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The basic program memory-storage register allocation is 70 lines of programming 
and 72 data storage regi sters, plus the I-register. The calculator automatically 
converts one data storage register into seven lines of program memory, one 
register at a time , as you need them, Conversion begins with R'9 and ends with 
Ro, 
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Function Key Index 
OFF l1li1 ON OFF-ON switch set to ON. 
PRGM l1li1 RUN PRGM-RUN switch set to RUN. 

Function keys pressed from the keyboard execute individual functions as 
they are pressed. Input numbers and answers are displayed. Except where 
otherwise indicated. each function key listed below operates from the 
keyboard and as a recorded instruction in a program. 

Prefix Keys I CHS I Changes sign Stack Manipulation 

ITJ Pressed before 
a function key. 
selects gold function 
printed above that 
key. 

[]] Pressed before 
a function key. 
selects blue function 
printed above that 
key. 

[EJ Pressed before 
a function key. se­
lects black function 
printed on slanted 
face of that key. 

CLEAR I PREFIX I 
(nonprogrammable) 
cancels a partially 
entered instruction 
such as ITJ. ITJ 
@ . []].[EJ.[EJ 
[EJ. I STO I [±J. etc. 

Digit Entry 

IENTERtl Enters a 
copy of number in 
displayed X-register 
into V-register. Used 
to separate 
numbers. 

of number or expo­
nent of 10 in dis­
played X-register. 

I EEX I Enter ex­
ponent. After press­
ing. next digits keyed 
in are exponents of 
10. 

o through 9 Digit 
keys. 

GJ Decimal point. 

Number Alteration 

OEIJ Leaves only 
integer portion of 
number in displayed 
X-register by truncat­
ing fractional 
portion. 

I FRAC I Leaves only 
fractional portion of 
number in displayed 
X-register by trun­
cating integer por­
tion . 

I ABS I Gives abso­
lute value of number 
in displayed X­
register. 
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lli!J Rolls down 
contents of stack for 
viewing in displayed 
X-register. 

lli!J Rolls up con­
tents of stack for 
viewing in displayed 
X-register. 

Ix~YI Exchanges 
contents of X- and V­
stack registers. 

I CLX I Clears con­
tents of displayed X­
register to zero. 

Storage 

I STO I Store. Fol­
lowed by address 
key. stores dis­
played number in the 
storage register 
(Ro through Rg. R.o 
through R.g. I) speci­
fied. Also used to 
perform storage 
register arithmetic. 



I RCL I Recall. FoI- I MANT I Mantissa OZ!.J Computes 
lowed by address (nonprogramma- reciprocal of number 

key, recalls number ble) . Displays all 10 in displayed X-
from storage regis- significant digits of register. 
ter (Ro through R. , the number in the X- o Places value of 
R.o through R.g, I) register as long as pi (3 .141592654) 
specified into the I MANT I key is into displayed X-
the displayed X- pressed. register. 
register. 

ILST xl Recalls num- Percentage 1m Integrate. 

ber displayed before Computes definite 

the previous opera- 1[:.% I Computes integral 1m f(x)dx 

tion back into the dis- percent of change with expression f(x) 

played X-register. between number in keyed into program 
Y-register and num- memory. 

CLEAR 1 REG IClears ber in displayed X-
contents of all stor- register. ISOLVEI Solves for 
age registers (Ro real root of equation 
through Rg, R.o 00 Computes x% f(x) = O, with expres-
through R.g, I) to of value in the Y- sion f(x) keyed into 
zero. register. program memory. 

Display Control Mathematics 
Statistics 

~ Selects fixed GG0GJ 
CLEAR [I) Clears point display. Arithmetic opera-

tors. statistical storage 
~ Selects sci en- registers (Ro through 
tific notation display. @ Computes Rs)· 

1 ENG I Selects eng i-
square root of num- IB Accumulates 
ber in displayed X- numbers from X-neering notation dis- register. and Y-registers into play. 
(£) Computes 

storage registers Ro 

1 DSP II Displays as square of number 
through Rs. 

many digits after the in displayed X- ~ Subtracts x and 
decimal point as are register. y values from stor-
specified by the age registers Ro 
number in the 1- ~ Calculates fac- through Rs for 
register (0 through torial xl , or Gamma correcting IB 
9) . function [(1 + x). accumulations. 
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(I) Computes Polar/Rectangular ~ Converts 
mean (average) of x Conversion degrees to radians. 
and y values accum-

~ Converts polar ~ Converts rad-
ulated by ~ . 

magnitude rand ians to degrees. 

o Computes angle 0 in X- and I+H.Ms I Converts 
sample standard Y -registers to rec- decimal hours (or 
deviations of x and y tangular x and y degrees) to hours, 
values accumulated coordinates. minutes, seconds 
by ~ . 

~ Converts x , y 
(or degrees, min-
utes, seconds). 

[I) Linear estimate. rectangular coordi-
8 Converts hours, 

Computes est i- nates placed in X-

mated value of y for and V-registers to minutes, seconds 

a given value of x by polar magnitude r (or degrees, min-

method of least and angle O. utes, seconds) to 

squares. 
decimal hours (or 
degrees). 

CD Correlation 
Trigonometry 

I-Register Control 
coefficient. Com-

I DEG I Sets decimal 
putes "goodness of 

degrees mode for I nIl Exchanges 
fit" between the x 

trigonometric func- contents of dis-
and y values accum-

tions. played X-register 
ulated using ~ with those of the l-
and the linear func- I RAD I Sets radians register. 
tion that approx- mode for trigono-
imates them. metric functions. IX~(j)1 Exchanges 

I GRD I Sets grads 
contents of dis-

~ Linear reg res- played X-register 
mode for trigonome- with those of the sion. Computes y- tric functions. register addressed intercept and slope 

for linear function ~lcosliTANI by the value stored 

that best approxi- Computes sine, co- in the I-register. 

mates x and y sine, or tangent of CD I-register. 
values accumulated value in displayed Storage register 
using ~ . The X-register. for increment/de-
value of the y-inter- I SIW' I I COSO, I I TAW' I crement operations 
cept is placed in the Computes arc sine, and for indirect 
X-register; the value arc cosine, or arc control of dis-
of the slope is placed tangent of number in play and program 
in the V-register. displayed X-register. execution. 
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@i] Indirect opera­
tions command. 
Used with I STO I and 
I RCL I for 
indirect data 
storage, recall , and 
storage register 
arithmetic. 
I DSP I I Displays as 
many digits after the 
decimal point as are 
specified in the 
I-register. 

I DSE I Decrement, 
skip when equal or 
less than . Subtracts 
specified decrement 
value from counter 
value. Skips one 
program line if new 
counter value is 
equal to or less than 
specified test value. 

[Iill increment , 
skip when greater. 
Adds specified 
increment value to 
counter value. Skips 
one program line if 
new counter value is 
greater than speci­
fied test value. 

Logarithmic and 
Exponential 

[IE) Computes 
natural logarithm 
(base e = 
2.718281828 .. . ) of 
number in displayed 
X-register. 

~ Natural anti­
logarithm. Raises e 

11 

(2.718281828) to 
power of number in 
displayed X-register. 

I LOG I Computes 
common logarithm 
(base 10) of number 
in displayed X­
register. 

~Common 
antilogarithm. Raises 
10 to power of num­
ber in displayed X­
register. 

(ZJ Raises number 
in V-register to 
power of number in 
displayed X-register. 



Program Control Index 

Several of the following keys operate only in PRGM mode; others operate 
differently in PRGM mode than in RUN mode. For specific details of 
operation , consult the indicated pages. 

IMEM I Displays search downward in [GTolG] nnn Go to 

current status of pro- program memory for line number. Posi-

gram memory/ designated label and tions calculator to 

storage register allo- halt. In a running occupied line num-

cation (page 59). program: causes ber specified by nnn 
calculator tei transfer (page 85). 
downward in pro-

[ BST I Back step. o [[) User-defin- gram memory to 
able program keys designated label Moves calculator 

for both program and resume pro- back one line in 

labels and execution gram execution occupied program 

(page 68). (page 102). memory (page 84). 

I SST I Single-step. 

0123456789 Moves calculator 

Label designators. [GSB I Go to sub- forward one line in 

When preceded by routine. Used with occupied program 

[LBL I, define begin- 0, [[), 0 through memory (page 84). 

ning of a routine 9 or I. From the key- [DEL I Delete. Used 
(page 68). board: causes cal- in PRGM mode to 

culator to search delete displayed in-
ITill Label. When downward in pro- struction from pro-
used with 0, gram memory for gram memory. All 
[[), or 0 through 9, designated label and subsequent in-
denote the begin- begin program exe- structions are 
ning of a program or cution. In a running moved up one line 
subroutine (page program: causes (page 85). 

68). calculator to transfer 
downward in pro- CLEAR [PRGM I 

[GToIGo to. Used gram memory to Clears all instruc-
with 0 , [[), 0 designated label and tions in program 
through 9, or CD . begin subroutine memory and resets 
From the keyboard: execution (page calculator to line 
causes calculator to 126). 000 (page 84). 

12 



I PSE I Pause. Halts occupied program skips one line in 

program execution memory (page program memory 

for about one sec- 126). before resuming 

ond to display con- ~Setflag. 
execution (page 

tents of X-register, Followed by flag 
120). 

then resumes designator (0, 1, 2, 
execution (page or 3) sets flag true 
65). (page 120). 

I RIS I Run/stop. @£) Clear flag. Ix~Yllx>YI ~lx=YI 

Begins program Followed by flag I X<O I I x >O II x .. o II x=o I 
execution from designator (0, 1, 2, 
current line number 

or 3) clears flag Conditionals. Each 
in program memory. tests value in X-
Stops execution if (page 120). 

register against ° or 
program is running 

~ Is flag true? value in Y -register 
(page 62). 

Followed by flag as indicated. If true, 
designator (0, 1, 2, calculator executes 

I RTN I Return . or 3) , tests design- instruction in next 
Causes calculator ated flag. Ifflag is set line of program 
to return from any (true) the calculator memory. If false , 
line in occupied pro- executes the instruc- calculator skips 
gram memory to line tion in the next line of one line in program 
000, or from subrou- program memory. If memory before 
tine to appropriate flag is cleared resuming execution 
line elsewhere in (false) , calculator (page 108). 
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Section 1 

Meet the HP-34C 

Congratulations! 

Your HP-34C Programmable Scientific Calculator with Continuous 
Memory is a truly unique and versatile calculating instrument. Using the 
Hewlett-Packard RPN logic system, your calculator can easily slice 
through the most difficult calculations with ease. It is without parallel: 

As a scientific calculator. The HP-34C features a multiple-entry 
keyboard with each of the keys controlling up to four separate operations , 
ensuring maximum computing power. 

As a problem-solving machine. Following step-by-step instructions in 
the HP-34C Applications books, you can key in programs from the 
areas of mathematics, engineering, statistics, surveying, and other fields 
and begin using your calculator. Immediately. 

As a personal programmable calculator. The HP-34C is so easy to 
program and use that it requires no prior programming experience or 
knowledge of mysterious programming languages. Yet even computer 
experts can appreciate the calculator's programming features: 

• Continuous Memory, allowing programs and data to be remem­
bered by the calculator-even when the power switch is off. 

• Automatic Memory Allocation: The basic 70 lines of program 
memory plus 21 storage registers reallocates in 7 -line increments 
to as many as 210 lines of program memory plus 1 storage 
register-automatically-as needed . 

• Fully merged prefix and function keys that mean more program­
ming power per line . 

• Easy-to-use editing features for correcting and modifying pro­
grams. 

• Conditional and unconditional branching. 

14 
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• Six levels of subroutines, 4 flags, 12 easily accessed and reusable 
labels . 

• Direct or indirect storage , recall , branching, and subroutine calls. 

• Powerful root-finding and numerical integration operations using 
the ISOLVEI and [ill keys. 

And in addition , the HP-34C can be operated from its rechargeable 
battery pack for complete portability, anywhere . 

If you are new to HP calculators and their RPN logic system, you may 
want to carefully work through Solving Problems With Your Hewlett­
Packard Calculator before consulting this handbook . Even if you 
already own another HP calculator, you may find some new features in 
the problem-solving book. 

Now let ' s take a closer look at your calculator to see how easy it is to 
use, whether we solve a problem manually or use its programming power 
to solve the problem automatically. 

Manual Problem Solving 

Before continuing, you should be comfortable solving problems 
manually. If not , refer to the Getting Started section of Solving Problems 
With Your Hewlett-Packard Calculator. 

Ready? Slide the OFF-ON switch to ... ON and be sure that the 
PRGM-RUN switch is in the "'RUN position. Now press ITllI!Kl4 
to be sure your HP-34C's display setting matches the setting used in the 
following pages. * 

To see the close relationship between manual and programmed calcula­
tions, let's first calculate the solution to a problem. Then we'll use a 
program to calculate the solution to the same problem and others like it. 

If you were to calculate the surface area of a sphere, you would use the 
formula A = 7Td2 where: 

• The display setting used with examples in this handbook is always ~ 4 unless 
otherwise indicated. 
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A is the surface area of the sphere. 

d is the diameter of the sphere. 

7r is the value of pi, 3.141592654 

Example: Ganymede, one of Jupiter's 
12 moons, has a diameter of 3,200 
miles . You can use the calculator to 
manually compute the surface area of 
Ganymede. Merely press the following 
keys in order. (Be sure the PRGM-RUN 
switch is in the ..:J RUN position.) 

Keystrokes 

3200 
[]J~ 
CEJ0 
o 

Display 

3,200. 
10,240,000.00 
3.1416 
32,169,908.78 

Diameter of Ganymede. 
Square of the diameter. 
The quantity 7r. 

Surface area of Ganymede in 
square miles. 

Programmed Problem Solving 
After calculating the surface area of Ganymede, suppose you decided 
you want to calculate the surface area of each moon. You could repeat 
the procedure you used for Ganymede 12 times, using a different diam­
eter d each time. However, an easier and faster method is to create a 
program that will calculate the surface area of any sphere from its 
diameter rather than pressing all the keys for each moon. 

To calculate the area of a sphere using a program , you first write the 
program, then you key the program into the calculator, and finally you 
run the program to calculate each answer. 
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Writing the Program. You have already written it! A program is little 
more than the series of keystrokes you would execute to calculate the 
solution manually. Two additional operations, a label and a return, are 
used to define the beginning and end of the program . 

Loading the Program. To load the keystrokes of the program into the 
calculator: 

I. Slide the PRGM-RUN switch to PRGM ~ (program) . 

2. Press CD CLEAR I PRGM I to clear program memory. 

3. Press the following keys in order. (When you are loading a 
program, the display gives you information that you will find 
useful later, but which you can ignore for now.) 

Keystrokes Display 

01LBLI0 001- 25, 13, 11 Defines the beginning of the 
program. 

(!)~ 002- 15 3 These are the same keys you 
00 003- 25 73 press to solve the problem 
0 004- 61 manually. 
01RTNI 005- 25 12 Defines the end of the 

program. 

The calculator will now remember this keystroke sequence. 

Running the Program. To run the program to find the area of any sphere 
from its diameter: 

I. Slide the PRGM-RUN switch to "'RUN 

2. Key in the value of the diameter. 

3. Press 0 to run the program . 

When you press 0, the sequence of keystrokes you loaded is automat­
ically executed by the calculator, giving you the same answer you would 
have obtained manually. 
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For example , to calculate the surface area of Ganymede with a diameter 
of 3,200 miles: 

Keystrokes 

3200 

o 

Display 

3,200. 
32,169,908.78 Square miles . 

With the program you have loaded, you can now calculate the surface 
area of any of Jupiter 's moons-in fact , of any sphere-using its 
diameter. Leave the calculator in RUN mode and key in the diameter of 
each sphere for which you want the surface area, then press 0 . 

For example , compute the surface area of Jupiter's moon 10, with a 
diameter of 2,3 10 miles. 

Keystrokes 

2310 0 
Display 

16,763,852.56 Square miles. 

Now compute the surface area of the moons Europa , diameter 1,950 
miles, and Callisto, diameter 3,220 miles . 

Keystrokes 

1950 0 

3220 0 

Display 

11 ,945,906.07 

32,573,289.27 

Area of Europa in square 
miles. 
Area of Callisto in square 
miles. 

Programming is that easy! The calculator remembers a series of key­
strokes and then executes them whenever you wish. In fact , your HP-34C 
can remember up to 210 separate operations (and many more keystrokes , 
since many operations require two or three keystrokes). 
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What Continuous Memory Means to You 
Your calculator contains Continuous Memory-one of the most ad­
vanced memory systems available in a scientific calculator. Continuous 
Memory means the program memory , all 21 storage registers , and the 
display mode stay " on" when your calculator is turned off. You can 
store your favorite program (or programs) for days or weeks! 

Continuous Memory is especially convenient when you want to retain 
data, save battery life , or customize your calculator (e.g., if you use 
20% of your programs in 80% of your calculations.) You save consider­
able time because you don't have to key in those common programs again 
and again-they are stored in your calculator . Continuous Memory 
reduces human entry errors too; fewer keystrokes mean fewer chances 
of making inadvertent errors. Perhaps the most important advantage of 
Continuous Memory is that it enables you to customize or personalize 
your calculator. The easiest way to customize your calculator is to make a 
list of the problems you encounter most frequently, rate them in order of 
priority, then write and save the specialized programs for those pro­
blems . Whenever you encounter a repetitive problem set, you just write 
the program once, then use it at different times. You can even preserve 
one or two favorite programs in the calculator. 

Besides saving programs, Continuous Memory lets you save data in 
up to 21 storage registers, depending on current program memory/data 
storage allocation. Constants , accumulations, and intermediate answers 
can be retrieved whenever you need them. And because display mode 
is also saved in Continuous Memory, your HP-34C " wakes up" in 
whatever (£iK] , ~ , or )ENG) setting you last used. 

Continuous Memory helps save battery li fe because you don ' t have to 
keep the calculator turned on to save programs or data between calcu­
lations. And if your calculator is left off, Continuous Memory can store 
your programs and data for I month or longer. When you do use your 
calculator, keying in fewer programs means less time that the display 
is on-hence, less battery drain . 
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Specific Features of the HP-34C 

Most of the features found on the HP-34C are discu~sed in Solving 
Problems With Your Hewlett-Packard Calculator. However, several 
features unique to the HP-34C (or new to HP calcu lators) are discussed 
in the following pages. 

