 e, refer to section 8, "Writing and Running
Programs."

Section 6: File Operations 101

Introduction to File Operations
As need arises, you will probably want to create and make copies of files, rename them, and purge them from memory. To give you a feel for how these operations can be performed, some examples are given here demonstrating file operations at the most elementary levels. The details of how the statements shown in the following examples work are given later in the section and in the HP-71 Reference Manual.

If you write a program in 1 •• .1 0 t- k f i 1 e and want to give it a name, you can use the t·j A t'1 E statement:
Input/Result

ED I T I END LINE I

1 •• .I0t-kfile

1 ~J GOTO 1 ~J I END LINE I
t·jAt·1E TEST I END LINE I
ED IT I END LINE I

1 .. .I0t-kfile

Designates 1 •• .1 0 t- k f i 1 e as the current file.

Displays the file name (1 .. .1 0 r k f i 1 e) and file
type (B A !:; I C).

Enters a line into the file.
Names the file .TE!:n .
Creates a new 1 .. .Ior k f i 1 e.

Rather than using the 1 .• .1 0 t- k f i 1 e, you can simply create a file with a name and enter program lines into it:

Input/Result

EDIT TESTllENDLINEI Creates a new file named T EST 1. It is the cur­
rent file.

Shows that T E ::: T 1 was created and that its file
type is BASIC.

1b avoid confusing a file with other files having similar. names, you can rename a file using P E t·j A t'1 E:
Input/Result

F.:Et·jAt·1E TEST 1 TO I.}OL TAGE 1 I END LINE I Renames T EST 1 to I.} 0 L TAG E 1 .

102 Section 6: File Operations

If you are going to make changes to a file, you might want a backup copy of the file in case you decide
later that you don't want to incorporate the changes. You can copy a file, giving the duplicate a new
name using COP 'r':

Input/Result

COpy VOLTAGE1 TO VOLTEST1
I END LINE I

Creates a copy of I,} 0 L TAG E 1 and names it
I,} 0 L T EST 1. Both files now reside in memory.

After creating several files, you inight occasionally want to know which ones you have in memory. You
can instruct the computer to display a list of the files in memory using CAT ALL:

Input/Result

CAT ALL IENDLINEI

t·jAt'lE

t·j DATE

TE::n

[!]

1,.lOt-kfile

[!]

'')OL TAGE 1

[!]

',}OL TEST 1

I ATTN I

S T,"!'PE LEt·j

T I t'lE POPT

BA::;IC 11

BASIC [1

BASIC [1

BASIC [1

Instructs the computer to display a list of the files
in memory.

Displays headings for catalog information.

Shows that the oldest file is T EST.

Displays the next file name.

The next oldest file is ,-,.I 0 t- k f i 1 e.

Displays an entry in the catalog for the file
',}OL TAGE1.

Displays an entry for I,} 0 L T EST 1 .
Pressing [!] again displays the same file name,
indicating that this is the last file in the catalog.

Returns the BASIC prompt to the display.

Section 6: File Operations 103

When you no longer need a file, you might want to purge it (erase the file) to free up memory for other
uses. You can do this using PUF.:GE:

Input/Result

PllF.:GE ',}OL TE::::T 1 Purges I,} 0 L T E ::; T 1 from memory.

The quick demonstration of file operations above shows how you can create, name, rename, catalog,
and purge the files in memory. The HP-71 gives you greater flexibility than shown here in how you can
manipulate files. But before you can understand the details of the file operations available to you, you
need to understand something of how memory is organized on the HP-71.

Structure of HP-71 Memory
The HP-71 gives you great flexibility in specifying where files are stored in memory. The HP-71 mem­
ory can be divided into smaller sections, called ports (described below), in which programs and data can
be stored. Storing information in a specific port enables the HP-71 to find it fast since, if you specify
the port where your information is located, the HP-71 searches only that port rather than all of mem­
ory. This can increase the speed of programs that use files.

Two Types of Memory: RAM and ROM

The HP-71 contains two kinds of memory:

• Read-Only Memory (ROM). This memory can't be altered .

• Random-Access Memory (RAM). You can store and delete information in this type of memory.

Read-Only Memory (ROM). The HP-71 contains 64 kilobytes (64K) of ROM.* The ROM contains
the operating system and all the functions of the HP-71. You can't write information to this memory,
but you can increase the capabilities of the HP-71 by adding ROM modules to any of the four front
ports (as described below). Also, you can run programs contained in ROM modules and read informa­
tion from them.

Random-Access Memory (RAM). The HP-71 contains 17.5K bytes of RAM, all of which is avail­
able to the user. (However, the HP-71 uses about lK of RAM for its operations.) You can add up to four
RAM modules to the HP-71 to increase the amount of RAM.

This section deals primarily with manipulating files in RAM. It also describes how to copy files from
plug-in memory.

• A kilobyte equals 1024 (210) bytes.

104 Section 6: File Operations

Main RAM and Independent RAM

The HP-71 contains four external ports in addition to the HP-IL and Card Reader ports. These ports
are numbered 1 through 4, from left to right. You can plug applications modules (ROM) or memory
modules (RAM) into any of these ports in any order.

The HP-71 contains an additional port, port 0, which is internal-you can't add any modules to it.
This internal port contains 16K bytes of RAM which can be set aside from the rest of the internal
RAM.

The HP-71 RAM can exist in two forms:

• Main RAM.

• Independent RAM.

Section 6: File Operations 105

Main RAM. The HP-71 is initially equipped with a certain amount of RAM (described above), some
of which is contained in port O. This RAM, and RAM added to any ports, is called main RAM. The
HP-71 uses main RAM for its operations, keeping files, and storing variables.

Independent RAM. Independent RAM is memory that is internally set aside from main RAM. In­
dependent RAM is not used by the HP-71 for its operations but contains only the information that you
store in it. Independent RAM is useful for:

• Protecting files from a memory reset condition caused by an I t·j IT: 3 reset.

• Enabling the computer to locate files quickly, since the search for a file can be limited to one
portion of RAM.

• Enabling you to remove a memory module from a port without disturbing the information in the
remainder of RAM.

If memory modules were plugged into all four ports (assuming that they are not set aside as indepen­
dent RAM), main RAM would consist of the internal ~AM plus the plug-in memory, as shown in the
following illustration:

Port 0

Main RAM

Port 1 Port 2 Port 3 Port 4

Internal
RAM

Plug-in
Memory

Main RAM, independent RAM, and plug-in ROM are all called memory devices. For example, when
main RAM consists of all internal RAM and all plug-in RAM (as shown in the above illustration),
there is one memory device-main RAM. Any portion of RAM that is designated independent RAM
becomes a separate memory device. Also, a ROM is always a separate memory device.

Declaring Independent RAM (F F.: E E P (I F.: T)

The RAM within a port can be set aside as independent RAM by executing F F.: E E PO F.: T.

I FF.:EE POF.:T (port number)

106 Section 6: File Operations

Example: Change the RAM in port 0 to independent RAM:

Input/Result

FF.:EE POfn 0:: [1::0 Port 0 becomes independent RAM, and is set off
from all other RAM.

If you don't have a RAM module plugged into any of the ports, the memory in your HP-71 can be
represented by the following diagram, which shows the memory in port 0 having a boundary between it
and main RAM as a result of executing the above statement.

Port 0

Main RAM

Port 1 Port 2 Port 3 Port 4

Internal
RAM

Plug-in
Memory

Note: When you remove a memory module, first free the module's port. If you don't first free the
port, main RAM will be cleared when you remove the module.

If the computer doesn't have enough unused memory in main RAM to free aport, * you will need to
purge some files from main RAM to make enough memory available. (Refer to "Purging Files,"
page 115.)

The HP-71 contains 16K bytes of RAM in port 0 which is subdivided into four 4K units. You can free
each of these units separately by specifying them in the F F.: E E PO F.: T statement as 0, 0.01, 0.02, and
0.03. (The leading zero can be dropped.) For example:

FPEE POPTO::,Ol::O

sets aside one 4K portion of port 0 as independent RAM.

• Indicated when the FREE PORT statement results in the ERR: I nsuf fie i en t Memor y message.

Section 6: File Operations 107

Reclaiming Independent RAM (CLA I t'1 POF.:T)

To incorporate an independent RAM back into main RAM, execute C L A I t'1 PO F.: T.

I CLA I t'1 POPT (port number)

The port number can be a number from 0 to 5. (Port 5 is the card reader port.)

Example: Claim the memory in port 0 as part of main RAM.

Input/Result

CLA I t'1 POPT 0:: (1::'

The memory in port 0 is now part of main RAM, as illustrated below.

Port 0

Main RAM

Port 1 Port 2 Port 3 Port 4

Internal
RAM

Plug-in
RAM

Note: When you claim an independent RAM, its memory is cleared by the HP-71. Therefore, you
might want to copy files from the independent RAM to main RAM, another port, or a mass storage
device before you claim that independent RAM.

Obtaining Memory Information (t'1 E t'1, ::; H 0 ~,~ P 0 ~~ T)

When creating, storing, or copying files you might need to know the storage capacity of a RAM module
and how much of that capacity is unused. This information is especially useful if you need to determine
how much memory to make available so you can create an independent RAM (as described above).

Determining the Amount of Unused Memory. You can determine the amount of unused memory
in main RAM or an independent RAM by executing t'1 E t'1.

t'1 E t'1 [0:: port number::']

108 Section 6: File Operations

The integer returned indicates the number of bytes of memory that are unused.

Examples:

1'1 E 1'1 Returns amount of unused memory in main
RAM.

Returns the amount of memory available in the
port indicated by A.

Returns the amount of unused memory in port 1.

Determining Memory Capacity. You can determine the size (in bytes) and type of memory in a port
using the ::; H 0 ~,j F' 0 P T statement.

Executing this statement shows the port number, the memory capacity in bytes, and the type of mem­
ory device. ROMs and independent RAMs are shown starting with the lowest-numbered port, then all
main memory devices. A memory type of "0" indicates main RAM; "I" indicates independent RAM; "2"
indicates a ROM; "3" indicates an EEPROM.*

Example: Set aside port 0 as an independent RAM, then find the memory size and type for the port.

Input/Result

1'1 E 1'1 I END LINE I

FPEE F'OPT':: 0::' I END LINE I
::;Hm,j F'Ofn I END LINE I

(1 4:J96 1
0.01 4096 0
~~1 • 02 4096 0
0. £13 4096 0

Determine if there is enough memory in main
RAM to set aside port 0 as an independent RAM.
(Port 0 contains 4096 bytes of RAM.)

Displays the number of unused bytes in main
RAM. If the number is at least 4096, this example
will work. If you don't have at least this much
memory, purge some files to free up more memory
if you want to complete this example.

Sets aside port 0 as independent RAM.

Shows the type and size of main RAM and port O.

Displays port information. Port 0 contains 4096
bytes of independent RAM. Ports 0.01, 0.02, and
0.03 are part of main RAM.

* Applies to the 2CCCC and later vE'rsions of the HP-71 system ROMs. Earlier versions do not show memory types "0" and "3". To
determine the version of system ROMs you have. execute VER$.

Section 6: File Operations 109

File Names
Each file you create in memory has a name. When you perform operations on a file, you refer to the file
by name. Before you start creating files, you should become familiar with the rules governing file
names.

Characteristics of File Names

File names can be a combination of up to eight letters or digits, but the first character must be a letter.
Characters other than letters or digits are not allowed. You can use upper- or lowercase letters, but
they will all be converted to uppercase.

Examples of Invalid and Valid File Names

Invalid Reason Valid

TAt·iGEt-H I AL Too long. TAt·iGEtH::;
4 P L D:: Can't begin with a number. FOUF.:PLE;:'::
Test: 12$ Can't use a colon or a dollar sign. Test12

A file name can be an unquoted string or a string expression. * Of course, a string expression must
evaluate to a valid file name (as described above).

Examples:

COP'l TAFGETS

COP\' "TAFGETS"

COP'l A$

COP\' A$ t B$

Uses an unquoted string to specify a file.

Uses a quoted string to specify the same file.

Uses a string variable which evaluates to a file
name.

Uses a string expression which evaluates to a file
name.

Files with the same name can exist in different memory devices (for example, in port 0 and in main
RAM). However, an error results if you try to store a file in a port or in main RAM when a file by that
name already exists there. For example, the following is a valid statement:

COpy FAOIAL:POFT(0) TO FAOIAL:MAIN

• A quoted string is the simplest form of a string expression. Therefore, when this manual refers to a string expression, it means
that a quoted string is also valid.

110 Section 6: File Operations

However, this is not valid:

COPY RADIAL:PORT(0) TO RADIAL:PORT(0)

since the file name already exists in the port.

Default Files

For statements that operate on files, you can optionally specify a file. When you don't specify a file,
some statements automatically use a default file (usually the current file) for their operation.

You can determine the default files that a statement uses by referring to the statement's keyword dic­
tionary entry in the HP-71 Reference Manual. Where a statement is introduced in this manual, the
default files it uses are described.

Reserved Words

The HP-71 attaches special significance to certain words used in statements that operate on files.
These words are:

HP-71 Reserved Words

Word Description

ALL Used in some statements to refer to all allowed options.

CARD Refers to the magnetic card reader.

ItHO Used as part of the T R A t·j ::; FOR t'l statement.

KE\'S Refers to the file of current key definitions (k Eo ';:Is).

TO Used as an intermediate word in statements such as
COP\' and REt·jAt'lE.

You cannot use these words as file names unless they are included in string expressions. To avoid am­
biguity, it is better not to use them as file names at all.

Device Names
For file operations, you can also specify the location of a file in addition to its name. This speeds up the
search for the specified file, and can prevent ambiJUity when files of the same name reside in different
memory devices. For this discussion, a device name is the name of a memory device, such as t'l A I t·j.

Section 6: File Operations 111

Characteristics of Device Names

Device names differ from file names in that device names can't be created by the user. The HP-71 only
recognizes certain device names-attempting to use a device name other than one the computer recog­
nizes generates an error. The following table shows valid device names on the HP-71:

Valid Device Names

Device Name Description

POfH Specifies all ports beginning with port O.

POF.:T(n) Specifies a particular port (where n is a number from
o through 5)

t'1AHj Specifies main RAM.

CAF.:D Specifies the magnetic card reader.

PCRD Specifies a private file on the magnetic card reader.

To specify a device in statements such as COP 'l and r1 ERG E, precede the device name by a colon. This
distinguishes it from a file name. For example

COP\' file name TO : PORT 0:: ~~1)

copies a file to port O.

If you want to specify both a file and its location, use

file name : device name

For example,

COP\' FILE 1 : t'1A I t·j TO : POF.:T o::~])

stores a copy of F I L E 1 in port O.

Default Devices

In many cases the HP-71 uses a default device when one isn't specified. Generally, the following rules
apply:

When a device is not specified:

• If a file name is specified, the computer searches for it beginning in main RAM, then in succes­
sively higher-numbered ports beginning with port O.

• If a file name is not specified, the device in which the current file resides is the default device.

If a device isn't specified for a destination file in a COP \' operation, the default device is main RAM.

112 Section 6: File Operations

File Search Order

When the HP-71 needs to locate a file in memory (when a device isn't specified for a file), it first
searches main RAM, then searches the memory in each successive port, beginning with port o.

If PO F.: T is the specified device but no port number is given, then all ports are searched, from the
lowest-numbered port to the highest. If a specific port is specified, then only that port is searched.
Also, if t'1 A I t·j is the specified device, then only main RAM is searched.

Copying Files (C: Ci ::::' 'y')

The COP \' statement enables you to store and retrieve files from main RAM, independent RAM, mag­
netic cards, and to retrieve files from plug-in ROM. This statement duplicates a file that you specify.

~ Simplified syntax ~

leo P \' source file TO destination file
L--I _____ _

'l\vo files are specified in the statement:

• The source file (the one to be copied).

• The destination file (the one to contain the duplicate).

When you execute COP \', the HP -71 creates the destination file and stores a copy of the source file in
it. The destination file cannot already exist.

The source file or destination file can be specified by a file name, a device name, or both. Also, you can
execute COP 'r' without explicitly specifying a file or a device. That is, you can specify a file in one of the
following forms:

• file name

• : device name

• file name : device name

• no file name or device name.

When you omit a file name, device name, or both, the HP-71 uses defaults (as previously described).

The following table summarizes the effects of COP \' given the different combinations of specified file
names and device names and their defaults.

,

Source*

Name I Device

x

x

x

x

Section 6: File Operations 113

Effects of COP '"!' Given Various Parameters

Destination*

Name I Device
Computer's Response and Example

x

x

x

x

Copies current file, If In an Independent RAM or a ROM, to main
RAM. The destination file has the same name as the current file.
COP'"!,

X Copies current file to specified device. The destination file has the
same name as the current file.

x

x

x

~~I;'~~ c:~~e~t~il~F~: ~:;~ RAM. The destination file has specified I
file name. I
COpy TO NEW1 I
Copies current file to specified device. The destination file has the I
specified file name.
COPY TO NEW1:PORT(2)

Copies file from CARD or PCFW to main RAM. No other device
can be specified. Destination file has same name as card file.
COP'"!, : PCRD

Valid only if CARD or PCFW is source file's device and t'lA I t·j is
destination file's device. Copies a card file to specified main RAM.
Destination file has card file's name.t
COP'"!, CAF.:D TO : t'lA I t·j

If specified device is CARD or PCRD, copies card file to main
RAM. If a different device is specified, copies a file from specified
device to main RAM. The HP-71 searches for a source file with
the same name as the specified destination file.t
COP\' : POF.:T ([1) TO t·jA t'lE 1

If source file's device is CAF.:D or PCF.:D, then destination file's
device must be t'l A I t·j; copies file from magnetic card to main
RAM. If source file's device is any other, searches for a source file
with the same name as the specified destination file and copies it
to specified file in the specified device.t: Destination file has speci­
fied file name.
COpy CARD TO NEW:MAIN
COPY :MAIN TO NAME1:PORT(0)

• An X indicates that the parameter is specified.

t When only a device is specified for the source file (other than C A FW or PCP [I), a name must be specified for the destination file.

t Files from the magnetic card reader can only be copied into main RAM. Therefore, if you specify CAFW or PCF:[I as the source file's
device, you can specify only ~lA I t·j as the destination file's device. (For more information about using the magnetic card reader,
refer to appendix C, "Using the HP 82400A Magnetic Card Reader.")

114 Section 6: File Operations

Effects of COP \' Given Various Parameters (continued)

Source* Destination*

Name I Device Name I Device

x

x x

x x

x x x

x x

x x x

x x x

x x x x

• An X indicates that the parameter is specified.

Computer's Response and Example

Copies specified file to main RAM. Destination file has same name
as source file.
COP\' OLD 1

Copies specified file to specified device. Destination file has same
name as source file.
COP\' OLD 1 TO : POPT 0:: 3)

Copies specified file to main RAM. Destination file has specified
name.
COPY OLDl TO NEWl

Copies specified file to specified device. Destination file has
specified name.
COP\' OLD 1 TO t·jEL,ll: POF.:T 0:: 1)

Copies specified file in specified device to main RAM. Destination
file has same name as source file.
COPY OLD1:POPT0::3)

Copies specified file in specifed device to specified destination de­
vice. Destination file has same name as source file.
COP\' OLD 1 : POF.:T 0:: 3) TO : POF.:T 0:: 1)

Copies specified file in specified device to main RAM. Destination
file has specified name.
COP'"(' OLD 1 : POPT 0:: 3) TO t·jEL,ll

Copies specified file in specified device to specified destination
device. Destination file has specified name.
COP\' OLD 1 : POPT 0:: 3) TO t·jEL,ll: POF.:T 0:: 1)

Section 6: File Operations 115

Renaml"ng FI"les (F' F· ! ... ! i:::i ! .• ! !:::.)

Files can be renamed with F.: E t·l A t'1 E.

simplified syntax -----------------------------------,

F.: E t·l A t'1 E old file name T 0 new file name

An old file name can be expressed as:

• File name.

• File name: device name.

• Blank. (Defaults to current file.)

A new file name can be expressed as:

• File name.

• File name: device name.

There is no default for a new file name-you must always specify it. The file's device can be specified
with either the old file name or the new file name.

Examples:

F.:Et-1At'1E TO F I LE2

RENAME FILEI TO FILE2

RENAME FILE1:POF.:T(0) TO FILE2

RENAME FILEI TO FILE2:POF.:T(0)

Purging Files (F:' t . .! i? C; E:)

To purge a file from RAM, use P U 1<: G E.

I PUF.:GE [file name[: device]]

Renames current file to F I L E 2.

Renames FILE 1 to F I LE2.

Renames FILE 1 in port 0 to F I LE2.

Renames FILE 1 in port 0 to F I LE2.

The default file for this statement is the current file. If you specify a device, you must also specify a file
name.

116 Section 6: File Operations

Examples:

PUPGE LOGIC1

PUPGE PPOTON:MAIN

PUPGE

Searches for a file named LOG I C 1 and if found,
purges it.
Purges a file named P F.: 0 T 0 t·j from main RAM.
Purges the current file.

You can purge all unsecure files in main RAM by executing P U F.: G E ALL.

I PUPGE ALL

Executing PUP G E ALL doesn't affect files stored in independent RAM.

.... M . F" (' .. " , ,) ergmg I es :'i i:::. i"':. ' .. :' i::: .

You can use the t'l E F.: G E keyword to integrate a BASIC file into the current file or a KEY file into the
system k Eo ';:I s file. Merging BASIC files is discussed here; merging a KEY type file is discussed on page
128.

~ ;':~';' ;:;;e me [, start line or key number [, tina! Une or key number II

The source file is the file you wish to merge into the current file. The default values for start line and
tina/line are the first line and the last line in the source file. The source file is not changed by a t'l E P G E
operation.

All line numbers are correctly inserted into the current file. If the same line number exists in the
source and current files, the line in the source file replaces the line in the current file. To ensure that
all lines in the current file are preserved, you can P E t·j U t'l B E P either the source or the current file.

Examples:

t'lEPGE FILE 1 : POF.:T':: 1 ::.

t'lEPGE K I ~'iAt·j I ::; 1.,70., 150

t'lEPGE F I LE2., 1 [H~l

Merges all of BASIC file F I L E 1 in port 1 into
the current file.

Merges lines 70 through 150 of BASIC file
K I ~'i A t·j I ::; 1 into the current file.

Merges file F I L E 2 into the current file starting
at line 100.

Section 6: File Operations 117

File Security

The HP-71 enables you to perform many operations on files, such as viewing, modifying, and copying.
However, in some situations you might want to prevent these operations from being performed on a
file. For instance, you might not want a program to be viewed or modified by others. The HP-71 en­
ables you to control the access to files and protect them from being modified, purged, or viewed.

Protecting a File's Contents (SECUPE, Ut·~SECUPE)

You can protect a file from being modified or purged using :::: E CUP E. The effects of this statement can
be reversed by the statement U t·l SEC U F.: E.

I SEC U F.: E [file name [: device]]

SI t·l SEC U P E [file name [: device]] i L~___~

You can secure any type of file. A secure file can't be altered or purged. However, you can execute it (if
it is a program file), view its contents, read from it, or copy it.

Controlling File Access (P PI'.} ATE)

You can prevent your file from being viewed, copied, or modified using PP I ',}ATE.

I P P I I,} AT E file name [: device]

The P P I I,) ATE statement is permanent-you can't reverse its effects.

Since this statement has such lasting effects, you must explicitly specify a file for the statement. This
ensures that you don't accidentally make the current file a private file.

Examples:

PP I ',}ATE BEAF.: I t·lG

PPIVATE AZIMUTH:POPT(0)

P P I I,} ATE operates on program files only. You can execute or purge a private file in memory, but no
one (including you) can view, copy, or modify it. (You can copy private files from magnetic cards to
memory, but you can't copy them to other parts of memory or back to magnetic cards.)

118 Section 6: File Operations

Using Both ~:;ECUPE and PP I '.}ATE

A program file can be both private and secure. The table below summarizes the type of operations that
can be performed on a file that has been protected with P P I I,} ATE, ::; E CUP E, or both.

Operations Permitted on Protected Files

Ut·1SECUF.:E
SECUF.:E

(default)

Not Private (default) Execute Execute
View/Copy View/Copy
Modify/Purge

PF.: I I,}ATE Execute Execute
Purge

If a file is both SEC U R E and P P I I,} ATE, the file can only be executed. If you execute U t·l SEC U PEon
such a file, you can execute it and purge it, but because it is a private file, you can't modify it.

File Catalogs

When you need information about files in memory, you can use CAT ALL to obtain a catalog of mem­
ory files.

A catalog gives you the following information about a file:

• File name.

• Type of security.

• File type.

• Size of file (in bytes).

• Date file was created.

• Time file was created .

• Port (if any) in which the file is located.

Catalog information is always returned in the same format. Catalog information returned for more
than one file is preceded by a catalog header. For example, when you execute CAT ALL, the HP-71
first displays:

t'lAt'1E ::; T'lPE LEt·l DATE T I t'1E POPT

To obtain a catalog of all files in main RAM, independent RAM, and plug-in ROMs (these are
collectively called memory devices), execute C AT ALL.

Section 6: File Operations 119

CAT ALL

This statement displays the catalog information for the files in each memory device, starting with
main RAM. By pressing [Y] and ~, you can display the catalog entries for each file in a memory
device. To view the first and last catalog entries for a memory device, press []]OO and []]OO
respectively.

When you want to display the catalog information for the next memory device, press [D1-LiNE I. For
example, if you are viewing the catalog entries for main RAM, pressing [D1-LiNE 1 enables you to view
the entries for port 0 (provided that port 0 has been set aside as independent RAM). By pressing
[D1-LiNE 1 again, you can view the entries for the memory device in the next higher-numbered port and
so on. Before displaying the catalog for the next port, the computer displays the catalog header again.

The following table summarizes the keystrokes that enable you to view catalog entries when you ex­
ecute a catalog function.

Keystrokes j
[Y]
~
[]]OO
[]]OO
[D1-LiNE 1

Catalog Viewing Keystokes

Computer's Response

Displays the next catalog entry in a memory device.
Displays the previous catalog entry in a memory device.
Displays the last catalog entry in a memory device.
Displays the first catalog entry in a memory device.
Enables you to view the entries for the next memory
device. After viewing entries for last memory device,
returns the computer to the BASIC prompt.

Sometimes you might want catalog information for a specific file or all the files in a specific memory
device. You can get a catalog for:

• All files in main RAM, independent RAM, and plug-in ROMs. (CAT ALL.)

• All files in main RAM only. (C AT: t'l A I t-L)

• All files in all ports. (CAT: pl]ln.)

• All files in a specific port. (C AT: P I] F.: T U'::1) .)

• A file specified by name. (C AT F I L E 1.)

• A file specified by the order in which it is stored in a memory device. This is the order it appears in
the catalog for the memory device. (C A T $ (3 ::. .)

If you want catalog information for specific files and ports, refer to the keyword dictionary entries for
CAT and CAT$ in the HP-71 Reference Manual.

Section 7

Customizing the HP-71

Contents

Overview .. 121
Redefining the Keyboard (DEF KE'y') 121

Specifying Key Name ... 122
Types of Key Definitions .. 124
Viewing and Editing Key Definitions (F ETC H K E 'y', KEY D E F $, OJI VIEW I) .. 125
Activating the User Keyboard (USEF<:, OJI USER I, [[]11 USER I) 126
KEY Files (::; E C U F<: E, U t·~ SEC U F<: E, CAT, CO F' 'y', P E t·j A t'l E,
F'UPGE, LIST, t'lEPGE) .. 127
Cancelling Key Definitions ... 128

Program/Keyboard Interactions ... 129
Testing for a Pressed Key (K E 'r' D 0 L,Hj) 129
Determining Which Key Is Pressed (K E 'y' $) 130
Causing a Program to "Press" a Key (p U T) 131

Alternate Characters .. 132
Defining Alternate Characters (CHAPSET, CHAPSET$) 132
Preserving and Destroyirig Alternate Characters 135

Protected Display Fields (LH t'WOL'J) 135
Reading Characters From the the Display (D I SF' $) 136
Display Graphics ... 137

Reading Individual Columns of Dots From the Display (G DIS F' $) 137
Displaying Graphics (GD I SF') ... 137

Restricting HP-71 Use (LOCK) ... 139
Automatic Command Execution (STAPTUF') 139
Controlling the Display (LC) .. 140

120

Section 7: Customizing the HP-71 121

Overview

This section covers:

• The power of user-defined keys.

• Saving several sets of key definitions.

• Using an active keyboard during program execution.

• Creating and using your own set of characters.

• Protecting portions of the display from character entry.

• Using already displayed characters in a program or key definition.

• Controlling each of the 132 columns of dots in the display.

• Locking your HP-71 against unauthorized use.

• Four ways you can control how your HP-71 displays information.

Redefining the Keyboard (L) i:::: i:::· i< F: \')
You can redefine every key on the keyboard except the two shift keys, ITl and []], to act as typing aids
or to execute one or more commands. Not only can you redefine the primary functions of keys, but also
each of the two shifted functions as well (accessed with ITl and []]). Key definitions are automatically
placed in a special system file, k e'::IS, discussed later in this section (page 127).

[DEF] KE'/ key name [., assigned. string [assignment type]]

DEF is optional. The key name can be specified two ways, by the keycap symbol (alone or with F or G)
or by the identifying key number. If the assigned. string (and assignment type) is omitted, the statement
cancels any user definition for that key, and the key reverts to its Normal keyboard definition.

The assigned. string specifies the typing aid or the one or more commands assigned to the key by the
DE F K E \' statement. The assignment type specifies which of three different types of key definitions
the statement specifies: typing aid, display and execute, or execute only. If the assignment type is omit­
ted, the key definition is a display and execute type.

The key name and assigned. string can be specified using any valid string expression, including quoted
strings.

122 Section 7: Customizing the HP-71

Specifying Key Name

By Character. Often the simplest way to specify the key is to use, within quotation marks, either one
or two characters to represent the unshifted or shifted key. For all keys-except letter keys-that dis­
play characters, the following applies:

For an unshifted key, use the character displayed when the key is pressed.

For an ITJ-shifted key, use the unshifted character preceded by the letter F (or f).

For a []]-shifted key, use the unshifted character preceded by the letter G (or ':::I).

For letter keys, we'll illustrate the general rule using ~ and 0 as examples. Anyone of the following
character key names refers to the keystroke(s) that displays a: "':::I a", "9 A", "Ga", "GA", and ".;j".
The only character key name that refers to the keystroke(s) that displays A is "A".

When lowercase is set and 0 is pressed on the User keyboard, any string assigned to ~ is displayed
and/or executed. When lowercase is set and ~ is pressed, any string assigned to 0 is displayed and/or
executed.

Examples of DE F f< E \' Key Names

Key Name Represents on the Normal Keyboard

"FH" The ITJ-shifted []] key.
II II The []]-shifted c::J key. ...
111:;1 II The keystroke(s) that produces lowercase "g."
II G! II The keystroke(s) that produces uppercase "Q."
IIG " The []]-shifted I SPC 1 key.
11GB!! The keystroke(s) that produces lowercase "b."
11'3 d II The keystroke(s) that produces lowercase "d."

By Key Number. There are some keys, like ION I, that cannot be redefined using a key character,
since they do not display a character when pressed. Any such keys, and any other unshifted or shifted
key (except the shift keys ITJ and []]) can be represented by a system-assigned key number preceded by
the # symbol, all enclosed in quotes. As shown in the following diagrams, un shifted keys are numbered 1
through 56, ITJ-shifted keys are numbered 57 through 112, and []]-shifted keys are numbered 113
through 168.

The table below indicates the relations between key number, the displayed character represented by
that number, the keystroke(s) represented by that number, and letter case setting.

Key Number Examples

Uppercase Set Lowercase Set

Key Number 15 Represents A and 0 A and []]0
Key Number 127 Represents a and []]0 a and 0

Section 7: Customizing the HP-71 123

Notice that key number 15 always represents uppercase A, but the keystroke(s) represented by number
15 depends on which letter case is active when the key definition is used (from the User keyboard).

As the following diagrams show, nine numbers are not used-44, 45, 52, 100, 101, 108, 156, 157,and 164.
These are the numbers that would identify [D, [[], and the lower half of the I END LINE I key. These
numbers assume uppercase is set. Numbers for [D and [[] are not useable.

Unshifted Keys

Key Code
Key

Key Code
Key

Key Code
Key

Key Code
Key

1
Q

15
A

29
Z

43
ON

[D Shifted Keys

Key Code
Key

Key Code
Key

Key Code
Key

Key Code
Key

57
IF

71
CALL

85
EDIT

99
OFF

[[] Shifted Keys

Key Code
Key

Key Code
Key

Key Code
Key

Key Code
Key

113
q

127
a

141
z

155

2
W

16
S

30
X

f

58
THEN

72
GOSUB

86
CAT

114
w

128
s

142
x

3 4
E R

17 18
D F

31 32
C V

46

9 RUN

59 60
ELSE FOR

73 74
RETURN GOTO

87 88
NAME PURGE

102
SST

115 116
e r

129 130
d f

143 144
c v

158
CTRL

Key Identification Numbers

5 6 7 8 9
T Y U I 0

19 20 21 22 23
G H J K L

33 34 35 36 37
B N M ()

47 48 49 50 51
<I(~ SPC .. y

61 62 63 64 65
TO NEXT DEF KEY ADD

75 76 77 78 79
INPUT PRINT DISP DIM BEEP

89 90 91 92 93
FETCH LIST DELETE AUTO COPY

103 104 105 106 107
BACK -CHAR IfR LC -LINE

117 118 119 120 121
t y u i 0

131 132 133 134 135

9 h i k I

145 146 147 148 149
b n m [1

159 160 161 162 163
10(~ ERRM .. Y

10 11 12 13 14
P 7 8 9 f

24 25 26 27 28
= 4 5 6 *
38 39 40 41 42

END 1 2 3 -
L
I 53 54 55 56
N

0 + E ,

66 67 68 69 70
LR PREDV MEAN SDEV SQR

80 81 82 83 84
FACl SIN COS TAN EXP

94 95 96 97 98
RES ASIN ACOS ATAN LOG

109 110 111 112
USER VIEW CALC CONT

122 123 124 125 126
p , { } "

136 137 138 139 140
; $ % & :

150 151 152 153 154
CMDS ! " # @

165 166 167 168
1 USER < > ?

124 Section 7: Customizing the HP-71

Example:

"#94" This represents CDI RES I.

Types of Key Definitions

Typing Aids (.:). If a semi-colon follows the assigned string in a key definition, the string is displayed
but not executed when the specified key is pressed on the User keyboard.

Immediate Execution. If no symbol follows the assigned string, the string is first displayed, then
e:recuted when the key is pressed on the User keyboard. The assigned string is displayed at the current
cursor position, and the HP-71 attempts to execute the entire line, including any characters already in
the display when the defined key is pressed. This type of key definition can be useful as a typing aid to
supply the last part of a command or input line.

Direct Execution (:). If a colon follows the assigned string, the string is executed directly without
being displayed. Any characters in the display are ignored when an execute-only key is pressed. One
way this type of key definition can be used is to provide a response to an I t~ PUT statement.

Examples: The following examples assume the uppercase letter set is active.

ClEF KE\' "c"., I PUt·l "CLOCK" I :

Assume a program named CLOCK is in memory. When you press [ill@] on the User keyboard after
executing this key definition, the C L 0 C K program runs. The quotes around C L 0 C K are optional.

KE'"(' "#94"., CHF.:$ (92) .:

When you press CDI RES Ion the User keyboard after executing this key definition, the HP-71 displays
the integer division operator, Notice that C H F.: $ (92) is not enclosed in quotes. If quotes enclosed
C H P $ (92) in this key definition, you would display the characters C H F.: $ (92) when you pressed
CDI RES Ion the User keyboard.

KE\' "FC"., "CHP$(".:

This statement assigns a typing aid to CD@]. This typing aid makes it easier to enter a C H P $ function.

ClEF KE'"(' "F3" .. "P3=74, 95"

Neither a semi-colon nor a colon ends this key definition, so pressing CDI ATAN 1 displays, then executes
the assignment statement.

Section 7: Customizing the HP-71 125

Viewing and Editing Key Definitions (FETCH KE'r', KE"c'DEF$, ITJI VIEW I)
The FE T C H K E \' statement returns the specified DE F K E \' statement into the display for viewing
and editing. The K E 'l D E F $ function returns the assigned string portion of the DE F K E 'l statement
(the typing aid or command assigned to the key) for viewing only.

I FETCH KE\' key name

Both FE T C H K E \' and DE F K E \' use the same key name specification.

Examples: These show FE T C H K E \' used to display two of the key definitions made above.

InputjResult

FETCH KE'l .. c" I END LINE 1

:> DEF KE\' 'c' 'F.:Ut·j .. ClO
CK" , :

FETCH KE\' .. #94" I END LINE 1

:>DEF KE\' '#94' I". I I
"' •• r

KE\'DEF$ (key name)

Displays the key definition assigned to lowercase
"c."

This key definition is displayed in the same form
as it was entered (the optional quotes around
C l 0 C K are displayed). You can edit and reenter
the definition.

You must use the key number for ITJI RES I, since
the HP-71 does not recognize PE:::; as a symbol
for ITJI RES I.

The K E 'l D E F $ function uses the same key name specification as is used by DE F K E \' and
FETCH KE'l.

126 Section 7: Customizing the HP-71

Examples: These show K E 'r' D E F $ used to display the other two key definitions made above.

Input/Result

KE\'DEF$ 0:: "FC" ::. I END LINE I

.:CHfU(

KE\'DEF$ 0:: "F3" ::. I END LINE I

F'3=74,95

The string assigned to ITJ@] is displayed, preceded
by.: , showing that this definition is a typing
aid.

The blank space preceding this statement identi­
fies the key definition as the type that displays,
then executes.

Pressing ITJI VIEW I enables the next key pressed to display, while held down, its assignment string, pre­
ceded by a semicolon, blank, or colon to identify the assignment type. If the key has no user definition,
it displays Unassi':lned. For example, pressing ITJIVIEWI, then []]@] (uppercase active) displays,
while @] is held down, : F.:Ut·j "CLOCK". (This is the definition assigned to @] on page 124).

Activating the User Keyboard (U::;EF.:, [I] I USER I, []]11 USER I)
Whenever the User keyboard is active, the USER annunciator is visible in the display.

The U :::; E F.: statement has three forms:

I USER
U::;EF.: ut·j
USEF.: OFF

USE F.: switches the User keyboard from its current state to the opposite state (from active to inactive
or from inactive to active). Pressing ITJI USER I is the keyboard equivalent of executing USEF.:. It ac­
tivates and inactivates the User keyboard.

USEF.: Ot·j switches the User keyboard from inactive to active (unless the User keyboard is already
active).

U :::; E F.: 0 F F switches the User keyboard from active to inactive (unless the User keyboard is already
inactive).

Pressing []]11 USER I activates or inactivates the User keyboard for only the next shifted or unshifted
keystroke. This is especially useful if you want your User keyboard to be inactive for all keystrokes
except when you're pressing a particular user-defined key.

Section 7: Customizing the HP-71 127

KEY Files (::; E CUP E, U t·~ SEC U P E, CAT, C [I P '"I', P E t·~ A t'l E,
PUPGE, LIST, MEPGE)

When you make your first key definition, a special file named k e '::I s is automatically created in which
that and subsequent key definitions are stored. You can L I ::;T, COP'r', PEt'jAt'lE, t'lEF.:GE, SECUF.:E,
Ut·jSECUF.:E, and PUF.:GE the k e'::IS file, and you can display its catalog with CAT KE\'S and
CAT ALL.

File of Current Key Definitions. All current key definitions are stored in the system k e '::I S file.
When the User keyboard is active, all key definitions in the k e '::I s file are active. While the k e '::I s file
cannot be made private, it can be made secure with the SEC U P EKE '"I' S statement, and unsecure with
the U t·j SEC U P EKE \' S statement. (Refer to page 116 for a discussion of file security.)

,
Creating Several Files of Key Definitions. You can create other KEY files in addition to the
k e '::I s file. While only the key definitions in the k e '::I s file are current, you can exchange any of your
KEY files with the k e '::I s file, thereby designating any of your key definition files as current. Such a
file exchange also saves the key definitions previously in k e '::I s for future use. You can use the follow­
ing statements to exchange files between k e '::I s and another KEY file:

• F.:Et·jAt'lE KE\'S TO file name,

• COP\' KE'lS TO file name,

• COP \' file name T 0 K E \' S,

• F.:Et·jAt'lE file name TO KE'lS.

Listing the k e '::I s File. Executing LIS T K E 'r' S displays each key definition in the k e '::I s file in
key-number order, defined in the diagrams on page 123. Each definition is displayed in DE F K E \'
format, and remains in the display for a period defined by DELA\' (described on page 26). You can list
a portion of the k e '::I s file (one or more definitions) by specifying a key number or key number range.

Examples:

LIST KE\'S., 1., 14

LIST KE\'S .. 24

Lists all key definitions assigned to the unshifted
top row keys.

Lists the key definition assigned to the G key.

128 Section 7: Customizing the HP-71

Merging a KEY File To k e '::I S. You can merge a KEY file you have created into the system k e'::IS

file.

t'1 E P G E file name [: device] [.. start key number [.. end key number]]

The file name, with optional device name, specifies the KEY file you wish to merge into the k e '::I S file.
Key definitions in any KEY file are ordered by key number, lowest key number first, If no key numbers
are given, the entire file is merged into k e '::I s. If only the start key number is specified, only the defini­
tion with that key number is merged into k e'::Is. If both start key number and end key number are
specified, all key definitions with key numbers in that range are merg~d into k e '::I s. Any definition in
k e '::I s, whose key number is the same as a key number being merged, is deleted, and the key definition
in the file being merged replaces it. The file being merged is not altered. After t'1 E P G E is executed, the
specified file exists unchanged; only the k e '::I S file is altered.

Examples:

t'1EPGE KE\'::; 1., 1., 14

t'1EPGE KE\'S2., 67

t'1EF.:GE t'1ATHKE\'S

Cancelling Key Definitions

Merges any key definitions assigned to the
unshifted top-row keys from KE\'::; 1 into k e '::I s.
Any unshifted top-row key definitions previously
in k e '::I S are replaced by the definitions being
merged. K E \' S 1 remains unaltered.

Merges the key definition in K E \' ::; 2 assigned to
the [IJ -shifted [I) key into k e '::I s.

Merges the entire file t'1 A T H K E \' S into k e '::I s.
The key definitions in t'1 A T H K E \' ::; are added to
the definitions in k e '::I s. Any keys defined in
both files will have the t'1 A T H K E \' ::; definition.

