1

FTEWLEETT-PACKARD

HP-28C
Reference Manual

NGB B8N

i

AL
W

HP-28C

Reference Manual

/A Facians

Edition 2 January 1987
Reorder Number 00028-90021

Notice

The information contained in this document is subject to change without
notice.

Hewlett-Packard makes no warranty of any kind with regard to this mate-
rial, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Hewlett-Packard shall
not be liable for errors contained herein or for incidental or consequential
damages in connection with the furnishing, performance, or use of this
material.

Hewlett-Packard assumes no responsibility for the use or reliability of its soft-
ware on equipment that is not furnished by Hewlett-Packard.

© 1986 by Hewlett-Packard Co.

This document contains proprietary information which is protected by copy-
right. All rights are reserved. No part of this document may be photocopied,
reproduced, or translated to another language without the prior written con-
sent of Hewlett-Packard Company.

Portable Computer Division
1000 N.E. Circle Blvd.
Corvallis, OR 97330, U.S.A.

Printing History

Edition 1 September 1986 Mfg. No. 00028-90022
Edition 2 January 1987 Mfg. No. 00028-90051

Welcome to the HP-28C

Congratulations! With the HP-28C you can easily solve complicated
problems, including problems you couldn’t solve on a calculator be-
fore. The HP-28C combines powerful numerical computation with a
new dimension—symbolic computation. You can formulate a problem
symbolically, find a symbolic solution that shows the global behavior
of the problem, and obtain numerical results from the symbolic
solution.

The HP-28C offers the following features:

Algebraic manipulation. You can expand, collect, or rearrange terms
in an expression, and you can symbolically solve an equation for a
variable.

Calculus. You can calculate derivatives, indefinite integrals, and
definite integrals.

Numerical solutions. Using the HP-28C Solver, you can solve an
expression or equation for any variable. You can also solve a sys-
tem of linear equations. With multiple data types, you can use

complex numbers, vectors, and matrices as easily as real numbers.

B Plotting. You can plot expressions, equations, and statistical data.

B Unit conversion. You can convert between any equivalent combina-

tions of the 120 built-in units. You can also define your own units.

Statistics. You can calculate single-sample statistics, paired-sample
statistics, and probabilities.

Binary number bases. You can calculate with binary, octal, and
hexadecimal numbers and perform bit manipulations.

Direct entry for algebraic formulas, plus RPN logic for interactive
calculations.

Welcome to the HP-28C 3

The HP-28C Getting Started Manual introduces your calculator and
leads you through a sampling of examples.

The HP-28C Reference Manual (this manual) gives specific information
about commands and how the calculator works. The first two chap-
ters explain the fundamentals and basic operations. The third chapter
is a dictionary of menus, describing the concepts and commands for
each menu.

We recommend that you first work through the examples in Getting
Started to get comfortable with the calculator. When you want to
know more about a particular command, you can look up the com-
mand in the Reference Manual. When you're familiar with the
commands and want a broader understanding of the calculator’s op-
eration, you can read the theoretical discussions in the Reference
Manual.

These manuals show you how to use the HP-28C to do math, but
they don’t teach math. We assume that you're already familiar with
the relevant mathematical principles. For example, to use the calculus
features of the HP-28C effectively, you should know elementary
calculus.

On the other hand, you don’t need to understand all the math topics
in the HP-28C to use those parts of interest to you. For example, you
don’t need to understand calculus to use the statistical capabilities.

4 Welcome to the HP-28C

Contents

11 How To Use This Manual

12 How This Manual is Organized

13 How To Read Stack Diagrams
1 17 Fundamentals

17 Principle of Operation

18 Data Objects

19 Name Objects

19 Variables

20 Local Variables

21 Formal Variables

21 Procedure Objects

21 Programs

22 Expressions

23 Equations

23 Commands

24 The Stack

25 Modes

27 Annunciators

27 Flags

29 Errors and Exceptions

29 Errors in the Command Line

29 Errors in Programs

29 Mathematical Exceptions

Contents

5

2 31 Basic Operations
31 Object Entry

32 Entering Numbers

33 Backspace: (€]

33 Lower-Case Letters:

33 Object Delimiters and Separators

35 How the Cursor Indicates Modes

35 Entry Modes

38 The Cursor Menu: [«]

40 Enter Command Line:

40 Viewing Objects: J(VIEW+], [VIEW+Y)

41 Editing Existing Objects
41 Editing Level 1: §(EDIT)

42 Editing a Variable or Stack Level: JB(VISIT)
42 Evaluating Objects

44 Names

44 Reserved Names

45 Quoted and Unquoted Names

45 Duplicate Names

45 Creating, Recalling, and Purging Variables
47 Recovery

48 Command Line Recovery: [j(COMMAND)
48 Stack Recovery: [§[{UNDO)

49 Last Arguments Recovery
49 Low Memory

50 Insufficient Memory

50 No Room for UNDO

51 No Room To ENTER

51 Low Memory!

51 No Room To Show Stack
52 Out of Memory

53 System Operations

53 Attention:

53 Contrast Control: [ON](+], [ON](=]
54 System Halt: [ON](a]

54 Memory Reset: [ON](INS](»]

55 Cancel Reset:

55 System Test: [ON](¥], [ON](«]

6 Contents

57
57

59
59
64
68
70
71
76

77
79
90

96

106
108
114
119
124
126

130
132
134
136
138

141
141
145
151

156

160
161
164
166

Dictionary
Menus

ALGEBRA (Algebraic manipulations)

Algebraic Objects

Functions of Symbolic Arguments

Evaluation of Algebraic Objects

Symbolic Constants: e, w, i, MAXR, and MINR
COLCT EXPAN SIZE FORM OBSUB EXSUB
TAYLR ISOL QUAD SHOW OBGET EXGET

ALGEBRA (FORM)
FORM Operations
FORM Operations Listed by Function

Arithmetic

ARRAY (Vector and matrix commands)
Keyboard Functions

-ARRY ARRY- PUT GET PUTI GETI
SIZE RDM TRN CON IDN RSD
CROSS DOT DET ABS RNRM CNRM
R-C C-R RE M CONJ NEG

BINARY (Base conversions, bit manipulations)
DEC HEX OCT BIN STWS RCWS
RL RR RLB RRB R-B B-R
SL SR SLB SRB ASR

AND OR XOR NOT

Calculus
Differentiation
Integration
Taylor Series

CATALOG

COMPLEX (Complex numbers)

R-C C-»R RE M CONJ SIGN
R-P P»R ABS NEG ARG
Principal Branches and General Solutions

Contents

7

174
174
180

181

181
184

187
187
193
194

198
198
201
202
203
204
204
207
210
212

215
215
216
217
218
221

223
224
224
226
230

232
234
234
236
238
242

8 Contents

LIST
-LIST LIST- PUT GET PUTI GETI
SUB SIZE

LOGS (Logarithmic, exponential, and hyperbolic
functions)

LOG ALOG LN EXP LNP1 EXPM

SINH ASINH COSH ACOSHTANH ATANH

MODE (Display, angle, recovery, and radix modes)
STD FIX SCI ENG DEG RAD
+CMD —CMD +LAST —LAST +UND —UND
+ML —ML RDX. RDX, PRMD

PLOT

The Display

Mathematical Function Plots

Statistical Scatter Plots

Interactive Plots

Plot Parameters

STEQ RCEQ PMIN PMAX INDEP DRAW
PPAR RES AXES CENTR W - *H
STOZ RCLZ COLZ SCLZX DRWZ
CLLCD DISP PIXEL DRAX CLMF PRLCD

PRINT

Print Formats

Faster Printing

Configuring the Printer

PR1 PRST PRVAR PRLCD TRACE NORM
PRSTC PRUSR PRMD CR

Programs

Evaluating Program Objects
Simple and Complex Programs.
Local Variables and Names
User-Defined Functions

PROGRAM BRANCH (Program branch structures)
Tests and Flags

Replacing GOTO

IF IFERR THEN ELSE END

START FOR NEXT STEP IFT IFTE
DO UNTIL END WHILE REPEAT END

243

243
245
249

252
252
255
257
262

264
265
266
269
270
272

275
276

285

287

290
290
291
293

296
297
300
302
305

309
309
313

314
315
315
321

PROGRAM CONTROL (Program control,
halt, and single-step operations)
Suspended Programs
SST HALT ABORT KILL ~ WAIT KEY
BEEP CLLCD DISP CLMF ERRN ERRM

PROGRAM TEST (Flags, logical tests)
Keyboard Functions

SF CF FS? FC? FS?C FC?C
AND OR XOR NOT SAME ==
STOF RCLF TYPE

REAL (Real numbers)

Keyboard Functions

NEG FACT RAND RDZ MAXR MINR
ABS SIGN MANT XPON

IP FP FLOOR CEIL RND

MAX MIN MOD %T

SOLVE (Numerical and symbolic solutions)
Interactive Numerical Solving: The Solver
(STEQ, RCEQ, SOLVR, ROOT)
Symbolic Solutions
(1SOL, QUAD, SHOW)
General Solutions

STACK (Stack manipulation)

Keyboard Commands

DUP OVER DUP2 DROP2 ROT LIST-
ROLLD PICK DUPN DROPN DEPTH -LIST

STAT (Statistics and probability)

Z+ 2— N2 "~ CLZ STOX RCLZ
TOT MEAN SDEV VAR MAXZ MINZ
COLZ CORR COV LR PREDV

UTPC UTPF UTPN UTPT

STORE (Storage arithmetic)
STO+ STO— STO%* STO/ SNEG SINV
SCON]

STRING (Character strings)

Keyboard Function

-STR STR- CHR NUM POS DISP
SUB SIZE

Contents

322

322
326
329

332
334
335
343
343

346
346

TRIG (Trigonometry, rectangular/polar and
degrees /radians conversion,
Hour/Minute /Second arithmetic)
SIN ASIN COS ACOS TAN ATAN
P-R R-P R-C C-R ARG
-HMS HMS- HMS+ HMS— D-R R-D

UNITS

Temperature Conversions
The UNITS Catalog
User-Defined Units

Unit Prefixes

USER (Variables, user-memory commands)
ORDER CLUSR MEM

Appendixes, Glossary, Indexes

10

349

357
357
359
360
361
362

363
364

367
381

Contents

A: Messages

B: Notes for HP RPN Calculator Users
The Dynamic Stack

Stack-Lift Disable and ENTER

Prefix Versus Postfix

Registers Versus Variables
LASTX Versus LAST

C: Notes for Algebraic Calculator Users
Getting Used to the HP-28C

Glossary

Operation Index

How To Use This Manual

This manual contains general information about how the HP-28C
works and specific information about how each operation works. For
an overview of the manual, look through the Table of Contents. You
can quickly find other types of information as follows.

To Learn About:

Refer to:

A particular operation, command, or
function.

A particular menu.

Concepts and principles of HP-28C
operation.

How to perform general HP-28C
operations.

What a displayed message means.

What an unfamiliar term means.

The Operation Index (page 381). All
operations, commands, and func-
tions are listed alphabetically. Each
entry includes a brief description, a
reference to a menu or topic in the
Dictionary, and a page reference to
the Dictionary. For background in-
formation, refer to the menu or topic
in the Dictionary (listed alphabeti-
cally). For specific information, refer
to the page number.

Chapter 3, “Dictionary” (page 57). All
menus are listed alphabetically.

Chapter 1, “Fundamentals” (page
17).

Chapter 2, “Basic Operations” (page
31).

Appendix A, “Messages” (page 349).
The Glossary (page 367).

How To Use This Manual 11

How This Manual is Organized

Chapters 1 and 2 contain general information. “Fundamentals” is an
overview for the experienced user, describing how the HP-28C works.
The next chapter, “Basic Operations”, describes how to enter objects in
the command line, create variables, and perform system operations.

Chapter 3, “Dictionary”, is the largest portion of the manual. Orga-
nized by menus, it details each individual operation, command, and
function. The action of each command and function is defined in a
stack diagram. (Refer to “How To Read Stack Diagrams” later in this
section.)

Chapter 3 also includes major topics not related to a particular menu.
There are entries for Arithmetic, Calculus, CATALOG, Programs, and
UNITS.

Appendix A, “Messages,” describes status and error messages you
might encounter.

Appendix B, “Notes for HP RPN Calculator Users,” and appendix C,
“Notes for Algebraic Calculator Users,” compare the HP-28C with
other types of calculators you might be familiar with.

The Glossary defines terms used in this manual.

The Operation Index is an alphabetical listing of all operations, com-
mands, and functions in the HP-28C. Each entry includes a brief
description, a reference to the chapter or menu heading in the manual
where you can find background information, and a page reference
where you can find specific information.

12 How To Use This Manual

How to Read Stack Diagrams

The action of a command is specified by the values and order of its
arguments and results. An argument is an object that is taken from the
stack, on which the command acts. The command then returns a re-
sult to the stack. (A few commands affect modes, variables, flags, or
the display, rather than returning objects.)

The description of each command includes a stack diagram, which
provides a tabular listing of the arguments and results of the com-
mand. A typical stack diagram looks like this:

XMPL Example Function

Level 2 Level 1 Level 1

obj, objo » objz

This diagram shows:

B The text name (which can appear in the command line) is “XMPL".
B The descriptive name is “Example”.
B XMPL is a function (allowed in algebraic expressions).

B XMPL requires two arguments, obj; and obj,, taken from stack
levels 2 and 1, respectively.

B XMPL returns one result, obj3, to level 1.
The arrow ® in the diagram separates the arguments (on the left) from
the results (on the right). It is a shorthand notation for “with the pre-

ceding arguments on the stack, executing XMPL returns the following
results to the stack.”

How To Use This Manual 13

The arguments and results are listed in various forms that indicate as
much specific information about the objects as possible. Objects of
specific types are shown within their characteristic delimiter symbols.
Words or formulas included with the delimiters provide additional de-
scriptions of the objects. Stack diagrams generally use the following

terms.

Terms Used in Stack Diagrams

Term Description
obj Any object.
X ory Real number.
hms Real number in hours-minutes-seconds format.
n Positive integer real number.
flag Real number, zero (false) or non-zero (true).
z Real or complex number.
CX,y? Complex number in rectangular form.
Cr,0» Complex number in polar form.
#n Binary integer.
"string" Character string.
Carray 1 Real or complex vector or matrix.
Cvector] Real or complex vector.
Cmatrix 1 Real or complex matrix.
CR-array] Real vector or matrix.
CC-array] Complex vector or matrix.
{list ¥ List of objects.
{index } List of one or two real numbers specifying an array element.
{dim} List of one or two real numbers specifying the dimension(s) of
an array.
"name' Name or local name.
¥program®* | Program.
‘symb' Expression, equation, or a name treated as an algebraic.

14 How To Use This Manual

The stack diagram for a command may contain more than one “argu-
ment ® result” line, reflecting the various possible combinations of
arguments and results. Where appropriate, results are written in a
form that shows the mathematical combination of the arguments. For
example, the stack diagram for + includes the following entries
(among others).

+ Add Analytic
Level 2 Level 1 Level 1
Z4 Zy » Zq +22
Carray1 Carray,1 » Carray+array,1
z ‘symb' w» 'z+Csymb !

This diagram shows that:

B Adding two real or complex numbers z; and z, returns a third real
or complex number with the value z;+z,.

B Adding two arrays Carray,1 and Carray,] returns a third array
Carray,+array,].

B Adding a real or complex number z and a symbolic object 'symb'
returns a symbolic object 'z+(symb> .

How To Use This Manual 15

L

Fundamentals

The HP-28C is based on a few fundamental principles. These princi-
ples are somewhat abstract, but their generality is the key to the
power and flexibility of the calculator. You don’t need a deep under-
standing of the calculator to use it, but a little understanding of its
principles will make its full power available to you.

If you haven’t used the HP-28C, we recommend that you begin with
Getting Started With the HP-28C. That manual gives you step-by-step
instructions for solving typical problems, and it demonstrates the
fundamentals of the calculator. When you have some experience, you
can return here to learn how the calculator works in a more general
context.

This chapter begins with a general statement of how the calculator
works, followed by sections that elaborate on the general statement.
Later sections describe the stack, modes, and errors. Information

about object entry, variables, and other basic topics appears in chapter
2, “Basic Operations.” Information about individual operations and
commands, organized by menus, appears in chapter 3, “Dictionary.”

Principle of Operation

Calculator operation centers around the evaluation of objects on the stack.
An object can be data, a name, or a procedure. To evaluate an object
means to perform the action associated with that object. Data objects
do nothing special (they are just data), name objects refer to other objects,
and procedure objects process the objects and commands in their
definitions.

1: Fundamentals 17

One benefit of this principle is uniformity. For operations such as en-
tering, editing, copying, storing, and recalling, you treat all objects
alike. This uniformity means fewer rules for you to remember.

Another benefit is flexibility. You can use objects in any number of
combinations to create the tools you need to solve a particular prob-
lem. Because you can choose when, if ever, to evaluate a symbolic
object, you can work on a problem both symbolically and
numerically.

Data Objects

These objects represent data treated as logical units: numerical data,
character strings, and lists of objects.

Data Objects

Type Object Description
Real number Real number Real-valued decimal floating-point
number.
Complex Complex number | Complex-valued decimal floating-point
number number.
Binary integer | Binary integer 64-bit binary integer number.
String String Character string.
Real array Real vector n-element real vector.
Real matrix nxm-element real matrix.
Complex Complex vector n-element complex vector.
array Complex matrix n X m-element complex matrix.
List List List of objects.

Evaluating a data object has no effect. If you put a data object on the
stack and press [EVAL], the object simply remains on the stack. Note
that the objects contained in a list aren’t evaluated when the list is
evaluated.

18 1: Fundamentals

Name Objects

These objects name other objects stored in user memory. Local names
can be created by procedures and are automatically deleted when the
procedure has completed evaluation.

Name Objects

Type Object Description

Name | Name Refers to an object stored in user memory.

Local name | Refers to an object temporarily held in local memory.

Variables

A variable is a combination of an arbitrary object and a name that are
stored together. The name becomes the name of the variable; the other
object is the value or contents of the variable. They are stored together
in user memory, which is separate from the stack. HP-28C variables
replace the numbered data registers and program memory found on
most calculators.

There are two aspects to the evaluation of variable names: what
causes names to be evaluated and the result of evaluating a name.

When is a name evaluated?

B The name on a USER menu label is evaluated when you press the
menu key in immediate entry mode.

B An unquoted name in the command line is evaluated when the
command line is evaluated.

B An unquoted name in a procedure is evaluated when the procedure
is evaluated.

B A name contained in a variable is evaluated when the variable’s
name is evaluated.

B A name in level 1 is evaluated when the EVAL command is
executed.

1: Fundamentals 19

What happens when a name is evaluated?

B Evaluating a name that corresponds to a variable puts the stored
object on the stack and, if the object is a name or program, evalu-
ates it.

B Evaluating a name that doesn’t correspond to a variable puts the
name back on the stack.

Considering when and how a name is evaluated, note that:

B You can recall a data object contained in a variable simply by eval-
uating the variable’s name.

B An unquoted name that refers to a program acts like a command to
evaluate the program.

B If a name refers to another name that refers to yet another name,
and so on, evaluating the first name causes all of the names to be
evaluated.

||:| Do not create a variable whose value includes its own
i name, such as would happen if you execute
Note "R' O 'H' ST0or 'X+Y' 'X' ST0. Evaluating such a

variable causes an endless loop. To halt an endless loop,
you must perform a system halt ([ON][a], described in “Basic Opera-
tions”), which also clears the stack.

Similarly, do not create variables that reference one another in a cir-
cular definition. Evaluating a variable included in a circular definition
also causes an endless loop.

Local Variables

Local variables are used only within the program structure that cre-
ates the variable. For example, user-defined functions and
FOR...NEXT program structures use local variables. Names that iden-
tify local variables are called local names and are described in
“Programs.” Evaluating a local variable’s name simply puts the local
variable’s contents on the stack.

20 1: Fundamentals

Formal Variables

In symbolic calculations you can use name objects as variables (in the
mathematical sense) before assigning values to the variables. If your
goal is a symbolic result—say, the derivative of an expression—you
might never assign values to the variables.

Names used as mathematical variables, but not associated with stored
objects, are called formal variables. We use this term only in a few
cases when the distinction is important. Evaluating a formal variable
leaves its name on the stack.

Procedure Objects

These objects contain procedures—sequences of objects and com-
mands that are processed when the procedure object is evaluated. A
program object can contain any sequence of objects and commands,
including those affecting the stack, user memory, or calculator modes.
An algebraic object contains a limited number of object types and com-
mands, and its syntax is similar to mathematical expressions and
equations.

Procedure Objects

Type Object Description

Program | Program Contains any sequence of objects.

Algebraic | Expression | Contains a mathematical expression.
Equation Contains a mathematical equation relating two
expressions.

Programs

A program is essentially the object form of a command line. The ob-
jects and commands you enter in the command line constitute a
procedure. When you surround that procedure by the program delim-
iters, you indicate that you want to treat the procedure as an object
that will be evaluated later.

1: Fundamentals 21

When is a program evaluated?

B You can evaluate a program in level 1 by executing the EVAL
command.

B A program stored in a variable is evaluated when the variable’s
name is evaluated.

B Commands such as DRAW, [, and ROOT repeatedly evaluate a
program that is their argument.

B A program that is the procedure part of a local variable structure is
evaluated when the structure is evaluated.

What happens when a program is evaluated?

B Evaluating a program puts each object on the stack and, if the ob-
ject is a command or unquoted name, evaluates it.

Considering when and how a program is evaluated, note that:

B Suppose that a program contains an unquoted name that refers to
another program, and that program contains an unquoted name re-
ferring to yet another program, and so on. Evaluating the first
program causes all of the programs to be evaluated. (The last one
referenced is the first one completely evaluated.)

B If you execute a command that evaluates a program, the commands
in the program may overwrite the original command arguments
stored in LAST.

Expressions

An expression is a procedure representing a mathematical expression
that is entered and displayed in a syntax corresponding to ordinary
mathematical forms.

When is an expression evaluated?

® You can evaluate an expression by executing the EVAL command.
(Evaluating expressions is the most common use of EVAL.)

22 1: Fundamentals

B Commands such as DRAW, [, ROOT, TAYLR, and QUAD repeat-
edly evaluate an expression that is their argument.

B An expression that defines a user-defined function is evaluated
when the function is evaluated.

What happens when an expression is evaluated?

B Evaluating an expression puts each object on the stack and evalu-
ates it. These objects are evaluated in RPN order (the order of the
equivalent program), not in the order they appear in the expression.

Considering when and how an expression is evaluated, note that:

B Although evaluating a name that refers to a program evaluates the
program, evaluating a name that refers to an expression puts the
expression on the stack.

B [f a name in an expression refers to a second expression, evaluating
the first expression doesn’t evaluate the second expression. Rather,
the second expression is substituted for every occurrence of the
name in the first expression.

Equations

Equations are two expressions related by an equals “=" sign. Evaluat-
ing an equation produces a new equation. The new left-hand
expression is the result of evaluating the original left-hand expression.
The new right-hand expression is the result of evaluating the original
right-hand expression.

Commands

Commands are built-in procedures that you can include in programs.
You can consider a command name as it appears in the command line
(for example, DROP or SIN) to be the unquoted name of a procedure
object stored in the calculator. This is similar to the names and con-
tents of your own variables. In practice, there’s no useful distinction
between the unquoted name and the built-in procedure.

1: Fundamentals 23

We classify built-in procedures according to their uses:

B An operation is any procedure built into the calculator, such as EN-
TER, CATALOG, or TRACE.

B A command is a programmable operation, such as SWAP or STO.
B A function is a command allowed in algebraics, such as IP or MIN.

B An analytic function is a function for which the HP-28C provides a
derivative and inverse, such as SIN or +.

Built-in procedures are usually characterized by their highest capabil-
ity. For example, SWAP is both a command and an operation, and IP
is a function, a command, and an operation, but we characterize
SWAP as a command and IP as a function.

The Stack

The stack is a sequence of numbered levels, each holding one object.
Objects enter the stack in level 1, lifting objects already in the stack to
higher levels. Objects also leave the stack from level 1, dropping the
objects remaining on the stack to lower levels. All objects are treated
identically—simply as objects—on the stack.

The HP-28C provides commands to duplicate, delete, and reorder ob-
jects on the stack. Several of these commands are found on the

keyboard ((Dror], [B(SwAP], l(ROLL]), and [[CLEAR]); others are in
the STACK menu.

Most commands take input objects (called arguments) from the stack
and return output objects (called results) to the stack. The arguments
must be present on the stack before the command is executed. The
command removes its arguments and replaces them with its results.
For example, the function SIN takes a value (a real or complex num-
ber, or an algebraic) from level 1, computes its sine, and returns the
result to level 1. The function + takes two values from the stack and
returns their sum to the stack.

24 1: Fundamentals

This type of logic, where the command comes after the arguments, is
called postfix logic or RPN, for Reverse Polish Notation, named after the
Polish logician Jan Lukasiewicz (1878-1956).

(Note that these postfix-logic commands include operations that may
use a prefix syntax on other RPN calculators. For example, to select
FIX display mode with two digits after the radix on the HP-28C, you
must execute the sequence 2 FIX. Similarly, to store the number 12
in a variable named FIRST, you must execute the sequence

12 'FIRST' ST0)

Modes

For many operations you can control the results by selecting a mode.
For example, you can control whether the trigonometric functions in-
terpret numbers as degrees or radians by selecting degrees angle mode
or radians angle mode.

The following table shows the modes in the HP-28C, grouped by sim-
ilar topics. The default choice for each mode, selected when you
perform a memory reset, is marked by an asterisk.

Most modes are indicated by a flag, an annunciator, or a menu label.
The third case occurs if a mode is selected by menu keys: the menu
label for the current selection appears in black characters, not the in-
verse video characters typical of menu labels. Pressing a menu key
that changes a mode also changes the menu label from inverse to

black characters.

HP-28C Modes

Mode Choices Indicator

Angle Degrees*/radians MODE labels,
flag 60 clear*/set,
(2T) annunciator

Beeper Enabled*/disabled Flag 51 clear*/set

Principal value Off*/on Flag 34 clear*/set

* Default choice.

1: Fundamentals 25

HP-28C Modes (Continued)

Mode

Choices

Indicator

Entry mode

Case

Level 1 display

Radix

Real number format

Number of decimal
digits

Binary integer base

Binary integer wordsize
Recovery

COMMAND

UNDO

LAST

Evaluation

Evaluation of symbolic
constants

Evaluation of functions
Printer

Printer trace

Auto CR

Faster print

General Entry and Display

Immediate*/Algebraic/
Alpha

Upper*/lower

Multi-line*/compact

Real Number Entry and Display

Period*/comma

Standard*/Fixed/
Scientific/Engineering

0* through 11

Binary Integer Entry and Display

Decimal*/Hexadecimal/
Octal/Binary

1 through 64*

Enabled*/disabled
Enabled*/disabled
Enabled*/disabled

Symbolic*/numeric

Symbolic*/numeric

Disabled*/enabled

Enabled*/disabled
Disabled*/enabled

Cursor, 0. annunciator

None

MODE labels,
flag 45 set*/clear

MODE labels,
flag 48 clear*/set

MODE labels,
flags 49-50

Flags 53-56

BINARY labels,
flags 43-44,

Flags 37-42

MODE labels
MODE labels

MODE labels,
flag 31 set*/clear

Flag 35 set*/clear

Flag 36 set*/clear

PRINT labels,
flag 32 clear*/set

Flag 33 clear*/set
Flag 52 clear*/set

* Default choice.

26 1: Fundamentals

Annunciators

The annunciators at the top of the display indicate the angle mode,
the entry mode, and other status information.

Annunciators
Annunciator Indication
o] A program is suspended.
4 The shift key has been pressed.
a Alpha entry mode is active.
((®) The HP-28C is busy—that is, not ready for keyboard input.
[— | Low battery.
(2m) The current angle mode is radians.
I~ The HP-28C is sending output to the printer.
Flags

A flag is a quantity that represents a truth value, either true or false.
Flags occur as numeric flags and as user flags.

Numeric Flags. On the stack, a non-zero real number represents
true and the real number 0 represents false. Numeric flags are used
with program branch structures, such as IF... THEN.. .ELSE, and with
logical tests, such as XOR.

User Flags. A separate part of calculator memory contains user
flags, each having two possible states: set (true) or clear (false). You
store the value true in the flag by setting the flag, and you store the
value false by clearing the flag. You can test the value of a flag, which
returns the corresponding numeric flag, 0 (false) or 1 (true), to the
stack.

1: Fundamentals 27

There are 64 user flags, numbered 1 through 64. Flags 1 through 30
are available for general use. Flags 31-64 have special meanings, as
listed below—when you set or clear them you alter the modes associ-
ated with the flags.

Reserved User Flags

Number Description Default
31 LAST enable Set
32 Printer trace Clear
33 Auto CR Clear
34 Principal value Clear
35 Symbolic evaluation of constants Set
36 Symbolic evaluation of functions Set
37-42 Binary integer wordsize Set
43-44 Binary integer base Clear
45 Level 1 display Set
46 Reserved Clear
47 Reserved Clear
48 Radix Clear
49-50 Real number format Clear
51 Beeper Clear
52 Faster print Clear
53-56 Number of decimal digits Clear
57 Under f low action Clear
58 Over f low action Clear
59 Infinite Result action Set
60 Angle Clear
61 Under f low— exception Clear
62 Under f 1 ow+ exception Clear
63 Over f 1ow exception Clear
64 Infinite Result exception Clear

28 1: Fundamentals

Errors and Exceptions

When an error occurs, the calculator beeps and displays an error mes-
sage in the top line of the display. Error messages are described in
appendix A, “Messages.”

If the error occurs during execution of a command that takes argu-
ments from the stack, the arguments are restored to the stack if LAST
is enabled. If LAST is disabled, the arguments are lost.

Errors in the Command Line

An error can occur during ENTER, while the calculator is processing
the text in the command line. If so, the calculator beeps, displays
Suntax Error, restores the command line, and attempts to indicate
the problem. If the error resulted from illegal syntax, the incorrect text
is displayed in inverse characters, followed by the cursor. If the error
resulted from incomplete entry, the cursor is positioned at the end of
the line.

Errors in Programs

If an error occurs in a program, the remainder of the program (not yet
processed) is aborted. If the program'’s evaluation was started by an-
other program, the remainder of that program is also aborted.

Mathematical Exceptions

Certain errors that can arise during ordinary real number calculations
are classified as mathematical exceptions. An exception can act as an
ordinary error and halt the calculation, or it can supply a default re-
sult, allowing the calculation to proceed. You can choose how

exceptions act by setting or clearing flags 57, 58, and 59. The follow-
ing table describes the mathematical exceptions and the related flags.

1: Fundamentals 29

Mathematical Exceptions

Exception Description
Infinite This exception occurs when a calculation returns an infi-
Result nite result. Examples include LN(0), TAN(90°), and

dividing by zero.

If flag 59 is set,* Infinite Result exceptions are
errors.

If flag 59 is clear, an Infinite Result exception
returns the default result =MAXR and sets flag 64, the
Infinite Result indicator.

Overflow This exception occurs when a calculation would return a
finite result whose absolute value is greater than the larg-
est machine-representable number MAXR. Examples
include 9E499 + 9E499, EXP(5000), FACT(2000).

If flag 58 is set, Over f low exceptions are errors.

If flag 58 is clear,” an Owver f 1 ow exception returns the
default result = MAXR and sets flag 63, the Over f low
indicator.

Under flow This exception occurs when a calculation returns a finite
result whose absolute value is smaller than the smallest
machine-representable number MINR. Examples include
1E-499/2 and EXP(-5000).

If flag 57 is set, an Unhder f 1 ow exception acts like an
error. It returns the error message Hegative
UnderfloworPositive Under f1low, depend-
ing on the sign of the actual result.

If flag 57 is clear,* an Under f 1ow exception returns
the default result 0 and sets flag 62, the Unhder f low +
indicator, or flag 61, the Under f 1 ow— indicator, de-
pending on the sign of the actual result.

* Default choice.

30 1: Fundamentals

2

Basic Operations

This chapter describes how to enter objects in the command line, how
to create, recall, and purge variables, how to recover previous com-
mand lines, stacks, and arguments, how to deal with low memory
conditions, and how to perform system operations.

Object Entry

When you press a key to begin entering new objects, the character on
the key is entered into a command line. The command line can contain
any number of objects, represented in text form. It appears at the bot-
tom of the display (immediately above the menu labels, if present).
The command line also appears when you use [§(EDIT] or @(VISIT] to
view or alter the contents of an existing object.

The contents of the command line are processed when you press
(or any command or function key that automatically performs
ENTER). The contents of the command line are evaluated as a pro-
gram, and the command line disappears from the display.

You can enter any number of characters into the command line. You
can break the line into several rows by pressing @[NEWLINE], which
inserts a “newline” character (line-feed) into the command line string
at the current cursor position. Newline characters act as object separa-
tors, but are otherwise ignored when the command line is evaluated.

2: Basic Operations 31

If you enter more than 23 characters into the command line, charac-
ters scroll off the display to the left. An ellipsis (...) appears in the
leftmost character position to indicate the undisplayed characters. If
you try to move the cursor past the left end of the display, the
leftmost characters scroll back into the display, and characters scroll
off the display to the right. An ellipsis then appears at the right end
of the display. When the command line contains multiple rows of
text, all rows scroll left and right together.

Entering Numbers

Real numbers are entered by pressing the digit keys, and to
produce the desired number. Digit keys always just add a single digit
to the command line.

Change Sign: [CHS]. Pressing changes the sign of a number in
the command line. (If no command line is present, pressing exe-
cutes the command NEG, which negates the object in level 1. NEG is
described in “Arithmetic.”)

“Number” can be either the mantissa or the exponent of a number—
the position of the cursor determines which is changed. If no sign is
present, a minus sign (-) is inserted at the beginning of the number. If
a plus sign (+) or minus sign is present, it is changed to the opposite
sign.

If the cursor is not positioned at a valid number, pressing adds a
minus sign to the command line.

To key in a negative number as the first object in the command line,
you must key in at least one digit, to create the command line, before
pressing [CHS]. In all other cases you can press before, during, or
after keying in the number.

Enter Exponent: [EEX]. You can enter numbers that are quite large
or small by using scientific notation. A number can be represented by
a mantissa and an exponent, where the value of the number is the

product of the mantissa and 10 raised to the power of the exponent.

32 2: Basic Operations

To key in a number in scientific notation, key in the mantissa, press
(EEX], and then key in the exponent. Pressing adds a character E
to the command line, separating the mantissa from the exponent.

If the cursor is not positioned at a valid number (or no command line
is present), pressing adds the characters 1E to the command line.
If the cursor is positioned at a number that already has an exponent,
pressing moves the cursor to the first digit in the exponent.

Backspace: (¢]

Pressing (4] deletes the character to the left of the cursor, moving the
cursor (and any characters to the right) one space to the left. If you
press and hold (], the action is repeated until you release the key.
Pressing (€] has no effect when the cursor is at the left end of a line.

Lower-Case Letters:

Pressing causes letter keys through to append the cor-
responding lower case letters a through z to the command line.
Lower-case entry continues until you press a second time, execute
ENTER, or press to clear the command line.

Object Delimiters and Separators

The various object types are entered in the same form in which they
are displayed. Successive objects or commands entered into the same
command line must be separated from each other by one of the
following;:

B An object delimiter ¢, », C, 1, ¢, ¥, #, ", ', %, ».

B A space or newline.

B A period or comma, whichever is not currently the radix mark. (If
flag 48 is clear, periods are radix marks and commas are separators;
if flag 48 is set, commas are radix marks and periods are
separators.)

2: Basic Operations 33

In algebraic objects, spaces are ignored (except with the operators
AND, OR, XOR, and NOT) and arguments contained within paren-
thesis (such as MOD(A,B)) must be separated by the current
separator, either comma or period.

When you key in an object, you must follow the correct syntax for
that object. Most object types begin and end with delimiters, special
punctuation marks that identify the object. For example, strings are
surrounded by double quotation marks, as in "Hi There" or
"m~2", and vectors are surrounded by square brackets, as in

C 123 JorC -5 & 7 -1@8.2 1. The calculator follows the
same format rules when it displays the objects.

The following table is an expanded version of the table printed above
the left keyboard on the calculator. Both show the appropriate delim-
iters for various objects.

Object Formats

Object Format Example
Real number real -1.234E24
Complex number | <real, real> ©1.23,4,36)>
Binary integer # digits # 123RF
String "text" "HELLO"

Real vector Creal real ... 1] C1 2 3 41
Real matrix CCreal real ... 1] CC1 2 3 41
Creal real ... 1] LS &6 7 81
: L 81 21
Creal real ... 11 L3 4 5 611
Complex vector Ccreal,real> ... 1] Ccl,2) (3,427
Complex matrix CC<real,real» ... 1 CCC1,2) ¢3,421]
Ccreal,real> ... 1 C{5,6) (7,827
Ccreal,real» ... 11
List i object object ... } £1 "HI" <1,2»:

34 2: Basic Operations

Object Formats (Continued)

Object Format Example
Name 'name' 'FRED'
Local name ' name' 'FRED'
Program « object object ... ® « DUP 4 ROLL =
Expression ' expression ' 'A+B’
Equation ' expression=expression ' 'A+B=SINCX)>"'

Any missing delimiters at the end of the command line are automati-

cally added when you press [ENTER].

How the Cursor Indicates Modes

The shape of the cursor indicates the current entry mode and the cur-
rent choice of insert/replace mode. (Entry modes are described next,
followed by the cursor menu, which includes insert/replace modes.)
The following table shows the six possible combinations of entry
mode and insert/replace mode.

Insert mode | Replace mode

Immediate entry mode B 0
Algebraic entry mode S =}
Alpha entry mode # B

Entry Modes

There are three modes for entering different types of objects. In gen-
eral, immediate entry mode is used to key in data objects, algebraic

entry mode to key in name objects and algebraic objects, and alpha
entry mode to key in programs and strings. You can always activate or
deactivate alpha entry mode by pressing [a]; in some cases the entry
mode changes automatically when you begin to key in a new object.

2: Basic Operations 35

The current entry mode primarily affects how keys associated with
commands operate—whether pressing a key causes the command to
execute, or whether the name of the command is added to the com-
mand line. In this discussion “key” 1ncludes shifted keys such as (=]
and assigned menu keys such as [EEFE.

The following keys are unaffected by the current entry mode:

B Keys associated with non-programmable operations, such as
(ENTER], ([CATALOG], or EIT™E. Pressing an operation key always
executes the operation.

B All single-character keys on the left-hand keyboard. Pressing a
character key always adds the character to the command line. (Al-
though keys such as [ll[>] correspond to the names of functlons
they act as character keys.)

B Character keys (0] through (9], (-], (1], and @(=] on the right-hand
keyboard. Pressing a character key always adds the character to the
command line.

L in the USER menu, E{%# in the PROGRAM CONTROL
(CTRL) menu, and any key in the PROGRAM BRANCH menu.
Pressing one of these keys always adds the name of the command
to the command line.

Along with command keys, the menu keys assigned to variable names
in the USER menu are affected by the current entry mode. The fol-
lowing describes each entry mode and how it affects each type of key.
The affected keys are all on the right-hand keyboard and are primar-
ily menu keys.

Immediate Entry Mode. This is the default entry mode—a new
command line normally begins in this mode. The cursor appears as 00
or 4. In immediate entry mode:

B Pressing a command key (such as [STO]) executes the command.
B Pressing a function key (such as (+]) executes the function.

B Pressing a variable key in the USER menu evaluates the variable
name.

36 2: Basic Operations

To save keystrokes, most command keys execute ENTER before exe-
cutmg the command. Exceptions to this rule are 5, | :
7798 in the MODE menu, and [- C
the BINARY menu, which execute their command w1th0ut executmg
ENTER—that is, without disturbing the command line.

Algebraic Entry Mode. Pressing ('] to begin a name or algebraic,
while in immediate entry mode, activates algebraic entry mode. The
cursor appears as B or €. Pressing [*] a second time to complete the
object reactivates immediate entry mode. In algebraic entry mode:

B Pressing a command key executes the command, just as in immedi-
ate entry mode.

B Pressing a function key adds the function name to the command
line. If the function takes its arguments in parentheses, such as
SINCX>, the opening parenthesis is also added.

B Pressing a variable key in the USER menu adds the variable name,
unquoted, to the command line.

Alpha Entry Mode. Pressing [«] or [ll("] to begin a program or string
activates alpha entry mode, indicated by the O annnunciator. The
cursor appears as B or 4. While in immediate or algebraic entry mode,
pressing (] activates alpha entry mode, and pressing (o] a second time
reactivates the previous entry mode. At any time you can press
B(«0CK] to “lock” alpha entry mode indefinitely. To “unlock” the en-
try mode, press [a].

In alpha entry mode:

B Pressing a command key adds the command name to the command
line.

B Pressing a function key adds the function name to the command
line.

B Pressing a variable key in the USER menu adds the variable name,
unquoted, to the command line.

If the cursor is in insert mode or positioned at the end of the com-
mand line when you press any of the above keys, one space is added
to the beginning and end of the appended text to separate commands.

2: Basic Operations 37

The Cursor Menu: %]

Pressing («+] assigns the cursor menu to the menu keys. No menu
labels appear; instead, the action of the menu keys is indicated by the
white labels above the menu keys. The cursor menu contains editing
operations more elaborate than backspacing ([¢]). Pressing (] a sec-
ond time reassigns the previous menu, whose menu labels reappear in
the display.

The cursor menu contains both shifted and unshifted keys. The
unshifted keys are labeled in white above the corresponding menu
keys, as illustrated.

The following table describes the operations associated with the
unshifted cursor menu keys. If you press and hold any of these keys,
except (INS], the operation is repeated until you release the key.

38 2: Basic Operations

Unshifted Cursor Menu Keys

Key Operation

Switch between replace mode and insert mode. In replace mode,
new characters replace existing characters; the cursor appears as
0, B, or K. In insert mode, new characters are inserted between
existing characters; the cursor appears as 9, €, or 4.

Delete the character at the cursor position.

(a] Move the cursor up one line.

(v] Move the cursor down one line.

(] Move the cursor left one space.

D) Move the cursor right one space.

The following table describes the operations associated with the
shifted cursor menu keys. Except for @[INS], these operations are
equivalent to repetitions of the unshifted operations.

Shifted Cursor Menu Keys
Key Operation
B(INS] | Delete all characters to the left of the cursor.
B(DEL] | Delete the character at the cursor position and all characters to
the right.
B Move the cursor to the top row of the command line.
B8] Move the cursor to the bottom row of the command line.
Bl Move the cursor to the left end of the command line.
B> Move the cursor to the right end of the command line.

2: Basic Operations 39

Enter Command Line:

Pressing evaluates the command line. (If no command line is
present, pressing executes the command DUP, which dupli-
cates the contents of level 1. DUP is described in “STACK.”)

To evaluate the command line, ENTER must parse the text in the
command line to make objects, combine the objects into a program,
and then evaluate the program. More precisely, here is what happens
when you press to evaluate a command line:

1. The busy annunciator (() is turned on.
2, If UNDO is enabled, a copy of the current stack is saved.

3. The text string in the command line is searched for object delim-
iters and separators, and then broken into the corresponding
substrings.

4. Each substring of text is tested against syntax rules to identify its
object type, and the corresponding object is put on the stack.

5. If COMMAND is enabled, a copy of the command line is saved
in the command stack.

6. The objects put on the stack are combined into a single program
object, which is then evaluated.

7. The busy annunciator ((e) is turned off.

If a substring fails the syntax tests in step 4, Suntax Error is dis-
played. The objects that ENTER has put on the stack are dropped,
and the command line is restored. The incorrect text is highlighted in
inverse characters, followed by the cursor. If the error resulted from
incomplete syntax, the cursor is positioned at the end of the line.

Viewing Objects: [§j(viEw+], [VIEW+]

You can view the hidden lines of an object that occupies more than
the available display lines with [VIEW*] and [(ViEW+]. [[VIEW*)

moves the display window up one line, and [VIEW+] moves the dis-
play window down one line. You can also view hidden stack levels in

this manner. Both @[VIEwW+] and [[VIEW+] are repeating keys and can

be used even during object entry or editing.

40 2: Basic Operations

Editing Existing Objects

An existing object can be returned to the command line. You can then
view its entire definition or change its definition, using the normal
editing operations in the command line. EDIT returns an object in
level 1 to the command line. VISIT returns an object in higher stack
levels, or in user memory, to the command line.

Editing Level 1: [J(EDIT]

EDIT acts as an inverse of ENTER, taking an object from level 1 and
returning it to the command line. In more detail, here is what EDIT
does:

1. A copy of the object in level 1 is converted to text form, and
entered into the command line.

2. Alpha entry mode is activated.

3. The cursor menu is activated for editing.

The original object in level 1 is highlighted to remind you that you are
editing that object and that the original copy is still preserved.

While the text form of the object is in the command line, you can alter
it as you please. When you have finished editing you can:

B Press to cancel the edit, clear the command line, and leave the
original object in level 1 unchanged.

B Press (or a key that performs ENTER) to replace the original
object in level 1. (More precisely, the original object in level 1 is
dropped and the command line is evaluated.)

If the cursor menu is still active when you complete the editing, the
previous menu is restored.

2: Basic Operations 41

Editing a Variable or Stack Level: [VisiT)

VISIT is an extended version of EDIT. It enables you to view or edit
an object stored in a variable, or in a stack level higher than level 1,
without first recalling the object to level 1.

Editing a variable. To edit the object stored in a variable, put the
variable name in level 1 and press [[VISIT). The stored object is cop-
ied to the command line, alpha entry mode is activated, and the
cursor menu is activated.

Editing a stack level. To edit the object in stack level n, put n on
the stack and press @[VISIT]. The object is copied to the command
line, alpha entry mode is activated, and the cursor menu is activated.
The original object is highlighted to remind you that you are editing
that object and that the original copy is still preserved.

You terminate VISIT in the same way as EDIT:

B Press to cancel the edit, clear the command line, and leave the
original object unchanged.

B Press (or a key that performs ENTER) to replace the original
object. (More precisely, the command line is evaluated, and the re-
sulting object in level 1 replaces the original object.)

If the cursor menu is still active when you complete the editing, the
previous menu is restored.

Evaluating Objects

EVAL Evaluate Object Command
Level 1
obj »

42 2: Basic Operations

EVAL evaluates the object in level 1. The result of evaluation, includ-
ing any results returned to the stack, depends on the evaluated object.
Evaluation is described in detail in “Fundamentals”. The evaluation of
functions is affected by flag 36, which selects symbolic or numerical
evaluation mode. See the section on “ALGEBRA”.

-NUM Evaluate to Number Command
Level 1 Level 1
obj » z

~NUM is identical to EVAL, except it temporarily sets numerical eval-
uation mode (described in “ALGEBRA”) to insure that functions
return numerical results. The current function evaluation mode is re-
stored when =NUM is completed.

SYSEVAL Evaluate System Object Command
Level 1
#n »

SYSEVAL is intended solely for use by Hewlett-Packard in application pro-
gramming. General use of SYSEVAL can corrupt memory or cause
memory loss. Use SYSEVAL only as specified by Hewlett-Packard
applications.

SYSEVAL evaluates the system object at the absolute address # 1. You
can display the version number of your HP-28C by executing
18 SYSEVAL (assuming DEC base, which is the default base).

2: Basic Operations 43

Names

Names can be up to 127 characters in length, although practical con-
siderations suggest names no longer than five or six characters. The
first character must be a letter. Lower-case letters are distinguished
internally from upper-case letters but appear as upper-case in the
USER menu. You can not use HP-28C command names for variable
names.

The legal characters available on the keyboard are letters, digits, and
the characters #, E, n, +, », and . The following characters cannot be
included in variable names:

B Object delimiters (#, C, I, ", ', &, ¥, &, », &, #).

B Algebraic operator symbols (+, -, %, », =, I, =, <, », £, =, #,
a,).

B Current separator (. or ,).

Reserved Names

The following names are reserved for specific uses:

B EQ refers to the current equation used by the Solver and PLOT
commands.

ZPAR refers to a list of parameters used by statistics commands.

PPAR refers to a list of parameters used by plot commands.

2ZDAT refers to the current statistical array.

s1, s2, and so on, are created by ISOL and QUAD to represent arbi-
trary signs obtained in symbolic solutions.

B nl, n2, and so on, are created by ISOL and QUAD to represent
arbitrary integers obtained in symbolic solutions.

You can use any of these names for your own purposes, but remem-
ber that certain commands use these names as implicit arguments.

a4 2: Basic Operations

Quoted and Unquoted Names

You can enter a name in the command line with or without quotes,
depending on whether you want the name to be evaluated.

Quoted Names. Entering a name in single quotes means, “Put this
name on the stack.” That is, a quoted name is put on the stack, but
not evaluated, when the command line is evaluated.

Unquoted Names. Entering a name without quotes means, “Evalu-
ate the object named by this name.” That is, an unquoted name is put
on the stack, and then evaluated, when the command line is
evaluated.

Duplicate Names

Normally you can’t create two user variables that have the same
name. However, certain commands (DRAW, [, QUAD, TAYLR) create
a temporary user variable whose name duplicates the name argument
you specify for the command. When the command completes execu-
tion, it purges the temporary variable. However, if the command is
aborted, by a system halt ((ON][4]) or by an Out of Memory error,
the temporary variable remains in user memory.

If the temporary variable remains, and if you had previously created a
variable with that name, there will be two variables with the same
name in the USER menu. Use PURGE to clear the duplicate name
from the USER menu. (PURGE clears the most recently created vari-
able, which is the temporary variable.)

Creating, Recalling, and Purging Variables

A variable is the combination of a name object and any other object,
stored together in user memory. The name object represents the name
of the variable; the other object is the value or contents of the
variable.

2: Basic Operations 45

This section tells you how to create an object, how to recall the con-
tents of a variable to the stack without evaluation, and how to purge
a variable.

STO Store Command

Level 2 Level 1

obj 'name' ®»

This command creates a variable whose name is name and whose
value is obj. Subsequent evaluation of name puts obj on the stack and,
if obj is a name or program, evaluates obj.

RCL Recall Command

Level 1 Level 1

"name' ®» obj

This command searches user memory for the variable name and re-
turns its contents obj. The object returned is not evaluated.

There is an important distinction between RCL (recall) and EVAL
(evaluate). RCL requires a variable name as an argument and returns
the contents of the variable. EVAL accepts any object as an argument
and evaluates the object according to the rules for that object. RCL
and EVAL have the same effect only when the argument is a name
that refers to a data object, an algebraic, or a local variable. In these
cases, both return the stored object to the stack.

The following table summarizes the results of executing EVAL and
RCL (with the name 'ABC' in level 1), for different values of the
associated variable ABC.

46 2: Basic Operations

Comparison Between EVAL and RCL

If 'ABC' contains: 'ABC' EVAL: 'ABC' RCL:
(undefined) Returns 'ABC'. Causes Undefined
Name error
A name 'DEF"'. Evaluates 'DEF'. Returns 'DEF .
A program. Evaluates the program. | Returns the program.
Any other object. Returns the object. Returns the object.
PURGE Purge Command
Level 1
' name ' »
{namey namey, ... } ®»

PURGE deletes one or more variables from user memory. If the argu-
ment is a name, PURGE deletes the corresponding variable. If the
argument is a list of names, PURGE deletes each of the named
variables.

Recovery

The HP-28C automatically saves copies of command lines, the stack,
and arguments. These copies enable you to recover from a mistake—
to go back to where you were before the mistake. You can then redo a
calculation correctly without having to start over from the beginning.
The copies of command lines and arguments are also handy for re-
peating calculations.

