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Welcome ... 

... to the HP-28C Step-by-Step Booklets. These books are designed to 
help you get the most from your HP-28C calculator. 

This booklet, Calculus , provides examples and techniques for solving prob­
lems on your HP-28C. A variety of function operations and aifIerential 
and integral calculus problems are designed to familiarize you with the 
many functions built into your HP-28C. 

Before you try the examples in this book, you should be familiar with cer­
tain concepts from the owner's documentation: 

• The basics of your calculator - how to move from menu (0 menu, how 
to exit graphics and edit modes, and how to use the menu to assign 
values to, and solve for, user variables . 

• Entering numbers and algebraic expressions into the calculator. 

Please review the section "How to Use This Booklet." It contains impor­
tant information on the examples in this booklet. 

For more information about the topics in the Calculus booklet, refer to a 
basic textbook on the subject. Many references are available in university 
libraries and in technical and college bookstores. The examples in the 
booklet demonstrate approaches to solving certain problems, but they do 
not cover the many ways to approach solutions to mathematical problems. 

Our thanks to Ross Greenley of Oregon Scate Universicy for developing the 
problems in this book. 
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How To Use This Booklet 

Please take a moment to familiarize yourself with the formats used in this 
booklet. 

Keys and Menu Selection: A box represents a key ?n the calcula­
tor keyboard. 

I ENTER I 
[iliJ 
ISTO I 

I ARRAY I 
[fbQTI 
I ALGEBRA I 

In many cases, a box represents a shifted key on the HP-28C. In the 
example problems, the shift key is NOT explicitly shown (for example, 
I ARRAY I requires the press of the shift key, followed by the ARRAY key, 
found above the "A" on the left keyboard). 

The "inverse" highlight represents a menu label: 

- DRAW (found in the [fbQTI menu) 
-ISOL - (found in the I ALGEBRA I menu) 
- ABCO = (a user-created name, found in the I USER I menu) 

Menus typically include more menu labels than can be displayed above the 
six redefinable menu keys. Press I NEXT I and I PREV I to roll through the 
menu options. For simplicity, I NEXT I and I PREV I are NOT shown in the 
examples. 
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Solving for a user variable within ~ SOLVA ~ is initiated by the shift key, fol­
lowed by the appropriate user-defined menu key: 

o ABCD . 

The keys above indicate the shift key, followed by the user-defined key 
labeled "ABCD". Pressing these keys initiates the Solver function to seek a 
solution for "ABCD" in a specified equation. 

The symbol ~ indicates the cursor-menu key. 

Interactive Plots and the Graphics Cursor: Coordinate values 
you obtain from plots using the IINS I and I DEL I digitizing keys may differ 
from those shown, due to small differences in the positions of the graphics 
cursor. The values you obtain should be satisfactory for the Solver root­
finding that follows. 

Display Formats and Numeric Input: Negative numbers, 
displayed as 

-5 
-12345.678 
[[ -1,-2,-3 [ -4,-5,-6 [ 

are created using the I CHS I key. 

5 ICHS I 
12345.678 ICHS I 
[[1 ICHS I ,2 ICHS I , 

The examples in this book typically specify a display format for the 
number of decimal places. If your display is set such that numeric displays 
do not match exactly, you can modify your display format with the I MODE I 
menu and the ~ FIX ~ key within that menu (e.g. IMODE I2 ~ FIX §) . 
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Function Operations 

The primary goals of this section are to write user-defined functions and 
introduce the root finding, plotting, and calculus capabilities of the 
HP-28C. Problems include definition and assignment of the trigonometric 
eo-functions in the USER menu, analysis of a cubic equatipn, and compu­
tation of the angle between two intersecting lines in a specific and general 
case. 
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Function Definition 

This section demonstrates creation of simple user-defined functions. Tbe 
use of functions of this type is basic to efficient use of tbe HP-28C. 

Example: The HP-28C has three basic trigonometric functions built in 
- sine, cosine, and tangent. It is simple to add Ihe remaining co-functions 
to tbe USER menu. Built-in functions of the HP-28C can be easily com­
bined to create new functions. Tbe use of programs and local variables 
permits the newly defIned functions to be used in the same manner as the 
built-in funclions. 

Tbe inverse of the sine is tbe cosecant. 

t CLEAR t G:?J 
« - X 'l+SIN( x 
tENTER t 

Store the user-defined function. 

'CSC tSTO t 

The inverse of the cosine is the secanl. 

« - X 'l+COS(x 
tENTER t 

Store the user-defined function. 

'SEC tSTO t 

4 
3 
2 
1 

Ii 
4 
3 
2 
1 

Ii 
The inverse of the tangenl is tbe cotangent. 

« --> X 'l+TAN (x 
tENTER t 

10 Function Definition 
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« .. X 'l/SIN(x)' ,. 

« .. X 'I/COS(x) ' ,. 

« .. X 'I/TAN(x)' ,. 



Store the user-defined function. 

'COT ISTO I 

Ii 
Example: Evaluate, in radians, COT(X) and CSC'(X)-co'J'2(X), 
where X =.2. 

First, store the value of X and select radians and standard display modes . 

• 2 I ENTER I 
'X ISTO I 
I MODE I ~ RAD ", ~ STD ~ 

Now enter the expression for COT(X) and evaluate it. 

'COT (X I ENTER I 
IEVAL I 

3: 
2: 
1: 4.93315487558 
[ ST. lllIEll_~.ilI!1I[ ." I 

Enter the second expression and evaluate it. 

'SQ(CSC(X»-SQ(COT(X» 
I ENTER I IEVAL I 

3: 
2 : 4.93315487558 
1: 1 
[ ST. lllIEll_~DI!II[ .A. I 

As expected, this identity returns the value 1. 

Purge the user-defined functions and the variable X created in this sec­
tion. 

{CSC SEC COT X [ENTER] IpURGE I 
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Function Composition 

This section demonstrates additional utility of user-defined functions. 
Arguments of the functions may be both numeric and symbolic. 

Example: Form the compositions F(G(x)) and G (F(x)) given 

F(x)~x2+1 and G(x)~5r+2. 

Create F and G as user-defined functions. 

First, create F . 

[CLEAR [ G2J 
« --+ X ·x"' 2+1 IENTER I 

Store in the variable F. 

'F [STO [ 

Now create G. 

« -> X '5 x x+2 [ENTER [ 

Store in the variable G. 

'G [STO [ 

4' 
3' 
2' 1 , 

« ~ x 'x ..... 2+1' ,. 

To form the composition G (F (x)), enter F as an argument of G . 

'G(F(X @TERl 

Evaluate the composite function. 

[EVAL [ 
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t 

t This expression can be simplified using EXPAN and COLCf. 

t I ALGEBRA I = EXPAN = , 

I _ COLCT -

Repeat the process using G as an argument of F . 

'F (G (X IENTER I 

Evaluate the composite function. 

IEVAL I 

Simplify the expression. 

- EXPAN-

- EXPAN-

- COLCT -

2: '7+5*XA 2' 
1: '5*X* (5*X)+2*(5*X)*2 

+2*2+1 ' 
lmillmil:IlimIDmltumlBi1ll 

Purge the variables created in this problem section. 

{F G IENTER ll pURGE I 
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Function Analysis 

The ability to locate extreme values and other key features of functions is 
critical to the solution of many problems in science and engineering. This 
section demonstrates the use of calculus to locate such features. 

Example: Locate the roots, local maximum, mimimum, and inflection 
points of 

F(x) =x'+6x 2+11x +6. 

Enter and name tbe given function. 

!CLEAR ! G2J 
'XA 3+6 x XA 2+11 x X+6 

!ENTER ! 

'FN !STO ! 

Recall the function, enter the PLOT menu, and store it for plotting. 

! PLOT ! - STEa = 

Clear the plot parameters and plot the function. 

'PPAR !PURGE! 
- ORAW -
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Digitize all of the roots. 

GJ GJ I INS I 

GJ ... GJ !iNs l 
GJ ." GJ !iNs l. 
I ATTN I 

3 : (- .9,0) 
2: ( -1.9,0) 
1: (-3 .1 ,0) 
HmlmmJum:JlmElmIrnm:ID 

Note: Differences from the displayed results may appear due to ditTerent 
digitizing locations. 

Now enter the SOL V menu and compute the three roots. 

I sOlv l SOlVR- 3: (- .9,0) 
2: (- 1.9,0) 
1: ( -3.1,0) _1mII ___ _ 

Enter a guess from the stack and compute the root. 

-0-" X" " X" =-----== ~ I~ I ~1mII ___ .-i 
After obtaining the exact root, make note of it and prepare to locate the 
next root. Discard the first root. Then repeat the process for the other two 
roots. 

I Compute the last root. 

I 

I 

i 

I 

I 

I 

I 

• 
I 

I 

With the three roots located, fInd the extrema. The extrema are located by 
finding the roots of the first derivative. 

Recall the function. 

I CLEAR I I USER I §FN ~ 
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Purge the current value of X and differentiate with respect to X. 

