@ Part 3

Hardware Specifications

Introduction to the Hardware Specifications

The purpose of this section of the Technical Reference Manual is to provide enough information for a
developer to test a system configuration using the HP-94 and accessories in typical usage. There are
four major topics:

s Electrical Specifications
This provides voltage and current levels and specific integrated circuit (IC) information for some of
the system ICs.

m Mechanical Specifications
This includes HP-94 dimensions and information about connector types and pin assignments.

m Environmental Specifications
This provides temperature, humidity, and other environmental information about the HP-94
operating environment.

m Accessory Specifications
This discusses the principal accessories currently available for the HP-94.

In addition, for reference by developers, data sheets are provided for four of the ICs used in the
machine.

Disclaimer

Hewlett-Packard makes no warranty of any kind with regard"t‘o this material, including, but not lim-
ited to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-
Packard shall not be liable for errors contained herein or for incidental or consequential damages in
connection with the furnishing, performance, or use of this material.

The information contained in this document is subject to change without notice.

System Block Diagram
On the next page is a block diagram of the HP-94 hardware.

Introduction to the Hardware Specifications 1

I
| <"1
| S |
l |
| Key Keyboard |
Matrix Control [wvvoo L Real-Time
| Custom Clock I
L - -~ =
l Gate I
- (- >d Array
Dispiay
| | Backiight e Beeper | |
\l/ ’ Earphone Jack
) Display = ---
Display Control [z |
BarCode |_ | Bar Gode Port
Interface
System < ------- ‘ |
ROM ---------------------- > w |
f-----"-----~---4% = Serial <=——v
beri e dernnnn iy e Interface —19 Serial Port
|
— Power
Control ‘
|
NiCd
Battery IL Recharger
|
| Lithium Lithium
| Battery Battery
Lithium Legend: gﬁ:'s ‘
Battery Data oo ro- > 40;8R:M
| y I
64K Buih-ln KET s araasnennnny Trd :
| RAM I T l-—>+-——~—> 128K Memory
| 64K Buitt-in Letuererenreenas) st st i e e s e s s b s e 1 Il > T Board
RAM e oo] |
| | B ROM/EPROM
!
[Card
I >

External Bus

Figure 1. HP-94 Hardware Block Diagram

2 Introduction to the Hardware Specifications

Electrical Specifications

Electrical Specifications

This section provides the basic electrical specifications for the HP-94. Specific bus timing information
is not provided. This information is available in the manufacturer’s specifications for the individual
components. The principal ICs used in the HP-94 are shown below.

Table 1-1. Principal Integrated Circuits

iC Manufacturer | Part Number
Microprocessor * NEC uPD70108 (V20)
RAM Toshiba TC5565FL-15L
EPROM Toshiba TCs57256D-20
LCD Column Driver * | Hitachi HD61102A
LCD Row Driver Hitachi HD61103A
UART * OKl MSM82C51A
Real-Time Clock * Epson RTC-58321
Custom Gate Array Hitachi 611224
* Refer to the data sheets for these devices,

Electrical Specifications

Specific questions relating to the use of these ICs or their specifications should be directed to the IC
manufacturer.

1-1

Table 1-2. Electrical Specifications

Parameter Symbol| Min Typical Max Units Comments
=Operating Voltage Vee 4.50 480 6.00 Vdc Varies as batteries vary
Operating Current lee 60 20 mA Running
35 50 mA Waiting for a key
Operating Frequency Fop 3.6864 MHz *
Display Backlight lgy 20 mA When backlight on
Current
Standby Current lsp 30 100 uA For HP-84F (256K
RAM): T=25°C
Battery Pack Capacity 900 mAh HP 82430A Recharge-
able NiCd Battery Pack
Low Battery Detect Vini 4.55 460 465 Vde Discharging {voltage
Level — NiCd decreasing)
4.70 475 480 Vdc Charging (voltage
increasing)
Low Battery Detect Vi 2.65 270 275 Vdc
Level — Lithium
Reset Detect Level Vist 435 440 445 Vdc
Ve Cutoff Level Veu 3.80 4.20 Vdc
~Serial Port s | 250 mA For Vo=V, 0.1V
Source Current
Serial Port Maximum Viom -15 +15 Vdc t
Input Voltage
Serial Port input Vin {0.8 V¢ vdc t
Logic Levels Vi 0.15V,. | Vdc
Serial Port Output Vo | Vee0.2 Vee Vdc s
Logic Levels Voo 0 0.2 Vdc
Serial Port linm +10 HA Vin=V¢c or GND
Input Current +3.5 mA V=215V
HP 82470A Level he 25 mA When active with a std.
Converter Current RS-232-C load at 9600
baud and V,.=6.0 V
Bar Code Port loer 175 mA For Vper=Vec-0.1V
Source Current
Bar Code Port Input Vi |0.75 V. Vee Vdc CMOS 40H004
Logic Levels (Voper) Vi 0 0.15V, | Vdc inverting buffer
Bar Code Port [+1 A Input logic 1 §
Input Current 6 mA Input logic 0 §
* Voltage and timing specifications associated with the external bus and memory port are established by the CPU vol-
tage and timing specifications. Please refer to the NEC uPD70108 data sheet.
t The HP-94 has a special input protection circuit using a 4.7 volt zener diode clamp that keeps the input voltage less
than 4.7 volts and greater than -0.6 volts. Input signais between 0 and V. will not be modified.
$ The output drivers are CMOS 40H004 inverting buffers that drive only between GND and V. voltage levels.
§ The bar code port input (Vo) drives a 40H004 inverting buffer with a 1 k2 pullup resistor.

1-2 Electrical Specifications

2

Mechanical Specifications

Contents

Chapter 2

2-1
2-1
2-2
2-3
2-5
2-7
2-7

Mechanical Specifications

Physical Specifications

Serial Port Connector Specifications
Bar Code Port Connector Specifications
Memory Port Connector Specifications
External Bus Connector Specifications
Earphone Connector Specifications
Battery Pack Connector Specifications

2

Mechanical Specifications

This chapter describes mechanical specifications for the HP-94 and its connectors.

3
Physical Specifications
Below are the physical specifications for the HP-94.

Table 2-1. Physical Specifications

Parameter Value Units Comments
Height 16.0 | cm 6.3in
Width 16.5 cm 6.5in
Thickness 3.7 | cm 1.4in
Weight 686-745* | g 1.5-161b

* The weight varies depending on the memory configuration. Minimum is for the
HP-94D, and maximum is for the HP-Q4E with an HP 82412A ROM/EPROM
Card containing three 27C256 EPROMs.

]
Serial Port Connector Specifications

The serial port connector is a 15-pin D-type female connector. The connector’s attachment bolts use
4-40 x 1/4" slotted-head screws; note that it is not necessary to secure cables to the machine using these
bolts. The following tables provide serial port connector pin assignments and information about mat-
ing connectors for the serial port.

Mechanical Specifications 2-1

Table 2-2. Serial Port Connector Pin Assignments

Pin Number Symbol Signal Name
Housing FG Frame Ground
1 NC Not Connected
2 ™D Transmitted Data
3 RxD Received Data
4 RTS Request To Send
5 CTS Clear To Send
6 DSR Data Set Ready
7 SG Signal Ground
8 DCD Data Carrier Detect
9 Vis Switched V.
10 Vien * Alternate Recharger Input
11 GND Recharger Ground Return
12-14 NC Not Connected
15 DTR Data Terminal Ready
* The specifications for Vrch to aliow charging of the NiCd battery pack
using this pin are the same values as the output voltage and current
specifications of the HP 8243 1A recharger.

Table 2-3. Serial Port Mating Connectors

Manufacturer | Part Number

TRW DAM 15P

Amphenol 17-20150-1

JAE DAC 15P

ITT Cannon DA-15P
L o

Bar Code Port Connector Specifications

The bar code port uses a 6-pin, 240° circular DIN connector. Either a 5-pin or 6-pin mating connector
can be used on the bar code reader since pin 6 is not connected at the bar code port. The following
tables provide bar code port connector pin assignments and information about mating connectors for
the bar code port.

Table 2-4. Bar Code Port Connector Pin Assignments

Pin Number | Symbol Signal Name
1 Voer Switched V.
2 Vober Input From Barcode Reader
3 GND * | Signal Ground
4-6 NC Not Connected

* The connector housing is attached to signal ground.

2-2 Mechanical Specifications

Table 2-5. Bar Code Port Mating Connectors

Manufacturer | Part Number
Switchcraft 12BL5M
Switchcraft 12BL6M

ITT Cannon 46005F

ITT Cannon 46006
TRW 014-00016-5
TRW 014-00024-1
SMK DIN45322

|
Memory Port Connector Specifications

The memory port connector is inside the back cover of the HP-94, and is where the 40K RAM card,
ROM/EPROM card, and 128K memory board connect to the machine. It is a Burndy PSE36C-2 36-

pin PCB edge connector. The pin assignment is shown below.

Mechanical Specifications

2-3

Table 2-6. Memory Port Connector Pin Assignments

Pin | Symbol Signal Name

1 GND Ground

2 RD Read

3 WR Write

4 Ccsv System reset

5 A0 Address bit 0

6 Al Address bit 1

7 A2 Address bit 2

8 A3 Address bit 3

] A4 Address bit 4
10 A5 Address bit 5
11 AB Address bit 6
12 A7 Address bit 7
13 A8 Address bit 8
14 A9 Address bit 9
15 A10 Address bit 10
16 At1 Address bit 11

17 A12 Address bit 12

18 A13 Address bit 13

19 Al4 Address bit 14

20 A15 Address bit 15

21 | CSMC1 * | Memory card chip select 1
22 | CSMC2+ { Memory card chip select 2
23 ADO Address/data bit 0

24 AD1 Address/data bit 1

25 AD2 Address/data bit 2

26 AD3 Address/data bit 3

27 AD4 Address/data bit 4

28 AD5 Address/data bit 5

29 AD6 Address/data bit 6

30 AD7 Address/data bit 7

31 Ccsv System reset

32 Vi NiCd battery voltage (output)
33 Vimes Lithium battery voltage (input)
34 Vag Recharger DC voltage (output)
35 V Supply voltage

cC
36 GND Ground

* CGSMCT1 is active when A1g, A18, and A16 = D and A17 = 1
({CSMC1 = A19-A18-A17-A16).

t CSMC2 is active when A19 and A18 = 0, and A17 and A16
= 1 (CSMC2 = A19-A18:A17-A16).

2-4 Mechanical Specifications

N
External Bus Connector Specifications

The external bus connector is located on the underside of the HP-94 behind a hard plastic port cover.
The connector is a JAE PICL-40S-ST. Connection to the external bus connector can be made using a
JAE PICL-40P-ST connector. The pin assignment is shown in the following table. Pin 1 is marked on
the connector body. The odd-numbered pins are on the outer row (toward the outer edge of the HP-94
case), and the even-numbered pins are on the inner row.

Mechanical Specifications 2-5

Table 2-7. External Bus Connector Pin Assignments

Pin | Symbol Signal Name
1 Vi NiCd battery voltage
2 Vi NiCd battery voltage
3 Vee Supply voltage
4 GND Ground
5 NC Not connected
6 NC Not connected
7 NC Not connected
8 DT/R Buffer read /write
9 | DEBUG | Connected to ground

10 NC No connection

11 IRQFK Reserved interrupt request 2
12 IRQPR Reserved interrupt request 1
13 I0/M 10/Memory

14 ALE Address latch enable

15 CLK CPU clock

16 AS16 Address/status bit 16

17 AS17 Address/status bit 17

18 AS18 Address/status bit 18

19 AS19 Address/status bit 19

20 RESET System clocked reset

21 ADO Address/data bit 0

22 AD1 Address/data bit 1

23 AD2 Address/data bit 2

24 AD3 Address/data bit 3

25 AD4 Address/data bit 4

26 AD5 Address/data bit 5

27 AD6 Address/data bit 6

28 AD7 Address/data bit 7

29 A15 Address bit 15

30 Al4 Address bit 14

31 A13 Address bit 13

32 A12 Address bit 12

33 A1 Address bit 11

34 A10 Address bit 10

35 A9 Address bit 9

36 A8 Address bit 8

37 WR Write
38 RD Read
39 GND Ground
40 GND Ground

2-6 Mechanical Specifications

]
Earphone Connector Specifications

The earphone jack accepts a 3.5 mm miniature plug, with an overall length of less than 12 mm. A 0.125
inch diameter miniature plug will also fit, but will tend to have a lower insertion and removal force.
Most standard earphones will connect properly to the HP-94 both mechanically and electrically. Some
variation in audio output volume will occur between various earphone manufacturers.

™
Battery Pack Connector Specifications

The battery pack uses two AMP 42827-1 brass contacts. The HP-94 mates these contacts with custom
nickel-plated brass pins that are 2.31 mm (0.091 in) nominal diameter, 6.3 mm (0.25 in) long, and 6.0
mm (0.24 in) center spacing.

Mechanical Specifications 2-7

o 3

Environmental Specifications

P 3

Environmental Specifications

Below are the environmental specifications for the HP-94.

Table 3-1. Environmental Specifications

Parameter Min Max Units Comments
Operating Temperature 0 55 °C +321t0 131 °F
Storage Temperature -40 65 °C -40to 149 °F
Operating Humidity 0 95 %RH At 40 °C
Vibration 3.4 g rms, 5 to 500 Hz random vibration, 10
minutes per axis
Swept sine, 1 g, 5 to 500 Hz, 10 minutes dwell at
resonance

Shock 3 ms, 1/2 sine wave, 228 ¢, 6 axes

Environmental Specifications

3-1

® 4

Accessory Specifications
|

Chapter 4

Contents

4-1
4-2
4-3
4-4
4-4
4-5
4-6
4-7
4-7
4-8
4-8
4-9
4-9
4-10
4-10
4-10

Accessory Specifications

40K RAM Card Specifications
ROM/EPROM Card Specifications
Battery Pack Specifications
Guidelines for Using Rechargeable Batteries
Recharger Specifications
Level Converter Specifications
When to Use the Level Converter
Cables
Modem Cable
Printer Cable
Level Converter Cable
Vectra Cable
Vectra or IBM PC/AT to Level Converter Cable
IBM PC or PC/XT to Level Converter Cable
Bar Code Readers
Connecting the Serial Port to a Smart Wand

4

Accessory Specifications

The principal HP-94 hardware accessories (at the time of printing) are listed below. This accessory list
does not include any software documentation, development tools, or utilities. For a complete list of all
HP-94 accessories and support items, please refer to the current HP-94 price list, available at all HP
sales offices. This chapter will describe only accessories listed in the table below.

Table 4-1. HP-94 Hardware Accessories

Model No. Description
HP 82411A 40K RAM Card
HP 82412A 32K-128K ROM/EPROM Card
HP 82430A Rechargeable NiCd Battery Pack
HP 82431A U.S./Canada Recharger

HP 82431AB * | Europe Recharger
HP 82431AG * | Australia Recharger
HP 82431AU * | U.K Recharger

HP 82470A RS-232-C Level Converter

HP 82433A HP-94 to Modem Cable

HP 82434A HP-94 to Printer Cable

HP 82435A HP-94 to Level Converter Cable

HP 82436A HP-94 to Vectra Cable

HP 24542G Vectra or IBM PC/AT to Level Converter Cable
HP 17255D IBM PC or PC/XT to Level Converter Cable
HP 39961D Smart Wand - Low Resolution

HP 39963D Smart Wand - General Purpose

HP 39965D Smart Wand - High Resolution

* The foreign versions of the recharger (Europe, Australia, and U.K) are not
available at the time this document was printed.

40K RAM Card Specifications

Pin assignments for the HP 82411A 40K RAM Card are described in the "Mechanical Specifications”
chapter. The RAM card uses the same Toshiba RAM (TC5565FL-15L) as is used in the HP-94. A
CR-2032 (or equivalent) lithium battery is required to provide battery backup for the RAM card.

Accessory Specifications 4-1

(T
ROM/EPROM Card Specifications

Pin assignments for the HP 82412A ROM/EPROM Card are described in the "Mechanical
Specifications" chapter.

The ROM/EPROM Card has sockets for up to three 32 Kbyte (256 Kbit) ROMs or EPROMs, or up
to two 64 Kbyte (512 Kbit) ROMs or EPROMs or their equivalents. There is a socketed jumper on the
card that allows selection of the different sizes. The generic names for these ICs are 27C256 for the 32
Kbyte and 27C512 for the 64 Kbyte ICs. The CMOS version of the ROMs or EPROMs must be used.
The NMOS versions require more current than is guaranteed by the HP-94. The EPROMs cannot be
programmed while in the ROM/EPROM card, but must be programmed in an external EPROM pro-
grammer.

A list of the required specifications is provided below to assist in selecting the appropriate parts.

Table 4-2. ROM and EPROM Specifications

Parameter Min Max | Units Comments
Operating Voltage 45 5.5 | Vdc 6.0V is recommended *
Operating Temperature | -10 +65 °C +14 t0 149 °F
Access Time 250 ns All parts < 250 ns
* Several manufacturers (including Intel) offer EPROMs with extended operating voltage range.

The manufacturers that make correct size ROMs and EPROMs for use with the ROM/EPROM card
and their part designations as of this printing are listed below. You should verify operating voltage,
temperature, and speed with the manufacturer before making a final selection. .

Table 4-3. ROM and EPROM Manufacturers

32K IC 64K IC
Manufacturer
EPROM ROM EPROM ROM
Advanced Micro Devices Am27C256 —_ Am27C512 —
Fujitsu MBM27C256 MB83256 MBM27C512 MB83512
Hitachi HN27C256 HN613256P — —
intel 27C256 — 27C512 —
Motorola MCM67256 — MCM67512
National Semiconductor | NMC27C256 — NMC27C512 —
NEC uPD27C256 uPD23C256E puPD27C512 uPD23C512
Texas Instruments TMS27C256 TMS47C256 TMS27C512 | TMS47C512
Toshiba TC57256 TMM53257P — —

4-2 Accessory Specifications

]
Battery Pack Specifications

The HP-94 uses the HP 82430A Rechargeable Battery Pack. When fully charged, the battery pack has
approximately 900 milliamp-hours (mAh) of usable charge. The battery pack is charged whenever an
HP 82431 recharger (HP 82431A/AB/AG/AU) is connected to the HP-94. Charging times and
currents when charged using one of the HP 82431 rechargers are shown below.

Table 4-4. HP 82430A Rechargeable Battery Pack Specifications

Parameter Symbol Min Typical Max Units Comments
Capacity 900 mAh
Charging Time Ten 6 10 14 hr *
Charging Current len 150 t mA Pack attached
to HP-94
Charging Current len 2001 | mA Pack detached
from HP-94

* The battery pack charging time is independent of HP-94 operating mode. Sufficient current is provided to operate the
HP-94 and its principal accessories as well as fully charge the battery pack.

Charging times in excess of 18 hours are not recommended. Extended charging time may reduce the iife of the bat-
tery pack. It is recommended that periodic "deep discharge - full recharge” cycles be performed to insure that max-
imum life and charge retention performance of the battery pack is maintained.

t The battery is connected to the recharger through a 2.7 £ current-limiting resistor in series with a Schottky blocking
diode. The actual charging current will vary as the battery pack voltage increases from the discharged state to the full
charged state.

1 Charging at currents greater than 200 mA for extended periods of time may damage the battery pack.

The battery pack contains four 2/3 C NiCd batteries completely enclosed in a detachable battery hous-
ing. All NiCd batteries are capable of extremely high short circuit currents. A thermal protector is
built into the battery pack to prevent a constant short circuit condition. Since this circuit is
temperature-sensitive, ambient conditions at or above its 75 °C temperature rating will cause a tem-
porary open circuit in the battery pack. The HP-94 will then behave as if no battery pack is connected.
When the short circuit or high temperature condition is removed, the battery pack short circuit protec-
tor will again close and the battery pack will continue normal operation.

WARNING Never connect multiple battery packs in paraliel while charging.
Each individual pack should be blocked with a diode to prevent
short circuit current from a failed cell from flowing into good cells
of other packs.

The battery pack connector specifications are described in the "Mechanical Specifications” chapter.

Accessory Specifications 4-3

Guidelines for Using Rechargeable Batteries

The following is usage information and cautions about using rechargeable batteries.

CAUTION To avoid damage to the handheld computer, use only the batteries and recharger
designated by Hewlett-Packard for the computer. Also, do not allow the batteries
to discharge beyond their available capacity — recharge as soon as possible
after the low battery indication appears. Allowing rechargeable batteries to
discharge beyond their maximum limit can damage the batteries.

m Recharging batteries before they are low may eventually decrease their charging capacity.

m Do not overcharge the batteries by allowing them to recharge for longer than the recommended
time. Shorter charging times will reduce the operating time before recharging is required, but will
not harm the batteries.

m Do not leave the recharger permanently connected to the machine. Doing so decreases the useful
life of the batteries.

m Do not use the recharger if it appears to have loose contacts, a cracked housing, or a damaged cord.

m Properly dispose of the batteries when they no longer adequately hold a charge or when they
appear damaged.

WARNING To prevent injury, keep all batteries out of the reach of children
and properly dispose of exhausted batteries. Do not mutilate or
puncture batteries, and do not dispose of them in fire. Exposure to
excessive heat can cause release of toxic fumes or explosion.

|
Recharger Specifications

The HP 82431 Recharger (HP 82431A/AB/AG/AU) supplies charging current to the HP-94’s NiCd
battery pack. The recharger is designed to supply sufficient current to charge the batteries even while
the HP-94 is operating.

4-4 Accessory Specifications

Table 4-5. HP 82431 Recharger Specifications

Parameter Symbol | Min Typical Max | Units Comments
Input Voltage Vac 108 120 132 | Vac HP 82431A
198 220 242 Vac HP 82431AB
216 240 264 | Vac HP 82431AG /AU
Input Current lac 80 mA HP 82431A
40 mA HP 82431AB/AG /AU
input Frequency P 57.5 60 625 | Hz HP 82431A
47.5 50 55 Hz HP 82431AB/AG /AU
Output Voltage Vieh 6.2 6.7 | Vdc
Output Current been 400 | mA *
* Refer to "Battery Pack Specifications" for details about the charging current actually supplied to the battery pack.

]
Level Converter Specifications

The HP-94 serial port outputs CMOS logic levels (refer to "Electrical Specifications”). Some RS-232
devices require that proper RS-232 voltage levels be provided for their serial interfaces to operate
properly. These devices require the use of the HP 82470A RS-232-C Level Converter.

The level converter modifies the 0 to V. voltage level outputs from the HP-94 serial port to +9 V EIA
RS-232-C voltage levels. Additionally, the level converter’s 25-pin connector inputs and outputs meet
all RS-232 timing and load specifications. RS-232 voltage level inputs to the level converter’s 25-pin
connector are internally shifted to the 0 to V, range the HP-94 expects, and then are output to the
HP-94 using the 15-pin connector.

When the serial port is disabled, the control lines are turned off (set to 0 volts). This is different than
most AC-powered serial devices, in which the control lines are high (-3 volts or less) because the serial
port is powered whenever the device is on.

Connection is made between the HP-94 and the level converter using an HP 82435A 1/4 meter cable.
The level converter is powered by the HP-94 using pin 9 of the serial port (V,s). The output voltage Vs
is activated under program control when the serial port is enabled (refer to the "Serial Port" chapter in
the operating system section of this manual). Typical power consumption by the level converter is 25
mA when active with a standard RS-232-C load at 9600 baud and V.. = 6.0 volts (Vs=Vc-0.1 V).

Below are the pin assignments for both the 15- and 25-pin connectors on the level converter.

Accessory Specifications 4-5

Table 4-6. HP 82470A RS-232-C Level Converter Pin Assignments

25-Pin Female Connector 15-Pin Female Connector
Signal Name Symbol | Pin No. || Pin No. | Symbol | HP-94 Signal Name

Frame Ground FG Housing || Housing FG Frame Ground
Transmitted Data TxD 2 2 TxD Transmitted Data
Received Data RxD 3 3 RxD Received Data
Request To Send RTS 4 4 RTS Request To Send
Clear To Send CTs 5 5 CTS Clear To Send
Data Set Ready DSR 6 6 DSR Data Set Ready
Signal Ground SG 7 7 SG Signal Ground
Data Carrier Detect DCD 8 8 DCD Data Carrier Detect
Not Connected NC 9 9 Vis Switched V. *
Data Terminal Ready DTR 20 15 DTR Data Terminal Ready
* HP 82470A level converter power.

When to Use the Level Converter

RS-232-C specifications require that input signal levels at the input of a device be greater than +3 or
less than -3 volts. RS-232 output voltages experience a greater voltage swing to prevent signal degrada-
tion and line noise from interfering with communication signals. However, many available line
receivers do not actually require voltage swings of these levels. The HP-94 system can take advantage
of this by not requiring that the level converter be used when communicating with these devices.

The HP-94 will switch its RS-232 outputs between CMOS logic levels, where V. will be between 4.5
and 6.0 volts. This provides logic low levels of less than 0.2 volts and logic high levels of greater than
V0.2 volts. Thus, any line receiver that will respond with high-to-low and low-to-high transitions in
this range of logic 0/1 values will not need to have true RS-232 levels at its inputs to properly detect the
logic level.

The line receivers that can communicate directly with the HP-94 (that is, no level converter required)

are listed below. Certain parts listed must be operated in the specified mode or configuration, so spe-
cial attention must be paid to the comments.

Table 4-7. Line Receivers That Do Not Require Level Converter

Part Number Manufacturer Comments
1489 National Semiconductor | Response (threshold) control must be open
Motorola *
75189 Texas Instruments -1 Response (threshold) control must be open
75154 Texas Instruments Response (threshold) control must be open
MAX232 Maxim
MC145406 Motorola
74HC14 many manufacturers
* 1489-compatible parts from other manufacturers will also work.

4-6 Accessory Specifications

CAUTION When using the HP-94 system without a level converter, special care must be
taken to ensure that the interconnection cables are sufficiently short to prevent
signal degradation. It is recommended that all communications cable for use with
the HP-94 that do not use the level converter be less than 3 meters in length.

-]
Cables

There are several cables available to allow configuration of the HP-94 in a system. The connections for
each of these cables are provided in the tables that follow in this section. Cable lengths are 1 meter
unless specified otherwise.

Modem Cable

The HP 82433A cable is used to connect the HP-94 to modems that do not require a level converter. It
is specifically designed for use with Hayes Smartmodems, but is usable with many other modems as
well.

Table 4-8. HP-94 to Modem Cable

HP-94 Modem
15-Pin Male Connector 25-Pin Male Connector
Signal Name Symbol | Pin No. || Pin No. | Symbol Direction
Frame Ground FG Housing || Housing AA N/A
Transmitted Data TxD 2 2 BA To Modem
Received Data RxD 3 3 BB From Modem
Request To Send RTS 4 4 CA* To Modem
Clear To Send CTS 5 5 CB From Modem
Data Set Ready DSR 6 6 cC From Modem
Signal Ground SG 7 7 AB N/A
Data Carrier Detect DCD 8 8 CF From Modem
Data Terminal Ready DTR 15 20 CD To Modem
* Hayes Smartmodems do not implement this line.

The HP-94 has receive all the necessary approvals for connecting to modems in the U.S. Some coun-
tries require that the product and its interface cable be approved prior to connecting to a modem.
Contact your local Hewlett-Packard sales office to verify that the HP-94 is approved for your specific
location.

Accessory Specifications 4-7

Printer Cable 6

The HP 82434A cable is used to connect the HP-94 to RS-232-C printers that do not require a level
converter. It is specifically designed for use with Hewlett-Packard ThinkJet printers (HP 2225D), but is

usable with many other printers as well.

Table 4-9. HP-94 to Printer Cable

HP-94 Printer
15-Pin Male Connector 25-Pin Male Connector
Signal Name Symbol | Pin No. || Pin No. | Symbol Signal Name

Frame Ground FG Housing {| Housing AA Protective Ground

Transmitted Data TxD 2 3 BB Received Data

Received Data RxD 3 2 BA Transmitted Data

Request To Send RTS 4 5 CB* Clear To Send

Clear To Send CTs 5 4 CA Request To Send

Data Set Ready DSR 6 20 CD Data Terminal Ready

Signal Ground SG 7 7 AB Signal Ground

* Many printers (including the Hewlett-Packard ThinkJet) do not implement this line.

Level Converter Cable

When using the level converter, an HP 82435A 1/4-meter cable is required. This cable provides a

straight-through connection between the HP-94 and the level converter.

Table 4-10. HP-94 to Level Converter Cable

HP-94 Level Converter
15-Pin Male Connector 15-Pin Female Connector
| Signal Name Symbol | Pin No. [Pin No. | Symbol Signal Name
 Frame Ground FG Housing || Housing FG Frame Ground
Transmitted Data TxD 2 2 TxD Transmitted Data
Received Data RxD 3 3 RxD Received Data
Request To Send RTS 4 4 RTS Request To Send
Clear To Send CTS 5 5 CTS Clear To Send
Data Set Ready DSR 6 6 DSR Data Set Ready
Signal Ground SG 7 7 SG Signal Ground
Data Carrier Detect DCD 8 8 DCD Data Carrier Detect
Switched V. Ve * 9 9 Vs * Switched V.
Data Terminal Ready DTR 15 15 DTR Data Terminal Ready
* HP 82470A level converter power.

4-8 Accessory Specifications

Vectra Cable

The HP 82436A 2-meter cable is used whenever direct communication between the HP-94 and a 9-pin
serial port on an HP Vectra personal computer. Each of the two Vectra serial interfaces has one 9-pin
port: the HP 24540A Serial/Parallel Interface, and the HP 24541A Dual Serial Interface. HP supplies
no cables that connect the HP-94 directly to the 25-pin port on the Vectra Dual Serial Interface.

Table 4-11. HP-94 to Vectra Cable

Vectra HP-94
9-Pin Female Connector 15-Pin Male Connector

B Signal Name Symbol | Pin No. || Pin No. | Symbol Signal Name

| Protective Ground AA Housing™ || Housing FG Frame Ground
Received Data BB 2 2 TxD Transmitted Data
Transmitted Data BA 3 3 RxD Received Data
Data Terminal Ready CD 4 5* CTS Clear to Send
Data Terminal Ready CD 4 6* DSR Data Set Ready
Signal Ground AB 5 7 SG Signal Ground
Data Set Ready cC 6* 15 DTR Data Terminal Ready
Clear to Send CB 8* 15 DTR Data Terminal Ready
* Pins 6 and 8 are tied together on the 9-pin connector, and pins 5 and 6 are tied together on the 15-pin connector.

Vectra or IBM PC/AT to Level Converter Cable

The HP-94 can communicate directly with the HP Vectra computer through the HP 82436A cable,
without using a level converter. For applications that require extended cable lengths or desire the level
converter option, the HP 24542G Serial Printer/Plotter Cable can be used. When communicating with
the IBM PC/AT, a level converter is required, and this cable must be used. The level converter is then
connected to the HP-94 using the HP 82435A cable.

Table 4-12. Vectra or IBM PC/AT to Level Converter Cable

Vectra or IBM PC/AT Level Converter
9-Pin Female Connector 25-Pin Male Connector
Signal Name Symbol | Pin No. || Pin No. | Symbol Signal Name
[Protective Ground AA Housing || Housing FG Frame Ground
Data Carrier Detect CF 1 4 RTS Request To Send
Received Data BB 2 2 TxD Transmitted Data
Transmitted Data BA 3 3 RxD Received Data
Data Terminal Ready CD 4 5* CTS Clear To Send
Data Terminal Ready CD 4 6* DSR Data Set Ready
Signal Ground AB 5 7 SG Signal Ground
Data Set Ready cC 6* 20 DTR Data Terminal Ready
Request To Send CA 7 8 DCD Data Carrier Detect
Clear To Send cB 8* 20 DTR Data Terminal Ready
* Pins 6 and 8 are tied together on the 9-pin connector, and pins 5 and 6 are tied together on the 25-pin connector.

Accessory Specifications

4-9

IBM PC or PC/XT to Level Converter Cable

When using an IBM PC or PC/XT to communicate with the HP-94, a level converter is required. The
HP 17255D cable connects the 25-pin IBM serial port connector to the 25-pin connector on the level
converter. The level converter is then connected to the HP-94 using the HP 82435A cable.

Table 4-13. IBM PC or PC/XT to Level Converter Cable

IBM PC or PC/XT Level Converter
25-Pin Female Connector 25-Pin Male Connector
Signal Name Symbol | Pin No. Pin No. | Symbol Signal Name
Frame Ground FG Housing * || Housing * FG Frame Ground
Transmitted Data TxD 2 3 RxD Received Data
Received Data RxD 3 2 TxD Transmitted Data
Clear To Send CTS 51 20 DTR Data Terminal Ready
Data Set Ready DSR 61 20 DTR Data Terminal Ready
Signal Ground SG 7 7 SG Signal Ground
Data Terminal Ready DTR 20 5% CTS Clear To Send
Data Terminal Ready DTR 20 61 DSR Data Set Ready
* Pin 1 is connected to frame ground (housing) on both connectors.
t Pins 5 and 6 are tied together on both connectors.

T
Bar Code Readers

The primary bar code readers for the HP-94 are the three HP Smart Wands: HP 39961D (low resolu-
tion), HP 39963D (general purpose), and HP 39965D (high resolution). Contact your sales office for
complete literature and specifications for these wands.

Connecting the Serial Port to a Smart Wand
HP Smart Wands can be configured in one of two ways:
= By scanning bar code configuration menus (optical configuration)
m By sending configuration escape sequences to the Smart Wand

When a Smart Wand is connected to the bar code port, only the first approach is available because the
bar code port is read-only. The second approach is available if the Smart Wand can be connected to
the serial port. To support this use, Hewlett-Packard supplies a low-level bar code handler with the
HP-94 Software Development System called HNSP that allows "smart" bar code scanning devices to be
connected to the serial port.

HP Smart Wands are supplied with a 5-pin, 240° circular DIN connector, but at this printing are not
available with a 15-pin D-type connector that would connect to the serial port. Below are the connec-
tions for a cable that will connect the serial port to a Smart Wand. This cable is not available from
Hewlett-Packard — the connections are provided to allow a developer to make the cable.

4-10 Accessory Specifications

Table 4-14. HP-94 Serial Port to Smart Wand Cable

HP-94 Smart Wand
15-Pin Male Connector 5-Pin or 6-Pin Female Connector
Signal Name Symbol | Pin No. Pin No. Symbol Signal Name
Frame Ground FG | Housing * || Housing * FG Frame Ground
Transmitted Data TxD 2 4 RxD Received Data
Received Data RxD 3 2 TxD Transmitted Data
Request To Send RTS 41 — NC Not Connected
Clear To Send CTS 51 — NC Not Connected
Signal Ground SG 7 3 SG Signal Ground
Switched V¢ Vst 9 1 Vs t Switched V.

1 HP Smart Wand power.

* The shield or braid must be connected to frame ground (housing).
1 Pins 4 and 5 are tied together on the 15-pin connector.

Accessory Specifications

4-11

® 5

Data Sheets

5

Data Sheets

This chapter contains copies of manufacturer’s data sheets for the following four ICs:
m NEC uPD70108 (V20) Microprocessor
m OKI MSMB82C51A Universal Asynchronous Receiver Transmitter (UART)
m Hitachi HD61102A LCD Column Driver
m Epson RTC-58321 Real-Time Clock

These data sheets provide reference information for developers whose application interacts directly
with the IC, independent of the HP-94 operating system. Refer to the appropriate chapters in the
"Operating System" for information about how these ICs are used in the HP-94, what I/O control
registers are associated with each IC, and what built-in software is available already to control them.

Data Sheets 5-1

]
. NEC xPD70108 (V20) Microprocessor Data Sheet

N EC 4PD70108 (V20)
HIGH-PERFORMANCE

NEC Electronics Inc. 16-BIT MICROPROCESSOR
‘ Revision 3 November 1985

Description . Ordering Information

The uPD70108 (V20) isa CMOS 16-bit microprocessor Part Max Frequency

with internal 16-bit architecture and an 8-bit external Number Package Type of Operation

data bus. The uPD70108 instruction set is a superset of 4#PD70108C-5 40-pin plastic DIP 5 MHz

the uPD8086/8088; however, mnemonics and execution LPD70108C-8 40-pin plastic DIP 8 MHz

times are different. The uPD70108 additionally has a

powerful instruction set including bit processing, 4PO70108D-5 40“’?" cera"‘fc P 5 MHz
packed BCD operations, and high-speed multiplication/ #PD70108D-8 40-pin ceramic DIP 8 MHz
division operations. The uPD70108 can also execute uPD70108D-10 40-pin ceramic DIP 10 MHz
trt1e g;tire ZOB(;th;\st_ruc‘t:pn stslet agd comes with a LPD70108G-5 52-pin flat pack 5 MHz
standby mode that significantly reduces power con- -

sumption. It is software-compatible with the uPD70116 #PD70108G-8 52"""."31 pack 8 Mz
16-bit microprocessor. uPD70108L-5 44-pin PLCC 5 MHz
Features uPD70108L-8 44-pin PLCC 8 MHz

O Minimum instruction execution time: 250 ns .
(at 8 MHz) Pin Configurations
O Maximum addressable memory: 1 Mbyte

O Abundant memory addressing modes 40-Pin Plastic DIP/Cerdip

0 14 x 16-bit register set S

3 101 instructions el 403 voo

O Instruction set is a superset of uPD8086/8088 :" g ; »p :“ "
instruction set *::E . ::g;:;,:

O Bit, byte, word, and block operations anOs 36 AwPs;

O Bit field operation instructions Aol s 3511 Arg/PSs

0O Packed BCD instructions ::E ’ 23;7%’ [HIGH]

O Multiplication/division instruction execution arts g wpAw
time: 4 us to 6 us (at 8 MHz) aps 10 5 311 HLDRO (RG/AK)

[J High-speed block transfer instructions: ADs Q1 R 30[]HLDAK (RG/AK)
1 Mbyte/s (at 8 MHZ) 1 AD, 012 21 wn_{nuswcx]

O High-speed calculation of effective addresses: A o =
2 clock cycles in any addressing mode AD: [15 26 [BUFEN (B5]

0 Maskable (INT) and nonmaskable (NMI) AD, (18 25[] ASTB {QSo|
interrupt inputs ' o E " “ g s asy)

0 IEEE-796 bus compatible interface cixdas 22) READY

[J 8080 emulation mode aNo [20 21 RESET

83-000102A

0O CMOS technology

0O Low-power consumption

O Low-power standby mode

[J Single power supply

0O 5 MHz, 8 MHz or 10 MHz clock

uPD70108 (V20) NEC

Pin Configurations (cont) Pin Ildentification .
No. Symbot Direction Function
44-Pin Plastic Leadless Chip Carrier (PLCC) 1 Ic* internally connected
2-8 Ayy-Ag Out Address bus, middle bits
9-16 AD7-ADg In/Out Address/data bus
17 NMI In Nonmaskable interrupt
input
A NC - -
s ArPSs 18 INT In Maskabie interrupt input
As LBSG (HIGH] 19 CLK In Clock input
AD? 18 20 GND Ground potential
ADg ab 21 RESET In Reset input
ADs HLORG (AG/AKG) 2 READY In Ready input
ADs HLDAK (RO/A) 23 POLL In Poll input
APa e] 24 INTAK (QS4) Out Interrupt acknowledge
AD; 10/M (882] output (queue status bit
ADy BUFA/W (B3] 1 output)
ADg SUFER (880) 25 ASTB (QSg) Out Address strobe output
’ (queue status bit 0
fanfenfemSeAferAet Al output)
*¥=z53%283 E g § 26 BUFEN (BS) Out Butfer enable output
£ o= F] (bus status bit 0 output)
£ = ssoomar2a 27 BUFR/W (BS1) Out Buffer read/write output
{bus status bit 1 output)
52-Pin Plastic Miniflat = -
28 10/M (BS») Out Access is 1/0 or memory
s = {bus status bit 2 output)
. § Eg o 5 29 WR(BUSLOCK) _ Out Write strobe output (bus
& E EBRs2¢8 lock output)
g E g xs%ga =
o388 8,812 ER . 30 HLDAK (RQ/AKy) Out Holdacknowledgeoutput,
2195222630232 (In/Out) (bus hold request input/
ﬂ ﬂ ﬂ ﬂ ﬂ ﬂ ﬂ ﬂ ﬂ ﬂ ﬂ ﬂ ﬂ acknowledge output 1)
/ ——
o T * 19 5 aste (asq) 31 HLDRQ (RQ/AKp) In Hold request input (bus
Pfg— TR (81) (In/Qut) hold request input/
Ate/PSo —] o _ acknowledge output 0)
AD1s (] READY 32 RD Out Read strobe output
Voo [RESET 33 s/iG In Small-scale/large-scale
Voo GND system input
GND] wPDT0108 GND
aND — NC 34 LBSg (HIGH) Out Latched bus status output
e GND 0 (atways high in
Are] cx large-scale systems)
A [INT 35-38 A4g/PS3- Out Address bus, high bits or
A2 NI A46/PSg processor status output
An :\“ 7 Inc 39 Ass Out Address bus, bit 15

40 Vpo Power supply

NC[]2
Ao]

Ag]

As
AD7 (]
AD¢ [
ADs]
ADy
Dy]
AD T
ADy]

Notes: " IC should be connected to ground.

ADg]
Ne TR

830018714 Where pins have different functions in small- and large-
scale systems, the large-scale system pin symbol and
function are in parentheses.

Unused input pins should be tied to ground or Vpg to
minimize power dissipation and prevent the flow of poten-
tially harmful currents.

uPD70108 (V20)

.ﬂlock Diagram

PS

ss

DSo

DS+

PEP

pP

TEMP

. Lc

2 A1g/PSo — A19/PS2
As — Ass
Bus
Butter
ADg — ADy

LSB

£950 -
: BUFEN (BSq], BUFR/W [BS:]
8 10/M [BS,)
ASTB [QSp], INTAK [QS4]

RD, WR [BUSLOCK]

PC

AW

BW

cw

ow

BP

SP

TC

TA
pe——smer——e———— Shifter ~

T8

L
Sub Data Bus [16)]

Status
Control
le—— /LG
te«———— READY
[e———— RESET
|«——— POLL
T-State Bus Hold «— HLDRQ [RQ/AKq]
Control Control | > HLDAK [RG/AKY]
Cycle Interrupt [NM
Decision Controt INT
I
| .~ Bus
Queue Standby ntrol
i Contro! Controt . CLK Co . °
Unit
l {BCU)
o e e e — —— ——— — — —
=
Execution
Unit
Ettective Address [EXU]
1 Generator

Microaddress Register

15) mc':::::':: tion E> Microinstruction

Queue Data Bus [8]

Microsequence
Control

I

Instruction Decoder

.

Main Data Bus [16]

83-000072C

uPD70108 (V20)

NEC

Pin Functions

Some pins of the uPD70108 have different functions
according to whether the microprocessor is used in a
small- or large-scale system. Other pins function the
same way in either type of system.

A5 - Ag [Address Bus]
For small- and large-scale systems.

The CPU uses these pins to output the middle 8 bits of
the 20-bit address data. They are three-state outputs
and become high impedance during hold acknowledge.

AD7 - ADg [Address/Data Bus]
For small- and large-scale systems.

