
HEWLETT-PACKARD I. ·
•

•
•

•

~.

• •
Technical Reference Manual

•

•

•
• • •

• • • •
•

•

•

•

•

•

•

HP·94 Handheld Industrial
Computer

Technical
Reference Manual

Edition 1 F.b " 1887

Reord.r Numb.r
82521·80001

Notice

Hewlett-Packard makes no warranty of any kind with regard to this material, including, but not lim­
ited to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett­
Packard shall not be liable for errors contained herein or for incidental or consequential damages in
connection with the furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

Copyright e Hewlett-Packard Company, 1985, 1986.

This document contains proprietary information, which is protected by copyright. All rights are
reserved. No part of this document may be photocopied, reproduced, or translated to another language
without the prior written consent of Hewlett-Packard Company. The information contained in this
document is subject to change without notice.

Epson RTC-58321 Data Sheet e Epson America, Inc., 1986.
All rights reserved. Reprinted by permission.

Hitachi HD61102A Data Sheet e Hitachi America, Ud. 1986
All rights reserved, reprinted by permission

MS®-DOS is a V.S. registered trademark of Microsoft Corp.

NEC J.'PD70108 (V20) Data Sheet e NEC Electronics, Inc., 1985.
All rights reserved. Reprinted by permission.

OK! MSM82C51A Data Sheet e OK! Semiconductor, Inc., 19'54.
All rights reserved. Reprinted by permission.

Smartmodem TM is a trademark of Hayes Microcomputer Products, Inc.

VNIX® is a registered trademark of AT&T in the V.SA. and other countries.

Portable Computer Division
1000 N.E. Circle Blvd.
Corvallis, OR 97330, U.s.A.

Printing History Edition 1 February 1987 Mfg. No. 82521-90002

•

•

•

I • Contents

1 Introduction to the Technical Reference Manual

Part 1 Operating System

1 Introduction to the Operating System

Chapter 1 lIemory lIanagement

1-1 Hardware Overview
1-1 Software Overview
1-2 Memory Organization
1-7 Reserved Scratch Space

1-10 Directory Table
1-13 FIle System
1-15 Data Files
1-18 Free Space
1-20 Scratch Areas
1-25 Logical ROMs
1-32 System ROM

• 1-33 Memory Integrity Verification

Chapter 2 Program Execution

2-1 Running Programs
2-2 Cold Start and Warm Start
2-5 Ending Programs
2-8 Program Structure

2-10 Program Restrictions

Chapter 3 User-Defined Handlers

3-1 Handler Structure
3-3 Channel Input and Output
3-4 Types of Handlers
3-5 Handler Information Table
3-7 Passing Parameters to Handlers

3-10 Handler Linkage Routines
3-12 Handler Routine Descriptions
3-14 CWSE
3-16 IOCTL

•

3-20 OPEN • 3-22 POWERON
3-25 READ
3-27 RSVD2
3-28 RSVD3
3-29 TERM
3-31 WARM
3-33 WRITE

Chapter 4 Operating System Functions

4-1 Operating System Function Usage
4-1 Operating System Function Descriptions
4-2 BEEP
4-3 BUFFER STATUS
4-4 CLOSE
4-6 CREATE
4-8 CURSOR
4-9 DELETE

4-11 DISPLAY ERROR
4-12 END PROGRAM
4-14 FIND FILE
4-16 FIND NEXT
4-19 GET CHAR
4-21 GET LINE • 4-23 GET MEM
4-25 MEM CONFIG
4-27 OPEN
4-29 PUT CHAR
4-30 PUT LINE
4-32 READ
4-35 REL MEM
4-36 ROOM
4-37 SEEK
4-39 SET INTR
4-41 TIMEOUT
4-43 TIME DATE
4-45 WRITE

Chapter 5 Hardware Control and Status Registers

5-2 Main Control and Status Registers
5-3 Interrupt Control and Status Registers
5-5 Copies of Write-Only Control Registers

•

•
Chapter 6 CPU

Chapter 7 Intenupt Controller

7-1 Procedure for Using a Hardware Interrupt
7-3 Interrupt Control and Status Registers
7-5 When the Operating System Disables Interrupts
7-6 Operating System Functions

Chapter 8 Keyboard

8-1 Keyboard Shift Status
8-2 Display Backlight Control
8-2 Key Buffer
8-2 Waiting for a Key
8-3 Keyboard Scanning
8-5 Keyboard Control and Status Registers
8-6 Operating System Functions

• Chapter 9 Display

9-1 Display Backlight Control
9-2 LCD Controllers
9-2 Writing Dots to the Display
9-2 Display Control and Status Registers
9-3 Writing Characters to the Display
9-4 Operating System Functions
9-5 User-Defined Characters

Chapter 10 Serial Port

10-1 Signal Levels
10-1 Enabling or Disabling the Serial Port
10-2 Initializing the Serial Port
10-2 Processing the Serial Port Data Received Interrupt
10-2 Serial Port Control and Status Registers
10-5 Built-in Serial Port Handler
10-9 Operating System Functions

•

• Chapter 11 Bar Code Port

11-1 Bar Code Port Power and Transition Detection
11-1 Bar Code Timer
11-1 Initializing the Bar Code Port
11-2 Processing the Bar Code Port Transition Interrupt
11-2 Bar Code Port Timing Constraints
11-3 Bar Code Port Control and Status Registers

Chapter 12 Timers

12-1 System Timer
12-3 Bar Code Timer
12-4 Timer Control and Status Registers
12-7 Operating System Functions

Chapter 13 Power Switch

13-1 Power Control and Status Registers
13-2 Operating System Functions

Chapter 14 BaHeries • 14-1 Main Nickel-Cadmium Battery Pack
14-2 Backup Lithium Batteries ,

14-2 Battery Control and Status Registers
14-4 Operating System Functions

Chapter 15 Real-Time Clock

15-1 Real-Time Clock Control and Status Registers
15-1 Operating System Functions

Chapter 16 Beeper

16-1 Beeper Control and Status Registers
16-2 Operating System Functions

•

•
Chapter 17 Reset S.Hch

Chapter 18 Other Hard.are

18-1 Read/Write Memory (RAM)
18-1 System ROM
18-1 Custom Gate Array
18-2 Earphone Jack
18-2 External Bus Connector

Part 2 BASIC Interpreter

1 Introduction to the BASIC Interpreter

Chapter 1 BASIC Program and Data Structure

1-1 BASIC Program Organization

• 1-2 BASIC Program Outline
1-4 Intermediate Code
1-4 Operand Codes
1-9 Variable Area

1-13 Data Structure
1-16 Control Information Save Area

Chapter 2 Operation Stacks

2-1 Operation Stack Area
2-2 Control Stack
2-5 Numeric Operation Stack
2-7 Character Operation Stack
2-8 Parameter Table (only for % CALL)

Chapter 3 Assembly Language Subprograms (Keywords)

3-1 Program Structure
3-2 BASIC Call and Return
3-6 Access to BASIC Interpreter Utility Routines

•

Chapter 4 BASIC Interpreter Utility Routines

4-1 BASIC Interpreter Utility Routine Descriptions
4-2 ERROR
4-3 GETARG
4-5 IOERR
4-7 SADD
4-8 SDIV
4-9 SETARG

4-10 SMUL
4-11 SNEG
4-12 SPOW
4-13 SSUB
4-14 TOBIN
4-15 TOREAL

Chapter 5 I/O Statements and Handlers

5-1 Input Keywords (GET #, INPUT #, INPUT$)
5-4 Output Keywords (PRINT #, PRINT # ... USING, PUT #)

Part 3 Hardware Specifications

1 Introduction to the Hardware Specifications

Chapter 1 Electrical Specifications

Chapter 2 lIechanical Specifications

2-1 Physical Specifications
2-1 Serial Port Connector Specifications
2-2 Bar Code Port Connector Specifications
2-3 Memory Port Connector Specifications
2-5 External Bus Connector Specifications
2-7 Earphone Connector Specifications
2-7 Battery Pack Connector Specifications

•

•

•

•

•

•

Chapter 3 Environmental Specifications

Chapter 4 Accessory Specifications

4-1 40K RAM Card Specifications
4-2 ROM/EPROM Card Specifications
4-3 Battery Pack Specifications
4-4 Recharger Specifications
4-5 Level Converter Specifications
4-7 Cables

4-10 Bar Code Readers

Chapter 5 Data Sheets

Appendixes

NEC ",PD70108 (V20) Microprocessor Data Sheet
OKI MSM82C51A UART Data Sheet
Hitachi HD61102A LCD Column Driver Data Sheet
Epson RTC-58321 Real-Time Clock Data Sheet

Resident Debugger

A-3 Command Syntax
A-4 D
A-6 G
A-7 I
A-8 L
A-9 M

A-10 0
A-11 R
A-12 S
A-13 X

8-1 Errors

C-1 Keyboard Layout

D-1 Roman-8 Character Set

E-1 Display Control Character.

F-1 lIemory lIap • G-1 Control and Status Register Addresses

H-1 Hardware Interrupts

1-1 Operating System Functions

J-1 BASIC Interpreter Utility Routines

K-1 Program Resource Allocation

Hewlett-Packard Bar Code Handlers

L-1 HNBC Low-Level Handler for Bar Code Port
L-7 HNSP Low-Level Handler for Serial Port

L-14 HNWN High-Level Handler for Bar Code Handlers

Disc-Based Utility Routines

11-2 Utility Routine Descriptions
11-3 BLINKASM
11-5 EQUATESASM
11-8 FINDOSASM

11-10 INTERNALASM
11-14 IOABORTASM • 11-18 IOWAITASM
11-20 ISOPENASM
11-22 LLHLINKGASM
11-34 NOIOWAIT ASM
11-36 READCTRLASM
11-38 READINTRASM
11-40 SCANKYBDASM
11-42 SETCTRLASM
11-44 SETINTRASM
11-46 VERSIONASM
11-49 XIOCfLASM
II-51 XTlMEOUT ASM

•

•
Part 1

•

•

2

1-3
1-4
1-6
1-8

1-10
1-12
1-16
1-18
1-19
1-21
1-22
1-23
1-25
1-27
1-28
1-30
1-33

2-8
2-9

2-11

Illustrations

Operating System

Figure 1. HP-94 Hardware Block Diagram

Figure 1-1. Memory Map of the HP-94
Figure 1-2. Memory Map of Main Memory
Figure 1-3. Memory Map of the HP82411A 40K RAM Card
Figure 1-4. Memory Map of Reserved Scratch Space
Figure 1-5. Directory Table Header Contents
Figure 1-6. Directory Table Entry Contents
Figure 1-7. File Movement During Data File Expansion
Figure 1-8. Example of Data File Expansion
Figure 1-9. Use of Free Space in Main Memory
Figure 1-10. Defining Scratch Area Data Structure
Figure 1-11. Blocking a Released Scratch Area
Figure 1-12. Coalescing Adjacent Released Scratch Areas
Figure 1-13. Memory Map of the HP82412A ROM/EPROM Card
Figure 1-14. Possible Logical ROM Configurations
Figure 1-15. Memory Map of a 32K Logical ROM in Directory 2
Figure 1-16. HP82412A ROM/EPROM Card Circuit Board
Figure 1-17. Memory Map of the System ROM

Figure 2-1. Program Headers
Figure 2-2. BASIC Keyword Structure
Figure 2-3. Defining Scratch Area Data Structure

3-2 Figure 3-1. Handler Header and Jump Table
3-5 Figure 3-2. Relationship Between High- and Low-Level Handlers
3-7 Figure 3-3. Example of Reading Handler Information Table Entries

3-13 Figure 3-4. Register Save Area

5-2 Figure 5-1. Main Control Register
5-3 Figure 5-2. Main Status Register
5-4 Figure 5-3. Interrupt Control Register
5-5 Figure 5-4. Interrupt Status Register

7-3 Figure 7-1. Interrupt Control Register
7-4 Figure 7-2. Interrupt Status Register
7-5 Figure 7-3. Interrupt Clear Register
7-5 FtgUI'e 7-4. End of Interrupt Register

8-1 Figure 8-1. HP-94 Keyboard
8-3 Figure 8-2. HP-94 Keycodes

8-5 Figure 8-3. Keyboard Control Register • 8-6 Figure 8-4. Keyboard Status Register

9-1 Figure 9-1. 6 x 8 Character Cell
9-3 Figure 9-2. Keyboard Control Register
9-3 Figure 9-3. Right LCD Driver Data Register
9-3 Figure 9-4. Left LCD Driver Data Register

10-3 Figure 10-1. Interrupt Control Register
10-3 Figure 10-2. Interrupt Status Register
10-3 Figure 10-3. Interrupt Clear Register
10-3 Figure 10-4. Baud Rate Clock Value Register
10-4 Figure 10-5. Main Control Register
10-4 Figure 10-6. Main Status Register
10-4 Figure 10-7. Serial Port Data Register
10-7 Figure 10-8. Baud Rate - Parameter Byte 1
10-8 Figure 10-9. Data Format - Parameter Byte 2
10-8 Figure 10-10. Terminate Character - Parameter Byte 3

11-3 Figure 11-1. Interrupt Control Register
11-4 Figure 11-2. Interrupt Status Register
11-4 Figure 11-3. Interrupt Clear Register
11-4 Figure 11-4. Bar Code Timer Data Register
11-4 Figure 11-5. Bar Code Timer Data Register
11-5 Figure 11-6. Bar Code Timer Control Register
11-5 Figure 11-7. Bar Code Timer Value Capture Register • 11-5 Figure 11-8. Bar Code Timer Clear Register
11-5 Figure 11-9. Main Control Register
11-6 Figure 11-10. Main Status Register

12-4 Figure 12-1. Interrupt Control Register
12-4 Figure 12-2. Interrupt Status Register
12-5 Figure U-3. Interrupt Clear Register
12-5 Figure U-4. System Timer Data Register
12-5 Figure 12-5. System Timer Control Register
12-6 Figure 12-6. Bar Code Timer Data Register
12-6 Figure U-7. Bar Code Timer Data Register
12-6 Figure 12-8. Bar Code Timer Control Register
12-6 Figure 12-9. Bar Code Timer Value Capture Register
12-6 Figure U-lO. Bar Code Timer Clear Register

13-2 Figure 13-1. Interrupt Control Register
13-2 Figure 13-2. Interrupt Status Register
13-2 Figure 13-3. Interrupt Clear Register
13-2 Figure 13-4. Power Control Register

14-3 Figure 14-1. Interrupt Control Register
14-3 Figure 14-2. Interrupt Status Register

•

•

•

•

14-3
14-4

Figure 14-3. Interrupt Clear Register
Figure 14-4. Main Status Register

16-1 Figure 16-1. Main Control Register

Part 2 BASIC Interpreter

1-1
1-2
1-2
1-3
1-3
1-6
1-7
1-8
1-8

1-10
1-10
1-11
1-12
1-13
1-13
1-14
1-14
1-15
1-15
1-16

Figure 1-1. BASIC Program Organization
Figure 1-2. Program Header
Figure 1-3. Program Code
Figure 1-4. Variable Descriptor Table
Figure 1-5. Variable Descriptor Type Byte
FIgUfe 1-6. Variable Reference
Figure 1-7. Parameters in the Variable Descriptor Table
Figure 1-8. Line Reference
Figure 1-9. DATA Statement Linking
Figure 1-10. Variable Area Allocation
Figure 1-11. Allocating and Releasing Variable Areas
Figure 1-12. Program Code and Variables
Figure 1-13. BASIC Program and Variable Relationships
Figure 1-14. Real Numeric Data in the Variable Area
Figure 1-15. Integer Numeric Data in the Variable Area
Figure 1-16. Character Data in the Variable Area
Figure 1-17. Array Data in the Variable Area
Figure 1-18. Array Data Example: DIM A(2,3)
Figure 1-19. Array Data Example: OPTION BASE 0: DIM B$6(4)
Figure 1-20. Format of the Control Information Save Area

2-1 Figure 2-1. Operation Stack Area
2-2 Figure 2-2. Control Stack Operation
2-2 Figure 2-3. Control Stack During Subprogram Execution
2-3 Figure 2-4. GOSUB Control Element
2-4 Figure 2-5. FOR ... NEXT Control Element
2-5 Figure 2-6. Numeric Operation Stack
2-5 Figure 2-7. Real Numeric Data on the Numeric Operation Stack
2-6 Figure 2-8. Integer Numeric Data on the Numeric Operation Stack
2-6 Figure 2-9. Numeric Operation Stack Example: A + B ... C -+ D
2-7 Figure 2-10. Character Operation Stack
2-7 Figure 2-11. Character Operation Stack Example: "ABC" + "DE"
2-8 Figure 2-12. Parameter Table Format
2-8 Figure 2-13. Parameter Table Type Byte

3-1 Figure 3-1. Assembly Language Subprogram Structure
3-3 Figure 3-2. Parameter Table Format
3-3 Figure 3-3. Parameter Table Type Byte
3-5 Figure 3-4. %CALL Example: Calling an Assembly Language Subprogram

4-3 Figure 4-1. GETARG Parameter Processing
4-4 Figure 4-2. GETARG Result Flags (Register CL)
4-9 Figure 4-3. SETARG Parameter Processing

Part 3 Hardware Specifications

Appendixes
2 Figure 1. HP-94 Hardware Block Diagram

F-2 Figure F-1. Memory Map of the HP-94

L-S
L-S
L-6
L-6
L-6
L-6

L-11
L-11
L-11
L-12
L-12
L-12
L-17
L-17
L-19

Figure L-1. HNBC Valid Data Flag - Parameter Byte 1
Figure L-2. HNBC Baud Rate - Parameter Byte 2
Figure L-3. HNBC Parity - Parameter Byte 3
Figure L-4. HNBC Key Abort - Parameter Byte 4
Figure L-5. HNBC Good Read Beep - Parameter Byte 5
Figure L-6. HNBC Terminate Character - Parameter Byte 6
Figure L-7. HNSP Valid Data Flag - Parameter Byte 1
Figure L-8. HNSP Baud Rate - Parameter Byte 2
Figure L-9. HNSP Parity - Parameter Byte 3
Figure L-10. HNSP Key Abort - Parameter Byte 4
Figure L-ll. HNSP Good Read Beep - Parameter Byte 5
Figure L-12. HNSP Terminate Character - Parameter Byte 6
Figure L-13. HNWN Valid Data Flag - Parameter Byte 1
Figure L-14. HNWN Escape Sequences - Parameter Byte 2
Figure L-15. Serial Port Configuration Escape Sequence

•

•

•

•
Part 1 .

•

•

1-1
1-2

1-13
1-28
1-29
1-31
1-32
1-34
1-35

2-3
2-5
2-6
2-7

3-3
3-6
3-9

3-11
3-19
3-24

Tables

Operating System

Table 1-1. HP-94 Memory Configurations
Table 1-2. Summary of Memory Information
Table 1-3. Directory Table Sizes
Table 1-4. Addresses for All Logical ROM Sizes in Directories 1-4
Table 1-5. Different Organizations of a %K Application
Table 1-6. Placing a %K Application Into Three 32K ICs
Table 1-7. Placing a %K Application Into Two 64K ICs
Table 1-8. Memory Integrity Errors
Table 1-9. Configuration Map for Valid Memory Configurations

Table 2-1. HP-94 Status at Cold and Warm Start
Table 2-2. Cold Start Status of BASIC Programs
Table 2-3. Ending a Program With END_PROGRAM or FAR RET
Table 2-4. HP-94 Status in Command Mode

Table 3-1. Channel Number Assignments
Table 3-2. Handler Information Table Entries
Table 3-3. Interpreting the Valid Data Flag
Table 3-4. Register Usage By Handler Linkage Routines
Table 3-5. Reserved IOCTL Function Codes
Table 3-6. Functions Allowed in POWERON Routine

5-1 Table 5-1. I/O Addresses for Control and Status Registers
5-6 Table 5-2. Copies of Primary Control Registers

6-2 Table 6-1. Intel 8088 and NEC V20 Instruction Mnemonics

7-1 Table 7-1. HP-94 Hardware Interrupts
7-2 Table 7-2. Using Hardware Interrupts
7-3 Table 7-3. Interrupt Control and Status Registers
7-6 Table 7-4. Interrupt-Related Operating System Functions

8-4 Table 8-1. ASCII Characters and Keycodes for Each Key
8-5 Table 8-2. Keyboard Control and Status Registers
8-6 Table 8-3. Keyboard-Related Operating System Functions

9-3 Table 9-1. Display Control and Status Registers
9-4 Table 9-2. Display Control Characters
9-5 Table 9-3. Display-Related Operating System Functions

10-2 Table 10-1. Serial Port Control and Status Registers

10-4 Table 10-2. Baud Rate Clock Values • 10-6 Table 10-3. Behavior of Built-in Serial Port Handler
10-7 Table 10-4. Errors Reported by Built-In Serial Port Handler
10-7 Table 10-5. Built-in Serial Port Handler Baud Rate Values
10-9 Table 10-6. Control Line Behavior
10-9 Table 10-7. Serial Port-Related Operating System Functions

11-3 Table 11-1. Bar Code Port Control and Status Registers

12-1 Table 12-1. HP-94 Timers
12-1 Table 12-2. Events Checked By System Timer Interrupt Routine
12-4 Table 12-3. Timer Control and Status Registers
12-7 Table 12-4. Timer-Related Operating System Functions

13-1 Table 13-1. Power Control and Status Registers
13-2 Table 13-2. Power Switch-Related Operating System Functions

14-1 Table 14-1. Activities Halted During Default Low Battery Behavior
14-3 Table 14-2. Battery Control and Status Registers
14-4 Table 14-3. Battery-Related Operating System Functions

15-1 Table 15-1. Real-Time Clock Control and Status Registers
15-1 Table 15-2. Real-Time Clock-Related Operating System Functions

16-1 Table 16-1. Beeper Control and Status Registers
16-2 Table 16-2. Beeper-Related Operating System Functions • Part 2 BASIC Interpreter

1-3 Table 1-1. Variable Descriptor Length Byte
1-4 Table 1-2. Intermediate Code
1-4 Table 1-3. Intermediate Code Groups
1-5 Table 1-4. Operand Codes

4-2 Table 4-1. Codes for ERROR Utility Routine
4-3 Table 4-2. GETARG Result Flag (Register CL)

5-2 Table 5-1. Response of Input Keywords to Handler-Generated Errors
5-4 Table 5-2. Response of Output Keywords to Handler-Generated Errors

Part 3 Hardware Specifications

1-1 Table 1-1. Principal Integrated Circuits
1-2 Table 1-2. Electrical Specifications

•

r

• Appendixes

•

2-1 Table 2-1. Physical Specifications
2-2 Table 2-2. Serial Port Connector Pin Assignments
2-2 Table 2-3. Serial Port Mating Connectors
2-2 Table 2-4. Bar Code Port Connector Pin Assignments
2-3 Table 2-5. Bar Code Port Mating Connectors
2-4 Table 2-6. Memory Port Connector Pin Assignments
2-6 Table 2-7. External Bus Connector Pin Assignments

3-1 Table 3-1. Environmental Specifications

4-1 Table 4-1. HP-94 Hardware Accessories
4-2 Table 4-2. ROM and EPROM Specifications
4-2 Table 4-3. ROM and EPROM Manufacturers
4-3 Table 4-4. HP 82430A Rechargeable Battery Pack Specifications
4-5 Table 4-5. HP82431 Recharger Specifications
4-6 Table 4-6. HP82470A RS-232-C Level Converter Pin Assignments
4-6 Table 4-7. Line Receivers That Do Not Require Level Converter
4-7 Table 4-8. HP-94 to Modem Cable
4-8 Table 4-9. HP-94 to Printer Cable
4-8 Table 4-10. HP-94 to Level Converter Cable
4-9 Table 4-11. HP-94 to Vectra Cable
4-9 Table 4-12. Vectra or IBM PC/AT to Level Converter Cable

4-10 Table 4-13. IBM PC or PC/XT to Level Converter Cable
4-11 Table 4-14. HP-94 Serial Port to Smart Wand Cable

A-1 Table A-1. Resident Debugger Commands
A-2 Table A-2. Resident Debugger Keyboard Map

B-2 Table B-1. Operating System Errors
B-3 Table B-2. BASIC Interpreter Errors

C-1 Table C-1. ASCII Characters and Keycodes for Each Key

E-1 Table E-1. Display Control Characters

G-1 Table G-1. I/O Addresses for Control and Status Registers

H-1 Table H-1. HP-94 Hardware Interrupts

1-1 Table 1-1. Operating System Function List

J-1 Table J-1. BASIC Interpreter Utility Routine List

K-1 Table K-l. Error Number Usage
K-2 Table K-2. Hewlett-Packard Handler Resource Usage

L-2 Table L-l. HNBC Statistics
L-3 Table L-2. Behavior of HNBC
L-4 Table L-3. Errors Reported by HNBC
L-5 Table L-4. HNBC Baud Rate Values
L-6 Table L-S. HNBC Parity Values
L-7 Table L-6. HNSP Statistics
L-9 Table L-7. Behavior ofHNSP

L-10 Table L-S. Errors Reported by HNSP
L-11 Table L-9. HNSP Baud Rate Values
L-11 Table L-IO. HNSP Parity Values
L-14 Table L-ll. HNWN Statistics
L-15 Table L-12. Behavior of HNWN
L-16 Table L-13. Errors Reported by HNWN
L-18 Table L-14. Beeps From HNWN for Smart Wand Escape Sequences
L-19 Table L-IS. Smart Wand Baud Rate
L-19 Table L-16. Smart Wand Parity Values
L-21 Table L-17. Status Request Escape Sequence Parameter

11-1
11-14
11-15
11-15
11-22

Table M-l. Utility Routines on Technical Reference Manual Disc
Table M-2. Low Battery Interrupt Routine Behavior During I/O
Table M-3. Power Switch Interrupt Routine Behavior During I/O
Table M-4. Timeout Interrupt Routine Behavior During I/O
Table M-S. Handler Linkage Routine List

•

•

•

•

•

•

Introduction to the Technical Reference Manual

The HP-94 Technical Reference Manual provides software and hardware reference information about
the HP-94 Handheld Industrial Computer. This information should allow software developers to write
assembly language programs for controlling the HP-94 hardware resources, and hardware developers
to design accessories that connect to the machine. This manual assumes a certain level of familiarity
with the HP-94 and 8088 assembly language programming, and that the user will be using Microsoft
assembly language development tools (MASM and LINK) or their equivalents. It is a supplement to
the HP 82520A HP-94 Software Development System (SDS), which includes other information neces­
sary to fully understand the product, as well as software utilities needed to convert and transfer assem­
bly language programs to the machine. The manual is divided into four major parts:

• Operating System

• BASIC Interpreter

• Hardware Specifications

• Appendixes

The first section describes the built -in operating system, which manages and provides programmatic
access to the HP-94 hardware: memory, interrupt system, keyboard, display and backlight, serial port,
bar code port, internal timers, power switch and power control, low battery detection, real-time clock,
and beeper. This section includes topics such as memory management, program execution, writing
user-defined handlers (device drivers) for controlling the serial and bar code ports, and using operating
system functions to simplify hardware control from assembly language programs.

The second section describes the internal operation of the built-in BASIC interpreter, which provides
the ability to execute BASIC programs that were developed on a development system computer using
the HP-94 SDS. This section does not discuss the syntax of the BASIC language, or the operation of
each BASIC keyword; that information is contained in the BASIC Language Reference Manual. Instead,
the section discusses the structure and operation of BASIC programs, data structure of BASIC vari­
ables, writing new BASIC keywords, and using BASIC interpreter utility routines to simplify the
interaction of BASIC and assembly language programs.

The third section contains hardware specifications for the HP-94 in four categories: electrical (voltage
and current levels, HP-94 operating conditions), mechanical (dimensions and connector pinouts),
environmental (conditions under which the HP-94 will perform properly), and accessory (electrical and
mechanical characteristics of plug-in cards, level converter, cables, etc.).

The final section is appendixes containing summaries of reference information for developers. This
includes documentation for the utility subroutines on the disc with this manual, and for the built-in
assembly language debugger .

Introduction to the Technical Reference Manual 1

• Part 1

Operating System

•

•

•

•

•

Introduction to the Operating System

This section of the HP-94 Technical Reference Manual describes the built-in operating system, which
manages and provides programmatic access to the HP-94 hardware. This section includes topics such
as memory management, program execution, writing user-defined handlers (device drivers) for con­
trolling the serial and bar code ports, and using operating system functions to simplify hardware control
from assembly language programs.

This section also describes the HP-94 hardware: what major hardware elements are present in the
machine, what they do, and how to operate them under software control. The major hardware ele-

ments are as follows:

• System ROM

• ReadfWrite Memory (RAM)

• Control and Status Registers

• CPU

• Interrupt Controller

• Keyboard

• Display with Electroluminescent Backlight

• Serial Port

• Bar Code Port

• Timers

• Power Switch

• Nickel-Cadmium (NiCd) Battery Pack

• Lithium Backup Batteries

• Real-Time Clock

• Beeper

• Reset Switch
All these items will be discussed in subsequent chapters. The following is a block diagram showing the
major hardware elements and their relationships.

Introduction to the Operating System 1

,
!

• 1

Memory Management

•

•

Contents •
Chapter 1 Memory Management

1-1 Hardware Overview
1-1 Software Overview
1-2 Memory Organization
1-4 Main Memory
1-5 40KRAM Card
1-7 ROM/EPROM Card
1-7 Reserved Scratch Space

1-10 Directory Table
1-13 File System
1-13 File Names
1-13 File Types
1-14 Erasing and Loading Files
1-14 Reserved File Names
1-14 Maximum Number of Files
1-15 Data Files
1-15 File Size
1-15 Size Increment
1-17 End-of-Data Address
1-17 File Access Pointer
1-17 Deleting Data Files
1-17 Interrupts During File Operations • 1-18 File Expansion Example
1-18 Free Space
1-19 Usage in Command Moqe
1-20 Usage at Run Time
1-20 Scratch Areas
1-20 Allocating Scratch Areas
1-21 Releasing Scratch Areas
1-24 Number of Scratch Areas
1-24 Optimum Memory Use With Scratch Areas
1-25 Logical ROMs
1-25 Logical Structure of the ROM/EPROM Card
1-26 Combining Logical ROMs of Different Sizes
1-29 Selecting a Logical ROM Size
1-29 Physical Layout of the ROM/EPROM Card
1-30 Selecting an IC Size
1-31 Placing Logical ROMs Into Physical ICs
1-32 System ROM
1-33 Memory Integrity Verification
1-34 Checksums Computed at Power Off
1-34 Memory Integrity Tests at Power On

•

•

•

•

1

Memory Management

This chapter describes memory in the HP-94: its possible configurations, how it is organized, and the
memory management software.

Hardware Overview
The HP-94 is available in three memory configurations: HP-94D with 64K RAM, HP-94E with 128K
RAM, and HP-94F with 256K RAM. Inside the 94 is a single slot for optional memory accessories. The
94D and 94E allow either the HP 82411A 40K RAM Card or HP 82412A ROM/EPROM Card (hold­
ing 32 to 128K of ROM or EPROM) to be plugged in. In addition, the 94E can be expanded to 256K
(equivalent to a 94F) with the HP 82410A 128K Memory Board (service upgrade only), which also
occupies the accessory slot. The 94F cannot be expanded. The following table summarizes HP-94
memory configurations.

Table 1-1. HP-94 Memory Configurations

Built-In 40K RAM ROM/EPROM 128K Memory
Machine RAM Card Allowed Card Allowed Board Allowed
HP-94D 64K Yes Yes No
HP-94E 128K Yes Yes Yes
HP-94F 256K No No No

The maximum total user memory in the HP-94, RAM and ROM/EPROM combined, is 256K. This
limit is imposed by both hardware and software.

Software Overview
The memory management software in the HP-94 provides a directory structure for major contiguous
blocks of memory, such as built-in memory and plug-in memory (RAM and ROM/EPROM cards).
Within each directory is a file system that supports four different file types and files in RAM or ROM.
BASIC programs (type B), assembly language programs (type A), and user-defined I/O port handlers
(type H) execute in place, whether in RAM or ROM. Data files (type D) can be created and deleted
dynamically while programs are running, and expand when written to in fixed- or variable-length incre­
ments. The operating system also provides for allocation and release of scratch areas, and verifies
memory integrity using checksums at power off and power on .

Memory Management 1-1

Memory Organization
HP-94 memory is organized into contiguous blocks called directories. The directories fall into three
major categories: main memory (built-in memory plus the 128K memory board), plug-in memory
(40K RAM and ROM/EPROM cards), and system ROM (built-in operating system and BASIC inter­
preter). Each block of memory has a fixed-length table at the beginning that describes each file in that
block of memory. Since the directory table is fixed-length, the maximum number of files that the direc­
tory can contain is also fixed. The directory table also identifies what type of memory it is (main,
plug-in RAM, plug-in ROM) and how much memory is encompassed by the directory. Below is a table
summarizing important information about HP-94 memory. followed by a memory map that shows the
organization of all memory in the HP-94. Note that in the map, the main memory RAM quantities
include the RAM for the smaller memory configurations, and the " ... " indicates unused address space.

Table 1-2. Summary of Memory Information

Name of Memory Directory Max. No. Min. System
Memory Area Size Number(s) of Files Overhead
Main Memory 64K 0 63 3.SK *

128K 0 63 3.SK*
2S6K 0 127 4.SK*

40K RAM Card 40K 1 31 O.SK

ROM/EPROM Card 32K 1-4 31 O.SK
64K 1-3 31 O.SK
96K 1-2 63 1K
128K 1 63 1K

* If a BASIC program is running, there will be an additional 2K used by the BASIC interpreter, plus
space for the data in the BASIC program variables.

1-2 Memory Management

•

•

•

•

•

•

FFFFFh

32K Built-In
System ROM

F8000h L...-____ --'

3FFFFh

256K Built-In
RAM (HP-94F)

20000h

128K Built-In
RAM (HP-94E)

10000h

64K Built-In
RAM (HP-94D)

OOOOOh
Main Memory

29FFFh

20000h

40K Plug-In
RAM

40K RAM Card

3FFFFh

38000h

30000h

28000h

20000h

32K Plug-In
ROM/EPROM

32K Plug-In
ROM/EPROM

32K Plug-In
ROM/EPROM

32K Plug-In
ROM/EPROM

ROM/EPROM Card

Figure 1-1. Memory Map of the HP-94

Memory Management 1-3

Main Memory
Main memory is the first major block of memory, and is called directory o. It can be 64, 128, or 256K,
depending on the memory configuration (94D, 94E, or 94F). Even though the 128K memory board that
is used in the 94F or added to the 94E occupies the accessory slot, it is still treated as main memory
because it cannot be installed or removed by the user the way the plug-in cards can. The number of
files main memory can contain are 63, 63, and 127 respectively for the three memory configurations.

Below is a map of main memory. The pointers on the right side of the memory map correspond to seg­
ment addresses maintained in the directory table header (the first entry in the directory table), and will
be discussed under "Directory Table".

256K: (3FFF:000F) 3FFFFh
128K: (1 FFF:OOOF) 1 FFFFh
64K: (OFFF:OOOF) OFFFFh

256K: (0120:0000) 01200h
64K or 128K: (OOEO:OOOO) OOEOOh

(OOAO:OOOO) OOAOOh

(0000:0000) OOooOh

Scratch Areas

Free Space

Data
Files

Program
Files

Directory Table

Reserved
Scratch Space

End of Main Memory

End of Free Space Pointer

Start of Free Space Pointer

End of Program Files Pointer

Start of Files Pointer

Start of Directory Table

Start of Reserved Scratch Space

Figure 1-2. Memory Map of Main Memory

1-4 Memory Management

•

•

•

•

•

•

The major blocks of memory shown in the memory map are described briefly below. They will each be
the subject of a separate section of this chapter.

• Reserved Scratch Space
This area contains the interrupt vectors for the hardware and software interrupts for the cpu.
This area is also used by the operating system to maintain information about the current state of
the 94, and for pointers into that information. This area comprises 2.5K of the system overhead.

• Directory Table
This block describes main memory and all the files contained in it. Files begin immediately after
the end of the directory table. This area comprises 1K or 2K of the system overhead, depending on
the memory configuration.

• Program Files
This block is where all non-data files are stored; that is, file types A, B, and H. All program files
appear first in the file system. The size of this block changes while programs are loaded, but does
not expand or contract at run time.

• Data Files
This block is where data files are stored. Data files expand by allocating memory from free space,
expanding toward higher addresses. When data files are deleted, all their space is returned to the
free space area.

• Free Space
This block is the pool of available memory from which data files are created and expanded and
scratch areas are allocated.

• Scratch Areas
Scratch areas are requested by the built-in BASIC interpreter and by user-written assembly
language programs and handlers, and are created by allocating memory from free space, building
toward lower addresses. When scratch areas are released, they are returned to free space. Scratch
areas are only created in main memory, regardless of which directory contains the program
requesting the scratch area. They comprise any additional system overhead requirements.

40K RAM Card

The HP 82411A 40K RAM card is one of the two types of plug-in memory, and is called directory 1. It
is 40K long, and can contain a maximum of 31 files. The organization of the RAM card is a subset of
the main memory organization - it contains only a directory table, files, and free space. No scratch
areas are available, since scratch areas are only allocated in main memory.

Here is a memory map of the 40K RAM card. The pointers on the right side of the map have the same
meaning as for main memory.

Memory Management 1-5

(2AOO:0000) 2AOOOh
(29FF:000F) 29FFFh

(2020:0000) 20200h

(2000:0000) 20000h

Free Space

Data
Files

Program
Files

Directory Table

End of Free Space Pointer
End of 40K RAM Card

Start of Free Space Pointer

End of Program Files Pointer

Start of Files Pointer

Start of Directory Table

Figure 1-3. Memory Map olthe HP 82411A 40K RAM Card

The major blocks of memory shown in the memory map are described below.

• Directory Table
This block describes the RAM card and all the files contained in it. Files begin immediately after
the end of the directory table. This area comprises the O.5K RAM card overhead.

• Program Files
This block is where all non-data files are stored; that is, file types A, B, and H. All program files
appear first in the file system. The size of this block changes while programs are loaded, but does
not expand or contract at run time.

• Data Files
This block is where data files are stored. Data files expand by allocating memory from free space,
expanding toward higher addresses. When data files are deleted, all their space is returned to the
free space area.

• Free Space
This block is the pool of available memory from which data files are created and expanded.

1-6 Memory Management

•

•

•

•

•

•

ROM/EPROM Card

The HP 82412A ROM/EPROM card is the other type of plug-in memory, and can contain directories
1 through 4. Files can be put in ROM or EPROM in blocks of four different sizes: 32, 64, 96, and 128K.
The number of files each block can contain is 31, 31, 63, or 63 respectively, depending on the ROM or
EPROM size. The memory map of the ROM/EPROM card will be discussed in detail under "Logical
ROMs" (a logical ROM is a ROM in one of the different possible sizes, not necessarily related to the
physical IC size actually placed on the ROM/EPROM card).

The organization of each of the four directories within the ROM/EPROM card is similar to the RAM
card. They each contain only a directory table, files, and free space. No scratch areas are available,
since scratch areas are only allocated in main memory (and could not be allocated in ROM or
EPROM anyway).

The memory map of an individual ROM within the ROM/EPROM card is essentially the same as for
the 40K RAM card. Unlike the RAM card, data files can only be read - they cannot be created,
deleted, or written to. Also, the free space in a ROM or EPROM cannot be used.

The pointers that are shown on the RAM card memory map have the same meaning for an individual
ROM or EPROM, but their values vary depending on the size and directory number of the ROM. This
will also be discussed in "Logical ROMs".

Reserved Scratch Space

The reserved scratch space is the first 2.5K of main memory. The first O.5K contains interrupt vectors
for CPU, hardware, and software interrupts. It also contains pointers to the next 2K, which is the
operating system scratch space. Here is a memory map of the reserved scratch space. The Of ••• " indi­
cates unused interrupt vector locations .

Memory Management 1-7

(OOAO:OOOO) OOAOOh

(0020:0000) 00200h

(0016:003E) 0019Eh

(0016:0000) 00160h

(0000:015C) 0015Ch

(0000:0158) 00158h

(0000:0154) 00154h

(0000:0150) 00150h

(0000:014C) 0014Ch

(0000:0148) 00148h

(0000:0144) 00144h

(0000:0140) 00140h

(0000:0074) 00074h

(0000:0070) 00070h

(0000:006C) 0006Ch

(0000:0068) 00068h

(0000:0010) 00010h

(OOOO:OOOC) OOOOCh

(0000:0008) 00008h

(0000:0004) 00004h

(0000:0000) OOOOOh

OS Scratch Space

...

OS Pointer Table

Interrupt Type 57h

Interrupt Type 56h

Interrupt Type 55h

Interrupt Type 54h

Interrupt Type 53h

Interrupt Type 52h

Interrupt Type 51 h

Interrupt Type 50h

...

Interrupt Type 1 Ch

...

Interrupt Type 1Ah

...

Breakpoint

NMI

Single Step

Zero Divide

Start of Directory Table

Start of OS Scratch Space

End of OS Pointer Table

Start of OS Pointer Table

Start of Hardware Interrupt Vectors

End of Software Interrupt Vectors

Start of Software Interrupt Vectors

End of Dedicated Interrupt Vectors

Start of Dedicated Interrupt Vectors

Figure 1-4. Memory Map of Reserved Scratch Space

1-8 Memory Management

•

•

•

•

•

•

The major items in the reserved scratch space are described below. The information at the end of each
description are the chapters or appendixes where further information can be found about that inter­
rupt. General information about the hardware interrupts (types 50h-5Th) is in the "Interrupt Con­
troller" chapter.

• Zero Divide
Dedicated interrupt vector for divide-by-zero condition. Points to the same location as the break-
point interrupt vector (appendix A).

• Single Step
Dedicated single step interrupt vector used for single-stepping the resident debugger (appendix A).

• NMI
Dedicated non-maskable interrupt vector used to invoke the resident debugger. Points to the same
location as the breakpoint interrupt vector (appendix A).

• Breakpoint
Dedicated breakpoint interrupt vector used for breakpoints in the resident debugger (appendix A).

• Interrupt Type lAb
Software interrupt vector used to invoke the operating system functions (chapter 4).

• Interrupt Type 1Ch
Software interrupt vector used for the one-second background timer (chapter 12).

• Interrupt Type 50h
Hardware interrupt vector for system timer (chapter 12).

• Interrupt Type 51h
Hardware interrupt vector for bar code port timer (chapters 11 and 12) .

• Interrupt Type 52h
Hardware interrupt vector for bar code port transitions (chapter 11).

• Interrupt Type 53h
Hardware interrupt vector for serial port (82C51 data received) (chapter 10).

• Interrupt Type 54h
Hardware interrupt vector for low main battery voltage (chapter 14).

• Interrupt Type 55h
Hardware interrupt vector for power switch pressed (chapter 13).

