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Introduction

Congratulations! Whether you are new to HP calculators or an
experienced user, you will find the HP-15C unmatched in the
calculator world. Besides Continuous Memory and low power
consumption, the HP-15C state-of-the-art technology provides:

® 448 bytes of program memory (one or two bytes per
instruction) and sophisticated programming capability, in-
cluding conditional and unconditional branching, subrou-
tines, flags, and editing.

® Four advanced mathematics capabilities: complex number
calculations, matrix calculations, solving for roots, and
numerical integration.

® Direct and indirect storage in up to 67 registers.

® Long-life batteries.

This handbook is written for you, regardless of your level of
expertise. The first part, Fundamentals, covers all the basic
functions of the HP-15C and how to use them. Each section in the
second part, Programming, is broken down into three sub-
sections—The Mechanics, Examples, and Further Information—in
order to make it easy for users with varying backgrounds to find
the information they need. The third part, Advanced Functions,
describes the four advanced mathematics capabilities.*

Before starting these sections, you may want to gain some
operating and programming experience on the HP-15C by work-
ing through the introductory material, The HP-15C: A Problem
Solver, on page 12.

The various appendices describe additional details of calculator
operation, as well as warranty and service information. The
Function Summary and Index and the Programming Summary
and Index at the back of this manual can be used for quick

* You certainly do not need to read every page of parts I and II before delving into the HP-
15C Advanced Functions if you are already familiar with HP calculators. The use of
and requires a knowledge of HP-15C programming.
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reference to each function key and as a handy page reference to
more comprehensive information inside the manual.

Also available from Hewlett-Packard dealers is the HP-15C
Advanced Functions Handbook, which provides applications and
technical descriptions for the root-solving, integration, complex
number, and matrix functions.
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The HP-15C:
A Problem Solver

The HP-15C Advanced Programmable Scientific Calculator is a
powerful problem solver, convenient to carry and easy to hold. Its
Continuous Memory retains data and program instructions
indefinitely until you choose to reset it. Though sophisticated, it
requires no prior programming experience or knowledge of
programming languages to use it.

An important new feature of your HP-15C is its extremely low
power consumption. This efficiency is responsible for the
lightweight, compact design, and eliminates the need for a
recharger. Power consumption in the HP-15C is so low that the
average battery life in normal use is 6 to 12 months. In addition,
the low-power indicator gives you plenty of warning before the
calculator stops functioning.

The HP-15C also conserves power by automatically shutting its
display off if it is left inactive for a few minutes. But don’t worry
about losing data—any information contained in the HP-15C is
saved by Continuous Memory.

A Quick Look at

Your Hewlett-Packard calculator uses a unique operating logic,
represented by the key, that differs from the logic in most
other calculators. You will find that using makes nested
and complicated calculations easier and faster to work out. Let’s
get acquainted with how this works.

For example, let’s look at the arithmetic functions. First we have to
get the numbers into the machine. Is your calculator on? If not,
press [ON]. Is the display cleared? To display all zeros, you can
press [g][CLx], that is, press [g], then [«].* To perform arithmetic,

* If you have not used an HP calculator before, you will notice that most keys have three
labels. To use the primary function—the one printed in white on top of the key—just
press that key. For those printed in gold or blue, press the gold [f] key or the blue (8] key
first.

12
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key in the first number, press to separate the first number
from the second, then key in the second number and press [+], [=],
[x], or [5]. The result appears immediately after you press any
numerical function key.

The display format used in this handbook is 4 (the decimal
point is “fixed” to show four decimal places) unless otherwise
mentioned. If your calculator does not show four decimal places,
you may want to press [f] 4 to match the displays in the
examples.

Manual Solutions

Run through the following two-number calculations. It is not
necessary to clear the calculator between problems. If you enter a
digit incorrectly, press [«] to undo the mistake, then key in the
correct number.

To Compute: Keystrokes Display
9-6=3 9 (ENTER]6 (-] 3.0000
9X6=54 9 [ENTER]6 [x] 54.0000
9+6=15 9 [ENTER] 6 (%] 1.5000
9% =531,441 9 [ENTER] 6 ] 531,441.0000

Notice that in the four examples:

e Both numbers are in the calculator before you press the
function key.

° is used only to separate two numbers that are keyed in
one after the other.

® Pressing a numeric function key, in this case [=], [X], (], or [,*],
executes the function immediately and displays the result.

To see the close relationship between manual and programmed
problem solving, let’s first calculate the solution to a problem
manually, that is, from the keyboard. Then we’ll use a program to
calculate the solution to the same problem with different data.
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The time an object takes to fall to the ground (ignoring air friction)
is given by the formula

where t = time in seconds,
h = height in meters,
g =the acceleration due to
gravity, 9.8 m/s2.

Example: Compute the time taken
by a stone falling from the top of the
Eiffel Tower (300.51 meters high) to
the earth.

Keystrokes Display

300.51 300.5100 Enter A.

2[x] 601.0200 Calculates 2A.

9.8(%) 61.3286 2h) /8.

7.8313 Falling time, seconds.

Programmed Solutions

Suppose you wanted to calculate falling times from various
heights. The easiest way is to write a program to cover all the
constant parts of a calculation and provide for entry of variable
data.

Writing the Program. The program is similar to the keystroke
sequence you used above. A label is useful to define the beginning
of a program, and a return is useful to mark the end of a program.
Also, the program must accommodate the entry of new data.

Loading the Program. You can load a program for the above
problem by pressing the following keys in sequence. (The display
shows information which you can ignore for now, though it will be
useful later.)



Keystrokes

(g)(PZR]

(fICLEAR

[E]N

BEE® O

(e)(P/R]

The HP-15C: A Problem Solver 15

Display
000-
000-
001-42,21,11
002- 2
003- 20
004- 9
005- 48
006- 8
007- 10
008- 11
009- 43 32
7.8313

Sets HP-15C to Program
mode. (PRGM annuncia-
tor on.)

Clears program mem-
ory. (This step is option-
al here.)

Label “A” defines the be-
ginning of the program.

The same keys you
pressed to solve the prob-
lem manually.

“Return” defines the end
of the program.

Switches to Run mode.
(No PRGM annunciator.)

Running the Program. Enter the following information to run

the program.

Keystrokes
300.51

1050 (f](A]

Display
300.51

7.8313

14.6385

Height of the Eiffel
Tower.

Falling time you calcu-
lated earlier.

The time (seconds) for a
stone to reach the
ground after release
from a blimp 1050 m
high.
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With this program loaded, you can quickly calculate the time of
descent of an object from different heights. Simply key in the
height and press [f][A]. Find the time of descent for objects released
from heights of 100 m, 2 m, 275 m, and 2,000 m.

The answers are: 4.5175 s; 0.6389 s; 7.4915 s; and 20.2031 s.

That program was relatively easy. You will see many more aspects
and details of programming in part II. For now, turn the page to
part I to take an in-depth look at some of the calculator’s important
operating basics.



Partl

HP-15C
- Fundamentals




Section 1

Getting Started

Power On and Off

The key turns the HP-15C on and off.* To conserve power, the
calculator automatically turns itself off after a few minutes of
inactivity.

Keyboard Operation

Primary and Alternate Functions

Most keys on your HP-15C perform one primary and two alternate,
shifted functions. The primary function of any key is indicated by
the character(s) on the face of the key. The alternate functions are
indicated by the gold characters printed above the key and the blue
characters printed cn the lower face of the key.

e To select the primary function
printed on the face of a key,
press only that key. For
example: [3].

e To select the alternate function
printed in gold or blue, press the
like-colored prefix key ([f] or (g])
followed by the function key. For
example: [f][SOLVE]; [g][x<y].

Throughout this handbook, we will observe certain conventions in
referring to alternate functions. References to the function itself
will appear as just the key name in a box, such as “the [MEM]
function.” References to the use of the key will include the prefix
key, such as “press [g][MEM].” References to the four gold functions
printed under the bracket labeled “CLEAR” will be preceded by the
word “CLEAR,” such as “the CLEAR function,” or “press
CLEAR

*Note that the key is lower than the other keys to help prevent its being pressed
inadvertently.

18
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Notice that when you press the [f] or -

(o] prefix key, an f or g annunciator 0.0000
appears and remains in the display : !
until a function key is pressed to

complete the sequence.

Prefix Keys

A prefix key is any key which must precede another key to
complete the key sequence for a function. Certain functions require
two parts: a prefix key and a digit or other key. For your reference,
the prefix keys are:

GSB
(]
HYP" (x2]

If you make a mistake while keying in a prefix for a function, press
[f)CLEAR to cancel the error. The CLEAR key is also
used to show the mantissa of a displayed number, so all 10 digits of
the number in the display will appear for a moment after the

key is pressed.

Changing Signs

Pressing (change sign) will change the sign (positive or
negative) of any displayed number. To key in a negative number,
press after its digits have been keyed in.

Keying in Exponents

(enter exponent) is used when keying in a number with an
exponent. First key in the mantissa, then press and key in the
exponent.

For a negative exponent press after keying in the exponent.*
For example, to key in Planck’s constant (6.6262 X 1073 Joule-
seconds) and multiply it by 50:

* may also be pressed after and before the exponent, with the same result
(unlike the mantissa, where digit entry must precede ).
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Keystrokes

6.6262
EEX

H» W

CHS
50 (%]

Display

6.6262
6.6262 00 The 00 prompts you to
key in the exponent.

6.6262 03 (6.6262 X 103).
6.6262 34 (6.6262 X 1034).
6.6262 -34  (6.6262X 10734
6.6262 -34 Enters number.
3.3131 -32 Joule-seconds.

Note: Decimal digits from the mantissa that spill into the
exponent field will disappear from the display when you
press [EEX], but will be retained internally.

To prevent a misleading display pattern, will not operate with
a number having more than seven digits to the left of the radix
mark (decimal point), nor with a mantissa smaller than 0.000001.
To key in such a number, use a form having a greater exponent
value (whether positive or negative). For example, 123456789.8 X
1023 can be keyed in as 1234567.898 X 102%; 0.00000025 X 1071 can
be keyed in as 2.5 X 10722,

The “CLEAR’' Keys

Clearing means to replace a number with zero. The clearing
operations in the HP-15C are (the table is continued on the next

page):

Clearing Sequence

Effect

(e)cLs]
(«]

In Run mode:
In Program mode:

[fJCLEAR [Z]

Clears display (X-register).

Clears last digit or entire display.
Deletes current instruction.

Clears statistics storage registers,
display, and the memory stack (described
in section 3).
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Clearing Sequence Effect
(flCLEAR
In Run mode: Repositions program memory to line
000.
In Program mode: Deletes all program memory.

(fJCLEAR Clears all data storage registers.
[fJCLEAR * Clears any prefix from a partially entered
key sequence.

*Also temporarily displays the mantissa.

Display Clearing: [CLx]and [«]
The HP-15C has two types of display clearing operations:
(clear X) and (€] (back arrow).
In Run mode:
° clears the display to zero.

® [«] deletes only the last digit in the display if digit entry has
not been terminated by or most other functions. You
can then key in a new digit or digits to replace the one(s)
deleted. If digit entry has been terminated, then [«] acts like

ClLx].
Keystrokes Display
12345 12,345 Digit entry not

terminated.

1,234 Clears only the last digit.
9 12,349
111.1261 Terminates digit entry.
[« 0.0000 Clears all digits to zero.

In Program mode:

° is programmable: it is stored as a programmed
instruction, and will not delete the currently displayed
instruction.

e [«] is not programmable, so it can be used for program
correction. Pressing will delete the entire instruction
currently displayed.
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Calculations

One-Number Functions

A one-number function performs an operation using only the
number in the display. To use any one-number function, press the
function key after the number has been placed in the display.

Keystrokes Display
45 45
(g](tog] 1.6532

Two-Number Functions and [ENTER

A two-number function must have two numbers present in the
calculator before executing the function. (+], (=], [x], and (3] are
examples of two-number functions.

Terminating Digit Entry. When keying in two numbers to
perform an operation, the calculator needs a signal that digit entry
is terminated for the first number. This is done by pressing
to separate the two numbers. If, on the other hand, one of the
numbers is already in the calculator as the result of a previous
operation, you do not need to use the key. All functions
except the digit entry keys themselves* have the effect of
terminating digit entry.

Notice that, regardless of the number, a decimal point always

appears and a set number of decimal places are displayed when
you terminate digit entry (as by pressing [ENTER]).

Chain Calculations. In the following calculations, notice that:

e The key is used only for separating the sequential
entry of two numbers.

e The operator is keyed in only after both operands are in the
calculator.

e The result of any operation may itself become an operand.
Such intermediate results are stored and retrieved on a last-in,
first-out basis. New digits keyed in following an operation are
treated as a new number.

* The digit keys, (], [CHS], [EEX], and [«].
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Example: Calculate (9+ 17 —4) +4.

Keystrokes Display

9 9.0000 Digit entry terminated.
17 26.0000 9+17).

4[] 22.0000 9+17—4).

4[5 5.5000 9+17—4)+4.

Even more complicated problems are solved in the same manner—
using automatic storage and retrieval of intermediate results. It is
easiest to work from the inside of parentheses outwards, just as you
would with calculations on paper.

Example: Calculate (6 + 7) X (9 — 3).

Keystrokes Display

6 6.0000 First solve for the
intermediate result of
6+7).

7 13.0000

9 9.0000 Then solve for the
intermediate result of
9—3).

3[=) 6.0000

] 78.0000 Then multiply the

intermediate results
together (13 and 6) for the
final answer.

Try your hand at the following problems. Each time you press
or a function key in a calculation, the preceding number is
saved for the next operation.

(16 X 38) — (13 X 11) = 465.0000
4 X (17—12) + (10 — 5) = 4.0000
232 — (13X 9) + 1/7=412.1429
V(5.4 X0.8) + (12.5— 0.72)] = 0.5998




Section 2

Numeric Functions

This section discusses the numeric functions of the HP-15C
(excluding statistics and advanced functions). The nonnumeric
functions are discussed separately (digit entry in section 1, stack
manipulation in section 3, and display control in section 5).

The numeric functions of the HP-15C are used in the same way
whether executed from the keyboard or in a program. Some of the
functions (such as [ABS]) are, in fact, primarily of interest for
programming.

Remember that the numeric functions, like all functions except
digit entry functions, automatically terminate digit entry. This
means a numeric function does not need to be preceded or followed

by [ENTER].

Pi
Pressing (][] places the first 10 digits of 7 into the calculator. [r]
does not need to be separated from other numbers by (ENTER].

Number Alteration Functions

The number alteration functions act upon the number in the
display (X-register).

Integer Portion. Pressing [g] replaces the number in the
display with the nearest integer of lesser or equal magnitude.

Fractional Portion. Pressing replaces the number in the
display with its fractional part (that is, the difference between the
number and its integer part).

Rounding. Pressing [g][RND]rounds all 10 internally held digits of
the mantissa of the displayed value to the number of digits
specified by the current ,[Sc1, or display format.

Absolute Value. Pressing [g][ABS]yields the absolute value of the
number in the display.

24
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Keystrokes Display

123.4567 [g]J(INT] 123.0000
[g)(STx][CHS](g](INT] -123.0000 Reversing the sign does

not alter digits.
(oJ(CLSTx](f][FRAC] =~ -0.4567
1.23456789

[g][RND] -1.2346

(fJCLEAR 1234600000 Temporarily displays all
(release) -1.2346 digits in the mantissa.
(g)(ABS] 1.2346

One-Number Functions

One-number math functions in the HP-15C operate only upon the
number in the display (X-register).

General Functions

Reciprocal. Pressing calculates the reciprocal of the number
in the display.

Factorial and Gamma. Pressing [f](x!] calculates the factorial of
the displayed value, where x is an integer 0 < x < 69.

You can also use [x!]to calculate the Gamma function, I (x), used in
advanced mathematics and statistics. Pressing [f] [x!]] calculates
I' (x + 1), so you must subtract 1 from your initial operand to get
I' (x). For the Gamma function, x is not restricted to nonnegative
integers.

Square Root. Pressing calculates the positive square root of
the number in the display.

Squaring. Pressing [g](3?] calculates the square of the number in
the display.

Keystrokes Display
25 0.0400
8 (=) 40,320.0000 Calculates 8! or I' (9).
3.9 1.9748

12.3[g)] 151.2900
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Trigonometric Operations

Trigonometric Modes. The trigonometric functions operate in
the trigonometric mode you select. Specifying a trigonometric
mode does not convert any number already in the calculator to that
mode; it merely tells the calculator what unit of measure (degrees,
radians, or grads) to assign a number for a trigonometric function.

Pressing (g] sets Degrees mode. No annunciator appears in
the display. Degrees are in decimal, not minutes-seconds form.
Pressing (g] sets Radians mode. The RAD annunciator
appears in the display. In Complex mode, all functions (except
and [®R]) assume values are in radians, regardless of the
trigonometric annunciator displayed.

Pressing [g] sets Grads mode. The GRAD annunciator
appears in the display.

Continuous Memory will maintain the last trigonometric mode
selected. At “power up” (initial condition or when Continuous
Memory is reset), the calculator is in Degrees mode.

Trigonometric Functions. Given x in the display (X-register):

Pressing Calculates
(SIN] sine of x
(g)(SINT] arc sine of x
cos cosine of x
(gl[cosT arc cosine of x
TAN tangent of x
(o)(TANT] arc tangent of x

Before executing a trigonometric function, be sure that the
calculator is set to the desired trigonometric mode (Degrees,
Radians, or Grads).

Time and Angle Conversions

Numbers representing time (hours) or angles (degrees) can be
converted by the HP-15C between a decimal-fraction and a
minutes-seconds format:



Section 2: Numeric Functions 27

Hours.Decimal Hours ~e———— Hours.Minutes Seconds Decimal Seconds
(H.h) (H.MMSSs)

Degrees.Decimal Degrees <e————> Degrees.Minutes Seconds Decimal Seconds
(D.d) (D.MMSSs)

Hours/Degrees-Minutes-Seconds Conversion. Pressing
converts the number in the display from a decimal
hours/degrees format to an hours/degree-minutes-seconds-decimal
seconds format.

For example, press to convert

1.2 3 45 1.1404
[ —

—— —— ——
— seconds
I to ‘ minutes
hours hours
Press [f][PREFIX] to display the value to all possible decimal places:

1140420000

—

Lto the hundred-thousandths of a second.

Decimal Hours (or Degrees) Conversion. Pressing [g]
converts the number in the display from an hours/degrees-
minutes-seconds-decimal seconds format to a decimal
hours/degrees format.

Degrees/Radians Conversions

The [#DEG] and [®RAD] functions are used to convert angles to
degrees or radians (D.d<«—=3R.r). The degrees must be expressed
as decimal numbers, and not in a minutes-seconds format.

Keystrokes Display
40.5 0.7069 Radians.
(g)[®DEG] 40.5000 40.5 degrees (decimal

fraction).
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Logarithmic Functions

Natural Logarithm. Pressing [g] calculates the natural
logarithm of the number in the display; that is, the logarithm to the
basee.

Natural Antilogarithm. Pressing calculates the natural
antilogarithm of the number in the display; that is, raises e to the
power of that number.

Common Logarithm. Pressing [g] calculates the common
logarithm of the number in the display; that is, the logarithm to the
base 10.

Common Antilogarithm. Pressing calculates the common
antilogarithm of the number in the display; that is, raises 10 to the
power of that number.

Keystrokes Display
45 [g][LN] 3.8067 Natural log of 45.
3.4012 30.0001 Natural antilog of 3.4012.
12.4578 [g][LOG] 1.0954 Common log of 12.4578.
3.1354 1,365.8405 Common antilog of
3.1354.
Hyperbolic Functions
Given x in the display (X-register):
Pressing Calculates
[{[BYP)(SIN] hyperbolic sine of x
[g)(HYPT](SIN) inverse hyperbolic sine of x
hyperbolic cosine of x
(g)[HYPT](COS) inverse hyperbolic cosine of x
hyperbolic tangent of x
(g)(HYPT)[TAN] inverse hyperbolic tangent of x
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Two-Number Functions

The HP-15C performs two-number math functions using two
values entered sequentially into the display. If you are keying in
both numbers, remember that they must be separated by or
any other function—like [g] or [1/x]—that terminates digit
entry.

For a two-number function, the first value entered is considered the
y-value because it is placed into the Y-register for memory storage.
The second value entered is considered the x-value because it
remains in the display, which is the X-register.

The arithmetic operators, [+], [=], [x], and (%], are the four basic
two-number functions. Others are given below.

The Power Function

Pressing [*] calculates the value of y raised to the x power. The
base number, y, is keyed in before the exponent, x.

To Calculate | Keystrokes Display

214 2 1.4 2.6390
2714 2 1.4(cHS]y*]| 0.3789
(—2)% 2 [CHS][ENTER] 3 [¥) -8.0000
32 or2” 2 [ENTER] 3 (17255 1.2599

Percentages

The percentage functions, and [A%], preserve the value of the
original base number along with the result of the percentage
calculation. As shown in the example below, this allows you to
carry out subsequent calculations using the base number and the
result without re-entering the base number.

Percent. The [%] function calculates the specified percentage of a
base number.
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For example, to find the sales tax at 3% and total cost of a $15.76
item:

Keystrokes Display

15.76 15.7600 Enters the base number
(the price).

3(gJ(%] 0.4728 Calculates 3% of $15.76
(the tax).

16.2328 Total cost of item ($15.76
+ $0.47).

Percent Difference. The function calculates the percent
difference between two numbers. The result expresses the relative
increase (a positive result) or decrease (a negative result) of the
second number entered compared to the first number entered.

For example, suppose the $15.76 item only cost $14.12 last year.
What is the percent difference in last year’s price relative to this
year’s?

Keystrokes Display

15.76 15.7600 This year’s price (our
base number).

14.12[g)(a%) -10.4061 Last year’s price was
10.41% less than this

year’s price.

Polar and Rectangular Coordinate Conversions
The and functions are
provided in the HP-15C for conver-
sions between polar coordinates and
rectangular coordinates.

The angle 6 is assumed to be in the
units set by the current trigonometric
mode, whether degrees (in a decimal
format, not a minutes-seconds for-
mat), radians, or grads. 6 is measured
as shown in the illustration at right.
Polar Conversion. Pressing (g] (polar) converts a set of
rectangular coordinates (x, y) to polar coordinates (magnitude r,
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angle ). The y-value must be entered first, the x-value second.
Upon executing [g][#®P], r will appear in the display. Press [xxy](X
exchange Y) to bring 6 out of the Y-register and into the display
(X-register). 6 will be returned as a value between —180° and 180°,
between —7 and 7 radians, or between —200 and 200 grads.

Rectangular Conversion. Pressing (rectangular) con-
verts a set of polar coordinates (magnitude r, angle 6) into
rectangular coordinates (x, y). 6 must be entered first, then r. Upon
executing (f][®R], x will be displayed first; press to display y.

/N

Y|y 0

X x r
N

Keystrokes Display

(g](DEG] Set to Degrees mode (no
annunciator).

5 5.0000 y-value.

10 10 x-value.

[g][=»P] 11.1803 r.

(x2y] 26.5651 6; rectangular coordinates
converted to polar coordi-
nates.

30 30.0000 6.

12 12 r.

10.3923 x-value.

(x2y] 6.0000 y-value. Polar coordinates

converted to rectangular
coordinates.



Section 3
The Automatic Memory Stack,
LAST X, and Data Storage

The Automatic Memory Stack
and Stack Manipulation

HP operating logic is based on a mathematical logic known as
“Polish Notation,” developed by the noted Polish logician Jan
Yukasiewicz (Wookashye'veech) (1878-1956). Conventional alge-
braic notation places the algebraic operators between the relevant
numbers or variables when evaluating algebraic expressions.
FLukasiewicz’s notation specifies the operators before the variables.
For optimal efficiency of calculator use, HP applied the convention
of specifying (entering) the operators after specifying (entering) the
variable(s). Hence the term “Reverse Polish Notation” (RPN).

The HP-15C uses RPN to solve complicated calculations in a
straightforward manner, without parentheses or punctuation. It
does so by automatically retaining and returning intermediate
results. This system is implemented through the automatic
memory stack and the key, minimizing total keystrokes.

The Automatic
Memory Stack Registers

T | 0.0000
Z | 0.0000
Y | 0.0000
X | 0.0000 | Always displayed.

When the HP-15C is in Run mode (no PRGM annunciator
displayed), the number that appears in the display is the number in
the X-register.

32
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Any number that is keyed in or results from the execution of a
numeric function is placed into the display (X-register). This action
will cause numbers already in the stack to lift, remain in the same
register, or drop, depending upon both the immediately preceding
and the current operation. Numbers in the stack are stored on a
last-in, first-out basis. The three stacks drawn below illustrate the
three types of stack movement. Assume x, y, z, and ¢ represent any
numbers which may be in the stack.

Stack Lift No Stack Lift or Drop
lost

X < N -+
NN
X < N o
;

X T
Keys:
Stack Drop
T ¢t ? t
Z | 2 t
Y[y NN z
X X ]\ x+y
Keys:

Notice the number in the T-register remains there when the stack
drops, allowing this number to be used repetitively as an
arithmetic constant.

Stack Manipulation Functions

[ENTER]. Pressing separates two numbers keyed in one after
the other. It does so by lifting the stack and copying the number in
the display (X-register) into the Y-register. The next number
entered then writes over the value in the X-register; there is no
stack lift. The example below shows what happens as the stack is
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filled with the numbers 1, 2, 3, 4. (The shading indicates that the
contents of that register will be written over when the next number

is keyed in or recalled.)

lost lost lost
T t / z / y |— /
y X
Z z / / — / 1
y X X
Y y / X / 1 — /
X X /I-'> 1 4: ’ |-> 2 4 "~ :
Keys: 1 2
T| x |— x 1
Z| 1 |[—>| 1 2
Y 2 3
X|2 3 4
Keys: 3

(roll down), (roll up), and [xxy] (X exchange Y).
and roll the contents of the stack registers up or down one
register (one value moves between the X- and the T-register). No
values are lost. (x%y] exchanges the numbers in the X- and Y-
registers. If the stack were loaded with the sequence 1, 2, 3, 4, the
following shifts would result from pressing [R¥ ], (R4], and [x%y].

T 1 |~ 4
R

Z| 2 | 1
N

Y 3 ~ 2

X| a4 3

Keys:

LR

AN

(gRe)

e
e

\/\:

WlH|IN|=

=]
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The LAST X Register and

The LAST X register, a separate memory register, preserves the
value that was last in the display before execution of a numeric
operation.* Pressing [g] (LAST X) places a copy of the
contents of the LAST X register into the display (X-register). For
example:

/ lost
T t |7/ ¢t z
Z| z |/ 2 / y
Y| v |/ v / 16
X 4 —»| 16 /: 4
Keys: @ (g)(LSTx]
LASTX: | / \>L -] a ]

The feature saves you from having to re-enter numbers you
want to use again (as shown under Arithmetic Calculations With
Constants, page 39). It can also assist you in error recovery, such
as executing the wrong function or keying in the wrong number.

For example, suppose you mistakenly entered the wrong divisor in
a chain calculation:

Keystrokes Display

287 287.0000

12.9(%) 22.2481 Oops! The wrong divisor.
[g][LsTx) 12.9000 Retrieves from LAST X

the last entry to the X-
register (the incorrect

divisor) before (] was

executed.

* Unless that operation was (3], [s], or [LR.], which don’t use or preserve the value in the
display (X-register), but instead calculate from data in the statistics storage registers
(Rg to Ry). For a complete list of operations which save x in LAST X, refer to appendix
B.
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Keystrokes Display

] 287.0000 Reverses the function that
produced the wrong
answer.

13.9(5) 20.6475 The correct answer.

Calculator Functions and the Stack

When you want to key in two numbers, one after the other, you
press between entries of the numbers. However, when you
want to key in a number immediately following any function
(including manipulations like [R¥]), you do not need to use [ENTER].
Why? Executing most HP-15C functions has this additional effect:

® The automatic memory stack is lift-enabled; that is, the stack
will lift automatically when the next number is keyed or
recalled into the display.

® Digit entry is terminated, so the next number starts a new

entry.
lost
e EsE
Yy'—>y/2\y
X4—>2/5]\7
I—»
Keys: 5

There are four functions—[ENTER], (CLx], [Z+], and [Z-]—that
disable stack lift.* They do not provide for the lifting of the stack
when the next number is keyed in or recalled. Following the
execution of one of these functions, a new number will simply write
over the currently displayed number instead of causing the stack to
lift. (Although the stack lifts when is pressed, it will not lift
when the next number is keyed in or recalled. The operation of

* [«] will also disable the stack lift if digit entry is terminated, making [€] clear the entire
display like [CLx]. Otherwise, it is neutral. For a further discussion of the stack, refer to
appendix B.
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illustrated on page 34 shows how thus disables the
stack.) In most cases, the above effects will come so naturally that
you won’t even think about them.

——

z |7/ 2

7 |—® O

T —
z ——T|
Y| v |/ v |7 v
X |—>
6

= 77/

Keys: g

Order of Entry and the Key

An important aspect of two-number functions is the positioning of
the numbers in the stack. To execute an arithmetic function, the
numbers should be positioned in the stack in the same way that
you would vertically position them on paper. For example:

98 98 98 98

-15 pas) X156 15
As you can see, the first (or top) number would be in the Y-register,
while the second (or bottom) number would be in the X-register.
When the mathematics operation is performed, the stack drops,
leaving the result in the X-register. Here is how a subtraction
operation is executed in the calculator:

/ lost / lost
t z —>
; z / y / )): —> : ‘ )):
A= ~
Y y / X / 98 |/ | 98 ]\ X
X X I'> 98 |—>| 98 r> 15 83
Keys: 98 15 =

The same number positioning would be used to add 15 to 98,
multiply 98 by 15, or divide 98 by 15.
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Nested Calculations

The automatic stack lift and stack drop make it possible to do
nested calculations without using parentheses or storing inter-
mediate results. A nested calculation is solved simply as a series of
one- and two-number operations.

Almost every nested calculation you are likely to encounter can be
done using just the four stack registers. It is usually wisest to begin
the calculation at the innermost number or pair of parentheses and
work outward (as you would for a manual calculation). Otherwise,
you may need to place an intermediate result into a storage
register. For example, consider the calculation of

3[4+5(6+7)]

Keystrokes Display

6 7 13.0000 Intermediate result of
®+17).

5[x] 65.0000 Intermediate result of
5(6+17).

4 69.0000 Intermediate result of
[4+56+7)]

3(x] 207.0000 Final result:
3[4+56+17)].

The following sequence illustrates the stack manipulation in this
example. The stack automatically drops after each two-number
calculation, and then lifts when a new number is keyed in. (For
simplicity, throughout the rest of this handbook we will not show
arrows between the stacks.)

T] ¢ z y y y
Z)| :z y X X y
Y y X 6 6 X
X1 x 6 6 7 13

Keys: 6 ENTER 7
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T| v y y y
Z |y X y X
Y | x 13 x 65
X113 65 4
Keys: 5 [x] 4
T| v y y y
Z X y X y
Y | 65 x 69 x
X1 a4 69 3 207
Keys: 3 x]

Arithmetic Calculations With Constants

There are three ways (without using a storage register) to
manipulate the memory stack to perform repeated calculations
with a constant:

1. Usethe LAST X register.

2. Load the stack with a constant and operate upon different
numbers. (Clear the X-register every time you want to
change the number operated upon.)

3. Load the stack with a constant and operate upon an
accumulating number. (Do not change the number in the
X-register.)

LAST X. Use your constant in the X-register (that is, enter it
second) so that it always will be saved in the LAST X register.
Pressing (g] will retrieve the constant and place it into the
X-register (the display). This can be done repeatedly.
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Example: Two close stellar neighbors
of Earth are Rigel Centaurus (4.3
away) and Sirius
light-years away). Use the speed of
light, ¢ (3.0 x 10® meters/second, or
9.5 x 10'® meters/year), to figure the
distances to these stars in meters.
(The stack diagrams show only one

light-years

decimal place.)

(8.7

T t z y y

Z z y X X

Y y x 4.3 4.3

X | x 4.3 55 9.5 15
Keys: 4.3 9.5 15

LAST X: L / J

'

I

T y y y x
Z X y X 4.1 16
Y| 43 x 41 16 8.7
X 9.5 15 4.1 16 8.7 9.5 15
Keys: x] 8.7 (g)(LSTx]
tastx: | / | |95 18| o5 15|  [9.5 15]
T X X
Z |41 16 x
Y 8.7 41 16 < (Rigel Ce:léaurus is
4.1 x 10'° meters away.)
X195 15 8.3 16|~ (Siriusis 8.3 10'6
Keys: = meters away.)
LASTX: |9.5 15 9.5 15
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Loading the Stack with a Constant. Because the number in the
T-register is replicated when the stack drops, this number can be
used as a constant in arithmetic operations.

T c ¢ |<e——— New constant
eneration.
¥4 c c g
Y c ¢ |<e———Dropstointeract
with X-register.
X | x cx
Keys: x]

Fill the stack with a constant by keying it into the display and
pressing three times. Key in your initial argument and
perform the arithmetic operation. The stack will drop, a copy of the
constant will “fall” into the Y-register, and a new copy of the
constant will be generated in the T-register.

If the variables change (as in the preceding example), be sure and
clear the display before entering the new variable. This disables
the stack so that the arithmetic result will be written over and only
the constant will occupy the rest of the stack.

If you do not have different arguments, that is, the operation will
be performed upon a cumulative number, then do not clear the
display—simply repeat the arithmetic operation.

Example: A bacteriologist tests a
certain strain of microorganisms
whose population typically increases
by 15% each day (a growth factor of
1.15). If she starts with a sample
culture of 1000, what will be the
bacteria population at the end of
each day for four consecutive days?

Keystrokes Display
1.15 1.15 Growth factor.
1.1500 Filling the stack.

1000 1,000 Initial culture size.
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Keystrokes Display

x] 1,150.0000 Population at the end of
day 1.

x] 1,322.5000 Day 2.

x] 1,520.8750 Day 3.

x] 1.749.0063 Day 4.

Storage Register Operations

When numbers are stored or recalled, they are copied between the
display (X-register) and the data storage registers. At “power-up”
(initial turn-on or Continuous Memory reset) the HP-15C has 21
directly accessible storage registers: Ry through Rg, R through R g,
and the Index register (R;) (see the diagram of the registers on the
inside back cover). Six registers, Ry to R, are also used for
statistics calculations.

The number of available data storage registers can be increased or
decreased. The function, which is used to reallocate registers
in calculator memory, is discussed in appendix C, Memory
Allocation. The lowest-numbered registers are the last to be
deallocated from data storage, therefore it is wisest to store data in
the lowest-numbered registers available.

Storing and Recalling Numbers

(store). When followed by a storage register address (0
through 9 or .0 through .9%), this function copies a number from the
display (X-register) into the specified data storage register. It will
replace any existing contents of that register.

(recall). Similarly, you can recall data from a particular
register into the display by pressing followed by the register
address. This brings a copy of the desired data into the display; the
contents of the storage register remain unaltered.

(X exchange). Followed by 0 through .9,* this function
exchanges the contents of the X-register and the addressed data
storage register. This is useful to view storage registers without
disturbing the stack.

* All storage register operations can also be performed with the Index register (using
or[(i)]), which is covered in section 10, and with matrices, section 12.
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The above are stack lift-enabling operations, so the number
remaining in the X-register can be used for subsequent calcula-
tions. If you address a nonexistent register, the display will show
Error 3.

Example: Springtime is coming and you want to keep track of 24
crocuses planted in your garden. Store the number of crocuses
blooming the first day, and add to this the number of new blooms
the second day.

Keystrokes Display
3 0 3.0000 Stores the number of first-

day blooms in Ry.

Turn the calculator off. Next day, turn it back on again.

0 3.0000 Recalls the number of cro-
cuses that bloomed
yesterday.

5 8.0000 Adds today’s new blooms
to get the total blooming
crocuses.

Clearing Data Storage Registers

Pressing [f] CLEAR (clear registers) clears the contents of all
data storage registers to zero. (It does not affect the stack or the
LAST X register.) To clear a single data storage register, store zero
in that register. Resetting Continuous Memory clears all registers
and the stack.

Storage and Recall Arithmetic

Storage Arithmetic. Suppose you not only wanted to store a
number, but perform arithmetic with it and store the result in the
same register. You can do this directly—without using [RCL]—by
using the following procedure:

1. Have your second operand (besides the one in storage) in the
display (as the result of a calculation, a recall, or keying in).

2. Press[STO].
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3. Press(+],[-],(x], or[5].

4. Key in the register address (0 to 9, .0 to .9). (The Index
register, discussed in section 10, can also be used.)

The new number in the register is determined as follows:

For storage arithmetic,

+
new contents _ old contents ] — | number in
of register of register | X display
Ry I r I T t Ro | r-x ] T t
Z| 2 Zz z
Y y Y y
X | x X | x
Keys: (sTol[=)o

Recall Arithmetic. Recall arithmetic allows you to perform
arithmetic with the displayed value and a stored value without
lifting the stack, that is, without losing any values from the Y-, Z-,
and T-registers. The keystroke sequence is the same as for storage

arithmetic using in place of [STO].

For recall arithmetic,

+
new display = old display ; cort?i:::r()f
Ro I r I T ¢ Ro l ’ ] T
Z z Z 5
Y| y vy,
X | X [xr

Keys: (Retj(=]o
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Example: Keep a running count of your newly blooming crocuses
for two more days.

Keystrokes Display

8 (o] 8.0000 Places the total number of
blooms as of day 21in Ry,

4 0 4.0000 Day 3: adds four new
blooms to those already
blooming.

3 0 3.0000 Day 4: adds three new
blooms.

24 [ReL)(-]o 9.0000 Subtracts total number of

blooms summed in Ry (15)
from the total number of
plants (24): 9 crocuses
have not bloomed.

[rRcL]O 15.0000 (The number in R does
not change.)

Overflow and Underflow

If an attempted storage or recall arithmetic operation would result
in overflow in a data storage register, the value in the affected
register will be replaced with +9.999999999 X 10% and the display
will blink. To stop the blinking (clear the overflow condition), press

(«]Jor [ONJor [g][CF]9.

In case of underflow, the value in the register will be replaced with
zero (no display blinking). Overflow and underflow are discussed
further on page 61.

Problems

1. Calculate the value of x in the following equation.

o \/§.33 (4—5.2) +[(8.33 — 7.46) 0.32]
4.3(3.15 — 2.75) — (1.71) (2.01)

Answer: 4.5728.
A possible keystroke solution is:

4 5.2 (5 8.33 (X (g 7.46 [5) 0.32 x) (3 3.15
(ENTER]2.75 (=] 4.3 [x]1.71 [ENTER]2.01 [x] (=] (3]
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Use arithmetic with constants to calculate the remaining
balance of a $1000 loan after six payments of $100 each and
an interest rate of 1% (0.01) per payment period.

Procedure: Load the stack with (1 + i), where i = interest rate,
and key in the initial loan balance. Use the following
formula to find the new balance after each payment.

New Balance = ((Old Balance) X (1 +¢)) — Payment
The first part of the key sequence would be:
1.01 [ENTER](ENTER][ENTER] 1000

For each payment, execute:

(x]100 (-]
Balance after six payments: $446.32.
Store 100 in Rs. Then:
1. Divide the contents of R5 by 25.
2. Subtract 2 from the contents of Rs.
3. Multiply the contents of R5 by 0.75.
4. Add 1.75to the contents of Rs.
5. Recall the contents of Ry.
Answer: 3.2500.
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Statistics Functions

A word about the statistics functions: their use is based on an
understanding of memory stack operation (section 3). You will find
that order of entry is important for most statistics calculations.

Probability Calculations

The input for permutation and combination calculations is
restricted to nonnegative integers. Enter the y-value before the
x-value. These functions, like the arithmetic operators, cause the
stack to drop as the result is placed in the X-register.

Permutations. Pressing calculates the number of possible
different arrangements of y different items taken in quantities of x
items at a time. No item occurs more than once in an arrangement,
and different orders of the same x items in an arrangement are
counted separately. The formula is

y!

P, = —2—
PE (y—a)

Combinations. Pressing [g] calculates the number of
possible sets of y different items taken in quantities of x items at a
time. No item occurs more than once in a set, and different orders of
the same x items in a set are not counted separately. The formula is

¥
x!(y—x)!

C)’,-x

Examples: How many different arrangements are possible of five
pictures which can be hung on the wall three at a time?

Keystrokes Display

5 3 3 Five () pictures put up
three (x) at a time.

60.0000 Sixty different arrange-

ments possible.
47
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How many different four-card hands can be dealt from a deck of 52
cards?

Keystrokes Display

52 [ENTER]4 4 Fifty-two (y) cards dealt
four (x) at a time.

(o) 270,725.0000 Number of different
hands possible.

The execution times for these functions may last several seconds,
depending on the magnitude of the x and y inputs. The display will
show running during this time. The maximum size of x or y is
9,999,999,999.

Random Number Generator

Pressing (random number) will generate a random
number (part of a uniformly distributed pseudo-random number
sequence) intherange 0 <r<1.*

At initial power-up (including reset of Continuous Memory), the
HP-15C random number generator will use zero as a “seed” to
initiate a random number sequence. Any time you generate a
random number, that number becomes the seed for the next
random number. You can initiate a different random number
sequence by storing a new seed for the random number generator.
(Repetition of a random number seed will produce repetition of the
random number sequence.)

(f][RAN#] will store the X-register number (0 < r < 1) as a new
seed for the random number generator. (A value for r outside this
range will be converted to fit within the range.)

(] will recall to the display the current random number
seed.

* Passes the spectral test (D. Knuth, Seminumerical Algorithms, vol. 2, 1969).
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Keystrokes Display

5764 0.5764 Stores 0.5764 as random

0.5764 number seed. (The [f] key-
stroke may be omitted.)

0.3422 Random number sequence

0.2809 initiated by the above

seed.