Executing a DE F K E \' that includes the key name but no assigned string cancels any key definition
assigned to that key and removes the definition from the k e '::I s file.

Example:

KE\' "#155" Cancels the key definition assigned to []]I ON I.

'Ib cancel all current key definitions, execute P U F.: G EKE \' S. Or, if you want a copy of your key defini­
tions preserved, execute P E t·j A t'1 EKE \' S TO file name.

Section 7: Customizing the HP-71 129

Program/Keyboard Interactions
There may be situations where it's useful to respond directly to a running program rather than re­sponding to an I t·1PUT statement. The HP-71 provides three types of direct response. A running pro­gram can:

• Test if any key or a specified key is pressed.
• Determine which keys have been pressed.
• "Press" a key.

Testing for a Pressed Key (~::: E 'y' D 0 L'~ t·~)

I f<EYDOWt·l

This form of the K E \' D 0 ~~ t·l function returns a 1 if any key, including m or [[), is down at the moment K E \' D 0 ~'l t~ is executed, and a (1 otherwise.

I f:::E7DC:~.m '_::k_e_y_n_a_m_e_) __________________________ I __ ---',
This form of K E \' D 0 ~'l t·l returns a only if the specified unshifted key is pressed. Otherwise, a 0 is returned. The key name can be specified by symbol or by key number in the same way key name is specified for D E F f< E Y, except that shifted keys are not accepted.

Examples:

1<=I<E\,DO~'lt~.:: "7" ::.

X=f<E\'DOWN(CHR$(87»

K4=KE\'DO~,lt·l ("# 1~:::t")

If the W key is down when this statement is ex­
ecuted, the statement assigns 1 to K; otherwise K
is assigned o.
If the [}X] key is down when this statement is ex­
ecuted, the statement assigns 1 to ::<:; otherwise ::<
is assigned o.
If the [E) key is down when this statement is ex­
ecuted, the statement assigns 1 to K4; otherwise
K 4 is assigned o.

130 Section 7: Customizing the HP-71

Determining Which Key Has Been Pressed (K E \' $)

Up to 15 keystrokes can be stored by the HP-71 in a special storage area called the key buffer. Or­
dinarily, when you press a key, the keystroke is momentarily stored in the key buffer, then removed, and
the key's action appears to occur immediately. However, if you press a key while a program is running,
the keystroke is stored in this key buffer.

Note: It a D I ::W statement sends an end-ot-line message to the display, and the DEL A \' is not
zero, the key buffer is reset (no keystrokes remain in the buffer).

KE'.,'$

This simple function removes the oldest key in the key buffer and returns its name in the same format
as DEF KE\', KE'lDO~'Jt·j, and KE\'DEF$ expect.

Example: This program turns your HP-71 into a two channel counter. It could be used, for instance,
to keep track of the numbers of children and adults attending a fund-raising function. Suppose you
were positioned at the ticket table. You press ~ for each adult and c:J for each child that passes. The
display shows a running total of each, adults on the left of the display, children on the right. Th reset
both channels, press [[).

Execute ED ITT ~,J 0 C 0 U t·j T and enter this program.

10 ! TWOCOUNT

20 STD @ DIM A$,I,J

30 DELAY 0,0

401=0 @ J=O

50 DISP I;TAB(10);J

60 A$=KEY$

70 IF A$="."THEN 1=1+1 @ GOTO 50

80 IF A$="+"THEN J=J+1 @ GOTO 50

90 IF A$="R"THEN 40 ELSE 60

Display shows no decimal point.

Allows maximum counting speed.

Pressing c:J increments left counter.

Pressing ~ increments right counter.

Pressing [[) resets both counters.

If no keys are pressed while this program is running, the program loop, lines 60 through 90, executes
repeatedly. If c:J is pressed, I is incremented by one, if ~ is pressed, ,J is incremented by one, and if [[)
is pressed, both counters are reset to zero.

The key to the program is line 60. Each time the HP -71 executes A $ = K E \' $, the name of the first key
pressed since the last execution of line 60 is assigned to A $.

Section 7: Customizing the HP-71 131

If more than one key is pressed between consecutive executions of line 60, the name of the first key
pressed is assigned to A $. If more than one key, on the average, is pressed between consecutive execu­
tions of line 60, the key buffer will become filled. Each time the HP-71 executes the program loop, the
name of the oldest key in the buffer will be assigned to A $, but more than one key will be added to the
buffer. After 15 keys become loaded into the buffer in this way, some pressed keys will be lost.

In practice, it is very difficult to press more than one key between consecutive executions of line 60, so
it is very unlikely that a user of the T (,J 0 C 0 U t·j T program would fill the key buffer. However, if the time
period between executions of K E 'r' $ in another program is long enough, a user of that program might
fill the key buffer. This could cause some pressed keys to be lost, which in turn might cause the pro­
gram to operate in an unpredictable manner. So when you use K E 'r' $ in a program, keep the time
between executions of K E \' $ short.

When you run T (,J 0 C 0 U H T, to ensure that the program does not miss keystrokes, be sure to release
one key before pressing another.

1b stop the program, press I ATTN I to pause the program, then execute E t·m.

Causing a Program to "Press" a Key (P U T)

I PUT key name

The key name is specified in the same form as used for DE F K E \'. When PUT is executed in a running
program, its effect is generally the same as if the key specified by key name were pressed on the
keyboard.

Example: This C L 0 C K program displays a running clock, both time and date, and avoids the
unchanging displays given by T I t'lE$ and DATE$ alone. This also shows how a program can be con­
densed using concatenation. (Create a file by executing ED I T CLOCK, then enter the program.)

10 DELAY 0 @ FOR X=1 TO 30 @ DISP Place three spaces between the quotes.
TIME$& .. "& DATE$ @ NEXT X @
DELAY 1 @ PUT "#43"

As the diagram on page 123 shows, key number 43 is the ION I key. Pressing ION I (that is, pressing
I ATTN J) clears the display, then displays the BASIC prompt and the flashing cursor. When
PUT "# 4 3" executes, a running program is not suspended; the SUSP annunciator is not turned on.
PUT "# 4 3" puts the I ATTN I key in the buffer, but does not stop the program. The program stops
following the execution of the last statement (which in this case happens to be PUT "# 4 3 "). When
the program stops, I ATTN I leaves the buffer, and the display clears.

132 Section 7: Customizing the HP-71

The effect of PUT" #43" , when executed by this program, is the same as pressing I ATTN I after the
program is finished running. 'Ib check this, modify your C L 0 C K program by adding an ! just before @

PUT" #43" , converting the PUT instruction into a remark. Now run your CLOCK program. When
the program completes its execution (when the PRGM annunciator turns off), you'll see that your dis­
play retains the last time (and date) displayed by your program. Press I ATTN I and see the display clear
and the BASIC prompt and cursor appear.

Now remove the I, reactivating your PUT statement, run C L 0 C K again, and see the same prompt plus
cursor display occur under program control.

Since you assigned f;: U t·j "C L 0 C K" to [ill@] above, you can display the time and date at any time
even with the Normal keyboard active by pressing and holding down [ill, then pressing the [QJ and @]
keys. (Remember that [ill I 1 USER I activates the User keyboard only for the next unshifted or shifted
keystroke.)

Alternate Characters
Characters with ASCII character codes from 128 through 255 normally represent the same characters
as those with codes 0 through 127. This is shown by the "HP-71 Character Set and Character Codes"
section in your reference manual. However, you can define every one of the 128 characters in the range
128 through 255 to be anything you want, provided you can represent each character by a dot pattern
six dots wide by eight dots high.

Defining Alter nate Characters (C HAP :::; E T, C HAP SET $)

The character code assigned to each of your alternate characters is automatically supplied by the
HP-71. The first character you define is assigned code 128, the second 129, and so on. When you define
your first alternate character, you use only C H A f;: ::; E T. For every character after the first, it often helps
to use both CHAf;:SET$ and CHARSET.

C H A f;: SET charset string

CHAf;:SET$

Section 7: Customizing the HP-71 133

The charset string represents the dot pattern of all existing alternate characters, as explained by the
example below. C H A F.: :::: E T $ is a function that returns this charset string. When creating your first
character (C H R $ (1 2:::: ::0), you execute a C H A F.: SET statement that specifies the six columns of dots
making up that character. When creating your second character (C H F.: $ (1 29)), you must specify all
12 columns of dots that define both of your alternate characters. The first six columns can be repre­
sented by the C H A F.: SET $ function, so you need only specify individually the next six columns of dots
that make up your second character. If you were creating your ninth character, you'd use CHAF.:SET$
to represent all eight of the existing alternate characters, so you again would have to specify addition­
ally only the next six columns of dots that define the character you're adding to the set.

Defining the First New Character. With the help of the diagram on the next page, we'll define as
C H F.: $ (1 2::::) an "integrate" symbol. Here are the steps to follow.

1. Draw a 6x8 dot pattern, and indicate which dots should be turned on to display the desired picture.

2. Each column represents one byte of the six-byte character definition. Each row in a particular
column represents one of the eight bits (dots) in the byte represented by that column. 'Ib help
assign values to each turned-on dot or bit, write the decimal value of each bit on the right next to
each bit row.

3. Now add up the values of the dots in each column to get each byte value. In our example, all dots in
the sixth column are off, giving a byte value of zero. It's good practice to keep this sixth column
blank to separate adjacent characters.

4. Now you're ready to write your CHAF.:SET statement as follows:

Example: When you execute this statement, you'll have a new C H R $ (1 2::::), an integrate symbol.

CHARSET CHR$(64)&CHR$(12::::)&CHR$(126)&CHR$(1)&CHR$(2)&CHR$(0)

Execute this statement, then execute C H R $ (1 2::::) to display your integrate symbol.

The C H R $ function is used with C H A F.: SET only as a vehicle to deliver the byte values of your new
character to the HP -71. The character represented, for instance, by C H F.: $ (64) , the I:!! symbol, has no
significance here except as a special way to represent the number 64.

134 Section 7: Customizing the HP-71

Alternate Character: Integrate Symbol

Bit values
of rows

DDD.DD
DD.D.D 2

DD.DDD 4

DD.DDD 8

DD.DDD 16

DD.DDD 32

.D.DDD 64

D.DDDD 128

64 128 2 2 0
4
8
16
32
64 ------

64 128126 1 2 0 Byte values of columns

Defining Additional New Characters (CHAF.:::;ET$, CHAF.:::;ET). The first alternate character you
create replaces existing character C H F.: $ (1 2::: :;., the second replaces existing character C H F.: $ (1 29) ,
and so on. If you have previously defined alternate character C H F.: $ (12:::), and now wish to add an­
other alternate character, you must combine the C H F.: $.:: 1 2::::;' charset string with the dot pattern of
your new C H F.: $.:: 129) character to form a new charset'string.

If the number of bytes (dot columns) defined by a C H A F.: SET statement does not consist of a multiple
of six bytes, the last byte or bytes of the last character definition are assigned zero values (blank col­
umns). So the final CHF.:$':: [1:;' could have been omitted in this example.

However, if your C H A F.: SET statement defines more than one character without using C H A F.: ::; E T $ (if
more than six CHF.:$ functions are used in your CHAF.:::;ET statement), and you want a character­
separating blank column, you must specify C H F.: $.:: (1:;' as a character-separating sixth column for any
character other than the last. Otherwise, since C H A F.: SET counts off six bytes for each character,
C H A F.: SET will take what you intend as the first column of the next character and make it the last
column of the previous character.

You cannot define more than 128 alternate characters in one set. Character codes above 255 specify the
existing 0 through 255 set of characters (modulo 256), including any existing alternate characters.

Section 7: Customizing the HP-71 135

Preserving and Destroying Alternate Characters

Since the C H A F.: ::; E T $ function returns the active alternate character set, you can preserve an al­
ternate character set by assigning the value of C H A R ::; E T $ to a properly dimensioned string variable. A
string variable with its default dimension of 32 can hold up to five alternate characters. Each column of
dots is defined by one character, so one alternate character (six columns of dots) requires six char­
acters, and five alternate characters can be stored in a string variable whose length is 30 characters. To
store more than five alternate characters in a string variable, you must dimension the variable before
you assign C H A F.: ::; E T $ to it.

To destroy all alternate characters, execute C H A F.: SET " " .

Protected Display Fields (~.) I ~' .. ~ Li Ci ~.'.~)

You can protect part of your visible display so that the characters in that part are unaffected by most
operations. If characters at the left of the display window are protected, the BASIC prompt and flash­
ing cursor are positioned just to the right of the protected portion, and define the left boundary of the
active display. This active display section is where most normal display actions occur, such as keyboard
entry, scrolling, display of DIS P statements, display of program listings, etc.

L·j I t·j D 0 L·j first column [.' last column]

The portion of the display window defined by this statement is the part that remains active. The part
or parts of the window lying outside this defined portion are protected. The first column can be any
numeric expression rounded to an integer in the range 1-22. The last column can be any numeric
expression rounded to an integer in the range first column through 22. If last column is omitted, the
value is assumed to be 22.

Examples:

I::' .-,.-.
"_I., .::..::.

L·j I t·jDOL·j 7

L·j I t·jDOL·j 6 .. 1:::

The characters in the display window's first four
character positions are protected by this state­
ment. The display's active portion consists of
positions 5 through 22.

This statement protects column 1 through 6, leav­
ing columns 7 through 22 still active.

Both ends of the display window are protected by
this statement. The left end is protected from
column 1 through 5, while columns 19 through 22
inclusive are protected on the right end. The ac­
tive part consists of character positions 6 through
18.

136 Section 7: Customizing the HP-l1

The protected portion of the display window will remain unchanged until one of the following occurs:

• Another ~'l I t·j D I] ~l statement is executed that defines a different protected field. For instance, ex­
ecuting ~'l I t·j D I] ~l 1 would make the entire window active.

• A G D I ::::F' statement (described below on page 137) is executed that changes the dot pattern in the
protected area of the display. The locations of the active and protected portions of the window are
unchanged by G DIS P. The new dot pattern in the protected area becomes protected immediately.

• An I t·j IT: 1, I I'j IT: 2, or I t·j IT: 3 reset (ION 1 [2]) is executed (section 1, page 13).

• A memory reset occurs due to power loss or other reason.

Reading Characters From the Display (Ci I::::; i:::' ::i::)

The D I ::; P $ function returns a string of length zero to 96 characters, containing all readable char­
acters in the display. Readable characters are those sent to the display while the cursor is on. DIS P $
allows a number (I,) A L 0:: DIS P $) or string keyed into the display to be used directly by a user-defined
key or a subsequently run program.

All characters sent to the display while the cursor is on are considered readable. All characters sent
with the cursor off are considered non-readable and will not be returned by this function. If the display
is empty, DIS P $ returns the null string.

Examples: The following two key definitions allow easy conversion between Fahrenheit and Celsius
degrees. These examples assume uppercase is set (@] displays C), the Normal keyboard is active, and
the display format is F I ::.:: 2.

Input/Result

DEF KE\' "e".," (I,)AL(DI::;P$)
-32) l 5 .. '"9 " : 1 END LINE I

2 1 2 []]11 USER I @]

DEF KE\' "F" .. " (I,)AL(DISP$)
l 9 .. '"5) +32" : 1 END LINE I

o []]11 USER I [I)

This execute-only key definition assigns the
Fahrenheit-to-Celsius conversion formula to
uppercase "C."

Displays 1 [10 , 00, the Celsius equivalent of
212°F.

This execute-only key definition assigns the
Celsius-to-Fahrenheit conversion formula to
uppercase "F."

Displays 32 , [H~1, the Fahrenheit equivalent to
zero degrees Celsius.

Section 7: Customizing the HP-71 137

Display Graphics

You have control over each of the 132 columns of dots in your display window. You can display any dot
pattern you wish, and you can store any dot pattern you wish. '!\vo important keywords used for display
graphics as well as alternate characters are CHAF.:SET and CHAF.::::;ET$. We'll describe here two more
keywords primarily used for display graphics. Following that we'll show you a graphics program.

Reading Individual Columns of Dots From the Display (G D I::; P $)

I GD I ::;P$

This function always returns a 132 character string, where each character represents the dot pattern of
one of the 132 columns of dots in the display. The first character of this string corresponds to the first
dot column of the display window, while the 132nd character corresponds to the last column. G DIS P $
treats each dot column as a byte, just as CHAF.:SET and CHAF.:SET$ do. The least significant bit (the
one's bit) of each of these bytes corresponds to the top row (top dot) of that display column. The most
significant bit (the 128's bit) corresponds to the bottom row of dots of that display column.

Once a display is captured by G DIS P $, each of the 132 dot-columns that make up that display can be
handled individually, as you will see later. Bear in mind that the one-column "characters" returned by
G DIS P $ are not the same as the characters normally represented by string variables. Each of those
"normal" characters, when displayed by a DIS P statement, requires six columns of dots, and these six
columns cannot be individually controlled.

Displaying Graphics (GD I SP)

After a dot pattern has been created with C H A F.: SET or captured with G DIS P $, it can be displayed
with G D I ::; P. The characters displayed by G DIS P are only one dot column wide, so G DIS P allows
more display flexibility than DIS P, which displays characters that are six columns wide.

I G DIS P [bit pattern]

The bit pattern is the pattern of dots expressed as a string such as those that have been created with
C H A F.: SET $ or captured by G DIS P $. This bit pattern string is always 132 characters long, where each
character represents the bit pattern in one column of dots. If the string is other than 132 characters
(columns) wide, it is truncated or null-filled to 132 characters. Here, "null" refers to C H F.: $.:: ~~1 ::., which
represents one column of blank dots. It does not refer to the null string.

G DIS P establishes a specified dot pattern in the display, but it does not affect the display buffer, the
storage area that holds the 96-character display line. This buffer holds the same 96-character line after
G DIS P is executed as it did before.

138 Section 7: Customizing the HP-71

The dot pattern displayed by GO I ::; F' remains in the display until the display is altered from a running
program or from the keyboard. Among the actions that will remove a G DIS F' dot pattern are the
following:

• A character (including a space) is sent to the display.

• One of the arrow keys is pressed (BJ [EJ [Xl [YJ).

A special feature of GO I SF' is its ability to display a dot pattern in a protected section of the display.
Once displayed, that dot pattern is immediately protected.

Example: 'Ib see G DIS F' $ and G DIS F' perform, enter and run the following t'l I) I,) I E program. When
prompted for a string, enter any string no longer than 22 characters. Then watch. (Remember to ex­
ecute E D I T t'W I,) I E before entering program lines.)

10 DISP "The MOVIE Program"

20 DIM D$[132],N$[132],X,S$

30 N$=CHR$(O)

40 FOR X=1 TO 131

50 N$ = N$ & CHR$(O)

60 NEXT X

70 INPUT "ENTER STRING: ";S$

80 DELAY 0,8

90 CONTRAST 0

100 DISP S$

110D$=GDISP$

120DISP

130 CONTRAST 9

140 FOR X=1 TO 132

150 GDISP N$[X,132]&D$

160 NEXT X

170 FOR X=1 TO 132

180 GDISP D$[X,132]

190 NEXT X

200 DELAY .5,.125

210 DISP TAB(8);"The End" @
END

The null character, not the null string.

N$ now contains 132 columns of blank dots.

These two lines make the action of line 100 less
visible.

Sets up display for GDISP$'s action.
Captures dot pattern entered at line 70.

Clears display to enhance effect.
Makes the show visible.
This loop causes the message to scroll onto the
display, one dot column at a time.

This loop causes the message to scroll off the left
edge of the display, one dot column at a time.

Establishes standard delay.

Section 7: Customizing the HP-71 139

The first time the loop comprising lines 140 to 160 runs, the 132 blank columns of dots stored in t,~ $

are displayed by the G D I ::; P statement in line 150. The second time line 150 runs, t,~ $ is displayed
minus the left-most column of blank dots. Since G DIS P displays the specified portion of t,~ $ combined
with D $, the first column of dots in D $ now appears at the right edge of the display window. This is
possible since D $ represents the 132 individual columns of dots captured by G D I ::; P $ in line 110. As
the program continues to execute the loop, more and more of D $ appears. Since D $ represents the
input string, the message entered at line 70 scrolls across the display, one dot-column after another.

The loop comprising lines 170 to 190 eats up D $, just as tH was in lines 140 to 160. As the loop
continues, blank columns proceed to fill the display.

Restricting HP-71 Use (L.JH:::!<)

You can use LOCK to define a password, without which your HP-71 cannot be used.

I L 0 C K password

The password can be any string expression that evaluates to no more than eight characters. It cannot
be an unquoted string. This password must be entered exactly, without quotes, by anyone wishing to use
your computer. Without the password, it will remain locked.

You can execute L 0 C K anytime. Its execution does not turn off the HP -71 or affect its operation in
any other way until the next time it's turned on. When it is turned on, the display will prompt with
P.:l S S 1".1.:0 t- d '~'. Unless the password is entered correctly, without quotes, the HP-71 will turn off
automatically.

Once a password is assigned, the HP-71 cannot be turned on and used without it, unless the effect of
L 0 C K is cancelled by entering the null string as a password, or unless you reset the memory.

Automatic Command Execution (::::; 'r !:::! !:;~~ 'r !,..! F')

Any valid command or group of commands entered after this statement will be executed whenever the
HP-71 is turned on.

I ::; TAR T U P command string

The command string can be any command or group of commands connected together with I:!! that can be
executed from the keyboard. The difference is that when used with this statement, the command or
commands must be enclosed in single or double quotes.

140 Section 7: Customizing the HP-71

When :::; T A F.: T U P is executed, the command string is not checked for correct syntax. This check does
not occur until the HP-71 is turned on.

To cancel such a command string, use S T A F.: T U P with the null string or enter a new command string
with STAF.:TUP.

Controlling the Display (L.. C:)

You can control from the keyboard or from an executing program:

• Scrolling speed, both horizontal and vertical.

• Viewing angle giving best contrast.

• Length of each displayed line, up to 96 characters.

• Case of displayed letters, either uppercase or lowercase.

Scrolling speed is controlled with DEL A '"I', described in section 1 (page 26). Viewing angle is controlled
with COtHF.:AST, also described in section 1 (page 29). Control ofline length with L,J I DTH is described
in section 13 (pages 232-233), and control of letter case is explained below.

The L C statement not only performs the toggle function of the I LC I key (ITJI LC I), but it can also
expressly specify uppercase or lowercase.

I LC LL ut·j

LC OFF

The L C statement switches the current uppercase/lowercase state of the letter keys. No other keys are
affected by LC. If the unshifted keys display uppercase letters (and []]-shifted keys display lowercase)
before this statement is executed, unshifted keys will display lowercase (and shifted keys uppercase)
after this statement is executed, and vice versa.

After the L C 0 t·j statement is executed, the unshifted letter keys will display lowercase letters and []]­
shifted letter keys will display uppercase.

After the L C 0 F F statement is executed, the unshifted letter keys will display uppercase letters and
[]] -shifted letter keys will display lowercase.

Section 8

Writing and Running Programs

Contents
Overview .. 143
Entering a New Program ... 143

Creating a New Program File (E D I T) 143
Using '.,Jot- k f i 1 eo (t'lAt'1E) ... 144
Keying In a Program Line ... 145
Keying In Additional Lines (AUTO) : 149

Running a Program ... 149
Executing the Program in the Current File (F.:Ut·l, GOSU8) 149
Executing a Specific Program WUt'l, CALL, CHA I t~) 150

Interrupting a Program ... 152
Halting Execution From the Keyboard 153
Halting Execution From Within a Program (PA U ::; E, ~'l A IT, S TOP, E t·W) ... 154
Resuming Program Execution ([Ill caNT I, COtH) 155

Editing a Program .. 156
Viewing Program Lines (FETCH, LIST, PLIST, GOTO) 156
Adding a Line ... 158
Editing Existing Lines ... 158
Deleting Lines (DELETE) ... 158
Renumbering Lines WEt'Wt'18EP) 159

Using BIN and LEX Files .. 160
Binary Programs ... 160
Language Extension Files ... 160

Transforming Files (T F.: A t·l S F 0 F.: t'1) 160

142

Section 8: Writing and Running Programs 143

Overview
Previous sections used short programs to illustrate some of the features of the HP-71. If you keyed in
some of those programs, you might have developed a feel for how to program the computer. This section
covers more about writing and running programs on the HP-71. More specifically, it describes how to:

• Create a program file.

• Enter program lines into a program file.

• Execute a program using the I RUN I key or the BASIC statements, F.: U t·j, GO!:;UB, CALL, and
CHAlt·j.

• Edit a program.

• Locate errors in a program.

• Interrupt a running program.

Entering a New Program
Entering a new program into the HP-71 from the keyboard requires two steps:

1. Creating a new program file.

2. Keying program lines into the file.

A program can also be loaded from magnetic cards using the COP Y statement, as described in
appendix C.

Creating a New Program' File (E D IT)

Before keying program lines into the HP-71, set the computer to BASIC mode (you can't enter pro­
gram lines when the HP-71 is set to CALC mode). Then, using ED I T, create a new BASIC program
file into which the lines you enter will be stored.

I ED I T file name

The file name is the name of the file you create. It becomes the current file and is stored in main RAM.
If the file already exists, the HP-71 simply makes it the current file. (Refer to section 6, "File Oper­
ations," for more information about file names.)

144 Section 8: Writing and Running Programs

For example, ED ITS 0 L I.} E creates a file named ~3 0 L I.} E and makes it the current file. Program lines
keyed into the HP-71 are then stored in the program file ~:; 0 U.' E.

When creating a BASIC file, you do not need to specify the file size. BASIC files automatically expand
to accomodate new lines keyed in. File size is limited only by the amount of available RAM.

You can also specify which memory device you want the newly created file to be in. You simply specify
the device with the file name (as described in section 6). If a device isn't specified, the HP-71 creates
the file in main RAM.

Examples:

ED I T F.:ADAP 1

EDIT NUCLEUS:POPT(0)

Using 1 .. .Ior k f i 1 e (t'~At'1E)

Creates a BASIC file in main RAM.

Creates a BASIC file in port 0.

As an alternative to creating a named program file, you can use 1 .•. 10 t- k f i 1 e as a scratch file for
entering program lines. To do this, make 1 •• .1 0 t" k f i 1 e the current file. Also, you might want to ensure
that 1 •• .1 0 t- k f i 1 e is empty. (Refer to section 6, "File Operations," for more information on
1 •• .Iot-kfi Ie.)

To make 1 •• .1 0 t" k f i 1 e the current file, type ED I T without specifying a file name.

Input/Result

ED I T I END LINE I

1 •• .Iorkfile BA~:; I C nn

Default file name is 1 •• .1 0 t- k f i 1 e.

Displays 1 .. .1 0 t- k f i 1 e catalog information. If nn
is 0, then 1 •• .1 0 t- k f i 1 e is empty. The
1 .. .1 0 t- k f i 1 e is now the current file.

If nn in the above result is not 0, then 1 •• .1 0 t- k f i 1 e has program lines in it. Before entering a new
program into 1 .. .I0t- k f i 1 e, you might want to save any information currently in the 1 .. .I0t- k f i 1 e.

You can save the information in the 1 •• .1 0 t" k f i 1 e in two ways:

1. Name the 1 •• .I0t- k f i 1 e.

2. Copy the 1 .. .I0t- k f i 1 e.

Section 8: Writing and Running Programs 145

Naming the ' ... ' or k f i 1 e. You can give the ' .. .I (I t- k f i 1 e a name using HAt'lE.

The following example shows how to save the information in ' ..) (I r k f i 1 e using t·J A ~l E. After naming
'.'.1 (I t- k f i 1 e, it no longer exists as '.'.1 (I t- k f i 1 e. You can create a new '.'.1 (I t- k f i 1 e and make it the
current file using E D IT.

Input/Result

t-JAt'lE PF.:CIPEL 1 I END LINE I

EDIT IENDLINEI

Names the '.'.1 (I t- k f i 1 e.

Creates a new '.'.1 (I t- k f i 1 e and designates it the
current file.

Copying the '.'.1 (I t- k f i 1 e. 'Ib copy the ' ..) (I t- k f i 1 e, ensure that it is the current file then execute
COP'r' TO destination file without specifying a source file. (The COP \. statement is described in section
6 under "Copying Files," page 112.) After copying the '.'.1 (I r k f i 1 e, you might also want to clear it
before entering new program lines. 'Ib do this, execute DEL E TEA L L.

Example:

Input/Result

ED I T I END LINE I

COP'·j' TO FILE 1 I END LINE I

DEL E TEA L L I END LI NE I

Keying In a Program Line

Designates the ' .. .I (I t- k f i 1 e as the current file.

Copies the ' ... '(It- k f i 1 e to a file named FILE 1
in main RAM.

Deletes all lines in the '.'.1 (I t- k f i 1 e.

Program Line Format. A BASIC program line always starts with a line number and consists of one
or more BASIC statements. A line number is an integer constant in the range 1 to 9999 that defines
the position of a line in a program. The HP-71 keeps program lines sorted by line number; therefore,
you can enter program lines in any order.

146 Section 8: Writing and Running Programs

Concatenating Statements With I!!. Often it is desirable to have more than one statement on a
program line, particularly in an IF ... THEtL.ELSE statement (which is descibed in section 10,
"Branching, Looping, and Conditional Execution"). Several statements can be included in a program
line by joining (concatenating) them with the I!! symbol. For example, the statements

1[1 A = B
20 B 1-·

can be written as:

10 A = B I!! B = C

Because the two statements are on a single line, two bytes of RAM are saved. A program line with more
than one statement is called a multistatement line. The HP-71 executes the statements in a
multistatement line from left to right.

Labels. Each statement in a program line can be identified by a label. Labels can be referenced in
branching statements such as GO::; U Band GOT 0 (described on page 179) so that program execution
can branch to any statement in a program line. For example, in the program line:

250 'I t·jI.}EF.:T ': ::·::=A I!! A=B I!! B=>::

the label I t·l l.} E R T identifies the statement ::.:: = A in the same way that the line number 25[1 identifies
the program line.

Labels are useful for identifying a subroutine with a meaningful name, thus helping you to remember
what the subroutine does. As you write a program, you might want to include a branching statement
that transfers execution to a subroutine that you haven't written yet. Since you might not know what
the line number of the start of the subroutine will be, you can plan to start it with a label later but
include that label in a branching statement now. For example:

40 GOSUB 'RETEST'

causes a branch to the label F.: E T EST. This statement is said to reference the label F.: E T EST because it
causes execution to branch to the statement it identifies. Including a label in lieu of a line number
frees you from guessing at what the subroutine's beginning line number will be. Later, when you start
to write the subroutine, you can label its first statement using F.: E T EST. For example:

53~3 'F.:ETEST': IF A=B OF.: C=D THEt·l A=D

Section 8: Writing and Running Programs 147

When using labels, remember the following rules:

• A label can contain up to eight letters or digits and must begin with a letter. You aren't required to
enclose a label in single quotation marks, but the computer always adds them to labels. This makes
it easier to distinguish labels.

11[1 '::;OF.:T12': FOP 1=1 TO l~~H] SOP T 1 2 identifies this statement.

• Where a label identifies a statement, a colon must be placed after the last character. Where a label
references a statement no colon is used.

9~~1 'F.:ETEST': IF A=B THEt·j B=D

4[1 GOTO 'F.:ETEST'

• A label can be on a line by itself.

120 'BLASTEF.:S I :

F.: E T EST identifies this statement.

F.: E T EST references the statement identified by
PETEST.

, BLASTEPS' identifies a line.

• A label can be placed in a multistatement line after IE.

35[1 IF A=B THEt·j B=C IE ' COt'1PLE::-:; 1 ' : identifies the statement
, COt1PLE::·:: 1 ': A=A .. ···C

25 t·j=S I t·j ().::) IE 'OUADt·j'
O=PED(SIN(X),360) @ 'SIGNN'
S=SIGt·j(SIt·j()-::>)

A=A.,··C.

, 0 U A D t·j ': and'S I G t·j t·j': identify different
statements on the same line.

• More than one label can be on a line and more than one label can identify a statement.

999~~1 'CHECK': 'CHECK2' , CHECK' : and' CHECK2 ' : both identify the
I F ::-:; # ~~1 THE t·j 'r' = 1 same statement. This occurs, for example, when

you consolidate two or more subroutines, but
don't want to change all label references to those
subroutines.

• If you have identical labels that identify different statements in a main program or subprogram,
the HP-71 recognizes only the first one. You can never branch to identical labels that follow the
first one.

10 'STAF.:T'

2~~1 'STAPT'

DESTF.:O'/ A., B, C

DIt'1 S(25)

This line has the label'S T A F.: T ' :.

This line also contains the label'S TAP T ' :. But
since the label already identifies a statement on
line 10, it won't identify the statement on line 20.
The label'S T A F.: T ' : on line 20 can never be
branched to.

148 Section 8: Writing and Running Programs

Entering a Line. 'Ib key in a program line, type a line number then one or more BASIC statements.
The line becomes part of the program file when you press 1 END LI NE I. (If a syntax error occurs, the line
will not be incorporated into the program. Syntax errors are described on page 163.)

The HP-71 interprets a line in the display as a program line when it is preceded by a line number. For
example,

10A=E:

is interpreted as a program line, whereas

A=E:

is immediately executed.

Error Checking. After you type a program line and press 1 END LINE I, the HP-71 checks the line for
syntax errors. Syntax errors include incorrect spelling, incorrect parameters, and improper use of a
keyword.

If the HP-71 does not detect a syntax error, it:

• Enters that line as part of the program.

• Designates that line as the current line. (The current line is described under "Viewing Program
Lines," page 156.)

• Clears the display.

If the HP-71 detects a syntax error it:

• Does not enter the line as part of the program.

• Beeps.

• Displays an error message for the duration of the 0 E L A \' setting.

• Displays the line.

• Sets the cursor to the position in the line where the error was detected.

If an error is detected, correct the syntax in the program line and enter it again. (Refer to "Debugging
Operations," page 165.)

Section 8: Writing and Running Programs 149

Keying In Additional Lines (AUTO)

As you key in additional program lines, the size of the file expands to accommodate them. If you use up
all available memory when entering program, the computer warns you with a message indicating that
there is insufficient memory.

When entering a program, it is often convenient to use the AUT 0 statement to automatically display a
new line number for each line you key in. You can specify both the starting line number and the
increment to use.

Examples:

AUTO

AUTO 1 [1/:J., 2[1

Running a Program

Starts auto line numbering beginning with line
10, using increments of 10.

Starts auto line numbering beginning with line
100, using increments of 20.

Executing the Current File (F.: U t·~, G 0 ~=; U B)

You can execute the current file by pressing I RUN I. This runs the program beginning with the lowest­
numbered line.

You can also run the current file by executing the FW t·j statement from the keyboard. r: ;Omp',",d ,y",,,

RUN [Hne numoo,]
F.: U t·j [.. label]

The line number or label represents the line or statement at which you want execution to begin. If you
don't specify a line number or label, execution begins at the lowest-numbered line. (If the line that you
specify doesn't exist, execution begins with the next highest line number. If the label that you specify
doesn't exist, an error results.)

Examples:

F.:ut·j 12~~1

F.: U t·j .' OF.: I I,}E 1

Executes the current file beginning with line 120.

Executes the current file beginning with the label
OF.: H,IE 1.

150 Section 8: Writing and Running Programs

F.: U t·j executed from a program causes that program to start running at the specified line or label. Only
the variables and arrays in the main environment remain unchanged when F.: U t·j is executed. (The main
environment is described in section 12, "Subprograms and User-Defined Functions.")

Using the G I) ::; U B statement from the keyboard, you can execute the current file starting at any line
number or label.

Examples:

GOSUB 24[1

GOSUB 'TEF.:t'1'

Executes the program in the current file begin­
ning at line 240.

Executes the program in the current file begin­
ning at the label T EF.: t'1.

If you execute GOSUB from the keyboard, the program halts when PAUSE, ::;TOP, Et·m, or F.:ETUF.:t·j
are encountered. But any statements concatenated with GO SUB are executed only if the program ends
with F.: E T U F.: t·j. (Executing G I) SUB from a running program is described under "Branching, Looping,
and Conditional Execution.") Since F.: E T U F.: t·j ends a subroutine , you can execute a specific subroutine
from the keyboard without running an entire program.

Executing A Specific Program (F.: U t·~, CAL L, C H A I t·~)

You can execute a specific program in memory (or on a mass storage medium) from the keyboard or
from within a program. A file does not have to be the current file to execute it. However, the HP-71
designates the program file as the current file before executing it.

Running a Program. Using the F.: U t~ statement, you can execute any program file beginning at a line
number or label that you specify. The following examples show how F.: U t·j can be used.

simplified syntax ------------------------------------,

F.: U t·j file name [.' line number]
F.: U t·j file name [.. label]

Examples:

F.: U t·j PF.:OG 1

RUN TEST3:PORT(1),3500

RUN PROG2,ACCOUNT

Section 8: Writing and Running Programs 151

Executes the file PRO G 1 beginning with the first
line.

Executes the file T E ::; T 3 beginning with line
3500. The file is in port l.

Executes the file P F.: 0 G 2 beginning with the label
ACCOUt·jT.

Calling a Program As a Subprogram. CAL L executes a program in much the same way as F.: U t·j.
However, when CAL L is executed, the current environment is saved and a new environment is created
for the called program. The HP-71 treats the called program as a subprogram. (Environments and
subprograms are described in section 12, "Subprograms and User-Defined Functions.")

I CAL L file name [: device]

Examples:

CALL ORBIT

CALL APOGEE:PORT(0)

CALL

Executes the program file 0 F.: BIT.

Executes the program file A P 0 GEE in port O.

Executes the current file.

Although CAL L typically executes a subprogram, it can be used as shown to execute a program if there
aren't any subprograms in memory with the same name as that program. When you execute CALL, the
HP-71 first searches for a subprogram with the specified name. If it doesn't find a subprogram, then it
searches memory for a program file with the specified name. If you attempt to execute a program using
CALL and the HP-71 finds a subprogram with the specified name, that subprogram is executed rather
than the program file you intended.

Running Chained Programs. The C H A I t-l statement loads a program into main RAM from mag­
netic cards, a mass storage device, or the computer's memory and executes it. Before the new file is
copied into main RAM, the current file (the one that executed C H A I t·j) is purged from RAM.

I C H A I t·j file name [: device]

C H A I t·j is useful when you want to execute a program that is too large to fit into memory. With
C H A I t·j, you can divide a program into smaller units and execute those units one at a time. Each unit
executes C H A I t·j as its last statement, which loads the next program and runs it.

152 Section 8: Writing and Running Programs

For example, suppose you had a large program but had only enough memory to execute a third of the
program at a time. Simply rewrite the program so that it can be executed in three sections, then store
those sections separately on magnetic cards or on a mass storage device.

PROGl ~ PF.:OG2 ~ PROG3

CHA I t·j PF.:OG2 CHA I t·j PF.:OG3 Et·m

As shown above, each section is stored in a separate program file. Thus if the files are called P P 0 G 1 ,
PPOG2, and PPOG3, the last statement of PF.:OG 1 is CHA I t·j PF.:OG2, and the last statement of
P P I] G 2 is C H A Hj P P I] G 3. When P P I] G 1 finishes, it is purged from memory and PRO G 2 is loaded
into main RAM and executed. When P P 0 G 2 is finished, it is purged and P P 0 G 3 is copied into main
RAM and executed.

While C H A I t·j is used primarily for executing a succession of files on magnetic cards or a mass storage
device, it can be used to execute programs stored in the HP-71 memory. (For more information about
using C H A I tl with files on magnetic cards, refer to appendix C.)

Interrupting a Program

When a program has finished its task, it normally stops running. A program can also stop running for
other reasons. For example, when the HP-71 detects an error in a running program (that is, the HP-71
can't perform some operation), it stops the program and reports the error.

You can also halt a program before it is finished. You can do this from the keyboard or include an
instruction in the program which causes it to halt.

You might want to halt a program when it doesn't seem to be operating properly or you might want to
view the values of some variables. You might also halt a program when you are locating and correcting
its errors (debugging).

Section 8: Writing and Running Programs 153

A halted program can assume one of two states:

• Suspended. The SUSP annunciator is on, indicating that the program can be continued from where
it halted. All program control information remains intact.

• Ended. The SUSP annunciator does not come on, indicating that all program control information
is erased. The program cannot be continued.

A program becomes suspended when you press I ATTN I, it executes P A IY:;; E, or an error occurs.

Halting Execution From the Keyboard

Suspending a Program. To halt a running program from the keyboard so that it maintains a sus­
pended state, press 1 ATTN I. When you do this, the HP-71 displays the SUSP annunciator, indicating
that the program can be continued from where it halted. (The statement at which execution can con­
tinue is called the suspend statement.)

The HP-71 retains the environments existing at the time a program is suspended. (Environments are
described in section 12, "Subprograms and User-Defined Functions.") While a program is suspended,
you can perform the following operations on the HP-71 without affecting the program's suspended
state:

• Display and alter variables .

• Perform keyboard calculations in BASIC or CALC mode.

• View the contents of the current file.

• Copy files.

• Obtain catalog listings.

• 'furn the HP-71 off and on.

• Call a subprogram. (However, a subprogram may change the global environment. This
occurs, for example, if the subprogram contains a 0 E LAY state­
ment.) For more information, see section 12.

Generally, operations that don't alter the current file or designate another file as the current file don't
affect the suspended state of a program. Operations that affect the suspended state of a program are
described below under "Ending a Program."

When you want to continue executing a suspended program, either press [Ill CaNT 1 or execute C I] t·~ T .
Execution will resume at the suspend statement, which is the statement following the last statement
executed. If you want to view the suspend statement, execute FE T C H from the keyboard.

In some infrequent situations, a running program might not halt when you press I ATTN I. If this occurs,
press I ON 10 simultaneously, then select level 1. (Refer to "Verifying Proper Operation," page 273.)
When you use ION 10 to interrupt the HP-71, it ends the program and might do a memory reset. You
should therefore avoid using this unless you haven't been able to gain control of the HP-71.

154 Section 8: Writing and Running Programs

Ending a Program. The following statements and operations end a program, clearing its suspended
state:

• EDIT.

• Et·W, Et-W ALL, ::;TOP.*

• DELETE.

• t'1EF.:GE (a BASIC file).

• P U F.: G E (the current file).

• FF.:EE POF.:T, CLAIt'1 POF.:T.

• T F.: A t·jF 0 F.: t'1 (the current file).

• F.:Ut·l, CHA I t·t

• Altering a program line.

After ending a program, there is no way to restore its suspended state.

