

Hewlett-Packard

HP-91

Owner's Handbook

with applications section

"The success and prosperity of our company will be assured only if we offer our customers superior products that fill real needs and provide lasting value, and that are supported by a wide variety of useful services, both before and after sale."

Statement of Corporate Objectives.
Hewlett-Packard

When Messrs. Hewlett and Packard founded our company in 1939, we offered one superior product, an audio oscillator. Today, we offer more than 3,000 quality products, designed and built for some of the world's most discerning customers.

Since we introduced our first scientific calculator in 1967, we've sold over a million worldwide, both pocket and desktop models. Their owners include Nobel laureates, astronauts, mountain climbers, businessmen, doctors, students, and housewives.

Each of our calculators is precision crafted and designed to solve the problems its owner can expect to encounter throughout a working lifetime.

HP calculators fill real needs. And they provide lasting value.

HP-91 Scientific Portable Printing Calculator Owner's Handbook

February 1976

00091-90001

How to Use This Handbook

New user? If you're a new calculator user, or even new to the many advantages offered by Hewlett-Packard calculators, you'll appreciate the step-by-step explanations in this handbook. After you have learned how to use the HP-91 by reading sections 1 and 2, *Getting Started and Printer and Display Control*, you will probably want to look at section 3, *The Automatic Memory Stack*, to see how the HP-91 is able to work through difficult problems quickly, easily, and accurately. In section 4 you will learn, via text and examples, how to use each of the many *Function Keys*.

Experienced on other Hewlett-Packard calculators? If you have used other portable HP calculators, you will find that many features of the HP-91 are old friends—the automatic memory stack, the storage registers, and most of the mathematical functions. But you'll find some new highlights on the HP-91 too. Eventually you will want to look over this entire handbook, but to maximize the usability and power of the calculator immediately, you will especially want to refer to the pages dealing with the many features of the special thermal printer. And be sure to read about the powerful statistical capabilities of the HP-91.

Novice or expert, you will find that the *Function and Key Index* on pages 7-9 packs a lot of information about the HP-91 into two pages. Use the index as a quick reference guide, as a handy page index to the operation of any key, or even to show your friends the many features available on your HP-91 portable calculator.

Nor should you overlook the *HP-91 Applications Routines* in section 5. Here are step-by-step solutions to important problems from the areas of mathematics, statistics, finance, surveying, and navigation. Whether knowledgeable or a neophyte in these fields, you will find it a simple matter to solve common problems by following the keystroke lists—you don't have to remember formulas or evaluate expressions. And you can pick up some hints to help use your HP-91.

Whether your interest lies in learning to use your calculator completely, or merely in solving a particular type of problem, we hope that this handbook will help you get the most from your HP-91.

Contents

The HP-91 Scientific Portable Printing Calculator	7
HP-91 Memory	8
Function and Key Index	8
Section 1: Getting Started	11
Power On	11
Display	11
Keyboard	11
Keying in Numbers	12
Negative Numbers	12
Clearing	13
Printer	13
Functions	15
One-Number Functions	16
Two-Number Functions	16
Chain Calculations	18
A Word about the HP-91	22
Section 2: Printer and Display Control	25
Display Control Keys	25
Fixed Point Display	26
Scientific Notation Display	27
Engineering Notation Display	27
Display Number Changes	29
Format of Printed Numbers	30
Automatic Display Switching	32
Keying in Exponents of Ten	32
Calculator Overflow	34
Error Display	34
Low Power Display	34
Section 3: The Automatic Memory Stack	37
The Stack	37
Initial Display	37
Manipulating Stack Contents	38
Reviewing the Stack	38
Exchanging x and y	39
Clearing the Stack	40
The ENTER Key	41
One-Number Functions and the Stack	43
Two-Number Functions and the Stack	43
Chain Arithmetic	45
Order of Execution	49
Constant Arithmetic	50

Section 4: Function Keys	53
LAST X	53
Recovering from Mistakes	53
Recovering a Number	54
Reciprocals	54
Factorials	55
Square Roots	55
Squaring	56
Using Pi	56
Percentages	57
Percent of Change	58
Storage Registers	58
Storing Numbers	58
Recalling Numbers	59
Listing the Storage Registers	60
Clearing Storage Registers	61
Storage Register Arithmetic	61
Trigonometric Functions	63
Trigonometric Modes	63
Functions	63
Hours, Minutes, Seconds/Decimal Hours Conversions	64
Adding and Subtracting Time and Angles	65
Polar/Rectangular Coordinate Conversions	67
Logarithmic and Exponential Functions	71
Logarithms	71
Raising Numbers to Powers	72
Statistical Functions	74
Accumulations	74
Listing Accumulations	76
Percent of Sum	76
Mean	77
Standard Deviation	79
Deleting and Correcting Data	82
Linear Regression	83
Linear Estimate	85
Coefficient of Determination	85
Vector Arithmetic	86
Section 5: HP-91 Applications Routines	89
Mathematical Applications	91
Quadratic Equation	92
Simultaneous Linear Equations in	
Two Unknowns	94
Determinant of a 3×3 Matrix	95
Hyperbolic Functions	96
Complex Number Operations	98
Vector Operations	102
Triangle Solutions	105
Curve Solutions	114
Coordinate Translation and Rotation	118
Base Conversions	119

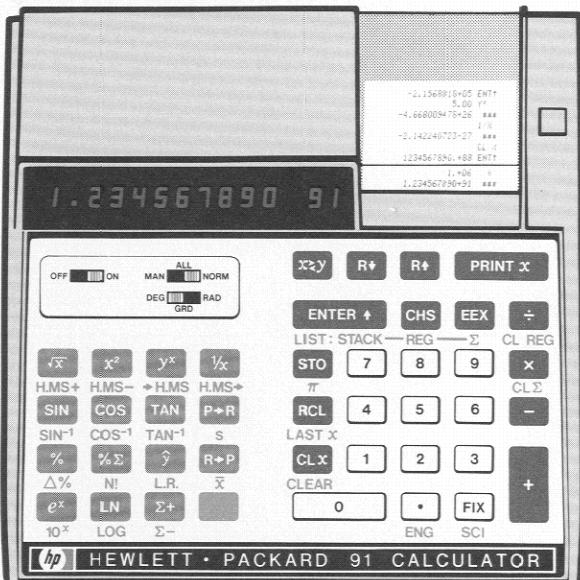
Highest Common Factor	122
Least Common Multiple	123
Statistical Applications	125
Exponential Curve Fit	126
Power Curve Fit	128
Analysis of Variance (One-Way)	130
Covariance and Correlation Coefficient	132
Normal Distribution	134
Inverse Normal Integral	136
Permutations	138
Combinations	139
Random Number Generator	140
Mean, Standard Deviation, Standard Error for Grouped Data	141
Chi-Square Statistics	143
F Statistic	146
Paired t Statistic	147
t Statistic for Two Means	149
Factorial and Gamma Function	151
Financial Applications	153
Interest (Compound)	154
Nominal Rate Converted to Effective Annual Interest Rate	157
Add-On Rate to Annual Percentage Rate (APR)	159
Periodic Savings	160
Direct Reduction Loans	162
Discounted Cash Flow Analysis	166
Depreciation	168
Calendar Routine	171
Navigation Applications	173
Rhumb Line Navigation	174
Great Circle Navigation	176
Sight Reduction Table	180
Most Probable Position	182
Surveying Applications	185
Bearing Traverse	186
Field Angle Traverse	188
Inverse from Coordinates	190
Horizontal Curve Layout	192
Elevations Along Straight Grades	194
Elevations Along a Vertical Curve	195
Volume by Average End Area	197
Appendix A: Accessories, Service, and Maintenance	201
Your Hewlett-Packard Calculator	201
Standard Accessories	202
Optional Accessories	202
AC Line Operation	203
Battery Charging	204
Battery Operation	204

Battery Pack Replacement	204
Battery Care	205
Your HP-91 Printer	206
Paper for Your HP-91	206
Replacing Paper	207
Printer Maintenance	208
Service	208
Low Power	208
Blank Display	208
Temperature Range	209
Warranty	209
Full One-Year Warranty	209
Obligation to Make Changes	209
Repair Policy	209
Repair Time	209
Shipping Instructions	210
Shipping Charges	210
Further Information	210
Appendix B: Improper Operations	211
Index	213

**The HP-91
Scientific Portable
Printing Calculator**

HP-91 Memory

Automatic Memory Stack


Registers

T 0.0000000000 00

Z 0.0000000000 00

Y 0.0000000000 00

Displayed X

Storage Registers

Manual Storage

R ₀	0.0000000000 00
R ₁	0.0000000000 00
R ₂	0.0000000000 00
R ₃	0.0000000000 00
R ₄	0.0000000000 00
R ₅	0.0000000000 00
R ₆	0.0000000000 00
R ₇	0.0000000000 00
R ₈	0.0000000000 00
R ₉	0.0000000000 00

Accumulation
(Σ+) or
Manual
Storage

R ₀	0.0000000000 00
R ₁	0.0000000000 00
R ₂	0.0000000000 00
R ₃	0.0000000000 00
R ₄	0.0000000000 00
R ₅	0.0000000000 00

Function and Key Index

 Paper advance pushbutton. Press to advance paper without printing (page 13).

 OFF ON Power switch (page 11).

 DEG RAD Trigonometric Mode switch. Selects degrees, grads, or radians for trigonometric functions (page 63).

 ALL NORM Print Mode switch. Controls extent of printing of keyboard operations (page 12).

 Prefix key. Press before function key to select function printed above that key (page 11).

Mathematics

 Computes square root of number in displayed X-register (page 55).

 Computes square of number in displayed X-register (page 56).

 Computes reciprocal of number in displayed X-register (page 54).

 Places value of pi (3.141592654) into displayed X-register (page 56).

 + - x ÷ Arithmetic operators (page 16).

Digit Entry

ENTER Enters a copy of number in displayed X-register into Y-register. Used to separate numbers (page 41).

CHS Changes sign of number or exponent of 10 in displayed X-register (page 12).

EEX Enter exponent. After pressing, next numbers keyed in are exponents of 10 (page 32).

x_y Exchanges contents of X- and Y-registers of stack (page 39).

R↓ Rolls down contents of stack for viewing in displayed X-register (page 38).

R↑ Rolls up contents of stack for viewing in displayed X-register (page 39).

CLx Clears contents of displayed X-register to zero. (page 13).

CLEAR Clears contents of stack (X, Y, Z, T) and all storage registers (R₀ through R₉; R₁₀ through R₁₅) to zero (page 40).

PRINT x Prints contents of displayed X-register (page 19).

LIST: STACK Causes printer to list contents of stack (page 37).

0 through **9** Digits used for keying in numbers and display formatting (page 12).

Logarithmic and Exponential

y^x Raises number in Y-register to power of number in displayed X-register (page 72).

10^x Common antilogarithm. Raises 10 to power of number in displayed X-register (page 71).

e^x Natural antilogarithm. Raises e (2.718281828) to power of number in displayed X-register (page 71).

LOG Computes common logarithm (base 10) of number in displayed X-register (page 71).

LN Computes natural logarithm (base e, 2.718281828) of number in displayed X-register (page 71).

Manual Storage

STO Store. Followed by number key, or decimal point and number key, stores displayed number in storage register specified (R₀ through R₉; R₁₀ through R₁₅). Also used to perform storage register arithmetic (page 58).

RCL Recall. Followed by number key or decimal point and number key, recalls value from storage register specified (R₀ through R₉; R₁₀ through R₁₅) into the displayed X-register (page 59).

CL REG Clears contents of storage registers (page 61).

LIST: REG Causes printer to list contents of all storage registers (page 60).

LAST x Recalls number displayed before the previous operation back into the displayed X-register (page 53).

Display Control

FIX Fixed point display. Followed by a number key, selects fixed point notation display (page 26).

SCI Scientific display. Followed by a number key, selects scientific notation display (page 27).

ENG Engineering display. Followed by a number key, selects engineering notation display (page 28).

Trigonometry

H.MS+ Adds hours, minutes, seconds or degrees, minutes, seconds in X-register to those in Y-register (page 65).

H.MS- Subtracts hours, minutes, seconds or degrees, minutes, seconds in displayed X-register from those in Y-register (page 65).

↔H.MS Converts decimal hours or degrees to hours, minutes, seconds or degrees, minutes, seconds (page 64).

H.MS↔ Converts hours, minutes, seconds or degrees, minutes, seconds to decimal hours or degrees (page 64).

SIN **COS** **TAN** Compute sine, cosine, or tangent of value in displayed X-register (page 63).

SIN⁻¹ **COS⁻¹** **TAN⁻¹** Compute arc sine, arc cosine, or arc tangent of number in displayed X-register (page 63).

Statistics

Σ Accumulates numbers from X- and Y-registers into storage registers R₀ through R₅ (page 74).

Σ- Subtracts x and y values from storage registers R₀ through R₅ for correcting **Σ** accumulations (page 82).

CLΣ Clears storage registers used for accumulations (R₀ through R₅) to zero (page 61).

LIST-Σ Causes printer to list contents of accumulation registers (storage registers R₀ through R₅) (page 76).

N! Computes factorial of number in displayed X-register (page 55).

Σ Computes mean (average) of x and of y values accumulated by **Σ** (page 77).

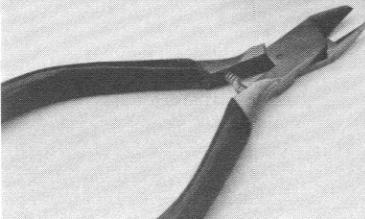
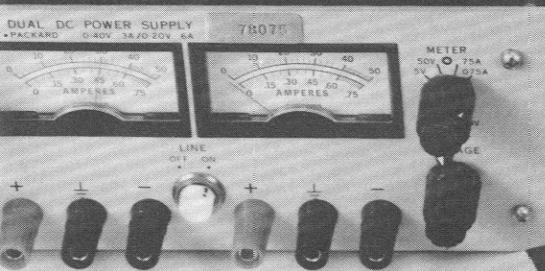
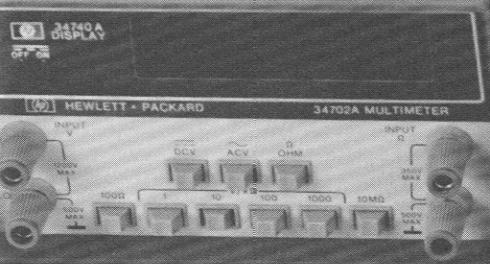
S Computes sample standard deviations of x and y values accumulated by **Σ** (page 79).

L.R. Linear regression. Computes y-intercept (A) and slope (B) for x and y data points accumulated using **Σ** (page 83).

Y Linear estimate. With set of x, y data points accumulated using **Σ**, computes estimated y for new x (page 85).

Polar/Rectangular Conversion

R→P Converts x, y rectangular coordinates placed in X- and Y-registers to polar magnitude *r* and angle *θ* (page 67).




P→R Converts polar magnitude *r* and angle *θ* in X- and Y-registers to rectangular x and y coordinates (page 68).

Percentage

% Computes x% of y (page 57).

Δ% Computes percent of change from number in Y-register to number in displayed X-register (page 58).

%Σ Computes percent that x is of the number (Σx) in storage register R₁ (page 76).

Section 1

Getting Started

Congratulations!

Your HP-91 is a professional-quality instrument from the Hewlett-Packard line of calculators, calculators whose durability and ease of operation have made them famous around the world. Besides the HP logic system that lets you slice with ease through the most difficult equations, the HP-91 includes:

- Dozens of scientific, mathematical, and statistical functions.
- 16 storage registers for unparalleled computing power.
- Whisper-quiet printer to give enhanced usability and archival permanence to your answers.
- Rechargeable batteries for completely portable operation.
- AC adapter/recharger for desktop use.

In addition, each HP calculator is backed up by continuing support in accessories, maintenance, and applications from the worldwide Hewlett-Packard network of sales and service facilities. You're in good company with HP!

Power On

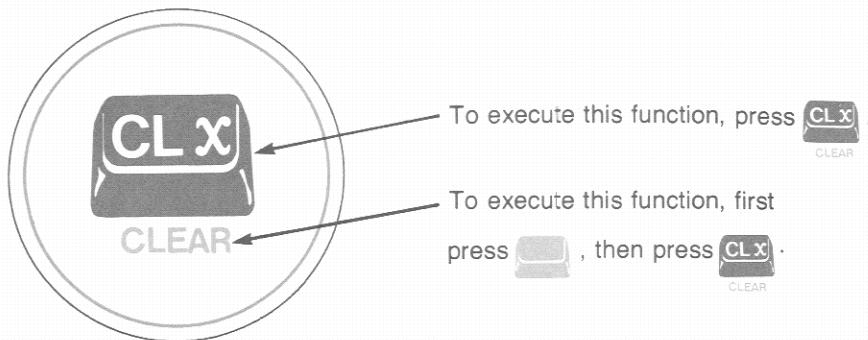
Your HP-91 is shipped fully equipped, including a battery pack.

Although the calculator is completely portable, if you want to use your HP-91 on battery power alone, you should connect the ac adapter/recharger and charge the battery for 7-10 hours first. Whether you operate from battery power or from the ac adapter/recharger, *the battery pack must always be in the calculator*. The battery pack is never in danger of being overcharged.

To begin: **Slide the OFF-ON switch OFF** **ON** to ON.

Slide the Print Mode switch MAN **ALL** **NORM** to MAN.

Display


Numbers that you key into the calculator and intermediate and final answers are always seen in the bright red display. When you first turn the calculator ON, the display is set to **0.00** to show you that all zeros are present there.

Keyboard

Most keys on the keyboard perform two functions. One function is indicated by the symbol on the face of the key, while another function is indicated by the gold symbol written below the key.

To select the function printed on the face of the key, press the key.

To select the function printed in gold below the key, press the gold prefix key then press the function key.

In this handbook, the selected key function will appear in the appropriate color outlined by a box, like this: **CLx**, **CLEAR**.

Keying in Numbers

Key in numbers by pressing the number keys in sequence, just as though you were writing on a piece of paper. The decimal point must be keyed in if it is part of the number (unless it is to the right of the last digit).

For example, to key in 148.84:

Press	Display
1 4 8 . 8 4	148.84

The resultant number 148.84 is seen in the display.

Negative Numbers

To key in a negative number, press the keys for the number, then press **CHS** (*change sign*). The number, preceded by a minus (-) sign, will appear in the display. For example, to change the sign of the number now in the display:

Press	Display
CHS	-148.84

You can change the sign of either a negative or a positive nonzero number in the display. For example, to change the sign of the -148.84 now in the display back to positive:

Press	Display
CHS	148.84

Notice that only negative numbers are given a sign in the display.

Clearing

You can clear any numbers that are in the display by pressing **CLX** (*clear x*). This key erases the number in the display and replaces it with **0.00**.

Press Display

CLX**0.00**

If you make a mistake while keying in a number, clear the entire number string by pressing **CLX**. Then key in the correct number.

Printer

The printer has three modes of operation, which you control using the Print Mode switch **MAN** **NORM** :

With the Print Mode switch **MAN** **NORM** set to **MAN** (*manual*), the printer is idle and does not print unless you press the **PRINTX** key or one of the **PRINT** functions. This mode gives greatest economy of paper and battery power.

With the Print Mode switch **MAN** **NORM** set to **NORM** (*normal*), the calculator records a history of the calculation sequence so that you can reconstruct your problem. In this mode you see digit entries and functions, but intermediate and final answers are not printed unless you press the **PRINTX** key.

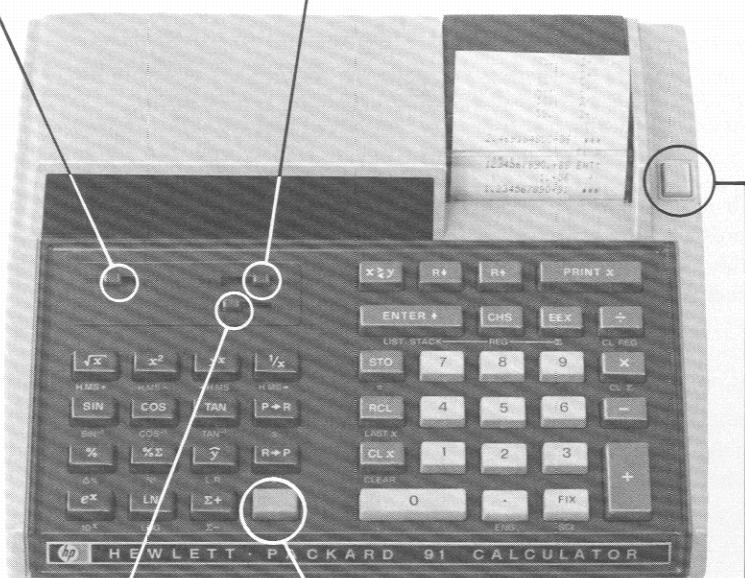
With the Print Mode switch **MAN** **NORM** set to **ALL**, the calculator prints numbers, functions, and intermediate and final answers, just as they are seen in the display. The results of functions are printed with the symbol ******* to the right of the number.

To advance the printer paper, press the paper advance pushbutton that is to the right of the paper output. Don't worry if the display blanks out while the paper advance is operating—this is normal. To advance the paper more than one space, simply hold the pushbutton down until the paper has advanced the desired amount. To replace the paper roll, refer to Using Your HP-91 Printer in appendix A of this handbook.

No matter what print mode you choose, you seldom have to worry about "overrunning" the printer when you are calculating. Your HP-91 contains a key buffer that "remembers" up to seven keystrokes—no matter how fast you press the keys.

Print Mode Switch

Manual. Printer operates only when you press **PRINTx** or one of the **LIST** functions.



Normal. Printer records history of calculation sequence, showing inputs and function keys pressed.

All. Printer duplicates display changes, showing all functions and intermediate and final answers.

Calculator Power Switch

Trigonometric Mode Switch.
Lets you assume angles in degrees, grads, or radians.

Paper Advance

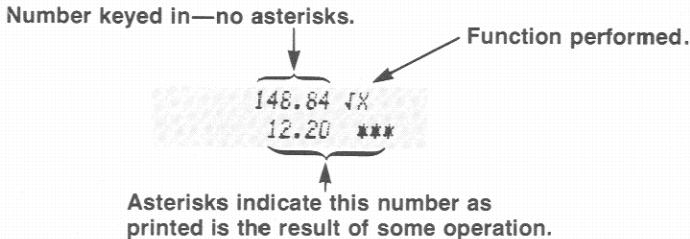
Shift Key

Functions

The best way to see how simple functions operate on your HP-91 is with the Print Mode switch set to ALL to give you a complete record of inputs, functions, and answers.

Slide the Print Mode switch **MAN** **NORM** to **ALL** now.

In spite of the dozens of functions available on the HP-91 keyboard, you will find the calculator functions simple to operate by using a single, all-encompassing rule: *When you press a function key, the calculator immediately executes the function written on the key.*


Pressing a function key causes the calculator to immediately perform that function.

For example, to calculate the square root of 148.84, merely:

Press	Display	
148.84 	148.84 12.20	148.84 \sqrt{x} 12.20 ***

Let's look briefly at the printed copy of that problem to see the simple way that the HP-91 printer duplicates your calculations.

The paper tapes are printed just as you read, from left to right and top to bottom. The number, 148.84, is printed exactly as you keyed it in. A symbol for the function performed, \sqrt{x} , is printed next to it. The answer, 12.20, is printed with a three-asterisk label to its right, indicating that the HP-91 performed some operation in order to obtain the number as it is printed.

Now let's continue. To square the result of the previous calculation:

Press	Display	
	148.84	148.84 x^2 12.20 ***

\sqrt{x} and x^2 are examples of one-number function keys; that is, keys that execute upon a single number. All function keys in the HP-91 operate upon either one number or two numbers at a time (except for statistics keys like $\Sigma+$ and Σ —more about these later).

Function keys operate upon either one number or two numbers.

One-Number Functions

To use any one-number function key:

1. Key in the number.
2. Press the function key (or press the prefix key, then the function key).

For example, to use the one-number function $\frac{1}{x}$ key, you first key in the number represented by x , then press the function key. To calculate $\frac{1}{4}$, key in 4 (the x -number) and press $\frac{1}{x}$.

Press	Display	
4	4.	4.00 1/ \sqrt{x}
$\frac{1}{x}$	0.25	0.25 ***

Now try these other one-number function problems. Remember, *first key in the number, then press the function*:

$\frac{1}{25}$	=	0.04
$\sqrt{2500}$	=	50.00
10^5	=	100000.00
$\sqrt{3204100}$	=	1790.00
$\log 12.58925411$	=	1.10
71^2	=	5041.00

(Use the 10^x key.)

Two-Number Functions

Two-number functions are functions that must have two numbers present in order for the operation to be performed. $+$, $-$, \times , and \div are examples of two-number function keys. You cannot add, subtract, multiply, or divide unless there are two numbers present in the calculator. Two-number functions work the same way as one-number functions—that is, the operation occurs when the function key is pressed. Therefore, *both numbers must be in the calculator before the function key is pressed*.

When more than one number must be keyed into the calculator before performing an operation, the **ENTER** key is used to separate the two numbers.

Use the **ENTER** key whenever more than one number must be keyed into the calculator before pressing a function.

If you key in only one number, you never need to press **ENTER**. To place two numbers into the calculator and perform an operation:

1. Key in the first number.
2. Press **ENTER** to separate the first number from the second.
3. Key in the second number.
4. Press the function key to perform the operation.

For example, to add 12 and 3:

Press

12	The first number.
ENTER↑	Separates the first number from the second.
3	The second number.
+	The function.

12.00 ENT1
3.00 +
15.00 ***

The answer, **15.00**, is displayed and printed.

Other arithmetic functions are performed the same way:

To perform	Press	Display	
12 - 3	12 ENTER↑ 3 -	9.00	12.00 ENT1 3.00 - 9.00 ***
12 × 3	12 ENTER↑ 3 ×	36.00	12.00 ENT1 3.00 × 36.00 ***
12 ÷ 3	12 ENTER↑ 3 ÷	4.00	12.00 ENT1 3.00 ÷ 4.00 ***

The **y^x** key is also a two-number operation. It is used to raise numbers to powers, and you can use it in the same simple way that you use every other two-number function key:

1. Key in the first number.
2. Press **ENTER↑** to separate the first number from the second.
3. Key in the second number (power).
4. Perform the operation (press **y^x**).

When working with any function key (including **y^x**), you should remember that the displayed number is always designated by *x* on the function key symbols.

The number displayed is always *x*.

So **xs** means square root of the displayed number, **1/x** means $\frac{1}{\text{displayed number}}$, etc.

Thus, to calculate 3^6 :

Press	Display	
3	3.	
ENTER	3.00	3.00 ENT
6	6.	6.00
y^x	729.00	729.00 ***

x , the displayed number, is now 6.
The answer.

Now try the following problems using the **y^x** key, keeping in mind the simple rules for two-number functions:

$$16^4 \quad (16 \text{ to the } 4^{\text{th}} \text{ power}) = \boxed{65536.00}$$

$$81^2 \quad (81 \text{ squared}) = \boxed{6561.00}$$

$$225^{.5} \quad (\text{Square root of } 225) = \boxed{15.00}$$

$$2^{16} \quad (2 \text{ to the } 16^{\text{th}} \text{ power}) = \boxed{65536.00}$$

$$16^{.25} \quad (4^{\text{th}} \text{ root of } 16) = \boxed{2.00}$$

(You could also have done this as a one-number function using **yx**.)

(You could also have done this as a one-number function using **yx**.)

Chain Calculations

The speed and simplicity of operation of the Hewlett-Packard logic system become most apparent during chain calculations. Even during the longest of calculations, you still perform only one operation at a time, and you see the results as you calculate—the Hewlett-Packard automatic memory stack stores up to four intermediate results inside the calculator until you need them, then inserts them into the calculation. This system makes the process of working through a problem as natural as it would be if you were working it out with pencil and paper, but the calculator takes care of the hard part.

For example, solve $(12 + 3) \times 7$.

If you were working the problem with a pencil and paper, you would first calculate the intermediate result of $(12 + 3)$

$$\begin{array}{r} (12 + 3) \times 7 = \\ \hline 15 \end{array}$$

.....and then you would multiply the intermediate result by 7.

$$\begin{array}{r} (12 + 3) \times 7 = 105 \\ 15 \times 7 \end{array}$$

You work through the problem exactly the same way with the HP-91, one operation at a time. You solve for the intermediate result first.....

$$(12 + 3)$$

Press

12
ENTER↑
3
+
105.00

Display

12.
12.00
3.
15.00

12.00 ENT↑
3.00 +
15.00 ***

Intermediate result.

.....and then solve for the final answer. You don't need to press **ENTER↑** to store the intermediate result—the HP-91 automatically stores it inside the calculator when you key in the next number. To continue.....

Press

7
x
105.00

Display

7.
105.00

The intermediate result from the preceding operation is automatically stored inside the calculator when you key in this number.

Pressing the function key multiplies the new number and the intermediate result, giving you the final answer.

7.00 x
105.00 ***

Because the HP-91 stores intermediate results automatically, you don't need to print them. You can slide the Print Mode switch to NORM to preserve a record of your calculations, and then press **PRINTX** to print the final answer.

For example, when you solved the above problem in ALL mode, you preserved *all* intermediate and final results. To solve the same problem and preserve only a history of the calculation:

Slide the Print Mode switch MAN NORM to NORM.

Press

12
ENTER↑
3
+
7
x
PRINTX
105.00

Display

12.
12.00
3.
15.00
7.
105.00
105.00

12.00 ENT↑
3.00 +
7.00 x
105.00 ***

Preserves the final answer in your printed record.

Now try these problems. Notice that for each problem you only have to press **ENTER** to insert a pair of numbers into the calculator—each subsequent operation is performed using a new number and an automatically stored intermediate result.

To solve

$$\frac{(2 + 3)}{10}$$

Press

2

ENTER

3

+

10

-

PRINTX

Display

0.50

0.50

2.00 ENT1
3.00 +
10.00 ÷
0.50 ***

$$3(16 - 4)$$

16

ENTER

4

-

3

×

PRINTX

36.00

36.00

16.00 ENT1
4.00 -
3.00 x
36.00 ***

$$\frac{14 + 7 + 3 - 2}{4}$$

14

ENTER

7

+

3

+

2

-

4

÷

PRINTX

5.50

5.50

14.00 ENT1
7.00 +
3.00 +
2.00 -
4.00 ÷
5.50 ***

Problems that are even more complicated can be solved in the same simple manner, using the automatic storage of intermediate results. For example, to solve $(2 + 3) \times (4 + 5)$ with a pencil and paper, you would:

First solve for the contents

of these parentheses...

$$(2 + 3)$$

...and then for these parentheses ...

...and then you would multiply the
two intermediate answers together.

You work through the problem the same way with the HP-91. First you solve for the intermediate result of $(2 + 3)$

Press Display

2 2.
ENTER 2.00
3 3
+ 5.00

Intermediate result.

2.00 ENT1
3.00 +

Then add 4 and 5:

(Since you must now key in another *pair* of numbers before you can perform a function, you use the **ENTER** key again to separate the first number of the pair from the second.)

Procedure Press Display

~~(2 + 3) × (4 + 5)~~ 4 **ENTER** 5 +
5 9

4.00 ENT1
5.00 +

Then multiply the intermediate answers together for the final answer:

Procedure Press Display

~~(2 + 3) × (4 + 5)~~ ×
5 9 **PRINT X**

45.00 ***

Notice that you didn't need to write down or key in the intermediate answers from inside the parentheses before you multiplied—the HP-91 automatically stacked up the intermediate results inside the calculator for you and brought them out on a last-in, first-out basis when it was time to multiply.

No matter how complicated a problem may look, it can always be reduced to a series of one- and two-number operations. Just work through the problem in the same logical order you would use if you were working it with a pencil and paper.

For example, to solve:

$$\frac{(9 + 8) \times (7 + 2)}{(4 \times 5)}$$

Press Display

9 **ENTER** 8 + 17.00
7 **ENTER** 2 + 9.00
× 153.00
4 **ENTER** 5 × 20.00
÷ 7.65
PRINT X 7.65

Intermediate result of $(9 + 8)$.
Intermediate result of $(7 + 2)$.
 $(9 + 8)$ multiplied by $(7 + 2)$.
Intermediate result of (4×5) .
The final answer.

9.00 ENT1
8.00 +
7.00 ENT1
2.00 +
X
4.00 ENT1
5.00 X
÷
7.65 ***

Now try these problems. Remember to work through them as you would with a pencil and paper, but don't worry about intermediate answers—they're handled automatically by the calculator.

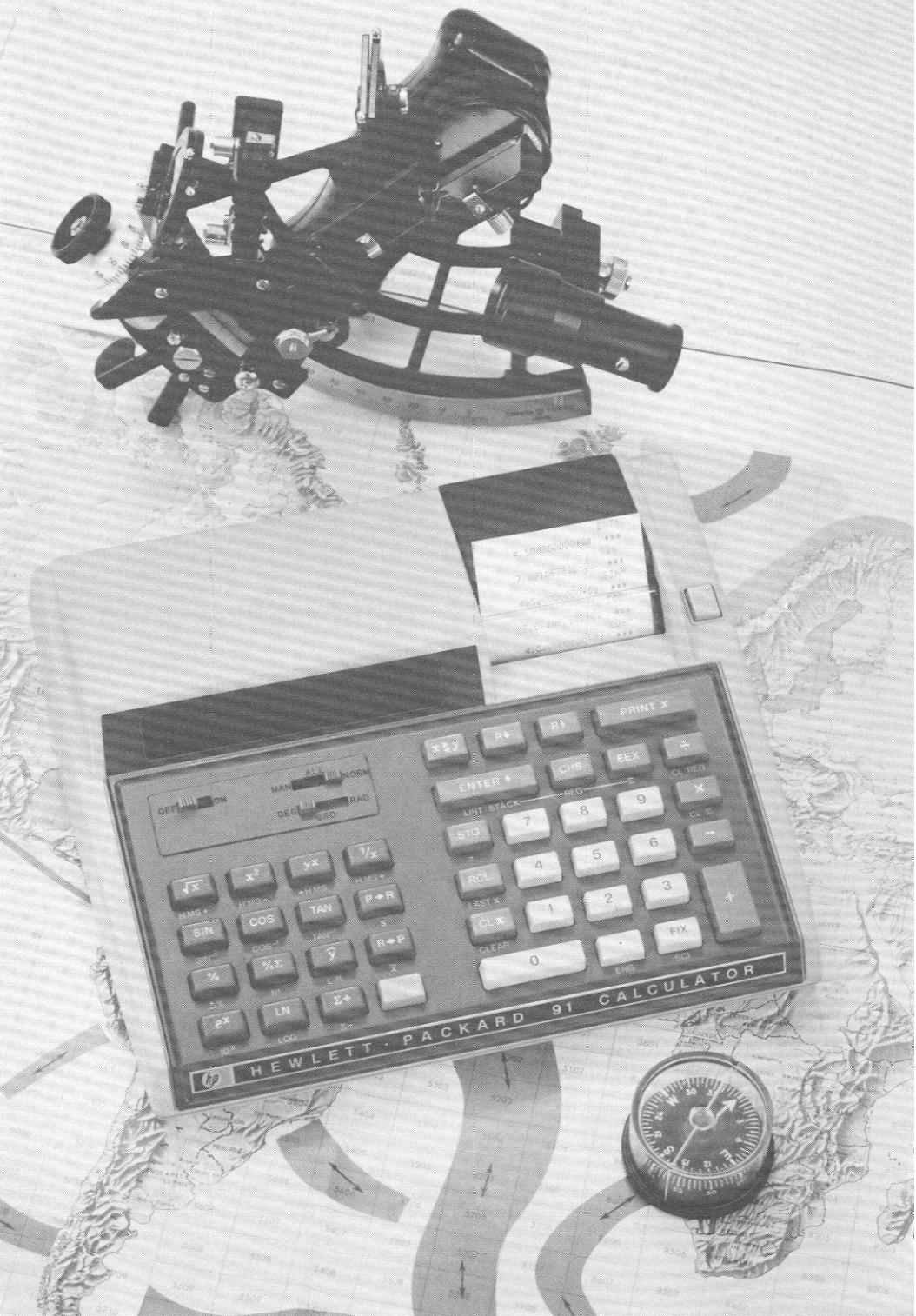
$$(2 \times 3) + (4 \times 5) = \boxed{26.00}$$

$$\frac{(14 + 12) \times (18 - 12)}{(9 - 7)} = \boxed{78.00}$$

$$\frac{\sqrt{16.3805 \times 5}}{.05} = \boxed{181.00}$$

$$4 \times (17 - 12) \div (10 - 5) = \boxed{4.00}$$

$$\sqrt{(2 + 3) \times (4 + 5)} + \sqrt{(6 + 7) \times (8 + 9)} = \boxed{21.57}$$


A Word about the HP-91

Now that you've learned how to use the calculator, you can begin to fully appreciate the benefits of the Hewlett-Packard logic system. With this system, you enter numbers using a parenthesis-free, unambiguous method called RPN (Reverse Polish Notation).