2: Basic Operations 47

These copies can consume a significant amount of memory. For each
of these recovery features—command lines, the stack, and argu-
ments—you can choose whether to enable or disable the feature. (The
operations to enable or disable the recovery features are in the MODE
menu.) This section assumes all recovery features are enabled, as they
are at memory reset.

The recovery operations are [l[COMMAND], which recovers copies of
the command line, @[UNDO], which recovers a copy of the stack, and
B(LAST], which recovers the last arguments used.

Command Line Recovery: [J[COMMAND)

Each execution of ENTER saves a copy of the command line. Up to
four saved command lines are stored in the command stack. Pressing
B(COMMAND] once retrieves the first (most recently saved) command
line, replacing the present contents of the command line. Pressing

B(COMMAND] a second time retrieves the second command line, and so

on. If you press [lJ[COMMAND] more than four times, the sequence
starts over with the first command line.

Stack Recovery: [J(UNDO]

Each execution of ENTER saves a copy of the stack before evaluating
the command line. Pressing [[UNDO] clears the current stack and re-
places it with the saved stack. UNDO restores the stack to the same
condition as before you pressed (or the key that executed EN-
TER), but it doesn’t affect any changes that occured in the user flags
or in user memory.

While a program is suspended, the UNDO feature, (including EEIH,
LN, and UNDO itself), is associated with the suspended program
environment. That is, UNDO will restore the stack that was present
prior to the last ENTER, but after the (most recent) program was sus-
pended. After a program is continued and completes execution,
UNDO will then reference the stack saved before the program was
executed.

48 2: Basic Operations

Last Arguments Recovery

LAST Last Arguments Command
Level 3 Level 2 Level 1
» obj4
0bjy 0bjp
» Obj1 Objz Ob/g

Commands that take arguments from the stack save copies of those
objects. Executing [lJ[LAST] returns the objects most recently saved by
a command. The objects return to the same stack levels that they orig-
inally occupied. Commands that take no arguments leave the current
saved arguments unchanged.

Note that when LAST follows a command that evaluates procedures
(such as [, 9, ISOL, EVAL, ROOT, and so on), the last arguments
saved are from the procedure, not from the original command.

Low Memory

The HP-28C contains 2048 bytes of user memory, of which about 400
are reserved for system use, leaving about 1650 bytes for general use.
Virtually every HP-28C operation requires some memory use—even
interpreting the command line. The amount of memory used by some
algebra commands (COLCT, EXPAN, TAYLR) increases rapidly as their
arguments become more complicated.

To use the HP-28C effectively, keep in mind that it is a calculator for
interactive problem solving. Its power is in its built-in operations, not
in its capacity to store large databases or program libraries. Try to
leave at least a few hundred bytes of memory free for dynamic sys-
tem use.

2: Basic Operations 49

Because the HP-28C operating system shares memory with user ob-
jects, you can fill memory so full of user objects that normal calculator
operation becomes difficult or impossible. The HP-28C provides a se-
ries of low memory warnings and responses. In order of increasing
severity—that is, decreasing free memory—these warnings are:

1. Insufficient Memory
2. Mo Room for UNDO

3. HNo Room to ENTER

4. Low Memory!

5. Ho Room to Show Stack
6. Dut of Memory

Insufficient Memory

If there isn’t enough memory available for a command to execute, the
command halts and displays Insufficient Memorwy. If LAST is
enabled, the original arguments are restored to the stack. If LAST is
disabled, the arguments are lost.

No Room for UNDO

Suppose that UNDO is enabled and you have a 11 X 11 matrix on
the stack. You can’t perform even a simple operation such as NEG,
because there isn’t enough room in memory for both the original ma-
trix and the resulting matrix. In such cases a No Room for UNDO
error occurs, which automatically disables UNDO. You can then retry
the operation that failed and later reenable UNDO.

50 2: Basic Operations

No Room to ENTER

If there isn’t enough memory available to process the command line,
the calculator clears the command line and displays Mo Roaom

to ENTER. A copy of the unsuccessful command line is saved in the
command stack if the command stack is enabled.

If you're attempting to edit an existing object, using EDIT or VISIT,
and a copy of the unsuccessful command line is saved in the com-
mand stack, purge the original copy of the object, press [lJ[COMMAND]
to recover the command line containing the edited object, and press
to enter the edited version.

Low Memory!

If fewer than 128 bytes of free memory remain, Low Memory!
flashes once in the top line of the display. This message will flash at
every keystroke until additional memory is available. Clear unneeded
objects from memory before continuing your calculations.

No Room To Show Stack

It is sometimes possible for the HP-28C to complete all pending oper-
ations, and not have enough free memory left for the normal stack
display. In this case, the calculator displays Ho Room to Shou
Stack in the top line of the display. Those lines of the display that
would normally display stack objects, now show those objects only by
type, for example, Real Mumber, Algebraic, and so on.

The amount of memory required to display a stack object varies with
the object type—algebraics usually require the most memory. Clear
one or more objects from memory, or store a stack object as a variable
so that it does not have to be displayed.

2: Basic Operations 51

Out of Memory

The extreme case of low memory is when there is insufficient memory
for the calculator to do anything—display the stack, show menu la-
bels, build a command line, and so on. In this situation, you must
clear some memory before continuing. A special Out of Memory
procedure is activated, which will create a display:

Out 0Of Memory

Purge?

Command Stack

EYER PN el

The calculator will sequentially prompt you to clear:

1. The COMMAND stack (if enabled).
2. The UNDO stack (if enabled).

3. LAST Arguments (if enabled).

4. The stack.

5. Each user variable, by name.

For each item that you want to purge, press the &5 menu key, for
those that you want to keep, press | . After pressing FEER
least once, you can try to terminate the Out of Memory procedure
by pressing [ATTN]. If sufficient memory is available, the calculator re-
turns to the normal display; otherwise, the calculator beeps and
continues through the purge sequence. After cycling once through the
choices, the Out of Memory procedure attempts to return to nor-
mal operation. If there still is not enough free memory, the procedure
starts over with the sequence of choices to purge.

52 2: Basic Operations

System Operations

There are special key combinations that interrupt normal HP-28C op-
eration to perform system operations. These system operations include
adjusting display contrast, halting endless program loops that do not
respond to the key, resetting memory, or performing an elec-
tronic system test.

Attention:

Pressing clears the command line and displays the stack. If a pro-
cedure is executing, pressing halts the procedure. The result is
similar to executing ABORT (described in “PROGRAM CONTROL").

Pressing [l OFF] turns the HP-28C off. When you next press [ON], the
HP-28C will resume operation in the same state as when you turned
it off. The HP-28C will turn itself off if it is left idle for 10 minutes.

Contrast Control: [ON](+], [ON][=]

You can change the HP-28C display contrast as follows:

1. Press and hold the key.

2, Press[+]to increase the contrast or press [=] to decrease the con-
trast. As long as you hold the key down, you can press
or (=] repeatedly or continuously, until you find the best
contrast.

3. Release the key.

2: Basic Operations 53

System Halt: [ON](4]

To perform a system halt press the key and the [a] key simulta-
neously, then release both. A system halt does the following:

B Stops all command or procedure execution.

B Clears any local variables.

B Clears the stack.

B Activates the cursor menu.

B Restarts normal keyboard operation.

The most common use of a system halt is to stop an “endless” name
evaluation loop. Remember that evaluation of a name that refers to a
second name causes evaluation of the second name. If the second

name refers back to the first name, evaluating either name causes an
endless loop. For example:

'YUotRY OSTO O 'R O'Y!Y STO X

results in an endless loop. Because name evaluation is critical for sym-
bolic algebra, it is optimized for speed, and cannot be halted by the
key. You must use a system halt to interrupt the loop.

Memory Reset: [ON][INS][P]

To clear and reset the entire HP-28C memory:

1. Press and hold [ON].

2. Press and hold and [p].
3. Release and [»].

4. Release [ON].

54 2: Basic Operations

A memory reset does the following:

Stops all command or procedure execution.
Clears any local variables.

Purges all user variables.

Clears the stack.

Resets all user flags to their default values.
Activates the cursor menu.

Beeps and displays Memory Lost in display line 1.

Restarts normal keyboard operation.

Cancel Reset:

If you initiate a system halt ([ON][a]) or a memory reset
((on]J(ins](»]), the halt or reset does not take place until you release
the key. You can cancel the pending action at any time before
you release the key by doing as follows:

1. Release all keys except [ON].

2. Press and release [DEL].
3. Release the key.

System Test: [ON](¥], [ON](«]

The HP-28C includes tests of its system electronics for manufacturing
and service operations. You can begin the tests by pressing and
(v] simultaneously and then releasing them. Each time the calculator
completes a test, as shown by a new display pattern, you can advance
by pressing any key.

2: Basic Operations 55

When the display shows KEYBOARD TEST, press through (F]J,
then through (L], then [M] through [R], and so on. When you've
completed the left-hand keyboard, test the right-hand keyboard be-

ginning with [INS].
If the calculator successfully completes all tests, it displays OK-28C.

You can begin repeated tests by pressing and (] simultaneously.
The calculator repeats the series of tests, skipping the keyboard test,
until you press a key. The calculator then displays a FAIL message,
indicating that its test was interrupted.

The system tests also perform a system halt ([ON](a]).

56 2: Basic Operations

Dictionary

All HP-28C operations (except for the special command SYSEVAL)
are available on a key. Frequently used operations such as [ENTER],
(+], and @[] are always available on the key showing their name. All
other operations are available on the menu keys—the six keys at the
top of the right-hand keyboard. (The variables you've created are also
available on the menu keys, as described in “SOLVE” and “USER”".)

The current assignment of each menu key appears on its menu label,
the name displayed in inverse video directly above the key. If no la-
bels are displayed, the cursor menu is active. The cursor operations
are used in editing; they are described in the chapter on “Basic
Operations.”

Operations are grouped in menus according to a common application,
such as trigonometry, or a common argument type, such as arrays.
You select a menu by pressing a menu selection key such as or
B(ARRAY]. Each menu consists of menu lines—a set of six commands
assigned to the menu keys at one time. Pressing a menu selection key
assigns the first menu line to the menu keys. Pressing assigns
the next menu line, eventually returning to the first menu line. Press-
ing @(PREV] steps through the menu lines in the reverse order from
(NEXT].

Pressing a menu key evaluates the assigned operation or adds its
name to the command line. Pressing an unassigned menu key (indi-
cated by a blank menu label) causes the calculator to beep. For a
complete description, refer to the section on “Object Entry” in “Basic
Operations.”

3: Dictionary 57

The following table lists the menu selection key and description for
each menu in the HP-28C.

Menu Selection

Key Description

(%) Cursor movement, editing operations.

B(ALGEBRA] Algebra commands.

B(ARRAY] Vector and matrix commands.

B(BINARY] Integer arithmetic, base conversions, bit
manipulations.

B(BRANCH] Program branch structures.

B(cvrix] Complex number commands.

B(cTRL] Program control, halt, and single-step operations.

B(uisT) List commands.

B (oGs) Logarithmic and exponential functions, hyperbolic
functions.

B (moDE] Display, angle, recovery, and radix mode selection.

B(ro7) Plotting commands.

B(PRINT] Printing commands.

B(REAL] Real number commands.

Numeric and symbolic solution commands, the
Solver.

B(STACK] Stack manipulation commands.

B(sTAT) Statistics and probability commands.

B(STORE] Storage arithmetic commands, in-place matrix
commands.

B(STRING] Character string commands.

B (TEST] Flag commands and logical test functions.

Trigonometric functions, rectangular/polar conver-
sion, degrees/radians conversion, and
Hour/Minute/Second arithmetic commands.

Variables, user-memory commands.

58 3: Dictionary

ALGEBRA

COLCT EXPAN SIZE FORM oBSuUB EXSUB
TAYLR ISOL QUAD SHOW OBGET EXGET

Algebraic Objects

An algebraic object is a procedure that is entered and displayed in
mathematical form. It can contain numbers, variable names, func-
tions, and operators, defined as follows:

Number: A real number or a complex number.

Variable name: Any name, whether or not there is currently a vari-
able associated with the name. We will use the term formal variable to
refer to a name that is not currently associated with a user variable.
When such a name is evaluated, it returns itself.

Function: An HP-28C command that is allowed in an algebraic pro-
cedure. Functions must return exactly one result. If one or more of a
function’s arguments are algebraic objects, the result is algebraic.
Most functions appear as a function name followed by one or more
arguments contained within parentheses; for example, 'SINCK>'.

Operator: A function that generally doesn’t require parentheses
around its arguments. The operators NOT, \/, and NEG (which ap-
pears in algebraics as the unary — sign) are prefix operators: their
names appear before their arguments. The operators +, —, %, /, *,
=, ==, #, <, >, <, =, AND, OR, and XOR are infix operators:
their names appear between their two arguments.

3: Dictionary 59

--.ALGEBRA

Precedence

The precedence of operators determines the order of evaluation when
expressions are entered without parentheses. The operations with
higher precedence are performed first. Expressions are evaluated from
left to right for operators with the same precedence. The following
lists HP-28C algebraic functions in order of precedence, from highest
to lowest:

1. Expressions within parentheses. Expressions within nested pa-
rentheses are evaluated from the inside out.

2, Functions such as SIN, LOG, and FACT, which require argu-
ments in parentheses.

3. Power (*) and square root (/).

4. Negation (—), multiplication (%), and division (/).

5. Addition (+) and subtraction (—).

6. Relational operators (==, #, <, >, <, =).

7. AND and NOT.

8. OR and XOR.

9. =
Algebraic objects and programs have identical internal structures.
Both types of procedures are sequences of objects that are processed
sequentially when the procedures are evaluated. The algebraic ' X +Y'
and the program « ¥ Y + » are both stored as the same sequence
(the RPN form). Algebraics are “marked” as algebraics so that they

will be displayed as mathematical expressions and to indicate that
they satisfy algebraic syntax rules.

60 3: Dictionary

--.ALGEBRA

Algebraic Syntax and Subexpressions

A procedure obeys algebraic syntax if, when evaluated, it takes no
arguments from the stack and returns exactly one argument to the
stack, and if it can be subdivided completely into a hierarchy of
subexpressions. A subexpression can be a number, a name, or a func-
tion and its arguments. By hierarchy, we mean that each sub-
expression can itself be an argument of a function. For example,
consider the expression:

"1-SINCK+Y !

The expression contains one number, 1, and two names, ¥ and Y,
each of which can be considered as a simple subexpression. The ex-
pression also contains three functions, +, -, and SIN, each of which
defines a subexpression along with its arguments. The arguments of +
are ¥ and ¥; ¥+Y is the argument of SIN, and 1 and SIH{X+Y> are
the arguments of —. The hierarchy becomes more obvious if the ex-
pression with its operators is rewritten as ordinary functions (Polish
notation):

—(1, SIN (+(X, Y)))

An object or subexpression within an expression is characterized by
its position and level.

The position of an object is determined by counting from left to right
in the expression. For example, in the expression '1-SINCK+Y2 "', 1
has position 1, - has position 2, SIH has position 3, and so on.

The position of a subexpression is the position of the object that de-
fines the subexpression. In the same example, 'SIN{X+Y>"' has
position 3, since it is defined by SIHN in position 3.

3: Dictionary 61

...ALGEBRA

The level of an object within an algebraic expression is the number of
pairs of parentheses surrounding the object when the expression is
written in purely functional form. For example, in the expression '1-
SINCX+Y)> ', - has level 0, 1 and SIN have level 1, + has level 2,
and ¥ and ¥ have level 3. Every algebraic expression has exactly one
level O object.

(User-defined functions are an apparent exception to the rule for
determining the levels of a subexpression. In the expression
'"FCA.BY ', for example, where F is a user-defined function, F, R,
and B are all at level 1; there is no explicit level 0 function. This is
because F and its arguments A and B are all arguments for a special
“invisible” function that provides display and evaluation logic for
user-defined functions.)

If we take the above expression and rewrite it again, by removing the
parentheses, and placing the functions after their arguments, we ob-
tain the RPN form of the expression:

1 ¥ %¥ + SIN -

This defines a program that has algebraic syntax, and is effectively

equivalent to the corresponding algebraic object. Programs, however,
are more flexible than algebraic objects; for example, we could insert a
DUP anywhere in the above program and still have a valid program,
but it would no longer obey algebraic syntax. Since DUP takes one
argument and returns two, it cannot define or be part of an algebraic
subexpression.

Equations

An algebraic equation is an algebraic object containing two expressions
combined with an equals sign (=). Mathematically, the equals sign im-
plies the equality of the two subexpressions on either side of the sign.
In the HP-28C, = is a function of two arguments. It is displayed as an
infix operator, separating the two subexpressions that are its argu-
ments. Internally, an equation is an expression with = as its level 0
object.

62 3: Dictionary

...ALGEBRA

When an equation is numerically evaluated, = is equivalent to -. This
feature allows expressions and equations to be used interchangeably
as arguments for symbolic and numerical rootfinders. An equation is
equivalent to an expression with = replaced by -, and an expression is
equivalent to the left side of an equation in which the right side is
zero.

When an equation is an argument of a function, the result is also an
equation, where the function has been applied to both sides. Thus

'R=Y¥"' SIHN returns 'SINCRXI=SIN{Y)> "',

Conventional mathematical usage of the equals sign = is ambiguous.
The equals sign is used to equate two expressions, as in

x + siny = 2z + t. This type of equation is suitable for solving, that
is, adjusting one or more variables to achieve the equality of the two
sides.

The equals sign is also used to assign a value to a variable, as in
x = 2y + z. This equation means that the symbol x is a substitution
for the longer expression 2y + z; it is meaningless to “solve” this
equation.

The ambiguity of the equals sign is compounded by certain computer
languages such as BASIC, where “=" means “replace by,” as in
X =Y + Z. Such notation doesn’t imply a mathematical equation at

all.

In the HP-28C, the equals sign always means equating two expres-
sions, such that solving the equation is equivalent to making the
difference between the two expressions zero. (Assignment is per-
formed by STO, which is strictly a postfix command that takes two
arguments.)

3: Dictionary 63

...ALGEBRA

= Equal Analytic
Level 2 Level 1 Level 1
Z4 Zy » 'z1=2,"
z 'symb' » 'z=symb'
'symb' z » 'symb=z"
' symby 'symby,' ®» ' symby=symb, '

This function combines two arguments, which must be names, expres-
sions, real numbers or complex numbers.

If the HP-28C is in symbolic evaluation mode (flag 36 set), the result
is an algebraic equation, with the level 2 argument on the left side of
the equation, and the level 1 argument on the right.

If the HP-28C is in numerical evaluation mode (flag 36 clear), the
result is the numerical difference of the two arguments. In effect, =
acts as the — operator in numerical evaluation mode.

Functions of Symbolic Arguments

Function Evaluation Mode

Symbolic Evaluation Mode (flag 36 set). In symbolic evaluation
mode, functions return symbolic results if their arguments are sym-
bolic. This is the default evaluation mode. For example:

'®' SIN returns 'SINCXK>!
'E2+5' LN returns 'LHCK*2+5) .
3 '¥' + returns '3 +X'
2 '®' + SIHM returns 'SIMNCZ+X>',
'¥'' 1 2 IFTE returns 'IFTECXK,1,2>"',

64 3: Dictionary

-..ALGEBRA

Numeric Evaluation Mode (flag 36 clear). In numeric evaluation
mode, each function attempts to convert symbolic arguments to data
objects. Once the arguments are converted to numbers, the function is
applied to those arguments, returning a numeric result. The argu-
ments are repeatedly evaluated until they become data objects or
formal variables. If the final arguments are formal variables, an
Undefined Name error occurs.

Automatic Simplification

Certain functions, when evaluated, replace certain arguments or com-
binations of arguments with simpler forms. For example, when
"1%¥"' is evalulated, the % function detects that one of its arguments
is a 1, so the expression is replaced by ' ¥'. Automatic simplification
occurs in the following cases:

Original Expression Simplified Expression
Negation, Inverse, Square
—(=R> b
INVCINV KDY b
SRCTHD A
SRCK™Y 2 RO ¥20
SRCiD -1
Addition and Subtraction
B+X or X+8 R
®-a A
B-x -X
R—® a
Muitiplication
A¥8 or BEK 5]
A¥1 or 1%¥% b
REC—12 or —1%X¥ -X
—R¥C-12 or —1¥(-K> A
i¥i -1
—REINVCY —(KAYD
—-RKEY —(REY D
HEINVCY D Ry

3: Dictionary

65

..ALGEBRA

Original Expression

Simplified Expression

Division
S |

%
1/INV(XD>
1%

Power

17K

A

b3 |

CTR» ™2
INUVCRI (=12
RM(=1>

in2

in(2,82

SIN, COS, TAN
SINCASINCX) D
SINC=-X>
SINCTS
SIMNCTA22
COSCACOS(K» 2
COSC-R>
COSCmo
CosS<n 22
TANCATANCK) >
TANC=-X2
TANCT

ABS, MAX, MIN, MOD, SIGN
ABS{ABS (X))

ABS(-x>

MAX (R, X2

MINCK, X)

MODCK, @2

MODCE, X2

MODCK, X2
MODCMODCK, Y2, YD
SIGNCSIGNCK Y2

— X ® X

NV XD

1
1
x
x
b

INWV (KD

-lor¢-1,82"
(-1,8>

b
—SINCR2
at

11

b
COSCRD
-1t

at

n
—TANCK
at

ABS (K>
ABS (X2

X

n

X

5]

a
MODCXK, Y2
SIGNCHK?

clear).

1 Applies only when the angle mode is radians.

* Depends on symbolic evaluation mode (flag 36 set) or numerical evaluation mode (flag 36

66 3: Dictionary

--.ALGEBRA

Original Expression

Simplified Expression

ALOG, EXP, EXPM, SINH, COSH, TANH
ALOGCLOGCX 2D

EXPCLNCX))

EXPMCLNPL1CK) 2

SINHCASINHCR? 2

COSHCACOSHC(K Y

TANHCATANHC K 2

IM, RE, CONJ
IMCIMCRD D
IMCRECK2 2
IMCCONJCK > 2
IMCia
RECRECR 22
RECIM{R22
RECCONJCK > 2
REC1D
CONMJCCONJCK 2D
CONJCRECK > 2
COMJCIMCK YD
COMNJCLD

KX KXXX X

“IMCKD

RECK)
IM(RD
RECK)

RECRY
IMCRD
-1i

Functions of Equations

Functions applied to equations in symbolic
equations as results.

evaluation mode return

If a function of one argument is applied to an equation, the result is
an equation obtained by applying the function separately to the left
and right sides of the argument equation. For example:

'R+2=Y"' SIH returns 'SINC(R+2>=SINCY>'.

3: Dictionary 67

--.ALGEBRA

If both arguments of a two argument function are equations, the re-
sult is an equation derived by equating the expressions obtained by
applying the function separately with the two left sides of the equa-
tion as arguments, and with the two right sides. For example:

'R+¥=Z2+T' 'SINC(RI=3"' + returns 'X+Y+SINCQI=Z2+T+5"'.

If one argument of a two argument function is a numeric object or an
algebraic expression, and the other is an equation, the former is con-
verted to an identity equation with the original object on both sides.
Then the function acts as in the case where both arguments are equa-
tions. For example:

'R=Y' 3 - returns 'XK-3=Y¥-3'.

These properties define the behavior of algebraic objects when they
are evaluated (see the next section) as well as allow you to perform
algebraic calculations in an interactive RPN style, much as you carry
out ordinary numerical calculations.

Evaluation of Algebraic Objects

Evaluation of algebraic objects is a powerful feature of the HP-28C
that allows you to consolidate expressions by carrying out explicit nu-
merical calculations, and substitute numbers or expressions for
variables. In order to understand what to expect when you evaluate
an algebraic object remember that an algebraic object is equivalent to
a program, and that evaluating a program means to put each object in
the program on the stack and, if the object is a command or name,
evaluate the object.

To demonstrate what this means, let us suppose that we have defined
variable X to have the value 3 (that is, 3 'X' ST0Q), Y to have the
value 4, and Z to have the value '¥+T'. We will also assume that
symbolic evaluation mode (flag 36) is set, so that functions will accept
symbolic arguments.

68 3: Dictionary

...ALGEBRA

First consider the expression '#+Y'. When we evaluate this expres-
sion ('®+Y' EWAL), we obtain the result 7. Here’s why: Internally,
'¥+Y " is represented as X Y +. So when 'R®+Y' is evaluated, X, Y,
and + are evaluated in sequence:

1. Since X is a name, evaluating it is equivalent to evaluating the
object stored in the variable ¥, the number 3. Evaluating X puts
3 in level 1.

2. Similarly, evaluating ¥ puts 4 in level 1, pushing the 3 into
level 2.

3. Now + is evaluated, with the numeric arguments 3 and 4 on the
stack. This drops the 3 and the 4, and returns the numeric
result 7.

Now try evaluating 'X+T"':

1. Evaluating X puts 3 in level 1.

2. Tis a name not associated with a variable, so it just returns itself
to level 1, pushing the 3 into level 2.

3. This time + has 3 and T as arguments; since T is symbolic, +
returns an algebraic result, '3+T".

Finally, consider evaluating '¥+Y+2Z"'. Internally, this expression is

represented as X Y + Z +. Following the same logic as in the above
examples, evaluation gives the result '7+X+T'. We can evaluate this
result again and obtain the new result '1@+T'. Further evaluation
makes no additional changes, since T has no value.

Notice that evaluating '®+T+Y"' (keeping the same values as above)
returns '3+T+4 ', not '7+T ' or 'T+7'. The values 3 and 4 obtained
by evaluating X and Y are not arguments to the same + operator in
the expression, and hence are not combined. If you want to combine
the 3 and the 4, you can use either the COLCT command for auto-
matic collection of terms, or the FORM command for more general
rearrangement of the expression.

3: Dictionary 69

...ALGEBRA

Symbolic Constants: e, =, i, MAXR, and
MINR

There are five built-in algebraic objects that return a numerical repre-
sentation of certain constants. These objects have the special property
that their evaluation is controlled by symbolic constants evaluation
mode (flag 35) as well as by the functions evaluations mode (flag 36).
When flag 36 is clear (numeric evaluation mode), these objects evalu-
ate to their numerical values (regardless of constants evaluation mode
(flag 35)). When flag 36 is set (symbolic evaluation mode):

B If flag 35 is clear, these objects will evaluate to their numeric val-
ues. For example:
'2%i' EVAL returns (8,2,

B If flag 35 is set, these objects will retain their symbolic form when
evaluated. For example:

‘2¥1i' EVAL returns 'Z¥i'.
The following table lists the five objects and their numerical values.

HP-28C Symbolic Constants

Object Name Numerical Value

e 2.71828182846

T 3.14159265359

i (0.00000000000,1.00000000000)
MAXR 9.99999999999E499

MINR 1.00000000000E-499

70 3: Dictionary

...ALGEBRA

The numerical values of e and 1 are the closest approximations of the
constants ¢ and = that can be expressed with 12-digit accuracy. The
numerical value of i is the exact representation of the constant i.
MAXR and MINR are the largest and smallest non-zero numerical val-
ues that can be represented by the HP-28C.

For greater numerical accuracy, use the expression 'EXP(X>' rather
than the expression 'e~X'. The function EXP uses a special algo-
rithm to compute the exponential to greater accuracy.

When the angle mode is radians and flags 35 and 36 are set, trigono-
metric functions of and -2 are automatically simplified. For
example, evaluating 'SIN¢w> ' gives a result of 0.

COLCT EXPAN SIZE FORM OBSUB EXSUB

These commands alter the form of algebraic expressions, much as you
might if you were dealing with the expressions “on paper”. COLCT,
EXPAN, and FORM are identity operations, that is, they change the
form of an expression without changing its value. OBSUB and EXSUB
allow you to alter the value of an expression by substituting new ob-
jects or subexpressions into the expression.

COLCT Collect Terms Command

Level 1 Level 1

‘symby' ®» ‘'symb,'

3: Dictionary 71

...ALGEBRA

COLCT rewrites an algebraic object so that it is simplified by “collect-
ing” like terms. Specifically, COLCT:

B Evaluates numerical subexpressions. For example:
'1+2+L0GC1@> "' is replaced by 4.

m Collects numerical terms. For example: '1+X+2'is replaced by
3R

® Orders factors (arguments of %), and combines like factors. For ex-
ample: 'X*Z¥Y¥X T#Y’ is replaced by '¥~(T+Zix¥"2'.

B Orders summands (arguments of +), and combines like terms dif-

fering only in a numeric coefficient. For example:
'H4+X+Y +3%% is replaced by 'SkK+Y ',

COLCT operates separately on the two sides of an equation, so that
like terms on opposite sides of the equation are not combined.

The ordering (that is, whether X precedes Y) algorithm used by
COLCT was chosen for speed of execution rather than conforming to
any obvious or standard forms. If the precise ordering of terms in a
resulting expression is not whnat you desire, you can use FORM to
rearrange the order.

EXPAN Expand Products Command

Level 1 Level 1

‘symby' ® ‘symby'

72 3: Dictionary

...ALGEBRA

EXPAN rewrites an algebraic object by expanding products and pow-
ers. More specifically, EXPAN:

B Distributes multiplication and division over addition. For example:
"A¥CB+C> ' expands to 'A¥B+A%C'; '(B+C>~A' expands to
'"B/A+CAA'.

B Expands powers over sums. For example: 'A~(B+C)' expands to
'"ATB¥A"C'.

B Expands positive integer powers. For example: 'X~5"' expands to
'®¥¥~4"' The square of a sum ' (X+Y>"2"' or 'SACX+Y) " is ex-
panded to 'X"Z+ZRHEY Y2

EXPAN does not attempt to carry out all possible expansions of an
expression in a single execution. Instead, EXPAN works down
through the subexpression hierachy, stopping in each branch of the
hierarchy when it finds a subexpression that can be expanded. It first
examines the level 0 subexpression; if that is suitable for expansion, it
is expanded and EXPAN stops. If not, EXPAN examines each of the
level 1 subexpressions. Any of those that are suitable are expanded; in
the remainder, the level 2 subexpressions are examined. This process
continues down through the hierarchy until an expansion halts fur-
ther searching down each branch. For example:

Expand the expression 'A™¢(BXx(C~2+D3>".

1. The level 0 operator is the left ~. Since it cannot be expanded,
the level 1 operator * is examined. One of its arguments is a
sum, so the product is distributed yielding:

'"ANCBXCH2+4BXDY !

2. The level 0 operator is still the left ~, but now its power is a sum,
so the power is expanded over the sum when EXPAN is exe-
cuted again:

'"AMCBRCA22kANCBXDY !

3: Dictionary 73

-..ALGEBRA

3. One more expansion is possible. The level 0 operator is now the
middle . Since it cannot be expanded, the level 1 operators, the
outside "’s, are examined. They cannot be expanded, so the level
2 operators, the outside *’s, are examined. Since they cannot be
expanded, the level 3 operator, the middle *, is examined. Its
power is a positive integer, so the power is expanded:

"A™C(BXCCXCO XA~ (BXD) !

SIZE Size Command
Level 1 Level 1
"string" ®» n
{ list ¥ » n
Carrayl o {list ¥
‘symb' ®» n

SIZE returns the number of objects that comprise an algebraic object.

Refer to “ARRAY,” “LIST,” and “STRING” for the use of SIZE with
other object types.

FORM Form Algebraic Expression Command
Level 1 Level 3 Level 2 Level 1
‘symby' w» ' symb, '
'symby' @ 'symby' n "symbg"

74 3: Dictionary

...ALGEBRA

FORM is an interactive expression editor that enables you to rear-
range an algebraic expression or equation according to standard rules
of mathematics. Its operation is described in the next section, “ALGE-
BRA (FORM).”

OBSUB Object Substitute Command
Level 3 Level 2 Level 1 Level 1
'symb, ' n {obj} » 'symb,'

OBSUB substitutes an object in the specified position of an algebraic
object. The object is the contents of a list in level 1, the position 1 is
in level 2, and the algebraic object is in level 3. For example:

'"A¥*B' 3 { C } OBSUB returns 'RA%C'.
You can substitute functions as well as user variables. For example:

'A¥B' 2 { + } 0OBSUB returns 'A+B'.

EXSUB Expression Substitute Command
Level 3 Level 2 Level 1 Level 1
'symb' n ‘symby,' ®» ‘'symbg'

EXSUB substitutes the algebraic (or name) 'symb,' for the
subexpression in the nth position of the algebraic 'symb;' and re-
turns the result expression 'symb;'. The nth subexpression consists of
the nth object in an algebraic object definition plus the arguments, if
any, of the object. For example:

'"CA+BX¥C' 2 'EMF' EXSUB returns 'E“FX¥C'.

3: Dictionary 75

...ALGEBRA

TAYLR ISOL QUAD SHOW OBGET EXGET

TAYLR is described in “Calculus,” along with 9 and J. ISOL, QUAD,
and SHOW are described in “SOLV.”

OBGET Object Get Command
Level 2 Level 1 Level 1
"symb' n » {obj

OBGET returns the object in the nth position of the algebraic object
symb in level 2. The object is returned as the only object in a list. For
example:

"CA+BX¥C' 2 OBGET returns { + :.

If n exceeds the number of objects, OBGET returns the level 0 object.

EXGET Expression Get Command
Level 2 Level 1 Level 1
'symby ' n ®» 'symb,'

EXGET returns the subexpression in the nth position of the algebraic
symb; in level 2. The nth subexpression consists of the nth object in an
algebraic object definition plus the arguments, if any, of the object.
For example:

"CA+BIXC' 2 EXGET returns 'A+B'.

If n exceeds the number of objects, EXGET returns the level 0
subexpression.

76 3: Dictionary

ALGEBRA (FORM)

FORM Form Algebraic Expression Command
Level 1 Level 3 Level 2 Level 1
'symby' ®» 'symby '
'symby' ®» ‘'symb,' n 'symbg '

FORM is an interactive expression editor that enables you to re-
arrange an algebraic expression or equation according to standard
rules of mathematics. All of FORM’s mathematical operations are
identities; that is, the result expression symb, will have the same value
as the original argument expression symb;, even though the two may
have different forms. For example, with FORM you can rearrange
"A+BE' to 'B+A', which changes the form but not the value of the
expression.

A variation of the command EXGET is available while FORM is ac-
tive. It allows you to duplicate a subexpression symb; contained in
symby, and return symbs and its position n to the stack.

When FORM is executed, the normal stack display is replaced by a
special display of the algebraic object, along with a menu of FORM
operations at the bottom of the display. The special display initially
starts in line two of the display (second from top), and wraps into line
three if the object is too long to display in a single line. If the object
requires more than two display lines, you will have to move the
FORM cursor through the object to view the remainder.

3: Dictionary 77

...ALGEBRA (FORM)

To exit FORM and continue with other calculator operations, press
[ON]. Alternatively, you can press the [#fg%f menu key, which also
returns the selected subexpression symb; and its position 7 to the
stack.

The FORM cursor highlights an individual object in the expression
display. (It is not a character cursor like that of the command line.)
The highlighted object appears as white characters against a black

background. The cursor identifies both the selected object, which is

highlighted, and the selected subexpression, which is the subexpression
consisting of the selected object and its arguments, if any.

You can move the cursor to the left or right in the expression by
pressing the FEEFI Ei=E keys in the menu; when the cursor
moves, it moves directly from object to object, skipping any interven-
ing parentheses. The cursor is always in line two of the display. If you
attempt to move the cursor past the right end of line two, the expres-
sion scrolls up one line in the display, and the cursor moves back to
the left end of line two. Similarly, if you try to move the cursor past
the left end of line two, the expression scrolls down one line, and the
cursor moves to the right end of line two.

The expression display differs from the normal stack algebraic object
display by inserting additional parentheses in order to make all oper-
ator precedence explicit. This feature helps you identify the selected
subexpression associated with the selected object as shown by the
cursor. This is important, since all FORM menu operations operate on
the selected subexpression.

While FORM is active, a special set of operations is available as menu
keys. The initial menu contains six operations common to all
subexpressions. Additional menus of operations are available via the

and [(PREV] keys; the contents of the additional menus vary
according to the selected object. Only those operations that apply to
the selected object are shown.

You can reactivate the first six menu keys at any time by pressing

(ENTER].

78 3: Dictionary

-..ALGEBRA (FORM)

FORM Operations

In the following subsections, all of the operations that can appear in
the FORM menus will be described. The descriptions consist primarily
of examples of the “before” and “after” structures of the selected
subexpressions relevant to each operation. Each possible operation is
represented by an example like this:

Distribute to the left.

Before After

((A+B)C) CCA%CI(B*CI)

For simplicity variable names such as A, B, and C will be used, but
each of these can represent a general object or subexpression. The ex-
ample shows that applymg » 7 (distribute to the left) to
"CA+BXXC' returns 'AXC+BXC'.

Individual FORM operations appear in the FORM menu when they
are relevant for the selected object. For example, [l appears in the
menu when + is the selected object, but not when SIN is selected.
Furthermore, if an operation does appear, you will be able to execute
it only if it applies to the selected subexpression. For example,
appears when is the selected object, since distribution is a property
of multiplication. However, the menu key is inactive (it will just beep
if pressed) unless the subexpression is of the form '<¢A+B>%C' or

'(A-B»*C', which can be distributed.

3: Dictionary 79

...ALGEBRA (FORM)

The initial FORM menu contains the following operations:

Operations Common to All Subexpressions

Operation

Description

Collects like terms in the selected subexpression. This opera-
tion works the same as the command COLCT except that its
action is restricted to the selected subexpression. The FORM
cursor is repositioned to the beginning of the expression
display.

Expands products and powers in the selected subexpression.
This operation works the same as the command EXPAN ex-
cept that its action is restricted to the current subexpression.
The FORM cursor is repositioned to the beginning of the ex-
pression display.

Displays the level of the selected object or its associated se-
lected subexpression. The level is displayed as long as you
hold down the [EE¥=E key.

Exits FORM, leaving the current version of the edited expres-
sion in level 3, a copy of the selected subexpression in level
1, and its position in level 2.

Moves the FORM cursor to the previous object (to the left) in
the expression.

Moves the FORM cursor to the next object (to the right) in the
expression.

80 3: Dictionary

Commutation, Association, and Distribution

~ | Commute the arguments of an operator.

...ALGEBRA (FORM)

Before

After

(AEB)
- CAEB)
(AEB)

(AlB)

CINVCAIEB)

CINV(BIEA)

which the parentheses will “move.”

Associate to the left. The arrow indicates the direction in

Before After
(AfI(B+C)) C(CA+BIC)
(AE(B-C)) C((A+BYEC)
(AE(B+C)) (CA-BYEC)
(AE(B-C)) C(CA-BYC)
(AZI(B*C)) C(CA%XBIIC)
CALE(B/C)) CCAXB)IC)
CAfl(BXxC)) (CA/BIC)
CAfI(B/C)) (CA/BIEC)
(AR(B*C)) (CA"BIEC)

3: Dictionary

81

..ALGEBRA (FORM)

.. Associate to the right. The arrow indicates the direction in
which the parentheses will “move.”

Before After
CCA+BIC) (Afl(B+CY)
(A-BYEC) CAB(B-C))
(CA+BIEC) (Af(B-CY
(CA-BYEC) (AE(B+C))
CCAXBYZC) (ASC(B*C))
(CA/BIEC) (AflcB/C)Y)
CCAXBIC) CAEICB/C))
(CA/BIC) CA(B*C))
(CA"BYEC) (AB(B*C))

30 Distribute prefix operator.

Before After

Bca+B) - (mEB
BcA-B) - cAEB)
BECA%XB) (- CAXEB)
BcasBd -(AfB)
EcLocead) [EEC INVCAY)
BcLNead EJcINvead)
INVIES:D] CINVCAIB)
(I NVICYA:D) CINVCAIEEB)
TNV €:38:D) (A-B»
cALOGCAY) AEEEC-cadd
[EFcEXPCAY) EXPIEX DD

82 3: Dictionary

...ALGEBRA (FORM)

Note that any time an expression is rewritten, the sequence * INV is
collapsed to /. Similarly, + — is replaced by —.

- Distribute to the left. The arrow points to the subexpres-
sion that is distributed.

Before After
(CA+BIIC) CCA%COE(B*C))
((A-BEC) CCAXCOF(B*C))
CCA+B)JC) C(CA/COECB/CI)
(CA-BIC) (CA/CHE(B/CY)
C(CAXB)EC) (CA™COHECB"CI)
(CA/BIgC) C(CA"COCB"CI)

== Distribute to the right. The arrow points to the sub-
expressmn that is distributed.

Before After
CAZC(B+C)) CCAXBIECA%C))
(AEE(B-C)) CCAXBIECA%C))
CAfCB+C)) Y CCINVCAI*)B) + CINVCAI*C))
CAfICB-C)) [V CCINVCAI*B) -CINVCAI*C))
(AR (B+C)) CCA™BIEICA"CI)
C(AECB-C)) (CA"BIJCA"CY)
L 0G[E:ES:D) (LOGCAIELOG(B))
[cA/B) (LOGCAIELOG(B))
AHE CA+B) (ALOGCAIZALOG(B))
AEEEcA-B) (ALOGCAIPALOG(B))
L NQGES:=D) (LNCADEILNCB))

3: Dictionary 83

...ALGEBRA (FORM)

(Continued)
Before After
A/B) (LN(A)@LN(B))
A+B) (EXP(A)EXP(B))
(A-B) (EXP(A)EXF’(B))

Merge left factors. This operation merges arguments of +,

—, %, and /, where the arguments have a common factor or a com-
mon single-argument function EXP, ALOG, LN, or LOG. In the case
of common factors, the arrow indicates that the left-hand factors are

common.

Before

After

CCAXBIECA%C))
C(CA%B) (A%C))
C(CA®BIICATCY)
C(CA"BIZCA"C))
C(LNCAIELNCB)Y)
(LNCAIELNCB))
(LOGCAIILOG(B))
(LOGCAIELOGC(B))
CEXPCAIEXP(B))
CEXPCAIJEXP(B))
(ALOGCAIIALOG(B))
(ALOGCAIIALOG(B))

(AEE(B+C))
(AL (B-C))
(AE(B+C))
(AE(B-C))

84 3: Dictionary

...ALGEBRA (FORM)

Merge right factors.This operation merges arguments of +,
—, %, and /, where the arguments have a common factor. The arrow
indicates that the right-hand factors are common.

Before After
CCAXCIE(B*C)) C(CA+BIC)

‘ Cca+B
CCAXCIE(B*C)) C(CA-BI[C)
(CA/COECB/CY) (CA-B)[]
(CA"CHECB™C)) C(CA%B)EC)
CCA"COHF(B"CY) (CA/BYfC)

Double-Negation and Double-Inversion

Double-negate. Negate a subexpression twice.

Before After

Bc-ca»

3: Dictionary 85

..ALGEBRA (FORM)

@) | Double-negate and distribute. This operatlon is equivalent
to a double negate [B[EE followed by distribution EEI#H of the re-
sulting inner negation.

Before After

(AEB) Bc-cAm-B)

(AEB) Bc-cAr+B)

- (AEB) Ba+Bd

(AZB) Bc-cAr*B)

- CAXEB) BAxB)

- CAfB) B/

(AfB) Ec-cr)/Bd
ECLOGCINVCAID)
EcLoccan
BCLNCINVCAD D)

II(INV(A)) BcLNCAY

(217 Double-invert. Invert a subexpression twice.

Before After

A LT CINVCAY)

86 3: Dictionary

to double inversion [
sulting inner INV:

...ALGEBRA (FORM)

| 707 Double-invert and distribute. This operation is equivalent

| followed by distribution EEZ8EE of the re-

Before After

(AEIB) [ElcINVCAd /B)
(AfB> [CINVCAI*B)
AfB A" -(BY)
(Ag-(BY» I NVIGI:D)
AL 0G{G)] INCALOGC-CAY))
AEEEC-CAd) McALOGCA))

(D) IENCcEXPC-CAdID

IMMCEXPCAY)

Before After
AR
Divide by 1.
Before After
A Al

3: Dictionary

87

...ALGEBRA (FORM)

' Raise to the power 1.

Before After
A AR
Add 1 and subtract 1.
Before After
A CA+ 181

Rearrangement of Exponentials

| Replace log-of-power with product-of-log.

Before

After

(LOGCAIEIB)
(LNCAIEIB)

Replace product-of-log with log-of-power.

Before

After

(LOGCAIEIB)
(LNCAIEIB)

88 3: Dictionary

...ALGEBRA (FORM)

Replace power-product with power-of-power.

Before After

(ALOGCAIEB)
(ALOGCAIEINV(B))
CEXPCAIEB)
CEXPCAIEINV(B))

Replace power-of-power with power-product.

Before After

(ALOGCAIEB)
(ALOGCAIEINV(B))
CEXPCAIEB)
CEXPCAIHINV(B))

Adding Fractions

Combine over a common denominator.

Before After
C(AfiCB/CY) C(CCAXC)+BIIC)
(CA/BYIC) C(CA+(B%C))I[B)
(C/D)) CCCA%D) +(B*C))I(B*D))
(AE(B/C)) C(CCA%C)-BIfIC)
(CA-(B*C))[B)
CCCA%D) - (B*C))II(B*D))

If the denominator is already common between two fractions, use

3: Dictionary 89

...ALGEBRA (FORM)

FORM Operations Listed by Function

The following tables show which operations will appear in the FORM
menu when a given function is the selected object. The form of the
original subexpression and the result is shown for each operation.

The operatlons EXPANPLEVEL B DNEG B DING P 1

, and | | are avallable for all functions and vanables These
common operatlons don’t appear in the tables. If only the common
operations are available for a function, no table appears for that func-
tion. (Only the common operations are available for \/ and SQ; to use
other operations, substitute ~.5 and "2.)

Addition (+)

Operation Before After

(BEA)

(- CAEB)
CACB+C
(ABCB-C
CA+BIPC)
(CA-BIEC)

(BEA)
C(CA+BYEC)
C(CA+BYEC)

1(B+C))
(AB(B-C))

CAEIC(B+C))
EJcAxB)
[®E[E cAXB)
CCA+BIIC)
CCA+BIfIC)
Ec-cm-B
BEwr-B

CCCA%C) +BIJIC)
CCCAXD) + (B*C)II(B*D))
C(CA+(B%xC))IFB)

90 3: Dictionary

...ALGEBRA (FORM)

Subtraction (—)

C(ABCB/C))
(CA/BIEC)

Operation Before After
(AEB) - (B
C(ABC(B+C)) (CA-BYEC)
(AE(B-C)) (CA-BYEC)
(CA+BYFC) (AE(B-C))
(CA-BYEC) (AE(B+C)Y)
CCAXBIE(A%C))
(LNCADEILNCB))
(LOGCAIELOG(B))

Eca+B)
C(CCAXC)I-BIFC)

Multiplication (X)

Operation Before After
(AEEB) (BA)
CINVCAIB) (BfA)
CAEICB*C)) C(CAXBIEIC)
(AEC(B/C)) C(CA%BIC)
C(CAXB)EIC) (AESC(B*C))
(CA/BYC) (AfiC(B/C))
(CA+BIEC) CCAXCIECB*C))
(CA-B)EC) CCAXCOIE(B*C))
(AEI(B+C)) CCA*BIECA%C)I)
(AEI(B-CY) CCA%BIECA%C))

3: Dictionary

91

...ALGEBRA (FORM)

(Continued)
Operation Before After
C(CA"BIICA™CY) (AE(B+C))
(ALOGCAIIALOG(B)) AEEcA+B)
CEXPCAXJEXP(B)) FiZcA+B)
CCA"CIEICB™C)) C(CAXBIRIC)
(AEB) BC-(AI*B)
- CAEB) S[GES:D)
(AfIB) Y CINVCAY /B)
CINVCAIEB) INVIC:Y:))
£C) [EEECA*B)
[EIcA"B)
Division (/)
Operation Before After

CAZCB+C))

(AflC(B-C))

ATCI)
ALOG(B))
XPC(B))

CEXPCA

CINVIBIEA)

(CA/BIJjC)
C(CA/BIC)

(ALCB/CY)
CAC(B%C))
C(CA/COEB/C))
(CA/COECB/C))

T+ CINVCAI*C))
CCINVCAI*B)
-CINVCAI*C))

92 3: Dictionary

...ALGEBRA (FORM)

(Continued)

Operation Before After
CCA"COPCBC)) (CA/BIEC)
(AfB) BC-m)/B)
- CAB) BcA/B)
(LNCAIEB) ENCA®INV(B))
(LOGCAIYB) AT INV(B))
(AfB) [CINVCAI*B)

Power (")

Operation Before After
(AR (B*C)) (CA"BIEC)
(C(A"BIEC) (AR (B*C))
CCAXBRC) CCA"COEICB™C))
(CA/BIEC) C(CA"COJ(B"C))
(AE(B+C)) CCA™BIICATC))
(AE(B-C)) (CA"BIJiCA"C))
(ARB) ~-(B))
(AR-(BY) (A"B)
(ALOGCAIEB) i€ CAXB)
(ALOGCAIGINV(B)) [€cA/B)
(EXPCAIEB) FCA%B)
(EXPCAIEINV(B)) 7(A/B)

3: Dictionary

93

...ALGEBRA (FORM)

Negation (—)

Operation Before After
EETo EcA+B) - CAEB)
Bca-B) -
EcLocear) - CAIEB)
- [€.¥4:)) - CAB)
EcAxB) [EEECINVCAY)
BcLNCAY) EICINVCAd)

Inverse (INV)

Operation Before After
¥caAxB) CINV(AYB)
Mca/B) CINV(AIEB)
[NcA"B) (AR- (B
EVcALDGCAY) AR C-ca»
IcEXPCA)) EXPIEXEI)

Logarithm (LOG)

Operation Before After
[EE[EcA*B) (LOGCAILDOG(B))
[Mi[§cA/B) (LOGCAIELOG(B))
L OG[¢:)) ECLOGCINVCADD)
[EECINVCAD) BcLoccar
WilEcA"B) (LOGCAIEB)
HEECA™ INV(B)) (LOGCAIIB)

94 3: Dictionary

Antilogarithm (ALOG)

-..ALGEBRA (FORM)

Operation Before After
HEIE (A+B) (ALOGCADEIALOG(B))
MEiEA-B) (ALOGCAIALOG(B))
AL OG[4:}] [CALOGC-(CAIDD
ALOCIEX D)) [cALOGCAD)
ALOGIEES:D] (ALOGCAIEB)
AW cA/B) (ALOGCAIEINV(B))
Natural Logarithm (LN)
Operation Before After
(A%B) C(LNCADELNCB))
(A/B) (LNCAIELNCB))
A) BECLNCINVCAD D)
ENCINVCA)) ECLNCAY)
[EJcA"INV(B)) (LNCAXEEB)
Exponential (EXP)
Operation Before After
[FEA+B) CEXPCAIEIEXP(B))
‘ CEXPCAIFEXP(B))
T CEXPC-CAYD)
M CEXPCAY)
(EXPCAIEB)
CEXPCAIEINV(B))

3: Dictionary

95

Arithmetic

This section describes the arithmetic functions +, —, %, /, ~, INV, \/,
5Q, and NEG. These functions apply to several object types. They're
described here for all appropriate object types; they're described in
other sections, such as “ARRAY” and “COMPLEX,” only as they apply
to that particular object type.

+ Add Analytic
Level 2 Level 1 Level 1
Z4 Zy » z1+2y
Carray,1 Carray,1 » Carray,+array, 1
z ‘symb' ®» 'z+Csymb> "'
'symb' z » 'symb+z'
'symb ' 'symbo' ®» 'symbq+ (symby) '
{listy ¥ Llisto ® { listylisty ¥
"' string4 " "string," » "' stringqstringo "
ny ny » # nyt+ny
ny # ny » # nyt+ny
ny # no » # nytny

+ returns the sum of its arguments, where the nature of the sum is
determined by the type of arguments. If the arguments are:

Two real numbers. The sum is the ordinary real sum of the
arguments.

