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Welcome...

... to the HP-28C Step-by-Step Booklets. These books are designed to
help you get the most from your HP-28C calculator.

This booklet, Calcutus, provides examples and techniques for solving prob-
lems on your HP-28C. A variety of function operations and differential
and integral calculus problems are designed to familiarize you with the
many functions built into your HP-28C.

Before you try the examples in this book, you should be familiar with cer-
tain concepts from the owner’s documentation:

m The basics of your calculator — how to move from menu to menu, how
to exit graphics and edit modes, and how to use the menu to assign
values to, and solve for, user variables.

m Entering numbers and algebraic expressions into the calculator.

Please review the section "How to Use This Booklet." It contains impor-
tant information on the examples in this booklet.

For more information about the topics in the Calculus booklet, refer to a
basic textbook on the subject. Many references are available in university
libraries and in technical and college bookstores. The examples in the
booklet demonstrate approaches to solving certain problems, but they do
not cover the many ways to approach solutions to mathematical problems.

Our thanks to Ross Greenley of Oregon State University for developing the
problems in this book.
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How To Use This Booklet

Please take a moment to familiarize yourself with the formats used in this
booklet.

Keys and Menu Selection: A box represents a key on the calcula-
tor keyboard.

In many cases, a box represents a shifted key on the HP-28C. In the
example problems, the shift key is NOT explicitly shown (for example,
requires the press of the shift key, followed by the ARRAY key,
found above the "A" on the left keyboard).

The "inverse" highlight represents a menu label:

Q

RAW= (found in the menu)
OL= (found in the menu)
ABCD= (a user-created name, found in the [USER| menu)

[y
@

i

Menus typically include more menu labels than can be displayed above the
six redefinable menu keys. Press and to roll through the

menu options. For simplicity, and are NOT shown in the
examples.
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Solving for a user variable within = SOLVR = is initiated by the shift key, fol-
lowed by the appropriate user-defined menu key:

[ JZABCD=

The keys above indicate the shift key, followed by the user-defined key
labeled "ABCD". Pressing these keys initiates the Solver function to seek a
solution for "ABCD" in a specified equation.

The symbol [ <> |indicates the cursor-menu key.

Interactive Plots and the Graphics Cursor: Coordinate values
you obtain from plots using the and digitizing keys may differ
from those shown, due to small differences in the positions of the graphics
cursor. The values you obtain should be satisfactory for the Solver root-
finding that follows.

Display Formats and Numeric Input: Negative numbers,
displayed as

-5
-12345.678
[[-1,-2,-3 [ -4,-5,-6 [ ...

are created using the |CHS | key.

5
12345.678
[[1 [cHS] ,2 [CHS] , ...

The examples in this book typically specify a display format for the
number of decimal places. If your display is set such that numeric displays
do not match exactly, you can modify your display format with the
menu and the = FIX = key within that menu (e.g. 2=FIXD).
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Function Operations

The primary goals of this section are to write user-defined functions and
introduce the root finding, plotting, and calculus capabilities of the
HP-28C. Problems include definition and assignment of the trigonometric
co-functions in the USER menu, analysis of a cubic equation, and compu-
tation of the angle between two intersecting lines in a specific and general

case.

Function Operations



Function Definition

This section demonstrates creation of simple user-defined functions. The
use of functions of this type is basic to efficient use of the HP-28C.

Example: The HP-28C has three basic trigonometric functions built in
- sine, cosine, and tangent. It is simple to add the remaining co-functions
to the USER menu. Built-in functions of the HP-28C can be easily com-
bined to create new functions. The use of programs and local variables
permits the newly defined functions to be used in the same manner as the
built-in functions.

The inverse of the sine is the cosecant.

4t
« — %X '1:+SIN(x g
It &+ x '"1/8INCx)' »
Store the user-defined function.
'CscC g:
21
i:
The inverse of the cosine is the secant.
« — X '1+COS(x 41
1: € %+ x '"1/C0S5Cx>" »
Store the user-defined function.
'SEC 4
21
1:

The inverse of the tangent is the cotangent.

« — X "1+TAN(x
ENTER

PR
E 88 A% am

€ 3 x '"1/TANCxD ' »
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Store the user-defined function.

'COT

=IO

Example: Evaluate, in radians, COT(X) and CSC*(X)-COT?(X),
where X =.2.

First, store the value of X and select radians and standard display modes.

.2 3
'X it
[MODE] ERADE =STD= [ sTo JIGEE NS T TN RAD ]

Now enter the expression for COT(X ) and evaluate it.

'COT (X [ENTER 3:
EVAL £ 4.93315487558
[ <70 JNEE N TN IR #AD ]

Enter the second expression and evaluate it.

'SQ(C5C (X)) =SQ(COT(X)) 8 4.93315487558
EVAL 1: ' 1
EALP] FI: [scx [ ens | ves [QINY

As expected, this identity returns the value 1.

Purge the user-defined functions and the variable X created in this sec-
tion.

{CSC SEC COT X
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Function Composition

This section demonstrates additional utility of user-defined functions.

Arguments of the functions may be both numeric and symbolic.

Example: Form the compositions F (G (x)) and G (F (x)) given
F(x)=x?>+1and G(x)=5 +2.

Create F and G as user-defined functions,

First, create F .

CLEAR
« — X ' 241

= Pa0

€ 3+ x 'x2+1' B

Store in the variable F .

'F [s10]

nhed

Now create G.

« — ¥ '5 x %¥+2 [ENTER

L LTV E Y

€ 3+ x 'SEx+2' @

Store in the variable G.

'G [sT0]

=Moo

To form the composition G (F (x)), enter F as an argument of G .

'G(F(X

L kLT E Y
»n on we we

'GCFCHID!

Evaluate the composite function.

EVAL

=P

'OR(HM2+1+2!
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This expression can be simplified using EXPAN and COLCT.

[ALGEBRA| = EXPAN

|

1
g
9
i

|
|

3:

1: '5*H"‘2+5*1+2'
Z:‘- [ERSUE
3:

2
1: 'THSERN2!

[CoLCT[ERPAN] STZE [FokM JOESUEIERSUE

Repeat the process using G as an argument of F.

"F(G(X [ENTER

Evaluate the composite function.

Simplify the expression.
= EXPAN =

SEXPANZ

SCOLCT=

3:

25 'FHoERM2!
1: FOGCHY !
COLCT [ExFAN] SIZE |FoRM [OESUB[EXSUE]

3:

2t 'TH5ERN2!
1: T(S5ER+2)2+]!
[CoLCT [EXFAN] ST2E [FORM [0ESUB[ERSUE]

2: 7+3¥%72!
1: ;§§§x3*2+2*<5*x>*2+2
[COLCT[E3iPaN] S12€ |F kM [DESUEIERSUE

L 1]

: 7HIER~2!

: ! 5*K*(5*X)+2*(5*X)*2
+2%2+1"'

[CoLCT]ERPAN] STZE |FORM ]

OESUE

=Pa0)
us an m

'THoERNZ!
' S+25#RN2H20%K
coLCT[ERPAN] ST2E [FORM JoBSUE

Purge the variables created in this problem section.

{F G [ENTER] [PURGE]
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Function Analysis

The ability to locate extreme values and other key features of functions is
critical to the solution of many problems in science and engineering, This
section demonstrates the use of calculus to locate such features,

Example: Locate the roots, local maximum, mimimum, and inflection
points of
F(x)=x+6x2+11x +6.

Enter and name the given function.

4:
'X~3+6 x X*2+11 x X+6 3
13 'RAB+EEX 2+11%K+6"
'FN 4!
2:
1: N

Recall the function, enter the PLOT menu, and store it for plotting.

=FN= 3
I: 'XABHEERA2H] 1546
LT R G Y IR
=STEQ= 3
1:
[STEC: |KCEG | PMIN|FPA% [TNDEF] DRAW |

Clear the plot parameters and plot the function.

'PPAR 3
SDRAW= s

!
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Digitize all of the roots.

ceo [2) 18]
... [D [ns),
(AT

Note: Differences from the displayed results may appear due to different
digitizing locations.

Now enter the SOLV menu and compute the three roots.

SOLV] =SOLVR= 3: ¢-.9,8)|
2 (-1.:9,8)
1: (-3.1,8)
% Qewer=l 11 1
Enter a guess from the stack and compute the root.
=Xz [ X2
ero 3

After obtaining the exact root, make note of it and prepare to locate the
next root. Discard the first root. Then repeat the process for the other two
roots.

EX= [] EX= £

: -2
I Y I I I
Compute the last root.
[DROP] 5
=X= Ex= ero
=X= [] Ex= 1% -1
| I T I I

With the three roots located, find the extrema. The extrema are located by
finding the roots of the first derivative.

Recall the function.

USER] =FN= 31 !
2
1: 'HOBHEER M2+ 1 ¥ X+HE !
% {rPaR | EC [ PN | | |
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Purge the current value of X and differentiate with respect to X .

'X [ENTER 3:
s T
T I T Y
5
1: 'IERZHEX(2EKI+LL!
mmm-—!;
Store the first derivative,
'DR1 3
1:
| T T 0 T
Plot the function and its first derivative.
=DR1 = 3:
SeNs 23 '3ERARHEX(2EX)+11"
=—= 1 = 'HO3HEERM 2+ 1 1 ¥ K46
[ Ok JFFRR | EC [ FN |~ [ |
[ENTER] 21
E 18 "3xX 246 (2xH2+11=K"
FH6¥X"2+11%5+6"
[ DRL [FPAR ] EC [ PN | | |
=STEQ= L i
= DRAW = h,,_, ’

Observe that the derivative is positive in regions where the function is

increasing and negative in regions where it

Digitize both roots of the derivative.

is decreasing.

INS

ATTN

35 -1.4,8)
1: i 6.0
mmmm

Note: Differences from the displayed resu
differences in digitizing locations.

