
FliOW HEWLETT
~~ PACKARD

HP-71
Reference Manual

rJ.~ HEWLETT 71 a!!f!A PACKARD

Printing History

Edition 1
Edition 2
Edition 3
Edition 4

October 1983
January 1984

May 1984
October 1987

Notice

Rev. A
Rev. B

Mfg. No. 00071-90087
Mfg. No. 00071-90110

Hewlett-Packard Company makes no express or implied warranty with regard to the pro­
gram material offered or the merchantability or the fitness of the program material for any
particular purpose. The program material is made available solely on an "as is" basis, and
the entire risk as to its quality and performance is with the user. Should the program ma­
terial prove defective, the user (and not Hewlett-Packard Company nor any other party)
shall bear the entire cost of all necessary correction and all incidental or consequential
damages. Hewlett-Packard Company shall not be liable for any incidental or consequential
damages in connection with or arising out of the furnishing, use, or performance of the
program material.

Printed in U.S.A.

rli~ HEWLETT
~I:.. PACKARD

HP-71

Reference Manual

October 1987

Reorder Number
00071-90010

© Hewlett-Packard Company 1984

Contents 3/4

System Memory Requirements 330
Memory Usage During Evaluation of Expressions 333

Mathematical Discussion of HP-71 Statistical Arrays 334

Contents
Matched Samples 334
Summary Statistics ... 335
Recursive Calculation of Statistics 336

How To Use This Manual ... 5 Simple Linear Regression .. 337
Introduction 5
What Is a Keyword? .. 5
Finding Keyword Entries ... 5
Format for Keyword Dictionary Entries 6
How To Read the Syntax Diagrams 8
Using Blanks in Keyword Inputs 9
Using the Glossary .. 9
Using the Keyword Index . 9

IEEE Proposal for Handling Math Exceptions 338
Introduction 338
Setting and Clearing Math Exception Flags 338
The Five Math Exception Flags 338
Extended Default Values ... 339

Not a Number .. 340
Infinity ... 341
Denormalized Numbers and - 0 341

HP-71 Keyword Dictionary .. 10 Classes of Numbers 342

System Characteristics .. 314
Scope of Environments .. 314

The Unordered Comparison Operator 343
Table of Comparisons (X Compared to Y) 344

Variables .. 315 Glossary ... 346
Simple Numeric Variables ... 316
Numeric Array Variables .. 316
Simple String Variables ... 316
String Array Variables .. 316
Array Bounds and Referencing 316

Math Reference .. 317
Precedence of Operators ... 317
Numeric Precision ... 317
Range of Numbers .. 317
Numeric Expressions .. 318

System Flags .. 319
Keyboard and Display Control 319

Input Keystrokes ... 319
Editing Keystrokes .. 320
System Keystrokes .. 321
Escape Keystrokes .. 322
Display Control ... 322
CALC Mode keystrokes .. 322

Errors, Warnings, and System Messages 378
Introduction ... 378
Alphabetical Message Listing .. 378
Numerical Message Listing and Descriptions 380

Math Errors (1 through 21) 380
System Errors (22 through 27) 382
Program Errors (28 through 56) 383
File and Device Errors (57 through 65) 387
Card Reader Errors (66 through 74) 389
Syntax Errors (75 through 88) 390
Card Reader Messages (89 through 97) 392

HP-71 Exception Flag Summary 393
IVL (Invalid Operation) ... 393
DVZ (Division By Zero) ... 393
OVF (Overflow) .. 393
UNF (Underflow) ... 393
INX (Inexact Result) ... 393

HP-71 Character Set and Character Codes 322
Control Characters .. 326
HP-71 Display Escape Code Sequences 328

Keyword Index and Summary 394
Subject Index .. 406

Reset Conditions .. 329

2

110\'\' To Cse This \lanual

introduction

The HP-71 Reference Manual is a reference tool for users who are already familiar with HP-71 oper­
ation and BASIC language programming. If you are new to the HP-71, you should first turn to the
HP-71 Owner's Manual to familiarize yourself with the computer's features.

This manual provides a source of nontutorial information concerning HP-71 keywords, character sets,
memory requirements, error messages, and other topics. Included also are a glossary of HP-71 terms
(page 346), a Keyword Summary and Index (page 394), and a Subject Index (page 406).

The HP-71 Keyword Dictionary covers keyword use, syntax, parameter guidelines, operating details,
and related keywords. Before you begin referring to the dictionary, read through the information on the
next four pages to familiarize yourself with the dictionary's format and use.

What Is a Keyword?

The term keyword refers to your HP-71's BASIC statements, functions, and operators. All but nine of
the keywords are programmable. These nine are termed nonprogrammable statements. (In some com­
puter literature, such nonprogrammable keywords are referred to as commands.)

Finding Keyword Entries

The HP-71 keyword entries are placed in alphabetical order. Each entry begins at the top of a new page
and can be quickly identified by the keyword name printed in large, blue characters. The keywords for
some trigonometric functions have acceptable alternate spellings. Such alternates are indicated in
parentheses at the top of the page, following the more common spelling. Middle keywords, such as TO,
cannot be executed alone and therefore are not listed separately.

Combined Keyword Descriptions. Where two or more keyword entries begin with the same word(s)
and perform similar operations, their descriptions are grouped together under one heading. For exam­
ple, 0 t·j E P POP GO SUB and 0 t·j E F.: P 0 F.: GOT 0 are described under the page heading ON ERROR
GOSUB I GOTO. In these instances, common features such as identical input parameters are repre­
sented once for all keywords in the group.

Operator Descriptions. Logical operators (A t·m, E>:: 0 F.:, t·W T, and 0 F.:) appear in alphabetical order
in the Keyword Dictionary. The (!! character, the ::.: concatenation operator, and the math operators (+,
-, l, ./, \, and) appear at the end of the dictionary. Relational operators (<:, =, >, #, '~', <: =, > =, and
<: » are listed under "Precedence of Operators" on page 317, but do not appear in the Keyword
Dictionary.

5

- .. --~-----~

6 How To Use This Manual

Format for Keyword Dictionary Entries

Each of the numbered circles shown below links a feature of the Keyword Dictionary format to a
corresponding illustration in the sample dictionary entry on the facing page.

CD Keyword Name: Identifies the keyword entry and includes, within parentheses, the keyword's
acceptable alternate spelling, if any.

® Purpose: Describes what operations the keyword is designed to perform. If the keyword is one of
the nine nonprogrammable statements, this fact is noted in this description.

® Keyword Type and Execution Options: The filled-in squares (.) in this chart indicate the
keyword type (statement, function, or operator) and whether you can execute the keyword from the
keyboard, in CALC mode, and/or after THE t·l or E L ::; E in an IF ... THE N ... E L S E statement.

8) Syntax Diagram: Illustrates the required and optional syntax for HP-71 keywords. A description
of how to read the syntax diagrams is provided on page 8 (following the sample of the DIS P
dictionary entry).

CD Examples: Illustrate some of the different ways you can use the keyword. (The examples are sepa­
rate from each other and, unless otherwise indicated, should not be read as if they are part of the
same instruction.) Examples that use quoted strings are shown with pairs of double quotes
(" ... "). Except in the case of quotes within quotes (" I ••• I "), or where' a pair of double quotes
enclose one single quote (" ... I ••• "), a pair of single quotes (' ... ') can be used in place of a
pair of double quotes.

® Input Parameters Table: Further specifies the parameters used in the syntax diagram.

Note: The various types of input parameters referred to in the syntax diagrams and "Input
Parameters" tables are defined in the glossary.

CD Comments: Additional information about the use of the keyword.

® Related Keywords: Other keywords that have either a functional similarity to the keyword being
described or an influence on its results.

®

DISP

[) I:::: F displays numeric and string data.

• Statement
D Function
D Operator

Examples

Input Parameters

Item Description

expression Numeric or string expression.

How To Use This Manual

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

None.

Restrictions

column Numeric expression rounded to an integer. Greater than zero.

Comments

You can omit the statement name itself in all cases except immediately after -r ":,, or 'L":::: E::.

•
•
•

) Related Keywords

7

8 How To Use This Manual

How To Read the Syntax Diagrams

The diagrams indicate acceptable keyword input syntax. (Incorrect syntax in an input prevents the
computer from accepting that input, which results in an error message.)

Note: The syntax diagrams illustrate the general use of blanks in keyword inputs. For a more
detailed discussion of this topic, refer to "Using Blanks in Keyword Inputs," on the next page.

Double quotes are used in these diagrams. However, you can also use single quotes. (The opening and
closing quote symbols must match.)

Example.

• Items enclosed in ovals and circles can be entered in either uppercase or lowercase letters. Blanks
should not be embedded unless explicity shown.

• Items in the boxes correspond directly to entries in the "Item" column of the "Input Parameters"
table included in the keyword description.

• All valid paths through the diagrams are indicated by arrows. Looping paths indicate a parameter
or sequence that can be repeated.

• An item is optional if there is a valid path around it. Options are generally shown as descending
loops.

• An arrow (-) terminating the exit path from a statement indicates that you can use the Cd.

character to append another statement to the illustrated statement.

• An arrow and an "X" (-x) terminating the exit path from a statement indicates that no
statement can be appended after the subject statement.

• An arrow with a vertical bar (---l) used to terminate the exit path from a statement indicates
that other statements can be appended, but they will not be executed following execution of the
illustrated statement.

How To Use This Manual 9

Using Blanks in Keyword Inputs

You can use blanks as separators between keywords, parameters, and punctuation unless otherwise
indicated in a keyword entry. However, blanks are not needed as separators except where required by
the HP-71 to prevent misinterpretation or error conditions when processing a keyword input.

The HP-71 uses blanks as delimiters for unquoted strings. Without these delimiters, using an
unquoted string for an input such as a file type name or an un quoted file specifier can cause an error.
For example, the HP-71 accepts file type names having up to five characters. Thus, to tell the com­
puter to "create file ABC of type TEXT," you would use the statement

which must have blanks as shown. Omitting the blanks results in the statement

C F.:EAT E T E::-:THEC

which the HP-71 interprets as "create file BC of type TEXTA" (which is a nonexistent type). This
second interpretation results in an error message because there is no such file type. Similarly, if you
wanted your HP -71 to copy file A to file B, you would enter COP \' A TO B. (Using the same state­
ment without blanks-COP'lATOB-tells the computer to copy file ATOB to main RAM.)

Ambiguity in program statements can also occur in certain uses of an unquoted file specifier that con­
tains a device specifier. For example, to tell the computer to copy file A from a plug-in device to file B,
you would use a program statement such as

100 COPY A:PORT TO B

which must have blanks, as shown. Omitting the blanks results in the statement

100 COPYA:PORTTOB

which causes the computer to interpret the string COP \' H: as a label. Because the remainder of the
statement (as interpreted) does not contain a valid statement, an error results.

Using the Glossary

The Glossary (page 346) describes the terminology used in this manual and in your HP-71 Owner's
Manual, and includes syntax diagrams that illustrate some of the common terms used in the keyword
dictionary to specify keyword inputs.

Using the Keyword Index

The keyword index, which begins on page 394, provides you with both a reference for locating keywords
by page number and a listing of keywords by functional category (such as "Input/Out" statements and
"File Management" statements).

HP-71 Keyword Dictionary

ABS

A E: ::; .:: >::::. returns the value of >:: with its sign set to "+."

D Statement
• Function
D Operator

Examples

Input Parameters

Item Description

argument Numeric expression.

Comments

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

None.

Restrictions

F:i F: c· ':.:') returns the value of with its sign set to "+." This also applies to the following two
cases:

= +0

• A E;,,:: .:: r! .0:, r! > = NaN, with its sign field forced to +.

Related Keywords

10

11

ACOS (ACS)

H;:::: c: c: (arccosine) returns the principal value of the angle having a cosine equal to its argument. The
angle returned is expressed in the current angular setting.

D Statement
• Function
D Operator

Examples

Input Parameters

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

Item Description Restrictions

a rgument Numeric expression. -1 through 1.
..

Comments

The range of the result of A COS is shown in the table to the right.

You can change the angular setting by executing DEGF.:EE::; (when in
Radians setting), or F.:AD I At·~S (when in Degrees setting). Refer also
to the 0 P T I 0 t·~ statement.

Related Keywords

Angular
Setting

Degrees
Radians

Range of
ACOS

o through 180
o through PI

H...:;. , H t·; C: l.. E , H :::: It·;, H :::: t·; , Fi 'r Hi',; , H T I'j , C U ::; , [I E G, D E G f~: E: E ::: , 0 P T I 0 ['1, F H D, F i:i D I H t·; ::: ,
::;.i t·;, THti.

12

ADD

ADD adds the coordinates of a data point to the summary statistics in the current statistical array.

• Statement
o Function
o Operator

Examples

ADD

ADD Vl,V2,V3,V4,V5

Input Parameters

Item Description

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

coordinate Numeric expression giving coordinate None.
(value) of the data point.

Comments

Restrictions

Numeric expressions you specify when you execute ADD represent the coordinates (values) of the data
point. The number of expressions must be within the range specified by a preceding ::: TAT statement
(O through 15). Any missing coordinates are assumed equal to zero.

Related Keywords

CeiF-'F, Cl...:::;THf, DFOF', l...F, t'1EHr';, F'FED',}, ::;DE',), :::THT, TCTHl....

13

ADDR$

ADD F.: $ (address string) returns a string representing the hexadecimal address of the file you specify.

o Statement
• Function
o Operator

Examples

file spec if ier

A $ = H D D F $ (H F I l... E 1 ;;)

Input Parameters

Item Description

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

D I ::;F' ADDF$ (" F I LE2 : F'CiFT;;)

Restrictions

file specifier String expression containing a file File name with optional port
specifier. specifier.

Comments

ADD F-: $ returns the address of the beginning of the file header.

Related Keywords

DTH$, HTD, PEEK$, POKE.

14

ADJABS

A [i,J A B ::; (adjust-absolute) performs an absolute adjust on the system clock.

• Statement
o Function
o Operator

Examples

AD,JAB::; 124,7

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

AD..JAB::; "-00: 02 : 14"

Input Parameters

Item Description Restrictions

seconds Numeric expression. Seconds (s) in the range -360000
< s < 360000.

adjustment string String expression in form "HH: MM: Maximum of 99h 59m 595 .

SS" or "-HH: MM: SS."

Comments

AD ,J A B::; changes only the HP -71 's clock time; the current clock speed is not affected. To adjust both
the clock time and the clock speed, refer to the AD ,J U ::; T statement on the next page.

Related Keywords

AD,JU::;T, AF, D::ACT, ::;ETT I t'1E.

15

ADJUST

AD ,j U ::; T simultaneously changes the clock time and specifies a clock speed correction that is stored
and applied the next time you execute E i:: ACT to calibrate the clock.

• Statement
o Function
o Operator

Examples

AD,JU::;T 124,7

A[UU::;T -3300

A[LJU::;T "00: 03 : 35"

Input Parameters

Item

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

AD,JU::;T "+(10: 05 : 45 Ii AD,JU::;T t·~

ADJUST A$

Description Restrictions

seconds Numeric expression. Seconds (s) in the range -360000
< s < 360000.

adjustment string String expression of form "HH: MM: Maximum of 99h 59m 595 •

SS" or " -HH: MM: SS".

Comments

AD ,J U ::; T performs the following:

1. Changes the clock time by the amount you specify.

2. Stores the difference between amount you specify and the nearest multiple of 30 minutes as an
error correction that will be implemented the next time you execute E >:: ACT.

16

ADJUST (continued)

Relative Clock Adjustment

om 60m

L-____ ~ __ ~ ____ ~ ____ ~ ____ ~ ____ ~ __ •.• ___

+d

Relative Adjustment

60m

~--~----~----~----~----~----~-- ... ---
~------~------~~

Relative Adjustment - d
Executing AD.J U ::; T performs the relative clock adjust­
ment and stores d as data for E ::.:: ACT correction factor
computation.

Because the error correction is added to any error correction already stored as a result of earlier
executions of AD.J U S T, you can execute AD.J U ::; T as many times as you want to before executing
E >:: ACT. E ::< ACT uses the accumulated error correction, then clears it from memory.

ADJUST
Input

Time Change Error Correction

-3300 -55m + 5m (Measured from - 60m to - 55m.)

00:03:35 + 3m 35" +3m 355 (Measured from oom to 3m 355 .)

-00:02:14 - 2m 14" - 2m 145 (Measured from oom to - 02m

145 .)

If you execute AD.J U ::; T more than once before executing E ::< ACT, the corresponding error correc­
tions are accumulated.

The resolution of the clock system is 0.00198 (1/512th of a second). Numeric input for AD.J U ::; T can
specify fractional seconds; string input cannot.

Related Keywords

17

AF

A F returns the current value of the clock system adjustment factor (expressed in seconds), and gives
you the option of setting a new adjustment factor.

o Statement
• Function
o Operator

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

----0
lcD----,.--ne-w--~...,.~~:-~-~-:-~m-e-n...,.t-~

..

Examples

LET ::< == AF D I ::;p AF LET \. == AF .:: 1 ~::)[1~:::1:;'

Input Parameters

Item Description Restrictions

new adjustment Numeric expression rounded to an Must be either 0 or within one of
factor (in seconds) integer. the following ranges:

• 10 < = newaf < = 8,388,607.

• - 8,388,608 < = new af < =
-10.

Comments

If you specify a new adjustment factor with A F, that factor replaces the current adjustment factor in
the HP-71's clock. However, regardless of whether you specify a new adjustment factor, AF always
returns the current adjustment factor.

The HP-71 adjusts the clock's internal time base by applying a I-second correction at the intervals
specified by the adjustment factor. A positive AF adds the correction; a negative AF subtracts the
correction. Specifying a new adjustment factor in the range of either 1 < = new af < = 9 or -9 < =
new af < = -1 results in an I n './ ali d A F (error 27) message. Specifying new af > 8,388,607 or
new af < -8,388,608 defaults the new adjustment factor to O.

18

AF (continued)

Related Keywords

19

AND

A t·l D returns a 1 or a 0, based on the logical AND of its operands.

o Statement _ Keyboard Execution
o Function _ CALC Mode

i .. _-__ O_p_er_a_to_r ______________ -__ IF_._._._T_H_E_N_,_,_,_E_LS_E _________ ---l

~ operand ~ operand ~

Examples

IF Z = 25 Arm A c THEt·l GO~:;UB 100

C! = F.: At·lD ~:;

Input Parameters

I Item Description I
I
i operand Numeric expression.
l

Comments

The operands of A t·l D are considered to be logically false
if zero and logically true if nonzero. The table to the right
indicates the range of results for At'm.

The precedence of At·m in relation to the HP-71's other
operators is described under "Precedence of Operators"
on page 317.

Related Keywords

E::-::OF.:, t·lOT, OF.:.

Restrictions

Subject to operator precedence.

Operand Result

Left Right

False False 0
False True 0
True False 0
True True 1

20

ANGLE

R t·j G L E returns the polar angle determined by the (x,y) coordinate pair. The angle returned is ex­
pressed according to the current angular setting.

o Statement
• Function
o Operator

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

~ x-argument ~ v-argument ~

Examples

T = Rt·jGLE (;:'::.' 'r')

Input Parameters

Item Description Restrictions

x-argument Numeric expression representing first None.
coordinate of pair (x,y).

y-argument Numeric expression representing second None.
coordinate of pair (x,y).

21

ANGLE (continued)

Comments

The arguments need not both be finite. (Notice, however, that there are invalid argument pairs. For
example, A t·l G L E (I t·j F., I t-l F::O is invalid.) Certain cases distinguish the sign of a zero argument. The
range of A t·l G LEis shown in the following illustration.

Range of Degrees Setting: -180° through 180°
Range of Radians Setting: -7r through 7r

90° or 7r/2
y

180° or 7r
~------~------~

-180° or -7r

Where sea) = sign(a)-except for s(+0) = 1 and s(-0)
Rt·jGLE (::-::, '::I).

Normal Inputs

x 0° or 0

-I-the following table defines

I
ANGLE (x, y)

x y

±O ±O y
s(x) = 1 Any Number ATAN(Ylx)
s(x) = -1 s(y) 'T 1 ATAN(y Ix) + 180 (in Degrees setting)
s(x) = -1 s(y) = -1 ATAN(y Ix) - 180 (in Degrees setting)

Related Keywords

RCO::;, ACS, A::; I t·j, ASt·j, ATAt·j, An·j, cos, DEG, DEGPEES, OPT I m·j, PAD, PAD I At·j::;,
S I t·j, TAt·t

22

ASIN (ASN)

A:::; I H (arcsine) returns the principal value of the angle having a sine equal to its argument. The angle
returned is expressed in the current angular setting.

o Statement
• Function
o Operator

Examples

PP I t·1T A::; I t·j (::<-P::'

Input Parameters

Item

• Keyboard Execution
• CALC Mode
• IF ... THEN ... ELSE

Description Restrictions

argument Numeric expression. -1 through 1.

Comments

You can change the angular setting by executing DE G 1<: E E S
(when in Radians setting) or RAD I At·jS (when in Degrees
setting). Refer also to the 0 P T I 0 t·j statement. The range of
the result of AS Hj is shown in the table to the right.

Related Keywords

Angular
Setting

Degrees
Radians

Range of
ASIN

- 90 through 90
- PI/2 through PI/2

ACOS, ACS, At·jGLE, ATAt·j, Anj, A::;t·1, CDS, DEG, DEI:;REE::;, DPT I Ot·j, I<:AD, I<:AD I At·jS,
::; I t·j, T A t·1.

23

ASSIGN #

A::; ::; I G t·j # associates a symbolic channel number with a specified file and opens that file.

• Statement
o Function
o Operator

Examples

ASSIGt·j # 1 TD FILEl
ASSIGt·j # L TO FILE2: POI<:T (2)

Input Parameters

Item Description

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

ASS I C;t·j # 6 TO 1:
ASSIGt·j # 6 TO II II

Restrictions

channel number Numeric expression rounded to an 1 through 255.
integer.

file specifier String expression or unquoted string. File name with optional device
specifier. Cannot reference CARD
device.

24

ASSIGN # (continued)

Comments

A given channel can be assigned to only one file at a time. Thus, if you specify a channel that is already
assigned to another file, that file is closed and the channel is then assigned to the new file.

An assigned channel is automatically released, and its associated file closed, by assigning the channel
number to l, "*", or "". Also:

• Executing P U t·l or E t·l D ALL releases all channels.

• Executing E t·j D or ::; TOP, or encountering the end of the program releases all channels in the
local environment.

• Executing E t·l D SUE: releases only those channels local to the subprogram.

If ASS I Gt~ # specifies a file, but no device, and cannot find the file, the HP-71 creates a DATA file (of
size zero, with a 256-byte record length) in main RAM and gives this file the name specified by
ASS I ca·j #. However, if ASS I G t~ # specifies a file and a device, but the file cannot be found on this
device, an error condition occurs.

Related Keywords

CF.:EATE.

25

ATAN (ATN)

f(r H rj (arctangent) returns the principal value of the angle having a tangent equal to its argument.
The angle returned is expressed in the current angular setting.

o Statement
• Function
o Operator

Examples

H ::: HTHr'; '" , .'

Input Parameters

Item

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

Description Restrictions

argument Numeric expression. -INF through INF.
.,

Comments

You can change the angular setting by executing DE G F.: E E S
(when in Radians setting) or PAD I At·jS (when in Degrees
setting). Refer also to the 0 P T I 0 t·j statement. The range of
the result of A T A t·l is shown in the table to the right.

Related Keywords

Angular
Setting

Degrees

Radians

Range of
ATAN

- 90 through 90

- PI/2 through PI/2

flCC':;, AC::;, Hr·jGLE, A::; I [';, A::;r;, HTt·;, ces, DEC, DEC;PEE::;, OFT I Ur';, PHD, F.:H[) I,::,t·j:::;,
::; I ri, THtl.

26

AUTO

RUT [I begins automatic line numbering for editing the current file, and is nonprogrammable.

• Statement
o Function
o Operator

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

~ ______________ ,-________________ -,~;x

Examples

start
line number

Input Parameters

Item

start line number

increment

Comments

Description

Integer constant identifying a program
line.

Default: 10.

Integer constant.
Default: 10.

RUTei 100.' Co.· .. !

Restrictions

1 through 9999.

1 through 9999.

HUT U numbers new program lines as they are entered and stored. Automatic numbering begins with
the start line number and continues with the specified or default increment. If an automatically dis­
played line number corresponds to an existing line in program memory, that line is displayed. If the
current line number added to the increment value exceeds 9999, a wrap-around takes place. That is:

Next Line Number = (Current Line Number + Increment) - 9999

27

AUTO (continued)

Anyone of the following operations terminates H i...i·r (J operation:

• Typing over the displayed line number with a syntactically correct line that does not begin with a
line number, then pressing I END LINE I.

• Deleting the line by pressing I END LINE I when the display following the line number is blank.

• Pressing I ATTN I .

28

BEEP, BEEP OFF/ON

BEE F' causes a tone to sound at the specified frequency and duration. PEE F 0 F F disables the
beeper. t:: E: E: F' 0 f'; enables the beeper.

• Statement
D Function
D Operator

Examples

PEEF

BEEF F

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

Input Parameters

Item

frequency

duration

Comments

Description Restrictions

Numeric expression rounded to an Refer to "Comments," below.
integer.

Default: 500 Hz.

Numeric expression rounded to the nearest 0 < = 1048.575 seconds.
thousandth.

Default: 0.25 seconds.

The beeper has two volume settings; normal (default) and loud. You can switch the volume to a loud
tone by setting flag -25 (the system beep volume flag). Clearing flag -25 returns the beep volume to
its normal (default) level.

29

BEEP, BEEP OFF/ON (continued)

BEEP Statement. The frequency of the tone is subject to the resolution of the built-in tone gener­
ator. The maximum frequency is approximately 4900 Hz. A specified duration greater than the maxi­
mum indicated under "Restriction" on the preceding page defaults to the maximum.

BEEP OFF Statement. BEEF OFF deactivates the beeper by setting flag -2 (the beep flag).
When deactivated, the beeper does not operate for any purpose, including execution of PEE F'.

Note: After executing PEE F C F F, a tone does not sound when the HP-71 detects an error condi­
tion.

PEEF' OFF does not affect the current setting of the beep volume flag (flag -25).

BEEP ON Statement. PEE F C [.j activates the beeper by clearing flag - 2 (the Beep flag). PEE F'
m~ does not affect the current setting of flag -25 (the beep volume flag).

30

BYE

P 'l E turns off the HP-71.

• Statement
D Function
D Operator

Examples

P\'E

Comments

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

General Operation. Pressing ION I after executing B\'E turns on the HP-71. Executing P\'E in a
program causes the HP-71 to automatically resume execution of the program-at the instruction fol­
lowing P \' E-when the computer is turned on again. However, when executing B \' E from the key­
board, any statements concatenated after B \' E are not executed when the computer is turned on
again.

Timer Control of Program Execution. If the HP-71 activates a timer by executing Ot·j T I t'1EP,
then subsequently executes B '"(' E, the computer turns itself off as described above. However, when the
timer expires, the computer turns on, executes the branch indicated by the timer, then continues
executing the program.

Related Keywords

OFF.

31

CALL

CAL L transfers program execution to a specified subprogram and may also pass parameters to that
subprogram.

• Statement
D Function
D Operator

Examples

CALL

subprogram
name

string
variable name

CAL L C 1 $ (A , E: $.. i:: +'-,' .. "\' E :::: ")

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

CALL CONTPOL(Al(4),P() .. Q(..) .. 0$[3, 10J) I t·~

CALL "Ei::ECUTE" «L) .. "7
'-' .' t·j) I f·; GEt·jEF.:AL

32

CALL (continued)

Input Parameters

Item Description Restrictions

subprogram name Quoted or unquoted string. One to eight characters. The first
character must be a letter; any remain-
ing characters can be letters and/or
digits in any combination.

string variable Refer to Glossary. Must evaluate to subprogram name.
name

actual parameter Constant, expression, variable name, Expressions cannot reference user-
or channel expression (numeric ex- defined functions. Rounded value of a
pression preceded by #). channel expression must be n the

range of 1 through 255.

file specifier String expression or unquoted string File name, with optional memory
device specifier (:MAIN or :PORT). Ex-
pressions cannot reference user-
defined functions.

Comments

A subprogram may call itself. User-defined functions may not appear anywhere in the parameter list.

Passing Parameters.

• The parameters must be of the same type (numeric, string, or channel number) as the correspond-
ing parameters in the subprogram's ::; U E: statement.

• Numeric expressions are passed by value to the corresponding numeric variable.

• A numeric variable may be passed by value by enclosing it in parentheses.

• An array passed by reference may have .::::. or .::..::. following the variable name indicating the
number of dimensions (1 or 2) of the passed array. However, the .::::. or '::., ::. is necessary only in
the :::; U E parameter list.

• String expressions or substrings are passed by value (up to a maximum length of 32 characters).

• String variables can also be passed by reference.

33

CALL (continued)

A channel number in the actual parameter list is a # followed by an integer constant or a numeric
expression. However, the corresponding formal parameter must be a # followed by an integer con­
stant. A channel number opened by a subprogram (and not passed as a parameter) is local to the
subprogram. If a subprogram has no parameter list, then the subprogram's channel numbers are the
same as those for the calling program, but all variables are local to the subprogram.

Note: Because of this feature, if the subprogram takes no parameters due to an omission in C H L L ..
or ::::!...! E;, you may unexpectedly discover channel numbers intended for local use are being used by
the calling program.

Subprograms. You can enter more than one subprogram in a program file. A subprogram must start
with :::! .. .lE: and end with Er·m :::! .. ,it:::. Any program lines between two subprograms will not be ex­
ecuted in normal program flow. You can store subprograms in the same file as a main program, as long
as the the main program precedes any subprograms. It is recommended that you use a different name
for each of your subprograms. Otherwise, there is a possibility that one of two or more commonly­
named subprograms will always be called, regardless of your intent, while any other subprograms hav­
ing that name will not be found by the computer.

The HP-71 searches for a subprogram as follows:

1. The current program file.

2. Any other program files in HP-71 memory, in the order in which they appear m the system
catalog.

3. Program files in any plug-in memory modules, in port number order.

4. If the subprogram is not found, and C H L L passes no parameters, then the subprogram name is
searched for as a program file name. (If a file name is specified by the I r'; keyword, as shown in
the syntax diagram on page 31, only that file will be searched.)

Executing C H L. L creates a local environment* for the subprogram. (That is, a new set of variables is
created which does not disturb the old variables unless they were passed as parameters). When execu­
tion returns from the subprogram to the calling program, the HP -71 reactivates the calling program's
environment.

• For further information concerning local and global environments, refer to "Scope of Environments" on page 314, and to your
HP-71 Owner's Manual.

-
34

CALL (continued)

Executing CALL From the Keyboard. The current file can be executed in a local environment by
executing C j::n .. L I END LI NE I from the keyboard.

Note: If you execute CAL L from the keyboard and

1. You concatenate other statements after CAL L, and

2. CAL L invokes a subprogram that is subsequently suspended, then resumed,

then, when the HP-71 returns from that subprogram it does not execute any of the remaining
concatenated statements.

Related Keywords

·····1:::1·r returns a catalog of file information.

• Statement
D Function
D Operator

Examples

Input Parameters

Item Description

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

C:HT PL.L.

Restrictions

35

CAT

file spe cifier String expression or unquoted string. A device specifier or a file name
Default: File name without device with optional device specifier.
specifier catalogs named file. Device
specifier without file name catalogs all
files on that device. Executing C:HT
without specifying either file name or
device specifier catalogs the current file.

_.

-
36

CAT (continued)

Comments

The catalog display provides the following file information:

• Name.

• Protection, coded as one of the following: F (private), ::; (secure), E (private and se~ure), or
blank (no protection).

• Type.

• Length (in bytes).

• Creation date, time, and port number (if any). The date is displayed in the MM/DD/YY format,
and the time is displayed in the HH:MM format.

When you use CAT to list the information on more than one file in a memory device, the files appear
in the order in which they were created, beginning with the oldest file. The 00 and C!J keys scroll from
one file to the next. Pressing moo positions the HP-71 to the first (oldest) file in the catalog. Pressing
mC!J positions the HP-71 to the last (newest) file in the catalog.

Specifying Devices. CAT: device id returns information on all files residing on the given device.
C H T : r'i H I [.~ returns information on all files residing in MAIN memory, while C H T : F ' ; !c. ; '. 1..' re­
turns information on all files residing on port #1.

Cataloging Devices. If one or more memory devices containing files are plugged into your HP-71:

• Executing CAT ALL returns information on the files in main RAM and in any plug-in memory
modules and independent RAMS.

• Executing CAT: F C~: T returns information only on the files in any plug-in memory modules and
independent RAMs.

Pressing ITJC!J during a CAT ALL or CAT : P I] F.: T operation causes the HP -71 to move from the cur­
rent memory device catalog to the next plug-in memory module.

Assigning a Displayed BASIC File to "Current" Status. Pressing the ED I T typing aid
(ITJI EDIT I) while in any multiple-file catalog causes the currently displayed file to become the current
file. An I n \1.:;; 1 i d F i 1 "::' T ;,~ p "" condition occurs if the file you select is not of type BASIC.

Cataloging a Magnetic Card Containing an HP-71 File. Executing CAT CAF.:D displays
CAT: Ali 9 nth e n E t·W Ul to prompt you to read a magnetic card into the HP-71.After you pull
the card through the card reader, the HP-71 displays the file name, track number, and catalog informa­
tion for the card in the same way as described in the preceding text for other file media.

37

CAT (continued)

Note: Because of the overhead information needed for card storage, the indicated file size may be
larger than the actual file size. In BASIC files, this discrepancy will be, at the most, one byte. However,
for TEXT files-which are always "padded" to a 256-byte boundary-the discrepancy will be in the
range of 0 to 255 bytes.

Cataloging a Magnetic Card Containing an HP-75 File. The HP-71 catalogs HP-75 magnetic
cards in the same way as for HP-71 cards, except that the file type is displayed as [i for any file that
is not a "LIFl" type.

Cataloging Key Assignments. Executing CAT f::: E \' S displays catalog information for the
k "" 'J::;: file, which is the system file of current key assignments.

Note: If you create a file using keywords from a plug-in module or device, then remove the module or
device and subsequently execute CAT, one or both of the following may occur:

• Instead of displaying file type, the HP-71 's five-digit internal code for the file type may be dis­
played .

• File size may be represented by a value that is 1 to 125 bytes greater than the actual file size.

Reexecuting the CAT instruction with the subject module or device plugged in eliminates both
discrepancies.

Executing DELA'";' with a line rate of 0.5 and a character rate of infinity (DELH\' ,5 .. I t'lF)
prevents the catalog header from scrolling. Refer to the DELAY keyword entry.

Related Keywords

CAT$.

--
38

CAT$

CPT $ returns catalog information for the specified file.

~ ~=1t------ --~-~~ii"CU:~:E- .-------J
L _________________ ----------- -- - -- ------------ --- - ----------- --------

number I
~deVice speCifier~

-CD-

Examples

DI::;P CRT$(i)

R$

Input Parameters

r-fi-Ie-n-u-m-I-~-em-r --·~~:~~-n-~=:-g~-:-:~---:-~--~-~~-i-~-;-~--;P-C~-:~-~-~!~dt~~~-'s·----·-------T--None .• ~ ~e~t~ct;on~-___ -l
position in the HP-71 or plug-in device.

device specifier String expression. First character must be a colon.
Default :f'iRlt·L

Comments

For a specified file, CRT $ returns in string form the same catalog information as that returned by
CRT. For files in main RAM, the length of the string returned is 38 characters; for files on plug-in
memory devices and independent RAMs, the string length is 43 characters. The last character is a
blank. The character positions in the string are assigned as follows:

Security File Size Date Time
Port Number

File Name Code
File Type In Bytes Created Created

If In a
Port

1-8 10 12-16 18-22 24-31 33-37 39-42
.-.-~.-- ... --.--.-.- -

39

GAT$ (continued)

If the file type is unrecognized, the five-digit signed integer file type number occupies characters
11 through 16.

A positive file number refers to a file's position on the memory device. For example, CRT $ (2::' re­
turns information on the second file in main RAM. If the specified file number is less than or equal to
zero, and no second parameter is given, then CRT $: returns information on the current file.

Specifying a file number greater than the last file in the specified device returns the null string. The
null string is also returned if the file number is less than or equal to zero and a second parameter is
specified.

If a device specifier string includes a file name, an In \1 ali d F i 1 e::;: F' e c: (error 58) condition
occurs.

Related Keywords

CAT.

--
40

CEIL

C ElL (ceiling) returns the smallest integer greater than or equal to a specified argument.

o Statement

• Function
o Operator

Examples

A I::::CE I L.'::::·::l ::.

Input Parameters

Item Description

argument Numeric expression.

Comments

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

FPIt·q- "Ceilit"I'J II .: eEL L (\')

Restrictions

None.

C ElL. returns a value of type REAL. If the value of the numeric expression is an integer, that value is
returned. For example:

• C ElL. .:: 1 , 5::' returns 2.

• C ElL .:: - 1::' returns - 1 .

• C ElL. .:: .- 1 , 5::' returns - i .

Related Keywords

FL.OOP, FF, I tH, IF.

41

CFLAG

C F L. A G (clear flag) clears user and/or system flags specified by keyword or by a flag number list.

• Statement
o Function
o Operator

Examples

CFLAG AL.L.

Input Parameters

Item

• Keyboard Execution
o CALC Mode
• IF ... THEN . .. ELSE

CFL.AG t'1ATH CFLAG 1 .. 2 .. I t·n::

Description Restrictions

flag number Numeric expression rounded to an - 32 through 63.
integer.

..

Comments

C F L. A GAL L clears all user flags. C F LAG t'l A T H clears the math exception flags. C F LAG with a flag
number list clears the system and user flags specified by the values (rounded to integers) of the numeric
expressions in the list. System flags numbered less than - 32 cannot be cleared by C F LAG.

Related Keywords

[l1,}Z, FLAG, Hl:x:, JI,.,IL, OI,}F, ::;FLAG, Ut·lF.

...
42

CHAIN

C H t1 I r·~ purges the current file, copies the specified file into main RAM, and begins executing that
file.

• Statement
D Function
D Operator

Examples

CHH I t··1 DEt'10 : FCF.:T (2 >

Input Parameters

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

CHH I r·~ TE::=';T~~: CHF.:D

Description Restrictions L . _____ I~~m•.• - _ _-_. - .. -.-.~

i I file specifier

L

Comments

String expression or unquoted string. File name with optional device
. specifier.

I

Chaining allows programs of unlimited size to be run by breaking up such programs into segments. A
C H H I r·; statement in the first segment directs the system to copy and run a second segment. A
C H H I t·i statement in the second segment directs the system to copy and run a third segment, and so
on. When execution of a chained file begins, that file becomes the current file.

, When C H HIt·; calls the next file, the calling file is purged from memory before execution of the
chained file.

C H H I t·1 releases local environments and clears all program control information associated with a prior
suspended program.

Related Keywords

COF\', F.: Ut·1.

43

CHAR SET

CHAP::;ET (character set) defines the alternate character set in the ASCII code range of 128 through
255.

• Statement
D Function
D Operator

Examples

charset
string

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE J

CHARSET CHR$(64)&CHR$(128)&CHR$(126>&CHR$(1)&CHR$(2>&CHR$(0>

CHARSET CHARSET$&CHR$(1)&CHR$(128>&CHR$(1)&CHR$(128>&CHR$(1)

Input Parameters

Item Description

charset string String expression.

Comments

The character set string is interpreted as a series of six-byte
groups. Each successive group defines a successive character
from an alternate character set. The first group defines
character 128; the second group defines character 129, and
so on, up to character 255. To add a new character to an ex­
isting character set, use the C H A R SET $ function in the
same way as shown in the second example, above (and de­
scribed under the next keyword entry).

None.

Restrictions

HP-71 Character Sets

Standard
HP-71
Character

: Set
I

Alternate
HP-71
Character
Set

o
1

127

{

'2B

255

...
44

CHARSET (continued)

Once an alternate character set is established, you can access any character in the set using C H F.: $. For
example, D I :::::F' C H F.: $ 0:: 132::' displays the fifth character in the current alternate character set. If
you specify less than 128 alternate characters and then use C H F.: $ to select a character number outside
of the defined range, the HP-71 returns the corresponding character from the standard HP-71 char­
acter set. Thus, if (1) you have an alternate set consisting of 11 characters (which would be numbered
from 128 through 138), and (2) you specify the nonexistent 12th character by executing C H F.: to:: 139::',
then the HP-71 returns the 12th character in the standard HP-71 character set. That is, the computer
returns the same character that would be returned by executing C H F.: $ 0:: 1 1 ::..

All predefined characters in the HP-71 are six columns wide-although the sixth column is left blank
to allow for space between characters. Each six-byte group in the character set string corresponds to
the dots of six consecutive columns in the HP-71 display. The first byte in a group specifies the
leftmost column in the displayed version of the character. The sixth specifies the rightmost column.
The lowest-valued bit of each byte corresponds to the topmost dot in a column, and the highest-valued
bit corresponds to the lowest dot in the column. (Refer to the next illustration.)

The first of the statements listed under "Examples" on the preceding page defines an alternate char­
acter set having only one character (which corresponds to character number 128). This character
resembles the symbol used in integration.

CHR$(64)
01000000

Display
Dots

CHR$(128)
10000000

Byte No.

2 3 4 5 6

CHR$(126)
01111110

CHR$(1)
00000001

Decimal Value
of Bit

2

4

8

16

32

64

128

CHR$(2)
00000010

CHR$(O)
00000000

45

CHARSET (continued)

If you specify more than 128 characters (768 bytes) in an alternate character set, the HP-71 uses only
the first 128. If the last group in the string does not contain six bytes, then the remaining bytes of that
character are assumed to be zero.

An alternate character set uses three and one-half bytes of user memory, plus six bytes for each charac­
ter in the set. C H A F.: ::; E T "" deactivates the alternate set and restores the memory to the user's avail­
able space.

Certain plug-in ROMs may activate alternate character sets without using this statement. In this case
the character set resides in ROM and requires only seven bytes of user memory (RAM).

Related Keywords

46

CHARSET$

C H A F.: ::; E T $ (character set) returns a string representing the current alternate character set.

o Statement
• Function
o Operator

Examples

A$ = CHAF.:::;ET$

Comments

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

GDISP CHARSET$[I%6,I%6+5J

The length of the returned string is determined by the number of alternate characters currently de­
fined. Each character you define adds 6 bytes to the string; up to 128 characters can be defined. The
maximum string length is 6 X 128 bytes.

C H A F.: SET $ returns the string of bytes specified in the last C H A F.: SET statement. (Refer to the CHARSET
keyword entry for the significance of the bytes.)

Related Keywords

CHARSET, CHR$.

47

CHR$

C H R $ (string conversion) converts a numeric value into an ASCII character.

o Statement
• Function
o Operator

Examples

A$[X,XJ = CHR$(47+X)

Input Parameters

Item Description

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

E$ CHR$(27)

Restrictions

argument Numeric expression rounded to an o through 255. (C H R $ performs
modulo 256 on numeric arguments.) integer.

Comments

C H F.: $ returns the one-character string having the specified ASCII value. For a table of ASCII characters
and their equivalent decimal values, refer to pages 322 through 326.

Related Keywords

CHAR::;ET, DISP, GDI::;P, t·Wt'1.

,.

48

CLAIM PORT

C L A It'! POP T returns an independent RAM module to main RAM status, and is nonprogrammable.

• Statement
o Function
o Operator

Examples

CLAIt'1 POPT (0)

Input Parameters

Item

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

CLAIt'1 POfn (A)

Description Restrictions

port specifier Numeric expression truncated to two
digits after the decimal point; interpreted as

o < = P < = 5.
o < = dd < = 15.

p.dd, where:

p = port number

dd = device number.

Comments

Port 0 contains the internal chain of devices and the HP-IL port. Ports 1 through 4 are the four ports
in the front of the HP-71. Port 5 is the card reader port.

Device number refers to the position of a plug-in device in a chain of such devices. In the HP-71, the
internal RAM (Port 0) device numbers are 0.00, 0.01, 0.02, and 0.03 (where each device number repre-

sents 4K of RAM).

Because C L A I t'1 changes the system configuration, all file pointers are reset, the workfile becomes the
current file, and all FOP ... t·j E ;:.:: T loops are terminated.

Related Keywords

c: L. A':; ::; returns a value indicating the numeric class of the argument.

o Statement
• Function
o Operator

Examples

IF CLASS(X)=-2 THEN TINYNEG

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

49

CLASS

IF AB:::,; (CLA::;::;':: >::)
Cr··i AB::;':: eLA::;::;':: >::) GCTO ZEPC,DENCRM,NCPMAL,INFINITE,QNAN,SNAN

Input Parameters

Item Description Restrictions

argument Numeric expression. None.

Comments

The primary use for C LA::; ::; is program control. C LA::; ::; also provides a mechanism to discriminate
between + 0 and - O.

-

50

CLASS (continued)

C L. H '::<::: returns a nonzero integer in the range of - 6 through 6, where:

• The sign of the result agrees with that of the argument .

• The result separates the machine representable numbers into 12 classes, as follows:

Class of Argument (x)

Zero (+0 or -0)

Denormalized (MIN REAL < = ABS(X) < EPS)

Normalized (EPS < = ABS(X) < + INF)

Infinity (+INF, or -INF)

Quiet NaN

Signalling NaN

Related Keywords

CLASS(-x)

1 -1

2 -2

3 -3

4 -4

5 -5

6 -6

51

CLSTAT

C L. ::: T H T (clear statistical array) clears (sets to zero) all elements in the currently specified statistical
array .

• Statement
D Function
D Operator

---c CLSTAT)--

Examples

cun AT

Related Keywords

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

IF I = 1 THEr-1 CUnAT

52

CONT

COt·] T (continue execution) continues execution of a suspended program, and is nonprogrammable.

• Statement
D Function
D Operator

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

~--------------,-~.x

Examples

COt·iT

CGr·jT 2'::C

statement
identifier

C::Ut·.iT II TE::;T~:~ II

Input Parameters

Item Description

statement Line number or label of a program
identifier statement.

Comments

COr·~T L:t

Restrictions

Any valid line number or label
reference.

CONT Operation. A running program will be suspended by a FA U :::: E statement, an error con­
dition, pressing I ATTN I , or single-stepping (I SST I).

Executing COt·] T without specifying a line number or label reference (or pressing ITJ I caNT I)
resumes execution at the suspend statement. Specifying a line number or label reference with cot·] T
resumes program execution at that line number or statement. If the HP-71 does not find the specified
line number, but does find a higher-numbered line, execution is continued from this line number.

If an error occurs during program execution, executing CO t·j T continues the program with the state­
ment causing the error. This feature enables you to debug a program that has been halted by an error,
then resume execution. For example, errors related to variables can be corrected and the program
continued from the statement in error.

~.

53

CONT (continued)

Note: Editing a program clears the suspended state of a program. Thus, attempting to continue a
program after editing that program causes execution to begin at the start of the program.

Continuing a program that is not suspended is equivalent to running the program.

Suspended Programs. When a program is suspended for any reason, the SUSP annunciator is dis­
played. While a program is suspended, memory is allocated to the suspended program for local
variables, subprograms, and other program control information. Modifying a program or executing
EYD, Et·jD ALL, or :::TOF' clears the SUSP annunciator and releases the memory used for program
control. C C r·~ T clears the SUSP annunciator, but does not release memory.

Related Keywords

E t·W, P AU::: E, ::: TOP. See also the descriptions of the I ATTN I, I SST I, and I caNT I keys in your HP-71 Own­
er's Manual.

54

CONTRAST

C C rH FUi ::; T adjusts the display contrast (viewing angle).

• Statement
D Function
D Operator

Examples

Input Parameters

Item Description

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

Restrictions

contrast value Numeric expression rounded to an o through 15.
integer.

Comments

Co t·j T F.: A::; T controls the parameter specifying the angle at which the display is most easily viewed.

The contrast value may be varied between 0 and 15, where 0 is the shallowest angle and 15 is the
steepest. This corresponds to the lowest and highest contrast, respectively.

The default display contrast value is 9.

55

COpy

",. creates a new (destination) file and copies information from an existing (source) file to the new
file.

• Statement
D Function
D Operator

Examples

CCPY FILEt TC FILE2

Input Parameters

Item Description

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

COP\' CAF.:D

COPY CAF.:D TO GF.:APH

COPY KEYS TO KEYASN:POF.:T(l}

Restrictions

file specifier String expression or unquoted string. Any valid file specifier.
Defaults: Refer to comments, below.

Comments

The source and destination files for a COP 'y' operation can exist in main RAM, in an independent
RAM, on a magnetic card, or on an external file storage device (except that when copying a file from a
card, the destination file must be in main RAM). When copying into main RAM or to independent
RAM, the destination file is a new file. The source file is never altered.

56

COpy (continued)

Defaults.

• When the current file is the source file, it is unnecessary to specify a source file name .

• It is unnecessary to specify either the source or destination file names when the following three con­
ditions apply:

1. The current file is the source file.

2. The current file is in a device that is plugged into a port.

3. You want the destination file to be created in main RAM with the same name as the source
file.

Note: The destination file specifier can be omitted only when the source file is in an external
device or on a magnetic card. (The HP-71 treats a device plugged into a port as an external
device.) If the source file is a special system file (such as I .. .i 0 (k f i 1 e or k e ':::I ::::), the HP-71
converts the destination file name to uppercase.

• When the destination device is not specified, it is assumed to be main RAM.

If a file having the same name as the destination file already exists in the destination device, a F i 1 e
E ::-:: i 5 t 5 (error 59) condition results when CO F \' attempts to create the new (destination) file.

Card Reader Operation. You can use the reserved word C A F.: [I or the device specifiers : C A F.: [I or
: F C F.: [I to reference the card reader. The : Fe F.: [I specifier following the destination file name cre­

ates a "private" card file.

When copying a file to a card, the source file specifier must refer to a file that is currently in either
the HP-71 or a memory device plugged into the computer. If the source file specifier is omitted, the
current file is copied to the card. If the destination file specifier is omitted, the source file name is
used as the destination file name on the card. For example, C C F \' A F I LET C! C A F.: [I creates a
card file named AF I LE. COF'\' AF I LE TO BF I L..E : CAF.:[I creates a card file named BF I LE
from the source file (named A F I L.. E).

If the source file is a special system file (such as I .. .i':; t- k f i.]. ;:" or k e ':::I :::;:), and the destination file­
name is omitted, (as in C U F \' K E \' ::; T C! C A F.: [I), the HP-71 converts the destination file name to
uppercase.

When copying a file to a card, each side of each card must be passed through the card reader twice. The
second pass verifies that the data was recorded correctly. If the data was not recorded correctly, the HP-71
prompts you to rewrite the card.

•
When copying a card to memory, if the destination file name is omitted, the file name on the card
becomes the destination file name.

57

COpy (continued)

Specifying : F C F.: [! as the source device is equivalent to specifying : C A F.: [!. It has no effect on the
privacy of the destination file.

Attempting to copy a card that was written on the HP-75 and contains a non-LIFl file type causes an
Unk (;()I .. .In [.:;j(d (error 69) condition. This condition can also be caused by an HP-71 file of an
unknown type. (An unknown HP-71 file type results if the computer requires a certain LEX file or
plug-in module to recognize the file type, and that LEX file or module is not present.)

Key Assignments. You can use C Ci F \' K E '-(' ::; to store the current key assignments in a file. When
copying from a key assignment file to k e ':::IS (which is the current system key assignment file):

• If k e ':::I 5 does not already exist, simply execute CCF\' file specifier TO f:::E\':::;.

• If k e ':::I:::;: already exists, either purge it (by executing F U F.: G EKE \' ::;) or rename it (by executing
P E [-FH'! E f::: E \' ::; T CI file specifier), then execute CO F \' file specifier T Ci K E \' ::;. (Attempting to
copy a key assignment file to k e ':! 5 when k e ':::IS already exists results in a F i leE ::-:: i :::: t 5 -

error 59 - condition.)

Related Keywords

FP I !,)ATE.

58

CORR

CO F.: f::: (correlation) returns the sample correlation between a pair of variables in the current statisti­
cal array.

D Statement

• Function

D Operator

Examples

A 1 =COPF.: (; ... ; 1., '5' J.::'

Input Parameters

Item

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

Description Restrictions

variable number Numeric expression rounded to an Must be a value in the range of 1
integer. through the current ~:;TAT array

dimension.