A real number u and a complex number (x, y). The result is the
complex number (x + u, y) obtained by treating the real number as a
complex number with zero imaginary part.

96 3: Dictionary

.Arithmetic

Two complex numbers (x4, y,) and (x5, ¥5). The result is the com-
plex sum (x; + x,, y; + ¥y).

A number and an algebraic. The result is an algebraic representing
the symbolic sum.

Two algebraics. The result is an algebraic representing the symbolic
sum.

Two lists. The result is a list obtained by concatenating the objects in
the list in level 1 to the end of the list of objects in level 2.

Two strings. The result is a string obtained by concatenating the
characters in the string in level 1 to the end of the string in level 2.

Two arrays. The result is the array sum, where each element is the
real or complex sum of the corresponding elements of the argument
arrays. The two arrays must have the same dimensions.

A binary integer and a real number. The result is a binary integer
that is the sum of the two arguments, truncated to the current
wordsize. The real number is converted to a binary integer before the
addition.

Two binary integers. The result is a binary integer that is sum of
the two arguments, truncated to the current wordsize.

3: Dictionary 97

«Arithmetic

— Subtract Analytic

Level 2 Level 1 Level 1
z4 Z5 » Z4—2y

Carray,1 Carrayo,]1 » Carray,—array, 1
z ‘symb' » 'z—symb'
'symb' z » 'symb-z"'

'symby ' ‘symby,' ® ' symby—symb,"
nq no » # ny—ny
ny # n, » # ny—ny
ny # n, » # ny—ny

— returns the difference of its arguments, where the nature of the
difference is determined by the type of arguments. The object in level
1 is subtracted from the object in level 2. If the arguments are:

Two real numbers. The result is the ordinary real difference of the
arguments.

A real number u and a complex number (x, y). The result is the
complex number (x — u, y) or (4 — x, —Yy) obtained by treating the
real number as a complex number with zero imaginary part.

Two complex numbers (x4, y4) and (x5, y3). The result is the com-
plex difference (x; — xp, Y1 — Y»).

A number and an algebraic. The result is an algebraic representing
the symbolic difference.

Two algebraics. The result is an algebraic representing the symbolic
difference.

98 3: Dictionary

. Arithmetic

Two arrays. The result is the array difference, where each element is
the real or complex difference of the corresponding elements of the
argument arrays. The two arrays must have the same dimensions.

A binary integer and a real number. The result is a binary integer
that is the sum of the number in level 2 plus the twos complement of
the number in level 1. The real number is converted to a binary inte-
ger before the subtraction.

Two binary integers. The result is a binary integer that is the sum
of the number in level 2 plus the twos complement of the number in
level 1.

b S Multiply Analytic
Level 2 Level 1 Level 1

z4 Z5 » Z425
Cmatrix 1 Carrayd w C matrix x array 1

z Carrayl = Czxarrayl
Carray 1 z » Carrayxz1]

z ‘symb' w 'z (symbx '
'symb ' z » ' {symb>¥z'
'symby ' 'symby,' ®» ' symbq&symb, '

ny no » # nqny
ny # n, » # nqny
nq # ny » # nqny

3: Dictionary 99

.Arithmetic

X returns the product of its arguments, where the nature of the prod-
uct is determined by the type of arguments. If the arguments are:

Two real numbers. The result is the ordinary real product of the
arguments.

A real number u and a complex number (x, y). The result is the
complex number (xu, yu) obtained by treating the real number as a
complex number with zero imaginary part.

Two complex numbers (x4, y4) and (x5, y¥5). The result is the com-
plex product (x1x; — Y12, X1Y2 + Xoyq).

A number and an algebraic. The result is an algebraic representing
the symbolic product.

Two algebraics. The result is an algebraic representing the symbolic
product.

A number and an array. The result is the product obtained by
muliplying each element of the array by the number.

A matrix and an array. The result is the matrix product of the argu-
ments. The array in level 1 must have the same number of rows
(elements, if a vector) as the number of columns of the matrix in
level 2.

A binary integer and a real number. The result is a binary integer
that is the product of the two arguments, truncated to the current
wordsize. The real number is converted to a binary integer before the
multiplication.

100 3: Dictionary

.Arithmetic

Two binary integers. The result is a binary integer that is the prod-
uct of the two arguments, truncated to the current wordsize.

| Divide Analytic

Level 2 Level 1 Level 1

Z4 Z5 » Z4/z5
Carray] Cmatrix] ®» Carrayxmatrix— 11

z 'symb' » 'zsCsymb !
'symb' z » ' Csymb) <z
' symby ‘symby,' @ ' symbq.~symby '

n, ny » # nqfny

n4 # n, » # nq/no

ny # ny » # nq/ny

/ ([()) returns the quotient (the object in level 2 divided by the object
in level 1) of its arguments, where the nature of the quotient is deter-
mined by the type of arguments. If the arguments are:

Two real numbers. The result is the ordinary real quotient of the
arguments.

A real number u in level 2 and a complex number (x, y) in
level 1. The result is the complex number

(ux/(* + y2), —uy/(* + %)

obtained by treating the real number as a complex number with zero
imaginary part.

A complex number (x, y) in level 2 and a real number u in
level 1. The result is the complex number (x/u, y/u) obtained by
treating the real number as a complex number with zero imaginary
part.

3: Dictionary 101

.Arithmetic

A complex number (x4, y4) in level 2, and a complex number
(x2, y2) in level 1. The result is the complex quotient

(%2 + v1v2)/(3 + ¥3), (y1xy — x1Y2)/ (3 + y)).

A number and an algebraic. The result is an algebraic representing
the symbolic quotient.

Two algebraics. The result is an algebraic representing the symbolic
quotient.

An array and a matrix. The result is the matrix product of the array
in level 2 with the inverse of the matrix in level 1. The array in level 2
must have the same number of rows (elements, if a vector) as the
number of columns of the matrix in level 1.

A binary integer and a real number. The result is a binary integer
that is the integer part of the quotient of the two arguments. The real
number is converted to a binary integer before the division. A divisor
of 0 returns # 0.

Two binary integers. The result is a binary integer that is the inte-
ger part of the quotient of the two arguments. A divisor of zero
returns # 0.

” Power Analytic
Level 2 Level 1 Level 1
Z4 Zy » 2122
z ‘symb' » 'z Csymb '
'symb' z » ' (symb»"z'
'symby ! 'symby,' ®» ' symb4 ™ (symbo) '

102 3: Dictionary

. Arithmetic

~ returns the value of the object in level 2 raised to the power given
by the object in level 1. Any combination of real number, complex
number, and algebraic arguments may be used. If either argument is
complex, ~ returns a complex result.

INV Inverse Analytic
Level 1 Level 1
z » 1)z
Cmatrix] » C matrix =11
‘symb' w» 'IMV Csymb) !

INV (B(i7x]) returns the inverse (reciprocal) of its argument.

For a complex argument (x, y), the inverse is the complex number

@/ +y3), —y/* + y?).

Array arguments must be square matrices.

Vv Square Root Analytic
Level 1 Level 1
z B Vz
'symb' » ‘T (symby '

3: Dictionary 103

. Arithmetic

\/ returns the (positive) square root of its argument. For a complex
number (x;, ¥;), the square root is the complex number

(2, y2) = (Vr cos 6/2, \r sin 0/2)
where

r = abs (v, y1), 0 = arg (x1, ¥1).
If (x1, y1) = (0, 0), then the square root is (0, 0).

Refer to “Principal Branches and General Solutions” in “COMPLEX.”

sQ Square Analytic
Level 1 Level 1
z B 72
Cmatrix] » C matrix X matrix 1
‘symb' » 'SQCsymb> !

SQ (@(2) returns the square of its argument.
For a complex argument (x, y), the square is the complex number
(= y%, 2xy).

Array arguments must be square matrices.

NEG Negate Analytic
Level 1 Level 1
z » -z
Carrayl » C —array1
‘symb' ® '={symb3 '

104 3: Dictionary

. Arithmetic

NEG returns the negative of its argument.

For an array, the negative is an array composed of the negative of
each element in the array. The key can be used to execute NEG
if no command line is present. If a command line is present, acts
on the command line as described in “Basic Operations.”

Menu keys for NEG are found in the REAL and ARRAY menus.

3: Dictionary 105

ARRAY

-ARRY ARRY- PUT
SIZE RDM TRN
CROSS DOT DET
R-C C-R RE

GET PUTI GETI
CON IDN RSD
ABS RNRM CNRM

M CONJ NEG

Arrays are ordered collections of real or complex numbers that satisfy
various mathematical rules. In the HP-28C, one-dimensional arrays
are called vectors; two-dimensional arrays are called matrices. We will
use the term “array” to refer collectively to vectors and matrices.

Although vectors are entered and displayed as a row of numbers, the
HP-28C treats vectors, for the purposes of matrix multiplication and
computations of matrix norms, as n X 1 matrices.

An array can contain either real numbers or complex numbers. We
will use the terms real array (real vector or real matrix) and complex
array when describing properties of arrays that are specific to real

numbers or complex numbers.

Arrays are entered and displayed in the following formats:

vector | L number number ...
matrix

C number number ...

C number number ...

]

CC number number ...

13

where number represents a real number or a complex number.

106 3: Dictionary

-..ARRAY

When you enter an array you can mix real and complex numbers. If
any one number in an array is complex, the resulting array will be
complex.

You can include any number of newlines anywhere in the entry, or
you can enter the entire array in a single command line.

When entering matrices, you can omit the delimiter] that ends each
row. The [that starts each row is required. If additional objects fol-
low the array in the command line, you must end the array with 13
before starting the new object.

The term row order refers to a sequential ordering of the elements of
an array, starting with the first element (first row, first column), then:
from left to right along each row; from the top row to the bottom row
(for matrices).

The STORE menu contains commands that allow you to perform ar-
ray operations using the name of a variable that contains an array,
rather than requiring the array itself to be on the stack. In these cases,
the result of an operation is stored in the variable, replacing its origi-
nal contents. This method requires less memory than operations on
the stack, and hence can allow you to deal with larger arrays.

Array operations that may be time-consuming for large arrays can be
interrupted via the key. If you press during such an opera-
tion, the HP-28C will halt execution of the array command and clear
the array arguments from the stack. You can recover the original ar-
guments by using UNDO or LAST.

In addition to the functions present in the ARRAY and STACK
menus, the keyboard functions described in the next section accept
arrays as arguments.

3: Dictionary 107

-..ARRAY

Keyboard Functions

Complete stack diagrams for these functions appear in “Arithmetic.”

+ Add Analytic

Level 2 Level 1 Level 1

Carray,1 Carray,1 » Carray,+array,1

+ returns the array sum of two array arguments. The two arguments
must have the same dimensions. The sum of a real array and a com-
plex array is a complex array, where each element x of the real array is
treated as a complex element (x, 0).

- Subtract Analytic
Level 2 Level 1 Level 1
Carray1 Carray,1 w» Carray,—array, 1

— returns the array difference of two array arguments. The two argu-
ments must have the same dimensions. The difference between a real
array and a complex array is a complex array, where each element/x of
the real array is treated as a complex element (x, 0).

108 3: Dictionary

-..ARRAY

* Multiply Analytic
Level 2 Level 1 Level 1
z Carrayd » Czxarrayl
Carray 1 z » Czxarrayl
C matrix 1 Carrayl = C matrix x array 1

% returns the product of its arguments, where the nature of the prod-
uct is determined by the type of arguments. If the arguments are:

An array and a number. The product is the matrix product of the
number (real or complex number) and the array, obtained by multi-
plying each element of the array by the scalar.

Two arrays. The product is the matrix product of the two arrays. The
array in level 2 must be a matrix (that is, it can not be a vector). Level
1 can contain either a matrix or a vector. The number of rows in the
array in level 1 must equal the number of columns in the matrix in
level 2.

The product of a real array and a complex array is a complex array.
Each element x of the real array is treated as a complex element (x,0).

| Divide Analytic

Level 2 Level 1 Level 1

Cmatrix B1 Cmatrix A1l » LCmatrix X1
Cvector B1 Cmatrix A1 ®» LCvector X1

3: Dictionary 109

-..ARRAY

/ ([)) applied to array arguments solves the system of equations
AX = B for X. That is, / computes X = A~ 'B. / uses 16-digit internal
computation precision to provide a more accurate result than obtained
by applying INV to A and multiplying the result by B.

A must be a square matrix, and B can be either a matrix or a vector. If
B is a matrix, it must have the same number of rows as A. If B is a
vector, it must have the same number of elements as the number of
columns of A.

In many cases the HP-28C will arrive at a correct solution even if the
coefficient array is singular (A has no proper inverse). This feature
allows you to solve under-determined and over-determined systems
of equations.

For an under-determined system (containing more variables than
equations), the coefficient array will have fewer rows than columns.
To find a solution:

1. Append enough rows of zeros to the bottom of your coefficient
array to make it square.

2. Append corresponding rows of zeros to the constant array.

You can now use these arrays with / to find a solution to the original
system.

For an over-determined system (containing more equations than vari-
ables), the coefficient array will have fewer columns than rows. To
find a solution:

1. Append enough columns of zeros on the right of your coefficient
array to make it square.

2. Add enough zeros on the bottom of your constant array to en-
sure conformability.

110 3: Dictionary

...ARRAY

You can now use these arrays with / to find a solution to the original
system. Only those elements in the result array that correspond to
your original variables will be meaningful.

For both under-determined and over-determined systems, the coef-
ficient array is singular, so you should check the results returned by /
to see if they satisfy the original equation.

Improving the Accuracy of System Solutions

Because of rounding errors during calculation, a numerically calcu-
lated solution Z is not in general the solution to the original system
AX = B, but rather the solution to the perturbed system (A + AA)
Z = B + AB. The perturbations AA and AB satisfy [[AA| < ¢[|A[| and
|aB] < €||B]|, where € is a small number and ||A| is the norm of A, a
measure of its size analogous to the length of a vector. In many cases
AA and AB will amount to less than one in the 12th digit of each
element of A and B.

For a calculated solution Z, the residual is R = B — AZ. Then

IR|| < ¢|A|| |Z]. So the expected residual for a calculated solution is
small. Nevertheless, the error Z — X may not be small if A is ill-condi-
tioned, that is, if |Z — X|| < ¢|A| 1A~ |1z

A rule-of-thumb for the accuracy of the computed solution is

(number of correct digits)
= (number of digits carried) — log (||A|l A=) — log 10n

where 7 is the dimension of A. For the HP-28C, which carries 12 ac-
curate digits,

(number of correct digits) = 11 — log (|A]| [A~!]) — log n.

3: Dictionary 111

-..ARRAY

In many applications, this accuracy may be adequate. When addi-
tional accuracy is desired, the computed solution Z can usually be
improved by iterative refinement (also known as residual corrections).
Iterative refinement involves calculating a solution to a system of
equations, then improving its accuracy using the residual associated
with the solution to modify that solution.

To use iterative refinement, first calculate a solution Z to the original
system AX = B. Then Z is treated as an approximation to X, in error
by E = X — Z. Then E satisifies the linear system

AE = AX — AZ = R,

where R is the residual for Z. The next step is to calculate the residual
and then solve AE = R for E. The calculated solution, denoted by F,
is treated as an approximation to E and is added to Z to obtain a new
approximation to X.

For F + Z to be a better approximation to X than is Z, the residual
R = B — AZ must be calculated to extended precision. The function
RSD does this (see the description of RSD below for details of its use).

The refinement process can be repeated, but most of the improvement
occurs in the first refinement. The / function does not attempt to per-
form a residual refinement because of the memory required to
maintain multiple copies of the original arrays. Here is an example of
a user program that solves a matrix equation, including one refine-
ment using RSD:

“« * BEA«BA .- BA I PICK RSDA » + % »

The program takes two array arguments B and A from the stack, the
same as /, and returns the result array Z, which will be an improved
approximation to the solution X over that provided by / itself.

112 3: Dictionary

-..ARRAY

INV Inverse Analytic

Level 1 Level 1

Cmatrix] ®» C matrix—11

INV (W(1/x]) returns the matrix inverse of its argument. The argu-
ment must be a square matrix, either real or complex.

SQ Square Analytic

Level 1 Level 1

Cmatrixy1 ®» [Cmatrix,]

SQ (M(x%)) returns the matrix product of a square matrix with itself.

NEG Negate Analytic

Level 1 Level 1

Carrayl ®» L[—arrayl]

Pressing when no command line is present executes the function
NEG. For an array, each element of the result is the negative of the
corresponding element of the argument array.

To enter the NEG function in the command line, use =
fourth row of the ARRAY menu).

| (on the

3: Dictionary 113

IIIARRAY

-~ARRY ARRY- PUT GET PUTI GETI

This group of commands allows you to recall or alter individual ele-
ments of an array.

-ARRY Stack to Array Command
Level nm+1 ... Level 2 Level 1 Level 1

X{ .. Xp i{n} » LCvector]

X191 -+ Xpm {nmi » [matrix]

-+ ARRY returns an array comprised of real or complex elements taken
one-by-one from the stack, in levels 2 and above. »ARRY takes a list
representing the size of the result array from level 1:

Vectors. If the list contains a single integer n, n numbers are taken
from the stack, and an #n element vector is returned.

Matrices. If the list contains two integers n and m, nm numbers are
removed from the stack and returned as the elements of an n X m
matrix.

The elements of the result array should be entered into the stack in
row order, with x;; (or xq) in level nm + 1 (or n + 1), and x,,,, (or x,)
in level 2. If one or more of the elements is a complex number, the
result array will be complex.

ARRY- Array to Stack Command
Level 1 Level n+1 ... Level2 Level 1
Cvector] » X{ ... Xp ini
Cmatrix] » X114 -+ Xpm {nmk

114 3: Dictionary

...ARRAY

ARRY= takes an array from the stack, and returns its elements to the
stack as individual real or complex numbers. ARRY~ also returns a
list representing the size of the array to level 1. The elements are
placed on the stack in row order:

Vectors. If the argument is an n-element vector, the first element is
returned to level n + 1, and the nth element to level 2. Level 1 will
contain the list {7 }.

Matrices. If the argument is an n X m matrix, element x,,, is re-
turned to level 2, and element x;; to level (nm + 1).

PUT Put Element Command

Level 3 Level 2 Level 1 Level 1

Carray, 1 {index ¥ X » Carray, 1

' name' {index ¥ X »

CC-array41 {index } z » CC-array, 1

' name ' {index ¥ z »
{ listy ¥ n obj » {listo ¥

" name* n obj »

PUT stores an element into an array or a list. This section describes its
use with an array; its use with a list is described in “LIST.”

PUT takes three arguments from the stack. Level 1 must contain the
number you wish to store in the array. If the number is complex, the
array must also be complex.

Level 2 contains the index of the array element you wish to replace. If
the array is a vector, the index list contains one integer specifying the
element number. If the array is a matrix, the index list has the form
{ row column }.

3: Dictionary 115

...ARRAY

Level 3 may contain either an array or a name. If level 3 contains an
array, PUT returns that array to the stack with one element replaced
by the number taken from level 1.

If level 3 contains a name, PUT stores the number from level 1 as one
element in the array contained in the variable name. (name can’t be a
local name.)

GET is the reverse operation of PUT.

GET Get Element Command
Level 2 Level 1 Level 1
Carray 1 {index: ® z
' name ' i{indexy ®» z
{list ¥ n » obj
"name ' n » obj

GET is a general mechanism for recalling an element from an array or
a list. In this section, we will describe array element recall. List ele-
ment recall is described in the “LIST” section.

GET takes two arguments from the stack. Level 1 should contain an
index list specifying the array element you wish to recall. If the array
is a vector, the index list should contain one integer specifying the
element number. If the array is a matrix, the index list must have the
form { row column }.

Level 2 may contain either an array or a name. If level 2 contains an
array, GET returns the indexed element of that array to the stack. If
level 2 contains a name, GET returns to the stack the indexed element
of the array contained in the variable name.

PUT is the reverse operation of GET.

116 3: Dictionary

...ARRAY

PUTI Put and Increment Index Command
Level 3 Level 2 Level 1 Level 2 Level 1
Carray;1 {indexq ¥ X » LCarray,1] {index, ¥
' name ' {indexq ¥ X » 'name' {index, ¥
CC-array41 {indexq * z » [C-array,1 {indexp ¥
"name ' {indexq ¥ z » ‘'name' {indexy ¥
{listy ¥ ny obj » {listy ¥ no
' name ' nq obj » 'name' ny

PUTI is a general mechanism for element storage into an array or ob-
ject storage into an list. List storage is described in “LIST.”

PUTI stores a number into an array in the same manner as PUT, but
also returns the array (or variable name) and the element index incre-
mented to the next element. This leaves the stack ready for you to
enter a new number, then execute PUTI again to store the number
into the next element in the array. When the element index is equal to
the maximum index in the array, PUTI returns the index {1} (for vec-
tors) or {11} (for matrices), starting over at the beginning of the
array.

PUTI takes three arguments from the stack. Level 1 must contain the
number you wish to store in the array. If the number is complex, the
array must also be complex.

Level 2 contains the index list specifying the number of the array ele-
ment you wish to replace. If the array is a vector, the index list should
contain one integer specifying the element number. If the array is a
matrix, the index list must have the form { row column }.

3: Dictionary 117

...ARRAY

Level 3 may contain either an array or a name. If level 3 contains an
array, PUTI returns that array to level 2, with the indexed element
replaced by the number taken from level 1. The next index is returned
to level 1.

If level 3 contains a name, PUTI stores the number from level 1 as the
nth element in the array contained in the variable name. Name is re-
turned to level 2, and the next index to level 1.

GETI is the reverse operation of PUTL

GETI Get and Increment Index Command
Level 2 Level 1 Level 3 Level 2 Level 1
Carray] {index;* ® Larray] {indexy ¥ z
' name' {index;+ ®» 'name' {indexy, ¥ z
{list ¥ ny » {list ¥ ny obj
' name' n » 'name' ny obj

GETI is a general mechanism for recalling an element from an array
or a list. List element recall is described in “LIST.”

GETI recalls an element from an array in the same manner as GET,
with the added feature that GETI leaves the array on the stack plus
the element index incremented to the next element, to facilitate
successive recalls from the same array. When the element index is
equal to the maximum index of the array, GETI returns the index {1}
(for vectors) or {1 1} (for matrices), starting over at the beginning of
the array.

118 3: Dictionary

-..ARRAY

GETI takes two arguments from the stack. Level 1 should contain an
index specifying the array element you wish to recall, in the form of a
list of one or two integers. If the array is a vector, the index list should
contain one integer specifying the element number. If the array is a
matrix, the index list must have the form { row column }.

Level 2 may contain either an array or a name. If level 2 contains an
array, GETI returns the indexed element of that array to level 1. GETI
also returns the array to level 3, and the index of the next element to
level 2.

If level 2 contains a name, GETI returns to level 1 the indexed ele-
ment in the array contained in the variable name. GETI also returns
name to level 3 and the index of the next element to level 2.

PUTI is the reverse operation of GETI

SIZE RDM TRN CON IDN RSD

SIZE Size Command
Level 1 Level 1
“string" ®» n
{list ¥ » n
Carrayl » {list ¥
‘symb' » n

3: Dictionary 119

...ARRAY

SIZE returns an object representing the size, or dimensions, of a list,
array, string, or algebraic argument. For an array, SIZE returns a list
containing one or two integers:

B |f the original object is a vector, the list will contain a single integer
representing the number of elements in the vector.

B If the object is a matrix, the list will contain two integers represent-
ing the dimensions of the matrix. The first integer is the number of
rows in the matrix; the second is the number of columns.

Refer to sections “STRING,” “LIST,” and “ALGEBRA” for the use of
SIZE with other object types.

RDM Redimension Command

Level 2 Level 1 Level 1

Carray,1 {dim} » [array,]

' name ' idim} »

RDM rearranges the elements of the array array; taken from level 2
(or contained in a variable name), and returns array,, which has the
dimensions specified in the list of one or two integers taken from level
1. If the array in level 2 is specified by name, array, replaces array, as
the contents of the variable. If the list contains a single integer 1, ar-
ray, will be an n-element vector. If the list has the form {n m}, array,
will be an n X m matrix.

Elements taken from array; preserve the same row order in array,. If
array, is dimensioned to contain fewer elements than array;, excess
elements from array; at the end of the row order are discarded. If
array, is dimensioned to contain more elements than array;, the addi-
tional elements in array, at the end of the row order are filled with
zeros ((0, 0) if array; is complex).

120 3: Dictionary

...ARRAY

TRN Transpose Command
Level 1 Level 1
Cmatrix;1 ®» Cmatrix, 1
'name ' »

TRN returns the (conjugate) transpose of its argument. That is, an
n X m matrix A in level 1 (or contained in name) is replaced by an
m X n matrix A!, where

A;; for real matrices,

[
A CONJ (A;) for complex matrices.

If the matrix is specified by name, A replaces A in name.

CON Constant Array Command
Level 2 Level 1 Level 1
Ldim ¥ z » Carray 1
Carray1 X » Carray, 1
CC-array, 1 z » CC-array,1
" name' z »

CON produces a constant array—an array with all elements having
the same value. The constant value is the real or complex number

taken from level 1. The result array is either a new array, or an exist-
ing array with its elements replaced by the constant value, according
to the object in level 2.

Creating a new array. If level 2 contains a list of one or two inte-
gers, a new array is returned to the stack. If the list contains a single
integer n, the result is a constant vector with n elements. If the list has
the form {n m}, the result is a constant matrix with n rows and m
columns.

3: Dictionary 121

...ARRAY

Replacing the elements of an existing array. If level 2 contains a
name, that name must identify a user variable containing an array. In
this case, the elements of the array are replaced by the constant taken
from level 1. If the constant is a complex number, the original array
must be complex.

If level 2 contains an array, an array of the same dimensions is re-
turned, with each element equal to the constant value. If the constant
is a complex number, the original array must be complex.

IDN Identity Matrix Command
Level 1 Level 1
n » C R-identity matrix 1
Cmatrix1 » Cidentity matrix 1
"name' »

IDN produces an identity matrix—a square matrix with its diagonal
elements equal to 1, and its off-diagonal elements 0. The result matrix
is either a new matrix, or an existing square matrix with its elements
replaced by those of the identity matrix, according to the argument in
level 1.

Creating a new matrix. If the argument is a real number, a new real
identity matrix is returned to the stack, with its number of rows and
number of columns equal to the argument.

Replacing the elements of an existing matrix. If the argument is
a name, that name must identify a user variable containing a square
matrix. In this case, the elements of the matrix are replaced by those
of the identity matrix (complex if the original matrix is complex).

122 3: Dictionary

...ARRAY

If the argument is a square matrix, an identity matrix of the same
dimensions is returned. If the original matrix is complex, the returned
identity matrix will also be complex, with diagonal values (1,0).

RSD Residual Command
Level 3 Level 2 Level 1 Level 1
Carray B1 LCmatrix Al Carray Z1 » Carray B—AZ1]

RSD computes the residual B — AZ of three arrays B, A, and Z. RSD is
typically used for computing a correction to Z, where Z has been ob-
tained as an approximation to the solution X to the system of
equations AX = B. Refer to “Improving the Accuracy of System Solu-
tions”, earlier in this section, for a description of the use of RSD with
systems of equations.

A, B, and Z are restricted as follows:

B A must be a matrix.

® The number of columns of A must equal the number of elements of
Z if Z is a vector, or the number of rows of Z if Z is a matrix.

B The number of rows of A must equal the number of elements of B
if B is a vector, or the number of rows of B if B is a matrix.

B B and Z must both be vectors or both be matrices.

B B and Z must have the same number of columns, if they are
matrices.

3: Dictionary 123

-..ARRAY

CROSS DOT DET ABS RNRM CNRM

CROSS Cross Product Command
Level 2 Level 1 Level 1
Cvector A1 LCvector B1 » Cvector A x BJ

CROSS returns the cross product A X B of two three-element vectors
A and B, where

(A X B); = A)B; — A3B,
(A X B)z - A3Bl - A133
(A X B); = AB, — A;B,

DOT Dot Product Command
Level 2 Level 1 Level 1
Carray A1 Carray B1 » X

DOT returns the “dot” product A-B of two arrays A and B, computed
as the sum of the products of the corresponding elements of the two
arrays. For example: L1 2 31 [4 5 &3] DOT returns 1 X 4 +

2 X5+ 3Xx6,or 32.

Some authorities define the dot product of two complex arrays as the
sum of the products of the conjugated elements of one array with
their corresponding elements from the other array. The HP-28C uses
the ordinary products without conjugation. However, if you prefer the
alternate definition, you can apply CON]J to one or both arrays before
using DOT.

124 3: Dictionary

-..ARRAY

DET Determinant Command
Level 1 Level 1
Cmatrix] w» determinant

DET returns the determinant of its argument, which must be a square
matrix.

ABS Absolute Value Function
Level 1 Level 1
z » |z|
Carrayd » |array||
‘symb' w» 'ABS symb> !

ABS returns the absolute value of its argument. In the case of an ar-
ray, ABS returns the Frobenius (Euclidean) norm of the array, defined
as the square root of the sum of the squares of the absolute values of
all of the elements.

Refer to “REAL,” “COMPLEX,” and “ALGEBRA” for the use of ABS
with other object types.

RNRM Row Norm Command
Level 1 Level 1
Carrayd » row norm

RNRM returns the row norm (infinity norm) of its argument. The row
norm is the maximum value (over all rows) of the sums of the abso-
lute values of all elements in a row. For a vector, the row norm is the
largest absolute value of any of the elements.

3: Dictionary 125

...ARRAY

CNRM Column Norm Command
Level 1 Level 1
Carrayd » column norm

CNRM returns the column norm (one-norm) of its argument. The col-
umn norm is the maximum value (over all columns) of the sums of
the absolute values of all elements in a column. For a vector, the col-
umn norm is the sum of the absolute values of the elements.

R-C C-R RE iM CONJ NEG
R-C Real-to-Complex Command
Level 2 Level 1 Level 1
X y » CX,y?

CR-array;1 LCR-array,1 » [C-array]

R~C combines two real numbers, or two real arrays, into a single
complex number, or complex array, respectively. The object in level 2
is taken as the real part of the result; the object in level 1 is taken as
the imaginary part.

For array arguments, the elements of the complex result array are
complex numbers, the real and imaginary parts of which are the cor-
responding elements of the argument arrays in level 2 and level 1,
respectively. The arrays must have the same dimensions.

126 3: Dictionary

...ARRAY

C-R Complex-to-Real Command
Level 1 Level 2 Level 1
X,y » X y

CC-arrayl w» LR-array;1 L[R-array,]

C-R returns to level 2 and level 1 the real and imaginary parts, re-
spectively, of a complex number or complex array.

The real or imaginary part of a complex array is a real array, of the
same dimensions, the elements of which are the real or imaginary
parts of the corresponding elements of the complex array.

RE Real Part Function
Level 1 Level 1
X » X
CX,y2 » X
CR-arrayd w CR-array 1
CC-arrayl » CR-array 1
'symb' » '"RECsymb> "'

RE returns the real part of its argument. If the argument is an array,
RE returns a real array, the elements of which are equal to the real
parts of the corresponding elements of the argument array.

3: Dictionary 127

...ARRAY

iM Imaginary Part Function
Level 1 Level 1
X » 0
X,y » y
CR-arrayl » C zero R-array 1
CC-arrayl » CR-array 1
‘symb' ®» 'IM<symb !

IM returns the imaginary part of its argument. If the argument is an
array, IM returns a real array, the elements of which are equal to the
imaginary parts of the corresponding elements of the argument array.
If the argument array is real, all of the elements of the result array
will be zero.

CONJ Conjugate Analytic
Level 1 Level 1
X » X
CX,ys » (X, —y»
CR-arrayd = CR-array]
CC-array;1 ®» CC-array, 1
'symb' ®» 'CONJCsymby !

CONJ returns the complex conjugate of a complex number or complex
array. The imaginary part of a complex number, or of each element of
a complex array, is negated. For real numbers or arrays, the conjugate
is identical to the original argument.

128 3: Dictionary

-..ARRAY

NEG Negate Analytic

Level 1 Level 1

Carrayd w» [—arrayl]

For an array, each element of the result array is the negative of the
corresponding element of the argument array.

When no command line is present, pressing executes the func-
tion NEG. A complete stack diagram for NEG appears in
“Arithmetic”.

3: Dictionary 129

BINARY

DEC HEX OCT BIN STWS RCWS
RL RR RLB RRB R-B B-R
SL SR SLB SRB ASR

AND OR XOR NOT

Binary integers are unsigned integer numbers that are represented in-
ternally in the HP-28C as binary numbers of length 1 to 64 bits. Such
numbers must be entered, and are displayed, as a string of digits pre-
ceded by the delimiter #.

The entry and stack display of binary integers is controlled by the
current integer base, which can be binary (base 2), octal (base 8), deci-
mal (base 10), or hexadecimal (base 16) If you chan e the current
base using one of the menu keys s, B, 1

the internal representation of a bmary 1nteger on the stack is not
changed, but the digits shown in the display will change to reflect the
number’s representation in the new base.

Digits included in a binary integer entry must be legal in the current
base. In binary base, only the digits 0 and 1 are allowed; in octal, the
digits 0-7; in decimal, the digits 0-9; and in hexadecimal, the digits 0-
9 and the letters A-F. The default base is decimal.

All binary integers entered in the same command line must be in the
same (current) base. Since the four base selection menu keys do not
perform an ENTER, you can change the base even after you have be-
gun keying into the command line. However, the digit syntax of
binary integers in the command line is checked (against the current
base) before any of the command line is executed, so you cannot enter
numbers in different bases by including the base selection commands
in the command line.

130 3: Dictionary

-..BINARY

The stack display of binary integers is also affected by the current
wordsize, which you can set in the range 1 to 64 bits with the com-
mand STWS. When a binary integer is displayed on the stack, the
display shows only the least significant bits, up to the wordsize, even
if the number has not been truncated. If you reduce the wordsize, the
display will alter to show fewer bits, but if you subsequently increase
the wordsize, the hidden bits will be displayed.

The primary purpose of the wordsize is to control the results returned
by commands. Commands that take binary integer arguments trun-
cate those arguments to the number of (least significant) bits specified
by the current wordsize, and they return results with that number of
bits. The default wordsize is 64 bits.

The current base and wordsize are encoded in user flags 37 through
44. Flags 37-42 are the binary representation of the current wordsize
minus 1 (flag 42 is the most significant bit). Flags 43 and 44 determine
the current base:

Flag 43 | Flag 44 Base
0 0 Decimal
0 1 Binary
1 0 Octal
1 1 Hexadecimal

In addition to the BINARY menu commands described in the next
sections, the arithmetic functions +, —, %, and / can be used with
pairs of binary integers, or combinations of real integers and binary
integers, as described in “Arithmetic.”

3: Dictionary 131

...BINARY

DEC HEX oCT BIN STWS RCWS

DEC Decimal Mode Command

»

DEC sets decimal mode for binary integer operations. Binary integers
may contain the digits 0 through 9, and will be displayed in base 10.

DEC clears user flags 43 and 44.

HEX Hexadecimal Mode Command

»

HEX sets hexadecimal mode for binary integer operations. Binary inte-
gers may contain the digits 0 through 9, and A (ten) through F
(fifteen), and will be displayed in base 16.

HEX sets user flags 43 and 44.

OCT Octal Mode Command

»

OCT sets octal mode for binary integer operations. Binary integers
may contain the digits 0 through 7, and will be displayed in base 8.

OCT sets user flag 43 and clears flag 44.

132 3: Dictionary

-..BINARY

BIN Binary Mode Command

»

BIN sets binary mode for binary integer operations. Binary integers
may contain the digits 0 and 1, and will be displayed in base 2.

BIN clears user flag 43, and sets flag 44.

STWS Store Wordsize Command
Level 1
n |

STWS sets the argument n as the current binary integer wordsize,
where 7 should be a real integer in the range 1 through 64. If n > 64,
then a wordsize of 64 is set; if n < 1, the wordsize will be 1. User
flags 37-42 represent the binary representation of n — 1 (flag 42 is
the most significant bit).

RCWS Recall Wordsize Command
Level 1
» n

RCWS returns a real integer n equal to the current wordsize, in the
range 1 through 64. User flags 37-42 represent the binary representa-
tion of n — 1.

3: Dictionary 133

...BINARY

RL RR RLB RRB R-B B-R

The commands RL and RR rotate binary integers (set to the current
wordsize) to the left or right by one bit. The commands RLB and RRB
are equivalent to RL or RR repeated eight times. R»B and B-R con-
vert real numbers to or from binary integers.

RL Rotate Left Command
Level 1 Level 1
ny » # n,

RL performs a 1 bit left rotate on a binary integer number # n;. The
leftmost bit of # n; becomes the rightmost bit of the result # n,.

RR Rotate Right Command

Level 1 Level 1

RR performs a 1 bit right rotate on a binary integer number # n;. The
rightmost bit of # n; becomes the leftmost bit of the result # n,.

RLB Rotate Left Byte Command
Level 1 Level 1
ny » # no

RLB performs a 1 byte left rotate on a binary integer number # ;.
The leftmost byte of # n; becomes the rightmost byte of the result
My.

134 3: Dictionary

-..BINARY

RRB Rotate Right Byte Command

Level 1 Level 1

RRB performs a 1 byte right rotate on a binary integer number # n;.
The rightmost byte of # n; becomes the leftmost byte of the result
ny.

R-B Real to Binary Command
Level 1 Level 1
n » #n

R-B converts a real integer n, 0 < n < 1.84467440737E19, to its bi-
nary integer equivalent # n. If n < 0, the result is # 0. If
n > 1.84467440737E19, the result is # FFFFFFFFFFFFFFFF (hex).

B-R Binary to Real Command
Level 1 Level 1
#n » n

B-R converts a binary integer # n to its real number equivalent n. If
#n > # 1000000000000 (decimal), only the 12 most significant deci-
mal digits are preserved in the mantissa of the result.

3: Dictionary 135

...BINARY

SL SR SLB SRB ASR

The commands SL and SR shift binary integers (set to the current
wordsize) to the left or right by one bit. The commands RLB and RRB
are equivalent to RL or RR repeated eight times.

SL Shift Left Command

Level 1 Level 1

SL performs a 1 bit left shift on a binary integer. The high bit of n; is
lost. The low bit of 1, is set to zero. SL is equivalent to binary multi-
plication by two (with truncation to the current wordsize).

SR Shift Right Command
Level 1 Level 1
ny » # ny

SR performs a 1 bit right shift on a binary integer. The low bit of n; is
lost. The high bit of n, is set to zero. SR is equivalent to binary divi-
sion by two.

136 3: Dictionary

...BINARY

SLB Shift Left Byte Command

Level 1 Level 1

#n1 » #nz

SLB performs a 1 byte left shift on a binary integer. SLB is equivalent
to multiplication by # 100 (hexadeciamal) (truncated to the current
wordsize).

SRB Shift Right Byte Command

Level 1 Level 1

SRB performs a 1 byte right shift on a binary integer. SRB is equiva-
lent to binary division by # 100 (hexadecimal).

ASR Arithmetic Shift Right Command

Level 1 Level 1

#n1 B #nz

ASR performs a 1 bit arithmetic right shift on a binary integer.
In an arithmetic shift, the most significant bit retains its value, and a
shift right is performed on the remaining wordsize - 1 bits.

3: Dictionary 137

..BINARY

AND OR XOR NOT

The commands AND, OR, XOR, and NOT can be applied to flags
(real numbers or algebraics), and to binary integers. In the former
case, the commands act as logical operators that combine true or false
flags. For binary integers, the commands perform logical operations
on the individual bits of the arguments.

The following descriptions apply to the use of the commands with
binary integer arguments. “‘PROGRAM TEST” describes their applica-
tion to flags.

AND And Function

Level 2 Level 1 Level 1

#n1 #n2 » #ng

AND returns the logical AND of two binary integer arguments. Each
bit in the result is determined by the corresponding bits in the two
arguments, according to the following table:

#ngy | # n, | AND Result # n3

- A O O
- O = O

0
0
0
1

138 3: Dictionary

-..BINARY

OR or Function

Level 2 Level 1 Level 1

ny # n, » # ng

OR returns the logical OR of two binary integer arguments. Each bit
in the result is determined by the corresponding bits in the two argu-
ments, according to the following table:

#ng | #ny OR Result # n3

0 0 0

0 1 1

1 0 1

1 1 1

XOR Exclusive Or Function

Level 2 Level 1 Level 1
nq # ny » # ng

XOR returns the logical XOR (exclusive OR) of two binary integer ar-
guments. Each bit in the result is determined by the corresponding
bits in the two arguments, according to the following table:

ny # ny XOR Result # ng

0
1
0
1

o = = O

3: Dictionary 139

-.BINARY

NOT Not Function

Level 1 Level 1

NOT returns the ones complement of its argument. Each bit in the
result is the complement of the corresponding bit in # n;.

ngy | NOT Result # n,

0 1
1 0

140 3: Dictionary

Calculus

The HP-28C is capable of symbolic differentiation of any algebraic
expression (within the constraints of available memory), and of nu-
merical integration of any (algebraic syntax) procedure. In addition,
the calculator can perform symbolic integration of polynomial expres-
sions. For more general expressions, the [command can automatically
perform a Taylor series approximation to the expression, then sym-
bolically integrate the resulting polynomial.

Differentiation

] Differentiate Analytic
Level 2 Leve! 1 Level 1
'symb4! "name' ®» 'symb,'

0 (M(d/dx]) computes the derivative of an algebraic expression symb,
with respect to a specified variable name. (Name cannot be a local
name.) The form of the result expression symb, depends upon
whether 9 is executed as part of an algebraic expression, or as a
“stand-alone” object.

Step-wise Differentiation in Algebraics

The derivative function 9 is represented in algebraic expressions with
a special syntax:

'anameisymby ',

where name is the variable of differentiation and symb is the expres-
sion to be differentiated.

3: Dictionary 141

.Calculus

For example, 'aRX{SIMCY 22 ' represents the derivative of SIMC{Y»
with respect to ®. When the overall expression is evaluated, the dif-
ferentiation is carried forward one “step”—the result is the derivative
of the argument expression, multiplied by a new subexpression repre-
senting the derivative of its argument. An example should make this
clear. Consider differentiating SIN<Y» with respect to ¥ in radians
mode, where % has the value '®¥“2"':

"AaX(SINCY 2" EVAL returns 'COS(Y>kak(yar'.

We see that this is a strict application of the chain rule of differentia-
tion. This description of the behavior of 9, along with the general
properties of EVAL, is sufficient for understanding the results of sub-
sequent evaluations of the expression:

EVAL returns 'COSCR" 22 (a{RIK2ZER(2-102",

EVAL returns 'COSCH~204(2%K ",

Fully Evaluated Differentiation
When 9 is executed as an individual object—that is, in a sequence
"sumb' 'name’' a,

rather than as part of an algebraic expression, the expression is auto-
matically evaluated repeatedly until it contains no derivatives. As part
of this process, if the variable of differentiation name has a value, the
final form of the expression will have that value substituted every-
where for the variable name.

To compare this behavior of d with the step-wise differentiation de-
scribed in the preceding section, consider again the example
expression 'SINCY ', where ¥ has the value '¥~2':

"SIMCY 2" "R oA returns 'COSCR*Zrk2FKY .

142 3: Dictionary

.Calculus

All of the steps of the differentiation have been carried out in a single
operation.

The function d determines whether to perform the automatic repeated
evaluation according to the form of the level 1 argument that specifies
the variable of differentiation. If that argument is a name, the full
differentiation is performed. When the level 1 argument is an alge-
braic expression containing only a name, only one step of the
differentiation is carried out. Normally, algebraics containing only a
single name are automatically converted to name objects. The special
syntax of 9 allows this exception to be used as a signal for full or step-
wise differentiation.

Differentiation of User-Defined Functions
When 9 is applied to a user-defined function:

1. The expression consisting of the function name and its argu-
ments within parentheses is replaced by the expression that
defines the function.

2. The arguments from the original expression are substituted for
the local names within the function definition.

3. The new expression is differentiated.
For example: Define F (a, b) = 2a + b:

« * a b '"2%a+b' ¥ 'F' STO

3: Dictionary 143

.Calculus

Then differentiate 'F ¢, ®~2» ' with respect to ¥. The differentia-
tion automatically proceeds as follows:

1. 'FOKH,¥~2)' is replaced by 'Z%a+b'.

2. ¥ is substituted for a, and '#~2' for b. The expression is now
2ER+E2 .

3. The new expression is differentiated.

B If we evaluated 'axiF ¢, ¥"22>" the result is
PARC2ERYAHCEN2 Y,

B If we executed 'F(¥, (®™~232' '®' a, the differentiation is
carried through to the final result '2+2%X"'.

User-Defined Derivatives

If 9 is applied to an HP-28C function for which a built-in derivative is
not available, d returns a formal derivative—a new function whose
name is “der” followed by the original function name. For example,
the HP-28C definition of % does not include a derivative. If you dif-
ferentiate 'X<®,¥> "' one step with respect to Z, you obtain

‘derX(r,Y,alCEd,aZdYry!

Each argument to the % function results in two arguments to the
der% function. In this example, the ¥ argument results in ¥ and
aZ(#) arguments, and the ¥ argument results in ¥ and &Z (Y >
arguments.

You can further differentiate by creating a user-defined function to
represent the derivative. Here is a derivative for %:

0+ w0y dx dy ' (xddy+yg¥dxio188' @ 'der¥x' STO.

With this definition you can obtain a correct derivative for the %
function. For example:

'ECRLZEKY Y 'K 2 COLCT returns ' B4%RX'.

144 3: Dictionary

.Calculus

Similarly, if 9 is applied to a formal user function (a name followed by
arguments in parentheses, for which no user-defined function exists
in user memory), d returns a formal derivative whose name is “der”
followed by the original user function name. For example, differenti-
ating a formal user function 'f (x1,x2,x3>"' with respect to x
returns

'derfixl,x2,x3,axixl),axix2),ax(x322!'

Integration
1] Integrate Command
Level 3 Level 2 Level 1 Level 2 Level 1
'symb'! ' name' degree » 'integral '
X {name a b} accuracy ®w integral error
'symb' {name ab?} accuracy ® integral error
#program#® +<name a b} accuracy ®» integral error
«program= tab?} accuracy ®» integral error

[returns either a polynomial expression representing a symbolic in-
definite integral, or two real numbers for a definite numerical integral.
The nature of the result is determined by the arguments. In general, [
requires three arguments. Level 3 contains the object to be integrated;
the level 2 object determines the form of the integration; the level 1
object specifies the accuracy of the integration.

3: Dictionary 145

«.Calculus

Symbolic Integration

[includes a limited symbolic integration capability. It can return an
exact (indefinite) integral of an expression that is a polynomial in the
variable of integration. It can also return an approximate integral by
using a Taylor series approximation to convert the integrand to a
polynomial, then integrating the polynomial.

To obtain a symbolic integral, the stack arguments must be:

3: Integrand (name or algebraic)
2: Variable of integration (name)

1: Degree of polynomial (real integer)

The degree of polynomial specifies the order of the Taylor series ap-
proximation (or the order of the integrand if it is already a
polynomial).

Numerical Integration
To obtain a numerical integral, you must specify:

B The integrand.
B The variable of integration.
B The numerical limits of integration.

B The accuracy of the integrand, or effectively, the acceptable error in
the result of the integration.

146 3: Dictionary

..Calculus

Using an Explicit Variable of Integration. A numerical integra-
tion, in which the variable of integration is named with a name object
that (usually) appears in the definition of the object used as the inte-
grand, is called explicit variable integration. In the next section, implicit
variable integration will described, in which the variable of integration
does not have to be named.

For explicit variable integration, you must enter the relevant objects as
follows:

3: Integrand
2: Variable of integration and limits

1: Accuracy

The integrand is an object representing the mathematical expression
to be integrated. It can be:

B A real number, representing a constant integrand. In this case, the
value of the integral will just be:

number (upper limit — lower limit).
B An algebraic expression.

® A program. The program must satisfy algebraic syntax—that is,
take no arguments from the stack, and return a real number.

The variable of integration and the limits of integration must be in-
cluded in a list in level 2 of the form:

{ name lower-limit upper-limit ¥,
where name is a name object, and the limits are real numbers.

The accuracy is a real number that specifies the error tolerance of the
integration, which is taken to be the relative error in the evaluation of
the integrand (the accuracy determines the spacing of the points, in
the domain of the integration variable, at which the integrand is sam-
pled for the approximation of the integral).

3: Dictionary 147

.Calculus

The accuracy is specified as a fractional error, that is,

true value — computed value
computed value

accuracy =

where value is the value of the integrand at any point in the integra-
tion interval. Even if your integrand is accurate to or near 12
significant digits, you may wish to use a larger accuracy value to re-
duce integration time, since the smaller the accuracy value, the more
points that must be sampled.

The accuracy of the integrand depends primarily on three
considerations:

B The accuracy of empirical constants in the expression.

B The degree to which the expression may accurately describe a phys-
ical situation.

B The extent of round-off error in the internal evaluation of the
expression.

Expressions like cos (x — sin x) are purely mathematical expressions,
containing no empirical constants. The only constraint on the accuracy
then, is the round-off errors which may accumulate due to the finite
(12-digit) accuracy of the numerical evaluation of the expression. You
can, of course, specify an accuracy for integration of such expressions
larger than the simple round-off error, in order to reduce computation
time.

When the integrand relates to an actual physical situation, there are
additional considerations. In these cases, you must ask yourself
whether the accuracy you would like in the computed integral is justi-
fied by the accuracy of the integrand. For example, if the integrand
contains empirical constants that are accurate to only 3 digits, it may
not make sense to specify an accuracy smaller than 1E-3.

148 3: Dictionary

..Calculus

Furthermore, nearly every function relating to a physical situation is
inherently inaccurate because it is only a mathematical model of an
actual process or event. The model is typically an approximation that
ignores the effects of factors judged to be insignificant in comparison
with the factors in the model.

To illustrate numerical integration, we will compute

J;z exp x dx

to an accuracy of .00001. The stack should be configured as follows
for [:

3: “EXP(X)
220 X 1 2}
1: .00001

Numerical integration returns two numbers to the stack. The value of
the integral is returned to level 2. The error returned to level 1 is an
upper limit to the fractional error of the computation, where normally

error = accuracy [lintegrand|

If the error is a negative number, it indicates that a convergence of the
approximation was not achieved, and the level 2 result is the last com-
puted approximation.

For the integral of 'EXF<¢x»' in the example, [returns a value
4.67077 to level 2, and the error 4.7E-5 to level 1.

3: Dictionary 149

.Calculus

Using an Implicit Variable of Integration. The use of an explicit
variable of integration allows you to enter the integrand as an ordi-
nary algebraic expression. However, it is also possible to enter the
integrand in RPN form, which can appreciably reduce the time re-
quired to compute the integral by eliminating repeated evaluation of
the variable name. In this method, an implicit variable of integration
is being used. The stack should be configured like this:

3: Integrand (program)
2: Limits of integration (list)

1: Accuracy (real number)

The integrand must be a program that takes one real number from the
stack, and returns one real number. [evaluates the program at each of
the sample points between the limits of integration. For each evalua-
tion [places the sample value on the stack. The program takes that
value, and returns the value of the integrand at that point.

The limits of integration must be entered as a list of two real numbers,
in the format {lower-limit upper-limit}. The accuracy specifies the frac-
tional error in the computation, as described in the preceding section.

For example to evaluate the integral:

2
J; exp (x) dx

to an accuracy of .00001, you should execute [with the stack as
follows:

150 3: Dictionary

.Calculus

3: « EXP »
221 2 }
1: .00001

This returns the same value 4.67077 and accuracy 4.7E-5 as the exam-
ple in the preceding section, where we used an explicit variable of
integration.