It is this unique system that gives you all these calculating advantages:

- You never have to work with more than one function at a time. The HP-91 cuts problems down to size instead of making them more complex.
- Pressing a function key immediately executes the function. You work naturally through complicated problems, with fewer keystrokes and less time spent.
- Intermediate results appear as they are calculated. There are no "hidden" calculations, and you can check each step as you go.
- Intermediate results are automatically handled. You don't even have to print out long intermediate answers when you work a problem. (Of course, if you want intermediate answers, the HP-91 printer will record them in ALL mode.)
- Intermediate answers are automatically inserted into the problem on a last-in, first-out basis. You don't have to remember where they are and then summon them.
- You can calculate in the same order that you do with pencil and paper. You don't have to think the problem through ahead of time.

The HP system takes a few minutes to learn. But you'll be amply rewarded by the ease with which the HP-91 solves the longest, most complex equations. With HP, the investment of a few moments of learning yields a lifetime of mathematical dividends.

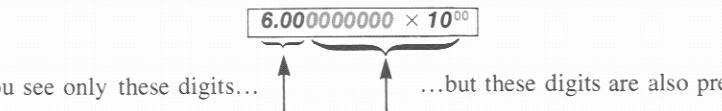
Section 2

Printer and Display Control

In the HP-91, you can select many different rounding options for display of numbers. When you first turn on the HP-91, for example, the calculator “wakes up” with numbers appearing rounded to two decimal places. Thus, the fixed constant π , which is actually in the calculator as 3.141592654, will appear in the display as 3.14 (unless you tell the calculator to display the number rounded to a greater or lesser number of decimal places).

Although a number is normally shown to only two decimal places, the HP-91 always computes internally using each number as a 10-digit mantissa and a two-digit exponent of 10. For example, when you compute 2×3 , you see the answer to only two decimal places:

Press **Display**


2 **ENTER** 3 **×** **6.00**

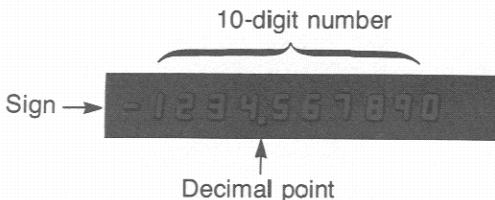
However, inside the calculator all numbers have 10-digit mantissas and two-digit exponents of 10. So the HP-91 actually calculates using full 10-digit numbers:

2.000000000 $\times 10^{00}$ **ENTER** 3.000000000 $\times 10^{00}$ **×**

yields an answer that is actually carried to full 10 digits internally:

6.000000000 $\times 10^{00}$

Display Control Keys


There are four keys, **FIX**, **SCI**, **ENG**, and the prefix key , that allow you to control the manner in which numbers appear in the display in the HP-91.

FIX displays and prints numbers in fixed decimal point format, while **SCI** permits you to view numbers in a scientific notation format. **ENG** displays numbers in engineering notation, with exponents of 10 shown in multiples of three (e.g., 10^3 , 10^{-6} , 10^{12}). followed by a number key (0 through 9) changes the number of displayed digits without changing the format.

No matter which format or how many displayed digits you choose, display control alters only the manner in which a number is displayed and printed in the HP-91. The actual number itself is not altered by any of the print options or the display control keys. No matter what type of display you select, the HP-91 always calculates internally with a full 10-digit number, multiplied by 10 raised to a two-digit exponent.

The printer does not immediately indicate when you change display formats, but any new results will be shown in the new format.

Fixed Point Display

Using fixed point display, you can specify the number of places to be shown after the decimal point. It is selected by pressing **FIX** followed by a number key to specify the number of decimal places (0 through 9) to which the display is to be rounded. The displayed number begins at the left side of the display (or the right side of the printed tape) and includes trailing zeros within the setting selected. When the calculator is turned OFF, then ON, it "wakes up" in fixed point notation with the display rounded to two decimal places.

For example:

Slide the Print Mode switch **MAN** **NORM** to **MAN** now so that you can concentrate on the display changes.

Press Display

(Turn the calculator OFF, then ON.)

0.00

Calculator "wakes up" in **FIX** 2 display format.

123.4567

123.4567

Display is rounded off to 0 decimal places. Internally, however, the number maintains its original value of 123.4567.

FIX 0

123.

FIX 4

123.4567

FIX 7

123.4567000

FIX 1

123.5

Notice that the display rounds if the first *hidden* digit is 5 or greater.

FIX 2

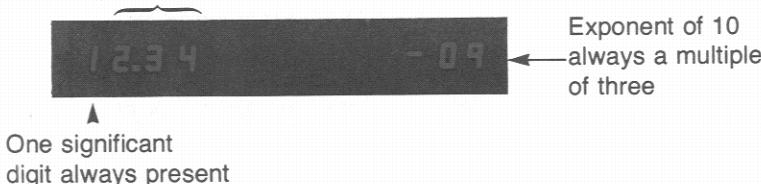
123.46

Normal **FIX** 2 display.

Scientific Notation Display

In scientific notation each number is displayed with a single digit to the left of the decimal point followed by a specified number of digits (up to nine) to the right of the decimal point and multiplied by a power of 10. Scientific notation is particularly useful when working with very large or small numbers.

Scientific notation is selected by pressing **SCI** followed by a digit key to specify the number of decimal places to which the number is rounded. The display is left-justified and includes trailing zeros within the selected setting. The printed copy is right-justified, with a sign to identify the exponent of 10. For example:


Press Display

123.4567	123.4567	
SCI 2	1.23 02	Indicates 1.23×10^2 .
SCI 4	1.2346 02	Indicates 1.2346×10^2 . Notice that the display rounds if the first <i>hidden</i> mantissa digit is 5 or greater.
SCI 7	1.2345670 02	Indicates 1.2345670×10^2 .
SCI 9	1.234567000 02	Indicates 1.234567000×10^2 .

Note: You can easily key in numbers in scientific notation format by using the **EEX** (enter exponent) key—more about this later.

Engineering Notation Display

Specified significant digits after the first one

Engineering notation allows all numbers to be shown with exponents of 10 that are multiples of three (e.g., 10^3 , 10^{-6} , 10^{12}).

This is particularly useful in scientific and engineering calculations, where units of measure are often specified in multiples of three. Refer to the prefix chart below.

Multiplier	Prefix	Symbol
10^{12}	tera	T
10^9	giga	G
10^6	mega	M
10^3	kilo	k
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p
10^{-15}	femto	f
10^{-18}	atto	a

Engineering notation is selected by pressing **ENG** followed by a number key. The first significant digit is always present in the display, and the number key specifies the number of additional significant digits to which the display is rounded. The decimal point always appears in the display. For example:

Press	Display	
.000012345	.000012345	
ENG 1	12. -06	Engineering notation display. Number appears in the display rounded off to one significant digit after the omnipresent first one. Power of 10 is proper multiple of three.
ENG 3	12.35 -06	Display is rounded off to third significant digit after the first one.
ENG 9	12.34500000-06	
ENG 0	10. -06	Display rounded off to first significant digit.

Notice that rounding can occur to the *left* of the decimal point, as in the case of **ENG** 0 specified above.

When engineering notation has been selected, the decimal point shifts to show the mantissa as units, tens, or hundreds in order to maintain the exponent of 10 as a multiple of three. For example, multiplying the number now in the calculator by 10 causes the decimal point to shift to the right without altering the exponent of 10:

Press Display

10

12.3	-06
123.	-06

However, multiplying again by 10 causes the exponent to shift to another multiple of three and the decimal point to move to the units position. Since you specified **ENG** 2 earlier, the HP-91 maintains two significant digits after the first one when you multiply by 10.

Press Display

10

1.23	-03
------	-----

Decimal point shifts.
Power of 10 shifts to 10^{-3} . Display maintains two significant digits after the first one.

Display Number Changes

You have seen how you can change the HP-91 display to show numbers in fixed, scientific notation, or engineering notation format. When you have specified any of these formats, the HP-91 permits you to change the *number* of displayed digits by simply pressing the prefix key followed by the desired number key. For example:

Press Display

12345

12345.	
--------	--

 SCI 3

1.235	04
-------	----

Scientific notation format selected.

 1

1.2	04
-----	----

The HP-91 remains in scientific notation mode; only the number of displayed digits is changed.

 6

1.234500	04
----------	----

The HP-91 remains in scientific notation mode; only the number of displayed digits is changed.

 2

1.23	04
------	----

The HP-91 remains in scientific notation mode; only the number of displayed digits is changed.

 ENG 2

12.3	03
------	----

Engineering notation format selected.

 3

12.35	03
-------	----

Number of displayed digits changes, but calculator remains in engineering notation mode.

 7

12.345000	03
-----------	----

Number of displayed digits changes, but calculator remains in engineering notation mode.

 1

12.	03
-----	----

 FIX 5

12345.00000	
-------------	--

Fixed format selected.

 3

12345.000	
-----------	--

Number of displayed digits changes, but calculator remains in fixed mode.

 0

12345.	
--------	--

 2

12345.00	
----------	--

Format of Printed Numbers

When using the printer, whether you are in MAN or NORM mode (where you must press **PRINTx** to see answers) or in ALL (where the HP-91 automatically prints answers as they are calculated), printed numbers can be shown in any display format—fixed point, scientific notation, or engineering notation. By selecting the display format, you also select the print format.

Results from your HP-91 are always displayed and printed in the format that you have chosen. The three-asterisk label that you see printed next to a result is a guarantee that it is in the chosen display format. Although numbers in the display are left-justified, printed numbers are right-justified.

Numbers that you key in—that is, numbers that are *not* the results of operations—are also printed by the HP-91. When you key in a number with the Print Mode switch set to NORM or ALL, the HP-91 does not print it until you change display format or press a function key. Then the number is printed exactly *as you keyed it in*. (One case is an exception to this rule—more about that later.) A number that you keyed in is not the result of an operation, and no asterisks are printed to its right. Subsequent *results*, of course, are printed in the selected format with a three-asterisk label. For example:

Slide the Print Mode switch **MAN** **NORM** to **NORM**.

Press Display

.0000123456 **.0000123456**
 1.235 -05

When you press any function, the number is first printed just as you keyed it in.

PRINTx **1.235 -05**

Results of functions, including display formatting, are printed in the selected format.

1234567890 **1234567890.**
 1.234568 09

The number is printed as you keyed it in.

PRINTx **1.234568 09**

The three-asterisk label guarantees that the number is now in the selected format.

.0000123456
1.235-05 ***
1234567890.
1.234568+09 ***

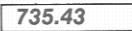
Notice that the HP-91 *prints* a + sign to show you positive exponents of 10.

Thus, whenever you key in a number, the HP-91 prints it just as you keyed it in; *then* the format is changed. It is easy for you to reconstruct your calculation because your exact inputs are identifiable from your printed copy.

When you have keyed in a number, there is one time that the HP-91 will change its format *before* printing. If you have specified fixed point notation (by turning the calculator OFF, then ON, or by pressing **FIX** followed by a number key) and the number keyed in is also in fixed point format (i.e., you have not pressed **EEX**), the HP-91 will attempt to align

the decimal points for easy readability on your printed copy. It will do this in fixed point notation by printing the number that you keyed in in the *specified* format (if the number can be printed without truncating), adding trailing zeros if necessary.

This feature permits you to key in numbers in fixed point notation and line up the decimal points in the printed record of your calculations.


Example: You begin the month with a balance of \$735.43 in your checking account. During the month, you write checks for \$235, \$79.95, \$5, \$1.44, \$17.83, \$50, and \$12.43. Calculate the closing balance for the account and preserve a printed record of your calculations.

First, ensure that the Print Mode switch is set to NORM.

Press Display

Sets 2 display mode. (Display shown assumes that no results remain from previous example.)

Two extra zeros printed so that decimal points will line up.

 -

 -

 -

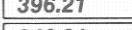
 -

 -

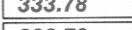
 -

 -

The number is printed exactly as you keyed it in.



Two extra zeros printed.



Two extra zeros printed.

Closing balance.

You need not worry about "losing" digits on the printed copy. The HP-91 printer will never truncate digits (not even extra zeros) that you have keyed in. For example, if you wanted to set aside 5/10000 of the closing balance of your account for a present for your sister-in-law:

Press Display

Entire number is printed—not rounded to 2.

 x

Amount set aside for sister-in-law's gift.
Result of function is rounded to 2.

Automatic Display Switching

The HP-91 switches the display from fixed point notation to full scientific notation (SCI 9) whenever the number is too large or too small to be seen with a fixed decimal point. This feature keeps you from missing unexpectedly large or small answers. For example, if you try to solve $(.05)^3$ in normal FIX 2 display, the answer is automatically shown in scientific notation.

Press	Display	
FIX 2	0.00	Normal FIX 2 display. (Display shown assumes no results remain from previous example.)
.05 ENTER [↓] 3 Y ^x PRINTX	0.05 1.250000000-04	Display automatically switched to SCI 9 to show answer.

.05 ENT[↓]
3.00 Y^x
1.250000000-04 ***

After automatically switching from fixed to scientific, and a new number is keyed in or CLX is pressed, the display automatically reverts back to the fixed point display originally selected.

The HP-91 also switches to scientific notation if the answer is too large ($\geq 10^{10}$) for fixed point display. For example, the display will not switch from fixed if you solve 1582000×1842 :

Press	Display	
1582000	1582000.	
ENTER [↓]	1582000.00	
1842 X	2914044000.	Fixed point format.
PRINTX	2914044000.	

1582000.00 ENT[↓]
1842.00 X
2914044000. ***

However, if you multiply the result by 10, the answer is too large for fixed point notation, and the calculator display switches automatically to scientific notation:

Press	Display	
10 X PRINTX	2.914044000 10	Scientific notation format.

10.00 X
2.914044000+10 ***

Notice that automatic switching is between fixed and scientific notation display modes only—engineering notation display must be selected from the keyboard.

Keying in Exponents of Ten

You can key in numbers multiplied by powers of 10 by pressing EEX (enter exponent of 10) followed by number keys to specify the exponent of 10. For example, to key in 15.6 trillion (15.6×10^{12}), and multiply it by 25:

Press

Display

15.6

EEX

12

15.6

15.6 00

15.6 12

This means 15.6×10^{12} .

Now Press

Display

ENTER25 **X** **PRINTX**

1.560000000 13

3.900000000 14

15.6+12 ENT1

25.00 X

3.900000000+14 ***

You can save time when keying in exact powers of 10 by merely pressing **EEX** and then pressing the desired power of 10. For example, key in 1 million (10^6) and divide by 52.

Press

Display

EEX

6

ENTER

1. 00

1000000.00

You do not have to key in the number 1 before pressing **EEX** when the number is an exact power of 10.

1.+06 ENT1

52.00 ÷

19230.77 ***

52 **÷** **PRINTX**

19230.77

Since you have not specified scientific notation, the display reverts to fixed point notation when you press **ENTER**.

To see your answer in scientific notation with six decimal places:

Press

Display

SCI**PRINTX**

1.923077 04

1.923077 04

1.923077+04 ***

To key in negative exponents of 10, key in the number, press **EEX**, press **CHS** to make the exponent negative, then key in the power of 10. For example, key in Planck's constant (h)—roughly, 6.625×10^{-34} erg sec.—and multiply it by 50.

Press

Display

CLX**FIX**6.625 **EEX****CHS**

27

ENTER50 **X** **PRINTX**

0.000000 00

0.00

6.625 00

6.625 -00

6.625 -27

6.625000000 -27

3.312500000 -25

Erg sec.

CL X

6.625-27 ENT1

50.00 X

3.312500000-25 ***

Calculator Overflow

When the number in the display would be greater than $9.999999999 \times 10^{99}$, the HP-91 displays all 9's to indicate that the problem has exceeded the calculator's range. For example, if you solve $(1 \times 10^{49}) \times (1 \times 10^{50})$, the HP-91 will display the answer:

Press Display

CL X	0.00
EEX 49 ENTER	1.000000000 49
EEX 50 X	1.000000000 99
PRINT X	1.000000000 99

CL X	1.49
ENT	1.49
1.49 X	1.49
1.49 X	1.000000000+99 ***

But if you attempt to multiply the above result by 100, the HP-91 display indicates overflow by showing you all 9's:

Press Display

100 X PRINT X 9.999999999 99 Overflow indication.

100.00	X
9.999999999+99	***

Error Display

If you happen to key in an improper operation, the word *Error* will appear in the display.

In addition, if the Print Mode switch MAN NORM is set to NORM or ALL, the printer will print *Error*.

For example, if you attempt to calculate the square root of -4 , the HP-91 will recognize it as an improper operation:

Ensure that the Print Mode switch MAN NORM is set to NORM.

Press Display

4 CHS	-4.
	Error

-4.00	X
ERROR	

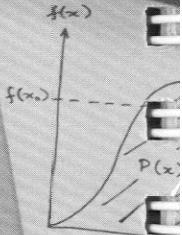
Pressing any key clears the error and is *not* executed. (Pressing the paper advance push-button clears the error and *is* executed.) The number that was in the display before the error-causing function is returned to the display so that you can see it.

Press Display

CL X	-4.00
------	-------

All those operations that cause an error condition are listed in appendix B.

Low Power Display


When you are operating the HP-91 from battery power, a red lamp inside the display will glow to warn you that the battery is close to discharge.

You must then connect the ac adapter/recharger to the calculator and operate from ac power, or you must substitute a fully charged battery pack for the one that is in the calculator. Refer to appendix A for a description of these operations.

HEWLETT-PACKARD 91 CALCULATOR

15.00 ENT1
78.00 L+
25.00 ENT1
RD AD TS

Section 3

The Automatic Memory Stack

The Stack

Automatic storage of intermediate results is the reason that the HP-91 slides so easily through the most complex equations. And automatic storage is made possible by the Hewlett-Packard automatic memory stack.

Initial Display

Turn the HP-91 OFF, then ON.

You can work through this section with the Print Mode switch at any setting you desire. The printed tapes that illustrate the problems in this handbook were created with the Print Mode switch **MAN** **NORM** set to NORM.

When you first switch the calculator ON, the display shows **0.00**. This represents the contents of the display, or "X-register."

Basically, numbers are stored and manipulated in the machine "registers." Each number, no matter how few digits (e.g., 0, 1, or 5) or how many (e.g., 3.141592654, -23.28362, or $2.87148907 \times 10^{27}$), occupies one entire register.

The displayed X-register, which is the only visible register, is one of four registers inside the calculator that are positioned to form the automatic memory stack. We label these registers X, Y, Z, and T. They are "stacked" one on top of the other with the displayed X-register on the bottom. When the calculator is switched ON, these four registers are cleared to 0.00.

Name	Register	
T	0.00	
Z	0.00	
Y	0.00	
X	0.00	Always displayed.

You can view the contents of the entire stack at any time by printing them using the **LIST: STACK** (*list stack*) key.

Press	Display	
LIST: STACK	0.00	0.00 LIST 0.00 T 0.00 Z 0.00 Y 0.00 X

Notice that **LIST: STACK**, like **PRINT X** and the other **LIST** functions, operates regardless of the position of the Print Mode switch.

Manipulating Stack Contents

The **R↓** (roll down), **R↑** (roll up), and **X↔Y** (x exchange y) keys allow you to review the stack contents or to shift data within the stack for computation at any time.

Reviewing the Stack

To see how the **R↓** key works, first load the stack with numbers 1 through 4 by pressing:

4 **ENTER↓** 3 **ENTER↓** 2 **ENTER↓** 1

4.00 ENT1
3.00 ENT1
2.00 ENT1

The numbers that you keyed in are now loaded into the stack, and its contents look like this:

T	4.00
Z	3.00
Y	2.00
X	1.

Display

To see the contents of the stack now, press:

Press

LIST: **STACK**

1.00 LIST
4.00 T
3.00 Z
2.00 Y
1.00 X

When you press the **R↓** key, the stack contents shift downward one register. So the last number that you have keyed in will be rotated around to the T-register when you press **R↓**. When you press **R↓** again, the stack contents again roll downward one register.

To see how the **R↓** key operates, press **LIST:** **STACK** to list the stack contents after each press of the **R↓** key:

Press

Display

R↓
LIST: **STACK**

2.00

R↓
LIST
1.00 T
4.00 Z
3.00 Y
2.00 X

Press

Display

R↓ LIST: STACK

3.00

R↓
LIST

2.00 T
1.00 Z
4.00 Y
3.00 X

R↓ LIST: STACK

4.00

R↓
LIST

3.00 T
2.00 Z
1.00 Y
4.00 X

R↓ LIST: STACK

1.00

R↓
LIST

4.00 T
3.00 Z
2.00 Y
1.00 X

Once again the number 1.00 is in the displayed X-register. Four presses of the **R↓** key roll the stack down four times, returning the contents of the stack to their original registers.

You can also manipulate the stack contents using the **R↑** (*roll up*) key. This key rolls the stack contents *up* instead of down, but it otherwise operates in the same manner as the **R↓** key.

Exchanging x and y

The **x↔y** (*x exchange y*) key exchanges the contents of the X- and the Y-registers without affecting the Z- and T-registers. If you press **x↔y** with data intact from the previous example, the numbers in the X- and Y-registers will be changed...

...from this...

T	4.00
Z	3.00
Y	2.00
X	1.00

...to this...

T	4.00
Z	3.00
Y	1.00
X	2.00

Display

Display

You can verify this by first listing the stack contents and then pressing **xy**. To see the results, list the stack contents again:

Press Display

LIST: **STACK**

1.00

xy

2.00

LIST: **STACK**

2.00

LIST	
4.00	T
3.00	Z
2.00	Y
1.00	X

LIST	
4.00	T
3.00	Z
1.00	Y
2.00	X

Notice that whenever you move numbers in the stack using one of the data manipulation keys, the actual stack registers maintain their positions. Only the *contents* of the registers are shifted. The contents of the X-register are always displayed.

Clearing the Stack

To clear the displayed X-register only, press **CLX**. To clear the entire automatic memory stack, including the displayed X-register, press **CLEAR**. This replaces all numbers in the stack with zeros. (It also clears all manual storage registers—more about these later.) When you turn the calculator OFF, then ON, it “wakes up” with all zeros in the stack registers.

Although it may be comforting, *it is never necessary to clear the stack or the displayed X-register when starting a new calculation.* This will become obvious when you see how old results in the stack are automatically lifted by new entries.

Press **CLX** now, and the stack contents are changed...

...from this...

T	4.00
Z	3.00
Y	1.00
X	2.00

Display

...to this.

T	4.00
Z	3.00
Y	1.00
X	0.00

Display

You can verify that only the X-register contents are affected by listing the stack contents after you have pressed **CLX**:

Press Display

		CL X
		LIST
	4.00	T
	3.00	Z
	1.00	Y
	0.00	X

Now press **CLEAR**. The contents of the stack are changed...

...from this...

T	4.00
Z	3.00
Y	1.00
X	0.00

...to this.

T	0.00
Z	0.00
Y	0.00
X	0.00

CLEAR

You can verify that the stack has been cleared completely and now contains all zeros by listing the stack contents:

Press Display

		LIST
	0.00	T
	0.00	Z
	0.00	Y
	0.00	X

The **ENTER+** Key

When you key a number into the calculator, its contents are written into the displayed X-register. For example, if you key in the number 314.32 now, you can see that the display contents are altered.

When you key in 314.32, the contents of the stack registers are changed...

...from this

T	0.00
Z	0.00
Y	0.00
X	0.00

...to this.

T	0.00
Z	0.00
Y	0.00
X	314.32

In order to key in another number at this point, you must first terminate digit entry—i.e., you must indicate to the calculator that you have completed keying in the first number and that any new digits you key in are part of a new number.

Use the **ENTER** key to separate the digits of the first number from the digits of the second.

When you press the **ENTER** key, the contents of the stack registers are changed...

...from this...

T	0.00
Z	0.00
Y	0.00
X	314.32

Display

...to this.

T	0.00
Z	0.00
Y	314.32
X	314.32

Display

As you can see, the number in the displayed X-register is copied into Y. The numbers in Y and Z have also been transferred to Z and T, respectively, and the number in T has been lost off the top of the stack. But this will be more apparent when we have different numbers in all four registers.

Immediately after pressing **ENTER**, the X-register is prepared for a new number, and that new number writes over the number in X. For example, key in the number 543.28 and the contents of the stack registers change...

...from this...

T	0.00
Z	0.00
Y	314.32
X	314.32

Display

...to this.

T	0.00
Z	0.00
Y	314.32
X	543.28

Display

CLX replaces any number in the display with zero. Any new number then writes over the zero in X.

For example, if you had meant to key in 689.4 instead of 543.28, you would press **CLX** now to change the stack...

...from this...

T	0.00
Z	0.00
Y	314.32
X	543.28

Display

...to this.

T	0.00
Z	0.00
Y	314.32
X	0.00

Display

and then key in 689.4 to change the stack...

...from this...

T	0.00
Z	0.00
Y	314.32
X	0.00

Display

...to this...

T	0.00
Z	0.00
Y	314.32
X	689.4

Display

Notice that numbers in the stack do not move when a new number is keyed in immediately after you press **LIST**: **STACK**, **PRINT X**, **ENTER**, or **CLX**. However, numbers in the stack *do* lift upward when a new number is keyed in immediately after you press most other functions, including **R[↓]**, **R[↑]**, and **X₂Y**.

One-Number Functions and the Stack

One-number functions execute upon the number in the X-register only, and the contents of the Y-, Z-, and T-registers are unaffected when a one-number function key is pressed.

For example, with numbers positioned in the stack as in the earlier example, pressing the **2⁶** key changes the stack contents...

...from this...

T	0.00
Z	0.00
Y	314.32
X	689.4

Display

...to this...

T	0.00
Z	0.00
Y	314.32
X	26.26

Display

The one-number function executes upon only the number in the displayed X-register, and the answer writes over the number that was in the X-register. No other register is affected by a one-number function.

Two-Number Functions and the Stack

Hewlett-Packard calculators do arithmetic by positioning the numbers in the stack the same way you would on paper. For instance, if you wanted to add 34 and 21 you would write 34 on a piece of paper and then write 21 underneath it, like this:

$$\begin{array}{r} 34 \\ +21 \\ \hline \end{array}$$

and then you would add, like this:

$$\begin{array}{r} 34 \\ +21 \\ \hline 55 \end{array}$$

Numbers are positioned the same way in the HP-91. Here's how it is done. (If you clear the stack first by pressing **CLEAR**, the numbers in the stack will correspond to those shown here in the example.)

Press	Display	
CLEAR	0.00	
34	34.	34 is keyed into X.
ENTER	34.00	34 is copied into Y.
21	21.	21 writes over the 34 in X.

Now 34 and 21 are sitting vertically in the stack as shown below, so we can add.

T	0.00
Z	0.00
Y	34.00
X	21.

Display

Press	Display	
+ PRINT X	55.00	The answer.

21.00 +
55.00 ***

The simple old-fashioned math notation helps explain how to use your calculator. Both numbers are always positioned in the stack in the natural order first; then the operation is executed when the function key is pressed. *There are no exceptions to this rule.* Subtraction, multiplication, and division work the same way. In each case, the data must be in the proper position before the operation can be performed.

To subtract 21 from 34:

$$\begin{array}{r} 34 \\ -21 \\ \hline \end{array}$$

Press	Display	
34	34.	34 is keyed into X.
ENTER	34.00	34 is copied into Y.
21	21.	21 writes over the 34 in X.
- PRINT X	13.00	The answer.

34.00 ENT1
21.00 -
13.00 ***

To multiply 34 by 21:

$$\begin{array}{r} 34 \\ \times 21 \\ \hline \end{array}$$

Press	Display	
34	34.	34 is keyed into X.
ENTER↑	34.00	34 is copied into Y.
21	21.	21 writes over the 34 in X.
x PRINT X	714.00	The answer.

34.00 ENT↑
21.00 X
714.00 ***

To divide 34 by 21:

$$\begin{array}{r} 34 \\ \hline 21 \end{array}$$

Press	Display	
34	34.	34 is keyed into X.
ENTER↑	34.00	34 is copied into Y.
21	21.	21 writes over the 34 in X.
÷ PRINT X	1.62	The answer.

34.00 ENT↑
21.00 ÷
1.62 ***

Chain Arithmetic

You've already learned how to key numbers into the calculator and perform calculations with them. In each case you first needed to position the numbers in the stack manually using the **ENTER↑** key. However, the stack also performs many movements automatically. These automatic movements add to its computing efficiency and ease of use, and it is these movements that automatically store intermediate results. The stack automatically "lifts" every calculated number in the stack when a new number is keyed in because it knows that after it completes a calculation, any new digits you key in are a part of a new number. Also, the stack automatically "drops" when you perform a two-number operation.

To see how it works, let's solve

$$16 + 30 + 11 + 17 = ?$$

If you press **CLEAR** first, you will begin with zeros in all of the stack registers, as in the example below; but of course, you can also do the calculation without first clearing the stack.

Note: You can use the **LIST: STACK** function to monitor the changes in the stack contents.

Press

Stack Contents

CLEAR

16

T	0.00
Z	0.00
Y	0.00
X	16.

16 is keyed into the displayed X-register.

ENTER

T	0.00
Z	0.00
Y	16.00
X	16.00

16 is copied into Y.

30

T	0.00
Z	0.00
Y	16.00
X	30.

30 writes over the 16 in X.

+

T	0.00
Z	0.00
Y	0.00
X	46.00

16 and 30 are added together. The answer, 46, is displayed.

11

T	0.00
Z	0.00
Y	46.00
X	11.

11 is keyed into the displayed X-register. The 46 in the stack is automatically raised.

+

T	0.00
Z	0.00
Y	0.00
X	57.00

46 and 11 are added together. The answer, 57, is displayed.

17

T	0.00
Z	0.00
Y	57.00
X	17.

17 is keyed into the X-register. 57 is automatically entered into Y.

CLEAR
16.00 ENT1
30.00 +
11.00 +
17.00 +
74.00 ***

+
PRINT X

T	0.00
Z	0.00
Y	0.00
X	74.00

57 and 17 are added together for the final answer.

After any calculation or number manipulation, the stack automatically lifts when a new number is keyed in. Because operations are performed when the operations are pressed, the length of such chain problems is unlimited unless a number in one of the stack registers exceeds the range of the calculator (up to $9.999999999 \times 10^{99}$).

In addition to the automatic stack lift after a calculation, the stack automatically drops during calculations involving both the X- and Y-registers. It happened in the above example, but let's do the problem differently to see this feature more clearly. First press **CLX** to clear the X-register. Now, again solve $16 + 30 + 11 + 17 = ?$

Press Stack Contents

16	T	0.00
	Z	0.00
	Y	0.00
	X	16.

16 is keyed into the displayed X-register.

ENTER+	T	0.00
	Z	0.00
	Y	16.00
	X	16.00

16 is copied into Y.

30	T	0.00
	Z	0.00
	Y	16.00
	X	30.

30 is written over the 16 in X.

ENTER+	T	0.00
	Z	16.00
	Y	30.00
	X	30.00

30 is entered into Y.
16 is lifted up to Z.

11	T	0.00
	Z	16.00
	Y	30.00
	X	11.

11 is keyed into the displayed X-register.

Press

Stack Contents

ENTER↑

T	16.00
Z	30.00
Y	11.00
X	11.00

11 is copied into Y. 16 and 30 are lifted up to T and Z respectively.

17

T	16.00
Z	30.00
Y	11.00
X	17.

17 is written over the 11 in X.

+

T	16.00
Z	16.00
Y	30.00
X	28.00

17 and 11 are added together and the rest of the stack drops. 16 drops to Z and is also duplicated in T. 30 and 28 are ready to be added.

+

T	16.00
Z	16.00
Y	16.00
X	58.00

30 and 28 are added together and the stack drops again. Now 16 and 58 are ready to be added.

+

PRINTX

T	16.00
Z	16.00
Y	16.00
X	74.00

16 and 58 are added together for the final answer and the stack continues to drop.

16.00	ENT↑
30.00	ENT↑
11.00	ENT↑
17.00	+
	+
	+
74.00	***

The same dropping action also occurs with $-$, \times and \div . The number in T is duplicated in T and drops to Z, the number in Z drops to Y, and the numbers in Y and X combine to give the answer, which is visible in the X-register.

This automatic lift and drop of the stack give you tremendous computing power since you can retain and position intermediate results in long calculations without the necessity of reentering the numbers.

Order of Execution

When you see a problem like this one:

$$5 \times [(3 \div 4) - (5 \div 2) + (4 \times 3)] \div (3 \times .213)$$

you must decide where to begin before you ever press a key.

Experienced HP calculator users have determined that by starting every problem at its innermost number or parentheses and working outward, just as you would with paper and pencil, you maximize the efficiency and power of your HP calculator. Of course, with the HP-91 you have tremendous versatility in the order of execution.