Comments

C () f:': F: returns a REAL value.

Related Keywords

59

cos
CO::; (cosine) returns the cosine of its argument.

[
.... D~ _._S_ta_t_e_m_e_nt ____________________________ • ___ K_e_y_b_o_a_rd __ E_xe_c_u_ti_o_n __________________ ~ Function • CALC Mode

Operator • IF ... THEN ... ELSE

Examples

Input Parameters

Item Description Restrictions

targ ument Numeric expression. Must be a finite number.

Comments

CC ::; assumes that the argument is expressed in the current angular setting. The HP-71 first reduces
the argument by 3600 (or 211" if in radians setting). If in radians setting, this reduction takes place with
a 31-digit representation of 11" for increased accuracy. Also:

COS(90 + n * 180) = [(-1) n] * 0; n = 0,1,2,3, ... (Degrees setting).

" COS(- x) = COS(x).

Related Keywords

ANGLE,ACOS,ACS,ASIN,ASN,ATAN, ATN, DEG, DEGREES, OPTION, RAD,RADIANS, SIN,
TAt·l,

60

CREATE

C PEA T E creates a data file in main RAM or in an independent RAM.

• Statement
o Function

• Keyboard Execution
o CALC Mode

o Operator • IF ... THEN ... ELSE

Examples

CREATE TEXT MEM0245

CREATE DATA AS,20,50

CREATE TE>::T "F I L..E:>:; ; FORT':: 1 ::. II , 2U~:HCi

CREATE SDATA FIL..E41C,20U

Input Parameters

Item

file type

file specifier

file size

record length

Comments

Description

Unquoted string indicating the type of file
to create.

String expression or unquoted string.

}
Numeric expression rounded to an
integer.

Default: Refer to "Comments."

Restrictions

TEXT, LlF1, DATA, or SDATA file
type.

File name with optional device
specifier.

DATA and SDATA files: 1 through
65,535; TEXT files: 1 through
1,048,575.

The file type tells the HP-71 which format to use when writing information into the file.

Executing C REA T E does not open the created file. To open a newly created data file for writing, use
the A:::; :::; I G t·l # statement.

61

CREATE (continued)

A file placed in memory as a result of executing C PEAT E will increase in size if you use F' PItH # to
sequentially write to a new record immediately following the current last record of the file.

TEXT (LIFt) Files. A TEXT file contains variable length records of ASCII character data. The
name "LIFl," by which this file type is referenced in the HP-75, can be used in place of the name
"TEXT." However, the HP-71 still regards as a TEXT file any file carrying a "LIFl" designation. This
file type is the same as that of the HP Logical Interchange Format (LIF) file type "1" which serves as
an interchange file format among most Hewlett-Packard computers. The file size is specified in bytes.
Both the minimum file length and the default file size are zero. Because a LIFI file contains records of
varying length, you cannot specify the file's record length.

DATA files. A DATA file type has fixed length records which can contain both numeric and string
values. The file size is specified in number of records, with a default size of zero. The record length is
specified in number of bytes. If not specified, or specified as 0, the record length defaults to 256 bytes.

SDATA files. The SDATA file type is the same file format as the DA (data) file produced by the
HP-41 calculator. Thus, SDATA files are register-oriented. Each record is 8 bytes in length. The HP-71
can write only numeric values to this type of file. Notice, however, that the HP-41 can store both
numeric and alpha data in this file, which can be read by the HP-71 PEA D # statement. (Refer to
READ# and PRINT# for further information.) The file size is specified by the number of records in the
file, with a default size of zero.

Related Keywords

62

DATA

D A T A statements contain data that can be read by F:' E: A D statements.

• Statement o Keyboard Execution

o Function o CALC Mode

o Operator o IF ... THEN ... ELSE

~~------------~~X

Examples

DATA 1:23,456, "Hello"

DATA FIl2,FGH"CC'!)"

D A T A "T his is.", 5 t t- i n'3" ::.: " e ::< p t- e 5 5 ion"

Input Parameters

Item

expression

unquoted string

Comments

Description

Refer to glossary.

Refer to "Punctuation and Space in Data
Items," on the next page.

None.

None.

Restrictions

D A T A statements provide the means for ordering string and/or numeric data items for assignment to
corresponding variables listed in F:: E: A D statements. Each time a running program encounters a vari­
able in a F:: E: A D statement, it assigns to that variable the next consecutive data item from a D A T fi
statement. If a F:: E A D statement variable is encountered after all of the data items in a etA T A state­
ment have been assigned, the first data item in the next consecutively-numbered D AT A statement is
assigned to that variable. A program or subprogram can contain any number of D A T A statements at
any locations.

63

DATA (continued)

Data Statements in Subprograms. When a subprogram is called, the HP-71 remembers the loca­
tion of the next item to be read in the calling program in anticipation of returning from the
subprogram. Within the subprogram, the first item read is the first item in the lowest numbered
L I .. -, statement within the subprogram. When program execution returns to the calling program, the
FE H D operations resume where they were suspended when the subprogram was called.

Constants and Variables. A numeric or string constant must be read into a variable that can store
the constant. In the HP-71 a numeric constant (or expression) in a DATA statement can be read into
either a numeric variable or a string variable. However, a string constant can be read only into a string
variable. That is:

" Numeric values in a D H T A statement can correspond to either numeric or string variables in a
F: E H U statement used to access that D Fi T A statement. A numeric value read into a string vari­
able is interpreted as an unquoted string.

String values in a D A T H statement can correspond only to string variables in a F:: E H D statement
used to access that D A T A statement. Attempting to read a string value into a numeric variable
causes an immediate error condition.

If a string can be interpreted as a valid string expression (such as D A T A C H F:: $.:: ::< ::.) followed by a
comma or the end of the line, then it will be evaluated as such when read. Otherwise, the computer
treats it as an unquoted string.

Punctuation and Spaces in Data Items. A data item can be anyone of the following:

Numeric expression.

String expression.

. U nquoted string.

To place an unmatched quote mark in a string expression, you must enclose the mark within a pair of
the opposite type quote marks. For example:

UHTA "Cl.::;ss of '6?" 43
[;HTf=: I E 1.:jF~::E~d T i fl,e: <=;''C'' ,

Also, the computer ignores any leading or trailing blanks in an unquoted string expression. Thus, to
include such blanks in a string expression, they must be within quotes (that is, in a quoted string).

Since [; A T A statements can contain I and (i! symbols, [; A T fi cannot be followed by a comment or
another statement.

64

DATA (continued)

Related Keywords [HT E returns the current clock date.

[

0 Statement
• Function
o Operator

Examples

Comments

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

nOTr::­
L'; ! ; '-

65

DATE

DfnE returns the current clock date as an integer in a year/day (YYDDD) format, where YY is the
year and DDD is the day number of the year.

Related Keywords

66

DATE$

D ATE $ (date string) returns the current calendar date as an eight-character string in a year /month/
day (YY/MM/DD) format.

o Statement
• Function
o Operator

Examples

A$ == DRTFt

Related Keywords

• Keyboard Execution
0 CALC Mode

• IF ... THEN ... ELSE

67

DEF FN

D F F F r; (define function) indicates the beginning of a user-defined function definition.

[~
Statement
Function
Operator

Examples

OFF FNF(X,V,Z)=(X*3+V*4)/Z

OFF FNR~I,J,K,B$)

OFF FNF$(R,B,C$)=C$[A BJ

Input Parameters ,.
Item Description

0
0
0

eric variable Letter, or letter followed by a digit.

al parameter Numeric or string variable name.

eric expression Refer to the Glossary.

Keyboard Execution
CALC Mode
IF ... THEN ... ELSE

DFF Fr·;C

None.

None.

None.

num

form

num

strin g variable Letter followed by $ or letter and digit None.

imum string max
leng th

strin g expression
--

followed by $.

Numeric constant. a to 65535.
Default: 32.

Refer to the Glossary. None.

Restrictions

68

DEF FN (continued)

Comments

A user-defined function computes a single value, and is used by specifying the function's name and
actual parameter list in an expression; for example: 3l F t·j F (::.:: ::0 + 1. (Refer to the FN keyword entry on
page 116.) A function definition can appear anywhere in a main program or subprogram, and can be
composed of either a single statement or multiple statements. A DE F F t·j statement with no = symbol
is the beginning of a multiple-statement function definition that must have a corresponding
E t·j D DE F statement.

A user-defined function can have from 0 to 14 parameters. The formal parameters must match the
actual parameters in both number and type. All parameters passed to a function are passed by value.
Parameters appearing in the function definition list are local to the function and are inaccessable
from the main program. However, all global variables having names that differ from the function's
formal parameters can be accessed from within the function.

A string function returns a string value. The string length of a formal string parameter is automati­
cally increased, if necessary, to match the length of the actual string value passed at execution. How­
ever, if the length of the formal string parameter becomes greater than the length of the actual string,
an error results. For example, in the following program segment, the actual string value (A:n is three
characters, but the corresponding formal string parameter (T $) contains five characters. Thus, line
110 would cause an error because the formal string length cannot be increased beyond that specified
by the actual string length.

10 A$="ABC"

20 DISP FNL$(A$)

100 DEF FNL$(T$)

110 T$="12345"

120 END DEF

A function can call itself (which is termed recursion).

For a user-defined string function to return a string containing more than 32 characters, you must
specify the maximum string length parameter. Otherwise, whenever the function value exceeds 32
characters, a S t t- i n9 0 · f 1 (error 37) condition occurs. (The way that DE F F t·j uses the maximum
string length parameter for a user-defined string function is similar to the way that D I t'1 uses the
maximum string length parameter for a string variable.)

Related Keywords

Fr·!D DFF.

69

DEF KEY

D E F K E \. (define key) assigns a character string to the specified key.

• Statement
o Function
o Operator

Examples

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

key
assignment type

DFF KE'-(!! #5" "GC:::UE: 13,:+" DFF KF\' n,; 1" .' !! CAL.L. ::;UE: 1':: I::'

DFF KE\' !! FO" .. !! CAL.L. F't'1T!! <E'/ "C" .. A$

ClEF KE\' Ii fi!!

Input Parameters

Item Description Restrictions

key name String expression indicating key to be Less than five characters.
defined. (Refer to glossary.)

assigned string String expression. None.

key assignment .' or : symbol. or blank. (Refer to None.
type "Assigning Keys," on the next page.)

Comments

Key assignments are useful for repetitive character string entry, data entry, partial command entry,
direct execution, and generally customizing the keyboard to your needs.

70

DEF KEY (continued)

Assigning Keys. The following table describes the three types of key assignments:

Assignment
Punctuation Used

Result of Pressing To Define Key
Type Assignment Type the Assigned Key

Typing Aid Semicolon (:). Displays the assigned string as though you
manually typed it in.

Direct Execution Colon (:). The assigned string is executed without
altering the display.

Immediate Execution None (default). The HP-71 displays the assigned string, then
performs the same as if you typed in the
assigned string and pressed I END LINE I.

Key assignments are only active when the user keyboard is active. If the first character of a multiple­
character key name string is #, the string is interpreted as a key number. If the first character of a
two-character string is upper- or lowercase "F" or "G," the string is interpreted as the 0]- or @]- shift
of the key specified by the second character. Any excess or unnecessary characters in the key name
string cause an error condition.

The numbers to use when entering a [lEF f<E'/ assign­
ment are shown in the table to the right.

Note: The 0]- and @]- shift keys cannot be redefined.

Key Set

Primary Key
Functions

0]- Shift
Functions

@]-Shift
Functions

Key Numbering

1 through 56
(@], [R), m,··· G)

57 through 112
(OIJ, I THEN 1 ... I CeNT 1)

113 through 168
(~,~···m)

The HP -71 stores any current key assignments in a special system file named k '=- '::i ,". Each time you
execute [I E F f< E \', the computer updates the k >? I,~:,; file.

Deassigning Keys. [I E F f< E 'y' also deassigns keys by returning them to their default assignments.
To deassign a key, enter [I E F f< E \' and the key name only, then press I END LI NE 1 .

71

DEF KEY (continued)

Related Keywords

.... ,::,.1"" f<E\':::, C(JF'\' f<E\ ':,:, FETCH f<E ';', L I ::;T f<E\':='::, F'UFGE KE\':::, FEr··!Hi'1E KE\'::::,

U':::Ef::', I VIEW I·

72

DEFAULT EXTEND/ON/OFF

DE F A U L T sets the math exception traps to specific values.

• Statement
o Function
o Operator

Examples

DEFAULT OFF

DEFAUL T Ot·~

Comments

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

DEFfiUL T E:<TEr·;D

IF A{0 THEN DEFAULT EXTEND

The trap actions may be set individually for each of the five exception flags by using the T F.: A P func­
tion described on page 293. However, there are some groups of actions that are common and can easily
be set by the DE F A U L T statements:

DFFAi...iLT OFF

DEFHUL T Ofi

Sets the traps for the UNF, OVF, DVZ, and IVL flags to zero. Sets the trap
for the INX flag to 1. For the INX flag (flag -4) a trap value of 1 or 2
produces the same results. Refer to the description of the T F.: A F' function
in your HP-71 Owner's Handbook.

Sets the traps for the INX, UNF, OVF, DVZ, and IVL flag to 1.

D F F H U L T E >:: T E tw: Sets the traps for the INX, UNF, OVF, and DVZ errors to 2. Sets the trap
for the IVL flag to 1.

Related Keywords

TFHF'.

DE G (radians to degrees conversion) converts arguments expressed in radians to degrees.

o Statement
• Function
o Operator

Examples

Input Parameters

Item Description

a rgument Numeric expression.

Comments

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

None.

Restrictions

73

DEG

The conversion constant used by DE G is accurate to 15 digits, which often produces more accurate
resul ts than a conversion which does not use this function.

Related Keywords

.....

74

DEGREES

DE G F.: E E :::; sets the unit of measure for expressing angles to degrees. It IS a short form of the
OPT I Ot·j At·jGLE DEGF.:EE:::; statement.

• Statement
o Function
o Operator

Examples

Comments

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

IF A=0 THEN DEGREE~

After you execute DE: C; f;:: E E '::::, executing any function that returns an angle will return the angle in
degrees units. Operations using parameters to represent angles interpret the angles in degrees.

The Degrees setting is the HP-71 default angular setting. Both the Degrees setting and its coun­
terpart, the Radians setting, are global.

Executing DE:: C R [F ::::; clears both the RAD annunciator and system flag -10.

Related Keywords

75

DELAY

n i='; H '/ sets the rate at which lines and characters within a line will scroll in the display.

• Statement
o Function
o Operator

Examples

DEL-H',' 1

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

Input Parameters

Item Description Restrictions

line rate Numeric expression rounded to the Zero to infinity.
nearest 1/32 second. Values greater than
or equal to 8 are considered infinite.

character rate Numeric expression rounded to the nearest Zero to infinity.
1/32 second. Values greater than or equal
to 8 are considered infinite.

Default: 0.125 second.

Comments

The character rate is the number of seconds to delay between characters in the display. A zero char­
acter rate causes the display to be immediately advanced to show the last part of the line. An infinite
character rate causes the first part of the line to remain in the display indefinitely.

The line rate is the number of seconds to hold each display line (after character movement halts)
before displaying the next line. An infinite line rate causes the line to remain in the display until you
press a key. A line rate of zero implies that lines are not held in the display at all.

The HP-71 interprets as infinite any line and character rates that equal or exceed eight seconds. Rates
of less than 0 are interpreted as O.

76

DELAY (continued)

Related Keywords

77

DELETE

u E LET E deletes one or more program lines from the current file, and is non programmable.

• Statement
D Function
D Operator

Examples

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

final
line number

Input Parameters

Item Description Restrictions

s tart line number Integer constant identifying a program 1 through 9999.
line.

inal line number Integer constant identifying a program Start line number through 9999.
line.

Default: Start line number.

Comments

To delete a single line, specify only that line number. (You can also delete a single line without using
the D [: L [H: statement by entering the line number and pressing I END LI NE I). To delete a block of
program lines, specify the start and final line numbers in the D [LET E statement.

[; F L. E T [: ALL deletes all lines in the current file. (The file header remains.)

78

DESTROY

U E co:; 'r F J \' deletes variables and arrays from memory.

• Statement
o Function
o Operator

Examples

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

Input Parameters

Item Description

variable Numeric or string variable name. None.

Comments

Restrictions

Destroys variables and arrays, reclaiming the memory they consumed. Memory-reclaiming deletion of
a specified array or variable occurs when U E :=:; T F 0 \' is executed. If the computer is executing a
subprogram or user-defined function, only the variables created by that entity are deleted. U E···

:::;'r ~:' C \' H L. L. deletes all variables in the current entity (program, subprogram, or user-defined func­
tion). Executing U E :::; T F: C 'j' H L. L within a user-defined function causes program execution to
immediately exit from that function in the same way that it does when executing E r'~ U U E: F.

Related Keywords

U I !'1, I i·ITEC;Ei?, FEHL.., ::::;HCF·T.

(dimension) allocates memory for string or REAL variables and arrays.

• Statement
o Function
o Operator

Examples

::::.

C:.:,.·:

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

Input Parameters

Item Description

n umeric variable Letter followed by optional digit. None.

st ring variable Letter followed by $.' or letter and digit None.
followed by $.

imension limit 1

79

DIM

Restrictions

d

d imension limit 2 } Numeric expression rounded to an integer. Option Base setting to 65535.

m
Ie

aximum string
ngth
.-

Numeric expression rounded to an integer. 1 to 65535.
Default: 32.

...

80

DIM (continued)

Comments
D I t'l creates REAL variables and arrays, and string variables and arrays. Creation occurs upon execu­
tion of D I t'l. The dimension limits are evaluated at creation time. The lowest-numbered subscript in
any dimension is 0 or 1, depending on the 0 P T I Clt·i B A::: E setting when the array is created.
OPT I 0 t·i BAS E has no effect on maximum string length or on substring indices; the first character
always occurs at position 1. Numeric elements are initialized to zero and string elements are initialized

to null (no characters).

If D I t'1 specifies a simple numeric variable that already exists, the variable is reinitialized to zero. Other
variables are redimensioned, but not reinitialized (unless the data type-or, if a string variable, the
maximum string length-is changed). If D I t'l expands an array, it also initializes all newly-created
elements in the array. Notice that redimensioning does not necessarily preserve an element's position
within an array, but does preserve the sequence of elements within an array. (Refer to "Declaring Ar­
rays (DIM, REAL, SHORT, INTEGER)" in section 3 of your HP-71 Owner's Manual.)

The following tables indicate the conditions that apply to REAL numeric variables and arrays, and to

string variables.

Initial Value

Numeric Precision

Exponent Range

Maximum No. of Array Dimensions

Maximum Dimension Limit

Memory Usage in Bytes
• Simple Variable
• Array

REAL Numeric Variables

o
12 Decimal Digits

±499

2

65535

9.5
8*(Dim1 - Base + 1)*(Dim2 - Base + 1) + 9.5

Initial Value

Default Maximum Length

Possible Maximum Length

Maximum No. of Array Dimensions

Maximum Dimension Limit
Memory Usage in Bytes
• Simple Variable Memory Usage
• Array

Related Keywords

String Variables

Null

32 Characters

65535 Characters

1

65535

Maximum Length + 11.5

81

DIM (continued)

(dim - base + 1) * (Maximum Length + 2) + 9.5

82

OISP

[I I ::;P (display) displays numeric and string data.

• Statement
D Function
D Operator

Examples

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

.' D:$:

Input Parameters

Item

expression

column

Comments

Description Restrictions

Numeric or string expression. None.

Numeric expression rounded to an integer. Greater than zero.

You can omit the statement name itself in all cases except immediately after T H t:: f··i or E L.. :::; f:::.

The numeric format depends on the currently selected display format. (Refer to the STR$ keyword
entry for details on various formats.) A leading blank is added before positive numbers and a trailing
blank is appended to the end of all numbers. These blanks are associated with the displayed number
itself, and not with the punctuation on either side of it. No blanks are added to either side of string
items.

83

OISP (continued)

After !:J I::::; i::> is executed, the display remains unchanged until explicitly changed by another state­
ment, keyboard entry, or program error.

Punctuating DISP Statements. Items to be displayed must be separated by semicolons or com­
mas, which themselves affect the display format. When the HP-71 encounters a semicolon after an
item, it displays the next item immediately adjacent to the first item (although numbers always have
one or two blanks associated with them, as described above). However, if the remaining line width is
not sufficient for the entire item, it will be displayed on the next line.

Commas between items cause the HP-71 to format the items in display "zones." A display zone is 21
characters wide. (The last zone in a display is less than 21 characters if it exceeds the remaining
display width.) The normal display width of 96 characters includes five zones: four 21-character zones
and one 12-character zone. When the HP-71 encounters a comma between items in the display list, it
skips to the beginning of the next zone (or to the next line if the remaining line width is not sufficient
for the entire item). To cause a blank zone of 21 characters, enter two adjacent commas in the display
list.

The effect of commas and semicolons can be used to added advantage when these symbols are the last
ones in the display list. For example, ending the list with a semicolon causes subsequent characters to
be displayed adjacent to the last output. Ending the list with a comma causes subsequent characters
to be displayed on the same line, but in the next display zone. Ending the list with neither causes
subsequent characters to be displayed on the next line by sending a carriage return/line feed to termi­
nate the line.

The [; I '; F' display list is equivalent to the ANSI minimal BASIC print list.

Use of TAB. T P f3 positions U I :::>:> (and !::> ~:' I f··j T) output at the column you specify. If the current
column position is beyond the specified T H f3, the computer first moves to the next line, then posi­
tions itself to the specified column. If the column position value exceeds the current line width, the
computer reduces the position value by a multiple of the line width (in a manner similar to the FEU

function), then moves to the reduced column position.

Related Keywords

•

--

84

OISP USING

[I I ::; P U ::; I t·j G (display using) displays the display list items in a user-specified image format.

• Statement
o Function
o Operator

DISP USING

Examples
~.;

::::.,', .

,-,;-, .. : ,', ;; ::1::;; 3D ! 'U;

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

expression

\' .' 2 , 34F2

Input Parameters

Item

line number

format string

expression

Description

Integer constant identifying a program
line.

String expression.

numeric or string expression.

Restrictions

1 through 9999.

Refer to the IMAGE keyword entry.

None.

85

OISP USING (continued)

Comments

[I I ::;p may be omitted in all cases except after THEt·j or EL::;E. The display items in the display list
must be separated by commas or semicolons. Notice that, contrary to the use of commas and
semicolons with the [I I ::; P statement, such punctuation has no effect on the spacing between displayed
or printed items.

L I::::; F' U ::::; I i··i C requires a format string to format the output items. If there are no display items,
there mayor may not be any output to the display, depending on the items entered in the format
string.

If [I I ::::; F U ::::; I f'; G references a line number, I 1'1 A C F must be the first statement in that line. When
executed from the keyboard, the computer searches for an I i'l H C; F statement at the referenced line
number in the current file.

If [I I ::; PUS I t·j G contains a string expression for the image, that expression must evaluate to a valid
format string, as described in the IMAGE keyword entry.

Example.

Program segment:

10 S$= '2X," , & "Today's" & ' ",10A,"$"2D.DD'

20 DISP USING S$; " Special" ,2.95

Program output:

Today's Special $2.95

Related Keywords

86

DISP$

D I::; P $ (display string) returns a string containing all readable characters in the display.

o Statement
• Function
o Operator

Examples

Comments

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

D I :3 P $ returns a string of up to 96 characters containing all DIS P $ readable characters in the
display.

A readable character is any character displayed while the cursor is on (as it is during keyboard entry).
The string CHI': $.:: 27 ::0 g.: " -:::" turns off the cursor, whereas C H F~ $ (27 ::0 t: " > " turns it on. Therefore,
for example, the program

1 (1 D I SF' CHF.:$ 0:: 27::0 :~.:":> t'~on" :l.: CH F.: $ 0:: 27::0 :~.:" <-r eadab 1" ::~:CHP$ 0:: 27::0 g.:":> e" .:

20 D$=DI:3F'$

assigns the string "None" to D$. The first cursor-on sequence makes readable the characters "Non";
the cursor-off sequence makes "-readable" non-readable; and the second cursor-on sequence makes "e"
readable.

D I!:; F' $ allows a number (,.} A l(D I :3 F' $::0) or string keyed into the display to be used directly by a user­
defined key or a subsequently-run program. If there are no readable characters in the display, the null
string is returned. In general, characters displayed by a DIS F' statement are not readable.

87

DIV

D I I.} (integer quotient division) returns the integer portion of the quotient of the dividend and the
divisor. That is:

x DI'.} Y = IP(x .. ···y>.

o Statement
o Function
• Operator

--1 dividend ~ divisor ~

Examples

Input Parameters

div

div

Item

idend

isor

Comments

Description

} Numeric expression.

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

Restrictions

Subject to operator precedence.
Division by zero and division of Inf
by Inf are not allowed.

The backs lash character (ASCII 92) is an alternative form of the [) I i,) operator.

Related Keywords

(division operator), Fr'iD.

jjIP -

--

88

DROP

D F: C! F' removes the coordinates of a data point from the data set represented by the summary statis­
tics in the current statistical array.

• Statement
D Function
D Operator

Examples

• Keyboard Execution
D CALC Mode
• IF ... THEN . .. ELSE

D F: 0 F c.:., 1 c.: , .. :' .' H .' C

Input Parameters

Item

coordinate

Comments

Description

Numeric expression giving coordinate
(variable value) of data point.

None.

Restrictions

The number of coordinates must be within the range specified by a preceding :::; TAT statement. Any
missing coordinates are assumed to equal zero.

Related Keywords

89

DTH$

[I T H $ (decimal-to-hexadecimal string) converts a decimal number to a five-digit string representing its
hexadecimal value, with leading zeroes included.

D Statement
• Function
D Operator

Examples

Input Parameters

Item Description

• Keyboard Execution
D CALC Mode
• IF ... THEN . .. ELSE

DISF' DTHS(165-1)

Restrictions

a rgument Numeric expression rounded to an o through 1,048,575.
integer.

Comments

A typical usage is converting a decimal number to a hexadecimal address in conjunction with the
H U D r::: ::~:, H T D, and F' E E f::: S functions, and the F' U f::: E statement.

Related Keywords

HDD~:::t, HTD, F'EEkS, F'Cit:::E.

90

DVZ

[11,)2 (divide-by-zero) returns the divide-by-zero flag number (-7),

D Statement
• Function
D Operator

Examples

IF FLAG(OVZ) THEN STOP

Related Keywords

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

C F L H G, 0 !:: F· H 1...1 1.... T, F L H C; , I r1 >< , I i,) L, 0 i,) F, :::. r L n ,_" , T F H P, U [.j F.

91

EDIT

E L! I T enables you to enter a new BASIC program or to edit a BASIC program already in memory,
and is nonprogrammable.

• Statement
D Function
D Operator

Examples

EDIT FIL.Et;

EUIT "::;TDj"

Input Parameters

Item

FDIT

Description

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

EDIT H:POPT

Restrictions

file specifier String expression or unquoted string. File name with optional device
Default: System workfile. specifier.

Comments

The BASIC file you specify with E U I T becomes the current file. If the file does not exist, EDIT
creates it. If you do not specify a file, the I,J 0 ["" k f i 1. ,,, becomes the current file. When you execute
[[i [T, the HP-71 displays the specified file's catalog information.

You can perform L.. I:=':; T, F.: U r·~, t,! E~: G E, COP \', F.: [t·j H t'l [, and other file operations on the current
file without specifying its file name. Also, the file's program lines may be viewed and edited using the
scroll keys.

[U I T file name: t'l H I ti initiates a search in main RAM only for the specified file. If the file is not
found, it is created in main RAM.

92

EDIT (continued)

ED I T file name: P I] F.: T (n) initiates a search of port n only for the specified file. If the file is not found
and if the device plugged into that port is an independent RAM, the file is created in that device.

ED I T file name: PO F.: T (no particular port specified) initiates a search of all plug-in memory devices
for the specified file. If the file is not found, ED I T creates the file on the first independent RAM
having enough room.

If you do not specify any device, and ED I T does not find the file, the HP -71 creates the file in main
RAM. As is always the case when no device is specified, the HP-71 searches main RAM first, then
searches any plug-in memory devices.

ED I T clears any program control information. This includes collapsing all (internally-maintained)
execution stacks and releasing any local environments. (In this regard, ED I T performs the equivalent
of E H D ALL.) Consequently, executing ED I T while a program is suspended (SUSP annunciator
displayed) removes the program from the suspended state and clears the SUSP annunciator. Also,
because ED I T clears the aforementioned stacks, it cannot be used in a F Ci F.: ••• hE>:: T loop.

Related Keywords

CAT.

E t·j D terminates a subprogram, user-defined function, or program.

• Statement
o Function
o Operator

Examples

Comments

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

93

END

END in a Program. E t·j D is the last statement executed in a program. (Program execution can also
be terminated with ::;TI]P.) When a program has been suspended (refer to the PAUSE keyword entry),
you can clear the suspended state by executing E t·j D from the keyboard.

END in a Subprogram. Executing E t·j D in a subprogram is equivalent to executing E t·j D SUE:. Re­
fer to "END SUB Comments" on the next page.

END in a User-Defined Function. Executing E t·j D in a user-defined function is equivalent to ex­
ecuting E t·j D DE F. Refer to "END DEF Comments" on the next page.

The END ALL Statement. E r'~ D A L .. L. releases all levels of local variables and memory associated
with a program, any subprogram(s) it called, and any user-defined functions in either the program or
the subprogram(s) it calls.

Related Keywords

94

END DEF/SUB

[r··! Li D [F (end function definition) causes a normal return from a multiple line user-defined func­
tion call.

E t·j D ::: U E: (end subprogram) causes a normal return from a subprogram invoked by a CAL L statement.

• Statement
D Function
D Operator

--(END DEF)--

--(END SUB}--I

Examples

Comments

• Keyboard Execution
D CALC Mode
D IF ... THEN ... ELSE

END DEF Comments. E t·j D DE F indicates the end of a user-defined function, and must be the last
statement in a multiple statement user-defined function definition. E t·j D DE F terminates function
execution and returns control to the expression containing the F t·j call. The value of the function is set
by the most recent execution of F t·j variable name = expression.

When a user-defined function is invoked, it not only uses memory to create its local variables, but it
also requires memory to retain information about the global environment. If program execution halts
during execution of a user-defined function, the local variables and memory used by that function
are not automatically released. However, you can release this memory by executing E f·; [) D F F from
the keyboard. This terminates the user-defined function and also affects control of execution in one of
the following two ways:

• If the user-defined function was invoked by a program, then suspended, executing F f·; D D F F

from the keyboard suspends program execution at the statement following the statement that
called the function.

• If the user-defined function was invoked from the keyboard, then suspended, executing F f·; D
D [F from the keyboard returns control to the keyboard and does not continue the statement that
invoked the function.

When used in a user-defined function, E t·] D and D [::: T F.' U \' ALL operate in the same way as [t·; D
DFF.

95

END DEF !SUB (continued)

END SUB Comments. Encountering E: ! ... ! Li '::.' !::: during subprogram execution terminates the sub­
program, releases the local variables and memory associated with the terminated subprogram, and
returns program execution to the statement following the C ,:::, L L that invoked the subprogram. If the
subprogram was invoked by a c: ,:i i statement from the keyboard, control returns to the keyboard.
(In this case, if there are one or more keywords concatenated after C:" L. L., the HP -71 executes these
keywords before returning control to the keyboard.)

When a subprogram is suspended, executing E t·j D ::: U E: from the keyboard terminates the subprogram,
releases any local variables and memory associated with the subprogram, and affects control of execu­
tion in one of the following two ways:

If the subprogram was called from another program, execution returns to that program and is
suspended at the statement following the C ,:::,! . L. ..

If the subprogram was called from the keyboard, control returns to the keyboard. This means that
if you concatenated one or more keywords after C '::, L.. L.., those keywords are not executed.

You can use E t·j D in place of E t·j D ::: U E: to end a subprogram. Also, E t·j D ::: U E: operates in the same
way as E t·j D if no local environment exists.

Related Keywords

--

96

ENDLINE

E ["! U L. I [.;t:: specifies the end-of-line sequence used in F F I [·n·· and F'l... I':='; T statements.

• Statement
o Function
o Operator

Examples

Et·![)L..I fiE

EYUL.I [1E ""

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

ENUL.INE CHF$(i~)&CHF$(10)&CHF$(10)

Input Parameters

Item Description Restrictions

endline string String expression. Up to three characters.

Comments

Default: CR/LF (carriage return/line
feed).

The specified string is appended to the output of each F F: I f'; 'T statement whenever either of the
following two conditions exist:

• The statement is not terminated by a comma or semicolon (, or:).

• An end-of-line sequence is sent to the printer.

E [.; [! L I [.j E without a string expression restores the normal CR/LF end-of-line.

Related Keywords

97

ENG

Et·1G (engineering format) sets the engineering display format (ENG mode) and the number of signifi­
cant digits to be displayed (or printed).

• Statement
o Function
o Operator

JENGL--.J'---nu....;m:..:b~er~O;...f --.JL ~ digits r----

Examples

Input Parameters

Item Description

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

Restrictions

n umber of digits Numeric expression rounded to an o through 11.
integer.

Default: A value less than 0 defaults to
O. A value greater than 11 defaults to
11.

98

ENG (continued)

Comments

Display format statements control the format setting for displaying numbers. The display setting
remains in effect until you execute another F i··; C, :=.:; C I, F I ::<, or ::;;·r D statement.

In E: i·i;::; format the displayed value appears as

(Sign) Mantissa E (Sign) Exponent,

where, for normalized numbers,

1 < = mantissa < 1000,

and the exponent is a multiple of 3. In E i···i C; format, the HP-71 displays one significant digit more
than the rounded integer value you specify in the i:c i·! C;; statement. For example, E: t·i C :::=: produces the
following four-digit outputs:

If a displayed value has an exponent of -499, it is displayed in eel format to the number of digits
specified in the E r; C; statement. Denormalized numbers have a mantissa of less than 1.

Related Keywords

99

EPS

E F ::; (epsilon) returns the smallest positive, normalized number that the HP-71 can represent (1.0
E-499).

o Statement
• Function
o Operator

Examples

IF ~\EPS THEN PRINT ~

Comments

The value of F F ::::; is the "underflow threshold."

Related Keywords

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

100

ERRL

E f;: f;: L (error line) returns the line number where the most recent program error or warning occurred.

D Statement
• Function
D Operator

Examples

DI'::;F "Error- on li!;I:~".:EPPL

Comments

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

IF EPPL=200 THEN GOTO
EF:P[i:: I T

The current E f;: F~: L.. value is affected only by errors and warnings occuring during program execution.
An error occurring in a subprogram sets [f;: P L. equal to the appropriate line number in that
subprogram, and not the line number of the main (calling) program.

If no error or warning has occured in a running program since the last memory reset, executing E F: P L
returns o. If the last error occurred during execution of a nonBASIC program, E F f;: L also returns 0.

Related Keywords

101

ERRM$

t:.' : j:;:: 1"'1 :$: (error message string) returns the message text of the most recent error or warning.

D Statement
• Function
D Operator

Examples

Comments

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

F i? f;:: 1'1:$: returns the message text identified by the number of the most recent error (E F f;:r-;). If no
error or warning has occurred since the last memory reset, [F: f;: [.; is zero and [~:: P 1'1:$: returns the
null string.

Related Keywords

102

ERRN

F f::: ~:: r"! (error number) returns the number of the most recent error or warning.

D Statement
• Function
D Operator

Examples

Comments

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

Both syntax and run-time errors update the number returned by E F F it If no error or warning has
occurred since you initialized your HP -71, E f;: f;Y returns Ci.

Related Keywords

103

EXACT

t:Ji:T calibrates the system clock and tells the HP-71 that the time currently stored is the correct
time.

• Statement
D Function
D Operator

Examples

Comments

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

F::HCT sets the Exact flag (-46), and directs the HP-71 to compute an internal adjustment factor
that is used to continuously update a fast- or slow-running clock. The recommended use of E >:: H C:T is
as follows:

1. After either powering up your HP-71 or performing a level three reset, execute :::; F T T I r'! E to set
the clock. Then immediately execute F:-:: H c: T to set the Exact flag and begin the first adjustment
period.

2. Following an interval of several days, weeks, or months, use H D ,J U ::: T and/or ::; E TTl r'l E one or
more times to correct the clock. The HP-71 accumulates all corrections except multiples of a half
hour (refer to the H D,J U ::: T and :::: F TTL 1'1 E statements). Ensure that the clock time is correct by
comparing it to a reliable time information source. Then execute E >:: H CT.

Note: A loss of precision occurs if the corrections made between executions of E >:: ACT do not
correspond exactly to the true time. However, the longer the interval between executions of
E ::-:; ACT, the smaller this precision error will be in proportion to any error resulting from a slow or
fast clock. Thus, correcting the clock after several weeks gives better results than correcting the
clock after only one day.

After executing E:: jC! C T, if further corrections are necessary, repeat the process at step 2.

104

EXACT (continued)

The interval between two E >:: H C T commands is termed an adjustment period. Executing E:: H .=: T
affects the adjustment period as follows:

• Recomputes the adjustment factor based on:

• The current adjustment factor.

• The time corrections accumulated during the current adjustment period.

• The length of the adjustment period.

• Begins a new adjustment period.

If the absolute value of the computed adjustment factor (ale) is in the range ° < ale < 10, an
In \1.:;; 1. i d P F (error 27) condition occurs.

To access the adjustment factor, refer to the AF keyword entry.

Note: The internal clock uses the Exact flag. The Inexact flag is a math flag and has no relationship to
the Exact flag.

Related Keywords

Fe::-< C F (exclusive or) generates the logical Exclusive Or of its operands.

o Statement
o Function
• Operator

--I operand ~ operand ~

Examples

Input Parameters

Item Description

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

105

EXOR

Restrictions

operand Numeric expression. Subject to operator precedence.

Comments

The operands of E >:: 0 1<: are considered to be logically false if
zero and logically true if nonzero. The possible results of
this operation are summarized in the table to the right.

E >:: 0 1<: has the same precedence as 0 F.:, which is the lowest
of all operators.

Operand

Left I Right

False False
False True
True False
True True

Result

0
1
1
0

The precedence of D:: 0 F.: in relation to the HP-71's other operators is described under "Precedence of
Operators" on page 317.

Related Keywords

PhD, t'WT, OF.

106

EXP

E ;:':: P (natural antilogarithm) returns the number e = 2.718281828 ... raised to the power given by the
argument.

o Statement
• Function
o Operator

Examples

Input Parameters

Item Description

argument Numeric expression.

Related Keywords

E::F't'ii., LUG, LCGF'i.

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

Restrictions

None.

E ::.:: P r'1l (natural antilogarithm minus 1) returns the value of eX -1.

i 0 Statement
• Function

I 0 Operator

Examples

Input Parameters

Item Description

argument Numeric expression.

Comments

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

None.

107

EXPM1

Restrictions

This function allows for an accurate evaluation of the quantity eX - 1, which is useful for values of X

that are close to zero.

Related Keywords

E::F', L.OC, LUCF 1.

108

EXPONENT

E i': F' C! ! .. ! E r·1 T returns the exponent of its normalized argument.

o Statement
• Function
o Operator

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

--(EXPONENT)------+(D----- argument r--0--
Examples

Input Parameters

Item Description

argument Numeric expression. None.

Comments

Restrictions

E i': F' 0 I·j E [.j T enables you to perform extended range computations that might otherwise produce an
underflow or overflow. For a finite nonzero argument, the result is an integer in the range -510
through 499. E :'< F' 0 ti Dn <:: ~:!::. or L< F' C r1 E rn (- Ci::' returns - I r·n::· and sets the DVZ (division-by­
zero) exception flag.

Related Keywords

l...UC 1 O.

109

FACT

FA C T (factorial) returns the factorial of a nonnegative integer argument.

o Statement
• Function
o Operator

Examples

Input Parameters

Item Description

argument Numeric expression.

Comments

F H C T returns a value of type REAL.

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

".:FACT(t-1),

Restrictions

Nonnegative integer less than or
equal to 253, or equal to Inf.

The factorial of a positive integer is the product of all positive integers less than or equal to that
integer. The factorial of 0 is defined as 1. The factorial function overflows for finite arguments greater
than 253. However,

FHCT<::Inf::' = Inf.

110

FETCH

FE T C H displays any line in the current program file for editing, and is non programmable.

• Statement
D Function
D Operator

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

~------------~~X

Examples

statement
ident1f ier

FFTC H ;" : ...

Input Parameters

Item

: ... : ... [1 : ! ... ~ : '",i i:::' tJ"r F

Description Restrictions

statement
identifier

Line number or label of a program
statement.

Any valid line number or label
reference.

Comments

Fetching a line sets the file pointer to that line and allows you to edit the line.

If a line number or label reference is not specified, the current line is displayed. If the line number is
not found, the HP-71 displays that line number followed by the cursor. This allows you to create a new
program line. In a suspended program (SUSP annunciator displayed), executing FE T C H without an
argument displays the line containing the next statement to be executed.

If a specified statement label is not found an error occurs.

Related Keywords

FE T C H f::: E \', L I ~:; T. See also the descriptions of the wand [YJ keys in the HP-71 Owner's Manual.

111

FETCH KEY

displays a specified key assignment for editing, and is nonprogrammable.

• Statement
D Function
D Operator

---c FETCH KEY H
Examples

key
name

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

FETCH f::E\' "H" FETCH f::F\' "fH"

Input Parameters

Item Description Restrictions

key name String expression. Less than five characters.

Comments

FE T C H f:: E '/ retrieves the character string assigned to the specified key. The string is displayed in
one of the following formats:

• Direct execution: DE F f::: E 'l key name., assigned string:

• 'JYping aid: DE F f::: E \' key name.. assigned string.:

• Immediate execution: DE F K E 'l key name., assigned string

If no string has been explicitly assigned to the key, the computer displays DE F K E 'l key name. (For
further information concerning these formats, refer to the DEF KEY keyword entry.)

The I VIEW) key displays the string assigned to the next key you press. The string remains in the
display as long as you hold the key down. When you release the key, the display returns to its original
state. If the key is unassigned, the HP-71 displays Ut·iH::::::; I C;r·~ED.

Related Keywords

DEF f:::E'/, LI::;T f:::E\'~:;, IVIEW).

112

FIX

F I ::.:: (fixed format) sets both the fixed display format and the number of fractional digits to be dis­
played (or printed).

• Statement
o Function
o Operator

Examples

number of
fractional digits

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

Input Parameters

Item

number of
fractional digits

Comments

Description Restrictions

Numeric expression rounded to an integer. 0 through 11.
Default: If the value is less than zero,
F J: ::< uses zero; if the value is greater
than eleven, F I ;:< uses 11.

Display format statements control the format for displaying numbers. The display setting remains in
effect until you execute another F I :::, F j ... j C;, ::; C I, or ::; T D statement.

In F 1:< display setting the displayed or printed value appears as:

(Sign) Mantissa.

The mantissa appears rounded to d places to the right of the decimal, where d is the specified number
of digits. While the fixed display format is active, the HP-71 automatically displays a value in c···

format, rounded to d places past the decimal, in either of the following two cases:

• If the number of digits to be displayed exceeds 12 .

• If a nonzero value rounded to d places past the decimal point would be displayed in fixed display
format as zero.

113

FIX (continued)

Related Keywords

114

FLAG

F L. A G returns the current value (0 or 1) of the specified flag, and optionally sets or clears the flag.

o Statement
• Function
o Operator

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

---@--0--ln~!~~rl-l 'T"~--. ---~~f-l-a~9-n-e-v-Wa~1~u-e-.....,-~--r"'·0--

Examples

A :::: F L.. H C; (I .' 3. !.j :::: r:-! ~::! r- (C) ',) c:" , ,..J >
IF FLMG~lVL) !HEN GU!U IVL.1P

Input Parameters

Item Description Restrictions

flag number Numeric expression rounded to an If you do not enter a new flag
integer. value, the range is -64 through 63.

If you enter a new flag value, the
range is -32 through 63.

new flag value Numeric expression. None.

Comments

If you do not specify a new flag value, the flag value remains unchanged. Otherwise, the HP-71 sets the
specified flag to 0 or 1, according to whether the new flag value is zero or nonzero.

You can use F L. A G to set, clear, test, save, and restore any user or system flags numbered greater than
-33.

Related Keywords

CFL.AG, D!,}Z, I t·i>::, I',}L., O!,}F, :::FLAG, Ut·iF.

F i . C! Ci F returns the greatest integer less than or equal to the argument.

o Statement
• Function
o Operator

Examples

Input Parameters

Item Description

argument Numeric expression.

Comments

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

None.

115

FLOOR

Restrictions

If the value of the numeric expression is an integer, that value is returned. If the value of the expres­
sion is not an integer, F!.... () () F: returns the greatest integer value less than or equal to the expression.
For example:

• I='! ,-, ,-, F' ". 1. , "-,,,, returns 1..

• FL.:' U F' (" i' returns - 1 .

F L.. (J () I? and It';"T are identical functions.

Related Keywords

CEIL, FF', ItH, IF.

116

FN

F t·j (function) transfers program execution to the specified user-defined function and may pass param­
eters to that function.

o Statement
• Function
o Operator

'Multiple·line user-defined functions cannot be used in CALC mode.

• Keyboard Execution
• CALC Mode'
o IF ... THEN ... ELSE

numeric ~~ __________________________ ~~
variable name"

Examples

string
variable name

FF I ['iT A$.: Ft'lD$ '. ':':,$.' \'$)

Input Parameters

Item Description

variable name Numeric or string variable name.

actual parameter Numeric or string expression.

Comments

FilE

None.

None.

Restrictions

When invoked in an expression, a function is evaluated and its value is returned to that expression. In
a user-defined function definition, F [.; is used in the left-hand side of an assignment statement to
assign the value to be returned from the function to the expression that invoked the function. A user­
defined function can be used in either a running program or a statement executed from the keyboard.
(Use the DE F F tl statement to create user-defined functions.)

The actual parameters must be of the same type (numeric or string) as the corresponding parameters
(formal parameters) in the [I E F F t·j statement. All actual parameters are evaluated, then passed as
values.

117

FN (continued)

The referenced function must be in the current program scope. If you execute the user-defined func­
tion from the keyboard, the computer searches only the main program or subprogram in the current
file, depending upon which environment is currently active. If the currently active environment pro­
gram contains more than one user-defined function with the same name, Ft·; uses the one on the
lowest-numbered line .

For further information concerning environments, refer to "Scope of Environments" on page 314 and
to your HP-71 Owner's Manual.

Note: It is possible for a subprogram to contain one or more user-defined functions having the same
name as a function in the main program. In this case, if you (1) suspend program execution while in
the subprogram and (2) execute the user-defined function from the keyboard, F [.; uses the function
on the lowest-numbered line in the subprogram.

Related Keywords

118

FOR ... NEXT

F C) !:;': is used with t·; E:<' to define a loop that is repeated until the loop counter exceeds the specified
value.

• Statement
D Function
D Operator

loop
counter

Examples

.., .-,
iU

161:<:; D]:::::F' i6 ... ··

• Keyboard Execution
D CALC Mode
D IF ... THEN ... ELSE

(~ t-iE:·:T <
10 @ DISP CAT5(1) @ NEXT

Input Parameters

Item Description

loop counter Simple numeric variable. None.

initial value Numeric expression. None.

final value Numeric expression. None.

step size Numeric expression. None.
Default: 1.

program Any number of contiguous program lines. None.
segment

Restrictions

119

FOR ... NEXT (continued)

Comments

General Operation. The loop counter is set to its initial value when program execution encounters
the F Ci P statement. Each time execution encounters the corresponding [.; !::: >::"T' statement, the step
size is added to the loop counter, and the resulting new loop counter value is tested against the final
value. If the new loop counter value does not exceed the final value in the direction indicated by the
step size, the computer executes the loop again, beginning with the statement immediately following
the F Ci P statement. If the new loop counter value exceeds the final value in the direction indicated by
the step size, the computer exits from the loop and continues program execution with the statement
following the N E: >: T statement. Refer to the loop test that is described under "Operating Details,"
below. Notice that the step size can be positive, negative, or zero (which results in an infinite loop).
Whenever you do not specify a step size, the HP -71 uses a default step size value of 1.

Operating Details. The HP-71 uses the following loop test to determine whether to execute the
program segment between the F Ci P and f'; E ::< T statements:

If (loop counter - final value) * SGN(step size) < = 0 then execute the program segment; else
transfer execution to the statement following the corresponding f'; E: >:: T statement.

When the loop is initialized, the loop counter is assigned its initial value, and the preceding loop test
is then performed to determine whether the F : .. ' F:: ••• r'; E ::r program segment should be executed or
bypassed.

The initial, final, and step size values for a loop are determined (initialized) when program execution
enters the loop. If you use a variable or expression for any of these values, you can change that variable
or expression value after the computer initializes the loop without affecting how many times the loop
is repeated. However, changing the value of the loop counter after the computer initializes the loop
affects the number of times that the loop will be repeated.

The loop counter variable is allowed in expressions that determine the initial, final, or step size values.
However, the value of the loop counter variable is established before the HP-71 computes the final and
step size values.

If you use C Ci T Ci to exit from a loop before the exit condition is satisfied, the loop counter contains
the value it had at that time.

FOR-NEXT loops can be nested.

When the loop control values involve NaN or Inf there are exceptions to the loop test. For example, if
the initial value, final value, or step size has the value of NaN upon loop entry, then an I.J ;"', () (" de t' ;::;- d
(error 20) condition occurs. If the IVL trap value is "2," then the loop counter is set to NaN and the
program segment between F 0 F:: and N E >:: T is executed at least once.

120

FOR ... NEXT (continued)

Related Keywords F F' (fractional part) returns the fractional part of a numeric value.

D Statement
• Function
D Operator

Examples

.: FP;:' '."

Input Parameters
r
I
I Item Description
!

I argument Numeric expression.

Comments

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

None.

The returned fraction has the same sign as the argument. For example:

• F F' .:: 1 . 5::' returns . 5.

• F F' .:: - 1::' returns - O.

• F F' .:: - 1 . 5::' returns - . 5.

Related Keywords

' ... !::.i. L., Fi . i ... Cif:::, I [';T, IF'.

121

FP

Restrictions

122

FREE PORT

F " , F Ci F' 'T switches the RAM in a port from main RAM to independent RAM status.
F' ," ," '" is non programmable.

• Statement
D Function
D Operator

Examples

Input Parameters

Item Description

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

Restrictions

port specifier Numeric expression truncated to two o <= p <= 5.
digits after the decimal point. Interpreted o <= dd <= 15.
as p.dd, where:

p = port number.
dd = device number.

Comments

Operation. :::. F F:' F: F' !"", ;::' .. , .. separates a RAM from system memory and prepares the RAM to receive
and maintain files independently of the computer's main RAM. If there is not enough memory avail­
able to remove the RAM, the computer displays an I i'''' .:: , ,+ 1- :L c: :i. '::;' (,"i: ,., '::' 'ii '.' ,. (error 24) message.
Following execution of F f? E:: t::: F Ci F' T, you can remove the RAM from the HP-71 without disrupting
the computer's memory configuration. (Removing a RAM from the computer without first separating
it from system memory by using F' ::;> i:::' r" F' ,", ,:::,'," can cause a 1.... C", condition).

Note: Executing F F.: E E F' [I F.: T changes the system configuration. That is, when you execute
F F.: E E F' 0 F: T, all file pointers are reset, the workfile becomes the current file, and all F 0 F.: ...
r'~ E:=: T loops are terminated.

123

FREE PORT (continued)

Port Information. Port 0 contains the HP-IL port and four internal memory modules. Ports 1
through 4 are the four ports in the front of the machine, numbered from left to right. Port 5 is the
card reader slot.

The device number (dd) is the position of a plug-in device in a device chain.

Related Keywords

124

GDISP

CD I ::; P (graphic display) sets the dot pattern in the display according to a specified string.

• Statement
D Function
D Operator

Examples

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

Input Parameters

Item Description

bit pattern String expression truncated to 132 None.
characters or extended with nulls to 132
characters. (The display is composed of
132 columns containing 8 dots per column.)

Comments

Restrictions

C; iJ I.::, r:' sets the HP-71's liquid crystal display bit pattern (but does not affect the display buffer con­
tents).