Taylor Series

TAYLR Taylor Series Command
Level 3 Level 2 Level 1 Level 1
"symby' ' name ' n » ‘symb,'

TAYLR (in the ALGEBRA menu) computes a Taylor series approxima-
tion of the algebraic symb,, to the nth order in the variable name. The
approximation is evaluated at the point name = 0 (sometimes called a
MacLaurin series). The Taylor approximation of f(x) at x = 0 is de-
fined as:

55 ()

x=

3: Dictionary 151

.Calculus

Translating the Point of Evaluation

If you're using TAYLR simply to put a polynomial in power form, the
point of evaluation makes no difference because the result is exact.
However, if you're using TAYLR to approximate a mathematical func-
tion, you may need to translate the point of evaluation away from
Zero.

For example, if you're interested in the behavior of a function in a
particular region, its TAYLR approximation will be more useful if you
translate the point of evaluation to that region. Also, if the function
has no derivative at zero, its TAYLR approximation will be meaning-
less unless you translate the point of evaluation away from zero.

||:I Executing TAYLR can return a meaningless result if the
i expression is not differentiable at zero. For example, if
Note you clear flag 59 (to prevent Infinite Result er-

rors) and execute:
IRt 'R' 2 TAYLR

you will obtain the result 'S.E499%%-1.25E499%X~2"'. The coef-
ficient of ¥ is aX¢®~.5>, which equals .5 % ¥~ - .5 and
evaluates to 5.E499 for x = 0.

Although TAYLR always evaluates the function and its derivatives at
zero, you can effectively translate the point of evaluation away from
zero by changing variables in the expression. For example, suppose
the function is an expression in X, and you want the TAYLR approxi-
mation at X = 2. To translate the point of evaluation by changing
variables:

1. Store 'Y +2' in '®"'.

2., Evaluate the original function to change the variable from X
to Y.

152 3: Dictionary

.Calculus

Find the Taylor approximation at Y = 0.
Purge X (if it still exists as a variable).
Store 'X-2' in '¥'.

o 0 W

«» Evaluate the new function to change the variable from Y to X.
7. Purge Y.

Approximations of Rational Functions

A rational function is the quotient of two polynomials. If the denomi-
nator evenly divides the numerator, the rational function is equivalent
to a polynomial. For example:

¥ 4+ 2% — 5¢x — 6

¥ —x =2

=x+ 3

If your expression is such a rational function, you can convert it to the
equivalent polynomial form by using TAYLR. However, if the denomi-
nator doesn’t evenly divide the numerator—that is, if there is a
remainder—the rational function is not a polynomial. For example:

3 2
x + 2x° — 5x — 2 4
=x+ 3 + 5
xz—x—z xz—x—Z

There is no equivalent polynomial form for such a rational function,
but you can use TAYLR to calculate a polynomial that is accurate for
small x (close to zero). You can translate the region of greatest accu-
racy away from x = 0, and you can choose the accuracy of the
approximation. For the example above, the first-degree TAYLR ap-
proximation at x = 0 is 2x + 1.

3: Dictionary 153

.Calculus

Polynomial Long Division. Another useful approximation to a ratio-
nal function is the quotient polynomial resulting from long division.
Consider the righthand side of the equation above as a polynomial
plus a remainder. The polynomial is a good approximation to the ra-
tional function when the remainder is small—that is, when x is large.
Note the difference between the quotient polynomial (x + 3) and the
TAYLR approximation of the same degree (2x + 1).

The steps below show you how to perform polynomial long division
on the HP-28C. The general process is the same as doing long divi-
sion for numbers.

1. Create expressions for the numerator and denominator, with
both in power form.

2, Store the denominator in a variable named ‘D’ (for “divisor”).

3. Store an initial value of zero in a variable named ‘Q’ (for
“quotient”).

With the numerator on the stack, proceed with the steps below. The
numerator is the initial value for the dividend. Each time you repeat
steps 4 through 8, you'll add a term to Q and reduce the dividend.

4. Put D on the stack (in level 1).

5. Divide the highest-order term of the dividend (in level 2) by the
highest-order term of the divisor (in level 1). You can calculate
the result by inspection and key it in, or you can key in an
expression

' dividend-term .- divisor-term '
and then put it in power form.

For example, if the dividend is x3 + 2x2 — 5x — 2 and the divi-
sor is x2 — x — 2, the result is x; if the dividend is 3x3 + x2 — 7
and the divisor is 2x2 + 8x + 9, the result is 1.5x.

The result is one term of the quotient polynomial.

154 3: Dictionary

.Calculus

6. Make a copy of the quotient term, and add this copy to Q.
7. Multiply the quotient term and the divisor.

8. Subtract the result from the dividend. The result is the new
dividend.

If the new dividend’s degree is greater than or equal to the divisor’s
degree, repeat steps 4 through 8.

When the new dividend’s degree is less than the divisor’s degree,
stop. The polynomial quotient is stored in Q, and the remainder
equals the final dividend divided by the divisor.

3: Dictionary 155

CATALOG

The HP-28C command catalog, activated by the [[CATALOG] key, is
an alphabetical listing of all of the commands recognized by the
HP-28C. You can use the catalog to determine the existence and cor-
rect spelling of a command, and to learn which object types can be
used as arguments for each command. Commands that start with a
non-alphabetic character are listed after XPON, the last command be-
ginning with a letter.

When you press @[CATALOG], the normal HP-28C display is super-
ceded by the catalog display:

ME:T | FREY [SCAN | UZE [FETCH

The top line shows a command name. ABORT is the first command
alphabetically in the HP-28C catalog.

156 3: Dictionary

-..CATALOG

The catalog menu is shown in the bottom line of the display. The six
menu keys act as follows:

Key Description

Advance the catalog display to the next command in the catalog
(repeating key).

Move the catalog display to the previous command in the catalog
(repeating key).

Scan automatically forward through the command catalog, show-
ing each command briefly. The menu label changes to
S ; pressing [halts the scan at the current command.
The scan will stop automatically at the last command in the cata-
log (»STR).

Activate the USAGE display (see below) for the current command,
to show the stack arguments used by the command.

Exit the catalog, and add the current command abbreviation to the
command line at the cursor position (start a new command line if
none is present).

G078 | Exit the catalog, leaving any current command line unchanged.
! 9 9

In addition to the operations available in the command catalog menu,
you can also:

B Press a key on the left-hand keyboard to move the catalog display
to the first command that starts with the letter or character
indicated.

B [f there are no commands starting with the letter corresponding to
a key you press, the catalog will move to the last command starting
with the alphabetically previous letter.

3: Dictionary 157

-..CATALOG

B If there are no commands starting with the non-alphabetic charac-
ter corresponding to a key you press, the catalog will move to +,
the first command that starts with a non-alphabetic character. (The
B («L0cK] key moves the catalog to +STR, the last entry in the
catalog.)

B Press to exit the catalog and clear any current command line.

Any keys that are not active during the catalog display will beep
when pressed.

USAGE

Pressing the BE#E menu key activates a second level of the catalog,
called the USAGE display. For the % command, for example, the ini-
tial USAGE display looks like this:

! : EEE ? ﬁumger

1: Real Humber
WERT|FRER] ~ - | | | GUTE

The display indicates that % can take two real numbers as arguments.
If the i and [IE menu keys are shown, this indicates that
there are additional argument options. For %, if you press 1, the
display becomes:

! : EEE T igLINEEF

1: Algebraic or Hame
MEET|FREN | ~ | | [CUIT]

158 3: Dictionary

-..CATALOG

This shows that % will also accept a real number in level 2 and an
algebraic or name in level 1 as arguments. There are two additional
combinations for %, which you can view by pressing twice.
You can also back up through the USAGE display by pressing FEEH .

To exit from the USAGE display, you can:

B Press to return to the catalog display for the current com-
mand. From here you can move through the catalog to other
commands, or exit by pressing again.

B Press to exit the catalog. also clears the current command
line.

3: Dictionary 159

COMPLEX

R-C C-R RE M CONJ SIGN
R-P P-R ABS NEG ARG

The COMPLEX menu ([l(CMPLX]) contains commands specific to
complex numbers.

Complex number objects in the HP-28C are ordered pairs of numbers
that are represented as two real numbers enclosed within parentheses
and separated by the non-radix character, for example,
¢1.234,5.678>. A complex number object (x, y) can represent:

B A complex number z in rectangular notation, where x is the real
part of z, and y is the imaginary part.

B A complex number z in polar notation, where x is the absolute
value of z, and y is the polar angle.

B The coordinates of a point in two dimensions, in rectangular co-
ordinates, where x is the abscissa or horizontal coordinate, and y is
the ordinate or vertical coordinate.

B The coordinates of a point in two dimensions, in polar coordinates,
where x is the radial coordinate, and y is the polar angle.

If you are not familiar with complex number analysis, you may prefer
to consider complex number objects as two-dimensional vectors or

point coordinates. Most of the complex number commands return re-
sults that are meaningful in ordinary two-dimensional geometry as
well as for complex numbers.

With the exception of the P=R (polar-to-rectangular) command, all
HP-28C commands that deal with values of complex number objects
assume that their arguments are expressed in rectangular notation.

Similarly, all commands that return complex number results, except
R-P (rectangular-to-polar), express their results in rectangular form.

160 3: Dictionary

-..COMPLEX

In addition to the commands described in the following sections, cer-
tain commands in other menus accept complex number arguments:
B Arithmetic functions +, —, %, /, INV, \/, SQ, ~.

B Trigonometric functions SIN, ASIN, COS, ACOS, TAN, ATAN.

® Hyperbolic functions SINH, ASINH, COSH, ACOSH, TANH,
ATANH.

B Logarithmic functions EXP, LN, LOG, ALOG.

R-C C-R RE M CONJ SIGN

The commands R-C, C-»R, RE, IM, and CON]J also appear in the
fourth row of the ARRAY menu. For their use with array arguments,
refer to page 000.

R-C Real to Complex Command
Level 2 Level 1 Level 1
X y » X,y

CR-array;1 LCR-array,1 » L[C-arrayl

R-C combines two real numbers x and y into a complex number. x is
the real part, and y the imaginary part of the result. x and y may also
be considered as the horizontal and vertical coordinates, respectively,
of the point (x, y) in a two-dimensional space.

3: Dictionary 161

--.COMPLEX

C-R Complex to Real Command
Level 1 Level 2 Level 1
Cx,yr» ®» X y

CC-arrayl w» [CR-array;1 LCR-array,]

C-R separates a complex number (or coordinate pair) into its compo-
nents, returning the real part (or horizontal coordinate) to level 2, and
the imaginary part (or vertical coordinate) to level 1.

RE Real Part Function
Level 1 Level 1
IX,y3 » X
'symb' ®» 'RE(symb: '
Carray;1 » Carray,1

RE returns the real part x of its complex number argument (x, y).
x may also be considered as the horizontal or abscissa coordinate of
the point (x, y).

IM Imaginary Part Function
Level 1 Level 1
CX,yr ®» y
'symb' w» 'IMCsymb !
Carray;1 » Carray, 1

IM returns the imaginary part y of its complex number argument
(x, ¥). y may also be considered as the vertical or ordinate coordinate
of the point (x, y).

162 3: Dictionary

--.COMPLEX

CONJ Conjugate Analytic
Level 1 Level 1
X » X
x,y» » (X, —y2
CR-arrayl » CR-array 1
CC-array;1 » CC-array, 1
‘symb' » '"CONJCsymb> !

CONJ returns the complex conjugate of a complex number. The imag-
inary part of a complex number is negated.

SIGN Sign Function
Level 1 Level 1
Z4 » Zy
‘symb' ®» 'SIGNCsymb> '

For a complex number argument (x, y;), SIGN returns the unit vector
in the direction of (xq, y;):

(X2, Yo) = (xl/Vx% + v oy /Va + y%)

3: Dictionary 163

-..COMPLEX

R-P P-R ABS NEG ARG

R-P Rectangular to Polar Function
Level 1 Level 1
X » (x,02
xX,y2 » Cr, 0>
‘symb' "R+P (symb) '

R-P converts a complex number in rectangular notation (x, y) to polar
notation (7, §), where

r = abs (x, y), 6 = arg (x, y).

P-R Polar to Rectangular Function
Level 1 Level 1
(r,6> » (x,y2
‘symb' » 'P+R{symb> '

P-R converts a complex number in polar notation (r,) to rectangular
notation (x, y), where

X =rcosf, y = rsin 6.

164 3: Dictionary

.«COMPLEX

ABS Absolute Value Function
Level 1 Level 1
z » 1z]
Carrayl » [|array||
‘symb' ®» "ABS (symb) '
ABS returns the absolute value of its argument. For a complex argument
(x, y), the absolute value is \/(x* + 3?) .
NEG Negate Analytic
Level 1 Level 1
z » -z
‘symb' » ' —(symb3'
Carray]d = C—array1

NEG returns the negative of its argument. When no command line is
present, pressing executes NEG. A complete stack diagram for
NEG appears in “Arithmetic.”

ARG Argument Function
Level 1 Level 1
z » 6
'symb' » 'ARG Csymb) !

ARG returns the polar angle § of a complex number (x, y) where
arc tan y/x forx = 0,

6 = 4 arc tan y/x + w sign y for x < 0, radians mode,

arc tan y/x + 180 sign y for x < 0, degrees mode.

The current angle mode determines whether 6 is expressed as degrees
or radians.

3: Dictionary 165

--.COMPLEX

Principal Branches and General Solutions

In general the inverse of a function is a relation—for any argument
the inverse has more than one value. For example, consider cos™ 1z
for each z there are infinitely many w’s such that cos w = z. For rela-
tions such as cos~! the HP-28C defines functions such as ACOS.
These functions return a principal value, which lies in the part of the
range defined as the principal branch.

The principal branches used in the HP-28C are analytic in the regions
where their real-valued counterparts are defined—that is, the branch
cut occurs where the real-valued inverse is undefined. The principal
branches also preserve most of the important symmetries, such as
ASIN(—2z) = —ASIN(2).

The illustrations below show the principal branches for \V/, LN, ASIN,
ACOS, ATAN, ACOSH. The graphs of the domains show where the
cuts occur: the solid color or black lines are on one side of the cut,
and the shaded color or black regions are on the other side. The
graphs of the principal branches show where each side of the cut is
mapped under the function. Additional dotted lines in the domain
graphs and the principal branch graphs help you visualize the
function.

Also included are the general solutions returned by ISOL (assuming
flag 34, Principal Value, is clear, and radians angle mode is selected).
Each general solution is an expression that represent the multiple val-
ues of the inverse relations.

The functions LOG, *, ASINH, and ATANH are closely related to the
illustrated functions. You can determine principal values for LOG, *,
ASINH, and ATANH by extension from the illustrations. Also given
are the general solutions for these functions.

166 3: Dictionary

-..COMPLEX

Principal Branch for VZ

-

Domain: 2 = (x,y>
/ ’ \ \

/ \

t . xl
1717777774 /"

! /

N “_] - P
]

\
\

\
\

T

General Solution: 'SCOCW»=Z" 'W' IS0L returns 's1%J2°'.

3: Dictionary

167

-..COMPLEX

Principal Branch for LN(Z)

Domain: 2 = x,y»

e ~
/ N
y N
/ \
/ e \
t RN \
OL--» —— I
) |
\ ~ 7 :

Principal Value: W = tu,v) = LHix,y>

!
|

[
|
\ |
| [
R
[\
[|
[|
| ‘

I

I

General Solution: 'ExP{W>=Z"' 'W' ISOL returns
'LHOZ» +2%n%iknl ',

168 3: Dictionary

-..COMPLEX

Principal Branch for LOG (2Z)

You can determine the principal branch for LOG from the illustrations
for LN (on the previous page) and the relationship log (z) =
In (z)/In (10).

General Solution: 'ALOG(W>=2Z"' 'W' ISOL returns
'LOGCZr+2%knkiknl ~2,30258589299!

Principal Branch for U*Z

You can determine the principal branch for complex powers from the
illustrations for LN (on the previous page) and the relationship
u* = exp (In (u) 2).

Principal Branch for ASINH (2Z)

You can determine the principal branch for ASINH from the illustra-
tions for ASIN (on the following page) and the relationship
asinh z = —i asin iz.

General Solution: 'SINHC(W>=Z"' 'W' IS0L returns
'"ASINHCZ Y +2%nkiknl’

Principal Branch for ATANH (2Z)

You can determine the principal branch for ATANH from the illustra-
tions for ATAN (on page 000) and the relationship
atanh z = —i atan iz.

General Solution: 'TANH(W>=Z"' 'W' ISOL returns
"ATANHCZ > +nkiknl'

3: Dictionary 169

-..COMPLEX

Principal Branch for ASIN(2Z)

Domain: 2 = (x,y?>

AN \ p /
\ /
\ /
SN/ ///17174
777777 o) v
/ \
/ \
J/ \

Principal Value: i = ¢

<

Lvy = ASINCX,y)

LI

o |
N 77

ol

|

General Solution: 'SINCW»=Z2"' 'W' IS0OL returns
'"ASIHCZ2¥C-12"nl +nknl ',

170 3: Dictionary

-..COMPLEX

Principal Branch for ACOS (Z)

Domain: £ = (x,y?
- ~ ~ - B
~ -~
~ e
N e
N s
\ /
\ /
\ /
NN /771174
7777777777 ol 1+
/ \
/ \
J \
/ N
b N
~ ~
- ~ -
— - — —_

-

Principal Value: Il = tu,v} = ACOS<x,y?

=

///////////////T

S/

— —— — — — |- — - — -— — —

General Solution: 'COSCW»=Z"' 'W' IS0L returns
's1¥ACOSCZ22+2%nknl!

3: Dictionary

171

-.COMPLEX

Principal Branch for ATAN (Z)

Domain: £ = (x,y>

ND

0

CE§

Principal Value: i = Cu,v> = ATAN{x,y>

R

B

o

’ \\\\l\\\\\\\\\ ’
|
|
|

n
[

[
[
1
[
|
t

AN

General Solution: 'TANC(W»=2Z"' 'W' IS0L returns
'"ATANCZ Y +0¥nl!

172 3: Dictionary

--.COMPLEX

Principal Branch for ACOSH (2Z)

Domain: 2 = (x,y>

| |
t t
| |
| |
| |
| |
| —1 0 1 |
77777777777777777777 R
| |
I I
1 , f
[: \
I i \
| { |

Principal Value: I{ = {u,v} = ACOSHIx,y>

|

3

E /
>~
\“‘
\ ..
=~

\ ;
N |
=~

=~

=~

>~

>~

>~

>~

=~

>~

>~

\

=~

>~

N
~

General Solution: 'COSH{W»=Z"' 'W' IS0L returns
's1¥ACOSHCZ > +2%nkiknl’

3: Dictionary 173

LIST

-LIST LIST- PUT GET PUTI GETI
SuUB SIZE

A list is an ordered collection of arbitary objects, that is itself an ob-
ject and hence can be entered into the stack or stored in a variable.
The objects in the list are called elements, and are numbered from left
to right starting with element 1 at the left. The commands in the LIST
menu enable you to create and alter lists, and to access the objects
contained in lists.

In addition to the LIST menu commands, you can also use the key-
board function + to combine two lists.

+ Add Analytic

Level 2 Level 1 Level 1

{listy 3 {listyy ® { listy listy *

+ concatenates two lists. That is, it takes two lists from the stack and
returns a single list containing the objects from the original two lists.

A complete stack diagram for + is given in the “Arithmetic” section.

-LIST LIST- PUT GET PUTI GETI

-LIST Stack to List Command
Level n+1 ... Level2 Level 1 Level 1
objy ... obj, n » {objy ... o0bj,¥

174 3: Dictionary

-LIST

-LIST takes an integer number n from level 1, plus n additional ob-
jects from levels 2 through n + 1, and returns a list containing the n

objects.

-LIST is also available in the STACK menu.

LIST- List to Stack Command
Level 1 Level n+1 ... Level2 Level 1
{objy ... obj,* » obj; ... obj, n

LIST— takes a list of n objects from the stack, and returns the objects
comprising the list into separate stack levels 2 through n + 1. The

number #n is returned to level 1.

LIST- is also available in the STACK menu.

PUT Put Element Command

Level 3 Level 2 Level 1 Level 1

Carray,1 <index ¥ X » [array,1

" name ' {index ¥ X »

CC-array;1 +index i z » [C-array,]

"name* {index ¥ z »
i listq ¥ n obj » llistyk

"name' n obj »

3: Dictionary

175

-LIST

PUT is a general mechanism for element storage into an array or ob-
ject storage into a list. In this section, we will describe list storage.
Array storage is described in the “ARRAY” section.

PUT takes three arguments from the stack. Level 1 must contain the
object you wish to store in the list. Level 2 contains a real number
specifying the number of the list element you wish to replace. Level 3
may contain either a list or a name:

B If level 3 contains a list, PUT returns that list to the stack with its
nth element replaced by the object taken from level 1.

B [f level 3 contains a name, then PUT replaces the nth element in
the list contained in the variable with the object in level 1. The
variable can’t be a local variable.

GET is the reverse operation to PUT.

GET Get Element Command
Level 2 Level 1 Level 1
Carray 1 {index: ®» z
' name ' {index: ®» z
{list ¥ n B obj
' name' n » obj

GET is a general mechanism for recalling an element from an array or
a list. In this section, list element recall will be described. Array ele-
ment recall is described in the “ARRAY” section.

176 3: Dictionary

-.LIST

GET takes two arguments from the stack. Level 1 should contain a
real number specifying the number of the list element you wish to
recall. Level 2 may contain either a list or a name:

B If level 2 contains a list, GET returns the nth element of that list to
the stack.

B If level 2 contains a name, GET returns to the stack the nth element
in the list contained in the variable.

PUT is the reverse operation to GET.

PUTI Put and Increment Index Command
Level 3 Level 2 Level 1 Level 2 Level 1
Carray,1 {indexq } X » [array,] {indexy ¥
' name' {indexq ¥ X » ‘'name' {index, ¥

CC-array;1 {indexq} z » [C-array,1 {indexy }
*name ' {indexq ¥ z » ‘'name' {indexy ¥
4 Iist1 ¥ ny Ob] » { Iistz ¥ ny
"name ' ny obj » ‘'name' ny

PUTI is a general mechanism for element storage into an array or ob-
ject storage into a list. In this section, list storage will be described.
Array storage is described in the “ARRAY” section.

3: Dictionary 177

-.LIST

PUTI stores an object into a list in the same manner as PUT, but also
returns the list (or a variable name) and the element number incre-
mented by 1. This leaves the stack ready for you to enter a new
object, and then execute PUTI again to store the object into the next
position in the list. When the element number is equal to the number
of elements in the list, PUTI returns the element number 1, starting
over at the start of the list.

PUTI takes three arguments from the stack. Level 1 must contain the
object you wish to store in the list. Level 2 contains a real number
specifying the number of the list element you wish to replace. Level 3
may contain either a list or a name:

B If level 3 contains a list, PUTI returns that list to level 2, with its
nth element replaced by the object taken from level 1. The next
element number (17; + 1, or 1) is returned to level 1.

B [f level 3 contains a name, PUTI stores the object as the nth ele-
ment in the list contained in the variable. The variable can’t be a
local variable. The name is returned to level 2, and the next ele-
ment number (n; + 1, or 1) is returned to level 1.

GETI is the reverse operation to PUTI.

GETI Get and Increment Index Command
Level 2 Level 1 Level 3 Level 2 Level 1
Carray 1 {index;* ®» Larray] {indexy ¥ z
' name' {index;* ®» 'pame' {index, ¥ z
{list nq » {list ¥ no obj
' name'' ny » ‘'name’ ny obj

GETI is a general mechanism for recalling an element from an array
or a list. Array element recall is described in the “ARRAY” section.

178 3: Dictionary

-LIST

GETI recalls an element from a list in the same manner as GET, with
the added feature that GETI leaves the list on the stack plus the ele-
ment number incremented by 1, to facilitate successive recalls from
the same list. When the element number is equal to the number of
elements in the list, GETI returns the element number 1, starting over
at the beginning of the list.

GETI takes two arguments from the stack. Level 1 should contain a
real number, specifying the number of the list element you wish to
recall. Level 2 may contain either a list or a name:

B If level 2 contains a list, GETI returns the nth element of that list to
level 1. GETI also returns the list to level 3, and the next element
number (1; + 1, or 1) to level 2.

B If level 2 contains a name, GETI returns to level 1 the nth element
in the list contained in the variable. GETI also returns the name to
level 3 and the next element number (1; + 1 or 1) to level 2.

PUTI is the reverse operation of GETIL.

3: Dictionary 179

-.LIST

SUB SIZE
sSuUB Subset Command
Level 3 Level 2 Level 1 Level 1
"string " ny no » 'string,"
{ I/'St1 3 n1 n2 » { /ISt2 }

SUB takes a list and two integer numbers n; and 1, from the stack,
and returns a new list containing the objects that were the elements
ny through n, of the original list. If n, < n;, SUB returns an empty
list.

SUB works in an analogous manner for character strings. Refer to
“STRING”.

SIZE Size Command
Level 1 Level 1
"string" » n
4 list ¥ B n
Carrayd » {list ¥
'symb' n

SIZE returns an object representing the size, or dimensions, of a list,
array, algebraic, or string argument. For a list, SIZE returns a number
n that is the number of elements in the list.

Refer to “ALGEBRA”, “ARRAY” and “STRING” for the cases of
algebraics, arrays and strings, respectively.

180 3: Dictionary

LOGS

LOG ALOG LN EXP LNP1 EXPM
SINH ASINH COSH ACOSH TANH ATANH

The LOGS menu contains exponential, logarithmic, and hyperbolic
functions. All of these functions accept real and algebraic arguments;
all except LNP1 and EXPM accept complex arguments.

LOG ALOG LN EXP LNP1 EXPM
LOG Common Logarithm Analytic
Level 1 Level 1
z » log z
'symb' ®» 'LOG<Csymb> !

LOG returns the common logarithm (base 10) of its argument.

An Infinite Result exception results if the argument is 0 or
0, 0).

ALOG Common Antilogarithm Analytic
Level 1 Level 1
z » 107

‘symb' ®» "ALOG (symb> '

ALOG returns the common antilogarithm (base 10) of its argument—
that is, 10 raised to the power given by the argument.

3: Dictionary 181

-.LOGS

For complex arguments:
alog (x, y) = expcx cos cy + i exp cx sin cy,

where ¢ = In 10. (Computation is performed in radians mode).

LN Natural Logarithm Analytic
Level 1 Level 1
z » In z
‘symb' » "LMCsymb !

LN returns the natural logarithm (base e) of its argument.

An Infinite Result exception results if the argument is 0 or

©, 0).

EXP Exponential Analytic
Level 1 Level 1
z » exp z
‘symb' » "EXP Csymb: '

EXP returns the exponential, or natural antilogarithm (base ¢) of its
argument—that is, e raised to the power given by the argument. EXP
returns a more accurate result than e~, since EXP uses a special algo-
rithm to compute the exponential.

For complex arguments:
exp(x, y) = expx cos y + i expx sin y.

(Computation is performed in radians mode).

182 3: Dictionary

-.LOGS

LNP1 Natural Log of 1+x Analytic
Level 1 Level 1
X » In (1+x)

'symb' ®» "LHMP1Csymb '

LNP1 returns In (1 + x), where x is the real-valued argument. LNP1 is
primarily useful for determining the natural logarithm of numbers
close to 1. LNP1 provides a more accurate result for In(1 + x), for x
close to zero, than can be obtained using LN.

Arguments less than 1 cause an Undefined Result error.

EXPM Exponential Minus 1 Analytic
Level 1 Level 1
X » exp (x)—1
'symb' ®» 'EXPMCsymby !

EXPM returns ¢* — 1, where x is the real-valued argument. EXPM is
primarily useful for determining the exponential of numbers close to
0. EXPM provides a more accurate result for e* — 1, for x close to 0,
than can be obtained using EXP.

3: Dictionary 183

-..LOGS

SINH ASINH COSH ACOSH TANH ATANH
These are the hyperbolic functions and their inverses.
SINH Hyperbolic Sine Analytic
Level 1 Level 1
z » sinh z
'symb' w» "SINHCsymb>"'
SINH returns the hyperbolic sine of its argument.
ASINH Inverse Hyperbolic Sine Analytic
Level 1 Level 1
z » asinh z

'symb' w» "ASIMH (symb> '

ASINH returns the inverse hyperbolic sine of its argument. For real
arguments |x| > 1, ASINH returns the complex result for the argu-

ment (x, 0).

184 Dictionary

-.LOGS

COSH Hyperbolic cosine Analytic
Level 1 Level 1
z » cosh z
‘symb' ® 'COSH{symb'

COSH returns the hyperbolic cosine of its argument.

ACOSH Inverse Hyperbolic Cosine Analytic
Level 1 Level 1
z » acosh z

‘symb' ®» "ACOSHCsymb> '

ACOSH returns the inverse hyperbolic cosine of its argument. For
real arguments Ix| < 1, ACOSH returns the complex result obtained
for the argument (x, 0).

TANH Hyperbolic Tangent Analytic
Level 1 Level 1
z » tanh z
‘symb' @ ®» '"TAMH Csymb '

TANH returns the hyperbolic tangent of its argument.

3: Dictionary 185

.LOGS

ATANH Inverse Hyperbolic Tangent Analytic
Level 1 Level 1
z » atanh z

‘symb' w» "ATAMH (symb !

ATANH returns the inverse hyperbolic tangent of its argument. For
real arguments Ix| > 1, ATANH returns the complex result obtained
for the argument (x, 0).

For a real argument x = +1, an Infinite Result exception oc-
curs. If flag 59 is clear, the sign of the result (MAXR) is that of the
argument.

186 3: Dictionary

MODE

STD FiX §CI ENG DEG RAD
+CMD —CMD +LAST —LAST +UND —UND
+ML —ML RDX. RDX, PRMD

The MODE menu contains menu keys that control various calculator
modes: number display mode, angle mode, recovery modes, radix
mode, and multi-line display mode.

The menu key labels in this menu also act as annunciators to show
you the current states of the modes. Each mode has two or more keys
that set the mode; at any time, one menu key label for each mode is
displayed in normal video (black-on-white). The normal video key la-
bel indicates the current mode setting. For example, the angle mode is
set by the DEG and RAD commands. When the angle mode is degrees,
the abel is normal video and the label is shown in in-
verse video (white-on-black). If you press , the | | label
changes to normal video (and the EEEEE label to inverse) to indicate
that the angle mode is radians.

In immediate entry mode, all MODE commands except FIX, SCI, and
ENG (which require arguments) execute without performing ENTER,
leaving the command line unchanged.

STD FIX SCI ENG DEG RAD

These functions set the number display mode and the angle mode.

The number display functions STD, FIX, SCI, and ENG control the
display format of floating-point numbers, as they appear in stack dis-
plays of all types of objects. In the algebraics, non-integer floating-
point numbers are displayed in the current format and integers are
always displayed in STD format.

3: Dictionary 187

..MODE

The current display mode is encoded in flags 49 and 50. Executing
any of the display functions alters the states of these flags; conversely,
setting and clearing these flags will affect the display mode. The cor-
respondence is as follows:

Mode Flag 49 | Flag 50
Standard 0 0
Fix 1 0
Scientific 0 1
Engineering 1 1

Flags 53-56 encode (in binary) the number of decimal digits, from 0
through 11. Flag 56 is the most significant bit.

STD Standard Command

»

STD sets the number display mode to standard format. Standard for-
mat (ANSI Minimal BASIC Standard X3]2) produces the following
results when displaying or printing a number:

B Numbers that can be represented exactly as integers with 12 or
fewer digits are displayed without a radix or exponent. Zero is dis-
played as @&.

® Numbers that can be represented exactly with 12 or fewer digits,
but not as integers, are displayed with a radix but no exponent.
Leading zeroes to the left of the radix and trailing zeroes in the
fractional part are omitted.

188 3: Dictionary

...MODE

B All other numbers are displayed in the following format:

(sign) mantissa E (sign) exponent

where the value of the mantissa is in the range 1 < x < 10, and
the exponent is represented by one to three digits. Trailing zeroes in
the mantissa and leading zeroes in the exponent are omitted.

The following table provides examples of numbers displayed in stan-

dard format:

R Representable
Number Displayed As With 12 Digits?
10" 1088000800 A8 Yes (integer)
1012 1.E12 No
1012 . AEBRBaeBRBBE1 | Yes
1.2x10~ " . BBERBBREAB12 | Yes
1.23x10-1" | 1.23E-11 No
12.345 12,345 Yes
FIX Fix Command
Level 1

FIX sets the number display mode to fixed format, and uses a real
number argument to set the number of fraction digits to be displayed
in the range 0 through 11. The rounded value of the argument is
used. If this value is greater than 11, 11 is used; if less than 0, 0 is

used.

3: Dictionary 189

-..MODE

In fixed format, displayed or printed numbers appear as
(sign) mantissa

The mantissa appears rounded to 1 places to the right of the decimal,
where 7 is the specified number of digits. While fixed format is active,
the HP-28C automatically displays a value in scientific format in ei-
ther of these two cases:

B [f the number of digits to be displayed exceeds 12.

® [f a non-zero value rounded to n places past the decimal point
would be displayed as zero in fixed format.

SCi Scientific Command

Level 1

n »

SCI sets the number display mode to scientific format, and uses a real
number argument to set the number of significant digits to be dis-
played in the range 0 through 11. The rounded value of the actual
argument is used. If this value is greater than 11, 11 is used; if less
than 0, 0 is used.

In scientific format, numbers are displayed or printed in scientific no-
tation to n + 1 significant digits, where 1 is the specified number of
digits (the argument for SCI). A value appears as

C=sign? mantissa E (sign? exponent

where 1 < mantissa < 10.

190 3: Dictionary

...MODE

ENG Engineering Command

Level 1

n »

ENG sets the number display mode to engineering format, and uses a
real number argument to set the number of significant digits to be
displayed, in the range 0 through 11. The rounded value of the argu-
ment is used. If this value is greater than 11, 11 is used; if less than
0, 0 is used.

In engineering format, a displayed or printed number appears as
{zign> mantissa E (sign?} exponent

where 1 < mantissa < 1000, and the exponent is a multiple of 3. The
number of significant digits displayed is one greater than the argu-
ment specified. If a displayed value has an exponent of —499, it is
displayed in scientific format.

DEG Degrees Command

»

DEG (degrees) sets the current angle mode to degrees. In degrees
mode:

Real-number arguments. Functions that take real-valued angles as
arguments interpret those angles as being expressed in degrees. (Com-
plex arguments for SIN, COS and TAN are always assumed to be in
radians.)

3: Dictionary 191

-..MODE

Real-number results. Functions that give real-valued angles as re-
sults return those angles expressed in degrees: ASIN, ACOS, ATAN,
ARG, and R-P. (Complex results returned by ASIN or ACOS for ar-
guments outside of the domain x < 1 are always expressed in
radians.)

Executing DEG turns off the (27) annunciator and clears user flag 60.

RAD Radians Command

»

RAD (radians) sets the current angle mode to radians. In radians
mode:

Real-number arguments. Functions that take real-valued angles as
arguments interpret those angles as being expressed in radians. (Com-
plex arguments for SIN, COS and TAN are always assumed to be in
radians.)

Real-number results. Functions that give real-valued angles as re-
sults return those angles expressed in radians: ASIN, ACOS, ATAN,
ARG, and R-P. (Complex results returned by ASIN or ACOS for ar-
guments outside of the domain x < 1 are always expressed in
radians.)

Executing RAD turns on the (27) annunciator, and sets user flag 60.

192 3: Dictionary

...MODE

+CMD -CMD +LAST -—-LAST +UND -UND

These six menu keys control the three recovery mechanisms COM-
MAND, LAST, and UNDO. In each label, “+” means “ON,” and “—"
means “OFF.”

None of these operations can be included in programs; the menu keys

are always immediate execute keys. LAST can be enabled or disabled
programmatically by setting or clearing flag 31.

COMMAND Enabled/Disabled

Operation Description

Enables COMMAND. Previous command lines can now be re-

covered by pressing [lJ(COMMAND J.

Disables COMMAND and recovers the memory in which pre-

vious command lines are saved. Pressing [ll{COMMAND] now

causes a COMMAND Stack Disabled error

LAST Enabled/Disabled

Operation Description

Enables LAST. Commands that take one to three arguments
now save those arguments for recall by LAST.

Disables LAST and recovers the memory used to save argu-
ments. Executing LAST now causes a LAST Disabled
error.

3: Dictionary 193

...MODE

UNDO Enabled/Disabled

Operation Description
Enables UNDO. The stack is now saved at each execution of

ENTER, and pressing [J[UNDO] replaces the current stack
with the last saved stack.

Disables UNDO and recovers the memory occupied by the
saved stack. Pressing [J[UNDO] now causes an
UMDO Disabled error.

The effects of and [T are “local” to the current
suspended program. That is, if a program is suspended, exe-
cuting TR and changes the stack save feature
only while that program is suspended.

+ML —-ML RDX. RDX, PRMD

Multi-line Enabled/Disabled

Objects on the stack are displayed in either of two general display
formats: multi-line and compact. Objects in all levels higher than
level 1 are always displayed in compact format, in which only one
display line is used for the object (if the complete object cannot be
shown, an ellipsis “...” replaces the rightmost character).

194 3: Dictionary

-..MODE

You have the option, using the and menu keys, of dis-
playing objects in level 1 in compact format (M), or in multi-line
format (BEGIEME). In multi-line display mode:

B Matrices are shown with each row on a separate display line, with
as many elements displayed on each line as possible with the cur-
rent number display mode.

B Procedures and lists are displayed with newlines inserted into the
displayed text so that all of their definitions are visible. Additional
procedures, lists, and matrices contained within the definitions are
also displayed in multiple lines.

B Numbers, complex numbers, vectors, names, and strings are not
broken across display lines, and thus still may be truncated in the
display. As in compact display, hidden characters are indicated by
an ellipsis “...” in the rightmost character position.

If the full display of the object requires more lines of the display than
are available (four with the cursor menu, less one for any other menu,
less one or more if there is a command line active), you can view
additional lines with [(VIEw#] or @[VIEW+].

The current multi-line/compact mode choice is also represented by
flag 45. Multi-line display mode corresponds to flag 45 set.

Operation Description

+ML Selects multi-line display mode for objects in level 1, and sets
flag 45. With multi-line mode on, one or more display lines are
used to display the object in level 1.

Level 1 objects printed on the HP-82240A printer in trace
mode will also be printed in a multi-line mode.

-ML Selects compact display mode for objects in level 1, and
clears flag 45. Level 1 objects printed on the HP-82240A
printer in trace mode are also printed in compact mode.

3: Dictionary 195

...MODE

Period/Comma for Radix Mark

% and F3 allow you to select the character that is used to rep-
resent the radlx that is, the symbol that separates the integer and

fractional parts of a floating-point number. The choice is either the
period “.” or the comma “,”; the character that is not the current radix
character (called the non-rudzx) can be used interchangeably with the
space as an object separator when you enter objects into the com-
mand line (except within algebraic objects, where the non-radix is

used to separate arguments of multiple-argument functions).

uon,

Operation Description
Sets the radix mark that separates the integer and fractional

parts of a number to be a period (decimal point), and clears
user flag 48. In this mode, the comma is called the non-radix,
and can be used in the command line interchangeably with
the space, except within algebraic objects.

_RDX, Sets the radix mark that separates the integer and fractional
parts of a number to be a comma, and sets user flag 48. In
this mode, the period is called the non-radix, and can be used
in the command line interchangeably with the space, except
within algebraic objects.

PRMD Print Modes Command

»

196 3: Dictionary

...MODE

PRMD displays and prints a listing of current HP-28C modes. The
listing shows the states of the number display mode, multiline mode,
the angle mode, the binary integer base, and the radix mode, and

whether the UNDO, COMMAND, and LAST features are enabled or
disabled. A typical listing looks like this:

Format STD Base DEC
DEGREES Radix .
Undo ON Command OH
Last OH Multiline ON

3: Dictionary 197

PLOT

STEQ RCEQ PMIN PMAX INDEP DRAW
PPAR RES AXES CENTR *W *H
STOZ RCL> COLZ SCLZ> DRWZ2

CLLCD DISP PIXEL DRAX CLMF PRLCD

The commands in the PLOT menu give you the capability of creating
special displays that supersede the normal stack and menu display.
You can plot mathematical functions, make scatter plots of statistical
data, display data while a program is executing, and digitize informa-
tion from plots.

The Display

The HP-28C liquid-crystal display (LCD) is an array of 32 rows of
137 pixels (dots), which is organized as four rows of 23 character
spaces. A character space is six pixels wide by eight pixels high, with
the exception of the rightmost character space in each row, which is
five pixels wide. Normally, display characters are five pixels wide,
which leaves a blank column of pixels between characters.

The default display shows menu key labels, the command line, and
the stack. You can temporarily replace the default display in the fol-
lowing ways:

B Clearing the display. The command CLLCD blanks the entire dis-
play (except for the annunciators).

B Displaying messages. Using DISP, you can display objects in one
or more of the four display lines.

B Displaying graphical data. The commands PIXEL, DRAW, and
DRWZ allow you to plot individual data points, mathematical
functions, and points from the statistics matrix, respectively. DRAX
allows you to draw axes within a plot.

198 3: Dictionary

-.PLOT

When you execute any of these commands, a system message flag is
set automatically, to prevent the normal stack and menu display from
overwriting your special display. The message flag is cleared, and the
normal display restored, when you press any key after all active pro-
cedures have completed execution, that is, when the busy annunciator
(@) is off. You can use the command CLMF in a program to clear the
message flag.

There are also keys that produce special displays and redefine the
keyboard temporarily:

® J(cATALOG] and [UNITS] create catalog displays, and provide

menu keys and letter keys for you to control the catalogs.

B(cATALOG) and [[UNITS] are described in “The Command CATA-

LOG” and “Unit Conversion’, respectively.

] and execute DRAW and DRWZ, respectively, to pro-
duce mathematical function graphs and scatter plots of statistical
data. In addition, if DRAW or DRWZ is ececuted by pressing its
menu key while the plot displays are visible, you can use the menu
keys to move a cursor about the display or to return digitized co-
ordinates to the stack.

Display Positions

For the purpose of displaying character strings, the display is treated
as four lines of characters. The topmost line of the display is line 1,
the next line is line 2, and so on. Each line must be displayed as a
single entity; you can not display single characters at arbitary posi-
tions. DISP displays an object, where the object is represented as a
character string equivalent to the multi-line stack display of the
object.

3: Dictionary 199

-.PLOT

For graphical data displays, the display is treated as a grid of

32 x 137 dots, or pixels. A pixel is specified by its coordinates, a com-
plex number representing an ordered pair of coordinates (x, y), where
x is the horizontal coordinate and y is the vertical coordinate. (We will
use the letters x and y to represent the horizontal and vertical direc-
tions during this discussion, but you can use any variable names you
choose for plotting on the HP-28C.)

The scaling of coordinates to pixels is established by the coordinates
of the corner points P, and P,,;,, which you set with the commands
PMAX and PMIN, respectively. P, is the upper-rightmost pixel in
the display; its coordinates are (X,uu0 Yimax)- Pmin Comins Ymin) iS the
lower-leftmost pixel. The default coordinates of these points are
P, = (6.8,1.6) and P,;, = (—6.8, —1.5). The coordinates of the
center of a particular pixel are

X = Ny Wy + Xpin
y = ny wy t Ymin
where 7, is the horizontal pixel number and ny is the vertical pixel
number (Py,;, has n, = 0 and n, = 0; P, has n, = 136, n, = 31). wy
and w, are the horizontal and vertical pixel widths:
Wy = (xmux _xmin)/136-
wy = Ymax —Ymin)/31.

The pixel with n, = 68 and n, = 15 is defined as the center pixel.
With the default values for P,,,, and P,,;,, the center pixel has coordi-
nates (0, 0).

200 3: Dictionary

-.PLOT

Mathematical Function Plots

A mathematical function plot is a plot of the values of a procedure
stored in the variable EQ (the same used by the Solver), as a function
of a specified independent variable. The procedure is fully evaluated
for each of 137/r values of the independent variable from x,,;, to
Xnaxwhere 7 is the resolution of the plot. A dot (pixel) is added to the
graph for each coordinate pair (independent-variable-value, procedure-
value), as long as the procedure value is within the plot range between
Ymin and y,,,.. The plot also includes axes with tick marks every 10
pixels.

The actual plot is produced by the command DRAW. If you execute
DRAW directly by pressing the menu key [, you will be able to
use the cursor keys to digitize data from the plot.

A function plot will produce one or two plotted curves, according to
the definition of the EQ procedure:

B If EQ contains an algebraic expression without an equals sign,
DRAW will plot a single curve corresponding to the value of the
expression for each value of the independent variable within the
plot range.

B [f EQ contains an algebraic equation, DRAW will plot two curves,
one for each side of the equation. Note that the intersections of the
two curves occur at the values of the independent variable that are
the roots of the equation, that can be found by the Solver.

B If EQ contains a program, it will be treated as an algebraic expres-
sion and plotted as a single curve. This presumes that the program
obeys the syntax of an algebraic expression: it must take no argu-
ments from the stack, and return exactly one object to the stack.

3: Dictionary 201

-.PLOT

The general procedure for obtaining a function plot is summarized
below. For details, refer to the descriptions of the individual
commands.

1. Store the procedure to be plotted in EQ, using STEQ.
2. Select the independent variable with INDEP.

3. Select the plot ranges, using PMIN, PMAX, CENTR, *H, and
XxW.

4. Specify the intersection of the axes, using AXES.
5. Select the plot resolution with RES.
6. Execute DRAW.

Any of steps 1-5 can be omitted, in which case the current values are
used.

Statistical Scatter Plots

A statistical scatter plot is a plot of individual points taken from the
current statistics array stored in variable ZDAT. You may specify any
column of coordinate values from the array to correspond to the hori-
zontal coordinate, and any other column for the vertical coordinate.
One point is then plotted for each data point in the matrix.

The general procedure for obtaining a scatter plot is summarized be-
low. For details, refer to the descriptions of the individual commands.
1. Store the statistical data to be plotted in ZDAT, using STOZ.

2. Select the horizontal and vertical coordinate columns with
COLZ.

3. Select the plot ranges, using SCLZ for automatic scaling, or
PMIN, PMAX, CENTR, *H, and *W.

202 3: Dictionary

-.PLOT

4. Specify the intersection of the axes, using AXES.
5. Execute DRWZ.

Any of the steps 1-4 can be omitted, in which case the current values
are used.

Interactive Plots

If you execute DRAW or DRWZ by pressing the corresponding menu
key, the HP-28C enters an interactive plot mode that allows you to
digitize information from the plot while viewing it. When you start an
interactive plot:

1. The display is cleared.

2. Either DRAW or DRWZ is executed to produce the appropriate
plot. (If you press before the plotting is finished, plotting of
points halts, and the interactive mode begins).

3. A cursor in the form of a small cross (+) appears at the center of
the display. (If the axes are drawn through the center, the cursor
will not be visible until you move it.)

4. The menu keys are activated as cursor/digitizer keys:

B The two leftmost menu keys return the coordinates of the
cursor to the stack without terminating the plot display.
returns the coordinates as a complex number (x, y). re-
turns the coordinates as two real numbers, x in level 2 and y
in level 1.

B The four rightmost menu keys act like the regular cursor con-
trol keys, moving the cursor up, down, left, or right, or all the
way in one direction if you first press [§.

The interactive plot mode continues until you press the key.

You can digitize as many points as you wish during the interactive
plot, by repeated use of [INS], [DEL], and the cursor keys.

3: Dictionary 203

-.PLOT

Plot Parameters

The scaling factors necessary for converting a coordinate pair to a dis-
play position, and vice-versa, are stored as a list of objects in the
variable PPAR. We will refer to them collectively as the plot param-
eters. They are:

Parameter Description

Pmin A complex number representing the coordinates of the lower
leftmost pixel. Set by PMIN, CENTR, *H, %W, and SCLZ.

P nax A complex number representing the coordinates of the upper
rightmost pixel. Set by PMAX, CENTR, *%H, %W, and SCLZ.

Independent | The variable name corresponding to the horizontal axis in a
variable mathematical function plot. Set by INDEP.

Resolution A real positive integer representing the spacing of plotted
points in a function plot. Set by RES.

P

axes A complex number representing the coordinates of the inter-

section of the plot axes. Set by AXES.

STEQ RCEQ PMIN PMAX INDEP DRAW

This set of commands allows you to select a procedure for a function
plot, set the primary plot parameters, and plot the procedure.

204 3: Dictionary

-.PLOT

STEQ Store Equation Command
Level 1
obj »

STEQ takes an object from the stack, and stores it in the variable EQ
(“EQuation”). It is equvalent to 'ER@' STO.

EQ is used to hold a procedure (the current equation) used as an im-
plicit argument by the Solver and by DRAW, so STEQ’s argument
should normally be a procedure.

RCEQ Recall Equation Command
Level 1
» obj

RCEQ returns the contents of the variable EQ. It is equivalent to
'E@' RCL.

PMIN Plot Minima Command
Level 1
CX, Y3 »

PMIN sets the coordinates of the lower leftmost pixel in the display to
be the point (x, y). The complex number (x, y) is stored as the first
item in the list contained in the variable PPAR.

3: Dictionary 205

-.PLOT

PMAX Plot Maxima Command
Level 1
x,y» »

PMAX sets the coordinates of the upper-rightmost pixel in the display
to be the point (x, y). The complex number (x, y) is stored as the sec-
ond item in the list contained in the variable PPAR.

INDEP Independent Command
Level 1
‘name' ®»

INDEP takes a name from the stack, and stores it as the independent
variable name, the third item in the list contained in the variable
PPAR. For subsequent executions of DRAW, the name will be used as
the independent variable corresponding to the horizontal axis (ab-
scissa) of the plot.

DRAW Draw Command

DRAW produces mathematical function plots on the HP-28C display.
If you execute DRAW by pressing the menu key, an interactive
plot is produced, as described in “Interactive Plots” on page 203.

206 3: Dictionary

-.PLOT

DRAW automatically executes DRAX to draw axes, then plots one or
two curves representing the value(s) of the current equation at each of
137 /r values of the independent variable. The current equation is the
procedure stored in the variable EQ.

If EQ contains an algebraic equation, the two sides of the equation are
plotted separately, yielding two curves. If the current equation is an
algebraic expression or a program, one curve is plotted.

The resolution r determines the number of plotted points. r = 1
means a point is plotted for every column of display pixels; r = 2
means every other column; and so on. r is set by the RES command.
The default value of r is 1; larger values of r may be used to reduce
plotting time.

DRAW checks the current equation to see if it contains at least one
reference, direct or indirect, to the independent variable. If the inde-
pendent variable was never selected, the first variable in the current
equation is used (and stored in PPAR). If the independent variable is
not referenced in the current equation, the message

name; Mot In Equation
U=sing name,

is displayed momentarily before the display is cleared and before the
actual plot begins. Here name; is the current independent variable de-
fined in PPAR, and name, is the first variable found in the current
equation. If the current equation contains no variables, the second line
of the warning message is replaced by Constant Equation. (The
independent variable name in PPAR will then be constant.)

PPAR RES AXES CENTR *xW *H

These commands provide alternate ways of setting plot parameters.

3: Dictionary 207

.PLOT

PPAR Recall Plot Parameters Operation

Level 1

» { plot parameters ¥

The PPAR command is a convenient way for you to examine the cur-
rent plot parameters.

PPAR is a variable containing a list of the plot parameters, in the form

{(xminl ymin) (xmax/ ymux) independent resolution (xuxiy yaxis)}

Pressing PPAR returns the list to the stack. The contents of the list are
described in “Plot Parameters” on page 204.

