HEWLETT-PACKARD

HP-34C

OWNER'S HANDBOOK
AND PROGRAMMING GUIDE

“The success and prosperity of our company will be assured only if we offer our
customers superior products that fill real needs and provide lasting value, and that
are supported by a wide variety of useful services, both before and after sale.”

Statement of Corporate Objectives.
Hewlett-Packard

When Messrs. Hewlett and Packard founded our company in 1939, we offered one
superior product, an audio oscillator. Today, we offer over 3500 quality products,
designed and built for some of the world’s most discerning customers.

Since we introduced our first scientific calculator in 1967, we've sold millions world-
wide, both pocket and desktop models. Their owners include Nobel laureates,
astronauts, mountain climbers, businesspersons, doctors, students, and

homemakers.
Each of our calculators is precision crafted and designed to solve the problems
its owner can expect to encounter throughout a working lifetime.

HP caiculators fill real needs. And they provide lasting value.

HEWLETT |’!ﬁ PACKARD

The HP-34C Programmable
Scientific Calculator
Owner’s Handbook and
Programming Guide

May 1979

00034-90001

Printed in U.S.A. © Hewlett-Packard Company 1979

Contents

The HP-34C Programmable Scientific Calculator

Keyboard and Memoriesoooiuiiiiiiiiiiiaian, 7
Function Key INndex 8
Program Control Indext 12
Section 1: Meet the HP-34C 14
Manual Problem Solving 15
Programmed Problem Solving ... 16
What Continuous Memory Meansto You 19
Section 2: Specific Features of the HP-34C 20
Keyboard Operationot 20
Storage Registers and Program Memory 21
Number Alteration Keyso, 22
Absolute Value ... 22
Integer Portion of a Number 22
Fractional Portion of a Number 23
Mathematical Functionst 24
Factorial 24
Gamma Function ..ot 25
Percent Difference i 26
Statistical Functions ... 27
AccumuIationSo 27
Deleting and Correcting Datacoovvveeaiiian... 31
Mean ... 32
Standard Deviationc.iiiii 34
Linear Regressionouiiiii i 36
Linear Estimation 0. oot 39
Correlation Coefficientc.oviiiiiiiiiieinn.. 40
Vector Arithmetico 40
Section 3: Simple Programmingc.c.oooi.. 44
What Is a Program? e 44
Why Write Programs?ciiiiiiiiiiaann. 44
Three Calculator Modesc.coiiiiiiiiiiaanannn. 45
Looking at Program Memoryccovviiiiniiain.... 46
Keycodesot 48
Problems 49

4 Contents

Creating Your Own Programcoiiiiiiiiinann. 49
Beginning a Programo 50
EndingaProgram............ i 50
Loading a Program ... 51

Running a Program 53
Searching ForaLabel 53
Executing Instructions o 54

Automatic Memory Allocation 55
Converting Storage Registers to Program Memory 55
Converting Program Memory to Storage Registers 59
USING (MEM) -« oo eee et 59

Writing a Third Program ... 60

Program Stops and Pauses i 62
Planned Stops During Program Execution 62
Pausing During Program Execution 65
Unexpected Program Stops ..., 66

Labelso 68

Flowcharts 68

Problems ... 72

Programming Techniques i ... 76
Using Horner's Method i 79
Further Applications i 82

Problems 82

Section 4: Program Editing 84

Nonrecordable Operationsc.ccviiiiiinn.. 84

Pythagorean Theorem Program 86

Single-Step Execution of a Program 87

Modifying a Program 89

Single-Step Viewing Without Execution 90

Resettingto Line 000t 91

GoingtoaLine Number il 91

Inserting Instructions in Longer Programs 93

Stepping Backwards Through a Program 93

Running the Modified Program 95

Deleting Instructions 96

Problems ... 98

Section 5: Branching, Decisions, and Flags 102

Unconditional Branching and Looping 102

Problems 104

Conditionals and Conditional Branches 108

Problems 116

Flags ..o 120

Contents 5

Section 6: Subroutines 126
Subrouting USageo 133
Subrouting LimitSt 135
Using (1) at the End of Occupied Program Memory 137
Section 7: Advanced Programming 140
Controlling the I-Register i 140
Storing a Number in the I-Register 140
Exchanging Xand |o i 141
Incrementing and Decrementing the I-Register 141
ISG and DSE LIMitS . ..o .vv et 149

ProbIEmM . 149

Using the I-Register For Display, Storage Register,

and Program Control ... 151
I-Register Display Control 152
Exchanging X and (i) ... 156
Indirect Store and Recall 158
I-Register Control of Branches and Subroutines 163
Problem 170
Branching and Subroutines Using Line Number Addressing171

Section 8: Finding the Roots of an Equation 174
USING [SOLVE] + v vttt e ettt e et e 174
When No Root Is Foundcoiiiiiiiiiiia. 180
Choosing Initial Estimatescooviiiiiiiininnn... 182
How [SOLVE] WOTKS . ..o
Accuracy of the ROOtot
Interpreting Resultst

Using in a Program

Restriction on the Use of [0Vvvvvire i 200
For Further Informationcoiiiiiiiiinan.. 200
Section 9: Numerical Integration 202
USING (73] oot 202
ACCUIACY OF (73] ..ottt e 208
Using (73] in@aProgramoieiuieeiiaiiieenai.. 212
For Further Informationouuuiei ... 213
Appendix A: Advanced Use of So0dovvvrvnrnnnnns, 214
Using (sove] With Polynomialsuueeeeeeeennn.. 214
Finding Several Rootsooiiiiiiiiiiiii.. 219
Finding Local Extremes of a Function 224
Using the Derivativecooure i, 224
Using an Approximate SIOpeooeeuieeeenea... 227
Using Repeated EStimationcccooeeeeei... 230

Limiting the Estimation Time

6 Contents

Counting lterations i 233
Specifying a Tolerance 233
Using [sovel With (73] .o 233
Appendix B: A More Detailed Look at 73 236
How WOTKS .ot 236
Accuracy, Uncertainty, and Calculation Time 237
Accuracy of the Function to be Integrated 241
Functions Related to Physical Situations 242
Round-Off Error in Internal Calculations 243
Uncertainty and the Display Format 244
Calculating Integrals of Maximum Accuracy 247
Obtaining the Current Approximation to an Integral 250
Considerations that Could Cause Incorrect Results 252
Considerations That Prolong Calculation Time 260
Subdividing the Interval of Integration 263
Transformation of Variables 267
Appendix C: Service and Maintenance 270
Appendix D: Error Conditions 280
Appendix E: Stack Lift and LAST X 284

General Index 286

The HP-34C Programmable
Scientific Calculator

AUTOMATIC

I apiling

-12345617-34

FEJON PRoM ML AUN

=

<N

s(. RAD ENG GRD)

Displayed

-

LAST X

—

STORAGE REGISTERS

Permanent Shared
PROGRAM MEMORY [] el ridll]
Permanent Shared Rl R |
000-| 071- ATy
n[] n[]
002- 073- R iy
. - Rs[:j R»Sl:j
=N Nl
- 208-
069- 209- R[] Ra:}
070- 210- [R

The basic program memory-storage register allocation is 70 lines of programming

and 72 data storage registers, plus the I-register. The calculator automatically

converts one data storage register into seven lines of program memory, one

%egister at a time, as you need them. Conversion begins with R.y and ends with
o

7

Function Key Index

orFf [on OFF-ON switch set to ON.
PrGM [l RUN PRGM-RUN switch set to RUN.

Function keys pressed from the keyboard execute individual functions as
they are pressed. Input numbers and answers are displayed. Except where
otherwise indicated, each function key listed below operates from the
keyboard and as a recorded instruction in a program.

Prefix Keys

Pressed before
a function key,
selects gold function
printed above that
key.

(9] Pressed before
a function key,
selects blue function
printed above that
key.

(n] Pressed before
a function key, se-
lects black function
printed on slanted

face of that key.

(nonprogrammable)
cancels a partially
entered instruction
such as LK
(9 ())
(sF), (#), etc.

Digit Entry
Enters a

copy of number in
displayed X-register
into Y-register. Used
to separate
numbers.

Changes sign
of number or expo-
nent of 10 in dis-
played X-register.

(EEx] Enter ex-
ponent. After press-
ing, next digits keyed
in are exponents of
10.

0 through 9 Digit
keys.

[+ Decimal point.

Number Alteration

Leaves only
integer portion of
number in displayed
X-register by truncat-
ing fractional
portion.

Leaves only
fractional portion of
number in displayed
X-register by trun-
cating integer por-
tion.

Gives abso-
lute value of number
in displayed X-
register.

Stack Manipulation

Rolls down
contents of stack for
viewing in displayed
X-register.

Rolls up con-
tents of stack for
viewing in displayed
X-register.

Exchanges
contents of X- and Y-
stack registers.

Clears con-
tents of displayed X-
register to zero.

Storage

Store. Fol-
lowed by address
key, stores dis-
played numberin the
storage register

(R, through R, R,
through R g, 1) speci-
fied. Also used to
perform storage
register arithmetic.

Recall. Fol-
lowed by address
key, recalls number
from storage regis-
ter (R, through R,
R, through R,)
specified into

the displayed X-
register.

Recalls num-
ber displayed before
the previous opera-
tion back into the dis-
played X- reg|ster

CLI ;|Clears
c,ontents of aII stor-
age registers (R,
through R, R
through R, |) to
zero.

Display Control

[Fix] Selects fixed
point display.

| Selects scien-
tmc notation display.

neering notation dis-
play.

Displays as
many digits after the
decimal point as are
specified by the
number in the I-
register (0 through
9)

MANT | Mantissa
(nonprogramma-
ble). Displays all 10
significant digits of
the number in the X-
register as long as
the key is
pressed.

Percentage

Computes
percent of change
between number in
Y-register and num-
ber in displayed X-
register.

Computes x%
of value in the Y-
register.

Mathematics

HUEHXE
Arithmetic opera-
tors.

| Computes
square root of num-
ber in displayed X-
register.

Computes

square of number
in displayed X-
register.

(1 Calculates fac-
torial x!, or Gamma
function I'(1+x).

Computes
reciprocal of number
in displayed X-
register.

Places value of
pi (3.141592654)
into displayed X-
register.

Integrate.
Computes definite
integral f(x)dx
with expression f(x)
keyed into program
memory.

Solves for
real root of equation
f(x)=0, with expres-
sion f(x) keyed into
program memory.

Statistics

Clears
statistical storage
registers (R, through
Rs).

Accumulates
numbers from X-
and Y-registers into
storage registers R,
through Rs.

Subtracts x and
y values from stor-
age registers R,
through R; for
correcting
accumulations.

9

(%) Computes

mean (average) of x
andy values accum-
ulated by [z+].

(s] Computes
sample standard
deviations of x andy
values accumulated
by (z+]

Linear estimate.
Computes esti-
mated value of y for
a given value of x by
method of least
squares.

(] Correlation
coefficient. Com-
putes “goodness of
fit” between the x
andy values accu m-
and the Imear func—
tion that approx-
imates them.

Linear regres-
sion. Computes y-
intercept and slope
for linear function
that best approxi-
mates x and y
values accumulated
using (z+]. The
value of the y-inter-
cept is placed in the
X-register; the value
of the slope is placed
in the Y-register.

Polar/Rectangular
Conversion

[+r] Converts polar
magnitude r and
angle 6 in X- and
Y-registers to rec-
tangular x and y
coordinates.

Converts x, y
rectangular coordi-
nates placed in X-
and Y-registers to
polar magnitude r
and angle 6.

Trigonometry

Sets decimal
degrees mode for
trigonometric func-
tions.

Sets radians
mode for trigono-
metric functions.

Sets grads
mode for trigonome-
tric functions.

Combutes sin’e,‘ co-
sine, or tangent of
value in displayed

X-register.

Computes arc sine,
arc cosine, or arc
tangent of number in
displayed X-register.

Converts
degrees to radians.

(<] Converts rad-
ians to degrees.

Converts
decimal hours (or
degrees) to hours,
minutes, seconds
(or degrees, min-
utes, seconds).

Converts hours,
minutes, seconds
(or degrees, min-
utes, seconds) to
decimal hours (or
degrees).

(

I-Register Control

[xx1] Exchanges
contents of dis-
played X-register
with those of the |-
register.

Exchanges
contents of dis-

played X-register
with those of the
register addressed
by the value stored
in the l-register.

| I-register.
Storage register
for increment/de-
crement operations
and for indirect
control of dis-
play and program
execution.

10

(] Indirect opera-
tions command.
Used with and
for

indirect data
storage, recall, and
storage register
arithmetic.

Displays as
many digits after the
decimal point as are
specified in the
I-register.

(pse) Decrement,
skip when equal or
less than. Subtracts
specified decrement
value from counter
value. Skips one
program line if new
counter value is
equal to or less than
specified test value.

(isG] Increment,
skip when greater.
Adds specified
increment value to
counter value. Skips
one program line if
new counter value is
greater than speci-
fied test value.

Logarithmic and
Exponential

[Ln] Computes
natural logarithm
(base e=
2.718281828...) of
number in displayed
X-register.

Natural anti-
logarithm. Raises e

(2.718281828) to
power of number in
displayed X-register.

(Loc] Computes
common logarithm
(base 10) of number
in displayed X-
register.

Common
antilogarithm. Raises
10 to power of num-
ber in displayed X-
register.

Raises number
in Y-register to

power of number in
displayed X-register.

11

Program Control Index

Several of the following keys operate only in PRGM mode; others operate
differently in PRGM mode than in RUN mode. For specific details of
operation, consult the indicated pages.

[mEMm) Displays
current status of pro-
gram memory/
storage register allo-
cation (page 59).

(2] (8] User-defin-
able program keys
for both program
labels and execution

(page 68).

0123456789
Label designators.
When preceded by
(LBL], define begin-
ning of a routine
(page 68).

Label. When
used with [a],

(8), or 0 through 9,
denote the begin-
ning of a program or
subroutine (page
68).

Go to. Used

with (&], (8), 0
through 9, or

From the keyboard:
causes calculator to

search downward in
program memory for
designated label and
halt. In a running
program: causes
calculator to transfer
downward in pro-
gram memory to
designated label
and resume pro-
gram execution
(page 102).

Go to sub-
routine. Used with
(], (8) O through
9 or |. From the key-
board: causes cal-
culator to search
downward in pro-
gram memory for
designated label and
begin program exe-
cution. In a running
program: causes
calculator to transfer
downward in pro-
gram memory to
designated label and
begin subroutine
execution (page
126).

) nnn Go to

line number. Posi-
tions calculator to
occupied line num-
ber specified by nnn
(page 85).

Back step.
Moves calculator
back one line in
occupied program
memory (page 84).

Single-step.
Moves calculator
forward one line in
occupied program
memory (page 84).

Delete. Used
in PRGM mode to
delete displayed in-
struction from pro-
gram memory. All
subsequent in-
structions are
moved up one line
(page 85).

Clears all instruc-
tions in program
memory and resets
calculator to line
000 (page 84).

12

Pause. Halts

program execution
for about one sec-
ond to display con-
tents of X-register,
then resumes
execution (page
65).

Run/stop.
Begins program
execution from
current line number
in program memory.
Stops execution if
program is running
(page 62).

Return.

Causes calculator
to return from any
line in occupied pro-
gram memory to line
000, or from subrou-
tine to appropriate
line elsewhere in

occupied program
memory (page
126).

Set flag.
Followed by flag
designator (0, 1, 2,
or 3) sets flag true
(page 120).

Clear flag.
Followed by flag
designator (0, 1, 2,
or 3) clears flag
(page 120).

Is flag true?
Followed by flag
designator (0, 1, 2,
or 3), tests design-
atedflag. Ifflagis set
(true) the calculator
executes the instruc-
tionin the next line of
program memory. If
flag is cleared
(false), calculator

skips one line in
program memory
before resuming
execution (page
120).

Conditionals. Each
tests value in X-
register against 0 or
value in Y-register
as indicated. If true,
calculator executes
instruction in next
line of program
memory. If false,
calculator skips
one line in program
memory before
resuming execution
(page 108).

13

Section 1

Meet the HP-34C

Congratulations!

Your HP-34C Programmable Scientific Calculator with Continuous
Memory is a truly unique and versatile calculating instrument. Using the
Hewlett-Packard RPN logic system, your calculator can easily slice
through the most difficult calculations with ease. It is without parallel:

As a scientific calculator. The HP-34C features a multiple-entry
keyboard with each of the keys controlling up to four separate operations,
ensuring maximum computing power.

As a problem-solving machine. Following step-by-step instructions in
the HP-34C Applications books, you can key in programs from the
areas of mathematics, engineering, statistics, surveying, and other fields
and begin using your calculator. Immediately.

As a personal programmable calculator. The HP-34C is so easy to
program and use that it requires no prior programming experience or
knowledge of mysterious programming languages. Yet even computer
experts can appreciate the calculator’s programming features:

= Continuous Memory, allowing programs and data to be remem-
bered by the calculator—even when the power switch is off.

Automatic Memory Allocation: The basic 70 lines of program
memory plus 21 storage registers reallocates in 7-line increments
to as many as 210 lines of program memory plus 1 storage
register—automatically—as needed.

= Fully merged prefix and function keys that mean more program-
ming power per line.

Easy-to-use editing features for correcting and modifying pro-
grams.

Conditional and unconditional branching.
14

Meet the HP-34C 15

= Six levels of subroutines, 4 flags, 12 easily accessed and reusable
labels.

= Direct or indirect storage, recall, branching, and subroutine calls.

= Powerful root-finding and numerical integration operations using

the [sowe and (/3] keys.

And in addition, the HP-34C can be operated from its rechargeable
battery pack for complete portability, anywhere.

If you are new to HP calculators and their RPN logic system, you may
want to carefully work through Solving Problems With Your Hewlett-
Packard Calculator before consulting this handbook. Even if you
already own another HP calculator, you may find some new features in
the problem-solving book.

Now let’s take a closer look at your calculator to see how easy it is to
use, whether we solve a problem manually or use its programming power
to solve the problem automatically.

Manual Problem Solving

Before continuing, you should be comfortable solving problems
manually. If not, refer to the Getting Started section of Solving Problems
With Your Hewlett-Packard Calculator.

Ready? Slide the OFF-ON switch to IMY and be sure that the
PRGM-RUN switch is in the Il #un position. Now press (7] (Fix]4
to be sure your HP-34C’s display setting matches the setting used in the
following pages.*

To see the close relationship between manual and programmed calcula-
tions, let’s first calculate the solution to a problem. Then we’ll use a
program to calculate the solution to the same problem and others like it.

If you were to calculate the surface area of a sphere, you would use the
formula 4 = md? where:

* The display setting used with examples in this handbook is always [F1X] 4 unless
otherwise indicated.

16 Meet the HP-34C

A is the surface area of the sphere.
d is the diameter of the sphere.
7 is the value of pi, 3.141592654

Example: Ganymede, one of Jupiter’s
12 moons, has a diameter of 3,200
miles. You can use the calculator to
manually compute the surface area of
Ganymede. Merely press the following
keys in order. (Be sure the PRGM-RUN
switch is in the RUN- position.)

Keystrokes Display

3200 3,200. Diameter of Ganymede.
9] 10,240,000.00 Square of the diameter.
DE3) 3.1416 The quantity 7.

(E3)] 32,169,908.78 Surface area of Ganymede in

square miles.

Programmed Problem Solving

After calculating the surface area of Ganymede, suppose you decided
you want to calculate the surface area of each moon. You could repeat
the procedure you used for Ganymede 12 times, using a different diam-
eter d each time. However, an easier and faster method is to create a
program that will calculate the surface area of any sphere from its
diameter rather than pressing all the keys for each moon.

To calculate the area of a sphere using a program, you first write the
program, then you key the program into the calculator, and finally you
run the program to calculate each answer.

Meet the HP-34C 17

Writing the Program. You have already written it! A program is little
more than the series of keystrokes you would execute to calculate the
solution manually. Two additional operations, a label and a return, are
used to define the beginning and end of the program.

Loading the Program. To load the keystrokes of the program into the
calculator:

1. Slide the PRGM-RUN switch to prov [(program).

2. Press [] CLEAR [prcM]to clear program memory.

w

Press the following keys in order. (When you are loading a
program, the display gives you information that you will find
useful later, but which you can ignore for now.)

Keystrokes Display

™ @ 001-25, 13, 11 Defines the beginning of the
program.

D) 002- 15 3 These are the same keys you

Mm@ 003- 2573 press to solve the problem

(E3] 004- 61 manually.

M 005- 25 12 Defines the end of the
program.

The calculator will now remember this keystroke sequence.

Running the Program. To run the program to find the area of any sphere
from its diameter:

1. Slide the PRGM-RUN switch to MM~ .
2. Key in the value of the diameter.
3. Press [&]to run the program.
When you press (&], the sequence of keystrokes you loaded is automat-

ically executed by the calculator, giving you the same answer you would
have obtained manually.

18 Meet the HP-34C

For example, to calculate the surface area of Ganymede with a diameter
of 3,200 miles:

Keystrokes Display
3200 3,200.
) 32,169,908.78 Square miles.

With the program you have loaded, you can now calculate the surface
area of any of Jupiter’s moons—in fact, of any sphere—using its
diameter. Leave the calculator in RUN mode and key in the diameter of
each sphere for which you want the surface area, then press (&) .

For example, compute the surface area of Jupiter’s moon Io, with a
diameter of 2,310 miles.

Keystrokes Display
2310 (&) 16,763,852.56 Square miles.

Now compute the surface area of the moons Europa, diameter 1,950
miles, and Callisto, diameter 3,220 miles.

Keystrokes Display

1950 (&) 11,945,906.07 Area of Europa in square
miles.

3220 (&) 32,573,289.27 Area of Callisto in square
miles.

Programming is that easy! The calculator remembers a series of key-
strokes and then executes them whenever you wish. In fact, your HP-34C
can remember up to 210 separate operations (and many more keystrokes,
since many operations require two or three keystrokes).

Meet the HP-34C 19
What Continuous Memory Means to You

Your calculator contains Continuous Memory—one of the most ad-
vanced memory systems available in a scientific calculator. Continuous
Memory means the program memory, all 21 storage registers, and the
display mode stay ‘‘on’” when your calculator is turned off. You can
store your favorite program (or programs) for days or weeks!

Continuous Memory is especially convenient when you want to retain
data, save battery life, or customize your calculator (e.g., if you use
20% of your programs in 80% of your calculations.) You save consider-
able time because you don’t have to key in those common programs again
and again—they are stored in your calculator. Continuous Memory
reduces human entry errors too; fewer keystrokes mean fewer chances
of making inadvertent errors. Perhaps the most important advantage of
Continuous Memory is that it enables you to customize or personalize
your calculator. The easiest way to customize your calculator is to make a
list of the problems you encounter most frequently, rate them in order of
priority, then write and save the specialized programs for those pro-
blems. Whenever you encounter a repetitive problem set, you just write
the program once, then use it at different times. You can even preserve
one or two favorite programs in the calculator.

Besides saving programs, Continuous Memory lets you save data in
up to 21 storage registers, depending on current program memory/data
storage allocation. Constants, accumulations, and intermediate answers
can be retrieved whenever you need them. And because display mode
is also saved in Continuous Memory, your HP-34C ‘‘wakes up’’ in
whatever (Fix], , or (ENG] setting you last used.

Continuous Memory helps save battery life because you don’t have to
keep the calculator turned on to save programs or data between calcu-
lations. And if your calculator is left off, Continuous Memory can store
your programs and data for 1 month or longer. When you do use your
calculator, keying in fewer programs means less time that the display
is on—hence, less battery drain.

Section 2

Specific Features of the HP-34C

Most of the features found on the HP-34C are discussed in Solving
Problems With Your Hewlett-Packard Calculator. However, several
features unique to the HP-34C (or new to HP calculators) are discussed
in the following pages.

Keyboard Operation

Most keys on the HP-34C keyboard perform three or four functions. One
function is indicated by the symbol on the horizontal key face, while
another is printed in black on the slanted key face. A third function is
indicated by the gold symbol printed above the key. On keys designed
with four functions, the last function is indicated by the appropriate
blue symbol, also printed above the key.

To select the function on the horizontal face of a key, press the key.

To select the function printed in black on the slanted face of a key, press
the black prefix key [h], then press the function key.

To select the function printed in gold above a key, press the gold prefix
key [7], then press the function key.

To select the function printed in blue above a key, press the blue prefix
key (@], then press the function key.

To execute this function,

i press [f]

2
x ®—___ To execute this function,

3 I press (9] (x?).
) ~—— ____ To execute this function,
X simply press 3.

\ To execute this function,

press (] (7).
20

Specific Features of the HP-34C 21

Notice that for all four-function keys excepr S8 the function
printed in gold is above and to the left of the key and the function printed
in blue is above and to the right of the key.

Storage Registers and Program Memory

In addition to the four-register stack and the LAST X register, your
HP-34C features a shared program and data storage memory that is
controlled automatically. The HP-34C’s basic program memory/data
storage allocation is 70 lines of program memory and 20 data storage
registers, plus the I-register. According to your programming needs,
one or more of the data storage registers can be automatically exchanged
for seven lines each of program memory. And, by pressing (2] MEM]
your HP-34C will even tell you the current program memory storage
register allocation at any time! We will cover this important subject in
detail when we discuss programming.

Storing and Recalling Numbers. Your HP-34C’s twenty data storage
registers are denoted R, through Ry and R through R 4 (plus the I-regis-
ter, which we’ll cover later). As you learned in Solving Problems With
Your Hewlett-Packard Calculator, a copy of the number in the displayed
X-register can be stored in registers R, through Ry by pressing
(store) and the number key of the register address (0-9). A copy of a
number in any register R, through Ry can be recalled to the displayed
X-register by pressing (recall) and the number key of the register
address (0-9). Notice, however, that store or recall operations involving
registers R through R 4 use an additional keystroke, (=], to correspond
to the decimal point in these register names. For example, to store a
copy of 7 in register R ;:

Keystrokes Display
M@ 3.1416
35 3.1416 A copy of 7 is now stored in

R.

22 Specific Features of the HP-34C

To recall a copy of 7 from R ;:

Keystrokes Display
0.0000
s 3.1416

Storage Register Arithmetic. Registers R, through Ry in your HP-34C
are used for the direct storage register arithmetic operations described in
Solving Problems With Your Hewlett-Packard Calculator. However, all
storage registers (R, through Ry, R o through R 4, and I) can be used to
perform indirect storage register arithmetic (we’ll cover this subject later,
in section 7).

Number Alteration Keys

Besides (cHs), your HP-34C has three keys provided for altering
numbers: , , and (FRAC].

Absolute Value

Some calculations require the absolute value, or magnitude, of a number.
To obtain the absolute value of the number in the displayed X-register,
press [n]followed by the (ABS](absolute value) key. For example, to
find the absolute value of -3.

Keystrokes Display
3 -3.
™ 3.0000

Integer Portion of a Number

To extract and display the integer portion of a number, press the [h])
prefix key followed by the (INT](integer) key. For example, to display
only the integer portion of the number 111.222.

Specific Features of the HP-34C 23

Keystrokes Display

111.222 111.222

03} 111.0000 Only the integer portion
remains.

333.444 -333.444

(M ONT) -333.0000 Again, only the integer

portion remains.

When (0] is pressed, the fractional portion of the number is re-
placed by zero. The sign is unaffected. The original number, of course,
is preserved in the LAST X register.

M) (sTx) -333.4440 The original number.

Fractional Portion of a Number

To extract and display only the fractional portion of a number, press the
(n] prefix key followed by the (FRaC] (fraction) key. For example, to
see the fractional portion of 555.666.

555.666 555.666

(»] (Frac) 0.6660 Only the fractional portion
of the number remains.

777.888 -777.888

(n] (Frac) -0.8880 Again, only the fractional

portion remains.

When the ([n](FRAC] is pressed, the integer portion of the number is
replaced by zero. The sign is unaffected. The original number is pre-
served in the LAST X register.

My -777.8880

24 Specific Features of the HP-34C
Mathematical Functions

Factorial

When the number in the X-register is a nonnegative integer n, pressing
(x1gives you the factorial of n, which is denoted n/ and defined as the
product of the integers from 1 to n. This function enables you to quickly
and easily solve permutations and combinations.

Example: Willie’s Widget Works
wants a photograph of its product line
for advertising. How many different
ways can the photographer arrange their
eight widget models?

Solution: The number of arrangements is given by
8l =8 XTX6X5X4X3X2X1

Keystrokes Display

8 (MY 40,320.0000 The photographer can ar-
range the widgets 40,320
different ways.

Example: The photographer looks through her viewfinder and decides
that she can show only five widgets if her camera is to capture the
intricate details of the widgets on film. How many different sets of five
widgets can she select from the eight?

Solution: The number of sets is given by

8!
8—=5s!

Specific Features of the HP-34C 25

Keystrokes Display

8 (0] 40,320.0000

8 8.0000

53 3.0000

DED] 6.0000

5 MGED 120.0000

(E3} 720.0000

(B3] 56.0000 The photographer can select
56 different sets of five
widgets.

Gamma Function

The (x1 key can also be used* to calculate the Gamma function,
denoted by I'(x), which occurs in certain problems in advanced
mathematics and statistics. Pressing (x!)gives you I'(x + 1). To calcu-
late the Gamma function of any number, therefore, subtract 1 from the
number, then with the result in the X-register, press (0] (x1).

Example: Calculate I'(2.7).

Keystrokes Display

2.7 2.7 Key in number.
1 3 1.7000 Subtract 1.

® &) 1.5447 re.7).

Example: Calculate I'(-2.7).

Keystrokes Display

2.7 -2.7 Key in number.
1 3 -3.7000 Subtract 1.

M &Y -0.9311 L(-2.7).

* The @.key. can be used for both the factorial and Gamma functions because when x is a
nonnegat'lve }ntegern, I'(x + 1) =T'(n + 1) = n/. The Gamma function can be regarded as
a generalization of the factorial function, since the number in the X-register is not limited to

nonnegative integers. Conversely, the factorial function can be regarded as a special case of
the Gamma function.

26 Specific Features of the HP-34C

Since I'(x) is not defined when x is a negative integer or 0, I'(x + 1),
the value returned by (x1, is not defined when x is a negative integer.
As x approaches these values, the magnitude of I'(x + 1) increases
without limit. Since the largest number your HP-34C can calculate
is 9.999999999 x 10%, if you press (n]) (xfwith a negative integer
in the X-register the calculator will display the overflow indication
-9.999999 99. Although I'(x + 1) as x approaches a negative integer
may be positive or negative, depending on the value of x, the calculator
always displays a minus sign in the overflow display when x is a
negative integer. This differentiates the value from the overflow display
9.999999 99 for very large positive values of x, at which I (x) increases
without limit but is always positive.

Percent Difference

The operation gives you the percent difference—that is, the
relative increase or decrease—between two numbers. To find the per-
cent difference:

1. Key in the base number (typically, the number that occurs first in
time).

2. Press (ENTERt).

3. Key in the second number.

4. Press [(n])(2%).

The formula used is: A% =100x ~y) .
y

Using the above order of entry, a positive result signifies an increase,
while a negative result signifies a decrease.

Specific Features of the HP-34C 27

Example: Silas Silversaver’s coin
collection was appraised in 1974 at
$475. An appraisal in 1979 valued the
collection at $735. By what percent did
the value of the collection increase from
1974 to 19797

Keystrokes Display
475 475.0000
735 (M)(a%) 54.7368 Percent increase.

Statistical Functions

Accumulations

Pressing the (2+]key computes certain important sums and products of
the values in the X- and Y-registers. The results are automatically
accumulated in storage registers R, through Rs. Before you start to
c.alculate accumulations with a new set of x and y values, you should
first clear these registers by pressing (] CLEAR [Z). Then, do the

following for each pair of x and y values in your data:

Key the y value into the X-register.

1

2. Press to raise the y value into the Y-register.
3. Key the x value into the X-register.
4

Press (] [z+).

28 Specific Features of the HP-34C

If your statistics problem involves only one variable (x) instead of two
(x and y), the procedure is similar. First clear statistical storage
registers R, through R;. In addition, if the contents of the Y-register are
not zero, you should clear the Y-register also. (A nonzero number in the
Y-register during one-variable calculations of s, r, L.R., or y may
result in a display of Error 3.) Pressing [f ‘ 6] will clear
registers R, through Rj, but will also clear registers Rg through Ry, R
through R 4, and I. Therefore, if there are numbers stored in these other
reglsters that you want to save, you should press the keys
‘ [Z] instead of | LE/ REG], After clearing the
reglsters do the following for each value of x in your data:

1. Key the number into the X-register.

2. Press [

Each time you press [] [2+], the following operations are performed:

1. The number in the X-register is added to the contents of storage
register R;.

2. The square of the number in the X-register is added to the contents
of storage register R,.

3. The number in the Y-register is added to the contents of storage
register Rj.

4. The square of the number in the Y-register is added to the contents
of storage register Ry.

5. The number in the Y-register is multiplied by the number in the
X-register, and the product is added to the contents of storage
register Rs.

6. The number 1 is added to the contents of storage register R,. The
result—the number of (x,y) data pairs accumulated so far—
is copied into the displayed X-register.

After you press (1] [2+], the number previously in the X-register is
placed in the LAST X register. The number previously in the Y-register
is not changed.

Specific Features of the HP-34C 29

To summarize, this is where the statistical accumulations are stored
inside your calculator:

Register Contents
Ro n: number of data pairs accumulated.
R, >x: summation of x values.
R. 3x2: summation of squares of x values.
Rs 3y: summation of y values.
R, 2y?2: summation of squares of y values.
Rs 3.xy: summation of products of x values andy values.

Some sets of data consist of x or y values that all differ from some
number by a comparatively small amount. You can maximize the pre-
cision of any statistical calculation involving such data by entering into
the calculator only the differences between each value and a number
approximating the average of the values. When you do this, this number
must be added to the result of calculating X, y, or the y-intercept of
L.R. For example, if your x values consist of 665999, 666000, and
666001, you should enter the data as -1, 0, and 1. If afterwards you
calculate X, add 666000 to the answer. In some cases the calculator
cannot compute s, r, L.R., or y with data values that are too close to
each other, and if you attempt to do so the calculator will display
Error 3. This will not happen, however, if you normalize the data as
described above.

Note: Unlike storage register arithmetic, the [z+] and
operations allow overflow to occur in storage registers R,
through Rs without indicating Error 1 in the display. (i.e.,

when executing [z+jor (z=)would resultin an overflow in any
statistics register, 9.999999999 x 10% is placed in that regis-
ter without interrupting normal operation.)

To use any of the accumulations, you can recall the contents of the
desired storage register into the displayed X-register by pressing
followed by the number of the register. If this is done immedi-
ately after pressing [7)[z+) (or (@)(z-), the accumulation recalled is
written over the number of data pair entries (z) in the display.

30 Specific Features of the HP-34C

If you want to use both 3x and 2y, press ([Reu)(7] (z+]. This simultane-
ously copies 2x from R, into the displayed X-register and copies 2y
from R; into the Y-register. If this is done immediately after pressing
(7)(=+), (9)(z7), [cLx), or (EnTeRs], the number in the Y-register is first
lifted into the Z-register. Otherwise, the numbers in the X- and Y-
registers are first lifted into the Z- and T-registers, respectively.

Example: Find 2x, 2x?, 3y, 2y?, and 2xy for the paired values of x and
y listed below.

y | 7159
x | 5|38
Keystrokes Display
(fJCLEAR (T] 0.0000 Clear statistical storage
registers. (Display shown
assumes no results remain
from previous calculations.)
7 7.0000
5 (1] =9 1.0000 First pair is accumulated;
n=1.
5 5.0000
3 (1) =9 2.0000 Second pair is accumulated,
n=2.
9.0000
3.0000 Third pair is accumulated;
n = 3.
16.0000 Sum of x values from
register R;.
98.0000 Sum of squares of x values
from register R,.
3 21.0000 Sum of y values from
register R.
4 155.0000 Sum of squares of y values
from register Ry.
5 122.0000 Sum of products of x and y
values from register R;.
(Rc] O 3.0000 Number of entries (n = 3)

from register R,.

Specific Features of the HP-34C 31

Deleting and Correcting Data

If you key in an incorrect value and have not yet pressed [f][z+],

press and key in the correct value.

If you want to change one of the values, or if you discover after pressing
that one of the values was erroneous, you can correct the
accumulations by using the (summation minus) key as follows:

1. Key the incorrect data pair into the X- and Y-registers. (You can
use to return a single incorrect data value to the displayed

X-register.)

2. Press (9] to delete the incorrect data.

3. Key in the correct values forx and y. If one value of an (x,y) data
pair is incorrect, you must delete and reenter both values.

4. Press (f)[(z+).

For example, if the last data pair (8,9) in the previous example should
have been (8,6), you could correct the accumulation as follows:

Keystrokes Display
9 9.0000
8 8.

) 2.0000
g 6.0000
K2 g:oooo

Incorrect y value is entered
again.

Correct x value is entered
again.

Numbered of entries (n) is
now two.

Correct y value is entered.
X value is entered again.
Number of entries is again
three.

32

Mean

Specific Features of the HP-34C

Note: Although (@] (£=Jcan be used to delete an erroneous
(x, y) pair, it will not delete any rounding errors that may
have occured when that pair was added into accumulating
registers R, through Rs. Consequently, subsequent results
may be different than they would have been if the erroneous
pair (x,y) had not been entered via [] (z+]and then deleted
via (@](z=} However, the difference will not be serious
unless the erroneous pair (x,y) have a magnitude that is
enormous compared with the correct pair; and in such a case
it may be wise to start over again and re-enter the data again
(and more carefully!).

Pressing (X)computes the arithmetic mean (average) of x and y values
accumulated in registers R; and Rj, respectively.

When you press [h] (X]

1.

3.

The contents of the stack registers are lifted just as they are when
you press (RcL) (] [z+], as described on page 30.

The mean of the x values (¥) is calculated using the data accumu-
lated in registers R; (2x) and R, (n) according to the formula:

2x

n

.—X_=

The resultant value for ¥ appears in the displayed X-register.

The mean of the y values (¥) is calculated using the data accumu-
lated in registers Ry (Xy) and R, (1) according to the formula:

)

y=—
n

The resultant value fory is available in the Y-register of the stack.

Specific Features of the HP-34C 33

Example: Below is a chart of daily high
and low temperatures for a winter week
in Fairbanks, Alaska. What are the aver-
age high and low temperatures for the
week selected?

Sun Mon Tues Wed

ca
(==}

|H

Thurs Fri Sat

High 6 11 14 12 5 -2 -9
Low I -22 -17 -15 -9 -24 -29 -35

Keystrokes Display

(] CLEAR 0.0000 Accumulation registers
cleared. (Display shown
assumes no results remain
from previous calculations.)

6 22 22,

0 1.0000 Number of data pairs (n) is
now 1.

11 17 17.

3 2.0000 Number of data pairs (n) is
now 2.

14 15 15.

K2 3.0000

12 9 9.

M 4.0000

5 24 24,

© 5.0000

2 -2.0000

29 M 6.0000

34 Specific Features of the HP-34C

Keystrokes Display

9 -9.0000

35 = 7.0000 Number of data pairs (n) is
now 7.

DR -21.5714 Average low temperature.

5.2857 Average high temperature.

Standard Deviation

Pressing (h) (s]computes the standard deviation (a measure of disper-
sion around the mean) of the accumulated data. The formulas used by the
HP-34C to compute sy, the standard deviation of the accumulated x
values, and sy, the standard deviation of the accumulated y values, are:

o = A\ / nEx*— (Zx) = \/ n2y* — (3y)?
X nn—1) v nn—1)

These formulas give the best estimates of the population standard
deviations from the sample data. Consequently, the standard devia-
tion given by these formulas is termed by convention the sample
standard deviation.