Keyboard Operation 
Most keys on the HP-34C keyboard perform three or four functions . One 
function is indicated by the symbol on the horizontal key face , while 
another is printed in black on the slanted key face. A third function is 
indicated by the gold symbol printed above the key. On keys designed 
with four functions, the last function is indicated by the appropriate 
blue symbol, also printed above the key. 

To select the function on the horizontal face of a key, press the key. 

To select the function printed in black on the slanted face of a key, press 
the black prefix key m, then press the function key. 

To select the function printed in gold above a key , press the gold prefix 
key CD , then press the function key. 

To select the function printed in blue above a key, press the blue prefix 
key 00 , then press the function key. 

20 

To execute this function, 
press CD @ . 

To execute this function, 
press m~. 

To execute this function, 
simply press 3. 

To execute this function , 

press m rl:l. 
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Notice that for all four-function keys except Ei!ii, the function 
printed in gold is above and to the left of the key and the function printed 
in blue is above and to the right of the key. 

Storage Registers and Program Memory 
In addition to the four-register stack and the LAST X register, your 
HP-34C features a shared program and data storage memory that is 
controlled automatically. The HP-34C's basic program memory/data 
storage allocation is 70 lines of program memory and 20 data storage 
registers , plus the I-register. According to your programming needs, 
one or more of the data storage registers can be automatically exchanged 
for seven lines each of program memory. And, by pressing [ID IMEMI 
your HP-34C will even tell you the current program memory storage 
register allocation at any time! We will cover this important subject in 
detail when we discuss programming. 

Storing and Recalling Numbers. Your HP-34C's twenty data storage 
registers are denoted Ro through Rg and R.o through R:g (plus the I-regis­
ter , which we'll cover later) . As you learned in Solving Problems With 
Your Hewlett-Packard Calculator, a copy of the number in the displayed 
X-register can be stored in registers Ro through Rg by pressing I STO I 
(store) and the number key of the register address (0-9). A copy of a 
number in any register Ro through Rg can be recalled to the displayed 
X-register by pressing IRCL I (recall) and the number key of the register 
address (0-9). Notice, however, that store or recall operations involving 
registers R.o through R.g use an additional keystroke, G] , to correspond 
to the decimal point in these register names. For example, to store a 
copy of 7T in register R. 5: 

Keystrokes 

m~ 
ISTolG] 5 

Display 

3.1416 
3.1416 A copy of 7T is now stored in 

R.5 · 
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To recall a copy of 7T from R.s : 

Keystrokes 

ICLXI 
IRCLIG] 5 

Display 

0.0000 
3.1416 

Storage Register Arithmetic. Registers Ro through Rg in your HP-34C 
are used for the direct storage register arithmetic operations described in 
Solving Problems With Your Hewlett-Packard Calculator . However, all 
storage registers (Ro through Rg, R.o through R.g, and I) can be used to 
perform indirect storage register arithmetic (we'll cover this subject later, 
in section 7). 

Number Alteration Keys 
Besides I CHS I, your HP-34C has three keys provided for altering 
numbers: IABSI, OEIJ, and IFRACI. 

Absolute Value 

Some calculations require the absolute value, or magnitude, of a number . 
To obtain the absolute value of the number in the displayed X-register, 
press [EJfoliowed by the IABsl(absolute value) key . For example, to 
find the absolute value of -3. 

Keystrokes 

3 ICHSI 
[EJ I ABSI 

Display 

-3. 
3.0000 

Integer Portion of a Number 

To extract and display the integer portion of a number, press the [EJ 
prefix key followed by the OEIJ(integer) key. For example, to display 
only the integer portion of the number 111.222. 
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Keystrokes 

111.222 

CEJ[Iill 

333 .444 I cHsl 

CEJ[Iill 

Display 

111.222 
111.0000 

-333.444 
-333.0000 

Only the integer portion 
remains. 

Again, only the integer 
portion remains. 

When CEJ [Iill is pressed, the fractional portion of the number is re­
placed by zero . The sign is unaffected . The original number, of course, 
is preserved in the LAST X register. 

-333.4440 The original number. 

Fractional Portion of a Number 

To extract and display only the fractional portion of a number, press the 
CEJ prefix key followed by the I FRAC I (fraction) key. For example, to 
see the fractional portion of 555.666. 

555 .666 
CEJIFRAC I 

777. 888 I CHS I 
CEJ IFRAC I 

555.666 
0.6660 

-777.888 
-0.8880 

Only the fractional portion 
of the number remains. 

Again, only the fractional 
portion remains . 

When the CEJ I FRAC I is pressed, the integer portion of the number is 
replaced by zero . The sign is unaffected. The original number is pre­
served in the LAST X register. 

-777.8880 
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Mathematical Functions 

Factorial 

When the number in the X-register is a nonnegative integer n , pressing 
@Jgives you the factorial of n , which is denoted n! and defined as the 
product of the integers from 1 to n . This function enables you to quickly 
and easily solve permutations and combinations . 

Example: Willie's Widget Works 
wants a photograph of its product line 
for advertising. How many different 
ways can the photographer arrange their 
eight widget models? 

Solution: The number of arrangements is given by 

8! = 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1 

Keystrokes 

80@J 

Display 

40,320.0000 The photographer can ar­
range the widgets 40,320 
different ways. 

Example: The photographer looks through her viewfinder and decides 
that she can show only five widgets if her camera is to capture the 
intricate details of the widgets on film. How many different sets of five 
widgets can she select from the eight? 

Solution: The number of sets is given by 

8! 
(8 - 5)! 5! 
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Keystrokes 

8[EJ@) 
8 IENTERt] 

58 
[EJ@) 
5[EJ@) 
o 
GJ 

Gamma Function 

Display 

40,320.0000 
8.0000 
3.0000 
6.0000 
120.0000 
720.0000 
56.0000 The photographer can select 

56 different sets of five 
widgets. 

The @) key can also be used* to calculate the Gamma function , 
denoted by f(x), which occurs in certain problems in advanced 
mathematics and statistics. Pressing @)gives you f(x + I). To calcu­
late the Gamma function of any number, therefore , subtract I from the 
number, then with the result in the X-register, press [EJ @). 

Example: Calculate f(2.7). 

Keystrokes Display 

2.7 2.7 
IENTERt] I 8 1.7000 
[EJ@) 1.5447 

Example: Calculate f( -2.7). 

Keystrokes 

2.7 ICHS] 
IENmlt] 1 G 
[EJ@) 

Display 

-2.7 
-3.7000 
-0.9311 

Key in number. 
Subtract 1. 
f(2.7). 

Key in number. 
Subtract 1. 
f(-2.7). 

• The ~key can be used for both the factorial and Gamma functions because whenx is a 
nonnegative integer n , r(x + 1) = r(n + 1) = n!. The Gamma function can be regarded as 
a generalization of the factorial function, since the number in the X-register is not limited to 
nonnegative integers. Conversely, the factorial function can be regarded as a special case of 
the Gamma function. 
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Since r(x) is not defined when x is a negative integer or 0, r(x + I), 
the value returned by ~, is not defined when x is a negative integer. 
As x approaches these values , the magnitude of r(x + I) increases 
without limit. Since the largest number your HP-34C can calculate 
is 9 .999999999 x 1099 , if you press [B ~with a negative integer 
in the X-register the calculator will display the overflow indication 
-9.99999999. Although f(x + I) as x approaches a negative integer 
may be positive or negative, depending on the value of x, the calculator 
always displays a minus sign in the overflow display when x is a 
negative integer. This differentiates the value from the overflow display 
9.999999 99 for very large positive values of x, at which r(x) increases 
without limit but is always positive . 

Percent Difference 

The 1[,% 1 operation gives you the percent difference-that is , the 
relative increase or decrease-between two numbers. To find the per­
cent difference: 

I . Key in the base number (typically , the number that occurs first in 
time). 

2. Press IEHTBI+I. 

3. Key in the second number. 

4. Press 01[,% I. 

The formula used is: ~% - 100(x - y) 
y 

Using the above order of entry, a positive result signifies an increase, 
while a negative result signifies a decrease . 
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Example: Silas Silversaver's coin 
collection was appraised in 1974 at 
$475. An appraisal in 1979 valued the 
collection at $735 . By what percent did 
the value of the collection increase from 
1974 to 1979? 

Keystrokes 

475 1 ENTER. 1 
735 01.6%1 

Display 

475.0000 
54.7368 

Statistical Functions 

Accumulations 

Percent increase . 

Pressing the ~ key computes certain important sums and products of 
the values in the X- and Y-registers. The results are automatically 
accumulated in storage registers Ro through R5 . Before you start to 
calculate accumulations with a new set of x and y values, you should 
first clear these registers by pressing ITl CLEAR []J. Then , do the 
following for each pair of x and y values in your data: 

I. Key the y value into the X-register. 

2. Press' ENTER.' to raise the y value into the Y -register. 

3. Key the x value into the X-register. 

4. Press ITl~. 
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If your statistics problem involves only one variable (x) instead of two 
(x and y), the procedure is similar. First clear statistical storage 
registers Ro through R5 . In addition, if the contents of the Y -register are 
not zero , you should clear the Y -register also. (A nonzero number in the 
Y -register during one-variable calculations of s, r , L.R., or y may 
result in a display of Error 3 .) Pressing ITl CLEAR I REG I will clear 
registers Ro through R5 , but will also clear registers R6 through R9 , R.o 
through R. 9 , and I. Therefore, if there are numbers stored in these other 
registers that you want to save, you should press the keys 
ITl CLEAR W instead of ITl CLEAR I REG I. After clearing the 
registers , do the following for each value of x in your data: 

1. Key the number into the X-register. 

2. Press ITl [EJ . 

Each time you press ITl [EJ , the following operations are performed: 

1. The number in the X-register is added to the contents of storage 
register R I . 

2. The square of the number in the X-register is added to the contents 
of storage register Rz. 

3. The number in the Y-register is added to the contents of storage 
register R3 . 

4. The square of the number in the Y -register is added to the contents 
of storage register R • . 

5. The number in the Y-register is multiplied by the number in the 
X-register, and the product is added to the contents of storage 
register R5 . 

6. The number 1 is added to the contents of storage register Ro. The 
result-the number of (x,y) data pairs accumulated so far­
is copied into the displayed X-register. 

After you press ITl [EJ , the number previously in the X-register is 
placed in the LAST X register. The number previously in the Y -register 
is not changed . 
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To summarize, this is where the stat istical accumulations are stored 
inside your calculator: 

Register Contents 

Ro n : number of data pairs accumulated. 
R, ~x: summation of x values. 

R2 ~X2: summation of squares of x values. 

R3 ~y: summation of y values. 
R. ~y2: summation of squares of y values. 
R5 ~xy: summation of products of x values and y values. 

Some sets of data consist of x or y values that all differ from some 
number by a comparatively small amount. You can maximize the pre­
cision of any statistical calculation involving such data by entering into 
the calculator only the differences between each value and a number 
approximating the average of the values. When you do this, this number 
must be added to the result of calculating X, y, or the y-intercept of 
L.R . For example, if your x values consist of 665999 , 666000 , and 
66600 I , you should enter the data as -1 , 0 , and I . If afterwards you 
calculate x, add 666000 to the answer. In some cases the calculator 
cannot compute s , r , L.R ., or y with data values that are too close to 
each other, and if you attempt to do so the calcul ator will display 
Error 3 . This will not happen , however, if you normalize the data as 
described above . 

Note: Unlike storage register arithmetic, the ~ and ~ 
operations allow overflow to occur in storage registers Ro 
through R5 without indicating Error 1 in the display. (i.e., 
when executing ~or ~would result in an overflow in any 
statistics register , 9.999999999 x 10·· is placed in that regis­
ter without interrupting normal operation .) 

To use any of the accumulations, you can reca ll the contents of the 
desired storage register into the displayed X-register by pressing 
I RCL I fo llowed by the number of the register. If this is done immedi­
ately after pressing m ~ (or []]~ ) , the accumulation recalled is 
written over the number of data pair entries (n ) in the display. 
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If you want to use both ~ and ~y, press I RCl I[JJ ~. This simultane­
ously copies ~x from RI into the displayed X-register and copies ~y 
from R3 into the Y -register. If this is done immediately after pressing 
[JJ~ , OO(B, IClXI, or 1ENT6l+1, the number in the Y-register is first 
lifted into the Z-register. Otherwise, the numbers in the X- and Y­
registers are first lifted into the Z- and T-registers, respectively. 

Example: Find ~x, ~X2, ~y, ~y2, and ~xy for the paired values of x and 
y listed below . 

y 

I 
7 

I 
5 

I 
9 

x 5 3 8 

Keystrokes Display 

[JJ CLEAR [IJ 0.0000 Clear statistical storage 
registers. (Display shown 
assumes no results remain 
from previous calculations.) 

7 I ENT6l+ I 7.0000 
5 [JJ~ 1.0000 First pair is accumulated; 

n = 1. 
5 I ENT6l+ I 5.0000 
3 [JJ~ 2.0000 Second pair is accumulated; 

n = 2. 
9 I ENT6l+ I 9.0000 
8 [JJ ~ 3.0000 Third pair is accumulated; 

n = 3. 
lRclll 16.0000 Sum of x values from 

register RI. 
IRCLI2 98.0000 Sum of squares of x values 

from register R2 • 

IRCLI3 21.0000 Sum of y values from 
register R3. 

IRCLI4 155.0000 Sum of squares of y values 
from register R4 • 

IRCll5 122.0000 Sum of products of x and y 
values from register R5 • 

IRCllO 3.0000 Number of entries (n = 3) 
from register Ro. 
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Deleting and Correcting Data 

If you key in an incorrect value and have not yet pressed OJ~, 

press ICLX) and key in the correct value. 

If you want to change one of the values, or if you discover after pressing 
OJ ~ that one of the values was erroneous, you can correct the 
accumulations by using the ~ (summation minus) key as follows: 

1. Key the incorrect data pair into the X- and Y-registers . (You can 
use I LSTX) to return a single incorrect data value to the displayed 
X-register.) 

2. Press [[) ~ to delete the incorrect data . 

3. Key in the correct values for x and y . If one value of an (x,y) data 
pair is incorrect , you must delete and reenter both values . 

4. Press OJ~. 

For example, if the last data pair (8 ,9) in the previous example should 
have been (8,6), you could correct the accumulation as follows: 

Keystrokes Display 

9 IENTER+I 9.0000 Incorrect y value is entered 
again . 

8 8. Correct x value is entered 
again. 

[[)~ 2.0000 Numbered of entries (n) is 
now two . 

6 IENTER+) 6.0000 Correct y value is entered. 
8 8. X value is entered again . 
OJ~ 3.0000 Number of entries is again 

three . 
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Mean 

Note: Although [[) ~can be used to delete an erroneous 
(x, y) pair, it will not delete any rounding errors that may 
have occured when that pair was added into accumulating 
registers R, through Rs. Consequently , subsequent results 
may be different than they would have been if the erroneous 
pair (x,y) had not been entered via [IJ (gland then deleted 
via [[) ~ However, the difference will not be serious 
unless the erroneous pair (x,y) have a magnitude that is 
enormous compared with the correct pair; and in such a case 
it may be wise to start over again and re-enter the data again 
(and more carefully!). 

Pressing CIl computes the arithmetic mean (average) of x and y values 
accumulated in registers R j and R3 , respectively. 

When you press W CIl 

1. The contents of the stack regi sters are lifted just as they are when 
you press I RCL I [IJ (gl , as desc ribed on page 30. 

2. The mean of the x values GX) is calculated using the data accumu­
lated in registers R, (~x) and Ro (n) according to the formula: 

X= 
~x 

n 

The resultant value for X appears in the displayed X-register. 

3. The mean of the y values (y) i s calculated using the data accumu­
lated in registers R3 (Xy) and Ro (n) according to the formula: 

y = ~y 
n 

The resultant value for y is available in the Y-register of the stack. 
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Example: Below is a chart of daily high 
and low temperatures for a winter week 
in Fairbanks , Alaska. What are the aver­
age high and low temperatures for the 
week selected? 

Sun Mon Tues Wed Thurs Fri Sat 
High 6 11 14 12 5 -2 -9 

Low -22 -17 -15 -9 -24 -29 -35 

Keystrokes Display 

lJ] CLEAR [IJ 0.0000 Accumulation registers 
cleared. (Display shown 
assumes no results remain 
from previous calculations.) 

6 [ENTERt122 22. 
ICHSI lJ] ~ 1.0000 Number of data pairs (n) is 

now I . 
II [ENTERt117 17. 
[cHsl lJ] ~ 2.0000 Number of data pairs (n) is 

now 2. 
14 [ENTERtl 15 15. 
[cHsl lJ] ~ 3.0000 
12 [ENTERt19 9. 
[cHsl lJ] ~ 4.0000 
5 [ENTERtl 24 24. 
[cHsl lJ] ~ 5.0000 
2 [CHS J( ENTERtl -2.0000 
29 [cHsl lJ] ~ 6.0000 
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Keystrokes 

9 I CHS I IENTERt I 
35 ICHSI OJ ~ 

Standard Deviation 

Display 

-9.0000 
7.0000 

-21.5714 
5.2857 

Number of data pairs (n) is 
now 7. 
A verage low temperature . 
A verage high temperature. 

Pressing 0 o computes the standard deviation (a measure of disper­
sion around the mean) of the accumulated data. The formulas used by the 
HP-34C to compute sx, the standard deviation of the accumulated x 
values, ands y , the standard deviation of the accumulatedy values, are: 

s = "'\. / nly2 - (ly)2 
Y V n(n-l) 

These formulas give the best estimates of the population standard 
deviations from the sample data. Consequently , the standard devia­
tion given by these formulas is termed by convention the sample 
standard deviation. 

When you press 0 0: 

I. The contents of the stack registers are lifted just as they are when 
you press I RCL I OJ ~, as descri bed on page 30. 

2. The standard deviation of the x values (sx) is calculated using the 
data accumulated in registers R2 (lx 2

), Rl (lx), and Ro (n) 
according to the formula shown above. The resultant value for Sx 

appears in the displayed X-register. 

3. The standard deviation of the y values (s y) is calculated using the 
data accumulated in registers R4 (ly2), R3 (ly), and Ro (n) 

according to the formula shown above. The resultant value for Sy 

is available in the Y -register. 
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Example: Norman Numbercruncher , 
a rising young math professor at Mam­
moth University, has developed a new 
test for measuring the mathematical 
abilities of college freshmen. To eval­
uate its effectiveness, he administers 
the test to the 746 students in Calculus 
1. Exhausted after grading the tests, 
Numbercruncher decides to randomly 
select 8 of the 746 tests and estimate 
the standard deviation of all the scores from the sample of 8. The scores 
on the tests selected were 79, 94, 68 , 86 , 82, 78 , 83 , and 89 . What 
standard deviation does Numbercruncher calculate? 