RES Resolution Command

Level 1

n -

RES sets the resolution of mathematical function plots (DRAW) to the
value n. n is stored as the fourth item in the list contained in the
variable PPAR. n determines the number of plotted points: n = 1
means a point is plotted for every column of display pixels; n = 2
means every other column; and so on. The default value of is 1; you
may wish to use larger values of n to reduce plotting time.

AXES Axes Command

Level 1

CX,y2 »

208 3: Dictionary

-.PLOT

AXES sets the coordinates of the intersection of the plot axes (drawn
by DRAX, DRAW, or DRWZ), to be the point (x, y). The complex
number (x, y) is stored as the fifth and last item in the list contained in
the variable PPAR. The default coordinates are (0, 0).

CENTR Center Command

Level 1

X,y> »

CENTR adjusts the plot parameters so that the point represented by
the argument (x, y) corresponds to the center pixel (1, = 68, n, = 15)
of the display. The height and width of the plot are not changed. P,,,,
and P,,;, are replaced by P, and P,;,’, where:

xmux/ =x+ (xmux_xmin)/ ymaxl =Y + ' (ymax—ymin)

4

Xmin = X — 2 (xmax_xmin)f ymin, =Yy — %51 (ymax_ymin)
xW Multiply Width Command
Level 1
X B

%W adjusts the plot parameters so that both x,,;, and x,,,, are multi-
plied by the number x.

[—
Xmin = X X Xpin

[—
Xmax — X X Xmax

3: Dictionary 209

IIIPLOT

*H Multiply Height Command
Level 1
X »

*H adjusts the plot parameters so that both y,,;, and y,,,, are multi-
plied by the number x.

[—
Ymin = X X Ymin

[A—
Ymax = X X Ymay

STOZ RCLZ COLZ SCLZ DRW2

This group of commands allows you to create statistics scatter plots.
See “STAT” for a description of the general statistical capabilities of
the HP-28C.

STOZ Store Sigma Command
Level 1
CR-arrayl »

STOZ takes a real array from the stack and stores it in the variable
ZDAT. Executing STOZ is equivalent to executing ' ZDAT' STO. The
stored array becomes the current statistics matrix.

RCLZ> Recall Sigma Command
Level 1
» obj

RCLZ returns the current contents of the variable ZDAT. RCLY is
equivalent to 'EDAT' RCL.

210 3: Dictionary

-.PLOT

COL> Sigma Columns Command
Level 2 Level 1
ny no »

COLZ takes two real integers, n; and n,, and stores them as the first
two items in the list contained in variable ZPAR. The numbers iden-
tify column numbers in the current statistics matrix ZDAT, and are
used by statistics commands that work with pairs of columns. Refer to
“Stat” for details about ZPAR.

n; designates the column corresponding to the independent variable
for LR, or the horizontal coordinate for DRWZ or SCLZ. 1, designates
the dependent variable or the vertical coordinate. For CORR and
COV, the order of the two column numbers is unimportant.

If a two-column command is executed when ZPAR does not yet exist,
it is automatically created with default values n; = 1 and n, = 2.

SCLZ Scale Sigma Command

»

SCLZ causes an automatic scaling of the plot parameters in PPAR so
that a subsequent statistics scatter plot exactly fills the display. That
is, the horizontal coordinates of P,,,, and P,,;, are set to be the maxi-
mum and minimum coordinate values, respectively, in the
independent data column of the current statistics matrix. Similarly, the
vertical coordinates of P,,, and P,,;, are set from the dependent data
column. The independent and dependent data column numbers are
those stored in the variable ZPAR.

3: Dictionary 211

-..PLOT

DRWZ Draw Sigma Command

»

DRWZ automatically executes DRAX to draw axes, then creates a sta-
tistical scatter plot of the points represented by pairs of coordinate
values taken from the independent and dependent columns of the

current statistics matrix ZDAT. If you execute DRWZ by pressing the
menu key, an interactive plot is produced, as described in “In-
teractive Plots” on page 203.

The independent and dependent columns are specified in the variable
ZPAR (default 1 and 2, respectively). DRWZ plots one point for each
data point in the statistics matrix. For each point, the horizontal co-
ordinate is the coordinate value in the independent data column, and
the vertical coordinate is the coordinate value in the dependent data
column.

CLLCD DISP PIXEL DRAX CLMF PRLCD

These commands allow you to create special displays, and to print an
image of the display on the HP-82440A printer.

CLLCD Clear LCD Command

»

CLLCD clears (blanks) the HP-28C display (except the annunciators)
and sets the system message flag.

212 3: Dictionary

-.PLOT

DISP Display Command

Level 2 Level 1

obj n »

DISP displays obj in the nth line of the display, where 1 is a real
integer. n = 1 indicates the top line of the display; n = 4 is the bot-
tom line. DISP sets the system message flag to suppress the normal
stack display.

An object is displayed by DISP in the same form as would be used if
the object were in level 1 in the multi-line display format, except for
strings, which are displayed without the surrounding " delimiters, to
facilitate the display of messages. If the object display requires more
than one display line, the display starts in line 7, and continues down
the display either to the end of the object or the bottom of the
display.

PIXEL Pixel Command

Level 1

CX,)2 »

PIXEL turns on one pixel at the coordinates represented by the com-
plex number (x, y) and sets the system message flag.

DRAX Draw Axes Command

»

Dictionary 213

-.PLOT

DRAX draws a pair of axes on the display, and sets the system mes-
sage flag. The axes intersect at the point P,,,,, specified in the variable
PPAR. Tick marks are placed on the axes at every 10th pixel.

CLMF Clear Message Flag Command

»

CLMF clears the internal message flag set by CLLCD, DISP, PIXEL,
DRAX, DRAW, and DRWZ. Including CLMF in a program, after the
last occurrence of any of these words, causes the normal stack display
to be restored when the program completes execution.

PRLCD Print LCD Command

»

PRLCD provides a means by which you can print copies of math-
ematical function plots and statistical scatter plots. Since PRLCD will
print only a copy of the current display, you must include PRLCD and
DRAW (or DRWZ) in the same command line. For example:

CLLCD DRAW PRLCD

will clear the LCD, plot the current equation, then print a replica of
the display.

214 3: Dictionary

PRINT

PR1 PRST PRVAR PRLCD TRACE NORM
PRSTC PRUSR PRMD CR

The HP-28C transmits text and graphics data to the HP 82240A
Printer via an infrared light link. The infrared light-emitting diode is
situated on the top edge of the right-hand HP-28C case. Before print-
ing, check that the printer can receive the infrared beam from the
HP-28C. Refer to the printer manual for more information about
printer operation.

You can use the print commands to print objects, variables, stack lev-
els, plots, and so on. In addition, you can select TRACE mode to
automatically print a continuous record of your calculations.

The & annunciator appears whenever the HP-28C transmits data
from the infrared diode. The calculator can’t determine whether
printing is actually occurring because the transmission is one-way
only. Make sure that TRACE mode is not active unless a printer is
present—otherwise, the frequent infrared transmissions slow down
keyboard operations.

Print Formats

Multi-line objects can be printed in compact format or multi-line for-
mat. Compact print format is identical to compact display format.
Multi-line printer format is similar to multi-line display format, ex-
cept that the following objects are fully printed:

B Strings and names that are more than 23 characters long are con-
tinued on the next printer line.

3: Dictionary 215

-« PRINT

B The real and imaginary parts of complex numbers are printed on
separate lines if they don't fit on the same line.

B Arrays are printed with an index before each element. For example,
the index 1,1: precedes the first element.

In TRACE mode, the print format depends on whether multi-line dis-
play format is enabled or disabled (flag 45 is set or clear). The print
command PRSTC (print stack compact) prints in compact format. All
other print commands print in multi-line format.

Faster Printing

When the printer is battery powered, its speed declines as its batteries
discharge. The HP-28C normally paces data transmission to match
the printer’s speed when its batteries are nearly exhausted.

When your printer is powered by an AC adapter, it can sustain a
higher speed. You can increase the calculator’s data transmission rate
to match the higher speed of the printer by setting flag 52. For subse-
quent battery-powered printing, clear flag 52 to return to slower data
transmission.

Don't set flag 52 when the printer is battery powered. Although a
printer with fresh batteries can print at the higher rate, it will eventu-
ally slow down enough to lose data sent by the HP-28C. This loss of
data corrupts printed output and can cause the printer to change its
configuration.

216 3: Dictionary

-..PRINT

Configuring the Printer

You can set various printer modes by sending escape sequences to the
printer. An escape sequence consists of the escape character (character
27) followed by an additional character. When the printer receives an
escape sequence, it switches into the selected mode. The escape se-
quence itself isn't printed. The HP 82240A printer recognizes the
following escape sequences.

Printer Mode Escape Sequence
Print Column Graphics | 27 001...166
No Underline* 27 250
Underline 27 251
Single Wide Print* 27 252
Double Wide Print 27 253
Self Test 27 254
Reset 27 255

* Default mode.

You can use CHR and + to create escape sequences and use PR1 to
send them to the printer. For example, you can print Under 1ine as
follows:

27 CHR 251 CHR + "Under" + 27 CHR + 258 CHR +
"line" + PRI

3: Dictionary 217

-«PRINT

PR1 PRST PRVAR PRLCD TRACE NORM

PR1 Print Level 1 Command

Level 1 Level 1

obj » obj

PR1 prints the contents of level 1 in multi-line printer format. All
objects except strings are printed with their identifying delimiters.
Strings are printed without the leading and trailing " delimiters. If
level 1 is empty, the message CEmpty Stack] is printed.

Printing a Text String

You can print any sequence of characters by creating a string object
that contains the characters, placing the string object in level 1, and
executing PR1. The printer prints the characters and leaves the print
head at the right end of the print line. Subsequent printing begins on
the following line.

Printing a Graphics String

You can print graphics by printing a string object that begins with the
escape character (character 27) and a character whose number 7 is
from 1 through 166. Together, these characters instruct the printer to
interpret the next n characters (n < 166) as graphics codes, with each
character specifying one column of graphics. Refer to the printer man-
ual for details about graphics codes.

The printer prints the graphics and leaves the print head at the right
end of the print line. Subsequent printing begins on the following
line. When you turn on the printer, you must print text or execute CR
before printing graphics.

218 3: Dictionary

-.-.PRINT

Accumulating Data in the Printer Buffer

You can print any combination of text, graphics, and objects on a sin-
gle print line by accumulating data in the printer. The printer stores
the data in a part of its memory called a buffer.

Normally, each print command completes data transmission by send-
ing CR (carriage right) to the printer. When the printer receives CR, it
prints the data in its buffer and leaves the print head at the right end
of the print line.

You can prevent the automatic transmission of CR by setting flag 33.
Subsequent print commands send your data to the printer but don't
send CR. The data accumulates in the printer buffer and is printed
only at your command. When flag 33 is set, observe the following
rules:

B Send CR (character 4) or newline (character 10), or execute the
command CR, when you want the printer to print the data that it
has received.

® Don’t send more than 200 characters without causing the printer to
print. Otherwise, the printer buffer fills up and subsequent charac-
ters are lost.

® Allow time for the printer to print a line before sending more data.
The printer requires about 1.8 seconds per line.

B Clear flag 33 when you're done to restore the normal operation of
the print commands.

PRST Print Stack Command
... Level 1 ... Level 1
.. obj » ...o0bj

3: Dictionary 219

-«PRINT

PRST prints all objects in the stack, starting with the object in the
highest level. Objects are printed in multi-line printer format.

PRVAR Print Variable Command
Level 1
' name' »

PRVAR prints the object stored in the variable name. The object is
printed in multi-line printer format.

PRLCD Print LCD Command

»

PRLCD prints a pixel-by-pixel image of the current HP-28C display
(excluding the annunciators).

The width of the printed image of an object is narrower using PRLCD
than using a print command such as PR1. The difference results from
the spacing between characters. On the display there is a single blank
column between characters, and PRLCD prints this spacing. Print
commands such as PR1 print two blank columns between adjacent
characters.

220 3: Dictionary

-..PRINT

TRACE Mode: TRACE, NORM

You can print an on-going record of your calculations by selecting
TRACE mode. Each time you execute ENTER, either by pressing
or by pressing an immediate-execute key, the calculator prints
the contents of the command line, the immediate-execute command,
and the resulting contents of level 1.

To enable TRACE mode, press EffieH. The TRACE menu label then
appears as black letters in a white label, indicating that TRACE mode

is enabled. You can enable TRACE mode within a program by setting
flag 32.

To disable TRACE mode, press Bl . The NORM menu label then
appears as black letters in a white label, indicating that TRACE mode
is disabled. You can disable TRACE mode within a program by clear-
ing flag 32.

The print format for the object in level 1 depends on whether multi-
line display format is enabled or disabled (flag 45 is set or clear). If
multi-line display mode is enabled (flag 45 is set), the object is printed
in multi-line printer format. If compact display mode is active (flag 45
is clear), the object is printed in compact format.

PRSTC PRUSR PRMD CR

PRSTC Print Stack (Compact) Command
... Level 1 ... Level 1
.. obj » ...o0bj

PRSTC prints all objects in the stack, starting with the object in the
highest level. Objects are printed in compact format.

3: Dictionary 221

...PRINT

PRUSR Print User Variables Command

»

PRUSR prints the names of the current user variables. The names are
printed in the order they appear in the USER menu. If there are no
user variables, PRUSR prints Ho User Variables.

PRMD Print Modes Command

»

PRMD displays and prints the current selections for number display
mode, binary integer base, angle mode, radix mode, and whether
UNDO, COMMAND, LAST, and multi-line display are enabled or
disabled.

CR Carriage Right Command

»

CR prints the contents, if any, of the printer buffer.

222 3: Dictionary

Programs

A program is a procedure object delimited by « # characters contain-
ing a series of commands, objects, and program structures, that are
executed in sequence when the program is evaluated. Certain pro-
gram structures, such as those described in “PROGRAM BRANCH” or
those specifying local names, must satisfy specific syntax rules, but
otherwise the contents of a program are much more flexible than that
of algebraic objects, the other type of procedure.

A program, in simplest terms, is a command line for which evaluation
is deferred. Any command line can be made into a program by insert-
ing a « at the beginning of the line; then when is pressed, the
entire command line is put on the stack as a program. The individual
objects in the program are not executed until the program is
evaluated.

By making a command line into a program, you can not only defer
evaluation, you can also repeat execution as many times as desired.
Any number of copies of the program can be made on the stack, us-
ing ordinary stack manipulation commands; or you can store a
program in a variable and then execute it by name—or by pressing
the corresponding menu key in the USER menu. Once a program is
stored in a named variable, it becomes essentially indistinguishable
from a command. (Actually, the commands themselves are just pro-
grams that are entered in ROM instead of RAM.) As you program the
HP-28C, you are extending its programming language.

3: Dictionary 223

-..Programs

Evaluating Program Objects

Evaluating a program puts each object in the program on the stack
and, if the object is a command or unquoted name, evaluates the ob-
ject. For example, with the stack:

g4z
3:
=H 3. B8g
1: « DUP INY =
pressing yields:
4:
3:
25 3. 8068
1: a.125

DUP was evaluated, copying 8.000 into level 2, then INV was evalu-
ated, replacing the 8.000 in level 1 with its inverse.

Simple and Complex Programs.

The simplest kind of program is just a single sequence of objects,
which are sequentially executed without halting or looping. For exam-
ple, the program « S % 2 + » multiplies a number in level 1 by 5
and adds 2.

224 3: Dictionary

..Programs

If this were an operation you performed frequently, you could store
the program in a variable, then execute the program as many times as
you want by pressing the USER menu key assigned to the variable.

You can add complexity to a program in one or more of the following
ways:

Conditionals. By using the IF...THEN...END or IF... THEN...
ELSE...END branch structures (or the equivalent commands IFT and
IFTE), programs can make decisions based upon computed results,
then select execution options accordingly.

Loops. You can cause repeated execution of a program or portion of
a program, a definite or indefinite number of times, by using the pro-
gram loops FOR...NEXT, START.. NEXT, DO...UNTIL...END, and
WHILE . . .REPEAT .. END.

Error Traps. By using the IFERR... THEN...END or IFERR...
THEN .. .ELSE.. .END conditional, you can make a program deal with
expected or unexpected errors.

Halts. The HALT command allows you to suspend program execu-
tion at predetermined points for user input or other purposes, then

resume with [JJ(CONT] or [FEE.

Programs Within Programs. Just as you can postpone evaluation of
a command line by enclosing it with « #, you can create program
objects within other programs by enclosing a program sequence
within « #». When the “inner” program is encountered during execu-
tion of the “outer” program, it is placed on the stack rather than
evaluated. It can be subsequently evaluated with EVAL or any other
command that takes a program as an argument.

3: Dictionary 225

..Programs

As you add length and complexity to a program, it can grow beyond a
size that is conveniently readable on the HP-28C display or too big to
enter. For this reason, and to promote orderly programming practices,
it is recommended that you break up long programs into multiple
short programs. For example, the program « A B C D * can be re-
written as « AB CD #, where AB is the program « A B #, and CD
is the program « C O =.

The process of writing a large program as a series of small programs
makes it straightforward to “debug” the large program. Each second-
ary program can be tested independently of the others, to insure that
it takes the correct number and type of arguments from the stack, and
returns the correct results to the stack. Then it is simple to link the
secondary programs together by creating a main program consisting
of the unquoted names of the secondary programs.

Local Variables and Names

A local variable is the combination of an object and a local name,
which are stored together in a portion of memory temporarily re-
served for use only during execution of a procedure. When a
procedure completes execution, any local variables associated with
that procedure are purged automatically.

226 3: Dictionary

.Programs

Local names are objects used to name local variables. They are subject
to the same naming restrictions as ordinary names. You can use local
variables, within their defining procedures, almost interchangeably
with ordinary names. However, there are several important
differences:

® When local names are evaluated, they return the object stored in
the associated local variables, unevaluated. They do not automati-
cally evaluate names or programs stored in their local variables, as
ordinary names do.

B You cannot use a quoted local name as an argument for [@(VISIT] or
for any of the following commands: CON, IDN, PRVAR, PURGE,
PUT, PUTI, RDM, SCON], SINV, SNEG, STO+, STO-, STO,
STO/, TAYLR, or TRN.

B Local variables will not appear in the Solver variables menu.

If you have an ordinary variable with the same name as a local vari-
able, any use of the common name within the local variable proce-
dure will refer only to the local variable, and leave the ordinary
variable unchanged. Similarly, if a local variable structure is nested
within another, the local names of the first (outer) structure can be
used within the second (inner).

It is possible for local names to remain on the stack or within proce-
dures and lists even after their associated local variables has been
purged. For example, 1 + x & 'x' * leaves the local name
'%' on the stack. If you attempt to evaluate the local name, or use it
as an argument for STO, RCL, or PURGE, the error

Undefined Local Name will be reported.

To minimize any confusion that might arise between names and local
names, it is recommended that you adopt a special naming conven-
tion for local names. One such convention used in this manual is to
use lower-case letters to name local variables (which can never appear
in menu key labels), and upper-case for ordinary variables.

3: Dictionary 227

..Programs

Creating Local Variables

Local variables are created by using program structures. This section
describes two local variable structures, which are the primary means of
creating local variables. There are also two program branch structures,
FOR...NEXT and FOR...STEP, which define definite loops in which
the loop index is a local variable. These program branch structures are
described in “PROGRAM BRANCH.”

The local variable structures have the form:
+ nameq name,...€ program %
+ namey name,..." algebraic

The - command begins a local variable structure. (The + character is
B(U] on the left-hand keyboard. Here - is a command in itself, so it
is followed by a space.) The names specify the local names for which
local variables are created. The program or algebraic is called the de-
fining procedure of the local variable structure. Its initial delimiter, « or
', terminates the sequence of local names.

When - is evaluated, it takes one object from the stack for each of
the local names, and stores each object in a local variable named by
the corresponding name. The objects and local names are matched up
so the order of the names is the same as the order in which the ob-
jects were entered into the stack. For example:

1 23 45+ abcde

assigns the number 1 to the local variable a, 2 to b, 3 to ¢, 4 to d, and
5 to e. (Since these are local variables, there is no conflict with the
symbolic .constant e.)

228 3: Dictionary

..Programs

Once the local variables are created and their values assigned, the
procedure that follows the name list is evaluated. Within that proce-
dure, you can use the local variable names just like ordinary names
(except for the restrictions listed above). When the procedure has fin-
ished execution, the local variables are purged automatically.

As an example, suppose you wish to take 3 numbers from the stack,
and multiply the first (level 3) by 4, the second (level 2) by 3, and the
third (level 1) by 2, and add the results. A simple program for this
purpose would be:

2 ¥ SWAP 2 ¥ + SWAP 4 % + .
Using local variables, the program would become:
€ +abc®ad4d b I F +c2F +FF,

The use of local variables has eliminated the SWAP operations. In this
simple case, the use of local variables is of marginal value, but as the
complexity of a program grows, local variables can help you write the
program in a simpler, less error-prone manner than if you try to man-
age everything on the stack.

Our example problem also lends itself to an algebraic form. We can
write our program this way:

% % a b c 'd¥a+3kb+2¥c’ ¥

and obtain the same result.

3: Dictionary 229

..Programs

User-Defined Functions

The = command in a special syntax can be used to create new alge-
braic functions. An algebraic function is a command that can be used
within algebraic object definitions. Within those definitions, the func-
tions takes its arguments from a sequence contained within paren-
theses following the function name. The command SIN, for example,
is a typical algebraic function taking one argument. Within an alge-
braic definition, it is used in the form 'SIN(X>' where the ¥
represents its argument.

A user-defined function of n arguments is defined by a program with
the following syntax:

€ + name; name, ... name, 'expression'

where name; name, ... name, is a series of n local variable names.
expression is an algebraic expression, containing the local variable
names, that represents the mathematical definition of the function.
No objects can precede the - in the program, and none can follow
"expression ' .

As an example, consider the algebraic form of the program defined in
the preceding section:

“« * a b c '4¥ka+3kb+2%c' »

It takes three arguments, multiplies them by 4, 3, and 2, respectively,
and sums the products. Because nothing precedes the - nor follows
the algebraic, this program is a user-defined function. Suppose that
we name the user-defined function XYZ by storing the program in
variable XYZ:

“ * a b o '4¥a+3kb+2¥c' 3 'HYZ' STO,

230 3: Dictionary

..Programs

In RPN syntax, we can execute 1 2 3 ¥YZ to obtain the result 16
(4 x1+3 X242 x 3). But we can also use algebraic syntax:
"HYZ(1,2,3>"' EVAL also returns the result 16. You are not re-
stricted to numerical arguments; any of XYZ’s three arguments can be
an algebraic. XYZ itself can appear in any other algebraic expression.

3: Dictionary 231

PROGRAM BRANCH

IF IFERR THEN ELSE END
START FOR NEXT STEP IFT IFTE
DO UNTIL END WHILE REPEAT END

The PROGRAM BRANCH menu ([l(BRANCH]) contains commands
for making decisions and loops within a program. These commands
can appear only in certain combinations called program structures.
Program branch structures can be grouped into four types: decision,
error trap, definite loops, and indefinite loops.

In the following, a clause is any program sequence.

1. Decision structures.

B IF test-clause THEN true-clause END. If test-clause is true, then
execute true-clause. (IFT is a single-command form of this
structure.)

B IF test-clause THEN true-clause ELSE else-clause END. If test-
clause is true, execute true-clause; otherwise, execute else-
clause. (IFTE is a single-command form of this structure.)

2. Error trapping structures.

B [FERR trap-clause THEN error-clause END. If an error occurs
during execution of trap-clause, then execute error-clause.

B [FERR trap-clause THEN error-clause ELSE normal-clause END.
If an error occurs during execution of trap-clause, then execute
error-clause; otherwise, execute normal-clause.

232 3: Dictionary

...PROGRAM BRANCH

3. Definite loop structures.

m start finish START loop-clause NEXT. Execute loop-clause once
for each value of a loop counter incremented by one from
start through finish.

® start finish START loop-clause step STEP. Execute loop-clause
once for each value of a loop counter incremented by step
from start through finish.

B start finish FOR name loop-clause NEXT. Execute loop-clause
once for each value of a local variable name, used as a loop
counter, incremented by ones from start through finish.

W start finish FOR name loop-clause step STEP. Execute loop-
clause once for each value of a local variable name, used as a
loop counter, incremented by step from start through finish.

4. Indefinite loop structures.

® DO loop-clause UNTIL test-clause END. Execute loop-clause re-
peatedly until test-clause is true.

B WHILE test-clause REPEAT loop-clause END. While test-clause
is true, execute loop-clause repeatedly.

These structures are described later in this section, following two in-
troductory topics.

3: Dictionary 233

...PROGRAM BRANCH

Tests and Flags

All program structures (except definite loops) make a branching deci-
sion based upon the evaluation of a test clause. A test clause is any
program sequence that returns a flag when evaluated. A flag is an
ordinary real number that nominally has the value 0 or 1. If the flag
has value 0, we say that it is “false” or “clear”; for any other value, we
say that the flag is “true” or “set”.

All program branch decisions are made by testing a flag taken from
the stack. For example, in an IF test-clause THEN true-clause END

structure, if evaluation of test-clause leaves a non-zero (real) result,
true-clause will be evaluated. If test-clause leaves 0 in level 1, execu-
tion will skip past END.

A test command is one that explicitly returns a flag with a value 0 or
1. For example, the command < tests two real numbers (or binary
integers, or strings) to see if the number in level 2 is less than the
number in level 1. If so, < returns the flag 1; otherwise, it returns 0.
The other test commands are >, <, =, ==, %, FS?, FC?, FS?C, and
FC?C, all of which are described in “PROGRAM TEST.”

Replacing GOTO

Programmers accustomed to other calculator programming languages,
such as the RPN language of other HP calculators, or BASIC, may
note the absence of a simple GOTO instruction in the HP-28C lan-
guage. GOTO’s are commonly used to branch depending on a test
and to minimize program size by reusing program steps. We’ll look at
how GOTO'’s are used in HP-41 RPN and BASIC, and show how to
obtain equivalent results with the HP-28C.

234 3: Dictionary

...PROGRAM BRANCH

B Using GOTO instructions to branch depending on a test. For exam-
ple, the programs below execute the sequence ABC DEF if the
number in the X register or variable is positive, or execute the se-
quence GHI JKL otherwise.

HP-41 RPN BASIC

01 X>0? 10 IF X>0 THEN GOTO 50
02 GTO 01 | 20 GHI

03 GHI 30 JKL

04 JKL 40 GOTO 70

05 GTO 02 | 50 ABC

06 LBL 01 60 DEF

07 ABC :

08 DEF

09 LBL 02

Here is an HP-28C equivalent:

IF

» THEN ABC DEF ELSE GHI JKL END

B Using a GOTO instruction to minimize program size by reusing
program steps. Both programs below contain a sequence MNO

PQR STU that is common to two branches of the program.

HP-41 RPN BASIC
01 ABC 10 ABC

02 DEF 20 DEF

03 GTO 01 30 GOTO 200
10 GHI 100 GHI

11 JKL 110 JKL

12 GTO 01 | 120 GOTO 200
20 LBL 01 | 200 MNO

21 MNO 210 PQR

22 PQR 220 STU

23 STU :

3: Dictionary

235

..PROGRAM BRANCH

In the HP-28C, the common sequence MNO PQR STU...would be
stored as a separate program:

MNO FPRRE STU ... ® '"COMMON' STO
Then each branch of the program would execute COMMON:
. ABEC DEF COMMOM ... GHI JKL COMMON

The advantage of HP-28C programming is that any program has only
one entrance and one exit. This makes it simple to write programs and
test them independently. When you combine the programs into a
main program, you need to test only that the programs work together
as you intended.

IF IFERR THEN ELSE END

These commands can be combined in a variety of decision structures
and error trapping structures.

IF test-clause THEN true-clause END. The command THEN takes a
flag from the stack. If the flag is true (non-zero), the true-clause is
evaluated, after which execution continues after END. If the number
is false (0), execution skips past END and continues. (Note that only
THEN actually uses the flag—the position of the IF is arbitrary as
long as it precedes THEN. test-clause IF THEN will work the same as
IF test-clause THEN). For example:

IF ¥ 8 > THEN "Positive" END

returns the string "Positive" if X contains a positive real number.

236 3: Dictionary

...PROGRAM BRANCH

IF test-clause THEN true-clause ELSE false-clause END. The
command THEN takes a flag from the stack. If the flag is true (non-
zero), the true-clause is evaluated, after which execution continues
after END. If the flag is false (0), the false-clause is evaluated, after
which execution continues after END. (Note that only THEN actually
uses the flag—the position of the IF is arbitrary as long as it precedes
THEN. test-clause IF THEN will work the same as IF test-clause
THEN). For example:

IF ¥ 8 > THEN "Positive" ELSE "Megative" END

returns the string "Positive" if X contains a non-negative real
number, or "Hegative" if X contains a negative real number.

IFERR trap-clause THEN error-clause END. This structure evalu-
ates error-clause if an error occurs during execution of trap-clause.

When trap-clause is evaluated, successive elements of the clause are
executed normally unless an error occurs. In that case, execution
jumps to error-clause. The remainder of trap-clause is discarded. For
example:

IFERR WHILE 1 REPEAT + END THEN "OK" 1 DISP END

sums all numbers on the stack. The + function is executed repeatedly
until an error occurs, indicating that the stack is empty (or a mis-
matched object type has been encountered). The error-clause then
displays OK.

When you write error clauses, keep in mind that the state of the stack
after an error may depend on whether LAST is enabled. If LAST is
enabled, commands that error will return their arguments to the stack;
otherwise the arguments are dropped.

3: Dictionary 237

...PROGRAM BRANCH

IFERR trap-clause THEN error-clause ELSE normal-clause

END. This structure enables you to specify an error-clause to be eval-
uated if an error occurs during execution of a trap-clause, and also a
normal-clause for execution if no error occurs.

When trap-clause is evaluated, successive elements of the clause are
executed normally unless an error occurs.

B If an error occurs, the remainder of the trap-clause is discarded and
the error-clause is evaluated.

B If no error occurs, evaluation of the trap-clause is followed by eval-
uation of the normal-clause.

In either case execution continues past END.

START FOR NEXT STEP IFT IFTE

start finish START loop-clause NEXT. The START command takes

two real numbers, start and finish, from the stack and stores them as

the starting and ending values for a loop counter. Then a sequence of

objects loop-clause is evaluated. The NEXT command increments the

loop counter by 1; if the loop counter is less than or equal to finish,
loop-clause is evaluated again. This continues until the loop counter

exceeds finish, whereupon execution continues following NEXT. For

example:

1 18 START XY¥YZ HNEXT
evaluates XYZ 10 times.

start finish START loop-clause increment STEP. This structure is
similar to START...NEXT, except that STEP increments the loop
counter by a variable amount, whereas NEXT always increments by 1.

238 3: Dictionary

...PROGRAM BRANCH

START takes two real numbers, start and finish, from the stack and
stores them as the starting and ending values for a loop counter. Then
a sequence of objects loop-clause is evaluated. STEP increments the
loop counter by the real number increment taken from level 1.

If step is positive and the loop counter is less than or equal to finish,
loop-clause is evaluated again. This continues until the loop counter
exceeds finish, whereupon execution continues following STEP.

If step is negative and the loop counter is greater than or equal to
finish, loop-clause is evaluated again. This continues until the loop

counter is less than finish, whereupon execution continues following
STEP. For example:

18 1 START #YZ -2 STEP
evaluates XYZ five times.

start finish FOR name loop-clause NEXT. This structure is a defi-
nite loop in which the loop counter name is a local variable that can
be evaluated within the loop. (The name following FOR should be
entered without quotes.) In sequence:

1. FOR takes two real numbers start and finish from the stack. It
creates a local variable name, and stores start as the initial value
of name.

2. The sequence of objects loop-clause is evaluated. If name is eval-
uated within the sequence, it returns the current value of the
loop counter.

3. NEXT increments the loop counter by 1. If its value then exceeds
finish, execution continues with the object following NEXT, and
the local variable name is purged. Otherwise, steps 2 and 3 are
repeated.

3: Dictionary 239

For

PROGRAM BRANCH

example:

1 5 FOR x x S& MNERT

places the squares of the integers 1 through 5 on the stack.

start finish FOR name loop-clause increment STEP. This structure

is a
that

definite loop in which the loop counter name is a local variable
can be evaluated within the loop. (The name following FOR

should be entered without quotes.) It is similar to FOR...NEXT, except

that the loop counter is incremented by a variable amount. In
sequence:
1. FOR takes two real numbers start and finish from the stack. It

For

creates a local variable name, and stores start as the initial value
of name.

The sequence of objects loop-clause is evaluated. If name is eval-
uated within the sequence, it returns the current value of the
loop counter.

STEP takes the real number increment from the stack and incre-
ments the loop counter by increment. If the loop counter then is
greater than finish (for increment > 0) or less than finish (for in-
crement < 0), execution continues with the object following
STEP, and the local variable name is purged. Otherwise, steps 2
and 3 are repeated.

example:

1 11 FOR % = S 2 STEP

places the squares of the integers 1, 3, 5, 7, 9, and 11 on the stack.

240

3: Dictionary

...PROGRAM BRANCH

IFT If-Then Command

Level 2 Level 1

flag obj »

IFT is a single-command form of IF.. THEN...END. IFT takes a flag
from level 2, and an arbitrary object from level 1. If the flag is true
(non-zero), the object is evaluated; if the flag is false (0), the object is
discarded. For example:

¥ 8 » "Positiwve" IFT

leaves "Positive" in level 1 if X contains a positive real number.

IFTE If-Then-Else Function
Level 3 Level 2 Level 1
flag true-obj false-obj ®»

IFTE is a single-command form of IF.. THEN...ELSE...END. IFTE
takes a flag from level 3, and two arbitrary objects from levels 1 and
2. If the flag is true (non-zero), false-object is discarded, and true-ob-
ject is evaluated. If the flag is false (0), true-object is discarded and
false-object is evaluated. For example:

¥ 8 > "Positive" "NHegatiwe" IFTE

leaves "Fozitive" on the stack if X contains a non-negative real
number, or "Hegative" if X contains a negative real number.

IFTE is also acceptable in algebraic expressions, with the following
syntax:

' IF TE C test-expression , true-expression , false-expression» '

3: Dictionary 241

...PROGRAM BRANCH

When an algebraic containing IFTE is evaluated, its first argument

test-expression is evaluated as a flag. If it returns a non-zero real num-
ber, true-expression is evaluated. If it returns zero, false-expression is
evaluated. For example:

"IFTECR=28,SINCKI K, 12!

is an expression that returns the value of sin(x)/x, even for x = 0,
which would normally cause an Infinite Result error.

DO UNTIL END WHILE REPEAT END

DO loop-clause UNTIL test-clause END. This structure repeatedly
evaluates a loop-clause and a test-clause, until the flag returned by
test-clause is true (non-zero). For example:

DO ¥ INCH ¥ - UNTIL .8881 < END.

Here INCX is a sample program that increments the variable X by a
small amount. This routine will execute INCX repeatedly, until the
resulting change in X is less than .0001.

WHILE test-clause REPEAT loop-clause END. This structure repeat-
edly evaluates a test-clause and a loop-clause, as long as the flag
returned by test-clause is true (non-zero). When the test-clause returns
a false flag, the loop-clause is skipped, and execution resumes follow-
ing END. The test-clause returns a real number, which REPEAT tests
as a flag. For example:

WHILE STRIMG "P" FPOS REPEAT REMOVEP EMD.

Here REMOVEP is a sample program that removes a character F from
a string stored in the variable STRING. The sequence repeats until no
more P’s remain in the string.

242 3: Dictionary

PROGRAM CONTROL

SST HALT ABORT KILL WAIT KEY
BEEP CLLCD DISP CLMF ERRN ERRM

The PROGRAM CONTROL menu ([@[CTRL]) contains commands for
interrupting program execution and for interactions during program
execution.

Suspended Programs

Evaluating a program normally executes the objects contained in the
program’s definition continuously up to the end of the program. The
commands in the PROGRAM CONTROL menu allow programs to
pause or halt execution at points other than the end of the program:

Command Description

HALT Suspends program execution, for continuation later.

ABORT Stops program execution, which then cannot be resumed.

KILL Stops program execution, and also clears all other suspended
programs.

WAIT Pauses program execution, which resumes automatically af-
ter a specified time.

A suspended program is a program that is halted during execution, in
such a way that the program can be continued (execution resumed) at
the point which it stopped. While a program is suspended, you can
perform any HP-28C operation (except system halt, memory reset,
and the KILL command)—enter data, view results, execute other pro-
grams, and so on—then continue the program.

3: Dictionary 243

-..PROGRAM CONTROL

The O annunciator indicates that one or more programs are
suspended.

The command HALT causes a program to suspend at the location of
the HALT in the program. To resume program execution you can:

B Press [(CONT] (continue) to resume continuous execution at the
next object in the program after the HALT. You can use HALT in
conjunction with [ll[CONT]in a program when you want to stop the
program for user input, then continue.

B Press 5l (single-step—in the PROGRAM CONTROL menu) to
execute the next object in the program after the HALT. Repeated
use of [EEI continues program execution, one step at a time. This
is a powerful program debugging tool, since you can view the stack
or any other calculator state after each step in a program.

If you do not choose either of these options, the program will remain
suspended indefinitely, unless you execute KILL or a system halt,
which clear all suspended programs.

You can “nest” suspended programs—that is, you can execute a pro-
gram that contains a HALT while another program is already
suspended. If you continue ([ll[CONT]) the second program, execution
will halt again when it has finished. Then you can press [[(CONT]
again to resume execution of the first program.

While a program is suspended, the stack save and recovery associated
with UNDO are “local” to the program. Refer to “MODE” for informa-
tion on the use of UNDO with suspended programs.

244 3: Dictionary

...PROGRAM CONTROL

SST HALT ABORT KILL WAIT KEY

Single Step

SST executes the “next step” in a suspended program. “Next step,” in
this context, means the object or command that follows, in the order
of program execution, the most recently evaluated object or command.

When you press BEE#ll, the program step about to be executed is dis-
played briefly, in inverse video, then it is executed. After each step,
the stack and menu key labels are displayed in the normal fashion.
Between steps, you can perform calculator operations without affect-
ing the suspended program. Of course, if you alter the stack, you
should insure that it contains the appropriate objects before resuming
program execution.

For any of the program loops defined with FOR...NEXT,
START .. .NEXT, DO...UNTIL.. .END, or WHILE.. .REPEAT.. .END,
the initial command (FOR, START, DO, or WHILE) is displayed only
as a step the first time through the loop. On successive iterations,
each loop will start with the first object or command after the initial
loop command.

If an error occurs when you single-step an object, the single-step does
not advance. This allows you to correct the source of the error, then
repeat the single-step.

Pressing when an IFERR is the next step executes the entire
IFERR... THEN...END or IFERR... THEN.. ELSE...END structure as
one step. To step through a clause of the structure, include HALT in-
side the clause.

3: Dictionary 245

..PROGRAM CONTROL

Similarly, pressing EEEf#ll when - is displayed executes the entire -
namey name, ... name, structure as one step. If the local names are
followed by an algebraic, the algebraic is immediately evaluated in
that same step.

HALT Halt Program Command

»

HALT causes a program to suspend execution at the location of the
HALT command in the program. HALT:

1. Turns on the © annunciator.

2, Assigns memory for a temporary saved stack, if UNDO is
enabled.

3. Returns calculator control to the keyboard, for normal
operations.

Programs resumed with @[CONT] or will continue with the ob-
ject next in the program after the HALT command.

ABORT Abort Program Command

»

ABORT stops execution of a program, at the location of the ABORT
command in the program’s definition. Execution of the program can-
not be resumed.

246 3: Dictionary

...PROGRAM CONTROL

KILL Kill Suspended Programs Command

»

KILL aborts the current program, and also all other currently sus-
pended programs. None of the programs can be resumed.

WAIT Wait Command

Level 1

WAIT pauses program execution for x seconds.

KEY Key Command
Level 2 Level 1
0
» "string" 1

KEY returns a string representing the oldest key currently held in the
key buffer, and removes that key from the key buffer. If the key
buffer is empty, KEY returns a false flag (0). If the key buffer cur-
rently holds one or more keys, KEY removes the oldest key from the
buffer, and returns a true flag (1) in level 1 plus a string in level 2.
The string “names” the key removed from the buffer.

The HP-28C key buffer can hold up to 15 keys that have been
pressed but not yet processed. When KEY removes a key from the
buffer it is converted to a readable string. The string contains the
character(s) on the key top, except for:

3: Dictionary 247

...PROGRAM CONTROL

Key String
"1t
"INS"
"DEL"
(a) "up"

(v) "DOWN"
K "LEFT"
D] "RIGHT"
(] "CURSOR"
(¢] "BACK"

The key retains its role as the key and interrupts the cur-
rent program.

The action of KEY can be illustrated by the following program:
« DO UNTIL KEY END "¥Y" SAME ».

When this program is executed, pressing [Y] returns 1 (true) to level 1,
and pressing any other key returns 0 (false).

248 3: Dictionary

-..PROGRAM CONTROL

BEEP CLLCD DISP CLMF ERRN ERRM

BEEP Beep Command

Level 2 Level 1

frequency duration ~ ®»

BEEP causes a tone to sound at the specified frequency and duration.
Frequency is expressed in Hertz (rounded to an integer). Duration is
expressed in seconds.

The frequency of the tone is subject to the resolution of the built-in
tone generator. The maximum frequency is approximately 4400 Hz;
the maximum duration is 1048.575 seconds (# FFFFF msec). Argu-

ments greater than these maximum values will default to the maxima.

Setting flag 51 disables the beeper, so that executing BEEP will pro-
duce no sound.

CLLCD Clear LCD Command

»

CLLCD clears (blanks) the LCD display (except the annunciators), and
sets the system message flag to suppress the normal stack and menu
display.

3: Dictionary 249

...PROGRAM CONTROL

DISP Display Command

Level 2 Level 1

obj n »

DISP displays obj in the nth line of the display, where 7 is a real
integer. n = 1 indicates the top line of the display; n = 4 is the bot-
tom line. DISP sets the system message flag to suppress the normal
stack display.

An object is displayed by DISP in the same form as would be used if
the object were in level 1 in the multi-line display format, except for
strings, which are displayed without the surrounding " delimiters to
facilitate the display of messages. If the object display requires more
than one display line, the display starts in line 1, and continues down
the display either to the end of the object or the bottom of the
display.

CLMF Clear Message Flag Command

»

CLMF clears the internal message flag set by CLLCD, DISP, PIXEL,
DRAX, DRAW, and DRWZ. Including CLMF in a program, after the
last occurrence of any of these words, causes the normal stack display
to be restored when the program completes execution.

250 3: Dictionary

...PROGRAM CONTROL

ERRN Error Number Command
Level 1
» #n

ERRN returns a binary integer equal to the error number of the most
recent calculator error. A table of HP-28C errors, error messages, and
error numbers is given in Appendix A.

ERRM Error Message Command

Level 1

» "error-message"

ERRM returns a string containing the error message of the most recent
calculator error. A table of HP-28C errors, error messages, and error
numbers is given in Appendix A.

3: Dictionary 251

PROGRAM TEST

SF CF FS? FC? FS?2C FC?C
AND OR XOR NOT SAME ==
STOF RCLF TYPE

The PROGRAM TEST menu (J[(TEST]) contains commands for
changing and testing flags and for logical calculations.

Test commands return a flag as the result of a comparison between
two arguments, or of a user-flag test. The comparison operators #,
<, >, <, and > are present on the left-hand keyboard as characters.
The remaining test commands FS?, FC?, FS?C, FC?C, SAME, and ==
are present in the TEST menu. In addition, the TEST menu contains
the logical operations AND, OR, XOR, and NOT, that allow you to
combine flag values. Note that the = function is not a comparison
operator; it defines an equation. Both == and SAME test the equal-
ity of objects.

Keyboard Functions

#+ Not Equal Function
Level 2 Level 1 Level 1
obj objo » flag
z 'symb' ®» 'z#symb'
'symb' z » 'symb#z"'
'symb, " ‘symby,' ® ' symbq#symbo '

252 3: Dictionary

...PROGRAM TEST

takes two objects from levels 1 and 2, and:

B [f either object is not an algebraic or a name, returns a false flag (0)
if the two objects are the same type and have the same value, or a
true flag (1) otherwise. Lists and programs are considered to have
the same values if the objects they contain are identical.

B If one object is an algebraic or a name, and the other is a number, a
name, or an algebraic, # returns a symbolic comparison expression
of the form 'symby#symb,', where symb; represents the object
from level 2, and symb, represents the object from level 1. The re-
sult expression can be evaluated with EVAL or »NUM to return a

flag.
< Less Than Function
Level 2 Level 1 Level 1
X y » flag
ny # n, » flag
"' stringq " 'string," W flag
X ‘symb' » 'x<symb'
‘symb' X » 'symb<x'
' symby "symby,' » "symbq <symby"'
> Greater Than Function
Level 2 Level 1 Level 1
X y » flag
ny # no » flag
"' stringq " 'string," ®» flag
X ‘symb' w» 'x>symb'
'symb ' X » 'symbix'
'symby ' 'symby,' ®» ' symbsymby '

3: Dictionary

253

...PROGRAM TEST

< Less Than or Equal Function
Level 2 Level 1 Level 1
X y » flag
nq # Ny » flag
"' stringq " "string," » flag
X 'symb' » ' x£symb '
'symb' X » 'symb£x
'symby ' 'symby' ®» ' symbq£symb, '
= Greater Than or Equal Function
Level 2 Level 1 Level 1
X y » flag
nq # ny » f/ag
"' string " "string," w» flag
X ‘symb' » 'x=symb'
'symb' X » ' symb=x '
' symby 'symby,' ®» ' symbqz=symb, '

The following description refers to the four stack disagrams above.

Each of the four commands <, >, <, and > takes two objects from
the stack, applies the logical comparison corresponding to the com-
mand name, and returns a flag according to the results of the

comparison. The logical order of the comparisons is level 2 test level 1,
where test represents any of the four comparisons. For example, if
level 2 contains a real number x, and level 1 contains a real number y,
then < returns a true flag (1) if x is less than y, and a false flag (0)

otherwise.

254 3: Dictionary

-..PROGRAM TEST

<, >, <, and >, because they imply an ordering, apply to fewer
object types than #, ==, or SAME:

B For real numbers and binary integers, “less than” means numeri-
cally smaller (1 is less than 2). For real numbers, “less than” also
means “more negative” (—2 is less than —1).

B For strings, “less than” means alphabetically previous (“ABC” is less
than “DEF”; “AAA” is less than “AAB”; “A” is less than “AA”). In
general, characters are ordered according to their character codes.
Note that this means that “B” is less than “a”, since “B” is character
code 66, and “a” is character code 97.

SF CF FS? FC? FS?C FC?C

This group of commands sets, clears, and tests the 64 user flags. In
this context, “to set” means “to make true” or “to assign value 17, and
“to clear” means “to make false” or “to assign value 0”.

SF Set Flag Command

Level 1

n »

SF sets the user flag specified by the real integer argument #n, where
1<n<o64

CF Clear Flag Command

Level 1

n [2

CF clears the user flag specified by the real integer argument 1, where
1<n<eo4

3: Dictionary 255

-..PROGRAM TEST

FS? Flag Set? Command?

Level 1 Level 1

n L flag

FS? tests the user flag specified by the real integer argument 1, where
1 < n < 64. If the user flag is set, FS? returns a true flag (1); other-
wise it returns a false flag (0).

FC? Flag Clear? Command
Level 1 Level 1
n » flag

FC? tests the user flag specified by the real integer argument n, where
1 < n < 64. If the user flag is clear, FC? returns a true flag (1); other-
wise it returns a false flag (0).

FS?C Flag Set? Clear Command
Level 1 Level 1
n » flag

FS?C tests, and then clears, the user flag specified by the real integer
argument 7, where 1 < n < 64. If the user flag is set, FS?C returns a
true flag (1); otherwise it returns a false flag (0).

256 3: Dictionary

...PROGRAM TEST

FC?C Flag Clear? Clear Command
Level 1 Level 1
n » flag

FC?C tests, and then clears, the user flag specified by the real integer
argument 7, where 1 < n < 64. If the user flag is clear , FC?C returns
a true flag (1); otherwise it returns a false flag (0).

AND OR XOR NOT SAME ==

The commands AND, OR, XOR, and NOT can be applied to flags
(real numbers or algebraics), and to binary integers. In the former
case, the commands act as logical operators that combine true or false
truth values into result flags. For binary integers, the commands per-
form logical combinations of the individual bits of arguments.

The following descriptions apply to the use of the commands with
real number arguments (flags). The “BINARY” section describes their
application to binary integers.

AND, OR, XOR, and NOT are allowed in algebraic objects. AND and
NOT have higher precedence than OR or XOR. AND, OR, and XOR
are displayed within algebraics as infix operators:

"¥ AND ¥Y' 'S5+X XOR Z AND ¥
NOT appears as a prefix operator:
"NOT X' 'Z+NOT (A AND B>'

If you enter the commands in this form, be sure to separate the com-
mands from other commands or objects with spaces. You can also
enter these commands into the command line in prefix form:

"ANDCK, YY" '"ANDCXORC(K,Z),Y>!

3: Dictionary 257

...PROGRAM TEST

AND And Function
Level 2 Level 1 Level 1
X y » flag
X ‘symb' » 'x AMD symb'
'symb' X » ‘symb RAND x'
' symb ! 'symb,' ®w 'symby AND symb,'

AND returns a flag that is the logical AND of two flags:

First Argument x

Second Argument y | AND Result

true
true
false

false

true true

false false
true false
false false

If either or both of the arguments are algebraics, the result is an alge-
braic of the form 'symb; AND symb,', where symb; and symb,
represent the arguments.

OR Or Function
Level 2 Level 1 Level 1
X y » flag
X 'symb' ®» 'x OR symb'
'symb' X » 'symb OR x'
'symb, ' 'symby,' ®» ‘symby OR symb,'

258 3: Dictionary

...PROGRAM TEST

OR returns a flag that is the logical OR of two flags:

First Argument x | Second Argument y | OR Result

true true true
true false true
false true true
false false false

If either or both of the arguments are algebraics, the result is an alge-
braic of the form 'symb; OR symb,', where symb; and symb,
represent the arguments.

XOR Exclusive Or Function
Level 2 Level 1 Level 1
X y » flag
X ‘symb' 'x ¥0OR symb'
'symb ' X » 'symb XOR x'
' symby 'symbo' ® 'symby XOR symb,'

XOR returns a flag that is the logical exclusive OR (XOR) of two flags:

First Argument x | Second Argument y | XOR Result
true true false
true false true
false true true
false false false

3: Dictionary 259

..PROGRAM TEST

If either or both of the arguments are algebraics, the result is an alge-
braic of the form 'symb; XOR symb,', where symb; and symb,
represent the arguments.

NOT Not Function
Level 1 Level 1
X » flag
'symb' » '"MOT symb'

NOT returns a flag that is the logical inverse of a flag:

Argument x | NOT Resuit

true false

false true

If the argument is an algebraic, the result is an algebraic of the form
"MOT sumb', where symb represents the argument.

SAME Same Command

Level 2 Level 1 Level 1

obj4 objo » flag

SAME takes two objects of the same type from levels 1 and 2, and
returns a true flag (1) if the two objects are identical, or a false flag (0)
otherwise.

260 3: Dictionary

...PROGRAM TEST

SAME is identical in effect to ==, for all object types except
algebraics and names. == returns a symbolic (algebraic) flag for
these object types.

SAME returns a (real number) flag for all object types, and is not al-
lowed in algebraic expressions.