When you press [n]) (s}

1. The contents of the stack registers are lifted just as they are when
you press (7] (%) as described on page 30.

2. The standard deviation of the x values (sy) is calculated using the
data accumulated in registers R, (2x?), R; (2x), and R, (n)
according to the formula shown above. The resultant value for s
appears in the displayed X-register.

3. The standard deviation of the y values (sy) is calculated using the
data accumulated in registers R, (2y?), Ry (2y), and R, (n)
according to the formula shown above. The resultant value for sy
is available in the Y-register.

Example: Norman Numbercruncher,
a rising young math professor at Mam-
moth University, has developed a new
test for measuring the mathematical
abilities of college freshmen. To eval-
uate its effectiveness, he administers
the test to the 746 students in Calculus
I. Exhausted after grading the tests,
Numbercruncher decides to randomly
select 8 of the 746 tests and estimate

Specific Features of the HP-34C 35

the standard deviation of all the scores from the sample of 8. The scores
on the tests selected were 79, 94, 68, 86, 82, 78, 83, and 89. What
standard deviation does Numbercruncher calculate?

Keystrokes
CLEAR (z)
79 (1)
94 (1)
68
86 (7]
82 (] &9
78 (1)
83 (1]
89 (]
M

Display

0.0000

0.0000
1.0000

2.0000

3.0000
4.0000
5.0000
6.0000
7.0000
8.0000

7.8365

Clear displayed X-register
and Y-register.

Clear statistical registers

First score is entered. Notice
that since this problem
involves only one variable,
you don’t have to enter a
y-value into the Y-register

using the key.

Display shows number of
scores entered so far.

Last score in sample.

Standard deviation
estimated for the 746 stu-
dents based on sample of 8.

36 Specific Features of the HP-34C

When your data constitutes not just a sample of a population but rather
all of the population, the standard deviation of the data is the true
population standard deviation (denoted o). The formula for the true
population standard deviation differs by a factor of [(2—1)/n]'/? from
the formula used for the (s]function. The difference between the values
is small, and for most applications can be ignored. Nevertheless, if you
want to calculate the exact value of the population standard deviation for
an entire population, you can easily do so with just a few keystrokes on
your HP-34C. Simply add, using the [f] [Z+]key, the mean (x) of the
data to the data and then press [n] (s]. The result will be the true pop-
ulation standard deviation of the original data.

Example: Suppose the data from the previous example represented all
the final exam scores from Numbercruncher’s seminar on transcendental
functions. Since this is the first time Numbercruncher has given this
seminar, he wants to calculate the standard deviation of the test scores to
determine how good his exam was. Numbercruncher takes his calculator
in hand, enters the data, then proceeds as follows:

Keystrokes Display
xE 82.3750 Mean of scores.

f] (z+) 9.0000 Mean is added to data.
Display shows nine total
entries.

™M E) 7.3304 Standard deviation for all

scores on final exam.

Linear Regression

Linear regression is a statistical method for finding a straight line that
best fits a set of data points, thus providing a relationship between two
variables. After a group of data points has been totaled in registers Ry
through R;, you can calculate the coefficients of the linear equation
y = Ax + B using the least squares method by pressing [n](LR].
(Naturally, at least two data points must be in the calculator before a
least squares line can be fitted to them.)

To use the linear regression function on your HP-34C, first key in a

=+) key. Then press [n][LR].

Specific Features of the HP-34C 37
When you press [h](LR]:

1. The contents of the stack registers are lifted just as they are when
you press (7] [£4], as described on page 30.

2. The slope (4) of the least squares line of the data is calculated
using the equation:

q=n Zxy — 2x 2y
n 2x%— (2x)?

The slope is available in the Y-register of the stack.

3. The y-intercept (B) of the least squares line of the data is cal-
culated using the equation:

Bzzy 2x?—2x 2xy
n Zx?— (2x)?

The y-intercept appears in the displayed X-register of the stack.

To use the value for A or to bring it into the displayed X-register,
simply exchange the stack contents with the key.

Example: Big George Gusher, owner-
operator of the Gusher Oil Company,
wishes to know the slope and y-intercept
of a least squares line for the consump-
tion of motor fuel in the United States
against time since 1945. He knows the
data given in the following table.

38 Specific Features of the HP-34C

Motor Fuel
Demand
(Millions of
Barrels) {696 994 1,330 1,512 1,750 2,162 2,243 2,382 2,484

Year l1945 1950 1955 1960 1965 1970 1971 1972 1973

Solution: Gusher could draw a plot of motor fuel demand against time
like the one shown below.

Demand
(Millions of Barrels)
2,500+ ..
2
2,000 4 A
/
1,500+ p
) e
/‘“’(ﬁ:f/
1,000+ s
o
500 1
L (Y
Year 1945 1950 1955 1960 1965 1970 1975

However, with his HP-34C, Gusher has only to key the data into the
calculator using the key, then press [h])(LR].

Keystrokes Display

(fJCLEAR (T} 0.0000 Clear statistical storage
registers. (Display shown
assumes no results remain
from previous calculations.)

696 696.0000

1945 (7] =9 1.0000

994 994.0000

1950 (7] (=4 2.0000

1330 1,330.0000

1955 =4 3.0000

1512 1,512.0000

1960 (7] z7) 4.0000

1750
1965
2162
1970 ()
2243
1971 3]
2382
1972
2484
1973 (1) =4

®ED)

Linear Estimation

Specific Features of the HP-34C 39

1,750.0000
5.0000
2,162.0000
6.0000
2,243.0000
7.0000
2,382.0000
8.0000
2,484.0000
9.0000

-118,290.6295

61.1612

All data pairs have been
keyed in.

The y-intercept of the line.
Slope of the line.

With data accumulated in registers R, through R, a predicted value for
y (denoted §) can be calculated by keying in a new value for x and

pressing [n] (3].

For example, with data intact from the previous example in registers
R, through R, if Gusher wishes to predict the demand for motor fuel
for the years 1980 and 2000, he keys in the new x value and presses

® &

Keystrokes
1980 (m)

2000 (1)

Display
2,808.6264

4,031.8512

Predicted demand in

millions of barrels for the
year 1980.

Predicted demand in
millions of barrels for the
year 2000.

40 Specific Features of the HP-34C

Correlation Coefficient

Both linear regression and linear estimation presume that the relationship
between the x and y data values can be approximated, to some degree, by
a linear function (i.e., a straight line). You can use (] (correlation
coefficient) to determine how closely your data ‘‘fits’” a straight line.
The correlation coefficient can range from r = +1 to r = —1. At
r = +1, the data falls exactly onto a straight line with positive slope,
while at r = —1, the data falls exactly onto a straight line with negative
slope. At r = 0, the data cannot be approximated at all by a straight line.

For example, to calculate the correlation coefficient for the example
above:

Keystrokes Display

MmO 0.9931 The data approximates a
straight line very closely.

Vector Arithmetic

You can add or subtract vectors with your HP-34C by using |
(Z-)in conjunction with [srjand [+#).

Example: Federation starship Felicity has emerged victorious from a
furious battle with the starship Thanatos from the renegade planet
Maldek. However, its automatic pilot is kaput, and its main thrust en-
gine is locked on at 37.2 meganewtons directed along a angle of 25.2°
from the star Ultima. Consulting the ship’s star map, the navigator re-
ports a hyperspace entrance vector of 51 meganewtons at an angle of
41.3° from Ultima. To what thrust and angle should the auxiliary engine
be set, for Felicity to achieve alignment with the hyperspace entrance
vector?

Solution: The required thrust vector of the auxiliary engine is equal to
the hyperspace entrance vector minus the thrust vector of the main
engine. The vectors are converted to rectangular coordinates using

This difference is recalled to the X- and Y-registers using
Then, these rectangular coordinates of the auxiliary engine thrust vector
are converted to polar coordinates using (g] [=F).

Ultima

25.2°

41.3°

Keystrokes
(1) CLEAR

(9] (oeg)
413

51

Specific Features of the HP-34C 41

Display
0.0000

0.0000

41.3000

38.3145

Clear statistical registers.
(Display shown assumes no
results remain from previous
calculations.)

Ensures that trigonometric
mode is set to degrees.
Enter angle of hyperspace
entrance vector into Y-
register.

Enter magnitude of hyper-
space entrance vector into
X-register and convert to
rectangular coordinates.

42 Specific Features of the HP-34C

Keystrokes
(] &4

25.2
37.2 (0 R

(@ =]
(Rey) (7] [Z4)
X%y

Display
1.0000

25.2000

33.6596

0.0000

4.6549

18.4190

75.3613

Rectangular coordinates of
hyperspace entrance vector
accumulated in registers

R; and Rj.

Enter angle of main engine
thrust vector into Y-register.
Enter magnitude of main
engine thrust vector into X-
register and convert to
rectangular coordinates.
Subtract rectangular coor-
dinates of main engine
thrust vector from rectang-
ular coordinates of hyper-
space entrance vector in
registers R; and Rj into X-
register and Y-register.
Recall rectangular coor-
dinates of auxiliary engine
thrust vector from registers
R, and Rz into X-register and
Y-register.

Convert to polar coordi-
nates. Display shows re-
quired magnitude, in mega-
newtons, of auxiliary engine
thrust vector.

Required angle of auxiliary
engine thrust vector.

Section 3

Simple Programming

What Is a Program?

A program is a sequence of keystrokes that is remembered by the
calculator. You can execute a given program as often as you like—
typically with just one keystroke. The answer displayed at the end of
execution is the same one you would have obtained by pressing the keys
one at a time manually. No prior programming experience is necessary to
learn HP-34C programming.

Why Write Programs?

Programs are written to save time on repetitive calculations. Once you
have written the keystroke procedure for a particular problem and
recorded it in the calculator, you need no longer devote attention to the
individual keystrokes that make up the procedure. You can let your
HP-34C calculate the solution to each problem for you. And you can
have more confidence in the answer. Why? Because once you have
checked that your program is correctly recorded in the calculator, you
may be sure that the calculator will execute your commands faithfully,
without the slips you might make if you had to manually press the keys
over and over again. The calculator performs the drudgery, leaving
your mind free for more creative work.

Before proceeding, let’s take another look at the powerful programming
features designed into your HP-34C:

® An easily understood programming language.

m Twelve labels you can use (and re-use) to designate various
programs and portions of programs.

a Fully merged program lines
keystrokes—such as (7]

one line of program memory.

44

Commands requiring multiple

] or l—consume only

Simple Programming 45

®= Automatic Memory Allocation. Possible memory combinations
range from 21 storage registers and 70 lines of programming to 1
storage register (the I-register) and 210 lines of programming.
Memory conversion occurs at the rate of seven lines of program-
ming for each data storage register—automatically!

= Decision-making capability for more sophisticated routines.

= Easy to use editing features for correcting and modifying
programs.

= Six levels of subroutines and four flags to help simplify otherwise
complicated programs.

= Indirect storage, recall, branching, and subroutine calls to auto-
matically control data, decisions, and program control.

= Increment/decrement counter and looping control.

Together, these features provide you with the tools necessary to tackle
complex problems with confidence.

Three Calculator Modes

Your HP-34C calculator has three operational modes:

1. Manual run mode.
2. Program mode.

3. Automatic run mode.

Manual Run Mode. The functions and operations you have learned
about in the first part of this handbook and in Solving Problems With
Your Hewlett-Packard Calculator are performed manually one at a

time. These functions combined with the automatic memory stack enable
you to calculate with ease.

Program Mode. In program mode the functions and operations you have
learned about are not executed but instead are recorded, in a part of the
calculator called program memory, for later execution. To get into pro-
gram mode, simply slide the PRGM-RUN switch to prem [l - All
operations on the keyboard except the following can be recorded for
later execution when the calculator is in program mode.

46 Simple Programming

These operations cannot be recorded:

(1] CLEAR (f) CLEAR (PREFIX] () em)

EED G0 (2] nnn (&) [wan)
Dt ® o)

You will find all of the above operations except [(h) and
useful when keying in and editing your programs.*

Automatic Run Mode. As you have learned, the HP-34C will auto-
matically execute a list of operations when the calculator is in run mode
if they have previously been recorded in program memory. Instead of
pressing each key manually, the recorded operations are executed
sequentially in automatic run mode. Typically, you press only one key
to start the calculator at the beginning of the list. The entire list of
recorded operations is then executed much more quickly than you could
have executed them yourself.

Looking at Program Memory

As you may remember from the program you created in section 1,

the keystrokes used to calculate a solution manually are also used when
you write a program to calculate the solution automatically. These

keystrokes are stored in the calculator’s program memory. When you
slide the PRGM-RUN switch to prem [[[[llll you can examine the
contents of program memory, one line at a time. Press (7000 to
return the calculator to the beginning of program memory. If you have
not already done so, slide the PRGM-RUN switch to prem [[[Tll - The
display should show 000-.

Program memory consists of from 70 to 210 lines, together with a top-
of-memory marker which is the 000- you now see in your display.
Program memory operates separately from the stack, LAST X, I, and
available storage registers.

* Pressing ™ does nothing in program mode, but pressing in either
program or run mode will perform the self-check as instructed, and will clear the stack,
LAST X register, and flags, reset trig mode to degrees, and reset the calculator to line 000 in
program memory.

+ ““Available’” storage registers refers to data storage registers that are not converted to
program memory.

Simple Programming 47

000- -«— Top-of-Memory Marker
001-
002-
003-

Program Memory 068

069- .
070- ~«— Minimum Program Line
Allocation
——]
208-
209-
-«+— Maximum Program Line
210- .
Allocation

With the PRGM-RUN switch set to pram [[[[Jlilj , the number that you
see on the left side of the display indicates the line number of program
memory to which the calculator is set. Press (7] CLEAR [prcM)

M (&), the first keystrokes of the Moon Surface Area program
(refer to page 17), and the display will change to:

Line number — 001-25, 13, 11

The calculator is now set to line 001 of program memory, as indicated
by the number 007 that you see on the left side of the display. The other
numbers in the display are keycodes for the keystrokes that have been

loaded into that line of program memory. Press (g) (x3). Your display
shows:

002- 15 3

The number 002 on the left side of the display indicates that you are now
at line two of the program.

Each line of program memory can ‘‘remember’’ a single instruction,
whether that instruction consists of one, two, or three keystrokes. Thus,
one line of program memory might contain a single-keystroke instruction
like (cHs), while another line of program memory could contain the

three-keystroke instruction 6 (adds the value in the displayed
X-register to the contents of register number 6).

48 Simple Programming

But how do those numbers in the display relate to the actual keystrokes
of program commands? This question brings us to the next step in
mastering your HP-34C—keycodes.

Keycodes

Let’s take another look at the program instructions we just entered.

Press (n](8sT). Your display will now show the first line of the Moon
Surface Area program:

Line number ——-»LOO_‘1-25, 13, 11 <+— Keycodes

As you know, the number code 007 appearing on the left side of the
display designates the line number of program memory. The next digit
pair, 25, represents the [h] keystroke; 13, the keystroke; and
11, the (A]keystroke. The first digit of each pair denotes the row the
key is located in; the second digit denotes the number of the key in the
row. So 25 tells you that the key is in the second row on the calculator
and that it is the fifth key in that row, or, the (hJkey. In this manner each
key on the keyboard is represented by a two-digit keycode, except for the
digit keys zero through nine. For convenience, these keys and their
respective alternate functions are coded O through 9. Let’s see an exam-
ple. Press (n])(SsT] once. Your HP-34C’s display will now show the
second line of the Moon Surface Area program, =3:

Line number —» 002- 15 3 <«— Keycodes
L1 1

From the above, we know that 002 is the program line number and 15 is
the first row, fifth key, or the (8] key. Because the (9] prefix key is part
of this instruction, the 3 denotes the x? function which is located on the
3 digit key. In calculator jargon, (x?) is a ‘‘shifted function’’ of the
3 key, just as the asterisk is a shifted function of a typewriter key.

The remaining keystrokes for the Moon Surface Area program are shown
below with their corresponding displays. Press each key in turn and
verify the keycodes shown in the display.

Keystrokes Display
™M@ 003- 2573
(B3] 004- 61

(0 (rTN) 005- 25 12

Simple Programming 49

In this case, a program consisting of 10 keystrokes takes only five lines
of program memory.

Problems
1. What would be the keycodes for the following operations:
(»(A), (9)(erD), Ms , 1?7 (Answers: 25 2;

15 13; 14 6; 23, 51 1)

2. How many lines of program memory would be required to load the
following sections of programs?

a. 2 (&very 3 (3]
b. 10 (570) 6 (ReQ) 6 ().

c. 100 (st0) 1 50 50 (x) 1 (reg 2 (0] (@) (¢
(Answers: a, 4; b, 5; ¢, 10.)

Clearing a Program

The Continuous Memory feature of your calculator preserves any pro-
grams loaded into program memory even while the calculator is turned
off. To clear program memory, turn the calculator on, sllde the PRGM-
RUN switch to erem [[[[HMl , and press [1] CLEAR [prcm) All lines of
program memory formerly occupied by programs you cleared using [1]
CLEAR [prgm) are again available for storing new program instructions.

If the programs you cleared occupied more than 70 lines of program
memory, the lines the programs used in excess of the first 70 are auto-
matically reallocated to data storage registers. Note that if you press (7]
CLEAR [prew]in RUN mode, the calculator resets to line 000, but

program memory is not cleared.

If power to the calculator is interrupted (that is, battery failure), all
instructions in program memory and all data in the storage registers may
be lost. When power is restored and the unit turned on, Pr Error appears
in the display to warn of this loss.

Creating Your Own Program

In Meet the HP-34C, at the beginning of this handbook, we created a
program that calculated the surface area of a sphere, given the diameter
of that sphere. Now let’s create another program to show you how to use
some of the other features of the HP-34C.

50 Simple Programming

If you wanted to use your HP-34C to calculate manually the area of a
circle using the formula4 = 7r? you could first key in the radius r, then
square it by pressing (9] (x?. Next you would summon 7 into the
display by pressing (h] (7). Finally you would multiply the squared
radius and 7 together by pressing (x].

Remember that a program to calculate a given solution is little more
than the keystrokes you would use to calculate that solution manually.
Thus, to create an HP-34C program for calculating the area of any circle,
you will want to identify the keystroke sequence used to calculate the
area of a circle manually.

The keystroke sequence for calculating the area of a circle according to
the formula A = 7 r? are:

(@) (=3
(=]
J

You will load into program memory these keystrokes plus, normally,
two more operations, [h] (A) and (n](rR7N]). (] (tBL] (A]is called
a label address and is used to begin the program. [n) is used to end
the program.

Beginning a Program

To define the beginning of a program use an [h) (label) instruction
followed by one of the letter keys ((] or (8]), or by one of the digit keys
(0 through 9). The use of labels permits you to have several different
programs or parts of programs loaded into the calculator at any time, and
to run them in the order you choose.

Ending a Program

To define the end of a program, you can use an [h])(RTN) (return)
instruction. When the calculator encounters a instruction while
executing a program, it immediately transfers execution to line 000 and
halts (unless executed as part of a subroutine—more about subroutines
later).

Simple Programming 51

Note: When a running program encounters the end of
occupied program memory, the effect is the same as if an
(n] (rRTn) had been encountered. This means that when
programming, if your /ast instruction in occupied program
memory would be an [n](rTn), it can be eliminated, saving
you one line of memory space.

If you want a program to halt at a certain line in memory without return-
ing to line 000, you can key in a (R7S]instruction at that line. When a
running program encounters a instruction in program memory,
execution simply halts. If you switch from RUN to PRGM mode, you
will see the next line of program memory after the instruction.
(Remember that the calculator returns to line 000 and halts after execut-
ing the last instruction in program memory whenever the last instruction
is any command other than (R7/S]), (GsB), (GToJ), ora (RTN]from a sub-
routine; so there is normally no need to put (R/S]at the end of the last
program in memory to halt execution.)

The complete program to calculate the area of any circle given its radius
is:

) @) Assigns name to and defines beginning of program.
D] Squares the radius.

™) Summons 7 into the display.

(B3] Multiplies 72 by 7 and displays the answer.

() Defines the end of and stops the program.

Loading a Program

When the calculator is set to PRGM, the functions and operations that
are normally executed when you press the keys are not executed. Instead,
they are stored in program memory for later execution. All keyboard
operations except the nine listed on page 46 can be loaded into program
memory for later execution.

To prepare for loading a complete program into the calculator:

1. Slide the PRGM-RUN switch to pram [T -

2. Press (fJCLEAR
programs.

PRGM]to clear program memory of any previous

52 Simple Programming

You can tell that the calculator is at the top of program memory because
the digits 000 appear at the left of the display. The digits appearing at the
left of the display when the calculator is in PRGM mode always indicate
the program memory line number being shown at the time.

The keys you press to load the program calculating the area of a circle are:

B @
@&
oja

®
BEw

Press the first key, (n], of the program.

Keystrokes Display
™ 000-

You can see that the display of program memory has not changed. Now
press the second and third keys of the program.

Keystrokes Display
000-
@ 001-25, 13, 11

When a new program memory line number appears on the left of the
display, it indicates that a complete operation has been loaded into that
line. As you can see from the keycodes present on the right side of the
display, the complete operation is [h](keycode 25), (LBL](keycode 13),
(AJ(keycode 711). Nothing is loaded into program memory until a com-
plete operation (whether one, two, or three keystrokes) has been
specified.

Now load the remainder of the program by pressing the following keys.
Observe the program memory line numbers and keycodes.

Keystrokes Display

@& 002- 15 3
D& 003- 2573
(B3] 004- 61

™ GEWN 005- 25 12

Simple Programming 53

The program for solving the area of a circle given its radius is now loaded
into your HP-34C’s program memory. Notice that nothing could be
loaded into the top-of-memory marker, line 000.

Running a Program

Programs are executed in automatic run mode. With the PRGM-RUN
switchin [lMlrun position, key in any data that is required, and press
the letter key ((a) or (B]), that labels your program.

For example, to use the program now in the calculator to calculate areas
of circles with radii of 3 inches, 6 meters, and 9 miles:

First, slide the PRGM-RUN switch to s~ .

Keystrokes Display

3 (&) 28.2743 Square inches.
6 (&) 113.0973 Square meters.
9@ 254.4690 Square miles.

Now let’s see how the HP-34C executed this program.

Searching for a Label

When you switched the PRGM-RUN switch to RUN, the calculator was
set at line 005 of program memory, the last line you had filled with an
instruction when you were loading the program. When you pressed the
(A)key, the calculator began searching sequentially downward through
program memory, beginning with line 005, for a (A) instruction.
When the calculator searches, it does not execute instructions.

Because line 005 did not contain the (k) (a] instruction, and no
further lines of program memory were occupied, your HP-34C returned
to line 000 and resumed searching downward through program memory.
When the calculator found the (] (L8L] (&) instruction in line 001 it
then began executing your program.

54 Simple Programming

Executing Instructions

The calculator executes instructions in exactly the order you keyed them
in, performing the (9] (xZoperation in line 002 first, then (] (@)in line
003, etc., until it executes an (] (RTN] instruction, a (R7S](run/stop)
instruction, or encounters the end of occupied program memory. Since
there is an [h] (RTn)instruction in line 005, execution returns to line 000
and halts. The calculator then displays the contents of the X-register.

It is normally best to use (AJor [B]to define the beginning of a program
and to save 0 through 9 for subroutine labels (more on subroutines later).
Why? Labels (A]and require only one keystroke to begin execu-
tion, as in our area of a circle program. But if you have several short
programs to key into your HP-34C you can use labels O through 9 to
address some of the individual programs. Using numerical labels
requires an additional keystroke, (GsB), for program execution. To
illustrate, let’s load and execute our area of a circle program using O for
the label.

Slide the PRGM-RUN switch to rram [N .

Keystrokes Display

(7] CLEAR [pAcm] 000~

(3] 0 001-25,13, 0
Bl 002- 15 3
DY) 003- 25 73
(E3] 004- 61
™) 005- 25 12

Slide the PRGM-RUN switch back to [Iruw -

Now, execute the program using the example from page 53. This time,
because of our label change, press 0 instead of (&)

Keystrokes Display
3 0 28.2743
6 0 113.0973

9 0 254.4690

Simple Programming 55

If you try to execute a label ((LBL)) that is not contained as an instruction
in program memory, the HP-34C will display Error 4. For example, if
your calculator contains only the program for area of a circle that you just
keyed in, you can cause an Error 4 condition by simply pressing a letter
key.

Keystrokes Display
Error 4

To clear the error message from the display, press (CLx]or any other key.
The calculator remains set at the current line of program memory.

Automatic Memory Allocation
Converting Storage Registers to Program Memory

The automatic memory allocation designed into your HP-34C gives you
increased versatility by converting storage registers to lines of program
memory only as needed. You begin programming with 70 lines of pro-
gram memory and 20 storage registers (plus the I-register, described in
section 7). With 0 to 70 instructions in program memory, the allocation
looks like this:

STORAGE REGISTERS PROGRAM MEMORY
Permanent Shared Shared Permanent
002-

R, |:I X,
S
Rl Jw.

T 3 3 >

[

N00000000

7./
=

2

R; :’Exy R. 068-
070-
R, R.,
Shared
R, D R -none-
A

©

56 Simple Programming

When you key in the 71% line of programming, storage register R 4
converts to 7 lines of additional program memory. Now the memory
allocation looks like this:

STORAGE REGISTERS PROGRAM MEMORY
Permanent Shared Shared Permanent

[] [» &, BT 000-

R, :] Sx R, D 001-Instruction|
002-Instruction
R4E:| 2y? R.A[T 068-Instruction L s
) ©
RS{:I Sxy R, [:l 069-Instruction Q
{ l :I 070-Instruction
" R : Shared :
R?l:] R, l:] 071-Instruction| J
“s[:l R, |] 072- \
C 073-
N N g
074- [S
075- &
®
076-
077-)

Simple Programming 57

When you record a full 210 lines of program memory, the calculator’s
memory registers look like this:

STORAGE REGISTERS PROGRAM MEMORY
Permanent Shared Permanent
r——=—" P
[Ro L 000- |
. 001-Instruction
r———"7
R, L - B 002-Instruction

s

o
r—
|

r=——- 068-Instruction
069-Instruction
070-Instruction

: Shared :
071-Instruction

072-Instruction

§

209-Instruction
k 210-Instruction

Program memory is separate from the four stack registers and the LAST
X register. Notice that instead of the original 21 storage registers (R,
through Ry, R through R 4, and I) we now have just the non-convertable
I-register. What happened to storage registers R, through R, and R,
through R 4? They were converted to program memory at the rate of
seven lines per register. The following table shows the allocation of the
lines of program memory to their respective storage registers.

58 Simple Programming

R, 071—077 R, 141—147
Ry 078—084 Ry, 148—154
R, 085—091 R, 155—161
R, 092—098 R, 162—168
R, 099—105 R, 169—175
R, 106—112 R, 176—182
R, 113—119 R, 183—189
R, 120—126 R, 190—196
R, 127—133 R, 197—203
R, 134—140 R, 204—210

When all 210 lines of program memory are occupied, attempting to
insert an additional program instruction anywhere in memory results
only in Error 4 appearing in the display. The additional instruction will
be ignored and none of the original 210 lines will be lost.

As you can see, each time currently available programming space is
filled, keying in another command automatically converts the next
remaining storage register to seven more lines of program memory. For
example, filling the first 77 lines and then keying a command into line 78
converts register R g to 7 more lines of program memory (lines 78-84),
and so on.

Note: Your HP-34C converts storage registers to program
lines in reverse numerical order, from R g to R ;and then from
R, to R,. For this reason it is good practice to program your
and operations using data registers in the oppo-
site order; that is, beginning with register R,. This procedure
helps avoid accidentally programming and for
data registers which have been converted to lines of program
memory. Remember also that the calculator does not retain
data previously stored in registers that are later converted
to lines of program memory.

Simple Programming 59

Converting Program Memory to Storage Registers

Pressing (7]JCLEAR [prcm)in PRGM mode converts all shared program
memory (lines 071-210) to storage registers R, through R . However,
deleting individual lines of program memory allows you to convert
portions of shared memory to storage registers without clearing all of
program memory. (More on deleting lines of memory in section 4,
Editing.)

Using (MEM]

The (MEM]) (memory) function on your calculator describes the current
memory allocation in or out of program mode. When you press (9]
(mem] the display shows both (1) the number of currently unused (avail-
able) program lines you must load before a storage register will be
converted, and (2), the name of the storage register which is next in
line to be converted (R 4 through R, Ry through Ry). For example, if
you press (9)(MEM) with 44 lines of program memory occupied, you
will see the following display:

l——»p-zs r-.9<—|

Lines remaining to be occupied The next storage register to be
before the calculator automati- converted.

cally converts a storage register

to 7 more program lines.

If you press (9)(Mem)with 173 lines of program memory occupied, you
will see this display:

l—-—»p—02 r-44——]

Lines remaining to be occupied The next storage register to be
before the calculator automati- converted.

cally converts a storage register

to 7 more program lines.

60 Simple Programming

If you press (2)(MEM) with 205 lines of program memory occupied, you
will see this display:

l——»p-05 r- ﬁ

Lines remaining to be occupied No more storage registers can
before all lines of program mem- be converted to program mem-
ory are occupied. ory.

As long as you are pressing (MEM], the memory allocation will be dis-
played. When you release the (MEM] key, the calculator returns to the
original display. So at any time, you can find out the number of lines
available for programming and the number of registers available for
storing data. Because the I-register is a permanent storage register with
special functions, it is not covered by the (MEM] operation.

Note: Remember that the statistical functions involve
registers R, through Rs. If one or more of these last six
registers are converted to lines of program memory, attempts
to execute statistical functions will result in an Error 2
display.

Writing a Third Program

To further explore the programming capabilities of your HP-34C let’s
write a third program. Suppose you want to write a program that will
calculate the increase in volume of a spherical balloon as its diameter
increases using the formula:

Increase in volume = ‘/,,»77 d,® —dy?),

where d,, is the original diameter of the balloon and d, is the new diame-
ter. If d, were entered in the Y-register and d; were keyed into the
X-register, the problem could be solved manually by pressing the keys
shown in the left-hand column below. The program keystrokes for this
problem are the same as the manual keystrokes. Switch the PRGM-RUN
switch to prem [[[[Illl and press the keys shown below.

Simple Programming 61

Keystrokes Display

CLEAR [fcw] 000-

™ 001-25, 13, 12

3 002- 3

™ 003- 25 3 Cube the new diameter.
004- 21

3 005- 3

™ 006- 25 3 Cube the original diameter.
= 007 - 41 Subtract the cubes.
Mm 008- 2573

= 009- 61 Multiply by 7.

6 010- 6

= 011- 71 Divide by 6.

™ 012- 25 12

Slide the PRGM-RUN switch to [IlJrun

Notice that an command was not included to separate the number
3 in line 002 from the digits you will key in later. Including
after the instruction would not cause an error in this example, but
is not necessary. Why? When a running program executes a
instruction, stack lift is enabled. When a new number is then entered into
the X-register the stack automatically lifts. Here is how this works when
you run the above program with d, entered into the Y-register and d,
keyed into the X-register.

Stack Registers
003

Zl
\Y} do %
X[4 3
() 3

If you are unsure how other operations affect the stack, see appendix E,
Stack Lift and LAST X.

62 Simple Programming

Example: Find the increase in volume
of a spherical balloon if the diameter
changes from 30 feet to 35 feet.

Keystrokes Display

30 30.0000 Enter original diameter into
Y.

35 8,312.1306 Key new diameter into X

and run the program. The
answer is displayed in cubic
feet.

Program Stops and Pauses

When programming, there may be occasions when you want a program
to halt during execution so that you can key in data. Or you may want the
program to pause so that you can quickly view results before the program

automatically resumes running. Two keys, (R7S](run/stop) and
(pause), are used for program interruptions.

Planned Stops During Program Execution

The (R7S](run/stop) function can be used either as an instruction in a
program or as an operation pressed from the keyboard.

When pressed from the keyboard:

Simple Programming 63
1. If a program is running, halts program execution.

2. If a program is stopped or not running, and the calculator is in
RUN mode, pressing (R7S]starts the program running. Execution
then begins with the first line of program memory following the
(R7s])instruction. (When (R7S]is pressed and held in RUN mode,
it displays the line number and keycode of that current line—
when released, execution begins with that line.)

You can use these features of the instruction to stop a running
program at points where you want to key in data. After the data has been
keyed in, restart the program using the key from the keyboard.

Example: Universal Tins; a canning
company, needs to calculate the vol-
umes of various cylindrically-shaped
cans. Universal would also like to be
able to record the area of the base of each
can before the volume is calculated.

The following program calculates the area of the base of each can and
then stops. After you have written down the result, the program can be
restarted to calculate the final volume. The formula used is:

Volume = base area X height = 7r?2 X h

The radius (r) and the height () of the can are keyed into the X- and
Y-registers, respectively, before the program is run.

64 Simple Programming

To record this program, set the PRGM-RUN switch to pram [[[HEl . then
key in the following program instructions.

Keystrokes Display

[f) CLEAR [preM] 000- Clears program memory and
displays line 000.

(v (tey) (&) 001-25, 13, 11

&3 002- 15 3 Square the radius.

Mm 003- 25 73 Place 7 in X.

x) 004- 61 Calculate the area of the
base.

005- 74 Stop to record the area.

E3) 006- 61 Calculate the final volume.

™ 007- 25 12

Set the PRGM-RUN switch to [l[Mrun . Then use the program to
complete the table below:

Height | Radius | Areaof Base | Volume

25 { 10.0 | ? ?
8 45 ? ?

Keystrokes Display

25 25.0000 Enter the height into the
Y-register.

10 (&) 314.1593 Key the radius into the
X-register and calculate
area. Program stops to
display the area.

R/S 7,853.9816 Volume of first can is
calculated.

8 8.0000 Enter the height into the
Y-register.

4.5 (&) 63.6173 Key the radius into the

X-register and calculate
area. Program stops to dis-
play the area.

R/S 508.9380 Second volume is
calculated.

Simple Programming 65

With the height in the Y-register and the radius in the X-register, pressing
(&) in automatic RUN mode calculates the area of the can’s base; the
program stops at the first (R7S]instruction encountered. Pressing
calculates the volume of the can. Program execution then returns to
line 000 and halts.

Pausing During Program Execution

An [n](PsE] instruction executed in a program interrupts program
execution to display results momentarily before execution is resumed.
The length of the pause is about 1 second, but you can use more than one
consecutive [h](PSE] instruction to lengthen the time.

To see how (h](PSE]can be used in a program, we’ll modify the cylinder
volume program in the previous example. In the new program the area
of the base will be briefly displayed before the volume is calculated.
This example will also show how different programming approaches can
be taken to solve the same problem.

To key in the program, set the PRGM-RUN switch to rrem [[THEH .
Press CLEAR [PrGM] to clear program memory and display line
000. Then key in the following program instructions.

Keystrokes Display

CLEAR (" 000-

™ @0 & 001-25, 13, 11

B 002- 15 3 Squares the radius in X.

™ 003- 25 73 Places 7 in X.

(E3] 004- 61 Calculates the area of the
base.

] 005- 25 74 Pauses to show the base area
for one second.

&J 006 - 61 Calculates final volume of
can.

™ &) 007- 25 12

66 Simple Programming

This program also assumes the height has been entered into the Y-register
and the radius has been keyed into the X-register. If you have stored the
instructions, set the PRGM-RUN switch to [Jl[[Jrun - Now complete
the table below using the new program.

Height | Radius | Areaof Base | Volume
20 I 15 l ? ?
10 5 ? ?
Keystrokes Display
20 20.0000 Enter the height into the
Y-register.
15 (&) 706.8583 Key the radius into the

X-register and calculate.
Area of base is displayed for

1 second.
14,137.1669 Program stops, displaying
the volume.
10 10.0000 Enter the second height into
Y.
5 @& 78.5398 Key the radius into the

X-register and calculate.
Area of base is displayed for
1 second.

785.3982 Program stops, displaying
the volume.

Unexpected Program Stops

At times a mistake of some kind in your program will stop program
execution. To help you determine why the calculator stopped in the
middle of a program, possible reasons are listed below.

Executing (0] . Unless in a subroutine, whenever [h] is
executed in a program, the calculator immediately returns to line 000 and
halts.

Simple Programming 67

Encountering the End of Program Memory. When the final instruc-
tion in program memory is not (G10J, (GSB], or (R7S], and is not in
a subroutine, a running program will encounter the end of occupied
program memory, transfer immediately to line 000, and halt.

Pressing Any Key. Pressing any key halts program execution. Be care-
ful to avoid pressing keys during program execution. The calculator has
been designed so that program execution will #ot halt in the middle of a
digit entry sequence. If you press any key while a number is being placed
in the X-register by a running program, the entire number will be *‘writ-
ten’” and the following line will be executed by the program before the
calculator halts.

When a program is halted, you can resume execution by pressing
from the keyboard in RUN mode. When you press (R/S], the program
resumes execution where it left off as though it had never stopped at all.

Error Stops. If the calculator attempts to execute any error-causing
operation (refer to appendix D, Error Indications) during a running
program, execution immediately halts and the calculator displays the
word Error and a number. To see the line number and keycode of the
error-causing instruction, you can switch the calculator to PRGM mode.

Overflow Calculations. Your HP-34C has been designed so that by
looking at the display you can always tell why the calculator stops. If
program execution stops because the result of a calculation in the X-
register is a number with a magnitude greater than 9.999999999 X 10%,
all 9’s are displayed with appropriate sign. It is then easy to determine
the operation that caused the overflow by switching to PRGM mode and
identifying the keycode in the display.

If an attempted storage register arithmetic operation would result in
overflow in a storage register, the calculator halts and displays Error 1.
The number in the affected storage register remains unchanged from its
previous value. When you clear the error message, the last number in the
display returns.

If the result of a calculation is a number with a magnitude less than
1.000000000 X 107%°, zero will be substituted for that number and a
running program will continue to execute normally. This is known as an
underflow.

68 Simple Programming
Labels

The labels ((&), (8], 0-9) in your programs act as addresses—they tell
the calculator where to begin or resume execution. When a label is
encountered as part of a program, execution merely ‘‘falls through’’ the
label and continues onward. For example, in the program segment shown
below, if you press [&], execution would begin at [n) (a]) and con-
tinue downward through program memory, on through the (n] 3
instruction, until the was encountered and execution returned to
line 000 and halted.

(v (tey) (&) When you press (&]... execution

begins here.

\J
(hJ (B3 No (n](r7n] here ...

so execution falls through the

™ 3 instruction ...

(m)(rRTN) {' ... and continues to the (rRTN],

then transfers to line 000 and halts.

Flowcharts

At this point, we digress for a moment from our discussion of the calcu-
lator itself to discuss a fundamental and extremely useful tool in
programming—the flowchart.

A flowchart is an outline of the way a program solves a problem. With
210 possible instructions, it is quite easy to get ““lost’ while creating a
long program, especially if you try to simply load the complete program
from beginning to end with no breaks. A flowchart is a shorthand that can

Simple Programming 69

help you design your program by breaking it down into smaller groups
of instructions. It is also very useful as documentation—a road map that
summarizes the operation of a program.

A flowchart can be as simple or as detailed as you like. Here is a flow-
chart that shows the operations you executed to calculate the area of a
circle according to the formula A = 772, Compare the flowchart to the
actual instructions for the program:

Key in Radius. ™]
Start
Square radius. EINEL
T
Y
Summon pi.) @
Multiply. E3)

!