For example, you could work the problem above by beginning at the left side of the equation and simply working through it in left-to-right order. All problems cannot be solved using left-to-right order, however, and the best order for solving any problem is to begin with the innermost parentheses and work outward. So, to solve the problem above:

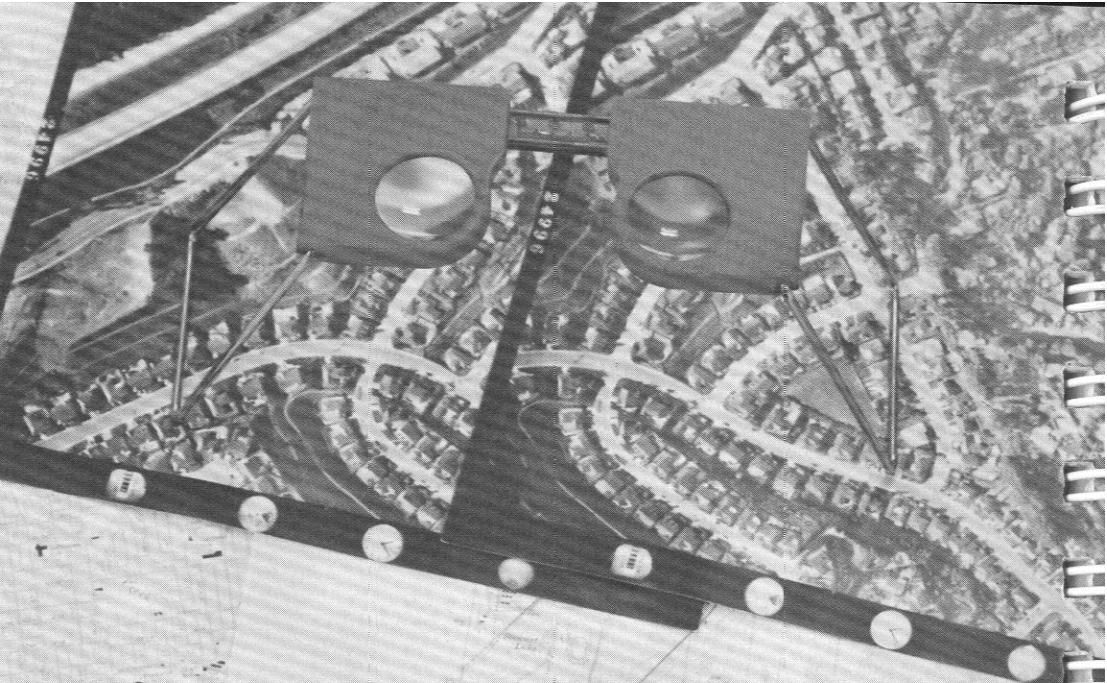
Press	Display	
3	3.	
ENTER↑	3.00	
4	4.	
÷	0.75	Intermediate answer for $(3 \div 4)$.
5	5.	
ENTER↑	5.00	
2	2.	
÷	2.50	Intermediate answer for $(5 \div 2)$.
—	-1.75	Intermediate answer for $(3 \div 4) - (5 \div 2)$.
4	4.	
ENTER↑	4.00	
3	3.	
×	12.00	Intermediate answer for (4×3) .
+	10.25	Intermediate answer for $(3 \div 4) - (5 \div 2) + (4 \times 3)$.
3	3.	
ENTER↑	3.00	
.213	.213	
×	0.64	Intermediate answer for $(3 \times .213)$.
÷	16.04	
5	5.	The first number is keyed in.
×	80.20	
PRINT X	80.20	80.20 ***

Constant Arithmetic

You may have noticed that whenever the stack drops because of a two-number operation (not because of **R**), the number in the T-register is reproduced there. This stack operation can be used to insert a constant into a problem.

Example: A bacteriologist tests a certain strain whose population typically increases by 15% each day. If he starts a sample culture of 1000, what will be the bacteria population at the end of each day for 6 consecutive days?

Method: Put the growth factor (1.15) in the Y-, Z-, and T-registers and put the original population (1000) in the X-register. Thereafter, you get the new population whenever you press **x**. Try working this problem with the Print Mode switch set to **ALL** so that you'll have a record of all the answers without pressing **PRINTx** each time.


Slide the Print Mode switch **MAN** **NORM** to **ALL**.

Press	Display	
1.15	1.15	Growth factor.
ENTER	1.15	
ENTER	1.15	
ENTER	1.15	
1000	1000.	Growth factor now in T.
x	1150.00	Starting population.
x	1322.50	Population after 1 st day.
x	1520.88	Population after 2 nd day.
x	1749.01	Population after 3 rd day.
x	2011.36	Population after 4 th day.
x	2313.06	Population after 5 th day.
x		Population after 6 th day.

1.15	ENT1
	ENT1
	ENT1
1000.00	x
1150.00	***
	x
1322.50	***
	x
1520.88	***
	x
1749.01	***
	x
2011.36	***
	x
2313.06	***

When you press **x** the first time, you calculate 1.15×1000 . The result (1150.00) is displayed in the X-register and a new copy of the growth factor drops into the Y-register. Since a new copy of the growth factor is duplicated from the T-register each time the stack drops, you never have to reenter it.

Notice that performing a two-number operation such as **x** causes the number in the T-register to be duplicated there each time the stack is dropped. However, the **R+** key, since it rotates the contents of the stack registers, does not rewrite any number, but merely shifts the numbers that are already in the stack.

Section 4

Function Keys

The HP-91 has dozens of internal functions that allow you to compute answers to problems quickly and accurately. Each function operates immediately when the function key is pressed. To save printing time and paper, you might wish to learn how to use the functions with the Print Mode switch set to MAN. Or you might want to see every intermediate and final answer by setting the switch to ALL. Except when indicated, however, all examples in this section are illustrated with the Print Mode switch **MAN** **NORM** set to NORM.

LAST X

In addition to the four stack registers that automatically store intermediate results, the HP-91 also contains a separate automatic register, the LAST X register. This register preserves the value that was in the displayed X-register before the performance of a function. To place the contents of the LAST X register into the display again, press **LAST X**.

Recovering from Mistakes

LAST X makes it easy to recover from keystroke mistakes, such as pressing the wrong function key or keying in the wrong number.

Example: Divide 12 by 2.157 after you have mistakenly divided by 3.157.

Press	Display	
12	12.	
ENTER	12.00	
3.157 ÷	3.80	
LAST X	3.16	Oops! You made a mistake.
×	12.00	Retrieves that last entry (3.157).
2.157 ÷	5.56	You're back at the beginning.
PRINT X	5.56	The correct answer.

In this example, when **LAST X** is pressed, the contents of the stack and **LAST X** register are changed...

...from this...

T	0.00
Z	0.00
Y	0.00
X	3.80

...to this.

T	0.00
Z	0.00
Y	3.80
X	3.16

LAST X

3.16

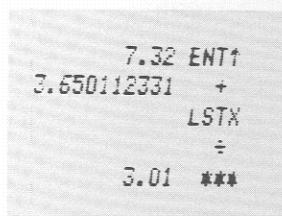
LAST X

3.16

This makes possible the correction illustrated in the example above.

Recovering a Number

The LAST X register is useful in calculations where a number occurs more than once. By recovering a number using **LAST X**, you do not have to key that number into the calculator again.

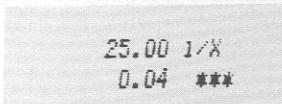

Example: Calculate

$$\frac{7.32 + 3.650112331}{3.650112331}$$

Press Display

7.32	7.32
ENTER↑	7.32
3.650112331	3.650112331
+	10.97
LAST X	3.65
÷	3.01
PRINT X	3.01

Intermediate answer.
Recalls 3.650112331
to X-register.
The answer.



Reciprocals

To calculate the reciprocal of a number in the displayed X-register, key in the number, then press **1/X**. For example, to calculate the reciprocal of 25:

Press Display

25	0.04
PRINT X	0.04

You can also calculate the reciprocal of a value in a previous calculation without reentering the number.

Example: In an electrical circuit, four resistors are connected in parallel. Their values are 220 ohms, 560 ohms, 1.2 kilohms, and 5 kilohms. What is the total resistance of the circuit?

$$R_T = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4}} = \frac{1}{\frac{1}{220} + \frac{1}{560} + \frac{1}{1200} + \frac{1}{5000}}$$

Press

Display

220 $\frac{1}{x}$

4.545454545-03

560 $\frac{1}{x}$

1.785714286-03

+

0.01

1200 $\frac{1}{x}$

8.333333333-03

+

0.01

5000 $\frac{1}{x}$

2.000000000-04

+

0.01

 $\frac{1}{x}$

135.79

The reciprocal of the sum of reciprocals yields the answer in ohms.

PRINT x

135.79

220.00 1/x
560.00 1/x
+
1200.00 1/x
+
5000.00 1/x
+
1/x
135.79 ***

Factorials

The $\boxed{N!}$ (factorial) key permits you to handle permutations and combinations with ease. To calculate the factorial of a positive integer in the displayed X-register, press $\boxed{6}$ $\boxed{N!}$.

Example: Calculate the number of ways that six people can line up for a photograph.

Method: $P_6^6 = 6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1$.

Press

Display

6

6.

 $\boxed{N!}$

720.00

PRINT x

720.00

The answer.

6.00 N!
720.00 ***

The calculator overflows for factorials of numbers greater than 69.

Square Roots

To calculate the square root of a number in the displayed X-register, press \sqrt{x} . For example, to find the square root of 16:

Press

Display

16 \sqrt{x}

4.00

PRINT x

4.00

16.00 \sqrt{x}
4.00 ***

To find the square root of the result:

Press	Display	
$\boxed{x^2}$	2.00	
PRINT X	2.00	\sqrt{x} 2.00 ***

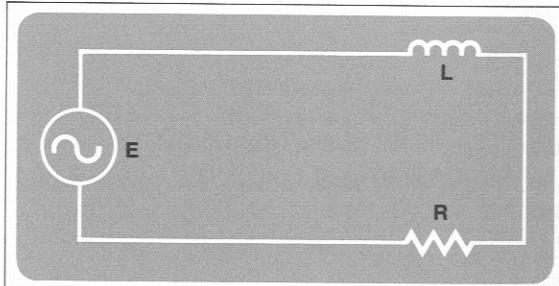
Squaring

To square a number in the displayed X-register, press $\boxed{x^2}$. For example, to find the square of 45:

Press	Display	
45 $\boxed{x^2}$	2025.00	45.00 x^2
PRINT X	2025.00	2025.00 ***

To find the square of the result:

Press	Display	
$\boxed{x^2}$	4100625.00	x^2
PRINT X	4100625.00	4100625.00 ***


Using Pi

The value π accurate to 10 places (3.141592654) is provided as a fixed constant in the HP-91. Merely press $\boxed{\pi}$ whenever you need it in a calculation. For example, to calculate 3π :

Press	Display	
3 $\boxed{\pi}$ \boxed{x}	9.42	3.00 π
PRINT X	9.42	9.42 ***

Example: In the schematic diagram below, X_L is 12 kilohms, R is 7 kilohms, E is 120 volts, and f is 60 Hz. Find the inductance of the coil L in henries according to the formula:

$$L = \frac{X_L}{2\pi f}$$

$$L = \frac{X_L}{2\pi f} = \frac{12,000}{2 \times \pi \times 60}$$

Press	Display	
12 EEX 3	12. 03	12.+03 ENT↑
ENTER↑	12000.00	2.00 ÷
2 ÷	6000.00	1
π ÷	1909.86	÷
60 ÷	31.83	60.00 ÷
PRINTX	31.83	31.83 ***

Henries.

Percentages

The **%** key is a two-number function which allows you to compute percentages. To find the percentage of a number:

1. Key in the base number.
2. Press **ENTER↑**.
3. Key in the number representing percent rate.
4. Press **%**.

For example, to calculate a sales tax of 6.5% on a purchase of \$1500:

Press	Display	
1500 ENTER↑	1500.00	Base number.
6.5	6.5	Percent rate.
%	97.50	The answer.
PRINTX	97.50	1500.00 ENT↑
		6.50 %
		97.50 ***

6.5% of \$1500 is \$97.50.

In the above example, when the **%** key is pressed, the calculated answer writes over the percentage rate in the X-register, and the base number is preserved in the Y-register.

When you press **%**, the stack contents were changed...

...from this...

T	0.00
Z	0.00
Y	1500.00
X	6.5

...to this.

T	0.00
Z	0.00
Y	1500.00
X	97.50

Since the purchase price is now in the Y-register and the amount of tax is in the X-register, the total amount can be obtained by simply adding:

Press	Display	
+	1597.50	Total of price and sales tax combined.
PRINTX	1597.50	1597.50 ***

Percent of Change

The $\Delta\%$ (percent of change) key is a two-number function that gives the percent increase or decrease from Y to X. To find the percent of change:

1. Key in the base number (usually, the number that happens first in time).
2. Press **ENTER**
3. Key in the second number.
4. Press **Δ%**

Example: Find the percent of increase of your rent 10 years ago ((\$70 per month) to today (\$240 per month).

Press

70 **ENTER**
240 **Δ%**
PRINT

Display

70.00
242.86
242.86

Percent increase.

70.00 ENT1
240.00 Δ%
242.86 ***

Storage Registers

In addition to automatic storage of intermediate results that is provided by the four-register automatic memory stack, the HP-91 also has 16 addressable storage registers that are unaffected by operations within the stack. These storage registers allow you to set aside numbers as constants or for use in later calculations.

Automatic Memory Stack

T
Z
Y
X

Display

LAST X

Storage Registers

R ₀
R ₁
R ₂
R ₃
R ₄
R ₅
R ₆
R ₇
R ₈
R ₉

R ₀
R ₁
R ₂
R ₃
R ₄
R ₅
R ₆

The addresses of the storage registers are indicated by number keys **0** through **9**, and by **LAST** **0** through **LAST** **5**.

Storing Numbers

To store a displayed number in any of storage registers R₀ through R₉:

1. Press **STO** (store).
2. Press the number key of the applicable register address (**0** through **9**).

For example, to store Avogadro's number (approximately 6.02×10^{23}) in register R₂:

Press Display

6.02 **EEX** 23

6.02	23
6.0200000000 23	

STO 2

6.02+23 S 2

Avogadro's number is now stored in register R₂. Notice that when a number is stored, it is merely copied into the storage register, so 6.02×10^{23} also remains in the displayed X-register.

To store a displayed number in any of storage registers R₀ through R₅:

1. Press **STO**.
2. Press the decimal point key **.**.
3. Press the number key of the applicable register address (0 through 5).

For example, to store 16,495,000 (the number of persons carried daily by the Japanese National Railway) in register R₄:

Press Display

16495000

16495000.
16495000.00

STO **.** 4

16495000.00 S.4

The number has been copied into storage register R₄ and also remains in the displayed X-register.

Recalling Numbers

Numbers are recalled from storage registers back into the displayed X-register in much the same way as they are stored. To recall a number from any of storage registers R₀ through R₉:

1. Press **RCL** (*recall*).
2. Press the number key of the applicable register address (0 through 9).

For example, to recall Avogadro's number from register R₂:

Press Display

RCL 2

6.0200000000 23

R 2

To recall a number from any of registers R₀ through R₅:

1. Press **RCL**.
2. Press the decimal point key **.**.
3. Press the number key of the applicable register address (**0** through **5**).

For example, to recall the number of persons carried daily by the Japanese National Railway:

Press Display

RCL **.** 4

16495000.00

R.4

Recalling a number causes the stack to lift unless the preceding keystroke was **ENTER**, **CLX**, or **$\Sigma+$** (more about **$\Sigma+$** later).

When you recall a number, it is copied from the storage register into the display, and it also remains in the storage register. You can recall a number from a storage register any number of times without altering it—the number will remain in the storage register as a 10-digit number with a two-digit exponent of 10 until you overwrite it by storing another number there, or until you clear the storage registers.

Example: Three tanks have capacities in U.S. units of 2.0, 14.4, and 55.0 gallons, respectively. If 1 U.S. gallon is equivalent to 3.785 liters, what is the capacity in liters of each of the tanks?

Method: Place the conversion constant in one of the storage registers and bring it out as required.

Press **Display**

3.785 STO 0	3.79
2 x	7.57
PRINTX	7.57
14.4 RCL 0 x	54.50
PRINTX	54.50
55 RCL 0 x	208.18
PRINTX	208.18

Constant placed in register R_0 .

Capacity in liters of 1st tank.

Capacity in liters of 2nd tank.

Capacity in liters of 3rd tank.

3.785 S 0	3.79
2.00 x	7.57 ***
14.40 k 0	54.50 ***
55.00 R 0	208.18 ***

Listing the Storage Registers

You can see the contents of all of the storage registers at any time by pressing **LIST: [REG]** to print the contents of all storage registers. If you have worked through the examples above, a listing of storage contents should look like the one shown here.

Press **Display**

LIST: [REG]	208.18
--------------------	---------------

LIST	3.79 \leftarrow 0
	0.00 \leftarrow 1
	€.020000000+23 \leftarrow 2
	0.00 \leftarrow 3
	0.00 \leftarrow 4
	0.00 \leftarrow 5
	0.00 \leftarrow 6
	0.00 \leftarrow 7
	0.00 \leftarrow 8
	0.00 \leftarrow 9
	0.00 \leftarrow .0
	0.00 \leftarrow .1
	0.00 \leftarrow .2
	0.00 \leftarrow .3
	16495000.00 \leftarrow .4
	0.00 \leftarrow .5

If you want only a partial listing of storage registers, you can stop the printing of them at any time by holding down the paper advance pushbutton for about one second, then releasing it.

Clearing Storage Registers

Notice that even though you have recalled the numbers from storage registers R_0 , R_2 , and $R_{.4}$, the numbers remain in the registers. A number stored in one of the storage registers may be recalled into the display any number of times, and it will still remain in the storage register. Storage registers may be cleared in any of three ways:

- To replace a number in a storage register, merely store another number there. To clear a storage register, replace the number in it with zero. For example, to clear storage register R_2 , press 0 **STO** 2.
- To clear *all* storage registers back to zero at one time, press **CLEAR**. Besides replacing the contents of each storage register with zero, this also replaces the contents of the automatic memory stack with zeros as well.
- When the HP-91 is first turned ON, it “wakes up” with the quantity zero in each of the storage registers and in each of the automatic stack registers. Thus, turning the calculator OFF, then ON, also clears the storage registers and the stack.

You can also clear storage registers R_0 through R_9 or registers $R_{.0}$ through $R_{.5}$ while leaving the remaining registers and the stack intact.

- Press **CL REG** to clear only storage registers R_0 through R_9 while preserving the contents of the stack and storage registers $R_{.0}$ through $R_{.5}$.
- Press **CL** to clear only storage registers $R_{.0}$ through $R_{.5}$ while preserving the contents of the stack and storage registers R_0 through R_9 .

Storage Register Arithmetic

Arithmetic can be performed *upon* the contents of storage registers R_0 through R_9 by pressing **STO** followed by the arithmetic function key followed in turn by the register address. For example:

Press	Result
STO + 1	Number in displayed X-register added to contents of storage register R_1 , and sum placed into R_1 ; $(r_1 + x \rightarrow R_1)$.
STO - 2	Number in displayed X-register subtracted from contents of storage register R_2 , and difference placed into R_2 ; $(r_2 - x \rightarrow R_2)$.
STO × 3	Number in displayed X-register multiplied by contents of storage register R_3 , and the product placed into R_3 ; $[(r_3)x \rightarrow R_3]$.
STO ÷ 4	Contents of storage register R_4 divided by number in displayed X-register, and quotient placed into register R_4 ; $(r_4 \div x \rightarrow R_4)$.

When storage register arithmetic operations are performed, the answer is written into the selected storage register, while the contents of the displayed X-register and the rest of the stack remain unchanged.

Notice that you can perform storage register arithmetic upon the contents of *only* storage registers R_0 through R_9 . You *cannot* perform storage register arithmetic upon storage registers $R_{.0}$ through $R_{.5}$.

Example: During harvest, farmer Flem Snopes trucks tomatoes to the cannery for three days. On Monday and Tuesday he hauls loads of 25 tons, 27 tons, 19 tons, and 23 tons, for which the cannery pays him \$55 per ton. On Wednesday the price rises to \$57.50 per ton, and Snopes ships loads of 26 tons and 28 tons. If the cannery deducts 2% of the price on Monday and Tuesday because of blight on the tomatoes, and 3% of the price on Wednesday, what is Snopes' total net income?

Method: Keep total amount in a storage register while using the stack to add tonnages and calculate amounts of loss.

Press **Display**

25 ENTER	25.00
27 +	52.00
19 + 23 +	94.00
55 x	5170.00
STO 5	5170.00
2 %	103.40
STO - 5	103.40
26 ENTER	26.00
28 +	54.00
57.50 x	3105.00
STO + 5	3105.00
3 %	93.15
STO - 5	93.15
RCL 5	8078.45
PRINT x	8078.45

Total of Monday's and Tuesday's tonnage.

Gross amount for Monday and Tuesday.

Gross placed in storage register R_5 .

Deductions for Monday and Tuesday.

Deductions subtracted from total in storage register R_5 .

Wednesday's tonnage.

Gross amount for Wednesday.

Wednesday's gross amount added to total in storage register R_5 .

Deduction for Wednesday.

Wednesday deduction subtracted from total in storage register R_5 .

Snopes' total net income from his tomatoes.

25.00	ENT
27.00	+
19.00	+
23.00	+
55.00	x
2.00	S
5	%
26.00	ENT
28.00	+
57.50	x
3.00	S
5	%
8078.45	***

(You could also work this problem using the stack alone, but doing it as shown here illustrates how storage register arithmetic can be used to maintain and update different running totals.)

Trigonometric Functions

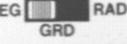
Your HP-91 provides you with six trigonometric functions, which operate in decimal degrees, radians, or grads. You can convert angles between decimal degrees and *degrees minutes, seconds*, and you can add and subtract angles in any of these forms without converting them.

Trigonometric Modes

The Trigonometric Mode switch is used to select whether angles are assumed by the calculator to be specified in decimal degrees, radians, or grads.

Note: 360 degrees = 400 grads = 2π radians.

Functions


The six trigonometric functions provided by the calculator are:

SIN	(sine)
	(arc sine)
COS	(cosine)
	(arc cosine)
TAN	(tangent)
	(arc tangent)

Each trigonometric function assumes that angles are in decimal degrees, radians, or grads, depending upon the position of the Trigonometric Mode switch.

All trigonometric functions are one-number functions, so to use them, you key in the number, then press the function key(s).

Example 1: Find the cosine of 35° .

First, specify degrees mode by sliding the Trigonometric Mode switch to DEG.

Press Display

35	35.00
COS	0.82
PRINTX	0.82

35.00 COS
0.82 ***

Example 2: Find the arc sine in radians of $.964$.

First, specify radians mode by sliding the Trigonometric Mode switch to RAD.

Press Display

.964	.964
	1.30
PRINTX	1.30

Radians.

.964 SIN⁻¹
1.30 ***

Example 3: Find the tangent of 43.66 grads.

Slide the Trigonometric Mode switch to GRD.

Press Display

43.66

43.66

TAN

0.82

PRINTx

0.82

43.66 TAN
0.82 ***

Hours, Minutes, Seconds/Decimal Hours Conversions

Using the HP-91, you can change time specified in decimal hours to *hours, minutes, seconds* format by using the (to *hours, minutes, seconds*) key; you can also change from *hours, minutes, seconds* to decimal hours by using the (from *hours, minutes, seconds*) key.

When a time is displayed or printed in *hours, minutes, seconds* format, the digits specifying *hours* occur to the left of the decimal point, while the digits specifying *minutes, seconds, and fractions of seconds* occur to the right of the decimal point.

Hours, Minutes, Seconds Display

2 4.56789

↑ ↑ ↑ ↑
Hours Minutes Seconds Tents of a Second

To convert from decimal hours to *hours, minutes, seconds*, simply key in the value for decimal hours and press . For example, to change 21.57 hours to *hours, minutes, seconds*:

Press Display

21.57

21.57

Key in the decimal time.

 4

21.5700

Reset display format.

21.3412

This is 21 hours, 34

PRINTx

21.3412

minutes, 12 seconds.

21.5700
→H.MS
21.3412 ***

Notice that the display is *not* automatically switched to show you more than the normal two digits after the decimal point (2), so to see the digits for *seconds*, you had to reset the display format to 4.

To convert from *hours, minutes, seconds* to decimal hours, simply key in the value for *hours, minutes, seconds* in that format and press **H.MS+**. For example, to convert 132 hours, 43 minutes, and 29.33 seconds to its decimal degree equivalent:

Press **Display**

132.432933

 132.432933

This is 132 hours,
43 minutes, 29.33
seconds.

 H.MS+

132.7248

This is 132.7248
hours.

PRINTx

132.7248

132.432933 H.MS+
132.7248 ***

Using the and operations, you can also convert angles specified in decimal degrees to *degrees, minutes, seconds*, and vice versa. The format for *degrees, minutes, seconds* is the same as for *hours, minutes, seconds*.

Example: Convert 42.57 decimal degrees to *degrees, minutes, seconds*.

Press **Display**

42.57

 42.57

Key in the angle.

This means $42^{\circ}34'12''$. (Display
assumes **FIX** 4
notation remains
specified from
previous example.)

PRINTx

42.3412

42.5700 →HMS
42.3412 ***

Example: Convert $38^{\circ}8'56.7''$ to its decimal equivalent.

Press **Display**

38.08567

 38.08567

Key in the angle.

Answer in decimal
degrees. (**FIX** 4
display specified
from previous
example.)

PRINTx

38.1491

38.08567 H.MS+
38.1491 ***

Adding and Subtracting Time and Angles

To add or subtract decimal hours, merely key in the numbers for the decimal hours and press or . To add or subtract *hours, minutes, seconds*, use the (*add hours, minutes, seconds*) and (*subtract hours, minutes, seconds*) keys.

Likewise, angles specified in *degrees, minutes, seconds* are added by pressing and subtracted by pressing .

Example: Find the sum of 45 hours, 10 minutes, 50.76 seconds and 24 hours, 49 minutes, 10.95 seconds.

Press **Display**

45.105076

ENTER

45.105076

45.1051

24.491095

H.MS+

24.491095

70.0002

6

70.000171

PRINT **X**

70.000171

[FIX] 4 notation from previous example.

45.105076 ENT1

24.491095 HMS+

70.000171 ***

Example: Subtract 142.78° from 312°32'17'', with the answer in *degrees, minutes, seconds* format.

Press **Display**

312.3217

ENTER

312.3217

312.321700

142.78

H.MS

142.78

142.464800

[FIX] 6 from previous example.

312.321700 ENT1

142.780000 →HMS

HMS-

PRINT **X** **H.MS-**

169.452900

169.45

Decimal degrees.

To degrees, minutes, seconds.

169.452900 ***

This is 169°45'29''.

Display mode reset.

In the HP-91, trigonometric functions assume angles in decimal degrees, decimal radians, or decimal grads, so if you want to compute any trigonometric functions of an angle given in *degrees, minutes, and seconds*, you must first convert the angle to decimal degrees.

Example: Lovesick sailor Oscar Odysseus dwells on the island of Tristan da Cunha (37°03'S, 12°18'W), and his sweetheart, Penelope, lives on the nearest island. Unfortunately for the course of true love, however, Tristan da Cunha is the most isolated inhabited spot in the world. If Penelope lives on the island of St. Helena (15°55'S, 5°43'W), use the following formula to calculate the great circle distance that Odysseus must sail in order to court her.

$$\text{Distance} = \cos^{-1} [\sin(\text{LAT}_s) \sin(\text{LAT}_d) + \cos(\text{LAT}_s) \cos(\text{LAT}_d) \cos(\text{LNG}_d - \text{LNG}_s)] \times 60.$$

Where: LAT_s and LNG_s = latitude and longitude of the source (Tristan da Cunha).

LAT_d and LNG_d = latitude and longitude of the destination.

Solution: Convert all *degrees, minutes, seconds* entries into decimal degrees as you key them in. The equation for the great circle distance from Tristan da Cunha to the nearest inhabited land is:

$$\text{Distance} = \cos^{-1} [\sin(37^\circ 03') \sin(15^\circ 55') + \cos(37^\circ 03') \cos(15^\circ 55') \cos(5^\circ 43' \text{W} - 12^\circ 18' \text{W})] \times 60$$

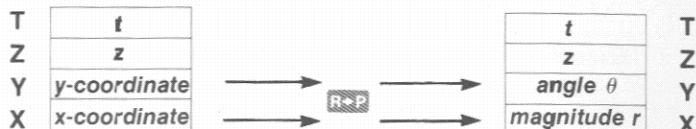
First, ensure that the Trigonometric Mode switch is set to DEG.

Press **Display**

5.43	5.43
	5.72
12.18	12.18
	-6.58
COS	0.99
15.55	15.55
	15.92
STO 1	15.92
COS	0.96
x	0.96
37.03	
STO 0	37.05
COS	0.80
x	0.76
RCL 0 SIN	0.60
RCL 1 SIN	0.27
x	0.17
+	0.93
	21.92
60 x PRINTx	1315.41

Distance in nautical miles that Odysseus must sail to visit Penelope.

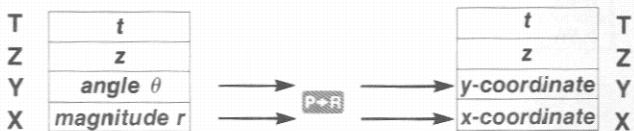
5.43	HMS+
12.18	HMS+
-6.58	-
0.99	COS
15.55	HMS+
15.92	S 1
15.92	COS
0.96	x
37.03	HMS+
37.05	S 0
0.80	COS
0.76	x
0.60	R 0
0.27	SIN
0.17	R 1
0.93	SIN
21.92	x
1315.41	+
60.00	COS^-1
1315.41	***


Polar/Rectangular Coordinate Conversions

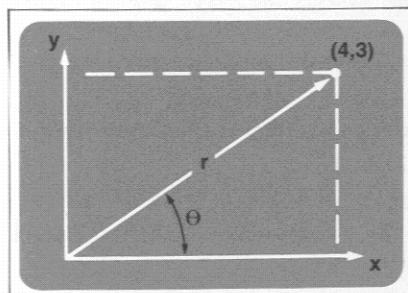
Two functions are provided for polar/rectangular coordinate conversions. Angle θ is assumed in decimal degrees, radians, or grads, depending upon the position of the Trigonometric Mode switch.

To convert from rectangular x, y coordinates to polar r, θ coordinates (magnitude and angle, respectively):

1. Key in the y-coordinate.
2. Press **ENTER** to raise the y-coordinate value to the Y-register of the stack.
3. Key in the x-coordinate.
4. Press the **R \leftrightarrow P** (rectangular to polar) key. Magnitude r then appears in the X-register and angle θ is placed in the Y-register. (To display the value for θ , you press **xxY**.)


The following diagram shows how the stack contents change when you press **R+P**.

To convert from polar r, θ , coordinates to rectangular x, y, coordinates:


1. Key in the value for the angle θ .
2. Press **ENTER** to raise the value for θ to the Y-register of the stack.
3. Key in the value for magnitude r .
4. Press the **P+R** (polar to rectangular) key. The x-coordinate then appears in the displayed X-register and the y-coordinate is placed in the Y-register. (To display the value for the y-coordinate, you can press **x_y**.)

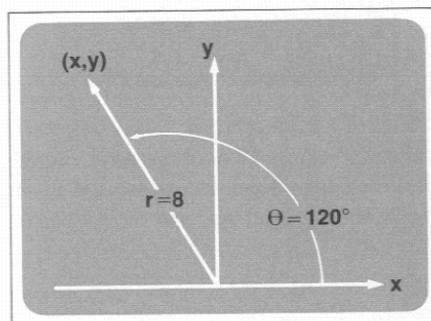
The following diagram shows how the stack contents change when you press **P+R**.

After you have pressed **R+P** or **P+R**, you can use the **x_y** key to bring the calculated angle θ or the calculated y-coordinate into the X-register for viewing or further calculation. With the Print Mode switch set to MAN or NORM, you must also use the **x_y** key to *print* these values. With the Print Mode switch **MAN** **NORM** set to ALL, however, both computed values are printed automatically when you press **R+P** or **P+R**. (No three-asterisk label is printed next to these results in ALL. Instead, they are conveniently labeled with symbols for x and y or for r and θ . These results are printed in the specified display format.)

Example 1: Convert rectangular coordinates (4, 3) to polar form with the angle expressed in radians.

Slide the Trigonometric Mode switch to RAD.

Press Display

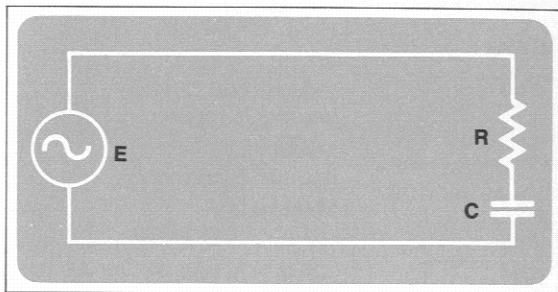

3	ENTER	3.00	y-coordinate entered into the Y-register.
4		4.	x-coordinate keyed into the X-register.
R→P		5.00	Magnitude r .
PRINT X		5.00	
x₂y		0.64	Angle θ in radians.
PRINT X		0.64	

3.00	ENT†
4.00	R→P
5.00	***
X ₂ Y	
0.64	***

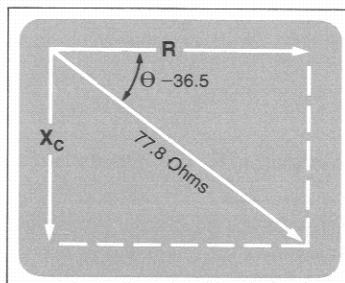
Now slide the Print Mode switch to ALL and work the problem again.

3.00	ENT†
4.00	R→P
0.64	θ
5.00	R

Example 2: Convert polar coordinates $(8, 120^\circ)$ to rectangular coordinates.


Slide the Trigonometric Mode switch to DEG.

Ensure that the Print Mode switch is set to ALL.


Press Display

120	ENTER	120.00	Angle θ entered into the Y-register.
8		8.	Magnitude r placed in displayed X-register.
P→R		-4.00	x-coordinate.
x₂y		6.93	y-coordinate brought into displayed X-register for use, if desired.

120.00	ENT†
8.00	P→R
6.93	Y
-4.00	X
	X ₂ Y
6.93	***

Example 3: Engineer Tobias Slothrop has determined that in the RC circuit shown above, the total impedance is 77.8 ohms and voltage lags current by 36.5° . What are the values of resistance R and capacitive reactance X_c in the circuit?

Method: Draw a vector diagram using 77.8 ohms total impedance for polar magnitude r and -36.5° for angle θ . When the values are converted to rectangular coordinates, the x-coordinate value yields resistance R in ohms, and the y-coordinate value yields reactance X_c in ohms.

Solution:

Ensure that the Trigonometric Mode switch is set to DEG.

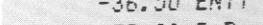
Ensure that the Print Mode switch is set to ALL.

Press

36.5

77.8

Display



Resistance R in ohms.

Reactance X_c , 46.28 ohms, available in displayed X-register.


 ENT↑

 F+R

 Y

 X

Logarithmic and Exponential Functions

Logarithms

The HP-91 computes both natural and common logarithms as well as their inverse functions (antilogarithms):

LN is \log_e (natural log). It takes the log of the value in the X-register to base e (2.718. . .).

e^x is antilog_e (natural antilog). It raises e (2.718. . .) to the power of the value in the X-register. (To display the value of e, press 1 **e^x** .)

LOG is \log_{10} (common log). It computes the log of the value in the X-register to base 10.

10^x is antilog_{10} (common antilog). It raises 10 to the power of the value in the X-register.

Example 1: The 1906 San Francisco earthquake, with a magnitude of 8.25 on the Richter Scale is estimated to be 105 times greater than the Nicaragua quake of 1972. What would be the magnitude of the latter on the Richter Scale?

The equation is:

$$R_1 = R_2 - \log \frac{M_2}{M_1} = 8.25 - \left(\log \frac{105}{1} \right)$$

Solution:

(If you want your printed copy to match the one shown here, slide the Print Mode switch

ALL
MAN NORM to NORM.)