< 0.0000

0.2809 Recalls last random num-

ber generated, which is
the new seed. (The [f)may
be omitted.)

Accumulating Statistics

The HP-15C performs one- and two-variable statistical calcula-
tions. The data is first entered into the Y- and X-registers. Then the
function automatically calculates and stores statistics of the
data in storage registers Ry through R; These registers are
therefore referred to as the statistics registers.

Before beginning to accumulate statistics for a new set of data,
press [f]CLEAR [Z]to clear the statistics registers and stack. (If you
have reallocated registers in memory and any of the statistics
registers no longer exist, Error 3 will be displayed when you try to
use CLEAR [Z], [£%], or [(Z-]. Appendix C explains how to reallocate
memory.)

In one-variable statistical calculations, enter each data point (x-
value) by keying in x and then press [Z+].

In two-variable statistical calculations, enter each data pair (the x-
and y-values) as follows:

1. Key yintothe display first.

2. Press [ENTER]. The displayed y-value is copied into the
Y-register.

3. Key x into the display.
Press (Z+]. The current number of accumulated data points,
n, will be displayed. The x-value is saved in the LAST X
register and y remains in the Y-register. disables stack

lift, so the stack will not lift when the next number is keyed
in.
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In some cases involving x or y data values that differ by a
relatively small amount, the calculator cannot compute s, r, linear
regression, or y, and will display Error 2. This will not happen,
however, if you normalize the data by keying in only the difference
between each value and the mean or approximate mean of the
values. This difference must be added back to the calculations of x,
v, and the y-intercept ([LR.]). For example, if your x-values were
665999, 666000, and 666001, you should enter the data as —1, 0, and
1; then add 666000 back to the relevant results.

The statistics of the data are compiled as follows:

Register Contents
R, n Number of data points accumulated (n also
appears in the X-register).
R3 3x Summation of x-values.
Ry Sx?2 Summation of squares of x-values.
Rs Sy Summation of y-values.
Re sy? Summation of squares of y-values.
Ry 3xy Summation of products of x- and y-values.

You can recall any of the accumulated statistics to the display
(X-register) by pressing and the number of the data storage
register containing the desired statistic. If you press [Z+], 3x
and Xy will be copied simultaneously from Rg and R, respectively,
into the X-register and the Y-register, respectively. (The sequence
lifts the stack twice if stack lift is enabled, once if not, and
then enables stack lift.)

Example: Agronomist Silas Farmer
has developed a new variety of high-
yield rice, and has measured the
plant’s yield rate as a function of
fertilization. Use the function to
accumulate the data below to find the
values for Sx, Sx2, Sy, Sy2, and Sxy
for nitrogen fertilizer application (x)
versus grain yield (y).
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X NITROGEN APPLIED
(kg per hectare*), x 0.00 | 20.00 {40.00 |60.00 |80.00
GRAIN YIELD
Y |(metrictons per 463 | 478 | 6.61 | 7.21 | 7.78
hectare), y
* A hectare equals 2.47 acres.

Keystrokes Display

[fJCLEAR [Z] 0.0000 Clears statistical storage
registers (Ry through R,
and the stack).

[fFExX]2 0.00 Limits display to two
decimal places, like the
data.

4.63 4.63

0 1.00 First data point.

4.78 4.78

20 2.00 Second data point.

6.61 6.61

40 3.00 Third data point.

7.21 7.21

60 4.00 Fourth data point.

7.78 7.78

80 5.00 Fifth data point.

3 200.00 Sum of x-values, 3x (kg of
nitrogen).

4 12,000.00 Sum of squares of x-
values, Sx2.

5 31.01 Sum of y-values, 3y (grain
yield).

6 200.49 Sum of squares of y-
values, Sy2

7 1,415.00 Sum of products of x- and

y-values, Sxy.
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Correcting Accumulated Statistics

If you discover that you have entered data incorrectly, the
accumulated statistics can be easily corrected. Even if only one
value of an (x,y) data pair is incorrect, you must delete and re-enter
both values.

1. Keytheincorrect data pair into the Y- and X-registers.
2. Press[g][=-]to delete the incorrect data.

3. Keyinthe correct values for x and y.

4. Press .

Alternatively, if the incorrect data point or pair is the most recent

one entered and has been pressed, you can press [g][LSTx](g][Z-]

to remove the incorrect data.*

Example: After keying in the preceding data, Farmer realizes he
misread a smeared figure in his lab book. The second y-value
should have been 5.78 instead of 4.78. Correct the data input.

Keystrokes Display

4.78 4.78 Keys in the data pair we

20(gJ(=-] 4.00 want to replace and
deletes the accompanying
statistics. The n-value
drops to four.

5.78 5.78 Keys in and accumulates
the replacement data pair.

20 5.00 The n-valueis back to five.

We will use these statistics in the rest of the examples in this
section.

* Note that these methods of data deletion will not delete any rounding errors that may
have been generated in the statistics registers. This difference will not be serious unless
the erroneous pair has a magnitude that is enormous compared with the correct pair; in
such a case, it would be wise to start over!
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Mean

The (%] function computes the arithmetic mean (average) of the
x-and y-values using the formulas shown in appendix A and the
statistics accumulated in the relevant registers. When you press
(g)(®], the contents of the stack lift (two registers if stack lift is
enabled, one if not); the mean of x (X) is copied into the X-register
as the mean of y (¥) is copied simultaneously into the Y-register.
Press [xxy]to view y.

Example: From the corrected statistics data we have already
entered and accumulated, calculate the average fertilizer applica-
tion, X, and average grain yield ¥, for the entire range.

Keystrokes Display
B 40.00 Average kg of nitrogen, x,
for all cases.
x% 6.40 Average tons of rice, y, for

all cases.

Standard Deviation

Pressing (g](s] computes the standard deviation of the accumulated
statistics data. The formulas used to compute s,, the standard
deviation of the accumulated x-values, and s,, the standard
deviation of the accumulated y-values, are given in appendix A.

This function gives an estimate of the population standard
deviation from the sample data, and is therefore termed the sample
standard deviation.* When you press [g] s], the contents of the
stack registers are lifted (twice if stack lift is enabled, once if not);
s, is placed into the X-register and s, is placed into the Y-register.
Press [xxy]to view s,,.

* When your data constitutes not just a sample of a population but all of the population,
the standard deviation of the data is the true population standard deviation (denoted o).
The formula for the true population standard deviation differs by a factor of \/(n —1)/n
from the formula used for the [s] function. The difference between the values is small for
large n, and for most applications can be ignored. But if you want to calculate the exact
value of the population standard deviation for an entire population, you can easily do
so: simply add, using [Z+], the mean (%) of the data to the data before pressing [g]s].
The result will be the population standard deviation. (If you subsequently correct any of
your accumulated data values, remember to delete the first mean value and add the
corrected one.)
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Example: Calculate the standard deviation about the mean
calculated above.

Keystrokes Display

(&) 31.62 Standard deviation about
the mean nitrogen
application, x.

xy] 1.24 Standard deviation about
the mean grain yield, y.

Linear Regression

Linear regression is a statistical method for finding a straight line
that best fits a set of two or more data pairs, thus providing a
relationship between two variables. By the method of least
squares, will calculate the slope, A, and y-intercept, B, of
the linear equation:

y=Ax+B

1. Accumulate the statistics of your data using the key.

2. Press [f][LR]. The y-intercept, B, appears in the display
(X-register). The slope, A, is copied simultaneously into the
Y-register.

3. Press [xxy]to view A. (As is the case with the functions [F]
and [s], causes the stack to lift two registers if it’s
enabled, one if not.)

T ¢ y y

z z X X

Y y A | slope B | y-intercept

X X B y-intercept A slope
Keys: xx%y)

The slope and y-intercept of the least squares line of the
accumulated data are calculated using the equations shown in
appendix A.
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Example: Find the y-intercept and slope of the linear approxima-
tion of the data and compare to the plotted data on the graph
below.

Grain Yield
(metric tons/hectare)

8.50+

7.50 1

6.50 4

5.50 1
B
P
4.50 -+ t t —+
0 20 40 60 80
Nitrogen Application (kg/hectare)
Keystrokes Display
4.86 y-intercept of the line.
[xx2y] 0.04 Slope of the line.

Linear Estimation and Correlation Coefficient

When you press [f] [3.r] the linear estimate, ¥, is placed in the
X-register and the correlation coefficient, r, is placed in the
Y-register. To display r, press [xxy].
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Linear Estimation. With the statistics accumulated, an esti-
mated value for y, denoted y, can be calculated by keying in a
proposed value for x and pressing [f](3.r].

An Estimated value for x (denoted 3?) can be calculated as
follows:

1. Press [fJ(LR.].

2. Key in the known y-value.

3. Press [x2y][-]=2y](=]-

Correlation Coefficient. Both linear regression and linear
estimation presume that the relationship between the x and y data
values can be approximated by a linear function. The correlation
coefficient, r, is a determination of how closely your data fit a
straight line. The range is — 1 < r < 1, with — 1 representing a
perfectly negative correlation and + 1 representing a perfectly
positive correlation.

Note that if you do not key in a value for x before executing [f](3.r],
the number previously in the X-register will be used (usually
yielding a meaningless value for y).

Example: What if 70 kg of nitrogen fertilizer were applied to the
rice field? Predict the grain yield based on Farmer’s accumulated
statistics. Because the correlation coefficient is automatically
included in the calculation, you can view how closely the data fit a
straight line by pressing [x X y] after the y prediction appears in the
display.

y

12 +
8T . X7
o 2 (70,9

./
-
-
4 . —— X
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Keystrokes Display

70 7.56 Predicted grain yield in
tons/hectare.

(xxy] 0.99 The original data closely
approximates a straight
line.

Other Applications

Interpolation. Linear interpolation of tabular values, such as in
thermodynamics and statistics tables, can be carried out very
simply on the HP-15C by using the function. This is because
linear interpolation is linear estimation: two consecutive tabular
values are assumed to form two points on a line, and the unknown
intermediate value is assumed to fall on that same line.

Vector Arithmetic. The statistical accumulation functions
can be used to perform vector addition and subtraction. Polar
vector coordinates must be converted to rectangular coordinates
upon entry (0, (ENTER], r [®R], [£+]). The results are recalled
from Ry (£x) and Rs (2y) (using [RCL](=+]) and converted back
to polar coordinates, if necessary. Remember that for polar co-
ordinates the angle is between —180° and 180° (or —m and =«
radians, or —200 and 200 grads). To convert to a positive angle,
add 360 (or 27 or 400) to the angle.

For the second vector entered, the final keystroke will be either
or [£-], depending on whether the two vectors should be added or
subtracted.
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The Display
and Continuous Memory

Display Control

The HP-15C has three display formats—(FiX], [SCI], and [ENG]—
that use a given number (0 through 9) to specify display format.
The illustration below shows how the number 123,456 would be
displayed specified to four places in each possible mode.

4 : 123,456.0000
4 : 1.2346 05

[fJ(ENG]4 : 123.46 03

Owing to Continuous Memory, any change you make in the
display format will be preserved until Continuous Memory is reset.

The current display format takes effect when digit entry is
terminated; until then, all digits you key in (up to 10) are displayed.

Fixed Decimal Display

(fixed decimal) format displays a figure with the number of
decimal places you specify (up to nine, depending on the size of the
integer portion.) Exponents will be displayed if the number is too
small or too large for the display. At “power-up,” the HP-15C is in
4 format. The key sequence is [f][FIX]n.

Keystrokes Display

123.4567895 123.4567895

fFxX)4 123.4568

6 123.456790  Display is rounded to six
decimal places. (Ten
places are stored
internally.)

[fFx])4 123.4568 Usual 4 display.

Scientific Notation Display

(scientific) format displays a number in scientific notation.
The sequence n specifies the number of decimal places to be
shown. Up to six decimal places can be shown since the exponent

58
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display takes three spaces. The display will be rounded to the
specified number of decimal places; however, if you specify more
decimal places than the six places the display can hold (that is,
7, 8, or 9), rounding will occur in the undisplayed seventh,
eighth, or ninth decimal place.*

With the previous number still in the display:

Keystrokes Display

6 1.234568 02 Rounds to and shows six
decimal places.

8 1.234567 02 Rounds to eight decimal
places, but displays only
six.

Engineering Notation Display
(engineering) format displays numbers in an engineering
notation format in a manner similar to , except:

e In engineering notation, the first significant digit is always
present in the display. The number you key in after [f]
specifies the number of additional digits to which you want to

round the display.
e Engineering notation shows all exponents in multiples of
three.
Keystrokes Display
.012345 0.012345
1 12. -03 Rounds to the first digit
after the leading digit.
[MENG)3 12.35 -03
10(x] 123.56 -03 Decimal shifts to main-
tain multiple of three in
exponent.
[FEx]4 0.1235 Usual [FIX]4 format.

* Therefore, the display shows no distinction among 7, 8, and 9 unless the number
rounded up is a 9, which carries a 1 over into the next higher decimal place.
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Mantissa Display

Regardless of the display format, the HP-15C always internally
holds each number as a 10-digit mantissa and a two-digit exponent
of 10. For example, = is always represented internally as
3.141592654 X 10%, regardless of what is in the display.

When you want to view the full 10-digit mantissa of a number in
the X-register, press [f] CLEAR [PREFIX]. To keep the mantissa in the
display, hold the key down.

Keystrokes Display

e 3.1416
(fICLEAR

(hold) 3141592654

Round-Off Error

As mentioned earlier, the HP-15C holds every value to 10 digits
internally. It also rounds the final result of every calculation to the
10th digit. Because the calculator can provide only a finite
approximation for numbers such as 7 or 2/3 (0.666...), a small error
due to rounding can occur. This error can be increased in lengthy
calculations, but usually is insignificant. To accurately assess this
effect for a given calculation requires numerical analysis beyond
our scope and space here! Refer to the HP-15C Advanced Functions
Handbook for a more detailed discussion.

Special Displays

Annunciators

The HP-15C display contains eight annunciators that indicate the
status of the calculator for various operations. The meaning and
use of these annunciators is discussed on the following pages:

* Low-power indication, page 62.

USER User mode, pages 79 and 144.

fandg Prefixes for alternate functions, pages 18-19.
RAD and GRAD Trigonometric modes, page 26.

Cc Complex mode, page 121.

PRGM Program mode, page 66.
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Digit Separators

The HP-15C is set at power-up so that it separates integral and
fractional portions of a number with a period (a decimal point), and
separates groups of three digits in the integer portion with a
comma. You can reverse this setting to conform to the numerical
convention used in many countries. To do so, turn off the
calculator. Press and hold [ON], press and hold (-], release [ON],
then release [-] ([ON]/[7]). (Repeating this sequence will set the
calculator to the previous display convention.)

Keystrokes Display
12345.67 12,345.67
oN)/ [ 12.345,6700
(oN]/ (] 12,345.6700

Error Display

If you attempt an improper operation—such as division by zero—
an error message (Error followed by a digit) will appear in the
display. For a complete listing of error messages and their causes,
refer to appendix A.

To clear the Error display and restore the calculator to its prior
condition, press any key. You can then resume normal operation.

Overflow and Underflow

Overflow. When the result of a calculation in any register is a
number with a magnitude greater than 9.999999999 X 10,
+ 9.999999999 X 10% is placed in the affected register and the
overflow flag, flag 9, is set.* Flag 9 causes the display to blink.
When overflow occurs in a running program, execution continues
until completion of the program, and then the display blinks.

The blinking can be stopped and flag 9 cleared by pressing [«],
[ON], or [g][CF)9.

Underflow. If the result of a calculation in any register is a
number with a magnitude less than 1.000000000 X 1079, that
number will be replaced by zero. Underflow does not have any
other effect.

* Recall that the display does not include the last three digits of the mantissa.
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Low-Power Indication

When a flashing asterisk, which
indicates low battery power, appears
in the lower left-hand side of the
display, there is no reason to panic.
You still have plenty of calculator
time remaining: at least 10 minutes if
you continuously run programs, and
at least an hour if you do calculations
manually. Refer to appendix F (page
259) for information on replacing the
batteries.

0.0000

Continuous Memory

Status

The Continuous Memory feature of the HP-15C retains the
following in the calculator, even when the display is turned off:

e All numeric data stored in the calculator.

e All programs stored in the calculator.

e Position of the calculator in program memory.

e Display mode and setting.

e Trigonometric mode (Degrees, Radians, or Grads).
e Any pending subroutine returns.

o Flag settings (except flag 9, which clears when the display is
manually turned off).

o User mode setting.
o Complex mode setting.

When the HP-15C is turned on, it always “wakes up” in Run mode.

If the calculator is turned off, Continuous Memory will be
preserved for a short period while the batteries are removed. Data
and programs are preserved longer than other aspects of calculator
status. Refer to appendix F for instructions on changing batteries.
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Resetting Continuous Memory
If at any time you want to reset (entirely clear) the HP-15C
Continuous Memory:
1. Turn the calculator off.
2. Press and hold the key, then press and hold the [-]key.
3. Release the key, then the [-] key. (This convention is
represented as [ON]/[=].)
When Continuous Memory is reset, Pr Error (power error) will be
displayed. Press any key to clear the display.
Note: Continuous Memory can inadvertently be interrupted
and reset if the -calculator is dropped or otherwise
traumatized.
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Section 6

Programming Basics

The next five sections are dedicated to explaining aspects of
programming the HP-15C. Each of these programming sections
will first discuss basic techniques (The Mechanics), then give
examples for the implementation of these techniques (Examples),
and lastly discuss finer points of operation in greater detail
(Further Information). Read only as far as you need to support your
use of the HP-15C.

The Mechanics

Creating a Program

Programming the HP-15C is an easy matter, based simply on
recording the keystroke sequence used when calculating manually.
(This is called “keystroke programming”.) To create a program out
of a series of calculation steps requires two extra manipulations:
deciding where and how to enter your data; and loading and
storing the program. In addition, programs can be instructed to
make decisions and perform iterations through conditional and
unconditional branching.

As we step through the fundamentals of programming, we’ll
rework the falling object program illustrated in the Problem Solver
(page 14).

Loading a Program

Program Mode. Press (g][P/R](program/run) to set the calculator
to Program mode (PRGM annunciator on). Functions are stored
and not executed when keys are pressed in Program mode.

Keystrokes Display
[g)(P/R] 000- Switches to Program

mode; PRGM annunciator
and line number (000)
displayed.

66
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Location in Program Memory. Program memory—and there-
fore the calculator’s position in program memory—is demarcated
by line numbers. Line 000 marks the beginning of program
memory and cannot be used to store an instruction. The first line
that contains an instruction is line 001. Program lines other than
000 do not exist until instructions are written for them.

You can start a program at any existent line (designated nnn), but
it is simplest and safest to start an independent program (as
opposed to a subroutine) at the beginning of program memory. As
you write, any existing program lines will be preserved and
“bumped” down in program memory.

Press 000 (in Program or Run mode) to move to line 000
without recording the statement. In Run mode, [f] CLEAR
will also reset the calculator to line 000—without clearing
program memory.

Alternatively, you can clear program memory, which will erase all
programs in memory and position you to line 000. To do so, press
CLEAR in Program mode.

Program Begin. A label instruction— [f][LBL] followed by a letter
([A]through [E]) or number (0 through 9 or .0 through .9)—is used to
define the beginning of a program or routine. The use of labels
allows you to quickly select and run one particular program or
routine out of several.

Keystrokes Display

CLEAR 000- Clears program memory
and sets to line 000 (start
of program memory).

001-42,21,11

Recording a Program. Any key pressed—operator or constant—
will be recorded in memory as a programmed instruction.*

* Except the nonprogrammable functions, which are listed on page 80.
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Keystrokes Display

2 002- 2

(] 003- 20

9 004- 9 ) . '

0 005- 48 Given A in the X-register,
8 006- 8 lines 002 to 008 calculate
B 007- 10 ah

008- 11 o8

Program End. There are three possible endings for a program:

e (g (return) will end a program, return to line 000, and
halt.

° will stop a program without moving to line 000.
e The end of program memory contains an automatic [RTN].

Keystrokes Display
[g](RTN] 009- 43 32 Optional if this is the last

program in memory.

Intermediate Program Stops

Use (pause) as a program instruction to momentarily stop a
program and display an intermediate result. (Use more than one
for a longer pause.)

Usea (run/stop) instruction to stop the program indefinitely.
The program will remain positioned at that line. You can resume
program execution (from that line) by pressing during Run
mode, that is, from the keyboard.

Running a Program

Run Mode. Switch back to Run mode when you are done

programming: (g][P/R]. Program execution must take place in Run
mode.
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Keystrokes Display

(e](F7R] Run mode; no PRGM
annunciator displayed.
(The display will depend
on any previous result.)

The position in program memory does not change when modes are
switched. Should the calculator be shut off, it always “wakes up” in
Run mode.

Executing a Program. In Run mode, press (f] letter label or
digit (or letter) label. This addresses a program and starts its
execution. The display will flash running.

Keystrokes Display

300.51 300.51 Key a value for A into the
X-register.

7.8313 The result of executing pro-

gram “A”. (The number of
seconds it takes an object
dropped from 300.51
meters high to hit the
ground.)

Restarting a Program. Press to continue execution of a
program that was stopped with a instruction.

User Mode. User mode is an optional condition to save keystrokes
when executing letter-named programs. Pressing will
interchange the (f]-shifted and primary functions of the [A]through
[E]keys. You can then execute a program using just one keystroke

(skipping the [f]or [(GSB]).

How to Enter Data

Every program must take into account how and when data will be
supplied. This can be done in Run mode before running the
program or during an interruption in the program.

1. Prior entry. If a variable value will be used in the first line
of the program, enter it into the X-register before starting the
program. If it will be used later, you can store it (with [STO])
into a storage register, and recall it (with a programmed
(RCL)) within the program.
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This is the method used above, where & was placed in the
X-register before running the program. No instruc-
tion is necessary because program execution (here: [f] [A])
both terminates digit entry and enables the stack lift. The
above program then multiplied the contents of the X-register
(h) by 2.

The presence of the stack even makes it possible to load more
than one variable prior to running a program. Keeping in
mind how the stack moves with subsequent calculations and
how the stack can be manipulated (as with [x%y]), it is
possible to write a program to use variables which have been
keyed into the X-, Y-, Z-, and T-registers.

Direct entry. Enter the data as needed as the program
runs. Write a (run/stop) instruction into the program
where needed so the program will stop execution. Enter your
data, then press to restart the program.

Do not key variable data into the program itself. Any values that
will vary should be entered anew with each program execution.

Program Memory

At power-up (Continuous Memory reset), the HP-15C offers 322
bytes of program memory and 21 storage registers. Most program
steps (instructions) use one byte, but some use two. The distribution
of memory capacity can be altered, as explained in appendix C.
The maximum attainable program memory is 448 bytes (with the
permanent storage registers—R;j, Ry, and R;—remaining); maxi-
mum number of storage registers is 67 (with no program memory).

Example

Mother’s Kitchen, a canning com-
pany, wants to package a ready-to-
eat spaghetti mix containing three
different cylindrical cans: one of spa-
ghetti sauce, one of grated cheese,
and one of meatballs. Mother’s needs
to calculate the base areas, total
surface areas, and volumes of the
three different cans. It would also
like to know, per package, the total
base area, surface area, and volume.
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The program to calculate this information uses these formulas and
data:

base area = nr2.

volume = base area X height = #r2h.
surface area = 2 base areas + side area = 2772 + 2n#rh.

Radius, r Height, h Base Area Volume Surface Area
2.5cm 8.0cm ? ? ?
4.0 10.5 ? ? ?
4.5 4.0 ? ? ?
TOTALS ? ? ?
Method:

1. Enter an r value into the calculator and save it for other
calculations. Calculate the base area (7r2), store it for later
use, and add the base area to a register which will hold the
sum of all base areas.

2. Enter & and calculate the volume (772 k). Add it to a register
to hold the sum of all volumes.

3. Recall r. Divide the volume by r and multiply by 2 to yield
the side area. Recall the base area, multiply by 2, and add to
the side area to yield the surface area. Sum the surface areas
in aregister.

Do not enter the actual data while writing the program—just
provide for their entry. These values will vary and so will be
entered before and/or during each program run.

Key in the following program to solve the above problem. The
display shows line numbers and keycodes (the row and column
location of a key), which will be explained under Further
Information.

Keystrokes Display

(g](P/R] 000- Sets calculator to Pro-
gram mode (PRGM dis-
played).

CLEAR 000- Clears program memory.

Starts at line 000.
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Keystrokes

(sT0Jo

(@3

(el
(]

(sT0)4
(sTOJ(*)1

R/S

]
(f)(PSE]
(STOJ(+)2

(RcL]o

B
2

3
(RcL)4

2

]

Display
001-42,21,11
002- 44 O
003- 4311
004- 43 26
005- 20
006- 44 4
007-44,40, 1
008- 31
009- 20
010- 42 31
011-44,40, 2
012- 45 O
013- 10
014- 2
015- 20
016- 45 4
017- 2
018- 20

|

Assigns this program the
label “A”.

Stores the contents of
X-register into R. r must
be in the X-register before
running the program.
Squares the contents of
the X-register (which will
be r).

nr?, the BASE AREA of a

can.
Stores the BASE AREA in
R,

Keeps a sum of all BASE
AREASinR;.

Stops to display BASE
AREA and allow entry of
the A value.

Multiplies - by the BASE
AREA, giving VOLUME.

Pauses briefly to display
VOLUME.

Keeps a sum of all can
VOLUMES in R,

Recallsr.
Divides VOLUME by r.

2mrh,the SIDE AREA of
acan.

Recalls the BASE AREA
of the can.

Multiplies base area by
two (for top and bottom).
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(sToj(+J3
(g)(RTN]
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Display
019- 40

020-44.,40, 3

021- 4332

Now, let’s run the program:

Keystrokes

(e](P7R]
(fJCLEAR

25

(or: [GSBJ[A])

R/S

R/S

10.5
R/S

R/S

Display

2.5
19.6350

8

157.0796
164.9336

4
50.2655

10.5

527.7876
364.4247

4.5
63.6173

SIDE AREA + BASE
AREA = SURFACE
AREA.

Keeps a sum of all
SURFACE AREAS in R3.
Ends the program and
returns program memory
to line 000.

Sets calculator to Run
mode. (PRGM cleared.)

Clears all storage
registers. The display does
not change.

Enter r of the first can.

Starts program A. BASE
AREA of first can.
(running flashes during
execution.)

Enter A of first can. Then
restart program.

VOLUME of first can.

SURFACE AREA of first
can.

Enter r of the second can.

BASE AREA of second
can.

Enter A of second can.

VOLUME of second can.
SURFACE AREA of
second can.

Enter r of the third can.
BASE AREA of third can.
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Keystrokes Display
4 4 Enter £ of third can.
R/S 254.4690 VOLUME of third can.
240.3318 SURFACE AREA of third

can.

1 133.5177 Sum of BASE AREAS.

2 939.3362 Sum of VOLUMES.

3 769.6902 Sum of SURFACE
AREAS.

The preceding program illustrates the basic techniques of
programming. It also shows how data can be manipulated in
Program and Run modes by entering, storing, and recalling data
(input and output) using [ENTER], [STO], [RCL], storage register

arithmetic, and programmed stops.

Further Information

Program Instructions

Each digit, decimal point, and function key is considered an
instruction and is stored in one line of program memory. An
instruction may include prefixes (such as (f], (STO], [GTO], and [LBL])
and still occupy only one line. Most instructions require one byte of
program memory; however, some require two. For a complete list of
two-byte instructions, refer to appendix C.

Instruction Coding

Each key on the HP-15C keyboard—except for the digit keys 0
through 9—is identified in Program mode by a two-digit “keycode”
that corresponds to the key’s position on the keyboard.

Instruction Code
(sTOl(+]1 006-44,40, 1 Sixth program line.
XXX-42, 5,25 [DSE]isjust“5”.

The first digit of a keycode refers to the row (1 to 4 from top to
bottom), and the second digit refers to the column (1, 2, ... 9, 0 from
left to right). Exception: the keycode for a digit key is simply that
digit.
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L2 3IN567-

C D MATRIX FIX

2
/ LOG % U ABS ) DEG
DIM (i) RESULT X%

11 T
(SIN=1 /COS-1) AN-1
L

PRGM REG PREFIX RAN# R

BEE
R R+ RND )Ml CLX )

FHAC USER

AR B

HEWLETT PACKARD

— [
(73~
o [

By

¥
o
>
[S}

I

A
I}
m
G)

Keycode 25: second row, fifth key

Memory Configuration

Understanding memory configuration is not essential to your use
of the HP-15C. It is essential, however, for obtaining maximum
efficiency in memory and programming use. The more you
program, the more useful this knowledge will be. Memory
configuration and allocation is thoroughly explained in appendix
C, Memory Allocation.

Should you ever get an Error 10, you have run up against
limitations of the HP-15C memory. If you learn how to reallocate
memory, you can greatly increase your ability to store information
in the HP-15C.

The HP-15C memory consists of 67 registers (R) to Rgs and the
Index register) divided between data storage and programming/
advanced function capability. The initial configuration is:

e 46 registers for both programming and the advanced
functions ([SOLVE], (%], the imaginary stack, and
functions). At seven bytes of memory per register, this is worth
322 program bytes if no memory is dedicated to advanced
functions.

e 21 registers for data storage (Rgto Rg, Ry to R g, and the Index
register).
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Initial Memory Configuration
STORAGE REGISTERS: R, RgtoRg  COMMON

REGISTERS:
Ry R2oto Rgs
Permanent (available for
Registers programming)
° Ro 322 program
R, bytes
R4 : available (if
no memory
(R2 R, used for
advanced
R3 R3 functions)
R
Statistics Ra Ra 20
Reai
egisters Rs R Ry,
Re Re Res [— |
\R- Ry Regs
Rg Rg Rgs
Rg R'S
sssssessssssl M ovable Boundary

Allocatable Registers (shaded)

Memory is reallocated by telling the calculator which data storage
register shall be the highest data register; all other registers are left
for programming and advanced functions.

Keystrokes Display

60 (f)[DM] (] * 60.0000 Rgo and below allocated to
data storage; five (Rg; to
Rgs5) remain for
programming.

* The optional omission of the keystroke after another prefix key is explained on page
78, Abbreviated Key Sequences.
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Keystrokes Display

1 {0 1.0000 R, and R allocated for
data storage; Ry to Rgs
available for
programming and
advanced functions.

19 [H)[DM] () 19.0000 Original allocation: R;g
(R9) and below for data
storage; Ry to Rgs for
programming and
advanced functions.*

[Red) DM 19.0000 Displays the current

highest data register.

The and [(MEM] (memory status) functions are described in
detail in appendix C.

Keep in mind that an error message will result (given the above
memory configuration) if
1. You try to address a register higher than R;9 (Rg), which
initially is the highest register allocated to data storage
(Error 3).
2. You have 322 occupied program bytes and try to load more
program lines (Error 4).

3. You try to run an advanced function with insufficient
available memory (Error 10).

Program Boundaries

End. Not every program needs to end with a or
instruction. If you are at the end of occupied program memory,
there is an automatic instruction, so you do not need to enter
one. This can save you one line of memory. On the other hand, a
program can “end” by simply transferring execution to another
routine using (section 7).

Labels. Labels in a program (or subroutine) are markers telling
the calculator where to begin execution. Following an [(f] label or
label instruction, the calculator will search downward in

*For memory allocation and indirect addressing, registers R ( through R g are referred to
as Ry through R;g.
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program memory for the corresponding label. If need be, the search
will wrap around at the end of program memory and continue at
line 000. When it encounters an appropriate label, the search stops
and execution begins.

If a label is encountered as part of a running program, it has no
effect, that is, execution simply continues. Therefore, you can label
a subordinate routine within a program (more on subroutines in
section 9).

Since the calculator searches in only one direction from its present
position, it is possible (though not advisable) to use duplicate
program labels. Execution will begin at the first appropriately
labeled line encountered.

000-
If an entry starts the search for

“A” here, >

it then proceeds downward through [fBL)3
memory, wraps around to line 000,
and stops at label “A”. Execution
then starts and continues (ignoring | [R/S
any other labels) until a halt
instruction.

=

(stop)

o = - ———

N ittt |

end of memory

Unexpected Program Stops

Pressing Any Key. Pressing any key will halt program
execution. It will not halt in the middle of an operation. This
instruction will be completed before the program stops.

Error Stops. Program execution is immediately halted when the
calculator attempts an improper operation that results in an Error
display.

To see the line number and keycode of the error-causing instruction
(the line at which the program stopped), press any one key to
remove the Error message, then switch to Program mode.

If the display is flashing when a program stops, an overflow
condition exists (page 61). Press [«], [ON], or [g] 9 to stop the
blinking.

Abbreviated Key Sequences

In certain cases, an [f] prefix you might expect to include in a key
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sequence is not needed. The rule for using an abbreviated key
sequence is: the [f] prefix key is unnecessary after any other prefix
key. (Page 19 contains a list of prefix keys.)

For example, becomes [f](LBL](A], (f][DIM][f]((i)) becomes
({)[omM](G)], and becomes [STOI[RAN#]. The removal of
the (f]is not ambiguous because the [f]-shifted function is the only
logical one in these cases. The keycodes for such instructions do
not include the extraneous (f] even if you do key it in.

User Mode

User mode is a convenience to save keystrokes when addressing
(calling up) programs for execution. Pressing will
exchange the primary functions and [f]-shifted functions of the
through [E] keys only. In User mode (USER annunciator displayed):

[f] shift E
Primary DC:- - o

[gshift —— 5. x2 LOG % A%

Press again to deactivate User mode.

Polynomial Expressions and Horner’s Method

Some expressions, such as polynomials, use the same variable
several times for their solution. For example, the expression

f(x)=Ax*+Bx3+ Cx2+Dx+E

uses the variable x four different times. A program to solve such an
equation could repeatedly recall a stored copy of x from a storage
register. A shorter programming method, however, would be to use
a stack which has been filled with the constant (refer to Loading
the Stack with a Constant, page 41).

Horner’s Method is a useful means of rearranging polynomial
expressions to cut calculation steps and calculation time. It is
especially expedient in and (%], two rather long-running
functions that use subroutines.

This method involves rewriting a polynomial expression in a
nested fashion to eliminate exponents greater than 1:

Ax*+Bx3+ Cx2+Dx+E
(Ax*+Bx2+Cx+D)x+E
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((Ax2+Bx+C)x+D)x+E
((Ax+B)x+C)x+D)x+E

Example: Write a program for 5x* + 2x2 as ((5x + 2)x)x)x, then
evaluate for x = 7.

Keystrokes Display

[g](F7R] 000- Assumes position in mem-
ory is line 000. If it is not,
clear program memory.

ey 001-42,21,12

5 002- 5

X 003- 20 5x.

2 004- 2

005- 40 5x+2.

X 006- 20 (bx+2)x.

X 007- 20 (bx+2)x2

x] 008- 20 (5x+2)x5.

GI[RTN] 009- 4332

[gJ[P/R] Returns to Run mode.
Prior result remains in
display.

7

7.0000 Loads the stack (X-, Y-, Z-,
and T-registers) with 7.

12,691.0000

Nonprogrammable Functions

When the calculator is in Program mode, almost every function on
the keyboard can be recorded as an instruction in program
memory. The following functions cannot be stored as instructions
in program memory.

[MCLEAR(FREFK]  [@[E5T) ST
[CLEAR (o) (VEWD)

M@ )(P/R) o)/
GrolcEslnnn  [on)/ ()
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Problems

1.

The village of Sonance has installed a 12-0o’clock whistle in
the firehouse steeple. The sound level at the firehouse door,
3.2 meters from the whistle, is 138 decibels. Write a program
to find the sound level at various distances from the whistle.

Use the equation L = Ly — 20 log (r/ry), where:

Ly is the known sound level (138 db) at a point near the
source,

ro is the distance of that point from the source (3.2 m),

L is the unknown sound level at a second point, and

r is the distance of the second point from the source in
meters.

What is the sound level at 3 km from the source (r = 3 km)?

A possible keystroke sequence is:

(9] (pzR] (1] (tBL] (€] 3.2 (2] (9] [Log] 20 [x] [CHS] 138 [+]
(g] (RIN]J (9] taking 15 program lines and 15 bytes of
memory. This problem can be solved in a more general way
by removing the specific values 3.2 and 138 from the pro-
gram, and instead recalling the L, and r; values from stor-
age registers; or by removing 3.2 and 138 and loading L, r,

and r( into the stack before execution: L, (ENTER]r[ENTER]r.
(Answer: for r =3 km, L = 78.5606 db.)

A “typical” large tomato weighs about 200 grams, of which
about 188 g (94%) are water. A tomato grower is trying to
produce tomatoes of lower percentage water. Write a
program to calculate the percent change in water content of
a given tomato compared to the typical tomato. Use a
programmed stop to enter the water weight of the new
tomato.

What is the percent change in water content for a 230 g
tomato of which 205 g are water?

A possible keystroke sequence is:

(fed(D] .94 (enter water weight of new
tomato) (enter weight of new tomato) [¥]
@ (g taking 11 program lines and 11 bytes of

memory.

(Answer: for the 230 g tomato above, the percent change in
percent water weight is —5.1804%.)



Section 7
Program Editing

There are many reasons to modify a program after you’ve already
stored it: you might want to add or delete an instruction (like [STO],
[PSE], or [R/S]), or you might even find some errors! The HP-15C is
equipped with several editing features to make this process as easy
as possible.

The Mechanics

Making a program modification of any kind involves two steps:
moving to the proper line (the location of the needed change) and
making the deletion(s) and/or insertion(s).

Moving to a Line in Program Memory

The Go To ([GTO]) Instruction. The sequence nnn will
move program memory to line number nnn, whether pressed in
Run mode or Program mode (PRGM displayed). This is not a
programmable sequence; it is for manually finding a specific
position in program memory. The line number must be a three-digit
number satisfying 000 < nnn < 448.

The Single Step ([SST)) Instruction. To move only one line at a
time forward through program memory, press (single step).
This function is not programmable.

In Program mode: will move the memory position forward one
line and display that instruction. The instruction is not executed. If
you hold the key down, the calculator will continuously scroll
through the lines in program memory.

In Run mode: will display the current program line while the
key is held down. When the key is released, the current instruction
is executed, the result displayed, and the calculator steps forward
to the next program line to be executed.

82
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The Back Step ([BST]) Instruction. To move one line backwards
in program memory, press (back step) in Program or Run
mode. This function is not programmable. will scroll (with the
key held down) in Program mode. Program instructions are not
executed.

Deleting Program Lines

Deletions of program instructions are made with (€] (back arrow)
in Program mode. Move to the line you want to delete, then press
[«]. Any remaining following lines will be renumbered to stay in
sequence.

Pressing («¢]in Run mode does not affect program memory, but is
used for display clearing. (Refer to page 21.)

Inserting Program Lines

Additions to a program are made by moving to the line preceding
the point of insertion. Any instruction you key in will be added
following the line currently in the display. To alter an instruction,
first delete it, then add the new version.

Examples

Let’s refer back to the can volume program on page 71 in section 6
and make a few changes in the instructions. (The can program as
listed below is assumed to be in memory starting on line 001.)

Deletions: If we don’t need the summed base area, volume, and
surface area values, we can delete the storage register additions
(lines 007, 011, and 020).

Changes: To eliminate the need to stop the program to enter the
height value (k), change the instruction to a 1
instruction (because of the above deletions, R, is no longer being
used) and store 4 in R; before running the program. To clean things
up, let’s also alter 4 (line 006) to 2 and 4 (old line
016) to 2, since we are no longer using Ry and Rg.

The editing process is diagrammed on the next page.
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Original Version Edited Version
\ o~
006-[ST0)4 change ——— > | 006-[ST0]2 new
007-[STO](*]1 delete 007-[RCL]1 new
008-[R/S] change —/ ——3» | 008-[%]
009-[x] _/—> 009-(f](PSE]
010-(f)[PSE] 010-[RCL]O
011-[STO]J(+]2 | delete / 011-[3]
012-(RCL]O / 012-2
013-(3] 013-[x]
014-2 / 014-(RCL]2 new
015-(x] / 015-2
016-(RCL]4 change / 016-x]
017-2 017-(*]
018-[x] / 018-[g][RTN]
019-(+] |
020-(ST0)(+]3 delete
021-[g](RTN]
|

Let’s start at the end of the program and work backwards. In this
way, deletions will not change the line numbers of the preceding
lines in the program.

Keystrokes Display

(a](P/R] 000- Program mode. (Assumes
position is at line 000.)

020 020-44,40, 3 Moves position to line 020

(or use [SST)) (instruction 3.)
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Keystrokes Display
[«] 019- 40 Line 020 deleted.
[g](BST] (hold) 016- 45 4 Thenextlineto editisline
016 ( 4).
[«] 015- 20 Line 016 deleted.
2 016- 45 2 Line016changed to
2.
(GTo][cHS]O11 011-44,40, 2 Moves toline 011 ([STO]
(or hold [BST)) #]2).
[«] 010- 4231 Line011 deleted.
(g](BST] (hold) 008- 31 Stop! (Single-stepping
backwards to line 008:
(r7S])
007-44,40, 1 deleted.
1 008- 45 1 Line008changed to
L
[g](BST) 007-44,40, 1 Back-step to line 007.
[« 006- 44 4 Line007([STOJ(*]1)
deleted.
005- 20 Line 006 ([STO]4) deleted.
2 006- 44 2 Changedto 2.
The replacement of a line proceeds like this:
015-(x] —| 015-(x] —| 015-[x]
016-(RCL]4 _/—-> 016-2 016~ [RCL]2
017-2 _/—> 017-[x] _\—-> 017-2

Further Information

Single-Step Operations

Single-Step Program Execution. If you want to check the
contents of a program or the location of an instruction, you can
single step through the program in Program mode. If, on the other
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hand, running the program produces an error, or you suspect that a
portion of the program is faulty, you can check the program by
executing it stepwise. This is done by pressing in Run mode.