=

70 Simple Programming

You can see the similarities. At times, a flowchart may duplicate the set
of instructions exactly, as shown above. At other times, it may be more
useful to have an entire group of instructions represented by a single
block in the flowchart. For example, here is another flowchart for the
program that calculates the area of a circle:

S —

)
(o=)

Calculate 7rr2.
1

Y

(s)

Here an entire group of instructions was replaced by one block in the
flowchart. This is a common practice, and one that makes a flowchart
extremely useful in visualizing a complete program.

You can see how a flowchart is drawn linearly, from the top of the page
to the bottom. This represents the general flow of the program, from
beginning to end. Although flowcharting symbols sometimes vary,
throughout this handbook we have held to the convention of ovals for
the beginning and end of a program or subroutine, and rectangles to
represent groups of functions that take an input, process it, and yield a
single output. We have used a diamond to represent a decision, where a
single input can yield either of two outputs.

Simple Programming 7

For example, if you had two numbers and wished to write a program
that would display only the larger, you might design your program by
first drawing a flowchart that looks like this:

j Input #2. '
kil
Y
/"'/ \\\\
YeS o targe tr: No

E— arger an >——

| N L #1? }
\/ "

y - B B

Dlsplay #2. |

e

Stop) [stop)

Dlsplay #1 '

After drawing the flowchart, you would go back and substitute groups of
Instructions for each element of the flowchart. When the program was
loaded into the calculator and run, if #2 was larger than #1, the answer
to the question ‘‘Is #2 larger than #12* would be YES, and the program

72 Simple Programming

would take the left-hand path, display #2, and stop. If the answer to the
question was NO, the program would execute the right-hand path, and
#1 would be displayed. You will see later the many decision-making
instructions available on your HP-34C.

As you work through this handbook, you will become more familiar with
flowcharts. Use the flowcharts that illustrate the examples and problems
to help you understand the many features of the calculator, or draw your
own flowcharts to help you create, edit, eliminate errors in, and
document your programs.

Problems

Here are four programming examples for you to try using material we’ve
already covered. Possible solutions for these examples are shown on the
following pages. However, you will receive the most benefit from the
exercises by coming up with your own solutions before finding out how
we’ve done it. Remember, there is usually more than one way to solve a
programming problem. Perhaps you can improve on our solutions!

1. You have seen how to write, load, and run a program to calculate
the area of a circle from its radius. Now write and load a program
that will calculate the radius r of a circle given its areaA using the
formula r = VA/m. Be sure to slide the PRGM-RUN switch
to PRGM and press CLEAR (prem]first to clear program
memory. Define the program with [h] (A)and [n](RTN).
After you have loaded the program, run it to calculate the radii of
circles with areas of 28.2743 square inches, 113.0973 square
meters, and 254.4690 square miles.

(Answers: 3.0000 inches, 6.0000 meters, 9.0000 miles.)

2. Create a program to calculate the length of a chord £ subtended by

angle 6 on a circle of r radius using the equation = 2r Sin A .

Simple Programming 73

Define this new program with [h] (8)and use it to complete
the following table:

r (meters) 0 Q V
25 30 ?
50 45 ?
100 90 ?

Design your program for a r, 6 order of data entry.
(Answers: 12.9410 meters, 38.2683 meters, 141.4214 meters.)

If you have difficulty programming for this example, go back to
page 60 and study Writing a Third Program.

3. Write and load a program that will convert temperature in degrees
Celsius to Fahrenheit, according to the formula F = 1.8 C + 32.

Define the program with [h) 0 and (n](rRTNJand run it to
convert Celsius temperatures of -40°, 0°, and +72°.

(Answers: -40.0000°F, 32.0000°F, 161.6000°F.)

4. Create a program that will convert temperature in Fahrenheit
back to Celsius according to the formula C = (F — 32)5/9.
Define the program using (0] I and (n] (RTn]- Run this
new program to convert the temperatures in Fahrenheit you
obtained back to Celsius.

If you wrote and loaded the programs as called for in problems 3 and 4,
you should now be able to convert any temperature in Celsius to Fahren-
heit by pressing 0 and any temperature in Fahrenheit to Celsius by
pressing 1. Questions? Review Executing Instructions, beginning
on page 54, concerning the use of and labels O through 9 for
addressing individual programs.

74

Simple Programming

Key in area.
Start

Summon pi.

!

Divide.

‘

Vquotient

!

Key in C.
Start

1.8C

!

Add constant.

!

(Stop)

Key inr, 6.
Start

sin 6/2

!

Multiply.

.
([stop)

Key in F.
Start

Subtract
constant.

!

difference X 5
9

(Stop)

Simple Programming 75

Example Problem Solutions
Keystrokes Display

Radius of a Circle ™ @ 001-25, 13, 11
®@E 002- 2573
B 003- 71
O &= 004- 14 3
® 005- 25 12
Length of a Chord) 001- 25,13, 12
2 002- 2
= 003- 71
[E2ELD; 004- 14 7
(3] 005- 61
2 006- 2
B 007- 61
(3] 008- 25 12
Convert Celsius to Fahrenheit ™ 0 001- 25,13, 0
1 002- 1
] 003- 73
8 004- 8
B 005- 61
3 006 - 3
2 007 - 2
008- 51
® 009- 25 12
Convert Fahrenheit to Celsius ™) 1 001-25,13, 1
3 002 - 3
2 003- 2
=) 004 - 41
5 005- 5
B3] 006- 61
9 007 - 9
= 008- 71
(M) (rTN 009- 25 12

Keystroke Solutions
1. Area (A)= Radius 3. C(esB]0 =F
2. Radius 0 (8)= Length of Chord 4. F(ese]l =C

76 Simple Programming
Programming Techniques

The solutions to some types of problems require you to use the same
variable several times during your calculations. As you may know, there
is more than one way to program such solutions in your HP-34C. How-
ever, the program that is economical both in execution time and in
program space is often the most desirable. Let’s compare two different
ways we can approach the solution to a problem using the same variable
several times. For example, the polynomial f(x) = x* + 3x® — x* + 4x
— 1 uses the variable x four times; i.e., x*, x3, x2, x. This means that four
powers of x will be needed to calculate f(x). Your task is to write a pro-
gram that both describes f (x) mathematically and makes available a copy
of the variable x each time it is needed during program execution. You
can do this with reasonable efficiency in one of two ways. Either initially
store a copy of the variable for later recall wherever it is needed; or,
better, write your program so that the stack need only be filled with
copies of the variable prior to execution. The advantages of this stack
fill method over the storage method are:

1. Your program can easily be written to keep a copy of the variable
either ready for immediate use or accessible with an instruc-
tion. (Remember that each time the stack drops, the T-register
duplicates the number which last occupied it before the stack
dropped.) This means you use fewer lines of program memory
because and instructions are unnecessary.

2. A storage register is saved for other uses.

3. Stack fill is convenient for evaluating polynomial expressions
generally, and for use with most (soLve] and applications
(more on and later).

Now let’s look at a program that evaluates the expression x* + 3x% —
x%+ 4x — 1 using the stack fill method. This time we’ll see just the
program instructions and stack contents. Examine the program instruc-
tions line by line and be sure you understand how and why each instruc-
tion affects the stack. Assume that the value of x is already in the stack
when program execution begins.

Simple Programming 77

Stack Registers

X

=

n__v

1) =

014 015 016
4 v I ———— ——
’_Z‘ x*4+3x3—x2 J L X [, X J
FY] X NS [x |
‘X!L 4] L 4x [lx4+3x3—x2+4x]

78 Simple Programming

Stack Registers
017 018 019

Y ——

z LR |

’Y xi+3x3—x2+4x | X
[x

U

P ¢ I
T—~_—N—

x I
X| 1 | i 3xi—x+ax—1] [x*+3x8—x2+4x—1]
1 =)&

Notice that extra copies of the variable remain in the stack after the
program has been run. If, for any reason, you want to return a copy of the
variable to the display after evaluating f(x) at that variable, simply

press (xx).

To experiment with the stack fill method, key in the program for evalu-
ating the above expression and try running some examples.

Slide the PRGM-RUN switch to prem [-

Keystrokes Display
(F)CLEAR (prGM) 000-
™ sy (&) 001- 25, 13, 11
4 002- 4
D) 003- 25 3
004- 21
3 005- 3
) 006- 25 3
3 007 - 3
B 008- 61
009- 51
010- 21
@ = 011- 15 3
012- 41
013- 21
4 014- 4
= 015- 61
016- 51
1 017- 1
=] 018- 41
™ 019- 25 12

Simple Programming 79

Slide the PRGM-RUN switch to [ll[Mruv and evaluate the expression
at the following values of x: 1, 2, 7.1935, In 17.5.

Keystrokes Display

1

1.0000 Fill stack with variable.
@) 6.0000 fx)

2

2.0000 Fill stack with variable.
@ 43.0000 f(x)

7.1935 (enTERY)

7.1935 Fill stack with variable.
@ 3,770.4359 F(x)

17.5 (1] [LN](ENTERs]

2.8622 Fill stack with variable.
@ 139.7118 fx)

Using Horner’s Method

As you can see, the above program was logically and easily written; and
it produced the results we wanted. However, using a mathematical tech-
nique known as Horner’s method, we can write a program that is not
only logical, but is also simpler and shorter.

For a polynomial expression apx" + a,_x"'+,...,a,x' + a,, Horner’s
method essentially reduces all powers x", x™,..., x! of the variable to x!.
As a result, the expression is stated as a series of arithmetic operations
involving the variable x and the coefficients ay,, an_i,...,a;, a,. For
example, applying Horner’s method to the polynomial expression we
calculated earlier:
xt+ 33 - x4+ 4x — 1
(X3 +3x2—x+4x — 1
((x2+3x— Dx +4x — 1
((x +3)x —DHx+4)x — 1

We can now write another program using the same stack fill method we
used in the previous program. But this time, because we rewrote f(x)
using Horner’s method, our program involves just seven arithmetic
operations instead of the six arithmetic and three exponential operations
needed earlier.

80 Simple Programming

Stack Registers

006 007 008

i o — ;{ I | S——
/| NS | I T | N
Y[X J] X] I ((x+3)x—1)x \]
X[’ ((x+3)x—1) j |' (x+3)x—1)x] |' 4]

-
“'\‘N_‘\
=
UV

M

X

(3= D=1 | [+ 3x—Dx+apr—1
=] (2N

Simple Programming 81

The above program uses only 13 lines of program memory, a savings of
6 lines over the previous program to calculate the same expression. Key
in the above program and try the same examples we ran earlier.

Slide the PRGM-RUN switch to prem [[[[Jll - If you have not executed
any other instructions since the previous evaluations of f(x), you will
see 000~ in the display. If this is not the case, press (GT0)(+] 000
(more on later).

Keystrokes Display

™ 001- 25, 13, 12
3 002- 3
003- 51
B8] 004- 61
1 005- 1
= 006- 41
(E3) 007- 61
4 008- 4
009- 51
) 010- 61
1 011- 1
) 012- 41
™ 013- 25 12

Slide the PRGM-RUN switch to [lll[Mlruv and evaluate the expression
using the same values of x we used earlier.

Keystrokes Display

1

1.0000 Fill stack with variable.
6.0000 f(x)

2

2.0000 Fill stack with variable.
43.0000)

7.1935 (enmems)

7.1935 Fill stack with variable.
3,770.4359 £(x)

17.5 (1) (01 (@en)

2.8622 Fill stack with variable.
139.7118 f(x)

82 Simple Programming

Did you notice something different? In addition to reducing the size of
the program, using Horner’s method reduced execution time as well.

Further Applications

As you have seen, the stack fill technique provides a simple and useful
approach to evaluating an expression containing several occurrences of
the same variable. By applying Horner’s method to the problem, where
possible, we realize greater space savings and speed. Later, when we
discuss root-finding and numerical integration, you will see how the
automatic stack fill designed into the [soLveland (/3] operations enhances
the power and convenience of your HP-34C’s programming and
problem-solving capability.

Problems

Using the stack fill technique and Horner’s method, write and execute

programs for evaluating the following expressions at x values of
1.5, 3.73, and -4.25.

. 2x° —x*+2x2 +x + 1

2. 0.97 Sin®x + 0.04 Sin’x — 1.73 Sinx — 1
Answers:

1. 17.1250, 1,283.0102, -3,066.5371.

2. -1.0452, -1.1121, -0.8720.

Section 4

Program Editing

Often you may want to alter, correct, or add to a program that is loaded in
the calculator. On your HP-34C keyboard, you will find several editing
functions that permit you to easily add or change steps in a loaded pro-
gram without reloading the entire program.

As you may recall, there are nine functions that cannot be recorded in
program memory. Seven of these functions are program editing and
manipulation functions, and can aid you in modifying and correcting
your programs.

Nonrecordable Operations

1]is one keyboard operatlon thal cannot be recorded in pro-
gram memory. When you press (] CLEAR J] in PRGM mode,

program memory is cleared and the calculator is reset to the top of mem-
does not reset a RAD or GRD

trig mode to DEG.

(single step) is another nonrecordable operation. When you press
(r](ss7), in PRGM mode, the calculator moves to and displays the next
line in occupied program memory. No program instructions are exe-
cuted. When you press [h] in RUN mode the calculator also moves
to and displays the next line of program memory. But when you release
the key, the calculator executes the instruction loaded in that line.

(BsT) (back step) is a nonrecordable operation used in both PRGM and
RUN mode to move to and display the previous line of program memory.
In RUN mode the original contents of the display reappear when is
released. No program instructions are executed.

CLEAR [PREFIX] is the nonrecordable operation used after a preflx key-
stroke (7], (g],o0r @)to cancel that keystroke. CLEAR [PREFIX] also
cancels all keystrokes in an incomplete instruction such as [
(s70) (7). CLEAR [PREFIX] has no effect on a completed instruction (i.e.,

[0 G S, I etc.).

84

Program Editing 85

(go to) (=] nnn is used for going to a specific line number, and is
another keyboard operation which cannot be loaded as an instruction.
(However, followed by a numbered label O through 9 can be
loaded as a program instruction. More about the use of this instruction
later.) Whether the calculator is in PRGM or RUN, when you press
(=] followed by a three digit line number, the program memory is
set to that line number. No instructions are executed. If the calculator is
in RUN mode, you can verify that the calculator is set to the specified
line by briefly switching to PRGM mode. The (] nnn opera-
tion is especially useful in PRGM mode because it permits you to jump
to any location in occupied program memory for editing or checking
purposes.

Note: Attempting to execute a (1] nnn instruction
to any lines of program memory that are unoccupied or
that the calculator has not converted from data storage
registers is an illegal operation which results in the error
signal Error 4.

The (DEL] (delete) key is a nonrecordable operation that you can use in
PRGM mode to delete instructions from program memory. When the
calculator is in PRGM mode and you press [h]) (DEL), the instruction at
the current line of program memory is erased. All subsequent in-
structions in program memory then move upward one line. Pressing
™) in RUN mode does nothing.

The (MEM) (memory) function, displays the current memory allocation at
any .time, in or out of program mode. To review [MEM], see page 59 in
section 3, Simple Programming.

N(?V.V let’s load a program from the keyboard and use your HP-34C’s
editing tools to check and modify it.

86 Program Editing

Pythagorean Theorem Program

The following program computes the
hypotenuse of any right triangle , given
the other two sides. The formula used is
¢ =Va®+ b2

Below are instructions for the program
(basically, the same keys you would
press to solve for ¢ manually), assum-
ing that values for sides ¢ and b have
been input to the X- and Y-registers of
the stack.

To load the program:

First set the calculator to erem [l mode. Then press CLEAR
to clear program memory of any previous programs and reset
the calculator to line 000 of program memory. Finally, load the program

by pressing the keys shown below.

Keystrokes Display

™ &0 (&) 001- 25, 13, 11
) 002- 15 3
003- 21
@ 004- 15 3
005- 51
M 006- 14 3
™) (Rn 007- 25 12

bZ
aZ
a® + b?

Va? + b*

End of program; calculator
returns to line 000 and halts.

Return the calculator to [lMrun mode.

Program Editing 87

Now you can run the program. For example, calculate the hypotenuse of
a right triangle with side a of 22 meters and side b of 9 meters. (Notice
that the order of entry does not matter in this case.)

Keystrokes Display

22 (ENTERY] 22.0000

9 9.

@) 23.7697 Length of side ¢ in meters.

To compute the hypotenuse of a right triangle with a side a of 73 miles
and a side b of 99 miles:

Keystrokes Display

73 (EnTERY) 73.0000

99 99.

@™ 123.0041 Length of side ¢ in miles.

Now let’s see how we can use the nonrecordable editing features of the
calculator to examine and alter this program.

Single-Step Execution of a Program

With the Program Mode switch set to RUN mode, you can execute a
recorded program one line at a time by using [h) (single-step).

To single-step through the Pythagorean Theorem program using a
triangle with side a of 73 miles and side b of 99 miles:

Keystrokes Display
73 (EnTERY) 73.0000
99 99. Program initialized for this

set of data before running.

Now, press (n])(ssT] and hold down to see the keycode for the
next instruction. When you release the key, that next instruction is
executed. (Remember that the (h) instruction in line 007 returned
the calculator to line 000 after the last execution of the program.)

88 Program Editing

Keystrokes Display
D ESi) 001-25,13,11 Keycode for (n) @
seen when you hold
down.
99.0000 ™) (A]) executed when

you release (SsT].

(Notice that you didn’t have to press (A). When you are executing a
program one line at a time, pressing [n](SST] begins the program
from the current line of program memory; in this case, line 001.)

Continue executing the program by pressing [h) again. When you
hold down, you see the keycode for the next instruction. When you
release (SsT), that instruction is executed.

Keystrokes Display
(M (ss7 002- 15 3 Keycode for (%2
9,801.0000 Executed.

When you press [h] (Ss7]a third time in RUN mode, line 003 of pro-
gram memory is displayed. When you release the key, the instruc-
tion in that line, [x%Y), is executed, and the calculator halts.

Keystrokes Display
M (ss1) 003- 21 Keycode for (xx7].
73.0000 Executed.

Continue executing the program by means of [h](SsT]. When you have
executed the [(n] instruction in line 007, the calculator returns to
line 000 (later we will cover more on how works). You have
completed executing the program and the answer is displayed, just as if
the calculator had executed the program automatically, instead of via

DESaE

Program Editing 89

Keystrokes Display
™) 004- 15 3
5329.0000
) 005- 51
15,130.0000
™ 006- 14 3
123.0041
™) 007 - 25 12
123.0041 Final answer.

Note: [h](ssT] will not advance into unoccupied lines of
program memory. If you single-step from the last occupied
line of program memory in RUN or PRGM mode your HP-34C
conveniently returns to line 000. In RUN mode the original
contents of the display remain unchanged. In PRGM mode
000- indicating the top of program memory, is displayed.

You have seen how the key can be used in RUN mode to single-
step through a program. Using (n]) in this manner can help you
create and correct programs. Now let’s see how you can use K8

000, (sst), (B), and (G10) (<) nnn in PRGM mode to help you

modify a program.

Modifying a Program

Let’s modify the Pythagorean Theorem program so that the X-register
contents will automatically be displayed at certain points in the program.
We will do this by inserting the [n]) instruction to halt the program
and display the contents of the X-register for about 1 second, then re-

sume execution. (More about later.) Here is the program you just
ran.

Keystrokes Display

™My @) 001- 25,13, 11

@ 002- 15 3

003- 21_ \| We will insert an [n](PSE)
EIE) 004- 15 3™ instruction after cach of
005- 51 /|these instructions.

006- 14 3

(W (&N 007- 25 12

90 Program Editing
Single-Step Viewing Without Execution

You can use in PRGM mode to single-step to the desired line of
program memory without executing the program. When you switch the
calculator to PRGM mode, you will see that the calculator is reset to line
000 of program memory as a result of executing the [h) instruction
in the above example. When you press (] (SST)once, the calculator now
moves to line 001 and displays the contents of that line of program
memory. No instructions are executed.

Slide the PRGM-RUN switch to prem [T -

Keystrokes Display
000- Line 000 of program
memory.
M (ssT) 001- 25,13, 11

You can see that the calculator is set at line 001 of program memory. If
you press a recordable operation now, it will be loaded in the next
line, line 002, of program memory, and all subsequent instructions
will be ‘‘bumped’’ down one line in program memory.

Thus, to load the [h) instruction so that the calculator will pause
and display the contents of the X-register:

Keystrokes Display
™) (7sE) 002- 25 74

Now let’s see what happened in program memory when you loaded that
instruction. With the calculator set at line 001, when you pressed

(h) (PsE], program memory was altered ...

Program Editing 91

... from this to this.
001 (1) (ed) (1) 007 (®)(e0) (A) o
s NG
003 ~a 003 (9] :
004 (9] (x?) 004 All subsequent
Ny e | G
006 (1) (%) ~a 006 one line of program
007 () (TN] 007 (1] (%) memory.

N [00F @

Resetting to Line 000

Your HP-34C automatically resets to line 000 when turned on. And, as
you know, when you press (] CLEAR [prém]with the calculator set to
PRGM mode, the calculator is reset to line 000 and all instructions in
program memory are erased. However, you can also reset the calculator
to line 000 while preserving existing programs in program memory by
pressing (] 000 in PRGM or RUN mode and [h] in RUN
mode.

To set the calculator to line 000 with the Pythagorean Theorem program
loaded into program memory:

Keystrokes Display
(=] 000 000-

Going to a Line Number

It is easy to see that if you wanted to single-step from line 000 to some
remote line number in program memory, it would take a great deal of
time and a number of presses of (] (8s7). To avoid such inconveniences
simply apply the (] nnn procedure which you used previously to
Jjump to line 000. In a manner similar to (%] 000, when you press
(6T0) (X)) nnn, the calculator immediately jumps to the occupied line
number specified by nnn. No instructions are executed. If you press
(] nnn in RUN mode, the display remains unchanged. If you press

92 Program Editing

(] nnn in PRGM mode, the line of occupied memory (line number
and keycodes) addressed by nnn appears in the display. In RUN mode, if
you then initiate a label search or program execution, the search or
execution will begin with that line of program memory. In PRGM mode,
any loading of additional instructions will begin with the next line of
program memory.

For example, to add an [h](PSE] instruction to review the X-register
contents after the squares have been added together by the instruction in
line 006, you can first press (GT0)(go to) followed by a decimal point and
the appropriate three-digit line number of program memory. Then press
™ to place that instruction in the following line of program mem-
ory. Remember that when you add an instruction in this manner, each
subsequent instruction is moved down one line in program memory. To
add the (n](PSE] instruction after the instruction that is now loaded
into line 006, be sure the calculator is in PRGM mode, then:

Keystrokes Display
] 006 006 - 51
(D3] 007- 25 74

As you load the [n) instruction into line 007, the instruction that
was formerly in line 007 is moved to line 008, and the instruction in
subsequent lines are similarly moved down one line.

When you added the (n])(PSE] instruction after line 006, program
memory was altered ...

... from this to this.
001 (n] &) 001 [n) ™)
002 (n](PsE) 002 (n)(PsE)
003 (9] (x7 003 (9] [x7)
004 004
005 (g) 005 (g
006 006 (n) (PsE] instruction
007 [f] 007 (n)(PSE) |inserted here.
008 (n) T [08 0 &= Subsequent instruc-
T~ 009 (n)(”RTN) tion bumped down

one line in program
memory.

Program Editing 93
Inserting Instructions in Longer Programs

After the initial 70 lines of program memory are occupied, the calculator
automatically converts storage registers to available program memory in
blocks of 7 lines at a time. This occurs block by block as each new
allocation of program lines is filled up with instructions. If only the first
70 program lines are occupied, inserting another instruction at any point
automatically causes the conversion of one storage register (R g in this
case) to 7 more lines of available program memory and places the last
instruction of the program in line 71. You would then have 77 program
lines available and 71 occupied. (Refer to page 55, Automatic Memory
Allocation.) With 77 lines occupied, inserting one instruction converts
another storage register (R g) to 7 program lines, and so on. If all 210
program lines are occupied, the calculator will not accept any additional
program instructions. If you attempt to add a new instruction at any point
in program memory with all 210 lines already occupied, Error 4 appears
in the display and program memory remains unchanged. (Remember—
pressing [g] (Mem) periodically while loading a long program will tell
you the current status of the program line/storage register allocation.)

Stepping Backwards Through a Program

The (back step) key allows you to back step through a loaded
program for editing whether the calculator is in RUN or PRGM mode.
When you press [h) , the calculator backs up one line in program
memory. If the calculator is in RUN mode, the previous line is displayed
as long as you hold down the (8sT]key. When you release it, the original
contents of the X-register are again displayed. In PRGM mode, of
course, you can see the line number and keycode of the instruction in the
display at all times. No instructions are executed, whether you are in
RUN or PRGM mode.

Note: When your HP-34C is at the top of the program
memory (line 000), pressing (n] (8sT)moves the calculator
to the last line of occupied program memory. This feature is
particularly helpful when you want to quickly verify the length
of an existing program or to begin loading a new program or
subroutine that you want to follow a program or subroutine
already in memory.

94 Program Editing

You now have one more [(h] instruction to add to the Pythagorean
Theorem program. The (n](PSE] instruction should be added after the
instruction that is now loaded in line 004 of program memory. If
you have just completed loading () inline 007 as described above,
the calculator is set at line 007 of program memory. You can use [BST]to
back the calculator up to line 004, then insert the [h] instruction in
line 005. To begin:

Ensure that the calculator is set to rram[[[[JJlj mode.

Keystrokes Display
007- 25 74 Calculator initially set to
line 008.
) 006- 51 Pressing [n) once

moves the calculator back
one line in program
memory.

Continue using the key to move backward through program
memory until the calculator displays line 004.

Keystrokes Display
™) 005- 15 3
™) 004- 21

Since you wish to insert the [n] instruction after the instruc-
tion now loaded in line 004, you move the calculator to line 004. As
always, when you key in an instruction, it is loaded into the next line
after the line being displayed. Thus, if you press (h](PSE]) now, that
instruction will be loaded into line 005 of program memory, and all
subsequent instructions will be moved down, or ‘‘bumped,’’ one line.

Keystrokes Display
() (FsE) 005- 25 74

You have now finished modifying the Pythagorean Theorem program so

that you can review the contents of the X-register at several points while
it runs.

Program Editing 95

The altered program is shown below:

Keystrokes Display

M ey (&) 001- 25,13, 11
(»]) (Psg) 002- 2574
] 003- 15 3
004- 21
(™) (7s8) 005- 25 74
@ 006- 15 3
007- 51
DE3) 008- 25 74
K3 009- 14 3
(M (rIN) 010- 25 12

If you wish, you can use [h] in PRGM mode to verify that the
program in your calculator matches the one shown above.

Running the Modified Program

To run the Pythagorean Theorem program, you need only set the calcu-
lator to RUN mode, key in the values for sides a and b and press [&].
The calculator displays the X-register contents (side b), then squares side
b, exchanges the contents of the X- and Y-registers, and again reéviews
the X-register contents (side a this time). Then the calculator squares
sidea, addsb?toa?, and reviews the X-register contents (a® + b*) a third
time. The hypotenuse is then calculated and execution returns to line 000
and halts.

For example, to compute the hypotenuse of a right triangle with sides
a and b of 22 meters and 9 meters:

Set the calculator to IlMru~ .

Keystrokes Display
2 22.0000
9@ 23.7697 After reviewing the X-regis-

ter contents three times
during the running program,
the answer in meters is
displayed.
Now run the program for a right triangle with sides @ and b of 73 miles
and 99 miles.

(Answer: 123.0041 miles.)

96 Program Editing
Deleting Instructions

Often in modifying or correcting a program you may wish to delete an
instruction from program memory. To delete the instruction to which the
calculator is set, merely press the nonrecordable operation [h](BEL)
(delete) with the calculator set to PRGM mode. (When you delete an
instruction from program memory using [DeL], all subsequent instruc-
tions in program memory are moved up one line. The calculator then
displays the line preceding the line that held the instruction you deleted.)

For example, if you wanted to modify the Pythagorean Theorem program
that is now loaded into the calculator so that the X-register was only
reviewed once, for the sum of the squares, you would have to delete the
(n](PsE] instructions that are presently loaded in lines 002 and 005 of
program memory. To delete these instructions, you must first set the
calculator at these lines using (n] (ss7), (n] , or () nnn, then
press [n](0EL). To delete the (n](PSE) instruction now loaded in line
002:

First, set the calculator to prMm (TN

Keystrokes Display
(] 002 002- 25 74 Line 002 is displayed.
(3] 001-25,13,11 The instruction in line 002 is

deleted and the calculator
moves to line 001.

You can use (h) to verify that the (n](PSE] instruction has been
deleted and subsequent instructions have been moved up one line.

Keystrokes Display
(M (ssT) 002- 15 3 The instruction formerly in

003 was moved up to line
002, and all subsequent
instructions were moved up
one line when you pressed

(] (oEL).

When you set the calculator to line 002 of program memory and pressed
(n) (DEL), memory was altered ...

Program Editing 97

... from this to this.

One instruction
Zz; % & gg; %@ T—deleted here.
003 (9) (x3 —7 003
004 d 004 [n](PsE) These instructions all
005 [n)(psE) 7 005 () (x7) move upward one
006 @) |~ . |006 ¢ line.
007 —~7 (007 () 7s5)
008 (] (PsE) —7 [o08 0 &=
009 (1)) ;: 005 W
010 (n])(rTN)

To delete the (n](PSE] instruction now loaded in line 004 you can use
the key to single-step down to that line number and then delete
the instruction with the (&) operation.

Keystrokes Display

® 003- 21

™ 004- 25 74

) 003- 21 The (0] instruction is

deleted from line 004 and the
calculator displays line 003.
Subsequent instructions
move up one line of program
memory.

If you have modified the program as described above, the X-register is
reviewed only once, just after the sum of the squares is calculated. The
value of the hypoteneuse is then calculated and execution halts.

Set the calculator to M~ mode and run the program for right
triangles with:

98 Program Editing

Sides a and b of 17 and 34 meters. After reviewing the
X-register (sum of the squares = 1,445.0000 meters), the
rest of the program is executed and the calculator halts
displaying the hypoteneuse: 38.0132 meters.

Sidesa and b of 550 rods and 740 rods. After reviewing the
X-register (sum of the squares = 850,100.0000 rods), the
rest of the program is executed and the calculator halts,
displaying the hypotenuse: 922.0087 rods.

To replace any instruction with another, simply set the calculator to the
desired line of program memory, press [h)(DEL) to delete the first
instruction, then press the keystrokes for the new instruction.

When deleting instructions from a program of more than 70 lines, the
process of automatically allocating storage registers to program lines
works in reverse. For example, deleting any instruction from a 78-line
program automatically converts program lines 78-85 back to storage
register R ¢ (Refer to Automatic Memory Allocation, page 55.)

The editing features of the calculator have been designed to provide
you with quick and easy access to any part of your program, whether
for editing, debugging, or documentation. If a program stops running
because of an error or because of an overflow, you can simply switch
the calculator to PRGM mode to see the line number and keycode of
the operation that caused the error or overflow. If you suspect a portion of
your program is faulty, you can use the (] nnn operation from the
keyboard to go to the suspect section, then use the operation in
RUN mode to monitor every change in calculator status as you execute
the program one line at a time.

Problems

1. You may have noticed that there is a single keyboard operation,
@ , that calculates the hypotenuse, side ¢, of a right triangle
with sides a and b input to the X- and Y-registers. Replace the
(x3, (=), (x3, (¥), (Psg), and (7] instructions in the
Pythagorean Theorem program with the single (@] [=Plinstruction
as follows:

Program Editing 99

a. Use) nnn and (v) to verify that the Pythagorean
Theorem program contains the instructions shown below.

Keystrokes Display
M) ey (&) 001- 25,13, 11
Bl 002- 15 3
003- 21 Replace all of these instruc-
@ &3 004- 15 3 \ tions witha (@] [=P)instruc-
005- 51 tion.

006- 25 74

007 - 14 3

008- 25 12

b

. Use the (] nnn keyboard operation to go to line 007,
the last instruction to be deleted in the program.

. Usethe [n](peL]keyboard operation in PRGM mode to delete
the instruction in lines 007, 006, 005, 004, 003, and 002.

d. Load the (@] (+P] instruction into line 002.
e. Verify that the modified program looks like the one below.

o

ey @) 001- 25,13, 11
@ 002- 15 4
DG 003- 25 12

f. Switch to [~ mode and run the program for a right
triangle with sides a and b of 73 feet and 112 feet. (Answer:
133.6899 feet.)

2. The following program is used by the manager of a savings and
loan company to compute the future amounts of savings accounts
according to the formula FV = PV(1 +)", where FV is future
value or amount, PV is present value, i is the periodic interest rate
expressed as a decimal, and n is the number of periods. With PV
entered into the Y-register, n keyed into the X-register, and an
annual interest rate of 7.5%, the program is:

100

Program Editing

Keystrokes Display

) 001-25,13,12
0 2 002- 14,11, 2

1
J

0

7

5

X

av

Y

EHE

e
]
!

C.

003- 1
004 - 73
005- 0
006 - 7
007 - 5
008 - 21
009- 25 3
010- 61
011- 25 12

Load the program into the calculator.

Run the program to find the future amount of $1,000 invested
for 5 years.

(Answer: $1,435.63)

Of $2,300 invested for 4 years.

(Answer: $3,071.58)

Alter the program to account for a change of the annual interest
rate from 7.5% to 8%.

Run the program for the new interest rate to find the future
value of $500 invested for 4 years; of $2,000 invested for 10
years.

(Answer: $680.24; $4,317.85)

The following program calculates the time it takes for an object to
fall to the earth when dropped from a given height. (Friction
from the air is not taken into account.) When the height 4 in meters
is keyed into the displayed X-register and (8]is pressed, the time
t in seconds the object to fall to earth is computed according to
the formula:

\ / 2h
t:
9.8

Program Editing 101

a. Clear all previously recorded programs from the calculator,
reset the display mode to Fix 4, and load the program below.

Keystrokes Display

(7] CLEAR 000-

™ 001- 25, 13, 12
2 002- 2
= 003- 61
9 004- 9
- 005- 73
8 006~ 8
= 007- 71
OFE 008- 14 3
(DG 009- 25 12

b. Run the program to compute the time taken by a stone to fall
from the top of the Eiffel Tower, 300.51 meters high; and from
a blimp stationed 1000 meters in the air.

(Answers: 7.8313 seconds; 14.2857 seconds.)

c. Alter the program to compute the time of descent when the
height in feet is known, according to the formula:

= \/ 2
32.1740

d. Runthe altered program to compute the time taken by a stone to
fall from the top of the Grand Coulee Dam, 550 feet high; and
from the 1350-foot height of the World Trade Center buildings
in New York City.

(Answers: 5.8471 seconds; 9.1607 seconds.)

Section 5

Branching, Decisions, and Flags

Unconditional Branching and Looping

You have seen how the nonloadable operation (*] nnn can be used
from the keyboard to transfer to any line in occupied program memory.
You can also use the go to instruction as part of a program. However, in
order for (GTO]Jto be recorded as an instruction, it must be followed by a
label designator ((&] or (8], or O through 9). (It can also be followed by
(1}]—more about using (1] later.)

When the calculator is executing a program and encounters a
instruction, for example, it immediately halts execution and begins
searching sequentially downward through program memory for that
label. When the first [n](LBL) instruction is then encountered,
execution resumes.

By using a (GTo]instruction followed by a label designator in a program,
you can transfer execution to any part of the program that you choose.

) (&
Execution branches to next [h) ®). r-
I
}
]
L
1]

A instruction used this way is known as an unconditional branch.
It always branches execution from the instruction to the specified
label. (Later, you will see how a conditional instruction can be used in
conjunction with a instruction to create a conditional branch—a
branch that depends on the outcome of a test.)

102

Branching, Decisions, and Flags 103

A common use of a branch is to create a ‘‘loop’’ in a program. For
example, the following program calculates and displays the square roots
of consecutive whole numbers beginning with the number 1. The
HP-34C continues to compute the square root of the next consecutive
whole number until you press (R7S]to stop program execution (or until
the calculator overflows).

To key in the program:

First, slide the PRGM-RUN switch to Prem [[[HM . Press (1) C1EAR
(PrGM]to clear program memory and to reset the calculator to line 000.

Keystrokes Display

® &) (&) 001- 25, 13, 11

0 002- 0

1 003- 23 1

™ [0 004- 25,13, 0

1 005- 1

1 006- 23,51, 1 Adds 1 to current number in
R,.

1 007- 24 1 Recalls current number
from R;.

(n] (PsE) 008- 25 74 Displays current number.

0&E 009- 14 3

(®)(rsE) 010- 25 74 Displays square root of
current number.

(GT0)0 011- 22 0 Transfers execution to
@ @D o.

™) @) 012- 25 12

To run the program, slide the PRGM-RUN switch to IMl[MrN and
press (A]. The program will begin displaying a table of integers and their
square roots and will continue until you press (R78]from the keyboard or
until the calculator overflows.

How it works: When you press (&), the calculator searches through
program memory until it encounters the (] (t8L] (A] instruction that
pegins the program. It executes that instruction and each subsequent
instruction in order until it reaches line 011, the 0 instruction.

104 Branching, Decisions, and Flags

The 0 instruction causes the calculator to search once again, this
time for a 0 instruction in the program. When it encounters the
0 instruction loaded in line 004, execution begins again from
0. (Notice that the address after a instruction in a program
is a label, not a line number.) Since execution is transferred to the
0 instruction in line 004 each time the calculator executes the
(G10)0 instruction in step 011, the calculator will remain in this ‘‘loop,”’
continually adding one to the number in storage register R, and display-
ing the new number and its square root.

Looping techniques like the one illustrated here are common and extra-
ordinarily useful in programming. By using loops, you take advantage of
one of the most powerful features of the HP-34C—the ability to update
data and perform calculations automatically, quickly, and, if you so
desire, endlessly.

You can use unconditional branches to create a loop, as shown above, or
in any part of a program where you wish to transfer execution to another
label. When the calculator executes a instruction in a running
program it searches sequentially downward through program memory
and begins execution again at the first specified label it encounters.

In RUN mode you can also use for finding a label without running
the program in memory. When you execute (@A), (8], orn) from
the keyboard you cause the calculator to go to the specified label and
halt. This feature is convenient when you want to simply review or edit
lines of memory following a certain label instead of executing them as
part of a program.

Problems

1. The following program calculates and pauses to display the square
of the number in storage register R, each time it is run. Key the
program in with the PRGM-RUN switch set to PRGM , then
switch to RUN mode and run the program a few times to see how
it works. (The answer will always be 1.000.) Finally, modify the
program by inserting a 1 instruction after the [h)
instruction at line 009 and inserting an (h] (tBL)I instruction after
the (s70]! instruction in line 003. This will create a loop that will
continually display a new number and its square, then increment

Branching, Decisions, and Flags 105

the number by 1, display the new number and compute and display
its square, etc. To load the original program, before modification,
slide the PRGM-RUN switch to prov [I[IM . Then press:

Keystrokes Display

(f) CLEAR 4 000-

(M) (ey 001- 25,13, 12
0 002- 0
1 003- 23 1
1 004- 1
1 005- 23, 51, 1
1 006- 24 1
™) (PsE) 007- 25 74
@3 008- 15 3
(n)(rsE) 009- 25 74
W) (rTN) 010- 25 12

Slide the PRGM-RUN switch to I~ and test the program
in its original form. After keying in the suggested modifications,
run the program again to generate a table of squares.