Press Display

8.25 ENTER	8.25
105 LOG	2.02
-	6.23
PRINT x	6.23

Rating on Richter scale.

8.25 ENT ↑
105.00 LOG
-
6.23 ***

Example 2: Having lost most of his equipment in a blinding snowstorm, ace explorer Jason Quarmorte is using an ordinary barometer as an altimeter. After measuring the sea level pressure (30 inches of mercury) he climbs until the barometer indicates 9.4 inches of mercury. Although the exact relationship of pressure and altitude is a function of many factors, Quarmorte knows that an *approximation* is given by the formula:

$$\text{Altitude (feet)} = 25,000 \ln \frac{30}{\text{Pressure}} = 25,000 \ln \frac{30}{9.4}$$

Where is Jason Quarmorte?

Solution:

Press **Display**

30	ENTER↑	30.00
9.4	÷	3.19
LN		1.16
25000		25000
x		29012.19
PRINTx		29012.19

Altitude in feet.

Quarmorte is probably near the summit of Mount Everest (29,028 feet).

Raising Numbers to Powers

The **y** key is used to raise numbers to powers. Using the **y** permits you to raise a positive real number to any real power—that is, the power may be positive or negative, and it may be an integer, a fraction, or a mixed number. **y^x** also permits you to raise any negative real number to the power of any integer (within the calculating range of the HP-91, of course).

For example, to calculate 2^9 (that is, $2 \times 2 \times 2$):

Press **Display**

2	ENTER↑	9	9.
y			512.00
PRINTx			512.00

To calculate $8^{-1.2567}$:

Press **Display**

8	ENTER↑	8.00
1.2567	CHS	-1.2567
y^x		0.07
PRINTx		0.07

To calculate $(-2.5)^5$:

Press **Display**

2.5	CHS	-2.5
ENTER↑		-2.50
5	y^x	-97.66
PRINTx		-97.66

In conjunction with **y^x**, **y** provides a simple way to extract roots. For example, find the cube root of 5. (This is equivalent to $5^{1/3}$.)

Press **Display**

5	ENTER↑	5.00
y		0.33
PRINTx		1.71

Reciprocal of 3.
Cube root of 5.

Example: In a rather overoptimistic effort to break the speed of sound, highflying pilot Ike Daedalus cranks open the throttle on his surplus Hawker Siddeley Harrier aircraft. From his instruments he reads a pressure altitude (PALT) of 25,500 feet with a calibrated airspeed (CAS) of 350 knots. What is the flight mach number

$$M = \frac{\text{speed of aircraft}}{\text{speed of sound}}$$

if the following formula is applicable?

$$M = \sqrt{5 \left[\left(\left(1 + 0.2 \left[\frac{350}{661.5} \right]^2 \right)^{3.5} - 1 \right) \left[1 - \left(6.875 \times 10^{-6} \right) 25,500 \right]^{-5.2656} \left\{ +1 \right\}^{0.286} - 1 \right]}$$

Method: The most efficient place to begin work on this problem is at the innermost set of brackets. So begin by solving for the quantity $\left[\frac{350}{661.5} \right]^2$ and proceed outward from there.

Press	Display		Press	Display
350 ENTER↑	350.00		350.00 ENT↑	
661.5 ÷	0.53		661.50 ÷	
x	0.28	Square of bracketed quantity.	x²	
.2 x 1 +	1.06		.20 x	
3.5 y 1 -	0.21	Contents of left-hand set of brackets are in the stack.	1.00 +	
1 ENTER↑	1.00		3.50 y^x	
6.875 EEX	6.875 00		1.00 -	
CHS 6 ENTER↑	6.875000000-06		1.00 ENT↑	
25500 x -	0.82		6.875-06 ENT↑	
5.2656 CHS	-5.2656	Contents of right-hand set of brackets are in the stack.	25500.00 x	
x	2.76		-5.2656 y^x	
x 1 +	1.58		1.00 +	
.286 y	1.14		.286 y^x	
1 -	0.14		1.00 -	
5 x x	0.84	Mach number of Daedalus' Harrier.	5.00 x	
PRINTX	0.84		0.84 ***	

In working through complex equations like the one containing six levels of parentheses above, you really appreciate the value of the Hewlett-Packard logic system. Because you calculate one step at a time, you don't get "lost" within the problem. You see every intermediate result, and you emerge from the calculation confident of your final answer.

Statistical Functions

Accumulations

Pressing the $\Sigma+$ key automatically gives you several different sums and products of the values in the X- and Y-registers at once. In order to make these values accessible for sophisticated statistics problems, they are automatically placed by the calculator into storage registers R.₀ through R.₅. *The only time that information is automatically accumulated in the storage registers is when the $\Sigma+$ key is used.* Before you begin any calculations using the $\Sigma+$ key, you should first clear the storage registers used in accumulations by pressing **CLx**.

When you key a number into the display and press the $\Sigma+$ key, each of the following operations is performed:

1. The number that you keyed into the X-register is added to the contents of storage register R.₁. ($\Sigma x \rightarrow R_{.1}$)
2. The square of the number that you keyed into the X-register is added to the contents of storage register R.₂. ($\Sigma x^2 \rightarrow R_{.2}$)
3. The number in the Y-register of the stack is added to the contents of storage register R.₃. ($\Sigma y \rightarrow R_{.3}$)
4. The square of the number in the Y-register of the stack is added to the contents of storage register R.₄. ($\Sigma y^2 \rightarrow R_{.4}$)
5. The number that you keyed into the X-register is multiplied by the contents of the Y-register, and the product added to storage register R.₅. ($\Sigma xy \rightarrow R_{.5}$)
6. The number 1 is added to storage register R.₀, and the total number in R.₀ then writes over the number in the displayed X-register of the stack. The stack does not lift.

The number that you keyed into the X-register is preserved in the **LAST X** register, while the number in the stack Y-register remains in the Y-register.

Thus, when you press $\Sigma+$, the stack and storage register contents are changed...

...from this...

T	t
Z	z
Y	y
X	x

LAST X

	R. ₀
	R. ₁
	R. ₂
	R. ₃
	R. ₄
	R. ₅

T	t
Z	z
Y	y
X	n

LAST X

...to this.

n	R. ₀
Σx	R. ₁
Σx^2	R. ₂
Σy	R. ₃
Σy^2	R. ₄
Σxy	R. ₅

To use any of the summations individually at any time, you can recall the contents of the desired storage register into the displayed X-register by pressing **RCL** **0** followed by the number key of the storage register address. (After you have pressed **Σ+**, recalling storage register contents or keying in another number writes over the number of entries (*n*) that is displayed. The stack does not lift.)

Example: Find Σx , Σx^2 , Σy , Σy^2 , and Σxy for the paired values of *x* and *y* listed below.

<i>y</i>	7	5	9
<i>x</i>	5	3	8

Press	Display	
CL	0.00	Ensures that storage registers $R_{.0}$ through $R_{.5}$ are cleared to zero initially. Display assumes no results remain from previous example.
7 ENTER	7.00	
5 Σ+	1.00	First pair is accumulated; $n = 1$.
5 ENTER	5.00	
3 Σ+	2.00	Second pair is accumulated; $n = 2$.
9 ENTER	9.00	
8 Σ+	3.00	Third pair is accumulated; $n = 3$.
RCL 0 1	16.00	Sum of <i>x</i> values from register $R_{.1}$.
RCL 0 2	98.00	Sum of squares of <i>x</i> values from register $R_{.2}$.
RCL 0 3	21.00	Sum of <i>y</i> values from register $R_{.3}$.
RCL 0 4	155.00	Sum of squares of <i>y</i> values from register $R_{.4}$.
RCL 0 5	122.00	Sum of products of <i>x</i> and <i>y</i> values from register $R_{.5}$.
RCL 0 0	3.00	Number of entries ($n = 3$) from register $R_{.0}$.

DL	I
7.00	ENT ↑
5.00	Σ+
5.00	ENT ↑
3.00	Σ+
9.00	ENT ↑
8.00	Σ+
	R.1
	R.2
	R.3
	R.4
	R.5
	R.0

Listing Accumulations

You can see *all* of the values accumulated by the Σ key at any time. Simply press **LIST:Σ**, and the printer will print out the contents of the storage registers used for summations along with a description for each summation.

For example, to list *all* of the accumulations that are now in the storage registers from the previous example:

Press Display

LIST:Σ **3.00**

LIST
3.00 H
16.00 ΣX
86.00 ΣX²
21.00 ΣY
155.00 ΣY²
122.00 ΣXY

Percent of Sum

The $\% \Sigma$ (*percent of sum*) key permits you to compute the percentage that several values are of a total, while leaving the total intact. The $\% \Sigma$ key computes the percentage the number in the X-register is of the value in storage register R.₁. The formula used is:

$$\frac{x}{\Sigma x} \times 100 = \% \Sigma$$

The computed value for $\% \Sigma$ writes over the number in the X-register, and the rest of the stack remains unchanged. (x is, of course, preserved in the LAST X register.)

You will probably want to accumulate the total value in register R.₁ using the Σ key before you press $\% \Sigma$. (You could also accumulate a value in register R.₁ manually, by simply storing the value there using the **STO** key.)

Example: A compound is made up of 5.4 grams of hydrogen (H), 172.8 grams of oxygen (O) and 866.7 grams of sulfur (S). What is the percentage by weight of each chemical in the compound, and what is the total weight of the compound?

Press Display

CLΣ **0.00**

Display assumes no results remain from previous example.

5.4 **STO** 1 Σ **1.00**

Percent H is of total weight.

172.8 **STO** 2 Σ **2.00**

Percent O is of total weight.

866.7 **STO** 3 Σ **3.00**

Percent S is of total weight.

RCL 1 $\% \Sigma$ **0.52**

PRINT X **0.52**

RCL 2 $\% \Sigma$ **16.54**

PRINT X **16.54**

RCL 3 $\% \Sigma$ **82.95**

CL Σ
5.40 H 1
Σ+
172.80 O 2
Σ+
866.70 S 3
Σ+
R 1
ΣΣ
0.52 ***
R 2
ΣΣ
16.54 ***
R 3
ΣΣ

PRINTX
RCL ⓧ 1
PRINTX

82.95
1044.90
1044.90

Total weight of the compound.

82.95 ***
R.1
1044.90 ***

Mean

The Σ (mean) key is the key you use to calculate the mean (arithmetic average) of x and y accumulated in registers R.₁ and R.₃, respectively.

When you press ⓧ Σ :

1. The mean (\bar{x}) of x is calculated using the data accumulated in register R.₁ (Σx) and R.₀ (n) according to the formula:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i \quad \left(\text{That is, } \frac{R_{.1}}{R_{.0}} = \bar{x} \right)$$

The resultant value for \bar{x} is seen in the displayed X-register.

2. The mean (\bar{y}) of y is calculated using the data accumulated in register R.₃ (Σy) and register R.₀ (n) according to the formula:

$$\bar{y} = \frac{1}{n} \sum_{i=1}^n y_i \quad \left(\text{That is, } \frac{R_{.3}}{R_{.0}} = \bar{y} \right)$$

The resultant value for \bar{y} is available in the Y-register of the stack.

The easiest way to accumulate the required data in the applicable registers is through the use of the Σ key as described above.

In order to *see* the calculated values for \bar{x} and \bar{y} , you can slide the Print Mode switch **MAN** **NORM** to ALL before pressing Σ . The HP-91 will compute and print both the value for \bar{x} and the value for \bar{y} . To *use* either of these values, of course, it must be summoned into the displayed X-register if it is not already present there.

Example: Below is a chart of a daily high and low temperatures for a winter week in Fairbanks, Alaska. What are the *average* high and low temperatures for the week selected?

	Sun	Mon	Tues	Wed	Thurs	Fri	Sat
High	6	11	14	12	5	-2	-9
Low	-22	-17	-15	-9	-24	-29	-35

Press

Display

CLΣ

0.00

Accumulation registers cleared.
(Display assumes no results remain from previous calculations.)

6 ENTER↑ 22

CHS Σ+

1.00

Number of data pairs (n) is now 1.

11 ENTER↑ 17

CHS Σ+

2.00

Number of data pairs (n) is now 2.

14 ENTER↑ 15

CHS Σ+

3.00

12 ENTER↑ 9

CHS Σ+

4.00

5 ENTER↑ 24

CHS Σ+

5.00

2 CHS ENTER↑

-2.00

29 CHS Σ+

6.00

9 CHS ENTER↑

-9.00

35 CHS Σ+

7.00

Number of data pairs (n) is now 7.

-21.57

Average low temperature.

PRINT X

-21.57

x₂y

5.29

PRINT X

5.29

Average high temperature.

As shown, you can use the **PRINT X** and **x₂y** keys to print the values for \bar{x} and \bar{y} , but another method is:

Slide the Print Mode switch MAN NORM to ALL.

Press

Display

-21.57

\bar{x}
5.29
 \bar{y}
-21.57
 \bar{x}

Notice that instead of a three-asterisk label, the HP-91 conveniently prints Y and X labels when you press in ALL mode.

The illustrations below represent what happens in the stack when you press **LAST X**.

Press **LAST X** and the contents of the stack registers are changed...

...from this...

T	t
Z	z
Y	y
X	x

...to this.

T	t
Z	z
Y	\bar{y}
X	\bar{x}

→ lost

LAST X

x

Standard Deviation

The **S** (standard deviation) key is the key you use to calculate the standard deviation (a measure of dispersion around the mean) of data accumulated in storage registers R.₀ through R.₅.

When you press **LAST S**:

1. Sample x standard deviation (s_x) is calculated using the data accumulated in storage register R.₂ (Σx^2), R.₁ (Σx), and R.₀ (n) according to the formula:

$$s_x = \sqrt{\frac{\Sigma x^2 - \frac{(\Sigma x)^2}{n}}{n - 1}}$$

The resultant value for standard deviation of x (s_x) is seen in the displayed X-register.

2. Sample y standard deviation (s_y) is calculated using the data accumulated in storage registers R.₄ (Σy^2), R.₃ (Σy), and R.₀ (n) according to the formula:

$$s_y = \sqrt{\frac{\Sigma y^2 - \frac{(\Sigma y)^2}{n}}{n - 1}}$$

The resultant value for standard deviation of y (s_y) is available in the Y-register of the stack.

Thus, with data accumulated in registers R.₀ through R.₅, when you press **LAST S**, the contents of the stack registers are changed...

...from this...

T	t
Z	z
Y	y
X	x

...to this.

T	t
Z	z
Y	s_y
X	s_x

LAST X

x

To see how the HP-91 prints both s_x and s_y :

Slide the Print Mode switch MAN NORM to ALL.

Press

Display

347.49

5
9.52 Y
347.49 X

Notice that instead of a three-asterisk label, in ALL mode the HP-91 identifies these results with Y and X labels when you press .

If the six persons used in the sample were actually the *six wealthiest persons*, the data would have to be considered as a population rather than as a sample. The relationship between sample standard deviation (s) and the population standard deviation (σ) is illustrated by the following equation.

$$\sigma = s \sqrt{\frac{n-1}{n}}$$

Since n is automatically accumulated in register $R_{.0}$ when data is accumulated, it is a simple matter to convert the sample standard deviations that have already been calculated to population standard deviations.

If the accumulations are still intact from the previous example in registers $R_{.0}$ through $R_{.5}$, you can calculate the population standard deviations this way:

If you want your printed copy to match the one shown here, slide the Print Mode switch MAN NORM back to NORM.

Press

Display

347.49

 0

6.00

1 \bar{x}

5.00

 0 \div

0.83

 \times

317.21

317.21

9.52

0.91

8.69

8.69

Calculate s_x and s_y .

Recall n .

Calculate $n - 1$.

Divide $n - 1$ by n .

Population standard deviation σ_x .

Brings s_y to the X-register.

Recall conversion factor.

Population standard deviation σ_y .

5
R.0
1.00 -
R.0 \div
 \sqrt{x}
X
317.21 ***
X²Y
LSTX
X
8.69 ***

Deleting and Correcting Data

If you key in an incorrect value and have not pressed $\Sigma+$, press **CLX** and key in the correct value.

If one of the values is changed, or if you discover after you have pressed the $\Sigma+$ key that one of the values is in error, you can correct the summations by using the $\Sigma-$ (*summation minus*) key as follows:

1. Key in the *incorrect* data pair into the X- and Y-registers. (You can use **LAST X** to return a single incorrect data value to the displayed X-register.)
2. Press **Σ-** Σ to delete the incorrect data.
3. Key in the correct values for x and y. (If one value of an x, y data pair is incorrect, both values must be deleted and reentered.)
4. Press $\Sigma+$.

The correct values for mean and standard deviation are now obtainable by pressing **Σ** and **S**.

For example, suppose the 62-year old member of the *sample* as given above were to lose his position as one of the wealthiest persons because of a series of ill-advised investments in cocoa futures. To account for the change in data if he were replaced in the sample by a 21-year old rock musician who is worth 1300 million dollars:

Press	Display	
62 ENTER	62.00	Data to be replaced.
1200	1200.	
Σ-	5.00	Number of entries (n) is now five.
21 ENTER	21.00	The new data.
1300	1300.	
Σ+	6.00	Number of entries (n) is six again.

62.00 ENT1
1200.00 Σ-
21.00 ENT1
1300.00 Σ+

The new data has been calculated into each of the summations present in the storage registers. To see the new mean and standard deviation:

Slide the Print Mode switch **MAN** **NORM** to **ALL**.

Press	Display	
Σ	1491.67	The new average (mean) worth.
x_{xy}	61.00	The new average (mean) age available in X-register for use.
Σ_{xy}	333.79	The new standard deviation for worth.
x_{zy}	21.60	The new standard deviation for age available in X-register for use.

61.00 X
1491.67 Y
X_{xy}
61.00 X_{zy}
333.79 Y
21.60 X_{zy}
21.60 ***

Linear Regression

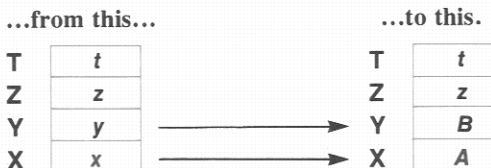
Linear regression is a statistical method for finding a straight line that best fits a set of data points, thus providing a relationship between two variables. After a group of data points has been totaled in registers R.₀ through R.₅, you can calculate the coefficients of the linear equation $y = A + Bx$ using the least squares method by pressing **L.R.** (Naturally, at least two data points must be in the calculator before a least squares line can be fitted to them.)

To use the linear regression function on your HP-91, first key in a series of data points using the **$\Sigma+$** key. Then press **L.R.**.

When you press **L.R.**, two values are calculated:

1. The y-intercept (A) of the least squares line of the data is calculated using the equation:

$$A = \frac{\sum y \sum x^2 - \sum x \sum xy}{n \sum x^2 - (\sum x)^2}$$


The y-intercept (A) appears in the displayed X-register of the stack.

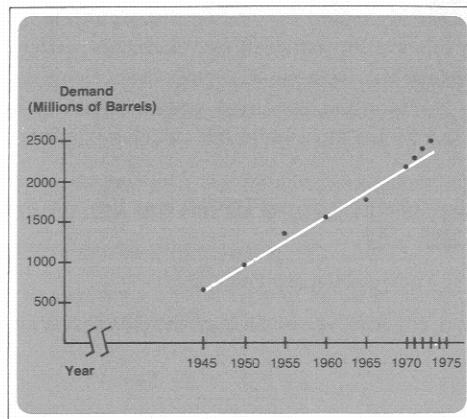
2. The slope (B) of the least squares line of the data is calculated using the equation:

$$B = \frac{n \sum xy - \sum x \sum y}{n \sum x^2 - (\sum x)^2}$$

The slope (B) is available in the Y-register of the stack.

Thus, when you press **L.R.**, the contents of the stack registers change...

With the Print Mode switch **MAN** **NORM** set to ALL, the HP-91 automatically prints values for both A and B whenever you press **L.R.**.


To use the value for B or to bring it into the displayed X-register, simply shift the stack contents with the **$\leftrightarrow y$** key.

Example: Big Lyle Hephaestus, owner-operator of the Hephaestus Oil Company, wishes to know the slope and y-intercept of a least squares line for the consumption of motor fuel in the United States against time since 1945. He knows the data given in the table.

Motor Fuel Demand
(Millions of Barrels)

969	994	1330	1512	1750	2162	2243	2382	2484
Year	1945	1950	1955	1960	1965	1970	1971	1972

Solution: Hephaestus *could* draw a plot of motor fuel demand against time like the one shown below.

However, with his HP-91, Hephaestus has only to key the data into the calculator using the L.R. key, then press L.R. .

(If you want your printed copy to match the one shown here, begin with the Print Mode switch MAN NORM set to NORM .)

Press

Display

CLEAR	0.00
696 ENTER \downarrow	696.00
1945 Σ \downarrow	1.00
994 ENTER \downarrow	994.00
1950 Σ \downarrow	2.00
1330 ENTER \downarrow	1330.00
1955 Σ \downarrow	3.00
1512 ENTER \downarrow	1512.00
1960 Σ \downarrow	4.00
1750 ENTER \downarrow	1750.00
1965 Σ \downarrow	5.00
2162 ENTER \downarrow	2162.00
1970 Σ \downarrow	6.00
2243 ENTER \downarrow	2243.00
1971 Σ \downarrow	7.00
2382 ENTER \downarrow	2382.00
1972 Σ \downarrow	8.00
2484 ENTER \downarrow	2484.00
1973 Σ \downarrow	9.00
L.R.	-118290.63

Stack, summation, and storage registers all cleared to zero.

CLEAR
696.00 ENT \uparrow
1945.00 Σ \downarrow
994.00 ENT \uparrow
1950.00 Σ \downarrow
1330.00 ENT \uparrow
1955.00 Σ \downarrow
1512.00 ENT \uparrow
1960.00 Σ \downarrow
1750.00 ENT \uparrow
1965.00 Σ \downarrow
2162.00 ENT \uparrow
1970.00 Σ \downarrow
2243.00 ENT \uparrow
1971.00 Σ \downarrow
2382.00 ENT \uparrow
1972.00 Σ \downarrow
2484.00 ENT \uparrow
1973.00 Σ \downarrow
L.R.
XΣY

All data pairs have been keyed in.
The y-intercept of the line.

Slope of the line.

x Σ y

61.16

To see how the HP-91 automatically prints the y-intercept A and the slope B of the line:

Slide the Print Mode switch MAN NORM to ALL.

Press Display

 LR

-118290.63

LR
51.16 B
-118290.63 A

In ALL mode, the HP-91 identifies these results with labels for A and B instead of with a three-asterisk label.

Linear Estimate

With the data totaled in registers R.₀ through R.₅, a predicted y (that is, a \hat{y}) can be calculated by keying in a new x-value and pressing .

For example, with data intact from the previous example in registers R.₀ through R.₅, if Hephaestus wishes to predict the demand for oil for the years 1980 and 2000, he has only to key in the new x-values and press .

(If you want your printed copy to match the one shown here, ensure that the Print Mode switch MAN NORM is set to ALL.)

Press Display

1980

2808.63

Predicted demand in millions of barrels for the year 1980.

2000

4031.86

Predicted demand in millions of barrels for the year 2000.

1980.00 ♦
2808.63 ***
2000.00 ♦
4031.86 ***

Coefficient of Determination

To establish how well the data fits the linear regression, you may want to calculate the coefficient of determination (r^2). The coefficient of determination is a value between 0 and 1. At $r = 0$ you have no fit, while at $r^2 = 1$ you have a perfect fit. The traditional equation for r^2 is:

$$r^2 = \frac{[\sum (x - \bar{x})(y - \bar{y})]^2}{[\sum (x - \bar{x})^2][\sum (y - \bar{y})^2]}$$

On your HP-91, however, the most efficient way to calculate r^2 is to use this equivalent equation:

$$r^2 = \left[\frac{n \sum xy - \sum x \sum y}{n(n-1) s_x s_y} \right]^2$$

Example: Calculate r^2 for the previously calculated linear regression.

Slide the Print Mode switch **MAN** **NORM** to **NORM** if you want your printed copy to match the one shown here.

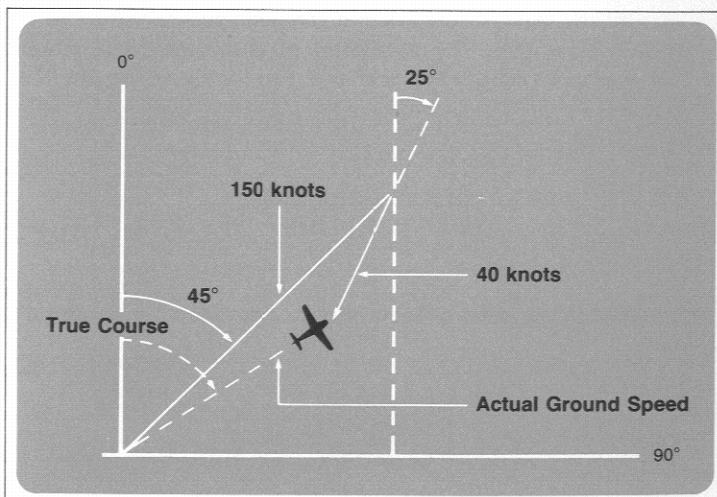
Press

 L.R.
 ENTER↑
 S
 ÷
 ÷
 x² **PRINT** **X**

Display

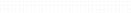
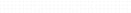
-118290.63
-118290.63
10.37
61.59
0.99
0.99

LR
ENT↑
S
÷
÷
X²
0.99 *******


Since the correlation coefficient is 0.99, you can assume the fit of the line is excellent.

Vector Arithmetic

You can use your HP-91 to add or subtract vectors by combining the polar/rectangular conversion functions (the **R→P** and **P→R** keys) with the summation functions (the **Σ+** and **Σ-** keys).



Example: Grizzled bush pilot Apeneck Sweeney's converted Swordfish aircraft has a true air speed of 150 knots and an estimated heading of 45° . The Swordfish is also being buffeted by a headwind of 40 knots from a bearing of 25° . What is the actual ground speed and course of the Swordfish?

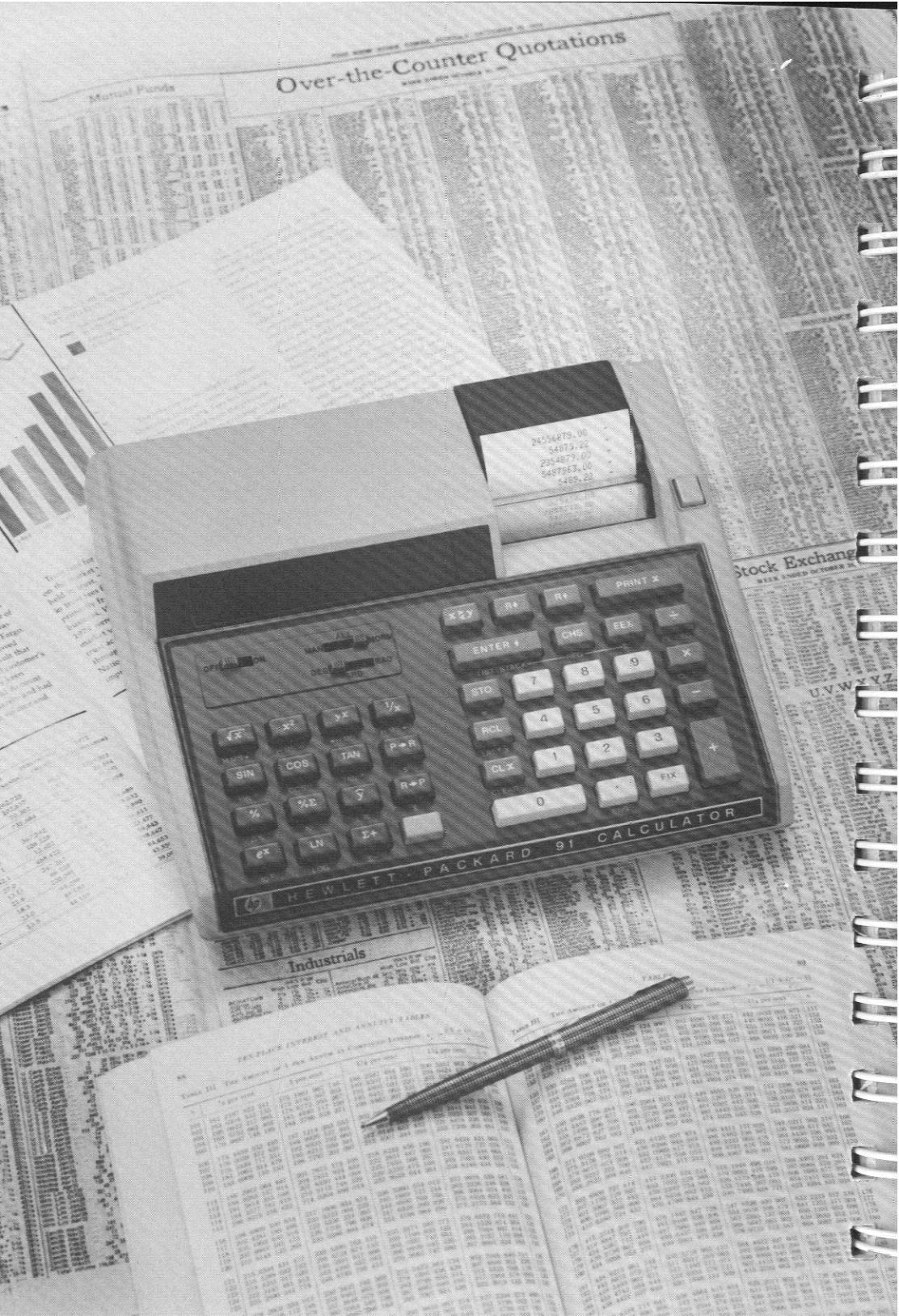
Method: The course and ground speed are equal to the difference of the vectors. (North becomes the x-coordinate so that the problem corresponds with navigational convention.)

Slide the Trigonometric Mode switch to DEG.

DEG RAD
GBD

Press	Display	
		Clears summation registers $R_{.0}$ through $R_{.5}$. (Display assumes no results remain from previous examples.)
45		θ for 1 st vector is entered to Y-register.
150		r for 1 st vector is keyed in.
		Converted to rectangular coordinates.
		1 st vector coordinates accumulated in storage registers $R_{.1}$ and $R_{.3}$.
25		θ for 2 nd vector is entered to Y-register.
40		r for 2 nd vector is keyed in.

45.00	ENT1	DL	Σ
150.00	F+R		
	Σ+		
25.00	ENT1		
40.00	F+R		
	Σ-		
	R Σ		


P+R	36.25	2 nd vector is converted to rectangular coordinates.
	0.00	2 nd vector rectangular coordinates subtracted from those of 1 st vector.
RCL	69.81	Recalls both $R_{.1}$ and $R_{.3}$.

Slide the Print Mode switch MAN NORM to ALL now, so that the HP-91 will automatically print both desired values.

Press Display

Course in degrees of
the Swordfish.
Actual ground speed
in knots of the
Swordfish.