16 Function Analysis

Its may appear due to



Recall the derivative and enter SOLVR to pinpoint the roots as was done
previously. The computed values may differ slightly depending on the

seed provided as an input to the Solver.

=oRi=
=STEQ=

= SOLVR=

Iillt

1
x
1

|
|

u
I

3:

2: (-1.4,8>
1: (-2.6458)
I R I

This is one of the roots. Recall the function and evaluate to get the func-

tional value.
USER| ZFNZ

EVAL

31 (-1.4,0)
2: -2.57735026317
1: 3849001794
% L ORL |FraR] EQ ] FN L ]

Now repeat the process for the other root. First discard the root and func-

tion value.

DROP] [DROP]

[sOLV] =ESOLVRE

=00
an nn0e

(_ 1 . 45 B)
(1 A ] R R

er‘n
-1.42264973681
-m———_
3:
2: —1 422649736881
13 . 38490017949
nmm-

The extreme values of the function have been located. Clear the stack and
find the inflection point. The inflection point, located at the root of the
second derivative, is the point or points at which the function changes con-
cavity. That is, it changes from concave up to concave down. The second
derivative of a cubic is linear and has only one root. Therefore a cubic has

only one point of inflection.

Function Analysis 17



Clear the value of X to obtain symbolic results.

CLEAR 3:
X 2
T T I T
Recall the first derivative.
31 o
% '3*X*2+6*(2*X)+}>1<:
[ DEL [FPREJ EQ | FN [ [ ]
Differentiate it with respect to X'.
3:
23
i: '3x(2xX)+12"
| bRl |FFAE] EC [ FN | | |
Store the second derivative.
'DR2 [sTO 3:
2t
i:
| D2 | DR1 |FFak ] EC: | FN | |

L

Plot the function and its second derivative.

Observe the location of the

root and how the function behaves at that point. It is coincidental that a
function root is located at the point of inflection. It remains only to repeat

=DR2= =H
=ZENZ 2t '3 (2¥XK0+12"
— 1: 'RASHEEXM 21 1 X4
| pk2 | OF1 [PFR | EC: | FN | |
Set them equal for plotting.
[ENTER] 21
(=] 1: 'S(2EX)+12=X"3+6¥K"
2+11%¥+6"
| ok2 | okL [FPFaR | EQ | FN | |

Store and plot the equation.

PLOT| =STEQ=
DRAW =

>

1
i
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Digitize the root.

INS ]

ATTN

Recall the second derivative and solve for the root.

SDR2Z
sov] SsTEQ=
=S0OLVRE

Enter the digitized initial guess and solve for the root.

cH

21

1: ('2-159)

[STEC [FCEG | FIIN]FPAG: JINGEF] DFnbd |

3:

2: (-2.1,8)

1: 135 (2x%)+12°

"Dk | OkL |PPAk | EC | FN | ]

3:

H

i: ¢-2.1,8)

T T R TOAD RS M
|

5 2

I S0 I I I N

This completes the analysis. We have found roots atx = -1,-2,-3,
extrema atx = —2.58,-1.42 and an inflection point atx = -2.

Purge the user variables created in this section.

{FN X DR1 DR2 PURGE
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Angle Between Two Lines

This section develops a user function to compute the angle of intersection
of two lines. The slopes of the intersecting lines are supplied as argu-
ments. The user function is used in the subsequent section in computing
the angle of intersection of two general functions.

Example: Compute the angle between the lines
Y=3+landY=-2x+5.

The angle between two curves is the angle formed by the tangent lines at
the point of intersection.
mg—m
f=tan~l———1 |
1+m 1Mo
Form a function that, given the slopes, computes the angle between two
functions at a point of intersection.

[CLEAR] [MODE| ZDEGZ= 2: '
« — a b 'ATAN((b_a)+ 13 ?1:agbg)lﬂlﬁN((b—a>”
(1+axb [ sTo | NN ESWETTEN( 0eG JNETN
'ANG o+

1:

[ sTo 1N EEMELTEN] veG TN

Lines have a constant slope. Read the slope for each directly from the
given formula.

3 |[ENTER 3:
-2 2 3
[sTo INGEN EESEEETEN( oes 1T

Now compute the angle.

SANG= %
1: 45
7 O e RN NN N

The lines intersect at an angle of 45°.

ANG is used in the next problem section.
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Angle Between Two Curves

The angle of intersection for two curves is defined to be the angle formed
by the tangent lines at the point of intersection. When an intersection
point is located, the slopes of the functions at that point can be found.
The problem is then that of two intersecting lines.

Example: Find the angle formed by the tangent lines at the points of
intersection of the following functions.
F=3x+1
Y =2x2

Enter and save the given functions.

[CLEAR] [<>] 4
EDeu 3

1: 13%X+]"
'F 4

-

1:
'2%X~2 &

21

1: 12%%A2"
'Y [sTO g-

21

1:

Plot the two functions to obtain initial guesses at the points of intersection.

First, set the two functions equal to each other.

[USER] Y= =F= 3t
2:

(=] [ENTER T | DERAD=RERH] "
I I T N I
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Store the equation.

=STEQ= 3:

22

1:

[STEC: [RCEC: [ FMIN[FH#R [TNDEF| DRAM |
Clear the plot parameters and draw the equation with the two functions.
'PPAR |PURGE
= DRAW =

Expand the height to see both intersection
10 =*HE=
= DRAWS

Digitize both intersection points. Enter th

e Solver to refine the guesses.

.o INS | 3:
. ~ 23 C-.3,8)
[>] ... [] [ws] 1: ¢1.9,7)
ATTN [STEC JRCEC [FMIN]FHAR [INDEF] Dl |
[SOLV] ESOLVRE= 31
23 C-.3,8)
1: C1.9,72
I (Y N A
Use the displayed value as an initial guess.
=XE
1: (-.3,8)
I (N I I I
Compule a solution to the equation.
[ ] ExE
19n Reversa
:? 1.7807764064
| % JueFT=] RT=J | | |
Repeat the procedure for the other point of intersection.
=X 1: 1.7807764064
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)

A5 = 28K 636G

1gn Keversa

1: -. 280776406405
| % JeFr=|{RkT= | | | |

0
i

Recall Y to compute the slope at an intersection point.

= 3: 1.7807764064
= 21 - . 288776406405
1: T pERA2 T
(% [PeaR] EG | Y | F ] NG ]

Take the derivative with respect tox.
'X_[ENTER] 3 e T
[d/dx] 1: -1.12316562562
% |PpaR | EQ | ¥ | F NG

Evaluate at one intersection point.

The last root computed remains assigned to x. The slope of the line can be
read from the given expression.

3 31 -, 280776406405
2 -1, 12310562562
"% |FFak | EG | ¥ | F | ANG

Use the ANG function to compute the angle.

=ANG = |3: 1.78A77640864
2: 288776406405
1: —6@ 1164484136
[ % [PPrek ] EC [ ¥ | F | ANG |

This is in degrees.

Ready the stack to operate on the second intersection point.

[DROP] : '1
2t

DROP 1: 7807764064
T T R
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Compute the derivative of Y.

Assigning a numeric value to x at this point will mean a numeric value for

the derivative when it is computed.

'X [sTO]

1
<
1

|

The derivative is computed with respect to

'X [ENTER]
[d/dx]

Enter the slope of the line.

3 |ENTER

cH
¢
[ [PPAR] EG | % | F | ANG |
3:
23
1 1 2ERAR
% TPPAR] EQ | ¥ | F ] ANG |
X.
3
{: 7.1231056256
% [PPAR] EQ | T | F | ANG |
cH
2: ?.1231856253
8 VPR L EQ | % | F | ANG |

Again use the ANG function to compute the intersection angle.

SANGE

3:
2t
1: -108.443524758
| % [Pk EC [ ¥ | F | ANG |

Purge the variables created in the last two

{F Y X ANG [ENTER] [PURGE]

24  Angle Between Two Curves
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Differential Calculus

This section includes problems of differential calculus, including function
minimization, computing tangent lines, and several methods of implicitly
differentiating functions. Several important features of the HP-28C are
highlighted — creating user-defined derivatives, keyboard algebra for solv-
ing complex problems, and effective use of user flag 59 (the infinite result
flag) and flag 35 (symbolic evaluation of constants).

Differential Calculus 25



Minimize Perimeter

Science, engineering, and business share the need to find the minimum
values of given functions as some parameter changes. In this section, the
function represents area and the parameter is the area’s perimeter.

Example: To minimize material expense, find the mimimum amount of
fencing required to enclose a rectangular plot measuring 200 square feet if
one side is next to a building and needs no fence.

Let the sides be called x and y withy parallel to the building. The perime-
ter to be minimized is
P=2x+y.
The area of the plot
x*y =200
gives the relationship betweenx and y.

Clear the display and make certain variables X and Y have no assigned
values. Clear flag 59 to ignore ’Infinite Result” errors while plotting,

[CLEAR| [MODE| 2 =FIX= [<>] 43

X 3

'Y {:

59 CF

Enter the perimeter.

1 2x¥X+Y ‘g:
21
1: '2%K+HY !

Enter the area.

"Xx¥=200 4
2t 2ENHY
1: 'HxY=280"

Isolate X.

'X [ALGEBRA] =ISOLZ 3: '
2: '2ER+Y!
1: '208s% "
TavLE] IS0L [ GUAD | SHOMW [OBGET|ERGET]
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Store the equation for X

'X [sT0]

3
2
1 ' 2EREY!
TavLE] I50L | CuaD | SHOM [OEGET]ERGET]

Evaluate the expression for the perimeter.

EVAL

=M
we ae o0

! 2*(2@@!"‘;’)+YJ
TAVLE| I50L | GUAD] SHOMW JOESETIERGET)

This expresses the perimeter in terms of one variable.

Collect terms.

=ZCOLCT = g
15 '4aazv+vu
[CoLCT [ERFAN] STZE [FokM JOESUEERSUE]

Compute the derivative. Roots of this will yield the mimimum value of Y.