'X I ENTER I I ENTER I 3' 
I PURGE I 2' 'X~3+6*X~2+11*X+6' 

1: I X I 

Store the first derivative. 

'DRl ISTO I 

Plot the function and its first derivative. 

~ DRl ~ 

~ FN ~ 

~ = STEQ = 
- DRAW -

IIDml.1Im:. __ _ 

I ' 
Observe that the derivative is positive in regions where the function is 
increasing and negative in regions where it is decreasing. 

Digitize both roots of the derivative. 

GJ ... GJ IiNs l 
GJ ... GJ IINS I 
I ATTN I 

Note: Differences from the displayed results may appear due to 
differences in digitizing locations. 
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~ Recall the derivative and enter SOL VR to pinpoint the roots as was done 
previously. The computed values may differ slightly depending on the 
seed provided as an input to the Solver. 

IUSER I ~ 
~ -STEQ ­

SOLVR -

3: 
2: (-1 .4,0) 
1: (-2.6,0) _1mB ___ _ 

Thls is one of the roots. Recall the function and evaluate to get the func­
tional value. 

Now repeat the process for the other root. First discard the root and func· 
tion value. 

I DROP I ~ 
ISOlV I - SOLVR-

3: 
2: 
1: (-1 .4,0) _1mB ___ _ 

'It,..o BJQ!l«SF}rI:W:I 
1: -1.42264973081 _1mB ___ _ 

3: 
2: -1.42264973081 
1: -.38490017949 
_GDlm:IlII~~_ 

The extreme values of the function have been located. Clear the stack and 
fmd the inflection point. The inf1ection point, located at the root of the 
second derivative, is the point or points at which the function changes con­
cavity. That is, it changes from concave up to concave down. The second 
derivative of a cubic is linear and has only one root. Therefore a cubic has 
only one point of iof1ection. 
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Clear the value of X to obtain symbolic results. 

I ClEAR I 
'X I~P!.-;U""'RG"'E"'I 

Recall the first derivative. 

§ DR1 § 
'X I;=E~N=T=ER~I 

DitTerentiate it with respect to X . 

I d/ dx I 

Store the second derivative. 

'DR2 ISTO I 

Plot the function and its second derivative. Observe the location of the 
root and how the function behaves at that point. It is coincidental that a 
function root is located at the point of inflection. It remains only to repeat 
the root finding procedure. 

Set them equal for plotting. 

~ I ENTER I 

Store and plot the equation. 

[fbQI] - STEQ -
DRAW 
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, Digitize the root. 

GJ ••• GJ I INS I 

• I ATTN I 
• 
; Recall the second derivative and solve for the root. 

• IUSER I :::: OR2 :::: 

• 

• ~ STEQ 
_ SOLVR -

3: 
2: (-2.1\0) 
1: '3H2*X)+ 2' 
11HI1GIIJI1ID~1Ii:JI_ 

3: 
2: 
1: (-2.1,0) _1mlEI ___ _ 

Enter the digitized initial guess and solve for the root. 

I~I I ~1mlEI ___ ..ii 
This completes the analysis. We have found roots atx = -1,-2, - 3, 
extrema at x = - 2.58, -1.42 and an inflection point at x = - 2. 

Purge the user variables created in this section. 

(FN X DRl DR2 I ENTER I I PURGE I 
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Angle Between Two Lines 

This section develops a user function to compute the angle of intersection 
of two lines. The slopes of the intersecting lines are supplied as argu­
ments. The user function is used in the subsequent section in computing 
the angle of intersection of two general functions. 

Example: Compute the angle between the lines 

Y=:k +1 and Y= -2>: +5. 

The angle between two curves is the angle formed by the tangent lines at 
the point of intersection. 

m2- m l 
9=lan- 1 • 

1+mlm2 

Form a function that, given the slopes, com pules the angle between two 
functions at a point of intersection. 

I ClEAR I I MODE l = DEG = 
« -+ a b I ATAN ( (b-aJ-;· 
(l+axb I ENTER I 

'ANG ISTO I 

2: 
1: « ~ a b 'ATAH«b-a» 

(1 +a"b»' ,. 
[ <TO 1 __ 1l:l!I[ DEG ID:!lll 

Lines have a constant slope. Read the slope for each directly from the 
given formula. 

3 I ENTER I 
-2 I ENTER I 

Now compute lhe angle. 

IUSER I - ANG -

The lines inlersect at an angle of 45°. 

ANG is used in the next problem section. 
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Angle Between Two Curves 

The angle of intersection for two curves is defined to be the angle formed 
by the tangent lines at the point of intersection. When an intersection 
point is located, the slopes of the functions at that point can be found. 
The problem is then that of two intersecting lines. 

Example: Find the angle formed by the tangent lines at the points of 
intersection of the following functions. 

F=3x+l 

Y=2x2 

Enter and save the given functions. 

I CLEAR I G:?J 
, 3 * X + 1 "I E""N"'T"'ER""'I 

'F ISTO I 

'2*X"2 I ENTER I 

'Y I STO I 

'3*x+l,1 

III 

Ii! 
Plot the two functions to obtain initial guesses at the points of intersection. 

First, set the two functions equal to each other. 

IUSER I ~ ;; F ;; 

G I ENTER I 
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Store tbe equation. 

I PLOT I - STEQ -

Clear the plot parameters and draw the equation with the two functions. 

, PPAR I PURGE I 
- DRAW -

Expand tbe height to see both intersection points. 

~W=O § *H § I :;;>rc:= I 

Digitize both intersection points. Enter the Solver to refine tbe guesses. 

GJ ••• GJ IINS I 
~ ••• ~ IINS I 
lATIN I 

I Salv i = SOlVR = 

Use the displayed value as an initial guess. 

3 : 
2: (-.3,0) 
1: ( 1.9,7> 
BmlllmllmllIlmBIlJ:llIDw:I!I 

3 : 
2: (- . 3 ,0) 
1: (1.9,7) _l!DEIum __ _ 

~ X ~ 1,;fK'lIW.t I 
1: (-.3,0) _l!DEIum __ _ 

Compute a solution to the equation. 

eversa 
1: 1.780776406 _l!DEIum __ _ 

Repeat tbe procedure for the other point of intersection. 

I SWAP I 
~ x ~ 1. 
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• 
• 
• 0 ll! Xll! 

• 
g n 

• Recall Y to compute the slope at an intersection point. 

I 

• 

Take the derivative with respect to x . 

I X I ENTER I 
~ 

Evaluate at one intersection point. 

3 : 1. 7807764064 
2 : -. 280776406405 
1: -1.1 2310562562 
_1mi1I~ __ EI:I!II 

I The last root computed remains assigned to x . The slope of the line can be 
• read from the given expression. 

• 3 I ENTER I 3 : - . 280776406405 
2 : -1 . 12310562562 
1: 3 
_1mi1I~ __ EI:I!II 

Use the ANG function to com pule the angle. 

• = ANG = 3 : 1. 7807764064 
2 : - . 280776406405 
1: -60.11 644041 36 
_1mi1I~ __ EI:I!II 

This is in degrees. 

Ready the stack to operate on the second intersection point. 

3 : 
2: 
1: 1. 7807764064 
_1mi1I~ __ EI:I!II 
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Compute the derivative of Y . 

Assigning a numeric value tox at this point will mean a numeric value for 
the derivative when it is computed. 

'X ISTO I 

The derivative is computed with respect to x . 

'X l@!g!IJ 
Id/dx l 

Enter the slope of the line. 

3 I ENTER I 

3: 
2: 
1: 7. 12310562~ _m:Ial ____ EJ:l!II 

3: 
2: 7.123105625~ 
1: 3 _m:Ial ____ EJ:l!II 

Again use the ANG function to compute the intersection angle. 

- ANG - 3: 
2: 
1: -10.443524758 _m:Ial ____ EJ:l!II 

Purge the variables created in the last two sections. 

{F Y X ANG IENTERll pURGE I 
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Differential Calculus 

This section includes problems of differential ealculus, including function 
• minimization, computing tangent lines, and several methods of implicitly 

differentiating functioos. Several important features of the HP-28C are 
highlighted - creating user-deflDed derivatives, keyboard algebra for solv­

I ing complex problems, and effective use of user flag 59 (the infinite result 
flag) and flag 35 (symbolic evaluation of coostants). 



Minimize Perimeter 

Science, engineering, and business share the need to find the minimum 
values of given functions as some parameter changes. In this section, the 
function represents area and the parameter is the area's perimeter. 

Example: To minimize material expense, fmd the mimimum amount of 
fencing required to enclose a rectangular plot measuring 200 square feet if 
one side is next to a building and needs no fence . 

Let the sides be called x and y with y parallel to the building. The perime­
ter to be minimized is 

P =2x +y. 

The area of the plot 

x"y =200 

gives the relationship between x and y . 

Clear the display and make certain variables X and Y have no assigned 
values. Clear flag 59 to ignore 'Infinite Result' errors while plotting. 

fCLEAR f ~ 2 " FIX " ~ 1 4~1;:: 
'X fpURGE I 
I Y fpURGE I L.:.... _________ -' 

59 CF f ENTER I 

Enter the perimeter. 