Halting Execution From Within a Program (P AU::; E, ~.J A IT, S TOP, E t·~ D)

Suspending a Program. A program suspends itself when it executes P AU::; E. P AU::; E uses no param­
eters' so it appears simply as

When a program executes this statement, it halts as if I ATTN I were pressed. The current line is the line
containing the statement following P A USE. If you want program execution to continue, press [TIl ceNT I
or execute Cot·n (described below under "Resuming Program Execution").

To enable a user to view intermediate results that a program might produce, you can use ~,~ A IT.

~,~ A I T seconds

~,~ A I T causes a program to do nothing for the specified number of seconds. Any information in the
display remains there while the statement is executing. ~'J A I T does not suspend a program.

• However, if the program was suspended while executing a subprogram, then executing E t·~ [I or !:; TOP ends the subprogram only,
and the program remains in a suspended state. E t·~ [I ALL ends all levels of subprograms and the main program. (For more
information about subprograms, refer to section 12, "Subprograms and User-Defined Functions.")

Section 8: Writing and Running Programs 155

Ending a Program. You can end program execution with the !:; TOP and E t·~ D statements. *

STOP

Et-W

Both statements end a program and clear all memory associated with program control. Athough they
are often the last statements in a program, S TOP and E t·~ D can be anywhere in a program.

Resuming Program Execution ([]]I caNT I, C 0 t·~ T)

Whenever the SUSP annunciator is on, you know that the program in the current file has been sus­
pended. You can resume execution by pressing [DI caNT 1 or by executing C 0 t·~ T. Execution resumes at
the suspend statement.

Pressing [DI caNT I. Program execution can be resumed from where it was suspended (the suspend
statement) by pressing ITJI caNT I, but only if the SUSP annunciator is on. If the SUSP annunciator is
off, pressing ITJI caNT 1 executes the current file beginning with the lowest-numbered line. (This is equiv­
alent to pressing I RUN I.)

Note: You can't resume program execution by pressing I RUN 1 or executing PUt·L PUt·~ clears the
program control information and restarts the program.

Executing C 0 t·~ T. The C (I t·~ T statement gives you more flexibility with how you resume program ex­
ecution. With C 0 t·~ T you can specify the line number or label at which program execution resumes.

COt'~T

Examples:

COt'~T 1 [1~3

COtH I PHASE 1 I

Resumes program execution at line 100.

Resumes program execution at the label
PHW:;E 1.

You can execute C 0 t·~ T from the keyboard only. C 0 t·~ T is not programmable.

* If a program is executing a subprogram, then executing S T I) F' or E t·j 0 ends the subprogram only. Th end a program from a
subprogram, execute Et·m ALL. However, since this decreases the usefulness of a subprogram, using Et·W ALL in a subprogram
is not recommended. (For more information about subprograms, refer to section 12, "Subprograms and User-Defined
Functions.")

156 Section 8 Writing and Running Programs

If a line number or a label is not specified, program execution resumes at the suspend statement. If you
execute CO t·j T for a program that isn't suspended, the program in the current file will be run as if F.: U t~
were executed.

Editing a Program

Editing a program file usually consists of a combination of the following operations:

• Viewing selected program lines.

• Adding lines.

• Changing existing lines.

• Deleting lines.

• Renumbering program lines.

Before attempting to edit a file, be sure the computer is set to BASIC mode and the file you want to
edit is the current file.

'Ib edit a program file that is not the current file, use:

lED I T [file name]

If you don't specify a file name, the HP-71 designates the 1 •• .1 0 t· k f i 1 e as the current file.

Viewing Program Lines (FETCH, LI~:;T, PLIST, GOTO)

Scrolling Through a Program. You can use the ~, [y), []][!], and []]OO keys to display the
program lines in a BASIC file.

Since you can view only one line at a time on the HP-71, the HP-71 designates that line as the current
line. You can view the current line by executing FETCH (as described below).

'Ib display the line previous to the current line, press ~. 'Ib display the line following the current line,
press [Y). The new line displayed becomes the current line. You can use these keys to scroll through a
file one line at a time. Pressing [Y) or ~ continuously causes program lines to be momentarily dis­
played in ascending or descending order.

'Ib view the first line of the program file, press []][!]. To view the last line of the program file, press

[]]OO·

Section 8: Writing and Running Programs 157

Fetching a Line. You can view a specific program line using FE T C H. It has the general form:

I FETCH [line number]
FETCH [label]]

You can specify either a line number or a label. If a label is specified, it can be quoted or unquoted. You
can display the current line by not specifying either.

Examples:

FET H

FET H 1 [1 ~~1

FET H GPAPH

FET H "SOF.:T 1"

FET H A$

Displays the current line.

Displays line 100.

Displays the line containing the label G F.: A PH.

Displays the line containing the label SOP T 1 .

Displays the line containing the label indicated
by A$.

Listing a File. A program file can be listed using the L I ~:; T and P LIS T statements. If the HP -71 is
connected to a printer, P LIS T lists the specified program on the printer, otherwise it lists lines on the
HP-71 display.*

simplified syntax ------------------------------------,

LIS T [start line number] [" end line number]
LIS T file name [" start line number [" end line number]]

simplified syntax ------------------------------------,

P LIS T [start line number] [" end line number]
P LIS T file name [,' start line number [" end line number]]

LIS T and P LIS T list program lines in ascending order.

Executing LIS T without specifying parameters lists the current file from the first to the last line. If
the file you specify isn't found, the HP-71 responds with the error message:

EF.:P: F i 1 Eo t'40 t FOl.md

* The HP 82401A HP-IL Interface is required to connect a printer to the HP-71.

158 Section 8: Writing and Running Programs

Changing the Current Line Designation. Using the GOT 0 statement from the keyboard, you can
designate a line as the current line without displaying it.

I GOTO Une numb.,
GOTO label

When you execute GOT 0 you can specify either a line number or a label. A label can be quoted or
unquoted.

Examples:

GOTO 1 O~~l

GOTO ',}ALEt'1CE

GOTO "F.:ESET"

Adding a Line

Designates line 100 as the current line.

Designates the line containing the label
I,} ALE t·1 C E as the current line.

Designates the line containing the label F.: ESE T
as the current line.

A line can be added to a program by typing a program line containing one or more statements, then
pressing 1 END LINE I. This is no different from keying in the original program. If you add a program line
that has the same line number as a program line already in the file, the new line replaces the old one.
'I\vo program lines cannot have the same line number.

Editing Existing Lines

To edit an existing program line, first call that line to the display (using FETCH, ~,[YJ, [ID~, or
[ID[YJ as described above), change it as you wish and press 1 END LINE I. Remember that after editing a
line, you must press 1 END LINE 1 to enter that edited line into the program. (Pressing~, [YJ, [ID~, or
[ID[YJ after editing a line will not enter that changed line into the program.)

Deleting Lines (0 E LET E)

One or more program lines can be erased from the current file using DEL E T E. Th use this statement to
delete:

• A single line, type:

DEL E T E line number

• A block of lines, type:

DEL E T E first line number., last line number

Section 8: Writing and Running Programs 159

• All lines in the file, type:

DELETE ALL

If you execute DEL E TEA L L, the file will still be in memory, but it will be empty. If you would rather
purge the current file from memory, execute PUR G E.

You can also delete a single program line by typing the line number you want to delete and pressing
I END LINE I. For example,

5 ~~1 I END LINE 1

deletes line 50 from the current file.

Renumbering Lines (F.: E t·4 U t'1 B E F.:)

Often after adding, deleting, and changing program lines, the intervals between program line numbers
can be too small to allow much additional editing of the program. For example, you cannot add a line
between lines 10 and 11 in a BASIC program. To remedy this inconvenience, you would have to renum­
ber one or more program lines to make room for a new line. But, when you change a line number, you
need to ensure that you change all references to that line (such as GOTO, GOSUB, and
P R I t·j T U ::; I t·j G statements). If you are changing many program line numbers, this task can become
large.

The HP-71's F.:Et·Wt·lBER statement can do all this for you. It renumbers the current file using param­
eters that you can specify.

R E t·w t'l B E F.: [new start line [.. increment [.. old start line [.. old end line]]]]

In the syntax description above, new start line is the new starting line number, increment is the desired
increment value between successive line numbers, old start line is the number of the line that you want
renumbering to begin at, and old end line is the last line that you want renumbered.

Examples:

RE t·j U t'l BEF.:

F.:Et·Wt'lBEF.: 100., 2~J

RENUMBER 100,10,200,300

Renumbers the current file so that its first line
number is 10 and all succeeding lines are num­
bered in increments of 10 (default).

Renumbers the current file so that its first line
number is 100 and succeeding lines are num­
bered in increments of 20.

Renumbers lines 200 through 300 so that line 200
becomes line 100 and succeeding lines are num­
bered in increments of 10.

160 Section 8: Writing and Running Programs

Using BIN and LEX Files
The HP-71 has a large number of statements, functions, and operators which you can use. Also, you
can write and run your own BASIC programs. In addition to this, you can extend the capabilities of the
HP-71 by using BIN and LEX files. These files are specially coded files. BIN programs run faster than
comparable BASIC programs and LEX files add keywords to the computer.

Binary Programs

Binary programs are specially coded program files which can be executed like BASIC programs. Typi­
cally, you obtain a BIN file by copying it from the card reader or a mass storage device. Or, it can be
contained in a plug-in ROM module.

You execute a BIN file in the same way you would a BASIC file; that is, using F.:Ut·j, CHA I t·j, or CALL.
BIN files don't have line numbers or labels, so you can't execute one with G [I :::; U B.

Since BIN files are specially coded programs; they can't be edited. You can only execute them.

Language Extension Files

Language Extension Files (LEX) are special binary files which add BASIC keywords to the HP-71.
They are typically found in application pacs and plug-in extensions or modules. You can't execute or
edit a LEX file. A LEX file doesn't have to be the current file to be used. When the file is in the
computer's memory (RAM or ROM), you can use its keywords.

You can use the BASIC keywords in a LEX file as you would any other keyword. The documentation
supplied with a LEX file explains the proper syntax and usage of the file's keywords.

When you execute a BASIC program containing LEX file keywords, that LEX file must be present in
memory.

The T F.: A t·j S F 0 F.: t" statement can be used to change a BASIC program into a TEXT file so that it can
be transferred to another Hewlett-Packard computer.

r simplified syntax

I TF.:At·jSFOPt·, [[file name]: device] I tHO file type [file name [: device]]

T F.: A t·j S F 0 F.: t" can also change a TEXT file into a BASIC program file. A TEXT file transformed from
a BASIC file has one record for each program line. (The T F.: A t·j S F 0 F.: t" statement is described in more
detail in the HP-71 Reference Manual.)

Examples:

TRANSFORM PROGI INTO TEXT
TPROG 1 : PORT (~])

TRANSFORM TPROG1:PORT(0)
I tnO BA::; I C

Section 8: Writing and Running Programs 161

Transforms the BASIC program file PRO G 1
into the TEXT file T PRO G 1 in port O.

Transforms the TEXT file T P F.: 0 G 1 in port 0
into a BASIC file.

This statement is particularly useful when you want to use programs on the HP-71 that were written
for the HP-75. It enables you to translate programs from the HP-75 to the HP-71.

The HP-71 TEXT file uses the Hewlett-Packard Logical Interchange Format, type 1 (LIFl). The LIFl
format is common to several HP computers and is therefore used for interchanging information be­
tween computers. HP-75 files that are of type LIFl can be loaded into the HP-71 using the optional
HP 82400A Magnetic Card Reader. (The operation of the card reader is described in appendix C.) A
BASIC program file can be transformed into a TEXT (LIFl) file on one computer, stored on a mag­
netic card, then loaded into the other computer, where it can be transformed back into a BASIC file.

Example: Transform a BASIC file on the HP-75 into a LIFl file, record it on a magnetic card, then
transfer it to the HP-71:

On the HP-75:

On the HP-71:

COPY CARD TO PROGI

TRANSFORM PROGI INTO BASIC

Transforms a BASIC file on the HP-75 into a
LIFl file.

Copies the transformed file onto a magnetic card
using the HP-75 built-in card reader.

Copies the card into the TEXT file P F.: 0 G 1.

Transforms PRO G 1 into a BASIC program file.

Note: A TEXT file can be transformed into a BASIC file only if each record (line) begins with a valid
BASIC line number. While the HP-75 accepts the line number 0, the HP-71 does not. If the HP-71
attempts to transform a file containing a line number 0, it will generate an error and will not com­
plete the transformation. You should therefore ensure that any HP-75 program file that you intend
to transform not contain the line number 0.

When you transform a TEXT file that was written on a card by the HP-75, the HP-71 changes any
program line it can't interpret into a remark. That is, after the line number a I ? is inserted in a line
which could not be properly interpreted. You then need to rewrite the line to conform to HP-71 BASIC.

Section 9

Error Conditions

Contents
Overview ° 0 ° 162
Types of Errors ° 0 ° 163
Error Messages ° 0 ° 163

Messages for Syntax Errors ° 0 ° 163
Messages for Run-Time Errors ([[]I ERRM I) 0 ° 164

Debugging Operations ° 0 ° 165
Tracing Execution (TF.:ACE FLm.~) 00000000000000000000000000000000000 ° 166
Tracing Variable Assignments (T F.: ACE I,) A F.: ::::) ° 0 ° 167
Cancelling Trace Operations (TF.:ACE OFF) 000000000000000000000000000 ° 168
Single-Step Execution ([Ill SST I) 0 ° 168

Program Control of Errors ° 0 ° 171
Branching on an Error (0 toj ERR 0 F.:, 0 F FER R 0 F.:) ° 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ° 172
Determining an Error Message Number (E F.: f':tol) ° 0 ° 173
Recalling an Error Message ([[]I ERRM I, EF.:F.:t·l$) 00000000000000000000000 ° 175
Locating an Error (ERF.:L) 00 ° 175

Warnings ° 0 0 0 0 0 0 0 0 0 0 0 0 .. 0 ° 175
Math Exceptions In Programs ° 0 ° 176

Exceptions as Errors ° 0 ° 176
Exceptions as Warnings ° 0 ° 177

Overview
This section covers the following topics:

• Types of errors.

• How the HP-71 notifies you of errors.

• How to respond to error and warning messages.

• How to locate and correct errors.

• How a program can handle its own errors.

162

Section 9: Error Conditions 163

Types of Errors
When writing a program, performing keyboard operations, or running a program, you might encounter
error messages or warning messages. An error message indicates that an operation can't be performed
until you correct an error. A warning message indicates that either the computer used a default value as
the result of an operation or that a certain condition requires your attention.

You can encounter three types of errors on the HP-71:

• Syntax

• Run-time

• Logical

A syntax error is an error in a statement's construction. This includes such errors as misspellings and
improper parameters. The HP-71 checks for syntax errors as statements are entered from the key­
board.

A run-time error is an error that is detected when a statement is being executed. Run-time errors occur
for events such as invalid arguments supplied for functions and branches to nonexistent lines. A logical
error is an error in a program's design. This type of error occurs when a program fails to produce the
correct results. The HP-71 doesn't detect logical errors; however, it does have functions that enable you
to trace such errors.

Error Messages
The HP-71 displays an error message when it can't correctly perform an operation. It also suspends its
operations (either keyboard or program operations). An error message indicates the nature of an error
and, in the case of a running program, the line in which the error was detected.

Messages for Syntax Errors

When the HP-71 detects a syntax error, it:

• Rejects the line just entered.

• Sets E F.: F.: t·j (described on page 173).

• Beeps and momentarily displays an error message (according to DELA'l setting).

• Displays the line just entered.

• ,sets the cursor to the point in the line where it detected the error.

164 Section 9: Error Conditions

A syntax error message has the form:

E F.: F.:: message

Example:

EF.:F.: : I n',.".:l 1 i d E::<pr Indicates that an expression was keyed in
incorrectly.

If, after the HP-71 reports an error, you find that the message doesn't aid you in determining why the
error occurred, refer to "Errors, Warnings, and System Messages" in the HP-71 Reference Manual. The
reference manual lists the most common reasons why each error occurs.

Messages for Run-Time Errors ([[II ERRM I)

When a run-time error occurs, the computer:

• Halts execution (if detected in a running program, it suspends the program).

• Sets ERR Land E F.: F.: N (described under "Program Control of Errors," page 171).

• Beeps and displays a message.

A run-time error message has the general forms:

ERR: message For a statement executed from the keyboard.

E F.: F.: Ln: message For a statement executed from a running program.

where ERR indicates that this is an error message, Ln indicates the line number, n, at which the error
was detected and message indicates what caused the error.

Example:

ERR L30:String Ovfl Indicates that a statement on line 30 of a program
attempted to assign a string to a string variable
that didn't have a large enough dimension.

You can view the last reported error or warning message by pressing [ill I ERRM I or executing E F.: F.: t'l $.

For an example, key in the following:

Input/Result

D I t'1 A$[5] I END LI NE I

A$="TOO BIG" IENDLINEI

E F.: F.: : S t t- i t"l9 0..,. f 1

[[]I ERRM I (hold down)

S t t- i t"l9 0 v f 1

EF.:Pt'1$ I END LINE I

::; t t- i t"l9 0 v f 1

Debugging Operations

Section 9: Error Conditions 165

Dimensions the string variable, A$, to five
characters.

Attempts to assign a seven-character string to A $.

The computer beeps, then displays a message in­
dicating that the string assigned to A $ is too
large.

Displays most recent message.

Displays EF.: Pt'1$, which returns the most recent
message.

Error messages are very concise and usually easy to interpret. If you need more information about an
error, refer to "Errors, Warnings, and System Messages" in the HP-71 Reference Manual. That section
contains a list of HP-71 error messages and the most common error conditions associated with them.
You may also want to refer to "HP-71 Keyword Dictionary" in the reference manual for more informa­
tion about the proper syntax and use of HP-71 keywords.

If you can't determine the cause of an error after referring to the reference manual, you can use
T PAC E and I SST I to trace program execution.

166 Section 9: Error Conditions

Tracing Execution (T PAC E FLO ~.J)

A useful method of locating errors is to trace program branching using T F.: ACE FLO ~,l. Th trace pro­
gram flow, execute T F.: ACE FLO ~'l from the keyboard, then execute the program. (This statement can
also be executed by a program, but it can't be executed from the keyboard while a program is running.)

I TF.:ACE FLO~'l

When you trace program execution, the HP-71 displays a message showing you each branch that oc­
curs. (Refer to the next section, "Branching, Looping, and Conditional Execution" for more informa­
tion about branching.)

This message has the form:

T t- ace lin e line number t 0 line number

If the order of program execution were to proceed sequentially from the lowest-numbered line to the
highest, trace messages wouldn't be displayed. But when a branch occurs (including a subprogram call),
the HP-71 displays both the line number where the branch occurs and the line number to which execu­
tion branches.

Example:

Trace line

A branch to a subprogram is reported in the form:

T r .:l c eli n e line number CAL L subprogram name

and a return from a subprogram is reported in the form:

Tr ·:lce line line number Et·~D::;U8

Example: A program has a call on line 100 to the subprogram T EST 1. The subprogram begins at line
400 and ends at line 450.

100 CALL TESTl

450 Et·jD SU8

Section 9: Error Conditions 167

As the computer executes these lines, it displays:

T t- ace 1 i n e 1 [1 [1 CAL L T EST 1 Reports the branch to the subprogram T E ::; T 1 .

T t- ace 1 i n e 4 5 ~j E t·j D SUB Reports the return back to the calling program.

Tracing Variable Assignments (T F.: ACE ' ... ' A F.: ::;)

The T F.: ACE I.} A F.: ::; statement enables you to trace the value changes of variables in a running pro­
gram. It can be in effect concurrently with T PAC E FLO L~.

I TF.:ACE '.}AP::; .

When a program assigns a value to a variable, the HP-71 displays a trace message indicating the line
number where the assignment took place and:

• The name and assigned value of a simple numeric variable.

Trace line 10 B=2

• The name of a string variable.

Trace line 20 S$

• The name, subscript(s), and assigned value of a particular numeric array element.

Trace line 30 C(2,3)=45

• The name and subscript(s) of a string array element.

Tr ace 1 ine 20 A$(3)[!, 10J I

T F.: ACE I.} A P S enables you to pinpoint where variables are being assigned unacceptable values.

168 Section 9: Error Conditions

Cancelling Trace Operations (T F.: ACE 0 F F)

Trace operations are cancelled by executing T F.: ACE 0 F F .

I TPACE OFF

This will cancel a T F.: ACE I.} A P S and a T F.: ACE FLO ~·l condition. It can be executed from the key­
board or by a program. It can't be executed from the keyboard while a program is running.

Single-Step Execution (ITJI SST I)

The I SST I function enables you to execute a program one line at a time and view the result of each
operation. You can evaluate each step of a program to determine where and why logical and run-time
errors occur.

I SST I performs two functions:

• It displays the next statement to be executed when you press ITJI SST I.
• It executes the statement when you release I SST I.

Example: Key in a program that displays the letters of the alphabet one at a time, then single-step
through it. (Before using I SST I, ensure that the program you want to debug is the current file and that
the HP-71 is in BASIC mode.) As you single-step through the program, view some intermediate results
to verify that they are correct.

Input/Result

10 FOF.: I =65 TO 9[1 I END LINE I
2[1 CHF.:$':: I ::. I END LINE I
30 t·iE>::T I I END LINE I

ITJI SST I (hold)

10 FOP 1=65 TO 90

Beginning of loop.

Displays a character.

End of loop.

Displays first line as long as you hold I SST I. (You
don't need to hold the ITJ key.)

Section 9: Error Conditions 169

(release) Executes the line.

'--__ >_I ______________ su_s--',I Displays co"",, and SUS. annunciata"

ITJI SST I (hold)

'--__ 2_(1_0_1_::,_· F_' _C_H_R_, $_. _(_1_::_' ______ su_SP--'1 Displays the line,

(release) Executes the line.

'--__ A _______________ su_SP--'1 Displays characte, 65,

I I END LINE I What is value of increment counter? (While sin­
gle-stepping through a file, you can perform key-
board operations.)

'--__ 6_5 ______________ su_SP--'1 I equals 65 (the characte' code fo, A),

'--__ 3_f1_t_~ _E_::<_T __ 1 __________ su_s--',I Displays and executes next line,

ITJI SST I (hold)

2f1 01SP CHR$(I)

(release)

Because this is a loop, execution jumps back to
line 20.

'--__ 8 _______________ su_SP--'1 Display, next characte"

170 Section 9: Error Conditions

I I END LINE I What is value of increment counter?

L..-__ 6_,6_, ______________ SU_S_p 1 Chm-acte, code fo, B.

Completes program execution.

You can continue single-stepping through the program until it ends. As an alternative, you can press
[DI caNT 1 (shown above) to execute the remainder of the program.

When you single-step through a program, the HP-71 displays and executes one statement at a time. If
you execute a multi-statement line using [DI SST I, each statement is shown with its bounding concat­
enation symbols U!!), and then executed.

Example: Change line 20 of the program from the example above to display the character code, its
uppercase equivalent, then the lowercase counterpart. Then, single-step through the program.

Input/Result

20 I @ CHR$(I) @ CHR$(I+32)
I END LINE 1

[DI SST 1 (hold)

10 FOR 1=65 TO 90

(release)

[DI SST 1 (hold)

20 DI:::P 1 I]!

(release)

65

~I

Changes line 20 (from previous example).

Displays first line.

Executes statement and suspends program. Com­
puter displays SUSP annunciator.

Displays next statement.

The I]! indicates that there is another statement
on the same line.

Executes the statement.

_I Di,plays the value of I.
L.-___________________ ~

[IJI SST I (hold)

20@ DISP CHR$(I) @ -I
(release)

Section 9: Error Conditions 171

Displays next statement on the line.

The first I:!! indicates that a statement precedes
the one displayed and the second I:!! indicates that
another statement follows on the same line.

Executes the statement.

L--__ A _______________ s_us_p 1 Di,plays a cru....acte,.

[IJI SST I (hold) Displays last statement in line.

20@ DISP CHR$(I+32) I
sus~

(release) Executes the statement.

Continues program execution.

For longer programs, you might want to single-step through a few lines only. You can set the HP-71 to
the line or label that you want to begin single-stepping at by executing GOT 0 from the keyboard. The
line you specify or the line containing the label you specify becomes the current line.

You can also single-step through a suspended program. Pressing and releasing [IJI SST I executes the
suspend statement. This is useful when you want to execute a program, but single-step through a por­
tion of it. 'Ib do this, include a P AU::; E statement at the beginning of the portion of the program that
you want to single-step through, then run the program. When the program executes the P A USE state­
ment, the HP-71 suspends the program. You can single-step through the program at that point.

The T RAe E 1,,1 A R ::; and T RAe E FLO ~'J conditions can be active during single-step execution through
a program.

Program Control of Errors
Normally when a run-time error occurs, the HP-71 halts program execution and displays a message.
However, you might not want a program to halt for certain errors if you anticipate them. Rather, it
might be better if you could write a recovery routine that would process anticipated errors. When an
error occurs, program execution would branch to your recovery routine and continue to run uninter­
rupted. The HP-71 has several statements that enable you to write and use error recovery routines.

172 Section 9: Error Conditions

Branching on an Error (0 t·~ E F.: F.: 0 F.:, 0 F F E F.: POP)

The 0 t·j E F.: F.: 0 F.: statement causes a branch to a specified program line when an error occurs. This can
be used to implement an error recovery routine.

The two forms of 0 t·j E F.: F.: 0 F.: are:

simplified syntax ------------------------------------,

Ot·j E F.: F.: 0 F.: GOTO line number
Ot·j E F.: F.: 0 F.: GOTO label

simplified syntax ------------------------------------,

Ot·j EF.:F.:OF.: GO::;UB line number
Ot·j EF.:F.:OF.: GOSUB label

o t·j E F.: F.: 0 F.: GOT 0 causes a branch to another statement. 0 t·j E F.: F.: 0 F.: GO SUB causes a branch to a
subroutine. When the subroutine is completed, execution returns to the statement following the one in
which the error occurred.

When 0 t·j E F.: F.: 0 F.: is executed, an 0 t·j E F.: F.: 0 F.: condition is created which exists until it is explicitly
turned off, changed, or the program ends.* To change an Ot·j EF.:F.:OF.: condition, simply execute
o t·j E F.: F.: 0 F.: again.

Th turn off an 0 t·j E F.: F.: 0 F.: condition, execute

I OFF EF.:F.:OF.:

No error branching will occur unless 0 t·j E F.: F.: 0 F.: is again executed.

• The 0 t·j E ~: R 0 R condition is not global. If it is set in a main program, it will not exist for any subprograms. If it is set in a
subprogram, it won't exist for the main program or any other subprogram. Refer to section 11, "Subroutines, Subprograms, and
User-Defined Functions."

Section 9: Error Conditions 173

Determining an Error Message Number (E P P t·~)
Each HP-71 error message has a unique identification number. (The identification numbers for error messages are listed under "Error, Warning, and System Messages" in the HP-71 Reference Manual.) Error messages are grouped so that numbers for similar types of messages fall within a range. For example, the identification numbers for the math error messages range from 1 to 21.
In some applications, a program might need to determine the type of error most recently committed. It can do this using ERR ~·L

I EF.:RN

E R F.: t·j returns the identification number of the most recent error message.

Example: Generate an error, then determine the message number.

Input/Result

DEFAUL T OFF I END LINE I
LOG (- 5::' I END LI NE I

EF.:F.::LOG(ne9)

ERR~·j I END LINE I

13

Treats math exceptions as errors.
Executes a function using an invalid argument to
generate an error.

The HP-71 displays the error message.

Gets the number of the message.

Displays the number of the most recent message.

If you know beforehand which errors you want to process in an error recovery routine, you can test for their identification numbers to determine which operations to perform.

Example: Write a program that displays the square of the natural log of a number which is input from the keyboard. Include in this program an error recovery routine which processes a negative or zero input.

174 Section 9: Error Conditions

10 DEFAULT OFF @ DESTROY N

20 INPUT "SQUARE LOG OF ?"; N

30 ON ERROR GOSUB 70

40 DISP LOG(N)A2

50 OFF ERROR

60 GOTO 20

70 IF ERRN = 12 THEN DISP "CAN'T TAKE 0"

80 IF ERRN = 13 THEN DISP "CAN'T TAKE
NEG"

90 RETURN

Treats all error conditions as errors.

Inputs a number.

Branches to line 70 on an error.

Calculates and displays the square of the log of n.

'furns off the I] t·j E F.: F.: I] F.: condition.

Loops back to input another number.

Displays message if error number is 12.

Displays message if error number is 13.

E F.: F.: t·j also indicates the type of device, plug-in ROM, or LEX file which generated the error message. *
Message numbers are of the general format

mmmm

where iii is a three digit LEX identification number and mmm is a message identification number. Any
leading zeros in this number are suppressed. For example, E F.: F.: t·j returns only a message ID number for
errors generated by the computer because it has a LEX ID of zero.

The LEX ID number identifies the device or LEX file that generated an error. The owner's manual for
each plug-in device or ROM indicates its LEX ID number.

For example, the HP 82401A HP-IL Interface has a LEX ID of 255 and can generate its own error
messages. If you are using the HP-IL interface and commit error number 7 according to this module,
E F.: F.: t·j will return the value 255007. The three leading digits (255) indicate that the device is the HP-IL
interface. The three trailing digits indicate that the message number is 7.

• A LEX file is a Language Extension File, which is a binary program that adds keywords to the Hp·71. LEX files can be in user
memory or a plug·in extension. For more information about LEX files, refer to section 8, "Writing and Running Programs."

Section 9: Error Conditions 175

Recalling an Error Message ([]]I ERRM I, E P P t'1 $)

Some applications require that an error message be saved, or combined with other messages and dis­
played. To save or manipulate a message, you need to recall it. You can recall the HP-71's error mes­
sages in two ways:

• Press and hold [[]I ERRM I. This displays the most recent error message.

• Execute E F.: F.: t'1 $. This returns an error message in a string expression.

E F.: F.: t'1 $

E F.: F.: t'1 $ is useful for customizing error recovery routines. For example, program execution can branch
on an error to a routine that assigns the error message to a string variable, adds to the variable, then
displays it as a custom error message.

Locating an Error (E P F.: L)

You can determine the program line at which the most recent error occurred (if it occurred in a running
program) by executing EF.:F.:L. This function always returns a line number. For example, if an error
occurred at line 50 of your program, the statement

DI::;P "Et"t"ot" on 1 ine".: EF.:F.:L

would display

Et" t" Ot" on 1 i ne 5E1

Warnings

Warning messages indicate conditions which are not significant enough to halt program execution, but
can be accommodated automatically by the HP-71. These include warnings about the condition of the
batteries, card reader information, file information, and warnings about math overflows and
underflows (these are described under "Math Exceptions In Programs" below).

176 Section 9: Error Conditions

When a warning occurs, the HP-71:

1. Sets E F.: F.: t·j to the number of the warning message. If the warning occurred during a running pro­
gram, E F.: F.: L is also set.

2. Displays the line number (if a running program) and message accompanied by a beep. For example:

WRN L50: Invalid TAB

The message remains in the display for a length of time specified by the DEL A \' setting.

3. Substitutes a default value and resumes execution. (You can select which default values are used
for some expressions. Refer to "Math Exceptions," below.)

The display of warnings is not affected by an 0 t·j E F.: F.: 0 P condition. That is, 0 t·j E F.: POP branching
can't occur for a warning condition.

You can suppress the display of warning messages by setting flag -1. (Refer to section 10, "Flags," for
information on setting and clearing flags.) When this flag is set, the computer supplies a default value
for an expression that causes a warning. The HP -71 will not display a warning message or set E F.: F.: L or
EF.:Pt·j, so you will have no indication that a warning has occurred. This is useful when you don't want
a warning to interrupt program execution.

Math Exceptions In Programs

Exceptions as Errors

Math exceptions are error conditions which can be treated as either errors or warnings. (Math excep­
tions are also described in section 2.) Math exceptions are associated with the five math exception
flags. When a math exception flag has a corresponding trap value of 0, the exception associated with
that flag will be treated as an error. When the exception occurs:

• Execution halts and the computer displays an error message, or

• If 0 t·j E P POI': was executed, program execution will branch to the line specified in the
o t·j E F.: F.: 0 F.: statement.

Section 9: Error Conditions 177

Exceptions as War nings

If an exception has a trap value of 1 or 2, it generally will be treated as a warning (as described above under "Warnings"), and a default value will be provided in the expression that caused the exception.* The default value supplied depends on the trap value.

In many applications, you might choose to have math exceptions treated as warnings. If so, expressions that generate math exceptions will assume the default values that you select. Since you would antici­pate this, you might not want warning messages displayed. To suppress the display of most warning messages (including those for math exceptions), execute

SFLAG -1

Most warning messages won't be displayed until you execute

CFLAG -1

(For more information about these statements, refer to section 11 "Flags.")

• An exception to this is the I VL exception flag. When the trap value for I VL is 1, then an I VL exception will be treated as an error. For more information about math exceptions, refer to "Math Exceptions" in section 2.

Section 10

Branching, Looping, and Conditional Execution

Contents
Overview 0 178
Unconditional Branching 0 179

Branching to a Line or Label (GOTO, GOSUB, PETUF.:tol, POP) 0000000000 179
Branching to a Subprogram (CALL) 000000000000000000000000000000000000 180
Branching to Another Program (CHA Hl) 00000000000000000000000000000000 180

Multiple Branching (Otol .. 0 GOTO, Otol .. 0 GO::;UB) 00000000000000000000000 181
Timer Branching 0 182

Timer Branching With GOTO (Ot~ T 1 t1EF.: :11= ••• GOTO) 0000000000000000 182
Timer Branching With GOSUB (otol T 1 MEP :11= 0 •• GOSUB) 00000000000.0 183
More About Timers 0 183
Deactivating a Timer (0 F F T H1 E F.: :11=) 0 • 0 0 0 0 0 0 0 0 0 0 184

Looping 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 185
Simple Loops (FOP ... tolE::<T) 000000000000000000000000000000000000000 185
Nested Loops 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 • 0 • 0 0 0 0 0 0 0 186

Conditional Execution (I F ... THEt~, 1 F 0 •• THEN ... ELSE) .000000.000 187
Conditional Branching 000 187
Optional ELSE 00000000.000 0 0 188

Overview
The HP-71 has several branching and looping statements that allow you to control the order in which
program statements are executed.

More specifically, this section describes:

• Unconditional branching.

• Multiple branching.

• Timer branching.

• Looping.

• Conditional execution.

Another type of branching-error branching-is discussed in section 9, "Error Conditions."

178

Section 10: Branching, Looping, and Conditional Execution 179

Unconditional Branching

Branching to a Program Line or Label (GOTO, GO::;UE:, RETUF.~t·~, POP)

The GOT 0 statement causes program execution to branch to a specified line or a label.

~ ",mp"'" "ym"
GOT 0 Une number
GO TO label

Branching with GOT 0 is unconditional because the branch occurs every time the statement is ex­
ecuted. GOT 0 can't cause a branch to a user-defined function or a subprogram. (Branching to
subprograms and user-defined functions is described in section 12.)

The G 0 ~:; U B statement causes an unconditional branch to a subroutine. The HP-71 saves the location
of each GOS;UB statement it executes so that when a subroutine ends (with PETUF.:t·j), execution re­
turns to the statement following the GO SUB that called it.

~ "mpi"e' 'ym"
GO SUB /lne number
GOSUB label

As with GOTO, the GOSUB statement can't cause a branch to a subprogram or a user-defined function.

The F.:ETUF.:t·j statement marks the end of a subroutine and directs the HP-71 to resume execution
with the statement following the last GO SUB executed.

I F.:ETUF.:t·j

A subroutine can contain aGO::: U B which causes a branch to another subroutine. When a F.: E T U P t·j is
encountered, execution branches back to the statement following the GO::: U B in the first subroutine.
When another F.: E T U F.: t·j is encountered, execution returns to the statement following the original
GO SUB. Thus, subroutines can cause branches to other subroutines. When this occurs, the subroutines
are said to be nested. The amount of nesting that can occur is limited only by the size of main RAM.

Nested subroutines typically end in the reverse of the order in which they were branched to. That is,
the last subroutine branched to is the first one to end when aPE T'-' P t·j statement is executed.

For some special applications, the order in which nested subroutines end can be changed by POP.

180 Section 10: Branching, Looping, and Conditional Execution

POP

Whenever a branch to a subroutine occurs, the HP-71 saves the location of the GO::: U B statement that
caused the branching. If you execute POP, the location of the last GO::: U B that caused a branch is no
longer saved. In this way, the return to a subroutine level can be bypassed.

Branching to a Subprogram (C ALL)

With the CALL statement, program execution can branch to a subprogram (or another program) and,
upon completion, return to the statement following the calling statement.

~ "mp'ified eyo;",

CAL L subprogram name [(parameters ::0]

This statement is similar to GO::: U B in that execution returns to the statement following the CAL L
when the subprogram has ended. The difference between the two statements is that GO::: U B causes a
branch to a subroutine while CAL L causes a branch to a subprogram. Also, CAL L can transfer execu­
tion to a subprogram located in a file other than the current file.

Writing and using subprograms is described in section 12, "Subprograms and User-Defined Functions."

Branching to Another Program (C H A I t·~)

You can unconditionally branch to another program file using the C H A I t·j statement.

The C H A I t·j statement purges the current file from RAM, copies the chained file into main RAM, then
executes it. The chained file becomes the current file. The program to be chained can be located in the
computer's memory or, more commonly, in an external device such as the magnetic card reader or a
digital cassette drive.

Note: Since C H A I t·j purges the program that executes it, don't use your only copy of a program
to execute this statement!

Using CHA I t·j, a program which is too large to fit in HP-71 memory can be divided into smaller pro­
grams and stored on a mass storage medium as separate files. After completing execution, each smaller
program chains the next one.

Section 10: Branching, Looping, and Conditional Execution 181

C H A I t·j preserves the status of all variables, modes, traps, flags, and open data files from one program to the next. However, it releases all local environments and program control information. (Program environments are described in the section 12, "Subprograms and User-Defined Functions.") When a program is chained, it begins running at its lowest-numbered line.

Examples:

CHAIt·j t'lAILIST

CHAIN MAILIST:CARD

Chains a program, t'l A I L I::; T, starting execution
with the lowest-numbered line.
Chains t'l A I LIS T from the magnetic card reader.

Multl"ple Branchl"ng «("l i··j r:: (OOl ·r C'l ("i i··j r:: l"""l ':::: iii::::) :: ••........... : , :: :

The 0 t·j ... GO::; U Band 0 t·j ... GOT 0 statements provide multiple branching capability based on the value of a numeric expression.

simplified syntax ------------------------------------,
o t·j expression GOT 0 line number, line number ...

label label

simplified syntax ------------------------------------,
ot-j expression GO::; U B line number, line number. ..

label label

When either of these statements is encountered in a program, the computer evaluates the numeric expression and rounds the value to an integer. That integer points to one of the line numbers or labels following the GOT 0 or GO SUB. If the expression evaluates to 1, program execution branches to the statement indicated by the first line number or label listed after the GOT 0 or GO::; U B. If the expres­sion evaluates to 2, execution branches to the statement indicated by the second line number or label in the list, and so on.

Example: The following statement causes program execution to branch on the value of the expression (T=Z) +(A=Z) +1.

ot·j (T=Z::O +(A=Z::O +1 GO TO F I F.:ST., 200., LAST

If (T = Z ;. + (A = Z) + 1 evaluates to 1, then execution branches to the label F I F.: S T. If the expression evaluates to 2, then execution branches to line 200. If it evaluates to 3, a branch to the label LAS T occurs.

182 Section 10: Branching, Looping, and Conditional Execution

Timer Branching
The HP-71 has three program timers which can be set to interrupt a program and cause execution to
branch to another line or label. A common application of program timers is to run entire routines at
specified intervals. With the 0 t·j T I t1 E F.: #... GO SUB and 0 t·j T I ~1 E F.: #... GOT 0 statements,
synchronized branches to a subroutine or simply another part of the program can be accomplished.

Timer Branching With GOT 0 (0 t·~ T I t'l E F.: # ... GOT 0)

The 0 t·j T I ~1 E F.: #... GOT 0 statement transfers execution to a program line or label when the
specified timer comes due and the statement that is currently being executed is completed.

r-: simplified syntax

o t·j T I t'l E F.: # timer number seconds GOT 0 line number
label

The timer number is a numeric expression that must evaluate to a rounded value of 1, 2, or 3. This
specifies which of the three timers to set. The number of seconds is also a numeric expression. It sets
the number of seconds between the time and the timer is set and the time it will expire. Timers can be
set to a precision of 1/32 second. The range for seconds is 1/32 through 134,217,727 seconds, a little
over four years. If you specify a value smaller than 1/32 second, the computer sets the timer to 1/32
second. If you specify a value greater than the maximum, the HP-71 uses the maximum value.

Once set, timers remain active until the program ends or until they are deactivated (described below
under "Deactivating a Timer"). Timers remain active if a program is suspended, but they don't execute
the specified branching until program execution resumes.

Example:

10 ON TIMER # 1, 10 GOTO 50

20 GOTO 20

50 DISP "TEN SECONDS"

60 BEEP 100

70 DISP "CONTINUE"

The interrupt transfers execution to line 50.

Execution continues as it does after any other
unconditional branch.

When a timer set by Ot·j T I t'lEF.: # ... GOTO expires, the HP-71 automatically resets it using the
specified interval. That is, a timer set to an interval of 30 seconds will expire every 30 seconds, causing
a branch to occur.

Section 10: Branching, Looping, and Conditional Execution 183

Timer Branching With GO!:; U B (0 t·~ T I t'l E F.: :1=1= ••• GO SUB)

The 0 t·j T I t'l E F.: #... GO::; U E: statement causes a branch to a subroutine when the specified timer
expires.

simplified syntax -----------------------------------,

o t·j T I t'l E F.: # timer number., seconds GO::; U E: line number
label

With I] t·j T I t'l E R #... GO SUE:, program execution branches to the specified subroutine when the
timer expires. When the HP-71 encounters a F.:ETUF.:t·j statement, it resets the timer and branches
back to the statement following the one that was being executed when the timer expired.

Example:

10 ON TIMER #2, 15 GOSUB 100

20 DISP "WAIT FOR TIMER"

30 GOTO 20

100 DISP ''TIMER EXPIRED"

110 RETURN

More About Timers

Sets a subroutine branch to line 100 at 15-second
intervals.

Execution transfers to this line when the timer
expires.

Causes a branch back to the statement following
the one that was being executed when the timer
expired.