• Interrupt Type 56h
Reserved hardware interrupt vector 1 (chapter 7).

• Interrupt Type 5Th
Reserved hardware interrupt vector 2 (chapter 7).

• OS Pointer Table
These are pointers to various parts of the operating system scratch space. The main pointer of
interest to assembly language programmers is the one that points to the handler information table.
Refer to the "User-Defined Handlers" chapter for details.

• OS Scratch Space
This is the space in which the operating system keeps important information about the current state
of the HP-94. This area is 2K long. The operating system stack is in this area. It varies in length as
it is used, up to a maximum of approximately 600 bytes .

Memory Management 1-9

CAUTION The operating system does not initialize or use the overflow interrupt (dedicated
interrupt vector 04h, at address 04h * 4 = 00010h). A program that uses the INTO
instruction (interrupt on oveiflow) must initialize this interrupt vector to a location in
its own program space.

Directory Table

The direCtory table is organized as a series of 16-byte entries, one per file. The first entry is the direc­
tory table header. It identifies the directory, the type of memory (main memory, 40K RAM card, or
ROM/EPROM card), and the total amount of memory encompassed by the directory. The header also
contains the pointers shown on the memory maps. Since all memory areas start and end on paragraph
boundaries (a paragraph is a block of 16 bytes), pointers are stored in the directory table as segment
addresses only.

The contents of the directory table header are shown below. The numbers on the left are hex offsets
relative to the start of the header.

10h
Directory Table

Checksum
OEh

End of Free
Space Pointer

OCh
Start of Free

Space Pointer
OAh

End of Program
Files Pointer

OSh
Start of

Files Pointer
06h

Directory
Type

OSh
Directory
Identifier

OOh

Figure 1-5. Directory Table Header Contents

Refer to the memory maps to see the areas of memory that the pointers refer to.

1-10 Memory Management

•

•

•

•

•

•

• Directory Identifier
The directory identifier always contains the characters *DIR*. The operating system uses this to
help verify memory integrity.

• Directory Type
The directory type is the character M for main memory, A for a 40K RAM card, or 0 for a
ROM/EPROM card.

• Start of Files Pointer
This segment address points past the end of the directory table, and is the beginning of all files.
Program files always appear first in the file system.

• End of Program Files Pointer
This segment address points past the end of the program files, which is the beginning of the data
files. Nothing below this address within the directory will move at runtime.

• Start of Free Space Pointer
This segment address points past the end of the data files, which is the beginning of the free space.
Free space is used for data files and scratch areas in main memory, for data files only in a RAM
card, and is not available for use in a ROM or EPROM.

• End of Free Space Pointer
This segment address points past the end of free space. For main memory, it also marks the begin­
ning of scratch areas available for assembly language programmers. If no scratch areas have been
allocated, this pointer points past the last byte in main memory - to 1000:0000 (64K), 2000:0000
(128K), or 4000:0000 (256K).

For the 40K RAM card, this pointer points past the end of the card, since there are no scratch
areas. For the same reason, in a ROM, this pointer points past the end of the logical ROM.

• Directory Table Checksum
This is where the checksum of the directory table is saved when the machine is turned off.

The other entries in the directory table identify the different files. The contents of the directory table
entries for files is shown below. Again, the numbers are hex offsets from the start of the entry.

Memory Management 1-11

10h
File

Checksum
OEh

Size
Increment

OCh
End-of-Data

Address
09h

Start
Address

07h
File
Size

05h
File

Type
04h

File
Name

~Oh

Figure 1-6. Directory Table Entry Contents

• File Name
This is the name of the file. File names are 1-4 characters long, padded with blanks. If the file had
a checksum error at power on, the high bit is set in the fitst character of the file name (except in
ROM files). If a directory table entry is unused, the first byte of this field is set to null (OOh).

• File Type
This is either an A, B, D, or H.

• File Size
This is the current length of the file in paragraphs. All files are padded with nulls (OOh) to the
nearest paragraph boundary.

• Start Address
This segment address is the location where the file starts.

• End-of-Data (EO D) Address
For data files, this is the offset of the end-of-data within the file, relative to the start of the file. For
program files, this is a pointer to the end of the program, which may not be the end of the file
because of the null padding. The EOD address is a 24-bit value stored as a two-byte offset and a
one-byte segment (low word followed by high byte).

• Size Increment
For data files, this is the expansion increment, in paragraphs, used when data is written past the
end-of-file. It is 0 for program files in RAM and for all files in ROM.

1-12 Memory Management

•

•

•

•

•

•

• File Checksum
This is where the checksum of the file is saved when the machine is turned off.

The space reserved for the directory table is fixed-length, and varies with the total amount of memory.
Because the first entry is always reserved for the directory table header, there will be space for one less
user file than the size of the directory table would otherwise indicate. The directory sizes and number
of files available are shown below.

Table 1-3. Directory Table Sizes

Name of Memory Directory Number
Memory Area Size Table Size of Files
Main Memory 64K 1K 63

128K 1K 63
256K 2K 127

40K RAM Card 40K O.5K 31
ROM/EPROM Card 32K O.5K 31

64K O.5K 31
96K 1K 63
128K 1K 63

File System
The HP-94 file system allows for multiple files of different types to coexist simultaneously. User files
can reside in any of the five user directories (0-4), whether RAM or ROM.

File Names
Each file is identified by a 1-4 character name. File names are composed of uppercase alphabetic
characters and numbers only, and must start with a letter. A file name can only exist once in any direc­
tory. It is not possible to have the same name but a different type in the same directory. However, the
same file name can exist in different directories, with either the same or different type.

File Types
There are four possible file types:

• Assembly Language Program - Type A
Assembly language programs are either new BASIC keywords, invoked with the %CALL state­
ment, or are entire assembly language applications.

• BASIC Program - Type B
BASIC programs are a collection of "tokens" that are can be executed by the BASIC interpreter.
They are produced by HXC from a BAS file during the file conversion process .

Memory Management 1-13

• Data File - Type D
Data files are simply contiguous blocks of memory.

• User-Defined Handler - Type H
A handler is a special assembly language program that controls the I/O ports, such as the serial and
bar code ports. It has a structure similar in concept to a UNIX or MS-DOS device driver.

Erasing and Loading Files
When files are erased from command mode with the E (erase) operating system command, their
memory is returned to free space, and files higher in memory move down to fill in the hole. When files
are loaded with the C (copy) operating system command, existing files with the same name are erased
first, and the memory they occupied is reclaimed for other uses. Then memory for the new file is allo­
cated from free space (assuming there is enough room). This ensures that neither file space nor free
space are fragmented while erasing or loading files. When data files are deleted with the DELETE
function (14h), the memory they occupied is also reclaimed.

Reserved File Names
There are four files with reserved names that must not be used for anything except their current use:

• SYBI - built-in BASIC interpreter

• SYBD - BASIC debugger

• SYFT - user-defined font

• SYOS - built-in operating system

When the BASIC interpreter searches for user-defined keywords with %CALL, the 12 built-in key­
words starting with SY will be not be overridden by new keyword files of the same name (SYAL,
SYBP, SYEL, SYER, SYIN, SYLB, SYPO, SYPT, SYRS, SYRT, SYSW, and SYTO).

In general, Hewlett-Packard uses SY as the first two characters of all its assembly language utilities,
and HN as the first two characters of all its user-defined handlers. If you use file names starting with
S Y or handler names starting with HN, you may have a name conflict. Consequently, you should not
use names starting with those characters.

Maximum Number of Files
The maximum number of files that can be placed in any directory was indicated in "Memory Organiza­
tion" and "Directory Table". The maximum total number of files would occur in a 94D or 94E with a
ROM/EPROM card containing four 32K ROMs - 63 files for main memory plus 4 * 31 files for the
ROM/EPROM card, for a total of 187 files.

1-14 Memory Management

•

•

•

•

•

•

Data Files
Data files are contiguous blocks of memory with a 1-4 character file name name, and file type D. They
have no explicit record structure associated with them - it is the responsibility of the application pro­
gram to impose any record structure needed, and read and write data from the appropriate position
within the file. They always appear after all program files in whichever directory the data file resides
- between the end of program files pointer and the start offree space pointer.

Data files are created using the CREATE function (llh). When a data file is created, the space
requested is taken from free space at the end of the current data files, the directory table header
pointers are adjusted, and one entry in the directory table is used to identify the file. Once a file is
created, it must be opened with the OPEN function (OFh) before data can be read or written. Data
files are automatically closed at cold start. Data files that were open when the machine was turned off
remain open at warm start.

Data files have two characteristics that are defined by the program that creates them (file size and size
increment) and two that are defined automatically (end-oJ-data address (EOD) andJile access pOinter).

File Size
This is the initial size of the file, which is the amount of memory that will be reserved for the file when
it is created. It is specified in paragraphs and ranges from OOOOh to FFFFh (although the maximum file
size is limited by available memory). The space used for the file is automatically initialized to all nulls
(OOh). A file size of 0 means that the file initially occupies no space, even though the directory table
entry still exists to identify the file .

Data files cannot be created in a ROM or EPROM, or in any read-only directory (main memory or the
40K RAM card may be set to be read-only if a checksum error occurred in their directory tables at
power on).

Data files can also be created on the development system. Like all development system files, they are
converted to Intel MDS format by HXC for transmission to the 94. When no file size is specified,
HXC automatically sets it to the actual file size on the development system, rounded up to the nearest
paragraph boundary. The 0 to 15 bytes needed to pad the file are automatically set to nulls (OOh).

For RAM data files, HXC allows specifying a file size that is larger than the actual size. That way a file
could be defined to have a certain amount of data in it, and a fixed amount of unused space in the file.
This option is not available for ROM data files, since a program cannot write to unused space in a
ROM or EPROM.

Size Increment

This is the expansion increment used to increase the file size when the WRITE function (13h)
attempts to write past the end of the file (that is, when the current file size is exceeded). It is specified
in paragraphs, and ranges from OOOOh to FFFFh (although the maximum expansion is limited by avail­
able memory). When a program writes to a data file, and there is no room for the data being written,
the operating system will attempt to expand the file by the number of size increments needed, and then
the data will be written to the file. For example, a file with a size increment of three (3) paragraphs
will expand by as many three-paragraph blocks of memory (48 bytes) as needed to accommodate the

Memory Management 1-15

data being written.

Note that the 94 may run out of memory during any of the expansions, leaving a file that has been
expanded, but not enough to hold the data to be written. In this situation, no data will be written to the
file - data is only written to a file if there is enough room for all it.

When a data file expands, all data files higher in memory move up to accommodate the increased file
size. This is illustrated below.

High Addresses

Free Space
N5-X Bytes

Free Space
N5 Bytes

Data File 4
N4 Bytes

Data File 4
N4 Bytes Data File 3

N3 Bytes

Data File 3
N3 Bytes

Data File 2
N2+X Bytes

Data File 2
N2 Bytes

Data File 1 Data File 1
N1 Bytes N1 Bytes

Low Addresses
Before File 2 Expanded After File 2 Expanded

Figure 1-7. File Movement During Data File Expansion

Expansion space added to the file is automatically initialized to all nulls (DOh). A size increment of 0
means no expansion will take place - the file will never grow past its allocated size. A size increment
of 0 can be specified for any RAM data file; HXC automatically sets it to 0 for ROM data files, since
they cannot expand.

1-16 Memory Management

•

•

•

•

•

•

File writes are not buffered - they immediately modify the file, provided space is available .

End-of-Data Address
The EOD address is a pointer in the directory table to the location in the data file just past the last byte
of data. It is usually not equal to the end of the file (EO F) because files always end on a paragraph
boundary. For data files from the development system, HXC sets the EOD address past the last byte of
data, even if there is padding to the paragraph boundary or unused space specified beyond the actual
file size.

Every time a file write operation writes data past the current EOD or EOF, the EOD is automatically
adjusted to reflect the new end-of-data location.

File Access Pointer
This is the single pointer to the current read/write position in the file. The pointer is set to 0 (the start
of the file) when the file is opened, and is updated after every file read or write operation. Every time a
read or write occurs, the pointer is changed to point past the last byte read or written. Subsequent file
read or write operations will begin reading or writing from that updated position. The pointer can be
explicitly moved to an arbitrary position between the start of the file and the EOD, or set to the EOD
by using the SEEK function (ISh). Moves beyond the EOD give an error. It is also possible to force
the EOD to be equal to the current file access pointer by performing a zero-length write using the
WRITE function (13h). This renders any data after that point inaccessible, but does not collapse the
file .

Deleting Data Files
Data files are deleted with the DELETE function (14h), and must be open before they can be deleted.
When data files are deleted, all the space occupied by the file is returned to free space. All data files
higher in memory move down to fill in the hole. The file space is then available for new data file crea­
tion, data file expansion, or scratch area allocation.

Interrupts During File Operations
The power switch and low battery interrupts are disabled during file create, read, write, and delete
operations, so they are guaranteed to complete and not be corrupted (unless the reset switch is pressed
or the machine turns off automatically because of very low battery). The interrupts are reenabled after
the file operation is completed. This disabling and enabling does not change the interrupt status
defined by the SET _ INTR function (OAh). What it does is defer the processing (or ignoring) of those
interrupts until after the file operation has been completed.

The system timeout only occurs during read operations for channels 0-4 and read/write operations for
channels 1-4, so it will not occur during file operations, which use channels 5-15 .

Memory Management 1-17

File Expansion Example
Assume a data file exists with a current size of 2 paragraphs (32 bytes) and a size increment of 3 para­
graphs (48 bytes). The file already contains 25 bytes of data, leaving the EOD at offset 25 relative to
the start of the file (the first byte of the file is at offset 0, and the EOD points past the last byte of
data). For this example, assume the file access pointer is also at EOD.

When a program tries to write 66 bytes at the file access pointer, there is no room - there are only 7
bytes available. The amount of space required is 66 - 7 = 59 bytes, or 4 paragraphs. Since the size
increment is 3, two expansions of 3 paragraphs each will be performed, with a resulting file size of 2 +
2 * 3 = 8 paragraphs (128 bytes). Once the expansion has been completed, the data will be written. The
EOD (and the file access pointer) will be moved to offset 25 + 66 = 91, leaving 37 bytes of unused
space available at the end. This change to the data file is illustrated below (both decimal and hex
offsets are shown).

32 (20h)

25 (19h)

o (OOh)

Old EOF
Unused Space
7 Bytes (07h)

Old EOD
Old Data

25 Bytes (19h)
File Start

Before File Expanded

128 (SOh)

91 (5Bh)

o (OOh)

Unused Space
37 Bytes (25h)

Old + New Data
25+66=91 Bytes (5Bh)

After File Expanded

Figure 1-8. Example of Data File Expansion

New EOF

NewEOD

File Start

If the file access pointer had been at the start of the file before the write operation, only a single 3-
paragraph expansion would have been needed to accommodate 66 - 32 = 34 bytes.

Free Space
Free space is the pool of available memory from which data files are created and expanded in RAM
(main memory and 40K RAM card) and scratch areas are allocated (main memory only). Free space
is not available for any use in a ROM or EPROM. It starts at the start of free space pointer in any
directory, which is the end of all data files, and ends at the end of free space pointer, which will be at
the end of the directory (for main memory only, it could also be at the start of the scratch areas).

1-18 Memory Management

•

•

•

•

•

•

In any directory, data files are created and expand by allocating the required memory from the bottom
of free space, expanding toward higher addresses. In main memory, scratch areas are created by allo­
cating the required memory from the top of free space, building toward lower addresses, as shown
below.

High Addresses End of Main Memory

Scratch Areas

End of Free Space Pointer

Free Space

Start of Free Space Pointer

Data Files

Low Addresses End of Program Files Pointer

Figure 1-9. Use of Free Space in Main Memory

When the free space goes to zero from either direction, the 94 is out of memory. No data files can be
created or expanded, and no more scratch areas can be allocated. The ROOM function (OEh) reports
the amount of free space in any directory; in main memory, it will take into account any existing scratch
areas.

Usage in Command Mode
Whenever the operating system enters command mode, all scratch areas in main memory are elim­
inated, allowing the free space in directory 0 to extend to the end of main memory. The available
memory for all directories is then just the size of the free space.

When any RAM file is erased with the E (erase) command, the space occupied by that file is returned
to free space, and all files higher in memory, regardless of type, are moved down to fill in the hole.
When a new file is loaded using the C (copy) command, a previously existing file with the same name is
erased, and the memory it occupied is reclaimed. Then space for the new file is allocated from free
space, and the new file is loaded. If the file loaded is a program file, all files above the end of program
files pointer are moved up to make room for the program. If the file loaded is a data file, it is added at
the end of the existing data files, and other files do not need to move .

Memory Management 1-19

Usage at Run Time
During a running program, there may be scratch areas allocated in main memory, so free space in
directory 0 extends only up to the start of the scratch areas. The available memory for other directories
is still just the size of the free space.

At run time, program files do not move - only data files and scratch areas interact with free space at
run time. When a RAM data file is deleted programmatically, the space occupied by that file is
returned to free space, and all data files higher in memory are moved down to fill in the hole. When a
new data file is created programmatically, its memory is allocated from free space at the end of the
existing data files. When a data file expands because of a write past its end-of-file, the expansion space
is allocated from free space, and all data files higher in memory are moved up to make room for the
expanded file.

When a scratch area is created, its memory is allocated from free space. When scratch areas are
released, their memory is returned to free space only if the area is adjacent to the top of free space.
See "Releasing Scratch Areas" for more details.

Scratch Areas
Scratch areas are blocks of memory that a program can reserve for its own use. The built-in BASIC
interpreter allocates scratch areas to hold BASIC program variables and subprogram calling informa­
tion. User-written assembly language programs and user-defined handlers can allocate scratch areas
for parameters, status, configuration information, buffer space, space for data returned by operating
system functions, or whatever other purpose is required.

Allocating Scratch Areas
The operating system GET _ MEM function (OBh) provides the ability to allocate scratch areas in sizes
from OOOlh to FFFFh paragraphs (although the maximum expansion is limited by available memory),
and returns the segment address of the scratch area. Scratch areas are allocated in main memory only,
regardless of which directory contains the program requesting the scratch area: directories 0-4, RAM
or ROM. Scratch areas start at the end of main memory and use the space required from free space,
building down toward lower addresses. They can also use previously-released scratch areas that have
not been returned to free space. This will be discussed later.

Scratch areas are automatically initialized to all nulls. They are all released at cold start, but are
preserved at warm start.

When a handler allocates a scratch area during its OPEN routine, the operating system saves the
scratch area address in a table based on the channel number of the handler. When the other routines
in the handler are called (such as READ, WRITE, etc.), the operating system passes the scratch area
address to the routine. (The handler must save this address in the handler information table if it will
be needed for an interrupt service routine.)

If a handler allocates more than one scratch area, only the address of the last one allocated will be
saved and automatically passed to handler routines. Therefore, when mUltiple scratch areas are allo­
cated by a handler, the allocation order is important. A handler can allocate scratch areas so that the
last one allocated is the one whose address should be passed to handler routines. Alternatively, the

1-20 lIemory lIanagement

•

•

•

•

•

•

handler can call GET MEM with the channel number set to 0, and the operating system will not save
that scratch area address or pass it to handler routines.

When an assembly language program allocates scratch areas, it is responsible for keeping track of the
locations of its scratch areas. The operating system saves scratch area addresses only for user-defined
handlers.

The assembler provides the ability to define the offsets within an external scratch area using the SEG­
MENT AT directive, as shown below.

SCR_AREA
PARAM1
PARAM2
PARAM3
SCR_AREA

segment at 0
db 6 dup(?)

db 00
dw
ends

0000

;Addresses start at 0
;First parameter needs 6 bytes
;Second parameter needs a byte
;Third parameter needs a word

Figure 1-10. Defining Scratch Area Data Structure

The SEGMENT AT directive provides an address template that can be imposed on the scratch area.
SEGMENT AT causes no code to be generated for the uninitialized data defined within that program
segment (in this case, the SCR AREA segment).

Releasing Scratch Areas
Scratch areas are released using the REL MEM function (OCh). The program supplies the address of
the scratch area to be released. An error will occur if the program tries to release a scratch area that
does not exist by supplying an address that does not point to any defined scratch area.

When a scratch area is released, the operating system will attempt to return the area to free space. This
can only occur if the scratch area is adjacent to free space. Consequently, it may not be possible to
return a scratch area to free space because of the order that the scratch areas were allocated.

For example, if a handler is opened in a BASIC subprogram, and allocates a scratch area, the area will
be adjacent to free space, and will be lower in memory than the scratch area allocated by the subpro­
gram for its variables. When the subprogram ends, the scratch area used for its variables will be
released, but will not be returned to free space. It is blocked from being adjacent to free space because
of the handler's scratch area. This area is flagged as a free block, available for scratch area allocation,
but not for data file creation or expansion since it is not part of free space.

In the diagram below, scratch area 3 was allocated for variables for a BASIC subprogram, and scratch
area 4 by a handler .

Memory Management 1-21

High Addresses

Scratch Area 1 Scratch Area 1
N1 Bytes N1 Bytes

Scratch Area 2 Scratch Area 2
N2 Bytes N2 Bytes

Scratch Area 3 Free Block 1
N3 Bytes N3 Bytes

Scratch Area 4 Scratch Area 4
N4 Bytes N4 Bytes

Free Space Free Space

Low Addresses
Before Area 3 Released After Area 3 Released

Figure 1-11. Blocking a Released Scratch Area

Scratch area 4 prevents released scratch area 3 from being returned to free space. Scratch area 3
becomes the first free block. It will not be returned to free space until scratch area 4 is released.

To allow this newly-available free block to be reused, regardless of the order in which scratch areas
were allocated and released, it will be combined with any adjacent free blocks formed when other
trapped scratch areas were released. This coalescing process attempts to form a few large available free
blocks, rather than many small ones. This is illustrated below.

1-22 Memory Management

•

•

•

•

•

•

High Addresses

Scratch Area 1 Scratch Area 1

N1 Bytes N1 Bytes

Scratch Area 2
N2 Bytes

Free Block 1
N2+N3 Bytes

Free Block 1
N3 Bytes

Scratch Area 4 Scratch Area 4

N4 Bytes N4 Bytes

Free Space Free Space

Low Addresses
Before Area 2 Released After Area 2 Released

Figure 1-12. Coalescing Adjacent Released Scratch Areas

When scratch area 2 is released, it forms a new free block that cannot be returned to free space. The
coalescing process combines this new block with free block 1 that already exists, forming a single free
block whose size is the sum of the two smaller blocks. This keeps the number of free blocks to a
minimum, since the operating system can only keep track of 20 free blocks.

Subsequent allocation of new scratch areas will use the first free block that is large enough among all
those available before allocating additional memory from free space. Only as much of the free block
will be used as is required. The remainder will be flagged as a smaller free block.

Data files cannot use free blocks until they are returned to free space - only scratch areas can reuse
free blocks. Consequeq.tly, free space can go to zero and leave no room for data files creation or
expansion, even though there may be free blocks available for reuse when allocating scratch areas.

There is no facility to pack the free blocks together, since many tables and handlers keep track of the
segment address of the their scratch areas. Only allocation and release of scratch areas in careful order
can help prevent fragmentation of free blocks.

After the coalescing has been completed, if there is an available free block adjacent to free space, it is
returned to free space for other uses (data file allocation and expansion or new scratch area allocation
when the available free blocks are not large enough).

Memory Management 1-23

When the 94 cold starts, all scratch areas and free blocks are automatically returned to free space. This
will occur the next time the machine is turned on after a program calls the END_PROGRAM function
(DOh) and specifies a subsequent cold start. This also occurs whenever the operating system enters
command mode, whether because of a program error or because of an explicit call to
END PROGRAM. If a program calls END PROGRAM and specifies a subsequent warm start, all
scratCh areas and free blocks are preserved the next time the machine is turned on.

Number of Scratch Areas
A maximum of 34 scratch areas can be allocated in main memory. An error will occur when a scratch
area is allocated if 34 scratch areas are already in use.

The BASIC interpreter allocates scratch areas for its own use, for BASIC variables, and for control
information. In this sense, the BASIC interpreter can be thOUght of as another assembly language pro­
gram, using the facilities within the operating system for scratch space management.

When a BASIC main program is run, two scratch areas are allocated immediately:

• One scratch area for the BASIC interpreter scratch space (2K long).

• One scratch area for the BASIC program variables. The length of this area is shown as "Variable
Space Required" in the BMP file produced by HXC (although the length is rounded up to the
nearest paragraph boundary). This area will not be allocated in the case of a BASIC main program
with no variables.

This leaves a total of 32 scratch areas available for other uses. After that, every time a BASIC subpro­
gram is called with the CALL statement, two scratch areas are allocated:

• One scratch area for the control information save area that contains information passed between
programs (32 bytes).

• One scratch area for the BASIC subprogram variables (length shown in the BMP file, not allocated
if no variables).

This is why BASIC subprograms can only be nested a maximum of 16 levels deep - scratch area allo­
cation limits permit 32 scratch areas beyond those used for the main program.

Fewer scratch areas may actually be available for BASIC subprogram nesting, since user-defined
handlers and assembly language programs can allocate scratch areas also. A high-level and low-level
handler combination, for example, may have three scratch areas allocated between them: one for
configuration passing and two for scratch and buffer space (one for each handler). Assembly language
programs generally allocate one scratch area for scratch and buffer space, but may allocate a second
one for configuration passing to handlers. Consequently, BASIC subprogram nesting may be restricted
to less than 16 levels.

Optimum Memory Use With Scratch Areas
To allow the most efficient use of memory, scratch areas should be allocated and released in such a
way that they do not block other scratch areas from being returned to free space. Long-term scratch
areas that must remain in place throughout program execution (such as handler scratch areas) should
be allocated when the program begins executing. Short-term scratch areas should be released as soon
as they are not needed.

1-24 Memory Management

•

•

•

•

•

•

This is particularly important for BASIC programs. BASIC programs should attempt to do tasks that
allocate long-term scratch areas in the main program, rather than in subprograms, where they will trap
short-term subprogram-related scratch areas. Whenever possible, tasks requiring short-term scratch
space should be isolated within a subprogram.

Logical ROMs
The HP 824l2A ROM/EPROM card accommodates ROMs or EPROMs of different sizes: 32,64,96,
or 128K These different sizes are considered to be "logical ROMs" for two reasons:

• A logical ROM of size N does not have to contain N bytes of program and data files; it can contain
less than N bytes. For example, a 64K logical ROM may only contain 44K of program and data
files .

• A logical ROM of size N does not have to be placed in a ROM or EPROM integrated circuit (IC)
of size N. For example, a 96K logical ROM can be contained in either three 32K ICs or two 64K
ICs.

Logical Structure of the ROM/EPROM Card

Below is a memory map of the ROM/EPROM card.

(3FFF:000F) 3FFFFh

Directory 4

(3800:0000) 38000h

Directory 3

(3000:0000) 30000h

Directory 2

(2800:0000) 28000h

Directory 1

(2000:0000) 20000h

End of ROM/EPROM Card

Start of Directory 4

Start of Directory 3

Start of Directory 2

Start of Directory 1

Figure 1-13. Memory Map of the HP 82412A ROM/EPROM Card

This memory map illustrates an important aspect of logical ROMs. Each directory begins on a 32K
address boundary within the ROM/EPROM card address space (20000h to 3FFFFh). Each logical
ROM is assigned a directory number corresponding to the 32K address boundary where the ROM will
start. A logical ROM larger than 32K will span more than one 32K block of addresses. The pointers in

Memory Management 1-25

the directory table header created by HXC will reflect that the starting address is on a 32K boundary,
and that the logical ROM space for large ROMs spans multiple 32K blocks. (For ROMs that span
more than one directory, the directory number specified when the ROM is created is the starting direc­
tory number.)

For example, a %K logical ROM starting at directory 1 will span directories 1, 2, and 3, leaving one
32K block of addresses, directory 4, available for a single 32K logical ROM. Similarly, a 64K logical
ROM starting at directory 3 will span directories 3 and 4, leaving two 32K block of addresses, direc­
tories 1 and 2, available. These can be filled by either another 64K logical ROM starting at directory 1,
or two 32K logical ROMs, one starting at directory 1, and the other starting at directory 2. A %K logi­
cal ROM could not start at directory 3, nor could a 64K logical ROM start at directory 4, because they
would have to span into a 32K block of addresses not available to the ROM/EPROM card.

Combining Logical ROMs of Di1lerent Sizes

Logical ROMs of different sizes can be combined in many different ways, subject to the following res­
trictions:

• The total number oflogical ROMs cannot exceed four.

• The total number of directories spanned by all the logical ROMs cannot exceed four.

• The total space required by all logical ROMs, regardless of the amount of code they contain, can-
not exceed 128K.

This is illustrated by the following diagram, which shows the possible logical ROM combinations for
filling 128K of ROM space. Of course, a ROM/EPROM card does not have to be full - that is, it
can contain fewer than four logical ROMs, span fewer than four directories, and contain less than 128K
total ROM.

1-26 Memory Management

•

•

•

•

•

•

Directory 1 Directory 2 Directory 3 Directory 4

32K 32K 32K 32K

32K 32K 64K

32K 64K 32K

32K 96K

64K 32K 32K

64K 64K

96K 32K

128K

Figure 1-14. Possible Logical ROM Configurations

The memory map of an individual ROM within the ROM/EPROM card is essentially the same as for
the 40K RAM card. The major difference is the values of the pointers - these can vary depending on
the starting directory number, the directory table size, and the logical ROM size. Below is a memory
map of a 32K logical ROM starting at directory 2 .

Memory Management 1-27

(3000:0000) 30000h
(2FFF:000F) 2FFFFh

(2820:0000) 28200h

(2800:0000) 28000h

Free Space

Data
Files

Program
Files

Directory Table

End of Free Space Pointer
End of Logical ROM

Start of Free Space Pointer

End of Program Files Pointer

Start of Files Pointer

Start of Directory Table

Figure 1-15. Memory Map of a 32K Logical ROM in Directory 2

Rather than provide memory maps for all the possible logical ROMs in directories 1-4, the addresses
of the start and end of the logical ROM and for the start of program files (end of directory table) are
shown in the following table.

Table 1-4. Addresses for All Logical ROM Sizes in Directories 1-4

Logical Directory Start of Start of Program End of Free
ROM Size Number Logical ROil Files Pointer Space Pointer

32K 1 2000:0000 2020:0000 2800:0000
2 2800:0000 2820:0000 3000:0000
3 3000:0000 3020:0000 3800:0000
4 3800:0000 3820:0000 4000:0000

64K 1 2000:0000 2020:0000 3000:0000
2 2800:0000 2820:0000 3800:0000
3 3000:0000 3020:0000 4000:0000

96K 1 2000:0000 2040:0000 3800:0000
2 2800:0000 2840:0000 4000:0000

128K 1 2000:0000 2040:0000 4000:0000

1-28 Memory Management

•

•

•

•

•

•

Selecting a Logical ROM Size
From the different possible logical ROM sizes, select those best for a specific application based on its
particular needs. Some of the items to consider are the total number of program and data files needed,
maximum file size, total ROM space required for directory tables (which decreases available ROM for
the application), and segmentation of code into blocks of different sizes. Below is a comparison of the
differences in organizing a 96K application in three different ways: three 32K ROMs, one 64K ROM
and one 32K ROM, or one 96K ROM.

Table 1-5. Ditlerent Organizations of a 96K Application

Logical Total Number Maximum Directory Table Segmentation

ROM Sizes of Files File Size Overhead Required

332KROMs 3 * 31 = 93 31.5K 3 * .5 = 1.5K three separate groups of
files that each fit in 32K

1 64K ROM+ 31 + 31 = 62 63.5K, .5 + .5 = 1K one group of files that

1 32K ROM 31.5K fits in 64K and one group
of files that fits in 32K

1 96K ROM 63 95K 1K none

The same reasoning can be applied to other size applications and other logical ROM choices. The
results of this analysis should be matched up against the requirements of the application to select the
best way to organize it .

ROM and EPROM IC selection is another factor to consider, and will be discussed later.

Physical Layout of the ROM/EPROM Card.
The ROM/EPROM card contains a circuit board with three sockets on it for ROM or EPROM ICs.
The sockets can accommodate either 32K ICs or 64K ICs (a jumper on the board selects which IC size
is being used). Different IC sizes cannot be mixed and matched - the board can hold either up to
three 32K ICs or up to two 64K ICs. A diagram of the card is shown below .

Memory Management 1-29

Alignment Holes

i.=1i.=1i.=1
J~ lJ 0

32K/64K Jumper

Figure 1-16. HP 82412A ROM/EPROM Card Circuit Board

The socketed jumper on the board selects between 32K ICs and 64K ICs. Underneath the jumper are
the legends 12561 and 15121 , meaning 256 Kbits (32 Kbytes) or 512 Kbits (64 Kbytes). To select the 32K
ICs, insert the jumper so its solid metal strips connect jumper pins whose mating holes on the board
are marked with the 12561 symbol. (This is the configuration shown in the diagram.) To select 64K ICs,
insert the jumper to use the holes marked with the 15121 symbol.

Each socket on the board begins on a 32K address boundary within the ROM/EPROM card address
space corresponding to the 32K blocks of address space in which logical ROMs reside. Socket 1
corresponds to directory 1, 2 to 2, and 3 to 3. A 32K IC can therefore be placed in any socket on the
board (1, 2, or 3). A 64K IC will span more than one 32K block of addresses. Consequently, 64K ICs
can be placed only in sockets 1 and 3. Placing a 64K IC in socket 3 gives access to the fourth 32K block
of addresses - this is the "fourth" socket on the board for directory 4.

This means that using 32K ICs, 96K of physical ROM space is the maximum available, and using 64K
ICs, the fulll28K is available.

Selecting an Ie Size
The directory numbers selected for the different logical ROMs will depend on where the logical ROMs
will be placed on the board in the ROM/EPROM card. Some of that will depend on which IC size is
chosen. The following items should be considered when making an IC size selection:

• Application size

• Price

• Availability

• Correct electrical specifications

• Supported by EPROM programmer (EPROMs only)

Refer to the "Hardware Specifications" for information about electrical and environmental
specifications and manufacturers for the different IC sizes.

1-30 lIemory lIanagement

•

•

•

•

•

•

Placing Logical ROMs Into Physical ICs

In addition to the previous restrictions on combining logical ROMs, and the fact that IC sizes cannot
be mixed, there is one more restriction that applies when placing logical ROMs into physical ICs: the
physical IC must be placed in the socket on the board which corresponds to the directory number for
the logical ROM contained in that IC.

Logical ROMs and physical ICs can both span 32K address boundaries, but this spanning is indepen­
dent of each other (with the above restriction). This fact yields two important results. First, a logical
ROM can cross physical IC boundaries; if it could not, logical ROMs larger than 32K would not be
possible. Second, it does not matter what part of a logical ROM occupies a given physical IC as long as
the logical ROM's starting directory number corresponds with the socket it occupies on the board, and
the different pieces of the logical ROM are kept in the proper order.

Continuing the previous example of a 96K application, below are the ways that the logical ROMs could
be placed in physical ICs. Each row of the tables represents a different way to place the particular logi­
cal ROM in the ICs.

Table 1-6. Placing a 96K Application Into Three 32K les

Which Part of Which Part of Which Part of
Logical Logical ROM Put In Logical ROM Put In Logical ROM Put In

ROM Sizes 32K Ie In Socket 1 32K Ie In Socket 2 32K Ie In Socket 3
3 32K ROMs one entire one entire one entire

32KROM 32KROM 32KROM
1 64K ROM+ first half of last half of entire
1 32K ROM 64KROM 64KROM 32KROM

entire first half of last half of
32KROM 64KROM 64KROM

1 96K ROM first third of middle third of last third of
96KROM 96KROM 96KROM

Memory Management 1-31

Table 1-7. Placing a 96K Application Into Two 64K ICs

Which Part of Which Part of
Logical Logical ROM Put In Logical ROM Put In

ROM Sizes 64K IC In Socket 1 64K IC In Socket 3
First Half of IC Last Half of IC First Half of IC Last Half of IC

3 32K ROMs one entire one entire one entire
32KROM 32KROM 32KROM

one entire one entire one entire
32KROM 32K ROM 32KROM

one entire one entire one entire
32KROM 32K ROM 32KROM

one entire one entire one entire
32KROM 32KROM 32KROM

1 64K ROM+ first half of last half of entire
1 32K ROM 64KROM 64KROM 32K ROM

first half of last half of entire
64KROM 64KROM 32K ROM

entire first half of last half of
32KROM 64KROM 64KROM

first half of last half of entire
64KROM 64KROM 32K ROM

entire first half of last half of
32K ROM 64KROM 64KROM

entire first half of last half of
32KROM 64KROM 64KROM

1 96K ROM first third of middle third of last third of
96KROM 96K ROM 96KROM

first third of middle third of last third of
96KROM 96KROM 96KROM

As the tables indicate, the segmentation of an application across logical ROM boundaries has no bear­
ing on the way the ROMs are segmented to fit into physical ICs, as long as the starting directory
number corresponds with the socket number, and the different pieces of the logical ROM are kept in
the proper order.

The same reasoning can be applied to other size applications and other logical ROM choices. The
results of this analysis should be matched up against the requirements of the application to select the
best way to organize it.

System ROM

The system ROM is 32K of EPROM located in directory 5 in the upper 32K of the CPU address space.
While this directory can be examined in command mode, it cannot be referenced by number or by any
of its files during a running program. During a running program, the OPEN, FIND FILE, and
FIND_NEXT functions (0Fh, 16h, and 17h) will only find files in directories 0-4. The system ROM

1-32 Memory Management

•

•

•

• contains four major blocks, shown in the memory map below.

•

•

(FFFF:OOOF) FFFFFh End of System ROM

Character Set

(FFC3:0000) FFC30h Start of Character Set

Operating
System

(FCOO:OOOO) FCOOOh Start of Operating System

BASIC
Interpreter

(FS03:0000) FS030h Start of BASIC Interpreter

Directory Table

(FSOO:OOOO) FSOOOh Start of Directory Table

Figure 1-17. Memory Map ofthe System ROM

• Directory Table
This contains only three entries: directory table header, BASIC interpreter file entry (SYBI), and
operating system file entry (SYOS).

• BASIC Interpreter
This is file SYBI.

• Operating System
This is file SYOS.

• Character Set
This is the dot pattern for the Roman-8 character set.

Memory Integrity Verification
The operating system computes and saves checksums of various areas of memory when the 94 is turned
off. When the 94 is turned back on, the checksums are recomputed and compared with the saved
values. Any changes indicate that memory integrity has not been preserved, and an error message is
issued. Checksums are computed such that the sum of all words in the block being verified, plus the

Memory Management 1-33

checksum, will equal zero.

The major blocks of memory for which checksum errors are reported are directory tables, files,
reserved scratch space, and free space. In addition, a checksum is made of the system ROM, and the
reserved scratch space is tested extensively. These operations are discussed below.

Checksums Computed at Power Oft
At power off, checksums for all RAM areas (main memory and 40K RAM card) are computed and
saved. Checksums for ROM/EPROM card are not computed, since they are fixed in ROM, but they
are saved in the reserved scratch space for comparison at power on. The system ROM checksum is
also not computed.

Memory Integrity Tests at Power On
At power on, the operating system checks the main NiCd battery voltage. If it is below the low battery
interrupt level, the machine is immediately turned off. If the voltage is OK, integrity tests are per­
formed in the order shown in the following table. If any of the first three tests fail, the machine will not
enter command mode. If any of the other tests fail, the machine will enter command mode and issue an
error message. Any program run at that time will cold start.

Table 1-8. Memory Integrity Errors

Integrity Test Main Memory 40K RAM Card ROM/EPROM
Performed Error Error Card Error

System ROM low beep - -

Checksum

Reserved Scratch high beep - -
Space ReadjWrite

Valid RAM high beep and - -
Configuration memory map

Directory Table 212 and 213 and -

Header Consistency require IO require II
Reserved Scratch 214 - -
Space Checksum *
Free Space 215 - -
Checksum *
Directory Table 212 and 213 and 213
Checksums * make type 0 make type 0
File 216 and 217 and 217
Checksums * set MSB of name set MSB of name

* Not computed at power off or power on if power turned off by pressing the reset switch or by
automatic turn-off 2-5 minutes after the low battery interrupt.

These tests and their results are described below.

1-34 Memory Management

•

•

•

•

•

•

• System ROM Checksum
If the stored checksum in the system ROM does not match the computed checksum, the operating
system will issue a continuous low tone beep, and will not enter command mode.

• Reserved Scratch Space ReadjWrite
If every byte in the reserved scratch space cannot be read and written, the operating system will
issue a continuous high tone beep, and will not enter command mode.

• Valid RAM Configuration
The RAM configuration is checked by reading and writing the first word of every RAM Ie. If
there is any other configuration of built-in RAM than 64K, 128K, 256K, or the RAM card has other
than 4OK, the operating system will issue a continuous high tone beep, and will not enter command
mode.

In addition, a memory configuration map will be displayed indicating the incorrect RAM ICs. The
map is in the form "Error" followed by eight hex characters. The bits in each character represent
individual RAM ICs. Reading from right to left, each bit will be a 1 if the IC was present, and a 0 if
the IC was not present. For example,

Error FFFFFFDF

indicates that the sixth RAM IC was not present (the last 8 bits of the map are 11011111). Shown
below is what the memory configuration map would be if the different configurations were correct.
(These patterns will never appear, because only an incorrect pattern will be displayed.)

Table 1-9. Configuration Map for Valid Memory Configurations

Memory Configuration Map if
Configuration Configuration Correct

64K Error OOOOOOFF
128K Error OOOOFFFF
256K ErrOl;:". FFFFFFFF

64K + 40K RAM Card Error 001FOOFF
128K + 40K RAM Card Error 001FFFFF

After this test, the operating system will check the keyboard. If any keys are down other than
I CLEAR I and I ENTER I , the machine will turn back off immediately. This is to prevent accidental turn
on (while in a full briefcase, for example).

• Directory Table Header Consistency
This verifies the consistency of the directory table headers for main memory and the 40K RAM
card. The *DIR* directory identifier must be intact and the different pointers must point to suc­
cessively higher addresses. If not, error 212 or 213 is issued, and the directory table is flagged such
that the user must initialize the directory with the I (initialize) command (10 or 11). This also
occurs if the size of main memory has changed (by adding or removing the 128K memory board).

• Reserved Scratch Space Checksum
This is the checksum of the interrupt vector area and the operating system scratch space. If this
checksum error occurred, error 214 will be issued.

• Free Space Checksum
This is the checksum of the free space (and scratch areas, if any) - everything higher in main
memory than the end of free space pointer. If this checksum error occurred, error 215 will be
issued .

Memory Management 1-35

• Directory Table Checksums
These are the checksums of the directory tables in any directory. If a directory table checksum
error occurred for main memory or the 40K RAM card, error 212 or 213 will be issued, and the
directory type in the directory table header will be changed to 0 (ROM directory). This makes the
directory read-only, allowing the data to be retrieved, but not changed. To make the directory table
type M or A again, the user must initialize the directory with the I command (IO or II) after
retrieving any desired data.