The LCD window consists of a field of 132 dot columns. Each column contains eight dots. The HP-71
displays information by turning on various dots. Any character in a CD I S P string has a character code
that can be represented as an eight-bit binary number. (Refer to "HP-71 Character Set and Character
Codes" on page 322.) Each character in a G DIS P string corresponds to one column of dots in the
display; each bit in the character's binary representation corresponds to one dot in that column. The
least significant bit of a binary character code defines the top dot of that character's display column;
the most significant bit defines the bottom dot of the display column. For example, CD I S P uses the bit
pattern for the character "A" (binary code: 0100 0001) to affect a display dot column as shown on the
facing page.

o 1 o 0 o 0

I

o 1

II~:

125

GDISP (continued)

A display of this column would
show the first and seventh dots.

Notice that the l's in the binary code correspond to the displayed dots and the O's correspond to the
undisplayed dots.

A C D I ::; P string character can be either a character you type in from the keyboard or a character
specified by C H F: :~::.

The C Ci I ::; F' string is a one-dimensional array of bytes used to determine the dots to turn on for a
graphic pattern you want to place in the display. The character code for the first character defines the
first dot column in the display, the second character defines the second column, and so forth. The
least significant bit of each character defines the top dot of that display column and the most signifi­
cant bit defines the bottom dot of the column. For example, the following illustration shows the result
of executing eLi I:::; F C H F::t .:: ~l ;::: ,:+::. :::: dTL..

126

GDISP (continued)

......-------01111100 CHR$(124)
.....------01100100 d

rFr
01010100 T

~01001100 L ! r-01111100 CHR$(124)

.----r-~-~~~

(Least Significant Bit of Each Column)

(Most Significant Bit of Each Column)

CD I ::; P redefines all dot columns in the display, regardless of the ~,j I t·~ D 0 ~,j setting. However, by using
CD I ::; P and ~,j I t·~ D 0 ~,j prior to executing DIS P, you can "lock" a bit pattern in a subsection of the
display. (That is, you can protect a CD I S P dot pattern in a designated portion of the display from
being cleared by subsequent executions of D I ::; P .

Where a C: Li I '::» -created symbol is not protected by a ~,~ I rW 0 i'~ setting, the symbol remains in the
display until either some operation sends a character to the display or you press a key while the
computer is waiting for an input.

Related Keywords

127

GDISP$

G DIS P $ (graphic display string) returns a 132-character string reflecting the bit pattern in the LCD
display:

o Statement
• Function
o Operator

--{ GDISP$ }--

Examples

Comments

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

The first character of a G DIS P $ string corresponds to the first dot column of the display, and the
132nd character of this string corresponds to the last dot column of the display. For any G DIS P char­
acter, the bits in that character's binary code represent the dots in the corresponding display column.
(Refer to "Comments" in the GDISP keyword entry.)

Executing CD I ::; P $ displays the current G D I ::; F:$: string (leading and imbedded nulls are ignored).
Executing CD I ::; P CD I ::; P $ displays the dot pattern specified by the current G D I ::; P $ string. In
the following program example, G D I ::; F $ is used in a loop to obtain the character string from the
current display for use in the next display.

10 REM PISTON PROGRAM

20 GDISP CHR$(255) & CHR$(255)

30 FOR I = 1 TO 60

40 GDISP CHR$(24) & GDISP$

Displays a solid vertical bar that is two columns
wide.

Begins countup loop.

Appends column corresponding to C H F.: $;:: 24::' to
current display, which, on the first pass through the
loop, is composed only of characters resulting from
execution of line 20; on subsequent passes through
the loop, is composed of all characters previously
specified in both line 20 and in the loop. Effects are
to build on C H fU (255::' image and scroll result­
ing image to the right.

128

GDISP$ (continued)

50 NEXT I

60 FOR I = 60 TO 1 STEP -1

70 GDISP GDISP$[2]

80 NEXT I

90 GOTO 20

Related Keywords

Terminates countup loop.

Begins countdown loop.

Shortens by one column the displayed image created
in the first loop, and scrolls image one column to the
left.

Ends countdown loop.

Repeats program.

129

GOSUB

GO::; U B (go to subroutine) transfers program execution to the subroutine beginning at the specified
statement. (The specified statement must be in the same program or subprogram as the GOSUB.) The
F.:ETUF.:t·l associated with a GOSUB statement returns the program exeuction to the statement immedi­
ately following that GO SUB.

• Statement
o Function
o Operator

Examples

statement
ident i fier

CC:::UB COr'1PUTE6

Input Parameters

Item Description

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

CCi:::UB II PLOT 1 [1 II

Restrictions

statement Line number or label of a program Any valid line number or label
identifier statement. reference.

Comments

If you execute GO SUB from the keyboard with another keyword concatenated after GO::; U B, the
computer

1. Executes the referenced program segment.

2. Executes the statement concatenated after GO::; U B (only if the called program segment ends with
F.:ETUF.:t·j).

3. Returns the computer to keyboard control.

130

GOSUB (continued)

However, if GO::; U E: execution is suspended and then resumed, upon encountering a F.: E T U F.: t·~ the com­
puter halts without returning to the statement concatenated after GO::; U E:.

All variables in a program are accessible to any subroutine within that program. Also, changing the
value of a variable during execution of a subroutine within that program changes the value of the same
variable in the main program.

Related Keywords

131

GOTO

When executed in a program, GOT 0 (go to statement) transfers program execution to the specified
statement. When executed from the keyboard, GOT 0 positions the HP -71 to the specified statement.

• Statement
o Function
o Operator

Examples

statement
identifier

Input Parameters

Item

F,r"' .:".

Description

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

Restrictions

statement Line number or label of a program Any valid line number or label
identifier statement. reference.

Comments

The specified line number or label must be within the current program scope.

C [I T [I is frequently used as follows:

• In a running program to perform unconditional branching.

• From the keyboard to:

• Commence execution from a particular statement using I SST lor I CaNT I (when the program is
suspended) .

• Position the computer to a particular line in order to edit that line. (Th view and/or edit a line
within the current file, but outside of the current program scope, use FE T C 1'-1).

(Executing C [I T [I from the keyboard displays the SUSP annunciator and sets the suspend statement to
either the first statement in the specified line or the first statement following the specified label. Also,
the line containing the suspend statement becomes the current line.)

132

GOTO (continued)

Related Keywords

CC:;iiT", FETCH, C:Ci:::::!.F::;. Refer also to the description of the I SST I key in your HP-71 Owner's
Manual.

133

HTD

H T D (hexadecimal string to decimal) converts a string argument representing a hexadecimal number to
a decimal number.

D Statement
• Function
D Operator

Examples

Input Parameters
i
, Item i
r-

hexadecimal
value

Description

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

A= HTD (;; :~qF 1;;· .. _'::::;:::

Restrictions

I hexadecimal value String expression containing hexadecimal Up to five uppercase or lowercase
I
I digits. digits. I
i

Comments

A typical usage of H T [i is to convert a hexadecimal address in conjunction with [i T H:l, H [i [i fd,
FEEf::$, or FCif:::E.

H T [i is a numeric function that accepts a string expression as input. The string expression must rep­
resent a hexadecimal integer value in the range 0 through FFFFF. Any string expression having more
than five characters or containing a character that is not a hexadecimal digit causes an error con­
dition. A null string also causes an error condition.

Leading zeroes in the string expression will be accepted, although they are not necessary.

Related Keywords

H [i Dfd, [i T H $, F' E Ef $, penT.

134

IF ... THEN ... ELSE

IF. .. , i"'i i:::. i··i ••• i : 1... ::::: E provides conditional execution.

• Statement
D Function
D Operator

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE*

'Following E: i (only). Refer to "Further Restrictions" on the next page.

Examples

T ~:::.

Input Parameters

Item Description Restrictions

logical expression Numeric expression evaluated as true if None.
non-zero and false if zero.

statement Line number or label of a program Any valid line number or label
identifier statement. reference.

executable Executable BASIC statement. Any statement legal in an
statement construct. (Refer to "Further l Restrd;ons," on the next page.)
label declaration Quoted or unquoted string followed by a Any valid label.

..
'------______ L_

135

IF ... THEN ... ELSE (continued)

Comments

General Operation. If the logical expression evaluates to a nonzero value, it is considered true, and
program control is transferred to the statement immediately following THE , .. j. Execution of state­
ments following THE I',; continues until the computer encounters either E: L .. :::: ,:::: or the end of the line
(unless a G Ci·"" Ci unconditionally branches execution to another statement). If the logical expression
evaluates to zero, it is considered false, and execution is either transferred to the statement immedi­
ately following E 1... ::::: t:: or, if I: L. ::: E is not used, to the next program line.

Note: A logical expression can be constructed with numeric or string expressions separated by rela­
tional operators, as well as with a numeric expression.

A line number or label reference immediately following T H F f'; or E: ~ .. ::: E: is considered to be an "im­
plied GeT C;''' and execution is transferred to the specified statement.

Further Restrictions. Most BASIC statements are legal following T H E:i--; or E L ::: F. However,
F Ci f:::, f'; ,:=.: >:: . .,.., D P T H, D t:: F F f';, and, generally, any nonexecutable statements are illegal after THE: i···i

or E L. ::::: E:. Because IF ... THE f'; constructs cannot be nested, IF ... THE: I"~ cannot follow T H t:: f"',
but can follow E L :::: [.

An implied D I Co is not legal immediately following T H t:: f'; or I::. L ::. t::., but is otherwise legal in an
T i::: construct.

136

IMAGE

I !"'1 H C; E: is used in conjunction with r·'" ,OM. :-.

displayed and printed output.
L: ::: I ,'j and F'." '·.,·r i... :::: I i···i C:: to control the format of

• Statement
D Function
D Operator

Examples

D Keyboard Execution
D CALC Mode
D IF ... THEN ... ELSE

Input Parameters

Item Description

format string Refer to "Using I !'!!'::iC:[Symbols to None.
Control Output" on the next page.

page control item Refer to "Page control symbols" on page
138.

Comments

Restrictions

I i"i H C F is the last keyword recognized in a program line. Since the (~ symbol is a valid I i'l H C E::

symbol, there can be no statements concatenated after I l'1 H C E. Also, an I j'i Fi C r:: statement cannot
contain a trailing remark, as inclusion of ! generates an error.

137

IMAGE (continued)

To be executed properly by D I ::;;t:' U ::: I r'; C or P~: I r·n u ::: I r·i C, I t'l A G F must be the first state­
ment in a program line. Although you can enter a program line having I t'l A G F as the last statement
in a multiple-statement line, program execution does not access an I t'l A G F statement in this posi­
tion, and causes an error.

You can place a program line containing I 1'1 A G F anywhere in a program, as location with respect to
D I ::: P U ::: I t·i G or P P I t·i T U ::: I t·i G is not significant. During program execution, I l'1 A C F state­
ments are ignored in the same way as P F 1'1 statements.

Using IMAGE Symbols to Control Output.

Format Str ing:

,---------------------------------icont~~~e1tem~----------------------~

multiplier

numeric field
(see diagram on page

multiplier

The use of field specifiers in D I ::: P U::: I t·j G or P P I t·j T U::: I t·j G statements is shown on the next
page. Also, in the following discussion, multipliers are represented by n.

138

IMAGE (continued)

Several I!'! tl C F symbols can be used with a multiplier, as shown in the syntax diagrams. (A multi­
plier is a numeric constant in the range 1 through 9999.)

• Carriage control symbol: Although this symbol is the first encountered in the format string, it is
not acted upon until all other output has been processed.

Suppresses the automatic output of the end-of-line sequence at the end of the
output list.

• Page control symbols:

Page contro 1 1 tem:

f rOt) ..
~r--mU-l-t-1p-1-1e-r-~ 4Y
Note: Editing symbols may precede or follow any I!'! peE character (except #).

n ./ D I ::; F U ::; I r·; C sends a carriage-return, line-feed to the display. F F I r·F
U :::; I r·; C sends an end-of-line sequence to the printer device.

n 1:Ei Sends a form-feed to the output device.

• Grouping symbols:

n .:: Parentheses are used to delimit field specifiers and to group several fields for
replicated output. There is no limit, except for the amount of memory avail­
able, to the number of levels of nested parentheses.

139

IMAGE (continued)

• Special output symbols:

H

• Editing Symbols:

Compact field. Displays/prints a number or string in current display format,
with no leading or trailing blanks.

Same as <, except the European radix (.') is substituted for a decimal point
in numeric output.

Displays/prints a single character. The number to be output i~ rounded to an
integer and the least significant eight bits of the number are sent. That is, a
modulus (256) is performed. The E: symbol is equivalent to C H fd.

Supression field. Causes the computer to evaluate the corresponding variable
without displaying or printing the result. For example, the statement

DI::;F U::;I r<; "f::: .. t::: <".: 1 .. ;2., 3 .. 4

displays

124.

f ~
ll""",,,,,, ~~'""'''''fLOJ

) ..

Note: Editing symbols may precede or follow any I t'1PCF character (except #).

n ::< Displays/prints a blank.

n "chars." Displays/prints the characters contained in the quotes. Any accompanying mul­
tiplier must precede the leading quote(s).

• String Field Symbol:

n A Displays/prints a string character. Generates trailing blanks if the specified
number of characters is greater than the number available in the corresponding
string. If the field specifier becomes exhausted while the corresponding string
still contains characters, those characters are ignored.

140

IMAGE (continued)

• Numeric Field Symbols:

Continue at
extension A.

Exte~sl0n ~--r-------'------------------'r-T""---'--

Note: Editing symbols may precede or follow any I t'lAGE character (except #).

141

IMAGE (continued)

• Digit specifiers:

n D Displays/prints one digit. Replaces a leading zero with a blank. If the number
is negative, but no sign symbol is specified, the minus sign occupies a leading
digit position. If a sign is displayed, it "floats" to the left of the leftmost digit.
Any editing symbols preceding the first D specifier are also "floated" to the
left of the leftmost digit (or sign, if appropriate).

n l Same as for [I, except leading zeroes are replaced with
not filled, no symbols float to the leftmost digit.

n .:::. Same as for l, except leading zeroes are displayed.

• Sign specifiers:

::; Displays/prints the number's sign (+ or -).

Since blanks are ""-l-" " ·T· •

Displays/prints the number's sign if negative, and a blank if positive.

No more than one ::; or ['1 is allowed per numeric field.

• Radix specifiers:

Displays/prints a decimal point radix.

Displays/prints a comma for the European radix.

• Digit separators:

C Displays/prints a comma as a digit separator.

F' Displays/prints a decimal point for the European digit separator.

• Exponent specifier:

E Displays/prints E with a sign and a three-digit exponent. (Leading zeroes in
the exponent are displayed.)

Field Specifiers. I t'i AGE items are grouped into logical field specifiers, with each output item
formatted by a new field. There are two types of field specifiers:

• Output Field: Consists of numeric, string or special specifiers, all requiring items from the output
list .

• Editing Symbol Field: Consists of blanks or quoted characters that do not require an output item.
A special case of this type is the null field, which consists of either a pair of adjacent commas or a
pair of parentheses that do not enclose any characters.

142

IMAGE (continued)

Each field terminates when it encounters a
delimiter. Delimiters indicate that formatting is
completed for an output item, whether or not the
entire item was used. The chart to the right illus­
trates the five field delimiters.

Field Delimiters

Delimiter* I Usage

The usual way to separate two field
specifiers.

n Page control character (output EOL
sequence).

n (ii Page control character (output form
feed).

n I Left parenthesis.
I Right parenthesis.

"The n indicates that the symbol can be preceded by a multiplier.

When the HP-71 executes D I ::; F' U :::; I ! .. ~ C; or F' F:: I f·F U ::; I he, it sequentially accesses the items in
the output list; one for each output field in the I 1'1 peE list. If the computer encounters a field that
does not require output items (editing symbol field), the field is acted upon without accessing the
output list.

The processing of field specifiers stops when the computer encounters an output field having no
matching output item. If the output fields are exhausted while output items remain, the fields are
reused, beginning with the first field.

IMAGE Overflow. An I t'l peE overflow results when a numeric item requires more digit places to
the left of the decimal point than are provided by the field specifier. This occurrence is reported in the
same manner as math overflows; that is, as an error or as a warning, depending upon the value of the
OVF trap. With either [I F F P U LTC F F pr T F:' 14 F' .:: C i) F ::. = C1! the I 1'1 peE overflow is reported as an
error, thus halting execution. With [lEFPUL T Cf·; or [lEFPUL T E>::TUW, or with TF::PF'':: Ci)F::'
set to 1 or 2, the It·! peE overflow is reported as a warning. After the warning is displayed, the
numeric field is filled with l symbols and execution continues.

A minus sign takes a digit place if you do not specify t'l or ::;, and can generate unexpected overflows
of the field specifier. If the number contains more digits to the right of the decimal point than the
field specifier, it is rounded to fit the field specifier.

String Fi~ld Output. If a string is longer than the field specifier, it is truncated, and the rightmost
characters are not sent out. If the string is shorter than the specified field, trailing blanks are used to
fill out the field.

143

IMAGE (continued)

IMAGE Syntax Details. The HP-71 checks the syntax of an I i·'iHGE statement only when D I:::»

i . .! ::::; I h C; or F' F I r·~ T U ::; I f··i C; execute that I i·'ll::1 C; E: statement. Only those parts necessary to exhaust
the output list are checked, since not all of the field specifiers may be used if there are fewer items in
the output list. Thus, a syntax error near the end of the format string is not reported if there is no
output item to access it. In addition, since the computer processes field specifiers sequentially, several
items may be generated before a syntax error is reported.

Typing for Readability. You can type I l'i Fi C E symbols in upper- or lowercase characters. A space
imbedded anywhere in an I i·'i H C F statement is ignored, except where the space is imbedded in a
quoted series of characters.

Carriage Control Symbol. Only one occurrence of the # carriage control symbol is allowed in any
format string, and only as the first non blank character in that list. The carriage control symbol must
be followed by a delimiter.

Parentheses. Although parentheses allow repeated output with multipliers, they always function as
delimiters for a new field. When building the format string, you should include parentheses only when
needed for field delimiters. For example, in each of the following program segments, the D I ::; F'
U '::; I f; C operations are the same, except for the parentheses appearing in one of the two I 1'1 peE

statements:

• Program segment:

10 DISP USING 100; "LUNCH","FRIDAY"
20 DISP USING 200; "LUNCH","FRIDAY"
100 IMAGE M3"."AA , 2X
200 IMAGE AA3(" '")AA , 2X

Program output:

LU, ,-. FF:'. ,ID

UJ .. FF::

• Program segment:

10 DISP USING 100; 5280, 1760
20 DISP USING 200; 5280, 1760
100 IMAGE 3ZCZZZ, 2X
200 IMAGE 3(ZCZZZ), 2X

144

IMAGE (continued)

Program output:

• Program segment:

10 DISP USING 100; 1.25,6.50
20 DISP USING 200; 1.25,6.50
100 IMAGE "$"DDD.DD , 2X
200 IMAGE ("$")DDD.DD , 2X

Program output:

$1 ,25 $6,5(1

$ 1,25 $ 6.50

Multipliers. Multipliers are integer values in the range 1 to 9999. A multiplier of 1 is ignored in all
cases (that is, no error will be generated in cases where a multiplier is not allowed). Only the following
types of symbols allow a multiplier.

• Editing symbols: >::, II chars.".

• Page control symbols: ,I~.

• Symbols specifying individual characters in an output item: D, t, 2 and A.

• Left parenthesis .::.

For a description of the preceding characters, refer to "Using IMAGE symbols to Control Output" on
page 137.

You can replicate any field by enclosing it in parentheses with a preceding multiplier. Thus, since the
symbols t:::,H,E:, and are fields specifying entire output items, they must be enclosed in parentheses
in order to be replicated. For example:

100 IMAGE 3(4D.2D,2X,5A),2/

200 It'1HC;E 2(E:), 4: .. 2232;::. i::i/25::::: ..-4(1<)

The Special Output Symbols H, K, B, and ". A special output specifier, because it uses an entire
item, comprises an entire field. H, K, and can be used to generate string or numeric items; B can be
used only with numeric items.

The t::: and H symbols generate an item in the current display format, except that no leading or
trailing blanks are generated. t::: and H differ only in the type of radix symbol for numeric output. t:::
uses the decimal point, whereas H uses the comma (European radix).

145

IMAGE (continued)

E:, which is used to format a numeric item, is equivalent to sending out C: H k :,1,: of the number. The
numeric item n must be in the range

-1048575 < = n < = 1048575.

The symbol allows output items to be skipped. Any such item is still evaluated, which allows the HP-
71 to execute a function without displaying or printing the returned value. This is useful if the evalu­
ated function changes the state of the machine, such as changing the display device.

Examples Using H, K, B, and".

Program segment:

10 DISP USING 100; 583.5,247.3:June",20
20 DISP USING 200; "Blue":Red","Hat":Shirt"
30 DISP USING 300; 65,66,67,CHR$(65),CHR$(66),CHR$(67)
100 IMAGE H,3X,K
200 IMAGE K,X,"
300 IMAGE 3(B),"=",3(A)

Program output:

For the next example, assume a plug-in ROM provides the F I:::' !"'; statement to change ink colors on a
printer.

Program segment:

1 0 PRINT USING 1 00; FNX(B,C), A
20 STOP
100 IMAGE ", "Account #",6Z,X,"Updated"
200 DEF FNX(B,C)
205 REM PEN 1 = black ink; PEN 2 = red ink
210 IF B> =C THEN PEN 1 ELSE PEN 2
220 FNX=B-C
230 END DEF

146

IMAGE (continued)

Printer output with B=33, C=22, and A=118042:

(in black ink)

Printer output with B = 18, C = 22, and A = 118042:

(in red ink)

Editing symbols. The symbol ::: and quoted characters can be imbedded within any other field
specifier without delimiters.

Editing Example.

Program segment:

10 OISP USING 100;2592, "Tues"
100 IMAGE DOD" dollars and "~O" cents: ,2XK"day"

Program output:

Numeric Specifiers. The symbol D sends out a digit, with leading zeroes replaced by blanks.

The ::f: symbol generates a digit, with each leading zero replaced by t.

The Z symbol generates a digit, with leading zeroes shown.

Numeric Specifier Example.

Program segment:

10 OISP USING 100; 12.4, 10.1, 6
100 IMAGE 00000,2X, *****,2X,ZZZZZ

Program output:

Digit output before the radix can be specified with aD, l, or Z, but not a mixed set of these symbols.
The only exception is that a Z can always occupy the unit digit's place. This unit digit Z is only
necessary with decimal output, since integer output will always show a digit in the unit place.

Sign specifiers U::; and t,!) can be imbedded anywhere within a numeric field. Only one ::; or 1"1 IS

allowed in each numeric field.

147

IMAGE (continued)

If ::: or t'1 is not specified, and the number is negative, then the minus sign will take up one digit
position before the radix.

Radix specifiers (, and 1:;:-) can only be followed by D symbols if digits are to be shown after the
decimal point. Only one decimal (.) or P is allowed in each numeric field.

Digit separators (C and P) can appear anywhere in a numeric field. They cannot be adjacent to (or
separated only by editing symbols from) other digit separators, radices, exponent specifiers, or
delimiters. If a C or P appears when leading zeroes are being output, the symbol causes output as
shown below:

Program segment:

10 OISP USING 100;2
20 OISP USING 200;2
30 OISP USING 300;2
100 IMAGE OC30C30.30CO
200 IMAGE *C3*C3*.30CO
300 IMAGE ZC3ZC3Z.30CO

Program output:

When used with D symbols, a digit separator within
leading zeroes is replaced with a blank.

When used with l symbols, a digit separator within
leading zeroes is replaced with a l.

When used with Z symbols, a digit separator within
leading zeroes appears as specified.

The [I symbol allows output to "float" past blanks to the leftmost digit of the number, or to the radix
indicator. The allowable floating specifiers are :::, t'1, >:: and quoted characters that precede all digit
specifiers in the field. These characters will float over any blank digit positions or separator positions
before the first nonzero digit is encountered. When the first D is encountered, the floating capability
is lost for any following ::;, t'i, ::<, or quoted characters. However, an implied negative sign always
floats past all blanks.

148

IMAGE (continued)

Examples.

Program segment:

10 DISP USING 100; 1234.56, -65.8
20 DISP USING 200; 1234.56, -65.8
30 DISP USING 300; 1234.56, -65.8
100 IMAGE "$"6D.DD, X, "$"6D.DD
200 IMAGE "$"DC4D.DD, X, M"$"5D.DD
300 IMAGE "$"2DC3D.DD, X, D"$"4DZ.DD

Program output:

$1234.56
$1234.56

$-65. :::[1
-$65.8[1

$1,234.56 $ -65.80

At least one digit specifier must precede the F symbol. The maximum exponent value allowable in
D I ::: F' U ::: I r'; G or F' f;' I r'; T U ::; It·; G output is ± 999. This is only obtainable through display form
manipulation, since, for normalized numbers, the maximum exponent value obtainable through
arithmetic operations is ± 499.

Program segment:

10 DISP USING 100; 1E-480
20 DISP USING 100; 1E-481
100 IMAGE 520DE

Program output:

~'~Fr··1 L~:~Ci; I !'1AGE C\ .. f 1
t t :*: t l t t t lllllllll t t t ... (Generates 525 l symbols.)

NaN and Inf. Numeric field specifiers display the numeric values t·j a n and I n f if there are at least
three numeric specifiers in the field (four in the case of - I n f). Numeric specifiers include the symbols
D, Z, :t:, ::;, t'l, C, P, " F.:, and E. For NaN and Inf output, each specifier corresponds to one position,
except that E corresponds to five positions. Where there are insufficient positions to print or display
the characters, the result depends on the current trap setting. That is, if the OVF trap is set to 0, the
HP-71 displays the I t'lAGE 0',/ f 1 (error 47) message. Otherwise, the computer generates a warning
and fills the numeric field with :t: symbols.

149

IMAGE (continued)

In the numeric field, !.! .:::, i·.J and I n -f" characters are right-justified, and will not be divided by editing
symbols. All excess positions in the numeric field are filled with blanks, regardless of the type of
symbol you use. (For example, ::::: andt symbols are filled with blanks when generating r';::i i'i or

output.) Generating f' i [! or I!" f output with U symbols disables the floating characteristics
of all editing symbols.

Program segment:

Note: In the following program, line 10 sets the IEEE traps to allow NaN, Inf, and error on overflow.
Assigning the trap value to T in each case simply avoids displaying the value returned by T!::: i:::i F'. The

variable T is otherwise not used in the program.

10 T = TRAP(IVL,2)@T=TRAP(DVZ,2)@T=TRAP(OVF,0)
20 SFLAG(-1) !SET QUIET TO SUPPRESS WARNINGS
30 DISP USING 1 OO;SQR(-1),1/0
40 DISP USING 110; -123, -Inf

50 DISP USING 120;NaN
100 IMAGE Z.D,3".",3DC3D.2D

110 IMAGE "{"S4D":"2D"}"
120 IMAGE 2D

Program output:

t·lat·l. . . In f
{-1:23}{ -Inf:

EPF.: L5~]: H1AGE O· ... ·f 1

Related Keywords
r"o "'" .. tJ ::::; T ~' .. j .. :' , F L. I 1-"1 r:, r.::. !";

150

INF

I iF:: (infinity) returns the machine representation of positive infinity.

D Statement
• Function
D Operator

Examples

::::: :i.

Comments

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

Any (non-NaN) number x is less than or equal to Inf. Most arithmetic functions accept In f as an
argument and process it according to standard arithmetic rules. For further information, refer to the
descriptions of the individual functions in this manual, or to your HP-71 Owner's Manual.

Operations that cause an overflow can result in an infinite value if you set the overflow trap (OVF) to
2. Also, operations that set the divide-by-zero (DVZ) exception create ;---, -,:- or ---- I (, f if you set the
DVZ trap to 2.

Related Keywords

151

INPUT

enables you to assign values to program variables from the keyboard.

• Statement
D Function
D Operator

Examples

C: ." ...

Input Parameters

Item Description

p rompt string Quoted string.
Default: "'~> "

d efault string String expression_
Default: Null string.

v ariable specifier Numeric variable specifier or
string variable specifier.

• Keyboard Execution
D CALC Mode
• IF __ . THEN ... ELSE

Restrictions

Cannot contain the same quote
character as that used to delimit the
string.

None.

None.

152

INPUT (continued)

Comments

You can assign values from the keyboard to any numeric or string variable, substring, or array element.

Prompts. Executing I [.j F' U T displays the input prompt (,~,). If the last D I ::; F' or D I ::; F' US I [.j G state­
ment was terminated (EOL suppressed) with a comma or semicolon for a delimiter, the ,~, prompt is
appended to the specified display message. If the last such statement did not terminate (EOL not
suppressed) with a comma or semicolon delimiter, the ? prompt appears on a line by itself.

Responding to Prompts. You can respond to a prompt in the following ways:

• Enter a list containing one or more numeric expressions, string expressions, or unquoted strings in
any combination. The individual items must be separated by commas and must match the I [.j F' U T
list variables in number and type. To enter an unquoted null string, key in two. consecutive
commas .

• If the input statement specifies a default string, you can either accept the string by pressing
I END LINE I or change the string by editing it, then pressing I END LINE I. When you execute an
114 F i...i T prompt containing a default string, the HP-71 displays this string immediately after the
prompt, with the cursor positioned at the first character in the string. For example:

Program Segment:

100 INPUT "CURRENT YEAR: ","1984"; A$
'-.r--'

Prompt:

Input
Prompt

..
Display
Cursor

Default
String

If the I i"; F' ii'r statement requires a string, but the item you key in is not a string, the computer
interprets the item as an unquoted string.

If you provide an improper number of inputs or enter an item that cannot be interpreted as a numeric
expression when I H F U T requires a numeric input, the computer gives an error message and again
prompts you for an input. If this occurs, the cursor appears on the input character at which the error
was detected.

153

INPUT (continued)

When prompted by an I f'; F U T statement, if you press I CONT I , the computer:

.. Terminates the I [.; F U T operation without changing the variables in the input list.

.. Continues program execution with the next statement.

Executing INPUT and Other Operations Simultaneously. While the I [.j F' U T prompt is dis­
played, the following operating conditions are active:

• The command stack is always active during I t~ PUT execution. (Pressing [QJI CMDS I is not required
to initiate command stack operation.) You can use the ~ and [YJ keys to move up and down in
the command stack. The same command stack is used for keyboard input regardless of whether the
computer is in BASIC or CALC mode, or is executing an I t·lPUT statement.

• I t·j PUT activates the command stack at the first level, so pressing ~ will initially display the
second level. To view the first level of the command stack, press [YJ or [QJ[YJ.

• If you press a direct execute user-defined key, the computer ignores the display and uses the input
of that user-defined key as the response to the I [.j F' U T prompt.

• The I VIEW I key and the [QJ I ERRM I key sequence are active during I t·W U T execution.

• Pressing I ATTN I clears the input buffer (if not already clear) or pauses the program (if the input
buffer is already clear). Thus, pressing I ATTN I twice in a row during execution of I t~PUT interrupts
program execution. If you then continue the program, the I t·j PUT statement is reexecuted.

• Pressing I RUN I, I SST I, or I CALC I during I t·lPUT execution has the effect of pressing I ENDLINE I.

• The keyboard buffer allows you to "type ahead" in anticipation of a prompt if you know what
input will be required by that prompt. As soon as the prompt appears, the key(s) held in the
buffer are accepted as the input, and program execution continues.

• The HP-71 temporarily suspends any O[·j T I !'lEF operations that come due during execution of
an 1[,; F U T statement. After (1) you complete the input process and (2) the computer assigns all
values (and unless a multiple-line user-defined function is invoked), any suspended m·j T I i'l E F.:
operations are processed.

• An error can cause an 0 [.j E F F C F branch. If there is no active 0 [.j E F.: F.: D F.: statement, and if
an input response results in an input error, the computer prompts you to reenter all variables in
the input list.

The HP-71 automatically turns itself off after ten minutes of inactivity. To continue execution, press
I ATTN I to turn the computer on, then press I CONT I to reexecute the I r'iF' U T statement.

Related Keywords

L.. I [··iF-UT, [,j I DTH.

154

INT

I t·j T (integer ~ argument) returns the greatest integer that is less than or equal to the argument, and
is identical to F L [I [I P.

D Statement
• Function
D Operator

Examples

Input Parameters

Item Description

argument Numeric expression.

Comments

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

Restrictions

None.

If the value of the numeric expression is an integer, that value is returned. If the value of the expres­
sion is not an integer, I [.; T returns the greatest integer value less than or equal to the expression. For
example:

• I [.; T 0:: .- 1 , ,::0;", returns ... ,
':"H.

Related Keywords

C:1:::: I L, FLCOF.:, FF', IF'.

155

INTEGER

T j.iT E: C E:: f;:- allocates memory for integer variables and arrays.

• Statement
D Function
D Operator

Examples

Input Parameters

Item

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

d imens ion 1 I--r-----------.--.{

dimension 2

Description Restrictions

numeric variable Letter followed by optional digit. None.

! dimension limit 1 }

dimension limit 2

Comments

Numeric expression rounded to an
integer.

Current C F' T I ':::' !.; E: P :=; F setting
to 65535.

I ['F E:: C E:: P creates integer variables and arrays. Creation occurs upon execution of I i··iTt::: C; E:: i:;::. The
dimension limits are evaluated at creation time. The lowest-numbered subscript in any dimension is 0
or 1, depending on the C F' T I () !···I b H ::::; E setting when the array is created. All elements are initial­
ized to zero.

156

INTEGER (continued)

If I t·j T E C; E F.: specifies a simple numeric variable that already exists, the variable is reinitialized to zero.
Array variables are redimensioned, but not reinitialized to zero (unless the data type is changed). If
I t·j T E C; E P expands an array, it also initializes all newly-created elements in the array. Notice that
redimensioning does not necessarily preserve an element's position within an array, but does preserve
the sequence of elements within an array. Refer to "Declaring Arrays (DIM, REAL, SHORT, IN­
TEGER)" in section 3 of the HP-71 Owner's Manual.

The following table indicates the conditions that apply to I r·1 T E G E P variables and arrays:

Integer Numeric Variables

Initial Value of Variables o
Integer Range ± 99999

Maximum Number of Array Dimensions 2

Maximum Dimension Limit

Memory Usage in Bytes:
• Simple Variable
• Array

Related Keywords

65535

9.5
3*(dim1- base + 1)*(dim2- base + 1)+9.5

Ii!:: (inexact) returns the number of the inexact result flag (-4).

o Statement
• Function
o Operator

Examples

Related Keywords

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

157

INX

158

IP

I F' (integer part) returns the integer part of the argument.

D Statement
• Function
D Operator

Examples

H:!. :::: J: F':: ::-:; 1. ::.

~ I F' ," : : .

Input Parameters

Item Description

argument Numeric expression.

Comments

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

None.

The returned value has the same sign as the argument. For example:

• IF', .. 1 , ,,-,::' returns i.

• I F (" - l.! returns - 1 .•

• IF'''' ,:::;::. returns

Related Keywords

CE I L.., FL..CiCF:, FF, I t;r.

Restrictions

(invalid operation) returns the number of the invalid operation flag (-8).

o Statement
• Function
o Operator

Examples

Related Keywords

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

, Ut··IF.

159

IVL

160

KEY$

K E \' $ (key string) returns a string representing the oldest key or keystroke combination currently held
in the key buffer, and removes that key or keystroke combination from the buffer.

D Statement
• Function
D Operator

Examples

Comments

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

The key buffer can contain up to 15 keys or keystroke combinations. The format in which the key
data is returned is the same as that for DE F f::: E \', K E '/ D U I.oj I··;, and f::: E \' D E: F $. If the key buffer is
empty then the null string is returned.

The string returned for a given key is determined as follows:

• If there is a single ASCII character that uniquely identifies the key, t::: E: \':$: returns this character.
For example, C identifies the [QJ key and q identifies the [ill-shifted [QJ key.

• If the key is an 1]]- or [ill-shifted key, and the key's primary function is uniquely identified by a
single ASCII character, then K E 'y' $ returns a two-character string. This string consists of f or ';
followed by the corresponding primary character. For example, ,; ,~i is the [ill-shift of the [QJ key.

• If neither of the above apply, f< E ',' $ returns # followed by the decimal-numbered key code for
that key. For example, if you press I RUN I during execution of the following program, the HP-71
displays # 4 6.

10 DELAY 0,0

20 FOR 1=1 TO 100

30 DISP KEY$;

40 NEXT I

Suppresses display time (because any keys held
in the display buffer at the start of a [! I ~; F dis­
play are cleared).

Adds the key designation to the current display.

The L C statement does not affect the returned string.

161

KEY$ (continued)

Related Keywords

162

KEYDEF$

f::: E \' D E F $ (key definition string) returns the redefined value of a key.

o Statement
• Function
o Operator

Examples

A$=KE\'DEF$ 0:: "G!" ::0

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

IF KE\'DEF$O:: "#43"::O[1.,1] # "U" THEt·l DI~:;P "Attn ke'"I h.:ls been
redefined"

Input Parameters

Item Description Restrictions

key name String expression. Less than five characters.

Comments

The returned string has the same format as is seen by pressing 1 VIEW I.

!< E: \' [) E: r::' ::!:: uses the same format as D E F v [::. :. to specify a key name. The first character in the
returned string indicates the type of definition for the key. The following list describes the possible
first characters:

• .: : Nonterminating.

• Blank: Terminating.

• : Direct execute.

• U : Key is not redefined.

The remaining characters in the string describe the key redefinition text.

If a specified key has not been redefined, i<: E: ',", ,::. ,.... returns the message ":.! i"' ... , , ' ... , i" , ",' ' .. :'.

163

KEYDEF$ (continued)

Related Keywords

164

KEYDOWN

f: E \' Li Ci ~,~ ! .. ~ returns either a 0 or a 1, depending on whether a key is being pressed.

D Statement
• Function
D Operator

-.(KEYDOWN) ,....~--(---nk-aeni-e-~--)---'--.

Examples

• Keyboard Execution
D CALC Mode
• IF ... THEN . .. ELSE

THEN CALL MOVEUP @ CALL

Input Parameters

Item Description Restrictions

key name String expression. Less than five characters. Also refer
to "Comments," below.

Comments

f::: E 'r' D Ci ~,j ['1 enables you to test for either any key being pressed or a specific key being pressed.

• To test for any key being pressed, use f::: F \' D () L,j i···i without any key parameter. The [IJ and []]
keys are not ignored by this f::: F '/ D Ci L,.i r'~ option.

• To test for a specific key being pressed, use f::: E 'r' D C ~,~ r'~ with a parameter specifying the desired
key. Parameter options are as follows:

• Key name expressed as a character: For unshifted keys identified by a symbol, such as a letter
or the G key, enter a quoted string containing only that character. Where a shifted or
unshifted key enters a symbol having a corresponding ASCII code, you can specify that key
by using C H F.: $ < n ::0, where n is the ASCII code for that symbol.

165

KEYDOWN (continued)

• Key name identified by key number: If the first character of a multiple-character key name is
#, f::: E \' [I 0 W·l interprets the string as a key number. You can use this method to specify any
unshifted key. The key numbers are as follows:

Key Numbers Description Keys

1 through 56 Un shifted keys [QJ,[R], ... G

The preceding parameters use the same formats as those used with DE: F
string for a f::: F ',' D 0 ~,~ r1 parameter, the HP-71 returns zero.

KF\'. If you use the null

The HP-71 accepts fE',.'L)Cn'H-~ (without a parameter) in CALC mode.

Related Keywords

f:::E\', f:::E\'$, f:::E\ DFF:t:, FUT.

166

LC

LC (case lock) toggles between the uppercase lock and the lowercase lock on the keyboard.

• Statement
D Function
D Operator

Examples
It··
!. ••• ' ••••

Comments

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

L.C LI'" !-,.

During usual keyboard input the primary alpha keys enter upper case letters and the []]-shifted alpha
keys enter lower case letters. The L C statement is used primarily for switching these assignments, as
follows:

• Executing Lee f·~ sets system flag -15, which assigns the lowercase characters to the cor­
responding primary alpha keys and assigns the uppercase characters to the []]-shifted alpha keys.

• Executing Lee F F clears system flag -15, which assigns the uppercase characters to the cor­
responding primary alpha keys and assigns the lowercase characters to the []]-shifted keys.

• Executing L C: switches the current setting of system flag -15, which exchanges the current
uppercase and lowercase key assignments for the primary and []]-shifted alpha keys. You can
switch this same flag from the keyboard by pressing the ITQ] key.

L E t·i (string length) evaluates the specified string expression and returns its length.

D Statement
• Function
D Operator

Examples

string
expression

1.... :::: L. t: H ;:: A $:~.: E: ::!:: L. I " ' i'" .

Input Parameters

Item Description

s tring expression Refer to the Glossary.

Comments

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

IF LEN(A$)=~ THEN 600

Restrictions

None.

167

LEN

Leading, trailing, and enclosed spaces are included in the returned value. For example, executing

168

LET

L.. E:·r is the assignment statement, which is used to assign values to variables.

• Statement
D Function
D Operator

• Keyboard Execution
• CALC Mode*
• IF ... THEN ... ELSE

• You can use only the implicit form of LET in CALC mode-for example, P= (. That is, the explicit form of LET - for example, LET
P=?-is not allowed in CALC mode.

Examples

numeric
variable specifier

Input Parameters

Item Description

numeric variable Refer to Glossary.
specifier

numeric Refer to Glossary.
expression

string variable Refer to Glossary.
specifier

string expression Refer to Glossary.

numeric variable Refer to Glossary.

string variable Refer to Glossary.

numeric
expression

string
expression

numeric
expression

string
expression

None.

None.

None.

None.

None.

None.

Restrictions

169

LET (continued)

Comments

If the specified variable does not exist, it is created when the HP -71 executes the corresponding L.. E T
statement. If the variable is an element of a nonexistent array, the HP-71 creates that array (where the
maximum allowed indices are 10 and minimum allowed indices correspond to the current [I F' T I [I [.j
B A::; E setting). A string variable created by L.. E T has a default maximum length of 32 characters.
Thus, larger maximum lengths must be explicitly dimensioned .

A numeric variable of type SHORT causes rounding (according to the current round-off setting) to
five significant decimal digits. However, the calculation itself is performed in 12-digit arithmetic. A
numeric variable of type INTEGER causes rounding to an integer (according to the integer rounding
method). If, after rounding, the result has more than five digits, the stored value will be ± 99999 or
INF, depending on the current trap settings for the math exception flags.

In addition to assigning a numeric result to the specified variable, the HP-71 stores the result in the
register reserved for use by F.: E ::;. (The value stored for use by F.: E ::; is the result calculated prior to
any rounding for SHORT or INTEGER.)

In a user-defined function having multiple statements, the function name itself is a legal variable.
Therefore, whatever value is in this variable when the HP-71 finishes executing the corresponding
function is the value returned by that function.

A string value replaces the current value of the specified string variable. If the new value exceeds the
string variable's maximum length, the replacement is not performed, and a::; t r i n'J [I \,' f 1 (error
37) condition occurs.

The following illustrates how the HP -71 handles string assignments:

Statement: A$=" ABCDEFGH I ,Jf:::Lt'1t·l0F'''

Output: ABCDEFGH I ,JKLt'1t·l0F'

Statement: A$[5 J=" TU',}L,l"
Output: ABC D T U I,} L,l

Statement: A$[5., 1 J=" EFGH I ,JK··········OF.:::;"
Output: ABCDEFGH I ,JK··········OF.:::;TU',}L,l

Replaces any earlier A $ string value.

Replaces portion of A $ that begins with posi­
tion 5. (T LP,.n.l becomes the new end-of-string,
starting at position 5.)

Inserts string between positions 4 and 5. No­
tice that second substring index is less than
the first (by an arbitrary amount), which
causes the HP-71 to insert the substring into
the existing string instead of overwriting part
of that string.

170

LET (continued)

Statement: A$[i 2., 13 J=" L!'lr·jOF II

Output: A E: C D E F G HI ,J f::: L 1'1 [.j 0 F) F.: ::; T U i,) ~'l

Statement: A$[2.,22 J= II - II

Output: A - ~,~

Statement: A$[5 J= II 123"

Output: A - ~'l 1 23

Statement: A $ = " "
Output: - Null-

Related Keywords

I rHEGEP, F.:EAL, PE::;, SHOF.:T.

Replaces a two-character substring with a five­
character string.

Replaces a 21-character substring with a 1-
character string.

Uses a "blank-filling" technique that allows
the 1 23 string to be appended.

Sets A $ to null. Note that a null value differs
from a blank space value.

171

LINPUT

L. I ! i r: i.! T' (line input) assigns an entire line from the display to a string variable.

• Statement
o Function
o Operator

Examples

! .j:­
L. •. -+"

;; Ei; '. ·:::-r

Input Parameters

Item Description

prompt string Quoted string.
Default: ",~, "

default string String expression.
Default: Null string.

string variable Refer to Glossary.
specifier

Comments

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

string
variable specifier

Restrictions

Cannot contain delimiting
character.

None.

None.

L. I r'W U T is similar to the I r'W U T statement in that it causes the HP -71 to pause execution, activate
the keyboard, and allow you to enter a variable. L I r·j F U T assigns the resulting line to the specified
string variable. L I r·j F U T is distinguished from I r·j F U T in that it allows punctuation, whereas I rj PUT

treats punctuation as delimiters. (Unlike the I [.j F U T statement, the string you enter with L I r1 F' U T is
interpreted literally, and not as a string expression.)

172

LINPUT (continued)

You can respond to a L I t·i F U T prompt in either of the following ways:

• Enter any number of characters.

• Enter an "execute only" string. (That is, a string that has been used with a colon to redefine a
key.) Notice that if you enter an execute only string, the HP-71 ignores any other characters that
may already be in the display.

For information concerning prompts and default inputs, refer to the comments provided in the INPUT
keyword entry.

Related Keywords

173

LIST

L. '" T displays the specified BASIC or KEY file .

• Statement
o Function
o Operator

Examples

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

start line
or key number

final line
or key number

LIST MEAN:FORT(~'

Input Parameters

Item Description Restrictions

file specifier String expression or unquoted string. File name with optional device
Default: Current file. specifier.

start line or key Integer constant identifying a program line 1 through 9999.
number or key number.

Default: First program line or key
assignment in file.

final line or key Integer constant identifying a program line Start line or key number through
number or key number. 9999.

Default: Start line or key number, if
specified; otherwise, last program line or
key assignment in file.

174

LIST (continued)

Comments

General Operation. Specifying a file that is not a BASIC or KEY file generates an In'" .::j 1.]. C!
F i l,::; T '::! F' ~::' (error 63) condition.

Executing L I ~:n f<E\'~:; results in a listing of the current key assignment file, k e':::!:::. (if present).

Specifying a single line or key parameter lists only that line or key assignment. If you specify a range
and the HP-71 does not find the start line or key number, but does find a higher-numbered line or key
number within the specified range, the listing begins with that higher-numbered line or key. Execut­
ing L I ::::;·r without specifying any line or key numbers generates a listing of the entire file.

The current [E i I:'! '/ setting determines how long the computer displays each line.

The current L,j I [T H setting determines the width of the display line.

Interrupting a Listing. To halt a listing and display the cursor, simply press 1 ATTN I.

Related Keywords

DEL A \', L,J I D T H, P L I ~:; T. See also the descriptions of FE T CHand the ~, [!], (]] 00, and (]] 00
keystrokes in your HP-71 Owner's Manual.

175

LOCK

L.;J C < specifies a password to provide for security against unauthorized use of your HP-71. Anyone
who turns on the computer will be prevented from using it until they enter the password.

• Statement
o Function
o Operator

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

Examples

LOCK

Input Parameters
..

Item Description Restrictions
...

p assword String expression. o through 8 characters.

Comments

The password can be any combination of up to eight letters, numbers, spaces, and symbols.

Note: Because the lock is absolute, it is recommended that you choose an easy-to-remember pass­
word. If you cannot enter the correct password, the HP-71 will not respond to your instructions. If this
situation occurs, you can regain control of the computer only by resetting the computer, which clears
both the memory and the clock.

Using LOCK. After initially executing LUC< with a password, each time you turn on the HP-71,
you are prompted by the message p.:l:='::=': 1,.1 0 ~- d '~'. To unlock the computer, type in the exact password
that you specified using LOCK, then press 1 END LINE I. The HP-71 then displays the cursor and you
can continue with your work. Any attempt to unlock the computer by entering an invalid password
simply turns off the computer.

Deactivating LOCK. To deactivate L C C t:::, remove the password by entering L 0 C f::: with a null
argument, as shown in the rightmost statement example, above. (Ensure that there are no spaces be­
tween the quotes. If a space is included, it will be interpreted as a new password.)

176

LOG (LN)

L Ci c; returns the natural logarithm (base e) of the argument.

o Statement
• Function
o Operator

Examples

T :::: L U ~_~ ::. >:: .. " n .. ' + T j

F' c", -'" 1-.! T

Input Parameters

Item Description

argument Numeric expression.

Comments

L Ci C; is subject to the following restrictions:

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

Restrictions

Refer to "Comments," below.

• Attempting to compute the natural logarithm of zero results in a . -, ,-.. " .--:, .
L i_;;_=, ". i::..l..' (error 12) condition .

• Attempting to compute the natural logarithm of a negative number results in aLe G ;:: n ~:~'~! ::.
(error 13) condition.

Related Keywords

177

LOGP1

LOGF'l (logarithm of (argument +1)) returns In(1 + x).

o Statement
• Function
o Operator

Examples

Input Parameters

Item Description

; argument Numeric expression.

Comments

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

Restrictions

Must be greater than -1.

You can use LeG F' 1 to eliminate large relative errors in certain calculations. For instance, LeG F' i.
(1 , :::::::~ 4 5 E - 1 0::' is accurate to 12 significant digits, but L ti .:: 1 + 1 , :::: 3 4 5 E - 1 Ci > becomes L t·i
.:: 1 , 0 ~=1 (1 t:J (; 0 0 0 01::::::' (because the HP-71 uses 12 digits). This results in a large relative difference
from the accurate answer, since In(1.00000000012) is quite different from In(1 + 1.2345E-I0).

Related Keywords

178

LOG10 (LGT)

LeG :i.;::J returns the logarithm (base 10) of the argument.

D Statement
• Function
D Operator

Examples

Input Parameters

Item Description

argument Numeric expression.

Comments

The following exceptions can occur:

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

- - - ... -j-'r:: 1. !'i i T H·[: ;:: L G T ;:: >:) H :=1: H

Restrictions

Refer to "Comments," below.

• Attempting to compute the logarithm of zero results in a L 0'; ;:: Ci > (error 12) condition.

• Attempting to compute the logarithm of a negative number results in a LOG;:: n e';::' (error 13)
condition.

Related Keywords

E i:: F' C r·i F r·~ T, L U C.

179

LR

L P (linear regression) specifies the current linear regression model and computes the intercept and
slope for that model. The computed intercept and slope are returned in optional variables.

• Statement
D Function
D Operator

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

dependent
variable number

Examples

L.i? 1,2, r·;;:: :1. .. , H':: ~:::

Input Parameters

Item Description Restrictions
------+--------------+------------------j
dependent
variable
number

independent
variable
number

intercept
variable

slope
variable

Numeric expression rounded to an integer.

Numeric expression rounded to an integer.

Numeric variable specifier. (Refer to

Glossary.)

Numeric variable specifier. (Refer to
Glossary.)

Zero through the current ::; T r··;; array

dimension.

One through the current ::;r Fl T array
dimension.

None.

None.

180

LR (continued)

Comments

L.. ~:: specifies the linear regression of the first (dependent) variable on the second (independent) vari­
able. The intercept and slope are stored in the intercept and slope variables, if present.

Related Keywords

r~, .. (maximum) returns the larger of two values.

o Statement
• Function
o Operator

Examples

Input Parameters
..

Item
...

Description

argument Numeric expression.

Related Keywords

t'1 I H.

181

MAX

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

Restrictions

None.

182

MAXREAL

j'lA>::PEAL (maximum real number) returns 9, 99999999999E499, which is the overflow thresh­
old-the maximum positive finite number that the HP-71 can represent.

o Statement • Keyboard Execution =
• Function • CALC Mode
o Operator • IF ... THEN ... ELSE L-----__ _

(MAXREAL }--

Examples

U=TPAP(UNF,2)@P=EXPONENT(MAXPEAL)-EXPONENT(MINPEAL)@TPAP(UNF,U)

Comments

The HP-71's exponent range is -510 through 499 (R=1009).

Related Keywords

1'1 [::: ,:::, ,; returns the sample mean of the specified variable in the current statistical array.

o Statement
• Function
o Operator

Examples

Input Parameters

Item

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

Description Restrictions

variable number Numeric expression rounded to an Zero through the current
integer. array dimension.