'Y 3
[a7ed] 15 - (40R/Y 2+ !
[CoLCT [ERFAN] SIZE [Fokt J0ESUE[ERSUE]
Plot the derivative to obtain a guess at the root.
=STEQ= 3:
'PPAR i
'Y ZINDEPZ [STEC: [RCEC |FMIN|FHA: [INGEF] DAL

The steps below expand the plotting area and draw the graph. If you have
no prior knowledge of the appearance of the graph, you may first wish to
plot the graph, modify the plottulg area accordingly, and then plot the
graph a second time (i.e. = DRAW = [ATTN], and then proceed with the steps
below).

H= |

N s B
i

o
Z|
Iy
/
\
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Digitize a seed for Y. Pick the guess near the positive root.

INS 3

ATTN 25
1- {19.68,8. BB)
[RCEC: | FHIN] FMAR [INDEF[[ERbL

Use the digitized value as a seed to compute Y.

[eow £ SSOLVR= O
I:EI"O

: 20.60
I T N I I

|:| i
Ifll\ IIHI
IHII

The side parallel to the building must be 20 feet long.

Recall and evaluate the expression for X .

X 3
; 2222
ST T R e R

Forty feet of fencing is required (two ends ten feet long, and one side 20
feet long).

Purge the variables created in the example.

(X ¥ PURGE]
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Mimimize Surface Area

This section uses differential calculus to minimize surface area. An appli-
cation of this solution is in manufacturing, where minimization can reduce
wasted raw material and increase profit. Other problem specifications
may, of course, add constraints or considerations to the final real-world

solution.

Example: In the problem below, user flag 35 is set to maintain symbolic
constants until the end of the solution.

Find the dimensions of a one liter can that has the minimum surface area.

The surface area of a can (a right circular cylinder) is

A =27R?*+2nRH .

The volume is
V =xR*H

where R is the radius and H is the height of the can. To minimize the
surface area, the area is expressed in terms of either R or H and that
expression is then differentiated with respect to that variable. Proceed by
isolating H in the volume equation and finding the root of the derivative
of the area taken with respect to R.

Clear the variables R, ¥, and H, and set flag 35.

(R V H [ENTER] [PURGE]
35 SF [ENTER]

Factor out 2xR and key in the expression for the surface area.

—RWE

' 2xmxRx (R+H -EB&

%: 12%m*R*¥(R+H>'
Duplicate the expression and store a copy for later use.
ENTER| 'A gi

%i 12¥mER* (R+H>'
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Enter the volume.

' V=mxR* 2xH

Isolate H .

"H [ENTER]

|[ALGEBRA] =1SOL

Il
1

Storeitas H.

"H [s10]

Now substitute for / in the area equation.

EVAL

Take the derivative with respect to R .

'R [ENTER]

Collect terms.

=COLCTE=

HIH

4:

3:

21 'E*H*R*(R+H)'
1: V=r*R~2xH"'
A

3: '2%¥mERE(R+H) !
23 '"W=rxR*~2%H"
1: IHI
kH

2t '2ETER*¥(R+H)'
1: 'NoCTERN2

[THYLE [ IS0L | GUAD] SHOM [OBGET[ERGET|

3:

2:

1= '2*w*R*(R+H)'
[TAVLE] I20L | GuRD[SHOW [0BGET[EXGET)

2
: 'E*W*R*(R+Vf(n*R*2))
THYLE] T30 [ Gunn | sHol [0EGET|ERGET]

12 '2xwx(R+VY/(mER"~2))+2
*TER*¥C(1- V*(w*(E*R))/
(T*R~22"2

Immﬂllmlﬁﬂmlﬁﬂnﬂﬂﬂﬁlllﬁl

JCoLCT[ERPHN] ST2E [FoRH 0BSUE[ERSUE

18 '2%(1-2%(RM2¥WI(-2)
*REVET)ER2T+2% (R (-2
YEV MR ¥

Prepare to plot the derivative to obtain a guess for the root.

=STEQ=

30 Mimimize Surface Area
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[STEQ TRCEC [FHIN]FHas [INDEF| DRAl |
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One liter is the same as 1000 cubic centimeters. Enter the volume as
1000; the answer will be in centimeters.

1000 5
v %
STEC: | KCEC | FHIN|FRAz [INDEF]ORAM

Purge the existing plot parameters and expand the plotting area.

' PPAR
100 =*H
5

w

=
il e
i
e

1]

[Frik | hes | nnes [CENTE] s | EH |

To find the radius that minimizes the area, specify R as the independent
plotting variable. Clear flag 59 to ignore ’Infinite Result’ errors that may
occur while plotting.

R ZINDEP=

59 CF [ENTER]

Draw the graph and digitize an initial guess for the Solver.

Eﬁm...@ J[// “

Now store the initial guess and compute the root.

=SOLVR= M
=R= [ | =R= ero

=R= || ERE 13 5.42
G U (T I I .
This is the radius. Now find the height.
'H 3:
25 5.42
EVAL 1: Y (mER™2) "
T PR (5 TS [ T [l
EVAL 3t
23 S5.42
1: '19008-(rE29,.37) "
T T L [ e B
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Compute the area.

A 21 ' 1008/ (w*29,37) *
1: ;Eig§?=42*(g.42+vﬁgn
T T O G MO

Evaluate to a numerical result,

EVAL 21 ‘1868 (1¥29.37)"
1: '2xr#53.42%(5,.42+1060
/(T*¥29.373) "
I TN T N R
Reduce the expression to a real number,
—NUM 3: .42
.’125 '1&&8%11*29.3?)5

To check that this is a minimum, compute the second derivative.

903.58
2%( 1-2*(R“"2*|r)"(7%=.

SOLVE] I50L [CUAD | SHOM |

=RCEQ= %’ .
'R T
3
F

'1888/(r$29.37) '
993.58

SOLVE]ISOL | CURD] SHO |

The second derivative is positive; therefore the
root is a local minimum.

curve is concave up. The

Purge the variables created in this problem section.

{A H R V [ENTER] [PURGE]
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Lines Tangent To A Circle

This section demonstrates manipulation of equations using the algebraic
capabilities of the HP-28C. It is often necessary to compute the derivative
of a function that cannot easily be expressed in terms of one variable. In
this case we use implicit differentiation. This is the first of three methods
for implicit differentiation shown in this booklet. Problem sections "Impli-
cit Differentiation With User-Defined Derivative" and "Implicit Functions”
show two other methods.

Example: Find the two points on a circle of radius 1 that have tangent
lines passing through the point (2,2).

There are two expressions for the slope of the tangent lines — one from
the circle itself and the other from the point exterior to the circle.

Clear the working variables to ensure a symbolic answer. This problem
also demonstrates a simple error recovery procedure. To ensure that the
recovery works, turn on UNDO.

T
(Y R B A EQ X [ENTeR] [PURGE] §}
[MODE| = +UND = CEET (-0 JECER LA TI[+UND ] IR

The general equation for a circle is x2+y?~r?=0, where r is the radius.
Implicitly differentiate this equation.

Enter it for step by step differentiation. Note that "3" is obtained by press-
ing the key after the [ key.

18X (XA 24YA2-RA2 5:
1: AR (RAZHYA2-RA2)
A [-cro ] HLAST| [+ UND JEILTE
EVAL N
Ti ' aR(RAZHYA2)-BK(RM2)

T CHo ]I Las Tl uNo BT
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Step through the derivative watching for the term representing the dy /dx
term.

EVAL 2:
1: ! bH(X"E}+6H(Y"2) -aK(
RI¥Z2¥R™

[-CMD]I-LHSTI[*UND]m

One more step-by-step differentiation will generate the dy /dx term from
the 8X(Y"2) term in the expression.

EVAL %

'ORCHIE2ERN(2-1)+3K(
YI#2EY M (2-1)"
I [- M0 ] L AS T [+ UND ] IET

Now collect terms to shorten the expression.

[ALGEBRA| =COLCT= 2:

LR (RIEZER+AK (YD ¥2%Y
[COLET[ERFAN] SIZE [FORM [OESUE[EXSUE

This is a critical step. Replace the derivative sub-expression with a vari-
able that can be isolated. Count all characters, except parentheses, up to
and including the second partial derivative symbol. The derivative symbol
is the ninth item for making the substitution.

9 [ENTER %=
'DY SEXSUBZ 1 'AR(RI*2ER+DYE2EY !
[CoLCT |ERFAN] SI2E [FORM [0ESUE[ERSUE]

Evaluate once more to clear the last derivative.

| EVAL g:
1! '2*X+DY*E*?'
[CoLCT |ERFAN] SIZE |FORM [0ESUE[ERSUE]
Solve for dy
'DY =ISOL= g :
i: o (2ERY 2
E!F'El
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Collect the 2’s.
SCOLCT=

3
2
1 =R
coLcT[EsFan] ST2E [Fokit [MESUE[ERUE

This is the slope of any line tangent to the circle. Tangent lines that pass
through a point (A,B) exterior to the circle have slope (y -B)/(x -4),
where the point (x,y) is on the circle.

' (Y-B)+(X-A 3:
(e (o B B ey
[CoLCT [EdFAN] SI2E [FukM [oESUE[ERZUE]

This line must be a tangent to the circle; that is, the expressions for the
slope must be equal.

(=] [ENTER] 3!
i '=(RAYI=CY-B)/(X-A)"
[CoLCTEXFAN] ST2E FORH ] [EHELIE]
Use algebra to solve for y.
Y 2z
o 1: ;;$¥/Y*Y)=(Y-B)/(X—H
[CoLcT [ExFaN] ST2E [FORM J0ESUEJERSLIE]

Clear the denominators by collecting terms and multiplying through by
denominator terms.

ECOLCT=

=)
e s

;§>5=IHV<-H+X>*<-B+Y)
oL CT [EXFAN] ST2E [FukM [0ESUE[ERSLIE]

Extract the denominator term.