The CPU uses these pins as the time-muiltiplexed
address and data bus. When high, an AD bit is a one;
when low, an AD bit is a zero. This bus contains the
lower 8 bits of the 20-bit address during T1 of the bus
cycle and is used as an 8-bit data bus during T2, T3,
and T4 of the bus cycle.

Sixteen-bitdata l/Ois performed in two steps. The low
byte is sent first, followed by the high byte. The ad-
dress/data bus is a three-state bus and can be ata high
or low level during standby mode. The bus will be high
impedance during hold and interrupt acknowledge.

NMI [Nonmaskable Interrupt]
For small- and large-scale systems.

This pin is used to input nonmaskable interrupt
requests. NMI cannot be masked by software. This
input is positive edge triggered and must be held high
for five clocks to guarantee recognition. Actual inter-
rupt processing begins, however, after completion of
the instruction in progress.

The contents of interrupt vector 2 determine the
starting address for the interrupt-servicing routine.
Note that a hold request will be accepted even during
NMi acknowledge.

This interrupt will cause the uPD70108 to exit the
standby mode.

INT [Maskable Interrupt]
For small- and large-scale systems.

This pin is an interrupt request that can be masked by
software.

INT is active high level and is sensed during the last
clock of the instruction. The interrupt will be accepted
if the interrupt enable flag IE is set. The CPU outputs
the INTAK signal to inform external devices that the
interrupt request has been granted. INT must be
asserted until the interrupt acknowledge is returned.

If NM! and INT interrupts occur at the same time, NM|
has higher priority than INT and INT cannot be

accepted. A hold request will be accepted during INT .

acknowledge.

This interrupt causes the uPD70108 to exit the standby
mode.

CLK [Clock]
For small- and large-scale systems.

This pin is used for external clock input.

RESET [Reset]
For smalil- and large-scale systems.

This pin is used for the CPU reset signal. it is an active
high level. input of this signal has priority over all other
operations. After the reset signal input returns to a low
level, the CPU begins execution of the program starting
at address FFFFOH.

In addition to causing normal CPU start, RESET input
will cause the uPD70108 to exit the standby mode.

READY [Ready]
For small- and large-scale systems.

When the memory or I/0 device being accessed
cannot complete data read or write within the CPU
basic access time, it can generate a CPU wait state
(Tw) by setting this signal to inactive (low level) and
requesting a read/write cycie delay.

If the READY signal is active (high level) during either

the T3 or Tw state, the CPU will not generate a wait
state.

POLL [Poll]

For small- and large-scale systems.

The CPU checks this input upon execution of the POLL
instruction. If the inputis low, then execution continues.
If the input is high, the CPU will check the POLL input
every five clock cycles until the input becomes low
again.

The POLL and READY functions are used to syn-
chronize CPU program execution with the operation of
external devices.

RD [Read Strobe]
For small- and large-scale systems.

The CPU outputs this strobe signal during data read
from an 1/0 device or memory. The IO/M signal is used
to select between I/0 and memory.

The three-state output is held high during standby
mode and enters the high-impedance state during hold
acknowledge.

S/LG [Small/Large]
For small- and large-scale systems.

This signal determines the operation mode of the CPU.
This signal is fixed at either a high or low level. When

NEC

uPD70108 (V20)

.‘ this signal is a high level, the CPU will operate insmall-

scale system mode, and when low, in the large-scale
system mode. A small-scale system will have at most
one bus master such as a DMA controller device on the
bus. A large-scale system can have more than one bus
master accessing the bus as well as the CPU.

Pins 24 to 31 and pin 34 function differently depending
on the operating mode of the CPU. Separate nomencla-
ture is adopted for these signals in the two operating
modes.

Function

Pin No. 8/18-high 8/(6-low
24 INTAK 0S4
25 ASTB QSg
26 BUFEN BSy
27 BUFR/W BS4
28 10/M BS
29 WR BUSLOCK
30 HLDAK RG/AK,
31 HLDRQ RQ/AKy
A LBSq Always high

INTAK [Interrupt Acknowledge]
For small-scale systems.

The CPU generates the INTAK signal low when it
accepts an INT signal.

The interrupting device synchronizes with this signal and
outputs the interrupt vector to the CPU via the databus
(AD7 - ADg).

ASTB [Address Strobe]

For small-scale systems.

The CPU outputs this strobe signal to latch address
information at an external latch.

ASTB is held at a low level during standby mode and
hold acknowledge.

BUFEN [Buffer Enable]
For small-scale systems.

This is used as the output enable signal for an external
bidirectional butfer. The CPU generates this signal during
data transfer operations with external memory or
I/0 devices or during input of an interrupt vector.

This three-state output is held high during standby
mode and enters the high-impedance state during hold
acknowledge.

BUFR/W [Buffer Read/Write]
For smali-scale systems.

The output of this signal determines the direction of
data transfer with an external bidirectional buffer. A

high output causes transmission from the CPU to the
external device; a low signal causes data transfer from
the external device to the CPU.

BUFK/W is a three-state output and becomes high
impedance during hold acknowledge.

10/M [10/Memory)
For small-scale systems.

The CPU generates this signal to specify either 170
access or memory access. A high-level output specifies
I/0 and a low-level signal specifies memory.

10/M’s output is three state and becomes high
impedance during hold acknowledge.

WR [Write Strobe]
For small-scale systems.

The CPU generates this strobe signai during data write
to an I/O device or memory. Selection of either 1/0 or
memory is performed by the 10/M signal.

This three-state output is held high during standby
mode and enters the high-impedance state during hold
acknowledge.

HLDAK [Hold Acknowledge]

For small-scale systems.

The HLDAK signal is used to indicate that the CPU
accepts the hold request signal (HLDRQ). When this
signal is a high level, the address bus, address/data
bus, and the control lines become high impedance.
HLDRAQ [Hold Request]

For small-scale systems.

This input signal is used by external devices to request
the CPU to release the address bus, address/data bus,
and the control bus.

LBSg [Latched Bus Status 0]
For small-scale systems.

The CPU uses this signal along with the I0/M and
BUFR/W signals to inform an external device what the
current bus cycle is.

10/M BUFR/W LBS; Bus Cycle
0 0 0 Program fetch

1

0

1

0

1

0

1

Memory read

Memory write

Passive state

Interrupt acknowiedge
1/0 read

110 write

Halt

0 ¢
0 1
0 1
1 0
1 0
1 1
1 1

uPD70108 (V20)

NEC

A19/PS3- A1g/PSo [Address Bus/Processor Status)
For small- and large-scale systems.

These pins are time multiplexed to operate as an
address bus and as processor status signals.

When used as the address bus, these pins are the high 4
bits of the 20-bit memory address. During 1/0 access,
all 4 bits output data 0.

The processor status signals are provided for both
memory and I/O use. PS; is always 0 in the native mode
and 1 in 8080 emulation mode. The interrupt enable
flag (1E) is pin on pin PS,. Pins PS; and PSgindicate which
memory segment is being accessed.

Ay7/PS; Ag/PSg Segment
0 0 Data segment 1
0 1 Stack segment
1 0 Program segment
1 1 Data segment 0

The output of these pins is three state and becomes
high impedance during hold acknowledge.

QS+, QS [Queue Status)
For large-scale systems.

The CPU uses these signals to allow external devices,
such as the floating-point arithmetic processor chip,
(#PD72091) to monitor the status of the internal CPU
instruction queue.

08, 08y instruction Queue Status
0] NOP (queue does not change)
0 1 First byte of instruction
1 0 Flush queue
1 1 Subsequent bytes of instruction

The instruction queue status indicated by these signals
is the status when the execution unit (EXU) accesses
the instruction queue. The data output from these pins
is therefore valid only for one clock cycle immediately
following queue access. These status signals are
provided so that the floating-point processor chip can
monitor the CPU’s program execution status and
synchronize its operation with the CPU when control is
passed to it by the FPO (Floating Point Operation)
instructions.

BS; - BSg [Bus Status]
For large-scale systems.

The CPU uses these status signals to allow an external
bus controller to monitor what the current bus cycleis.

The external bus controller decodes these signals and
generates the control signals required to perform
access of the memory or I/O device.

6

Bus Cycle

Interrupt acknowledge

1/0 read

110 write

Halt

Program fetch

Memory read

Memory write

BS;
0
0
0
0
1
1
1
1

~lo|=|o|~|o|=|=|8

- R I OOl alOolO

Passive state

The output of these signals is three state and becomes
high impedance during hold acknowledge.

BUSLOCK [Bus Lock]
For large-scale systems.

The CPU uses this signal to secure the bus while
executing the instruction immediately foliowing the
BUSLOCK prefix instruction, or during an interrupt
acknowledge cycle. tis a status signal to the other bus
masters in a multiprocessor system, inhibiting them
from using the system bus during this time.

The output of this signal is three state and becomes
high impedance during hold acknowledge. BUSLOCK
is high during standby mode except if the HALT
instruction has a BUSLOCK prefix.

RG/AK4, RQ/AKq [Hold Request/Acknowledge]
For large-scale systems.

These pins function as bus hold request inputs (RQ)
and as bus hold acknowledge outputs (AK). RQ/AKg
has a higher priority than RQ/AKj.

These pins have three-state outputs with on-chip pull-
up resistors which keep the pin at a high level when the
output is high impedance.

Vpp [Power Supply]
For small- and large-scale systems.

This pin is used for the +5 V power supply.

GND [Ground)]
For small- and large-scale systems.

This pin is used for ground.

IC {Internally Connected]

This pin is used for tests performed at the factory by
NEC. The uPD70108 is used with this pin at ground
potential.

NEC uPD70108 (V20)

. Absolute Maximum Ratings Capacitance
Ta=125°C Tp=+25°C,Vpp=0V
Power supply voltage, Vpp —05Vto+7.0V Limits Test
Power dissipation, PDpax 05w Parameter Symbol Min Max Uit Conditions
lnput. voltage, V; —-05VtoVpp+03V Input capacitance G, 15 o E:nrzn ;aa:m 4 gins
CLK input voltage, Vi —05V1oVpp 10V 1/0 capacitance Cio 15 pF returnedto OV
Output voitage, Vo v —05VtoVpp+03V
Operating temperature, Topt —40°C to +85°C
Storage temperature, Ts1g —65°C to +150°C
Comment: Exposing the device to stresses above those listed in
Absolute Maximum Ratings could cause permanent damage. The
device is not meant to be operated under conditions outside the
limits described in the operational sections of this specification.
Exposure to absolute maximum rating conditions for extended
periods may affect device retiability.
DC Characteristics
uPD70108-5, T = —40°C to +85°C, Vpp =+5V £ 10%
pPD70108-8, yPD70108-10, T = —10°C to +70°C, Vpp = +5V £ 5%
Limits Test
Parameter Symbol Min Typ Max Unit Conditions
Input voltage high ViH 22 Vpp+0.3 v
Input voitage low Vi -0.5 0.8 v
. CLK input voltage high VKH 39 Vpp+10 v
CLK input voltage low Vi —-05 06 v
Output voltage high VoH 0.7 x Vpp v ign = —400 A
Output voltage low VoL 0.4 v loL=25mA
Input leakage current high LK 10 uA Vi=Vop
Input leakage current low I -10 A Vi=0V
Output leakage current high ILoH 10 uh Vo= Vpp
Output leakage current low ILoL -10 uA Vo=0V
70108-5 30 - 60 mA Normal operation
5 MHz 5 10 mA Standby mode
Supply current ip 70108-8 45 80 mA Normal operation
8 MHz 6 12 mA Standby mode
70108-10 60 100 mA Normal operation
10 MHz 7 14 mA Standby mode

uPD70108 (V20) N E C

AC Characteristics
uPD70108-5, Ty = —40°C to +85°C, Vpp = +5 V £ 10%
uPD70108-8, uPD70108-10,T = —10°C to +70°C, Vpp =+5V £ 5%

uPD70108-5 #PO70108-8 4POT0108-10
Parameter Symbol Min Max Min Max Min Max Unit Conditions
Smali/Large Scale
Clock cycle tovk 200 500 125 500 100 500 ns
Clock pulse width high tkkH 69 4 41 ns V=30V
Clock pulse width low kKL 90 60 49 ns VkL=15V
Clock rise time kR 10 8 5 ns 15Vto 30V
Clock fall time txe 10 7 5 ns 30Vtoi1s5V
READY inactive setup to CLK{ tSRYLK -8 -8 -10 ns
READY inactive hold after CLK! tukryH 0 20 20 ns
READY active setup to CLK? tSRYHK tkkL — 8 tkkL — 8 tkx —10 ns
READY active hold after CLKt tHKRYL 3 20 20 ns
Data setup time to CLK | tspK 30 20 10 ns
Data hold time after CLK tHkD 10 : 10 10 ns
NML, INT, POLL setup time ts1K 30 15 15 ns
to CLK !
Input rise time (except CLK) tir 20 20 20 ns 08Vto22V
Input fall time (except CLK) 113 12 12 12 ns 22Vt 08V
Output rise time tor 20 20 20 ns 08Vto22V ‘
Output fall time tor 12 12 12 ns 22Vto 08V
Small Scale
Address delay time from CLK tpKA 10 90 10 60 10 48 ns
Address hold time from CLK tHka 10 10 10 ns
PS delay time from CLK { tpkp 10 %0 10 60 10 50 ns
PS float delay time from CLK trxp 10 80 10 60 10 50 ns
Address setup time to ASTB tsAST tykL~ 60 txkL — 30 tykL — 30 ns
éfzrfss tioat delay time from tFKA tHkA 80 tHkA 60 tHKA 50 ns Cy = 100 pF
ASTB t delay time from CLK | tOKSTH 80 50 40 ns
ASTB | delay time from CLK 1 tDKSTL 85 55 45 ns
ASTB width high tsTsT tkkL — 20 tkk — 10 tkx, — 10 ns

Address hold time from ASTB | tHsTA tkky — 10 tkkw — 10 tkkn —10 ns

NEC uPD70108 (V20)

AC Characteristics (cont)
pPD70108-5, Ta= —40°C to +85°C, Vpp=+5V < 10%
uPD70108-8, uPD70108-10, Ta = —10°C to +70°C, Vpp = +5V + 5%

uPD70108-5 #PD70108-8 4PD70108-10
Parameter Symbol Min Max Min Max Min Max Unit Conditions
Small Scale (cont)
Control delay time from CLK toKeT 10 110 10 65 10 55 ns
Address fioat to RD! tAFRL 0 0 0 ns
RO ! detay time from CLK { tDKRL 10 165 10 80 10 70 ns
RD 1 delay time from CLK | tDKRH 10 150 10 80 10 60 ns
Address delay time from RD 1 tpRHA vk — 45 toyk — 40 toyk — 35 ns
RD width low tRR 2tcyk—T75 2tcyk—50 2tcyk—40 ns C_=100pF
Data output delay time from oKD 10 90 10 60 10 50 ns
CLK
Data float delay time from trkp 10 80 10 60 10 50 ns
CLK |
WR width low tww 2tcyk—60 2tcy—40 2teyk—35 ns
HLDRQ setup time to CLK ! tsHOK 35 20 20 ns
HLDAK delay time from CLK | tDKHA 10 160 10 100 10 60 ns
Large Scale
Address delay time from CLK toka 10 90 10 60 10 48 ns
Address hold time from CLK THKA 10 10 10 ns
' PS delay time from CLK | tokp 10 %0 10 60 10 50 ns
PS fioat delay time from CLK ! tekp 10 80 10 60 10 50 ns
lc\ﬂgrfss float defay time from trka tHKA 80 tHKA 501”‘ tHKA 50 ns
Address delay time from RD ! tORHA toyk — 45 toyk — 40 toyk —35 ns
ASTB delay time from BS toesT 15 15 15 ns
BS | delay time from CLK 1DKBL 10 110 10 60 10 50 ns
BS 1 delay time from CLK ¢ tDKBH 10 130 10 65 10 50 ns
RD | delay time from address tDAFRL 0 0 ‘ 0 ns CL=100pF
fioat
RD | delay time from CLK | tDKRL 10 165 10 80 10 70 ns
AD 1 delay time from CLK | tOKRH 10 150 10 80 10 60 ns
RD width low trR 2eyK—75 2tcyk—50 2tcyk—40 ns
Date output delay time from tpxp 10 90 10 60 10 50 ns
CtK
Data float delay time from trxD 10 80 10 60 10 50 ns
CLK?
AK delay time from CLK { tDKAK 70 50 40 ns
RO setup time to CLK 1 tSROK 20 10 9 ns
RQ hold time after CLK tHKRQ 40 30 20 ns

uPD70108 (V20)

Timing Waveforms

,‘—

e\

'snvm(

b

POLL, NMI, INT Input Timing

Tn

CLK
tsic
—

POLL
NMLINT X

BUSLOCK

AC Test Input Waveform [Except CLK] Clock Timing
ey 2.2v 2.2v

08V 0.8V
AC Output Test Points CLK

2.2V 2.2V

T
0.8v 0.8V
49-000238A

Wait {[Ready] Timing BUSLOCK Output Timing

CLK
tD'(A
[td

49-000240A

10

NEC

uPD70108 (V20)

. Timing Waveforms (cont)

Read Timing [Small Scale]

T4 pal 12 T4
ax £ ./ -
tuxa) texe
toxa—s] e —] ‘n—
{
A/PS, - Address Program Status
A8, ,
toka>| = g i “‘m(r
F=tsast
LBS,
{oxa— i-l-— | ta-thKa 4
t'“" .‘-lF A oo
—
AD,-AD, Ad Data Input i
toxsTH> to—| — e tugra —o
te. tuxo
T8T
ASTB) s
o e _Jtexer
toxsri || toxct!
|
1 tarRL toxct
BUFR/W
— *toxaL — tokan
RO
toxeT
— — g toRuaA—

Write Timing [Small Scale)

T4 Tt T2 T3 T4
A,/PS, - Ad Program Status
A, /PS, ~
LBS,
toka—i t=— - "loxb _,_t
AD, - AD, Ad Dats Output
tgagr |- ;"mu

—j
te-tusTa]
r.-

!DKCT_’

toket
OFEN / ﬂ *

49-000243A

A Ay , Aehy X DS
49.00024°A ERR v
Read Timing [Large Scale] Write Timing [Large Scale]
14 T T2 ht T4 T4 T T2 T3 T4
ox f K oLk / !t_/_\;_/__/—\—/_\t__
toxae] e][ta g '
Arp/PS . =1 [=toxe :
A11 dPSao- Address \ Program Ststus — AA‘x/P:s’o' Address Program Status —
toka— |
188, LBS,
] Lt teoK =+ tox t,
toxa-" l“ o] “'k:: - tetuxo }_ towa= [+~ _"l tuxl: — F‘K’D
AD; - ADo k A Dets input AD7 - ADg =m——q Address J Data Output i
ASTB ""»omu"I— ASTB
(71088 088 7/ \
Output) \ gnpm) J_
-] re-lpgst toxen 1 i——
BS: - BS Bus Status 7 B5,-8Sc \ Bus Status /
-.to.(.:‘ i '] r+loarnc = |=toxnn
w \ . Qs - Qs X X) D ¢ X
toxa> | - |*toxne -
XXX a X O
—t ‘F—A 49-0002444
A5 - Ag J i
I

11

uPD70108 (V20) NEC

Timing Waveforms (cont)

Interrupt Acknowiedge Timing
ol T2 jx] T4 jal T2 13 n
o k_/
AD, - AD, —
toxcr—e tokcr—e e
INTAK \ /
[—toxcr —= t*toxer

Ei
E

— tD‘A
BUSLOCK * /

39-0000+5E

Hold Request/Acknowledge Timing [Small Scale]} ror2
or

Ztoyn— Xteyx

'SNQK T 'S”QK

HLDRQ j |
toxwa—= (e— toxma 4 3
HLDAK ‘_—£

o r—lnu
- 70108 Externai Master ’——'< 70108

®:A/PS,-A /PS8, A, -A,AD, - AD,, RD, LBS,, 10/M, BUFR/W, WA BUFEN

RILES § Vats £

12

NEC

1PD70108 (V20)

. Timing Waveforms (cont)

Bus Request/Acknowledge Timing [Large Scale]

70108 input 70108

ciK W m
tsmax
zlcv.‘—-‘ toxax
———{l r—-tox‘x ——{ tuxna .—l — toxax
RQ/AK 7 \ e P 2) \ M/

Output
“‘ fe—texa

N\

2tlevk

- 70108

N)

® ;A JPS, - A,/PS, A, - A, AD, - AD,, BS, - BS,, RD, BUSLOCK

—

49 Q002368

13

uPD70108 (V20)

NEC

Register Configuration
Program Counter [PC]

The program counter is a 16-bit binary counter that
contains the segment offset address of the next
instruction which the EXU is to execute.

The PC increments each time the microprogram fetches
an instruction from the instruction queue. A new
location valueis loaded into the PC each time a branch,
call, return, or break instruction is executed. At this
time, the contents of the PC are the same as the
Prefetch Pointer (PFP).

Prefetch Pointer [PFP]

The prefetch pointer (PFP) is a 16-bit binary counter
which contains a segment offset which is used to
calculate a program memory address that the bus
control unit (BCU) uses to prefetch the next byte for
the instruction queue. The contents of PFP are an
offset from the PS (Program Segment) register.

The PFPisincremented each time the BCU prefetches
an instruction from the program memory. A new
location will be loaded into the PFP whenever a branch,
call, return, or break instruction is executed. At that
time the contents of the PFP will be the same as those
of the PC {Program Counter).

Segment Registers [PS, SS, DSy, and DS4]

The memory addresses accessed by the uPD70108 are
divided into 64K-byte logical segments. The starting
(base) address of each segment is specified by a 16-bit
segment register, and the offset from this starting
address is specified by the contents of another register
or by the effective address.

These are the four types of segment registers used.

Segment Register Default Offset
PS (Program Segment) PFP

SS (Stack Segment)
DS (Data Segment 0) IX, effective address
DSy (Data Segment 1) Y

SP, effective address

Generai-Purpose Registers [AW, BW, CW, and DW]
There are four 16-bit general-purpose registers. Each
one can be used as one 16-bit register or as two 8-bit
registers by dividing them into their high and low bytes
(AH, AL, BH, BL, CH, CL, DH, DL).

Each register is also used as a default register for
processing specific instructions. The default assign-
ments are:

AW: Word multiplication/division, word 1/0, data
conversion

14

AL: Byte multiplication/division, byte I/0, BCD
rotation, data conversion, transiation

AH:
BW: Translation
CW: Loop control branch, repeat prefix

CL: Shift instructions, rototation instructions,
BCD operations

Word multiplication/division, indirect
addressing 1/0

Pointers [SP, BP] and Index Registers [IX, Y]

These registers serve as base pointers or index registers
when accessing the memory using based addressing,
indexed addressing, or based indexed addressing.

Byte multiplication/division

DW:

These registers can also be used for data transfer and
arithmetic and logical operations in the same manner

as the general-purpose registers. They cannot be used

as 8-bit registers.

Also, each of these registers acts as a default register
for specific operations. The default assignments are:

SP: Stack operations
iIX: Block transfer (source), BCD string operations
IY: Blocktransfer (destination), BCD string operations

Program Status Word [PSW]

The program status word consists of the following six
status and four control fiags.

Control Flags
e MD (Mode)

Status Flags
® V (Overflow)

® S (Sign) ® DIR (Direction)

® Z (Zero) ® |E (Interrupt Enable)
® AC (Auxiliary Carry) ¢ BRK (Break)

® P (Parity)

® CY (Carry)

When the PSW is pushed on the stack, the word images
of the various flags are as shown here.

PSW

15 14 13 12 11 10 9 8 76 5 43 210

M 1 1 1 V. DI BSZO0OAOPT1C

D I ER C Y
R K

The status flags are set and reset depending upon the
result of each type of instruction executed.

Instructions are provided to set, reset, and complement
the CY flag directly.

Other instructions set and reset the control flags and
control the operation of the CPU.

NEC

.High-Speed Execution of Instructions

This section highlights the major architectural features
that enhance the performance of the uPD70108.

Dual data bus in EXU

e Effective address generator

e 16/32-bit temporary registers/shifters (TA, TB)
[J

[]

16-bit loop counter
PC and PFP

Dual Data Bus Method

To reduce the number of processing steps for in-
struction execution, the dual data bus method has
been adopted for the uPD70108 (figure 1). The two
data buses (the main data bus and the subdata bus) are
both 16 bits wide. For addition/subtraction and logical
and comparison operations, processing time has been
speeded up some 30% over single-bus systems.

Figure 1. Dual Data Buses
~") ")
<:: \—/

1% 16
e ()
registers/shitters
ALY
Ve ™
Subdata bus Main dsta bus

83-000103A

uPD70108 (V20)
Example
ADD AW,BW ;AW «— AW+ BW
Single Bus Dual Bus

Step 1 TA — AW

Step 2 TB «— BW

Step3AW «— TA+TB
Effective Address Generator

This circuit (figure 2) performs high-speed processing to
calculate effective addresses for accessing memory.

Calculating an effective address by the microprogram-
ming method normally requires 5 to 12 clock cycles.
This circuit requires only two clock cycles for
addresses to be generated for any addressing mode.
Thus, processing is several times faster.

TA — AW, TB — BW
AW — TA + TB

Figure 2. Effective Address Generator

First and second byte of instruction
mod rim
y
EA Generator
Effective address
83-000104A

16/32-Bit Temporary Registers/Shifters [TA, TB]

These 16-bit temporary registers/shifters (TA, TB)
are provided for muitiplication/division and shift/
rotation instructions.

These circuits have decreased the execution time of
multiplication/division instructions. In fact, these
instructions can be executed about four times faster
than with the microprogramming method.

TA + TB: 32-bit temporary register/shifter for multi-
plication and division instructions.

TB: 16-bit temporary register/shifter for shift/rotation
instructions.

15

uPD70108 (V20)

NEC

Loop Counter {LC]

This counter is used to count the number of loops fora
primitive block transfer instruction controlled by a
repeat prefix instruction and the number of shifts that
will be performed for a muitiple bit shift/rotation in-
struction.

The processing performed for a multiple bit rotation of
a register is shown below. The average speed is
approximately doubled over the microprogram method.

Example
RORC AW, CL
Microprogram method LC method
8+ (4x5)=28clocks 7+ 5=12clocks
Program Counter and Prefetch Pointer [PC and PFP]

The uPD70108 microprocessor has a program counter,
(PC) which addresses the program memory location of
the instruction to be executed next, and a prefetch
pointer(PFP), which addresses the program memory
location to be accessed next. Both functions are
provided in hardware. A time saving of several clocks
is realized for branch, call, return, and break instruction
execution, compared with microprocessors that have
only one instruction pointer.

Enhanced Instructions

In addition to the uPD8088/86 instructions, the
©PD70108 has the following enhanced instructions.

;CL=5

Instruction Function

PUSH imm Pushes immediate data onto stack

PUSH R Pushes 8 general registers onto stack

POPR Pops 8 general registers from stack

MUL imm Executes 16-bit multiply of register or memory contents
by immediate data

SHL imm8 Shifts/rotates register or memory by immediate

SHR imm8 value

SHRA imm8

ROL imm8

ROR imm8

ROLC imm8

RORC imm8

CHKIND Checks array index against designated boundaries

INM Moves a string from an {/0 port to memory

ouT™ Moves a string from memory to an /0 port

PREPARE Allocates anarea for a stack frame and copies previous
frame pointers

DISPOSE Frees the current stack frame on a procedure exit

16

Enhanced Stack Operation Instructions
PUSH imm

This instruction allows immediate data to be pushed
onto the stack.

PUSH R/POP R

These instructions allow the contents of the eight
general registers to be pushed onto or popped from
the stack with a single instruction.

Enhanced Multiplication Instructions
MUL reg16, imm16/MUL mem16, imm16

These instructions allow the contents of a register or
memory location to be 16-bit multiplied by immediate
data.

Enhanced Shift and Rotate Instructions
SHL reg, imm8/SHR reg, imm8/SHRA reg, imm8

These instructions allow the contents of a register to be
shifted by the number of bits defined by the immediate
data.

ROL reg, imm8/ROR reg, imm8/ROLC reg, imm8/
RORC reg, imm8

These instructions allow the contents of a register to be
rotated by the number of bits defined by the immediate
data.

Check Array Boundary Instruction
CHKIND reg16, mem32

This instruction is used to verify that index values
pointing to the elements of an array data structure are
within the defined range. The lower limit of the array
should be in memory location mem32, the upper limit
inmem32+ 2. Ifthe index value inreg16 is not between
these limits when CHKIND is executed, a BRK 5 will
occur. This causes a jump to the location in interrupt
vector 5.

Block I/0 Instructions
OUTM DW, src-block/INM dst-block, DW

These instructions are used to output or input a string
to or from memory, when preceded by a repeat prefix.

Stack Frame Instructions
PREPARE imm16, imm8

This instruction is used to generate the stack frames
required by block-structured languages, such as
PASCAL and Ada. The stack frame consists of two
areas. One area has a pointer that points to another
frame which has variables that the current frame can
access. The otheris alocal variable area for the current
procedure.

NEC

uPD70108 (V20)

. DISPOSE

This instruction releases the last stack frame generated
by the PREPARE instruction. It returns the stack and
base pointers to the values they had before the
PREPARE instruction was used to call a procedure.

Unique Instructions

In addition to the uPD8088/86 instructions and the
enhanced instructions, the uPD70108 has the following
unigue instructions.

Instruction Function

INS Insert bit field

EXT Extract bit field

ADDA4S Adds packed decimal strings

SuB4S Subtracts one packed decimal string from another
CMP4S Compares two packed decimal strings

ROL4 Rotates one BCD digit teft through AL lower 4 bits
ROR4 Rotates one BCD digit right through AL lower 4 bits
TESTH Tests a specified bit and sets/resets Z flag

NOT1 Inverts a specified bit

CLR1 Clears a specified bit

SET1 Sets a specified bit

REPC Repeats next instruction until CY flag is cleared
REPNC Repeats next instruction until CY fiag is set

FPO2 Additional fioating point processor call

Figure3. BitField Insertion

Variable Length Bit Field Operation Instructions

This category has two instructions: INS (Insert Bit
Field) and EXT (Extract Bit Field). These instructions
are highly effective for computer graphics and high-
level languages. They can, for example, be used tor
data structures such as packed arrays and record type
data used in PASCAL.

INS reg8, reg8/INS reg8, imm4

This instruction (figure 3) transfers low bits from the
16-bit AW register (the number of bits is specified by
the second operand) to the memory location specified
by the segment base (DS register) plus the byte offset
(1Y register). The starting bit position within thisbyteis
specified as an offset by the lower 4-bits of the first
operand.

After each complete data transfer, the |Y register and
the register specified by the first operand are auto-
matically updated to point to the next bit field.

Either immediate data or a register may specify the
number of bits transferred (second operand). Because
the maximum transferable bit length is 16-bits, only the
lower 4-bits of the specified register (00H to OFR) will
be valid.

Bit field data may overlap the byte boundary of memory.

15

| Bitlength
e

- //

l Bit oftset Byte offset (1Y)
))] l Y
¢ | : | & {
| ! / i ! Memory
Eﬁ L ! : 7‘(‘ l g(
! 1 1 1
Byte boundary Segment base (DS1)

83-000106A

17

NEC

1PD70108 (V20)

EXT reg8, reg8/EXT reg8, imm4

This instruction (figure 4) loads to the AW register the
bit field data whose bit length is specified by the
second operand of the instruction from the memory
location that is specified by the DSO segment register
(segment base), the IX index register (byte offset), and
the lower 4-bits of the first operand (bit offset).

After the transfer is complete, the IX register and the
lower 4-bits of the first operand are automaticaliy
updated to point to the next bit field.

Either immediate data or a register may be specified for
the second operand. Because the maximum trans-
ferrable bit length is 16 bits, however, only the lower
4-bits of the specified register (OH to OFH) will be valid.

Bit field data may overlap the byte boundary of memory.
Packed BCD Operation Instructions

The instructions described here process packed BCD
data either as strings (ADDA4S, SUB4S, CMP4S) or
byte-format operands (ROR4, ROL4). Packed BCD
strings may be from 1 to 254 digits in length.

When the number of digits is even, the zero and carry
flags will be set according to the result of the operation.
When the number of digits is odd, the zero and carry
flags may not be set correctly in this case, (CL = odd),
the zero flag will not be set unless the upper 4 bits of the
highest byte are all zero. The carry flag will not be set
unless there is a carry out of the upper 4 bits of the
highest byte. When CL is odd, the contents of the upper
4 bits of the highest byte of the result are undefined.

Figure 4. Bit Field Extraction

ADDA4S

This instruction adds the packed BCD string addressed
by the IX index register to the packed BCD string
addressed by the IY index register, and stores the
result in the string addressed by the |Y register. The
length of the string (number of BCD digits) is specified
by the CL register, and the result of the operation will
affect the overflow flag (V), the carry flag (CY), and
zero flag (Z).

BCD string (Y, CL) « BCD string (1Y, CL) + BCD
string (1X, CL)

SUB4S

This instruction subtracts the packed BCD string
addressed by the IX index register from the packed
BCD string addressed by the |Y register, and stores the
result in the string addressed by the Y register. The
length of the string (number of BCD digits) is specified
by the CL register, and the result of the operation will
affect the overflow flag (V), the carry flag (CY), and
zero flag (2).

BCD string (lY, CL) « BCD string (Y, CL) — BCD
String (I1X, CL)

CMP4S

This instruction performs the same operation as
SUBA4S except that the result is not stored and only the

overflow (V), carry flags (CY) and zero flag (Z) are
affected.

BCD string (1Y, CL) — BCD string (I1X, CL)

Bit length Bitoffset | Byte offset (1X) -
- {{ {
D) T] mli)
‘ /// ‘
]
i ' i$;
)
' } ?
Byte Boundary Segment base (DS0)
15 0
w o)]/

83-0001078

18

NEC

uwPD70108 (V20)

. ROL4

This instruction (figure 5) treats the byte data of the
register or memory directly specified by the instruction
byte as BCD data and uses the lower 4-bits of the AL
register (AL) to rotate that data one BCD digit to the
left.

Figure 5. BCD Rotate Left (ROL4)

7 AL o

83-000108A

ROR4

This instruction (figure 6) treats the byte data of the
register or memory directly specified by the instruction
byte as BCD data and uses the lower 4-bits of the AL
register (AL) to rotate that data one BCD digit to the
right.

Figure 6. BCD Rotate Right (ROR4)

7 AL 0

Upper Lower Upper Lower
4 bits 4 bits 4 bits 4 bits

83-000109A

Bit Manipulation Instructions
TEST1

This instruction tests a specific bit in a register or
memory location. [f the bitis 1, the Zflag is reset to 0.If
the bit is 0, the Z flag is set to 1.

NOT1

This instruction inverts a specific bit in a register or
memory location.

CLRt

This instruction clears a specific bit in a register or
memory location.

SET1

This instruction sets a specific bit in a register or
memory location.

Repeat Prefix Instructions

REPC

This instruction causes the uPD70108 to repeat the
following primitive block transfer instruction until the

CY flag becomes cleared or the CW register becomes
zero.

REPNC

This instruction causes the uPD70108 to repeat the
following primitive block transfer instruction until the
CY flag becomes set or the CW register is decremented
to zero.

Floating Point Instruction
FPO2

This instruction is in addition to the pPD8088/86
floating point instruction, FPO1. These instructions
are covered in a later section.

Mode Operation Instructions

The uPD70108 has two operating modes (figure 7).
One is the native mode which executes uPD8088/86,
enhanced and unique instructions. The other is the
8080 emulation mode in which the instruction set of the
uPDB8080AF is emulated. A mode flag (MD) is provided
to select between these two modes. Native mode is
selected when MD is 1 and emulation mode when MD is
0. MD is set and reset, directly and indirectly, by
executing the mode manipulation instructions.

Two instructions are provided to switch operation from
the native mode to the emulation mode and back:
BRKEM (Break for Emulation), and RETEM (Return
from Emulation).

Two instructions are used to switch from the emulation
mode to the native mode and back: CALLN (Call Native
Routine), and RET!I (Return from Interrupt).

The system will return from the 8080 emulation mode
to the native mode when the RESET signal is present,
or when an external interrupt (NM! or INT) is present.

Figure 7. V20 Modes

HOLD REQ/HOLD ACK

——n.

Native Mode

8088/86
Enhanced
and Unique
Instruction Set

RESET, NMi, or INT and IE

Halt

INT and {D idie at
10% Power

Standby
- Mode

HOLD REQ/HOLD ACK

E

8080 Mode
83-000775A

19

u1PD70108 (V20)

NEC

BRKEM imm8

This is the basic instruction used to start the 8080
emulation mode. This instruction operates exactly the
same as the BRK instruction, except that BRKEM
resets the mode flag (MD) to 0. PSW, PS, and PC are
saved to the stack. MD is then reset and the interrupt vector
specified by the operand imm8 of this command is
loaded into PS and PC.

The instruction codes of the interrupt processing
routine jumped to are then fetched. Then the CPU
executes these codes as uPDB080AF instructions.

in 8080 emulation mode, registers and flags of the
uPDB8O8OAF are performed by the following registers
and flags of the uPD70108.

«PD70108

~PDBOBOAF

Registers: A AL
B CH

C CL

] DH

E DL

H BH

L BL

SpP BP

PC PC

Flags: C cYy
AC AC

Inthe native mode, SPis used for the stack pointer. Inthe
8080 emulation mode this function is performed by BP.

This use of independent stack pointers allows indepen-
dent stack areas to be secured for each mode and
keeps the stack of one of the modes from being
destroyed by an erroneous stack operation in the other
mode.

The SP, IX, IY and AH registers and the four segment
registers (PS, SS, DSy, and DS,) used in the native
mode are not affected by operations in 8080 emuiation
mode.

in the 8080 emulation mode, the segment register for
instructions is determined by the PS register (set
automatically by the interrupt vector) and the segment
register for data is the DSy register (set by the
programmer immediately before the 8080 emulation
mode is entered).

it is prohibited to nest BRKEM instructions.

20

RETEM [no operand]

When RETEM is executed in 8080 emulation mode
(interpreted by the CPU as a uPD8080AF instruction),
the CPU restores PS, PC, and PSW (as it would when
returning from an interrupt processing routine), and
returns to the native mode. At the same time, the
contents of the mode flag (MD) which was saved to the
stack by the BRKEM instruction, is restoredtoMD =1.
The CPU is set to the native mode.

CALLN imm8

This instruction makes it possible to call the native
mode subroutines from the 8080 emulation mode. To
return from subroutine to the emulation mode, the
RET! instruction is used. ’

The processing performed when this instruction is
executed in the 8080 emulation mode (it is interpreted
by the CPU as uPD8080OAF instruction), is similar to
that performed when a BRK instruction is executed in the
native mode. The imm8 operand specifies an interrupt
vector type. The contents of PS, PC, and PSW are
pushed on the stack and an MD fiag value of O is saved.
The mode flag is set to 1 and the interrupt vector
specified by the operand is loaded into PS and PC.

RET! [no operand]

This is a general-purpose instruction used to return
from interrupt routines entered by the BRK instruction
or by an external interrupt in the native mode. When
this instruction is executed at the end of a subroutine
entered by the execution of the CALLN instruction, the
operation that restores PS, PC, and PSW is exactly the
same as the native mode execution. When PSW is
restored, however, the 8080 emulation mode value of
the mode flag (MD) is restored, the CPU is set in
emulation mode, and all subsequent instructions are
interpreted and executed as uPD8080AF instructions.

RETlis also used to return from an interrupt procedure
initiated by an NMI or INT interrupt in the emulation
mode.

Floating Point Operation Chip
Instructions

FPO1 {p-op, mem/FPO2 fp-op, mem

These instructions are used for the external floating
point processor. The floating point operation is passed
to the floating point processor when the CPU fetches
one of these instructions. From this point the CPU
performs only the necessary auxiliary processing
(effective address calculation, generation of physical
addresses, and start-up of the memory read cycle).

NEC

uPD70108 (V20)

The floating point processor always monitors the
instructions fetched by the CPU. When itinterprets one
as an instruction to itself, it performs the appropriate
processing. At this time, the floating point processor
chip uses either the address alone or both the address
and read data of the memory read cycle executed by the
CPU. This difference in the data used depends on
which of these instructions is executed.
Note: During the memory read cycle initiated by the CPU for FPO1
or FPO2 execution, the CPU does not accept any read data
on the data bus from memory. Although the CPU generates

the memory address, the data is used by the fioating point
processor.

interrupt Operation
The interrupts used in the uPD70108 can be divided
into two types: interrupts generated by external inter-
rupt requests and interrupts generated by software
processing. These are the classifications.
External Interrupts
(a) NMl input (nonmaskable)
(b) INT input (maskable)
Software Processing
As the result of instruction execution
— When a divide error occurs during execution
of the DIV or DIVU instruction
— When a memory-boundary-over error is detected
by the CHKIND instruction
Conditional break instruction
— When V = 1 during execution of the BRKV
instruction
Unconditiona! break instructions

BRK3
BRK imm8

— 1-byte break instruction:
— 2-byte break instruction:

Filag processing

— When stack operations are used to set the
BRK fiag

8080 Emulation mode instructions

— BRKEM imm8
— CALLN imm8

Interrupt Vectors

Starting addresses for interrupt processing routines
are either determined automatically by a single location
of the interrupt vector table or selected each time
interrupt processing is entered.

The interrupt vector table is shown in figure 8. The
table uses 1K bytes of memory addresses 000H to
3FFH and can store starting address data for a
maximum of 256 vectors (4 bytes per vector).

The corresponding interrupt sources for vectors 0
to 5 are predetermined and vectors 6to 31are reserved.
These vectors consequently cannot be used for
general applications.

The BRKEM instruction and CALLN instruction (in the
emulation mode) and the INT input are available for
general applications for vectors 32 to 255.

Asingle interrupt vector is made up of 4 bytes (figure 9).
The 2 bytes in the low addresses of memory are
loaded into PC as the offset, and the high 2 bytes are
loaded into PS as the base address. The bytes are
combined in reverse order. The lower-order bytes in
the vector become the most significant bytes in the PC
and PS, and the higher-order bytes become the least
significant bytes.

Figure 8. Interrupt Vector Table
000H —[
Vector0 Divide Error l
004K I
Vector1 Break Flag |
008H
Vector2 NM! Input
00CH Dedicated
Vector3 BRK 3 Instruction
010H
Vector4 BRKY Instruction
014H ‘
Vector 5 CHKIND instruction 5
018K - —
Vector 6
t— Reserved
07CH
Vector 31
080H —_
Vector32 Genersl Use
— e BRK imm8 Instruction
* BRKEM Instruction
3FCH ® INT input [External;
Vector225 ® CALLN instruction
83-000°" 14
Figure 9. Interrupt Vector 0
Vector 0
T
000H ! 001H
+
002+ : 003H
PS «— (003H, 002H)
PC — (001H, 000H)
83-0001124

21

wPD70108 (V20)

NEC

Based on this format, the contents of each vector
shouid be initialized at the beginning of the program.

The basic steps to jump to an interrupt processing
routine are now shown.

(SP-1,SP-2) — PSW
(SP-3,SP-4) — PS
(SP-5,SP-6) «— PC
SP~SP-6 ,

IE «— 0, BRK «~ 0, MD « 1
PS <« vector high bytes
PC « vector low bytes

Standby Function

The uPD70108 has a standby mode to reduce power
consumption during program wait states. This mode is
set by the HALT instruction in both the native and the
emulation mode.