Keystrokes Display
(g)(P/R] Run mode.
CLEAR Clear storage registers.
Move to first line of pro-
gram A.
8 1 8.0000 Store a can height.
2.5 2.5 Enter a can radius.
(hold) 001-42,21,11 Keycode for line 001
(label).
(release) 2.5000 Result of executing line
001.
002- 44 0 0.
2.5000 Result.
003- 4311 [gJF).
6.2500 Result.
004- 4326 [g)(r].
3.1416 Result.
SST 005- 20 [x].
19.6350 Result: the base area of
the can.

Wrapping. will not move program position into “unoccupied”
program territory. Instead, the calculator will “wrap around” to
line 000. (In Run mode, will perform any instructions at the
end of program memory, such as [RTN], (GTO], or J)

Line Position

Recall that the calculator’s position in program memory does not
change when it is shut off or Program/Run modes are changed.
Upon returning to Program mode, the calculator line position will
be where you left it. (If you executed a program ending with [RTN],
the position will be at line 000.) Therefore, if the calculator is left on
and shuts itself off, you need only turn it on and switch to Program
mode (the calculator always “wakes up” in Run mode) to be back
where you were.
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Insertions and Deletions

After an insertion, the display will show the instruction you just
added. After a deletion, the display will show the line prior to the
deleted (now nonexistent) one.

If all space available in memory is occupied, the calculator will not
accept any program instruction insertions and Error 4 will be
displayed.

Initializing Calculator Status

The contents of storage registers and the status of calculator
settings will affect a program if the program uses those registers or
depends on a certain status setting. If the current status is
incorrect for the program being run, you will get incorrect results.
Therefore, it is wise to clear registers and set relevant modes either
just prior to running a program or within the program itself. A
self-initializing program is more mistake-proof—but it also uses
more program lines.

Calculator-initializing functions are: CLEAR (Z], [f] CLEAR

[PRGM], [f] CLEAR [REG], [g][DEG], [g][RAD], [g][GRD], (g](SF], and [g]
[CF].

Problems

It is good programming technique to avoid using identical program
labels. (This shouldn’t be hard, since the HP-15C provides 25
different labels.) To ensure against duplication of labels, you can
clear program memory first.

1. The following program is used by the manager of a savings
and loan company to compute the future values of savings
accounts according to the formula FV = PV (1 + i)", where
FV is future value, PV is present value, { is the periodic
interest rate, and n is the number of periods. Enter PV first
(into the Y-register) and n second (into the X-register) before
executing the program. Given is an annual interest rate of
7.5% (so i = 0.075).
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Keystrokes Display

GleEmak 001-42,21, .1

[FExX)2 002-42, 7, 2

1 003- 1

- 004- 48

0 005- 0 7 Interest.
7 006- 7

5 007- 5

(x2y] 008- 34

009- 14 (1+i)~
] 010- 20 PV(1+i)~
[g)(RTN] 011- 4332

Load the program and find the future value of $1,000
invested for 5 years; of $2,300 invested for 4 years. Remember
to use to run a program with a digit label. (Answers:
$1,435.63; $3,071.58.)

Alter the program to make the annual interest rate 8.0%.

Using the edited program, find the future value of $500
invested for 4 years; of $2,000 invested for 10 years.
(Answers: $680.24; $4,317.85.)

Create a program to calculate the length of a chord 2
subtended by an angle 6 (in degrees) on a circle of radius r,
according to the equation

0=2rsin 2. \/
2 N

Find 2 when 6 = 30° and r = 25.

(Answer: 12.9410. A possible program is: (g]J(DEG]
[Fx]4 2 [x] 2[5 (x] [(g)(RTN]). (Assumes

0in Y-register and r in X-register when program is run.)
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Make any necessary modifications in the program to also
find and display s, the length of the circular arc cut by 0 (in
radians), according to the equation

s=rf.

Complete the following table:

[’} r 2| s
45° 50 72
90° 100 | 2 | ?

270° 100 | 2 | ?

(Answers: 38.2683 and 39.2699; 141.4214 and 157.0796;
141.4214 and 471.2389. A possible new sequence is:

(gJ[DEG] [[J[FIX]4 [STOJO 2[x] (sTo]1
2[z] [SIN] [x] [f(PsE] [A[PsE] [RCL]O [RCL]1
(] [gJ(RTN]).



Section 8

Program Branching
and Controls

Although the instructions in a program are normally executed
sequentially, it is often desirable to transfer execution to a part of
the program other than the next line. Branching in the HP-15C
may be simple, or it may depend on a certain condition. By
branching to a previous line, it is possible to execute part of a
program more than once—a process called looping.

The Mechanics

Branching

The Go To ([GT0]) Instruction. Simple branching—that is,
unconditional branching—is carried out with the instruction
label. In a running program, will transfer execution to the
next appropriately labeled program or routine (not to a line
number).

.
015-(GT0]7 L»I
016- [
017- Y
018- I
019-[MIBE07 <
020-

\

The calculator searches forward in memory, wrapping around
through line 000 if necessary, and resumes execution at the first
line containing the proper label.

Looping. If a instruction specifies a label at a lower-
numbered line (that is, a prior line), the series of instructions
90
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between the and the label will be executed repeatedly—
possibly indefinitely. The continuation of this loop can be
controlled by a conditional branch, an instruction (written
into the loop), or simply by pressing any key during execution
(which stops the program).

015-[AB07 - —
016-
017-
018-
019-[GT0)7 ——
020-

—___|

—

L—

Conditional Tests

Another way to alter the sequence of program execution is by a
conditional test, a true/false test which compares the number in
the X-register either to zero or to the number in the Y-register. The
HP-15C provides 12 different tests, two explicit on the keyboard
and 10 others accessible using [g](TEST] n.*

1. Direct: [g](x<yland [g](x=0].
2. Indirect: [g] n.

n| Test | n| Test
0 x7#0 5 x=y
1 x>0 | 6 xFy
2 x<0\| 7 x>y
3 x=20| 8 x<y
4 x<0 |9 x=y

* Four of the conditional tests can also be used for complex values, as explained in
section 11 on page 132.
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Following a conditional test, program execution follows the “Do if
True” Rule: it proceeds sequentially if the condition is true, and it
skips one instruction if the condition is false. A instruction is
often placed right after a conditional test, making it a conditional
branch; that is, the branch is executed only if the test
condition is met.

Program Execution After Test

If True If False
—_\’

- 015-(f)(LBL].1

: 016-

| 017-[g)(=<y) —_——

bt e 018-[GT0].1 ‘
019- - —l
020-

——

Flags

Another conditional test for programming is a flag test. A flagis a
status indicator that is either set (= true) or clear (= false). Again,
execution follows the “Do if True” Rule: it proceeds sequentially if
the flag is set, and skips one line if the flag is clear.

The HP-15C has eight user flags, numbered 0 to 7, and two system
flags, numbered 8 (Complex mode) and 9 (overflow condition). The
system flags are discussed later in this section. All flags can be set,
cleared, and tested as follows:

o [g](SF]n will set flag number n (0 to 9).
o (g)[CF]n will clear flag number n.
o [g)[F?)n will check if flag n is set.

A flag n that has been set remains set until it is cleared either by a
n instruction or by clearing (resetting) Continuous Memory.
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Examples

Example: Branching and Looping

A radiobiology lab wants to predict
the diminishing radioactivity of a
test amount of 131, a radioisotope.
Write a program to figure the radio-
activity at 3-day intervals until a
given limit is reached. The formula
for N;, the amount of radioisotope
remaining after ¢t days, is

Nt — NO (2—t/k)’
where k& = 8 days, the half-life of 13'T, and N is the initial amount.
The following program uses a loop to calculate the number of
millicuries (mci) of isotope theoretically remaining at 3-day
intervals of decay. Included is a conditional test to check the result

and end the program when radioactivity has fallen to a given value
(a limit).

The program assumes t;—the first day of measurement—is stored
in Ry, Ng—the initial amount of isotope—is stored in Ry, and the
limit value for radioactivity is stored in R,.

Keystrokes Display

[g](P7R] 000- Program mode.

CLEAR 000- (Optional.)

001-42,21,11 Each loop returns to this
line.

0 002- 45 0 Recallscurrentt, which
changes with each loop.

003- 42 31 Pausestodisplay t.

8 004- 8 k.

(=] 005- 10

006- 16 —t/k.

2 007- 2

(xxy] 008- 34

) 009- 14 27Uk
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Keystrokes

(REL(x] 1

(ReL)2

(g)(TEST)9

(o)(RTN]
3
(sToJ(+Jo

Display
010-45,20, 1
011- 42 31
012- 45 2
013-43,30, 9
014- 43 32
015- 3
016-44,40, O
017- 22 11

Recall multiplication with
the contents of R; (Ny),
yielding Ny, the mci of 131
remaining after t days.
Pauses to display N .
Recalls limit value to X-
register.

x=y? Tests whether limit
value (in X) meets or
exceeds N; (in Y).

If so, program ends.

If not, program continues.
Adds 3days totinRy.
Goto “A” and repeat exe-
cution to find a new N,
from anew ¢.

Notice that without lines 012 to 014, the loop would run indefinitely
(until stopped from the keyboard).

Let’s run the program, using ¢, = 2 days, Ny = 100 mci, and a limit
value of half of N (50 mci).

Keystrokes

(a)(PZR]

2[sT0]J0
100 (ST0) 1
50(S70)2

Display

2.0000
100.0000
50.0000
2.0000
84.0896
5.0000
64.8420
8.0000
50.0000
50.0000

Run mode (display will
vary).

t.

No.

Limit value for N,.

t.

N;.

to.

N,.

t3.

Ns.

N; limit; program ends.
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Example: Flags

Calculations on debts or investments can be calculated in two
ways: for payments made in advance (at the beginning of a given
period) and for payments made in arrears (at the end of a given
period). If you write a program to calculate the value (or “present
value”) of a debt or investment with periodic interest and periodic
payments, you can use a flag as a status indicator to tell the
program whether to assume payments are made in advance or
payments are made in arrears.

Suppose you are planning the payment of your child’s future
college tuition. You expect the cost to be about $3,000/year or about
$250/month. If you wanted to withdraw the monthly payments
from a bank account yielding 6% per year, compounded monthly
(which equals 0.5% per month), how much must you deposit in the
account at the start of the college years to fund monthly payments
for the next 4 years?

The formula is
-\ — if payments are to be
1—-(1+)™ 11 pay.
1-a+or - i 1+13) made each month in
i

L . advance,

and the formulais

[ 1—(1+i)™ i if payments are to be
V=P | ———— made each month in
L t N arrears.

V is the total value of the deposit you must make in the account;

P is the size of the periodic payment you will draw from the
account;

i is the periodic interest rate (here: “periodic” means monthly,
since interest is compounded monthly); and

n is the number of compounding periods (months).

The following program allows for either payment mode. It assumes
that, before the program is run, P is in the Z-register, n is in the
Y-register, and i is in the X-register.
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Keystrokes

(a)(P7R]
(aJ(cFlo

(GTo]1
(f](LBLI(E]

(el(sEl0

(a)(RTN]

Display

000~

001-42,21,12

002-43, 5, 0

003- 22 1
004-42,21,15

005-43, 4, 0
006-42,21, 1
007- 44 1
008- 1
009- 40
010- 34
011- 16
012- 14
013- 16
014~ 1
015~ 40
016-45,10, 1
017- 20
018-43, 6, 0
019- 43 32
020- 45 1
021- 1
022- 40
023- 20
024- 4332

Program mode.

Start at “B” if payments
to be made at the
beginning.

Flag 0 clear (false); indi-
cates advance payments.
Go to main routine.

Start at “E” if payments
to be made at the end.

Flag 0 set (true); indicates
payment in arrears.

Routine 1 (main routine).
Stores i (from X-register).

14+39).
PutsninX;(1+i)inY.
-n.

1+

—(1+i)™™

1—-1+)™™

Recall division with Ry (7)
toget[1— (1 +i)" "]/i.
Multiplies quantity by P.
Flag 0 set?

End of calculation if flag 0
set (for payments in
arrears).

Recalls:.

a1 +i).
Multiplies quantity by
final term.

End of calculation if flag 0
clear.
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Now run the program to find the total amount needed in an
account from which you want to take $250/month for 48 months.
Enter the periodic interest rate as a decimal fraction, that is, 0.005
per month. First find the sum needed if payments will be made at
the beginning of the month (payments in advance), then calculate
the sum needed if payments will be made at the end of the month
(in arrears).

Keystrokes Display

(gJ(P/R] Set to Run mode.

250 250.0000 Monthly payment.

48 48.0000 Payment periods (4 years
X 12 months).

.005 0.005 Monthly interest rate as a
decimal fraction.

10,698.3049  Deposit necessary for pay-
ments to be made in
advance.

(Repeat stack entries.)

[E) 10,645.0795  Deposit necessary for pay-
ments to be made in
arrears. (The difference be-
tween this deposit and the
tuition cost ($12,000) repre-
sents interest earned on
the deposit!)

Further Information

GoTo

In contrast to the nonprogrammable sequence nnn, the
programmable sequence label cannot be used to branch to a
line number, but only to a program label (a line containing
label).* Execution continues from the point of the new label, and
does not return to the original routine unless given another
instruction.

* It is possible to branch under program control to a particular line number by using
indirect addressing, discussed in section 10.
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label can also be used in Run mode (that is, from the
keyboard) to move to a labeled position in program memory. No
execution occurs.

Looping

Looping is an application of branching which uses a
instruction to repeat a portion of the program. A loop can continue
indefinitely, or may be conditional. A loop is frequently used to
repeat a calculation with different variables. At the same time, a
counter, which increments with each loop, may be included to keep
track of loop iterations. This counter can then be checked with a
conditional test to determine when to exit the loop. (This is shown
in the example on page 112.)

Conditional Branching

There are two general applications for conditional branching. One
is to control loops, as explained above. A conditional test can check
for either a certain calculated value or a certain loop count.

The other major use is to test for options and pursue one. For
example, if a salesperson made a variable commission depending
on the amount of sale, you could write a program which takes the
amount of sale, compares it to a test value, and then calculates a
specific commission depending on whether the sale is less than or
greater than the test value.

Tests. A conditional test takes what is in the X-register (“x”’) and
compares it either to zero (such as [x=0]) or to “y”, that is, what is
in the Y-register (such as [x<y]). For an x:y comparison, therefore,
you must have the x- and y-values juxtaposed in the X- and Y-
registers. This might require that you store a test value and then
recall it (bringing it into the X-register). Or, the value might be in
the stack and be moved, as necessary, using [x%y], (R¥], or [(R%].

Tests With Complex Numbers and Matrix Descriptors. Four
of the conditional tests also work with complex numbers and

matrix descriptors: [x=0], 0(x#0), 5(x=y),and

6 (x # y). Refer to sections 11 and 12 for more information.

Flags

As a conditional test can be used to pick an option by comparing
two numbers in a program, a flag can be used to pick an option
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externally. Usually, a flag is set or cleared first thing in a program
by choosing a different starting point (using different labels)
depending on the condition or mode you want (refer to the example
on page 95).

In this way, a program can accommodate two different modes of
input, such as degrees and radians, and make the correct
calculation for the mode chosen. You set a flag if a conversion
needs to be made, for instance, and clear it if no conversion is
needed.

Suppose you had an equation requiring temperature input in
degrees Kelvin, although sometimes your data might be in degrees
Celsius. You could use a program with a flag to allow either a
Kelvin or Celsius input. In part, such a program might include:

Start program at “C” for degrees Celsius.
Flag 7 cleared (=false).

Start program at “D” for degrees Kelvin.
Flag 7 set (=true).

1 (Assuming temperature in X-register.)

(eI(F2]7 Checks for flag 7 (checks for Celsius or
Kelvin input).

2 If set (Kelvin input), goes to a later routine,

skipping the next few instructions.

2 If cleared (Celsius input), adds 273 to the

7 value in the X-register, since °K = °C + 273.
3

LBL]2 Calculation continues for both modes.

The System Flags: Flags 8 and 9

Flag 8. Setting flag 8 will activate Complex mode (described in
section 11), turning on the C annunciator. If another method is
used to activate Complex mode, flag 8 will automatically be set.
Complex mode is deactivated only by clearing flag 8; flag 8 is
cleared in the same manner as the other flags.
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Flag 9. An overflow condition (described on page 61) auto-
matically sets flag 9. Flag 9 causes the display to blink or, if a
program is running, waits until execution is complete and then
starts blinking the display.

Flag 9 may be cleared in three ways:
® Press[g](CF]9 (the common procedure for clearing flags).

® Press [«]. This will only clear flag 9 and stop the blinking—it
will not clear the display.

® Turn the calculator off. (Flag 9 is not cleared if the calculator
turns itself off.)

If you set flag 9 manually ([SF] 9), it causes the display to blink
irrespective of the overflow status of the calculator. As usual, a
program will run to completion before the display starts blinking.
Therefore, flag 9 can be used as a programming tool to provide a
visual signal for a selected condition.
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Subroutines

When the same set of instructions needs to be used at more than
one point in a program, memory space can be conserved by storing
those instructions as a single subroutine.

The Mechanics

Go To Subroutine and Return

The (go to subroutine) instruction is executed in the same
way as the branch, with one major difference: it establishes a
pending return condition. label, like label * transfers
program execution to the line with the corresponding label ([A] to
(2], 0 to 9 or .0 to .9). However, execution then continues until the
first subsequent instruction is encountered—at which point
execution transfers back to the instruction immediately following
the last instruction, and continues on from there.

Subroutine Execution
(f(EeL](A] > (1

/
/

(GsB](]1 —/
‘\
@EN | @EN \
END RETURN
Execution transfers to line 000 Execution transfers back to
and halts. original routine, after [GSB][-]1.

*A or instruction followed by a letter label is an abbreviated key sequence (no
necessary). Abbreviated key sequences are explained on page 78.

101
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Subroutine Limits

A subroutine can call up another subroutine, and that subroutine
can call up yet another subroutine. This “subroutine nesting” —the
execution of a subroutine within a subroutine—is limited to a stack
of subroutines seven levels deep (this does not count the main
program level). The operation of nested subroutines is as shown
below:

Main Program
’ (L)1 (LBL]2 [LBL)3 (L84

1 1
* / ll * // /I
[GSB)1 / Y |/ | Gses |/ Y |/
Gssz |/ Gsla |/

X , %

\C Y ] NN
RTN \ RTN \ RTN \ RTN M ORIN
End

Examples

Example: Write a program to calcu-
late the slope of the secant line
joining points (x{, ¥1) and (xg, y3) on
the graph shown, where y=x* —
sin x (given x in radians).

The secant slope is:

YaTYL o, (x9®—sinxy) — (2,2 —sinx))
X9~ X1 ' Xg— Xy

The solution requires that the equation for y be evaluated twice—
once for y; and once for y,, given the data input for x; and x,.
Since the same calculation must be made for different values, it
will save program space to call a subroutine to calculate y.

The following program assumes that x; has been entered into the
Y-register and x, into the X-register.
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(gl(P/R]

CLEAR (Not programmable.)

000-

001- 9 Start main program.

002-[g](RAD] Radians mode.

003- 0 Stores x5 in Ry.

004-(x%y] Brings x; into X; x5into Y.

005-[ST0][=]0 (xg—x;)inR,,.

— 006 .3 Transfer to subroutine “.3” with x;.

Return from subroutine “.3”.

007- - -y

008-[x%y] Brings x4 into X-register.

009- .3 Transfer to subroutine with x .
Return from subroutine “.3”.

010- < Yo—¥1.

011-[Rctz]o Recalls (x5 — x;) from Ry and
calculates (yos —y1)/(x9— x1).

012-[g](RTN] Program end (return to line 000).

SUBROUTINE

013~ .3 Start subroutine .3.

014-(gJ*) x2.

015-[g](LSTx] Recall x.

016-[SIN] Sinx.

017-5) x2—sin x, which equals y.

018-[g] — —l Return to origin in main program.

Calculate the slope for the following values of x; and x5: 0.52, 1.25;
—1, 1; 0.81, 0.98. Remember to use 9 (rather than (f] 9) when
addressing a routine with a digit label.

Answers: 1.1507; —0.8415; 1.1652.

Example: Nesting. The following subroutine, labeled “.4”,
calculates the value of the expression \/x2+ y2 + z2 + ¢t2 as part of
alarger calculation in a larger program. The subroutine calls upon
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another subroutine (a nested subroutine), labeled “.5”, to do the
repetitive squaring.

The program is executed after placing the variables ¢, z, y, and x
into the T-, Z-, Y-, and X-registers.

Keystrokes
|-—-> 4 A Start of main
subroutine.

F1Es) x2.

e 5 Calculates y2 and
x2+ y 2

— .5 ﬁ ® Calculates z2 and
x2+ y2 +22

—(GSB].5 = ® Calculates 2 and
x2+y2+22+ 2

- ® Vai+y2+2z24¢2

(g](RTN] End of main subroutine;
returns to main program.

5 (f](LBL].5 Start of nested
subroutine.

[x2y]

FlEs) Calculates a square and
adds it to current sum of
squares.

(] — End of nested sub-
routine; returns to main
subroutine.

If you run the subroutine (with its nested subroutine) alone using
x =43,y =179, z = 1.3, and ¢t = 8.0, the answer you get upon
pressing 415 12.1074.
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Further Information

The Subroutine Return

The pending return condition means that the instruction
occurring subsequent to a instruction causes a return to the
line following the [(GSB] rather than a return to line 000. This is what
makes a subroutine useful and reuseable in different parts of a pro-
gram: it will always return execution to where it branched from,
even as that point changes. The only difference between using a
branch and a branch is the transfer of execution after a

(RTN].

Nested Subroutines

If you attempt to call a subroutine that is nested more than seven
levels deep, the calculator will halt and display Error 5 when it
encounters the instruction at the eighth level.

Note that there is no limitation (other than memory size) on the
number of nonnested subroutines or sets of nested subroutines that
you may use.



Section 10
The Index Register
and Loop Control

The Index register (R;) is a powerful tool in advanced
programming of the HP-15C. In addition to storage and recall of
data the Index register can use an index number to:

® Count and control loops.

® Indirectly address storage registers, including those beyond
RgRyg).

® Indirectly branch to program line numbers, as well as to
labels.

® Indirectly control the display format.

® Indirectly control flag operations.

The [I]and [(i)] Keys

Direct Versus Indirect Data Storage With the Index Register

The Index register is a data storage register that can be used
directly, with [I], or indirectly, with [(i}].* The difference is
important to note:

(@

The [I]function uses The ((i)] function uses the
the number itself in the absolute value of the integer
Index register. portion of the number in the

Index register to address
another data storage register.
This is called indirect
addressing.

* Note that the matrix functions and complex functions use the [I] and [{i)] keys also, but
for different purposes. Refer to sections 11 and 12 for their usage.
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Indirect Program Control With the Index Register

The [I] key is used for all forms of indirect program control other
than indirect register addressing. Hence, (1] (not [{i)]) is used for
indirect program branching, indirect display format control, and
indirect flag control.

Program Loop Control

Program loop counting and control can be carried out in the
HP-15C by any storage register: Ry through Rg, R ( through R g, or
the Index register ([IJ). Loop control can also be carried out
indirectly with [(i)].

The Mechanics

Both [I]and [(i)] can be used in abbreviated key sequences, omitting
the preceding [f] prefix (as explained on page 78).

Index Register Storage and Recall

Direct. and (). Storage and recall between the X-
register and the Index register operate in the same manner as with
other data storage registers (page 42).

Indirect. (or [RCL)) [(i)] stores into (or recalls from) the data
storage register whose number is addressed by the integer portion
of the value (0 to 65) in the Index register. See the table below and
on the next page.

Indirect Addressing

. . . | CODeEEDw

If Ry contains: (@] will address: transfer to:*

+0 Ro (fl{tBLjo

9 Ro

10 Ro "0

1 R, v

19 R (F(tBL).9

20 Rao )
*For Ry =0 only.

(Continued on next page.)
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Indirect Addressing

. . [GTO](M or [GSB] [T will
If Ry contains: () will address: Mo _WI
transfer to:

21 Roq

22 Roo noon

23 Rys P @

24 Rys woon @

65 Res -
*For Ry =0only.

Index Register Arithmetic

Direct. or { (], (5, ¥, (5] } (@. Storage or recall
arithmetic operates with the Index register in the same manner as
upon other data storage registers (page 43).

Indirect. or { (+], 5], [x], (5]} ()] carries out storage or
recall arithmetic with the contents of the data storage register

addressed by the integer portion of the number (0 to 65) in the
Index register. See the above table.

Exchanging the X-Register

Direct. (f] exchanges contents between the X-register and
the Index register. (Works the same as [x%] n does with registers 0
through .9.)

Indirect. [f][x%]((i)] exchanges contents between the X-register and
the data storage register addressed by the number (0 to 65) in the
Index register. See the above table.

Indirect Branching With

The [I)key—but not the [(i)] key—can be used for indirect branching
([GTO)(T)) and subroutine calls ([GSB](I]). (Only the integer portion
of the number in R is used.) ([(}J is only used for indirect
addressing of storage registers.)
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To Labels. If the R; value is positive, and will

transfer execution to the label which corresponds to the number in
the Index register (see the above table).

For instance, if the Index register contains 20.00500, then a
instruction will transfer program execution to [A]. See the
chart on page 107.

To Line numbers. If the R, value is negative, (GTO][1] causes
branching to that line number (using the absolute value of the in-
teger portion of the value in Rp).

For instance, if R contains —20.00500, then a instruction
will transfer program execution to program line 020.

Indirect Flag Control With

m, ], or will set, clear, or test the flag (0 to 9)
specified in R; (by the magnitude of the integer portion).

Indirect Display Format Control With
m, 1, and will format the display in their

customary manner (refer to pages 58-59), using the number in Ry
(integer part only) for n, which must be from 0 to 9.*

Loop Control With Counters: [ISG]and

The (increment and skip if greater than) and [DSE](decrement
and skip if less than or equal to) functions control loop execution
by referencing and altering a loop control number in a given
register. Program execution (skipping a line or not) then depends
on that number.

The key sequence is (f] {(1ISG], [DSE]} register number. This number
is0t09,.0t0.9, [, or [(i)].

The Loop Control Number. The format of the loop control
number is:

+nnnnn is the current counter value,
nnnnn.xxxyy, where XXX is the test (goal) value, and
vy is the increment or decrement
value.

* Except when using (/5] (section 14).
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For example, the number 0.05002 in a storage register represents:

nnnnn X X X y y
00500

Start count at zero. —} T L— Count by twos.

Count up to 50.

and Operation. Each time a program encounters
or [DSE], it increments or decrements nnnnn (the integer portion of
the loop control number), thereby keeping count of loop iterations.
It compares nnnnn to xxx, the prescribed test value, and exits the
loop by skipping the next line if the loop counter (nnnnn) is either
greater than ([ISG)) or less than or equal to ([DSE]) the test value
(xxx). The amount that nnnnn is incremented or decremented is
specified by yy.

With these functions (as opposed to the other conditional tests), the
rule is “Skip if True”.

False (nnnnn < xxx) True (nnnnn > xxx)
instruction l
A [0seld -1
loop L — ETo)1 y
instruction +—— J exit loop

For [ISG): given nnnnn.xxxyy, increment nnnnn to nnnnn +yy,
compare it to xxx, and skip the next program line if the new value
satisfies nnnnn > xxx. This allows you to exit a loop at this point
when nnnnn becomes greater than xxx.
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False (nnnnn > xxx) True (nnnnn << xxx)
instruction l
A ) —
toop -~ [ GTOI1 v
instruction r  exit loop

For [DSE]: given nnnnn.xxxyy, decrement nnnnn to nnnnn —
yy, compare it to xxx, and skip the next program line if the new
value satisfies nnnnn < xxx. This allows you to exit a loop at this
point when nnnnn becomes less than or equal to xxx.

For example, loop iterations will alter these control numbers as
follows:

Iterations
Operation (] 1 2 3 4
0.00602 | 2.00602 | 4.00602 | 6.00602 | 8.00602
(skip next
line)
DSE 6.00002 | 4.00002 | 2.00002 | 0.00002
(skip next
line)
Examples
Examples: Register Operations
Storing and Recalling
Keystrokes Display
CLEAR Clears all storage registers.
12.3456 12.3456
12.3456 Stores in Ry.
7 2.6458
2.6458 Storage in R 5 by indirect

addressing (R; = 12.3456).
12.3456 Recalls contents of Ry.
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Keystrokes Display

[Red@ 2.6458 Indirectly recalls contents
of R 2-

f=z].2 2.6458 Check: same contents re-
called by directly ad-
dressing R 5.

Exchanging the X-Register

Keystrokes Display

HE 12.3456 Exchanges contents of R;
and X-register.

(rReU(d 2.6458 Present contents of R;.

[{E=) 0.0000 Exchanges contents of Ry
(which is zero) with X.

(@ 2.6458

(x%]2 2.6458 Check: directly address
RZ-

Storage Register Arithmetic

Keystrokes Display

10(sT0](*+](T] 10.0000 Adds 10 to R

12.6458 New contents of R; (= old
+10).

[g) =] 3.1416 Divides contents of R 5
by .

[Red)([@] 0.8422 New contents of R 5.

[fxz).2 0.8422 Check: directly address
R,.

Example: Loop Control with

Remember the program in section 8 which used a loop to calculate
radioactive decay? (Refer to page 93.) This program used a test
condition (x=y?) to exit the loop when the calculated result passed
a given limit (50). As we’ve seen in this section, there’s another way
to control loop execution: through a stored loop counter that is

monitored by the or function.
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Here is a revision of the original radioisotope decay program. This
time, we will limit the program to three executions of the loop
rather than setting a specific limit value. This example uses
with a loop control numberin Ryof 3. 0 0 0 0 1.

initial loop counterJ T Ldecrement value

test (goal) value

Make the following changes to the program (assuming it is in
memory). A loop counter will be stored in Ry and a line number in
the Index register.

Keystrokes Display

(g)(P/R] 000- Program mode.

[GTo][cHS]013 013-43,30, 9 Thesecond of the two loop
test condition lines.

(€][«) 011- 4231 Deletelines 013 and 012.

2 012-42, 5, 2 Add your loop counter
function (counter stored in
RQ).

013- 2225 Gotogiven line number
(015).

Now when the loop counter (stored in Ry) has reached zero, it will
skip line 013 and go on to 014, the instruction, thereby ending
the program. If the loop counter has not yet decreased to zero,
execution continues with line 013. This branches to line 015 and
continues the program and the looping.

To run the program, put ¢; (day 1) in R, N (initial isotope batch) in
R, the loop counter in Ry, and the line number for branching in the
Index register.

Keystrokes Display

(g)[P/R] Run mode.

2 0 2.0000 t.

100 1 100.0000 No.

3.00001 2 3.0000 Loop counter. (This in-

struction could also be
programmed.)
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Keystrokes Display
15 -15.0000 Branch line number.
2.0000 Running program: loop
counter = 3.
84.0896
5.0000 Loop counter = 2.
64.8420
8.0000 Loop counter = 1.
50.0000
50.0000 Loop counter = 0; program
ends.

Example: Display Format Control

The following program pauses and displays an example of
display format for each possible decimal place. It utilizes a loop
containing a instruction to automatically change the number
of decimal places.

Keystrokes

(]

CLEAR

9 nnnnn = 9, Therefore, xxx = 0 and by
default yy =1 (yy cannot be zero).

0

[f)(PSE] Displays current value of nnnnn.

Value in Rj is decremented and tested. Skip
alineif nnnnn < test value.

(] Continue loop if nnnnn > test value (0).

(g](TEST]1 Tests whether value in display is greater

0 than 0, so loop will continue when nnnnn
has reached 0 but display still only shows
1.0.

(a)(RTN]



Section 10: The Index Register and Loop Control 115

To display fixed point notation for all possible decimal places on
the HP-15C:

Keystrokes Display

(g)(P7R] Run mode.
9.000000000
8.00000000
7.0000000
6.000000
5.00000
4.0000
3.000
2.00
1.0
0. Display at
instruction.
0. Display when program
halts.

Further Information

Index Register Contents

Any value stored in the Index register can be referenced in three
different ways:

e Using[I]like any other storage register. The value in R; can be
manipulated as it is: stored, recalled, exchanged, added to, etc.

e Using as a control number. The absolute value of the
integer portion in Rj is a separate entity from the fractional
portion. For indirect branching, flag control, and display
format control with [I], only this portion is used. For loop
control, the fractional portion is also used, but separately from
the integer portion.*

e Using as a reference to the contents of another storage
register. The [(i)] key uses the indirect addressing system
shown in the tables on pages 107 and 108. (In turn, the
contents of that second register may be used as a loop control
number, in the fashion described above.)

* This is also true for the value in any storage register used for indirect loop control.
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(I5G]and [DSE]

For the purpose of loop control, the integer portion (the counter
value) of the stored control number can be up to five digits long
(nnnnn.xxxyy). The counter value (nnnnn) is zero if not specified
otherwise.

xxx, in the decimal portion of the control number, must be
specified as a three-digit number. (For example, “5” must be “005”.)
xxX is zero if not specified otherwise. Whenever or is
encountered, nnnnn is compared internally to xxx, which
represents the end level for incrementing or decrementing.

yy must be specified as a two-digit number. yy cannot be zero, so if
left (or specified) as 00, the value for yy defaults to 1. The value
nnnnn is altered by the amount of yy each time the loop runs
through or [DSE]. Both yy and xxx are reference values, which
do not change with loop execution.

Indirect Display Control

While you can use the Index register to format the display
manually (that is, from the keyboard), this function is most
commonly used in programming. This capability is especially
valuable for the [ 5] function, for which accuracy can be stipulated
by specifying the number of digits to be displayed (as described in
section 14).

There are, as usual, certain display limitations to keep in mind.
Recall that any display format function merely alters the number
of decimal places to which the display is rounded. In its memory,
the calculator always retains a number in scientific notation as a
10-digit mantissa with a two-digit exponent.

The integer portion of the number in the Index register specifies the
number of decimal places to which the display is rounded. A
number less. than zero defaults to zero (zero decimal places
displayed in format), while a number greater than 9 defaults to
9 (9 decimal places displayed in [FIX]).*

*Note that in and format modes, the maximum display is a seven-digit
mantissa with a two-digit exponent. However, a format number greater than six (and
less than or equal to nine) will alter the decimal place at which rounding occurs. (Refer
to pages 58-59.)
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An exception is in the case of (5], where the display format number
in Ry may range from —6 to +9. (This is discussed in appendix E on
page 247.) A number less than zero will not affect the display
format, but will affect accuracy with this function.
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Section 11

Calculating With
Complex Numbers

The HP-15C enables you to calculate with complex numbers, that
is, numbers of the form

a+1ib,

where aisthereal part of the complex number,
bis theimaginary part of the complex number, and
i=+/-1.
As you will see, the beauty of calculating with the HP-15C in

Complex mode is that once the complex numbers are keyed in, most
operations are executed in the same manner as with real numbers.

The Complex Stack and Complex Mode

Calculations with complex numbers

are performed using a complex stack Real Imaginary
composed of two parallel four- Stack_L L-Stack
register stacks (and two LAST X

registers). One of these parallel
stacks—referred to as the real
stack—contains the real parts of
complex numbers used in calcula-
tions. (This is the same stack used in
ordinary calculations.) The other
stack—referred to as the imaginary
stack—contains the imaginary parts

of complex numbers used in LASTX Dj

calculations.

X < N o

Creating the Complex Stack

The imaginary stack is created (by converting five storage
registers as described in appendix C) when you activate Complex
mode; it does not exist when the calculator is not in Complex mode.

120
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Complex mode is activated
1) automatically, when executing or [f][RexIm]; or
2) by setting flag 8, the Complex mode flag ([g](SF] 8).

When the calculator is in Complex mode, the C annunciator in the
display is lit. This tells you that flag 8 is set and the complex stack
exists. In or out of Complex mode, the number appearing in the
display is the number in the real X-register.

Note: |n Complex mode (signified by the C annunciator), the
HP-15C performs a// trigonometric functions using radians.
The trigonometric mode annunciator in the display (RAD,
GRAD, or blank for Degrees) applies to two functions only:
[®R]and [#P](as explained later in this section).

Deactivating Complex Mode

Since Complex mode requires the allocation of five registers from
memory, you will have more memory available for programming
and other advanced functions if you deactivate Complex mode
when you are working solely with real numbers.

To deactivate Complex mode, clear flag 8 (keystroke sequence:
(] 8). The C annunciator will disappear.

Complex mode is also deactivated when Continuous Memory is
reset (as described on page 63). In any case, deactivating Complex
mode dissolves the imaginary stack, and all imaginary numbers
there are lost.

Complex Numbers and the Stack

Entering Complex Numbers
To enter a number with real and imaginary parts:
1. Key the real part of the number into the display.
2. Press [ENTER].
3. Key the imaginary part of the number into the display.
4

Press [f][I. (If not already in Complex mode, this creates the
imaginary stack and displays the C annunciator.)

Example: Add 2+ 3i and 4 + 5i. (The operations are illustrated in
the stack diagrams following the keystroke listing.)
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Keystrokes

(f(Ex)4
2 [ENTER]

4 [ENTER]

1

(@ (hold)

(release)

Display

2.0000

2.0000

4.0000

4.0000

6.0000

8.0000
6.0000

Keys real part of first
number into (real) Y-
register.

Keys imaginary part of
first number into (real) X-
register.

Creates imaginary stack;
moves the 3 into the
imaginary X-register, and
drops the 2 into the real X-
register.

Keys real part of second
number into (real) Y-
register.

Keys imaginary part of
second number into (real)
X-register.

Copies 5 from real X-
register into imaginary X-
register, copies 4 from real
Y-register into real X-
register, and drops stack.
Real part of sum.
Displays imaginary part
of sum while the [(i)] key is
held. (This also termi-
nates digit entry.)

The operation of the real and imaginary stacks during this process
is illustrated below. (Assume that the stack registers have been
loaded already with the numbers shown as the result of previous
calculations.) Note that the imaginary stack, which is shown below
at the right of the real stack, is not created until (f](I] is pressed.
(Recall also that the shading of the stack indicates that those
contents will be written over when the next number is keyed in or

recalled.)
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Re Im Re Im Re Im Re Im Re Im
Tle| i [l & [2] 7 [7]7F [7]o
dosBusBosliosRar
vyi{z] i [e| ¢ [2] | [2] % [e]o
X |6 E 2 , 3 . BEIEEERE

Keys: 2 3

The execution of [f](I] causes the entire stack to drop, the T contents
to duplicate, and the real X contents to move to the imaginary

X-register.

When the second complex number is entered, the stacks operate as
shown below. Note that lifts both stacks.

Re Im Re Im Re Im Re Im
T|7]o0 710 6 6|0
Z|7]|0 6|0 2|3 2|3
Y |[6]|0 2|3 4|0 4|0
X 2|3 4|0 4|0 5|0

Keys: 4 5
Re Im Re Im Re Im
T|e|o 0 6|0
Z|2]|3 6|0 6|0
Y|(a]|o0 2|3 6|0
X|5]|0 4|5 6|8

Keys:

A second method of entering complex numbers is to enter the
imaginary part first, then use and [«]. This method is
illustrated under Entering Complex Numbers With (€], page 127.
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Stack Lift in Complex Mode

Stack lift operates on the imaginary stack as it does on the real
stack (the real stack behaves identically in and out of Complex
mode). The same functions that enable, disable, or are neutral to
lifting of the real stack will enable, disable, or be neutral to lifting
of the imaginary stack. (These processes are explained in detail in
section 3 and appendix B.)

In addition, every nonneutral function except [«] and causes
the clearing of the imaginary X-register when the next number is
entered. That is, these functions cause a zero to be placed in the
imaginary X-register when the next number is keyed in or recalled.
Refer to the stack diagrams above for illustrations. This feature
allows you to execute calculator operations using the same key
sequences you use outside of Complex mode.*

Manipulating the Real and Imaginary Stacks
(real exchange imaginary). Pressing will

exchange the contents of the real and imaginary X-registers,
thereby converting the imaginary part of the number into the real
part and vice-versa. The Y-, Z-, and T-registers are not affected.
Press twice to restore a number to its original form.

also activates Complex mode if it is not already activated.

Temporary Display of the Imaginary X-Register. Press
to momentarily display the imaginary part of the number in the
X-register without actually switching the real and imaginary
parts. Hold the key down to maintain the display.

Changing Signs

In Complex mode, the function affects only the number in the
real X-register—the imaginary X-register does not change. This
enables you to change the sign of the real or imaginary part
without affecting the other. To key in a negative real or imaginary
part, change the sign of that part as you enter it.

If you want to find the additive inverse of a complex number
already in the X-register, however, you cannot simply press
as you would outside of Complex mode. Instead, you can do either
of the following:

" Except for the [(®P] and [#R] functicns, as explained in this section (page 133).
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® Multiply by —1.
e If you don’t want to disturb the rest of the stack, press
[f)[Rexim] [CHS] [f][RexIm].

To find the negative of only one part of a complex number in the
X-register:

® Press to negate the real part only.
® Press [f][Rexim] [CHS RexIlm] to negate the imaginary part

only, forming the complex conjugate.

Clearing a Complex Number

Inevitably you will need to clear a complex number. You can clear
only one part at a time, but you can then write over both parts
(since[«]and disable the stack).

Clearing the Real X-Register. Pressing [«](or [g][CLx]) with the
calculator in Complex mode clears only the number in the real
X-register; it does not clear the number in the imaginary X-register.

Example: Change 6 + 8i to 7 + 8i and subtract it from the previous
entry. (Use or (f][(i)] to view the imaginary part in X.)
Assumea, b, ¢, and d represent parts of complex numbers.