7 ZEXGETE

whie

L - H+x 1
[TavLE] TS0l [CeUiRn ] SHik) B GETIERGET]

Since EXGET ’consumes’ the original expression, a copy should have
been made first. It is easy to recover from the error.

2:
I: L X=INVC-ReROXC-BHY)
[TAvLR] T30L | Cend ] SHibd [DEGET|ExET]
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Make a copy and re-execute EXGET.
[ENTER]

Multiply through by the extracted term.

[x]

The denominator is now cleared.

ECOLCTE

e

'-X=INV(-H+X)*(-E+§T
"-A+
[THYLE| T50L | CEURD | SHOM J0EGE T[EHSET

23
13 - (K= (-A+X))=INV(-
X)*(-B+Y)*Y*(-H+X)B+

[TRYLE] TS0l | OUAD]SHOW JOEGET[ERGET)

=M

37 CCROROI=C-Ba
oL e N S12€ 1Fust [oESUE]EG U]

The following expansions distribute the x andy terms.

EXPAN =

SEXPANE

I

S EXPANE

Now collect terms.

COLCT
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P =(-A+X)EX=-BEY+YEY"
[CoLCT [ERFAN] STZE [FokM [0ESUE[ERSLIE]

' (A-Ry#R=-BxY+Y£Y'
CoLCT[ERFAN] STZE [FoRH JoBSUEJERSUIE]

il-‘NUJ
E aE Em Em

3t
2
1: 'A¥R-BEX=-BxY+Y%Y"'

[COLCTJEXFAN] STZE [FORM JOESUBJERSUE]

3
2
1 = Rh2HAER=Y 2 B*‘J
coLcTExFAN] SI2E [FokM [0ESUEJERSUE




]

Gather like powers.

First gather powers of 2.

[ENTER]

1 =EXGET

1

(-]

COLCT=

(]
i

Now gather powers of 1.

[ENTER]
7 ZEXG

IHH‘

[+]

OOLCT =

3:
B wameerzpy
[Twrir 5oL [cunD | sHon [ogGET[ESGET

2

- RA2+ARR R 2=V 2-B*
Y+x"2'
[TAVLR] 500 Jeeun [SHok [0EGET[EXGET]

o

'AEX=- (BEYI+X Z+Y" 2!
[CoLCTJExRFAN] SIZE [FORM JOESUEERSUE]

=0

P ARR=-(BRYIHR"24Y72.
[TRVLR] I50L | CUAD| SHOM [VEGETIERGET

=M

P RERIBEY=- (BRY)HR24
L T30 ] o [swoia JoE e TIEGET

] =PI

'AxX+BEY=K~2+Y" 2"’
[E0LET [exipan] ST2E TF ikt (06 SUE[ESUE]

The right hand side of this equation is 7. Make a substitution for the right

hand side.
12 [ENTER]

'R*"2 ZEXSUBZ=

This linear equation can now be solved for

Y SISOLE

'AxX+BxY=R"2"

'(R™2-A%RI /B!
TavLk] 150l | GUAD ] SHIM JOBGET[ERGET)
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Save this for later use.

'Y [sT0]

Enter the equation for the circle.
'X~2+Y~2-R"2 [ENTER]

Substitute in the expression for y .

EVAL

a0
*e un

[TRvLE] T50L [GUAD | SHOb [0EGETIERGET

3
21
1: | RA2+YA2-RAZ!

LravLE] 150l JQUAD | sHoM [oEGET]EXGET,

=

P IRAPHCCRAZ-AXR) B2
_RAEI

[TAVLE] TS0L [ CUAD] SHoK [0 GET[EHGET)

This is a quadratic equation for x, and is easy to solve.

'X

= QUAD

i

Shorten it by collecting terms,

=COLCT=

Duplicate and store this expression for x .

[ENTER] 'X [sTO]

13 '(A-B*2%(R"2-BY+s1*[
C(-CA/B*2%(R™2-B)) )"
2-4%((2-A-B*2%(-(A/B

[TrvLE] T50L | GUab ] sHow [oEGETIERGET]

13 " C(-(2#(2+2%A~2%B~(
=22)*#((INV(B )*R“E)“E
-R*233+(-(2¥A*B" (-2

EEIIBEEDEEE!EHIHEEEBIIHI

1: (2*(2+2*H“2*B“(
INY(B)*R™23"2

-RAE))+( (2¥A*B~(-22
[COLCT [ERFAN] SI2E [ FORM J0BSUB]ERSUE]

In the Solver, you can assign the numbers needed to complete the given

problem,

SOLV| =STEQ=

=S0LVRE=
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2
LA L6 Lk | 31 Jeurks] |




The exterior point is (2,2).

2 SAS TR SR T
1:
[ a1 & | & | s1 lewpks] |
2 £BS !.m—1
i:
n““mﬂa—J
The radius of the circle is 1.
1 =R

;

—

There are two roots, one for each point on the circle.

=
il

|

S1

Solve for the x coordinate.

= EXPR=

‘IHH
_i

Now solve for the y coordinate.

Y= 3:
2: 8.9
1: '(R™2-A¥X) /B’
P VS T e e TR
—NUM

Repeat the process for the other point.

[soLv] ZsOLVRE a:
2: @.91
1: -@.4
Th [ B | k| 51 lenpks] |
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Solve for the x coordinate.

1

EXPR= =

Now compute the y coordinate.

Y

|

1
11

The points of tangency are (0.91,-0.41) and (-0.41,0.91).

The general solution approach solves the problem for any circle and any

exterior point.

Purge the variables created in this problem section.

{X Y A B R sl [ENTER] [PURGE
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Implicit Differentiation With User-Defined
Derivative

This section uses a user-defined derivative for implicit differentiation of a
function. Refer to the Reference Manual for additional information.
Example: Given the cquation\/; +\/)T =3, express —E?x- in terms of x
andy.

Create a user-defined derivative for the function y (x ). User-defined

derivatives must take two inputs from the stack; the definition below sim-
ply discards them and returns the variable DY, which can be isolated.

CLEAR gz
21
« — ¥ dx 'DY [ENTER] 1: €« % x dx 'DY' »
Store it in the variable derY .
'der¥Y g:
2:
1:
Enter the Y variable as a function of X.
'WX + ¥ (X) - 3 [ENTER] 4
21
1: "IREY (K-8
Differentiate with respect to X,
'X 31
2:
1 'INVC(2#HK)+DY~(2%IY(
®iy!

Solve for DY . Remember that DY represents %

'DY [ALGEBRA] =ISOL= 2
1

;; g INVC2#IXO* (2% TY (X
[TRYLR] IS0l | GUAD | SHOM JOEGETEXGET]
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Simplify to get the solution.

=COLCT = g:
1: = (TYERY AR
[COLCTJERFAN] STZE |FORM J0S UE [E 4508

Purge the user-defined derivative created in this example.

'deryY
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Taylor Series Error Term

Many physics and engineering problems are made solvable by expanding
non-linear terms in a Taylor series. Ignoring the quadratic and higher
degree terms leads to an approximate solution that is good for *small dis-
placement’. This problem shows how to find the range for which the error
in a Taylor series expansions stays small.

Example: Find the range of x for which the error in the 3rd degree
approximation of sin(x) is less than .1.

The Taylor Series error term is
n+l
R —fin+1) x"*
=1

The exponent of f indicates the order of differentiation.

It is important to recognize that the error is the next term in the expan-
sion. Since the ’sin’ function contains only odd powered terms, look at the
difference in the 5th and 3rd degree approximations. For the ’sin’ function
the n +1 derivative has a maximum of 1.

n+l

Thl.lS R(n+1)<m .

Compute the 5th degree expansion.

Set the angle mode. Key in the function and the variable name.

[CLEAR] [MODE| =RAD= ETS
'SIN (X ¢l PSINGES.
X 510 |qzep) sc1 [ ena | vec [EIUR)
Key in the order and find the Taylor Series.
5 [ALGEBRA| =TAYLR= 2:
1X-0.17#X"3+08.81¥X"5
(TAvLE] T30l |QUAD] SHoM [0EGET[ERGET
Now compute the 3rd degree approximation.
'SIN(X 3:
X 21 'X-B.17%{1340. 015K,
3 STAVR= [TRILR] 130 CunD|SHoLd [0pGET[EGET]
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Make a copy and store this result for later use.

[ENTER] 'APS [STO] 3:
21 '%-0, 17%X73+0. Bl
1: - '%-@.17ax~3"
[TavLk] T50L ]G] Shobd [oBGET EsGET

Subtract the two approximations.

(-] 21
[ %8, 17557348, B15%"5
mmmnmnmlénmnﬁmnlmumllnml

Collect terms. The remaining expression is the 3rd degree error term.

=COLCT= %:
i: ', B1ERAS
CoLCT[ERFAN] ST2E |Foktt [oesUE[ERSUE]
Set it equal to .1 and then solve for x.
1 [ENTER] [=] [ENTER] 3
1! '9. B1*X"5=0. 10"
[COLCT [E:iF AN] STZE FukM [OF SUB[ESSUE)

There are several ways to solve for x. The ISOL command will isolate x
in the displayed equation, and result in a generalized expression forx. A
second approach is to use Solver to compute x . A third approach would be
to use the laws of algebra and the capabilities of the HP-28C and solve for
x ’long-hand’. All three methods are shown below; the third approach is
included to illustrate the power of FORM in the ALBEGRA menu.

Choose any one of the three methods which follow, and then proceed to
the "Conclusion" portion of this problem.

44  Taylor Series Error Term



Method 1: Using ISOL

Find the generalized expression for x. The status of flags 34 and 35 will
affect the next display. The expression below is the result with both flags
34 and 35 clear. Refer to the Reference Manual for a discussion on alter-
nate settings of these flags. With flag 34 set, you would immediately
obtain the result 1.64 found after the next several steps.