For the ROM/EPROM card, only the error (213) will be issued - the directory type is already
type O. Any checksum error in a ROM or EPROM (especially an EPROM) implies that the IC
had one or more bits change state, and the IC should be replaced.

The operating system recognizes that a card has been plugged in or removed, or that ROMs were
changed on the ROM/EPROM card, because the number and contents of the directory tables has
changed. When these conditions occur, they will not cause a checksum error, but will cause the
machine to cold start.

• File Checksums
These are the individual checksums for each file in any directory. If a file checksum error occurred
for main memory or a RAM card, the MSB of the first character of the file name will be set. This
will cause the file names to be displayed with a leading asterisk (*) when the D (directory) or M
(memory) operating system commands are executed. If a file name has already been flagged as
being corrupted, its checksum will not be computed at power on.

If a file checksum error occurred in a ROM/EPROM card, the file name will not be altered, so no
asterisk will appear when using the D or M commands. Any checksum error in a ROM or EPROM
(especially an EPROM) implies that the IC has had one or more bits change state, and the IC
should be replaced.

Even with the MSB set in the file name, all normal file operations can still be performed: open,
close, read, write, delete, find, execute, etc. All these operations are risky (especially running cor­
rupted programs) because the state of the file is unknown. Unless the program or the user has the
ability to reconstruct corrupted data, the safest action would be to erase the corrupted files and
either replace them (program files) or recreate them (data files).

After all memory integrity tests have been performed, the operating system checks the lithium backup
battery voltages. If the voltages are too low, the machine will enter command mode, and issue error
210 (main memory) and/or 211 (l28K memory board or 40K RAM card).

1-36 Memory Management

•

•

•

• 2

Program Execution

•

•

Chapter 2

2-1
2-1
2-1
2-1
2-2
2-2
2-4
2-4
2-4
2-5
2-5
2-6
2-8
2-8
2-9

2-10
2-10
2-11
2-11

Contents

Program Execution

Running Programs
Autostart
In-Place Execution of Programs
Behavior at Run Time
Behavior of Reserved Files

Cold Start and Warm Start
When Cold Start Occurs
When Warm Start Occurs
Operating System Activities During Cold Start
Operating System Activities During Warm Start

Ending Programs
Operating System Activities When Entering Command Mode

Program Structure
Program Headers
BASIC Keyword Structure

Program Restrictions
Valid EXE Format
Use of Operating System Stack
Programs in ROM or EPROM

•

•

•

• 2

•

•

Program Execution

This chapter describes program execution in the HP-94: behavior at run time, cold start and warm
start, program structure, and restrictions.

Running Programs
Program files are any of the non-data files - file types A, B, or H. They can reside in RAM or
ROM/EPROM, and have some characteristics that are described here. Details on new BASIC key­
words (type A) and user-defined handlers (type H) are in the BASIC interpreter and handler sections
of this manual. BASIC programs are discussed in the BASIC interpreter section of this manual, as well
as in the BASIC Language Reference Manual.

Autostart
When the HP-94 cold starts (discussed later), the operating system will automatically run the first file
called MAIN that it finds. It searches directories 0-4 in ascending order, and if the first MAIN file
encountered is type A or type B, it will be run; if not, an error will be issued. This search order allows
a MAIN program in directory 0 (main memory) to override a MAIN file in directories 1-4 (40K RAM
card or ROM/EPROM card).

Programs can also be run using the S (start) operating system command. Programs run with S will
always cold start.

In-Place Execution of Programs
Program files are executed in place, regardless of where they are located in memory. Programs in
ROM do not have to be copied into RAM before being executed. Space for BASIC program variables
and scratch areas for assembly language programs and handlers are allocated from main memory,
regardless of which directory the program resides in.

Behavior at Run Time
Program files always appear first in the file system for each directory, as illustrated in the memory
maps. This placement occurs regardless of the order in which files are loaded. The C (copy) command
ensures that all RAM-based program files are located before any data files. HXC ensures the same
condition for ROM-based programs.

This is important because program files do not move at run time. All files lower in memory than the

Program Execution 2-1

end of program files pointer will not move at run time. However, because the order programs are
loaded may vary, it is not known until run time exactly where each file may be located (and therefore
what the initial CS will be). There is no segment fixup performed as is true for MS-DOS programs.
Consequently, all references to addresses within program files must be relative to the start of the file
- there can be no far calls or far jumps. This is particularly important for assembly language pro­
grams; HXBASIC and HXC handle this for BASIC programs.

Data files, however, can move at run time, since they can expand and be deleted. Since the operating
system assumes that programs do not move at run time, data files must appear after all program files
so that data file expansion and deletion will not change the location of programs.

Behavior of Reserved Files

There are four files with reserved names that must not be used for anything except their current use:

• SYBI - built-in BASIC interpreter
If this file is run with the S (start) command, the operating system will immediately return to com­
mandmode.

• SYBD - BASIC debugger
If this file is run with the S command, the operating system will immediately return to command
mode (with the side effects shown in Table 2-3 for a FAR RET).

• SYFT - user-defined font
If this file is run with the S command, the data in the file will be treated as code, which will have
unpredictable (and possibly harmful) side effects.

• SYOS - built-in operating system
If this file is run with the S command, the operating system will immediately turn the machine off.

When the BASIC interpreter searches for user-defined keywords with %CALL, the 12 built-in key­
words starting with new keyword files of the same name S Y will be not be overridden by new keyword
files of the same name (SYAL, SYBP, SYEL, SYER, SYIN, SYLB, SYPO, SYPT, SYRS,
SYRT, SYSW, and SYTO).

Cold Start and Warm Start

The HP-94 supports two methods of running programs when the machine is turned on: cold start and
wann start. The fundamental difference is where the program starts running.

At cold start, the program starts running at the beginning. All conditions are reset to their default state.
At warm start, the program continues running from the point at which it turned the power off. Most
conditions are preserved in the state they were in while the program was previously running, although a
few are reset to their default state. The warm start state is seen by user-defined handlers when their
WARM routines are called.

The details of what state the machine is in at cold and warm start are described below. Notice that
there are several items at the beginning of the table that behave identically, regardless of cold or warm
start. This is particularly important for handlers. In the WARM routine of a handler, the handler must
restore I/O devices to their required state (power, interrupt vector addresses, and interrupt
enable/disable status) since they are always set to their default state, even at cold start.

2-2 Program Execution

•

•

•

• Table 2-1. HP-94 Status at Cold and Warm Start

Item Status at Cold Start Status at Warm Start
Display Cleared Cleared
Input/Output Halted Halted
Interrupt Vector Addresses Set to Default * Set to Default *
Interrupt Enable/Disable Status Set to Default t Set to Default t
Copy of Main Control Register DOh DOh
Copy of Interrupt Control Register 31h t 31h t
Serial Port Power Off Off
Built-In Serial Port Buffer Cleared Cleared
Bar Code Port Power Off Off
Bar Code Port Transitions Disabled Disabled
Key Buffer Cleared Cleared
Beeper Turned Off Turned Off
User-Defined Characters Available Available
Access to Directory 5 Disabled Disabled

MAIN Program Starts at Beginning -
Current Program - Restarts at Power Off Point
System Timeout Value 120 s Unchanged
Display Backlight Timeout Value 120 s Unchanged
Display Backlight Turned Off Unchanged
Cursor Status On Unchanged
Cursor Type Underline Unchanged
Keyboard Status Unshifted Unchanged

• Low Battery Behavior Halt Program With Error 200 Unchanged
Power Switch Behavior Turn Off Machine Unchanged
Timeout Behavior Turn Off Machine Unchanged
Allocated Scratch Areas Returned to Free Space Preserved
Available Free Blocks Returned to Free Sl?flce Preserved
BASIC Variable Contents Lost Preserved
Open Data Files Closed Left Open
File Access Pointers Reset to Zero Unchanged
Handler Information Table Cleared Unchanged
Open Channel 1-4 Handlers Closed Left Open ~
Channel 1-4 Handler Configurations Lost Preserved ~
Channel 1-4 Buffers Lost Preserved ~
Open Built-In Serial Port Handler Closed Left Open, Serial Port On
Built-In Serial Port Configuration Set to Default § Unchanged
Stack Pointer Points to OS Stack Unchanged
* System timer (5Oh), serial port data (53h), low main battery voltage (54h), power switch (55h), operating system func-

tion (1Ah), user timer (1Ch), and dedicated (OOh-Q3h) interrupt vectors all point to their operating system interrupt ser-
vice routines. All others point to a dummy FAR RET.

t System timer, low main battery voltage, and power switch interrupts are enabled. All others are disabled.

t Exact warm start behavior depends on user-defined handler. The handler must restore the I/O device to its proper
state (power, interrupt vector addresses, and interrupt enable/disable status).

§ 9600 baud, 7ES, XON/XOFF enabled, no terminate character, null strip disabled .

• Program Execution 2-3

When Cold Start Occurs
The 94 will cold start a program under the following conditions:

• After default power off, either because the machine timed out or because the program turned it off
with the END_PROGRAM function (OOh) and specified cold start.

• After pressing the reset switch.

• After the automatic power off occurs 2-5 minutes after low battery interrupt.

• If any memory integrity error occurred at power on.

• After entering command mode, either when a program ends or by pressing I CLEAR I and I ENTER I at
power on.

• If the program is run using the S (start) operating system command.

• If main memory size changes (l28K memory board added or removed).

• If 40K RAM card changed to ROM/EPROM card, or vice-versa.

• If number or size of directories in ROM/EPROM card changed.

When Warm Start Occurs
The 94 will warm start the program if the program turned the machine off with the END_PROGRAM
function and specified warm start, and none of the cold start conditions occurred.

Operating System Activities During Cold Start
When the 94 cold starts, it begins by performing the normal power-on initialization (check memory
integrity, determine memory configuration, etc.). The operating system looks for a file called MAIN by
searching directories 0-4 in ascending order. If MAIN exists, the status defined in the previous table is
set. If no MAIN file is found, or if MAIN is not type A or B, the machine cannot autostart, so it enters
command mode.

If MAIN is type A, the operating system does a FAR CALL to the main entry point of the program -
the segment address of the start of the program and an offset of 6 (past the end of the program
header). This implies that an assembly language program can end with a FAR RET - see the section
on "Ending Programs" for further information.

If MAIN is type B, it will be executed by the BASIC interpreter. The operating system searches for a
BASIC interpreter (SYBI) in directories 0-5 in ascending order. Error 100 is issued if none is found,
or if the one found is not type A. Once the interpreter is found, control is transferred to it. It allocates
and initializes its scratch area and the variable space required by the program, sets default values for
various BASIC program conditions (shown below), and begins interpreting the program.

2-4 Program Execution

•

•

•

•

•

•

Table 2-2. Cold Start Status of BASIC Programs

Item Initial Status
BASIC Numeric Variables and Arrays Set to zero

BASIC String Variables and Arrays Set to null string

SYELValue 120 seconds

SYERValue Error trapping disabled

SYLBValue Default low battery behavior

SYRS Value * 9600 baud, 7ES, XON/XOFF enabled, no ter-
minate character, null strip disabled

SYSWValue Default power switch/timeout behavior

SYTOValue 120 seconds

* These values override any values specified by the B (baud) operating system command.

Operating System Activities During Warm Start
When the 94 warm starts, it begins by performing the normal power-on initialization (check memory
integrity, determine memory configuration, etc.) and executes the WARM routines of any open
handlers. Then the operating system transfers control to where the program was running when the
power was turned off, and the program continues running .

Ending Programs
Assembly language programs can end in one of two ways. They can either turn the power off, or they
can leave the power on and enter command mode. Command mode is where the user can type operat­
ing system commands such as C (copy) or D (directory), and is usually reached by turning on the
machine on while holding down the I CLEAR I and I ENTER I keys.

The END_PROGRAM function (OOh) is used to end a program and turn the power off, specifying that
the next power on be cold or warm start. For warm start, the CPU registers are saved on the operating
system stack for use when the machine next turns on. If the program has used the operating system
stack for its own data, the data will be destroyed when the CPU registers are saved. Therefore, a pro­
gram cannot specify warm start unless it uses its own stack. If it specifies warm start while using the
operating system stack, END_PROGRAM will issue error 219 and enter command mode.

There are two ways to enter command mode from a program. The first way is with a FAR RET, since
the program was executed with a FAR CALL. The second way is to use the END PROGRAM func­
tion, specifying to enter command mode. There are subtle differences in the operating system behavior
with these two approaches, summarized below .

Program Execution 2-5

Table 2-3. Ending a Program With END_PROGRAM or FAR RET

Behavior Using Behavior Using
Item END PROGRAM FAR RET

CPU Interrupt Flag Set (STI) Unchanged
Access to Directory 5 Enabled Disabled
Open Files Closed Not Closed
Handler CLOSE Routines Called Not Called *
* The handler will have no opportunity to restore interrupt vectors or status. Power will be

continue to be supplied to the serial port, level converter, and bar code port if they were
enabled.

Because of these differences, the END_PROGRAM function is the preferred method of ending a pro­
gram and entering command mode.

Operating System Activities When Entering Command Mode
When the operating system enters command mode, it initializes certain things to their default values, as
shown below.

2-6 Program Execution

•

•

•

• Table 2-4. HP-94 Status in Command Mode

Item Status

Input/Output Halted *
Interrupt Vector Addresses Unchanged *
Interrupt Enable/Disable Status Unchanged *
Copy of Main Control Register Unchanged *
Copy of Interrupt Control Register Unchanged *
Serial Port Power Off *
Built-In Serial Port Buffer Cleared
Bar Code Port Power Off *
Bar Code Port Transitions Disabled *
Key Buffer Unchanged

Beeper Unchanged
User-Defined Characters Not Available
Access to Directory 5 Enabled t
System Timeout Value 120 s
Display Backlight Timeout Value 120 s
Display Backlight Turned Off
Cursor Status On
Cursor Type Block
Keyboard Status Shifted
Low Battery Behavior Halt Program With Error 200
Power Switch Behavior Turn Off Machine
Timeout Behavior Turn Off Machine

• Allocated Scratch Areas Returned to Free Space
Available Free Blocks Returned to Free Space
BASIC Variable Contents Lost
Open Data Files Closed
File Access Pointers Reset to Zero
Handler Information Table Cleared
Open Channel 1-4 Handlers Closed
Channel 1-4 Handler Configurations Lost
Channel 1-4 Buffers Lost
Open Built-In Serial Port Handler Closed t
Built-In Serial Port Configuration Set to Default *
Stack Pointer Points to OS Stack

* Whether or not these conditions are true depends on the what the program does
before it ends and the behavior of the CLOSE routines in any user-defined
handlers in use (assuming the routines are called before the program ends). The
CLOSE routines will be executed automatically when entering command mode
with the END _PROGRAM function (rather than a FAR RET).

t Only if the END _PROGRAM function was used to enter command mode (rather
than a FAR RET).

* 9600 baud, 7ES, XON/XOFF enabled, no terminete character, null strip disabled .

• Program Execution 2-7

Program Structure
The three different types of programs (types A, B, and H) have a simple structure consisting of a pro­
gram header followed by the code. Assembly language programs (type A) have a six-byte header, then
the executable code. Handlers (type H programs) have a six-byte header, a jump vector table, then the
code pointed to by each of the jump vectors. BASIC programs (type B) have a 16-byte header, then the
program tokens.

Program Headers
Assembly language programs start with a six-byte header, shown below with hex offsets on the left side.
Note that the order of this illustration is with the lowest offset at the top, which is the order the entries
would be placed in the source code for the handler.

OOh

02h

04h

06h

Program Length
(with header)

2 Bytes

Internal
Entry Point

2 Bytes

Version
Number
2 Bytes

Header For New
BASIC Keyword

OOh

Program Length
(with header)

2 Bytes

02h

(Undefined)
2 Bytes

04h

Version
Number
2 Bytes

06h
Header For Assy.

Lang. Program

Figure 2-1. Program Headers

There are three fields in the header:

• Program Length

OOh

02h

04h

06h

Program Length
(with header)

2 Bytes

Handler
Identifier
2 Bytes

Version
Number
2 Bytes

Header For User­
Defined Handler

This field is the length of the program, including the length of the header itself .

• Internal Entry Point
For type A programs that are new BASIC keywords, this field is the offset of the processing block
relative to the start of the program. This assumes a particular BASIC keyword structure which will
be described shortly. If a BASIC keyword does not use this structure, this field can be set to point
to the first byte after the header, to a dummy FAR RET instruction, or be used for other purposes.

2-8 Program Execution

•

•

•

•

•

•

• (Undefined)
For type A programs that are not BASIC keywords, the place to start executing the program is
immediately after the header, so the value of the internal entry point field does not matter - it will
never be called by another program. It can therefore either be set to point to the first byte after the
header, to a dummy FAR RET instruction, or be used for other purposes.

• Handler Identifier
The second field in the header has a slightly different meaning for handlers. It contains a two­
character identifier that is returned by the identify handler I/O control function (OOh).

• Version Number
This is used for revision control by the programmer. It is a two-byte binary number representing a
decimal fraction of the form II.FF, where the II is the integer part of the version, and the FF is the
fractional part of the version. The statement VERSION dw 0103h would designate a version
number of 1.03, and the statement VERSION dw 0212h would define version 2.18 of the software.
This can also be defined in decimal as db 18,2, where the fractional part precedes the integer part.

For type A programs, the program code starts after the header. For type H programs, the jump vector
table that follows the header defines the locations of the executable code.

BASIC Keyword Structure
BASIC keywords can be written so that they are accessible from both BASIC and assembly language
programs. This requires a keyword structure in which there are two distinct blocks: an I/O block in
which all interaction with BASIC variables occurs, and a processing block in which the function of the
keyword is implemented. Once the I/O block has read and validated the supplied variables, it calls the
processing block. When the processing block is done, it returns its results to the I/O block, which then
places them in BASIC variables as appropriate. This structure is shown below.

Program Header

CALL Input/Output Block

l ---;..

Processing Block
RET "---

Main Entry Point
(FAR CALLed by %CALL)

Internal Entry Point
(FAR CALLed by assembly
language programs)

Figure 2-2. BASIC Keyword Structure

The internal entry point in the program header would point to the start of the processing block. This
allows both BASIC and assembly language programs access to the functionality implemented by the
keyword. BASIC programs execute new keywords with %CALL, which FAR CALls the main entry
point at the end of the header. Assembly language programs execute the processing block only via the
internal entry point. They find the program, read the internal entry point from the header, set up
appropriate parameters, and FAR CALL the processing block.

Program Execution 2-9

Errors should be reported differently depending on which entry point is called. If the main entry point
is called (which implies the keyword was called by a BASIC program), non-numeric errors should be
reported using the ERROR BASIC interpreter utility routine (offset 34h). This will cause a non­
numeric error to be issued by the BASIC interpreter, and the BASIC program will halt. If the internal
entry point is called (which implies the keyword was called by an assembly language program), numeric
errors should be returned in the AL register (DOh if no errors).

The main entry point of a BASIC keyword can also be called from command mode with the S com­
mand. This condition should be recognized by BASIC keywords. If the keyword was called from a
BASIC program using %CALL, the CS register will be the same as the DS register. If the keyword
was called from command mode with the S command, the CS register will be different than the DS
register.

There are two possible ways to handle this condition. One approach is for the keyword to end immedi­
ately if the keyword is called from command mode. Another approach is to implement an
input/output block for interacting with command mode, analogous to the input/output block for
interacting with the BASIC interpreter.

Program Restrictions

Programs can start on any paragraph boundary, depending on where the program was loaded and what
other files were loaded or deleted. Once they begin to run, they do not move - there is no run-time
relocation. Consequently, there should be no far calls or jumps to absolute addresses in type A or H
programs. (HXBASIC and HXC ensure this for type B programs.)

Valid EXE Format
When EXE files are created, they should not contain any MS-DOS-style relocation entries. HXC will
reject any EXE file if it contains a relocation table. An EXE file, to be accepted by HXC, must have
the following characteristics:

• EXE file size of 512 bytes or greater.

• Valid EXE identifier.

• 512-byte header.

• No relocation entries.

• Initial CS = OOOOh.

It is recommended that source files use byte alignment by specifying SEGMENT BYTE at the beginning
of each program segment. The assembler's default alignment is on paragraph boundaries, causing each
object file to be padded with 1-15 bytes. Byte alignment eliminates this unused space. HXC will pad the
entire EXE file only once, not once for each object file.

2-10 Program Execution

•

•

•

•

•

•

Use of Operating System Stack
A program can use the operating system stack for its own use. The stack varies in length, depending on
how the program was called (from the operating system or from another program), up to a maximum
of approximately 600 bytes. If a program turns off the machine and specifies a subsequent warm start
(see "Cold Start and Warm Start"), it must not use the operating system stack. The END PROGRAM
function (OOh) will issue error 219 if the program is using the operating system stack. Co"iisequently, if
a program wants to use the warm start option, it must put its stack in its own data space.

Programs In ROM or EPROM
Programs can be in RAM or ROM, and execute in place in either location. ROM programs have addi­
tional restrictions. There can be no data space in the code itself if the program is to have the option of
running in ROM. The operating system provides scratch area allocation and release functions to allow
ROM programs to get needed data space.

The assembler provides the ability to define the offsets within an external scratch area using the SEG­
MENT AT directive, as shown below.

SCR_AREA
PARAM1
PARAM2
PARAM3
SCR_AREA

segment at 0
db 6 dupe?)

db 00

dw
ends

0000

;Addresses start at 0
;First parameter needs 6 bytes
;Second parameter needs a byte
;Third parameter needs a word

Figure 2-3. Defining Scratch Area Data Structure

The SEGMENT AT directive provides an address template that can be imposed on the scratch area.
SEGMENT AT causes no code to be generated for the uninitialized data defined within that program
segment (in this case, the SeR _AREA segment).

Program Execution 2-11

• 3

User-Defined Handlers

•

•

Chapter 3

3-1
3-1
3-1
3-3
3-4
3-4
3-4
3-4
3-4
3-5
3-6
3-6
3-6
3-7
3-7
3-7
3-8
3-8
3-9

3-10
3-10
3-12
3-12
3-13
3-14
3-16
3-17
3-20
3-22
3-23
3-25
3-27
3-28
3-29
3-31
3-33

Contents

User-Defined Handlers

Handler Structure
Program Header
Jump Table

Channel Input and Output
File Search Order

Types of Handlers
Low-Level Handlers
High-Level Handlers
Who Calls Handler Routines

Handler Information Table
Table Usage While Handlers Are Closed
Table Usage While Handlers Are Open
Table Entry Offsets
Reading and Setting the Handler Information Table

Passing Parameters to Handlers
Passing Parameters in a Parameter Scratch Area
Verifying Parameter Area Existence
Validating the Contents of the Parameter Scratch Area
Passing Parameters After the Handler Name
Restrictions on In-Line Parameters

Handler Linkage Routines
Handler Routine Descriptions

Registers Passed to Handler Routines
High-Level Handler Behavior With Unused Registers

CLOSE
IOCTL

Reserved IOCTL Functions
OPEN
POWER ON

HP-94 Status During POWERON Routine
READ
RSVD2
RSVD3
TERM
WARM
WRITE

•

•

•

•

•

•

3

User-Defined Handlers

User-defined handlers, or handlers for short, allow BASIC or assembly language programs simple
access to the HP-94 I/O ports - the devices associated with channels 1-4. In particular, user-defined
handlers can be written for the serial port (channell) and bar code port (channel 2); channels 3 and 4
are reserved, and currently have no I/O port associated with them. Handlers are assembly language
program files that are assembled and linked into EXE files on the development system. Then they are
processed by HXC and given file type H before being copied into the HP-94.

Handlers are similar in concept to UNIX or MS-DOS device drivers. They are a collection of routines
to handle various activities associated with I/O devices, such as initializing the port for use, reading and
writing data to it, and releasing control of the port. Handlers have a special structure that allows the
individual routines to be called, either from BASIC or assembly language, solely by supplying the name
of the handler being used when the channel is opened.

This chapter will discuss handler organization in general, how handlers interact with the channel­
oriented input and output of the HP-94, the different types of handlers, passing configuration parame­
ters and registers to handler routines, and what tasks handler routines perform .

Handler Structure
Handlers contain three major components: the program header, the jump table, and the executable
code for each of the handler routines. . .•

Program Header
Handlers, like all assembly language programs, start with a six-byte header. The first two bytes are the
length of the handler, including the header. The next two bytes are a two-character handler identifier
that is returned by handlers that implement function OOh of the IOCTL routine (discussed later). The
last two bytes of the header are the software version number. It is a two-byte binary number represent­
ing a decimal fraction of the form II.FF, where the II is the integer part of the version, and the FF is
the fractional part of the version. The statement VERSION dw 0103h would designate a version
number of 1.03, and the statement VERSION dw 0212h would define version 2.18 of the software.
This can also be defined in decimal as db 18.2, where the fractional part precedes the integer part.

Jump Table
Immediately following the header is a jump table with 10 entries of three bytes each. Each entry con­
tains a JMP instruction to one of the handler routines. Each routine must end with a FAR RET. The
header and jump table, showing the order in which the jump table must appear in the program, is
shown below. The hex offsets from the start of the program are along the left side. Note that the order

User-Defined Handlers 3-1

of this illustration is with the lowest offset at the top, which is the order the entries would be placed in
the source code for the handler.

OOh
Program Header

02h
Handler Identifier

04h
Version Number

06h
JMP to OPEN Routine

09h
JMP to CLOSE Routine

OCh
JMP to READ Routine

OFh
JMP to WRITE Routine

12h
JMP to WARM Routine

15h
JMP to TERM Routine

18h
JMP to POWERON Routine

1Bh
JMP to IOCTL Routine

1Eh
JMP to RSVD2 Routine

21h
JMP to RSVD3 Routine

24h

Figure 3-1. Handler Header and Jump Table

The purpose of the different handler routines are listed briefly below.

• OPEN Routine - initializes the port.

• CLOSE Routine - releases control of the port.

• READ Routine - reads data coming into the port.

• WRITE Routine - writes data to the port.

• WARM Routine - allows reinitialization of the port at warm start.

• TERM Routine - allows I/O to be terminated because of the power switch or low battery.

• POWERON Routine - allows initialization at machine power-on.

• IOCTL Routine - controls actions of handler.

• RSVD2 Routine - for future use.

• RSVD3 Routine - for future use.

3-2 User-Defined Handlers

•

•

•

•

•

•

Entries in the jump table are required for all handler routines. However, not all handlers will imple­
ment all routines. If a routine is not implemented, the jump table entry should just JMP to a dummy
FAR RET.

There is no jump table entry for the handler's interrupt service routine. The address of that routine is
placed in the appropriate interrupt vector in the reserved scratch space. For details on using interrupts,
refer to the "Interrupt Controller" chapter.

The tasks performed by the different handler routines will be discussed later in this chapter. The next
sections will describe general information relevant to all handlers and handler routines.

Channel Input and Output
The HP-94 operating system performs input and output through 16 different logical channels, each of
which is associated with different physical devices. The channels being used for I/O are defined by
opening them. From an assembly language program, this is done with the OPEN function (OFh); from
a BASIC program, this is done with the OPEN # statement (which calls the OPEN function). Both
the OPEN function and the OPEN # statement take the channel number to open and a file name as
their parameters. The table below summarizes the uses of the 16 logical channels, and the meaning of
the file name for the different channels.

Table 3-1. Channel Number Assignments

Channel Physical File Name
Number Device lIeaning

0 Console * Ignored

1 Serial Port Name of User-Defined Handler (Type H)
2 Bar Code Port Name of User-Defined Handler (Type H)

3-4 Reserved Name of User-Defined Handler (Type H)

5-15 Data Files Name of Data File (Type D)

* The console is the keyboard for input operations and the display for output operations.

Below is more information about the different channels.

• Channel 0
The console is always opened by the operating system. A program can specify a file name as a
parameter when opening channel 0, but the name will be ignored - user-defined handlers for
channel 0 are not allowed.

• Channell
The built-in serial port handler is specified by supplying the null string ("") for the file name. If a
user-defined device handler name is supplied and no such handler exists in memory, the default
handler will be used.

• Channels 2-4
There is no default handler for these channels. If the null string is used as the file name, or there is
no handler in memory matching the file name supplied, an error will be reported .

User-Defined Handlers 3-3

• Channels 5-15
When a data file is opened, the file access pointer is reset to the start of the file. Only one channel
at a time can be assigned to a single file. Multiple channels cannot be open to the same file simul­
taneously.

Once a channel has been opened, an error will occur if it is reopened without first being closed.

File Search Order
The 0 PEN function will search for the specified file name in directories 0-4 in ascending order. If the
file name includes a directory number (e.g., II 1: HNBC"), only that directory will be searched. If the
file name is found, but is an illegal type, (not type H for channels 1-4, or not type D for channels 5-15),
an error will be issued. If it is a legal type, it will be opened.

Types of Handlers
There are two types of handlers: high-level and low-level. These support the concept of layered
software, in which successively higher layers become more hardware-independent.

Low-Level Handlers
Low-level handlers interact only with the I/O port hardware. They take care of the characteristics of
the I/O port on the HP-94 only. An example of this is HNBC, a low-level bar code port handler sup­
plied with the HP-94 Software Development System that does low-level I/O with the bar code port.
Low-level handlers usually include one or more interrupt service routines for the hardware interrupts
associated with the I/O port.

High-Level Handlers
High-level handlers interact only with low-level handlers, not with the I/O port hardware. They take
care of the characteristics of the external device connected to the port, but not of the port itself. An
example of this is HNWN, a high-level handler that handles the device-specific features of Hewlett­
Packard Smart Wands, but relies on the low-level handlers HNBC or HNSP to perform port-specific
activities. High-level handlers do not have interrupt service routines because they do not interact
directly with the hardware.

Who Calls Handler Routines
The routines in both types of handlers can be called by operating system functions, which in turn are
called by BASIC I/O keywords, assembly language programs, or by the operating system itself. If a
high- and low-level handler pair are being used, the operating system will think that only the high-level
handler is open. All communication between the two handlers is performed by the high-level handler
using handler linkage routines. These routines are described later in this chapter, and are available as
an include file that can be included with the high-level handler source code (discussed in the appen­
dixes).

3-4 User-Defined Handlers

•

•

•

•

•

•

The relationship between all the layers of software used for I/O is shown below .

BASIC I/O

\

I Assembly Language J l Operating
Keywords Programs System

1 I 1 1
Operating System Functions

High-Level Handler

I Interacts With Low-Level Handler

Low-Level Handler
Interacts With I/O Port Hardware

Figure 3-2. Relationship Between High- and Low-Level Handlers

As this diagram indicates, all that is required to perform I/O to a port is a low-level handler. It is not
necessary to have or use a high-level handler. If external devices will be used with unique characteris­
tics better accommodated on a driver level than an application level (so the application is more device­
independent), then a high-level handler may also be necessary.

Because the high-level handler is totally dependent on the low-level handler to actually move data
through the I/O port, high-level handlers cannot stand alone. A low-level handler can be used by itself,
but a high-level handler must be used as part of a high- and low-level handler pair.

Handler Information Table

There is a table in the operating system scratch space where handlers keep information about scratch
area locations. The table contains five two-byte entries, each of which is associated with a specific
channel and has a different meaning depending on whether the handler is closed or open .

User-Defined Handlers 3-5

Table 3-2. Handler Information Table Entries

Entry Which lIeaning While lIeaning While Used By Which
Offset Channel Handler Closed Handler Open Interrupt

OOh Bar Code Port None Low-Level Handler BarCode
Scratch Area Address Timer (51 h)

02h Serial Port Parameter Low-Level Handler Serial Port Data
Scratch Area Address Scratch Area Address Received (53h)

04h Bar Code Port Parameter Low-Level Handler Bar Code Port
Scratch Area Address Scratch Area Address Transition (52h)

06h Channel 3 Parameter Low-Level Handler Reserved 1 (56h)
Scratch Area Address Scratch Area Address

08h Channel 4 Parameter Low-Level Handler Reserved 2 (57h)
Scratch Area Address Scratch Area Address

Table Usage While Handlers Are Closed
When a handler is closed, the handler information table is used for the segment address of the parame­
ter scratch area for that channel. When the OPEN routine in either a high- or low-level handler is
called, it looks at the appropriate table entry to determine if the parameter scratch area exists and if
the information it contains is valid. The procedure for doing this will be discussed later.

Table Usage While Handlers Are Open
Every time a routine in an open handler is called, the operating system automatically passes the seg­
ment address of the handler's scratch area to the routine in the DS register. However, the operating
system cannot do this when an interrupt causes the handler's interrupt service routine to be executed.
To allow the interrupt service routine to locate the scratch area, the handler information table is used
for the address of the low-level handler's scratch area. This is done only when the handler is open, for
this is the only time that interrupts will be enabled for the handler.

After verifying its parameters, the low-level handler's OPEN routine must save the parameter scratch
area address in the handler's scratch area, and place the handler's scratch area address in that table
entry. When the handler is closed, the low-level handler CLOSE routine must restore the original
parameter scratch area address in that table entry.

Table Entry onsets

The handler information table entry offsets for a particular handler are 2 * the handler channel number.
Once the handler is open, the entry is read during the handler interrupt service routine. This means
that each handler can have one hardware interrupt associated with it. This is not true for the bar code
port, since it has both a transition interrupt and a timer interrupt. The primary interrupt for the bar
code port is the transition interrupt since it occurs on every transition, so it is associated with the entry
for channel 2. The bar code port timer interrupt uses the first entry in the table at offset O.

3-6 User-Defined Handlers

•

•

•

•

•

•

Reading and Setting the Handler Information Table
The handler information table is located in the first 10 bytes (5 words) of the operating system scratch
space. Using the operating system pointer to locate the scratch space (described in the appendix), the
following code will take the channel number in AL and load the table entry for that channel into ES:

mov si,16h ;get segment address of as pointers
mov ds,si ;put in segment register
xor ah,ah ;clear ah
mov si,ax ;put channel number in si
shl si,1 ;2 * channel number
mov ds,ds: [OOOOh] ;get the segment address of as scratch space
mov es,word ptr ds:[si] ;get this channel's table entry

Figure 3-3. Example of Reading Handler Information Table Entries

Passing Parameters to Handlers
Parameters are passed to a handler mainly to define its operating configuration (such as baud rate for
the serial port). The handler uses them to set its configuration when its OPEN routine is called.
Parameters can be passed in one of two ways when the handler is opened:

• The parameters can be placed in a parameter scratch area. This can be done from a BASIC pro­
gram with a separate keyword (such as the SYBC keyword that defines parameters for HNBC), or
from an assembly language program that allocates and initializes the parameter scratch area before
opening the handler. This is the approach used for passing parameters to Hewlett-Packard
handlers .

• The parameters can be placed after the handler name that is passed to the OPEN function or the
OPEN # statement (e.g., "LLHN 9600, 7ES"). Thc>handler OPEN routine then parses the
parameters from the name string.

Regardless of which approach is used to pass parameters, the low-level handler must save a copy of
them in its scratch area. This is needed by the IOCTL routine ofthe handler.

Passing Parameters in a Parameter Scratch Area
A parameter scratch area is a one-paragraph scratch area. The upper S bytes (bytes OSh-OFb) are
reserved for high-level handler parameters, and the lower S bytes (bytes OOh-07h) are reserved for
low-level handler parameters. The first byte of each half is used as a valid data flag (discussed shortly)
to indicate the validity of the parameters. This leaves 7 bytes available for parameters for each high­
and low-level handler.

Handlers verify two aspects of configuration parameters: first, that the parameter scratch area exists,
and second, that it contains valid configuration information .

User-Defined Handlers 3-7

Verifying Parameter Area Existence
High- and low-level handlers determine if the parameter area exists by reading the handler information
table entry for that channel. If the entry is zero, there is no parameter scratch area for the handler. The
handler should then allocate a one-paragraph parameter scratch area and place its address in the table
entry. If the entry is non-zero, the entry contains the segment address of a parameter scratch area that
already exists.

It is important that the address of the parameter area put in the handler information table actually
point to a scratch area. If an assembly language program opens a handler and passes it parameters, the
address put in the table must not point to parameters on the program's stack, or to fixed parameters
embedded in the program code. This is because if the stack vanishes or the program moves, the
address in the handler information table will no longer point to valid parameters.

CAUTION When a handler is open, the entry in the handler information table will be the
scratch area address of the handler, not of the parameter scratch area (see
"Handler Information Table"). If a separate configuration program is run after the
handler is open, it could misinterpret the handler information table entry, and
modify the handler scratch area by mistake. Configuration programs should
check if the handler is open before examining the handler information table. See
the appendixes for a utility routine that determines if a channel is open or not.

Validating the Contents of the Parameter Scratch Area
High- and low-level handlers validate the contents of the parameter scratch area by looking at the first
byte in their respective parts of the area (upper 8 bytes for high-level handlers, lower 8 bytes for low­
level handlers). This first byte is a valid data flag that is unique for each handler associated with a par­
ticular channel. The valid data flag is set to zero when the scratch area is allocated because the operat­
ing system initializes all scratch areas to zero (DOh). The flag is then set to a value either by a handler,
by the program calling the handler, or by a configuration keyword. The action that a handler should
take for different values of the valid data flag is shown below.

3-8 User-Defined Handlers

•

•

•

•

•

•

Table 3-3. Interpreting the Valid Data Flag

Value High-Level Low-Level
of Flag Handler Action Handler Action

Zero Put correct valid data flag Put correct valid data flag
and default high-level and default low-level
handler configuration in handler conf iguration in
upper 8 bytes of parameter lower 8 bytes of parameter
scratch area. scratch area.

Correct for Handler Use these parameters to Use these parameters to
define high-level handler define low-level handler
configuration. cont iguration.

Any Other Value Return an error, since the Return an error, since the
parameters are not valid for parameters are not valid for
this handler. this handler.

Handlers should use values for the valid data flag in the range Olh-7Fh. Hewlett-Packard uses values in
the range SOh-FFh for its handlers, and OOh is reserved because it indicates uninitialized parameters.
Refer to the "Program Resource Allocation" appendix for information about reserving a valid data flag
that will not conflict with any other flag in use.

Passing Parameters After the Handler Name
If parameters are passed in-line with the handler name, the handler's OPEN routine must parse and
interpret the handler names and parameters. When the handler OPEN routine executes, ES: BX
points to the start of the entire handler name string. The routine can skip past the handler name in the
string to find the beginning of the parameters, and parse them into whatever internal form is required
for the handler. The syntax of the name string is as follows:

• High-level handler name

• One or more spaces

• High-level handler parameters separated by commas

• Semicolon

• One or more spaces

• Low-level handler name

• One or more spaces

• Low-level handler parameters separated by commas

• Ending null (OOh)

This results in handler and parameter strings that look like the following examples:

User-Defined Handlers 3-9

"HNLL 7,2"
"HNHL 1,3iHNLL 7,2"
"l:HNHL 1,3il:HNLL 7,2"
"HNHLiHNLL"

Low-level handler with parameters
High- and low-level handlers with parameters
Same but with directory numbers
High- and low-level handlers with no parameters

Restrictions on In-Line Parameters
• If the OPEN # statement is used, the maximum length of the handler names and parameters is

255 characters.

• The OPEN # statement uppercases all characters in the name string, so the name string in OPEN
1, "llhn 7 es" will be passed as "LIJIN 7ES". If a handler that accepts in-line parame­
ters will be opened with the OPEN # statement, the parameters should not be case-sensitive.

• If a high-level handler that accepts in-line parameters calls a low-level handler that accepts parame­
ters in a parameter scratch area (such as Hewlett-Packard handlers), the high-level handler must
parse its in-line parameters and put them in the form expected by the low-level handler. Then it
must create a parameter scratch area, place the parameters in it, and modify the handler informa­
tion table before calling the low-level handler.

Handler Linkage Routines
If a high- and low-level handler pair are being used, the operating system will think that only the high­
level handler is open. All communication between high- and low-level handlers is performed by the
high-level handler using handler linkage routines. These routines are available as an include file that
can be included with the high-level handler source code (discussed in the appendixes).

Each handler routine has a corresponding linkage routine that it uses to call the low-level handler. To
use the linkage routines, load appropriate values into the registers, put the channel number in AL, and
FAR CALL the routine by name. The activities of each high-level handler routine before and after cal­
ling the linkage routine will be discussed shortly.

The linkage routines are designed to mimic the way the operating system cal1s handler routines. A
low-level handler will not be able to distinguish that it is being called by a high-level handler rather
than by the operating system. Like the operating system, the caller's registers (in this case, the high­
level handler's) are saved in a register save area on the stack when the low-level handler is called.
Upon return, the registers are popped off in exactly the same manner. This means that low-level
handlers must return the error code in AL (OOh if no errors), and all other register values in the
appropriate location in the register save area.

Below is a summary of the registers passed to and returned by the linkage routines.

3-10 User-Defined Handlers

•

•

•

• Table 3-4. Register Usage By Handler Linkage Routines

Routine Registers Passed Registers Returned
Name Register Contents Register Contents

LLH CLOSE AL Channel number to close AL Error code

LLH IOCTL AL Channel number AL Error code -
AH IOCTL function code Others As defined by routine

Others As defined by routine

LLH OPEN AL - Channel number to open AL Error code
ES Segment address of low-

level handler name to open
BX Offset address of low-

level handler name to open

LLH READ AL Channel number to read AL Error code - CX Number of bytes to read CX Number of bytes
actually read

ES Segment address of
read buffer

BX Offset address of
read buffer

LLH RSVD2 AL Channel number AL Error code -
Others Not yet defined Others Not yet defined

LLH RSVD3 AL Channel number AL Error code -
Others Not yet defined Others Not yet defined

• LLH TERM AL Channel number AL Error code -
Cause of termination AH*
1 = power switch
0= low battery

LLH WARM AL Channel number AL Error code
LLH WRITE AL Channel number to write AL Error code -

CX Number of bytes to write CX Number of bytes
actually written

ES Segment address of
write buffer

BX Offset address of
write buffer

All (supplied DSt Segment address of low- BP Unchanged from value
automatically) level handler scratch area passed to routine

BP Stack offset address of
register save area

DI Destroyed
* The TERM routine for high- and low-level handlers will receive the cause of the termination in AL. A high-level handler

must move this value into AH and place the channel number in AL before calling LLH _TERM. LLH_ TERM will swap
them back, thereby passing the cause of the termination to the low-level handler in AL.

t Not passed to LLH _OPEN routine .

• User-Defined Handlers 3-11

Handler Routine Descriptions
Handler routine descriptions consist of the following:

• A brief description of the routine.

• A summary of the parameters passed to the routine.

• A summary of the parameters that the routine must return.

• Details on when the routine is called.

• Supplementary notes and cautions on the use and behavior of the routine.