Keystrokes Display 

I CLX I IENTERt I 0.0000 Clear displayed X-register 
and Y-register. 

ITJ CLEAR [I] 0.0000 Clear statistical registers 

79 ITJ [EJ 1.0000 First score is entered . Notice 
that since this problem 
involves only one variable , 
you don ' t have to enter a 
y-value into the Y-register 
using the I ENTERtl key. 

94 ITJ [EJ 2.0000 Display shows number of 
scores entered so far. 

68 ITJ[EJ 3.0000 
86 ITJ[EJ 4.0000 
82 ITJ[EJ 5.0000 
78 ITJ[EJ 6.0000 
83 ITJ[EJ 7.0000 
89 ITJ[EJ 8.0000 Last score in sample . 

00 7.8365 Standard deviation 
estimated for the 746 stu-
dents based on sample of 8. 
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When your data constitutes not just a sample of a population but rather 
all of the population , the standard deviation of the data is the true 
population standard deviation (denoted 0-) . The formula for the true 
population standard deviation differs by a factor of [(n - I )/n] 1/2 from 
the formula used for the 0function. The difference between the values 
is small, and for most applications can be ignored. Nevertheless, if you 
want to calculate the exact value of the population standard deviation for 
an entire population, you can easily do so with just a few keystrokes on 
your HP-34C. Simply add, using the ITJ!EJ key, the mean (x) of the 
data to the data and then press [B 0. The result will be the true pop­
ulation standard deviation of the original data. 

Example: Suppose the data from the previous example represented all 
the final exam scores from Numbercruncher' s seminar on transcendental 
functions. Since this is the first time Numbercruncher has given this 
seminar, he wants to calculate the standard deviation of the test scores to 
determine how good his exam was. Numbercruncher takes his calculator 
in hand, enters the data, then proceeds as follows: 

Keystrokes 

[BOO 
ITJ(g) 

linear Regression 

Display 

82.3750 
9.0000 

7.3304 

Mean of scores. 
Mean is added to data. 
Display shows nine total 
entries. 
Standard deviation for all 
scores on final exam. 

Linear regression is a statistical method for finding a straight line that 
best fits a set of data points , thus providing a relationship between two 
variables. After a group of data points has been totaled in registers Ro 
through R5 , you can calculate the coefficients of the linear equation 
y = Ax + B using the least squares method by pressing [B@. 
(Naturally, at least two data points must be in the calculator before a 
least squares line can be fitted to them.) 

To use the linear regression function on your HP-34C, first key in a 
series of data points using the ITJ !EJ key. Then press [B @ . 
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When you press !B (I[J: 

1. The contents of the stack registers are lifted just as they are when 
you press I RCL I [IJ ~, as described on page 30. 

2. The slope (A) of the least squares line of the data is calculated 
using the equation: 

A = n lxy - lx ly 
n lx2 - (lx)2 

The slope is available in the Y -register of the stack. 

3. The y-intercept (B) of the least squares line of the data is cal­
culated using the equation: 

B = ly lx2 
- lx lxy 

n lx2 - (lx? 

The y-intercept appears in the displayed X-register of the stack. 

To use the value for A or to bring it into the displayed X-register, 
simply exchange the stack contents with the Ix~yl key. 

Example: Big George Gusher, owner­
operator of the Gusher Oil Company, 
wishes to know the slope andy-intercept 
of a least squares line for the consump­
tion of motor fuel in the United States 
against time since 1945. He knows the 
data given in the following table. 
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Motor Fuel 
Demand 

(Millions of 
Barrels) 696 994 1,330 1,512 1,7502,162 2,243 2,382 2,484 

Year 1945 1950 1955 1960 1965 1970 1971 1972 1973 

Solution: Gusher could draw a plot of motor fuel demand against time 
like the one shown below. 

Demand 
(Millions of Barrels) 

2,500 

2,000 

1,500 

1,000 

500 

IIIIII 

Year 1945 1950 1955 1960 196519701975 

However, with his HP-34C , Gusher has only to key the data into the 
calculator using the key, then press (I) (I[J. 

Keystrokes 

CDCLEAR W 

696 I ENTER+ I 
1945 CDrE) 
994 I ENTER+ I 
1950 CDrE) 
1330 IENTER+ I 
1955 CDrE) 
1512 IENTER+I 
1960 CDrE) 

Display 

0.0000 

696.0000 
1.0000 
994.0000 
2.0000 
1,330.0000 
3.0000 
1,512.0000 
4.0000 

Clear statistical storage 
registers . (Display shown 
assumes no results remain 
from previous calculations.) 
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1750 I EJmRt I 1,750.0000 

1965 CD (E) 5.0000 

2162 IEJmRtl 2,162.0000 

1970 CD rEl 6.0000 

2243 IEJmRtl 2,243.0000 

1971 CDrEl 7.0000 

2382 IEJmRtl 2,382.0000 

1972 CD rEl 8.0000 

2484 I EJmRtl 2,484.0000 

1973 CD rEl 9.0000 All data pairs have been 
keyed in. 

[E]@ -118,290.6295 The y-intercept of the line. 

lu)'1 61.1612 Slope of the line . 

Linear Estimation 

With data accumulated in registers Ro through R5 , a predicted value for 
y (denoted y) can be calculated by keying in a new value for x and 
pressing [E] m . 

For example, with data intact from the previous example in registers 
Ro through R; , if Gusher wishes to predict the demand for motor fuel 
for the years 1980 and 2000, he keys in the new x value and presses 
[E]CH 

Keystrokes 

1980 mm 

2000 mm 

Display 

2,808.6264 

4,031.8512 

Predicted demand in 
millions of barrels for the 
year 1980. 

Predicted demand in 
millions of barrels for the 
year 2000. 
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Correlation Coefficient 

Both linear regression and linear estimation presume that the relationship 
between thex andy data values can be approximated , to some degree , by 
a linear function (i.e., a straight line). You can use CD (correlation 
coefficient) to detennine how closely your data " fits " a straight line. 
The correlation coefficient can range from r = + I to r = - I. At 
r = + 1, the data falls exactly onto a straight line with positive slope, 
while at r = - 1 , the data falls exactly onto a straight line with negative 
slope. At r = 0 , the data cannot be approximated at all by a straight line. 

For example, to calculate the correlation coefficient for the example 
above: 

Keystrokes 

0CD 
Display 

0.9931 

Vector Arithmetic 

The data approximates a 
straight line very closely. 

You can add or subtract vectors with your HP-34C by using ~ and 
[B in conjunction with ~and ~. 

Example: Federation starship Felicity has emerged victorious from a 
furious battle with the stars hip Thanatos from the renegade planet 
Maldek. However , its automatic pilot is kaput, and its main thrust en­
gine is locked on at 37.2 meganewtons directed along a angle of 25.2° 
from the star Ultima. Consulting the ship's star map , the navigator re­
ports a hyperspace entrance vector of 51 meganewtons at an angle of 
41.3° from Ultima. To what thrust and angle should the auxiliary engine 
be set , for Felicity to achieve alignment with the hyperspace entrance 
vector? 

Solution: The required thrust vector of the auxiliary engine is equal to 
the hyperspace entrance vector minus the thrust vector of the main 
engine. The vectors are converted to rectangular coordinates using 
ITJ EID , and their difference is calculated using ITJ ~ and [ID [B. 
This difference is recalled to the X- and Y -registers using I RCL I ITJ ~. 
Then, these rectangular coordinates of the auxiliary engine thrust vector 
are converted to polar coordinates using [ID~ . 



Keystrokes 

[IJ CLEAR [I) 

41.3 I ENTER. I 

51 [IJ ~ 

Specific Features of the HP-34C 41 

Display 

0.0000 

0.0000 

41.3000 

38.3145 

Clear statistical registers. 
(Display shown assumes no 
results remain from previous 
calculations. ) 
Ensures that trigonometric 
mode is set to degrees. 
Enter angle of hyperspace 
entrance vector into Y­
register. 
Enter magnitude of hyper­
space entrance vector into 
X-register and convert to 
rectangular coordinates. 
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Keystrokes 

0[0 

25.2 /ENTERt, 

37.2 0 ~ 

Display 

1.0000 

25.2000 

33.6596 

0.0000 

4.6549 

18.4190 

75.3613 

Rectangular coordinates of 
hyperspace entrance vector 
accumulated in registers 
RI and R3. 
Enter angle of main engine 
thrust vector into Y-register. 
Enter magnitude of main 
engine thrust vector into X­
register and convert to 
rectangular coordinates. 
Subtract rectangular coor­
dinates of main engine 
thrust vector from rectang­
ular coordinates of hyper­
space entrance vector in 
registers RI and R3 into X­
register and Y -register. 
Recall rectangular coor­
dinates of auxiliary engine 
thrust vector from registers 
RI and R3 into X-register and 
Y -register. 
Convert to polar coordi­
nates. Display shows re­
quired magnitude , in mega­
newtons, of auxiliary engine 
thrust vector. 
Required angle of auxiliary 
engine thrust vector. 





Section 3 

Simple Programming 

What Is a Program? 

A program is a sequence of keystrokes that is remembered by the 
calculator. You can execute a given program as often as you like­
typically with just one keystroke. The answer displayed at the end of 
execution is the same one you would have obtained by pressing the keys 
one at a time manually. No prior programming experience is necessary to 
learn HP-34C programming. 

Why Write Programs? 

Programs are written to save time on repetitive calculations. Once you 
have written the keystroke procedure for a particular problem and 
recorded it in the calculator, you need no longer devote attention to the 
indi vidual keystrokes that make up the procedure . You can let your 
HP-34C calculate the solution to each problem for you. And you can 
have more confidence in the answer. Why? Because once you have 
checked that your program is correctly recorded in the calculator, you 
may be sure that the calculator will execute your commands faithfully , 
without the slips you might make if you had to manually press the keys 
over and over again. The calculator performs the drudgery, leaving 
your mind free for more creative work. 

Before proceeding, let's take another look at the powerful programming 
features designed into your HP-34C: 

• An easily understood programming language. 

• Twelve labels you can use (and re-use) to designate various 
programs and portions of programs. 

• Fully merged program lines. Commands requiring multiple 
keystrokes- such as CD ~ or ISTOI [±] I-consume only 
one line of program memory. 

44 
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• Automatic Memory Allocation . Possible memory combinations 
range from 21 storage registers and 70 lines of programming to I 
storage register (the I-register) and 210 lines of programming. 
Memory conversion occurs at the rate of seven lines of program­
ming for each data storage register-automatically! 

• Decision-making capability for more sophisticated routines. 

• Easy to use editing features for correcting and modifying 
programs. 

• Six levels of subroutines and four flags to help simplify otherwise 
complicated programs. 

• Indirect storage, recall, branching, and subroutine calls to auto­
matically control data, decisions , and program control. 

• Increment/decrement counter and looping control. 

Together, these features provide you with the tools necessary to tackle 
complex problems with confidence. 

Three Calculator Modes 
Your HP-34C calculator has three operational modes: 

1. Manual run mode. 

2. Program mode. 

3. Automatic run mode. 

Manual Run Mode. The functions and operations you have learned 
about in the first part of this handbook and in Solving Problems With 
Your Hewlett-Packard Calculator are performed manually one at a 
time. These functions combined with the automatic memory stack enable 
you to calculate with ease. 

Program Mode. In program mode the functions and operations you have 
learned about are not executed but instead are recorded , in a part of the 
calculator called program memory, for later execution. To get into pro­
gram mode , simply slide the PRGM-RUN switch to PRGM mm. . All 
operations on the keyboard except the following can be recorded for 
later execution when the calculator is in program mode . 
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These operations cannot be recorded: 

ITJ CLEAR I PRGM I 
01 sST I 

01esTI 

ITJ CLEAR I PREFIX I 
IGTOl8 nnn 
010ELI 

IIJ IMEMI 

01MANTI 

I STO II ENTER. I 

You will find all of the above operations except 0 I MANT I and I STO I 

I ENTER. I useful when keying in and editing your programs.* 

Automatic Run Mode. As you have learned, the HP-34C will auto­
matically execute a list of operations when the calculator is in run mode 
if they have previously been recorded in program memory. Instead of 
pressing each key manually, the recorded operations are executed 
sequentially in automatic run mode. Typically, you press only one key 
to start the calculator at the beginning of the list. The entire list of 
recorded operations is then executed much more quickly than you could 
have executed them yourself. 

Looking at Program Memory 
As you may remember from the program you created in section I , 
the keystrokes used to calculate a solution manually are also used when 
you write a program to calculate the solution automatically. These 
keystrokes are stored in the calculator ' s program memory. When you 
slide the PROM-RUN switch to PRGM umm. you can examine the 
contents of program memory, one line at a time. Press IGTOI 8000 to 
return the calculator to the beginning of program memory. If you have 
not already done so, slide the PROM-RUN switch to PRGM umm.. The 
display should show 000-. 

Program memory consists of from 70 to 210 lines, together with a top­
of-memory marker which is the 000- you now see in your display. 
Program memory operates separately from the stack, LAST X, I, and 
available storage registers. t 

* Pressing 01 MANT Idoes nothing in program mode , but pressing §Q)IEHTeItl in either 
program or run mode will perform the self-check as instructed , and will clear the stack, 
LAST X register, and flags , reset trig mode to degrees, and reset the ca!culalor to line O()() in 
program memory. 

t "Available" storage registers refers to data storage registers that are nOI convened to 
program memory. 
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000-
001-

002-

003-

---== 
~ 

Program Memory 068-

069-
070-

~ 
~ 

208-

209-

210-

- Top-ot-Memory Marker 

- Minimum Program Line 
Allocation 

- Maximum Program Line 
Allocation 

With the PROM-RUN switch set to PRGM rum. ' the number that you 
see on the left side of the display indicates the line number of program 
memory to which the calculator is set. Press [I) CLEAR I PRaM b 

o I LBL I 0 , the first keystrokes of the Moon Surface Area program 
(refer to page 17), and the display will change to : 

Line number -- ,001,-25, 13, 11 

The calculator is now set to line 00 I of program memory , as indicated 
by the number 001 that you see on the left side of the display. The other 
numbers in the display are keycodes for the keystrokes that have been 
loaded into that line of program memory . Press [[]~. Your display 
shows: 

002- 15 3 

The number 002 on the left side of the display indicates that you are now 
at line two of the program . 

Each line of program memory can "remember" a single instruction , 
whether that instruction consists of one, two, or three keystrokes. Thus , 
one line of program memory might contain a single-keystroke instruction 
like I CHS I, while another line of program memory could contain the 
three-keystroke instruction I STO I CB 6 (adds the value in the displayed 
X-register to the contents of register number 6) . 
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But how do those numbers in the display relate to the actual keystrokes 
of program commands? This question brings us to the next step in 
mastering your HP-34C-keycodes. 

Keycodes 
Let's take another look at the program instructions we just entered . 
Press [EJ I SST I. Your display will now show the first line of the Moon 
Surface Area program: 

Line number ____ ~ , 25, 13, 11,- Keycodes 

As you know, the number code 001 appearing on the left side of the 
display designates the line number of program memory. The next digit 
pair, 25 , represents the [EJ keystroke; 13, the ~ keystroke; and 
11 , the 0 keystroke. The first digit of each pair denotes the row the 
key is located in; the second digit denotes the number of the key in the 
row. So 25 tells you that the key is in the second row on the calculator 
and that it is the fifth key in that row , or, the [EJkey. In this manner each 
key on the keyboard is represented by a two-digit keycode, except for the 
digit keys zero through nine. For convenience , these keys and their 
respective alternate functions are coded 0 through 9. Let's see an exam­
ple. Press [EJ I SST 1 once. Your HP-34C's display will now show the 
second line of the Moon Surface Area program, @) ~ : 

Line number _ 002- 15 3..- Keycodes 
L-..J L---.J 

From the above, we know that 002 is the program line number and 15 is 
the first row, fifth key , or the @) key . Because the [[) prefix key is part 
of this instruction, the 3 denotes the x 2 function which is located on the 
3 digit key. In calculator jargon, @) ~ is a " shifted function" of the 
3 key, just as the asterisk is a shifted function of a typewriter key . 

The remaining keystrokes for the Moon Surface Area program are shown 
below with their corresponding displays. Press each key in turn and 
verify the keycodes shown in the display . 

Keystrokes 

[EJ~ 
o 
[EJIRTNI 

Display 

003- 25 73 
004- 61 
005- 25 12 
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In this case, a program consisting of 10 keystrokes takes only five lines 
of program memory . 

Problems 
1. What would be the keycodes for the following operations: 

~ (ill, [[) I GAD I , CD I+H.MS I, 1 STO 1 [±) I? (Answers: 25 2; 
15 13; 14 6; 23, 51, 1) . 

2. How many lines of program memory would be required to load the 
following sections of programs? 

a. 2 IENTER+I 3 [±) . 

b. 10 ISTOI 6 IRCLI 6 0 . 

c. 100 ISTOI 1 50 ISTOI0 1 IRCLI 2 ~ 0 0 . 

(Answers: a, 4; b, 5; c , 10.) 

Clearing a Program 
The Continuous Memory feature of your calculator preserves any pro­
grams loaded into program memory even while the calculator is turned 
off. To clear program memory, turn the calculator on, slide the PRGM­
RUN switch to PRGM ~ , and press CD CLEAR 1 PRGM 1 All lines of 
program memory formerly occupied by programs you cleared using CD 
CLEAR 1 PRGM 1 are again available for storing new program instructions. 
If the programs you cleared occupied more than 70 lines of program 
memory, the lines the programs used in excess of the first 70 are auto­
matically reallocated to data storage registers . Note that if you press CD 
CLEAR IpRGMl in RUN mode, the calculator resets to line 000, but 
program memory is not cleared . 

If power to the calculator is interrupted (that is, battery failure), all 
instructions in program memory and all data in the storage registers may 
be lost. When power is restored and the unit turned on, Pr Error appears 
in the display to warn of this loss. 

Creating Your Own Program 
In Meet the HP-34C, at the beginning of this handbook , we created a 
program that calculated the surface area of a sphere, given the diameter 
of that sphere . Now let's create another program to show you how to use 
some of the other features of the HP-34C. 
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If you wanted to use your HP-34C to calculate manually the area of a 
circle using the formula A = 'TTr2 you could first key in the radius r , then 
square it by pressing (]]~. Next you would summon 'TT into the 
display by pressing 0 0. Finally you would multiply the squared 
radius and 'TT together by pressing 0. 