N Equal Function
Level 2 Level 1 Level 1
obj, objo » flag
z 'symb' w» 'z==symb'
‘symb' z » 'symb==z"
'symb4 ! 'symby,' @ ' symby==symb, '

== takes two objects from levels 1 and 2, and:

B If either object is not an algebraic (or a name), == returns a true
flag (1) if the two objects are the same type and have the same
value, or a false flag (0) otherwise. Lists and programs are consid-
ered to have the same values if the objects they contain are
identical.

B If one object is an algebraic (or a name), and the other is a number
or an algebraic, == returns a symbolic comparison expression of
the form 'symb;==symb, ', where symb; represents the object from
level 2, and symb, represents the object from level 1. The result
expression can be evaluated with EVAL or »NUM to return a flag.

The function name == is used for the equality comparison, rather
than =, to distinguish between a logical comparison (==) and an
equation (=).

3: Dictionary 261

..PROGRAM TEST

STOF RCLF TYPE

STOF Store Flags Command

Level 1

n »

STOF sets the states of the 64 user flags to match the bits in a binary
integer # n. A bit with value 1 sets the corresponding flag; a bit with
value 0 clears the corresponding flag. The first (least significant) bit of
n corresponds to flag 1; the 64th (most significant) corresponds to
flag 64.

If # n contains fewer than 64 bits, the unspecified most significant bits
are taken to have value 0.

RCLF Recall Flags Command
Level 1
» # n

RCLF returns a 64-bit binary integer # n representing the states of the
64 user flags. Flag 1 corresponds to the first (least significant) bit of
the integer; flag 64 is represented by the 64th (most significant) bit.

You can save the states of all user flags, using RCLF, and later restore
those states, using STOF. Remember that the current wordsize must
be 64 bits (the default wordsize) to save and restore all flags. If the
current wordsize is 32, for example, RCLF returns a 32-bit binary inte-
ger; executing STOF with a 32-bit binary integer restores only flags 1
through 32 and clears flags 33 through 64.

262 3: Dictionary

...PROGRAM TEST

Following a memory reset, RCLF will return the value
4001FFC40000000 (hexadecimal), corresponding to the default
settings of the 64 flags.

TYPE Type Command

Level 1 Level 1

obj » n

The command TYPE returns a real integer representing the type of an
object in level 1. The object types and their type numbers are as
follows:

Object Types and TYPE Numbers

Object TYPE Number

Real number

Complex number

String

Real (vector or matrix)
Complex (vector or matrix)
List

Name

Local name

Program

Algebraic

- © 00 N o o b~ WO N = O

Binary integer

3: Dictionary 263

REAL

NEG FACT RAND RDZ MAXR MINR
ABS SIGN MANT XPON

P FP FLOOR CEIL RND
MAX MIN MOD %T

An HP-28C real number object is a floating-point decimal number
consisting of a 12-digit mantissa, and a 3-digit exponent in the range
—499 to +499. Real numbers are entered and displayed as a string of
numeric characters, with no delimiters and no intervening spaces.

un

Numeric characters include the digits 0 through 9, 4+, —, a radix (.

or “,” according to the current radix mode), and the letter E to indicate
the start of the exponent field. The general real number format is

(sign) mantissa E (sign) exponent
When you enter a real number, the format is as follows:

B The mantissa sign can be a +, a —, or omitted (implying +).

B The mantissa can be any number of digits, with one radix mark
anywhere in the sequence. If you enter more than 12 digits, the
mantissa is rounded to 12 digits. (Half-way cases are rounded up in
magnitude.) Leading zeros are ignored if they are followed by non-
zero mantissa digits.

B An exponent is optional; if you include an exponent, it must be
separated from the mantissa by an “E”.
B The exponent sign can be a +, a —, or omitted (implying +).

B The exponent must contain three or fewer digits, and fall in the
range 0 to 499. Leading zeros before the exponent are ignored.

Real numbers are displayed according to the current real number dis-
play mode. In general, the display may not show all of the significant
digits of a number, but the full 12-digit precision of a number is al-
ways preserved in the stored version of the number.

264 3: Dictionary

-.REAL

The REAL menu contains functions that operate upon real number
(and real-valued algebraic) arguments, or enter special real numbers
into the stack. In addition to the menu functions, % and %CH are
provided on the keyboard.

Keyboard Functions

% Percent Function
Level 2 Level 1 Level 1
X y » xy/100
X 'symb' » "% {x,symb> "'
‘symb' X » 'HX{symb, x>
'symby ' ‘symby,' ®» ' (symby,Ssymbol'

% takes two real-valued arguments x and y, and returns x percent of
y—that is, xy/100.

%CH Percent Change Function
Level 2 Level 1 Level 1
X y » 100(y —x)/x
X 'symb' ®» '%CH<Cx,symb> !
'symb' X » '%CHCsymb, x> !
'symby ! ‘symby,' w 'XCHCsymby,symby> '

%CH computes the (percent) increase over the real-valued argument x
in level 2 that is represented by the argument y in level 1. That is,
%CH returns 100(y — x)/x.

3: Dictionary 265

--.REAL

T T Function

Level 1

» 3.14159265359

I.nl

w returns the symbolic constant 'w' or the numerical value
3.14159265359, the closest machine-representable approximation to
w. For information on symbolic constants, see page 70.

@ e Function
Level 1
» 2.71828182846
1 e 1

e returns the symbolic constant 'e' or the numerical value
2.71828182846, the closest machine-representable approximation to e,
the base of natural logarithms. For information on symbolic constants,
see page 70.

NEG FACT RAND RDZz MAXR MINR

NEG Negate Analytic
Level 1 Level 1
¥4 » -z
‘symb' » '-symb'

NEG returns the negative of its argument. When no command line is
present, pressing executes NEG. A complete stack diagram for
NEG appears in “Arithmetic.”

266 3: Dictionary

...REAL

FACT Factorial (Gamma) Function
Level 1 Level 1
n » n!
X » Ix+1)
'symb' ®» '"FRCT (symb>'

FACT returns the factorial n! of a positive integer argument n. For
non-integer arguments x, FACT(x) = ['(x + 1), defined for x > —1 as

Fx+1) = fo‘”e—ttx dt

and defined for other values of x by analytic continuation. For

x = 253.1190554375 or x a negative integer, FACT causes an
Ower f low exception; for x < —254.1082426465, FACT causes an
Under f low exception.

RAND Random Number Command
Level 1
» X

RAND returns the next real number in a pseudo-random number se-
quence, and updates the random number seed.

The HP-28C uses a linear congruous method and a seed value to gen-
erate a random number x, whichlalways lies in the range 0 < x < 1.
Each succeeding execution of RAND returns a value computed from a
seed based upon the previous RAND value. You can change the seed
by using RDZ.

3: Dictionary 267

-..REAL

RD2 Randomize Command

Level 1

X »

RDZ takes a real number as a seed for the RAND command. If the
argument is 0, a random value based upon the system clock will be

used as the seed. After memory reset, the seed value is
.529199358633.

MAXR Maximum Real Function

Level 1

®» 9.99999999999E499
» '"MAXR'

MAXR returns the symbolic constant 'MAXR' or the numerical value
9.99999999999E499, the largest machine-representable number. For
information on symbolic constants, see page 70.

MINR Minimum Real Function

Level 1

» 1.00000000000E-499
» 'MINR'

MINR returns the symbolic constant 'MINR' or the numerical value
1E—499, the smallest positive machine-representable number. For in-
formation on symbolic constants, see page 70.

268 3: Dictionary

-..REAL

ABS SIGN MANT XPON

ABS Absolute Value Function
Level 1 Level 1
z » |zI
Carrayl » |array||
‘symb' ®» 'ABS (symb> !

ABS returns the absolute value of its argument. See “ARRAY” and
“COMPLEX” for the use of ABS with other object types. ABS can be
differentiated but not inverted (solved) by the HP-28C.

SIGN Sign Function
Level 1 Level 1
Z1 B 22
'symb' » 'SIGHN{symb> '

SIGN returns the sign of its argument, defined as +1 for positive real
arguments, —1 for negative real arguments, and 0 for argument 0.
See “COMPLEX” for complex arguments.

3: Dictionary 269

..REAL

MANT Mantissa Function
Level 1 Level 1
X » y
'symb' » "MAMT Csymb '

MANT returns the mantissa of its argument. For example,

1.2E34 MANT returns 1.2.

XPON Exponent Function
Level 1 Level 1
X » n
‘symb' ®» 'EPONCsymby !

XPON returns the exponent of its argument. For example,

1.2E34 XPON returns 34.

iP FP FLOOR CEIL RND
iP Integer Part Function
Level 1 Level 1
X » n
'symb' "IP Csymb) '

IP returns the integer part of its argument. The result has the same
sign as the argument.

270 3: Dictionary

...REAL

FP Fractional Part Function
Level 1 Level 1
X » y
‘symb' » '"FP{symb>'

FP returns the fractional part of its argument. The result has the same
sign as the argument.

FLOOR Floor Function

Level 1 Level 1

X » n
'symb' » 'FLOOR Csymb !

FLOOR returns the greatest integer less than or equal to its argument.
If the argument is an integer, that value is returned.

CEIL Ceiling Function
Level 1 Level 1
X » n
‘symb' ® 'CEIL{symb)"

CEIL returns the smallest integer greater than or equal to its argu-
ment. If the argument is an integer, that value is returned.

3: Dictionary 271

-.REAL

RND Round Function
Level 1 Level 1
X » y
‘symb' » '"RND(symb> '

RND rounds its argument so that the full-precision internal represen-
tation of the number is rounded to match the displayed representa-
tion, according to the current display mode:

B In SCI or ENG mode, the internal representation of the result is
identical to the displayed number.

B [n FIX mode, the internal representation of the result is identical to
its displayed value, unless the display has underflowed or over-
flowed to SCI notation. Thus in n FIX mode, the result is 0 if the
argument is less than 10™". No rounding is performed if the argu-
ment is greater than or equal to 101,

B In STD mode, no rounding is performed.

Numbers greater than or equal to 9.5E499 are not rounded.

MAX MIN MOD %T

MAX Maximum Function
Level 2 Level 1 Level 1
X y » max(x,y)
X 'symb' w» '"MAX{x,symb> "’
'symb' X » '"MAX Csymb, x2 "'
' symby 'symbo,' ® 'MAX{symby,symbyd '

MAX returns the greater (more positive) of its two arguments.

272 3: Dictionary

-..REAL

MIN Minimum Function
Level 2 Level 1 Level 1
X y B min(x,y)
X 'symb' ®» "MINCx,symb>"
'symb' X » '"MINCsymb, x> !
'symbq ! 'symby' ® 'MINCsymby.symby? !

MIN returns the lesser (more negative) of its two arguments.

MOD Modulo Function
Level 2 Level 1 Level 1
X y » x mod y
X 'symb' ®» 'MODCx, symb> "
'symb' X » 'MODCsymb, x> '
'symbq ' 'symby' ® 'MOD C(symbq.,symby !

MOD applied to real-valued arguments x and y returns a remainder

defined by

x mod y = x — y floor (x/y)

Mod (x, y) is periodic in x with period y. Mod (x, y) lies in the interval
[0, y) for y > 0 and in (y, 0] for y < 0.

3: Dictionary

273

-..REAL

%T Percent of Total Function
Level 2 Level 1 Level 1
X y » 100y/x
X 'symb' 'ETOx,symby !
'symb' X » 'ETCsymb, x> !
' symby ! 'symby' w ' ETisymby,symbyd '

%T computes the (percent) fraction of the real-valued argument x in
level 2 that is represented by the argument y in level 1. That is, %T
returns 100y /x.

274 3: Dictionary

SOLVE

STEQ RCEQ SOLVR ISOL QUAD SHOW
ROOT

The SOLVE menu ([SOLV]) contains commands that enable you to
find the solutions of algebraic expressions and equations. By solution,
we mean a mathematical root of an expression—that is, a value of one
variable contained in the expression, for which the expression has the
value zero. For an equation, this means that both sides of the equa-
tion have the same numerical value.

The command ROOT is a sophisticated numerical root-finder that can
determine a numerical root for any mathematically reasonable expres-
sion. You can use ROOT as an ordinary Command or you can invoke
the root-finder through the " key. | | activates an interactive
version of the root-finder called the Solver. The Solver provides a
menu for data input and for selecting a “solve” variable, and returns
labeled results with messages to help you interpret the results.

It is also possible to solve many expressions symbolically, that is, to
return symbolic rather than numerical values for the roots of an ex-
pression. The command ISOL (isolate) finds a symbolic solution by
isolating the first occurrence of a specified variable within an expres-
sion. QUAD returns the symbolic solution of a quadratic equation.

In many cases, a symbolic result is preferable to a numerical result.
The functional form of the symbolic result gives much more informa-
tion about the behavior of the system represented by a mathematical
expression than can a single number. Also, a symbolic solution can
contain all of the multiple roots of an expression. Even if you are only
interested in numerical results, solving an expression symbolically be-
fore using EMY can result in a significant time savings in obtaining
the numerical roots.

3: Dictionary 275

--.SOLVE

Interactive Numerical Solving: The Solver

The Solver is an interactive operation that automates the process of
storing values into the variables of an equation, and then solving for
any one of the variables. The general procedure for using the Solver is
as follows:

1. Use STEQ (“Store Equation”) to select a current equation.
2. Press to activate the Solver variables menu.

3. Use the variables menu keys to store values for the equation
variables, including a “first guess” for the value of the unknown
variable.

4. Solve the equation for an unknown, by pressing the shift key
(@) then the menu key corresponding to the unknown variable.

Each of these steps is described in detail in the following sections.

The Current Equation

The current equation is defined as the procedure that is currently
stored in the user variable EQ. The term current equation (and the
name EQ) is chosen to reflect the typical use of the procedure; how-
ever, the procedure can be an algebraic equation or expression, or a
program. A program used with the Solver must be equivalent to an
algebraic; that is, it must not take arguments from the stack, and
should return one result to the stack.

You can think of the current equation as an “implicit” argument for
(it is also the argument for DRAW). An implicit argument
saves you from having to place a procedure on the stack every time
you use or DRAW.

276 3: Dictionary

IIISOLVE

For the purpose of solving (root-finding) equations and expressions,
you can consider an expression as the left side of an equation with its
right side 0. Alternatively, you can interpret an equation as an expres-
sion by treating the = sign as equivalent to — (subtract).

Described next are STEQ and RCEQ, which are commands for storing
and recalling the contents of EQ.

STEQ Store Equation Command
Level 1
obj »

STEQ takes an object from the stack, and stores it in the variable EQ
(“EQuation”). EQ is used to hold the current equation used by the
Solver and plot applications, so STEQ's argument should normally be
a procedure.

RCEQ Recall Equation Command
Level 1
» obj

RCEQ returns the contents of the variable EQ. It is equivalent to
'EQ@' RCL.

3: Dictionary 277

- SOLVE

Activating the Variables Menu

Pressing EFMYA activates the Solver variables menu derived from the
current equation. The variables menu contains:

B A menu key label for each independent variable in the current
equation. If there are more than six independent variables, you can
use the [NExT] and [[PREV] keys to activate each group of (up to)
six keys.

B One or two menu keys for evaluating the current equation. If EQ
contains an algebraic expression or a program, the key [HE i
provided for evaluating the expression or program. If EQ contams
an algebraic equation, and EE allow you to evaluate sep-
arately the left and right sides of the equation.

How The Variables Menu Is Configured. An independent variable
named in the current equation is either a formal variable, or a variable
that contains a data object, usually a real number. A variable contain-
ing a procedure will not appear in the variables menu. Rather, the
names appearing in that procedure are taken as possible independent
variables; those that contain data objects are added to the variables
menu. The process continues until all independent variables are iden-
tified in the menu. The variables menu is continuously updated, so
that if you store a procedure into any of the variables in the menu,
that variable will be replaced in the menu by the new independent
variables contained in the procedure.

For example, if the current equation is 'A+E=C"', the variables menu:

L 4§ 8§ O RBLitT-f RT- |

results if A, B, and C do not contain procedures. But if we store
'D+E"' in C, the menu will become

L ¢ B F § U LEFT-J R7-

(If a current equation variable itself contains an equation, the latter
equation is treated as an expression by replacing the = with a —, for
the purpose of defining the variable.)

278 3: Dictionary

-.SOLVE

Storing Values into the Independent Variables

Pressing a Solver variables menu key EEff#, where name is any of
the independent variable names, is similar to executing the sequence
"name' STO. That is, [ENEN takes an object from the stack and
stores it as the value of the variable name.

To confirm input, EELE also displays name: object in display line 1,
where object is the object taken from the stack. The message will dis-
appear at the next key press.

At any time, you can review the contents of a variable by pressing [*]
i and then @(RcL), @(visIT), or [(EVAL].

Choosing Initial Guesses

In general, algebraic expressions and procedures can have more than
one root. For example, the expression (x — 3) (x — 2) has roots at

x = 3 and x = 2. The root that the root-finder returns depends on the
starting point for its search, called the initial guess.

You should always supply an initial guess for the root-finder. The

guess is one of the required arguments for the command ROOT. For
the Solver, the current value of the unknown variable is taken as the
initial guess. If the unknown variable has no value, the Solver will
assign it an initial guess value 0 when you solve for it, but there is no
guarantee that this default initial guess will yield the root you desire.

3: Dictionary 279

- SOLVE

You can speed up the root-finding, or guide the root-finder to a par-
ticular root, by making an appropriate initial guess. The guess can be
any of following objects:

B A number, or a list containing one number. This number is con-
verted to two initial guesses, as described next, by duplicating it
and perturbing one copy slightly.

B A list containing two numbers. The two numbers identify a region
in which the search will begin. If the two numbers surround an
odd number of roots (signified by their procedure values having
opposite signs), then the root-finder can usually find a root be-
tween the numbers quite rapidly. If the procedure values at the two
numbers do not differ in sign, then the root-finder must search for
a region where a root lies. Selecting numbers as near a root as pos-
sible will tend to speed up this search.

B A list containing three numbers. In this case the first number
should represent your best guess for the root of interest. The other
two numbers should surround the best guess, and define a region
in which the search should begin. The list of three numbers re-
turned when you interrupt the root-finder with the key
corresponds to the current guess in this format.

Any of the numbers described above can be complex; in that case
only the real parts are used.

The best way to choose an initial guess is to plot the current equation.
The plot gives you an idea of the global behavior of the equation and
lets you see the roots. For an equation, the roots are the values of the
independent (horizontal) variable for which the two curves represent-
ing the equation intersect; for an expression (or a program), the roots
are the points at which the curve intersects the horizontal axis (verti-
cal coordinate = 0). If you use the interactive plotter (), you
can move the cursor to the desired root, and digitize one or more

points. Then you can use the point coordinate(s) as the initial

guess(es) for the solver.

280 3: Dictionary

- SOLVE

Solving for the Unknown Variable.

To solve the current equation for an “unknown” variable name, press
the shift key [l and then the menu key G . This activates the nu-
merical root-finder, to determine a value of the unknown variable
that is a root of the current equation (that is, makes the current equa-
tion have the value zero). While the root-finder is executing, the
message

Solving for name

is displayed in display line 1. When execution is completed, the result
is returned to the stack, and display line 1 shows

name: result
(until you press a key). Line 2 gives a message that qualifies the result.
While the Solver root-finder is executing, you can:

B Press to stop the root-finder iteration and return to the normal
stack display. When the root-finder is halted in this manner, it dis-
plays its current best value for the root to the unknown variable,
and returns a list containing current best value plus two additional
real numbers specifying the search region. If you wish to restart the
root-finder, you can just press the unknown variable menu key to
store the list into the variable, then the shifted menu key. By using
the list as a guess, you can restart the root-finder at the same point
where it was interrupted.

B Press any other key to display the intermediate results of the root-
finder as it seeks a root. Lines 2 and 3 of the display will show two
current guesses used by the root-finder, plus the signs of the value
of the current equation evaluated at the guesses. If the current
equation is undefined at a guess point, the sign is shown as 7.

3: Dictionary 281

= SOLVE

The intermediate results that are displayed are two values of the un-
known variable that characterize the region in which the root-finder is
searching for a root. Although their precise meaning varies according
to the nature of the current equation, you can view them as an indi-
cator of the progress of the root search. Typically, the root-finder will
search the domain of the procedure until it finds a sign reversal, indi-
cated by opposite signs for the procedure at two guesses. Then you
will see the two guesses “bracket” the root and converge from oppo-
site sides to the root value. On the other hand, if you observe the two
guesses diverging from each other, it indicates that the root-finder has
not yet located a region with a possible root. If the divergence contin-
ues, it most likely indicates that there is no finite root.

Interpreting Results

The HP-28C root-finder seeks a real root of a specified procedure,

starting with the first guess that you have supplied. In most cases, the
root-finder returns a result. The command ROOT just returns the re-
sult to the stack. The Solver returns the result to the stack, displays a
labeled result in line 1 of the display, and shows a qualifying message
in line 2. The qualifying message provides a rough guide to the nature
of the root found:

Message Meaning
ZEro An “exact” root of the procedure has been found: eval-
uating the procedure at the root returns the value zero.
Sign An approximation to a root, correct to 12 digits, has
Reversal been found. The root-finder has found neighboring points

for which the procedure value changes sign, but no point
at which it evaluates to zero. This root may or may not
be a normal root, or it may be a discontinuity in the pro-
cedure value, across which the value changes sign.

Extremumn The root-finder has found an approximation to a local
minimum or maximum of the numerical absolute value of
the procedure. If the “root” is +9.99999999999E499, it
corresponds to an asymptotic extremum.

282 3: Dictionary

--.SOLVE

After you have obtained a result using the Solver or ROOT, you
should evaluate the procedure for which the result was obtained, in
order to interpret the results. (If you are using the variables menu,
you can use [EJZF for an expression or a program, or and
for an equation.) There are two possibilities: the value of the
procedure at the value of the unknown variable returned by the root-
finder is close to zero; or it is not close to zero. It is up to you to
decide how close is close enough to consider the value a root.

The best way to understand the nature of a root is to plot the proce-
dure in the neighborhood of the root. The plot will show you whether
the root is a proper root, or a discontinuity, much more clearly than
any qualifying message that the Solver can return.

During its search for a root, the root-finder may evaluate the proce-
dure at values of the unknown variable that cause mathematical
exceptions. No error is generated, but the appropriate mathematical
exception user flags will be set.

Errors

In two cases the root-finder will fail, indicating the problem with an
error message:

Error Message Meaning
Ead One or both initial guesses lie outside of the domain of
Guessies) the procedure. That is, the procedure returns an error

when evaluated at the guess points.

Constant? The procedure returns the same value at every point
sampled by the root-finder.

3: Dictionary 283

- SOLVE

ROOT Root-Finder Command
Level 3 Level 2 Level 1 Level 1
“program* ' name ' guess » root
«program ' name' {guesses: ®» root
'symb' ' name' guess » root
'symb' ' name' {guesses: ®» root

ROOT takes a procedure, a name, and either a single guess (a real
number or a complex number) or a list of one, two, or three guesses,
and returns a real number root. Root is a value of the variable name
that is returned by the HP-28C numerical root-finder. Where the
mathematical behavior of the procedure is appropriate, roof is a math-
ematical root—a value of the variable for which the procedure has a
numerical value zero. Refer to “Interpreting Results” for more in-
formation on interpreting the results of the root-finder.

The single guess, or the list of guesses, are guesses of the value of the
root that you must supply to indicate to the root-finder the region in
which the search for a root is to begin. “Choosing Initial Guesses”
explains how to choose initial guesses.

If you interrupt ROOT by pressing the key, the procedure is re-
turned to level 3, the name to level 2, and a list containing three

intermediate values of the unknown variable to level 1. The current
best value for the root is stored in the unknown variable. The list is
suitable for use as a first guess if you wish to restart the root-finder.

284 3: Dictionary

-.SOLVE

Symbolic Solutions

ISOL Isolate Command

Level 2 Level 1 Level 1

'symb ! "name' ® 'symb,'

ISOL returns an expression symb, that represents the rearrangement
of its argument algebraic symb; to “isolate” the first occurrence of vari-
able name. If the variable occurs only once in the definition of symby,
then symb, is a symbolic root (solution) of symb;. If name appears
more than once, then symb, is effectively the right side of an equation
obtained by rearranging and solving symb; to isolate the first occur-
rence of name on the left side of the equation. (If symb; is an
expression, consider it as the left side of an equation symb; = 0.)

If name appears in the argument of a function within symb;, that
function must be an analytic function—the HP-28C must be able to
compute the inverse of the function. Thus ISOL cannot solve

IP(X) = 0 for X, since IP has no inverse. Commands for which the
HP-28C can compute an algebraic inverse are identified as analytic
functions in this manual.

3: Dictionary 285

. SOLVE

QUAD Quadratic Form Command
Level 2 Level 1 Level 1
'symby ! ‘name' ® 'symb,'

QUAD solves an algebraic symb; for the variable name, and returns an
expression symb, representing the solution. QUAD computes the sec-
ond-degree Taylor series approximation of symb; to convert it to a

quadratic form (this will be exact, if symb, is already a second order
polynomial in name).

QUAD evaluates symb, before returning it to the stack. If you want a
symbolic solution, you should purge any variables that you want to
remain in the solution as formal variables.

SHOW Show Variable Command
Level 2 Level 1 Level 1
'symby’ ‘name' ® 'symb,'

SHOW returns symb,, which is equivalent to symb;, except that all
implicit references to a variable name are made explicit. For example,
if we define

'R+l O'AYOSTO O 'Y+2' B OSTAO,
then
'A¥B' 'Y' SHOW returns 'A%y +2>!

and
'A¥EB' "K' SHOW returns '<x+12%B'.

286 3: Dictionary

IIISOLVE

General Solutions

HP-28C functions are functions in the strict mathematical sense, that
is, they always return exactly one result when evaluated. This means,
for example, that \/4 always returns +2, not —2 or +2. For other
functions, such as ASIN, a principal value is returned, according to
common mathematical conventions.

This implies, however, that pairs of functions such as \/ and SQ, or
SIN and ASIN, do not necessarily represent the general inverse rela-
tion implied by their names. Consider the equation x2 = 2. If we take
the square root of both sides, we obtain the “solutions”

x=+\/2_andx=—\/2—.

The HP-28C equation 'X={2' cannot represent correctly both solu-
tions—the \/ function always returns the positive square root. Similarly,
if we solve sin x = .5 for x, there are an infinite number of solutions
x = 30° + 360n°, where 1 is any integer. Applying the ASIN function to
.5 will only return the single result 30°.

The principal value flag, user flag 34, determines the nature of solutions
returned by ISOL and QUAD. If the flag is set, all arbitrary signs and
integers are chosen automatically to represent principal values. If the flag
is clear, solutions are returned in their full generality.

3: Dictionary 287

- SOLVE

General Solution Mode

When the HP-28C is in general solution mode, signified by flag 34
clear, the commands QUAD and ISOL solve expressions in their full
generality by introducing, where appropriate, special user variables
representing arbitrary signs and arbitrary integers. You can select val-
ues for these variables in the usual way by storing the desired values
into the corresponding variables, then evaluating the expression.
QUAD and ISOL introduce variables in this manner:

B When a command returns a result containing one or more arbitrary
signs, the first such sign is represented by a variable =1, the second
by s2, and so on. Example:

'RA245%K 44 "K' QUAD returns '{(-5+s1%32-2".

The =1 represents the conventional + symbol. You can choose ei-
ther root by storing +1 or —1 into s1, then executing EVAL.

® If ISOL returns a result containing one or more arbitrary integers,
the first is represented by a variable n1, the next by n2, and so on.
Example:

'RUMd=Y K'Y ISOL returns 'EXP(2¥wHidnlo40¥Y~, 250,

The exponential represents the arbitrary complex sign of the result;
there are three unique values, corresponding to n1 = 0, 1, and 2.
You can choose one of these values by storing the appropriate
number into nl, then evaluating the expression.

An alternate keyboard method of substituting for the arbitrary vari-
ables in an ISOL or QUAD result expression is to EDIT the expression
and make the arbitrary variables into temporary variables for which
you supply values. For example, to choose the negative root in the
above QUAD example, press [lJ[EDIT] to copy the result expression to
the command line, then press

i -1 =+ =1 [ENTER].

This makes =1 into a local variable, assigns it the value —1, and then
evaluates the expression. This method has the advantage that it
avoids creating “permanent” variables in user memory corresponding
to the arbitrary variables.

288 3: Dictionary

- SOLVE

Principal Value Mode

If you set flag 34, QUAD and ISOL will return “principal” values for
their solutions. That is:

B Arbitrary signs are chosen to be positive. This applies both to the
ordinary =+, and to the more general complex “sign” exp (27ni/x)
that arises from inverting expressions of the form y*. In the latter
case, the arbitrary integer n is chosen to be 0.

B Arbitrary integers are chosen to be 0. Thus
'SINCK)=Y"' 'K' ISOL returns 'ASINC(YDY !,
which always lies in the range 0 through 180 degrees.

You should understand that these choices of “principal” values serve
primarily to simplify the result expressions. Mathematically, they are
no better or worse than any other roots of an expression. If you desire
symbolic results that can subsequently be evaluated for purposes
other than simple visual inspection, you should work with flag 34
clear, so that the results are completely general.

3: Dictionary 289

STACK

DUP OVER DUP2 DROP2 ROT LIST—
ROLLD PICK DUPN DROPN DEPTH -LIST

This menu provides commands to manipulate the contents'of the
stack. The most frequently used of these commands are provided on
the keyboard; the remainder are available as menu keys in the STACK
menu.

The keyboard commands are [DROP], [(SwAP], [B(ROLL], and

B(CLEAR].

Keyboard Commands

DROP Drop Command

Level 1

obj »

DROP removes the first object from the stack. The remaining items
on the stack drop one level.

You can recover the dropped object by executing LAST if it is enabled.

SWAP Swap Command

Level 2 Level 1 Level 2 Level 1

obj4 objo » objo obj,

SWAP switches the order of the first two objects on the stack.

290 3: Dictionary

= STACK

ROLL Roll Command
Level n+1 ... Level 2 Level 1 Leveln ...Level 2 Level 1
objy ... obj, n » objo ... obj, obj4

ROLL takes an integer n from the stack and “rolls” the first n objects
remaining on the stack. For example, 4 ROLL moves the object in
level 4 to level 1.

CLEAR Clear Command

Level n ... Level 1

obj; ... obj, »

CLEAR removes all objects from the stack.

If UNDO is enabled, you can recover the stack that has been lost due
to an inadvertent CLEAR by pressing @lJ[UNDO] immediately after the
CLEAR.

DUP OVER DUP2 DROP2 ROT LIST-

DUP Duplicate Command

Level 1 Level 2 Level 1

obj » obj obj

DUP returns a copy of the object in level 1. Pressing when no
command line is present executes DUP.

3: Dictionary 291

. STACK

OVER Over Command
Level 2 Level 1 Level 3 Level 2 Level 1
0bj1 0bi2 » 0bj1 0b/2 0bj1

OVER returns a copy of the object in level 2.

DUP2 Duplicate Two Objects Command
Level 2 Level 1 Level 4 Level3 Level2 Level 1
obj obj » obj4 objo obj obj»

DUP2 returns copies of the first two objects on the stack.

DROP2 Drop Command

Level 2 Level 1

Ob] 1 Ob/ 2 »

DROP2 removes the first two objects from the stack. The two objects
are saved in LAST arguments. They can be recovered with LAST if it
is enabled.

ROT Rotate Command
Level 3 Level 2 Level 1 Level 3 Level 2 Level 1
Ob/1 Obj2 Obj3 » Ob/z 0b/3 Ob/1

ROT rotates the first three objects on the stack, bringing the third ob-
ject to level 1. ROT is equivalent to 3 ROLL.

292 3: Dictionary

= STACK

LIST- List to Stack Command
Level 1 Level n+1 ... Level 2 Level 1
{obj; ... obj,} » objy ... obj, n

LIST- takes a list of 7 objects from the stack, and returns the objects
comprising the list into separate stack levels 2 through n+1. The
number 7 is returned to level 1.

ROLLD PICK DUPN DROPN DEPTH -LIST

ROLLD Roll Down Command
Level n+1 ... Level 2 Level 1 Level n Level n—1 ... Level 1
objy ... obj, n » obj, objy ... o0bj,_1

ROLLD takes an integer n from the stack and “rolls down” the first n
objects remaining on the stack. For example, 4 ROLLD moves the ob-
ject in level 1 to level 4.

PICK Pick Command
Level n+1 ... Level 2 Level 1 Level n+1 ... Level 2 Level 1
obj; ...obj, n » obj; ... obj, obj4

PICK takes an integer 7 from the stack and returns a copy of obj; (the
nth remaining object). For example, 4 PICK returns a copy of the
object in level 4.

3: Dictionary 293

- STACK

DUPN Duplicate n Objects Command
Leveln+1.. Level2 Level1 Level2n.. Leveln+1 Leveln.. Level1
obj, ... obj; n » obj, ... obj obj, ... objy

DUPN takes an integer number n from the stack, and returns copies
of the first remaining n objects on the stack (the objects in levels 2
through n + 1 while n is on the stack).

DROPN Drop n Objects Command
Level n+1 ... Level 2 Level 1
objy ... obj, n »

DROPN removes the first n + 1 objects from the stack (the first n
excluding the number # itself). The number 7 is saved in LAST argu-
ments, for recovery by LAST. You can use [l[UNDO] to recover the

dropped objects that remain.

DEPTH Depth Command

Level 1

» n

DEPTH returns a real number n representing the number of objects
present on the stack (before DEPTH was executed).

294 3: Dictionary

-.STACK

-LIST Stack to List Command
Level n+1 ... Level 2 Level 1 Level 1
objy ... obj, n » {obj; ...o0bj,*

—-+LIST takes an integer number n from level 1, plus n additional ob-
jects from levels 2 through n + 1, and returns a list containing the n

objects.

Executing DEFTH +LIST combines the entire contents of the stack
into a list, which you can, for example, store in a variable for later

recovery.

3: Dictionary

295

STAT

Z+ Z— N2 CLZ STOZ RCLZ
TOT MEAN SDEV VAR MAXZ> MINZ
COoLZ CORR cov LR PRDEV
UTPC UTPF UTPN UTPT

HP-28C statistics commands deal with statistical data collected in an
n X m matrix called the current statistics matrix. The current statistics
matrix is defined to be a matrix stored in the variable ZDAT.

The current statistics matrix ZDAT is created automatically, if it does
not already exist, when you begin entry of statistical data points with
the command Z+. A data point is a vector of m coordinate values (real
numbers), and is stored as one row in the statistics matrix. The first
data point entered sets the m dimension (number of columns) of the
statistics matrix. The n dimension (number of rows) is the number of
data points that have been entered as illustrated below:.

Coordinate Number
Data Point
1 2 m
1 X114 X12 Xim
2 X21 Xo2 Xom
n Xn1 Xn2 Xnm

Certain statistics commands combine data from two specified col-

umns of the statistics matrix. User variable ZPAR contains a list of
four real numbers, the first two of which identify the two columns.
You select the columns with the command COLZ. The last two num-
bers in the list are the slope and intercept computed from the most
recent execution of the linear regression command LR.

296 3: Dictionary

--.STAT

Because ZDAT and ZPAR are ordinary variables, you can use ordi-
nary commands to recall, view, or alter their contents, in addition to
the specific statistics commands that deal with the variables.

The commands SDEV (standard deviation), VAR (variance), and COV
(covariance) calculate sample statistics using data that represent a sam-
ple of the population. These commands are described in detail below.
If the data represent the entire population, you can calculate the popu-
lation statistics as follows.

1. Execute MEAN to return a data point representing the mean
data.

2. Execute 2+ to add the mean data point to the data.
3. Execute SDEV, VAR, or COV. The result is the statistics for the

population.
4. Execute Z— DROP to remove the mean data point from the
data.
2+ Z- N2 CLZ STOZ RCLZ

These commands allow you to select a statistics matrix, and to add
data to or delete data from the matrix.

2+ Sigma Plus Command
Level 1
X ®
[X1 Xo ... Xm] »
[EX11 X12 ... X1m]
: »
Cxpq Xpp oev X1

2+ adds one or more data points to the current statistics matrix
ZDAT.

3: Dictionary 297

- STAT

For a statistics matrix with m columns, you can enter the argument for
2+ in several ways:

Entering one data point with a single coordinate value. The ar-
gument for 2+ is a real number.

Entering one data point with multiple coordinate values. The
argument for Z+ is a vector of m real coordinate values.

Entering several data points. The argument for 2+ is a matrix of
n rows of m real coordinate values.

In each case, the coordinate values are added as new rows to the cur-
rent statistics matrix stored in ZDAT. If ZDAT does not exist, =+
creates it as an n X m matrix stored in the variable ZDAT. If SDAT
does exist, an error occurs if it does not contain a real matrix, or if the
number of coordinate values in each data point entered with =+
doesn’t match the number of columns in DAT.

22— Sigma Minus Command

Level 1

X

» Cxyxo ... X3

2 — returns a vector of m real numbers, or one number if m = 1, cor-
responding to the coordinate values in the last data point entered by
2+ into the statistics matrix ZDAT. The last row of the statistics ma-
trix is deleted.

The vector returned by Z— can be edited or replaced, then restored to
the statistics matrix by Z+.

298 3: Dictionary

IIISTAT

N2 Sigma N Command

Level 1

» n

N2 returns the number of data points entered in the statistics matrix
stored in ZDAT. The number of points is equal to the number of rows
of the matrix.

CLZ Clear Sigma Command

CLZ clears the statistics matrix by purging the ZDAT variable.

STO> Store Sigma Command
Level 1
Cmatrix1 =

STOZ takes a matrix from the stack and stores it in the variable ZDAT.

RCLZ Recall Sigma Command
Level 1
» obj

RCLZ returns the current contents of the variable ZDAT. RCLY is
equivalent to 'E0AT' RCL.

3: Dictionary 299

- STAT

TOT MEAN SDEV VAR MAXZ MINZ

These commands compute elementary statistics for the data in each
column of the current statistics matrix.

TOT Total Command
Level 1
» X
» Cxq Xo ... Xp1

TOT computes the sum of each of the m columns of coordinate values
in the statistics matrix XDAT. The sums are returned as a vector of m
real numbers, or as a single real number if m = 1.

MEAN Mean Command
Level 1
[2 X
» CxqXo ... xp3d

MEAN computes the mean of each of the m columns of coordinate
values in the statistics matrix ZDAT, and returns the mean as a vector
of m real numbers, or as a single real number if m = 1. The mean is
computed from the formula

n

mean = . x;/n

i=1

where x; is the ith coordinate value in a column, and 7 is the number
of data points.

300 3: Dictionary

- STAT

SDEV Standard Deviation Command
Level 1
» X
» CxqyXo .. Xpd

SDEV computes the sample standard deviation of each of the m
columns of coordinate values in the current statistics matrix. The
standard deviations are returned as a vector of m real numbers, or as
a single real number if m = 1. The standard deviations are computed

from the formula
1 - e
\/1’1 -1 1‘21 (Xi X)

where x; is the ith coordinate value in a column, ¥ is the mean of the
data in this column, and 7 is the number of data points.

VAR Variance Command
Level 1
» X
» Cxqyxo oon X1

VAR computes the sample variance of the coordinate values in each
of the m columns of the current statistics matrix. The variance is
returned as a vector of m real numbers, or as a single real number if
m = 1. The variance is computed from the formula

n
2 (xi _ 7)2
=1

n—l,-

where x; is the ith coordinate value in a column, ¥ is the mean of the
data in this column, and # is the number of data points.

3: Dictionary 301

. STAT

MAXZ Maximum Sigma Command
Level 1
» X
» Cxqy X0 ... Xpd

MAXZ finds the maximum coordinate value in each of the m columns
of the current statistics matrix. The maxima are returned as a vector
of m real numbers, or as a single real number if m = 1.

MINZ Minimum Sigma Command
Level 1
» X
» Cxq xo ... xp3

MINZ finds the minimum coordinate value in each of the m columns
of the current statistics matrix. The minima are returned as a vector of
m real numbers, or as a single real number if m = 1.

COLZ CORR cov LR PREDV

COLZ Sigma Columns Command

Level 2 Level 1

n1 no »

302 3: Dictionary

- STAT

COLZ takes two column numbers, n; and n,, from the stack and
stores them as the first two objects in the list contained in the variable
ZPAR. The numbers identify column numbers in the current statistics
matrix ZDAT, and are used by statistics commands that work with
pairs of columns. 1y designates the column corresponding to the inde-
pendent variable for LR, or the horizontal coordinate for DRWZ or
SCLZ. n, designates the dependent variable or the vertical coordinate.
For CORR and COV, the order of the two column numbers is
unimportant.

If any of the two-column commands is executed when ZPAR does not
yet exist, it is automatically created with default values n; = 1 and
Ny = 2.

CORR Correlation Command

Level 1

» correlation

CORR returns the correlation of two columns of coordinate values in
the current statistics matrix. The columns are specified by the first two
elements of ZPAR (default 1 and 2). The correlation is computed from
the formula

zl (xinl - J_Enl) (xin2 - xnz)

n n

= 32 = \2

\/zl (xin1 - xnl) ‘Zl (xin2 - xnz)
= i=

where x;, is the ith coordinate value in column 7y, x;,, is the ith co-
ordinate value in the column n,, Xn, is the mean of the data in column
ny, X,, is the mean of the data in column 7,, and is the number of
data points.

3: Dictionary 303

. STAT

Ccov Covariance Command

Level 1

®» covariance

COV returns the sample covariance of the coordinate values in two
columns of the current statistics matrix. The columns are specified by
the first two elements in ZPAR (default 1 and 2). The covariance is
computed from the formula

1 - - _
n— 1 igl (xinl - xnl) ('xin2 - xnz)

where x;, is the ith coordinate value in column 7y, X, is ith coordi-
nate value in the column ny, X, is the mean of the data in column n,
Xy, is the mean of the data in column #n,, and # is the number of data
points.

LR Linear Regression Command

Level 2 Level 1

» intercept slope

LR computes the linear regression of a dependent data column on an
independent data column, where the columns of data exist in the cur-
rent statistics matrix. The columns of independent and dependent

data are specified by the first two elements in ZPAR (default 1 and 2).

The intercept and slope of the regression line are returned to levels 2
and 1 of the stack, respectively. LR also stores these regression coef-
ficients as the third (intercept) and fourth (slope) items in the list in
the variable ZPAR.

304 3: Dictionary

--.STAT

PREDV Predicted Value Command
Level 1 Level 1
X » predicted value

PREDV computes a predicted value from a real number argument x,
using the linear regression coefficients most recently computed with
LR and stored in the variable ZPAR:

predicted value = (x X slope) + intercept.

The regression coefficients intercept and slope are stored by LR as the
third and fourth items, respectively, in the variable ZPAR. If you exe-
cute PREDV without having previously executed LR, a default value
of zero is used for both coefficients, so that PREDV will always return
zZero.

UTPC UTPF UTPN UTPT

The HP-28C provides four upper-tail probability commands, which
you can use to determine the statistical significance of test statistics.
The upper-tail probability function of a random variable X is the
probability that X is greater than a number ¥, and is equal to 1 — F(x),
where F(x) is the distribution function of X.

The inverses of distribution functions are useful for constructing con-
fidence intervals. The argument of an inverse upper-tail probability
function is a value from 0 through 1; when the argument is expressed
as a percent, the inverse function values are called percentiles. For
example, the 90th percentile of a distribution is the number x for
which the probability that the random variable X is greater than x is
100% — 90% = 10%.

3: Dictionary 305

. STAT

You can use the Solver to obtain the inverses of the upper-tail prob-
ability functions. Suppose you wish to determine a percentile of the
normal distribution. Let

P = percentile/100
M = mean of the distribution
V = variance
X = random variable

UTPN (described below) returns the upper-tail probability for normal
distribution. To solve the equation

1 — P = utpn M, V, X),
for X, create the program
€« 1 P - MV X UTPN - 3%,

and store it as the current equation by pressing EiES. Then
press to produce the Solver menu:

L SO B G

Try a normal distribution with M =0, V = 1:

0 1
Now compute the 95th percentile:
.05 i @

yields the result X = 1.6449.

306 3: Dictionary

am IsTAT

UTPC Upper Chi-Square Distribution Command
Level 2 Level 1 Level 1
n X » utpe(n, x)

UTPC returns the probability utpc(n, x) that a chi-square random
variable is greater than x, where n is the number of degrees of free-
dom of the distribution. n must be a positive integer.

UTPF Upper Snedecor’s F Distribution Command
Level 3 Level 2 Level 1 Level 1
ny ny X » utpf(nq, na, Xx)

UTPF returns the probability utpf(ny, n,, x) that a Snedecor’s F ran-
dom variable is greater than x, where n; and 7, are the numerator and
denominator degrees of freedom of the F distribution. n; and 1, must
be positive integers.

UTPN Upper Normal Distribution Command
Level 3 Level 2 Level 1 Level 1
m v X » utpn(m, v, X)

UTPN returns the probability utpn(m, v, x) that a normal random
variable is greater than x, where m and v are the mean and variance,
respectively, of the normal distribution. v must be a non-negative
number.

3: Dictionary 307

--.STAT

UTPT Upper Student’s t Distribution Command
Level 2 Level 1 Level 1
n X » utpt(n, x)

UTPT returns the probability utpt(n, x) that a Student’s t random
variable is greater than x, where n is the number of degrees of free-
dom of the distribution. n must be a positive integer.

308 3: Dictionary

STORE

STO+ STO— STO* STO/ SNEG SINV
SCONJ

The STORE menu contains storage arithmetic commands which allow
you to perform addition, subtraction, multiplication, division, inver-
sion, negation, and conjugation on real and complex numbers and
arrays that are stored in variables, without recalling the variable con-
tents to the stack. Besides minimizing keystrokes in many cases, the
STORE commands provide an “in-place” method of altering the con-
tents of an array, which requires less memory than manipulating the
array while it is on the stack.

Storage arithmetic is restricted to ordinary variables—you cannot use
a local name as an argument for any of the commands in the STORE
menu.

STO+ STO- STOx STO/ SNEG SINV

STO+ Store Plus Command

Level 2 Level 1

z ' name ' »
' name ' z L
Carray 1 ' name' »
' name' Carray] »

3: Dictionary 309

---STORE

STO+ adds a number or array to the contents of the variable. The
variable name and the number or array can be in either order on the
stack.

The object on the stack and the object in the variable must be suitable
for addition to each other—you can add any combination of real and
complex numbers, or any combination of conformable real and com-
plex arrays.

STO- Store Minus Command
Level 2 Level 1
z ' name ' »
' name ' z »
Carray 1 ' name' »
' name' Carray 1 »

STO— computes the difference of two numbers or arrays. One object
is taken from the stack, and the other is the contents of a variable
specified by a name on the stack. The resulting difference is stored as
the new value of the variable.

The result depends on the order of the arguments:

B If name is in level 1, the difference
(value in level 2) — (value in name)
becomes the new value of name.
B If name is in level 2, the difference
(value in name) — (value in level 1)
becomes the new value in name.
The object on the stack and the object in the variable must be suitable
for subtraction with each other—you can subtract any combination of

real and complex numbers, or any combination of conformable real
and complex arrays.

310 3: Dictionary

--.STORE

STOX Store Times Command

Level 2 Level 1

z ' name ' »
' name ' z »
Carray] ' name' »
' name' Carray 1 »

STO% multiplies the contents of a variable by a number or array.
When multiplying two numbers or a number and an array, the vari-
able name and the other object can be in either order on the stack.
When multiplying two arrays, the result depends on the order of the
arguments:

B If name is in level 1, the product
(array in level 2) X (array in name)

becomes the new value of name.

B If name is in level 2, the product
(array in name) X (array in level 1)

becomes the new value in name.

The arrays must be conformable for multiplication.

STO/ Store Divide Command

Level 2 Level 1

z ' name ' »
' name ' z »
Carray 1 ' name' »
' name ' Carray 1 »

STO/ computes the quotient of two numbers or arrays. One object is
taken from the stack, and the other is the contents of a variable speci-
fied by a name. The resulting quotient is stored as the new value of
the variable.

3: Dictionary 311

--.STORE

The result depends on the order of the arguments:

B If name is in level 1, the quotient
(value in level 2)/(value in name)
becomes the new value of name.
B If name is in level 2, the quotient
(value in name)/(value in level 1)

becomes the new value in name.

The object on the stack and the object in the variable must be suitable
for division with each other. In particular, if both objects are arrays,
the divisor (level 1) must be a square matrix, and the dividend (level
2) must have the same number of columns as the divisor.

SNEG Store Negate Command
Level 1
' name ' »

SNEG negates the contents of the variable named on the stack; the
result replaces the original contents of the variable. The variable may
contain a real number, a complex number, or an array.

SINV Store Invert Command
Level 1
' name"' [

SINV computes the inverse of the contents of the variable named on
the stack; the result replaces the original contents of the variable. The
variable may contain a real number, a complex number, or a square
matrix.

312 3: Dictionary

--.STORE

SCONJ

SCONJ Store Conjugate Command
Level 1
' name ' »

SCON] conjugates the contents of the variable named on the stack;
the result replaces the original contents of the variable. The variable
may contain a real number, a complex number, or an array.

3: Dictionary 313

STRING

-STR STR- CHR NUM POS DISP
SUB SIZE

A string object consists of a sequence of characters delimited by dou-
ble-quote marks " at either end. Any HP-28C character can be
included in a string, including the object delimiters ¢, », C, 1, ¢, ¥, #,
", ', #, and «. Characters not directly available on the keyboard can
be entered by means of the CHR command.

Although you can include " characters within a string (using CHR
and +), you will not be able to EDIT a string containing a " in the
usual way. This is because ENTER attempts to match pairs of "’s in
the command line—extra "’s within a string will cause the string to
be broken into two or more strings that will contain no "’s.

Strings are used primarily for display purposes—prompting, labeling
results, and so on. The commands included in the STRING menu pro-
vide simple string and character operations. However, the commands
—+STR and STR—~ add an important application for strings—they can
convert any object, or sequence of objects, to and from a character-
string form. In many cases, the string form requires less memory than
the normal form of an object. You can store objects in variables as
strings and convert them to the normal form only when you need
them. See the descriptions of =STR and STR- below for more
information.

314 3: Dictionary

---STRING

Keyboard Function

+ Add Analytic

Level 2 Level 1 Level 1

"' string4 " "string," "string4 string,"

+ concatenates the characters in the string in level 1 to the characters
in the string in level 2, producing a string result.

-STR STR- CHR NUM POS DISP

-STR Object to String Command
Level 1 Level 1
obj » "string"

-STR converts an arbitrary object to a string form. The string is es-
sentially the same as the display form of the object that you would
obtain when the object is in level 1, and multi-line display mode is
active:

B The result string includes the entire object, even if the displayed
form of the object is too large to fit in the display.

B If the object is displayed in two or more lines, the result string will
contain newline characters (character 10) at the end of each line.
The newlines are displayed as the default character =.

3: Dictionary 315

- STRING

B Numbers are converted to strings according to the current number
display mode (STD, FIX, SCI, or ENG) or binary integer base (DEC,
BIN, OCT, or HEX) and wordsize. The full-precision internal form
of the number is not necessarily represented in the result string.
You can insure that +STR preserves the full precision of a number
by selecting STD mode or a wordsize of 64 bits, or both, prior to
executing -STR.

B [f the object is already a string, »=STR returns the string.

You can use ~STR to create special displays to label program output
or provide prompts for input. For example, the sequence

"Result = " SWAP »STR + 1 DISP

displays Result = object in line 1 of the display, where object is a
string form of an object taken from level 1.

STR- String to Objects Command
Level 1
“string" ®»

STR~ is a command form of ENTER. The characters in the string ar-
gument are parsed and evaluated as contents of the command line.
The string may define a single object, or it may be a series of objects
that will be evaluated just like a program.