'2xX+Y I ENTER I 

Enter the area. 

I XxY=200 I ENTER I 

IsolateX. 

I X f ALGEBRA I - ISOL -

2S IIlnlmiz. Peril.ete, 

Iii 
4: 
3 : 
2 : 
1 : 



I 

I 

I 

I 

Store the equation for X . 

'X ISTO I 

Evaluate the expression for the perimeter. 

This expresses the perimeter in terms of oDe variahle. 

CoUect terms. 

COLCT -

I Compute the derivative. Roots of this will yield the mimimum value of Y . 

• I Y IENTER I 3: 
=::1 2: 

I ~ 1: '-(4eEI/Y~2)+1' 
t!!ImlmllllmDmmtm'D1m!ll 

I 
I Plot the derivative to obtain a guess at the root. 

I PPAR IpURGE I 2; 
I I PLOT I - STEa _ r.::137• ---------,1 
• I Y _ INOEP _ ~1!H!'Ium:JIDCllllil:llml'll!:lD 
• 
• 
I 

I 

l 

The steps below expand the plotting area and draw the graph. If you have 
no prior knowledge of the appearance of the graph, you may first wish to 
plot the graph, modify the plotting area accordingly, and then plot the 
graph a second time (i.e. = DRAW = I ATTN I , and then proceed with the steps 
below). 

2 § *H § 

4 ~ 
- ORAW - I 7" 



Digitize a seed for Y. Pick the guess near the positive root. 

Use the digitized value as a seed to compute Y. 

ISOlVI - SOlVR = , 
:!i Y:!i o § y § 

The side parallel to the building must be 20 feet long. 

Reeall and evaluate the expression for X . 

X I ENTER I r::o:-- ----- - ---, 

IEVAl l 

Forty feet of fencing is required (two ends ten feet long, and one side 20 
feet long). 

Purge the variables created in the example. 

{X Y ®'!ft!!l I PURGE I 



Mimimize Surface Area 

I This section uses differential calculus to minimize surface area. An appli­
, cation of this solution is in manufacturing, where minimization can reduce 

wasted raw material and increase profit. Otber problem specifications 
I may, of course, add constraints or considerations to tbe final real-world 

solution. 

Example: In the problem below, user flag 35 is set to maintain symbolic 
constants until the end of the solution. 

Find the dimensions of a one liter can that has the minimum surface area. 

The surface area of a can (a right circular cylinder) is 

A ='brR2 +21rRH . 

The volume is 

V =."R2H 

where R is the radius and H is the height of the can. To minimize the 
surface area, the area is expressed in terms of eitber R or H and that 
expression is then differentiated witb respect to that variable. Proceed by 
isolating H in the volume equation and finding the root of the derivative 

, of the area taken with respect to R . 

I 

I , 

Clear the variables R, V, and H, and set flag 35. 

f CLEAR f G2J 1 4~1 ;:: (R V H fENTER f fPURGE f 
35 SF fENTER f "'-________ ---....J 

Factor out 2."R and key in the expression for the surface area. 

I 2>OO<Rx ( R+ H [ENTER] 4: 
3: 
2: 
1: 

Duplicate the expression and store a copy for later use. 

[ENTER] 'A fSTo l r.4~:---------, 

3: 
2: 
1: '2*w*R*<R+H), 
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Enter the volume. 

'V=,rxR" 2xH ! ENTER ! 

IsolateH. 

'H !ENTER ! 

!ALGEBRA I = ISOL-

Store it as H. 

'H Ism ! 

4 
3 
2 
1 

Now substitute for H in the area equation. 

Take the derivative with respect to R . 

'R [ENTER] 
!djdx! 

CoDect terms. 

- COLCT -

Prepare to plot the derivative to obtain a guess for the root. 

!PLOT ! - STEQ - [ ~~ I 
umJ11mI1DIllIUEEI!l:Im1ll!:ID 
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One liter is the same as 1000 cubic centillleters. Entcr the volume as 

1000; tbe answer will be in centimeters. 

1000 I Er-lTER I 

'V ISTOI 

Purge the existing plot parameters and expand the plotting area. 

I PPAR I PURGE I 

100 " *H ,,, 
5 § *W § 

To find the radius that minimizes the area, specify R as tbe independent 

pl"tting variable. Clear flag 59 to ignore 'Infinite Result' errors tbat may 

occur while plotting. 

R ~ INDEP ~ 

59 CF I Er-lTER I 

Draw the grapb and digitize an initial guess for tbe Solver. 

- DRAW - [2J ••• G IINS I '---~---;-t-(-/--;------' 

Now store the initial guess and compute the root. 

lATIN I ISOlV I SOlVR 

§ R § 0 ", R ", 

This is the radius. Now find the height. 

I H I ENTER I 

IEVAl l 

3 : 
2: 5.42 
1: ' 1000/( ,,*29. 37) , __ rms __ _ 
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Compute the area. 

A IEVAl l 

Evaluate to a numerical result. 

Reduce the expression to a real number. 

I-NUM I 

2: '1131313/(1T*29.37>' 
1: '2*1T*5.42*(5.42+1131313 

/(1T*29 . 37» , __ tma __ _ 

To check that this is a minimum, compute the second derivative. 

I sOlvl - RCEO ­

'R I ENTER I 

The second derivative is positive; therefore the curve is concave up. The 
root is a local minimum. 

Purge the variables created in this problem section. 

{A H R V I ENTER I I PURGE I 
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lines Tangent To A Circle 

This section demonstrates manipulation of equations using tbe algebraic 
capabilities of the HP-28C. It is often necessary to compute tbe derivative 
of a function that cannot easily be expressed in terms of one variable. In 
this case we use implicit dilIerentiation. This is tbe first of three methods 
for implicit dilIerentiation sbown in this booklet. Problem sections "impli­
cit Differentiation Witb User-Defined Derivative" and "Implicit Functions" 
sbow two other methods. 

Example: Find the two points on a circle of radius 1 that bave tangent 
lines passing through tbe point (2,2). 

There are two expressions for tbe slope of tbe tangent lines ,- one from 
the circle itself and tbe other from the point exterior to the circle. 

Clear the working variables to ensure a symbolic answer. This problem 
also demonstrates a simple error recovery procedure. To ensure tbat the 
recovery works, turn on UNDO. 

I CLEAR I 
{Y R B A EQ X IENTER [l pURGE[ 
IMODE [ : +UND : 

3: 
2: 
1: 
cmJ[-cMDlamlH.STI[,uNDll:l'l:IJl 

The general equation for a circle isx2+y2_r2:0, wbere r is the radius. 
Implicitly differentiate this equation. 

Enter it for step by step differentiation. Note tbat "iJ' is obtained by press­
ing the I dId. [ key after the [] key. 

cmJ[-CMDlaml~l'STI['UNDJI:l'l:IJI 
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Step through the derivative watching for the term representing the dy /dx 
term. 

One more step-by-step differentiation will generate the dy /dx term from 
the ax(Y'2) term in the expression. 

IEVALI 

Now collect terms to shorten the expression. 

I ALGEBRA I = COLer = 2: 
1: :OX(X)*2*X+OX(Y)*2*Y 

1Il'lmtm:I:JlmIlmDl'IB!IIlmllJ 

This is a critical step. Replace the derivative sub-expression with a vari­
able that can be isolated. Count all characters, except parentheses, up to 
and including the second partial derivative symbol. The derivative symbol 
is the ninth item for making the substitution. 

9 I ENTER I 
I DY _ EXSUB = 

Evaluate once more to clear the last derivative. 

Solve for~. 

I DY - ISOL-
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I , 
I 

Collect the 2's. 

= COLCT -

This is the slope of any line tangent to the circle. Tangent lines that pass 
through a point (A,B) exterior to the circle have slope (y -B)/(r -A), 
where the point (r ,Y ) is on the circle. 

I (Y-B) + (X-A I ENTER I 

This line must be a tangent to the circle; that is, the expressions for the 
slope must be equal. 

G I ENTER I 

Use algebra to solve for y . 

Y~ 

3' 
2' 1. '- (X/Y)=(Y-B)/(X-A) , 
IIIIImlE:I:lmDlmDlIIIlIlIlDIIII 

• Clear the denominators by coUecting terms and multiplying through by 
denominator terms. 

• 
• 
t 

-COLCT -

I Extract the denominator term. 

7 - EXGET 3. 
2' 
I' '-A+X' 
IlmlIDIIIlIIiII!l:!DIi:lIlDIIII!!IlID!III 

Since EXGET 'consumes' the original expression, a copy should have 
been made fITst. It is easy to recover from the error. 

IUNOO I '-2-.----------------' 
I' '-X=INV(-A+X)*(- B+Y) 

*Y' 
IlmlI DIIIlIIiII!l:!DIi:lIlD IIII!!IlID!III 
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Make a copy and re-execute EXGET. 

I ENTER I 
7 = EXGET = 

Multiply through by the extracted term. 