R+P

Over-the-Counter Quotations

1980 NEW YORK COMMODITY EXCHANGE INC.

1980 BOSTON COMMODITY EXCHANGE INC.

Money Funds

Stock Exchange
WEEK ENDED OCTOBER 30

TABLE III. Ten-Year and One-Year Annuity at Compound Interest

Time	Interest	10 years	1 year
100	100.00	100.00	100.00
101	101.00	101.00	101.00
102	102.00	102.00	102.00
103	103.00	103.00	103.00
104	104.00	104.00	104.00
105	105.00	105.00	105.00
106	106.00	106.00	106.00
107	107.00	107.00	107.00
108	108.00	108.00	108.00
109	109.00	109.00	109.00
110	110.00	110.00	110.00
111	111.00	111.00	111.00
112	112.00	112.00	112.00
113	113.00	113.00	113.00
114	114.00	114.00	114.00
115	115.00	115.00	115.00
116	116.00	116.00	116.00
117	117.00	117.00	117.00
118	118.00	118.00	118.00
119	119.00	119.00	119.00
120	120.00	120.00	120.00
121	121.00	121.00	121.00
122	122.00	122.00	122.00
123	123.00	123.00	123.00
124	124.00	124.00	124.00
125	125.00	125.00	125.00
126	126.00	126.00	126.00
127	127.00	127.00	127.00
128	128.00	128.00	128.00
129	129.00	129.00	129.00
130	130.00	130.00	130.00
131	131.00	131.00	131.00
132	132.00	132.00	132.00
133	133.00	133.00	133.00
134	134.00	134.00	134.00
135	135.00	135.00	135.00
136	136.00	136.00	136.00
137	137.00	137.00	137.00
138	138.00	138.00	138.00
139	139.00	139.00	139.00
140	140.00	140.00	140.00
141	141.00	141.00	141.00
142	142.00	142.00	142.00
143	143.00	143.00	143.00
144	144.00	144.00	144.00
145	145.00	145.00	145.00
146	146.00	146.00	146.00
147	147.00	147.00	147.00
148	148.00	148.00	148.00
149	149.00	149.00	149.00
150	150.00	150.00	150.00
151	151.00	151.00	151.00
152	152.00	152.00	152.00
153	153.00	153.00	153.00
154	154.00	154.00	154.00
155	155.00	155.00	155.00
156	156.00	156.00	156.00
157	157.00	157.00	157.00
158	158.00	158.00	158.00
159	159.00	159.00	159.00
160	160.00	160.00	160.00
161	161.00	161.00	161.00
162	162.00	162.00	162.00
163	163.00	163.00	163.00
164	164.00	164.00	164.00
165	165.00	165.00	165.00
166	166.00	166.00	166.00
167	167.00	167.00	167.00
168	168.00	168.00	168.00
169	169.00	169.00	169.00
170	170.00	170.00	170.00
171	171.00	171.00	171.00
172	172.00	172.00	172.00
173	173.00	173.00	173.00
174	174.00	174.00	174.00
175	175.00	175.00	175.00
176	176.00	176.00	176.00
177	177.00	177.00	177.00
178	178.00	178.00	178.00
179	179.00	179.00	179.00
180	180.00	180.00	180.00
181	181.00	181.00	181.00
182	182.00	182.00	182.00
183	183.00	183.00	183.00
184	184.00	184.00	184.00
185	185.00	185.00	185.00
186	186.00	186.00	186.00
187	187.00	187.00	187.00
188	188.00	188.00	188.00
189	189.00	189.00	189.00
190	190.00	190.00	190.00
191	191.00	191.00	191.00
192	192.00	192.00	192.00
193	193.00	193.00	193.00
194	194.00	194.00	194.00
195	195.00	195.00	195.00
196	196.00	196.00	196.00
197	197.00	197.00	197.00
198	198.00	198.00	198.00
199	199.00	199.00	199.00
200	200.00	200.00	200.00
201	201.00	201.00	201.00
202	202.00	202.00	202.00
203	203.00	203.00	203.00
204	204.00	204.00	204.00
205	205.00	205.00	205.00
206	206.00	206.00	206.00
207	207.00	207.00	207.00
208	208.00	208.00	208.00
209	209.00	209.00	209.00
210	210.00	210.00	210.00
211	211.00	211.00	211.00
212	212.00	212.00	212.00
213	213.00	213.00	213.00
214	214.00	214.00	214.00
215	215.00	215.00	215.00
216	216.00	216.00	216.00
217	217.00	217.00	217.00
218	218.00	218.00	218.00
219	219.00	219.00	219.00
220	220.00	220.00	220.00
221	221.00	221.00	221.00
222	222.00	222.00	222.00
223	223.00	223.00	223.00
224	224.00	224.00	224.00
225	225.00	225.00	225.00
226	226.00	226.00	226.00
227	227.00	227.00	227.00
228	228.00	228.00	228.00
229	229.00	229.00	229.00
230	230.00	230.00	230.00
231	231.00	231.00	231.00
232	232.00	232.00	232.00
233	233.00	233.00	233.00
234	234.00	234.00	234.00
235	235.00	235.00	235.00
236	236.00	236.00	236.00
237	237.00	237.00	237.00
238	238.00	238.00	238.00
239	239.00	239.00	239.00
240	240.00	240.00	240.00
241	241.00	241.00	241.00
242	242.00	242.00	242.00
243	243.00	243.00	243.00
244	244.00	244.00	244.00
245	245.00	245.00	245.00
246	246.00	246.00	246.00
247	247.00	247.00	247.00
248	248.00	248.00	248.00
249	249.00	249.00	249.00
250	250.00	250.00	250.00
251	251.00	251.00	251.00
252	252.00	252.00	252.00
253	253.00	253.00	253.00
254	254.00	254.00	254.00
255	255.00	255.00	255.00
256	256.00	256.00	256.00
257	257.00	257.00	257.00
258	258.00	258.00	258.00
259	259.00	259.00	259.00
260	260.00	260.00	260.00
261	261.00	261.00	261.00
262	262.00	262.00	262.00
263	263.00	263.00	263.00
264	264.00	264.00	264.00
265	265.00	265.00	265.00
266	266.00	266.00	266.00
267	267.00	267.00	267.00
268	268.00	268.00	268.00
269	269.00	269.00	269.00
270	270.00	270.00	270.00
271	271.00	271.00	271.00
272	272.00	272.00	272.00
273	273.00	273.00	273.00
274	274.00	274.00	274.00
275	275.00	275.00	275.00
276	276.00	276.00	276.00
277	277.00	277.00	277.00
278	278.00	278.00	278.00
279	279.00	279.00	279.00
280	280.00	280.00	280.00
281	281.00	281.00	281.00
282	282.00	282.00	282.00
283	283.00	283.00	283.00
284	284.00	284.00	284.00
285	285.00	285.00	285.00
286	286.00	286.00	286.00
287	287.00	287.00	287.00
288	288.00	288.00	288.00
289	289.00	289.00	289.00
290	290.00	290.00	290.00
291	291.00	291.00	291.00
292	292.00	292.00	292.00
293	293.00	293.00	293.00
294	294.00	294.00	294.00
295	295.00	295.00	295.00
296	296.00	296.00	296.00
297	297.00	297.00	297.00
298	298.00	298.00	298.00
299	299.00	299.00	299.00
300	300.00	300.00	300.00
301	301.00	301.00	301.00
302	302.00	302.00	302.00
303	303.00	303.00	303.00
304	304.00	304.00	304.00
305	305.00	305.00	305.00
306	306.00	306.00	306.00
307	307.00	307.00	307.00
308	308.00	308.00	308.00
309	309.00	309.00	309.00
310	310.00	310.00	310.00
311	311.00	311.00	311.00
312	312.00	312.00	312.00
313	313.00	313.00	313.00
314	314.00	314.00	314.00
315	315.00	315.00	315.00
316	316.00	316.00	316.00
317	317.00	317.00	317.00
318	318.00	318.00	318.00
319	319.00	319.00	319.00
320	320.00	320.00	320.00
321	321.00	321.00	321.00
322	322.00	322.00	322.00
323	323.00	323.00	323.00
324	324.00	324.00	324.00
325	325.00	325.00	325.00
326	326.00	326.00	326.00
327	327.00	327.00	327.00
328	328.00	328.00	328.00
329	329.00	329.00	329.00
330	330.00	330.00	330.00
331	331.00	331.00	331.00
332	332.00	332.00	332.00
333	333.00	333.00	333.00
334	334.00	334.00	334.00
335	335.00	335.00	335.00
336	336.00	336.00	336.00
337	337.00	337.00	337.00
338	338.00	338.00	338.00
339	339.00	339.00	339.00
340	340.00	340.00	340.00
341	341.00	341.00	341.00
342	342.00	342.00	342.00
343	343.00	343.00	343.00
344	344.00	344.00	344.00
345	345.00	345.00	345.00
346	346.00	346.00	346.00
347	347.00	347.00	347.00
348	348.00	348.00	348.00
349	349.00	349.00	349.00
350	350.00	350.00	350.00
351	351.00	351.00	351.00
352	352.00	352.00	352.00
353	353.00	353.00	353.00
354	354.00	354.00	354.00
355	355.00	355.00	355.00
356	356.00	356.00	356.00
357	357.00	357.00	357.00
358	358.00	358.00	

Section 5

HP-91 Applications Routines

In order to further enhance the usability of your HP-91, we have included in your *HP-91 Owner's Handbook* dozens of keystroke routines to solve problems in several scientific disciplines. In the next pages are routines to use your HP-91 to solve common problems from the areas of mathematics, statistics, navigation, surveying, and finance.

To use any of the routines:

1. Begin at line #1 of the keystroke list.
2. Key in the information called for under DATA at line #1.
3. Press in left-to-right order the keys called for under OPERATIONS for line #1.
4. If specified under RESULTS, read the answer from the display or the paper tape.
5. Note any REMARKS.
6. Continue with line #2, reading from left to right.

You can place the Print Mode switch in any of its three positions when using the routines shown here. Of course, in MAN (*manual*), the printer will be idle and will only print if you press **PRINTX** or one of the **LIST** functions. In NORM (*normal*), the printer will record your inputs and the function keys you press—to record your results, press **PRINTX**. In ALL, the HP-91 prints inputs, functions, and the result of each function. Regardless of the position of the Print Mode switch, you will find that you can press keys quite rapidly—the internal key buffer in the HP-91 “remembers” up to seven keystrokes, even though you seem to be outrunning the printer.

Within each application area, we've tried to arrange the routines in the order of use, with the most common routines from each discipline at the beginning.

Don't be afraid to rearrange and experiment with any of the routines. The HP-91 is a tremendously powerful and versatile calculating instrument, and with a little practice, you'll soon be writing keystroke procedures of your own to solve the most complicated of problems within your field.

Mathematical Applications

Quadratic Equation	92
Simultaneous Linear Equations	
in Two Unknowns	94
Determinant of a 3×3 Matrix	95
Hyperbolic Functions	96
Complex Number Operations	98
Vector Operations	102
Triangle Solutions	105
Curve Solutions	114
Coordinate Translation and	
Rotation	118
Base Conversions	119
Highest Common Factor	122
Least Common Multiple	123

Quadratic Equation

Formula: A general quadratic equation is of the form

$$Ax^2 + Bx + C = 0.$$

The equation has two roots, x_1 and x_2 .

Let

$$D = \frac{B^2 - 4AC}{4A^2}$$

If $D \geq 0$, then $x_1 = \begin{cases} -\frac{B}{2A} + \sqrt{\frac{B^2 - 4AC}{4A^2}} & \text{if } -\frac{B}{2A} \geq 0 \\ -\frac{B}{2A} - \sqrt{\frac{B^2 - 4AC}{4A^2}} & \text{if } -\frac{B}{2A} < 0 \end{cases}$

$$\text{and } x_2 = \frac{C}{Ax_1}$$

If $D < 0$, then $x_1, x_2 = -\frac{B}{2A} \pm i \sqrt{\frac{4AC - B^2}{4A^2}}$

$$= u \pm iv$$

The coefficient A cannot be zero.

Examples: Find the solutions to the following equations:

1. $x^2 - 3x - 4 = 0$
2. $2x^2 + 3x + 4 = 0$

Answers:

1. $D = 6.25$ $x_1 = 4, x_2 = -1$
2. $D = -1.44$ $x_1, x_2 = -0.75 \pm 1.20i$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	C	STO [3]		
2	B	STO [2]		
3	A	STO [1] ENTER+ R ² ÷		
4		2 ÷ CHS ENTER+ X		
5		R ² R ² x ₂ y ÷ STO		
6		[1] -	D	If D < 0, go to 11.
7		x ₂ y	-B/2A	If -B/2A < 0, go to 9.
8		+	x ₁	Go to 10.
9		x ₂ y -	x ₁	
10		Y _x RCL [1] X	x ₂	Stop.
11		CHS x ₂ y	u	
12		x ₂ y	v	

Simultaneous Linear Equations in Two Unknowns

Formula: Solve for x and y given the following:

$$ax + by = e$$

$$cx + dy = f$$

Cramer's Rule is used to find the solution.

$$x = \frac{\begin{vmatrix} e & b \\ f & d \end{vmatrix}}{\begin{vmatrix} a & b \\ c & d \end{vmatrix}} = \frac{ed - bf}{ad - bc}$$

$$y = \frac{\begin{vmatrix} a & e \\ c & f \end{vmatrix}}{\begin{vmatrix} a & b \\ c & d \end{vmatrix}} = \frac{af - ec}{ad - bc}$$

where $ad - bc \neq 0$.

Example:

Solve $\begin{cases} 7.32x - 9.08y = 3.14 \\ 12.39x + 7y = 0.05 \end{cases}$

Answer:

$$x = 0.14$$

$$y = -0.24$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	e	STO 1		
2	d	STO 2 x		
3	b	STO 3		
4	f	STO 4 x -		
5	a	STO 5 RCL 2 x		
6	c	STO 6 RCL 3 x		
7		- STO 7 ÷	x	
8		RCL 5 RCL 4 x		
9		RCL 1 RCL 6 x		
10		- RCL 7 ÷	y	

Determinant of a 3×3 Matrix

Let $D = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$ be a 3×3 matrix.

The determinant of D is calculated by expanding D by minors about the first column. The formula is:

$$\text{Det } D = a_{11} (a_{22} a_{33} - a_{23} a_{32}) - a_{21} (a_{12} a_{33} - a_{13} a_{32}) + a_{31} (a_{12} a_{23} - a_{13} a_{22})$$

Example:

$$D = \begin{vmatrix} -1 & 3 & 2 \\ 2 & 1 & -1 \\ 4 & 2 & 3 \end{vmatrix} = -35$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	a_{11}	STO 1		
2	a_{22}	STO 2 \times		
3	a_{33}	STO 3 \times		
4	a_{12}	STO 4		
5	a_{23}	STO 5 \times		
6	a_{31}	STO 6 \times +		
7	a_{13}	STO 7		
8	a_{21}	STO 8 \times		
9	a_{32}	STO 9 \times +		
10		RCL 6 RCL 2 \times		
11		RCL 7 \times -		
12		RCL 9 RCL 5 \times		
13		RCL 1 \times -		
14		RCL 3 RCL 8 \times		
15		RCL 4 \times -	D	

Hyperbolic Functions

These procedures evaluate three hyperbolic functions and their inverses.

Hyperbolic Sine

Formula:

$$\sinh x = \frac{e^x - e^{-x}}{2}$$

Example:

$$\sinh 3.2 = 12.25$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	x	2		
2			$\sinh x$	

Hyperbolic Cosine

Formula:

$$\cosh x = \frac{e^x + e^{-x}}{2}$$

Example:

$$\cosh 3.2 = 12.29$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	x	+ 2		
2			$\cosh x$	

Hyperbolic Tangent

Formula:

$$\tanh x = \frac{\sinh x}{\cosh x}$$

Example:

$$\tanh 3.2 = 1.00$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	x			
2		+	$\tanh x$	

Inverse Hyperbolic Sine

Formula:

$$\sinh^{-1} x = \ln(x + \sqrt{x^2 + 1})$$

Example:

$$\sinh^{-1} 51.777 = 4.64$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	x	ENTER +		
2		+	$\sinh^{-1} x$	

Inverse Hyperbolic Cosine

Formula:

$$\cosh^{-1} x = \ln(x + \sqrt{x^2 - 1}) \quad (x \geq 1)$$

Example:

$$\cosh^{-1} 51.777 = 4.64$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	x	ENTER -		
2		+	$\cosh^{-1} x$	

Inverse Hyperbolic Tangent

Formula:

$$\tanh^{-1} x = \frac{1}{2} \ln \frac{1+x}{1-x}$$

$$(-1 < x < 1)$$

Example:

$$\tanh^{-1} 0.777 = 1.04$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1		ENTER		
2	x	+ -		
3			$\tanh^{-1} x$	

Complex Number Operations

These procedures evaluate the basic complex number operations.

Complex Addition

Formula:

$$(a_1 + ib_1) + (a_2 + ib_2) = (a_1 + a_2) + i(b_1 + b_2) = u + iv$$

Example:

$$(3 + 4i) + (7.4 - 5.6i) = 10.40 - 1.60i$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	a_1	ENTER+		
2	a_2	+	u	
3	b_1	ENTER+		
4	b_2	+	v	

Complex Subtraction

Formula:

$$(a_1 + ib_1) - (a_2 + ib_2) = (a_1 - a_2) + i(b_1 - b_2) = u + iv$$

Example:

$$(3 + 4i) - (7.4 - 5.6i) = -4.40 + 9.60i$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	a_1	ENTER+		
2	a_2	-	u	
3	b_1	ENTER+		
4	b_2	-	v	

Multiplication of n Complex Numbers

Formula:

$$\prod_{k=1}^n (a_k + ib_k) = \left(\prod_{k=1}^n r_k \right) e^{i \sum_{k=1}^n \theta_k} = u + iv$$

$$\text{where } a_k + ib_k = r_k e^{i \theta_k}$$

Examples:

$$(3.1 + 4.6i) \times (5 - 12i) = 70.70 - 14.20i$$

$$(3 + 4i) (7 - 2i) (4.38 + 7i) (12.3 - 5.44i) = 1296.66 + 3828.90i$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1				
2	b_k			Perform 2-3 for
3	a_k		k	$k = 1, 2, \dots, n$.
4			u	
5			v	

Complex Division

Formula:

$$\frac{(a_1 + ib_1)}{(a_2 + ib_2)} = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)} = u + iv$$

$$\text{where } a_1 + ib_1 = r_1 e^{i \theta_1}$$

$$a_2 + ib_2 = r_2 e^{i \theta_2} \neq 0$$

Example:

$$\frac{(3 + 4i)}{7 - 2i} = 0.25 + 0.64i$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	b_2	ENTER		
2	a_2	R+P		
3	b_1	ENTER		
4	a_1	R+P x₂y R+P x₂y ÷		
5		R² — R² P+R	u	
6		x₂y	v	

Complex Reciprocal

Formula:

$$\frac{1}{a + ib} = \frac{1}{r} e^{-i\theta}, z \neq 0$$

$$= u + iv$$

Example:

$$\frac{1}{2 + 3i} = 0.15 - 0.23i$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	b	CHS ENTER		
2	a	R+P 1/x P+R	u	
3		x₂y	v	

Complex Square

Formula:

$$(a + ib)^2 = r^2 e^{i2\theta}$$

Example:

$$(7 - 2i)^2 = 45.00 - 28.00i$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	b	ENTER		
2	a	R+P x₂y 2 x x₂y		
3		x² P+R	u	
4		x₂y	v	

Complex Square Root

Formula:

$$\sqrt{a + ib} = \pm(\sqrt{r}e^{i\theta/2}) = \pm(u + iv)$$

Example:

$$\sqrt{7 + 6i} = \pm (2.85 + 1.05i)$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	b	ENTER		
2	a	R→P √X X₂Y [2] ÷		
3		X₂Y P→R	u	
4		X₂Y	v	

Vector Operations

Vector Addition

Suppose vector V_k (in two-dimensional space) has magnitude m_k and direction θ_k ($k = 1, 2, \dots, n$). Find the sum

$$V = \sum_{k=1}^n V_k = \vec{x_i} + \vec{x_j}$$

Example:

m_k	θ_k
2	30°
6.2	-45°
7.6	125°
10.7	232°

Answer:

$$V = -4.83\vec{i} - 5.59\vec{j}$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1				
2	θ_k			Perform 2-3
3	m_k		k	for $k = 1, 2, \dots, n$.
4			x	
5			y	

Vector Angles

Suppose

$$\vec{x} = (x_1, x_2, x_3)$$

$$\vec{y} = (y_1, y_2, y_3)$$

then the angle between these two vectors is

$$\theta = \cos^{-1} \left[\frac{x_1 y_1 + x_2 y_2 + x_3 y_3}{\sqrt{x_1^2 + x_2^2 + x_3^2} \sqrt{y_1^2 + y_2^2 + y_3^2}} \right]$$

Example: Find the angle between

$$\vec{x} = (5, -6.2, -7)$$

$$\vec{y} = (3.15, 2.22, -0.3)$$

Answer:

$$\theta = 84.28 \text{ degrees} = 1.47 \text{ radians}$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1				
2	x_i	ENTER STO [1]		Perform 2-5
3				for $i = 1, 2, 3$
4	y_i	ENTER STO [2]		
5				
6		RCL [1] RCL [2]		
7			θ	

Vector Cross Product

Formula:

If $\vec{x} = (x_1, x_2, x_3)$ and $\vec{y} = (y_1, y_2, y_3)$ are two vectors, then the cross product \vec{z} is also a vector.

$$\begin{aligned}\vec{z} &= \vec{x} \times \vec{y} \\ &= (x_2 y_3 - x_3 y_2, x_3 y_1 - x_1 y_3, x_1 y_2 - x_2 y_1) \\ &= (z_1, z_2, z_3)\end{aligned}$$

Example:

$$\text{If } \vec{x} = (2.34, 5.17, 7.43)$$

$$\vec{y} = (.072, .231, .409)$$

$$\text{Find } \vec{x} \times \vec{y}$$

Answer:

$$\vec{x} \times \vec{y} = (0.40, -0.42, 0.17)$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	x_2	STO 1		
2	y_3	STO 2 \times		
3	x_3	STO 3		
4	y_2	STO 4 \times -	z_1	
5	y_1	STO 5 RCL 3 \times		
6	x_1	STO 6 RCL 2 \times		
7		-	z_2	
8		RCL 6 RCL 4 \times		
9		RCL 1 RCL 5 \times		
10		-	z_3	

Vector Dot Product

Formulas:

Given two vectors \vec{x} , \vec{y} in an n-dimensional vector space

$$\vec{x} = (x_1, x_2, \dots, x_n)$$

$$\vec{y} = (y_1, y_2, \dots, y_n)$$

the dot product is

$$\vec{x} \cdot \vec{y} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$$

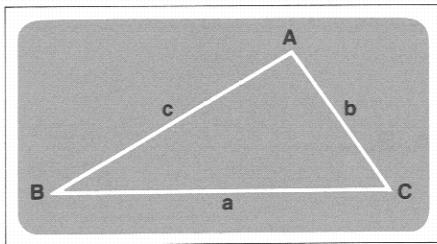
Example:

If $\vec{x} = (2.34, 5.17, 7.43, 9.11, 11.41)$
 $\vec{y} = (.072, .231, .409, .703, .891)$

then $\vec{x} \cdot \vec{y} = 20.97$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	x_1	ENTER+		
2	y_1	\times		
3	x_i	ENTER+		Perform 3-4
4	y_i	\times +		for $i = 2, 3, \dots, n$.

Triangle Solutions


The basic formulas used to solve a triangle are:

1. law of sines

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

2. law of cosines

$$c^2 = a^2 + b^2 - 2ab \cos C$$

Note: Triangle solution routines work in any of the three angular modes. When the calculator is in DEG mode, all angles are in decimal degrees.

Given a, b, C; Find A, B, c

Formulas:

$$c = \sqrt{a^2 + b^2 - 2ab \cos C}$$

$$A = \tan^{-1} \left(\frac{a \sin C}{b - a \cos C} \right)$$

$$B = \cos^{-1} [-\cos (A + C)]$$

Example:

Given $C = 28^\circ 40'$ (convert angle C to decimal degrees)

$$a = 132$$

$$b = 224$$

Find c, A, B

Answer:

$$c = 125.35$$

$$A = 30.34^\circ$$

$$B = 120.99^\circ$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	C	ENTER ENTER		
2	a	R		
3	b	x:y - R+P	c	
4		R+	A	
5		+ COS CHS COS⁻¹	B	

Given a, b, c; Find A, B, C**Formulas:**

$$A = 2 \cos^{-1} \left(\sqrt{\frac{S(S-a)}{bc}} \right)$$

$$B = \tan^{-1} \left(\frac{b \sin A}{c - b \cos A} \right)$$

$$\text{where } S = (a + b + c)/2$$

$$C = \cos^{-1} [-\cos(A + B)]$$

Example:

$$\begin{array}{ll} \text{Given} & a = 30.3 \\ & b = 40.4 \\ & c = 62.6 \end{array}$$

$$\text{find} \quad A, B, C$$

Answer:

$$A = 23.66^\circ = 0.41 \text{ radians} = 26.29 \text{ grads}$$

$$B = 32.35^\circ = 0.56 \text{ radians} = 35.95 \text{ grads}$$

$$C = 123.99^\circ = 2.16 \text{ radians} = 137.76 \text{ grads}$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	a	STO 1		
2	b	STO 2		
3	c	STO 3 + + 2		
4		÷ ENTER ENTER RCL 1		
5		- x RCL 2 ÷		
6		RCL 3 ÷		
7		COS-1 2 x STO 1	A	
8		RCL 2 P-R RCL 3		
9		X2Y - P-R X2Y	B	
10		RCL 1 + COS CHS		
11		COS-1	C	

Given a, A, C; Find B, b, c

Formulas:

$$b = \frac{a \sin (A + C)}{\sin A}$$

$$c = \sqrt{a^2 + b^2 - 2ab \cos C}$$

$$B = \tan^{-1} \left(\frac{b \sin C}{a - b \cos C} \right)$$

Example:

Given $a = 17.5$
 $C = 1.09$ radians
 $A = 0.72$ radians

Find b, c, B

Answer:

$b = 25.78$
 $c = 23.53$
 $B = 1.33$ radians

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	a	STO 1		
2	C	STO 2		
3	A	STO 3 + SIN RCL		
4		3 SIN ÷ RCL 1		
5		x	b	
6		RCL 2 x ₂ y P ₂ R RCL		
7		1 x ₂ y - R ₂ P	c	
8		x ₂ y	B	

Given a, B, C; Find A, b, c

Formulas:

$$c = \frac{a \sin C}{\sin (B + C)}$$

$$b = \sqrt{a^2 + c^2 - 2ac \cos B}$$

$$A = \cos^{-1} [-\cos (B + C)]$$

Example:

Given a = 25.2
 B = 35.3°
 C = 68.5°

Find c, b, A

Answer:

c = 24.14
 b = 14.99
 A = 76.20°

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	a	STO 1		
2	B	STO 2		
3	C	STO 3 SIN RCL 2		
4		RCL 3 + SIN ÷		
5		RCL 1 × STO 3	c	
6		RCL 2 RCL 3 P-R		
7		RCL 1 x ^y - R-R	b	
8		x ^y RCL 2 + COS		
9		CHS COS ⁻¹	A	

Given B, b, c; Find a, A, C

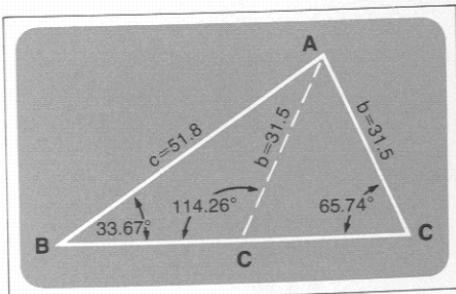
Formulas:

$$a = \frac{c \sin (B + C_1)}{\sin C_1}$$

where

$$C_1 = \begin{cases} \sin^{-1} \left(\frac{c \sin B}{b} \right) \text{ or} \\ \sin^{-1} \left(-\frac{c \sin B}{b} \right) \end{cases}$$

$$A = \tan^{-1} \left(\frac{a \sin B}{c - a \sin B} \right)$$


$$C = \cos^{-1} [-\cos (A + B)]$$

Note: If B is acute and $b < c$, two solutions exist.

Example:

Given $b = 31.5$
 $c = 51.8$
 $B = 33.67^\circ$

Find a, A, C

Answer:

$$C = 65.74^\circ$$

$$a = 56.05$$

$$A = 80.59^\circ$$

Alternate answer:

$$C = 114.26^\circ$$

$$a = 30.17$$

$$A = 32.07^\circ$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	b	STO 1		
2	c	STO 2		
3	B	STO 3 SIN x RCL		
4		1 ÷ sin ⁻¹ STO		
5		4	C ₁	
6		SIN RCL 3 RCL 4		
7		+ SIN x ₂ y ÷ RCL		
8		2 x	a	
9		RCL 3 x ₂ y ÷ RCL		
10		2 x ₂ y - x ₂ y	A	
11		RCL 3 + COS CHS		
12		COS ⁻¹	C	If b ≥ c, stop.
13		RCL 4 CHS STO 4		Go to 6 for alternate solution

Given a, b, c; Find Area**Formula:**

$$\text{area} = \sqrt{S(S - a)(S - b)(S - c)}$$

$$\text{where } S = 1/2(a + b + c)$$

Example:

$$a = 5.31$$

$$b = 7.09$$

$$c = 8.86$$

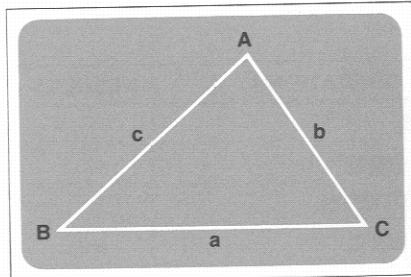
Answer:

area = 18.82

(S = 10.63)

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	a	STO 1		
2	b	STO 2 +		
3	c	STO 3 + 2 ÷	S	
4		ENTER ENTER ENTER RCL 1		
5		- × x ₂ y RCL 2		
6		- × x ₂ y RCL 3		
7		- ×	area	

Given a, b, C; Find Area**Formula:**


area = $1/2 a b \sin C$

Example:

a = 5.3174

b = 7.0898

C = $\frac{\pi}{4} = 45^\circ$

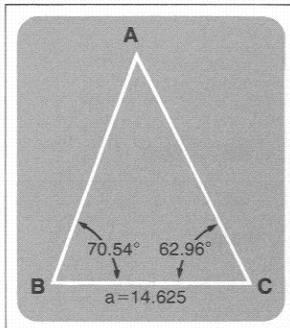
Answer:

area = 13.33

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	a	ENTER		Set machine to
2	b	\times [2] \div		desired mode
3	C	SIN \times	area	(DEG, RAD, or GRD).

Given a, B, C; Find Area

Formula:


$$\text{area} = \frac{a^2}{2} \frac{\sin B \sin C}{\sin (B + C)}$$

Example:

$$\begin{aligned} a &= 14.625 \\ B &= 70^\circ 32' 12'' \\ C &= 62^\circ 57' 28'' \end{aligned}$$

Answer:

$$\text{area} = 123.80$$

Note: In this example, convert angles to decimal degrees before using trigonometric function keys.

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	a	\times^2 [2] \div		Set machine to
2	B	STO [1] SIN \times		desired mode
3	C	STO + [1] SIN \times		(DEG, RAD, or GRD).
4		RCL [1] SIN \div	area	

Given Vertices; Find Area

Formula: Given the three vertices (x_1, y_1) , (x_2, y_2) , (x_3, y_3) of a triangle,

$$\text{area} = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$

$$= \frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$$

Example: Compute the area of a triangle with vertices $(0, 0)$, $(4, 0)$, $(4, 3)$.

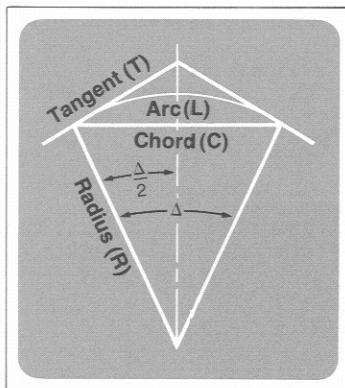
Answer:

6.00

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	y_2	STO [1]		
2	y_3	STO [2] -		
3	x_1	\times RCL [2]		
4	y_1	STO [3] -		
5	x_2	\times + RCL [3] RCL		
6		[1] -		
7	x_3	\times + [2] \div	Area	

Curve Solutions

Notation:


T = Tangent distance

C = Chord length

L = Arc length

R = Radius

Δ = Central angle

Given Δ and R, Find Remaining Parameters Plus Sector and Segment Area

Formulas:

$$T = R \tan(1/2 \Delta)$$

$$C = 2 R \sin(1/2 \Delta)$$

$$L = \Delta \pi R / 180$$

$$\text{Sector area} = LR/2$$

$$\text{Segment area} = \text{Sector area} - 1/2 R^2 \sin(\Delta)$$

Example:

$$\Delta = 45^\circ 30' 23''$$

$$R = 223.181$$

Answers:

$$1/2 \Delta = 22^\circ 45' 12''$$

$$T = 93.602$$

$$C = 172.636$$

$$L = 177.258$$

$$\text{Sector area} (\triangleright) = 19,780$$

$$\text{Segment area} (\square) = 2,015$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1		CLEAR		
2	Δ	HMS \Rightarrow 2 \div STO		
3		1 1 \Rightarrow H.MS	1/2 Δ	
4		RCL 1 TAN		
5	R	STO 2 \times	T	
6		RCL 1 SIN RCL 2		
7		\times 2 \times	C	
8		RCL 1 RCL 2 \times		
9		π \times 9 \square		
10		\div	L	
11		RCL 2 \times 2 \div	Sector area	
12		RCL 2 SIN RCL 1		
13		2 \times SIN \times 2		
14		\div \square	Segment area	

Given R and C, Find Remaining Parameters Plus Sector and Segment Area

Formulas:

$$R = C/(2 \sin (1/2 \Delta))$$

$$\Delta = 2 \sin^{-1} (1/2 C/R)$$

$$T = R \tan (1/2 \Delta)$$

$$L = \Delta \pi R/180$$

$$\text{Sector area} = LR/2$$

$$\text{Segment area} = \text{Sector area} - 1/2 R^2 \sin \Delta$$

Example:

$$C = 172.636$$

$$R = 223.181$$

Answers:

$$\Delta = 45^\circ 30' 23''$$

$$1/2 \Delta = 22^\circ 45' 11''$$

$$T = 93.602$$

$$L = 177.258$$

$$\text{Sector area} (\triangleright) = 19,780$$

$$\text{Segment area} (\square) = 2,015$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1		CLEAR		
2	C			
3	R			
4			1/2 Δ	
5		TAN		
6			T	
7				
8		9 0		
9			L	
10			Sector area	
11				
12				
13			Segment area	

**Given Δ and C, Find Remaining Parameters
Plus Sector and Segment Area**

Formulas:

$$R = C / [2 \sin (1/2 \Delta)]$$

$$T = R \tan (1/2 \Delta)$$

$$L = \Delta \pi R / 180$$

$$\text{Sector area} = LR/2$$

$$\text{Segment area} = \text{Sector area} - 1/2 R^2 \sin \Delta$$

Example:

$$C = 172.636$$

$$\Delta = 45^\circ 30' 23''$$

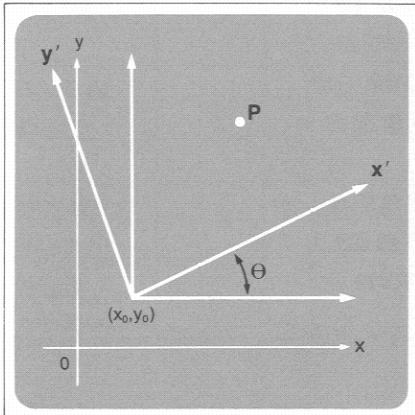
Answers:

$$1/2 \Delta = 22^\circ 45' 12''$$

$$R = 223.181$$

$$T = 93.602$$

$$L = 177.258$$


$$\text{Sector area} (\triangleright) = 19,780$$

$$\text{Segment area} (\triangleleft) = 2,015$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1		CLEAR		
2	C	ENTER 2 ÷		
3	Δ	H.MS 2 ÷ STO		
4		1 ENTER 4 +H.MS	1/2 Δ	
5		R SIN ÷ STO 2	R	
6		RCL 1 TAN ×	T	
7		RCL 2 √ ×		
8		RCL 1 × 9 0		
9		÷	L	
10		RCL 2 × 2 ÷	Sector area	
11		RCL 2 x ² RCL 1		
12		2 × SIN × 2		
13		÷ -	Segment area	

Coordinate Translation and Rotation

Suppose point P has coordinates (x, y) with respect to the rectangular coordinate system (x, y) axes. Let (x_0, y_0) be the center of a new coordinate system rotated through an angle θ . Find the new coordinates (x', y') of P with respect to the new system having x', y' axes.

Formulas:

$$x' = (x - x_0) \cos \theta + (y - y_0) \sin \theta$$

$$y' = -(x - x_0) \sin \theta + (y - y_0) \cos \theta$$

Example: Translate the point $(1, 3)$ to a new coordinate system with center at $(-1, 4)$ at 30° to the old system.

Answer:

$$x' = 1.23$$

$$y' = -1.87$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	y	ENTER		
2	y_0	-		
3	x	ENTER		
4	x_0	- R-P x_R		
5	θ	- x_R y_R P-R	x'	
6		x_R y_R	y'	In ALL, this is not needed.

Base Conversions

Note: Base conversion algorithms are given for positive values only. To convert a negative number, change sign, convert, and change sign of result.

Decimal Integer to Integer in Any Base

$$I_{10} \rightarrow J_b$$

In the following key sequence, $f + 1$ is the number of digits in J_b . d_i ($i = 1, \dots, f + 1$) represents the i^{th} digit in J_b , counting from left to right;

$$\text{i.e. } J_b = (d_1 \ d_2 \ \dots \ d_{f+1})_b$$

For large numbers, $J_b = (d_1 \ d_2 \ \dots \ d_{f+1})_b \cdot b^f$. See example 3.

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	b	ENTER+ ENTER+		
2	l	STO 1 L R x ^y L		
3		÷	D	Let f be the largest integer $\leq D$.
4		CLx		
5	f	x ^y ENTER+ ENTER+ RCL 1		
6		R ^y R ^y x ^y R ^y ÷	E ₁	$d_i = \text{integer part of } E_i \ (i = 1, \dots, f)$.
7	d ₁	– x	E ₂	
8	d _i	– x	E _{i+1}	Perform 8 for $i = 2, \dots, f$.
9		FIX 0	d _{f+1}	

Example 1: Convert 1206 to hexadecimal (base 16).

(The hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.)

Answer:

$$1206_{10} = 4B6_{16} \ (f = 2)$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	16	ENTER+ ENTER+		
2	1206	STO 1 LN x ^y LN		
3		÷	2.56	f = 2
4		CLx		
5	2	x ^y ENTER+ ENTER+ RCL 1		
6		R ^y R ^y x ^y y ^x ÷	4.71	d ₁ = 4
7	4	– x	11.38	d ₂ = 11
8	11	– x	6.00	d ₃ = 6

Example 2: Convert 513 to octal (base 8).