Inthe standby mode, the internal clock is supplied only
to those circuits related to functions required to
release this mode and bus hold control functions. As a
result, power consumption can be reduced to 1/10 the
level of normal operation in either native or emulation
mode.

The standby mode is released by inputting a RESET
signal or an external interrupt (NMI, INT).

The bus hold function is effective during standby
mode. The CPU returns to standby mode when the bus
hold request is removed.

During standby mode, all control outputs are disabled
and the addres/data bus will be at either high or low
levels.

Instruction Set

The following tables briefly describe the uPD70108's
instruction set.

O Operation and Operand Types - defines abbrevia-
tions used in the Instruction Set table.

0 Flag Operations - defines the sybols used to describe
flag operations.

0O Memory Addressing - shows how mem and mod
combinations specify memory addressing modes.

O Selection of 8- and 16-Bit Registers - shows how
reg and W select a register when mod = 111.

O Selection of Segment Registers - shows how sreg
selects a segment register.

O Instruction Set - shows the instruction mnemonics,
their effect, their operation codes the number of
bytes in the instruction, the number of clocks
required for execution, and the effect on the
uPD70108 flags.

22

Operation and Operand Types .

identifier Description

reg 8- or 16-bit general-purpose register

reg8 8-bit general-purpose register

reg16 16-bit general-purpose register

dmem 8- or 16-bit direct memory location

mem 8- or 16-bit memory location

mem8 8-bit memory location

mem16 16-bit memory location

mem32 32-bit memory location

imm Constant (0 to FFFFH)

imm16 Constant (0 to FFFFH)

imm8 Constant (0 to FFH)

imm4 Constant (0 to FH)

imm3 Constant (0 to 7)

acc AW or AL register

sreg Segment register

src-table Name of 256-byte transiation table

src-block Name of block addressed by the IX register

dst-block Name of block addressed by the IY register

near-proc Procedure within the current program ‘
segment

far-proc Procedure located in another program
segment

near-label Label in the current program segment

short-label Label between —128 and +127 bytes from the
end of instruction

far-label Label in another program segment

memptr1é Word containing the offset of the memory
location within the current program segment
to which control is to be transferred

memptr32 Double word containing the offset and
segment base address of the memory
location to which control is to be transferred

regptr16 16-bit register containing the offset of the
memory location within the program
segment to which control is to be transferred

pop-value Number of bytes of the stack to be discarded
(0 to 64K bytes, usually even addresses)

fp-op Immediate data to identify the instruction

code of the external floating point operation

NEC

‘ Operation and Operand Types (cont)

uPD70108 (V20)

Operation and Operand Types (cont)

identifier Description identifier Description
R Register set tmpcy Temporary carry flag (1 bit)
w Word/byte field (0 to 1) seg immediate segment data (16 bits)
reg Register field {000 to 111) offset immediate offset data (16 bits)
mem Memory field (000 to 111) i Transfer direction
mod Mode field (00 to 10) + Addition
SwW When S:W = 01 or 11, data = 16 bits. Atall - Subtraction
other times, data = 8 bits. X Multiplication
X, XXX, YYY, 222 Data to identi?y the ?nstrqction pode_of the = Division
external floating point arithmetic chip
AW Accumulator (16 bits) % Modulo
AH Accumulator (high byte) AND Logical product
AL Accumulator (low byte) OR Logical sum
BW BW register (16 bits) XOR Exclusive logical sum
cW CW register (16 bits) XXH Two-digit hexadecimal value
L CW register (low byte) XXXXH Four-digit hexadecimal value
DW DW register (16 bits) Flag Operations
sP Stack pointer (16 bits) Jdentifier Description
PC Program counter (16 bits) (blank) No change
PSW Program status word (16 bits) 0 Cleared to 0
IX Index register (source) (16 bits) 1 Set to 1
Y Index register (destination) (16 bits) X Set or cleared according to the result
PS Program segment register (16 bits) U Undefined
SS Stack segment register (16 bits) R Value saved earlier is restored
DSg Data segment 0 register (16 bits)
DS4 Data segment 1 register (16 bits) Memory Addressing
AC Auxiliary carry flag mod
cy Carry flag mem 00 o1 10
Parity flag 000 . BW+IX BW + IX + disp8 BW + IX + disp16
Sign flag 001 BW+IY BW + IY + disp§ BW + 1Y + disp16
Zero flag 010 BP+IX BP + IX + disp8 BP + IX + disp16
DIR Direction flag 011 BP+1Y BP + 1Y + disp8 BP +!Y + disp16
IE Interrupt enable flag 100 X IX + disp8 IX + disp16
vV Overflow flag 101 VY 1Y + disp8 IY + disp16
BRK Break flag 110 Direct address BP + disp8 BP + disp16
MD Mode flag 1M1 BW BW + disp8 BW + disp16
(.) Values in parentheses are memory contents
disp Displacement (8 or 16 bits)
ext-disp8 16-bit displacement (sign-extension byte
+ 8-bit displacement)
temp Temporary register (8/16/32 bits)

23

#PD70108 (V20) NEC

Selection of 8- and 16-Bit Registers (mod 11) The table on the following pages shows the instruction .
rog W-0 W1 set.
000 AL AW At“No. of Clocks,” for instructions referencing memory
001 L oW operands, the left side of the slash (/) is the number of
clocks for byte operands and the right side is for word
010 oL bw operands. For conditional control transfer instructions,
on BL BwW the left side of the slash (/) is the number of clocks if a
100 AH SP control transfer takes place. The right side is the
101 CH 8P number of clocks when no control transfer or branch
occurs. Some instructions show a range of clock
110 DH X times, separated by a hyphen. The execution time of
11 BH Y these instructions varies from the minimum value to

the maximum, depending on the operands involved.

Selection of Segment Registers ‘
“No. of Clocks"” includes these times:

sreg .
0 DS, ® Decoding
o Effective address generation
01 Ps ® Operand fetch
10 SS . ® Execution
1 DSp It assumes that the instruction bytes have been pre-

fetched.

24

Operation Code No.of No.of Flags
Mnemonic Operand Operation 76 54 32 107654 32 10 Clocks Bytes AC cY v P 812
Data Transier Instructions
MoV reg, reg reg <—reg 1000101 W11 reg reg 2 2
mem, reg (mem) «— reg 1000100 W mod reg mem 9/13 24 n
reg, mem reg <— {mem) 1000101 W mod reg mem 11/15 24
mem, imm (mem) «— imm 1100011 Wmod 000 mem 11/15 36
reg, imm reg «<— imm 101 1W reg 4 2-3
acc, dmem When W = 0 AL «— (dmem) 1010000 W 10/14 3
When W = 1 AH «— (dmem + 1), AL «— (dmem)
dmen, acc When W = 0 (dmem) «— AL 1010001 W 9/13 3
When W = 1 (dmem + 1) «— AH, (dmem) <— AL
sreg, reg16 sreg «— reg16 sreg : S, DSO, DS1 10001110110 sreg reg 2 2
sreg, mem16 sreg <—— (mem16) sreg : SS, DSO, DS1 10001110 mod 0 sreg mem 11/15 2-4
reg16, sreg reg16 «— sreg 10001100110 sreg reg 2 2
mem16, sreg (mem16) «— sreg 10001100 mod 0 sreg mem 10/14 24
DS0, reg16, reg16 «— (mem32) 1100010 1 mod reg mem 18/26 24
mem32 DSO «— (mem32 + 2)
DS1, reg16, reg16 «— (mem32) 11000100 mod reg mem 18/26 2-4
mem32 DSt «— (mem32 + 2)
AH, PSW AH «—S,Z, x,AC, x, P, x, CY 100111 114 2 1 X X X X X
PSW, AH S,Z x,AC, x,P,x,CY «— AH 10011110 3 1 X X X X X
LDEA reg16, mem16 reg16 «— memi6 ' 1000110 1 mod reg mem 4 2-4
TRANS src-table AL «— (BW + AL) 11010111 9 1
XCH reg, reg reg < reg 1000011 W11 reg reg 3 2
mem, reg (mem) «— reg 10000 11 W mod reg mem 16/26 24
or reg, mem
AW, reg16 AW «—> reg16 10010 reg 3 1
or reg16, AW -
Repeat Prefixes h)
REPC While CW # 0, the next byte of the primitive block 01100101 2 1 3
transfer instruction is executed and CW is
decremented (— 1). I there is a waiting interrupt, o
it is processed. When CY # 1, exit the loop. 8
: REPNC While CW = 0, the next byte of the primitive block 01100100 2 1 o
transfer instruction is executed and CW is -~
I decremented (— 1). If there is a waiting interrupt, <
‘ it is processed. When CY = 0, exit the loop. N
om e

decremented (— 1). If there is a waiting interrupt, it is
processed. If the primitive block transfer instruction
is CMPBK or CMPM and Z # 0, exit the loop.

Primitive Block Transfer Instructions

N
o Operation Code No.of No.of Fiags =

Mnemonic Operand Operation 76 54 32 10176 54 32 10 Clocks Bytes AC CY V P S 2 g

Repeat Prefixes {cont} J

REP While CW # 0, the next byte of the primitive block 11110011 2 1 (@]

REPE transfer instruction is executed and CW is wh

REPZ decremented (— 1). If there is a waiting interrupt, it is o

processed. if the primitive block transfer instruction (o)

is CMPBK or CMPM and Z # 1, exit the loop. pag

REPNE While CW # 0, the next byte of the primitive block 11110010 2 1 <

REPNZ transfer instruction is executed and CW is N

(=)

S’

MOVBK dst-block, When W =0 (IY) «— (IX) 1010010 W M1+8n 1
src-block DIR=0:IX «=IX+ 1, 1Y «— 1Y + 1
DR=1IX—IX-11Y Y -1
When W =1(IY + 1, 1Y) < (IX + 1, IX) 11+ 16n

DIR=0:1X «—IX+2,1Y «— 1Y +2
DIR=1:IX*+—1IX~2,1Y 1Y -2

CMPBK src-block, When W =0 (IX) — (1Y) t0 10011 W 7+ 14n 1 X X X X X X
dst-block DIR=0:IX «—IX+ 1, 1Y — Y +1
DIR=11X «—IX—1 1Y — 1Y -1
When W =1(IX+ 1,IX) — (IY + 1, 1Y) 7+22n

DIR=0:1X «<— IX+2,1Y «— 1Y +2
DIR=1IX*—IX—-2,1Y 1Y -2

CMPM dst-block When W =0 AL — (1Y) 1010111 W 7+10n 1 X X X X X X
DIR=0:1Y «— Y+ 1;DIR=1:1Y «— Y — 1
When W =1 AW — (IY + 1, 1Y) 74 14n
DR=0:1Y«—IY+2:DIR=1:1Y «— Y -2
LDM src-block When W = 0 AL < (IX) 1010110 W 7+9n 1
DIR=0:1X «—IX+1;DIR=1:IX «—IX —1
When W =1 AW «— (IX + 1, IX) 7+ 13n
DR=0:IX < IX+2:DIR=1:IX «—IX -2
ST™M dst-block When W =0 (IY) <« AL 1010101 W 7+4n 1
DIR=0:1Y «— 1Y+ 1;DIR=1:1Y — Y — 1
When W =1 (IY + 1, 1Y) «— AW 7+8n
DIR=0:IY«—IY+2DIR=1: 1Y =Y -2 n: number of transfers
Bit Field Transfer Instructions
INS reg8, reg8 16-Bit field «— AW 000O0TtTT1T1T1TO0O01T1000T1 35133 3
T reg reg
reg8, imm4 16-Bit field «— AW 000011 1t1001T1100 1 3513 4
11000 reg

DN

Operation Code No.of No.of Fiags
Mnemonic Operand Operation 76 54 32 10765354 32 10 Clocks Bytes AC CY V¥ P S
Bit Field Transfer Instructions fcont)
EXT reg8, reg8 AW <« 16-Bit field 00001111001t 100 11 345 3
11 reg reg
reg8, imm4 AW «— 16-Bit field 000011110011 1011 345 4 0
11000 reg
1/0 Instructions
IN acc, imm8 When W = 0 AL < (imm8) 1110010 W 9/13 2
When W = 1 AH «— (imm8 + 1), AL <— (imm8)
acc, DW When W =0 AL < (DW) 1110110 W 8/12 1
When W = 1 AH «— (DW + 1), AL «— (DW)
out imm8, acc When W = 0 (imm8) «— AL 1110011 W 8/12 2
When W = 1 (imm8 + 1) «— AH, (imm8) «—— AL
DW, acc When W = 0 (DW) «— AL 1110111 W 8/12 1
When W =1 (DW + 1) «— AH, (DW) «— AL
Primitive 1/0 Instructions
INM dst-block, DW When W = 0 (IY) «— (DW) 01 10t10W 9+ 8n 1
DIR=0:1Y « 1Y + 1;,DIR=1:1Y « 1Y — 1
When W = 1(IY + 1,1Y) «— (DW + 1, DW) 9+ 16n
DIR=0:1Y «— Y+ 2;DIR=1: 1Y «— 1Y -2
oUTM DW, src-block When W = 0 (DW) «— (IX) 0110111 W 9+ 8n 1
DIR=0:IX —IX+1;DIR=1IX —IX-1
When W =1 (DW + 1, DW) «— (IX + 1,1X) 9+ 16n
DIR=0:IX—IX+2,DIR=1.IX «—IX—-2 . n: number of transfers
Addition/Subtraction Instructions
ADD reg, reg reg «— reg + reg 0000001 WI11 reg reg 2 2 X X X X X X
mem, reg (mem) <~ (mem) + reg 0000000 W mod reg mem 16/24 224 X X X X X X
reg, mem reg «— reg + (mem) 00000O0T1 W mad reg mem 11/15 244 x X X X X X
reg, imm reg «— reg + imm 1'00000S W11000 reg 4 34 x X X X X X
mem, imm (mem) <«— (mem) + imm 1 00000S Wmod 000 mem 18/26 36 x x X X X X ™
acc, imm When W =0 AL «—— AL + imm 00000 10W 4 223 x X X X X X h)
When W = 1 AW «— AW + imm O
ADDC reg, reg req «— reg + reg + CY 0001001 W11 reg reg 2 2 X X X X X X g
mem, reg (mem) <— (mem) + reg + CY 0001000 W mod reg mem 16/24 24 X X X X X X 'y
reg, mem reg «— reg + (mem) + CY 0001001 W mod reg mem 11/15 24 X X X X X X 8
reg, imm reg <— reg + imm + CY 100000SW11010 reg 4 34 x X X X X X —~
mem, imm (mem) «— (mem) + imm + CY 1 00000S Wmoed 010 mem 18/26 36 x Xx X X X X §
. C

8¢

Operation Code No.of No.of Flags
Mnemonic Operand Operation 76 54 32 1076 5432 10 Clocks Bytes AC CY ¥V P § Z
Addition/Subtractien Instructions (cont)
ADDC acc, imm When W =0 AL «—— AL + imm + CY 0001010 W 4 23 X X X X X X
When W =1 AW «— AW + imm + CY
SuB reg, reg reg < reg — reg 0010101t WwWI1A1 reg reg 2 2 X X X X X X
mem, reg (mem) <— (mem) — reg 0010100 W mod reg mem 16/24 24 x X X X X Xx
reg, mem reg <—— reg — (mem) 0010101 W mod reg mem 11/15 24 X x X x X X
reg, imm reg «— reg — imm 100000S W11 101 reg 4 34 x x x x x x
mem, imm (mem) «— (mem) — imm 1 0000O0S Wmod 1 0t mem 18/26 36 x x x x x x
acc, imm When W =0 AL «— AL - imm 0010110W 4 23 x x X x X X
When W =1 AW «— AW — imm
SUBC reg, reg reg — reg — reg — CY 0001101 WI11 reg reg 2 2 X X X X X X
mem, reg (mem) «— (mem) — reg — CY 0001100 W mod reg mem 16/24 24 X X X X X X
reg, mem reg <— reg — (mem) — CY 0001101 W mod reg mem 11/15 24 x x x x X
reg, imm reg «<— reg — imm — CY 100000S W1 1011 reg 4 34 x x x x x x
mem, imm (mem) «— (mem) — imm — CY 100000S Wmod 01 1 mem 18/26 36 x x x x x X
acc, imm When W =0 AL «— AL — imm — CY 0001110W 4 23 x X X X X X
When W = 1 AW «— AW — imm — CY
BCD QOperation Instructions
ADD4S dst BCD string «— dst BCD string 000011t 11001000O00O0 7+19n 2 U X u Uuux
+ src BCD string
SUB4S dst BCD string «— dst BCD string 06000111 100100O010 7+19n 2 Uu X u b ux
- sr¢ BCD string
CMP4S dst BCD string — src BCD string 0000111 100100110 7+19n 2 U X U v uXx
n: number of BCD digits divided by 2
ROL4 reg8 7 AL 0 rog 000011 1100101000 25 3
. I I ~]'—-IW‘NNIL‘”U‘N:]"*I 1100 reg
L
mem8 7 AL 0 mem 0000111100101 000 28 35
L | Mj l”"’"“"lm“"Il"_] mod 0 0 0 mem
| I
ROR4 reg8 7 AL ° reg 0000111100101 010 29 3
T o fomam}—y 11000 0
| 2
mem8 7 AL co000t111t00101010 33 35
000 mem

0 mem
I I ALtj*-l Upper 4 bits l LW‘M’H mod
| B

(oZA) sorozad”

DN

Operation Code No.of Me.of Flags 2

Mnemonic Operand Operation 76 54 32 1076 354 32 10 Clocks Bytes AC CY V P 8 7

Increment/Oecrement Instructions {cont)

INC reg8 reg8 «— reg8 + 1 1111111011000 veg 2 2 X X X X X m
mem {mem) «— (mem) + 1 1111111 Wmod 000 mem 16/24 24 x X X X X 0

reg16 reg16 «— reg16 + 1 01000 reg 2 1 X X X X X

DEC reg8 reg8 «—reg8 — 1 1111111011001 reg 2 2 X X X X X

mem (mem) <«— (mem) — 1 1111111 Wmod 001 mem 16/24 24 X X X X X

reg16 reg16 «— reg16 — 1 01001 reg 2 1 X X X X X

Multiplication Instructions .
MULU reg8 AW <«— AL x reg8 1111011011100 vreg 21-22 2 U X X U uu

AH=0:CY «0,V<0
AH#0:CY «— 1,V 1

mem8 AW «— AL x {(mem8) 11110110 md 100 mem 2728 24 u x X U uu
AH=0:CY «—0, V0
AH#0:CY «— 1,V «—1

reg16 DW, AW «— AW x reg16 1111011111100 vreg 29-30 2 U X X uuu
DW=0:CY «0,V<10
DW #0:CY «— 1,V «—1

mem16 DW, AW «— AW x (mem16) 11110111 mod 100 mem 3940 24 U x X u u vy
DW=0:CY «—0,V+—0
DW#0:CY «— 1, V1

MUL reg8 AW «— AL x reg8 1111011011101 reg 33-39 2 U X X U uu
AH = AL sign expansion: CY <0,V «—0
AH > AL sign expansion: CY «— 1,V «—1

mem8 AW «— AL x {mem8) 11110110 md 101 mem 3945 24 U X X U v v
AH = AL sign expansion: CY<——0 V20
AH » AL sign expansion; CY «—— 1,V «— 1

reg16 DW, AW «— AW x reg16 111101 t1t111101 reg 41-47 2 U X X U uu
DW = AW sign expansion; CY «— 0,V «— 0
DW = AW sign expansion: CY «— 1,V «—1

mem16 DW, AW «— AW x (mem16) 1t 1110111 md 1t 01 mem 515 24 U X X u u u =
DW = AW sign expansion: CY «— 0,V «— 0 v
DW # AW sign expansion: CY «—— 1,V «— 1 v]
reg16, reg16 «— reg16 x imm8 0110101111 reg reg 28-34 3 U X X uuu ~
(reg16.) Product < 16 bits: CY «<— 0, V «— 0 =
imm8 Product > 16 bits: CY «— 1,V «— 1 3
reg16, reg16 «— (mem16) x imm8 01101011 mod reg mem 38-44 35 u x x uuu o)
mem16, Product < 16 bits: CY «—— 0,V «—0 -~
imm8 Product > 16 bits: CY «— 1,V «— 1 <
N
o
~

6¢

8 Operation Code No.of No.of Flags =

Mnemonic Operand Operation 76 54 32 1076 54 32 10 Clocks Bytes AC CY V P S 2 1
Multiplication Instructions {cont) g

MUL reg16, reg16 «— reg16 x imm16 0110100111 reg reg 36-42 4 ¥ X X U uUuu (@]
(reg16,) Product < 16 bits: CY «— 0,V «— 0 b

imm16 Product > 16 bits: CY «— 1,V «— 1 o

reg16, reg16 «<— (mem16) x imm16 0110100 1t mod reg mem 46-52 46 u x x u u wu ®

mem16, Product < 16 bits; CY «<— 0,V «— 0 —~

imm16 Product > 16 bits: CY «—— 1,V «— 1 <

Unsigned Division Instructions g

Divy reg8 temp «— AW 1111011011110 reg 19 2 U U U Uuuu A

When temp -+ reg8 > FFH

(SP—1,SP — 2) «— PSW, (SP — 3, SP — 4) «— PS
(SP—5,SP —6) «— PC,SP «— SP -6

IE «— 0, BRK «— 0, PS «— (3, 2), PC «— (1, 0)

All other times

AH «— temp % reg8, AL <— temp -+ reg8

mem8 temp «— AW 11110110 mod 110 mem 25 24 u U u u uu
When temp <+ (mem8) > FFH ’
(SP—1,5P —2) «— PSW, (SP—3,5P - 4) «—PS
(SP—5,SP — 6) «— PC, SP «— SP -6
IE «— 0, BRK «— 0, PS «— (3, 2), PC < (1, 0)
All other times
AH «— temp % (mem8), AL «— temp -+ (mem8)

reg16 temp «— AW 1111011111110 reg 25 2 U U U UUuu
When temp -+ reg16 > FFFFH
(SP — 1, SP — 2) «— PSW, (SP — 3, SP — 4) «— PS
(SP—5, SP —6) «— PC, SP «— SP — 6
(£ «—0,BRK «—0,PS «— (3,2), PC «— (1,0)
All other times
AH «— temp % reg16, AL «— temp + reg16

mem16 temp «— AW 11110111 mod 110 mem 35 24 u U U U U wu
’ When temp -+ (mem16) > FFFFH
(SP—1,SP —2) «— PSW, (SP —3,SP — 4) «—PS
(SP—5,SP —6) «— PC,SP «—SP -6
IE «— 0, BRK «— 0, PS «— (3, 2), PC «— (1,0)
Al other times
AH <« temp % (mem16), AL < temp - (mem16)

Signed Divislon Instructions

DIv reg8 temp «— AW 1111011011111 reg 29-34 2 U U uuuu

When temp - reg8 > 0 and temp =+ reg8 > 7FH or
temp -+ reg8 < 0 and temp - reg8 < 0-7FH — 1

| (SP — 1, SP — 2) «— PSW, (SP — 3,SP — 4) «— PS

‘ (SP —5, SP ~ 6) «— PC, SP «~— SP — 6
IE «— 0, BRK <0, PS «— (3, 2), PC < (1, 0}
All other times
AH «— temp % reg8, AL «— temp =+ reg8

DN

1€

Operand

Operation Code
Operation 786 5 4 32

No.of No.of
Bytes AC CY

Clocks

Flags
v

Signed Division Instructions {cont)

DIv

mem8

temp «— AW 111101
When temp < (mem8) > 0 and (mem8) > 7FH or

temp < (mem8) < 0 and

temp < (mem8) <0-7FH — 1

(SP—1,SP —2) «— PSW, (SP—3,5P —4) «—PS
(SP—5,SP —6) «— PC,SP «— SP—6

IE «<— 0, BRK «— 0, PS «— (3,2), PC < (1,0)

All other times

AH «— temp % (mem8), AL «— temp -+ (mem8)

mod

mem

35-40

24

u

u

u

u

reg16

temp «— AW 111101
When temp = reg16 > 0 and reg16 > 7FFFH or

temp <+ reg16 < 0 and

temp + reg16 <0 - 7FFFH — 1

(SP—1,SP — 2) «— PSW, (SP —3,5P —4) «—PS

{SP—5, SP — 6) «— PC,SP «— SP - 6

IE «—— 0, BRK «— 0, PS «— (3,2), PC «—(1,0)

All other times

AH «— temp % reg16, AL <— temp + reg 16

reg

38-43

mem16

temp «— AW 111101
When temp < (mem16) > 0 and (mem16) > 7FFFH

or temp = (mem16) < 0 and temp + (mem16)

<0-7FFFH — 1

(SP—1,SP —2) «— PSW, (SP —3,5P —4) «—PS

(SP —5, SP — 6) «— PC, SP «— SP -6

1E «— 0, BRK «— 0, PS «— (3.2), PC «— (1,0)

All other times .

AH «— temp % (mem16), AL <— temp = (mem16)

mod

mem

48-53

24

BCO Adjust Instructions

ADJBA

When (AL AND OFH) >9 or AC =1,
AL «— AL + 6, AH «<— AH + 1, AC «— 1,
CY «<— AC, AL «—— AL AND OFH

001101

ADJ4A

When (AL AND OFH) >9 or AC =1,

AL «— AL +6,CY «— CYOR AC, AC «— 1,
When AL > 9FH, or CY =1

AL «— AL + 60H, CY «— 1

001001

ADJBS

When (AL AND OFH) >9 or AC = 1, 006 t1 11
AL «—— AL —6,AH «— AH —1,AC «— 1,
CY «— AC, AL «—— AL AND OFH

ADJ4S

When (AL AND OFH) >9 or AC=1,

AL «— AL —6,CY «— CYORAC, AC «— 1
When AL > 9FH or CY =1

AL < AL — 60H, CY «—1

001011

AN

(ozA) soLOLad”

ce

Operation Code No.of No.of Flags
Maemonic Operamd Operation 76 54 32 1076 9543210 Clocks Bytes AC CY ¥V P 8 2
Data Conversion Instructions
CviBD AH «— AL + 0AH, AL «— AL % 0AH 110101 6 000O0T1O0T11TDO0 15 2 U U uXx X X
cviDBs AH «— 0, AL «— AH x 0AH + AL 110101 100001010 7 2 U U uXx x x
CviBW When AL < 80H, AH «— 0, 100110 0 1
all other times AH <— FFH
CVTWL When AL < 8000H, DW «— 0, 10011001 4.5 1
all other times DW <«— FFFFH
Comparison Instructions
CMP reg, reg reg — reg 001 1101WI11 reg reg 2 2 X X X X X X
mem, reg (mem) — reg 0011100 W maod reg mem 11/15 24 x x x x x x
reg, mem reg — (mem) 0011101 W mod reg mem 11/15 24 Xx X X X X X
reg, imm reg —imm 100000SWI1T11 11 reg 4 34 x x x x x X
mem, imm (mem) — imm 100000S Wmod 1 1 1 mem 13/17 36 x x x x x x
acc, imm When W =0, AL — imm 0011110W 4 23 x X X X X X
When W =1, AW — imm
Complement Instructions
NOT reg reg «— reg 1111011 W1 1010 reg 2 2
mem {mem) <«— (mem) 1111011 Wmod 010 mem 16/24 24
NEG reg reg <« reg + 1 1111011 W11011 reg 2 2 X X X X X X
mem (mem) «— (mem) + 1 1111011 Wmod 011 mem 16/24 24 x X X X X X
Logical Operation Instructions
TEST reg, reg reg AND reg 100001 Wi reg reg 2 2 u X X X
mem, reg (mem) AND reg 100001 W mod reg mem 10/14 24 u X X X
or reg, mem
reg, imm reg AND imm 1111 11T W110 reg 4 34 u 0 0 x x x
mem, imm (mem) AND imm 11 11 11 W mod 0 mem 11/15 36 u 0 0 x x x
acc, imm When W = 0, AL AND imm8 1010100 W 4 23 u 0 0 x x x
When W = 1, AW AND imm8
AND reg, reg reg «— reg AND reg 0010001 WI1I1 reg reg 2 2 u 0 0 x x x
mem, reg {mem) <— (mem) AND reg 0010000 W mod reg mem 16/24 24 u 0 0 x x x
reg, mem reg <— reg AND (mem) 0010001 W mod reg mem 11/15 24 u 0 0 x x x
reg, imm reg <—— reg AND imm 10000O0O0WTI1T1 100 vreg 4 34 u 0 0 x x x
mem, imm (mem) «— (mem) AND imm 1 0000O0CO0 WM 1 00 mem 18/26 36 u 0 0 x x x
acc, imm When W =0, AL «<— AL AND imm8 0010010 W 4 23 u 0 0 x x x

When W = 1, AW «— AW AND imm16

(oZA) 80L0LZAd”

DN

Operation Code MNo.of No.of Flags
Mnemonic Operand Operation 76 54 32 10786 54 32 10 Clocks Bytes AC CY V P]
Loglcal Operation Instructions (cont)
OR reg, reg reg «—— reg OR reg 0000101 WI1 i reg reg 2 2 v 0 0 x x x
mem, reg (mem) «— (mem) OR reg 0000100 W mod reg mem 16/24 24 u 0 0 x x X
reg, mem reg «—— reg OR (mem) 0000101 W mod reg mem 11/15 24 u 0 0 x x x
reg, imm reg «— reg OR imm 1000000WT11001 reg 4 34 u 0 0 x x x
mem, imm (mem) < (mem) OR imm 1000000 WM 00 1 mem 18/26 36 u 0 0 x x x
acc, imm When W =0, AL «— AL OR imm8 0000110 W 4 23 u 0 0 x x x
When W = 1, AW «— AW OR imm16
XOR reg, reg reg «—— reg XOR reg 0011001 W11 reg reg 2 2 u 0 0 x x x
mem, reg (mem) <«— (mem) XOR reg 0011000 W mod reg mem 16/24 24 u 0 0O x x x
reg, mem reg «— reg XOR (mem) 0011001 W mod reg mem 11/15 24 u 0 0 x x X
reg, imm reg «— reg XOR imm 1000000WTI1TI1T110 reg 4 34 u 0 0 x x X
mem, imm (mem) <+— (mem) XOR imm 1000000 Wmed 110 mem 18/26 34 u 0 0 x x x
acc, imm When W =0, AL «— AL XOR imm8 0011010 W 4 223 u 0 0 x x x
When W = 1, AW «—— AW XOR imm16
Bit Operation Instructions
2nd lbyte' 3rd byte*
1
) 11 1
TESTH reg8, CL reg8 bitno. CL=0:Z «—1 0 00100O0O0CT1T1000 reg 3 3 u 0 0 uwux
reg8 bitno.CL=1:Z«0
mem8, CL {mem8) bitno.CL=0:Z <1 . 000100 00 md 000 mem 12 35 u 0 0 u u x
{mem8) bitno. CL=1:Z «— 0 ‘
reg16, CL reg16 bitno. CL=0:Z «— 1 ' 0001000O0T1TT1T 1000 vreg 3 3 u 0 0 uwu x
regl6bitno. CL=1:Z «— 90
mem16, CL {mem16) bitno. CL =0: Z <1 00010001 modOOO mem 16 3 u 0 0 u v x
(mem16) bitno. CL=1:7Z <0
reg8, imm3 reg8 bitno. imm3 =0: Z «— 1 0001100011000 reg 4 4 u 0 0 uux
reg8 bitno. imm3 =1:Z «— 0
mem8, imm3 (mem8) bit no. imm3 =0:Z «— 1 00011000 mod 000 mem 13 46 u 0 0 v u x
(mem8) bit no. imm3=1:Z «0
reg16, imm4 reg16 bit no. imm4 =0: Z «— 1 0006110011 1000 vreg 4 4 u 0 0 uwu x
reg16 bit no. immd4 =1:Z <0
mem16, imm4 {mem16) bit no. imm4 = 0: Z «—1 00011001 mod 00 0 mem 17 46 u 0 0 u u x
(mem16) bit no. imm4 = 1: Z «<— 0 L T - L —
2nd byte* 3rd byte*

*Note: First byte = OFH

€e

JUN

(ozZA) sorozad”

w
H

Operation Code No.of No.of Flags
Mnemonic Operand Operation 76 54 32 101765432 10 Clocks Bytes AC CY V P S 2
Bit Operation Instructions {cont)
2nd Ibyte“ 3rdlbyte'
— r LA -t
NOT1 reg8, CL reg8 bit no. CL «— reg8 bit no. CL 0001011011000 mreg 4 3
mem8, CL (mem8) bit no. CL <— (mem8) bit no. CL 00010110 mod OOGO mem 18 35
reg16, CL reg16 bit no. CL <— reg16 bit no. CL 0001011111000 reg 4 3
memi6, CL (mem16) bit no. CL «— (mem16) bit no. CL 00010111 mod 000 mem 26 35
reg8, imm3 reg8 bit no. imm3 «— reg8 bit no. imm3 0001111011000 reg 5 4
mem8, imm3 (mem38) bit no. imm3 «— (mem8) bit no. imm3 00011t 110 mod 000 mem 19 4-6
reg16, immd reg16 bit no. imm4 «— (reg16) bit no. immé4 0001111111000 regq 5 4
mem16, imm4 {mem16) bit no. imm4 < (mem16) bit no. imm4 00011111 mod 000 mem 27 4-6
[— I | T Jd
2nd byte* 3rd byte*
*Note: First byte = OFH '
cY CY «—CY 11110101 2 1 X
2nd Ibyte' 3rdlbyte'
CLR1 reg8, CL reg8 bit no. CL «— 0 '0 001001 0”1 1000 reg1 5 3
mem8, CL (mem8) bitno. CL «— 0 00010010 mod 00 0 mem 14 35
reg16, CL reg16 bit no. CL «— 0 00010011t 11000 reg 5 3
mem16, CL (mem16) bit no. CL «—— 0 00010011 mod 000 mem 22 35
reg8, imm3 reg8 bit no. imm3 «— 0 0001101011000 reg 6 4
mem8, imm3 (mem8) bit no. imm3 «— 0 00011010 mod 600 mem 15 4-6
reg16, imm4 reg16 bit no. imm4 «— 0 0001101111000 reg 6 4
mem16, imm4 (mem16) bit no. imm4 «— 0 l0 001101 1“mod 000 meml 27 4-6
2nd {)yte' 3rd]byte'
*Note: First byte = OFH
cY CY <0 11111000 1 0
DIR DIR«—20 11111100 2 1

(o2A) soroLzad”

DN

Operation Code No.of No.of Flags 2
Mnemonic Opsrand Operation 76 54 32 1076 54 32 10 Clocks Bytes AC CY V P S 2
Bit Operation Instructions [cont)
SET1 reg8, CL reg8 bit no. CL «—1 0001010011000 reg 4 3 m
mem8, CL (mem8) bit no. CL «— 1 00010100 mod 0600 mem 13 35 0
reg16, CL reg16 bit no. CL «— 1 0001010111000 reg 4 3
mem16, CL (mem16) bit no. CL «— 1 00010101 mdOOO mem 21 35
reg8, imm3 reg8 bit no. imm3 «— 1 0001110011000 vreg 5 4
mem8, imm3 (mem8) bit no. imm3 «— 1 00011100 mod 00 0 mem 14 4-6
reg16, imm4 reg16 bit no. imm4 «— 1 0001110111000 reg 5 4
mem16, imm4 (mem16) bit no. imm4 «—— 1 l0 001110 1”mod 0060 memI 22 4-6
2nd t')yte' 3rd]byte'
*Note: First byte = OFH
cY CY «1 11111001 2 1 1
| DIR DIR «—1 11111101 2 1
| Shift Instructions
SHL reg, 1 CY «— MSB of reg, reg «— reg x 2 1101000W1T 1100 vreg 2 2 U X X X X X

When MSB of reg # CY, V «— 1
When MSB of reg =CY,V «—0

mem, 1 CY «—— MSB of (mem), (mem) <— (mem) x 2 1101000 Wmod 100 mem 16/24 24 4 X X X X X
When MSB of (mem) # CY, V «—1
When MSB of (mem) =CY,V «—0

reg, CL temp «— CL, while temp > 0, 1101001 W11 100 reg 7+n 2 U X U X X X
repeat this operation, CY <— MSB of reg,
reg < reg x 2, temp < temp — 1

mem, CL temp <« CL, while temp # 0, 1101001 Wmod 100 mem 19/27+n 2
repeat this operation, CY <— MSB of (mem),
(mem) < (mem) x 2, temp «— temp — 1

4 U X U X X X

reg, imm8 temp «— imm8, while temp # 0, 1100000WTt1T1 100 reg 7+n 3 U X U X X X

repeat this operation, CY «<— MSB of reg, h~
reg <«— reg x 2, temp «— temp — 1 O
mem, imm8 temp < imm8, while temp # 0, 1100000 Wmod 1t 00 mem 1927+n 35 u x u x X X =)
repeat this operation, CY «<— MSB of (mem), b |
(mem) «+— (mem) x 2, temp «— temp — 1 n: number of shifts (e
SHR reg, 1 CY «— LSB of reg, reg «— reg + 2 11061000wWTtT 1101 reg 2 2 u X X X X X =t
When MSB of reg bit following MSB o
of reg: V «— 1 ®
When MSB of reg = bit following MSB -~
ofreg; V20 <
N
o
~—r

se

8 Operation Code No.of No.of Flags
Mnemonic Operand Operation 76 54 32 10786 5432 10 Clocks Bytes AC CY V P 8 2
Shift Instructions {cont)
SHR mem, 1 CY «— LSB of (mem), (mem) «— (mem) ~ 2 1101000 Wmod 1 0 1 mem 16/24 24 U X X X x X

When MSB of (mem) # bit following MSB
of (mem): V «— 1
When MSB of (mem) = bit following MSB
of (mem): V<+—20

reg, CL temp <— CL, while temp # 0, 1101000WT1T 1101 reg 7+n 2 U X U X X X
repeat this operation, CY «— LSB of reg,
reg < reg - 2, temp «— temp — 1

mem, CL temp <« CL, while temp # 0, 1101001 Wmod 1 01 mem 19/27+n 24 u X U X X X
repeat this operation, CY <— LSB of (mem),
(mem) «— (mem) = 2, temp «— temp — 1

(o2A) soroLad”

reg, imm8 temp < imm8, while temp # 0, 1100000WI1T 1T 101 reg 7+n 3 U X u X X X
repeat this operation, CY <— LSB of reg,
reg «— reg = 2, temp «— temp — 1

mem, imm8 temp «<— imm8, while temp # 0, 1100000 Wmod 1 01 mem 19/274n 35 u x u x X x
repeat this operation, CY «— LSB of (mem), y
(mem) «— (mem) + 2, temp <« temp — 1 n: number of shifts

SHRA reg, 1 CY «—1SBofreg, reg«—reg~2,V «—0 1101000W1T1 111 reg 2 2 v x 0 x x x

MSB of operand does not change

mem, 1 CY «— LSB of (mem), (mem) <—— (mem) + 2, 1101000 Wmod 1 1 1 mem 16/24 24 u x 0 x x x
V «— 0, MSB of operand does not change

reg, CL temp <« CL, while temp 5= 0, 1101001 W11 111 reg 7+n 2 U X U X X X

repeat this operation, CY «— LSB of reg,
reg «—— reg -+ 2, temp <«— temp — 1
MSB of operand does not change

mem, CL temp <— CL, while temp = 0, 1101001 Wmod 1 11 mem 19/27+n 24 u X u X X X
repeat this operation, CY «— LSB of (mem),
(mem) «—— (mem) + 2, temp <« temp — 1
MSB of operand does not change

reg, imm8 temp «— imm8, while temp » 0, 1100000WT1TI1 111 reg 7+n 3 U X U X X X
repeat this operation, CY <« LSB of reg,
reg <— reg + 2, temp «— temp — 1
MSB of operand does not change

mem, imm8 temp «<— imm8, while temp = 0, 1100000 Wmod 1 11 mem 1927+n 35 u x u x X Xx
repeat this operation, CY «— LSB of (mem),
(mem) «<— (mem) + 2, temp «— temp — 1
MSB of operand does not change n: number of shifts

DN

L€

®

Operand

Operation

Operation Code
76 354 32101763798

2

1

No.of Ne.of

Flags

Clocks Bytes AC CY V P 8 2

Rotation Instructions

ROL

reg, 1

CY «— MSB of reg, reg «— reg x 2 + CY
MSB of reg = CY: V «—1
MSBofreg=CY:V«—0

1101000 W110

reg

mem, 1

CY <« MSB of (mem),
(mem) «— (mem) x 2 + CY
MSB of (mem) # CY: V «— 1
MSB of (mem) =CY:V «—0

1101000 Wmod O

mem

16/24 2-4

reg, CL

temp «— CL, while temp # 0,

repeat this operation, CY «— MSB of reg,
reg «— regx 2 + CY

temp «— temp — 1

reg

7+n 2

mem, CL

temp «— CL, while temp # 0,

repeat this operation, CY «— MSB of (mem),
(mem) «— (mem) x 2 + CY

temp «— temp — 1

1101001 Wmoed 0

reg

19/27+n 24

reg, imm8

temp < imm8, while temp =0,

repeat this operation, CY «<— MSB of reg,
reg «— reg x 2 + CY

temp «— temp — 1

reg

74+n 3

mem, imm8

temp < imm8, while temp # 0,

repeat this operation, CY <— MSB of (mem),
(mem) «— (mem) x 2 + CY

temp «— temp — 1

1100000 W mod 0

n: number of shifts

mem

19/27+n 35

ROR

reg, 1

CY <« LSB of reg, reg «— reg + 2

MSB of reg «—— CY '

MSB of reg » bit following MSB of reg: V. «— 1
MSB of reg = bit following MSB of reg: V «<— 0

1101000 W110

reg

mem, 1

CY «— LSB of (mem), (mem) «— (mem) + 2
MSB of (mem) «— CY

MSB of (mem) # bit following MSB

of (mem): V «— 1

MSB of (mem) = bit following MSB

of (mem): V<+—10

1101000 Wmod 0

mem

16/24 2-4

reg, CL

temp <— CL, while temp # 0,

repeat this operation, CY «— LSB of reg,
reg «— reg + 2, MSB of reg «— CY
temp «— temp — 1

1101001 W110

reg

7+n 2

mem, CL

temp <— CL, while temp # 0,

repeat this operation, CY <— LSB of (mem),
{mem) «— (mem) + 2, MSB of (mem) «— CY
temp «— temp — 1

1101001 Wmod 0

n:number of shifts

mem

19/27+n 24

>

JAN

(ozZA) sorozad”

8€

Operation Code No.of No.of Flags
Muemonic Operand Operation 76 54 32 10765432 10 Clocks Bytes AC CY VvV P 8§ 2
Rotatien instructions [cont)
ROR reg, imm8 temp «— imm8, while temp 0, 1100000W1T1001 reg 7+n 3 X u

repeat this operation, CY «— LSB of reg,
reg «— reg -+~ 2, MSB of reg «— CY
temp < temp — 1

mem, imm8 temp «—— imm8, while temp 0, 1100000 Wmod 0 01 mem 19/27+n 3
repeat this operation, CY <— LSB of (mem),
(mem) «— (mem) + 2
temp <« temp — 1 n: number of shifts