Timers Within Subprograms. Timers are global in that the three timers which can be set in a main
program can also be set in a subprogram. However, the effects of timers are local in that they can cause
a branch only to a line or label within the main program or subprogram in which they are set. Also,
they can cause a branch only when the main program or subprogram in which they are set is currently
running.

If a timer is set and then a subprogram is called, the timer can't cause a branch until the subprogram
ends. Similarly, if a timer is set in a subprogram and the subprogram ends, the timer remains active,
but won't cause a branch until the subprogram is called again.

184 Section 10: Branching, Looping, and Conditional Execution

When the Computer is Off. If a program activates a timer and then executes B '"(' E or 0 F F, the timer
remains active. When it expires, the computer turns itself on and begins executing the program at the
line or label specified in the 0 t·j T I t1 E F.: # statement. This technique is commonly used when the
HP-71 is required to take a reading from an external device (such as a voltmeter) at specified intervals,
but is not otherwise required to be on. Thus, it can set a timer, turn itself off, then repeatedly turn
back on when the timer expires, take a reading, and turn itself off again.

Example: The following program sets a timer, executes BEE P, and turns off the HP-71. Then, at 3
second intervals, the HP-71 turns itself on, executes BEEP, then turns itself off.

Lines 40 through 80 are executed each time the timer comes due. When the HP-71 has beeped 10
times, the program deactivates the timer (described below under "Deactivating the Timer").

10 DESTROY I

201=1

30 ON TIMER # 1,3 GOTO 40

40 DISP I

50 BEEP

601=1+1

70 IF 1>10 THEN OFF TIMER # 1

80 BYE

Ensures that I is available for use as a simple
numeric variable.

Sets the initial value of I.

Sets timer 1 to expire every 3 seconds.

Displays the value of I.

Beeps.

Increments I.

Deactivates the timer if it has beeped 10 times, as
indicated by the value of I.

'!brns the HP -71 off.

Deactivating a Timer (0 F F T I t'l E F.: #)

A timer can be deactivated by executing 0 F F T I t'1 E R #.

I OFF T I t'1EF.: # timer number

For example, the statement 0 F F TIM E F.: #:3 deactivates timer 3.

All three timers are simultaneously deactivated when a program ends. (For more information about
ending a program, refer to "Ending a Program," page 155.)

Section 10: Branching, Looping, and Conditional Execution 185

Looping

Repeatedly executing a sequence of statements is called looping. A simple loop begins with a F (I F.:
statement, which initializes the loop, and ends with a t·j E :x: T statement. Simple loops can be located
within other loops to form nested loops. Nested loops are commonly used to process arrays and to
manage data files.

Simple Loops (F 0 P . . . t·~ E ::< T)

The combination of the F 0 F.: and t·j E ::.:: T statements enclose a sequence of statements which are to be
executed a specified number of times.

FOR loop counter=initial value TO final value [STEP step size]

t·j E ::.:: T loop counter

The FOP statement defines the beginning of the loop and initializes a variable, called the loop counter,
that determines the number of times the loop is to be executed. The loop counter must be a simple
numeric variable. The initial value, final value, and step size are numeric expressions. They define the
initial and final value of the loop counter and the increment between successive values. If the step size
isn't specified (the !::;T E P part of the statement is optional), the HP -71 sets it to 1.

Examples:

FOP I = 255-X TO 255

t·jE::-::T I

FOP J = (A AND B) TO ::·::·····2

~jE::<T ,J

FOF.: L 1 = 100 TO 200 STEP

t·jE::-n L 1

+ ' .. '
t'l

.-. E::'

.::. '-'

!:;TEP 'l

186 Section 10: Branching, Looping, and Conditional Execution

The FOR statement performs four operations:

• It sets the loop counter to the specified initial value.

• It stores the final value for the loop counter. The final value determines when to stop looping.

• It stores the step size.

• It marks the start of the loop.

The t·j E ::.:: T statement performs three operations:

• It defines the end of the loop.

• It increments the loop counter according to the value of the step size.

• It tests to see if the loop counter has been incremented beyond the final value. If so, the program
exits the loop and executes the statement following the t·j E >:: T statement. If the final value has not
been exceeded, the program branches to the first statement following the FOR statement.

There are two rules governing the branching into and out of F 0 1<: ••• t·j E ::<: T loops:

• Execution of a F 0 1<: ••• t·j E ::.:: T loop should always begin with the FOR statement. Branching into
the middle of a loop produces an error if the t·j E ::.:: T statement is executed before the program
executes the corresponding F 0 1<: statement.

• It is permissible to branch out of a loop without completing it. After exiting a loop, the loop counter
retains its value for possible use later in the program.

Nested Loops

The HP-71 allows nesting of F 0 1<: • • • t·j E ::.:: T loops. Nesting occurs when one or more loops are
contained (nested) in another loop. Nested loops can't overlap-each loop (except the first one) must
be wholly contained in another loop. Nesting is limited only by the amount of available RAM.

Example: The following program fragment, shown without line numbers, illustrates how nested loops
can be useful in an application such as multiplying matrices. The matrix A is multiplied by B to obtain
the result matrix C.

OPT I Ot·j BASE 1
t'l = 3 I:!! t·j =4(!! P = 2
DIM ACM,N),BCN,P),CCM,P)
FOI<: 1=1 TO t'l

FOI<: ,J= 1 TO P
~:;=[1

FOI<: K= 1 TO t·j
S=S+ACI,K)*BCK,J)

t·jE::·::T K

CCI."J)=8
t·jE::·::T ,J

t·jE::·::T I

Section 10: Branching, Looping, and Conditional Execution 187

The HP-71 offers flexibility in how FOP ... t·jE>::T loops are used. However, when using nested loops,
you should follow these guidelines:

• Every F I] P statement should have a matching t·j E :>:: T statement-that is, after each F 0 F.: state­
ment, there should be a t·j E ::-:; T statement which uses the same loop counter variable.

• Nested loops can't use the same loop counter variable.

• Loops should not overlap.

Conditional Execution (I F' ••• 'r j ... j E: j' .. j, IF:' ... "T'j ... j E: j ... j ••• E: L.. ::::; E:)

The IF ... THE t·j statement enables a program to execute one or more statements based on the value
of a numeric expression.

simplified syntax -----------------------------------,

I F numeric expression THE t·j statements

If the expression between I F and THEt·j evaluates to ° (false), program execution skips to the next line.
If the expression evaluates to a value other than 0, statements after THE t·j are executed.

One or more statements can follow THE t·j providing they are concatenated with the I:!! symbol. How­
ever, some statements aren't valid in an IF ... THE t·j statement. The keyword dictionary in the refer­
ence manual shows for each keyword whether it can be included in an IF ... THE t·j statement.

For example, another IF ... THE t·j statement is not allowed after THE t·j, though it is allowed after
EU:;E.

Conditional Branching

Often the IF ... THE t·j statement is used for conditional branching. Using G 0 T 0 or GO::; U B in the
statement causes program execution to branch depending on the outcome of a conditional test.

simplified syntax -----------------------------------,

I F expression THHj [GOTO] line number
I F expression THE t·j [G 0 TO] label

simplified syntax -----------------------------------,

I F expression THE t-l GO:3 U B line number
I F expression THE t·j GO SUB label

188 Section 10: Branching, Looping, and Conditional Execution

Notice that the keyword GOT 0 isn't required immediately after T H Ht If a line number or label appears
immediately after THEt·j, the computer recognizes this as an implied GOTO. For example,

IF Pl=Ql THEN 100

causes program execution to branch to line 100 if PI equals Ql.

However, if you want conditional branching to a subroutine, you must use the GO::; U B keyword. For
example, the statement

IF Pl=Ql THEN GOSUB NEWFORM

causes program execution to conditionally branch to a subroutine beginning at the label t·j E ~,~ F 0 F.: t'1.

Optional E L ::; E

E L ::; E is an optional keyword which can be used in the IF ... THE t·j statement. It provides for execu­
tion of statements when the expression between I F and THE t·j evaluates to O.

simplified syntax -----------------------------------,

I F expression THE t·j statements E L S E statements

When the expression between I F and THEt·j evaluates to a nonzero number (true), the statements
between THEt·j and ELSE are executed. When the expression evaluates to 0 (false), only the statements
after E L S E are executed, then execution continues to the next line.

Examples:

IF 1=0 THEN X=X+Y @ Z=1 ELSE X=X-Y @ Z=2
IF FLAG(OVF) THEN M$='Overflow' ELSE M$='No Error'

In the same manner as described above, GOSUB and GOTO can be used after ELSE to provide con­
ditional branching.

Section 10: Branching, Looping, and Conditional Execution 189

Examples:
IF L THEN 'EXIT' ELSE

GOSUB 'REFORMAT'

IF ::.(:> 'l THEt·j 10(1

IF T$=A$ THEN 245 ELSE FRMl

If NOT Y THEN X=T @
GOSUB 50 ELSE 150

If L is not equal to zero, then execution
branches to D:: I T (an implied GOTO). If L
equals zero, then execution branches to
REFI]F.:rlAT.
If ::-~:> 'r' is true, execution branches to line 100
(implied).

If T $ = A $ is true, execution branches to line 245
(implied) otherwise it branches to F R t'll
(implied).

If t·j I] T 'r' is true, the value of T is assigned to ;'::
and execution branches to the subroutine begin­
ning at line 50, otherwise execution branches to
line 150 (implied).

Section 11

Flags

Contents
Overview .. 190
Introduction to Flags .. 191
Testing Flags (FLAG) ... 191
Setting and Clearing Flags ... 192

Setting Flags (::;FLAG) ... 192
Clearing Flags (CFLAG, ~:ESET) 192

User Flags .. 193
System Flags .. 196

Warning Message Flag (-1) ... 196
Beeper Flags (-2, -25) .. 197
Continuous-On Flag (-3) .. 197
Math Exception Flags (- 4 through - 8) 197
User Keyboard Flag (-9) .. 197
Angular Setting Flag (-10) .. 197
Round-Off Setting Flags (-11, -12) 198
Display Format Flags (-13, -14) 198
Lowercase Flag (-15) .. 199
Base Option Flag (-16) ... 199
Number of Digits Flags (-17 through - 20) 199
BASIC Prompt Flag (- 26) ... 200
E:=-::ACT Flag (-46) .. 200
Annunciator Flags (-57, -60 through -64) 201

Overview
The HP-71 has 128 flags, all of which can be tested and 96 of which you can set and clear. This section
covers:

• 'JYpes of flags.

• Testing flags.

• Setting flags.

• Clearing flags.

190

Section 11: Flags 191

Introduction to Flags
The previous section describes conditional-execution statements, which are statements that direct pro­
gram flow based on the outcome of conditional tests. A type of conditional test that can be used in
programming is the flag test. A flag is a status indicator that is either set (meaning true) or clear
(meaning false). A flag test is a function that indicates the state of a specified flag, either set or clear.

Flags numbered -64 through -1 are system flags. System flags are used by the computer operating
system to indicate the status of the computer. System flags that are useful from the keyboard and in
BASIC programs are described below under "System Flags."

Flags numbered 0 through 63 are user flags. These flags have no special meaning to the computer. Their
meanings can be arbitrarily defined within a program. You can use them in a program to indicate a
condition that isn't represented by the system flags. (An example of programming with user flags is
given below under "User Flags.")

All flags can be tested with the F LAG function.

I FLAG (flag number)

This function returns a value of 1 if the specified flag is set and 0 if the flag is clear.

You can test any flag with this function. The flag number can be in the range - 64 through 63. If you
specify a non-integer, it will be rounded to an integer before the flag is tested. You can use the math
exception flag mnemonics, such as I I.}L and [l1.}Z, in place of flag number to test flags -4 through -8.

Examples:

FLAG(5)

FLAG(II,}L)

FLAG()'::)

IF FLAGC-15) THEN 100

A=FLAG(12):t:5

'!ests flag 5.

'!ests the invalid flag.

'!ests the flag indicated by :'(.

Branches to line 100 if flag -15 is set.

Sets A=5 if flag 12 is set and A=O if flag 12 is
clear.

192 Section 11: Flags

Setting and Clearing Flags
Flags can be set and cleared by ::;FLAG, CFLAG, and FLAG.

Setting Flags (::; F L A G)

With SF LAG you can specify that all user flags be set, that all the math exception flags be set, or that
selected individual flags be set. System flags - 32 through 63 can be set with ::; F LAG.

::; F LAG flag number, flag number ...
SFLAG ALL
::;FLAG t'1ATH

Examples:

SF LAG 4,.5,.25,. I]\}F

SFLAG I, .. J,.K

SFLAG ALL

SFLAG t'1ATH

Sets flags 4, 5, 25, and the I] \} F flag.

Sets the flags indicated by I, .J, and K.

Sets flags 0 through 63.

Sets the five math exception flags.

You can also set a flag at the time you test it using F LAG.

I F LAG 0:: flag number " new value)

When using F LAG to set a flag, flag number must be in the range - 32 through 63. The new value can
be any number, including Inf and NaN. If new value is 0, the flag is cleared; if it is not 0, the flag is set.
You can set only one flag at a time with this function.

Example:

FLAG0::5 .. 1)

Clearing Flags (CFLAG, PESET)

You can clear flags with CFLAG or FLAG.

C F LAG flag number, flag number ...
CFLAG ALL
CFLAG t'1ATH

Tests flag 5 then sets it to 1.

Section 11: Flags 193

The same parameter restrictions apply to C F LAG as apply to ::; F LAG.

Examples:

CFLAG 3 .. 5 .. Ut..JF

[FLAG L .. I :j::.J

Clears flags 3, 5, and the underflow flag.

Clears the flags indicated by the numeric
expressions.

You can clear flags with F LAG in the same way that you set them.

Example:

FLAG(5 .. 0)

FLAG(5 ... J)

FLAG(5 .. FLAG(5)-1).

'Thsts flag 5 and clears it.

'Thsts flag 5 then sets it if J#O and clears it if
J=O.

'Thsts flag 5 and switches its state (from clear to
set or set to clear).

Flags - 32 through 63 can be collectively cleared by executing F.: ESE T or performing a memory reset
(I t·j IT : 3).

F.:ESET

User Flags

User flags are those numbered 0 through 63. These flags can all be set, tested, and cleared by the user.
These flags are not used by the computer and have no meanings except those attributed to them by the
user.

Flags 0 through 4 have annunciators in the display. When any of these flags are set, the corresponding
annunciator (0, 1, 2, 3, 4) comes on.

Example: When measuring distances on a map, you might be measuring in inches (the English sys­
tem) or in centimeters (the metric system). Distances measured on a map must be converted to actual
distances on the ground to be meaningful. You might want to know actual distances on the ground in
terms of miles or kilometers. Using flags you can write a program that accepts map measurements in
inches or centimeters and converts them according to the map's stated scale into actual distances, in
either miles or kilometers. One flag can indicate the units you are measuring in and another flag can
indicate the units in which actual distances are represented.

194 Section 11: Flags

Suppose you are planning a hike in the Cascade Range in Oregon and you want to know the straight­
line distance between Mt. Jefferson and Grizzly Peak. You have a topographic map which has a scale
(representative fraction) of 1:62500. (That is, one inch on the map represents 62,500 inches on the
ground.) The distance on the map between the peaks is 8.8 centimeters. How many miles separate the
two peaks?

The formulas for converting inches and centimeters to miles and kilometers are:

miles = s x (inches / 63360)
miles = s x (centimeters / 160934.4)
kilometers = s x (inches) x (.0000254)
kilometers = s x (centimeters) x (.00001)

where s is the denominator of the representative fraction. (In this example, s is 62500.)

The following program allows you to select the type of input, inches or centimeters, and the type of
result, miles or kilometers. The program uses flags 1 and 2 to indicate to the program which units are
being used.

In the program, flag 1 indicates which units you are using to measure distances on the map. Flag 1 set
indicates inches and flag 1 clear indicates centimeters. Flag 2 indicates the units used to express the
actual distances. Flag 2 set indicates miles and flag 2 clear indicates kilometers.

Flag 1 is set or cleared in line 60 and flag 2 is set or cleared in line 90. There are four possible combina­
tions of flags 1 and 2 being set and clear. The state of each flag is tested in lines 120 through 150 to
indicate to the computer which conversion formula to use. For example, if you are measuring in centi­
meters and displaying results in miles, flag 1 will be clear and flag 2 will be set. The conversion formula
in line 130 is then used and the result displayed.

10 'SETUP': DELAY 1,1 @ FIX 2

20 DESTROY S,M$,R$,M,R

30 INPUT "MAP SCALE?"; S

40 DISP "MEASUREMENTS"

50 INPUT" in OR em (I/C}?"; M$

60 IF UPRC$(M$)="I" THEN SFLAG 1 ELSE
IF UPRC$(M$)="C" THEN CFLAG 1
ELSE 40

70 DISP "RESULTS"

80 INPUT" mi OR km (M/K)?"; R$

90 IF UPRC$(R$)='"M" THEN SFLAG 2
ELSE IF UPRC$(R$) = "K" THEN
CFLAG 2 ELSE 70

100 'CONVERT': DELAY 4

Initializes the variables to be used in the program.

Inputs map scale.

Inputs type of measurements.

Sets flag 1 to indicate inches or clears flag 1 to
indicate centimeters.

Inputs type of results.

Sets flag 2 if results are in miles and clears flag 2
if results are in kilometers.

110 INPUT "MEASUREMENT? "; M @ IF
M<=O THEN 170

120 IF FLAG(1) AND FLAG(2)
THEN R=S*M/63360 @ DISP R; .. mi"

130 IF NOT FLAG(1) AND FLAG(2)
THEN R = S*M/160934.4 @
DISP R; " mi"

140 IF FLAG(1) AND NOT FLAG(2)
THEN R=S*M*.0000254 @
DISP R;" km"

150 IF NOT FLAG(1) AND NOT FLAG(2)
THEN R=S*M*.00001 @ DISP R; " km"

160 GOTO 'CONVERT'

170 END

Section 11: Flags 195

Inputs a measurement and branches to the end
of the program if the measurement is less than or
equal to zero.

Converts inches to miles if flags 1 and 2 are set.

Converts centimeters to miles if flag 1 is clear
and flag 2 is set.

Converts inches to miles if flag 1 is set and flag
2 is clear.

Converts centimeters to kilometers if flags 1 and
2 are both clear.

Directs program execution to the label CO t·j',) E F.: T
(in line 100).

Now run the program to find the distance between the two peaks.

Input/Result

IRUNI

625~~H~1 I END LINE I

t'1 E A ~:; U F.: E t'1 E t·j T S

in OF.: em (I.""C)?

C I END LINE I

m i OF.: k m (t'1 K)?

Prompts you to enter the denominator of the re­
presentative fraction.

You key in the scale.

Prompts you to indicate the units you'll use to
measure distances on the map.

Key in C for centimeters.

Prompts you to indicate the units you want re­
sults displayed in.

196 Section 11: Flags

t'l I END LINE I

t'l E A::; U F: E t'l E H T?

::: , :::: I END LI NE I

3,42 mi

t'lE ASUP Et'lEt'~T?

~~1 I ENDLI NE I

Key in t'l for miles.

Prompts you for a measurement.

Key in the distance on the map (in centimeters)
from Mt. Jefferson to Grizzly Peak.

Displays the actual distance in miles.

Prompts for another measurement.

Ends the program.

The program continues to prompt for measurements until you enter a measurement of O. If you want to
use different units of measurement, simply run the program again.

System Flags
The HP-71 flags are divided into two groups-system flags, whose meanings are predefined by the
HP-71, and user flags, whose meanings can be defined by the user.

All flags are global-they can all be used by subprograms (even those in other files) and user-defined
functions. No flags are local to program files or subprograms.

System flags indicate the state of the HP-71. Flags -32 through -1 can be set, cleared, and tested by
the user. Flags - 64 through - 33 can only be tested.

The flags that you can use are described here. Flags not described are used by the HP-71 for its
operation.

Warning Message Flag (-1)

By setting the warning message flag you can suppress the display of most warning messages. System
messages, error messages, and certain warning messages can't be suppressed. (For a list of which warn­
ing messages can be suppressed, refer to "Errors, Warnings, and System Messages," in the HP-71 Ref­
erence Manual.)

Section 11: Flags 197

Beeper Flags (-2, - 25)

When flag - 2 is set, the beeper will not sound when BEE P is executed. When flag - 2 is clear, the
beeper operates normally.

The beeper has two volumes which can be selected by setting or clearing flag - 25. When this flag is
set, the beeper volume is loud. When the flag is clear, the volume is soft.

Continuous-On Flag (- 3)

To save battery power the HP-71 automatically shuts itself off after 10 minutes of inactivity. There are
times when you might want to leave the HP-71 on continuously. You can set the HP-71 to continuous
on by setting flag - 3. Clearing flag - 3 restores the automatic shut-off feature.

Math Exception Flags (-4 through - 8)

One or more of these flags are set whenever a math exception occurs. (For more information about
math exceptions, refer to "Math Exceptions," page 57.)

Once set, the math exception flags can be cleared individually by using C F LAG, or cleared collectively
by executing CFLAG t·lATH.

User Keyboard Flag (-9)

When set, flag -9 indicates that the User keyboard is active. Setting the flag activates the User key­
board. (This is equivalent to executing U ::; E F.: ot-L) Clearing the flag deactivates the User keyboard
(equivalent to executing USEP OFF). This flag can be useful in a program when you are using a KEY
file and want to ensure that the User keyboard is active.

Angular Setting Flag (-10)

This flag, when set, indicates that the arguments and results of trigonometric functions are expressed
in radians. When clear, it indicates that arguments and results are expressed in degrees.

Example: The following routine computes the arcsine of an input value and displays the result in
degrees or radians, depending on the status of flag -10.

10 INPUT X
20 IF FLAG(-10) THEN DISP ASIN(X);" RADIANS" Include a space after the two leading quotation

ELSE DISP ASIN(X);" DEGREES" marks.

When flag -10 is set, the RAD annunciator comes on in the display. Radians and degrees can also be
set on the HP-71 using the PAD I At·jS or DEGF.:EES statements.

198 Section 11: Flags

Round-Off Setting Flags (-11, -12)

Flags -11 and -12 indicate the current round-off setting, according to the following table:

Round-Off Setting Flags

Type of Rounding Flag -11 Flag -12

Near clear clear
Zero clear set

Positive set clear
Negative set set

Example: The following routine displays the current round-off setting.

10 A = FLAG(-12) + 2 * FLAG(-11)
20 IF A = 0 THEN R$ = "NEAR"
30 IF A = 1 THEN R$ = "ZERO"
40 IF A = 2 THEN R$ = "POSITIVE"
50 IF A = 3 THEN R$ = "NEGATIVE"
60 DISP "ROUND-OFF: "; R$

You can select the round-off setting by setting or clearing the appropriate flags or by using the
I] P T I I] t·j F.: I] U t·j D statement.

Display Format Flags (-13, -14)

Flags -13 and -14 indicate the current display format according to the following table:

Display Format Flags

Display Format Flag -13 Flag -14

::HD clear clear
F I ::-:: set clear
:::;C I clear set
Et·jG set set

These flags are useful for numeric routines that need to know how numbers are displayed.

Example: The following routine displays the current display format.

10 A = FLAG(-13) + 2 * FLAG(-14)
20 IF A = 0 THEN R$ = "STO"
30 IF A = 1 THEN R$ = "FIX"
40 IF A = 2 THEN R$ = "SCI"
50 IF A = 3 THEN R$ = "ENG"
60 OISP "FORMAT:"; R$

The display format can also be set using ::; TO, F I ::.::, ::; C I, and E t·j G.

Lowercase Flag (-15)

Section 11: Flags 199

Flag -15, when set, indicates that the keyboard is set to lowercase. That is, pressing letter keys dis­
plays the lowercase characters. When clear, the keyboard is set to uppercase.

Pressing the [ill key before a letter key displays the opposite case of that letter. For example, when flag
-15 is clear, pressing [ill@] displays d. But when flag -15 is set, pressing [ill@] displays D.

This flag is useful in a program when you want to ensure that the keyboard is set to one case. The
keyboard can be set to lowercase or uppercase using Leo t·j and Leo F F.

Base Option Flag (-16)

When set, flag -16 indicates that the current base option for dimensioning arrays is 1. When clear, the
flag indicates that the base option is zero. The base option can also be set using the 0 P T I 0 t·j B A::; E
statement.

Number of Digits Flags (-17 through - 20)

Flags -17 through - 20 indicate the number of significant digits currently displayed if the display
format is F I ::<, SCI, or E t..J G. The following table indicates what the combinations of these four flags
indicate:

200 Section 11: Flags

Number of Digits Displayed

Number of Digits Flag -17 Flag -18 Flag -19 Flag -20

0 clear clear clear clear
1 set clear clear clear
2 clear set clear clear
3 set set clear clear
4 clear clear set clear
5 set clear set clear
6 clear set set clear
7 set set set clear
8 clear clear clear set
9 set clear clear set

10 clear set clear set
11 set set clear set

These flags are useful when a program needs to determine the number of significant digits currently
displayed. (You can display up to 11 digits to the right of the radix mark.)

Example: The following statement shows the current number of significant digits displayed.

FLAG(-17)+2*FLAG(-18)+4*FLAG(-19)+8*FLAG(-20)

The number of digits displayed can be set using F I ::'::, ::; C I, or E t·j G.

BASIC Prompt Flag (-26)

When flag -26 is set, the HP-71 suppresses the display of the BASIC prompt. The flag is cleared when
you press I END LI NE I.

E::-::ACT Flag (-46)

When set, flag -46 indicates that E::-::ACT has been executed. This flag is cleared when the clock is
reset or a memory reset occurs. You can only test this flag.

Section 11: Flags 201

Annunciator Flags (-57, -60 through -64)

The annunciator flags each indicate the status of a display annunciator. When set, a flag indicates that
its corresponding annunciator is on. Flags and their corresponding annunciators are shown in the fol­
lowing table.

Annunciator Flags

Annunciator Flag

AC -57
Alarm «.) -60
BAT -61
PRGM -62
SUSP -63
CALC -64

Section 12

Subprograms and User-Defined Functions

Contents

Overview 00 0 0 0 0 0 0 0 000

Subprograms 0

Form of a Subprogram (::;UB. EtoW SUB) 000000000000000000000000000000

Calling a Subprogram (CALL) 000

Subprogram Environments 0

Recursive Subprograms 0

User-Defined Functions 0

Forms of a User-Defined Function (D E F F tol. E toW DE F) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Referencing a User-Defined Function 0

Environment of a User-Defined Function 0

Recursive User-Defined Functions

Overview

202
203
204
205
210
214
218
218
220
220
222

The complexity of a program can often be reduced by using loops and subroutines that perform certain
tasks repeatedly. However, a program must often branch around subroutines and loops when they
shouldn't be executed. Also, routines that operate on different sets of variables often use their own sets
of variables to contain intermediate values. For a large program, operations on numerous variables can
become difficult to trace and control.

Subprograms and user-defined functions, which can be used repeatedly, overcome some of the disadvan­
tages of subroutines and loops. These are independent programming structures that are executed only
when explicitly referenced. Unlike a subroutine or a loop, you don't need to branch around a
subprogram or a user-defined function when you don't want it executed.

Subprograms and user-defined functions can contain their own sets of variables. When you write a
subprogram, you don't need to remember which variable names are used by another program or
subprogram. A variable name in a subprogram can be the same as one in a program or another
subprogram, yet the computer regards the duplicates as separate variables.

202

Section 12: Subprograms and User-Defined Functions 203

Subprograms and user-defined functions are structured so that you can readily trace how values are
input and output by them. They offer the following advantages:

• They have names by which they are referenced.

• They enable you to reduce large programs to a series of smaller, simpler, independent units.

• They are executed only by a specific reference to them.

• The names of variables within a subprogram or a user-defined function can be duplicates of vari­
able names in a program or another subprogram.

This section describes how to incorporate subprograms and user-defined functions into your programs.
More specifically, this section covers:

• How to write, store, and use a subprogram.

• How to write and execute a user-defined function.

• How to use recursion.

• How the HP-71 maintains different "environments" for subprograms and user-defined functions.

Subprograms

1b simplify a sizable program, a programmer often reduces it to a collection of routines, each of which
performs one of the tasks of the program. Rather than creating a single, large program, the program­
mer reduces the amount of work by creating a series of smaller, simpler program units. Traditionally,
the program units available on a BASIC computer have been subroutines and user-defined functions.
The HP-71 offers a third type of program unit-the subprogram.

A subprogram is a distinct group of program lines that can reside in a BASIC file separately from the
main program. Subprograms can be called by a main program (or another subprogram) in a manner
similar to executing a subroutine. Subprograms reside in a program file following the main program, as
shown in the following illustration:

Main Program

Subprogram

Subprogram

204 Section 12: Subprograms and User-Defined Functions

Form of a Subprogram (::=; U B, E t·~ D ~:; U B)

Subprograms are independent parts of a program that are essentially small but complete programs.
Subprograms are delimited by a header statement, which contains the subprogram name, and a termi­
nating statement. A subprogram is executed when it is called using the CAL L statement (described
below).

Form of a Subprogram

Starts with the ::; U E: keyword

~ Name Formal parameters
~ r~----~--~

Header statement ~ ::;UE: I t·jTEGF.:AL 0:: A, E: 0::), C$)}
Program lines

Terminating statement ~ E t·j D ::; U E:

The SUE: Statement. The SUE: statement is the first statement of a subprogram. It identifies the
subprogram and declares its parameters.

simplified syntax -----------------------------------,

SUE: subprogram name [0:: formal parameter list)]

As with file names, a subprogram name can contain up to eight letters or digits, the first of which must
be a letter. The name is followed by an optional formal parameter list, which is a list of variable and
array names, called parameters, that will contain information passed to the subprogram by a calling
program.

The Formal Parameter List. A subprogram obtains values from a calling program through the for­
mal parameter list. Values can also be passed back to the calling program through this list. The formal
parameter list is enclosed in parentheses, and parameters are separated by commas.

Example:

SUE: SOLVEO::A,E:,Cl) The subprogram's name is SOL I,} E and its formal
parameters are A, E:, and C 1 .

Ending a Subprogram. A subprogram ends with an E t·j D SUE: statement.

Et·jD ::;UE:

Section 12: Subprograms and User-Defined Functions 205

The function of E t·l D SUB is similar to RET U 1<: ~l in that it returns execution back to the calling
program. It also clears the memory used to execute the subprogram, making it available for other uses.
(Refer to "Subprogram Environments" below.)

As an alternative to using Et·lD SUB, you can use Et·lD. Actually, you aren't required to use Et·lD SUB
or E ~l D to end a subprogram. A subprogram will end when the computer encounters the next SUB
statement or the end of the file.

Storing a Subprogram. Subprograms can be in a program file either with a main program or by
themselves. A file can contain more than one subprogram; however, all subprograms must be listed
after the main program (if one exists) and should have no program lines between them. (Any program
lines between subprograms will never be executed.)

Main Program

END

SUB

END SUB

~:;UB

Calling a Subprogram (C ALL)

~ The Et·lD SUB statement clearly marks the
end of the subprogram.

~ The end of the file (or another ~:; U B statement)
can also mark the end of a subprogram.

The CAL L Statement. The CAL L statement executes a subprogram.

simplified syntax ------------------------------------,

CAL L subprogram name [.:: actual parameter list)] [I t·l program file]

This statement's elements correspond to the SUB statement. The subprogram name is the name of the
subprogram to be executed. The actual parameter list is a set of expressions and variables that are
passed to a subprogram. The program file indicates the file in which the called subprogram is located.

CAL L is like G I) SUB in that it transfers program execution to a subprogram until the subprogram is
finished, then execution ret:urns to the statement following CAL L.

206 Section 12: Subprograms and User-Defined Functions

Actual Parameters. Many different CAL L statements can invoke the same subprogram so long as
their actual parameter lists match the ~:; U B statement's formal parameter list item for item, type for
type.

The following illustration show the correspondence between a CAL L and a SUB statement.

CALL SUBPROG1(A,25,CS)

Corresponding

Types

SUB SUBPROG1(S,T,VS)

Et·iD ~:;UB

The CAL L statement invokes the
subprogram and passes information to it.

Returns execution to the statement after CAL L.

In this illustration, the formal parameters Sand T are numeric variables and t,} S is a string variable.
Any CAL L statement that calls SUB P F.: 0 G 1 must have numeric values or expressions as its first two
parameters and a string value or expression as its last parameter.

Types of Actual Parameters. In some applications, a program needs information passed back to it
from a subprogram. This can be accomplished by passing a variable as a parameter to a subprogram
which, in turn, alters the value of that variable.

A CAL L statement can pass three forms of parameters to a subprogram:

• Value parameters, which can't be changed by a subprogram. In the actual parameter list, these are
variables that are individually enclosed in parentheses, and numeric or string expressions.

• Reference parameters, which can be changed by a subprogram so that values can be passed back to
the calling program or subprogram. In the actual parameter list, these are variable names which
aren't enclosed in parentheses. Reference parameters can be variables only. Also, arrays can be
reference parameters only.

• Channel numbers, which are numbers associated with data files. A special type of value parameter,
they are preceded by a # in a formal parameter list. (The use of data files is described in section
14, "Storing and Retrieving Data.")

Section 12: Subprograms and User-Defined Functions 207

Example: A program calls a subprogram that computes the octal equivalent of a decimal number. The
program passes value parameter T, which contains the decimal number, and a reference parameter E $,

which is assigned an octal equivalent by the subprogram.

I t·WUT T

CALL OCTAL((T)., E$)

OCTAL(A., B$)

B $ = octal equivalent

Et·iD :::;UB

T contains the decimal number; it is a value
parameter.

E $ is the reference parameter; it contains the
octal representation when the subprogram is com­
pleted.

A contains the value passed in T.
Changes to B $ result in equal changes to E $.

The subprogram assigns the octal representation
to B $. Since E $ is the corresponding reference
parameter, it is also assigned the octal representa­
tion.

When CAL L is executed, the values of the value parameters are assigned to the corresponding formal
parameters in the SUB statement. Reference parameters become linked with their corresponding for­
mal parameters in such a way that changes to the formal parameters result in equivalent changes to
the reference parameters. In this way values are passed back to the calling program or subprogram.

208 Section 12: Subprograms and User-Defined Functions

All variables declared within a subprogram are local to that subprogram. That is, they are not shared by
the calling program. This means that a variable used in a subprogram can have the same name as one
in the calling program, yet the HP-71 treats them as different variables. Also, a reference parameter
need not have the same variable name as its corresponding formal parameter. The subprogram operates
within its own local environment. (Local environments are described below under "Subprogram
Environments.")

Parameters can be any type of variable-they can be simple numeric, array, string, or string array
variables. Value parameters can be numeric or string expressions, but the expressions can't contain any
references to user-defined functions. Reference parameters must be variables.

Channel numbers, which are associated with data files, can also be passed as actual parameters to a
subprogram. A channel number in a subprogram's formal parameter list becomes associated with the
same file as the corresponding actual parameter.

If a subprogram opens a data file using a channel number that is not in the formal parameter list, that
channel number is local to the subprogram, and its data file will be closed when the subprogram ends.
If a subprogram doesn't have a formal parameter list, any channel number it uses is global. The chan­
nel number's corresponding data file remains open after the subprogram ends. (For more information
about channel numbers, refer to "Data Files," page 247.)

Examples:

CALL SOLVE(2*X.3+5X-12,Al)

CALL EOITOR(OISPS,LS&TS,(X»

The first parameter is a value parameter. The sec­
ond, A 1, is a reference parameter.

All parameters are value parameters.

An Example Subprogram. Now that some of the elements of a subprogram have been described,
let's look at a complete subprogram to see how it works.

Example: The Fibonacci series is a mathematical series in which each term is the sum of the two
preceding terms. The values of the first and second terms in the series are defined as 1. The third term
is the sum of these two, 2. The fourth term is the sum of the second and third, 1 + 2 = 3, and so on.

The following program, FIB 0 t·j A C, uses a subprogram to compute the nth term of the Fibonacci series
for O<n<61. It prompts you to enter a value from the keyboard, calls a subprogram to determine the
corresponding Fibonacci number, and displays the result. The values returned are exact (no round-off
errors).

Th key in this example program, type EO I T FIB 0 t·j A C I END LI NE I and enter the following program
lines.

Section 12: Subprograms and User-Defined Functions 209

10 DESTROY N, A @ STD

20 INPUT "TERM? ";N

30 CALL FIBO (N,A)

40 DISP "TERM ";N;" IS ";A

50 SUB FIBO(B,C)

60 IF FP(B) OR B<?1 OR B>?60 THEN C=O
@ GOTO 160

70 IF B=1 OR B=2 THEN C=1 @ GOTO 160

80 X=1

90 Y=1

100 FOR 1=3 TO B

110 Z=X

120 X=X+Y

130 Y=Z

140 NEXT I

150 C=X

160 END SUB

B corresponds to t·j, and C corresponds to A in
line 30 above.

Checks for an input error.

Assigns 1 to C for the simple cases. Since A is a
reference parameter, it is assigned the value of C.

'r' and).:: are two consecutive terms.

Finds the value of the Bth (t·lth) term.

::.:: assumes the value of the next term and 'c'
assumes the value of ;:'::.

Z is a temporary variable to store ::.~.

::.:: contains the value of the Bth term.

FIB 0 is the name of the subprogram. The number input from the keyboard, which must be an integer
greater than 0 (the program returns 0 for an improper input), is assigned to t·j, which is then passed as
a reference parameter to the subprogram. The subprogram assigns the t·lth term of the series to the
reference parameter, A.

To use the program, press I RUN I and at the prompt enter an integer, n, then press I END LINE I. The
program will compute and display the value of the nth term in the Fibonacci series.

Input/Result

IRUNI

TEF.:t'l?

Executes FIB 0 t·j A C (assuming it's the current
file).

Prompts you for the number of a term in the
series.

210 Section 12: Subprograms and User-Defined Functions

6 I END LINE I Selects the 6th term.

Displays the value of the 6th term.

Calling a Subprogram In Another File. You can call a subprogram in another file by specifying the
file in the CAL L statement.

Examples:

CALL FIBOI«S),T) IN
t'1ATW:;ET : POPT (2)

CALL OATEI IN OATES

Calls F I BO I in the file t'1ATH::;ET in port 2.

Calls DATE I in the file OATES.

The HP-71 can locate a subprogram in another file even if you don't specify the file. Therefore, it isn't
necessary to include a reference to the subprogram's file in the CAL L statement unless another
subprogram of the same name resides in memory.

You can also call a program as a subprogram, but you can't pass it any parameters.

When calling a program, the HP-71 first searches the files in memory for a subprogram by the speci­
fied name. If a subprogram isn't found, then the HP-71 searches for a program file by that name and
executes it as a subprogram.

Examples:

CALL

CALL A I F.:SPEEO

Subprogram Environments

Calls the current file as a subprogram.

Calls A I F.: ::; PEE O. The computer first searches
for a subprogram by this name. If it doesn't find
one, it searches for a program and executes it.

When you perform operations from the keyboard, you have access to variables, flags, files, the Com­
mand Stack, and other HP-71 operating features. A program also has access to these features. Some of
these features are available to all programs and subprograms. Other features are available only to the
program or subprogram in which they are defined. These features collectively form an environment for
a program or subprogram.

Section 12: Subprograms and User-Defined Functions 211

Those features that are always accessible to any program or subprogram comprise the global environ­
ment. Those features that are defined or declared within a program or subprogram comprise the local
environment for that program or subprogram. From the keyboard, you have access to the global envi­
ronment and, at any time, one local environment.

When you execute F.: U t·j, the program uses the same local environment as that used by the keyboard.
This environment is the main environment. It can be considered the default local environment for the
computer.

The following illustration shows the relationship between the main environment and the global envi­
ronment. A running program has access to the elements listed under Main Environment plus the
elements listed under Global Environment.

Main and Global Environments

Global Environment

file names
Command Stack
flags
trap values
timers
system settings·

Main Environment

variables
arrays
user-defined functions
channel numbers
statement labels
subroutines
FOP ... t·jE::<T loops

Saved Environments. When a subprogram is called (either by a program or from the keyboard), the
main environment is saved and a new local environment is created for the subprogram. The
subprogram has access to the elements of its local environment plus the elements of the global environ­
ment. It doesn't have access to the saved environment. The new local environment exists as long as its
corresponding subprogram is in effect. When the subprogram ends, the local environment is erased and
the main environment is restored.

When a local environment is active, it is the active environment. If a subprogram becomes suspended,
only the features of its local environment plus the global environment can be accessed from the
keyboard.

* System settings include the statistics array assignment (STAT), the OPT! ON, DEGREES, RAD I ANS, LOCK, STARTUP,
USER, LC, and TRACE statements, and assignments affecting display or printer output (such as F I X, DELAY, and PW I DTH).
Output device assignments such as DIS P LAY I S are also included.

212 Section 12: Subprograms and User-Defined Functions

Program and Subprogram Environments

Global Environment

file names
Command Stack
flags
trap values
timers
system settings

Main Environment
(saved)

variables
arrays
user-defined functions
channel numbers
statement labels
subroutines
FOR ... t·l E ::.:: T loops

Subprogram
Environment

(active)

variables
arrays
user-defined functions
channel numbers
statement labels
subroutines
FOR ... t·lDn loops

Elements that are within a local environment can't be accessed by another environment. For example, a
user-defined function that is in a subprogram can't be used by a main program or another subprogram.
But features that are part of the global environment can be accessed by any environment.

A program can call a subprogram, a subprogram can call another subprogram, and that subprogram can
call even another subprogram. There is no predefined limit to the number of levels of subprogram calls
that can occur. But each call results in an environment being saved and another one being created,
using up more of main RAM. Thus, the amount of main RAM limits the number of levels of
subprogram calls.

Restoring Environments. When a subprogram ends, execution returns to the calling subprogram or
program. Also, the subprogram's environment is erased and the calling environment, the environment
of the calling program or subprogram, is restored.

For example, a program, P F.: 0 G 1, calls a subprogram, ::; U B P F.: 0 G 1. The local environment for PRO G 1
(the main environment) is saved and the computer creates a new environment for::; U B PRO G 1. This
subprogram calls another subprogram, SUBPF.:OG2. The environment for ::;UBPF.:OG 1 is saved and
one is created for ::; U B P F.: 0 G 2.