Re Im Re Im Re Im Re Im
Tla|s a|b alb a
Z|c|d c|d c|d a
Y 0 0 0 c|d
X 8 o8 8 -1(-8

Keys: [« 7 [=] (or other
operation)

Since clearing disables the stack (as explained above), the next
number you enter will replace the cleared value. If you want to
replace the real part with zero, after clearing use or any
other function to terminate digit entry (otherwise the next number
you enter will write over the zero); the imaginary part will remain
unchanged. You can then continue with any calculator function.
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Clearing the Imaginary X-Register. To clear the number in the
imaginary X-register, press [f] [Rexim], then press [«]. Press
again to return the zero, or any new number keyed in, to
the imaginary X-register.

Example: Replace —1 — 8i by —1 + 5.

Re Im Re Im Re Im Re Im Re Im
Tlal|s al|b alb a|b alb
Z|c|d c|d c|d c|d c|d
Y |e|f el f el|f el|f e| f
X [-1|-8 —8[—1 0|1 5|1 -1| 5

Keys: 5

(continue with
any operation)

Clearing the Real and Imaginary X-Registers. If you want to
clear or replace both the real and imaginary parts of the number in
the X-register, simply press [«], which will disable the stack, and
enter your new number. (Enter zeros if you want the X-register to
contain zeros.) Alternatively, if the new number will be purely real
(including 0 + 0¢), you can quickly clear or replace the old, complex
number by pressing followed by zero or the new, real number.

Example: Replace —1 + 5i with 4 + 7.

Re Im Re Im Re Im Re Im Re Im

T |als alb c|d c|d c|d

Z|c|d c| d f f cl|d

Y |e|f e| f 4|5 4|5 e|f

X |-1]|5 0|5 5 0 4|7
Keys: [«] 4 [ENTER] 7 [m

(continue with
any operation)
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Entering Complex Numbers with [€¢]. The clearing functions
and can also be used with as an alternative method
of entering (and clearing) complex numbers. Using this method,
you can enter a complex number using only the X-register, without
affecting the rest of the stack. (This is possible because (¢]and
disable stack lift.) Executing will also create an imaginary

stack if one is not already present.

Example: Enter 9 + 8; without moving the stack and then find its

square.
Keystrokes Display
(L« (0.0000) Prevents stack lift when
the next digit (8) is keyed
in. Omit this step if you’d
rather save what’sin X
and lose what’sin T.
8 8 Enter imaginary part
first.
[f)(RexIm] 7.0000 Displays real part;
Complex mode activated.
0.0000 Disables stack.
(Otherwise, it would lift
following )
9 9 Enters real part (digit
entry not terminated).
(o) 17.0000 Real part.
[ (hold) 144.0000 Imaginary part.
(release) 17.0000
Re Im Re Im Re Im Re Im
T| a| s al|b al|b al|b
2| c| d c|d c|d c|d
Y|el|f e|f e | f e | f
X|a]|7 0|7 8|7 718
Keys: [f][RexIm]
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Re Im Re Im Re Im Re Im
T| a| b a|b a | b a |b
Z| c| d c|d c | d c |d
Y| el f e | f e | f e | f
X|7|s 0|8 9 |8 17 144

Keys:

Entering a Real Number

(elF

You have already seen two ways of entering a complex number.
There is a shorter way to enter a real number: simply key it (or
recall it) into the display just as you would if the calculator were
not in Complex mode. As you do so, a zero will be placed in the
imaginary X-register (as long as the previous operation was not

or [CLx], as explained on page 124).

The operation of the real and imaginary stacks during this process
is illustrated below. (Assume the last key pressed was not or
and the contents remain from the previous example.)

Re Im Re Im Re Im
T al| b c|d f
Y4 c| d e | f 17 144
Y el| f 17 144 0
X | 17144 4|0

Keys:

4

(Followed by

another number.)
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Entering a Pure Imaginary Number

There is a shortcut for entering a pure imaginary number into the
X-register when you are already in Complex mode: key in the

(imaginary) number and press [f][RexIm].

Example: Enter 0 + 10/ (assuming the last function executed was

not [¢]or [CLx]).

Keystrokes Display

10 10 Keys 10 into the displayed
real X-register and zero
into the imaginary X-
register.

1] 0.0000 Exchanges numbers in

real and imaginary X-
registers. Display again
shows that the number in
the real X-register is
zero—as it should be for a
pure imaginary number.

The operation of the real and imaginary stacks during this process
is illustrated below. (Assume the stack registers contain the
numbers resulting from the preceding examples.)

Re Im Re Im Re Im
T)el| f e | f e | f
Z | 17|144 17 (144 17 144
Y 410 410 4 10
X 41 0 10| 0 o |10
Keys: 10 (Continue with

any operation.)



130 Section 11: Calculating With Complex Numbers

Note that pressing [f] simply exchanges the numbers in the
real and imaginary X-registers and not those in the remaining
stack registers.

Storing and Recalling Complex Numbers

The and functions act on the real X-register only;
therefore, the imaginary part of a complex number must be stored
or recalled separately. The keystrokes to do this can be entered as
part of a program and executed automatically.*

To store a + ib from the complex X-register to R; and Ry, you can
use the sequence

ST0]1 Rexim] [STO]2

You can follow this by to return the stack to its original
condition if desired. To recall @ + ib from R; and Ry you can use the
sequence

(Rel)1 [Rel]2 ([

If you wish to avoid disturbing the rest of the stack, you can recall
the number using the sequence

2 L.
(In Program mode, use [g][CLx]instead of [«].)

Operations With Complex Numbers

Almost all functions performed on real numbers will yield the same
answer whether executed in or out of Complex mode,t assuming
the result is also real. In other words, Complex mode does not
restrict your ability to calculate with real numbers.

Any functions not mentioned below or in the rest of this section
(Calculating With Complex Numbers) ignore the imaginary stack.

*You can use the HP-15C matrix functions, described in section 12, to make storing and
recalling complex numbers more convenient. By dimensioning a matrix to be n X2, n
complex numbers can be stored as rows of the matrix. (This technique is demonstrated
in the HP-15C Advanced Functions Handbook, section 3, under Applications.)

tThe exceptions are and [®R], which operate differently in Complex mode in order to
facilitate converting complex numbers to polar form (page 133).
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One-Number Functions

The following functions operate on both the real and imaginary
parts of the number in the X-register, and place the real and
imaginary parts of the answer back into those registers.

(&] () (N] (Log) (17x] (10¥] [eX] (ABS] [+P] [*R]

All trigonometric and hyperbolic functions and their inverses also
belong to this group.*

The function gives the magnitude of the number in the X-
registers (the square root of the sum of the squares of the real and
imaginary parts); the imaginary part of the magnitude is zero.

converts to polar form and converts to rectangular form,
as described later in this section (page 133).

For the trigonometric functions, the calculator considers numbers
in the real and imaginary X-registers to be expressed in radians —
regardless of the current trigonometric mode. To calculate
trigonometric functions for values given in degrees, use to
convert those values to radians before executing the trigonometric
function.

Two-Number Functions

The following functions operate on both the real and imaginary
parts of the numbers in the X- and Y-registers, and place the real
and imaginary parts of the answer into the X-registers. Both stacks
drop, just as the ordinary stack drops after a two-number function
not in Complex mode.

HEUMEW®

Stack Manipulation Functions

When the calculator is in Complex mode, the following functions
simultaneously manipulate both the real and imaginary stacks in
the same way as they manipulate the ordinary stack when the
calculator is not in Complex mode. The function, for instance,

*Refer to the HP-15C Advanced Functions Handbook for definitions of complex
trigonometric functions and further information about doing calculations in Complex
mode.
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will exchange both the real and imaginary parts of the numbers in
the X- and Y-registers.

(x2] (R¥] [R¥] [ENTER] (LSTx]

Conditional Tests

For programming, the four conditional tests below will work in the
complex sense: and 0 compare the complex number in
the (real and imaginary) X-registers to 0 + 0i, while 5 and
6 compare the complex numbers in the (real and imaginary)
X- and Y-registers. All other conditional tests besides those listed
below ignore the imaginary stack.

(TEST)O (x#0) (TESTI5(x=y) (TESTI6(x7*y)

Example: Complex Arithmetic. The characteristic impedance
of aladder network is given by an equation of the form

where A and B are complex numbers. Find Z for the hypothetical
values A=1.2+4.7iand B=2.7+ 3.2i.

Keystrokes Display

1.2 [ENTER]4.7 1.2000 Enters A into real and
imaginary X-registers.

2.7 [ENTER]3.2 [f](I) 2.7000 Enters Binto real and
imaginary X-registers,
moving A into real and
imaginary Y-registers.

= 1.0428 Calculates A/B.

1.0491 Calculates Zj and
displays real part.

[ (hold) 0.2406 Displays imaginary part
of Zy while[(i))is held
down.

(release) 1.0491 Again displays real part

OfZO.
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Complex Results from Real Numbers

In the preceding examples, the entry of complex numbers had
ensured the (automatic) activation of Complex mode. There will be
times, however, when you will need Complex mode to perform
certain operations on real numbers, such as V=5. (Without
Complex mode, such as operation would result in an Error 0—
improper math function.) To activate Complex mode at any time
and without disturbing the stack contents, set flag 8 before
executing the function in question.*

Example: The arc sine (sin™!) of 2.404 normally would result in an
Error 0. Assuming 2.404 in the X-register, the complex value arc sin
2.404 can be calculated as follows:

Keystrokes Display
(o)(SFI8 Activates Complex Mode.
(g)(SINT] 1.5708 Real part of
arc sin 2.404.
[ (hold) -1.5239 Imaginary part of
arc sin 2.404.
(release) 1.5708 Display shows real part

again when [(i))is released.

Polar and Rectangular Coordinate
Conversions

In many applications, complex numbers are represented in polar
form, sometimes using phasor notation. However, the HP-15C
assumes that any complex numbers are in rectangular form.
Therefore, any numbers in polar or phasor form must be converted
to rectangular form before performing a function in Complex mode.

* Pressing (f)[RexIm] twice will accomplish the same thing. The sequence is not used
because it would combine any numbers in the real X- and Y-registers into a single
complex number.
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r(cos 6 +isin 0)=rei (polar)
atib=
rZe (phasor)
imaginary

real

and can be used to interconvert the rectangular and polar
forms of a complex number. They operate in Complex mode as
follows:

converts the polar (or phasor) form of a complex number
to its rectangular form by replacing the magnitude r in
the real X-register with a, and replacing the angle 6 in
theimaginary X-register with b.

(g)[(>P] converts the rectangular coordinates of a complex
number to the polar (or phasor) form by replacing the
real part a in the real X-register with r, and replacing
theimaginary part b in the imaginary X-register with 6.

/\
Re Im Re Im

XIa b Ezl

These are the only functions in Complex mode that are affected by
the current trigonometric mode setting. That is, the angular units
for 6 must correspond to the trigonometric mode indicated by the
annunciator (or absence thereof).
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Example: Find the sum 2(cos 65° + i sin 65°) + 3(cos 40° + i sin
40°) and express the result in polar form. (In phasor form, evaluate
2/65° +3240°.)

Keystrokes Display

(g](DEG] Sets Degrees mode for any
polar-rectangular
conversions.

2 2.0000

65 2.0000 C annunciator displayed;
Complex mode activated.

0.8452 Converts polar to
rectangular form,; real
part (a) displayed.

3 3.0000

40 3.0000

2.2981 Converts polar to
rectangular form; real
part (a) displayed.

3.1434

(g)(=P] 4.8863 Converts rectangular to
polar form; r displayed.

[H@ (hold) 49.9612 6 (in degrees).

(release) 4.8863
Problems

By working through the following problems, you will see that
calculating with complex numbers on the HP-15C is as easy as
calculating with real numbers. In fact, once your numbers are
entered, most mathematical operations will use exactly the same
keystrokes. Try it and see!

1. Evaluate: 2i (—8 + 6i)°

(4—2V5i)(2—4/510)
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Keystrokes Display
2 0.0000 2i. Display shows real
part.
8 -8.0000
61D -8.0000 -8+ 6i.
37 352.0000 (—8+6i)3.
x) -1,872.0000 2i (—8+6i)°.
4 [ENTER) 4.0000
5 2.2361
2 [cAs)(x) -4.4721 —2./5.
mno 4.0000 4—2+/5i.
B -295.4551 2i(-8+6i)3
4—2/5i
2 5 2.2361
4 [CcHS](x) -8.9443
2.0000 2—4./5i.
B 9.3982 Real part of result.
i -35.1344 ) _ .
ey } Answer: 9.3982 — 35.1344i.
. . 2z+1 .
2. Write a program to evaluate the function o = Tt 8 for dif-
z

ferent values of z. (w represents a linear fractional transforma-
tion, a class of conformal mappings.) Evaluate o for 2 =1 +2i.

(Answer: 0.3902 + 0.0122 ;. One possible keystroke sequence is:
() (LB [A] [ENTER] [ENTER] 2 [x] 1 [+] [xx2] 5 [(x] 8 (3] (] [R/S]
(e](RTN].)

3. Try your hand at a complex polynomial and rework the
example on page 80. You can use the same program to
evaluate P(z) = 5z* + 223, where z is some complex number.

Load the stack with z = 7 + 0/ and see if you get the same
answer as before.

(Answer: 12,691.0000 + 0.0000:.)
Now run the program forz=1+1.
(Answer: —24.0000 + 4.0000:.)
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For Further Information

The HP-15C Advanced Functions Handbook presents more
detailed and technical aspects of using complex numbers in
various functions with the HP-15C. Applications are included. The
topics include:

e Accuracy considerations.

e Principal branches of multivalued functions.

e Complex contour integrals.

e Complex potentials.

e Storing and recalling complex numbers using a matrix.
e Calculating the nth roots of a complex number.

e Solving an equation for its complex roots.

e Using and [5]in Complex mode.



Section 12

Calculating With Matrices

The HP-15C enables you to perform matrix calculations, giving
you the capability to handle advanced problems with ease. The
calculator can work with up to five matrices, which are named A
through E since they are accessed using the corresponding
through [E] keys. The HP-15C lets you specify the size of each
matrix, store and recall the values of matrix elements, and perform
matrix operations—for matrices with real or complex elements. (A
summary of matrix functions is listed at the end of this section.)

A common application of matrix calculations is solving a system of
linear equations. For example, consider the equations

38x,+72x, = 165

1.3x;—09x9 = —22.1

for which you must determine the values of x; and xo.

These equations can be expressed in matrix form as AX = B, where

38 7.2 X 165
A=l13 0o |" X7 |4, || *™94B=| o1 |

The following keystrokes show how easily you can solve this
matrix problem using your HP-15C. (The matrix operations used in
this example are explained in detail later in this section.)

First, dimension the two known matrices, A and B, and enter the
values of their elements, from left to right along each row from the
first row to the last. Also, designate matrix C as the matrix that
you will use to store the result of your matrix calculation (C = X).

138
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Keystrokes Display

(al(cFl8
2[ENTER][f)[DM](A]  2.0000

[f)[MATRIX] 1 2.0000
2.0000
3.8 A 11
3.8000
7.2 7.2000
1.3 1.3000
.9 -0.9000
2 [ENTER] 1 1.0000
16.5 16.5000
221 -22.1000
(FJ(RESULT](C] -22.1000

Deactivates Complex
mode.

Dimensions matrix A to
be 2 X 2.

Prepares for automatic
entry of matrix elements
in User mode.

(Turns on the USER
annunciator.)

Denotes matrix A, row 1,
column 1. (A display like
this appears momentarily
as you enter each element
and remains as long as
you hold the letter key.)

Stores a ;.
Stores aq,.
Stores a ;.
Stores a 9.

Dimensions matrix B to
be2X1.

Stores b1;.
Stores by;.

Designates matrix C for
storing the result.

Using matrix notation, the solution of the matrix equation AX =B

18

X=A"B

where A7l is the inverse of matrix A. You can perform this
operation by entering the “descriptors” for matrices B and A into
the Y- and X-registers and then pressing [£]. (A descriptor shows
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the name and dimensions of a matrix.) Note that if A and B were
numbers, you could calculate the answer in a similar manner.

Keystrokes Display
b 2 1  Enters descriptor for B,

the 2 X 1 constant matrix.
A 2 2 Enters descriptor for A,
the 2 X 2 coefficient
matrix, into the X-register,
moving the descriptor for
B into the Y-register.
] running Temporary display while
A~1Bis being calculated
and stored in matrix C.
C 2 1  Descriptor for the result
matrix, C, a 2 X 1 matrix.

Now recall the elements of matrix C—the solution to the matrix
equation. (Also remove the calculator from User mode and clear all
matrices.)

Keystrokes Display
c 1.1 Denotes matrix C, row 1,
column 1.
-11.2887 Value of ¢q; (x).
8.2496 Value of ¢y (x5).
8.2496 Deactivates User mode.
[f][MATRIX]O 8.2496 Clears all matrices.
The solution to the system of equations is x; = —11.2887 and x4 =
8.2496.

Note: The description of matrix calculations in this section
presumes that you are already familiar with matrix theory
and matrix algebra.

Matrix Dimensions

Up to 64 matrix elements can be stored in memory. You can use all
64 elements in one matrix or distribute them among up to five
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matrices. Matrix inversion, for example, can be performed on an
8 X 8 matrix with real elements (or on a 4 X 4 matrix with complex
elements, as described later*).

To conserve memory, all matrices are initially dimensioned as 0 X
0. When a matrix is dimensioned or redimensioned, the proper
number of registers is automatically allocated in memory. You may
have to increase the number of registers allocated to matrix
memory before dimensioning a matrix or before performing certain
matrix operations. Appendix C describes how memory is
organized, how to determine the number of registers currently
available for storing matrix elements, and how to increase or
decrease that number.

Dimensioning a Matrix

To dimension a matrix to have y rows and x columns, place those
numbers in the Y- and X-registers, respectively, and then execute
followed by the letter key specifying the matrix:

1. Key the number of rows (y)
into the display, then press
to lift it into the Y-

register. Y number of
rows

2. Key the number of columns (x)
into the X-register. ¥ | number of

3. Press followed by a columns
letter key, [A] through [E], that
specifies the name of the
matrix.

* The matrix functions described in this section operate on real matrices only. (In
Complex mode, the imaginary stack is ignored during matrix operations.) However, the
HP-15C has four matrix functions that enable you to calculate using real representa-
tions of complex matrices, as described on pages 160-173.

TYou don’t need to press [f] before the letter key. (Refer to Abbreviated Key Sequences on
page 78.)
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Example: Dimension matrix A to be a 2 X 3 matrix.

Keystrokes Display

2 2.0000 Keys number of rows into
Y-register.

3 3 Keys number of columns
into X-register.

3.0000 Dimensions matrix A to
be2X 3.

Displaying Matrix Dimensions
There are two ways you can display the dimensions of a matrix:
e Press followed by the letter key specifying the
matrix. The calculator displays the name of the matrix at the

left, and the number of rows followed by the number of
columns at the right.

e Press followed by the letter key specifying the
matrix. The calculator places the number of rows in the
Y-register and the number of columns in the X-register.

Keystrokes Display
b 0 O Matrix BhasOrowsand0

columns, since it has not
been dimensioned

otherwise.
3.0000 Number of columns in A.
[x2y] 2.0000 Number of rows in A.

Changing Matrix Dimensions

Values of matrix elements are stored in memory in order from left
to right along each row, from the first row to the last. If you
redimension a matrix to a smaller size, the required values are
reassigned according to the new dimensions and the extra values
are lost. For example, if the 2 X 3 matrix shown at the left below is
redimensioned to 2 X 2, then
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If you redimension .a matrix to a larger size, elements with the
value 0 are added at the end as required by the new dimensions.
For example, if the same 2 X 3 matrix is redimensioned to 2 X 4,
then

When you have finished calculating with matrices, you’ll probably
want to redimension all five matrices to 0 X 0, so that the registers
used for storing their elements will be available for program lines
or for other advanced functions. You can redimension all five
matrices to 0 X 0 at one time by pressing 0. (You can
dimension a single matrix to 0 X 0 by pressing 0 [f] {(A]
through (E]}.)

Storing and Recalling Matrix Elements

The HP-15C provides two ways of storing and recalling values of
matrix elements. The first method allows you to progress through
all of the elements in order. The second method allows you to
access elements individually.

Storing and Recalling All Elements in Order

The HP-15C normally uses storage
registers Ry and R; to indicate the
row and column numbers of a matrix R row
element. If the calculator is in User %l number
mode, the row and column numbers
are automatically incremented as R column
you store or recall each matrix number
element, from left to right along each
row from the first row to the last.

-

To set the row and column numbers in Ry and R, to row 1, column

1, press 1
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To store or recall sequential elements of a matrix:
1. Besurethe matrix is properly dimensioned.

2. Press 1. This stores 1 in both storage registers R
and Ry, so that elements will be accessed starting at row 1,
column 1.

3. Activate User mode by pressing (USER]. With the
calculator in User mode, after each element is stored or
recalled the row number in R or the column number in R, is
automatically incremented by 1, as shown in the example
following.

4. Ifyou are storing elements, key in the value of the element to
be stored in row 1, column 1.

5. Press or followed by the letter key specifying the

matrix.

6. Repeat steps 4 and 5 for all elements of the matrix. The row
and column numbers are incremented according to the
dimensions of the matrix you specify.

While the letter key specifying the matrix is held down after
or is pressed, the calculator displays the name of the matrix
followed by the row and column numbers of the element whose
value is being stored or recalled. If the letter key is held down for
longer than about 3 seconds, the calculator displays null, doesn’t
store or recall the element value, and doesn’t increment the row
and column numbers. (Also, the stack registers aren’t changed.)

After the last element of the matrix has been accessed, the row and
column numbers both return to 1.

Example: Store the values shown below in the elements of the
matrix A dimensioned above. (Be sure matrix A is dimensioned to
2X3.)

a;; @iz ‘113:|_ 123

Qg1 Q22 Q23 456



Keystrokes
1

1

2(s70](A]
3(s10](A]
4(s10](A]
5(ST0](A]
6(ST0](A]
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Display

1.0000
2.0000
3.0000
4.0000
5.0000
6.0000
A 11

1.0000
2.0000
3.0000
4.0000
5.0000
6.0000
6.0000

Sets beginning row and
column numbers in R,
and R, to 1. (Display
shows the previous result.)

Activates User mode.

Row 1, column 1 of A.
(Displayed momentarily
while [A]key held down.)

Value ofa ;.
Value of a 5.
Value of a 3.
Value of ay;.
Value of ag,.
Value of ags.

Recalls elementin row 1,
column 1. (Rgand R; were
reset in preceding step.)

Valueofay;.
Value of a .
Value of a 3.
Value of ag;.
Value of a gs.
Value of a 3.
Deactivates User mode.

Checking and Changing Matrix Elements Individually

The calculator provides two ways to check (recall) and change
(store) the value of a particular matrix element. The first method
uses storage registers Ry and R; in the same way as described
above—except that the row and column numbers aren’t auto-
matically changed when User mode is deactivated. The second
method uses the stack to define the row and column numbers.
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Using Ry and R;. To access a particular matrix element, store its
row number in R and its column number in R;. These numbers
won’t change automatically (unless the calculator is in User mode).

e To recall the element value (after storing the row and column
numbers), press followed by the letter key specifying the
matrix.

e To store a value in that element (after storing the row and
column numbers), place the value in the X-register and press
followed by the letter key specifying the matrix.

Example: Store the value 9 as the element in row 2, column 3 of
matrix A from the previous example.

Keystrokes Display

2(sT0J0 2.0000 Stores row number in Ry,

3 1 3.0000 Stores column number in
R,.

9 9 Keys the new element
value into the X-register.

A 2,3 Row 2, column 3 of A.

9.0000 Value of ags.

Using the Stack. You can use the stack registers to specify a
particular matrix element. This eliminates the need to change the
numbers in Ry and R;.

® To recall an element value, enter the row number and column
number into the stack (in that order). Then press @
followed by the letter key specifying the matrix. The element
value is placed in the X-register. (The row and column
numbers are lost from the stack.)

e To store an element value, first enter the value into the stack
followed by the row number and column number. Then press
[g] followed by the letter key specifying the matrix. (The
row and column numbers are lost from the stack; the element
valueis returned to the X-register.)

Note that these are the only operations in which the blue [g] key
precedes a gold letter key.
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Example: Recall the element in row 2, column 1 of matrix A from
the previous example. Use the stack registers.

Keystrokes Display

2 1 1 Enters row number into Y-
register and column
number into X-register.

(ReL(g][A) 4.0000 Value of ay;.

Storing a Number in All Elements of a Matrix

To store a number in all elements of a matrix, simply key that

number into the display, then press followed by the
letter key specifying the matrix.

Matrix Operations

In many ways, matrix operations are like numeric calculations.
Numeric calculations require you to specify the numbers to be used;
often you define a register for storing the result. Similarly, matrix
calculations require you to specify one or two matrices that you
want to use. A matrix descriptor is used to specify a particular
matrix. For many calculations, you also must specify a matrix for
storing the result. This is the result matrix.

Because matrix operations usually require many individual
calculations, the calculator flashes the running display during
most matrix operations.

Matrix Descriptors

Earlier in this section you saw that when you press
followed by a letter key specifying a matrix, the name of the matrix
appears at the left of the display and the number of rows followed
by the number of columns appears at the right. The matrix name is
called the descriptor of the matrix. Matrix descriptors can be
moved among the stack and data storage registers just like a
number—that is, using [STO], [RCL], [ENTER], etc. Whenever a matrix
descriptor is displayed in the X-register, the current dimensions of
that matrix are shown with it.

You use matrix descriptors to indicate which matrices are used in
each matrix operation. The matrix operations discussed in the
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rest of this section operate on the matrices whose descriptors are
placed in the X-register and (for some operations) the Y-register.

Two matrix operations—calculating a determinant and solving the
matrix equation AX = B—involve calculating an LU decomposi-
tion (also known as an LU factorization) of the matrix specified in
the X-register.* A matrix that is an LU decomposition is signified
by two dashes following the matrix name in the display of its
descriptor. (Refer to page 160 for using a matrix in LU form.)

The Result Matrix

For many operations discussed in this section, you need to define
the matrix in which the result of the operation should be stored.
This matrix is called the result matrix.

Other matrix operations do not use or affect the result matrix. (This
is noted in the descriptions of these operations.) Such an operation
either replaces the original matrix with the result of the operation
(if the result is a matrix, such as a transpose) or returns a number
to the X-register (if the result is a number, such as a row norm).

Before you perform an operation that uses the result matrix, you
must designate the result matrix. Do this by pressing
followed by the letter key specifying the matrix. (If the descriptor of
the intended result matrix is already in the X-register, you can
press instead.) The designated matrix remains the
result matrix until another is designated.t To display the

descriptor of the result matrix, press RESULT].

When you perform an operation that affects the result matrix, the
matrix is automatically redimensioned to the proper size. If this
redimensioning would require more additional elements than there
are available in matrix memory (a maximum of 64 for all five
matrices), then the operation can’t be performed. This restriction

* The LU decomposition of a matrix A is another matrix in which is encoded a lower-
triangular matrix, L, and an upper-triangular matrix, U, whose product LU equals
matrix A (possibly with some rows interchanged). The HP-15C Advanced Functions
Handbook discusses LU decomposition in detail.

tMatrix A is automatically designated as the result matrix whenever Continuous
Memory is reset.
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can often be overcome by designating the result matrix to be one of
the matrices being operated on. (However, there are certain
operations for which the result matrix can not be the same one as
either of the matrices being operated on—this is noted in the
description of these operations.)

While the key used for any matrix operation that stores a result in
the result matrix is held down, the descriptor of the result matrix is
displayed. If the key is released within about 3 seconds, the
operation is performed, and the descriptor of the result matrix is
placed in the X-register. If the key is held down longer, the
operation is not performed and the calculator displays null.

Copying a Matrix
To copy the elements of a matrix into the corresponding elements

of another matrix, use the MATRIX]sequence:

1. Press followed by the letter key specifying the
matrix to be copied. This enters the descriptor of the matrix
into the display.

2. Press followed by the letter key specifying the
matrix to be copied into.

If the matrix specified after does not have the same
dimensions as the matrix specified after [STO], the second matrix is
redimensioned to agree with the first. The matrix specified after
need not already be dimensioned.

Example: Copy matrix A from the previous example into matrix
B.

Keystrokes Display
A 2 3 Displays descriptor of
matrix to be copied.

A 2 3 Redimensions matrix B

and copies A into B.

b 2 3 Displays descriptor of new

matrix B.

One-Matrix Operations

The following table shows functions that operate on only the
matrix specified in the X-register. Operations involving a single
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matrix plus a number in another stack register are described under

Scalar Operations (page 151).

One-Matrix Operations:
Sign Change, Inverse, Transpose, Norms, Determinant

Effect on
Result in Matrix Effect on
k [P .
Keystroke(s) X-register Specified in Result Matrix
X-register
CHS No change. Changes sign of None.}
all elements.
Descriptor of None.f Inverse of
(H07=) result matrix. specified
in User Mode) matrix. §
MATRIX|4 Descriptor of Replaced by None.}
transpose. transpose.
([fJ(MATRIX]7 Row norm of None. None.
specified
matrix.*
[fJ(MATRIX]8 Frobeniusor None. None.
Euclidean
norm of
specified
matrix.t
MATRIX]9 Determinant None.f LU decomposi-
of specified tion of specified
matrix. matrix. §

*

of the specified matrix.

—+

elements in the specified matrix.

w

The row norm is the largest sum of the absolute values of the elements in each row

The Frobenius or Euclidean norm is the square root of the sum of the squares of all

Unless the result matrix is the same matrix specified in the X-register.

If the specified matrix is a singular matrix (that is, one that doesn’t have an
inverse), then the HP-15C modifies the LU form by an amount that is usually small
compared to round-off error. For [1/x], the calculated inverse is the inverse of a
matrix close to the original, singular matrix. (Refer to the HP-715C Advanced
Functions Handbook for further information.)
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Example: Calculate the transpose of matrix B. Matrix B was set
in preceding examples to
[1 2 3:|
"4 5 97

B
Keystrokes Display
b 2 3 Displays descriptor of 2 X
3 matrix B.
4 b 3 2  Descriptorof3 X2
transpose.

Matrix B (which you can view using in User mode) is now

Scalar Operations

Scalar operations perform arithmetic operations between a scalar
(that is, a number) and each element of a matrix. The scalar and
the descriptor of the matrix must be placed in the X- and
Y-registers—in either order. (Note that the register position will
affect the outcome of the (-] and (] functions.) The resulting values
are stored in the corresponding elements of the result matrix.

The possible operations are shown in the following table.
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Elements of Result Matrix*
Operation | Matrix in Y-Register Scalarin Y-Register
Scalar in X-Register Matrix in X-Register

Adds scalar value to each matrix element.

Multiplies each matrix element by scalar value.

-] Subtracts scalar value Subtracts each matrix
from each matrix element from scalar
element. value.

B Divides each matrix Calculates inverse of
element by scalar matrix and multiplies
value. each element by scalar

value.
* Result matrix may be the specified matrix.

Example: Calculate the matrix B=2A, then subtract 1 from every
element in B. From before, use

123
A=
4 59
Keystrokes Display
Designates matrix B as

result matrix.

A 2 3 Displays descriptor of
matrix A.

2 (x] b 2 3 Redimensions matrix B to
the same dimensions as
A, multiplies the elements
of A by 2, stores those
values in the
corresponding elements of
B, and displays the
descriptor of the result
matrix.
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Keystrokes Display

105 b 2 3  Subtracts 1 from the
elements of matrix B and
stores those values in the
same elements of B.

The result (which you can view using in User mode) is

13 5
B= .
79 17
Arithmetic Operations

With matrix descriptors in both the X- and Y-registers, pressing
or (-] calculates the sum or difference of the matrices.

Pressing | Calculates*
Y+X
=] Y-—-X

*Result is stored in result matrix.
Result matrix may be X or Y.

Example: Calculate C = B — A, where A and B are defined in the
previous example,

[1 2 3] [1 3 5]

= dB= .

A= lsso] ™ 79 17
Keystrokes Display

Designates C as result

matrix.

b 2 3  Recalls descriptor of

matrix B. (This step can
be skipped if descriptor is
already in X-register.)

A 2 3 Recalls descriptor of
matrix A into X-register,
moving descriptor of
matrix B to Y-register.
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Keystrokes Display
=] (o} 2 3 CalculatesB—A and
stores values in
redimensioned result
matrix C.
. 01 2
The result is =
3 4 8

Matrix Multiplication

With matrix descriptors in both the X- and Y-registers, you can
calculate three different matrix products. The table below shows
the results of the three functions for a matrix X specified in the
X-register and a matrix Y specified in the Y-register. The matrix
X~1is theinverse of X, and the matrix Y 7 is the transpose of Y.

Pressing Calculates*
(x] YX
5 Y’X
= X1y

*Result stored in result matrix. For (%], the result
matrix can be Y but not X. For the others, the
result matrix must be other than X or Y.

Note: When you use the [£] function to evaluate the
expression A”'B, you must enter the matrix descriptors in
the order B, A rather than in the order that they appear in
the expression.*

The value stored in each element of the result matrix is determined
according to the usual rules of matrix multiplication.

For 5, the matrix specified in the Y-register isn’t changed
by this operation, even though its transpose is used. The result is
identical to that obtained using 4 (transpose) and [x].

*This is the same order you would use if you were entering b and a for evaluating alp
=b/a.
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For (], the matrix specified in the X-register is replaced by its LU
decomposition. The [Z] function calculates X! Y using a more
direct method than does and (x], giving the result faster and
with improved accuracy.

Example: Using matrices A and B from the previous example,
calculate C=ATB.

123 13 5
A=145 9| and B=17 49 47

Keystrokes Display
A 2 3  Recalls descriptor for

matrix A.

b 2 3 Recalls descriptor for
matrix B into X-register,
moving matrix A
descriptor into Y-register.

[f](RESULT](C] b 2 3 Designates matrix C as
result matrix.
5 (o} 3 3 CalculatessATBand

stores result in matrix C,
which is redimensioned to
3X3.

The result, matrix C, is

29 39 173
C=|37 51 95
66 90 168
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Solving the Equation AX =B

The (2] function is useful for solving
matrix equations of the form
AX = B, where A is the coefficient
matrix, B is the constant matrix, and constant
X is the solution matrix. The descrip- Y matrix
tor of the constant matrix B should
be entered in the Y-register and the
descriptor of the coefficient matrix A
should be entered in the X-register.
Pressing [#] then calculates the solu-
tion X =A"!1B.*

X coefficient
matrix

Remember that the [£] function replaces the coefficient matrix by
its L U decomposition and that this matrix must not be specified as
the result matrix. Furthermore, using [¥] rather than and [x]
gives a solution faster and with improved accuracy.

At the beginning of this section, you found the solution for a
system of linear equations in which the constant matrix and the
solution matrix each had one column. The following example
illustrates that you can use the HP-15C to find solutions for more
than one set of constants—that is, for a constant matrix and
solution matrix with more than one column.

Example: Looking at his receipts for
his last three deliveries of cabbage
and broccoli, Silas Farmer sees the
following summary.

* If A is a singular matrix (that is, one that doesn’t have an inverse), then the HP-15C
modifies the LU form of A by an amount that is usually small compared to round-off
error. The calculated solution corresponds to that for a nonsingular coefficient matrix
close to the original, singular matrix.
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Week
1 2 3
Total Weight (kg) 274 233 331
Total Value $120.32 | $112.96 | $151.36

Silas knows that he received $0.24 per kilogram for his cabbage
and $0.86 per kilogram for his broccoli. Use matrix operations to
determine the weights of cabbage and broccoli he delivered each
week.

Solution: Each week’s delivery represents two linear equations
(one for weight and one for value) with two unknown variables (the
weights of cabbage and broccoli). All three weeks can be handled
simultaneously using the matrix equation

1 1 dy; dig dis 274 233 331
0.24 0.86 | | do; doy dog ~ 112032 112.96 151.36
or AD=B

where the first row of matrix D is the weights of cabbage for the
three weeks and the second row is the weights of broccoli.

Keystrokes Display

2 2.0000 Dimensions A as 2 X 2
matrix.

1 2.0000 Sets row and column
numbers in Ryand R; to 1.

2.0000 Activates User mode.

1 1.0000 Stores aq;.

1.0000 Stores a ;5.

.24 0.2400 Stores ay;.

.86 0.8600 Stores ags.

2 [ENTER]3 3.0000 Dimensions B as 2X 3

matrix.
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Keystrokes Display

274 [ST0](B] 274.0000 Stores b;;.*

233 233.0000 Stores b5.

331 331.0000 Stores b;3.

120.32 120.3200 Stores by;.

112.96 112.9600 Stores by9.

151.36 151.3600 Stores bys.
(f)(RESULT](D] 151.3600 Designates matrix D as

result matrix.

b 2 3 Recalls descriptor of

constant matrix.

A 2 2 Recallsdescriptor of
coefficient matrix A into
X-register, moving
descriptor of constant
matrix B into Y-register.

=] d 2 3 CalculatessA"!Band
stores result in matrix D.

(D) 186.0000 Recalls d;;, the weight of
cabbage for the first week.

RCL](D] 141.0000 Recalls d 5, the weight of
cabbage for the second
week.

[RcL](D) 215.0000 Recalls d ;3.

(RcL)(D] 88.0000 Recalls dg;.

(RcL(D) 92.0000 Recalls dgs.

[Red(D] 116.0000 Recalls dg3.

116.0000 Deactivates User mode.

* Note that you did not need to press [f][MATRIX] 1 before beginning to store the elements
of matrix B. This is because after you stored the last element of matrix A, the row and
column numbers in R and Ry were automatically reset to 1.
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Silas’ deliveries were:

Week

Cabbage (kg) | 186 | 141 | 215
Broccoli (kg) 88 92 116

Calculating the Residual

The HP-15C enables you to calculate the residual, that is, the
matrix

Residual = R—YX

where R is the result matrix and X and Y are the matrices specified
in the X- and Y-registers.

This capability is useful, for example, in doing iterative refinement
on the solution of a system of equations and for linear regression
problems. For example, if C is a possible solution for AX = B, then
B — AC indicates how well this solution satisfies the equation.
(Refer to the HP-15C Advanced Functions Handbook for
information about iterative refinement and linear regression.)

The residual function ([MATRIX] 6) uses the current contents of the
result matrix and the matrices specified in the X- and Y-registers to
calculate the residual defined above. The residual is stored in the
result matrix, replacing the original result matrix. A matrix
specified in the X- or Y-register can not be the result matrix.

Using 6 rather than [x]and (=] gives a result with improved
accuracy, particularly if the residual is small compared to the
matrices being subtracted.

To calculate the residual:

Enter the descriptor of the Y matrix into the Y-register.
Enter the descriptor of the X matrix into the X-register.
Designate the R matrix as the result matrix.

Press 6. The residual replaces the original result
matrix (R). The descriptor of the result matrix is placed in
the X-register.

L
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Using Matrices in LU Form

As noted earlier, two matrix operations (calculating a deter-
minant and solving the matrix equation AX = B) create an LU
decomposition of the matrix specified in the X-register. The
descriptor of such a matrix has two dashes following the matrix
name. A matrix in LU form has elements that differ from the
elements of the original matrix.

However, the descriptor for a matrix in LU form can be used in
place of the descriptor for the original matrix for operations
involving the inverse of the matrix and for the determinant
operation. That is, either the original matrix or its LU
decomposition can be used for these operations:

[#)for the matrix in the X-register

(MATRIX]9

For these three functions, using the LU form of the matrix to be
inverted gives a result that is identical to that using the original
matrix.

As an example, if you solved the matrix equation AX = B, matrix
A would be changed to its LU form. If you wanted to change the B
matrix and solve the equation again, you could do so without
changing the A matrix—the LU matrix will give the correct
solution.

For all other matrix operations, a matrix that is an LU
decomposition is not recognized as representing its original
matrix. Instead, the elements of the LU matrix are used just as
they appear in matrix memory and the result is not the result you
would obtain using the original matrix.

Calculations With Complex Matrices

The HP-15C enables you to perform matrix multiplication and
matrix inversion with complex matrices (that is, matrices whose
elements are complex numbers) and to solve systems of complex
equations (that is, equations whose coefficients and variables are
complex).

However, the HP-15C stores and operates on only real matrices.
The capability of doing calculations with complex matrices is
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completely independent of the capability of doing calculations with
complex numbers described in the preceding section. You don’t
need to activate Complex mode for calculations with complex
matrices.

Instead, calculations with complex matrices are performed by
using real matrices derived from the original complex matrices—in
a manner to be described below—and performing certain
transformations in addition to the regular matrix operations.
These transformations are performed by four calculator functions.
This section will describe how to do these calculations. (There are
more examples of calculations with complex matrices in the
HP-15C Advanced Functions Handbook.)

Stering the Elements of a Complex Matrix

Consider an m X n complex matrix Z =X +:Y, where X and Y are
real m X n matrices. This matrix can be represented in the
calculator as a 2m X n “partitioned” matrix:

X } Real Part
Y

} Imaginary Part

The superscript P signifies that the complex matrix is represented
by a partitioned matrix.

All of the elements of Z” are real numbers—those in the upper half
represent the elements of the real part (matrix X), those in the
lower half represent the elements of the imaginary part (matrix Y).
The elements of Z% are stored in one of the five matrices (A, for
example) in the usual manner, as described earlier in this section.

For example, if Z=X +iY, where

x X y Y12
X:[n 12] and Y= 1 Y1 ,
X21 %22 Y21 Y22
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then Z can be represented in the calculator by

X X11 X12
A=ZP=|_ |=|FL 22
Y Y Yi2

Yo1 Y22

Suppose you need to do a calculation with a complex matrix that is
not written as the sum of a real matrix and an imaginary matrix—
as was the matrix Z in the example above—but rather written with
an entire complex number in each element, such as

[x11+i)’11 x12+iy12:|

Xo1THiygr Xoa+ iy

This matrix can be represented in the calculator by a real matrix
that looks very similar—one that is derived simply by ignoring the
i and the + sign. The 2 X 2 matrix Z shown above, for example, can
be represented in the calculator in “complex” form by the 2 X 4

matrix.
c X1 Y1 X12 Yi2
A=Z%= .
Xo1 Yo1 X2 Yo2
The superscript C signifies that the complex matrix is represented
in a “complex-like” form.