Answer:

$$513_{10} = 1001_8$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	8	ENTER+ ENTER+		
2	513	STO 1 LN x ^y LN		
3		÷	3.00	f = 3
4		CLx		
5	3	x ^y ENTER+ ENTER+ RCL 1		
6		R ^y R ^y x ^y y ^x ÷	1.00	d ₁ = 1
7	1	– x	0.02	d ₂ = 0
8	0	– x	0.13	d ₃ = 0
9	0	– x	1.00	d ₄ = 1

Example 3: Convert 6.023×10^{23} to octal.

Answer:

$$6.023 \times 10^{23} = 1.7743_8 \times 8^{26}$$

Note: If we consider 6.023×10^{23} to be a scientific measurement good only to four significant digits, it is meaningless for the octal representation to contain more than 5 significant digits. Therefore, we stop before the loop is completed.

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	8	ENTER+ ENTER+ 6 + 0		
2		2 3 EEX 2 3		
3		STO 1 LN x ² y LN		
4		÷	26.33	f = 26 (Note: this gives the exponent in base 8.)
5		CL X		
6	26	x ² y ENTER+ ENTER+ RCL 1		
7		R ² R ² x ² y y ² ÷	1.99	d ₁ = 1
8	1	— ×	7.94	d ₂ = 7
9	7	— ×	7.54	d ₃ = 7
10	7	— ×	4.34	d ₄ = 4
11	4	— ×	2.69	d ₅ = 3 (rounded), stop.

Integer in Base b to Decimal

$$(d_1 d_2 \dots d_{n-1} d_n)_b \rightarrow I_{10}$$

Examples:

1. $730020461_8 = 123740465_{10}$
2. $7DOF_{16} = 32015_{10}$
(A = 10, B = 11, C = 12, D = 13, E = 14, F = 15 in the hexadecimal system.)

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	b	ENTER+ ENTER+ ENTER+		
2	d ₁	×		
3	d _i	+ ×		Perform 3 for i = 2, ..., n - 1.
4	d _n	+		

Highest Common Factor

The highest common factor (or greatest common divisor) of two positive integers a and b is the largest integer which divides both a and b . We write it as $\text{HCF}(a, b)$.

Example:

$$\text{HCF}(51, 119) = 17.00$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	a	STO 1		
2	b			
3		ENTER+ ENTER+ RCL 1 ÷	D	Let f be the largest integer $\leq D$.
4	f	x₂y CL X RCL 1 x		
5		-	E	If E = 0, go to 8.
				Otherwise, continue with line 6.
6		RCL 1 x₂y STO 1		
7		CL X +		Go to 3.
8		RCL 1	HCF(a, b)	

Least Common Multiple

The least common multiple of two positive integers a and b is the smallest positive integer that both a and b can divide.

$$\text{LCM}(a, b) = \frac{a \cdot b}{\text{HCF}(a, b)}$$

Example:

$$\text{LCM}(51, 119) = 357.00$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	a	STO 1 STO 3		
2	b	STO 2		
3		ENTER+ ENTER+ RCL 1 ÷	D	Let f be the largest integer $\leq D$.
4	f	x ₂ y CLx RCL 1 x		
5		-	E	If E = 0, go to 8. Otherwise, continue with line 6.
6		RCL 1 x ₂ y STO 1		
7		CLx +		Go to 3.
8		RCL 1 RCL 3 RCL		
		2 x x ₂ y ÷	LCM (a,b)	

Statistical Applications

Exponential Curve Fit	126
Power Curve Fit	128
Analysis of Variance (One-Way)	130
Covariance and Correlation	
Coefficient	132
Normal Distribution	134
Inverse Normal Integral	136
Permutations	138
Combinations	139
Random Number Generator	140
Mean, Standard Deviation, Standard	
Error for Grouped Data	141
Chi-Square Statistics	143
F Statistic	146
Paired t Statistic	147
t Statistic for Two Means	149
Factorial and Gamma Function	151

Exponential Curve Fit

Formulas: For a given set of data points

$$\{(x_i, y_i), i = 1, 2, \dots, n\}$$

this procedure fits an exponential curve of the form

$$y = ae^{bx}$$

$$(a > 0)$$

The equation is linearized into

$$\ln y = \ln a + bx$$

The following statistics are computed:

1. Coefficients a, b

$$b = \frac{\sum x_i \ln y_i - \frac{1}{n} (\sum x_i)(\sum \ln y_i)}{\sum x_i^2 - \frac{1}{n} (\sum x_i)^2}$$

$$a = \exp \left[\frac{\sum \ln y_i}{n} - b \frac{\sum x_i}{n} \right]$$

2. Coefficient of determination

$$r^2 = \frac{\left[\sum x_i \ln y_i - \frac{1}{n} \sum x_i \sum \ln y_i \right]^2}{\left[\sum x_i^2 - \frac{(\sum x_i)^2}{n} \right] \left[\sum (\ln y_i)^2 - \frac{(\sum \ln y_i)^2}{n} \right]}$$

3. Estimated value \hat{y} for a given x

$$\hat{y} = ae^{bx}$$

Note: n is a positive integer and n $\neq 1$.

Example:

x_i	.72	1.31	1.95	2.58	3.14
y_i	2.16	1.61	1.16	.85	.50

Answer:

$$a = 3.45$$

$$b = -0.58$$

$$y = 3.45e^{-0.58x}$$

$$r^2 = 0.98$$

For $x = 1.5$, $\hat{y} = 1.44$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1		CL		
2	y_i			Perform 2-3 for
3	x_i		i	$i = 1, 2, \dots, n$.
2'	y_k			Perform 2' - 3' to delete
3'	x_k	STO 1		erroneous data x_k, y_k .
4		L.R. STO 1	a	
5		STO 2	b	
6		ENTER+ ENTER+		
7			r^2	
8	x	RCL 2 x RCL		
9		1 x	\hat{y}	For a new x, go to step 8. For a new case, go to step 1.

Power Curve Fit

Formula: For a given set of data points

$$\left\{ (x_i, y_i), i = 1, 2, \dots, n \right\}$$

where $x_i > 0$ and $y_i > 0$

this procedure fits a power curve of the form

$$y = ax^b$$

(a > 0)

By writing this equation as

$$\ln y = b \ln x + \ln a$$

the problem can be solved as a linear regression problem.

Output statistics are:

1. Regression coefficients

$$b = \frac{\sum (\ln x_i)(\ln y_i) - \frac{(\sum \ln x_i)(\sum \ln y_i)}{n}}{\sum (\ln x_i)^2 - \frac{(\sum \ln x_i)^2}{n}}$$

$$a = \exp \left[\frac{\sum \ln y_i}{n} - b \frac{\sum \ln x_i}{n} \right]$$

2. Coefficient of determination

$$r^2 = \frac{\left[\sum (\ln x_i)(\ln y_i) - \frac{(\sum \ln x_i)(\sum \ln y_i)}{n} \right]^2}{\left[\sum (\ln x_i)^2 - \frac{(\sum \ln x_i)^2}{n} \right] \left[\sum (\ln y_i)^2 - \frac{(\sum \ln y_i)^2}{n} \right]}$$

3. Estimated value \hat{y} for given x

$$\hat{y} = ax^b$$

Note: m is a positive integer and n $\neq 1$.

Example:

x_i	10	12	15	17	20	22	25	27	30	32	35
y_i	0.95	1.05	1.25	1.41	1.73	2.00	2.53	2.98	3.85	4.59	6.02

Answer:

$$a = 0.03$$

$$b = 1.46$$

$$y = 0.03x^{1.46}$$

$$r^2 = 0.94$$

$$\text{For } x = 18, \hat{y} = 1.76$$

$$x = 23, \hat{y} = 2.52$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1				
2	x_i			Perform 2-3 for
3	y_i		i	$i = 1, 2, \dots, n.$
2'	x_k			Perform 2' -3' to delete
3'	y_k			erroneous data x_k, y_k .
4			a	
5			b	
6				
7			r^2	
8	x			
9			\hat{y}	For a new x , go to step 8.
				For a new case, go to step 1.

Analysis of Variance (One Way)

The one-way analysis of variance tests the differences between the population means of k treatment groups. Group i ($i = 1, 2, \dots, k$) has n_i observations (treatment group may have equal or unequal number of observations).

The key sequence yields the analysis of variance table: sum of squares (SS), mean squares (MS), degrees of freedom (df), and the F ratio.

Formulas:

$$\text{Total SS} = \sum_{i=1}^k \sum_{j=1}^{n_i} x_{ij}^2 - \frac{\left(\sum_{i=1}^k \sum_{j=1}^{n_i} x_{ij} \right)^2}{\sum_{i=1}^k n_i}$$

$$\text{Treat SS} = \sum_{i=1}^k \frac{\left(\sum_{j=1}^{n_i} x_{ij} \right)^2}{n_i} - \frac{\left(\sum_{i=1}^k \sum_{j=1}^{n_i} x_{ij} \right)^2}{\sum_{i=1}^k n_i}$$

$$\text{Error SS} = \text{Total SS} - \text{Treat SS}$$

$$\text{Treat df} = k - 1$$

$$\text{Error df} = \sum_{i=1}^k n_i - k$$

$$\text{Treat MS} = \frac{\text{Treat SS}}{\text{Treat df}}$$

$$\text{Error MS} = \frac{\text{Error SS}}{\text{Error df}}$$

$$F = \frac{\text{Treat MS}}{\text{Error MS}} \left(\text{with } k - 1 \text{ and } \sum_{i=1}^k n_i - k \text{ degrees of freedom} \right)$$

Example:

		j	1	2	3	4	5	6
		i	1	10	8	5	12	14
		Treatment	2	6	9	8	13	
			3	14	13	10	17	16

Answer:

Total SS = 172.93

Treat SS = 66.93

Error SS = 106.00

Treat df = 2.00

Treat MS = 33.47

Error df = 12.00

Error MS = 8.83

F = 3.79 (with 2 and 12 degrees of freedom)

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1		CLEAR		
2		1 STO + 4		Perform 2-8 for i = 1, 2, ..., k.
3	x_{ij}		j	Perform 3 for j = 1, 2, ..., n_i .
4		STO + 0 RCL .		
5		1 STO + 1 x		
6		$x \cdot y \div$ STO + 3		
7		RCL . 2 STO +		
8		2 CL-2		
9		RCL 2 RCL 1 x		
10		RCL 0 + -	Total SS	
11		LAST X RCL 3 x y		
12		-	Treat SS	
13		-	Error SS	
14		LAST X RCL 4 1		
15		-	Treat df	
16		-	Treat MS	
17		x y RCL 0 RCL 4		
18		-	Error df	
19		-	Error MS	
20		-	F	

Covariance and Correlation Coefficient

Formulas: For a set of given data points $\{(x_i, y_i), i = 1, 2, \dots, n\}$, the covariance and the correlation coefficient are defined as:

$$\text{covariance } s_{xy} = \frac{1}{n-1} \left(\sum x_i y_i - \frac{1}{n} \sum x_i \sum y_i \right)$$

$$\text{or } s_{xy}' = \frac{1}{n} \left(\sum x_i y_i - \frac{1}{n} \sum x_i \sum y_i \right)$$

$$\text{correlation coefficient } r = \frac{s_{xy}}{s_x s_y}$$

where s_x and s_y are standard deviations

$$s_x = \sqrt{\frac{\sum x_i^2 - (\sum x_i)^2/n}{n-1}}$$

$$s_y = \sqrt{\frac{\sum y_i^2 - (\sum y_i)^2/n}{n-1}}$$

Note: $-1 \leq r \leq 1$

Example:

y_i	92	85	78	81	54	51	40
x_i	26	30	44	50	62	68	74

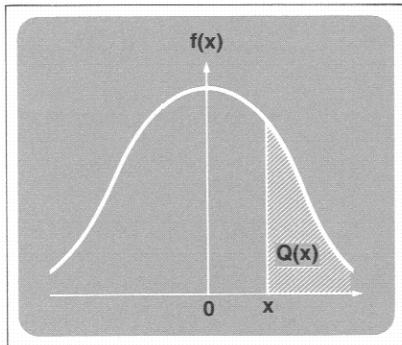
Answer:

$$r = -0.96$$

$$s_{xy} = -354.14$$

$$s_{xy}' = -303.55$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1				
2	y_i			Perform 2-3 for $i = 1, 2, \dots, n$.
3	x_i		i	
2'	y_k			Perform 2'-3' to delete erroneous data x_k, y_k .
3'	x_k			
4				
5			r	
6				
7			s_{xy}	
8				
9			s_{xy}	


Normal Distribution

Formulas: The density function for a standard normal variable is

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

The upper tail area is

$$Q(x) = \frac{1}{\sqrt{2\pi}} \int_x^{\infty} e^{-\frac{t^2}{2}} dt$$

For $x \geq 0$, polynomial approximation is used to compute $Q(x)$:

$$Q(x) = f(x) (b_1 t + b_2 t^2 + b_3 t^3 + b_4 t^4 + b_5 t^5) + \epsilon(x)$$

where $|\epsilon(x)| < 7.5 \times 10^{-8}$

$$t = \frac{1}{1 + rx}, r = 0.2316419$$

$$b_1 = .31938153$$

$$b_2 = -.356563782$$

$$b_3 = 1.781477937$$

$$b_4 = -1.821255978$$

$$b_5 = 1.330274429$$

Note: The routine only works for $x \geq 0$. Equations $f(-x) = f(x)$, $Q(-x) = 1 - Q(x)$, where $x \geq 0$, can be used to find f and Q for negative numbers.

Examples:

$$1. \quad x = 1.18$$

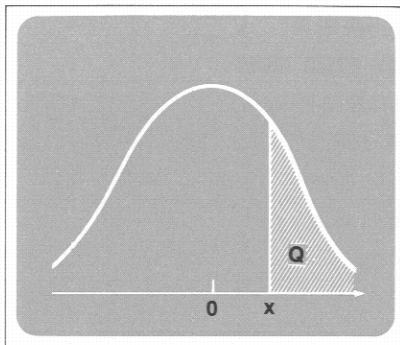
$$f(x) = 0.20$$

$$Q(x) = 0.12$$

$$2. \quad x = 2.28$$

$$f(x) = 0.03$$

$$Q(x) = 0.01$$


LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	r	STO 0		
2	b_1	STO 1		
3	b_2	STO 2		
4	b_3	STO 3		
5	b_4	STO 4		
6	b_5	STO 5		
7	x	STO 6 \times 2 \div		
8		CHS \times 2		
9		\times 2 \div STO 7	f(x)	
10		RCL 0 RCL 6 \times		
11		1 + \times ENTER+ ENTER+		
12		ENTER+ RCL 5 \times RCL		
13		4 + \times RCL 3		
14		+ \times RCL 2 +		
15		\times RCL 1 + \times		
16		RCL 7 \times	Q(x)	Go to 7 for new x.

Inverse Normal integral

Formulas: This procedure determines the value of x such that

$$Q = \int_x^{\infty} \frac{e^{-\frac{t^2}{2}}}{\sqrt{2\pi}} dt$$

where Q is given and $0 < Q \leq 0.5$.

The following rational approximation is used:

$$x = t - \frac{c_0 + c_1 t + c_2 t^2}{1 + d_1 t + d_2 t^2 + d_3 t^3} + \epsilon(Q)$$

$$\text{where } |\epsilon(Q)| < 4.5 \times 10^{-4}$$

$$t = \sqrt{\ln \frac{1}{Q^2}}$$

$$\begin{array}{ll} c_0 = 2.515517 & d_1 = 1.432788 \\ c_1 = 0.802853 & d_2 = 0.189269 \\ c_2 = 0.010328 & d_3 = 0.001308 \end{array}$$

Examples:

$$\begin{array}{ll} Q = 0.12 & Q = 0.05 \\ x = 1.18 & x = 1.65 \end{array}$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	c_0	STO 0		
2	c_1	STO 1		
3	c_2	STO 2		
4	d_1	STO 3		
5	d_2	STO 4		
6	d_3	STO 5		
7	Q	x^2 $1/x$ LN \sqrt{x} STO		
8		6 ENTER+ ENTER+ ENTER+ RCL		
9		5 x RCL 4 +		
10		x RCL 3 + x		
11		1 + STO 7 CLx		
12		RCL 2 x RCL 1		
13		+ x RCL 0 +		
14		RCL 7 ÷ -	x	Go to 7 for new Q.

Permutations

A permutation is an ordered subset of a set of distinct objects. This procedure calculates the number of possible permutations of "a" objects taken "b" at a time.

Formula:

$${}_aP_b = P(a, b) = \frac{a!}{(a - b)!}$$

where a, b are integers and $0 \leq b \leq a$.

Example:

$${}_7P_5 = 2520.00$$

Notes:

$${}_aP_0 = 1$$

$${}_aP_1 = a$$

$${}_aP_a = a!$$

Procedure requires $a \leq 69$.

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	a			
2	b		${}_aP_b$	

Combinations

A combination is a selection of one or more of a set of distinct objects without regard to order. This procedure calculates the number of possible combinations of "a" objects taken "b" at a time (binomial coefficient).

Formula:

$$\binom{a}{b} = {}_aC_b = C_b^a = C(a, b) = \frac{a!}{b!(a - b)!}$$

Example:

$${}_7C_5 = 21.00$$

Notes:

$${}_aC_0 = {}_aC_a = 1$$

$${}_aC_1 = {}_aC_{a-1} = a$$

Procedure requires $a \leq 69$.

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	a			
2	b			
3			${}_aC_b$	

Random Number Generator

Formulas: This procedure calculates uniformly distributed pseudo random numbers u_i in the range

$$0 \leq u_i \leq 1$$

using the following formula:

$$u_i = \text{fractional part of } [997 u_{i-1}]$$

$$\text{where } u_0 = 0.5284163.$$

Example: Using the above u_0 , generate a series of uniformly distributed random numbers.

$$0.83, 0.56, 0.27, 0.04, 0.20, 0.75, 0.83, 0.95, \dots$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	997	ENTER ENTER ENTER		
2	.5284163			
3		x	D_i	Perform 3-4 for
				$i = 1, 2, 3, \dots$
4	f_i	=	u_i	Let $f_i = \text{integer part of } D_i$.

Mean, Standard Deviation, Standard Error for Grouped Data

Formulas: Given a set of data points

$$x_1, x_2, \dots, x_n$$

with respective frequencies

$$f_1, f_2, \dots, f_n$$

the following statistics are computed:

$$\text{mean } \bar{x} = \frac{\sum f_i x_i}{\sum f_i}$$

$$\text{standard deviation } s = \sqrt{\frac{\sum f_i x_i^2 - (\sum f_i) x^2}{\sum f_i - 1}}$$

$$\text{standard error } s_{\bar{x}} = \frac{s_x}{\sqrt{\sum f_i}}$$

Example:

x_i	2	3.4	7	11	23	3.41
f_i	5	3	4	2	3	1

Answer:

$$\bar{x} = 7.92$$

$$s = 7.52$$

$$s_{\bar{x}} = 1.77$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1		CLEAR		
2	x_i	ENTER		Perform 2-5 for $i = 1, 2, \dots, n.$
3	f_i	STO		
4		LAST X		
5		LAST X	i	
6				
7				
8			\bar{x}	
9			s	
10			s_x	

Chi-Square Statistics

Chi-Square Evaluation

This routine calculates the value of the χ^2 statistic for the goodness of fit test by the equation

$$\chi^2 = \sum_{i=1}^n \frac{(O_i - E_i)^2}{E_i}$$

where O_i = observed frequency
 E_i = expected frequency

Example:

O_i	8	50	47	56	5	14
E_i	9.6	46.75	51.85	54.4	8.25	9.15

Answer:

$$\chi^2 = 4.84$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1		CLEAR		
2	E_i	ENTER+ ENTER+		Perform 2-3 for
3	O_i	- x xy ÷ +		$i = 1, 2, \dots, n.$

$2 \times k$ Contingency Table

Formulas: Contingency tables can be used to test the null hypothesis that two variables are independent.

	1	2	3	...	k	Totals
A	a_1	a_2	a_3	...	a_k	N_A
B	b_1	b_2	b_3	...	b_k	N_B
Totals	N_1	N_2	N_3	...	N_k	N

Test statistic χ^2 has $k - 1$ degrees of freedom.

$$\chi^2 = \frac{N}{N_A} \sum_{i=1}^k \frac{a_i^2}{N_i} + \frac{N}{N_B} \sum_{i=1}^k \frac{b_i^2}{N_i} - N$$

Pearson's coefficient of contingency C measures the degree of association between the two variables.

$$C = \sqrt{\frac{\chi^2}{N + \chi^2}}$$

Example:

	1	2	3
A	2	5	4
B	3	8	7

Answer:

$$\begin{aligned}\chi^2 &= 0.02 \\ C &= 0.03\end{aligned}$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1		CLEAR		
2	a_i	ENTER		Perform 2-7 for
3	b_i	STO 3 STO + 1		$i = 1, 2, \dots, k.$
4		$x \cdot y$ STO 2 STO +		
5		0 + Σ RCL 3		
6		$x \cdot y$ \div RCL 2		
7		LAST X \div Σ	i	
8		RCL 0 2 RCL 0		
9		\div RCL 0 4 RCL		
10		1 \div + 1 -		
11		RCL 0 RCL 1 +		
12		x	χ^2	
13		ENTER ENTER RCL 0 RCL		
14		1 + + \div Σ	C	

F Statistic

This procedure is used for testing two population variances.

Formulas: Given independent random samples $\{x_i, i = 1, 2, \dots, n_x\}$ and $\{y_i, i = 1, 2, \dots, n_y\}$ taken from two normal populations whose variances are σ_x^2 and σ_y^2 , the F statistic, with $n_x - 1$ and $n_y - 1$ degrees of freedom (df), can be used to test the null hypothesis

$$H_0: \sigma_x^2 = \sigma_y^2$$

F is computed from the following:

$$F = \frac{s_x^2}{s_y^2}$$

where s_x^2 = sample variance of x
 s_y^2 = sample variance of y

Example:

$$x: 91, 103, 90, 113, 108, 87, 100, 80, 99, 54 \quad (n_x = 10)$$

$$y: 79, 84, 108, 114, 120, 103, 122, 120 \quad (n_y = 8)$$

Answer:

$$F = 1.02 \text{ (df = 9 and 7)}$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1				
2	x_i		i	Perform 2 for $i = 1, 2, \dots, n_x$.
3				
4				
5	y_i		i	Perform 5 for $i = 1, 2, \dots, n_y$.
6				
7			F	

Paired t Statistic

Formulas: Given a set of paired observations from two normal populations with means μ_1, μ_2 (unknown)

x_i	x_1	x_2	\dots	x_n
y_i	y_1	y_2	\dots	y_n

let

$$D_i = x_i - y_i$$

$$\bar{D} = \frac{1}{n} \sum_{i=1}^n D_i$$

$$s_D = \sqrt{\frac{\sum D_i^2 - \frac{1}{n} (\sum D_i)^2}{n - 1}}$$

$$s_{\bar{D}} = \frac{s_D}{\sqrt{n}}$$

The test statistic

$$t = \frac{\bar{D}}{s_{\bar{D}}}$$

which has $n - 1$ degrees of freedom (df), can be used to test the null hypothesis

$$H_0: \mu_1 = \mu_2.$$

Example:

x_i	14	17.5	17	17.5	15.4
y_i	17	20.7	21.6	20.9	17.2

Answer:

$$t = -7.16$$

$$df = 4.00$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1				
2	x_i			Perform 2-3 for $i = 1, 2, \dots, n.$
3	y_i		i	
4				
5				
6			t	
7			df	

t Statistic for Two Means

Formulas: Suppose $\{x_1, x_2, \dots, x_{n_1}\}$ and $\{y_1, y_2, \dots, y_{n_2}\}$ are independent random samples from two normal populations having means μ_1, μ_2 (unknown) and the same unknown variance σ^2 .

We want to test the null hypothesis

$$H_0: \mu_1 - \mu_2 = D$$

where D is a given number.

Define

$$\bar{x} = \frac{1}{n_1} \sum_{i=1}^{n_1} x_i$$

$$\bar{y} = \frac{1}{n_2} \sum_{i=1}^{n_2} y_i$$

$$t = \frac{\bar{x} - \bar{y} - D}{\sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \sqrt{\frac{\sum x_i^2 - n_1 \bar{x}^2 + \sum y_i^2 - n_2 \bar{y}^2}{n_1 + n_2 - 2}}}$$

We can use this t statistic, which has the t distribution with $n_1 + n_2 - 2$ degrees of freedom, to test the null hypothesis H_0 .

Example:

$$\begin{array}{cccccccc} x: & 79, & 84, & 108, & 114, & 120, & 103, & 122, & 120 \\ y: & 91, & 103, & 90, & 113, & 108, & 87, & 100, & 80, & 99, & 54 \end{array}$$

$$n_1 = 8$$

$$n_2 = 10$$

If $D = 0$ (i.e., $H_0: \mu_1 = \mu_2$)

then

$$\bar{x} = 106.25$$

$$\bar{y} = 92.5$$

$$t = 1.73$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1				
2	x_i		i	Perform 2 for $i = 1, 2, \dots, n_1$.
3				
4				
5				
6			\bar{x}	
7				
8	y_j		j	Perform 8 for $j = 1, 2, \dots, n_2$.
9			\bar{y}	
10	D			
11				
12				
13				
14				
15				
16				
17				
18				
19			t	

Factorial and Gamma Function

This procedure uses Stirling's approximation to compute factorial. From factorial, Gamma function can easily be calculated.

Notes: This approximation can be used for positive $x \leq 69$ (otherwise the answer is $> 10^{100}$).

This approximation is good for large x .

For $x < 1$, use polynomial approximation.

To compute Gamma function, $\Gamma(x) = (x - 1)!$

Formula:

$$x! \cong \sqrt{2\pi x} x^x e^{-x} \left(1 + \frac{1}{12x} + \frac{1}{288x^2} - \frac{139}{51840x^3} - \frac{571}{2488320x^4} \right)$$

Example:

$$4.25! \cong 35.21$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1		CL		
2	x	ENTER+ ENTER+ ENTER+ \times 2		
3		π \times R \downarrow \times		
4		\times R \downarrow CHS e \downarrow		
5		x STO 0 R \downarrow \times		
6		ENTER+ ENTER+ ENTER+		
7	12	\times \times		
8	288	\times \times		
9	139	ENTER+		
10	51840	\div \times \times CHS \times		
11	571	ENTER+		
12	2488320	\div \times \times \times CHS		
13		\times RCL \times 5 1		
14		+ RCL 0 \times	x!	

Financial Applications

Interest (Compound)	154
Nominal Rate Converted to	
Effective Annual Interest Rate	157
Add-On Rate to Annual Percentage	
Rate (APR)	159
Periodic Savings	160
Direct Reduction Loan	162
Discounted Cash Flow Analysis	166
Depreciation	168
Calendar Routine	171

Interest (Compound)

This procedure applies to an amount of principal that has been placed into an account and compounded periodically with no further deposits. With any three of the important variables given, a fourth may easily be calculated.

Notation:

n = number of time periods

i = periodic interest rate expressed as a decimal

PV = present value or principal

FV = future value or amount

I = interest amount

Future Value

Formula:

$$FV = PV (1 + i)^n$$

Example: Find the future amount of \$1000 invested at 6% compounded annually for 5 years.

Answer:

\$1338.23 (Note: $i = 0.06$)

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	i	$\text{ENTER} \downarrow \text{1} +$		
2	n	$\text{2nd} \text{ FV}$		
3	PV	$\text{2nd} \text{ PV}$	FV	

Present Value

Formula:

$$PV = \frac{FV}{(1 + i)^n}$$

Example: What sum invested today, at 6% compounded annually, will amount to \$1500 in 5 years?

Answer:

\$1120.89 (Note: $i = 0.06$)

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	FV	ENTER		
2	i	ENTER \downarrow 1 \div		
3	n	\mathbb{Y} \div	PV	

Number of Time Periods

Formula:

$$n = \frac{\ln \left(\frac{FV}{PV} \right)}{\ln (1 + i)}$$

Example: If you deposit \$250 in a savings account at 6% interest, compounded annually, how long will it take for your money to double?

Answer:

11.90 years (Note: $i = 0.06$)

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	FV	ENTER		
2	PV	\downarrow \mathbb{Y} \downarrow 1 \downarrow ENTER		
3	i	\downarrow \mathbb{Y} \div	n	

Rate of Return**Formula:**

$$i = \left(\frac{FV}{PV} \right)^{1/n} - 1$$

Example: Find the annual rate of return if \$2000 doubles in 10 years when compounded monthly.

Answer:

6.95% (0.0695) annually

(Note: $n = 120$ months; $FV = 4000$; answer must be multiplied by 12 to find an annual rate of return.)

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	FV	ENTER		
2	PV	±		
3	n	xy 1 –	i	

Interest Amount**Formula:**

$$I = PV \left[(1 + i)^n - 1 \right]$$

Example: Find the compounded interest on \$2000 for 5 years if interest at 5.5% is compounded monthly.

Answer:

\$631.41

(Note: $n = 60$ months; $i = 0.055/12$)

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	i	ENTER 1 +		
2	n	xy 1 –		
3	PV	x	I	

Nominal Rate Converted to Effective Annual Interest Rate

This procedure calculates the effective or compounded annual interest rate when the number of periods per year and the nominal annual interest rate are known.

Finite Compounding

Formula:

$$\text{Effective} = (1 + i)^n - 1$$

Example: What is the effective annual rate of interest if the nominal (annual) rate of 6% is compounded monthly?

Answer:

6.17% (0.0617)

(Note: $n = 12$, $i = .06/12$)

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1		4		
2	i			
3	n		Effective	

Continuous Compounding

Formula:

$$\text{Effective} = e^i - 1$$

Example: A bank offers a savings plan with a 5.75% annual nominal interest rate. What is the annual effective rate if compounding is continuous?

Answer:

5.92% (0.0592)

(Note: $i = .0575$)

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	i			
2		4	Effective	

Note: Some banks offer 365 days of continuous compounding on a 360-day basis. To find the effective interest rate, use the following procedure.

$$i \left(\frac{365}{360} \right) - 1$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	i	ENTER 3 6 5 x		
2		3 6 0 ÷		
3		1 FIX 4	Effective	

Add-On Rate to Annual Percentage Rate (APR)

This procedure converts add-on interest rate (when a percentage of the loan amount is added on as a finance charge) to the true rate of interest (annual percentage rate).

Formula:

$$\text{APR} \cong \frac{600 \text{ ni}}{3(n + 1) + [(n - 1) \text{ ni}/m]}$$

where n = number of payments
 m = number of payments in one year
 i = add-on interest rate

Note: This formula will give an approximate, not an exact, answer.

Example: What is the true rate of interest (APR) on an 18-month, 5% add-on loan?

Answer:

9.27%

(Note: i = 0.05)

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	i	ENTER \downarrow STO [1]		
2	n	STO [2] \times RCL [2]		
3		[1] \downarrow \times		
4	m	\div RCL [2] [1] \downarrow		
5		[3] \times \downarrow [6] [0]		
6		[0] RCL [2] \times RCL		
7		[1] \times \downarrow \div	APR	

Periodic Savings

This procedure calculates payment, future value, or number of time periods for a schedule of periodic payments into a savings account, given the interest rate and two of the other three variables.

Notation:

n = number of payments

i = periodic interest rate expressed as a decimal

PMT = payment (at the beginning of the period)

FV = future value

Note: Payments are assumed to occur at the beginning of the time period (annuity due or "payments in advance").

Number of Periods

Formula:

$$n = \frac{\ln \left[\frac{FV \cdot i}{PMT} + (1 + i) \right]}{\ln (1 + i)} - 1$$

Example: If you deposit \$100 a month in a savings account which earns 5½% interest (compounded monthly), how long will it take to accumulate \$2000?

Answer:

19.10 months

(Note: $i = 0.055/12$)

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	i	$\text{STO } 1$		
2	FV	\times		
3	PMT	$\div \text{ RCL } 1 \ 1 +$		
4		$\text{STO } 2 + \text{ EN RCL}$		
5		$2 \text{ } \text{LN} \div 1 -$	n	

Payment Amount

Formula:

$$PMT = \frac{FV \cdot i}{(1 + i)^{n+1} - (1 + i)}$$

Example: In 3 years you will need \$5000. How much should you deposit each month, if you will receive 6% annual interest, compounded monthly?

Answer:

\$126.48

(Note: $n = 36$, $i = .06/12$)

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	i	STO 1		
2	FV	$\times 1$ RCL +		
3		STO 2		
4	n	ENTER+ 1 + y^x RCL		
5		2 - ÷	PMT	

Future Value

Formula:

$$FV = \frac{PMT}{i} [(1 + i)^{n+1} - (1 + i)]$$

Example: You are depositing \$1000 per year in a savings account earning 7.5% interest compounded annually. How much will you have in 10 years?

Answer:

\$15,208.12

(Note: $i = 0.075$)

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	i	STO 1 1 + ENTER+		
2		ENTER+		
3	n	ENTER+ 1 + y^x $x \cdot y$		
4		-		
5	PMT	\times RCL 1 ÷	FV	

Direct Reduction Loan

Given any three of the variables listed below, these procedures calculate the fourth for a direct reduction loan (the type of loan commonly used for mortgages).

Notation:

n = number of payments

i = periodic interest rate expressed as a decimal

PMT = payment

PV = present value or principal

Payment Amount

Formula:

$$PMT = \frac{PV \cdot i}{1 - (1 + i)^{-n}}$$

Example: What monthly payment is required to pay off a \$5000 loan at 9.5% interest in 36 months?

Answer:

\$160.16

(Note: $i = 0.095/12$)

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	i	$\text{STO } 1$		
2	PV	$\times \text{ RCL } 1 \text{ } 1 \text{ } +$		
3	n	$\text{CHS } \text{2nd } 1 \text{ } \text{2nd } \text{2}$		
4		\div	PMT	

Present Value

Formula:

$$PV = PMT \left[\frac{1 - (1 + i)^{-n}}{i} \right]$$

Example: You are willing to pay \$125 per month for 36 months. If the current interest rate is 9.5%, how much can you borrow?

Answer:

\$3902.23

(Note: $i = 0.095/12$)

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	i	STO 1 +		
2	n	CHS 3 1 x ^y =		
3		RCL 1 ÷		
4	PMT	x	PV	

Number of Time Periods

Formula:

$$n = -\frac{\ln(1 - i \cdot PV/PMT)}{\ln(1 + i)}$$

Example: How many payments are required to pay off a loan of \$4000 at 9.5% annual interest, with payments of \$175 per month?

Answer:

25.31 months

(Note: $i = 0.095/12$)

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	i	STO 1		
2	PV	x		
3	PMT	÷ 1 x ^y = LN		
4		RCL 1 1 + LN		
5		÷ CHS	n	

Interest Rate

It is not possible to write a closed equation for i in a direct reduction loan. Hence, it is necessary to use an iterative process like the one below.

Formula:

$$\text{Periodic interest rate } i = \frac{\text{PMT} \left[1 - \left(\frac{1}{1+i} \right)^n \right]}{\text{PV}}$$

$$\text{Annual interest rate} = i \times A$$

where A = number of payments per year

Example: You have a \$30,000 mortgage on which you will make 360 monthly payments of \$179.86. What interest rate are you paying?