Default: 1 .

Related Keywords

183

MEAN

::;THT

184

MEM

t'1 E !'i (memory) returns the number of available bytes in either main RAM or a memory device.

D Statement
• Function
D Operator

Examples

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

Input Parameters

Item Description Restrictions

port specifier Numeric expression truncated to two O<=P<=5
digits after the decimal pOint. Interpreted o <= dd <= 15
as P.dd. where:

P = port number.
dd = device number.
Default: Returns current 1'1 E i'l value
for main RAM.

185

MEM (continued)

Comments

The following can help you plan how to use available memory.

Variable Type
Bytes Used per Bytes Used per

Precision
Simple Variable Array* Variable

INTEGER 9.5 3 ±99999
SHORT 9.5 4.5 5-digit
REAL 9.5 8 12-digit
STRING 11.5 + MAXIMUM LENGTH 2 + MAXIMUM LENGTH -

-Any array has a 9.S-byte overhead.

186

MERGE

1'1 E F: G E integrates a portion of the file you specify into either the current BASIC file or the system
k E:' '=!::;: file, depending on the type of the specified file.

• Statement
D Function
D Operator

Examples

1'1E:F'C;F P; FCf;:T

1'1 E f;: G E [: :t.:, ':::;

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

start line
or key numberl-T-----------.I

final line
or key number

Input Parameters

Item Description Restrictions

file specifier String expression or unquoted string. File name with optional device
specifier.

start line or key Integer constant identifying a program line 1 through 9999.
number or key number.

Default: First program line or key
assignment in file.

final line or key Integer constant identifying a program line Start line or key number through
number or key number. 9999.

Default: Start line or key number, if
specified. Otherwise last line or key
assignment in file.

_ _ ... _._ ... __ . __ . __ L... -_ _----_.

187

MERGE (continued)

Comments

If you specify a BASIC file, it is merged into the current file. If you specify a KEY file, it is merged
into the system k ':::"::! :::: file. Any other file type results in an In "i.'j :I. :i. d F i 1 e T ':::i F ;::' (error 63)
condition. If the specified file is a KEY file and the system k >.? ':::i:::: file does not already exist, 1'1 E f::: C; E
creates it.

1'1 E:: i? C:: E: inserts all line numbers or key assignments into their proper positions in the destination file.
If a line or key number in the file to be merged already exists in the destination file, the line or key
number in the source file replaces the corresponding program line or key assignment in the destina­
tion file. In a BASIC file, you can prevent any duplicate line numbers from being replaced in the
destination file by first renumbering either of the files to ensure that there are no common line
numbers.

Merging a BASIC file by executing I'i F F' G E in a running program performs the merging operation,
then terminates program execution, releasing local environments and clearing all program control in­
formation.

Merging a file does not alter the file being merged. Only the current or k;~'~ ::0 file is altered.

Related Keywords

188

MIN

r'i I Ii (minimum) returns the smaller of two values.

D Statement
• Function
D Operator

Examples

Input Parameters

Item Description

argument Numeric expression.

Related Keywords

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

None.

Restrictions

189

MINREAL

t'1 I [.j PEA L returns 0, ~~1 [1 0 [1 0 0 0 ~j 0 OlE - 4 9 9, which is the smallest positive number that the
HP-71 can represent. To return this number, set the underflow trap to 2 before executing
t'l I [.j PEA L (T PAP (U [.j F .. 2)). Otherwise, executing t'l I [.j PEA L generates an underflow exception.

D Statement
• Function
D Operator

---c MINAEAL }--

Examples

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

U=TPAP(UNF .. 2)@W=1-EXPONENT(MINPEAL/EPS)@TPAP(UNF .. U)

Comments

The value t'l I [.j PEA L returns is one example of a denormalized number. (For a discussion of
denormalized numbers, refer to "Denormalized Numbers and -0" on page 341.) Executing t'l I t·jPEAL
sets the underflow exception flag (flag -5) if TF.:AP (U[·jf) is set to 0 or 1.

Related Keywords

190

MOD

t'1OD(x .. y) (modulo) returns a remainder that is defined by the expression x - y. INT(x/y).

D Statement
• Function
D Operator

• Keyboard Execution

• CALC Mode
• IF ... THEN. 0 0 ELSE

~ argument 1 ~ argument 2 ~

Examples

Input Parameters

Item Description Restrictions

argument1 Numeric expression Refer to "Comments," below.

argument2 Numeric expression. Refer to "Comments," below.

Comments

t,! (J iJ is similar to ::,>::::: roo, and F t'1 [!, and has the following properties:

• t,! Ci U .:: x, y> is periodic in x with period I y I.

• ['! CD':: x .. y) lies in the interval [O,y) for y > ° and (y,O] for y < 0.

• t'1 [I D can set the Inexact Result flag (I to~ >0. When this occurs, it indicates that the value returned
by t'1[1D requires rounding in order to fit into a REAL variable. For example, MOD(-E-20,360) is
(360 -IE-20), which cannot be represented exactly with 12 digits of precision.

If either x = Inf or y = 0, an I (; '/03 lid P, f"0 -:j (error 11) condition occurs.

Related Keywords

foj , , re, '::. names the system '''' .-. (" k f :!. I ,==,.

• Statement
D Function
D Operator

Examples

Input Parameters

Item Description

• Keyboard Execution
D CALC Mode
• IF. 0 0 THEN ... ELSE

Restrictions

ile name String expression or unquoted string. Any valid file name.

Comments

191

NAME

While I ..) () (" k f :!. 1 e is the current file you can easily access it. However, once you move the edit
pointer away from i.,.1 () (" k f i 1 ':?, there is no way to reference the file without redesignating it as the
current file (by executing E [! I T I END LINE I). Assigning a name to I .. .! 0 (" k f i l;:? enables you to ref­
erence it without designating it as the current file.

192

NAN

t·~ H t··1 (not-a-number) returns the value of a Signaling NaN.

o Statement
• Function
o Operator

Examples

• Keyboard Execution
• CALC Mode
• IF ... THEN ... ELSE

193

NOT

t; r performs the logical NOT of its operand.

0 Statement • Keyboard Execution
0 Function • CALC Mode

• Operator • IF ... THEN ... ELSE

Examples

~=~ ~~n NOT Q OR Q ~~n NUT P

Input Parameters

Item Description Restrictions

operand Numeric expression. Subject to operator precedence.
..

Comments

Operands used with t·~ 0 T are considered logically false if
zero and logically true if nonzero. The table to the right
indicates the range of results for t·w T.

The precedence of t·WT in relation to the HP-71's other
operators is described under "Precedence of Operators" on
page 317.

Related Keywords

Operand 1 Result

True 0
False

194

NUM

h i.J t'1 (number) returns the ASCII character code for the first character of a string.

o Statement
• Function
o Operator

Examples

Input Parameters

Item Description

argument String expression.

Comments

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

IF hUt'1(8$)=R THEh C$=C$&8$

Restrictions

None.

t·H.H'! returns a decimal number. For example, executing t·Hi 1'1 .:: " Fl " returns (: '5. If a specified string
is null, tH.F'1 returns C.

t··! iJ 1'1 is the inverse of the C H F'$: function.

Related Keywords

195

OFF, OFF ERROR/TIMER

(::1 F F turns off the HP -71.

1_' - r- E F: R [I R disables any previous Ct·; E ~:: R C R statement, thus returning the computer to its de­
fault method of error reporting.

C F F T I 1'1 E R # deactivates the corresponding 0 t·; T I i'l E R # statement.

• Statement
o Function
o Operator

Examples

OFF

OFF TI1'1ER #1

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

OFF TH1EP #T1l::·:: .. ,·3

Input Parameters

Item Description Restrictions

timer number Numeric expression rounded to an Timer number 1, 2, or 3.
integer.

196

OFF, OFF ERROR/TIMER (continued)

Comments

The OFF Statement. OFF is equivalent to E:'/I:::. Executing OFF in a program, then later turning
on the HP-71 causes program execution to automatically resume with the statement immediately fol­
lowing the [I F F statement. If you execute C F F from the keyboard, any statements concatenated
after (J F F' are not executed when the HP -71 is turned on again.

The OFF ERROR Statement. In addition to 0 F F E F.: F.: 0 F.:, anyone of the following four operations
disables a previously executed 0 t·j E F.: F.: 0 F.: statement:

• Executing E tm.

• Executing the last statement of a program.

• Editing a program.

• Running another program.

Timer Control of Program Execution. If the HP -71 activates a timer by executing C f'; T I !'1 [F',
then subsequently executes () F' F, the computer turns itself off as described above. However, when the
timer expires, the computer turns itself on, services the timer, and resumes program execution.

The OFF TIMER Statement. There are three timers, numbered 1, 2, and 3. When rounded, an
OFF T I t'1 E F.: number must equal an integer from 1 to 3.

An C F' F "T I r'i E: i? # statement deactivates the corresponding U !.! T I 1'1 F F: # statement. No further
interrupts from that timer will occur until you reactivate it.

Any of the four operations listed above that disables an [I fl
three timers.

Related Keywords

:-- :-. :-.. -. :-. cr::r::Ur:O statement also deactivates all

197

ON ERROR GOSUB/GOTO

C f·i E F: F' [I F' causes the computer to execute the specified subroutine or branch when an error occurs
during program execution.

• Statement D Keyboard Execution

D Function D CALC Mode

D Operator • IF ... THEN ... ELSE

statement
ident if ier

Examples

!I F ::< I T

Input Parameters
..

Item Description Restrictions

statement Line number or label of a program Any valid line number or label
identifier statement. reference.

Comments

This keyword allows you to design specialized error-handling routines into your programs.

" ,.j F F' F' C) ~:: is a local declaration that, when executed, activates an U i"; F F' F' C F: condition that traps
program errors in the following manner:

• An Ci i···i F F: i;:: Ci ~:' C; Ci ::::; i...i E: condition transfers execution to the specified statement in the same
way as for a subroutine call. Thus, when execution subsequently encounters a F' E::'f i..i f;' i; state­
ment, execution transfers to the first statement following the one in which the error occurred.

• An C) 'i F F F:' f"i pee T c: condition unconditionally transfers execution to the specified statement
in the same way as for a program branch.

198

ON ERROR GOSUB/GOTO (continued)

o r·j E F.' F.' Ci F.' is subject to the following operating conditions:

• Regardless of the number of errors that occur, an 0 t·j E F.' F.' 0 F.' declaration remains active for the
program that executed it until replaced with another 0 t·j E F.' F.' C! F.: declaration or disabled with
an () F F E F.' F.' C F.' statement.

• C ! .. ; E F.' F.' 0 F.' and C F F E F.' F.' 0 F.' act locally, affecting only the program or subprogram in which
they appear. When one program calls another, the computer temporarily suspends any active [I h
E F: F (J P declaration in the first program until execution returns to that first program.

If an (J ! .. ; E F.' F.' C F.: CO:::: 1...1 [: routine itself contains an error, program execution halts. If an Cr'; E F.'­
F.' 0 F.: C Ci T C routine contains an error, an infinite loop can occur between the statement in error and
the routine specified by 0 tl E F.' F.' C F.: cur u.

Executing C F F E F: F: Ci F: deactivates Cr'; E F: F: Ci f:::.

When using Ot·j EPPOF.: it is sometimes helpful to also use EF.:F.:L, EF.:Pt·j, or EF.:F.:t'1$ in the specified
o t·j E F.: F.: 0 F.: subroutines or branches, which produces the following results:

E ~:: F:: l...: Returns the most recent line number in error.

E F.' F.' ti: Returns the most recent error number.

E F: FY $:: Returns the error message associated with the most recent error number.

199

ON ... GOSUB/GOTO/RESTORE

[I H ... CO::: U B and [I t·j ... COT 0 transfer program execution to the destination specified by COS U B or
C [I T [I. ot·j ... F.: EST 0 F.: E resets the PEA D data pointer to the closest D A T A statement following the
selected statement.

• Statement
o Function
o Operator

Examples

C); E ...

pOinter

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

200

ON ... GOSUB/GOTO/RESTORE (continued)

Input Parameters

Item Description Restrictions

pointer Numeric expression rounded to an 1 through the number of
integer. statement identifiers listed.

statement Line number or label of a program Any valid line number or label
identifier statement. reference. If more than one is listed,

use to separate.

Comments

The ON ... GOSUB and ON ... GO TO Statements. (J !.j ; .. ';' •..... . executes any of one of sev­
eral subroutines that you have listed by statement identifier in an ri ~ .. ~ ... 1..;; U ~ ... ; l ;" statement. The
HP -71 uses the current value of the pointer in to select a statement identifier from
the list. That is, executing 0 t·j ... GO::; U E: causes the computer to:

1. Determine the specified pointer value.

2. Use the pointer value as a position in the address list. A pointer value of 1
corresponds to the first statement identifier; 2 corresponds the the second statement identifier,
and so on.

3. Execute the subroutine that begins at the statement specified by the statement identifier listed
in the selected position in the list.

Following an statement, when a running program encounters a F':J statement,
program execution returns to the statement following that c: C:; .••• ; ii E: statement.

transfers execution to another location in program memory in the same way as f", ,.,

,:;::;<; ii E:, but has no provision for a subsequent return of execution.

The ON ... RESTORE Statement. or·; ... FE::; T 0 F E specifies a statement in the same way as en-·I ...
c; C, ':::; i.i E: and CI tj ... COT O. If that statement is a D A T A statement, the computer then resets the F E A D
data pointer to the first item in that D A T A statement. If the specified statement is not a D !'i T H state­
ment, the computer resets the FE A D data pointer to the first item in the first D A T A statement that
follows the specified statement.

Related Keywords
r",:"",",",":
::, l i::.

201

ON TIMER #

0[1 T I 1'1 E F # enables one of three individual timers to interrupt a program at the specified time
interval and cause the specified branching to occur.

• Statement
o Function
o Operator

ON TIMER f

Examples

o Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

statement
identifier

Input Parameters

Item Description Restrictions

timer number Numeric expression rounded to an 1 through 3.
integer.

seconds Numeric expression. 1/32 second through 134,217,727
seconds.

statement Line number or label of a program Any valid line number or label
identifier statement. reference.

202

ON TIMER # (continued)

Comments

The timer number must be either 1, 2, or 3. The time interval must be specified in seconds. Time
intervals less than the minimum or greater than the maximum are set to the minimum or maximum,
respectively.

When the HP-71 executes Of·; T I !'1Ef;: #:, the appropriate timer is activated. When that timer ex­
pires, program execution transfers to the specified line. Where more than one timer has expired, the
expired timers are serviced in numeric order. If the timer expires during execution of a program state­
ment, the transfer does not occur until the computer has completed execution of that statement.

Executing the ";-;- T I 1'1 [F: *i statement deactivates the timer previously activated by the cor­
responding C i; i i. ,', t. ;-: :it statement. Any of the following operations deactivates all three timers:

• Executing [iF), EY [; H L.. L.., or ::: T ,J F'.

• Executing the last statement of a program.

• Editing a program.

• Running a program.

Timer Subroutines. When the timer set by an 0 t·j T I 1'1 E P. . . GO SUB statement expires, program
execution transfers to the indicated statement and continues. The computer terminates the subroutine
when it executes aPE T U P t·j statement. Execution then returns to the statement following the last
statement executed before the timer interruption occurred, and resumes. Simultaneously, the subject
timer is reset to the time interval you originally specified in the 0 t·j T I 1'1 E P. . . GO::; U B statement.

Timer Branches. When the timer set by an C) !.; T I !'1 E i~' ... G C' T' C statement expires:

• Program execution transfers to the indicated statement and continues.

• The subject timer is immediately reset.

Timers continue to run after a program is suspended, but the interrupt does not cause the specified
branching until the program is resumed.

Timer Operating Details. If a E;\ or C,FF statement within a program turns off the HP-71
after a timer has been activated, when that timer expires, the computer turns itself on and:

1. Executes the subroutine or branch specified by the timer.

2. When i? i::: 'r ii i:::- i'; is encountered after C) ii 'T I i"i E: F#:. .. ' .. :;::) :::: i ,r' execution, the computer
resumes program execution with the first statement following the !:;;' E or C) F' r'" statement.

203

ON TIMER # (continued)

Timers are global. Thus, after a program has called a subprogram, any timers activated by the calling
program and expiring during execution of the subprogram are not acted upon until execution returns
to the calling program. Also, a timer activated within a subprogram supersedes any other timer that
was activated earlier by another program.

Related Keywords

204

OPTION ANGLE/BASE/ROUND

o F' T I 01"1 A f'i G L E selects the global unit of measure for expressing angles. D F' T I Ci ['i E A::; E specifies
the subscript lower bound(s) for subsequently dimensioned arrays. 0 F' TIC [.j F C :Y·m selects the
roundoff setting.

• Statement
o Function
o Operator

Examples

CP~T~~ ANGLE DEGREE~

u~TION ROUND NEAR

Input Parameters

Item Description

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

CF'TICN ANGLE FADIANS

OF'TION F~UND 7EFC

Restrictions

subscript base Numeric expression rounded to' an
integer.

o or 1.

205

OPTION ANGLE/BASE/ROUND (continued)

Comments

Any 0 F' T I 0 [·1 E A::; E setting has a global effect. That is, an 0 F' T I 0 [,1 E A::; E setting has the same
effect regardless of whether it is executed in a program or subprogram, or from the keyboard.

The OPTION ANGLE Statement. When executed subsequent to OF'T I m·j A[·jc;LE, all func­
tions that return an angle do so in the specified units, and all subsequently executed operations that
use parameters representing angles will interpret angles in the specified units.

Selecting radians setting turns on the RAD annunciator and sets system flag -10. Selecting degrees
setting clears the RAD annunciator and clears system flag -10.

The OPTION BASE Statement. Any array you create or redimension after executing
OPT I 0 [.j BAS E will have the subscript lower bound(s) specified in that 0 P T I 0 t·j BAS E statement.
However, subscript lower bounds for previously dimensioned arrays will not be changed. That is, chang­
ing the 0 P T I 0 t·j B A::; E setting after creating an array does not change the array's option base. (The
lowest-numbered element in any array has a subscript of either 0 or 1, depending upon the current
OPT I Ot·1 BASE setting.)

Executing C F' TIC [.; E A::; E Ci clears flag -16. Executing 0 F TIC [.; E: H :::; E 1 sets flag -16.

The OPTION ROUND Statement. Executing 0 P T I 0 t·1 F 0 U t·j D t·1 E A F.: selects rounding to the
nearest machine value. Where there is a choice between two values, the even value is selected.
OPT I Ot·1 F.:OUt·W PO::; selects rounding upward (towards + infinity). OPT I Ot·1 F.:OUt·W t·jEG se­
lects rounding downward (towards -infinity). OPT I Ot·j F.:OUt-W ZEF.:O selects rounding towards zero
(rounds the absolute value downward).

C, F' TIC [; R C i...i i"; D sets or clears system flags -11 and
-12 as shown in the table to the right.

Related Keywords

OPTION
ROUND

[··IEHF:
-:: L~' D ("; .::..:...
FC:(:'

l"ic. i_~

Flag Flag
-11 -12

Clear Clear
Clear Set
Set Clear
Set Set

206

OR

The 0 F binary operator performs the logical OR of its two operands.

D Statement
D Function
• Operator

------..J operand ~ operand ~

Examples

IF 2=5 OF A=C THEN GOSUB 100

Input Parameters

Item Description

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

Restrictions

operand Numeric expression. Subject to operator precedence.

Comments

Operands used with U i? are considered logically false if
zero, and logically true if nonzero. The table to the right
indicates the range of results for 0 F.

o F.: and E ::< 0 F.: have the same level of precedence, which is
the lowest of all HP-71 operators. (Refer to "Precedence
of Operators" on page 317.)

Related Keywords

Operand

Left I Right

False False
False True
True False
True True

Result

0
1
1
1

C i. F (overflow) returns the number of the overflow flag (-6).

D Statement
• Function
D Operator

Examples

IF FLAG(UVF THEN GUSUB O~~~LW

Related Keywords

C:F:L..HC, DEFHULT, Di.,:::, FL..He;, k' "':, Ii,) L,

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

207

OVF

208

PAUSE

F' AU::; E suspends program execution.

• Statement
D Function
D Operator

Examples

Comments

D Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

In a running program, F' AU::; E suspends program execution. Subsequently executing C Ci r·; T or press­
ing either the I CO NT I key or the I SST I key resumes execution at the statement immediately following
the F' AU::; E statement.

Executing F r··j D, ::=.; T C F', or Fr·; D A L.. L.., running a program, or editing a program clears the "sus­
pended" status (that is, releases local environments and clears all program control information main­
tained in the computer).

Note: A suspended program retains any memory allocations it has already established for local
variables, pending subprogram calls, subroutine levels, G Ci ::; U [: statements and F C~: ... t·E: >: T
statements.

Attempting to execute F' H U ::; E from the keyboard results in an III eq .:::; 1 Con t e: : t (error 79)
condition.

Related Keywords

CCiiiT, Fr··iD, ::;TCF', and the I ATTN I and I SST I keys.

F' E E t::: $ returns the contents of a specified section of memory.

D Statement
• Function
D Operator

Examples

Input Parameters

Item

hexadecimal
address

Description

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

number
of nibbles

209

PEEK$

Restrictions

hexadecimal String expression containing hexadecimal Up to five uppercase or lowercase
address digits. digits.

number of nibbles Numeric expression rounded to an o through 52~,287.
integer.

Comments

Specifying memory that IS located In a private file results In a F:l 1 ~~ F':-- c; ·r ;:::, ("···r (error 61)
condition.

Related Keywords

210

PI

F'I returns a 12-digit value (3.14159265359) representing 7r.

D Statement
• Function
D Operator

Examples

C::::F' I lD

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

@ F'RINT SIN~~) @ NEXT ~

211

PLIST

F'L.. I :::; T displays the specified BASIC or KEY file on the print device.

• Statement
D Function
D Operator

Examples

F'LI::;T

F'L I ::;T f::E\':::;

start line
or key number

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

final line
or key number

F'LIST CATS(I),10,99

Input Parameters

Item Description Restrictions

file specifier String expression or unquoted string. File name with optional device
Default: Current file. specifier.

start line or key Integer constant identifying a program line 1 through 9999.
number or key number.

Default: First program line or key
assignment in file.

final line or key Integer constant identifying a program line Start line or key number through
number or a key number. 9999.

Default: Start line or key number, if
specified; otherwise, last program line or
key assignment in file.

212

PLIST (continued)

Comments

Operation. The P L I :;:;T operation is identical to that of L I :::;T, except the output goes to the print
device instead of to the display device.

Specifying a file that is not a BASIC or KEY file generates an In \I.:l 1 i d F i 1 Eo T '::I P Eo (error 63)
condition.

Executing P L I :::n K E \' :::;; results in a listing of the current key assignment file, k Eo '::15.

Specifying a single line or key parameter lists only that line or key assignment. If you specify a range
and the HP-71 does not find the start line or key number, but does find a higher-numbered line or key
number within the specified range, the listing begins with that higher-numbered line or key. Execut­
ing P L I :::;; T without specifying any line or key numbers generates a listing of the entire file.

If the print device is the display, the current [I E L A \' setting determines how long the computer
displays each line.

The current P r,j I [I T H setting determines the width of the printed line.

Interrupting a Listing. To halt a listing and display the cursor, simply press I ATTN I .

Related Keywords

213

POKE

PO K E writes to memory at the specified hexadecimal address.

CAUTION

Executing PO K E can cause a t'1 Eo mot" '::I L 0 5 t condition. Also, executing PO K E for some areas
of memory can result in a condition from which the only methods of recovery are either to execute
I [.j IT::; or to remove the batteries. I t·j IT::; destroys ali files in main RAM. Removing the batteries
causes a loss of memory in ali of RAM.

• Statement
o Function
o Operator

Examples

PCf:::E "AF3~J".''' 56DE"

Input Parameters

Item

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

PCt:::E A:t.' [1$

Description Restrictions

hexadecimal String expression containing hexadecimal Up to five uppercase or lowercase
address digits. digits.

data String expression containing hexadecimal No restriction on number of
digits. characters in data.

Comments

If there is a nonhexadecimal digit in the data string, PC < E writes to memory all digits preceding the
nonhexadecimal digit, then generates an In \1 .:::1:1. idA (.;::; (error 11) condition.

The amount of data written is limited only by the amount of available memory. Attempting to use
P () f::: E within a secure or private file results in a F i 1 ~::' PI··':' i: E' c: 1: (error 61) condition.

214

POKE (continued)

Related Keywords

ADDfU, DTH$, HTD, PEEK$.

POP cancels the pending return of program execution from the current subroutine.

• Statement
o Function
o Operator

Examples

POP

Comments

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

215

POP

P CI P is similar to PET U P h except that it causes program execution to continue at the instruction
following the P CI P statement instead of at the instruction following the calling GO::: U B statement.
(That is, PC! P cancels the pending return established by the last GO::: U B statement.)

Related Keywords

GU:::UB, F.:ETUF.:t·i.

216

POS

PO::; (substring position) returns the position of a given substring within a string.

D Statement
• Function
D Operator

Examples

IF POS(AS,SS)=5 THEN COSUS 100

POS':: "t'lISSIS::;IPPI".," 1".,3)

Input Parameters

ITEM Description

string searched String expression.

substring String expression.
searched for

start character Numeric expression rounded to an
number integer.

Default: 1.

Comments

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

Restrictions

None.

None.

If the rounded value is less than or
equal to zero, PI) S used the default value
of "1."

PO::; searches within the first string for the second string. If the second string is found within the
first, the starting character position of the second string is returned.

If the search is to start at a position other than the first character, use the optional third parameter to
specify the starting position. In the above examples, PO::; (" !'1 I ::; ::; I ::; ':; I F' PI" , " I " , :::':::, returns :::,
which represents the result of a search beginning at character 3 (::;) for the character I.

217

POS (continued)

P [I ::; returns zero when the substring cannot be found. For example:

• P [I ::; (" ~'i A F.: THO C ", "H 0 C ") returns 5.

• PO::; (" ~'i A F.: THO G " , "P I C iI) returns O.

218

PREDV

F'PED',} (predicted value) returns the predicted value (based upon the current statistical array) of the
dependent variable, the last L F.: statement, and the value of the independent variable specified as the
argument.

D Statement
• Function
D Operator

Examples

Input Parameters

Item

: i::::i::::'···· .

Description

argument Numeric expression.

Comments

F' k E: U ,) must be preceded by execution of

Related Keywords

• Keyboard Execution
• CALC Mode
• IF ... THEN ... ELSE

Restrictions

None.

to specify the dependent and independent variables.

...... ",. c

.... ';!!; ,

F' P I (.j T causes the print items to be sent to the print device.

• Statement
D Function
D Operator

Examples

F' F' I t·n- I.: T A E .:: I +5 ::. .: ":~:"

F'F: I i·iT "H,? 11 () ": A$:: l'

Input Parameters

Item Description

expression Numeric or string expression.

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

None.

Restrictions

column Numeric expression rounded to an integer. Greater than zero.

219

PRINT

220

PRINT (continued)

Comments

Operation. F' F.: I t·j T operates in a manner similar to that of [I I ::; F'. However, F' F.: I t·i T is not af­
fected by t,~ I [I T H statements (and, conversely, [I I ::; F' is not affected by F' t,~ I [I T H statements).

You can use E ti [I L I t·i E to alter the string that F' F.: I t·i T appends to the end of each print line. (The
default string is the carriage return/line feed.)

Use of TAB. T A E: positions F' F: I tH (and [I I ::; F') output to begin at the column you specify. If the
current column position is beyond the specified T A E: column, the computer first moves to the next
line, then positions itself to the specified column. If the column position value exceeds the current line
width, the computer reduces the position value by a multiple of the line width (in a manner similar to
the F.: E [I function), then moves to the reduced column position.

Related Keywords

[I I :::F', Et·WL I t'iE, F'F.: I tH U::; I tiG, F'F.: I tH #, hi I [lTH.

221

PRINT USING

F' F.: I t·j T US I t·j G causes the print list to be sent to the print device in a user-specified image format.

• Statement
D Function
D Operator

PRINT USING

Examples

F'F.: I [H U::; I t·le 2~J~J.: ,:':, , 345,99

F'F.: I iH U::; I r·1C :::$; A:t, 1,25 +;:.::

"# .. f:::, 2"-",,,,:, 3D, D)" .

Input Parameters

Item Description

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

"Ciu t pu t =c- I! , '/ .. 2 , 34E:2

Restrictions

line number Integer constant identifying a program line. 1 through 9999.

format string String expression Refer to the IMAGE keyword entry.

expression Numeric or string expression. None.

222

PRINT USING (continued)

Comments

F F.: I [.j T U ::; I [.j C uses a format string to format output items. If there are no output items, there may
or may not be any output to the printer, depending on the items in the format string.

If F P I t·j T U :::; I [.j G references a line number, an I 1'1 ACE statement must be the first statement in
that line. When executed from the keyboard, the computer searches for an I 1'1 ACE statement at the
referenced line number in the current file.

If P P I t·j T U ::; I t·j G contains a string expression for the image, that expression must evaluate to a valid
format string, as described in the IMAGE keyword entry. For example:

FFIt·jT U:::lt·jG "2::< .. 'hello' .. i:: .. :::A., ill.: t.~ $

FF.:lt·F IY:';It·jC ':::A .. 5i:: .. "$"3D,DD'.: "h-ofit=" .. F

The following program provides a further F F.: I [.j T U::; I [.j C; illustration:

10 S$= '2X,"' & "Today's" & '",8A,"$"2D.DD'

20 PRINT USING S$; " Special" ,2.95

Today's Special $2.95

Uses string expressions for images.

References string expression.

Result of executing lines 10 and 20.

The items in an output list must be separated by commas or semicolons. However, unlike F F.: It·; T,
these punctuation characters have no further meaning in F F I [.j T U::; I [j G statements.

Related Keywords

223

PRINT #

P F I [.j T # writes data items to a data file associated with a specified channel number.

• Statement
D Function
D Operator

Examples

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

FFINT #18 .. 20;A .. b~ .. C

Input Parameters

Item Description Restrictions

channel number Numeric expression rounded to an o through 255.

integer.

record number Numeric expression rounded to an o through 1,048,575.
integer. The first record of the file is record
O.

expression Numeric or string expression. None.

array specifier Array name followed by an empty set of None.

parentheses (") or (, ::= which indicates
that the entire array is to be written to the
file.

224

PRINT # (continued)

Comments

F' P I H T # writes data items to the file assigned to the specified channel number. The file type can be
DATA, TEXT, or SDATA.

If you do not specify a record number, the data items are sequentially written to the specified file
(termed sequential access), beginning with the current position of the data pointer within the file.
The HP-71 automatically increases the file size if the end of the file is reached before all data is
written to the file. If you specify a record number, the file pointer moves to that record and the data
items are written. This process is termed random access, and can be used with all data file types
except T E >:: T files. (Attempting to randomly access aTE ::-:; T file results in an I n \1 .::; 1 i d F i 1 e
T'::Ipe (error 63) condition. Also, for a file of type DATA or ::;DATA, specifying a record number greater
than the last record number in the file generates an End .:. f F i 1 e (error 54) condition.)

The format of numeric and string values depends upon the types of files to which they are written.

For information concerning the amount of memory required for various HP-71 file types, refer to the
information listed under "Files" in the "System Memory Requirements" table that begins on page 330.

TEXT Files. Every data item written to a text file forms an individual record. The computer writes
an end-of-file mark when it completes execution of each P PI t·j T # statement. (Only sequential access
is allowed on a TEXT file-a record number must not be specified.) The computer converts numeric
data to text form-according to the current display format-before writing the data to the file.

DATA Files. F' P I r-; T # uses eight bytes of memory to write each numeric value to the file, and uses
three bytes plus one byte per character for each string. Sequential access starts at the current file
position, may cross record boundaries, and writes an end-of-file mark after the last data item written.
Random access writes data items to the specified record number, then writes an end-of-record mark.
(Random access does not cross record boundaries.) Thus, for random access, all of the data must fit
into one record. Otherwise, aPE; c: 0 (" d 0',/ f 1 (error 29) condition results.

SDATA Files. You can write only numeric data to an SDATA file. Each value uses eight bytes of
memory.

Related Keywords

225

PRIVATE

F' !~' I',,' ,1 T E limits access to the specified file and restricts changes in its protection.

• Statement
o Function
o Operator

Examples

Input Parameters

Item Description

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

Restrictions

file specifier String expression or unquoted string. File name with optional device
specifier.

Comments

A private file may not be altered, listed, or otherwise read. This means that you cannot use it as the
destination file in a t'i F i;:' G F statement or otherwise modify it. Because of the permanent results of
executing F' F: I ,,) ,:::,"1 E:, this statement requires that you always specify the name of the file you want
to make private.

Note: As an added precaution, only an unsecured file can be made private.

You can execute and purge an unsecured file that is private. The catalog listing for an unsecured
private file appears with a F in the protection field. A secured private file can only be executed. In a
catalog listing, a secured private file appears with an t::: in the protection field. Once you make a file
private, the file remains private. Thus, its protection can only oscillate between the protection types F:
and E. Also, you can designate as private, only the files that you can execute. That is, only executable
BASIC and BIN (binary) files can be designated as private.

Related Keywords

SFCUPE, UHSECUPE.

226

PROTECT

F' F C TEe T write-protects one track of a magnetic card.

• Statement
D Function
D Operator

--+(PROTECT }--

Examples

F'I?()TEC:T

Comments

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

F' ~:: Ci TEe T is available only when the HP 82400A Card Reader is installed in your HP -71. When you
execute F' f;: UTE C: T, the computer prompts you for a card and then allows you to pull the card
through the card reader once. This operation, which places a write-protect code on the track accessed
by the card reader, protects that track from being overwritten by a subsequent c c F' \' operation. To
protect the card's other track, turn the card around, reexecute F' f;: C TEe T, and again pull the card
through the card reader.

When a track has been protected, you cannot write over it unless you first execute an U t·j F' f;: 0 TEe T
operation for that track.

Related Keywords

U [.j F' F Ci TEe T.

F' U F G E deletes a file (or files) from RAM.

• Statement
D Function
D Operator

Examples

F'Uf;:GE "TE:::::TF I LE; F'Cf;:T;;

F'UFCE f:::E\'::::;

F'UFGE "TO"

Input Parameters

Item Description

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

F'Uf;:CE ALL

F'UFCE

227

PURGE

Restrictions

file specifier String expression or unquoted string. File name with optional device
Default: Current file. specifier.

Comments

After you purge a file, you cannot access the information it contained. If you purge the current file,
I .. .! 0 r· k f i 1 e becomes the current file.

228

PURGE (continued)

Purging the current file during program execution:

1. Halts the program.

2. Clears the program from memory.

3. Releases local environments.

4. Clears all internally-maintained program control information.

5. Designates 1.,.1 0 to k f i 1 e as the current file.

Attempting to purge the current file when (1) the 1 .. .1 0 to k f i 1 e does not exist, and (2) there is not
enough memory to create the 1 .. .1 0 to k f i 1 >.? results in the In 5 U f fie i en t 1'1 e if; 0 to ';:I (error 24)
condition.

Executing F U F.: G E ALL clears all unsecured files from main RAM. Executing F U t::: G E f< E \' ::;
purges the system k e ';:15 file.

Related Keywords

F U T enters a key code (specified by the key's string argument) into the key buffer.

• Statement
D Function
D Operator

Examples

FUT A$ FUT "fe"

Input Parameters

Item Description

key name String Expression.

Comments

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

FUT "#43"

Restrictions

Less than five characters.

229

PUT

This statement adds the specified key to the end of the list of keys currently held in the buffer. (The
buffer can hold up to 15 keys.)

The key name is specified in the same format as that for DE F f< E \'. If the buffer is full, executing
F U T leaves the buffer unchanged.

Related Keywords

DEF f<E\', f<E\'$.

230

PWIDTH

n~ I D T H (print width) defines the line length of F' ~:: I tH statements.

• Statement
D Function
D Operator

Examples

n1 I DTH I ['iF

Input Parameters

Item Description

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

Restrictions

print width Numeric expression rounded to an n; I DTH interprets a value less
integer. than 1 as 1, and a value greater

than 255 as infinity.

Comments

F' ~'1 I D T H specifies a line width that is used during execution of subsequent F' F.: I [.~ T statements to
determine the output format.

Using T A E: in F' F.: I t·j T statements reduces the T A E argument modulo the F' ~,~ I D T H argument.

Related Keywords

F'L I ::::1', F' F.: I tH, ~,j I D T H.

F.: F, D (degrees to radians conversion) converts arguments expressed in degrees to radians.

D Statement
• Function
D Operator

Examples

Input Parameters
,

i Item Description

I argument Numeric expression.

Comments

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

Restrictions

None.

231

RAD

The conversion constant is accurate to 15 digits, which often produces more accurate results than a
conversion that does not use F.: AD.

Related Keywords

232

RADIANS

FAD I A r'~ ::; selects Radians mode, which specifies radians as the unit of measure for expressing angles.
It is a short form of the 0 F T T i~; r"! p.;.~ G ~ 1:: P fl D I fl r"! ::; statement.

• Statement
D Function
D Operator

---< RADIANS }--

Examples

Comments

FAD I A t·~ ::; turns on the RAD annunciator.

After executing FAD I A f'~ ::;:

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

IF A=l THEN FADIANS

• Any function that returns an angle does so in radian units.

• Instructions that use angles for parameters will interpret such parameters in radian units.

Related Keywords

DEGF.:EE::;, OPT I Gr·t

F A [.; D c! l'1 I Z E specifies a seed for the F.: [.; D function.

• Statement
D Function
D Operator

---< RANDOMIZE)I-"r~-L.....-s~e_e-d~~-r-••

Examples

FAt·mOt'1 I ZE

Input Parameters

Item Description

seed Numeric expression.

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

None.
Default: Current value in clock register.

Comments

233

RANDOMIZE

Restrictions

The random number series generated by executions of the F.: t·~ D function depends upon the starting
seed value you specify with F.: A t·j D (I t1 I Z E. If you specify 0 for a seed, the subsequent F.: t·j D sequence will
consist of all zeroes. Otherwise, F.: A t·j D (I t'1 I Z E uses the given seed's absolute value or the contents of a
clock register. F.: A t·j D (I t'1 I Z E is a global declaration. That is, executing F.: A t·j D [I t'1 I ZEin a subprogram
affects the subsequent F.: t·j D. series in the calling program.

Related Keywords

Hm.

234

READ

P E FI D assigns values from D A T A statements to variables.

• Statement
o Function
o Operator

Examples

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

2$[3., 3J.: C

Input Parameters

Item Description Restrictions

variable specifier Numeric variable specifier or string None.
variable specifier.

array name Name of a numeric or string array. The number of dimensions must
Indicates that the entire array is to be read. match the empty subscripts that

follow, if specified.
-.

235

READ (continued)

Comments

The numeric items stored in D ,'1 T A statements are read into the numeric variables in a FE A D state­
ment. If they are not in the correct form (that is, if they are not valid numeric expressions) then an
error results. A string variable may read what appears to be a numeric item, as long as it is
dimensioned large enough to contain the characters. When the current program context changes due to
execution of F: i.J roo! or CAL. L., the DATA pointer is reset. The first FE A D statement in a program
accesses the first item in the first D H T H statement in that program unless you used P E ::; T C !:;:: t:: to
specify a different D H or H statement as the starting point. Successive FE H D operations access
successive [; H T H items, progressing sequentially through the D ,:=: T ,:::! statements as necessary. Trying
to read past the end of the last D H T ,:::i statement causes an error. The F: E: ::::; T C f;: F statement may be
used to alter the order in which FE H Li accesses D ,'1 T ,:'\ statements.

A valid D ,'1 T ,::' expression may contain any function calls or variable references that are allowed in any
other expression. This feature may be useful for reading computed constants or special characters that
are normally unavailable from the keyboard, such as D A T A ::; I) F.: .:: 2l F' I ::. and C H P $.:: 27 ::. .

Related Keywords

, I' ~ ::::: .0;0. ::::: ~;~~ F .

236

READ #

FER D # reads data items from a data file associated with a specified channel number.

• Statement
D Function
D Operator

Examples

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

FERD #3;J,F,DS,P(),SlS(

FERD #7, 2Ci.: I., R(I), ,"',

F:ERD #H.: Z(,::'

Input Parameters

Item Description Restrictions

channel number Numeric expression rounded to an 1 through 255.
integer.

record number Numeric expression rounded to an o through 1,048,575.
integer. The first record of the file is record
O.

variable specifier Numeric variable specifier or string variable None.
specifier.

array name Name of a numeric or string array. The number of dimensions must
Indicates that the entire array is to be match the empty subscripts that
read. follow, if specified.

L .. _ .. ______ . ______

237

READ # (continued)

Comments

FER D # reads data items from the file assigned to the specified channel number. The file's type can
be DATA, TEXT, or SDATA. The data type of each item in the FER D # read list must match the
type of corresponding data item in the data file.

If you specify a record number, the file is positioned to that record and the data items are read. This is
termed random access. For a file of type DATA or SDATA, specifying a record number greater than
the number of records in the file causes an End (I f F i 1 e (error 54) condition.

If you do not specify a record number, the computer begins reading data items from the data pointer's
current position in the file. This is termed sequential access.

TEXT Files. Every record is assumed to contain a single data item represented as a string of char­
acters. If a data item is to be read into a numeric variable, the computer attempts to evaluate the
ASCII string as a numeric expression in a manner similar to that of the I,) R L function. If the specified
record number is greater than the number of records in the file, the file pointer is set to the end of the
file.

DATA Files. For random access, the number of items in the read list must not exceed the number of
data items in the record.

SDATA Files. Each record of this file type can contain a single numeric or string data item. Note
that strings are limited to six characters.

If the data type of each item in the F~ E R D # read list does not match the type of corresponding data
item in the data file, the error E F.: F.: : D a taT '::I P eo occurs, and the file pointer is adjusted as follows:

File Type File Pointer Action

DATA Left at record where error occurred.

TEXT Incremented to next record.

SDATA Incremented to next record.

Related Keywords

238

REAL

FE H L.. allocates memory for real variables and arrays.

• Statement
o Function
o Operator

Examples

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

FEHL. 1)4«(',::';) F:EfiL t'j, F'':: 4,4'

Input Parameters

Item Description Restrictions

numeric variable Letter followed by an optional digit. None.

dimension limit 1 }

dimension limit 2
Numeric expression rounded to an integer. Current 0 F' TIC! [.j EoW::E setting

through 65535.

Comments

FE H L creates real variables and arrays. Creation occurs upon execution of FE t1 L. The dimension
limits are evaluated at creation time. The lowest-numbered subscript in any dimension is 0 or 1,
depending on the 0 F' T I 0 [.j Eo H ::: E setting when the array is created. All elements are initialized to
zero.

239

REAL (continued)

If F.: E A L specifies a simple numeric variable that already exists, the variable is reintialized to zero.
Array variables are redimensioned, but not reinitialized to zero (unless the data type is changed). If
F.:EAL expands an array, it also initializes all newly-created elements in the array. Notice that
redimensioning does not necessarily preserve an element's position within an array, but does preserve
the sequence of elements within an array. (Refer to "Declaring Arrays (D I t'1, F.: E A L, S H 0 F.: T,
I tHEGEF.:)" in section 3 of your HP-71 Owner's Manual.)

The following table indicates the conditions that apply to F.: E H L variables and arrays:

Initial Value

Numeric Precision

Exponent Range

Maximum No. of Array Dimensions

Maximum Dimension Limit

Memory Usage in Bytes
• Simple Variable
• Array

Related Keywords

REAL Numeric Variables

o
12 Decimal Digits

±499

2

65535

9.5
8*(dim1-base+1)*(dim2 - base + 1) + 9.5

240

RED

P E D (x .' y) (reduction) returns a remainder defined by the expression

x - y * n

where n is the nearest integer to x/yo If x/y lies exactly between two integers, F.: E D uses the even
integer.

o Statement
• Function
o Operator

Examples

Input Parameters

Item Description

argument1 } Numeric expression.
argument2

• Keyboard Execution
• CALC Mode
• IF ... THEN ... ELSE

IF PED(K,3)=1 THEN PPINT K

Restriction

Refer to "Comments," on the facing
page.

241

RED (continued)

Comments

P E D is the remainder function defined by the IEEE Floating Point Standard. * F.: E D has the following
properties:

• F.:ED (x., y) is periodic in x with period Iyl, except at odd multiples of y/2, where the period
is 21yl.

• F.:ED(x,y::' lies in the interval [-lyl/2, lyl/2].

• F.: E D generates exact answers (that is, no rounding is necessary for the 12-digit result).

F: E D is useful for angle reductions, since

-180 <= F.:ED(x,360) <= 180

and the result is exact. For example, F.: E D (... 1 E - 2 ~J .' ::; 6 ~J::' = -IE - 20, exactly.

If argumentl is In f or argument2 is equal to zero, the In',,'.::; 1 i d P r '; (error 11) condition results.

Related Keywords

• The remainder function is referred to as REM in the IEEE Floating Point Standard.

242

REM

~'C:. ,'i (remarks) enables you to document your programs with comments.

• Statement
o Function
o Operator

Examples

Input Parameters

Item

character Any character.

Comments

Description

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

None.

Restrictions

When program execution encounters F" :, it assumes that any remaining information in that line
consists of remarks, and not executable keywords. Thus, in the following example, the i~! [I::::; F' E ::~
is ignored:

10 IF B$=C$ THEN PURGE B$ @ REM PURGED B$ @ DISP C$

When you want to enter a comment in a program line without using the I:!! F.: Et-1. .. construction, use
the I exclamation point. (Wherever P E t-1 is allowed, ! is also allowed. Notice, however, that I does not
require use of the I:!! character.)

P E t1 A r-1 E changes the name of a file.

• Statement
o Function
o Operator

RENAME

Examples

PENAME TEST1:PORT(2) Tn TEST2

PENAME TO STRESS6

Input Parameters

Item Description

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

243

RENAME

PENAME KEYF32 TO KEYS

Restrictions

file specifier String expression or unquoted string. File name with optional device
Default: Current file. specifier. Proposed file name must

not already exist on the device
containing the designated file.

Comments

You can use PEr'; i:i i'-1 t:: T !-, file name to name the !,,; () (" k f i 1 ~::' when the 1,,; c; (k r :I. ':::' is the current
file.

REt··; H [-1 t:: to:: E -,. :::; T (J file name renames the current key assignment file, which deactivates any active
key assignments. P E r'~ A !'i E file name T Ci to:: F \' :::; designates the specified KEY file to become the
current key assignment file. If the specified file is not in main RAM, an error occurs.

244

RENAME (continued)

A device specifier for the file you rename may be given in either file specifier (that is, before or after
the T U). If both file specifiers include device specifiers, then the device in the first file specifier
(whether implicit or explicit) is always interpreted as the device containing the file to be renamed. In
such cases the second device specifier is ignored. An example of an implicit device specifier is:

RENAME TU A:PURT

The preceding example implicitly specifies the device containing the current file. Thus, R E h A 1'1 E
ignores the : P (J R T device specifier.

R E t·j U t'1 E: E R renumbers the lines in a program file.

• Statement
D Function
D Operator

Examples

Input Parameters

Item Description

new start line Integer constant.
number Default: 10.

increment value Integer constant.

!
Default: 10.

old start line Integer constant.
number Default: Start of file.

old final line Integer constant.
number Default: End of file.

245

RENUMBER

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

Restrictions

1 through 9999.

1 through 9999.

1 through 9999.

1 through 9999.

246

RENUMBER (continued)

Comments

F.: E t·j U t'l B E F.: operations are subject to the following:

• If the HP-71 cannot find the old start line number, it locates the next successive line number and
begins renumbering from that line.

• If, during renumbering, F.: E f·j U t-1 B E P reaches line 9999 before the entire program is renumbered,
the computer automatically renumbers the program lines using 1 for the increment between lines.
In this case, if the new start line number was not specified, it defaults to 1.

• If a renumbered line is referenced by a program statement such as COTO or GC:::UB, the com­
puter automatically changes that reference to reflect the new line number.

Note: Where F.: U [.;, L I ::; T, or F.: E h U 1-1 B E F.: are program statements referring to specific line
numbers, any execution of P E [j U t'l B E F.: does not adjust those references to correspond to
the new line numberings.

F.: E S (result) returns the value of the most recently executed numeric expression.

o Statement
• Function
o Operator

Examples

Comments

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

247

RES

The HP-71 stores the result of each numeric assignment and calculator statement in a register re­
served for use by P E :::. This occurs prior to any rounding that may take place due to a SHORT or
INTEGER destination variable. P E :::: recalls the value currently stored in this register. FE::: can be
particularly useful in iterative computations because it is much faster than variable references.

In CALC Mode, the computer implicitly executes k t:: ':::; whenever a null subexpression is completed.
Thus, ::: I [.j S::') returns the sine of the previous result, and t-1 P ::< s:: , H> returns the larger of the pre-
vious result and variable H.

248

RESET, RESET CLOCK

P E ::; E T resets user and system flags to their default settings. P E ::: ETC L 0 C t::: nullifies the effect of
executing E ;:.:: H CT.

• Statement
o Function
o Operator

Examples

Comments

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

F.:E::;ET CLue:l<

The RESET Statement. F.:ESET clears all user flags (0 through 63) and the system flags that can be
set or cleared by users (flags -1 through -32). Reset also sets all math traps to their DEFAUL T Ot·j
settings.

The RESET CLOCK Statement. P E ::: ETC L 0 C f::: clears the Exact flag (flag - 46) and the sys­
tem clock's adjustment factor.

Related Keywords

kE:::;ET: C:F i....i:::iC:, :::FLAG.
kE::::::E:--r' C:l... :)':::r<: HF, F::<FiC·T.

249

RESTORE

P F ::; T (I P F specifies which D H T fi statement will be used by the next P FAD operation.

• Statement
o Function
o Operator

Examples

statement
illentifier

Input Parameters

Item Description

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

Restrictions

statement Line number or label of a program Any valid line number or label

identifier statement. reference.
Default: First DF1TH statement in the
program.

Comments

If P E :::: T Ci I:::: E specifies a line that does not contain a D H T H statement, the computer uses the first
D A T H statement following the specified line. P F ::: T Ci F.: E: can only refer to lines within the current
program. If no line number is specified, the next P E H [) statement uses the first D f:!"T' Fl statement in
the current program or subprogram.

Related Keywords

250

RESTORE #

FE::; T 0 F.: E # sets the file pointer associated with the specified channel number to the indicated
record number.

• Statement
D Function
D Operator

RESTORE *

Examples

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

Input Parameters

Item Description Restrictions

channel number Numeric expression rounded to an 1 through 255.
integer.

record number Numeric expression rounded to an o thru 1,048,575.
integer. The first record of the file is record
O.

Default: Beginning of the file.

Comments

For a file of type DATA or SDATA, specifying a record number greater than the number of records in
the file results in an En c! ;:; f F j. j ~::' (error 54) condition. For a TEXT file, if the record number
does not exist, f::: E: '::,: T () !::: E: # sets the file pointer to the end of the file, which causes the next record
written to the file to be appended to the current end of the file.

Related Keywords

251

RETURN

FE: T U F: h returns program execution to the statement following the invoking CO::; U E:.

• Statement
D Function
D Operator

---c RETURN)--

Examples

Program Segment:

Comments

I

Lim

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

P = E
G CI ::;,: 1...1 E:

D I ::::;P ;; E --;;

I ~ir=·UT E
FETUF.:r;- - - - J

In the above example, the C U '::; U E: on line 310 transfers execution to the subroutine beginning ~t line
700. The FE: T i...i ~:: r; at line 720 terminates subroutine execution and transfers program executIOn to
line 320.

Related Keywords

252

RMD

P rm 0:: x.' y::O (remainder) returns the remainder defined by the expression x - y • I F'(x/y),

D Statement
• Function
D Operator

Examples

i'l ::: [::: ' ". ; ; , ~::, ~J ,:;

Input Parameters

Item Description

argument1 } Numeric expression.
argument2

Comments

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

Restrictions

Refer to Comments, below.

pr'w is the remainder function defined by the ANSI BASIC Standard,* and has the following
properties:

• F' h'!"" .:: x.' y> is not periodic in x across x = 0.

• F :'" :::; .:: x.' y> lies in the interval

• [O,lyl) for x >= 0.

• (-lyl,O] for x <= 0.