Although a complex matrix can be initially represented in the
calculator by a matrix of the form shown for ZC, the
transformations used for multiplying and inverting a complex
matrix presume that the matrix is represented by a matrix of the
form shown for Z¥. The HP-15C provides two transformations that
copnvert the representation of a complex matrix between ZC and
VA

Pressing | Transforms | Into

z¢ zr
(@) YAl Al

To do either of these transformations, recall the descriptor of Z € or
Z? into the display, then press the keys shown above. The
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transformation is done to the specified matrix; the result matrix is
not affected.

Example: Store the complex matrix
4+31 7—2i
1+5; 3+8i

in the form ZC, since it is written in a form that shows ZC. Then
transform Z € into the form Z%.

You can do this by storing the elements of Z€ in matrix A and then
using the function, where

A=7ZCe 4 37 —2
153 8

Keystrokes Display

0 Clears all matrices.

2 4 4.0000 Dimensions matrix A to
be 2 X 4.

[f][MATRIX] 1 4.0000 Sets beginning row and
column numbers in R
and R to 1.

4.0000 Activates User mode.

4sT0](A] 4.0000 Stores a;.

3 3.0000 Stores aqs.

7 7.0000 Stores aq3.

2 (CHS][STO]J(A] -2.0000 Stores a 4.

1 1.0000 Stores ay;.

5 5.0000 Stores ag9.

3 3.0000 Stores ay3.

8 8.0000 Stores a .

8.0000 Deactivates User mode.

A 2 4 Displaysdescriptor of
matrix A.

A 4 2 TransformsZCintoZ?,

and redimensions matrix

A.
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Matrix A now represents the complex matrix Z in Z form:

1 7 } Real Part
A=7ZP =]~ ....
3 —2 .
8 Imaginary Part

The Complex Transformations Between ZP and Z

An additional transformation must be done when you want to
calculate the product of two complex matrices, and still another
when you want to calculate the inverse of a complex matrix. These
transformations convert between the Z% representation of an
m X n complex matrix and a 2m X 2n partitioned matrix of the

following form:
. | X =
Z= .
Y X

The matrix Z created by the 2 transformation has twice as
many elements as Z.

For example, the matrices below show how Z is related to Z%.
1 -6 - 1 —6i4 —5
ZP=|cmmmmae] € Z = [emmmmemnimeeeas

The transformations that convert the represention of a complex
matrix between Z¥ and Z are shown in the following table.

Pressing Transforms | Into
(f)(MATRIX] 2 z*? z
3 / z*

To do either of these transformations, recall the descriptor of Z% or
7 into the display, then press the keys shown above. The
transformation is done to the specified matrix; the result matrix is
not affected.
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Inverting a Complex Matrix

You can calculate the inverse of a complex matrix by using the fact

that (Z)! = (Z).
To calculate the inverse, Z ™!, of a complex matrix Z:

1. Storethe elements of Z in memory, in the form either of Z or

of Z€.

2. Recall the descriptor of the matrix representing Z into the

display.

3. Ifthe elements of Z were entered in the form ZC, press

to transform Z€ into Z 7.
Press [f][MATRIX] 2 to transform Z % into Z.

5. Designate a matrix as the result matrix. It may be the same

as the matrix in which Z is stored.

~ ~

6. Press[1/x]. This calculates (Z)™!, which is equal to (Z1). The
values of these matrix elements are stored in the result
matrix, and the descriptor of the result matrix is placed in

the X-register.
~
7. Press 3 to transform (Z 1) into (Z1)P.
8. Ifyouwant theinverse in the form (Z71)€, press [g)(Cyx].

You can derive the complex elements of Z~! by recalling the
elements of ZZ or Z€ and then combining them as described earlier.

Example: Calculate the inverse of the complex matrix Z from the

previous example,

4 7
1 3
A=7ZP=|-c-.2.
3 —2
5 8
Keystrokes Display
A 4 2 Recalls descriptor of
matrix A.
2 A 4 4 TransformsZ%intoZ,

and redimensions matrix

A.
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Keystrokes Display

A 4 4 Designates B as theresult
matrix. ~

b 4 4 Calculates(Z)'=(Z™)
and places the result in
matrix B. ~

3 b 4 2 Traln}s;forms (Z71) into
(V0

The representation of Z~! in partitioned form is contained in
matrix B.

—0.0254  0.2420
—0.0122 —0.1017

} Real Part

0.1691 —0.1315 }ImaglnaryPart

Multiplying Complex Matrices

The product of two complex matrices can be calculated by using the
fact that (YX)P =YX?.

To calculate YX, where Y and X are complex matrices:

1.

Store the elements of Y and X in memory, in the form either
of ZF or of Z €.

Recall the descriptor of the matrix representing Y into the
display.

If the elements of Y were entered in the form YC, press

to transform Y € into YZ.
Press 2to transform YZ into Y.

Recall the descriptor of the matrix representing X into the
display.
If the elements of X were entered in the form XC, press

[f(Pyx]to transform X € into X 7.

Designate the result matrix; it must not be the same matrix
as either of the other two.
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8. Press [X] to calculate YX? = (YX)?. The values of these
matrix elements are placed in the result matrix, and the
descriptor of the result matrix is placed in the X-register.

9. Ifyou want the product in the form (YX)C, press [g][Cy.x].
Note that you don’t transform X into X.

You can derive the complex elements of the matrix product YX by
recalling the elements of (YX)? or (YX)C and combining them
according to the conventions described earlier.

Example: Calculate the product ZZ™!, where Z is the complex
matrix given in the preceding example.

Since elements representing both matrices are already stored (Z in
A and (Z7Y)? in B), skip steps 1, 3, 4, and 6.

Keystrokes Display

(RCL] A 4 4 Displays descriptor of
matrix A.

b 4 2 Displays descriptor of
matrix B.

b 4 2 Designates C asresult
matrix.

x] Cc 4 2 Calculates Z(Z )P =
(ZZ1)P.

c 4 2 Activates User mode.

c 11 Matrix C, row 1, column 1.

(Displayed momentarily
while last key held down.)

1.0000 Value of ¢q;.
-2.8500 -10 Valueofcy,.
RCL -4.0000 -11 Valueofcy.
1.0000 Value of cqo.
RCL 1.0000 -11 Valueofecsy;.
RCL 3.8000 -10 Valueofcgs.
1.0000 -11 Valueofcy;.
RCL -1.0500 -10 Valueofcy,.
[f)[USER] -1.0600 -10 Deactivates User mode.
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Writing down the elements of C,

1.0000 —2.8500 X 10710
—11
C= |Z30000x1071 10000 _____ p——
1.0000 X 10711 3.8000 X 10710 ’

1.0000 X 1071 —1.0500 % 10710

where the upper half of matrix C is the real part of ZZ™! and the
lower halfis the imaginary part. Therefore, by inspection of matrix
C,

gz-1— | 1:0000 —2.8500 X 10710
~ |-4.0000x 1071 1.0000

[ 1.0000x10°'  3.8000x 10711
" | 1.0000x1071'  —1.0500 X 1010

As expected,

B 10 00
77 = +i .
01 00

Solving the Complex Equation AX =B

You can solve the complex matrix equation AX = B by finding
X = A7 B. Do this by calculating X¥ = (A)"1 B?.

To solve the equation AX = B, where A, X, and B are complex
matrices:

1. Store the elements of A and B in memory, in the form either
of Zf or of ZC.

2. Recall the descriptor of the matrix representing B into the
display.

3. If the elements of B were entered in the form BC, press
[Py.x]to transform BC into B,
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Recall the descriptor of the matrix representing A into the
display.

If the elements of A were entered in the form of AC, press
to transform A Cinto A®.

Press 2to transform A into A.

Designate the result matrix; it must not be the same as the
matrix representing A.

Press [%]; this calculates X”. The values of these matrix
elements are placed in the result matrix, and the descriptor
of the result matrix is placed in the X-register.

If you want the solution in the form X €, press [g][Cy.x).

Note that you don’t transform BZ into B.

You can derive the complex elements of the solution X by recalling
the elements of X? or X€ and ¢ombining them according to the
conventions described earlier.

Example: Engineering student A. C. Dimmer wants to analyze the
electrical circuit shown below. The impedances of the components
are indicated in complex form. Determine the complex representa-
tion of the currents I; and I,.

ZR=1O

This system can be represented by the complex matrix equation

or

10+ 200; —200i || I, 5
—200; (200—30)i || I, | |0

AX=B.
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In partitioned form,

10 0 5
A=|-d 2 anaB= |,

200 —200 0

—200 170 0,

where the zero elements correspond to real and imaginary parts

with zero value.

Keystrokes Display
4 [ENTER]2 2.0000

[f)(MATRIX] 1 2.0000
(f)[USER) 2.0000
10(ST0](A] 10.0000
0[5T0)(A) 0.0000
0.0000
STO 0.0000
200 200.0000
-200.0000
~-200.0000
170 170.0000
4 [ENTER] 1 1.0000

0 [STO)[MATRIX](B] 0.0000

5 (ENTER] 1 1.0000
(sTol(g)(B] 5.0000

b 4
A 4

Dimensions matrix A to
be4 X 2.

Set beginning row and
column numbers in Rq
and R; to 1.

Activates User mode.
Stores a ;.
Stores a1o.
Stores a ;.
Stores a 9.
Stores a3;.
Stores a 3.
Stores a 4;.
Stores a 4.

Dimensions matrix B to
be4 X 1.

Stores value 0 in all
elements of B.

Specifies value 5 for row
1, column 1.

Stores value 5in b;.
Recalls descriptor for
matrix B.

Places descriptor for
matrix A into X-register,
moving descriptor for
matrix B into Y-register.
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Keystrokes Display

2 A 4 4 Transforms A% into A.

[f)(RESULT](C] A 4 4 Designates matrix C as
result matrix.

=] (o] 4 1 Calculates X” and
stores in C.

[g)(Cy.x] c 2 2 Transforms X% into XC.

0.0372 Recalls ¢q;.

0.1311 Recalls c1o.

0.0437 Recalls cq;.

0.1543 Recalls cgo.

0.1543 Deactivates User mode.

0 0.1543 Redimensions all

matrices to 0 X 0.

The currents, represented by the complex matrix X, can be derived

from C:
I:Il] 0.0372+O.1311i:|
X = = .
I, 0.0437 + 0.1543:
Solving the matrix equation in the preceding example required 24
registers of matrix memory—16 for the 4 X 4 matrix A (which was
originally entered as a 4 X 2 matrix representing a 2 X 2 complex
matrix), and four each for the matrices B and C (each representing
a 2 X 1 complex matrix). (However, you would have used four fewer
registers if the result matrix were matrix B.) Note that since X and

B are not restricted to be vectors (that is, single-column matrices),
X and B could have required more memory.

The HP-15C contains sufficient memory to solve, using the method
described above, the complex matrix equation AX = B with X and
B having up to six columns if A is 2 X 2, or up to two columns if A is
3 X 3.* (The allowable number of columns doubles if the constant
matrix B is used as the result matrix.) If X and B have more
columns, or if A is 4 X 4, you can solve the equation using the

* If all available memory space is dimensioned to the common pool ((MEM]: 1 64 0-0).
Refer to appendix C, Memory Allocation.
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alternate method below. This method differs from the preceding
one in that it involves separate inversion and multiplication
operations and fewer registers.

1. Store the elements of A in memory, in the form either of A?
orof AC.

2. Recall the descriptor of the matrix representing A into the
display.

3. If the elements of A were entered in the form AC, press
to transform A Cinto A%,

Press 2 to transform AP into A.

Press RESULT] to designate the matrix representing A
as the result matrix.

Press to calculate (A) L.

Redimension A to have half the number of rows as indicated
in the display of its descriptor after the preceding step.

8. Store the elements of B in memory, in the form either of B
or of BC.

9. Recall the descriptor of the matrix representing A into the
display.

10. Recall the descriptor of the matrix representing B into the
display.

11. If the elements of B were entered in the form BC, press

to transform B into B®.
12. Press [f][MATRIX]2 to transform BZ into B.

13. Designate the result matrix; it must not be the same matrix
as either of the other two.

14. Press[x].
15. Press 4 to transpose the result matrix.
16. Press 2.

17. Redimension the result matrix to have half the number of
rows as indicated in the display of its descriptor after the
preceding step.
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18. Press to recall the descriptor of the result

matrix.

19. Press 4to calculate X ?.
20. Ifyou want the solution in the form X €, press [g][Cy.x].

A problem using this procedure is given in the HP-15C Advanced
Functions Handbook under Solving a Large System of Complex
Equations.

Miscellaneous Operations Involving Matrices

Using a Matrix Element With Register Operations

If a letter key specifying a matrix is pressed after any of the
following function keys, the operation is performed using the
matrix element specified by the row and column numbers in Ry and
R, just as though it were a data storage register.

(sTOJ* (RCL]*
(STO){(+], ), B, (23 (ReL){(+], (5, (0, =y
(xx

Using Matrix Descriptors in the Index Register

In certain applications, you may want to perform a programmed
sequence of matrix operations using any of the matrices A through
E. In this situation, the matrix operations can refer to whatever
matrix descriptor is stored in the index register (Ry).

Ifthe index register contains a matrix descriptor:

® Pressing ((i)] after any of the functions listed above performs
the operation using the element specified by Ry and R; and the
matrix specified in Ry.

® Pressing [()] after [g] or (g] performs the operation
using the element specified by the row and column numbers in
the Y- and X-registers and the matrix specified in Ry.

* Also, in User mode the row and column numbers in Ry and R; are incremented
according to the dimensions of the specified matrix.
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® Pressing dimensions the matrix specified in R
according to the dimensions in the X- and Y-registers.

® Pressing recalls to the X- and Y-registers the
dimensions of the matrix specified in R;.

e Pressing or (I] has the same result as pressing
or followed by the letter of the matrix specified in
R;. (This is not actually a matrix operation—only the letter in
the matrix descriptor is used.)

Conditional Tests on Matrix Descriptors

Four conditional tests— [x=0], 0 (x#0), 5(x=y),and
6 (x # y)—can be performed with matrix descriptors in the X-
and Y-registers. Conditional tests can be used to control program
execution, as described in section 8.

If a matrix descriptor is in the X-register, the result of will be
false and the result of 0 will be true (regardless of the element
values in the matrix.)

If matrix descriptors are in the X- and Y-registers when 5 or
6 conditional test is performed, x and y are equal if the same
descriptor is in the X- and Y-registers, and not equal otherwise. The
comparison is made between the descriptors themselves, not
between the elements of the specified matrices.

Other conditional tests can’t be used with matrix descriptors.

Stack Operation for Matrix Calculations

During matrix calculations, the contents of the stack registers shift
much like they do during numeric calculations.

For some matrix calculations, the result is stored in the result
matrix. The arguments—one or two descriptors or numbers in the
X-register or the X- and Y-registers—are combined by the
operation, and the descriptor of the result matrix is placed in the
X-register. (The argument from the X-register is placed in the
LAST X register.)
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6.0000 |———> 6.0000
5.0000 |—> 5.0000
4.0000 |—> 4.0000

X < N -

matrix A result mat.

Keys: 17x)

5.0000 <: 5.0000
4.0000 5.0000
matrix B \ 4.0000
matrix A ]\ result mat.
Keys: )
LAST X: I—»
Several matrix functions operate on the matrix specified in the
X-register only and store the result in the same matrix. For these
operations the contents of the stack (including the LAST X

register) are not moved—although the display changes to show the
new dimensions if necessary.

For the [MATRIX] 7, [MATRIX] 8, and 9 functions, the
matrix descriptor specified in the X-register is placed in the
LAST X register and the norm or (for 9) the determinant is
placed in the X-register. The Y-, Z-, and T-registers aren’t changed.

X < N -

When you recall descriptors or matrix elements into the X-register
(with the stack enabled), other descriptors and numbers already in
the stack move up in the stack—and the contents of the T-register
are lost. (The LAST X register is not changed.) When you store
descriptors or matrix elements, the stack (and the LAST X register)
isn’t changed.

In contrast to the operation described above, the (g)and
(g] functions do not affect the LAST X register and operate as
shown on the next page.
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lost
T 4.0000 !__-> 4.0000
Z value i 4.0000
Y | row number \ 4.0000
X | col. number j value
(sTo](g](A]
,—-> lost
T | s.0000 , 5.0000
Z | 4.0000 l : 5.0000
Y |row number j\L 4.0000
X | col. number value

[ReL](gl(A]

Using Matrix Operations in a Program

If the calculator is in User mode during program entry when you
enter a or {[A] through [EJ, [()]} instruction to store or
recall a matrix element, a u replaces the dash usually displayed
after the line number. When this line is executed in a running
program, it operates as though the calculator were in User mode.
That is, the row and column numbers in R, and R; are
automatically incremented according to the dimensions of the
specified matrix. This allows you to access elements sequentially.
(The USER annunciator has no effect during program execution.)

In addition, when the last element is accessed by the “User”
or instruction—when Rj and R, are returned to 1—program
execution skips the next line. This is useful for programming a loop
that stores or recalls each matrix element, then continues
executing the program. For example, the following sequence
squares all elements of matrix D:
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i 1

——> 4

Forall | (Re(D)

matrix | &I

elements

except last | ““User’’ [STO](D] ~1 Forlast
Lo 4 | matrix element

e r‘ -

The 7 (row norm) and 8 (Frobenius norm)
functions also operate as conditional branching instructions in a
program. If the X-register contains a matrix descriptor, these
functions calculate the norm in the usual manner, and program
execution continues with the next program line. If the X-register
contains a number, program execution skips the next line. In both
cases, the original contents of the X-register are stored in the
LAST X register. This is useful for testing whether a matrix
descriptor is in the X-register during a program.

Summary of Matrix Functions
Keystroke(s) Results

(g](Cy.x] Transforms Z% into ZC.

CHS Changes sign of all elements in matrix specified in
X-register.

[f[omM] {[A] Dimensions specified matrix.

through [E], (1]}

[f)(MATRIX]O Dimensions all matrices to 0 X 0.

[f][MATRIX] 1 Sets row and column numbers in RgandR; to 1.
[f)[MATRIX] 2 Transforms Z into Z.

[ [MATRIX] 3 Transforms Z into Z%.

MATRIX |4 Calculates transpose of matrix specified in
X-register.
MATRIX|5 Multiplies transpose of matrix specified in

Y-register with matrix specified in X-register.
Stores in result matrix.
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Keystroke(s)

()[MATRIX] 6
([MATRIX] 7

()[MATRIX]8
([MATRIX]9

(ReL}{[A]
through [EJ, (0]}

(Red)(g){ (A
through (E], [0}

(ReL](DM]{(A]
through [EJ, (T)}

(RELJ[MATRIX]{ (A]
through [EJ}

(f)(RESULT]{(A]
through [EJ}
(sTO){[A]
through (EJ, [(0)]}

(sTo](gl{[A]
through [EJ, ()]}

(STO](MATRIX]{[A]
through [E]}

Results
Calculates residual in result matrix.

Calculates row norm of matrix specified in
X-register.

Calculates Frobenius or Euclidean norm of matrix
specified in X-register.

Calculates determinant of matrix specified in
X-register. Places LU in result matrix.
Transforms ZC into ZP

Recalls value from specified matrix, using row and
column numbers in Ry and Ry.

Recalls value from specified matrix, using row and
column numbers in Y- and X-registers.

Recalls dimensions of specified matrix into X- and
Y-registers.

Displays descriptor of specified matrix.

Displays descriptor of result matrix.

Designates specified matrix as result matrix.

Stores value from display into element of specified
matrix, using row and column numbers in Ry and
Rj.

Stores value from Z-register into element of
specified matrix, using row and column numbers in
Y- and X-registers.

If matrix descriptor is in display, copies all
elements of that matrix into corresponding
elements of specified matrix. If number is in
display, stores that value in all elements of
specified matrix.
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Results

Designates matrix specified in X-register as result
matrix.

Row and column numbers in Ry and Rq are
automatically incremented each time or
{[AJthrough [E], [{(i}}} is pressed.

Inverts matrix specified in X-register. Stores in
result matrix. Use if User mode is on.

If matrix descriptors specified in both X- and
Y-registers, adds or subtracts corresponding
elements of matrices specified. If matrix descriptor
specified in only one of these registers, performs
addition or subtraction with all elements in
specified matrix and scalar in other register. Stores
in result matrix.

If matrix descriptors specified in both X- and
Y-registers, calculates product of specified
matrices (as YX). If matrix specified in only one of
these registers, multiplies all elements in specified
matrix by scalar in other register. Stores in result
matrix.

If matrix descriptors specified in both X- and Y-
registers, multiplies inverse of matrix specified in
X-register with matrix specified in Y-register. If
matrix specified in only Y-register, divides all
elements of specified matrix by scalar in other
register. If matrix specified in only X-register,
multiplies each element of inverse of specified
matrix by scalar in other register. Stores in result
matrix.

For Further Information

The HP-15C Advanced Functions Handbook presents more
detailed and technical aspects of the matrix functions in the
HP-15C, including applications. The topics include: least-squares
calculations, solving nonlinear equations, ill-conditioned and
singular matrices, accuracy considerations, iterative refinement,
and creating the identity matrix.
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Finding the Roots
of an Equation

In many applications you need to solve equations of the form

f(x)=0*

This means finding the values of x
that satisfy the equation. Each such
value of x is called a root of the

f(x)

equation f(x) = 0 and a zero of the ROOT
function f(x). These roots (or zeros)
that are real numbers are called real
roots (or real zeros). For many X

problems the roots of an equation can
be determined analytically through
algebraic manipulation; in many

other instances, this is not possible.
Numerical techniques can be used to estimate the roots when
analytical methods are not suitable. When you use the key
on your HP-15C, you utilize an advanced numerical technique that
lets you effectively and conveniently find real roots for a wide
range of equations.t

Using

In calculating roots, the operation repeatedly calls up and
executes a subroutine that you write for evaluating f(x).

* Actually, any equation with one variable can be expressed in this form. For example,
f(x)=ais equivalent to f(x) —a =0, and f(x) = g(x) is equivalent to f(x) — g(x) = 0.

t The function does not use the imaginary stack. Refer to the HP-15C Advanced
Functions Handbook for information about complex roots.

180



Section 13: Finding the Roots of an Equation 181

The basic rules for using are:

1.

In Program mode, key in a subroutine that evaluates the
function f(x) that is to be equated to zero. This subroutine
must begin with a label instruction ( label) and end up
with a result for f(x) in the X-register.

In Run mode:

Key two initial estimates of the desired root, separated by
[ENTER], into the X- and Y-registers. These estimates merely
indicate to the calculator the approximate range of x in
which it should initially seek a root of f(x) = 0.

Press followed by the label of your subroutine. The
calculator then searches for the desired zero of your function
and displays the result. If the function that you are
analyzing equals zero at more than one value of x, the
routine will stop when it finds any one of those values. To
find additional values, you can key in different initial

estimates and use [SOLVE]again.

Immediately before addresses your subroutine it places a
value of x in the X-, Y-, Z-, and T-registers. This value is then used
by your subroutine to calculate f(x). Because the entire stack is
filled with the x-value, this number is continually available to your
subroutine. (The use of this technique is described on page 41).

Example: Use to find the values of x for which

flx)=x2—3x—10=0.

Using Horner’s method (refer to page 79), you can rewrite f(x) so
that it is programmed more efficiently:

f(x)=(x—3)x—10.

In Program mode, key in the following subroutine to evaluate f(x).

Keystrokes Display
(g)(P7R] 000- Program mode.

CLEAR 000- Clear program memory.
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Keystrokes Display

[fLeLjo 001-42,21, 0 Begin with [LBL)
instruction. Subroutine
assumes stack loaded
with x.

3 002~ 3

=] 003- 30 Calculatex — 3.

x] 004~ 20 Calculate (x — 3)x.

1 005~ 1

0 006- 0

= 007- 30 Calculate (x —3)x — 10.

LI[RTN) 008- 4332

In Run mode, key two initial estimates into the X- and Y-registers.
Try estimates of 0 and 10 to look for a positive root.

Keystrokes Display*

(g)(P7R] Run mode.

0 0.0000 . .

10 10 } Initial estimates.

You can now find the desired root by pressing 0. When
you do this, the calculator will not display the answer right away.
The HP-15C uses an iterative algorithmt to estimate the root. The
algorithm analyzes your function by sampling it many times,
perhaps a dozen times or more. It does this by repeatedly executing
your subroutine. Finding a root will usually require about 30
seconds to 2 minutes; but sometimes the process will require even
more time.

Press 0 and sit back while your HP-15C exhibits one of its
powerful capabilities. The display flashes running while is
operating.

*Press [f] 4 to obtain the displays shown here. The display setting does not influence
the operation of [SOLVE].

1 An algorithm is a step-by-step procedure for solving a mathematical problem. An
iterative algorithm is one containing a portion that is executed a number of times in the
process of solving the problem.
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Keystrokes Display
0 5.0000 The desired root.

After the routine finds and displays the root, you can ensure that
the displayed number is indeed a root of f(x) = 0 by checking the
stack. You have seen that the display (X-register) contains the
desired root. The Y-register contains a previous estimate of the
root, which should be very close to the displayed root. The
Z-register contains the value of your function evaluated at the
displayed root.

Keystrokes Display

5.0000 A previous estimate of
the root.

0.0000 Value of the function at
the root showing that
f(x)=0.

Quadratic equations, such as the one you are solving, can have two
roots. If you specify two new initial estimates, you can check for a
second root. Try estimates of 0 and —10 to look for a negative root.

Keystrokes Display

? _?60000 } Initial estimates.

0 -2.0000 The second root.

-2.0000 A previous estimate of
the root.

0.0000 Value of f(x) at second

root.
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You have now found the two roots of
f(x) = 0. Note that this quadratic
equation could have been solved
algebraically—and you would have
obtained the same roots that you

found using [SOLVE].

f(x)
30

—20

Graph of f(x)

The convenience and power of the key become more
apparent when you solve an equation for a root that cannot be

determined algebraically.

Example: Champion ridget hurler
Chuck Fahr throws a ridget with an
upward velocity of 50 meters/second.
If the height of the ridget is expressed
as

h =5000(1 — e"t/20) — 200¢,

how long does it take for it to reach
the ground again? In this equation, A
is the height in meters and ¢ is the
time in seconds.

Solution: The desired solution is the positive value of ¢t at which

h=0.

Use the following subroutine to calculate the height.

Keystrokes Display
000-
001-42,21,11
2 002- 2

0 003- 0
= 004- 10

Begin with label.

Subroutine assumes t is
loaded in X- and Y-
registers.
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Keystrokes Display

005- 16 —t/20.

006- 12

007- 16 —e t/20,

1 008- 1

009- 40 1—e /%0,

5 010- 5

0 011- 0

0 012- 0

0 013- 0

x) 014- 20 5000 (1 —e /20,

[x2y] 015- 34 Brings another ¢-value
into X-register.

2 016- 2

0 017- 0

0 018- 0

) 019- 20 200¢.

= 020- 30 5000 (1— e t/20)—200¢.

(a)(RTN] 021- 4332

Switch to Run mode, key in two initial estimates of the time (for
example, 5 and 6 seconds) and execute [SOLVE].

Keystrokes Display

(g) Run mode.

5 5.0000

6 6 } Initial estimates.
9.2843 The desired root.

Verify the root by reviewing the Y- and Z-registers.

Keystrokes Display

9.2843 A previous estimate of the
root.

0.0000 Value of the function at
the root showing that

h=0.
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Fahr’s ridget falls to the ground
9.2843 seconds after he hurls it—a h(t)
remarkable toss. 120
-2 121
—20

Graph of hversus t

When No Root Is Found

You have seen how the key estimates and displays a root of
an equation of the form f(x) = 0. However, it is possible that an
equation has no real roots (that is, there is no real value of x for
which the equality is true). Of course, you would not expect the
calculator to find a root in this case. Instead, it displays Error 8.

Example: Consider the equation

ftx)
el =1 10

which has no solution since the
absolute value function is never
negative. Express this equation in
the required form

lx|+1=0
and attempt to use to find a Graph of (x) =|x| +1
solution.
Keystrokes Display
(g](P/R] 000- Program mode.
(Be01 001-42,21, 1
(e](ABS] 002- 4316
1 003- 1
004- 40

(a](RTN] 005- 43 32
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Because the absolute-value function is minimum near an argument
of zero, specify the initial estimates in that region, for instance 1
and —1. Then attempt to find a root.

Keystrokes Display

(a) Run mode.

1 1.0000 e .

1 -1 } Initial estimates.

1 Error 8 This display indicates
that no root was found.

[« 0.0000 Clear error display.

As you can see, the HP-15C stopped seeking a root of f(x) = 0 when
it decided that none existed—at least not in the general range of x
to which it was initially directed. The Error 8 display does not
indicate that an “illegal” operation has been attempted; it merely
states that no root was found where presumed one might
exist (based on your initial estimates).

If the HP-15C stops seeking a root and displays an error message,
one of these three types of conditions has occurred:

o If repeated iterations all produce a constant nonzero value for
the specified function, execution stops with the display
Error 8.

e If numerous samples indicate that the magnitude of the
function appears to have a nonzero minimum value in the
area being searched, execution stops with the display Error 8.

e If an improper argument is used in a mathematical operation
as part of your subroutine, execution stops with the display
Error O.

In the case of a constant function value, the routine can see no
indication of a tendency for the value to move toward zero. This
can occur for a function whose first 10 significant digits are
constant (such as when its graph levels off at a nonzero horizontal
asymptote) or for a function with a relatively broad, local “flat”
region in comparison to the range of x-values being tried.

In the case where the function’s magnitude reaches a nonzero
minimum, the routine has logically pursued a sequence of samples
for which the magnitude has been getting smaller. However, it has
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not found a value of x at which the function’s graph touches or
crosses the x-axis.

The final case points out a potential deficiency in the subroutine
rather than a limitation of the root-finding routine. Improper
operations may sometimes be avoided by specifying initial
estimates that focus the search in a region where such an outcome
will not occur. However, the routine is very aggressive and
may sample the function over a wide range. It is a good practice to
have your subroutine test or adjust potentially improper argu-
ments prior to performing an operation (for instance, use
prior to [{&]). Rescaling variables to avoid large numbers can also
be helpful.

The success of the routine in locating a root depends
primarily upon the nature of the function it is analyzing and the
initial estimates at which it begins searching. The mere existence
of a root does not ensure that the casual use of the key will
find it. If the function f(x) has a nonzero horizontal asymptote or a
local minimum of its magnitude, the routine can be expected to find
aroot of f(x) =0 only if the initial estimates do not concentrate the
search in one of these unproductive regions—and, of course, if a
root actually exists.

Choosing Initial Estimates

When you use to find the root of an equation, the two initial
estimates that you provide determine the values of the variable x at
which the routine begins its search. In general, the likelihood that
you will find the particular root you are seeking increases with the
level of understanding that you have about the function you are
analyzing. Realistic, intelligent estimates greatly facilitate the
determination of a root.

The initial estimates that you use may be chosen in a number of
ways:

If the variable x has a limited range in which it is conceptually
meaningful as a solution, it is reasonable to choose initial
estimates within this range. Frequently an equation that is
applicable to a real problem has, in addition to the desired solution,
other roots that are physically meaningless. These usually occur
because the equation being analyzed is appropriate only between
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certain limits of the variable. You should recognize this restriction
and interpret the results accordingly.

If you have some knowledge of the behavior of the function f(x) as
it varies with different values of x, you are in a position to specify
initial estimates in the general vicinity of a zero of the function.
You can also avoid the more troublesome ranges of x such as those
producing a relatively constant function value or a minimum of the
function’s magnitude.

Example: Using a rectangular piece
of sheet metal 4 decimeters by 8
decimeters, an open-top box having a
volume of 7.5 cubic decimeters is to be
formed. How should the metal be
folded? (A taller box is preferred to a
shorter one.)

Solution: You need to find the
height of the box (that is, the amount
to be folded up along each of the four

sides) that gives the specified volume. If x is the height (or amount
folded up), the length of the box is (8 — 2x) and the width is
(4 —2x). The volume V'is given by

V=(8—-2x)4—2x)x.

By expanding the expression and then using Horner’s method
(page 79), this equation can be rewritten as

V=4((x—6)x+8)x.
To get V="17.5, find the values of x for which
f(x)=4((x —6)x +8)x —7.5=0.

The following subroutine calculates f(x):

Keystrokes Display

(g](P7R] 000- Program mode.
(B3 001-42,21, 3 Label

6 002- 6 Assumes stack loaded

with x.
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Keystrokes Display

B 003- 30

x] 004- 20 (x—6)x.

8 005- 8

006- 40

] 007- 20 ((x—6)x+8)x.
4 008- 4

x] 009- 20 4((x—6)x +8)x.
7 010- 7

& 011- 48

5 012- 5

=) 013- 30

(o] (RTN] 014- 4332

It seems reasonable that either a tall, narrow box or a short, flat
box could be formed having the desired volume. Because the taller
box is preferred, larger initial estimates of the height are
reasonable. However, heights greater than 2 decimeters are not
physically possible (because the metal is only 4 decimeters wide).
Initial estimates of 1 and 2 decimeters are therefore appropriate.

Find the desired height:

Keystrokes Display

(o] Run mode.

; ;.0000 } Initial estimates.

3 1.5000 The desired height.
1.5000 Previous estimate.

0.0000 f(x) at root.
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By making the height 1.5 decimeters,
a 5.0 X 1.0 X 1.5-decimeter box is flx)
specified. 30

If you ignore the upper limit on the
height and use initial estimates of 3
and 4 decimeters (still less than the

width), you will obtain a height of :T 5 X
4.2026 decimeters—a root that is /
physically meaningless. If you use —20

small initial estimates such as 0 and

1 decimeter, you will obtain a height Graph of f(x)
of 0.2974 decimeter—producing an
undesirably short, flat box.

As an aid for examining the behavior of a function, you can easily
evaluate the function at one or more values of x using your
subroutine in program memory. To do this, fill the stack with x.
Execute the subroutine to calculate the value of the function (press

letter label or label.

The values you calculate can be plotted to give you a graph of the
function. This procedure is particularly useful for a function whose
behavior you do not know. A simple-looking function may have a
graph with relatively extreme variations that you might not
anticipate. A root that occurs near a localized variation may be
hard to find unless you specify initial estimates that are close to the
root.

If you have no informed or intuitive concept of the nature of the
function or the location of the zero you are seeking, you can search
for a solution using trial-and-error. The success of finding a
solution depends partially upon the function itself. Trial-and-error
is often—but not always—successful.

® If you specify two moderately large positive or negative
estimates and the function’s graph does not have a horizontal
asymptote, the routine will seek a zero which might be the
most positive or negative (unless the function oscillates many
times, as the trigonometric functions do).

® Ifyou have already found a zero of the function, you can check
for another solution by specifying estimates that are relatively
distant from any known zeros.
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e Many functions exhibit special behavior when their argu-
ments approach zero. You can check your function to
determine values of x for which any argument within your
function becomes zero, and then specify estimates at or near
those values.

Although two different initial estimates are usually supplied when
using [SOLVE], you can also use with the same estimate in
both the X- and Y-registers. If the two estimates are identical, a
second estimate is generated internally. If your single estimate is
nonzero, the second estimate differs from your estimate by one
count in the seventh significant digit. If your estimate is zero,
1 X 1077 is used as the second estimate. Then the root-finding
procedure continues as it normally would with two estimates.

Using |SOLVE |in a Program

You can use the operation as part of a program. Be sure
that the program provides initial estimates in the X- and Y-
registers just prior to the operation. The routine
stops with a value of x in the X-register and the corresponding
function value in the Z-register. If the x-value is a root, the program
proceeds to the next line. If the x-value is not a root, the next line is
skipped. (Refer also to Interpreting Results on page 226 for a
further explanation of roots.) Essentially, the instruction
tests whether the x-value is a root and then proceeds according to
the “Doif True” rule. The program can then handle the case of not
finding a root, such as by choosing new initial estimates or
changing a function parameter.

The use of as an instruction in a program utilizes one of the
seven pending returns in the calculator. Since the subroutine called
by utilizes another return, there can be only five other
pending returns. Executed from the keyboard, on the other hand,
itself does not utilize one of the pending returns, so that six
pending returns are available for subroutines within the
subroutine called by [SOLVE]. Remember that if all seven pending
returns have been utilized, a call to another subroutine will result
in a display of Error 5. (Refer to page 105.)
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Restriction on the Use of | SOLVE

The one restriction regarding the use of is that
cannot be used recursively. That is, you cannot use in a
subroutine that is called during the execution of [SOLVE]. If this
situation occurs, execution stops and Error 7 is displayed. It is
possible, however, to use with (5], thereby using the
advanced capabilities of both of these keys.

Memory Requirements

[SOLVE]requires five registers to operate. (Appendix C explains how
they are automatically allocated from memory.) If five unoccupied
registers are not available, [SOLVE] will not run and Error 10 will be
displayed.

A routine that combines and requires 23 registers of
space.

For Further Information
In appendix D, Advanced Use of [SOLVE], additional techniques
and explanations for using are presented. These include:

e How [SOLVE]works.

e Accuracy of theroot.

Interpreting results.
e Finding several roots.

e Limiting estimation time.
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Numerical Integration

Many problems in mathematics, sci-
ence, and engineering require calcu-
lating the definite integral of a
function. If the function is denoted by
f(x) and the interval of integration is

a to b, the integral can be expressed 77,
mathematically as
2

b X
I=fa f(x)dx. a b

f(x)

!

The quantity I can be interpreted geometrically as the area of a
region bounded by the graph of f(x), the x-axis, and the limits x =a
andx=b.*

When an integral is difficult or impossible to evaluate by
analytical methods, it can be calculated using numerical
techniques. Usually, this can be done only with a fairly
complicated computer program. With your HP-15C, however, you
can easily do numerical integration using the (/] (integrate) key.T

Using

The basic rules for using /] are:

1. In Program mode, key in a subroutine that evaluates the
function f(x) that you want to integrate. This subroutine
must begin with a label instruction ( label) and end up
with a value for f(x) in the X-register.

* Provided that f(x) is nonnegative throughout the interval of integration.

T The function does not use the imaginary stack. Refer to the HP-15C Advanced
Functions Handbook for information about using [/z]in Complex mode.

194
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In Run mode:

2. Key the lower limit of integration (a) into the X-register, then
press to lift it into the Y-register.

Key the upper limit of integration (&) into the X-register.
Press followed by the label of your subroutine.

Example: Certain problems in physics and engineering require
calculating Bessel functions. The Bessel function of the first kind
of order 0 can be expressed as

Jo(x)= —717—_/; cos (x sin 6) d6.

1 m™
Find J0(1)=——j; cos (sin ) df.
m

In Program mode, key in the following subroutine to evaluate the
function f(6) = cos (sin ).

Keystrokes Display

[g)(P/R] 000- Program mode.

[fJCLEAR 000- Clear program memory.

0 001-42,21, 0 Begin subroutine with a
[LBL]instruction.
Subroutine assumes a
value of 6 is in X-register.

SIN 002- 23 Calculate sin 6.

CcoS 003- 24 Calculate cos (sin ).

(a](RTN] 004- 4332

Now, in Run mode key the lower limit of integration into the Y-
register and the upper limit into the X-register. For this particular
problem, you also need to specify Radians mode for the
trigonometric functions.
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Keystrokes Display

(g](P/R] Run mode.

0 0.0000 Key lower limit, 0, into
Y-register.

F1|Ea 3.1416 Key upper limit, 7, into
X-register.

(g](RAD] 3.1416 Specify Radians mode for

trigonometric functions.

Now you are ready to press 0 to calculate the integral. When
you do so, you’ll find that—just as with [SOLVE]—the calculator will
not display the result right away, as it does with other operations.
The HP-15C calculates integrals using a sophisticated iterative
algorithm. Briefly, this algorithm evaluates f(x), the function to be
integrated, at many values of x between the limits of integration.
At each of these values, the calculator evaluates the function by
executing the subroutine you write for that purpose. When the
calculator must execute the subroutine many times—as it does
when you press [/;]—you can’t expect any answer right away. Most
integrals will require on the order of 30 seconds to 2 minutes; but
some integrals will require even more. Later on we’ll discuss how
you can decrease the time somewhat; but for now, press 0 and
take a break (or read ahead) while the HP-15C takes care of the
drudgery for you.

Keystrokes Display
[fx]o 2.4040 :fo cos (sin 0) df.

In general, don’t forget to multiply the value of the integral by
whatever constants, if any, are outside the integral. In this
particular problem, we need to multiply the integral by 1/ to get
JO (1)

Keystrokes Display

[al(=) 3.1416
=) 0.7652 Jo(1).
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Before calling the subroutine you provide to evaluate f(x), the
algorithm—just like the algorithm—places the value of x in
the X-, Y-, Z-, and T-registers. Because every stack register contains
the x-value, your subroutine can calculate with this number
without having to recall it from a storage register. The subroutines
in the next two examples take advantage of this feature. (A
polynomial evaluation technique that assumes the stack is filled
with the value of x is discussed on page 79.)

Note: Since the calculator puts the value of x into all stack
registers, any numbers previously there will be replaced by x.
Therefore, if the stack contains intermediate results that
you'll need after you calculate an integral, store those
numbers in storage registers and recall them later.

Occasionally you may want to use the subroutine that you
wrote for the operation to merely evaluate the function at
some value of x. If you do so with a function that gets x from
the stack more than once, be sure to fill the stack manually
with the value of x, by pressing [ENTER] [ENTER] [ENTER],
before you execute the subroutine.