5 X u

Rotate Instructions

ROLC reg, 1 tmpcy <— CY, CY «— MSB of reg 11010006 WI1 1010 reg 2 2 X X
reg <— reg x 2 + tmpcy
MSBofreg=CY: V<0
MSB of reg # CY: V «— 1

mem, 1 tmpcy «— CY, CY «— MSB of (mem) 1101000 Wmod 01 0 mem 16/24 24 X X
(mem) <«— (mem) x 2 + tmpcy
MSB of (mem) =CY: V «— 0
MSB of (mem) = CY: V «— 1

reg, CL temp «— CL, while temp # 0, 1101001 W1 1010 reg 7+n 2 X U
repeat this operation, tmpcy «— CY,
CY «— MSB of reg, reg «<— reg x 2 + tmpcy
temp «— temp — 1

mem, CL temp <— CL, while temp # 0, 1101001 Wmod 010 mem 19/27+n 24 X u
repeat this operation, tmpcy <— CY,
CY «—— MSB of (mem),
(mem) <— (mem) x 2 + tmpcy
temp <« temp — 1

reg, imm8 temp «— imm8, while temp 0, 1100000 W110 10 reg 7+n 3 X U
repeat this operation, tmpcy «— CY,
CY «<— MSB of reg, reg «— reg x 2 + tmpcy
temp «— temp — 1

mem, imm8 temp «— imm8, while temp # 0, 1100000 Wmod 010 mem 19/27+n 35 X u
repeat this operation, tmpcy «— CY,
CY «— MSB of (mem)
{mem) <— (mem) x 2 + tmpcy
temp «— temp — 1 n: number of shifts

(oZA) soLoLzad”

DN

Operation Code No.of No.of Flags
Mnremonic Operamd Operation 76 54 32 10786 54 32 10 Clocks Bytes AC CY V P S) 4
Rotate Instructions (cont)
RORC reg, 1 tmpcy <— CY, CY «— LSB of reg 1101000WI1 1101 reg 2 2 X X

reg <— reg - 2, MSB of reg «—— tmpcy
MSB of reg # bit following MSB of reg: V «— 1
MSB of reg = bit following MSB of reg: V «— 0

mem, 1 tmpcy «<— CY, CY «— LSB of (mem) 1101000 Wmed 0 1 1 mem 16/24 2-4 X X
(mem) «— (mem) <+ 2, MSB of (mem) «— tmpcy
MSB of (mem) # bit following MSB
of (mem): V «— 1
MSB of (mem) = bit following MSB
of (mem): V<0

reg, CL temp <— CL, while temp # 0, 1101001 W11011 reg 7+n 2 X u
repeat this operation, tmpcy <«— GY,)
CY «— LSB of reg, reg «— reg + 2,
MSB of reg < tmpcy, temp < temp — 1

mem, CL temp «— CL, while temp # 0, 1101001 Wmed 011 mem 1927+n 24 X u
repeat this operation, tmpcy «— CY,
CY «— LSB of (mem), (mem) «— (mem) =2
MSB of (mem) <— tmpcy, temp «— temp — 1

JUN

reg, imm8 temp «— imm8, while temp # 0 t100000W11011 reg 7+n 3 X u
repeat this operation, tmpcy < CY,
CY < LSB of reg, reg «— reg + 2
MSB of reg «—— tmpcy, temp «— temp — 1

mem, imm8 temp «— imm8, while temp # 0, 1100000 Wmod 0 1 1 mem 1927+n 35 X u
repeat this operation, tmpcy <— CY,
CY «— LSB of (mem), (mem) »— (mem) + 2 <
MSB of (mem) «— tmpcy, temp «— temp — 1 n: number of shifts
Subroutine Control Instructions
CALL near-proc (SP—1,SP — 2) «— PC, SP «— 5P — 2 11101000 20 3
PC «— PC + disp
regptr16 (SP~1,SP—2) «—PC,SP «—SP—2 1111111111010 reg 18 2
PC «— regptri6 =
memptri6 {SP—1,SP —2) «— PC, SP «— SP — 2 11111111 mdO10 mem 3 2-4 v
PC «— (memptri6) U
far-proc (SP—1,SP —2) «—PS, (SP —3,SP — 4) «— PC 10011010 29 5 ~J
SP «— SP — 4, PS «— seg, PC «— offset o
memptr32 (SP—1,SP—2) «— PS, (SP —3,5P — 4} «— PC 11111111 md 011 mem 47 2-4 wb
SP «— SP — 4, PS «— (memptr32 + 2), =
PC «— (memptr32) @
—
<
N
" o
@ ~—

8 Oporation Code No.of No.of Flags S
Mnremonic Operand Operation 76 5432 1076 54 32 10 Clocks Bytes AC CY V P 8 Z v
Subroutine Centrel Instructions [cont) g
RET PC «— (SP + 1, SP), SP «— SP + 2 110000 11 19 1 o
pop-value PC «— (SP + 1, SP) 11000010 24 3 i
SP «— SP + 2, SP +— SP + pop-value o
PC «— (SP+1,SP),PS «— (SP+3,S5P +2) 11001011 29 1 2
SP«—SP+4 <
pop-value PC «— (SP+1,SP), PS «— (SP + 3,5P + 2) 11001010 32 3 N
SP «— SP + 4, SP «— SP + pop-value (o]
Stack Manipulation Instructisns ~
PUSH mem16 (SP — 1, SP — 2) «— (mem16), SP «— SP — 2 11111111 mod 1106 mem 26 24
reg16 (SP —1,SP —2) «—reg16, SP «— SP — 2 01010 reg 12 1
sreg (SP— 1, SP— 2) «— sreg, SP «— SP — 2 0 0 0 sreg 1t 10 12 1
PSW (SP—1,SP —2) «— PSW, SP «— SPp — 2 10011100 12 1
R Push registers on the stack 01100000 67 1
imm (SP—1,5P - 2) «— imm 01101080 - 1/ 23
SP «— SP — 2, When S = 1, sign extension 12
POP mem16 (mem16) «— (SP + 1, SP), SP «— SP + 2 10001111 mod 0006 mem 25 24
reg16 reg16 «— (SP + 1, SP), SP «— SP + 2 01011 reg 12 1
sreg sreg «— (SP + 1, SP) sreg : SS, DSO0, DS1 0 0 0 sreg 1 1 1 12 1
SP «—SP +2
PSW PSW «— (SP + 1, SP), SP «— SP + 2 10011101 12 1 R R RRARR
R Pop registers from the stack 01100001 75 1
PREPARE imm16, imm8 Prepare new stack frame 11001000 * 4
*imm8=0: 16
imm8 > 1: 23 + 16 (imm8 — 1)
DISPOSE Dispose of stack frame 11001001 10 1
Branch Instruction
BR near-label PC «— PC + disp 11101001 13
short-label PC «— PC + ext-disp8 11101011 12
regptri6 PC «— regptr16 1111111111100 reg 1"
memptri6 PC «— (memptr16) 11111111 mod 100 mem 24 24
far-label PS «— seq, PC «— offset 11101010 15 5 2
memptr32 PS <«— (memptr32 + 2), PC «— (memptr32) 11111111 mod t 01 mem 35 24 m

[J i] o

Operation Code No.of No.of Flags
Maemonic Operamd Operation 78 54 32 1076354 3210 Clocks Bytes AC CY V | I T 4
Conditional Branch instructiens
8v short-label it V=1, PC «— PC + ext-disp8 01110000 14/4 2
BNV short-label it V=0, PC «— PC + ext-disp8 0t110001 14/4 2 0
BC, BL short-labe! it CY =1, PC < PC + ext-disp8 01110010 14/4 2
BNC, BNL short-label it CY = 0, PC «—— PC + ext-disp8 01110011 14/4 2
BE, BZ short-label it Z=1, PC < PG + ext-disp8 01110100 14/4 2
BNE, BNZ short-label it Z =0, PC «— PC + ext-disp8 01110101 14/4 2
BNH short-label if CYORZ = 1, PC «— PC + ext-disp8 01110110 14/4 2
BH short-label it CY OR Z = 0, PC «—— PC + ext-disp8 01110111 14/4 2
BN short-label if $ =1, PC «—— PC + ext-disp8 01111000 14/4 2
BP short-label it S =0, PC «— PC + ext-disp8 01111001 14/4 2
BPE short-label if P =1, PC «— PC + ext-disp8 01111010 14/4 2
BPO short-iabel if P =0, PC «—— PC + ext-disp8 01111011 14/4 2
BLT short-label if SXORV = 1, PC «— PC + ext-disp8 0o0t1 11100 14/4 2
BGE short-label if S XOR V =0, PC «—— PC + ext-disp8 0o0t1 11101 14/4 2
BLE short-label if (S XOR V) OR Z = 1, PC «— PC + ext-disp8 o1 t1t11110 14/4 2
BGT short-label if (S XOR V) OR Z = 0, PC «— PC + ext-disp8 01111111 14/4 2
DBNZNE short-label CW«—(CW-1 11100000 14/5 2
it Z =0 and CW # 0, PC «— PC + ext-disp8
DBNZE short-label CW«—CW -1 . 11100001 14/5 2
if Z=1and CW # 0, PC «—— PC + ext-disp8
DBNZ short-iabel CW «— CW -1 11100010 13/5 2
it CW 52 0, PC «—— PC + ext-disp8
BCWZ short-label if CW = 0, PC «— PC + ext-disp8 1110001t 1 13/5 2
Interrupt Instructions
BRK 3 (SP — 1, SP — 2) «— PSW, (SP — 3, SP — 4) «— PS, 11001100 50 1 h -
{SP—5,SP — 6) «— PC,SP «— SP—6 O
[E «— 0,BRK «—0 v
PS <« (15, 14), PC «— (13, 12) ~J
imm8 (SP — 1, SP — 2) «— PSW, (SP — 3, SP — 4) «— PS, 11001101 50 2 Qo
(#3) (SP -5, SP — 6} «— PC, SP «— SP - 6 wh
IE «—— 0, BRK «— 0 o
PC«—(nx4,+1,nx4) o
PS«—{nxd4+3 nxd4+2)n=imm8 Py
<
N
L=
3 -

H
N Operation Code No.of No.of Flags %
Mnremonic Operand Operation 76 54 32 1076 54 32 10 Clocks Bytes AC CY V P 8 Z U
Interrupt Instructions [cont) =]
BRKV WhenV =1 110011190 5213 1 o
(SP — 1, SP — 2) «— PSW, (SP — 3, SP — 4) «— PS, wh
(SP—5,SP—6) «—PC,SP «—SP—6 (e
IE «<— 0, BRK «— 0 (o]
PS «— (19, 18), PC «— (17, 16)] Py
RETI PC «— (SP + 1, SP), PS « (SP + 3, SP + 2), 11001111 39 1 R R RRARR <
PSW +— (SP + 5, SP + 4), SP «— SP + 6 g
CHKIND reg16, When (mem32) > reg16 or (mem32 + 2) < reg16 01100010 mod reg mem 73-76/ 24 ~
mem32 (SP — 1, SP — 2) «— PSW, (SP — 3, SP — 4) «— PS, 26
(SP—5,SP —6) «— PC,SP «—— SP — 6
IE «— 0, BRK «— 0,
PS «— (23, 22), PC «+— (21, 20)

BRKEM imm8 (SP —1,SP — 2) «— PSW, (SP — 3, SP — 4) «— PS, 600O01T1T1T1T1t11111 118 3
(SP—5,SP — 6) «— PC,SP «— SP — 6 :
MD == 0, PC “— (nx 4 + 1, n x 4), MD Bit Write Enable
PS-(nx4+3,nx4+2),n=imm8

CPU Control Instructions

HALT CPU Halt t1110100 1

BUSLOCK Bus Lock Prefix 11110000 1

FPO1 fp-op No Operation 11011 XX X11YYY Z2Z2Z 2 2
fp-op, mem data bus «— (mem) 11011 XX X modY YY mem 15 24

FPO2 fp-op No Operation 0t1001tX11YYYZ2Z2Z 2 2
fp-op, mem data bus «— (mem) 0110011 XmodY YY mem 15 24

POLL Pott and wait 10011011 2+5n 1

n: number of times POLL pin is sampled

NOP . No Operation 10010000 3 1

DI IE+—0 11111010 2 1

El IE <1 11111011 2 1

8080 Mode Instructions
RETEM PC «— (SP + 1, SP), PS «— (SP + 3, SP + 2), 111011011111 1101 39 2 R R RRRR
PSW <= (SP + 5, SP + 4), SP «— SP + 6, MD Bit Write Disable
CALLN imm8 (SP—1,5P — 2) «— PSW, (SP—3,SP — 4) 1110110111101 101 58 3

«—PS, (SP—5,SP —6) «— PC,SP «— SP—6
MD «—1,PC«—(nx4+1,nx4)
PSS« (nx4+3nx4+2),n=imms

DN

NEC

uPD70108 (V20)

‘ ckaging Information

P Package (600 mil)

A ARANRAAARAANAAABAARR

/

A AT A A

[

34 max 2.1 max
max .10 max
T.P.] .10 [T.P.]
10 o0 *0

.26 + .1 1.9+ .004

min 047 min

$+03 142 £ .012

min .02 min

1 max 17 max
max 226 max

24 [T.P. 80 [T.P.]

2 52
+.10 o z;

0

uPD70108 (V20) NEC

Packaging Information (cont)

40-Pin Cerdip Package

Ranaananpansanaanaal SRS

N\ —
”

VAT AR AR AR A VAT A VAT VATAVA

NEC uPD70108 (V20)

.Packaging information (cont)
44-Pin Plastic Leadless Chip Carrier (PLCC) Package

(Information available in first quarter of 1986.)

45

uPD70108 (V20)

NEC

Packaging Information (cont)

52-Pin Plastic Minifiat Package

Hem Millimeters Inches

+.3 +.012
140 _2 551 _ oos
1203 472 £.012
1.00 +.15 .038 +.006
+.2 +.008
4 018 — 004
21.0 .4 .827 +.016
F 15 132,2 .006 :%

G 2.8 max .110 max
H 332 130 +.008
| 22+2 087 +.008

83-0018758

46

NEC uPD70108 (V20)
‘0‘08:

47

uPD70108 (V20)

REGIONAL SALES AND
ENGINEERING SUPPORT OFFICES

NORTHEAST

Twenty Burlington Mall Road, Suite 449
Burlington, MA 01803

TEL 617-272-1774 TWX 710-348-6515

SOUTHEAST

Radice Corporate Center

600 Corporate Drive, Suite 412
Fort Lauderdale, FL 33334

TEL 305-776-0682 TWX 759839

MIDWEST

3025 West Salt Creek Lane, Suite 300
Arfington Heights, IL 60005

TEL 312-577-9090 TWX 910-687-1492

SOUTHCENTRAL

16475 Dallas Parkway, Suite 380

Dallas, TX 75248

TEL 214-931-0641 TWX 910-860-5284

SOUTHWEST

200 East Sandpointe, Building 8 Suite 460
Santa Ana, CA 92707

TEL 714-546-0501 TWX 759845

NORTHWEST

10080 North Wolfe Road, SW3 Suite 360
Cupertino, CA 95014

TEL 408-446-0650 TLX 595497

DISTRICT OFFICES DISTRICT OFFICES [cont]
200 Broadhollow Road, Suite 302 Echelon Building 2
Route 110 9430 Research Boulevard, Suite 330
Melville, NY 11747 Austin, TX 78759
TEL 516-423-2500 TWX 510-224-6090 TEL 512-346-9280
Beechwood Office Park 6150 Canoga Avenue, Suite 112
385 South Road Woodland Hills, CA 91367
Poughkeepsie, NY 12601 TEL 818-716-1535 TWX 559210
TEL 914-452-4747 TWX 510-248-0066 . o
Lincoln Center Building
200 Perinton Hills Office Park 10300 S.W. Greenburg Road, Suite 540
Fairport, NY 14450 Portland, OR 97223
TEL 716-425-4590 TWX 510-100-8949 TEL 503-245-1600
5720 Peachtree Parkway, Suite 120 5445 DTC Parkway, Suite 218
Norcross, GA 30092 Englewood, CO 80111
TEL 404-447-4409 TWX 910-997-0450 TEL 303-694-0041 TWX 510-600-5666
7257 Parkway Drive, Suite 109
Hanover, MD 21076 NATICK TECHNOLOGY CENTER
TEL 301-796-3944 TLX 759847
One Natick Executive Park
29200 Southfield Road, Suite 208 Natick, MA 01760
Southfield, Mi 48076 TEL 617-655-8833 TWX 710-386-2110

TEL 313-559-4242 TWX 810-224-4625

Busch Corporate Center

6480 Busch Bivd., Suite 121

Columbus, OH 43229

TEL 614-436-1778 TWX 510-101-1771

8030 Cedar Avenue South, Suite 229
Bloomington, MN 55420
TEL 612-854-4443 TWX 910-997-0726

NEC

NEC Electronics Inc.
CORPORATE HEADQUARTERS

401 Ellis Street

P.0. Box 7241

Mountain View, CA 94039
TEL 415-960-6000

TWX 910-379-6985

©1985 NEC Electronics Inc./Printed in U.S.A.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent ot NEC.
Eiectronics inc. The tnformation in this document is subject to change without notice. Devices sold by NEC Electronics Inc.
are covered by the warranty and patent indemnitication provisions appearing in NEC Electronics inc. Terms and Conditions
of Sale only. NEC Electronics Inc. makes no warranty, express, statutory, implied, or by description, regarding the
information set forth herein or regarding the freedom of the described devices trom patent infringement. NEC Efectronics
Inc. makes no warranty of merchantability or fitness for any purpose. NEC Electronics inc. assumes no responsibility for any
errors that may appear in this document. NEC Electronics inc. makes no commitment to update or to keep current the
information contained in this document.

NECEL-000010-1185
STOCK NO. 500835

R
‘ OKI MSM82C51A UART Data Sheet

JUNE 1984

semiconductor

MSM82CS51A

UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER

TRANSMITTER

GENERAL DESCRIPTION

The MSMB82C51A is 8 USART (Universal Synchronous Asyn-
chronous Receiver Transmitter) for serial data communication
for the microcomputer systems.

The MSMB2C51A receives parallel data from the CPU and trans-
mits seriai data. This device aiso receives senal data and trans-
mits paraiiel data to the CPU.

The MSMB82C51A is a tully static circuit using silicon gate CMOS
technology. It operates on an exiremely iow power supply at 100
pA (max) of standby current by suspending af! the operations.
MSMB82C51A is functionally compatible with the B251A.

FEATURES

» Wide power supply voltage range from3 Vio 6 V.

* Wide temperature range from —40°C to 85°C.

* Sync J8 COMMUNK upto 64K baud.

« Asynchronous communication upto 38.4K baud.

o T itting / recesving op under double buffered
configuration.

* Error detection (parity, overrun and framing)

* 28-pin DIP (MSM82C51ARS)

* 32-pin fiat package (MSM82C51AGSK)

FUNCTIONAL BLOCK DIAGRAM

DATA
D,-Dg 8US
BUFFER

(A

TRANSMIT
N BUFFER }——e TxD
{P-S)

L

w
RESET —— < l—— TxRDY
CLK " EAD/WRITE - TRANSMIT
c/b ——={ CONTROL 2 CONTROL | > TxE
== LOGIC . —_
AD — o > © fe—— Txe
WR —»(-
&% <
<
p
DSR ——e0 Z R |
DTR «—do MODEM BS%%EVRE
DTR j———— RxD
CTS —a CONTROL <:> (S—P)
RTS «——(g

——» RxRDY

RECEIVE

conTroL [* Rt

j@- —» SYNDET/BD

HILLINSNVHL HIAIZD3H SNONOHHONASY SNONOHHONAS TVYSH3AINN VISOTBWNSW

PIN CONFIGURATION

o2 (7] e 28] o1

DJE Zv]oo
aeol3]) vee
GNDE aﬁ

DIE 24| GTR

os[¢] 7] v

os[7] 23558

mE i)reser
v} e
waio] (9] =0

CSE Ehswﬂv
c DE Ec"'rs .
sl svwoer o0

RxRDY [t4 EY-RDV

MSMB2CS51ARS (Top View)
28 Lead Piastic DIP

o] O 3 o
032} 37 00
a:0[3] 153 vec
~ c[4] g~ ¢
GNDE Eh-—c
o S
os (] el
o e
o7[5] 24] ReSET
T e
vﬁE gno
s3] 1] Tuempy
Y(E =R
cofie [} c7s
ﬁoE ESYNDEY 8D
RIRDVE ET:RDY

MSMB2CS1AGSK (Top View)
32 Leao Plastic Flat Package

FUNCTION

Outline

MSMB82C51A's functional configuration is programmed by the
software.

Operation between MSM82CS1A and CPU is executed by pro-
gram control. Table 1 shows the operation between CPU and

the device.

Table 1 Operation betwesen MSM82CS1A and CPU

CS |C/D | RD | WR
1 X X Data bus 3-state
0 1 1 Data bus 3-state
0 1 0 1 Status > CPU
0 1 1 0 Control word < CPU
0 0 1 Data = CPU
0 1 0 Data < CPU

it is necessary to execute a tunction-setting sequence after re-
setting on MSMB2CS51A. Fig. 1 shows the function-setting
sequence.

It the function was set. the device is ready to receive a command,
thus enabling the transter of data by setting a necessary com-
mand. reading a status and reading/writing data.

Write mode
instruction

S

no

Write first sync
character

no

Write second
sync character

Fig. 1 Function-Setting Sequence
(Mode Instruction Sequencs)

Conirol Worde

There are two types of control words
1. Mode instruction

2. Command

1. Mode instruction
Mode instruction is used for setting the function of the
MSMB2C51A. Mode instruction will be in “wait for write” at
either internal reset or external reset. Thus writing a control

word after resetting wili be recognized as ‘mode instruction.”

items to be set by mode instruction are as follows:
« Synchronous/asynchronous mode

* Stop bit length (asynchronous mode)

* Character length

* Parity bit

+ Baud rate factor (asynchronous mode)

« internal/external synchronization (synchronous mode)

* No. of synchronous characters (synchronous mode)

The bit configuration of the mode instruction is shown in Figs.
2 and 3. in the case of synchronous mode, it is necessary to
write one- of two-sync characters.

f sync characters were written, a function will be set because
the writing of sync characters constitutes part of the mode
instruction.

Sy S) EP PEN La L

D, Do
B, B,
Baud rate factor
0 1 0 1
_— 0 0 1 1
* As‘)z:e 1x 16x 64x

Character length

(¢} 1 4} 1
0 0 1 1
5 bits 6 bits 7 bits | 8 bits
Parity check
0 1 0 1
0 0 1 1
R Odd . Even
Disable parity Disable parity

Stop bit length

*Refer to Figure 3

0 1 4] 1
0 0 1 1
Inhibit 1 bit |1.5bits | 2 bits

Fig. 2 Bit Configurstion of Mode Instruction (Asynchronous)

2. Command

The command word is used for setting the operation of

MSMB82CS1A.

It is possibie to write a command whenever necessary after
writing mode instruction and sync characters.

Items to be set by command are as follows:

* Transmit
* Receive

Character iength
> 0 1 1] 1
0 0 1 1
5 bits 6 bits 7 bits 8 bits
Parity
0 1 [+} 1
0 0 1 1
. Odd . Even
Disable parity | Disable parity
Synchronous Mode
0 1
internal |External
synchro-| synchro-
nization [nization
No. of synchronous characters
0 1
2char- | 1 char-
acters acter

Fig. 3 Bit Configuration of Mode Instruction {Synchronous)

Enabie/Disable
Enable/Disable

« DTR.ATS Output of data.

« Resetting of error fiag.

* Sending of break characters

+ internai reset

* Hunt mode (synchronous mode)
The bit contiguration of a command is shown in Fig. 4

D+ D¢ Ds Ds Ds D, Dy Do
EH IR RTS ER |SBRK | RxE | DTR | TxEN
1....Transmit Enable
0....Disable
DTR
1—2>DTR =0
0—*>DTR =1
1....Receive Enabie
0....Disable
1....Send break
character.
0....Normal operation
1....Reset error
flag.
0....Normal operation
RTS
1—=RTS=0
0—->RTS =1
1....Internal reset
0....Normal operation
1....Hunt mode
(Note)
0....Nomal operation

{Nots) Search mode for synchronous
characters in synchronous mode.

Fig. 4 Bit Configuration of Command

Ststus Word
it is possibie to see the internal status of MSMB2C51A by reading
a status word.

The bit configuration of status word is shown in Fig. 5.

Dy Dg Ds Dy D3 D3 Dy Dy
SYN-
DSR DBEI;I FE | OE | PE Lm?w nngv RTI;(Y

Partly different from
TXRDY terminal.
Refer to ‘‘Expiana-
tion of TXRDY
Terminal.*’

Same as terminal.
Refer to ’Explana-
tion of Terminals.’’

1....Parity error

1....0verrun error

1....Framing error

Shows terminal DSR.
1...DSR =0
0...DSR = 1

Fig. 5 Bit Configuration of Status Word

(Nots) only asyn-
chrnous mode.
Stop bit cannot
be detected.

Standby Mode "

it is possibie to put MSMB2C51A in ““standby mode" for the com-

plete static configuration of CMOS

it is when the toliowing conditions have been satisfied that

MSMB2CS1A is in “standby mode.”

(1) TS terminal shall be fixed at VCC leve!

(2). Input pins other than T3, Do to D7, RD. WR and C/D shall be
fixed at VCC or GND levei (including SYNDET in external
synchronous mode)

Note: When ail outputs current are low, ICCS specification

applies

E ton of Each Terminal

Do to D7 (1/0 terminal)

This is a bidirectional data bus which receives control words

and transmits data from the CPU and sends the status words

and received data to the CPU.

RESET (inpt terminal)

A "High" on this input forces the MSMB2C51A into “reset.’”

The device waits for the “‘mode instruction ™

The min reset width is six clock inputs

CLK (Input terminal)

CLK signal is used to generate internal device timing

CLK signat is independent of RXC or TXC.

However. the frequency of CLK must be greater than 30 times

the RXC and TXC at Synchronous mode and Asynchronous

" x1" mode. and must be greater than 5 times at Asynchronous

“X16" and ' x 64" mode

WR (input terminal)

This is “active low™ input terminal which receives a signa! for

writing transmit data and control words from CPU into the

MSMB2C51A

RD (tnput terminal)

This is “active low" input terminal which receives a signal for

reading receive data and status words from the MSMB2C51A

€ /D (input terminal)

This is an input terminal which receives a signal for selecting

data or command word and status word when MSM82C51A is

accessed by CPU

1 C/D = iow. data will be accessed

1tC/D = high, command word or status word will be accessed

€8 (Input terminal)

This is “active iow' input terminal which selects the

MSMB2CS1A.

Note The device won't be in “standby mode ' only setting £5 =

High. Refer to "Explanation of Standby Mode "

TXD (Output terminal)

This is an output for serial transmit Gata

The device is in "mark state” (high ievel) after resetting or when

transmit is disabled

Itis aiso possible to set the device in the “break state" (low level)

by a command

TXRODY (Output terminal)

This is an output which indicates that the MSMB2C51A is ready

to accept a transmit data character. But the terminal is always

atiow leve! it CTS = high or the device was set in “TX disable
status” by a command

Note TXRDY of the status word indicates that transmit data

character is receivable regardiess of TTS or command.

If the CPU writes a data character, TXRDY will be reset by the

leading edge of the WR signat

TXEMPTY (Output terminal)

This is an output terminal which indicates that the MSM82C51A

transmitted ali the characters and has no data characters to

send

in "synchronous mode,” the terminal is at high level, it transmit

data characters are no ionger left (sync characters are auto-

matically transmitted).

H the CPU writes a data character, TXEMPTY will be reset by

the ieading edge of WR signal.

Nole As transmitter is disabled by setting CTS "High™ or com-
mand, data written prior to the transmitter being disabled
wili be sent out, then TXD and TXEMPTY will be “High"

If data is written atter the transmitter is disabled, that data
I8 not sent out and TXE will be “High™. Atter re-enabling
the transmitter it will be sent. (Refer to Transmitter Controt
and Flag Timing Chart.)

TXE (input terminal)

This is a clock input signal which determines the transfer speed

of transmit data.

In “synchronous mode, " the baud rate will be the same as the

frequency of TXC.

In “Asynchronous mode," it is possibie to select baud rate factor

by the mode instruction.

ftcanbe 1, 1/16. or 1/64 the TXC.

The falling edge of TXC shifts the serial data out of the

MSM82C51A

RXD (Input terminal)

This is a termina! which receives serial data.

RXRDY (Output terminat)

This is a terminat which indicates that MSM82C51A contains a

character that is ready to be read

I CPU reads a data character, RXRDY wiil be reset by the lead-

ing edge of the RD signal

Uniess the CPU reads a data character betfore the next char-

acter is received completely. the preceding data will be iost. In

such a case, the overrun error flag of the status register will be
set

RXC (Input terminal)

This is a clock input signal which determines the transier speed

of the receiver.

In “synchronous mode,” the baud rate will be the same as the

trequency of RXC

in “asynchronous mode," is is possible to select baud rate

factor by, mode instruction

tt can be 1, 1/16, 1/64 the RXC

SYNDET /BD (input or output terminal)

This is a terminal whose function changes according to the

mode.

In "internal synchronous mode," this terminal is at high level, it

sync characters are received and synchronized. i status word is

read, the terminal will be reset.

In “external synchronous mode,” this is an input terminal

A “High" on this input forces the MSM82C51A to start receiving

data characters.

in "asynchronous mode,” this 1s an output terminal which gen-

erates a'high output upon the detection of a "break’’ character,

if the receiver data contained "“low-leve!" space between stop
bits of two continuous characters. The terminal will be reset, it

RXD 15 at high level.

D3R (input terminal)

This is an input port for MODEM interfaces. The input status of

the terminal can be read by reading the status register.

DBTR (Output terminai)

This is an output port for MODEM interfaces It is possibie to set

the status of DTR by a command

€78 (iInput terminal)

This is an input terminal for MODEM interfaces which is used for

controlling the trangmission. The terminal controls data trans-

mission if the device is set in “TX Enable” status by a command.

Data is transmittabie if the terminal is at low ievel.

RTS (Output terminal)

This is an output port for MODEM interfaces. It is possible 1o set

the status ot RTS by a command

ABSOLUTE MAXIMUM RATINGS

Parameter Symbol Limis Unit Conditions
MSMB2CS51ARS | MSM82CS1AGS
Power supply voitage Vee 0.5~ +7 v
input voltage VIN 05~ Ve +0.5 v With respect to GND
Output voitege Vout 05~ Ve +0.5 \
Storage temperature Tstg -55 ~ 150 °C —
Power dissipstion Pp 09 0.7 w Te = 25°C
OPERATING RANGE
Parameter Symbol Limits Unit
Power supply voltage vee 3~6 v
Operating temperature Top -40 ~ 85 °C
RECOMMENDED OPERATING CONDITIONS
Parameter Symbol Min, Typ. Max. Unit
Power supply voltage Vee 4.5 5 5.5 v
Operating temperature Toe -40 +25 +85 °C
“L" input volitage ViL ~0.3 +0.8 v
"H" input voitage Vin 2.2 Vee + 0.3 \4

DC CHARACTERISTICS

(Vcc =45~ 55V Ta =

—40°C ~ +85°C)

Parameter Symboi Min. Tvp. Max, Unit Measurement Conditions
“L" output voltage VoL 0.45 v oL = 2mA
“H" output voltage VoH 37 v IoH = —400 uA
Input leskage current u -10 10 BA 0SViNSVee
Output leakage current Lo -t0 10 WA 0<Vout SVee

. Asynchronous X64 during
Operating supply current Icco -] mA transmiitting/receiving
All input voitage shall be
ly current

Standoy supply curr 'ces 100 A fixed at VCc or GND level.

AC CHARACTERISTICS

CPU Bus interface Part

(Vcc = 45 ~ 55V, Ta = —40 ~ 85°C)

Parameter Symbol Min Max. Unit Remarks
Address stable before RD tAR 20 NS Note 2
Address hold time tor RD tRA 20 NS Note 2
RD puise width tRR 250 NS
Data detay from RD tRD 200 NS
RD to dsta fiost 10F 10 100 NS
Recovery time between D tRVRA 6 Tey Note 5
Address stable before WR taw 20 NS Note 2
Address hold time for WR twa 20 NS Note 2
WR pulse width tww 250 NS
Data set-up time for WR oW 150 NS
Data hoid time for WR twD 20 NS
Recovery time between WR tRVW 6 Tey Note 4
RESET puise width TRESW Tey

Serial intertace.Part

Parameter Symbol Min. Max. Unit Remarks
Main clock period tey 250 NS Note 3
Clock low time 3 90 NS
Clock high time to 120 tcy~90 NS
Clock rise/tall time tR. tF 20 NS
TXD delay from falling edge of TXC 1pTX 1 uS
Transmitter clock frequency | 1X Baud fTx DC 64 Kz
16X, Baud frx DC 615 kHz Note 3
64X, Baud frx DC 615 kHz
Transmitter clock low time | 1X Baud tTPW 13 Tey
16X, 64X Baud tTPW 2 Tey
Transmitter clock high time | 1X Baud tTpD 15 Tey
16X, 64X Baud tTPD 3 Tey
Receiver clock frequency 1X Baud fRx DC 64 kH2
16X Baud fRX DC 615 kHz Note 3
64X Baud fax DC 615 kHz
Receiver clock low time 1X Baud tRPW 13 Tey
16X, 64X Baud tRPW 2 Tey
Receiver clock high ume 1X Baud tRPD 15 Tey
16X, 64X Baud tRPD 3 Tey
Time from the center of last bit to the rise TXRDY 8 Tey
of TXRDY
Z;";—i;;? the leading edge of WR to the fall 'TXROY CLEAR 400 NS
Time from the center of last bit 10 the rise tRXRDY 26 .
of RXRDY Y
Parameter Symbol Min Max. Unit Remarks
:;n;e;:on;the leading edge of RD to the fall tRXRDY CLEAR 400 NS
;r;!%r:_z SYNDET delay time from rising edge s 2 Tey
SYNDET setup time for RXC tes 18 Tey
TXE delay time from the center of iast bit ITXEMPTY 20 Tey
:Ad(:eD:'Mw_c:mrol signa! delay time from rising we 8 ch
:g(g)eD:'M‘%mrol signal setup time for failing tcR 20 ch
:);Dss:xup time for rising edge of RXC tRXDS 1 ch
ud)
:))((DB::I:) time for falling edge of RXC tRXDH 17 Tey

leve! for output and 1.5 V for input
2) Addresses are CS and C/D.
3) frx or fry = 1/(30 Tey)
fry or frx < (1/5 Tey)

1 x baud

16 x, 64 x Baud

Caution 1) AC characteristics are measured at 150 pF capacity load as an output load based on 0.8V at low level and 2.2 V at high

4) This recovery time is mode initialization only. Recovery time between command writes for Asynchronous Mode is 8 tcy

and tor Synchronous Mode is 18 ey

Write Data is aliowed only when TXRDY = 1

5) This recovery time is Status read only.

Read Data is aliowed only when RXRDY = 1.

6) Status update can have a maximum deiay of 28 ciock periods from event aftecting the status

TIMING CHART

System Clock Inpast

CLK

Transmitter Clock and Data

R

R umacoe \ ANV

—_— P..q," ~e |Je—tDTX
— X
Recelver Clock and Data
IARBAUD COUNTER STARTS MERE}
LI STARY 17 / DATA BT X oarae
Axt (1 3MO0E) F 3 \
p——8 ""'.E ""'C:"‘ b1 A2C PERIODS (16 TMODE e}
&t neamo0€!
i
—=lte-3cy k:-cy
INT SAMPLING PULSE
[

Write Data Cycle (CPU — USART)

TxROY / N

tTxROY CLEAR

. ﬂ—lww
]
WD
tDW
1
DATA IN DON'T CARE y DON‘T CARE
\D.B.) | DATASTABLE -

_ taw WA

c/d
= tAw twa
Read Data Cycle (CPU « USART)
RxADY /
tRxRDY CLEAR
. tRR
AD N
— }c—!ao --tDF
DATA OUT DATA FLOAT DATA FLOAT
(0. B.) DATA OUT ACTIVE
_ tAR tRA |
c/D

= taR tRA /-_—

10

Write Control or Output Port Cycle (CPU — USART)

DTR.RTS X
’*—twc—’l
tww
WR
twD
fe——tow
§
DATA IN DON'T CARE et — DON'T CARE
(DB) -{_ DATASTABLE)
TAW WA
c/o / k
AW twA
cs \x If

Read Control or input Port (CPU — USART)

DSR.CTS
}o——i1cR
_ -L—tRR
RD
— ﬁtno 1OF
DATA OQUT DATA FLOAT DATA OUT ACTIVE DATA FLOAT
(D.B.)
—-»[AR te— —! tRA '-—
c/b ﬂ r\
—» AR [*— —=| IRA
cs
Transmitter Control and Flag Timing (ASYNC Mode)
€vs \ ; '
TEMPTY —od ’.— \‘—_)
_ TTXEMPTY 4 A\ e
3
cs*rnng% 1 " ‘ J !
- H
50) N, s
Wi DATA1 Wr DATA 2 Wr DATA 3 Wr DATA 4 X
&b [l 7 \ | s L —
Wi SBAK
WR A\ j
TxD leol&—é—
DATA CHAR 1 DATA CHAR 2 DATA CHAR 3 R

{Nose) The wave-form chart 13 based on the case of 7 br1 dets length + parity det + 2 stop bit

DATA CHAR G

START BT
STOP BIT

11

Receiver Control and Flag Timing (ASYNC Mode)

SREAK DETECY
FRAMING ERROR
ISTATUS BT}
OVERRUN ERROA foata h
BTATUS BIT) —ofo— A2 ROY HAR 1
AmrOY i
he OATA
b Y AL 4
A, ™ EAAOR
L]
1) Vs 4
ReDATA Moo .
DATA OATA DATA
CnaR Y CHAR 2 CHAR Y

BREAK

PAMITY Y
sTOP BIT
START Y
DATA OIT

o) The e Sarm chort & Gustd on the cose of 7 dom Wt ngrh ¢ parsty (91 ¢ 2 e Bt

Transmitter Control and Flag Timing (SYNC Mode)

T

TeEMPTY k

TaADY
STATUS 1) { ’ u_‘

e ¥ 1 3 =

e NI N| [L Al [J

W DATA W DATA W DATA W DATA Wr COMMAND W OATA
CHAR)Y CwAR 2 1 CHAR 3 CHAR 4 x CHAR S

wh

MARKING STATE Sync

SPACING MARKING] DATA SYNC
STATE |STATE CHARS | Cuan ETC

0] The miwe-form chart s Med O the Cae Of 5 GBTA Dt HengEh ¢ Parity Bit Bnd 7 SynCheOROUs Characiors

Receiver Control and Flag Timing (SYNC Mode)

SYNDET ey Whaetd » -
PINI INote ¥) b
‘|s-o~] to— . {13
SYNDET 158y RN y
ovERRUN Varioae P
ERROR (S8} - VN A
LOST
AWRDY PIN) P r -
AdSTATUS LAl :- Ao STATUS
€ _ fwen\ / rasTatus 1] [
Antn Rg DATA R0 DAYA RISYNC
CHAR } CHAR 3 CHAR 1 l
wa f
W Y AW}
1] '
I Y
DON'T CARE P
Ra0
e

4 £xi7 wunT MoDE
SETSYNCDET

EXIT MUNT MODE SETSYNDET ISTATUS 8151
SETSYNDET (BTATUS BiT)

(NOSe 1) 1AM AS! 1y ACRIONL201/00 4 DISET ON the COM OF 5 CILE b1 RPN + Parity i1 Snet 2 sy ACROROUS ChIraCIoTS

(NOIE 1) ERtecnsl syACh/ONanon 1 0800 0N the Cose Of § BBia Dr1 length » pesty Drl

12

PACKAGE SPECIFICATIONS

MSMB82C51ARS
28 LEAD PLASTIC DIP

38.0 MAX

28 15
o B i W s B e Y s B e Y s B e O e B e B v O v W |

(UNIT: mm)

14.2 MAX

|

l_..lul_.lul_ll_ll_.ll_l[._ll_.luul—-l
1 14

1 PIN INDEX MARK AREA

1524 - 030

- 06 _ e

MAX

13

PACKAGE SPECIFICATIONS cont'd

MSMB2C51AGSK
32 LEAD PLASTIC FLAT PACKAGE

(UNIT: mm)
Y INDEX MARK
\ 96 - 04 05 TYP
=0 11 = |
= . b T
=] WAX Er—
10 = 01
— —r—
——) ==
= P N —— 150 = 0.2
=4 / |
/
=—=|_ + \I e 16.0 = 0.2
]|] T ——
= \ l 7 =]
p—— ~.4- | —— 055:010
c—r— | T
— 0a T
—— MAX ——]
(—— ! l T
16 =1 | A==t Y
05TYP
f 80 - 02
20 20
- 04 : 04

|

N N
Y PR S Oy l

I] \% 0° ~ 10°
0.;'r01 03

OKI SEMICONDUCTOR, INC. 650 N. MARY AVENUE, SUNNYVALE, CA 94086
TELEPHONE: (408) 720-1900 TELEX (25) 910-3380508

OKI Semiconductor reserves the right to make changes in specifications at any time and without notice. The information furnished by OK! Semi-
conductor in this publication is believed to be accurate and reliable. However. no responsibility is assumed by OKI Semiconductor for its use; nor tor
any intringements of patents or other rights of third parties resuiting from its use. No license is granted under any patents or patent rights of OKI.

<1984 OKi SEMICONDUCTOR 14 PRINTEDINUS A

T
. Hitachi HD61102A LCD Column Driver Data Sheet

HD61102 (DOT MATRIX LIQUID CRYSTAL
GRAPHIC DISPLAY COMMON DRIVER)

HD61102 is a column (segment) driver for
dot matrix liquid crystal graphic display
systems. It stores the display data
transferred from a 8~bit micro-computer
in the internal display RAM and generates
dot matrix liquid crystal driving

signals.

Each bit data of display RAM corres-
ponds to ON/OFF of each dot of liquid
crystal display to provide more

flexible display.

As it is internally equipped with 64
output drivers for display, it is
available for liquid crystal graphic

display with many dots.

The HD61102, which is produced in the
CMOS process, can accomplish a portable
battery drive equipment by combining
a CMOS micro-computer, utilizing the.
liquid crystal display's lower power

dissipation.

Moreover it can facilitate dot matrix
liquid crystal graphic display system
configuration by combining the row
(common) driver HD61103A.

(FP-100)

M PIN ARRANGEMENT

-y

! —-._J‘smlwlw “'g;;"
Lwe 408K U,Q&PogSSocog
1303 g8 d g &8s adTag FIEIEGER
Aec (=1081
v e
ve — VAL
V3 [V3L
VIR[4] v
ViR (5] CIviL
VEE? (3] [} veer
v
Vn y;
Yoo fm 3y,
Yo (Y.
My)Yy
MM [
so[1y (e},
Yl [y,
MYz [Gve
MY 5] ¥ee
MO GIASTY
Ya[¥) [+3 Y1y
M [Y,
Yo [3] (7 Vi
ol L3} vee
Yas[:) V:.
Yo (3] 13 ¥y
Yor[5] [33) Yea
You) LYy
Yos[»] 137 Yo
salR) B3 ¥y
Yor(=] 5] ¥s,

(Top view)

HITACHI 183

HD61102

B FEATURES

® Dot matrix liquid crystal graphic display column driver incorporating
display RAM.