• For X,y > 0, F.: r'l D 0:: x .. y::o = r'l 0 D 0:: x .. y::O .

• Returns results that are exact. U:U'::::) never sets the INX flag. No rounding needs to be done
because the result is never greater than 12 digits.)

If either argumentl equals I n f or argument 2 equals zero, the I n \.' ·:d idA tOO ':::I (error 11) condition
results.

* The remainder function is referred to as REM in the ANSI BASIC Standard.

253

RMD (continued)

Related Keywords

[I I''), r'10D, PED.

254

RND

F.: t·j [I (random number) returns the next real number in a pseudo-random number sequence and up­
dates the random number seed.

o Statement
• Function
o Operator

Examples

Comments

• Keyboard Execution
• CALC Mode
• IF ... THEN ... ELSE

"",:,'" ;.,
r" r:. 1 i"i i II r .:;jndom

The HP-71 uses a linear congruential method and a seed value to generate a random number value (r),
which always lies in the range 0 < = r < 1. Each succeeding execution of F: [.j D returns an r-value
computed from a seed based upon the previous F: t·; D value.

Note: If the seed is zero, the F: t·; D sequence will likewise be zero.

You can change the seed by executing F.: PHD Ci i'l I Z E.

Related Keywords

255

RUN

F.: U t·; executes a BASIC or binary program.

• Statement
o Function
o Operator

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

r.-----------,r----------------------r~x

Examples

FUr'~ : CAFD

file
spec if ier

FUr; .' ::;THFTS

F: ..Jf·; TE::;T:::;:: F'CFT':: 1::' ,3SCCi

Input Parameters

Item

statement
ident if ier

Description

Pi .. ,it·; : CHFU., 31j

I .:1=: .' _

Restrictions

ile specifier String expression or unquoted string. File name with optional device
Default: Current file. specifier or : CAFD.

ine number Integer constant. 1 to 9999.

s tatement Line number or label of a program Any valid line number or label
dentifier statement. reference.

256

RUN (continued)

Comments

If an external device contains the specified file, it is first copied into main RAM, then executed. When
you enter a file specifier and execute F.: U t·~, that file becomes the current file.

If you enter a line number or label reference after a file specifier, F.: U t·j begins program execution at
that line or statement. Otherwise, F.: U t·j begins execution at the first statement of the program. If the
computer does not find the specified line number, but does find a higher-numbered line, F.: U t·; begins
execution with that line. If you enter only a line number or label reference (and no file name), F.: U t·j
begins executing the current program from the specfied statement.

Note: The label reference must be preceded by a comma to distinguish it from a file specifier. The
comma preceding the line number is optional.

Effect of RUN on Suspended or Running Programs. Executing F.: U t·; from within a running
program causes the computer to halt the current program, switch to the specified program (which
becomes the "current file"), and run the new program.

If you suspend a program (which turns on the SUSP annunciator), subsequently executing F.:ut·j turns
off the SUSP annunciator, closes all files, releases local environments, clears all program control in­
formation with respect to the suspended program, and executes the specified program, as described
above.

The I RUN I Key. This key is a direct execute key. It causes program execution to begin with the first
statement of the current program.

The Effect of RUN on Current Memory Status. F.: U [.; closes all files, releases local environ­
ments and clears all program control information associated with a prior suspended program. (This is
equivalent to E f·m.)

Related Keywords

257

SCI

~:; C I (scientific format) sets the scientific display format (SCI mode) and the number of significant
digits to be displayed (or printed).

• Statement
o Function
o Operator

Examples

Input Parameters
_.

Item Description

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

IF X < 1 THEN SCI 11

Restrictions

number of digits Numeric expression rounded to an o through 11. ,-. ,-. T interprets a .:. ,_" 1

integer. value less than 0 as 0, and a value
greater than 11 as 11.

Comments

Display format statements control the format setting for displaying numbers. The display setting
remains in effect until you execute another ~:; C I, F I ::<, E ! .. ; G, or ::; T D statement.

::: C I display format displays values in scientific notation to d + 1 significant digits, where d is the
specified number of digits. The value appears as

(Sign) Mantissa E (Sign) Exponent

where, for normalized numbers,

1 < = Mantissa < 10

and, for denormalized numbers,

Mantissa < 1.

258

SCI (continued)

Related Keywords

259

SDEV

::; [i E I,) (standard deviation) returns the sample standard deviation for the specified variable in the
current statistical array.

o Statement
• Function
o Operator

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

-@--r1cH--(--r--~:':~~--)---Y---·
varible
number

Examples

P 1 =:::;[iEI,j':: i:: 1 ..

II.: ::;DE !,)

Input Parameters

Item Description Restrictions

v ariable number Numeric expression rounded to an Zero through the current
integer. array dimension.

Default: 1.

Comments

::;TfH

The sample standard deviation calculation uses n - 1 as the denominator, where n is the sample size.
For information concerning statistical arrays, refer to the "Mathematical Discussion of HP-71 Statis­
tical Arrays," page 334.

Related Keywords

..... : ' .. ~ .. , , C'TOT '-' ; ; ; ; ,

260

SECURE

::::: F C!..J P E protects a file from being altered or purged.

I ~ - ~~~~:~n~-------------------- ------------~

~ Operator___________ •

Examples

:::: E C: U F.: E < !:::. i .;--.

Input Parameters

Keyboard Execution
CALC Mode
IF ... THEN ... ELSE

SFCUPETESTGvC:P~~ I(~)'

-1----_____ D_e_s_c_r_iP_t_io_n ______ ~-----R-e-s-tr-ic-t-iO_n_s ____ ~
r-
I Item

til. spec"'.,
Default Current file.

File name with optional device
specifier. I

String expression or unquoted string.

--_________ -L _____________ ~

Comments

If a secured file is not private:

• In a catalog listing the file appears with an ::::: in the file protection field.

• The file can be read, listed, and executed.

• The file cannot be altered, purged, or declared private.

A file that is both secure and private appears in a CAT listing with an E in the file protection field.
Access to such files is limited to execution only. To remove a file from secure status, refer to the
UNSECURE keyword entry.

261

SECURE (continued)

Related Keywords

F'~:: I '')ATE, Ut·~::::;ECUPE.

262

SETDATE

~=.:; E"T D H"T [sets the system clock to the specified date.

• Statement
D Function
D Operator

Examples

i"1 it::. ' .. .' -._, .. " ~~., :

Input Parameters

Item Description

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

Restrictions

numeric date Numeric expression rounded to an Must be of the form YYDDD or
integer. YYYYDDD, where YYor YYYY =

year and DOD = day-in-year. For
leap year: DOD is in the range of 1
through 366. For other years, DOD
is in the range of 1 through 365.

date string String expression. Must be a valid date of the form
YY/MM/DD or YYYY/MM/DD.

263

SETDATE (continued)

Comments

You can specify either a year and the day number of the day in that year, or a date string. The HP-71
uses either YY or YYYY formats for year inputs, MM for month inputs, and DD for day inputs.

For numeric date inputs and for date string inputs, if you use the two-digit year format, and if:

• 60 <= YY <= 99, then YY = YY + 1900.

• 0 <= YY <= 59, then YY = YY + 2000.

If you use the date string format that specifies a four-digit year, the computer interprets the year as
entered. Although Li HT F: and U i', T Et display only the last two digits of the year portion of a date,
all four year digits are maintained internally.

Related Keywords

i .L j'it: .•

264

SETTIME

::::; E TTl t'1 E sets the time on the system clock.

• Statement
D Function
D Operator

Examples

seconds
since midnight

time
string

Ii i;::: .; -":' I!
; . .:';..:.;; J. I"

Input Parameters

Item Description

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

:=':;[TT I t'1E T$

Restrictions

seconds since Numeric expression rounded to an integer. o < = seconds < 86400.
midnight

time string String expression. Must be of the form HH:MM:SS
representing time < 24 hours.

Comments

Hours (HH) must always be entered as two digits, and in
the 24-hour clock format shown in the table to the right.

The HP-71 uses :::::[TT I r'E inputs in two ways:

1. The time you enter is used to set the clock time.

265

SETTIME (continued)

Hour HH
a.m./p.m.

12 Midnight 00
1 a.m. 01

12 Noon 12
1 p.m. 13
2 14

10 22
11 23

2. The difference between the time currently maintained by the clock and the time you enter is
interpreted as two entities, as follows, for interpreting the error correction factor:

• The portion of the difference that is a multiple of 30 minutes is interpreted as an absolute
adjustment, such as that used for a time zone or daylight savings change, and is not used as
an error correction input.

• The portion of the difference that is not a multiple of 30 is used to automatically determine
and store an error correction factor that is applied the next time you execute [::< fi C: T. The
HP-71 measures this portion from the nearest 30-minute increment and applies the appro­
priate sign.

For example, if the current HP-71 clock time is 10:03:17 and you execute ::::: [T"T· I r'T
" 1. 0 : ~::I ~:; : ::3;3" to correct the clock, the HP-71's clock is set to 10:05:30 and an error factor is
computed on the basis of 5m 308

- 3m 17S, or + 2m 13S, and is automatically stored.

266

SETTIME (continued)

The ::; E TTl t'1 E error correction factor is cumulative between executions of E::< ACT. This allows you
to execute ::; E TTl t'1 E as many times as you wish before executing E ::.:: ACT.

The resolution of the clock system is 1/512 second. A numeric input for ::; E TTl t'1 E can specify frac­
tional seconds; a string input cannot.

Related Keywords

ADJAE:::;, AD, .. .II...I::;T, AF, D::ACT, T I i'iE, T I t'1E$.

267

SFLAG

::; F LAC (set {lag) sets user and/or system flags specified by keyword or by a flag number list.

• Statement
o Function
o Operator

Examples

::;FLAG ALL

Input Parameters

Item Description

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

Restrictions

flag number Numeric expression rounded to an -32 through 63.
integer.

Comments

::; F LAG sets flags as follows:

• ::; F LAG ALL sets all user flags (0 through 63).

• ::; F LAG t'1 A T H sets the math exception flags.

• ::; F LAG with a flag number list sets the system and user flags specified by the integer-rounded
values of the numeric expressions in the list. ::; F LAG cannot set system flags numbered less than
-32.

Related Keywords

CFLAG, [li,}Z, FLAG, I r'~::<, I !,)L, 0 ..,iF, Ur·~F.

268

SGN

::: G t·j 0:: ::.::::0 (sign (x)) returns -1 if x is less than zero; 0 if x equals zero; and 1 if x is greater than zero.

D Statement
• Function
D Operator

Examples

Input Parameters

Item Description

argument Numeric expression.

Comments

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

None.

The table to the right shows the values returned by::: G t·t

Related Keywords

Restrictions

x I SGN(x)

>0 1
= 0 0
<0 -1

= NaN NaN

::::: H 0 F.: T allocates memory for short (5-digit precision) variables and arrays.

• Statement
D Function
D Operator

Examples

Input Parameters

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

:::::HClI?r F.: 7 ;:: 7. ::;::.

269

SHORT

Item Description Restrictions

meric variable nu

di mens;on Urn;! 1 }

di mension limit 2

Comments

Letter followed by optional digit. None.

Numeric expression rounded to an Current OFT:r. C) i"; E: H ::::: E: setting
integer. through 65535.

I

::::: H (J F: T creates short variables and arrays. Creation occurs upon execution of ::::: !···I (J f::: T. The dimension
limits are evaluated at creation time. The lowest-numbered subscript in any dimension is 0 or 1,
depending on the 0 F TIC [.; E: H ::::: E: setting when the array is created. All elements are initialized to
zero.

270

SHORT (continued)

If !:; H 0 F.: T specifies a simple numeric variable that already exists, the variable is reinitialized to zero.
Array variables are redimensioned, but not reinitialized to zero (unless the data type is changed). If
S H 0 F.: T expands an array, it also initializes all newly-created elements in the array. Notice that
redimensioning does not necessarily preserve an element's position within an array, but does preserve
the sequence of elements within an array. (Refer to "Declaring Arrays (D I t'l, F.:EAL, SHOF.:T,
I tHEGEF.:)" in section 3 of the HP-71 Owner's Manual.)

The following table indicates the conditions that apply to S H 0 F.: T variables and arrays:

Initial Value

Numeric Precision

Exponent Range

Maximum No. of Array Dimensions

Maximum Dimension Limit

Memory Usage in Bytes:
• Simple Variable
• Array

Related Keywords

SHORT Numeric Variables

o
5 Decimal Digits

±499

2

65535

9.5
4.5*(Dim1 - Base + 1)*(Dim2 - Base + 1) + 9.5

271

SHOW PORT

::;HOl·j POF.:T displays the type and size, in bytes, of all memory devices in your HP-71. :3HOl·j
PO F.: T is nonprogrammable.

• Statement
o Function
o Operator

Examples

Comments

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

For each memory device ::; H Ci ~'i F' 0 F: T displays the port number, the device size in bytes, and the
device type number. Memory type numbers range from 0 through 15:

Device Type

Main RAM

Independent RAM

ROM

EEPROM

I Device Type Number

o

2

3

Refer to F F.: E E F' 0 F.: T for port numbering information.

As an example, after F F.: E E PO F.: T (. (12 ::0, the :3 H 0 l,j PO F.: T statement would display for that mem-
0ry device:

(1. (12 4(196

This indicates that port 0.02 contains 4096 bytes of independent RAM.

272

SIN

::; I t·~ (sine) returns the sine of its argument.

D Statement
• Function
D Operator

Examples

Input Parameters

Item Description

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

Restrictions

argument Numeric expression. Must be finite value.

Comments

::; I t·~ first reduces the argument modulo 360 (when in Degrees setting) or modulo 2*11" (when in Radians
setting). S I t·~ assumes that the argument is expressed according to the current angular setting. In
Radians setting, S I t·~ uses a 31-digit representation of 11" to increase accuracy. Also:

+0

• ::; HH 1 ::: [1 * n::' = [(-1)n] * 0; where n = 1,2,3, ... (Degrees mode).

• ::;It·~(-x) = -SIt·~(x); for example, ::;It'~(-1:::0::' = +0.

Related Keywords

273

SOR (SORT)

:::; C F (square root) returns the square root of the argument.

D Statement
• Function
D Operator

Examples

Input Parameters

Item Description

argument Numeric expression.

Comments

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

Restrictions

The argument must be greater than
or equal to zero. Refer also to
"Comments," below.

If the argument is less than zero, then the ::; C~: .:: !"': I?":;'::' (error 10) condition occurs.

Note: Because -0 is non-negative (-0=0), SQR(-O)= -0 .

274

STARTUP

::nAF.:TUF' defines a command string to be executed when you turn on the HP-71.

• Statement
D Function
D Operator

Examples

command
string

:::;TAF.:TUF' "~,j I DTH I r'lF I~ DE L A";"'

Input Parameters

t:'

"'..1 .'

Item Description

command string String expression.

Comments

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

I r'jF II

Restrictions

o through 95 characters.

When specifying a:::; T A ~: T i...! F' string, you can use any string of instructions that you can otherwise
execute from the keyboard. To enter a multistatement string, use I~ to concatenate the statements in
the same way that you would when executing multistatement commands from the keyboard or in a
program.

STARTUP Operation. When you execute :::;TA~:Ti...iF', the HP-71 stores the specified command
string as it is typed, without checking for syntax errors. The computer maintains only one :=.:; T fi F T U F'
string at any given time. When you switch the computer off, then on, if the string is error-free, the
::; 'r H P T i...! F string is executed. Otherwise, the computer displays an error message. If the computer is
in CALC mode when you turn it off, or if b ";"' !:~ or C F F turns off the computer during program
execution, the :::; T AFT U F' string is not executed when you turn the computer on again.

Clearing a STARTUP String. Once you specify a:::; T fl P T U F' string, it remains active until
cleared. To clear a:::; T H f;:: T U F' string, execute :::; T A Vi ! .. F::' with a null string (::n APT U F' II ").

275

STAT

:::; TAT (statistics) either creates and dimensions a statistical array to the appropriate size for a speci­
fied number of variables, or designates a previously dimensioned statistical array as the current statis­
tical array.

• Statement
D Function
D Operator

Examples

number
of variables

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

Input Parameters

Item Description Restrictions

array name Numeric variable. None.

number of Numeric expression rounded to an o through 15.
variables integer.

Comments

:::; T fiT allows you to simultaneously store several statistical arrays and to analyze them in any order.

Before performing statistical calculations, you must specify both the array to use for accumulating
summary statistics and, if the array did not already exist, the number of statistical variables (coordi­
nates) for each data point.

Creating an Array. ::; T f'i T specifies the current statistical array and the number of variables per
data point. You can specify the number of variables as any numeric expression whose rounded value is
in the range of 0-15.

The HP-71 uses the number of variables to automatically allocate enough space for the array. The
array has an eFT I C ri E: f<='; F setting of zero, regardless of the current 0 F' T I 0 !"; E><='; F setting.

276

STAT (continued)

Selecting an Existing Array. In an existing statistical array the number of variables is already set.
Thus, you need not specify the number of variables when using ::; TAT to select an existing statistical
array.

Related Keywords

ADD, CU::TAT, COF.:F.:, DF.:OF', U\ f'lEAt·j, F'PE[)i,}, SDEi,}, TOTAL.

::;TD (standard) selects the HP-71's standard BASIC format for displaying numbers.

• Statement
o Function
o Operator

Examples

Comments

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

IF FLAC(D)=l THEt·j

277

STD

The ::; T D format conforms to ANSI Mimimal BASIC Standard X3J2, and produces the following
results when displaying or printing a number:

• Numbers that can be represented exactly as integers with 12 or fewer digits are displayed without
a decimal point or exponent.

• Numbers that can be represented exactly with 12 or fewer digits, but not as integers, are displayed
with a decimal point but no exponent. Leading zeroes to the left of the decimal point and trailing
zeroes in the fractional part are omitted.

• Zero is displayed as [i.

• All other numbers are displayed in the following format:

(Sign) Mantissa E (Sign) Exponent

where the value of the mantissa is in the range 1 < = x < 10, and the exponent is represented by
one to three digits. (A denormalized number has a mantissa that is less than 1 and an exponent of
-499.) Trailing zeroes in the mantissa and leading zeroes in the exponent are omitted.

278

STD (continued)

The following table provides examples of numbers displayed in :::; T D format:

Number Displayed As
Representable
With 12 Digits?

1011 100000000000 Yes-integer.
1012 1.E12 No.
10-12 .000000000001 Yes.
1.2*10- 11 .000000000012 Yes.
1.23*10- 11 1.23E-11 No.
12.345 12.345 Yes.

Any display setting remains in effect until changed by another F I ::<, ::; C I, E r·; G, or :::; T D statement.

Related Keywords

Et"iC, FI>::, :::;C1, :::;TF.::$:.

279

STOP

:::; TOP operates in the same was as E t"i D to end a subprogram, user-defined function, or a program.

• Statement
o Function
o Operator

Examples

Comments

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

1 F ::< <0 THEt"i STOP

A program can contain more than one :::; T C F' statement.

Executing :::; T 0 F' from the keyboard releases a suspended program.

Related Keywords

280

STR$

::: T F.: $ (numeric-to-string conversion) returns a string representation of the value of the argument.

D Statement
• Function
D Operator

Examples

Input Parameters

Item

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

D I ::; F' II >:::::: II .: ::: T F.' $;:: >:: ::.

Description

argument Numeric expression. None.

Comments

Restrictions

The returned string is in the current display (or print) format, except that a positive value represented
as a string is shifted one space to the left. ::; T F.: $ formats infinity as I n f, and NaN as t·~.;j t·t

Standard (STD) Display Format. The STD format conforms to ANSI Minimal BASIC Standard
X3J2, and is enabled by executing STD. (Refer to the STD keyword entry.)

Fixed-Precision (FIX) Display Format. The value is displayed rounded to n places past the
decimal point, where n is specified by F I ::< n. Where the number of digits displayed by this method
would exceed 12, the value is displayed in ::; C I n format. Where the nonzero value rounded to n
places past the decimal point would be zero, the value is displayed in ::: C I n format.

281

STR$ (continued)

Scientific (SCI) Display Format. The value is displayed in scientific notation to n + 1 significant
digits, where n is specified by SCI n. The value appears as:

(Sign) Mantissa E (Sign) Exponent

where 1 < = mantissa < 10 for normalized numbers, and the mantissa is less than 1 for denormalized
numbers.

Engineering (ENG) Display Format. The value is displayed to n + 1 significant digits, where n
is specified by E [.j C n. The value appears as:

(Sign) Mantissa E (Sign) Exponent

where 1 < = mantissa < 1000, and the exponent is divisible by 3. If the value has an exponent of
- 499, it is displayed in ::: C I n format.

Related Keywords

282

SUB

::; U B (begin subprogram) is the first statement in a subprogram and can specify the subprogram's for­
mal parameters.

• Statement
o Function
o Operator

Examples

subprogram
name

o Keyboard Execution
o CALC Mode
o IF ... THEN ... ELSE

::=':I . ..iE PA,-;"'FOLL

Input Parameters

Item Description Restrictions

subprogram name Unquoted string consisting of letters and Up to eight characters.
digits, and starting with a letter.

formal parameter Simple or array variable name, or channel Channel number must be integer
number preceded by #. constant in the range 1 to 255.

Comments

::; U P identifies the start of a subprogram. An E t·w ::: UP, another ::; U E statement, or the end of the
program file terminates the subprogram and returns program execution to the statement following the
CAL L statement that invoked the subprogram.

Parameter Passing. Actual parameters (those in the CAL L parameter list) and formal parameters
(those in the ::; U E: parameter list) must match in type and number. Parameters can be passed to a
subprogram by value or by reference. The distinction is specified in the C r'i L L statement. Array
variables passed by reference must be specified by the variable name, followed by an empty set of
parentheses to specify the number of dimensions. (For example, a two-dimensional array, A, appears
as A'::.' ::').

283

SUB (continued)

All variables used in the subprogram, except those passed as parameters, are local to the subprogram.
If a subprogram takes no parameters, then the channel numbers it uses are those of the calling pro­
gram. Any channel number specified in the formal parameter list must be a constant.

Subprograms in Files. A BASIC program file can contain more than one subprogram. Also, a
subprogram can reside in the same file as a main program.

If a subprogram is in the same file as the main program it must follow the main program. If there is
more than one subprogram in a file, the subprograms must be placed consecutively. Any statement
placed between two subprograms is ignored during program execution.

Binary Subprograms. You can write a subprogram in BASIC or in assembly code. CAL L can in­
voke either subprogram type.

How the HP-71 Searches for Subprograms. If no file specifier is given in the CALL statement,
the subprogram search begins with the current file. If the subprogram is not found, the search contin­
ues through the files in main RAM, then through the files on plug-in memory devices and independent
RAMs. If the subprogram is not found in any file, and if the CAL L statement lists no parameters, the
HP-71 then begins searching for a Program having the specified name.

Related Keywords

284

TAN

T H ii (tangent) returns the tangent of its argument.

-" ".-.--------_._--_._------ --_._--- --"-------.- ._-"-- "---

i 0 Statement

l • Function
o Operator

Examples
..... j.: .

;; ;S"! "'. ; ...

Input Parameters

Item Description

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

Restrictions

argument Numeric expression. Must be finite value.
-

Comments

T A t·j first reduces the argument modulo 360 (when in Degrees setting) or modulo 2 • 7r (when in
Radians setting). T A t·j assumes that the argument is expressed according to the current angular set­
ting. In Radians setting, T A t·j uses a 3l-digit representation of 7r for increased accuracy.

+0; n=1,2,3, ... (Degrees mode).

• TPii<····x) -THi···i<x>.

Related Keywords

::::;, H: ... :::::;,

T I r'iE returns the time of day expressed in seconds since midnight (OOh oom 00').

o Statement
• Function
o Operator

Examples

A=T I I'lE

Related Keywords

T I 1'1 E:$:.

Comments

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

285

TIME

=

Returns time since midnight to the closest lOOth of a second. (This assumes the clock has been
set correctly using the :::: E TTl t'1 E command.)

286

TIME$

T I t'l E $ (time string) returns the time of day as a string in the format HH:MM:SS.

D Statement
• Function
D Operator

Examples

A$=T I t'1E$

Comments

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

The T I t'1 E $ function uses the 24-hour format shown in
the table to the right.

Related Keywords

T I t"IE.

Hour
a.m./p.m.

12 Midnight
1 a.m.

: 1
12 Noon

1 p.m.

!
11

HH

00
01

12
13

23

287

TOTAL

T I] TAL returns the total of the specified variable in the current statistical array.

D Statement
• Function
D Operator

Examples

Al = TOTAL<::>::l

Input Parameters

Item Description

• Keyboard Execution
• CALC Mode
• IF ... THEN ... ELSE

FF I ['F "To 1: ,:; 1 " ,: TOTAL

Restrictions

variable number Numeric expression rounded to an Zero through current ~:nAT
integer. dimension.

Default: 1.

Comments

array

Because variable "0" of a statistics array accumulates the number of coordinate inputs, executing
T C:; T fi L.. <:: ;J) returns the number of data points currently summarized in an array.

Related Keywords

288

TRACE FLOW/VARS/OFF

T F.: ACE FLO i,j reports changes in the flow of a running program. T F.: ACE I,) A F.: ::: reports all variable
assignments in a running program. T F.: t"i CEO F F turns off all T F.: ACE operations.

• Statement
D Function
D Operator

Examples

Comments

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

T F.: ACE FLO i,j traces program execution during branches from the current statement, as when G I] T 0
or GO::; U B is executed.

T F:: H C: E I) H f::: ::=.: traces the changes in the values of all program variables.

Note: T F.: ACE I,) H to:: ::,; does not trace the effects of [I E: ',:; T F.: 0 'y' and variable redimensioning.

T ~:: H C: F C F F turns off any active T F.: ACE: operations.

Trace operates globally. Thus, if a subprogram sets Trace mode, but does not subsequently clear it, the
mode remains active when execution returns to the calling program.

T F.: A C: E I,) Fi I:::: ::::: and T F: H C E F L. (J ~,; can be active at the same time.

289

TRANSFORM

T F H r'~ ::: F 0 F.: t'1 is used to transform BASIC program files into TEXT files for interchange purposes, or
to transform them back into BASIC program format.

• Statement
D Function
D Operator

TRANSFORM

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

destination
file

Examples

TF.:HNSFCF.:M L.IF1PF.:CG:PCF.:T INTO BASIC PF.:CG

TF.:ANSFOF.:M AS INTO BHSIC

TFANSFOF.:M INTO TEXT

Input Parameters

Item Description

source file File specifier of file from which lines to be
reformatted will be read.

Default: Current file.

file type File type specifying format of destination
file.

destination file File specifier of the file into which lines to
be reformatted will be written.

i
Default: Source file.

Restrictions

String expression or unquoted
string containing a file name with an
optional device specifier.

Must be BASIC or TEXT (LlF1).

String expression or unquoted
string containing a file name with an
optional device specifier.

290

TRANSFORM (continued)

Comments

The HP-71 TEXT file type can be referred to as LIF1, and is in fact identical to the LIF1 file type
generated by the HP-75 computer. The HP-71 interprets and decompiles LIF1 as TEXT. For example,
if you enter

100 TRANSFORM "AAA" INTO LlF1

then list this line, the HP-71 displays

100 TRANSFORM "AAA" INTO TEXT.

Transformation In-Place. If you omit the destination file, or if it is the same as the source file, the
source file itself is transformed into the specified file type. If the file is already of the desired type, no
action is taken. If the file is the ! .. J () r- k f i 1 e, it is renamed to L,j (I F K F I L.. E, and a new 1, • .1 (I t- k f i 1 e
is created. The HP-71 allows in-place transformation only for files residing in RAM.

Transformation Out-of-Place. If the destination file is not the source file, a transformation des­
tination file is created (it cannot already exist). If the source file is already of the desired type, a
simple copy occurs. If the destination file is to be created on an external device, the HP-71 makes a
preliminary pass through the source file to determine the file size needed for the destination file. The
computer then creates the destination file and writes the transformed data, line by line, to the des­
tination file. Any warning messages displayed during the preliminary pass will be displayed again
when the file is actually transformed.

BASIC-To-TEXT Transformations. A BASIC-to-TEXT transformation converts ("decompiles")
a BASIC program file into equivalent lines of ASCII text. The starting line number of each statement
is decompiled as a four-digit number with leading zeroes supplied. A decompiled line exceeding 120
characters generates the L:l (, ;:::' T ();:; L;:; (,<:i (error 65) condition.

291

TRANSFORM (continued)

TEXT-To-BASIC Transformations. TF.:At·j::;FOF.:t'1 generally uses the same statement entry rules
that the HP-71's operating system uses for statements entered from the keyboard, with certain excep­
tions and restrictions. T F.: A t·j ::; F 0 F.: t'1 accepts a maximum line length of 120 characters instead of the
95-character keyboard limit. Longer lines are truncated to 120 characters, and generate the Lin e
T;:. I) L I) n';! (error 65) condition. Restrictions are that every line must begin with a line number, and
that an implied [I I ::; F' statement may not begin with an expression that itself begins with a variable.
For example:

100 3*SIN(A)

will be interpreted as

100 DISP 3*SIN(A)

but the statement

100 A

generates a syntax error.

Note: A transformation can take up to several minutes to complete, depending upon the size of the
file being transformed.

Error Handling During Transformation. Errors detected during a transformation are handled
automatically. If the error is a recoverable error (that is an error that will not prevent completion of
the transformation), a warning message is displayed in the following format:

T F i'i ~,! F.: f'; Lnnnn: ...

The nnnn indicates the line number of the source file line on which the error exists, and " ... " indicates
the warning message. If the computer cannot identify a line number for the source line, nnnn indicates
the sequential number of the line in the source file. After the transformation is complete, the ::; '::I n t .;l >::
error message is generated if one or more recoverable errors occurred during the transformation.

When transforming a TEXT file to BASIC, a line having a valid line number but an invalid BASIC
statement is a recoverable error and results in a warning. In this case the line is converted to a BASIC
remark statement by preceding it with the characters" I ,~, ". A BASIC-to-TEXT transformation
removes these characters. Thus, original TEXT lines that cause an entry error when transformed from
TEXT to BASIC will be restored when transformed back to TEXT.

292

TRANSFORM (continued)

If an error is unrecoverable (that is, an error that will prevent completion of the transformation), the
computer displays the warning message

TFM WRN:Transform Failed

and aborts the transformation. If the transformation is out-of-place, the destination file is purged. If
the transformation is in-place, the file is restored to its original format. After the HP-71 completes
either operation, an error message identifying the cause of the unrecoverable error appears in the
display.

CAUTION

An error condition that prevents completion of an in-place transformation causes the computer to
perform a reverse transformation on the portion of the file already changed in order to restore the file
to its original format. If the reverse transformation is aborted by another error, such as insufficient
memory, the file is rendered unrecoverable and is automatically purged. Note that in low memory
conditions with extended keywords supplied by external ROMS or LEX files, there is a remote pos­
sibility that despite all system safeguards an error that prevents completion of a transformation oper­
ation can occur during the inverse transformation. For this reason, in-place transformation is not
recommended in conditions of limited memory or on a file for which you do not have a backup copy.

293

TRAP

T i? f1 F' returns the current value of the trap for the specified flag number, and optionally allows you to
supply a new value.

o Statement
• Function
o Operator

• Keyboard Execution
• CALC Mode
• IF ... THEN ... ELSE

~n~~~~rl-I Lo-,r------n-ew--~..........-·0-
, .------

. trap value

Examples

-r '''''TF:AF' 0:: O')F "J::'

t ;C' ::; t D ,i ,::. t , ... 0; i='

Input Parameters

Item Description
_.

Restrictions

fl ag number Numeric expression rounded to an -8 through -4.
integer.

n ew trap value Numeric expression rounded to an 0 through 15. (Refer to
integer. ments" on the next page.)

"Com-

294

TRAP (continued)

Comments

You can use T F.: A F' to set, test, save, and restore individual trap values. If an optional new trap value
is specified, the trap is then assigned the new value. Otherwise, the trap is left unchanged. For in­
formation concerning trap values, refer to your HP-71 Owner's Manual.

A trap value in the range of 3 through 15 is treated in the same was as a trap value of o.

Related Keywords

[lEFfii...1L..T, (11)2, I r·;;:,::, I')L, C "IF, Ui··1F.

Ut··iF (underflow) returns the underflow flag number (-5).

D Statement
• Function
D Operator

Examples

IF FLfiG(UNF) THEN A=0

Related Keywords

CFL.AG, DEFAULT, Di,)Z, ~. i ~ r~
• '--, :"_0"'

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

Oi,)F,

295

UNF

296

UNPROTECT

U t·~ P F.: [I T E C T removes the write-protection from one track of a magnetic card.

• Statement
o Function
o Operator

Examples

u [.j P F.: [I T E C T

Comments

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

Uf·n='F.:[lTECT is available only when the HP 82400A Card Reader is installed in your HP-71. When
you execute U t·; P F.: [I T E C T, the computer prompts you for a card and then allows you to pull the card
through the card reader once. If the track accessed by the card reader was previously write-protected
by P F.: C! TEe T, the U t·~ P F.: C T E C T operation removes the write protection. To remove the write­
protection from the card's other track, turn the card around, reexecute U [.j P F.: C T E C T, and again pull
the card through the card reader.

When you remove write-protection from a track, you can then use C C P \' to write over that track.

Related Keywords

PF:OTECT.

297

UNSECURE

U t·~ ::; E C U F.: E clears the file access restriction that is set by::; E C U F.: E.

• Statement
o Function
o Operator

Examples

Ur·j::;ECUF.:E KE\':::

U t·~ ::: E C U F.: E

Input Parameters
--

Item Description

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

Ut·~SECUF.:E CAT$ 0:: t·~::O

Ut·~::;ECUF.:E F I LE2

Restrictions

file specifier String expression or unquoted string. File name with optional device
Default: Current file. specifier .

..

Comments

U t·; ::: E C U F.: E t::: E '-;- ::; reverses the effects of :::: F C: !...! f::: E on the current key assignment file, k e '::! ::::..

You can purge an unsecured file. If such a file is not private, it may be read, listed, and altered without
restriction.

Note: All files are unsecured at creation.

Related Keywords

pr::' I !)ATE, ::;FCUF.:E.

298

UPRC$

UP F.: C:$: (uppercase conversion) converts all lower case letters In a string to their uppercase
counterparts.

D Statement
• Function
D Operator

Examples

Fi$=UPF.:C$':: ri$::'

Input Parameters

Item Description

string String expression.

Comments

• Keyboard Execution
D CALC Mode
• IF ... THEN . .. ELSE

None.

Restrictions

UP F.: C $ returns a string that is identical to its argument except that all lowercase letters contained in
the string are converted to uppercase.

This function is useful when you wish to allow input in lowercase, but require that such input be
converted to uppercase before determining its value.

299

USER

1.1 :::: E F.: activates or deactivates the User keyboard, in which user-defined key assignments are active.

• Statement
D Function
D Operator

Examples

Comments

U:::EF: OFF

• Keyboard Execution
D CALC Mode
• IF ... THEN . .. ELSE

U::::EF:

When the User keyboard is inactive, all keys correspond to those indicated on your HP-71's keyboard,
and the USER mode annunciator is not displayed. When User mode is active, any user-defined key
assignments maintained in the k e '::15 file are active and the USER annunciator is displayed. For a
description of how to redefine keys, refer to the DEF KEY keyword entry.

Executing U ::: E F: without specifying 0 r-; or 0 F F switches the current status of User mode to its
opposite status.

Activating User mode sets system flag -9; deactivating User mode clears flag -9.

Related Keywords

-

300

VAL

I,m L (string-to-numeric conversion) converts to a numeric value any numeric expression within a string
expression.

D Statement
• Function
D Operator

Examples

D=::i,}AL.':: DATE:i;:[7 J::'

Input Parameters

Item Description

string String expression.

Comments

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

Restrictions

Must contain a valid numeric
expression.

The parameter string is entered as a numeric expression.

• Any characters following the first valid numeric expression are ignored. For example,
',j H l... .:: " :i. ::::: :::;; E(? "::' would return i 2::;.

• Any numeric expression is allowed including those that return I n f" or t·~.3 t·;.

If i,) 1:::1 L. cannot interpret the string as a numeric expression, an error results. For example, ,) F:, L.
.:: " ~::::;: 4 :f: ".. which the computer interprets as an incomplete expression, causes an I n \1 ·3 1]. d
E ::< p ~- (error 80) condition.

Related Keywords

301

VER$

I,} E F.: $ (version string) returns a string indicating the versions of the system ROMs built into your
HP-71. I,}EF.:$ also returns the names of any LEX files present in the computer's memory or in a plug­
in ROM.

D Statement
• Function
D Operator

Examples

: . ..l.i .. :" !JFF:$:

Comments

• Keyboard Execution
D CALC Mode
• IF ... THEN ... ELSE

This function can provide useful information to Service personnel should your computer ever need
service.

The default string returned by I,} E: r::::;::: indicates the version of your computer's system ROM set. The
defaul t string uses the following format:

HP71: lCCCC

where each character (C) in the string following the colon indicates the version of each of the comput­
er's four system ROMs .

If there are any LEX files in main RAM, plug-in ROMs or independent RAMs, the HP-71 appends to
the default string a separate string identifying each of these files. The format for any appended string
is:

" name [: version identifier] " .

The number of characters in the .'/ t:. r:: :~:. string depends upon the number of LEX files in the machine.

302

WAIT

~,j fi I T causes the computer to wait for the specified number of seconds.

• Statement
o Function
o Operator

Examples

Input Parameters

Item

~,jA IT,:':,

Description

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

~'~AIT ,]

Restrictions

interval Numeric expression giving number of o through 19,531,250,000,000.
seconds to wait. Both integer and fractional values

allowed.

Comments

To interrupt the waiting period, press the I ATTN I key.

303

WIDTH

~,~ I D T H defines the line length for the D I::; F' and L I ::; T statements.

• Statement
o Function
o Operator

Examples

Input Parameters

Item Description

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

Restrictions

display width Numeric expression rounded to an 1 to infinity. Arguments exceeding
integer. 255 are interpreted as infinite.

Arguments less than 1 are
interpreted as 1.

Comments

~,j I D T H affects only the displayed output. ~,j I D T H does not set an absolute length on stored lines,
but rather sets the number of characters for any line you display. If a stored line has more characters
than specified by the current ~,j I D T 1'1 setting, the line is split into two or more lines when included
in D I:::; F and L I::; T operations. For example, if you execute ~"! I D T H 1 0, then execute

the HP -71 displays the string as

HE:CDEFGH I , .. J

and

~,; I D T H affects input prompt displays in the same way.

304

WIDTH (continued)

Using T A E: in [I I ::; F' statements reduces the T A E: function value modulo display width.

Related Keywords

305

WINDOW

~.~ I t·j [I (I ~.~ sets the display window size and location.

• Statement
o Function
o Operator

Examples

~.~ I t·j[l(l~·~ 5.20

Input Parameters
!

Item Description

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

Restrictions

: first column Numeric expression rounded to an 1 through 22.
i integer.
i
i last column Numeric expression rounded to an First column to 22.
i integer.
!

Default: 22.
I

Comments

A display window specified by ~.~ I t·; [I C ~.~ contains the "free portion" of the display that you can access
and edit. Any portions of the display outside of the current display window are protected fields and
cannot be edited. Any scrolling is thus performed in the free portion of the window. Any dot pattern
in a protected field remains unchanged until one of the following occurs:

• Another ~.~ I t·; [I C ~.~ command clears the protected field in which the dot pattern is located.

• A G [I I ::; F' statement changes the dot pattern.

• You perform an I t·1 I T 1 reset operation. (Refer to "Verifying Proper Operation" in appendix A of
the HP-71 Owner's Manual.)

If the current window is [1,22] then the entire LCD is reserved for the display. If the value of the first
column specifier is greater than 1, ~.~ I r'~ [I c ~.~ locks six dot columns into the display for each display
character position not in the window. The effective size of the LCD is reduced by that amount, and
scrolling occurs within the reduced window.

306

@

The I:!! concatenation character joins statements, which enables you to enter more than one statement
in a program line or keyboard instruction.

o Statement
o Function
o Operator

I BASIC ~ BASIC I
statement @statement

Examples

SFLAG-25 @ BEEP 250,

Comments

• Keyboard Execution
o CALC Mode
• IF ... THEN ... ELSE

i~ CFLAG-·25

Using multistatement lines instead of single-statement lines conserves memory. (Refer to the "BASIC"
entry under "Files" in the "System Memory Requirements" chart on pages 330 through 332.)

Most HP-71 statements can be used in multi statement lines without restriction. However, AUT C,
COt··! T, FE T C: H, and I:;: i...i t·; cannot be followed by an I:!!.

The :!, concatenation operator joins strings.

o Statement
o Function
• Operator

string
expression

Examples

Program segment:

10 A$="AMPERSAND: "
20 C$="CONCATENATOR"

string
expression

30 DISP A$ & " STRING" & C$

Program output:

307

&

• Keyboard Execution
o CALC Mode
o IF ... THEN ... ELSE

308

+
The + (addition) binary operator returns the sum of its operands. When used as a unary operator, +
returns the value of its operand.

D Statement
D Function
• Operator

-Q_o_pe_r_a_n_d_~L...-O_pe_r_a_nd---l~

Examples

C::::=:: + A

Input Parameters

Item Description

operand Numeric expression.

Comments

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

Restrictions

Subject to operator precedence.
Also, refer to "Comments," below.

Executing In f + .:: - I n f results in the In f - I (, '!' (error 15) condition.

309

The - (minus) unary operator reverses the sign of its operand. When used as a binary operator, x - y
is defined as x + (-y).

D Statement
D Function
• Operator

-Q,--o_pe_r_a_n_d...J~_o_pe_r_a_n_d....J~

Examples

A=-A

Input Parameters

Item Description

operand Numeric expression.

Comments

• Keyboard Execution
• CALC Mode
• IF ... THEN ... ELSE

FPlr'~T !'Difference _1':>::1'_'::<2

Restrictions

Subject to operator precedence.
Also, refer to "Comments," below.

The - x operation reverses the sign of x. (This is true even for ± 0 and for NaN.)

In f - In f results in an In f - I n f (error 15) condition.

310

*
The l (multiplication) binary operator returns the product of its operands.

D Statement
D Function
• Operator

-----1 operand ~ operand ~

Examples

Input Parameters

Item Description

operand Numeric expression.

Comments

• Keyboard Execution
• CALC Mode
• IF ... THEN ... ELSE

Restrictions

Subject to operator precedence.
Cannot multiply Inf by zero.

I .. 1. n t l 0) and ;::? tIn f::' results in an In i: t ~:! (error 16) condition.

The (division) binary operator returns the quotient of its operands.

D Statement
D Function
• Operator

-----1 dividend ~ divisor ~

Examples

c=::< F.:

Input Parameters

Item Description

I dividend
I

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

F'F: I t·jT "co:::: t ::o.!! ,' .. '

Restrictions

Subject to operator precedence.

311

/

I

I divisor
} Numeric expression.

Cannot divide by zero or divide Inf
by Inf.

Comments

The following exceptions can occur:

• O ~] results in an error 7 condition.

• n r:..1 results in an error 8 (... .. ::>=' [" 0) condition.

• In f .. ' I n f results in an error 14 condition.

Related Keywords

312

The (exponentiation) binary operator returns the first operand raised to the power given by the
second operand.

D Statement
D Function
• Operator

~ base ~ power ~

Examples

P2 = ;:.::·····2 + \'·····2

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

PPlt·~T "t·~-th Poot of ::< = ": ;:.:: (1./t·~)

Input Parameters

Item Description Restrictions

base } Numeric expression.
Subject to operator precedence.

power Also, refer to "Comments," below.

Comments

The following exceptions can occur:

• A negative value raised to an non-integer power results in a t·~ e'3 , ... t·~ 0 n - i n t (error 9) condition.

• The value of 1 raised to an In f power results in a 1····· I n f (error 17) condition.

• Zero raised to a negative power results in a 0····· n e'3 (error 5) condition.

• The operations [1····· [1 and I n f .. '. ~] give warnings, but return the default value 1 unless
DEFAUL T OFF is active. (Refer to the DEFAULT OFF/ON keyword entry.)

313

The ;.~ (percent) binary operator returns x percent of y for the operation x;·; y.

D Statement
D Function
• Operator

~ percent ~ argument ~

Examples

Input Parameters

I Item Description

percent } Numeric expression.
argument

Comments

The x ;.; y operation is defined by

x % y = (x/l00) * y.

• Keyboard Execution

• CALC Mode
• IF ... THEN ... ELSE

PPlt·~T "10\ of Total =".: 10\T

Restrictions

Subject to operator precedence.
Also, refer to "Comments," below.

Executing ~J \ In f or In f ;.; [i results in the In flO (error 16) condition.

System Characteristics

Scope of Environments

An environment is the set of variables, pointers, flags, and other information within which a program or a
subprogram operates. Three types of environments can exist in the HP -71:

1. Global environment. This can be accessed by every program and subprogram and from the keyboard.
For example, a flag set in one subprogram can be tested in another subprogram.

2. Main environment. This is the default environment. It is active when a subprogram isn't running or
execution is not halted in a subprogram. The main environment consists of those variable items and
channel numbers that are saved when a subprogram is called. Executing E t-l D ALL returns the
computer to the main environment.

3. Subprogram environment. This is similar to the main environment, except that it is created when a
subprogram is called. Running a subprogram saves the main environment. A subprogram's environ­
ment is saved if it calls another subprogram. When the second subprogram ends, its environment
is erased and the first subprogram's environment is restored. When the first subprogram ends, its
environment is erased and the main environment is restored.

The illustration on the facing page indicates the components of the global, main, and subprogram
environments.

314

System Characteristics 315

Global, Main, and Subprogram Environments

Global Environment
File Names
Command Stack
Flags
Trap Values
Timers

Main Environment (saved)
Variables
Arrays
User-Defined Functions
Channel Numbers
Statement Labels
DATA Statements
Subroutines
FOR ... NEXT Loops

Subprogram Environment (active)
Variables
Arrays
User-Defined Functions
Channel Numbers
Statement Labels
DATA Statements
Subroutines
FOR ... NEXT Loops

A user-defined function can be used only by the main program or subprogram in which the function is
created. A user-defined function created by a program or a subprogram cannot be used by another pro­
gram or subprogram. Also, the D A T A statements contained within a program or subprogram can be read
only by PEA D statements.

Channel numbers listed as parameters in a subprogram's ::: U E: statement are not local to that sub­
program. Channel numbers not listed in a SUE: statement are local unless the ::: U E: statement contains
no other parameters, in which case the channel numbers in the calling environment are shared with
those of the subprogram's environment.

Variables
A simple variable and an array variable cannot use the same identifier.

Note: In the following information, any optional parameter is indicated by a pair of square brack­
ets, as shown below:

required parameter [optional parameter]

316 System Characteristics

Simple Numeric Variables
• Identifier: letter[digit]

• Types: F.: E A L (default type)
::;HUF:T

I tHEGEF.:

• Examples: A, F'::3

Numeric Array Variables
• Identifier: letter[digit].:: subscript[.. subscript]::.

• Types: F.: E A L (default type)
~:;HOFT

I f··iTFC;EF::

• Examples: A':: 1. ::0, t·~ 0:: 5 .. 1 ~J ::0

Simple String Variables
• Identifier: letter[digit]:$:

• Examples: A $:, T::3:$:

• Default string size: 32.
(Refer to the DIM keyword entry.)

String Array Variables
• Identifier: letter[digit]:$: 0:: subscript)

• Examples: b :,i:: 0:: :::; ::0, Z:3:t.::.:+::o

• Default element size: 32. (Refer to the DIM keyword entry.)

Array Bounds and Referencing

The default lower bound on array subscripts at memory reset (1""'"" n', 0 (" ':::! l. 0 ~,: 1:) is O.(Refer to the
OPTION BASE keyword entry.)

The default upper bound on array subscripts is 10. ([I I t'1, F.: E A L, ::; H 0 F: T, or I tH E G E F.: declarations
specify an upper bound.)

The maximum upper bound on array subscripts is 65535.

you can reference entire arrays in F' F' I i'(T :j:!:, b:' F F:i D :j:!:, F.: F A [I, and C H U statements by specify ...
109 only the array name. Also, you can use an array name with parentheses and no subscripts. For
example, you can use T':: .' instead of the array name alone.

System Characteristics 317

Math Reference

Precedence of Operators

The table below lists HP-71 operators in their order of precedence. The first line indicates the highest
precedence. Where an expression contains two or more operators having the same level of precedence,
those operators will be evaluated in the left-to ... right order in which they occur within the expression.

Performed First
.:: ... ::. (Nested parentheses are evaluated from the inside out.)
Functions (such as ::; I h, F.: t-H), etc.)

unary + , unary -, t-; C T
l, , [I I ',), \
+, -, :~.:

<, >, #, '~', .:."= ":.= <>
Hr'W
OF.:, F::<CF'

Performed Last

Numeric Precision

Type I Precision I
F.: E Fi L.
::;HOPT
I rHEGEF.:

Range of Numbers

12 digits
5 digits
5 digits

Maximum Value

± 9.99999999999 X 1 0 ± 499
±9.9999X10±499
±99999

The shaded areas in the following illustration indicate intervals that do not contain any HP ... 71 repre ...
sentable numbers. I i"~ F, t·j H ::< f;' [!4 L, and i'1 I i"~ i;:: F f::! L.. are functions that return the endpoints of these
intervals. ['1 H::-< F: E Fl L.. and E F' ::; return the overflow and underflow thresholds respectively. The HP ...

71 representable numbers whose magnitudes lie between E F' ::; and i'1 I f'~ F' F!4 L.. are "denormalized."
That is, they have the minimum exponent, -499, but contain one or more leading zeroes in the

mantissa.

318 System Characteristics

-t'l I t·H;::EAL
- t'l A >:;f;:: E A L - 0.00000000001 E - 499

t'l I t·iPEAL
0.00000000001 E - 499

- 9.99999999999E499

-I t·lF

+

Numeric Expressions

1 1

.- .:.

-1.E-499

t 0

'-v
Denormahzed

Numbers

A numeric expression can include any of the following:

• A numeric constant.

• A numeric variable.

• A numeric function.

.:.

1.E-499

t'lA::<PEAL
9.99999999999E499

! Hi F

A numeric expression can also be any of the preceding forms, combined by operators (arithmetic,
relational, or logical) or pairs of parentheses.

System Characteristics

Iystem Flags
A memory reset (m e m 0 r- '::;I 1 ()::;: i:) clears all of the following flags except flag - 61.

Flag Effect
Number When Set

-1 Warning messages suppressed.
-2 Beeper is off.
-3 Continuous on.
-4 Inexact result (I [.; :-::).
-5 Underflow (U ti :-::).
-6 Overflow (O!,) F).
-7 Division by zero ([I I,} Z).
-8 Invalid operation (I I,) L).
-9 User keyboard is active.
-10 Angular setting is radians.
-11. -12 Round-off setting.
-13. -14 Display format.
-15 Lowercase lock.
-16 Base option 1.
-17 to -20 Number of display digits.
-25 Beep set to loud.
-26 Don't prompt.
-46 Exact flag.
-57 AC annunciator on.
-60 Alarm annunciator on.
-61 BAT annunciator on.
-62 PRGM annunciator on.
-63 SUSP annunciator on.
-64 CALC annunciator on.

Keyboard and Display Control

Input Keystrokes

[K] through [I)
[]]w through
[]]~
[Q] through m
I SPC I
c::J

} Uppercase and lowercase letters.

Digits.

Space.

Period. Used as a decimal point in numbers.

Set/Clear
by User

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
No
No
No
No
No
No

319

320 System Characteristics

G,8,0,[2],
[]]~, []]oo
GJ

rnrn
[]]OJ

[]]O, []]O

[]]0

[]]rn
[]]w
[]][IJ, []][IJ

o
[]]8J
[]]~

[]][]], []] ITJ
[]]O

Editing Keystrokes
[Il (gold key)

Arithmetic symbols: addition (plus), subtraction (minus), multiplicatior
(asterisk), division (slash), exponentiation (circumflex), and percent.

Comma. Used to separate items in commands, statements, and func­
tions; and to separate keyboard responses to the J: j.j F' ' , statement.
Also used to space between items displayed.

Parentheses. Used to key in expressions and to dimension variables.

Exclamation mark. Used for end-of-line comments in program state­
ments.

Double and single quotation marks. Used to enclose strings.