Section 12: Subprograms and User-Defined Functions 213

Program and Subprogram Environments

Global Environment

file names
Command Stack
flags
trap values
timers
system settings

Main Environment
(saved)

variables
arrays
user-defined functions
channel numbers
statement labels
subroutines
FOF.: ... t·1E:,,:T loops

SUBPROGl
Environment

(saved)

variables
arrays
user-defined functions
channel numbers
statement labels
subroutines
FOR ... t-1E::n loops

SUBPF.:OG2
Environment

(active)

variables
arrays
user-defined functions
channel numbers
statement labels
subroutines
FOF.: ... t·1E:":T loops

While ::; U B P F.: 0 G 2 is running, its environment is the active environment. Its calling environment is
that of SUB P F.: 0 G 1, and the calling environment of SUB PRO G 1 is the main environment. Whenever
program execution is suspended, the environment that is active at that time is the one that can be
accessed from the keyboard. To access a saved environment, you must end one or more subprograms
until the environment you want becomes the active environment. You can do this from the keyboard
using EHD.

214 Section 12: Subprograms and User-Defined Functions

Ending a Subprogram Environment. When E t·j 0 or E t·j 0 ::; U B is executed within a subprogram,
the subprogram ends and execution returns to the calling program or subprogram. The calling environ­
ment is restored as the active environment.

More specifically, when either Et·W or Et·W SUB is executed from within a subprogram, the HP-71
does the following:

• Returns execution to the calling program or subprogram.

• Closes all files associated with local channels.

• Clears memory associated with the subprogram's local environment.

• Clears any I] t·j E F.: F.: I] F.: condition set in the subprogram.

• Restores any I] t·j E F.: F.: I] F.: condition set in the calling environment.

• Restores the 0 A T A pointer.

Alternatively, you can end a program and clear the active and all saved environments using E t·W ALL.
This statement ends program execution, but does not affect the variables declared within the main
environment.

If you execute E t·j 0 or E t·j 0 SUB from the keyboard while a program is suspended during a
subprogram, the statement following the CAL L statement that invoked the subprogram becomes the
suspend statement.

Recursive Subprograms

What Is Recursion? A subprogram can call other subprograms the same way a main program can call
a subprogram. A subprogram can also call itself as a subprogram. A subprogram that calls itself is a
recursive subprogram. Each time a recursive subprogram calls itself, the HP-71 creates a new local
environment, as it does for any other subprogram (as illustrated below).

Section 12: Subprograms and User-Defined Functions 215

Program and Subprogram Environments

Global Environment

file names
Command Stack
flags
trap values
timers
system settings

Main Environment
(saved)

variables
arrays
user-defined functions
channel numbers
statement labels
subroutines
FOR ... t·j E ::.:: T loops

::;;UBPROG 1
Environment

(saved)

variables
arrays
user-defined functions
channel numbers
statement labels
subroutines
FOR ... ~jE::·::T loops

::;UBPROG 1
Environment

(active)

variables
arrays
user-defined functions
channel numbers
statement labels
subroutines
FOr;;: ... t·jE::-::T loops

Recursive subprogram calls are useful in sorting and searching operations. 'JYpically, recursive
subprograms are used for more advanced programming applications; however, some smaller programs
can be simplified if recursion is used. For example, instead of using the iterative algorithm in the
Fibonacci program above, you could simply define the value of the nth term of the Fibonacci series as
the value of the (n - l)th plus the value of the (n - 2)th terms. The subprogram could then pass n - 1 .
and n - 2 as parameters to itself to determine their values.

216 Section 12: Subprograms and User-Defined Functions

Example: The following Fibonacci program, which is a revision of the previous one, uses a recursive
subprogram. Key in this program and run it as you would the previous program. (Type
ED I T F I 80t·jAC2 I END LINE I.)

10 DESTROY N,A

20 INPUT "TERM? ";N

30 CALL FIBO(N,A)

40 DISP "TERM ";N;" IS ";A

50 SUB FIBO(B,C)

60 IF FP(B) OR B<?1 OR B>?60 THEN C=O
@ GOTO 110

70 IF B=1 OR B=2 THEN C=1 @ GOTO 110

80 CALL FIBO(B-1,S)

90 CALL FIBO(B-2,T)

100 C=S+T

110 END SUB

Returns 0 if an input error is detected.

Returns 1 for the simple cases.

Finds the value of (8 - l)th term and assigns it
to :::;.

Finds the value of (8 - 2)th term and assigns it
to T.

Assigns the value of the 8th term, S + T, to C.

The difference between this algorithm and the iterative algorithm in the previous example is that the
iterative approach started with the value for the simplest term and worked up to the nth term while the
recursive algorithm starts with the nth term and works its way to the simple term.

Example: Execute the recursive Fibonacci program.

Input/Result

F.:Ut·j F I 80t·jAC2 I END LINE 1 Executes the recursive Fibonacci program.

TEF.:t'1? I Prompts for an integer.

5 I END LINE I Finds the value of the fifth term.

TEf:;:t1 5 I!:: 5 Displays the fifth term.

Using the recursive algorithm, the subprogram determines the value of a given term by successively
calling itself for each preceding term. To avoid calling itself endlessly, the subprogram returns a dis­
crete value for the first and second terms. For any other term the subprogram calls itself until it
returns the value of the second or first term. The different levels of subprogram calls end after comput­
ing the values for their respective terms.

Section 12: Subprograms and User-Defined Functions 217

The subprogram found the value of a term by recursively finding the value of the two preceding terms,
as shown by the following illustration:

CALL FIBO <5, A)

/~
CALL FIBO <4, A) + CALL FIBO <3, A)

/~ /~
CALL FIBO <3"A) + CALL FIBO <2"A) CALL FIBO (Z"A) + CALL FIBO <l,A)

/~
CALL FIBO <2" A) + CALL FIBO < 1" A)

The illustration shows the different levels of subprogram calls necessary to determine the value of the
fifth term in the Fibonacci sequence. Different levels of the subprogram are called until it returns a
value for a simple case. Then, the pending subprogram calls are evaluated in turn up to the first level.
Using numbers in place of subprogram calls, the diagram becomes:

5

~
3 + 2

/\ 1\
2 + 1 1 + 1

1\
1 + 1

You may have also noticed that the recursive algorithm ran much slower than the iterative one. That is
because in this case, the recursive algorithm computes many of the intermediate values more than once,
thus requiring more time than the iterative algorithm to reach the same solution.

218 Section 12: Subprograms and User-Defined Functions

For many programming problems, the iterative algorithm is the more efficient solution, but this is not
always the case. Recursive subprograms can be much easier to write and might run faster. However,
recursive subprograms use a larger amount of memory to store all the variables for each call of the
subprogram. The above example, while not demonstrating the efficiency of recursion, simply illustrates
how to write a recursive subprogram.

User-Defined Functions
The HP-71 has a sizable set of built-in functions. Although they will meet many of your programming
needs, you might at times find it necessary to create your own functions. The HP-71 enables you to
create user-defined functions and use them as you use the computer's built-in functions.

A user-defined function can appear anywhere in a program or subprogram. But it can only be used by
the program or subprogram in which it's defined. If the computer encounters a user-defined function
definition when executing a sequence of statements, it skips over the definition. A function can be
executed only when it is referenced in a numeric or string expression, either in a program or from the
keyboard.

Forms of a User-Defined Function (D E F F t·~, E t·~ D D E F)

Functions that you create can be simple or very complex. On the HP-71 you can create simple func­
tions using a single statement, or more complex functions which require more than one statement to
define.

Single-Statement Functions. Single-statement functions begin with the DE F Ft-i keywords and in­
clude an expression that assigns a value to the function.

simplified syntax ------------------------------------,

DE F F t·i function name [(formal parameter list)] = expression

A function name is a single letter, or a letter and a digit, for a numeric function. For a string function, a
$ must follow the letter or letter-digit combination. The variables appearing in the formal parameter
list are variable names which can be the same as variable names in any other environment. The formal
parameters can be used in the expression to assign a value to the function.

A DE F F t·i statement can contain up to 14 parameters in its formal parameter list. These formal
parameters can be simple numeric or string variables only.

Examples:

DEF FNT(A,B) = (A-B)/(A+B)
DEF FNA1$(S2,F$) = F$[S2,S2+6J & F$[S2+12,S2+18J
DEF FNP = 3%P A 3+2%P A 2+P+5

Section 12: Subprograms and User-Defined Functions 219

Multistatement Functions. A multistatement function is delimited by a beginning and an end
statement.

Simplified synta.x ---------------------------------,

DE F F t·j function name [0:: formal parameter list ::.]

Et·i[I DEF

A multistatement, user-defined function has the following general form:

DE F F t·jx 0:: formal parameter list::.

F t·jx = expression

Et-lD DEF

Examples:

100 DEF FNT(A,8)

110 A=A+8

120 8=A+8

130 FNT=A+8

140 END DEF

100 DEF FNA$(R$,T$,U$)

110 FOR I = 1 TO LEN(R$)

120 U$[I,I+1]=R$[I,I] & U$[I,I]

130 NEXT I

140 FNA$ = U$

150 END DEF

A beginning line.

Program lines.

An assignment statement.

Program lines.

An ending statement.

Defines a function named F t·j T.

Assigns a value to the function.

Ends the function.

Defines a function named F t·j A $.

Assigns a value to F t·j A $.

Ends the function.

J

220 Section 12: Subprograms and User-Defined Functions

Referencing a User-Defined Function

When you use a function in an expression, you are referencing it. To reference a user-defined function,
include it in an expression as you would one of the HP-71 functions. You can reference a user-defined
function from the keyboard only if it is defined in the current file. (The program in the current file
need not be in a suspended state.)

Examples:

AS=BS & FNTS(A,BS)

D I ::;p T:*:Ft·~.-, (T) p I

H=FNA2(FNW(X,Y)+FNR)

The parameters in the function reference are similar to the actual parameters in a subprogram call.
They must match the function's formal parameters in the order in which they are listed, type for type,
numeric or string. Numeric or string expressions can be used as actual parameters and, unlike the
actual parameters in the CAL L statement, the expressions can contain references to user-defined func­
tions. All actual parameters are passed as value parameters. A user-defined function doesn't return
values through the actual parameters.

Environment of a User-Defined Function

User-defined functions are accessible only to the program unit in which they are defined. That is, a
main program or a subprogram can't reference functions which are defined in another program or
subprogram.

A user-defined function can access the variables and channel numbers of the environment in which it is
defined. The exception to this is that variables declared in the function's formal parameter list are local
to that function. Because of this, a user-defined function can't access a variable of the local environ­
ment in which it's defined if it has a variable of the same name in its formal parameter list.

The following illustration shows that a user-defined function has its own environment consisting of its
formal parameters, subroutines, and F 0 F.: ••• t·~ E :": T loops. The elements of the user-defined function's
environment aren't accessible to the program or subprogram, but the elements of the program's or
subprogram's local environment, as well as the elements of the global environment, are accessible to
the user-defined function.

Section 12: Subprograms and User-Defined Functions 221

Program and User-Defined Function Environments

Global Environment

file names
Command Stack
flags
trap values
timers
system settings·

Local Environment

variables
arrays
channel numbers
statement labels
subroutines
FOF.: ... t·1E:":T loops

User-Defined
Function

Environment

formal parameters
subroutines
FOF.: ... t·1E::-:;T loops

Normally, a multistatement, user-defined function ends with E t·w DE F or alternatively, with E t·W.
When either of these statements ends a user-defined function, the computer:

• Returns execution to the calling expression.

• Clears the memory associated with the function's environment.

A user-defined function also ends when ::::UB, Et-W SUB, or the end of a file is encountered.

When debugging a user-defined function, a programmer often includes a PA USE in the function defini­
tion then references the function from the keyboard. The function becomes suspended when it executes
the P A USE, enabling the programmer to view the values variables, flags, and other aspects of the local
and global environments. 'Ib continue executing the function, the user presses [TIl CONT I. If a function
is referenced in a keyboard expression and then suspended, only the function will be completed when
execution resumes; the portion of the expression to the right of the function reference isn't evaluated. If
you end a suspended function that was referenced from the keyboard, it does not return a value.

If you end a suspended function that was referenced from a program and a value was not assigned to
the function, the function returns to the expression a value of zero if it is a numeric function or a null
string if it is a string function.

* Refer to the footnote on page 211.

222i223 Section 12: Subprograms and User-Defined Functions

Recursive User-Defined Functions

Like subprograms, user-defined functions can be recursive. For example, the Fibonacci program can be
written using a recursive, user-defined function.

Example: Key in the following program and execute it as you did the other Fibonacci programs.

The main part of the program is line 50 in the user-defined function, FNF. In this function, a discrete
value is returned for the simplest cases (inputs of 1 or 2), while the function calls itself recursively for
inputs greater than 2. Line 50 simply states that the value of the function is 1 if the input is 1 or 2. If
the input is greater than 2, the value of the function is the sum of the Fibonacci values for the two
preceding terms in the series.

Line 40 of the program tests for inputs that are either less than 1 or noninteger. If such an input is
detected, the function displays a message then ends without being assigned a value. When a numeric
function ends without being assigned a value, it returns a value of O.

10 INPUT "TERM? ";N

20 DISP "TERM ";N;" IS ";FNF(N)

30 DEF FNF(B)

40 IF FP(B) OR B<?1 OR B>?60 THEN 60

50 IF B=1 OR B=2 THEN FNF=1 ELSE
FNF=FNF(B-1) + FNF(B-2)

60 END DEF

Prompts you to enter a term.

Invokes the user-defined function and displays its
value.

Defines the beginning of the user-defined
function.

Checks for an input error. Since the line that
assigns a value to the function is skipped, the
function returns O.

Assigns a value to the function.

Ends the function definition.

The algorithm for this program is similar to that used earlier when a subprogram was called
recursively; however, this function is shorter and easier to follow.

Section 13

Printer and Display Formatting

Contents

Overview .. 224
Simple Formatting .. 225

Displaying and Printing Information (D I ~:; F', F' F.: I t·~ T) 225
Implied DIS F' ... 226
Spacing Output (TA B) .. 226

Advanced Formatting ... 228
What is a Format String? ... 229
Using a Format String (I t1AGE, D I SF' US I t·lG, F'~: I tH US I t·lG) 230

Controlling the Display and Printer .. 232
Line Width (L·j I DTH, F'L·j I DTH) 232
Changing the End-Of-Line Sequence (E t·~ D L I t·l E) 234
Cursor and Display Control .. 234

Overview

When you write BASIC programs, you might need to control how information is displayed or printed.
You can use a few simple techniques or, if you are an advanced user, some advanced techniques. This
section describes printer and display formatting on the simple to the advanced levels. More specifically
this section covers:

• Sending information to a display and a printer.

• Encoding information to be displayed or printed with formatting instructions.

• Using format strings and I MAG E statements to format output.

• Controlling the line width of the display and printer.

• Controllin{t the end-of-line sequence used by the display and printer.

• Controlling the display and the printer using control codes and escape sequences.

• How to create and use protected fields in the display.

224

Section 13: Printer and Display Formatting 225

Simple Formatting

Displaying and Printing Information (D I ~:;P, PP I HT)

You can use the D I ~::;P and PP I tH statements to display information on the HP-71. If you have a
printer connected, the P F.: I t·j T statement sends information to it. Information that is displayed or
printed is collectively referred to as output. Also, output can mean to send information to the display or
a printer.

Ie ,;mplifiod 'Y"'''

D I::; P display list

The display list and print list are of the same format and each contains a list of items to be output. List
items can be:

• Variables and array elements.

• Numeric expressions.

• String expressions.

The items in either list are evaluated and displayed on the same line (if possible) according to the order
in which they are listed.

Examples:

DISP A.: B.: C1$.: C2$

DISP S%T/V; L$&N$

Numbers which are displayed using DIS P or P P I t·j T are formatted according to the current display
format. (Numeric display formats are described under "Number Formatting," page 54.)

226 Section 13: Printer and Display Formatting

Implied D I::; P

In most cases, the display list does not need to be preceded by D I:::; P. For example, typing A $ I END LI NE 1

is equivalent to typing D I:::; P A $ I END LI NE I. This can save you keystrokes when keying in a program.
For example, the program line

10 II BACK II 2.:CH F.: $ 0:: 92) g.: II SLASH II

would be interpreted and displayed by the HP-71 as

1 ~~1 D I SP II BACK II KCHF.:$ 0:: 92) :~.: II SLASH II

The implied D I SP doesn't apply after THEN or ELSE in an IF ... THEt·j or IF ... THEt·j ... ELSE
statement. Since an implied G (I T (I can be used in this case (refer to "Conditional Branching," page
187) the computer interprets a string expression following T H Et-j or E L SEas a label to which execu­
tion should branch. Therefore, you must key in DIS P after THE t·j or E L S E when you want it executed
in a conditional execution statement.

You should be careful when entering an expression from the keyboard in such a way that it can be
interpreted as a program line. If a line keyed into the display begins with a number, the computer trys
to evaluate it as an expression. If the computer is unsuccessful, it then tries to evaluate the information
as a program line. For example, 1 E 1 is evaluated as 1 [1 while 1 E 1 is interpreted as the program line
1 DISP E1.

Spacing Output (T A B)

Spacing between items in a display list or print list can be controlled by the punctuation used between
items in the list and by TAB.

I TAB 0:: column number)

TAB operates much like a tab key on a typewriter. It simply spaces over to a specified column before
displaying or printing information. For example, TAB 0:: 1 5) moves the cursor to column 15 before
writing the next piece of information.

If the column number supplied to TAB is greater than the current ~.j I D THor P ~~ I D T H setting, the
HP-71 repeatedly subtracts the current width from the column number until the column number is less
than the width. For example, if the current ~.j I D T H setting is 96 (default),

TABO::l16)

is interpreted by the computer as

TAB0::20)

Example:

Input/Result

DI~:;;P "ABC".: TAB(:::).: "DEF"

ABC DEF

Section 13: Printer and Display Formatting 227

Displays the first item, tabs to column 8, then
displays the second item.

Spacing can also be controlled by including punctuation between items in the display list or print list.
The following punctuation marks perform the indicated spacing:

• Semicolon (;) Allows no spaces between items.

• Comma (.,) Fills the remainder of the display zone (described below) with spaces .

A display zone is a 21-character portion of a display line. The display can accommodate a partial
display zone when its width won't allow a complete one. Thus, the display with its default width of 96
characters has five display zones-four of 21 characters and one of 12 characters. If two items are
separated in a display list or print list by a comma, the first is printed, and if it doesn't fill its display
zone, the computer fills the rest of the zone with spaces before displaying or printing the next item.

Examples:

Input/Result

DIS P "A B C " .: "D E F" I END LI NE J

ABCDEF

DISP "ABC"., "DEF" IENDLlNEJ

ABC

C

D

DEF

Displays the two items with no spacing.

Displays the first item beginning at column 1 and
the second item beginning at column 22.

Scrolls to the left to display the second item.

228 Section 13: Printer and Display Formatting

Advanced Formatting

Using the comma and semicolon as described, you can format output adequately for many applications.
However, there are some applications for which you won't be able to control the lengths of strings or
the magnitudes of numbers to be printed. These uncertainties can make it difficult to print or display
information in a consistent format.

The HP-71 enables you to precisely control the manner in which information is displayed or printed.
Detailed formats can be specified using format strings (described below).

Example: The following two programs illustrate how formatted output allows you to round values to a
specified number of decimal places and to position numbers and text for greater readability.

Formatting with commas, semicolons, and TAB:

10 OPTION BASE 1
20 DESTROY A1,B1,I,A,B
30 FOR 1=1 TO 4
40 READ A(I),B(I)
50 DISP A(I);TAB(25);B(I)
60 A1 =A1 +A(I) @ B1 =B1 +B(I)
70 NEXT I
80 DISP "---------------";TAB(25);"---------------"
90 DISP "TOTAL=";A1;TAB(25);"TOTAL=";B1
1 00 DATA 5.8052,7,.3737,8.6,4.322,9,679.4646,.8

Output:

7
'7777

I "_, I "_, I ::: I 6
4,322 9
679,4646

TOTAL= 6:::9,9655 TOTAL= 25,4

Section 13: Printer and Display Formatting 229

Formatting with D I :::;F' U::; I t·jG and I t'lAGE (described below):

10 OPTION BASE 1
20 DESTROY A1,B1,I,A,B
30 FOR 1=1 TO 4
40 READ A(I),B(I)
50 DISP USING 100; A(I),B(I)
60 A1 =A1 +A(I) @ B1 =B1 +B(I)
70 NEXT I
80 DISP USING 110;"TOTAL=",A1,"TOTAL=",B1
90 DATA 5.8052,7,.3737,8.6,4.322,9,679.4646,.8
100 IMAGE 10X,4D.DD,10X,4D.DD
110 IMAGE 3X,14"-",3X, 14"-"/2(3X,7A,4D.DD)

Output:

5.81

4.32
679.46

TOTAL= 689.97 TOTAL=

What is a Format String?

7.00
8.60
9.00

.80

25.4[1

A format string is a string of characters which represents an output format. A format string consists of
one or more field specifiers that are separated by delimiters, which are usually commas. Each data item
is formatted by a field specifier. Field specifiers are constructed of characters called image symbols that
define what information appears in each character position, and multipliers that specify how many
times an image symbol is repeated. Multipliers can also specify how many times a field specifier (or
group of field specifiers) is repeated.

Field Specifier

~

4D. DD, 7::·::, 5D. DD

Format String

230 Section 13: Printer and Display Formatting

A format string can be a string expression:

• Included in a D I::; P U ::; I t·j G or P F.: I t·j T U S I t·j G statement:

DISP USIt·lG "4D. DD .. 7::< .. 5D. DD".: AI .. Bl

• Assigned to a string variable and referenced by that variable name:

l~~H] A$="4D. DD .. 7;:':: .. 5D. DD"
110 DISP USING A$; AI, Bl

A format string can also be an unquoted string included in an I t'l AGE statement and referenced by
D I ::;p US I t·lG and PF.: I t~T US I t·jG:

100 DISP USING 110; AI, Bl
110 IMAGE 4D.DD,7X,5D.DD

Image symbols are listed and described in the HP-71 Reference Manual under I t'l AGE in the keyword
dictionary.

Using a Format String (I t'1AGE, D I ::;p US I t·4G, PP I t·4T U::; I t'4G)

Format strings are used by DIS PUS I t~ G and P F.: I t·j T U S I t·j G to format output.

simplified syntax ------------------------------------,

DIS P U ::; I t-j G format string .: display list
DIS PUS I t·j G line number .: display list

simplified syntax ------------------------------------,

P F.: I t·j T US I t·j G format string .: print list
P P I t·j T US I t·j G line number .: print list

Each item in the display list or print list uses a field specifier in the format string. If there are more data
items than field specifiers, the format string is reused until all items in the display list or print list have
been formatted. This is useful when, for instance, you want to display a dozen numeric values with the
same format; your format string can be a single numeric field specifier. Each field specifier must be able
to accommodate the type of its corresponding data item in the display list or print list. For example, a
numeric field specifier can correspond only to a numeric data item. If a numeric field specifier's cor­
responding data item is a string, an error results.

As shown above, format strings can be included in DIS PUS I t·l G and P P I t·j T US I t·j G statements or
assigned to a string variable. Also, formats can appear on a separate program line using the I t'l AGE
statement.

Section 13: Printer and Display Formatting 231

~ "mp',",d ,y","

I t·, AGE unquoted format string

Example: Using the information on format strings in the HP-71 Reference Manual (listed under the
keyword I ~'AGE), build a format string for a list of items to be printed. The items to be output are
eight six-digit numbers representing the number of apples and prunes produced in four regions of the
northern Yukon, and two column headings. Print the column headings with four numbers under each
heading and eight spaces between columns.

10 OPTION BASE 1

20 PRINT USING 100; "Apples·,"Prunes·

30 FOR 1=1 TO 4

40 READ A(I),B(I)

50 PRINT USING 110; A(I),B(I)

60 NEXT I

100 IMAGE 2(8X,6A)/

110 IMAGE 2(8X,6D)

120 DATA 14857,233649,122990,333125

130 DATA 759982,1243,233219,416627

Sets the base option to 1.

Prints the column headings.
Begins loop.

Assigns values from the D A T A statement to the
array elements.

Prints the values.
End of loop.
Format string for the headings.

Format string for the values.

To determine which field specifiers to use in the format string, you need to first layout the information
to determine the formats you want. For this example the desired output should appear as:

8 Blanks 8 Blanks
~.

Apples Prunes

14857 233649
122990 333125
759982 1243
233219 416627
'---v---I '---v---I

6 Digits 6 Digits

232 Section 13: Printer and Display Formatting

The format string for the heading requires eight spaces, six character positions, eight more spaces,
another six character positions, and an end-of-line symbol for a blank line. The symbol for a space is
::'::, the symbol for a character position is A, and the symbol for end-of-line is Using these characters
for the format, statement 100 becomes:

100 IMAGE XXXXXXXX,AAAAAA,XXXXXXXX,AAAAAA/

Each set of image symbols is called a field specifier. A field specifier defines how an item from the print
list is formatted, or defines the spacing between printed items. The eight X's above specify a field of
eight blanks. The six A's specify a field of six characters. Field specifiers are usually separated by
commas.

You can shorten the format string by using multipliers. A multiplier that precedes a field specifier
indicates that the specifier should be repeated that number of times. Thus the I t'l AGE statement above
becomes:

100 IMAGE 8X,6A,8X,6A/

or more simply,

100 IMAGE 2(8X,6A)/

The format string for the numeric data requires eight blanks, six digits, eight more blanks, and another
six digits. The statement becomes:

110 IMAGE 2(8X,6D)

Controlling the Display and Printer

Line Width (~.~ I D T H, P ~.~ I D T H)

The ~'l lOT Hand P ~'l lOT H statements set the maximum line length for information output to the
display and a printer, respectively.

~'l lOT H line length

P ~'l lOT H line length

Section 13: Printer and Display Formatting 233

The line length can be a numeric expression that evaluates to a number between 0 and 255.

Note: Values greater than 255 are interpreted as infinite. However, the maximum line length
for the HP-71B display is 96. If you use a greater value, the end of a long display line may be
truncated.

These statements don't affect how many characters you can type in the display. They determine
the line length of information displayed by the following statements:

• DI::;P

• DISP USIt·jG

.PRItH

• PR I t·jT US I t·jG

• LI::;T

• PL I ST

Example:

Input/Result

L,l I DTH 1 (1 I END LINE I
"H1EtH\' THPEE CHAF.:ACTEF.:S" I END LINE I

HJEtH\' THF.:

EE CHAF.:RCT

The HP-71 displays the first 10 characters.

The HP-71 displays the second 10 characters.

The HP-71 displays the last characters.

The HP-71's display is the printer device if there isn't a printer connected. With no printer connected,
information can be displayed by both DIS P and P R I t·j T statements. In this case, if you execute
P L,l I D T H, it will only affect the line length of information sent by P R I t·j T. Similarly, if you execute
L,l I D T H, the line length that is set will only affect information displayed with DIS P.

234 Section 13: Printer and Display Formatting

Changing the End-Ol-Line Sequence (E t·~ D L I t·~ E)

When the HP-71 sends a line of information to a printer (or the display) using P F.: I tH, it sends a
following end-of-line sequence, which is a string of up to three characters that tells the printer what to
do after receiving the line. The default end-of-line sequence has two characters-carriage return (CR)
and line feed (LF). This default sequence causes a printer to advance one line and position the print
head to the first column. On the HP-71, this default sequence causes a new line to be displayed.

You can change the end-of-line sequence to any characters you choose using the E t-W L I t·j E statement.

The string is a string expression that evaluates to at most three characters.

Example:

ENOLINE CHR$(13)&CHR$(10)&
CHR$(1~~1::O

Sets the end-of-line sequence to CR, LF, LF,
causing a double line feed.

These two characters, C H F.: $ (1 0::0 and C H R $ (1 3) are two of 32 ASCII control characters. Control
characters are those ASCII characters (codes are 0 through 31) that are used by computers to control
peripheral devices.* Many devices respond differently to control characters, or do not respond at all.
Before using control characters, you should refer to the owner's manual for the device you are using to
determine how it responds to these characters.

Cursor and Display Control

The HP-71 enables you to control the display using certain characters. If you aren't an advanced user,
you might not need this information.

Control Characters and Escape Sequences. You can further control how the HP-71 displays in­
formation by sending it control characters and escape sequences. Athough some of the effects of control
characters and escape sequences can be accomplished with some of the HP-71 functions and state­
ments (such as ~.J lOT Hand E t·w L I t·j E), you can develop some advanced techniques for controlling the
display using these special characters.

* Character codes are listed under "HP-71 Character Set and Character Codes" on page 322 of the HP-71 Reference Manual.

Section 13: Printer and Display Formatting 235

Control characters (which can be generated by special keystrokes, shown below) control how informa­
tion is displayed. These characters are commonly used by computer systems to control communications
between them. Control characters aren't displayed. Rather, the HP-71 recognizes them as instructions.
To access these characters, you need to first press I]] 1 CTRL 1 and another key. The following table lists
the control characters the HP-71 recognizes, and the keystrokes required to access these characters.

Display Control Characters

ASCII Keystrokes Description
Character

CHF.:$ (:::) 1]]1 CTRL 1 [EJ Backspace (BS). Moves cursor left one space.

CHP$(l[1) none Linefeed (LF). Displays a new line without moving the cursor.

CHP$(13) 1]]1 CTRLI [MJ Carriage return (CR). Moves cursor to first column. The HP-71 at-
tempts to evaluate the display line as if you pressed 1 END LINE I.

CHP$(27) 1]]1 CTRL II]][JJ Escape (ESC). Indicates the start of an escape sequence.

An escape sequence is a string, beginning with the escape character (ASCII character code 27), that
represents one or more instructions for a device such as a display or a printer. (The escape character is
represented in this manual as ESC.) The HP-71's display responds to several escape sequences. Escape
sequences that it doesn't recognize are ignored. Escape characters can be generated in two ways:

1. As keystrokes which are executed directly from the keyboard.

2. As character strings which are executed when "displayed."

The following table lists the escape sequences that control the display. To execute an escape sequence
directly from the keyboard, press 1]]1 CTRL II]][JJ then the keys shown in the table below to complete the
sequence. To store an escape sequence as a character string, use C H P $ (27) to generate the escape
character and concatenate one of the characters represented by the keys in the table to complete the
sequence.

236 Section 13: Printer and Display Formatting

HP-71 Escape Sequences

Escape keystrokes
or character Description
followed by:

@] Moves the cursor to the right one space (same as 0).
[[) Moves the cursor to the left one space (same as @).

W Resets (and clears) the display, including the BASIC prompt.

[8J Moves the cursor to the first column, superimposing it on the BASIC prompt.

QJ or [K] Clears the display from the cursor position to the end of the line. (Accomplishes
the same thing as [IJ1-LiNE I.)

[[] Sets Insert cursor (same as [IJ[JZ[J).

[[) Deletes the character under the cursor and shifts all characters to the right of the
cursor one position to the left (same as [IJI-CHAR I.)

W Deletes character

[Q] Set Insert Cursor.
[]] Sets Replace cursor (same as [IJ[JZ[J).

[]]@ Turns the cursor off.

[]]0 Turns the cursor on.

OOmn Sets the cursor to the column represented by the character code for an ASCII
character m. The character code for n is used by video display devices for row
positioning. Although it has no effect on the HP-71 display, it must be present to
complete the escape sequence.

[9]1 CTRL 1 @] Moves cursor to right of rightmost character.

[9]1 CTRL 1 [[) Moves cursor to leftmost character.

Example: Switch to the Insert cursor then back to the Replace cursor.

Input/Result

[]]I CTRL 1 []][I] [[]

[]]I CTRL 1 []][I] []]

Switches to Insert cursor (flashing left arrow).

Switches to Replace cursor (flashing rectangle).

Positioning the Cursor. To set the cursor to a particular column, press

then key in the character whose character code represents the number of the column which you want to
move the cursor to. (This sequence is referred to in this manual as the ESC% instruction.)

Section 13: Printer and Display Formatting 237

Example: Move the cursor to column 65.

Input/Result

[[]I CTRL 1 [[][] [[]OO 0 0 Positions the cursor at column 65.

The character code for an uppercase A is 65.* Therefore the cursor moves to column 65. (This sequence
requires a second character after the ~.; because it is used by other devices to specify a row to move the
cursor to. Remember that although the HP-71 doesn't use the second parameter for its display, it
requires you to include it.) If a multi-line display device is used, this instruction causes the cursor to go
to the specified row and column.

Rather than using the keystrokes to execute escape sequences, you can store those sequences in char­
acter strings and use them under program control (or assign a sequence to a key).

Example: Assign an ESC% instruction to the variable A $ so that when executed it moves the cursor
to column 11 before displaying information.

Input/Result

A$=CHF.:$ (27::' :~.:" ~.;" :~.:CHF.:$ (11 ::. :~.:" A"
I END LINE 1

A $ t: " H P - 7 1 " I END LI NE 1

HP-71

Assigns an ESC% instruction to A$.

Evaluates the display line.

Displays H F' - 7 1 beginning at column 11.

Creating Protected Fields. A particular use of the ESC< (cursor off) and ESC> (cursor on)
instructions in programs is to write information in the display so that it can't be overwritten. Portions
of the display that can't be overwritten are called protected fields. Information is placed in a protected
field when it is written to the display while the cursor is off. Information written to the display while
the cursor is on can be overwritten.

Executing ESC < turns the cursor off so that information written to the display is protected from
being overwritten. (ESC> turns the cursor back on.) Information in a protected field can be erased by
pressing I ON 1 or I END LINE I, but it can't be written over and the cursor can't be set to any character in
the protected field (except by using the ESC% instruction). (Protected fields created using the L·j I t·~­
DOL·j statement, described in section 7, can't be overwritten in any way.) Also, the HP-71 can't read
information that is in a protected field.

• HP-71 characters and their corresponding character codes are listed on page 322 in the HP-71 Reference Manual.

238 Section 13: Printer and Display Formatting

Example: The following program prompts a user to input a hyphenated identification number. Using
the ESC< (cursor off) and ESC> (cursor on) instructions, the prompt appears as:

ID?I

When the user enters the number, the cursor automatically skips over the hyphens. (The computer
recognizes the hyphenated number as one number without any punctuation.) The following program
displays the input prompt in a protected field:

10 DIM P$[40],F$[2],N$[2],S1

20 F$=CHR$(27)&"<"

30 N$=CHR$(27)&">"

40 H$=F$&"-"&N$

50 P$=" "&H$&" "&H$&" "&F$&"."

60 INPUT "ID?",P$;S1

In this routine,

Dimensions four variables.

Assigns the ESC< instruction to F$.

Assigns the ESC> instruction to tu.
Assigns a write-protected hyphen to H$.

Assigns the default string to P $. It contains three
spaces, a hyphen, two spaces, a hyphen, and 4
spaces.

Prompts the user to enter an identification
number. (I t·~ PUT is described under "Entering
One or More Items," page 241.)

• F $ contains the escape sequence which turns the cursor off.

• t·~ $ contains the sequence which turns the cursor on.

• H $ contains a write-protected hyphen.

• P $ contains the default string for the I t·~ PUT statement.

The information to be displayed in a protected field is preceded by F $ to turn the cursor off. The
spaces (which are to be written over) are preceded by tU to turn the cursor on. The I t'~PUT statement
in line 60 displays the input prompt and waits for a numeric input.

To use the routine, key it into a new program file (refer to page 143 if you have forgotten how to do
this), and execute it.

Input/Result

~:nD

1D?1

4445

1D?444-51-

23345

I D·7-·444-52-3345. 1

I END LINE I
~=; 1 I END LINE I

444523345

Section 13: Printer and Display Formatting 239

Sets the numeric display format to standard
format.

Prompts you for a number. Notice the cursor just
to the right of the question mark.

Notice how the cursor skipped over the hyphen.

The program accepts the input.

Checks the value you just entered.

The hyphens weren't read as part of the input.

A protected field can be created on either side of the display using the L·j I t·j D I] L·j statement.

Example: Create a display window enclosed by H P on the left and 7 1 on the right.

Input/Result

L·j1 DTH221:!! "HP" .: TAB(21::'.: "71 "I:!!
L·j I t-WOL.J3 .. 20 I END LINE I

HP 71

I END LINE I

HP>I 71

Displays H P and 7 1 .

Places the BASIC prompt at column 3 of the dis­
play. The H P and 7 1 now reside in protected
fields.

Section 14

Storing and Retrieving Data

Contents
Overview .. 240
Keyboard Data Entry .. 241

Entering One or More Items (H1PUT) 241
Entering a Display Line (L Hl PUT) 244

Program Data .. 245
Storing Data In a Program (D ATA) 245
Retrieving Program Data (F.: E A D) 246
Resetting the Data Pointer (F.: E ::n 0 F.: E) 246

Data Files ... 247
Types of Data Files ... 247
Creating a Data File (C F.: E AT E) .. 248
Opening a Data File (A ::; ::; I G t·l #) 248
Closing a Data File ... 249
Accessing Data Files ... 249

Storing and Retrieving Data Sequentially 250
Storing Data Sequentially (P F.: I tH #) 250
The File Pointer and Sequential Access 252
Recalling Data Sequentially WE S T 0 F.: E #, F.: E A D #) 254

Storing and Retrieving Data Randomly 256
File Records .. 256
Moving the File Pointer WE S T 0 F.: E #) 258
Storing Data Randomly (P F.: I tH #) 258
Recalling Data Randomly WE A D #) 260

Storing and Retrieving Arrays .. 261
Passing Channel Numbers to a Subprogram 263

Overview
Computer programs operate on data. Programs can obtain data from different sources. These sources
are:

• The keyboard. A user can key data into the computer when prompted to by a program.

240

Section 14: Storing and RetrievinQ Data 241

• A program. A program can contain data stored within its lines.

• A file. Information can be stored in data files.

This section describes how the HP-71 gets information from these sources. More specifically, this sec­
tion describes:

• How a program accepts data items from the keyboard.

• How to store and retrieve data in a program.

• How to create data files, how to store data in them, and how to retrieve that data.

Keyboard Data Entry

Entering One or More Items (I H PUT)

Using the I t·j PUT statement a program can assign values entered from the keyboard to variables. The
I t·j PUT statement prompts the user to enter information from the keyboard, then assigns that in­
formation to specified variables.

I t·j PUT [prompt message [., default string].:] input list

The I t·j PUT statement contains four parts-the I t·j PUT keyword followed by a prompt message, a
default string, and the input list. The prompt message and the default string are optional, but there must
be an input list.

The prompt message must be a quoted string. The default string can be any valid string expression. The
input list is a list of one or more variable names (numeric, array elements, string, or substring) separated
by commas.

The following diagram illustrates the components of an I t·j PUT statement.

Prompt Message
Default
String

r---------A---------~\ r~----~--~

Input
List
~

I t·jpUT "EtHEP t·jA t'lE .. AGE: ".," BPUCE., 27".: t·j$., A

Keying in Values. When the computer executes I t·j PUT, it expects the user to key in some data. If
you are to key in more than one item of data, items must be separated by commas. The order in which
variables appear in the input list is the order in which the computer expects information to be keyed in.
For example, if the input list contains a string variable and a numeric variable, you must key in either a
string expression or an unquoted string (you aren't required to enclose string information in quotes in
response to an I t·j PUT prompt), then either a numeric value or a numeric expression.

242 Section 14: Storing and Retrieving Data

Example: The following I t·j PUT statement requires the user to key in a numeric value, a comma, another numeric value, another comma, and either an unquoted string or string expression:
Input/Result

DE:::;TPO\' ALL lEND LINE)
I t·jp UTA .' B .' C $ I END LI NE)

? I

5 .' 3 .' ABC I END LI NE)

If you had keyed in, for example,

ABC., 5., 3

Instructs the HP-71 to prompt for some values.
The HP-71 will accept two numeric values and a
string.

The HP-71 prompts you for the data.

You key in two values and a string (the string
need not be quoted).

the computer would have generated an error since it tried to input the string ABC into the variable A, which is a numeric variable.

If you had keyed in

5 .. 3,.456

the computer would not have generated an error. The reason is that the 456 can be assigned to either a string variable or a numeric variable. Since, in this example, the 456 is assigned to a string variable, it is treated as a string and not a number.

Keying in Expressions. In response to an I t·j Ptl T prompt, one can also enter numeric or string expressions. However, each expression must evaluate to the same data type as the corresponding variables in the I t..f PUT variable list. For example:

Input/Result

I t·jpUT A., B., C$ I END LINE)

? I

4*5 +3.. D 1 +S I t·j (D2::O., :::;$:~.: T$ I END LINE I

Instructs the computer to prompt for two numeric
values and a string.

Prompts for the information.

You key in two numeric expressions and a string
expression.

Section 14: Storing and Retrieving Data 243

Input Prompts. If you use an I t·WUT statement with only an input list, you will see the? prompt in
the display when the statement is executed. However, you can write your own special prompt to be
displayed instead of ? After typing the I t·j PUT keyword, type in a prompt message (it can be a quoted
string only), then a semicolon and the input list.

For example, if you want to prompt with E t·j T E F.: #, the I t·j PUT statement would be:

I t·WUT 'EtHEP #'.: t·j

When the I t·j PUT statement is executed, the computer displays the prompt message with the cursor to
the right of it. The prompt message cannot be overwritten (except by using special escape sequences,
described in section 13) when the user responds to it.

Example:

Input/Result

I t·jPUT 'EtHEP #'.: t·j I END LINE I Instructs the computer to prompt for data.

EtHEF.: #1 Displays the prompt message.

c:-._' Enters a value.

Default Strings. In some applications you might want an input variable to assume a default value
when a user doesn't key one in. You can specify a default string in an I t·j PUT statement to supply values
to variables when a user doesn't key them in. A default string is often used when a programmer antici­
pates a common response to an input prompt.

A default string appears in the I t·j PUT statement as a string expression following the prompt message.
It is separated from the prompt message by a comma, and is separated from the variable list by a
semicolon.

Example:

Input/Result

I t·WUT " Et·HEF.: #" .. "45" .: t·j
I END LINE I

EtHEF.: #45

I END LINE I

Prompts for an input.

Cursor is set to the first character of the default
string.

The input variable, t·j, is assigned the value of the
default string.

244 Section 14: Storing and Retrieving Data

Alternatively, you can edit the default string rather than merely pressing I END LINE I. You can key in
your own response and even use the command stack to locate and enter a previous expression.

Input Conditions. While the HP-71 displays a prompt, the following conditions are active:

• The Command Stack is active, enabling you to use Command Stack lines for input.

• The I VIEW I and []]I ERRM I keys are active, enabling you to view key assignments and the last error
message.

• Pressing I ATTN I clears the input line. Pressing I ATTN I again suspends program execution.