STR— can also be used to restore objects that were converted to
strings by =STR back to their original form. The combination -STR
STR~ leaves objects unchanged except that =STR converts numbers
to strings according to the current number display format and binary
integer base and wordsize. STR— will reproduce a number only to the
precision represented in the string form.

316 3: Dictionary

---STRING

CHR Character Command
Level 1 Level 1
n » 'string"

CHR returns a one-character string containing the HP-28C character
corresponding to the character code n taken from level 1. The default
character = is used for all character codes that are not part of the
normal HP-28C display character set.

Character code 0 is used for special purposes in the command line.
You can include this character in strings by using CHR, but attempt-
ing to edit a string containing this character causes the

Can't Edit CHR{@> error.

NUM Character Number Command
Level 1 Level 1
"string" n

NUM returns the character code of the first character in a string.

The following table shows the relation between character codes (re-
sults of NUM, arguments to CHR) and characters (results of CHR,
arguments to NUM). For character codes 0 through 147, the table

shows the characters as displayed in a string. For character codes 148
through 255, the table shows the characters as printed by the HP

82240A printer; these characters are displayed on the HP-28C as the
default character =.

3: Dictionary 317

- STRING

Character Codes (0-127)

NUM CHR | NUM CHR | NUM CHR | NUM CHR
a . 32 54 B 95
1 . 23] 63 f 37 a
2 . 34 » 66 B 95 b
3 . 35 % 67 . 99 ¢
4 . 3% 63 D 188 d
5 s 77 % 9 E 181 =
& = 33 % 78 F 182§
7 . 33 710G 183 g
g . 48 72 H 184 h
3 . 41 7301 185 i
18 = 42 74 196
11 = 43+ 75K 187k
12 = 44 7L 183 1
13 = 45 - W 159 m
14 = 46 . 3N 1@ n
15 = 47 730 111 o
16 = 43 B g P 112 p
i7 . 49 1 g1 X} 112 3
13 = 58 2 22 R 114 r
19 - 51 3 83 3 115 s
Pt I 52 4 34 T 116+
21 = 53 5 8 U 117w
2 . 54 6 3 ¥ 118 v
23 = 55 7 87 W 119w
24 . 56 3 28 128 x
25 » 57 9 LR 121y
2% . 58 EL 122z
27 . 59 ; ERNI 123
23 . 68 < ECEE 124 |
29 - 61 = S 125 3
8 . 62 > E 126~
31 - 63 ? EE 127 %

318 3: Dictionary

Character Codes (128-255)

-.STRING

NUM CHR | NUM CHR | NUM CHR | NUM CHR
28 e« 192 3 224 A
129 = 161 A 193 & 225 &
138 x 62 A 194 3 226 %
31 I 163 £ 195 3 227 il
32 J 164 £ 1986 a 228 d
133 T 1635 E 197 é 229 i
134 » 166t 198 3 228t
135 1 167 i 199 4 231 6
136 a 168 ’ 288 E] 232]
137 < 169 281 & 233 »
123 a 17 ° 282 5 234 3
129 2 171 283 O 235 &
149 vz~ 284 a 236§
141 173 o 283 & 237 0
147 174 @ 26 5 238 @
143 o 175 £ 287 O 239§
144 4 176~ 288 A 248 P
145 =® 7y 9 289 1 241 p
145« 178 g 218 @ 242
147 3 179 ° 211 E 243 u
142 F lgs © 212 & 244 4
149 181 ¢ 213 | 245 %
158 2 132] 214 # 246 -
151 2 183 i 213 * 247 %
152 3 184 i 216 A 243 %
153 1835 i 217 i 249 2
154 i 186 i 213 0 258 2
155 . a7 £ 219 v] 25 %
156 : ig8 ¥ 228 £ 252 []
157 4 189 & 221 1 253 3
158 k 138 ¥ 222 B 254 :
159 n 191 t 223 4 255

3: Dictionary

319

---STRING

POS Position Command

Level 2 Level 1 Level 1

" string " "string," n

POS returns a real number n that is the position of string, within
string;. The position is the character position, counting from the left,
of the first character of the substring within string; that matches
string,. A zero result indicates that string, is not matched within
stringy.

DISP Display Command

Level 2 Level 1

obj n »

DISP displays obj in the nth line of the display, where n is a real

integer. n = 1 indicates the top line of the display; n = 4 indicates
the bottom line. DISP sets the system message flag to suppress the
normal stack display.

Strings are displayed without the surrounding " delimiters. Other ob-
jects are displayed in the same form as they are in level 1 in multi-
line display mode. If the object display requires more than one
display line, the display starts in line n and continues down the dis-
play, either to the end of the object or the bottom of the display.

320 3: Dictionary

..STRING

SUB SIZE
SUB Subset Command
Level 3 Level 2 Level 1 Level 1
"string4 " nq ny » "string,"
i /ist1 ¥ n1 n2 » { /istz H

SUB takes a string and two integer numbers 7, and n, from the stack,
and returns a new string containing the characters in positions 1,
through 1, of the original string. If n, < n;, SUB returns an empty
string.

Arguments less than 1 are converted to 1; arguments greater than the
size of the string are converted to the string size.

Refer to “LIST” for the use of SUB with lists.

SIZE Size Command
Level 1 Level 1
"string" ®» n
Carrayl » {list ¥
i list ¥ » n
‘symb' ®» n

SIZE returns a number n that is the number of characters in a string.

Refer to “ALGEBRA”, “ARRAY” and “LIST” for the use of SIZE with
other object types.

3: Dictionary 321

TRIG

SIN ASIN CcOoSs ACOS TAN ATAN
P-R R-P R-C C-R ARG
-HMS HMS- HMS + HMS — D-R R-D

The TRIG (trigonometry) menu contains commands related to angular
measurement and trigonometry: circular functions, polar/rectangular
conversions, degrees/radians conversions, and calculations with val-
ues expressed in degrees-minutes-seconds or hours-minutes-seconds
form.

SIN ASIN COS ACOS TAN ATAN

These are the circular functions and their inverses. SIN, COS and
TAN interpret real arguments according to the current angle mode
(DEG or RAD), returning real results. ACOS, ASIN, and ATAN ex-
press real results according to the current angle mode.

All six functions accept complex arguments, producing complex re-
sults. For ACOS and ASIN, real arguments with absolute value
greater than 1 also produce complex results. Complex numbers are
interpreted and expressed in radians.

ASIN, ACOS, and ATAN return the principal values of the inverse
relations, as described in “COMPLEX.”

322 3: Dictionary

--.TRIG

SIN Sine Analytic
Level 1 Level 1
z [] sin z
'symb' » "SINCsymby '

SIN returns the sine of its argument. For complex arguments,

sin (x + iy) = sin x cosh y + i cos x sinh y.

ASIN Arc sine Analytic
Level 1 Level 1
z » arc sin z
'symb' » '"ASINCsymb> "'

ASIN returns the principal value of the angle having a sine equal to
its argument. For real arguments, the range of the result is from —90
to +90 degrees (—7/2 to += /2 radians). For complex arguments, the
complex principal value of the arc sine is returned:

arc sin z = —iln (iz + V1 —2?)
A real argument x outside of the domain —1 < x <1 is converted to

a complex argument z = x + 0i, and the complex principal value is
returned.

3: Dictionary 323

- TRIG

COS Cosine Analytic
Level 1 Level 1
z » cos z
'symb' » 'COSCsymby !

COS returns the cosine of its argument. For complex arguments,

cos (x + iy) = cos x cosh y — i sin x sinh y

ACOS Arc cosine Analytic
Level 1 Level 1
z » arc cos z
'symb' » '"ASIHCsymb» '

ACOS returns the principal value of the angle having a cosine equal
to its argument. For real arguments, the range of the result is from 0
to 180 degrees (0 to = radians). For complex arguments, ACOS re-
turns the complex principal value of the arc cosine:

arc cos z = —iln (z+ \z2—1)

A real argument x outside of the domain —1 < x < 1 is converted to
a complex argument z = x + 0i, and the complex principal value is
returned.

324 3: Dictionary

.. TRIG

TAN Tangent Analytic
Level 1 Level 1
z » tan z
'symb' » 'TAM Csymb !

TAN returns the tangent of its argument. For complex arguments,

sin x cos x + i sinh y cosh y
(sinh y)2 + (cos x)?

tan(x + iy) =

If a real argument is an odd integer multiple of 90, and if DEG angle
mode is set, an Infinite Result exception occurs. If flag 59 is
clear, the sign of the (MAXR) result is that of the argument.

ATAN Arc tangent Analytic
Level 1 Level 1
z » arc tan z
'symb' » "ATANCsymb> '

ATAN returns the principal value of the angle having a tangent equal
to its argument. For real arguments, the range of the result is from
—90 to +90 degrees (—m/2 to +m/2 radians). For complex argu-
ments, ATAN returns the complex principal value of the arc tangent:

i <i+z>
arctanz = — In |——
z i— z

3: Dictionary 325

- TRIG

P-R R-P R-C C-R ARG

The functions P=R (polar-to-rectangular), R~P (rectangular-to-polar),
and ARG (argument) deal with complex numbers that represent the
coordinates of points in two dimensions. R+C (real-to-complex) and
C-R (complex-to-real) convert pairs of real numbers to and from com-
plex notation.

The functions P=R and R-P can also act on the first two elements of
a real vector.

P-R Polar to Rectangular Function
Level 1 Level 1
X » ix, 83
Cr.f » CX,)3
Cré6...1m» C x y...]
'symb' » 'P+*RCsymb: !

P—R converts a complex number (7, §) or two-element vector [r 6],
representing polar coordinates, to a complex number (x,) or two-ele-
ment vector [x y], representing rectangular coordinates, where:

x =rcosf, y = rsin.

The current angle mode determines whether 6 is interpreted as de-
grees or radians.

If a vector has more than two elements, P=R converts the first two
elements and leaves the remaining elements unchanged. For three-
element vectors, P»R converts a vector [p 0 z] from cylindrical
coordinates (where p is the distance to the z-axis, and # is the angle in
the xy-plane from the x-axis to the projected vector) to the vector
[*yz] in rectangular coordinates.

326 3: Dictionary

.. TRIG

You can represent a vector in spherical coordinates as [7 ¢ 6], where r
is the length of the vector, ¢ is the angle from the z-axis to the vector,
and ¢ is the angle in the xy-plane from the x-axis to the projected
vector. To convert a vector from spherical to rectangular coordinates,
execute:

F+R ARRY+ DROP ROT {3} *ARRY P3*R

R-P Rectangular-to-Polar Function
Level 1 Level 1
z » Cr.02
C xy...1m» Cro..13
'symb' ® "R+*P{symby '

R-P converts a complex number (x, y) or two-element vector [x v],
representing rectangular coordinates, to a complex number (r, /) or
two-element vector [r § |, representing polar coordinates, where:

r=abs (x,y), 0 = arg (x, y)

The current angle mode determines whether 6 is expressed as degrees

or radians. A real argument x is treated as the complex argument
(x, 0).

3: Dictionary 327

.. TRIG

If a vector has more than two elements, R+P converts the first two
elements and leaves the remaining elements unchanged. For three-
element vectors, R+P converts a vector [x y z | from rectangular
coordinates to a vector [p 6 z] in cylindrical coordinates, where p is
the distance to the z-axis, and 0 is the angle in the xy-plane from the
x-axis to the projected vector.

You can represent a vector in spherical coordinates as [7 ¢ 6], where r
is the length of the vector, ¢ is the angle from the z-axis to the vector,
and 0 is the angle in the xy-plane from the x-axis to the projected
vector. To convert a vector from rectangular to spherical coordinates,
execute:

R+P ARRY> DROP ROT ROT {3 *ARRY R=2*P

R-C Real to Complex Command
Level 2 Level 1 Level 1
X y » CX,y2

R—+C combines real numbers x and y into a coordinate pair (x, y).

Refer to “ARRAY” for the use of R+C with arrays.

C-R Complex to Real Command
Level 1 Level 2 Level 1
X,y » X y

C-R converts a coordinate pair (x, y) into two real numbers x and y.

Refer to “ARRAY” for the use of C»R with arrays.

328 3: Dictionary

--.TRIG

ARG Argument Function
Level 1 Level 1
z » 0
'symb' » '"ARG Csymb '

ARG returns the polar angle 6 of a coordinate pair (x, y) where
arc tan y/x for x = 0,
0 = § arc tan y/x + w sign y for x < 0, radians mode,
arc tan y/x + 180 sign y for x < 0, degrees mode.
The current angle mode determines whether 6 is expressed as degrees

or radians. A real argument x is treated as the complex argument
(x, 0).

-HMS HMS- HMS+ HMS- D-R R-D
The commands -HMS, HMS-, HMS+, and HMS— deal with time

(or angular) quantities expressed by real numbers in HMS (hours-min-
utes-seconds) format.

3: Dictionary 329

--.TRIG

The HMS format is h.MMSSs, where:

B /1 is zero or more digits representing the integer part of the number.
B MM are two digits representing the number of minutes.
B SS are two digits representing the number of seconds.

B 5 is zero or more digits representing the decimal fractional part of
seconds.

Here are examples of time (or angular) quantities expressed in HMS
format.

Quantity HMS Format
12h 32m 46s (12° 32’ 46”) 12.3246
—6h 00m 13.2s (—6° 00’ 13.2”) | —6.00132
36m (367) 0.36
-HMS Decimal to H-M-S Command
Level 1 Level 1
X » hms

~HMS converts a real number representing decimal hours (or de-
grees) to HMS format.

HMS- H-M-S to Decimal Command
Level 1 Level 1
hms » X

HMS— converts a real number in HMS format to its decimal form.

330 3: Dictionary

- TRIG

HMS + Hours-Minutes-Seconds Plus Command
Level 2 Level 1 Level 1
hms4 hms, » hmsq{ + hmsy

HMS+ adds two numbers in HMS format, returning the sum in HMS
format.

HMS — Hours-Minutes-Seconds Minus Command
Level 2 Level 1 Level 1
hms,4 hmso » hmsy — hms,

HMS — subtracts two real numbers in HMS format, returning the dif-
ference in HMS format.

D-R Degrees to Radians Function
Level 1 Level 1
X » (r/180) x
‘symb' '‘O+Rcsymb> !

D-R converts a real number expressed in degrees to radians.

R-D Radians to Degrees Function
Level 1 Level 1
X » (180/x) x
'symb' ® 'R*Disymby '

R-D converts a real number expressed in radians to degrees.

3: Dictionary 331

UNITS

The value of a physical measurement includes units as well as a nu-
merical value. To convert a physical measurement from one system of
units to another, you multiply the numerical value by a conversion
factor, which is the ratio of the new units to the old units. The
HP-28C automates this process through the command CONVERT.
You specify a numerical value, the old units, and the new units, and
then CONVERT computes the appropriate conversion factor and mul-
tiplies the numerical value by the conversion factor.

The HP-28C’s unit conversion system is based upon the International
System of Units (SI). There are 120 units included in the HP-28C’s
permanent memory. CONVERT recognizes any multiplicative com-
bination of these units, as well as additional units that you can define.
The UNITS catalog lists the built-in units and their values in terms of
standard base quantities.

The International System specifies seven base quantities: length (me-
ter), mass (kilogram), time (second), electric current (ampere),
thermodynamic temperature (kelvin), luminous intensity (candela),
and amount of substance (mole). In addition, the HP-28C recognizes
one undefined base quantity, which you may specify as part of user-
defined units.

CONVERT Convert Command
Level 3 Level 2 Level 1 Level 2 Level 1
X " o/dll Ilnewll . y llnew "
X "old" 'new' » y "new'
X ‘old' "new" » y "new"
X ‘old' "new ' » y "new'
332 3: Dictionary

--.UNITS

CONVERT multiplies a real number x by a conversion factor, which is
computed from two arguments representing old and new units. The
resulting real number y is returned to level 2, and the new unit string
is returned to level 1.

Generally the old and new units are represented by string objects, as
described below. For convenience in simple conversions, however,
you can use a name object to represent a unit. For example, assuming
you haven'’t created variables named ‘ft’ or ‘m’, you could convert 320
feet to meters by executing;:

328 ft m CONVERT.

The unit strings are string objects that represent algebraic expressions
containing unit abbreviations. A unit string may contain:

B Any built-in or user-defined units. Built-in units are represented by
their abbreviations (refer to “The UNITS Catalog”). User units are
represented by their variable names (refer to “User-Defined Units”).

B A unit followed by the ~ symbol, plus a single digit 1-9. For exam-
ple: "m™~2" (meters squared), "g#¥s"3" (gram-seconds cubed).

B A unit preceded by a prefix representing a multiplicative power of
10. For example: "Mpc" (Megaparsec), "nm" (nanometer). (Refer to
“Unit Prefixes”).

B Two or more units multiplied together, using the * symbol. For ex-
ample: "g¥cm" (gram-centimeters), "f t#1b" (foot-pounds),
"m¥ka¥s" (meter-kilogram-seconds).

B One / symbol to indicate inverse powers of units. If all units in a
unit string have inverse powers, the unit string can start with
"1,". For example: "m sec" (meters per second), "1-m" (inverse
meters), "g¥cmss"2%° K" (gram-centimeters per second squared
per degree Kelvin).

B The ' symbol, which is ignored. This allows you to create an alge-
braic expression on the stack and then use »STR to change the
expression to a unit string. However, parentheses are not allowed
in unit strings.

3: Dictionary 333

-:UNITS

The two unit strings must represent a dimensionally consistent unit
conversion. For example, you can convert "1" (liters) to "cm"3" (cu-
bic centimeters), but not to "acre". CONVERT checks that the
powers of each of the eight base quantities (seven SI base quantities
plus one user-defined base quantity) are the same in both unit strings.
(Dimensionality consistency is checked in modulo 256.)

Here are some examples of using CONVERT (numbers shown in STD
format):

Old Oid New New New
Value Units Units Value Units
1 "mt R 2 » 3.28083989501 BRI
1 Hb*mp‘cll Ilcma\Ell . 3085678 Ilcmr’usll
12.345 "kg¥msos~2" "dun" » 18585 "dun"

Temperature Conversions

Conversions between the four temperature scales (°K, °C, °F, and °R)
involve additive constants as well as multiplicative factors. If both
unit string arguments contain only a single, unprefixed temperature
unit with no exponent, CONVERT performs an absolute temperature
scale conversion, including the additive constants. For example, to

convert 50 degrees Fahrenheit to degrees Celsius, execute:

58 "F °C CONVERT

If either unit string includes a prefix, an exponent, or any unit other
than a temperature unit, CONVERT performs a relative temperature
unit conversion, which ignores the additive constants.

334 3: Dictionary

--.UNITS

The UNITS Catalog

Pressing [(UNITS] activates the UNITS catalog, which is analogous to
the command catalog obtained with @(CATALOG]. The UNITS catalog
lists each unit included in the HP-28C, along with the abbreviation
recognized by CONVERT and the value of the unit in terms of the SI
base quantities.

When you press [[UNITS], the normal HP-28C display is superceded
by the UNITS display:

P

m~z
[MEXT [FREY [ZCAM] [FETCH

The top line shows the unit abbreviation of the selected unit, in this
example a, followed by the full name, are. Are is the first unit in
the HP-28C alphabetical unit catalog. The second line shows the
unit’s value in SI base units, which are shown in the third line. Alto-
gether, this display shows that ar e is abbreviated a and has the value
100 meters squared.

3: Dictionary 335

-:UNITS

The UNITS menu is shown in the bottom line. The five active menu
keys act as follows:

Menu Key Description

Advance the catalog to the next unit in the catalog.

Move the catalog to the previous unit in the catalog.

Scan forward through the unit catalog, showing each unit's

name briefly. Pressing changes the menu label to
S ; pressing halts the scan at the current unit.
The scan stops automatically at the last unit in the catalog
(the unit “17).

Exit the catalog and add the current unit abbreviation to the
command line at the cursor position (start a new command
line if none is present).

Exit the catalog, leaving any current command line
unchanged.

In addition to the operations available in the UNITS menu, you can:
B Press any letter key to move the catalog to the first unit that starts
with that letter.

B Press any non-letter key on the left-hand keyboard to move the
catalog to “°”, the first non-alphabetic unit.

B Press (1] to move the catalog display to “1”, the last non-alphabeti-
cal unit.

B Press to exit the catalog and clear the command line.

The following table shows all the units in the UNITS catalog, includ-
ing descriptions of the units.

336 3: Dictionary

HP-28C Units

--.UNITS

Unit Full Name Description Value

a Are Area 100 m~2

A Ampere Electric current 1A

acre Acre Area 4046.87260987 m"2

arcmin | Minute of arc Plane angle 2.90888208666E —4

arcs Second of arc Plane angle 4.8481368111E—6

atm Atmosphere Pressure 101325 Kg/m*s~2

au Astronomical unit Length 149597900000 m

A° Angstrom Length .0000000001 m

b Barn Area 1.E—28 m™2

bar Bar Pressure 100000 Kg/m*s"2

bbl Barrel, oil Volume .158987294928 m~3

Bqg Becquerel Activity 11/s

Btu International Table Btu | Energy 1055.05585262
Kgkm»2/s"2

bu Bushel Volume .03523907 m~3

C Coulomb Electric charge 1 Aks

cal International Table Energy 4.1868 Kg*m"2/s"2

calorie

cd Candela Luminous intensity 1cd

chain Chain Length 20.1168402337 m

Ci Curie Activity 3.7E10 1/s

ct Carat Mass .0002 Kg

cu US cup Volume 2.365882365E—4
m”3

d Day Time 86400 s

dyn Dyne Force .00001 Kg*m/s"2

erg Erg Energy .0000001
Kg*m~2/s"2

3: Dictionary 337

-.UNITS

HP-28C Units (Continued)

Unit Full Name Description Value

eV Electron volt Energy 1.60219E—19
Kgxm~2/s"2

F Farad Capacitance 1 A*2%s™4/Kgkm”2

fath Fathom Length 1.82880365761 m

fom Board foot Volume .002359737216 m"3

fc Footcandle Luminance 10.7639104167
cd/m"2

Fdy Faraday Electric charge 96487 Aks

fermi Fermi Length 1E-156m

flam Footlambert Luminance 3.42625909964
cd/m”2

ft International foot Length 3048 m

ftuS Survey foot Length 304800609601 m

g Gram Mass .001 Kg

ga Standard freefall Acceleration 9.80665 m/s"2

gal US gallon Volume .003785411784 m"3

galC Canadian gallon Volume .00454609 m"3

galuK UK gallon Volume .004546092 m”3

gf Gram-force Force .00980665 Kg*m/s*2

grad Grade Plane angle 1.57079632679E —2

grain Grain Mass .00006479891 Kg

Gy Gray Absorbed dose 1 m™2/s"2

Hour Time 3600 s

H Henry Inductance 1 Kgxm"2/A*2%s"2

hp Horsepower Power 745.699871582
Kg*xm~2/s*3

Hz Hertz Frequency 11/s

338 3: Dictionary

HP-28C Units (Continued)

--.UNITS

Unit Full Name Description Value

in Inch Length .0254 m

inHg Inches of mercury Pressure 3386.38815789
Kg/m*s”2

inH20 Inches of water Pressure 248.84 Kg/m*s”2

J Joule Energy 1 Kg*xm~2/s"2

kip Kilopound-force Force 4448.22161526
Kgkm/s*2

knot Knot Speed 514444444444 m(s

kph Kilometer per hour Speed 277777777778 m/s

| Liter Volume .001 m"3

lam Lambert Luminance 3183.09886184
cd/m"2

Ib Avoirdupois pound Mass 45359237 Kg

Ibf Pound-force Force 4.44822161526
Kgkm/s"2

Ibt Troy Ib Mass 3732417 Kg

Im Lumen Luminance flux 1cd

Ix Lux llluminance 1 cd/m”2

lyr Light year Length 9.46055E15 m

m Meter Length 1m

mho Mho Electric conductance 1 A*2%s"3/Kgkxm"2

mi International mile Length 1609.344 m

mil Mil Length .0000254 m

min Minute Time 60 s

miuS US statute mile Length 1609.34721869 m

mmHg | Millimeter of mercury Pressure 133.322368421
Kg/mxs*2

mol Mole Amount of substance 1 mol

3: Dictionary

339

-UNITS

HP-28C Units (Continued)

Unit Full Name Description Value
mph Miles per hour Speed 44704 m/s
N Newton Force 1 Kg*m/s*2
nmi Nautical mile Length 1852 m
ohm Ohm Electric resistance 1 Kg*km"2/A*2%s™3
0z Ounce Mass .028349523125 Kg
ozfl US fluid oz Volume 2.95735295625E -5
m~3
ozt Troy oz Mass .031103475 Kg
ozUK UK fluid oz Volume .000028413075 m”3
P Poise Dynamic viscosity .1 Kg/mxs
Pa Pascal Pressure 1 Kg/mxs”2
pc Parsec Length 3.08567818585E16 m
pdl Poundal Force .138254954376
Kgxm/s"2
ph Phot Luminance 10000 cd/m~2
pk Peck Volume .0088097675 m"3
psi Pounds per square Pressure 6894.75729317
inch Kg/m*s”2
pt Pint Volume .000473176473 m"3
qt Quart Volume .000946352946 m"3
r Radian Plane angle 1
R Roentgen Radiation exposure .000258 Axs/Kg
rad Rad Absorbed dose .01 m~2/s™2
rd Rod Length 5.02921005842 m
rem Rem Dose equivalent .01 m"2/s"2
S Second Time 1s
S Siemens Electric conductance 1 A"2%s”3/Kgkm~2
sb Stilb Luminance 10000 cd/m*2
340 3: Dictionary

HP-28C Units (Continued)

--.UNITS

Unit Full Name Description Value

slug Slug Mass 14.5939029372 Kg

sr Steradian Solid angle 1

st Stere Volume 1 m™3

St Stokes Kinematic viscosity .0001 m"2/s

Sv Sievert Dose equivalant 1 m"2/s"2

t Metric ton Mass 1000 Kg

T Tesla Magnetic flux 1 Kg/A%s™2

tbsp Tablespoon Volume 1.47867647813E—5
m”3

therm EEC therm Energy 105506000
Kgxm~*2/s"2

ton Short ton Mass 907.18474 Kg

tonUK Long ton Mass 1016.0469088 Kg

torr Torr Pressure 133.322368421
Kg/mxs"2

tsp Teaspoon Volume 4.92892159375E -6
m~3

u Unified atomic mass Mass 1.66057E—27 Kg

\Y Volt Electric potential 1 Kgxm"2/A%xs"3

W Watt Power 1 Kg*m~2/s"3

Wb Weber Magnetic flux 1 Kgxm"2/A%xs"2

yd International yard Length 9144 m

yr Year Time 31536000 s

© Degree Angle 1.74532925199E -2

°C Degree Celsius Temperature 1 °K

°F Degree Fahrenheit Temperature .555555555556 °K

°K Degree Kelvin Temperature 1°K

3: Dictionary 341

IIIUNlTs

HP-28C Units (Continued)

Unit Full Name Description Value

°R Degree Rankine Temperature .555555555556 °K
Micron Length .000001 m
User quantity 12

1 Dimensionless unit 1

Sources: The National Bureau of Standards Special Publication 330,
The International System of Units (SI), Fourth Edition, Washington D.C.,
1981.

The Institute of Electrical and Electronics Engineers, Inc., American
National Standard Metric Practice ANSI/IEEE Std. 268-1982, New York,
1982.

American Society for Testing and Materials, ASTM Standard for Metric
Practice E380-84, Philadelphia, 1984.

Aerospace Industries Association of America, Inc., National Aerospace
Standard, Washington D.C., 1977.

Handbook of Chemistry and Physics, 64th Edition, 1983-1984, CRC Press,
Inc., Boca Raton, FL, 1983.

342 3: Dictionary

--.UNITS

User-Defined Units

You can create a variable containing a list that CONVERT will accept
as a user-defined unit in a unit string. The list must contain a real
number and a unit string (similar to the second and third lines in the
UNITS display). For example, suppose you often use weeks as a unit
of time. Executing

{7 "d"y '"WK' STO

allows you to use "WK" in conversions or in creating more compli-
cated user-defined units.

The user defined unit string can contain any element of a conversion
unit string, along with two other special units:

B To define a dimensionless unit, specify a unit string "1".

B To define a new unit not expressible in SI units, specify a unit
string " ?". CONVERT will check dimensionality for this unit along
with the SI units. For example, to convert money in three curren-
cies, dollars, pounds, and francs, define:

i1 "2ty 'DOLLAR' STO
{2.2% "?"y 'POUND' STO
.4 "?"y 'FRAMC' STO

and then convert between any two of these currencies (the values
chosen are just for illustration).

Unit Prefixes
In a unit string you can precede a built-in unit by a prefix indicating a

power of ten. For example, "mm" indicates “millimeter”, or meter X
1073, The table below lists the prefixes recognized by CONVERT.

3: Dictionary 343

-:UNITS

Unit Prefixes

Prefix | Name | Exponent
E exa +18
P peta +15
T tera +12
G giga +9
M mega +6
k or K | kilo +3
h or H | hecto +2
D deka +1

d deci -1

c centi -2
m milli -3
u micro —6
n nano -9
p pico —12
f femto —15
a atto —18

Most prefixes used by the HP-28C correspond with standard SI nota-
tion. The one exception is “deka”, indicating an exponent of +1,
which is “D” in HP-28C notation and “da” in SI notation.

344 3: Dictionary

--.UNITS

o

Note

You can’t use a prefix with a unit if the resulting com-
bination would match a built-in unit. For example, you
can’t use "min" to indicate milli-inches because "mimn"
is a built-in unit indicating minutes. Other possible com-

binations that would match built-in units are: "Fa", "cd", " Fh',
Ilflamll’ "nmi", llmph"/ "kph"/ Ilctll/ Ilptll, Ilftlll "al..J", and

"Cu".

Although you can’t use a prefix with a user-defined unit, you can
create a new user-defined unit whose name includes the prefix

character.

3: Dictionary 345

USER

ORDER CLUSR MEM

The USER menu contains, in addition to the three “permanent” en-
tries ORDER, CLUSR, and MEM, an entry for each current user
variable. User variables appear first in the menu, starting at the left
with the most recently created variable. If there are more than six user
variables, [USER] activates the first six; each press of [NEXT] activates a
successive group of six. [IFUE , and | appear when

is pressed while the last group of user variables is displayed, or
when [[PREV] is pressed while the first group is active.

Pressing a USER menu key corresponding to a variable causes the as-
sociated variable name to be evaluated in immediate entry mode, or
appended to the command line in algebraic or alpha entry mode.

The menu-key labels are derived from the user variable names. A la-
bel will show the leading characters from the corresponding variable
name, as many as will fit in the label display, up to five characters. A
variable name may contain lower-case letters, but these will appear as
upper case in the menu label.

ORDER CLUSR MEM

ORDER Order Command

Level 1

{namey namey, ... ¥ ®

346 3: Dictionary

-.USER

ORDER takes a list of variable names, and rearranges variable mem-
ory so that the variables will appear in the user menu in the same
order as specified in the list. Those variables named in the list are
moved to the start of the user menu. Variables not in the list remain
in their current order, following the variables named in the list.

CLUSR Clear User Memory Command

»

CLUSR purges all current variables. To prevent accidental execution,
pressing EHIER always executes ENTER and puts CLUSR in the com-
mand line. Then you can press [ENTER] to execute CLUSR.

MEM Memory Command

Level 1

» X

MEM returns the number of bytes of currently unused memory. The
number returned by MEM should be used only as a rough indicator
of available memory, since the amount of memory used by the calcu-
lator can vary depending on current and pending operations that may
not be directly visible. The recovery mechanisms associated with
@(covmanD], [(unDo], and (LAST], for example, can consume or
release substantial amounts of memory when any operations are
executed.

3: Dictionary 347

A

Messages

This appendix lists all error and status messages given by the
HP-28C. Messages are normally displayed in display line 1 and disap-
pear at the next keystroke. (Solver qualifying messages are shown in
line 2.)

Messages noted as status messages are for your information, and do
not indicate error conditions. Messages noted as math exceptions will
not appear if the corresponding exception error flag is clear. (Math
exceptions are described in “Fundamentals.”)

Messages Listed Alphabetically

Error Number

Message Meaning
Hex Decimal
Bad Argument Type 202 514 A command required a
different argument object
type.
Bad Argument Value 203 515 An argument value was

out of the range of oper-
ation of a command.

Bad Guess(es) A01 2561 The guess or guesses
supplied to the Solver or
ROOT caused invalid re-
sults when the current
equation was evaluated.

Can’t Edit CHR(0) 102 258 An attempt was made to
edit a string containing
character 0.

A: Messages 349

Messages Listed Alphabetically (Continued)

Message

Error Number

Meaning

Circular Reference

Command Stack
Disabled

Constant?

Constant Equation

Extremum

HALT not Allowed

Improper User Function

Inconsistent Units

Hex Decimal
129 297

125 293

A02 2562
Status

Status

121 289

103 259

B02 2818

An attempt was made to
store an object in a vari-
able, using the Solver
menu, when the object
refers to the variable di-
rectly or indirectly.

@ (COMMAND] was
pressed while COM-

MAND was disabled.

The current equation re-
turned the same value at
every point sampled by
the root-finder.

The current equation re-
turned the same value for
every point within the
specified range sampled
by DRAW.

The result returned by
the Solver is an extre-
mum rather than a root.

DRAW or the Solver en-
countered a HALT
command in the program
EQ.

An attempt was made to
evaluate an improper
user-defined function.
Refer to “Programs” for
correct syntax.

CONVERT was executed
with unit strings of differ-
ent dimensionality.

350 A: Messages

Messages Listed Alphabetically (Continued)

Error Number

Hex Decimal

Meaning

Infinite Result

Insufficient Memory

Insufficient 2 Data

Interrupted

Invalid Dimension

Invalid PPAR

Invalid Unit String

Invalid ZDAT

Invalid ZPAR

LAST Disabled

Low Memory!

305 773

001 001

603 1539

Status

501 1281

11E 286

BO1 2817

601 1537

604 1540

205 517

Status

Math exception. A cal-
culation returned an
infinite result, such as
1/0 or LN(O).

There was not enough
free memory to execute
an operation.

A statistics command
was executed when
ZDAT did not contain
enough data points for
the calculation.

The Solver was inter-
rupted by the key.

An array argument had
the wrong dimensionality.

DRAW or DRWZ encoun-
tered an invalid entry in
PPAR.

CONVERT was executed
with an invalid unit string.

A statistics command

was executed with an
invalid object stored in
ZDAT.

2PAR is the wrong object
type or contains an
invalid or missing entry in
its list.

LAST was executed with
flag 31 clear.

Indicates fewer than 128
bytes of free memory
remain.

A: Messages 351

Messages Listed Alphabetically (Continued)

Message

Error Number

Decimal

Meaning

Memory Lost

Negative Underflow

No Current Equation

Nonexistent ZDAT

Non-real Result

No Room for UNDO

No Room to ENTER

No Room to Show Stack

name4 Not in Equation

005

302

104

602

11F

101

105

Status

Status

005

770

260

1538

287

257

261

HP-28C memory has
been reset.

Math exception. A cal-
culation returned a
negative, non-zero result
greater than —MINR.

SOLVR or DRAW was
executed with a nonexis-
tent variable EQ.

A statistics command
was executed with a non-
existent variable ZDAT.

A procedure returned a
result other than a real
number, which was re-
quired for the Solver,
ROOT, DRAW, or |.

There was not enough
free memory to save a
copy of the stack. UNDO
is automatically disabled.

There was not enough
memory to process the
command line. :

There is not enough
memory for the normal
stack display.

DRAW was executed
when the independent
variable name; in PPAR
did not exist in the cur-
rent equation. This
message is followed by
either Constant Equa-
tion or Using name,.

352 A: Messages

Messages Listed Alphabetically (Continued)

Message

Error Number

Hex

Decimal

Out of Memory

Overflow

Positive Underflow

Sign Reversal

Syntax Error

Too Few Arguments

Unable to Isolate

Undefined Local Name

303

301

Status

106

201

120

003

771

769

262

513

288

003

No free memory is avail-
able for continued
calculator operation. You
must purge one or more
objects to continue.

Math exception. A cal-
culation returned a result
greater (in absolute
value) than MAXR.

Math exception. A cal-
culation returned a
positive, non-zero result
less than MINR.

The Solver was unable to
find a point at which the
current equation evalu-
ates to zero, but did find
two neighboring points at
which the equation
changed sign.

An object in the com-
mand line was entered in
an invalid form.

A command required
more arguments than
were available on the
stack.

The specifed name could
not be isolated in the ex-
pression. The name was
either absent or con-
tained in the argument of
a function with no
inverse.

Attempted to evaluate a
local name for which a
corresponding local vari-
able did not exist.

A: Messages 353

Messages Listed Alphabetically (Continued)

Message

Error Number

Hex

Decimal

Undefined Name

Undefined Result

UNDO Disabled

Using name

Wrong Argument Count

Zero

204

304

124

Status

128

Status

516

772

292

296

Attempted to recall the
value of an undefined
(formal) variable.

A function was executed
with arguments that lead
to a mathematically un-
defined result, such as
0/0, or LNP1(x) for
x<—1.

B(uNDO] was pressed
while UNDO was
disabled.

DRAW has selected the
independent variable
name.

A user-defined function
was evaluated in an ex-
pression, with the wrong
number of arguments in
parentheses.

The Solver found a value
for the unknown variable
at which the current

equation evaluated to 0.

354 A: Messages

Error Messages Listed by Error Number

Hex

Decimal

Message

001 001
003 003
005 005
101 257
102 258
103 259
104 260
105 261
106 262
11E 286
11F 287
120 288
121 289
124 292
125 293
128 296
129 297
Errors Resulting
201 513
202 514
203 515
204 516
205 517
Errors Resulting
301 769
302 770
303 771
304 772
305 773

Errors Resulting From General Operations

Insufficient Memory
Undefined Local Name
Memory Lost

No Room for UNDO
Can’t Edit CHR(0)
Improper User Function
No Current Equation
No Room to ENTER
Syntax Error

Invalid PPAR

Non-real Result

Unable to Isolate

HALT not Allowed
UNDO Disabled
Command Stack Disabled
Wrong Argument Count
Circular Reference
From Stack Operations
Too Few Arguments
Bad Argument Type
Bad Argument Value
Undefined Name

LAST Disabled

From Real Number Operations

Positive Underflow
Negative Underflow
Overflow
Undefined Result

Infinite Result

A: Messages

355

Error Messages Listed by Error Number (Continued)

Hex | Decimal Message

Errors Resulting From Array Operations
501 1281 Invalid Dimension

Errors Resulting From Statistics Operations

601 1537 Invalid ZDAT

602 1538 Nonexistent ZDAT

603 1539 Insufficient 2 Data

604 1540 Invalid ZPAR

Errors Resulting From the Root-finder
AO1 2561 Bad Guess(es)

A02 2562 Constant?

Errors Resulting From Unit Conversion
BO1 2817 Invalid Unit String

B02 2818 Inconsistent Units

356 A: Messages

Notes for HP RPN
Calculator Users

Starting with the HP-35 in 1972, Hewlett-Packard has developed a
series of handheld scientific and business calculators based upon the
RPN stack interface. Although there are many differences in the ca-
pabilities and applications of these various calculators, they all share a
common implementation of the basic stack interface, which makes it
easy for a user accustomed to one calculator to learn to use any of the
others.

The HP-28C also uses a stack and RPN logic as the central themes of
its user interface. However, the four-level stack and fixed register
structure of the previous calculators is inadequate to support the mul-
tiple object types and symbolic mathematical capability of the
HP-28C. Thus while the HP-28C is a natural evolution of the “origi-
nal” RPN interface, there are sufficient differences between the
HP-28C and its predecessors to require a little “getting used to” if you
are accustomed to other RPN calculators. In this appendix, we will
highlight the major differences.

The Dynamic Stack

The most dramatic difference in the basic interface of the HP-28C
compared with previous HP RPN calculators is the size of the stack.
The other calculators feature a fixed, four-level stack consisting of the
X-, Y-, Z- and T-registers, augmented by a single LAST X, or L-regis-
ter. This stack is always “full’—even when you “clear” the stack, all
you are doing is filling the stack with zeros.

B: Notes for HP RPN Calculator Users 357

The HP-28C has no fixed size to its stack. As you enter new objects
onto the stack, new levels are dynamically created as they are needed.
When you remove objects from the stack, the stack shrinks, even to
the point where the stack is empty. Thus the HP-28C can generate a
Too Few Arguments error that previous HP RPN calculators could
not.

The dynamic versus fixed stack implementation gives rise to the fol-
lowing specific differences between the HP-28C and fixed-stack
calculators:

Numbered levels. The indefinite size of the HP-28C stack makes
the X Y Z T stack level names inappropriate—instead, the levels are
numbered. Thus level 1 is analogous to the X-register, 2 to Y, 3 to Z,
and 4 to T. The key labels 1/x and x? were preserved on the HP-28C
for the sake of familiarity—they make the keys more visible than
their actual command names INV and SQ, respectively. However, the
RPN fixture X<<>Y has been renamed SWAP on the HP-28C.

Stack Manipulation. The HP-28C requires a more general set of
stack manipulation commands than the fixed-stack calculators. Rt and
R4, for example, are replaced by ROLL and ROLLD, respectively,
each of which require an additional argument to specify how many
stack levels to roll. The STACK menu contains several stack manipu-
lation commands that do not exist on the fixed-stack calculators.

No Automatic Replication of the T-register. On fixed-stack calcu-
lators, the contents of the T-register are duplicated into the Z-register
whenever the stack “drops” (that is, when a number is removed from
the stack). This provides a convenient means for constant multiplica-
tion—you can fill the stack with copies of a constant, then multiply it
by a series of numbers by entering each number, pressing (%], then
after you have recorded each result. You can’t do this on the
HP-28C—but it is easy to create a program of the form

« 12345 % » 'MULT' STO

where 12345 represents a typical constant. Then all you have to do is
press [(USER], enter a number and press [, enter a new number
and press &R again, and so on, to perform constant multiplication.
You can leave successive results on the stack.

358 B: Notes for HP RPN Calculator Users

Stack Memory. A dynamic stack has the advantage that you can use
as many levels as you need for any calculation, without worrying
about losing objects “off the top” as you enter new ones. This also has
the disadvantage that you can tie up a significant amount of memory
with old objects, if you leave them on the stack after you are finished
with a calculation. With the HP-28C, you should get in the habit of
discarding unneeded objects from the stack.

DROP Versus CLX. In fixed-stack calculators, CLX means “replace
the contents of the X-register with 0, and disable stack lift” (see be-
low). Its primary purpose is to throw away an old number, prior to
replacing it with a new one—but you can also use it as a means to
enter 0. On the HP-28C, CLX is replaced by DROP, which does what
its name implies—it drops the object in level 1 from the stack, and the
rest of the stack drops down to fill in. No extraneous 0 is entered.
Similarly, CLEAR drops all objects from the stack, instead of replacing
them with zeros as does its fixed-stack counterpart CLST (CLEAR
STACK).

Stack-Lift Disable and ENTER

Certain commands on fixed-stack calculators (ENTERt, CLX, 2+,
2—) exhibit a peculiar feature called stack-lift disable. That is, after
any of these commands is executed, the next number entered onto the
stack replaces the current contents of the X-register, rather than push-
ing it into the Y-register. This feature is entirely absent on the
HP-28C. New objects entered onto the stack always push the previous
stack objects up to higher levels.

The X-register and ENTER on fixed-stack calculators play dual roles
that are derived more from the single-line display of the calculators
than from the stack structure. The X-register acts as an input register
as well as an ordinary stack register—when you key in a number, the
digits are created in the X-register, until a non-digit key terminates
entry. The key is provided for separating two consecutive
number entries. But in addition to terminating digit entry, the

key also copies the contents of the X-register into Y, and dis-
ables stack lift.

B: Notes for HP RPN Calculator Users 359

On the HP-28C each of these dual roles is separated—there is no

stack lift disable. A command line completely distinct from level 1

(the “X-register”) is used for command entry. ENTER is used only to
process the contents of the command line—it does not duplicate the
contents of level 1. Note, however, that the key will execute
DUP (which copies level 1 into level 2) if no command line is present.
This feature of is provided partly for the sake of similarity to
previous calculators.

Prefix Versus Postfix

HP-28C commands use a strict postfix syntax. That is, all commands
using arguments require that those arguments be present on the stack
before the command is executed. This departs from the convention
used by previous RPN calculators, in which arguments specifying a
register number, a flag number, and so on, are not entered on the

stack but are entered after the command itself—for example, STO 25,
TONE 1, CF 03, and so on. This latter method has the advantage of
saving a stack level, but the disadvantage of requiring an inflexible
format—STO on the HP-41, for example, must always be followed by
a two-digit register number.

Similar operations of the HP-28C are closer in style to indirect opera-
tions on the fixed-stack calculators, where you can use an i-register (or
any register, in the case of the HP-41) to specify the register, flag
number, and so on, addressed by a command. You can view STO,
RCL, and so on, on the HP-28C as using level 1 as an i-register. RCL,
for example, means “recall the contents of the variable (‘register’)
named in level 1”— equivalent to RCL IND X on the HP-41.

You should be aware also that most HP-28C commands remove their
arguments from the stack. If you execute, for example, 123 ‘X’ STO,
the 123 and the ‘X’ disappear from the stack. Without this behavior,
the stack would be overloaded with “old” arguments. If you want to
keep the 123 on the stack, you should execute 123 DUP ‘X" STO.

360 B: Notes for HP RPN Calculator Users

Registers Versus Variables

Fixed-stack calculators can deal efficiently only with real, floating-

point numbers for which the fixed, seven-byte register structure of the
stack and numbered data register memory is suitable (the HP-41 in-
troduced a primitive alpha data object constrained to the seven-byte
format). The HP-28C replaces numbered data registers with named
variables. Variables, in addition to having a flexible structure so that
they can accomodate different object types, have names that can help
you remember their contents more readily than can register numbers.

If you want to duplicate numbered registers on the HP-28C, you can
use a vector:

{ 58 » B8 CON 'REG' STO
creates a vector with 50 elements initialized to 0;
« 1 »LIST 'REG' SWAF GET » 'HERCL' STO

creates a program NRCL that recalls the nth element from the vector,
where 7 is a number in level 1;

1 *LIST 'REG' SMWAP ROT PUT = 'HSTO' STO

creates the analogous store program NSTO.

B: Notes for HP RPN Calculator Users 361

LASTX Versus LAST

The LASTX command on fixed-stack calculators returns the contents
of the LASTX (or L) register, which contains the last value used from
the X-register. This concept is generalized on the HP-28C to the LAST
command, which returns the last one, two, or three arguments taken
from the stack by a command (no command uses more than three
arguments). Thus 1 2 + LASTX returns 3 and 2 to the stack on a
fixed-stack calculator, but 1 2 4+ LAST returns 3, 1, and 2 to the stack
on the HP-28C.

Although the HP-28C LAST is more flexible than its LASTX predeces-
sor, you should keep in mind that more HP-28C commands use
arguments from the stack than their fixed-stack calculator counter-
parts. This means that the LAST arguments are updated more
frequently, and even such commands as DROP or ROLL will replace
the LAST arguments.

Remember also that UNDO can replace the entire stack, which for
simple error recovery may be preferable to LAST.

362 B: Notes for HP RPN Calculator Users

Notes for Algebraic
Calculator Users

Many calculators, including the great majority of simple, “four-func-
tion” calculators, use variations of the algebraic calculator interface.
The name derives from the feature that the keystroke sequences used
for simple calculations closely parallel the way in which the calcula-
tion is specified in algebraic expressions “on paper.” That is, to

evaluate 1 + 2 — 3, you press = EE

This interface works nicely for expressions containing numbers and
operators—functions like +, —, X, and / that are written in infix
notation between their arguments. More sophisticated calculators al-
low you to enter parentheses to specify precedence (the order of
operations). However, the introduction of prefix functions, like SIN,
LOG, and so on, leads to two different variations:

B Ordinary algebraic calculators use a combination of styles—infix
operators remain infix, but prefix functions are entered in a postfix
style (like RPN calculators). For example, 1 + SIN(23) is entered as
(=]. This approach has the advantages of being
able to show intermediate results, and of preserving single-key
evaluations of prefix functions (that is, without parentheses), but
the disadvantage of losing the correspondence with ordinary math-
ematical notation that is the primary advantage of the algebraic
interface.

C: Notes for Algebraic Calculator Users 363

® “Direct formula entry” calculators, and BASIC language computers
that have an immediate-execute mode, allow you to key in an en-
tire expression in its ordinary algebraic form, then compute the
result when you press a termination key (variously labeled [(ENTER],
(ENDLINE], [RETURN], and so on). This approach has the advantage
of preserving the correspondence between written expressions and
keystrokes, but usually the disadvantage of providing no intermedi-
ate results. (The HP-71B CALC mode is an exception.) You have to
know the full form of an expression before you start to enter it—it
is difficult to “work your way through a problem,” varying the cal-
culation according to intermediate results.

Getting Used to the HP-28C

HP-28C operating logic is based on a mathematical logic known as
“Polish Notation,” developed by the Polish logician Jan kukasiweicz
(Wookashye'veech) (1878-1956). Conventional algebraic notation
places arithmetic operators between the relevant numbers or variables
when evaluating algebraic expressions. kukasiweicz’s notation speci-
fies the operators before the variables. A variation of this logic
specifies the operators after the variables—this is termed “Reverse Pol-
ish Notation,” or “RPN” for short.

The basic idea of RPN is that you enter numbers or other objects into
the calculator first, then execute a command that acts on those entries
(called “arguments”). The “stack” is just the sequence of objects wait-
ing to be used. Most commands return their results to the stack,

where they can then be used as arguments for subsequent operations.

The HP-28C uses an RPN stack interface because it provides the nec-
essary flexibility to support the wide variety of HP-28C mathematical
capabilities in a uniform manner. All calculator operations, including
those that can not be expressed as algebraic expressions, are per-
formed in the same manner—arguments from the stack, results to the
stack.

364 C: Notes for Algebraic Calculator Users

Nevertheless, using the RPN stack for simple arithmetic is most likely
the biggest stumbling block for algebraic calculator users trying to
learn to use RPN calculators. RPN is very efficient, but it does require
you mentally to rearrange an expression before you can calculate re-
sults. But the HP-28C'’s capability of interpreting algebraic expressions
without translation should make the transition from algebraic calcu-
lator use more straightforward than has been possible on previous
RPN calculators. The four-line display can also help to take away
some of the mystery of the stack, by showing you the contents of up
to four levels at a time.

For the purpose of evaluating algebraic expressions, the HP-28C is
essentially a “direct formula entry” calculator. That is, to evaluate an
algebraic expression, all you have to do is precede it with a [*], key in
the expression in its algebraic form, including infix operators, prefix
functions, and parentheses, and then press to see the result.
You can use this method even for simple arithmetic:

CJ (2 (=) () (EvAL] returns 0.

Except for the preceding [*], these are the same keystrokes you would
use on a simple algebraic calculator, where you substitute for

(=1.

||:l Don't confuse the HP-28C (=] key with that found on
i algebraic calculators—on the HP-28C, =] is used for the
Note sole purpose of creating algebraic equations (described

in “ALGEBRA”).

C: Notes for Algebraic Calculator Users 365

When you use the HP-28C as a “direct formula entry calculator,” each
result that you compute is retained on the stack, which takes on the
role of a “history stack.” This allows you to save old results indefi-
nitely for reuse later. It also allows you to break up large calculations
into smaller ones, keeping each partial result on the stack and then
combining the results when they are all available. (When carried to
the extreme, this is the essence of RPN arithmetic). The stack provides
a much easier-to-use and more powerful history stack than the single
“result” function available on algebraic or BASIC calculators.