Number sign. Used to specify file numbers of BASIC files in A::; ::; I C t·j
#, P F.: I t·j T #, F.: E ::; T [I F.: E #, and F.: E A D # statements. Also used to as­
sign timer numbers in [I t·j T I r'1 E F.: # and [I F F T I r'1 E F.: # statements
and for inequality in relational tests.

Dollar sign. Used to specify string variables and string functions.

Ampersand. Used to concatenate string expressions.

Opening and closing brackets. Used to dimension string variables and to
specify substrings.

Statement separator. Used between statements to form multistatement
lines.

Semicolon. Used as a delimiter in F !" .L r"! ! , i! i : ... ; ~:', .i.;; r" U ! ,

*j, and j?j:::: i:::i jJ :fj: statements, and as a "typing aid" specifier in key re-
defiinitions.

Equals. Used to assign values to variables and to test for equality.

Less than. Used in relational tests.

Greater than. Used in relational tests. Also used as the BASIC prompt.

Left brace and right brace.

Colon. Used as a delimiter and as an "execution only" specifier in key
redefinitions.

Question mark. The default prompt for the T i, ,:::' !i T statement. Also
used as a relational operator.

The f-shift key. Used to access f-shifted keywords, commands, and func­
tions.

[]] (blue key)

[Ill LC 1

[IlOZID

[Ill BACK 1

[Ill-CHAR 1

~,[!]

System Keystrokes
ION I, I ATTN 1

[Ill FETCH 1

I END LINE 1

System Characteristics 321

The g-shift key. Used to access lowercase letters, characters indicated in
blue on the keyboard, and certain editing features.

Control character prefix. Used to display certain characters from the
HP -71 character set.

Lowercase lock. Switches keyboard between uppercase and lowercase.

Insert/Replace. Switches between insert cursor and replace cursor.

Backspace. Backspaces the cursor one character position and deletes
the character at the cursor's new position.

Delete character. Deletes the character at the cursor position and shifts
all succeeding characters one position to the left.

Delete line. Deletes all characters from the cursor position to the end of
the line.

Next port catalog. Used during C AT ALL and CJi T ; PO F: T oper-
ations to access the catalog on the next port in sequence.

Left and right arrows. Moves the cursor to the left or right across the
display or, if no cursor, scrolls the display window to the left or right.

Far left and far right arrows. Moves cursor to the far left and the far
right of the display. If no cursor, shifts the display window to the far
left or far right.

Up and down arrows. Moves the display up and down through BASIC
program files, through the system and mass storage catalogs, and
through the command stack.

Far up and far down arrows. Moves display to first and last line of a
BASIC program file and catalog, and to oldest and most recent entry in
the command stack.

Attention. Thrns on the display, clears the display, and interrupts run­
ning programs.

Thrns the display off. Memory and clock system remain active.

Reset. When pressed simultaneously, causes a reset to occur. The com­
puter prompts for one of three initialization settings.

Typing aid for E [; I T function. If pressed during a multiple file catalog
operation, causes the currently displayed file to become the current file.

Typing aid for F ETC H function.

End line. Causes an expression, statement, or command in the display
to be evaluated, stored, or executed.

322 System Characteristics

[]J~

[]J11 USER I

Escape Keystrokes
[]JI CTRL I []JOJ

Display Control

Run program. Runs the current program when in BASIC mode.

Single step. Displays and executes the next program statement in the
current file.

Command stack. Displays most recent instruction executed from the
keyboard and sets display to command stack. When in the command
stack, this key sequence returns you to the BASIC prompt.

While held down, displays most recent error message.

Toggles user keyboard for one shifted or un shifted keystroke.

Generates ASCII character 27 (escape). The HP-71 responds to the es­
cape sequences listed under "HP-71 Display Escape Code Sequences"
on page 328.

Delay function. Controls the rate at which information is sent to and
scrolled across the display.

Sets line length of output to printer devices.

Sets line length of output to display devices.

Sets number of characters in display window.

CALC Mode Keystrokes

[IJI SST I I RUN I

[]JIBACKI

_ I END LINE I

Causes evaluation of the rightmost operator or function.

Backup execution. For the current expression, restores the last operator
or function that was evaluated.

Command stack scroll up, down. Scrolls through command stack. While
in CALC mode, unnecessary to press []JI CMOS I to enter command stack.

Causes expression to be evaluated and the results of numeric expressions
to be stored in the RES variable.

HP-71 Character Set and Character Codes

The following table shows the HP-71 character set. Where keystrokes are shown to the right of a
character, you can use either those keystrokes or the C H P $ function to display the character. Where no
keystrokes are shown to the right of a character, you can use only the C H F.: $ function to display that
character. (In most cases, the default display characters in the right side of the table are duplicates of
the display characters in the left side of the table.)

System Characteristics

Note: You can use the C H A F.: ::; E T statement to change the display character symbol for one or
more of the default display characters corresponding to character codes 128 through 255.

Decimal Decimal
Default Binary (CHP$) Display

Keystrokes
(CHP$)

Display Hex
Character Character Character

Character
Left I Right Code Code

00 0000 0000 0 -None- []JI CTRL I []J~ 128 Space
01 0000 0001 1 a []JI CTRL I [KJ 129 a

02 0000 0010 2 >:: []JI CTRL I []] 130 ::<
03 0000 0011 3 ..;- []JI CTRL I @J 131 ..;-

04 0000 0100 4 0: []JI CTRL I @J 132 0:
05 0000 0101 5 f-; []JI CTRLIW 133 f-;
06 0000 0110 6 r []JI CTRL II£] 134 r
07 0000 0111 7 ... []JI CTRL I @] 135 ...
08 0000 1000 8 -Blank- []JI CTRL I []] 136 ~. -;

09 0000 1001 9 (5 []JI CTRL I 0] 137 1:5"

OA 0000 1010 10 -Blank- -None- 138 L~

OB 0000 1011 11 ;:.0, []JI CTRL I [K] 139 ;:"1

OC 0000 1100 12 p. []JlcTRLI[g 140 ~I.

00 0000 1101 13 -Blank- []JlcTRLI[0 141 .,J
OE 0000 1110 14 ·r []JI CTRL I []] 142 ·r
OF 0000 1111 15 1 []JI CTRL I [Q] 143 1
10 0001 0000 16 8 []JI CTRL I [IJ 144 8
11 0001 0001 17 rl []JI CTRL I [Q] 145 r~

12 0001 0010 18 I~' []JI CTRL I []] 146 ':!:'

13 0001 0011 19 € []JI CTRL I [I) 147 €

14 0001 0100 20 1T []JI CTRL I [I] 148 1T

15 0001 0101 21 H []JI CTRL I []] 149 H
16 0001 0110 22 a []JI CTRL I CYJ 150 .:l

17 0001 0111 23 I~I []JlcTRLI[R] 151 ':1
18 0001 1000 24 1:1 []JI CTRL I [K] 152 1:1
19 0001 1001 25 CI []JI CTRL I [YJ 153 CI

1A 0001 1010 26 (i. []JI CTRL I W 154 U
1B 0001 1011 27 -Blank- []JI CTRL I []JOJ 155 F"
1C 0001 1100 28 I -None- 156 ::
10 0001 1101 29 *" []JI CTRL I []JITJ 157 *"
1E 0001 1110 30 f []JI CTRL I []J~ 158 f
1F 0001 1111 31 r~ -None- 159 j:~:;

20 0010 0000 32 Space Ispcl 160 Space
21 0010 0001 33 ! []J[O 161 I

22 0010 0010 34 " []JO 162 "
23 0010 0011 35 # []J[!] 163 #

(Continued on next page.)

323

324 System Characteristics System Characteristics 325

(Continuation of Character Set/Code Table) (Continuation of Character Set/Code Table)

Decimal Decimal
Default

Hex
Binary (CHfU) Display

Keystrokes
(CHfU)

Display Character Character Character
Left I Right Code Code

Character

Decimal Decimal
Default

Hex
Binary (CHfU) Display

Keystrokes
(CHfU)

Display
Character Character Character

Left I Right Code Code
Character

24 0010 0100 36 $ @Jrn 164 $ 48 0100 1011 75 K [K] 203 f'" ".
25 0010 0101 37 ~.~ @JOO 165 ... ~ 4C 0100 1100 76 L CIJ 204 L
26 0010 0110 38 8.: @JOO 166 :~.: 4D 0100 1101 77 r'1 [ill 205 r'1
27 0010 0111 39 , @J[J 167 , 4E 0100 1110 78 (.j [0 206 (.j

28 0010 1000 40 (ill 168 , 4F 0100 1111 79 [I @] 207 [I

29 0010 1001 41) [I] 169 , 50 0101 0000 80 P [f] 208 P
2A 0010 1010 42 * [!] 170 * 51 0101 0001 81 G! [ill 209 G!
28 0010 1011 43 + G 171 + 52 0101 0010 82 F.: [[] 210 F.:
2C 0010 1100 44 , GJ 172 , 53 0101 0011 83 ~:; [[] 211 ::;
2D 0010 1101 45 - Q 173 - 54 0101 0100 84 T IT] 212 T
2E 0010 1110 46 [] 174 55 0101 0101 85 U []] 213 U
2F 0010 1111 47 .. ' [ZJ 175 56 0101 0110 86 I",' [2] 214 I,i

30 0011 0000 48 [1 [QJ 176 [1 57 0101 0111 87 ~,J [R] 215 ~,J

31 0011 0001 49 1 OJ 177 1 58 0101 1000 88 ;:.:: [K] 216 ::.::

32 0011 0010 50 2 [IJ 178 2 59 0101 1001 89 \' m 217 \'
33 0011 0011 51 :=: rn 179 ::: 5A 0101 1010 90 Z [I) 218 Z
34 0011 0100 52 4 [I] 180 4 58 0101 1011 91 [@Jill 219 [

35 0011 0101 53 c- m 181 c-
'-' '-' 5C 0101 1100 92 -None- 220 .••..

36 0011 0110 54 6 rn 182 6 5D 0101 1101 93] @JITJ 221]

37 0011 0111 55 7 [I] 183 "7 , 5E 0101 1110 94
@J~ 222

38 0011 1000 56 ::: I]] 184 ::: 5F 0101 1111 95 -None- 223 - -
39 0011 1001 57 '3 rn 185 '3 60 0110 0000 96 '. -None- 224 '.

3A 0011 1010 58 : @J[J 186 : 61 0110 0001 97 .:l @J~ 225 .;:j

38 0011 1011 59 , @J[i] 187 , 62 0110 0010 98 b @Jlli] 226 b
3C 0011 1100 60 <: @J8J 188 .. '

". 63 0110 0011 99 c @J~ 227 , --
3D 0011 1101 61 = G 189 = 64 0110 0100 100 d @J@] 228 d
3E 0011 1110 62 : @J[8 190 '. : 65 0110 0101 101 e @J~ 229 e
3F 0011 1111 63 .::. @J[IJ 191 .::' 66 0110 0110 102 f @JITJ 230 f
40 0100 0000 64 I~ @Jcru 192 I~ 67 0110 0111 103 '3 @J@J 231 '3
41 0100 0001 65 A 0 193 A 68 0110 1000 104 h @Jlli] 232 h
42 0100 0010 66 E: []] 194 E: 69 0110 1001 105 i @JDJ 233 i
43 0100 0011 67 C @] 195 1-' 6A 0110 1010 106 ,j @JOJ 234 ,j

44 0100 0100 68 D [[] 196 D 68 0110 1011 107 k' @Jm 235 k
45 0100 0101 69 E [[] 197 E 6C 0110 1100 108 1 @J[] 236 1
46 0100 0110 70 F [£J 198 F 6D 0110 1101 109 f,'1 @J~ 237 f,'1

47 0100 0111 71 G @] 199 G 6E 0110 1110 110 n @J[QJ 238 n
48 0100 1000 72 H [8] 200 H 6F 0110 1111 111 0 @J[QJ 239 0

49 0100 1001 73 I OJ 201 I 70 0111 0000 112 p @J(£] 240 p
4A 0100 1010 74 ,J QJ 202 ,J 71 0111 0001 113 q @J(gJ 241 q

(Continued on next page.) (Continued on next page.)

326 System Characteristics

(Continuation of Character Set/Code Table)

Decimal Decimal
Binary (CHfU) Display (CHfU)

Default
Hex Keystrokes Display

Character Character Character
Left T Right Code Code

Character

72 0111 0010 114 t- [[J[!] 242 t-

73 0111 0011 115 s [[J~ 243 s
74 0111 0100 116 t. [[J[IJ 244 t.
75 0111 0101 117 u [[J~ 245 u
76 0111 0110 118 E.} [[J0 246 I.)

77 0111 0111 119 1",1 [[J~ 247 1 .. .1

78 0111 1000 120 >:: [[J0 248 >::
79 0111 1001 121 '::I [[J[1J 249 '::I
7A 0111 1010 122 z [[J0 250 z
7B 0111 1011 123 { [[Jill 251 :
7C 0111 1100 124 I -None- 252 !
7D 0111 1101 125 ::- [[Jm 253 ::-
7E 0111 1110 126 -None- 254

7F 0111 1111 127 I- -None- 255 I-

Control Characters

Characters 0 through 31 in the preceding table are also special control characters defined by the Ameri­
can Standard Code for Information Interchange (ASCII). These characters (also known as control
codes) are primarily used in data communications to control peripheral devices. The following table
shows the standard ASCII definitions for those characters.

Note Except for the four special control character codes marked with an asterisk, none of the
characters represented by the following codes perform any control function in the HP-71. Also,
adding 128 to the character code for any of these four special control characters displays the
symbol for that code instead of performing the indicated control function.

System Characteristics 327

Decimal
(CHfU)

Mnemonic Control Function
Character

Code

0 NUL The Null Character
1 SOH Start of Header
2 STX Start of Text
3 ETX End of Text
4 EOT End of Transmission
5 ENQ Enquiry
6 ACK Acknowledge
7 BEL Ring Bell
8" BS Backspace
9 HT Horizontal Tab

10" LF Linefeed
11 VT Vertical Tab
12 FF Form Feed
13" CR Carriage Return
14 SO Shift Out
15 SI Shift In
16 DLE Data Link Escape
17 DC1 Device Control 1
18 DC2 Device Control 2
19 DC3 Device Control 3
20 DC4 Device Control 4
21 NAK Negative Acknowledge
22 SYN Synchronous Idle
23 ETB End of Transmission Block
24 CAN Cancel Line
25 EM End of Medium
26 SUB Substitute
27* ESC Escape
28 FS File Separator
29 GS Group Separator
30 RS Record Separator
31 US Unit Separator

328 System Characteristics

HP-71 Display Escape Code Sequences

To enter an escape (ESC) sequence, press @)I GTRL I @)[IJ followed by the key corresponding to the
desired sequence.

Press
@)IGTRLI

Effect @)[IJ
and:

@] Inserts cursor.

[ill Inserts cursor (with wrap-around).

lID Replaces cursor.

@] Moves cursor right.

[QJ Moves cursor left.

[]] Homes cursor.

QJ Clears display.

[K] Deletes through end of line.

@)~ Turns cursor on.

@)@ Turns cursor off.

[[] Resets display.

[E] Deletes character.

[QJ Deletes character (with wrap-around).

00 Sets cursor position in video monitor. Refer to following paragraph.

@)IGTRLI@] Moves cursor to right of rightmost character.

@)I GTRL I [QJ Moves cursor to leftmost character.

To reposition the cursor to a specific row and column in a video monitor, use the C H F.: $ < 27) form of
the escape sequence with the ;.~ symbol as follows:

D I :::;F' CHF.:$ < 27) t: ";';" t: CHF.:$ <column) :~.: CHF.:$ <row) I END LINE I

Using the key sequence @)I GTRL I @)[IJ @)oo (as indicated in the preceding table) instead of
C H F.: $ < 27) :~.: ";.~" causes the cursor to move to the column position specified by the ASCII char­
acter code for the first key you press after 00.

System Characteristics 329

eset Conditions
The following conditions exist in the HP -71 when you first install the batteries, or whenever a r'1 ':::' 1"1', ••••

. '", ,-, .::: 'j' condition occurs or you execute a memory reset-cm:IIJ []] (ION I [Z]).

Condition

Display:
::.,. .-.-:-,:
~:~ 1 U i 1"1

DEL f:1 ','

L C (lowercase lock)
User Keyboard
Alternate Character Set

Flags:
All user flags.
System flags

Files:
File Catalog
File Access
k "-~ ':~::;: File

Numeric Settings:
Display Format
Angular Setting
Random Number Seed
DEFAULT
Variables and Arrays
OFT I Ot·~ BA::;E
Round-off Setting

Password:
LCCf:::

: E ti D L I ti F Setting

Clock:
:::ETT I r'1E
:::ETDATE
Accuracy Factor (A F)

:::~ ~:::

]. .. ;'" .)

, . .! , , 12~;

Off.
Not Active.
None.

Clear.

After the Machine Reset or After
the Batteries Are First Installed

-1 through -32 Clear.

One file, the system ' ... 0 (k f i 1 '=-, which is the current file.
No files are open.
Nonexistent.

DEC
999 5 ~j 0::3::3::3 ~:1 :::::3 ~":i ~3 3
Ut·j

None allocated.

Nearest.

Set to null string.

CR/LF.

00: 0[1 : O~j
0000 01 01
o

(Continued on next page.)

330 System Characteristics

Condition

Programming:
Current File
Pi..J"T·(:) mode
Timers
TkHCE
Warning Messages

Continuous C,·;

~:; T F:! F' T i... F' String

Reset Conditions (continued)

After the Machine Reset or After
the Batteries Are First Installed

System I,.! C r- k f]. ';::' .
Off.
Off.
Off.
Displayed.

Not set.

Set to U i··, and L..! "., .

None.

System Memory Requirements

Item I Memory Required

Alternate Character Set 3V2 bytes, plus 6 bytes per character.

Command Stack 15 bytes, plus 1 byte for each character in each
command in the stack, including carriage return.

Data File Channels 31 V2 bytes for each file opened, plus 2V2 bytes for
each new channel number. (Up to 64 files can be
opened at once.)

Expressions

Constants:

One-Digit Integer Constant byte.

Multi-Digit Integer Constant byte plus V2 byte for each digit.

Constant With Fractional Part or 2V2 bytes plus V2 byte for each digit.
Exponent > 11

String Constants 2 bytes plus 1 byte per character.

(Continued on next page.)

System Characteristics 331

(Continuation of System Memory Requirements Table)

Item

Variable References:

• Simple Variable

• Array Variable

Function References:

• User-Defined Functions

• System Functions

Operators:

• Relational Operators

• Other Operators

Substring References

Files

BASIC

TEXT

DATA

KEY

Memory Required

1 byte per character in variable name.

1112 bytes, plus 1 byte per character in array name,
plus memory requirement for subscript expres­
sion(s).

1 V2 bytes, plus 1 byte per character in function
name, plus memory requirement for parameter
expression(s), if present.

1 or 3V2 bytes, plus memory requirement for
parameter expression(s), if present.

1V2 bytes.

1 byte.

1 V2 bytes plus memory requirement for index
expression(s).

24V2 bytes for the empty file. Also, in addition to
the memory used for the statement(s) you enter in
a line, any single-statement line uses four bytes,
and any multiple-statement line uses four bytes
plus two more bytes for each concatenated state­
ment. (Thus, by using a multiple-statement line in­
stead of two or more single-statement lines, you
conserve two bytes per concatenated statement.)

18V2 bytes plus 2 bytes per line plus 1 byte per
character plus 2 bytes for end-of-file.

22V2 bytes plus record size in bytes times number
of records. String data items written to the file use
3 bytes plus 1 byte per character plus 3 bytes per
crossing of a record boundary. Numeric data items
occupy 8 bytes.

18V2 bytes plus 3 bytes per definition, plus 1 byte
per character in assigned string(s).

(Continued on next page.)

332 System Characteristics

(Continuation of System Memory Requirements Table)

LEX

BIN

SDATA

Item

Plug-In ROM or RAM Device

Subprogram Calls

User-Defined Function Calls

Subroutine Calls

FOP ... t·j E ::.:: T Loop Configuration

Pre-allocated System RAM

Variables

Simple Numeric

Simple String

Numeric Array

String Array

I Memory Required

18112 bytes plus file's data size. Requires an
additional 5112 bytes of system overhead for each
LEX file in memory.

24112 bytes plus file's data size.

18112 bytes plus 8 bytes for each record.

5 bytes per device plus 5112 bytes of system over­
head for each LEX file, if any.

39112 bytes plus 9112 bytes for each numeric param­
eter, plus 9112 bytes for each string parameter
passed by reference, plus, for each string param­
eter passed by value, 2 bytes plus one byte per
character.

50 bytes plus 9112 bytes per numeric parameter
plus, for each string parameter, 2 bytes plus one
byte per character. The function name itself re­
quires an added amount of memory (as if the
name were a passed parameter).

3 bytes each.

20112 bytes for each loop.

755 bytes minimum. Add 5 bytes for every ROM,
RAM, or memory-mapped I/O device plugged in.

9112 bytes, regardless of type.

11112 bytes, plus 1 byte per character in a maximal
string. (For example, a default length simple string
variable consumes 43112 bytes, regardless of how
many characters the variable contains.)

9112 bytes, plus:

• 8 bytes per REAL number.

• 4112 bytes per SHORT number.

• 3 bytes per INTEGER number.

9112 bytes, plus 2 bytes for each element, plus the
maximum element string length times the number
of elements.

System Characteristics 333

Memory Usage During Evaluation of Expressions

The HP -71 stores expressions in postfix form. During evaluation, the computer copies operands to a
stack (maintained by the operating system), which temporarily consumes user-available memory. Each
numeric operand requires eight bytes; each string operand requires eight bytes, plus one byte for each
character in the string.

Substrings are extracted by a postfix operation which requires the entire parent string to be present on
the stack. For this reason, it may be preferable to store related data fields as smaller elements of a
string array instead of grouping these fields in a single, large string from which substrings are
extracted.

Mathematical Discussion of HP-71 Statistical Arrays

Matched Samples

A sample is a collection of observations of a random variable. A matched sample consists of one or
more samples where each observation in a sample is matched with an observation in each of the other
samples. Each sample has the same number of elements, which is denoted by N. NV AR will denote the
number of variables (samples). A matched sample data set can then be visualized as a table with N
rows and NV AR columns.

Sample Set of Matched Data

Variable Number
Element

1 2 ... j . .. k . .. NVAR

1 x(1,1) x (1,2) ... x(1,j) . .. x (1,k) . .. x (1,NVAR)

2 x (2,1) x (2,2) ... x (2,j) . .. x (2,k) . .. x (2,NVAR)

i x (i,1) x (i,2) ... x (i,j) . .. x (i,k) . .. x (i,NVAR)

N x (N,1) x (N,2) ... x (N,j) . .. x (N,k) . .. x (N,NVAR)

Each row of this table represents a point in NVAR-dimensional space and will be called a data point.
A data point can be considered an observation or realization of an NVAR-dimensional random vari­
able, resulting in N such realizations.

334

Statistical Arrays 335

3ummary Statistics

For the purposes of performing statistical operations and functions, the HP-71 does not need to store
the entire data set. Instead, the computer reduces, or summarizes, the data in the following way. Let
x(ij) represent the entry in row i and column j for i=1,2, . . . ,N and j=1,2, . . . ,NVAR. The summary
statistics are then:

N
NVAR
TU) = '2;ix (ij)
8Uk) = '2;i[x(ij)

j=1,2, ... ,NVAR
TU)/N] [x(ik) - T(k)/N] j,k=1,2, ... ,NVAR

T(j) represents the sums of the columns and the 8(jk) represents the sums of squares and cross­
products of the mean-adjusted variables.

Some calculators and handheld computers with statistical functions accumulate the sums of squares
and sums of cross-products of the unadjusted variables,

'2;ix(ij)x(ik),

rather than the 8(jk) Three advantages to using the mean-adjusted sum 8(jk) are:

1. It reduces the potential for loss of significance errors when the data points have non-zero means.

2. Calculations based on mean-adjusted values are faster than those based on the unadjusted ones.

3. It is easier to use sample means, variances, and correlations as inputs in place of the original data.

The ::::; TAT statement reserves space for these summary statistics by dimensioning a statistical array.
This array has one dimension and has length (NVAR+1)(NVAR+2)/2. NVAR is stored in the statisti­
cal array's internal representation. The other statistics are stored as

(N, T(l), 8(11), T(2), 8(12), 8(22), ... , 8(NVAR,NVAR)).

Multiple matched samples can be stored simultaneously and analyzed in any order by using more than
one statistical array.

The ::::; TAT statement specifies the current statistical array. The HP -71 contains only one current
statistical array at a time. All other statistical arrays are preserved, however, like any array or simple
variable, up to the limit of memory. A noncurrent statistical array can be made current by specifying it
with a::::; TAT variable name statement.

336 Statistical Arrays

Recursive Calculation of Statistics

A data point V = (V(l), ... ,V(NVAR» is "added" to or "dropped" from the current data set using the
F! D D and D P 0 F' statements, respectively. The NVAR numeric expressions in an ADD or D F: C! F'
statement are evaluated and are interpreted as the coordinates of the data point. If less than NV AR
numeric expressions are included, the missing trailing expressions are assumed equal to zero.

H D D updates the summary statistics according to:

If N < 0 then display EPP: In', " 1 i d ::::; 1:." 1: is 1: i c and stop.

For k = 0 to NVAR

For j = 1 to k (skip if k = 0)

If N=O then S(jk): = 0

else S(jkJ: = S(jk)+(N*V(j)-T(j»(N*V(k)-T(k»/[N(N+l)]

Next j

T(k): T(k)+ V(k)

Next k

N: = N+l

End.

D P Ci F' updates the summary statistics according to:

If N < 0 or 0 < N < 1 then display E F: F: : In', ... ali d :;::; 1: ." 1: i s 1: i c and stop.

If N = 0 then display EPP: I n\"a 1 i d ::::; 1: a 1: Op and stop.

For k = 0 to NVAR

For j = 1 to k (skip if k = 0)

If N = 1 then S(jk): = 0

else S(jk): = S(jk)-(N*V(j)-T(j»(N*V(k)-T(k»/[N(N-l)]

Next j

T(k): T(k) - V(k)

Next k

N: = N-l

End.

The C L ::::; TAT statement sets the elements of the current statistical array to zero. This prepares the
statistical array for accumulating statistics for another data set.

Statistical Arrays 337

Simple Linear Regression

The simple linear regression model is:

X(j) = a + b*X(k) + e,

where X(j) is the dependent variable, X(k) is the independent variable, a and b are constants to be
determined (estimated), and e represents random errors (uncorrelated with zero mean and with un­
known but constant variance). The constants a and b are determined by the method of least squares.
That is, they are chosen to minimize the residual sum of squares:

~i[x(ij) - a - b • x(ik)]2.

The solution is:

b S(jk)/S(kk), and

a [T(j) - b*T(k)]/N.

Notice that a (constant) random variable equal to one and having the coefficient a is implicitly present
in the regression model. This interpretation can be quite useful when adding and dropping variables
(or terms) to or from multiple linear regression models.

The mean-adjusted sum of squares for this constant variable and any mean-adjusted sum of cross­
products involving this variable are zero. The sum of the values for this variable is N. Therefore, no
additional summary statistics need be accumulated in order to implicitly include this variable in the
data set.

For these reasons, this random variable (numbered zero) will always be considered present in a data
set, and zero will be considered a valid variable number for all statistical statements and functions,
except where explicitly stated otherwise.

The L F.: statement specifies the dependent and independent variables. Any variable number in
[O,NVAR] is allowed to be the dependent variable, and any variable number in [l,NVAR] is allowed to
be the independent variable. * These variable numbers are stored by the computer.

If one or two variable names are included in the L P statement, the estimated intercept a is stored in
the first variable and the estimated slope b is stored in the second variable, if appropriate.

• For a definition of "variable number" refer to the table on page 334.

The IEEE Proposal for Handling Math Exceptions

Introduction
The IEEE Radix Independent Floating-Point Proposal divides all of the floating-point "exceptional
events" encountered in calculations into five classes of math exceptions: invalid operation, division by
zero, overflow, underflow, and inexact result. Associated with each math exception is a flag that is set
by the HP-71 whenever an exception is encountered. These flags remain set until you clear them. Each
of these flags can be accessed by its number or by its name.

Setting and Clearing Math Exception Flags
You can clear and set the math exception flags in the same way as any flag, except that flag names can
be used as well as flag numbers.

Examples. Both of these statements clear the invalid and inexact flags.

CFLAG I I,}L.' I t·j>,:

CFLAG -::::.' "'-4

The keyword t,! A T H specifies all math exception flags as a group. It can be used with the ::; F LAG
and C F L Fi c:; statements.

The Five Math Exception Flags
The following describes the conditions that set each of the math exception flags:

• I '.}L. Invalid operations are those for which no real value can reasonably be returned as a result.
Some examples that set the I I,} L flag are S CI F.: .:: - 1 ::0, LOG':: - 1 ::0, A COS .:: 2 ::0, and 0 .. ··· O.

• D I,} Z. The division by zero flag is set whenever finite operands give rise to an exact infinite result.
Typical examples: 1."" C1, L t·j (0 ::0, T A [.j (9 C1::O in degrees, and 0 (- 5 ::0 •

• 0 I,} F. The overflow flag is set when:

1. The finite 12-digit rounded result r of an operation satisfies Irl > t'lA:'·':F.:EAL, such as
r = lE499-1O.

2. A::; H 0 F.: T variable is assigned a finite value r such that the five-digit rounded value 1" satisfies
Ir'l> 9.9999E499, such as r = 9.99996E499.

338

IEEE Proposal 339

3. An I [HEGEP variable is assigned a finite value r which, when rounded to an integer r',
satisfies Ir'l > 99999, such as r = 100000.

4. A decimal string representing a value greater than l"i H : :~: F H L. is converted to a numeric
value, such as 5,)HL.. (;; 1 F:500;; >.

• U fi F. The underflow flag is set when:

1. The 12-digit rounded result r satisfies 0 < Irl < lE-499 and will not be represented exactly
in its destination. For instance, 1 E - 4 9 9 :3 sets the U [.j F flag, although 1 E - 4 9 9 ."" 1 0 0
depends on the default value dictated by the T F.: A P (U [.j F::O setting. If T PAP':: U [.j F::O = 2,
then the denormalized result ,0 [1 1 E - 4 9 9 is exact, and U [.j F is not set. (The next topic
covers default values.)

2. A::; HOP T variable is assigned a value r such that the five-digit rounded result r' satisfies
0< Ir'l < lE-499 and will not be represented exactly in its ::;HOF.:T destination.

3. A decimal string representing a number less than [F' ::::; is converted to a numeric value .

• I f';:<' Generally, the inexact flag is set if and only if the rounded real result of an operation is not
identical to the exact result. This is true for most HP-71 functions, including all functions speci­
fied by the IEEE Proposal (+, -, l, , ::; C< ~:, and FE [J). For example, 1. .. .-<:;:, ::; ce ('5::' and

+ 1F-·jOO all set If';:=-:: while 1 ,,+, ::;OF(1t:>, and j + l[-lU do not set If!:'<.

However, for some compound operations, such as >': 'l, and for most statistics operations, it is imprac­
tical to determine exactness in all cases. Thus, for these compound and statistics operations, the fol­
lowing is true: if I [·n-=: is not set, the result is exact, but some exact results may (overcautiously) set
I [·n-=:. This is also the rule for any sequence of HP-71 operations. If I [·n,: is not set by a sequence of
operations, then no rounding errors have occurred, and you can be sure that your result is exact. But if
I [.j :,.,: was set by any of the operations, it is not necessarily true that the result is inexact. For example,
the statement 'l = S C! P .:: 5 ::0."" ::; C! P .:: :"':::0 sets I [.j >': even when :'-=: = 5. This is because the HP -71 reacts to
the rounding errors committed in ::; C! F.: .:: 5::' and S C! F.: .:: >': ::0, but, of course, does not detect the fact that
they compensate each other. Although some exact calculations will set I [.j>,:, these cases have been kept
to a minimum so that the flag will retain its usefulness in more complicated calculations.

Extended Default Values
When exceptions occur, it is sometimes desirable to continue the calculation by using a default value
for the result. The HP-71 extends the normal range of floating-point values to include, as proposed by
the IEEE, special default results which can be used with relative safety for each exception.

By setting the appropriate traps with the T F A P function or with the D [F Fi U L T statement, you can
select the action of continuing the calculation with a choice of default values or of suspending the
program with an error message.

340 IEEE Proposal

A T F: 1:::1 F' value of 2 causes all math exceptions to return the new default values introduced by the
IEEE Proposal.

Default Values with T F: I'i F' Value of 2
and 0 F' T I 0 H F.: U i...i [.; D t·; F H F' Active

Exception I
I') L.

Default Value

I 1""', f or - I n f

li"""!f or -Inf

Ci, - ~~i, or a Denormalized

Number

Not a Number

I Comment

Not a Number, explained below.

} Mathematically exact infinity, explained below.

Explained below.

When an invalid operation (I i) L.) occurs, the IEEE default result is the value "Not a Number," dis­
played as h"j !";' This value conveys the information that an invalid operation has occurred and the
result of the calculation is not a number.

Example. When you enter the following three concatenated statements, the display will first show
the current trap value associated with the I I) L. flag, whatever it happens to be. This example assumes
the current trap value is 1. Then the two following statements will display the outputs shown.

Input/Result

TRHF'(IVL.,~) @ 2=0/0 @ DISF' 2
T F.: H F' .:: I !) L, :~::. returns the current trap value
and sets 2 as the new trap value for I!) L.

2 == Ci Ci returns a warning, since the current
I !,j L. trap value is now 2.

t·~ .:; t; D I ::; F' 2 returns the value of 2.

If you do not wish to preserve an I!,} L. trap value of 2, execute T F.: H F' .:: I !) L., 1:; or
TF.:HF' (I ')L..' 0:;.

A t·j.:. t·j value propagates through the usual math operations so that it generally appears in the final
result. For example, using Z from the above example, 3 * Z + 1 returns the original t·j a t·j with no
exceptions being raised. In the event that two t·jat·js enter one operation (for example, Z + Z), then
the result will also be ~jat~. Exceptions to this are logical operations and numeric comparisons, which
always return [1 or 1.

t·j .:; t·~ can be stored in a::; H [I F.: T or I [.j T F G E F.: precision variable.

IEEE Proposal 341

Since t·jat·j has no ordering with the other PEAL numbers, when [·ja[·js are involved in certain compari­
sons the I I,j L flag will be set. Refer to the topic "The Unordered Comparison Operator" on page 343.

The t·j.:. t·j s described above are called Quiet Han s. There is also another type of [.j.:. [.j called a Signaling
[.j.:; [.j. This t·j.:. [.j is created directly by the user when the [.j.:. [.j function is executed, and at this time no
exception results. Later, a Signaling t·j a [.j will set the I I,j L flag whenever it is first encountered in a
math operation. The Signaling [.j a t·j then becomes a Quiet [.j.:. [.j. The Signaling [.j a [.j can be used to
initialize any uninitialized data so that the I I,j L flag will be set whenever this data unexpectedly enters
into a calculation.

Infinity

When the D!) 2 or C!) F exception occurs, the IEEE Proposal specifies default values I n f and
-- I n f. These behave like mathematical infinity in subsequent operations. For example, I (! f .""

1 F 2 0 0 = I n f and - 2 ."" ;j = - I n f .

The I f'; F function returns the value I n f. I n f can be stored in an I [.; T [G [R, ::; H Ci F.:I, or R [i:i L

variable.

Denormalized Numbers and - 0

On many computers, the simple test for x-y=O does not guarantee that x=y. For,
when Ixl and Iyl are small enough to be near the underflow threshold, x-y may underflow to 0 with­
out having equality. For instance, with [I E F H U L TOt; active, 1 , 2::3 4 ':5 E·,·· 4 ::~? - 1, ;::: 3 4 E - 4:::;?

produces a ~,~ F.: [.~ : Un d e t' f 1 .:. !,.i warning, followed by 0.

The IEEE Proposal specifies that gradual underflow be implemented. This requires that small results
be denormalized to the minimum exponent of the number system. Gradual underflow is implemented
when [I E F H U L T E :-:: T E [.j [I is in force. With [I E F H U L T E::-:: T E [.j D active, the above example
1 , 2::3 4 ':5 E - 4 ::::; ? 1 , 2 3 4 E - 4 ::::; ? does not underflow. Rather, the HP -71 returns the
denormalized result 0, 0':5 E -, 4 ::::; ::::;.

Here's another example: 1, 2::3 4 ':5 E - 4 ::::;::::; tiE - ::::; displays, after the warning, the rounded,
denormalized result 0, 0 CHlO 0 0 0 0 1 2::3 E - 4 ::::; ::::;, with [I F' T lOt·; F.: I] U [-iD [.~ [FlF.: active. The expo­
nent of the normalized form of this result is given by the [::-:: F' 0 [.~ [[.~ T function. Executing
[:<F'ot'~[[H':: F.:[::;:; gives -50:::.

When the magnitude of the rounded result is smaller than 1*10-510 (OF'T I [It·~ F.:OU[·H) [·~[HF.: ac­
tive), it underflows to 0 and the U [.~ F flag is set. To retain more information about the underflow,
the value ~~1 preserves the sign of the underflowed value. For instance, a result of -1*10-600 would
underflow to - o.

342 IEEE Proposal

This extra information in the sign of zero can be useful for carefully written programs designed to
handle exceptions like 1.."'" i . ..i) automatically. Otherwise, in unexceptional calculations, ~::i and _. U
behave in the same way. They even compare equally, so that - ~::i =:: ~::i is true and - ~:) <: i? is false.

The sign of zero will normally be preserved through functions F(x), where F(O) =0. For example,
::;!) F: .:: i;::i') returns 0 and ::; U i? .:: i?::' returns - 0 (recall that .- U is not less than ;J).

Classes of Numbers

The inclusion of T F: H F' 2 default values for math exceptions extends the normal range and type of
numbers. This extended range is divided into 12 classes as shown in the table below.

Classes of Numbers

Value or Range of x

Denormalized (f'1 I r~ F: E H L:=x<T F,,:;)
(-1'1 I r'~FEHL:> :::x:> -EF'::;)

Normalized (E F' :::; <: ::::: X <: I n f)
(_. E F' ::; :> ::: x:> - I n f")

I (; f or _ .. I n t

Quiet ± t~ .:;; I"~

Signaling ± t~ '3 I"~

r Class of x

1. or

-2

- .. :.

4 or -4

t:: or -

f; or -6

Examples. The value returned by C i.... r:i :", :::- identifies the class of numbers to which its argument
belongs. The sign of the result indicates the sign of the argument. The returned values are shown in
:::; T!::! display format with [E F H i...! L..T E >: T E r~ [set. While you can execute ::; T [and [[F H U L.. T
r: ' : T E !j [only in BASIC mode, you can execute C L H ::; :::; in either BASIC or CALC mode.

Returns - ...

Returns 2:.

Returns - -~'

Returns 4.

IEEE Proposal 343

The Unordered Comparison Operator
The introduction of i···i .,;; i···1 to represent the result of an invalid operation requires a new comparison
operator, '~', to complement the usual relational operators <:, :::, and :>. The comparison ::< '~:- \' is
true if and only if one (or both) of ::< and \' is [.. j .,;,1".1. With any comparison of ::< and \' exactly one of
four conditions is true:

1. ,:':, is less than \'.
,:':, is equal to \'.
,:':, is greater than \'.

2.
3.
4. ,:':, is unordered with \'.

(::< <' '
(::<::: \'
(::<:> \'
(::< ,) \'

is true).
is true).
is true).
is true).

One consequence of r-; .,j r'; is that ::< <::> \' is no longer identical to ::< =1* \', as the following table shows:

Differences Between the Operators <. ::- and =1*

Comparison I Equivalent To

"." /' .. ,: OF: ::<>
b. ::< =1* \' ,:':, <: \' [I F ,:':, .,:' '.... C ~:: ,..',:";

If either >:: or \' is t·~.:;; r'~, a is false but b is true. Note that if :< is r'~':;; r'~, then the comparison >=::: ::< is
false. In fact, the comparison ::<::: >:: can be used to test if >:: is a r'~':;; r·~. The C u=r:; ::; function (page
49) can also do this test.

The invalid (IVL) flag is set for numerical comparisons whenever the expressions being compared are
unordered and the relational operator being used to compare the expressions contains <: or :> but
not '~'. That is, the IVL flag is set when the expressions are "unexpectedly" unordered. Note that even
though the flag is set, no t·j.:;; t·j is created.

Example. Assume the current trap value for the invalid flag is 1. This example assigns a trap value of
2 for the invalid flag so the HP-71 will respond to an invalid operation with a warning and a default
value rather than an error and an operation halt.

Input/Result

T F H F' ;:: Ii,,' L .. 2::' I~ 0:::: 0 0 I~ F::: 5 I END LI NE I
The HP-71 displays the current trap value for the
invalid flag.

Next, the computer warns that an invalid oper­
ation has occurred and sets the IVL flag.

344 IEEE Proposal

Input/Result
[i "- ,.- I) I END LINE I

The result of ;~i 0 is "Not a Number," since the
trap value for the IVL flag is 2.

Display the answer to the question: is Q less than
or greater than R?

The computer sets the IVL flag and warns that a
comparison involving at least one t·; .:;:! : ... ! has been
attempted.

C is assigned 0, not t·j.;l t·j. The comparison is
false. Since Q is a t·j.;l t·j, the only true comparison
would be one involving the unordered comparison
operator, '~'.

Table of Comparisons (X Compared to Y)

The table shown below illustrates the ordering relation­
ships among values represented by ± infinity, finite posi­
tive and negative numbers, ± zero, and NAN (not-a­
number). The symbols used in the table are described in
the box to the right. In the table itself:

n = a real negative number.

p = a real positive number.

True Results of Comparing X to Y

Y

Less Than
Equal To
Greater Than
Unordered

-Inf n -0 +0 p +inf NaN

-Inf -:. : '-::'

n .:

-0 > = :

x +0

p :

+Inf ... : '-::'

t·j;ltj - c· - .-

IEEE Proposal 345

Example using the Relational Operator Table. Suppose that you wish to evaluate x < = y, where
x = -37.3 and y = -0. Since the x-value corresponds to row 2 (n) of the table and the y-value cor­
responds to column 3(- 0) of the table, the tabular result is <. Thus, the table indicates that, in this
case, x < = y is true.

Glossary

Introduction

This glossary describes terms used in both the HP-71 Reference Manual and the HP-71 Owner's
Manual. If a term you are looking for is not described in the glossary, refer to the HP-71 Owner's
Manual index.

Special Symbols
;::.: String concatenator.

Used to close a channel. (Refer to the ASSIGN# keyword entry on page 23.)

Separates statements in multistatement lines.

Allows end-of-line comments in program lines.

Tho special uses:

• The default I tl F U T prompt.

• Used as a relational operator. (See unordered.)

Displayed in lieu of a line number to indicate an execution error in a non-BASIC program.

E Tho uses:

• Exponent-precedes a power of 10 in a floating point number.

• Indicates a private and secure file in a catalog entry (an "execute only" file).

Indicates a private file in a catalog entry.

Indicates a secure file in a catalog entry.

346

Glossary 347

Terms

A

accessory: Devices or modules that plug directly into the HP-71, such as the HP 82400A Magnetic
Card Reader or the HP 82420A 4K Memory Module.

accuracy factor: See adjustment factor.

active environment: The currently accessible local environment.

actual parameter: An expression or variable that is passed as an argument to a subprogram or
function. In a C H L.. L. statement, an actual parameter can also be a channel number (preceded by
#). See also formal parameter.

address space: The range of memory locations the computer can access. The HP-71 address space
is 1,048,576 four-bit locations.

adjustment factor: The amount of correction applied to the internal clock of the HP-71. The
adjustment factor is expressed as the number of seconds the HP-71 waits before adding (or
subtracting) one second to correct a slow (or fast) clock. Sometimes referred to as accuracy factor.
Refer to the EXACT entry in the Keyword Dictionary.

adjustment period: The period delimited by successive executions of E: >:: H C: T. The computer uses
this period to calculate the adjustment factor.

alternate character set: A set of user-defined characters that are represented by the ASCII char­
acter codes 128 through 255. The HP-71 alternate character set is entirely user-definable.

annunciators: Symbols that appear in the left and right ends of the display window to indicate
certain machine conditions.

ANSI BASIC Standard: A standard for the BASIC language that was developed by the American
National Standards Institute. Tho standards have been developed. The first was ANSI X3.60-1978
and is referred to as "ANSI Minimal BASIC." The second, referred to as the Levell standard, was
proposed by ANSI subcommittee X3J2. As of the original printing of this manual, the second
standard was not yet adopted.

argument: A parameter.

348 Glossary

arithmetic operator: One of the elementary operators: +, -, :*:, , , ... ;" and D 1: ,,}.

array: A variable containing an ordered collection of values. Each value is termed an element. An
element is specified by an array name followed by a list of one or two subscripts enclosed in
parentheses. (The rules governing numeric and string array names are the same as those for
numeric and string variable names.) All elements of an array are of the same data type. See also
numeric array and string array.

array base: The lowest-numbered subscript that can be used to reference an element of an array.
The base of an array is automatically set at the time that you create the array and is determined
by the current C F' T I eni E: F<>:: setting (1 or 0). The HP-71 default eFT I C r~ E: H ':; E setting is
O.

array element: One of the values in an array. An array element is referenced by array name and
element subscript(s}.

ASCII: The American Standard Code for Information Interchange. This is a standard used by the
computer industry to represent characters by numeric values. This code enables different types of
computers to exchange information. Each HP -71 character, either buil t-in or user-defined, cor­
responds to a decimal code in the range 0 through 255.

assignment statement: ALE T statement or an implied LET statement used to give a variable a
value.

available memory: The part of RAM that is not currently being used to hold files, variables, ar­
rays, or any system control information. (1'1 E 1'1 returns the amount of available memory in main
RAM, in a specified plug-in memory device, or in an independent RAM.)

B

base: See array base.

base part: See mantissa.

BASIC: Beginner's All-purpose Symbolic Instruction Code. BASIC is the HP- 71's programming
language. Also refers to a file type.

Glossary 349

BASIC mode: The computer mode in which you can write BASIC programs and perform most
keyboard operations. It is distinct from CALC mode.

binary operator: An operator that performs its operation on two expressions. It is placed between
the two expressions. The following binary operators are available:

See also unary operator.

Arithmetic I Relational I Logical

+ # AND
OF.:

<> E::·::OF.:
OI',j <

..... >
<=
>=

.-:;.

• The "-" operator is a unary operator that can

be used as a binary operator.

bit: The smallest unit of memory, equivalent to one binary digit. A bit can have one of two values: 0 or
1.

bit pattern: The pattern formed in the HP-71 display by a group of binary digits (bits). Each bit
represents one dot on the display. (The bit pattern is described under "Defining Alternate Char­
acters" on page 132 in the HP-71 Owner's Manual.)

branch: To transfer program execution to a specified program statement.

byte: A standard unit of memory equivalent to eight binary digits (bits). Depending on the value of
each bit, a byte can have a value of 0 through 255. Each ASCII character occupies one byte of
memory. See also bit and nibble.

C

CALC mode: A mode in which you can perform keyboard calculations and view intermediate re­
sults. Pressing [IJ I CALC I switches the computer between CALC mode and BASIC mode.

350 Glossary

calling environment: The local environment of a program or subprogram that has referenced a user­
defined function or called a subprogram. When --a program or subprogram calls a subprogram, the
calling environment is maintained in an inactive status until the called subprogram ends. See also
active environment, environment, global environment, local environment, and main
environment.

calling program: A program that executes another program or subprogram using the L n L L

statement.

calling statement: A statement that transfers execution to a subroutine (G 0 ::; U B) or a subprogram
(CALL). When a subroutine or a subprogram ends, program execution returns to the statement
following the calling statement.

CAP D: A keyword that specifies the HP 82400A Magnetic Card Reader as a device. This keyword is
used in COP \' or CAT statements.

card file: A file that resides on one or more magnetic cards.

carriage-return (CR): A control character (character code 13) that causes the cursor to return to
the left edge of the display.

carriage-return/line-feed (CR/LF): A sequence of two characters normally generated by the ter­
mination of keyboard entries and P F.: I t·j T and DIS P statements. The ~ and (Y] keys send car­
riage-return/line-feeds to display devices.

catalog entry: A display line of information showing the name, protection, type, length, creation
date and time, and port (if any) of a file in memory or on a mass storage medium.

channel: A path through which the computer stores and retrieves information from a data file. A
channel is assigned a number and is associated with a file when you execute A::; ::; I G r·i #.

channel number: A number assigned to a channel at the time the channel is associated with a
specific data file.

character: An elementary symbol, such as a letter, numeral, punctuation mark, or other special
symbol that can be displayed on the HP-71. The HP-71 has 128 predefined ASCII characters and
128 user-definable characters.

Glossary 351

character code: The numeric value, ranging from 0 through 255, associated with a character. For
example, the character code for A is 65. (Refer also to "HP-71 Character Set and Character
Codes," pages 322 through 326.)

character delay: The length of time between successive horizontal scrolls in the display. When the
computer displays a line longer than 22 characters, it scrolls the line through the display one
character at a time, from right to left. The character delay is the length of time a portion of that
line is displayed before the computer scrolls it one character. This value can be set using the
DEL f'i \' statement.

C: H A F: :=.:; E T string: A group of characters whose character codes represent a bit pattern for a user­
defined character set. This string is an argument the user supplies to the C HAP ::; E "j" statement.

close a file: To dissociate a file from a channel. You can close a file by executing H::=': ::; I G ! .. ; #.

command stack: A portion of main RAM that stores the five most recent commands entered from
the keyboard. You can access the command stack by pressing []] 1 END LINE I.

concatenate: To join string expressions (with :n or to join statements (with i~) on a single line.
(Some statements cannot be followed by I~. The Keyword Dictionary entries for such statements
include this information.)

conditional branch: A type of conditional execution in which a program branch occurs as a result
of a conditional test.

conditional execution: The execution of a statement or statements based on the outcome of a
conditional test.

conditional test: A test based upon a logical expression or an implied comparison between two
values, as in I F or 0 t·l ... G Ci T C/G 0 ::; U B/P E ::; T Ci F: E statements.

continuous on: A condition in which the automatic shut-off feature of the computer is disabled.
This condition can be set on the HP-71 by setting flag -3.

contrast value: The argument used by the CO t·l T F: A::; T statement to adjust the viewing angle of
the display.

352 Glossary

control character: One of 32 characters that controls the operation of a printer or display. The
character codes for the control characters are 0 through 31.

CR: See carriage return.

CR/LF: See carriage returnlline feed.

current file: The file that receives the program lines you type into the computer. Also, the current
file is the default file for the following operations:

• Pressing the I RUN 1 key.

• Executing F U r·~ without specifying a file name.

• Performing most file operations when no file is specified.

Note: The "current file" designation can be changed by F.: U t·j, ED IT, C H A I t·j, CAL L, P U F.: G E,
TF.: A t·j ~:; F 0 F.: t'l, C L A I t'l P 0 F.: T, and F F.: E E P 0 F.: T .

current key assignments: The key definitions in the system k e '::J. s file. These definitions are
the assignments that become active when the User keyboard is active (USER annunciator
displayed).

current line: The program line at which the computer is positioned. You can display the current line
by executing FE T C H with no argument. If a program is paused, the line containing the suspend
statement (the statement at which execution will resume if you press ITJ~) is the current line.
When you run a program, the current line (as displayed by executing ITJI FETCH 1 or FE T C H without
an argument) does not change unless the program is paused by I ATTN I, PAU~:;E, or I SST I, or if an
error or warning condition occurs. If the program is paused, the current line contains the state­
ment at which execution will resume if you press ITJI caNT I. When a running program is suspended
by P A U ~:; E, the current line is the line containing the statement after the P A USE.

current statistical array: The statistical array most recently selected by executing ~:; TAT. You
can define several statistical arrays, but you can perform statistical operations on only the current
statistical array.

cursor: A blinking symbol that indicates the point on the display line at which characters can be
entered or deleted.

Glossary 353

D

data item: A numeriC expression, string expression, or un quoted string contained III a Li H T i:::i
statement.

data pointer: The computer's internal mechanism for indicating the next [! fl T fi item to read. You
can reposition the data pointer using k E: :::; T C F: E. See also file pointer, pointer, and program
pointer.

data type: A category in which a data item falls. HP-71 data types are:

• String

• Real

• Integer

• Short

Also, a simple variable differs in data type from an array variable.

debug: To locate and correct errors (particularly logical errors) in a program.

default setting: A setting (such as the display contrast value) that the HP-71 uses until you
specify a different setting.

default value: A value supplied by the HP-71 in either of the following cases:

• If an optional parameter is not specified in a statement or function.