• Pressing ITJI caNT I continues program execution without changing the values of the variables in the
input list.

• Pressing I RUN I, ITJI SST I, or ITJI CALC I has the same effect as pressing I END LI NE I.
• You can type ahead of anticipated input prompts. The keystrokes will be stored in the keyboard

buffer then accepted as input when the prompt appears. The keyboard buffer holds up to 15 shifted
and unshifted keystrokes.

• An 0 t·j TIt" E F.: # condition that expires won't cause a branch until the input is completed.

• If an 0 t·j E F.: F.: 0 F.: condition is active, a branch will occur for an input error.

• If the wrong type of item is keyed in, the HP-71 reprompts for the correct type of data if an
o t·j E F.: F.: 0 F.: condition isn't in effect. If the HP -7.1 encounters an error condition when evaluating
input items, it suspends the program and displays an error message. If it encounters a warning
condition, it substitutes a default value and continues to execute the program.

Entering a Display Line (L I t·~ PUT)

The L I t·j PUT statement is similar to the I t·j PUT statement, except that L I t·j PUT assigns the in­
formation in the display to a single string variable.

L I t·iPUT [prompt message [.. default string].:] input variable

The L I t·j PUT statement can have a user-specified prompt message and default string in the same way
as I t·j PUT, but its variable list contains only one variable name, the input variable. L I t·j PUT assigns the
entire input to the specified input variable, which must be a string variable. Thus, commas, which nor­
mally separate items in the input list, can be accepted as part of the input.

Section 14: Storing and Retrieving Data 245

Example:

Input/Result

L I t·lPUT II TE:>::T : ".: A$ I END LINE I

T E ;:-:; T : I Prompts for an input line.

A B C , DE F .' G H I I END II NE I
A$ I END LINE I

ABC., DEF, GH I

Program Data

Key in ABC., DEF, GH I for the input line.

Displays line just entered.

Shows that the commas were accepted as part of
the input string.

Often a program requires data which should not change each time the program is executed. Rather
than require a user to key in the data, it can be stored directly in program lines.

Storing Data In a Program (0 A T A)

You can store data in a program using DATA.

~ ,'mp''''d ,,0<"
D A T A data items

The data items are numeric expressions, string expressions, and unquoted strings. They can appear in
any order, but as in an input list, they must be separated by commas. A D A T A statement isn't executed
by a program. It simply holds data.

Examples:

DATA 55,4,79,REVENUE,INTEREST,45EI8

DATA TOTAL, PRICE, (AI +Bl +Cl) ·5 .. S$(1:=:)g,ILO~'J"

A D A T A statement in a program or a subprogram can't be used by another program or subprogram.

246 Section 14: Storing and Retrieving Data

Retrieving Program Data (P E AD)

A program accesses items in D A T A statements by assigning them to variables using the F.: E A [I state­
ment.

" ,;mp""'d 'yO<"
PEA [I variable list

The HP-71 maintains a data pointer which points to the next item in a [I AT A statement to be read.
When a F.: E A [I statement assigns a data item to a variable, the data pointer is advanced one item.
When the HP -71 executes a program, the data pointer points to the first item in the first [I A T A state­
ment. Successive PEA [I operations advance the pointer to successive items in the [I A T A statement.

When the last item in a [I A T A statement is read, the data pointer jumps to the first item in the next
[I A T A statement. Successive PEA [I operations continue to advance the pointer to successive items and
successive [I A T A statements. When the last item in the last [I A T A statement in a program or
subprogram is read, a subsequent PEA [I causes an error. It might be helpful to think of the [I A T A
statements in a local environment collectively as a large table of data items. (Local environments are
described in section 12, "Subprograms and User-Defined Functions.")

Resetting the Data Pointer (P E ::; T 0 F.: E)

You can reset the data pointer within a local environment to the first data item in a [I A T A statement
using PE~:;TOPE.

I F.: E ~:; TOP E [statement identifier]

Examples:

F.:E~:;TOF.:E

PESTOF.:E 1000

PESTOF.:E ELEC[lATA

Sets the data pointer to the first data item of the
first [I A T A statement in the program or
subprogram.

Sets the data pointer to the first data item of the
[I A T A statement on line 1000.

Sets the data pointer to the first data item of the
[I A T A statement on the line identified by the la­
bel, ELEC[lATA.

Section 14: Storing and Retrieving Data 247

F.: E ::; T 0 F.: E can set the data pointer only within a local environment. If a D A T A statement isn't on a
line specified by F.:ESTORE, then the HP-71 searches through the higher-numbered lines for a DATA
statement and restores the pointer to the first item in the D A T A statement. If a D A T A statement isn't
found, the F.: EST 0 REstatement isn't executed and program execution continues.

Data Files
Many programs generate large amounts of data. This data needs to be stored in a logical format so that
it can be easily retrieved, added to, changed, or sent to other computers. The HP-71 enables you to do
this using data files.

Types of Data Files

The HP-71 enables you to create three types of data files:

• DATA files, which can contain numeric and string data.

• TEXT files, which are formatted to be read by other Hewlett-Packard computers, such as the
HP-75.

• SDATA files, which have the same format as data files created by the HP-41 Handheld Computer.

Although the formats of these files are different, many of the operations on them are similar. There­
fore, data file operations will be described in general and differences in operations among file types will
be noted.

There are several operations involving data files:

• Creating a file.

• Opening a file.

• Closing a file.

• Storing information in a file.

• Retrieving information from a file.

248 Section 14: Storing and Retrieving Data

Creating a Data File (C F.~ EAT E)

You can create a data file using C F.: EAT E.

fc ,;m pi ;'''' 'ym"
C F.: EAT E file type file name [: device]

The file type must be DATA, SDATA, or TEXT. The file name can be any valid file name and the device
can be main RAM (default) or an independent RAM.

You can optionally specify file size, and for DATA files, the record size. (Specifying the record size and
file size is described under "File Records," page 256.) When you store information sequentially in a
data file located in HP-71 memory, the size of the file expands to accommodate the information. There­
fore, specifying file size is not necessary when creating data files in memory for sequential operations.

When creating a random access data file, you must specify file size. The file size will not expand when
you store data randomly; the records you specify in random access operations must already exist.
(When creating a data file on a mass storage device, you must specify the record size and file size.
Using data files located in mass storage devices is described in the HP 82401A HP-IL Interface Owner's
Manual.)

Examples:

CPEATE DATA TPEE::::TAT Creates a DATA file named TF.:EE::nAT.

CF.:EATE TE::·::T LABt·jOTE::; Creates a TEXT file named LABt·jOTES.

CPEATE ::;DATA L I t·jEF I T Creates an SDATA file named L I t·jEF IT.

Opening a Data File (A ::; S I G t·4 #)

To access a data file, you must first open it using ASS I G t·j #.

Ie ,;mpm,,,, ,y"'"
A::; ::; I G t·j # channel number TO data file

This statement assigns a symbolic channel number to the specified data file, opening the file. A channel
is a memory area created by ASS I G t·j # that contains file control information to facilitate the flow of
data between the keyboard or a program and the file with which the channel is associated. A channel
number must be in the range 1 through 255 and can be assigned to only one file. You can assign up to
64 channel numbers at a time, but each file can be associated with at most one channel at a time.

If the file you specify can't be found in memory and no device was specified, the HP-71 creates a
DATA file in main RAM and assigns the specified channel number to it. Files created in this manner
are sequential data files whose data cannot be accessed randomly.

Examples:

ASSIGN # 1 TO STOCK:PORT(4)

ASSIGN # 221 TO AS

ASSIGN # Bl7 TO VOLTAGES

Closing a Data File

Section 14: Storing and Retrieving Data 249

Opens the file ::; Toe K in port 4 and assigns chan­
nel 1 to it.

Opens the file indicated by A S and assigns chan­
nel 221 to it.

Opens the file I,} 0 L TAG E S and assigns the chan­
nel indicated by B l 7 to it.

You should always close a file when you finish using it. Closing a file releases the memory (34 bytes)
associated with a channel. All data files opened by a program or a subprogram are automatically closed
when that program or subprogram executes E t·j 0 or E t·j 0 SUB. When you close a file, you are simply
breaking the association between a channel and a file.

Data files are closed by the ASS I G t·j # statement when the file name in the statement is one of the
following:

• II II

• II t II

• l

Examples:

AS::; I Gt·j # 1 TO ""
A:::;SI Gt·j # 5 TO "l"
A::;::; I C;t·j # 12 TO l

Accessing Data Files

You can store and retrieve data from a data file either sequentially or randomly. When you store data
sequentially, the HP-71 places items in the file one after another. Items are kept in the file in the order
that you store them. Therefore, they can be read from the file in the same order. When storing data
randomly, items are stored in an arbitrary order. The order in which they exist in the file is not nec­
essarily the order in which they were stored. When you store data items randomly, you specify where in
the file you want them stored.

The HP-71 uses a mechanism called a file pointer to keep track of where the next data item will be
stored or retrieved in a file. When you store data or retrieve data sequentially, the HP-71 automatically
moves the file pointer. When you store and retrieve data randomly, you specify the position of the file
pointer.

250 Section 14: Storing and Retrieving Data

If you have never used data files before, you might want to read "Storing and Retrieving Data Sequen­
tially" before you read "Storing and Retrieving Data Randomly." For beginners it is usually easier to
learn how to store and retrieve data sequentially before learning how to store and retrieve data ran­
domly. This is because sequential file access doesn't require you to keep track of the file pointer-the
HP-71 automatically does this for you. You only need to remember to reset the file pointer to the
beginning of the file after storing all your data. (This will be descibed shortly.)

Storing and Retrieving Data Sequentially

A list of checks written, or an array consisting of temperature measurements, are examples of items
arranged in a sequence. If you are going to store data items in a sequence and then recall them in the
same order, you need to use sequential file access.

Sequential file access has the following advantages:

• It is simpler to use than random data access.

• The computer automatically keeps track of the file pointer.

• You can store a list of items in a data file regardless of the file's record size.

Data items are stored in a file using PI<: I t·j T #. 'Ib remember this, think of P R I t·j T # as "printing"
information on a file. Data items are retrieved, or "read," from a file using F: E A D #.

Storing Data Sequentially (P F.: I H T #)

Once a file has been created and opened, you can store information in it sequentially using P R I t·j T #.

Ie "mp',"d """
PI<: I t·j T # channel number .: data item list

The data item list is a list of one or more data items separated by commas. Data items can be numeric
and string expressions or arrays. (Although you can retrieve numeric and string data from an SDATA
file, you can store only numeric data in such a file.) Data items are stored in the order in which they
appear in the list.

Note: When you store numeric information in a DATA file, the file's record size must be at least
eight bytes. If you attempt to store numeric data in a file with a record size smaller than eight
bytes, an error results.

Section 14: Storing and Retrieving Data 251

Example: The following program turns the HP-71 into a checkbook register. It sequentially stores the
amount of a check and who it was paid to in a DATA file. The program prompts you for information
about each check written and then stores that information. (Another example will use the data file
created by this program, so you might want to save the data file.) The program stores information for
as many checks as you want. When you don't want to enter any further information, type D 0 t~ E , 0 in
response to the prompt and the program will end. Key in the following program (first type
ED I T CHECK I END LINE I) and execute it.

10 CREATE DATA CHECKS

20 ASSIGN #1 TO CHECKS

30 DESTROY N$,A

40 INPUT "PAID TO,AMT:";N$,A

50 IF N$="DONE" THEN 'DONE'

60 PRINT #1 ;N$,A

70 GOTO 30

80 'DONE': PRINT #1;N$

90 ASSIGN #1 TO *
Input/Result

F.:Ut·j CHECK I END LINE 1

PAID TO.,AtH:.

ABC ~'l I F.: I t·j G., 1 ~~15 (1 , 75 I END LI NE 1

PAID TO.,AtH:.

CO t'l PUG F.: ILL., 1::: , 95 I END LI NE 1

PAID TO.,AtH:.

Creates the DATA file C H E C K ::;.

Opens the file by associating it with channel 1.

Ensures that N$ and A are unused.

Prompts for checkbook information.

Ends program if you type DO t·j E.

Stores checkbook information.

Prompts for another input.

Stores DO t·j E to mark the last entry.

Closes the file by dissociating it from channel 1.

Executes the C H E C f< program.

Prompts you to enter who you wrote a check to
and the amount of the check.

You enter paid to and amount.

Prompts you for another check.

252 Section 14: Storing and Retrieving Data

ABC GF.:APHIC:=<, 137, 65 I END LINE I

PAID TO., AtH:.

PHOTO CEtHEF.:., 34 , 5 I END LINE I

PAID TO.,AtH:.

DOt·jE., ~J I END LINE I You signal the computer that you don't want to
enter any further checkbook information.

In the example above, you can see that you can store a mix of data types in the same file. The program
stored each piece of check information after the preceding one, keeping them in the order in which
they were stored.

The File Pointer and Sequential Access

The HP-71 uses the file pointer to point to where the next data item will be stored or read in a data
file. After the HP-71 stores an item, it moves the file pointer to the place in the file where it will store
the next piece of information. Similarly, the HP-71 moves the file pointer to the next data item after
retrieving data from a file.

When a file is opened, the HP-71 places the file pointer at the beginning of the file, When you store
data sequentially, the computer places the items in the file in the order in which they appear in the data
item list. When the entire list has been stored, the pointer remains at the end of the recorded data, and
the end-ot-file marker is written after the position of the last item. The HP-71 always writes an end-of­
file marker after the last data item when data is stored sequentially.

Data
File

End-ot-File Marker

+
item item ... item item I

t
File Pointer

Section 14: Storing and Retrieving Data 253

Execution of a subsequent P F.: I t,j T # statement on the same file records data items after the pre­
viously recorded data and moves the end-of-file marker to the end of the newly recorded data. The file
size automatically expands, if necessary, to accommodate the new data.

PF.:ltH # 1 ,: item .. item " • ••• 1 item

End-at-File Marker

t .t
Data
File

item item ... item item item item .. , item I
t • t File Pointer

The pointer continues moving sequentially through the file as items are added. This continues until the
file is closed or the pointer is relocated using RES TOR E # (described on the next page).

Note: The movement of the file pointer and end-of-file marker influence the way in which
sequential files are updated. Thus, when storing data sequentially, always store all your
information in a file before relocating the file pointer or closing the file. (You can store several
data items in a record.) But if you close a file, then either reopen it or use RES TOR E # to
position the file pointer to that file's beginning, then use sequential PR I NT # to store data,
the new data replaces the old data in that record.

Also, since the HP-71 places an end-of-file marker after a sequential PR I NT #, if the data
exactly fills one record, the end-of-file marker is placed at the beginning of the next record. In
this case, all previously stored data beyond the end-of-file marker is also lost to sequential
REA D #. This always applies to TEXT files because each record contains only one data item.
But for DATA files, where more than one data item can occupy a record, you can use random
READ # (page 260) to access any data beyond the end-of-file marker.

The following diagram illustrates how the information from the above example is stored in the data
file. The position of the file pointer is shown before the file is closed.

DATA File For the C H E C f::: Program

End-Ot-File Marker

+
L-H_' E_: '-__ : _~'~_1_F._': _I _t'i_C,_' ...L..-_1_0_'=_' [_1 _' _7_5.......L_

C_: _O_t'1_F_' L_II_=;_F.:_1_L_, L_,L.. ___ -L.f---:1-l:1_::3_4_,_':::-_-;!_~1...J..._r.::_! C_H_"i _E....JI

t
File Pointer

254 Section 14: Storing and Retrieving Data

Recalling Data Sequentially (P E ~:; T 0 F.: E #, PEA D #)

Sequential data is recalled in the order in which it is stored. If you store information in a data file and
don't close it, then you will need to move the file pointer to the beginning of the file before you retrieve
information from it. You can do this using RE::::TORE #.

" "mp'"'' 'Y"'''
R E ::: TOR E # channel number

Examples:

RESTOF.:E # 14

F.:E:::TORE # A +B

Moves the file pointer to the beginning of the file
associated with channel 14.

Moves the file pointer to the beginning of the file
associated with the channel indicated by the
expression A +B.

If a file has just been opened, the file pointer is positioned at the beginning of the file. In this case, you
don't need to use F.: EST 0 F.: E # before reading information from the file.

Information is recalled from a data file and assigned to one or more variables using REA D #.

" "mp'iti" ,yo'"
REA D # channel number ,: variables

In this statement, channel number is a valid channel number and variables is a list of one or more
variables or arrays, separated by commas, that will be assigned values from items in the data file asso­
ciated with the channel number.

This statement retrieves a data item for each variable listed. Each data item must match the type of
the variable, either numeric or string, it is assigned to. Successively executing F.: E A D # reads
successive data items from the file, assigning them to variables. (The contents of the file aren't affected
by this statement.)

Attempting to retrieve information beyond the end-of-file marker using F.: E A D # results in an error.

Example: The following program retrieves the checkbook information from the data file C H E C K (cre­
ated in the example on page 251) and displays it one line at a time. To display the check information,
key in the program and execute it (first type ED I T GET C H E C K I END LI NE I).

10 DESTROY N$,A,S

20 ASSIGN #1 TO CHECKS

30 READ # 1 ;N$

40 IF N$="DONE" THEN DONE

50 READ # 1;A

60 DISP USING 100;N$,A

70 S=S+A

80 GOTO 30

90 DONE: DISP USING 110; S

100 IMAGE 12A,X,"$",5D.DD

110 IMAGE "TOTAL =", 7X,"$" ,5D.DD

120 ASSIGN # 1 TO *
Input/Result

F.: U t·j GET CHECK I END LINE I

ABC L~IRIt-iG $ 1(15t1.75
COt'lPUGR I LL $ 1t:. 95
ABC GRAPHICS $ 137 .65
PHOTO CEtHER $ 34. 5~~1
TOTAL= $ 1241 ,:'1:"

I I_'0_I

Section 14: Storing and Retrieving Data 255

Ensures that N$, A, and S are clear.

Opens the DATA file.

Reads a paid to name.

Tests for the last entry.

Reads a check value.

Displays paid to and amount.

Accumulates check totals.

Loops back and reads another check.

Displays the total.

Specifies the image format for displaying
checkbook information.

Specifies the image format for displaying total.

Closes the data file.

Executes GETCHECf<.

Reads checks from the data file C H E C K ::; and
displays them.

Computes and displays the total.

Numeric data in a file need not agree in precision (F.:EAL, I tHEGEF.:, :::;HOF.:T) with the variables to
which they are assigned. Numbers retrieved from data files are converted to the precision of the
variables to which they are assigned. If a F.: E A 0 # variable has a lower precision than the data item
being read, the data item is rounded to the precision of the variable. If aRE A 0 # variable has a higher
precision, then its magnitude is not changed, but is simply considered a value of the higher precision.

256 Section 14: Storing and Retrieving Data

Storing and Retrieving Data Randomly
Random access enables you to print to, read from, or update a portion of a data file by accessing its
individual records in any order. Storing and retrieving data randomly is a bit more complex than
sequential operations. If your applications require only sequential access, you don't need to read this
information on random access of files.

The advantages of using random file access are:

• You can move the file pointer to any record. This enables you to store and retrieve data in any
order.

• An end-of-file marker is not placed in the file after you store a data item in it.

There are two restrictions that apply to random access of data files:

• You can store and retrieve data from only one record at a time from a DATA file. (But you can store
more than one data item in a record.)

• You can't randomly store information in a TEXT file.

File Records

Each data file is divided into smaller units called records. Using random operations, you can store one
or more data items in a single, specified record within a DATA file. (In sequential access, data items are
stored in a DATA file without regard to record boundaries. It is important to keep track of DATA file
records only when you are using random access.)

You can store only one data item in an SDATA record. (Remember, you can store only numeric data in
this type of file.) However, unlike DATA files, you can store information from more than one SDATA
record with a single P F.: I t·j T # statement. Also, you can retrieve information from more than one
SDATA record with a single F.: E A D # statement.

You can retrieve information from a TEXT file using random access or sequential access, but you can
store information in a TEXT file using sequential access only. The size of a TEXT file record is deter­
mined by the computer at the time a data item is stored. Each record is just large enough to contain the
data item it holds.

Section 14: Storing and Retrieving Data 257

The following table shows the operations that can be performed on each type of data file (indicated by
an x):

Allowed Data File Operations

Operation DATA I SDATA I TEXT

Random P R I t·j T # x x
Random F.: E A 0 # x x x
Single Record Access x
More Than One Item Per Record x

The record sizes for the different data files are shown in the following table:

Data File Record Sizes

File Type Record Size

DATA 256 bytes (default). Can be set by user.

SDATA 8 bytes (fixed).

TEXT Set by the computer to the size of the
data item it contains.

When you create a DATA file, you can specify the record size and the number of records in the file.

simplified syntax --------------------------------.....,

CREATE file type file name [: device][.. file size[.. record length]]

In this statement, file size refers to the number of records for DATA and SDATA files, and the number
of bytes for TEXT files. The record length refers to the number of bytes per record, which you can
specify for DATA files only. When you create an SDATA file, you can specify the number of records in
the file, but the record size you specify is ignored. (The record size is fixed at eight bytes.) The com­
puter ignores the record size you might specify for a TEXT file.

The DATA file is the most versatile file for random access operations. You can specify its file size and
record length, and can store any type of data in it.

258 Section 14: Storing and Retrieving Data

Moving the File Pointer (F.: E ::; T 0 F.: E #)

If you want to move the file pointer to a specific record in a data file, execute P E ~:n 0 F.: E # .

F.:E~:nOPE # channel number, [record number]

Example:

F.:E~:nOF.:E # 1.,25 Moves file pointer to the beginning of record 25.

The ability to move the file pointer is useful when you want to store or retrieve data beginning at a
specific record. To do this, you can simply position the pointer to the desired record using
F.: E ~:n 0 F.: E #, then read from or store to that file. Using F.: E ~:n 0 F.: E # to position the file pointer is
necessary if you want to store or retrieve data sequentially beginning at a specified record. * But for
random storing and retrieving operations, it is not necessary to first position the file pointer using
F.:E~:nOF.:E #.

When you don't specify a record number the computer sets the file pointer to the first record (0).

Storing Data Randomly (P F.: I t·4 T #)

You can store information in a specific record by specifying a record number in the P F.: I t·~ T # state­
ment. (This is allowed for DATA and SDATA files only.)

simplified syntax --------------------------------------,

P F.: I t·~ T # channel number, record number; data item list

Note: When you store numeric information in a DATA file, the file's record size must be at least
eight bytes. If you attempt to store numeric data in a file with smaller records, an error results.

Examples:

PF.:ltH # i., [1.: A$ Stores A$ in record o.
PPINT # l,A+B;T$&G$ Stores a string in the record indicated by A + B.

The following example illustrates the movement of the file pointer as a result of random storage oper­
ations. This example uses a DATA file, which is created with a record length of eight bytes.

* Sequentially stored data items are often stored in consecutive records when there is not enough room in a single record to
contain them. For example, part of a string can lie in one record and be continued in the next record. You should keep this in
mind when moving the file pointer so that data in a file doesn't become inadvertently altered or lost.

Section 14: Storing and Retrieving Data 259

Example: Create a DATA file and into it store numeric information relating to the number of foggy
days recorded by a freighter during four crossings of the Pacific Ocean.

Input/Result

C PEA TED AT A F (I G D AT A " 5 " ::: Creates a DATA file with five 8-byte records.

ASS I Gt'j # 1 TO FOGDATA Opens the file FOGDATA.

L 0 I, 1,131 .] The file;' empty, having just been created.

+
File Pointer

PF.:ItH # 1,.2,:6

PPltH # 1,.3,:10

Lol,I:I'301 .J
•

PF.:ltH # 1 .. 0,:5
PP UH # 1,. 1,: 3

File Pointer

[5131s1101J
o 1. 2 3 4

File Pointer

PPltH # 1,.4,: "FOG"

[5131s1 10xOGJ
o 1 234

+
File Pointer

Stores 6 in record 2.

Stores lOin record 3.

The file pointer moves to the beginning of record
4 .

Stores two more data items. Unlike a sequential
store, the computer doesn't place an end-of-file
marker in the file following a random store.

The file pointer is positioned after the last item
stored.

Stores the string "F 0 G" in record 4.

The file pointer moves to record 4 where the
string FOG is written.

260 Section 14: Storing and Retrieving Data

After the last operation, the file pointer is positioned inside record 4. If you now attempt to do a
random store, you could not fill the remainder of record 4, you could only overwrite the information in
it. However, you can fill the remainder of the record by storing sequential information. This is because
a sequential store operation places information in the file starting from the current position of the file
pointer. But, except for highly specialized applications, you should avoid mixing random and sequential
operations.

Recalling Data Randomly (F.: E A D #)

In the same way that you specify a record number for storing data, you specify the record from which
you want to retrieve information. A random read operation can retrieve information from one record
only.

,- sirnplified syntax -----------------------------------...,
I
! F.: E R D # channel number record number variables i_. ___ ~

You can store and retrieve more than one item in a record in a DATA file. All items to be stored in a
single record must be listed together in the P F.: I t·i T # statement. Storing several items in a single
record is useful when you store different items in sets and retrieve them with a single F.: E R D # state­
ment. For example, if you wrote a program to store a list of telephone numbers, the first name, last
name, and phone number can be stored as separate items in a single record, provided the record size
can accommodate the information. The three items can then be retrieved with a single statement such
as F.:ERD # 1._ 4.: F$._ L$._ tU.

Examples:

PERD # 2._ 5.: R._ B$

PERD # 5,2*B-l;N$

Retrieves two items from record 5.

Retrieves a string from the record indicated by
2*B-1.

Attempting to read past the end of the file or past a record boundary generates an error.

A record in a TEXT or SDATA file can contain only one item. But, unlike reading information from a
DATA file, you can read data from more than one TEXT or SDATA record at a time.

Section 14: Storing and Retrieving Data 261

Storing and Retrieving Arrays
An entire numeric or string array can be stored in a data file using a single P F.: I t·l T # statement. You
can use parentheses as shown below to indicate an array in the data item list. You don't need to specify
the dimensions of an array (arrays are one- or two-dimensional) when you store it in a data file. The
HP-71 automatically accommodates an array of any dimension, provided there is enough RAM to store
all its elements.

Examples:

PP ItH # 4.: A 0:: ::.

PPltH # 2.: T40::.,::O

PF.:ItH # 1.: B

Stores the one-dimensional array, A in the data
file associated with channel 4.

Stores the two-dimensional array, T 4 in the data
file associated with channel 2. (The comma be­
tween the parentheses is required when indicating
a two-dimensional array.)

Stores the array B in the data file associated with
channelL The array's dimensions don't have to
be indicated.

An array is stored as a sequence of data items. Nothing in the file indicates that the data items form an
array. 'Ib avoid confusion, it is often best to dedicate a single data file to an array, then store the array
sequentially with a single P F.: I ~l T # statement and retrieve it with a single F.: E A D # statement. How­
ever, there are some applications in which you might wish to recall a sequence of array elements in an
order different than they were stored.

When you store an array, the first element in the first row becomes the first data item in the file. Each
element in the row is stored in order. Elements are stored row by row.

For example, the following matrix is stored in a data file (assuming the file has been associated with
channel 1) in the sequence A(1,1), A(1,2), A(1,3) ... A(3,4), as shown:

A(,) = [: : ~ :]

9 10 11 12

PF.:ItH # 1.: A

262 Section 14: Storing and Retrieving Data

Since array elements are stored linearly, they may be retrieved with or without an array format. For the
array in the example above, the following statements could access those array elements (assuming the
file is assigned to channell and the base option is 1):

F.:E::::TOF.:E # 1
Dlt'l B(3,.4) I:!! F.:EAD # 1,: B(,.)

F.:E::::TOF.:E # 1
Dlt'l C(4,.3) I:!! F.:EAD # 1,: C(,,)

C(,) =

F.:E:::;TOF.:E # 1
Dlt'l T1 (2,. 6) I:!! F.:EAD # 1,: T1 (,,)

Assigns the file's data to the array B, which has
three rows and four columns. This array is identi­
cal to A in the example above.

Assigns the file's data to the array C, which has
four rows and three columns.

123

456

789

10 11 12

Assigns the file data to the array T 1 , which has
two rows and six columns.

Tl ~ [~ 2 3

8 9

4 5

10 11

F.:E::::TOF.:E # 1
DIMX(12) @ READ # 1; X()

Assigns the file data to the array;:':;, which has
twelve elements.

X() = 11 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 110 111 1121

Alternatively, the values in the data file can be read into a list of simple variables, or a subset of them
could be read into a smaller array.

F.:E::::TOF.:E # 1
F.:EAD # 1,: D,E,.F,.G,.H,.I

Assigns the first six items in the file to the
variables D, E, F, G, H, and I.

D = 1, E = 2, F = 3,G = 4, H = 5, I = 6

Section 14: Storing and Retrieving Data 263

Passing Channel Numbers to a Subprogram.
Often when peforming the same set of operations on more than one data file, it is convenient to write a
subprogram which will perform those operations. For such a subprogram, all the calling program needs
to do is open each data file using A::; ::; I G t-l #, then pass the symbolic channel number as a parameter
to a subprogram which performs some operations on the file.

Data file channel numbers are passed as parameters to subprograms somewhat differently than
variables or constants. A channel number in a subprogram's formal parameter list must be an integer
constant from 1 to 255 and preceded by a "#" symbol. For example,

SUE: t·1At'1E 1 (#5::'

declares channel 5 as a local channel number. This channel number will point to the same file as the
corresponding channel number in the CAL L statement's actual parameter list. (Subprograms, param­
eter passing, local environments, and calling environments are described in section 12, "Subprograms
and User-Defined Functions.")

The channel number in the actual parameter list can be a numeric expression-however, it must be
preceded by a # character.

Examples: The following CAL L statements pass a channel number to the SUE: statement above:

CALL t·1At'1E 1 (#2:Hl::'

CALL t·1At'1E 1 (#:::::.

The second CAL L statement above passes channel 8 to t·l A t'1 E 1. The data file which is associated with
channel 8 in the calling program becomes associated with channel 5 in the subprogram. All operations
performed on channel 5 in the subprogram are performed on the file associated with channel 8 in the
calling program. If the calling program also has a channel 5, it is unaffected by the channel numbers
used in the subprogram. Like variable names, a subprogram can duplicate the channel numbers used in
a main program or another subprogram.

If no channel numbers appear in the subprogram's formal parameter list, then channel numbers estab­
lished by the subprogram are local to that subprogram. If a subprogram doesn't have a formal param­
eter list, then any channel numbers it uses are those of the calling program or subprogram.

264 Section 14: Storing and Retrieving Data

The following table summarizes the extent to which a subprogram shares channel numbers with a
calling environment.

Scope of Channel Numbers

Form of ::; U B statement Scope

::; U B statement with no formal parameter list. Channel numbers are those of the calling program.

SUB statement with a formal parameter list Channel numbers are local to the subprogram.
that has no channel number.

SUB statement with parameter list that in- Channel numbers are local to the subprogram. Channel
cludes channel numbers. numbers in the formal parameter list become asso-

ciated with the same files as the corresponding chan-
nel numbers in a CAL L statement's actual parameter
list.

Appendix A

Owner's Information

Contents
Serial Number and Operating System Version (I.) E P $) 267
Environmental Limits .. 267
Operating Precautions ... 267
Clock Accuracy .. 268
Conformance of BASIC Interpreter to ANSI Standards 268

HP-71 Extensions to Minimal BASIC 268
HP-71 Deviations From Minimal BASIC 269

Power Supply Information .. 271
Power Consumption .. 271
Low-Battery Safeguards .. 271
Replacing the Batteries ... 272

General Cleaning Information ... 272
Plug-In Modules .. 273
Verifying Proper Operation ... 273
Limited One-Year Warranty ... 274

What We Will Do .. 274
What Is Not Covered ... 274
Warranty for Consumer Transactions in the United Kingdom 275
Obligation to Make Changes ... 275
Warranty Information ... 275

Service ... 276
Obtaining Repair Service in the United States 276
Obtaining Repair Service in Europe 276
International Service Information .. 277
Service Repair Charge .. 278
Service Warranty ... 278
Shipping Instructions ... 278
Battery Damage ... 279
Further Information ... 279

Potential for Radio/Television Interference (For U.S.A. Only) 279
When You Need Help ... 280

266

Appendix A: Owner's Information 267

Serial Number and Operating System Version (i) F: F~ ::1::)

Each HP-71 has a serial number stamped on its underside. You should keep a record of this number. If
your HP -71 is lost or stolen, the serial number can be useful for tracing and recovery, as well as for
insurance claims. Hewlett-Packard does not maintain a record of individual owners' names and com­
puter serial numbers.

The I,} E F.: $ function returns a ten-character string* that indicates which version of the operating sys­
tem your comptuer is using. Type VEF.:$ I END LINE I to determine the operating system version of your
unit. This information is helpful when corresponding with Hewlett-Packard concerning technical
assistance.

Environmental Limits
In order to maintain product reliability, you should observe the following temperature and humidity
limits of the HP-71.

• Operating Temperature: 0° to 45°C (32° to 113°F).

• Storage Temperature: -40° to 55°C (-400 to 131°F).

• Operating and Storage Humidity: 0 to 95 percent relative humidity.

Your computer should not be operated or stored outside of the specified range. Operating or storing the
computer outside the ranges can decrease its reliability. Maximum reliablity is obtained at normal
room temperatures.

Operating Precautions
Certain electronic circuits in the HP-71 function continuously. Improper operation can either disrupt
performance in unexpected ways or damage the electronics. Disruption or damage can be caused by:

• Removing the batteries while the ac adapter is not plugged in (may cause loss of memory contents).

• Removing plug-in modules while the HP-71 is turned on.

• Allowing electrostatic discharge to reach the HP-71.

• Placing the HP-71 in strong magnetic fields.

• Connecting the HP-71 to equipment that is not supported by Hewlett-Packard for use with the
HP-71.

* If one or more extension ROMs are installed, this string may be longer than ten characters.

268 Appendix A: Owner's Information

Observe the precautions listed below.

CAUTION

• Hold or touch the computer while preparing to install batteries or a plug-in module to neutralize any
electrostatic charge. This is particularly important for the HP-IL module and card reader ports.

• Do not place fingers, tools, or other foreign objects into any of the plug-in ports.

• Turn off the unit before installing or removing batteries, unless the ac adapter is plugged in.

• Turn off the unit before installing or removing a plug-in module.

Clock Accuracy
The system clock is regulated by a quartz crystal accurate to within 3 minutes per month for worst-case
operating temperatures. A more typical accuracy is 1112 minutes per month. The adjustment procedure
makes possible accuracies of better than 15 seconds per month. The accuracy of the clock crystal is
affected by temperature, physical shock, humidity, and aging. Optimum accuracy is maintained at
25°C ± 5° (77°F ± 9°). When an extreme change in environmental conditions occurs, the clock may
require readjustment, as described in section 5, page 94.

Conformance of BASIC Interpreter to ANSI Standards
The HP-71 BASIC language interpreter conforms to the American National Standards Institute
(ANSI) definition for Minimal BASIC, except as indicated below. Conformance to the standard was
verified by the application of the National Bureau of Standards (NBS) test suite to the HP-71
interpreter. This test suite is available as NBS Special Publications 500-70/1 and 500-70/2 from the
National Bureau of Standards, U.S. Department of Commerce, Washington, D.C., 20234.

HP-71 Extensions to Minimal BASIC

The HP-71 extends Minimal BASIC on the following items (numbers in parentheses refer to the pro­
gram number in the test suite):

• Variables and strings are initialized to zero and null string, respectively; reference to them before
assignment returns default values of 0 for numeric variables and "" (null string) for string
variables. (#23)

• The character set has been expanded to include any of ASCII code 0 through 255 (decimal) as valid
character responses. (#93.1, #102, #112)

Appendix A: Owner's Information 269

• The HP-71 accepts double and single quotes as input characters in an unquoted string if they are
not the first character in the response. (#109)

• On program input, the HP-71 accepts blanks at the beginning of a line, and accepts a lack of
blanks between keywords. After a line has been entered, the interpreter removes extraneous blanks
and inserts blanks where required for readability. (#187, #190, #191)

• In an assignment statement, the keyword LET is optional. (#185)

• The interpreter provides an invisible E t·j D statement at the physical end of a BASIC file, so the
user need not supply an E t~ D statement in a program if flow will naturally go to the last line. In
addition, the interpreter permits more than one E t·j D statement in a BASIC program. (#3, #4)

• User-defined functions are not restricted to having lower line numbers than the line where they are
referenced. (#157, #159, #162)

• The HP-71 permits null data items in DATA statements. (#105)

• F.: E A D and I t-lP U T statements allow expressions instead of just constants. (#112)

• The system will not generate an error if the program ends before a F 0 F.: statement has found a
matching t~D::T. (#50)

HP-71 Deviations From Minimal BASIC

The HP-71 does not comply with Minimal BASIC on the following items:

• The HP-71 assigns the F 0 F.: variables from left to right during the initial entry into the loop.

Example: The following loop is executed once by the HP-71 (ANSI requires it to be executed six
times):

150 J= -2
160 FOR J=9 TO J STEP J
170 NEXT J

ANSI requires that the limit and step be evaluated once upon entering the loop. The HP-71 does this,
but after setting the initial value. (#48)

• The HP-71 response to input errors and the ANSI requirements are tabulated below. (For
DEFAUL T D::THW responses, refer to the keyword dictionary entry for DEFAUL T in the HP-71
Reference Manual.)

270 Appendix A: Owner's Information

Responses to Input Errors-HP-71 Versus ANSI

HP-71

Input DEFAULT o t,~ DEFAULT OFF

Numeric underflow. Warning: system supplies Error: user must
zero. reenter value.

Numeric overflow. Warning: system supplies Error: user must
its largest signed value. reenter value.

String overflow. Trappable; otherwise fatal.

Variable assignment error. Checked after each item verified.

Execution error. Trappable; otherwise fatal.

• If a Minimal BASIC program contains the following statement:

ItWUT I., A(I::O., ::<:

and the user response is:

1.,2., I abc I

ANSI

No warning or error.
System supplies zero.

Error: user must
reenter value.

Allows reenter.

Checked after all
items verified.

User must reenter
input line.

then the I abc I is invalid input and ANSI requires that I and A (I::O not be assigned until all
input is correct. The HP-71 will request the user to reinput his data, but I and A (I::O will have
the current values of 1 and 2 respectively. If the user now inputs 2., 3.. 4 then A (1 ::0 has the
value 2, and A (2::0 has the value 3. ANSI requires that A (1 ::0 is yet to be defined and A (2 ::0 = 3.
(#108.3)

• Minimal BASIC requires ~] ~] to provide a warning and to return an overflow value. The HP-71
gives an error for [1 .. ···0. (#28)

• A Minimal BASIC program assumes 0 P T I 0 t·~ B A::: E [1 unless 0 P T I 0 t·~ BAS E 1 is executed
as a program statement before any array is declared. An HP-71 program assumes the
OPT I 0 t·~ BAS E setting already in continuous memory when the program starts. To avoid uncer­
tain program performance, an HP-71 program using arrays should include an OPT I Ot·~ BASE
statement (page 68). (#56)

• A Minimal BASIC program assumes radians setting unless DE G F.: E E S is executed as a program
statement. An HP-71 program assumes the angular setting already in continuous memory when
the program starts. To avoid uncertain program performance, an HP-71 program requiring an an­
gular setting should include either a F.:AD I At·~S or a DEGREES statement (page 50). (#120)

Appendix A: Owner's Information 271

• A Minimal BASIC program uses the same random number sequence each time it's run, unless a
F.:Atmot'1 I ZE statement is executed as a program statement. An HP-71 program uses a different
random number sequence each time it's run. However, an HP-71 program will use the same random
number sequence each time it's run when a F.: A t·j D 0 t'1 I Z E numeric expression statement (page 52)
is executed as a program statement. The result of the numeric expression determines what random
number sequence is used each time the program runs. (#130)

• A Minimal BASIC program declares variables according to the 0 I M statement, whether or not
program control flows through that 0 I M statement. The HP-71 requires program control to
flow through a program's DIM statement. Otherwise the variable declarations will not occur.
(#62).

Power Supply Information

Power Consumption

The HP-71 consumes the least power when the display is turned off (after OFF, B'lE, [Ill OFF I, or the
lO-minute timeout period elapses). More power is consumed while the HP-71 is turned on, and more
yet while a program is running or the beeper is sounding.

While the HP-71 is turned off, it draws a current of about 0.03 mA; while on, but not running, it
draws 0.75 rnA of current. With a typical program running or the beeper sounding, the computer
draws 10mA. New alkaline batteries will operate an HP-71 equipped with four memory modules for
at least 60 hours of continuous operation (running typical programs) at room temperature
(approximately 25°C or 77°F) before the BAT (low battery) annunciator first turns on.
Rechargeable batteries will deliver a somwhat shorter period (and will not be recharged while in
the HP-71). If a card reader or HP-IL interface is installed, battery life is shortened by an amount
determined by module use.

Thrn the HP-71 off before connecting the unit to a power outlet. This will prevent unexpected voltage
"spikes" from disturbing the contents of memory. When connected to a power outlet, the HP-71 uses
the batteries as a backup power supply and normally doesn't draw any power from them. You won't
damage the HP-71 by using the computer without batteries, but you may lose everything in memory
should there be a power outage or an intermittent connection to the voltage source.

Low-Battery Safeguards

The HP-71 has low-power safeguards to protect the contents of memory. After the first indication of
low power, replace the batteries as soon as you can.

• If battery voltage drops below the operating minimum, the BAT annunciator turns on. This
indicates that the computer can run a program for 5 minutes to 2 hours more, depending on
battery condition.

• The computer will continue to operate after the BAT annunciator comes on. Continued operation,
however, may result in a memory reset if the batteries run too low.

272 Appendix A: Owner's Information

• The card reader may not function properly in a low-battery condition. Although card reader oper­
ations might not be aborted, the HP-71 will display the message

~·JF.:t·j: LOI .• J Ba t t E't- '::I

if card reader operations are performed during a low-battery condition.

Replacing the Batteries

The HP-71 uses four size AAA alkaline batteries. When you remove the batteries, you have at least 30
seconds to replace them, provided you do rwt press any keys, before the contents of the computer's
memory are lost. If you press any keys while batteries are removed, memory contents are immediately
lost. If you have an ac adapter connected to the HP-71, you do not have to worry about possible mem­
ory loss when changing the batteries. If you are going to change the batteries without the ac adapter
being connected, you may first want to copy your files onto magnetic cards or a mass storage medium
to prevent them from being lost should a memory loss occur.