Use the following flowchart to create a program that computes and
pauses to display the future value (FV) of a compound interest
savings account in increments of one year according to the for-
mula:

FV = PV(l + iy

where FV' = future value of the savings account.
PV = present value (or principal) of the account.
i = interest rate (expressed as a decimal fraction; e.g.,
6% is expressed as 0.06).
n = number of compounding periods (usually, years).

106

Branching, Decisions, and Flags

Assume that program execution will begin with i entered into the
Y-register of the stack and with PV keyed into the displayed
X-register.

After you have written and loaded the program, run it for an
initial interest rate i of 6% (keyed in as .06) and an initial deposit
(or present value, PV) of $1000.

(Answer: 18t year, $1060; 2"" year, $1123.60; 3rd year, $1191.02;
etc.)

The program will continue running until you press (R7S](or any
key), or until the HP-34C overflows. You can see how your
savings would grow from year to year. Try the program for differ-
ent interest rates i and values of PV.

Branching, Decisions, and Flags 107

Define beginning Define beginning
of program with N of routine with
LBL A. LBL 0.
v
Fix 2)
Display mode. Re‘;?{'}'n(‘ 1'; i)
i —
Store PV in
Storage register R,. Recall n from R;.
¥ L]
inaii Pause to
Bring i into h
display by rolling display n.
down stack. 17
L - Compute (1 +1i)-
Store quantity 1
in storage 17
register R;.
Recall
Y PV from R,.
Add 1toi. 17
1] Multiply PV
Store (1+ /) by (1 +i)?
in storage ¥
register R, .
Pause to
display result (FV).
Add 1tonin
register R,.
Y
Go to
o LBL 0.
¥

RTN

108 Branching, Decisions, and Flags

Solutions:

Here is a possible solution to problem 2.

]y (@)
0 X2
)0
3100

1
(sTo) 1

+
E%)2
@ @00

RCL] 2
1

PEE
aa'

BB
ElE

B
B

g
3

Convenient financial display
mode.

Stores PV.

Brings i into display.

Stores initial quantity (1) of n.
Adds 1 toi.
Stores (1 + i).

Recalls (1 + i).

Recalls n.

Displays n.

Calculates (1 + i)™

Recalls original PV from R,.
Calculates new FV.

Displays result (FV).

Adds 1 ton in R;.
Unconditional branch.
End of Program.

Conditionals and Conditional Branches

Often there are times when you want a program to make a decision. The
conditional operations on your HP-34C keyboard are program instruc-
tions that allow your calculator to make decisions. The conditionals
available on your HP-34C are:

tests to see if the value in the X-register is less than or

equal to the value in the Y-register.

Branching, Decisions, and Flags 109
(0 >y) tests to see if the value in the X-register is greater than
the value in the Y-register.

1 =) tests to see if the value in the X-register is not equal to
the value in the Y-register.

(1) (>=7] tests to see if the value in the X-register is equal to the
value in the Y-register.

@ tests to see if the value in the X-register is less than zero.

ED} tests to see if the value in the X-register is greater than
zero.

@ tests to see if the value in the X-register is not equal to
zero.

(2] tests to see if the value in the X-register is equal to zero.

] Fn tests to see if flag n is set (more on flags later).

Each conditional essentially asks a question when it is encountered as an
instruction in a program. If the answer is YES, program execution
continues sequentially downward with the next line in program memory.
If the answer is NO, the calculator branches around the next line. For
example:

I: Conditional Test | == ‘:
1

Yes - -

No

110 Branching, Decisions, and Flags

You can see that after it has made the conditional test, the calculator will
do the next instruction if the test is true. This is the ‘“DO IF TRUE”’
rule.

The line immediately following the conditional test can contain any
instruction. The most commonly used instruction you’ll find will be a
instruction. This will branch program execution to another section
of program memory if the conditional test is true.

Conditional Test | = =1
Yes I: 7 !

r--

T T g
nstruction - No

instruction

instruction

|

1

1

I

1 - .

| instruction
L

—1 (g7

Example: Certified Public Accountant
Polly Preparer knows that persons with
incomes over $10,000 pay a tax of 20%
and persons with incomes of $10,000 or
less pay a tax of 17.5%. To make her job
easier, Preparer wants to write a program
that will allow her to compute taxes for
all her clients in the simplest way pos-
sible. She will use a program containing
conditional branches.

Branching, Decisions, and Flags

The flowchart for the program might look like this:

111

Y

Yes

(Start

Y

Key in amount
of income.

:

Is

income over
$10,0007?

Use 20%.

|

No

e

Use 17.5%.

;

Compute tax.

:

(Stop)

112 Branching, Decisions, and Flags

To key in the program:
Slide the PRGM-RUN switch to prom [N .

Keystrokes Display

2 R [prcW] 000~
(v (te) (&) 001- 25,13, 11
002- 33} Amount of $10,000 placed
4 003- 4; . .

in Y-register.

(x2y) 004~ 217 1f amount of income is

b= 005- 14 51 } greater than $10,000, go to
006- 22 12 portion of program defined

by label B.

1 007 - 1
7 008- 7 | Tax percentage for this
(2 009- 73 (portion of program is 17.5.
5 010- 5

GT0] 1 011- 22 1
® 012- 25,13, 12
2 013- 2 Tax percentage for this
0 014- 0} portion of program is 20.
(M (eg 1 015-25,13, 1
) 016- 25 41
(M) (RN 017- 25 12

To run the program to compute taxes on incomes of $15,000 and $7,500:
Slide the PRGM-RUN switch to I rux .

Keystrokes Display

15000 (&) 3,000.00 Dollars of tax.
7500 (&) 1,312,50 Dollars of tax.

Branching, Decisions, and Flags 113

All Preparer has to do to compute tax rates for her other clients is key in
their incomes and press (). The calculator automatically determines the
clients’ tax bracket and computes the tax.

Another place where you often want a program to make a decision is
within a loop. The loops that you have seen have, to this point, been
infinite loops—that is, once the calculator begins executing a loop, it
remains locked in that loop, executing the same set of instructions over
and over again, forever (or, more practically, until the calculator
overflows or you halt the running program by pressing (R7§]or any other
key).

You can use the decision-making power of the conditional instructions to
shift program execution out of a loop. A conditional instruction can shift
execution out of a loop after a specified number of iterations or when a
certain value has been reached within the loop.

Example: Asyouknow, your HP-34C contains a value fore, the base of
natural logarithms. (You can display the calculator’s value fore by press-
ing 1 (g])(e¥).) The following program shows that 1/n/ can be used to
verify that the seriese=1/0! + 1/1! + 1/2! + ... + 1/n! approximates the
value for e. After each iteration through the loop, the latest approxima-
tion is displayed and compared to the calculator’s value for e. When the
two values are equal, the execution is transferred out of the loop to stop
the program.

114 Branching, Decisions, and Flags

Start

\.

al.

T
(0]
Q
L
Py
s
=

Recall n.

Calc./n!

1!
Add 1/n! to total. Add 1

ton.

Store total.

Display total.

T

Yes Does No

T total =e? o
r N

X

Branching, Decisions, and Flags 115

To load the program into the calculator:
Slide the PRGM-RUN switch to erom [.

Keystrokes Display

(7) CLEAR (PrGm) 000-

® &) &) 001- 25, 13, 11
1 002- 24 1
0 003- 24 0
® & 004- 25 1
® (& 005- 25 2
006- 51
Fx]9 007- 14,11, 9
1 008- 23 1
™) (Psg) 009- 25 74
1 010~ 1
@ 011- 15 1
0 =) 012- 14 71
® G 013- 25 12
1 014- 1
0 015- 23,51, 0
® 016- 22 11

Slide the PRGM-RUN switch to HEMII run

Ensure that the registers are cleared to zero. Then press (A]to run the
program.

Keystrokes Display

CLEAR (Rreg) 1,312.50 Clears all storage registers
to zero. (Displayed value
remains from previous
example.)

&) 2.718281828

You can see that execution continues within the loop until the approxi-
mation for e equals the calculator’s value for e. When the instruction
(*=Y]in line 012 is finally true, execution is transferred out of the loop.

116 Branching, Decisions, and Flags
Problems

1. Write a program that tests for a negative angle and then converts
any negative angle to its positive equivalent. Use a conditional,
and, if the angle is negative, add 360 degrees to it to make the
angle positive. Use the flowchart below to help you write the
program.

Start
e
S ’Iys an I.e“ ‘
N g
r‘—*"gﬂ"‘ < lessthan Yes
\ . zero?
| ~ " Add 360 |
' |_Degrees. |

Branching, Decisions, and Flags 117

Use the flowchart to help you
write a program that will allow a
dealer to compute sales staff
commissions at the rates of 10%
of sales of up to $1000, 12.5% for
sales of $1000 to $5000, and 15%
for sales of over $5000. The pro-
gram should display the amount
of sales and the amount of com-
mission.

Load the program and run it for sales amounts of $500, $1000,
$1500, $5000, and $6000.

(Answers: $50.00, $125.00, $187.50, $625.00, $900.00.)

118

Branching, Decisions, and Flags

|

Key in sales
amount
&start.

Sales No
< $10007? *"-;v

Calculate
10% of sales.

Calculate Calculate
12.5% of sales. 15% of sales.

:

I

y

Y
Display
commission.

v

Branching, Decisions, and Flags 119

Solutions:
1. Keystrokes Display
K 000-
001- 25, 13, 11
002- 15 41
003- 22 0
004- 25 12
005- 25,13, 0
006- 3
007- 6
008- 0
009- 51
010- 25 12

User instructions: After keying in program, set PRGM-RUN switch to
B runv and set display mode to FIX 4. Input angle and press (a].

2. Keystrokes Display

(prGM] ~ 000-

™ ey (&) 001- 25,13, 11
002- 33
003- 3
004- 14 51
005- 22 0
006 - 5
007- 61
008- 21
009- 14 41
010- 22 1
011- 1
012- 5
013- 25 41
014- 25 12

015-25,13, 1

120 Branching, Decisions, and Flags

Keystrokes Display

1 016- 1
2 017- 2
(K3 018- 73
5 019- 5
™ 020- 25 41
(n] (RN 021- 25 12
(M ey o 022- 25,13, 0
023- 21
1 024- 1
0 025- 0
(3] 026- 25 41
M EN) 027- 25 12

User instructions: After keying in program, set PRGM-RUN switch to
I "oy and set display mode to FIX 2. Input sales dollars and press

®.

Flags

Besides the conditionals ([*=Y], [x>0], etc.), you can also use flags for
tests in your programs. A flag actually is a memory device that can be
either SET (true) or CLEAR (false). A running program can then test the
flag later in the program and make a decision, depending upon whether
the flag was set or clear.

There are four flags available in your HP-34C. They are numbered 0, 1,
2, and 3. To set a flag true, use the instruction (sF)(set flag) followed by
the proper digit key (0, 1, 2, or 3) of the desired flag. To set flag 3,
for example, you would use these keystrokes:

JE83

Flags are cleared using the (clear flag) instruction followed by
the proper digit key. To clear flag 3 you would use these keystrokes:

(A3

Branching, Decisions, and Flags 121

When using flags, decisions are made using the instruction (F?)(is flag
true?) followed by the digit key (0, 1, 2, 3) specifying the flag to be
tested. When a flag is tested by a (#] [F?)n instruction, the calculator
executes the next line if the flag is set (this is the ‘DO if TRUE”
rule). If the flag is clear, the next line of program memory is skipped
before execution resumes.

Is flag 1 true?

Yes No
C E] 1 =~
\
\
if YES, <’ if NO, skip
continue execution one line before
with next line. resuming execution.

A flag which has been set by an [h] [SFJn command remains set until it
is cleared by one of the following:*

1. Executing an (h]) (CFJn command.
2. Turning the calculator OFF.

Using flags

Like the the x/y and x/0 conditional tests, flags give you the capability to
either skip or execute individual lines in program memory. However,
while the x/y and x/0 conditionals function by comparing values, flags
function by telling the calculator whether or not a particular operation or
type of operation has been performed.

* Note that pressing (] CLEAR [prGm] does not clear a flag that has been set by an

(n] (SF) n instruction.

122 Branching, Decisions, and Flags

Example: The following program contains an infinite loop that illus-
trates the operation of a flag. The program alternately displays all 1’s and
all 0’s by changing the status of the flag, and hence, the result of the test
in line 006, each time through the loop. A flowchart for the program
might look like this:

Start

PaUse
to display
ones.

Clear flag 0.

Isflag ™~_ Yes_ ‘
0 set? ‘

' | No
| ‘ Pa_Uée !
| todisplay |
‘ Zeros.

Set flag 0.

Branching, Decisions, and Flags 123

The program assumes that you have stored the number O in register R,
and the number 1.111111111 in register R;.

Slide the PRGM-RUN switch to prav [.

Keystrokes Display
(1) CLEAR (prcu] 000-
™) (&) 001- 25,13, 11
1 002- 24 1 Recalls and displays ones
from register R;.
003- 25 74

EEEE
(=)

004-25,61, 0 Clears flag 0.
005-25, 13, 12
006-25,71, 0 Tests flag 0.

3
o

@ 007- 22 11 If set (true), go to (a).
(rRegJ O 008- 24 0 Otherwise, recall and dis-
(M) (rsE) 009- 25 74 play zeros from register R,
(Ao 010-25,51, 0 set flag 0, and go to

011- 22 12 (8).

(v) (rTN) 012- 25 12

Now switch to Il ru~ | Joad storage registers Ry and R, then execute

Keystrokes Display

(O Fx)9 0.000000000

0 0 0.000000000

1.111111111 1.111111111

(s10)1 1.111111111

@) 1.111111111 All ones and all zeros.
0.000000000

To stop the running program, press (or any other key).

124 Branching, Decisions, and Flags

How it works: After you have initialized the program by storing zero in
register R, and all ones in register R, the program begins running when
youpress (a]. The (RcL)1 and (h](PSE)instructions in lines 002 and 003
pause to display all ones from storage register R;. The (n] (CF]O instruc-
tion in line 004 clears flag 0. (Since the flag is already clear when you
begin the program, the status of the flag simply remains the same.)

There is no after the routine begun by (&), so execution
continues through the (8)instruction in line 005 to the test, [n)
0, in line 006. The [n] (F?)0 instruction asks the question ‘‘Is flag O set
(true)?”’ Since the flag has been cleared earlier, the answer is NO, and
execution skips one line of program memory and continues with the
0 instruction in line 008. The (RcU)0 and (] instructions in lines
008 and 009 pause to display all zeros from register R,. Flag 0 is then set
by the [h] 0 instruction in line 010 and execution is transferred to
(8] by the (8] instruction in line 011.

With flag O now set, the answer to the test [n] (F2)0 (‘‘Is flag O true?”’) is
now YES, so the calculator executes the (A)instruction in line 007,
the next line after the test. After again pausing to display all ones, the
flag is cleared, and the program continues in an endless cycle, alternately
displaying ones and zeros, until you stop execution from the keyboard.

Problem

One mile is equal to 1.609344 kilometers. Use the following flowchart to
create and load a program that will permit you to key in distance in either
miles (define with (&) or kilometers (define with). Use
a flag for determining whether to multiply or divide to convert from one
unit of measure to the other. (Hint: () (XJyields the same result as
=)

Set the calculator to (Fix) 4 display mode. Then run the program to
convert 26 miles into kilometers; to convert 1500 meters (1.5 kilometers)
into miles. (Answers: 41.8429 kilometers; 0.9321 miles.)

Branching, Decisions, and Flags

125

Key in
kilometers.
Start
Y
Clear flag Set flag.
v
Place
1.609344
in X-register.
No Yes
Y i
Multiply. Divide.

(=)

Section 6
Subroutines

Often, a program contains a certain series of instructions that are
executed several times throughout the program. When the same set of
instructions occurs more than once in a program, it can be executed as a
subroutine. A subroutine is selected by the (go to subroutine)
operation, followed by a label address (&), (8], or O through9. You can
also select a subroutine with [1]—more about (1] later.

A instruction transfers execution to the routine specified by the
label address, just like a instruction. However, after a in-
struction has been executed, when the running program then executes a
(RTN] (return), execution is transferred back to the next instruction after
the (GsB]). Execution then continues sequentially downward through
program memory. The illustration below should make the distinction

between and more clear.

Branch
(W) () 4 (et (&)
/
/

(h)(rRTN) (hJ®™N) | Execution transfers
to line 000 and
halts.

Subroutine

Mey® (h)(eL) (&)

(csel(] |

Execution trans- (W)(rTN) Mo RN \
fers to line 000

and halts.

126

Subroutines 127

In the top illustration of a branch, if you pressed (&]from the keyboard,
the program would execute instructions sequentially downward through
program memory. If it encountered a (8)instruction, it would then
search for the next and continue execution from there, until it
encountered a [rTn). When it executed the instruction, execu-
tion would transfer directly to line 000 and halt.

However, if the running program encounters a (8](go to subrou-
tine B) instruction, as shown in the lower illustration, it searches down-
ward for the next (8)and resumes execution. When it encounters a
(return), program execution is once again transferred, this time
back to the first line after the origin of the subroutine call ((Gse] (8]),
where execution resumes.

As you can see, the only difference between a subroutine and a normal
branch is the transfer of execution after the (rTn). After a (GT0], the
next (RTN]causes execution to transfer to line 000 and halt; after a (GsB),
the next returns execution back to the main program, where it
continues until another (or a (R7S)) is encountered.

Example: Write a program for calcula-
ting the average slope of the graph of
f(x) between x; and x, where f(x) =
x% = In(x2 + e7¥).

128 Subroutines

Solution: The average slope of f(x) between x; and x, is given by
flxg) = f(x4)
Xo T Xp

_ [xzz — In(x,% + e"‘z)] - [x{" —In(x*+ e"“)]
Xy — X

Notice that the solution requires two computations of the expression
x2 = In(x? + ™).

The program below allows you to key in the values for x; and x, and
compute the average slope by pressing [A].

() (tey) (&) EXP]
0 ¢
CHS
=0 9
h (h)(LsTx)
CcHS (=3
@ Calculates f(x,) . 9
™ Th i ¢ (1) (tN)
ese sections o
program memory are
g identical. -
0w ‘ @&
P Calculates f(x,) . \
EiEu 0
J =)
CHS (M) (RN

Since the program section for calculating f(x,) contains a large portion of
program memory identical to the section for calculating f(x,), you can
simply create a subroutine that will execute this section of instructions.
The subroutine is then called up and executed in calculating both f(x5)
and f(x;).

Subroutines 129

001 (v (ted) (&) # 013 (n) (@80
002 (570) 0 A 014
003 (x23) o7, 015 (e
004 (570) (5)0 el 016 (@) (€
005 [// 017 (m)EsTx)
006 --————— //

007 “7

008 (GSB) 0= === —~— 4

009 - ———— — ~ -
010 (Re) 0 s 022

011 (2 Saoh 028 E6E
012 (®](rTN) S~ 024 3@

SN025 W (EW

With the modified program, when you press (AJwith x, in the Y-register
and x, in the displayed X-register, execution begins with the
] (&)instruction in line 001. When the 0 instruction in line
005 is encountered, execution transfers to the (] (L8L)O0 instruction in
line 013 and calculates the quantity f(x,). If for example, we used a value
of 2 for x, and a value of 3 for x,, here is an illustration of what would be
happening in the stack as the average slope of f(x) was calculated.
001 002 003 004 005

3 3 2
® ® 0 =o (cse)0
(xy in Y-reg., (x4 in Ry) (x; in X-reg., (xz — x, in Ry)
X, in X-reg.) Xxpin Y-reg.)
014 016 017

o
-~
IIO'

Y[s J[2 | 01353
2 2 -2 0.1353 -2
® @00 ®
(Begin (—xy) (e %) (Recalls —x,)

subroutine)

b

30 Subroutines
018 019

(In(x2 + e™1)) (—In(x? + e™1))

2.5804

® Ew

(Return to main
program)

From line 025 execution transfers back to the main program and con-
tinues with the first line after the last instruction. When the
0 instruction in line 008 is encountered, execution again transfers to the
™ 0 instruction in line 013. To continue our illustration:

-2.5804 3
CHs ® 0
(=f(x1) (=f(xy) saved (Begin

in stack.) subroutine)

Subroutines 131

9.0498

(xs + e7%2)

(Return to main
program)

After the calculator passes through the subroutine under (LBL]0 a second
time to compute f(x,), the [) instruction at line 025 causes
execution to return to the first instruction in the main program after the
last 0 instruction. f(x,) is in the X-register; —f(x,) is in the Y-, Z-,
and T-registers.

132 Subroutines
009 010

X]|_4.2168
0 =]
(F) = f(x) (e—x) (fx) = f(x) (End of
+ (xp —xy)) Program)

When calculation halts, the average slope of f(x) between x, and x,
appears in the display. Extra copies of -f(x;) in the Y-, Z-, and T-
registers are ignored.

Keystrokes Display
[fJCLEAR [PrGM] 000-
() ey (&) 001- 25,13, 11
0 002- 23 0
003- 21
=Jo 004- 23,41, 0
0 005- 13 0
006 - 32
007- 21
0 008- 13 0
009- 51
0 010- 24 0
® 011- 71
(M (RN 012- 25 12
™ 0 013- 25,13, 0
014- 31
CHS 015- 32
(@) 016- 15 1
(W (sTx) 017- 25 0
] 018- 15 3
019- 51
(f]) (LN 020- 14 1
CHS 021~ 32

Subroutines 133

022- 21
@ 023- 15 3
024- 51
®) (rTw) 025- 25 12

Slide the PRGM-RUN switch to [l[[Mrun . Now find the average slope
of f(x) between the following pairs of points: (0, 0.5), (0.55, 1.15),
(1.25, 1.75).

Answers: 0.8097, 0.6623, 1.8804.

Subroutine Usage

Subroutines give you extreme versatility in programming. A subroutine
can contain a loop, or it can be executed as part of a loop. Another com-
mon and space-saving trick is to use the same routine as a subroutine and
as part of the main program.

Example: The program below simu-
lates the throwing of a pair of dice, paus-
ing to display first the value of one die
(an integer from 1 to 6) and then pausing
to display the value of the second die
(another integer from 1 to 6). Finally the
values of the two dice are added together
to give the total value.

The ““heart” of the program is a random number generator (actually a
pseudorandom number generator) that is executed first as a subroutine
and then as part of the main program. When you key in a first number,
calleda *‘seed,’” and press (&), the digit for the first die is generated and
displayed using the (h]) (LBL)2 routine as a subroutine. Then i\.e digit for
the second die is generated using the same routine as part of the main
program. The program then uses the generated number as a new seed for
successive ‘‘throws’’ of the dice.

134 Subroutines

To key in the program:
Set the calculator to preM[[[[Ill mode.

Keystrokes Display

(] CLEAR [prRGM] 000-

1 001- 22 1

(n]) ey (&) 002- 25, 13, 11

0 003- 23 0

) 1 004- 25,13, 1

0 005- 0

1 006- 23 1

2 007- 13 2) 2 executed first as
~N @ subroutine.

(") (g2 008-25,13, 2

0 009- 24 0

9 010- 9

9 011- 9

7 012- 7

(E3) 013- 61

(~) (FrRaS) 014- 25 33

0 015- 23 0

6 016- 6

E3) 017- 61

1 018- 1 (] 2 then executed as

019- 51 the remainder of the main

M (ONT) 020- 25 32 | program.

I 021-14,11, 0

DIE) 022- 25 74

1 023- 23,51, 1

RCL] 1 024- 24 1

DG 025- 25 12) Transfers execution to line

008 when 2 executed
as a subroutine; to line 000
when (LBL]2 executed as the
remainder of the main pro-
gram.

Subroutines 135

Now set the calculator to IR~ mode and *‘roll’’ the dice. To roll
the dice, key in the initial decimal ‘‘seed’’ (that is, 0 <n <1). Then
press [A). The calculator will display first the number rolled by the first
die, then the number rolled by the second, and finally, when the program
stops, you can see the total number rolled by the dice. To make another
roll, press (R7S]. The program uses the last number as a new seed for the
roll.

You can play a game with your friends using the ‘‘dice.”’ If your first
“‘roll”” is 7 or 11, you win. If it is another number, that number becomes
your ‘‘point.”” You then keep ‘‘rolling’’ (pressing (R7S]) until the dice
again total your point (you win) or you roll a 7 or 11 (you lose). To run
the program:

Keystrokes Display

.2315478 0.2315478 The seed.

@) 10. Your point is 10.

8. You missed your point.
5. Missed it again.

7. Whoops! You lose.

Now try it again using the last number as the new seed.

Keystrokes Display
8. Your point is 8.
8. Congratulations! You win.

Before you continue, reset the display to four decimal places.

Keystrokes Display
F)(Fx) 4 8.0000

Subroutine Limits

A subroutine can call up another subroutine, and that subroutine can call
up yet another subroutine. Subroutine branching is limited only by the
number of returns that can be held pending by the calculator. Six
subroutine returns can be held pending at any one time in the HP-34C.

136 Subroutines

The diagram below should make this more clear.

Main Program

*.ool

\...\

[y p 1
1
'
Gse)1 | [7
N 2
\
|/ \ \
RTN ! RTN
END

The calculator can return back to the main program from subroutines that
are six deep, as shown. However, if you attempt to call up subroutines
that are seven deep, the calculator will halt and display Error 8 when it
encounters the instruction attempting to call the seventh subroutine

level.

Main Program

(tel) (&) *L (tey) !

1
] '
! Y
2
RTN

s 06
/
6
\/ \]
RTN RTN

06

@07

Y PRy

(csg) 7

RTN

RTN

Execution
halts and
Error 8 is
displayed.

Subroutines 137

Naturally, the calculator can execute non-subroutine instructions
(transfer execution to line 000 and halt) any number of times. Also, if you

press or with (), (8], or O through 9 from the keyboard,
any pending instructions are forgotten by the calculator.

Press (GSB)2 Execution

Main Program begins here.

ey, P 05 ©6

2] | [ese)6
3! h
\
Y N i\ Y \ y
\ \
RTN \ RTN RTN

Note that in PRGM mode, single-step execution of a program contain-
ing subroutines follows the same order of execution as in a running
program.

Using (] at the End of Occupied
Program Memory

The programming examples in your HP-34C Owner’s Handbook and
Programming Guide include an (n) as the last line in occupied
program memory. This is done both to clearly indicate the ends of
programs and to illustrate how affects program execution.
However, you can omit [n) where it occurs as the last instruction
in occupied program memory without affecting program execution.
Why? Whenever the last instruction in program memory is not (]
» program execution performs just as if () existed immedi-
ately following the last instruction you keyed in. In other words, when
program execution encounters the end of occupied memory without

finding an (w) instruction:

138 Subroutines

1. If in a subroutine, execution returns to the first line after the last
instruction and resumes.

2. If not in a subroutine, execution returns to line 000 and halts.

If the last line in occupied memory contains a instruction, the cal-
culator executes the indicated subroutine, returns to line 000, and halts.

Notice that and instructions always cause the calculator to
search forward in program memory for the specified label. This feature
often allows you to write a program in such a way that it uses a given
label more than once.

Example: The following program to calculate the value of the expres-
sion Vx2 + y2 + z2 + 2 uses (A)to identify both the beginning of
the program and a subroutine within the program. The program is
executed by placing the variablesx, y, z, and 7 in the stack and pressing

@).

Slide the PRGM-RUN switch to prem [[[[Hll and key in the following
program.

Keystrokes Display

() CLEAR (PrGM] 000-

™ ey @) 001- 25,13, 11
@ =3 002- 15 3
@ 003- 13 11
@) 004- 13 11
®) 005- 13 11
s 006- 14 3
™ ™) 007- 25 12
™ ey (&) 008- 25, 13, 11
X% 009- 21
@) x3 010- 15 3
011- 51
™ EN 012- 25 12

Subroutines 139

Slide the PRGM-RUN switch to Ill[[ru~ and key in the following set
of variables:

x=43,y=79,z=13,1t=8.0

Keystrokes Display
8 8.000
1.3 1.3000

7.9 @@ 4.3 (&) 12.1074

Section 7

Advanced Programming

Controlling the I-Register

The I-register is one of the most powerful programming tools available
onyour HP-34C. In addition to serving as aregister for the simple storage
and recall of data, the I-register can also be used in conjunction with other
instructions to perform the following:

Increment or decrement a specified value from the current value
in I for loop control or other functions.

Indirectly control the storage register address of (sT0), (RCi],
and storage register arithmetic.

= Indirectly control the label address of and (GsB].

Indirectly control the number of digits displayed by the [Fix],
sci], and [Enc) modes.

Transfer execution to any line of occupied program memory.

Storing a Number in the I-Register

To store a number in the I-register, you use the key sequence
[1]. For example, to store the number 7 in the I-register:

Ensure that the PRGM-RUN switch is set to [IlI[ru~ .

Keystrokes Display
7 (810) (7] [1 7.0000

To recall a number from the I-register into the displayed X-register, you
use the key sequence)

Keystrokes Display
0.0000
) 7.0000 A copy of the number stored

in I is recalled.
140

Advanced Programming 141

Exchanging X and |

In a manner similar to the operation, the (] [**1](X exchange I)
operation exchanges the contents of the displayed X-register with those
of the I-register. For example, key the number 2 into the displayed X-
register and exchange the contents of the X-register with the value you
stored in the I-register in the previous example.

Keystrokes Display

2 2,

(f) 7.0000 Contents of X-register and
[-register exchanged.

When you pressed [x%1], the contents of the stack and the I-register
were changed...

...from this... ...to this.

Display

I

To restore the X-register and I-register contents to their original
positions:

Keystrokes Display
K 2.0000

Incrementing and Decrementing the I-Register

Another way of altering the contents of the [-register, and one that is most
useful in programming, is through the ISG (increment, then skip if
greater) and DSE (decrement, then skip if less than or equal) functions.
Both contain internal counters that allow you to control the execution of
a loop, as well as the sequential addressing operations covered later in
this section.

142 Advanced Programming

The ISG and DSE functions use a number that is stored in the I-register
and interpreted in a special way. The number is called a loop control
value. The usual format is:

nNNNNN.XXXYy
A loop control value is interpreted as three separate integers, where:

*nnnnn is the current counter value,
XXX is the counter test value, and
yy is the increment or decrement value.

The nnnnn portion of the number tells your HP-34C that you wish to
count the number of passes through the loop beginning with that number.
If you do not specify an nnnnn value, the HP-34C assumes you wish to
begin counting at zero. An nnnnn value can be specified as one to five
digits.

The xxx portion of the number tells the HP-34C that you wish to stop the
counting at that number. The xxx value must always be specified as a
three-digit number (e.g., an xxx value of 10 would be specified as 010).

The yy portion of the loop control number tells the calculator how you
wish to count. Current counter value nnnnn is incremented or decre-
mented by the value of yy. If you do not specify a yy value, the HP-34C
automatically assumes you wish to count by ones (yy default = 01). A
specified yy value must be two digits (e.g., 02, 03, 55).

Increment, Then Skip if Greater. Each time is executed, it first
increments nnnnn by yy. It then tests to see if nnnnn is greater than xxx.
If it is, the HP-34C skips the next line in the program.

So, with the loop control value 100.20001 in the I-register, the
instruction would begin counting up from 100. Each time the program

executed (1G], the nnnnn portion of the loop control value would be
incremented by 1.

Contents of the I-register = 100.20001
Execution of (1sG] would:
Start counting up from 100.
Increment nnnnn by 1.
Test to see if nnnnn is greater
than 200.

Advanced Programming 143

After one execution or pass through the loop containing (iSGJ, the
I-register would contain 101.20001. After 10 executions or passes
through the loop, the I-register would contain 110.20001. Each time
(sG] increments, it then checks to see if the current counter value
nnnnn is greater than 200 (xxx). When nnnnn is greater than 200,
program execution skips the next line of program memory following
the (1sG]instruction. You will see how skipping the next line in the
program is useful in a moment.

Decrement, then Skip if Equal (or Less Than). Each time is
executed, it first decrements nnnnn by yy. It then tests to see if nnnnn is
equal to (or less than) xxx. If it is, the HP-34C skips the next line in the
program.

So, with the number 100.01001 in the I-register, the (psg]instruction
would begin counting down from 100. Each time the program executed
(osg), the nnnnn portion of the loop control value would be decremented
by 1.

Contents of the I-register = 100.01001
Execution of would:
Start counting down from 100.
Decrement by 1.
Test to see if xxx was equal to (or
less than) 10.

After one execution or pass through the loop, the I-register would contain
99.01001. After 10 executions or passes through the loop, the I-register
would contain 90.01001. Each time (bse]decrements, it then checks to
see if the counter value nnnnn is equal to or less than 010 (xxx). When
nnnnn is equal to or less than 010 (xxx), the calculator skips the next line
of the program.

Example: Here is a program that illustrates how (i5G] works. It con-
tains a loop that pauses to display the current value in the I-register and
uses (1SGJto control the number of passes through the loop and the value

of the squared number. The program generates a table of squares of even
numbers from 2 through 50.

144 Advanced Programming

Slide the PRGM-RUN switch to erem [[[[Illl and key in the following
program.

Keystrokes Display

(] CLEAR 000-

™) @ 001-25, 13, 11 Program label

[Fx)S 002- 14,11, 5

2 003- 2 } Current counter value

(K8 004- 73 (nnnnn),

0 005- 0

5 006- 5 Counter test value (xxx).

0 007- 0

0 008~ 0 } Increment value (yy).

2 009- 2

[010- 23, 14,23 Store loop control valuein 1.

(n] (L8]l 011- 25,13, 1 Begin the loop.

(i 1] 012- 24, 14, 23 Recall the number in I.

™) 013- 25 32 Take the integer portion.

™) 014- 25 74 Pause to display the integer.

@) &3 015- 15 3 Square the number.

(Y] 016- 25 74 Display the square of the
number.

(is¢] 017- 15 24 Increment I by 2 and check

to see that the counter is not
greater than the final number
(50). If the counter is
greater than the final
number, skip the next line in
the program.

(6101 018- 22 1 Loop back to label 1.
MmEN) 019- 25 12 Halts the program.

Advanced Programming 145

Now run the program:
Slide the PRGM-RUN switch to [l run and press (&].

Keystrokes Display
® 2.00000 When the HP-34C begins
4.00000 executing, it first pauses to
display the number to be
4.00000 squared, then pauses to dis-
16.00000 play the square of the num-
ber. When the loop counter
increments beyond 50, the
. program halts.
50.00000
2,500.00000

Here is what happens when you run the above program.

1. Under label (A], the number 2.05002 is stored in the I-register
as the loop control value. It is in the counter format: i.e.,

nnnnn XXX yy
(0000)2 050 02
Current counter Test Increment
Value Value Value

2. Under label 1, the following sequence occurs:

After 2 and 4 (the square of 2) are displayed, the current counter value in
I, 00002 (nnnnn), is incremented by the increment value 02 (yy). The
new number in the I-register is 4.05002, which is interpreted by your
calculator as:

nnnnn XXX yy
(0000)4 050 02
Current Counter Test Increment
Value Value Value

The new counter value is then compared to the test value 050 (xxx). As
the counter value has not exceeded the test value, the calculator proceeds

to the next line, 1, and the process is repeated with the new
number.

146 Advanced Programming

3. After 25 even-numbers (2-50) and their squares are displayed,
the current counter value finally increments beyond 50. This
causes the calculator to skip one line after the (isGJatline 17.
As a result, the 1 command at line 18 is bypassed and the
command at line 19 is executed, causing the calculator
to return to line 000 and halt.

After running the program, press (f] (1). The recalled I-register
value in your display should now look like this:

52.05002
Current Test Increment
Counter Value Value
Value
(nnnnn) (xxx) yy)

Now let’s add a second program which uses your HP-34C’s (psg] func-
tion. Remember, the nnnnn.xxxyy format is the same as for (isG).
You will, however, be decrementing the current counter value instead of
incrementing it.

The island of Manhattan was sold in the
year 1624 for $24. The following pro-
gram shows a simplified method to cal-
culate growth of the original amount if it
had been placed in a bank account draw-
ing 6% annual interest. The number of
years for which you want to calculate
growth is stored in the I-register as a loop
control value. The instruction is
then used to keep track of the number of
iterations through the loop.

Advanced Programming 147

Slide the PRGM-RUN switch to prom [[[[Illl . Executing the (rTn
instruction in line 019 of the previous program returned your calculator
to line 000. To add the following program to the end of currently occu-
pied program memory, press [(h] (or (33 019) to return to
line 019.

Keystrokes Display

(Y] 019- 25 12 Last line of previous
program.

™) 020- 25, 13,12 New program label.

0 [Fx) 2 021- 14,11, 2

OO 022-23,14,23 Stores user-input loop con-
trol value nnnnn.xxxyy in
the I-register.

1 023- 1

6 024- 6 Initial year

2 025- 2 year.

4 026 - 4

027 - 51 Final year.

0 028- 23 0 Stores final year.

2 029- 2 Initial dollar amount

4 030- 4)

™) 2 031-25,13, 2 Begins the loop.

1 032- 1

(6) ggi: g Calculates annual growth.

) (= 035- 25 41

036- 15 23 Decrements the current
counter value nnnnn and
compares with the counter
test value xxx.

2 037- 22 2 If nnnnn>Xxxx, returns to
2.

0 038- 24 0

J(rsg) 039- 25 74

040- 21 If nnnnn=xxx, displays

& 041- 25 12) final year, final growth

value, and halts.

148 Advanced Programming

Slide the PRGM-RUN switch to l[Mrw~ and key in the number of
years (loop control value) for which you want to see the accumulated
amount. Press to store your input value in the I-register and to run
the program.

Keystrokes Display

5 5. Loop control value;
nnnnn = 5, xxx = 000,
yy = 00 (defaults to 01
internally).

32.12 After five years, in 1629, the
account would have been
worth $32.12.

15 15. Loop control value;
nnn = 15, xxx = 000,
yy = 00 (defaults to 01
internally).

57.52 After 15 years, in 1639, the
account would have been
worth $57.52.

How it works: When you key in the number of years and press (8]your
entry is stored in the I-register and becomes the loop control value
(nnnnn.xxxyy).

nnnnn XXX Yy
(0000)5 000 00

Current Counter Counter Test Decrement Value
Value Value (Defaults to 01 internally.)

(Notice that when the test value is 000 and the increment or decrement
value is 01, it is not necessary to enter them.)

The loop control value is then added to the initial year. This sum is the
final year and is stored in R, for later recall. The initial dollar amount is
then entered. Each time through the loop the dollar amount is increased
by 6%. The instruction then subtracts 1 from the I-register. If the
loop control value in I is not then zero, execution returns to 2 and
the loop is executed again.

Advanced Programming 149

When the loop control value in the I-register is decremented to zero
(nnnnn=xxx), execution bypasses the (GT0]2 instruction at line 37 and
resumes with the (REL)O instruction at line 38. The final year and dollar
value then appear in succession and the program halts.

ISG and DSE Limits

Note that [1SGJand ([psg]can be used to increment and decrement any
number that the HP-34C can display. However, the decimal portion of
the loop control value will be affected by current counter values exceed-
ing the five-digit nnnnn value.

For example, the number 99,950.50055, when incremented using
would become 100,005.5006. The initial number was incremented by
55. But since the new number 100,005.50055, cannot be fully displayed,
the decimal portion of the number was rounded. As the calculator
assumes a two-digit number for the increment value (yy), the next in-
crement would be by 60, not 55. And when the number becomes
999,945.5006, the next number would be 1,000,005.501, thus rounding
the decimal portion of the number again. Since no increment value yy is
present, the next increment would default to 01 instead of remaining at
60.