~ 

The denominator is now cleared. 

- COLCT -

3: 
2: '-X=IHV(-A+X)*(-B+V ... 
1: '-A+X' 
omamaM!l:lDmml11l!lll1ll!W 

2: 
1: '-(X*(-A+X»=INV(-Ai 

X)*(-B+V)*V*(-A+X), 
omamaM!l:lDmml11l!lll1ll!W 

2: 
1: '-«-A+X)+X)=(-B+V)* 

V' 
IIII!mIm:cJIlmlDilmIllJ!l!llIB!illlJ 

The following expansions distribute the x and y terms. 

- EXPAN -

- EXPAN -

- EXPAN -

Now collect terms. 

= COLCT = 
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3: 
2: 
1: '-(-A+X)*X=-B*V+V*V' 
IIII!mIm:cJIImI DiIm IIIJ!I!IIIB!iIIIJ 

3: 
2: 
1: '(A-X)+X=-B"V+V"V' 
IIII!mIm:cJIlmlDiIm IIIJ!I!IIIB!iIIIJ 



Gather like powers. 

First gather powers of 2. 

@fER] 
1 - EXGET -

- COLCT -

Now gather powers of 1. 

I ENTER I 
7 - EXGET -

- COLCT -

The right hand side of this equation is ,2. Make a substitution for the right 
hand side. 

12 [ENTER) 
'R" 2 -EXSUB = 

This linear equation can now be solved for y . 

y = ISOL = 3 ' 
2 ' 
l' ' (R"2- A"X)/B' 
im!lIIIIaMlClllB:mDL'll!W1!!!IJI 
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Save this for later use. 

'Y ISTOI 

Enter the equation for the circle. 

'X"2+Y"2-R"2 I ENTER I 

Substitute in the expression for y . 

IEVAL I 

This is a quadratic equation for x ,and is easy to solve. 

'X QUAD 

Shorten it by collecting terms. 

=OOLCT = 

In the Solver, you can assign the numbers needed to complete the given 
problem. 

[§Qi:iZI STEQ 

= SOLVR = 
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The exterior point is (2,2). 

2 ~ A ~ 

2 ~ B ~ 

The radius of the circle is 1. 

1 ~ R ~ 

There are two roots, one for each point on the circle. 

1 ~ Sl ~ 

Solve for thex coord.inate. 

- EXPR= -

Now solve for the y coordinate. 

IUSERI ~ y ~ 

Repeat the process for the other point. 

I SOLv l - SOLVA-

Irr
IWIm 

I ____ ImIB_ 

1~~~$9W I 1: 0.91 ____ ImIB_ 

3: 
2: 0.91 
1: -0.41 ------
3: 
2: 0.91 
1: -0.41 ____ ImIB_ 
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- 1 :::: Sl :::: 

Solve for the x coordinate. 

= EXPRz = 

Now compute the y coordinate. 

!USER! :::: v :::: 

If:I 9. 911 1: -0.41 _____ IDJ!I_ 

3 : -0 . 41 
2 : -0. 41 
1: 0 . 9 1 ------

The points of tangency are (0.91, -0.41) and (-0.41,0.91). 

The general solution approach solves the problem for any circle and any 
exterior point. 

Purge the variables created in this problem section. 

{X Y A B R s1 !ENTER!! PURGE ! 
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, 

Implicit Differentiation With User-Defined 
Derivative 

Thls section uses a uSer-derIDed derivative for implicit differentiation of a 
function. Refer to the Reference Manual for additional information. 

Example: Given tbe equation rx +vY =3, express ~ in terms of x 

andy . 

Create a user-defined derivative for the functiony(x). User-derIDed 
derivatives must take two inputs from the stack; the definition below sim­
ply discards them and returns the variable DY, which can be isolated. 

I CLEAR I ~ 4 ' 
3' 
2. 

« - X dx I DY I ENTER I i ' « .. x dx 'DY' ,. 

Store it in the variable derY . 

I derY ISlO l 

Enter the Y variable as a function of X. 

'v'X + v'Y(X) - 3 I ENTER ! 

Differentiate with respect to X . 

I X I ENTER ! Id/dx ! 

''[X+.fY(X)-3' 

Solve for DY. Remember that DY represents ~. 

'DY IALGEBRA ! - ISOL- 2' 
1. '- (IHV(2*.fX)*(2*.fY(X ») , 
Il:Immamg:mli:l'lDt!lIiIIIliml 



Simplify to get the solution. 

COLCT -

Purge the user-defined derivative created in this example. 

I derY I PURGE I 
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Taylor Series Error Term 

Many physics and engineering problems are made solvable by expanding 
non-linear terms in a Taylor series. Ignoring the quadratic and higher 
degree terms leads to an approximate solution that is good for 'small dis­
placement'. This problem shows how to find the range for which the error 

I in a Taylor series expansions stays small. 

Example: Find the range ofx for which the error in the 3rd degree 
approximation of sin(x ) is less than .1. 

The Taylor Series error term is 

Xn.+l 
R (x)=!(··,)(C).,.::....-,-

• (n +1)! 

The exponent of! indicates the order of differentiation. 

It is important to recognize that the error is the next term in the expan­
sion. Since the 'sin' function contains only odd powered terms, look at the 
difference in the 5th and 3rd degree approximations. For the 'sin' function 
the n + 1 derivative has a maximum of 1. 

Compute the 5th degree expansion. 

Set the angle mode. Key in the function and the variable name. 

[ClEAR] ~ § RAD § 3 : 
2' ' SIH(X) , 'SIN(X ~ I: 'X' 

X [ENTffi] m.[ rIM J .. ~DD( .AD J 

Key in the order and find the Taylor Series. 

5 IALGEBRA I = TAYLR - [;;2::-:- --------' 
I: 'X-0. 17*XA 3+0. 01lfXA 5 , 

Now compute the 3rd degree approximation. 

'SIN (X I ENTER I 
X [ENTffi] 
3 - TAYLR -
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Make a copy and store this result for later use. 

[ENTER] 'APS ISTOI 3' 
2' 'X-0.17*XA 3+0.01*XA _ 

I' 'X-0.17*XA 3' 
o:rmmaliilll:lllmIDl!!ml1ililll 

Subtract the two approximations. 

Collect terms. The remaining expression is the 3rd degree error term. 

= COLCT = 

Set it equal to .1 and then solve for X • 

• 1 I ENTER I ~ I ENTER I 

There are several ways to solve for x. The ISOL command will isolate x 
in the displayed equation, and result in a generalized expression for x . A 
second approach is to use Solver to compute x . A third approach would be 
to use the laws of algebra and the capabilities of the HP-28C and solve for 
x 'long_hand'. All three methods are shown below; the third approach is 
included to illustrate the power of FORM in the ALBEGRA menu. 

Choose any ODe of the three methods which follow, and then proceed to 
the "Conclusion" portion of this problem. 
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Method 1: Using ISOL 

Find the generalized expression for x. The status of flags 34 and 35 will 
affect the next display. The expression below is the result with both flags 
34 and 35 clear. Refer to the Reference Manual for a discussion on alter­
nate settings of these flags. With flag 34 set, you would immediately 
obtain the result 1.64 found after the next several steps. 

'X = ISOL -

Assign a value of 7.ero to the arbitrary integer nl introduced into the isola­
tion of the variable x . 

o !ENTER ! 
'n! !STO ! 

Evaluate the expression. 

!EVAL ! 

2: 
I: • EXP«B_ BB, 6. 28"'nl/ 

5"'1.64 ' 
D:ma1ll!llllt1m:!lJmmllll!lD!E!!m 

3: 
2: 
1: (1.64,B .BB > 
D:ma1ll!llllt1m:!lJmmllll!lD!E!!m 

Extract the real component of the complex result. 

Now skip to the discussion and keystrokes labeled "Conclusion' 10 com­
plete this problem. 
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Method 2: Using Solver 

This method illustrates a simple approach to solve for x with the Solver. 

Proceed to the Solver menu and store the equation. 

~ - SlEO 
- SOLVR -

Solve for the variable x . 

~-~ 19n eversal 
1: 1.64 _lmlIDEII __ _ 

Now skip to the discussion and keystrokes labeled "Conclusion" to com­
plete this problem. 

Method 3: Using FORM and algebraic manipulation 

This method illustrates the use of FORM and the keyboard capabilities of 
the HP-28C to manipulate algebraic expressions. While the two methods 
above are more direct, this alternative follows a traditional 'paper-and­
pencil' approach towards the solution. 

First, compute the fifth root of the equation. 

I 1.,. 5 [£N!ffiJ El 

In FORM, first distribute the lcft hand exponential, and then associate the 
5 and 1/5. Then collect terms in the expression. 

= FORM -

Move to the exponentiation sign. 

~ H ~ ... ~ H ~ 
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Distribute the left-hand exponential. 

Move to the second exponentiation sign. 

:::: H :::: ••• :::: [~J :::: 

Now associate the 5 and 1/5 in the expression. 

Exit FORM and collect terms. 

I ATTN I COLer -

Solve for x. 