To install batteries in the HP-71:

1. 'fum off the HP-71. Press IIJI OFF 1 or type 0 F F I END LI NE I.
2. 'fum the computer upside down and set it on a soft, fiat

surface.

3. Using your thumb press down on the battery compartment
door (the door to the center compartment), and slide it toward
the rear of the computer. When you press down on the
compartment door, the catch will snap as it unlatches from the
computer.

4. Remove the four batteries, and insert four fresh ones, being careful to align them according to the
indicators in the compartment.

5. Lay the compartment door in position and slide it toward the front of computer until the catch
snaps.

General Cleaning Information
The HP-71 can be cleaned with a soft cloth dampened either in clean water or in water containing a
mild detergent. Don't use an excessively wet cloth or allow water inside the computer. Avoid abrasive
cleaners, especially on the display window.

Appendix A: Owner's Information 273

Plug-In Modules

Your HP-71 has four external ports for RAM and ROM modules, one port for a card reader module,
and one port for an HP-IL interface. Before shipping, each of these ports is fitted with a removable,
blank module to protect the underlying circuits. These ports should be kept covered when not in use to
prevent foreign matter from entering the HP-71.

Instructions for installing and using optional memory modules, preprogrammed modules, and the
HP-IL module are included with each of those modules. Instructions for the card reader module are
located in Appendix C in this manual, page 284.

Verifying Proper Operation

If you suspect that your HP-71 is not operating properly and may require service, you can do the
following self-test in the specified order:

1. 'furn the computer off. (Press [TIl OFF 1 or execute 0 F F.)

2. Plug an ac adapter into a power outlet then connect it to the computer.

3. 'furn the computer back on. (Press @ill.)

4. Execute the P I function. Type PI I ENDLINE I. The result 3 , 14159265359 should be displayed,
which indicates that approximately 60% or more of the computer's circuits are operating properly.

5. If the computer repeatedly fails to perform a particular operation, such as copying a file to a mag­
netic card, or repeatedly displays an error message, such as E ::< c Eo sse h a r- s, then carefully
reread the instructions in this manual regarding that operation; you may be specifying the oper­
ation improperly.

6. If the computer still does not operate properly, press I ON 1 and [Z] simultaneously , then press
I END LI NE 1 to execute a level one initialization. The display should now display the Replace cursor
(BASIC mode) or Insert cursor (CALC mode).

7. Press I ON 1 [Z] (simultaneously) then [gJ I END LINE I, to execute a level 2 initialization (I t·j IT: 2).
The computer will do a self-test of its circuitry. The computer will display PO rl T E ::; T 1 as it
begins to test the circuits. When the first portion of the test verifies the proper operation of the
circuits, the computer will display

F.:Ot'l TEST 1 G 2,

indicating that it is continuing the test. When the test is completed, the computer will display

POM TEST 1G 2G 3G 4G

if the test revealed no faulty circuits. If faulty circuits are detected, at least one of the numbers will
be followed by a B instead of a G. Thus,

F.: 0 t'l TEST 1 G 2B 3G 4G.

274 Appendix A: Owner's Information

would indicate that the computer has a faulty ROM. If your computer indicates a faulty ROM
after an I t·j IT: 2 test, it requires service.

8. If the display remains blank when I ON I is pressed, or if characters remain "frozen" in the display,
then reset the memory:

a. Unplug the ac adapter.
b. Remove all modules.
c. Remove the batteries.
d. Press and hold down I ON I for about 30 seconds to discharge the circuits.
e. Install batteries or connect the ac adapter, then press I ON I to turn the computer on. The

message t'l eo m 0 r '::I Los t should now be in the display. Pressing any key should display the
BASIC prompt and Replace cursor.

If you cannot determine the cause of difficulty, write or telephone Hewlett-Packard at an address or
phone number listed under Service, starting on page 276.

Limited One-Year Warranty

What We Will Do

The HP-71 (except the batteries and damage caused by the batteries) is warranted by Hewlett-Packard
against defects in materials and workmanship affecting electronic and mechanical performance for one
year from the date of original purchase. If you sell your unit or give it as a gift, the warranty is trans­
ferred to the new owner and remains in effect for the original one-year period. During the warranty
period, we will repair or, at our option, replace at no charge a product that proves to be defective,
provided you return the product, shipping prepaid, to a Hewlett-Packard service center.

What Is Not Covered

The batteries or damage caused by the batteries are not covered by this warranty. However, certain battery
manufacturers may arrange for the repair of the HP-71 if it is damaged by the batteries. Contact the
battery manufacturer first if your HP-71 has been damaged by the batteries.

This warranty does not apply if the product has been damaged by accident or misuse or as the result of
service or modification by other than an authorized Hewlett-Packard service center.

No other express warranty is given. The repair or replacement of a product is your exclusive remedy.
ANY OTHER IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS IS LIMITED
TO THE ONE-YEAR DURATION OF THIS WRITTEN WARRANTY. Some states, provinces,
or countries do not allow limitations on how long an implied warranty lasts, so the above limitation
may not apply to you. IN NO EVENT SHALL HEWLETT-PACKARD COMPANY BE LIABLE
FOR CONSEQUENTIAL DAMAGES. Some states, provinces, or countries do not allow the exclu­
sion or limitation of incidental or consequential damages, so the above limitation or exclusion may not
apply to you.

Appendix A: Owner's Information 275

This warranty gives you specific legal rights, and you may also have other rights which vary from state
to state, province to province, or country to country.

Warranty for Consumer Transactions in the United Kingdom

This warranty shall not apply to consumer transactions and shall not affect the statutory rights of a
consumer. In relation to such transactions, the rights and obligations of Seller and Buyer shall be
determined by statute.

Obligation to Make Changes

Products are sold on the basis of specifications applicable at the time of manufacture. Hewlett-Packard
shall have no obligation to modify or update products once sold.

Warranty Information

If you have questions about this warranty, please contact Hewlett-Packard at one of the following
locations.

In the United States. Call (503) 757-2002 or write to:

Hewlett-Packard Co.
Calculator Service Center

1030 N.E. Circle Blvd.
Corvallis, OR 97330

In Europe. Call (022) 83 81 11 or write to:

Hewlett-Packard S.A.
150, route du Nant-d' Avril

P.O. Box CH-1217 Meyrin 2
Geneva

Switzerland

Note: Do not send computers to this address for repair.

In other countries. Call (415) 857-1501 in the U.S.A. or write to:

Hewlett-Packard Intercontinental
3495 Deer Creek Road

Palo Alto, California 94304
U.S.A.

Note: Do not send computers to this address for repair.

276 Appendix A: Owner's Information

Service

Hewlett-Packard maintains service centers in most major countries throughout the world. You may
have your unit repaired at a Hewlett-Packard service center any time it needs service, whether the unit
is under warranty or not. There is a charge for repairs after the one-year warranty period.

Hewlett-Packard products are normally repaired and reshipped within five (5) working days of receipt
at any service center. This is an average time and could vary depending upon the time of year and the
work load at the service center. The total time you are without your unit will depend largely on the
shipping time.

Obtaining Repair Service in the United States

For service in the United States:

ship your HP-71 to: Hewlett-Packard Co. or mail it to: Hewlett-Packard Co.
Calculator Service Center

1030 N.E. Circle Blvd.
Corvallis, OR 97330

Calculator Service Center
P.O. Box 999

Corvallis, OR 97339

The telephone number for the Calculator Service Center is (503) 757-2002.

Obtaining Repair Service in Europe

Service centers are maintained at the following locations. For countries not listed, contact the dealer
where you purchased your unit.

AUSTRIA
HEWLETT-PACKARD Ges.m.b.H.
Kleinrechner-Service
Wagramerstrasse-Lieblgasse1
A-1220 Wien (Vienna)
Telephone: (0222) 23 65 11

BELGIUM
HEWLETT-PACKARD BELGIUM SA/NV
Woluwedal 100
B-1200 Brussels
Telephone: (02) 762 32 00

DENMARK
HEWLETT -PACKARD A/S
Datavej 52
DK-3460 Birkerod (Copenhagen)
Telephone: (02) 81 66 40

Appendix A: Owner's Information 277

EASTERN EUROPE
Refer to the address listed under Austria.

FINLAND
HEWLETT-PACKARD OY
Revontulentie 7
SF-02100 Espoo 10 (Helsinki)
Telephone: (90) 455 02 11

FRANCE
HEWLETT-PACKARD FRANCE
Division Informatique Personnelle
S.A.V. Calculateurs de Poche
F-91947 Les Ulis Cedex
Telephone: (6) 907 78 25

GERMANY
HEWLETT-PACKARD GmbH
Kleinrechner-Service
Vertriebszentrale
Berner Strasse 117
Postfach 560 140
0-6000 Frankfurt 56
Telephone: (611) 50041

ITALY
HEWLETT-PACKARD ITALIAN A S.P.A.
Casella postale 3645 (Milano)
Via G. Di Vittorio, 9
1-20063 Cernusco Sui Naviglio (Milan)
Telephone: (2) 90 36 91

NETHERLANDS
HEWLETT-PACKARD NEDERLAND B.V.
Van Heuven Goedhartlaan 121
NL-1181 KK Amstelveen (Amsterdam)
P.O. Box 667
Telephone: (020) 472021

NORWAY
HEWLETT-PACKARD NORGE A/S
P.O. Box 34
Oesterndalen 18
N-1345 Oesteraas (Oslo)
Telephone: (2) 17 11 80

International Service Information

SPAIN
HEWLETT -PACKARD ESPANOLA S.A.
Calle Jerez 3
E-Madrid 16
Telephone: (1) 458 2600

SWEDEN
HEWLETT-PACKARD SVERIGE AB
Skalholtsgatan 9, Kista
Box 19
S-163 93 Spanga (Stockholm)
Telephone: (08) 750 2000

SWITZERLAND
HEWLETT -PACKARD (SCHWEIZ) AG
Kleinrechner -Service
Allmend 2
CH-8967 Widen
Telephone: (057) 31 21 11

UNITED KINGDOM
HEWLETT-PACKARD Ltd
King Street Lane
GB-Winnersh, Wokingham
Berkshire RG11 5AR
Telephone: (0734) 784 774

Not all Hewlett-Packard service centers offer service for all models of HP products. However, if you
bought your product from an authorized Hewlett-Packard dealer, you can be sure that service is avail­
able in the country where you bought it.

If you happen to be outside of the country where you bought your unit, you can contact the local
Hewlett-Packard service center to see if service is available for it. If service is unavailable, please ship
the unit to the address listed above under "Obtaining Repair Service in the United States." A list of
service centers for other countries can be obtained by writing to that address.

All shipping, reimportation arrangements, and customs costs are your responsibility.

278 Appendix A: Owner's Information

Service Repair Charge

There is a standard repair charge for out-of-warranty repairs. The repail charges include all labor and
materials. In the United States, the full charge is subject to the customer's local sales tax. In European
countries, the full charge is subject to Value Added Tax (VAT) and similar taxes wherever applicable.
All such taxes will appear as separate items on invoiced amounts.

Computer products damaged by accident or misuse are not covered by the fixed repair charges. In these
situations, repair charges will be individually determined based on time and materials.

Service Warranty

Any out-of-warranty repairs are warranted against defects in materials and workmanship for a period
of 90 days from date of service.

Shipping Instructions

Do not return any batteries in or with the computer. Please refer to Battery Damage on page 279.

Should your unit require service, return it with the following items:

• A completed Service Card, including a description of the problem.

• A sales receipt or other proof of purchase date if the one-year warranty has not expired.

The product, the Service Card, a brief description of the problem, and (if required) the proof of pur­
chase date should be packaged in adequate protective packaging to prevent in-transit damage. Such
damage is not covered by the one-year limited warranty; Hewlett-Packard suggests that you insure the
shipment to the service center. The packaged unit should be shipped to the nearest Hewlett-Packard
designated collection point or service center. Contact your dealer for assistance. (If you are not in the
country where you originally purchased the unit, refer to "International Service Information," above.)

Whether the unit is under warranty or not, it is your responsibility to pay shipping charges for delivery
to the Hewlett-Packard service center.

After warranty repairs are completed, the service center returns the unit with postage prepaid. On out­
of-warranty repairs in the United States and some other countries, the unit is returned C.O.D. (cover­
ing shipping costs and the service charge).

Appendix A: Owner's Information 279

Battery Damage

Do not return any batteries in or with the computer. The batteries or damage caused by the batteries
are not covered by the one-year limited warranty.

If your HP-71 is damaged by battery leakage, you should first contact the battery manufacturer for
warranty information. Some battery manufacturers may repair the computer if it has been damaged by
leaking batteries. If the battery manufacturer warrants against battery damage, you should deal directly
with that manufacturer for repairs. If the battery manufacturer does not warrant against battery dam­
age, you should send the computer to Hewlett-Packard for repair. Whether the computer is under war­
ranty or not, there will be a charge for repairs made by Hewlett-Packard when the computer has been
damaged by the batteries. To avoid this charge, contact the battery manufacturer first when your com­
puter has been damaged by the batteries.

Further Information
Service contracts are available. For information about service contracts, please contact the Cal­
culator Service Center in Corvallis, Oregon.

Calculator product circuitry and design are proprietary to Hewlett-Packard. Service manuals are
not available to customers.

Potential for Radio/Television Interference (For U.S.A. Only)
The HP-71 generates and uses radio frequency energy and, if not installed and used properly-that is,
in strict accordance with the instructions in this manual-may cause interference with radio and tele­
vision reception. It has been tested and found to comply with the limits for a Class B computing device
in accordance with the specifications in Subpart J of Part 15 of FCC rules, which are designed to
provide reasonable protection against such interference in a residential installation. However, there is
no guarantee that interference will not occur in a particular installation. In the unlikely event that
your HP-71 does cause interference to radio or television reception (which can be determined by
removing all power to the HP-71 and then reconnecting the power and turning it on) you are encour­
aged to try to correct the interference by one or more of the following measures:

• Reorient the receiving antenna.

• Relocate the HP-71 with respect to the receiver.

• Move the HP-71 away from the receiver.

• Plug the ac adapter into a different ac outlet so that the HP-71 and the receiver are on different
branch circuits.

If necessary, you should consult your dealer or an experienced radio/television technician for additional
suggestions. You may find the following booklet, prepared by the Federal Communications Commis­
sion, helpful: How to Identify and Resolve Radio-TV Interference Problems. This booklet is available
from the U.S. Government Printing Office, Washington, D.C. 20402, Stock Number 004-000-00345-4.

280/281 Appendix A: Owner's Information

Germany Radio Frequency Interference
The HP-71 has been tested and complies with VFG 1046/84, VDE 0871B, and similar non-interfer­
ence standards.

Should you use equipment that is not manufactured or recommended by Hewlett-Packard, that
system configuration has to comply with the requirements of Paragraph 2 of the German Federal
Gazette, Order (VFG) 1046/84, dated December 14, 1984.

Air Safety Notice (U.S.A.)
The HP-71 has been tested to the requirements of RTCA (Radio Thchnical Commission for Aero­
nautics) Docket 160B, Section 21 and found to comply with those limits. Many airlines permit the
use of calculators in flight based on such a qualification. However, before boarding a flight, check
with an airline representative on the carrier's policy regarding use of calculators in flight.

When You Need Help
Technical Assistance. For technical assistance with this product,

call: (503) 757-2004
8 a.m. to 3 p.m.

Pacific time

or write to: Hewlett-Packard Co.
Handheld Computer and Calculator Operation

Calculator Thchnical Support
1000 N .E. Circle Blvd.

Corvallis, OR 97330

Product Information. For information about Hewlett-Packard products and prices, contact your lo­
cal Hewlett-Packard dealer. For the name of the dealer nearest you, or to order free literature about
Hewlett-Packard products,

call toll-free: (800) FOR-HPPC
(800) 367-4772

or write to: Hewlett-Packard Co.
Personal Computer Group

PCG Thlemarketing
10520 Ridgeview Court
Cupertino, CA 95014

Appendix B

Accessories Included With the HP-71

Your HP-71 comes with each of the following:

• HP-71 Owner's Manual.

• HP-71 Reference Manual.

• HP-71 Quick Reference Guide.

• One case for the computer.

• One keyboard overlay.

• Four AAA alkaline batteries.

• Accessory brochure.

• Service Card.

The accessory brochure describes optional accessories for your HP-71. For more information, see a
Hewlett-Packard dealer. If you are outside the U.S., please contact the Hewlett-Packard Sales Office
nearest you.

Availability of all accessories, standard or optional, is subject to change without notice.

282/283

Appendix C

Using the HP 82400A Magnetic Card Reader

Contents

Overview .. 284
Installing the Card Reader ... 285
Removing the Card Reader .. 285
Caring For the Card Reader and Cards 286

Cleaning Magnetic Cards .. 286
Cleaning the Card Reader Head .. 286
Marking Magnetic Cards .. 286

A Look At a Magnetic Card .. 287
Pulling Cards Through the Card Reader 287
Card Reader Operations ... 289

Copying a Card File to a File in Memory 291
Copying a File in Memory to a Card File 291
Protecting a Card (PI<:OTECT, Ut·WI<:OTECT) 292
Using Private Cards (: PC R [I) ... 292
Catalog of a Card File (C AT CAl<: [I) 293

Overview

This section is for those who have obtained the optional HP 82400A Magnetic Card Reader. It de­
scribes how to install and operate the card reader.

You might want to first become familiar with the file operations described in section 6. The informa­
tion in that section is helpful for understanding how to copy files from one device to another.

This appendix covers:

• How to install and test the card reader.

• Caring for the card reader and magnetic cards.

• Copying files to and from magnetic cards.

• Obtaining file information from the card reader.

284

Appendix C: Using the HP 82400A Magnetic Card Reader 285

Installing the Card Reader
1. 'Ibm off the HP-71 (press [IJI OFF I).

2. The card reader fits in the port which is to the right of the display and above the numeric keys.
'Ibm the HP-71 over and remove the door to the card reader port, by pressing down on the door
and sliding it to the rear of the HP-71.

3. 'Ibm the HP-71 right side up. With your thumb, push
on the plastic insert that is in the port until it drops
out. You may want to save this insert in case you re­
move the card reader.

4. 'Ibm the HP-71 over again. Orient the card reader
with its label facing into the port and its pin socket
aligned with the pin connectors. Press on the card
reader near the pin socket until it snaps into place.

Note: The pin socket might fit tightly over the pin connectors, requiring you to push hard on the
card reader when installing it. Although the card reader fits snugly into the port, you should ensure
that you don't force it into the port if it isn't properly aligned over the contacts.

5. Replace the door to the port.

Removing the Card Reader
Th remove the card reader:

1. 'Ibm off the HP-71 (press [IJI OFF I).

2. Remove the cover to the card reader port.

3. Push with your thumb on the labeled side of the card reader until it drops out of the port.

4. Replace the plastic insert.

5. Replace the port cover.

286 Appendix C: Using the HP 82400A Magnetic Card Reader

Caring for the Card Reader and Cards

Cleaning Magnetic Cards

Clean cards are necessary for optimum card reader performance. Card surfaces are susceptible to dust
and oil accumulation, which interferes with the transfer of information to and from the HP-71. A
common source of dirt and oil is your fingers. Handle cards by their edges only. You can clean cards
with a soft, clean, lint-free cloth moistened with isopropyl alcohol.

Place the card on a smooth, clean surface, then wipe the
cleaning cloth firmly across the magnetic surface (the
unlabeled side) of the card.

Creasing, bending, or scratching a card can damage it be­
yond repair. As a protective measure, you could duplicate
your important card files and place the duplicates in a
card holder in a secure location. If one of your working
cards should be damaged, you'll have a back-up copy
available.

Cleaning the Card Reader Head

•

The card reader head is similar to an audio recording head. As such, dirt or foreign matter collected on
the head can impair the contact between the head and magnetic cards. Dirty cards passed through the
card reader will impair the quality of its operations. You can clean the head by pulling the abrasive
head cleaning card (supplied with the card reader) through the card reader in the direction of the arrow
one or two times. It's unnecessary to execute any statements before passing the head cleaning card
through the card reader.

CAUTION

Use of the abrasive card should be necessary no more than a few times during the life of the card
reader. Frequent use of the abrasive card can cause excessive head wear.

Marking Magnetic Cards

You can label the face of a card using any writing implement that doesn't emboss the card. Permanent
ink felt-tip pens (such pens usually have the words permanent, waterproof, or smearproof on them­
don't use water-based overhead projector pens or ordinary felt-tip writing pens), capillary or technical
drawing pens using permanent ink, and pencils work well for marking cards. Most inks must be al­
lowed to dry for a few seconds. Pencil can smear, but is erasable.

Appendix C: Using the HP 82400A Magnetic Card Reader 287

A Look at a Magnetic Card
Each magnetic card has two data tracks, both of which record the following information:

• The catalog entry of the file recorded on the track.
• The total number of tracks in the file.
• The identification number of this track, a number from 1 to the total number of tracks.
• The write-protection status of the track; that is, whether the track is protected against recording.
• Up to 650 bytes of the file itself. One track can contain information from one file only. One card can contain information from one or two files.

Alignment marks for the beginning of the track. H
(~D II f

Space to label the card. =.J
II

The direction of movement J
through the card reader.

When passing either track of a card through the card reader, always have the printed face of the card up. The order in which you read the tracks doesn't matter.

Note: Keep magnetic cards clean and free of oil, grease, and dirt, and handle cards by their edges only. Dirt and fingerprints degrade the performance of the card reader, cause warning messages to occur, and decrease the lifespan of cards. Cards can be cleaned with isopropyl alcohol and a soft cloth. Keep cards away from sources of strong magnetic fields, such as permanent magnets, wires carrying heavy currents, power transformers, and degaussers (magnetic erasers); magnetism can permanently damage the cards.

Pulling Cards Through the Card Reader
The HP-71 displays a variety of messages to guide you through card reader operations. All card reader operations involve the following steps:

1. Type a card reader statement in BASIC mode (such as COP\' TO CAPD).
2. Press I END LINE I to initiate the operation. The HP-71 responds with the appropriate message and waits.

A typical message you'll encounter is:

~'Jt- 1:: Al i9 n 1: hen Et-lDUi The HP-71 waits for your response. You can press
I ATTN I to cancel the operation.

288 Appendix C: Using the HP 82400A Magnetic Card Reader

3. With the card oriented in the forward direction of the desired track, insert the card so that the
rightmost alignment mark is just beneath the entry slot; the card should protrude past the exit slot
so that the arrow and box show. Then press I END LINE I a second time. The HP-71 responds:

Ptlll 1 of n

4. Pull the card through the card reader. The HP-71 allows about 7 seconds for you to start pulling
the card. A longer time causes the HP-71 to beep, display a warning-": ~l Er- r- oro-and prompt
you to try again. If you decide not to pull the card, wait until the HP-71 again prompts you to
A I i'3 nth e n E H D Ul (about 7 seconds), then press I ATTN I instead.

5. After you've pulled a card through the reader, several HP-71 responses are possible:

• If you're copying a file in memory to a card, the HP-71 will prompt you for a second pass of the
same track:

',}f'::!: Al i':;In then Et·WLN

This time though, the accuracy of the information copied to the track will be verified. If the
information isn't verified on the second pass, the HP-71 will display a warning­
I,} e r- i f y Fa i I-and require two more passes of the same track through the card reader,
once to copy and once to verify. (If the track still fails to be verified, then clean the card or use
a new card.)

• The HP-71 will signal you when you are done with each track:

Trk n Done

• If the file fills more than one track, the HP -71 prompts you for the next track:

Wrt: AIi'3n then ENDLN

PI.lII 2 of n

The computer is ready for you to turn the card around and read the second track or to insert
another card.

Appendix C: Using the HP 82400A Magnetic Card Reader 289

• If you pull a card too fast or too slowly, the HP-71 displays a warning-Too Fa:=: t -or­
Too :::; 1 ol .. J-and prompts you for another pull. If you pull a card very slowly, the computer
might respond as if no card had been pulled.

• The HP-71 continues prompting for as many passes as needed. When the operation is com­
pleted, the BASIC prompt and the cursor will reappear in the display.

Card Reader Operations
The following statements operate on magnetic cards using the card reader:

• CAT C A F.: D Displays the catalog information of a card file.

• cop'''' file TO CAFW

• COP'''' CAF.:D TO file

• PF.:OTECT

• Ut·WROTECT

• RUt·j : CAF.:D

• CHA I t·j : CAF.:D

Copies a file in memory to a magnetic card. A file
can be a file name and a device name.

Copies a card file to a file in main RAM. You
can't copy a card file to an independent RAM.

Protects a track from being overwritten.

Removes the write-protection from a track.

Loads a program from magnetic cards, designates
it as the current file, then executes it. .

Purges the current file, loads a program from
magnetic cards, designates it as the current file,
then executes it.

All card reader statements are programmable. Only RUt·j : CARD, F.:Ut~ : PCF.:D, CHA I t·j : CAF.:D,
and C H A I t·j : PC R D change the current file designation.

A magnetic card can be specified in an operation by the device names : C A F.: D and : PC F.: D. (: PC R D,
which specifies a private card file, is described below.) CAR D is also a reserved word which can't be used
as a file name. Both words specify a device in much the same way as PO F.: T and t'1 A I t·j do when used in
C I] P \' statements. Copying information to and from cards is not much different from copying to and
from independent RAM.

To specify a file on a card, you can use one of the following forms.

• CAF.:D

• : CARD

• : PCRD

• file name: CARD

• file name: peRD

290 Appendix C: Using the HP 82400A Magnetic Card Reader

The following is an example of a typical operation using the card reader. This example assumes the file
resides on three card tracks.

COP'l CAF.:D TO ACF.:E::; I END LINE I

F.:e.3d: Al i';j n t hen Et·WU~

(align card)
I END LINE I

Pull Cat-d

Tt- k 1 done

F.:ead: Al i';j n t hen Et·WLt·~

(align the card)
I END LINE I

P,-d 1 2 of 3

(pull the card)

Tt- k 2 Done

F.:ead: Al i';j n t hen Et·WU~

(align the card)
I END LINE I

P,-d 1 3 of 3

(pull the card)

Copies a card file to A C F.: E S in main RAM.

Prompts you to align the card.

Indicates that you are ready to pass the card
through the card reader.

Prompts you to pull the card through.

Indicates that the HP -71 successfully read the
card.

Prompts you to pull another card through.

Indicates that you are about to pull a card.

Prompts you to pull the card.

Indicates that the computer successfully read
track 2.

Prompts you to pull another card through.

Indicates that you are about to pull a card.

Prompts you to pull the card.

After reading the last track, the file is stored in
memory and the BASIC prompt appears.

Appendix C: Using the HP 82400A Magnetic Card Reader 291

After the HP-71 reads the last track, it no longer prompts for cards.

The example above shows that when you execute a statement involving magnetic cards, the computer
first responds with a message such as Re.::.d: Al i':J n then Et'WU'l, then prompts you for more
cards if they are required.

Copying a Card File to a File in Memory

When a file that you want to copy is on a card, you must specify the card reader as the source file's
device in the COP 'r' statement. Executing a form of COP 'r' file name without specifying the card reader
as the source device causes the computer to search for the file in RAM and ROM. Files from magnetic
cards can be copied only into main RAM from the card reader. Once in main RAM, they can be copied
to another memory device. (You can't copy a file directly from card to card.)

Examples:

COPY CARD TO ROTATE

COPY :CARD TO TRIANGLE

COP\' CAF.:D

COPY LATERAL:CARD

COPY GRAPHICS:CARD TO IMAGES

Copies the file from the card to a file named
F.:OTATE.

You can use either CARD or : CARD.

Copies the card file to a file of the same name in
main RAM.

Copies the card file LA T E F.: A L to main RAM.

Copies the card file GRAPH I C::; to I t'lAGES in
main RAM,

Copying a File in Memory to a Card File

You can copy any RAM or ROM file to magnetic cards.

Examples:

COPY ROTATE:PORT(O) TO CARD

COPY TRIANGLE:MAIN TO :CARD

COP'r' TO CAF.:D

COPY IMAGES:PORT(O)
TO GF.:APH I CS : CAFW

Copies ROT ATE from port 0 to a card.

Copies T R I A t·j G L E from main RAM to a card.

Copies current file to a card.

Copies I t'lAGES from port 0 to GRAPH I CS on
a card.

292 Appendix C: Using the HP 82400A Magnetic Card Reader

Protecting a Card (PF.:OTECT, Ut·~PF.:OTECT)

For some applications you might want to protect a card from being overwritten so that you don't ac­
cidentally alter or lose a file. You can protect cards using P F.: 0 T E CT.

I PPOTECT

When you execute this statement, the HP-71 prompts you to pull a card through the card reader. When
you pull the card through, the HP-71 will encode a write-protect mark on the track. If you want to
protect the other track, you must execute P POT E C T again and pull the second track through.

You can remove the file protection from a card by executing U t·w F.: 0 T E CT.

I Ut·WF.:OTECT

When you execute U t·j P F.: 0 T E C T, the HP -71 prompts you to pull a card through the card reader. When
you pull a card through, the HP-71 removes the file protect mark from the track.

Using Private Cards (: PC F.: D)

A file copied to magnetic cards can be encoded as a private file using : PCP D instead of : C A F.: D as the
device for the new file. A program on a private card can be copied and executed only, and not viewed or
edited. As with files in RAM, the private encoding of a card file can't be reversed. (Private files in RAM
are described in section 6 under "Controlling File Access," page 116.)

Copying a File to a Private Card. You can make a card file a private file only at the time you copy
the file from RAM or ROM to the card reader. To do this, type:

simplified syntax ---------------------------------,

COP\· [file name] [: device] TO [file name] : PCF.:D

Examples:

COPY TYPESET:MAIN TO :PCPD

COPY TO ELECTPON:PCPD

COP\' TO : PCF.:D

Copies T \' P E !:; E T in main RAM to a private card.

Copies the current file to ELECTPOt·j on a pri­
vate card.

Copies the current file to a private card.

Appendix C: Using the HP 82400A Magnetic Card Reader 293

Copying a Private Card to a File. You can copy a private card to a file by specifying C A F.: D or
: PCP D as the source device in the COP 'r' statement. You aren't required to specify a private card as a

source device when copying a file from a private card. When the HP-71 copies a file from a private card,
that file resides in main RAM as a private file.

Examples:

COPY :PCPD TO TYPESET Copies the file on a card to the file T \' P E ::; E T.

COP'r' ELECTPOt·j: PCF.:D Copies ELECTPOt·j from a card to main RAM.

COP'r' CAP D Copies the file from a card to main RAM.

Catalog of a Card File (C ATe A F.~ D)

The CAT C A F.: D statement enables you to view the catalog information for any card file.

I CAT CAPD

Example: Display the catalog information for a card file named PI': 0 G 1 .

CAT CAF.:D I END LINE 1

Cat: Align then ENDLN

(Align card)
I END LINE 1

(Pull card)

P F.: 0 G 1 0:: t t- k nnn (I f nnn ::0

PF.:OG 1 P BA::; I C 37 ~j 1
./11 .. ···83 22: 36

Prompts you to align a card then press 1 END LINE I.

You have about 7 seconds to pull the card
through.

Displays the track just passed through,

Displays catalog information.

When you try to obtain a catalog of a card that was written on by another computer or a card with an
unused track, the HP-71 indicates that its file type is zero.

Subject Index

Page numbers in bold type indicate primary references; page numbers in standard type indicate second­
ary references. In addition to the references in this subject index, a complete index to the HP-71
instruction set grouped by category is located inside the back cover of the owner's manual. Other lists
of alphabetized information are in the HP-71 Reference Manual; in particular, the sections titled "Glos­
sary," "Keyword Dictionary," and "Errors, Warnings, and System Messages."

A

A B ::; function, 48
Absolute value (A B ::;), 48
AC status annunciator, 30
Accessing data files, 249-263. See also retrieving

program data
Accessories included with HP-71, 282
Accuracy of clock, 268
A CO::; function, 52
A C::; function, 52
Active environment, 211
ADD statement, 80-82, 87
Adding data points to statistical array (A D D), 80-

82,87
Adding lines to program, 116, 158
Addition (+) operator, 47
A D ,j A B ::; statement, 92-93
A D ,j U ::; T statement, 94-95
Adjusting clock speed (::; E TTl rl E, AD ,j U::; T, A F,

E:'<ACT, F.:E::;ET CLOCk), 94-96
Adjustment factor for clock, 95-96
A F statement, 94-95
Alternate characters, defining, (C H A F.: ::; E T ,

CH A F.: ::; E T $ keywords), 132-135
Ampersand (:~., operator), 73
A t·j D logical operator, 62-63
A t·j G L E function, 52
Angular setting flag (-10), 197
Annunciator flags (-57, -60 through -64), 201
Annunciators, 15-16, 20, 22, 30
ANSI standards, conformance of BASIC inter-

preter to, 268-271
Arc cosine (A CO::; or A CO;), 52
Arc sine (A ::; I t·j or A::; t·O, 52
Arc tangent (ATAt·j or AHO, 52
Arc tangent in proper quadrant (At·jGLE), 52

294

Arithmetic
hierarchy, 64
operators, 47, 64

Arrays, numeric, 68-71
Changing dimensions under program control, 70-

71
Declaration of, (D I t'l, F.: E A L, ::; H 0 F.: T,

I tHEGEF.:), 69-70, 271
Default dimensions of, 70
Recalling (retrieving) (PE::;TOF.:E #, F.:EAD i),

261-263
Setting lower bound of, (OPT IOt·j BA::;E),68-

69,70,270
Storing (PP I tH #),261

Arrays, statistical, 78-89
Adding data points to, (ADD), 80-82, 87
Calculating means using, (t'1 E mo, 83
Calculating predicted values using, (P P E D I.}), 85-

86, 89
Calculating sample correlations using, (C 0 F.: F.:),

84
Calculating standard deviations using, (::; DE',}),

83-84
Clearing elements of, (CL::;TAT), 78-80, 87
Declaring <:::TAT), 78-80, 87
Deleting data points from, (D POP), 81-82
Fitting linear regression model using, (LF.:), 84-

85, 88
Recalling (retrieving) from data files

(F.:E::;TOPE #, PEAD #),261-263
Storing (PF.: I tH #),261
Summing data points in, (TOTAL), 82-83

Arrays, string, 71-73
Changing dimensions of, under program control,

73
Declaring (D I t'1), 72-73, 271
Default dimensions of, 73
Setting lower bound of, (OPT I Ot-] BA!:;E),72-

73. See also same entry under arrays, numeric
Arrow keys

Left/right ([3J, [El) keys, 15-16
Up/down (~, m) keys, 21, 31, 156, 158

Arrow status annunciators (-, .. symbols), 15-16,
22,30

Arrow ('") symbol (I END LI NE I symbol in CALC
mode), 42-44

A !:; I t·~ function, 52
A !:; t·~ function, 52
A!:; !:; I C t·~ # statement, 248-249
Assignment (LET) statement, 67, 269

in CALC mode, 38-39
Multiple, 67, 146
Substring, 74

Assistance, technical, 280
A T A t·~ function, 52
A T t·~ function, 52
I ATTN I key, 16, 31, 153
AUT 0 statement, 149
Automatic

B

command execution (::;TAfHUP), 139-140
parenthesis matching in CALC mode, 39-40

I BACK I key, 12, 16, 21, 44
Backward execution, in CALC mode, 44-45
Base option flag (-16), 199
BASIC

conformance to ANSI standards, 268-271
Extensions to minimal, 268-269
files, 99, 143-144
Merging files, 116
Minimal, deviations from, 269-271
Minimal, extensions to, 268-269
mode, 13-14, 19,37
mode calculations, 19, 37
prompt (», 13-14
prompt flag (-26), 200

BAT status annunciator, 30, 271
Battery, 13, 30, 271-272

damage, 279
power consumption, 271
replacement, 272

BEE P 0 F F statement, 32-33
BEE P 0 t·~ statement, 32-33
BEE P statement, 32-33

Subject Index 295

Beeper
flags (-2, -25), 33, 197
loudness, controlling, 32-33

BIN (binary) files, 99, 160
Boolean values, 62
Branching, program. See program, branching,

conditional/unconditional

C

CALC mode, 18-20,37-46,48
Arrow ('") symbol (I END LI NE I symbol in Com-

mand Stack), 42-44
Assignment statements in, 38-39
Backward execution in, 44-45
comma (.,) reminder for argument lists, 40-41
Command Stack in, 42-44
Complete expression recovery in, 42-44
Error recovery in, 42-46
Features of, 38-44
Implied result in, 38, 40
Operations unsupported in, 46, 48
Precedence of operators in, 41-42
Single-step execution in ([Ill SST I), 41,42
Unsupported operations in, 46, 48
USER keyboard in, 38
Warning messages in, 46

CALC status annunciator, 19, 30
Calculating means using statistical array (t'1 E A t·n,

83
Calculating predicted values using statistical array

(PPED',..'), 85-86, 89
Calculating sample correlations using statistical ar­

ray (LP), 84-85, 88
Calculating standard deviations using statistical ar­

ray (::; DE',..'), 83-84
Calculations, 18-20, 36-64, 78-89
Calendar, 17, 90-91

Setting, 17, 90-91
Years covered by, 90

CAL L statement
calling subprogram in another file, 210
executed from keyboard, 150-151,
executed in program, 180, 205-210
parameters, 206-209

Cancelling
key definitions (DEF f:::E'.,.'), 128
trace operations (TPACE OFF), 168
write-protection of magnetic card

(Ut·~Pf;:OTECT), 289, 292
CAP D keyword, 289
Card, magnetic. See magnetic card

296 Subject Index

Card reader, 284-293
CAT CAP D statement, 289, 293
C H A I t·l : CAP D statement, 289
CHA I t·l : PCPD statement, 289, 292-293
COP..,.' CAPD TO statement, 289, 291
COP..,.' TO CAPD statement, 289, 291
CO F'''''' TO: PC F.: D statement, 289, 292
head cleaning, 286
Installing, 285
operations, 289-293
P POT E C T statement, 289, 292
Pulling cards through, 287-289
Removing, 285
F.: U t·l : CAP D statement, 289
P U t·l : PCP D statement, 289, 292
UtlF'POTECT statement, 289, 292

: CAP D keyword, 289
C AT ALL statement, 102, 118-119
CAT CAP D statement, 289, 293
CAT statement. Refer to HP-71 Reference Manual
Catalog of file(s). See file, catalog
Categories of numbers (CLW:;!:::), 60
C ElL function, 48
CFLAG statement, 192-193
C H A I t·l statement

executed from keyboard, 151-152
executed in program, 180-181

C H A I t·l : CAP D statement, 289
Chained programs, 151-152
Channel number (AS!:; I Gt'l #),248-249
Channel number (CALL, !3UE:), 206, 263-264
1 -CHAR 1 key, 21
Character

code, 74-75, 77, 132-135, 268
Control, 234-239
display scrolling rate, 26
set, 132-135, 268

C H A F.: !:; E T statement, 132-135
C HAP !:; E T $ function, 132-135
C H P $ function, 75, 77
C L A I ['1 PDF.: T statement, 107
C LA!:; !:; function, 60
Cleaning information, 272
Clearing

display (I AnN I), 16
memory, 13-14

Clock
accuracy, 268
Setting C:; E T T H1 E), 17-18, 92-95; (A D ,.I A E: !:;),

92-93
Speed correction factor, 92-96

Closing data file (A!:;!:; I Gt·l #),248-249
C L !:; TAT statement, 78-80, 87

1 CMDS 1 (Command Stack) key, 31-32
Code, character, 74-75, 77, 132-135, 268
Comma (.,) reminder for argument lists in CALC

mode, 40-41
Comma (.') used for output spacing, 227
Command execution (automatic) when HP-71 is

turned on C:;TAF.:TUP), 139-140
Command Stack, 31-32

in CALC mode, 42-44
Common log (LGT or LOG 1 0),50
Complete expression recovery in CALC mode, 42-

44
Concatenation, statement ((1!), 22, 67, 146
Concatenation, string (::.,), 73
Conditional

execution of program lines. See program, liners),
conditional execution of

program branching. See program, branching,
conditional

Conformance of BASIC interpreter to ANSI stan-
dards, 268-271

1 caNT 1 key, 153, 155
CO t·l T statement, 155
Continuous-on flag (-3), 197
C 0 t·l T P A!:; T statement, 29-30
Control characters, 234-239
Controlling

cursor, 135-136, 234-239
display, 135-140, 232-239
file access C:; E CUP E, U t·l !:; E CUP E, F' P I I,} AT E),

117-118
line width O,~ I D T H, P ~,~ I D T H), 232-233
printer, 232-234

Conventions used in manual, 14, 16, 21, 34
COP..,.' CAPD TO statement, 289, 291
COP'" statement, 102, 112-114, 127
COP'" TO CAF.:D statement, 289, 291
COP P statement, 84
Correcting errors_ See also error recovery

by clearing display, 16
in CALC mode, 42-46
using T PA C E FLO ~,~ and T F.: ACE I,} A P !:;, 166-

171
with editing keys, 23-26

CO!:; function, 52
Cosine (CO!:;), 52
CPEATE statement, 248, 257, 259
Creating data file (CPEATE), 248, 257, 259
Current

file, 27-28, 100
line, 154, 158

Cursor
control, 135-136, 234-239
Insert, 19-20, 23
Moving, 15-16
Replace, 14, 16

Curve fitting, 86-89
Customizing the HP-71, 120-140

D

Damage to batteries, 279
DATA files, 99, 247-264
Data. See also file, data

entry, (ItWUT), 241-244, 269
entry into statistical array, (ADD), 80-82, 87
file, accessing, 249-263. See also data, recall
file, closing (AS!,';! GH #),248-249
file, creation of (C F.: EAT E), 248
file, opening (A!:;!,';! Gt~ #),248-249
file pointer, 252-253, 258
file, random data recall from (F.:EAD #),254-

257, 260
file, random data storage into (F.: E !:; T 0 F.: E #,

F'F.: UH #s), 256-263
file records, 256-260
file, sequential data recall from (F.: E !:; T 0 F.: E #,

F.:EAD #),254-263
file, sequential data storage into (F.:ESTOF.:E #,

F' F.: I t·~ T #) 250-253, 256-263
files, types, 247
pointer, resetting (F.:E~HOF.:E), 246-247
Program (DATA, F.:EAD, F.:E!:;rOF.:E), 245-247,