Problem:

1. Write a program that will count from zero up to a limit using the
(1sG] function, and then, in the same program, count back down
to zero using the (bse]function. Use the flowchart on the follow-
ing page to help you.

150

Advanced Programming

|

STO nnnnnxxxyy
N .

Increment nnnnn.

Set xxx to 0.

e

Decrement nnnnn.

Clear flag-
RCL nnnnnxxxyy.

Advanced Programming 151

Using The I-Register For Display,
Storage Register, and Program Control

You have seen how the value in the I-register can be altered using (sT0),
(xx1], (1sG], and operations. But the value contained in the
I-register can also be used to control display, storage register, branching,
and subroutine operations. First, let’s get a brief overview of these
operations. Then we’ll examine each one in detail.

(osp1)(display I) uses a number stored in the I-register to specify the
number of decimal places appearing in the display.

(X exchange indirect) exchanges the contents of the displayed
X-register with the contents of the available storage register addressed
by the absolute value of the number in the I-register.

(1] [w](store indirect) stores the value that is in the display in the
storage register addressed by the absolute value of the number currently
in the I-register.

(7] [@])(recall indirect) recalls the contents of the storage register
addressed by the absolute value of the number currently in the I-register.

(s10)((#]),), (5], or (3])) [w](indirect storage register arithmetic)
performs storage register arithmetic on the contents of the storage register
addressed by the absolute value of the number currently in the I-register.

(7] [1] (8o to label or line I) with a positive number in the
L-register transfers execution of a running program sequentially down-
ward in program memory to the next label specified by the number
currently in I. With a negative number in the I-register, execution
transfers to the occupied /ine number specified by the absolute value of
the number currently in I.

(7] (1] (go to label or line I subroutine) with a positive number
in the I-register transfers execution of a running program sequentially
downward in program memory to the next label specified by the number
currently in I. With a negative number in the I-register, execution
transfers to the occupied line number specified by the absolute value of
the number currently in L. In both cases, when a (RTN)is then encoun-
tered, execution transfers back to the line following the [GsB)instruc-
tion, and continues.

152 Advanced Programming

When executing any one of the above operations, if the number in the
I-register is inappropriate for that operation, the display will show an
Error message. Also, when using a number in I for display, storage regis-
ter, or program control, remember that the calculator uses only the in-
teger portion of the number in I. Thus, 12.99041276 stored in the
I-register retains its full value there, but when used to control any of
the above operations it is read as 12 by the calculator.

You can already see that using the I-register in conjunction with other
functions gives you a tremendous amount of computing power and
exceptional programming control. Now let’s have a closer look at
these operations.

I-Register Display Control

You can use a number in the I-register to control the number of decimal
places appearing in the display. When [&](pspP1)is performed, the
display is seen rounded to the number of decimal places specified by the
current value contained in the I-register. (The display is seen rounded,
but of course, the calculator maintains its full accuracy, 10 digits multip-
lied by 10 raised to a two-digit exponent, internally.) The above opera-
tion is most useful as part of a program, but it can also be executed
manually from the keyboard. For example, execute the following in
RUN mode.

Keystrokes Display

cix) () [Fix] 4 0.0000 Clears display; normal FIX
display.

sto)[1] [1] 0.0000 Insures that zero is in the
I-register.

9.123456789 9.123456789

(03] 9. FIX display specified by the
zero value in the I-register.

(9] (1sG] 9. Increments value in
I-register to 1.

™) 9.1 FIX display specified by the
the value in the I-register.

(9] (s6]) 9.1 Increments value in I-
register to 2.

™) 9.12 FIX display specified by the

value in the I-register.

Advanced Programming 153

Example: The following program pauses and displays an example of
FIX display format for each possible decimal place. It utilizes a loop
containing a instruction to automatically change the number of
decimal places.

Slide the PRGM-RUN switch to prewm [[[Jiili] and key in the following
program.

Keystrokes Display

(] CLEAR (pr 000~

™ @@ @ 001- 25, 13, 11
9 002- 9
‘ 003- 23, 14, 23
™ (eg 0 004- 25,13, 0
™ 005- 25 11
006- 24, 14, 23
(n) (PsE) 007- 25 74
@ 008- 15 23
0 009- 22 0
@) 9 010- 15 51
0 011- 22 0
™ EW 012- 25 12

To display fixed point notation for all possible decimal places on your
HP-34C.

Slide PRGM-RUN switch to [l ru~ .

Keystrokes Display

&) 9.000000000
8.00000000
7.0000000
6.000000
5.00000
4.0000
3.000
2.00
1.0
0.

0.

154 Advanced Programming

To display scientific or engineering notation for all possible places,
replace the 9 at line 002 with a 6 and shift the calculator to SCI or ENG

mode by pressing (7] or enc) and any digit 0-7.* Then press
(A] as you did in the above example.

Slide the PRGM-RUN switch prem [l to PRGM.

Keystrokes Display

() 002 002- 9
(v] (oel) 001- 25,13, 11
6 002- 6

Slide the PRGM-RUN switch to llIru~ .

Keystrokes Display
(1) (scy 4 0.0000 00 Normal (sci]display.
or
(7)(Enc) 4 0.0000 00 Normal [enc)display.
] 6.000000 00
5.00000 00
4.0000 00
3.000 00
2.00 00
1.0 00
0. 00
0. 00

If any number less than 0 is stored in the I-register, executing [h)
results in the same number of digits in the display as when you execute
() with 0 in the I-register. | If a number greater than 9 is stored in
the I-register, executing [h) results in the same number of digits
in the display as when you execute (n](@SP1) with 9 in the I-register.
Note that in SCI and ENG modes any number greater than 6 in the
I-register results in a maximum of 6 digits and a 2-digit exponent

* In PRGM mode, pressing (] (sci] or [f] [Enc] followed by 8 or 9 automatically
results in an (1) (sci] 7 or (] (Enc) 7 in program memory.

+ During execution of only, a number -6 through +9 in the I-register is used by
as an automatic parameter for (/3] calculations (more on (/3] in section 9).

Advanced Programming 155

appearing to the right of the decimal. (Remember, however, that
or 7 rounds the display to one more digit than does [SCi]or
6.)

Execute the following:

Keystrokes Display

() [(Fx)4 0.0000 Normal FIX display.

1.999999999 1.999999999

M0 2.0000 Display rounds to last
display format command.

] 2.0 Only the integer portion of
the value in I is read by
(osP1).

.9852 0.9852

(1M 1.0 Display rounds to last format
command.

™) 1. A value of <1 brings the
same result as a value of 0.

19 19.

0 19.

™) 19.00000000 With 2 digits to the left of the
decimal occupied, a value
> 9 stored in I brings
the same result as a value of
8 or 9.

3] -19.00000000 Stores a negative number
in L.

™) -19. A negative number stored in

I brings the same result as
a positive number <1.

) 4 -1.9000 01 Normal SCI display.

1.1111119 (enters) 1.1111 00

7 (0 (O 11111 00

™) 1.111111 00 Display rounded to 7
decimal places.

6 (1) D) 1111111

®) 1.111112 00 Display rounded to 6
decimal places.

156 Advanced Programming
Exchanging X and (i)

Using you can exchange the contents of the displayed X-register
with those of any available storage register indirectly addressed by the
absolute value of any number -21<n< 21 in the I-register. The integers
from O through *=9 address storage registers R, through Ry. The
integers from * 10 through =19 address registers R , through R 3. With
the number +20 in the I-register, addresses the I-register itself!

The following diagram illustrates these addresses more clearly:

(i) Address (i) Address

R _Jo Re[] 10
R, [: 1 R., |_—_] 1
R]2 R.|__ |12
R 3 R |13
R4 R |14
R[5 Re |15
St []
Rl 7 R |17
R |8 Rl |18
R o R 1o

LT

Before proceeding, set the display to FIX 4 and clear both the displayed
X-register and all storage registers.

Keystrokes Display
M Fx) 4 0.0000
(\R (REG) 0.0000

Now try the following examples using (xx) to store 1.234 in registers
R;, R.5, and 1.

Keystrokes Display
3 (1) X 0.0000

1.2345 (&) 0.0000

3 1.2345
15 (7] [=%1) 3.0000
1.2345
D) 0.0000
35 1.2345
() CLE 1.2345
15.3974 -15.3974
(] 0.0000
x%Y 1.2345
™ 0.0000
s 1.2345

Advanced Programming 157

Exchanges contents of dis-
played X-register and
I-register.

Exchanges contents of dis-
played X-register and R;,
using the integer 3 in I for an
address.

Recalls a copy of the
contents of Rs.

Exchanges contents of dis-
played X-register and I.

Exchanges contents of dis-
played X-register and Y-
register.

Exchanges contents of dis-
played X-register and R 5
using the integer 15 in I as
an address.

Recalls a copy of the
contents of R 5.

Clears the contents of all
storage registers to 0.

Exchanges the contents of
the displayed X-register and
L.

Exchanges the contents of
the displayed X-register and
the Y-register.

Exchanges contents of dis-
played X-register and R ;5
using the integer portion of
the absolute value of
-15.3974 stored in I as an
address.

Recalls a copy of the con-
tents of R 5

158 Advanced Programming

Keystrokes Display
20 (1) [xx=1) -15.3974 Exchanges the contents of
the displayed X-register and
L
X%y 1.2345 Exchanges the contents of

the displayed X-register and
the Y-register.

™) 20.0000 Exchanges the contents of
the displayed X-register and
I, using the integer stored in
I as an address.

(Red) (7] (1) 1.2345 Recalls a copy of the con-
tents of I.

(] CLEAR (Reg) 1.2345 Clears the contents of all
storage registers to 0.

0.0000 Clears all stack registers.

Indirect Store and Recall

Like (xx@), you can use the I-register to indirectly address all 21 storage
registers for and operations. When you press (1) (@),
the value in the display is stored in the storage register addressed by the
number in the I-register. (7] (@]addresses the storage registers in a
like manner, as do the storage register arithmetic operations
@), %) 3 [, 67 & (@),and G16) & (). (If you have for-
gotten the normal operation of the storage registers, or of storage regis-
ter arithmetic, go back and review section 4, Storing and Recalling
Numbers, inSolving Problems With Your Hewlett-Packard Calculator.)

When using 0 @), (1] [@], or any of the storage register
arithmetic operations utilizing the (] function, the I-register can contain
the same positive or negative values from O through 20, as used with

Advanced Programming 159

By using the calculator manually, you can easily see how] (@)
and [(]are used in conjunction with the I-register to address
the different storage registers:

Ensure that the PRGM-RUN switch is set to [Jrun -

Keystrokes Display

(1) Fx)4 0.0000

CLEAR 0.0000 Clears all storage registers,
including I, to zero.

5 MO0 5.0000 Stores the number 5 in the
I-register.

1.23 () (W 1.2300 Stores the number 1.23 in
the storage register ad-
dressed by the number in
I—that is, storage register
R;.

19 3R 19.0000 Stores the number 19 in the
I-register.

85083 (1] (@) 85,083.0000 Stores the number 85083 in
the storage register R g
addressed by the current
number 19 in I.

12 M 12.0000 Stores the number 12 in the
I-register.

77 (EEx) 43 77. 43

@) 7.7000 44 Stores the number 7.7 X 10%

in the storage register ad-
dressed by the number in
I—that s, in storage register
R,.

160 Advanced Programming

To recall numbers that are stored in any register, you can use the
(recall) key followed by the number of the register address. However,
when the number currently stored in the I-register addresses the storage
register you want, you can recall the contents of that register with

:) -1
EBRMOIE

Keystrokes
5

Display
1.2300

7.7000 44

Contents of storage register
R recalled to displayed
X-register.

Since the I-register still
contains the number 12, this
operation recalls the con-
tents of storage register R ,,
which is addressed by the
number 12.

By changing the number in the I-register, you change the address
specified by (7] [@)or (7] [@]. For example:

Keystrokes

19 (%) (1) (T
e (1)

5 EpE
(ret] (7] (@]

Display

19.0000
85,083.0000

5.0000
1.2300

Contents of storage register
R 4 recalled to displayed
X-register.

Contents of storage register
R recalled to displayed
X-register.

Storage register arithmetic is performed upon the contents of the register
addressed by I by using (@, = @, (] (@], and
(=] [@]. Notice that it is not necessary to use the [shift function
key with these four operations.

Advanced Programming 161

Keystrokes Display

1 (@) 1.0000 One added to number in
storage register (R;) cur-
rently addressed by the
I-register.

(1) (@) 2.2300 Recalls the number stored
in Rs.

2] (@] 2.0000 Multiplies the contents of
Rs by 2.

0 W) 4.4600 Recalls the new contents of
Rs.

0.0000 Clears display.

5 4.4600 Directly recalls the contents
of R;.

Note: When programming, storage register arithmetic
commands for register R, through R, can be keyed in as
either direct or indirect storage operations. However, storage
register arithmetic commands for registers R, through R4
and the I-register are implemented using indirect storage
operations only.

Naturally, the most effective use of the I-register as an address for
and is in a program.

Example: The following program uses a loop to place the number
representing its address in storage registers R, through R, and registers
R o through R 4. During each iteration through the loop, program execu-
tion pauses to show the current value of I. When I reaches 20, execution
is finally transferred out of the loop by the (1sG] instruction and the
program returns to line 000 and halts.

162 Advanced Programming

Slide the PRGM-RUN switch to prem [[[[Jlll and key in the following
program.

Keystrokes Display

(f] CLEAR 000-

™ (&0 (&) 001- 25, 13, 11

3 002- 73

003- 0

(1) 004- 1 Loop control number.

9 005- 9

(1O 006- 23, 14,23 Store loop control number.

eyl 007- 25,13, 1

I 008- 24, 14,23 | Current integer value of I

mC 009- 25 32 stored in storage register

010- 23, 14, 24 addressed by (i).

(DE3) 011- 25 74 Pause to display current
value of 1.

(s6] 012- 15 24 Add one to value in I-
register and compare with
counter test value (019).

1 013- 22 1 IfI<19, execute loop again.

™ 014- 25 12 If I>19, execution transfers
to line 000 and halts.

Slide the PRGM-RUN switch to [lrun .

When the program is run, it begins by placing zero in the I-register.
Then the program recalls the current value in the I-register (loop control
value) and stores the integer part of that number in the corresponding
address — for example, when the I-register contains the number 17.019,
that number is recalled and the integer portion, 17, is stored in the indirect
storage register (R;;) that is addressed by the number 17. Each time
through the loop the I-register is incremented and the result is used both
as data and as an address by the 7] (] instruction. When the
number in the I-register reaches 20, execution transfers out of the loop
and the program stops.

Advanced Programming 163

To run the Program:

Keystrokes Display

@) 0.0000
1.0000
2.0000
19.0000

Notice that the contents of the I-register have been incremented to
20.0190.

Keystrokes Display
@D (7] (1) 20.0190

I-Register Control of Branches and Subroutines

Like the addressing of storage registers using (s70) (7] (@]and (]
(@], you can address routines, subroutines, even entire programs,
with the I-register.

To address a routine using the I-register, use the instruction (f]
(1]. When a running program encounters a (f] (1] instruction,
execution is transferred sequentially downward to the that is
addressed by the number in the I-register. Thus, with the number 7 stored
in I, when the instruction (7] (1] is encountered, execution is
transferred downward in program memory to the next 7 instruction
before resuming.

164 Advanced Programming

Naturally, you can also execute (7] (1]from the keyboard when
you want the calculator to go to the label addressed in the I-register and
halt.

Subroutines can also be addressed and utilized with the I-register. When
[f] [1]is executed in a running program, execution transfers to the
specified (tBL]and executes the subroutine. When a (RTN)is then encoun-
tered executlon transfers back to the next instruction after the
Jand resumes. For example, with the number 7 stored in the
I- reglster (Gse) (7] (1] causes execution of the subroutine defined by

(G0 7 and).

Dleak
v
/
/7
/7
/
/
‘\\
~[mEw

You can also execute (7] [1)from the keyboard when you want the
calculator to execute the pro gram or subroutine addressed by the number
in I, then halt.

The s1mple to-remember addressmg using the I-register is the same for
(T)and (GsB] (7] [1]. Ifthe I-register contains zero or apositive
number from 1 through 9 m or (Gss] (7] (1] addresses (tBL) O
through 9. When the number in I is a positive 10 or 11, (&) or

Advanced Programming 165
is addressed. Label addressing is illustrated below.

If the number

J [(Jor [

in I is: transfers execution to:

0

1

2 ®)
3 ®
4 ®)
5 ®)
6 (®
7 ®J
8 ®)
9 ™)
10 ™
11

o] res[y

!
2

-l
o (o
-

-
-]
[

3
4
5
6
7
8
9

LBL

LeL] (&)
(v (&Y (&)

Remember that label address numbers in the I-register must be 0 or a
positive value less than 12 (negative numbers cause transfer of program
execution, which we will discuss later), and that the calculator looks at
only the integer portion of the number in I when using it for an address.

Example: One method of generating pseudorandom numbers in a
program is to take a number (called a ‘‘seed’’), square it, and then
remove the center of the resulting square and square that, etc. Thus, a
seed of 5182 when squared yields 26853124. A random number
generator could then extract the four center digits, 8531, and square that
value. Continuing for several iterations through a loop would generate
several pseudorandom numbers. *

The following program uses the] (Jinstruction to permit you to
key in a four-digit seed in any of three forms: nnnn, .nnnn, or nn.nn.
The seed is squared and the square truncated by the main part of the
program, and the resulting four-digit random number is displayed in the
form of the original seed: nnn, .nnnn, or nn.nn.

* As indicated, the numbers are not really random. After several such *‘pseudorandom’’
numbers have been generated by this mid-square method they may well begin behaving in a
very systematic, non-random way. The art of generating truly random numbers is beyond
the scope of this handbook.

166 Advanced Programming

A flowchart for the program might look like this:

Key in
number.nnnn.

Key in Key in
number nnnn. number nn.nn.
__Start _Start

Start
Change to Change to
form nn.nn. form nn.nn.

%' Jr v
Store 1 Store 2 Store 3
in l-register. in I-register. in |-register.
y
Square
number.

Extract new
seed of
form .nnnn.

f

LBL 1 =1 GTOI ™ LBL3

(]] 1]
Change to Change to
form nnnn. LBL2 form nn.nn.

Cow) (ow) (s)

Advanced Programming 167

The use of the (] (1] instruction lets you select, via your seed
format, the operations that are performed upon the number after the main
portion of the program.

By storing 1, 2, or 3 in the I-register depending upon the format of the
seed, the program selects the form of the result after it is generated by
the main portion of the program. Although the program shown here stops
after each result, it would be a simple matter to create a loop that would
iterate several times, increasing the apparent randomness of the result
each time.

Slide the PRGM-RUN switch to erem [[[[Ill and key in the program.

Keystrokes Display
) CLEAR (Prci] 000-

Mm@y 4 001- 25,13, 4

(Ex) 002- 33

2 003- 2} Changes nnnn to nn.nn.

3] 004- 71 }

1 005- 1 Places 1 in X-register for
storage in I.

7 006- 22 7

™) 5 007-25,13, 5

(E33] 008- 33

2 009- 2 } Changes .nnnn to nn.nn.

3] 010- 61

2 011- 2 Places 2 in X-register for
storage in I.

7 012- 22 7

™ 6 013-25,13, 6

3 014- 3 Places 3 in X-register for
storage in I.

(®) (e 7 015- 25,13, 7

sto] (1] (1] 016-23,14,23 Stores address of later

operation in I.

168

Advanced Programming

Keystrokes Display
X%Y 017- 21
@) &3 018- 15 3
019- 33
020- 2
021- 61
022- 25 32
023- 33
024- 4
025- 71
026- 25 33

027- 22, 14, 23

028- 25,13, 1

029- 33
030- 4
031- 61
032- 14,11, 0
033- 25 12
034- 25,13, 2
035- 14,11, 4
036- 25 12
037- 25,13, 3
038- 33
039- 2
040- 61
041- 14,11, 2
042- 25 12

Brings nn.nn to X-register.
Squares nn.nn.

Truncates two final digits of
square.

} Truncates two leading digits

of square.

Transfers execution to
appropriate operational
routine.

\ Result appears as nnnn.

Result appears as .nnnn.

[Result appears as nn.nn.

We could also have stored the digits for 100 (that is, (EEX] 2) and recalled
them for use in lines 002-003, 008-009, 019-020, and 038-039, but we
have used this more straightforward program to illustrate the use of the

(] (1] instruction.

Advanced Programming 169

When you key in a four-digit seed number in one of the three formats
shown, an address (1, 2, or 3) is placed in the Ry-register. This address
is used by the (1] (1) instruction in line 27 to transfer program
execution to the proper routine so that the new random number is seen
in the same form as the original seed.

Now run the program for seeds of 5182, .5182 and 51.82. To run the
program:

Set the calculator to [lIMrun .

Keystrokes Display

5182 4 8,531. Random number generated
in the proper form.

.5182 5 0.8531

51.82 6 85.31

The program generates a random number of the same form as the seed
you keyed in. To use the random number as a new seed (simulating the
operation of an actual random number generator, in which a loop would
be used to decrease the apparent predictability of each succeeding
number), continue pressing and the appropriate label key:

Keystrokes Display
6 77.79
6 51.28
6 29.63

With a few slight modifications of the program, you could have used a

(f] (1] instruction instead of the (7] (1) instruction.

170 Advanced Programming

Problem

Create and load a program using [1sGJand that permits you
to key in a series of values during successive halts. The values should be
stored in storage registers R, through Ry, R o through R4 and I in the
order you key them in. Use the following flowchart to help you.

Start

Store counter
test value in I.

Clear display.

Halt to key
in number.

Store number
in register
addressed by (i).

Increment
I-register.

Is
current
counter value
ini<20?

No

Yes

Stop

Advanced Programming 171
Branching and Subroutines Using Line Number Addressing

Using (7] [1]or (7] [1], with a negative number stored in
the I-register, you can actually branch to any occupied line number in
program memory.

As you know, when (GT0](7]) (1] or (1) (1] is executed in a
running program, the calculator searches downward through program
memory until it locates the addressed by the positive number in I.
Then execution resumes. However, when (G70] (7] (1]or (GsB) (1] [1]
is executed in a running program with a negative number stored in I, the
calculator does not search for a label. Instead, execution is transferred to
the occupied line number in program memory specified by the absolute
value of the negative number in I. This feature allows you to transfer
program execution even when all labels have been used or when you want
to execute only part of a subroutine or program without using an addi-
tional label.

For example, in the section of program memory shown below, -35 is
stored in the I-register. Then, when line 047,] [1], is executed,
the running program jumps immediately to line 035, where execution
begins again.

033- (A7)
034- 3
>~ 035- (570) 3 3. Execution
i, When s | 036- 4 resumes .here
. | and continues
pressed, execution | 037- 5 until the ()
gzglms at line | |038- at line
: I 1039- (&) (sF) 0O 040 is encoun-
| 040- (W) (rRTN) tered.
2. With 35 stored | | [047= B0
in I, execution | 042- [1
transferred to | 043- 3
line 035 by I ||o4q= 5
uj oL | 045 -
I y|od6- '
L —loa7-
048- (9] (TanT

172 Advanced Programming

When (1] [1]is performed in a running program, execution then
continues until the next or [R7S]instruction is encountered, and
then halts. If you pressed (8]with the instructions shown above loaded
into the calculator, the instructions in lines 041 through 047 would be
executed in order. Then program execution would jump backward and
resume at line 035 and continue with 036, 037, etc., until the
instruction was encountered in line 040. Program execution would then
halt and the calculator would return to line 000.

Note that executing (1] (1] from the keyboard brings the same
results as execution in a running program except the calculator halts at
the specified line number instead of resuming program execution.

With a negative number stored in the I-register, (7] (1)also trans-
fers execution to the occupied line of program memory specified by the
absolute value of the negative number in I. However, just as when using
with labels, subsequent instructions are then executed as a sub-
routine. Therefore, when the next is encountered, execution trans-
fers back to the instruction following the (f] [1]instruction.

The section of program memory below shows how (1) [1]oper-
ates. If you press (8], —35 will be stored in the I-register. When the
(] [1]at line 047 is then executed, the running program jumps
back to line 035 and resumes execution. When the instruction at
line 040 is encountered, execution returns to line 048 and continues.

Advanced Programming 173

033 (n]
034 3
~> 1035 3 3. Execution re-
036 4 sumes here.

037 5

038 [3) (7Y
039 (n) 570

4. The subroutine
ends here.

1 When (B]is
pressed, execution
begins at line
041.

5. Execution trans-
fers back to first

2. Execution trans- |
ferred to line | _Y

035 by (Gse) (7]] line after
M. { and resumes.
o
°
[]
Like (GT0) (711 can be used to jump to a specific line of
program memory wrthout running your entire program. When you exe-
cute (GsB) (7] [1] from the keyboard using the absolute value of a

negative number in I as an occupied line address, the calculator jumps to
that line and begins execution. However, unlike the execution of
(GsB] (7] (1]in a running program, when a (RTN] is encountered, the
calculator returns to line 000 and halts.

Section 8

Finding the Roots of an Equation

In many applications you need to solve equations of the form

f(x)=0.%*
This means finding the values of x that
satisfy the equation. Each such value of x
is called a root of the equation f(x) = 0
and a zero of the function f(x). These
roots (or zeros) that are real numbers are
called real roots (or real zeros). For many
problems the roots of an equation can be
determined analytically through algebraic
manipulation; in many other instances,
this is not possible. Numerical techniques
can be used to estimate the roots when

| f(x)

analytical methods are not suitable. When you use the | key on
your HP-34C, you utilize an advanced numerical technique that lets
you effectively and conveniently find real roots for a wide range of

equations.
Using |
The basic rules for using VE| are:
1. Key in a subroutine that evaluates the function f(x) that is to be

equated to zero. This subroutine must begin with the instruction
(n) (tBy followed by 0, 1, 2, 3, (&), or (8], and must place
the value of f(x) into the X-register.

Key two initial estimates of the desired root, separated by (ENTER®],
into the X- and Y-registers. These estimates merely indicate to the
calculator the approximate range of x in which it should initially
seek a root off(x) =0

Press [1] [sowve followed by the label of your subroutine. The
calculator then searches for the desired zero of your function and

* Actually, any equation with one variable can be expressed in this form. For example,
f(x) =a is equivalent to f(x) —a = 0, and f(x) = g(x) is equivalent to f(x) — g(x) =

174

Finding the Roots of an Equation 175

displays the result. If the function that you are analyzing equals
zero at more than one value of x, the routine will stop when it finds
any one of those values. To find additional values, you can key in
different initial estimates and use again.

Immediately before uses your function subroutine, a value of x is
placed in the X-, Y-, Z-, and T-registers. This value is then used by your
subroutine to calculate f(x). Because the entire stack is filled with the x
value, this number is continually available to your subroutine. (The use
of this technique is described on page 76).

Example: Use [sovejto find the values of x for which
fx)=x2—3x—10=0.

Using Horner’s method (refer to page 79), you can rewrite f(x) so that it
is programmed more efficiently:

f(x) = (x — 3)x — 10.

Slide the PRGM-RUN switch to prem [[[[IMl and key in the following
subroutine that evaluates f(x).

Keystrokes Display

[f]CLEAR [prcm| 000- Clear program memory.

(m)ey0 001-25,13, 0 Begin with
instruction.

3 002- 3

= 003- 41

J 004- 61

1 005- 1
0 006- 0
= 007- 41
DG 008- 25 12

176 Finding the Roots of an Equation

Now slide the PRGM-RUN switch back to Prem [[HMl. Key two initial
estimates into the X- and Y-registers. Try estimates of 0 and 10 to look
for a positive root.

Keystrokes Display*
(1)0 (1)00000 } Initial estimates.

You can now find the desired root by pressing [f ve] 0. When you do
this, the calculator will not display the answer right away. The HP-34C
uses an iterative algorithmT to estimate the root. The algorithm analyzes
your function by sampling it many times, perhaps a dozen times or more.
It does this by repeatedly executing your subroutine. Finding a root will
usually require about 30 seconds to 2 minutes; but sometimes the process
will require even more time.

Press [=] 0 and sit back while your HP-34C exhibits one of its
powerful capabilities:

Keystrokes Display
e 0 5.0000 The desired root.

After the routine finds and displays the root, you can ensure that the
displayed number is indeed a root of f(x) = 0 by checking the stack. You
have seen that the displayed X-register contains the desired root. The
Y-register contains a previous estimate of the root, which should be very
close to the displayed root. The Z-register contains the value of your
function evaluated at the displayed root.

* Press 4 to obtain the displays in this section. The display setting does not
influence the operation of

+ An algorithm is a step-by-step procedure for solving a mathematical problem. An
iterative algorithm is one containing a portion that is executed a number of times in the
process of solving the problem.

Finding the Roots of an Equation 177

Keystrokes Display

5.0000 A previous estimate of the
root.

0.0000 Value of the function at the
root, showing that
f(x)=0.

Quadratic equations, such as the one you are solving, can have two roots.
If you specify two new initial estimates, you can check for a second root.
Try estimates of 0 and -10 to look for a negative root.

Keystrokes Display

(1)0 _‘1)0 } Initial estimates.

(1) (sowvg 0 -2.0000 The second root.

-2.0000 A previous estimate of the
root.

0.0000 Value of f(x) at second root.

You have now found the two roots of
f(x) = 0. Note that this quadratic equa-
tion could have been solved
algebraically—and you would have ob-
tained the same roots that you found

using 5017

Graph of f(x)

178 Finding the Roots of an Equation

The convenience and power of the [soLvelkey becomes more apparent
when you solve an equation for a root that cannot be determined
algebraically.

Example: Champion ridget hurler
Chuck Fahr throws a ridget with an
upward velocity of 50 meters/second.
If the height of the ridget is expressed as

h = 5000(1 — e~t/2%) — 200¢,

how long does it take for it to reach the
ground again? In this equation, & is the
height in meters and ¢ is the time in
seconds.

Solution: The desired solution is the positive value of ¢ at which
h=0.

Slide the PRGM-RUN switch to prem [[[[HBll and key in the following
subroutine that calculates the height.

Keystrokes Display

™ ® 001- 25, 13, 11 Begin with

instruction.

2 002- 2
0 003- 0

&= 004- 71

005- 32

006 - 15 1

CHS 007 - 32

1 008- 1

009~ 51
5 010- 5
0 011- 0
0 012- 0
0 013- 0

) 014- 61

x%Y 015- 21 Bring ¢ value into

X-register.

Finding the Roots of an Equation 179

Keystrokes Display

2 016- 2
0 017- 0
0 018- 0
(3] 019- 61
= 020- 41
™ 021- 25 12

Next, set the PRGM-RUN switch to [lMrw . Key in two initial
estimates of the time (for example, 5 and 6 seconds) and execute (SOLVE].

Keystrokes Display
2 2.0000 } Initial estimates.
) Y 9.2843 The desired root.

Verify the root by reviewing the Y- and Z-registers.

Keystrokes Display

9.2843 A previous estimate of the
root.

0.0000 Value of the function at the

root, showing that A = 0.

Fahr’s ridget falls to the ground 9.2843
seconds after he hurls it—a remarkable
toss.

]

| \

Graph of h versus t

180 Finding the Roots of an Equation
When No Root Is Found

You have seen how the (soLvelkey estimates and displays a root of an
equation of the form f(x) = 0. However, it is possible that an equation
has no real roots (that is, there is no real value of x for which the equality
is true). Of course, you would not expect the HP-34C to find a root in this
case. Instead, it displays Error 6.

Example: Consider the equation
x| =-1
which has no solution since the absolute

value function is never negative. Ex-
press this equation in the required form

Ix'+1=0

Graph of f(x) = x| + 1
and attempt to use (SoLve|to find a solu-

tion. With the PRGM-RUN switch set

to prom (MM, key in the required function subroutine.

Keystrokes Display

™ 1 001-25,13, 1 Begin subroutine with
instruction.

® 002- 25 34

1 003- 1

004- 51

™) (") 005- 25 12

Because the absolute-value function is minimum near an argument of
zero, specify the initial estimates in that region, for instance 1 and -1.
Then attempt to find a root. After setting the PRGM-RUN switch to

] o

Keystrokes Display

1 1.0000 } Iitial esti

1 -1. nitial estimates.

(] Error 6 This display indicates that

no root was found.

Finding the Roots of an Equation 181

As you can see, the HP-34C stopped seeking a root of f(x) = 0 when it
decided that none existed—at least not in the general range of x to which
it was initially directed. The Error 6 display does not indicate that an
‘“‘illegal’’ operation has been attempted; it merely states that no root was
found where [SOLVE] presumed one might exist (based on your initial
estimates).

If the HP-34C stops seeking a root and displays an error message, one of
these four types of conditions has occurred:

= Ifrepeated iterations all produce a constant non-zero value for the
specified function, execution stops with the display Error 6.

® If numerous samples indicate that the magnitude of the function
appears to have a nonzero minimum value in the area being
searched, execution stops with the display Error 6.

= If an improper argument is used in a mathematical operation as
part of your subroutine, execution stops with the display Error 0.

m If the result of any calculation has a magnitude greater than
9.999999999 X 10%, execution stops with all 9’s and the appro-
priate sign (or Error 1 in the case of register overflow) in the
display.

In the case of a constant function value, the routine can see no indica-
tion of a tendency for the value to move toward zero. This can occur for
a function whose 10 most significant digits are constant (such as when
its graph levels off at a nonzero horizontal asymptote) or for a function
with a relatively broad, local *‘flat’’ region in comparison to the range of
x values being tried.

In the case where the function’s magnitude reaches a nonzero minimum,
the routine has logically pursued a sequence of samples for which the
magnitude has been getting smaller. However, it has not found a value of
x at which the function’s graph touches or crosses the x-axis.

The two final cases point out a potential deficiency in the subroutine
rather than a limitation of the root-finding routine. Improper operations
may sometimes be avoided by specifying initial estimates that focus the
search in a region where such an outcome will not occur. However, the
[SoLvE routine is very aggressive and may sample the function over a

182 Finding the Roots of an Equation

wide range. It is a good practice to have your subroutine test or adjust
potentially improper arguments prior to performing an operation (for

numbers can also be helpful.

The success of the (SoLve|routine in locating a root depends primarily
upon the nature of the function it is analyzing and the initial estimates at
which it begins searching. The mere existence of a root does not ensure
that the casual use of the (soLvelkey will find it. If the functionf(x) has a
nonzero horizontal asymptote or a local minimum of its magnitude, the
routine can be expected to find a root of f(x) =0 only if the initial
estimates do not concentrate the search in one of these unproductive
regions—and, of course, if a root actually exists.

Choosing Initial Estimates

When you use (sowve| to find the root of an equation, the two initial
estimates that you provide determine the values of the variable x at which
the routine begins its search. In general, the likelihood that you will find
the particular root you are seeking increases with the level of under-
standing that you have about the function you are analyzing. Realistic,
intelligent estimates greatly facilitate the determination of a root.

The initial estimates that you use may be chosen in a number of ways:

If the variable x has a limited range in which it is conceptually meaning-
ful as a solution, it is reasonable to choose initial estimates within this
range. Frequently an equation that is applicable to a real problem has, in
addition to the desired solution, other roots that are physically meaning-
less. These usually occur because the equation being analyzed is appro-
priate only between certain limits of the variable. You should recognize
this restriction and interpret the results accordingly.

If you have some knowledge of the behavior of the function f(x) as it
varies with different values of x, you are in a position to specify initial
estimates in the general vicinity of a zero of the function. You can also
avoid the more troublesome ranges of x such as those producing a rela-
tively constant function value or a minimum of the function’s magnitude.

Finding the Roots of an Equation 183

Example: Using a rectangular piece of
sheet metal 4 decimeters by 8 deci-
meters, an open-top box having a vol-
ume of 7.5 cubic decimeters is to be
formed. How should the metal be
folded? (A tall box is preferred to a
short one.)

Solution: You need to find the height
of the box (that is, the amount to be
folded up along each of the four sides) that gives the specified volume.
If x is the height (or amount folded up), the length of the box is (8 — 2x)
and the width is (4 — 2x). The volume V is given by

V=8—-2x)4—2x)x.

By expanding the expression and then using Horner’s method (page 79),
this equation can be rewritten as

V =4((x — 6)x + 8)x.
To get V =17.5, find the values of x for which
fX)=4(x—-6)x+8x—-75=0.

Set the PRGM-RUN switch to pram [[[[Ill and key in the following
subroutine that calculates f(x).

Keystrokes Display
™) 3 001-25,13, 3 Begin with
instruction.

6 002- 6

=) 003- 41

B3] 004- 61

8 005- 8

006- 51

(3] 007- 61

4 008~ 4

B3] 009- 61

184 Finding the Roots of an Equation

Keystrokes Display

7 010- 7
-] 011- 73
5 012- 5
= 013- 41
™ 014- 25 12

It seems reasonable that either a tall, narrow box or a short, flat box
could be formed having the desired volume. Because the tall box is
preferred, larger initial estimates of the height are reasonable. How-
ever, heights greater than 2 decimeters are not physically possible
(because the metal is only 4 decimeters wide). Initial estimates of 1 and
2 decimeters are therefore appropriate.

Set the PRGM-RUN switch to IMII R and find the desired height.

Keystrokes Display

; ;‘0000 } Initial estimates.
() (sowve) 3 1.5000 The desired height.
) 1.5000 Previous estimate.
3] 0.0000 f(x) at root.

By making the height 1.5 decimeters, a
5.0 X 1.0 X 1.5-decimeter box is
specified.

If you ignore the upper limit on the
height and use initial estimates of 3 and 4
decimeters (still less than the width),
you will obtain a height of 4.2026
decimeters—a root that is physically
meaningless. If you use small initial
estimates such as 0 and 1 decimeter, you Graph of f(x)
will obtain a height of 0.2974 decimeter

—producing an undesirable short,

flat box.

Finding the Roots of an Equation 185

As an aid for examining the behavior of a function, you can easily evalu-
ate the function at one or more values ofx if your subroutine is in program
memory. To do this, key the value of x into the X-register, then press
(EnTER+] (ENTER] (ENTER®] to fill the stack. Calculate the value of the func-
tion by pressing (&), (8], or followed by your function label,
whichever is appropriate. The values you calculate can be plotted to give
you a graph of the function. This procedure is particularly useful for a
function whose behavior you do not know. A simple-looking function
may have a graph with relatively extreme variations that you might not
anticipate. A root that occurs near a localized variation may be hard to
find unless you specify initial estimates that are close to the root.

If you have no informed or intuitive concept of the nature of the function
or the location of the zero you are seeking, you can search for a solu-
tion using trial-and-error. The success of finding a solution depends
partially upon the function itself. Trial-and-error is often—but not
always—successful.

= If you specify two moderately large positive or negative estimates
and the function’s graph does not have a horizontal asymptote, the
routine will seek a zero which might be the most positive or
negative (unless the function oscillates many times, as the
trigonometric functions do).

s Ifyouhave already found a zero of the function, you can check for
another solution by specifying estimates that are relatively distant
from any known zeros.

= Many functions exhibit special behavior when their arguments
approach zero. You can check your function to determine values
of x for which any argument within your function becomes zero,
and then specify estimates at or near those values.

Although two different initial estimates are usually supplied when using
[SOLVE), you can also use £)with the same estimate in both the X- and
Y-registers. If the two estimates are identical, a second estimate is
generated internally. If your single estimate is nonzero, the second
estimate differs from your estimate by one count in the seventh signifi-
cant digit. If your estimate is zero, 1 X 1077 is used as the second
estimate. Then the root-finding procedure continues as it normally would
with two estimates.