'X - ISOL-

Conclusion: The variable x has now been isolated by one of the three 
methods described above. Proceed with the remainder of Ihis problem 
solution. 

The 'sin' is symmetric so R3<.1 for -1.64 < x < 1.64. Check the result in 
Solver. 

Compare the approximation to sin(x). 

'SIN(X ®i@ 
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~ I ENTER I 

~ - STEQ~ 
SOLVR 

= LEFT: -

3' 
2' 1.64 
i' 'X-0.17*XA 3=SIH(X)' 1:Ia ____ _ 

Ir[wlG I _I!DDDlII __ _ 

l~r~;afiS" I 
i' 0.90 _I!DDDlII __ _ 

Clearly the difference is .1. Now plot the two equations. Purge the current 
plot parameters and draw the function. 

~ 'PPAR I PURGE I I \~t I 
_DRAW - 7~0A'Z7~ 

If the Taylor series approximation is needed for values of x that differ 
significantly from 0, the center of the expansion should be shifted, as 
demonstrated in the tangent line problem in the next section. 

Purge the variables created in this problem section. 

{X APS EQ I ENTER I I PURGE I 
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Tangent Lines and Taylor Series 

This section demonstrates how to use the first order Taylor series to gen­
erate a tangent line equation. The example problem expands about a 
point other than the origin. 

Example: Find the equation of the line tangent to the sine curve at 
X=I. 

Clear the stack. The first degree polynomial Taylor series expansion is the 
tangent line at the point of expansion. 

Enter the function to be expanded. 

rruARJ ~ 
I SIN (X r-I E''"''NTE'''R:011 

'SIN(X) ,I 
Change the variable to correspond with the new center. That is, Y = 0 
corresponds to X = 1. 

I Y+l I ENTER I 

I X ISTO I 

This is the function to be expanded. 

IEVAL I 

Ii! 
Enter the variable and the degree of the polynomial. 

'SIN(X)' 
'Y+1' 

'SIN(X) ,I 

'SIN(Y+1) ,I 

I y I ENTER I r:
4
-,----------, 

1 I ENTER I 3 ' . . 2 ' 
1 , 

'SIN(Y+l )' 
'Y' 

1.00 

Tangent Un •• and Taylor Serl •• 49 



Find the Taylor expansion. 

I ALGEBRA I - TAYLR -

This is the equation in Y. 

IUSER I :::: X :::: 

Recall the change of variable equation. 

'X ~ 
~ I ENTER I 

3: 
2: '0.84+0.54*Y' 
I: 'Y+I' ------
3: 
2: '0. 84+0. 54*Y , 
I: 'Y+I=X' ------

Clear the original variable change equation. 

I X I PURGE I 3: 

Solve for Y. 

Iy I ENTER I 

I ALGEBRA I - ISOL -

Save the expression for Y. 

Iy ISTOI 

2: '0.84+0.54*Y' 
I: 'Y+I=X' IiIlWlItmmmm __ _ 

3: 
2: '0.84+0.54*Y' 
1: I X-1 1 

Il:I'lDDmlMlIl!lIl!IlIiIDtllJ!IillE!lil 

3: 
2: 
I: '0.84+0.54*Y' 
Il:I'lDDmlMlIl!lII!IlIiID tllJ!Iil IE!Iil 

Change back to the original variable and simplify the resulting expression. 

= EXPAN = 
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3: 
2: 
I: '0.84+0.54*(X-I), 
Il:I'lD DmI MlIl!lII!IlIiID tllJ!Iil IE!Iil 



- COLCT -

Save a copy of this expression for the next problem section. 

I ENTER I 
'STN ISTO I 

Plot the two equations for a quick check. 

I SIN (X I ENTER I 

G I ENTER I 

I PLOT I - STEQ -

I PPAR I PURGE I 
'X - INDEP ­

- DRAW-

3' 
2' 
l' '0.30+0. 54"X=SIN(X) , 
WBIlm:1lllWiJllmDmmJlm!D 

Purge variables X and Y for the next problem section. 

I ATTN I 'X IpURGE I Iy IpURGE I 
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Normal Line 

In the previous section, the equation for the line came as a result of a Tay­
lor series expansion. This section continues by manually assembling the 
expression for the normal line. 

Example: Compute the equation of the line normal (perpendicular) to 
the sine curve at x = 1. 

First recall the equation for the tangent line. 

3: '0.30+0.54*X' 
2: '0.30+0.54*X' 
1: '0 .30+0.54*X' IDlIlItmlllIiI:II __ _ 

We need the value of the function atx = 1. Evaluate the expression. 

1 1 ENTER 1 

'X ISTO I 
IEVAL I 

This is Yo. 

3: '0.30+0.54*X' 
2: '0.30+0.54*X' 
1: 0.84 _lDlIlItmlllIiI:II __ 

Since we want symbolic solutions purge the value of x . 

I X 1 PURGE 1 3: '0.30+0.54*X' 
2: '0.30+0.54*X' 
1: 0.84 IDlIlItmlllIiI:II __ _ 

The general point slope formula for a line is 

Y -Yo=m(X-Xo) . 

Yo is on the stack. Form the left hand side of the relationship above. 

y 1 ENTER 1 

1 SWAP 1 

G 

3: '0.30+0. 54*X , 
2: '0.30+0.54*X' 
1: 'Y-0.84' IDlIlItmlllIiI:II __ _ 

Now form the right hand side. Bring the original line in position to find 
the slope. 

1 SWAP 1 
I X "'l@fuj";-;:NT"'E;o]R 

3: 'Y-0.84' 
2 : '0.30+0.54*X' 
1: I X I IDlIlItmlllIiI:II __ _ 
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Find the slope by taking the derivative. 

Id/dx l 3: '0. 30+0. 54*X' 
2: 'Y-0.B4' 
1: 0.54 1D91m111m:1l __ _ 

This is the slope of the tangent line. The slope of the normal line is 

1 m,,=-- . 
m, 

Computem •. 

ICHS I 
[iliJ 

Now compute the right hand side. 

'X-l I ENTER I 

Form the entire equation. 

G I ENTER I 

Solve for Y. 

'Y I ENTER I 
I ALGEBRA I = ISOL -

Sim plify the expression. 

- EXPAN_ 

3: '0.30+0.54*X' 
2. 'Y-0.B4' 
I' -1.B5 1D91m111m:1l __ _ 

3' 'Y-0.B4' 
2: -1.B5 
1: 'X-I' 1D91m111m:1l __ _ 

3: '0. 30+0. 54*X' 
2' 'Y-0.B4' 
1: '-(I.B5*(X-l »' 1D91m111m:1l __ _ 

2: '0. 30+0. 54*X' 
1: 'Y-0. B4=- (1. B5*(X-l) 

) , 1D91m111m:1l __ _ 

3: 
2: '0.30+0. 54*X , 
1: '- ( I.B5* (X-l»+0.B4' 
imDllilllIIl<t!C!!1ml1DtJlEjJlJlI!IlI 
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EXPAN 

= COLCT = 

Plot the resulting function. 

'SIN(X ! ENTER ! 

G ! ENTER ! 

!PLOT ! STEQ 

'PPAR !PURGE ! 
'X - INDEP -

DRAW 

2: '0.30+0,54+X' 
1: '-1.85+X--1.85+1+ 

0.84' 
tmi)[jJ!J:J:lmDIlDmmElDtmIII 

3: 
2: '0.30+0.54+X' 
1: '2.69-1.85+X' 
tmi)[jJ!J:J:lmDIlDmmElDtmIII 

3: 
2: '0.30+0.54+X' 
1: '2.69-1.85+X=SIN(X), 
tmi)[jJ!J:J:lmDI IDmmElDtmIII 

Purge the following variables created in this section. 

!ATTN ! {STN EQ PPAR [ENTER] !PURGE I 

54 Nor ••• Lin. 



t 

t Implicit Functions 

• 

The Implicit Function Theorem is, perhaps, the most elegant of three 
methods shown for implicit differentiation. This section demonstrates a 
more general method for finding the equation of a line than the previous 
sections . 

Example: rmd the equation of the line tangent to tbe function 
x 2 +xy-3=Oatx=1. 

Begin by defining a function to compute the derivative of a general func­
tion F (x ,y). The formula, a result of the implicit function theorem, can be 

aF 
used as long as ay F 0 holds. 

Purge the variables to be used to ensure symbolic solutions. 

{X Y Y X W'!M I PURGE I ~ 

lil 
Enter the function for computing implicit derivatives. 

« -+ a '-aX(a)+<3Y (a 

W'!M 

Store the implicit derivatives function. 

• IMP ISTO I 

Ii! 
Enter and store the general formula for a line. 

'y=mx(X-X)+Y I ENTER I 

• LINE ISTOI 

4 
3 
2 
1 

Ii 

'y=",*(x-X)+Y' 
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The function must be expressed in terms of X and Y due to the use of 
those variables in the function IMP. 

'X"'2+XxY-3 [ENTER] 

'F ISTO I 

Now find -;; in terms of X and Y. 