• If an improper operation has occurred, thus requiring a substitute value so that execution can
continue.

degrees setting: The 0 F T I Ci h A t·j G L E setting used for expressing trigonometric function ar­
guments and results in degrees.

delimiter: A character, such as a comma, that separates items in an input list or separate arguments
supplied to a statement.

denormalized number: A floating point number that has a true exponent less than -499. (Refer to
the section entitled "The IEEE Proposal For Handling Math Exceptions"-page 338-for more
information about denormalized numbers.) See also gradual underflow.

destination file: The file that is created or modified as the result of a copy, merge, or transform
operation.

354 Glossary

device identifier: A special system device word. t'l A I t,~ refers to main RAM; C A F.: D and PC F.: D refer
to the optional magnetic card reader; PI] F.: T refers to plug-in memory and independent RAM. The
PI] F.: T device word can be followed by an optional port specifier for referencing a particular plug-in
port.

device specifier: A colon (:) followed immediately by a device identifier.

~ device ~
. identifier

digit: One of the following characters: 0, 1, 2, 3, 4, 5, 6, 7,. 8, 9, for decimal numbers. Also includes A,
B, C, D, E, F, for hexadecimal numbers.

dimension: Used as a noun to refer to either the maximum length of a string variable or the num­
ber of elements in an array. If an array's base is 0, the number of elements is equal to the maxi­
mum subscript value plus 1. If an array's base is 1, the number of elements is equal to the
maximum subscript value. "Dimension" is also used as a verb to describe the execution of D I !'! to
set the dimension of a string variable or an array.

direct execute key: A key or keystroke combination that, when pressed, executes one or more
instructions without altering the display. Refer also to the DE: F' f::: E: \' entry in the Keyword
Dictionary.

display format: The way that numeric information appears in the display. Refer to the FIX, SCI,
ENG, and STD entries in the Keyword Dictionary.

display line: The line currently in the HP-71 display. It can be up to 96 characters in length, minus
zero or more character positions for the prompt. The display window displays up to 22 characters
at a time and can scroll back and forth along the display line.

dummy array variable: A formal parameter that is indicated by a variable name followed by (' ')
for one dimension or 0:: .. ::' for two dimensions.

Glossary 355

E

editing: Using keyboard operations to add, delete, or alter information in either the display or a
file.

end-of-file mark: An internal marker placed by the computer to indicate the end of information
in certain files.

end-of-line sequence: The sequence of characters indicating the end of a line. The sequence usu­
ally consists of a carriage return and a line feed, and is sometimes called the end-oJ-line indicator.
You can use the E: r'; D L.. I [1 E: statement to set an end-of-line sequence for the F'~: I r,n and
F'L.. ::: ::;"f' statements.

entry slot: The left-hand opening of the card reader slot. Magnetic cards are inserted through this
opening.

environment: The combination of the local and global environment that can be accessed by a pro­
gram or subprogram. See also active environment, calling environment, global environ­
ment, local environment, and main environment.

EOL indicator: See end-of-line sequence.

EPS: The smallest normalized number representable on the HP-71: 1 ,~::JE-499.

error condition: A condition in which the computer cannot perform an operation. An error con­
dition results in an error message. For further information, see section 9, Error Conditions, in
your HP-71 Owner's Manual.

error message: A message the computer associates with a given error. You can view the most re­
cent error message using E F.: ~: t'l:t or []] I ERRM I . In some cases, a warning message occurs instead
of an error message. For further information, see section 9, Error Conditions, in your HP-71 Own­
er's Manual.

escape character: The control character whose character code is 27. Used as the first character in an
escape sequence. This character can be generated on the HP-71 by pressing []]I CTRL I []]ITJ or by
evaluating CH F.: $ 0:: 27::0.

356 Glossary

escape sequence: A sequence of characters, the first being the escape character, that controls the
operation of a display or printer. Escape sequences that control the HP-71 display are listed on
page 328.

evaluate: To compute the value of an expression. The result is always a string or numeric value.

exception flag: See math exception flag.

exit slot: The right-hand opening of the card reader slot. Magnetic cards exit through this opening.

exponent: See floating point number.

expression: See numeric expression and string expression.

external medium: See mass storage medium.

F

field specifier: A sequence of one or more symbols used in a format string to indicate the printer
or display format for a data item.

file: A set of lines or other data in memory or on a mass storage medium. A file can be manipulated
as a single unit and has a unique name.

file name: A string of one to eight characters that specifies a file in memory. The first character
must be a letter. Remaining characters may be any combination of letters and digits. The HP-71
automatically changes lowercase letters to uppercase letters. In general, file names can be speci­
fied by string expressions or unquoted strings. A blank character terminates a file name. See also
reserved word.

file pointer: An internal mechanism the computer uses to indicate the position III an open file
where the next read or write operation on that file will occur.

Glossary 357

file specifier: An unquoted string or a string expression that, when evaluated, indicates the name of a
file and, optionally, the device in which the file is located.

file type: The characteristic format of a file. A file type is indicated by an unquoted string. The
HP-71 recognizes the following file types:

• E A ::: I C (BASIC program).

• E I [.; (machine language program).

• D AT A (fixed-length record data file).

• < E \' (key definition file).

• LEi:: (language extension file).

• L I F 1. (same format as TEXT).

• ::: DATA (serial data file from the HP-41).

• T E:: T (variable length record file of character data).

final character position: The position of the last character to be replaced by an assignment to a
string variable. Also refers to the last character of a substring. A value greater than the variable's
current string length is interpreted as equal to the current string length. A value less than the
start character position is interpreted as specifying a null substring immediately preceding the
start character position. The default value is the current string length. See also start character
position.

flag: An internal system variable that can have two possible values, 0 and 1, which correspond to the
"clear" and "set" states. Refer to the FLAG, CFLAG, and SFLAG entries in the Keyword Dictionary.

floating-point number: A number represented internally by the HP-71 in the decimal format

m * lOe

where m is the mantissa, which is a 12-digit number in the range

1 < = I m I < = 9.99999999999

for normalized numbers, and

Iml < 1

for denormalized numbers;

358 Glossary

and where e is the exponent, which is a 3-digit integer in the range

o <= lei <= 499.

formal parameter: A variable name that appears in a:::; i.J t::: or L! t. F:· F i··j statement. A formal
parameter either references or assumes the value of an actual parameter passed to it. You can
specify a channel number as a formal parameter in a::; U E: statement by using # followed by an
integer constant in the range of 1 through 255.

format string: The characters in an I t'l AGE, D I ::: P U ::: I t·~ G, or P PItH US I t·~ G statement that
specify the formatting of information sent to display and printer devices.

free a port: To use F i? I:::: E F' U I? T to set aside a portion of main RAM as independent RAM.

function: A built-in routine that can operate on arguments and produces a single string or numeric
value. A user-defined function is a function that is defined in a BASIC program using the DE F

F f··1 statement.

G-H

global environment: The set of files, flags, and other settings that are accessible to any program,
subprogram, or user-defined function. See also active environment, calling environment,
environment, main environment, and local environment.

gradual underflow: A process by which numbers too small to be represented in normal floating
point format are represented instead by the minimum allowable exponent and a mantissa less than
1 (for example, O.OI23E-499). These values are called denormalized numbers.

hexadecimal address: A location in memory specified by a base 16 number.

hexadecimal digit: A digit 0 through 9 or a letter A through F.

HH:MM:SS: Hours, minutes, and seconds.

hierarchy: A prescribed order in which data is ordered or operations are performed. Refer also to the
information under "Precedence of Operators" on page 317.

HP-IL: Hewlett-Packard Interface Loop. A means of controlling peripherals used by the HP-71 and
other computers.

Glossary 359

Identifier: A string expression or unquoted string that identifies a file and/or device.

IEEE default value: The default values specified by the IEEE Floating Point standard. These
values can be supplied by the HP-71 when math exceptions occur. (Refer to the section entitled
"The IEEE Proposal For Handling Math Exceptions" for further information about IEEE default
values.)

immediate execute key: A key or keystroke combination that, when pressed, displays an instruc­
tion, then executes it. Compare with direct execute key. Refer also to the DEF KEY entry in the
Keyword Dictionary.

independent RAM: RAM that is separated from main RAM by executing F PEE F' U ~:: T. An in­
dependent RAM contains files and is referenced by its port number.

inexact result: A numeric result that cannot be exactly represented in the HP-71 floating point
format, such as an irrational number or a number having a repeating decimal.

H~F: A function used to return the HP-71 representation for infinity (Inf).

initialize a variable: To assign an initial value to a variable. In the HP-71, all numeric variables
and array elements are initialized to zero when created by executing D I 1·'1, F.: E A 1..., ::: f·n:nn, and
I f·F E G E~:. All string variables and array elements are initialized to the null string when created
by executing DIn.

input: To enter data from the keyboard or from a data file. Also refers to the data itself.

integer value: A number that has no fractional part.

instruction: A generic term for all operations that can be performed on the HP-71, including any
statement, function, or operator (with its corresponding operands).

interchange file: A file of type TEXT (or LIFl) written to a mass storage medium and used to
interchange information between the HP-71 and other computers.

360 Glossary

interface: The circuitry that connects a computer to other devices and enables them to function

together.

I/O: Abbreviation for input/output, indicating an operation that either receives input from a device
or sends output to a device. The HP -71 's buil t-in input and output devices are the keyboard and
display. The card reader is both an input and an output device.

K

key definition: The current functionality of a key or keystroke combination, which can be to dis­
playa string of characters and/or to execute one or more instructions. Refer also to the DEF KEY

entry in the Keyword Dictionary.

key name: A string expression that identifies a key. A single-character string refers to the key that
enters that character. (Letters can be uppercase or lowercase.) A two-character string in which the
first character is upper- or lowercase "f" or "g" refers to the [IJ- or @]- shift of the specified key. A
string beginning with # and followed by one to three digits refers to a key number. For further
information, refer to the DEF KEY entry in the Keyword Dictionary.

keyboard buffer: An area of main RAM in which the computer stores keystrokes until it can
process them. The keyboard buffer can contain up to 15 keystrokes.

keyboard execution: To perform HP-71 operations from the keyboard, as opposed to operations
performed by a running program.

K E \' ~:;: A reserved word that specifies the system k e '::i s file. When used, it must be an unquoted

string.

k e '::i s file: The system file that contains the current key redefinitions. This file is named k e '::i s.
To reference it, use the K E \' ~:; keyword.

keyword: A word having a predefined meaning in the HP-71. Usually a statement, function, or

operator.

Glossary 361

L

label: A quoted or un quoted string, immediately followed by a colon, that identifies a program
statement. A label can precede any statement within a BASIC program, and can follow a line
number, an I~i, or another label. That is, multiple labels can identify the same statement.

A label can consist of one to eight characters. The first character must be a letter. Each of the
remaining characters can be either a letter or a digit. The HP-71 converts all letters in program
labels to uppercase and places the label within single quotes.

~ ~.o-
.. label II

label reference: A string expression or unquoted string used in GOT 0, GO SUB, and other statements
to transfer execution to the statement immediately following the corresponding label. A label refer­
ence contains the same string as its corresponding label. See also label.

language extension (LEX) file: A type of file used to define new keywords and to extend HP-71
capabilities. LEX files can be maintained on mass storage media and in the computer's memory.

least significant bit: The bit contributing the smallest amount to the value of a binary number. In
the owner's manual and the reference manual, it refers to the rightmost bit of a binary number. See
also most significant bit.

left justify: To write a string beginning at the leftmost column of a display or print field.

LEX file: See language extension (LEX) file.

LIF: See logical interchange format (LIF).

line editing: Adding to, modifying, or deleting characters in the display.

line-feed: A control character (decimal code 10) that causes the HP-71 to advance to a new display
line.

line number: An integer constant in the range 1 through 9999 that identifies a program line.

362 Glossary

local environment: The environment that the HP-71 defines for exclusive use by a specific main
program or subprogram. See also active environment, calling environment, environment,
global environment, and main environment.

logical error: An error in a program's design. A logical error can result from using a faulty al­
gorithm or from simply keying in a program improperly. Logical errors aren't detected by the
computer, but are evident from faulty program output.

logical expression: A numeric expression used in a conditional test. Evaluated as true if nonzero,
and false if zero. Usually includes relational operators. Refer also to the IF . .. THEN . .. ELSE
entry in the Keyword Dictionary.

logical interchange format (LIF): A mass media format that is common to several Hewlett­
Packard computers. This format enables different computers to interchange programs and
information.

logical operator: An operator that returns a logical value (0 or 1). The logical operators on the
HP -71 are 0 P, miD, E ::< Ci F, and h C To

loop counter: The simple numeric variable in a F 0 F ... hE i: T loop that controls the number of
loop iterations.

looping: Repeatedly executing a series of statements, usually until a specified condition is satisfied.

M

main environment: The local environment of a main program. The main environment is also active
when no program is running or suspended. See also active environment, calling environment,
environment, global environment, and local environment.

main program: A program that is not called by another program or subprogram, but is typically
executed by IRUNI, PUt·~, or CHAlt'L

main RAM: The memory used by the computer to create the main environment or subprogram
environments. (The computer uses part of this memory to maintain operating information that is
not directly accessible to users.) Main RAM is distinct from independent RAM. (Main RAM is
referenced by t'1 H I t·t Creating a file either when no device is specified or when MAIN is specified
causes the HP-71 to create the file in main RAM. Refer to "Device Names" in your HP-71 Own­
er's Manual.

Glossary 363

mantissa: The normalized part of a number displayed or printed with an exponent in scientific
display format. For example, the number 1 , ,:: (' ;:; E 1. (' has J. , '5 (':3 as its mantissa and 1 (' as its
exponent of 10. See also floating point number.

mass storage device: An I/O device such as the HP 82400A Magnetic Card Reader or an HP 82161A
Cassette Drive that you can use to copy files between memory and mass storage media.

mass storage medium: A magnetic card, cassette, or disc on which you can store computer files.

math exception: An event that occurs during evaluation of a numeric expression and is in one of
the following categories:

• Invalid operation.

• Division by zero.

• Overflow.

• Underflow.

• Inexact.

Depending upon the trap value that corresponds to the exception, the HP - 71 can either treat
such events as errors or supply a default value for the expression.

math exception flag: A flag that the HP-71 sets whenever a math exception occurs. The five math
exception flags are:

• I ',j L (invalid operation).

• [II.} Z (division by zero).

• O!,} F (overflow).

• U ['iF (underflow).

• I t~ >:: (inexact result).

t'1 A:-: PEA L: The largest finite value the HP-71 can represent, which is: 9.99999999999E499.

memory reset: A condition in which the memory of the computer is cleared of all programs, data, and
other information. This happens when you execute I t·j IT: 3 (in which case independent RAM is
protected) or remove the batteries for an extended period (independent RAM is not protected). 'Ib
execute an I t·j IT: 3, refer to "Memory Reset, BASIC Mode, and the BASIC Prompt" in section 1
of your HP-71 Owner's Manual.

364 Glossary

message number: A number that identifies an error, warning, or instructional message. Error mes­
sages and their corresponding numbers are listed on pages 380 through 392.

t'1 I t·j F.: E A L: The smallest positive value the HP-71 can represent, which is the denormalized number
0.00000000001E-499. Refer to the MINREAL entry in the Keyword Dictionary.

mode: A condition of the computer that determines which operations can be performed. For exam­
ple, a BASIC program can be edited in BASIC mode only; it cannot be edited in CALC mode.

module: A device that fits into one of the HP-71 ports and extends its memory or its capabilities.

most significant bit: The bit contributing the greatest amount to the value of a binary number. Often
referred to as the leftmost bit.

multiple-statement function: A user-defined function that contains more than one program
statement.

multistatement line: A line containing two or more BASIC statements concatenated by the i:Ei

symbol.

N

t·jA t·j: The HP-71 function that returns a Signaling NaN. When entered from the keyboard and used
in an expression, it signals the computer to set the I I,} L flag and supplies the value t·j a t·j (not-a­
number).

N aN: An abbreviation for Not-a-Number. This is a default value supplied for invalid operations
(operations that set the I I) L flag) when the I!) L exception trap is set to 2. NaN is supplied for
such invalid operations as 0/0.

nested loop: A F Ci F.: ••• t·j E >:: T loop contained within another such loop.

nested subroutine: One subroutine that is invoked by another subroutine.

nibble: One-half of a byte; equivalent to four bits. The HP-71 individually addresses nibbles III

memory.

Glossary

normalized number: A number represented internally by the HP-71 in the decimal format

m * lOe

where m is the mantissa, which is a 12-digit number in the range

1.00000000000 < = I m I < = 9.99999999999,

and e is the exponent, which is a 3-digit number in the range

-499 <= e <= 499.

null string: String of zero length, specified by or

numeric array: An array containing elements that are numeric values.

numeric constant: A fixed numeric value within the range the HP-71 can represent.

365

numeric expression: A valid combination of values and operators that produce a numeric result.
The following diagram describes the syntax of a numeric expression.

r-------------------------------------~o~!~:~br ~--------------------------~

--~L,----------_r~~ ;~::~~\ ~--_,~~

v ar ~~~~~ 1 ~amef--r--.--1

user-defined numeric
function name

Note: The A binary operator cannot be followed immediately by a binary operator.

366 Glossary

numeric function: An operation (that is, an HP-71 keyword or a user-defined function) that, given
the appropriate type, number, and range of arguments, returns a single numeric value. Some
numeric function keywords, like F.: E ~:;, require no arguments.

numeric variable name: A letter or letter-digit combination that represents a location in memory
where you can store numeric information.

numeric variable specifier: Designates a simple numeric variable or a numeric array element
that is to receive a new value, as in PEAD, F:E:AD#, I r·F:>UT, L I t·WUT, LET, and LF:.

o

numeric
variable name

open a file: To associate a file with a channel number. Opening a file enables the computer to read
and write information to that file. A file is opened by executing W<:; I G r·~ #.

operand: A numeric or string value upon which an operation is performed.

operating system: A collection of built-in programs that control the overall operation of the com­
puter, performing such tasks as interpreting and executing BASIC programs, assigning places in
memory for files, processing keyed-in information, controlling the display, and performing
calculations.

operator: A symbol that combines or compares the values of two expressions. Arithmetic, rela­
tional, and logical operators result in a numeric quantity; the string operator (:U results in a
string quantity.

output: Information that the computer sends to a device such as a printer or display.

Glossary 367

p

parameter: The numeric or string information acted on by a keyword. Also, numeric or string in­
formation used by a function to determine the function's value. Parameters passed to a
subprogram can be passed by reference or by value. See reference parameter and value
parameter.

pass by reference: To pass a variable as an actual parameter to a subprogram so that it can be
altered.

pass by value: To pass an expression value as an actual parameter to a subprogram or user-defined
function. A variable is passed to a subprogram by value only if it is enclosed in parentheses (which
ensures that it cannot be altered by the subprogram.) All parameters passed to user-defined func­
tions are passed by value.

password: A string expression specified in the L U !_: f::. statement. A password prevents
unauthorized use of the HP-71. Refer to the LOCK entry in the Keyword Dictionary.

peripheral: Any external device on a standard interface controlled by the HP-71.

pointer: An internal mechanism the computer uses to indicate the next piece of information to
process. The HP-71 uses pointers to access information such as data items, files, and program
lines. See also data pointer, file pointer, and program pointer.

port specifier: A number of the form m.nn or m that identifies one of the computer's ports. The
value for m is in the range from 0 through 5; nn is in the range from 00 through 15. (Values of nn
less than 10 must be expressed with two digits; for example 09, 08, ... 01.) If the port specifier is
contained within an unquoted string, the specifier can be designated by a numeric expression.

precision: The number of significant digits a computer uses when it computes and stores a numeric
value. The HP-71 performs computations in 15-digit precision and stores in 12-digit precision.

precedence of operators: The order in which mathematical operations are performed by the
computer, based on the types of operators in an expression. Refer to "Precedence of Operators" on
page 317.

predefined function: Any functions that are defined for you by either the HP-71 or by a language
extension file present in the computer.

368 Glossary

private file: A file on a magnetic card or other external medium that can be copied into memory
and run, but which cannot be changed or recopied. (A private file in memory can be run and/or
purged, but cannot be copied.)

program: A set of instructions that performs some computing task and controls the input, process­
ing, and output of data. You can store programs in BASIC files and in BIN (binary) files.

program line: One line of a BASIC file; contains a line number and one or more statements.

program pointer: The mechanism used to identify the next function or statement to be executed
in a BASIC program. See also pointer.

program scope: The environment of the current program or subprogram. This environment deter­
mines which variables and statement identifiers can be referenced.

program unit: A program, subprogram, or user-defined function that performs a specified task.

prompt: The symbol that appears at the left edge of the display (the right edge when in CALC
mode) to indicate readiness for user input. Also, a text string used in an I r·; F' U T statement to
indicate that the user should key in some information.

protected field: A portion of the display or a display line that cannot be overwritten. The ~,~ I ti­
D U ~,~ statement defines protected fields in the 22-character display window. Escape sequences can
define protected fields in the 96-character display line.

R

radians setting: The [I F' T I CI t·j A t1 G L E setting used for expressing trigonometric function ar­
guments and results in radians.

radix mark: The mark, such as a decimal point, that separates the integer portion of a number from
its fractional part.

RAM: See random access memory.

random access memory (RAM): Nonpermanent memory circuits in which a computer can read
and write. RAM requires a constant source of power to retain its memory. Compare with read­
only memory (ROM).

Glossary 369

random file access: The process of reading from or writing to a specified record in a data file.

random seed: A number used by F.' i·i [) to generate a random number. You can set the random seed
using F.' A i··; U U i'l I Z F.

read-only memory (ROM): Permanent memory from which a computer can only read. ROM re­
tains its memory when disconnected from a power source.

real value: A numeric value represented as a floating point number.

record: The smallest addressable unit of a data file.

recursion: A process or procedure that is defined in terms of itself.

recursive subprogram: A subprogram that calls itself.

reference parameter: A parameter that can be changed by the subprogram to which it is passed.
See also parameter and value Parameter.

relational operator: A binary operator that compares two arguments and returns a 0 or a 1 based
on the outcome of the comparison. The following relational operators are available: <" ">, <: =:,

:> ==, <: :>, # , and '~'.

reserved word: A word that has a predefined meaning in the HP -71 and cannot be used as a file
name unless the word is part of a string expression. The reserved words are: TO, ALL, f::: E \' ::;,
CAF.:D, and I rHO. The reserved words are a subset of the HP-71 keywords.

ROM: See read-only memory.

ROM-based file: Files residing in read-only memory.

round: To adjust the least significant digits of a number according to digits that were either trun­
cated or cannot be represented due to limits of precision.

rounding error: The error resulting from rounding a quantity by deleting the less significant digits
and applying some rule of correction to the part retained. For example, 2.6641 can be rounded to
2.664 with a rounding error of .0001.

370 Glossary

round-off setting: Anyone of four settings that determine how the computer rounds numbers in
arithmetic operations. Refer to the OPTION ROUND entry in the Keyword Dictionary.

rout~ne: A program, program segment, user-defined function, or subprogram that performs a spe­
CIfic task and supports the execution of a larger program.

run-time error: An error that occurs during execution of a program or individual keyboard
instruction and is not due to a syntax error. See also logic error.

s

scope: The range of operation or accessibility of a program, statement, user-defined function, file,
setting, or other information.

scroll: Apparent horizontal movement of characters across the display or apparent vertical move­
ment of program lines, command stack items, or catalog entries through the display.

scroll key: The~, [y], BJ and [E) keys, and their @)-shifted counterparts.

SDATA file: A data file with a fixed record length of eight bytes.

secure file: A file that cannot be purged, altered, or declared private.

sequential file access: The procedure of reading from or writing to successive records in a data
file.

setting: A flag or operating condition (such as the C F' T I : . ..! f'; A [.j .. f_':; 1_. t_:·.:. c· .-.~. T .-.' '.-. tt') th t . ,,: H U I H ['j ::' se mg a IS

part of the global environment.

shifted keystroke: A keystroke that is preceded by pressing the OJ - or @)-shift key.

short value: A numeric value that is represented according to the ::; H C f;:: T format.

signaling. NaN: A NaN entered from the keyboard. Such a NaN, when used in a subsequent math
operatlOn, causes the HP-71 to set the I'')L flag.

Glossary 371

simple numeric variable: A variable name (a single letter or a letter and a digit) representing a
memory location in which a single numeric value has been stored.

simple string variable: A variable name (a single letter followed by :t or a letter and a digit
followed by :f) representing a memory location in which a single string value has been stored.

single step: To execute a program one statement at a time using OJ I SST I. Also, to evaluate an
expression one operation at a time while in CALC mode.

source file: A file that contains information that the computer either reads or transfers to another
file.

start character position: The position of the first character to be replaced by an assignment to a
string variable. Also refers to the first character of a substring. Values less than 1 are interpreted
as 1, and the default value is 1. For an assignment, the value cannot exceed the string variable's
maximum length. See also final character position.

start-up string: A string that is specified in the ::; T P f;:: T i ... : F' statement and executed as a com­
mand when the computer turns on.

statement: A BASIC instruction that can be executed in a running program or from the keyboard.
Statements can be concatenated with I}.I to form a multistatement line.

statement identifier: A line number or label reference that specifies a program statement.

statistical array: A numeric, one-dimensional array in which summary statistics are accumulated.
Statistical arrays are created using the ::; TAT statement.

string: An arbitrary sequence of characters that is not regarded as a number. In general, you can
specify such a sequence as a string expression or as an un quoted series of characters.

string array: A one-dimensional array having elements that are strings.

string constant: An arbitrary sequence of characters delimited by quotation marks (' ... I or
" ... "). Also called a quoted string.

372 Glossary

string expression: A valid combination of string components that produces a string result. The
following two diagrams describe string expression syntax and components.

String Expression:

String Component:

user-defined string
function name

string
expression

start
character position

final
character position

string function: An operation (that is, an HP-71 keyword or a user-defined function) that, given
the appropriate type, number, and range of arguments, returns a single string value. Some string
function keywords, like 'r I!"'! E::!, require no argument.

Glossary 373

string variable name: A letter or a letter-digit combination followed by $, that represents a
location in memory where you can store character information.

string variable specifier: Designates a simple string variable or a string array element (or a por­
tion of that string) that is to receive a new string value, as in F.: E: H D, F.: E H D #, I r'~ F' U T,
L I f'! F' i...iT, and LET. The portion of the destination string variable to be replaced is specified by
the start character position and the final character position. The computer always begins the
substitute string at the start character position.

subprogram: A set of program lines that forms a routine that is independent of any main program
within the file in which it's stored. A subprogram is delimited by the ~:; U E: and E r"! D ~:; i...i E

statements.

subroutine: A program segment that begins execution as a result of a C U ::::; U E statement and that
returns control when it executes a F.: E T U F.: t·i statement.

subscript: A number that specifies the row (or column) location of an array element. A subscript
value must be less than or equal to the array dimension limit, and greater than or equal to the
array base.

substring: A portion of a string variable; contains zero or more contiguous characters. To specify a
substring, follow a string variable specifier with a numeric expression (or numeric expressions)
enclosed in brackets ([J).

string
variable specifier

start
character position

final
character position

suspend statement: When a program is suspended, the statement at which program execution will
resume when you press ITJI CONT I .

suspended program: A program that has been interrupted without affecting its program control
information. The SUSP annunciator is displayed when a program is suspended. A suspended pro­
gram can be resumed by pressing ITJI CONT I .

374 Glossary

syntax: The rules governing the spelling of keywords, variable names, operators, file names, etc.,
and the construction of statements and functions.

system file: A file that is designated by the computer for a special use. '!\vo such files are
i .. .i () (" k f" :i. :i. '::~ and k ':? 'Co! ,:;:. System files can be identified by their lowercase spelling in a catalog
entry.

system flag: A flag used by the computer to indicate a condition, such as a low battery or an
overflow in a calculation. System flags are numbered from -1 through - 64.

system message: A message displayed by the computer to give instructions.

T

tab: To move the cursor to a specified column.

THE:: A keyword that moves the D I :::: F' or F F:: I [.; T position ahead to a specified column.

text: An arbitrary collection of characters.

T E >:: T file: A file composed of textual information in a form that can be transmitted to other comput­
ers. In the HP-71, the TEXT file type is identical to the LIFI file type on the HP-75.

timer number: An integer from 1 through 3 that is used in an C [.j TIt'! E F:' # statement to specify
a system timer.

track: One of two read/write channels on a magnetic card.

trap: To detect certain exceptional conditions when they occur in calculations and to take an action
based on the type of exception and the setting of its corresponding trap value. Refer to "The
IEEE Proposal for Handling Math Exceptions" section that begins on page 338.

trap action: The actual computer response to errors as determined by the trap value.

trap value: A value associated with the five math exception flags to indicate how the computer
responds to the errors that set those flags. A trap value can be 0, 1, or 2.

Glossary 375

trappable error: Any error that, when it occurs, allows use of an 0 t·~ E F.: F.: O~: branch or subroutine
to take some action other than halting the program; an error that either sets one of the five math
exception flags or can cause a branch to occur during an 0 t·j E F.: F.: O~: condition.

truncate: To cut off a portion of a string or number. For example, the I F function truncates a
number at its decimal point. No rounding occurs.

typewriter key: A key that normally displays a letter, digit, or other symbol.

typing aid: A key or keystroke combination that enters a string of characters when pressed, as if
they had been typed in. Typing aids can be user-defined. Refer to the DEF KEY entry in the
Keyword Dictionary.

u-v

unconditional branch: A branch that occurs every time the statement is executed, as when pro­
gram execution encounters a COT 0 statement.

unary operator: An operator that performs its operation on one operand. It is placed in front of
the operand. The following unary operators are available.

• - . Reverses sign of its operand.

• +: Identity operator. (This is a binary operator that can be used as a unary operator.)

• t·j 0 T: Logical complement.

See also binary operator.

underflow: A condition in which the computer cannot represent a very small result within its nor­
mal range of precision. Some results that cause an underflow condition can be represented as de­
normalized numbers.

unquoted string: A series of characters, regarded as a string, that is not enclosed in quotes.

unordered: A relation in which a value is neither greater than, equal to, or less than another value,
as when a NaN is compared to another value. An unordered relation is tested by the .~. operator.

user-defined function: A numeric or string function that a user defines in a program by means of
DE F F t·j and E t·j D DE F statements.

376/377 Glossary

user-defined function name: Fr·; followed by a letter and an optional digit. A user-defined string
function name always ends with $.

user flag: A flag whose use is determined by the user. The user flags on the HP-71 are those num­
bered 0 through 63.

user keyboard: The set of key redefinitions in the current k e ':J.::;: file that are activated by press­
ing ITJ I USER I .

value parameter: A parameter that cannot be changed by the subprogram to which it is passed.
Value parameters include numeric expressions, string expressions, and variable names enclosed in
parentheses. See also Parameter and reference parameter.

variable name: Consists of a letter followed by an optional digit, and is used to identify a variable.
String variable names end with $. See numeric variable specifier and string variable
specifier.

variable number: An integer identifying a particular statistical variable.

verify: To check a magnetic card to ensure that information was properly written to it.

w-x

warning condition: A condition in which either a math result needs a default value or the com­
puter has detected an undesirable hardware condition (such as low batteries).

1 .. .1 0 t- k f i 1 eo: A system file existing as a BASIC scratch file in main RAM.

::.~ F t·j: An abbreviation used in either an error message or a displayed line to refer to a function in a
plug-in ROM or language extension (LEX) file when the ROM or LEX file has been removed from
the HP-71.

::.:: ~~ 0 F.: D: An abbreviation used in an error message or a displayed line to refer to a keyword defined in
a plug-in ROM or language extension (LEX) file when the ROM or LEX file has been removed
from the HP-71.

Errors, Warnings, and System Messages

This section contains the error, warning, and system messages related to the HP-71 computer. For
messages related to devices that can be connected to the HP-71, please refer to the manuals for those

devices.

Introduction

This section contains two listings:

1. An alphabetically-ordered listing of error, warning, and system message names, with their cor­
responding error numbers. You can use this listing to determine the number of any message.

2. A numerically-ordered listing of error, warning, and system messages, with a description of each

message.

An error message begins with E P P: and names the error type. In most cases, an error halts execu­
tion, which indicates that the computer cannot perform a pending operation. A warning begins with
L,j F.: t·~: and names the warning type. A warning indicates that a default value has been substituted for
a value that the computer could not compute, and does not halt execution. Some messages can be
either error messages or warning messages, depending upon the arithmetic trap values. An error or
warning message displayed during program execution indicates the line number causing the error or
warning, !\uch as E P P L::3 0: (error at line 30) and L,W [.j L 9 5: (warning at line 95).

A system message is usually a procedural message, such as a prompt for card reader operations. For a
description of error and warning conditions, refer to your HP-71 Owner's Manual.

Alphabetical Message Listing
Messages beginning with nonalphabetical characters are placed at the end of this listing.

Message I Number

C .::J t: A 1 i. ':;:I nth e n E [m U1 96
Chn 1 # ['10 t Found 41
Con f i ':;:i IJ t" a t ion 26
[la t·::J T'::Ipe 31
[le\,' i ce ['10 t Found 64
End 0 f F i l. e 54 I
E >:: c e sse h .::;, t" S ... ~.:...:..:..:.:._~:.:..._.:...:...~:2~U

378

~:: 0 "E~,~~~g~: .. ~ N.u.~~r 3

F 1 1 '=' E 1.:: t.::. •••••••••••••••••••• 59
I F 1 1 E' ['10 t F 0 u n d 57
i F i 1 e 0 pen .. 62
i F i 1 e P t" 0 tee t 61

l_FF._,.1._1.1.1-'_~_".-~~:~0 0 E: i':;:l 73
4
3

11 11 Found
.... _. ____ . ____ ___ ---l

(Continued on next page.)

Errors, Warnings, and System Messages 379

(Continuation of Message Table)

Message I Number Message I Number

FOP I,J ."" () t·~ E ;:.:: T 42 PFCT: HI i'::J.n then Er·WUj 94
III e':;:i .::;, lAc c e s s 60 P u 1 1 nnn 0 f mmm 89
Ille(~lal Conte::·::t 79 P i) 1 1 C .::;, [" d .. 90
U1AGE Ci',,'n 47 C U 0 t ~:' E ::< F' '''' c 1: e d 77
I n e >:: .::;, Ct. .. 21 P ~,~ E t· t" 0 [" 70
In1':n~i 16 F.'e.::;,d: A 1 i'::J. n then E[mUj 93
Inf-In1' 15 Pecord 0',,'f1 29
In1' .. ···1n1' 14 PHi 1,).""0 CC)::;UE: •.•...•.••.•••..• 44
In1' .. ···0 18 ::; i':;:i n·::J 1 ,,,,d OP 19
Ins u f fie i en t f'1 e m 0 ('::1 ••••••••• 24 ::; 0 F.: (n e'::J.::' 10
I n \,' .::;, 1 i Cl A F 27 ::;tff!t hot Found 30
I n\,'·::;, 1 id Ar'::J. 11 ::; t r i n':;:i C "/ fl. 37
I n\I.::J 1 i d E::<pt" 80 ::; u b ['10 t F 0 u n d 49
In' ... ::;, 1 id Fi Ie T'::Ipe 63 ::; u b s c (i F' t 28
I n \1 .::;, 1 i d F i 1 e s pee 58 ::; '::1 n t a>:: 75
I n '/ .::;, lid I ['1 AGE 45 ::; '::1 s t em Er [" or 23
I n \1 .::;, lid f::: e '::I 85 TA['~=Inf 4
In\lal id P.::;'t"rfl 81 T Ff'1 L'~ P ['1 Lnnn: 88
In \,'.::;, lid ::; t .::;, t H t" r' .::;, '::1 •••••••••• 51 Too F.::;,s t 71
In\,'.::;,l id :::t.::;,t Op 53 Too Fel.,) Inputs 40
I n \,' .::;, 1 i d ::: t .::;, tis tic 52 Too f'1 .::J n '::1 I n PUt s 39
I n \1 .::;, 1 i d T A E: •••••••••••.•.••.••• 48 Too ::; 1 0 1,) •••••••••••••••••••••••• 72
I n \1.::;' 1 i d T t" .::;, nsf 0 t" m 55 T r .::J nsf 0 t" m F a i 1 e d 56
1(;\1.::;, 1 i d U::: HiC 46 Tt" k nnn [lone 97
I n\I.::;' 1 i d I,}at" 83 Undet" f lOI,) 1
Lin e Too L 0 n':;:l 65 Unk nOI,)n C.::Jt" d 69
LOC(O::' 12 Unot" det" ed 20
LOC(ne'::J.) 13 Un p t": A 1 i ':;:I nth e n E [·W Uj 95
L 0 1,) E: .::;, t t e r '::I 22 I,}.:.t" Con t e::< t 50
f'1issin':;:i P.::;,rm 82 1,)et"if'::I F.::Ji.1 68
f'1 0 d u 1 e P u 1 1 e d 25 I,) f '::I: A 1 i q nth '-" n E [·m U1 92
[·1e':;:i·····[·10n-int 9 L,J t" i t e F' t" 0 tee ted 66
['1E>::T 1,).""0 FOF.: 43 L,Jt" on':;:i [·1.::Jme 73
['10 [I.::;, t.::J 32 L,h" t: A 1 i':;:i n then HWU1 91
['1 0 t T his F i 1 e 67 ::·::F[·j ['10 t Found 34
['1umet" i c I nplJ t 38 ::<L,WPD ['10 t Found 35
Opet"and E::·::pec t ed 86 E>::pec t ed 76
(I pet" .::J tOt· E ::< p >? C ted. '. 87 .. ···Zet" 0 8
(I',.let" f 101.,) 2 0 (:1 •••••••••••••••••••••••••••••••• 7

p.::Jt" ·::Jme t et" f'1 i sm·::J t ch 36 0·····0 6

Pt" ecedence 84 O· .. ··ne':;:l 5
l· .. ··Inf 17

380 Errors, Warnings, and System Messages

Numerical Message Listing and Descriptions

Error
Number

2

3

4

5

6

7

8

9

10

11

Math Errors (1 through 21)

Message and Condition

Under f 101,.1

The magnitude of a result is too small to fit exactly into its destination format. Sets UNF
(underflow) flag (- 5).

O\let" f 101,.1

The magnitude of a result is too large to fit into its destination format. Sets OVF (overflow)
flag (-6).

E::<F'Ot'~Et'~T >:: 0)
Indicates attempt to compute the exponent of a zero argument. Sets DVZ (division-by-zero)
flag (-7).

TAt~=1nf

T A t·~ argument is an odd integral multiple of 90 degrees. Sets DVZ (division-by-zero) flag
(-7).

O"ne'::J
x Y, where x = 0 and y < O. Sets DVZ (division-by-zero) flag (- 7).

[i ~J

x Y, where x = y = O. Does not set an exception flag.

0 0
x/y or x DIV y, where x = y = O. Sets IVL (invalid operation) flag (-8).

..... Zer (;
x DIV Y or x/y, where 0 < Ixl < Inf and y = O. Sets DVZ (division- by-zero) flag (-7).

t·~ '''''=':1 t·; (:1 n'- i n 1:

xv, where x < 0,0 < Iyl < Inf, and y is noninteger. Sets IVL (invalid operation) flag (-8).

Attempt to compute the square root of a negative number. Sets IVL (invalid operation) flag
(-8).

An argument of a function, operation, or statement has the correct data type, but lies outside
the domain of definition of that function, operation, or statement. In some circumstances sets
IVL (invalid operation) flag (- 8).

(Continued on next page.)

Error
Number

12

13

14

15

16

17

18

19

20

21

Errors, Warnings, and System Messages 381

Math Errors (continued)

Message and Condition

L.OG>::[i)

• L G T: Attempt to compute the logarithm of O.

• LOG F' 1: If argument equals -1.

Sets DVZ (division-by-zero) flag (-7).

L.OG':: ne'::J ::.
Attempt to compute the logarithm of a negative number.

L. C G F' 1: If argument is less than -1.
Sets IVL (invalid operation) flag (- 8).

1nf 1nf
An operation requires the division of an infinite dividend by an infinite divisor. Sets IVL (invalid
operation) flag (- 8).

1nf-Inf
An operation requires the subtraction of an infinite value from another infinite value of like
sign. Sets IVL (invalid operation) flag (-8).

In f :*:~:::i

An operation requires multiplying an infinite argument by a zero argument. Sets IVL (invalid
operation) flag (- 8).

lInt"
Attempt to raise + 1 or -1 to an infinite power. Sets IVL (invalid operation) flag (- 8).

In f ·····0
Attempt to raise an infinite argument to the power of zero. Does not set an exception flag.

::; i'::J ;-;.:;1 ed OF'
An input (parameter or data) is a signaling NaN. Sets IVL (invalid operation) flag (-8).

UnDr-dered
A comparison involves at least one NaN and either a -:.. or ":. operator without the '~:- oper­
ator. Occurs with 1'1 F"i::-< or 1'1 I t~ if either or both arguments are NaNs. Sets IVL (invalid
operation) flag (- 8).

I r·i€"::<·~C t
The result of a function or operation may not be exact. Sets INX (inexact result) flag (-4).

382 Errors, Warnings, and System Messages

Error
Number

22

23

24

System Errors (22 through 27)

Message and Condition

During a card reader operation, warns that the battery level is low and continued operation
may cause incorrect results,

The integrity of information in memory has been disrupted such that the computer cannot
process the information, This can be caused, for example, by deleting a calling program while
its corresponding subprogram is executing, At this point, due to the memory disruption, the
HP-71 may not operate properly until you execute an ,. ,., .,. .. 3.

CAUTION

Executing i< IT :::: clears al/ of the HP-71's main RAM. Refer to your HP-71 Owner's
Manual.

.L (l -:::L 1L ;::~ r;

Generally, insufficient memory available to complete an operation. Specifically, indicates in­
sufficient memory for the following functions to perform their indicated operations:

• H::: '::: I C: i··i #: Creating the I/O buffer needed to open the file.

• i. f·· i:::i T !'i: Copying in the specified file.

• ... ,' ') ':.: ':::: E:T: Storing the alternate character set.

• ,. Creating the destination file. When copying to a card, building the card header in
main RAM.

• I ematlng a va,lable with the specified dimensions.
• T j.:

,;. ,',: : : :.

•

· "'. ,,::;
.... ';;;; . Creating a statistical array for the specified number of variables.

• E i', T i: Creating a file that does not already exist.

• ;::: Ci F' ... i···i i : ::T: There is not enough memory to save the needed F (J i? ... i···i i:::' i' ..,..
information.

• FF.:EE F'OPT: There is not enough memory to remove RAM from main RAM.

• i"! 'i: The file specified is on an external device and there is not enough memory to copy
the file into main RAM.

• ;:::!! j'" f: E: Attempting to purge the current file when the '.' , .C 1 .i ,';' does not exist and
there is not enough memory to create the •. ']. .L "'.

(Continued on next page.)

Error
Number

25

26

27

Error
Number

28

29

30

31

32

Errors, Warnings, and System Messages 383

System Errors (continued)

Message and Condition

t'1odu 1 e Pulled
A module was removed while the computer was turned on. Doing so causes a system
reconfiguration and, if any ROMs have moved in address space, causes an automatic
E [I IT. The system i,.lot-kfile is now the current file.

Confi'::Jut-ation
A configuration error has occurred, such as too many ROMs for the address space or insuffi-
cient memory to build all of the configuration tables. The computer should operate satisfac-
torily, but will not find all of the plug-in memory and I/O devices.

In\ialid AF
An invalid value was specified for the clock adjustment factor. (Executing either A F (param-
eter) or E >': ACT with an adjustment factor whose absolute value lies between 0 and 10.)

Program Errors (28 through 56)

Message and Condition

An array subscript is out of range.

• P P I f1 T #: The data items in a print list cannot fit into the specified record.

• PEA [I #: A random access read from a data file has specified a record that has fewer
data items than the number of items in the read list.

:::tn,-r t'iot Founci
A statement identifier that is not in the current program scope has been referenced. For
example, occurs when FE T C H references a label that is not in the current file.

[I.:j'(.::J T':!pe
The HP-71 cannot use a variable, result, or quantity as it has been specified. Can be gen­
erated, for example, by referencing an existing variable as an array.

f"! (.. [I.::J 1 •. ::;

Data for PEA [I cannot be found.

33 Fr'; hot Found

• E i"; D [I E F: A function was not being evaluated when the computer executed [f"! D
[I [F.

• F r'i: Attempting to execute a user-defined function that is not defined in the current
program.

(Continued on next page.)

384 Errors, Warnings, and System Messages

Error
Number

34

35

36

37

38

39

40

41

42

43

44

Program Errors (continued)

Message and Condition

>::Fl·j t·~o t Found
The language extension (LEX) file required to execute a function cannot be found.

::<~·jOFD t'~ot found
The language extension (LEX) file required to execute a statement cannot be found.

Par-ameter Mismatch
The number or type of the actual parameters in a CAL L statement or function reference
does not match the number or type of the formal parameters in the corresponding ::; U B or
D E F F [.j statement.

::: t r i n9 0 './ f 1
Either a string result is too long for the given destination or a::; T H F T U P string exceeds 95
characters in length.

t'~urfler i c I npu t
I [,1 PUT requires numeric input. (Reprompts you for input.)

Toe: t·1.'ln'::I I npu t s
Too many items entered in response to an I t·~ PUT statement. (Reprompts you for input.)

Too Fel,.! I npu t s
Too few items entered in response to an I [.j PUT statement. (Reprompts you for input.)

Chn 1 # t·jo t Found
The specified channel number has not been assigned by an A::; S I G t·~ # statement.

FCF 1 .. .1 0 t·jE>::T
The HP-71 has encountered a FOF.: statement that is not going to be executed, and can­
not find a corresponding t·~ E ::< T statement. This can occur, for example, where a state­
ment such as F 0 F.: I = 1 TO - 5 S T E P . 5 occurs without a corresponding
t·~ D::T statement.

t·~ E ::< T 1,.1 e: Fe f;:
At·; E ::< T statement has been encountered for which a corresponding F C F-:: statement can­
not be found.

A I? E: T U f;: [.; has been encountered for which there is no corresponding G Ci :::; i .. .1 E: statement.

(Continued on next page.)

Error
Number

45

46

47

Errors, Warnings, and System Messages 385

Program Errors (continued)

Message and Condition

I r-,' .:e:, (j Ii'! H C: E:
An image list has one or more errors, as follows:

• Carriage return symbol not followed by a delimiter.

• Unrecognized character in the format string.

• Illegal use of image symbols. For example:

• [in a string field.

• Mixed D, :*, and Z symbols in a numeric field.

• Adjacent C or F'

• C or F' beginning or ending a numeric field.

• C or F' adjacent to radix or exponent specifier.

• Specifying more than one ::: or :"1.

• Leading :::: or t,! with no following digit or radix specifier.

• Leading or F with no following U.

• Omitting the closing quote on a quoted string.

• Specifying a multiplier for a symbol that does not allow one.

• Specifying a zero multiplier or a multiplier greater than 9999.

• Following a multiplier with a comma or closing parenthesis.

• Specifying a multiplier for a unit digit's '-..

• No matching closing parenthesis.

• Closing parenthesis without opening parenthesis.

Either D I::::: i::> i .. .! ':::: T ; .. :' or F' F' I i'; "T i...i ::::: I i"; C statement references a line number that has
no I r'j j:::" . r'" statement, or the output item is not of the type specified in the image list. (For
example, a numeric output field may be matched to a string item.)

I~ji::iC:;F' C)':/fJ
A field in an image list does not have enough digits specified to the left of the decimal point.
This can also occur when the number is negative and the implied negative sign reduces the
number of specified digits by occupying the leftmost digit. Also occurs when an F symbol in
a numeric field would result in a displayed exponent having more than three digits.

(Continued on next page.)

386 Errors, Warnings, and System Messages

Error
Number

48

49

50

51

52

53

54

55

56

Program Errors (continued)

Message and Condition

In\lalid TAE:
T A E: column rounds to a value less than 1. A warning condition occurs and a value of 1 is
supplied.

::;ub t·jo 1: FOlAnd
CAL L: The called subprogram cannot be found.

1,).::;["' Con t e>:: t

An attempt has been made to explicitly or implicitly create or destroy a variable within a mul­
tiple-statement user-defined function, where that variable is already defined as either a des­
tination in an assignment statement or as a function parameter.

Invalid Stat Array
No valid statistical array is currently defined.Sometimes occurs when redimensioning an exist­
ing array within a user-defined function when the pending assignment statement's destination
is a variable element in the array.

Invalid Statistic
The sample size is invalid for ADD, D F 0 F, L F.:, t'l E A ['j, F FED,}, or ::; DEI,}, or a sum of
squares is less than zero for CO F F.:, L F, F' F.: E D I,}, or ::: DEi) .

In\i.::;lid ::;t.::;t Op
Can be caused by any of the following:

• The variable list length is greater than the number of variables for ADD or D F C F .

• The sample size is zero for DF.:OF, LF, t'1EAi·;, FF.:EDi,}, or :::DEi).

• The sample size is 1 for ::; DEI,} .

• A sum of squares is zero for C Ci F F.', L F.:, or F FED i) .

Fnc.:i 0+ File
The specified record number is greater than the last record number in the file. In a text file this
can also occur if a line length header pOints beyond the end of the file.

Invalid Transform
Generated by the T F.: A [.j ::: F C F t'l statement if the desired transformation from the source file
type to the destination file type is not allowed.

T["·.::in~::for·I"fI F.::;i l;::~d
T f::: fi i'; :=.:; F 0 f;: 1"1 failed due to an unrecoverable error, such as insufficient memory.

Error
Number

57

58

59

60

61

62

Errors, Warnings, and System Messages 387

File and Device Errors (57 through 65)

Message and Condition

File t·jot Found
The specified file does not exist. (Can be generated upon return from a subprogram if execu­
tion of the calling program file cannot be resumed because it has been purged or
transformed.)

In\lalid Filespec
File specifier contains an invalid name or an invalid device specifier. The specified file resides
in a device that is not appropriate for the attempted operation.

F i 1 e E::·:: i s t s

• A file with the same name already exists on that device.

• F U t·j specified an external file which cannot be copied into main memory for execution
due to a duplicate filename.

• CO F' \' or T F A t·j ::; F 0 F.: t'l cannot operate on system file 1 .. .1 0 r k f i 1 e or k;:~ 'J s be­
cause ~,w F.: t::: F I L E or t::: E \' ::; already exists on the specified device.

III e'::),::; 1 Access
Either an attempt to alter, purge, or declare private a file that resides in ROM, or an attempt
to F' 0 t::: E into a restricted part of memory.

• Attempt to purge, alter, or declare private a file that is secure.

• Privacy violation. Attempt to alter a private file or to access such a file through L I ::: T ,
FE T C H, t'l E F.: G E, F' E E t::: $, or AUT O. A private file may only be executed, purged, or
copied from an external medium into memory.

• Attempt to copy into the HP-71 a private file of unrecognized type.

• DE F t::: E \' attempted when system k e ':~ S file is secured.

File Open
Attempt to open more than 64 files or attempt to open a file that is already open. Can be
generated, for example, by attempting to execute H ::: ::: I G t·j # to open a file to a channel
number when that file is already open to another channel number.

(Continued on next page.)

388 Errors, Warnings, and System Messages

Error
Number

63

64

65

File and Device Errors (continued)

Message and Condition

Invalid File Type

• Specified file is not of appropriate type for the operation.

• Attempt to execute C Ci f'i T or FE T C H, or to edit a line when the current file type is not
BASIC.

• Attempt to run a file that is not BASIC or BINARY in type.

• Copying to a card when the source file type is not recognized by the operating system.

• Copying from a card when the source file type is not recognized by the operating system
and is not within the standard file type range.

D''':'\i:la::~~ t-;()·t F()!)nd

• Specified device cannot-be found.

• Attempt to either free a port that does not contain main RAM or to claim a port that is
not an independent RAM.

• Attempt to create a file on an unspecified port when no independent RAM with enough
memory is available.

Line T()o Lon.:;

• Attempt to display a line that exceeds 95 characters.

• A line exceeds 120 characters. (Occurs as a T F P f'; ::=.; F C F l'! warning.)

• Attempt to enter a statement having an internal representation exceeding 127 bytes.