® RAM data direct display by internal display RAM
RAM bit data "1"cce.. ON
RAM bit data "0" OFF

e Internal display RAM address counter

preset, increment
e Display RAM capacity .eeeesve.. 512 bytes (4096 bits)
e B8-bit parallel interface
e Internal liquid crystal display driver circuit 64

e Display duty
Combination of frame control signal and data latch synchronization
signal make it possible to select out of static through an optional

duty.

e Wide range of instruction function
Display Data Read/Write, Display ON/OFF,
Set address, Set Display Start line,
Read Status '

e Lower power dissipation during display 2mW max

e Power supply Vec -+5V = 107
VEE oV ~ ~10V

e Lliquid crystal display driving level—15.5V max
e CMOS process

e 100 - pin flat plastic package (FP-100)

184 HITACHI

B ABSOLUTE MAXIMUM RATINGS

HD61102 |

Item Symbol Value Unit Note
Vee =0.3 ~ +7.0 v 2
Supply voltage VEE Voo =16.5 ~ Voo +0.3 \ 3
Terminal voltage (1) V1 VEE —0.3 ~ Voo +0.3 v 4
Terminal voltage (2) A4) =0.3 ~ vee +0.3 v 2,5
Operating temperature | Topr =20 v +75 °c
Storage temperature Tstg =55 n +125 °C

(Note 1)

(Note 2)
(Note 3)

(Note 4)

(Note 5)

LSI1's may be destroyed for ever, if being used beyond the absolute
maximum ratings.

In ordinary operation, it is desirable to use them observing the
recommended operation conditions.

Using beyond these conditions may cause malfunction and poor

reliability.
All voltage values are referred to GND=OV.
Apply the same supply voltage to VEp 1 and VEE2.

Applies to ViL, V2L, V3L, V4L, VIR, V2R, V3R and V4R.
Maintain
VCC2V1L=V1R2V3L=V3R2V4L=V4R2V2L=V2R2VEE

Applies to M, FRM, CL, RST, ADC, ¢1, ¢2, TST, 52, €S2, E, R/W,
D/I, ADC and DBOMT. T

HITACHI 185

HD61102

B ELECTRICAL CHARACTERISTICS
(GND=0V, VCC=4.5 ~ 5.5V, VEE=0~-10V, Ta=-20~+75°C)

Item Symbol | Test condition ey LIT;; —= Unit
Vv -
Input "Bigh" Voltage IHC D.7xVee Vece v
Vint 2.0 - | Vee v
Input "Low" voltage ViLe 0 - 10.3xVee| V
ViLr o =-{o08 |v
Output "High" voltage | Voy I0H=-205pA 2.4 - - v
Output "Low'" voltage VoL I0L=1.6mA - - 10.4 v
Input leakage current IIL Vin=GNDVcc -1.0 - [+1.0 uA
Three state (OFF) 1 . _ _
input current TSL Vin=GNDvVcc 5.0 +5.0 LA
Liquid crystal supply 1 . _ _ fun ,
leakage current LSL Vin=VEEVVcc 2.0 +2.0 HA
: : R Vce-VEE=15V _ _ -
Driver ON resistance ON :ILOAD‘O-lmA 7.5 K2
Icc(1) | During display - - | 100
Dissipation current Tee(2) cycle - - | 500 vA

. acces
During
access

1MHz

(Note 1) Applies to
(Note 2) Applies to
(Note 3) Applies to

(Note 4) Applies to

M, FRM, CL, RST, ADC, ADC, ¢1 and ¢2.

s1, Csz, Cs3, E, R/W, D/I and DBO ~ 7.

DBO ~ 7.

terminals except for DBO ~ 7.

(Note 5) Applies to DBO ~ 7 at high impedance.

(Note 6) Applies to

(Note 7) Applies to Y1 n Y64.

VIL ~ V4L and VIR v V4R.

(Note B) Specified when liquid crystal display is in 1/64 duty.

Operation frequency fpyy=250 kHz (¢1 and 42 frequency)

Frame frequency

fy =70 Hz (FRM frequency)

Specified in the state of

Output terminal ----- not loaded

Input level

-

----- VIH=VCC(V)

Vip=GND (V)

Measured at Vcc terminal

186 HITACHI

©® INTERFACE AC CHARACTERISTICS

(1) MPU Interface

(GND=0V, Vcc=4.5 ~ 5.5V, VEE'O A~ =10V, Ta==20 ~ +75°C)

HD61102

51~ 3

BO~ 7

Item Symbol min typ max Unit Note
E cycle time teve 1000 - - ns 1, 2
E high level width PWEH 450 - - ns 1, 2
E low level width Pwr-;L 450 - - ns 1, 2
E rise time tr - - 25 ns 1, 2
E fall time tf - - 25 ns 1, 2
Address setup time tAS 140 - - ns 1, 2
Address hold time tam 10 - - ns 1, 2
Data setup time tDsw 200 - - ns 1
Data delay time topR - - 320 ns 2, 3
Data hold time (Write) oW 10 - - ns 1
Data hold time (Read) thHR 20 - - ns 2
(Note 1) (Note 2)
- teve texe

2.0V e -

o.stPWELj PWEHE E EPWEL — PuER —

t tan - Cr tf e
2.0VY, tae] / 2.0V | ;
o.8vy * R 0 avf—a5 < twj%—

. TAS oI tAH . Cas ./ FAH
2.0vx cSin 3 2 0V7 ! i
0.8V D/1 0.8V /% ? i X
tpsw S tpHW ~—EODR —f e
2.0V Jeav tDHR
DBO~ 7
0.8V b— O.D
Fig. 1 CPU Write Timing Fig. 2 CPU Read Timing
(Note 3) DBO ~ 7 : load circuit
? RL=2.4KD
<RL
R =11KQ

C =130pF (including jig capacity)

Diodes D1 to D4 are all 15207:(.

HD511D2
(2) Clock Timing

(GRD=0V, Veo=4.5 v 5.5V,

VEE=0 ~ ~10V, Ta=20 ~ +75°C)

Test Limit

Item Symbol condition min typ max Unit
$1, ¢2 cycle time teyce Fig. 3 2.5 - 20 us
$1 "Low" level width tuLel Fig. 3 625 - - ns
$2 "Low"™ level width tWLd2 Fig. 3 625 - - ns
$1 "High" level width tWHS 1 Fig. 3 1875 - - ns
¢2 "High" level width tWHe2 Fig. 3 1875 - - ns
$1-¢2 phase difference tD12 Fig. 3 625 - - ns
$2-¢1 phase difference | tp21 Fig. 3 625 - - ns
$1l, ¢2 rise time tr Fig. 3 - - 150 ns
¢1, ¢2 fall time tf Fig. 3 - - 150

Teye
tr Lt tWHe1
0.7vVce / j
1
0.3Vce
twLgl
tp12 tp21
$2 0.7Vcc-s { ¢
0.3Vec WHo2 —
t
f ‘tm_:;z t.
T teye

188 HITACH!

Fig. 3 External Clock Waveform

(3) Display Control Timing

(GND=0V, Vee=4.5 ™ 5.5V, VEg=0 =10V, Ta==20 ~ +75°C)

HD61102

Item Symbol Egzgition min Li:;; max Unit
FRM delay time tDFRM Fig. 4 -2 - +2 us
M delay time tDM Fig. 4 -2 - +2 us
CL "Low" level width SoLeL Fig. 4 35 - - us
CL "High" level width tWHCL Fig. 4 35 - - us

Y

0.7Vece
0.3Vce

Fig. 4 Display Control Signal Waveform

HITACHI 189

HDE1102

@ BLOCK DIAGRAM
& R R N Mo oo
(2]
sFRY gmpp 2ee o883
4 44 i N N
el Liquid mn%mnm.u mwmu & M <
M play driver circuit
$
O
~|~|n|Display data latch SIBE
f—
$
O
= .
g z v L
= 3
ADC 3 c
; 2 g [
o | < o of ¢
v e e
O &
g .ﬂ,. Mw % @
o ~ < b H i i
-M a. <) el i
7} ° &0 > i
a ° np 0 [
o a @ =l Sk !
Vee y i a ® a9 .
ao —— L [2 22T
a -~ .
VEE]l—— o 4 ® 8# 1 |
VEE2—}— of _ m
USRS S B R — - |
_ |)
1 i ! !
- nstruction
i |
m_ register i |
£l $ y ! i
c“ Input Output I [Busy \
m_ register register “ flag
oy ol e L] |
ol - _ _
2| 1/0 buffer ” o -
S 8 4 4 4 | T
RSPV (0 S O S S I | -4l
fa 0+ - GN
y
1
o v 4
™~
8 2
[=]
4 D
BEfu: &
-~ -]
o a
0

190 HITACHI

o HD61102
8 TERMINAL FUNCTIONS
Terminal Numbgr of 1/0 Connected Functions
name terminals to
VCC 2 Power Power supply for intermal logic.
CND supply Recommended voltage is
GND = OV
Vece = +5V = 102
Vgg 1 2 Power Power supply for liquid crystal display
VEE 2 supply drive circuit.
Recommended power supply voltage is
Vecc - 15 to GND. Connect the same power
supply to Vggy and Vgg,.
VEE] and Vgp, are not connected each other
in the LSI.
viL, VIR 8 Power Power supply for liquid crystal display
V2L, V2R supply .
. V3L, V3R drive.
V4L, V4R Apply the voltage specified depending on
liquid crystals within the limit of
Vgg through Vgc.
V1L(V1R), V2L(V2R)---Selection level
V3L(V3R),V4L (V4R)==-=--Non-selection level
Power supplies connected with V1L and VIR
(V2L & V2R, V3L & V3R, V4L & V4R) should
have the same voltages.
csT 3 1 |MPU Chip selection.
ggg Data can be input or output when the
terminals are in the next conditions.
% i Terminal name | CS1 | CS2 ' CS3|
! Condition | 'L o'w’
{
E 1 I {MPU i Enable
, At write(R/W=L) : Data of DBO to L
: latched at the { I EL|
’ E At read(R/W=H) : Data appears at DBU to
! i .
. ; % DB? while E is in "High"
; E ! ; level.

HD61102

Terminal
name

Number of
terminals

1/0

Connected
to

Functions

R/W

1

MPU

Read /Write
R/W=H : Data appears at DBO to DB7 and
can be read by the CPU
When E=H, CS1, CS2=L and CS3=H.

: DBO to DB7 can accept at fall of

E when CS51, CS2=L and CS3=H.

R/W=L

D/1

MPU

Data/Instruction
D/I=H : Indicates that the data of DBO

to DB7 is display data.

D/I=L : Indicates that the data of DBO

to DB7 is display control data.

Vcc/GND

Adress control signal determine the relation

between Y address of display RAM and
terminals from which the data is output.
ADC=H : Y1-$0, Y64-$63
ADC=L : Y64-%0, Y1-$63

DBONDB7

1/0

MPU

Data bus, three-state I/0 common terminal

M

HD61103A

Switch signal to convert liquid crystal

drive waveform into AC.

FRM

HD61103A

Display synchronous signal (frame signal)
This signal presets the 6-bit display line
cbuntet and synchronizes a common signal
with the frame timing when the -7l signal

becomes high.

CL

HD61103A

Syncronous signal to latch display cata.
The CL signal indicates to count up the
display output adress counter and latch the
display data at rising.

01,92

HD611034A

2-phase clock signal for internal operation.
The ¢1 and ¢2 clocks are used to perform the
operations (I/0 of display data and
execution of instructions) other than

display.

192 HITACHI

Terminal Numb?r of 1/0 Connected Functions
name |terminals to
YINY64 64 0 |Liquid Liquid crystal display column (segment)
criptal .
display drive output.
These pins outputs light ON level when "1"
is in the display RAM, and light OFF level
with "0" in it.
Relation among output level, M and display
data (D) is as follows.
v _ T Lo
> _[TloJTlo]J
Output IVl l V3 I V2 I V4 l
level
RST 1 I |CPU or The following registers can be initialized
external by setting the RST signal to "Low'" level.
CR (1) ON/OFF register O set (display OFF)
(2) Display start line register (O line
set (displays from O line)
After releasing reset, this condition can
be changed only by the instruction.
DY 1 O | Open Output terminal for test. Usually, don't
connect any lines to this terminal.
NC 2 Open Unused.terminals. Don't connect any lines
to these terminals.
(Note) "1" corresponds to "High level" in positive logic.

HD61102

HD61102

B FUNCTION OF EACH BLOCK

® Interface Control

(1) 1/0 buffer
Data is transferred through 8 data buses (DBO ~ DB7).
DB7 MSB (Most Significant Bit)
DBO LSB (Least Significant Bit)
Data can neither be input nor output unless €CS1 to CS3 are in the
active mode. Therefore, when CS1 to CS3 are not in active mode it i
useless to switch the signals of input terminals except RST and ADC,
namely, the internal state is maintained and no instruction excute.
Besides, pay attention to RST and ADC which operate irrespectively b
CS1 to CS3.
(2) Register A
Both input register and output register are provided to interface
MPU of which the speed is different from that of internal operation.
The selection of these registers depend on the combination of R/I an
D/I signals.
Table 1. Register Selection
D/I | R/W . Operation
1 1 Reads data out bf'output register as internal operu:i..n
(display data RAM + output register)
1 0 Writes data into input register as internal operation
(input register =+ display data RAM)
0 1 Busy check. Read of status data.
0 0 Instruction

@ Input register

Input register is used to store data temporarily before writing it intc

display data RAM.
The data from MPU is written into input register, then into display .

RAM automatically by internal operation.

194 HITACHI

HD61102

When CS1 to CS3 are in the active mode and D/I and R/W select the input

register as shown in Table 1, data is latched at the fall of E signal.

Output register

Output register is used to store data temporarily which is read from
display data RAM. To read out the data from output register, CS1 to CS3
should be in the active mode and both D/I and R/W should be 1. With READ
instruction, data stored in the output register is output while E is "H"
level. Then, at the fall of E, the display data at the indicated address
is latched into the output register and the address is increased by 1.
The contents in the output register is rewritten with READ instruction,

while is held with address set instruction, etc.

Therefore, the data of the specified address can not be output with READ
instruction soon after the address is set, but can be output at the second
read of data. That is to say, one dummy read is necessary. Fig. 5 shows

the CPU read timing.

o/1 | I e N
R/W l |

RNy U p N I N S e T e B e B e

Address { N | N+ ! N+2
(o] t
r:;linsjter {Data at address N | Data at address :i-i
DBOA 7 | Busy |Write Busy Read Busy Read Busy [Data read
B | check | address| check data ° check |data at{ check |address
N dummy) address N+1
N

Fig. 5 CPU Read Timing

HITACHI 195

HD61102

& Busy Flag

"1" of busy flag indicates that HD61102 is on the move and any instruction:
except Status Read instruction can not be accepted. The value of the busy
flag is read out on DB7 by the Status Read instruction. Make sure that the
busy flag is reset ("0") before the issue of instruction.

Busy ‘
fla
& L— T Busy —HI

1/fcLksT Busys3/fcrg

fCLK is ¢1, 92 frequency .

e Display ON/OFF Flip Flop

Display ON/OFF flip flop selects one of two states, ON state and OFF state
of segments Y1 to Y64. 1In'ON state, the display data corresponding to that
in RAM is output to the segments. On the other hand, the displav data at

all segments disappear in OFF state independent of the data in RAM.

It is controlled by display ON/OFF instruction. '0' of RET cf==21 csts the
segments in OFF state. The status of the flip flop is output to DB5> by
Status Read instruction. Display ON/OFF instruction does not influence date
in RAM. To control display data latch by this flip flop, CL signal (display

synchronous signal)- should be input correctly.

e Display Start Line Register

The register specifies a line in RAM which corresponds to the top line of
LCD panel, when displaying contents in display data RAM on the LCD panel.

It is used for scrolling of the screen.

6-bit display start line information is written into this register by displa

start line set instruction, with 'H' level of FRM signal instructing to st‘

the display, the information in this register is transferred to Z address
counter which controls the display address, and the Z address counter is

preset.

196 HITACHI

HD61102

o X, Y Address Counter

This is a 9-bit counter which designates addresses of internal display data
RAM. X address counter of upper 3 bits and Y address counter of lower 6 bits

should be set each address by respective instruction.

(1) X address counter

Ordinary register with no count functions. An address is set in by

instructions.

(2) Y address counter

An address is set in by instruction and it is increased by 1 automatically
by R/W operations of display data. The Y address counter loops the

values of 0 to 63 to count.

e Display Data RAM

. Dot data for display is stored in this RAM. 1-bit data of this RAM
corresponds to light ON (data=1) and light OFF (data=0) of 1 dot in the
display panel. The correspondence between Y addresses of RAM and segment
PINs can be reversed by ADC signal.

As ADC signal controls Y address counter, a reverse of the signal during
the operation causes malfunction and destruction of the contents of register
and data of RAM. Therefore, never fail to connect ADC pin to Voe or GND

when using.

Fig. 6 shows the relations between Y address of RAM and segment pins in the
cases of ADC=1 and ADC=0. (display start line=0, 1/64 duty).

HD61102
I comM1 (HD61103A X)
B com2 (HD61103A X:
- —— CcoM3 (HD61103A X'
T — COM4 (HD61103A X!
LCD T —— CcOM5 (HD611034 X!
display pattern T — COM6 (HD61103A X¢
coM? (HD61103A X;
Tt b—o coM8 (HD61103A Xt
T —— coM9 (HD61103A X¢
L \\\\‘____J//
P —
] e o B I e o (HD61103A,
e —— COM63 (HD61103A X¥
I T F—— COM64 (HD61103A X
r YI‘YZKY3Y4YSY6_____Y62 Yl63 Y64 <=— HD61102 PIN NAME |
Line 0-—-=-|0;1]1]1]0]0| ¢ 0lolo]1 DBO (LSB)
Line 1--=—-|1]o0j0jol1jo] __ olojo]1 DB1
Line 2-———-1|0|/0|0{1|0O ____1lojon DB2
1j0iojoj1j0f . ojifol1 DB3
=01viihhhife] T Toloih DB4
Display 110/0j0j110] ____ olofo[1 L85
RAM data 110j0joj1jo] ojojon DB6
L |0]0j0j0lojo] __ojofo]o ' DB7 (MSB)
0jojojojojo] ~__ olojo]o I
x=1 { L- i ___ L e
I
X=7 L S
oftjojofojol — ToloJo
Line 62 —-——11 1 /111]1{0] ~~ "Jojolo
Line 63 ———1-[0joio]0jofo] ToJo]o]
1T T T [
012345 6162 63 < RAM Y Address
—_——
(a) ADC="1" (Connected to Vcc) .
Fig. 6 Relation between RAM Data and Display

198 HITACHI

HD61102

(HD61103A X1)
(HD61103A X2)
(HD61103A X3)
(HD61103A X4)
(HD61103A X5)
(HD61103A X6)
(HD61103A X7)

LCD
display pattern

_____ — COM8 (HD61103A X8)
_____ —— COM9 (:#D61103A X9)
| T~ _ 1
‘ S e T
J I }——COM62 (HD61103A X62)
L f—— COM63 (HD61103A X63)
| O COM64 (HD61103A X64)
Y|Y YlY Y
6463 62161 59 Y3 Y2i¥1 <—{ HD61102 PIN .iT z
Line 0---+-0/1:1/1]010] 0J0/0]|1 DBO (LSB)
Line 1--—F11/010j0]1]0] - 0/0}0]1 DB
Line 2---41i0j0j0/1/0| 1j0({0]1 DB2
x=0i [1j0j0jol1j0} ol1lo0/1)
l1i1j1j1{1jo} ___ ojof1t1 E-
. 1{ololoj1]0 0/0/0]1 pnT
Display ————— ‘
RAM data 1{ojo0lo]1j0] __0jojoj1 DBn
ojolojojojol | 0/o0}0/{0 ¢—-- ©Z7 (MSB)
ojojojojo[O] 0/0{0]|0 I
X=1
/J \\L*~~___,L//) i N
i [
] [
X=7 //T‘\\\'- -]
olilojofolo] jolo]o
Line 62-==T71!1111{1;01 _____ olojo
Line 63—--t-|0f0|0j0[0j0o] ~ {ojojo]
! Pl B
012345 616263 <" RAM Y Address |

(b) ADC="0" (Connected to GND)

Fig. 6 Relation Between RAM Data and Display

HD61102

¢ Z Address Counter

The Z address counter generates addresses for outputting the display data
synchronized with the common signal. This counter consists of 6-bit and
counts up at the fall of CL signal. With "H" level of FRM, the contents of

the display start line register is preset at the Z counter.

e Display data Latch

The display data latch stores the display data temporarily which is output
from display data RAM to liquid crystal driving circuit.

Data is latched at the rise of CL signal. Display ON/OFF instruction
controls the data in this latch and does not influence data in display data
RAM.

e Liquid Crystal Display Driver Circuit

The combination of latched display data and M signal causes one of the 4
liquid crystal driver levels, V1, V2, V3 and V4 to be output. .

e Reset

The system can be initialized by setting R5T terminal at "Low" level when

turning power ON.

1) Display-OFF

2) Set display start line register 0 line.

While RST is in Low level, any. instruction except Status Read cannot be
accepted. Therefore, Carry out other instructions after making sure that
DB4=0 (clear RESET) and DB7=0 (Ready) by Status Read instruction.

The conditions of Power Supply at initial power up are as follows.

Item Symbo1 Min. Typ Max. Unit
Reset time tesT 1.0 - - us
Rise time ty - - 200 ns

Do not fail to set the system again because
RESET during operation may destroy the data
in all the register except ON/OFF register

and in RAM.

200 HITACHI

HD61102
B DISPLAY CONTROL INSTRUCTIONS

® Qutline

Table 2 shows the instructions. Read/Write (R/W) signal, Data/Instruction
(D/1) signal and Data bus signal (DBO to DB7) are also called instructions
because the internal operation depends on the signals from MPU.

These explanations are detailed from the following page. Generally, there

are following three kinds of instructions.

(1) Instruction to give addresses in the internal RAM
(2) Instruction to transfer data from/to the internal RAM

(3) Other instructions

In general use, the instruction (2) are used most frequently. But, since Y
address of the internal RAM is increased by 1 automatically after writing
(reading) data, the program can be lessened. During the execution of an
instruction, the system camnot accept other instructions than Status Read
instruction. Send instructions from MPU after making sure if the busy

flag is "0", which is the proof an instruction is not being excuted.

HITACHI 201

IHOVLIH 20C

Table 2.

Instructions

Instructions

Code

R/W|D/1|DB7|DB6| DBS|DB4|DB3{DB2| DB1| DBO

Functions

1 Display ON/OFF

1/0

Controls the ON/O¥F of display. RAM data and internal

status are not affected. 1:0N, 0:0FF.

2 Display start
line

display start line (0v63)

Specifies a RAM line displayed at the top of the

3 Set page (X
address)

4 Sct Y address

5 Status Read

6 Write display
data
7 Read display
data .

+ 1) Busy time varics with the frequeney (f01k) of

screen.
ojJoj{1]0] 1{1] 1] Page (On7) Sets the page (X address) of RAM at the page (X address)
' register.
0| 0| O] 1| Y address (0v63) Sets the Y address at the Y address counter
1{of{B]l]ofoN|]R[O|]O| O] O Reads the status. RESET 1: reset O:normal
u /| E . s
s OFF| s ON/OFF 1: display OFF O0:display ON
y E Busy 1: on the internal operation
T 0: Ready
011 Write Data Writes data DBO (LSB) to DB7 (MSB)|Has access to the
on the data bus into display RAM. { address of the display
1] Read Data Reads data DBO (1SB) to DB7 (MSB) | \AM specified in

advance. After the

from the display RAM to the

data bus access, Y address is

increased by 1.

(Mfeg = Tousy = 3/M¢g)

P+, and ¢2.

ZOL19QH

HD61102

o Detailed Explanation

(1) Display ON/OFF

R/W D/1 DB? ~—__________ .~ DBO

Code I 0 0 0 0 1 1 1 .]- 1 1 D

= high-order-bit low-order-bit —

The display data appears when D is 1 and disappears when D is O.
Though the data is not on the screen with D=0, it remains in the
display data RAM. Therefore, you can make it appear by changing
D=0 into D=1.

(2) Display start line

R/W D/1 DB7 TN— DBO

. Code 0 0 1 1 A A A A A A
= high-order-bit low-order-bit —=

Z address AAAAAA (binary) of the display data RAM is set at the iisplay
start line register and displayed at the top of the screen.

Fig. 7 are the examples of display (1/64 duty) when the start line=0 n 3.
When the display duty is 1/64 or more (ex. 1/32, 1/24 etc.,, tne data

of total line number of LCD screen, from the line specified by display

start line instruction, is displayed.

HITACH1 203

HD61102

COM1
coM2 o
coM3 .
COM4 N
COM5
COM6 2
COM? | |
coMs ! |
CoM9
' ~ee
]
l = —
COM60 1
COM61
COM62
COoM63 P
CoMé4 ___J:T_“
Start line=0 Start line=1l
COoM1 T COM1
COM2 . com2
COM3 coM3
CoM4 COM4
COM5 COM5
coM6 COM6
coM7 coM7
COM8 COM8
coM9 COM9
! |
! |
! |
; '
COM60 COM60
coxel CoM61
COM62 COoM62
COM63 COM63
COM64 COoM64
Start line=2 Start line=3

Fig. 7 Relation Between Start Line and Display

204 HITACHI

‘ HD61102
(3) Set page (X address)
R/W D/I DB?7 — S DBO
Code 0 0 1 0 1 1 1 A A A
“*— high-order-bit low-order-bit —

X address AAA (binary) of the display data RAM is set at the X address
register. After that, writing or reading to or from MPU is executed in

this specified page until the next page is set.

(4) Set Y address

R/W D/I DB7 DBO
Code] © 0 0 1 A A A-} a A A
. <« high-order-bit low-order-bit -~

Y address AAAAAA (binary) of the display data RAM is set at the Y
address counter. After that, Y address counter is increased by 1

every time the data is written or read to or from MPU.

Y address
012 -~61 62 63
DBO o
e Page 0 X=290
DB7
DBO
e Page 1 X=1
DB?7

/—__/

DBO

e Page 6 X =6
DB7

DBO l

e Page 7 X =7

@ |

Fig. 8 Address Configuration of Display Data RAM

HITACHI 205

HD61102
(5) Status Read
R/W D/I DB] —— SN— DBO
code | 1 | o [eusy| o |2 Ireser| o | o o] o
OFF
<+— high-order-bit low-order-bit —»

BUSY: When BUSY is 1, the LSI is in internal operation. No instructions
are accepted while BUSY is 1, so you should make sure that BUSY
is O before writing the next instruction.

ON/OFF: This bit shows the liquid crystal display conditions - ON
condition or OFF condition.
When ON/OFF is 1, the display is in OFF condition.
When ON/OFF is O, the display is in ON condition.

RESET: RESET=1 shows that the system is being initialized. In this .
condition, any instructions except Status Read instruction cannot
be accepted.

RESET=0 shows that initializing has finished and the svstem is in
the usual operation.
(6) Write Display Data

R/W D/I DB7 — S DBO

Code 0 1 D D D D D D r o]

L
«— high-order-bit low-order-bit —*
Writes 8-bit data DDDDDDDD (binary) into the display data RAM. Tion

Y address is increased by 1 automatically.

(7) Read Display Data
R/W D/I DB7 T DBO

Code 1 1 D D D D D D D D

< high-order-bit low=order-bit -

206 HITACHI

HD61102
Read our B-bit data DDDDDDDD (binary) from the display data RAM. Then

Y address is increased by 1 automatically.

One dummy read is necessary soon after the address setting. For details,

refer to the explanation of output register in "FUNCTION OF EACH BLOCK".

HITACHI 207

HD61102—

B THE USAGE OF HD61102

e Interface with HD61103A (1/64 duty)

Rf g'f_]

Ve e >mm—of
V1>——
V6> ——]
V5 >——
V2 r—

VEE >

Vce

~

R

Vce
vViL
V6L
V5L
V2L
VEE

GND

SHL
DS1
DS2
TH

CLl
FS

M/S
FCS

CR €

,VIR
,V6R
»V5R
»V2R

HD61103A

STB

X1

X64

DL
DR

CL2
FRM
$1
$2

-10V

208 HITACHI

External CR

CPU

COM1
g LCD Panel
64 x 64 dots
COM64 —_ 3
T O
= st
[%2] [77]
r
| open N
L— Open .
Y1 -7 N\~ Y64
M
CL
FRM ———<Vee
¢1 HD61102 VIL,VIR |—<v1
$2 V2L,V2R f——V2
V3L,V3R |}———<V3
V4L,V4R +——V4
) VEE1l,VEE2}——~VEE
Vee>—— ADC
RST ;L
all= I O = &N O T T~
v S~ R @mm@A@mM@p
Er:omnmaonmcaa:
PHETTTTTTTTT

HD61102

CL

HITACH!1 209

Vé
V6
V1
V1
In this

Input

o
(=)
=4
] O
LRV -1
5 7
©
[4
] ~ ~t
o . = > > S —
— >
- wn Q. +
w o >
— " = -~ I ©
— —_—— -ty - —— —_———— — — L -]
. " . 03
=3 = L ~
— -_ — o t— e e e S | —_—— - ~ e —
(v} S
— [7a) o~ o~ =
= = o> = [V -9 +
—_ —_—— el e — & — —_ Tl o] |
| 7 3 b=
o~ w £
||||| - - - """ —— — - Y] [
= C
-t ——_—-——— lllll.ll-l'nlllﬁll o o0 o
o AL =
N (7] — —
] ¢ ' [" " I w o €
9] - -
HE ' ! ' . ! @ 2y —
]]]]] — a c
tla 1] 1]]] - s [
1]]] []]] 7] 3 o Y]
b [} [#] >
=3 [} -
- 2 2 3 &
Y -] S — ™ v v
> > >
~ © “ o
> = o o o© o
= o - -
L — - - —————— —_—— I|.eﬁ @
o —
o~ O —~ [.
=] = > N 9 oA o
—— e —— p— — = cp—— . — — e —_— .l..l.w b .
[[-% o
o — e —_— e e] o K
= [w
S S) N R R £
wy ~ ~T
c <o
> > > [Pe
e -
> v
~— o~ NEZEN M — ~— M @ —
= " o >¢ S o 2 o
\ N I\ m
= Q £ %
3] a
w wn v 9

HD61102-

® Interface with CPU

a) Example of connection with HD6800

Al5

Al

AO
R/

HD6800
$2

DO

D7

RES

Decoder

-

Vee —

cs1
ts2
Cs3

Yoot |-

HD61102

The example of connection with HD6800 series

In this decoder, addresses of HD61102 in the address area of 'D6800 are:

Read/Write of the display data

Write of display instruction

Read out of status

Therefore, you can control HD61102 by reading/writing the dats at these

addresses.

210 HITACHI

b) Examﬁle of connection with HD6801

HD61102

7415154
P10 A Y0 4T
P11 B ’El T &5z
P12 c) Vee—CS3
Gl G2
(10s)sc1 I
(R/W)sC2 R/W
P14 D/1
HD6801 HD61102
E E NO.]
P30 DBO
P31 - DB1
' 1 '
(Data bus) ! '
P37 ! DB7'

® Set HD6801 in Mode 5.
P10 to P14 are used as the
output port and P30 to P37

as the data bus.

e 74LS154 is 4 to 16 decoder and
genelate chip select signal to
make specified HD61102 active
after decoding 4 bits of P10
to P13,

Therefore, after making the
operation possible by P10 to
P13 and specifying D/I signal
by P14, read/write from/to

the external memory area ($0100 to
$01FE) to control HD61102.

In this case, I0S signal : ~rerut
from SC1 and R/W signal from SC2.

For details of HD6800 and HD6801,

refer to the each manual.

HITACHI 211

HD61102

o Example of Application

HD61103A
(Master)

>
o

latad
WNﬁ

4N

HD61103A
(Slave)

>4
o

et etal
WRI—

"

Note)

212 HITACHI

HD61102 HD61102 HD61102
No.9 No.10 | —— e No.16
Y1 ™ Y64 Y1 7~ Y64 Y1 ™\ Y32

COM1

COM2

COM3
|
]
]
|
|
|

COM64

LCD Panel
128 x 480 dots
COM65
coM67 "]
!
I
4 |
I
|
|
|
|
{
COM128 .o

Y1 /< Y64 Y1 —/™~Y64 Yi Y32
HD61102 HD61102 e e 61102
No.1 No.2 No.8

In this example, two HD61103A's output the equivalent waveforms.

So, stand-alone operation is possible. 1In this case, connect COM1
COM65 to X1, COM2 and COM66 to X2, ..., and COM64 and COMIZE to .\'6.
However, for the large screen display, you had better drive in 2 row

as this example to guarantee the display qualitv.

Appendixes

A

Resident Debugger

The ROM-resident debugger provides a way to debug application programs written in assembly
language. It offers a way to examine or modify data in memory and the CPU registers, set a break-
point, or single-stcp an assembly-language program.

The debugger is entered by typing RDB76 at the command mode prompt. The debugger
must not use interrupts, so keys are more difficult to enter than in command mode. There is no cursor

because cursor blink requires interrupts. Note that the debugger will not time out and turn the HP-94
off.

Table A-1. Resident Debugger Commands

Command Description Page
D Display the contents of memory in hexadecimal characters. A4
G Execute code until a breakpoint. A6
I * [inputdatafromani/O port. A-7
L t |Enterdata in MDS format. A8
M Display or change the contents of memory. A9
O * |Output datato an /O port. A-10
R Display or change the contents of CPU registers. A-11
S Single-step execution of a program. A-12
X Switch the debugger console between HP-94 keyboard and serial port.| A-13

* For the | and O commands, press the [K] or [L] key respectively on the HP-84 keyboard. The command

etter is shown in the display.
t The L command can only be entered if the console is set o the serial port.

All the characters recognized by the debugger can be entered without using , including the digit
keys [0] through [8] . Some characters are assigned to different keys because the key which has that
character printed on it is also a digit key.

Resident Debugger A-1

Table A-2. Resident Debugger Keyboard Map

Key | Response
:
['
[#) +
(K] I
o]
Q] P
(ignored)

The ROM-resident debugger uses the HP-94 keyboard and display as the console. If the serial port is
not used by the code being debugged, the serial port can be used as a console by connecting a terminal
to the port. The port configuration is unconditionally set to 9600 baud, 7-bit data with even parity, and
one stop bit.

A-2 Resident Debugger

L
Command Syniax
A parameter enclosed by [] is optional and may be omitted.
Usnderlined characters are characters displayed by the debugger.
In this chapter, the term word mcans a 16-bit value.

Example:

To input 40:1F, press these keys:

[4][o)(sPACE][1][F]
An address has the following format:

[SSSS:JFFFF

SSSS is the segment expression (defankt = TS register)
FFFF is the offset expression

Both segment and offset can combine hexadecimal constants or two-character register names in addi-
tion or subtraction expressions using the + and - operators.

I more than four hexadecimal digits are entered, only the last four digits are used.
Valid register names are AX, BX, CX, DX, SP, BP, S1, DI, CS, DS, SS, ES, IP, and FL (flags).
Examples:

41-1:145+AF isinterpreted as 40 : 1F4.
145-34+1isinterpreted 25 CS:112.

IP+2 (if IP is 110h) is interpreted as C5:112.
FFF0145-34+1 is imterpreted as CS:112 (0145-34+1).

ES : BX+1 is interpreted as expected.

Resident Debugger A-3

D

Display the contents of memory.

Syntax:

D[W]address1[, address2][ENTER]

Description:

The D command displays in hexadecimal the contents of memory from address? to address2. If the
W option is specified, the display is grouped by words; otherwise the display is grouped by bytes.
Console is the HP-94 keyboard/display:

The contents of memory up to a paragraph boundary (oxcxxx() are displayed. The debugger then
waits for a key to be pressed. If is pressed, the contents of the next 16 bytes of memory are
displayed. Pressing any other key terminates the D command.

Console is the serial port:

The contents of memory are displayed in hexadecimal. If the W option is not specified, the correspond-
ing ASCII characters are also displayed. Pressing any key terminates the D command. That key is
then processed as a debugger command. Since software handshake characters are interpreted as keys,
a handshake character such as XOFF from a terminal will terminate the D command.

Example 1: Console is HP-94 keyboard/display; display O : 0 through 0: 14 as bytes.
*00:0, 14 ([D] [0] [SPACE] [0] [1] [1] [4] [ENTERD

0000:0000

58 0C 00 FC E1 0B
00 FC 58 OC 00 FC
58 OC 00 FC
0000:0010

88 FF 95 7F 07

L

Example 2: Console is serial port; display 0 : O through 0 : 14 as bytes.

*00:0, 14

0000:0000 58 OC 00 FC E1 0B 00 FC 58 OC 00 FC SB OC 00 FC [NN [...l...
0000:0010 88 FF 95 7FO7

.

Example 3: Console is HP-94 keyboard/display; display DS : 0 through DSt 14 as words. Assume
DS is 0.

oS30, 14 (o] (W] [0] [§] [SPACE] [0] [] [1] [4] [ENTERD

0000:00
0CSB FCOO OBE1 FCOO

0CS8 FCOO OC58 FCOO
0000:0010

FF88 7F95 FFO7

-

A-4 Resident Debugger

...D

Example 4: Console is serial port; display DS : O through DS ¢ 14 as words. Assume DS is 0.

*OW DS:0,14

0000:0000 OC58 FCOO OBE1 FCOO OC5B FCOO OC5B FCOO
0000:0010 FFB8 7F95 FFO7

-

Resident Debugger A-5

G

Execute code until a breakpoint.
Syntax:

G_cccc:iiii- dd {startaddress][, break address][ENTER]

Description:

The G command displays in hexadecimal the contents of CS ¢ IP and the contents of the byte at that
location. If a break address is specified, a breakpoint is set by writing an INT 3 (CCh) at that address.
If the INT 3 cannot be written, an error occurs. This means it is not possible to set a breakpoint in a
program in ROM. If a start address is not specified, program execution starts at CS : IP. If a start
address is specified, program execution starts at that address.

When a program reaches the breakpoint, the debugger displays the following message and waits for
another command.

BR@cececo:iiii

CCcCc is the value of the current CS register.

ooooo

Note that if a program never reaches the breakpoint, the INT 3 remains in the code. The debugger will
try to restore the instruction replaced by the INT 3 when the debugger is reentered. Because the pro-
gram being debugged may have moved, it is zecommended that a breakpoint not be set before return-
ing to the operating system from the debugger.

A-6 Resident Debugger

Input data from a port.

Syntax:

IW]port,

Description:

The I command inputs data from port port and displays it in hexadecimal. If the W option is specified,

one word of data is input from port and displayed; otherwise one byte of data is input from port and
displayed. Data is input from port and displayed each time a comma is entered.

Pressing [ENTER| terminates the I command.

Resident Debugger A-7

L

Enter data in MDS format.
Syntax:

L[bias)[ENTER]
Description:
The L command inputs data in MDS format and loads the data to main memory. The data is written

at the record address contained in the MDS data records added to the value of bias. The default bias
is zero. The segment value can be set with a type 2 MDS record. The default segment is zero.

The L command is available only if the console is the serial port.

The L command discards any data received until the first colon () of the MDS file is encountered. If
the data which follows the colon is not in MDS format, the L command terminates.

A-8 Resident Debugger

Display or change the contents of memory.

Syntax:

M[W]address, dd-_[new data],

Description:

The M command displays in hexadecimal the contents of memory at address. If the W option is
specified, memory is processed in words; otherwise memory is processed in bytes.

When a comma is entered, the contents of the next memory location are displayed.

Pressing terminates the M command.

If new data is specified (in hexadecimal), it is written to the memory location currently displayed. A
read-after-write check is done to ensure that the data was written correctly. If the data read back does
not match the data which was written, such as when trying to write to ROM, the M command ter-
minates.

Resident Debugger A-9

Output data to a port.
Syntax:
O[W]port, data[ENTER]

or
O[W]port,data,

Description:

The O command outputs data to the specified port. If the W option is specified, one word of data is
output to port; otherwise one byte of data is output to port.

If the O command is entered with a trailing comma, it writes the data to the port, then prompts for new
data with a dash (=).

Pressing terminates the O command.

A-10 Resident Debugger

Display or change the contents of CPU registers.
Syntax:

R [ENTER]

or

Rregister-dddd ~ [data][,][ENTER]
Description:
The R command displays the contents of CPU registers in hexadecimal.

If register is specified, the contents of that register are displayed in hexadecimal. If data is specified
(in hexadecimal), the register is changed to that value. A comma (,) continues on to the next register,
if any; terminates the R command.

If register is not specified, the contents of all the CPU registers are displayed. The format depends on
whether the console is the HP-94 or the serial port:

Console is the HP-94 keyboard/display:

*& [ENTER]
AX=024A BX=000D
CX=1FA2 DX=DOOE
SP=07F2 BP=0250

$1=0410 DI=0015

Cs=0128 Ds=0128
$S=1F80 ES=1F80
1P=0008 FL=F206

Console is the serial port:

*R
AX=024A BX=0000 CX=1FA2 DX=000E SP=07F2 BP=0250 SI=0410
D1=0015 CS=0128 DS=0128 SS=1F80 ES=1F80 1P=0008 FL=F206

L 4

Resident Debugger A-11

S

Single-step execution of a program.
Syntax:

S cccc:iiii- dd [startaddress],

Description:
The S command displays the current CS:IP in hexadecimal and waits for another key. If start
address is specified, the current CS ¢ IP is set to that address.

A single instruction at the current CS : IP is executed when a comma (,) is entered. The S com-
mand displays the new CS : I P and waits for another key.

Single-step execution terminates when the key is pressed.

NOTE Because the HP-94 has a timer which interrupts every 5 ms, there will almost always
be a pending interrupt when single-stepping code. Because all registers are restored
before execution, including FL, interrupts are enabled unless the FL register has
been modified to disable interrupts. When using the HP-94 keyboard, there is no key
sequence to directly type the letter L. To view the FL register using the R command,

type RIP, (RJ[K][Q][.D.

A-12 Resident Debugger

Switch the debugger console between the HP-94 keyboard and serial port.

Syntax

X

The X command switches the debugger console between the HP-94 keyboard/display and the serial
port. Several commands display information in a format which is easier to read when the console is the
serial port.

The X command displays the verification prompt "Ok ? " and waits for a key. If[Y] is entered,
the console is switched to the serial port if the console was the HP-94 keyboard/display, or to the HP-
94 keyboard/display if the console was the serial port.

When the console is switched to the serial port, the port is set to 9600 baud, even parity, 7-bit data, and
one stop bit. The debugger operates without any hardware or software handshaking. Any handshaking

characters sent by the terminal will be interpreted as keys, and will have the same effect as pressing
keys. This is especially important for the D command.

The console must not be switched to the serial port while an application program which uses the serial
port is being debugged.