3: 
2: 
I: 'X"2+X*V-3' _IEIIImli1I __ _ 

2: 
I: '-(OX(X"'2+X*V)/OV(X" 

2+X*V» , _IEIIImli1I __ _ 

Evaluate the expression until all the partial derivative symbols are gone. 

2: 
I: '- «oX(X"'2)+oX(X*V» 

/(oV(X"'2)+oV(X*V»), _IEIIImli1I __ _ 

I: '- «OX(X)*2*X"'(2-1)+ 
(OX(X)*V+X*OX(V»)/( 
OV(X)*2*X"'(2-1)+(OV( _IEIIImli1I __ _ 

3: 
2: 
I: '-«2*X+V)/X), _IEIIImli1I __ _ 

This expression for the slope of F (x ,y) at any point on the curve must be 
the slope of the tangent line. 

'In ISlol 
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Now determine the value of Y that corresponds to x = 2. 

~ - STEQ ­
= SOLVR -

EXPR- -

Solve for Y. 

'Y I ALGEBRA I -ISOL-

'Y ISTO I 

~r'iiarrm"4!!I:' 
i' '4+2*Y-3' __ [JIlI!I __ _ 

With the coordinates of the point at the tangent line and the slope of the 
line in terms of those coordinates, evaluate and simplify the formula for 
the line. 

I USER I - LINE = 
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Use EXP AN to distribute the constant. 

I ALGEBRA I EXPAN 

- EXPAN-

2: 
I: 'y=- ( 1.75*(x-2»-

8.58' __ IHiJI .... 1ElI 

2: 
I: 'y=-I. 75*x--1. 75*2-

8.58' 
IS!lDJli!mlimllDmltm\lllmllJ 

Finally, simplify the equation for the tangent line. 

-COLCT -

Purge the variables created in this problem section. 

{Y X EQ M F LINE IMP IENTER I I PURGE I 
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Integral Calculus 
This section solves a number of problems of integral calculus, including 
integration of simple differential equations and computation of arc 
lengths, surfaces, and volumes. Both symbolic and numerical solutions are 
demonstrated with appropriate use of system flags. 
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Integration and Free Falling Body 

This problem section demonstrates derivation of standard equations of 
motion through simple integration. The importance of the constant of 
integration is made clear, and how that constant is incorporated into the 
solution provided hy the HP-28C. 

Example: A stone is dropped from a bridge 100 ft above the water. 
Compute how long it takes to reach the water and its r mal velocity. 

From Newton's 2nd law 

F=mX . 

The only force acting on a falling body is that of gravity. 

F=-mg 

Combining these, 

x = -g. 

This is the equation of motion for a freely falling body. A well-posed 
problem requires two initial conditions, the starting position and velocity. 
The problem then may be solved by integration. 

This solution approach plots the final equation to facilitate root finding. 
Start by configuring the plot parameters. 

'PPAR I PURGE I 2; 
I CLEAR I I PLOT I 13. I 

100 ,, ·H " ~mMum:Jlml!lmIm~ 
(0,-70 = PMIN = 

Plot the displacement as a function of time. Let TM represent the time. 

'TM INDEP 
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Start by integrating the above equation. Let GR V be the acceleration due 
to gravity. Since the expression to be integrated includes no 'TM' terms, 
the specified degree of the polynomial is zero. 

'-GRV I ENTER I r.:3"':-------""',c-_-::G"'R""V'"'" 
2: 'TM' 'TM I ENTER I ;:;:-!§ P 1 : a. aa o I ENTER I Hm111ll1m11um:JIDm!l:Imm:III 

This is an expression for the velocity. At TM = 0 the initial velocity is VO. 

VO 0 

Store this for future use. 

'VEL ISTO I 

Now recall the velocity and prepare for a second integration. The 
integrand includes 'TM' to the first degree, so a '1' is specified for the last 
parameter to the integration. 

IUSER i ~ 
'TM I ENTER i 
1 I ENTER i 

3: '-(GRV*TM)+va' 
2: 'TM' 
1: 1. aa 1I'mIII1mlI ___ _ 

This is an expression for the displacement. At TM = 0, x = XO. 

xo 0 2: 
1: 'va*TM-GRV/2*TMA 2+xa , 1I'mIII1mlI ___ _ 



To put this in the standard form, use the expression manipulation capabili­
ties in FORM. 

I ALGEBRA I - FORM -

Move the cursor to the minus sign. 

§ H § ••• § H § 

Commute the expressions about the minus sign. 

Exit FORM, make a copy, and save the expression for distance. 

I ATTN I ®':@jJ 
IDST ISTO I 

Store the expression for use in the Solver menu. 

~ STEQ 
- SOLVR -

In English units the acceleration due to gravity is 32 ft/see/see. 

32~ 

The bridge is 100 reet high. 

100 § xo § 
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Since the stone is dropped, the initial velocity is zero. 

o !::: vo !::: 

Evaluate the expression EO. 

~ EXPR= - ~;-I= 'eaurmoow 
I' '-(16*TMA2)+100' 
1IffiI1II1IIDI1I'I;)I1II!lII1mS_ 

To find the time required to hit the water, fmd a root of this equation. 
Digitize an initial guess from a plot of the equation. 

I PLOT I - DRAW ­

ill ... [;] I INS I 

Assign the seed to 'I'M. 

IATIN I I SOLV I - SOLVR ­

!::: TM !::: 

Solve for TM. 

!,.mw EJmFU 
I. '-C16*TMA2)+100' 
1IffiI1II1IIDI1I'I;)I1II!lII1mS_ 

"firm " ero 
1: 2.50 
1IffiI1II1IIDI1I'I;)I1II!lII1mS_ 

The stone hits the water after 2.5 seconds. To find the velocity, recall VEL 
and evaluate it. 

3' '- (16*TMA2)+100' 
2. 2.50 
I' -S0.00 IIIlDIIDD ___ _ 

The stone is falling at 80 feet per second. 
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By changing tbe initial conditions, tbe equations of motion developed in 
tbe previous example can be applied to a rock thrown straight up. 

Example: A stone is thrown straight up from ground level with an ini­
tial velocity of 70 feet per second. 

Compute its peak, tbe time elapsed until it ruts the ground, and its tmal 
velocity. 

Fetcb tbe general equation for distance traveled. 

~ r-2~: ----------------' 

IUSERI = DST = 1: ~X~~RV/2*TMA2)+V0*TM 

E11111'1!J11~Il!ID~lIlI!iII 

Enter the SOL V menu and store tbe equation for analysis. 

~ - STEO ­
= SOLVR -

The initial position is ground level or x = o. 
o ~ xo ~ 

The initial velocity is 70 feet per second upward, and therefore positive. 

70 ~ vo ~ 

The plot parameters were set in the previous problem. Plot both tbe velo­
city and the distance equations. 

IUSER I ~ DST ~ 
~ VEL ~ 
G r=[@j'lli'C::NT=ER'" 

Store the equation for plotting. 

[fbQ!J = STEO = 

- DRAW -
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The velocity is the first derivative of the distance; therefore the root of the 
velocity equation corresponds to a maximum of the distance equation. 
Digitize the roots of the velocity (where the straight line crosses the x-axis) 
and the distance (where the curve crosses the x-axis for the second time). 

GJ ... [!] IINSI 
G ... G IINS I 
lATIN I 

3: 
2: (2.30,-3.23) 
1: (4.45,-3.23) 
mMmmJom:JlJEEI!I:lmll!ltlD 

Recall the equation for velocity and save the equation for analysis. 

~ IUSER I ~ VEL ~ 3: (2.30,-3.23) 
2: (4.45t -3.23) 

I [§QbiZJ STEQ -
- SOLVR -

1: '-(GRV* M)+V0' _1mlII ___ _ 

3: 
2: (2.30,-3.23) 
1: (4.45,-3.23) __ E!JIIImlB __ 

Enter the initial guess for the root and solve for TM. 

• I SWAP I H M ~ D H M ~ ~.~'@'!WgII~iiili'j-iiiiiiiiiiiiiiiiii1 
Zero 
1: 2.19 __ E!JIIImlB __ 

After 2.19 seconds, the stone reaches a maximum height. Recall the dis-
• tance equation from the User menu and evaluate to find this height. 

3: (4.45,-3.23) 
2: 2.19 
1: 76.56 
_E!JllII![!JI_~UIII 

The rock reaches a height of 76.56 feet. 

Now drop two numbers from the stack and fetch the distance equation for 
analysis. 
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~ = STEQ = 
SOLVA 

Enter the guess and solve for the root. 

~ TM ~ 0 ~ TM ~ 

3 : 
2: 
1: (4.45,-3.23) 
II1IDmm~ElIIIm!I_ 

The rock hits after 4.38 seconds. Note that this is exactly twice the time 
required to reach the maximum height. Therefore the time spent going up 
is equal to the time spent falling back to the ground. To find the final velo­
city recall the velocity equation and evaluate. 