Example: The Bessel function of the first kind of order 1 can be
expressed as

Jl(x):%j; cos (6 — x sin 6) d6.

Find Jl(1>=—717—fO cos (9 — sin 6) do.

Key in the following subroutine that evaluates the function
f(6) =cos (0 —sin 6).

Keystrokes Display
(g)(P/R] 000- Program mode.
1 001-42,21, 1 Begin subroutine with a

label.
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Keystrokes Display

SIN 002- 23 Calculatesin 6.

= 003- 30 Since a value of § will be
placed into the Y-register
by the [s] algorithm before
it executes this
subroutine, the [5]
operation at this point will
calculate (6 — sin 6).

cos 004~ 24 Calculate cos (6 —sin 6).

[g][RTN] 005- 43 32

In Run mode, key the limits of integration into the X- and Y-
registers. Be sure that the trigonometric mode is set to Radians,
then press 1 to calculate the integral. Finally, multiply the
integral by 1/ to calculate /' {(1).

Keystrokes Display

(g] Run mode.

0 0.0000 Key lower limit into
Y-register.

FIEa 3.1416 Key upper limit into
X-register.

(gJ[RAD] 3.1416 (If not already in Radians
mode.)

HEN 1.3825 =_/;) cos (§ —sin ) d#.

(al=])[=] 0.4401 J1(1).

Example: Certain problems in
communications theory (for example,
pulse transmission through idealized
networks) require calculating an
integral (sometimes called the sine
integral) of the form

t .
Si(t) = f SBE .
0 X
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Find Si(2).

Key in the following subroutine to evaluate the function f(x) =
(sinx)/x.*

Keystrokes Display

(a)(P/R] 000- Program mode.

2 001-42,21,.2 Begin subroutine with a
instruction.

[(SIN] 002- 23 Calculatesin x.

(x2y] 003- 34 Since a value of x will be
placed in the Y-register by
the (5] algorithm before it
executes this subroutine,
the [x% y]operation at this
point will return x to the
X-register and move sin x
to the Y-register.

=] 004- 10 Dividesinx by x.

(e](RTN] 005- 4332

Now key the limits of integration into the X- and Y-registers. In
Radians mode, press (f](55].2 to calculate the integral.

Keystrokes Display

9)P/R] 0.4401 Run mode

0 0.0000 Key lower limit into
Y-register.

2 2 Key upper limit into
X-register.

(g](RAD] 2.0000 (If not already in Radians
mode.)

{x).2 1.6054 Si(2).

* If the calculator attempted to evaluate f(x) = (sin x)/x at x = 0, the lower limit of
integration, it would terminate with Error O in the display (signifying an attempt to
divide by zero), and the integral could not be calculated. However, the algorithm
normally does not evaluate functions at either limit of integration, so the calculator can
calculate the integral of a function that is undefined there. Only when the endpoints of
the interval of integration are extremely close together, or the number of sample points
is extremely large, does the algorithm evaluate the function at the limits of integration.
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Accuracy of

The accuracy of the integral of any function depends on the
accuracy of the function itself. Therefore, the accuracy of an
integral calculated using is limited by the accuracy of the
function calculated by your subroutine.* To specify the accuracy of
the function, set the display format so that the display shows no
more than the number of digits that you consider accurate in the
function’s values.t If you specify fewer digits, the calculator will
compute the integral more quickly;f but it will presume that the
function is accurate to only the number of digits specified in the
display format. We’ll show you how you can determine the
accuracy of the calculated integral after we say another word about
the display format.

You’ll recall that the HP-15C provides three types of display
formating: [FIX], [(SCI], and (ENG]. Which display format should be
used is largely a matter of convenience, since for many integrals
you’ll get about the same results using any of them (provided that
the number of digits is specified correctly, considering the
magnitude of the function). Because it’s more convenient to use
display format when calculating most integrals, we’ll use
when calculating integrals in subsequent examples.

Note: Remember that once you have set the display format,
you can change the number of digits appearing in the display
by storing a number in the Index register and then pressing
[FFEX][I, [F(Scyd], or (f)[(ENG](I], as described in section
10. This capability is especially useful when is executed
as part of a program.

* It is possible that integrals of functions with certain characteristics (such as spikes or
very rapid oscillations) might be calculated inaccurately. However, this possibility is
very small. The general characteristics of functions that could cause problems, as well
as techniques for dealing with them, are discussed in appendix E.

1 The accuracy of a calculated function depends on such considerations as the accuracy
of empirical constants in the function as well as round-off error in the calculations.
These considerations are discussed in more detail in the HP-15C Advanced Functions
Handbook.

1 The reason for this is discussed in appendix E.
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Because the accuracy of any integral is limited by the accuracy of
the function (as indicated in the display format), the calculator
cannot compute the value of an integral exactly, but rather only
approximates it. The HP-15C places the uncertainty* of an
integral’s approximation in the Y-register at the same time it
places the approximation in the X-register. To determine the
accuracy of an approximation, check its uncertainty by pressing

(x2y]).
Example: With the display format set to 2, calculate the
integral in the expression for J;(1) (from the example on page 197).

Keystrokes Display

0 0.0000 Key lower limit into
Y-register.

Q=] 3.1416 Key upper limit into
X-register.

(g)(RAD] 3.1416 (If not already in Radians
mode.)

2 3.14 00 Setdisplay format to
2.

1 1.38 00 Integral approximated in
2.

(x2y) 1.88 -03 Uncertainty of 2
approximation.

The integral is 1.38 + 0.00188. Since the uncertainty would not
affect the approximation until its third decimal place, you can
consider all the displayed digits in this approximation to be
accurate. In general, though, it is difficult to anticipate how many

* No algorithm for numerical integration can compute the exact difference between its
approximation and the actual integral. But the algorithm in the HP-15C estimates an
“upper bound” on this difference, which is the uncertainty of the approximation. For
example, if the integral Si(2) is 1.6054 £ 0.0001, the approximation to the integral is
1.6054 and its uncertainty is 0.0001. This means that while we don’t know the exact
difference between the actual integral and its approximation, we do know that it is
highly unlikely that the difference is bigger than 0.0001. (Note the first footnote on page
200.)



202 Section 14: Numerical Integration

digits in an approximation will be unaffected by its uncertainty.
This depends on the particular function being integrated, the limits
of integration, and the display format.

If the uncertainty of an approximation is larger than what you
choose to tolerate, you can decrease it by specifying a greater
number of digits in the display format and repeating the
approximation.*

Whenever you want to repeat an approximation, you don’t need to
key the limits of integration back into the X- and Y-registers. After
an integral is calculated, not only are the approximation and its
uncertainty placed in the X- and Y-registers, but in addition the
upper limit of itegration is placed in the Z-register, and the lower
limit is placed in the T-register. To return the limits to the X- and
Y-registers for calculating an integral again, simply press
(R¥].

Example: For the integral in the expression for J(1), you want an
answer accurate to four decimal places instead of only two.

Keystrokes Display

4 1.8826 -03 Setdisplay format to
4.

RYJ(RY] 3.1416 00 Roll down stack until
upper limit appears in
X-register.

AR 1.3825 00 Integral approximated in
4.

[x2y] 1.7091 -05 Uncertainty of 4
approximation.

The uncertainty indicates that this approximation is accurate to at
least four decimal places. Note that the uncertainty of the 4
approximation is about one-hundredth as large as the uncertainty
of the 2 approximation. In general, the uncertainty of any
approximation decreases by about a factor of 10 for each additional
digit specified in the display format.

* Provided that f(x) is still calculated accurately to the number of digits shown in the
display.
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In the preceding example, the uncertainty indicated that the
approximation might be correct to only four decimal places. If we
temporarily display all 10 digits of the approximation, however,
and compare it to the actual value of the integral (actually, an
approximation known to be accurate to a sufficient number of
decimal places), we find that the approximation is actually more
accurate than its uncertainty indicates.

Keystrokes Display

[x2y] 1.38256 00 Return approximation to
display.

CLEAR 1382459676  All 10 digits of
approximation.

The value of this integral, correct to eight decimal places, is
1.38245969. The calculator’s approximation is accurate to seven
decimal places rather than only four. In fact, since the uncertainty
of an approximation is calculated very conservatively, the
calculator’s approximation in most cases will be more accurate
than its uncertainty indicates. However, normally there is no way
to determine just how accurate an approximation is.

For a more detailed look at the accuracy and uncertainty of
approximations, refer to appendix E.

Using [/3]in a Program

can appear as an instruction in a program provided that the
program is not called (as a subroutine) by [/]itself. In other words,
cannot be used recursively. Consequently, you cannot use (5] to
calculate multiple integrals; if you attempt to do so, the calculator
will halt with Error 7 in the display. However, [5]can appear as an
instruction in a subroutine called by [SOLVE].

The use of as an instruction in a program utilizes one of the
seven pending returns in the calculator. Since the subroutine called
by [s] utilizes another return, there can be only five other pending
returns. Executed from the keyboard, on the other hand, itself
does not utilize one of the pending returns, so that six pending
returns are available for subroutines within the subroutine called
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by [5]). Remember that if all seven pending returns have been
utilized, a call to another subroutine will result in a display of Error
5. (Refer to page 105.)

Memory Requirements

requires 23 registers to operate. (Appendix C explains how they
are automatically allocated from memory.) If 23 unoccupied
registers are not available, will not run and Error 10 will be
displayed.

A routine that combines [s] and also requires 23 registers of
space.

For Further Information

This section has given you the information you need to use (/] with
confidence over a wide range of applications. In appendix E, more
esoteric aspects of [/5] are discussed. These include:

e How (] works.

e Accuracy, uncertainty, and calculation time.
e Uncertainty and the display format.

o Conditions that could cause incorrect results.
e Conditions that prolong calculation time.

e Obtaining the current approximation to an integral.



Appendix A
Error Conditions

If you attempt a calculation containing an improper operation—
say division by zero—the display will show Error and a number. To
clear an error message, press any one key. This also restores the
display prior to the Error display.

The HP-15C has the following error messages. (The description of
Error 2 includes a list of statistical formulas used.)

Error O: Improper Mathematics Operation

Illegal argument to math routine:
(2], where x =0.
("], where:
e outof Complex mode, y <0 and x is noninteger;
e out of Complex mode, y =0 and x < 0; or
e in Complex mode, y =0 and Re(x)<0.
iz ], where, out of Complex mode, x < 0.
(7], where x = 0.
(LOG], where:
e out of Complex mode, x <O0; or
e in Complex mode, x =0.
(LN], where:
e out of Complex mode, x <0; or
e in Complex mode, x =0.
(SIN], where, out of Complex mode, | x| > 1.
COS™], where, out of Complex mode, | x| > 1.
(sT0](%], where x =0.
[RCL](#], where the contents of the addressed register = 0.
[A%], where the value in the Y-register is 0.
[HYPT][COS], where, out of Complex mode, x < 1.
[HYPT])[TAN], where, out of Complex mode, | x| > 1.
or [Py,x], where:

e xoryisnoninteger;
205
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e x<Oory<Qo;
e x>y;
e xory=1010.
Error 1: Improper Matrix Operation

Applying an operation other than a matrix operation to a matrix,
that is, attempting a nonmatrix operation while a matrix is in the
relevant register (whether the X- or Y-register or a storage register).

Error 2: Improper Statistics Operation

E n=0
5] n<1
Gl n<1
n<1

Error 2 is also displayed if division by zero or the square root of a
negative number would be required during computation with any
of the following formulas:

- 2x _ 3y
x=— y=—_
n n
/ M / N P
Sy = —_— sy, = —_— r=———o
n(n—1) n(n—1) vVM-N
A:_I_’_ B= M3y—P3x
M n M
. M3Iy+P(n-x—3x)
Y n-M
where:

M=n3x%—(3x)2
N=n3y?—(3y)?

P=n3xy—3x3y

(A and B are the values
returned by the operation
(LR], wherey = Ax+ B.)
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Error 3: Improper Register Number or Matrix Element

Storage register named is nonexistent or matrix element indicated
is nonexistent.

Error 4: Improper Line Number or Label Call

Line number called for is currently unoccupied or nonexistent
(>448); or you have attempted to load a program line without
available space; or the label called does not exist. Or: User mode

is on and you did not press (f] before (=], (], (10%], (¥*], or (i/x].
Error 5: Subroutine Level Too Deep

Subroutine nested more than seven deep.

Error 6: Improper Flag Number
Attempted a flag number >9.

Error 7: Recursive [SOLVE]or [5]
A subroutine which is called by also contains a

instruction; a subroutine which is called by [5i] also contains an
instruction.

Error 8: No Root
unable to find a root using given estimates.

Error 9: Service

Self-test discovered circuitry problem, or wrong key pressed during
key test. Refer to appendix F.

Error 10: Insufficient Memory

There is not enough memory available to perform a given
operation.

Error 11: Improper Matrix Argument

Inconsistent or improper matrix arguments for a given matrix
operation:

or [=], where the dimensions are incompatible.
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[x], where:

® the dimensions are incompatible; or

® theresultis one of the arguments.
(17x], where the matrix is not square.
scalar/matrix [#], where the matrix is not square.

(2], where:
® the matrix in the X-register is not square;

® the dimensions are incompatible; or
® theresultis the matrix in the X-register.

2, where the input is a scalar; or the number of rows is
odd.

3, where the input is a scalar; or the number of columns
is odd.

4, where the input is scalar.
5, where:

® theinputis a scalar;

® the dimensions are incompatible; or

® theresultis one of the arguments.
6, where:

® theinputis scalar;

® the dimensions are incompatible (including the result); or

® theresultis one of the arguments.
9, where the matrix is not square.
(RcL)[DIM] (1], where contents of Ry are scalar.
[DIM][1], where contents of Ry are scalar.
[STO](RESULT], where the input is scalar.
(Py.x], where the number of columns is odd.
[Cy.x], where the number of rows is odd.

Pr Error (Power Error)

Continuous Memory interrupted and reset because of power failure.
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Stack Lift and
the LAST X Register

The HP-15C calculator has been designed to operate in a natural
manner. As you have seen working through this handbook, most
calculations do not require you to think about the operation of the
automatic memory stack.

There are occasions, however—especially as you delve into
programming—when you need to know the effect of a particular
operation upon the stack. The following explanation should help
you.

Digit Entry Termination

Most operations on the calculator, whether executed as instructions
in a program or pressed from the keyboard, terminate digit entry.
This means that the calculator knows that any digits you key in
after any of these operations are part of a new number.

The only operations that do not terminate digit entry are the digit
entry keys themselves:

[0)through (9] [«
O
Stack Lift

There are three types of operations on the calculator based on how
they affect stack lift. These are stack-disabling operations, stack-
enabling operations, and neutral operations.

When the calculator is in Complex mode, each operation affects
both the real and imaginary stacks. The stack lift effects are the
same. In addition, the number keyed into the display (real X-
register) after any operation except [«] or is accompanied by
the placement of a zero in the imaginary X-register.

209



210 Appendix B: Stack Lift and the LAST X Register
Disabling Operations

Stack Lift. There are four stack-disabling operations on the
calculator.* These operations disable the stack lift, so that a
number keyed in after one of these disabling operations writes over
the current number in the displayed X-register and the stack does
not lift. These special disabling operations are:

z4] =]

Imaginary X-Register. A zero is placed in the imaginary X-
register when the next number following [ENTER], (Z+], or [Z-] is
keyed or recalled into the display (real X-register). However, the
next number keyed in or recalled after («] or does not change
the contents of the imaginary X-register.

Enabling Operations

Stack Lift. Most of the operations on the keyboard, including one-
and two-number mathematical functions like (¥*] and [x], are stack-
enabling operations. This means that a number keyed in after one
of these operations will lift the stack (because the stack has been
“enabled” to lift). Both the real and imaginary stacks are affected.
(Recall that a shaded X-register means that its contents will be
written over when the next number is keyed in or recalled.)

T t z y y
¥4 z y X X
Y y X 4.0000 4.0000
X X 4 - 4.0000 3
Keys: 4 3
(Assumes Stack Stack No stack
stack lifts. disabled. lift.
enabled.)

*Refer to footnote, page 36.
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T y y y y
Z X X X X
Y | 4.0000 53.1301 53.1301 53.1301
X 3 5.0000 0.0000 7
Keys: (g)(=>P] (g)(CLs) 7
Stack Stack No stack
enabled. disabled. lift.

Imaginary X-Register. All enabling functions provide for a zero
to be placed in the imaginary X-register when the next number is
keyed or recalled into the display.

Neutral Operations

Stack Lift. Some operations, like [FIX], are neutral; that is, they do
not alter the previous status of the stack lift. Thus, if you disable
the stack lift by pressing [(ENTER], then press [f] n and key in a
new number, that number will write over the number in the X-
register and the stack will not lift. Similarly, if you have previously
enabled the stack lift by executing, say ({z ], then execute a
instruction followed by a digit entry sequence, the stack will lift.*

The following operations are neutral on the HP-15C:

FIX GRD R/S
nnn CLEAR P/R
ENG BST CLEAR [+
DEG SST CLEAR[Z)

RAD (MEM]

Imaginary X-Register. The above operations are also neutral
with respect to clearing the imaginary X-register.

* All digit entry functions are also neutral during digit entry. After digit entry
termination, and are lift-enabling; [¢]is disabling.

+ That is, the [f]({Q)) sequence used to view the imaginary X-register.
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= Pl %

(siN] TAN

B3]

=

(Py.x]*

[Cy.x)*

(HYP](SIN] (=]

(HYP](cos] (Log)

(=1 [MATRIX] 5 through 9
SIN P Tk

*Except when used as a matrix function.

t[z] uses the LAST X register in a special way, as described in appendix E.
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Memory Allocation
The Memory Space

Storage registers, program lines, and advanced function execution*
all draw on a common memory space in the HP-15C. The
availability of memory for a specific purpose depends on the
current allocation of memory, as well as on the total memory
capacity of the calculator.

Registers

Memory space in the HP-15C is allocated on the basis of registers.
This space is partitioned into two pools, which strictly define how a
register may be used. There is always a combined total of 67
registers in these two pools.

o The data storage pool contains registers which may be used
only for data storage. At power-up (Continuous Memory reset)
this equals 21 registers. This pool contains at least three
registers at all times: R, Ry, and R;.

e The common pool contains uncommitted registers available

for allocation to programming, matrices, the imaginary stack,
and and operation. At power-up there are 46
uncommitted registers in the common pool.

*The use of [SOLVE], (5], Complex mode, or matrices temporarily requires extra memory
space, as explained later in this appendix.
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P t
ermanen R;

Ro
R4

Allocatable R,
Ro
Ro
R

Highest

numbered Rg

data

register = dd —»R g

Ryg 41 ——>

Res

Total allocatable memory: 64 registers, numbered Ry through
Rgs. [(dd — 1) + uu + pp + (matrix elements) + (imaginary stack) +
([SOLVE] and (%])] = 64. For memory allocation and indirect
addressing, data registers R through Rg are referred to as Ry

through Rqg.

MEMORY

Index Register|

0o

1

10

1

—

18

19
Jiceassmencsasna]

65
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Appendix C: Memory Allocation

’

\

DATA STORAGE POOL
R, to Ryyallocated
here. Initial config-
uration: dd =19.

MOVABLE BOUNDARY

after R 4. Initially
dd=19.

COMMON POOL
Matrix Elements
Imaginary Stack
(SOLVE]and

Program Lines

Number of
uncommitted
registers = uu.

Number of registers
occupied by program
lines =pp.
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Memory Status ([MEM))

To view the current memory configuration of the calculator, press

(g) (MEM] (memory), holding [MEM] to retain the display.* The
display will be four numbers,

dd uu pp-b

where:

dd = the number of the highest-numbered register in the data
storage pool (making the total number of data registers dd + 2
because of R, and Ry);

uu = the number of uncommitted registers in the common pool;
pp = the number of registers containing program instructions; and
b = the number of bytes left before uu is decremented (to supply
seven more bytes of program memory) and pp is incremented.
The initial status of the HP-15C at power-up is:
19 46 0-0

The movable boundary between the data storage and common
pools is always between Ry and Ryy 4 1-

Memory Reallocation

There are 67 registers in memory, worth seven bytes each. Sixty-
four of these registers (R, to Rgs) are interconvertible between the
data storage and common pools.

The [DIM]((i)] Function

If you should require more common space (as for programming) or
more data storage space (but not both simultaneously!), you can
make the necessary register reallocation using (@].t The
procedure is:

*[MEM]is nonprogrammable.

t[DIM] (dimension) is so called because it is also used (with through (E] or (1)) to
dimension matrices. Above, however, it is used (with [(i})]) to “dimension” the size of the
data storage pool.
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1. Placedd, the number of the highest data storage register you
want allocated, into the display. 1 <dd <65. The number of
registers in the uncommitted pool (and therefore potentially
available for programming) will be (65 — dd).

2. Press ).
There are two ways to review your allocation:

® Press [(] to recall into the stack the number of the
highest-allocated data storage register, dd. (Programmable.)

® Press [g][MEM] (as explained above) to view a more complete
memory status (dd vu pp-b).

Keystrokes Display

(assuming a cleared program memory)*

1 [{M][G)] 1.0000 Ry, Ro, and Ry
[g][MEM](hold) 1 64 0-0, allocated for data storage.

Sixty-four registers are
uncommitted; none
contain program

instructions.
19 19.0000 R9(Rg)is the highest-
(RCL)[DM] (@] 19.0000 numbered data storage

register. Forty-six
registers left in the
common pool.

Restrictions on Reallocation

Continuous Memory will maintain the configuration you allocate
until a new is executed or Continuous Memory is reset. If
you try to allocate a number less than 1, dd = 1. If you try to
allocate a number greater than 65, Error 10 results.

*If program memory is not cleared, the number of uncommitted registers (uuv) is less,
owing to allocation of registers to program memory (pp). Therefore, pp would be >0 and
b would vary.
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When converting registers, note that:

® You can convert registers from the common pool only if they
are uncommitted. If, for example, you try to convert registers
which contain program instructions, you will get an Error 10
(insufficient memory).

® You can convert occupied registers from the data storage pool,
causing a loss of stored data. An Error 3 results if you try to
address a “lost”—that is, nonexistent—register. Therefore, it
is good practice to store data in the lowest-numbered registers
first, as these are the last to be converted.

Program Memory

As mentioned before, each register consists of seven bytes of
memory. Program instructions use one or two bytes of memory.
Most program lines use one byte; those using two bytes are listed
on page 218.

The maximum programming capacity of the HP-15C is 448
program bytes (64 convertible registers at seven bytes per register).
At power-up, memory can hold up to 322 program bytes (46
allocated registers at seven bytes per register).

Automatic Program Memory Reallocation

Within the common register pool, program memory will auto-
matically expand as needed. One uncommitted register at a time,
starting with the highest-numbered register available, will be
allocated to seven bytes of program memory.

Conversion of Uncommitted Registers to Program Memory

Program Bytes

Res —_— 1t07
Rea —_— 8t0 14
Re3 — 15 to 21
/-\
N
R21 ——> 309t0315
Roo ——3» 316t0322
Movable Boundary
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Your very first program instruction will commit Rgs (all seven
bytes) from an uncommitted register to a program register. Your
eighth program instruction commits Rgs, and so on, until the
boundary of the common pool is encountered. Registers from the
data storage pool (at power-up, this is R;9 and below) are not
available for program memory without reallocating registers using

(DM] ().
Two-Byte Program Instructions

The following instructions are the only ones which require two
bytes of calculator memory. (All others require only one byte.)

(A{LBLI[Jlabel (F[MATRIX] {0 to 9}
(GTO]()label [fx%]{2t09,.0to0.9}
(gJ[CF)(nor (1)) [f)(DSE]{2t0 9, .0 to .9}
(¢)(SF)(n or (1)) [0sG){2t09,.0t0.9}
(J(F2)(n or (D) (sTo){[+], =), [x), =1y
[HEX](n or (1)) (Reu){(+], 51, 1, =Dy

(scl}(n or (1)) (STOJ[MATRIX]{[A]to [E]}

[ENG](n or (1)) [sTO){[Alto [E], [()]} in User mode
[Red){[Alto [E], ()]} in User mode
(sTo](g)(@]

(R (gl (@]

Memory Requirements for the Advanced
Functions

The four advanced functions require temporary register space from
the common register pool.

Function Registers Needed
253 } 23 if executed
together
Complex Stack 5

Matrices 1 per matrix element
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For and (%], allocation and deallocation of the required
register space takes place automatically.* Memory is thereby
allocated only for the duration of these operations.

Space for the imaginary stack is allocated whenever (f] (I],
(Rexim], or [g][SF] 8 is pressed. The imaginary stack is deallocated
when [CF] 8 is executed.

Space for matrix registers is not allocated until you dimension it
(using [DIM]). Reallocation takes place when you redimension a
matrix. [MATRIX]0 dimensions all matrices to 0 X 0.

*If you should interrupt a [SOLVE] or (/5] routine in progress by pressing a key, you could
deallocate its registers by pressing (g] or [fJCLEAR in Run mode.
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A Detailed Look at

Section 13, Finding the Roots of an Equation, includes the basic
information needed for the effective use of the algorithm.
This appendix presents more advanced, supplemental considera-

tions regarding [SOLVE].

How Works

You will be able to use most effectively by having a basic
understanding of how the algorithm works.

In the process of searching for a zero
of the specified function, the algo- f(x)
rithm uses the value of the function
at two or three previous estimates to
approximate the shape of the func-
tion’s graph. The algorithm uses this
shape to intelligently “predict” a new
estimate where the graph might
cross the x-axis. The function sub-
routine is then executed, computing
the value of the function at the new estimate. This procedure is
performed repeatedly by the algorithm.

If any two estimates yield function
values with opposite signs, the algo- f(x)
rithm presumes that the function’s
graph must cross the x-axis in at
least one place in the interval
between these estimates. The inter-
val is systematically narrowed until
aroot of the equation is found.

A root is successfully found either if
the computed function value is equal
to zero or if two estimates, differing by one unit in their last
significant digit, give function values having opposite signs. In
this case, execution stops and the estimate is displayed.

220
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As discussed in section 13, page 186, the occurrence of other
situations in the iteration process indicates the apparent absence
of a function zero. The reason is that there is no way to logically
predict a new estimate that is likely to have a function value closer

to zero. In such cases, Error 8 is displayed.

You should note that the initial estimates you provide are used to
begin the “prediction” process. By permitting more accurate
predictions than might otherwise occur, properly chosen estimates
greatly facilitate the determination of the root you seek.

The algorithm will always find a root provided one exists
(within the overflow bounds), if any one of four conditions are met:

e Any two estimates have func-
tion values with opposite signs.

e The function is monotonic, mean-
ing that f(x) either always
decreases or else always in-
creases as x is increased.

f(x)
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e The function’s graph is either
convex everywhere or concave f(x)
everywhere.

X
e The only local minima and
maxima of the function’s graph fx)
occur singly between adjacent
zeros of the function.
X

In addition, it is assumed that the algorithm will not be
interrupted by an improper operation.

Accuracy of the Root

When you use the key to find a root of an equation, the root
is found accurately. The displayed root either gives a calculated
function value (f(x)) exactly equal to zero or else is a 10-digit
number virtually adjacent to the place where the function’s graph
crosses the x-axis. Any such root has an accuracy within two or
three units in the 10th significant digit.

In most situations the calculated root is an accurate estimate of the
theoretical (infinitely precise) root of the equation. However,
certain conditions can cause the finite accuracy of the calculator to
give a result that appears to be inconsistent with your theoretical
expectation.



Appendix D: A Detailed Look at 223

If a calculation has a result whose magnitude is smaller than
1.000000000 X 107%, the result is set equal to zero. This effect is
referred to as “underflow.” If the subroutine that calculates your
function encounters underflow for a range of x and if this affects
the value of the function, then a root in this range may be expected
to have some inaccuracy. For example, the equation

x4=0

has a root at x = 0. Because of underflow, produces a root of
1.56060 -25 (for initial estimates of 1 and 2). As another
example, consider the equation

1/x2=

whose root is infinite in value. Because of underflow, gives
aroot of 3.1707 49 (for initial estimates of 10 and 20). In each
of these examples, the algorithm has found a value of x for which
the calculated function value equals zero. By understanding the
effect of underflow, you can readily interpret results such as these.

The accuracy of a computed value sometimes can be adversely
affected by “round-off” error, by which an infinitely precise
number is rounded to 10 significant digits. If your subroutine
requires extra precision to properly calculate the function for a
range of x, the result obtained by [SOLVE] may be inaccurate. For
example, the equation

|x2—5|=0

has a root at x = \/5. Because no 10-digit number exactly equals
\/5, the result of using is Error 8 (for any initial estimates)
because the function never equals zero nor changes sign. On the
other hand, the equation

[(|x[+1) +10'%]2 = 10%
has no roots because the left side of the equation is always greater

than the right side. However, because of round-off in the
calculation of

flx)=[(|x[+ 1)+ 1012 —10%,
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the root 1.0000 is found for initial estimates of 1 and 2. By
recognizing situations in which round-off error may influence the
operation of [SOLVE], you can evaluate the results accordingly and
perhaps rewrite the function to reduce the effects of round-off.

In a variety of practical applications, the parameters in an
equation—or perhaps the equation itself—are merely approxima-
tions. Physical parameters have an inherent accuracy (or
inaccuracy). Mathematical representations of physical processes
are only models of those processes, accurate only to the extent that
the underlying assumptions are true. An awareness of these and
other inaccuracies can be used to your advantage. By structuring
your subroutine to return a function value of zero when the
calculated value is negligible for practical purposes, you can
usually save considerable time in finding a root with [SOLVE]—
particularly for cases that would normally take a long time.

Example: Ridget hurlers such as Chuck Fahr can throw a ridget to
heights of 105 meters and more. In fact, Fahr’s hurls usually reach
a height of 107 meters. How long does it take for his remarkable
toss, described on page 184 in section 13, to reach 107 meters?

Solution: The desired solution is the value of ¢ at which A = 107.
Enter the subroutine from page 184 that calculates the height of
the ridget. This subroutine can be used in a new function
subroutine to calculate

f(t)=h(t)—107.

The following subroutine calculates f(t):

Keystrokes Display

(g)(P/R] 000- Program mode.
001-42,21,12 Begin with new label.
002- 3211 Calculates A(t).
Keystrokes Display

1 003- 1
0 004- 0
7 005- 7 Calculates A(t)—107.
=i 006- 30
(g} 007- 4332
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In order to find the first time at which the height is 107 meters, use
initial estimates of 0 and 1 second and execute using [B].

Keystrokes Display

(e] Run mode.

? ?.0000 } Initial estimates.

4.1718 The desired root.

4.1718 A previous estimate of the
root.

0.0000 Value of f(t) at root.

It takes 4.1718 seconds for the ridget to reach a height of exactly
107 meters. (It takes approximately one minute to find this
solution.)

However, suppose you assume that the function A(t) is accurate
only to the nearest whole meter. You can now change your
subroutine to give f(t) = 0 whenever the calculated magnitude of
f(t)is less than 0.5 meter. Change your subroutine as follows:

Keystrokes Display

(g)(P/R] 000- Program mode.

006 006- 30 Line before
instruction.

(g)(ABS] 007- 4316 Magnitude of f(¢).

[ 008- 48 }

5 009- 5 Accuracy.

(g)(TEST]7 010-43,30, 7 ) Testforx >y and return
zero if accuracy >

[g)(CLx] 011- 43 35 ) magnitude (0.5 >|f(t)|.

Test for x # 0 and restore
f(t) if value is nonzero.

[g)TEST]O 012-43,30, 0
(g)(LsTx] 013- 4336
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Execute again:

Keystrokes Display

(g(P/R] Run mode.

(1) ?.0000 } Initial estimates.

[ 4.0681 The desired root.

4.0681 A previous estimate of the
root.

0.0000 Value of modified f(t) at
root.

After 4.0681 seconds, the ridget is at a height of 107 + 0.5 meters.
This solution, although different from the previous answer, is
correct considering the uncertainty of the height equation. (And
this solution is found in just under half the time of the earlier
solution.)

Interpreting Results

The numbers that places in the X-, Y-, and Z-registers help
you evaluate the results of the search for a root of your equation.*
Even when no root is found, the results are still significant.

When finds a root of the
specified equation, the root and f(x)

function values are placed in the X-
and Z-registers. A function value of

zero is the expected result. However, \ /

a nonzero function value is also
acceptable because it indicates that
the function’s graph apparently
crosses the x-axis within an infini-
tesimal distance from the calculated
root. In most such cases, the function value will be relatively close
to zero.

X

* The number in the T-register is the same number that was left in the Y-register by the
final execution of your function subroutine. Generally, this number is not of interest.
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Special consideration is required for
a different type of situation in which f(x)
finds a root with a nonzero
function value. If your function’s
graph has a discontinuity that
crosses the x-axis, specifies
as a root an x-value adjacent to the
discontinuity. This is reasonable
because a large change in the func-
tion value between two adjacent
values of x might be the result of a very rapid, continuous
transition. Because this cannot be resolved by the algorithm, the
root is displayed for you to interpret.

A function may have a pole, where
its magnitude approaches infinity. If
the function value changes sign at a
pole, the corresponding value of x
looks like a possible root of your
equation, just as it would for any
other discontinuity crossing the
x-axis. However, for such functions,
the function value placed into the Z-
register when that root is found will
be relatively large. If the pole occurs at a value of x that is exactly
represented with 10 digits, the subroutine may try that value and
halt prematurely with an error indication. In this case, the
operation will not be completed. Of course, this may be avoided by
the prudent use of a conditional statement in your subroutine.

Example: In her analysis of the
stresses in a structural component,
design consultant Lucy I. Beame has
determined that the shear stress can
be expressed as

3x3—45x2+350for 0<x<10
{ 1000 for10<x<14

where @ is the shear stress in
newtons per square meter and x is the distance from one end in
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meters. Write a subroutine to compute the shear stress for any
value of x. Use to find the location of zero shear stress.

Solution: The equation for the shear stress for x between 0 and 10
is more efficiently programmed after rewriting it using Horner’s

method:

Q= (3x — 45)x%+ 350
Keystrokes Display
(e](P7R] 000-

[MBey2 001-42,21, 2
1 002- 1
0 003- 0
L=<y 004- 4310
(GTO]9 005- 22 9
(g](CLx] 006- 43 35
3 007~ 3
x] 0086- 20
4 009- 4
5 010- 5
=i 011- 30
X 012- 20
X 013- 20
3 014- 3
5 015- 5
0 016- 0
017- 40
g] 018- 43 32
019-42,21, 9
020- 26
3 021- 3
QRN 022- 4332

for 0 <x < 10.

Program mode.

} Test for x range.

Branch for x>10.
3x.

(3x —45).

(3x — 45)x2.

(3x — 45)x% + 350.
End subroutine.
Subroutine for x = 10.

103 =1000.
End subroutine.

Execute using initial estimates of 7 and 14 to start at the
outer end of the beam and search for a point of zero shear stress.



Appendix D: A Detailed Look at 229

Keystrokes Display
(g)(P7R]
7 m 7.0000

14
.m 2 10.0000
[RYJRY] 1,000.0000

Run mode.

} Initial estimates.

Possible root.
Stress not zero.

The large stress value at the root points out that the routine

has found a discontinuity. This is a

place on the beam where the

stress quickly changes from negative to positive. Start at the other

end of the beam (estimates of 0 and 7)

and use again.

Keystrokes Display

g 2.0000 } Initial estimates.

2 3.1358 Possible root.

2.0000 -07 Negligible stress.

Beame’s beam has zero shear stress 0

at approximately 3.1358 meters and 1500

an abrupt change of stress at 10.0000

meters. .
\: ; 4> X
0 vo14
1500

Graph of Q versus x.

When no root is found and Error 8 is displayed, you can press [«]or
any one key to clear the display and observe the estimate at which
the function was closest to zero. By also reviewing the numbers in
the Y- and Z-registers, you can often determine the nature of the

function near the root estimate
constructively.

and use this information
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If the algorithm terminates its search
near a local minimum of the func- f(x)
tion’s magnitude, clear the Error 8
display and observe the numbers in
the X-, Y-, and Z-registers by rolling
down the stack. If the value of the
function saved in the Z-register is
relatively close to zero, it is possible
that a root of your equation has been
found—the number returned in the
X-register may be a 10-digit number very close to a theoretical root.
You can explore this potential minimum further by rolling the
stack until the returned estimates are back in the X- and Y-registers
and then executing again using these numbers as initial
estimates. If an actual minimum has been found, Error 8 will again
be displayed and the number in the X-register will be approxi-
mately the same as before, but possibly closer to the actual location
of the minimum.

Of course, you may deliberately use to find the location of a
local minimum of the function’s magnitude. However, in this case
you must be careful to confine the search in the region of the
minimum. Remember, tries hard to find a zero of the
function.

If the algorithm stops searching and
displays Error 8 because it is working ftx)
on a horizontal asymptote (when the
value of the function is essentially
constant for a large range of x), the
estimates in the X- and Y-registers
usually are significantly different
from each other. The number in the
Z-register is the value of the potential

asymptote. If you execute
again using as initial estimates the numbers that were returned in
the X- and Y-registers, a horizontal asymptote may again cause
Error 8, but with numbers in the X- and Y-registers that will differ
from the previous numbers. The value of the function in the
Z-register would then be about the same as that obtained
previously.
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If Error 8 is displayed as a result of a

search that is concentrated in a local f(x)
“flat” region of the function, the

estimates in the X- and Y-registers

will be relatively close together or (—T

extremely small. Execute
again using for initial estimates the
numbers from the X- and Y-registers
(or perhaps two numbers somewhat
further apart). If the magnitude of

the function is neither a minimum nor constant, the algorithm will
eventually expand its search and find a more significant result.

Example: Investigate the behavior of the function
flx)=38+ e lxl/10_ ex2e W

as evaluated in the following subroutine.

Keystrokes Display
000- Program mode.
001-42,21,.0
002- 43 16
003- 16
004- 12 k.
005- 34 Bring x-valueinto
X-register.
F1[Es 006- 4311
X 007- 20 x2e7l,
008- 12
2 009- 2
B 010- 20 -
CHS 011- 16 —2e%°¢ ",
x2y] 012- 34 Bring x-valueinto
X-register.
(gJ[ABS 013- 4316
014- 16
1 015- 1
0 016- 0
= 017- 10 —|x|/10.

018- 12
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Keystrokes Display

o19- 40 o100 ggrte,

3 020- 3

021- 40 34 o ltl/10_ggr2e
(o)RTN] 022- 4332

Use with the following single initial estimates: 10, 1, and
10720,

Keystrokes Display

(g](P/R] Run mode.

10 10.0000 Single estimate.

.0 Error 8

455.4335 Best x-value.

48,026,721.85 Previous value.

1.0000 Function value.

(a] (a] 455.4335 Restore the stack.

.0 Error 8

48,026,721.85 Another x-value.

1.0000 Same function value (an
asymptote).

1 1.0000 Single estimate.

.0 Error 8

[«] 2.1213 Best x-value.

2.1471 Previous value.

0.3788 Function value.

[dR¥](g](RE] 2.1213 Restore the stack.

.0 Error 8

2.1213 Same x-value.

0.3788 Same function value (a
minimum).

20 1.0000 -20 Singleestimate.

.0 Error 8

1.0000 -20 Bestx-value.

1.1250 -20 Previous value.

2.0000 Function value.
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Keystrokes Display

IRH](gRE) 1.0000 -20 Restore the stack.

.0 Error 8

(«] 1.1250 -20 Another x-value.
1.6626 -16 Previous value.
2.0000 Same function value.

In each of the three cases,

initially searched for a root in a fix) third case
direction sug.g.ested .by the graph 3 tecond case
around the initial estimate. Using 10 first case
as the initial estimate, found
the horizontal asymptote (value of
1.0000). Using 1 as the initial esti-
mate, a minimum of 0.3788 at x = 9| 20
2.1213 was found. Using 10720 as the —1

initial estimate, the function was

essentially constant (at a value of
2.0000) for the small range of x that
was sampled.

Finding Several Roots

Many equations that you encounter have more than one root. For
this reason, you will find it helpful to understand some techniques
for finding several roots of an equation.

The simplest method for finding several roots is to direct the root
search in different ranges of x where roots may exist. Your initial
estimates specify the range that is initially searched. This method
was used for all examples in section 13. You can often find the roots
of an equation in this manner.

Another method is known as deflation. Deflation is a method by
which roots are “eliminated” from an equation. This involves
modifying the equation so that the first roots found are no longer
roots, but the rest of the roots remain roots.

If a function f(x) has a value of zero at x = a, then the new function
f(x)/(x — a) will not approach zero in this region (if a is a simple
root of f(x) =0). You can use this information to eliminate a known
root. Simply add a few program lines at the end of your function
subroutine. These lines should subtract the known root (to 10
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significant digits) from the x-value and divide this difference into
the function value. In many cases the root will be a simple one, and
the new function will direct away from the known root.

On the other hand, the root may be a multiple root. A multiple root
is one that appears to be present repeatedly, in the following sense:
at such a root, not only does the graph of f(x) cross the x-axis, but
its slope (and perhaps the next few higher-order derivatives) also
equals zero. If the known root of your equation is a multiple root,
the root is not eliminated by merely dividing by the factor
described above. For example, the equation

flx)=x(x—a)’=0
has a multiple root at x = a (with a multiplicity of 3). This root is

not eliminated by dividing f(x) by (x — a). But it can be eliminated
by dividing by (x — a)3.

Example: Use deflation to help find the roots of
60x* — 944x3 + 3003x% 4 6171x — 2890 = 0.

Using Horner’s method, this equation can be rewritten in the form
{[(60x — 944)x + 3003]x + 6171} — 2890 = 0.

Program a subroutine that evaluates the polynomial.