Registers Passed to Handler Routines
Handler routines are called by the analogous operating system functions. For example, the READ
function will FAR CALL the READ routine in the handler that is open to the channel being read.
When handler routines are called, either by the operating system or by handler linkage routines, all the
registers values that were passed to the operating system function will be passed to the handler routine,
with the following exceptions:

• The DS register contains the segment address of the handler scratch area (except for the OPEN
routine).

• The BP register contains the offset on the stack where all the caller's registers were saved.

• The DI register is destroyed.

All the caller's original registers are saved in a register save area on the stack. When the handler rou­
tine ends (with a FAR RET), the caller (operating system function or handler linkage routine) will
automatically pop all the saved registers off the stack except AL, which is used to return error codes,
and BP, which must be unchanged from the value passed to the routine. Consequently, if a handler
wants to return a value in a register other than AL or BP, it cannot just put the value in the register -
the register will be lost when the saved register copies are popped off the stack. Instead, the handler
routine must place values to be returned into the register save area on the stack.

The order that the registers are saved on the stack is shown below, with the hex offsets on the left.

3-12 User-Defined Handlers

•

•

•

•

•

•

18h
Flags Register

16h
CS Register

14h
IP Register

12h
BP Register

10h
ES Register

OEh
OS Register

OCh
01 Register

OAh
SI Register

08h
OX Register

06h
CX Register

04h
BX Register

02h
AX Register

OOh SS:BP

Figure 3-4. Register Save Area

CAUTION Do not alter values in the register save area except those that the handler routine
is required to change. Some registers are critical to the proper operation of the
calling routines, and changing them can have significant, detrimental side effects
(including loss of data).

High-Level Handler Behavior With Unused Registers

Routines in high-level handlers must return to their callers all registers returned by the low-level
handler, even if the high-level handler doesn't use or modify any of those registers. The reason is that
even if the high-level handler doesn't care about the contents of a particular register, the register may
be important to the caller.

This is particularly true of the IOCTL routine, in which the high-level handler may just pass through,
unmodified, low-level handler IOCTL requests from an application. If the high-level handler does not
similarly pass back the results from the low-level handler, the caller will not see them .

User-Defined Handlers 3-13

CLOSE

The CLOSE routine in a handler is where the I/O port and the external device are shut down, and
control of the port is released by the handler.

Passed to routine:

AL

Routine must return:

AL=OOh

>OOh

BP

When routine is called:

Channel number to close.

Successful close.

Error code.

Unchanged from value passed to routine.

• By the CLOSE function (lOh) if a high- or low-level handler name was specified when the handler
was opened. The CLOSE function can be invoked either by the BASIC CLOSE # statement or
by an assembly language program.

• Bya high-level handler using the LLH CLOSE linkage routine.

• When a program ends and returns to command mode by calling the END PROGRAM function
(OOh), the operating system closes all open handlers by calling their CLOSE routines.

Notes:

• Registers specified by the caller of the CLOSE function or the LLH _CLOSE linkage routine are
passed to the handler CLOSE routine with the following exceptions:

DS Set to the segment address of the scratch area allocated by the handler.

BP Points to the offset on the stack where all the caller's registers are saved and where all
returned values except AL must be put.

D1 Destroyed.

Cautions:

• When returning to command mode, the operating system calls the CLOSE routines of all open
handlers to close them, but does not set AL to the channel number being used. Make sure AL is
set to the channel number before calling LLH_ CLOSE, or the linkage routine will not call the
low-level handler CLOSE routine properly.

If the high-level handler is only valid for one channel, that valid channel number can be placed in
AL before calling LLH CLOSE. If the high-level handler can be used for more than one chan­
ne~ the channel numbe~ being used should have been saved in the handler's scratch area by its
OPEN routine.

3-14 User-Defined Handlers

•

•

•

• . .. CLOSE

Activities of routine:

High-Level Handler Low-Level Handler
Activities Activities

Perform device-specific shut down activi- Disable hardware interrupts for the I/O port.
ties.

Disable and power down the I/O port.
Call low-level handler with LLH CLOSE

Restore original hardware interrupt vectors
linkage routine (see caution below)~

for the I/O port.
Release high-level handler scratch area.

Restore parameter scratch area address
Return an error code if the routine failed from the low-level handler scratch area into
(DOh if no errors). the handler information table.

Deallocate low-level handler scratch area.

Return an error code if the routine failed
(DOh if no errors) .

•

• User-Defined Handlers 3-15

IOCTL

The IOCTL (I/O control) routine in a low-level handler allows a program to control the handler
operation after the handler has already been opened. This is in addition to providing the handler
configuration parameters at open time. High-level handler IOCTL routines only call their low-level
handler, since most external devices are controlled by command sequences embedded in data sent to
them (via the WRITE function).

Passed to routine: *
AH

AL

Routine must return: *

AL=OOh

>OOh

BP

AHt

BXt

CXt

DXt

SIt

DI t
ES t

When routine is called:

IOCTL function code.

Channel number.

Successful.

Error code.

Unchanged from value passed to routine.

As defined by routine (return in register save area, offset OOh)

As defined by routine (return in register save area, offset 02h)

As defined by routine (return in register save area, offset 04h)

As defined by routine (return in register save area, offset 06h)

As defined by routine (return in register save area, offset 08h)

As defined by routine (return in register save area, offset OAh)

As defined by routine (return in register save area, offset OEh)

• By a high-level handler using the LLH _ I OCTL linkage routine.

• By an assembly language program using the IOCTL utility routine (see the appendixes). If a
high-level handler is called, it passes the call on to the low-level handler by calling LLH _ IOCTL.

• Not called by the operating system. IOCTL is one of the three reserved handler routines whose
use was not defined until after the operating system was developed; the others are RSVD2 and
RSVD3.

Notes:

• Registers specified by the caller of the LLH _I OCTL linkage routine or the IOCTL utility rou­
tine are passed on to the low-level handler IOCTL routine with the following exceptions:

• Because each handler implements different handler control functions within its IOCIL routine, other register requirements
are defined by the handler itself.

t Returned by high-level handler only.

3-16 User-Defined Handlers

•

•

•

•

•

•

. . .lOCTL

DS

BP

Set to the segment address of the scratch area allocated by the handler.

Points to the offset on the stack where all the caller's registers are saved and where all
returned values except AL must be put.

DI Destroyed.

• Routines in high-level handlers must return to their callers all registers returned by the low-level
handler, even if the high-level handler doesn't use or modify any of those registers. The reason is
that even if the high-level handler doesn't care about the contents of a particular register, the regis­
ter may be important to the caller. This is particularly true of the IOCTL routine, in which the
high-level handler may just pass through, unmodified, low-level handler IOCTL requests from an
application. If the high-level handler does not similarly pass back the results from the low-level
handler, the caller will not see them.

Cautions:

• The high-level handler must not change the DS register in the register save area from the caller.
Doing so may cause the caller to use the wrong scratch area.

Activities of routine:

High-Level Handler Low-Level Handler
Activities Activities

Call low-level handler with LLH IOCTL Perform low-level handler control activities. -
linkage routine.

Return an error code if the routine failed or if
Return any registers (in the register save a function code was passed that the handler
area) that may have been used by the low- does not implement (~Oh if no errors).
level handler routine to the caller.

Return an error code if the routine failed
(DOh if no errors).

Reserved IOCTL Functions

Certain I/O control functions have been assigned fixed function codes DOh-06h. Each handler may
implement additional functions; refer to the documentation for the particular handler of interest for
details. The "Program Resource Allocation" appendix indicates other function codes that have been
reserved by other handlers. The fixed function codes are listed below in numeric order.

• IDENTIFY (Function DOh)
The IDENTIFY function returns two pieces of information to identify handlers: the handler
identifier (bytes 2 and 3 of the program header) in CX (byte 2 in CH, byte 3 in CL), and the ver­
sion number in DX (DH=integer part, DL=fractional part). Hewlett-Packard handlers also return
the characters "HP" in BX (BH="H", BL="P"),

• GET CONFIG (Function Olh)
The GET CONFIG function returns the address of the current configuration in ES: DX. Refer
to the docUmentation for each handler for details on the format of the confIguration .

User-Defined Handlers 3-17

.. .lOCTL

The configuration that is returned should be the one saved in the handler's scratch area during its
OPEN routine. If the CHANGE_ CONFIG function has changed the configuration, the changes
would have been made to the saved copy, not the original conflguration in the parameter scratch
area.

• CHANGE CONFIG (Function 02h)
The CHANGE_ CONFIG function changes the current handler (and possibly port) conIIgUTation
while the handler is open. The address of the new conIIgUTation is passed in ES : DX. Refer to the
documentation for each handler for details on the format of the configuration.

The configuration that is altered should be the one saved in the handler's scratch area during its
OPEN routine. The reason is that configuration changes while the handler is open should not
affect the original status defined while it was closed. If a program has initialized a parameter
scratch area with certain values prior to opening the handler, the program expects that set of
parameters to be unchanged the next time the handler is opened.

• RECEIVE STATUS (Function 03h)
The RECEIVE_STATUS function returns the number of bytes in the receive buffer in CX.

• RECEIVE FLUSH (Function 04h)
The RECEIVE FLUSH flushes the receive buffer.

• SEND_STATUS (Function 05h)
The SEND_STATUS function returns the number of bytes in the send buffer in CX.

• SEND_FLUSH (Function 06h)
The SEND FLUSH flushes the send buffer.

The register usage for these functions is summarized below. The AH register is set to the function
code, and the AL register is set to the channel number. Lik.e all handler routines, all the registers
returned by these functions must be placed in the register save area except AL (for error codes) and
BP (which must be unchanged from the value passed to the routine).

3-18 User-Defined Handlers

•

•

•

• .. .lOCTL

Table 3-5. Reserved IOCTL Function Codes

Function Registers Passed Registers Returned
Name Register Contents Register Contents

CHANGE CONFIG AH 02h AL Error code -
(OOh if no errors)

AL Channel number
ES Segment address

of configuration
DX Offset address

of configuration

GET CONFIG AH 01h AL OOh - AL Channel number ES Segment address
of configuration

DX Offset address
of configuration

IDENTIFY AH OOh AL OOh
AL Channel number BX "HP" *

CX Handler identifier
DX Version number

RECEIVE FLUSH AH 04h AL Error code -

• (OOh if no errors)
AL Channel number - Receive buffer cleared

RECEIVE STATUS AH 03h AL OOh -
AL Channel number CX Number of bytes

in receive buffer

SEND FLUSH AH 06h AL Error code -
(OOh if no errors)

AL Channel number - Send buffer cleared

SEND STATUS AH 05h AL OOh -
AL Channel number CX Number of bytes

in send buffer

.. Returned by Hewlett-Packard handlers .

• User-Defined Handlers 3-19

OPEN

The OPEN routine in a handler is where the I/O port and the external device are initialized and
readied for I/O.

Passed to routine:

AL

ES

BX

DS

DX

Routine must return:

AL=OOh

>OOh

BP

When routine is called:

Channel number to open.

Segment address of handler name string to open.

Offset address of handler name string to open.

Segment address of parameter area (built-in serial port handler only).

Number of bytes to write.

Successful open.

Error code.

Unchanged from value passed to routine.

• By the OPEN function if the caller invoking the function specifies a high- or low-level handler
name. The OPEN function can be invoked either by the BASIC OPEN :# statement or by an
assembly language program.

• Bya high-level handler using the LLH OPEN linkage routine.

Notes:

• Registers specified by the caller of the OPEN function or the LLH_ OPEN linkage routine are
passed to the handler OPEN routine with the following exceptions:

BP Points to the offset on the stack where all the caller's registers are saved and where all
returned values except AL must be put.

D I Destroyed.

• Handlers allocate one or two scratch areas in their OPEN routine: the parameter scratch area for
parameter passing (if not already allocated), and the handler scratch area for its pointers, buffers,
etc. The operating system saves the handler's scratch area address in an internal table based on the
channel number of the handler (this is not the same as the handler information table). When the
other routines in the handler are called (such as READ, WRITE, etc.), the operating system reads
the appropriate scratch area address from this internal table, and passes it to the routine.

If a handler allocates more than one scratch area, only the address of the last one allocated will be
saved and automatically passed to handler routines. Therefore, when multiple scratch areas are
allocated by a handler, the allocation order is important. A handler can allocate scratch areas so
that the last one allocated is the one whose address should be passed to handler routines. Alterna­
tively, the handler can call GET _ MEM with the channel number set to 0, and the operating system
will not save that scratch area address or pass it to handler routines.

3-20 User-Defined Handlers

•

•

•

• ... OPEN

Activities of routine:

High-Level Handler Low-Level Handler
Activities Activities

Verify that the channel being opened to is Read and verify configuration parameters.
correct for this handler. If passed in parameter scratch area, use the

Read and verify configuration parameters.
handler information table and the valid data
flag. If passed in-line with the name string,

If passed in parameter scratch area, use the
parse the parameters from the string, and

handler information table and the valid data
flag. If passed in-line with the name string,

convert to the form required by the handler.

parse the parameters from the string, and Allocate and initialize parameter scratch
convert to the form required by the handler. area if necessary.

Allocate and initialize parameter scratch Allocate low-level handler scratch area for
area if necessary. port-specific needs.

Allocate high-level handler scratch area for Save parameter scratch area address from
device-specific needs. the handler information table in the low-level

Save channel number the handler is opened
handler scratch area. This will be needed by

to in the high-level handler scratch area.
the CLOSE routine.

This will be needed by the CLOSE, TERM, Save parameters from the parameter

• and WARM routines. * scratch area in the low-level handler scratch

Change handler name painter (ES: BX) to
area. This will be needed by the IOCTL

point to the start of the low-level handler
routine.

name. Skip past the directory number and Save the low-level handler scratch area
colon, if any, and any in-line parameters to address in the handler information table.
find the low-level handler name. Return an This will be needed by the interrupt service
error if there is no low-level handler name. routine.

Call low-level handler with LLH OPEN link- Take over hardware interrupt vectors for the -
age routine. Return an error if no low-level I/O port, and save the previous vector
handler with that name exists. address in the low-level handler scratch

Perform device-specific initialization activi-
area.

ties. Initialize the I/O port and provide power to

Return an error code if the routine failed
it.

(DOh if no errors). Enable hardware interrupts for the I/O port.

Return an error code if the routine failed
(DOh if no errors).

* This is only necessary if the high-level handler can be used for more than one channel, such as HNWN. If the
handler can be used for only one channel, that channel number need not be saved, since it will always be known .

• User-Defined Handlers 3-21

POWERON

The POWERON routine allows a handler to perform device or port initialization when the machine is
turned on, even if the handler is not open.

Passed to routine:

Nothing. *

Routine must return:

Nothing. *

When routine is called:

• Only when the HP-94 is turned on, after all memory integrity checks have been performed, and all
battery voltages have been tested. All handlers, whether open or closed, will have their POWERON
routine executed at that time. This includes the low-level handler of a high- and low-level handler
pair, even though the operating system thinks that only the high-level handler of the pair is open.
For this reason, there is no LLH _ POWERON linkage routine.

• Not executed if the machine enters command mode because of a memory integrity error or because
the I CLEAR I and I ENTER I keys are held down. (The latter prevents an erroneous POWERON routine
from permanently preventing access to command mode.) This means that if the machine autostarts
MAIN, POWERON will have been executed, but if MAIN is run from command mode using the S
(start) command, POWERON will not have been executed. POWERON will not have been exe­
cuted if the program is always started from command mode (e.g., S CO LL to start a program called
COLL).

Notes:

• If a high-level handler wants to perform device-specific power-on initialization, it must be done
after a low-level handler performs port-specific power-on initialization, or the I/O port may not
allow access to the device. The POWERON routines are called in each handler, open or closed, in
directories 0-4 in ascending order. Within each directory, handlers are called in ascending directory
table entry order. This implies that the low-level handler's POWERON routine would have to be
called before the high-level handler's. This will only occur if the low-level handler appears earlier
in the same directory as the high-level handler, or in a lower-numbered directory than the high­
level handler.

• HP-94 status during the POWERON routine is discussed later.

Cautions:

• Power-on initialization of the HP-94 can be completely altered, with significant, detrimental side
effects (including loss or alteration of existing data) if the POWERON routine changes any of the
registers that are passed to it. It is therefore imperative that the POWERON routine save and
restore any registers that it uses.

• Unlike all other handler routines, no registers are saved before calling POWERON, or restored upon its exiL No registers
are passed to the routine, nor are any values expected to be returned by iL

3-22 User-Defined Handlers

•

•

•

•

•

•

... POWERON

Activities of routine:

High-Level Handler Low-Level Handler
Activities Activities

Save any registers used by routine. Save any registers used by routine.

Perform device-specific power-on initializa- . Perform port-specific power-on initialization
tion activities. activities.

Restore original registers. Restore original registers.

HP-94 Status During POWERON Routine

The machine status when the POWERON routine is called is identical to the status at warm start, even
if the machine was turned off with cold start specified, with the following exceptions:

• The status of user-defined characters is unchanged. If the machine was turned off during a running
program, they will be available (assuming they were present in the machine) during the POWERON
routine. If the machine was turned off by pressing the power switch in command mode, they will
not be available during POWERON routine.

• Access to directory 5 is enabled. This is the only time when a program is running that directory 5 is
accessible .

• The display backlight will be off.

After the POWERON routine is called, the operating system will perform either cold start or warm
start initialization, depending on how the machine was turned off. If it should cold start, the cold start
status is set, and program MAIN will be autostarted. User-defined characters are located and made
available if they exist, access to directory 5 is disabled, and the backlight remains off. If it should warm
start, the warm status is left unchanged, and the program continues running at its power-off point.
User-defined characters are left in their warm start state, access to directory 5 is disabled, and the
backlight is turned on if it was on when the machine turned off.

Because the cold or warm status is set after POWERON is called, some operating system functions can­
not be used in the routine. For example, if the machine is going to cold start, all open data files will be
closed. If a file was opened during the POWERON routine, it will be closed immediately during cold
start initialization. Here is a list of the operating system functions that can be used in the POWERON
routine:

User-Defined Handlers 3-23

... POWERON •
Table 3-6. Functions Allowed in POWERON Routine

Function Function
Name Number

BEEP 07h
BUFFER STATUS 06h
CURSOR OSh
DISPLAY ERROR 1Sh
FIND FILE 16h
FIND NEXT 17h
GET CHAR 01h
GET LINE 02h
MEM CONFIG OOh
PUT CHAR 03h
PUT LINE 04h
ROOM OEh
SET INTR OAh
TIMEOUT 09h
TIME DATE OSh

•

3-24 User-Defined Handlers •

•

•

•

READ

The READ routine in a handler is where the data coming into the I/O port is read and returned to the
caller.

Passed to routine:

AL

ex
ES

BX

Routine must return:

AL=OOh

>OOh

BP

ex
When routine is called:

Channel number to read.

Number of bytes to read.

Segment address of read buffer.

Offset address ofread buffer.

Successful read.

Error code.

Unchanged from value passed to routine.

The number of bytes actually read (return in register save area, offset 04h).

• By the READ function if a high- or low-level handler name was specified when the handler was
opened. The READ function can be invoked either by the BASIC GET #, INPUT # or
INPUT$ statements, or by an assembly language program.

• By a high-level handler using the LLH READ linkage routine .

Notes:

• Registers specified by the caller of the READ function or the LLH _READ linkage routine are
passed to the handler READ routine with the following exceptions:

DS Set to the segment address of the scratch area allocated by the handler.

BP Points to the offset on the stack where all the caller's registers are saved and where all
returned values except AL must be put.

DI Destroyed.

Cautions:

• The number of bytes to read must not be greater than the actual read buffer length (although it can
be less) .

User-Defined Handlers 3-25

... READ • Activities of routine:

High-Level Handler Low-Level Handler
Activiti.s Activities

Call low-level handler with LLH _READ link- Enable the system timeout. *
age routine. The read buffer specified can

-Monitor system events (system timeout, be either the caller's buffer or one in the
power switch, and low battery) while waiting

handler's scratch area.
for incoming data. *

Perform device-specific read activities.
Read the data from the I/O port.

Transfer the data from the high-level
Transfer the data from the low-level

handler's buffer (if any) into the caller's read
handler's buffer (in its scratch area) into the

buffer (but no more than the low-level
caller's read buffer (but no more than the

handler returned).
caller requested).

Return the actual number of bytes read, and
Disable the system timeout. * an error code if the routine failed (OOh if no

errors). Return the actual number of bytes read, and
an error code if the routine failed (OOh if no
errors).

* Refer to the appendixes for information about a utility routine to do this.

•

3-26 User-Defined Handlers •

•

•

•

RSVD2

The RSVD2 routine in a handler is the second routine reserved for future use, the first (with a use
now assigned) being rOCTL, and the third being RSVD3.

Passed to routine: *

AL

Routine must return: *
AL=OOh

>OOh

BP

When routine is called:

Channel number.

Successful write.

Error code.

Unchanged from value passed to routine.

• Bya high-level handler using the LLH _ RSVD2 linkage routine.

• Not called by the operating system or by any utility routines.

Notes:

• Registers specified by the caller of the LLH _ RSVD2 linkage routine are passed on to the handler
RSVD2 routine with the following exceptions:

DS Set to the segment address of the scratch area allocated by the handler.

BP Points to the offset on the stack where all the caller's registers are saved and where all
returned values except AL must be put.

Dr Destroyed.

Activities of routine: *

High-Level Handler Low-Level Handler
Activities Activities

Call low-level handler with LLH RSVD2 Return an error code if the routine failed -
linkage routine. (OOh if no errors).

Return an error code if the routine failed
(OOh if no errors).

• Because these routines have not yet been defined, other register requirements and activities may be defined at a later date .

User-Defined Handlers 3-27

RSVD3

The RSVD3 routine in a handler is the third routine reserved for future use, the first (with a use now
assigned) being 10CTL, and the second being RSVD2.

Passed to routine: *

AL

Routine must return: *
AL=OOh

>OOh

BP

When routine is called:

Channel number.

Successful write.

Error code.

Unchanged from value passed to routine.

• By a high-level handler using the LLH _ RSVD3 linkage routine.

• Not called by the operating system or by any utility routines.

Notes:

• Registers specified by the caller of the LLH _ RSVD3 linkage routine are passed on to the handler
RSVD3 routine with the following exceptions:

DS Set to the segment address of the scratch area allocated by the handler.

BP Points to the offset on the stack where all the caller's registers are saved and where all
returned values except AL must be put.

D1 Destroyed.

Activities of routine: *

High-Level Handler Low-Level Handler
Activities Activities

Call lOW-level handler with LLH RSVD2 Return an error code if the routine failed -
linkage routine. (DOh if no errors).

Return an error code if the routine failed
(DOh If no errors).

• Because these routines have not yet been defined, other register requirements and activities may be defined at a later date .

3-28 User-Defined Handlers

•

•

•

•

•

•

TERM

The TERM routine in a handler is used to halt I/O in progress when low battery or power switch inter­
rupts occur.

Passed to routine:

AL

Routine must return:

AL=OOh

>OOh

BP

When routine is called:

Cause of termination (0 = low battery, 1 = power switch pressed).

Successful.

Error code.

Unchanged from value passed to routine.

• By the operating system when low battery occurs.

• By the operating system when the power switch is pressed, unless the program disabled the power
switch using the SET INTR function (OAh).

• By a high-level handler using the LLH _TERM linkage routine.

• Not called by the operating system when the system timeout occurs. Since each handler must moni­
tor the system timeout itself, that handler will be the only one waiting on I/O when the timeout
expires. Consequently, it is the only one that needs to terminate I/O.

Notes:

• Registers specified by the caller of the TERM function or the LLH _TERM linkage routine are
passed on to the handler TERM routine with the following exceptions:

DS Set to the segment address of the scratch area allocated by the handler.

BP Points to the offset on the stack where all the caller's registers are saved and where all
returned values except AL must be put.

D I Destroyed.

Cautions:

• When low battery or power switch occurs, the operating system calls the TERM routines of all open
handlers, but does not set AL to the channel number being used. Instead, it sets AL to the cause of
the termination (0 = low battery, 1 = power switch). Place the cause of the termination into AH, and
make sure AL is set to the channel number before calling LLH _ TERM, or the linkage routine will
not call the low-level handler TERM routine properly. LLH _TERM will swap the values so that
the low-level handler's TERM routine will receive the cause of the termination in AL.

If the high-level handler is only valid for one channel, that valid channel number can be placed in
AL before calling LLH TERM. If the high-level handler can be. used for more than one channel;
the channel number be~ used should have been saved in the handler's scratch area by its OPEN
routine .

User-Defined Handlers 3-29

... TERM •
Activities of routine:

High-Level Handler Low-Level Handler
Activities Activities

Call low-level handler with LLH TERM link- Halt I/O in progress.
age routine (see caution below)~

Clean up incomplete data.
..

Perform device-specific termination activi-
Return an error code if the routine failed ties.
(OOh if no errors).

Return an error code if the routine failed
(OOh if no errors).

•

3-30 User-Defined Handlers •

•

•

•

WARM

The WARM routine in a handler is where the I/O port and the external device are reinitialized to their
open state and readied for I/O when the HP-94 warm starts.

Passed to routine:

AL

Routine must return:

AL=OOh

>OOh

BP

When routine is called:

Channel number.

Successful.

Error code.

Unchanged from value passed to routine.

• By the operating system when the HP-94 turns on with a warm start, after the POWERON routine
has been called. The WARM routines of any high- or low-level handlers that were open at power off
are called after the operating system performs all memory integrity tests and sets all warm start
status, just before returning control to the program that turned the power off. Refer to the "Pro­
gram Execution" chapter for details on machine status at warm start.

• By a high-level handler using the LLH _WARM linkage routine.

Notes:

• Registers specified by the caller of the WARM function or the LLH _ WARM linkage routine are
passed to the handler WARM routine with the following exceptions:

DS Set to the segment address of the scratch area allocated by the handler.

BP Points to the offset on the stack where all the caller's registers are saved and where all
returned values except AL must be put.

D1 Destroyed.

Cautions:

• At warm start, the operating system calls the WARM routines of all open handlers, but does not set
AL to the channel number being used. Make sure AL is set to the channel number before calling
LLH _WARM, or the linkage routine will not call the low-level handler WARM routine properly.

If the high-level handler is only valid for one channel, that valid channel number can be placed in
AL before calling LLH WARM. If the high-level handler can be used for more than one channel,
the channel number being used should have been saved in the handler's scratch area by its OPEN
routine .

User-Defined Handlers 3-31

... WARM •
Activities of routine:

High-Level Handler Low-Level Handler
Activities Activities *

Call low-level handler with LLH WARM link- Take over hardware interrupt vectors for the
age routine (see caution below)-:- I/O port, and save the previous vector

Perform device-specific initialization activi-
addresses in the low-level handler scratch

ties.
area.

Initialize the I/O port and provide power to
Return an error code if the routine failed
(DOh if no errors).

it.

Enable hardware interrupts for the I/O port.

Return an error code if the routine failed
(DOh if no errors).

* The status of I/O devices at warm start is the same as at cold start. It is the responsibility of the handler to
restore I/O devices to their proper state (power, interrupt vector addresses, and interrupt enable/disable status).

•

3-32 User-Defined Handlers •

•

•

•

WRITE

The WRITE routine in a handler is where the data is sent out the I/O port to the external device.

Passed to routine:

AL

ex
ES

BX

Routine must return:

AL=OOh

>OOh

Channel number to write.

Number of bytes to write.

Segment address of write buffer.

Offset address of write butTer.

Successful write.

Error code.

Unchanged from value passed to routine. BP

ex The number of bytes actually written (return in register save area, otTset 04h).

When routine is called:

• By the WRITE function (13h) if a high- or low-level handler name was specified when the handler
was opened. The WRITE function can be invoked either by the BASIC PRINT #, PRINT
••• USING or PUT # statements, or by an assembly language program.

• By a high-level handler using the Llli WRITE linkage routine .

Notes:

• Registers specified by the caller of the WRITE function or the Llli _WRITE linkage routine are
passed to the handler WRITE routine with the following exceptions:

DS Set to the segment address of the scratch area allocated by the handler.

BP Points to the offset on the stack where all the caller's registers are saved and where all
returned values except AL must be put.

D I Destroyed.

Cautions:

• The number of bytes to write must not be greater than the actual write butTer length (although it
can be less) .

User-Defined Handlers 3-33

... WRITE •
Activities of routine:

High-Level Handler Low-Level Handler
Activities Activities

Perform device-specific write activities. Enable the system timeout. *

Call low-level handler with LLH WRITE Monitor system events (system timeout,
linkage routine. The write buffer specified power switch, and low battery) while output-
can be either the caller's buffer or one in the tlng data. *
handler's scratch area.

Write the data to the I/O port.
Return the actual number of bytes written,

Disable the system timeout. *
and an error code if the routine failed (DOh if
no errors). Return the actual number of bytes written,

and an error code if the routine failed (DOh if
no errors).

* Refer to the appendixes for information about a utility routine to do this.

•

3-34 User-Defined Handlers •

• 4

Operating System Functions

•

•

Contents • Chapter 4 Operating System Functions

4-1 Operating System Function Usage
4-1 Operating System Function Descriptions
4-1 Registers Passed to Operating System Functions
4-2 BEEP
4-3 BUFFER STATUS
4-4 CLOSE
4-6 CREATE
4-8 CURSOR
4-9 DELETE

4-11 DISPlAY ERROR
4-12 END PROGRAM
4-14 FIND FILE
4-16 FIND NEXT
4-19 GET CHAR
4-21 GET LINE
4-23 GET MEM
4-25 MEM CONFIG
4-27 OPEN
4-29 PUT CHAR
4-30 PUT LINE
4-32 READ • 4-35 REL MEM
4-36 ROOM
4-37 SEEK
4-39 SET INTR
4-41 TIMEOUT
4-43 TIME DATE
4-45 WRITE

•

•

•

•

4

Operating System Functions

This chapter describes the operating system functions. These functions allow assembly language pro­
grams to simplify the interaction between assembly language programs and the HP-94 hardware:,
memory, keyboard, display (and display backlight), serial port, bar code port, power switch, low battery
detection, real-time clock, and beeper. The BASIC interpreter also uses these functions to provide
analogous capability to BASIC language programs.

Operating System Function Usage
Operating system functions are called by the following procedure:

• Load function code into register AH.

• Load any other function parameters into the corresponding registers.

• Issue a software interrupt 1Ah.

When functions end, they pass results back in the registers listed in the function descriptions .

Operating System Function Descriptions
Function descriptions consist of:

• A brief description of the operating system function.

• A summary of the function call parameters.

• A summary of the function return parameters including any possible returned error codes.

• Supplementary notes and cautions on the use and behavior of the function.

• A list of related operating system functions.

• An example of the use of the operating system function. These examples are provided only to illus­
trate typical use of the various functions. Several of the examples contain data scratch areas
embedded in the code, and consequently will only work if executed in RAM - they will not run in
ROM or EPROM.

Registers Passed to Operating System Functions
Each operating system function saves the contents of all the registers passed to it, and returns those
values to the caller when the function ends. The only registers altered by the functions are those that
explicitly return particular values to the caller - all other registers will retain their original values.
AL is always used to return error codes .

Operating System Functions 4-1

BEEP

Beep a high or low tone for a specified duration.

Call with:

AH=07h

AL=OOh

=Olh

BEEP function code.

Low tone.

High tone.

BL Length of tone in 0.1 second units (0.1 - 25.5 seconds).

Returns:

Nothing.

Notes:

• When AL is greater than 01h, no action is performed.

Cautions:

• As soon as BEEP starts the beeper, the application program will continue to run; that is, the pro­
gram does not wait for the beep to finish before resuming execution.

• BEEP can be called while the beeper is beeping. If the tone specified is different than the tone in
progress, beeping will continue at the high tone and duration - the high tone and its duration will
always take precedence, regardless of the order in which the tones are specified. If the tone
specified is the same as the tone in progress, beeping will continue at either the remaining duration
or the new duration, whichever is longer.

Related functions:

None.

Example:

The following example will do a one-second low beep.

BEEP
LOT ONE
HITONE

equ
equ
equ

mov
mov
mov
int

07h
OOh
01h

ah,BEEP
al,LOTONE
bl,10
1Ah

4-2 Operating System Functions

;BEEP function code

;BEEP function code
; low tone ..•
; for 1 second
;beep it.

•

•

•

•

•

•

BUFFER_STATUS

Get the number of bytes in or flush either the key buffer or the receive buffer for the built-in serial port
handler.

Call with:

AH=06h

AL=OOh

=Olh

=02h

=03h

Returns:

DL

Notes:

BUFFER STATUS function code.

Flush key buffer.

Get the number of bytes in the key buffer.

Flush the receive buffer for the built-in serial port handler.

Get the number of bytes in the receive buffer for the built-in serial port
handler.

Number of bytes in the key buffer (AL=Olh) or the receive buffer for the
built-in serial port handler (AL=03h).

• The operations performed when AL is 02h or 03h only apply to the buffer for the built-in serial port
handler. For user-defined serial port handlers with their own buffers, these operations will not
work.

• When AL is greater than 03h, no action is performed .

Related functions:

GET_CHAR, GET_LINE, READ

Example:

The following example will flush any characters in the key buffer and serial port receive buffer.

BUFFER STATUS
KBD_FLUSH
KBD_STAT
SER_FLUSH
SER_STAT

equ 06h iBUFFER_STATUS function code
equ OOh
equ 01h
equ 02h
equ 03h

initialize the key buffer and serial port receive buffer

mov
mov
int
mov
int

ah,BUFFER_STATUS
al,KBD_FLUSH
1Ah
al,SER_FLUSH
1Ah

iBUFFER_STATUS function code

iflush keyboard buffer

iflush serial port receive buffer

Operating System Functions 4-3

CLOSE

Close and release an open channel.

Call with:

AH=10h

AL

Returns:

AL=()()h

=65h (101)

=69h (105)

Notes:

CLOSE function code.

Channel number to close.

Successful close.

Illegal parameter.

Channel not open.

When closing channels 1 - 4, CLOSE will transfer control to the CLOSE routine of the user­
defined handler specified when the channel was opened. The same registers passed to the CLOSE
function will be passed to the user-defined handler CLOSE routine with the following exceptions:

DS Set to the segment address of the scratch area allocated by the handler.

BP Points to the offset on the stack where all the caller's registers are saved and where all
returned values except AL must be put.

DI Destroyed.

Refer to the "User-Defined Handlers" chapter for details.

• When closing channels 1 - 4 and the user-defined handler has returned from its CLOSE routine,
the handler will no longer be in control of the device.

• Once a channel is closed, it may not be accessed until it is reopened.

Cautions:

• This function may not be called from the POWERON routine of a handler.

Related functions:

CREATE, DELETE, OPEN, READ, SEEK, WRITE

4-4 Operating System Functions

•

•

•

• Example:

The following example procedure will close a file.

CLOSE equ 10h

fclose .. close an open file

call with:
al = channel #

fclose proc near
mov ah,CLOSE
int 1Ah
or al,al
ret

fclose enclp

•

•

... CLOSE

;CLOSE function code

;CLOSE function code
;close the file
;set status for caller

Operating System Functions 4-5

CREATE

Allocate initial storage for a data file and build the directory table entry for the file.

Call with:

AH=l1h

ES

BX

CX

DX

Returns:

AL=DOh

CX

BX

Notes:

=65h (101)

=66h (102)

=68h (104)

=6Ch (108)

=6Dh (109)

=6Fh (111)

CREATE function code.

Segment address of file name to create.

Offset address of file name to create.

Initial allocated size in paragraphs.

Size increment in paragraphs.

Successful create.

Illegal parameter.

Directory does not exist.

Too many files. The directory is full.

File already exists.

Read-only access.

No room for file.

Start segment address of the file.

Available free space in paragraphs (when AL=6Fh).

• The file name must be uppercase.

• The file name must be terminated by either a null (DOh) or a space (20h).

• Wild card characters are not allowed in the file name.

• If the file name is longer than 4 characters, only the first 4 characters (plus a leading directory
number and colon, if any) will be used.

• If the file name contains a directory specifier, the file will be created in that directory. If the file
name does not contain a directory specifier, the file will be created in directory 0 (main memory).

• The size increment is the expansion increment used when data is written past the end-of-file.

• CREATE will fail if an attempt is made to create a data file in a ROM or EPROM.

• A data file must be opened before it can be written to or read from.

• Allocated file space is automatically initialized to nulls (DOh).

• If there is not enough free space in the directory to create a file with the specified number of para­
graphs, CREATE will return 6Fh (111) in AL along with the number of available paragraphs in
BX.

4-6 Operating System Functions

•

•

•

•

•

•

. .. CREATE

Cautions:

• This function may not be called from the POWERON routine of a handler.

Related functions:

CLOSE, DELETE, OPEN, READ, SEEK, WRITE

Example:

The following example procedure will create a file.

CREATE

,
fcreate

fcreate

equ

fcreate

call with:

proc
mov
push
pop
int
or
ret
endp

11h ;CREATE function code

create a file

bx = offset address of file name buffer
cx = initial size in paragraphs
dx = size increment in paragraphs

near
ah,CREATE
cs
es
1Ah
al,al

;CREATE function code
;segment address of file name to ES

;create the file
;set status for caller

Operating System Functions 4-7

CURSOR

Move the display cursor or obtain its current position.

Call with:

AH=05h

AL=OOh

=Olh

CL

CH

Returns:

CL

CH

Notes:

CURSOR function code.

Get the current display cursor position.

Move the display cursor.

Cursor column position 0 - 19 (for move cursor).

Cursor row position 0 - 3 (for move cursor).

Current cursor column position 0 - 20 (for get cursor).

Current cursor row position 0 - 3 (for get cursor).

• When AL is greater then 01h, no action is performed.

• When an attempt is made to move the cursor outside the range of the display window, no action is
performed.

• When a character is displayed in the last column of the display, the cursor will remain in that
column until another character is displayed. In this case, it is considered to be in column position
20.

Related functions:

Example:

The following example will move the cursor to column 0 of the current line.

CURSOR equ

mov
mov
int
mov
mov
int

OSh

ah,CURSOR
al,OOh
1Ah
cl,OOh
al,01h
1Ah

;CURSOR function code

;CURSOR function code
;to get current cursor position
;get cursor position
;set to collllll'l 0
;to set cursor position
;and set the new position

4-8 Operating System Functions

•

•

•

•

•

•

DELETE

Delete a currently open data file. The area occupied by the file will be returned to the free space in
the directory containing the file.

Call with:

AH=14h

AL

Returns:

AL=OOh

Notes:

=65h (101)

=69h (105)

=6Dh (109)

=6Eh (110)

DELETE function code.

Channel number of the open file to delete.

Successful delete.

Illegal parameter. This error will also occur for deletes of channels 0 - 4.

Channel not open.

Read-only file.

Access restricted.

• The released area is merged with the other free space in the directory each time a file is deleted.

• An automatic CLOSE occurs after a DELETE.

Cautions:

• This function may not be called from the POWERON routine of a handler .

Related functions:

CLOSE, CREATE, OPEN, READ, SEEK, WRITE

Operating System Functions 4-9

... DELETE

Example:

The following example will delete a file by first opening and then deleting it.

DELETE
OPEN

equ
equ

mov
mov
push
pop

mov
int
or
jne
mov
mov
int
or
jne

14h
OFh

ah,OPEN
al,5
ds
es

bx,offset
1Ah
al,al
open_err
ah,DELETE
al,5
1Ah
al,al
del_err

4-10 Operating System Functions

byte ptr

;DELETE function code
;OPEN function code

;OPEN function code
;use channel 5
;put fname segment address into ES

;fname address offset into BX
fname

;open the file
;successful open?
;no .. handle the open error
;DELETE function code
;the open channel
;delete the file
;successful delete?
;no .. handle the delete error

•

•

•

•

•

•

Display the specified numeric error code. The displayed message will be of the form Error nnn,
where nnn is the decimal value of the error code.

Call with:

AH=18h

AL

Returns:

Nothing.

Notes:

DISPLAY ERROR function code.

Error code.

• The error number in the displayed message will always be three decimal digits. For error codes less
than 64h (100), leading zeroes will be added.

• Before displaying an error message the cursor is moved to the first column of the next line in the
display. After displaying the message, the cursor will be placed in the first column to the right of
the error message.

• A beep will occur when the error message is displayed.

Related functions:

None .

Example:

The following example will display error 101 (illegal parameter).

DISPLAY_ERROR equ

mov
mov
int

18h

ah,D I SPLAY_ERROR
al,101
1Ah

;DISPLAY ERROR function code

;DISPLAY ERROR function code
;illegal parameter error code
;and display the error message

Operating System Functions 4-11

Terminate an application program. The application program can turn off the HP-94, specifying either
cold or warm start at the next power on, or return to command mode.

Call with:

AH=OOh

AL=OOh

=01h

>01h

Returns:

Nothing.

Notes:

END PROGRAM function code.

Cold start.

Warm start.

End application program and enter command mode.

• When cold start is selected, the HP-94 will be turned off. When power is turned back on, the pro­
gram MAIN will be run if it exists, or command mode will be entered.

• When warm start is selected, all registers and flags will be stored by the HP-94 before turning off
power. When power is turned back on, the registers and flags will be restored and program execu­
tion resumed.

Cautions:

• Warm start may not be used by an application program which uses the HP-94 operating system's
stack. An application which is initialized from command mode must allocate its own stack area in
order to do a warm start END_PROGRAM. If a warm start is attempted using the operating
system's stack, error 219 will be generated and control will return to command mode.

• This function may not be called from the POWERON routhie of a handler.

• A FAR RET can also be used to end a program, but there are some subtle side effects. Refer to
"Program Execution" for details.

Related functions:

None.

4-12 Operating System Functions

•

•

•

•

•

•

Example:

The following example will end the program and return to command mode.

END_PROGRAM
COLDSTART
WARMSTART
CMDMOOE

equ
equ
equ
equ

mov
mov
int

OOh
OOh
01h
02h

ah,END_PROGRAM
al,CMDMOOE
1Ah

iEND PROGRAM function code

iEND_PROGRAM function code
ito enter command mode

Operating System Functions 4-13

Find the first file to match a file name pattern. Wild card characters may be included in the file name.

Call with:

AH=16h

ES

BX

OS

OX

Returns:

AL=OOh

ex
OX

Notes:

=65h (101)

=66h (102)

=67h (103)

FIND FILE function code.

Segment address of the search file name.

Offset address of the search file name.

Segment address of the file information buffer.

Offset address of the file information buffer.

Successful FIND FILE.

Illegal parameter.

Directory does not exist.

File not found.

Segment address of the directory table entry for the matched file.

Offset address of the directory table entry for the matched file.

• The search file name must be uppercase.

• There is one wild card character, "*", which matches any character at that position and all subse­
quent positions in the file name.

• If the search file name contains a directory specifier, only that directory will be searched. If it does
not contain a directory specifier, directories 0 - 4 will be searched in ascending order. The system
directory (directory 5) will not be searched by FIND FILE.

• If the file name is longer than 4 characters, only the first 4 characters will be used.