A key feature of the HP-28C is that you really don’t need to concern
yourself over whether RPN logic is better or worse than algebraic
logic. You can choose the logic that is best suited for the problem at
hand, and intermix algebraic expressions with RPN manipulations.

366 C: Notes for Algebraic Calculator Users

Glossary

accuracy: For numerical integration, the numerical accuracy of the
integrand, which determines the sampling intervals for computation
of the integral.

algebraic: Short for algebraic object.

algebraic object: A procedure, entered and displayed between ' '
delimiters, containing numbers, variables, operators, and functions
combined in algebraic syntax to represent a mathematical expression
or equation.

algebraic entry mode: The entry mode in which a key correspond-
ing to a function appends its function name and a left parenthesis (if
applicable) to the command line. Keys corresponding to other com-
mands execute their commands immediately.

algebraic syntax: The restrictions on a procedure, that (1) when
evaluated, it takes no arguments from the stack and returns one re-
sult, and (2) it can be subdivided into a hierarchy of subexpressions.
These conditions are satisfied by all algebraic objects and some
programs.

alpha entry mode: The entry mode in which all keys corresponding
to commands add their command names to the command line.

analytic function: A function that can be differentiated or solved
for its argument.

annunciators: The icons at the top of the LCD display that indicate
the states of certain calculator modes.

Glossary 367

arbitrary integer: A variable n1, n2, and so on, that appears in the
solution of an expression with multiple roots. Different roots are ob-
tained by storing real integers into the variables.

arbitrary sign: A variable s1, s2, and so on, that appears in the solu-
tion of an expression with multiple roots. Different roots are obtained
by storing +1 or —1 into the variables.

argument: An object taken from the stack by an operation as its
input.

array: An object, defined by the [1 delimiters, that represents a real
or complex matrix or vector.

associate: To rearrange the order in which two functions are ap-
plied to three arguments, without changing the value of an
expression—for example, (a + b) + c is rearranged to a + (b + c).
(In RPN form, a b + ¢ + is rearranged to a b ¢ + +.)

base: The number base in which binary integers are displayed. The
choices are binary (base 2), octal (base 8), decimal (base 10) and hexa-
decimal (base 16).

base unit: One of the seven units that are used as the basis for
HP-28C unit conversions. The base units are the meter (length), kilo-
gram (mass), second (time), ampere (electric current), kelvin
(thermodynamic temperature), candela (luminous intensity) and mole
(amount of substance).

binary integer: An object identified by the delimiter #, which repre-
sents an integer number with from 1 to 64 binary digits, displayed
according to the current base.

clause: A program sequence between two program structure com-
mands, such as IF test-clause THEN then-clause END.

clear: (1) To empty the stack (CLEAR). (2) To blank the display
(CLLCD). (3) To assign the value 0 to a user flag (CF).

368 Glossary

command: Any HP-28C operation that can be included in the defi-
nition of a procedure or included by name in the command line.

command line: The input string that contains non-immediate-exe-
cute characters, numbers, objects, commands, and so on, that are
entered from the keyboard. ENTER causes the command line string to
be converted to a program and evaluated.

command stack: Up to four previously entered command lines that
are stored for future retrieval by COMMAND.

commute: To interchange the two arguments of a function.

complex array: An array in which the elements are complex
numbers.

complex number: An object delimited by ¢ symbols, consisting of
two real numbers representing the real and imaginary parts of a com-
plex number.

conformable: For two arrays, having the correct dimensions for an
arithmetic operation.

contents: The object stored in a variable. Also referred to as the
variable’s value.

coordinate pair: A complex number object used to represent the co-
ordinates of a point in two-dimensional space. The real part is the
“horizontal” coordinate, and the imaginary part is the “vertical”
coordinate.

current equation: The procedure stored in the variable EQ, used as
an implicit argument by DRAW and by the Solver.

current statistics matrix: The matrix stored in the variable ZDAT,
containing the statistical data accumulated with Z+.

Glossary 369

cursor: A display character that highlights a position on the display.
(1) The command line cursor indicates where the next character will
be entered into the command line. It varies its appearance to indicate
the current entry mode. (2) The FORM cursor is an inverse-video
highlight that identifies the selected subexpression. (3) The
DRAW/DRWZX cursor is a small cross that indicates the position of a
point to be digitized.

data object: An object that, when evaluated, returns itself to the
stack. Includes real and complex numbers, arrays, strings, binary inte-
gers, and lists.

delimiter: A character that defines the beginning or end of the dis-
play or command line form of an object: *, ", %, C, 3, 4, ¥, ¢, 1,
#, Or *,

dependent variable: A variable whose value is computed from the
values of other (independent) variables, rather than being set arbi-
trarily. Refers also to the vertical coordinate in plots.

digit: One of the characters 0-9, and, when referring to hexadecimal
binary integers, one of the characters A-F.

direct formula entry calculator: A calculator in which you perform
numerical calculations by entering a complete formula in ordinary
mathematical form, without obtaining intermediate results.

distribute: To apply a function to the arguments of the + operator,
before performing the addition: a X (b + c) distributes to
(@ X b) + (a X ¢).

domain: The range of values of an argument over which a function
is defined.

entry mode: The calculator mode that determines whether keys
cause immediate command execution or just enter their command
names into the command line. The entry mode can be immediate
mode, algebraic mode, or alpha mode.

equation: An algebraic object consisting of two expressions com-
bined by a single equals sign (=).

370 Glossary

error: Any execution failure, caused by a mathematical error, argu-
ment mismatch, low memory, and so on, that causes normal
execution to halt with an error message display.

evaluation: The fundamental calculator operation. (1) Evaluation of
a data object returns the data object. (2) Evaluation of a name object
returns the object stored in the associated variable and, if this object is
a name or program, evaluates it. (3) Evaluation of a procedure object
returns each object comprising the procedure and, if an object is a
command or unquoted name, evaluates it.

exception: A special type of mathematical error for which you can
choose, by means of a user flag, whether the calculator returns a de-
fault result or halts with an error message.

execute: To evaluate a procedure object or some portion of a proce-
dure, including HP-28C operations, which are procedure objects
stored in ROM.

exponent: The power of 10 included in the exponential notation
representation of a floating-point number; specifically, the one-, two-,
or three-digit signed number following the “E” in a number display.
The exponent of x is IP (LOG (x)).

exponential notation: A representation of a number as a sign, a
mantissa between 1 and 9.99999999999, and an exponent “E” fol-
lowed by a signed three-digit integer.

expression: An algebraic object that contains no equals sign (=).
factor: Either of the arguments of * (multiply).
false: A flag value represented by the real number 0.

fixed-stack calculator: An RPN calculator with a fixed, (usually)
four-level stack.

flag: A real number used as an indicator to determine a true/false
decision. The number 0 represents false; any other number, usually
+1, represents true.

Glossary 371

formal variable: A variable that is named but does not exist, that is,
has no value.

function: An HP-28C operation that can be included in the defini-
tion of an algebraic object. Various functions may take up to three
arguments, but all return one result.

function plot: A plot produced by DRAW, for which the current
equation is evaluated at up to 137 values of a specified (independent)
variable.

hierarchy: The structure of a mathematical expression, which can be
organized into a series of levels of subexpressions, each of which can
be the argument of a function.

HMS format: A real number format in which digits to the left of the
radix mark represent integer hours (or degrees), the first two digits to
the right of the radix represent minutes (arc or time), the next two
digits integer seconds, and any remaining digits fractional seconds.

independent variable: A variable whose value can be set arbitrarily
rather than being computed from the values of the other variables. In
plotting, the horizontal coordinate. In the Solver, a variable that
doesn’t contain a procedure with names in its definition.

infinite result: A mathematical exception resulting from an opera-
tion that would return an infinite result, such as divide by zero.

initial guess: One or more numbers supplied to the root-finder to
specify the region in which a root is to be sought.

intercept: The vertical coordinate value at which the straight line
determined by a linear regression intersects the vertical (dependent
variable) axis.

inverse: (1) The reciprocal of a number or array. (2) A function,
which when applied to a second function, returns the argument of the
second function. Thus SIN is the inverse of ASIN.

372 Glossary

iterative refinement: A process of successive approximations to the
solution of systems of equations.

key buffer: A memory location that can hold up to 15 pending key
codes, representing keys that have been pressed but not yet
processed.

level: (1) A position in the stack, capable of containing one object. (2)
The position of a subexpression in an algebraic expression hierarchy.

list: A data object, consisting of a collection of other objects.

local name: A name object that names a local variable. Local names
are a different object type (type 7) from ordinary names (type 6).
Evaluation of a local name returns the contents of the associated local
variable, unevaluated.

local variable: A variable created by the command - or FOR for
temporary use within a program structure. The variable is automati-
cally purged when the procedure has completed execution.

machine singular: Describes a numerical value that is too large to
be represented by an HP-28C floating-point number.

mantissa: The portion of a number represented by the decimal part
of its logarithm. Specifically, the part of the number to the left of the
“E” when it is displayed in exponential notation.

matrix: A two-dimensional array.

memory reset: A system clear in which all calculator modes and
memory locations are reset to their default contents, including clearing
the stack, COMMAND stack, UNDO stack, LAST arguments, and
user variable memory.

menu: A collection of operations with common properties that are
assigned, six at a time, to the menu keys.

menu keys: The six unlabeled keys in the top row of the right-hand
keyboard, the operation of which is determined by the active menu
shown in the bottom display line.

Glossary 373

menu selection key: Any key that activates a menu of operations
that can be executed by pressing menu keys.

message flag: An internal flag that determines whether the normal
stack display is shown when all pending execution is complete. The
message flag is set by errors and by commands that produce special
displays.

mode: A calculator state that affects the behavior of one or more op-
erations other than through the explicit arguments of the operation.

name: An object that consists of a character sequence representing a
variable name. (1) Evaluation of a name object returns the object
stored in the associated variable and, if this object is a name or pro-
gram, evaluates it. (2) Evaluation of a local name returns the object
stored in the associated local variable.

non-singular: The opposite of singular.
number: A complex number or a real number.

numeric mode: A mode in which the evaluation of functions causes
repeated evaluation of their arguments until those arguments return
numbers.

numeric object. A real or complex number or array.

object: The basic element of calculator operation. Data objects repre-
sent quantities that have a simple “value;” name objects serve to name
variables that contain other objects; and procedure objects represent
sequences of objects and commands.

operation: Any built-in HP-28C capability available to the user, in-
cluding non-programmable keystrokes and programmable commands.

operator: A function that is subject to special rules of precedence
when included in an algebraic expression.

overflow: A mathematical exception resulting from a calculation that
returns a result too large to represent with a floating-point number.

374 Glossary

parse: To convert a character string to a program consisting of the
series of objects defined by the string. Usually applied to the action of
ENTER on the command line.

pixel: A single LCD picture element, or dot.

plot parameters: The contents of the list variable PPAR, which de-
termine the position and scaling of a plot and the name of the
independent variable.

Polish Notation: A mathematical notation in which all functions and
operators are written in prefix form. In Polish Notation, “1 plus 2” is
written as “+(1, 2)".

precedence: Rules that determine the order of operator execution in
expressions where the omission of parentheses would otherwise make
the order ambiguous.

principal value: A particular choice among the multiple values of a
mathematical relation or solution, chosen for its uniqueness or sim-
plicity. For example, ASIN (.5) returns 30°, a principal value of the
more general result (—1)" 30° + 180n°, where n is any integer.

procedure: An object of the class that includes programs and
algebraics, where evaluation of the object means to put each object
comprising the procedure on the stack and, if the object is a command
or an unquoted name, evaluate the object.

program: A procedure object defined with RPN logic, identified by
the delimiters « =.

program structure: A set of commands that must follow a specific
sequence within a program. Program clauses, delimited by the com-
mands, that comprise logical units for decision making and branching.

quadratic form: A second-order polynomial in a specified variable.

qualifying message: A message displayed by the Solver to provide
information about the result returned by the Solver.

Glossary 375

radix mark: The punctuation that separates the integer and decimal
fraction parts of a number.

real array: An array object that contains only real number elements.

real integer: A real number used as the argument for a command
that deals with integer values.

real number: An object consisting of a single real floating-point
number, displayed in base 10.

recall: To return the object stored in a variable.

resolution: In a plot, the spacing of the points on the abscissa for
which ordinate values are computed. Resolution 1 is every point, 2 is
every other point, and so on.

results: Objects returned to the stack by commands.

Reverse Polish Notation: A modification of Polish Notation in
which functions follow their arguments: 1 2 + means 1 plus 2. This
mathematical notation corresponds to the calculator interface where
functions take their arguments from a stack and return results to a
stack.

root: A value of a variable for which an expression has the value 0,
or an equation is satisfied—both sides of the equation have the same
value.

row order: An ordering of the elements of an array, from left to right
across each row, with successive rows following from top to bottom.

RPN: Reverse Polish Notation.

scatter plot: A plot of data points from the statistics matrix, pro-
duced by DRWZ.

376 Glossary

selected subexpression: The subexpression that is subject to the
active menu of FORM operations, identified by the inverse video
cursor that highlights the object defining the subexpression.

set: To assign the value true, or non-zero, to a flag.

simplification: To rewrite an algebraic expression in a form that pre-
serves the original value of the expression, but appears simpler.
Simplification may involve combining terms, or partially evaluating
the expression.

single step: To execute one object or structure in a program’s
definition.

singular: Refers to a mathematical quantity that evaluates to 0 at
some point, or has derivatives that are 0, such that it can’t be evalu-
ated or inverted without returning an infinite result. A singular matrix
has determinant 0, so it can’t be inverted.

slope: The slope of the straight line obtained from a linear
regression.

solution: Equivalent to root.
solve: To find a root of an expression or equation.

solver: The HP-28C system that builds a variables menu from the
definition of the current equation, enabling you to store values for the
variables and solve the equation for any of the variables.

stack: The series of objects that are presented in a “last-in, first-out”
stack, providing a uniform interface for dealing with the arguments
and results of commands.

stack diagram: A tabular summary of the arguments and results of
a command, showing the nature and position of the arguments and
results in the stack.

status message: A message displayed by the calculator to inform
you of some calculator status that is not an error condition.

Glossary 377

storage arithmetic: Performing arithmetic operations on the con-
tents of variables, without recalling the contents to the stack.

string: An object containing a sequence of characters (letters, num-
bers and other symbols), delimited by " marks.

subexpression: A portion of an algebraic expression consisting of a
number, name, or function and its arguments. Any subexpression can
contain other subexpressions as arguments, and can itself be an argu-
ment to another subexpression.

summand: Either of the arguments of + (addition).

suspended program: A program for which execution has been
stopped by HALT, and which may be resumed by [Egi or [{CONT].

symbolic: Representing a value by name or symbol rather than with
an explicit numerical value.

symbolic constant: Any of the five objects e, i, m, MAXR, and
MINR, which either evaluates to its numerical value or retains its
symbolic form according to the states of flags 35 and 36.

symbolic mode: The calculator mode in which functions of symbolic
arguments return symbolic results.

system halt: An initialization in which all pending operations are
stopped and the stack is cleared.

test: To make a program branch decision based upon the value of a
flag.

true: A flag value represented by a real number of value other than
0. When a command returns a true flag, it is represented by the num-
ber 1.

underflow: A mathematical exception resulting from a calculation

that returns a non-zero result too small to represent with a floating-
point number.

378 Glossary

unit conversion: A multiplication of a real number by a conversion
factor determined by the values of two unit strings representing “old”
and “new” units for the number.

unit string: A string that represents the physical units associated
with a real number value. A unit string can contain unit names, pow-
ers, products, and one ratio.

unknown: The variable for which the Solver, ROOT, QUAD, or
ISOL attempts to find a numerical or symbolic root.

user flag: A one-bit memory location, the value of which can be set
to 0 or 1, and which can be tested. The HP-28C contains 64 user
flags, numbered from 1 through 64.

user interface: The procedures, keystrokes, displays, and so on,
whereby a user interacts with a calculator.

user memory: The region of memory where user variables are
stored.

value: The numerical, symbolic, or logical content of an object. When
referring to variables, value means the object that is stored in the
variable.

variable: A combination of a name object (the variable name) and
any other object (the variable value) that are stored in memory
together.

variables menu: The menu created by the Solver, where each vari-
able referred to by the current equation is represented by a menu key.

vector: A one-dimensional array.

wordsize: The number of bits to which the results of binary integer
commands are truncated.

Glossary 379

Operation Index

This index contains basic information and references for all operations
in the HP-28C. For each operation this index shows the following:

Name. For operations, the key or menu label associated with the op-
eration. For commands, how the command appears in the command
line.

Description. What the operation does.

Type. Where you can use the operation and how its corresponding
key acts. This information is given in the following codes.

Code Description

A Analytic Function. Can be solved or differentiated.

F Function. Can be included in algebraic objects or programs.
C Command. Can be included in programs but not algebraics.
(0] Operation. Cannot be included in the command line or in a

procedure.

*

The corresponding key or menu key does not perform ENTER in
immediate entry mode.

1 The corresponding key or menu key always adds the command
name to the command line.

In. How many objects are required on the stack. (This entry is left
blank for operations that don’t use the stack.)

Out. How many objects are returned to the stack. (This entry is left
blank for operations that don’t use the stack.)

Where. Where the command is described in this manual.

Operation Index 381

[4:1>

xapuj] uonesado

HP-28C Operation Index

Name Description Type In Out Where

ABORT Aborts program execution. C 0 0 PROGRAM CONTROL 246
ABS Absolute value. F 1 1 ARRAY 125

COMPLEX 165

REAL 269
ACOS Arc cosine. 1 1 TRIG 324
ACOSH Arc hyperbolic cosine. 1 1 LOGS 185
- AF Adds fractions. (o) ALGEBRA (FORM) 89
B(ALGEBRA] | Selects the ALGEBRA menu. o* ALGEBRA 59
ALOG Antilogarithm (10 to a power). A 1 1 LOGS 181
AND Logical or binary AND. F 2 1 BINARY 138

PROGRAM TEST 258
ARG Argument. F 1 1 COMPLEX 165

TRIG 329
B(ARRAY] Selects the ARRAY menu. 0* ARRAY 106
ARRY- Replaces an array with its elements as separate stack | C 1 n+1 | ARRAY 114

objects.

ASIN Arc sine. 1 1 TRIG 323
ASINH Arc hyperbolic sine. 1 1 LOGS 184

ldo08av

xapuj uonesado

€8€

ASR
ATAN
ATANH

(ATTN] ((ON])

AXES
“ A
BEEP
BIN
W(BINARY]
W(BRANCH]
B-R
B(cATALOG]
CEIL
CENTR
CF
CHR

CHS

CLEAR

Arithmetic shift right.
Arc tangent.
Arc hyperbolic tangent.

Aborts program execution; clears the command line; ex-
its catalogs, FORM, plot displays.

Sets intersection of axes.
Associates to the right.
Sounds a beep.

Sets binary base.

Selects the BINARY menu.
Selects the PROGRAM BRANCH menu.
Binary-to-real conversion.
Starts the command catalog.
Next greater integer.

Sets center of plot display.
Clears a user flag.

Makes a one-character string.

Changes the sign of a number in the command line or
executes NEG.

Clears the stack.

O*

ot

C*

Ow

O*

O«

_ O O =

BINARY
TRIG
LOGS

Basic

PLOT

ALGEBRA (FORM)
PROGRAM CONTROL
BINARY

BINARY

PROGRAM BRANCH
BINARY

CATALOG

REAL

PLOT

PROGRAM TEST
STRING

Basic

STACK

137
325
186

53

208

82
249
133
130
232
135
156
271
209
255
317

32

291

Hvaio

1 21>

x3apuj uonesadQ

HP-28C Operation Index (Continued)

Name Description Type In Out Where

CLLCD Blanks the display. C 0 0 PLOT 212

PROGRAM CONTROL 249
CLMF Clears the system message flag. C 0 0 PLOT 214

PROGRAM CONTROL 250
CLUSR Clears all user variables. Ct 0 0 USER 347
CLz Purges the statistics matrix. C 0 0 STAT 299
B(cvPLX] Selects the COMPLEX menu. o* COMPLEX 160
CNRM Computes a column norm. 1 1 ARRAY 126
COLCT Collects like terms. 1 1 ALGEBRA Al
Collects like terms in a subexpression. o* ALGEBRA (FORM) 80
COLZ Selects statistics matrix columns. C 2 0 PLOT 211

STAT 302
BB(COMMAND] | Moves an entry from the command stack to the com- | O Basic 48

mand line.

CON Creates a constant matrix. C 2 0,1 | ARRAY 121
CONJ Complex conjugate. 1 1 ARRAY 128

COMPLEX 163
B conT] Continues a halted program. 0] PROGRAM CONTROL 244

al11o

x3apuj uonesado

S8€

CONVERT
CORR
CcosS
COSH
cov

CR
CROSS

B(cTr]

C-R

W(c/0x]

DEC
DEG
DEL

W(cEL

DEPTH
DET

Performs a unit conversion.

Correlation coefficient.

Cosine.

Hyperbolic cosine.

Covariance.

Prints a carriage-right.

Cross-product of three-element vectors.
Selects the PROGRAM CONTROL menu.

Complex-to-real conversion.

Derivative (d function).
Sets decimal base.
Sets degrees mode.

Deletes character at cursor; digitizes point.

Deletes character at cursor and all characters to the
right.

Counts the objects on the stack.

Determinant of a matrix.

O O o >» » O O

Ci
Cg
O*

O*

—_

N O o

o o o N

UNITS

STAT

TRIG

LOGS

STAT

PRINT

ARRAY

PROGRAM CONTROL

ARRAY
COMPLEX
TRIG

Calculus
BINARY
MODE

Basic
PLOT

Basic

STACK
ARRAY

332
303
324
185
304
222
124
243

127
162
328

141
132
191

39
203

39

294
125

13a

98¢

xapuj uonesadg

HP-28C Operation Index (Continued)

Name Description Type In Out Where

Double inverts. o* ALGEBRA (FORM) 86
DISP Displays an object. C 2 0 PLOT 213
PROGRAM CONTROL 250

STRING 320

Double negates. (o) ALGEBRA (FORM) 85

Part of DO...UNTIL...END. Ct PROGRAM BRANCH 233

DOT Dot product of two vectors. C 2 1 ARRAY 124
DRAW Creates a mathematical function plot. C 0 0 PLOT 206
DRAX Draws axes. C 0 0 PLOT 213
DROP Drops one object from the stack. C 1 0 STACK 290
DROPN Drops n+1 objects from the stack. C n+1 |0 STACK 294
DROP2 Drops two objects from the stack. C 2 0 STACK 292
DRWZ Creates a statistics scatter plot. C 0 0 PLOT 212
DUP Duplicates one object on the stack. C 1 2 STACK 291
DUPN Duplicates n objects on the stack. c n+1 | 2n STACK 294
DUP2 Duplicates two objects on the stack. C 2 4 STACK 292
Distributes to the right. o* ALGEBRA (FORM) 83

ANIa

xapuj uonesado

L8€

EEX
ELSE
END

ENG

ERRM
ERRN
EVAL
EXGET

EXPAN

Degrees-to-radians conversion.

Symbolic constant e.

Copies the object in level 1 to the command line for
editing.

Enters exponent in command line.
Begins ELSE clause.

Ends program structures.

Sets engineering display format.

Parses and evaluates the command line or executes
DUP.

Returns the last error message.
Returns the last error number.
Evaluates an object.

Gets a subexpression.

Gets a subexpression.

Natural exponential.

Expands an algebraic.

Expands a subexpression.

Ft

O*
Ct
Ct

(@]

O O O O

>

—_

NN = O

TRIG

ALGEBRA
REAL

Basic

Basic
PROGRAM BRANCH
PROGRAM BRANCH

MODE

Basic

PROGRAM CONTROL
PROGRAM CONTROL
Basic

ALGEBRA

ALGEBRA (FORM)
LOGS

ALGEBRA

ALGEBRA (FORM)

331

70
266

41

32
232

232
233

191
40

251
251
42
76
80
182
72
80

NvVdX3

88€

xapuj uonesadg

HP-28C Operation Index (Continued)

Name Description Type In Out Where
Natural exponential minus 1. A 1 1 LOGS 183
Evaluates the current equation. 0 1 SOLVE 278
Substitutes a subexpression. C 3 1 ALGEBRA 75
Replaces power-of-product with power-of-power. o ALGEBRA (FORM) 89
W Replaces power-of-power with power-of-product. (o) ALGEBRA (FORM) 89
FACT Factorial or gamma function. 1 1 REAL 267
FC? Tests a user flag. 1 1 PROGRAM TEST 256
FC?C Tests and clears a user flag. 1 1 PROGRAM TEST 257
Exits CATALOG or UNITS, writes the current command | O* CATALOG 336
or unit in the command line. UNITS 157
FIX Sets FIX display format. C 1 0 MODE 189
FLOOR Next smaller integer. 1 1 REAL 271
FOR Begins definite loop. Ct 2 0 PROGRAM BRANCH 233
FORM Changes the form of an algebraic. C 1 1,3 | ALGEBRA 74
ALGEBRA (FORM) 77
FP Fractional part. 1 1 REAL 271
FS? Tests a user flag. C 1 1 PROGRAM TEST 256

WdX3

xapuj uonesado

68€

FS?C
GET

GETI

HALT
HEX
HMS +
HMS —
HMS-

IDN

IFERR

IFT
IFTE

INDEP

Tests and clears a user flag.

Gets an element from an object.

Gets an element from an object and increments the
index.

Suspends program execution.
Sets hexadecimal base.
Adds in HMS format.
Subtracts in HMS format.
Converts from HMS format.
Symbolic constant i.
Creates an identity matrix.
Begins IF clause.

Begins IF ERROR clause.
If-then command.
If-then-else function.

Returns the imaginary part of a number or array.

Selects the plot independent variable.

Ct
C*

Ft

Ct
Ct

PROGRAM TEST

ARRAY
LIST

ARRAY
LIST

PROGRAM CONTROL
BINARY

TRIG

TRIG

TRIG

ALGEBRA

ARRAY

PROGRAM BRANCH
PROGRAM BRANCH
PROGRAM BRANCH
PROGRAM BRANCH

ARRAY
COMPLEX

PLOT

256

116
176

118
178

246
132
331
331
330

70
122
232
232
241
241

128
162

206

d3AaNI

06¢

xapuj] uonesadg

HP-28C Operation Index (Continued)

Name Description Type | In | Out Where

Switches between insert and replace modes; digitizes o* 0 0, 1 | Basic 39
point. PLOT 203

B(ns] Deletes all characters to the left of the cursor. o* Basic 39
INV Inverse (reciprocal). A 1 1 Arithmetic 103
ARRAY 113

IP Integer part. 1 1 REAL 270
ISOL Solves an expression or equation. C 2 1 ALGEBRA 76
SOLVE 285

KEY Returns a key string. 0 1,2 | PROGRAM CONTROL 247
KILL Aborts all suspended programs. 0 0 PROGRAM CONTROL 247
LAST Returns last arguments. 0 1, 2, | Basic 49
Switches between upper-case and lower-case modes. o* Basic 33
Evaluates the left side of the current equation. 0 0 1 SOLVE 278
Displays the level of the selected subexpression. o ALGEBRA (FORM) 80
B(uisT) Selects the LIST menu. o* LIST 174
LIST~ Moves list elements to the stack. C 1 n+1 | LIST 175
STACK 293

SNI

x3apuj uonesadQ

L6€

LN
LNP1

LOG
@(Locs]

LR

MAXZ

MEAN
MEM
MIN
MINR

MINZ

Natural logarithm.

Natural logarithm of (argument+1).
Common (base 10) logarithm.

Selects the LOGS menu.

Computes a linear regression.

Replaces product-of-iog with log-of-power.
Replaces log-of-power with product-of-log.
Returns the mantissa of a number.
Returns the maximum of two numbers.

Symbolic constant maximum real.

Finds the maximum coordinate values in the statistics
matrix.

Computes statistical means.
Returns available memory.
Returns the minimum of two numbers.

Symbolic constant minimum real.

Finds the minimum coordinate values in the statistics
matrix.

O*

O*
o*

m MmO O

o N O o

LOGS
LOGS
LOGS
LOGS
STAT
ALGEBRA (FORM)
ALGEBRA (FORM)
REAL
REAL

ALGEBRA
REAL

STAT

STAT
USER
REAL

ALGEBRA
REAL

STAT

182
183
181
181
304

88

88
270
272

70
268

302

300
347
273

70
268

302

ININ

C6€

xapuj uonesado

HP-28C Operation Index (Continued)

matrix.

Name Description Type In Out Where

MOD Modulo. F 2 1 REAL 273
B voDE] Selects the MODE menu. o* MODE 187
Merges right factor. o* ALGEBRA (FORM) 85
NEG Negates an argument. A 1 Arithmetic 104
ARRAY 129

COMPLEX 165

REAL 266

NEXT Ends definite loop. Ct 0 0 PROGRAM BRANCH 233
Displays the next row of menu labels. o* 57

Advances to next command or unit in a catalog. o CATALOG 157

UNITS 336

Advances to next argument option in USAGE. o* CATALOG 158

Choose not to purge during Out of Memorwy. o* Basic 52

Disables printer trace mode. o* PRINT 221

NOT Logical or binary NOT. F 1 BINARY 140
PROGRAM TEST 260

NUM Returns character code. C 1 STRING 317
NZ Returns the number of data points in the statistics C 0 1 STAT 299

aow

x3apuj uonesadQ

€6¢

OBGET
0OBSUB
OoCT

((ATTN])

(oN]{iNs][>]

(on](=]
(on](a]

(oN](v)
(on](d]
W(oFF]
OR

ORDER
OVER

Extracts an object from an algebraic.
Substitutes an object into an algebraic.
Sets octal base.

Turns the calculator on; aborts program execution;
clears the command line; exits catalogs, FORM, plot
displays.

Cancels system halt or memory reset if pressed before

is released.

(Memory Reset) Stops program execution, clears local
and user variables, clears the stack, resets user flags.

Increases the display contrast.
Decreases the display contrast.

(System Halt) Stops program execution, clears local vari-
ables, clears the stack.

Starts system test.
Starts continuous system test.
Turns the calculator off.

Logical or binary OR.

Rearranges the user menu.

Duplicates the object in level 2.

OQ

O*

Oi

O*

o*
O*

O*
O*
O*

ALGEBRA
ALGEBRA
BINARY

Basic

Basic

Basic

Basic
Basic

Basic

Basic
Basic
Basic

BINARY
PROGRAM TEST

USER
STACK

76
75
132
53

55

54

53
53
54

55
55
53

139
258

346
292

H3A0

vee

x3puj uonesado

HP-28C Operation Index (Continued)

Name Description Type In Out Where

PICK Duplicates the nth object. C n+1 | n+1 | STACK 293
PIXEL Turns on a display pixel. C 1 0 PLOT 213
B(rLoT) Selects the PLOT menu. o* PLOT 198
PMAX Sets the upper-right plot coordinates. C 1 0 PLOT 206
PMIN Sets the lower-left plot coordinates. C 1 0 PLOT 205
POS Finds an substring in a string. c 2 1 STRING 320
Recalls the plot parameters list. C 0 1 PLOT 208
PREDV Predicted value. C 1 1 STAT 305
B(PrEV] Displays the previous row of menu labels. o* 57
Displays the previous command or unit in a catalog. o CATALOG 157

UNITS 336
Displays the previous argument option in USAGE. o CATALOG 158
B(PRINT] Selects the PRINT menu. o* PRINT 215
PRLCD Prints an image of the display. C 0 0 PLOT 214

PRINT 220
PRMD Prints and displays current modes. C 0 0 MODE 196

PRINT 222

NJid

xapuj uonesa2dQ

S6€

PROGRAM
B(BRANCH]
W(cTRL]
B(EsT)

PRST
PRSTC
PRUSR
PRVAR
PR1
PURGE
PUT

PUTI
P-R
QUAD

Selects the PROGRAM BRANCH menu.
Selects the PROGRAM CONTROL menu.
Selects the PROGRAM TEST menu.

Prints the stack.

Prints the stack in compact format.
Prints a list of variables.

Prints the contents of a variable.
Prints the level 1 object.

Purges one or more variables.

Put an element into an array or list.

Put an element into an array or list, and increment the
index.

Polar-to-rectangular conversion.

Solves a quadratic polynomial.

Exits CATALOG or UNITS.

Exits USAGE display.

Oi
Ox
O«

O O O O O O

O:

O*

o o o

o O O O o o o

PROGRAM BRANCH
PROGRAM CONTROL
PROGRAM TEST

PRINT
PRINT
PRINT
PRINT
PRINT
Basic

ARRAY
LIST

ARRAY
LIST

COMPLEX
TRIG

ALGEBRA
SOLVE

CATALOG
UNITS

CATALOG

252
232
243

219
221
222
220
218

47

115
175

117
177

164
326

76
286

336
157

159

11nd

96€

Xxapuj uonesadg

HP-28C Operation Index (Continued)

Name Description Type In Out Where

RAD Sets radians mode. * 0 0 MODE 192
RAND Returns a random number. 0 1 REAL 267
RCEQ Recalls the current equation. 0 1 PLOT 205
SOLVE 277

RCL Recalls the contents of a variable, unevaluated. 1 1 Basic 46
RCLF Returns a binary integer representing the user flags. 0 1 PROGRAM TEST 262
RCLX Recalls the current statistics matrix. 0 1 PLOT 210
STAT 299

RCWS Recalls the binary integer wordsize. 0 1 BINARY 133
RDM Redimensions an array. 2 0,1 | ARRAY 120
RDX . Sets *." as the radix. o* MODE 196
| RDX,, | Sets *" as the radix. o MODE 196
RDZ Sets the random number seed. C 1 0 REAL 268
RE Returns the real part of a complex number or array. 1 1 ARRAY 127
COMPLEX 162

B(ReEAL] Selects the REAL menu. (oM REAL 264
REPEAT Part of WHILE. . .REPEAT.. .END. Ct 1 0 PROGRAM BRANCH 233

avy

xopuj] uones2do

L6¢

RES
RL
RLB
RND
RNRM
ROLL
ROLLD
ROOT
ROT
RR
RRB
RSD

RT=
R-B
R-C

R-D

Sets the plot resolution.

Rotates left by one bit.

Rotates left by one byte.

Rounds according to real number display mode.
Computes the row norm of an array.
Moves the level n+1 object to level 1.
Moves the level 2 object to level n.
Finds a numerical root.

Moves the level 3 object to level 1.
Rotates right by one bit.

Rotates right by one byte.

Computes a correction to the solution of a system of
equations.

Evaluates the right side of the current equation.
Real-to-binary conversion.

Real-to-complex conversion.

Radians-to-degrees conversion.

O O O O O O O o T o o o

(@)

n+1
n+1

W = =

o

PLOT
BINARY
BINARY
REAL
ARRAY
STACK
STACK
SOLVE
STACK
BINARY
BINARY
ARRAY

SOLVE
BINARY

ARRAY
COMPLEX
TRIG

TRIG

208
134
134
272
125
291
293
284
292
134
135
123

278
135

126
161
328

331

a-d

86¢

xapuj] uonesddo

HP-28C Operation Index (Continued)

Name Description Type In Out Where

R-P Rectangular-to-polar conversion. F 1 1 COMPLEX 164

TRIG 327

SAME Tests two objects for equality. C 2 1 PROGRAM TEST 260

Advances automatically through CATALOG or UNITS. o* CATALOG 336

UNITS 157

SCI Sets scientific display format. C 1 0 MODE 190

SCL= Auto-scales the plot parameters according to the statis- | C 0 0 PLOT 211
tical data.

SCONJ Conjugates the contents of a variable. C 1 0 STORE 313

SDEV Computes standard deviations. C 0 1 STAT 301

SF Sets a user flag. C 1 0 PROGRAM TEST 255

SHOW Resolves all references to a name implicit in an C 2 1 ALGEBRA 76

algebraic. SOLVE 286

SIGN Sign of a number. F 1 1 COMPLEX 163

REAL 269

SIN Sine. 1 1 TRIG 323

SINH Hyperbolic sine. 1 1 LOGS 184

SINV Inverts the contents of a variable. 1 0 STORE 312

d-d

x3apuj uonesadQ

66€

SIZE

s51
B(sTACK]
START

B (sTAT)
STD

STEP
STEQ

Finds the dimensions of a list, array, string, or algebraic.

Shifts left by one bit.

Shifts left by one byte.

Negates the contents of variable.
Selects the SOLVE menu.

Selects the Solver variables menu.

Squares a number or matrix.

Shifts right by one bit.

Shifts right by one byte.
Single-steps a suspended program.
Selects the STACK menu.

Begins definite loop.

Selects the STAT menu.

Sets standard display format.
Ends definite loop.

Stores the current equation.

O*

Ct
o
c*
Ct

ALGEBRA
ARRAY
LIST
STRING

BINARY
BINARY
STORE
SOLVE
SOLVE

Arithmetic
ARRAY

BINARY

BINARY

PROGRAM CONTROL
STACK

PROGRAM BRANCH
STAT

MODE

PROGRAM BRANCH

PLOT
SOLVE

74
119
180
321

136
137
312
275
278

104
113

136
137
245
290
233
296
188
233

205
277

0als

oov

xapuj] uonesado

HP-28C Operation Index (Continued)

Name Description Type In Out Where
STO Stores an object in a variable. C 2 0 Basic 46
STOF Sets all user flags according to the value of a binary C 1 0 PROGRAM TEST 262
integer.

Stops scanning through CATALOG or UNITS. o CATALOG 336

UNITS 157
B(STORE]) Selects the STORE menu. 0* STORE 309
STO* Storage arithmetic multiply. 2 0 STORE 31
STO+ Storage arithmetic add. 2 0 STORE 309
STO— Storage arithmetic subtract. C 2 0 STORE 310
STO/ Storage arithmetic divide. C 2 0 STORE 311
STOZ Stores the current statistics matrix. Ok 1 0 PLOT 210

STAT 299
B(sTRING] Selects the STRING menu. 0* STRING 314
STR~ Parses and evaluates the commands defined by a string. 1 0 STRING 315
STWS Sets the binary integer wordsize. 1 0 BINARY 133
SUB Extracts a portion of a list or string. C 3 1 LIST 180

STRING 321

ols

x3apuj uonesadQ

oY

SWAP
SYSEVAL
TAN
TANH
TAYLR

| RESH

THEN
TOT

(TriG)
TRN

TYPE

E(uNDO |

B(uNITS]

UNTIL
USE

(UsER)

Swaps the objects in levels 1 and 2.
Executes a system object.

Tangent.

Hyperbolic tangent.

Computes a Taylor series approximation.

Selects the PROGRAM TEST menu.

Begins THEN clause.

Sums the coordinate values in the statistics matrix.
Enables printer trace mode.

Selects the TRIG menu.

Transposes a matrix.

Returns the type of an object.

Replaces the stack contents.

Selects the units catalog.

Part of BEGIN...UNTIL...END.

Displays USAGE for current command in CATALOG.

Selects the USER menu.

o » >» O O

o*
o*
Ct
o
o

STACK
Basic
TRIG
LOGS

ALGEBRA
Calculus

PROGRAM TEST
PROGRAM BRANCH
STAT

PRINT

TRIG

ARRAY

PROGRAM TEST
Basic

UNITS

PROGRAM BRANCH
CATALOG

USER

290

43
325
185

76
151

252
232
300
221
322
121
263

48
332
233
157
346

cov

xapuj uonesado

HP-28C Operation Index (Continued)

Name Description Type In Out Where

UTPC Upper-tail Chi-Square distribution . C 2 1 STAT 307
UTPF Upper-tail F-distribution. C 3 1 STAT 307
UTPN Upper-tail normal distribution. C 3 1 STAT 307
UTPT Upper-tail t-distribution. C 2 1 STAT 308
VAR Computes statisical variances. C 0 1 STAT 301
B(ViEwt] Moves the display window up one line. o* Basic 40
B(ViEwy] Moves the display window down one line. o* Basic 40
B(visiT) Copies an object to the command line for editing. 1 0 Basic 42
WAIT Pauses program execution. C 1 0 PROGRAM CONTROL 247
WHILE Begins WHILE. . .REPEAT .. .END. Ct 0 0 PROGRAM BRANCH 233
XOR Logical or binary XOR. F 1 BINARY 139
PROGRAM TEST 259

XPON Returns the exponent of a number. 1 1 REAL 270
8] Executes function SQ. A 1 1 Arithmetic 104
ARRAY 113

YES Chooses to purge during Out of Memoryd. o* Basic 52

odln

xapuj uonesado

€0V

1/x

1/0)

+I

+CMD
£ AST

|+
II EH l' ll
=

+UND

+
-
i
-

| -CMD
~LAST

|I II II |
1
=
T

-UND

*
)
~
-

Executes function INV.

Double invert and distribute.

Adds two objects.

Enables COMMAND.

Enables LAST.

Selects multi-line display mode.
Enables UNDO.

Adds and subtracts 1.

Subtracts two objects.

Disables COMMAND.
Disables LAST.

Selects single-line display mode.

Disables UNDO.
Double negates and distributes.

Multiplies two objects.

Ou

o
o
o
o
o

o
o
o
o
o

Arithmetic
ARRAY

ALGEBRA (FORM)

Arithmetic
ARRAY
LIST
STRING

MODE
MODE
MODE
MODE
ALGEBRA (FORM)

Arithmetic
ARRAY

MODE
MODE
MODE
MODE
ALGEBRA (FORM)

Arithmetic
ARRAY

103
113

87

96
108
174
315

193
193
195
194

88

98
108

193
193
195
194

86

99
109

vov

xapuj uonesado

HP-28C Operation Index (Continued)

Name Description Type In Out Where

*H Adjusts the height of a plot. C 1 0 PLOT 210
*W Adjusts the width of a plot. C 1 0 PLOT 209
Multiplies by 1. o* ALGEBRA (FORM) 87
/ Divides two objects. A 2 1 Arithmetic 101

ARRAY 109
Divides by 1. o* ALGEBRA (FORM) 87
% Percent. F 2 1 REAL 265
%CH Percent change. F 2 1 REAL 265
%T Percent of total. 2 1 REAL 174
~ Raises a number to a power. A 2 1 Arithmetic 102
Raises to the power 1. O ALGEBRA (FORM) 88
\V4 Takes the square root. 1 1 Arithmetic 103
i Definite or indefinite integral. 3 1, 2 | Calculus 145
a Derivative. 2 1 Calculus 141
< Less-than comparison. Ft 2 1 PROGRAM TEST 253
< Less-than-or-equal comparison. Ft 2 1 PROGRAM TEST 254
= Equals operator. At 2 1 ALGEBRA 64

Hx

xapuj] uonesado

SO¥

Eg@g@g@@'v v

B« L0cK]

Equality comparison.

Not-equal comparison.
Greater-than-or-equal comparison.
Greater-than comparison.

Shift key.

Selects cursor menu or restores last menu.

Moves cursor up.

Moves cursor up all the way.
Moves cursor down.

Moves cursor down all the way.
Moves cursor left.

Moves cursor left all the way.
Moves cursor right.

Moves cursor right all the way.
Moves FORM cursor left.
Moves FORM cursor right.
Backspace.

Switches alpha mode on or off.

Locks alpha mode on.

Ft
Ft
Ft
o
o
o
o
o
o
o
o
o
o
o

o*
Oﬂ
O*

N DN N

PROGRAM TEST
PROGRAM TEST
PROGRAM TEST
PROGRAM TEST

Basic
Basic
Basic
Basic
Basic
Basic
Basic
Basic
Basic
ALGEBRA (FORM)
ALGEBRA (FORM)
Basic
Basic

Basic

261
252
254
253

38
39
39
39
39
39
39
39
39
80
80
33
37
37

MO0T0

90V

xapuj uones2dQ

HP-28C Operation Index (Continued)

Name Description Type In Out Where

™ Symbolic constant . Ft 0 1 ALGEBRA 70
REAL 266

I+ Adds a data point to the statistics matrix. C 1 0 STAT 297
z- Deletes the last data point from the statistics matrix. 0 1 STAT 298
Associates to the left. o* ALGEBRA (FORM) 81
Distributes to the left. o ALGEBRA (FORM) 83
Merges left factors. o* ALGEBRA (FORM) 84
Commutes arguments. o* ALGEBRA (FORM) 81
- Creates local variables. Ct n 0 Programs 228
-ARRY Combines numbers into an array. n+1 |1 ARRAY 114
-~HMS Converts a number to HMS format. 1 1 TRIG 330
-LIST Combines objects into a list. C n+1 | 1 LIST 174
STACK 295

-~NUM Evaluates an object in numerical mode. C 1 0 Basic 43
-STR Converts an object to a string. 1 1 STRING 315
-C) Distributes prefix operator. o ALGEBRA (FORM) 82

Terms Used in Stack Diagrams

Term Description
obj Any object.
x ory Real number.
hms Real number in hours-minutes-seconds format.
n Positive integer real number.
flag Real number, zero (false) or non-zero (true).
z Real or complex number.
(X,y» Complex number in rectangular form.
r.02 Complex number in polar form.
#n Binary integer.
"string" Character string.
Carray1 Real or complex vector or matrix.
Cvector] Real or complex vector.
Cmatrix 1 Real or complex matrix.
CR-array 1 Real vector or matrix.
CC-array] Complex vector or matrix.
Llisty List of objects.
{index ¥ List of one or two real numbers specifying an array element.
tdim ¥ List of one or two real numbers specifying the dimension(s) of
an array.
"name'’ Name or local name.
“program#* | Program.
'symb' Expression, equation, or a name treated as an algebraic.

Contents

Page 11

17
31
57

349
357
363

367
381

How To Use This Manual

1: Fundamentals
2: Basic Operations
3: Dictionary
ALGEBRA
ALGEBRA (FORM)
Arithmetic
ARRAY
BINARY
Calculus
CATALOG
COMPLEX
LIST
LOGS
MODE
PLOT
PRINT

A: Messages

Programs
PROGRAM BRANCH
PROGRAM CONTROL
PROGRAM TEST
REAL

SOLVE

STACK

STAT

STORE

STRING

TRIG

UNITS

USER

B: Notes for HP RPN Calculator Users
C: Notes for Algebraic Calculator Users

Glossary

Operation Index

(D

HEWLETT
PACKARD

Reorder Number
00028-90021

00028-90051
Printed in U.S.A.

1/87

Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

	Cover

	Welcome to the HP-28C
	Contents
	How To Use This Manual
	How This Manual is Organized
	How to Read Stack Diagrams

	Fundamentals
	Principle of Operation
	Data Objects
	Name Objects
	Variables
	Local Variables
	Formal Variables

	Procedure Objects
	Programs
	Expressions
	Equations
	Commands

	The Stack
	Modes
	Annunciators
	Flags

	Errors and Exceptions
	Errors in the Command Line
	Errors in Programs
	Mathematical Exceptions

	Basic Operations
	Object Entry
	Entering Numbers
	Backspace:

	Lower-Case Letters:
	Object Delimiters and Separators
	How the Cursor Indicates Modes
	Entry Modes
	The Cursor Menu:
	Enter Command Line:
	Viewing Objects:

	Editing Existing Objects
	Editing Level 1:
	Editing a Variable or Stack Level:

	Evaluating Objects
	Names
	Reserved Names
	Quoted and Unquoted Names
	Duplicate Names

	Creating, Recalling, and Purging Variables
	Recovery
	Command Line Recovery:
	Stack Recovery:

	Low Memory
	Insufficient Memory
	No Room for UNDO
	No Room to ENTER
	Low Memory!
	No Room To Show Stack
	Out of Memory

	System Operations
	Attention:
	Contrast Control:
	System Halt:
	Memory Reset:
	Cancel Reset:
	System Test:

	Dictionary
	Menus
	ALGEBRA
	Algebraic Objects
	Functions of Symbolic Arguments
	Evaluation of Algebraic Objects
	Symbolic Constants: e, 7r, i, MAXA, and MINA
	COLCT EXPAN SIZE FORM OBSUB EXSUB
	TAYLR ISOL QUAD SHOW OBGET EXGET
	ALGEBRA (FORM)
	FORM Operations
	FORM Operations Listed by Function

	Arithmetic
	ARRAY
	Keyboard Functions
	->ARRY ARRY-> PUT GET PUTI GETI
	SIZE RDM TRN CON IDN RSD
	CROSS DOT DET ABS RNRM CNRM
	R->C C->R RE 1M CONJ NEG

	BINARY
	DEC HEX OCT BIN STWS RCWS
	RL RR RLB RRB B->R
	SL SR SLB SRB ASR
	AND OR XOR NOT

	Calculus
	Differentiation
	Integration
	Taylor Series

	CATALOG
	COMPLEX
	R->C C->R RE IM CONJ SIGN
	R->P P->R ABS NEG ARG
	Principal Branches and General Solutions

	LIST
	->LlST LIST->
 PUT GET PUTI GETI
	SUB SIZE

	LOGS
	LOG ALOG LN EXP LNP1 EXPM
	SINH ASINH COSH ACOSH TANH ATANH

	MODE
	STD FIX SCI ENG DEG RAD
	+CMD -CMD +LAST -LAST +UND -UND

	PLOT
	The Display
	Mathematical Function Plots
	Statistical Scatter Plots
	Interactive Plots
	Plot Parameters
	STEQ RCEQ PMIN PM AX INDEP DRAW
	PPAR RES AXES CENTR *W *H
	STO SIG RCL SIG COL SIG SCL SIG DRW SIG
	CLLCD DISP PIXEL DRAX CLMF PRLCD

	PRINT
	Print Formats
	Faster Printing
	Configuring the Printer
	PR1 PRST PRVAR PRLCD TRACE NORM
	PRSTC PRUSR PRMD CR

	Programs
	Evaluating Program Objects
	Simple and Complex Programs.
	Local Variables and Names
	User-Defined Functions

	PROGRAM BRANCH
	Tests and Flags
	Replacing GOTO
	IF IFERR THEN ELSE END
	START FOR NEXT STEP IFT IFTE
	DO UNTIL END WHILE REPEAT END

	PROGRAM CONTROL
	Suspended Programs
	SST HALT ABORT KILL WAIT KEY
	BEEP CLLCD DISP CLMF ERRN ERRM

	PROGRAM TEST
	Keyboard Functions
	SF CF FS? FC? FS?C FC?C
	AND OR XOR NOT SAME ==

	STOF RCLF TYPE

	REAL
	Keyboard Functions
	NEG FACT RAND RDZ MAXR MINR
	ABS SIGN MANY XPON
	MAX MIN MOD %T

	SOLVE
	Interactive Numerical Solving: The Solver
	Symbolic Solutions
	General Solutions

	STACK
	Keyboard Commands
	DUP OVER DUP2 DROP2 ROT LIST->

	ROLLD PICK DUPN DROPN DEPTH ->LIST

	STAT
	SIG+ SIG- N SIG CL SIG STO SIG RCL SIG
	TOT MEAN SDEV VAR MAX SIG MIN SIG
	COL SIG CORR COY LR PREDV
	UTPC UTPF UTPN UTPT

	STORE
	STO+ STO- STO* STOI SNEG SINY
	SCONJ

	STRING
	Keyboard Function
	->STR STR-> CHR NUM P0S DI5P
	SUB SIZE

	TRIG
	SIN ASIN COS ACOS TAN ATAN
	P->R R->P R->C C->R ARG
	->HMS HMS-> HMS+ HMS- D->R R->D

	UNITS
	Temperature Conversions
	The UNITS Catalog
	User-Defined Units
	Unit Prefixes

	USER
	ORDER CLUSR MEM

	A
Messages
	B Notes for HP RPN Calculator Users
	The Dynamic Stack
	Stack-Lift Disable and ENTER
	Prefix Versus Postfix
	Registers Versus Variables
	LASTX Versus LAST

	C
Notes for AlgebraicCalculator Users
	Getting Used to the HP-28C

	Glossary
	Operation Index
	Terms Used in Stack Diagrams