Answer:

6.00% (8 iterations)

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1		FIX 9		
2	n	ENTER+ ENTER+		
3	PMT	ENTER+ FIX 9		
4	PV	÷ STO 1 CLx +		
5		1 + % x _Y x _Z y _Z		Perform 5-7 for $k = 1, 2, \dots$
6		1 x _Z y _Z - RCL 1		until i_k converges (to
7		x	i_k	desired decimal place).
8		EEX 2 x		
9	A	x FIX 2		Answer is in %.

Amortization Schedule

I_k = interest paid in k^{th} payment

PMT = payment

PP_k = payment to principal of k^{th} payment

PV_k = remaining balance after k^{th} payment

PV_0 = amount of loan

i = periodic interest rate expressed as a percent

An amortization schedule consists of the interest paid, the payment to principal, and the remaining balance for each payment $k = 1, 2, \dots$

Formulas:

$$I_k = iPV_{k-1}/100$$

$$PP_k = PMT - I_k$$

$$PV_k = PV_{k-1} - PP_k$$

Example: Generate an amortization schedule for the first two months of a \$40,000 loan at 9% ($i = 9/12$) with monthly payments of \$321.85.

Answer:

$$I_1 = \$300.00$$

$$I_2 = \$299.84$$

$$PP_1 = \$21.85$$

$$PP_2 = \$22.01$$

$$PV_1 = \$39978.15$$

$$PV_2 = \$39956.14$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	PMT	STO 1		
2	i	ENTER+ ENTER+		i is expressed as a percent.
3	PV ₀			
4		x ₂ y ÷	I _k	Repeat for subsequent
5		RCL 1 x ₂ y -	PP _k	payments.
6		-	PV _k	

Discounted Cash Flow Analysis

The primary purpose of this procedure is to compute the net present value (NPV) of a series of cash flows. The NPV is found by discounting the cash flows at the desired rate of return, and then subtracting the initial investment.

In general, an initial investment is made in some enterprise that is expected to bring in periodic cash flows. After discounting, a negative value for NPV indicates that the enterprise would not be profitable, while a positive value for NPV means that the enterprise will show a profit to the extent that a rate of return on the initial investment has been exceeded.

Notation:

PV_0 = original investment

PV_k = net cash flow of the k^{th} period

i = discount rate per period (as a decimal)

NPV_k = net present value at period k

Formula:

$$NPV_k = -PV_0 + \sum_{j=1}^k \frac{PV_j}{(1+i)^j}$$

Example: A small shopping complex, which costs \$137,000, is estimated to have annual cash flows as follows:

Year	Cash Flow (\$)
1	10,000
2	13,000
3	19,000
4	152,000 (property sold in 4 th year)

The desired minimum yield is 10%. Will this rate be achieved by the above cash flows?

Answer:

$$NPV_1 = -127909.09$$

$$NPV_2 = -117165.29$$

$$NPV_3 = -102890.31$$

$$NPV_4 = 927.74$$

Because the final NPV is positive, the investment more than achieves the desired yield.

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	i	ENTER \square \square \square \square \square		
2	PV _j	$x \times y \div$		
3	PV _j	$-$	NPV _j	
4	PV _i	RCL \square \square		Perform 4-5 for $j = 2, 3, \dots, k$.
5	j	$x \times y \div +$	NPV _j	

Depreciation

These procedures can be used to calculate depreciation of assets using straight line, declining balance, or sum of the years' digits method.

Straight Line Depreciation

Formulas:

$$D = \frac{PV}{n}$$

$$RDV_k = PV - kD$$

where PV = original value of asset (less salvage value)

n = depreciable life of asset

D = depreciation per year

RDV_k = remaining depreciable value at time period k

Example: A duplex costing \$40,000 (exclusive of land) is depreciated over 25 years, using the straight line method. What is the depreciation amount and remaining depreciable value after 5 years?

Answer:

$$D = \$1600$$

$$RDV_5 = \$32,000$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	PV	ENTER ENTER		
2	n	÷	D	
3	k	x –	RDV _k	

Declining Balance Depreciation

Formulas:

$$D_k = PV \cdot \frac{R}{n} \left(1 - \frac{R}{n} \right)^{k-1}$$

$$RDV_k = PV \left(1 - \frac{R}{n} \right)^k$$

where PV = original value of asset
 n = depreciable life of asset
 R = depreciation rate (given by user)
 D_k = depreciation at time period k
 RDV_k = remaining depreciable value at time period k

Example: A fleet car has a value of \$2500 and a life expectancy of 6 years. Use the double declining balance method ($R = 2$) to find the amount of depreciation and remaining depreciable value after 4 years.

Answer:

$$RDV_4 = \$493.83$$

$$D_4 = \$246.91$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	k	$ENTER + 1 ENTER +$		
2	R	$ENTER +$		
3	n	$\div - STO 1 x \bar{y}$		
4		\bar{x}		
5	PV	\times	RDV_k	
6		$RCL 1 \div 1 RCL$		
		$1 - \times$	D_k	

Sum of the Years' Digits Depreciation (SOYD)

Formula:

$$D_k = \frac{2(n - k + 1)}{n(n + 1)} PV$$

$$RDV_k = S + (n - k) D_k/2$$

where PV = original value of asset
 n = depreciable life of asset
 S = salvage value
 D_k = depreciation at time period k
 RDV_k = remaining depreciable value at time period k

Example: Apartments valued at \$88,000 are depreciated over 25 years using SOYD depreciation. What is the depreciation amount and remaining depreciable value after 10 years? Assume a salvage value of zero.

Answer:

$$D_{10} = \$4332.31$$

$$RDV_{10} = \$32492.31$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	n	STO 1		
2	k	STO 2 - STO 3		
3		1 + RCL 1 ENTER*		
4		ENTER* x + ÷ 2		
5		x		
6	PV	x	D _k	
7		RCL 3 x 2 ÷		
8	S	+	RDV _k	

Calendar Routine

Weekday

This procedure finds the day of the week for any date since September 14, 1752.

d = day of month

m = month, with January and February being the 13th and 14th months of the previous year

y = year (4 digits)

$$\text{Weekday} = [d + e_1 + e_2 - e_3 + e_4] \pmod{7}$$

$$\text{where } e_1 = \text{INT} \left(\frac{13}{5} (m + 1) \right)$$

$$e_2 = \text{INT} \left(\frac{5}{4} y \right)$$

$$e_3 = \text{INT} \left(\frac{y}{100} \right)$$

$$e_4 = \text{INT} \left(\frac{y}{400} \right)$$

INT is "integer part of".

Output is read as follows:

0 – Saturday

1 – Sunday

2 – Monday

3 – Tuesday

4 – Wednesday

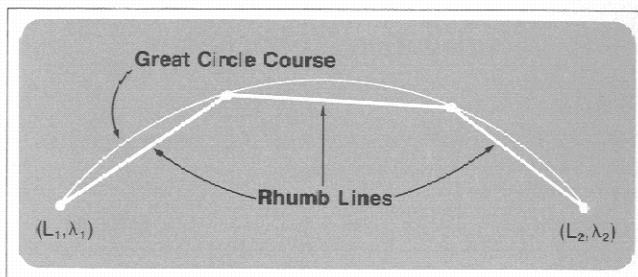
5 – Thursday

6 – Friday

Example: On what day was February 29, 1972?

Answer:

Tuesday ($d = 29$, $m = 14$, $y = 1971$)


LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	d	ENTER		
2	m	ENTER		
3	y	STO 1 R↓ 1 +		
4		1 3 X 5 ÷	E₁	Let e_1 = integer part of E_1 .
5		CLX		
6	e_1	+ RCL 1 x₂y STO		
7		1 x₂y ENTER ENTER ENTER		
8		5 X 4 ÷	E₂	Let e_2 = integer part of E_2 .
9		CLX		
10	e_2	RCL 1 +		For 20 th century date. go to 18.
11		STO 1 R↓ EEX 2		
12		÷	E₃	Let e_3 = integer part of E_3 .
13		CLX		
14	e_3	CHS STO + 1 R↓		
15		4 0 0 ÷	E₄	Let e_4 = integer part of E_4 .
16		CLX		
17	e_4	RCL 1 +		Go to 19.
18		E +		
19		ENTER ENTER 7 ÷	E₅	Let e_5 = integer part of E_5 .
20		CLX		
21	e_5	ENTER 7 X -		

Navigation Applications

Rhumb Line Navigation	174
Great Circle Navigation	176
Sight Reduction Table	180
Most Probable Position	182

Rhumb Line Navigation

This procedure calculates the rhumb line distance and course for the rhumb line between two points on the earth (a spherical earth is assumed). Successive legs can be linked without reentry of initial latitude and longitude.

Notation:

- L_1 = latitude of initial point
- λ_1 = longitude of initial point
- L_2 = latitude of final point
- λ_2 = longitude of final point
- C = rhumb line course
- $DIST$ = rhumb line distance

Formulas:

$$C = \left| \tan^{-1} \left(\frac{\frac{\pi \sin^{-1} \{ \sin [(\lambda_1 - \lambda_2)/2] \}}{90 \ln \frac{\tan (45 + L_2/2)}{\tan (45 + L_1/2)}}}{\frac{\pi \sin^{-1} \{ \sin [(\lambda_1 - \lambda_2)/2] \}}{90 \ln \frac{\tan (45 + L_2/2)}{\tan (45 + L_1/2)}}} \right) \right|$$

If $\sin^{-1} [\sin (\lambda_1 - \lambda_2)] < 0$, then $C = 360 - C$

$$DIST = \begin{cases} 60 (\lambda_2 - \lambda_1) \cos (L), & \text{if } \cos (C) = 0 \\ 60 \frac{L_2 - L_1}{\cos (C)}, & \text{if } \cos (C) \neq 0 \end{cases}$$

Notes: No course should pass through the North or South Pole.

This procedure gives incorrect results when computing distances due east or due west across the dateline. To obtain correct results, compute up to the dateline and then proceed on the other side.

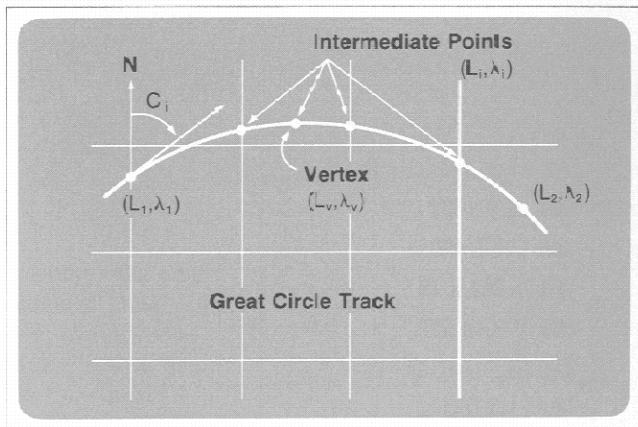
Errors in distance calculations may be encountered as $\cos(C)$ approaches zero.

Accuracy deteriorates for very short legs.

Northern latitudes and western longitudes are input and output as positive values; southern latitudes and eastern longitudes are input and output as negative values.

Example: Find the distances and headings for a flight from Anchorage, Alaska, to Juneau, Alaska, to Seattle, Washington.

Anchorage	$61^{\circ}13'N$	$149^{\circ}54'W$
Juneau	$58^{\circ}18'N$	$134^{\circ}25'W$
Seattle	$47^{\circ}36'N$	$122^{\circ}20'W$


Answer:

$$\begin{array}{lll} \text{Anchorage - Juneau} & C = 110.52^\circ & \text{DIST} = 499.22 \text{ nautical miles} \\ \text{Juneau - Seattle} & C = 145.94^\circ & \text{DIST} = 774.90 \text{ nautical miles} \end{array}$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	L_1	1		
2	λ_1	3		
3	Next L	2		
4	Next λ	4		
5		RCL 3 RCL 4 -		
6		STO 7 2 ÷ SIN		
7		9 0 ÷		
8		x RCL 2		
9		2 ÷ 4 5 +		
10		TAN RCL 1 2 ÷		
11		4 5 + TAN ÷		
12		LN RCL x x x y		
13		RCL 7 SIN		If negative, go to line 15.
14		x y	C	C in decimal degrees. Go to line 16.
15		x y 3 6 0 +	C	C in decimal degrees.
16		COS	cos (C)	If zero, go to line 19.
17		RCL 2 RCL 1 -		
18		x y ÷ 6 0 x	DIST	DIST in nautical miles. Go to line 21.
19		RCL 7 RCL 2 COS		
20		x 6 0 x	DIST	DIST in nautical miles.
21		RCL 2 STO 1 RCL		
22		4 STO 3		Go to line 3 for next leg.

Great Circle Navigation

This procedure calculates the great circle distance and initial course for the great circle track between two points on the earth (a spherical earth is assumed). The coordinates of the vertex and the distance from the initial point to the vertex can be calculated. The latitude of a point of intersection of a great circle track with an intermediate longitude can also be calculated.

Notation:

- L_1 = latitude of initial point
- λ_1 = longitude of initial point
- L_2 = latitude of final point
- λ_2 = longitude of final point
- DIST = great circle distance
- C_i = initial course
- L_v = latitude of vertex
- λ_v = longitude of vertex
- λ'_v = longitude of alternate vertex
- $DIST_v$ = distance from initial point to vertex
- L_i = latitude of intermediate point
- λ_i = longitude of intermediate point

Formulas:

$$DIST = 60 \cos^{-1} [\sin(L_1) \sin(L_2) + \cos(L_1) \cos(L_2) \cos(\lambda_1 - \lambda_2)]$$

$$C_i = \cos^{-1} \left(\frac{\sin(L_2) - \cos(DIST/60) \sin(L_1)}{\sin(DIST/60) \cos(L_1)} \right)$$

If $\sin(\lambda_1 - \lambda_2) < 0$, then $C_i = 360 - C_i$

$$L_i = \tan^{-1} \left(\frac{\tan(L_1) \sin(\lambda_i - \lambda_2) - \tan(L_2) \sin(\lambda_i - \lambda_1)}{\sin(\lambda_i - \lambda_2)} \right)$$

$$\lambda_v = \tan^{-1} \left(\frac{\tan(L_2) \cos(\lambda_1) - \tan(L_1) \cos(\lambda_2)}{\tan(L_1) \sin(\lambda_2) - \tan(L_2) \sin(\lambda_1)} \right)$$

$$\lambda'_v = \lambda_v \equiv 180^\circ$$

$$DIST_v = 60 \sin^{-1} \left(\frac{\cos(C_i) \cos(L_i)}{\sin(L_v)} \right)$$

Notes: No point on a leg should be at either the North or South Pole.

No leg should pass more than halfway around the earth.

Points located at diametrically opposite sides of the earth should not be used since there are an infinite number of great circle courses through such points.

C_i cannot always be calculated along lines of longitude ($\lambda_1 = \lambda_2$).

Equator crossings are at $\lambda = \lambda_v \pm 90^\circ$.

Northern latitudes and western longitudes are input and output as positive values; southern latitudes and eastern longitudes are input and output as negative values.

Example: A ship is proceeding from Manila to Los Angeles. The captain wishes to sail a great circle course from $L12^\circ 45' 12'' N$, $\lambda124^\circ 20' 06'' E$ (input as negative), off the entrance to San Bernardino Strait, to $L33^\circ 48' 48'' N$, $\lambda120^\circ 07' 06'' W$, five miles south of Santa Rosa Island.

Find the initial great circle course and great circle distance; the latitude and longitude of the vertex and the distance from the initial point to the vertex; the latitude at $\lambda180^\circ$.

Answer:

$$DIST = 6185.88 \text{ nautical miles}$$

$$C_i = 50.32^\circ$$

$$\lambda_v = 19^\circ 26' 00'' E \text{ (output as negative)}$$

$$\lambda'_v = 160^\circ 34' 00'' W$$

$$L_v = 41^\circ 21' 08'' N$$

$$DIST_v = 4228.83 \text{ nautical miles}$$

$$L_i = 39^\circ 41' 33'' N \text{ (longitude at } \lambda_i = 180^\circ)$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	L ₂	H.MIS [↔] STO 2 1		
2				
3	L ₁	H.MIS [↔] STO 1 1		
4		DEG STO 5 x ² STO		
5		6 F _Y x R _Y STO		
6		7 x R _Y		
7	λ_1	H.MIS [↔] STO 3		
8	λ_2	H.MIS [↔] STO 4 -		
9		STO 0 COS x +		
10		COS ⁻¹ STO 8 6		
11		0 x DIST	DIST	DIST in nautical miles.
12		RCL 7 RCL 6 RCL		
13		8 COS x - RCL		
14		8 SIN ÷ RCL 5		
15		÷ COS ⁻¹ RCL 0		
16		SIN STO 0		If negative, go to line 18.
17		x _Y STO 9 C _i	C _i	C _i in decimal degrees.
				Go to line 20.
18		x _Y 3 6 0 x _Y		
19		- STO 9 C _i	C _i	C _i in decimal degrees.
20		RCL 1 FAN STO 1		
21		RCL 2 TAN STO 2		If the coordinates of the vertex are not desired, go to line 32.
22		RCL 4 RCL 1 RCL		
23		x _Y RCL 3 RCL 2		
24		RCL R _Y - R _Y -		
25		R _Y ÷ TAN ⁻¹ ENTER		
26		H.MIS	λ_v	If negative, go to line 29.
27		x _Y 1 8 0 -		
28		H.MIS	λ_v'	Go to line 31.
29		x _Y 1 8 0 +		

LINE	DATA	OPERATIONS	RESULTS	REMARKS
30		H.M.S	λ_v'	
31				To calculate L_i , let $\lambda_i = \lambda_v$ or λ_v' and proceed to line 32.
32	λ_i	H.M.S ENTER ENTER RCL		
33		SIN RCL 1		
34		X ² Y RCL 3 -		
35		RCL 2 X -		
36		RCL 0 ÷ TAN ⁻¹		
37		H.M.S	L_i	Go to line 32 for next λ_i ; or, if L_i was just calculated, continue with line 38 to calculate $DIST_v$.
38		H.M.S SIN RCL 9		
39		COS RCL 5 X ÷		
40		SIN ⁻¹ 6 0		
41		X	$DIST_v$	$DIST_v$ in nautical miles.
42				Go to line 32 for intermediate points.

Sight Reduction Table

This procedure calculates the computed altitude and azimuth of a celestial body given the observer's latitude and the declination and local hour angle of the body.

Notation:

DEC = declination of celestial body

LHA = local hour angle of body

L = observer's latitude

Zn = azimuth of body

Hc = computed altitude of body

Formulas:

$$Hc = \sin^{-1} [\sin(DEC) \sin(L) + \cos(DEC) \cos(L) \cos(LHA)]$$

$$Z = \cos^{-1} \left(\frac{\sin(DEC) - \sin(L) \sin(Hc)}{\cos(Hc) \cos(L)} \right)$$

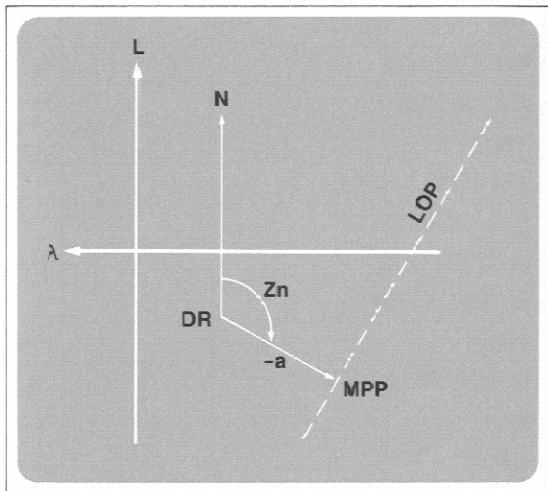
$$Zn = \begin{cases} Z, & \text{if } \sin(LHA) < 0 \\ 360 - Z, & \text{if } \sin(LHA) > 0 \end{cases}$$

Notes: Northern latitudes, northern declinations, and western hour angles are input as positive values; southern latitudes, southern declinations and eastern hour angles are input as negative values.

This procedure may also be used for star identification by entering the observed azimuth in place of local hour angle and observed altitude in place of declination. The outputs are then declination and local hour angle, respectively, instead of altitude and azimuth. The star may be identified by comparing this computed declination to the list of stars in *The Nautical Almanac*.

Example: Compute the altitude and azimuth of the Sun if its LHA is $333^{\circ}01'54''W$ and its declination is $12^{\circ}28'06''S$ (input as negative). The assumed latitude is $34^{\circ}11'06''S$ (input as negative).

Answer:


$$Hc = 57^{\circ}15'58''$$

$$Zn = 54.97^{\circ}$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	DEC	H.MS+ 1 P-R		
2	L	H.MS+ 1 P-R STO		
3		1 x ₂ y STO 2 R ₁		
4		x R ₁ STO 3 x		
5		R ₁		
6	ILHA	H.MS+ 1 P-R x ₂ y		
7		STO 4 R ₁ x +		
8		SIN ⁻¹ STO 5		
9		→H.MS	H _c	
10		RCL 3 RCL 2 RCL		
11		5 1 P-R R ₁ x		
12		- R ₁ RCL 1 x		
13		÷ COS ⁻¹ STO 6	Z	
14		RCL 4		If negative, go to line 17.
15		3 6 0 RCL 6		
16		-	Z _n	Z _n in decimal degrees.
17		RCL 6	Z _n	Z _n in decimal degrees.

Most Probable Position

This procedure computes the most probable position (MPP) from a single observation of a celestial object by dropping a perpendicular from the dead reckoning position (DR) to the line of position (LOP) of the object.

Notation:

L_1 = latitude of observer's DR

λ_1 = longitude of observer's DR

L_{mpp} = latitude of most probable position

λ_{mpp} = longitude of most probable position

Hc = computed altitude of object

Ho = corrected sextant height

a = altitude intercept: $(-)$ = toward, $(+)$ = away

Zn = azimuth of object

Formulas:

$$a = Hc - Ho$$

$$\lambda_{mpp} = \lambda_1 + \frac{a \sin(Zn)}{\cos(L_1)}$$

$$L_{mpp} = L_1 - a \cos(Zn)$$

Notes: Northern latitudes and western longitudes are input and output as positive values; southern latitudes and eastern longitudes are input and output as negative values.

Example: A navigator determines his DR to be $L = 40^{\circ}12'S$ (input as negative), $\lambda = 159^{\circ}57'E$ (input as negative). He observes Procyon to be $11^{\circ}11'18''$ above the horizon. The computed altitude is $10^{\circ}57'$ at azimuth 73.4° . What is his MPP?

Answer:

$$L_{\text{MPP}} = 40^{\circ}07'55''S \text{ (output as negative)}$$

$$\lambda_{\text{MPP}} = 160^{\circ}14'56''E \text{ (output as negative)}$$

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1	Zn	ENTER		Z_n in decimal degrees.
2	Hc	ENTER		
3	Ho	HMS \leftarrow -	a	
4		D \leftarrow CHS		
5	L_1	HMS \leftarrow STO 1 +		
6		+HMS	L_{MPP}	
7		R \leftarrow RCL 1 COS \div		
8		+HMS		
9	λ_1	HMS+	λ_{MPP}	

Surveying Applications

Bearing Traverse	186
Field Angle Traverse	188
Inverse from Coordinates	190
Horizontal Curve Layout	192
Elevations along Straight Grades	194
Elevations along a Vertical Curve	195
Volume by Average End Area	197

Note: Several procedures from the section on Mathematical Applications will also be of interest to surveyors, such as:

- Triangle Solutions
- Curve Solutions
- Coordinate Translation and Rotation

Bearing Traverse

This procedure uses bearings and distances to calculate coordinates of successive points in a traverse. Area, closing distance, and closing azimuth can be calculated for a closed traverse.

Notation:

HD = horizontal distance

SD = slope distance

ZA = zenith angle

AZ = azimuth

BRG = bearing

N_i = northing of point i

E_i = easting of point i

AREA = area of traverse in square feet

CL HD = closing horizontal distance

CL AZ = closing azimuth

Formulas:

$HD = SD \sin (ZA)$

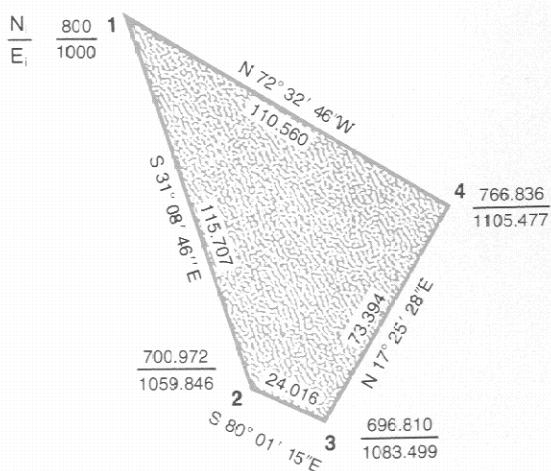
$N_{i+1} = N_i + HD \sin (AZ)$

$E_{i+1} = E_i + HD \cos (AZ)$

$$\begin{aligned} \text{AREA} &= (E_2 - E_1)[(N_2 - N_1)/2] + (E_3 - E_2)[(N_3 - N_1) + (N_3 - N_2)/2] \\ &\quad + \dots + (E_k - E_{k-1})[(N_{k-1} - N_1) + (N_k - N_{k-1})/2] \\ &\quad + \dots + (E_1 - E_n)[(N_n - N_1) + (N_1 - N_n)/2] \end{aligned}$$

Example: Traverse the figure shown below using the bearing and distance for each side to calculate the coordinates of the points. At the end of the traverse, calculate area and closure.

Answer:


$$\text{CL } N = 799.998$$

$$\text{CL } E = 1000.007$$

$$\text{AREA} = 5104 \text{ sq. ft.}$$

$$\text{CL HD} = 0.007 \text{ ft.}$$

$$\text{CL AZ} = 109^\circ 05' 49''$$

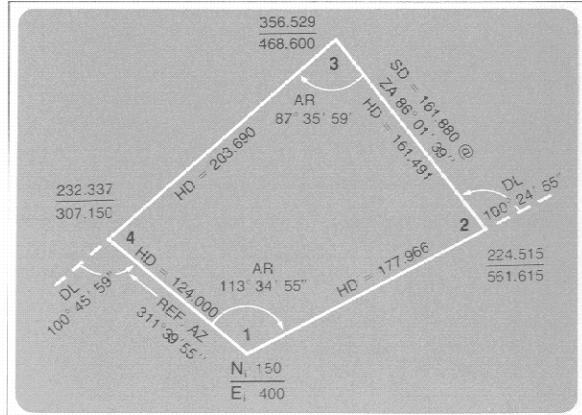
LINE	DATA	OPERATIONS	RESULTS	REMARKS
1		CLEAR		
2	N_1	STO 1		
3	E_1	STO 2 x_2y \oplus		
4	BRG NE	H.MS+		
	BRG SE	H.MS+ CHS 1 \ominus		
		G \pm		
	BRG NW	H.MS+ CHS		
	BRG SW	H.MS+ 1 8 0		
		+		
5	HD or SD			
6		ENTER+		Omit lines 6-7 if distance
7	ZA	H.MS+ SIN X		is horizontal.
8		COS \ominus		
9		RCL 3 LAST X \pm		Omit lines 9-12 if
10		STO 3 LAST X 2		AREA is not calculated.
11		$\div - \times$ STO +		
12		4		
13		RCL 2	N	
14		x_2y	E	Go to line 4 for next course.
15		RCL 4	AREA	Ignore sign if negative
16		RCL 2 RCL 1		
17		\ominus RCL x_2y \oplus	CL HD	
18		x_2y H.MS	CL AZ	If negative, add 360°
				(H.MS+).

Field Angle Traverse

This procedure uses angles or deflections and distances to calculate coordinates of successive points in a traverse. Area, closing distance, and closing azimuth can be calculated for a closed traverse.

Notation:

HD = horizontal distance
 SD = slope distance
 ZA = zenith angle
 AZ = azimuth
 REF AZ = reference azimuth
 ANG RT = angle right
 ANG LT = angle left
 DEF RT = deflection right
 DEF LT = deflection left
 N_i = northing of point i
 E_i = easting of point i
 AREA = area of traverse in square feet
 CL HD = closing horizontal distance
 CL AZ = closing azimuth


Formulas:

$$HD = SD \sin(ZA) \quad N_{i+1} = N_i + HD \cos(AZ)$$

$$E_{i+1} = E_i + HD \sin(AZ)$$

$$\begin{aligned} \text{AREA} &= (N_2 - N_1) [(E_2 - E_1)/2] + (N_3 - N_2) [(E_3 - E_1) + (E_3 - E_2)/2] \\ &+ \dots + (N_n - N_{n-1}) [(E_{n-1} - E_1) + (E_n - E_{n-1})/2] \end{aligned}$$

Example: Traverse the figure shown below using the field angle traverse for each side to calculate the coordinates of the points. At the completion of the traverse, calculate area and closure.

Answer:

CL N = 149.905

CL E = 399.783

AREA = 26559 sq. ft.

CL HD = 0.237 ft.

CL AZ = 246° 19' 43"

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1		CLEAR		
2	N ₁	STO 1		
3	E ₁	STO 2 x ₁ y		
4	REF AZ	H.MS+ 1 8 0		
5		+ STO 5		
6	ANG RT	H.MS+ 1 8 0		
	ANG LT	H.MS+ CHS 1 8		
		0 +		
	DEF RT	H.MS+		
	DEF LT	H.MS+ CHS		
7		RCL 5 + STO 5		
8	HD or SD			
9		ENTER+		Omit lines 9-10 if distance
10	ZA	H.MS+ CHS		is horizontal.
11		P ₁ x ₁		
12		RCL 3 LAST X		Omit lines 12-15 if AREA
13		STO 3 LAST X 2		is not calculated.
14		÷ - x STO +		
15		4		
16		RCL 3	N	
17		x ₁ y	E	Go to line 6 for next course.
18		RCL 4	AREA	Ignore sign if negative.
19		RCL 2 RCL 1		
20		÷ RCL R ₁	CL HD	
21		x ₁ y + H.MS	CL AZ	If negative, add
				360°. (H.MS+).

Inverse from Coordinates

This procedure uses coordinates to calculate distance and azimuth between points of a traverse. Area can be calculated for a closed traverse.

Notation:

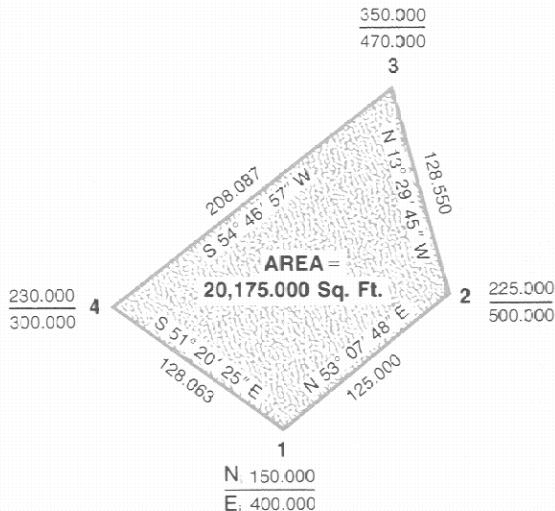
HD = horizontal distance

AZ = azimuth

N_i = northing of point i

E_i = easting of point i

AREA = area of traverse in square feet


Formulas:

$$HD = \sqrt{(E_i - E_{i-1})^2 + (N_i - N_{i-1})^2}$$

$$AZ = \tan^{-1} \left(\frac{E_i - E_{i-1}}{N_i - N_{i-1}} \right)$$

$$\begin{aligned} \text{AREA} = & (N_2 - N_1)[(E_2 - E_1)/2] + (N_3 - N_2)[(E_3 - E_1) + (E_3 - E_2)/2] \\ & + \dots + (N_k - N_{k-1})[(E_{k-1} - E_1) - (E_k - E_{k-1})/2] \\ & + \dots + (N_1 - N_n)[(E_n - E_1) + (E_1 - E_n)/2] \end{aligned}$$

Example: Traverse the figure shown below using coordinates to calculate the azimuth and distance for each side. At the completion of the traverse, calculate area.

Answer:

AREA = 20175 sq. ft.

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1				
2	N_1			
3	E_1			
4				
5	Next N			
6	Next E			
7				
8				
9				Omit lines 9-15 if AREA
10				is not calculated.
11				
12				
13			HD	
14			AZ	If negative, add 360° ().
15				Go to line 18.
16			HD	
17			AZ	If negative, add 360° ().
18				Go to line 4 for next N and next E. Continue until N_1 and E_1 have been reentered.
19			AREA	

Convert azimuth (in DMS) to bearing (in DMS) as follows:

AZ

0° to 90°
 90° to 180°
 180° to 270°
 270° to 360°

BRG

NE
SE, press
SW, press
NW, press

Horizontal Curve Layout

Given the radius of the curve, this procedure calculates short and long chords and deflection angles for successive arcs along the curve.

Notation:

R = radius of curve

ARC = length of curve between stations

SHT CHD = length of short chord

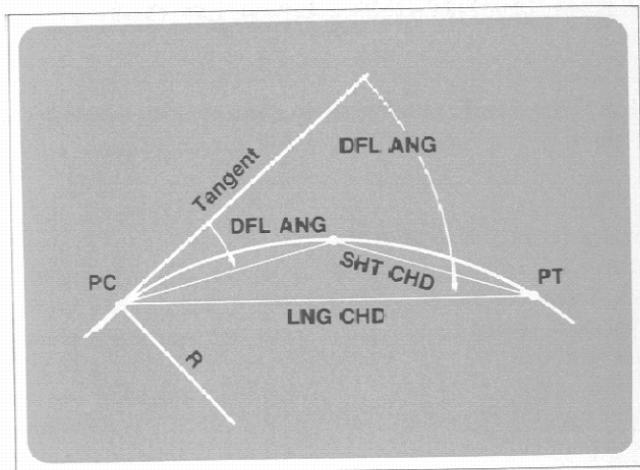
LNG CHD = length of long chord

DFL ANG = deflection angle

PC = station at start of curve

PT = station at end of curve

Formulas:


$$\text{SHT CHD} = 2R \sin \left(\text{ARC} \frac{180}{2\pi R} \right)$$

$$\text{LNG CHD} = 2R \sin (\text{DFL ANG})$$

$$\text{DFL ANG} = \frac{180}{2\pi R} (\text{ARC}_1 + \text{ARC}_2 + \dots + \text{ARC}_n)$$

Example: R = 900 feet

Station	ARC	SHT CHD	LNG CHD	DFL ANG
PC 12 + 57.00				
12 + 75.00	18	18.000	18.000	00°34'23''
13 + 00.00	25	24.999	42.996	1°22'07''
13 + 43.00	43	42.996	85.967	2°44'15''
13 + 75.00	32	31.998	117.916	3°45'22''
PT 13 + 89.00	14	14.000	131.882	4°12'06''

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1		CLEAR		
2	R	ENTER 1 2 x ENTER 1 STO		
3		1 2 x 1		
4		8 0 ÷ ÷		
5		RCL		
6	ARC	x STO + 3 SIN		
7		x	SHT CHD	
8		RCL 3 SIN RCL 1		
9		x	LNG CHD	
10		RCL 3 x +H.MS	DFL ANG	Go to line 5 for next ARC.