269
recall from data file. See data file, random data

recall and data file, sequential data recall
recall (retrieval) from program (F.:EAD), 246, 269
storage in data file. See data file, random data

storage and data file, sequential data storage
storage in program (DATA), 245

DATA statement, 245, 269
Date

Displaying (DATE), 90-91; (DATE$), 17,90-91
Setting (::; ET D AT E), 17, 90-91

D ATE function, 90-91
DATE$ function, 17,90-91
Debugging errors, 16, 23, 25-26, 43-46, 165-171
Decimal to hexadecimal conversion (DTH$), 48
Declaring arrays (D I t'l, F.:EAL, !:;HOF.:T,

I tHEGEF.:), 57, 69-71
ClEF Ft~ statement, 218-219
DEF KE'r' statement, 28, 121-124
Default array dimensions, 70
Default device, 111
Default files, 110

Subject Index 297

DEFAUL T Ot-1jOFF !E:onnW statements, 58,
269-270

Default string (ItW U T), 243-244
DE G function, 52
DE G F.: E E !:; statement, 50, 270
Degrees to radians (F.:AD), 52
DEL A Y statement, 26, 130, 131, 138, 194
DEL E T E statement, 158-159
Deleting data from statistical array (D F.: 0 F'), 81-82
DE!:; T F.: O'r' statement, 67-68
Deviations from minimal BASIC, 269-271
Device

Default, 111
names, 110-114

D I t'l statement, 69,72-73, 271
Dimensions, array, 69-73
D I!:; F' statement, 225-227

Implied, 24, 67, 226
Quotation marks in, 67

D I!:; F' U !:; I H G statement, 230-232
D I!:; F' $ function, 136
Display

catalog of file. See file, catalog
control, 26, 29-30, 135-140, 232-239
fields, protected, ((,J I HDO~'J), 135-136
fields, protected using escape sequences, 237-239
file catalog. See file, catalog
format flags (-13, -14), 198-199
format statements, 55-56
graphics (G D I!:; P), 137-139
key definitions (FETCH f<E..,.', KE'r'DEF$,

I VIEW I), 125-126
line, entering (L I t·~F'UT), 244-245
list, 230
program lines (FETCH, L I!:; T, GOTO), ~, (Y]),

21, 156-158
Protected, fields. See display, fields, protected
reading characters from, (D I!:; F' $), 136-139
Reset, 236
speed, controlling (DELA..,.'), 26
zone, 227

Display window, 14-16
Clearing, 16
line length, 14-15
Moving, 15-16
viewing angle (COtHF.:A!:;T), 29-30

Displayed number rounding, 56
Displaying information, 24, 67, 224-239. See also

display, display window
D I I,} operator, 47
Division by zero, 57-60, 270
Division operator (...), 47
Double quotation marks, 67
D T H $ function, 48
D',": flag, 57-60, 270

298 Subject Index

E

E symbol, 54-56
eX - 1 (D': F' t'11), 50
ED I T statement, 21, 22, 27, 143-144, 156
Editing

key definitions (FETCH KE'r'), 125
keys, 15-16, 21
program, 22-26, 156-159

E L :::; E keyword, 188-189
Et·W DEF statement, 219
1 END LINE 1 key, 13, 31, 42, 158
End-of line sequence (Et·WL I t·jE), 234
E t-W statement, 155, 269
E t·j D :::; U E: statement, 204-205
E t·j D L I t·j E statement, 234
E t·j G statement, 56
Engineering display format (E t·j G), 56
Entering

data and expressions (It-lF'UT), 241-244
data into statistical array (ADD), 80-82, 87
display line, (L I t·lPUT), 244-245
program lines, 22-25, 145-149, 269

Environment
Active, 211
Global, 211
Local,211
Main, 211
Program and subprogram, 153, 210-215
User-defined function, 220-221

Environmental limits of HP-71, 267
Environments, subprogram, 210-215

Ending, 214
Restoring, 212-213
Saved, 211-212

Equal-to (=) operator, 62
E F' :::; function, 61
E F.: F.: L function, 175-176
1 ERRM 1 key, 164-165
EF.:F.:t-1$ function, 164-165
E F.: F.: t·j function, 173-174, 176
Error recovery

by clearing display, 16
in CALC mode, 42-46
using TF.:ACE FLOI,l and TF.:ACE I,}AF.::::;, 166-

167, 171
with editing keys, 23, 25-26

Error(s)
Checking, 148
conditions, 162-177
Control of. See error(s), program control of
Math exception, 57-60, 176,269-270
messages, 13, 68, 163-165
messages, recalling ([]JI ERRM I, EF.:F.:t'1$), 164-

165, 175
Program, control of, (Ot·j EF.:F.:OF.:, EF.:F.:t·j,

EPF.:L),171-175
Run-time, 163-165
Syntax, 163-164
types, 163

Escape sequences, 234-239
Evaluation order, 64
E:'<ACT flag (-46), 200
D': ACT statement, 96
Exception, math. See math exception
Execute key (I END LINE I), 13, 31, 42, 158
Execute magnetic card program (F.:Ut·j : CAF.:D,

CHA I t·j : CAF.:D), 289
Executing program. See program, execute.
E :'< 0 F.: logical operator, 62-63
E >': F' 0:: x::' - 1 (E :'< F' t'11) function, 50
E >': F' function, 50
E >': F' t'11 function, 50
E :'< F' 0 t·j E t·j T function, 50
Exponential notation (E), 54, 56
Exponentiation operator C··), 47
Exponentiation operator, order of precedence, 64
Expression entry (HlP U T), 242, 269
Expression recovery in CALC mode, 42-44

F

IT] key, 11
f status annunciator, 30
F ACT function, 49
Factorial (FACT), 49
FE T C H f< E'r' statement, 125
FETCH statement, 26, 156-157
Fibonacci program, 216-218

File. See also BIN, LEX, BASIC, DATA, TEXT,
KEY, SDATA, data, file

Catalog of card (CAT CAFW), 289, 293
Catalog of every (CAT ALL), 102, 118-119
Catalog of specified (CAT). Refer to HP-71 Ref-

erence Manual
Closing data (A:::;:::; I Gt·~ #),248-249
Controlling, access, (PF.: I I,}ATE), 117-118
Copy card, to main RAM (COP'r' CAFW TO),

289, 291
Copy (COP'r'), 102, 112-114, 127
Copy, to magnetic card (COP',!, TO CAF.:D),

289, 291
Data, accessing, 249-263. See also retrieving pro-

gram data
Data, creation (CF.:EATE), 248, 257, 259
Data, pointer, 252-253, 258
Data, random data recall from (F.:EAD #),256-

257, 260
Data, random data storage into (F.:E:::;TOF.:E #,

PF.: un #),256-263
Data recall. See file data, random data recall and

file data, sequential data recall
Data, sequential data recall from (F.: E :::; T 0 F.: E #,

F.:EAD #),254-263
Data, sequential data storage into

(F.:E:::;TOF.:E #, PF.: I tn #),250-253,
256-261

Data, storage. See file data, random data storage
and file data, sequential data storage

Data, types, 247
Default, 110
names, 22, 109-110
names, reserved words for, 110
Naming BASIC (ED I T), 21-22, 143-144
naming workfile (t'~At'1E), 27, 101, 145
Opening data (A:::;:::; I Gt·~ #),248-249
operations, 98-118
pointer, 252-253, 258
Program, 27, 143-144
Purge (PUF.:GE), 115-116, 127
records, 256-260
Renaming (F.:Et·~At'1E), 101, 115, 127
search order, 112
security (:=; E C UF.:E, 1.1 H :::; ECUF.: E, P F.: I I,,' AT E),

117-118, 127
Specify magnetic card (CAF.:D, : CAF.:D, : PCF.:D),

289-293
transform between BASIC and TEXT

(TF.:At·~::;FOF.:t'1), 160-161
Fitting data to curves, 86-89
F I :,.,: statement, 55
Fixed-decimal display format (F I >0, 55

Subject Index 299

F LAG statement, 191-193
Flag(s), 30, 57-60, 68, 190-201. See also system

{lags
Clearing, (C F LAG, F.: E :::; E T) 192-193
Math exception, 57-60, 68, 176-177, 197
Setting, (::;FLAG), 192
System, 196-201
Testing, (FLAG), 191-193
User, 193-196

FLO 0 F.: function, 48
FOF.: .. .t·~D':T statement, 185-187,269
Form of subprogram (:::;UB, EHD :::;UB),204-205
Form of user-defined function (D E F F t·~,

EtW DEF),218-219
Format string (I t'1 ACE, D I ::; P 1.1::; I t·~ C,

PF.: I tn U:=; I t'~G), 228-232
Formatting, printer and display, 224-239
Formatting numbers, 54-56
4 status annunciator, 30
F P function, 48
Fractional part (F P), 48
FF.:EE POF.:T statement, 105-106
Functions

G

Numeric, 47-53
Statistical, 78-89
String, 74-77
User-defined, 218-222, 269

[]] key, 11
9 status annunciator, 30
CD I :3P statement, 137-139
Generating random integers, 53
Global environment, 211
GO::; U B statement

executed from keyboard, 150
executed in program, 179

GOT 0 statement
executed from keyboard, 158
executed in program, 179

Graphics, display, 137-139
Graphics, displaying (C D I ::; P), 137-139
Greater-than (», 62
Greatest integer (I tn or FLOOF.:), 48

H

Halt program execution, 153
Head, card reader, cleaning, 286
Hexadecimal to decimal conversion (H T D), 48
H T D function, 48

300 Subject Index

I-J

IEEE proposal for handling math exceptions, 59-
60,62

IF ... THEtL.E L ::; E statement,188-189
IF ... THE t·~ statement, 187-188
I t'1 AGE statement, 229-232
Implied D I::; F' statement, 24, 67, 226
Implied result in CALC mode, 38, 40
Independent RAM, 104-108

Declare (FF.:EE F'OF.:T),105-106
incorporate, into main RAM (CLA I t'1 F'O F.: T),

107
Index of keywords, inside back cover
Inexact result (an<), 57-60
+ I n f, - I n f values, 59-60
I t·~ F function, 60
Infinity (+Inf, -Inf, IHF), 59-60
Information, dealer and product, 280
I t~ I T display, 13-14, 193, 273-274
Initializing the HP-71 (I t·~ IT), 13-14, 153, 193,

273-274
I t·WUT statement, 241-244, 269-270
Insert cursor, 19-20, 23
Installing card reader, 285
UH function, 48
Interference, radio/television, potential for, (U.S.A.

only),279
Integer division (D I I,,'), 47
Integer part (I F'), 48
I tHEGEF.: statement, 57, 69-70
Integers, generating random, 53
Integration, trapezoidal rule, program, 76
Interrupting program, 152-155
Invalid operation (I I.) L), 57-60, 68
I t·~ :'< flag, 57-60
I F' function, 48
OZ[) key, 21
I I,} L flag, 57-60, 68

K

Key definitions (DEF KE'r'), 28, 121-124
Cancelling, 128
Types of, 124
Viewing and editing, (FETCH f'::E'r', KE'r'DEF$,

OJI VIEW I), 125-126
KEY files, 99, 127-128
Key name, 121-124

by character, 122-123
by number, 122-124
Specifying, 122-124

Key pressed, identity of, (KE'r'$), 130-131

Key pressing
Causing program to simulate, (F'UT), 131-132
Test for, (KE'r'DOW·n, 129

Keyboard, 11-12
calculations, 18-20, 36-46
entry of data and expressions (I t'WUT), 241-

244, 269-270
Normal, 28-29, 121
operation, 11-12
Shifted operations on, 11
User, 28-29, 122-124, 126

Keyboard/program interactions, 129-132
f< E 'r' D E F $ function, 125-126
K E 'r' $ function, 130-131
f< E 'r' D 0 t,j H function, 129
Keys, 11-13, 15-16, 21. See also individual key

symbol.
alternate operations, 11
Immediate execute, 12
Letter, lowercase, 11
Letter, uppercase, 11
primary operations, 11
Typing aid, 12
User defined, 28-29, 121-124

Keystroke presentation conventions, 13
Keyword index, inside back cover

L

Labels, statement, 146-147
[KJ key, 11, 140
Left arrow key ([3]), 15
L E H function, 74
Less-than «), 62
LET statement, 67, 269
Letter case control. See lowercase/uppercase control.
LEX files, 99, 160, 174
L G T function, 50
Line

display scrolling rate, 26
length, 14
Program. See program line.
width control U,j I DTH, F't,j I DTH), 232-233

1·L1NE I key, 21
Linear regression (LF.:), 84-85, 88
L I H F' U T statement, 244-245
LIST statement, 127, 156-157
L t·~ function, 50
Load and execute magnetic card program

(F.:UH : CAF.:D, CHA I t~ : CAF.:D), 289, 291
Local environment, 211
LOCK statement, 139
Log, natural. See natural log.
LOG function, 50

Logical operators, 62-64
LOG 1 0 function, 50
LOG F' 1 function, 50
Loops, program. See program, loops
Low battery indication (BAT), 30, 271
Lower bound of arrays, setting (OF'T I Ot·~ E:A3E),

68-69, 70, 72, 73, 270
Lowercase/uppercase control

by flag (-15), 199
by key ([ill), 11, 140
by statements (LC, LC Ot·~, LC OFF), 140

M

Magnetic card, 287-293
Marking, 286
operations. See entries under card reader
organization, 287
Pulling, through card reader, 287-289

Magnetic card reader. See card reader
Main

environment, 211-213
program, 203

Main RAM, 104-108
Reclaiming (CLA I t'l F'OF.:T), 107

Manual conventions, 14, 16, 21, 34
Marking magnetic cards, 286
Math exception

as error, 176, 269-270
as warning, 177, 269-270
flags (I',}L, D',}:, CI',}F, Ut·w, an·,:), 57-60, 68,

176-177, 197
Recovering from (DEFAUL T Ot·~,

DEFAUL T OFF, DEFAUL T DnnW),58,
269-270

Value for, (TF.: A F'), 59-60
Math exceptions, IEEE proposal for handling, 59-

60
t'l A >': function, 49
Maximum (t'lAi<), 49
['1 A :'< F.: E A L function, 61
t'1Et'1 function, 107-108
Memory

RAM, 103-108,273
reset, 13-14, 153, 193
port RAM/ROM data U:;HO~'J F'OF.:T), 108
ROM, 103-105, 273-274
structure, 103-108
Unused amount of, in RAM O'lEt'l), 107-108

t'l e rn co r- '",I 1 Co s t display, 14
t'l E F.: G E statement, 116, 128
t'l I tl function, 49
Minimal BASIC, deviations from, 269-271
Minimal BASIC, extensions to, 268-269

Minimum 0'1 I t·~), 49
t'l I HF.:EAL function, 61
t'l 0 D function, 49
Module, plug-in, 103-108, 273
Modulo (t'lOD), 49
Movie program, 138

Subject Index 301

Moving file pointer (F.: E :,::T 0 F.: E #), 258
Multiple assignment statements, 67
Multiplication operator (:n, 47
Multistatement line, 146

N

t-JAt'lE statement, 27, 101, 145
Names

Device, 110-114
File, 22, 109-110
Numeric variable, 68
Program (BASIC file), 21-22, 101, 109-110, 143-

145
String variable, 72

t·~ A t·~ function, 59-60
H a t·~ value, 59-60, 68
Natural antilog (D': F'), 50
Natural log (LOG or Un, 50
Natural log (LOGF'l), 50
Nested

loops. See program, loops, nested
subroutines. See program, subroutines, nested

t·~D:T statement, 185-187,269
Normal keyboard, 28
Normal/User keyboards, switching between

(U::;EF.:, U::;EF.: Ot·~, U3EF.: OFF, I USER I,
11 USER I), 28, 126

Not a number (t.~ a t·n, 59-60, 68
Not a number (t.~ A t·~), 59-60
Not-equal-to (#) logical operator, 62
t·~ 0 T logical operator, 62-63
Null string, 72, 268
t·Wt'l function, 74, 77
Number

formatting, 54-56
of digits flags (-17 through -20), 199-200
rounding, displayed, 56

Numbers, range of, 0'1 I t·WEAL, EF'::;, t'lA>n;::EAL),
61

Numeric
functions, 47-53
precision (OF'T I Ot·~ F.:OUt·W),56
variable precision (F.:EAL, ::;HOF.:T, I tHEGEF.:),

57

302 Subject Index

o
Off, automatic, 13
1 OFF 1 key, 13
o t·4 E F.: F.: 0 F.: statement, 172
o tL.G 0 ::; U B statement, 181
OH ... GOTO statement, 181
ION 1 key, 13
o t·4 T I t'l E F.: # ... GO::; U B statement, 183-184
OH T I t'lEF.:# ... GOTO statement, 182, 184
1 status annunciator, 30
11 USER 1 key, 28-29, 126
Opening data file (A:::;:::; I Gt·4 #),248-249
Operating precautions, 267-268
Operating system version (',}EF.:$), 267
Operation, verifying proper HP-71, 273-274
Operations unsupported in CALC mode, 46
Operator precedence, 64

in CALC mode, 41-42
Operators

Arithmetic, 47
Logical, 62-63
order of precedence, 64
Relational, 62

OF'T I Ot·4 At·4GLE DEGF.:EE:::; statement, 50
OF'T IOt·4 At'4GLE F.:AD I At·4:::; statement, 50
OF'T IOt·4 BA:::;E statement, 68-69, 70, 72-73, 270
o F' T I 0 t·4 F.: 0 U t-m t·4 E A F.: statement, 56
OF'T I 0 t·4 F.: 0 U t·4 D HE G statement, 56
o F' T I 0 t·4 F.: 0 U t·4 D F' 0 :::; statement, 56
OF'T IOt·4 F.:OUt·W ZEF.:O statement, 56
OF.: logical operator, 62-63
Order of evaluation, 64
Organization of magnetic cards, 287
Output spacing (TAB, semicolon (:), comma (,))

226-227 '
Overflow (0 I,} F), 57-61
O''}F flag, 57-60

P

Parameter list. See parameters
Parameter passing (CALL, :::;UB), 204-210, 263-

264
Parameters

used in CAL L statement, 206-210
used in DEF Ft-4 statement, 218-219

Parentheses
in array declarations, 69-72
in numeric expressions, 64
in numeric functions, 48-52
in string functions, 74-75

Passing channel number (CALL, :::;UB), 263-264
F' AU:::; E statement, 154
: F' C F.: D keyword, 289, 292-293

Percent C·;) operator, 47
F' I function, 49
F'L I :::; T statement, 157
Pointer, data file, 252-253, 258
F' 0 F' statement, 180
Port, 104-108
F' 0 :::; function, 74-75
Potential for radio/television interference (U.S.A.

only), 279
Power consumption, 271
Power supply, 271-273
Precedence of operators, 64

in CALC mode, 41-42
Predicted values (F' F.: E D I,,'), 85-86, 89
Pressed key test (KE\'DOW'4), 129
PRGM status annunciator, 25, 30
Print list, 230
F' F.: I t·4 T # statement, 250-252, 256-263
F' F.: I H T statement, 225

Quotation marks in, 67
F' F.: I t·4 T U :::; I t·4 G statement, 230-232
Printer control, 232-234
Printing information, 224-234
Private magnetic cards (: F'CF.:D), 289, 292-293
F'F.: I ',..'ATE statement, 117-118
Product information, 280
Program. See also subprogram and program line

branching, conditional (0 tL. G 0 SUB,
OtL.GOTO, Ot'4, T I t'lEF.:# ... GO:::;UB,
Ot·4 T I t'lEF.:# ... GOTO), 181-184

branching, unconditional (G 0 SUB, GOT 0,
F.:ETUF.:t·4, F'OF', CALL, CHA I t·n, 179-181

Chained, 151-152
changing of array dimensions, 70-71, 73
Conditional, branching. See program, branching

conditional '
Conditional execution of, lines. See program,

liners), conditional execution of
data (DATA, F.:EAD, F.:E:::;TOF.:E), 245-247, 269
data pointer, resetting (F.:ESTOF.:E), 246-247
Editing, 22-26, 156-159
Ending execution of (:::;TOF', Et-W), 155
Entering, 22-25, 143-149, 269
environment, 153, 210-215
Execute, 25, 149-152. See also entries under pro­

gram, liners}.
Execute, at specified line (F.:Ut·4, GO:::;UB), 149-

150
Execute current file (F.:Ut·4, GO:::;UB, 1 RUN)),25,

149-150
Execute magnetic card (F.:Ut·4 : CAF.:D,

F.:UH :F'CF.:D, CHAIH :CAF.:D,
CHA I H : F'CF.:D), 289

Program, cont.
Execute specified, (F.: U t·j, CAL L, C H A I t·O, 150-

152
execution, single step ([DI SST I) key, 168-171
execution, trace flow of (T PAC E FLO ~.j,

TF.:ACE I,}AW::), 166-167, 171
Fibonacci, 216-218
file, 27, 143-144
Halting, execution, 153-155
input, 22-25, 143-149, 269
Interrupting, 152-155
line, adding, to program, 158
lines, automatic numbering of (AUTO), 149
line(s), conditional execution of (I F ... THE t·j,

IF ... THE t·L.E L :::: E), 187-189
line, current, 154, 158
line(s), deleting (DELETE), 158-159
line(s), displaying (FETCH, L r:::T, F'L r:::T,~,

IY]), 21, 156-158
line, format of 145
line, keying in, 22-25, 145-149
line label. See statement labels
line, multistatement, 146
line number, 145
line, renumber (F.:Et·Wt'1BEF.:), 159
line(s), unconditional execution of (GOSUE:,

GOTO, PETUF.:t·j, F'OF', CHA I t·O, 179-181
Load magnetic card (PUt·j : CAF.:D,

PUN :F'CPD, CHAIN :CAPD,
CHA I t·j : F'CPD), 289

loops (FOP .. ,t·jD';T), 185-187,269
loops, nested, 186-187
merging, 116
Movie, 138
name, 21-22, 101, 109-110, 143-145
protection, 117, 127, 292
Resuming, execution ([DI CONT I, COtH), 155
Retrieving data from (F.:EAD), 246
Running. See program, execute.
Saving (ED I T, NAt'1E), 21-22, 27,101,143-145
Storing data in (DATA), 245, 269
subroutines, 179-184
subroutines, nested, 179
Suspending, execution (I A TIN I, F' AU:::: E, ~,j A IT),

153-154
Tracing, execution (TPACE FLO~,n, 166-167
Tracing, variable assignment (T PAC E I,}A P S),

167
Trapezoidal rule integration, 76
Twocount, 130
Unconditional, branching. See program, branch­

ing, undonditional
Unconditional execution of, lines. See program,

liners), unconditional execution of

Subject Index 303

Program/keyboard interactions, 129-132
Prompts, input (Hj F' U T), 243
Proper HP-71 operation, verifying, 273-274
F'POTECT statement, 289, 292
Protected display fields n,j I t·W 0 ~,n, 135-136
Protected display fields using escape sequences,

237-239
Protecting files (:::: E CUP E, U t·j :::: E CUP E,

F'P I\,1ATE), 117-118, 127
Pulling magnetic cards through card reader, 287-

289
F'UPGE statement, 115-116, 127
F' U T function, 131-132
F' WID T H statement, 232-233

Q

Quotation marks, 67, 72, 109, 269

R

PAD function, 52
RAD status annunciator, 30
PAD I A t·j :::: statement, 50, 270
Radians to degrees (D E G), 52
Radio/television interference, potential for (U.S.A.

only),279
RAM, 13, 103-108

Independent, 104-108
Main, 104-108
Plug-in, modules, 103-108, 273
port data (::::HO~,j F'OPT), 108
Unused memory in (t'1Et'1), 107-108

Random access memory, 13, 103-108. See RAM
Random data recall (F.: E A D #), 260
Random data storage (CF.:EATE, PE::::TOPE #,

F'PItH #),256-260
Random integers, generating, 53
Random number (F.:t·W), 52-53
PAt'WOt'1 I ZE function, 52-53, 271
Range of numbers (t'1 I t·WEAL, EF'::::, t'1A;''';PEAL),

61
F.:EAD # statement, 254-257, 260
Read-only memory (ROM), 103-105, 273-274
PEA D statement, 246, 269
Reading calendar date (D AT E, D AT E $), 17, 90-91
PEAL statement, 57,69
Recalling data randomly (PEAD #),254-257,260
Recalling data sequentially (F.: E :::: TOP E #,

PEA D #), 254-263
Recalling program data (PEAD), 246, 269. See

accessing data files
Reclaiming memory (DESTPO'r'), 67-68
Records, file, 256-260
Recovering from math exceptions, 58, 269-270
Recursive subprograms, 214-218

304 Subject Index

Recursive user-defined functions, 222
F.: E D function, 49
Redefining the keyboard (DEF f<E\'), 28,121-124
Reduction (F.: ED), 49
Reference parameters (CALL), 206
Referencing user-defined function, 220
Relational operators, 62, 64
Remainder (F.:t'1D), 49
Remove write-protection from magnetic card

(UtWF.:OTECT), 289, 292
Removing card reader, 285
F.: Et-~ A t'1 E statement, 101, 115, 127
F.: E t·~ U t'1 E: E F.: statement, 159
Replace cursor, 14, 23
Replacing batteries, 272
F.: E ::; function, 49
Reserved words for file names, 11 0
F.' E ::; ETC L 0 C k statement, 96
Reset data pointer in program (F.:E::;TOF.:E), 246-

247
Reset HP-71 (I tn T), 13-14, 193, 273-274
F.:E::;ET statement, 193
F.: E ::; T 0 F.: E # statement, 254, 258, 262-263
F.: E ::; T 0 F.: E statement, 246-247
Restricting HP-71 use (LOCf<), 139
Result (F.:E::;), 49
Resuming program execution, ([IJI CO NT I, COtH),

155
Retrieving data sequentially (F.:E::;TOF.:E #,

F.:EAD #),254-263
Retrieving file data randomly (pEAD #),254-257,

260
Retrieving program data (PEAD), 246, 269. See

accessing data files
Return key, 13
F.: E T U F.: t·~ statement, 179
Right arrow key ([E), 15-16
F.: t'1 D function, 49
F.: t·~ [I function, 52-53
ROM,103

Plug-in, modules, 103-108, 273
port data (::;HO~'l POF.:T), 108

Rounding, displayed number, 56
Round-off setting flags (-11, -12), 198
I RUN I, 25, 27, 41, 149
F.: U t·~ : C A F.: D statement, 289
F.: U t·~ : P C F.: D statement, 289
F.: U H statement, 27, 149-151
Run-time errors, 163-165
Running program. See program, execute.

S

Sample correlations (C 0 F.: F.:), 84
Saving programs (E D I T, H A t'1 E), 21-22, 27, 101,

143-145
::; C I statement, 55
Scientific display format (::; C I), 55
Scrolling rate, display, 26
SDATA files, 99, 247-264
Search order for files, 112
::; E C U F.: E statement, 117-118, 127
Securing HP-71 contents (LOCf<), 139
Semicolon (.:) for output spacing, 227
Sequence, escape, 234-239
Sequential data access, file pointer, 252-253, 258
Sequential data recall (pE::;TOF.:E #, F.:EAD #),

254-263
Sequential data storage (P F.: ItH #), 250-253,

256-263
Serial number of HP-71 (',,'EF.:$), 267
Service, 276-279

contracts, 279
in Europe, 276-277
in United States, 276
International, 277
repair charge, 278
shipping instructions, 278-279
warranty, 278

Set, character, 132-135, 268
::; E T D AT E statement, 17, 90-91
::;; E TTl t'1 E statement, 17-18, 92-95
Setting

clock speed. See adjusting clock speed
date (::;ETDATE), 17,90-91
lower bound of arrays (OPT I Or'~ E:A::;E),68-69,

70, 72-73, 270
system, 211
time (::;ETT H1E), 17-18,92-95; (AD,JAB::;), 92-

93
::;FU1G, 192
:=.; G t·~ function, 49
Shipping instructions for service, 278-279
:::;HOF.:T statement, 57, 69-71
::; H (I ~'l PO F.: T statement, 108
Sign (:=';Gt'ij, 49
Simplified syntax, 34
::; I t·~ function, 52
Single-step execution ([IJI SST I), 41-42, 168-171
Single quotation marks, 67, 72, 269
Smallest integer (CE I L), 48
Spacing output (T A E, semicolon (.:), comma (.,)),

226-227
Specify magnetic card file (C A F.: [I, : C A F.: D,

: PCPD), 289-293
Speed correction factor for clock, 92-96

:::: ,) fe' function, 49
I SST I key, 41,168-171
Standard deviations (:::DE'), 83-84
Standard display format (::=:rD), 55
:e: T F! F.: T U P statement, 139-140
3 T Fl T statement, 78-80, 87
Statement(s)

execution (automatic) at start-up (::::TAF.:TUP),
139-140

Concatenating, 22, 67, 146
labels, 146-147
Suspend execution of program, 153-154

Statistical statements and functions, 78-89
Status annunciators, 15-16, 20, 22, 30
:::: T D statement, 55
::=:rEF' keyword, 185-187
':: T 0 F' statement, 155
Storing and retrieving data, 240-264
Storing data randomly (CF.:EATE, F.:E::::TOF.:E #,

P F.: I t1 T #), 256-263
Storing data sequentially (F' F.: I tH #), 250-253,

256-263
:::; T F::t function, 75, 77
String(s), 71-77

character code to character (CHF.::t), 75, 77
concatenation (:n symbol, 73
default (HiP U 1"), 243-244
first character to character code (t·W t'1), 74, 77
functions, 74-77
length (1_ E tn function, 74
lowercase to uppercase (U P F.: C :t), 75
Null, 72, 268
Numeric value to string (::::TF.::t), 75, 77
Quoted, 71-72
String to numeric value ('...'AL), 74, 76
Substring position (PO::::), 74-75
Substrings, 73-75
variables, 71-73

Structure of memory, 103-108
'::; U E: statement, 204-205
Subprogram, 151, 203-218

channel number, passing (C ALL, :::; U E:), 263-264
environments, 210-215
Form of (::::UE:, EriD ::::UE:),204-205
parameter passing (CF1LL., :::;UE:), 204-205, 263-

264
Recursive, 214-218
Transfer program execution to (CALL), 205-210

,::; i.; b;, Cr' i F' c warning/error message, 68
Subtraction (--.) operator, 47
Summing data points in statistical array (T 0 TAL),

82-83
SUSP status annunciator, 30, 153, 155

Suspend statement, 153
Syntax

errors, 163-164
guidelines, 34
Simplified, 34

System flag(s), 196-201
Angular setting (-10), 197

Subject Index 305

Annunciator (-57, -60 through -64), 201
Base option (-16), 199
BASIC prompt (-26), 200
Beeper (-2, -25), 197
Continuous-on (-3), 197
Display format (-13, -14), 198-199
E:: fi CT (-46), 200
Lowercase (-15), 199
Math exception (-4 through -8, n,IL, D',)2, O',}F,

UtlF, I [r:), 57-60, 68,176-177,197
Number of digits (-17 through -20), 199-200
Round-off setting (-11, -12), 198
User keyboard (-9), 197
Warning message (-1), 196

System version, operating (I,) E F.::t), 267
System settings, 211

T

T A E: statement, 226-227
T A [1 function, 52
Technical assistance, 280
Television/radio interference, potential for (U.S.A.

only),279
TEXT files, 99, 247-264
THEil keyword, 187-189
3 status annunciator, 30
Time. See clock
TI ME function, 94
TIM E $ function, 94
Timer program branching. See program, branching,

conditional
Timers, 182-184
Timers, deactivating (C;H' T I t'IEF' #),184
Tone

loudness, controlling, 32-33
Producing, 32-33

r" F L. Ci 1,1 statement, 166-167
T i:;" He;::: C;;::' F statement, 168
T ,I" H .. : i:' ') ,:i F' ':: statement, 167
T ,:' H ii ':; F (; F: ,'1 statement, 160-161
T F: ,:i F' function, 59-60, 68
Trapezoidal rule integration program, 76
2 status annunciator, 30
1\vocount program, 130
Typing

aids, 12, 21-22, 24, 26, 28
errors, correcting, 16, 22-23, 25-26

306 Subject Index

U V

Unary minus (-) operator, 64
Unconditional program branching. See program,

branching, unconditional
Underflow (U t·W), 57-61
Ut·w flag, 57-61
Unordered (,~,) operator, 62
U t·l P POT E C T statement, 289, 292
Ut·l::;ECUPE statement, 117-118,127
Unsupported operations in CALC mode, 46, 48
Uppercase/lowercase control. See

lowercase/uppercase control
UP F.: C $ function, 75
I USER 1 key, 28, 29, 126
U ::; E F.: statement, 126
USER status annunciator, 30
User. See also user-defined functions

flags, 193-196
key definitions (DEF KE'r'), 28, 121-124
keyboard, 28-29, 122-124, 126
keyboard flag (-9), 197

User-defined functions, 218-222
Environment of, 220-221
Forms of (DEF Ft·l, Et·m DEF),218-219
Recursive, 222
Referencing, 220, 269

User/Normal keyboards, switching between
(U ::; E P, U ::; E P 0 t·l, U ::; E F.: OF F, I USER I,

I 1 USER I), 28, 126
USE P 0 F F statement, 126
U ::; E P 0 t·l statement, 126
Using magnetic cards, 287-293

I,} A L function, 74, 76
Value parameters (CALL), 206
Variable (numeric) precision (0 P T I 0 t·l PO U t·m),

56
Variables, 66-77

Array, 68-73
Default values for, 67-68, 72, 268
Names of, 68, 72
Nonexistent, 68, 72
Sharing, between keyboard and programs, 67
String, 71-73, 268

I,} E F.: $ function, 267
Verifying proper HP-71 operation, 273-274
1 VIEW 1 key, 126
Viewing

angle, 29-30
key definitions (FETCH I<E""', KE..,.'DEF$,

0]1 VIEW I), 125-126
program lines (F ETC H, L I::; T, P LIS T, ~,

[Y)), 21, 156-158

W--X--Y--Z
~,~ A I T statement, 154
Warning message, 13, 68, 175-176

Math exception, 68, 177, 269-270
flag (-1), 196
in CALC mode, 46

Warranty
on HP-71, 274-276
on service, 278

~,~ I D T H statement, 232-233
~,~ I t-mO~,~ statement, 135-136
Workfile, 27-28, 100, 101, 144-145

Copying (COP..,.'), 145

Keyword Index

This index lists the HP-71 keywords by category and gives a page number where that keyword is in-
troduced in this manual. Some keywords appear in more than one category.

Program Entry/Editing Program Control Logical and Relational General Math (continued)

AUTO 149 (continued) Operators OPT I Ot·~ F.:OUt·~D 56
DELETE 158 Ot·~ TH1EF.: # 182 AHD 63 O',}F 57
EDIT 143 Ot·~ ... GOSUB 181 E:":OF.: 63 F.:At·lDOt'1 I ZE 52
FETCH 157 OH ... GOTO 181 t'~OT 63 F.:ED 49
LI:::;T 157 OtL.F.:ESTOF.:E OF.: 63 F.:E::; 49

HAt'1E 145 PAUSE 154 62 F.: t'1 D 49
PL I::;r 157 POP 180 # 62 F.: t·~ D 52
PF.:I',}ATE 116 F.:ETUF.:H 179 <> 62 ::; G t·~ 49

F.:Et'1 (!) 22 STOP 155 .:" 62 ::;OF.: 49

F.:EHUt'1BEF.: 159 SUB 204 <= 62 ::;OF.:T 49
SECUF.:E 116 ~'lA IT 154 > 62 Ut'~F 57
T F.: A t·~ ::; F 0 F.: t'1 160 62
Ut·~::;ECUF.: E 116 Debugging ? 62 Logarithmic Operations
I:!! 146 COt'~T 155 E>':P 50

DEFAULT 58 Arithmetic Operators E:'<Pt'11 50
Program Execution EF.: F.: L 175 + 47 E :'<POt'~E t·~ T 50

CALL 151 EF.:F.:tH 175 47 LGT 50
CHA I t·~ 151 EF.:F.:t·~ 173 l 47 U~ 50
COHT 155 Ot·~ EF.:F.:OF.: GO::;UB 172 47 LOG 50
F.:U t·~ 149 OH EF.: F.: 0 F.: GOTO 172 D I I,} ('-...) 47 LOG10 50

PAU::;E 154 47 LOGPl 50
Program Control TF.:ACE 166 ~.~ 47

B'lE 184 Trigonometric

CALL 205 Storage Allocation General Math Operations

CHA I t·~ 180 CLA I t'1 POF.:T 107 AB::; 48 ACO::; 52
DEF F t·~ 218 DE::;TF.:O..,.' 67 CEIL 48 AC::; 52
Et-lD 155 D H1 69 CLA::;S 60 At'~GLE 52
Et·lD DEF 219 FF.:EE POF.:T 105 D',} Z 57 ASIH 52
Et·lD SUB 204 I tHEGEF.: 70 E :'<POt·~ E t·~ T 50 A ::; t·~ 52
Ft-~ 220 t'1Et'1 107 FACT 49 ATAt~ 52
F 0 F.: .. .t.~ Dn 185 OPT I Ot·~ BASE 68 FLOOF.: 48 AH~ 52
GO::;UB 179 F.:EAL 69 FP 48 CO::; 52
GOTO 179 ::;HOF.:T 70 UH 48 DEG 52
IF ... THEt·LELSE 187 SHO~'l POF.:T 108 I t·~ >': 57 DEGF.:EE::; 50
OFF 13 ~;TAT 79 IP 48 OPT I Ot·~ AHGLE 50
OFF EF.:F.:OF.: 172 I',}L 57 F.:AD 52
OFF T I t'1EF.: 184 LET 67 F.: A D I At·~ ::; 50
o t·~ EF.:F.:OF.: GO::;UB 172 t'1A >': 49 ::; I t·~ 52
Ot·~ EF.:F.:OF.: GOTO 172 t'1 I t·~ 49 TAt·~ 52

t'10D 49

Statistics Input/Output (continued) File Management Customization and
ADD 80 Et·1G 56 (continued) Keyboard Control
CUHAT 79 F I:": 55 t'lAt'1E 145 ADDfU
COF.:F.: 84 GDISP 137 PF.: I ',}ATE 116 CHAF.:::;ET 132
DF.:OP 81 GDI::;P$ 137 PF.:OTECT 292 CHAF.:3ET$ 132
LF.: 84 I t'1AGE 231 PUF.:GE 115 COt·1TF.:A::;T 29

\,
t'1EA t·l 83 I t·w U T 241 F.:EHAt'1E 115 DEF K E'r' 121
PF.:ED',} 85 KE'r'DO[,jH 129 3ECUF.:E 116 DELA''''' 26
3DE',} 83 LC 140 3HO[,j POF.:T 108 DTH$ 48
::;TAT 79 L I t·WUT 244 TF.:A t·l3 F 0 F.: t'1 160 FETCH KE''''' 125
TOTAL 82 LI3T 157 Ut·lPF.:OTECT 292 F I ::-:; 55

OtL.F.:E3TOF.:E Ut·l::;ECUF.:E 116 HTD 48
Constants PLI::;r 157 I t'1AGE 231
EF'3 61 PF.:ItH 225 Time and Date f<E'r' 121
It-lF 59 PF.:ItH U3 I t·lG 230 AD,JAB::; 93 KE'r'$ 130
t'1A::-:;F.:EAL 61 PF.:ItH # 250 AD,JU::;T 95 f:::E'''''DEF$ 125
t'1 I t·WEAL 61 PUT 131 AF 95 K E 'r' D 0 [,j t·l 129
t·lAH 59 P[,j I DTH 232 DATE 91 LC 140
PI 49 F.:EAD 246 DATE$ 91 LOCK 139

F.:EAD # 254 D(ACT 96 PEEK$

Strings F.:E3TOF.:E 246 F.:E::;ET CLOCK 96 POKE

73
F.:E3TOF.:E # 254 3ETDATE 90 PUT 131

:~.:

75
::;C I 55 3ETT I t'1E 92 ::;TAF.:TUP 139 CHF.:$

74
3TD 55 TH1E 94 U::;EF.: 126

LEt'l
74

TAB 226 TH1E$ 94 [,j I t'lDO[,j 135 t·lUt'1 UPF.:C$ 75
P03 74 U3EF.: 126
3TF.:$ 75 System Settings

75
[,j I DTH 232 and Flags UPF.:C$ [,j I t'lDO[,j 135

''}AL 74 CFLAG 192
',}EF.:$ 267 Graphics DEFAULT 58

DEGF.:EE3 50
Input/Output GDI::;P 137 DELA''''' 26

248
GD I ::;P$ 137 D',}Z 57 A3::; I Gt·l #

BEEP 32 File Management FLAG 191

BEEP OFF 32 ADDF.:$ I t·l ::-:; 57

BEEP Ot·l 32 CAT I ',}L 57
COt·1TF.:A::;T 29 CAT ALL 119 OPT I Ot·l AHGLE 50
COP'r' 112 CAT$ OPTIOH BA3E 68
CF.:EATE 248 CLA I t'1 POF.:T 107 OPTIO~l F.:OUt·lD 56
DATA 245 COP'r' 112 O',}F 57
DELA'r' 26 CF.:EATE 248 F.:AD I At'l3 50
D I ::;p 225 EDIT 143 F.:E3ET 193
D I ::;p U::; I t·lG 230 FF.:EE POF.:T 105 3FLAG 192
DI3P$ 136 t'1Et'1 107 TF.:AP 59
EHDL I t·lE 234 t'1EF.:GE 116 Ut·1F 57

How to Use This Manual (page 6)
1: Getting Started (page 10)
2: Calculating with the HP-71 (page 36)
3: Variables: Simple and Array (page 66)
4: Statistical Functions (page 78)
5: Clock and Calendar (page 90)
6: File Operations (page 98)
7: Customizing the HP-71 (page 120)
8: Writing and Running Programs (page 142)
9: Error Conditions (page 162)

10: Branching, Looping, and Conditional Execution (page 178)

11: Flags (page 190)
12: Subprograms and User-Defined Functions (page 202)
13: Printer and Display Formatting (page 224)
14: Storing and Retrieving Data (page 240)

A: Owners Information (page 266)
B: Accessories Included With the HP-71 (page 282)
C: Using the HP 82400A Magnetic Card Reader (page 284)

European Headquarters
150, Route Du Nant-D'Avril

P.O. Box, CH-1217 Meyrin 2
Geneva - Switzerland

00071-90001 Rev. E English

Fli;- HEWLETT
~r... PACKARD

Portable Computer Division
1000 N.E. Circle Blvd., Corvallis, OR 97330, U.S.A.

HP-United Kingdom
(Pinwood)

GB-Nine Mile Ride, Wokingham
Berkshire RG11 3ll

Printed in U.S.A. 3/87
00071-90106

Scan Copyright ©
The Museum of HP Calculators

www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