Sy

'X ZISOL= 23
= 1: 'EHF;(E%EIB,G.EB)*MK

Assign a value of zero to the arbitrary integer n! introduced into the isola-
tion of the variable x.

0 T
'nl 1: 5§§§f§2133’5-233*“1/

TivLE] 1501 ] GUAD|SHOW [OBGETIERGET]

Evaluate the expression.

3
1 (1.64,0.00)
[Tavik] 150l JouAD[SHoW JOEGETIEXGET
Extract the real component of the complex result.
REAL| =ABS= 3:
2:
1: 1.64
hes [SIGN [MeNT[xFoN] 1 |

Now skip to the discussion and keystrokes labeled "Conclusion" to com-
plete this problem.
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Method 2: Using Solver
This method illustrates a simple approach to solve for x with the Solver.

Proceed to the Solver menu and store the equation.
SOLv| =STEQ= ]E:

=SOLVR= F
I | % JteFr=frr=] | ]

Solve for the variable x .

[]

|

NI

X

1: 1.
% MEFT=lkr=1 | [

glgn Eeuersa!
64

Now skip to the discussion and keystrokes labeled "Conclusion" to com-
plete this problem.

Method 3: Using FORM and algebraic manipulation

This method illustrates the use of FORM and the keyboard capabilities of
the HP-28C to manipulate algebraic expressions. While the two methods
above are more direct, this alternative follows a traditional "paper-and-
pencil’ approach towards the solution.

First, compute the fifth root of the equation.

'1+5 [ENTER] [7] 2:
[: (B Q1xx05)~(1/5)=

8.108
[COLCT [ERFAN] SIZE [FORM

In FORM, first distribute the left hand exponential, and then associate the
5 and 1/5. Then collect terms in the expression.

<COMIIB (X053 (152 )=
8.81°C1/55)5
CoLcTlenPAnLEVEL [E4GET] () | D) ]

= FORM=

Move to the exponentiation sign.

( (B, B1% (X5 IWC1/5))=(
8.617(1,55)3
CoLcTlesPANLEVELJERGET] [€) | [3) |

|

I
t?
1

g
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Distribute the left-hand exponential.

I
1

o
I

Now associate the 5 and 1/5 in the expression.

1
i

|

Exit FORM and collect terms.
[ATTN] ZcoLcT

1

Solve forx.

'X =ISOLE

—_—

(€9.017(1,52) ((H"‘ﬁ}"‘(
<95)))=(B8.81"¢
mmm

(A, @817 0190 0% (X“‘E)i(
1-5)30=(A.81"C1-5)))
coLCT [ExFAN]LEVEL [ERGET] [€1 | [31 ]

CECB. 811,50 0%CK (5*(1
5:-:- ) CA.0817¢C1-35)>
mmm
3:

28

1= 'a. 38*X a 63'
[CoLCT [ERFAN] STZE [FORM [0ESUEERSUE]
3:

2:

1: 1.64
TRLE] I30L [CUAD|SHOW [0EGET]ERGET]

Conclusion: The variable x has now been isolated by one of the three
methods described above. Proceed with the remainder of this problem

solution.

The *sin’ is symmetric so R3<.1 for —1.64 <x < 1.64. Check the result in

Solver.

= Aps=

Compare the approximation to sin(x ).

'SIN(X

1.64
'R-B.17%X"3'
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(=] [ENTER]

3

2 1.64
1@ '¥-0.17%X"~3=5IH(X)"'
I [ ) D S P
a:

H

1: 1.64
| % JLEFT=[RT= | | [

i

[
"

“m_-_‘

I

1 8.908
I (V0 AT I N O

1 : .00
“[!!IE--_

Clearly the difference is .1. Now plot the two equations. Purge the current

plot parameters and draw the function.

' PPAR [PURGE]

S DRAWS=

[H\ i/-‘\ Z
7 \:../] LN

If the Taylor series approximation is necded for values of x that differ
significantly from 0, the center of the expansion should be shifted, as
demonstrated in the tangent line problem in the next section.

Purge the variables created in this problem section.

{X APS EQ [ENTER|
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Tangent Lines and Taylor Series

This section demonstrates how to use the first order Taylor series to gen-
erate a tangent line equation. The example problem expands about a
point other than the origin.

Example: Find the equation of the line tangent to the sine curve at
X=1

Clear the stack. The first degree polynomial Taylor series expansion is the
tangent line at the point of expansion.

Enter the function to be expanded.

"SIN(X [ENTER]

=W

'SINCRY!

Change the variable to correspond with the new center. That is, ¥ =0
corresponds to X =1.

'Y+1 %:
21 "SINCK)!
i YL
'X 4
2t
11z 'SINCKY!
This is the function to be expanded.
EVAL 4:
3:
28
1 'SINCY+1)
Enter the variable and the degree of the polynomial.
'Y 4:
1 8t 'SINCY+1)
1: 1.608
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Find the Taylor expansion.

[ALGEBRA| =ZTAYLRE

This is the equation in Y,

X

i
i

Recall the change of variable equation.

'X [ENTER]
(=] [ENTER]

Clear the original variable change equation.

'X [PURGE]

Solve for Y.
'y

[ALGEBRA| =1SOL

Save the expression for Y.

'Y [sTO]

3:
2
1: '@, B4+, 54xY "
FTYLE] 1201 | CUAD]SHOM JOEGET e neeT]
3:
3 '8, 84+0. 54%Y"
l: |Y+1 1
e e e e
3:
2 '0.84+0, 5457 !
PR T S 0 ey
H
3: '0.84+0. S54%Y"
1: "Y+i=x'
T T T I
3:
2 '9.84+0.54%Y .
FTRTLR] T50L | CAURD ] SHOM [OEGETIERGET

3:
23
1: '@, 84+8. 54"’
TAVLE] I50L [ CURD] SHOMW JOEGET]ERGET]

Change back to the original variable and simplify the resulting expression.

EVAL

EXPAN =

50 Tangent Lines and Taylor Series

3:
21
i: '9, 84+0.54%(X-1)"
[TAVLE | T50L ] GRURD ] SHOL [OEETIERGET)

M

: ;@.s4+ca.54*x-a.54*1

[CoLCT[ExF AN] STZE | FORM |0BSUEE4SUE]




=COLCT =

Jil[
il

Save a copy of this expression for the next

'STN

Plot the two equations for a quick check.

'SIN(X
=

=S STEQ=
' PPAR
"X ZINDEPZ
=DRAW=

o L RELU Y]

'0.30+8.54%X"
COLCT[ERFAN] STZE [FORM JOESUE[ERSUE]

problem section.

3:
2
1 'B BB-HB 54*)4'

3:
2
1: '0.30+0.54%¥=STN(X)'
[COLCTEXFAR] STZE JFORM J0ESUE[ERSUIE

Purge variables X and Y for the next problem section.

[ATTN] *X [PURGE] 'Y [PURGE]
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Normal Line
In the previous section, the equation for the line came as a result of a Tay-
lor series expansion. This section continues by manually assembling the

expression for the normal line.

Example: Compute the equation of the line normal (perpendicular) to
the sine curve atx =1,

First recall the equation for the tangent line.

o TR %
USER] =STN= i: 'Q, 30+, 54X
ENTER T I T I N

We need the value of the function atx =1. Evaluate the expression.

: 2 8:35:8: 343
' : . . '
X 1t @. 54
EVAL [ [FFAR] EQ [ STN] ] |
This is Y,
Since we want symbolic solutions purge the value of x .
X 3: 'Q.30+0. 54%X "
%E '8.36+8., 53*&;
I 3 N T N

The general point slope formula for a line is
Y -Yo=m (X -X,) .

Y, is on the stack. Form the left hand side of the relationship above.

Y 31 '@.30+0. 54%X "
21 '9. 30+0. 54X
SWAP 1 'y2p.84"
[-] 707 O T T R R
Now form the right hand side. Bring the original line in position to find
the slope.
2 0.30+0. 2.3%
' : 'a. B !
X T T
[Pkl Ec [STN] T 1
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Find the slope by taking the derivative.

(d/dx] 3: '9.30+0.54%X"
e 'vi5.84"
T I T I I

This is the slope of the tangent line. The slope of the normal line is

1
m,=-—.
my
Compute m,, .
3: '0.30+0.54*X"
ﬁ 5 YD, 84
1: -1.85
[FEak L EC [ sTw] 1 1 ]
Now compute the right hand side.
'X-1 %: 'Y-8,84"
: -1.
1: '®-1'
T EE=N AT I N
3 'D.30+0. 54K’
2: 'Y-9,84"
1: '-(1.85%(K-1))"
I N T I I
Form the entire equation.
[=] 2: '8, 30+, 54%%'
1: ;Y—B.84=-(1.85*(X-1)
PPkl EC JsTe] 1 ] ]
Solve for Y.
'Y [ENTER] 3:
= = 2: '0.38+0.54%K"
[ALGEBRA| =1S0L = 1t '-(1.85%(%-1))+2.84"
[ThvLE] I30L | CURD]SHOI JOBGET[ERGET)
Simplify the expression.
SEXPANZ 3:
2 '8, 30+8. 54%K"'
1: '-1.85%(X-12+8.84"
[COLCTIERFHN] SIZE [FORM JOESUB[ERSUE]
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SEXPAN= 2: '0.30+0 :
ol (855K 1 80k e
[COLCTJERPRN] ST2E [FORM [0BSUE E 5 UE]
=COLCT= 3
21 'B 30+8.54%¥"
1= 2.69-1,85%X"
Emmmmm
Plot the resulting function.
"SIN(X a: 5. 20
= ! +8,. 545X
[=] 1= '2 69- « B5¥K=5TNCX
Eﬂ!mmm
= STEQ= -
'"PPAR fﬂ i/"—\ z
"X ZINDEP= \—4 N
SDRAWE

Purge the following variables created in this section.