Remember that a program to calculate a given solution is little more 
than the keystrokes you would use to calculate that solution manually. 
Thus, to create an HP-34C program for calculating the area of any circle, 
you will want to identify the keystroke sequence used to calculate the 
area of a circle manually. 

The keystroke sequence for calculating the area of a circle according to 
the formula A = 'TT r2 are: 

You will load into program memory these keystrokes plus, normally, 
two more operations, 0 [TID 0 and 01 RTN I. 01 LBL I 0 is called 
a label address and is used to begin the program. 01 RTN I is used to end 
the program. 

Beginning a Program 

To define the beginning of a program use an 01 LBL I (label) instruction 
followed by one of the letter keys ( 0 or ~) , orby one of the digit keys 
(0 through 9). The use of labels permits you to have several different 
programs or parts of programs loaded into the calculator at any time , and 
to run them in the order you choose. 

Ending a Program 

To define the end of a program , you can use an 01 RTN I (return) 

instruction. When the calculator encounters a 1 RTN I instruction while 
executing a program, it immediately transfers execution to line 000 and 
halts (unless executed as part of a subroutine-more about subroutines 
later). 
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Note: When a running program encounters the end of 
occupied program memory, the effect is the same as if an 
[EJ I RTN I had been encountered. This means that when 
programming, if your last instruction in occupied program 
memory would be an [EJ I RTN I, it can be eliminated, saving 
you one line of memory space. 

If you want a program to halt at a certain line in memory without return­
ing to line 000, you can key in a I RIS I instruction at that line. When a 
running program encounters a I RIS I instruction in program memory , 
execution simply halts. If you switch from RUN to PRGM mode , you 
will see the next line of program memory after the I RIS I instruction . 
(Remember that the calculator returns to line 000 and halts after execut­
ing the last instruction in program memory whenever the last instruction 

is any command other than I RIS I, I GSB I, I GTO I, or a I RTN Ifrom a sub­
routine; so there is normally no need to put IRIS lat the end of the last 
program in memory to halt execution.) 

The complete program to calculate the area of any circle given its radius 
is: 

[EJILBLI0 

OO~ 
[EJ0 
o 
[EJIRTNI 

Assigns name to and defines beginning of program. 
Squares the radius. 
Summons 7r into the display. 
Multiplies r2 by 7r and displays the answer. 
Defines the end of and stops the program. 

Loading a Program 

When the calculator is set to PRGM, the functions and operations that 
are normally executed when you press the keys are not executed. Instead , 
they are stored in program memory for later execution. All keyboard 
operations except the nine iisled on page 46 can be loaded into program 
memory for later execution. 

To prepare for loading a complete program into the calculator: 

1. Slide the PRGM-RUN switch to PRGM mm.. 
2. Press CD CLEAR I PRGM Ito clear program memory of any previous 

programs. 
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You can tell that the calculator is at the top of program memory because 
the digits 000 appear at the left of the display . The digits appearing at the 
left of the display when the calculator is in PRGM mode always indicate 
the program memory line number being shown at the time . 

The keys you press to load the program calculating the area of a circle are: 

Press the first key, [8, of the program. 

Keystrokes 

[8 

Display 

000-

You can see that the display of program memory has not changed. Now 
press the second and third keys of the program. 

Keystrokes 

ILBLI 

o 

Display 

000-
001-25, 13, 11 

When a new program memory line number appears on the left of the 
display, it indicates that a complete operation has been loaded into that 
line. As you can see from the keycodes present on the right side of the 
display, the complete operation is [8 (key code 25), 1 LBL I(keycode 13), 
o (keycode 11). Nothing is loaded into program memory until a com­
plete operation (whether one, two, or three keystrokes) has been 
specified . 

Now load the remainder of the program by pressing the following keys. 
Observe the program memory line numbers and keycodes . 

Keystrokes 

[!]~ 
[80 
o 
[81 RTNI 

Display 

002- 15 3 
003- 25 73 
004- 61 
005- 25 12 
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The program for solving the area of a circle given its radius is now loaded 
into your HP-34C's program memory. Notice that nothing could be 
loaded into the top-of-memory marker, line 000. 

Running a Program 
Programs are executed in automatic run mode. With the PRGM-RUN 
switch in "'RUN position , key in any data that is required, and press 
the letter key ( 0 or W), that labels your program. 

For example, to use the program now in the calculator to calculate areas 
of circles with radii of 3 inches, 6 meters, and 9 miles: 

First, slide the PRGM-RUN switch to "'RUN . 

Keystrokes 

30 
60 
90 

Display 

28.2743 
113.0973 
254.4690 

Square inches . 
Square meters. 
Square miles. 

Now let 's see how the HP-34C executed this program. 

Searching for a Label 

When you switched the PRGM-RUN sw itch to RUN , the calculator was 
set at line 005 of program memory, the last line you had filled with an 
instruction when you were loading the program. When you pressed the 
o key , the calculator began searching sequentially downward through 
program memory , beginning with line 005, for a I LBL I 0 instruction. 
When the calculator searches, it does not execute instructions. 

Because line 005 did not contain the 01 LBL I 0 instruction , and no 
further lines of program memory were occupied, your HP-34C returned 
to line 000 and resumed searching downward through program memory. 
When the calculator found the 0 (I[g 0 instruction in line 001 it 
then began executing your program. 
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Executing Instructions 

The calculator executes instructions in exactly the order you keyed them 
in , performing the []J ~operation in line 002 first, then [B 0in line 
003, etc., until it executes an [BIRTNI instruction, a IRlsl(run/stop) 

instruction, or encounters the end of occupied program memory. Since 
there is an [B I RTN I instruction in line 005 , execution returns to line 000 
and halts . The calculator then displays the contents of the X-register. 

It is normally best to use 00r (]]to define the beginning of a program 
and to save 0 through 9 for subroutine labels (more on subroutines later) . 
Why? Labels 0 and (]] require only one keystroke to begin execu­
tion, as in our area of a circle program. But if you have several short 
programs to key into your HP-34C you can use labels 0 through 9 to 
address some of the individual programs. Using numerical labels 
requires an additional keystroke, IGsal, for program execution. To 
illustrate, let's load and execute our area of a circle program using 0 for 
the label. 

Slide the PRGM-RUN switch to PRGM mm. . 

Keystrokes Display 

CD CLEAR I PRGM I 000-
[BlLallO 001-25,13, 0 
[]J~ 002- 15 3 
[B0 003- 25 73 

0 004- 61 
[BIRTNI 005- 25 12 

Slide the PRGM-RUN switch back to ..uJRUN. 

Now , execute the program using the example from page 53. This time , 
because of our label change, press I Gsal 0 instead of 0. 

Keystrokes 

3 IGsalO 
6 IGsal 0 
9 IGsal 0 

Display 

28.2743 
113.0973 
254.4690 
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If you try to execute a label ( I LBL I) that is not contained as an instruction 
in program memory, the HP- 34C will display Error 4 . For example, if 
your calculator contains only the program fo r area of a circle that you just 
keyed in , you can cause an Error 4 condition by simply pressing a letter 
key. 

Keystrokes 

[[] 

Display 

Error 4 

To clear the error message from the displ ay , press I CLX 1 or any other key. 
The calculator remains set at the current line of program memory. 

Automatic Memory Allocation 
Converting Storage Registers to Program Memory 

The automatic memory allocation designed into your HP-34C gives you 
increased versatility by converting storage registers to lines of program 
memory only as needed . You begin programming with 70 lines of pro­
gram memory and 20 storage registers (plus the I-register, described in 
section 7). With 0 to 70 instructions in program memory , the allocation 
looks like this: 

STORAGE REGISTERS PROGRAM MEMORY 

Permanent Shared Shared 

IC] R. c=Jn R.oC] 
Rl0~x R.1D 
R2 0~X2 R.2D 
R30~Y R.3D 
R.O~Y2 R.D 
R5 0~XY R.5D 
RsO R.sD 
R70 R.7D 
ReO R.eD 
RgO R.gD 

Permanent 

000-

001-

002-

~ -
068-

069-

070-

Shared 
-none-
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When you key in the 7l't line of programming, storage regi ster R n 
converts to 7 lines of additional program memory. Now the memory 
a llocat ion looks like this: 

STORAGE REGISTERS PROGRAM MEMORY 
Permanent Shared Shared Permanent 

IDRaDn R.ac=J 000-

R,D };x R.,O 001-lnstruction 

R2D };x 2 R.2O 002-lnstruction 

R3D};y R.30 
R4Dly2 R.40 068-lnstruction c: 

II) 

RsD lxy R.sO 069-lnstruction 
CD 
Q. 

RsD 0 070-lnstruction R.s 
Shared 

R7D R.7 0 071-lnstruction 

RaD R.a O 072-

RgD r--' 073-R I I .g L __ ..1 "- II> 
074- c: 

II> 

075-
;: 
tT 
iD 

076-

on-
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When you record a full 210 lines of program memory , the calculator's 
memory registers look like this: 

STORAGE REGISTERS 
Permanent Shared 

r----, 
I I L ___ -I 

· · r- ""! -.., 
I I Rg I..._ -; _....J 

· r----, 
R. g L ___ J 

PROGRAM MEMORY 
Permanent 

000-

001-1 nstruction 

002-1 nstruction 

068-lnstruction 

069-lnstruction 

070-1 nstruction 

Shared 

071-lnstruction 

072-lnstruction 

209-lnstruction 

210-lnstruction 

Program memory is separate from the four stack registers and the LAST 
X register. Notice that instead of the original 21 storage registers (Ro 
through Rg , R.o through R g , and I) we now have just the non-convertable 
I-register. What happened to storage registers Ro through Rg and R.o 
through R.g? They were converted to program memory at the rate of 
seven lines per register . The following table shows the allocation of the 
lines of program memory to their respective storage registers. 
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R.g 071-077 Rg 141-147 
R.s 078-084 Rs 148-154 
R.7 085-091 R7 155-161 
R.6 092-098 R6 162-168 
R.5 099-105 R5 169-175 
R.4 106-112 R4 176-182 
R.3 113-119 R3 183-189 
R.2 120-126 R2 190-196 
R.l 127-133 Rl 197-203 
Ro 134-140 Ro 204-210 

When all 210 lines of program memory are occupied, attempting to 
insert an additional program instruction anywhere in memory results 
only in Error 4 appearing in the display. The additional instruction will 
be ignored and none of the original 210 lines will be lost. 

As you can see, each time currently available programming space is 
filled, keying in another command automatically converts the next 
remaining storage register to seven more lines of program memory. For 
example, filling the first 77 lines and then keying a command into line 78 
converts register R.s to 7 more lines of program memory (lines 78-84) , 
and so on. 

Note: Your HP-34C converts storage registers to program 
lines in reverse numerical order, from R.9 to R.o and then from 
Rg to Ro. For this reason it is good practice to program your 
I STO I and I RCL I operations using data registers in the oppo­
site order; that is, beginning with register Ro. This procedure 
helps avoid accidentally programming I STO I and I RCL I for 
data registers which have been converted to lines of program 
memory. Remember also that the calculator does not retain 
data previously stored in registers that are later converted 
to lines of program memory. 
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Converting Program Memory to Storage Registers 

Pressing CD CLEAR I PRGM lin PRGM mode converts all shared program 
memory (lines 071-210) to storage registers Ro through Rg. However , 
deleting individual lines of program memory allows you to convert 
portions of shared memory to storage registers without clearing all of 
program memory. (More on deleting lines of memory in section 4, 
Editing.) 

Using IMEMI 
The IMEMI (memory) function on your calculator describes the current 
memory allocation in or out of program mode. When you press I]J 
IMEMI the display shows both (I) the number of currently unused (avail­
able) program lines you must load before a storage register will be 
converted, and (2) , the name of the storage register which is next in 
line to be converted (R9 through R.o, Rg through Ro) . For example , if 
you press I]JIMEMI with 44 lines of program memory occupied , you 
will see the following display: 

Lines remaining to be occupied 
before the calculator automati­
cally converts a storage register 
to 7 more program lines. 

The next storage register to be 
converted. 

If you press I]JIMEMI with 173 lines of program memory occupied, you 
will see this display: 

Lines remaining to be occupied 
before the calculator automati­
cally converts a storage register 
to 7 more program lines. 

The next storage register to be 
converted. 
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If you press []JIMEMI with 205 lines of program memory occupied, you 
will see this display: 

iP-05 r- ~ 

Lines remaining to be occupied 
before all lines of program mem­
ory are occupied. 

No more storage registers can 
be converted to program mem­
ory. 

As long as you are pressing IMEMI , the memory allocation will be dis­
played. When you release the IMEMI key , the calculator returns to the 
original display. So at any time, you can find out the number of lines 
available for programming and the number of registers available for 
storing data. Because the I-register is a permanent storage register with 
special functions, it is not covered by the IMEMI operation. 

Note: Remember that the statistical functions involve 
registers Ro through Rs. If one or more of these last six 
registers are converted to lines of program memory, attempts 
to execute statistical functions will result in an Error 2 
display. 

Writing a Third Program 
To further explore the programming capabilities of your HP-34C let's 
write a third program. Suppose you want to write a program that will 
calculate the increase in volume of a spherical balloon as its diameter 
increases using the formula: 

where do is the original diameter of the balloon and d I is the new diame­
ter. If do were entered in the Y -register and d I were keyed into the 
X-register, the problem could be solved manually by pressing the keys 
shown in the left-hand column below. The program keystrokes for this 
problem are the same as the manual keystrokes. Switch the PRGM-RUN 
switch to PRGM~ and press the keys shown below. 
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Keystrokes Display 

[IJ CLEAR I PRGM I 000-

01LBLI m 001-25,13,12 

3 002- 3 

0(E) 003- 25 3 Cube the new diameter. 

Ix~YI 004- 21 
3 005- 3 
0(E) 006- 25 3 Cube the original diameter. 

G 007- 41 Subtract the cubes. 

0~ 008- 25 73 

0 009- 61 Multiply by 7r . 

6 010- 6 

G 011- 71 Divide by 6. 

01RTNI 012- 25 12 

Slide the PRGM-RUN switch to .mmRUN 

Notice that an I ENTER. I command was not included to separate the number 
3 in line 002 from the digits you will key in later. Including I ENTER. I 
after the I LBL I instruction would not cause an error in this example, but 
is not necessary . Why? When a running program executes a I LBL I 
instruction, stack lift is enabled. When a new number is then entered into 
the X-register the stack automatically lifts. Here is how this works when 
you run the above program with do entered into the Y -register and d, 
keyed into the X-register. 

Stack Registers 

001 002 003 

[T;~ ..... ' ~ ...... ........ f3fl .. ................. . 
[Z] .... ····· d

o 
.. ..... ........................ . 

IYI do « d, < ~ <~d"~ 

IX1 d, 3 d:! 

3 

If you are unsure how other operations affect the stack , see appendix E, 
Stack Lift and LAST X . 
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Example: Find the increase in volume 
of a spherical balloon if the diameter 
changes from 30 feet to 35 feet. 

Keystrokes 

30 I ElmRt I 

35 [[) 

Display 

30.0000 

8,312.1306 

Enter original diameter into 
Y. 
Key new diameter into X 
and run the program. The 
answer is displayed in cubic 
feet. 

Program Stops and Pauses 
When programming , there may be occasions when you want a program 
to halt during execution so that you can key in data. Or you may want the 
program to pause so that you can quickly view results before the program 
automatically resumes running. Two keys, I RIS I (run/stop) and I PSE I 
(pause), are used for program interruptions. 

Planned Stops During Program Execution 

The IRISI(run /stop) function can be used either as an instruction in a 
program or as an operation pressed from the keyboard. 

When pressed from the keyboard : 
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1. If a program is running , I RIS I halts program execution. 

2. If a program is stopped or not running, and the calculator is in 
RUN mode , pressing IRlslstarts the program running. Execution 
then begins with the first line of program memory following the 
IRIS I instruction. (When IRlslis pressed and held in RUN mode, 
it displays the line number and keycode of that current line­
when released, execution begins with that line.) 

You can use these features of the I RIS I instruction to stop a running 
program at points where you want to key in data . After the data has been 
keyed in, restart the program using the I RIS I key from the keyboard. 

Example: Universal Tins, a canning 
company, needs to calculate the vol­
umes of various cylindrically-shaped 
cans . Universal would also like to be 
able to record the area of the base of each 
can before the volume is calculated. 

The following program calculates the area of the base of each can and 
then stops. After you have written down the result , the program can be 
restarted to calculate the final volume. The formula used is: 

Volume = base area x height = 7rr2 X h 

The radius (r) and the height (h) of the can are keyed into the X- and 
Y-registers, respectively, before the program is run. 
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To record this program, set the PRGM-RUN switch to PRGM ~ , then 
key in the following program instructions . 

Keystrokes Display 

ITl CLEAR I PRGM I 000- Clears program memory and 
displays line 000 . 

[I]ILBlI0 001-25,13,11 

(]J~ 002- 15 3 Square the radius. 

[I]~ 003- 25 73 Place 7T' in X. 

0 004- 61 Calculate the area of the 
base . 

IRlsl 005- 74 Stop to record the area. 

0 006- 61 Calculate the final volume. 
[I]IRTN! 007- 25 12 

Set the PRGM-RUN switch to "RUN . Then use the program to 
complete the table below: 

Height 

25 
8 

Keystrokes 

25 IENroIt! 

100 

8 IENroIt! 

4.5 0 

Area of Base Volume 

Display 

25.0000 

314.1593 

7,853.9816 

8.0000 

63.6173 

508.9380 

? 
? 

? 
? 

Enter the height into the 
Y -register. 
Key the radius into the 
X-register and calculate 
area. Program stops to 
display the area. 
Volume of first can is 
calculated. 
Enter the height into the 
Y -register. 
Key the radius into the 
X-register and calculate 
area . Program stops to dis­
play the area. 
Second volume is 
calc ulated. 
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With the height in the Y -register and the radius in the X-register, pressing 
o in automatic RUN mode calculates the area of the can's base; the 
program stops at the first 1 RIS I instruction encountered. Pressing 1 RIS I 
calculates the volume of the can. Program execution then returns to 
line 000 and halts. 

Pausing During Program Execution 

An 01 PSE I instruction executed in a program interrupts program 
execution to display results momentarily before execution is resumed. 
The length of the pause is about I second, but you can use more than one 
consecutive 01 PSE I instruction to lengthen the time . 