CAUTION if the console is switched to the serial port which is connected to a terminal that
cannot communicate at 9600 baud, even parity, 7-bit data, and one stop bit, or if
the console is switched with no terminal attached, the only way to regain control
of the HP-94 is to press the reset switch.

Resident Debugger A-13

Table B-1. Operating System Errors

Hex Decimal Meaning
64h 100* | BASIC interpreter not found
65h 101 lllegal parameter
66h 102 Directory does not exist
67h 103 File not found
68h 104 Too many files
69h 105 Channel not open
6Ah 106 Channel already open
6Bh 107 File already open
6Ch 108 File already exists
6Dh 109 Read-only access
6Eh 110 Access restricted
6Fh 111 No room for file
70h 112 No room to expand file
71h 113 No room for scratch area
72h 114 Scratch area does not exist
73h 115¢ Short record detected
74h 1161 Terminate character detected
75h 117+ | End-of-data
76h 118 Timeout
77h 119 Power switch pressed
Csh 200 Low battery
Coh 201 Recelve buffer overfiow
CAh 202 Parity error
CBh 203 Overrun error
CCh 204 Parity and overrun error
CDh 205 Framing error
CEh 206 Framing and parity error
CFh 207 Framing and overrun error
DoOh 208 Framing, overrun, and parity error
Dih 2094 Invalid MDS file received
D2h 210 * Low backup battery — main memory
D3h 211+ Low backup battery — 128K memory board or 40K RAM card
D4ah 212 * Checksum error — main memory directory table
Dsh 213+ Checksum error — 40K RAM or ROM/EPROM card directory table
D6h 214+ Checksum error — reserved scratch space
D7h 215 * Checksum error — main memory free space
Dsh 216 * Checksum error — main memory file
Dsh 217 * Checksum error — 40K RAM or ROM/EPROM card file
DAh 218 Lost connection while transmitting
DBh 219 ¢ Ilegal use of operating system stack
* Only reported when machine is turned on.
t Never reported by built-in BASIC keywords.

B-2 Errors

Table B-2. BASIC Interpreter Errors

Message Meaning

AR Array subscript error
BM BASIC interpreter malfunction
BR Branch destination error
CN Data conversion error
Cco Conversion overflow
DO Decimal overfiow

DT Data error

EP Missing END statement

FN llegal DEF FN statement

iL lllegal argument

IR Insufficient RAM

IS lilegal statement

LN Nonexistent line
MO Memory overflow

NF Program not found

RT RETURN or SYRT error

sy Syntax error

TY Data type mismatch

um Unmatched number of arguments

Errors

B-3

C

Keyboard Layout

Table C-1. ASCII Characters and Keycodes for Each Key

Shifted “Shifted Unshifted Unshifted
Key (orange) Character Key (white) Character Keycode

(A A (41h) (unmarked) user-defined (80h) 01h
B (42h) (unmarked) user-defined (81h) 06h
C (43h) (unmarked) user-defined (82h) 0Bh
(D) D (44h) (unmarked) user-defined (83h) 10h
[E] E (45h) (unmarked) user-defined (84h) 02h
[F] F (46h) (unmarked) user-defined (85h) 07h
6] G (47h) (unmarked) user-defined (86h) oCh
1) H (48h) 7 (37h) 11h
0] I (49h) 8 (38h) 16h
J (4Ah) 9 9 (39h) 1Bh
K] K (4Bh) (unmarked) user-defined (87h) 03h
L (4Ch) (unmarked) user-defined (88h) osh
™) M (4Dh) (unmarked) user-defined (89h) 0Dh
N] N (4Eh) [4 (34h) 12h
(0] O (4Fh) (5] 5 (35h) 17h
[P P (50h) (6] 6 (36h) 1Ch
[Q (51h) (unmarked) user-defined (8Ah) 04h
[R] R (52h) (unmarked) user-defined (8Bh) 0oh
B S (53h) (unmarked) user-defined (8Ch) OEh
T (54h) Kl 1 (31h) 13h
[u] U (55h) [2] 2 (32h) 18h
V (56h) (3] 3 (33h) 1Dh
(w] W (57h) (unmarked) user-defined (8Dh) 05h
[x] X (58h) (unmarked) user-defined (8Eh) 0Ah
Y (59h) (unmarked) user-defined (8Fh) OFh
Z] Z (5Ah) [0] 0 (30h) 14h
Q) * (2Ah) [#] # (23h) 15h
(space) (20h) 00 (30h 30h) 19h
= — (2Dh) = — (2Dh) 1Ah
CJ . (2Eh) N . (2Eh) 1Eh
(none) (none) 1Fh
(CAN) (18h) (CAN) (18h) 20h
(DEL) (7Fh) (DEL) (7Fh) 21h
(CR) (0Dh) (CR) (0Dh) 22h

Keyboard Layout C-1

o D

Roman-8 Character Set

. Roman-8 Character Set D-1

"ASCIl Character Code ASCIl Character Code
Char. | Hex | Dec | Oct Binary Char. | Hex | Dec | Oct | Binary
NUL 00 0 000 | 00000000 space 20 32 040 | 00100000
SOH 01 1 001 | 00000001 1 21 33 041 00100001
STX 02 2 002 | 00000010 " 22 34 042 | 00100010
ETX 03 3 003 | 00000011 # 23 35 043 | 00100011
EOT 04 4 004 | 00000100 $ 24 36 044 | 00100100
ENQ 05 5 005 | 00000101 % 25 37 045 | 00100101
ACK 06 6 006 | 00000110 & 26 38 046 | 00100110
BEL 07 7 007 | 00000111 ’ 27 39 047 | 00100111
BS 08 8 010 | 00001000 (28 40 050 | 00101000
HT 09 9 011 | 00001001) 29 41 051 | 00101001
LF 0A 10 012 | 00001010 * 2A 42 052 | 00101010
vT 0B 11 013 | 00001011 + 2B 43 053 | 00101011
FF oC 12 014 | 00001100 , 2C 44 054 | 00101100
CR 0D 13 015 | 00001101 - 2D 45 055 | 00101101
SO OE 14 016 | 00001110 . 2E 46 056 | 00101110
Sl OF 15 017 | 00001111 / 2F 47 057 | 00101111
DLE 10 16 020 | 00010000 0 30 48 060 | 00110000
DC1 11 17 021 | 00010001 1 31 49 061 00110001
DC2 12 18 022 | 00010010 2 32 50 062 | 00110010
DC3 13 19 023 | 00010011 3 33 51 063 | 00110011
DC4 14 20 024 | 00010100 4 34 52 064 | 00110100
NAK 15 21 025 | 00010101 5 35 53 065 | 00110101
SYN 16 22 026 | 00010110 6 36 54 066 | 00110110
ETB 17 23 027 | 00010111 7 37 55 067 | 00110111
CAN 18 24 030 | 00011000 8 38 56 070 | 00111000
EM 19 25 031 | 00011001 9 39 57 071 00111001
suB 1A 26 032 } 00011010 : 3A 58 072 | 00111010
ESC iB 27 033 | 00011011 4 3B 59 073 | 00111011
FS 1C 28 034 | 00011100 < 3C 60 074 | 00111100
GS 1D 29 035 | 00011101 = 3D 61 075 | 00111101
RS 1E 30 036 | 00011110 > 3E 62 076 | 00111110
Us 1F 31 037 | 00011111 ? 3F 63 077 | 00111111

D-2 Roman-8 Character Set

ASCii Character Code ASCIl Character Code
Char. | Hex | Dec | Oct | Binary Char. | Hex | Dec | Oct | Binary

@ 40 64 100 | 01000000 60 96 140 | 01100000
A 41 65 101 01000001 a 61 97 141 01100001
B 42 66 102 | 01000010 b 62 g8 142 | 01100010
C 43 67 103 | 01000011 c 63 99 143 | 01100011
D 44 68 104 | 01000100 d 64 100 144 | 01100100
E 45 69 105 | 01000101 e 65 101 145 | 01100101
F 46 70 106 | 01000110 f 66 102 146 | 01100110
G 47 71 107 | 01000111 g 67 103 147 | 01100111
H 48 72 110 | 01001000 h 68 104 150 | 01101000
| 49 73 111 01001001 | 69 106 151 01101001
J 4A 74 112 | 01001010 i 6A 106 152 | 01101010
K 4B 75 113 | 01001011 k 6B 107 163 | 01101011
L 4C 76 114 | 01001100 { 6C 108 154 | 01101100
M 4D 77 115 | 01001101 m 6D 109 155 | 01101101
N 4E 78 116 | 01001110 n 6E 110 156 | 01101110
o) 4F 79 117 | 01001111 0 6F 111 157 | 01101111
P 50 80 120 | 01010000 p 70 112 160 | 01110000
Q 51 8t 121 01010001 q 71 113 161 01110001
R 52 82 122 | 01010010 r 72 114 162 | 01110010
S 53 83 123 | 01010011 s 73 115 163 | 01110011
T 54 84 124 | 01010100 t 74 116 164 | 01110100
U 55 85 125 | 01010101 u 75 117 165 | 01110101
Vv 56 86 126 | 01010110 v 76 118 166 | 01110110
W 57 87 127 | 01010111 w 77 119 167 | 01110111
X 58 88 130 | 01011000 X 78 120 170 | 01111000
Y 59 89 131 0101100t y 79 121 171 01111001
z 5A 90 132 | 01011010 b4 7A 122 172 | 01111010
[5B o1 133 01011011 { 7B 123 173 01111011
\ sC | 92 | 134 | 01011100 | 7C | 124 | 174 | 01111100
] 5D 83 135 | 01011101 } 7D 125 175 | 01111101
~ 5E 94 136 | 01011110 ~ 7E 126 176 | 01111110
_ 5F a5 137 | 01011111 DEL 7F 127 177 | 01111111

Roman-8 Character Set D-3

ASCIl ~ Character éod_e [Asci Character Code
Char. | Hex | Dec | Oct | Binary Char. Dec | Oct | Binary

128 | 200 | 10000000
129 | 201 { 10DOOODY
130 | 202 | 10000010
131 { 203 | 10000011
132 | 204 { 10000100
133 | 205 | 10000101
134 | 206 | 10000110
135 | 207 | 1DDOC111
136 | 210 | 10001000
137 | 211 | 10001001
138 | 212 | 10001010
139 | 213 | 10001011
140 | 214 | 10001100
141 215 | 10001101
142 | 216 | 10001110
143 | 217 | 10001111
144 | 220 | 10010000
145 | 221 | 10010001
146 | 222 | 10010010
47 { 223 | 10010011
148 | 224 | 10010100
149 | 225 | 10010101
150 | 226 | 10010110
151 227 | 10010111
152 | 230 | 10011000
153 | 231 | 10011001
154 | 232 | 10011010
155 | 233 | 10011011
156 | 234 | 10011100

160 | 240 | 10100000
161 241 | 10100001
162 | 242 | 10100010
163 | 243 | 10100011
164 | 244 | 10100100
165 | 245 | 10100101
166 | 246 | 10100110
167 | 247 | 10100111
168 | 250 | 10101000
169 | 251 | 10101001
170 | 252 | 10101010
1 253 | 10101011
172 | 254 | 10101100
173 | 255 | 10101101
174 | 256 | 10101110
175 | 257 | 10101111
176 | 260 | 10110000
177 | 261 | 10110001
178 | 262 | 10110010
179 | 263 | 10110011
180 | 264 | 10110100
181 265 | 10110101
182 | 266 | 10110110
183 | 267 | 10110111
184 | 270 | 10111000
185 | 271 | 10111001
186 | 272 | 10111010
187 | 273 | 10111011
188 | 274 | 10111100

BES 8RB REBReBIREEESBEIZRRER2E
B EMHC—~Z0OL) oS 1O ¢t) - .-.....mmm»:b—g
- EE LRI S EE R T E 2 2T 2 F ST 24T

oD 157 | 235 | 10011101 BD 189 | 275 | 10111101
9E 158 | 236 | 10011110 BE 190 | 276 | 10111110
oF 159 | 237 | 10011111 BF 191 277 | 10111114

D-4 Roman-8 Chamacter St

ASCII Character Code ASCIlI Character Code
Char. | Hex | Dec | Oct | Binary Char. | Hex | Dec | Oct | Binary

& Co | 192 | 300 | 11000000 A EO | 224 | 340 | 11100000
8 C1 183 | 301 | 11000001 A E1 225 | 341 | 11100001
6 C2 | 194 | 302 | 11000010] E2 | 226 | 342 | 11100010
0 C3 | 195 | 303 | 11000011 ® E3 | 227 | 343 | 11100011
& C4 | 196 | 304 | 11000100 a E4 | 228 | 344 | 11100100
é Ccs | 197 | 305 | 11000101 f E5 | 229 | 345 | 11100101
6 Cs | 198 | 306 | 11000110 1 E6 | 230 | 346 | 11100110
a C7 | 199 | 307 | 11000111 6 E7 | 231 | 347 | 11100111
a Cs | 200 | 310 | 11001000 (o} E8 | 232 | 350 | 11101000
& Co9 | 201 | 311 | 11001001 (o] E9 | 233 | 351 | 11101001
o CA | 202 | 312 | 11001010 o EA | 234 | 352 | 11101010
u CB | 203 | 313 | 11001011 § EB | 235 | 353 | 11101011
& CC | 204 | 314 | 11001100 3 EC | 236 | 354 | 11101100
8 CD | 205 | 315 | 11001101 V] ED | 237 | 355 | 11101101
6 CE | 206 | 316 | 11001110 Y EE | 238 | 356 | 11101110
] CF | 207 | 317 | 11001111 § EF | 239 | 357 | 11101111
A DO | 208 | 320 | 11010000 b FoO | 240 | 360 | 11110000
1 D1 | 209 | 321 | 11010001 b F1 241 | 361 | 11110001
o D2 | 210 | 322 | 11010010 . F2 | 242 | 362 | 11110010
/-3 D3 | 211 | 323 | 11010011 P F3 | 243 | 363 | 11110011
a D4 | 212 | 324 | 11010100 | F4 | 244 | 364 | 11110100
1 D5 | 213 | 325 | 11010101 34 Fs | 245 | 365 | 11110101
o D6 | 214 | 326 | 11010110 - F6 | 246 | 366 | 11110110
® D7 | 215 | 327 | 11010111 14 F7 | 247 | 367 | 11110111
A D8 | 216 | 330 | 11011000 1/2 F8 | 248 | 370 | 11111000
] D9 | 217 | 331 | 11011001 8 F9 | 249 | 371 | 11111001
(o} DA | 218 | 332 | 11011010 0 FA | 250 | 372 | 11111010
0 DB | 219 | 333 { 11011011 << FB | 251 | 373 | 11111011
E DC | 220 | 334 | 11011100 . FC | 252 | 374 | 11111100
i DD | 221 | 335 | 11011101 >> FD | 253 | 375 | 11111101
B DE | 222 | 336 | 11011110 + FE | 254 | 376 | 11111110
o) DF | 223 | 337 | 11011111 Y FF | 255 | 377 | 11111111

Roman-8 Character Set D-S

E

Display Control Characters

Table E-1. Display Control Characters

0Ah (LF)
0Bh (VT)

0Ch (FF)
0Dh (CR)
OEh (SO)
OFh (SI)

1Eh (RS)
1Fh (US)

Hex Value Meaning

01h (SOH) | Tum on cursor.

02h (STX) Turn off cursor.

06h (ACK) High tone beep for 0.5 second.

07h (BEL) Low tone beep for 0.5 second.

08h (BS) Move cursor left one column. When the cursor reaches the left

end of the line, it will back up to the right end of the previous line.
When the cursor reaches the top left corner, backspace will have
no effect.

Move cursor down one line. If the cursor is on the bottom line, the
display contents will scroll up one line.

Clear every character from the cursor position to the end of the
current line. The cursor position will be unchanged.

Move cursor to upper left corner and clear the display.

Move cursor to left end of current line.

Change keyboard to numeric mode (underline cursor).

Change keyboard to alpha mode (block cursor).

Turn on display backlight.

Turn off display backlight.

Display Control Characters

E-1

® F

Memory Map

. Memory Map F-1

FFFFFh

F8000h

3FFFFh

20000h

10000h

00000h

32K Bulit-in
System ROM

256K Built-In
RAM (HP-94F)

128K Built-In
RAM (HP-94E)

64K Built-In
RAM (HP-94D)

Main Memory

29FFFh

20000h

40K Plug-in
RAM

40K RAM Card

3FFFFh

38000h

30000h

28000h

20000h

Figure F-1. Memory Map of the HP-94

F-2 Memory Map

32K Plug-In
ROM/EPROM

32K Plug-in
ROM/EPROM

32K Plug-In
ROM/EPROM

32K Plug-in
ROM/EPROM

ROM/EPROM Card

PS G

Control and Status Register Addresses

Table G-1. 1/O Addresses for Control and Status Registers

1/0 Register Read/
Address Name Write

00h interrupt Control

00h interrupt Status

0th interrupt Clear

0th End of Interrupt

02h System Timer Data

03h System Timer Control
04h Bar Code Timer Data (lower 8 bits)
05h Bar Code Timer Data (upper 4 bits)
06h Bar Code Timer Control
07h Bar Code Timer Value Capture
08h Bar Code Timer Clear
O0Ah Baud Rate Clock Value
0Bh Main Control
. 0Bh Main Status
oCh Real-Time Clock Control
0Ch Real-Time Clock Status/Data

OEh Keyboard Control
OEh Keyboard Status

10h Serial Port Data
11h Serial Port Control
11h Serial Port Status

12h Right LCD Driver Control
12h Right LCD Driver Status
13h Right LCD Driver Data

14h Left LCD Driver Control
14h Left LCD Driver Status
15h Left LCD Driver Data

1Bh Power Control

sgmsgms msgznsms »s|s sss§§ sgmsms

' Control and Status Register Addresses G-1

¢ H

Hardware Interrupts

Table H-1. HP-94 Hardware Interrupts

Interrupt Interrupt
Type Name
50h System Timer Highest
5th Bar Code Timer
52h Bar Code Port Transition ‘L
53h Serial Port Data Received
54h Low Main Battery Voitage Interrupt Priority
55h Power Switch ‘L
56h Reserved Interrupt 1
57h Reserved Interrupt 2 Lowest

. Hardware Interrupts H-1

Operating System Functions

Table I-1. Operating System Function List

Name Code Description

BEEP 07h Beep a high or low tone for specified duration

BUFFER_STATUS 06h Get the number of bytes in or flush either the key
buffer or the serial port handler receive buffer

CLOSE 10h | Close an I/O channel

CREATE 11h | Create a data file

CURSOR 05h Read or change the cursor position on the LCD

DELETE 14h Delete data file

DISPLAY ERROR | 18h | Display numeric error

END_PROGRAM 00h | Terminate the appiication program

FIND FILE 16h | Find first occurrence of a file

FIND NEXT 17h | Find subsequent occurrences of file

GET_CHAR 01h | Geta character from key buffer

GET_LINE 02h Get a character string from the key buffer

GET_MEM 0Bh | Get a scratch area of memory

MEM_CONFIG oDh | identify memory configuration

OPEN OFh | Openan /O channel

PUT_CHAR 03h Display a character on the LCD

PUT_LINE 04h Display a character string on the LCD

READ 12h | Read data from an I/O channel

REL_MEM 0Ch | Release scratch area of memory

ROOM OEh Identify available room in a directory

SEEK 15h Move data file access pointer

SET_INTR 0Ah Define power switch or low battery interrupt rou-
tines or disable/enable the power switch interrupt

TIMEOUT 0%h Set system or backlight timeout value

TIME DATE 08h | Set or read the time and date on the real-time clock

WRITE 13h Write data to an | /O channel

Operating System Functions

1-1

® J

BASIC Interpreter Utility Routines

Table J-1. BASIC Interpreter Utility Routine List

Name | Ofiset Description
ERROR 34h Display error and end program
GETARG 3Ch Convert real or integer into binary
IOERR 38h Process errors in accordance with SYER
SADD 14h Add two real numbers
SDhIV 20h Divide two real numbers
SETARG 40h Convert binary into real or integer
SMUL 1Ch Multiply two real numbers
SNEG 28h Change sign of real number
SPOW 24h Raise one real number to the power of another
SSUB 18h Subtract two real numbers
TOBIN 30h Convert integer or real into integer
TOREAL 2Ch Convert integer or real into real

BASIC Interpreter Utility Routines

J-1

K

Program Resource Allocation

There are certain resources related to assembly language programs that must be chosen carefully to
prevent conflict between different programs. Some of these resources are for any program, while others
are for user-defined handlers only. These are as follows:

a Error Numbers
These are used to report error conditions to calling BASIC or assembly language programs. BASIC
programs can report numeric or non-numeric errors, although both internally map to an error
number.

a Handler Identifier
This is returned by the IDENTIFY function of the handler TOCTL routine.

= Valid Data Flag
This is used to determine if the data in the parameter scratch area is correct for the handler being
used.

& IOCTL Function Codes
These are the function codes for the different functions in the handler TOCTL routine.

Refer to the "User-Defined Handlers” chapter in part 1, "Operating System", for details on the last
three resources.

Below are tables summarizing usage of these resources by Hewlett-Packard programs. Remember that
Hewlett-Packard also reserves SY as the first two characters of HP assembly language program and
keyword names, and HN as the first two characters of HP handler names.

Table K-1. Error Number Usage

Error Number Range
Start End Reserved For
00h (0) 00h (0) No error
0th (1) 13h (19) BASIC interpreter
64h (100) 77h (119) Operating system
96h (150) ASh (169) HP-94 Datacomm Utilities Pac
Csh (200) | DBh (219) | Operating system

Program Resource Allocation

K-1

Table K-2. Hewlett-Packard Handler Resource Usage

Handler | Handler | Valid Data 10CTL
Name identifier Flag Function Codes

HNBC BC FFh 00h-04h

HNSP SP FFh 00h-04h,80h

HNSG SG FEh 00h-04h,81h

Reserved - 80h-FDh 05h-06h

To reserve resources for a particular program, a request should be made in writing to Hewlett-
Packard. The request should indicate the resources required and their desired values. Also provide
information about the software these resources will be used for (commercial applications for general
sale, company-specific internal use only, etc.). This will help us allocate these limited resources as
efficiently as possible. Send the request to:

Hewlett-Packard Portable Computer Division
Technical Marketing Software Support Group
1000 N.E. Circle Bivd.

Corvallis, OR 97330

If the desired value is available, it will be reserved for use by the program. If not, it will be necessary to
select a different value for that resource.

K-2 Program Resource Allocation

L

Hewlett-Packard Bar Code Handlers

Hewlett-Packard supplies three bar code handlers with the HP-94 Software Development System:
= HNBC, a low-level bar code handler for the bar code port.
= HNSP, a low-level bar code handler for the serial port.

@ HNWN, a high-level bar code handler for Hewlett-Packard Smart Wands (HP 39961D, HP 39963D,
and HP 39965D).

These are all supplied as EXE files, and will all execute from RAM or ROM. This appendix will dis-
cuss details of these handlers important for assembly language programmers, including statistics,
behavior of handler routines, errors, and parameter passing.

All three handlers follow the general behavior pattern described in the "User-Defined Handlers"
chapter in part 1, "Operating System", so only the specific characteristics that are unique to each
handler will be described here. This appendix assumes that the handler descriptions in the HP-94
BASIC Reference Manual have been read; that information will not be repeated here.

]
HNBC Low-Level Handler for Bar Code Port

HNBC is a low-level bar code handler for the bar code port. It is designed to allow "smart" bar code
scanning devices to be connected to the bar code port — devices which do on-board decoding of bar
code labels into ASCII, and return it as serial data. The HP-94 bar code port does not have a hardware
UART to receive serial data, but HNBC performs the functions of a UART in software (assembling
the serial bit stream into bytes, and checking for parity and framing errors).

HNBC is designed to work with bar code devices whose electrical characteristics match those of the
HP-94 bar code port, and that send data in bursts of no more than 255 characters, with an intercharac-
ter delay (time between characters) of 1-106 ms. HNBC is only supported for Hewlett-Packard Smart
Wands (HP 39961D, HP 39963D, and HP 39965D).

HNBC Statistics
Here are pertinent statistics for HNBC.

Hewiett-Packard Bar Code Handlers L-t

Table L-1. HNBC Statistics

item Value

Version Number 1.00
Handier Identifier BC
Valid Data Flag FFh
Length in HP-94 2151 bytes
Scratch Areas Used 1 of 288 bytes *
Handler Information Table Offsets Used 00h, 04h
Valid Channel Numbers 2
* One additional 16-byte parameter scratch area is allocated if it was

not aliocated before opening the handler.

HNBC Capabilities

HNBC provides the following capabilities:
m Read-Only Operation
Because the bar code port is read-only, no data can be written to it.

® Good Read Beep
Automatic beep on successful decoding of a bar code label.

m Key Abort
Allows a key being pressed to abort waiting for a successful scan.

s Received-Data Buffering

Received data is placed in a 255-byte buffer. There is no transmit buffer.
m Speeds

Speeds can be set from 150 to 9600 baud.

= Data Bits
Seven only.

= Parity
Zero, one, even, or odd parity.
= Stop Bits

One only. For a receive-only port, all stop bits received after the first one are treated as interchar-
acter delay.

m Terminate Character Control
When defined, a received terminate character will signal the end of the bar code data from the
scanning device.
The table below describes how HNBC behaves. It shows the action taken by the handler routines as
well as during its interrupt service routine, not including normal handler activities described in the
*User-Defined Handlers" chapter. Note that certain actions, such as beeping on a good scan or

responding to a received terminate character, will only occur if the appropriate options were enabled
when the handler was opened.

L-2 Hewlett-Packard Bar Code Handlers

Table L-2. Behavior of HNBC

[Routine

Activities

CLOSE

Disable Interrupt 52h and restore interrupt vector
Turn off power to bar code port
Release handler scratch area

IOCTL

implement the reserved TOCTL functions 00h-04h

OPEN

Allocate parameter scratch area if needed
Aliocate handler scratch area

Take over interrupt 52h vector

Initialize operating configuration *

Supply power to bar code port

Retum handler scratch area address in CX ¢

POWERON

Do nothing

READ

Wait for key up before accepting data

Report error CDh (205) if no bar code device connected

Discard data until none for 106 ms to avoid reading middle of iabel
Return no data and error 75h (117) if read aborted by pressing key
Monitor and report low battery, power switch, and timeout errors §
Enable interrupt 52h

Walt for first byte received

End read operation if no subsequent data received for 106 ms
Compute parity of received data

Report error 74h (116) If terminate character detected

Report error 75h (117) if scanned length less than requested length
Report errors detected in interrupt service routine

Issue high beep if scan successful

Return data from receive buffer

RSVD2

Do nothing

RSVD3

Do nothing

TERM

Filush receive buffer

WARM

Perform all OPEN routine activities except those related to scratch areas

WRITE

Return error 6Dh (109).

interrupt
Service

Read bar code status from main control register for all bits in each byte
Monitor framing and receive buffer overflow errors
Accumulate data into receive buffer

* Baud rate, parity, key abort, good read beep, and terminate character.
{1 Handiers are not required to return this, but HNBC does.

$ System timeout only monitored until first byte received. After that, no data received for 106 ms signals the
end of the label. Consequently, all characters must be received in a burst in which the intercharacter delay
(time between characters) must be less than 106 ms.

Hewlett-Packard Bar Code Handlers

L-3

CAUTION The HP-94 is unable to receive data through the serial port while the READ rou-

tine is executing. READ prevents this from happening by disabling the serial port
data received interrupt. If both the serial and bar code ports must be open simul-
taneously, programs should halt serial port input before calling the HNBC READ
routine (perhaps by sending an XOFF).

While the READ routine Is executing, the background timer routine (interrupt 1Ch)
must not clear the CPU interrupt flag (CLI), write the interrupt control register
(ooh) to enable any interrupts, or issue software interrupts (such as interrupt 1Ah
for the operating system functions). Doing so may cause loss of bar code data,
resulting in parity or framing errors.

The background timer accuracy will be degraded if the baud rate of the bar code
device Is less than 2400 baud or if the device sends Its data with an intercharacter
delay of less than 1 ms.

The errors reported by HNBC are shown in the following table.

Table L-3. Errors Reported by HNBC

Routine Errors
CLOSE 6Eh
IOCTL 65h

OPEN 65h,67h,6Eh,71h

POWERON | None

READ 74h,75h,76h,77h,C8h,C8h,CAh,CDh,CEh
RSVD2 None

RSVD3 None

TERM None

WARM None

WRITE 6Dh

interrupt C9h,CDh
Service *

* Detected by interrupt service routine, but reported by READ routine.

L-4 Hewlett-Packard Bar Code Handlers

NOTE Two errors reported by the READ routine (74h, terminate character detected, and
75h, end of data) do not indicate error conditions, but signal the end of bar code data
for the BASIC GET # and INPUT # statements. Assembly language programs
using HNBC should handle these two errors differently than other errors from the
READ routine.

If READ has not transferred all the data in its receive buffer when any read error

occurs, it will flush the buffer. The next time READ is called, it will wait for a new bar
code scan.

Parameters at OPEN Time

When HNBC is opened, it looks at offset 04h of the handler information table. If the value is zero, it
allocates a one-paragraph parameter scratch area, places the default configuration in it, and places the
scratch area address in the table. If the value is non-zero, it uses the value as the segment address of
an existing parameter scratch area, and reads the configuration to usc from that scratch area. The
meanings of the parameters are shown below. In these figures, the offsets are from the start of the
parameter scratch area. A copy of these parameters are pointed to by ES:DX in the
GET_CONFIG and CHANGE_CONFIG reserved IOCTL functions (01h and 02h).

7 6 5 4 3 2 1 0

111 {1yt 1111t]1

Figure L-1. HNBC Valid Data Flag — Parameter Byte 1 (Offset 00h)

L—‘_‘— Baud Rate (see table for meaning)

Figure L-2. HNBC Baud Rate — Parameter Byte 2 (Offset 01h)

Table L-4. HNBC Baud Rate Values

Value | Baud Rate

9600
4800
2400
1200
600
300
150

NOONHWN -

Hewlett-Packard Bar Code Handlers L-5

~
(=]
4]
»n
w
N
oy
(=]

J—L Parity (see table for meaning)
X = don't care

Figurs 1 -3. SMBC Parity — Parameter Byte 3 (Offset 02h)

Table LS. HNBC Parity Values

Value | Parity
0 Zero
1 One
2 Even
3 Odd
7 6 5 4 3 2 1 0
X1 XX X|X]|X]|X
1: Enabled
Key Abort [o: Disabled

X = don’t care

Figure L-4. HNBC Key Abort — Parameter Byte 4 (Offset 03h)

7 6 5 4 3 2 1 0O

1: Enabled

L— Good Read Beep [0: Disabled

X = don't care

Figure L-5. HNBC Good Read Beep — Parameter Byte 5 (Ofiset 04h)

7 6 5 4 3 2 1 0

Figure L-6. HNBC Terminate Character * — Parameter Byte 6 (Offset 05h)

L-6 Hewiett-Packard Bar Codes Handlers

The default values for the parameters are FFh (valid data flag), 01h (9600 baud), 00h (zero parity), 01h
(key abort enabled), 01h (good read beep enabled), and 00h (no terminate character).

.
HNSP Low-Level Handler for Serial Port

HNSP is a low-level bar code handler for the serial port. It is designed to allow "smart" bar code scan-
ning devices to be connected to the serial port — devices which do on-board decoding of bar code
labels into ASCII, and return it as serial data.

HNSP is designed to work with bar code devices whose electrical characteristics match those of the
HP-94 serial port, and that send data in bursts of no more than 255 characters, with an intercharacter
delay (time between characters) of 0-106 ms. HNSP is only supported for Hewlett-Packard Smart
Wands (HP 39961D, HP 39963D, and HP 39965D).

HNSP Statistics
Here are pertinent statistics for HNSP.

Table L-8. HNSP Statistics

item Value

Version Number 1.00
Handler Identifier SP
Valid Data Flag FFh
Length in HP-94 2332 bytes
Scratch Areas Used 1 of 288 bytes *
Handler iInformation Table Offsets Used 02h
Valid Channel Numbers 1
* One additional 16-byte parameter scratch area is aliocated if it was

not aliocated before opening the handier.

HNSP Capabilities
HNSP provides the following capabilities:

= Read/Write Operation
Bar code data can be read from the port, and commands and data can be written to the bar code
device. XON/XOFF handshaking is automatically used to pace transmission only.

® Good Read Beep
Automatic beep on successful decoding of a bar code label.

* To disable use of the terminate character, set it to zero.

Hewlett-Packard Bar Code Handlers L-7

» Key Abort
Allows a key being pressed to abort waiting for a successful scan.

= Received-Data Buffering
Received data is placed in a 255-byte buffer. There is no transmit buffer.

| Speeds
Speeds can be set from 150 to 9600 baud.

s Data Bits

Seven only.
® Parity

Zero, one, even, or odd parity.
= Stop Bits

One for received data like HNBC. Two for transmitted data (actually, one plus intercharacter
delay), which allows transmitting to devices that use either one or two stop bits.

® Terminate Character Control
When defined, a received terminate character will signal the end of the bar code data from the
scanning device. A terminate character will be sent after sending every block of data.

The table below describes how HNSP behaves. It shows the action taken by the handler routines as
well as during its interrupt service routine, not including normal handler activities described in the
*User-Defined Handlers" chapter. Note that certain actions, such as beeping on a good scan or
responding to a received terminate character, will only occur if the appropriate options were enabled
when the handler was opened.

L-8 Hewlett-Packard Bar Code Handlers

Table L-7. Behavior of HNSP

Routine

Activities

CLOSE

Complete transmission of current byte

Disable interrupt 53h and restore interrupt vector
Lower RTS and DTR

Walt 60 ms for signals to stabllize

Disable 82C51 and turn off power to serial port
Release handler scratch area

IOCTL

implement the reserved TOCTL functions 00h-04h and 80h

OPEN

Allocate parameter scratch area If needed
Allocate handler scratch area

Take over interrupt 53h vector

Enable 82C51 and supply power to serial port
Initialize operating configuration *

Raise RTS and DTR

Return handler scratch area address in CX ¢

POWERON

Do nothing

READ

Wait for key up before accepting data

Discard data until none for 106 ms to avoid reading middie of label
Return no data and error 75h (117) if read aborted by pressing key
Monitor and report low battery, power switch, and timeout errors §
Enable interrupt 53h

Wait for first byte received

End read operation if no subsequent data received for 106 ms
Compute parity of received data

Report error 74h (116) if terminate character detected

Report error 75h (117) if scanned length less than requested length
Report errors detected in interrupt service routine

Issue high beep If scan successful

Return data from receive buffer

RSVD2

Do nothing

RSVD3

Do nothing

TERM

Fiush receive buffer

WARM

Perform all OPEN routine activities except those related to scratch areas

WRITE

Monitor and report low battery, power switch, and timeout errors
Monitor CTS indirectly and report error DAh (218) if lost

Write data to 82C51

Send terminate character at end of data

interrupt
Service

Monitor parity, framing, overrun, and receive butfer overflow errors
Read data from 82C51 and accumulate data into receive buffer
Disable/enable transmission when XOFF /XON received

* Baud rate, parity, key abort, good read beep, and terminate character.
1 Handiers are not required to return this, but HNSP does.

{ System timeout only monitored until first byte received. After that, no data received for 106 ms signals the
ond of the label. Consequently, all characters must be received in a burst in which the intercharacter delay

(time bstween characters) must be less than 106 ms.

Hewlett-Packard Bar Code Handlers

L-9

CAUTION While the READ routine is executing, the background timer routine (interrupt 1Ch)
must not clear the CPU interrupt flag (CLI), write the interrupt control register
(00h) to enable any interrupts, or issue software interrupts (such as interrupt 1Ah
for the operating system functions). Doing so may cause loss of bar code data,
resulting in parity or framing errors.

The errors reported by HNSP are shown in the following table.

Table L-8. Errors Reported by HNSP

[Routine Errors
CLOSE 6Eh
IOCTL 65h

OPEN 65h,67h,6Eh,71h

POWERON | None

READ 74h,75h,76h,77h,C8h,C9h,CAh,CBh,CCh,CDh,CEh,CFh,DOh
RSVD2 None

RSVD3 None

TERM None

WARM None

WRITE 76h,77h,C8h,DAh

Interrupt Cgh,CAh,CBh,CCh,CDh,CEh,CFh,DOh
Service *

* Detected by interrupt service routine, but reported by READ routine.

NOTE Two errors reported by the READ routine (74h, terminate character detected, and
75h, end of data) do not indicate error conditions, but signal the end of bar code data
for the BASIC GET # and INPUT # statements. Assembly language programs
using HNSP should handle these two errors differently than other errors from the
READ routine.

If READ has not transferred all the data in its receive buffer when any read error
occurs, it will flush the buffer. The next time READ is called, it will wait for a new bar
code scan.

Parameters at OPEN Time

When HNSP is opened, it looks at offset 02h of the handler information table. If the value is zero, it
allocates a one-paragraph parameter scratch area, places the default configuration in it, and places the
scratch arca address in the table. If the value is non-zero, it uses the value as the segment address of
an existing parameter scratch area, and reads the configuration to use from that scratch area. The

L-10 Hewlett-Packard Bar Code Handlers .

meanings of the parameters are shown below. In these figures, the offsets are from the start of the
parameter scratch area. A copy of these parameters are pointed to by ES:DX in the
GET_CONFIG and CHANGE_CONFIG reserved IOCTL functions (01h and 02h).

7 6 5 4 3 2 1 0
1|11]v]v]1]1i1

Figure L-7. HNSP Valid Data Flag — Parameter Byte 1 (Offset 00h)

7 6 5 4 3 2 1 0

‘__[_—i— Baud Rate (see table for meaning)

Figure L-8. HNSP Baud Rate — Parameter Byte 2 (Offset 01h)

Table L-9. HNSP Baud Rate Values

Value | Baud Rate

9600
4800
2400
1200
600
300
150

NONDBDWN =

‘_lj—- Parity (see table for meaning)

Figure L-9. HNSP Parity — Parameter Byte 3 (Offset 02h)

X = don't care

Hewlett-Packard Bar Code Handlers L-11

Table L-10. HNSP Parity Values

Value | Parity
0 Zero
1 One
2 Even
3 Odd
7 6 5 4 3 2 1 0
XIX|X|X]|X]|X]|X
1: Enabled
~—— Key Abort [o: Disabled

X = don't care

Figure L-10. HNSP Key Abort — Parameter Byte 4 (Offset 03h)

1: Enabled

L Good Read Beep [0, Disabled

X = don’t care

Figure L-11. HNSP Good Read Beep — Parameter Byte 5 (Offset 04h)

Figure L-12. HNSP Terminate Character * — Parameter Byte 6 (Offset 05h)

The default values for the parameters are FFh (valid data flag), 01h (9600 baud), 00h (zero parity), 01h
(key abort enabled), 01h (good read beep enabled), and 00h (no terminate character).

* To disable use of the terminate character, set it to zero.

- =12 Hewleti-Packard Bar Code Handlers

Write With Read Enabled 10CTL Function

HNSP implements an additional TOCTL function, function 80h, called WR_RD_EN (write with read
enabled). 1t is invoked by setting AH to 80h when calling the HNSP IOCTL routine, and it returns
00h in AL (no errors). This is used when requesting status from a bar code device. To request status
from a Hewlett-Packard Smart Wand, for example, a program would normally send it an escape
sequence via the WRITE routine. The Smart Wand returns its status almost immediately — before
the HNSP READ routine is ready to accept it. The READ routine will not read this status successfully
because it ignores all data received after it is called until a quict period of 106 ms has elapsed.

The WR_RD_EN function enables HNSP to receive data that arrives immediately after its WRITE
routine completes writing data to the bar code device. The received data is stored in a buffer and
returned to the calling program the next time the READ routine is called.

When the WR_RD_EN function is called, it enables a write with read enabled only for the next write
operation. The next time the WRITE routine is called, it will actually do two separate I/O operations:
first a write, then a read.

= The WRITE routine first performs the write operation the same way it would for a normal write.
WRITE writes CX bytes of data starting at ES : BX out the serial port (for HP Smart Wands, this
would be the status request escape sequence).

® The WRITE routine then performs the read operation the same way it would for a normal read. It
waits until it receives the data from the serial port, or until the system timeout period expires.
Once a byte has been received, the system timeout is no longer monitored, and WRITE assumes
all data has arrived when the serial port does not receive any bytes for 106 ms.

@ After all data has arrived, the WRITE routine checks for parity and framing errors. It does not
beep, even if the beeper is enabled for normal bar code data. WRITE stores the received data in
the receive buffer.

® WRITE returns the number of bytes actually written (nof the number of bytes read) in CX and the
error code in AL (00h if no errors). The error code is for both the write and read portions of the
operation. The calling program will not know whether the error occurred during the write or the
read, except for the context of the error message. For example, error DAh (218) can only occur
during a write, while error CAh (202) can only occur during a read.

The next time the READ routine is called, it behaves as a normal read with data already available in
the receive buffer, even though the data was actually received by the WRITE routine. The number of
bytes actually read is returned in CX, and the data is returned in the read buffer specified by the
READ caller.

The next time the WRITE routine is called, it behaves as a normal write — no write with read
enabled operation will be performed unless WR_RD_EN is called again.

Because WR_RD_EN is treated as two separate 1/O operations, the system timeout is restarted twice.
It is started for the write operation and then stopped when the write is completed. It is then restarted
for the read operation and stopped when the read is complete. If a system timeout occurs during either
operation, AL is set to 76h (118). (For the read operation, it is only monitored until the first byte is
received. After that, no data reccived for 106 ms signals the end of the label.)

Hewlett-Packard Bar Code Handlers L-13

XON/XOFF Handshaking During WR_RD_EN

XON/XOFF handshaking is normally done only during the WRITE routine. When the write with
read enabled operation occurs, however, XON/XOFF handshaking is performed during both the write
and the read portions of the operation. If status information returned by a bar code device contains an
XON or an XOFF as legitimate data, those characters will be used to pace communications. They will
not be passed back to the caller as part of the status.

HP Smart Wands do not send XON or XOFF characters as part of their status information.

L
HNWN High-Level Handler for Bar Code Handlers

HNWN is a high-level bar code handler for cither the bar code port or the serial port. Because it is a
high-level handler, it only communicates with low-level handlers, and specifically with HNBC and
HNSP. It is designed to accommodate the unique features of Hewlett-Packard Smart Wands (HP
39961D, HP 39963D, and HP 39965D), and is only supported for these devices.

Throughout this section, there arc references to features, behavior, and escape sequences sent or
recognized by the Smart Wand. Refer to the HP Smart Wand User’s Manual (part number HP 39960-
90001) for details. There are also references to configuration menus, which provide optical
configuration of the Smart Wand. This allows changing the Smart Wand’s behavior by scanning bar
code labels that are interpreted as commands, not as data. (Since the HP-94 bar code port is read-
only, commands to change configuration cannot be sent to the Smart Wand through the bar code port).
Refer to the Smart Wand Configuration Menus (part number HP 39960-90002) for details.