{STN EQ PPAR [ENTER
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Implicit Functions

The Implicit Function Theorem is, perhaps, the most elegant of three
methods shown for implicit differentiation. This section demonstrates a
more general method for finding the equation of a line than the previous
sections.

Example: Find the equation of the line tangent to the function
x2+xy -3=0atx =1

Begin by defining a function to compute the derivative of a general func-
tion F (x,y). The formula, a result of the implicit function theorem, can be

used as long as % #0 holds.

Purge the variables to be used to ensure symbolic solutions.

{X Y y x [ENTER] [PURGE] [<>

Lo AoLI Y

Enter the function for computing implicit derivatives.

« — a'-gX(a)d9Y¥ (a

=W
e =8 u

: + a '-ak(arsa¥iar!

Store the implicit derivatives function.

'IMP

=00 p

Enter and store the general formula for a line.

'y=mx(x-X)+Y 4:

3:

-H

1: 'y=mE(x-¥I+Y¥!'
' LINE &

=H

21

1:
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The function must be expressed in terms of X and Y due to the use of

those variables in the function IMP.

'XA24XxY-3

'"F [sTO]

Now find % in terms of X and Y.

1
T
1Kl

|

i
=
o
i

Evaluate the expression until all the partial derivative symbols are gone.

EVAL

EVAL

EVAL

=00

(IR TRT]

'RA2+KEY-3!

=00

e

' RAZHREY-3!
I =TT T I

=N

"= CAXCRM2+XEY I /A (KN
2+XxY2) !
L F _JLINETIME | 1 1

2

—
e an

"= (ARCR2I+HAR(REY DD
LAY (K 20 +aY (REYDI DD !
I TS T3 T I

18 '—(CaK(XIx2eX~(2-10+
CAXCHIEYHXEIXCYIIIAC
SY (K)#2¥X~(2-1)+(aY¥(
R F 6113 8 1) P P e

=0

"= ((2¥R+Y IR

A R D T (e (e T

This expression for the slope of F (x,y) at any point on the curve must be

the slope of the tangent line.
'm
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nhw

| M | F JuINEJIMP ] | ]
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Now determine the value of Y that corresponds tox =2.

Solve for Y.

'Y [ALGEBRA| ZISOL

'Y [sTO]

Ml
e s un

'R2+REY-3
T s R T I8 ] B 8

ed

=00

I T (T I I

..i

i:
T T ) N S N
1 '442%Y-3"
3:
21
1: -9.50

[TAvLE] T50L [ CeUinb | SHOb JoB GETIERGET]

=M

[TAVLE] IS0L | QUAD] SHOW JOEGET]ERGET

With the coordinates of the point at the tangent line and the slope of the
line in terms of those coordinates, evaluate and simplify the formula for

the line.
USER] ELINE=

EVAL |

nhw

'y=mECx-KI+Y'
| v | ® [Ec [ M | F [LINE]

[2
1

'y=- ((2%X+Y I KE(x-20
J=0.506'

L v 1 ® Jea | M | F JLINE]
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EVAL 2
1

éﬁgafl.?S*(x—?))-
I N N T A T

Use EXPAN to distribute the constant.

[ALGEBRA| = EXPANZ g:
1 'y=-1,75%(x-2>-0.58"
COLCT |EAFAN] SIZE [FORM [OESUEIERSOE
= EXPAN = 2:
1: 'uga!.?ﬁ*x—-l.?S*E—
[CoLcTee aN] S12€ [Fok JoESUEENSUE |

Finally, simplify the equation for the tangent line.

=COLCT= 3:
1: 'y=3-1, 75%x"
[COLCT JERFAN] SIZE |FORM J0ESUEJENSUE

Purge the variables created in this problem section.

{Y X EQ M F LINE IMP PURGE|
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Integral Calculus

This section solves a number of problems of integral calculus, including
integration of simple differential equations and computation of arc
lengths, surfaces, and volumes. Both symbolic and numerical solutions are
demonstrated with appropriate use of system flags.
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Integration and Free Falling Body

This problem section demonstrates derivation of standard equations of
motion through simple integration. The importance of the constant of
integration is made clear, and how that constant is incorporated into the
solution provided by the HP-28C.

Example: A stone is dropped from a bridge 100 ft above the water.
Compute how long it takes to reach the water and its final velocity.
From Newton’s 2nd law

F=mx .
The only force acting on a falling body is that of gravity.

F=-mg
Combining these,

X=-g.

This is the equation of motion for a freely falling body. A well-posed
problem requires two initial conditions, the starting position and velocity.
The problem then may be solved by integration.

This solution approach plots the final equation to facilitate root finding.
Start by configuring the plot parameters.

CLEAR
' PPAR
100 =*H= [STEC: [KCEC: | PMIN|PMAY [INDEF| DRk |

nhw

-1

Plot the displacement as a function of time. Let TM represent the time.

'TM =INDEPZ= g J
i:

[STEC JRCEC: [FMIN]FMAY JINDEF] DRAL ]
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Start by integrating the above equation. Let GRV be the acceleration due
to gravity. Since the expressicn to be integrated includes no 'TM’ terms,
the specified degree of the polynomial is zero.

'-GRV 3: "-GRY'
'"TM ' 4 B, b
0 [ENTER] [STEC: |RCEC |FMIN|FHAs [INGEF[DRAM |
n F J
1: - (GRY*TM) '
(STEC: [KCEG: | PMIN] FMA: JTNDEF| DR |

This is an expression for the velocity. At TM = 0 the initial velocity is VO.
Vo

'~ (GRVETM)+VB'
STEC |KCEGe | FMIN] PR JINDEF]DRAb |

IHNUJ
by =5 um mm

Store this for future use.

'VEL %
1:
|STEC: [RCEC [FMIN[FHMAR [INDEF| DRl |

Now recall the velocity and prepare for a second integration. The
integrand includes "TM’ to the first degree, so a’1’ is specified for the last
parameter to the integration.

SVELS 3: - (GRV*TM>+vB'
'TM $i 1150
1 |ENTER BT T T e e R I
(1]

3

1t 'V@xTM-GRY/2¥TM 2"

T Y I N

This is an expression for the displacement. At TM = 0, x = X0.
X0

2:
1: 'veTM- GRY-2xTM*2+X0
TN T A I O
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To put this in the standard form, use the expression manipulation capabili-

ties in FORM.
ALGEBRA| =FORM

Move the cursor to the minus sign.

LRI
:
i

g THMY= C(GRY-2)%(THM~
253 85%0)

COLCTIERPANILEVEL JEXGET] (€] | [3] |

CCCVOxTMDRC(GRY 22 % (TH™
23 22+K@)
COLCTJEXPAN]LEVEL [EHGET] [€1 | [3] |

Commute the expressions about the minus sign.

l

-;:E"I:'ME (DR'\I’S’E)*{TM“E) Jacve
o0 [ €3 [ €M ] s ]| €n | > |

Exit FORM, make a copy, and save the expression for distance.

[ATTN] [ENTER]
'DST [sTO

-
I3 |- CGRV/25THA2)+VD¥TH
[cocrlesan] 126 [F okt [0BSUEER2UE

Store the expression for use in the Solver menu.

=STEQ=

=SOLVR=

whw

In English units the acceleration due to gravity is 32 ft/sec/sec.

32

LU

|

GRV

1

The bridge is 100 feet high.
100

1
i

|

integration and Free Falling Body

—

[ GEv | TM | Vo | HO Jexrk=] |

1:
[ GREY ] TH | vo | R0 [EnFRs] |

—




Since the stone is dropped, the initial velocity is zero.

0

I
1

:l

Evaluate the expression EQ.

EEXPR==

[ GRY | TH | Vo | Ho JeEXFR=] |

'-(16xTM 2)+188"
[ GRY ] TH | vo | #o Jexpk=] |

To find the time required to hit the water, find a root of this equation.
Digitize an initial guess from a plot of the equation.

[PLOT| =DRAW=
W ... [<] [ns]

Assign the seed to TM.

[ATTN] [SOLV] ZSOLVRE

1
—
=
il

Solve for TM.
[ ] EWME

B

| ==

1 ‘- (16%¥TM 22+1688"
AT T T T G

ero
: 2,50
mmmm-J

The stone hits the water after 2.5 seconds. To find the velocity, recall VEL

and evaluate it.

SVEL

1

3: '-(16¥TM"2>+188'
2: 2.08
1: -84.84
TR [T e T R

The stone is falling at 80 feet per second.
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By changing the initial conditions, the equations of motion developed in

the previous example can be applied to a r

Example: A stone is thrown straight up
tial velocity of 70 feet per second.

ock thrown straight up.

from ground level with an ini-

Compute its peak, the time elapsed until it hits the ground, and its final

velocity.

Fetch the general equation for distance traveled.

CLEAR

=DST=

2
1

;gégRV/E*TH“2>+va*Tn
| 11 | vo | %0 | GkY | EQ | DST |

Enter the SOLV menu and store the equation for analysis,

SOLV| ZSTEQ=
=SOLVRE

3
q
I T T T T

e
i
1

e initial position is ground level or x =0.

R

S—

The initial velocity is 70 feet per second upward, and therefore positive.

70 =Ew=

?_EEI-HE_

1:

|

LRy L T4 ] vo | 20 Jenfk=] |

The plot parameters were set in the previous problem. Plot both the velo-

city and the distance equations.

2
1

"= (GRVY/2%TH"2)+VB%TM
+XB=- (GRV*TMI+VY@'
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The velocity is the first derivative of the distance; therefore the root of the
velocity equation corresponds to a maximum of the distance equation.
Digitize the roots of the velocity (where the straight line crosses the x-axis)
and the distance (where the curve crosses the x-axis for the second time).

<] «.. [1] [Ins]
e« [>] [INS

ATTN

: (2.38,-3.237
1- (4.45,-3.23)
[STEC |RCEC |FMIN]FHAY [INDEF] DRk |

Recall the equation for velocity and save the equation for analysis.