• The file information buffer consists of 14 bytes formatted as follows:

Bytes Data

OOh - 06h Name of first file found which
matches the search file name.

07h File type

OSh - 09h Start segment address of the file

OAh-OBh Low word of the end-of-data address

OCh High byte of the end-of-data address

OOh NUL (OOh)

4-14 Operating System Functions

•

•

•

•

•

•

File names are of the form "d: name" where "d" is the directory number and "name" is the 1 -
4 byte file name terminated by a null (OOh).

Related functions:

FIND NEXT

Example:

The following example will search for the first file which matches a specific file name. It is part of the
example included with the FIND_NEXT function. Since the code contains a scratch buffer and the
file information buffer, it will not work in ROM.

FIND FILE equ 16h ;FIND_FILE function code

moy ah,FIND_FILE ;FIND_FILE function code
push cs ;ES:BX address of scratch buffer
pop es
moy bx,offset buffer
push cs ;DS:DX address of file info buffer
pop ds
moy dx,offset fbuffer
int 1Ah ;find the first file
call errchk ;check for error

buffer db BUFSIZ+1 dup (1) ; read buffer
;lllJst be in RAM

fbuffer db 14 dup (1) ;find filename dest buffer
;lllJst be in RAM

Operating System Functions 4-15

FIND_NEXT

Find the next file to match a file name pattern set up by a FIND _ FI LE function call.

Call with:

AH=l7h

Returns:

AL=OOh

=67h (103)

ex
OX

Notes:

FIND NEXT function code.

Successful FIND NEXT.

File not found.

Segment address of the directory table entry for the matched file.

Offset address of the directory table entry for the matched file.

• The format of the file information buffer is the same as that of the FIND FI LE function.

• The FIND FILE function must be executed before FIND NEXT.

• FIND_NEXT will return data in the area specified by the last FIND_FILE function call.

Cautions:

• FIND_NEXT will search only in the directory in which FIND_FILE found the first matching
file name.

Related functions:

FIND FILE

Example:

The following example will prompt for a file name and use FIND FILE and FIND NEXT to find
and display all the files which match that file name. Since the code contains a scratch buffer and the
file information buffer, it will not work in ROM.

GET CHAR
ECHO
NOECHO
GET LINE
PUT LINE
FINDJILE
FIND_NEXT
DISPLAY_ERROR
BUFSIZ

code

prog
start:

equ 01h
equ DOh
equ 01h
equ 02h
equ 04h
equ 16h
equ 17h
equ 18h
equ 80

segment
assume cs:code,ds:code
proc far

dw
dw
db

push
pop

prgmend-start
0006h
0100h

cs
ds

;GET CHAR function code

;GET_LINE function code
;PUT LINE function code
;FIND_FILE function code
;FIND NEXT function code
;DISPLAY ERROR function code

;offset of internal entry point
;version 1.00

;set OS to CS

4-16 Operating System Functions

•

•

•

•

dots01:

nodot:

•
loop01:

pause01:

exit:

prog

•

... FIND NEXT

; display "DIR> " prompt
mov bx,offset DIR
call puts
; get name of file
mov bx,offset buffer
mov al,BUFSIZ
call gets
call errchk
; null out the terminating CR
sub dh,dh ;clear out dh
mov di,dx ;and put it into di
mov byte ptr buffer[di],DDh;null out last byte
; go through buffer and substitute ":" for "."
sub dx,dx ;clear out dx
mov di,dx ;and put it into di

mov al,byte ptr buffer[di];get the next character
c~ al,"." ;is it a dot?
jne nodot ;no, don't swap it
mov al,":" ;get a":"
mov byte ptr buffer[di],al;and save it

inc
or
jne

mov
push
pop
mov
mov
int
call
mov

di
al,al
dots01

ah,FIND_FILE
cs
es
bx,offset buffer
dx,offset fbuffer
1Ah
errchk
byte ptr lcnt,S

byte ptr lcnt
pause01
ah,GET_CHAR
al,NOECHO
1Ah

; increment di
;is al null?
;no, check next byte

;FIND_FILE function code
;ES:BX address of buffer

;DS:DX address of file info buffer
;find the first file
;check for error
;reset display line counter

; decrement line counter
;not 0 .. don't pause
;GET_CHAR function code
;don't echo
;get a character

dec
jne
mov
mov
int
mov
c~

jne
mov

byte ptr lcnt,4
dl,"."

;reset the counter (less this line)
;was it a dot?

pause01
byte ptr lcnt,1

;no .. leave the counter as is
;only 1 line

; display file name from fbuffer
mov bx,offset CRLF ;di splay a cr/ l f
call puts
mov bx,offset fbuffer
call puts
mov ah,FIND_NEXT ;FIND_NEXT function code
int 1Ah ;find the next file
or al,al ;returned a O?
je loop01 ;yes .. display the file (if found)
mov al,GET_CHAR ;GET_CHAR function code
mov ah,NOECHO ;don't echo
int 1Ah ;wait for a key

ret
endp

;if no more files, done.

Operating System Functions 4-17

... FIND -
puts

puts

gets

gets

errchl<

errret:

errchl<

lent
OIR
CRLF
buffer

fbuffer

prgmend:
code

NEXT

proc
mov
push
pop
int
ret
endp

proc
mov
push
pop
int
ret
endp

proc
or
je
mov
int
add
jq:>

ret
endp

db
db
db
db

db

ends
end

near
ah,PUT_LINE
cs
es
1Ah

near
ah,GET_LINE
cs
es
1Ah

near
al,al
errret
ah,OISPLAY_ERROR
1Ah
sp,2
exit

?
"OIR> ",OFh,OOh
OOh,OAh,OOh
BUFSIZ+1 dup (?)

14 dup (?)

4-18 Operating System Functions

;PUT LINE function code
;segment address of buffer to ES

;display it

;GET LINE function code
;CS to ES

;get aline

;return code O?
;yes .. just return
;OISPLAY ERROR function code
;display the error message
;pull off the near return address
;terminate program

;prompt, alpha mode
;cr/lf
; read buffer
;lIlJst be in RAM
;find filename dest buffer
;lIlJst be in RAM

•

•

•

•

•

•

Get one character from the key buffer and optionally echo it to the display.

Call with:

AH=Olh

AL=OOh

>OOh

Returns:

AL=OOh

DL

Notes:

=76h (l1S)

=77h (119)

=C8h (200)

GET CHAR function code.

Echo the character being read.

Do not echo the character being read.

Successful read.

Timeout. A timeout occurred before a key was pressed.

Power switch pressed.

Low battery.

Character read from the key buffer and optionally echoed to the display.

• When the key buffer is empty, GET_CHAR will wait for a key.

• The I SHIFT I key cannot be read.

• The keys I CLEAR I , B , and ~ , return the codes lSh, 7Fh, and ODh respectively. They are
never echoed to the display, nor are any control codes (OOh-1Fh) or user-defined characters (SOh­
SFh), the first 16 of which correspond to user-defined keys .

• The following behavior only applies when echoing to the display: When a character is echoed to
the last column of a line in the display, the cursor will remain over that character. The display will
be scrolled, if necessary, and the cursor moved to the first column of the next line before echoing
the next character.

Related functions:

BUFFER_STATUS, GET LINE

Operating System Functions 4-19

Example:

The following example will wait for the I ENTER I key to be pressed.

GET_CHAR
ECHO
NOECHO

entwait:

equ
equ
equ

mov
mov
int
or
jne
c~

jne

01h
OOh
01h

ah,GET_CHAR
al,NOECHO
1Ah
al,al
rd_err
dl,ODh
entwait

4-20 Operating System Functions

;GET CHAR function code

;GET CHAR function code
;don't echo the character read
;read a character
;read error (al <> O)?
;yes -- process read error
;[ENTER] key?
;no -- wait for another key

•

•

•

•

•

•

GET_LINE

Get a character string from the keyboard buffer and echo it to the display.

Call with:

AH=02h

AL

ES

BX

Returns:

AL=OOh

DL

Notes:

=76h (118)

=77h (119)

=C8h (200)

GET LINE function code.

Maximum number of bytes to read (1- 255 bytes).

Segment address of the read buffer.

Offset address of the read buffer.

Successful read.

Timeout. A timeout occurred before a key was pressed.

Power switch pressed.

Low battery.

Number of characters read from keyboard buffer.

• If the key buffer does not contain an 1 ENTER 1 , GET_LINE will wait until 1 ENTER 1 is pressed.

• The terminating 1 ENTER 1 will not be echoed to the display. The cursor will be left at the column to
the right of the character before the [BiiTERl .

• The buffer must contain enough space for the maximum number of bytes to read (register AL), as
well as one byte for the terminating 1 ENTER I.

• The character count returned in DL does not include the terminating 1 ENTER I.

• The buffer returned by GET_LINE will contain the terminating 1 ENTER 1 (ODh).

• When AL characters have been read and [BiiTERl has not been pressed, subsequent characters will
be discarded, and a low beep issued, until 1 ENTER 1 is pressed.

• GET LINE processes El and 1 CLEAR 1 separately. If there are any characters in the buffer, El will
remove the last character from the input buffer, erase the character from the display and move the
display cursor back one character position. 1 CLEAR I will clear the entire input buffer and erase the
entire input line from the display.

• When a character is displayed in the last column of a line in the display, the cursor will remain over
that character. The display will be scrolled, if necessary, and the cursor move to the first column of
the next line before displaying the next character.

• If timeout, power switch, or low battery interrupts occur, the buffer will contain any characters
already entered. The DL register will contain the number of characters actually read.

Cautions:

• GET _LINE will not check for wraparound of the read buffer's offset address .

Operating System Functions 4-21

... GET_LINE

Related functions:

BUFFER_STATUS, GET CHAR

Example:

The following example will read in a 2O-character string. Since the code contains the read buffer for
GET_LINE, it will not work in ROM.

GET LINE
BUFSIZ
buffer

equ
equ
db

mov
mov
push
pop
mov
int
or
jne

02h
20
BUFSIZ+1 dup (?)

ah,GET_L1NE
al,BUFSIZ
ds
es
bX,offset buffer
1Ah
al,al
rd_err

4-22 Operating System Functions

;GET_LINE function code

;lIlJst be in RAM

;GET LINE function code
;size of buffer
;set ES to OS

;buffer offset to ax
;read string
;read error (al <> O)?
;yes -- process read error

•

•

•

•

•

•

Allocate a scratch area of memory.

Call with:

AH=OBh

AL

=OOh

BX

Returns:

AL=OOh

GET MEM function code.

Channel number if the request is being made by a handler.

If the request is not being made by a handler.

Size of the requested area in paragraphs.

Successful allocation.

Illegal parameter. Invalid channel number. =65h (101)

=6Eh (110)

=71h (113)

Access restricted. No scratch areas available or main memory not initialized.

No room for scratch area.

ex
ox

Notes:

Segment address of scratch area.

Length in paragraphs of scratch area.

• A maximum of 34 scratch areas may be allocated.

• Scratch memory is automatically initialized to nulls (OOh) .

• Handlers should set AL to the channel number to which they are open, or to zero, depending on
whether or not they want the operating system to pass this scratch area address to all their routines.
See the "User-Defined Handlers" chapter for details.

Cautions:

• This function may not be called from the POWERON routine of a handler.

Related functions:

REL MEM

Operating System Functions 4-23

Example:

The following example will allocate a lO-paragraph (l60-byte) scratch area.

GET_MEM
SCRSIZ

equ
equ

mov
mov
mov
int
or
jne

OSh
OAh

ah,GET_MEM
al,OOh
bX,SCRSIZ
1Ah
al,al
get_mem_err

iGET MEM function code
iscratch area size (10 paragraphs)

;GET MEM function code
;called by an application (not a handler)
;size of scratch area

;error?
;yes .. handle it

CX=segment address of scratch area initialized to nulls
DX=length of allocated scratch area (OAh)

4-24 Operating System Functions

•

•

•

•

•

•

Get the current memory configuration of the HP-94.

MEM _ CONFIG returns 5 bytes of configuration information. Bytes 0 - 4 describe the contents of
directories 0 - 4 respectively as follows.

Call with:

AH=ODh

ES

BX

Returns:

AL

Related functions:

ROOM

Value
lIeaning

Hex ASCII

DOh NUL No memory installed

4Dh M Main memory

41h A 40K RAM card

4Fh 0 ROM/EPROM card

MEM CONFIG function code.

Segment address of the 5-byte configuration buffer.

Offset address of the 5-byte configuration buffer.

Number of directories with memory installed. This value is the same as the
number of bytes in the configuration buffer which contain a non-zero value.

Operating System Functions 4-25

Example:

The following program will display the number of installed directories followed by the type of each
directory. Since the code contains the configuration buffer, it will not work in ROM.

MEM_CONFIG
PUT CHAR
END_PROGRAM
CMDMODE
code

mem
start:

mem01 :

notzero:

membuf

prgmend:
mem
code

equ
equ
equ
equ
segment
assume
proc

dw
dw
dw

mov
mov
mov
mov
mov
int
add
mov
int
mov
mov
int
mov
mov
mov

mov
c""
jne
mov

mov
int
inc
loop
mov
mov
int

db

endp
ends
end

DDh
03h
OOh
02h

cs:code,ds:code
far

prgmend-start
0006h
0100h

ax,cs
ds,ax
es,ax
bx,offset membuf
ah,MEM_CONFIG
1Ah
al,"O"
ah,PUT_CHAR
1Ah
al,":"
ah,PUT CHAR
1Ah
ax, offset membuf
di ,ax
cx,5

al,byte ptr [di]
al,OOh
not zero
al,"-"

ah,03h
1Ah
di
memO 1
ah,ENO_PROGRAM
al,CMOMODE
1Ah

5 dup (?)

4-26 Operating System Functions

iMEM CONFIG function code
iPUT CHAR function code
iEND PROGRAM function code

ioffset of internal entry point
iversion 1_00

iset OS to CS

iset ES to segment addr of membuf
iset BX to offset addr of membuf
iMEM CONFIG function code
iget it
iturn al into a number
iPUT CHAR function code
idisplay it
idisplay a":"

iset 01 to offset addr of membuf

inumber of bytes to check

iget it
iis it OOh?
ino, leave it alone
ichange it to a "_,,

iPUT CHAR function code
idisplay it
iincrement offset (01)
iand do the next character
ienter command mode

ifllJst be in RAM

•

•

•

•

•

•

OPEN

Open a data file or handler and assign it to a specific channel.

Call with:

AH=OFh

AL

ES

BX

DS

DX

Returns:

AL=OOh

CX

Notes:

=65h (101)

=66h (102)

=67h (103)

=6Ah (106)

=6Bh (107)

=6Eh (110)

OPEN function code.

Channel number to open.

Segment address of file or handler name string to open.

Offset address of file or handler name string to open.

Segment address of parameter area (built-in serial port handler only).

Offset address of parameter area (built-in serial port handler only).

Successful open.

Illegal parameter.

Directory does not exist.

File or handler not found.

Channel already open.

File or handler already open.

Access restricted. The specified file is not a data file or handler.

Segment address of the data file or handler.

• The OPEN function will search for the file (type D) or handler (type H) with the specified name in
directories 0 - 4 in ascending order, or only in a specified directory (e.g., "2: ABeD").

• Channel 0 (keyboard for read operations, display for write operations) is always open. If channel 0
is opened, AL will always return zero. The handler name string is ignored when opening channel O.

• When opening channels 1 - 4, if the handler is not found, or if a null string was specified as the
handler name, the default handler will be used. For channell, the default handler is the built-in
serial port handler. For channels 2 - 4, there is no built-in handler, and the OPEN function will
report error 65h.

Once the handler is found (either user-defined or built-in), the OPEN function will transfer control
to the OPEN routine of the handler. The handler will then become associated with the device, and
the CLOSE, READ, and WRITE functions will transfer control to the CLOSE, READ, and
WRITE routines of the handler. The same registers passed to the OPEN function will be passed
to the user-defined handler OPEN routine with the following exceptions:

BP Points to the offset on the stack where all the caller's registers are saved and where all
returned values except AL must be put.

D I Destroyed.

Refer to the "User-Defined Handlers" chapter for details .

Operating System Functions 4-27

... OPEN

• If the name string is longer than 4 characters, only the first 4 characters (plus a leading directory
number and colon, if any) will be used by the OPEN function. The entire handler name string
(pointed to by ES: BX) will be passed to the OPEN routine of user-defined handlers. This name
string can include a high- and low-level handler pair (such as "HNWN iHNBC"), or in-line param- .
eters if the handler allows them (e.g., II RSHN 9600, 7 ES ").

• Alphabetic characters in the name string must be uppercase.

• The file or handler name part of the name string must be terminated by either a null (OOh) or a
space (20h).

• The wild card character "*,, is not allowed in the file or handler name part of the name string.

• The parameter area address (OS: OX) is only used when the built-in serial port handler is opened.
The meanings of the parameters are defined in the "Serial Port" chapter. Refer to the "User­
Defined Handlers" chapter for a discussion of passing configuration parameters to user-defined
handlers using the handler information table.

Cautions:

• This function may not be called from the POWERON routine of a handler.

Related functions:

CLOSE, CREATE, DELETE, READ, SEEK, WRITE

Example:

The following example will open the serial port (channell) with the built-in handler.

OPEN equ OEh iOPEN function code

sprnode db 1 i9600 baud
db 00001101b iXON/XOFF,7 bits, even parity,

i1 stop, null strip disabled
db OOh iterminate on CR

null db OOh i the null string

mov ah,OPEN iOPEN function code
mov al,1 iserial port channel
push cs iuse default handler (ES:BX = null string)
pop es
mov bX,offset null
push cs iOS:OX = port config buffer
pop ds
mov dX,offset sprnode
int 1Ah iopen the port
or al,al ierror?
jne open_err ;yes .. process the error

4-28 Operating System Functions

•

•

•

•

•

•

Display one character on the display and move the cursor one column to the right.

Call with:

AH=03h

AL

Returns:

Nothing.

Notes:

PUT CHAR function code.

Character to display.

• When a character is written to the last column of a line in the display, the cursor will remain over
that character. The display will be scrolled, if necessary, and the cursor moved to the first column
of the next line before writing the next character.

Cautions:

• While processing the display control character that homes the cursor and clears the screen (OCh),
interrupts are disabled for -45 ms. This time may be important to serial and bar code port
handlers.

Related functions:

CURSOR, PUT LINE

Example:

The following example will turn on the backlight, change the keyboard into alpha mode and display a
prompt character.

PUT_CHAR equ 03h iPUT_CHAR function code
ELaN equ 1Eh
ELOFF equ 1Fh
ALPHMODE equ OFh
NUMMODE equ OEh

mov ah,PUT_CHAR iPUT_CHAR function code
mov al,ELON iturn on backlight
int 1Ah
mov al,ALPHMODE ialpha mode keyboard
int 1Ah
mov al,">" iprompt character
int 1Ah

Operating System Functions 4-29

PUT_LINE

Display a character string on the display.

Cali with:

AH=04h

ES

BX

Returns:

Nothing.

Notes:

PUT LINE function code.

Segment address of the write string.

Offset address of the write string.

• The write string must be terminated with a null character (DOh); the null will not be displayed. Any
other ASCII character, including display control characters, may be embedded in the string.

• When a character is written to the last column of a line in the display, the cursor will remain over
that character. The display will be scrolled, if necessary, and the cursor moved to the first column
of the next line before writing the next character.

Cautions:

• While processing the display control character that homes the cursor and clears the screen (OCh),
interrupts are disabled for -45 ms. This time may be important to serial and bar code port
handlers.

• PUT_LINE will not check for wraparound of the write buffer's offset address.

Related functions:

CURSOR, PUT CHAR

4-30 Operating System Functions

•

•

•

•

•

•

... PUT_LINE

Example:

The following program will display the message "Hello world".

PUT_LINE
END_PROGRAM
CMDMOOE
code

hiworld
start:

prgmend:
hiworld
msg
code

equ
equ
equ
segment
assume
proc

dw
dw
dw

push
pop

mov
push
pop
mov
int

mov
mov
int

endp
db
ends
end

04h
OOh
02h

cs:code,ds:code
far

prgmend·start
0006h
0100h

cs
ds

ah,PUT_LINE
ds
es
bx,offset msg
1Ah

ah,END]ROGRAM
al,CMDMOOE
1Ah

;PUT_LINE function code
;END_PROGRAM function code

;offset of internal entry point
;version 1.00

;set DS to CS

;PUT_LINE function code
;set ES to DS

;buffer offset to BX
;write string to LCD

;enter command mode

"Hello world",ODh,OAh,OOh

Operating System Functions 4-31

READ

Read data from an open channel.

Call with:

AH=12h

AL

ex
ES

BX

Returns:

AL=OOh

=65h (101)

=69h (105)

=73h (115)

=74h (116) *

=75h (117)

=76h (118)

=77h (119) t

=C8h (200) t
=C9h (201) t

=CAh (202) *

=CBh (203) *

=CCh (204) *
=CDh (205) *

=CEh (206) *

=CFh (207) *

=DOh (208) *
ex

READ function code.

Channel number to read.

Number of bytes to read.

Segment address of read buffer.

Offset address of read buffer.

Successful read.

Illegal parameter.

Channel not open.

Short record detected.

Terminate character detected.

End of data.

Timeout. A timeout occurred before the read was completed.

Power switch pressed.

Low battery.

Receive buffer overflow.

Parity error.

Overrun error.

Parity and overrun error.

Framing error.

Framing and parity error.

Framing and overrun error.

Framing, overrun and parity error.

The number of bytes actually read.

• Can only occur when reading from channels 1 - 4. Whether these errors occur for a user-defined handler depends on the
handler.

t Can only occur when reading from channels 0 - 4. Whether these errors occur for a user-defined handler depends on the
handler.

4-32 Operating System Functions

•

•

•

•

•

•

... READ

Notes:

• When reading data from channels 1 - 4, READ will transfer control to the READ routine of the
user-defined handler specified when the channel was opened. The same registers passed to the
READ function will be passed to the user-defined handler READ routine with the following excep­
tions:

DS Set to the segment address of the scratch area allocated by the handler.

BP Points to the offset on the stack where all the caller's registers are saved and where all
returned values except AL must be put.

D I Destroyed.

Refer to the "User-Defined Handlers" chapter for details.

• Timeout, power switch and low battery will cause reads from channels 0 - 4 to be aborted, but will
not interrupt reads from channels 5 - 15. Device I/O will be halted by these conditions, but file
I/O will always be completed (unless the reset switch is pressed or the machine turns off automati­
cally because of very low battery).

• When reading data from the keyboard (channel 0), no echoing to the display will occur. All keys
pressed (except I SHIFT D will be returned, unlike the GET_CHAR and GET_LINE functions. The
number of bytes to read determines when READ will end, whether or not the I ENTER I key was
pressed.

• When reading data from the built-in serial port handler (channell), if a terminate character was
specified when the channel was opened, READ will stop if the terminate character is received even
though the full read count has not been reached. The terminate character will be placed in the read
buffer, but it will not be included in the returned read length, and error 74h will be reported.

• When reading data from a file (channels 5 - 15), data is read from the current file access pointer
position. After the read is complete, the file access pointer is advanced by the size of the data read.

• Error 65h will occur if the number of bytes to read would cause the read buffer's offset address to
wraparound.

Related functions:

CLOSE, CREATE, DELETE, OPEN, SEEK, WRITE

Cautions:

• This function may not be called from the POWERON routine of a handler.

• The number of bytes to read must not be greater than the actual read buffer length (although it can
be less) .

Operating System Functions 4-33

... READ

Example:

The following example will read from a channel.

READ

fread

fread

4-34

equ 12h iREAD function code

fread .. read a channel into a buffer

call with:

proc
mov
int
or
ret
endp

al = chamel #
cx = number of bytes to read
es = segment address of read buffer
bx = offset address of read buffer

near
ah,READ
1Ah
al,al

iREAD function code
iread the channel
iset status for caller

Operating System Functions

•

•

•

•

•

•

Release a scratch area obtained via GET MEM.

Call with:

AH=OCh

ex
Returns:

AL=OOh

=6Eh (110)

=72h (114)

Cautions:

REL MEM function code.

Segment address of scratch area to release.

Successful release.

Access restricted. No free blocks available.

Scratch area does not exist. Scratch area address does not correspond to a
currently allocated scratch area.

• This function may not be called from the POWERON routine of a handler.

Related functions:

GET MEM

Example:

The following example will free a the scratch area addressed by the current extra data segment (ES) .

REL_MEM equ OBh ;REL_MEM function code

mov cx,es ;segment address of scratch area into cx
mov ah,REL_MEM ;REL_MEM function code
int 1Ah
or al,al ;error?
jne rel_mem_err ;yes -- handle it

Operating System Functions 4-35

ROOM

Identify available room in a directory.

Call with:

AH=OEh

AL

Returns:

AL=OOh

BX

ex
DX

Notes:

=65h (101)

=66h (102)

Related functions:

MEM eONFIG

Example:

ROOM function code.

Directory number (0 - 4).

Successful request.

Illegal parameter. Invalid directory number.

Directory does not exist.

The available directory free space in paragraphs.

Segment address of directory table.

Total memory in directory in paragraphs, not including directory table.

The following example will get the remaining space in main memory.

ROOM

4-36

equ

mov
mov
int

OOh

aL,O
ah,ROOM
1Ah

;ROOM function code

;directory 0
;ROOM function code

BX=avaiLabLe free space in paragraphs
CX=segment address of directory tabLe
OX=totaL memory in directory 0 in paragraphs

Operating System Functions

•

•

•

•

•

•

SEEK

Move the file access pointer of an open file, or get the current pointer position.

Call with:

AH=15h

AL

BL=OOh

CX

OX

=01h

=02h

Returns:

AL=OOh

CX

OX

Notes:

=65h (101)

=69h (105)

SEEK function code.

Channel number.

Read the current file access pointer position.

Seek relative to the start of the file.

Set the file access pointer to EOD.

High byte of 24-bit seek offset - CH ignored (for BL=OOh or 01h).

Low word of 24-bit seek offset (for BL=OOh or 01h).

Successful seek.

Illegal parameter. This error will also occur for seeks on channels 0 - 4.

Channel not open.

High byte of the current 24-bit file access pointer (CH always set to zero).

Low word of the current 24-bit file access pointer.

• Seeks past EOD will generate error 65h.

• The 24-bit seek offset and file access pointer are relative to the start of the file. The first byte of
the file has a seek offset and file access pointer position of O.

• The file access pointer is set to 0 when the file is opened.

Cautions:

• This function may not be called from the POWERON routine of a handler.

Related functions:

CLOSE, CREATE, DELETE, OPEN, READ, WRITE

Operating System Functions 4-37

... SEEK

Example:

The following example will seek to EOD to get the current true file size.

SEEK
channel

equ
db

mov
mov
mov
int
or
jne

15h
5

ah,SEEK
al,channel
bl,02h
1Ah
al,al
seek err

;SEEK function code
; channel to seek on

;channel to seek on
;SEEK to EOO
;SEEK .•.
;SEEK error?
;yes, process it.

CX,DX now contain the exact number of bytes in the file,
regardless of padding to the nearest paragraph boundary.

4-38 Operating System Functions

•

•

•

•

•

•

Two system interrupts may put under program control - the power switch/system timeout and low
battery interrupt. In addition, the power switch interrupt may be disabled or enabled.

Call with:

AH=OAh

AL=OOh

=Olh

=02h

>02h

BX

ex
ox

Returns:

Nothing.

Notes:

SET INTR function code.

Define a power switch/system timeout interrupt routine.

Define a low battery interrupt routine.

Disable the power switch interrupt.

Enable the power switch interrupt.

The data segment to be used for the interrupt routine. This value will be
loaded into OS before the interrupt routine is activated (for AL=OOh or Olh).

Segment address of interrupt routine (for AL=OOh or Olh).

Offset address of interrupt routine (for AL=OOh or Olh).

• An interrupt can be restored to its default behavior by calling SET _ INTR with both ex = OOh and
ox = OOh .

• When the power switch/timeout interrupt routine is called, the AL register will be set to 76h (118)
if a timeout occurred, or 77h (119) if the power switch was pressed.

Cautions:

• The offset address specified in ox must be non-zero for the operating system to properly interpret
the existence of user-defined interrupt routines.

Related functions:

None .

Operating System Functions 4-39

Example:

The following example will set up a power switch interrupt routine.

SET_INTR

psint

psint

equ

mov
mov
mov
mov
mov
mov
mov
int

proc

ret
endp

OAh

ax,ds
bx,ax
ax,cs
cx,ax
dx,offset psint
ah,SET_INTR
at,OOh
1Ah

far

4-40 Operating System Functions

iSET INTR function code

iPUt OS in BX

iPUt es in ex

iput routine offset into ox
iSET_INTR function code
iset power switch interrupt routine
iset it

ipower switch interrupt routine
interrupt routine for
power switch goes here

ireturn from interrupt

•

•

•

•

•

•

TIMEOUT

Set the display backlight timeout and system timeout intervals. The timeouts may be as short as 1
second, as long as 1800 seconds, or disabled.

Call with:

AH=09h

AL=OOh

=Olh

BX

Returns:

Nothing.

Notes:

TIMEOUT function code.

Set the display backlight timeout interval.

Set the system timeout interval.

Number of seconds to set timeout to (1 - 1800). A value of 0 may be used to
disable the timeout completely, in which case the backlight will never turn off
or the system will never timeout (turn itself off).

• The initial value at cold start for both timeout intervals is 120 seconds.

• If AL is greater then 01h, no action is performed.

• If BX is greater than 1800 (0708h), no action is performed.

• Setting the display backlight timeout only sets the interval - it does not turn on the backlight. The
backlight is turned on programmatically by writing the display control character 1Eh to the display .

Cautions:

• Leaving the backlight on continuously or for long periods of time (greater than 5 minutes) will
reduce the life of the backlight.

• If the backlight is on and a new timeout interval is set, the backlight must be turned off (either pro­
grammatically or by timeout) before the new timeout interval will be in effect.

Related functions:

None .

Operating System Functions 4-41

... TIMEOUT

Example:

The following example will set the display backlight timeout interval to 3 minutes, and disable the sys­
tem timeout.

TIMEOUT equ 09h ;TIMEOUT function code

mov ah, TIMEOUT ;TIMEOUT function code
mov al,OOh ;display backlight timeout
mov dx,180 ;3 minutes (180 seconds)
int 1Ah ;set it
mov al,01h ;system timeout interval
mov dX,OOh ;disable timeout
int 1Ah ;set it

4-42 Operating System Functions

•

•

•

•

•

•

Read or set the time and date of the real-time clock. The time and date is read into or set from a 17-
byte fixed-length buffer. The format of the buffer is:

Call with:

AH=08h

AL=OOh

=Olh

ES

BX

Returns:

Nothing.

Notes:

MM/DD/YY,hh:rom:ss

Symbol Value Range Symbol Value

MM
DD
YY

Month 01-12

Date 01-31

Year 00-99

TIME DATE function code.

Set time and date.

Read time and date.

hh Hour

rom Minute

ss Second

Segment address of the time and date buffer.

Offset address of the time and date buffer.

• When AL is greater than 01h, no action is performed.

Cautions:

Range

00-23

00-59

00-59

• The validity of the time and date is not checked. If times and dates are set outside the above ranges,
the clock wi! be set to unpredictable values.

Related functions:

None .

Operating System Functions 4-43

... TIME_DATE

Example:

The following program will read the current time and date and write it to the display. Since the code
contains the read buffer for TIME_DATE, it will not work in ROM.

TIME DATE equ OBh
PUT_LINE equ 04h
END_PROGRAM equ OOh
CMDMOOE equ 02h
TDBUFLEN equ 17
code segment

assune cs:code,ds:code
mem proc far
start:

dw prgmend·start
dw 0006h
dw 0100h

mov ax,cs
mov ds,ax
mov ah, TIME_DATE
mov al,01h
push ds
pop es
mov bx,offset buffer
int 1Ah
mov ah,PUT_L1NE
int 1Ah

mov ah,END_PROGRAM
mov al,CMDMOOE
int 1Ah

buffer db TDBUFLEN dup (?)

db ODh,OAh,OOh
prgmend:
mem endp
code ends

end

4-44 Operating System Functions

iTIME_DATE function code
iPUT_LINE function code
iEND_PROGRAM function code

ioffset of internal entry point
iversion 1.00

iset DS to CS

iTIME DATE function code
iget date
iset ES to DS

iget the time and date
iPUT_LINE function code
idisplay it

ienter command mode

irrust be in RAM

•

•

•

•

•

•

Write data to an open channel.

Call with:

AH=13h

AL

ex
ES

BX

Returns:

AL=OOh

=65h (101)

=69h (105)

=6Dh (109)

=70h (112)

=76h (118) *

=77h (119) *

WRI TE function code.

Channel number to write.

Number of bytes to write.

Segment address of write buffer.

Offset address of write buffer.

Successful write.

Illegal parameter.

Channel not open.

Read-only access.

No room to expand file.

Timeout. A timeout occurred before the write was completed.

Power switch pressed.

= C8h (200) * Low battery .

WRITE

=DAh (218) * Lost connection while transmitting. The Clear to Send (crS) control line was
lowered.

ex The number of bytes actually written.

Notes:

• When writing data to channels 1 - 4, WRITE will transfer control to the WRITE routine of the
user-defined handler specified when the channel was opened. The same registers passed to the
WRITE function will be passed to the user-defined handler WRITE routine with the following
exceptions:

OS Set to the segment address of the scratch area allocated by the handler.

BP Points to the offset on the stack where all the caller's registers are saved and where all
returned values except AL must be put.

01 Destroyed.

Refer to the "User-Defined Handlers" chapter for details .

• Can only occur when writing to channels 1 - 4. Whether these errors occur for a user-defined handler depends on the
handler .

Operating System Functions 4-45

... WRITE

• Timeout, power switch and low battery will cause writes to channels 1 - 4 to be aborted, but will not
interrupt writes to channels 5 - 15. Device I/O will be halted by these conditions, but file I/O will
always be completed (unless the reset switch is pressed or the machine turns off automatically
because of very low battery).

• When writing data to the built-in serial port handler (channell), if a terminate character was
specified, the terminate character will be written after writing the data in the write buffer.

• When writing data to a file (channels 5 - 15), data is written from the current file access pointer
position. After the write is complete, the file access pointer is advanced by the size of the buffer
written.

• A write of 0 bytes to a data file will cause the EOD to be set equal to the current file access
pointer. This has the effect of truncating the data in the file to the current pointer position, even
though the file size will remain unchanged.

• Error 65h will occur if the number of bytes to write would cause the write buffer's offset address to
wraparound.

Cautions:

• This function may not be called from the POWERON routine of a handler.

• The number of bytes to write must not be greater than the actual write buffer length (although it
can be less).

Related functions:

CLOSE, CREATE, DELETE, OPEN, READ, SEEK

Example:

The following program will append one data file to another. If the destination file does not exist, it will
be created. The program illustrates the use of the OPEN, CLOSE, CREATE, READ, WRITE and
SEEK functions. Since the code contains the buffer address and length, it will not work in ROM.

GET_LINE equ 02h iGET LINE function code
PUT_CHAR equ 03h iPUT_CHAR function code
PUT_LINE equ 04h iPUT_LINE function code
GET_MEM equ OSh iGET MEM function code
REL_MEM equ OCh iREL_MEM function code
OPEN equ OFh iOPEN function code
CLOSE equ 10h iCLOSE function code
CREATE equ 11h iCREATE function code
READ equ 12h iREAD function code
WRITE equ 13h iWRITE function code
SEEK equ 15h iSEEK function code
DISPLAY_ERROR equ 18h iDISPLAY_ERROR function code

BUFSIZ equ 4 i4 paragraphs

code segment
asslmIe cs:code,ds:code

prog proc far
start:

dw prgmend-start

4-46 Operating System Functions

•

•

•

•

•

crbig:

crfi le:

•

dw
dw

push
pop

0006h
0100h

cs
ds

i initialize storage

... WRITE

ioffset of internal entry point
iyersion 1.00

iset DS to CS

sub ax,ax iclear AX
moy word ptr bufaddr,ax iand clear buffer address

i allocate buffer memory
moy bX,BUFSIZ
moy al,O
call alloc
call errchk
moy
moy
shl
moy

push
pop
moy
call
call
call
moy
call
call

push
pop
moy
call
call
call

moy
moy
moy
int

or
jnz
add
jc
moy
shr
moy
moy
jq>

moy
moy

moy
moy
sub
call
cq>

word ptr bufaddr,cx
cl,4
dx,cl
word ptr buflen,dx

cs
es
bx,offset FROM
puts
gets
errchk
al,15
fopen
errchk

cs
es
bx,offset TO
puts
gets
errchk

ah,SEEK
al,15
bl,02h
1Ah

cx,cx
crbig
dx,15
crbig
cl,4
dx,cl
cx,dx
dx,1
crfile

cx,1000h
dx,10h

ax,word ptr bufaddr
es,ax
bx,bx
fcreate
al,6Ch

isize of buffer to allocate
inot associated with a handler
iallocate memory
icall error check
istore away buffer address
iturn buffer size from paragraphs to bytes

istore away buffer length

iES:BX address of "From" message

ichannel number for input file
iopen the file

iES:BX address of "To" message

iSEEK function code
i infi le channel
iseek to EOD
iseek to EOD to find file size
i(could also use FIND FILE)
iis the file big (> 64k) (cx > O)?
iyes .. use a default big size
ito round up # of paragraphs
iif we had a carry it is big file
ishift dx 4 bits right
ito turn from bytes to paragraphs
iinitial size allocation to dx
isize increment
iand create the file

ifile is >= 10000h bytes (64K) long
iuse a large increment

isegment address of buffer
ito ES
ioffset address of buffer
icreate the file if it does not exist
ifile already exist?

Operating System Functions 4-47

... WRITE

je nocrerr
or aL ,aL
caLL errchlc

nocrerr:
sub bX,bx

mov aL,14
call fopen
jnz errexit1
mov ah,SEEK
mov aL,15
mov bL,01h
sub cx,cx
sub dx,dx
int 1Ah
mov aL,14
mov bL,02h
int 1Ah
push cs
pop es
mov bX,offset CRLF
call puts

Loop:
mov aX,word ptr bufaddr
mov eS,ax
sub bX,bx
mov cX,word ptr buflen
mov aL,15
caLL fread
c"1' aL,73h
je norderr
c"1' aL,75h
je cLosefiLes
or aL,aL
jnz errexit

norderr:
mov aL,14
caLL fwrite
jnz errexit
mov ah,PUT_CHAR
mov aL,"."
int 1Ah
j"1' Loop

cLosefiLes:
sub aL,aL

errexit:
push ax
mov aL,14
call fcLose
pop ax

errexit1:
push ax
mov aL,15
call fcLose
pop ax

dsperr:
or aL,aL
jz noerr
mov ah ,01 SPLAY_ERROR

4-48 Operating System Functions

;ignore the error
;set status for caLLer
;checlc for any other create errors

;offset address of buffer
;(cLObbered by CREATE)
;channeL number for outfiLe
;open the file
;error .. cLose infiLe
;SEEK function code
; channeL number for infiLe
;seelc absoLute
;to start of fiLe (OOOOOOh)

;seelc to start of infiLe
;channeL number for outfiLe
;seelc to EOD
;seelc to EOD to append to outfiLe
;ES:BX address of CRLF

;ES:BX buffer address

;offset of buffer is 0
;buffer size
;infiLe channeL #
; read infile
;short record error?
;not an error
; EOD?
;yes .. finish up
;any other read error?
;yes .. exit

;outfiLe channeL #
;write outfiLe (rest aLready set up)
;error? .. exit
;PUT_CHAR function code

;dispLay a"."

;no error (aL=O)
;cLose both infiLe and outfiLe
;save error code
;outfiLe channeL #
;cLose the fiLe (ignore error code)
;restore error code
;onLy cLose infiLe
;save error code
;infiLe channeL #
;cLose the fiLe (ignore error code)
;restore error code

;error?
;no .. don't dispLay an error message
;DISPLAY ERROR function code

•

•

•

• noerr:

nofree:

prog

puts

puts

gets

•
okbuffer:

dotloop:

•

... WRITE

int 1Ah ;display it

mov cx,word ptr bufaddr ;get segment address of buffer
or cx,cx ;=O?
jz nofree ;yes .. no buffer to free
call free ;free the buffer

ret
endp

;exit program

puts .. write a line to the LCD

call with:

proc
mov
int
ret
endp

es = segment address of string
bx = offset address of string

near
ah,PUT_LINE
1Ah

;PUT LINE function code
;display it

gets Read a line from the keyboard into buffer.

call with:

proc
mov
mov
sub
mov
or
jnz
mov

dec
mov
int

or
jnz

Turn trailing CR into a NUL.
Turn '.' into ':'

nothing.

near
ax,word ptr bufaddr ;get segment address of buffer
es,ax ;set ES to it
bx,bx ;offset address to buffer
ax, word ptr buflen ;size in bytes
ah,ah ;bigger than 256?
okbuffer ;no .. we will use the actual
al,255

al ; leave room for the CR
ah,GET_LINE ;GET LINE function code
1Ah ;get string

al,al ;set status for caller
getsret ;error? .. return now

; save away registers
push ax
push cx
push dx
push di
sub dh,c:Ih ;clear high byte of dh
add dx,bx ;address of last byte
mov di,dx ;length to index register
mov byte ptr es:[di],OOh;null out CR

; change '.' to ': I
mov di,bx ;offset of string into offset

mov ah,es: [di] ;get the next character
c~ ah,"." ;is it a dot?
jne nodot ;no .. don't change it.

size

register

Operating System Functions 4-49

... WRITE

nodot:

getsret:

gets

errchk.

err01:

errchk.

alloc

alloc

free

free

fopen

mov ah,":" ireplace it with a":"
mov es: [di] ,ah

inc di
or ah,ah iis it a NUL (end of string)
jnz
i restore
pop
pop
pop
pop

or
ret
endp

proc
or
jnz
ret

add
j""
endp

dot loop
registers

di
dx
cx
ax

al,al

near
al,al
err01

sp,2
dsperr

iset status for caller

ireturn code O?
iyes -- display an error
ino -- just return

iPUll off the near return
idisplay the error & exit

alloc -- allocate a scratch area

call with:

proc
mov
int
or
ret
endp

al = channel number for handler, 0 for others
bx = size of area in paragraphs

near
ah,GET_MEM
1Ah
al,al

iGET MEM function code
iallocate scratch area
iset status for caller

free -- free a scratch area

call with:

proc
mov
int
or
ret
endp

cx = segment address of scratch area

near
ah,REL_MEM
1Ah
al,al

iREL MEM function code
irelease scratch area
iset status for caller

fopen -- open a file

call with:

proc

al = chamel #
es = segment address of file name buffer
bx = offset address of file name buffer
dx = offset address of parameter area

(built-in serial port only)

near

address
program

4-50 Operating System Functions

•

•

•

•
fopen

fclose

fclose

fcreate

• fcreate

fread

fread

,
fwrite

•

... WRITE

mov
int
or
ret
endp

ah,OPEN
1Ah
al,al

iOPEN function code
iopen the fi le
iset status for caller

fclose .. close an open file

call with:

proc
mov
int
or
ret
endp

fcreate

call with:

proc
mov
int
or
ret
endp

al = channel #

near
ah,CLOSE
1Ah
al,al

create a file

iCLOSE function code
iclose the file
iset status for caller

es segment address of file name buffer
bx = offset address of file name buffer
cx initial size in paragraphs
dx = size increment in paragraphs

near
ah,CREATE
1Ah
al,al

iCREATE function code
icreate the file
iset status for caller

fread .. read a channel into a buffer

call with:

proc
mov
int
or
ret
endp

al = channel #
cx = number of bytes to read
es = segment address of read buffer
bx = offset address of read buffer

near
ah,READ
1Ah
al,al

iREAD function code
iread the channel
iset status for caller

fwrite .. write a buffer into a channel

call with:

proc
mov
int
or

al = channel #
cx = number of bytes to write
es segment address of write buffer
bx = offset address of write buffer

near
ah,WRITE
1Ah
al,al

iWRITE function code
iwrite the buffer
iset status for caller

Operating System Functions 4-51

... WRITE

• ret
fwrite endp

FROM db "From: ",OFh,OOh
TO db OOh,OAh,"To: ",OFh,OOh
CRLF db OOh,OAh,OOh
bufaddr dw ? illUst be in RAM
buflen dw ? illUst be in RAM

prgmend:
code ends

end

•

4-52 Operating System Functions •

• 5

Hardware Control and Status Registers

•

•

Contents

Chapter 5 Hardware Control and Status Registers

5-2 Main Control and Status Registers
5-3 Interrupt Control and Status Registers
5-5 Copies of Write-Only Control Registers

•

•

•

•

•

•

5

Hardware Control and Status Registers

The HP-94 has control and status registers that allow a program to control the various hardware dev­
ices and determine their status. The control and status registers are in the CPU I/O space, so pro­
grams interact with them using the I N and OUT instructions. The details of these registers are dis­
cussed in the appropriate device chapters. The table below summarizes the I/O addresses for all the
control and status registers.