Keystrokes Display
(e(P/R] 000- Program mode.
CLEAR 000-

(fBg2 001-42,21, 2
6 002- 6
0 003- 0
=] 004- 20
9 005- 9
4 006- 4
4 007- 4
B 008- 30
B 009- 20
3 010- 3
0] 011- 0
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Keystrokes Display

0 012- 0
3 013- 3
014- 40
B] 015- 20
6 016- 6
1 017- 1
7 018- 7
1 019- 1
020- 40
B 021- 20
2 022- 2
8 023- 8
9 024- 9
0 025- 0
B 026- 30
Q)[RTN) 027- 4332

In Run mode, key in two large, negative initial estimates (such as
—10 and —20) and use to find the most negative root.

Keystrokes Display

(g] Run mode.

;g :;g.OOOO } Initial estimates.

2 -1.6667 First root.

0 -1.6667 Stores root for deflation.
4.0000 -06  Function value near zero.

Return to Program mode and add instructions to your subroutine to
eliminate the root just found.

Keystrokes Display

[g)(P7R] 000- Program mode.
(g)(BST](g](BST) 026- 30 Line before [RTN].

027- 34 Brings x into X-register.
0 g;g: 45 0 Divides by (x — a), where
B 030- 10 @ is known root.
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Now use the same initial estimates to find the next root.

Keystrokes Display

[e)(P7R] 4.0000 -06  Runmode.

;g -_—;g.OOOO } Same initial estimates.
[f)(SOLVE] 2 0.4000 Second root.

1 0.4000 Stores root for deflation.
0.0000 Deflated function value.

Now modify your subroutine to eliminate the second root.

Keystrokes Display

(gJ(P/R] 000- Program mode.
[g)(BST](g](BST] 030- 10 Line before[RTN].

031- 34 Brings x into X-register.

1 032- 45 1

= 033- 30 } Deflation for second root.
B 034- 10

Again, use the same initial estimates to find the next root.

Keystrokes Display
(a](F/R] 0.0000 Run mode.
10 [CHS](ENTER] -10.0000 e .
20 -20 Same initial estimates.
2 8.4999 Third root.
8.4999 Stores root for deflation.
-1.0929 -07 Deflated function value
near zero.

Now change your subroutine to eliminate the third root.

Keystrokes Display
(g)(P/R] 000- Program mode.
(o)(BST](g](BST] 034- 10 Line before [RTN].

(x2y] 035- 34 Brings x into X-register.
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Keystrokes Display

2 036 45 2
B 037- 30
B 038- 10
Find the fourth root.

Keystrokes Display
(g)[P/R] -1.0929 -07
10 -10.0000

20 -20

2 8.5001

3 8.5001
-0.0009

Using the same initial estimates
each time, you have found four roots
for this equation involving a fourth-
degree polynomial. However, the last
two roots are quite close to each other
and are actually one root (with a
multiplicity of 2). That is why the
root was not eliminated when you
tried deflation once at this root.
(Round-off error causes the original
function to have small positive and
negative values for values of x
between 8.4999 and 8.5001; for x = 8.5
the function is exactly zero.)

} Deflation for third root.

} Same initial estimates.

Fourth root.
Stores root for reference.

Deflated function value
near zero.

f(x)(in 10°s)
30
X
-4 12
-10

Graph of f(x)

In general, you will not know in advance the multiplicity of the root
you are trying to eliminate. If, after you have attempted to
eliminate a root, finds that same root again, you can

proceed in a number of ways:

e Usedifferent initial estimates with the deflated function in an
attempt to search for a different root.

e Usedeflation again in an attempt to eliminate a multiple root.
If you do not know the multiplicity of the root, you may need to

repeat this a number of times.
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® Examine the behavior of the deflated function at x-values near
the known root. If the function’s calculated values cross the
x-axis smoothly, either another root or a greater multiplicity is
indicated.

® Analyze the original function and its derivatives algebra-
ically. It may be possible to determine its behavior for x-values
near the known root. (A Taylor series representation, for
example, may indicate the multiplicity of a root.)

Limiting the Estimation Time

Occasionally, you may desire to limit the time used by to
find a root. You can use two possible techniques to do this—
counting iterations and specifying a tolerance.

Counting Iterations

While searching for a root, typically samples your function
at least a dozen times. Occasionally, may need to sample it
one hundred times or more. (However, will always stop by
itself.) Because your function subroutine is executed once for each
estimate that is tried, it can count and limit the number of
iterations. An easy way to do this is with an instruction to
accumulate the number of iterations in the Index register (or other
storage register).

If you store an appropriate number in the register before using

[SOLVE], your subroutine can interrupt the algorithm when
the limit is exceeded.

Specifying a Tolerance

You can shorten the time required to find a root by specifying a
tolerable inaccuracy for your function. Your subroutine should
return a function value of zero if the calculated function value is
less than the specified tolerance. This tolerance that you specify
should correspond to a value that is negligible for practical
purposes or should correspond to the accuracy of the computation.
This technique eliminates the time required to define the estimate
more accurately than is justified by the problem. (The example on
page 224 uses this method.)
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For Advanced Information

In the HP-15C Advanced Functions Handbook, additional,
advanced techniques and applications for using are
presented. These topics include:

Using with polynomials.
Solving a system of equations.
Finding local extremes of a function.
Using for financial problems.

Using in Complex mode.
Solving an equation for its complex roots.
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Section 14, Numerical Integration, presented the basic information
you need to use [/5]. This appendix discusses more intricate aspects
of [s]that are of interest if you use [/5] often.

How [/;]Works

The algorithm calculates the integral of a function f(x) by
computing a weighted average of the function’s values at many
values of x (known as sample points) within the interval of
integration. The accuracy of the result of any such sampling
process depends on the number of sample points considered:
generally, the more sample points, the greater the accuracy. If f(x)
could be evaluated at an infinite number of sample points, the
algorithm could—neglecting the limitation imposed by the
inaccuracy in the calculated function f(x)—provide an exact
answer.

Evaluating the function at an infinite number of sample points
would take a very long time (namely, forever). However, this is not
necessary, since the maximum accuracy of the calculated integral
is limited by the accuracy of the calculated function values. Using
only a finite number of sample points, the algorithm can calculate
an integral that is as accurate as is justified considering the
inherent uncertainty in f(x).

The algorithm at first considers only a few sample points,
yielding relatively inaccurate approximations. If these approxima-
tions are not yet as accurate as the accuracy of f(x) would permit,
the algorithm is iterated (that is, repeated) with a larger number of
sample points. These iterations continue, using about twice as
many sample points each time, until the resulting approximation
is as accurate as is justified considering the inherent uncertainty in
f(x).
240
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The uncertainty of the final approximation is a number derived
from the display format, which specifies the uncertainty for the
function.* At the end of each iteration, the algorithm compares the
approximation calculated during that iteration with the approx-
imations calculated during two previous iterations. If the
difference between any of these three approximations and the
other two is less than the uncertainty tolerable in the final
approximation, the algorithm terminates, placing the current
approximation in the X-register and its uncertainty in the
Y-register.

It is extremely unlikely that the errors in each of three successive
approximations—that is, the differences between the actual
integral and the approximations—would all be larger than the
disparity among the approximations themselves. Consequently,
the error in the final approximation will be less than its
uncertainty.t Although we can’t know the error in the final
approximation, the error is extremely unlikely to exceed the
displayed uncertainty of the approximation. In other words, the
uncertainty estimate in the Y-register is an almost certain “upper
bound” on the difference between the approximation and the
actual integral.

Accuracy, Uncertainty, and Calculation Time

The accuracy of an approximation does not always change
when you increase by just one the number of digits specified in the
display format, though the uncertainty will decrease. Similarly,
the time required to calculate an integral sometimes changes when
you change the display format, but sometimes does not.

Example: The Bessel function of the first kind, of order four, can
be expressed as

™

Jy(x)= % fo cos (40 — x sin 6) d6.

*The relationship between the display format, the uncertainty in the function, and the
uncertainty in the approximation to its integral are discussed later in this appendix.

T Provided that f(x) does not vary rapidly, a consideration that will be discussed in more
detail later in this appendix.
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Calculate the integral in the expression for J4 (1),

f; cos (46 — sinb) d6.

First, switch to Program mode and key in a subroutine that
evaluates the function f(6) = cos (46 — sin#).

Keystrokes Display
[g)(P/R] 000- Program mode.
CLEAR 000-

[Boo 001-42,21, 0
4 002- 4
B 003- 20
(x2y] 004- 34
005- 23
=] 006- 30
007- 24
(g)(RTN] 008- 4332

Now, switch to Run mode and key the limits of integration into the
X- and Y-registers. Be sure the trigonometric mode is set to
Radians, and set the display format to 2. Finally, press 0
to calculate the integral.

Keystrokes Display

(9] Run mode.

0 0.0000 Keys lower limit into Y-
register.

(=] 3.1416 Keys upper limit into X-
register.

(g](RAD] 3.1416 Sets the trigonometric
mode to Radians.

2 3.14 00 Sets display format to
2.

0 7.79 -03 Integral approximated in
2.

(xxy) 1.45 -03 Uncertainty of [SCI] 2

approximation.
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The uncertainty indicates that the displayed digits of the
approximation might not include any digits that could be
considered accurate. Actually, this approximation is more accurate
than its uncertainty indicates.

Keystrokes Display

[x2y] 7.79 -03 Return approximation to
display.

CLEAR

(hold) 7785820888  All 10 digits of (SCI]2
approximation.

The actual value of this integral, correct to five significant digits, is
7.7805 X 1073, Therefore, the error in this approximation is about
(7.7858 — 7.7805) X 1073 = 5.3 X 1078, This error is considerably less
than the uncertainty, 1.45 X 107°. The uncertainty is only an upper
bound on the error in the approximation; the actual error will
generally be smaller.

Now calculate the integral in 3 and compare the accuracy of
the resulting approximation to that of the 2 approximation.

Keystrokes Display

3 7.786 -03  Changes display format
to 3.

3.142 00 Rolls down stack until
upper limit appears in X-
register.

55]0 7.786 -03 Integral approximated in
3.

[x%y] 1.448 -04  Uncertainty of 3
approximation.

(x2y] 7.786 -03  Returns approximation to
display.

CLEAR

(hold) 7785820888 All110 digits of [SCI]3

approximation.



244  Appendix E: A Detailed Look at

All 10 digits of the approximations in 2 and 3 are
identical: the accuracy of the approximation in 3 is no better
than the accuracy in 2 despite the fact that the uncertainty in
3is less than the uncertainty in 2. Why is this? Remember
that the accuracy of any approximation depends primarily on the
number of sample points at which the function f(x) has been
evaluated. The (] algorithm is iterated with increasing numbers of
sample points until the disparity among three successive
approximations is less than the uncertainty derived from the
display format. After a particular iteration, the disparity among
the approximations may already be so much less than the
uncertainty that it would still be less if the uncertainty were
decreased by a factor of 10. In such cases, if you decreased the
uncertainty by specifying one more digit in the display format, the
algorithm would not have to consider additional sample points,
and the resulting approximation would be identical to the
approximation calculated with the larger uncertainty.

If you calculated the two preceding approximations on your
calculator, you may have noticed that it did not take any longer to
calculate the integral in 3 than in 2. This is because the
time to calculate the integral of a given function depends on the
number of sample points at which the function must be evaluated
to achieve an approximation of acceptable accuracy. For the 3
approximation, the algorithm did not have to consider more
sample points than it did in 2, so it did not take any longer to
calculate the integral.

Often, however, increasing the number of digits in the display
format will require evaluating the function at additional sample
points, so that calculating the integral will take more time. Now
calculate the same integral in 4.

Keystrokes Display
[flscn4 7.7858 -03 [SCij4display.

3.1416 00 Rolls down stack until
upper limit appears in X-
register.

0 7.7807 -03 Integral approximated in

(sci4.
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This approximation took about twice as long as the approximation
in 3or 2. In this case, the algorithm had to evaluate the
function at about twice as many sample points as before in order to
achieve an approximation of acceptable accuracy. Note, however,
that you received a reward for your patience: the accuracy of this
approximation is better, by almost two digits, than the accuracy of
the approximation calculated using half the number of sample
points.

The preceding examples show that repeating the approximation of
an integral in a different display format sometimes will give you a
more accurate answer, but sometimes it will not. Whether or not the
accuracy is changed depends on the particular function, and
generally can be determined only by trying it.

Furthermore, if you do get a more accurate answer, it will come at
the cost of about double the calculation time. This unavoidable
trade-off between accuracy and calculation time is important to
keep in mind if you are considering decreasing the uncertainty in
hopes of obtaining a more accurate answer.

The time required to calculate the integral of a given function
depends not only on the number of digits specified in the display
format, but also, to a certain extent on the limits of integration.
When the calculation of an integral requires an excessive amount
of time, the width of the interval of integration (that is, the
difference of the limits) may be too large compared with certain
features of the function being integrated. For most problems,
however, you need not be concerned about the effects of the limits
of integration on the calculation time. These conditions, as well as
techniques for dealing with such situations, will be discussed later
in this appendix.

Uncertainty and the Display Format

Because of round-off error, the subroutine you write for evaluating
f(x) cannot calculate f(x) exactly, but rather calculates

Flx) =F(x) £ 8;(x),

where §; (x) is the uncertainty of f(x) caused by round-off error. If



246 Appendix E: A Detailed Look at

f(x) relates to a physical situation, then the function you would like
to integrate is not f(x) but rather

F(x)={f(x)+ 85 (x),
where 8, (x) is the uncertainty associated with f(x) that is caused
by the approximation to the actual physical situation.
Since f(x) = f(x) + 8; (x), the function you want to integrate is

F(x)=F(x) %6 (x) £ 8 (x)
or F(x)=f(x) + 8(x),

where 8(x) is the net uncertainty associated with f (x).

Therefore, the integral you want is

b b R
j;F(x)de_]; [f(x)£6(x)]dx

=fabf(x)dx ifabﬁ(x)dx

=IxA

b
where I is the approximation to f F(x)dx and A is the uncertainty
a

associated with the approximation. The algorithm places the
number Iin the X-register and the number A in the Y-register.

The uncertainty 8(x) of f(x), the function calculated by your
subroutine, is determined as follows. Suppose you consider three
significant digits of the function’s values to be accurate, so you set
the display format to 2. The display would then show only the
accurate digits in the mantissa of a function’s values: for example,
1.23 -04.

Since the display format rounds the number in the X-register to the
number displayed, this implies that the uncertainty in the
function’s values is +0.005 X 104 = £0.5 X 1072 X 10 =
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+0.5 X 1075, Thus, setting the display format to n or n,
where n is an integer,* implies that the uncertainty in the
function’s values is

8(x)=0.5X 10" X 10™(*)

=0.5x107"+mE

In this formula, n is the number of digits specified in the display
format and m(x) is the exponent of the function’s value at x that
would appear if the value were displayed in display format.

The uncertainty is proportional to the factor 10™®), which
represents the magnitude of the function’s value at x. Therefore,
and [ENG] display formats imply an uncertainty in the
function that is relative to the function’s magnitude.

Similarly, if a function value is displayed in n, the rounding of
the display implies that the uncertainty in the function’s values is

8(x)=0.5X10""

Since this uncertainty is independent of the function’s magnitude,
display format implies an uncertainty that is absolute.

Each time the [5] algorithm samples the function at a value of x, it
also derives a sample of 8(x), the uncertainty of the function’s
value at x. This is calculated using the number of digits n currently
specified in the display format and (if the display format is set to

* Although 8 or 9 generally results in the same display as 7, it will result in a
smaller uncertainty of a calculated integral. (The same is true for the format.) A
negative value for n (which can be set by using the Index register) will also affect the
uncertainty of an calculation. The minimum value for n that will affect uncertainty
is -6. A number in Ry less than -6 will be interpreted as -6.
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or [ENG]) the magnitude m(x) of the function’s value at x. The
number A, the uncertainty of the approximation to the desired
integral, is the integral of §(x):

A =j;b6(x) dx

b
:f [0.5X 107+ m(®)] d.
a

This integral is calculated using the samples of §(x) in roughly the
same ways that the approximation to the integral of the function is
calculated using the samples of f(x).

Because A is proportional to the factor 107", the uncertainty of an
approximation changes by about a factor of 10 for each digit
specified in the display format. This will generally not be exact in
or display format, however, because changing the
number of digits specified may require that the function be
evaluated at different sample points, so that 8(x) ~ 10™*) would
have different values.

Note that when an integral is approximated in display format,
m(x) = 0 and so the calculated uncertainty in the approximation
turns out to be

A=0.5X10""(b—a).

Normally you do not have to determine precisely the uncertainty in
the function. (To do so would frequently require a very complicated
analysis.) Generally, it’s more convenient to use or
display format if the uncertainty in the function’s values can be
more easily estimated as a relative uncertainty. On the other hand,
it’s more convenient to use display format if the uncertainty in
the function’s values can be more easily estimated as an absolute
uncertainty. display format may be inappropriate to use
(leading to peculiar results) when you are integrating a function
whose magnitude and uncertainty have extremely small values
within the interval of integration. Likewise, display format
may be inappropriate to use (also leading to peculiar results) if the
magnitude of the function becomes much smaller than its
uncertainty. If the results of calculating an integral seem strange,
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it may be more appropriate to calculate the integral in the alternate
display format.

Conditions That Could Cause
Incorrect Results

Although the algorithm in the HP-15C is one of the best
available, in certain situations it—like nearly all algorithms for
numerical integration—might give you an incorrect answer. The
possibility of this occurring is extremely remote. The ;] algorithm
has been designed to give accurate results with almost any smooth
function. Only for functions that exhibit extremely erratic
behavior is there any substantial risk of obtaining an inaccurate
answer. Such functions rarely occur in problems related to actual
physical situations; when they do, they usually can be recognized
and dealt with in a straightforward manner.

As discussed on page 240, the [5;] algorithm samples the function
f(x) at various values of x within the interval of integration. By
calculating a weighted average of the function’s values at the
sample points, the algorithm approximates the integral of f(x).

Unfortunately, since all that the algorithm knows about f(x) are its
values at the sample points, it cannot distinguish between f(x) and
any other function that agrees with f(x) at all the sample points.
This situation is depicted in the illustration on the next page,
which shows (over a portion of the interval of integration) three of
the infinitely many functions whose graphs include the finitely
many sample points.
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f(x)

With this number of sample points, the algorithm will calculate the
same approximation for the integral of any of the functions shown.
The actual integrals of the functions shown with solid lines are
about the same, so the approximation will be fairly accurate if f(x)
is one of these functions. However, the actual integral of the
function shown with a dashed line is quite different from those of
the others, so the current approximation will be rather inaccurate if
f(x)is this function.

The algorithm comes to know the general behavior of the
function by sampling the function at more and more points. If a
fluctuation of the function in one region is not unlike the behavior
over the rest of the interval of integration, at some iteration the
algorithm will likely detect the fluctuation. When this happens, the
number of sample points is increased until successive iterations
yield approximations that take into account the presence of the
most rapid, but characteristic, fluctuations.

For example, consider the approximation of

o
f xe *dx.
0
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Since you’re evaluating this integral numerically, you might think
(naively in this case, as you’ll see) that you should represent the
upper limit of integration by 109°—which is virtually the largest
number you can key into the calculator. Try it and see what
happens.

Key in a subroutine that evaluates the function f(x) = xe™*.

Keystrokes Display
[a](P7R] 000- Program mode.
(e 001-42,21, 1

002- 16
003- 12
004- 20
005- 43 32

Set the calculator to Run mode. Then set the display format to
3 and key the limits of integration into the X- and Y-registers.

Keystrokes Display

(o Run mode.

3 Sets display format to
3.

0 0.000 00 Keys lower limit into Y-
register.

99 1 99 Keys upper limit into X-
register.

1 0.000 00 Approximation of
integral.

The answer returned by the calculator is clearly incorrect, since the
actual integral of f(x) = xe™ from 0 to « is exactly 1. But the
problem is not that you represented « by 10%, since the actual
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integral of this function from 0 to 109 is very close to 1. The reason
you got an incorrect answer becomes apparent if you look at the
graph of f(x) over the interval of integration:

f(x)

X

The graph is a spike very close to the origin. (Actually, to illustrate
f(x) the width of the spike has been considerably exaggerated.
Shown in actual scale over the interval of integration, the spike
would be indistinguishable from the vertical axis of the graph.)
Because no sample point happened to discover the spike, the
algorithm assumed that f(x) was identically equal to zero
throughout the interval of integration. Even if you increased the
number of sample points by calculating the integral in 9, none
of the additional sample points would discover the spike when this
particular function is integrated over this particular interval.
(Better approaches to problems such as this are mentioned at the
end of the next topic, Conditions That Prolong Calculation Time.)

You’ve seen how the[/;] algorithm can give you an incorrect answer
when f(x) has a fluctuation somewhere that is very uncharacter-
istic of the behavior of the function elsewhere. Fortunately,
functions exhibiting such aberrations are unusual enough that you
are unlikely to have to integrate one unknowingly.

Functions that could lead to incorrect results can be identified in
simple terms by how rapidly it and its low-order derivatives vary
across the interval of integration. Basically, the more rapid the vari-
ation in the function or its derivatives, and the lower the order of
such rapidly varying derivatives, the less quickly will the al-
gorithm terminate, and the less reliable will the resulting
approximation be.
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Note that the rapidity of variation in the function (or its low-order
derivatives) must be determined with respect to the width of the
interval of integration. With a given number of sample points, a
function f(x) that has three fluctuations can be better character-
ized by its samples when these variations are spread out over most
of the interval of integration than if they are confined to only a
small fraction of the interval. (These two situations are shown in
the next two illustrations.) Considering the variations or
fluctuations as a type of oscillation in the function, the criterion of
interest is the ratio of the period of the oscillations to the width of
the interval of integration: the larger this ratio, the more quickly
the algorithm will terminate, and the more reliable will be the
resulting approximation.
f(x)

| |
[ |
: Calculated integral :
| of this function |
| will be accurate. |
I
|
1

a
f(x)
| |
: Calculated integral :
| of this function |
| may be inaccurate. |
| |
| I
|
| 1
| |
| |
|
| |
4 '
T L]
a b
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In many cases you will be familiar enough with the function you
want to integrate that you’ll know whether the function has any
quick wiggles relative to the interval of integration. If you’re not
familiar with the function, and you have reason to suspect that it
may cause problems, you can quickly plot a few points by
evaluating the function using the subroutine you wrote for that
purpose.

If for any reason, after obtaining an approximation to an integral,
you have reason to suspect its validity, there’s a very simple
procedure you can use to verify it: subdivide the interval of
integration into two or more adjacent subintervals, integrate the
function over each subinterval, then add the resulting approxima-
tions. This causes the function to be sampled at a brand new set of
sample points, thereby more likely revealing any previously
hidden spikes. If the initial approximation was valid, it will equal
the sum of the approximations over the subintervals.

Conditions That Prolong Calculation Time

In the preceding example (page 251), you saw that the algorithm
gave an incorrect answer because it never detected the spike in the
function. This happened because the variation in the function was
too quick relative to the width of the interval of integration. If the
width of the interval were smaller, you would get the correct
answer; but it would take a very long time if the interval were still
too wide.

For certain integrals such as the one in that example, calculating
the integral may be unduly prolonged because the width of the
interval of integration is too large relative to certain features of the
functions being integrated. Consider an integral where the interval
of integration is wide enough to require excessive calculation time
but not so wide that it would be calculated incorrectly. Note that
because f(x) = xe™™ approaches zero very quickly as x approaches
oo, the contribution to the integral of the function at large values of
x is negligible. Therefore, you can evaluate the integral by
replacing o, the upper limit of integration, by a number not so
large as 109, say 105.
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Keystrokes Display

0 0.000 00 Keys lower limit into Y-
register.

3 1 03 Keys upper limit into X-
register.

1 1.000 00 Approximation to
integral.

(xxy) 1.824 -04 Uncertainty of
approximation.

This is the correct answer, but it took a very long time. To
understand why, compare the graph of the function over the
interval of integration, which looks about identical to that shown
on page 252, to the graph of the function between x =0 and x = 10.

f(x)

0 10

By comparing the two graphs, you can see that the function is
“interesting” only at small values of x. At greater values of x, the
function is “uninteresting,” since it decreases smoothly and
gradually in a very predictable manner.

As discussed earlier, the algorithm will sample the function
with higher densities of sample points until the disparity between
successive approximations becomes sufficiently small. In other
words, the algorithm samples the function at increasing numbers
of sample points until it has sufficient information about the
function to provide an approximation that changes insignificantly
when further samples are considered.
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If the interval of integration were (0, 10) so that the algorithm
needed to sample the function only at values where it was
interesting but relatively smooth, the sample points after the first
few iterations would contribute no new information about the
behavior of the function. Therefore, only a few iterations would be
necessary before the disparity between successive approximations
became sufficiently small that the algorithm could terminate with
an approximation of a given accuracy.

On the other hand, if the interval of integration were more like the
one shown in the graph on page 252, most of the sample points
would capture the function in the region where its slope is not
varying much. The few sample points at small values of x would
find that values of the function changed appreciably from one
iteration to the next. Consequently the function would have to be
evaluated at additional sample points before the disparity between
successive approximations would become sufficiently small.

In order for the integral to be approximated with the same
accuracy over the larger interval as over the smaller interval, the
density of the sample points must be the same in the region where
the function is interesting. To achieve the same density of sample
points, the total number of sample points required over the larger
interval is much greater than the number required over the smaller
interval. Consequently, several more iterations are required over
the larger interval to achieve an approximation with the same
accuracy, and therefore calculating the integral requires con-
siderably more time.

Because the calculation time depends on how soon a certain
density of sample points is achieved in the region where the
function is interesting, the calculation of the integral of any
function will be prolonged if the interval of integration includes
mostly regions where the function is not interesting. Fortunately, if
you must calculate such an integral, you can modify the problem so
that the calculation time is considerably reduced. Two such
techniques are subdividing the interval of integration and
transformation of variables. These methods enable you to change
the function or the limits of integration so that the integrand is
better behaved over the interval(s) of integration. (These
techniques are described in the HP-15C Advanced Functions
Handbook.)
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Obtaining the Current Approximation
to an Integral

When the calculation of an integral is requiring more time than
you care to wait, you may want to stop and display the current
approximation. You can obtain the current approximation, but not
its uncertainty.

Pressing while the HP-15C is calculating an integral halts the
calculation, just as it halts the execution of a running program.
When you do so, the calculator stops at the current program line in
the subroutine you wrote for evaluating the function, and displays
the result of executing the preceding program line. Note that after
you halt the calculation, the current approximation to the integral
is not the number in the X-register nor the number in any other
stack register. Just as with any program, pressing again
starts the calculation from the program line at which it was
stopped.

The [/] algorithm updates the current approximation and stores it
in the LAST X register after evaluating the function at each new
sample point. To obtain the current approximation, therefore,
simply halt the calculator, single-step if necessary through your
function subroutine until the calculator has finished evaluating
the function and updating the current approximation. Then recall
the contents of the LAST X register, which are updated when the
instruction in the function subroutine is executed.

While the calculator is updating the current approximation, the
display is blank and does not show running. (While the calculator is
executing your function subroutine, running is displayed.) There-
fore, you might avoid having to single-step through your
subroutine by halting the calculator at a moment when the display
is blank.

In summary, to obtain the current approximation to an integral,
follow the steps below.

1. Press to halt the calculator, preferably while the
display is blank.

2.  When the calculator halts, switch to Program mode to check
the current program line.

e If that line contains the subroutine label, return to Run
mode and view the LAST X register (step 3).
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® If any other program line is displayed, return to Run
mode and single-step ([SST]) through the program until
youreach a instruction (keycode 43 32) or line 000 (if
there is no [RTN]). (Be sure to hold the key down long
enough to view the program line numbers and keycodes.)

3. Press [g] to view the current approximation. If you
want to continue calculating the final approximation, press
[«][*][R/S]. This refills the stack with the current x-value
and restarts the calculator.

For Advanced Information

The HP-15C Advanced Functions Handbook explores more esoteric
aspects of (] and its applications. These topics include:

® Accuracy of the function to be integrated.
® Shortening calculation time.

® (Calculating difficult integrals.

® Using [/]in Complex mode.
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Battery, Warranty, and
Service Information

Batteries

The HP-15C is powered by three batteries. In “typical” use, the
HP-15C has been designed to operate 6 months or more on a set of
alkaline batteries. The batteries supplied with the calculator are
alkaline, but silver-oxide batteries (which should last twice as long)
can also be used.

A set of three fresh alkaline batteries will provide at least 60 hours
of continuous program running (the most power-consuming kind of
calculator use*). A set of three fresh silver-oxide batteries will
provide at least 135 hours of continuous program running. If the
calculator is being used to perform operations other than running
programs, it uses much less power. When only the display is on—
that is, if you are not pressing keys or running programs—very
little power is consumed.

If the calculator remains turned off, a set of fresh batteries will
preserve the contents of Continuous Memory for as long as the
batteries would last outside of the calculator—at least 1% years for
alkaline batteries or at least 2 years for silver-oxide batteries.

The actual lifetime of the batteries depends on how often you use
the calculator, whether you use it more for running programs or
more for manual calculations, and which functions you use.*

The batteries supplied with the calculator, as well as the batteries
listed on the next page for replacement, are not rechargeable.

* Power consumption in the HP-15C depends on the mode of calculator use: off (with
Continuous Memory preserved); idle (with only the display on); or “operating” (running
a program, performing a calculation, or having a key pressed). While the calculator is
turned on, typical calculator use is a mixture of idle time and “operating” time.
Therefore, the actual lifetime of the batteries depends on how much time the calculator
spends in each of the three modes.

259
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WARNING

Do not attempt to recharge the batteries; do not store
batteries near a source of high heat; do not dispose of
batteries in fire. Doing so may cause the batteries to leak or
explode.

The following batteries are recommended for replacement in you
HP-15C (not all batteries available in all countries):

Alkaline Silver-Oxide
Eveready A76* Eveready 357*
UCAR A76 UCAR 357

National or Panasonic LR44

Low-Power Indication

An asterisk (¥) flashing in the lower left corner of the display when
the calculator is on signifies that the available battery power is
running low.

With alkaline batteries installed:

® The calculator can be used for at least 1% hours of continuous
program running after the asterisk first appears.f

e If the calculator remains turned off, the contents of its
Continuous Memory will be preserved for at least 1 month
after the asterisk first appears.

With silver-oxide batteries installed:

® The calculator can be used for at least 10 minutes of
continuous program running after the asterisk first appears.t

e If the calculator remains turned off, the contents of its

* Not available in the United Kingdom or Republic of Ireland.

T Note that this time is the minimum available for continuous program running—that is,
while continuously “operating” (as described in the footnote on page 259). If you are
using the calculator for manual calculations—a mixture of the idle and “operating”
modes—the calculator can be used for a much longer time after the asterisk first
appears.
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Continuous Memory will be preserved for at least 1 week after
the asterisk first appears.

Installing New Batteries

The contents of the calculator’s Continuous Memory are preserved
for a short time while the batteries are out of the calculator
(provided that you turn off the calculator before removing the
batteries). This allows you ample time to replace the batteries
without losing data or programs. If the batteries are left out of the
calculator for an extended period, the contents of Continuous
Memory may be lost.

To install new batteries, use the following procedure:

1. Be sure that the calculator is
off.

2. Holding the calculator as
shown, press outward on the
battery compartment door
until it opens slightly.

3. Grasp the outer edge of the
battery compartment door,
then tilt it up and out of the
calculator.
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CAUTION
In the next two steps, be careful not to press any keys while

batteries are out of the calculator. If you do so, the contents
of Continuous Memory may be lost and keyboard control may
be lost (that is, the calculator may not respond to keystrokes).

4. Turn the calculator over and
gently shake, allowing the
batteries to fall into the palm
of your hand.

CAUTION

In the next step, replace all three batteries with fresh ones. If
you leave an old battery inside, it may leak. Furthermore, be
careful not to insert the batteries backwards. If you do so, the
contents of Continuous Memory may be lost, and the
batteries may be damaged.

5. Insert three new batteries un-
der the plastic flap or flaps
shielding the Dbattery
compartment. They should be
positioned with their flat
sides (the sides marked + )
facing toward the nearby rub-
ber foot, as shown in the
illustration on the calculator
case.
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6. Insert the tab of the battery
compartment door into the slot
in the calculator case.

7. Lower the battery compart-
ment door until it is flush with
the case, then push the door
inward until it is tightly shut.

8. Turn the calculator on. If for
any reason Continuous Mem-
ory has been reset (that is, if its
contents have been lost), the
display will show Pr Error.
Pressing any key will clear
this message from the display.

Verifying Proper Operation (Self-Tests)

If it appears that the calculator will not turn on or otherwise is not
operating properly, use one of the following procedures.

For a calculator that does not respond to keystrokes:

1. Press the [¥*] and keys simultaneously, then release
them. This will alter the contents of the X-register, so clear
the X-register afterward.

2. If the calculator still does not respond to keystrokes, remove
and reinsert the batteries. Make sure the batteries are
properly positioned in the compartment.

3. If the calculator still does not respond to keystrokes, leave
the batteries in the compartment and short the battery
terminals together. (The batteries must remain in place to
prevent possible internal damage to the calculator.) With a
paper clip or piece of wire, briefly connect the terminals.
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Only momentary contact is required. The terminals are
matching metal strips, or a combination of one spring and
one hard edged tab located at either end of the battery
compartment. After you do this, the contents of Continu-
ous Memory will be lost, and you may need to press the
key more than once to turn the calculator back on.

4. Ifthe calculator still does not turn on, install fresh batteries.
If there is still no response, the calculator requires service.

For a calculator that does respond to keystrokes:
1. With the calculator off, hold down the key and press [X].

2. Release the key, then release the [x] key. This initiates a
complete test of the calculator’s electronic circuitry. If
everything is working correctly, within about 25 seconds
(during which the word running flashes) the display should
show -8,8,8,8,8,8,8,8,8,8, and all of the status indicators
(except the * low-power indicator) should turn on.* If the
display shows Error 9, goes blank, or otherwise does not
show the proper result, the calculator requires service.t

Note: Tests of the calculator’s electronics are also per-
formed if the [+] key or the [] key is held down when is
released. 11 These tests are included in the calculator to be
used in verifying that it is operating properly during
manufacture and service.

* The status indicators turned on at the end of this test include some that normally are
not displayed on the HP-15C.

t If the calculator displays Error 9 as a result of the [ON]/[x] test or the [ON]/ [+] test but
you wish to continue using your calculator, you should reset Continuous Memory as
described on page 63.

1 The [ON]/[#] combination initiates a test that is similar to that described above, but
continues indefinitely. The test can be terminated by pressing any key, which will halt
the test within 25 seconds. The [ON]/[] combination initiates a test of the keyboard and
the display. When the key is released, certain segments in the display will be lit. To
run the test, the keys are pressed in order from left to right along each row, from the top
row to the bottom row. As each key is pressed, different segments in the display are lit.
If the calculator is operating properly and all the keys are pressed in the proper order,
the calculator will display 15 after the last key is pressed. (The key should be
pressed both with the third-row keys and with the fourth-row keys.) If the calculator is
not working properly, or if a key is pressed out of order, the calculator will display
Error . Note that if this error display results from an incorrect key being pressed, this
does not indicate that your calculator requires service. This test can be terminated by
pressing any key out of order (which will, of course, result in the Error 9 display). Both
the Error 9 display and the 15 display can be cleared by pressing any key.
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If you had suspected that the calculator was not working properly
but the proper display was obtained in step 2, it is likely that you
made an error in operating the calculator.We suggest you reread
the section in this handbook applicable to your calculation. If you
still experience difficulty, write or telephone Hewlett-Packard at an
address or phone number listed under Service (page 267).

Limited One-Year Warranty

What We Will Do

The HP-15C (except for the batteries, or damage caused by the bat-
teries) is warranted by Hewlett-Packard against defects in materials
and workmanship for one year from the date of original purchase. If
you sell your unit or give it as a gift, the warranty is automatically
transferred to the new owner and remains in effect for the original
one-year period. During the warranty period, we will repair or, at our
option, replace at no charge a product that proves to be defective,
provided you return the product, shipping prepaid, to a
Hewlett-Packard service center.

What Is Not Covered

Batteries, and damage caused by the batteries, are not covered by the
Hewlett-Packard warranty. Check with the battery manufacturer
about battery and battery leakage warranties.

This warranty does not apply if the product has been damaged by
accident or misuse or as the result of service or modification by
other than an authorized Hewlett-Packard service center.

No other express warranty is given. The repair or replacement of a
product is your exclusive remedy. ANY OTHER IMPLIED WAR-
RANTY OF MERCHANTABILITY OR FITNESS IS
LIMITED TO THE ONE-YEAR DURATION OF THIS
WRITTEN WARRANTY. Some states, provinces, or countries do
not allow limitations on how long an implied warranty lasts, so the
above limitation may not apply to you. IN NO EVENT SHALL
HEWLETT-PACKARD COMPANY BE LIABLE FOR CON-
SEQUENTIAL DAMAGES. Some states, provinces, or countries
do not allow the exclusion or limitation of incidental or
consequential damages, so the above limitation or exclusion may
not apply to you.
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This warranty gives you specific legal rights, and you may also
have other rights which vary from state to state, province to
province, or country to country.

Warranty for Consumer Transactions
in the United Kingdom

This warranty shall not apply to consumer transactions and shall
not affect the statutory rights of a consumer. In relation to such
transactions, the rights and obligations of Seller and Buyer shall
be determined by statute.

Obligation to Make Changes

Products are sold on the basis of specifications applicable at the
time of manufacture. Hewlett-Packard shall have no obligation to
modify or update products once sold.

Warranty Information

If you have any questions concerning this warranty, please
contact:

® Inthe United States:

Hewlett-Packard
Calculator Service Center
1030 N.E. Circle Blvd.
Corvallis, OR 97330
Telephone: (503) 757-2002

® In Europe:

Hewlett-Packard S.A.
150, route du Nant-d’Avril
P.O. Box
CH-1217 Meyrin 2
Geneva
Switzerland
Telephone: (022) 83 81 11

Note: Do not send calculators to this address for repair.
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e In other countries:

Hewlett-Packard Intercontinental
3495 Deer Creek Rd.
Palo Alto, California 94304
U.S.A.
Telephone: (415) 857-1501

Note: Donot send calculators to this address for repair.

Service

Hewlett-Packard maintains service centers in most major
countries throughout the world. You may have your unit repaired
at a Hewlett-Packard service center any time it needs service,
whether the unit is under warranty or not. There is a charge for
repairs after the one-year warranty period.

Hewlett-Packard calculator products normally are repaired and
reshipped within five (5) working days of receipt at any service
center. This is an average time and could vary depending upon the
time of year and work load at the service center. The total time you
are without your unit will depend largely on the shipping time.

Obtaining Repair Service in the United States

The Hewlett-Packard United States Service Center for handheld
and portable calculator products is located in Corvallis, Oregon:

Hewlett-Packard Company
Service Department
P.O. Box 999 or 1030 N.E. Circle Blvd.
Corvallis, OR 97330, U.S.A.
Telephone: (503) 757-2000

Obtaining Repair Service in Europe

Service centers are maintained at the following locations. For
countries not listed, contact the dealer where you purchased your
calculator.

AUSTRIA

HEWLETT-PACKARD Ges.m.b.H. BELGIUM

Kleinrechner-Service HEWLETT-PACKARD BELGIUM SA/NV
Wagramerstrasse-Lieblgasse 1 Woluwedal 100

A-1220 Wien (Vienna) B-1200 Brussels

Telephone: (0222) 23 65 11 Telephone: (02) 762 32 00
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DENMARK
HEWLETT-PACKARD A/S
Datavej 52

DK-3460 Birkerod (Copenhagen)
Telephone: (02) 81 66 40

EASTERN EUROPE
Refer to the address listed under Austria.

FINLAND
HEWLETT-PACKARD OY
Revontulentie 7

SF-02100 Espoo 10 (Helsinki)
Telephone: (90) 455 02 11

FRANCE

HEWLETT-PACKARD FRANCE
Division Informatique Personnelle
S.A.V. Calculateurs de Poche
F-91947 Les Ulis Cedex
Telephone: (6) 907 78 25

GERMANY
HEWLETT-PACKARD GmbH
Kleinrechner-Service
Vertriebszentrale

Berner Strasse 117
Postfach 560 140

D-6000 Frankfurt 56
Telephone: (611) 50041

ITALY

HEWLETT-PACKARD ITALIANA S.P.A.
Casella postale 3645 (Milano)

Via G. Di Vittorio, 9

1-20063 Cernusco Sul Naviglio (Milan)
Telephone: (2) 90 36 91

NETHERLANDS

HEWLETT-PACKARD NEDERLAND B.V.
Van Heuven Goedhartlaan 121

NL-1181 KK Amstelveen (Amsterdam)
P.O. Box 667

Telephone: (020) 472021

NORWAY

HEWLETT-PACKARD NORGE A/S
P.O. Box 34

Oesterndalen 18

N-1345 Oesteraas (Oslo)
Telephone: (2) 17 11 80

SPAIN

HEWLETT-PACKARD ESPANOLA S.A.
Calle Jerez 3

E-Madrid 16

Telephone: (1) 458 2600

SWEDEN

HEWLETT-PACKARD SVERIGE AB
Skalholtsgatan 9, Kista

Box 19

S-163 93 Spanga (Stockholm)
Telephone: (08) 750 20 00

SWITZERLAND
HEWLETT-PACKARD (SCHWEIZ) AG
Kleinrechner-Service

Alimend 2

CH-8967 Widen

Telephone: (057) 31 21 11

UNITED KINGDOM
HEWLETT-PACKARD Ltd
King Street Lane
GB-Winnersh, Wokingham
Berkshire RG11 5AR
Telephone: (0734) 784 774

International Service Information

Not all Hewlett-Packard service centers offer service for all models
of HP calculator products. However, if you bought your product
from an authorized Hewlett-Packard dealer, you can be sure that
service is available in the country where you bought it.