To see how 01 PSE Ican be used in a program, we'll modify the cylinder 
volume program in the previous example . In the new program the area 
of the base will be briefly displayed before the volume is calculated. 
This example will also show how different programming approaches can 
be taken to solve the same problem. 

To key in the program , set the PRGM-RUN switch to PRGMW. . 
Press ITJ CLEAR 1 PRGM I to clear program memory and display line 
000. Then key in the following program instructions. 

Keystrokes Display 

ITJ CLEAR I PRGM I 000-
01LBLI0 001-25,13,11 
[[)~ 002- 15 3 Squares the radius in X. 
00 003- 25 73 Places 71' in X. 
0 004- 61 Calculates the area of the 

base . 
01psEI 005- 25 74 Pauses to show the base area 

for one second. 
0 006- 61 Calculates final volume of 

can. 
0IRTN) 007- 25 12 
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This program also assumes the height has been entered into the Y -register 
and the radius has been keyed into the X-register. If you have stored the 
instructions , set the PRGM-RUN switch to ...:JRUN . Now complete 
the table below using the new program. 

Hei ht 
20 
10 

Keystrokes 

20 IENTER+I 

150 

Radius 

15 
5 

Display 

20.0000 

706.8583 

Area of Base 

? 
? 

Volume 
? 
? 

Enter the height into the 
Y -register. 
Key the radius into the 
X-register and calculate. 
Area of base is displayed for 
1 second. 

14,137.1669 Program stops, displaying 
the volume. 

10.0000 

50 78.5398 

785.3982 

Unexpected Program Stops 

Enter the second height into 
Y. 
Key the radius into the 
X-register and calculate. 
Area of base is displayed for 
I second. 
Program stops, displaying 
the volume. 

At times a mistake of some kind in your program will stop program 
execution. To help you determine why the calculator stopped in the 
middle of a program, possible reasons are listed below. 

Executing W I RTN I . Unless in a subroutine, whenever W I RTN I is 
executed in a program, the calculator immediately returns to line 000 and 
halts. 
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Encountering the End of Program Memory. When the final instruc­
tion in program memory is not I GTC " 'GSB', 'RTN , or IRIS', and is not in 
a subroutine, a running program will encounter the end of occupied 
program memory, transfer immediately to line 000, and halt. 

Pressing Any Key. Pressing any key halts program execution. Be care­
ful to avoid pressing keys during program execution . The calculator has 
been designed so that program execution will not halt in the middle of a 
digit entry sequence. If you press any key while a number is being placed 
in the X-register by a running program, the entire number will be "writ­
ten" and the following line will be executed by the program before the 
calculator halts. 

When a program is halted , you can resume execution by pressing 'RIS , 

from the keyboard in RUN mode. When you press IRIS', the program 
resumes execution where it left off as though it had never stopped at all. 

Error Stops. If the calculator attempts to execute any error-causing 
operation (refer to appendix D, Error Indications) during a running 
program, execution immediately halts and the calculator displays the 
word Error and a number. To see the line number and keycode of the 
error-causing instruction , you can switch the calculator to PRGM mode. 

Overflow Calculations. Your HP-34C has been designed so that by 
looking at the display you can always tell why the calculator stops . If 
program execution stops because the result of a calculation in the X­
register is a number with a magnitude greater than 9.999999999 x 1099

, 

all 9's are displayed with appropriate sign. It is then easy to determine 
the operation that caused the overflow by switching to PRGM mode and 
identifying the keycode in the display. 

If an attempted storage register arithmetic operation would result in 
overflow in a storage register, the calculator halts and displays Error 1. 
The number in the affected storage register remains unchanged from its 
previous value . When you clear the error message, the last number in the 
display returns. 

If the result of a calculation is a number with a magnitude less than 
1.000000000 x 10-99

, zero will be substituted for that number and a 
running program will continue to execute normally. This is known as an 
underflow. 
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Labels 
The labels ( 0 , [IJ , 0-9) in your programs act as addresses-they tell 
the calculator where to begin or resume execution. When a label is 
e ncountered as part of a program , exec ution merely " fall s through" the 
label and continues on ward. For example, in the program segment shown 
below , if you press 0 , execution would begin at [EJ [LBL I 0 and con­
tinue downward through program memory , on through the [EJ [ LBL I 3 
instruction, until the [RTN I was encountered and execution returned to 
line 000 and halted. 

[EJILBLI0 

[EJ [LBLI3 

[EJ[RTNI 

L---------
Flowcharts 

When you press 0 ... exec ution 
begins here . 

No [EJ [RTN I here . .. 
so execution fall s th rough the 
[EJ ~ 3 instruction ... 

.. . and continues to the [RTN I, 
then transfers to line 000 and halts. 

At this point , we digress for a moment from our disc ussion of the calcu­
lator itself to di scuss a fund amental and extreme ly useful tool in 
programming-the flowchart . 

A fl owc hart is an outline of the way a program solves a problem. With 
2 IO possible instructions, it is quite easy to get " lost" while creating a 
long program , especially if you try to simply load the complete program 
from beg inning to end with no breaks . A fl owchart is a shorthand that can 
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help you design your program by breaking it down into smaller groups 
of instructions. It is also very useful as documentation-a road map that 
summarizes the operation of a program. 

A flowchart can be as simple or as detailed as you like. Here is a flow­
chart that shows the operations you executed to calculate the area of a 
circle according to the formula A = 71-,2. Compare the flowchart to the 
actual instructions for the program: 

( Stop. ) 
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You can see the similarities. At times, a flowchart m.ay duplicate the set 
of instructions exactly, as shown above . At other times, it may be more 
useful to have an entire group of instructions represented by a single 
block in the flowchart. For example, here is another flowchart for the 
program that calculates the area of a circle: 

C,----Sto_p ) 

Here an entire group of instructions was replaced by one block in the 
flowchart. This is a common practice, and one that makes a flowchart 
extremely useful in visualizing a complete program. 

You can see how a flowchart is drawn linearly, from the top of the page 
to the bottom. This represents the general flow of the program, from 
beginning to end. Although flowcharting symbols sometimes vary , 
throughout this handbook we have held to the convention of ovals for 
the beginning and end of a program or subroutine , and rectangles to 
represent groups of functions that take an input, process it, and yield a 
single output. We have used a diamond to represent a decision , where a 
single input can yield either of two outputs. 
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For example , if you had two numbers and wished to write a program 
that would display only the larger, you might design your program by 
first drawing a flowchart that looks like this: 

9 
I Input #1. I 

t 

~ 
Yes No 

( Stop ) 

After drawing the flowchart, you would go back and substitute groups of 
instructions for each element of the flowchart. When the program was 
loaded into the calculator and run, if #2 was larger than # 1, the answer 
to the question' 'Is #2 larger than #I?" would be YES, and the program 
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would take the left-hand path, display #2, and stop. If the answer to the 
question was NO, the program would execute the right-hand path, and 
# I would be displayed. You will see later the many decision-making 
instructions available on your HP-34C. 

As you work through this handbook, you will become more familiar with 
flowcharts. Use the flowcharts that illustrate the examples and problems 
to help you understand the many features of the calculator, or draw your 
own flowcharts to help you create, edit, eliminate errors in, and 
document your programs. 

Problems 
Here are four programming examples for you to try using material we ' ve 
already covered. Possible solutions for these examples are shown on the 
following pages. However, you will receive the most benefit from the 
exercises by coming up with your own solutions before finding out how 
we've done it. Remember, there is usually more than one way to solve a 
programming problem. Perhaps you can improve on our solutions! 

I. You have seen how to write , load, and run a program to calculate 
the area of a circle from its radius. Now write and load a program 
that will calculate the radius r of a circle given its areaA using the 
formula r = yfAj;. Be sure to slide the PRGM-RUN switch 
to PRGM and press CIJ CLEAR I PRGM I first to clear program 
memory. Define the program with [EJ I LBL 1 0 and [EJ I RTN I· 
After you have loaded the program, run it to calculate the radii of 
circles with areas of 28.2743 square inches, 113.0973 square 
meters , and 254.4690 square miles. 

(Answers: 3.0000 inches, 6.0000 meters, 9.0000 miles.) 

2. Create a program to calculate the length of a chord Q subtended by 

angle (j on a circle of r radius using the equation Q= 2r Sin ~ . 
2 
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Define this new program with 01 LBL I w and use it to complete 
the following table: 

, (meters) e !( 

25 30 ? 
50 45 ? 

100 90 ? 

Design your program for a r , () order of data entry. 

(Answers: 12.9410 meters , 38.2683 meters, 141.4214 meters.) 

If you have difficulty programming for this example, go back to 
page 60 and study Writing a Third Program. 

3. Write and load a program that will convert temperature in degrees 
Celsius to Fahrenheit, according to the formula F = 1.8 C + 32. 
Define the program with 01 LBL lOa n d 01 RTN 1 and run it to 
convert Celsius temperatures of -40°,0°, and +72°. 

(Answers: -40.0000°F, 32.0000°F, 161.6000°F.) 

4 . Create a program that will convert temperature in Fahrenheit 
back to Celsius according to the formula C = (F - 32)5/9. 
Define the program using 0 1 LBL 1 I and 0 1 RTN I. Run this 
new program to convert the temperatures in Fahrenheit you 
obtained back to Celsius. 

If you wrote and loaded the programs as called for in problems 3 and 4, 
you should now be able to convert any temperature in Celsius to Fahren­
heit by pressing IGSBI 0 and any temperature in Fahrenheit to Celsius by 
pressing I GSB I I. Questions? Review Executing Instructions , beginning 
on page 54, concerning the use of I GSB I and labels 0 through 9 for 
addressing individual programs. 
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Summon pi . sin (J/2 

+ + 
Divide . cp 

+ 
I Multiply. I 

+ 

( Stop ) ( Stop ) 

Key in F. 
Start 

1.8C 
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Example Problem Solutions 

Keystrokes Display 

Radius of a Circle [EJILBLI0 001- 25, 13, 11 

[EJ0 002- 25 73 

G 003- 71 
[D@ 004- 14 3 

[EJ I RTN I 005- 25 12 

Length of a Chord [EJILBLI W 001- 25, 13, 12 
2 002- 2 

G 003- 71 

[D~ 004- 14 7 

0 005- 61 
2 006- 2 

0 007- 61 
[EJIRTNI 008- 25 12 

Convert Celsius to Fahrenheit [EJ~O 001- 25, 13, 0 
1 002- 1 

8 003- 73 
8 004- 8 

0 005- 61 
3 006- 3 
2 007- 2 

[}] 008- 51 
[EJ I RTN I 009- 25 12 

Convert Fahrenheit to Celsius [EJ I LBL II 001- 25,13, 
3 002- 3 
2 003- 2 

G 004- 41 
5 005- 5 

0 006- 61 
9 007- 9 

G 008- 71 
[EJ I RTN I 009- 25 12 

Keystroke Solutions 

I . Area 0 = Radius 3. C IGSBIO = F 

2. Radius I ENTERtl 8 W = Length of Chord 4. FIGSBII = C 
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Programming Techniques 

The solutions to some types of problems require you to use the same 
variable several times during your calculations. As you may know, there 
is more than one way to program such solutions in your HP-34C. How­
ever, the program that is economical both in execution time and in 
program space is often the most desirable. Let's compare two different 
ways we can approach the solution to a problem using the same variable 
several times . For example, the polynomialf(x)= X4 + 3x3 

- x 2 + 4x 
- I uses the variable x four times; i.e., x4, x 3

, x 2
, x. This means that four 

powers of x will be needed to calculatef(x) . Your task is to write a pro­
gram that both describesf(x) mathematically and makes available a copy 
of the variable x each time it is needed during program execution. You 
can do this with reasonable efficiency in one of two ways. Either initially 
store a copy of the variable for later recall wherever it is needed; or, 
better, write your program so that the stack need only be filled with 
copies of the variable prior to execution. The advantages of this stack 
fill method over the storage method are: 

I. Your program can easily be written to keep a copy of the variable 
either ready for immediate use or accessible with an I x~y I instruc­
tion. (Remember that each time the stack drops , the T-register 
duplicates the number which last occupied it before the stack 
dropped.) This means you use fewer lines of program memory 
because I STO I and I RCL I instructions are unnecessary. 

2. A storage register is saved for other uses. 

3. Stack fill is convenient for evaluating polynomial expressions 
generally, and for use with most ISOLVEI and [ZIJ applications 
(more on ISOLVEI and [ZIJ later). 

Now let ' s look at a program that evaluates the expression X4 + 3x3 -

x 2 + 4x - I using the stack fill method. This time we ' ll see just the 
program instructions and stack contents. Examine the program instruc­
tions line by line and be sure you understand how and why each instruc­
tion affects the stack. Assume that the value of x is already in the stack 
when program execution begins. 
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Stack Registers 

001 002 003 004 005 

;§~~~~ 
4 3 

006 007 008 009 010 

rn~'&~'" ~< .•.. ; " •.•. ~x 
~ ' . .......... ; ...... ............... ············ ;4 ···· ········· .... ' ; 

lE .. ;~ ................. x
3

" ....... .... ;.~ . . . . 

IX] x 3 3 3x3 

x x 

x x 

X x 4 +3x3 

x 4 +3x3 X 

01EJ 3 0 [±] I x~Y I 

011 012 013 

rn x x x 

~ x x x 

lE x 4 +3x3 X 

~ x 2 x 4 +3x3 - x 2 x 

[]]~ G 

014 015 016 

rn x x x 

~ x 4+3x3 - x 2 
X x 

00 X x 4+3x 3 - x 2 x 

IX] 4 4x 

4 0 
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Stack Registers 
017 018 019 

m x x x 

~ x x x 

ry x 4 +3x3 - x 2 +4x x x 

Xl I x 4 +3x3 - x 2 +4x-1 x 4 +3x3 - x 2 +4x-1 

B [BIRTNI 

Notice that extra copies of the variable remain in the stack after the 
program has been run. If, for any reason, you want to return a copy of the 
variable to the display after evaluating f(x) at that variable , simply 
press Ix~YI. 

To experiment with the stack fill method, key in the program for evalu­
ating the above expression and try running some examples . 

Slide the PRGM-RUN switch to PRGM [!I[JI . 

Keystrokes Display 

[DCLEAR I PRGM I 000-
[BILBLI0 001- 25, 13, 11 
4 002- 4 
[B(Z] 003- 25 3 
Ix~YI 004- 21 
3 005- 3 
[B(Z] 006- 25 3 
3 007- 3 

0 008- 61 
[±J 009- 51 
Ix~YI 010- 21 
[]J~ 011- 15 3 

G 012- 41 
Ix~YI 013- 21 
4 014- 4 

0 015- 61 
[±J 016- 51 
I 017- 1 

B 018- 41 
[B I RTN I 019- 25 12 
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Slide the PRGM-RUN switch to "RUN and evaluate the expression 
at the following values of x: I, 2, 7 . 1935, In 17.5. 

Keystrokes 

I I ENTERtll ENTERtl 
IENTERtl 
0 
2 I ENTERtll ENTERtl 
IENTERtl 
0 
7. 1935 IENTERt I 
I ENTERtll ENTERtl 
0 
17.5 [I] ~IENTERtl 
I ENTERtll ENTERtl 
0 

Display 

1.0000 
6.0000 

2.0000 
43.0000 

7.1935 
3,770.4359 

2.8622 
139.7118 

Fill stack with variable . 
f(x) 

Fill stack with variable . 
f(x) 

Fill stack with variable. 
f(x) 

Fill stack with variable. 
f(x) 

Using Horner's Method 

As you can see , the above program was logically and easily written; and 
it produced the results we wanted. However, using a mathematical tech­
nique known as Horner's method , we can write a program that is not 
only logical, but is also simpler and shorter. 

For a polynomial expression anxn + an_IXn- 1 +, ... ,alx l + ao, Horner's 
method essentially reduces all powers xn ,xn-t, . .. ,Xl of the variable to Xl . 

As a result, the expression is stated as a series of arithmetic operations 
involving the variable x and the coefficients an , an-l, ... , alo ao. For 
example, applying Horner' s method to the polynomial expression we 
calculated earlier: 

x' + 3x 3 - x 2 + 4x - 1 

(x 3 + 3x2 
- X + 4)x - I 

«x 2 + 3x - I)x + 4)x - 1 

«(x + 3)x - I)x + 4)x - 1 

We can now write another program using the same stack fill method we 
used in the previous program. But this time, because we rewrotef(x) 

using Homer's method, our program involves just seven arithmetic 
operations instead of the six arithmetic and three exponential operations 
needed earlier. 
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Stack Registers 

001 002 003 004 005 

1~~ 1 ~ ;~ >==: ~ >==:==::< >'=(=X:=3)X::::::< 
!Xl x 3 (x+3) (x+3)x I 

~[ LBLIW 3 ill o 

006 007 008 

[T x x x 

~ x x x 

~ x X ((x+3)x-l)x 

IX ((x + 3)x- l ) ((x+3)x- l )x 4 

G 0 4 

009 010 011 

T L_ x x x 

~ x x x 

~ x x (((x+3)x -l )x+4)x 

rx ((x+3)x-l)x+4 (((x+3)x - l)x+4)x I 

ill ~ 

012 013 

~ x x 

~ x x 

~ x x 

!Xl «(x+3)x- I)x+4)x-1 «(x +3)x- I)x +4)x-1 

G ~IRTN I 
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The above program uses only 13 lines of program memory , a savings of 
6 lines over the previous program to calculate the same expression. Key 
in the above program and try the same examples we ran earlier. 

Slide the PRGM-RUN switch to PRGM ~. If you have not executed 
any other instructions since the previous evaluations of f(x), you will 
see 000- in the display. If this is not the case, press IGTol[!J 000 
(more on IGTollater) . 

Keystrokes Display 

01LBLIC!] 001- 25, 13, 12 
3 002- 3 

m 003- 51 

0 004- 61 
I 005-

G 006- 41 

0 007- 61 
4 008- 4 

m 009- 51 

0 010- 61 
I 011- 1 

G 012- 41 
01ATNI 013- 25 12 

Slide the PRGM-RUN switch to "RUN and evaluate the expression 
using the same values of x we used earlier. 

Keystrokes Display 

1 I ENTER. II ENTER. I 
I ENTER. I 1.0000 Fill stack with variable. 
C!] 6.0000 f(x) 
2 I ENTER.II ENTER. I 
I ENTER. I 2.0000 Fill stack with variable. 
C!] 43.0000 f(x) 
7. 19351ENTER.1 
I ENTER.II ENTER. I 7.1935 Fill stack with variable. 
C!] 3,770.4359 f(x) 
17.5 [[] @J IENTER.I 

I ENTER. I I ENTER. I 2.8622 Fill stack with variable. 
C!] 139.7118 f(x) 
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Did you notice something different? In addition to reducing the size of 
the program, using Horner's method reduced execution time as well. 