SVELS
soLv] EsTEQ=
=SOLVRE

2. 39, 3 232

3:

2: (4.4 235

1: BT T WL

TR T R TR TR T

3:

2 (2.50,-3.23)
. - [ het=11

[ GRv | T | vo Jenek=] 1 |

J

Enter the initial guess for the root and solve for TM.

[SWAP] ETM= [ | ETM=

aro
1: 2.19
| GRY | TH [ YO [exFR=] | |

After 2.19 seconds, the stone reaches a maximum height. Recall the dis-
tance equation from the User menu and evaluate to find this height.

EpsST=

EVAL

The rock reaches a height of 76.56 feet.

2: 2.19
1: ;;éQRVKE*TH“E)+VB*TM
[Tt | Yo | #o | Gkv | EC | DST

(4.435,-3,23)
2.19

76.56
[Tt | v0 | %0 | Gk | EG | b3T |

nhw

Now drop two numbers from the stack and fetch the distance equation for

analysis,

(DROP]

(4.45,-3,23)
' (GRY/23THA25+VB%TH
+X8"'

[ Tt | vo | ®o | GRv | EQ | DST |

2
1
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=STEQE g:
=SOLVR= 1: (4.45,-3.23)
| GEv | 1M | vo | %0 JeNFR=] |
Enter the guess and solve for the root.
=M= [ | ETM=
ero
4.38
mmm_

The rock hits after 4.38 seconds. Note that this is exactly twice the time
required to reach the maximum height. Therefore the time spent going up
is equal to the time spent falling back to the ground. To find the final velo-
city recall the velocity equation and evaluate.

EVELS F3=
1' - (GRV*TH)H’B
m—_--
EVAL 3:
2: 4.38
1 H -73.80
L [ R R R R

Note that this number differs from the initial velocity in sign only. The
rock’s final speed is the same as its initial speed, but it is traveling in the
opposite direction.

Purge the variables created in this problem section.
{TM EQ VEL DST GRV X0 VO PPAR
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Double Integration

This section uses both symbolic and numerical integration to solve com-
mon problems of integral calculus.

Example: Compute the area between the line
Y =x
and the parabola

Y =x2.
0=
The area may be found by computing the double integral f f dy dx.
1 43

To insure a symbolic answer purge the constant and the variable of
integration.

{C Y [ENTER] [PURGE]| [<>

Lo LA OVE
ue aa 5m 88

The next four displays show the calculator steps to compute f ¢ dy where

¢ =1. Because the result is simply v, you can choose to skip directly to the
evaluation of the integral at its limits if you wish. If so, simply enter Y,
and proceed to the steps below beginning with "Enter the upper limit".

Otherwise, prepare the stack for a symbolic integration with a first degree
result. Start by integrating a constant.

'C [ENTER 4: -
'Y [ENTER g -2
1 1: 1.00
Execute the integral.
7 41

3:

2:

1: 'CEY!
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Eliminate the constant by equating it to 1.

1 [ENTER]
'C [s10]

Enter the upper limit.

"X [ENTER]
'Y [sT0]

4:
H
25
1: 'Cxy!
41
cH
2:
1: IYI
4:
H
-H
1: .YI

Save a copy of the integrand for later use and evaluate the integral at the

limit.
ENTER
EVAL

Repeat the process for the lower limit.

'X”2
'Y

4z
3:
2: |Y|
1: 1
4:
3:
2 1y
1: T

Place a copy of the integrand in position for evaluation at the lower limit.

EVAL

The difference is the integrand for the second integration.

[-]

68 Double Integration

nhen

IxAZI

l-'l‘\)m-l-‘:

1R LA




- - - .-

Key in the parameters for the integration.

(X 01 4
2; T aAm )
1: { ¥ 0.08 1.688 }
Key in the error bound.
.005 4:
[ENTER] T v
2t { X 0.80 1.88_>
1: B.81

Evaluate the second integral. The error bound provides accuracy to the
number of displayed digits (assuming 2 = FIX ).

4z
lI] 3:
2: 8.17
1: 8.37E-4
The area is 0.17.

Purge the variables created in this problem section.

(Y C [ENTER] [PURGE]
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Area Between Two Curves

This section provides a general approach for finding the area between any
two intersecting curves.

Example: Find the area inclosed by the parabola f (x )=x? and the line
yx)=x+3.

'g"he arca between two curves can be found by computing the integral
f | f (x)=y(x) | dx. In this problem the limits will be the intersection
a

points of the curves.

Enter and store the integrand.

'ABS (F-Y

Ll LAV T

'"ABSC(F-Y>'

' AREA

nhws

Enter and store the functions.

'Xn2

PO

IHAEI

'F [sT0]

Lt LVF BT
e un 8e an

'X+3

L Lo Y

'K+

'Y [sTO]

PO P
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Plot both curves to find the intersection points.

'F=Y [ENTER]

EVAL

=P

IF=YI

=00

'XA2=R+3 !

Store the equation and set up the plot parameters. If you have no prior
knowledge of the graph of the curves, you can first draw the graph, exit
and modify the plot parameters as shown below, and then proceed with a

second graph.

=STEQE
'PPAR [PURGE]

5 E*H=

3:
F
FFPRE | RES | AHES |CENTE] 3k | 30 |

The rightmost intersection point will become the upper limit. The left-
most intersection point is the lower limit. Draw the equation and digitize
the rightmost point first, followed by the leftmost point.

= DRAW =

W ... < s

ATTN

Use the Solver to refine the initial guess.

SOLv

=S0LVRE

1
x
i

|

i
>
1

|

Nk

- i

(2.38,5.58)
(-1.48,2.

[STEC |RCEC: [PMIN]FMAR [INDEF| DEAL |

L ALY V]

(2.38,3.58)
(-1.408,2.08d)
I (V35 S I .

=00

glgn HEUEFSE!

1: -1.306

I (Y T R . —_—
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Repeat the process for the upper limit.

7)]
’H

>

)

1
i

]

|

X

$1gn Eeversa!

2.308

N [T [ el Sy P

The limits are in the correct order for integration but the variable is miss-
ing. Manipulate the stack to put it in place.

'X [ENTER)]

3 [STACK] =

ROLLD =

Now convert the 3 elements to a list.

3 [usT]

—LIST=

Recall the integrand.
SAREA=

Put them in the necessary order.

Enter the error and integrate.

- 005

3: 1 1
£ 15
FOLLD] FICK |DUPN DROPNIDEPTHTSLEST
=H
2%
1: { % -1.30 2.38 >

PLISTILISTS] PUT | GET | FUTI|GETI ]

3:

21 { ¥-1.38 2 *
1: "RABS{F- ‘r‘)'
[ % |FFik ] EC | % | F [ARER |
3:

23 '"ABSLF-Y)!
1: £ ¥ -1.30 2.38 ¥
| % [FreR [ EC | ¥ [ F [AREA ]
3: '"ABSC(F-=-Y>!
23 { ¥ -1.28 2.308_32
1: B8.81
| % JFFuk | EC | ¥ | F [ARKEA |
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3:

] 2: 7.81
1: 6. b4
% _JFFaR ] EC | v | F | ARER |

The area is 7.81.

Purge the variables created in this problem section.

{(AREA F Y EQ X PPAR [PURGE
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Arc Length

This section demonstrates keystroke and programming examples for com-
puting arc lengths of rectifiable functions, The program ARC created in
the second example is used in a later section entitled "Surface Area".
Example: Find the length of the curve
/ 2 3

F(x)= %LZL
fromx =0 tox =3.
The arc length of a function is found by evaluating the integral

b
JV1+f(x)?.

First form the integrand. Enter the given function in terms of x.

[CLEAR] [<>] 41
"((XA2+2) 7 (3+2))+3 3
1: T(RN242)7(3,2) /3"
Specify the variable of differentiation.
"X [ENTER] 4
21 TRAH2IN(3/2) /3"
1 H 1 x 1
Take the derivative and simplify.
5
1 '2x%%1,50% (K 2+2)"
8.50-3"
Collect terms.
[ALGEBRA| =COLCT= g:
1: (24X72)"0. 505K
[C0LCT]ERPAN] ST2E [FoRr [oBSUEJERSUE
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Square the derivative, add one, and take the square root.

¥ 1 [+]

This is the differential of arc length.

21
1: '"J(SQCC2+K 270, 58%K
2+

oL T]EXFAN] STZE |FORH JOESUEIE:SLIE

Place the list containing the variable and limits of integration on the stack.

{X 0 3 [ENTER]

3:

28 'JSRE2+HRM2270. DO%.,
1: { ¥ 68.68 3.88 >
[CoLET [ERFHN] ST2E JFoRi J0ESUB[ERSUE]

Specify the accuracy and perform the integration.

- 005
n

The arc length is 12.00.

: 12.809
1: a. 66
[COLCT]ERPAN] SIZE [FORM J0ESUE[ERSUE]
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Example: Compute the arc length of f (x)=x2forx =0 tox =2.

For repeated problems, a simple program facilitates the computation of
arc length. The program below differentiates the function with respect to
X . This means that functions must be entered in terms of X .

The partial derivative symbol °8 is obtained by pressing the key.

2:
« — X "W(14+3X(x) "2 1: ; F x "T1+HAK G2
[COLCTJetPaN] ST2E | FoRM [0k SUEIERSUE

Examine this function to see that it is equivalent to the integrand in the
previous example.

Store the program in the variable ARC.
'ARC

3
i
[CoLCT[ERFAN] ST2E |FokM JoBSUBE:SUE

The program below first stores the error in the variable ER , then converts
the next three levels of the stack to the list required for integration. The
function is then brought to level 1 and operated on by the ARC function.
Finally the function is returned to its position and the error is recalled.
The integration completes the process.