Table 5-1. I/O Addresses for Control and Status Registers

I/O Register Read/
Address Name Write

OOh Interrupt Control W
OOh Interrupt Status R
01h Interrupt Clear W
01h End of Interrupt R
02h System Timer Data RfW
03h System Timer Control W
04h Bar Code Timer Data ~ower S bits) RfW
05h Bar Code Timer Data (upper 4 bits) RfW
06h Bar Code Timer Control W
07h Bar Code Timer Value Capture W
OSh Bar Code Timer Clear W
OAh Baud Rate Clock Value W
OBh Main Control W
OBh Main Status R

OCh Real-Time Clock Control W
OCh Real-Time Clock Status/Data R

OEh Keyboard Control W
OEh Keyboard Status R
10h Serial Port Data RfW
11h Serial Port Control W
11h Serial Port Status R

12h Right LCD Driver Control W
12h Right LCD Driver Status R
13h Right LCD Driver Data RfW
14h Left LCD Driver Control W
14h Left LCD Driver Status R
15h Left LCD Driver Data RfW
1Bh Power Control W

Hardware Control and Status Registers 5-1

Two primary control registers are particularly important to programs: the main control register (OBh) •.
and the interrupt control register (OOh),

Main Control and Status Registers

The main control and status registers are at I/O address OBh. The uses of these registers to control
specific hardware devices and determine their status are discussed in the appropriate device chapters.
All the uses of these registers are summarized below.

765 432 0

I I 1 J J

x = don't care

[

11: Low Tone
Beeper Control 01: High Tone

00: Off

Serial Port [1: Enable
Power Control 0: Disable

Bar Code Port [1: Enable
Power Control 0: Disable

Bar Code Port [1: Enable
Transition Control 0: Disable

Figure 5-1. Main Control Register (I/O Address OBh. Write)

5-2 Hard.are Control and Status Registers

•

•

•

•

•

7 6 5 432 o

lxl I IIXI IXI I
L

x = ignore

[
1: Light

Bar Code Port Status 0: Dark

. [1 : Not Detected
Carner Detect Status 0: Detected

Main Memory [1 : Voltage OK
Backup Battery Status 0: Low Voltage

Memory Board or RAM Card [1: Voltage OK
Backup Battery Status 0: Low Voltage

. [1 : Voltage OK
Main Battery Status 0 L V It : ow 0 age

Figure 5-2. Main Status Register (I/O Address OBh, Read)

Interrupt Control and Status Registers
The interrupt control and status registers are at I/O address OOh. The uses of these registers to enable
specific hardware interrupts and determine which interrupts occurred are discussed in the "Interrupt
Controller" chapter. All the uses of these registers are summarized below.

Hardware Control and Status Registers 5-3

7654321 0

I I I I III I]
L System Timer Interrupt [~~ ~:~~

Bar Code Timer Interrupt [~~ ~:~~
Bar Code Port [1: Enable
Transition Interrupt 0: Disable

Serial Port Data [1: Enable
Received Interrupt 0: Disable

Low Main Battery [1: Enable
Voltage Interrupt 0: Disable

P S · hit [1: Enable ower wite nterrup 0: Disable

[
1: Enable

Reserved Interrupt 1 0: Disable

[
1: Enable

Reserved Interrupt 2 0: Disable

Figure 5-3. Interrupt Control Register (1/0 Address DOh, Write)

5-4 Hardware Control and Status Registers

•

•

•

•

•

•

7 6 5 432 o

I I I I I I I I I

L . [1 : Interrupted
System Timer Interrupt 0 D'd N tit t : Ion errup

. [1: Interrupted
Bar Code Timer Interrupt 0 D'd N tit t : Ion errup

Bar Code Port
Transition Interrupt

Serial Port Data
Received Interrupt

[
1: Interrupted
0: Did Not Interrupt

[
1: Interrupted
0: Did Not Interrupt

Low Main Battery [1: Interrupted
Voltage Interrupt 0: Did Not Interrupt

. [1 : Interrupted
Power Switch Interrupt 0: Did Not Interrupt

Reserved Interrupt 1 [1: Interrupted
0: Did Not Interrupt

Reserved Interrupt 2 [1 : Interrupted
0: Did Not Interrupt

Figure 5-4. Interrupt Status Register (1/0 Address OOh, Read)

Copies of Write-Only Control Registers
Control of the HP-94 I/O devices and interrupts is accomplished by using two primary control regis­
ters: the main control register and the interrupt control register. These are both write-only as far as
controlling the devices and interrupts is concerned, and reading them back yields different results.
Reading the main control register obtains other hardware status, and reading the interrupt control
register indicates which interrupt occurred.

To allow the operating system and assembly language programs to know what status was set using
these two registers, the operating system writes a copy of the register values to two locations in the
operating system scratch space. When hardware or interrupt status is changed, the operating system
uses the following procedure to ensure that hardware devices or interrupts unaffected by the change
remain in their current state:

• Read the copy of the register being changed.

• Change the bits needed to cause the status to change.

• Write the updated value back to its original location.

• Output the updated value to the control register.

When a program uses the operating system functions and utility routines, these copies will be updated
automatically. If a program changes the device or interrupt status independent of the operating system,

Hardware Control and Status Registers 5-5

it is the program's responsibility to mimic the operating system action. That is, the program must •
make the change correctly while preserving the state of unaffected devices, and must update the copies
of the control registers for use by the operating system and other programs.

The status of these registers at cold and warm start is shown below. Refer to appendix L for informa­
tion about the utility subroutines for reading and saving copies of the control registers.

Table 5-2. Copies of Primary Control Registers

Control 1/0 Initial Meaning of Utility
Register Name Address Value Initial Value Subroutines

Main Control OBh OOh Beeper off, serial READCTRL.ASM
port power off, bar SETCTRL.ASM
code port power off,
bar code port transi-
tions disabled

I nterrupt Control OOh 31h System timer, low READINTR.ASM
battery, and power SETINTR.ASM
switch interrupts
enabled

5-6 Hardware Control and Status Registers

•

•

• 6

CPU

•

•

•

•

•

6

CPU

The HP-94 CPU is the NEC Io'PD70108 (V20) microprocessor. This is a CMOS microprocessor that is
compatible with the Intel 8088 and provides a standby mode for reduced power consumption. Pro­
grams written for the 8088 can be run on the V20 with no modifications.

The V20 provides a superset of the 8088 instruction set. Some 8088 instructions have been enhanced,
and new instructions have been added. All the changes are described in the CPU data sheet in the
"Hardware Specifications". The enhancements and additions are only available if NEC assembly
language development tools are used. Contact NEC for information on these if using the V20 features
is important to your applications.

The HP-94 CPU runs at an operating frequency of 3.6864 MHz, which is 0.27 lo'S/clock cycle. Note,
however, that the V20 instruction timing is different than the 8088 instruction timing. The V20 timing
should be used whenever determining the number of clock cycles for specific operations. The instruc­
tion timing is shown in the CPU data sheet using NEC mnemonics. These are similar but not identical
to 8088 mnemonics, as shown in the next table .

CPU 6-1

Table ~1. Intel 8088 and NEC V20 Instruction Mnemonics • Intel NEC Intel NEC Intel NEC Intel NEC
8088 V20 8088 V20 8088 V20 8088 V20

AAA ADJBA JA BH JZ BE,BZ REPE REPE
AAD CVTDB JAE BNC,BNL LAHF MOV REPZ REPZ
AAM CVTBD JB BC,BL LDS MOV REPNE REPNE
AAS ADJBS JBE BNH LEA LDEA REPNZ REPNZ
ADC ADDC JC BC,BL LES MOV RET RET
ADD ADD JCXZ BONZ LOCK BUSLOCK ROL ROL
AND AND JE BE,BZ LODS LDM ROR ROR
CALL CALL JG BGT LODSB LDM SAHF MOV
CBW CVTBW JGE BGE LODSW LDM SAL SHL
CLC CLR1 JL BLT LOOP DBNZ SAR SHRA
CLD CLR1 JLE BlE LOOPE DBNZE SBB SUBC
CLI DI JMP BR LOOPNE DBNZNE SCAS CMPM
CMC NOT1 JNA BNH LOOPNZ DBNZNE SCASB CMPM
CMP CMP JNAE BC,BL LOOPZ DBNZE SCASW CMPM
CMPS CMPBK JNB BNC,BNL MOV MOV SHL SHL
CMPSB CMPBK JNBE BH MOVS MOVBK SHR SHR
CMPSW CMPBK JNC BNC,BNL MOVSB MOVBK STC SET1
CWD CVTWL JNE BNE,BNZ MOVSW MOVBK STD SET1
DAA ADJ4A JNG BLE MUL MULU STI EI
DAS ADJ4S JNGE BLT NEG NEG STOS STM
DEC DEC JNL BGE NOP NOP STOSB STM
DIV DIVU JNLE BGT NOT NOT STOSW STM
ESC FP01 JNO BNV OR OR SUB SUB • HLT HALT JNP BPO OUT OUT TEST TEST
IDIV DIV JNS BP POP POP WAIT POLL
IMUL MUL JNZ BNE,BNZ POPF .' POP XCHG XCH
IN IN JO BV PUSH PUSH XLAT TRANS
INC INC JP BPE PUSHF PUSH XOR XOR
INT BRK JPE BPE RCL ROLC
INTO BRKV JPO BPO RCR RORC
IRET RETI JS BN REP REP

~2 CPU •

• 7

Interrupt Controller

•

•

Contents

Chapter 7 Interrupt Controller

7-1 Procedure for Using a Hardware Interrupt
7-3 Interrupt Control and Status Registers
7-5 When the Operating System Disables Interrupts
7-6 Operating System Functions

•

•

•

•

•

•

7

Interrupt Controller

The HP-94 interrupt controller receives interrupt requests from eight different HP-94 hardware dev­
ices. It prioritizes these interrupts, and informs the CPU of the highest priority interrupt. The CPU
then locates the interrupt vector for that interrupt and transfers control to the interrupt service routine.
The hardware interrupts and their priority are shown below:

Table 7-1. HP-94 Hardware Interrupts

Interrupt Interrupt
Type Name

50h System Timer
51h Bar Code Timer

Highest

52h Bar Code Port Transition
53h Serial Port Data Received
54h Low Main Battery Voltage

Interrupt Priority

55h Power Switch
56h Reserved Interrupt 1
57h Reserved Interrupt 2 Lowest

Information about the behavior of interrupt service routines for the different hardware devices are in
the appropriate device chapters.

At both cold and warm start, the system timer, serial port data received, low main battery voltage, and
power switch interrupt vectors all point to their operating system interrupt service routines. They are
all enabled except for the serial port data received interrupt. The other hardware interrupt vectors
point to a dummy interrupt service routine which clears the interrupt, reads the end of interrupt regis­
ter, and returns (with an IRET). Reserved interrupts 1 and 2 are for future use.

Procedure for Using a Hardware Interrupt
There are four control registers available for controlling interrupt behavior:

• Interrupt Control Register
This is used to enable or disable any of the hardware interrupts.

• Interrupt Status Register
This indicates which hardware devices have issued interrupt requests. The interrupt status register
will indicate that an interrupt request occurred even if the interrupt was disabled. This is useful for
polling device status .

Interrupt Controller 7-1

• Interrupt Clear Register
Once a hardware interrupt has occurred, another interrupt of the same type will not be processed
by the interrupt controller until that interrupt has been cleared.

• End of Interrupt Register
This is read at the end of an interrupt service routine to allow the interrupt controller to generate
new interrupts of any type.

There are several things that must be done to use a hardware interrupt. Some must be done when the
interrupt is initialized, and others during an interrupt service routine. These are summarized below:

Table 7-2. Using Hard.are Interrupts

Control or Required Required
Action Status During In Service

Register Used Initialization Routine
Disable Interrupt Interrupt Control No* No
Take Over Interrupt Vector - Yes No
Enable Interrupt Interrupt Control Yes No
Set CPU Interrupt Flag (STI) - Yes Not
Verify Interrupt Source Interrupt Status No No*
Clear Interrupt Interrupt Clear No* Yes
Read End of Interrupt Register End of Interrupt No* Yes
Return from Interrupt (IRET) - No Yes

* Not required, but can be done as defensive programming. For example, it is unlikely when enabling an interrupt that
a previous interrupt request of the same type is present, requiring that the interrupt be cleared before it can occur
again. The same reasoning can be applied to the other items that reference this footnote.

t Set automatically by IRET.

When taking over an interrupt, the interrupt vector location is the two words starting at address T ... 4,
where T is the interrupt type. This is at addresses OOl40h-0015Ch for the hardware interrupts. The
instruction pointer (I P) offset of the interrupt service routine should be stored at the first word, and
the code segment (CS) address of the routine should be stored at the second word.

The existing interrupt vector should be saved when the interrupt is taken over, then restored when the
program gives up the interrupt.

If the interrupt service routine is in a user-defined handler, the program should save the segment
address of the handler scratch area in the handler information table. See the "User-Defined Handlers"
chapter for details.

Software interrupt lAb for calling operating system functions is discussed in the "Operating System
Functions" chapter, and software interrupt lCh for the background timer is discussed in the "Timers"
chapter.

7-2 Interrupt Controller

•

•

•

•

•

•

Interrupt Control and Status Registers
The interrupt control and status registers are shown below. A copy ofthe main interrupt control regis­
ter is maintained in the operating system scratch space for reference. Refer to the "Hardware Control
and Status Registers" chapter for further information.

Table 7-3. Interrupt Control and Status Registers

Register
Name

Interrupt Control
Interrupt Status
Interrupt Clear
End of Interrupt

7654321 0

I I I I I I I I I

I/O Bits Read/
Address Used Write

DOh 0-7 W
OOh 0-7 R
01h 0-7 W
01h None R

System Timer Interrupt [~~ ~~~~~

Bar Code Timer Interrupt [~~ ~~~~~
Bar Code Port [1: Enable
Transition Interrupt 0: Disable

Serial Port Data [1: Enable
Received Interrupt 0: Disable

Low Main Battery [1 : Enable
Voltage Interrupt 0: Disable

Power Switch Interrupt [~~ ~~~~~

[
1: Enable

Reserved Interrupt 1 0: Disable

[
1: Enable

Reserved Interrupt 2 0: Disable

Figure 7-1. Interrupt Control Register (I/O Address OOh, Write)

Interrupt Controller 7-3

76543 2 o

l 1 I I I I I I J • L . [1: Interrupted
System Timer Interrupt 0: Did Not Interrupt

. [1: Interrupted
Bar Code Timer Interrupt 0: Did Not Interrupt

Bar Code Port [1: Interrupted
Transition Interrupt 0: Did Not Interrupt

Serial Port Data [1: Interrupted
Received Interrupt 0: Did Not Interrupt

Low Main Battery [1: Interrupted
Voltage Interrupt 0: Did Not Interrupt

. [1: Interrupted
Power SWitch Interrupt 0: Did Not Interrupt

[
1: Interrupted

Reserved Interrupt 1 0: Did Not Interrupt

[
1: Interrupted

Reserved Interrupt 2 0: Did Not Interrupt

Figure 7-2. Interrupt Status Register (1/0 Address OOh, Read) •

7-4 Interrupt Controller •

•

•

•

7 6 5 432 o

l I I I I I I I I
L . [1: Leave Unchanged

System Timer Interrupt 0: Clear

Bar Code Timer Interrupt [~~ ~::~ Unchanged

Bar Code Port [1: Leave Unchanged
Transition Interrupt 0: Clear

Serial Port Data [1: Leave Unchanged
Received Interrupt 0: Clear

Low Main Battery [1: Leave Unchanged
Voltage Interrupt 0: Clear

Power Switch Interrupt [~~ ~~::~ Unchanged

Reserved Interrupt 1 [1 : Leave Unchanged
0: Clear

Reserved Interrupt 2 [1: Leave Unchanged
0: Clear

Figure 7-3. Interrupt Clear Register (I/O Address 01h. Write)

765 4 321 o
x X X X X X X X

X = ignore

Figure 7-4. End of Interrupt Register (I/O Address 01h. Read)

When the Operating System Disables Interrupts
The operating system disables interrupts by clearing the CPU interrupt flag (CLI) at two times that
may be important to time-critical interrupt service routines:

• While processing the display control character that homes the cursor and clears the screen (OCh),
interrupts are disabled for -45 ms. This may be important for serial and bar code port handlers.

• While checking to see if the beeper needs to be turned off, interrupts are disabled for - 50 JlS. This
may be important for bar code port handlers.

Interrupt Controller 7-5

Operating System Functions
The interrupt software implements the following operating system functions: •

Table 7-4. Interrupt-Related Operating System Functions

Function Function
Name Code

TIMEOUT 09h
SET INTR OAh -

•

7-6 Interrupt Controller •

• 8

Keyboard

•

•

Contents

Chapter 8 Keyboard

8-1 Keyboard Shift Status
8-2 Display Backlight Control
8-2 Key Buffer
8-2 Waiting for a Key
8-3 Keyboard Scanning
8-5 Keyboard Scanning at Turn On
8-5 Keyboard Control and Status Registers
8-6 Operating System Functions

•

•

•

•

•

•

8

Keyboard

The HP-94 keyboard has 34 keys, arranged as shown below.

Power Switch

Reset Switch Contrast

/

LJ ~ ~ LJ DB ISHIFTI

Q QQDDD ICLEAR\

QQ III f101 DDDG
Q L;] Q QuOIT]
I_ ,141 Q Q o rp~Cj D :

Figure 8-1. HP-94 Keyboard

Keyboard Shift Status

The symbols on the upper left corner of each key are in orange and can be entered when the keyboard
is shifted. The symbols on the lower right corner of each key are in white and can be entered when the
keyboard is unshifted. Keys with only one centered symbol are in white and can be entered whether
the keyboard is shifted or not.

Keyboard 8-1

The keys labelled f1 through f16 are the user-defined keys, and have no predefined action associated
with them. When the keyboard is unshifted, they return ASCII SOh-8Fh which corresponds to the first
16 user-defined characters (see the "Display" chapter for details).

The I SHIFT I key toggles between unshifted and shifted keys. The keyboard shift status is indicated by
the shape of the cursor. An underscore cursor indicates unshifted (white keys), and a block cursor indi­
cates shifted (orange keys).

Display Backlight Control
The I SHIFT I key controls the display backlight. If the I SHIFT I key is held down for one second, the display
backlight will be turned on (or off if it was already on). When the backlight is toggled by holding down
I SHIFT I for one second, the keyboard status and cursor type will be unchanged.

The backlight will turn off automatically after two minutes (120 seconds). This timeout can be set
under program control between 0 (never turn off) and 1800 seconds. The display backlight can be
turned on or off from a program by writing the appropriate display control character to the display:
1Eh turns on the backlight, and 1Fh turns off the backlight. The keyboard control register has a bit to
turn on and off the backlight.

CAUTION Leaving the display backlight on continuously or for long periods of time (greater
than 5 minutes) will reduce the life of the backlight.

Key Buffer
There is an eight-character key buffer where the ASCII equivalents of each scanned key (not the key­
codes) are placed. A short, low tone beep will be issued when a key is placed in the key buffer (note
that this beep cannot be disabled). A long, high tone beep will be issued when a key is pressed after
the buffer is full - the key will be discarded. When the I SHIFT I key is pressed, it is processed for
changing keyboard shift status and the backlight control, but is not placed in the key buffer.

Waiting for a Key

While waiting for a key to be pressed, the keyboard software puts the CPU into its standby mode to
save power, and monitors the system timeout. The timeout is restarted every time a key is pressed.
When the timeout expires, the default behavior is to turn the machine off. If a program has defined a
power switch/timeout interrupt routine using the SET _ INTR function (OAh) , that routine will be
executed with a FAR CALL when the timeout expires. This will only occur in a running program, not in
command mode.

8-2 Keyboard

•

•

•

•

•

•

Keyboard Scanning
The keyboard is scanned by the operating system software every 5 ms. Keys are debounced for 25 ms.
When a key has been held down for 675 ms, it begins to repeat every 115 ms until it is released.

The keyboard control register has a bit for each column to be scanned. The keyboard is scanned by
clearing the bit corresponding to the column to be scanned, and reading the keyboard status register to
see which row(s) have a key down. If a key is down, the bit corresponding to that row will be set. The
correspondence between the keyboard and the bits in the keyboard control and status registers are
shown below.

Keyboard Control Register (I/O Address OEh, Write)

7654321 0

Display Backlight [~~ ~

Figure 8-2. HP-94 Keycodes

o

Keyboard Status
2 Register

(I/O Address
3 OEh, Read)

4

If multiple columns are selected for scanning, the program will not be able to distinguish which key was
pressed. It will only be able to identify that a key in a particular row was held down.

The operating system scans the keyboard columns from right to left, and checks the rows from top to
bottom. The first key found down in that scanning sequence will be reported as a keycode (shown
above in hex). Other keys to the left or below the first key found will be ignored (the I CLEAR I and
I ENTER I sequence to enter command mode is scanned as a special case). The keycode will be translated
into an ASCII character according to the keyboard shift status and the following keyboard map .

Keyboard 8-3

Table 8-1. ASCII Characters and Keycodes for Each Key

Shifted Shifted Unshifted Unshifted
Key (orange) Character Key (white) Character Keycode

[K] A (41 h) (unmarked) user~efined (SOh) 01h

lID B (42h) (unmarked) user~efined (S1 h) 06h
[9 C (43h) (unmarked) user~efined (S2h) OBh
[QJ D (44h) (unmarked) user~efined (83h) 10h

lID E (4Sh) (unmarked) user~efined (84h) 02h
[£J F (46h) (unmarked) user~efined (ash) 07h
[QJ G (47h) (unmarked) user~efined (S6h) OCh
[ill H (48h) [l] 7 (37h) 11 h
[0 I (49h) [[] S (3Sh) 16h
QJ J (4Ah) @J 9 (39h) 1Bh
[RJ K (4Bh) (unmarked) user~efined (S7h) 03h
[] L (4Ch) (unmarked) user~efined (ash) OSh
[M] M (4Dh) (unmarked) user~efined (S9h) ODh
[EJ N (4Eh) [i] 4 (34h) 12h
[QJ o (4Fh) ~ S (3Sh) 17h
[IJ P (SOh) ~ 6 (36h) 1Ch
[Q] a (S1 h) (unmarked) user~efined (SAh) 04h
IBJ R (S2h) (unmarked) user~efined (SBh) 09h
[§] S (S3h) (unmarked) user~efined (SCh) OEh
IT] T (S4h) IT] 1 (31 h) 13h
[ill U (SSh) ~ 2 (32h) 1Sh
[Y] V (S6h) W 3 (33h) 1Dh
~ W (S7h) (unmarked) user~eflned (SOh) OSh
[K] X (SSh) (unmarked) user~efined (SEh) OAh
[Y] Y (S9h) (unmarked) user-defined (SFh) OFh
~ Z (SAh) [Q] o (30h) 14h
~ * (2Ah) [i] # (23h) 1Sh

I SPACE I (space) (20h) [QQJ 00 (30h 30h) 19h
B - (2Dh) B - (2Dh) 1Ah
0 . (2Eh) 0 . (2Eh) 1Eh

ISHIFTl (none) I SHIFT I (none) 1Fh
LQ!J@ (CAN) (1Sh) I CLEAR I (CAN) (1Sh) 20h

El (DEL) (7Fh) El (DEL) (7Fh) 21h
! ENTER I (CR) (ODh) !ENTER! (CR) (ODh) 22h

Refer to the appendixes for a utility routine that scans the keyboard and returns the keycode of the first
key found down.

8-4 Keyboard

•

•

•

•

•

•

Keyboard Scanning at Turn On
When the machine turns on, the operating system checks the keyboard after performing the first three
memory integrity checks (system ROM checksum, reserved scratch space read/write, and valid RAM
configuration). If any keys are down other than [CLEAR [and [ENTER [, the machine will turn back off
immediately. This is to prevent accidental turn on (while in a full briefcase, for example).

Keyboard Control and Status Registers
The keyboard control and status registers are summarized below.

Table 8-2. Keyboard Control and Status Registers

Register I/O Bits Read/
Name Address Used Write

Keyboard Control OEh 0-7 W
Keyboard Status OEh 0-4 R

7 6 5 432 1 0

I I I I I I I I I
L Column 7 Select [1: Not Selected

0: Selected

Column 6 Select [1 : Not Selected
0: Selected

Column 5 Select [1: Not Selected
0: Selected

Column 4 Select [1: Not Selected
0: Selected

Column 3 Select [1: Not Selected
0: Selected

Column 2 Select [1: Not Selected
0: Selected

Column 1 Select [1: Not Selected
0: Selected

Display Backlight Control [~~ ~

Figure 8-3. Keyboard Control Register (I/O Address OEh, Write)

Keyboard 8-5

7 6 5 4 3 2 1 0

I X I X I 0 I I I I I
L Row 1 Scan [1: Key Down

0: No Key Down

Row 2 Scan [1: Key Down
0: No Key Down

Row 3 Scan [1: Key Down
0: No Key Down

Row 4 Scan [1: Key Down
0: No Key Down

Row 5 Scan [1: Key Down
0: No Key Down

X = ignore

Figure 8-4. Keyboard Status Register (I/O Address OEh. Read)

Operating System Functions
The keyboard software implements the following operating system functions:

Table 8-3. Keyboard-Related Operating System Functions

8-6 Keyboard

Function
Name

GET CHAR
GET LINE
PUT CHAR
PUT LINE
BUFFER STATUS -
READ

Function
Code

01h
02h
03h
04h
06h
12h

•

•

•

• 9

Display

•

•

Contents

Chapter 9 Display

9-1 Display Backlight Control
9-2 LCD Controllers
9-2 Writing Dots to the Display
9-2 Display Control and Status Registers
9-3 Writing Characters to the Display
9-4 Operating System Functions
9-5 User-Defined Characters
9-5 Structure of SYFf Font DefInition File
9-6 Relationship to User-Defined Keys

•

•

•

•

•

•

9

Display

The HP-94 has a liquid crystal display (LCD) with an electroluminescent backlight. The display is a
continuous dot-matrix of 120 columns and 32 rows, yielding 4lines of 20 characters each, where each
character is in a 6 x 8 character cell. The built-in Roman-8 character set places characters in a 5 x 8
cell, leaving the right column of the 6 x 8 cell blank. It uses the eighth dot for descenders only. The
orientation of a character cell is shown below. The filled-in boxes are the dot positions used by the
built-in character set.

7654321 0

I I I II 1 1 I J

L •••••

Column Dot Definition For
User-Defined Characters [

1: On
0: Off

• • • • • • •

• • • • • • •

• • • • • • • • • • • • • •
6 dots

Figure 9-1. 6 x 8 Character Cell

• • • • • • •

-

ad ots

-

All characters are mapped upside-down. The upper dot of a column of a character is bit 0 of the byte
containing the bit pattern for that column. There are 6 bytes per character, one per column from left
to right.

Display Backlight Control

The I SHIFT I key controls the display backlight. If the I SHIFT I key is held down for one second, the display
backlight will be turned on (or off if it was already on). When the backlight is toggled by holding down
I SHIFT I for one second, the keyboard status and cursor type will be unchanged .

Display 9-1

The backlight will turn off automatically after two minutes (120 seconds). This timeout can be set •
under program control between 0 (never turn off) and 1800 seconds. The display backlight can be
turned on or off from a program by writing the appropriate display control character to the display:
lEh turns on the backlight, and 1Fh turns off the backlight. The keyboard control register has a bit to
turn on and off the backlight.

CAUTION Leaving the display backlight on continuously or for long periods of time (greater
than 5 minutes) will reduce the life of the backlight.

LCD Controllers
There are three LCD controllers. The row driver is a Hitachi HD61103A. It is not accessible to
software - the rows are driven automatically by the hardware.

The column driver is a Hitachi HD61102A. Since the column driver can only support 64 columns, two
are used. The left half driver controls columns 0-63 (counting from the left), and the right half driver
controls column 64-119. Columns 120-127 are ignored. The details of the column driver hardware,
operation, and usage are described in the Hitachi HD61102A data sheet in the "Hardware
Specifications" .

Writing Dots to the Display
Programs writing directly to the display hardware can write an 8-dot pattern to any column in the LCD.
As with characters, the dots in the column being written are represented upside-down in the byte con­
taining that dot pattern. A program cannot write individual dots to the display - the display control
registers only allow writing columns of data. (Since a program can read individual columns of data, it
could read a column, change a dot, and write the column back. This would have the effect of writing an
individual dot.)

Display Control and Status Registers
The display control and status registers are shown below.

9-2 Display

•

•

•

•

•

Table 9-1. Display Control and Status Registers

Register I/O Bits Read/
Name Address Used Write

Keyboard Control OEh 7 W

Right LCD Driver Control 12h 0-7 * W
Right LCD Driver Status 12h 0-7 * R
Right LCD Driver Data 13h 0-7 RfW
Left LCD Driver Control 14h 0-7 * W
Left LCD Driver Status 14h 0-7 * R
Left LCD Driver Data 15h 0-7 RfW
* For the meaning of the bits in these registers, refer to the Hitachi HD61102A data

sheet in the "Hardware Specifications".

7 6 5 4 320

Display Backlight Control [~~ g~

Figure 9-2. Keyboard Control Register (I/O Address OEh. Write)

7654320

Figure 9-3. Right LCD Driver Data Register (I/O Address 13h. Read/Write)

765 4 3 2 1 0

Figure 9-4. Left LCD Driver Data Register (I/O Address 15h. Read/Write)

Writing Characters to the Display
The display software performs the generation of characters from the built-in Roman-8 character set.
The first half of the character set (characters ooh-7Fh) consists of standard U.S. ASCII characters. The
second half (SOh-FFh) contains special characters, including those used by other languages. The
display software also displays user-defined characters in the range SOh-9Fh. These will be discussed
shortly.

Cursor shape, status, movement, and blinking is also controlled by the display software. The cursor
shape is a block to represent shifted keyboard status and an underline to represent unshifted status.
The cursor can be either on or off. When on, it is blinked every 500 ms (0.5 s) .

Display 9-3

Power switch and low battery interrupts can occur while writing data to the display using operating sys- •
tem functions. The system timeout does not occur when writing to the display (channel 0).

The display software processes display control codes for the following actions:

Table 9-2. Display Control Characters

Hex Value lIeaning
01h (SOH) Turn on cursor.
02h (STX) Turn off cursor.
06h (ACt<) High tone beep for 0.5 second.
07h (BEL) low tone beep for 0.5 second.
08h (8S) Move cursor left one column. When the cursor reaches the left

end of the line, it will back up to the right end of the previous line.
When the cursor reaches the top left corner, backspace will have
no effect.

OAh (IF) Move cursor down one line. If the cursor is on the bottom line, the
display contents will scroll up one line.

08h (VT) Clear every character from the cursor position to the end of the
current line. The cursor position will be unchanged.

OCh (FF) Move cursor to upper left corner and clear the display.
ODh (CR) Move cursor to left end of current line.
OEh (SO) Change keyboard to numeric mode (underline cursor).
OFh (SI) Change keyboard to alpha mode (block cursor).
1Eh (RS) Turn on display backlight.
1Fh (US) Turn off display backlight.

Control codes not listed in this table are ignored - that is, no character is displayed for those codes.

NOTE While processing the display control character that homes the cursor and clears the
screen (OCh) , interrupts are disabled for -45 ms. This time may be important to
serial and bar code port handlers.

Operating System Functions
The display software implements the following operating system functions:

9-4 Display

•

•

•

•

•

Table 9-3. Display-Related Operating System Functions

Function Function
Name Code

PUT CHAR 03h
PUT-LINE 04h
CURSOR OSh
WRITE 13h
DISPLAY ERROR 18h -

User-Defined Characters

The HP-94 allows the font for 32 characters to be redefined: character codes SOh-9Fh, the control
codes for the upper 128 characters of the built-in Roman-8 character set. The operating system will
use these redefined characters only when a program is running - they will not be used in command
mode. When a program is executed (either with the S (start) command or by autostarting), the
operating system searches for a type A font definition file named SYFT. If this file is found, and is the
correct type, then the dot pattern for characters SOh-9Fh will be taken from it. If SYFT does not exist,
characters in that range will be displayed as blanks.

Character mapping will occur whenever characters SOh-9Fh are displayed on the LCD using the
PUT CHAR and PUT LINE functions, or the WRITE function for channel 0 (functions 03h, 04h,
and Dh). PUT _ CHAR-and PUT_LINE are used by the BASIC I/O keywords PRINT, PRINT
USING, PRINT #, PRINT # ••• USING, and PUT # .

Structure of SYFT Font Definition File

The SYFT font file must contain definitions for 32 characters. If it does not, some characters will be
constructed from the contents of the file immediately following SYFT (higher in memory). While this
will not have any harmful side effects, it is unlikely to provide useful characters. Unlike type A pro­
gram files, SYFT does not require a program header.

There are six bytes per character in SYFT, one for each of the six columns of data to be defined in the
character's 6 x 8 character cell. All six bytes can be used for dot information. The built-in Roman-8
character set leaves the rightmost column of each character blank to provide intercharacter spacing,
but that is not required.

All characters are mapped upside-down. The upper dot of a column of a character is bit 0 of the byte
containing the byte for that column. This is illustrated in the earlier picture of a 6 x 8 character cell.

To create SYFT, enter the dot patterns (upside-down) into an assembly language source file, then
assemble and link the file. Run HXC on the resulting EXE file, specifying file type A and handheld
file name SYFT .

Display 9-5

Relationship to User-Defined Keys
The HP-94 has 16 keys which have no predefined use: the alphabetic keys whose unshifted keycaps
(lower right corner) are unmarked. These are shown as f1-f16 on the keyboard layout in the "Key­
board" chapter, and correspond to character codes SOh-8Fh, half of the control codes for the upper 128
characters of the built-in Roman-8 character set.

Whether or not these keys cause the corresponding user-defined character to be echoed to the display
depends on which operating system function was used to read the keyboard. GET CHAR and READ
for channel 0 (functions Olh and 12h) do not echo user-defined characters, while GET_LINE (02h)
does. The only BASIC I/O statements that echo to the display while accepting keyboard input are
INPUT and INPUT #, and they both use GET_LINE.

Even when echoing of keyboard input occurs, it will still track the behavior of user-defined characters
- that is, echoed as blanks if no SYFT exists or if the machine is in command mode, and echoed as
user-defined characters if SYFT exists and a program is running.

9-6 Display

•

•

•

• 10

Serial Port

•

•

Chapter 10

10-1
10-1
10-2
10-2
10-2
10-5
10-5
10-7
10-8
10-9

Contents

Serial Port

Signal Levels
Enabling or Disabling the Serial Port
Initializing the Serial Port
Processing the Serial Port Data Received Interrupt
Serial Port Control and Status Registers
Built-in Serial Port Handler

Built-in Serial Port Handler Capabilities
Parameters at OPEN Time
Control Line Behavior

Operating System Functions

•

•

•

•

•

•

10

Serial Port

The HP-94 serial port is a read/write port controlled by an OK! MSM82C51A Universal Asynchro­
nous Receiver Transmitter (UART). This is a CMOS UART compatible with the Intel 825IA. (It is
actually a USART, but the 94 does not provide the additional hardware needed for synchronous opera­
tion.) The details of the UART hardware, operation, and usage are described in the Oki MSM82C51A
data sheet in the "Hardware Specifications" elsewhere in this manual.

Signal Levels
The serial port signal levels are 0 to V IX (-0-5) volts. Not all devices can operate at those levels, and
may require the HP 82470A RS-232-C Level Converter. The converter changes the 0 to V IX signal lev­
els into + 9 to -9 volts for those devices that require it. Refer to the "Hardware Specifications" for
details on the signal levels as well as the connector pinouts for the serial port and the level converter.

Enabling or Disabling the Serial Port

The 82C51 can be enabled or disabled under software control. Power is supplied to the level converter
only when it is enabled; it is only at this time that serial port has any power consumption. When the
82C51 is enabled, the 94 provides a baud rate clock at 16 times the desired baud rate. Before a pro­
gram transmits or receives with the 82C51, the UART must be set in 16x mode. When the 82C51 has
received an entire byte of serial data (including the start and stop bits) and checked for errors (parity,
framing, and UART overrun), the serial port data received interrupt (type 53h) will be issued.

Initializing the Serial Port

Below are the things that must be done to initialize the serial port in the OPEN routine of a user­
defined serial port handler.

• Take over the existing serial port interrupt vector.

• Set the baud rate clock value.

• Tum on power to the serial port, and wait 60 ms to allow the level converter to power up. This
turn-on delay may not accommodate the turn-on or reset time required by the RS-232 device con­
nected to the serial port.

(Note: when turning off the serial port, the CLOSE routine should wait 60 ms after the 82C51 is
disabled to allow signals to stabilize.)

• Reset the 82C51, and set it to the desired initial state .

Serial Port 10-1

• Enable the serial port interrupt.

Processing the Serial Port Data Received Interrupt
When the data received interrupt occurs, the following actions should be taken by the interrupt service
routine. These are in addition to whatever data processing is done in the routine, and to normal inter­
rupt routine overhead such as reading the end of interrupt register.

• Check if an 82C51 error occurred. If so, clear it.

• Read the data from the serial port data register.

NOTE While processing the display control character that homes the cursor and clears the
screen (OCh), interrupts are disabled for -45 ms. This time may be important to
serial port handlers.

Serial Port Control and Status Registers
The serial port control and status registers are summarized below.

Table 10-1. Serial Port Control and Status Registers

Register I/O Bits Read/
Name Address Used Write

Interrupt Control OOh 3 W
Interrupt Status OOh 3 R
Interrupt Clear 01h 3 W
Baud Rate Clock Value OAh 0-2 W
Main Control OBh 2 W
Main Status OBh 2 R

Serial Port Data 10h 0-7 RfW
Serial Port Control 11 h 0-7 * W
Serial Port Status 11 h 0-7 * R
* For the meaning of the bits in these registers, refer to the Oki MSM82C51A data

sheet in the "Hardware Specifications".

10-2 Serial Port

•

•

•

• 7 6 5 4 3 2 0

Serial Port Data [1: Enable
Received Interrupt 0: Disable

Figure 10-1. Interrupt Control Register (1/0 Address OOh, Write)

7 6 5 4 3 2 0

Serial Port Data [1: Interrupted
Received Interrupt 0: Did Not Interrupt

Figure 10-2. Interrupt Status Register (1/0 Address OOh, Read)

7 6 5 4 3 2 0

Serial Port Data [1: Leave Unchanged
Received Interrupt 0: Clear

• Figure 10-3. Interrupt Clear Register (1/0 Address 01h, Write)

765 4 3 2 o
x X X X X

Baud Rate (see table for meaning)

X = don't care

Figure 10-4. Baud Rate Clock Value Register (1/0 Address OAh, Write)

• Serial Port 10-3

Table 10-2. Baud Rate Clock Values

Baud Rate Baud Frequency
Clock Value Rate (kHz) *

0 19200 t 307.2
1 9600 153.6
2 4800 76.8
3 2400 38.4
4 1200 19.2
5 600 9.6
6 300 4.8
7 150 2.4

* The actual clock frequency is 16 times the desired baud rate.

t Available but not supported.

765 4 320

X X X

Serial Port [1 : Enable
Power Control 0: Disable

X = don't care

Figure 10-5. Main Control Register (I/O Address OBh, Write)

765

X

X = ignore

432 0

X X

Carrier Detect Status [1: Not Detected
0: Detected

Figure 10-6. Main Status Register (I/O Address OBh, Read)

765 432 0

Figure 10-7. Serial Port Data Register (I/O Address 10h, Read/Write)

10-4 Serial Port

•

•

•

•

•

•

Built-In Serial Port Handler
The built-in serial port handler is the one used when the serial port is opened and the null string (" ")
is provided as the handler name. This handler is always used by the C (copy) operating system com­
mand and by the resident debugger when using the serial port as the console, even when user-defined
handlers are available. The handler is designed for use with general serial devices that do not perform
hardware handshaking.

Built-In Serial Port Handler Capabilities
The built-in serial port handler provides the following capabilities:

• Full Duplex Communications
Two-way simultaneous communications.

• Received-Data Buffering
Received data is placed in a 64-byte buffer. There is no transmit buffer.

• Speeds
Speeds can be set from 150 to 9600 baud (19200 baud is available but not supported).

• Data Bits
Seven or eight.

• Parity
Odd, even, or no parity.

• Stop Bits
One or two stop bits .

• XONjXOFF Software Handshaking
When enabled, this option allows received XON (llh) and XOFF (13h) characters to start and stop
HP-94 transmissions, and causes XON and XOFF characters to be sent to start and stop host
transmissions.

• Null Stripping
When enabled, this option causes any received NUL characters (OOh) to be stripped from and not
counted as received data, and not placed in the receive buffer.