• In CALC mode, either the expression being entered has more than 95 characters or there
is no memory available.

Error
Number

66

67

68

69

70

71

72

73

74

Errors, Warnings, and System Messages 389

Card Reader Errors (continued)

Message and Condition

~,~(i 1: '-" F't .. 0 1: ea:: 1: ed
The computer encountered a track that has been write-protected by F' F.: 0 TEe T and there­
fore cannot be written on.

t'~oi: This File
The computer has attempted to read a track which is not in the same file as other tracks
already read.

I,jet· 1 f 'oi F·:; i I
The computer failed to verify the card against the data which was written to it.

Unk n05.,.ln C.~t- d
The computer does not recognize the card format.

F/~'~ Et .. t"o(

• A wait of more than 7.5 seconds after the F' '.! 1 1 message has occurred.

• Checksum error in card header or data field.

• Hardware data error.

ic() F.:;s1:
Card pulled too fast.

T()() :::; lo' .. .!
Card pulled too slowly.

L,.j r" (; n '~~ t·~ .:j rf! ~::<

During a FE: H D operation the name on the card does not match the name specified in the
CCiP-·(command.

Fil,,,; T()() Ei.:;
During a ~,j FIT E operation the source file is larger than 65535 bytes.

390 Errors, Warnings, and System Messages

Error
Number

Syntax Errors (75 through 88)

Message and Condition

75 :::'::!(; t .::;>:

76

77

78

79

• Missing keyword; incorrect (or missing) characters in a statement.

• Valid line number or statement label not given for one of the following:

• CCJTCi

• CU::::I...!E:

• F.: U r~ file specifier

• T F: I:i i'j :::: F Ci F: 1'1: A syntax error occurred during the transformation (accompanied by a
warning message).

• D I :'1: More than one subscript in a string array.

• Mandatory expressions not entered in C r'~ T I :'1 E: F.: statement.

E:>::F'~:~c t ed

• At end of parameter list for DE: F, ::=. IE, or CFiLL..

• After port specification of F F: E: E or C L. A I :'1.

• Array variable in F.: F.: I r~ T, D I ':::: F, ::: T H T F.: E A L., "',; , I !"~TECEF, U 1. ['i.

• Dummy array variable in ::=.: U E: parameter list.

I) i ... ; () t ~::, [::. : : F' ~:~ c: ted
Missing closing quote in I t·i F' !..J T and D H T I:i statements.

• Extra characters at the end of an otherwise legal statement.

• Statement followed by I~i when not allowed.

• D E: F F ! .. ~: More than 14 parameters specified in parameter list.

• Statement not programmable.

• Statement not keyboard executable.

• Statement not legal in an I F construct.

(Continued on next page.)

Error
Number

80

81

82

83

84

85

Errors, Warnings, and System Messages 391

Syntax Errors (continued)

Message and Condition

• Syntax error in an expression.

• Assignment with type mismatch (string on one side, numeric on other).

• Quoted label declaration without a closing quote. (Statement interpreted as an implied
r"i T ':::: F'.)

• File command interpreted as an unquoted label declaration due to no spaces; for exam­
ple: 1. C F'I.;;:' !"':: F ,:::, :: I::: CI F' T, where F' U F.: C E: ,:::, is interpreted as a label declaration, and
the computer interprets F' CI F' T as an implied U I::::: F' statement.

.1. (i"/."i.L 1. ::"1 F' ; ...

Improper input is entered for an expected parameter.

• Line number expected in L. :;: 'e, , , and
u :I: (::: F' IF ~:: I r'~ T i. .. 1 :::' j i';

• Invalid keyword in () F::' I l. I. I r··' or LI I·:: F: H I Ii statement.

• Invalid parameter in ::e: U !::: parameter list.

No input received for expected parameter:

• Line number expected in L.. I :::::T" , "i t:. "

U I::::: F' IFf::: I!" i 'c' .1. r··1 i .. :, .

• Missing keyword in "p I .1. i . ..! r"; or D t::: F: ,:::, I Ii statement.

• Missing parameter in I::: I..J t:: parameter list.

(r \:' .::~]. :r ; ... j I'

Either an array variable has been specified where a simple variable is required, or a variable of
the wrong data type has been specified.

After single-step in CALC mode, an operator has been entered that has a higher precedence
than the operator that was executed by the last single-step operation.

In CALC mode:

• A system typing aid begins with a space. Does not apply to user-defined typing aids.

• User-defined key that is an immediate execute key definition instruction (specified
with :: when defining).

(Continued on next page.)

392 Errors, Warnings, and System Messages

Syntax Errors (continued)

Error
Number Message and Condition

86 Opet" .:lnd E::-::pec t ed
In CALC mode an operator is input when an operand is required.

87 Opet" a tOt" E::-::pec t ed
In CALC mode an operand is input when an operator is required.

88 TFt'1 ~,~ P t·j Lnnn: message
The syntax error message occurred on source file line nnn during execution of TF.: A t·H:;
FOP t'1. This warning condition is reported during the transformation, but does not halt
execution.

Card Reader Messages (89 through 97)

Message
Number Message and Condition

89 P u 1 1 nnn 0 f mmm
Prompt for all write and verify pulls, and for the second and any subsequent pulls needed to
read a file.

90 Full C.:lt"d
Prompt for first read pull, and for CAT, PF.:OTECT, and Ut·jPPOTECT.

91 ~,~ t" t: Ali ':;I nth e n E t·lD Uj
Prompt for write (C 0 P \' T (I CAP D) operation.

92 I,} f '::I: Ali ':;I nth e n E t·lD Lt·j
Prompt for write-verify operation.

93 Pe·:ld: A 1 i':;l n then Et-lDUl
Prompt for read (C 0 P \' C A F.: D) operation.

94 Frot: Al i':;In then Et·lDUl
Prompt for F F.: [I T E C T operation.

95 U n p t"; Ali ':;I nth e n E t·lD Uj
Prompt for U t·j P P [I TEe T operation.

96 C .:l t: Ali .; nth e n Et-lD Ul
Prompt for CAT C A F.: D operation.

97 Tt"· k nnn Done
After verifying or reading each track.

Errors, Warnings, and System Messages 393

HP-71 Exception Flag Summary

The following summarizes the conditions under which the HP -71 sets any of the five exception flags.

IVL (Invalid Operation)

The IVL exception (sets flag -8) occurs when an operand has the appropriate data type, but its value
is a signaling NaN and/or is invalid for the operation to be performed.

DVZ (Division By Zero)

The DVZ exception (sets flag -7) occurs when a finite operand produces an exact infinite result
(+ Inf or - Inf). The actual result depends on the j '"" H ,. setting.

OVF (Overflow)

The OVF exception (sets flag -6) occurs when the magnitude of a result is too large to fit into its
destination format.

UNF (Underflow)

The UNF exception occurs when the magnitude of a nonzero result is less than lE-499. If TPAP
.:: Ut·jF::' "* 2, the underflow exception flag (flag -5) is set whenever the underflow exception occurs.
Otherwise, the HP-71 sets this flag only if the underflow exception occurs and the result cannot be
exactly represented in the destination's denormalized format.

INX (Inexact Result)

The INX exception (sets flag -4) occurs when a result may be inexact. If the HP-71 does not set the
inexact result flag, the result is exact. For several functions (+, -, t, , ::;OP, and F.:ED), the flag is set
only if the result is inexact. However, for some compound functions like and the statistics functions,
the computer sometimes sets the flag for results that are actually exact.

HP-71 Keyword Index and Summary
Some keywords appear in more than one category.

Keyword I Page I
Program Entry IEditing
AUTO

DELETE

EDIT

FETCH

LUH

t·1At'lE

PLUH

PF.: I ',}ATE

PEt'l (!)

F.:Et·1Ut'lBEP

::;ECUPE

TF.:At·1SFOF.:t'1

Ut·1SECUF.:E

I:!!

Program Execution
CALL

CHA I t·l

COt·1T

PUt·l

26

77

91

110

173

191

211

225

242

245

260

289

297

306

31

42

52

255

Description

Numbers lines automatically.

Deletes program line(s) from current file.

Assigns "current file" status to specified file.

Displays any line of current program.

Displays listing of specified lines in a file.

Names the ' ... 'Ot- k f iIE'.

Prints listing of specified lines in a file.

Limits access to file and restricts changes in its protection.

Enables entry of comments in program lines for program
documentation.

Renumbers lines in current file.

Protects file from being altered or purged.

Transforms BASIC file to TEXT file, or reverse.

Clears file access restriction set by SEC U P E.

Appends a statement in a multiple-statement line.

Transfers program execution to subprogram.

Purges current file, copies specified file into main RAM, and exe­
cutes that file.

Continues execution of suspended program.

Executes a BASIC or binary program.

394

Keyword

Program Control
B'lE

CALL

CHA I t·l

DEF Ft·l

Et·j[I

Et-W DEF

Et·j[I SUB

Ft-l

FOP ... t·1D::T

GOSUB

GOTO

IF ... THEt·l ... ELSE

OFF

OFF EF.:POP

OFF T Ifol E F.:

Ot·l E F.: F.: 0 F.: GOSUB

Ot·l EF.:F.:OP GOTO

Ot·l T I t'l E F.: #

Ot·l ... GOSUB

Ot·l ... GOTO

Ot·l ... F.:ESTOF.:E

PAU::;E

POP

I Page I

30

31

42

67

93

94

94

116

118

129

131

134

195

195

195

197

197

201

199

199

199

208

215

HP-71 Keyword Index and Summary 395

Description

Turns computer off.

Transfers program execution to subprogram.

Purges current file, copies specified file into main RAM, and exe­
cutes that file.

Indicates beginning of user-defined function definition.

Terminates a subprogram, user-defined function, or program.

Causes normal return from a multiple-statement user-defined
function.

Causes normal return from subprogram invoked by CAL L
statement.

Transfers program execution to specified user-defined function.

Defines loop that is repeated until loop counter exceeds specified
value.

Transfers program execution to subroutine.

Transfers program execution to specified statement.

Provides conditional execution.

Turns computer off.

Disables any previous 0 t·l E F.: F.: 0 P statement.

Deactivates corresponding 0 t·l T I t'l E P # statement.

Executes specified subroutine when an error occurs.

Executes specified branch when an error occurs.

Interrupts program at specified time and causes specified branching
to occur.

Transfers program execution to selected subroutine.

Transfers program execution to selected statement or line.

Selects which D A T A statement will be used by next F.: E A D
statement.

Suspends program execution.

Cancels pending return of program execution from current
subroutine.

396 HP-71 Keyword Index and Summary

Keyword

F.:ETUF.:t·j

~=;TOP

SUB

~'~A IT

Debugging
COt·jT

DEFAULT

EF.:F.:L

EF.: F.: t'1$

EF.:Pt·j

Ot·j EPPOP GOSI_IB

Ot·j EPPOF.: GOTO

PAUSE

TPACE

Storage Allocation
CLA I t'1 POF.:T

DESTF.:O'r'

DH1

FPEE POPT

ItHEGEP

t'1Et'1

OPT I Ot·j BASE

F.:EAL

SHOPT

~=;HO~,~ POPT

I Page I

251

279

282

302

52

72

100

101

102

197

197

208

288

48

78

79

122

155

184

204

238

269

271

275

Description

Returns program execution to statement following invoking
GOSUB.

Terminates a subprogram, user-defined function, or program.

Identifies beginning of subprogram.

Causes program execution to wait for specified number of seconds.

Continues execution of suspended program.

Sets math exception traps to specific values.

Returns line number of most recent error or warning.

Returns message text of most recent error or warning.

Returns error number of most recent error or warning.

Executes specified subroutine when an error occurrs.

Executes specified branch when an error occurs.

Suspends program execution.

Traces program execution and variables in a running program.

Returns independent RAM to main RAM status.

Deletes variables and arrays from memory.

Allocates memory for string or REAL variables and arrays.

Switches a portion of main RAM to independent RAM status.

Creates INTEGER variables and arrays.

Returns number of bytes available in memory.

Specifies subscript lower bounds for arrays.

Creates REAL variables and arrays.

Creates SHORT variables and arrays.

Displays type and size of all plug-in memory devices and indepen­
dent RAMs.

Selects or creates a statistical array.

HP-71 Keyword Index and Summary

Keyword I Page I Description

Logical and Relational Operators
A t·j D 19 Performs logical And of its operands.

E::·::OF.:

t·lOT

OF.:

=

<>
<:

<=
>

:. =
?

105

193

206

317

317

317

317

317

317

317

317

Performs logical Exclusive Or of its operands.

Performs logical Not of its operand.

Performs logical Or of its operands.

Performs Equality test on its operands.

Performs Inequality test on its operands.

Performs Less Than or Greater Than test on its operands.

Performs Less Than test on its operands.

Performs Less Than or Equal To test on its operands.

Performs Greater Than test on its operands.

Performs Greater Than or Equal To test on its operands.

Performs Unordered Comparison test on its operands.

Arithmetic Operators
+

.....

D I I,)

General Math
ABS

308 Addition.

309 Subtraction.

310

311

87

312

313

Multiplication.

Division.

Divides one argument by another and returns integer portion of
quotient.

Exponentiation.

Percent.

Returns absolute value of its argument.

397

CEIL

10

40 Returns smallest integer greater than or equal to specified
argument.

CLASS

DI,)2

E ::.:: P 0 t·j E t·j T

FACT

FLOOF.:

49

90

108

109

115

Returns value indicating class of argument.

Returns divide-by-zero flag number (- 7).

Returns exponent of its normalized argument.

Returns factorial of non-negative integer argument.

Returns greatest integer less than or equal to argument.

398 HP-71 Keyword Index and Summary

FP

ItH

I t·l ::.::

IP

I',}L

LET

t'lA::'::

t'l I t·l

t'10D

Keyword

OPT IOt·l F.:OUt·1D

O',}F

PAt'Wor'l I ZE

PED

PES

Pt'lD

Pt·1D

~:;c!PT

Ut·1F

I Page I

121

154

157

158

159

168

181

188

190

204

207

233

240

247

252

254

268

273

273

295

Logarithmic Operations
E::·::P 106

E::'::Pt'11 107

E ::.:: P 0 t·l E t·l T 108

LGT 178

Ul 176

LOG 176

LOGPl 177

LOG1El 178

Description

Returns fractional part of numeric value.

Returns greatest integer less than or equal to argument.

Returns inexact result flag number (-4).

Returns integer part of argument.

Returns invalid operation flag number (- 8).

Assigns value to variable.

Returns larger of two values.

Returns smaller of two values.

Returns remainder of modulo reduction.

Selects roundoff setting.

Returns overflow flag number (- 6).

Specifies a "seed" for the P t·W function.

Returns remainder of argument reduction.

Returns value of most recently executed numeric expression.

Returns remainder of division.

Returns next real number in a pseudo-random number sequence
and updates current seed.

Returns -1, 0, or 1 if argument is less than zero, equal to zero, or
greater than zero, respectively.

Returns square root of argument.

Alternate spelling for S C! F.:.

Returns underflow flag number (-5).

Returns the number e = 2.718281828 ... raised to power given by
argument.

Returns value of eargument - 1.

Returns exponent of its normalized argument.

Alternate spelling for LOG 1 El.

Alternate spelling for LOG.

Returns natural logarithm (base e) of argument.

Returns In(1 + argument).

Returns logarithm (base 10) of argument.

Keyword I Page I

Trigonometric Operations
ACOS

ACS

At·1GLE

A ~:; I t·l

ASt·l

ATAt'l

AHl

DEG

DEGPEES

OPT I Ot·l At·1GLE

PAD

PAD I At·1S

S I t·l

TAt'l

Statistics
ADD

CL~:;TAT

COPP

DPOP

LP

t'lEAt'l

PF.:ED',}

SDE',}

STAT

TOTAL

11

11

20

22

22

25

25

59

73

74

204

231

232

272

284

12

51

58

88

179

183

218

259

275

287

HP-71 Keyword Index and Summary

Description

Returns arccosine of its argument.

Alternate spelling for A COS.

Returns polar angle determined by (x,y) coordinate pair.

Returns arcsine of its argument.

Alternate spelling for A S I t·l.

Returns arctangent of its argument.

Alternate spelling for A T A t·t

Returns cosine of its argument.

Converts argument in radians to degrees.

Sets unit of measure for expressing angles to degrees.

Selects unit of measure for expressing angles.

Converts arguments expressed in degrees to radians.

Sets unit of measure for expressing angles to radians.

Returns sine of its argument.

Returns tangent of its argument.

399

Adds coordinates of a data point to data set represented by sum­
mary statistics in current statistical array.

Clears all elements in current statistical array.

Returns sample correlation coefficient between a specified pair of
variables.

Removes coordinates of a data point from the data set represented
by summary statistics in current statistical array.

Specifies current linear regression model and computes intercept
and slope for that model.

Returns sample mean of specified variable.

Returns predicted value of dependent variable.

Returns standard deviation of specified variable.

Selects or creates statistical array.

Returns total of specified variable.

400 HP-71 Keyword Index and Summary

Keyword

Constants
EP::;

It-lF

t'1 A ::'::1,: E A L

t'1 I t·lF.:EAL

t·lA t·l

PI

Strings

CHF.:$

LEt'l

t·lUt'1

POS

STF.:$

UPF.:C$

I,}AL

I,}EF.:$

Input/Output
ASS I Gt'l #

BEEP

BEEP OFF

BEEP Ot·l

COt·lTF.:AST

COP\'

CF.:EATE

DATA

DELA\'

99

150

182

189

192

210

307

47

167

194

216

280

298

300

301

23

28

28

28

54

55

60

62

75

Description

Returns HP-71 's smallest positive, normalized number
(1.0 E-499).

Returns machine representation of positive infinity.

Returns maximum positive finite number that the HP-71 can repre­
sent (9.99999999999E499).

Returns smallest positive number that HP-71 can represent
(0.00000000001 E - 499).

Returns Signaling NaN.

Returns 12-digit value representing 11".

Concatenation operator.

Converts numeric value into ASCII character.

Returns length of specified string.

Returns ASCII numeric code for first character of string.

Returns position of given substring.

Returns string representation of value of argument.

Converts lowercase letters to uppercase.

Converts a numeric expression within a string expression to a nu­
meric value.

Indicates versions of system ROMs and LEX files.

Associates symbolic channel number with specified file and opens
that file.

Causes specified tone to sound.

Disables beeper.

Enables beeper.

Adjusts display contrast.

Copies information from source file to destination file.

Creates a data file.

Contains data that can be read by F.: E AD.

Sets line and character scroll rates in display.

Keyword

DISP

DISP USI~lG

DISP$

Et·WLI t·lE

Et·lG

F I>::

GDISP

GDISP$

It'1AGE

I t·lPU T

KE\' D 0 ~'J t·l

LC

L I t·lPUT

L I ::;T

Ot·l ... F.:ESTOF.:E

PL H;T

pF.:Itn

PF.: I t·lT U::; I t·lG

pF.:Itn #

PUT

P~,J I DTH

F.:EAD

F.:EAD #

F.:ESTOF.:E

F.:ESTOF.:E #

::;C I

::;TD

I Page 1
82

84

86

96

97

112

124

127

136

151

164

166

171

173

199

211

219

221

223

229

230

234

236

249

250

257

277

HP-71 Keyword Index and Summary 401

Description

Displays numeric and string data.

Displays items according to specified format.

Returns string containing all readable characters in display.

Specifies end-of-line sequence used in P F.: I t·l T and P LIS T
statements.

Selects engineering display format.

Selects fixed display format.

Sets specified dot pattern in display.

Returns 132-character string reflecting dot pattern in display.

Controls format of displayed and printed output.

Enables assigning values to program variables from keyboard.

Returns 0 or 1, depending on whether key is being pressed.

Selects between uppercase and lowercase lock on keyboard.

Assigns display line to string variable.

Displays listing of specified lines in a file.

Selects which D A T A statement will be used by next F.: E A D
statement.

Prints on print device a listing of specified lines in a file.

Causes print list to be sent to print device.

Causes print list to be sent to print device according to specified
format.

Writes data items to data file in memory.

Enters a specified key code into key buffer.

Defines line length of P F.: I tn and P LIS T statements.

Assigns values from D A T A statements to variables.

Reads data items from data file.

Specifies which D AT A statement will be used by next F.: E A D
operation.

Sets specified file pointer to indicated record number.

Selects scientific notation display format.

Selects standard BASIC display format for numbers.

402 HP-71 Keyword Index and Summary

Keyword

TAB

UPF.:C$

U:::;EP

~'J I DTH

~,J I t·j D 0 ~,J

Graphics
GD I :::;p

GDISP$

File Management
ADDF.:$

AT

AT$

LA I t'l POPT

OP\'

PEATE

DIT
FPEE POPT

j'lEt'l

t'lEPGE

t·jAt'lE

PP I ',}ATE

PPOTECT

PUPGE

PEt'jAt'lE

:::;ECUF.:E

:::;HO~,J POPT

T F.: A t·j :::; FOP t'l

Ut·jPPOTECT

Ur·j :::; E CUP E

I Page I

{
82

219

298

299

303

305

124

127

13

35

38

48

55

60

91

122

184

186

191

225

226

227

243

260

271

289

296

297

Description

Moves DIS P or P PI t-iT position ahead to specified column.
(Refer to the DISP or PRINT keyword entry.)

Converts lowercase letters to uppercase.

Activates or deactivates user-defined key assignments.

Defines line length for DIS P and L I :::; T statements.

Sets display window size and location.

Sets specified dot pattern in display.

Returns a 132-character string reflecting dot pattern in display.

Returns string representing hexadecimal address of specified file.

Gives catalog of file information.

Returns catalog information for a specified file.

Returns independent RAM to main RAM status.

Copies information from source file to destination file.

Creates a data file.

Assigns "current file" status to specified file.

Switches a portion of main RAM to independent RAM status.

Returns number of bytes available in memory.

Merges all or part of file into another file.

Names system 1 .. .I0t- k f i 1 e.

Limits access to file and restricts changes in its protection.

Write-protects one track of a magnetic card.

Deletes file from RAM.

Changes name of file.

Protects file from being altered or purged.

Displays type and size of all plug-in memory devices and indepen­
dent RAMs.

Transforms BASIC files into TEXT files, or the reverse.

Removes the write-protection from one track of a magnetic card.

Clears file access restriction set by:::; E CUP E.

Keyword

Time and Date
AD,JABS

AD,JUST

AF

DATE

DATE$

E>::ACT

PESET CLOCK

SET DATE

SETT I t'lE

TH1E

TH1E$

I Page I

14

15

17

65

66

103

248

262

264

285

286

HP-71 Keyword Index and Summary 403

Description

Performs an absolute adjust on system clock.

Changes clock time and specifies clock speed correction.

Returns current value of clock accuracy factor and gives option of
setting new adjustment factor.

Returns current clock date as an integer (YYDDD).

Returns current clock date in year/month/day format.

Calibrates system clock and tells HP-71 that time currently stored is
the correct time.

Nullifies effect of executing E ::< ACT.

Sets date on system clock.

Sets time on system clock.

Returns time of day in seconds since midnight.

Returns time of day in HH :MM :SS format.

System Settings and Flags
CFLAG

DEFAULT

DEGPEE:::;

DELA\'

D',}Z

FLAG

I t·j >::

I',}L

OPT I Ot·j At·jGLE

OPT I Ot·j BASE

OPT I Ot·j POUt·jD

O',}F

PAD I At·jS

F.:ESET

SFLAG

41

72

74

75

90

114

157

159

204

204

204

207

232

248

267

Clears specified user and/or system flags.

Sets math exception traps to specific values.

Selects degrees as unit of measure for angles.

Sets line and character scroll rates in display.

Returns divide-by-zero flag number (- 7).

Returns current value (0 or 1) of specified flag, and optionally se­
lects new flag setting.

Returns inexact result flag number (- 4).

Returns invalid operation flag number (-8).

Specifies unit of measure for expressing angles.

Specifies subscript lower bounds for arrays.

Specifies round-off setting.

Returns overflow flag number (- 6).

Selects radians as unit of measure for angles.

Resets user and system flags and traps to their system default
settings.

Sets specified user and/or system flags.

404/405 HP-71 Keyword Index and Summary

Keyword

TPAP

Ut·jF

I Page I Description

293 Returns trap for specified flag number and optionally selects new
trap setting.

295 Returns underflow flag number (- 5).

Customization, Keyboard, and Display Control
ADDfU

CHAP:::ET

CHAF.::::ET$

COt·jTF.:AST

DEF KE\'

DELA\'

DTH$

FETCH KE\'

F I ::-:;

HTD

I t'1AGE

KE'l

KE\'$

KE\'DEF$

K E \' D 0 ~,J t·j

LC

LOCK

PEEK$

POKE

PUT

STAF.:TUP

USEF.:

~,J I t·j D 0 ~'J

13

43

46

54

69

75

89

111

112

133

136

69

160

162

164

166

175

209

213

229

274

299

305

Returns string representing hexadecimal address of specified file.

Specifies alternate character set in ASCII code range of 128
through 255.

Returns string representing current alternate character set.

Adjusts display contrast.

Assigns character string to specified key.

Sets line and character scroll rates in display.

Converts decimal number to string representing its five-digit hexa­
decimal value.

Displays specified key assignment for editing.

Sets fixed display format and number of fractional digits to be
displayed.

Converts string argument representing hexadecimal number to deci­
mal number.

Controls format of displayed and printed output.

Assigns character string to specified key.

Returns and deletes oldest key or keystroke combination from key­
board buffer.

Returns redefined value of a key.

Returns [1 or 1, depending on whether key is being pressed.

Selects between uppercase and lowercase lock on keyboard.

Sets password. Causes HP-71 to prompt for that password the
next time computer is turned on.

Returns contents of specified section of memory.

Writes to memory at specified hexadecimal address.

Enters a specified key code into key buffer.

Defines command string to be executed when HP-71 is turned on.

Activates or deactivates user-defined key assignments.

Sets display window size and location .
. _-------------------------------'

Subject Index

Page numbers in bold type indicate primary references; page numbers in standard type indicate
secondar~ refere~ces. B~cause the manual mentions some indexed topics only in a secondary sense,
such top~cs ar~ hsted wIthout any primary references. Also, because the HP-71 keywords are listed
alphabetically m the Keyword Dictionary, main keyword entries are not indexed.

A

Abort, transformation, 292
Absolute value, 10
Access

random, 224, 237
sequential, 224, 237

Accuracy, 11", 284
Accuracy factor, default, 329
Actual parameter, 68, 116
Addition, 308
Address, hexadecimal, 89, 133, 209, 213
Adjust clock, 15
Adjust clock, absolute, 14
Adjustment

factor, 17, 104
interval, 17
period, clock, 103-104

Allocating memory, 79, 155, 156
Altering a file, protection, 260
Alternate character set, 43-45, 46, 323-326, 330

deactivating, 45
memory, 45

Ampersand, 307
Angle, unit of measure, 204-205
Angular setting, 11, 20, 22, 25, 59
Angular setting default, 74
Annunciator

flags, 319
RAD, 205, 232
SUSP, 110, 256, 53

ANSI
BASIC Standard, 252
minimal BASIC, 83
minimal BASIC Standard X3J2, 277, 280

Antilogarithm, 106, 107

Argument
normalized, 108
pairs, invalid, 20

Array, 155, 156
bounds, 316
creating, 169
deleting, 78
integer, 155-156

406

lower bounds, 204, 205
pass by reference, 32
real, 79-80, 238-239
real string, 80
redimensioning, 80, 156, 239
SHORT, 269-270
statistical, 12, 88, 218, 259, 275, 276, 287, 334-

337
statistical default 0 F' T I 0 t·~ B A::; E setting, 275,

276
string, 333
variable, 315, 316
variable, parameter passing, 282

ASCII, 61, 326
character, 47
character code, 43, 328
string, 237

Assigning variables, 151-153
Assignment

statement, 168-170
variable, 234-235

At (i:!!) symbol, 274
At (i:!!) symbol, with I t'1AGE, 136
1 ATTN I, during input, 153
Automatic

line numbering, 26
startup, 274
timeout, 153

B

Base 10, logarithm, 178
BASIC file, 225
BASIC file, memory requirements, 331
BASIC-to-TEXT transformation, 290
Batteries, 329
BEE F', default setting, 330
BIN file, 225
BIN file, memory requirements, 332
Binary

codes, 323-326
operator, 206, 308-313
program, 255
representation, display, 124-126
subprogram, 283

Bit pattern, 127, 124-126
Bit pattern, locking, 126
Blank, 8

leading, 63, 82
trailing, 63, 82
use in inputs, 9

Branch, 197
on error, 197
timer, 201-203
tracing, 288
unconditional, 131, 135

Buffer
display, 124
input, 153
key, 160, 229

B \. E, operation with timer, 202

c
1 CALC I, during input, 153

mode, 247, 274
mode, assignment statement, 168

Calendar date, 262-263
Calibrate, clock, 15, 103-104
Call

function, 235
subroutine, 197

Calling program, 63, 233
Card

copying, 226
file, private, 56
magnetic, 226, 296
protection, 296
reader, 36, 123, 226
verifying 56

Carriage return, 138, 220
Carriage return/line feed, 96. See also CR/LF.

Case lock, 166
Catalog

listing, 260
purged, 42
string form, 38
unsecured private file, 225

Channel, 23, 24, 32, 33

Subject Index 407

Channel number, 224, 236, 237, 250, 315
Character

code, 124, 125, 322-326
rate, 75
readable, 86
set, 322-326
set, alternate, 43-45, 46, 330
set, standard, 43
width, 44

Characters, control, 326-327
CHfU, 125, 127, 139, 145, 164, 194,

with character codes, 322-326
with escape sequence, 328

C LA::; ::;, 342
Classes of numbers, 342
Clearing a flag, 114
Clock, 103, 248, 262-266

absolute adjust, 14
adjustment
calibrate, 15
default settings, 329
factor, 17, 103-104
interval, 17
resolution, 16, 266
setting, 103
speed, 14, 15
stored correction, 15
time, 14

Codes, binary, 323-326
Codes, hexadecimal, 323-326
Columns, display, 44
Command stack, during input, 153
Command stack memory requirements, 330
Commands, 5
Comments, 242
Comparison table, math exceptions, 344
Comparisons, unordered (?), 343
Concatenation, 30, 34, 129, 130, 196, 274

I t'1AGE, 136
operator, 5
statements, 306
string, 307

Conditional execution, 134-135
Congruential method, linear, 254

408 Subject Index

Constants, memory requirements, 330
Continuing a program, 208
Control characters, 326-327. See also 1 CTRL I.
Conversion

degrees to radians, 231
numeric-to-string, 280
stiing-to-numeric, 300

Coordinate pair, 20
Coordinates, of data point, 12
Copying a card, 226
Counter, loop, 118, 119
CR/LF; 96, 220
1 CTRL I, 328
1 CTRL 1 keystrokes, 323. See also Control characters.
Current file, 91, 227, 228, 256
Cur{.ent file, assigning, 36
Customizing the keyboard, 69

D

Data
assignments, 234-235
file, 60, 61, 223, 224, 236, 237, 250
file channels, memory requirements, 330
memory requirements, 331
point, 334, 336
pointer, 199, 200, 237
reading, 234-237, 249
type, changing, 239

Date, setting, 262-263
Deactivating timers, 196
Deassigning keys, 70
Debugging, 52
Decompile, TEXT /LIF1 file, 290
D E F A U L T, math exceptions, 339
DEFAULT EXTEND,341
Default

angular setting, 74
environment, 314
settings, 329-330
value, math exceptions, 339-343

Degrees setting, 11
Degrees-to-radians conversion, 231
Deleting

file, 227-228
line number, 27
variables and arrays, 78

Delimiter, 9, 143, 171
field, 142
I t'lAGE, 146, 147

Denormalized number, 98, 189, 257, 277, 317, 341-
342

Dependent variable, 179, 180, 218
Destination file, 55-57, 187, 225, 290
Deviation, standard, 259
Device chain, 123
Device number, 48
Direct execute key, 162, 256
Direct execute user-defined key, during input, 153
Direct execution, 69, 70, 111,
Dis p, implied, 135
Display, 124-126, 127, 128

buffer, 124
character set, 322-326
columns, 44
escape code sequences, 328
format, 277-278
format control, 136-149
formatting, 83, 85
line length, 303
list, 84
locking a bit pattern, 126
rounding, 280
setting, 112, 257
setting, changing, 278
setting, default, 329
string, 86
window, 305
zones, 82

Division-by-zero, 338, 393
Division-by-zero flag, 108
Dot pattern, 124-126, 127
Dot pattern display, 305
Duplicate names, subprograms, 33
Duration, 28, 29
[P.}Z, 338
DVZ, 108, 150, 393

E

e, 106, 107, 176
Editing, 53, 91, 131
End-of-file mark, 224
End-of-line sequence, 96, 138
Et·WL I t·~E, default setting, 329
Endline string, 96
Engineering display format, 97-98, 281
Environment, 33, 34, 256, 314

global,33
local, 42, 228, 92

Environment, maintaining, 314
Environment, user-defined function, 117
EOL,152
1 ERRM I, during input, 153
Error

clock precision, 103
correction, accumulated, 16
during input, 153
during transformation, 291-292
handling, in programs, 197-198
I t'l AGE syntax, 143
in subprogram, 100
line number, finding, 100
message, 378-392
message, defined, 378
nonBASIC program, 100
number, 102
reporting, 195
rounding, 339
rounding, string, 101
program, 197

Escape code sequences, display, 328
European digit separator, 141
European radix, 139, 141, 144
Exact flag, 103
Exception

flag, 72
flag, DVZ, 108
flag, DVZ, summary, 393
math, comparison table, 344
traps, 72

Exclusive or, 105
Execute only string, 172
Execution,

suspend, 117, 130
transferring, 251

Exponent
D I ::;p or PP I tH U::; I t·~G maximum, 148
range, 182

Exponentiation, 312
Extended range computations, 108

F

Field delimiter, 142
File

access restriction, 260, 297
alter or purge protection, 260

Subject Index

automatic purge, during transformation, 292
backup, 292
BASIC, 225
BIN,225
creating, 91-92
current, 36, 91, 227, 228, 256
DATA, 224, 237, 250
data, 223, 236
default condition, 329
deleting, 227-228
destination, 55-57, 187, 225, 290
header, 13, 77
independent of main RAM, 122
KEY, 243
key assignment, 297
k e ':I 5, 212, 228, 299
LEX, 57, 292, 301
LIF1, 37, 57
list, 173-174
listing, 225
listing on printer, 211-212
memory requirements, 331
merging, 186-187
pointer, 110
private, 209, 213, 225, 260
private secured, 225
protection, 36, 260
purging. See deleting.
renaming, 243-244
reset, 48
SDATA, 224, 237, 250
source, 55-57, 187, 290
TEXT, 224, 237, 250
type unrecognized, 39
unrecoverable, during transformation, 292
unsecured, 225, 228, 297
1.·JOt· k f i 1 e, 191

Final value, loop, 119
Fixed format, 112
Fixed-precision display format, 280

409

410 Subject Index

Flag, 248
-5,295
-10,205
-15, 166
-46,248
clearing, 114
default settings, 329
divide-by-zero, 108, 90
Exact, 103
exception summary, 393
inexact result, 104, 157, 190
invalid operation, 159
INX, 252
math exception, 338
numbers
overflow (-6), 207
set, clear, test, save, 114
setting, 114, 267
subprogram, 314
system, 319
underflow exception (-5), 189
volume, 28

Floating specifiers, 147
F 0 F.: ••• t·l E :'< T loops, memory requirements, 332
Form feed, 138
Formal parameter, 33, 67, 68, 116
Format

control, display and printer, 136-149
display, 83, 85, 277-278
engineering, 97-98
fixed, 112
image, 221
Keyword Dictionary, 6-7
scientific, 257-258
string, 85, 138, 222

Fractional part, 121
Frequency, 28, 29
Function, call, 235
Function references, memory requirements, 331

G

Global
angular settings, 74
declaration, 233
effect, settings, 205
environment, 33, 314
timer, 203
tracing, 288
variables, 68

Glossary, using, 9
GOTO, implied, 135
Gradual underflow, 341
Graphics; display, 124-128

H-I

Hexadecimal
address, 13, 209, 213
codes, 323-326
conversion, 89
to decimal conversion, 133

HP 82400A card reader, 296. See also Card reader.
HP Logical Interchange Format (See LIFl.)
HP-41,61
HP-75, 61, 290
IEEE

Floating Point Standard, 241
Math Exceptions, 338-345
remainder function, 241
traps, 149

I t'1AGE, location in program, 137
Image format, 221
Immediate execution, 70, 111
Implied

D I ::;P, 135
GOTO, 135
negative, 147

In-place transformation, 290, 292
Independent RAM, 122
Independent variable, 179, 180, 218
Inexact, 157

flag, 104, 190
result, 339, 393

INF,169
I n f, 280, 300, 310, 311, 312, 313, 341

in I t'1AGE, 148-149
loop control value, 119
subtraction, 309

Infinite loop, 119, 198
Infinity, 341
Infinity, positive, 150
Initial value, loop, 119
Initialize, 155, 238, 239, 269

data, signalling NaN, 341
loop, 119
numeric array, 155

Input, line, 171-172
I nsu f fie i en t t'1ernot- ':I, 122
INTEGER, 169
INTEGER variable, 247
Integer, greatest, 115
Integer, part, 158
Intercept, 179, 180
Interchanging files, 289

Invalid operation, 338, 393
Invalid operation flag, 159
Inverse transformation, 292
I tl:':, 339
I tl :'< flag, 190, 252
I'.} L, 338, 393
IVL trap value, loop control, 119

K

KEY file, 211, 243
KEY file, memory requirements, 331
Key

assignment, 70, 111, 243
assignment file, 297
buffer, 160, 229
code, 229
deassigning, 70
definition, 162
direct execute, 162, 256
file, list, 173, 174
nonterminating, 162
renaming, 243
terminating, 162
test, 164, 165

Keyboard, concatenation, 196
Keyboard control, 129
k e':lS, 297
k e ':I S file, 70, 186, 212, 228, 299
Keystroke combinations, 319-322
Keyword

combined entry, 5
defined,5
dictionary, how to use, 5
dictionary format, 6-7
finding entries, 5
index, using, 9
middle, 5
operators, 5
plug-in-module, 37
related, 6

L

LCD,305
Leading blank, 63
Length of string expression, 167
LEX file, 57, 292, 301

Subject Index

LEX file memory requirements, 332
LIF1, 57, 60, 61
LIF1 file, 37, 290
Limits of numerical representation, 318
Line

feed, 138, 220
input, 171-172
length,303
length, maximum, during transformation, 291
length, printer, 230
renumbering, 187

Line number, 131
automatic, 26
deleting, 27

Line rate, 75
Lines, renumbering, 245-246
Linear congruential method, 254
Linear regression, 179, 180
Linear regression, simple, 337
List display, 84
List halt, 174
Listing file, 225
Listing on a printer, 211-212
Local environment, 33, 34, 42, 228
Lock, case, 166
Locking a bit pattern, 126
Locking the HP-71, 175
Logarithm, natural, 176, 177
Logarithm base 10, 178
Logical NOT, 193
Logically false, 19
Loop, 118, 119, 122, 127, 128
Loop, infinite, 198
Loss of memory, 213
Lower bounds, subscript, 204, 205
Lowercase, 8, 166, 298

411

412 Subject Index

M

Machine-representable numbers, 50
Magnetic card, 36, 226, 296. See also Card reader.

file size, 37
HP-75 file, 37
overhead, 37
track,36

Main
environment, 314
program, variables, 130
RAM,122

Matched sample, 334
Math exception, 338-345

comparison table, 344
CFLAG,338
flag, 267
traps, 72

Math operators, 5
Math trap, 248
Maximum real number, 182
Maximum value, 181
Mean, sample, 183
Memory 184-185

allocating, 79, 155, 156
allocating, suspended program, 208
conserving, 306, 333
contents, 209
DATA files, 224
external, 184
insufficient during transformation, 292
loss, 213, 329
reclaiming, 78
releasing, 93, 94, 95
reset, 100, 101, 316, 329
reset, flags, 319
SDATA files, 224
system requirements, 330-332
type, 271
use, user-defined function, 94
writing to, 213

t'lernot' '::! Los ~, 122
t'l e rn 0 t' '::! Los ~ condition, 329
Merging files, 186-187
Message string, error or warning, 101
Minimum of two values, 188
Minimum real number, 189
Minus, 309
Mode

CALC, 274
radians, 232
SCI, 257-258

Modulo, 190, 272, 284, 304
Multiple-statement function definition, 94
Multiple-statement line, 137
Multiplication, 310
Multistatement line, 306

N

restriction, 306
string, 274
string or command, 274

NaN, 150, 192, 280, 300, 340-341, 343
in I t'lAGE, 148-149
loop control value, 119
sign, 309

Natural logarithm, 176
Negative, implied, 147
Nested parentheses, 138
Nesting, I F ... THEt·L.EU,;E, 135
NonBASIC program, error, 100
Nonprogrammable function, 271
Nonprogrammable statement, 5, 110, 111, 122, 26,

48, 52, 77, 91
Nonterminating key, 162
Normalized

argument, 108
number, 98, 257, 342
number, smallest positive, 99

Not-a-number, 340-341. See also NaN.
Notation, scientific, 257
Null, 80, 247, 274

argument, 175
string, 101, 133, 160, 194, 274
string, K E \' D DI,H-l parameter, 165
unquoted, 152

Number
classes, 342
denormalized, 189
machine-representable, 50

Numeric
expression, 318
precision, 80
settings, default, 329
variable, creating, 169
variable, REAL, 80, 239
variable, SHORT, 270

Numeric-to-string conversion, 280

o
Off,30
Off, operation with timer, 202
On, continuous, default, 330
Opening a file, 60
Operator

binary, 308-313
concatenation, 5
descriptions, location 5
math,5
memory requirements, 331
precedence, 105, 317
relational, 5

(I F' T I (I t·l E: A::; E setting, 80
Out-of-place transformation, 290
Output field, reusing, 142
Output list, 138, 142
Overflow, 108, 207, 338-339, 393
Overflow, factorial, 109
Overflow, I t'lAGE, 142
Overflow, string, 169
Overflow, threshold, 182, 317, 318
OVF, 150, 338-339, 393
OVF, trap, 142, 148

P

Padded file size, 37
Parameter

actual, 116
formal, 33, 116
passing, 31, 68, 116
passing, subprograms, 282-283

Pass by reference, 32
Pass by value, 32
Passing parameters, 31, 32
Passing parameters by value, 68
Password, 175
Password, default, 329
F' E tl, 145
Pending return, 215
Percent, 313
Pi (11"), accuracy, 272
Pi (11"), number of digits, 59
Piston program, 127, 128
Pointer

data, 199, 200, 235, 237
file, 110, 122, 250
program, 200

Polar angle, 20

Port, 122-123, 184, 271
device number, 122, 123
HPIL,123
search,92

Postfix form, 333
Precedence, operators, 105, 317
Precision, numeric, 80
Predicted value, 218
Print list, 221
Printer

format control, 136-149
listing a file, 211-212
width setting, 212

Private, 36
card file, 56
file, 209, 213, 225, 260
file, secured, 225

Program
binary, 255
calling, 233
debugging, 52
editing, 53, 91
entering, 91
error handling, 197-198
interruption, 256
line, multiple-statement, 137
scope, 117, 131

Subject Index

suspend, 42, 52, 92, 93, 208, 279, 339
suspend timer operation, 202
transfer execution, 199, 200, 201-203

Programming, default conditons, 330
Prompt, display message, 152
Prompt, input ('?), 152
Protected field, display, 305
Protection, file, 36, 260
Pseudo-random number, 254
Purging a file, protection, 260

Q-R

Question mark (':.,) symbol, input, 152

413

Question mark (?) symbol, unordered comparisons,
343

Quiet NaN, 341, 342
Quoted strings, 6
Quotes, 6
Quotes, matching, 6
RAD annunciator, 74, 205, 232
Radians mode, 232
Radians setting, 11, 59
Radix, 141, 144, 146, 147

European, 139
IEEE proposal, 338

414 Subject Index

RAM
independent, 122
main, 122, 184
plug-in, memory requirements, 332
removing, 122

Random
access, 224, 237
number, 254
number seed, 233

Range, exponent, 182
Range of numbers, diagram, 318
Read list, 237
Readable character, 86
Real number, maximum, 182
REAL numeric variables, 80, 190
Record, 61, 224
Record number, 224, 237, 250
Recoverable error, during transformation, 291
Recursion, 68
Recursive calculation, statistics, 336
Redimensioning, 79, 288
Redimensioning an array, 156
Reduction, 240-241
Reference, parameter passing, 282
Regression, linear, 179, 180
Reinitialize, 80, 156, 239, 270
Reinitialize, numeric or array variable, 156
Related keywords, 6
Relational operators, 5
Relative errors, logarithms, 177
Releasing variables and memory, 93
F.:Et-1,137
Remainder, 252
Remainder function, IEEE, 241
Remark, 63, 242
Remark with I t-1 AGE, 136
Renumbering lines, 187, 245-246
Replication, 138, 144
Representable numbers, 317-318
Reset, 175, 305

level three, 103
memory, 100, 101, 329

Restoring data pointer, 200
Return

from function, 94
from subprogram, 94
pending, 215

Reverse transformation, warning, 292
ROM

plug-in, 145
plug-in memory requirments, 332
system, 301

Rounding, 341
error, 339
INTEGER variable, 169
SHORT variable, 169

Roundoff setting, 204, 205
1 RUN 1,256
1 RUN 1 during input, 153
Run-time error, 102

S

Sample, 334
correlation, 58
mean, 183
standard deviation, 259

SCI mode, 257-258
Scientific

notation, 257
display format, 281
format, 257-258

Scope, program, 117, 131
Scrolling, 75, 127, 128, 305
SDATA file, 60, 61, 224, 237, 250
SDATA file, memory requirements, 332
Search order, subprograms, 33
Secure, 36
Secured private file, 225
Seed, random number, 233, 254
Sequential access, 224, 237
Service, 301
Setting, display, 112
Setting a flag, 114
Shifted keys, !, 9, 160
SHORT, 169

numeric variables, 247, 270
precision, 269-270

Sign, floating, 141
Sign of zero, 342
Signalling NaN, 192, 341, 342
Significance errors, 335
Simple variable, 315, 316
Single-step execution, 131
Slope, 179, 180
Smallest integer, 40
Source file, 55-57, 187, 290
Space, ignored in I t-1AGE, 143
Specifier, port, 122
1 SST I, during input, 153
Standard deviation, 259
Standard display format 277-278, 280
Start line number, 26

~:n mn U P string, default, 330
Statement

concatenation, 306
joining, 306
suspend, 131

Statistical array, 259, 275, 276, 287, 334-337
default OPT I Ot·l BA~:;E setting, 275, 276
specifying, 335

Statistics, 88
ADD, 336
C L ~:; TAT, 336
[IF.: 0 P, 336
linear regression, 337
LF.:,337
math exceptions, 339
~:; TAT, 335

~:;TEP, 118, 119
String

array, 333
assignments, 168-170
catalog, 38
concatenation, 307
execute only, 172
expression, length, 167
multistatement, 274
null, 101
overflow, 169
time, 286
variable, creating, 169
variable length, 81

String-to-numeric conversion, 300
Subprogram, 31, 32, 33, 34, 208, 233, 279, 282-283,

288,315
calls, memory requirements, 332
DATA statements, 63
data reading, 249
duplicate names, 33
ending, 94
environment, 314
error, 100, 198
parameter list, 32
passing parameters, 31, 32, 116, 282-283
recursion, 32
search order, 33
suspended, 34, 95
terminating, 95
timer operation, 203

Subject Index

Subroutine, 129, 130, 200, 208, 215
call, 197
call, memory requirements, 332
on error, 197
return, 251
suspended execution, 130
timer, 202

Subscript, 155, 238
Subscript, array, 269, 316
Subscript, array, lower bounds, 204, 205
Substring, 216, 333
Substring, references, memory requirements, 331
SUSP annunciator, 53, 92, 110, 131, 256
Suspend

program, 93, 208
statement, 131
subprogram, 34, 95
user-defined function, 94

Suspended
execution, single-step, 131
program, 42, 52, 256, 279
program, timer operation, 202

Symbolic channel number, 23
Symbols, special, 346
Syntax

diagrams, 6
diagrams, how to read, 8
error, 102
error, I t-1AGE, 143

System

T

catalog, 33, 262-266
configuration, change, 122
flag, 114, 319
messages, 378, 382-383

TAB, 82, 83, 220, 230, 304
Terminate program, subprogram, or user-defined

function, 93
Terminating key, 162
Test, loop, 119
TEXT file, 60, 61, 224, 237, 250, 289-292
TEXT file, memory requirements, 331
TEXT-to-BASIC transformation, 290
Threshold, overflow, 182
Threshold, underflow, 99, 341

415

416 Subject Index

Time
base, 17
error correction, 265-266
of day, 285, 286
setting, 264-266
string, 286

Timeout, automatic, 153
Timer, 195, 196, 201-203
Timer, suspended during input, 153
Tone, 28
Track, magnetic card, 36, 226, 296
Trailing blank, 63
Transfer, program execution, 199, 200, 201-203
Transferring execution, 129-132
Transforming files, 289-292
Trap, 150, 378, 339

IEEE, 149
math,248
math exceptions, 72, 339, 340
OVF,142
program errors, 197
settings, 169
underflow, 189
values, 293, 294

Trigonometric functions, spellings, 5
Truncated string, 142
Thrn off, 195, 196
Typing aid, 70, 111

u
Unary operator, 308, 309
Ut·1A::;::; I Gt·1ED, 111
Unconditional branching, 135
Underflow, 108, 295, 339, 393

exception, 189
gradual, 341
threshold, 99, 317, 318, 341

UNF, 339, 393
Unlock, 175
Unordered comparisons en 343-344
Unrecoverable error, during transformation, 292
Unsecured file, 225, 228, 297
Uppercase, 8, 166
Uppercase conversion, 298
User

annunciator, 299
flag, 114
keyboard, 70, 299
mode, system flag, 299

User-defined function, 32, 116-117, 279, 315
calls, memory use, 94, 332
ending, 94
precedence, 117
same name, 117
suspend execution, 94, 117
value, 94
variable, 169

User-defined key assignments, 299

\'

Value, parameter passing, 282
Variable

array, 315, 316
assigning, 151-153
assignments, 234-235
deleting, 78
dependent, 179, 180, 218
independent, 179, 180, 218
integer, 155-156, 247
local, 208
memory requirements, 332
numeric, 316
numeric, REAL, 80
numeric, SHORT, 270
passing, 31, 32, 33
real, 79-80, 238-239
real string, 80
reference, 235
reference, memory requirements, 331
redimensioned, 80
releasing, 93
SHORT, 247, 269-270
simple, 315, 316
simple, numeric, 270
string, 81, 316
string length, 81
subprogram, local, 283
subroutine access, 130

Verifying a card, 56
Version string, 301
IVIEWI,111
I VIEW I during input, 153
Viewing angle, 54
Volume flag, 28

w
Waiting period, 302
Warning, 100

defined, 378
during transformation, 290, 291-292
message string, 101
number, 102

Warnings, 378-381
Window, display, 305
Window, setting, 126
Workfile, 122
1 •• .1 0:0 r k f i 1 e, 91, 48, 191, 227, 228, 243, 290, 290
Wrap-around,26
Write protection, 226, 296

z
Zero, positive and negative, 49, 50
Zero, sign of, 342
Zeroes, leading, 133
Zone, display, 82

Subject Index 417

How to Use This Manual (page 5)
HP-71 Keyword Dictionary (page 10)
System Characteristics (page 314)
Mathematical Discussion of HP-71 Statistical Arrays (page 334)
IEEE Proposal for Handling Math Exceptions (page 338)
Glossary (page 346)
Errors, Warnings, and System Messages (page 378)
Keyword Index and Summary (page 394)
Subject Index (page 406)

r/i~ HEWLETT
~~ PACKARD

Portable Computer Division
1000 N.E. Circle Blvd., Corvallis, OR 97330, U.S.A.

European Headquarters
150, Route Ou Nant-O'Avrii

P.O. Box, CH-1217 Meyrin 2
Geneva-Switzerland

Reorder Number
00071-90010 English

HP-United Kingdom
(Pinewood)

GB-Nine Mile Ride, Wokingham
Berkshire RG11 3ll

Printed in U.S.A. 10/87
Mfg. No.00071-90110

Scan Copyright ©
The Museum of HP Calculators

www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