3: 
2 : 4. ~~ 
1: '- (GRV,nM)+V0' IIlDIm:IlI ___ _ 

3: 
2: 4.38 
1: -70.00 IIlDIm:IlI ___ _ 

Note that this number differs from the initial velocity in sign only. The 
rock's fmal speed is the same as its initial speed, but it is traveling in the 
opposite direction. 

Purge the variables created in this problem section. 

(TM EQ VEL DST GRV XO VO PPAR I ENTER I I PURGE I 



Double Integration 

This section uses both symbolic and numerical integration to solve com­
mon problems of integral calculus. 

Example: Compute the area between the line 

Y=x 

and the parabola 

Y =x2
. 

o • 
The area may be found by computing the double integral J J dy dx. 

1 .z~ 

To insure a symbolic answer purge the constant and the variable of 
integration. 

I CLEAR I 
{C Y I ENTER I IpURGE I ~ 

The next four displays show the calculator steps to compute Je dy where 

e = 1. Because the result is simply y , you can choose to skip directly to the 
evaluation of the integral at its limits if you wish. If so, simply enter Y, 
and proceed to the steps below beginning with 'Enter the upper limit'. 

Otherwise. prepare the stack for a symbolic integration with a first degree 
result. Start by integrating a constant. 

'C I ENTER I 
'Y I ENTER I 
1 I ENTER I 

Execute the integral. 

Ii 

Ii 

'c'l 'Y' 
1.0~ 
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Eliminate the constant by equating it to 1. 

1 I ENTER I 
'e ISTO I 

Enter the upper limit. 

'X [ENTER] 
'Y ISTO I 

!i 

Save a copy of the integrand for later use and evaluate the integral at the 
limit. 

I ENTER I 

!ii .y.! IEVAL I 
'X' 

Repeat the process for the lower limit. 

'X" 2 I ENTER I 

Iii .y.! 'Y ISTO I 
'X' 

Place a copy of the integrand in position for evaluation at the lower limit. 

'X· I ·X ...... 2 1 

The difference is tbe integrand for the second integration. 

Ii 
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, 

, 

Key in the parameters for the integration. 

{X 0 1 I ENTER I 

Key in the error bound . 

• 005 IENTER I 

4 
3 
2 
1 

4' 
3' 
2' 1 , 

• X-X ..... 2 I 
{ X 0.00 1. 00 } 

'X- X ..... 2 1 

{ X 0.00 1. 00 } 
0.01 

Evaluate the second integral. The error bound provides accuracy to the 
number of displayed digits (assuming 2 § FIX ID. 

The area is 0.17. 

Purge the variables created in this problem section. 

{Y C I ENTER I I PURGE I 

0. 17
1 8. 37E-4 
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Area Between Two Curves 

This section provides a general approach for finding the area between any 
two intersecting curves. 

Example: Find the area inclosed by the parabola f (x) ~X2 and the line 
y(x)~x +3. 

The area between two curves can be found by computing the integral 
b 

f I f (x) - y (x) I £Ix. In this problem the limits will be the intersection 
• 
points of the curves. 

Enter and store the integrand. 

I CLEAR I ~ 
'ABS(F-Y I ENTER I 

I AREA ISTO I 

Enter and store the functions. 

'X" 2 ~ 

'F ISTO I 

I X+3 I ENTER I 

Iy ISTO I 
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Ii 'ABS(F-Y) ,I 

Ii 

Ii 

Ii 

Ii 

Ii 



Plot both curves to fmd the intersection points. 

'F=Y ®'!!@J 

Iii 
Iii 

Store the equation and set up the plot parameters. If you have no prior 
knowledge of the graph of the curves, you can first draw the graph, exit 
and modify the plot parameters as shown below, and then proceed with a 
second graph. 

I PLOT I = STEQ = 
'PPAR I PURGE I 
5 ~ *H ~ 

The rightmost intersection point will become the upper limit. The left­
most intersection point is the lower limit. Draw the equation and digitize 
the rightmost point first, followed by the leftmost point. 

- DRAW -

G ... m IINS I 
[I] ••• GJ IINS I 
I ATTN I 

Use the Solver to refine the initial guess. 

I Salv i - SOlVR-

I;» '~ I 

3: 
2: (2.30,5.50) 
1: ( -1.40,2.00 ) _I!DD ___ _ 

-1. 
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Repeat the process for the upper limit. 

!SWAP ! 

D~~ X ~ 
The limits are in the correct order for integration but the variable is miss­
ing. Manipulate the stack to put it in place. 

t X ! ENTER ! ,.,Sc-:----------,'~X~, 

3 !STACK ! - ROLLD - 2: -1-Se 

Now convert the 3 elements 10 a list. 

3 !uST i _ ~UST _ 

Recall the integrand. 

!USER i -AREA = 

Put them in the necessary order. 

!swAP i 

Enter the error and integrate . 

• 005 iENTER i 

72 Area Betw .... Two Curve. 

1: 2_ se 
IlDImlllDlm!ll:lIDmmJ:J1DBI 

s: 
2: 
1: ( X -l.Se 2.Se ) 
1DBI1Dm1DlIllK!!DI1l!lD1!IlII 

s: 
2: ( X -l.Se 2.Se ) 
1: 'ABS(F-Y), _IDlIlIlKD __ mD 

s: 
2: 'ABS(F-Y), 
1: ( X -l.Se 2.Se ) _IDlIlIlKD __ mD 

s: 'ABS(F-Y), 
2: ( X -l.Se 2.Se 
1: 13.131 _IDlIlIlKD __ mD 



3: 
2: 7.81 
1: 0.04 _m:wmm __ mD 

The area is 7.81. 

Purge the variables created in this problem section. 

{AREA F Y EQ X PPAR I ENTER I I PURGE I 
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Arc Length 

This section demonstrates keystroke and programming examples for com­
puting arc lengths of rectifiable functions. The program ARC created in 
the second example is used in a later section entitled "Surface Area". 

Example: Find the length of the curve 
r,-:. 

F(x) (v X;+2) 

from x =0 tox =3. 

The arc length of a function is found by evaluating the integral 

• 
!Vl+!'(x)'. 
a 

First form the integrand. Enter the given function in terms of x . 

Specify the variable of differentiation. 

I X I ENTER I 

Take the derivative and simplify. 

I d{dx I 

Collect terms. 

I ALGEBRA I - COLCT -

74 Arc Length 

4' 
3 ' 
2' 
1 • 

4' 
3' 
2' 
1 • 



• 
• 
• 
• 
• 
• , 
, 

Square the derivative, add one, and take the square root. 

Tills is the differential of arc length. 

Place the list containing the variable and limits of integration on the stack. 

{X 0 3 IENTER I 

, Specify the accuracy and perform the integration . 

• 005 I ENTER I 3 ' 
m 2 ' 12.00 

1: 0 . 06 
J!IilD)lJIImlIDlmDtllli!Dlm!lJ 

The arc length is 12.00. 
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Example: Compute the arc length off (X)=X2 for x =0 tox =2. 

For repeated problems, a simple program facilitates the computation of 
arc length. The program below differentiates the function witb respect to 
X. This means that functions must be entered in terms of X. 

The partial derivative symbol 'I)' is obtained by pressing the ~ key. 

I CLEAR I 2: 
« -+ x 'v' (1+aX (x) " 2 
IENTER J 

I: « ~ x ',(I+oX(x)~2)' ,. 
1S.!IDJlm:l:lIUllIlmDtmmlm!l1 

Examine this function to see that it is equivalent to the integrand in the 
previous example. 

Store the program in the variable ARC. 

'ARC ISTO J 

The program below first stores tbe error in the variable ER , then converts 
tbe next three levels of tbe stack to the list required for integration. The 
function is then brought to levell and operated on by the ARC function. 
Finally tbe function is returned to its position and the error is recalled. 
The integration completes tbe process. 

« 'ER' STO 3 --LIST 
SWAP ARC SWAP ER 
f I ENTER J 

Store the program ARCP. 

'ARCP ISTO J 

I: « 'ER' STO 3.00 
~LIST SWAP ARC SWRP 
ER t ,. 

1l!Iil1llm~II!IIIID!IlIIII!ImI 

Computing the arc length of any function now only requires placing the 
correct information on tbe stack. This program requires the function on 
level 5, the variable of integration on level 4, the upper limit on level 3, the 
lower integration limit on level 2, and tbe error bound on level!. 

'X"2' 'X' 0 2 .005 3: 0.00 
~ 2: 2.00 

1: 0.01 
1l!Iil1llm~II!IIIID!IlIIII!ImI 
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Compute the arc length. 

IUSER l ARCP 3: 
2: 4.65 
1: 0.02 .-lmallmlll __ _ 

Purge the program ARCP and variable ER. Program ARC is used in the 
next problem section. 

'ARCP I PURGE l 'ER I PURGE I 
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Surface Area 

The function created to compute arc lengths can be extended to comput­
ing surface areas. 

Example: Compute the surface area of the solid formed by revolving 
the section of 1 (x) = x· between 0 and 1 about the x axis. 