Elevations along Straight Grades

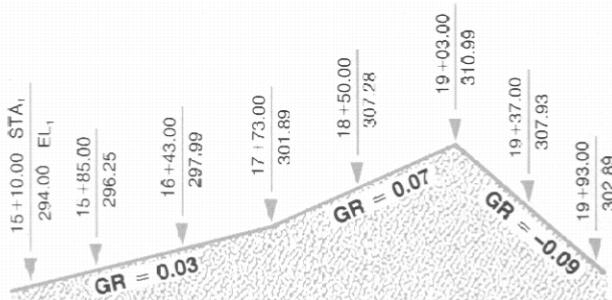
This procedure calculates elevations of specified stations along straight grades.

Notation:

EL₁ = elevation at beginning of grade

STA₁ = station at beginning of grade

GR = grade in feet per foot


EL_i = elevation at station i

STA_i = station i

Formula:

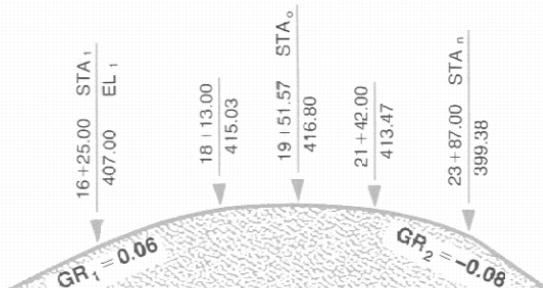
$$EL_i = (STA_i) (GR) + EL_1 - (STA_1) (GR)$$

Example:

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1		CL _E		
2	EL ₁	ENTER _A		
3	STA ₁	ENTER _B		
4	GR	\times LAST _X R _B -		
5		R _A D _B		
6		RCL D _B		
7	STA	\times +	EL	Repeat lines 6-7 for next STA. For a new GR, go to line 1.

Elevations along a Vertical Curve

This procedure calculates elevation at any specified station along a vertical curve. The elevation and station at the highest or lowest point can also be calculated.


Nomenclature:

GR_1 = grade at beginning of curve in feet per foot
 GR_n = grade at end of curve in feet per foot
 STA_1 = station at beginning of curve
 STA_n = station at end of curve
 EL_1 = elevation at beginning of curve
 STA_i = station i
 EL_i = elevation at station i
 STA_0 = station on curve where grade is zero

Formula:

$$EL_i = \frac{(GR_n - GR_1)}{2(STA_n - STA_1)} (STA_i - STA_1)^2 + GR_1 (STA_i - STA_1) + EL_1$$

Example:

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1		CLΣ		
2	GR ₁	ENTER ↓ ENTER ↓		
3	GR _n	x ² y		
4	STA _n	ENTER ↓		
5	STA ₁	STO [1] - ÷ [2]		
6		÷ x ² y		
7	EL ₁	STO [2]		
8		RCL		
9	STA	RCL [1] - × x ² y		
10		CL LAST X x +		
11		RCL [2] +	EL	Repeat lines 8-11 for next STA.
12		RCL [1] ENTER ↓ ENTER ↓ RCL		Lines 12-14 may be per-
13		RCL x ² y ÷ [2] ÷		formed any time after
14		-	STA ₀	line 6.

Volume by Average End Area

This procedure calculates the end area for a station, volume from the previous station, and accumulated volume to the present station.

Nomenclature:

INT_i = interval between stations i and $i + 1$

EL_i = elevation from datum of point i in cross-section

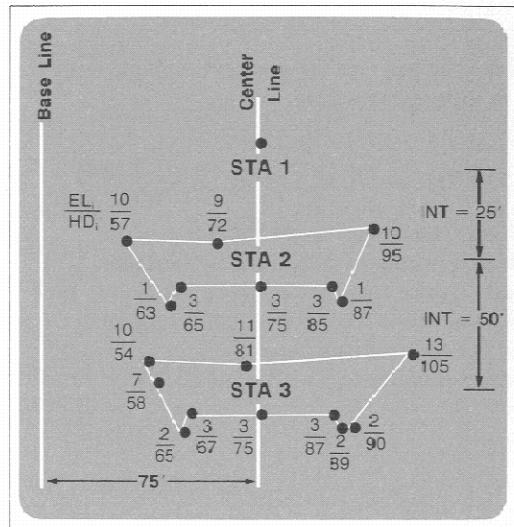
HD_i = horizontal distance from centerline or baseline to point i in cross-section

$AREA_i$ = end area of cross-section at station i

VOL_i = volume between stations i and $i + 1$

$TOT\ VOL$ = total volume between all stations

Formulas:


$$AREA_i = \frac{1}{2} [(EL_2 + EL_1)(HD_2 - HD_1) + (EL_3 + EL_2)(HD_3 - HD_2) + \dots + (EL_1 + EL_n)(HD_1 - HD_n)]$$

$$VOL_i = \frac{1}{2} INT_i (AREA_i + AREA_{i+1}), \text{ where } AREA_i \neq 0 \text{ and } AREA_{i+1} \neq 0$$

$$VOL_i = \frac{1}{3} INT_i (AREA_i + AREA_{i+1}), \text{ where } AREA_i = 0 \text{ or } AREA_{i+1} = 0$$

$$TOT\ VOL = VOL_1 + VOL_2 + \dots + VOL_n$$

Example:

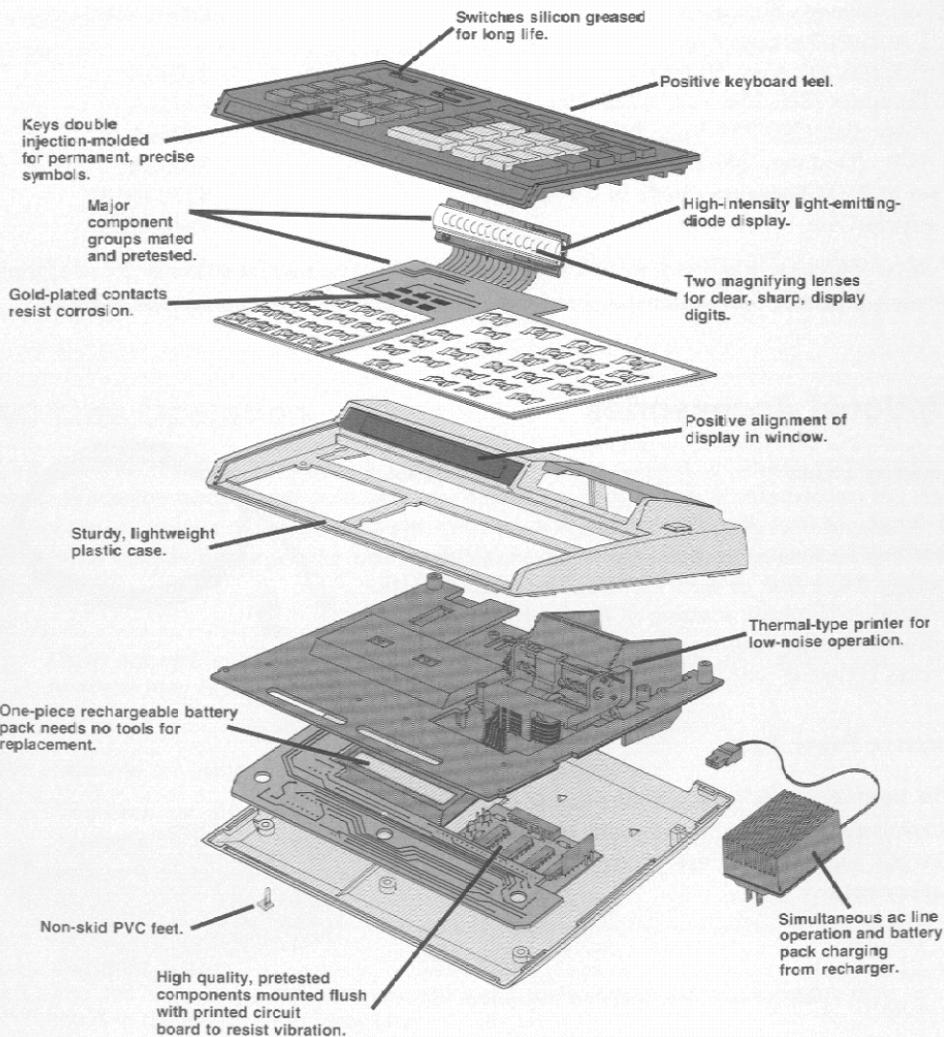
Answer:

STA	AREA	VOL	TOT VOL
1	0	0	0
2	216	1800	1800
3	321.5	13437.5	15237.5

LINE	DATA	OPERATIONS	RESULTS	REMARKS
1		CLEAR		
2	*EL ₁	ENTER		If END AREA of station is
3	HD ₁	STO 2 X ₂ Y		zero, go to line 7.
4	NEXT EL	STO 1 + RCL 2		
5	NEXT HD	STO 2 = RCL		
6		1		Go to line 4 for next EL and HD. Continue until EL ₁ and HD ₁ have been reentered.
7		RCL 3 RCL + 5		
8		2 ÷ X ₂ Y ₂ STO		
9		3	AREA	
10		+ 2 **		
11		÷ CLR		
12	INT	X STO + 5	VOL cu. ft.	
13		2 7 ÷	VOL cu. yd.	Go to line 2 for next END
				AREA.
14		RCL 5	TOT VOL cu. ft.	
15		2 7 ÷	TOT VOL cu. yd.	

* If first station has zero end area, start with second station.

** Change 2 to 3 if previous station area was zero.



Appendix A

Accessories, Service, and Maintenance

Your Hewlett-Packard Calculator

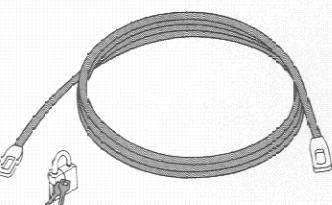
Your HP-91 is another example of the award-winning design, superior quality, and attention to detail in engineering and construction that have marked Hewlett-Packard electronic instruments for more than 30 years. Each Hewlett-Packard calculator is precision crafted by people who are dedicated to giving you the best possible product at any price.

After construction, every calculator is thoroughly inspected for electrical or mechanical flaws, and each function is checked for proper operation.

When you purchase a Hewlett-Packard calculator, you deal with a company that stands behind its products. Besides an instrument of unmatched professional quality, you have at your disposal many extras, including a host of accessories to make your calculator more usable and service that is available worldwide.

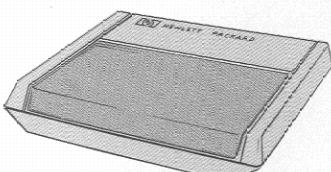
Standard Accessories

Your HP-91 comes complete with the following standard accessories:


Accessory	HP Number
Battery Pack (installed in calculator before packaging)	1420-0227
<i>HP-91 Owner's Handbook</i>	00091-90001
AC Adapter/Recharger (one of the following)	
U.S. (90-127 Vac, 50-60 Hz)	82040A
European (200-254 Vac, 50-60 Hz)	82031A
Australian (200-254 Vac, 50-60 Hz)	82039A
U.K. (Desktop, 200-254 Vac, 50-60 Hz)	82032A
Two Rolls of Paper (available in six-roll packs)	9270-0513
Carrying Case	1540-0383

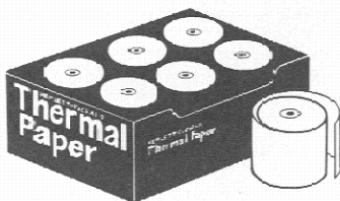
You can purchase additional standard accessories from your nearest dealer or by mail from Hewlett-Packard. See Optional Accessories below for information on how to order.

Optional Accessories


Security Cable	82044A
----------------	--------

A tough six-foot long steel cable that prevents unauthorized borrowing or pilferage of your calculator by locking it to a desk or work surface. The cable is plastic-covered to eliminate scarring of furniture, and you have full access to all features of your HP-91 at all times. Comes complete with lock.

Reserve Power Pack	82037A
--------------------	--------


The reserve power pack attaches to the calculator's ac adapter/recharger to keep an extra battery pack freshly charged and ready for use. Comes complete with extra battery pack.

Paper Rolls

9270-0513

Each pack gives you six rolls of special Hewlett-Packard thermal paper for your HP-91 printer.

To order additional standard or optional accessories for your HP-91 see your nearest dealer or fill out an Accessory Order Form and return it with check or money order to:

Hewlett-Packard
Advanced Products Division
19310 Pruneridge Avenue
Cupertino, CA 95014

If you are outside the U.S., please contact the Hewlett-Packard Sales Office nearest you. Availability of all accessories, standard or optional, is subject to change without notice.

AC Line Operation

Your calculator contains a rechargeable battery pack that is made up of nickel-cadmium batteries. When you receive your calculator, the battery pack inside may be discharged, but you can operate the calculator immediately by using the ac adapter/recharger. Even though you are using the ac adapter/recharger, the batteries must remain in the calculator whenever the calculator is used.

Note: Attempting to operate the HP-91 from the ac line with the battery pack removed may result in wrong or improper displays.

The procedure for using the ac adapter/recharger is as follows:

1. You need not turn the HP-91 OFF.
2. Insert the female ac adapter/recharger plug into the rear connector of the HP-91.
3. Insert the power plug into a live ac power outlet.

CAUTION

The use of a charger other than the HP recharger supplied with the calculator may result in damage to your calculator.

Battery Charging

The rechargeable batteries in the battery pack are being charged when you are operating the calculator from the ac adapter/recharger. With the batteries in the calculator and the recharger connected, the batteries will charge with the calculator OFF or ON. Normal charging times from fully discharged battery pack to full charge are:

Calculator OFF: 7-10 hours

Calculator ON: 17 hours

Shorter charging periods will reduce the operating time you can expect from a single battery charge. Whether the calculator is OFF or ON, the HP-91 battery pack is never in danger of becoming overcharged.

Note: It is normal for the ac adapter/recharger to be warm to the touch when it is plugged into an ac outlet.

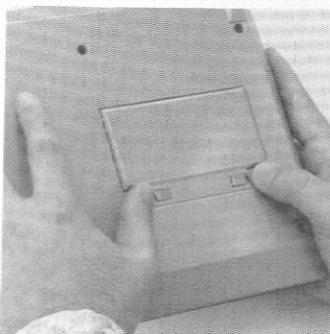
Battery Operation

To operate the HP-91 from battery power alone, simply disconnect the female recharger plug from the rear of the calculator. (Even when not connected to the calculator, the ac adapter/recharger may be left plugged into the ac outlet.)

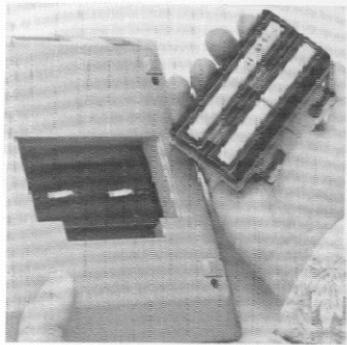
Using the HP-91 on battery power gives the calculator full portability, allowing you to carry it nearly anywhere. A fully charged battery pack provides approximately 3 to 6 hours of continuous operation. By turning the power OFF when the calculator is not in use, the charge on the HP-91 battery pack should easily last throughout a normal working day.

The printer is the most power-consuming part of your HP-91, and you can maximize battery operating time by leaving the calculator in MANUAL ALL MAN NORM printing mode when printing is not necessary.

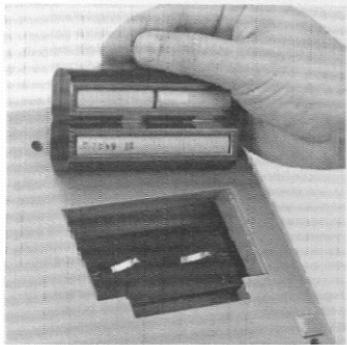
Battery Pack Replacement

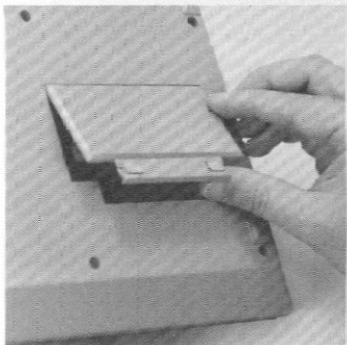

If it becomes necessary to replace the battery pack, use only another Hewlett-Packard battery pack like the one shipped with your calculator.

CAUTION


Use of any batteries other than the Hewlett-Packard battery pack may result in damage to your calculator.

To replace your battery pack, use the following procedure:


1. Turn the ON-OFF switch to OFF and disconnect the ac adapter/recharger from the calculator.
2. Slide the two battery door latches inward.


3. Let the battery door and battery pack fall into the palm of your hand.

4. If the battery connector springs have been flattened inward, bend them slightly outward again.

5. Insert the new battery pack so that its contacts face the calculator and line up with the connector springs.

6. Insert the end of the battery door opposite the latches behind the retaining groove and close the door.

7. Secure the battery door by pressing it gently while sliding the two battery door latches outward.

Battery Care

When not being used, the batteries in your HP-91 have a self-discharge rate of approximately 1% of available charge per day. After 30 days, a battery pack could have only 50 to 75% of its charge remaining, and the calculator might not even turn on. If a calculator fails to turn on, you should substitute a charged battery pack, if available, for the one in the calculator. The discharged battery pack should be charged for at least 14 hours.

If a battery pack will not hold a charge and seems to discharge very quickly in use, it may be defective. The battery pack is warranted for one year, and if the warranty is in effect, return the defective pack to Hewlett-Packard according to the shipping instructions. (If you are in doubt about the cause of the problem, return the complete HP-91 along with its battery pack and ac adapter/recharger.) If the battery pack is out of warranty, see your nearest dealer or use the Accessory Order Form provided with your HP-91 to order a replacement.

WARNING

Do not attempt to incinerate or mutilate your HP-91 battery pack—the pack may burst or release toxic materials.

Do not connect together or otherwise short circuit the battery terminals—the pack may melt or cause serious burns.

To maximize the life you get from your battery pack, keep printing to a minimum and display only the fewest number of digits necessary during portable operation.

Your HP-91 Printer

The printing device in your HP-91 is a thermal printer that uses a moving print head to print upon a special heat-sensitive paper. When the print head is energized, it heats the paper beneath it. The heat causes a chemical change in the paper, which then changes color. The printer in your HP-91 prints answers quickly and quietly, and has been expressly designed to give you a permanent record of your computations in a portable scientific calculator.

Paper for your HP-91

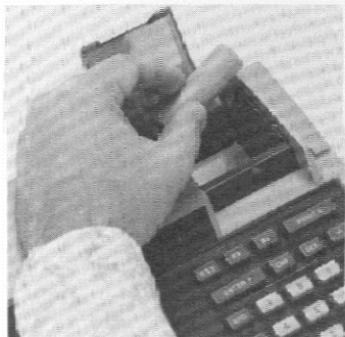
Because the printer in your HP-91 is a thermal printer, it requires special heat-sensitive paper. You should use only the Hewlett-Packard thermal paper available in 80-foot rolls from your nearest HP distributor or sales office, or by mail from:

Hewlett-Packard
Advanced Products Division
19310 Pruneridge Avenue
Cupertino, CA 95014

Because of the special heat-sensitive requirements of the paper, standard adding machine paper will *not* work in the HP-91. Also, since different types of thermal paper vary in their sensitivities, the use of thermal paper other than that available from Hewlett-Packard may result in poor print quality or even in damage to your calculator.

CAUTION

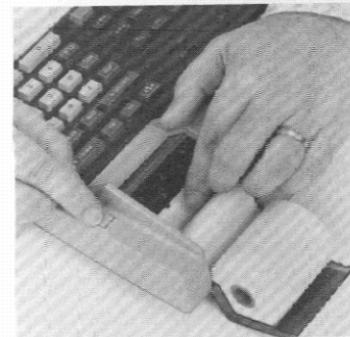
Use only Hewlett-Packard paper in your HP-91.


The heat-sensitive paper used in your HP-91 should be stored in a cool, dark place. Discoloration of paper may occur if it is exposed to direct sunlight for long periods of time, if storage temperatures rise above 50°C (122°F), or if the paper is exposed to excessive humidity or to acetone, ammonia, or other organic compounds. (Exposure to gasoline or oil fumes will not harm your HP-91 paper supply.)

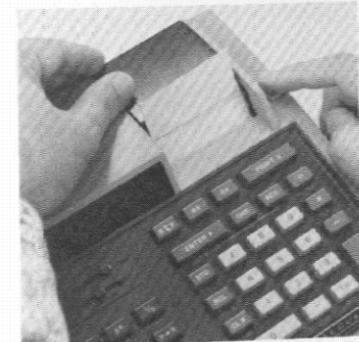
Printed tapes from your HP-91 will last 30 days or more without fading under fluorescent light, but to ensure the permanence of your records, you should store printed tapes at room temperature in a dark place away from direct sunlight, heat, or fumes from organic compounds. (For added permanence, you can copy tapes with a suitable office copier.)


Replacing Paper

To replace the paper roll in your HP-91, proceed as follows:


1. Open the paper roll cover and remove the empty core from the paper well.

2. Before inserting the new roll of paper into the calculator, discard the first 2/3 turn to ensure that no glue, tape, or other foreign matter is on the paper.
3. Fold the leading edge of the paper and crease the fold with your fingernail.


4. Temporarily place the paper roll into the paper roll cover and insert the leading edge of paper into the slot near the bottom of the paper well.

5. Turn the calculator ON-OFF switch to ON and press the paper advance pushbutton several times until the leading edge of paper becomes visible beneath the clear plastic tear bar. You can remove the tear bar for accessibility, if desired.

6. Drop the roll of paper into the paper well and close the paper roll cover.

When there is no paper in the calculator, the paper advance pushbutton operates, but the printer does not.

Printer Maintenance

The printer in your HP-91, like the rest of the calculator, is crafted for engineering excellence and is designed to give trouble-free operation with a minimum of maintenance. All moving parts in the printer mechanism contain self-lubricating compound, and no lubrication, cleaning, or servicing of the mechanism is ever required. You may want to occasionally remove the clear plastic tear bar and clean it with mild soap and water solution. (Do not use acetone or alcohol to clean the tear bar.)

You should *never* attempt to insert a tool, such as a screwdriver, or pencil into the printer or its mechanism. If the paper tape should become jammed and fail to feed properly, clear it by grasping the tape and pulling it forward or backward through the printer mechanism. (You can remove the plastic tear bar for accessibility.)

If the paper is feeding properly through the printer mechanism, but no printing appears on the tape, the paper roll is probably inserted backwards. (The paper is chemically treated, and will print on only one side.) Tear off the leading edge of paper, open the paper roll cover and grasp the paper roll, and pull it backward to remove the paper tape that is in the print mechanism. Reverse the paper roll and feed it back into the printing mechanism as described earlier under Replacing Paper.

If, after reversing, there is still no printing on the tape when you press **PRINTx** or other print functions, remove the paper roll and insert a roll of Hewlett-Packard thermal paper.

Note: Printer operation may be affected if the printer is in close proximity to a strong magnetic field. Normal operation can be restored by removing the calculator from the vicinity of the magnetic field. No permanent damage will result.

Service

Low Power

When you are operating from battery power, a bright red lamp inside the display will glow to warn you that the battery is close to discharge.

You must then either connect the ac adapter/recharger to the calculator as described under AC Line Operation, or you must substitute a fully charged battery pack for the one in the calculator.

Blank Display

If the display blanks out, turn the HP-91 OFF, then ON. If **0.00** does not appear in the display, check the following:

1. If the ac adapter/recharger is attached to the HP-91, make sure it is plugged into an ac outlet.
2. Examine the battery pack to see if the contacts are dirty.
3. Substitute a fully charged battery pack, if available, for the one that was in the calculator.
4. If the display is still blank, try operating the HP-91 using the recharger (with the batteries in the calculator).
5. If, after step 4, the display is still blank, service is required. (Refer to **Warranty** paragraphs.)

Temperature Range

Temperature ranges for the calculator are:

Operating	0° to	45°C	32° to	113°F
Charging	15° to	40°C	59° to	104°F
Storage	-40° to	+55°C	-40° to	+131°F

Warranty

Full One-Year Warranty

The HP-91 is warranted against defects in materials and workmanship for one (1) year from the date of delivery. During the warranty period, Hewlett-Packard will repair or, at its option, replace at no charge components that prove to be defective, provided the calculator is returned, shipping prepaid, to Hewlett-Packard's Customer Service Facility. (Refer to **Shipping Instructions**.)

This warranty does not apply if the calculator has been damaged by accident or misuse, or as a result of service or modification by other than an authorized Hewlett-Packard Customer Service Facility. **Hewlett-Packard shall not be liable for consequential damages.**

Obligation to Make Changes

Products are sold on the basis of specifications applicable at the time of sale. Hewlett-Packard shall have no obligation to modify or update products once sold.

Repair Policy

Repair Time

Hewlett-Packard calculators are normally repaired and reshipped within five (5) working days of receipt at any Customer Service Facility. This is an average time and could possibly vary depending upon time of year and work load at the Customer Service Facility.

Shipping Instructions

The calculator should be returned, along with completed Service Card, in its shipping case (or other protective package) to avoid in-transit damage. Such damage is not covered by warranty, and Hewlett-Packard suggests that the customer insure shipments to the Customer Service Facility. A calculator returned for repair should include the ac adapter/recharger and the battery pack. Send these items to the address shown on the Service Card.

Shipping Charges

Whether the calculator is in-warranty or out-of-warranty, the customer should prepay shipment to the Hewlett-Packard Customer Service Facility. During warranty, Hewlett-Packard will prepay shipment back to the customer.

Further Information

Service contracts are not available. Calculator circuitry and design are proprietary to Hewlett-Packard, and Service Manuals are not available to customers.

Should other problems or questions arise regarding repairs, please call your nearest Hewlett-Packard Sales Office or Customer Service Facility.

Improper Operations

If you attempt a calculation containing an improper operation—say, division by zero—the calculator display will show **Error**. In addition, if the Print Mode switch is set to NORM or ALL, the word **ERROR** will be printed.

The following are improper operations:

	where $x = 0$
	where $y = 0$ and $x \leq 0$
	where $y < 0$ and x is non-integer
	where $x < 0$
	where $x = 0$
	where $x \leq 0$
	where $x \leq 0$
	where $ x $ is > 1
	where $ x $ is > 1
	where $x = 0$
	where $n = 0$
	where $n \leq 1$
or	where $n \sum x^2 - (\sum x)^2 = 0$
or	where $n = 0$
	where $y = 0$
	where $\sum x = 0$
	where $x < 0$ or x is non-integer

General Index

A

- ac line operation, 203
- Accessories, 202
- Accumulations, 74
- Adding angles, 65
- Addition, complex numbers, 98
- Addition, simple, 17
- Addition, vectors, 86, 102
- Addressable storage registers, 58
- Add-on interest to APR, 159
- ALL mode, 13
- Amortization schedule, 164
- Analysis of variance (one-way), 130
- Angle conversions, 64, 67
- Angles, vector, 102
- Antilogs, 71
- Applications routines, 89
- Arc cosine, 63
- Arc sine, 63
- Arc tangent, 63
- Area of triangle, 110-113
- Arithmetic average, see Mean, 77
- Arithmetic, complex, 98
- Arithmetic, simple, 17
- Arithmetic, storage, 61
- Automatic display switching, 32
- Automatic memory stack, 37

B

- Base conversions, 119
- Battery care, 205
- Battery charging, 204
- Battery operation, 204
- Battery pack replacement, 204
- Bearing traverse, 186
- Blank display, 208

C

- Calendar, 171
- Care of battery, 205
- Chain arithmetic, 45
- Chain calculations, 18
- Changing paper rolls, 207
- Changing the battery, 204
- Charging times, 204

Chords of arc, 192
 Chi-square statistics, 143
 Clearing: display, 12; stack, 40; storage registers, 61
 Closing azimuth, 186, 188, 190
 Closing distance, 186, 188, 190
 Coefficient of contingency, 144
 Coefficient of determination, 85
 Combinations, 139
 Common logarithms, 71
 Complex arithmetic, 98
 Compound interest, 154
 Constant arithmetic, 50
 Constants, storing, 58
 Contingency table, 144
 Continuous effective rate, 157
 Conversions:
 decimal-octal, 119
 decimal-hexadecimal, 119
 degrees-degrees, minutes, seconds, 65
 hours-hours, minutes, seconds, 64
 interest rates, 157
 polar-rectangular coordinates, 67
 Coordinate rotation, 118
 Coordinate translation, 118
 Correlation coefficient, 132
 Cosine, 63
 Covariance, 132
 Cramer's Rule, 94
 Cross product, vector, 103
 Cube roots, 72
 Curve fit, exponential, 126
 Curve fit, power, 128
 Curve solutions, 114

D

Day of the week, 171
 Dead reckoning position, 182
 Decimal degrees, 65
 Decimal hours, 64
 Declining balance depreciation, 168
 Degrees, minutes, seconds, 65
 Deleting and correcting accumulations, 82
 Density function, 134
 Depreciation, 168
 Determinant of a 3×3 matrix, 95
 Direct reduction loan, 162
 Discoloration of paper, 206
 Discounted cash flow analysis, 166
 Display: blank, 208; clearing, 12; control, 25; error, 34; formatting, 25; low power, 208
 Distance, great circle, 176
 Distance, rhumb line, 174

Division, complex numbers, 99

Division, simple, 17

Dot product, vector, 104

E

e^x , 71

Effective annual rate, 157

Elevations along a vertical curve, 195

Elevations along straight grades, 194

End area, 197

Engineering notation, 27

ENTER key, 16, 42

Equator crossings, 177

Error conditions, 211

Error display, 34, 211

Exchanging x and y, 39

Exponentiation, 72

Exponential curve fit, 126

Exponents of ten, 32

F

F statistic, 146

Factorial function, Stirling's approximation, 151

Factorial key, 55

Field angle traverse, 188

Finance charge, 159

Financial applications, 153

Fixed point display, 26

Format of display, 25

Format of printed numbers, 30

Function index, 8

Functions, 15

Future value, 154

G

Gamma function, 151

Getting started, 11

Gold prefix key, 11

Grads, selection of, 63

Great circle navigation, 176

Greatest common divisor, 122

Grouped data, 141

H

Heat-sensitive paper, 206

Highest common factor, 122

Horizontal curve layout, 192

Hours, decimal, 64

Hours, minutes, seconds, 64

Hyperbolic functions, 96

I

Improper operations, 211
 Index, function, 8
 Inserting paper, 207
 Interest amount, 156
 Interest, compound, 154
 Interest rate conversions, 157
 International dateline, 174
 Inverse from coordinates, 190
 Inverse functions, 63
 Inverse hyperbolic functions, 97
 Inverse normal integral, 136

K

Keying in numbers, 12
 Keyboard summary, 8

L

LAST X register, 53
 Law of cosines, 105
 Law of sines, 105
 Least common multiple, 123
 Linear equations, simultaneous, 94
 Linear estimate, 85
 Linear regression, 83
 Lining up decimal points, 31
 Loan payment, 162
 Loans, 162
 Logarithms, common, 71
 Logarithms, natural, 71
 Long chord, 192
 Listing accumulations, 76
 Listing the stack, 37
 Listing the storage registers, 60
 Low power display, 34, 208

M

Mach number formula, 73
 Maintenance of printer, 208
 MAN mode, 13
 Mathematical applications, 91
 Matrix, determinant of, 95
 Mean, 77
 Mean for grouped data, 141
 Memory, HP-91, 8
 Memory stack, 37
 Modes of operation, 13
 Mode switch, 13
 Mortgages, 162
 Most probable position, 182
 Multiplication, complex numbers, 99
 Multiplication, simple, 17

N

Natural logarithms, 71
Navigation applications, 174
Negative exponents, 72
Negative numbers, 12
Net present value, 166
Nominal to effective rate, 157
NORM mode, 13
Normal distribution, 134

O

One-number functions, 16
One-way analysis of variance, 130
One-year warranty, 209
Order of execution, 49
Overflow display, 34

P

Paired t statistic, 147
Paper advance, 13
Paper replacement, 207
Paper rolls, 203, 206
Pearson's coefficient of contingency, 144
Percent increase/decrease, 58
Percent of change, 58
Percent of total, 76
Percentages, 57
Periodic savings, 169
Permutations, 138
Pi, 56
Polar/rectangular coordinate conversion, 67
Population standard deviation, 81
Power curve fit, 128
Power on, 11
Powers, see Exponentiation, 72
Print format, 30
Print mode switch, 13
Printer maintenance, 208
Probable position, 182

Q

Quadratic equation, 92

R

Radians mode, 63
Raising numbers to powers, 72
Random number generator, 140
Range of temperature, 209
Rate of return, 156

Reciprocals of complex numbers, 100
Rectangular/polar coordinate conversion, 67
Registers: LAST X, 53; stack, 37; statistical, 74; storage, 58
Repair policy, 209
Repair time, 209
Replacing paper, 207
Replacing the battery, 204
Reserve power pack, 202
Rhumb line navigation, 174
Roll-down key, 38
Roll-up key, 39
Roots: complex numbers, 101; cube, 72; quadratic, 92; square, 55

S

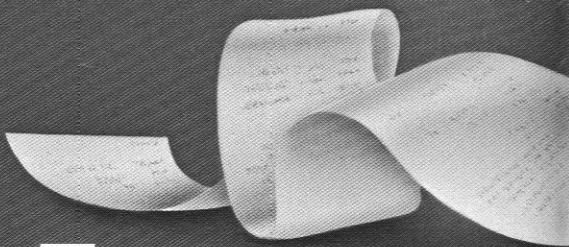
Savings problems, 169
Scientific notation, 27
Sector area, 114-117
Security cradle, 202
Segment area, 114-117
Setting printer modes, 13
Shipping charges, 210
Shipping instructions, 210
Short chords, 192
Sight reduction table, 180
Sigma plus key, 74
Simultaneous linear equation (two unknowns), 94
Sine, 63
Square roots, 55
Square roots, complex numbers, 101
Squaring complex numbers, 98
Squaring numbers, 56
Stack, 37
Standard deviation, 79
Standard deviation, grouped data, 141
Standard error, grouped data, 141
Star identification, 180
Statistical applications, 125
Statistical functions, 74
Stirling's approximation, 151
Storage registers, 58
Storage register arithmetic, 61
Storing numbers, 58
Storing paper, 206
Straight line depreciation, 168
Subtraction, complex numbers, 98
Subtraction, simple, 17
Summations, 74
Sum of the years' digits depreciation, 169
Surveying applications, 185
Recalling numbers, 59
Reciprocals, 54

T
t statistic for two means, 149
t statistic, paired, 147
Tangent, 36
Temperature range, 209
Testing population variances, 146
Thermal printer, 206
Three-by-three matrix, 95
Translating coordinates, 118
Trend line, see Linear Regression, 83
Triangle solutions, 105–113
Trigonometric functions, 63
Trigonometric modes, 63
True rate of interest, 159
Two-number functions, 16

U

Upper tail area, 134

V


Variance, analysis of, 130
Vector addition, 86, 102
Vector angles, 102
Vector arithmetic, 86
Vector cross product, 103
Vector dot product, 104
Vertical curve, 195
Volume by average end area, 197

W

Warranty, 209
Weekday routine, 171

X

x-exchange-y key, 39
X-register, 37

HEWLETT PACKARD

Sales and Service from 172 offices in 65 countries.
19310 Pruneridge Avenue, Cupertino, CA 95014

For additional Sales and Service Information contact your local Hewlett-Packard
Sales Office or call 408/996-0100 (ask for Calculator Customer Service).

00091-90001

Printed in U.S.A.

Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please do not make copies of this scan or
make it available on file sharing services.