« 'ER' STO 3 —LIST 1: ¢« 'ER' STO 2.8@
SWAP ARC SWAP ER 2LIST SWAP RRC SWAP
ER J »
J [ENTER [SLISTILIST] PUT | GET | PUTI| GETI|
Store the program ARCP.
'ARCP 3:
2
1:
SLISTILISTS] PUT | GET | PUTI | GETI]

Computing the arc length of any function now only requires placing the
correct information on the stack. This program requires the function on
level 5, the variable of integration on level 4, the upper limit on level 3, the
lower integration limit on level 2, and the error bound on level 1.

IX~2" ¥t 0 2 .005 =1 B.0606
g R
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Compute the arc length.
SARCP=

4,63

nhe

Purge the program ARCP and variable ER. Program ARC is used in the
next problem section. ,

'ARCP 'ER
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Surface Area

The function created to compute arc lengths can be extended to comput-
ing surface areas.

Example: Compute the surface area of the solid formed by revolving
the section of f (x)=x? between 0 and 1 about the x axis.

In this problem the integrand is expressed in terms of a function of x . The
surface area can be computed from

b
S =[2nf )V 1+f "(x)?.

The square root factor in the integrand is identical to the ARC function
used in the problem section entitled "Arc Length”. If you have not already
done so, key in the ARC function from the previous section. Enter the
integrand using ARC as a function.

4
' 2xrxFxARC (F 8
1: '2xw*F*ARC(F) !
Enter the function to be integrated.
'X~2 4:
3:
21 '2*%*w*F*ARCCF) *
1: 'Rh2!

Store the function by the corresponding name appearing in the integrand.

'"F [sT0]

[l VL0V I

'2¥w*F*ARC(F )

Purge the variable of integration to ensure that the name is not in use.

'X [PURGE]

MO0

'2¥w*#F*ARCCF) !
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Enter the variable of integration and the limits.

{X 0 1 [ENTER]

=00 R

'E*W*F*HRC(F)'
{ X 8.88 1.80 X

Enter the error bound and compute the surface area.

- 005
n

=P
TR TETR L]

3.81
8.82

The surface area is 3.81.

Purge the variables created in this problem section.

{F ARC [ENTER] [PURGE]
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Arc Length of Parametric Equations

It is often necessary to work with equations expressed in terms of a
parameter. The coordinates of a particle moving in a plane as a function
of time is a common example.

Example: Compute the length of the curve corresponding to the equa-
tions

3
x0=5 and y=CE0
fort=0tor=4.
In parametric form the arc length is
L-NaTrar.

Enter the integrand in terms of the differentials of x and y . This general
relationship can be used for any set of parametric equations with 7' as the
parameter.

3
'V (SQ (8T (X)) +SQ(aT (Y Tt ' F(SR(ATCR)I+SRCATLY
ENTER I
Save the parametric arc length in PARC.,
' PARC s
=H
2t
i:

Enter the parametric equations. Store them under the names X and Y as
expected by the PARC function.

1TA2:2 4:
' (2xT+1) A (322)+3 3t ‘TAsB
1: '(2%T+1)~(3,25/3"
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'Y [sTO]
'X [sT0]

L L TN Y

Now integrate with respect to T from 0 to 4.

First recall the integrand.

=PARC=

;{§$Q(3T(H) 2+SRCATCY

Key in the variable of integration and the limits.

T O 4 [ENTER 31

¢ 27 'J(SRCAT(RI )+SQCAT (...
1: { T 8.00 4,88
| % | v JFeRC) 1 1 |

Enter the desired error bound.

.005 31 'T(SRCATIRI Y+SQCAT (.
%5 {T0.00 4.60 }
A T N

Now perform the integration.

1 3t
2 12.808
1: 4. 86
B BT 7T R e EE
The arc length is 12.00.

Program PARC is used in the next section, and X and Y are replaced by
new functions.
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Surface Area of Parametric Equations

The function created to compute arc lengths can be extended to compute
surface areas. The surface area can be found by computing the integral

b
S = [2xYV dx?+dy?

Example: Dectermine the surface area of the sphere formed by revolv-
ing a circle about the x axis.

x(t)=2cos(t) y(t)=2sin(t)

These are the parametric equations for a circle of radius 2.

Note that the integrand includes the parametric arc length as a factor. Use
the function defined in the previous section in the integrand. Clear user
flag 35 for numeric evaluation of = when it is supplied as a limit to the
integration.

[CLEAR] 35 CF [ENTER] 3
' ZXIXYXPARC 1 ; 12EmEY#PARC!
| ® | v [PeRC] ] | |
Now enter the X and Y equations.
"2xSIN(T [ENTER] 3:
2: '2%m*Y*PARC
1: '2¥SINCTY!
| # | v JFRc] | [ |
'Y [sTO] 3
i: ' 2%y *PARC '
[ T TTT I R
12xCOS (T 3:
2: '2¥m*Y*PARC'
1: '2%C0S(TY!
I T T I
'X |sTO g:
1: ' 2 #Y£PARC
IR T T I I
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Key in the variable and limits of integration. With flag 35 cleared, = is

evaluated to its numeric representation. The integration that follows

requires a non-symbolic representation. Convert the parameters into a

list.

Tor 3 2ETEYEP
=_LsT= : ' 2% %Y *PARC !

3 =—LST= 1: (T 8.08 3.14 3

[PLIST|LIST] PUT | GET [FUTI]GETI]

Key in the error bound and perform the integration.

.005 [ENTER] ;
n : 50. 27
: @.25

:
[ZLISTILIST2] FUT | GET JFUTI| GETI |

Note that 50.27 is 4ar2.

Purge the programs and variables created in this problem section.

{X Y PARC [ENTER| [PURGE]
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Volume of Solid of Revolution: Method of
Shells

This section demonstrates computation of the volume of a solid of revolu-
tion by the method of shells.

The method of shells requires evaluation of the integral
b
J2meF (x )dx

Example: Find the volume of the solid formed by revolving the curve
F(x)= e
from x =0 to x =3 about the ¥ axis. Consider the behavior of the integral

as the region of integration is extended.

Form an algebraic expression for the integrand including a general func-
tion F (x).

4:
' 25X XXF 2
1: ' 2EmEXEF
Store the integrand.
'SHEL 4
2t
1:

Now enter the function. This must be a function of X as specified in the
volume integrand.

"EXP (-X"2

'EXP(-X"2)!

=MW
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Store the function by the name used in the SHEL program.

'F g
2t
1: N
Recall the expression to be integrated.
ESHELS g
1: ' 2ETEREF !
CF dewec | 1 1 1
Place the variable of integration and the limits on the stack.
(X 0 3 3:
28 ' 2¥mEREF !
1: { X 8.8 3.80 >
CF Tsweol [~ T [
Specify the error bound of the integration.
. 005 [ENTER] 3: 1oerEKEF !
2 ¢ X 8.00 3. go 3
G T I T N
Now integrate the function.
Eﬂ 3:
2 3.14
1: 8.082
G T I I N
The result corresponds to « within the error specified.
Reset the display to show four digits.
[MODE] 4 =FIX= 3:
28 3.1483
1 . B.8158
510 [§3E) sc1 | ENG | DEG QLU
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As expected, the accuracy is limited by the specification of two digits.

Perform the integration again, increasing the accuracy to produce four
digits to the right of the decimal.

SSHELE

T 9.9158
(X 03 it 5. boss
.00005 {7 ST AN NN S
(]

The desired accuracy was not achieved. By extending the region of
integration, it may be possible to generate more digits of accuracy.

SSHELS 3 9. 6002
{X 0 4 [ENTER] i . BEB2
.00005 [ENTER I T N R N

n

This is indeed = to four digits. This process does not prove that the
integral, taken to infinity, converges to w. That proof requires an explicit
solution to the integral. The curve that was specified is, of course, the
"bell curve” used frequently in statistical analysis.

Purge the programs and variables used in the last two sections.

{SHEL F
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Volume of Solids of Revolution : Method of
Disks.

This problem section computes volume of solids of revolution by the
method of disks.

The method of disks requires evaluation of the integral

b.
frf (x)%x .

In general, for a given integral, the smaller the error bound the longer the
integration will take. The appropriate choice of error bound depends on
the problem being solved, but the method to reach a solution remains con-
stant.

Example: Compute the volume of the solid formed by revolving the
function f (x)=x? from 0 to 1 about the x axis.

Key in the first program for the general form of the integrand,

CLEAR 4:
« — X 'mx*2 [ENTER] 3
1: € 3 x 'mEx"2' ¥
Store the program in the variable DSK.
'DSK 4z
3:
21
1:

Key in the second program. This program puts the function and integra-
tion parameters in the appropriate form on the stack and calls DSK for
the general form of the integrand. It then performs the volume computa-
tion.

« 'ER' STO 3.00 —LIST
SWAP DSK SWAP ER |

Lt

« 'ER' ST0 3.86800
3LIST SWAP DSK SWAP
ER J #
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Store the second program by the name DSKP.
'DSKP

=MW

Now enter the function and integration data.

'X~2''X' 0 1 .005 [ENTER

4= ] x ]
3 0. 0060
3 106900
T 0. 88506

Execute the program.

USER] ZDSKPE T

[USER] SDSKP= 2 8.6283
2 9.0831
| EE _JOskP] OS] | |

The computed volume is .6283. The explicit solution to the integral is x/5.
For greater accuracy, increase the error bound as appropriate.

Purge the programs and variables created in this problem section.

{DSK DSKP ER

a8 Yolume of Solids of Revolution : Method of Disks.
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Calculus contains a variety of examples and solutions to show
how you can solve your technical problems more easily

® Function Operations
Definition, Composition, Analysis, Angle Between Lines
and Functions

® Differential Calculus
Maximization /Minimization, Differentiation and Tangent
Lines, Implicit Function Theorem

® Integral Calculus
Integration and Free Falling Bodies, Double Integrals and
Area Between Two Curves, Arc Length and Surface
Area, Volume of Solids of Revolution
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