In this problem the integrand is expressed in terms of a function of x. The 
surface area can be computed from 

• 
S = [21f1 (x)..J1+1 ' (X)2. 

a 

The square root factor in the integrand is identical to the ARC function 
used in the problem section entitled "Arc Length". U you have not already 
done so, key in the ARC function from the previous section. Enter the 
integrand using ARC as a function. 

I CLEAR I ~ 
I 2>oo<FxARC (F I ENTER I 

Enter the function to be integrated. 

'X"2 [ENTER] 

Store the function by the corresponding name appearing in the integrand. 

'F Isro l 4: 
3: 
2: 
1: ' 2*1f*F *ARC (F) , 

Purge the variable of integration to ensure that the name is not in use. 

'X I PURGE I 

71 Surface Are. 
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Enter the variable of integration and the limits. 

(X 0 1 W@ID 4' 
3' 
2. 
1 • 

Enter the error bound and compute the surface area . 

• 005 !ENTER ! 

!II 

The surface area is 3.81. 

Purge the variables created in this problem section. 

{F ARC !ENTER !! PURGE ! 

'2",,"F"ARC(F), 
( X 0.00 1.00 ) 

3. 811 0.02 



Arc Length of Parametric Equations 

It is often necessary to work with equations expressed in terms of a 
parameter. The coordinates of a particle moving in a plane as a function 
of time is a common example. 

Example: Compute the length of the curve corresponding to the equa­
tions 

~ 

X(I)=~ and y et) (21 +1)2 
2 3 

forl =Otol=4. 

In parametric form the arc length is 

• 
L = IV dx2+dy2 . 

• 
Enter the integrand in terms of the differentials of x and y . This general 
relationship can be used for any set of parametric equations with T as the 
parameter. 

I CLEAR I [52J 
'V(SQ(aT(X»+SQ(aT(Y 
I ENTER I 

Save the parametric arc length in P ARC. 

'PARC ISTO I 

3' 
2' 
I' 'leSQeaTeX»+SQeaTeY 

») , 

If 1 
Enter the parametric equations. Store them under the names X and Y as 
expected by the P ARC function. 

'TA272 I ENTER I 
'(2xT+l) A(372)73 ~ 

4 
3 
2 
1 
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'Y ISTOI 
'X ISTO I Ii 
Now integrate with respect to T from 0 to 4. 

First recall the integrand. 

IUSER I - PARC - 2: 
1: 'HSQ(oT<X) )+SQ(oT<Y 

») , ------
Key in the variable of integration and the limits. 

(T 0 4 I ENTER I 

Enter the desired error bound . 

• 005 I ENTER I 

Now perform the integration. 

III 

The arc length is 12.00. 

3: 
2: 'HSQ(oT ( X) )+SQ(oT< ... 
1: ( T 0.00 4.00 ) ------
3: 'HSQ(oT<X) )+SQ(dTC .. 
2: ( T 0.00 4.00 ) 
1: 0.01 ------
3: 
2: 12.00 
1: 0.06 ------

Program P ARC is used in the next section, and X and Y are replaced by 
new functions. 
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Surface Area of Parametric Equations 

The function created to compute arc lengths can be extended to compute 
surface areas. The surface area can be found by computing the integral 

b 

S = J'brY"; dx2+dy2 
« 

Example: Determine the surface area of the sphere formed by revolv­
ing a circle about the x axis. 

x(t)=2cos(t) y(t)=2sin(t) 

These are the parametric equations for a circle of radius 2. 

Note that the integrand includes the parametric arc length as a factor. Use 
the function defined in the previous section in the integrand. Clear user 
flag 35 for numeric evaluation of 1r when it is supplied as a limit to the 
integration. 

i ClEAR i 35 CF i ENTER i 
'2"""YxPARC iENTER i 

Now enter the X and Y equations. 

'2xSIN(T i ENTER i 

Iy iSTO I 

I 2xCOS (T I ENTER I 

'X ISTO I 
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Key in the variable and limits of integration. With flag 35 cleared, .. is 
evaluated to its numeric representation. The integration that follows 
requires a non-symbolic representation. Convert the parameters into a 
list. 

TO .. I ENTER I 
3 IUSTI -~LlST = 

Key in the error bound and perform the integration . 

• 005 I ENTER I 
[l] 

Note that 50.27 is 4.72
• 

3' 
2 ' 50.27 
1: 0 . 25 
mHll!lmll!Illll!lIllll!IIJl!IiII 

Purge the programs and variables created in this problem section. 

{X Y PARC I ENTER I I PURGE I 
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Volume of Solid of Revolution: Method of 
Shells 

This section demonstrates computation of the volume of a solid of revolu­
tion by the method of shells. 

The method of shells requires evaluation of the integral 
b 

J21rXF (x)dx . 
a 

Example: Find the volume of the solid formed by revolving the curve 

F(x)=e~' 

frornx =0 tox =3 about the Y axis. Consider the behavior ofthe integral 
as the region of integration is extended. 

Form an algebraic expression for the integrand including a general func­
tion F(x). 

I CLEAR I [£] 
, 2 >oo<XxF I ENTER I 

Store the integrand. 

'SHEL ISTO I 

Ii! 

Ii! 
Now enter the function. This must be a function of X as specified in the 
volume integrand. 

'EXP (-X" 2 I ENTER I 4' 
3 ' 
2' 1 , 

114 Yolu •• of Solid of Revolution: Method of Shena 
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Store the function by the name used in the SHEL program. 

'F Isro l 

Ii! 
Recall the expression to be integrated. 

I USER I - SHEL -

Place the variable of integration and the limits on the stacie 

{X 0 3 [ENTER] 

Specify the error bound of the integration . 

• 005 I ENTER I 

Now integrate the function. 

3: 
2: '2*rr*X*F' 
1: ( X 0.00 3.00 ) _1ImlII ___ _ 

3: '2*rr*X*F ' 
2: ( X 0.00 3.00 ) 
1: 0.01 _1ImlII ___ _ 

3: 
2: 3.14 
1: 0.02 _1ImlII ___ _ 

The result corresponds to .. within the error specified. 

Reset the display to show four digits. 

IMODE I 4 HIX ~ 3: 
2: 3.1403 
1: 0.0158 
1DIlII[ rIM lllBJlti:lill_[ ... 1 
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As expected, the accuracy is limited by the specification of two digits. 

Perform the integration again, increasing the accuracy to produce four 
digits to the right of the decimal. 

IUSER I = SHEL = 
{X 0 3 I ENTER ! 
.00005 lTI!!llil 

III 

3: 0.0158 
2: 3.1412 
1: 0.BBB2 _1imI ___ _ 

The desired accuracy was not achieved. By extending the region of 
integration, it may be possible to generate more digits of accuracy. 

- SHEL -
{X 0 4 lTI!!llil 
.00005 I ENTER ! 

III 

3: 0.BBB2 
2: 3.1416 
1: B.0B02 _1imI ___ _ 

This is indeed" to four digits. This process does not prove that the 
integral, taken to infinity, converges to ". That proof requires an explicit 
solution to the integral. The curve that was speeified is, of course, the 
"bell curve" used fTequently in statistical analysis. 

Purge the programs and variables used in the last two sections. 

{SHEL F !ENTER !! PURGE ! 
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Volume of Solids of Revolution Method of 
Disks. 

This problem section computes volume of solids of revolution by the 
method of disks. 

The method of disks requires evaluation of the integral 

• 
I"I (x )2dx . 
• 

In general, for a given integral, the smaller the error bound the longer the 
integration will take. The appropriate choice of error bound depends on 
the problem being solved, but the method to reach a solution remains con­
stant. 

Example: Compute the volume of the solid formed by revolving the 
function f (x) =x2 from 0 to 1 about thex axis. 

Key in the first program for the general form of the integrand. 

[@Rl B 4: 
« -+ X '1!X}{ A 2 I ENTER I ~; 

Store the program in the variable DSK. 

'DSK ISTO I 

1: « ~ x I tt*xA2 I » 

Ii! 
Key in the second program. This program puts the function and integra­
tion parameters in the appropriate form on the stack and cal1s DSK for 
the general form of the integrand. It then performs the volume computa­
tion. 

« 'ER' STO 3.00 -+LIST 
SWAP DSK SWAP ER f 
I ENTER I 

2: 
1: « 'ER' STO 3.eeee 

~LIST SWAP DSK SWAP 
ER .f ,. 

Volu ... of Solids of Revolution: Method of Disks. 17 



Store the second program by the name DSKP. 

'DSKP ISTOI 

Now enter the function and integration data. 

'X A 2"X' 0 1 .005 I ENTER I 4: 
3: 
2: 

Execute the program. 

IUSER I - DSKP -

I : 

3: 

'X' 
13.13131313 
1.13131313 
B.BBSB 

2: 13.6283 
I: 13.131331 m. ____ _ 

The computed volume is .6283. The explicit solution to the integral is 1</5. 

For greater accuracy, increase the error bound as appropriate. 

Purge the programs and variables created in this problem section. 

{DSK DSKP ER IENTER ll pURGE I 

.. Yolu ... of Solids of Rewoludon : lIethod of DlslI: •. 
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