HNWN Statistics
Here are pertinent statistics for HNWN,

Table L-11. HNWN Statistics

item Value
Version Number 1.00
Handler Identifier WN
Valid Data Flag FFh
Length in HP-94 2217 bytes
Scratch Areas Used 1 of 272 bytes *
Handler Information Table Offsets Used 02h or 04h
Valid Channel Numbers fand 2
Valid Low-Level Handlers HNBC, HNSP
* One additional 16-byte parameter scratch area is aliocated if it was

not aliocated before opening the handier.

L-14 Hewlett-Packard Bar Code Handlers

HNWN Capabilities
HNWN provides the following capabilities:

= Ignorc or transmit Smart Wand escape sequences
Causes escape sequences sent by the Smart Wand when it is in configuration mode to be sent to the
calling program. Different beeps than for normal bar code data help distinguish received
configuration escape sequences.

= Synchronize parity and baud rate of HP-94 port and Smart Wand
Allows the HP-94 serial port or bar code port to track the Smart Wand’s parity and baud rate
without closing and reopening the port.
The table below describes how HNWN behaves. It shows the action taken by the handler routines, not
including normal handler activities described in the "User-Defined Handlers” chapter. Note that cer-
tain actions, such as responding to escape sequences from the HNWN caller or from the Smart Wand,
will only occur if the appropriate options were enabled when the handler was opened. Since high-level
handlers interact with low-level handlers but not with I/O port hardware, HNWN has no interrupt ser-
vice routine.

Table L-12. Behavior of HNWN

Routine Activities

CLOSE Call iowdevel handler CLOSE routine
Release scratch area

IOCTL Call lowdevel handler IOCTL routine

OPEN Allocate parameter scratch area if needed
Allocate handler scratch area
Call low-level handler OPEN routine

POWERON | Do nothing

READ Read data from low-level handler by calling fts READ routine
ignore or transmit escape sequences

RSVD2 Call low-level handler RSVD2 routine

RSVD3 Call low-evel handler RSVD3 routine

TERM Call low-level handier TERM routine

WARM Call low-evel handler WARM routine

WRITE Parse escape sequences being sent to low-level handler
Take appropriate action for special escape sequences *
Pass data to low-evel handler by calling its WRITE routine

* Discussed later in this section.

Hewlett-Packard Bar Code Handlers

L-15

NOTE

HNWN cannot be used by itself — it must be used in conjunction with either HNBC
or HNSP. To open HNWN with one of the low-level handlers, use the following as
the handler name given to the BASIC OPEN # statement or the OPEN function
(OFh):

"HNWN ; HNBC" for the bar code port (channel 2)
"HNWN ; HNSP" for the serial port (channel 1)

When the low-level handlers are copied into the HP-94, their file names must be
cither of the low-level handlers must be either HNBC or HNSP — if the file names
are different, HNWN will not be able to open them.

The errors reported by HNWN are shown in the following table. In addition, HNWN will report etrors
returned to it by either HNBC or HNSP.

Table L-13. Errors Reported by HNWN

Routine Errors

CLOSE 6Eh

IOCTL None

OPEN 65h,66h,67h,6Eh,71h
POWERON | None

READ None

RSVD2 None

RSVD3 None

TERM None

WARM None
WRITE None

Parameters at OPEN Time

When HNWN is opened, it looks in the handler information table. If it is opened to channel 1, it looks
at offset 02h of the table. If it is opened to channel 2, it looks at offset 04h of the table. If the value is
zero, it allocates a one-paragraph parameter scratch area, places the default configuration in it, and
places the scratch area address in the table. If the value is non-zero, it uses the value as the segment
address of an existing parameter scratch arca, and reads the configuration to use from that scratch
arca. The meanings of the parameters are shown below. In these figures, the offsets are from the start
of the parameter scratch area.

L-16

Hewlett-Packard Bar Code Handlers

7 6 5§ 4 3 2 1 0

111 (11111171

7 6 5 4 3 2 1 0

0: ignore

L ¢ Seai [1: Transmit

Figure L-14. HHINWN Escapo;eqmm —<aremeter Byte 2 (Offset 09h)

The default values for the parameters are FFh (valid data flag) and 86h (ignore escape sequences).

Response to Escape Sequences From Smart Wand
When the Smart Wand scans bar codes in a configuration menu, it sends one of six types of responses:

m Configuration Complete (fc \ *)
This is sent to signify that the Smart Wand has completed the configuration operation specified by
the menu.

m Configuration Partially Complete (% \ +)
This is sent to signify the Smart Wand has completed a portion of the configuration operation. This
is sent for intermediate steps in configuration operations that require more than one scan.

m Syntax Error (k¢ \-)
This is sent to signify that the configuration menu was ont of context. This may be caused by scan-
ning configuration bar codes in the wrong order, that are the srong type, or that are numerically
out of range.

m Configuration Dump (fc * & % & \..)
This contains status information about the Smart Wand. If the Smart Wand is in HP-94 default
mode, the length of this status is 223 characters.

s Hard Resct Message (ready XX.X)
This message is sent if the configuration bar code that specifies a hard reset is scanned. XX.X is
the Smart Wand’s firmware version number.

m No Read Message (user-defined, default is &'¥)
This message is sent only if the Smart Wand is enabled to send the no read message and if the
Smart Wand reads a bar code label but is unable to decode it.

HNWN provides special responses only for the four escape sequences. It treats the hard reset message
and no read message the same as standard bar code data. It is the responsibility of the calling program

to provide special handling of these messages.

When escape sequences are received, HNWN will respond in one of two ways:

dHewliett-Packard Bar Code Handlers L-17

® Ignore Escape Sequences (default behavior)
If this mode is selected, HNWN will discard all strings received from the Smart Wand that begin
with & \. There is no beep, and the string is not passed to the calling program. This mode may be
used if it is desirable to prevent configuration messages from accidentally being interpreted by an
application as legitimate bar code data.

= Transmit Escape Sequences
In this mode HNWN will transmit to the calling program all strings received from the Smart Wand
that begin with & \. When escape scquences are received, HNWN causes the HP-94 to generate
different sounding beeps in response to the configuration mode escape sequences. These are gen-
erated only if there are no parity or framing errors when the configuration bar code was scanned,
and are generated whether or not the good read beep is enabled for normal bar code data.

Table L-14. Beeps From HNWN for Smart Wand Escape Sequences

Smart Wand Number | Beep
Escape Sequence of Beeps | Tone
Configuration Complete 4 High
Configuration Partially Complete 2 High
Syntax Error 4 Low
NOTE Because Code 128 bar code labels can contain any of 128 ASCII characters, it is possi-

ble (although unlikely) to encounter Code 128 labels that decode to strings beginning
with & \. If such labels are encountered, HNWN will respond to them as if they were
configuration sequences (assuming the transmit escape sequences option is being
used). Applications that may encounter this situation should use HNWN with the
ignore escape sequences option, or usc HNBC or HNSP alone (without HNWN).

Response to Escape Sequences From Calling Program

The Smart Wand will respond to a number of escape sequences sent to it through its serial port (using
HNSP). Four of these also invoke special responses from HNWN:

® Serial Port Configuration (& -y n p)

m Status Request (¢ -yn s)

m Hard Reset (t -y 1zand & E)

m Save Configuration to Non-Volatile Memory (% -y 5 2)

These may be sent to HNWN ; HNSP with the BASIC PRINT # and PUT # statements or with the
WRITE function (13h). The last three cannot be sent to the Smart Wand using HNBC since the bar
code port is read-only (the first one is handled by HNWN ; HNBC as a special case). Refer to the
"Hardware Specifications” for the pin assignments of a cable that will connect the serial port to the
Smart Wand.

L-18 Hewliett-Packard Bar Code Handlers

Serial Port Configuration Escape Sequence
The format of this escape sequence is as follows:

E.ynp

where n is a sequence of numeric characters (30h through 39h) that specifies a decimal number
between 0 and 255. If this decimal number is converted to the equivalent binary number, the bit pattern

has the following meaning:

7 6 5 4 3 2 1 0

T | T
Baud Rate (see table for meaning)

1:2

Stop Bits * [0: 1

Parity (see table for meaning)
1: On
0: Off

1: Enabled
0: Disabled

Character Delay * [

RTS/CTS Handshake * [

Figure L-15. Serial Port Configuration Escape Sequence

Table L-15. Smart Wand Baud Rate Values

Value | Baud Rate

ONHWN =0

150

300

600

1200
2400
4800
9600

* Ignored by HNWN. Ouly affects Smart Wand.

Hewlett-Packard Bar Code Handlers

L-19

Table L-16. Smart Wand Parity Values

Value | Parity
) Zero
1 One
2 Even
3 Odd

If the Smart Wand receives this escape sequence through its serial port, it changes its scrial
configuration as specified. For example, & - y 62 p would set the Smart Wand serial port to 9600
baud, 2 stop bits, odd parity, character delay off, and RTS/CTS handshake disabled (because 62
decimal corresponds to a bit pattern of 00111110).

The manner in which HNWN responds depends on which channel it is open to. If it is open to the serial
port (channel 1) through HNSP, HNWN sends the escape sequence on to the Smart Wand at the
current baud rate and parity. It then changes the baud rate and parity of the HP-94 serial port to the
values specified by the sequence. This causes the Smart Wand and the HP-94 to track each other’s
serial configuration. When the port configuration is changed this way, the new configuration is
assumed only for as long as the port is open. If the bar code or serial port is closed and then reopened,
it will assume the baud rate and parity specified in the parameter scratch area at the time the port is
reopened.

If HNWN is open to the bar code port (channel 2) through HNBC, HNWN changes the baud rate
and/or the parity of the port. It does not try to write the escape sequence to the bar code port, since
the port is read-only. (For this reason, the serial port configuration escape sequence is the only
sequence that may be written to HNWN ; HNBC without causing an error.) It is assumed that immedi-
ately after this sequence is sent to HNWN ; HNBC, the operator will scan a configuration bar code that
causes the Smart Wand to change parity and baud rate to match those of the HP-94. If this is not
done, all subsequent scans will result in parity or framing errors.

If it is desirable to change both baud rate and parity for the bar code port, the baud rate should be
changed first. The changes should be done as two separate operations, since each change involves
sending an escape sequence to HNWN and having the operator scan the appropriate configuration bar
code.

When the Smart Wand is powered off, then back on, it may or may not return to its default serial

- configuration. This depends on whether the Smart Wand’s serial port configuration has been saved
(discussed in "Save Configuration to Non-Volatile Memory Escape Sequence”).

Status Request Escape Sequence

This escape sequence can be used to obtain various types of status from the Smart Wand. The format
is as follows:

k.yns

where n is a decimal number from 1-6. The meanings of the different values of n are as follows:

L-20 Hewlett-Packard Bar Code Handlers

Table L-17. Status Request Escape Sequence Parameter

Value Type of Status Returned

1 Status message followed by &

2 Status message with selected traller

3 Message ready/not ready response

(for Single Read Mode 2)
4* | Smart Wand configuration screen message
5 Serial number
6 Configuration dump ¢

*The Smart Wand responds to & -y 4 s by sending its

oonfiguration screen message, which is not usable by the HP-

94. HNWN traps this sequence, does not send it to the Smart
Wand, and returns error 65h (101).

1 f the Smart Wand is in HP-94 default mode, this is 223 bytes long.

If this escape sequence is written to channel 1, it alters the behavior of HNWN ; HNSP. Normally,
HNWN ; HNSP discards all data received by the serial port unless its READ routine is called. However,
when this escape sequence is received, HNWN invokes the WR_RD_EN function of the HNSP
IOCTL routine, writes the escape sequence to HNSP, then places the status returned by the Smart
Wand in the receive buffer. The status will be returned to the calling program the next time the READ
routine is called. The beeper does not sound when the status information is received, even if beeps are
cnabled for normal bar code data.

If this escape sequence is written to channel 2, HNWN ; HNBC returns error 6Dh (109).

NOTE The status messages returned by the Smart Wand are escape sequences, and HNWN
must be configured to transmit escape sequences in order for the calling program to
receive the status messages.

Wand Hard Reset Escape Sequences
- There are two escape sequences that cause the Smart Wand to perform a hard reset. These are:

E.ytz
kE

When the Smart Wand receives one of these escape sequences, it becomes unable to parse escape
sequences for 516 ms (worst case), until the reset operation is complete. When HNWN receives either
of these escape sequences, it sends it to the Smart Wand (through HNSP only) and then waits 530 ms
before returning to the calling program or sending any more characters in the output string. This gives
the Smart Wand enough time to perform the reset operation.

Hewlett-Packard Bar Code Handlers L-21

Save Configuration to Non-Volatile Memory Escape Sequence
This escape sequence has the following format:

k.y52

It causes the Smart Wand to write its current configuration to the Smart Wand’s built-in non-volatile
memory (EEPROM). This operation requires 2.78 seconds (worst case). When HNWN receives this
escape sequence, it sends it to the Smart Wand (through HNSP only) and then waits 2.9 seconds
before returning to the calling program or sending any more characters in the output string. The HP-94
power switch is disabled during this period to prevent powering down of the HP-94 and the Smart
Wand.

CAUTION The Smart Wand must not be powered down by turning off the HP-94 while the
save configuration operation is in progress. Although the power switch is dis-
abled, the reset switch or automatic turn off after very low battery could still turn
the 94 and Smart Wand off. If this occurs, the Smart Wand may become inoper-
able, requiring that it be sent to a Hewlett-Packard service center to be restored to
proper operation.

L-22 Hewliett-Packard Bar Code Handlers

Disc-Based Utility Routines

The disc included with the HP-94 Technical Reference Manual contains 17 utility routines. These utili-
ties are include files with the extension ASM. They can be included as part of assembly language pro-
grams (using the INCLUDE assembler directive), and can be executed from either RAM or ROM.
Below is a list of all the utilities.

Table M-1. Utility Routines on Technical Reference Manual Disc

" File Name Description Page
BLINK.ASM * Blink the cursor M-3
EQUATES.ASM Equates for HP-94 operating system M-5
FINDOS .ASM Locate operating system file in system ROM M-8
INTERNAL.ASM Call internal entry point of BASIC keyword M-10
IOABORT.ASM Check for low battery, power switch, or timeout | M-14
IOWAIT.ASM Enable 1/0 wait state M-18
ISOPEN.ASM Determine if a channel is open M-20
LLHLINKG.ASM Call low-evel handier from high-level handier M-22
NOIOWAIT.ASM Disable 1/0 walt state M-34
READCTRL.ASM Examine hardware status M-36
READINTR.ASM Examine interrupt status M-38
SCANKYBD.ASM * | Check if key down M-40
SETCTRL.ASM Write to saved copy of main control register M-42
SETINTR.ASM Write to saved copy of interrupt control register | M-44
VERSION.ASM * Return version of operating system or program | M-46
XIOCTL.ASM Execute TOCTL routine in any handler M-49
XTIMEOUT.ASM * | Execute timeout process when timeout occurs M-51
* Requires the FINDOS.ASM utility.

~ These utilities were written to be assembled using the Microsoft assembler MASM. Conditional
assembly is used to allow the Hewlett-Packard copyright notice to appear in the source code, but not
be printed in the list file (extension LST). The copyright notice allows the utilities to be reproduced
for inclusion in an application or for archival purposes without prior written consent of Hewlett-
Packard.

Conditional assembly is also used for the FINDOS utility. This utility is required by the BLINK,
SCANKYBD, VERSION and XTIMEOUT utilities, and is included with each of them (using the
INCLUDE assembler directive). The conditional assembly prevents FINDOS from being included
more than once in the source file.

Disc-Based Utility Routines M-1

L

Utility Routine Descriptions

Utility routine descriptions consist of the following:
® A brief description of the utility.
® Information on when the utility should be used.
= Program listing.

The program listings start with a comment block that describes the following:
m What the utility does.
& How to call the utility.
@ What is returned by the utility.
m Registers altered by the utility.

M-2 Disc-Based Utility Routines

BLINK.ASM

The BLINK utility in this include file blinks the cursor. Normally, the system timer interrupt service
routine causes the cursor to blink every 500 ms. However, in time-critical handlers such as for the bar
code port, the system timer may be disabled while waiting for data to be received at the port (to
prevent bar code port transition interrupts from being missed). BLINK performs the operating sys-
tem cursor blink operation when the system timer is disabled.

The BLINK utility should be called approximately every 100 ms while the handler waits for data,
thereby allowing the cursor to continue blinking. This helps prevent users from gaining the perception
of no machine activity that accompanies an idle cursor. (The 100 ms calling interval is consistent with
the frequency with which the system timer interrupt routine calls BLINK.)

BLINK uses FINDOS to find the operating system file and the start of the operating system jump
table.

Program listing:
.sfcond

i
i
3
§
|
|

"(c) Copyright Hewlett-Packard Company, 1987. AlL *
rights are reserved. Copying or other reproduction *
of this program for inclusion in an application or hd
*
»

* % s

for archival purposes is permitted without the prior
uritten consent of Hewlett-Packard Compeny.%

Lt b 2 g g g g g 2 T 2 g] R T T gy
endif

.lfcond

®e %o %3 W Wy W W
»

include findos.asm

Rad a2 g g g R e ey

* 0

Name: BLINK

L 2

Version: 1.3

* »

Description:
Call the cursor blink routine in the operating system

* 8%

Call with:
None

* %

Returns:
tone

* %0

Registers altered:
None

* %

Notes:
The BLINK routine is normally called every 100 ms by the
system timer interrupt service routine, and should be called
here only when the system timer interrupt is disabled.

[2N B B B

The BLINK routine decrements a count in the operating system
scratch space each time it is called. The cursor state is
changed only when the count reaches 0. When the cursor state

e WY NP WY VY W WP Ny Np Ve Vs Ve WY WL Ve W) W2 Wy W NWE W9 Wy WP WL 03 g
»

*

Disc-Based Utility Routines M-3

...BLINK.ASM

* is changed, the count is reset to 5.

H
o®
’
.
’

BLINK proc near
push bx
push si
push ds
push es
call FINDOS

; DS is SYOS segment
s ES is operating system pointer table segment

push ds ; Push cursor blink routine segment
push es: [38h) ; Push cursor blink routine offset
mov 8i,es: [00h]
mov ds,si ; DS = operating system data segment
mov si,sp
call dword ptr ss:[si)
add $p,4
pop es
pop ds
pop si
pop bx
ret
BLINK endp

M-4 Disc-Based Utility Routines

EQUATES.ASM

The EQUATES include file is a set of symbolic names for use in writing HP-94 assembly language
programs. These include names for operating system functions, register locations in the register save
area for handler routincs, and certain operating system values and locations.

Program listing;

-sfcond

if1
Had "(c) Copyright Hewlett-Packard Company, 1985, 1987. AllL *
Hl rights ere reserved. Copying or other reproduction of *
Fad this program for inclusion in en application or for hd
Fad archival purposes is permitted without the prior written *
Had consent of Hewlett-Packard Company.* *
H TEARRERRERE

endif

-lfcond

; Equate values for the WP-94

; Macros to push and pop registers in order expected by handlers

pushregs macro
pushf
push bp
push es
push ds
push di
push 8i
push dx
push cx
push bx
push ax
mov bp,sp
endn

popregs macro
pop ax
pop bx
pop cx
pop dx
pop si
pop di
pop ds
pop es
pop bp
popf
ondn

Sywbolic nameg for registers relative to BP
(e.g. AXREGIBP] is the saved value of AX)

AXREG oqu 00h
ALREG oqu 00h
AHREG oqu oth
’

BXREG o«qu 02h
BLREG oqu 02h
BHREG oqu 03h

Disc-Based Utility Routines M-5

...EQUATES.ASM

;

CXREG
CLREG
CHREG

H

DXREG
DLREG
DHREG

’

SIREG
DIREG
DSREG
ESREG
BPREG

OS_PTRTBL_SEG

are located.

8~. ®e W ®g Wy Wy We Wy

SCRATCH_SEG

0~

YSROM_SEG

8-

ENTBLSI1ZE

ESTART_STATUS

L

g

EVENTTBL
i
OPENTBL

’

KEY_SCAN
CURSOR_BLINK
TIMEQUT
VERSION

®e %9 %3 Ws B W Ny Ve Wy Wp Wy Ve W Wy W

Bo22a2f BB 2188

HP-94 ADDRESSES

Déh
04h
05h

B588 I8

g

3

; Operating system pointer table segment

All entries in the ackiress table are 2-byte entries.

2882 2 22 2 2 2 8

FUNCTION CALLS

Example which loads AH:
Output the line pointed to by ES:BX

mov
fnt

o«qu
oqu

00h
08h
0Ah
14h

18h
1Ah

24h

3Ah
3Ch

Call operating system functions as follows:

#h,PUT_LINE

1Ah

00h
01h

M-8 Disc-Based Utility Routines

. ®e we ws

The values below are the offset addresses in OS_PTRTBL_SEG.

0S_PTRTBL_SEG is a segment wddress of a table of operating system pointers.
The contents of this table point to where the system addresses

System RAM data segment

System ROM segment

of open table entries .

Number

Offset

Offset
Offset

Offset

Offset
Offset
Offset
Offset

of status area in OSRAM_SEG

of maximum directory # in OSRAM_SEG
of system timer event table in OSRAM_SEG

of channel

(in
(in
¢in
(in

Each function call equate has two forme, one for directly loading
AH (mov ah,FUNCTION), the ovther for loading AX with a word value.
The form for loading AX has “x100h" appended to the base name.

Hsvm“
#SYOS™
IsYos [1]
»SYOS™

table in OSRAM_SEG

file) of jump to key scan routine
file) of jump to cursor blink rout
file) of jump to timeout utility

file) of system ROM version number

...EQUATES.ASM

GET_LINE
PUT_CHAR
PUT_LINE
CURSOR
BUFFER_STATUS
BEEP
TIME_DATE
TIMEOUT
SET_INTR
GET_MEM
REL_MEM
MEM_CONFIG
ROOM

OPEN

CLOSE

CREATE

READ

WRITE

DELETE

SEEK
FIND_FILE
FIND_NEXT
DISPLAY_ERROR

o we % wp wy W ®

2
END_PROGRAMx 100h
GET_CHARX100h
GET_LINEx100h
PUT_CHARX100h
PUT_LINEX100h
CURSORX100h
BUFFER_STATUSx100h
BEEPX100h
TIME_DATEx100h
TIMEOUTX100h
SET_INTRx100h
GET_MEMx100h
REL_MEMx100h
MEM_CONF1Gx100h
ROOMx 100h
OPENX100h
CLOSEx100h
CREATEX100h
READX100h
WRITEx100h
DELETEx100h
SEEKx100h
FIND_FILEx100h
FIND_NEXTx100h
DISPLAY_ERRORX100h

2282220000000 0000002

Example which loads AX:
Output the letter 'j! to the LCD

:

int

23022 R002200 0000000004041

02h
03h

05h

ax,PUT_CHARX100h + %jn

1Ah

0000h
0100h
0200h
0300h
0400h
0500h
0600h
0700h

Disc-Based Utility Routines

M-7

FINDOS.ASM ‘

The FINDOS utility in this include file finds the operating system (file SYOS) in the system ROM,
The FIND_FILE and FIND_ NEXT functions (16h and 17h) cannot be used because running pro-
grams do not have access to directory 5, the system ROM directory. The FINDOS utility searches the
system ROM directory table to locate SYOS.

This utility is used by the BLINK, SCANKYBD, and XTIMEOUT utilities, all of which utilities call
routines whose locations are defined by a jump table at a known location in the operating system file.
It is also used by VERSION to locate the version number at a known location.

Program listing:
Xxlist : Suppress findoshere macro listing
findoshere macro
.sfcond
if1
H Ld b d b g g g T T T e ey arerereny
* “(c) Copyright Hewlett-Packard Company, 1987. AlL *
Pl rights are reserved. Copying or other reproduction *
:* of this program for inclusion in an application or *
Fd for archival purposes is permitted without the prior *
Hd written consent of Hewlett-Packard Company." -
; L a g gl g f g g Dl d Dl gl g T I ar A e ey
endif
.lfcond
TABLE_SEG EQU 16h
SYSROM_SEG EQU 08h
;mmmmmm
*
* Neme: FINDOS
*
* Version: 1.3
*
L]

Description:
Find the start of the SYOS file

*

Call with:
None

Returns:
DS = gtart of SYOS file (0 if SYOS not found)
ES = start of operating system pointer table

* % % % % % % %

*

Registers altered:
DS, ES

* % %

Notes:
1f SYOS is not found, DS = 0.

WP Mg We N We WP Wy Wy Wy We Ve Ve W Ve W0 ¢ V4 Vs Ve Ve W) W
*

i
§

FINDOS proc near
push bx
push (14
mov bx, TABLE_SEG
mov es,bx ; ES is TABLE_SEG

M-8 Disc-Based Utility Routines

...FINDOS.ASM

FIND1:

FIND2:

NOFIND:

FIND3:

FIND4:

FINDOS

bx,es: [SYSROM_SEG)
ds,bx

cx,ds: [06h]

cx,bx

cx

bx,ds

bx

ds,bx
ds:[2),'0'+'S'*100h
FIND2

ds: [0],'S*+'Y!*100h
FIND3

FIND1

bx,bx

ds,bx

short FINDG

ds,ds: [7]

cX
bx

FINDOS

FINDOS eq $

Disc-Based Utility Routines

DS is SYSROM_SEG
Get gtart of files pointer

CX is number of paragraphs in directory

Account for "*DIR*" entry

DS[0] is name
losl

15y

Set DS = 0 (not found)

DS is SYOS segment

INTERNAL.ASM

The INTERNAL utility in this include file calls the internal entry point of a type A file. The internal
entry point is the address at offset 02h in the file — the second pair of bytes in the program header. It
is used mainly for type A files that are new BASIC keywords, allowing access to the functionality of the
keyword without using the interaction between the keyword and the BASIC interpreter. Refer to the
“Program Exccution” chapter in part 1, "Operating System”, for details.

The INTERNAL utility calls the internal entry point with a FAR CALL, 5o the called program should
end with a FAR RET.

Program listing:

.sfcond
if1

AENBETARARRTR TR RS
"(c) Copyright Hewlett-Packard Company, 1987. All
rights ere reserved. Copying or other reproduction
of this program for inclusion in an application or
for archival purposes is permitted without the prior
written consent of Hewlett-Packard Company.®
mmmmmmmmttt

endif

.lfcond

*® * RS
LR B B BN

®e %o me Wy ws Wy W
*

»

Name: INTERNAL

Version: 1.3

| 2]

Description:
Call the internal entry point of a type "A" file

LN BN

Call with:
$S:SP+2 = gegment address of file name
§S:SP = offset address of file name

L 2 B

* Returns:
* AL = Error code:
* 00h No error

65h (101) 1llegal parameter
66h (102) Invalid directory rumber
67h (103) File not found

L B 3R BN 1

Registers altered:
AL (if the internal entry point is called, the return
value in AL is the value returned by the internal entry
point)

LR B BN BN 1

Notes:
INTERNAL verifies that the file is type A%, and that
the internal entry point offset is within the file.

L B 2R BN

All registers psssed to INTERNAL are preserved for the
call to the internal entry point.

L 2 B J

The address of the file name is passed on the stack so that
all registers may be pessed to the internal entry point routine

We W We My We Wy Wp Ws W We Ws Wy Ve WY Ve Vs Ve Ve Wy Ve UV V4 Wg Wy Wg W WP Ve Wy Ve Vg W§ Vg By

M-10 Disc-Based Utility Routines

...INTERNAL.ASM

*
FEEEARNERR AR RN ACER AR RAR DR TR R AR RN RN NN CR AR AR RN AN

e wo

FIND_FILE equ 16h
BUFFER_SIZE equ OEh
AXREG oqu 00h
ALREG equ 00h
AHREG equ 0th
[
BXREG equ 02h
BLREG equ 02h
BHREG oqu 03h
14
CXREG oqu 04h
CLREG oqu 04h
CHREG equ 05h
.
DXREG equ 06h
DLREG equ 06h
DHREG oqu 07h
SIREG oqu 08h
DIREG equ OAh
DSREG o 0Ch
ESREG equ OEh
BPREG equ 10h
’
FLAGREG equ 12h
REGSAVE_SIZE equ 14h
FILE_SEGMENT equ REGSAVE_SIZE+BUFFER_SIZE+4
FILE_OFFSET equ REGSAVE_SIZE+BUFFER_SIZ2E+2
pushregs macro
pushf
push bp
push es
push ds
push di
push si
push dx
push ex
push bx
push ax
mov bp, sp
endm
popregs macro
pop ax
pop bx
pop cx
pop dx
pop si
pop di
pop ds
pop es
pop bp
popf
endm

Disc-Based Utility Routines M-11

...INTERNAL.ASM

L
INTERNAL proc near
sub sp,BUFFER_SI2E ; Reserve file information buffer
’
pushregs
lea dx, [bp+REGSAVE_SIZE]; offset of file informetion buffer
’
push 88
pop ds ; DS =SS
mov es,FILE_SEGMENT [bp]l
mov bx, FILE_OFFSET [bp)
; DS:DX = address of file information buffer
mov oh,FIND_FILE
int 1Ah ; 0.S. function call
;s Check for errors...
or al,al
jnz ENTRY_ERROR
; CX:DX = directory table entry of the file
push ss
pop ds
mov si,sp
lea si, [sT+REGSAVE_SIZE]
; DS:SI = directory table entry of the file
mov al,ds: [si+07h]
cp al,"Av
jne ENTRY_NOT_A
mov cx,ds: [si+0Ch) : high byte of end-of-data address
mov dx,ds: [si+0Ah]) ; low word of end-of-data address
mov ds,ds: [si+08h] ; segment address of file
mov ax,ds: [02h) ; Internal entry point offset
cp ax,06h ; Check for valid offset (must be >= §)
jb ENTRY_BAD
or €x,cx
jnz ENTRY_CALL
cmp ax,dx ; low word of end-of-data address
jae ENTRY_BAD
; Address is OK
; DS is segment of file
ENTRY_CALL:
mov FILE_SEGMENT [bp] ,ds ; segment of internal entry point
mov FILE_OFFSET[bpl ,ax ; offset of internal entry point
popregs ; restore all registers
add sp,BUFFER_SIZE ; discard buffer (no longer needed)
push cs
push sp ; leave room for offset of INTERNAL1t
pushf
sub sp, 4 ; leave room for segment and offset addresses
push bp
mov bp, sp
push ax

@6 Wp Wy We Wy We @y Wy W W Ny

Stack relative to BP (* means not yet filled in)

10h FILE_SEGMENT

OEh FILE_OFFSET

OCh Caller's return address (offset)
OAh CS (my segment)

08h * offset of INTERNAL1

06h Flag register

04h * Segment of internal entry point
02h * Offset of internal entry point

M-12 Disc-Based Utility Routines

...INTERNAL.ASM

INTERNAL1:

se
ENTRY_NOT_A:
ENTRY_BAD:

ENTRY_ERROR:

INTERNAL

ax,of fset INTERNAL1

{bp+08h] , ax
ax, [bp+10h]
{bp+4] ,ax
ax, [bp+0Eh]
[bp+2] ,ax
ax

bp

al,65h

bp,sp
ALREG[bp] , al

sp,BUFFER_SIZE

; file segment address

; file offset address

; Internsl entry point ends with a FAR RET

s NEAR RET and add 4 to SP

: Illegal parameter

; NEAR RET and add 4 to SP

Disc-Based Utility Routines

M-13

IOABORT.ASM

The TOABORT utility in this include file allows a handler to check for system errors that should cause
1/0 to be aborted: low battery, power switch pressed, and system timeout. TOABORT will report
errors C8h (200), 77h (119), and 76h (118) respectively for these conditions, but only if the operating
system I/O wait state has been enabled using TOWAIT. To use this during the READ or WRITE
routine, the handler would do the following;

= Enable the operating system I/O wait state by calling TOWAIT.

® Call IOABORT periodically while waiting to receive or transmit data, and check if it returns an
error code that indicates I/0 should be aborted. It can be called as often as is convenient, such as
in the main READ or WRITE routine wait loop. It should be called at least every second, since
that is the system timeout resolution (although low battery or power switch may not occur exactly
on a 1 second time boundary).

= If the timeout error is reported by IOABORT, the user-defined timeout interrupt routine defined
by SET__INTR (0Ah) will not have been executed. The handler should call XTIMEOUT which
will call the user-defined timeout interrupt routine if one was defined, or turn the machine off. If
the low battery or power switch errors are reported by IOABORT, user-defined low battery or
power switch interrupt routines defined by SET _INTR (0Ah) will already have been executed.

= Abort I/O by halting the process of receiving or sending data.
m Disable the operating system 1/0 wait state by calling NOTOWAIT.
= End the READ or WRITE routine, and return the error code from IOABORT to the caller.

TOABORT must be used in conjunction with TOWAIT, which sets the operating system I/O wait
state. The tables below show how the I/O wait state affects how each of these error conditions are
reported by IOABORT.

Table M-2. Low Battery interrupt Routine Behavior During 1/0

1/0 Wait User-Defined Detauit
State Behavior Behavior

Waiting * IOABORT reports error C8h (200). | Program halted, Error 200 displayed,
User-defined low battery interrupt rou- | and machine walts for power switch to
tine executed when low battery condi- | be pressed to tum off.

tion occurs. ¢

Not waiting | TOABORT does not report an error. | Program halted, Error 200 displayed,
User-defined low battery interrupt rou- | and machine waits for power switch to
tine executed when low battery condi- | be pressed to tumn off.

tion occurs.

* Only if IOWAIT was called.
1 Routine has aiready been executed by the time OABORT reports the error.

M-14 Disc-Based Utility Routines

...I0OABORT.ASM

Table M-3. Power Switch Interrupt Routine Behavior During 1/0

User-defined power switch interrupt
routine executed when power switch
pressed. Interrupt routine not called if
power switch disabled.

1/0 Wait User-Defined Default
State Behavior Behavior

Waiting * IOABORT reports error 77h (119). | Machine turns off. No default action
User-defined power switch interrupt | taken if power switch disabled.
routine executed when power switch
pressed. 1 Error not reported and inter-
rupt routine not called i power switch
disabled.

Not waiting | TOABORT does not report an error. | Machine turns off.

* Only if IOWAIT was called.
t Routine has already been sxecuted by the time IOABORT reports the error,

Table M-4. Timeout Interrupt Routine Behavior During I/0

User-defined timeout interrupt routine
not executed.

1/0 Wait User-Defined Default
State Behavior Behavior

Waiting * IOABORT reports error 76h (118). | TIOABORT reports error 76h (118).
Handler must call XTIMEOUT, which | Handler must call XTIMEOUT, which
will execute user-defined timeout inter- | will turn machine off. Error not
rupt routine. Error not reported if | reported if timeout disabled.
timeout disabled.

Not waiting | TOABORT does not report an error. | IOABORT does not report an error.

No default action taken.

* Only if IOWAIT was calied.

* % %8

ws ®e ma %o we ®p ws
»

.sfcond

#(c) Copyright Hewlett-Packard Company, 1986.
rights are reserved. Copying or other reproduction
of this program for inclusion in sn spplication or

for archival purposes is permitted without the prior
written consent of Hewlett-Packard Company.®

endif
.l fcond

Disc-Based Utility Routines

»
»
* %

All

Rl d it g g s T e e T

M-15

...lIOABORT.ASM

0 Wy Wy we Wg ay
LI NE N R AR B 2R 2 B B I B BN B R BN EE N B NN B R NN Y

WO Wy W My WMe Wy Me Wg Wy Ve B Ve Ve Ve W VG W0 WV WL VY VWY Vs Wy Ve Wy Wy Wy ®
*

* N

ame: JOABORT
Version: 1.3

Description:

Check for any error conditions while waiting for dats

(designed for use by a handler while doing 1/0)

Call with:

Returns:

AL = Error code:
00h No error
76h (118) Timeout
7h (119) Power switch pressed
C8h (200) Low battery

Registers altered:

AL

Notes:

Timeout is checked first, followed by low battery,

and finally power switch pressed; if there are multiple

error conditions, only the first one found will be
reported. Subsequent calls to IOABORT will report
any errors not previously reported.

IOABORT assumes that IOWAIT and NOIOWAIT are used
by the handler to set up timeout processing.

;
|

TOABORT proc near
push bx
push cx
push ds
mov bx, 16h
mov ds, bx
mov bx,ds: [14h]
add bx, 4 ; BX points to current status
mov ds,ds: [00h)
mov al,ds: [bx]
mov cx,0FE76h
test sl 014 ;timeout?
jne TOABORT1 ;(yes)
mov cx,0F7C8h
test al,08h ;low battery?
jne IOABORT 1 :(yes)
mov cx,0EF77h
test ol,10H4 spower SW off?
jre IOABORT 1 :(yes)
mov cx,0FFOOh

TI0ABORT1:
and byte ptr ds:[bx],ch ;clear flag with CH
mov al,cl
pop ds
pop cx

M-16 Disc-Based Utility Routines

...JOABORT.ASM

TOABORT

133

. Disc-Based Utility Routines M-17

IOWAIT.ASM

The TOWATIT utility in this include file enables the operating system I/O wait state. This is the state
in which low battery, power switch, and timeout errors can be reported by the IOABORT utility while
handler READ or WRITE routines are waiting for 1/0.

The low battery error will occur when the operating voltage drops to 4.6 = 0.05 volts or below. The
power switch error will occur when the power switch is pressed. It will not occur if the power switch
has been disabled using the SET_INTR function (0Ah). The timeout error will occur when the
current system timeout value expires. The system timeout value is set by the TIMEOUT function
(09h), and has a default time of 120 seconds. The timeout error will not occur if the timeout has been
disabled by setting it to zero.

Whenever TOWATIT is called, it resets the timeout to the system timeout value. This allows a handler
to restart the timeout period after cach byte is sent or received by calling TOWAIT again.

When a handler READ or WRITE routine ends, it must call NOIOWAIT to indicate that 1/O is not

The 1/O wait state set by TOWAIT determines how TOABORT reports these error conditions. Refer
to the TOABORT utility for details.

Program listing-

.sfcond
if1

l

RAEABERAN AN RN SN EARR AT R R AR

“(c) Copyright Hewlett-Packard Company, 1986. ALl
rights are reserved. Copying or other reproduction
of this program for inclusion in an application or
for archival purposes is permitted without the prior
written consent of Hewlett-Packard Company.®

bt gl g g d g a2t g 2l 2 f il s g S g R I Iy
endi f

. lfcond

* % %
* % % % %

«e we me we %o we we
»

: L b il g it g o d e a g a2 T T R Y

;% Neme: IOMWAIT

;¥ Version: 1.4

ot

:* Description:

Enable 1/0 wait state

-~ -
* %

* Call with:
None

* @

* Returns:
None

L 2R 4

* Registers altered:
None

®E We Nu W We Ve We Wy Wy Wy Ne "o

Notes:
Enables timeout if timeout interval is not zero.

[2N N R 1

M-18 Disc-Based Utility Routines

-...JOWAIT.ASM

10UAITS:

TOWAIT

di

ds

ax, 16h
ds, ax
bx,ds: [14h]
bx,4

si,ds: [1Ah]
di,ds: [18h]
bp, di

di,2

bp, Obh
ds,ds: [00h)

byte ptr ds:[bx],20h
ax,word ptr ds: [di]

ax,ax
IOMAITO
ds: [bp] ,ax

.
.
.
?
.
,
.
’
-
’

8X points to current status
System timer event control table

DI points to timeout interval

BP points to timeout counter

DS = operating system data segment
1/0 waiting flag set

Read timeout interval

No timeout if zero
; Timeout counter set to timeout interval

byte ptr ds:13[si], 200 Timeout enable (1 second)

ds
bp
di
si
bx
ax

Disc-Based Utility Routines M-19

ISOPEN.ASM

The ISOPEN utility in this include file checks if a channel is open. The primary use of ISOPEN is
for configuration programs to determine if a handler is already open.

When a handler is closed, configuration programs create a parameter scratch area, write configuration
parameters into it, and put the scratch area address in the appropriate entry in the handler information
table. If the scratch arca already exists, the handler information table entry will already point to the
scratch area, and the configuration program will write its parameters into the existing scratch area.

When a handler is open, however, the entry in the handler information table is the address of the
handler scratch area, not of the parameter scratch area. If the configuration program is run after the
bandler is open, it could misinterpret the handler information table entry, and modify the handler
scratch area by mistake. ISOPEN allows configuration programs to check if the handler is open
regardless of the meaning of the entry in the handler information table. This allows configuration pro-
grams to take different action depending on whether or not the handler is open. Refer to the "User-
Defined Handlers” chapter in part 1, "Operating System", for information about using the handler
information table.

Program listing:

.sfcond
if1

RARRAR RN TR AETRAY
"(c) Copyright Hewlett-Packard Company, 1986. All

-
rights are reserved. Copying or other reproduction *
of this program for inclusion in an application or b
*
*

* % % % %

for archival purposes is permitted without the prior
written consent of Hewlett-Packard Company.*
RERRRANERAEEANAANERRRARARENESRETAREREANERRRERR R RN RN RATN R
endif

.lfcond

AR REREAAA TR AN RN TR AN TR R AT TR T AR EN ST T AR AR R R R d A w
L]

;* Name: 1SOPEN
*

:* Version: 1.3

L

;* Description:

* Check if a channel is open
*

;* Call with:

AL = Channel rumber

. we

e we

- % w0
*

«e wp we
*

L I B

Returns:
AL = Error code:
00h No error (channel open)
65h (101) lllegal perameter
65h (105) Channel not open

®e % we w2 we
]

* % %

Registers altered:
AL

* ®

Notes:

]

®s me e We W @

M-20 Disc-Based Utility Routines

...ISOPEN.ASM

0BIT

I1SOPEN

ISOPEN1:

L}
I1SOPEN_ERR:

1SOPEN

JUTTHHII LN

[-3
w38
-~

x
(]
3

33

ret

mov
imp

10h

near
ds

si

ax

si,16h
ds,si
si,ds: [0Ah)]
sh,eh

ax,si
ISOPEN_ERR
si,ds: [24h)
ds,ds: [00h)
sh,0Ch

sh

si,ax

ax

al,6%h

Size of open table
Set AH=0
Check for valid channel #

Open channel table

DS = operating system data segment
0Ch (12) bytes per open table entry
Result to AX

DS:S1 points to channel entry
Restore AN

Preload “Channe! not open®

byte ptr ds:[si],0BIT; Is channel open?

1SOPEN1
al,al

si
ds

al,65h
ISOPEN1T

-
.
-
’

Channel not open.
Channel is open. Return 00h.

Restore AH
Illegal parameter

Disc-Based Utility Routines M-21

LLHLINKG.ASM

The handler linkage routines are in LLHLINKG.ASM. This set of utilities is a single include file
that can be used as part of a high-level handler to call a low-level handler. Below is a list of all the link-
age routines.

Table M-5. Handler Linkage Routine List

Name Description

LILH_ CLOSE | Call CLOSE routine of low-level handler
LLH IOCTL | Call IOCTL routine of low-level handler
LLH OPEN | Call OPEN routine of low4evel handler
LLH READ Call READ routine of low-evel handler
LLH RSVD2 | Call RSVD2 routine of low-level handler
LLH_RSVD3 | Call RSVD3 routine of low-level handler
LILH TERM | Call TERM routine of low-evel handler
LLH WARM | Call WARM routine of low-level handler
LLH WRITE | Call WRITE routine of low-level handler

All the information about the linkage routines and how to use them is in the “User-Defined Handlers"
chapter in part 1, "Operating System".