If you happen to be outside of the country where you bought your
unit, you can contact the local Hewlett-Packard service center to
see if service is available for it. If service is unavailable, please ship
the unit to the address listed above under Obtaining Repair Service
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in the United States. A list of service centers for other countries can
be obtained by writing to that address.

All shipping, reimportation arrangements, and customs costs are
your responsibility.

Service Repair Charge

There is a standard repair charge for out-of-warranty repairs. The
repair charges include all labor and materials. In the United
States, the full charge is subject to the customer’s local sales tax. In
European countries, the full charge is subject to Value Added Tax
(VAT) and similar taxes wherever applicable. All such taxes will
appear as separate items on invoiced amounts.

Calculator products damaged by accident or misuse are not
covered by the fixed repair charges. In these situations, repair
charges will be individually determined based on time and
material.

Service Warranty

Any out-of-warranty repairs are warranted against defects in
materials and workmanship for a period of 90 days from date of
service.

Shipping Instructions
Should your unit require service, return it with the following items:

A completed Service Card, including a description of the
problem.

A sales receipt or other documentary proof of purchase date if
the one-year warranty has not expired.

The product, the Service Card, a brief description of the problem,
and (if required) the proof of purchase date should be packaged in
the original shipping case or other adequate protective packaging
to prevent in-transit damage. Such damage is not covered by the
one-year limited warranty; Hewlett-Packard suggests that you
insure the shipment to the service center. The packaged unit should
be shipped to the nearest Hewlett-Packard designated collection
point or service center. Contact your dealer for assistance. (If you
are not in the country where you originally purchased the unit,
refer to International Service Information above.)
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Whether the unit is under warranty or not, it is your responsibility
to pay shipping charges for delivery to the Hewlett-Packard service
center.

After warranty repairs are completed, the service center returns the
unit with postage prepaid. On out-of-warranty repairs in the
United States and some other countries, the unit is returned C.0.D.
(covering shipping costs and the service charge).

Further Information

Service contracts are available. For information about service con-
tracts, please contact the Calculator Service Center in Corvallis,
Oregon.

Calculator product circuitry and design are proprietary to Hewlett-
Packard, and service manuals are not available to customers.

Should other problems or questions arise regarding repairs, please
call your nearest Hewlett-Packard service center.

When You Need Help

Technical Assistance. For technical assistance with this prod-
uct, call:

(503) 757-2004
8 a.m. to 3 p.m.
Pacific time

or write to:

Hewlett-Packard Co.
Portable Computer Division
Calculator Technical Support

1000 N.E. Circle Blvd.

Corvallis, OR 97330

Product Information. For information about Hewlett-Packard
products and prices, contact your local Hewlett-Packard dealer.
For the name of the dealer nearest you, or to order free literature
about Hewlett-Packard products, call toll-free:

(800) FOR-HPPC
(800) 367-4772
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or write to:

Hewlett-Packard Co.
Personal Computer Group
PCG Telemarketing
10520 Ridgeview Court
Cupertino, CA 95014

Temperature Specifications

® QOperating: 0°to 55° C (32°to 131° F)
® Storage: —40° to 65° C (—40° to 149° F)

Potential for Radio and Television
Interference (for U.S.A. Only)

The HP-15C generates and uses radio frequency energy and if not
installed and used properly, that is, in strict accordance with the
manufacturer’s instructions, may cause interference to radio and
television reception. It has been type tested and found to comply
with the limits for a Class B computing device in accordance with
the specifications in Subpart J of Part 15 of FCC Rules, which are
designed to provide reasonable protection against such inter-
ference in a residential installation. However, there is no guarantee
that interference will not occur in a particular installation. If your
HP-15C does cause interference to radio or television reception, you
are encouraged to try to correct the interference by one or more of
the following measures:

® Reorient the receiving antenna.
® Relocate the calculator with respect to the receiver.
® Movethe calculator away from the receiver.

If necessary, you should consult your dealer or an experienced ra-
dio/television technician for additional suggestions. You may find
the following booklet prepared by the Federal Communications
Commission helpful: How to Identify and Resolve Radio-TV
Interference Problems. This booklet is available from the U.S.
Government Printing Office, Washington, D.C. 20402, Stock No.
004-000-00345-4.
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Complex ([used to enter
Functions complex numbers.
[ON]Turns the calcu- [Rexim]Real ex- Activates Complex

lator’s display on and
off (page 18). It is
also used in resetting
Continuous Memory
(page 63), changing
the digit separator
(page 61), and in var-
ious tests of the cal-
culator’s operation
(pages 263-264).

change imaginary.
Activates Complex
mode (establishing
an imaginary stack)
and exchanges the
real and imaginary
X-registers

(page 124).

mode (establishing
an imaginary stack)
(page 121). Also
used with [DIMJto
indirectly dimension
matrices (page 174).
(For Index register
functions, refer to
Index Register Con-
trol keys, page 274.)
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(i) Displays the con-
tents of the imagi-
nary X-register while
the key is held

(page 124).

[SF]8 Setsflag 8,
which activates

Complex mode
(page 121).

[CF]8 Clears flag 8,
deactivating Com-
plex mode

(page 121).

Conversions

[®R]Converts polar

magnitude r and
angle fin X-and Y-
registers respectively
to rectangular x- and
y-coordinates (page
31). For operation in
Complex mode, refer
to page 134.

[#P]Converts x, y rec-
tangular coordinates
placed in X- and Y-
registers respectively
to polar magnitude r
and angle 6 (page
30). For operation in
Complex mode, refer
to page 134.

Converts

decimal hours (or
degrees) to hours,

minutes, seconds (or
degrees, minutes,
seconds) (page 27).

[#H]Converts hours,
minutes, seconds (or
degrees, minutes,
seconds) to decimal
hours (or degrees)
(page 27).

(#RAD|Converts

degrees to radians
(page 27).

+DEG |Converts

radians to degrees
(page 27).

Digit Entry
[ENTER]Enters a copy

of number in X-
register (display) into
Y-register; used to
separate multiple
number entries
(pages 22, 37).

[CHS]Changes sign
of number or expon-
ent of 10 in display
(pages 19, 124).

[EEX]Enter exponent;
next digits keyed in
are exponents of 10
(page 19).

[0]through [9]digit
keys (page 22).

[-]Decimal point
(page 22).

Display Control
[Fix]Selects fixed

point display mode
(page 58).

Selects scientif-

ic notation display
mode (page 58).

[ENG]Selects en-
gineering notation
display mode (page
59).

Mantissa. Pressing
[fJCLEAR
displays all 10 digits
of the number in the
X-register as long as
the [PREFIX]key is
held down (page
60). It also clears
any partial key se-
quences (page 19).

Hyperbolic
Functions

Compute hyperbolic
sine, hyperbolic co-
sine, or hyperbolic
tangent, respectively
(page 28).
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(HYPT[SIN] . [HYPT]
(Cos]. [HYPT](TAN]
Compute inverse
hyperbolic sine,
inverse hyperbolic
cosine, or inverse
hyperbolic tangent,
respectively (page
28).

Index Register
Control

Index register (R)).
Storage register for:
indirect program exe-
cution—branching
with and[GSB],
looping with
and[DSE] —indirect
flag control, and
indirect display
format control (page
107). Also used to
enter complex num-
bers and activate
Complex mode (page
121).

Indirect opera-
tions. Used to
address another
storage register
through R, for pur-
poses of storage, re-
call, storage, arith-
metic, and program
loop control (page
107). Also used with
to allocate
storage registers
(page 215).

Logarithmic and
Exponential
Functions

Computes

natural logarithm
(page 28).

Natural antiloga-
rithm. Raises e to
power of number in
display (X-register)
(page 28).

Computes

common logarithm
(base 10) (page 28).

Common anti-

logarithm. Raises 10
to power of number
in display (X-register)
(page 28).

(y*]Raises number in
Y-register to power
of number in display
(X-register) (enter y,
then x). Causes the
stack to drop (page
29).

Mathematics
HHEE
Arithmetic operators;
cause the stack to
drop(page 29).

Computes
square root x (page
25).

[¥*] Computes the
square of x (page
25).

[x!] Calculates the
factorial (n!) of x or
Gamma function (T')
of (1 + x) (page 25).

Computes
reciprocal (page 25).
(For matrix use, refer
to Matrix Functions,
page 275.)

Places value of =
in display (page 24).

SOLVE| Solves for

real root of a function
f(x), with the expres-
sion for f(x) defined
by the userina
labeled subroutine
(page 180).

Integrate. Com-
putes the definite
integral of f(x), with
the expression f(x)
defined by the user
in a labeled sub-
routine (page 194).

Matrix Functions

Dimensions a

matrix of a given

name {[A]to[E]. (1]}
(page 141).
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Designates
the matrix into which
the result of certain
matrix operations is
placed (page 148).

[USER]User mode.
Row and column
numbers in Ry and
R4 are automatically
incremented each

time [STO]or
((Alto [E], [} is
pressed (page 144).

[STOJand [REL]{[Alto
(E], } Stores or re-
calls matrix elements
using the row and
column numbers in
Roand R, (pages

144, 146).
(sT0](gJand [RCL][g]

{(Alo [E], [(0]y
Stores or recalls
matrix elements
using the row and
column numbers in
the Y- and X-
registers (page 146).

(STO]and [RCL]
[(MATRIX] {[Alto (E]}
Stores or recalls
matrices for the
specified matrix
(pages 142, 147).

(STO] and
Stores or re-

calls descriptor of the
result matrix (page
148).

through (1
Recalls the dimen-
sions of the given
matrix into the Y-
(row) and X-(column)
registers (page 142).

[1/«]inverts the
matrix whose descrip-
tor is displayed and
places the resultin
the specified result
matrix. The descrip-
tor of the result
matrix is then dis-
played (page 150).

(+], =], [x) Adds, sub-
tracts, or multiplies
the corresponding
elements of two
matrices or of one
matrix and a scalar.
Stores inresult
matrix (page
152-155).

[]For two matrices,
multiplies inverse of
matrix in X by matrix
inY. For only one
matrix: if matrixin,
divides all elements
of matrix by scalar in
X; if matrix in X, mul-
tiplies each element

of inverse of matrix
by the scalarin Y.
Stores inresult
matrix (pages
152-155).
Changes sign
of all elements in
matrix specified in X-
register (page 150).
[MATRIX]{0 through
9} Matrix operations.
[MATRIX] 0 Dimen-

sions all matrices to
0 X0 (page 143).

(MATRIX]1 Sets row
and column numbers
inRpandRjto 1
(page 143).
(MATRIX] 2 Complex
transform: Z t0o Z
(page 164).
(MATRIX]3 Inverse
complex transform:
ZtoZ? (page 164).
[MATRIX]4 Trans-
pose: X to X7 (page
150).

5 Trans-
pose multiply: Y and
X to YTX (page
154).

[MATRIX]6 Calcu-
lates residuals inre-
sult matrix (page
159).

(MATRIX] 7 Ccalcu-
lates row norm of
matrix specified in X-
register (page 150).
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8 Calcu-
lates Frobenius norm
of matrix specified in
X-register (page
150).

[MATRIX] 9 Calcu-
lates determinant of
matrix specified in X-
register (also does
LU decomposition of
the matrix) (page
150).

[Cy.x] Transforms
matrix stored in
“partitioned form”
(Z%) to “complex
form” (Z€) (page
162).

Transforms
matrix stored in
“complex form” (Z€)
to “partitioned
form” (ZF) (page
162).

0

5 6 Con-
ditional tests for
matrix descriptors in
the X- or X-and Y-
registers. and
0 (x  0) test
the quantity in the X-
register for zero.
Matrix descriptors
are considered
nonzero. [TEST]5
(x=y)and 6
(x #y)testifthe
descriptors in X and

Y are the same. The
result affects
program execution:
skip (one line) if false
(page 174).

Number Alteration

Yields absolute
value of number in
display (page 24).

Leaves only
fractional portion of
number in display
(X-register) by trun-
cating integer por-
tion (page 24).

Leaves only inte-
ger portion of num-
ber in display (X-
register) by
truncating fractional
portion (page 24).

Rounds man-
tissa of entire (10-
digit) number in
X-register to match
display format (page
24).

Percentage

Percent. Com-
putes x % (value in
display) of number in
the Y-register (page
29). Unlike most
two-number func-
tions, [%] does not
drop the stack.

Percent differ-

ence. Computes per-

cent of change be-
tween number in
Y-register and
number in display
(page 30). Does not
drop the stack.

Prefix Keys

Pressed before a
function key to select
the gold function
printed above that
key (page 18).

[a] Pressed before a
function key to select
the blue function
printed below that
key (page 18).

For other prefix keys,
refer to Display Con-
trol keys (page 273),
Storage keys (page
278), and the Pro-
gramming Summary
and Index (page 278).

CLEAR Can-
cels any prefix key-
strokes and partially
entered instructions
such as (page
19). Also displays
the complete 10-digit
mantissa of the num-
ber in the display
(page 60).

Probability
[Cy.x] Combination.

Computes the num-
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ber of possible sets
of y different items
taken x at a time, and
causes the stack to
drop (page 47). (For
matrix use, refer to
Matrix Functions
keys, page 276.)

Permutation.
Computes the num-
ber of possible differ-
ent arrangements of
y different items
taken x at a time, and
causes the stack to
drop (page 47). (For
matrix use, refer to
Matrix Functions
keys, page 276.)

Stack Manipulation

[>%y] Exchanges con-
tents of X- and Y-
stack registers (page
34).

[xx] X-register ex-
change. Exchanges
contents of X-
register with those of
any other named
storage register.
Used with [1J, [(i]],
digit, or [-]digit
address (page 42).

Real ex-
change imaginary.
Exchanges the con-
tents of the real and
imaginary X-
registers and acti-

vates Complex mode
(page 124).

Rolls down con-

tents of stack (page
34).

Rolls up con-
tents of stack (page
34).

Clears contents
of display (X-register)
to zero (page 21).

[«]In Run mode: re-
moves the last digit
keyed in, or clears
the display (if digit
entry has been ter-
minated) (page 21).

Statistics

[Z+]Accumulates
numbers from X- and
Y-registers into stor-
age registers R,
through R (page
49).

[Z=]Removes num-
bers in X- and Y-
registers from stor-
age registers R,
through R for cor-
recting [£+]accumu-
lations (page 52).

[z]Computes mean
of x- and y-values ac-
cumulated by
(page 53).

[s]Computes sample
standard deviations
of x- and y-values ac-

cumulated by [£+]
(page 53).

[3.r]Linear estimate
and correlation coeffi-
cient. Computes esti-
mated value of y (y)
for a given value of x
by least squares
method and places re-
sult in X-register.
Computes the corre-
lation coefficient, r,
of the accumulated
data and places re-
sultin Y-register
(page 55).

Linear Regres-
sion. Computes the
y-intercept and slope
for the linear func-
tion best approxi-
mating the accumu-
lated data. The value
of the y-intercept is
placed in the X-
register; the value of
the slope is placed in
the Y-register (page
54).

Random num-
ber. Yields a pseudo-
random number as
generated from a
seed stored using

(STO](RAN#](page
48).

CLEAR [Z] Clears
contents of the statis-
tics registers (R, to
R;) (page 49).
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Storage
(STO]Store. Stores a

copy of a number

into the storage regis-
ter specified {Oto 9,
0t0.9, [1], }(page
42). Also used for
storage register arith-
metic: new register
contents = old regis-
ter contents { & &
(x], {E} display (page
44).

(RCLJRecall. Recalls
a copy of the number
from the storage reg-
ister specified {Oto 9,
0to.9, (I, [[0}}
(page 42). Also used
for storage register
arithmetic: new dis-
play = old display

(], (=), ¢, ()} regis-

ter contents (page
44).

CLEAR Clears
contents of all stor-
age registers to zero
(page 43).

(LSTxJRecalls into
the display the num-
ber present before
the previous opera-
tion (page 35).

Trigonometry

(DEG]Sets decimal
Degrees mode for
trigonometric func-
tions—indicated by
absence of GRAD or
RAD annunciator
(page 26). Not oper-
ative for complex
trigonometry.

(RAD]Sets Radians

mode for trigono-
metric functions—in-
dicated by RAD an-
nunciator (page 26).

(GRD]Sets Grads
mode for trigono-
metric functions—in-
dicated by GRAD an-
nunciator (page 26).
Not operative for com-
plex trigonometry.

(SIN], (cos],
Compute sine, co-
sine, or tangent, re-
spectively, of number
in display (X-register)
(page 26).

[SINT], [cOST], [TANT]
Compute arc sine,
arc cosine, or arc tan-
gent, respectively, of
number in display (X-
register) (page 26).

Programming Summary

and Index

Program/Run
mode. Sets the calcu-
lator to Program
mcde (PRGM annun-
ciator on) or Run
mode (PRGM annun-
ciator cleared) (page
66).

CLEAR In
Program mode:
clears all program
memory and deallo-
cates all program reg-
isters. In Run mode:
only resets calculator
to line 000 (page 67).

[MEM]Displays cur-
rent status of calcula-
tor memory (number
of registers dedi-
cated to data storage,
the common pool,
and program mem-
ory) (page 215).
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Back arrow. In
Program mode, de-
letes displayed in-
struction from pro-
gram memory. All
subsequent instruc-
tions are moved up
(page 83).

Label. Used
with the label desig-

nations below to de-
note the start of a pro-
gram routine (page
67).

(AJ(8](c)(D])(E] 012
3456789.0.1.2

.3.4.5.6.7.8.9
Label designations.
When preceded by
, define the
beginning of a pro-
gram routine (page
67). Also used (with-
out[LBL] ) to initiate
execution of a
specific routine
(page 69).

Activates and

deactivates User
mode, which ex-
changes the primary
(white) and gold alter-
nate functions
through(E] ) of the
top left five functions
(page 69). User
mode also affects the
matrix use of(STO]

or[RCL] through
}. User mode

automatically incre-
ments Rg (row num-
ber) or Ry (column
number) for storage
or recall of matrix
elements (page
144).

Go to. Used

with a label designa-
tor (listed above) or
to transfer the pos-
ition of the calculator
to the designated
label. If it is a pro-
gram instruction, pro-
gram execution con-
tinues. If itis not a
program instruction,
only the position
change occurs (page
90). If a negative
number is stored in
RL[GTO](1] will effect
a transfer to a /ine
number (page 109).

nnn Go

to line number. Posi-
tions calculator to
the existing line num-
ber specified by nnn.
Not programmable
(page 82).

Go to sub-

routine. Used with a
label designator
(listed above) or  to
start the execution of
a given, labeled rou-

tine. Can be used
both in a program
and from the key-
board (in Run mode).
A[RTN] instruction
transfers execution
back to the first line

following the[GSB]
(page 101).

Back step.

Moves calculator
back one or more
lines in program
memory. (Also
scrolls in Program
mode.) Displays line
number and contents
of previous program
line (page 83).

Single step. In

Program mode:
moves calculator for-
ward one or more
lines in program
memory. In Run
mode: displays and
executes the current
program line, then
steps to next line to
be executed (page
82).

Pause. Halts

program execution
for about 1 second to
display contents of
X-register, then re-
sumes execution
(page 68).
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Run/Stop. Be-
gins program execu-
tion from current line
number in program
memory. Stops exe-
cution if program is
running (page 68).

Return. Causes
calculator to return
to line 000 and halt
execution (if running)
(page 68). If in a sub-
routine, merely re-
turns to line after

[GSE] (page 101).

Set flag (= true).
Sets designated flag
(0to 9). Flags O
through 7 are user
flags, flag 8 signifies
Complex mode, and
flag 9 signifies an
overflow condition
(page 92).

Clear flag

(= false). Clears de-
signated flag (O to 9)
(page 92).

Is flag set? Tests
for designated flag. If
set, program execu-
tion continues; if
cleared, program exe-
cution skips one line
before continuing
(page 92).

{
through 9} Condition-
al tests. Each test
compares value in X-
register against O or
value in Y-register as
indicated. If true, cal-
culator executes in-
struction in next line
of program memory.
If false, calculator
skips one line in pro-
gram memory before
resuming execution
(page 91). and
0,5,and 6 are
also valid for com-
plex numbers and
matrix descriptors
(pages 132, 174).

(TEST]O x#0)
[TEST]1 x>0

[TEST) 2 x<O
[TEST)3 x=0
[TEST]4 x<O0
[TEST]5 x=y
[TEST] 6 x5y
[TEST]7 x>y
[TEST)8 x<y
(TEST]9 x =y

Decrement and
skip if equal to or less
than. Decrements
counter value in
given register as stip-
ulated. Skips one pro-
gram line if new
counter value is
equal to or less than
specified test value
(page 109).

Increment and
skip if greater than.
Increments counter
value in given regis-
ter as stipulated.
Skips one program
line if new counter
value is greater than
specified test value
(page 109).
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Subject Index

Page numbers in bold type indicate primary references; page
numbers in regular type indicate secondary references.

A
Abbreviated key sequences, 78
Absolute value ([ABS]), 24
Allocating memory, 42,213-219
Altering program lines, 83
Annunciators,
complex, 121
list of, 60
PRGM, 32, 66
trigonometric, 26
Antilogarithms, common and natural, 28
Arithmetic operation, 29, 37
Assistance, technical, 270
Asymptotes, horizontal, 230
Automatic incrementing of row and column numbers, 143

B
Back-stepping ( ), 83
Bacterial population example, 41
Battery life, 259
Battery replacement, 260, 261-263
Bessel functions, 195, 197
Branching,
conditional, 91, 98,177, 192
indirect, 108-109, 112-114, 115
simple, 90

C

C annunciator, 99, 121
Can volume and area example, 70-74
Chain calculations, 22-23, 38
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Changing signs, 19
in Complex mode, 124-125
in matrices, 177
(cHs], 19
Clearing
blinking in display, 100
complex numbers, 125-127
display, 21
memory, 63
operations, 20-21
overflow condition, 45, 61
prefix keys, 19
statistics registers, 49
Coefficient matrix, 156
Combinations function ([Cy.x]), 47
Common pool, 213
Complex arithmetic example, 132
Complex conjugate, forming, 125
Complex matrix,
inverting, 162, 164, 165
multiplying, 162, 164, 166
storing elements, 161
transforming, 162, 164
Complex mode, 120-121
activating, 99, 120-121, 133
deactivating, 121
mathematics functionsin, 131
stack lift in, 124
Complex numbers,
clearing, 125-127
converting polar and rectangular forms, 133-135
entering, 121, 127, 128-129
storing and recalling, 130
Conditionals, indirect, 109-111,112,116
Conditional tests, 91, 98, 192
in Complex mode, 132
with matrix descriptors, 174
Constant matrix, 156
Constants,
calculations with, 39-42
using in arithmetic calculations, 35, 39-42
Continuous Memory,
duration of, 62
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resetting (clearing), 63
what it retains, 43, 48, 58, 61, 62
Conventions, handbook, 18
Conversions,
degrees and radians, 27
polar and rectangular coordinates, 30-31
time and angle, 26-27
Correcting accumulated statistics data, 52
Correlation coefficient, find the ([3.r]), 55-56
(cos], [cosT), 26
Counters in program loops, 98, 112-114
Crocus example, 43
Cumulative calculations, 41

D
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Data storage, 42
Data storage pool, 213-214
Debt payment example, 95
Decimal point, 22
Decimal point display, 61
Deflation, 233, 234, 237
(DEG], 26
Determinant, 150
Digit entry, 22

in Complex mode, 121, 125,127, 128-129

termination, 22, 36, 209
Digit separator display, 61
(DIm], 76-77,215-217
Disabling stack lift, 36
Display (See also X-register),

blinking, 100

clearing, 21

error messages, 61

full mantissa, 60

in Complex mode, 121
Display format, 58-59, 61

effect on [55], 200, 241, 244, 245-249
Do if True rule, 92, 192
(DSE], 109-111,112,116
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E

(EEX], 19
Electrical circuit example, 169-171
Enabling stack lift, 36
[ENG], 59
Engineering notation, 59
[ENTER], 12, 33-34, 36

effect on digit entry, 22, 29

effect on stack movement, 37, 41
Entering data for statistical analysis, 49
Error

conditions, 205-208

display, 61

stops, 78
Errors,

with (%], 203-204

with [SOLVE], 187,192,193
Euclidean norm (See Frobenius norm)
Exchanging the real and imaginary stacks, 124
Exponential function (See Power function)
Exponents, 19, 20

F

7,18

Factorial function ([!]), 25
Falling stone example, 14

(FIX], 58

Fixed decimal notation, 58

Flag tests, 92, 98

Flag 8,99

Flag 9,100

Format, handbook, 2, 18
Fractional portion ([FRAC]), 24
Frobenius norm, 150, 177
Functions, nonprogrammable, 80
Functions, one-number, 22, 25
Functions, primary and alternate, 18
Functions, two-number, 22, 29

G
(e, 18
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Gamma function ([x1]), 25

m 90, 97, 98
(GTo](cHs], 82

H
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Horner’s Method, 79, 181
Hyperbolic functions, 28

I

Imaginary stack,
clearing the, 124
creation of, 121-123, 133
display of, 124
stack lift of, 124
Index register
arithmetic, 108, 112
display format control, 109, 114, 115,116
exchange with X-register, 108, 112
flag control, 109, 115
loop control, 107,109-111
storage and recall, 107,111,115
Indirect addressing, 106-108, 115
Initialization, 87
Instructions, 74
Integer portion ([INT)), 24
Integrate function ([13]), 194-204
accuracy of, 200-203, 240, 241-245
algorithm for, 196, 240-241, 249-251, 255-256
display format with, 245-249
execution time for, 196, 200, 244, 245, 254-256
memory usage, 204
obtaining an approximation for, 257-258
problems with erratic functions, 249-254
programmed, 203-204
recursive use of, 203
subroutines for, 194-195
uncertainty in, 202-203, 240-244, 245-249
Interchanging functions (See User mode)
Interference, radio and television, 271
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Intermediate results, 22, 38
Interpolation, using (§.r], 57
(sG],109-111,116

Iterations using and [DSE], 111

K

Keycodes, 74-75

Keying in
chain calculations, 22
exponents, 19-20
one-number functions, 22
two-number functions, 22, 29

L

Labels, 67,77, 90, 97
LAST X register, 35

in matrix functions, 174-176

operations saved by, 212

putting constants in, 39-40

to correct statistics data, 52
Linear equations, solving with matrices, 138, 156
Linear estimation ([3,r]), 55-56
Linear regression ([LR.)), 54
Loading the stack with constants, 39, 41
Logarithmic functions, common and natural, 28
Loop control number, 109, 116
Looping, 90, 98
Low-power indication, 62, 260-261
LU decomposition, 148, 155, 156, 160
Fukasiewicz, Jan, 32

M

Mantissa, displaying full 10 digits, 60
Matrix
complex, 160-163
copying, 149
descriptors, 139, 147, 160, in R, 173-174
dimensioning, 140, 142, 142,174
dimensions, displaying, 142,147
equation, complex, 168
memory, 140,171
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name (See Matrix descriptors)
partitioned, 161, 164
Matrix elements,
accessing individually, 145-147
displaying, 144
storing and recalling, 143-144, 147,149, 176
Matrix functions,
using Ry, 173-174
using registers, 173
arithmetic, 153
conditional, 177
inverse, 150, 154
multiplication 154
one-matrix, 149-151
programmed, 176-177
reciprocal, 150
residual, 159
row norm, 150, 177
summary, 177-179
transpose, 150, 151, 154
Mean ((3)), 53
(MEM), 215
Memory
allocation, 76,215-217
availability, 75-77, 213,215
configuration, initial, 75-76
distribution, 75,213-214
limitations, 75, 77,217
requirements for advanced functions, 218-219
requirements for programming, 218
stack (See Stack)
status display, 215
registersin, 213-215
Metal box dimensions example, 189-191
Minima, finding with [SOLVE], 230
Modes, trigonometric, 26
Multiple roots, 234

N
Negative numbers, 19
in Complex mode, 124-125
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Nested calculations, 38

Neutral operations, 211
Nonprogrammable functions, 80
Normalizing statistics data, 50
null display, 144, 149
Numerical integration, 194-204

(0]

(on],
and off, 18
to reset Continuous Memory, 63
to set decimal point display, 61
Overflow condition, 45, 61, 100

P

[P/R], 66, 68
Pause ([PSE]), 68
Percent difference ([A%)), 29
Percentage functions, 29-30
Permutations function ([Py.x]), 47
Phasor notation, 133
Pi, 24
Polar coordinates, 30, in Complex mode, 133-135
Power function ([y*]), 29
Prefix keys, 19
PRGM annunciator, 66, 82
Program
control, indirect, 107, 109-111
data entry techniques, 69-70
end, 68, 77
entering, 66-68
labels, 67, 77
loading 66
loop counters, 109, 112-114, 116
mode, 66, 68, 86
position, changing, 82, 86
running, 68-69
starting, 69
stops, 68, 78
Program execution, 69
after ,101
after ,97
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after overflow, 100
after test, 92
from or through labels, 78-79
Program lines (instructions), 67, 74
deleting, 83, 86
inserting, 83, 86
Program memory, 67, 70, 75,217-219
automatic reallocation, 217-218
clearing, 67
moving in, 67

Q.

Quadratic equation, solving, 181

R

R and Ry, using to access matrix elements, 143, 146, 176
(RAD], 26

Radioisotope example, 93-94

Random number generator ([RAN#]), 48

Random number storage and recall, 48

Recall arithmetic, 44

Recalling accumulated statistics data, 50

Recalling numbers ([RCL]), 42, 44, with matrices, 144, 149, 176
Reciprocal ([1/x]), 25, with matrix, 150

Rectangular coordinates, 31, in Complex mode, 133-135
Registers, converting, 215-217

Reset Continuous Memory, 63

Residual, 159

Result matrix, 147, 148, 150, 152

Return ([RTN)), 68, 77

Returns, pending, 101, 105, 192, 204

Reverse Polish Notation, 32

[RexIm], 124, 127

Rice yield example, 50-56

Ridget hurling example, 184-186, 224-226

Roll down, 34

Roll up, 34

Roots, eliminating, 233, 234, 237

Roots, meaningless, 188, 191

Rounding ([(RND]), 24

Rounding in the display, 59

Round-off errors, 52, 60, with [SOLVE], 223, 237
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Row norm, 150,177

Run/Stop ([R/S)), 68, 91
running display, 69, 147, 182

S

Scalar operations, 151-153

(sci], 58

Scientific notation, 58

Scrolling, 82

Secant line calculation example, 102

Self-tests, 263-265

Service information, 267-270

Shear stress example, 227-228

(SINJ, [SINT), 26

Sine integral example, 198-199

Single-stepping ([SST)), 82, 85

Skip if True rule, 110 -

Slope, finding the, 54

[SOLVE], 180-181
accuracy, 222-226, specifying, 238
algorithm, 182, 187-188, 220-222, 230-231
conditions necessary for, 221-222
constant function value with, 187, 189
execution time, 238
illegal math routine with, 187-188
initial estimates with, 181, 188-192, 221, 233, 237
memory usage, 193
nonzero minimum of function with, 187
programmed, 192
recursive use of, 193
restrictions on, 193
using as a conditional test, 192
using functions with discontinuities, 227
using functions with poles, 227
using functions with several roots, 233-238
with no root, 186-188, 192, 229

Square root ([(z)), 25

Squaring ([¥%]), 25

Stack
contents, with (5], 197, 202
drop, 33, 38
lift, 33, 36, 38, 44, 209-211
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manipulation functions, 33-34, in Complex mode, 131

imaginary, 120-125

used to access matrix elements, 146-147
Stack-disabling operations, 210
Stack-enabling operations, 210-211
Stack movement, 32, 33-37

in matrix functions, 174-176

with ,181
Standard deviation ([s]), 53, sample vs. population, 53
Star example, 40
Statistics, accumulation of data ([Z+]), 49
Statistics, correction of accumulated data ([Z-]), 52
Statistics functions,

combinations, 47

correlation coefficient, 55

linear estimation, 55

linear regression, 54

mean, 53

permutations, 47

probability, 47

standard deviation, 53
Statistics registers, 49-50
Status indicators, 60
Storage and recall ([STO], [RCL)), 42, 43, 44

complex numbers, 130

direct (with [1]), 106, 107

indirect, 106-107, 111

matrices, 144, 149, 176

matrix elements, 143-144,147, 149
Storage arithmetic, 43
Storage registers, 42

allocation, 42,215-217

arithmetic, 43

clearing, 43

statistics, 42, 49
Subroutine

levels, 102, 105

limits, 102, 105

nesting example, 103

returns, 101, 105

using with [SOLVE], 180-181, 192
System flags, 92, 99

291
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T

T-register, 32, 33
in matrix functions, 174-176
with (], 202
(TAN], [TANT], 26
Temperature specifications, 270
,91
Tracing, 82
Transpose, 150,151, 154
Trigonometric modes in Complex mode, 121, 134
Trigonometric operations, 26

18]

udisplay, 176
Uncommitted registers, 213,215, 217
Underflow,
in any register, 61
storage register arithmetic, 45
with ,223
User flags, 92
User mode, 69, 79, with matrices, 143,176

A%

Vector arithmetic, using statistics functions, 57

w

Warranty information, 265-267
Wrapping, 86, 90

X

X exchange ([xx]), 42

X exchange Y ([x%y]), 34

X-register, 32, 35, 37, 42, 60, 209-210
imaginary, 210,211
in matrix functions, 141, 156, 175-176
with (], 202
with [SOLVE], 181, 183, 192, 226

Y

y-intercept, finding, 54
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Y-register, 32, 37
in matrix functions, 141, 156, 175-176
with (%], 202
with [SOLVE], 181, 183, 192, 226

Z

293

Z-register, 32
in matrix functions, 174-176
with [5], 202
with [SOLVE], 181, 183, 192, 226












The HP-15C
Keyboard and Continuous Memory

MEMORY STACK
Real Imaginary

< N o

X

Display shows real X-register.

FRAC  USER

BEEm
L=E N & N el =r

o | LR Py

1] sTo|[l[RcL Pem————— -
prrEalaseall. .. e
HEWLETT-PACKARDI b B

DATA STORAGE POOL

R :I COMMON POOL

Ro 0
Ro 10 Rao
R, 1 R
A i Matrix Memory
R, 2 n R, 12
Imaginary Stack
R3 3 Ix R3 13
R, A sx2 R, e [SOLVE] and (%]
Rsg 5 Xy Rg 15 Uncommitted
i >
Rg 6 3y? Rg 16
Program Memory
Ry z xy Ry b up to seven pro-
Rg 8 Rg 18 gram lines per
ey
Rg 9 Rg 19 Regs
Initial allocation is Ry through Memory allocation for
R,gto data storage. program lines is automatic

Allocations can be changed with within the common memory
the (@] function. pool.

Initial allocation is Ry
through Rgs to the common
pool, from which the above
functions and programming
draw memory space.

There are seven bytes of memory
per register. One or two bytes are
needed per program instruction.
One register at a time is con-
verted to program memory as
needed, starting at the highest-
numbered available register and
proceeding to the lower registers.



HEWLETT
(ﬁl”] PACKARD
Portable Computer Division

1000 N.E. Circle Blvd., Corvallis, OR 97330, U.S.A.

Reorder Number Printed in Canada 6/87
00015-90001 English Mfg. No. 00015-90016



Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.



	Cover

	Introduction
	Contents
	The HP-15C: A Problem Solver
	A Quick Look at ENTER

	Manual Solutions
	Programmed Solutions

	Getting Started
	Power On and Off
	Keyboard Operation
	Primary and Alternate Functions
	Prefix Keys
	Changing Signs
	Keying in Exponents
	The "CLEAR" Keys
	Display Clearing: CLx <-


	Calculations
	One-Number Functions
	Two-Number Functions and ENTER



	Numeric Functions
	Pi
	Number Alteration Functions
	One-Number Functions
	General Functions
	Trigonometric Operations
	Time and Angle Conversions
	Degrees/Radians Conversions
	Logarithmic Functions
	Hyperbolic Functions

	Two-Number Functions
	The Power Function
	Percentages


	The Automatic Memory Stack, LAST X, and Data Storage
	The Automatic Memory Stackand Stack Manipulation
	Stack Manipulation Functions
	The LAST X Register and LSTx

	Calculator Functions and the Stack
	Order of Entry and the ENTER Key

	Nested Calculations
	Arithmetic Calculations With Constants

	Storage Register Operations
	Storing and Recalling Numbers
	Clearing Data Storage Registers
	Storage and Recall Arithmetic
	Overflow and Underflow

	Problems

	Statistics Functions
	Probability Calculations
	Random Number Generator
	Accumulating Statistics
	Correcting Accumulated Statistics
	Mean
	Standard Deviation
	Linear Regression
	Linear Estimation and Correlation Coefficient
	Other Applications


	The Display and Continuous Memory
	Display Control
	Fixed Decimal Display
	Scientific Notation Display
	Engineering Notation Display
	Mantissa Display
	Round-Off Error

	Special Displays
	Annunciators
	Digit Separators
	Error Display
	Overflow and Underflow
	Low-Power Indication

	Continuous Memory
	Status
	Resetting Continuous Memory


	Programming Basics
	The Mechanics
	Creating a Program
	Loading a Program
	Intermediate Program Stops
	Running a Program
	How to Enter Data
	Program Memory

	Example
	Further Information
	Program Instructions
	Instruction Coding
	Memory Configuration
	Initial Memory Configuration
	Program Boundaries
	Unexpected Program Stops
	Abbreviated Key Sequences
	User Mode
	Nonprogrammable Functions

	Problems

	Program Editing
	The Mechanics
	Moving to a Line in Program Memory
	Deleting Program Lines
	Inserting Program Lines

	Examples
	Further Information
	Single-Step Operations
	Line Position
	Insertions and Deletions
	Initializing Calculator Status

	Problems

	Program Branching and Controls
	The Mechanics
	Branching
	Conditional Tests
	Flags

	Examples
	Further Information
	GoTo
	Looping
	Conditional Branching
	Flags
	The System Flags: Flags 8 and 9


	Subroutines
	The Mechanics
	Go To Subroutine and Return
	Subroutine Limits

	Examples
	Further Information
	The Subroutine Return
	Nested Subroutines


	The Index Register and Loop Control
	The I and (i) Keys

	Direct Versus Indirect Data Storage With the Index Register
	Indirect Program Control With the Index Register
	Program Loop Control

	The Mechanics
	Index Register Storage and Recall
	Index Register Arithmetic
	Exchanging the X-Register
	Indirect Branching With I
	Indirect Flag Control With I
	Indirect Display Format Control With I
	Loop Control With Counters: ISG and DSG


	Examples
	Further Information
	Index Register Contents
	ISG and DSE

	Indirect Display Control


	Calculating With 
Complex Numbers
	The Complex Stack and Complex Mode
	Creating the Complex Stack
	Deactivating Complex Mode

	Complex Numbers and the Stack
	Entering Complex Numbers
	Stack Lift in Complex Mode
	Manipulating the Real and Imaginary Stacks
	Changing Signs
	Clearing a Complex Number
	Entering a Real Number
	Entering a Pure Imaginary Number
	Storing and Recalling Complex Numbers

	Operations With Complex Numbers
	One-Number Functions
	Two-Number Functions
	Stack Manipulation Functions
	Conditional Tests
	Complex Results from Real Numbers

	Polar and 
Rectangular Coordinate Conversions
	Problems
	For Further Information

	Calculating With Matrices
	Matrix Dimensions
	Dimensioning a Matrix
	Displaying Matrix Dimensions
	Changing Matrix Dimensions

	Storing and Recalling Matrix Elements
	Storing and Recalling All Elements in Order
	Checking and Changing Matrix Elements Individually
	Storing a Number in All Elements of a Matrix

	Matrix Operations
	Matrix Descriptors
	The Result Matrix
	Copying a Matrix
	One-Matrix Operations
	Scalar Operations
	Arithmetic Operations
	Matrix Multiplication
	Solving the Equation AX = B
	Calculating the Residual
	Using Matrices in LU Form

	Calculations With Complex Matrices
	Storing the Elements of a Complex Matrix
	The Complex Transformations Between zP and Z~

	Inverting a Complex Matrix
	Multiplying Complex Matrices
	Solving the Complex Equation AX = B

	Miscellaneous Operations Involving Matrices
	Using a Matrix Element With Register Operations
	Using Matrix Descriptors in the Index Register
	Conditional Tests on Matrix Descriptors

	Stack Operation for Matrix Calculations
	Using Matrix Operations in a Program
	Summary of Matrix Functions
	For Further Information

	Finding the Roots 
of an Equation
	Using SOLVE

	When No Root Is Found
	Choosing Initial Estimates
	Using SOLVE 
in a Program
	Restriction on the Use of SOLVE

	Memory Requirements
	For Further Information

	Numerical Integration
	Using Int x y

	Accuracy of Int x y

	Using Int x y 
in a Program
	Memory Requirements
	For Further Information

	A 
Error Conditions
	B Stack Lift andthe LAST X Register
	Digit Entry Termination
	Stack Lift
	Disabling Operations
	Enabling Operations
	Neutral Operations

	LAST X Register

	C 
Memory Allocation
	The Memory Space
	Registers
	Memory Status MEM


	Memory Reallocation
	The DIM (i) 
Function
	Restrictions on Reallocation

	Program Memory
	Memory Requirements for the Advanced Functions

	D A Detailed Look at SOLVE

	How SOLVE Works
	Accuracy of the Root
	Interpreting Results
	Finding Several Roots
	limiting the Estimation Time
	Counting Iterations
	Specifying a Tolerance

	For Advanced Information

	E A Detailed Look at Int x y

	How Int x y Works

	Accuracy, Uncertainty, and Calculation Time
	Uncertainty and the Display Format
	Conditions That Could Cause 
Incorrect Results
	Conditions That Prolong Calculation Time
	Obtaining the Current Approximation 
to an Integral
	For Advanced Information

	F 
Battery, Warranty, and Service Information
	Function Summary and Index
	Programming Summary and Index
	Subject Index
	The HP-15C 
Keyboard and Continuous Memory