Further Applications 

As you have seen, the stack fill technique provides a simple and useful 
approach to evaluating an expression containing several occurrences of 
the same variable. By applying Horner' s method to the problem, where 
possible , we realize greater space savings and speed. Later, when we 
discuss root-finding and numerical integration , you will see how the 
automatic stack fill designed into the IsoLvEl and IZD operations enhances 
the power and convenience of your HP-34C's programming and 
problem-solving capability. 

Problems 

Using the stack fill technique and Horner's method , write and execute 
programs for evaluating the following expressions at x values of 
1.5, 3.73, and -4.25. 

1. 2x5 - X4 + 2x2 + X + 1 

1.73 Sinx - 1 

Answers: 

1. 17.1250,1,283.0102, -3 ,066.5371. 

2 . -1.0452 , -1.1121 , -0.8720. 





Section 4 

Program Editing 

Often you may want to alter, correct, or add to a program that is loaded in 
the calculator. On your HP-34C keyboard , you will find several editing 
functions that permit you to easily add or change steps in a loaded pro­
gram without reloading the entire program. 

As you may recall , there are nine functions that cannot be recorded in 
program memory. Seven of these functions are program editing and 
manipulation functions. and can aid you in modifying and correcting 
your programs . 

Nonrecordable Operations 

CLEAR I PRGM I is one keyboard operation that cannot be recorded in pro­
gram memory. When you press []] CLEAR IPRGMI in PRGM mode, 
program memory is cleared and the calculator is reset to the top of mem­
ory (line 000) . Note that []] CLEAR I PRGM Idoes not reset a RAD or GRD 
trig mode to DEG. 

I SST I (single step) is another nonrecordable operation. When you press 
01 SST I, in PRGM mode , the calculator moves to and displays the next 
line in occupied program memory. No program instructions are exe­
cuted. When you press 01 SST I in RUN mode the calculator also moves 
to and displays the next line of program memory . But when you release 
the I SST I key, the calculator executes the instruction loaded in that line . 

I eST I (back step) is a nonrecordable operation used in both PRGM and 
RUN mode to move to and display the previous line of program memory. 
In RUN mode the original contents of the display reappear when I eST I is 
released. No program instructions are executed. 

CLEAR I PREFIX I is the nonrecordable operation used after a prefix key­
stroke ( []] , 00 , or 0) to cancel that keystroke. CLEAR I PREFIX I also 
cancels all keystrokes in an incomplete instruction such as []] @ or 
I STO I [±] . CLEAR I PREFIX I has no effect on a completed instruction (i .e . , 
[]] @ 5, ISTOI [±] I , etc.). 

84 
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I GTOI (go to) G] nnn is used for going to a specific line number, and is 
another keyboard operation which cannot be loaded as an instruction. 
(However, IGTOI fo llowed by a numbered label 0 through 9 can be 
loaded as a program instruction. More about the use of this instruction 
later.) Whether the calculator is in PRGM or RUN, when you press 
IGTOIG] followed by a three digit line number , the program memory is 
set to that line number. No instructions are exec uted . If the calculator is 
in RUN mode, you can verify that the calculator is set to the specified 
line by briefly switching to PRGM mode. The IGTolG] nnn opera­
tion is especially useful in PRGM mode because it permits you to jump 
to any location in occupied program memory for editing or checking 
purposes . 

Note: Attempting to execute a I GTO I G] nnn instruction 
to any lines of program memory that are unoccupied or 
that the calculator has not converted from data storage 
registers is an illegal operation which results in the error 
signal Error 4. 

The I DEL I (delete) key is a nonrecordable operation that you can use in 
PRGM mode to delete instructions fro m program memory. When the 
calculator is in PRGM mode and you press (BIDHI , the instruction at 
the current line of program memory is erased . All subsequent in­
structions in program memory then move upward one line. Pressing 
(BIDHI in RUN mode does nothing. 

The IMEMI (memory) function , displays the current memory allocation at 
any time, in or out of program mode. To review IMEMI, see page 59 in 
section 3, Simple Programming . 

Now let's load a program from the keyboard and use your HP-34C's 
editing tools to check and modify it. 
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Pythagorean Theorem Program 

The following program computes the 
hypotenuse of any right triangle, given 
the other two sides. The formula used is 
c = Va 2 + b 2

• 

Below are instructions for the program 
(basically , the same keys you would 
press to solve for c manually) , assum­
ing that values for sides a and b have 
been input to the X- and Y -registers of 
the stack. 

To load the program: 

First set the calculator to PRGMumm. mode. Then press ITJ CLEAR 
I PRGM I to clear program memory of any previous programs and reset 
the calculator to line 000 of program memory. Finally , load the program 
by pressing the keys shown below. 

Keystrokes 

@)~ 

CB 
ITJ@j 
01RTNI 

Display 

001- 25,13, 11 
002- 15 3 
003- 21 
004-
005-
006-
007-

15 3 
51 

14 3 
25 12 

a 2 

a 2 + b2 

Va2+b2 
End of program; calculator 
returns to line 000 and halts. 

Return the calculator to -.JRUN mode . 
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Now you can run the program. For example, calculate the hypotenuse of 
a right triangle with side a of 22 meters and side b of 9 meters. (Notice 
that the order of entry does not matter in this case.) 

Keystrokes 

221ENm1+1 
9 
o 

Display 

22.0000 
9. 
23.7697 Length of side c in meters. 

To compute the hypotenuse of a right triangle with a side a of 73 miles 
and a side b of 99 miles: 

Keystrokes 

73 IENmI+ 1 

99 
o 

Display 

73.0000 
99. 
123.0041 Length of side c in miles. 

Now let's see how we can use the nonrecordable editing features of the 
calculator to examine and alter this program. 

Single-Step Execution of a Program 

With the Program Mode switch set to RUN mode , you can execute a 
recorded program one line at a time by using [EJ ISSTI (single-step). 

To single-step through the Pythagorean Theorem program using a 
triangle with side a of 73 miles and side b of 99 miles: 

Keystrokes 

73 I ENmI+ 1 
99 

Display 

73.0000 
99. Program initialized for this 

set of data before running. 

Now, press 01 SST 1 and hold I SST 1 down to see the keycode for the 
next instruction. When you release the I SST 1 key, that next instruction is 
executed. (Remember that the 01 RTN 1 instruction in line 007 returned 
the calculator to line 000 after the last execution of the program.) 
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Keystrokes 

01sSTI 

Display 

001- 25, 13, 11 

99.0000 

Keycode fo r 0 ITEl 0 
seen when you hold 1 SST 1 
down. 
01 LBL 1 0 executed when 
you re lease 1 SST I. 

(Notice that you didn ' t have to press 0 . When you are executing a 
program one line at a time, pressing 01 SST 1 begins the program 
from the current line of program memory; in this case , line 00 I .) 

Continue exec uting the program by pressing 01 SST 1 again . When you 
hold 1 SST 1 down, you see the keycode for the next instruction. When you 
release 1 SST I, that instruction is exec uted . 

Keystrokes 

01ssTI 

Display 

002- 15 3 
9,801.0000 

Keycode for ~ 
Executed . 

When you press [EJ 1 SST 1 a thi rd time in RUN mode, line 003 of pro­
gram memory is di splayed . When you release the 1 SST 1 key, the instruc­
tion in that line, Ix~YI, is executed, and the calculator halts. 

Keystrokes 

01ssTI 

Display 

003- 21 
73.0000 

Keycode for Ix~YI. 
Executed . 

Continue exec ut ing the program by means of 01 SST I. When you have 
executed the 01 RTN 1 instruction in line 007 , the calcul ator returns to 
line 000 (later we will cover more on how 1 RTN 1 works). You have 
completed exec ut ing the program and the answer is displayed , just as if 
the calculator had executed the program automatically, instead of via 
0IsSTI. 
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Keystrokes Display 

01ssTI 004- 15 3 
5329.0000 

01ssTI 005- 51 
15,130.0000 

01ssTI 006- 14 3 
123.0041 

0 1ssTI 007- 25 12 
123.0041 Final answer. 

Note: 01ssT I will not advance into unoccupied lines of 
program memory. If you single-step from the last occupied 
line of program memory in RUN or PRGM mode your HP-34C 
conveniently returns to line 000. In RUN mode the original 
contents of the display remain unchanged. In PRGM mode 
000- indicating the top of program memory, is displayed. 

89 

You have seen how the 1 SST I key can be used in RUN mode to single­
step through a program . Using 01ssT I in this manner can help you 
create and correct programs. Now let's see how you can use IGTOl8 
000, ISSTI, W, and IGTOl8 nnn in PRGM mode to help you 
modify a program . 

Modifying a Program 
Let's modify the Pythagorean Theorem program so that the X-register 
contents will automatically be displayed at certain points in the program . 
We will do this by inserting the 01 PSE I instruction to halt the program 
and display the contents of the X-register for about 1 second , then re­
sume execution. (More about 1 PSE I later.) Here is the program you just 
ran. 

Keystrokes 

01LBLI0 

OO~ 
Ix~YI 

OO~ 
W 
CD@'J 
01RTNI 

Display 

~~;= 25, !~' 1~~ 
003- 21 We will insert an 01 PSE I 
004- 15 3' instruction after each of 
005- 51 these instructions . 

006- 14 3 
007- 25 12 
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Single-Step Viewing Without Execution 

You can use I SST I in PRGM mode to single-step to the desired line of 
program memory without executing the program. When you switch the 
calculator to PRGM mode, you will see that the calculator is reset to line 
000 of program memory as a result of executing the 01 RTN I instruction 
in the above example. When you press 01 SST lonce, the calculator now 
moves to line 001 and displays the contents of that line of program 
memory. No instructions are executed. 

Slide the PRGM-RUN switch to PRGM~. 

Keystrokes Display 

000-

001- 25, 13, 11 

Line 000 of program 
memory. 

You can see that the calculator is set at line 001 of program memory. If 
you press a recordable operation now, it will be loaded in the next 
line, line 002, of program memory, and all subsequent instructions 
will be "bumped" down one line in program memory. 

Thus , to load the 01 PSE I instruction so that the calculator will pause 
and display the contents of the X-register: 

Keystrokes 

[EJlpsEI 

Display 

002- 25 74 

Now let's see what happened in program memory when you loaded that 
instruction. With the calculator set at line 001, when you pressed 
01 PSE I, program memory was altered " . 
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... from this ... ... to this . 

001 01LBLI0 001 01LBLI0 
002 []]~ 002 

003 Ix~)'1 003 

004 []]~ 004 

005 m 005 

006 [IJ@J 006 
007 01RTNI 007 

008 

Resetting to Line 000 

01pSEI 
[]]~ 

Ix~)'1 

[]]~ 

m 
[IJ@J 

01RTNI 

-- 01 PSE 1 instruction 
inserted here. 

All subsequent 
instructions are 
"bumped" down 
one line of program 
memory . 

Your HP-34C automatically resets to line 000 when turned on. And, as 
you know, when you press [IJ CLEAR I PRGM Iwith the calculator set to 
PRGM mode, the calculator is reset to line 000 and all instructions in 
program memory are erased. However, you can also reset the calculator 
to line 000 while preserving existing programs in program memory by 
pressing I GTol8 000 in PRGM or RUN mode and 01 RTN 1 in RUN 
mode . 

To set the calculator to line 000 with the Pythagorean Theorem program 
loaded into program memory: 

Keystrokes 

IGTol8000 

Display 

000-

Going to a Line Number 
It is easy to see that if you wanted to single-step from line 000 to some 
remote line number in program memory, it would take a great deal of 
time and a number of presses of 01 SST I. To avoid such inconveniences 
simply apply the IGTOl8 nnn procedure which you used previously to 
jump to line 000. In a manner similar to IGTOl8 000, when you press 
I GTO 18 nnn, the calculator immediately jumps to the occupied line 
number specified by nnn. No instructions are executed. If you press 
IGTOl8 nnn in RUN mode, the display remains unchanged . If you press 
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I GTO 18 nnn in PRGM mode , the line of occupied memory (line number 
and keycodes) addressed by nnn appears in the display. In RUN mode , if 
you then initiate a label search or program execution, the search or 
execution will begin with that line of program memory. In PRGM mode, 
any loading of additional instructions will begin with the next line of 
program memory. 

For example , to add an ~ IpSE 1 instruction to review the X-register 
contents after the squares have been added together by the instruction in 
line 006, you can first press I GTO I( go to) followed by a decimal point and 
the appropriate three-digit line number of program memory. Then press 
~ I PSE I to place that instruction in the following line of program mem­
ory. Remember that when you add an instruction in this manner , each 
subsequent instruction is moved down one line in program memory. To 
add the ~ IpSE 1 instruction after the [±] instruction that is now loaded 
into line 006, be sure the calculator is in PRGM mode , then: 

Keystrokes Display 

IGTOl8 006 006-
~I PSE 1 007-

51 
25 74 

As you load the ~ IpSE 1 instruction into line 007, the instruction that 
was form erly in line 007 is moved to line 008 , and the instruction in 
subsequent lines are similarly moved down one line . 

When you added the ~ I PSE I instruction after line 006, program 
memory was altered . . 

... from this ... 

001 ~CillJ0 
002 ~lpSEI 

003 [ID~ 
004 Ix~YI 

005 [ID~ 
006 [±] 
007 CD~ 
008 ~IRTNI 

. .. to this . 

001 ~ILBlI0 
002 ~lpSEI 

003 [ID~ 
004 Ix~YI 

005 [ID~ 
006 [±] 
007 ~lpSEI 

008 CD~ 
009 ~IRTNI 

~ IpSE 1 instruction 
... inserted here. 

} 

Subsequent instruc­
tion bumped down 
one line in program 
memory . 
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Inserting Instructions in Longer Programs 

After the initial 70 lines of program memory are occupied, the calculator 
automatically converts storage registers to available program memory in 
blocks of 7 lines at a time. This occurs block by block as each new 
allocation of program lines is filled up with instructions. If only the first 
70 program lines are occupied , inserting another in struction at any point 

auto matically causes the con version of one storage register (R.9 in this 
case) to 7 more lines of available program memory and places the last 
instruction of the program in line 7 1. You would then have 77 program 
lines available and 71 occupied. (Refer to page 55, Automatic Memory 
Allocation.) With 77 lines occupied, in serting one instruction con verts 
another storage register (Rs) to 7 program lines, and so on. If all 210 
program lines are occupied, the calculator will not accept any additional 
program instructions . If you attempt to add a new instruction at any point 
in program memory with all 210 lines already occupied, Error4 appears 
in the di splay and program me mory remains unchanged. (Remember­
pressing []] IMEMI periodicall y while loading a long program will tell 
you the current status of the program line/storage register allocation.) 

Stepping Backwards Through a Program 

The 1 BST I (back step) key allows you to back step through a loaded 
program for editing whether the calculator is in RUN or PRGM mode . 
When you press 0 1 BST I, the calculator backs up one line in program 
memory. If the calculator is in RUN mode, the previous line is displayed 
as long as you hold down the 1 BST Ikey . When you release it , the original 
contents of the X-register are again displayed . In PRGM mode , of 
course, you can see the line number and keycode of the instruction in the 
display at all times . No instructions are exec uted , whether you are in 
RUN or PRGM mode. 

Note: When your HP-34C is at the top of the program 
memory (line 000), pressing 01 BST I moves the calculator 
to the last line of occupied program memory. This feature is 
particularly helpful when you want to quickly verify the length 
of an existing program or to begin loading a new program or 
subroutine that you want to follow a program or subroutine 
already in memory. 
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You now have one more lliJ I PSE I instruction to add to the Pythagorean 
Theorem program. The lliJ I PSE I instruction should be added after the 
Ix~YI instruction that is now loaded in line 004 of program memory . If 
you have just completed loading lliJ I PSE lin line 007 as described above , 
the calculator is set at line 007 of program memory. You can use I BST I to 
back the calculator up to line 004, then insert the lliJ I PSE I instruction in 
line 005. To begin: 

Ensure that the calculator is set to PRGM~ mode. 

Keystrokes Display 

007- 25 74 

006- 51 

Calculator initially set to 
line 008. 
Pressing lliJ I BST I once 
moves the calculator back 
one line in program 
memory . 

Continue using the I BST I key to move backward through program 
memory until the calculator displays line 004 . 

Keystrokes 

lliJ I BST I 
lliJ I BST I 

Display 

005- 15 3 
004- 21 

Since you wish to insert the lliJ I PSE I instruction after the Ixnl instruc­
tion now loaded in line 004, you move the calculator to line 004. As 
always, when you key in an instruction, it is loaded into the next line 
after the line being displayed. Thus , if you press lliJ I PSE I now , that 
instruction will be loaded into line 005 of program memory, and all 
subsequent instructions will be moved down , or "bumped ," one line. 

Keystrokes 

lliJlpSEI 

Display 

005- 25 74 

You have now finished modifying the Pythagorean Theorem program so 
that you can review the contents of the X-register at several points while 
it runs. 
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The alte red program is shown below: 

Keystrokes Display 

01LBLI0 001- 25, 13, 11 

01 pSEI 002- 25 74 

(ID~ 003- 15 3 
Ix~yl 004- 21 

01pSEI 005- 25 74 

(ID~ 006- 15 3 

EI 007- 51 
01pSE I 008- 25 74 

CD~ 009- 14 3 
01RTNI 010- 25 12 

If you w ish, you can use 01 SST I in PROM mode to verify that the 
program in your calculator matches the one shown above. 

Running the Modified Program 
To run the Pythagorean Theorem program , you need only set the calcu­
lator to RUN mode, key in the values fo r sides a and b and press 0 . 
The calcul ator displays the X-register co ntents (s ide b) , then squares side 
b, exchanges the contents of the X- and Y -registers, and again reviews 
the X-register contents (side a thi s time). Then the calculator squares 
sidea, adds b 2 toa 2

, and revie ws the X-register contents (a 2 + b 2
) a third 

time . The hypotenuse is then calcul ated and exec utio n returns to line 000 
and halts. 

For example, to compute the hypotenuse of a right triangle with sides 
a and b of 22 meters and 9 meters: 

Set the calculator to "RUN 

Keystrokes 

22 I EHlERt I 
90 

Display 

22.0000 
23.7697 After reviewing the X-regis­

ter contents three times 
during the running program , 
the answer in meters is 
displ ayed. 