Program listing:

.sfcond
if1

3

ARt ethttddd

%(c) Copyright Hewlett-Packard Company, 1986. ALl *
rights are reserved. Copying or other reproduction *
*
*

*

of this program for inclusion in an spplication or
for archival purposes is permitted without the prior
written consent of Hewlett-Packard Company.® *

W Wy Wy Wy We Wy W
* % % 8

!
|

endif
.lfcond

List of functions:

LLH_OPEN - calls OPEN routine of specified handler
LLE_CLOSE - calls CLOSE routine of specified handler
LLH_READ - calls READ routine of specified handier
LLH_WRITE - calls WRITE routine of specified handler
LLH_WARM - calls WARM routine of specified handler
LLE_TERM - calls TERM routine of specified handler
LLH_IOCTL - calls 10CTL routine of specified handler

LLH_RSVWD2 - calls RSW2 routine of specified handler

®e %o Wp M Wg We WE e By WE Wy W5 W Wy Ve W Ny Ve Wy

LLH_RSVD3 - calls RSWD3 routine of specified handler

M-22 Disc-Based Utility Routines

...LLHLINKG.ASM

-
s

AXREG
ALREG
AHREG

,

BXREG
BLREG
BHREG
’

CXREG
CLREG
CHREG

H

DXREG
DLREG
DHREG

’

SIREG
DIREG
DSREG
ESREG
BPREG

OBIT

save_regs

s ws wp

restore_regs

2 28428 242 RE2 22% 22123

-
o

push
push
pushf
push

macro

383

Save registers on stack in the order used by handler call

ds
bp

cs
bp,offset RET_TO_HLH
bp

- N385 L]

bp, sp
88 :BPREG [bp] ,bp

Pop registers off of stack and return to high-level handler

bx : Get BN into AH
sh,bh

bx

ex

Disc-Based Utility Routines

M-23

...LLHLINKG.ASM

popP dx
pop si
pop di
pop ds
pop es
pop bp
fret
endm
page

Name: LLH_OPEN

* %

Version: 1.5

Description:
Call the OPEN routine of the low-level handler

. %

« %o Mo WE We Wy We We We Wy Wy
» »

Call with:
AL = Channe! number to open
ES:BX = Address of handler name string to open

+ »

’

e

;* Returns:

;* AL = Error code:

Had 00h No errors

Had 65h (101) Illegal parameter

il 66h (102) Directory does not exist
i 67h (103) File not found

* 6Ah (106) Channel already open
Hd 6Eh (110) Access restricted

Hd (any others returned by handler)
ok

;* Registers altered:

* AL

;*

:* Notes:

;* None.

'-*

ARARRERREAAARERREREAAAARRECREATNCATAAAETREATRTTR e did

LLH_OPEN proc near

save_regs Save regs on stack

Save DI and SI for FIND_HNDLR

ws W we

mov di,es
mov si,bx

Get segment addr of work area out of channel table

cmp sl,5 ; valid device channel

JL LLH_OPEN_1 ; Yes, continue

mov al,65h : Invalid parameter

jop short LLK_OPEN_5 ; Exit with return code in AL
LLK_OPEN_1:

mov bx, 16h ; Table of addresses

mov ds,bx

mov bx,ds :24h ; Get offset of open table

M-24 Disc-Based Utility Routines

...LLHLINKG.ASM

LLH_OPEN_2:

we W W

[
LLH_OPEN_3:

Restore registers

.y w¢ w3

8ranch to handler

e W W

s %p Wy ®y we we

mov
mov
mul
add
test
jnz
mov
Jmp

mov
push
push
push

push
mov

push

call
and
je
add
imp

mov
pushf
push
mov

h

|

ds,ds:00h
ah,0Ch

ah

bx, ax

Length of each entry in open table
Multiply by channel number

byte ptr ds:[bx],0BIT; 1s channel open?

LLH_OPEN_2
al,6%h

short LLH_OPEN_S5

cx,ds:5 [bx)
ds
bx
€x

Set up my return address for open entry of handler

cs

Yes, continue
Channel not open
Exit with return code in AL

Get stored value in open table
Address and value of
DS entry in open table

dx,offset LLH_OPEN_4 ; Return address this program

dx

FIND_HNDLR
al,al
LLH_OPEN_3
sp,4

short LLH_OPEN_4

ds:08h [bx],cx

cx
bx,6
bx

-
’
.
’
.
’
-
')
.
[

s wo w2 ws

Return address in DX

Set up address of handler entry on stack for IRET to branch to

Get segment address of handler
Any errors

No, continue

Yes, clean up stack

Return with error code in AL

Save handler CS

Put flags for IRET
Segment address of handler
Offset of OPEN entry

to the values they had when function was called

(1)
-—
p s

§33383383k

entry

3

iret

sp, 10h
ax
bx
cx
dx
8i
di
ds
es

bp

p,9*2+10h

Return to calling program with return code in AL
NOTE: it is the responsibility of the hendler entry that was
just executed to set AL to sppropriate return code

Point to register values

Point to IRET addr

Address in DX

Disc-Based Utility Routines M-25

...LLHLINKG.ASM

]
LLH_OPEN_é4:
pop ex
pop bx
pop ds
xchg ds:05h [bx],cx
mov de:0Ah [bx],cx
LLH_OPEN_S:
restore_regs
LLH_OPEN endp
page

LN N BE NE B R R B A 4

* % % % % % % %

o

Wy We Wy Wy Wy W ®e W W "y ~.’ e WO MY WL VWH Wy Wy WE Ve W W
4
:
3
:

Name: LLH_CLOSE
Version: 1.5

Description:

Call the CLOSE routine of the low-level handler

Call with:
AL = Channel number to close

Returns:
AL = Error code

Registers altered:
AL

Notes:
None.

LLH_CLOSE proc near
save_regs
mov bx, 09h
jmp CALL_HNDLR
LLH_CLOSE endp
page

e ws

s we wp np

Get the saved copy of segment address
of high-level handler's work area

Restore to open table and get

saved copy of segment address of
low-level handler's work area

Save low-level handler's work area seg

Return to high-level handler

Offset of CLOSE entry
Go to handler

;t'*ﬁ‘t*tﬁ**'.*'i*'t"*tttitﬁ*ﬂ.'Qtﬁit*i'*tt**itt&tttitt'ﬁt

®s Be B0 We WE W W Wy WS W Wp Ve W ©
$ 2 % % % % % % % % %%

*

Name: LLH_READ
Version: 1.5

Description:

Call the READ routine of the low-level handler

Call with:
AL = Channel number from which to read
CX = Number of bytes to read
€S:BX = Address of read buffer

Returns:

Disc-Based Utility Routines

...LLHLINKG.ASM

.]
:* AL = Error code
;* CX = Number of bytes actually read
I3
’
;* Registers altered:
OALCX
;Q
;* Notes:
:* None
;Q
Phddabbedeedebbbddd bbbl bl
LLH_READ proc near
save_regs
mov bx,0Ch ; Offset of READ entry
Jwp CALL_HNDLR ; Go to handler
LLH_READ endp
page
;ﬁmmﬁmmmttttncttﬁ
:t
;* Name: LLH_WRITE
-l
4
:* Version: 1.5
;'
:* Description:
:* Call the WRITE routine of the low-level handler
£3 4
L}
:* Coll with:
:* AL = Channel rumber to write
:* CX = Number of bytes to write
;* ES:BX = Address of write buffer
-l
r
:* Returns:
;* AL = Error code
:* CX = Number of bytes actually written
o
.
:* Registers altered:
* AL,CX
;i
:* Notes:
:* Mone
;'
H RERERER AR EAN TN TR AT TRCTETR AL RN TT TR TN TR R RRddddd
LLH_WRITE proc near
save_regs
wov bx,0Fh ; Offset of WRITE entry
jmp CALL_MNDLR s Go to handler
LLH_WRITE endp
page

HREEENERERR A AN AR E RN AT AR AR LT TR R H AN T SRR TR AR TNTR TR
*

s* Name: LLH_WARM

¥

L4

;% Version: 1.5

ot

;* Description:

:* Call the WARM routine of the low-level handler

Disc-Based Utility Routines

M-27

...LLHLINKG.ASM

»

H

;¥ Call with:

:* AL = Channel number
ol

;* Returns:

:* AL = Error code
o

’

:* Registers altered:
* AL

;t

;* Notes:

;* MNone

;

:

LLH_WARM proc nesr

save_regs

mov bx, 12h ; Offset of WARM entry

jmp CALL_HNDLR ; Go to handler
LLH_WARM endp

page
tRRETERENERETRERAEELETRETTRNRERAEAN TR d bR b i

* %

Name: LLK_TERM

* %

Version: 1.5

»

Description:
Call the TERM routine of the low-level handler

* »

Call with:
AL = Channel number
AH = Cause of termination

L 2R B BN

Returns:
AL = Error code

* * %

Registers altered:
AL

* % %

Notes:
Note that entry conditions are different for LLH_TERM
than those which are seen by the low-level handler (AH, AL).
LLH_TERM moves AH (cause of terminetion) into AL before
calling the low-ievel handler.

* % %8

ﬁi~‘~ WE We I By W WG Ve W Ny We We W Wy WS e W My WG Vg Wy Wy Ny W
»
»
L3
»

LLH_TERM proc near
save_regs
pop bx ; Get original AX into BX
xchg bh,bl ;s Exchange AK and AL
push bx ; Put back on the stack
mov bx, 15h : Offset of TERM entry
Jjmp CALL_WNDLR ; Go to handler

LLH_TERM endp
page

M-28 Disc-Based Utility Routines

-..LLHLINKG.ASM

*

(others as defined by handler)

LR 1

Registers altered:

* AL

* (others as defined by handler)
L]

* Notes:

* MNone

}.
H
-
H

@ —
;mmmmmmm
:Q
7% Neme: LLH_IOCTL
e
s
:* Version: 1.5
o
L
:* Description:

;* Call the 10CTL routine of the low-level handler
ol

4

;* Call with:

:* AL = Chamnel rumber

:* AH = JOCTL function code

:* (others as defined by handler)
o

[4

:* Returns:

:* AL = Error code

H

H

:

H

H

H

LLH_IOCTL proc near

save_regs
. mov bx, 1Bh ; Offset of IOCTL entry

jmp CALL_HNDLR ; Go to handler

LLH_lOCTL endp
page

;mm Ehddthdtdddtdtdtd bt db bt iidy

o

®

;* Name: LLH_RSVD2

+ %

Version: 1.5

L 2

Description:
Call the RSW2 routine of the low-level handler

* 8

Call with:
AL = Channel rumber
(others as defined by handler)

LR IR N

Returns:
AL = Error code
(others as defined by handler)

* 9

Registers altered:
AL
(others as defined by handler)

LR B B

Notes:
None

@ @5 We We We G4 MY Wg Ve Vs Ve W6 Ve Ve W6 Vs VO U U Ve We 4y
* »

|
|

. Disc-Based Utility Routines M-29

...LLHLINKG.ASM

LLH_RSVD2 proc near

save_regs
mov bx, 1Eh

jmp CALL_HNDLR

LLKH_RSWD2 endp
pege

*

* Name: LLH_RSVD3

-

* Vergion: 1.5

. »

Description:

* %8

Call with:
AL = Channel number
(others as defined by handler)

* % %8

Returns:
AL = Error code
(others as defined by handler)

LR B B

Registers altered:
AL
(others as defined by handler)

* % %8

Notes:
Nonhe

»

-e ~.. WM Ne W WL N We %o %p We WP Wy Wy Mo W W WF WS W0 Ve e Ve Wy W

LLH_RSVD3 proc near
save_regs
mov bx,21h
mp CALL_HNDLR
LLH_RSVD3 endp
page

Call the RSVD3 routine of the iow-level handler

.
’
.
’

ARAA AR AN R TR A AT ERE AT EAART RN SR AN RN RN R AR T IR R R by

Offset of RSVD2 entry
Go to handler

Offset of RSVD3 entry
Go to handler

cRRNRRRERAAREEAAE NIRRT EACRAAER AR A RC RN AT RT RN R RRERRTRS

L 4

Name: CALL_HNDLR

* »

Version: 1.5

* Description:

* »

* Call with:
AL = Channel number
BX = Offset of handler entry to call

* B »

* Returns:
AL = Error code

* %

* Registers altered:
AL

»

@3 e Be My We B Wy Be Ve Ve Ve We Ve Ve Ve Ve Ve Ny @
*

M-30 Disc-Based Utility Routines

Call the selected routine of the low-leve!l handler

...LLHLINKG.ASM

:* Notes:
* None
*

RERTEREEERENERAR DR AR A AR AN SRRV TSR N R AR AR DR A AR d

CALL_HNDLR proc near

Set up my return address for handler entry to return to

push cs
mov dx,of fset CALL_HNDLR_EXIT; Return address this program
push dx ; Return address in DX

Set up address of handler entry on stack for IRET to branch to

ws we we

pushf ; Put flags for IRET
mov si,16h
mov ds,si
mov s8i,ds:24h ; DS:S! point to open table
mov ds,ds:00h
mov sh,0Ch
mul ah ; Multiply channel number by length of each entry
add si,ax ; DS:SI points to table entry for this channel
mov cx,ds:0AhIsi] ; Get low-level handler's work area segment
mov 88:DSREG [bp] , cx ; Send to low-level handler
mov cx,ds:08h[si] ; Get low-level handler's CS
CALL_HNDLR_1:
push cx ; Segment address of handler
push bx ; Offset of handler entry

Restore registers to the values they had when function was called

’
’
; Stack now:
: OAh (saved registers)
; 08h My CS
; O6h My IP (points to CALL_HNDLR_EXIT)
; 04h flags
; 02h low-level handler's segment address
; OOh low-level handler's offset address
’
cli
add sp,0Ah ; Point to register values
pop ax
pop bx
pop cx
pop dx
pop si
pop di
pop de
pop es
pop bp
; Branch to handler entry
sub sp,9*2+0Ah ; Point to IRET addr
fret

Return to calling program with return code in AL

Disc-Based Utility Routines M-31

...LLHLINKG.ASM

NOTE: it is the responsibility of the handier entry that was
just executed to set AL to appropriate return code

s we @

CALL_HNDLR_EXIT:

restore_regs ; Return to high-level handler
CALL_HNDLR endp
pege
MERERRE TR AN AR AN A RN LR C RN T AR A TN AR AR AR TR TR RS
[]
* Name: FIND_HNDLR
*
* Version: 1.5
*
* Description:
* Find a handler program whose name is at DI:Sl
[¢

* Call with:

* DI1:SI = Pointer to handler name
*

* Returns:

* AL = Error code

* 00h No errors

A 65h (101) Illegal parameter
* 66h (102) Directory does not exist
* 67h (103) File not found

* 6Eh (110) Access restricted
* CX = Segment address of handler
*

* Registers altered:

* AX,CX

L]

* Notes:

* None

*

Ne % We Me e Ve WY We e NI Ve Ne WF W By Ny s Ty Wp WE Ve W5 Wy Ve Wy Vo Wy We

RERAERCET SN E R AR R R RN AR AR R AR A SR AR A AR SN EA S TR R TR SRR d

FIND_HNDLR proc near
push bx
push dx
push di
push bp
push ds
push es
mov bp,sp ; Save SP
sub sp,0Eh ; Get room for file information buffer
mov bx,si ; Set ES:BX to file name address
mov es,di
mov di,sp ; Get offset address of file information buffer
push 88
pop ds ; Get segment address of file information buffer
mov oh,16h s FIND_FILE function

FIND_WNDLR1:
mov dx,di Offset ackiress of file information buffer

int 1Ah

1f there are any errors, exit with appropriate error code

or al,al ; Any errors?

M-32 Disc-Based Utility Routines

...LLHLINKG.ASM

jnz FIND_HNDLR_EXIT : Yes, exit with error code in AL

If this is not a handler program (type “H"), generate “Access restricted"
Get another file with same name and correct type

Ne we w0 W

mov al,6Eh ; “Access restricted" error code
cmp byte ptr 88:7[di}l,"K"; Is it a handler?
jne FIND_HNDLR_EXIT ; No, exit with error
xor al,al ; Set *No error" code
mov cX,$8:08h [di] ; Get gegment address of handler
FIND_MNDLR_EXIT:
mov sp,bp
pop es
pop ds
pop bp
pop di
pop dx
pop bx
ret
FIND_HNDLR endp
RET_TO_HLH proc near

Restore 8P and DS, then return to calling program

pop bp
pop ds
ret

RET_TO_HLH endp

Disc-Based Utility Routines M-33

NOIOWAIT.ASM

The NOTOWAIT utility in this include file disables the operating system 1/0O wait state. This is the
state in which low battery, power switch, and timeout errors can be reported by the JOABORT utility
while handler READ or WRITE routines are waiting for 1/0.

The I/O wait state is enabled with TOWAIT. NOIOWAIT should be called when the handler READ
or WRITE routines end, whether the routines are ending because 1/0 is being aborted, or because of
a normal end. Refer to TOWAIT and IOABORT for further information.

Program listing:

.sfcond
if1

AERRATTERT R AARATSAEAA A d

"(c) Copyright Hewlett-Packard Company, 1986. All *
rights are reserved. Copying or other reproduction *
of this program for inclusion in an application or *
for archival purposes is permitted without the prior *
written consent of Hewlett-Packard Company.® -

* s &% %

|
!
|

endi f
.lfcond

é

»

Name: NOIOWAIT

*

* Version: 1.3

»

* Description:
Disable 1/0 wait state

LN B

Call with:
None

* % &

Returns:
None

* » %

Registers altered:
None

* % »

Notes:
None.

»

W WE We NE Ve We NG NE WE W Ve Ny Bp Be W We We Ve g Wy W W
*

NOIOWAIT proc near
push bx
push si
push ds
mov bx, 16h
mov ds, bx
mov bx,ds: [14h]
add bx,4 ; BX points to current status
mov si,ds: [1Ah]) : System timer event control table
mov de,ds: [00h) ; DS = operating system data segment
and byte ptr ds:[bx],00Fh; 1/0 waiting flag clear

M-34 Disc-Based Utility Routines

‘ ...NOIOWAIT.ASM

mov byte ptr ds:13(sil,-1; Timeout disable
pop ds
pop si
pop bx
ret
NOIOWAIT endp

Disc-Based Utility Routines M-35

READCTRL.ASM

The READCTRL utility in this include file reads the saved copy of the main control register (I/0
address 0Bh). When hardware status is changed by an assembly language program, the program must
use the following procedure to ensure that hardware devices unaffected by the change remain in their
current state:

= Read the saved copy of the main control register using READCTRL.
= Change the bits nceded to cause the hardware status to change.

® Write the updated value back to its saved location and output the updated value to the main control
register using SETCTRL.

Refer to the "Hardware Control and Status Registers" chapter in part 1, "Operating System”", for further
information.

Program listing;

.sfcond
if1

|
i
2
;
%

written consent of Newlett-Packard Company.*
BERAETRRRAERARCRNTAARCT AR CARRARTR RN RN AT RRY
endif

.tfcond

H
Had “(c) Copyright Hewlett-Packard Company, 1986. All *
Fad rights are reserved. Copying or other reproduction *
P of this program for inclusion in an application or *
il for archival purposes is permitted without the prior *
- *
[
H

:

Name: READCTRL

L 2 2

Version: 1.3

L 2

Description:
Read the saved copy of the main control register
(1/0 address OBh)

* % % 8

Call with:
None

* * %

Returns:
AH = Main control register value

* % %

Registers altered:
AN

* ¢ 8

Notes:
The control register bits have the following meanings:

@9 ®e NE WE NG Ve Ve W V9 Ve Ve Ve VI We W W0 e W 5 Wy W Wy W0
[]

»

F-
.
~
.
o

we %o wp we
»
.
.
.
.
.
.
.
.
.
.
.
.

*

M-36 Disc-Based Utility Routines

...READCTRL.ASM

?

Rl

:* . . . cescces

ol - . . .

R

Hal . . . <. beeper control
* . . . 11 = low tone
Had - - . 01 = high tone
Hd - . . 00 = off

* . . .

*« serial port power control
Fiud N . 1 = ensble

Hd - . 0 = disable

Pl - .

Had . «sss.bar code port power control
Fad . 1 = enable

Had . 0 = disable

o

FHd «....bar code port transition control
Fad 1 = enable

Ha 0 = disable

H

READCTRL proc near
push bx
push ds
mov bx, 16h ; Get operating system pointer table
mov ds,bx
mov bx,ds: [14h] : Get offset of status area
mov ds,ds: [00h)
inc bx
inc bx ; Point to saved copy of main control register
mov ah,ds: {bx] : Read it
pop ds
pop bx
ret
READCTRL endp

Disc-Based Utility Routines M-37

READINTR.ASM

The READINTR utility in this include file reads the saved copy of the interrupt control register (I/0
address 00h). When interrupt status is changed by an assembly language program, the program must
use the following procedure to ensure that interrupts unaffected by the change remain in their current
state:

® Read the saved copy of the interrupt control register using READINTR.
m Change the bits nceded to cause the interrupt status to change.

= Write the updated value back to its saved location and output the updated value to the interrupt
control register using SETINTR,

Refer to the "Hardware Control and Status Registers® and "Interrupt Controller” chapters in part 1,
"Operating System", for further information.

Program listing:

.sfcond
ift

|
|
!
3
;

“(c) Copyright Hewlett-Packard Company, 1986. ALl *
rights are reserved. Copying or other reproduction *
of this program for inclusion in en spplication or -
for archival purposes is permitted without the prior *
written consent of Hewlett-Packard Company.®

e s s wp w8 we N
* % % %

1
|
!
i

endif
.lfcond

s
’

Name: READINTR

* »

Vergion: 1.3

* »

Description:
Read the saved copy of the interrupt control register
(1/0 address 00h)

* % % %

Call with:
None

LR B

Returns:
AN = interrupt control register value

LN R J

Registers altered:
AR

LN S

Notes:
The interrupt control register bits have the following meanings:

L R]

(bit set to 1 -> corresponding interrupt enabled)
(bit set to 0 -> corresponding interrupt disabled)

* % %8

»
»
N
.
[
.
w
.
»
.
wt
.
[})
.
-t
.
(-]
.

-
.
-
’
.
’
-
L4
-
L)
.
’
.
’
.
.
.
.
.
’
.
.
.
’
.
L
.
’
-
L4
-
.
-
.
.
s
.
.
.
2
-
’
-
’
-
L
-
L
-
1
-
.
.
L
-
’
.
’

M-38 Disc-Based Utility Routines

»

...READINTR.ASM

’ Ry Ry Y R P RN R R Y]
- - - - - - - -
.

. ... system timer interrupt
. (type 50h)

- .. bar code timer interrupt

. (type 51h)

... ber code port trsnsition interrupt
(type 52h)

* % 8

.. serial port data received interrupt
(type 53h)

* %

«e« lOow main battery voltage interrupt
(type 54h)

» #

.. power switch interrupt
(type 55h)

* % 8

.. reserved interrupt 1
(type 56h)

* *»

.. reserved interrupt 2
(type 57h)

® s Wo Ws W Wp We @p Wy Mg Wy W We WE) W2 W N
»

jl
*
i
i
*

READINTR proc near
push bx
push ds
mov bx, 16h ; Get operating system pointer table
mov ds,bx
mov bx,ds: [14h] ; Get offset of status area
mov ds,ds: [00h]
add bx,3 ; Point to saved copy of interrupt control register
mov ah,ds: [bx] ; Read it
pop ds
pop bx
ret
READINTR endp

Disc-Based Utility Routines M-39

SCANKYBD.ASM

The SCANKYBD utility in this include file scans the keyboard and returns the keycode of the first key
found down. Normally, the system timer interrupt service routine causes the keyboard to be scanned
every 5 ms. However, in time-critical handlers such as for the bar code port, the system timer may be
disabled while waiting for data to be reccived at the port (to prevent bar code port transition interrupts
from being missed). SCANKYBD performs the operating system keyboard scan operation when the
system timer is disabled.

The SCANKYBD utility can be called while the handler waits for data, thereby allowing the handler to
respond to keyboard input. This helps prevent users from gaining the perception of no machine activity
that accompanies no keyboard response.

The keyboard columns are scanned from right to left, and the rows from top to bottom. The first key
found down in that scanning sequence will be reported as a keycode. Other keys to the left or below the
first key found will be ignored.

The keycodes corresponding to ecach key position and the corresponding ASCII characters are
described in the "Keyboard” chapter in part 1, "Operating System".

SCANKYBD uses FINDOS to find the operating system file and the start of the operating system
jump table.

written consent of Hewlett-Packard Company.*

REBARA TN RN TR LA AR T AR NN TR AR R AR RS RA AR AN RN R RN
endif

«lfeond

Program listing:

.sfcond

if1
H RREECRAAENNERAANEATARERENCAANE L E A A AR RN TR SARRTR
™ %(c) Copyright Hewlett-Packard Company, 1987. All *
* rights are reserved. Copying or other reproduction *
" of this program for inclusion in an application or *
i for archival purposes is permitted without the prior *
(3. *
’
H

include findos.asm

s WREEANEEARRAR AR AN AT EEARE AR LR AR ARSI NRA AR AT R R RN R dr S
-

* Name: SCANKY8D
o

’

;* Version: 1.3

®

.

;* Description:

* Call the operating system routine to scen the keyboard

* 8

Call with:
None

:* Returns:

AL = 0 if no key down
AL = HP-94 keycode (see chapter 8, "Keyboard", for keycode values)

-
-
.
-
.
.
-
.
-
L[4
-

» % % %8

;* Registers altered:

M-40 Disc-Based Utility Routines

...SCANKYBD.ASM

AX

Notes:
The key is NOT debounced by this routine - the routine
simply reports what key is down at the present time.

* % 8

SCANKYBD proc near
push bx
push si
push ds
push es
catl FINDOS

DS is SYOS segment
ES is operating system pointer table segment

- W

push ds
push es: [36h) ; Get offset of keyscan routine
mov si,es: [00h)
mov ds,si ; DS = operating system data segment
mov si,sp
call dword ptr ss: [si)
add sp,4
pop es
pop ds
pop si
pop bx
ret
SCANKYBD endp

Disc-Based Utility Routines M-41

SETCTRL.ASM

The SETCTRL utility in this include file writes a value to the location of the saved copy of the main
control register (I/O address 0Bh), then writes the value to the main control register as well. When
hardware status is changed by an assembly language program, the program must use the following pro-
cedure to ensure that hardware devices unaffected by the change remain in their current state:

= Read the saved copy of the main control register using READCTRL.
m Change the bits needed to cause the hardware status to change.

@ Write the updated value back to its saved location and output the updated value to the main control
register using SETCTRL.

Refer to the "Hardware Control and Status Registers" chapter in part 1, "Operating System", for further
information.

Program listing:

.sfcond
if1

|
;
z
§

%(c) Copyright Hewlett-Packard Company, 1986. All ¢
rights are reserved. Copying or other reproduction *
of this program for inclusion in an spplication or *
*
[]

* » %

for archival purposes is permitted without the prior

we wE We We W We w0

L2

. written consent of Hewlett-Packard Company.®

AERERNTRT TR TRRTRT R RTAAR TR T AR bR R Rl
endif
.tfcond

;mmmmﬁmmwnmmta

ol

’

;% Name: SETCTRL

I3

;¥ Version: 1.3

;t

;* Description:

s* Set the mail control register (1/0 address 0Bh) and its

;* saved copy to the value specified in AH

«®

:* Cell with:

:* AH = main control register value

o

’

:* Returns:

:* The main control register and its ssved copy are set

;¥ to the value in AN

ot

;™ Registers altered:

:* None

;t

s* Notes:

:* The control register bits have the following meanings:

o

e

o cesssssesssaceesasssssssscssssnnsssnnne

*

¢ .7 . 6 .5 . 4 .3 .2 .1.0.

H

H

H

M-42 Disc-Based Utllity Routines

--.SETCTRL.ASM

*

*

... beeper control
11 = low tone
01 = high tone
00 = off

e ms %4 %o W) w4 wg Wy wp
* % % 8 L]

... serial port power control
1 = enable
0 = disable

»

..«.bar code port power control
1 = ensble
0 = disable

L 2N BN

»

....bar code port transition control
1 = enable
0 = disable

* »

“ ®e Wp W NE Ve Mg Ve W VE W W O
3
»
*

SETCTRL proc near
push ax
push bx
push ds
pushf : Save interrupt flag (CLI below)
mov bx, 16h ; Get operating system pointer table
mov ds,bx
mov bx,ds: [14h] ; Get offset of status area
mov ds,ds: [00h]
inc bx
inc bx ; Point to saved copy of main control register
mov al,sh ; Get AH into AL
cti
mov ds: [bx] ,al ; Send value to saved copy location
out 08h, a8l ; Send to main control register
popf ; Restore interrupt flag
popP ds
pop bx
pop ax
ret
SETCTRL endp

Disc-Based Utility Routines M-43

SETINTR.ASM

The SETINTR utility in this include file writes a value to the location of the saved copy of the inter-
rupt control register (I/0 address 00h), then writes the value to the interrupt control register as well.
When interrupt status is changed by an assembly language program, the program must use the follow-
ing procedure to ensure that interrupts unaffected by the change remain in their current state:

= Read the saved copy of the interrupt control register using READINTR.
m Change the bits needed to cause the interrupt status to change.

m Write the updated value back to its saved location and output the updated value to the interrupt
control register using SETINTR.

Refer to the "Hardware Control and Status Registers” and "Interrupt Controller” chapters in part 1,
"Operating System", for further information.

Program listing:

.sfcond
ift

NERENREEATEECER NN RN RTARERAR NN R d
"(c) Copyright Hewlett-Packard Company, 1986. All *
rights are reserved. Copying or other reproduction *
of this program for inclusion in an application or hd

*

[]

* * %0

for archival purposes is permitted without the prior
written consent of Hewlett-Packard Company.®

cWEARRFRN RS RARAERRRANRAN A AN IC T TTRET TRt TR RS
endif

.tfcond

®s we we wa W W s
»

* %

Name: SETINTR

* ®

Version: 1.3

* »

Description:
Set the interrupt control register (1/0 address 00h)
and its saved copy to the value in AH

[2 BN R

Call with:
AH = interrupt control register value

Returns:
The interrupt control register and its saved copy are
set to the value in AH

L 28]

Registers altered:

* None

-

* Notes:

* The interrupt control register bits have the following meanings:
®*

* (bit set to 1 -> corresponding interrupt enabled)
* (bit set to 0 -> corresponding interrupt disabled)
-

- [EE R R RN R RN N R NN RN A E N R N N NN AR NN NN NN -

* L) - - - L] - - L] .

* .7 .6 .5 .4 .3 .2 .1.0.

N0 B Wy We WE WG W WP Ve VG VL Ve We WO We WY We W0 WG e Wy W Vs W Wy W W W4 W

M-44 Disc-Based Utility Routines

-..SETINTR.ASM

*

2% ceeiicncctccccctscsnstscscnanscntsensensccssennes

* - -

ol

H - .

* - - . -

Had . - . - . . o .=s system timer interrupt

* . - . . - . . (type 50h)

£3 J

: - -

Hd . . . - - . <« bar code timer interrupt

Hd (type 51h)

Hd . . - - . .

Hal bar code port transition interrupt

* . . - . . (type 52h)

ol

H . . - . .

FHad . - - serial port data received interrupt

Hal . - 5 . (type 53h)

-

H

i - - lOow main battery voltage interrupt

* R - . (type 54h)

ol

; . - .

Fad . - ... poser switch interrupt

Had . . (type 55h)

rs]

; . -

:* - «.. reserved interrupt 1

Fd . (type 56h)

o

H .

Had «ss reserved interrupt 2

Hd (type 57h)

oW

;.mmmnmmtmmamﬁmcnttat*

SETINTR proc near
push ax
push bx
push ds
pushf ; Save interrupt flag (CLI below)
mov bx, 16h ; Get operating system pointer table
mov ds,bx
mov bx,ds: [14h] : Get offset of status area
mov ds,ds: [00h]
add bx,3 ; Point to saved copy of interrupt control register
mov al,ah ; Get AH into AL
cli
mov ds: [bx] ,al : Write value to saved copy location
out 00h,al ; Write to interrupt control register
popf ; Restore interrupt flag
pop ds
pop bx
pop ax
ret

SETINTR endp

Disc-Based Utility Routines

M-45

VERSION.ASM

The VERSION utility in this include file returns the version number from the specified program file
(type A, B, or H). The version number is the two-byte value at offset 04h in the file — the third pair of
bytes in the program header. If the specified program is a handler (type H), VERSION also returns
the handler identifier, which is the two-byte identifier at offset 02h in the file — the second pair of
bytes in the handler header. VERSION can return the version of the system ROM instead of the ver-
sion of a program. The system ROM version is part of the copyright message that appears when the
machine enters command mode.

Program listing:
-sfcond
if1
Hd ¥(c) Copyright Hewlett-Packard Company, 1987. All *
Hal rights are reserved. Copying or other reproduction *
Hd of this program for inclusion in an application or *
Hl for archival purposes is permitted without the prior *
P written consent of Hewlett-Packard Company.® *
H AR TR RERRA AR A RN R ER AR AN RN AT AR AT S SRR SR AR AT TR BY
endif
.lfcond
AXREG equ 00h
ALREG equ 00h
AHREG equ 01h
i
BXREG equ 02h
BLREG equ 02h
BHREG equ 03h
CXREG equ 04h
CLREG equ 04h
CHREG equ 05h
DXREG equ 06h
DLREG oqu 06h
DHREG equ 07h
SIREG equ 08h
DIREG equ OAh
DSREG equ Och
ESREG equ OEh
BPREG equ 10h
FIND_FILE equ 16h
BUFFER_SIZE equ Oth
pushregs macro
pushf
push bp
push es
push ds
push di
push si
push dx
push [
push bx
M-46 Disc-Based Utility Routines

...VERSION.ASM

]
push ax
mov bp, sp
endm

popregs macro

pop ax
pop bx
pop cx
pop dx
pop si
pop di
pop ds
pop es
pop bp
popf

endm

include findos.asm

WA ARERERARERRAN AR AR EREAAA AR RAER B EAT A AT AR A TR AR A AR AR RS

* %

Name: VERSION

+ 8

Version: 1.5

* »

Description:
Return the version number of the specified file

* % %

Call with:
ES:BX points to a file name (see Notes, below)

* %

* Returns:
* AL = Error code:
* 00h No error

3

65h (101) Illegal parameter
66h (102) invalid directory number
67h (103) File not found

* % %

1f AL=0Ch:
DX = version (DH = integer part, DL = fractional part)
For type "H" files only:
CX = handier identifier (bytes 2 and 3 of the program header)

% % B %

Registers altered:
cx,DX

* % »

Notes:
1f ES and BX are both zero, the version returned is that
of the system ROM (the version shown in the copyright
message which is displayed when the HP-94 enters command mode).

* 8

™ ME W We WP WE WE W) VL VP NI Ve VD Ve Ve Ve Ve Ve W WG Ve Vs W Ve Ve Ve ®e W MW Ve WE W W
* *

*
BREARE RN LR AR AR RN NN RN ERAR AR AT AT AR TN T b I D
VERSION proc near
pushregs
mov ax,es
add ax, bx ; Check for zero
Jja VERSION_FILE
; This is for the system ROM
catl FINDOS

Disc-Based Utility Routines

M-47

M-48

...VERSION.ASM

File not found

; DS is start of SYOS file, ES is start of operating system pointer table

VERSION_0S1:

2
VERSION_0S2:

’
VERSION_0S3:

VERSION_FILE:

VERSION_EXIT:

VERSION_RET:

VERSION

mov ax,ds

or ax, ax

mov al,67h

Jz VERSION_RET
mov si,es: [3Ch]
sub dx, dx

mov bx,010Ah
lodsb

sub al,'9'+1
add al,'9'+1-20"
jnc VERSION_0S2
xchg al,dh

mul bt

odd ch,al

Jmp VERSION_OS1
cmp al,'.'-10!
jne VERSION_0S3
sub bh,0th

jc VERSION_EXIT
xchg dh,dl

jmp VERSION_OS1
or bh,bh

jnz VERSION_EXIT
xchg dh,dl

jm short VERSION_EXIT
sub sp,BUFFER_SIZE
push ss

pop ds

mov dx,sp

mov ah,FIND_FILE
int 1Ah

or al,al

jnz VERSION_RET
mov 8i,sp

mov ds,ss: [si+08h]
mov al,ss:[si+07h)
mov dx,ds: [04h)
cmp al,'H'

jne VERSION_EXIT
mov cx,ds: [02h]
mov CXREG [bp] , cx
mov DXREG [bp] ,dx
sub al,al

mov ALREG[bp] ,al
mov sp,bp
popregs

ret

endp

Disc-Based Utility Routines

-e - ms wa

e we

Pointer to version

Clear out counter

Decade value and *.% flag

Not in 0...9

New sum in DH

. u (continue with fraction)

decrement %.% flag
already had *.% (exit now)

Done

allocate file information buffer

0.S. function call

start segment address of the file
get file type
Fetch version from file

Fetch handler identifier

result code = 0Ch

return result code to user
restore stack pointer

XIOCTL.ASM

The XIOCTL utility in this include file allows an assembly language program to call the IOCTL rou-
tine in an open low-level handler. TOCTL routines are usually called by a high-level handler to cause
its low-level handler to take some action, such as change operating configuration or flush its receive
buffer. The XIOCTYL utility allows any application to direct the behavior of a low-level handler in the
same manner. The behavior of the TIOCTL routine is described in the "User-Defined Handlers"
chapter in part 1, "Operating System", and the "Hewlett-Packard Bar Code Handlers" appendix.

Program listing:

.sfcond
if1

RS RdRd

H
Fad ®(c) Copyright Hewlett-Packard Compeny, 1986. All *
* rights are reserved. Copying or other reproduction *
% of this program for inclusion in an application or -
:* for archival purposes is permitted without the prior *
:* written consent of Hewlett-Packard Company.® *
;tttﬁf*'*ttiﬁttitﬁtﬂﬁﬁttt*tttttitﬁ'ﬁttt'ﬁf’t*td*ttt**t.**tttt*
endif
.l fcond
s BRREERNENEIRF AN LN SR ACEEEERRAERERETAAAIAIT A AT AN TR R Rd

* %

Name: XIOCTL

L R

Version: 1.5

* »

Description:
Call the IOCTL routine in a handler

* % »

Call with:
AL = Channel number
AH = I0CTL function code
Other registers as defined by the handler's I0CTL routine

* % %%

* Returns:
* AL = Error code:
* 00h No error

6%h (105) Channel not open
Other registers as defined by the handler’'s 10CTL routine

* % »

Registers altered:
AL (handler’s AL if channel is open)
Other registers as defined by the handler’s IOCTL routine

* % %

Notes:
See the Technical Reference Manual, Part 1, chapter 3 “User-
Defined Hendlers® for more information about I10CTL.

LN B B

when the 10CTL routine of the handler is called, XIOCTL also
sets up these registers:

DS = Segment address of hendler scratch area

BP = Stack offset address of register save area

@6 My g Be ®g B We Wa g Wy W3 e W T4 We ®e WE Wy Ve We Ve Ve ®e W6 Wy We W5 Wp WG Ve We W &
* 8

o8IT equ 10h
equ 20h

Disc-Based Utility Routines M-49

--.-XIOCTL.ASM

.
X10CTL proc near
pushf
push bp
push es
push ds
push di
push si
push dx
push cx
push bx
push ax
mov bp, sp
mov bx, 16h
mov ds,bx
mov bx,ds: [0Ah) ; Size of open table
cmp al,bl : Check for valid channel #
jae XIOCTL_ERROR
mov bx,ds: [24h) ; Open channel table
mov ds,ds: [00h] ; Operating system segment
mov sh,0Ch ; OCh (12) bytes per open table entry
ml sh ; Result to AX
add bx, ax ; DS:BX points to channel entry
mov ax,0{bp] ; Restore AX
mov al,byte ptr ds:[bx] ; Read channel status
and al ,0BIT+HBIT
cmp al ,0BIT+HBIT : Is channel open for a device handler?
mov al ,6%h ; Preload *Channel not open"
jne XIOCTL_END
xor al,sl
push cs
mov cx,offset XIOCTL_END
push cx ; Stack has return address for XIOCTL_END
push ds: [bx+3]
mov cx,ds: [bx+1]
add cx, 15h
push cx ; Stack has execute address for I0CTL
mov ds,ds: [bx+5] ; Load handler data segment
mov cx, 4 [bp)
mov bx, 2 [bp] ; Restore these registers
db 0CBh ; FAR RET (go to 10CTL handler)
XI1OCTL_ERROR:
mov al,65h ; lllegal parameter
XIOCTL_END:
pop bx ; (really AX contents)
mov sh,bh ; Leave AL unchanged from handler I0OCTL
pop bx
pop cx
pop dx
pop si
pop di
pop ds
pop es
pop bp
popf
ret
XI0CTL endp
M-50 Disc-Based Utility Routines

XTIMEOUT.ASM

The XTIMEOUT utility in this include file executes a user-defined timeout interrupt routine if one
was defined, or turns the machine off if none was defined. It is used by a handler READ or WRITE
routine that is waiting for I/O when the IOABORT utility indicates that the timeout occurred. Refer
to JOWAIT and IOABORT for further information.

XTIMEOUT uses FINDOS to find the operating system file and the start of the operating system
jump table.

Program listing:

.sfcond
if1

!

Aa a4 gy

%(c) Copyright Hewlett-Packard Company, 1987. All
rights are reserved. Copying or other reproduction
of this program for inclusion in an application or
for archival purposes is permitted without the prior
written consent of Hewlett-Packard Company."
;nmnmmmmnatmw-nmttmttntmtt
endif

. tfcond

* % 8
* % % %8

wp me w5 wa % W

include findos.asm

REAEAAEERREER R AR TR TR RN ERTRERRAANEEEATACRN AT RAT R R RN TR TR

we we
»

* Name: XTIMEOUT

*

Version: 1.3

* »

Description:
Execute a user-defined timeout routine, if any. If no
user-defined timeout routine is present, turn the WP-94
off (will cold start when next turned on)

* & % 88

Call with:
Nonhe

* 8 »

Returns:
None

* % 2

Registers altered:
None

* %@

Notes:
If there is no user-specified timeout routine, XTIMEOUT
does not return to the caller. The WP-94 is turned off,
ond will cold start when it is turned on again.

% % %8

1f there is a user-specified timeout routine, it will be
executed before XTIMEOUT returns.

. »

AN ERER I RA ST EET TR RN RN N NS SRR AN AR PR AR AR RN

Disc-Based Utility Routines M-51

W ®e W W We WY WP Ve B3 W W Ve W VF Ve W) W W B W G5 W WG %o Wy @« W

XTIMEOUT proc near
push ax

-..XTIMEOUT.ASM

e
push bx
push si
push ds
push es
call FINDOS

: DS is SYOS segment
: ES is operating system pointer table segment

push ds
push es: [3Ah)
mov si,es: [00h)
mov ds,si
mov si,sp
call dword ptr ss:[sf]
add sp,4
pop es
pop ds
pop si
pop bx
pop ax
ret
XTIMEOUT endp

Disc-Based Utility Routines

Get offset of timeout routine

Set up operating system data segment

Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