186 Finding the Roots of an Equation
How Works

You will be able to use most effectively by having a basic
understanding of how the algorithm works.

In the process of searching for a zero of
the specified function, the algorithm
uses the value of the function at two or
three previous estimates to approximate
the shape of the function’s graph. The
algorithm uses this shape to intelligently
“‘predict”’ a new estimate where the
graph might cross the x-axis. The func-
tion subroutine is then executed, com-
puting the value of the function at the
new estimate. This procedure is performed repeatedly by the
algorithm.

If any two estimates yield function
values with opposite signs, the algo-
rithm presumes that the function’s graph
must cross the x-axis in at least one
place in the interval between these
estimates. The interval is systematically
narrowed until a root of the equation is
found.

A root is successfully found either if the
computed function value is equal to zero
or if two estimates, differing by less than two or three units in their
least-significant (tenth) digit, give function values having opposite
signs. In this case, execution stops and the estimate is displayed.

As discussed earlier (refer to page 180), the occurrence of other situa-
tions in the iteration process indicate the apparent absence of a function
zero. This is a result of there being no way to logically predict a new
estimate that is likely to have a function value closer to zero. In such
cases, Error 6 is displayed.

Finding the Roots of an Equation 187

You should note that the initial estimates you provide are used to begin
the “‘prediction’’ process. By permitting more accurate predictions than
might otherwise occur, properly chosen estimates greatly facilitate the
determination of the solution you seek.

The (soLveJalgorithm will always find a root provided one exists, if any
one of four conditions are met:

= Any two estimates have function
values with opposite signs.

The function is monotonic, mean-
ing that f(x) either always
decreases or else always increases
as x is increased.

188 Finding the Roots of an Equation

= The function’s graph is either
convex everywhere or concave
everywhere.

= The only local minimums and
maximums of the function’s
graph occur singly between
adjacent zeros of the function.

In addition, it is assumed that the [SOLvE| algorithm will not be inter-
rupted by an improper operation or overflow condition.

Accuracy of the Root

When you use the (SoLvelkey to find a root of an equation, the root is
found accurately. The displayed root either gives a calculated function
value (f(x)) exactly equal to zero or else is a 10-digit number virtually
adjacent to the place where the function’s graph crosses the x-axis. Any
such root has an accuracy within two or three units in the tenth significant
digit.

Finding the Roots of an Equation 189

In most situations the calculated root is an accurate estimate of the
theoretical (infinitely precise) root of the equation. However, certain
conditions can cause the finite accuracy of the calculator to give a result
that appears to be inconsistent with your theoretical expectation.

If a calculation has a result whose magnitude is smaller than
1.000000000 X 107%, the result is set equal to zero. This effect is
referred to as ‘‘underflow.’’ If the subroutine that calculates your func-
tion encounters underflow for a range of x and if this affects the value of
the function, then a root in this range may be expected to have some
inaccuracy. For example, the equation

xt=0
has a root at x = 0. Because of underflow, | produces a root of

1.5060 -25 (for initial estimates of 1 and 2). As another example,
consider the equation

1/x*=

whose root is infinite in value. Because of underflow, gives a root
of 3.1707 49 (for initial estimates of 10 and 20). In each of these
examples, the algorithm has found a value of x for which the calculated
function value equals zero. By understanding the effect of underflow,
you can readily interpret results such as these.

The accuracy of a computed value sometimes can be adversely affected
by *‘round-off’’ error, by which an infinitely precise number is rounded
to 10 significant digits. If your subroutine requires excessive precision
to properly calculate the function for a range of x, the result obtained by
Elmay be inaccurate. For example, the equation

|x2=5]=0

has arootatx = V5. Because no 10-digit number exactly equals \/E, the
result of using ve|is Error 6 (for any initial estimates) because the
function never equals zero nor changes sign. On the other hand, the
equation

[(|x] + 1)+ 101]2 = 10%

190 Finding the Roots of an Equation

has no roots because the left side of the equation is always greater than
the right side. However, because of round-off in the calculation of

f@y =[xl +1+107] =107,

the root 1.0000 is found for initial estimates of 1 and 2. By recognizing
situations in which round-off error may influence the operation of (soLve],
you can evaluate the results accordingly and perhaps rewrite the function
to reduce the effects of round-off.

In a variety of practical applications, the parameters in an equation—or
perhaps the equation itself—are merely approximations. Physical para-
meters have an inherent accuracy (or inaccuracy). Mathematical repre-
sentations of physical processes are only models of those processes,
accurate only to the extent that the underlying assumptions are true. An
awareness of these and other inaccuracies can be used to your advantage.
By structuring your subroutine to return a function value of zero when the
calculated value is negligible for practical purposes, you can usually save
considerable time in finding a root with E]—particularly for cases
that would normally take a long time.

Example: Ridget hurlers such as Chuck Fahr can throw a ridget to
heights of 105 meters and more. In fact, Fahr’s hurls usually reach a
height of 107 meters. How long does it take for his remarkable toss,
described on page 178, to reach 107 meters?

Solution: The desired solution is the value of ¢t at which A = 107. The
subroutine from the earlier example calculates the height of the ridget.
This subroutine can be used in a new function subroutine to calculate

f@t)="h()— 107.

Slide the PRGM-RUN switch to Prem [[[[Ill and key in a subroutine
that calculates f(z).

Keystrokes Display
™ 001-25,13,12 Begin with

instruction.

® 002- 13 11 Calculates h(z).

Finding the Roots of an Equation

Keystrokes Display

1 003 - 1
0 004- 0
7 005- 7
=) 006- 41
® 007- 25 12

191

Calculates h(¢) — 107.

Now slide the PRGM-RUN switch to IMMIM#u . In order to find the
first time at which the height is 107 meters, use initial estimates of 0 and

1 second.

Keystrokes Display

0 0.0000 }
1 1.

4.1718

@ 4.1718

@ 0.0000

Initial estimates.

The desired root.

A previous estimate of the
root.

Value of f(¢) at root.

It takes 4.1718 seconds for the ridget to reach a height of exactly 107
meters. (It takes approximately one minute to find this solution.)

However, suppose you assume that the function 4(#) is accurate only to
the nearest whole meter. You can now change your subroutine to give
f(t) =0 whenever the calculated magnitude of f(¢) is less than 0.5
meter. Slide the PRGM-RUN switch to rrem [[[[Hll and key in the

following changes to your subroutine:

Keystrokes Display

2006 006 - 41

(»] (aes) 007- 25 34
008- 73
009- 5
010- 14 51
011- 34
012- 15 61
013- 25 0

Line before

instruction.
Magnitude of f(¢).

} Accuracy.

} Return zero if accuracy >

magnitude.

} Restore f(¢) if value is
nonzero.

192 Finding the Roots of an Equation

Slide the PRGM-RUN switchto [} ruv and execute [SOLVE| again.
Keystrokes Display
0 (EnTERY) 0.0000
1 1 } Initial estimates.
4.0681 The desired root.
4.0681 A previous estimate of the
root.
(9 0.0000 Value of modified f(z) at
root.

After 4.0681 seconds, the ridget is at a height of 107 =0.5 meters. This
solution, although different from the previous answer, is correct con-
sidering the uncertainty of the height equation. (And this solution is
found in just under half the time of the earlier solution.)

Interpreting Results

The numbers that (SoLve|places in the X-, Y-, and Z-registers help you
evaluate the results of the search for a root of your equation.* Even when
no root is found, the results are still significant.

When (soLvelfinds a root of the specified -
equation, the root and function values f(x)
are placed in the X- and Z-registers. A ‘

function value of zero is the expected : @
result. However, a nonzero function i

value is also acceptable because it indi- \ /
cates that the function’s graph appar- X
ently crosses the x-axis within an
infinitesimal distance from the calcu-
lated root. In most such cases, the
function value will be relatively close to zero.

* The number in the T-register is the same number that was left in the Y-register by the
final execution of your function subroutine. Generally, this number is not of interest.

Finding the Roots of an Equation

Special consideration is required for a
different type of situation in which
[sowve)finds a root with a nonzero func-
tion value. If your function’s graph has a
discontinuity that crosses the x-axis,
specifies as a root an x value
adjacent to the discontinuity. This is
reasonable because a large change in the
function value between two adjacent
values of x might be the result of a very

193

rapid, continuous transition. Because this cannot be resolved by the

algorithm, the root is displayed for you to interpret.

A function may have a pole, where its
value approaches infinity. If the function
value changes sign at a pole, the corre-
sponding value of x looks like a possible
root of your equation, just as it would for
any other discontinuity crossing the x-
axis. However, for such functions, the
function value placed into the Z-register
when that root is found will be relatively
large. If the pole occurs at a value of x

that is exactly represented with 10 digits, the subroutine may try that
value and halt prematurely with an error or overflow indication. In this
case, the [soveoperation will not be completed. Of course, this may be
avoided by the prudent use of a conditional statement in your subroutine.

194 Finding the Roots of an Equation

Example: In her analysis of the stresses
in a structural component, design con-
sultant Lucy 1. Beame has determined
that the shear stress can be expressed as

Q= { 3x3—45x>+350 for 0<x<10
1000 for 10sx <14

where Q is the shear stress in newtons
and x is the distance from one end in meters. Write a subroutine to com-

zero shear stress.

Solution: The equation for the shear stress for x between 0 and 10 is
more efficiently programmed after rewriting it using Horner’s method:

0 = (Bx — 45)x2 + 350 for 0<x<10.

Slide the PRGM-RUN switch to prov [[[IM and key in the subroutine:

Keystrokes Display

[f] CLEAR [(preM] 000- Clear program memory.

™) 2 001-25,13, 2 Begin with
instruction.

1 002- 1

0 003- 0 ; Test for x range.

1)) 004- 14 41

G10] 9 005- 22 9 Branch for x=10.

006 - 34

3 007 - 3

(E3) 008 - 61

4 009- 4

5 010- 5

= 011- 41

= 012- 61

(B3] 013- 61

3 014- 3

5 015- 5

0 016- 0

Finding the Roots of an Equation 195

Keystrokes Display

017- 51
M) 018- 25 12
M (ey9 019- 25,13, 9
(EEX] 020- 33
3 021- 3
) (&N 022- 25 12

Now slide the PRGM-RUN switch to M7 . Use initial estimates
of 7 and 14 to start at the outer end of the beam and search for a point of
zero shear stress.

Keystrokes Display

Z4 :;’0000 } Initial estimates.
K3 2 10.0000 Possible root.
1,000.0000 Stress not zero.

The large stress value at the root points out that the [(SoLvEJroutine has
found a discontinuity. This is a place on the beam where the stress
quickly changes from negative to positive. Start at the other end of the
beam (estimates of 0 and 7) and use [SOLVE| again.

Keystrokes Display

(7) l;.OOOO } Initial estimates.
(1) (sowvg) 2 3.1358 Possible root.
2.0000 -07 Negligible stress.

Beame’s beam has zero shear stress at
approximately 3.1358 meters and an
abrupt change of stress at 10.0000
meters.

Graph of Q versus x

196 Finding the Roots of an Equation

When no root is found and Error 6 is displayed, you can press any key to
clear the display and observe the estimate at which the function was
closest to zero. By also reviewing the numbers in the Y- and Z-registers,
you can often determine the nature of the function near the root estimate
and use this information constructively.

If the algorithm terminates its search
near a local minimum of the function’s
magnitude, clear the Error 6 display and
observe the numbers in the X-, Y-, and
Z-registers by rolling down the stack. If
the value of the function saved in the Z-
register is relatively close to zero, it is
possible that a root of your equation has
been found—the number returned in the
X-register may be a 10-digit number
very close to a theoretical root. You can explore this potential minimum
further by rolling the stack until the returned estimates are back in the
X- and Y-registers and then executing [SOLvE]again using these numbers
as initial estimates. If an actual minimum has been found, Error 6 will
again be displayed and the number in the X-register will be approxi-
mately the same as before, but possibly closer to the actual location of
the minimum.

Of course, you may deliberately use [SoLvejto find the location of a local
minimum of the function’s magnitude. However, in this case you must
be careful to confine the search in the region of the minimum. Remem-
ber, [SoLve|tries hard to find a zero of the function.

If the algorithm stops searching and
displays Error 6 because it is working on
a horizontal asymptote (when the value
of the function is essentially constant for
a large range of x), the estimates in the
X- and Y-registers usually are signifi-
cantly different from each other. The
number in the Z-register is the value of
the potential asymptote. If you execute
[soLveJagain using as initial estimates the
numbers that were returned in the X- and Y-registers, a horizontal

Finding the Roots of an Equation 197

asymptote may again cause Error 6, but with numbers in the X- and
Y-registers that will differ from the previous numbers. The value of the
function in the Z-register would then be the same as that obtained
previously.

If Error 6 is displayed as a result of a
search that is concentrated in a local
““flat’” region of the function, the esti-
mates in the X- and Y-registers will be
relatively close together or extremely
small. Execute [SOLVE] again using for
initial estimates the numbers from the
X- and Y-registers (or perhaps two
numbers somewhat further apart). If the
magnitude of the function is not a mini-
mum nor constant, the algorithm will eventually expand its search and
find a more significant result.

Example: Investigate the behavior of the function

o 1A

fx)=3+¢ [XN0_ opx

First set the PRGM-RUN switch to prem [[[[Ill and key in the following
subroutine to calculate f(x).

Keystrokes Display

™) [eyo 0071-25,13, 0 Begin with
instruction.

(»]) (aes) 002- 25 34

003- 32

004- 15 1

005- 21 Bring x value into
X-register.

=3 006- 15 3

B3] 007- 61

008- 15 1

2 009- 2

B3 010- 61

(2]
I
[

011- 32

198 Finding the Roots of an Equation

Keystrokes Display
012- 21 Bring x value into
X-register.

™ 013- 25 34

014- 32

1 015- 1

0 016- 0

017- 71

018- 15 1

019- 51

3 020- 3

021- 51

(v] (rN) 022- 25 12

Slide the PRGM-RUN switch to Il rov and use [S0LVe] with the
following single initial estimates: 10, 1, and 10-2°.

Keystrokes Display

10 10.0000 Single estimate.

(1) (sowvg0 Error 6

455.4335 Best x value.

48,026,721.85 Previous value.

@ 1.0000 Function value.

(1] (rY) (1] (RY) 455.4335 Restore the stack.

(] [sovgo Error 6

48,026,721.85 Another x value.

@ 1.0000 Same function value (an
asymptote).

1 1.0000 Single estimate.

() (sovg)0 Error 6

2.1213 Best x value.

2.1471 Previous value.

0.3788 Function value.

1) (ry) (1) 2.1213 Restore the stack.

(1] [sowvg)0 Error 6

2.1213 Same x value.

@ 0.3788 Same function value (a

minimum).

Finding the Roots of an Equation

Keystrokes Display
(€Ex] (cHs) 20 1.0000 -20
K3 0 Error 6
1.0000 -20
1.1250 -20
2.0000

(1] 1.0000 -20
(sovgl0 Error 6
1.1250 -20
1.5626 -16
2.0000

In each of the three cases, [SOLVE]ini-
tially searched for a root in a direction
suggested by the graph around the initial
estimate. Using 10 as the initial esti-
mate, found the horizontal
asymptote (value of 1.0000). Using 1 as
the initial estimate, a minimum of
0.3788 at x =2.1213 was found.
Using 1072° as the initial estimate, the
function was essentially constant (at a
value of 2.0000) for the small range of
x that was sampled.

Using (sowvelin a Program

Single Estimate.

Best x value.
Previous value.
Function value.
Restore the stack.

Another x value.
Previous value.
Same function value.

199

You can use the [SoLvEJoperation as part of a program. Be sure that the
program provides initial estimates in the X- and Y-registers just prior to
the [soLveJoperation. The [(SoLve|routine stops with a value of x in the
X-register and the corresponding function value in the Z-register. If the
x value is a root (as explained on page 192), the program proceeds to
the next line. If the x value isn’t a root (as explained on page 196), the
next line is skipped. Essentially, the (soLve)instruction tests whether the x
value is a root and then proceeds according to the ‘DO IF TRUE"” rule.
The program can then handle the case of not finding a root, such as by

choosing new initial estimates or changing a function parameter.

200 Finding the Roots of an Equation

The use of [(soLvelas an instruction in a program utilizes one of the six
pending returns in the calculator. Since the subroutine called by
utilizes another return, there can be only four other pendmg returns.
Executed from the keyboard, on the other hand, |
utilize one of the pending returns, so that five pendmg returns are avail-
able for subroutines within the subroutine called by (soLve]. Remember
that if all six pending returns have been utilized, a call to another sub-
routine will result in a display of Error 8. (Refer to page 135).

Restriction on the Use of

The one restriction regarding the use of Elcannot be
used recursively. That is, you cannot use E]in a subroutine that is
called during the execution of If this situation occurs, execution
stops and Error 5 is displayed.

It is possible, however, to use [soLvel with [/3], thereby using the
advanced capabilities of both of these keys. An example of a combined

application is given in appendix A.

For Further Information

In appendix A, Advanced Use of [soLve], additional techniques and
applications for using E|are presented These include:

Using |

with polynomials.
= Finding several roots.
Finding local extremes of a function.

= Limiting the estimation time.

Section 9

Numerical Integration

Many problems in mathematics, sci-
ence, and engineering require calculat-
ing the definite integral of a function. If
the function is denoted by f(x) and the
interval of integration isa to b, the integ-
ral can be expressed mathematically as

I =fabf(x) dx.

The quantity / can be interpreted geometrically as the area of a region
bounded by the graph of f(x), the x-axis, and the limitsx = aq andx = b.*
When an integral is difficult or impossible to evaluate by analytical
methods, it can be calculated using numerical techniques. In the past,
this could be done only with a fairly complicated computer program.
With your HP-34C, however, you can easily do numerical integration
using the (integrate) key.

Using

The basic rules for using are:

1. Key in a subroutine that evaluates the function f(x) that you want
to integrate. This subroutine must begin with the instruction

™ followed by 0, 1, 2, 3, (&), or , and must place the
value of f(x) in the X-register.

2. Key the lower limit of integration (a) into the displayed X-register,
then press to lift it into the Y-register.

3. Key the upper limit of integration (b) into the X-register.
4. Press [f] followed by the label of your subroutine.

* Provided that f(x) is nonnegative throughout the interval of integration.

202

Numerical Integration 203

Example: Certain problems in physics and engineering require calcu-
lating Bessel functions. The Bessel function of the first kind of order 0
can be expressed as

m

Jo (x) - f cos (x sin) df.
T 0

Find Jo (1) =L f cos (sin) df.
m 0

First, slide the PRGM-RUN switch to prov [l and key in the follow-
ing subroutine that evaluates the function f(6) = cos (sin 6).

Keystrokes Display

[fJCLEAR [PrRGM] 000- Clear program memory.

(m)(eyo 001-25,13, 0 Begin subroutine with a
(ted] instruction. Sub-
routine assumes a value
of 0 is in X-register.

K3 002- 14 7 Calculate sin 6.

003- 14 8 Calculate cos (sin 6).

™ Emw) 004- 25 12

Now, slide the PRGM-RUN switch back to I ruN | and key the
lower limit of integration into the Y-register and the upper limit into the
X-register. For this particular problem, you also need to specify radians
mode for the trigonometric functions.

Keystrokes Display

0 0.0000 Key lower limit, 0, into
Y-register.

@ 3.1416 Key upper limit, 7, into
X-register.

(g] 3.1416 Specify radians mode for

trigonometric functions.

204 Numerical Integration

Now you are ready to press [f] (/3] 0 to calculate the integral. When you
do so, you’ll find that—just as with [sOLvE|l—the calculator will not
display the result right away, as it does with other operations. Your
HP-34C calculates integrals using a sophisticated iterative algorithm.
Briefly, this algorithm evaluates f(x), the function to be integrated, at
many values of x between the limits of integration. At each of these
values, the calculator evaluates the function by executing the subroutine
you write for that purpose. You may recall that some of the programs and
subroutines you executed earlier in this handbook required several
seconds to yield an answer. This may not seem too long, but when the
calculator must execute the subroutine many times—as it does when you
press [/3]—you can’t expect an answer right away. Most integrals will
require on the order of 30 seconds to 2 minutes; but some integrals will
require even more. Later on we’ll discuss how you can decrease the
time somewhat; but for now, press [(/3] 0 and take a break (or read
ahead) while your HP-34C takes care of the drudgery for you.

Keystrokes Display
ARG 2.4040 =f0 cos (sin 0) d6.
In general, don’t forget to multiply the value of the integral by whatever

constants, if any, are outside the integral. In this particular problem, we
need to multiply the integral by 1/7 to get J, (1):

Keystrokes Display
D& 3.1416
B 0.7652 Jo(1).

Before calling the subroutine that evaluates f(x), the (/3] algorithm—
Justlike the [soLvelalgorithm—places the value of x in the X-, Y-, Z-, and
T-registers. Because every stack register contains the x value, your
subroutine can calculate with this number without having to recall it from
a storage register. The subroutines in the next two examples take advan-
tage of this feature. (A polynomial evaluation technique that assumes the
stack is filled with the value of x is discussed on page 79.)

Numerical Integration 205

Note: Since the calculator puts the value of x into all the stack
registers, any numbers previously there will be replaced by x.
Therefore, if the stack contains intermediate results that you'll
need after you calculate an integral, store those numbers in
storage registers and recall them later.

Occasionally you may want to use the subroutine that you
wrote for the (/) operation to merely evaluate the function at
some value of x. If you do so with a function that gets x from
the stack more than once, be sure to fill the stack manually with
the value of x, by pressing (enTers) (ENTER+) (ENTER4) , before you
execute the subroutine.

Example: The Bessel function of the first kind of order 1 can be
expressed as

1 ks
Ji (x)=—f cos (6 — x sin 6) d6.
o Jo

Find Jy (1) =—1—f cos (0 — sin 6)d6.
T Yo

First, slide the PRGM-RUN switch to prem [[[[HEll and key in the follow-
ing subroutine that evaluates the function f(6) = cos (# — sin).

Keystrokes Display

™) 1 001-25,13, 1 Begin subroutine with a
instruction.

&N 002- 14 7 Calculate sin 6.

&= 003- 41 Since a value of 6 will be

placed into the Y-register by

the (/3] algorithm before it

executes this subroutine, the

(=] operation at this point

will calculate (6 — sin 6).
(f] (cos] 004- 14 8 Calculate cos (6 — sin 6).
™ E™N 005- 25 12

206 Numerical Integration

Now, slide the PRGM-RUN switch back to Il ruv | and key the
limits of integration into the X- and Y-registers. Ensure that the trigono-
metric mode is set to radians, then press (] (/3] 1 to calculate the inte-
gral. Finally, multiply the integral by 1/ to calculate J,(1).

Keystrokes Display
0 0.0000
™ @ 3.1416
3.1416
@ 1 1.3825
MM E 0.4401

Example: Certain problems in com-
munications theory (for example,
pulse transmission through idealized
networks) require calculating an
integral (sometimes called the sine
integral) of the form

t .
Si(1) = fo L .

Find Si (2).

Key lower limit into
Y-register.

Key upper limit into
X-register.

Ensure that trigonometric
mode is set to radians. (This
step is not necessary if you
have not switched your
calculator off nor reset the
trigonometric mode since
you last set it to radians.)

=fo cos (6 — sin 6) d6.
J:(1).

Numerical Integration 207

First, slide the PRGM-RUN switch to prom [l and key in the follow-
ing subroutine that evaluates the function f(x) = (sin x)/x.*

Keystrokes Display

™ 2 001-25,13, 2 Begin subroutine with a
instruction.

002- 14 7 Calculate sin x.

003- 21 Since a value of x will be
placed in the Y-register by
the algorithm before it
executes this subroutine, the
operation at this point
will return x to the X-
register and move sin x to
the Y-register.

= 004- 71 Divide sin x by x.

M) (rN) 005- 25 12

Now, slide the PRGM-RUN switch back to Il rov | and key the
limits of integration into the X- and Y-registers. Ensure that the trigono-
metric mode is set to radians, then press [f] (/3] 2 to calculate the
integral.

* If the calculator attempted to evaluate f(x) = (sin x)/x at x = 0, the lower limit of
integration, it would terminate with Error 0 in the display (signifying an attempt to divide by
zero), and the integral could not be calculated. However, the [/3] algorithm normally does
not evaluate functions at either limit of integration, so the calculator can calculate the
integral of a function that is undefined there. Only when the endpoints of the interval of
integration are extremely close together, or the number of sample points is extremely large,
does the algorithm evaluate the function at the limits of integration.

208 Numerical Integration

Keystrokes Display

0 0.0000 Key lower limit into
Y-register.

2 2, Key upper limit into
X-register.

2.0000 Ensure that trigonometric

mode is set to radians. (This

step is not necessary if you

have not switched your

calculator off nor reset the

trigonometric mode since

you last set it to radians.)
1.6054 Si (2).

Accuracy of |

The accuracy of the integral of any function depends on the accuracy of
the function itself. Therefore, the accuracy of an integral calculated using
s limited by the accuracy of the function calculated by your subrou-
tine.* To specify the accuracy of the function, set the display format so
that the display shows no more than the number of digits that you con-
sider accurate in the function’s values. If you specify fewer digits, the
calculator will compute the integral more quickly;¥ but it will presume
that the function is accurate to only the number of digits specified in the
display format. We’ll show you how you can determine the accuracy of
the calculated integral after we say another word about the display
format.

* It is possible that integrals of functions with certain characteristics (such as spikes or very
rapid oscillations) might be calculated inaccurately. However, this possibility is very small.
The general characteristics of functions that could cause problems, as well as techniques for
dealing with them, are discussed in appendix B.

t The accuracy of a calculated function depends on such considerations as the accuracy of
empirical constants in the function as well as round-off error in the calculations. These
considerations are discussed in more detail in appendix B.

t The reason for this is discussed in appendix B.

Numerical Integration 209

You’ll recall that your HP 34C provides three types of display format-
ting: [Fix], |, and | . Which display format should be used is
largely a matter Of convemence since for many integrals you’ll get about
the same results using any of them (provided that the number of digits is
specified correctly, considering the magnitude of the function). Because
it’s more convenient to use [sci]display format when calculating most
integrals, we’ll use when calculating integrals in examples
throughout the rest of this handbook.

Note: Remember that once you have set the display format
to (sci, (Fix]), you can change the number of
digits appearing in the display by storing a number in the I-
register and then pressing (] (psp1), as described in section
7. This capability is especially useful when [/3)is executed as
part of a program, and is essential in a particular situation
described in appendix B under Calculating Integrals of Max-
imum Accuracy.

Because the accuracy of any integral is limited by the accuracy of the
function (as indicated in the display format), the calculator cannot com-
pute the value of an integral exactly, but rather only approximates it.
Your HP-34C places the uncertainty* of an integral’s approximation in
the Y-register at the same time it places the approximation in the X-
register. To determine the accuracy of an approximation, check its
uncertainty by pressing .

* No algorithm for numerical integration can compute the exact difference between its
approximation and the actual integral. But the algorithm in your HP-34C computes an
“‘upper bound”’ on this difference, which is the uncertainty of the approximation. For
example, if the integral Si(2) is 1.6054 * 0.0001, the approximation to the integral is
1.6054 and its uncertainty is 0.0001. This means that while we don’t know the exact differ-
ence between the actual integral and its approximation, we do know that the difference is
no bigger than 0.0001.

210 Numerical Integration

Example: With the display format set to 2, calculate the integral
in the expression for J;(1) (from the example on page 205).

Keystrokes Display

0 0.0000 Key lower limit into
Y-register.

(DI]E3] 3.1416 Key upper limit into
X-register.

3.1416 Ensure that trigonometric
mode is set to radians. (This
step is not necessary if you
have not switched your cal-
culator off nor reset the
trigonometric mode since
you last set it to radians.)

() (scy 2 3.14 00 Set display format to
Een2.

R 1.38 00 Integral approximated in
EEn2.

1.88 -03 Uncertainty of (sci]2
approximation.

The integral is 1.38 = 0.00188. Since the uncertainty would not affect
the approximation until its third decimal place, you can consider all the
displayed digits in this approximation to be accurate. In general, though,
it is difficult to anticipate how many digits in an approximation will be
unaffected by its uncertainty. This depends on the particular function
being integrated, the limits of integration, and the display format.

If the uncertainty of an approximation is larger than what you choose to
tolerate, you can decrease it by specifying a greater number of digits in
the display format and repeating the approximation.*

* Provided that f(x) is still calculated accurately to the number of digits shown in
the display.

Numerical Integration 211

Whenever you want to repeat an approximation, your HP-34C can save
you the trouble of keying the limits of integration back into the X- and Y-
registers. After an integral is calculated, not only are the approximation
and its uncertainty placed in the X- and Y-registers, but in addition the
upper limit of integration is placed in the Z-register, and the lower limit
is placed in the T-register. To return the limits to the X- and Y-registers

for calculating an integral again, simply press .

Example: For the integral in the expression for J,(1), you want an
answer accurate to four decimal places instead of only two.

Keystrokes Display

K3} 4 1.8826 -03 Setdisplay formatto [SCi4.

3.1416 00 Roll down stack until upper
limit appears in X-register.

(7] 1 1.3825 00 Integral approximated in
G 4.

X%y 1.7091 -05 Uncertainty of (sci]4
approximation.

The uncertainty indicates that this approximation is accurate to at least
four decimal places. Note that the uncertainty of the [SCi]4 approxima-
tion is about one-hundredth as large as the uncertainty of the (sci]2
approximation. In general, the uncertainty of any (/3] approximation
decreases by about a factor of 10 for each additional digit specified in
the display format.

In the preceding example, the uncertainty indicated that the approxima-
tion might be correct to only four decimal places. If we temporarily
display all 10 digits of the approximation, however, and compare it to the
actual value of the integral (actually, an approximation known to be
accurate to a sufficient number of decimal places), we find that the
approximation is actually more accurate than its uncertainty indicates.

Keystrokes Display

1.3825 00 Return approximation to
display.

(n]) (manT) 1382459676 All 10 digits of approxi-

mation.

212 Numerical Integration

The value of this integral, correct to eight decimal places, is 1.38245969.
The calculator’s approximation is accurate to seven decimal places rather
than only four. In fact, since the uncertainty of an approximation is cal-
culated very conservatively, the calculator’s approximation in most
cases will be more accurate than its uncertainty indicates. However,
normally there is no way to determine just how accurate an approxima-
tion is; we know only that the difference between it and the actual integral
is no bigger than the number in the Y-register.

We’ll take a more detailed look at the accuracy and uncertainty of [/5
approximations in appendix B.

Using (/3] in a Program

(/3] can appear as an instruction in a program provided that the program
is not called (as a subroutine) by itself. In other words, (/3]
used recursively. Consequently, you cannot use (/3] to calculate

€3]

multiple integrals; if you attempt to do so, the calculator will halt with
Error 5 in the display. However, (/3] can appear as an instruction in a
subroutine called by . An example of doing so will be shown at
the end of appendix A.

The use of (/3] as an instruction in a program utilizes one of the six
pending returns in the calculator. Since the subroutine called by (/3]
utilizes another return, there can be only four other pending returns.
Executed from the keyboard, on the other hand, (/3] itself does not
utilize one of the pending returns, so that five pending returns are avail-
able for subroutines within the subroutine called by (/3]. Remember that
if all six pending returns have been utilized, a call to another subroutine
will result in a display of Error 8. (Refer to page 135).

Numerical Integration 213
For Further Information

This section has given you the information you need to use (/3] with
confidence over a wide range of applications. In appendix B, A More
Detailed Look at /3], we will discuss more esoteric aspects of (/3
These include:

m How (/3] works.

= Accuracy, uncertainty, and calculation time.

® Accuracy of the function to be integrated.

s Uncertainty and the display format.

® Calculating integrals of maximum accuracy.

= Obtaining the current approximation to an integral.
Considerations that could cause incorrect results.

= Considerations that prolong calculation time.

Appendix A

Advanced Use of

Section 8 includes the basic information needed for the effective use of
the (s algorithm. This appendix presents more advanced, supple-
mental considerations regarding |:

Using | With Polynomials

In many practical applications, functions known as polynomials are
useful for representing physical processes or more complex mathemat-
ical functions. Polynomials are easily understood and can be structured
to have a wide range of mathematical characteristics.

A polynomial of degree n can be represented as
apx" +ap x"'+ ... ta; x + a,.

This function has at most n real values for which the function equals
zero. A limit to the number of positive zeros of this function can be
determined by counting the number of times the signs of the coeffi-
cients change as you scan the polynomial from left to right. Similarly, a
limit to the number of negative zeros can be determined by scanning a
new function obtained by substituting —x in place of x in the original
polynomial. If the actual number of real positive or negative zeros is less
than its limit, it will differ by an even number. (These relationships are
known as Descartes’ Rule of Signs.)

As an example, consider the third-degree polynomial function
f(x) =x%—3x2— 6x + 8.

It can have no more than three real zeros. It has at most two positive
real zeros (observe the sign changes from the first to second. and third
to fourth terms) and one negative real zero (obtained from f(-x) = -x3
-3x% + 6x + 8).

214

Advanced Use of 215

Polynomial functions are best programmed by rewriting them in a
slightly different form that uses nested multiplication. This is sometimes
referred to as Horner’s method. As an illustration, the function from the
previous example can be rewritten as

flx) = [(x - 3 - 6]x+ 8.

This representation is more easily programmed and more efficiently
executed than the original form, especially since the stack contains the
value of x in all four registers. (This technique is described on page 79.)

Example: During the winter of ’78, Arctic explorer Jean-Claude
Coulerre, isolated at his frozen camp in the far north, began scanning
the southern horizon in anticipation of the sun’s reappearance. Coulerre
knew that the sun would not be visible to him until early March, when it
reached a declination of 5° 18’S. On what day and time in March was the
chilly explorer’s vigil rewarded?

Solution: The time in March when the sun reached 5° 18'S declination
can be computed by solving the following equation for ¢:

D = au* + ast® + axt* + ayt + a,

where D is the declination in degrees, ¢ is the time in days, and

ays= 4.2725 X 1078
as; = -1.9931 X 1073
a, = 1.0229 x 1073
a; = 3.7680 X 107!
a, = -8.1806.

This equation is valid for 1<t <32, representing March, 1978.

First convert 5° 18'S to decimal degrees by pressing 5.18 (=H)
and obtaining -5.3000 (using (7ix)4 display mode). (Southern latitudes

are expressed as negative numbers for calculation purposes.)

216 Advanced Use of

The solution to Coulerre’s problem is the value of ¢ satisfying
-5.3000 = a,t* + a3 + a.t? + at + a,.

Expressed in the form required by (s the equation is

0 = autt + ast® + ast?> + a;t — 2.8806

where the last, constant term now incorporates the value of the declina-
tion.

Using Horner’s method, the function to be set equal to zero is
f(t) = (((ast + az)t + ax)t + ay)t — 2.8806.

To shorten the subroutine, store and recall the constants using the regis-
ters corresponding to the exponent of . Slide the PRGM-RUN switch to
rraM[[[[HM and key in the subroutine:

Keystrokes Display

(1] AR [PrGM) 000- Clear program memory.

(03] @ 001- 25,13, 11 Begins with
instruction.

4 002- 24 4

(B3] 003- 61

3 004- 24 3

005- 51

(E3] 006 - 61

2 007- 24 2

008 - 51

[E3] 009- 61

1 010- 24 1

011- 51

(B3] 012- 61

0 013- 24 0

014- 51

8

015- 25 12

Advanced Use of 217

Now set the PRGM-RUN switch to [ll[[Mruv and key in the five coef-
ficients:

Keystrokes Display *

4.2725 (€1 8 42725 -08

4 4.2725 -08 Coefficient of #*.
1.9931 (EEx)

5 3 -1.9931 -05 Coefficient of 3.
1.0229 (EEx)(CAs)3 1.0229 -03

2 0.0010 Coefficient of #2.
3.7680 (EEx) 1 37680 -01

1 0.3768 Coefficient of r.
2.8806 0 -2.8806 Constant term.

Because the desired solution should be between 1 and 32, key in these
two values for initial estimates. Then use g to find the root.

Keystrokes Display

! 1.0000 } Initial estimates.

32 32.

[sowvel (&) 7.5137 Root found.

E)) 7.5137 Same previous estimate.

9 0.0000 Function value.
R¢) 7.5137 Restore stack.

The day was March 7th. Convert the fractional portion of the number to
decimal hours and then to hours, minutes, and seconds.

Keystrokes Display

(v (Frac) 0.5137 Fractional portion of day.
24 [x) 12.3293 Decimal hours.

() (snms) 12.1945 Hours, minutes, seconds.

* Press (1) (F1x] 4 to obtain the display settings in this appendix.

218 Advanced Use of

Explorer Coulerre saw the sun on March 7th at 12" 19™ 458 (Coordinated
Universal Time).

By examining Coulerre’s function f(¢), you realize that it can have as
many as four real roots—three positive and one negative. Try to find

Keystrokes Display
1000 1100 1,100. Two larger, positive
estimates.
(7] [sowvel (&) Error 6 No root found.
278.4497 Last estimate tried.
[ED) 276.7942 A previous estimate.
@ 7.8948 Non-zero value of function.
0 Ry (1) RY 278.4497 Restore stack to original
state.
Error 6 Again, no root found.
278.4398 Approximately same
estimate.
278.4497 A previous estimate.
7.8948 Same function value.

You have found a positive local minimum rather than a root. Now try to
find the negative root.

Keystrokes Display

1000 -1,000.0000 Two larger, negative
1100 -1,100. } estimates.

(1] [sc @ -108.9441 Negative root.

9 -108.9441 Same previous estimate.
1.6000 -08 Function value.

Advanced Use of 219

There is no need to search further—you
have found all possible roots. The nega-
tive root has no meaning since it is out-
side of the range for which the declina-
tion approximation is valid. The graph
of the function confirms the results you
have found.

Graph of f(t)

Finding Several Roots

Many equations that you encounter have more than one root. For this
reason, you will find it helpful to understand some techniques for finding
several roots of an equation.

The simplest method for finding several roots is to direct the root search
in different ranges of x where roots may exist. Your initial estimates
specify the range that is initially searched. This method is used through-
out section 8, Finding the Roots of an Equation. You can often find the
roots of an equation in this manner.

A more advanced method is know as deflation. This technique is useful
when the function in an equation has characteristics that make it difficult
for (sowvelto find all of the roots. Deflation is a method by which roots
are ‘‘eliminated’’ from an equation. This involves modifying the equa-
tion so that the first roots found are no longer roots, but the rest of the
roots remain roots.

If a function f(x) has a value of zero at x = a, then the new function

f(x)
(x—a)
of f(x) = 0). You can use this information to eliminate a known
root. Simply add a few program lines at the end of your function sub-
routine. These lines should subtract the known root (to 10 significant
digits) from the x value and divide this difference into the function
value. In many cases the root will be a simple one, and the new function
will direct (soLvelaway from the known root.

will not approach zero in this region (if @ is a simple root

220 Advanced Use of

On the other hand, the root may be amultiple root. A multiple root is one
that appears to be present repeatedly, in the following sense: at such a
root, not only does the graph of f(x) cross the x -axis, but its slope (and
perhaps the next few higher-order derivatives) is equal to zero. If the
known root of your equation is a multiple root, the root is not eliminated
by merely dividing by the factor described above. For example, the
equation

f&)=x(x—-a)P®=0

has a multiple root at x = a (with a multiplicity of 3). This root is not
eliminated by dividingf(x) by (x —a). But it can be eliminated by divid-
ing by (x —a)3.