• Terminate Character Control
When defined, a received terminate character will end the wait for a fixed-length block of data,
even if all the data has not been received. A terminate character will be sent after sending every
block of data.

• Control Lines
RTS and DTR are raised when the serial port handler is opened, and lowered when the handler is
closed. crs is monitored indirectly by checking if the TxRDY status bit in the 82CS1 goes high
within three byte-times after attempting to transmit a byte. In addition, V rs (switched V cc) is sup­
plied to power the level converter when the handler is opened, and not supplied when the handler is
closed.

The table below describes how the built-in serial port handler behaves. It shows the action taken by
the handler routines as well as during its interrupt service routine, not including normal handler activi­
ties described in the "User-Defined Handlers" chapter. Note that certain actions, such as sending an
XON or responding to a received terminate character, will only occur if the appropriate options were
enabled when the handler was opened .

Serial Port 10-5

Table 10-3. Behavior of BuiH-ln Serial Port Handler •
Routine Activities

CLOSE Complete transmission of current byte
Disable interrupt 53h
Flush receive buffer
Lower RTS and DTR
Wait 60 ms for signals to stabilize
Disable 82C51 and turn off power to serial port

IOCTL Do nothing

OPEN Flush receive buffer
Enable 82C51 and supply power to level converter
Wait 60 ms for level converter turn on
Initialize operating configuration *
Raise RTS and DTR
Enable interrupt type 53h
Send single XON
Ignore parity, framing, overrun, and receive buffer overflow errors

POWERON Do nothing

READ Monitor and report low battery, power switch, and timeout errors t
Report errors detected in interrupt service routine
Send XON when receive buffer emptied
End and report error 74h (116) if terminate character detected
Return data from receive buffer

RSVD2 Do nothing

RSVD3 Do nothing • TERM Do nothing

WARM Perform all OPEN routine activities except sending XON

WRITE Monitor and report low battery, power switch, and timeout errors t
Monitor CTS indirectly and report error DAh (218) if lost
Write data to 82C51
Send terminate character at end of data

Interrupt Monitor parity, framing, overrun, and receive buffer overflow errors
Service Read data from 82C51 and accumulate data into receive buffer

Disable transmission when XOFF received
Enable transmission when XON received
Send XOFF for each byte when buffer 3/4 full
Strip nulls (DOh)

* Baud rate, data format, XON/XOFF handshaking, null stripping, and terminate character.

t System timeout restarts after each byte received or transmitted.

The errors reported by the built-in serial port handler are shown in the following table.

10-6 Serial Port •

•

•

•

Table 10-4. Errors Reported by Built-In Serial Port Handler

Routine Errors
CLOSE None

IOCTL None

OPEN 65h

POWERON None

READ 74h, 76h, 77h,CSh,C9h,CAh,CBh,CCh,CDh,CEh,CFh,DOh

RSVD2 None

RSVD3 None

TERM None

WARM None

WRITE 76h,77h,CSh,DAh

Interrupt C9h,CAh,CBh,CCh,CDh,CEh,CFh,DOh
Service *
t Detected by interrupt service routine, but reported by READ routine.

Parameters at OPEN Time
When the built-in serial port handler is opened, DS : DX must point to a three-byte parameter area.
The meanings of the parameters are shown below. In these figures, the offsets are from DS : DX.

7 6 5 432 o
o 0 000

Baud Rate (see table for meaning)

Figure 10-8. Baud Rate - Parameter Byte 1 (Offset OOh)

Table 10-5. Built-In Serial Port Handler Baud Rate Values

Value Baud Rate
0 19200 *
1 9600
2 4800
3 2400
4 1200
5 600
6 300
7 150

* Available but not supported .

Serial Port 10-7

7654321 0

IXIXI I I I I I 1

x = don't care

XONjXOFF Handshaking

Data Bits [
1: 8
0:7

[
1: Enabled
0: Disabled

P . Ch k' [1: Enabled
arity ec Ing 0: Disabled

P . T * [1: Even
arity ype 0: Odd

[
1: 2

Stop Bits 0: 1

N II S ·· [1: Enabled
u tnpplng 0: Disabled

Figure 10-9. Data Format - Parameter Byte 2 (Olfset 01h)

7 6 5 432 1 0

Figure 10-10. Terminate Character t - Parameter Byte 3 (Olfset 02h)

The default values for the parameters are Olh (9600 baud), ODh (XONjXOFF enabled, 7 data bits,
parity checking enabled, even parity, one stop bit, and null stripping disabled), and OOh (no terminate
character).

Control Line Behavior
The 82eSl can monitor or control only a subset of the standard RS-232 control lines. Of those lines
not monitored, one can be monitored indirectly, and one can be monitored using other HP-94
hardware. Not all these hardware capabilities are actually used by the built-in serial port handler. The
usage is summarized below .

• The parity type is ignored if parity checking is disabled.

t To disable use of the tenninate character, set it to zero.

10-8 Serial Port

•

•

•

•

•

•

Table 10-6. Control Line Behavior

Control Line Monitored or Monitored or
Controlled By Controlled By

Symbol Name Hardware Built-In Handler
CTS clear to send monitored * monitored *
DSR data set ready monitored not monitored
DCD data carrier detect monitored not monitored

RTS request to send controlled controlled
DTR data terminal ready controlled controlled

* Monitored indirectly by checking if the TxRDY status bit in the 82C51 goes high within three
byte-times after attempting to transmit a byte.

A user-defined serial port handler could use all the lines supported by the hardware. Refer to the
"User-Defined Handlers" chapter for details on how to write a user-defined serial port handler.

When the serial port is disabled, the control lines are turned off (set to 0 volts).

Operating System Functions
The serial port software implements the following operating system functions:

Table 10-7. Serial Port-Related Operating System Functions

Function Function
Name Code

BUFFER STATUS 06h -OPEN OFh
CLOSE 10h
READ 12h
WRITE 13h

Serial Port 10-9

• 11

Bar Code Port

•

•

Chapter 11

11-1
11-1
11-1
11-2
11-2
11-3

Contents

Bar Code Port

Bar Code Port Power and Transition Detection
Bar Code Timer
Initializing the Bar Code Port
Processing the Bar Code Port Transition Interrupt
Bar Code Port Timing Constraints
Bar Code Port Control and Status Registers

•

•

•

•

•

•

11

Bar Code Port

The HP-94 bar code port is a read-only port designed to connect to bar code scanning devices such as
wands. The port provides power to the external device. Interrupt control, timing for light and dark
transitions, and light or dark state is available to programs reading bar code data.

Bar Code Port Power and Transition Detection
The main control register is used to enable power to the bar code port (and to the device attached to
it) and, independently, to enable transition detection at the port. Once the port is powered and detect­
ing transitions, interrupt type 52h will be issued whenever a transition occurs at the port - either
light-to-dark or dark-to-light. When the interrupt occurs, the light or dark state is indicated by reading
the main status register.

Bar Code Timer
The bar code timer is a 12-bit count-up timer with a 261£S interval. This resolution allows timing inter­
vals from 261£S to 106.7 ms. Because it is a count-up timer, it must be set using the complement of the
desired number of intervals. When the timer overflows (counts up to zero), interrupt type 51h is gen­
erated. This is usually used to indicate the end of a scan.

When the timer reaches zero, it is automatically reset to its starting value and restarted. If the count
value has to be set to a specific value, the timer must be stopped first. Unlike the system timer, the bar
code timer can be reset to zero while it is still running.

When the bar code port transition interrupt occurs, the timer value can be captured (i.e., placed in the
timer data registers where it can be read) to indicate how long the bar code port has been at the
current state. Then the timer can be reset to zero to continue counting up for the next transition. The
value can be captured while the timer is still running.

Initializing the Bar Code Port
Below are the things that must be done to initialize the bar code port.

• Take over the existing bar code port transition and timer interrupt vectors.

• Turn on power to the bar code port, and enable transition detection.

• Set the bar code timer to the desired initial value (or clear it), and start the timer.

• Enable the bar code port transition and timer interrupts.

Some of the initialization activities will be done in the OPEN routine of a bar code port handler, while

Bar Code Port 11-1

others will be done in the READ routine. This will be discussed shortly.

Processing the Bar Code Port Transition Interrupt
When the transition interrupt occurs, the following actions should be taken by the interrupt service rou­
tine. These are in addition to whatever data processing is done in the routine and to normal interrupt
routine overhead such as reading the end of interrupt register.

• Capture the current timer value into the timer data registers (04h and OSh) by writing to the timer
value capture register (07h).

• Read the captured timer data from the timer data registers.

• Reset the timer to the desired value. If it is a specific value, stop the timer with the timer control
register (06h), set the values, and restart it. If it is only necessary to clear the timer, do so by writing
to the timer clear register (08h).

• Determine if the state after the transition is light or dark by reading the main status register (OBh).

Bar Code Port TIming Constraints
The bar code port transition interrupt occurs on every transition. This requires an order of magnitude
more processing time than the serial port, since its interrupt occurs only after the 82CSl has received
10-12 transitions (bits) of serial data. Experience has shown that it is unlikely that a bar code port
handler can be run "in the background" to simply fill a receive buffer. When other interrupts occur, the
CPU interrupt flag will be cleared while the corresponding interrupt service routine executes. This
results in periods of time when bar code port transition interrupts occur but cannot be processed, and
therefore may be missed.

To deal effectively with these timing constraints, a bar code port handler should only process bar code
data during its READ routine. The transition and timer interrupts should only be enabled then, and
certain other interrupts should be disabled to prevent transitions from being missed. The machine
should essentially become dedicated to the sole task of reading bar code transitions for the duration of
the READ operation. This is in contrast to a serial port handler, which can run "in the background",
save data in its receive buffer when interrupts occur, and return the data in the buffer when its READ
routine is called.

The particular interrupts that should be disabled are the system timer (SOh) and serial port data
received (S3h). The latter has the side effect that data cannot be received by the serial port while bar
code labels are being scanned. The former has the side effect that the events paced by the system timer
will not occur for the period of time that the timer interrupt is disabled. Refer to the "Timers" chapter
for details. There are utility routines available to perform some of these tasks (scan keyboard and
blink cursor) without clearing the CPU interrupt flag. Refer to the appendixes for details.

The low main battery voltage (54h) and power switch (SSh) interrupts should remain enabled, since
those events need to be monitored by the handler to determine if it should abort a read operation.

11-2 Bar Code Port

•

•

•

•

•

•

NOTE While processing the display control character that homes the cursor and clears the
screen (OCh), interrupts are disabled for -45 ms. While checking to see if the beeper
needs to be turned off, interrupts are disabled for - 50 IJS. These times may be impor­
tant to bar code port handlers.

Bar Code Port Control and Status Registers
The bar code port control and status registers are shown below.

Table 11-1. Bar Code Port Control and Status Registers

Register I/O Bits Read/
Name Address Used Write

Interrupt Control OOh 1-2 W
Interrupt Status OOh 1-2 R
Interrupt Clear 01h 1-2 W

Bar Code Timer Data 04h 0-7 RjW
Bar Code Timer Data 05h 0-3 RjW
Bar Code Timer Control 06h 0 W
Bar Code Timer Value Capture 07h None W
Bar Code Timer Clear 08h None W

Main Control OBh 3-4 W
Main Status OBh 0 R

7654320

Bar Code Timer Interrupt [~~ ~~~~~
Bar Code Port [1: Enable
Transition Interrupt 0: Disable

Figure 11-1. Interrupt Control Register (I/O Address OOh, Write)

Bar Code Port 11-3

7 6 5 4 3 2 0

. [1: Interrupted
Bar Code Timer Interrupt 0: Did Not Interrupt

Bar Code Port [1: Interrupted
Transition Interrupt 0: Did Not Interrupt

Figure 11-2. Interrupt Status Register (I/O Address OOh, Read)

7 6 5 4 3 2 0

Bar Code Timer Interrupt [~~ ~~::~ Unchanged

Bar Code Port [1: Leave Unchanged
Transition Interrupt 0: Clear

Figure 11-3. Interrupt Clear Register (I/O Address 01 h, Write)

7 6 543 2 0

Figure 11-4. Bar Code Timer Data Register * (I/O Addres. 04h, Read/Write)

7 6 543 2 1 0

X X X X

X = ignore

Figure 11-5. Bar Code Timer Data Register t (I/O Address 05h, Read/Write)

• Lower 8 bits of the 12-bit timer value.

tUpper 4 bits of 12-bit timer value.

11-4 Bar Code Port

•

•

•

•

•

•

7 6 5 4 3 2 1 0

x x x x x x

St rtjSt [1 : Start
a op 0: Stop

x = don't care

Figure 11-6. Bar Code Timer Control Register (I/O Address 06h. Write)

7 6 5 4 321 0

x X X X X X X X

X = don't care

Figure 11-7. Bar Code Timer Value Capture Register (I/O Address 07h. Write)

7 6 5 432 0

X X X X X X X X

X = don't care

Figure 11-B. Bar Code Timer Clear Register (I/O Address OBh. Write)

6 432 1 0

Bar Code Port [1: Enable
Power Control 0: Disable

Bar Code Port [1: Enable
Transition Control 0: Disable

X = don't care

Figure 11-9. "ain Control Register (I/O Address OBh. Write)

Bar Code Port 11-5

7 6

x

x = ignore

5 4 3

x
2 o

[
1: Light

Bar Code Port Status 0: Dark

Figure 11-10. lIain Status Register (I/O Address OBh, Read)

11-8 Bar Code Port

•

•

•

• 12

Timers

•

•

Chapter 12

12-1
12-2
12-2
12-3
12-3
12-4
12-7

Contents

Timers

System Timer
System Timeout
Display Backlight Timeout
Background Timer

Bar Code Timer
Timer Control and Status Registers
Operating System Functions

•

•

•

•

•

•

12

Timers

The HP-94 has two timers available other than the real-time clock: the system timer and the bar code
timer. These use a different time base than the real-time clock, and their accuracy is ± 0.1 %.

Table 12-1. HP-94 Timers

Timer No. of Time Timer Overflow Overflow .. aximum
Name Bits Interval Type Interval Interrupt Time
System 8 0.417 ms up 5ms 50h 106.7 ms

BarCode 12 26~ up - * 51h 106.7 ms
* Not defined by the operating system. Defined only by bar code port handler.

System Timer
The system timer is an 8-bit count-up timer with an interval of 0.417 ms. It is initialized to -12 (-Deh) ,
so it overflows (counts up to zero) every 5 ms (12 • 0.417 = 5 ms, complemented because it is a count­
up timer). When the system timer overflows, interrupt type SOh is generated. This interrupt is used to
pace six different events in the operating system, shown below. While these events are checked and
appropriate action is taken, interrupts are enabled except during the beeper event.

Table 12-2. Events Checked By System Timer Interrupt Routine

Timing How Often How Often
Event Event Checked Action Taken

Scan Keyboard 5ms Put key into key buffer after 25 ms debounce
Start key repeat if key still down after 675 ms
Repeat key every 115 ms

Turn Off Beeper 10 ms Turn beeper off after current beep time expires

Blink Cursor lOOms Blink cursor every SOO ms
System Timeout 1 s Turn off machine or execute user-defined

power switch/timeout routine after current
system timeout expires

Display Backlight 1 s Turn off backlight after current backlight
Timeout timeout expires

Background Timer 1 s Execute background timer interrupt routine
every 1 s

Timers 12-1

NOTE While the beeper is checked to see if it needs to be turned off, interrupts are disabled
for - 50 J.LS. This time may be important to bar code port handlers.

System Timeout
The system timeout is the time after which the machine will automatically turn off. It can be set from
0-1800 seconds using the TIMEOUT function (09h). The timeout is in effect while the machine is
waiting for keyboard input or for data to be received at the serial or bar code ports. It will abort read
operations from channels 0-4 and write operations to channels 1-4. It will not abort create, read, write,
or delete operations for channels 5-15. The operating system will take one of the following actions
when the system timeout expires:

• Turn off the HP-94.
This is the default behavior if the program has not defined a power switch/timeout routine using
the SET _ INTR function (DAh). The next time the machine is turned on, it will cold start.

• Execute the user-defined power switch/timeout interrupt routine.
If the program has defined a power switch/timeout routine with SET INTR, that routine will be
executed with a FAR CALL (and therefore must end with a FAR RET)-:-The AL register will be set
to 76h, the timeout error, and the DS register will be set to the value specified when SET INTR
was called. This will only occur during a running program, not in command mode. When thneouts
are monitored during I/O by a user-defined handler, the handler must execute the user-defined
interrupt routine.

• Ignore the system timeout.
If the program has disabled the system timeout by setting the timeout value to 0 with TIMEOUT,
the operating system will ignore the system timeout.

The TERM routine of any open user-defined handlers will not be executed. Since each handler must
monitor the system timeout itself, that handler will be the only one waiting on I/O when the timeout
expires. Consequently, it is the only one that needs to terminate I/O.

Display Backlight Timeout
The display backlight timeout is the time after which the machine will automatically turn off the display
backlight. This timeout is in effect whenever the backlight is on. It can be set from 0-1800 seconds
using the TIMEOUT function.

When the display control code is processed to turn on or off the display backlight, the operating system
controls the backlight state when keyboard scanning is done. If the system timer is disabled, no scan­
ning is done, so the backlight will not be controlled. If a program disables the system timer, it must
turn on the backlight explicitly using the keyboard control register, and then turn the backlight off
explicitly after the timeout expires.

12-2 Timers

•

•

•

•

•

•

CAUTION Leaving the display backlight on continuously or for long periods of time (greater
than 5 minutes) will reduce the life of the backlight.

Background Timer
The background timer is a one-second heartbeat timer that the machine provides for assembly
language programs to use. Once a second, the operating system will issue a FAR CALL to the address in
interrupt vector 1Ch, the background timer interrupt.

To take over the background timer interrupt, the program must do the following:

• Read the background timer interrupt vector (address 1Ch * 4 = 00070h) , and save it in the
program's scratch area.

• Write the address of the program's background timer interrupt routine into the vector location. The
instruction pointer (IP) offset should be stored at the first word, and the code segment (CS)
address should be stored at the second word.

To use the background timer interrupt, the program must do the following:

• When the interrupt routine is called, perform whatever processing is necessary.

• At the end of the routine, execute a FAR JMP to the address of the previous background timer
interrupt routine.

The FAR JMP has the effect of daisy-chaining all the background timer interrupt routines together,
allowing different programs to share the same interrupt. The last routine in the chain is the default
routine, which is simply a FAR RET to end the aggregate background timer interrupt.

If the background timer does not provide enough resolution (1 second) for the program, the program
can take over the system timer interrupt (vector at address 50h * 4 = 00l40h) in the same manner
(save the current interrupt vector, and FAR JMP to it at the end of the interrupt routine). This will
provide a 5 ms timing resolution.

CAUTION The background timer routine must not clear the CPU interrupt flag (CLI). Doing
so may cause interrupts from hardware devices to be delayed long enough that
time-critical interrupt service routines (for open user-defined handlers) may miss
their data.

Bar Code Timer
The second timer is the bar code timer, a 12-bit count-up timer with an interval of 26 J.LS. It is reserved
for use by bar code port handlers, so it is never initialized to any value by the operating system. Like
the system timer, it must be set using the complement of the desired number of intervals. When it
overflows, interrupt type 5lh is generated.

When either timer reaches zero, the timer is automatically reset to its starting value and restarted. If

Timers 12-3

the count value has to be set to a specific value, the timer must be stopped first, The bar code timer
can be reset to zero or have its current value captured while it is still running,

Timer Control and Status Registers
The timer control and status registers are shown below,

Table 12-3. Timer Control and Status Registers

Register I/O Bits Read/
Name Address Used Write

Interrupt Control OOh 0-1 W
Interrupt Status OOh 0-1 R
Interrupt Clear 01h 0-1 W

System Timer Data 02h 0-7 RfW
System Timer Control 03h 0 W

Bar Code Timer Data 04h 0-7 RfW
Bar Code Timer Data 05h 0-3 RfW
Bar Code Timer Control 06h 0 W
Bar Code Timer Value Capture 07h None W
Bar Code Timer Clear 08h None W

7 6 5 4 3 2 0

System Timer I"terrupt [1: Enable
0: Disable

B Cod T' I t [1: Enable ar elmer nterrup 0: Disable

Figure 12-1. Interrupt Control Register (I/O Address OOh, Write)

7 6 5 4 3 2 1 0

, [1 : Interrupted
System Timer Interrupt OD'd N tit t : Ion errup

, [1: Interrupted
Bar Code Timer Interrupt 0: Did Not Interrupt

Figure 12-2. Interrupt Status Register (I/O Address OOh, Read)

12-4 TImers

•

•

•

7 6 5 4 3 2 0

•
System Timer Interrupt

[1: Leave Unchanged
0: Clear

B Cod r Itt [1: Leave Unchanged
ar elmer n errup 0: Clear

Figure 12-3. Interrupt Clear Register (I/O Address 01h. Write)

7 6 5 4 3 2 1 0

Figure 12-4. System Timer Data Register (I/O Address 02h. Read/Write)

7 6 5 4 3 2 1 0

X X X X X X X I~
StartjSto [1 : Start

p 0: Stop

• X = don't care

Figure 12-5. System Timer Control Register (I/O Address 03h. Write)

• Timers 12-5

7 6 5 432 1 0

Figure 12-6. Bar Code Timer Data Register * (I/O Address 04h, Read/Write)

7654320

X X X X

X = ignore

Figure 12-7. Bar Code Timer Data Register t (I/O Address OSh, Read/Write)

7 6 5 4 3 2 1 0

X X X X X X

St rtjSt [1 : Start
a op 0: Stop

X = don't care

Figure 12-8. Bar Code Timer Control Register (I/O Address 06h, Write)

76543 2 1 0

X X X X X X X X

X :: don't care

Figure 12-9. Bar Code Timer Value Capture Register (I/O Address 07h, Write)

7 6 5 4 3 2 1 0

X X X X X X X X

X = don't care

Figure 12-10. Bar Code Timer Clear Register (I/O Address 08h, Write)

• Lower 8 bits of the 12-bit timer value.

tUpper 4 bits of 12-bit timer value.

12-6 Timers

•

•

•

• Operating System Functions
The timer software implements the following operating system functions:

Table 12-4. Timer-Related Operating System Functions

Function Function
Name Code

TIMEOUT 09h
SET INTR OAh

•

• Timers 12-7

• 13

Power Switch

•

•

Contents

Chapter 13 Power Switch

13-1 Power Control and Status Registers
13-2 Operating System Functions

•

•

•

•

•

•

13

Power Switch

The HP-94 power switch provides software control for turning the machine off. When the HP-94 is off,
pressing the power switch turns the machine on. When the machine is on, pressing the power switch
generates interrupt type 55h. The power switch interrupt will abort read operations from channels 0-4
and write operations to channels 1-4. It will not abort create, read, write, or delete operations for
channels 5-15. The operating system will take one of the following actions in response to this interrupt:

• Turn off the HP-94.
This is the default behavior if the program has not defined a power switch/timeout interrupt rou­
tine using the SET _ INTR function (~Ab). The next time the machine turns on, it will cold start.

• Execute the user-defined power switch/timeout routine.
If the program has defined a power switch/timeout interrupt routine with SET _ INTR, that rou­
tine will be executed with a FAR CALL (and therefore must end with a FAR RET). The AL register
will be set to 77h, the power switch error, and the OS register will be set to the value specified
when SET _ INTR was called. This only occurs when the power switch is pressed during a running
program, not in command mode.

• Ignore the power switch.
If the program has disabled the power switch with SET _ INTR, the operating system will respond
to the interrupt but take no action, thereby ignoring the power switch .

In the first two cases, the TERM routine of any open user-defined handlers will be executed before the
action is taken.

To turn the machine off, the operating system writes to the power control register.

Power Control and Status Registers
The power control and status registers are shown below.

Table 13-1. Power Control and Status Registers

Register I/O Bits Read/
Name Address Used Write

Interrupt Control OOh 5 W
Interrupt Status OOh 5 R
Interrupt Clear 01h 5 W
Power Control 1Bh None W

Power Switch 13-1

7 6 5 4 3 2 0 •
Power Switch Interrupt [1: Enable

0: Disable

Figure 13-1. Interrupt Control Register (1/0 Address OOh. Write)

7 6 5 4 3 2 1 0

. [1: Interrupted
Power Switch Interrupt 0: Did Not Interrupt

Figure 13-2. Interrupt Status Register (1/0 Address OOh, Read)

7654320

Power Switch Interrupt [~~ ~~::~ Unchanged

Figure 13-3. Interrupt Clear Register (1/0 Address 01h. Write) • 76543 210

x X X X X X X X

X = don't care

Figure 13-4. Power Control Register (1/0 Address 1Bh, Write)

Operating System Functions
The power switch software implements the following operating system functions:

Table 13-2. Power Switch-Related Operating System Functions

Function Function
Name Code

END PROGRAM OOh
SET INTR OAh

13-2 Power Switch •

• 14

Batteries

•

•

Chapter 14

14-1
14-2
14-2
14-4

Contents

Batteries

Main Nickel-Cadmium Battery Pack
Backup Lithium Batteries
Battery Control and Status Registers
Operating System Functions

•

•

•

•

•

•

14

Batteries

The HP-94 contains two types of batteries: nickel-cadmium batteries as the main power source, and
lithium batteries for memory backup. Details about the characteristics of these batteries is in the
"Hardware Specifications" elsewhere in this manual.

Main Nickel-Cadmium Battery Pack

The main power source for the machine is a rechargeable nickel-cadmium (NiCd) battery pack with a
nominal capacity of 900 mAh. The machine operating voltage (which is slightly below the battery pack
voltage) is continuously checked by the low battery detection circuitry whenever the machine is on.
When the operating voltage drops to 4.6 ± 0.05 volts or below, interrupt type 54h is generated. The
low battery interrupt will abort read operations from channels 0-4 and write operations to channels 1-4.
It will not abort create, read, write, or delete operations for channels 5-15. The operating system will
take one of the following actions in response to this interrupt:

• Halt all machine activities, issue error 200, and wait for the user to press the power switch to turn
the machine off.
This is the default behavior if the program has not defined a low battery interrupt routine using the
SET _ INTR function (OAb). The following activities are halted:

Table 14-1. Activities Halted During Default Low BaHery Behavior

Activity Action
or Device Taken

Cursor Turned Off
Interrupts Disabled
System Timer Turned Off
Bar Code Timer Turned Off
Beeper Turned Off
Keyboard Disabled
Display Backlight Turned Off
Serial Port Disabled
Serial Port Power Turned Off
Bar Code Power Turned Off
Bar Code Transitions Disabled

The next time the machine is turned on, it will cold start.

• Execute the user-defined low battery routine.
If the program has defined a low battery interrupt routine with SET INTR, that routine will be
executed with a FAR CALL (and therefore must end with a FAR RET). The DS register will be set
to the value specified when SET _ INTR was called. This only occurs during a running program,

BaHeries 14-1

not in command mode.

In both cases, the TERM routine of any open user-defined handlers will be executed before the action
is taken. SET _ INTR does not allow disabling the low battery interrupt.

The low battery interrupt only occurs once, when the main battery voltage drops below 4.6 volts. At
that point, the program has 2-5 minutes left before the battery voltage drops so low that the machine
turns itself off automatically without warning. The low battery interrupt will not occur again until the
machine has been turned off and back on. If the battery remains below 4.6 volts while the 94 is off, the
machine will not turn back on again until the battery has been recharged enough to bring its voltage
above that level (-4.8 volts). (The machine actually turns on, but the operating system turns it off
before any memory integrity tests are performed if the voltage is too low.)

The actual amount of time available depends on what is happening when the low battery condition
occurs. For example, the display backlight takes more power, as does the HP 82470A RS-232-C Level
Converter (if one is connected to the serial port), so less operating time will be available if these are
on. The time also depends on how much the battery was charged during its last charging cycle, the
ambient temperature, and many other factors. Because the remaining operating time is variable, the
program should respond to the low battery interrupt as rapidly as possible by ending its activities (shut
off I/O and powered devices, complete me updates that were in progress, etc.), notifying the user that
it is necessary to recharge the main battery, and turning the power off.

If the program continues operating until the machine turns itself off automatically, the effect is as if the
reset switch was pressed. No data in data files will be lost, since the backup batteries will keep memory
intact, but the machine will cold start the next time it is turned on. This means that any data in program
variables or scratch areas that did not get saved in a data file will be lost.

Backup Lithium Batteries
The backup power source is user-replaceable 3-volt lithium backup batteries, CR-2032 or equivalent.
There is one lithium battery for each major block of RAM: one for the first 64 or 128K (which also
backs up the real-time clock), one for the 128K memory board, and one for the 40K RAM card. The
mainframe lithium batteries are accessible through the back cover, and the RAM card battery is under
a cover on the card. These batteries are only used to preserve the contents of memory when the main
NiCd battery pack is completely discharged or disconnected (and there is no recharger connected).
They are not used when other power sources are available to preserve memory.

Their state is checked and reported only when the machine is turned on, after all memory integrity
tests are performed. Error 210 is reported at power on to indicate low voltage (2.7 volts) of the battery
for the first 64 or 128K, while error 211 is reported for the memory board or RAM card battery. Both
errors will be reported if both batteries need replacing.

Battery Control and Status Registers
The battery control and status registers are shown below.

14-2 Batteries

•

•

•

•

•

•

Table 14-2. BaHery Control and Status Registers

Register
Name

Interrupt Control
Interrupt Status
Interrupt Clear
Main Status

7654321 0

I/O Bits
Address Used

OOh 4
DOh 4
01h 4
OBh 4-6

Low Main Battery [1: Enable
Voltage Interrupt 0: Disable

Read/
Write

W
R
W
R

Figure 14-1. Interrupt Control Register (I/O Address OOh, Write)

7 6 5 432 1 0

Low Main Battery [1: Interrupted
Voltage Interrupt 0: Did Not Interrupt

Figure 14-2. Interrupt Status Register (I/O Address OOh, Read)

7 6 5 432 1 0

Low Main Battery [1: Leave Unchanged
Voltage Interrupt 0: Clear

Figure 14-3. Interrupt Clear Register (I/O Address 01h, Write)

BaHeries 14-3

654 2 o •
Main Memory [1 : Voltage OK
Backup Battery Status 0: Low Voltage

Memory Board or RAM Card [1: Voltage OK
Backup Battery Status 0: Low Voltage

. [1 : Voltage OK
Main Battery Status 0: Low Voltage

x = ignore

Figure 14-4. "ain Status Register (1/0 Address OBh, Read)

Operating System Functions
The battery software implements the following operating system functions:

Table 14-3. BaHery-Related Operating System Functions

Function Function
Name Code

SET INTR OAh •

14-4 BaHeries •

• 15

Real-Time Clock

•

•

Contents

Chapter 15 Real-Time Clock

15-1 Real-Time Clock Control and Status Registers
15-1 Operating System Functions

•

•

•

•

•

•

15

Real-Time Clock

The HP-94 contains an Epson RTC-58321 real-time clock. Its quartz crystal operates at 32768 Hz, and
is backed up by the main memory lithium backup battery if the main NiCd battery is completely
discharged or removed. The clock has a one-second resolution, and is accurate to ± 50 ppm (-2
minutes/month). The clock supports time, date, and day-of-week functions, but the clock software in
the operating system only supports time and date, as well as the T (time) operating system command.
Leap years are accommodated automatically. The details of the real-time clock hardware, operation,
and usage are described in the Epson RTC-58321 data sheet in the "Hardware Specifications".

The operating system provides the TIME_DATE function (08h) to set or read the time and date. No
syntax checking is performed on the time and date when they are set. It is the responsibility of the
application program to ensure that the time and date are in the proper format when they are set.

Real-Time Clock Control and Status Registers
The real-time clock control and status registers are shown below .

Table 15-1. Real-Time Clock Control and Status Registers

Register I/O Bits Read/
Name Address Used Write

Real-Time Clock Control/Data OCh 0-7 * W
Real-Time Clock Status/Data OCh 0-4 * R

* For the meaning of the bits in these registers, refer to the Epson RTC-58321 data
sheet in the "Hardware Specifications".

Operating System Functions
The real-time clock software implements the following operating system functions:

Table 15-2. Real-Time ClOCk-Related Operating System Functions

Function Function
Name Code

TIME DATE 08h

Real-Time Clock 15-1

• 16

Beeper

•

•

Contents

Chapter 16 Beeper

16-1 Beeper Control and Status Registers
16-2 Operating System Functions

•

•

•

• 16

•

•

Beeper

The HP-94 beeper is a piezoelectric buzzer that is turned on and off using the main control register. If
a program turns the beeper on explicitly, it is responsible for turning it off as well after the appropriate
duration. If a program uses the operating system BEEP function (OTh), the operating system will turn
the beeper off automatically after the specified time has elapsed.

The BEEP function allows specifying beep durations from 0.1 to 25.5 seconds, and either high or low
tones. It can be called while the beeper is beeping. If the tone specified is different than the tone in
progress, beeping will continue at the high tone and duration - the high tone and its duration will
take precedence regardless of the order in which the tones were specified. If the tone specified is the
same as the tone in progress, beeping will continue at either the remaining duration or the new dura­
tion, whichever is longer.

Beeper Control and Status Registers
The beeper control and status registers are shown below .

Table 16-1. Beeper Control and Status Registers

Register
Name

Main Control

76543 2 0

x X X

X = don't care

I/O Bits
Address Used

OBh 0-1

[

11 : Low Tone
Beeper Control 01: High Tone

00: Off

Read/
Write

W

Figure 16-1. "ain Control Register (I/O Address OBh, Write)

Beeper 16-1

Operating System Functions
The beeper software implements the following operating system functions: •

Table 16-2. Beeper-Related Operating System Functions

Function Function
Name Code

BEEP 07h

•

16-2 Beeper •

• 17

Reset Switch

•

•

•

•

•

17

Reset Switch

The HP -94 has a smaIl reset switch to the left of the power switch. Since the power switch is under
program control, it is possible for a program to inadvertently prevent the user from turning off the
machine. The reset switch is provided to accommodate this situation.

The reset switch is a hardware power off, not a software power off. When the reset switch is pressed,
the machine is turned off immediately. No data in data files will be lost, since the backup batteries will
keep memory intact, but the machine will cold start the next time it is turned on. This means that any
data in program variables or scratch areas that did not get saved in a data file will be lost.

The TERM routine of any open user-defined handlers will not be executed, and no power-off check­
sums will be computed. The next time the machine is turned on, it will not compute power-on check­
sums (although the other memory integrity tests will be performed) .

Reset Switch 17-1

• 18

Other Hardware

•

•

Chapter 18

18-1
18-1
18-1
18-2
18-2

Contents

Other Hardware

Read/Write Memory (RAM)
System ROM
Custom Gate Array
Earphone Jack
External Bus Connector

•

•

•

• 18

•

•

Other Hardware

The HP-94 has some other hardware elements that will be discussed here: read/write memory
(RAM), system ROM, custom gate array, earphone jack and external bus connector.

Read/Write Memory (RAM)
HP-94 read/write memory is Toshiba TC5565FL-15L CMOS static RAM (8K x 8). Refer to the
"Memory Management" chapter for a detailed description of the memory organization. Major
hardware blocks of memory are backed up by user-replaceable lithium backup batteries; refer to the
"Batteries" chapter for details.

System ROM
The HP-94 has 32K of EPROM located in the upper 32K of the CPU address space. The system ROM
contains all the HP-94 built-in software. Refer to the "Memory Management" chapter for a detailed
description of the system ROM organization .

Custom Gate Array
The HP-94 contains a proprietary Hitachi 61L224 custom gate array that combines what would other­
wise be several separate integrated circuits (ICs). The following is a list of the major hardware facilities
provided by the gate array:

• Interrupt controller for HP-94 hardware interrupts.

• Hardware control registers (except for keyboard, display, and 82C51).

• Power off control.

• System timer.

• Serial port power and baud rate clock.

• Bar code port power control, transition detection, and timer.

• Real-time clock control.

• Beeper tone.

• Chip select address decoding.

• Address/data bus latches.

• Status of data carrier detect (DCD) control line .

Other Hardware 18-1

Earphone Jack
The earphone jack accepts any standard earphone with a 3.5 mm plug. It allows the user of the
machine to hear the beeper (particularly for applications using bar code) in noisy environments.

External Bus Connector
The external bus connector is located on the underside of the HP-94 behind a hard plastic port cover.
It brings out all lines from the internal system bus. Details about the external bus connector (pin
assignments, voltages, currents, and logic levels are described in the "Hardware Specifications".

18-2 Other Hardware

•

•

•

• Part 2

BASIC Interpreter

•

•

• 1

BASIC Program and Data Structure

•

•

Chapter 1

1-1
1-2
1-4
1-4
1-6
1-9

1-13
1-13
1-13
1-14
1-14
1-15
1-16

Contents

BASIC Program and Data Structure

BASIC Program Organization
BASIC Program Outline
Intermediate Code
Operand Codes

Explanation of Operand Codes
Variable Area
Data Structure

Real Numeric Data
Integer Numeric Data
Character Data
Array Data
Array Examples

Control Information Save Area

•

•

•

•

•

•

1

BASIC Program and Data Structure

BASIC application programs (type B) are interpreted by the HP-94 BASIC interpreter (SYBI). The
BASIC application program may be in either RAM or ROM.

BASIC Program Organization
The following figure shows the organization of a BASIC program.

r------------.+- Paragraph boundary
Program Header

Program Code

Variable Descriptor Table

Figure 1-1. BASIC Program Organization

A variable area is necessary to execute a BASIC program. A control information save area is necessary
when a CALL statement or an interrupt process routine is executed. The variable area and the control
information save area are dynamically allocated in main memory.

BASIC Program and Data Structure 1-1

BASIC Program Outline

BASIC programs start with a lOh byte program header. The contents of the header are shown below
with hex offsets listed on the left side and a brief description on the right. The program code and vari­
able descriptor table are also shown to illustrate their location and size.

OOh
Program Size 10h + t + v

02h
Identifier "BP"

04h
Size of the variable area In paragraphs

06h
Variable Descriptor Table Address 10h + t

08h
First DATA Statement Offset o when no DATA statements

OAh
OPTION BASE Information o when OPTION BASE 0, otherwise 1

OCh
Program Name Four characters

10h
Program Code t bytes

10h + t
Variable Descriptor Table v bytes

10h + t + v

Figure 1-2. Program Header

The following figure shows the organization of the BASIC program code.

Length Line Number Code eol
(1 byte) (2 bytes) (n bytes) (1 byte)

eof

Figure 1-3. Program Code

The information contained in a line of program code is:

• Length: number of bytes in a line = 1 + 2 + n + 1 (must be less than 256).

• Line Number: 0 through 32767 (OOOOh through 7FFFh, least significant 8 bits ftrst).

• eol (end of line) and eof (end of me) are the NUL character (OOh).

• Some lines, such as comments, generate no program code.

1-2 BASIC Program and Data Structure

•

•

•

•

•

•

Type
(1 byte)

Length
(1 byte)

Segment Address
(2 bytes)

Figure 1-4. Variable Descriptor Table

Offset Address
(1 byte)

The variable descriptor table contains information about the type, length, and address of each variable.
The figure above illustrates the table organization. The meanings of the fields are as follows:

• Type:

765

• Length:

43210

o I I I I
L parameter [

1: formal parameter
0: not formal parameter

bin

character

array

[
1: integer
0: real

[
1: character
0: numeric

[
1: array variable
0: simple variable

Figure 1-5. Variable Descriptor Type Byte

Table 1-1. Variable Descriptor Length Byte

Type
Integer

Real
Character
Parameter

Array

Length in Bytes
2
8

Dimensioned size (default 8)
5*

Size of one array element

* This entry points to another descriptor entry which contains the actual informa­
tion for the variable.

• Segment Address, Offset Address:
The segment address and offset address are a pointer to the variable data in the user variable area.
They are relative to the start of the variable area. The first byte of the segment address field con­
tains the least significant 8 bits of the segment address. The offset address contains values in the
range OOh through OFh. When the parameter bit is 1, the segment and offset addresses are the
address of the variable descriptor entry for the parameter .

BASIC Program and Data Structure 1-3

Intermediate Code • Codes interpreted by the HP-94 BASIC interpreter are called intermediate code.

Table 1-2. Intermediate Code

Ox 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Ox Ex Fx

xO eol >= LET GET SOR FIXS OMS
x1 <= GOTO PUT EXP FIX9 ARD
x2 bin <> GOSUB PARAM LOG MAX ADS
x3 ral > RETURN %CALL TAB LGT MIN FIXE
x4 chr < FOR DEF XOR SGN RND TIM
x5 var , NEXT READ %CURSOR ABS EOF PI
x6 prm ; IF DATA %HOME INT INPUT$ VER
x7 fnc : ON RESTORE %DEL LEN TOD$ KEY
x8 ext (# DIM AND lOX SIN HEX$

x9 lin) INPUT OR NUM COS SIZE
xA adr + PRINT NOT COD TAN
xB - CALL TO STR$ ASN
xC rem ** END STEP CHR$ ACS
xD * FORMAT USING ASC$ ATN
xE / OPEN MSG MOD FRC
xF = CLOSE SPACE FIXO RAD

Note: A blank entry in the table indicates an unused code. •
Table 1-3. Intermediate Code Groups

Code Group Range of Codes
Operand OOh-17h

Delimiter 18h-2Fh

Statement 30h-47h
Optional Word 73h-7Fh

Function 8Oh-A9h

Operand Codes
The symbols and formats for the various members of the operand code group are listed below.

1-4 BASIC Program and Data Structure •

• Table 1-4. Operand Codes

Code Symbol Format Comments

OOh eol INULI End of line

02h bin I bin IVALUE (L), (H) I Integer constant

03h raI I ral I real char string INULI Real type constant

04h chr I chr I char string INULI Character constant

05h var I var IADRS (L), (H) I Variable

06h prm I prm I ADRS (L), (H) I User~efined function parameter

07h fnc I fnc IADRS (L), (H) I User~efined function

The ADRS after var, prm, and fnc is the
appropriate position in the variable descrip-
tor table

• OSh ext I ext I external procedure name I NUL I Entry name (CALL and %CALL)

09h lin I lin IADDR (L), (H) I Text line address reference

lin is used by FORMAT, GOTO, GOSUB,
and USING.

The ADDR after lin is the relative offset to
another line.

OAh adr I adr IADDR (L), (H) I Address of next DATA statement

The ADDR after adr is the relative position
from the start of the program.

OCh rem I rem I char string INULI Skipped during execution

rem is used for the data in DATA statements
or the format information in FORMAT state-
ments .

• BASIC Program and Data Structure 1-5

Explanation of Operand Codes

The meaning of each operand code is as follows:

• eo! (end of line)

This indicates the end of a line in a program. Multiple statements within the line are separated
with a colon (:), character code 27h.

• bin (integer constant)

This indicates the following two bytes are an integer constant (-32768 through 32767). The fIrst
byte is the least significant 8 bits.