Now run the program for a right triang le with sides a and b of 73 miles 
and 99 miles . 

(Answer: 123.0041 miles .) 
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Deleting Instructions 

Often in modifying or correcting a program you may wish to delete an 
instruction from program memory. To delete the instruction to which the 
calculator is set, merely press the nonrecordable operation (EJ I DEL I 
(delete) with the calculator set to PROM mode. (When you delete an 
instruction from program memory using I DEL I, all subsequent inst ruc­
tions in program memory are moved up one line . The calculator then 
displays the line preceding the line that held the instruction you deleted.) 

For example , if you wanted to modify the Pythagorean Theorem program 
that is now loaded into the calculator so that the X-register was only 
reviewed once, for the sum of the squares, you would have to delete the 
(EJ I PSE I instructions that are presently loaded in lines 002 and 005 of 
program memory. To delete these instructions, you must first set the 
calculator at these lines using (EJ I SST I, (EJ I BST I, or I GTO 1 GJ nnn , then 
press (EJ I DEL I· To delete the 01pSEI instruction now loaded in line 
002: 

First, set the calculator to PRGMmm. 

Keystrokes 

IGTOI GJ 002 
010ELI 

Display 

002- 25 74 
001- 25,13,11 

Line 002 is displayed. 
The instruction in line 002 is 
deleted and the calculator 
moves to line 001. 

You can use (EJ I SST I to verify that the (EJ I PSE I instruction has been 
deleted and subsequent instructions have been moved up one line. 

Keystrokes 

01ssT I 

Display 

002- 15 3 The instruction formerly in 
003 was moved up to line 
002, and all subsequent 
instructions were moved up 
one line when you pressed 

0IDELI· 

When you set the calculator to line 002 of program memory and pressed 
[E] I DEL I. memory was altered . . . 



... from this ... 

001 01LBLI0 
002 01pSEI 
003 []]~ 
004 Ix~YI 

005 01pSEI 
006 []]~ 
007 m 
008 01 psEI 
009 OJ@:) 
010 01RTNI 

... to this . 

001 01LBLI0 
002 []] ~ 
003 Ix~YI 

004 01pSEI 
005 []] ~ 

006 m 
007 01pSEI 
008 OJ@:) 
009 01RTNI 
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One instruction 
..- deleted here. 

These instructions all 
move upward one 
line. 

To delete the 01 PSE I instruction now loaded in line 004 you can use 
the I SST I key to single-step down to that line number and then delete 
the instruction with the 0 1 DEL I operation. 

Keystrokes 

01sSTI 
01sSTI 
01DELI 

Display 

003- 21 
004- 25 74 
003- 21 The 01 PSE I instruction is 

deleted from line 004 and the 
calculator displays line 003. 
Subsequent instructions 
move up one line of program 
memory. 

If you have modified the program as described above, the X-register is 
reviewed only once , just after the sum of the squares is calculated. The 
value of the hypoteneuse is then calculated and execution halts. 

Set the calculator to ..:!RUN mode and run the program for right 
triangles with: 
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Sides a and b of 17 and 34 meters . After reviewing the 
X-register (sum of the squares = 1,445 .0000 meters), the 
rest of the program is exec uted and the calcul ator halt s 
displ ay ing the hypoteneuse: 38 .0 132 meters. 

Sidesa and b of 550 rods and 740 rods. After reviewing the 
X-registe r (sum of the squares = 850 , 100.0000 rods) , the 
rest of the program is executed and the calc ul ator halts, 
display in g the hypotenu se: 922 .0087 rods. 

To replace any instruction with another , simply set the calculator to the 
desired line of program memory , press 01 DEL 1 to delete the first 
instruction, then press the keystrokes fo r the new instruction. 

When deleting instructions from a program of more than 70 lines, the 
process of automatically allocating storage registers to program lines 
works in reverse. For example, de leting any in struction from a 78-li ne 
program automatically converts program lines 78-85 back to storage 
register R.s (Refer to Automatic Memory Allocation, page 55 .) 

The editing fea tures of the calcul ator have been designed to provide 
you with quick and easy access to any part of your program, whether 
for editing, debugging, or doc umentation. If a program stops running 
because of an e rror or because of an overflow , you can simply switch 
the calcul ator to PRGM mode to see the line number and keycode of 
the operation that caused the error or overfl ow. If you suspect a port ion of 
your program is faulty, you can use the 1 GTO 18 nnn operation from the 
keyboard to go to the suspect section, then use the I SST I operation in 
RUN mode to monitor every change in calculator status as you execute 
the program one line at a time. 

Problems 

I . You may have noticed that there is a single keyboard operation, 
lID ~ , that calculates the hypotenuse, side c , of a right triangle 
with sides a and b input to the X- and Y -registers . Repl ace the 
[£) , Ix~YI , [£), [B , IPSEI , and ~ in structions in the 
Pythagorean Theorem program with the single lID ~instruc tion 

as fo llows: 
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a. Use IGTo[8 nnn and 01 SST [ to verify that the Pythagorean 
Theorem program contains the instructions shown below . 

Keystrokes Display 

0ILBL[0 001 - 25, 13, 11 

[[]~ 002- 153) Ix~ Y [ 003- 21 Replace all of these instruc-

[[]~ 004- 15 3 tions with a [[] ~ instruc-

III 005- 51 tion. 

0I pSE [ 006- 25 74 
CD@] 007- 14 3 

0IRTH [ 008- 25 12 

b. Use the IGTo[8 nnn keyboard operation to go to line 007, 
the last instruction to be deleted in the program. 

c . Use the 01 DE L [keyboard operation in PRGM mode to delete 
the instruction in lines 007 , 006 , 005 , 004 , 003 , and 002. 

d. Load the [[] ~ instruction into line 002. 

e . Verify that the modified program looks like the one below. 

01LBL [0 
[[]~ 
0IRTH[ 

001- 25,13,11 
002 - 15 4 
003 - 25 12 

f. Switch to "RUN mode and run the program for a right 
triangle with sides a and b of 73 feet and 112 feet. (Answer: 
133.6899 feet.) 

2. The following program is used by the manager of a savings and 
loan company to compute the future amounts of savings accounts 
according to the formula FV = PV (1 + i)n, where FV is future 
value or amount , PV is present value , i is the periodic interest rate 
expressed as a decimal, and n is the number of periods. With PV 
entered into the Y -register, n keyed into the X-register, and an 
annual interest rate of 7 .5%, the program is: 
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Keystrokes 
(EJILBLI(!) 
ITJ c:IW 2 

I 

Display 
001- 25, 13, 12 
002-14,11,2 
003- 1 

o 004- 73 
o 
7 
5 

005- 0 
006- 7 
007- 5 

Ix~)'1 008- 21 
(EJ(B 
o 

009- 25 3 
010- 61 

(EJ IRTNI 011- 25 12 

a. Load the program into the calculator. 

b. Run the program to find the future amount of $1,000 invested 
for 5 years. 

(Answer: $1,435 .63) 

Of $2,300 invested for 4 years . 

(Answer: $3 ,071.58) 

c. Alter the program to account for a change of the annual interest 
rate from 7.5% to 8% . 

d . Run the program for the new interest rate to find the future 
value of $500 invested for 4 years; of $2 ,000 invested for 10 
years. 

(Answer: $680.24; $4,317.85) 

3. The following program calculates the time it takes for an object to 
fall to the earth when dropped from a given height. (Friction 
from the air is not taken into account.) When the height h in meters 
is keyed into the displayed X-register and (!)is pressed, the time 
t in seconds the object to fall to earth is computed according to 
the formula : 

t = Y-----:2,--,h;:---
9.8 
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a. Clear all previously recorded programs from the calculator , 
reset the display mode to Fix 4 , and load the program below. 

Keystrokes Display 

CD CLEAR I PRGM I 000-

01LBLI [[) 001- 25, 13, 12 
2 002- 2 

0 003- 61 
9 004- 9 
[!] 005- 73 
8 006- 8 

G 007- 71 

CD~ 008- 14 3 
01RTNI 009- 25 12 

b . Run the program to compute the time taken by a stone to fall 
from the top of the Eiffel Tower, 300.51 meters high; and from 
a blimp stationed 1000 meters in the air. 

(Answers: 7.83 13 seconds; 14.2857 seconds .) 

c. Alter the program to compute the time of descent when the 
height infeet is known, according to the formula: 

t = ~ / __ 2_h __ 
V 32.1740 

d . Run the altered program to compute the time taken by a stone to 
fa ll from the top of the Grand Coulee Dam, 550 feet high; and 
from the 1350-foot height of the World Trade Center buildings 
in New York City. 

(Answers: 5.8471 seconds ; 9.1607 seconds.) 



Section 5 

Branching, Decisions, and Flags 

Unconditional Branching and Looping 
You have seen how the nonloadable operation 1 GTO I GJ nnn can be used 
from the keyboard to transfer to any line in occupied program memory. 
You can also use the go to instruction as part of a program. However, in 
order for 1 GTO I to be recorded as an instruction, it must be followed by a 

label designator ( 0 or W, or 0 through 9) . (It can also be followed by 
[I)-more about using [I) later.) 

When the calculator is executing a program and encounters a 1 GTol W 
instruction, for example, it immediately halts execution and begins 
searching sequentially downward through program memory for that 
label. When the first 01 LBL I W instruction is then encountered, 
execution resumes. 

By using a IGTolinstruction followed by a label designator in a program, 
you can transfer execution to any part of the program that you choose. 

Execution branches to next 01 LBL I W. 1 
01LBLI0 

IGTOI w r-

0CillJill 

A 1 GTol instruction used this way is known as an unconditional branch. 
It always branches execution from the 1 GTO I instruction to the specified 
label. (Later, you will see how a conditional instruction can be used in 
conjunction with a 1 GTol instruction to create a conditional branch-a 
branch that depends on the outcome of a test.) 

102 
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A common use of a branch is to create a "loop" in a program. For 
example, the following program calculates and displays the square roots 
of consecutive whole numbers beginning with the number I. The 
HP-34C continues to compute the square root of the next consecutive 
whole number until you press [RIS I to stop program execution (or until 
the calculator overflows). 

To key in the program: 

First, slide the PRGM-RUN switch to PRGM ~ . Press ITJ CLEAR 
[PRGM I to clear program memory and to reset the calculator to line 000. 

Keystrokes Display 

0[LBLI0 001- 25, 13, 11 
0 002- 0 
[STO 11 003- 23 1 
0[LBLI0 004- 25, 13, 0 
I 005- 1 
[sToiG I 006- 23, 51, Adds I to current number in 

R I · 

[RCL II 007- 24 Recalls current number 
from R I . 

0[PSEI 008- 25 74 Displays current number. 

ITJ~ 009- 14 3 
01 pSE I 010- 25 74 Displays square root of 

current number. 
IGTOIO 011- 22 0 Transfers execution to 

0[LBLI0. 
0[RTNI 012- 25 12 

To run the program, slide the PRGM-RUN switch to '-RUN and 
press 0. The program will begin displaying a table of integers and their 
square roots and will continue until you press IRIS I from the keyboard or 
until the calculator overflows. 

How it works: When you press 0, the calculator searches through 
program memory until it encounters the 0[ LBL I 0 instruction that 
begins the program. It executes that instruction and each subsequent 
instruction in order until it reaches line 0 II , the [GTO I 0 instruction. 
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The I GTO 10 instruction causes the calculator to search once again, this 
time for a I LBL I 0 instruction in the program . When it encounters the 
I LBL I 0 instruction loaded in line 004, execution begins again from 
I LBL 10. (Notice that the address after a IGTOI instruction in a program 
is a label, not a line number.) Since execution is transferred to the 
I LBL I 0 instruction in line 004 each time the calculator executes the 
I GTolO instruction in step 0 II, the calculator will remain in this' 'loop," 
continually adding one to the number in storage register R, and display­
ing the new number and its square root. 

Looping techniques like the one illustrated here are common and extra­
ordinarily useful in programming. By using loops, you take advantage of 
one of the most powerful features of the HP-34C-the ability to update 
data and perform calculations automatically, quickly, and, if you so 
desire, endlessly. 

You can use unconditional branches to create a loop, as shown above, or 
in any part of a program where you wish to transfer execution to another 
label. When the calculator executes a I GTO I instruction in a running 
program it searches sequentially downward through program memory 
and begins execution again at the first specified label it encounters. 

In RUN mode you can also use I GTO I for finding a label without running 
the program in memory. When you execute I GTO I ( 0, ® , or n) from 
the keyboard you cause the calculator to go to the specified label and 
halt. This feature is convenient when you want to simply review or edit 
lines of memory following a certain label instead of executing them as 
part of a program . 

Problems 
I. The following program calculates and pauses to display the square 

of the number in storage register R, each time it is run. Key the 
program in with the PRGM-RUN switch set to PRGM [1[111 , then 
switch to RUN mode and run the program a few times to see how 
it works. (The answer will always be 1.000.) Finally , modify the 
program by inserting a I GTO I I instruction after the 0 I PSE I 

instruction at line 009 and inserting an 0 I LBL II instruction after 
the I STO 11 instruction in line 003. This will create a loop that will 
continually display a new number and its square, then increment 
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the number by I, display the new number and compute and display 
its square, etc. To load the original program, before modification, 
slide the PRGM-RUN switch to PRGM ~ . Then press: 

Keystrokes Display 

CD CLEAR I PRGM I 000-
(B ILBLI [[) 001- 25, 13, 12 
0 002- 0 
I STO 11 003- 23 
I 004-
I STO ICD 1 005- 23,51, 
IRcL II 006- 24 
(BI PSE I 007- 25 74 

I]]~ 008- 15 3 
(BlpSEI 009- 25 74 
(BIRTNI 010- 25 12 

Slide the PRGM-RUN switch to "RUN and test the program 
in its original form. After keying in the suggested modifications, 
run the program again to generate a table of squares. 

2. Use the following flowchart to create a program that computes and 
pauses to display the future value (FV) of a compound interest 
savings account in increments of one year according to the for­
mula: 

FV = PV(I + i)n 

where FV = future value of the savings account. 
PV = present value (or principal) of the account. 

= interest rate (expressed as a decimal fraction; e.g., 
6% is expressed as 0.06) . 

n = number of compounding periods (usually, years). 
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Assume that program execution will begin with i entered into the 
Y-register of the stack and with PV keyed into the displayed 
X-register. 

After you have written and loaded the program, run it for an 
initial interest rate i of 6% (keyed in as .06) and an initial deposit 
(or present value, PV) of $1000. 

(Answer: 1st year, $1060; 2nd year, $ 1123 .60; 3,,1 year, $ 1191.02; 
etc.) 

The program will continue running until you press I RIS I (or any 
key) , or until the HP-34C overflows. You can see how your 
savings would grow from year to year. Try the program for differ­
ent interest rates i and values of PV . 
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Solutions: 

Here is a possible solution to problem 2. 

ISTOIO 
[[)lli!l 
I 
ISTOII 
(I] 
ISTOl2 
01lBliO 
\RClI2 
IRCl II 
01pSEI 
0~ 
IRCllO 
o 
01pSEI 
I 
ISTO I (I] I 
\GToIO 
01RTNI 

Convenient financial display 
mode. 
Stores PV. 
Brings i into display . 

Stores initial quantity (1) of n. 
Adds 1 to i. 
Stores (1 + i). 

Recalls (1 + i) . 
Recalls n . 
Displays n. 
Calculates (1 + i)n . 
Recalls original PV from Ro. 
Calculates new FV. 
Displays result (FV). 

Adds I to n in R I . 

Unconditional branch. 
End of Program. 

Conditionals and Conditional Branches 
Often there are times when you want a program to make a decision. The 
conditional operations on your HP-34C keyboard are program instruc­
tions that allow your calculator to make decisions. The conditionals 
available on your HP-34C are: 

tests to see if the value in the X-register is less than or 
equal to the value in the Y-register. 
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tests to see if the value in the X-register is greater than 
the value in the Y -register. 

tests to see if the value in the X-register is not equal to 
the value in the Y -register. 

tests to see if the value in the X-register is equal to the 
value in the Y-register. 

tests to see if the value in the X-register is less than zero. 

tests to see if the value in the X-register is greater than 
zero. 

tests to see if the value in the X-register is not equal to 
zero. 

tests to see if the value in the X-register is equal to zero. 

tests to see if flag n is set (more on flags later). 

Each conditional essentially asks a question when it is encountered as an 
instruction in a program. If the answer is YES, program execution 
continues sequentially downward with the next line in program memory. 
If the answer is NO, the calculator branches around the next line. For 
example: 

Yes 

Conditional Test - - , 
I 
I ._.J 

~------------, No 
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You can see that after it has made the conditional test, the calculator will 
do the next instruction if the test is true. This is the "DO IF TRUE" 
rule . 

The line immediately following the conditional test can contain any 
instruction. The most commonly used instruction you'll find will be a 
IGTolinstruction. This will branch program execution to another section 
of program memory if the conditional test is true. 

YesC: r--

Conditional Test 

IGTOl7 

instruction 

instruction 

instruction 

instruction 

01LBLI7 

Example: Certified Public Accountant 
Polly Preparer knows that persons with 
incomes over $10 ,000 pay a tax of 20% 
and persons with incomes of $10,000 or 
less pay a tax of 17 .5%. To make her job 
easier, Preparer wants to write a program 
that will allow her to compute taxes for 
all her clients in the simplest way pos­
sible . She will lise a program containing 
condi tional branches. 

--, 

I 

~JNo 
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The flowchart for the program might look like this: 

Yes Is No 

( Stop ) 
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To key in the program: 

Slide the PRGM-RUN switch to PRGM~ . 

Keystrokes Display 

ITl CLEAR I PRGM I 000-
(BILBLI0 001- 25, 13, 11 
IEEXI 002-

3! ) 
Amount of $10,000 placed 

4 003- in Y -register. 
Ix~)'1 004- 21 If amount of income is 
ITllx>)'1 005- 14 51 } greater than $10,000, go to 
IGTOI W 006- 22 12 portion of program defined 

by label B. 

1 007-

7~) 7 008- Tax percentage for this 

8 009- portion of program is 17.5. 

5 010-
IGTOII 011- 22 1 
(B ILBLI W 012- 25, 13, 12 
2 013- ~} 

Tax percentage for this 
0 014- portion of program is 20 . 

(B~l 015- 25,13, 1 
(BOO 016- 25 41 
(BIRTNI 017- 25 12 

To run the program to compute taxes on incomes of $15 ,000 and $7,500: 

Slide the PRGM-RUN switch to ~ RUN . 