Example: Use deflation to help find the roots of
60x* — 944x3 + 3003x% + 6171x — 2890 = 0.
Using Horner’s method, this equation can be rewritten in the form
(((60x — 944)x + 3003)x + 6171)x — 2890 = 0.

Slide the PRGM-RUN switch to erom [[[Jl] - Key in a subroutine to
evaluate the polynomial.

Keystrokes Display

® 2 001- 25,13, 2
6 002- 6
003-
004- 6
005-
006-
007-
008- 4
009- 6
o10-
011-
012-
013-

~ A dhoO=oO

WOoOow

Keystrokes

DG

Advanced Use of 221

Display

014- 51
015- 61
016- 6
017- 1
018- 7
019- 1
020- 51
021- 61
022 - 2
023- 8
024- 9
025- 0
026- 41
027 - 25 12

Slide the PRGM-RUN switch to [l[Mruv . Key in two large, negative

initial estimates (such as —10 and -20) and use (s

negative root.

Keystrokes

10
20(cs)

vejto find the most

Display

-10.0000 .. .

-20 } Initial estimates.

-1.6667 First root.

-1.6667 Store root for deflation.
4.0000 -06 Function value near zero.

Slide the PRGM-RUN switch to prem[[[[lll- Add instructions to your
subroutine to eliminate the root just found.

Keystrokes
(-] 026

(re] O
=
J

Display

026- 41 Line before
instruction.

027 - 21 Bring x into X-register.

Divide by (x — a), where a

029- 41 .
is known root.

028- 24 0
030- 71

222 Advanced Use of

Now slide the PRGM-RUN switch to [f[[MJrun - Use the same initial
estimates to find the next root.

Keystrokes Display
-10.
10 _zg 0000 } Same initial estimates.
0.4000 Second root.
0.4000 Store root for deflation.
£ 0.0000 Deflated function value.

With the PRGM-RUN switch set to erem[[[[Jiilf - modify your sub-
routine to eliminate the second root.

Keystrokes Display

(-J030 030- 71 Line before
instruction.

031- 21 Bring x into X-register.

1 032- 24 1

= 033- 41 } Deflation for second root.

=] 034- 71

Slide the PRGM-RUN switch to BE[Jrun . Again, use the same initial
estimates to find the next root.

Keystrokes Display
10 -10.0000 . .
-20 Same initial estimates.
8.4999 Third root.
8.4999 Store root for deflation.

-1.0929 =07 Deflated function value near
Z€er0.

Advanced Use of 223

With the PRGM-RUN switch set to prem]Il , change your subrou-
tine to eliminate the third root.

Keystrokes Display

] 034 034- 71 Line before
instruction.

035- 21 Bring x into X-register.

2 036- 24 2

= 037- a1 Deflation for third root.

= 038- 71

Slide the PRGM-RUN switch to [Jl[Jruv and find the fourth root.

Keystrokes Display

10 [ENTER] -10.0000 .

20 - _zg 0 } Same initial estimates.

K3 2 8.5001 Fourth root.

3 8.5001 Store root for reference.
-0.0009 Deflated function value near

Z€10.

Using the same initial estimates each
time, you have found four roots for
this equation involving a fourth-degree
polynomial. However, the last two roots
are quite close to each other, and are
actually one root (with a multiplicity of
2). That is why the root was not elim-
inated when you tried deflation once at
this root. (Round-off error causes the
original function to have small positive Graph of f(x)
and negative values for values of x

between 8.4999 and 8.5001; forx = 8.5

the function is exactly zero.)

224 Advanced Use of

In general, you will not know in advance the multiplicity of the root you
are trying to eliminate. If, after you have attempted to eliminate a root,
Lvelfinds that same root again, you can proceed in a number of ways:

Use different initial estimates with the deflated function in an
attempt to search for a different root.

= Use deflation again in an attempt to eliminate a multiple root. If
you do not know the multiplicty of the root, you may need to
repeat this a number of times.

= Examine the behavior of the deflated function atx values near the
known root. If the function’s calculated values cross the x -axis
smoothly, either another root or a greater multiplicity is indicated.

= Analyze the original function algebraically. It may be possible to
determine its behavior for x values near the known root. (A
Taylor series representation, for example, may indicate the multi-
plicity of a root.)

Finding Local Extremes of a Function

Using the Derivative

The traditional way to find local maximums and minimums of a func-
tion’s graph uses the derivative of the function. The derivative is a
function that describes the slope of the graph. Values of x at which the
derivative is zero represent potential local extremes of the function.
(Although less common for well-behaved functions, values of x where
the derivative is infinite or undefined are also possible extremes.) If you
can express the derivative of a function in closed form, you can use [SoLVE]
to find where the derivative is zero—showing where the function may be
maximum or minimum.

Advanced Use of 225

Example: For the design of a vertical
broadcasting tower, radio engineer Ann
Tenor wants to find the angle from the
tower at which the relative field intensity
is most negative. The relative intensity
created by the tower is given by

cos(2mh cos 0) — cos(2mh)
[1 = cos@2mh)] sin 6

E =

where E is the relative field intensity, 4 is the antenna height in wave-
lengths, and @ is the angle from vertical in radians. The height is 0.6
wavelengths for her design.

Solution: The desired angle is one at which the derivative of the inten-
sity with respect to 6 is zero.

To save program memory space and execution time, store the following
constants in registers and recall them as needed:

RO =2mh and is stored in register Ry,
R1=cos(2mh) and is stored in register Ry,
R2= 1/[1—cos(2wh)] and is stored in register R,.

The derivative of the intensity E with respect to the angle 6 is given by

dE . cos(RO cos) —R1
——=R2|RO RO 0) — .
do [sin(RO cos 6) sin 6 tan 6]

226 Advanced Use of

Slide the PRGM-RUN switch to rrem[[[[lll and key in a subroutine to
calculate the derivative.

Keystrokes Display
(1) CLEAR (prcw) 000~
(®) ey O 001-25,13, 0
(1) (Cos) 002- 14 8
(ReL) 0 003- 24 0
004- 61
005- 14 8
006- 24 1
007- 41
008- 21
009- 14 7
010- 71
011- 21
012- 14 9
= 013- 71
014- 32
xxY 015- 21
(1) (Cos) 016- 14 8
Ry 0 017- 24 0
B 018- 61
M GN) 019- 14 7
(Rel) 0 020- 24 0
B 021- 61
022- 51
RCL] 2 023- 24 2
Q) 024- 61
™ EWN 025- 25 12

Now slide the PRGM-RUN switch to [Jll[[[Jruv . In radian mode, calcu-
late and store the three constants.

Keystrokes Display

(9] 0.0000 Specify radian mode.
(Assumes display has been

cleared.)

Advanced Use of

Keystrokes Display
A DI ES 6.2832
6 X 0 3.7699
M 1 -0.8090
(crg) 1 1.8090
™ 2 0.5528

227

Constant RO.
Constant R 1.

Constant R 2.

The relative field intensity is maximum at an angle of 90° (perpendicular
to the tower). To find the minimum, use angles closer to zero as initial
estimates, such as the radian equivalents of 10° and 60°.

Keystrokes Display

10 (g 0.1745

60 1.0472

(1) (sowg 0 0.4899

=) -5.5279 -10
M 0.4899

M 28.0680

The relative field intensity is most nega-
tive at an angle of 28.0680° from verti-
cal.

Using an Approximate Slope

The derivative of a function can also be
approximated numerically. If you sam-
ple a function at two points relatively
close tox (namely x +A and x —A), you
can calculate an average slope of the
function’s graph

g = FOHB) —f(x—A)
2A '

} Initial estimates.

Angle giving zero slope.
Slope at specified angle.
Restore the stack.
Angle in degrees.

A

Graph of dE/d9 Versus 6

228 Advanced Use of

The accuracy of this approximation depends upon the increment A and
the nature of the function. Smaller values of A give better approxima-
tions to the derivative, but excessively small values can cause round-off
inaccuracy. A value of x at which the slope is zero is potentially a local
extreme of the function.

Example: Solve the previous example without using the equation for
the derivative dE/d 6.

Solution: Find the angle at which the derivative (determined numeri-
cally) of the intensity E is zero.

Slide the PRGM-RUN switch to prem[[[[lll and key in two subrou-
tines: one to estimate the derivative of the intensity and one to evaluate
the intensity function E. In the following subroutine, the slope is calcu-
lated between 6 + 0.001 and € — 0.001 radians (a range equivalent to
approximately 0.1°).

Keystrokes Display

™ (0 (&) 001- 25, 13, 11
(Eex) 002- 33)
003- 32

3 004- 3 1 Evaluate £ at 6 + 0.001.
005- 51
006 - 31
007- 13 12
X2y 008- 21
(EEx) 009- 33)
010- 32

3 011- 3\ Evaluate E at § — 0.001.
=) 012- 41 (
013- 31
014- 13 12
B 015- 41

2 016- 2
(Eex) 017- 33
018- 32

3 019- 3
) 020- 71
(M (RN 021- 25 12

Advanced Use of 229

Keystrokes Display
® 022- 25, 13, 12
(1) (Cos) 023- 14 8
(RS0 0 024- 24 0
= 025- 61
[Cos) 026- 14 8
1 027- 24 1
028- 41
029- 21
0 5N 030- 14 7
B 031- 71
(ReL) 2 032- 24 2
Q) 033- 61
™ E) 034- 25 12

Slide the PRGM-RUN switch to [ll[Irun . In the previous example,
the calculator was set to radian mode and the three constants were stored
in registers 0, 1, and 2. Key in the same initial estimates as before and

execute .

Keystrokes Display
10 (9] 0.1745 } Initial estimates.
60 (9] 1.0472
(1] (sowe (&) 0.4899 Angle giving zero slope.
(9 £ 0.0000 Slope at specified angle.
(DRI D Ry 0.4899 Restore the stack.
-0.2043 Use function subroutine to
calculate minimum inten-
sity.
0.4899 Recall 6 value.
(D) 28.0679 Angle in degrees.

This numerical approximation of the derivative indicates a minimum
field intensity of —0.2043 at an angle of 28.0679°. (This angle differs
from the previous solution by 0.0001°.)

230 Advanced Use of

Using Repeated Estimation

A third technique is useful when it is not
practical to calculate the derivative. It is
a slower method because it requires the
repeated use of the [soivelkey. On the
other hand, you do not have to find a
good value for A of the previous method.
To find a local extreme of the function
f(x), define a new function

glx) =f(x) —e

where e is a number slightly beyond the
estimated extreme value of f(x). If e is
properly chosen, g(x) will approach
zero near the extreme of f (x) but will not
equal zero. Use [soLve|to analyze g (x)
near the extreme. The desired result is
Error 6.

m If Error 6 is displayed the number in the X-register is an x value
near the extreme. The number in the Z-register tells roughly how
far e is from the extreme value of f(x). Revise e to bring it closer
(but not equal) to the extreme value. Then use to examine
the revised g (x) near the x value previously found. Repeat this
procedure until successive x values do not differ significantly.

m If aroot of g (x) is found, either the number e is nor beyond the
extreme value of f(x) or else [soLve|has found a different region
where f(x) equals e. Revise e so that it is close to—but beyond—
the extreme value of f(x) and try again. It may also be
possible to modify g (x) in order to eliminate the distant root.

Advanced Use of 231

Example: Solve the previous example without calculating the deriva-
tive of the relative field intensity E.

Solution: The subroutine to calculate E and the required constants have
been entered in the previous examples.

Slide the PRGM-RUN switch to rrem[[[[JJilj- Key in a subroutine
which subtracts an estimated extreme number from the field intensity E.
The extreme number should be stored in a register so that it can be man-
ually changed as needed.

Keystrokes Display
(03} 1 001-25,13, 1 Begin with
' instruction.
002- 13 12 Calculate E.
9 003- 24 9 } Subtract extreme estimate.
=] 004- 41
(h]) (RTN) 005- 25 12

Slide the PRGM-RUN switch to [[ll[[[ruv . Estimate the minimum
intensity value by manually sampling the function.

Keystrokes Display

10 (9) 0.1745

-0.1029

30 (9) 0.5236 Sample the function at
-0.2028 10°, 30°, 50°, ...

50 (9] 0.8727

0.0405

232 Advanced Use of

Based on these samples, try using an extreme estimate of -0.25 and

initial (soLve] estimates (in radians) near 10° and 30°.
Keystrokes Display
.25 9 -0.2500 Store extreme estimate.
0.2000 } Initial esti
0.6 nitial estimates.
Error 6 No root found.
0.4849 Store 0 estimate.
5 0.4698 Store previous 6 estimate.
0.0457 Distance from extreme.
9 X 0.0411 } lljevgl(s)e extreerﬁle fe:}tllmate
9 0.0411 y >0 percent of the
distance.
4 0.4849 Recall 6 estimate.
-0.2043 Calculate intensity E.
oo el ot 0t
3 0.4698 in Y-register.
f] (sowe 1 Error 6 No root found.
0.4898 6 estimate.
0.4893 Previous 6 estimate.
0.4898 Recall 0 estimate.
-0.2043 Calculate intensity E.
0.4898 Recall 6 value.
(f) (0 28.0660 Angle in degrees.

The second iteration produces two € estimates that differ in the fourth
decimal place. The field intensities E for the two iterations are equal
to four decimal places. Stopping at this point, a minimum field intensity
of -0.2043 is indicated at an angle of 28.0660°. (This angle differs from
the previous solutions by about 0.002°.)

Limiting the Estimation Time

Occasionally, you may desire to limit the time used by [soive to find a
root. You can use two possible techniques to do this—counting iterations
and specifying a tolerance.

Advanced Use of 233

Counting lterations

While searching for aroot, [soLve] typically samples your function at least
a dozen times. Occasionally, [soLve] may need to sample it one hundred
times or more. (However, [sowve) will always stop by itself.) Because
your function subroutine is executed once for each estimate that is tried, it
can count and limit the number of iterations. An easy way to do this is
with an (1sG) instruction to accumulate the number of iterations in the
I-register. If you store an appropriate number in the I-register before
using sowve , your subroutine can interrupt the [sive) algorithm when

the limit is exceeded. The (isg) instruction is discussed on page 141.)

Specifying a Tolerance

You can shorten the time required to find a root by specifying a tolerable
inaccuracy for your function. Your subroutine should return a function
value of zero if the calculated function value is less than the specified
tolerance. This tolerance that you specify should correspond to a value
that is negligible for practical purposes or should correspond to the
accuracy of the computation. This technique eliminates the time required
to define the estimate more accurately than is justified by the problem.
(Example of this method are given on page 190 and below.)

Using [sowve) With (73

Example: For a phase-modulated radio signal, the amplitude of the
carrier signal is proportional to J,(x), the zero-order Bessel function of
the first kind, where x is the modulation index. What is the smallest
modulation index at which the carrier signal is suppressed (that is, its
amplitude is zero)?

Solution: The desired index is the smallest value of x for which

Jo(x) ZL Lﬂ_smold0=0.

You can use [solve)to determine this value. The function Jo(x) must
be calculated by using [73).

234 Advanced Use of

The approximation of Jy(x) calculated by [/3]has an uncertainty that is
returned in the Y-register. Whenever the magmtude of Jo(x) is less than
this uncertainty, Jo(x) can be considered to be zero. By using this
technique, you can prevent [soive| from seeking unreasonable accuracy.

Slide the PRGM-RUN switch to prom [[[[Jlll . Key in a subroutine that
calculates Jy(x) and a subroutine that calculates the function to be
integrated.

Keystrokes Display
) 000- Clear program memory.
™) @) 001-25,13,11 Begin with
instruction.

0 002- 23 0 Store argument x.
0 003- 0 . . :
®&E 004- 25 73 } Limits of integration.
KAl 005- 14,72, 3 Calculate Jy(x).
(n] (aBS) 006- 25 34 Magnitude of Jy(x).
(1) (¥<¥) 007- 14 41 } Return zero if

oLx) 008- 34 Jo(x) < uncertainty.
D) 009- 15 61 } Restore Jy(x) if value
(n])(LsTx) 070- 25 0) is nonzero.
(Y] 011- 25 12
(n) (e 3 012- 25,13, 3)

i ‘ 013- 14 7
(’Rem) 0 014- 24 0
[E3] 015- 61 \ Calculate function

(co 016- 14 8 ([to be integrated.

Mm@ 017- 25 73
= 018- 71
M EN 019- 25 12 J

In order to shorten the time to find the desired root, initially specify

|0 display mode for the integration. After an approximate solution
has been found specify a greater integration accuracy (by using (5¢13).
Then let [so1ve) home in on the root using the more accurate function.
This procedure eliminates the need to integrate with great accuracy for
values of x not near the root, saving considerable time.

Advanced Use of 235

Slide the PRGM-RUN switch to [ll[Mrun and perform the following
steps. Keep in mind that (sorve|samples your function many times and
that (/3] often requires up to a minute or more to evaluate an integral. For
these reasons the [5o1ve|executions that follow take about 3 and 6 minutes
to be completed.

Keystrokes Display

(7)(sci] O 0. 00 Specify the

- accuracy.
(Assumes that the display
has been cleared.)

0 00

0 0 00 Initial estimates to

1 1. } search near 0.

(7) (2, 00 Desired root.

7] | 3 2.480 00 Specify greater
accuracy.

2.4 2.400 00 } Initial estimates near

2.5 2.5 first approximation.

() [soLve 2.405 00 Desired root.

(M) 4 2.4049 View in (777 4 format.

£l 0.0000 Jo(x) is less than
uncertainty.

@ 0.0001 Uncertainty from

A modulation index of 2.4049 causes the carrier signal amplitude to be
suppressed by at least 99.99%. (That is, its amplitude is less than 0.0001
of maximum.)

Appendix B

A More Detailed Look at

Section 9 presented the basic information you need to use (73] know-
ledgeably in most applications. This appendix discusses more esoteric
aspects of (/3] that may be of interest to you if you use (/3] often.

How (/7] Works

The [/3)algorithm calculates the integral of a function f(x) by computing
a weighted average of the function’s values at many values of x (known
as sample points) within the interval of integration. The accuracy of the
result of any such sampling process depends on the number of sample
points considered: the more sample points, the greater the accuracy. If
f(x) could be evaluated at an infinite number of sample points, the
algorithm could—neglecting the limitation imposed by the inaccuracy
in the calculated function f(x)—provide an exact answer.

Evaluating the function at an infinite number of sample points would
take a very long time (namely, forever). Fortunately, this is not neces-
sary, since the maximum accuracy of the calculated integral is limited by
the accuracy of the calculated function values. Using only a finite num-
ber of sample points, the algorithm can calculate an integral that is as
accurate as is justified considering the inherent uncertainty in f(x).

The (/7] algorithm at first considers only a few sample points, yielding
relatively inaccurate approximations. If these approximations are not
yet as accurate as the accuracy of f(x) would permit, the algorithm is
iterated (that is, repeated) with a larger number of sample points. These
iterations continue, using about twice as many sample points each time,
until the resulting approximation is as accurate as is justified considering
the inherent uncertainty in f(x).

The uncertainty of the final approximation is a number derived from the
display format, which indicates the uncertainty in the function.* At the
end of each iteration, the algorithm compares the approximation calcu-
lated during that iteration with the approximations calculated during two

* The relationship between the display format, the uncertainty in the function, and the
uncertainty in the approximation to its integral are discussed later in this appendix.

236

A More Detailed Look at 237

previous iterations. If the difference between any of these three approxi-
mations and the other two is less than the uncertainty of the final approx-
imation, the algorithm terminates, placing the current approximation in
the X-register and its uncertainty in the Y-register.

The algorithm is designed so that it is extremely unlikely that the
error in each of three successive approximations—that is, the differences
between the actual integral and the approximations—would all be less
than the disparity among the approximations themselves. Consequently,
the error in the final approximation will be less than its uncertainty.*
Although we can’t know the error in the final approximation, we can
be very confident that the error is less than the displayed uncertainty of
the approximation. Thus, the uncertainty of the approximation is an
“‘upper bound’’ on the difference between the approximation and the
actual integral.

Accuracy, Uncertainty, and Calculation Time

The accuracy of an (/5]approximation does not always change when you
increase by just one the number of digits specified in the display format.
Similarly, the time required to calculate an integral sometimes changes
when you change the display format, but sometimes does not.
Example: The Bessel function of the first kind of order four can be
expressed as

Ji(x) = LJ‘ cos (46 — xsin6) do.
T 0

Calculate the integral in the expression for J4(1),

Lf cos (46 —sin6) d6.
T 0

* Provided thatf(x) is sufficiently smooth, a consideration we will discuss in more detail later
in this appendix.

238 A More Detailed Look at

First, slide the PRGM-RUN switch to prem[[[[lll, and key in a sub-
routine that evaluates the function f(0) = cos (46 — sin 6).

Keystrokes
sl
4

B3]
S
olcn

P

Display

000-
001-25,13, 0
002- 4
003- 61
004- 21
005- 14 7
006- 41
007 - 14 8
008- 25 12

Now, slide the PRGM-RUN switch back to [ll[Mruv, and key the
limits of integration into the X- and Y-registers. Ensure that the trigo-
nometric mode is set to radians, and set the display format to 2.
0 to calculate the integral.

Finally, press (7] |

Keystrokes
0

=

x%)

Display
0.0000

3.1416

3.1416

3.14 00
7.79 -03

1.45 -03

Key lower limit into
Y-register.
Key upper limit into
X-register.
Ensure that trigonometric
mode is set to radians. (This
step is not necessary if you
have not switched your cal-
culator off nor reset the
trigonometric mode since
you last set it to radians.)
Set display format to

c1)2.
Integral approximated in

Uncertainty of (sci)2
approximation.

A More Detailed Look at 239

The uncertainty indicates that the displayed digits of the approximation
might not include any digits that could be considered accurate. Actually,
just like the last approximation in section 9, this approximation is more
accurate than its uncertainty indicates.

Keystrokes Display

x%Y 7.79 -03 Return approximation to
display.

(n) (maNT] 7785820888 All 10 digits of 2
approximation.

The actual value of this integral, correct to five significant digits, is
7.7805 X 1073. Therefore, the error in this approximation is about
(7.7858 — 7.7805) x 1073 = 5.3 x 107%. This error is considerably less
than the uncertainty, 1.45 X 1073. The uncertainty is only an upper
bound on the error in the approximation; the actual error will generally
be smaller.

Now let’s calculate the integral in [5c1)3 and compare the accuracy of the

resulting approximation to that of the 1]2 approximation.

Keystrokes Display

(1) 3 7.786 -03 Change display format to
(sci)3.

9 @ 3.142 00 Roll down stack until upper
limit appears in X-register.

| 0 7.786 -03 Integral approximated in

X%y 1.448 -04 Uncertainty of (5¢7]3
approximation.

xzy 7.786 -03 Return approximation to
display.

() (manT) 7785820888 All 10 digits of |3

approximation.

240 A More Detailed Look at

All 10 digits of the approximations in (sci) 2 and in (sci) 3 are identi-
cal: the accuracy of the approximation in [sci] 3 is no better than the
than the uncertainty in [5¢1)2. Why is this? Remember that the accuracy
of any approximation depends primarily on the number of sample points
at which the function f(x) has been evaluated. The (/3] algorithm is
iterated with increasing numbers of sample points until the disparity
among three successive approximations is less than the uncertainty,
which is a number derived from the display format. After a particular
iteration, the disparity among the approximations may already be so
much less than the uncertainty that it would still be less if the uncertainty
were decreased by a factor of 10. In such cases, if you decreased the
uncertainty by specifying one more digit in the display format, the algo-
rithm would not have to consider additional sample points, and the result-
ing approximation would be identical to the approximation calculated
with the larger uncertainty.

If you calculated the two preceding approximations on your calculator,
you may have noticed that it took just as long to calculate the integral in
(sci]3asin [sci]2. This is because the time to calculate the integral of a
given function depends on the number of sample points at which the
function must be evaluated to achieve an approximation of acceptable

consider more sample points that it did in (sci] 2, so it did not take any
longer to calculate the integral.

Often, however, increasing the number of digits in the display format
will require evaluating the function at additional sample points, so that
calculating the integral will take more time. Let’s now calculate the same
integral in (sci)4:

Keystrokes Display

4 7.7858 -03 Change display format to
(sc) 4.

@ @ 3.1416 00 Roll down stack until upper
limit appears in X-register.

0 7.7807 -03 Integral approximated in

(scn 4.

A More Detailed Look at 241

This approximation took about twice as long as the approximation in
(sci)3 or (sci] 2. In this case, the algorithm had to evaluate the function
at about twice as many sample points as before in order to achieve an
approximation of acceptable accuracy. Note, however, that we received
a reward for our patience: the accuracy of this approximation is better,
by almost two digits, than the accuracy of the approximation calculated
using half the number of sample points.

The preceding examples show that repeating the approximation of an
integral in a different display format sometimes will give you a more
accurate answer, but sometimes it will not. Whether or not the accuracy
is changed depends on the particular function, and generally can be
determined only by trying it.

Furthermore, if you do get a more accurate answer, it will come at the
cost of about double the calculation time. This unavoidable trade-off
between accuracy and time is important to keep in mind if you are con-
sidering decreasing the uncertainty in hopes of obtaining a more accurate
answer.

Note: The time required to calculate the integral of a given
function depends not only on the number of digits specified in
the display format, but also, to a certain extent, on the limits
of integration. When the calculation of an integral requires an
excessive amount of time, the width of the interval of integra-
tion (that is, the difference of the limits) may be too large
compared with certain features of the function being inte-
grated. For most problems, however, you need not be con-
cerned about the effects of the limits of integration on the
calculation time. These considerations, together with exam-
ples where the limits may be unduly prolonging the calcula-
tion time as well as techniques for dealing with such
situations, will be discussed later in this appendix.

Accuracy of the Function to be Integrated

The accuracy of an integral calculated using /3] depends on the accuracy
of the function calculated by your subroutine. This accuracy, which you
specify using the display format, depends primarily on three consider-
ations:

1. The accuracy of empirical constants in the function.

242 A More Detailed Look at

2. The degree to which the function may accurately describe a
physical situation.

3. The extent of round-off error in the internal calculations of the
calculator.

Functions Related to Physical Situations

The functions we’ve integrated so far in section 9 and this appendix—
cos (sin), cos (8 — sin @), cos (46 — sin), and (sin x)/x—are exam-
ples of pure mathematical functions. In this context, this means that
the functions do not contain any empirical constants, and neither the
variables nor the limits of integration represent actual physical quantities.
For such functions, you can specify as many digits as you want in the
display format (up to nine) to achieve the desired degree of accuracy in
the integral.* All you need to consider is the trade-off between the
accuracy and calculation time.

There are additional considerations, however, when you’re integrating
functions relating to an actual physical situation. Basically, with such
functions you should ask yourself whether the accuracy you would like
in the integral is justified by the accuracy in the function. For example,
if the function contains empirical constants that are specified to only,
say, three significant digits, it might not make sense to specify more than
three digits in the display format.

Another important consideration—and one which is more subtle and
therefore more easily overlooked—is that nearly every function relating
to a physical situation is inherently inaccurate to a certain degree,
because it is only a mathematical model of an actual process or event. A
mathematical model is itself an approximation that ignores the effects of
known or unknown factors which are insignificant to the degree that the
results are still useful.

An example of a mathematical model is the normal distribution function

dx,

J‘ t e~ (x— w2a*
- oVimw

* Provided that f(x) is still calculated accurately, despite round-off error, to the number of
digits shown in the display.

A More Detailed Look at 243

which has been found to be useful in deriving information concerning
physical measurements on living organisms, product dimensions,
average temperatures, etc. A similar mathematical model is

%

_ G —y¥4Dt
- \ mDt x/Z\/ﬁe dy’

C

which is a particular solution of the diffusion equation for semiconduc-
tors. Such mathematical descriptions typically are either derived from
theoretical considerations or inferred from experimental data. To be
practically useful, they are constructed with certain assumptions, such
as ignoring the effects of relatively insignificant factors. For example,
the accuracy of results obtained using the normal distribution function as
amodel of the distribution of certain quantities depends on the size of the
population being studied. The accuracy of results obtained using the
solution to the diffusion equation ignores quantum effects. And the
accuracy of results obtained from the equation s = s, — Y% g¢%, which
gives the height of a falling body, ignores the variation with altitude of g,
the acceleration of gravity.

Thus, mathematical descriptions of the physical world can provide
results of only limited accuracy. If numerical results of the model are
needed to only, say, three significant digits, the effects of many factors
and assumptions can be ignored. On the other hand, such factors and
assumptions might, if they could be included in a more precise mathe-
matical description—which would still be only a model—affect the
digits in the fifth and succeeding decimal places. If you calculated an
integral with an apparent accuracy beyond that with which the model
describes the actual behavior of the process or event, you would not be
justified in using the calculated value to the full apparent accuracy.

Round-Off Error in Internal Calculations

With any computational device—including your HP-34C—calculated
results must be ‘‘rounded off’’ to a finite number of digits (10 digits in
your HP-34C). Because of this round-off error, calculated results—
especially results of evaluating a function that contains several mathe-
matical operations—may not be accurate to all 10 digits that can be
displayed. Note that round-off error affects the evaluation of any mathe-
matical expression, not just the evaluation of a function to be integrated
using |/3].

244 A More Detailed Look at (73)

If f(x) is a function relating to a physical situation, its inaccuracy due to
round-off typically is insignificant compared to the inaccuracy due to
empirical constants, etc. Iff(x) is what we have called a pure mathemat-
ical function, its accuracy is limited only by round-off error. Generally,
it would require a complicated analysis to determine precisely how many
digits of a calculated function might be affected by round-off. In prac-
tice, its effects are typically (and adequately) determined through exper-
ience rather than analysis.

In certain situations round-off error can cause peculiar results, particu-
larly if you should compare the results of calculating integrals that are
equivalent mathematically but differ by a transformation of variables.
Describing such situations—which you are unlikely to encounter in
typical applications—is beyond the scope of this handbook.

Uncertainty and the Display Format

Because of round-off error, the subroutine you write for evaluating
f(x) cannot calculate f(x) exactly, but rather calculates

Fo) = f(x) £ 8,(x),

where 8;(x) is the uncertainty of f(x) caused by round-off error.

If f(x) relates to a physical situation, then the function you would like to
integrate is not f(x) but rather

F(x) = f(x) % 8y(x),

where 8,(x) is the uncertainty associated with f(x) that is caused by the
approximation to the actual physical situation.

Since f(x) =j‘(x) * 8,(x), the function you want to integrate is

F(x) =F(x) = 8,(x) = 8,(x)
or F(x) =f(x) = 8(x),

where 8(x) is the net uncertainty associated withf(x).

A More Detailed Look at 245

Therefore, the integral you want is

b b
fa F(x) dx=fa [F0) = 8(x)] dx

=fabf(x) dx tLb 8(x) dx
=]xA

b
where [is the approximation to| F(x) dx and A is the uncertainty
a

associated with the approximation. The [/3]algorithm places the number
I in the X-register and the number A in the Y-register.

The uncertainty 6(x) of f(x), the function calculated by your subroutine,
is determined as follows. Suppose you consider three significant digits of
the function’s values to be accurate, so you set the display format to [sci]
2. The display would then show only the accurate digits in the mantlssa of
a function’s values: for example, 1.23 -04.

Since the display format rounds the number in the X-register to the
number displayed, this implies that the uncertainty in the function’s
values is £0.005 X 10~ = 0.5 X 1072 X 10~* = £0.5 X 1076. Thus,
setting the display format to (Sci) (ENG]n, where n is an integer,
implies that the uncertainty in the function’s values is

8(x) = 0.5 x 10™ x 10m®

= 0.5 x 107"me

In this formula, n is the number of digits specified in the display format
and m (x) is the exponent of the function’s value atx that would appear if
the value were displayed in (sci]display format.

The uncertainty is proportional to the factor 10™*, which represents the
magnitude of the function’s value at x. Therefore, (sci]and [enc) dis-
play formats imply an uncertainty in the function that is relative to the
function’s magnitude.

246 A More Detailed Look at

Similarly, if a function value is displayed in n, the rounding of the
display implies that the uncertainty in the function’s values is

8(x)=0.5x10™.

Since this uncertainty is independent of the function’s magnitude,
display format implies an uncertainty that is absolute.

Each time the (/3] algorithm samples the function at a value of x, it also
derives a sample of 8(x), the uncertainty of the function’s value atx. This
is calculated using the number of digits » currently specified in the dis-
play format and (if the display format is set to [SCi]or [ENG]) the mag-
nitude m (x) of the function’s value at x. The number A, the uncertainty
of the approximation to the desired integral, is the integral of & (x):

b
A =fa 8(x) dx
b
=fa [0.5%x 107"+ ™)] dx.

This integral is calculated using the samples of 8(x) in roughly the same
way that the approximation to the integral of the function is calculated
using the samples of f(x).

Because A is proportional to the factor 10", the uncertainty of an approx-
imation changes by about a factor of 10 for each digit spec1ﬁed in the
display format. This will generally not be exact in [SC1] c) display
format, however, because changing the number of digits speafled may
require that the function be evaluated at different sample points, so that
8 (x) ~ 10™* would have different values.

Note that when an integral is approximated in [Fix] display format,
m(x) = 0 and so the calculated uncertainty in the approximation turns

out to be

A =0.5% 10™(b — a).

A More Detailed Look at 247

Normally you do not have to determine precisely the uncertainty in the
function. (To do so would frequently require a very complicated analy-
sis.) Generally, it’s more convenient to use (Scijor [ENG]display format
if the uncertainty in the function’s values can be more easily estimated as
a relative uncertainty. On the other hand, it’s more convenient to use
[Fix] display format if the uncertainty in the function’s values can be
more easily estimated as an absolute uncertainty. (Fix]display format
may be inappropriate to use (leading to peculiar results) when you are
integrating a function whose magnitude and uncertainty have extremely
small values throughout the interval of integration, or a function whose
magnitude and uncertainty vary through extremely large and small
values within the interval of integration. Likewise, [sci]display format
may be inappropriate to use (also leading to peculiar results) if the mag-
nitude of the function becomes much smaller than its uncertainty. If the
results of calculating an integral seem strange, it may be more appropri-
ate to calculate the integral in the alternate display format.

Calculating Integrals of Maximum Accuracy

In [Scijor [Enc]display format, numbers can be dlsplayed with a man-
tissa contammg up to seven digits. Spec1fy1ng [sci)8or (sc1]9 generally
results in the same display as 7. However the uncenamty of
integrals calculated in]9 is smaller than the uncertainty of
integrals calculated in The same is true, of course, for integrals
calculated in (Enc) display format.

You can calculate an integral of greatest possible accuracy with the
display mode set to [sci](or [EnG])9.* If the calculator is in RUN mode,
you can do so elther directly by pressing | 19, or indirectly by
pressing 9 i] (1] (] (osP1] (when the dlsplay format is already set
to [Scijor [Eng) _ If the calculator is m PRGM mode, however, you
cannot set the dlsplay modedirectly to [sci]8, [sc1]9, [EnG]8, or [En 19.
If you attempt to do so, the resulting keycode will indicate (5¢ ENG]
7, and integrals will be calculated with an uncertainty derived from a

* Provided, of course, that f(x) is calculated accurately to 10 significant digits.

248 A More Detailed Look at

display format specifying seven digits. To calculate integrals of
maximum accuracy in PRGM mode, therefore, you must set the display
format indirectly using K

To see how this is done, slide the PRGM-RUN switch to pram [N

and key in the following (trivial) program, which calculates the integral
of (sin x)/x with maximum accuracy. Afterwards, we’ll execute the
program to calculate Si(2).

Keystrokes Display

(D3] @ 001- 25,13, 11 Label of program containing
[/3) in program line.

9 002- 9 Key 9 into X-register.

00 003-23, 14,23 Store 9 in I-register.

™ 004- 25 11 Sets display format to nine
digits. (This program
assumes that the display
format will have been
manually set to [SC1] before
the program is executed.)

005- 15 22 Roll down the stack so that
the 9 entered into the X-
register in program line 002
does not become the upper
limit of integration.

D@ 2 006- 14,72, 2 Calculate the integral

b

fa (sinx)/x dx.

(n]) (rR7N 007- 25 12

(h) (B 2 008- 25,13, 2 Label of subroutine that

evaluates f(x) = (sin x)/x.

009- 14 7
010- 21
011- 71
012- 25 12

* If there is a negative number in the I-register when you press (] (©SP1), numbers will be
displayed as they would apggar if O were in the I-register. However, the negative number
will be considered by the [/3) algorithm in determining the uncertainty of an approxima-
tion. The minimum number that can be considered in determining the uncertainty of an
approximation is -6. If the I-register contains a number less than -6, the approximation

will be performed as if -6 were in the I-register.

Keystrokes

0 <0 3

0 (EnTERY)

(8] (Ran]

A More Detailed Look at 249

Now, slide the PRGM-RUN switch back to [l[[Mlruv . To calculate
Si(2), key the limits of integration into the X- and Y-registers, then
press (a] to execute the program.

Display
0.000 00
0.000 00
2.

2.000 00

1.605412 00
6.000000-10
1.605412 00
1605412977

Specify [sci]display for-
mat. Executing the subse-
quent program (by pressing
([a)) will change the number
of digits specified from 3 to
9. (Display shown assumes
no results remain from
preceding example.)

Key lower limit into
Y-register.

Key upper limit into
X-register.

Ensure that trigonometric
mode is set to radians. (This
step is not necessary if you
have not switched your cal-
culator off nor reset the
trigonometric mode since
you last set it to radians.)

Si(2) calculated with
maximum accuracy.
Uncertainty of
approximation.

Return approximation to
display.

All 10 digits of
approximation.

Since the most significant digit of the uncertainty occurs in the tenth
decimal place, the uncertainty indicates that the estimate is correct to at
least nine decimal places. Indeed, the estimate agrees to all nine decimal
places with the value given for Si (2) in tables of mathematical functions.

250 A More Detailed Look at

Obtaining the Current Approximation to an
Integral

Pressing while your HP-34C is calculating an integral halts the
calculation, just as it halts the execution of a running program. When you
do so, the calculator stops at the current program line in the subroutine
you wrote for evaluating the function, and displays the result of execut-
ing the preceding program line. Note that after you halt the calculation,
the current approximation to the integral is not the number in the X-
register nor the number in any other stack register. Just as with any
program, pressing again starts the calculation from the program
line at which it was stopped.

When the calculation of an integral is requiring more time than you care
to wait, you may want to stop and display the current approximation.
You can obtain the current approximation, but not its uncertainty. The
(/5] algorithm updates the current approximation and stores it in the
LAST X register after evaluating the function at each new sample point.
To obtain the current approximation, therefore, simply halt the calcu-
lator, single-step if necessary through your function subroutine until the
calculator has finished evaluating the function and updating the current
approximation, then recall the contents of the LAST X register.

Note that while the calculator is updating the current approximation, the
display does not flash as it usually does while the calculator is executing
your function subroutine. Therefore, you might avoid having to single-
step through your subroutine by halting the calculator at a moment when
the display is blank.

In summary, to obtain the current approximation to an integral, follow
the steps below.

1. Press [R7S]to halt the calculator, preferably while the display is
blank.

2. When the calculator halts with a number in the display, slide the
PRGM-RUN switch to pram [N -

a. If the display shows the program line containing the label of
your function subroutine, slide the PRGM-RUN switch back
to JMrw and proceed with step 3.

A More Detailed Look at 251

b. If you didn’t press (R/S]at a moment when the display was
blank, the display will now show some other program line
within your subroutine. Slide the PRGM-RUN switch back
to H[Mrww and press [n) repeatedly until the
display shows 25 12 at the right (or 000- at the left*) while
the key is held down; then release the key and wait
for the calculator to halt with a number in the display.