• ral (real constant)

This indicates a real constant which is stored as a character string. Only positive numbers are
stored in this format. Negative numbers are expressed as a unary expression.

e.g. -123.4 -4- - ral 1 2 3 • 4 NUL

• chr (character constant)

This indicates a character string. It does not include the double quotation marks which specify the
beginning and end of a character string. Two successive double quotation marks (" ") indicate a

•

double quote ("). Two successive ampersands (&&) indicate an ampersand (&). An ampersand •
(&) followed by two hexadecimal digits represents a single byte with that hexadecimal value.

• var (variable)

The two bytes following var are the offset from the start of the variable descriptor table to the vari­
able descriptor table entry. The first byte is the least significant 8 bits.

Start of variable descriptor table --+ .---------------------,

Offset--+
type length segment offset

(L). (H)

.~ (OOh through OFh)

Figure 1-6. Variable Reference

1-6 BASIC Program and Data Structure •

•

•

•

• prm (user-defined function parameter name)

The prm operand code is used for parameters in subprograms and user-defined functions.

The two bytes following prm are the offset from the start of the variable descriptor table to the vari­
able descriptor table entry. The first byte is the least significant 8 bits.

The variable descriptor table entry has a type = Olh ('parameter') and length = OSh. The seg­
ment and offset values are relative to the start of the variable area. The variable area indicated by
the variable descriptor table entry contains a variable descriptor table entry which has the correct
type and length for the parameter. The segment and offset values in the latter entry are set to the
actual address of the variable (not an offset from the start of the variable area).

type length segment offset
01h OSh (L), (H)

(in variable area)

I i type \ length I I ~
Figure 1-7. Parameters in the Variable Descriptor Table

• fnc (user-defined function)

The two bytes following fnc are the offset from the start of the variable descriptor table to the vari­
able descriptor table entry. The first byte is the least significant 8 bits.

The variable descriptor table entry segment address field is the offset from the start of the program
to the user-defined function definition. The final byte of this entry (offset) is OOh.

If the definition contains one or more arguments, the segment address field points to the first argu­
ment. If the definition does not contain an argument, the segment address field points to the
equals sign (=) which follows the definition.

DEF FNA=
i

DEF FNA(r'Y)=

• ext (external program name)

The subprogram name for CALL and % CALL is indicated with ext.

BASIC Program and Data Structure 1-7

• lin (line reference)

The two bytes following lin are an offset to the start of a line. The first byte is the least significant 8
bits. The offset is relative to the byte following the offset (the third byte following lin).

lin

• adr (address reference)

offset
(L), (H)

The start of the referenced line is (Q) + offset

i
Q

Figure 1-8. Line Reference

The adr operand code is used in DATA statements.

Program Header

L I H
1

First DATA statement I rem I DATA I NUL I adr I L I H I eol I
Address

I rem I DATA I NUL I adr I L : H eol

Last DATA statement L..I r_e_m-,I __ D_A_T_A_--L..I N_U_L-,I_a_d_r ..J...1_OO_h_IL...0_o_h...J.l_e_o_1

Figure 1-9. DATA Statement Linking

An adr of OOOOh indicates the end of the DATA chain.

• rem (non-executed statement)

The rem operand code indicates character strings for the FORMAT and DATA statements.

A line with the rem operand code is not executed.

1-8 BASIC Program and Data Structure

•

•

•

•

•

•

Variable Area
The variable area is allocated in main memory when BASIC program execution begins. It is released
when execution ends.

The variable area is allocated or released as a block. The size of the variable area to be allocated is
available in the variable area size field of the BASIC program header. The variable area is not allo­
cated if the variable area size field is zero.

BASIC Program Main Memory

Size of variable area (a)

I
a variable area

Program Code

Variable Descriptor Table

Figure 1-10. Variable Area Allocation

An example of the process of allocating and releasing variable areas is shown in the following figure.
The example illustrates the main program (MAIN) calling a second program (program B), which in
turn calls a third program (program C). Program C ends, returning control to program B. Program B
also ends, returning control to MAIN. MAIN then ends, returning to command mode.

The control information save areas which are allocated between each variable area are omitted in this
figure.

BASIC Program and Data Structure 1-9

MAIN (step 1)

CALL B (step 2)

END (step 6)

Step 1. Start of MAIN
execution

MAIN variable area

Step 4. Completion of
Program C by END

Program B variable area

MAIN variable area

Program B

CALL C (step 3)

END (step 5)

Step 2. Start of Program B
execution by CALL B

Program B variable area

MAIN variable area

Step 5. Completion of
Program B by END

MAIN variable area

Program C

END (step 4)

Step 3. Start of Program C
execution by CALL C

Program C variable area

Program B variable area

MAIN variable area

Step 6. Completion of
MAIN by END

Figure 1-11. Allocating and Releasing Variable Areas

The relationship between the program code, variable descriptor table, and variable area is shown in the
following figure.

1-10 BASIC Program and Data Structure

•

•

•

•

•

•

t rt sa

Program Code

· ..

I var I address ~ (start + segment) :offset

· ..

Variable Descriptor Table

· ..
type I length I segment I offset

· ..

Figure 1-12. Program Code and Variables

The meaning of the items in italics is listed below.

• var
Operand code for a variable

• address
Relative address in the variable descriptor table

• type
variable type

• length
variable or array element length

• segment
variable segment address relative to start

• offset
variable offset address relative to start

• start
Start of variable area (determined at CALL time)

• variable data
Current value of the variable

Variable Area

. ..

variable data I

. ..

BASIC Program and Data Structure 1-11

An example showing several statements in a BASIC program helps clarify the relationship between •
program code and variables.

BASIC Program

10 DIM A(2),BCD$5
20 LET A(l)=O
30 LET BCD$="ABC"

Program Code
L gthU # Cod en ne

len10 10 DIM var 0

len20 20 LET var 0

len30 30 LET var 5

eof

e

(.... eo!

(.... eo!

= eo!

DIM, LET, (, and = are in intermediate code.

A(2)

BCD$

Variable Descriptor Table

Type Length Segment Offset

OSh OSh OOOOh OOh

04h 05h 0OO1h 03h
Variable Area

Array Information

Figure 1-13. BASIC Program and Variable Relationships

1-12 BASIC Program and Data Structure

•

•

•

•

•

Data Structure
There are three data types - real numeric data, integer numeric data, and character data. In addi­
tion, each of the data types can be collected into an array. Information about the array is stored
preceding the elements in the array. The data in an array is stored consecutively.

Real Numeric Data

The format for real numeric data in the variable area is shown below.

1 byte Mantissa part - 7 bytes (14 BCD digits)
7 ... 1 0

I I I I I I I .
L Position of (implied) mantissa decimal point

1 bit - sign of mantissa: 0 for positive. 1 for negative
7 bits - ex po nentvalue

Figure 1-14. Real Numeric Data in the Variable Area

The exponent is in two's complement (binary). Exponent values -64 through 63 indicate 10-64 through
1063•

Integer Numeric Data

Integers are stored as two bytes in both the variable area and data files; the first byte contains the most
significant 8 bits, and the second byte contains the least significant 8 bits. The range of an integer is
-32768 through 32767.

Ihi9h: low I

Figure 1-15. Integer Numeric Data In the Variable Area

BASIC Program and Data Structure 1-13

Character Data

The format for character data in the variable area is shown below.

n-byte area

Figure 1-16. Character Data in the Variable Area

The default value for n is 8. A DIM statement can be used to assign values 1 through 255 to n. The
value of n is in the variable descriptor table.

H the character string has fewer than n bytes, a NUL (DOh) is stored following the last character of the
string.

Only the first n characters assigned to a character string are stored - excess characters are discarded.

Array Data

1 2 * #dimensions e1 * e2 * ... * en * element length ~ size in bytes

e1 1 e2 I· . ·f en Array elements

L #dimensions
~ Array information ----? of- Array data ----?

Figure 1-17. Array Data in the Variable Area

The maximum size of an array is 65535 (FFFFb) bytes, including both the array information and the
array data. The number of dimensions must be in the range 1 through 255.

In the array information, en is the number of elements in that dimension. For OPTION BASE 0,
the number of elements is the array's upper bound plus 1. Each en is stored with the least significant 8
bits in the first byte and the most significant 8 bits in the second byte.

Array elements are stored in row-major order (the right-most SUbscript varies most rapidly).

1-14 BASIC Program and Data Structure

•

•

•

• Array Examples

The following two examples show how the array information and data would be stored in memory.

Example: DIM A(2,3)

OOh 01h 03h OSh OOh 1Sh

I02h l 0002h 0003h A(l,l) A(1,2)

1Sh 10h 2Sh

A(1,3) A(2,1)

2Sh 10h 35h

A(2,2) A(2,3)

Figure 1-18. Array Data Example: 0111 A(2,3)

• Example: OPTION BASE 0: DIM B$6 (4)

OOh 01h 03h 09h OFh 15h 1Bh 21h

B$(O) B$ (1) B$(2) B$(3) B$(4)

Note that this is the number of elements in this subscript.

Figure 1-19. Array Data Example: OPTION BASE 0 : Dill B$6(4)

• BASIC Program and Data Structure 1-15

Control Information Save Area
The control information save area is used to save the control information of the currently executing
program when a subprogram is called with the CALL statement or when an interrupt causes a jump to
an interrupt routine.

The control information save area is allocated in main memory when a CALL statement or interrupt
occurs. The control information for the currently executing program is saved in the save area. When
the subprogram ends (END) or the interrupt routine ends (%CALL SYRT), the information is
restored to the BASIC interpreter control area.

OOh
Saved control information pointer Unk to previous control information (0 for main program)

02h
Saved segment of BASIC program

04h
Saved SPTR

06h
Saved segment of Variable Area

08h
Saved SP value for IOERR

OAh
Saved offset to current program line

OCh
Saved offset to current program byte

OEh
Saved offset to DATA statement

12h
Saved SYER flag I 10h

1 if S YER active, 0 if not

Saved error variable Information Copy of parameter block entry from %CALL SYER

(5 bytes)
16h

Unused (2 bytes)
18h

Saved offset to SYSW interrupt line
1Ah

Saved offset to SYLB interrupt line
1Ch

Unused

(4 bytes)
20h

Figure 1-20. Format of the Control Information Save Area

1-16 BASIC Program and Data Structure

•

•

•

• 2

Operation Stacks

•

•

Contents

Chapter 2 Operation Stacks

2-1 Operation Stack Area
2-2 Control Stack
2-3 GOSUB Control Element
2-4 FOR ... NEXT Control Element
2-5 Numeric Operation Stack
2-5 Real Numeric Data
2-6 Integer Numeric Data
2-6 Numeric Operation Stack Example
2-7 Character Operation Stack
2-7 Character Operation Stack Example
2-8 Parameter Table (only for %CALL)

•

•

•

•

•

•

2

Operation Stacks

The operation stack area is used for:

• Control stack

• Numeric operation stack

• Character operation stack

• Parameter table entries (for %CALL)

Operation Stack Area
Parameters which are passed by value (constants and expressions) are evaluated, and the result of th,e
expression is stored in the operation stack area.

The character operation stack pointer is CPTR, and the numeric operation stack pointer is SPTR.

[BP].CPTR----*

[BP] • SPTR----*

Parameter tare rn'r for % CALL)

Character operation stack

111

iii
Numeric operation stack

iii
Control stack

Figure 2-1. Operation Stack Area

250h bytes

Operation Stacks 2-1

Control Stack

The control stack is used to maintain address and variable information for GOSUB and
FOR ... NEXT loops.

[BP] • SPTR-+
(Numeric operation stack)

Control element n iii
...

Direction of stack growth

iii
Control element 3

Control element 2

Control element 1

~
Figure 2-2. Control Stack Operation

[BP] • SPTR-+
(Subprogram numeric operation stack)

Subprogram control elements

OOh I
(Main program parameters passed by value)

Main program control elements

~
Figure 2-3. Control Stack During Subprogram Execution

Notes:

• Q is the SPTR value saved in the control information save area.

• Control stack usage for an interrupt routine is the same as for a subprogram.

• Control elements consist of GOSUB return information and FOR ... NEXT loop information.

• There is no pointer which separates the numeric operation stack from the control stack.

2-2 Operation Stacks

•

•

•

•

•

•

GOSUB Control Element

The GOSUB control element block size is OSh bytes.

Code line address:

Code address:

DOh ,...-------,
Type (01 h) I

01h~----~----~
Code line address (LPTR)

03h~---------~
Code address

05h~------------------~

Figure 2-4. GOSUB Control Element

The start of the code line containing the GOSUB statement.

The address of the eel or eos which follows the GOSUB statement.

Operation Stacks 2-3

FOR ... NEXT Control Element

The FOR ... NEXT control element block size is 18h bytes.

OOh
Type (8Xh) I

01h
Code line address (LPTR)

03h
Code address

OSh
Control variable segment offset I 08h

10h

18h

Type (8Xh):

Code line address:

Code address:

STEP value (real or integer) [8 bytes]

TO value (real or integer) [8 bytes]

Figure 2-5. FOR ... NEXT Control Element

Indicates the control variable type (SOh = real,82h = integer).

The start of the code line containing the FOR statement.

The address of the eo! or eos which follows the FOR statement.

Control variable address: The segment offset address of the control variable for the FOR ... NEXT
loop. The offset is a single byte.

STEP value:

TO value:

The value to be added to the control variable when the NEXT statement is
executed. The type of the STEP value matches the type of the control
variable (integer or real).

The value to which the control variable is compared (after adding the
STEP value) when the NEXT statement is executed. The type of the TO
value matches the type of the control variable (integer or real).

The FOR ... NEXT control element is removed from the control stack by the NEXT statement when
the loop terminates. If the FOR loop is exited with a GOTO statement, the control element is left on
the control stack. The FOR statement searches the control stack for FOR loop control elements
before creating a new element. If there is a FOR loop control element with the same variable name,
that control element is reused.

2-4 Operation Stacks

•

•

•

Numeric Operation Stack

Numeric par....eters pasvd by valli(: to subprogram, .. e "Qred 00 !be Dumeric .ration Slack
(itldudiftg any dwader ~"'uu .,used by value). n.e paramr.l" r table CODI~ pointers to tbc::.e

""~.

The: SPTR and CPTR pointers m: compared wheD pmb;ng a value onto the stack. If S PTR :$
CPTR, lberc: if. an overflow, and 'Error MO' {lCCurs.

Numeric va/uc.s 00 t~ i1ad are a1wl~ g bytes. whel.1>er TeLl or integer type. An integer vl.lue on the
IIad. Mans with [WI) bytes c(00h.

SPrR-'r--:-:-:--1 1 1 1
Value" DIrection oI5tack gr(Ml\h

f----j 111

Value 2

VlIIue 1

Real Numeric Data

""" Mantissa part - 7 bytes (1 4 seD dlgh)
7 ... 1 0

I I I I I I I .
L Posltlon d (Implied) mantl5sa decimal point

1 bit · slgnd mamissa: 0 lor positive. 1 for negative
7 bits • exponent value

Flgure 2~7. Re.1 Numeric: Data. on Ihe Numeric: Operetion S ... c:1l

The expooent ir. in two's complement (binary). &ponent value~ -64 through 63 inditale 10"" through
10".

Integer Numeric Data • The range of an integer value is -32768 through 32767.

Figure 2-8. Integer Numeric Data on the Numeric Operation Stack

Numeric Operation Stack Example

A+B*C-+O (S means SPTR)

O. Initial 1. Stack A, 2. Stack B, 3. Stack C, 4. Call
state Update S Update S Update S SMUL

S-+
C

S-+
B B

S-+
A A A

S-+ • Call Same as 5. 6. 7. B. ASSign the 9.
SADD results to D, initial state

S-"""* Update S
B*C

S-+
A A+B*C

S-+

Figure 2-9. Numeric Operation Stack Example: A + B * C -+ 0

2-6 Operation Stacks •

• Character Operation Stack

•

•

The character operation stack is used by character operators as a temporary storage area.

The SPTR and CPTR pointers are compared when pushing a value onto the stack. If CPTR ~
SPTR, there is an overflow, and "Error MO" occurs.

A DOh byte must always be written at the byte pointed to by CPTR.

BASIC Control area

CPTR-+ I OOh I
~

! ! !
Direction of stack growth

! ! !

Figure 2-10. Character Operation Stack

Character Operation Stack Example

"ABC"+"DE"

1) "ABC" 2) +"DE"

A A

B B

C C

CPTR-+ 1------1

DOh D

E
CPTR-+ r--------1

OOh

Figure 2-11. Character Operation Stack Example: ""ABC" + "DE"

Operation Stacks 2-7

Parameter Table (only for %CALL)

The operation stack area is used by % CALL for the parameter table and for parameters passed by
value.

1 byte 1 byte
ES:BX~.-----.-----.-----------.------,

Type Length Segment J Offset

2 bytes 1 byte

Information for the first argument

Information for the nth argument

FFh

Figure 2-12. Parameter Table Format

The meanings of the fields in the parameter table are as follows:

• Type:

7 6 5 4 3 2 o

I

bin [
1: integer
0: real

[
1 : character

character
0: numeric

array [
1: array variable
0: simple variable or array element

Figure 2-13. Parameter Table Type Byte

Arrays are passed to subprograms with subscript "*".

DIM XYZ(lO)

%CALL ABC(XYZ(*» REM pass the entire XYZ array

Numeric and string expressions (including constants) are evaluated by % CALL. Numeric values
are put on the numeric operation stack as real numbers even if they could be expressed as an
integer. String characters are moved from the character operation stack to the numeric operation
stack before the subprogram is called.

2-8 Operation Stacks

•

•

•

•

•

•

• Length:

Type Length in bytes
Integer 2
Real 8
Character Dimensioned size (default is 8)
Array Size of one array element

• Segment Address, Offset Address:

The segment address and offset address contain the actual address of the variable's data area. This
is different than in the variable descriptor table, where the address is relative to the start of the vari-
able descriptor table.

The segment address is a two-byte field; the offset address is a one-byte field with values OOh

through OFh.

Operation Stacks 2-9

• 3

Assembly Language Subprograms (Keywords)

•

•

Contents • Chapter 3 Assembly Language Subprograms (Keywords)

3-1 Program Structure
3-2 BASIC Call and Return
3-2 BASIC Interpreter %CALL Procedure
3-3 Parameter Table Format
3-5 %CALL Example
3-6 Assembly Language Subprogram Return to BASIC
3-6 Access to BASIC Interpreter Utility Routines
3-8 Using a Utility from an Assembly Language Subprogram

•
.. '

•

•

•

•

3

Assembly Language Subprograms (Keywords)

An assembly language subprogram (also called a keyword) is called with the %CALL statement.

The following assembly language subprograms are built into the HP-94: SYAL, SYBP, SYEL,
SYER, SYIN, SYLB, SYPO, SYPT, SYRS, SYRT, SYSW, and SYTO.

In addition, SYBD, SYBI, SYFT, and SYOS are reserved file names which must not be used for
assembly language subprograms.

For assembly language subprograms which are not built into the HP-94, the file name is the subpro­
gram name. In general, Hewlett-Packard uses SY as the first two characters of its assembly language
files, and HN as the first two characters of its user-defined handlers. Names starting with SY and HN
should not be used.

Assembly language subprograms must be written so that they can be executed in ROM.

This chapter assumes an understanding of HP-94 program structure. Refer to the "Program Execu­
tion" chapter in Part 1, "Operating System" .

Program Structure
An assembly language program has a six-byte header followed by the program code. This structure is
shown below with hex offsets indicated on the left side.

OOh +-Paragraph boundary
Program length (len)

02h
Internal entry point

04h
Version number

06h +-% CALL entry point
BASIC entry point
(program code)

...

len-*

Figure 3-1. Assembly Language Subprogram Structure

See the "Program Execution" chapter in Part 1, "Operating System" for more information .

Assembly Language Subprograms (Keywords) 3-1

BASIC Call and Return

A BASIC program calls an assembly language program with the %CALL statement. When the assem­
bly language routine finishes executing, a FAR RET is used to return to the BASIC interpreter.

BASIC Interpreter %CALL Procedure

The BASIC interpreter calls the assembly language subprogram at its entry point with a FAR CALL.

Contents of the CPU registers when an assembly language subprogram is called:

BASIC Interpreter Scratch Area

Parameter table

Control area

System stack (996 bytes available)

Return address

Assembly Language Subprogram

~SS.ES

~BX

~BP

~SI

This area is available to the subprogram
~SP

Return to %CALL statement (FAR RET)

OOh r-------------,~CS.DS
Program header

06h I--------------I~IP
Program code

The direction flag is clear (CLD).

Interrupts are enabled (STI).

AX contains the value of SPTR before %CALL built the parameter table (not needed unless the sub­
program uses IOERR; see IOERR for more information and an example).

The contents of registers which are not shown are not defined.

3-2 Assembly Language Subprograms (Keywords)

•

•

•

•

•

•

Parameter Table Format

1 byte 1 byte 2 bytes 1 byte
ES:BX-7~----~---,,----------,------.

Segment I Offset Type Length Information for the first argument

Information for the nth argument

FFh

Figure 3-2. Parameter Table Format

The meanings of the fields in the parameter table are as follows:

• Type:

7 6 5 4 3 2 o

I

bin

character

array

[
1: integer
0: real

[
1 : character
0: numeric

[
1: array variable
0: simple variable or array element

Figure 3-3. Parameter Table Type Byte

Arrays are passed to subprograms with subscript "*".

DIM XYZ(lO)

%CALL ABC(XYZ(*» REM pass the entire XYZ array

Numeric and string expressions (including constants) are evaluated by %CALL. Numeric values
are put on the numeric operation stack as real numbers even if they could be expressed as an
integer. String characters are moved from the character operation stack to the numeric operation
stack before the subprogram is called.

Assembly Language Subprograms (Keywords) 3-3

• Length:

Type Length in bytes
Integer 2
Real 8
Character Dimensioned size (default is 8)
Array Size of one array element

• Segment Address, Offset Address:

The segment address and offset address contain the actual address of the variable's data area. This
is different than in the variable descriptor table, where the address is relative to the start of the vari­
able descriptor table.

The segment address is a two-byte field; the offset address is a one-byte field with values OOh
through OFh.

3-4 Assembly Language Subprograms (Keywords)

•

•

•

•

•

•

"CALL Example
10 INTEGER C
20 DIM A(10),B$5,C(3,2)
30 D=l

100 %CALL AB(A(*),B$,C(1,2) ,D)

When line 100 is executed, %CALL creates a parameter table (shown below) in the operation stack
area and passes a pointer to it in ES : BX.

Assume that the BASIC variable area segment address is 1FOOh.

Parameter Table

Low-High
ES:BX---t

08h 08h 1F01h 01h f-A (*) (points to an entire array)

04h OSh 1 F06h 04h f-B$

02h 02h 1 FOOh 07h f-C (1,2) (points to one element)

OOh 08h 1 F06h 09h f-D

FFh
'---

Variable Area

1 FOO:Oo---t
11FOO:07

02h 0003h 0002h I C(1,1) C(1,2) I C(2,1) I C(2,2) C(3,1) I C(3,2)
1 F01 :01---t

01h OOOAh A(1) (8 bytes) ... A(10) (8 bytes)
1 F06:04---t

B$ (5 bytes) I
0(8 bytes) I

1 F06:09---t

Figure 3-4. "CALL Example: Calling an Assembly Language Subprogram

Note: The values in italics are array information .

Assembly Language Subprograms (Keywords) 3-5

Assembly Language Subprogram Return to BASIC

When an assembly language subprogram returns to the BASIC program that called it, the following
conditions should exist.

• The SS, BP, and SP registers must have the same value as when the assembly language subpro-
gram was called.

• The direction flag must be clear (CLD instruction).

• Interrupts must be enabled (STI instruction).

• A FAR RET must be used to return to the BASIC Interpreter.

Access to BASIC Interpreter Utility Routines
This section describes how to access BASIC Interpreter utility routines for decimal math, stack mani­
pulation, number conversion, and parameter processing from an assembly language program.

In the following table, CSEG is the segment address ofthe BASIC interpreter.

An assembly language subprogram can easily determine the value of CSEG by examining the return
stack. The word at SS: SP+2 is the segment address of the BASIC interpreter.

The regular entry point of the BASIC interpreter is CSEG:O. If the interpreter is called at CSEG: 6
(as the operating system S command does), it immediately returns to the operating system.

If an error is detected by a BASIC interpreter utility routine, either the ERROR routine or the
IOERR routine is called. The line number and the program name displayed in the error message
point to the %CALL keyword.

3-6 Assembly Language Subprograms (Keywords)

•

•

•

•

•

•

BASIC Interpreter Code

CSEG:OOh JMP CSEG:51h (interpreter start)

02h Identifier "IP"

04h Release No. I Version No.

06h JMP CSEG:44h (Exit to O.S.)

OSh Data part size (paragraphs)

OAh Operation stack size (bytes)

OCh Control area size (bytes)

OEh offset from SS: BP to SPTR

10h offset from SS: BP to CPTR

12h offset from SS: BP to SYSSTK

14h JMP SADD

1Sh JMP SSUB

1Ch JMP SMUL

20h JMP SDIV

24h JMP SPOW

2Sh JMP SNEG

2Ch JMP TOREAL

30h JMP TOBIN

34h JMP ERROR

3Sh JMP IOERR

3Ch JMP GETARG

40h JMP SETARG

(FAR RET)

(FAR RET)

(FAR RET)

(FAR RET)

(FAR RET)

(FAR RET)

(FAR RET)

(FAR RET)

(FAR RET)

(FAR RET)

(FAR RET)

(FAR RET)

44h EXIT (returns to the operating system)

51 h BASIC Interpreter code

BASIC Interpreter Scratch Area

r-----------------~~SS:O

Operation stack (250h)
r-----------------~~SS:BP

Control area (1 COh)
~----------------_4~SS:SI

System stack (3FOh)
r-----------------~~SS:SP

NOTE
The scratch area is allocated
in main memory by the BASIC
interpreter after a cold start.

Assembly Language Subprograms (Keywords) 3-7

Using a Utility from an Assembly Language Subprogram

Many of the utility routines require their data to be on the numeric operation stack. The numeric
operation stack pointer (SPTR) must be set up to use these routines.

BASIC Interpreter
code segment

Control area

SS : B~ I---------i
CSEG:OE~ t--------I

Offset to S PTR ~
SPTR

Operation stack

data on stack

The SPTR address relative to BP is stored in the BASIC interpreter header at location CSEG:OEh.

See the "Operation Stack" section for more information about using the numeric operation stack.

3-8 Assembly Language Subprograms (Keywords)

•

•

•

• 4

BASIC Interpreter Utility Routines

•

•

Chapter 4

4-1
4-1
4-2
4-3
4-5
4-7
4-8
4-9

4-10
4-11
4-12
4-13
4-14
4-15

Contents

BASIC Interpreter Utility Routines

BASIC Interpreter Utility Routine Descriptions
Registers Passed to BASIC Interpreter Utility Routines

ERROR
GETARG
IOERR
SADD
SDIV
SETARG
SMUL
SNEG
SPOW
SSUB
TOBIN
TOREAL

•

•

•

•

•

•

4

BASIC Interpreter Utility Routines

This chapter describes the BASIC interpreter utility routines. These utilities allow assembly language
subprograms to use the decimal math routines in the BASIC interpreter and simplify the passing of
parameters between BASIC programs and assembly language subprograms. Utility routines are also
available for reporting errors detected in the assembly language subprograms and for converting
between real and integer data.

BASIC Interpreter Utility Routine Descriptions

BASIC interpreter utility routine descriptions consist of the following:

• A brief description of the routine.

• The calling sequence for the routine.

• Notes on the use and behavior of the routine.

• A summary of the parameters passed to the routine and the parameters that the routine must
return.

Registers Passed to BASIC Interpreter Utility Routines
,>

The BASIC interpreter utility routines all expect BP to point to the BASIC interpreter control area.
Other registers which are expected are mentioned in the "Input:" section for each routine .

BASIC Interpreter Utility Routines 4-1

ERROR

Display an error message and return to the operating system command mode.

Calling sequence:

FAR CALL CSEG:34h

Notes:

• If the code in AL is not in the table below, the code is displayed as three decimal digits.

• ERROR returns to command mode after displaying the message.

Input:

AL = code
(See table below)

Hex Decimal

01h 1
02h 2
03h 3
04h 4
05h 5
06h 6
07h 7
08h 8
09h 9
OAh 10
OBh 11
OCh 12
ODh 13
OEh 14
OFh 15
10h 16
11h 17
12h 18
13h 19

Output:

Error CC nnnnn pppp
CC: Characters corresponding to the code
nnnnn: Error line number
pppp: Program name

Table 4-1. Codes for ERROR Utility Routine

CC lIeaning

SY Syntax error
TY Data type mismatch
CN Conversion error
RT RETURN or SYRT error
DT Data error
IL Illegal argument
BR Branch destination error
MO Memory overflow
NF Program not found
AR Array subscript error
CO Conversion overflow
EP Missing END statement
DO Decimal overflow
IR Insufficient RAM
FN Illegal DEF FN statement
UM Unmatched number of arguments
BM BASIC Interpreter malfunction
LN Nonexistent line
IS Illegal statement

4-2 BASIC Interpreter Utility Routines

•

•

•

•

•

•

GETARG

Convert a numeric parameter from % CALL into a binary value and return the value.

Calling sequence:

FAR CALL CSEG:3Ch

Notes:

• H the parameter is an array or is of character type, Error TY occurs.

• H there is no parameter (type = FFh), Error UM occurs.

• Hthe parameter is negative and a negative number is not allowed, Error IL occurs.

• H the parameter is out of range, Error IL occurs. The valid range depends on the contents of
register CL, as shown in this table:

Table 4-2. GETARG Result Flag (Register CL)

CL Length Positive/Negative Range of values

0 word (16 bits) positive or zero only o through 32767

1 double word (32 bits) positive or zero only o through 231 _1

2 word negative allowed -32768 through 32767

3 double word negative allowed _231 through 231 _1

Input: Output:

ES : BX points to a parameter table entry
CL is the flag byte (see below)

H destination is a word:
AX = binary value
DX = (undefined)

Parameter Table Entry
1 byte 1 byte 2 bytes 1 byte

ES:BX~r---~----r-----'----. I Type I Length I Segment I Offset I
1 1

Absolute address

1
Data

H destination is double word:
AX = low word of binary value
DX = high word of binary value

Figure 4-1. GETARG Parameter Processing

BASIC Interpreter Utility Routines 4-3

... GETARG

76543 1 0

Length

Positive/Negative

[
1: double word
0: single word

[
1: negative allowed
0: positive or zero only

Figure 4-2. GETARG Result Flags (Register eL)

4-4 BASIC Interpreter Utility Routines

•

•

•

•

•

•

IOERR

If error trapping (%CALL SYER) is not in effect, display an error message and return to the operat­
ing system command mode.

Calling sequence:

FAR CALL CSEG:38h

Notes:

• Assembly language subprograms must set up certain registers before calling IOERR. See the
example program below to set up these registers.

• If error trapping (%CALL SYER) is in effect, the error number variable is set to the error code.
BASIC execution resumes at the next line (not statement) of the BASIC program. IOERR does
not return to the assembly language routine which called it.

• If error trapping (%CALL SYER) is not in effect, a call to IOERR has the same effect as a call
to ERROR.

Input: Output:

AL = code Error NNN nnnnn pppp
(See Appendix B) NNN: Error code (3 decimal digits)
BP, SS, and SP unchanged from %CALL
SPTR restored (value was in AX after %CALL)

nnnnn: Error line number
pppp: Program name

IOERR_OFFSET equ 038h
SPTR OFFSET equ OEh

MYSEG segment public 'MYSEG'
asslJlle cs:MYSEG

EXAMPLE proc far
START:
PROG SIZE dw FINISH·START
ASM_ENTRY_ADR dw offset START_ASM
VERSION dw 0100h ; Version 1.00

; This is an outline of an assembly-language subprogram which shows how
; to save and restore the value of SPTR before a call to IOERR.

push ax Save SPTR value on stack
,
;******* (user's code omitted here) *******

; AL contains the error code for IOERR
Needed only if code executed a STD
Needed only if code executed a Cll

dx Recall SPTR value to OX from stack
cx Drop BASIC interpreter offset

cld
sti
pop
pop
pop
push
mov
push
mov

es Pop BASIC interpreter segment (CSEG)
es Push CSEG for IOERR entry
cx,IOERR_OFFSET
cx
si,es:SPTR_OFFSET

Push offset for IOERR entry
SI = offset of SPTR

BASIC Interpreter Utility Routines 4-5

.. .lOERR

EXAMPLE
FINISH:
MYSEG

mov
ret

pop
ret

endp

ends
end

ss: [bp+si] ,dx

dx

4-6 BASIC Interpreter Utility Routines

Restore SPTR
J~ to IOERR

Throw away (unused) SPTR value
Return to BASIC interpreter

•

•

•

•

•

•

SADD

Add two numbers on the operation stack.

Calling sequence:

FAR CALL CSEG:14h

Notes:

• The numbers can be either real numbers or integers. The result is an integer only if both numbers
were integers, and the result fits in an integer.

• SADD does not use the operation stack as a scratch area.

Input: Output:

SPTR---7I--------/
S2

SPTR---7~--------~

Sl Sl+S2

S 1, S 2: numeric values S 1 + S 2: numeric value

BASIC Interpreter Utility Routines 4-7

SDIV •
Divide two numbers on the operation stack.

Calling sequence:

FAR CALL CSEG:20h

Notes:

• The numbers can be either real numbers or integers. The result is always a real number .

• SDIV uses the operation stack as a scratch area.

Input: Output:

(used by SDIV)
SPTR~~--------~

S2
SPTR~ ~---------I

S1 S1/S2

S 1, S 2: numeric values S1/S2: numeric real value

•

4-8 BASIC Interpreter Utility Routines •

•

•

•

SETARG

SETARG converts a binary value into the type of a numeric parameter from %CALL (either real or
integer) and stores the value into the parameter.

Calling sequence:

FAR CALL CSEG:40h

Notes:

• AX contains the binary value (-32768 through 32767).

• IT there is no parameter (type = FFh), Error UM occurs.

• IT the parameter is an array or is of character type, Error TY occurs.

• SETARG uses 8 bytes of the operation stack as a scratch area.

Input:

AX is a binary value
ES : BX points to a parameter table entry

Parameter Table Entry
1 byte 1 byte 2 bytes 1 byte

ES:BX~.---~---.------~--~ I Type I Length I Segment I Offset I
1 1

Absolute address

1
AX = binary value ~ I Data

Output:

Contents of AX placed in parameter.

Figure 4-3. SETARG Parameter Processing

BASIC Interpreter Utility Routines 4-9

SMUL

Multiply two numbers on the operation stack.

Calling sequence:

FAR CALL CSEG:ICh

Notes:

• The numbers can be either real numbers or integers. The result is an integer only if both numbers
were integers, and the result fits in an integer.

• SMUL uses the operation stack as a scratch area.

Input:

SPTR-+
(used by SMUL)

S2

Output:

SPTR-+~--------~
Sl Sl*S2

S 1, S 2: numeric values S 1 * S 2: numeric value

4-10 BASIC Interpreter Utility Routines

•

•

•

•

•

•

SNEG

Change the sign of a number on the operation stack.

Calling sequence:

FAR CALL CSEG:28h

Notes:

• The number can be either a real number or an integer. The result is an integer if the number was
an integer.

• SNEG does not use the operation stack as a scratch area.

Input: Output:

SPTR~L--J
~

SPTR~L--J
~

S 1: numeric values -S 1: numeric value

BASIC Interpreter Utility Routines 4-11

SP~W • Exponential operation for two numbers on the operation stack.

Calling sequence:

FAR CALL CSEG:24h

Notes:

• The numbers can be either real numbers or integers. The result is always a real number.

• S POW uses the operation stack as a scratch area.

Input: Output:

(used by SPOW)
SPTR~~--------~

S2
SPTR-t ~--------~

S1

S 1, S 2: numeric values S 1 S 2: numeric real value

•

4-12 BASIC Interpreter Utility Routines •

•

•

•

SSUB

Subtract two numbers on the operation stack.

Calling sequence:

FAR CALL CSEG:18h

Notes:

• The numbers can be either real numbers or integers. The result is an integer only if both numbers
were integers, and the result fits in an integer.

• S SUB does not use the operation stack as a scratch area.

Input: Output:

SPTR~ r-----------i
S2

SPTR~~--------~
Sl Sl-S2

S 1, S 2: numeric values S l-S 2: numeric value

BASIC Interpreter Utility Routines 4-13

TOBIN •
Convert a number at 55 : BX to an integer.

Calling sequence:

FAR CALL C5EG:30h

Notes:

• The value is left unchanged if 55: BX points to an integer.

• The fractional part of the real number, if any, is truncated.

• An error occurs if the real number is not within the range -32768 through 32767.

• TOBIN does not use the operation stack as a scratch area.

Input: Output:

55:BX~I~ ____ 5_1 ____ ~ 55: BX---+ 1~ __ 5_1 __ --.J

51: numeric real or integer data 51: numeric integer data

•

4-14 BASIC Interpreter Utility Routines •

• TO REAL

Convert an integer or real number at ss: BX to a real number.

Calling sequence:

FAR CALL CSEG:2Ch

Notes:

• TOREAL does not use the operation stack as a scratch area.

Input: Output:

SS:BX~I~ ____ S_l ____ ~ SS:BX~~I ____ S_1 ____ ~

S 1: numeric real or integer data S 1: numeric real data

•

• BASIC Interpreter Utility Routines 4-15

• 5

1/0 Statement and Handlers

•

•

Contents ••
Chapter 5 I/O Statement and Handlers

5-1 Input Keywords (GET #, INPUT #, INPUT$)
5-4 Output Keywords (PRINT #, PRINT # ... USING, PUT #)

•

•

•

•

•

5

1/0 Statements and Handlers

The BASIC Reference Manual has tables associated with the BASIC I/O keywords (GET #,
INPUT #, INPUT$, PRINT #, PRINT # ••• USING, and PUT #) which describe the
interaction between the keywords and the built-in handlers for channels 1 through 4. This chapter
describes the interactions between these BASIC keywords and user-defined handlers for channels 1
through 4.

Input Keywords (GET #, INPUT #, INPUT$)

GET #, INPUT #, and INPUT$ all process incoming data in a different way.

• GET # reads data directly into the input variables.

• INPUT # reads data into a 256-byte internal buffer, then copies the data to the input variables.

• INPUT$ reads data and places it on the character stack. The data is then copied to the variable
with the BASIC assignment operation.

The following table summarizes how each of the input keywords responds to conditions generated by
user-defined handlers .

1/0 Statements and Handlers 5-1

Table 5-1. Response of Input Keywords to Handler-Generated Errors

Condition GET# INPUT # INPUTS •
~ 'r received. N/A. Characters received N/A.

from the device
(except the ~ 'r) are
placed in the input
variable. Input is
aborted if no other
characters were
received.

Character from ter- N/A. N/A. Characters received
minate character string from the device
received. (including the ter-

minate character) are
placed in the input
variable.

Short record detected Ends input for that The short read error Ignored (input opera-
(error 115). variable. generates a garbage tion not ended).

byte, and the error is
ignored (input opera-
tion for that variable
not ended).

Terminate character Ends input for that Ignored (input opera- Ignored (input opera-
detected (error 116). variable. tion for that variable tion not ended).

not ended).
End of data (error Ends input for that Characters read up to Ignored (input opera- • 117). variable. * the EOD are placed in tion not ended). *

the input variable.
Input is aborted if no
characters were
received before the
EOD.

Timeout (error 118). Input aborted. Input aborted. Input aborted.
Power switch pressed Input aborted. Input aborted. Input aborted.
(error 119).

Low battery (error Input aborted. Input aborted. Input aborted.
200).

Errors 201-208. Input aborted. Input aborted. Input aborted.

* The behavior of GET II and INPUTS is altered if INPUT II has been used with the channel and the last INPUT II
aborted input due to an EOD.

• GET II is not affected except that program execution continues on the next line of the program (not the next
statement, if GET II is in a multistatement line) .

• INPUTS will abort input after reading one character. Program execution continues on the next line of the program
(not the next statement, If INPUTS is in a multiatatement line).

5-2 I/O Statements and Handlers •

•

•

•

When input is aborted, program execution continues on the next line of the program (not on the next
statement, if the GET #, INPUT #, or INPUT$ statement is in a multistatement line).

"Input aborted" has different meanings for GET #, INPUT #, and INPUT$.

GET #: The input operation has been interrupted. When input is aborted, the input operation is
ended, and any characters received up to that point are placed in the input variable.
This may result in part of the previous value of the variable being overwritten. All sub­
sequent variables in the input list are unchanged. This is in contrast to INPUT # and
INPUT$, in which any received data for that variable is discarded.

When input is aborted because of a numeric error, the I/O length reported by SYIN is
set to the number of bytes actually received up to that point, since that data has already
been placed in the input variable.

INPUT #: No data has been received or the input operation has been interrupted. When input is
aborted, the input operation is ended, and any characters received up to that point are
discarded. The current input variable and all subsequent variables in the input list are
left unchanged (note that variables prior to the one at which input was aborted will
already have been changed). This is in contrast to GET #, in which any received data
for that variable is saved.

When input is aborted because of a numeric error, the I/O length reported by SYIN is
set to 0, since no data is placed in the input variable.

INPUT$: No data has been received or the input operation has been interrupted. When input is
aborted, the input operation is ended, and any characters received up to that point are
discarded. The input variable is left unchanged. This is in contrast to GET #, in which
any received data is saved and the variables are set to ° or the null string .

When input is aborted because of a numeric error, the I/O length reported by SYIN is
set to 0, since no data is placed in the input variable .

I/O Statements and Handlers 5-3

Output Keywords (PRINT II, PRINT II ... USING, PUT II)
This table summarizes how each of the output keywords (PRINT #, PRINT # ••• USING,
PUT #) responds to errors generated by user-defined handlers.

Table 5-2. Response of Output Keywords to Handler-Generated Errors

Condition PRINT # PRINT # ... USING PUT#

Timeout (error 118). Output aborted. Output aborted. Output aborted.
Power switch pressed Output aborted. Output aborted. Output aborted.
(error 119).

Low battery (error Output aborted. Output aborted. Output aborted.
200).

Errors 201-208. Output aborted. Output aborted. Output aborted.
Lost connection while Output aborted. Output aborted. Output aborted.
transmitting (error
218).

"Output aborted" means that the output operation has been interrupted. When output is aborted, the
output operation is ended. Subsequent variables in the output list are not output.

When output is aborted, program execution continues on the next line of the program (not on the next
statement, if PRINT #, PRINT # ••• USING, or PUT # is in a multistatement line).

When output is aborted because of a numeric error, the I/O length reported by SYIN is set to the
number of bytes actually sent up to that point, since that data has already been written to the device.

5-4 110 Statements and Handlers

•

•

•

Scan Copyright ©
The Museum of HP Calculators

www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