3. Press [n])(tsTx). The current approximation will appear in the
display. If you want to continue calculating the final approxima-

tion, press (R7S). This refills the stack with the current
x value and restarts the calculator.

For example, let’s calculate the integral Si(2) again and obtain the
current approximation after a minute or two.

Keystrokes Display

@ kI (@) 2.000000 00 Roll down stack until upper
limit appears in X-register.

) (flashing) Start calculation of integral.

After a minute or two, halt the calculator and check the current
approximation:

Keystrokes Display

R/S 6.771087-01 Halt the calculator by pres-
sing (R7S]) while the display
is blank. (Of course, the
particular number in your
calculator’s display depends
on the moment you pressed

(R/s]).)

* This will occur only when you have not included a instruction at the end of your
subroutine.

252 A More Detailed Look at

Now slide the PRGM-RUN switch to prem[[[[HER to verify that the
calculator has stopped at the label of your subroutine.

Display
001-25,13, 2 Label 2.
Since the calculator stopped at the label of your subroutine, you can

recall the current approximation from the LAST X register after sliding
the PRGM-RUN switch back to [EMrun -

Keystrokes Display
(n])(sTx] 1.605412 00 Current approximation to

integral. (Again, the partic-
ular number in your calcu-
lator’s display depends on
the moment you pressed

@)

To continue with the calculation and obtain the final approximation:

Keystrokes Display

6.771087-01 Return current x value to
X-register.

R/S 1.605412 00 Final approximation to
integral.

Considerations That Could Cause Incorrect
Results

Although the algorithm in your HP-34C is one of the best available,
in certain situations it—Ilike nearly all algorithms for numerical
integration—might give you an incorrect answer. The possibility of this
occurring is extremely remote. The algorithm has been designed to

A More Detailed Look at 253

give accurate results with almost any smooth function. Only for func-
tions that exhibit extremely erratic behavior is there any substantial risk
of obtaining an inaccurate answer. Such functions rarely occur in prob-
lems related to actual physical situations; when they do, they usually can
be recognized and dealt with in a straightforward manner.

Let’s take a more detailed look at the operation of the [/7]algorithm to
see how it might calculate an incorrect answer. This will enable us to
identify the general characteristics of functions that could cause prob-
lems. Finally, we’ll see how you can verify the accuracy of an approxi-
mation if you should ever want to.

As we discussed on page 236, the (/7 algorithm samples the function
f(x) at various values of x within the interval of integration. By calcu-
lating a weighted average of the function’s values at the sample points,
the algorithm approximates the integral of f(x).

Unfortunately, since all that the algorithm knows aboutf(x) are its values
at the sample points, it cannot distinguish between f(x) and any other
function that agrees with f(x) at all the sample points. This situation is
depicted in the illustration below, which shows (over a portion of the
interval of integration) three of the infinitely many functions whose
graphs include the finitely many sample points.

f(x)

254 A More Detailed Look at

With this number of sample points, the algorithm will calculate the same
approximation for the integral of any of the functions shown. The actual
integrals of the functions shown in black and gold are about the same, so
the approximation will be fairly accurate if f(x) is one of these functions.
However, the actual integral of the function shown in blue is quite dif-
ferent from those of the others, so the current approximation will be
rather inaccurate if f(x) is this function.

Suppose that the approximation using this number of sample points
differs from previous approximations by less than the uncertainty, which
was derived from the number of digits specified in the display format.
The (/3] algorithm will then terminate, returning the current approxima-
tion as the best approximation to the integral given the uncertainty you
have implicitly agreed to tolerate. Thus, for certain functions—such as
the function shown in blue—the calculator can give you a rather inac-
curate approximation because it samples the function at only a finite
number of points. This situation represents the extreme case of the trade-
off we mentioned earlier (page 241) between accuracy and calculation
time: because you don’t want to wait an infinitely long time (to sample
the function at an infinite number of points), you can’t be absolutely
confident that the calculator’s approximation is as accurate as its
uncertainty indicates.

Suppose, in contrast to the situation above, that the derived uncertainty
in the approximation is so small (because you have specified sufficiently
many digits in the display format) that the approximation to the integral
using this number of sample points is not sufficiently accurate. The
algorithm will then sample f(x) at additional sample points.-This situa-
tion is depicted in the next illustration, which shows the same three
possible functions whose graphs include the first set of sample points.

A More Detailed Look at 255

f(x)

Although all three functions shown in this illustration have identical
values at the smaller number of sample points, the function shown in
blue has very different values at the new sample points. When the algo-
rithm processes these new function values, it will find that the disparity
between the current approximation and the previous ones is much larger
than the acceptable uncertainty. Consequently, the algorithm will con-
tinue evaluating the function at more and more sample points until
successive approximations agree sufficiently closely. In this case, the
calculator can give you an accurate approximation because, in saying
that you would accept only a relatively small uncertainty, you agreed to
wait as long as necessary.

Practically speaking, however, you wouldn’t want to wait forever for an
answer. (You probably wouldn’t need it then!) By imposing this restric-
tion on the algorithm, you must accept that the function cannot be
evaluated at infinitely many sample points and that consequently a sharp
and narrow ‘‘spike’” in the function can be overlooked by the algorithm.
This situation is depicted in the next illustration, which shows a func-
tion that is smooth except for a prominent spike.

256 A More Detailed Look at
f(x)

Despite a relatively high density of sample points, none of the sample
points happens to discover the spike in the function. Since the approxi-
mations after successive iterations agree quite closely, the algorithm
would terminate with an approximation that is significantly incorrect
because the spike remains undetected by the algorithm.

Why is the spike not detected? Because it is so unlike the mild behavior
of the function elsewhere throughout the interval of integration. Except
for the spike, the function is smooth throughout the interval shown in the
illustration. (Actually, if you viewed the graph of these functions over
the entire interval of integration, they might not appear smooth but
instead exhibit rapid fluctuations. The illustrations show an expanded
view of a small portion of the interval of integration, so that characteris-
tic rapid variations in the functions appear to be smooth.) By sampling
the function with sample points of sufficient density, the algorithm
comes to know the general behavior of the function. If the spike were not
so unlike the rest of the function, either it or similar variations would be
detected by the algorithm at some iteration. When this happens, the
number of sample points is increased until successive iterations yield
approximations that take into account the presence of the most rapid, but
characteristic, fluctuations.

A More Detailed Look at 257

For example, consider the approximation of

e
f xe™ dx.
0

Since we’re evaluating this integral numerically, we might think (naively
in this case, as we will see later) that we should represent the upper limit
of integration by 10, which is virtually the largest number you can key
into the calculator. Let’s try it and see what happens.

Slide the PRGM-RUN switch to erem [[[[Jjilj 2and key in a subroutine
that evaluates the function f(x) = xe ™.

Keystrokes Display

(e 1 001- 25,13, 1
002- 32
) 003- 15 1
B 004- 61
™ 005- 25 12

Now slide the PRGM-RUN switch back to IEIMRuN , set the display
format to 3, and key the limits of integration into the X- and
Y-registers.

Keystrokes Display

® 3 0.000 00 Set display format to
3. (Display shown assumes
no results remain from
preceding example.)

0 0.000 00 Key lower limit into
Y-register.

(EEX)99 1. 99 Key upper limit into
X-register.

K3 1 0.000 00 Approximation of integral.

258 A More Detailed Look at

The answer returned by the calculator is clearly incorrect, since the
actual integral of f(x) = xe™ from O to = is exactly 1. But the problem is
not that we represented by 10%, since the actual integral of this function
from 0 to 10% is very close to 1. The reason we got an incorrect answer
becomes apparent if we look at the graph of f(x) over the interval of
integration:

f(x)

The graph is a spike very close to the origin. (Actually, to illustrate
f(x) we have considerably exaggerated the width of the spike. Shown in
actual scale over the interval of integration, the spike would be indis-
tinguishable from the vertical axis of the graph.) Because no sample
point happened to discover the spike, the algorithm assumed that f(x)
was identically equal to zero throughout the interval of integration.
Even if you increased the number of sample points by calculating the
integral in [sci]9, none of the additional sample points would discover
the spike when this particular function is integrated over this particular
interval. We’ll mention a better solution after we briefly describe the
general nature of functions that could cause problems.

We have seen how the (/3] algorithm can give you an incorrect answer
when f(x) has a wiggle somewhere that is very uncharacteristic of the
behavior of the function elsewhere. Fortunately, functions exhibiting
such aberrations are unusual enough that you are unlikely to have to
integrate one unknowingly.

Functions that could lead to incorrect results can be identified most
precisely by describing them from the mathematical viewpoint of com-

A More Detailed Look at 259

plex analysis.* But in more simple terms, such a function can be identi-
fied by how rapidly it and its low-order derivatives vary across the
interval of integration. Basically, the more rapid the variation in the
function or its derivatives, and the lower the order of such rapidly vary-
ing derivatives, the less quickly will the (/3)algorithm terminate, and the
less reliable will the resulting approximation be.

Note that the rapidity of variation in the function (or its low-order
derivatives) must be determined with respect to the width of the interval
of integration. With a given number of sample points, a function f(x)
that has three ‘‘wiggles’’ can be better characterized by its samples when
these variations are spread out over most of the interval of integration
than if they are confined to only a small fraction of the interval. (These
two situations are shown in the next two illustrations.) Considering
the variations or wiggles as a type of oscillation in the function, the cri-
terion of interest is the ratio of the period of the oscillations to the width
of the interval of integration: the larger this ratio, the more quickly the
algorithm will terminate, and the more reliable will be the resulting
approximation.

In many cases you will be familiar enough with the function you want to
integrate that you’ll know whether the function has any quick wiggles
relative to the interval of integration. If you’re not familiar with the
function, and you have reason to suspect that it may cause problems, you
can quickly plot a few points by evaluating the function using the
subroutine you wrote for that purpose.

If for any reason, after obtaining an approximation to an integral, you
have reason to suspect its validity, there’s a very simple procedure you
can use to verify it: subdivide the interval of integration into two or more
adjacent subintervals, integrate the function over each subinterval, then
add the resulting approximations. This causes the function to be sampled
at a brand new set of sample points, thereby more likely revealing any
previously hidden spikes. If the initial approximation was valid, it will
equal the sum of the approximations over the subintervals.

* The approximations computed by the HP-34C will converge rapidly to the correct answer
provided the integrand f(z), regarded as an analytic function of the complex variable z,
has no singularities on nor too near the interval of integration, and has an average value on
that interval not drastically smaller than its magnitude near that interval.

260 A More Detailed Look at

Calculated integral
of this function
will be accurate.

Calculated integral
of this function
may be inaccurate.

Considerations That Prolong Calculation
Time

In the example on page 257, we saw that the algorithm gave an incorrect
answer because it never detected the spike in the function. This happened
because the variation in the function was too quick relative to the width of
the interval of integration. If the width of the interval were smaller, we
would get the correct answer; but it would take a very long time if the
interval were still too wide.

A More Detailed Look at 261

For certain integrals, such as the one in that example, calculating the
integral may be unduly prolonged because the width of the interval of
integration is too large relative to certain features of the function being
integrated. Let’s consider an integral where the interval of integration is
wide enough to require excessive calculation time but not so wide that it
would be calculated incorrectly. Note that because f(x) = xe™ ap-
proaches zero very quickly as x approaches o, the contribution to the
integral of the function at large values of x is negligible. Therefore,
we can evaluate the integral by replacing %, the upper limit of integra-

tion, by a number not so large as 10%?, say 10°.

Keystrokes Display

0 0.000 00 Key lower limit into
Y-register.

(eEx] 3 1. 03 Key upper limit into
X-register.

1 1.000 00 Approximation to integral.

1.824 -04 Uncertainty of
approximation.

This is the correct answer, but it took a very long time. To understand
why, compare the graph of the function over the interval of integration,
which looks about identical to that shown on page 258, to the graph of the
function between x = 0 and x = 10.

f(x)

262 A More Detailed Look at

By comparing the two graphs, you can see that the function is *‘inter-
esting’’ only at small values of x. At greater values of x, the function is
“‘uninteresting,’” since it decreases smoothly and gradually in a very
predictable manner.

As we discussed earlier, the algorithm will sample the function
with higher densities of sample points until the disparity between suc-
cessive approximations becomes sufficiently small. In other words, the
algorithm samples the function at increasing numbers of sample points
until it has sufficient information about the function to provide an
approximation that changes insignificantly when further samples are
considered.

If the interval of integration were (0, 10) so that the algorithm needed to
sample the function only at values where it was interesting but relatively
smooth, the sample points after the first few iterations would contribute
no new information about the behavior of the function. Therefore, only
a few iterations would be necessary before the disparity between suc-
cessive approximations became sufficiently small that the algorithm
could terminate with an approximation of a given accuracy.

On the other hand, if the interval of integration were more like the one
shown in the graph on page 261, most of the sample points would capture
the function in the region where its slope is not varying much. The few
sample points at small values of x would find that values of the function
changed appreciably from one iteration to the next. Consequently, the
function would have to be evaluated at additional sample points before
the disparity between successive approximations would become
sufficiently small.

In order for the integral to be approximated with the same accuracy over
the larger interval as over the smaller interval, the density of the sample
points must be the same in the region where the function is interesting.
To achieve the same density of sample points, the total number of sam-
ple points required over the larger interval is much greater than the num-
ber required over the smaller interval. Consequently, several more
iterations are required over the larger interval to achieve an approxima-
tion with the same accuracy, and therefore calculating the integral
requires considerably more time.

A More Detailed Look at 263

Because the calculation time depends on how soon a certain density of
sample points is achieved in the region where the function is interesting,
the calculation of the integral of any function will be prolonged if the
interval of integration includes mostly regions where the function is not
interesting. Fortunately, if you must calculate such an integral, you can
modify the problem so that the calculation time is considerably reduced.
We will discuss two techniques of doing so: subdividing the interval of
integration, and transformation of variables.

Subdividing the Interval of Integration

In regions where the slope of f(x) is varying appreciably, a high density
of sample points is necessary to provide an approximation that changes
insignificantly from one iteration to the next. However, in regions where
the slope of the function stays nearly constant, a high density of sample
points is not necessary. This is because evaluating the function at addi-
tional sample points would not yield much new information about the
function, so it would not dramatically affect the disparity between suc-
cessive approximations. Consequently, in such regions an approxima-
tion of comparable accuracy could be achieved with substantially fewer
sample points; so much of the time spent evaluating the function in these
regions is wasted. When integrating such functions, you can save time
by using the following procedure:

1. Divide the interval of integration into subintervals over which the
function is interesting and subintervals over which the function is
uninteresting.

2. Over the subintervals where the function is interesting, calculate
the integral in the display format corresponding to the accuracy
you would like overall.

3. Over the subintervals where the function either is not interesting
or contributes negligibly to the integral, calculate the integral with
less accuracy, that is, in a display format specifying fewer digits.

4. To get the integral over the entire interval of integration, add
together the approximations and their uncertainties from the
integrals calculated over each subinterval. You can do this easily
using the (z+]key.

264 A More Detailed Look at

Before subdividing the interval of integration, check whether the calcu-
lator underflows when evaluating the function around the upper (or
lower) limit of integration.* Since there is no point in evaluating the
function at values of x for which the calculator underflows, in some cases
the upper limit of integration can be reduced, saving considerable
calculation time.

Remember that once you have keyed in the subroutine that evaluates
f(x), you can calculate f(x) for any value of x by keying that value into
the X-register and pressing (ENTER+) (ENTER+] (ENTER®) followed by the
label of the subroutine.

If the calculator underflows at the upper limit of integration, try smaller
numbers until you get closer to the point where the calculator no longer
underflows.

Keystrokes Display

(EEx) 3 1. 03 Key upper limit into
X-register.

1.000 03 Fill the stack with x.

1 0.000 00 Calculator underflows at the
upper limit.

300

3.000 02 Try a smaller value of x.

1 0.000 00 Calculator still underflows.

200

2.000 02 Try a smaller value of x.

1 2.768 -85 Calculator does not under-
flow at x = 200; try a num-
ber between 200 and 250.

225

2.250 02

1 4.324 -96 Calculator is close to

underflow.

At this point, you can use to pinpoint the smallest value of x at
which the calculator underflows.

* Remember that when the calculation of any quantity would result in a number less than
107%, the result is replaced by zero. This condition is known as underflow.

Keystrokes

A More Detailed Look at 265

Display
2.250

2.280

02

02

Roll down stack until the
last value tried is in the X-
and Y-registers.

The minimum value of x at
which the calculator under-
flows is about 228.

We have now determined that we need integrate only from O to 228.
Since the function is interesting only for values of x less than 10, let’s
divide the interval of integration there. The problem has now become:

1000 28 10 228
fo xe ™ dxzfo xe™* dx =f0 xe ™ dx +J-10 xe ™ dx.

Keystrokes
0

10

x%Yy

@RI @) &Y

Display
0.000

10.

9.995
9.995

1.000

1.841

1.000

00

01

Key in lower limit of
integration over first
subinterval.

Key in upper limit of
integration over first

subinterval.
Integral over (0, 10)
calculated in 3.

Clear statistical storage
registers.

Sum approximation and its
uncertainty in registers R,
and R;.

Uncertainty of
approximation.

Roll down stack until upper
limit of first integral appears
in X-register.

266 A More Detailed Look at
Keystrokes Display
228 228.
0 2. 02
5 -04
3 5.328 -04
X%y 7.568 -05
X%y 5328 -04
2.000 00
RCL 1.000 00
x%Y 2.598 -04

Key upper limit of second
integral into X-register.
Upper limit of first integral
is lifted into Y-register,
becoming lower limit of
second integral.

Specify 0 display for-
mat for a quick calculation
over (10, 228). If the uncer-
tainty of the approximation
turns out not to be accurate
enough, we can repeat the
approximation in a display
format specifying more

digits.
Integral over (10, 228)
calculated in 0

Change display format back
to 3.

Check uncertainty of
approximation. Since it is
less than the uncertainty of
the approximation over the
first subinterval, 0
yielded an approximation of
sufficient accuracy.

Return approximation and
its uncertainty to the X- and
Y-registers, respectively,
before summing them in
statistical storage registers.
Sum approximation and its
uncertainty.

Integral over total interval
(0, 228).

Uncertainty of integral.

Calculating the integral over the two subintervals took only a fraction of
the time to calculate the integral over (0,228); and the combined uncer-

A More Detailed Look at 267

tainty of the total approximation is not appreciably larger than the
uncertainty of the single approximation over the entire interval.

Transformation of Variables

In many problems where the function changes very slowly over most of a
very wide interval of integration, a suitable transformation of variables
may decrease the time required to calculate the integral.

For example, consider again the integral

*
fo xe ™ dx.

Let u=e>x
Then x=—lnu
and dx = — ﬂl—

u
Substituting,

J;)xxe”‘dx =fe:~x(— Inu) (u) (— dTu)
=f10 Inudu.

Slide the PRGM-RUN switch to erom [and key in a subroutine that
evaluates the function f(«) = In u.

Keystrokes Display
™ 3 001- 25,13, 3
002- 14 1

W (EN) 003- 25 12

268 A More Detailed Look at
Slide the PRGM-RUN switch back to [~ and key in the limits of

integration, then press 3 to calculate the integral.

Keystrokes Display

1 1.000 00 Key in lower limit of
integration.

0 0. Key in upper limit of
integration.

3 9.998 -01 Approximation to equiva-

lent integral.

x%y 2.130 -04 Uncertainty of
approximation.

Considering the uncertainty of this approximation, it agrees with the
value calculated above for the original integral. Yet, it required only a
fraction of the calculation time.

Appendix C
Service and Maintenance

Your Hewlett-Packard Calculator

Your calculator is another example of the award-winning design,
superior quality, and attention to detail in engineering and construction
that have marked Hewlett-Packard electronic instruments for more than
30 years. Each Hewlett-Packard calculator is precision crafted by people
who are dedicated to giving you the best possible product at any price.

AC Line Operation

Your calculator contains a rechargeable battery pack consisting of
nickel-cadmium batteries. When you receive your calculator, the battery
pack inside may be discharged, but you can operate the calculator
immediately by using the ac adapter/recharger.

Note: Do not attempt to operate the calcuiator from an ac
line with the battery pack removed.

The procedure for using the ac adapter/recharger is as follows:

1. You need not turn the calculator off.

2. Insert the ac adapter/recharger plug into the connector on the top
of the calculator, with the snap release tab on the plug facing
toward the right side of the calculator.

3. Insert the power plug into a live ac power outlet.

Note: It is normal for the ac adapter/recharger (and the
battery pack) to be warm to the touch when plugged into an
ac outlet.

270

Service and Maintenance 271

CAUTION

The use of a charger other than the HP recharger supplied
with the calculator may result in damage to your calculator.

Use only the “B” suffix version ac adapter/recharger
shipped with your calculator (see product number on
recharger). Earlier “A” suffix version rechargers will not
damage your calculator, but may clear continuous memory
when plugged in.

Battery Operation

To operate the calculator from battery power alone, simply disconnect
the recharger plug from the calculator by grasping the plug between your
thumb and forefinger, squeezing to depress the snap release tab, and
pulling gently. (Even when not connected to the calculator, the ac
adapter/recharger may be left plugged into the ac outlet.)

Using the calculator on battery power gives the calculator full port-
ability, allowing you to carry it nearly anywhere. A fully charged battery
pack typically provides 3 hours of continuous operation. By turning the
power off when the calculator is not in use, the charge on the battery
pack should easily last throughout a normal working day.

Low Power

When you are operating from battery power and the batteries get low, a
raised decimal is turned on at the far left of the display to warn you that
you have between 1 minute and 25 minutes of operating time left.

*1.23

If the display contains the low power indication, the minus sign looks like
an incomplete divide sign.

+1.23

To return to full power either connect the ac adapter/recharger to the
calculator as described under AC Line Operation, or substitute a fully
charged battery pack for the one in the calculator.

272 Service and Maintenance

Battery Charging

The rechargeable batteries in the battery pack are charged while you
operate the calculator from the ac adapter/recharger. Batteries will
charge with the calculator on or off, provided batteries are in place and
recharger is connected. Normal charging times between the fully dis-
charged state and the fully charged state are (depending on ac line voltage
value):

Calculator off: 5 to 9 hours

Calculator on: 17 hours

Shorter charging periods will reduce the operating time you can expect
from a single battery charge. Whether the calculator is off or on, the
calculator battery pack is never in danger of becoming overcharged.

Note: The ac adapter/recharger is a sealed unit and is not
repairable. Return it to Hewlett-Packard if service is required.

Using Continuous Memory

When you turn your calculator off, the following information is retained:

All programs that are loaded into the calculator.
Contents of the storage registers.

Display status (FIX, SCI, or ENG, and number of displayed
digits).

Regardless of where you stopped in a program, the calculator returns to
line 000 (top of program memory) when you turn it on again.

Numbers in the stack, LAST X, and trigonometric mode status (DEG,
RAD, or GRAD) are not preserved when you turn the calculator off.
Also, all flags and pending subroutines are cleared.

Continuous memory requires that the batteries be kept in the calculator.
If the low power indicator appears in the display, turn your calculator off
immediately and connect it to an ac outlet or insert a new battery pack.
If you allow the battery to discharge completely, the information in
continuous memory will be lost.

Service and Maintenance 273

If you drop or traumatize your calculator, or if power to the continu-
ous memory is interrupted, whether the calculator is off or on, the con-
tents of program memory and the data storage registers may be lost. If
this occurs, when the calculator is next turned on with power available,
PrError (power failure) will appear in the display. (Pressing any key will
clear this and all other error signals.)

Battery Pack Replacement

If it becomes necessary to replace the battery pack, use only another
Hewlett-Packard battery pack like the one shipped with your calculator.
Continuous memory requires that batteries be replaced as quickly as
possible. Normally you have a minimum of 5 seconds to change the
batteries. Leaving batteries out of the calculator for extended periods will
result in loss of information in continuous memory.

CAUTION

Use of any batteries other than the Hewlett-Packard battery
pack may result in damage to your calculator.

To replace the battery pack use the following procedure:

1. Set calculator ON-OFF switch
to OFF and disconnect the ac
adapter/recharger from the
calculator.

274 Service and Maintenance

2. Press down on the short ridges
of the battery door, close to the
edge, until the door release
snaps open. Slide the door

open.

3. When door is removed, turn
calculator over and gently
shake, allowing the battery
pack to fall into the palm of your
hand.

4. Place the new battery pack into
the calculator. Your calculator
will turn on only if the battery
pack is inserted correctly.

5. Insert battery door and slide
door back into place.

Service and Maintenance 275

6. Turn calculator over and turn
power on to assure proper
battery installation. If the dis-
play does not light, make sure
the battery pack is correctly
placed in calculator.

Battery Care

When not being used, the batteries in your calculator have a self-
discharge rate of approximately 1 percent of available charge per day.
After 30 days, a battery pack might have only 50 to 75 percent of its
charge remaining, and the calculator might not even turn on. If a calcu-
lator fails to turn on, you should substitute a charged battery pack, if
available, for the one in the calculator, or plug in the ac adapter/
recharger. The discharged battery pack should be charged for at least 12
hours.

If a battery pack will not hold a charge and seems to discharge very
quickly in use, it may be defective. If the one-year warranty on the
battery pack has not expired, return the defective pack to Hewlett-
Packard according to the shipping instructions. (If you are in doubt
about the cause of the problem, return the complete calculator along with
its battery pack and ac adapter/recharger.) If the battery pack is out of
warranty, see your nearest dealer to order a replacement.

WARNING

Do not attempt to incinerate or mutilate the battery pack—
the pack may burst or release toxic materials.

Do not connect together or otherwise short-circuit the battery
terminals—the pack may melt or cause serious burns.

276 Service and Maintenance
Temperature Range

Temperature ranges for the calculator are:

Operating 0° to 45°C 32°to 113°F

Charging 15° to 40°C 59°to 104°F

Storage —40° to 55°C —40°to 131°F
Service

Blank Display

If the display blanks out, turn the calculator off, then on. If the display
remains blank, check the following:

1. If the ac adapter/recharger is attached to the calculator, make sure
it is plugged into an ac outlet.

2. Examine the battery pack to see if the contacts are dirty.

Substitute a fully charged battery pack, if available, for the one
that was in the calculator.

4. Ifthe display is still blank, try operating the calculator using the ac
adapter/recharger (with the batteries in the calculator).

5. 1If, after step 4, the display is still blank, service is required.
(Refer to Limited One-Year Warranty.)

Limited One-Year Warranty

What We Will Do

The HP-34C and its accessories are warranted by Hewlett-Packard
against defects in materials and workmanship for one year from date of
original purchase. If you sell your calculator or give it as a gift, the war-
ranty is automatically transferred to the new owner and remains in effect
for the original one-year period. During the warranty period we will
repair or, at our option, replace at no charge a product that proves to be
defective provided that you return the product, shipping prepaid, to a
Hewlett-Packard repair center.

Service and Maintenance 277

How to Obtain Repair Service

Hewlett-Packard maintains repair centers in most major countries
throughout the world. You may have your calculator repaired at a
Hewlett-Packard repair center anytime it needs service, whether the
unit is under warranty or not. There is a charge for repairs after the one-
year warranty period. Please refer to the Shipping Instructions in
this handbook.

Hewlett-Packard calculators are normally repaired and reshipped within
five (5) working days of receipt at any repair center. This is an average
time and could possibly vary depending upon time of year and work load
at the repair center.

The Hewlett-Packard United States Repair Center for handheld and
portable printing calculators is located at Corvallis, Oregon. The mailing
address is:

Hewlett-Packard
Corvallis Division e Service Department
1000 N.E. Circle Boulevard/P.O. Box 999
Corvallis, Oregon 97330

What Is Not Covered

This warranty does not apply if the product has been damaged by
accident or misuse, or as a result of service or modification by other than
an authorized Hewlett-Packard repair center.

No other expressed warranty is given. The repair or replacement of a
product is your exclusive remedy. ANY IMPLIED WARRANTY OF
MERCHANTABILITY OR FITNESS IS LIMITED TO THE ONE-
YEAR DURATION OF THIS WRITTEN WARRANTY. Some
states do not allow the exclusion or limitation of incidental or conse-
quential damages, so the above limitation or exclusion may not apply to
you.

This warranty gives you specific legal rights, and you may also have
other rights which vary from state to state.

278 Service and Maintenance
Obligation to Make Changes

Products are sold on the basis of specifications applicable at the time of
manufacture. Hewlett-Packard shall have no obligation to modify or
update products once sold.

Warranty Information Toll-Free Number

If you have any questions concerning this warranty, please call 800/
648-4711. (In Nevada call 800/992-5710.)

Shipping Instructions

The calculator should be returned, along with completed Service Card,
in its shipping case (or other protective package) to avoid in-transit
damage. Such damage is not covered by warranty and Hewlett-Packard
suggests that the customer insure shipments to the repair center. A calcu-
lator returned for repair should include the ac adapter/recharger and the
battery pack. Send these items to the address shown on the Service Card.
Remember to include a sales slip or other proof of purchase with your
unit.

Whether the unit is under warranty or not, it is your responsibility to pay
shipping charges for delivery to the Hewlett-Packard repair center.

After warranty repairs are completed, the repair center returns the unit
with postage prepaid. On out-of-warranty repairs, the unit is returned
C.0.D. (covering shipping costs and the service charge).

Programming and Applications Assistance

Should you need technical assistance concerning programming, calcu-
lator applications, etc., call Hewlett-Packard Customer Support at
503/757-2000. This is not a toll-free number, and we regret that we
cannot accept collect calls. As an alternative, you may write to:

Hewlett-Packard
Corvallis Division Customer Support
1000 N.E. Circle Boulevard
Corvallis, OR 97330

Service and Maintenance 279

A great number of our users submit program applications or unique
program key sequences to share with other HP owners. Hewlett-Packard
will only consider using ideas given freely to us. Since it is the policy of
Hewlett-Packard not to accept suggestions given in confidence, the
following statement must be included with your submittal:

“I am voluntarily submitting this information to Hewlett-Packard
Company. The information is not confidential and Hewlett-Packard may
do whatever it wishes with the information without obligation to me or
anyone else.”’

Further Information

Service contracts are not available. Calculator circuitry and design are
proprietary to Hewlett-Packard, and service manuals are not available
to customers. Should problems arise regarding repairs, please contact
your nearest Hewlett-Packard repair center. The address for the United
States Repair Center for handheld and portable printing calculators is:

Hewlett-Packard Company
Corvallis Division e Service Department
1000 N.E. Circle Boulevard/P.O. Box 999
Corvallis, Oregon 97330

Note: Not all Hewlett-Packard repair centers offer service
for all models of HP calculators. However, you can be sure
that service may be obtained in the country where you bought
your calculator.

If you happen to be outside of the country where you bought
your calculator, you can contact the local Hewlett-Packard
repair center to see if service capability is available for your
model. If service is unavailable, ship your calculator to the
above address. A list of repair centers for other countries
may be obtained by writing to the above address.

All shipping and reimportation arrangements are your
responsibility.

Appendix D
Error Conditions

If you attempt a calculation containing an improper operation—say divi-
sion by zero—the display will show Error and a number. To clear an
error message, press any key.

The following operations will display Error plus a number:

Error 0: Improper Mathematical Operation

Illegal argument to math routine;

(=), wherex = 0.

(%), wherey = 0 and x < 0, ory < 0 and x is non-integer.
(%), where x < 0.

1, where x < 0.
, where x < 0.
(sin]), where | X ‘ is > 1.
(CosT], where | x | is > 1.

(=), where x = 0.
, where the value in the y-register is O.

Error 1: Storage Register Overflow

storage register would be larger than 9.999999999 X 10%.

Error 2: Improper Register Number

Named storage register currently converted to program memory, or
nonexistent storage register.
280

Error Conditions 281

Error 3: Improper Statistical Operation
0

NNIN N

Note: Error 3 is also displayed if division by zero or the
square root of a negative number would be required during
computation with any of the following formulas:

Sy = L S, = _.L._ r=_P—.
=V S =V Wm0 VM N

a=F = M2y —P3x (A and B are the values re-
M n.M turned by the operation (LR,
where y =Ax + B.)
5= M3y +P(n-x—2x)
n-M
where:

M =n3x?— (3x)?
N =nXy*— (2y)?
P=n3xy —3x2y

Error 4: Improper Line Number or Label Call

Line number called for is currently unoccupied, or nonexistent (>210),
attempt to load more than 210 lines of program memory, or label
called does not exist.

Error 5

Recursive call to (/3] or [sowve, i.e., within a subroutine called by
another (/3] or within a subroutine called by another (soLve].

282 Error Conditions

Error 6

unable to find a root using given estimates.

Error 7
Illegal label (4-9) used with (/3] or |

g, or illegal flag name (4-9).

Error 8
Subroutine level too deep.

Error 9

Self-test discovered circuitry problem. Note that program memory,
storage register contents, and display setting are not cleared by executing
the self-test).

Pr Error

Continuous memory cleared because of power failure.

Appendix E

Stack Lift and LAST X

Your HP-34C calculator has been designed to operate in a natural
manner. As you have seen as you worked through this handbook, you are
seldom required to think about the operation of the automatic memory
stack—you merely work through calculations in the same way you
would with a pencil and paper, performing one operation at a time.

There may be occasions, however, particularly as you program the
HP-34C, when you wish to know the effect of a particular operation
upon the stack. The following explanation should help you.

Digit Entry Termination

Most operations on the calculator, whether executed as instructions in a
program or pressed from the keyboard, terminate digit entry. This means
that the calculator knows that any digits you key in after any of these
operations are part of a new number.

Stack Lift

There are three types of operations on the calculator, depending upon
how they affect the stack lift. These are stack-disabling operations,
stack-enabling operations, and neutral operations.

Disabling Operations

There are only four stack-disabling operations on the calculator. These
operations disable the stack lift, so that a number keyed in after one of
these disabling operations writes over the current number in the dis-
played X-register and the stack does not lift. These special disabling
operations are:

Enabling Operations

The bulk of the operations on the keyboard, including one- and two-
number mathematical functions like and (x], are stack enabling

284

Stack Lift and LAST X 285

operations. These operations enable the stack lift, so that a number keyed
in after one of the enabling operations lifts the stack. Note that switching
from PRGM mode to RUN mode is an enabling operation.

Neutral Operations

Some operations, like and (Fix], are neutral; that is, they do not
alter the previous status of the stack lift. Thus, if you disable the stack
lift by pressing (ENTER#), then press (Fix)n and key in a new number,
that number will write over the number in the X-register and the stack
will not lift. Similarly, if you have previously enabled the stack lift by
executing, say (xZ), then execute a [Fix]instruction followed by a digit
entry sequence, the stack will lift.

The following operations are neutral on the HP-34C:

Fix nnn CLEAR
CLEAR
(In RUN mode (SsT CLEAR
may execute an instruc- (cns)*
tion that does enable MANT
the stack.)

(MEm)

LAST X

The following operations save x in LAST X:

)

= =4 (=
=) (x?
3]
]
(Hws) G =R
&) (=D

* [ChS] is neutral during digit entry of a number from keys, as in 1, 2, 3, (S5 to enter
—123; or, 123 (EEX)(CHS) to enter 123 X 1075, But otherwise, (CHS] enables the stack, as
you would expect.

HEWLETT 'zﬁ,l PACKARD

1000 N.E. Circle Blvd., Corvallis, OR 97330

For additional sales and service information contact your
local Hewlett-Packard Sales Office or Call 800/648-4711.
(In Nevada call 800/992-5710.)

00034-90001 Printed in U.S.A.

Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

	Cover

	Contents
	The HP-34C Programmable Scientific Calculator
	Function Key Index
	Program Control Index

	Meet the HP-34C
	Manual Problem Solving
	Programmed Problem Solving
	What Continuous Memory Means to You

	Specific Features of the HP-34C
	Keyboard Operation
	Storage Registers and Program Memory
	Number Alteration Keys
	Absolute Value
	Integer Portion of a Number
	Fractional Portion of a Number

	Mathematical Functions
	Factorial
	Gamma Function
	Percent Difference

	Statistical Functions
	Accumulations
	Deleting and Correcting Data
	Mean
	Standard Deviation
	Linear
Regression
	Linear Estimation
	Correlation Coefficient

	Vector Arithmetic

	Simple Programming
	What Is a Program?
	Why Write Programs?
	Three Calculator Modes
	Looking at Program Memory
	Keycodes
	Clearing a Program
	Creating Your Own Program
	Beginning a Program
	Ending a Program
	Loading a Program

	Running a Program
	Searching for a Label
	Executing Instructions

	Automatic Memory Allocation
	Converting Storage Registers to Program Memory
	Converting Program Memory to Storage Registers
	Using MEM

	Writing a Third Program
	Program Stops and Pauses
	Planned Stops During Program Execution
	Pausing During Program Execution
	Unexpected Program Stops

	Labels
	Flowcharts
	Programming Techniques
	Problems

	Program Editing
	Nonrecordable Operations
	Pythagorean Theorem Program
	Single-Step Execution of a Program
	Modifying a Program
	Single-Step Viewing Without Execution
	Resetting to Line 000
	Going to a Line Number
	Inserting Instructions in Longer Programs
	Stepping Backwards Through a Program
	Running the Modified Program
	Deleting Instructions

	Branching, Decisions, and Flags
	Unconditional Branching and Looping
	Conditionals and Conditional Branches
	Flags
	Using flags

	Problem

	Subroutines
	Subroutine Usage
	Subroutine Limits
	Using h RTN at the End of Occupied Program Memory

	Advanced Programming
	Controlling the I-Register
	Storing a Number in the I-Register
	Exchanging X and I
	Incrementing and Decrementing the I-Register
	ISG and DSE Limits
	Using The I-Register For Display, Storage Register, and Program Control
	I-Register Display Control
	Exchanging X and (i)
	Indirect Store and Recall
	I-Register Control of Branches and Subroutines
	Branching and Subroutines Using Line Number Addressing

	Finding the Roots of an Equation
	Using SOLVE
	When No Root Is Found
	Choosing Initial Estimates
	How SOLVE Works

	Accuracy of the Root
	Interpreting Results
	Using
SOLVE in a Program
	Restriction on the Use of SOLVE
	For Further Information

	Numerical Integration
	Using Integrate

	Accuracy of Integrate

	Using Integrate
in a Program
	For Further Information

	A Advanced Use of SOLVE
	Using SOLVE
With Polynomials
	Finding Several Roots
	Finding Local Extremes of a Function
	Using the Derivative
	Using an Approximate Slope
	Using Repeated Estimation

	Limiting the Estimation Time
	Counting Iterations
	Specifying a Tolerance
	Using SOLVE With Integrate

	B A More Detailed Look at Integrate
	How Integrate Works
	Accuracy, Uncertainty, and Calculation Time
	Accuracy of the Function to be Integrated
	Functions Related to Physical Situations
	Round-Off Error in Internal Calculations

	Uncertainty and the Display Format
	Calculating Integrals of Maximum Accuracy
	Obtaining the Current Approximation to an
Integral
	Considerations That Could Cause Incorrect Results
	Considerations That Prolong Calculation Time
	Subdividing the Interval of Integration
	Transformation of Variables

	C
Service and Maintenance
	Your Hewlett-Packard Calculator
	AC Line Operation
	Battery Operation
	Low Power

	Battery Charging
	Using Continuous Memory
	Battery Pack Replacement
	Battery Care
	Temperature Range
	Service
	Limited One-Year Warranty

	D
Error Conditions
	E
Stack Lift and LAST X