Keystrokes 

15000 0 
7500 0 

Display 

3,000.00 
1,312.50 

Dollars of tax. 
Dollars of tax. 
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All Preparer has to do to compute tax rates for her other clients is key in 
their incomes and press 0. The calculator automatically determines the 
clients' tax bracket and computes the tax. 

Another place where you often want a program to make a decision is 
within a loop. The loops that you have seen have, to this point , been 
infinite loops-that is, once the calculator begins executing a loop, it 
remains locked in that loop, executing the same set of instructions over 
and over again , forever (or, more practically, until the calculator 
overflows or you halt the running program by pressing I RIS lor any other 
key). 

You can use the decision-making power ofthe conditional instructions to 
shift program execution out of a loop. A conditional instruction can shift 
execution out of a loop after a specified number of iterations or when a 
certain value has been reached within the loop. 

Example: As you know, your HP-34C contains a value for e, the base of 
natural logarithms. (You can display the calculator' s value for e by press­
ing 1 (]] ~. ) The following program shows that IIn! can be used to 
verify that the series e = I/O! + II I ! + 1/2! + ... + II n! approximates the 
value for e. After each iteration through the loop, the latest approxima­
tion is displayed and compared to the calculator's value for e. When the 
two values are equal, the execution is transferred out of the loop to stop 
the program. 
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Recall n. 

Calc.1/n! 

Yes Does No 
total = e? 

( Stop ) 
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To load the program into the calculator: 

Slide the PRGM-RUN switch to PRGM~ . 

Keystrokes Display 

CD CLEAR I PRGM I 000-

01 LBL I0 001- 25, 13, 11 
IRCll I 002- 24 1 
IRCllO 003- 24 0 

0@J 004- 25 

o lID 005- 25 2 

0 006- 51 

CD (£W 9 007- 14, 11, 9 
ISTOII 008- 23 1 
01pSEI 009- 25 74 
I 010-
(]](B 011- 15 1 
CD Ix=yl 012- 14 71 
[EJIRTNI 013- 25 12 
I 014-
ISTOI00 015-23,51,0 
IGTOl0 016- 22 11 

Slide the PRGM-RUN switch to .rnllI]RUN . 

Ensure that the registers are cleared to zero. Then press 0 to run the 
program. 

Keystrokes 

CD CLEAR I REG I 

Display 

1,312.50 

2.718281828 

Clears all storage registers 
to zero . (Displayed value 
remains from previous 
example.) 

You can see that execution continues within the loop until the approxi­
mation for e equals the calculator's value for e. When the instruction 
Ix=yl in line 012 is finally true, execution is transferred out of the loop. 
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Problems 
1. Write a program that tests for a negative angle and then converts 

any negative angie to its positive equivalent. Use a conditional , 
and , if the angie is negative, add 360 degrees to it to make the 
angle positive . Use the flowchart below to help you write the 
program. 

No 
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2. Use the flowchart to help you 
write a program that will allow a 
dealer to compute sales staff 
commissions at the rates of 10% 
of sales of up to $1000, 12.5% for 
sales of $1000 to $5000, and 15% 
for sales of over $5000. The pro­
gram should display the amount 
of sales and the amount of com­
mission. 

Load the program and run it for sales amounts of $500, $1000, 
$1500, $5000, and $6000. 

(Answers: $50.00 , $125.00, $187 .50, $625.00, $900.00.) 
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Yes Sales 
< $1000? 

No 

Yes Sales No 

Calculate 
12.5% of sales. 

~ $5000? 
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Solutions: 

I. Keystrokes Display 

[[) CLEAR I PRGM I 000-

01LBLI0 001- 25, 13,11 
[]] Ix<ol 002- 15 41 
IGTOIO 003- 22 0 

01RTNI 004- 25 12 
01LBL IO 005- 25, 13, 0 
3 006- 3 
6 007- 6 
0 008- 0 

m 009- 51 
01RTN I 010- 25 12 

User instructions: After keying in program, set PRGM-RUN switch to 
.mJ] RUN and set display mode to FIX 4. Input angle and press 0. 

2. Keystrokes Display 

[[) CLEAR I PRGM I 000-
0 1LBLI0 001- 25, 13, 11 
IEEXI 002- 33 
3 003- 3 
[[) Ix>y I 004- 14 51 
IGTolO 005- 22 0 
5 006- 5 

0 007- 61 
Ix~YI 008- 21 
[[) I x~y I 009- 14 41 
IGTOII 010- 22 
I 011- 1 
5 012- 5 

0tm 013- 25 41 
01RTNI 014- 25 12 
01LBLII 015- 25,13, 1 
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Keystrokes Display 
I 016- 1 
2 017- 2 

GJ 018- 73 
5 019- 5 

0lill 020- 25 41 
01RTNI 021- 25 12 
01LBLIO 022- 25,13, 0 
Ix~yl 023- 21 
I 024-

° 025- 0 

0lill 026- 25 41 
01RTNI 027- 25 12 

User instructions: After keying in program, set PRGM-RUN switch to 
.. RUN and set displ ay mode to FIX 2. Input sales doll ars and press 

0· 

Flags 
Besides the conditionals (l x=y l, Ix>o l, etc.) , you can also use flags fo r 
tests in your programs . A flag actually is a memory device that can be 
either SET (true) or CLEAR (false). A running program can then test the 
fl ag later in the program and make a decision , depending upon whether 
the fl ag was set or clear. 

There are four fl ags available in your HP- 34C. They are numbered 0 , I , 
2 , and 3. To set a flag true , use the instruction ~(setflag) fo llowed by 
the proper digit key (0 , I , 2, or 3) of the desired fl ag. To set flag 3, 
fo r example, you would use these keystrokes: 

Flags are cleared using the ~ (clear flag) instruction fo llowed by 
the proper digit key. To clear fl ag 3 you would use these keystrokes: 
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When using flags, decisions are made using the instruction §) (is flag 
true?) followed by the digit key (0 , 1, 2, 3) specifying the flag to be 
tested . When a flag is tested by a 0 §) n instruction , the calculator 
executes the next line if the flag is set (this is the " DO if TRUE" 
rule). If the flag is clear, the next line of program memory is skipped 
before execution resumes. 

Is flag 1 true? 

Yes No 

( 
0§)1 -

1---==-==----1 '\ 
if YES, 1--------1.4/ if NO, skip 
continue execution 
with next line. 

one line before 
resuming execution. 

A fl ag which has been set by an 0 ~n command remains set until it 
is cleared by one of the following:* 

I . Executing an 0 @n command. 

2. Turning the calculator OFF. 

Using flags 

Like the the x/y andx/O conditional tests, fl ags give you the capability to 
either skip or execute individual lines in program memory. However, 
while the x/y and x/O conditionals function by comparing values, fl ags 
function by telling the calculator whether or not a particular operation or 
type of operation has been performed. 

* Note that pressing CD CLEAR I PRGM I does not clear a fl ag that has been set by an 
m (E) n instruction . 
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Example: The following program contains an infinite loop that illus­
trates the operation of a flag. The program alternately displays all I 's and 
all 0' s by changing the status of the flag, and hence, the result of the test 
in line 006 , each time through the loop. A flowchart for the program 
might look like this: 

Yes 
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The program assumes that you have stored the number 0 in register Ro 
and the number 1.111111111 in register R I . 

Slide the PRGM-RUN switch to PRGM ~ . 

Keystrokes Display 

OJ CLEAR [PRGM [ 000-
CEJ[lBl10 001-25,13,11 
iRellt 002- 24 1 Recalls and displays ones 

fro m register R I . 

CEJ[ PSE I 003 - 25 74 
CEJ @I) 0 004-25,61 , 0 Clears flag O. 
CEJ I lBl I [[) 005- 25, 13, 12 
CEJ~O 006- 25,71, 0 Tests fl ag O. 
[GToI0 007 - 22 11 If set (true), go to [lBl 10. 
[RClI O 008- 24 0 Otherwise , recall and dis-
CEJ[PSEI 009- 25 74 play zeros from register Ro, 

CEJ [ill 0 010-25,51 , 0 set flag 0 , and go to 
[GTol [[) 011- 22 12 [lBl I [[) . 
CEJ[RTNI 012- 25 12 

Now switch to .mID RUN, load storage registers Ro and R I> then execute 
the program. 

Keystrokes 

CD~ 9 
o [sTOI 0 
1.1111 11111 
[STO ]I 
o 

Display 

0.000000000 
0.000000000 
1.111111111 
1.111111111 
1.111111111 
0.000000000 

All ones and all zeros. 

To stop the running program , press [RIS I (or any other key). 
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How it works: After you have initialized the program by storing zero in 
register Ro and all ones in register R I , the program begins running when 
you press CAl The I RCL 11 and [EJ I PSE I instructions in lines 002 and 003 
pause to display all ones from storage register R I . The [EJ @Il0 instruc­
tion in line 004 clears flag O. (Since the flag is already clear when you 
begin the program, the status of the flag simply remains the same.) 

There is no I RTN I after the routine begun by ~ 0, so execution 
continues through the I LBL I [[)instruction in lineOOS to the test , [EJ IfZ] 
0 , in line 006. The [EJ 1fZ]0 instruction asks the question "Is flag 0 set 
(true)?" Since the flag has been cleared earlier, the answer is NO, and 
execution skips one line of program memory and continues with the I RCL I 
o instruction in line 008. The I RCL I 0 and [EJ I PSE I instructions in lines 
008 and 009 pause to display all zeros from register Ro . Flag 0 is then set 
by the [EJ!TIl 0 instruction in line 010 and execution is transferred to 
ILBLI [[)by the IGTOI [[)instruction in line 011. 

With flag 0 now set , the answer to the test [EJ 1fZ]0 ("Is flag 0 true?") is 
now YES, so the calculator executes the I GTO I 0 instruction in line 007, 
the next line after the test. After again pausing to display all ones, the 
flag is cleared, and the program continues in an endless cycle , alternately 
displaying ones and zeros, until you stop execution from the keyboard . 

Problem 
One mile is equal to 1.609344 kilometers . Use the following flowchart to 
create and load a program that will permit you to key in distance in either 
miles (define with I LBL I 0) or kilometers (define with I LBL I [[) ). Use 
a flag for determining whether to multiply or divide to convert from one 
unit of measure to the other. (Hint: [EJ lliJ 0 yields the same result as 
GJ·) 

Set the calculator to (£!KJ 4 display mode. Then run the program to 
convert 26 miles into kilometers ; to convert ISOO meters (1.S kilometers) 
into miles. (Answers: 41.8429 kilometers; 0.9321 miles .) 
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Place 
1.609344 

in X-register. 

Stop 

Yes 
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Subroutines 
Often, a program contains a certain series of instructions that are 
executed several times throughout the program. When the same set of 
instructions occurs more than once in a program , it can be executed as a 
subroutine. A subroutine is selected by the IGSBI (go to subroutine) 
operation, followed by a label address 0 , [[), or 0 through 9. You can 
also select a subroutine with I GSB 1 OJ -more about OJ later. 

A I GSB 1 instruction transfers execution to the routine specified by the 
label address, just like a IGTOI instruction. However, after a IGSBI in­
struction has been executed, when the running program then executes a 
I RTN 1 (return), execution is transferred back to the next instruction after 
the I GSB I. Execution then continues sequentially downward through 
program memory. The illustration below should make the distinction 
between I GTO 1 and I GSB 1 more clear. 

I 

! 
Execution trans- ~ 
fers to line 000 
and halts. 

01LBLI0 

I GTol [[) 

01RTNI 

Branch 

I 
I 

I 

0(ill][[) 

01RTNI 

Subroutine 

01LBLI0 

I GSBI [[) / 

01RTNI 

I 
/ 

\ 
\ 

126 

0ILBLI[[) 

01RTNI 

Execution transfers 
to line 000 and 
halts. 
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In the top illustration of a branch, if you pressed 0 from the keyboard , 
the program would execute instructions sequentially downward through 
program memory. If it encountered a ,GTO, [[)instruction, it would then 
search for the next 'LBL 1 [[) and continue execution from there, until it 
encountered a 'RTN I. When it executed the 'RTN 1 instruction, execu­
tion would transfer directly to line 000 and halt. 

However, if the running program encounters a 'GSBI [[)(go to subrou­
tine B) instruction, as shown in the lower illustration, it searches down­
ward for the next 'LBL 1 [[)and resumes execution. When it encounters a 
'RTN 1 (return), program execution is once again transferred, this time 
back to the first line after the origin of the subroutine call (' GSB 1 [[), 

where execution resumes. 

As you can see , the only difference between a subroutine and a normal 
branch is the transfer of execution after the 'RTN I. After a 'GTO I, the 
next 'RTN 1 causes execution to transfer to line 000 and halt; after a I GSB I, 

the next 'RTN 1 returns execution back to the main program, where it 
continues until another 'RTN 1 (or a 'R/S I) is encountered. 

Example: Write a program for calcula­
ting the average slope of the graph of 
f(x) between Xl and X2 where f(x) = 
x 2 

- In(x2 + e-X). 
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Solution: The average slope of f(x) between x I and Xz is given by 

[X 22 - In(x22 + e-X2 ) ] - [x1 2 - In(x, 2 + e-XI )] 

X2 - XI 

Notice that the solution requires two computations of the expression 
x 2 - In(x 2 + e-X

). 

The program below allows you to key in the values for Xt and X2 and 
compute the average slope by pressing 0. 

01lBll0 
ISTOIO 
Ix~yl 

ISTOI GO 
IENTERtl 
ICHSI 
(]]~ 
01lSTXl 
(]]~ 
G 
CD@] 
ICHSI 
Ix~YI 

(]]~ 
G 
ICHSI 

Calculates f(X2) . 

These sections of 
program memory are 
identical. 

Calculatesf(xt) . 

tx~yl 

IENTERtl 
ICHSI 
(]]~ 
01lST xl 
(]]~ 
G 
CD@] 
ICHSI 

(]]~ 
G 
G 
IRCllO 
G 
01RTNI 

Since the program section for calculatingf(X2) contains a large portion of 
program memory identical to the section for calculatingf(xt), you can 
simply create a subroutine that will execute this section of instructions. 
The subroutine is then called up and executed in calculat ing both f(X2) 
and f(xt). 
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001 01LBLI0 , 013 01LBLI0 
002 ISTOI 0 ,/~if 014 IENTERtl 
003 Ix~YI ,// / 015 ICHSI 
004 ISTOI GO ,/ / 016 [[) ~ 
005 IGSBIO ------........ / 017 01lSTXI 
006 ICHSI .... ----, / 018 [[)~ 
007 Ix~YI ' .. / 019 IT) 
008 I GSB I 0 - - - - - -" " 020 OJ ~ 
009 IT) .... -----, ', 021 ICHSI 
010 IRCllO ',, ', 022 Ix~YI 
011 G ', ', 023 [[) ~ , , 
012 01RTNI " " 024 IT) 

" 025 01RTNI 

With the modified program, when you press 0withxt in the Y-register 
and X2 in the displayed X-register, execution begins with the 
01 lBl I 0 instruction in line 00 1. When the I GSB 10 instruction in line 
005 is encountered, execution transfers to the 01 lBl I 0 instruction in 
line 013 and calculates the quantity f(xt). Ifforexample, we used a value 

of 2 for X t and a value of 3 for X2, here is an illustration of what would be 
happening in the stack as the average slope of f(x) was calculated. 

I§§@§@ 
§Q]o §Q] Go IGSBIO 

(x I in Y -reg., (x, in Ro) (x I in X-reg. , (x, - X I in Ro) 
x, in X-reg.) x,in Y-reg.) 

rn~- ... 0'3 ..... ~ ........ ~14 . .... ~ .................. ~1~ ~ ... . 0 .. ' .6 . _w. ~--.~r .. 
lZl ..... .. ...... . ... w; . .. ' .. ··········· 3 ..... . '. .' . 3 " .... .... - ; .......••... 

~ ~ :~ ~ - ~~ =;;--:-: ::o.-';~~ ~o.'!ft-
lliJ CillJ 0 
(Begin 
subroutine) 

lliJ ILST xl 
(Recalls -XI) 
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018 019 020 

~f:~W~4~ 
023 024 025 

~~~f~jW[~ 
[EJ~ 

(Return to main 
program) 

021 

3 
,~ '" 

3 

2 

-1.4196 

022 

3 

3 

-1.4196 

2 

From line 025 execution transfers back to the main program and con­
tinues with the first line after the last IGSBI instruction. When the IGSBI 
o instruction in line 008 is encountered, execution again transfers to the 
01 LBL I 0 instruction in line 013. To continue our illustration: 

(ill) 
(-/(x \) saved 
in stack.) 

~o [EJ~o 
(Begin 
subroutine) 
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015 016 017 018 019 

!f~~f~~ 
~ 

3 -2.5804 -2.5804 -2.5804 
"" •. " 

-2.5804 3 3 -2.5804 
, 

3 0.0498 0.0498 3 

[Xl -3 0.0498 -3 9 9.0498 

~ [ID(B CEJ ILST xl [ID(£) ITl 
(-X2) (e - X, ) (Recalls - X2) (x,') (x,' + e-'<') 

020 021 022 023 024 -
[T] -2.5804 -2.5804 -2.5804 -2.5804 -2.5804 

,,-

~ -2.5804 -2.5804 -2.5804 -2.5804 -2.5804 

[E 3 3 -2.2027 -2.2027 -2.5804 

[Xl 2.2027 -2.2027 3 9 6.7973 

ITl~ ~ §l] [!) ~ ITl 
(In(x,' + e-X'))(-ln(x,' + e - x,)) (x,) (x,') (f(X2) 

025 

[T] -2.5804 

~ -2.5804 

lE -2.5804 

[Xl 6.7973 

(E] IRTN! 

(Return to main 
program) 

After the calculator passes through the subroutine under ITillO a second 
time to compute f(X2), the (E] I RTN! instruction at line 025 causes 
execution to return to the first instruction in the main program after the 
last I GSB! ° instruction. f(X2) is in the X-register; -f(x ,) is in the Y -, Z-, 
and T-registers. 
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009 010 011 012 

rn -2.5804 -2.5804 -2.5804 -2.5804 
'W "'" " 

~ -2.5804 -2.5804 -2.5804 -2.5804 
, ~. 

lYl -2.5804 4.2168 -2.5804 -2.5804 
, ~, , 

[Xl 4.2168 1 4.2168 4.2168 

G ~O o 0§E] 
(f(x,) - !(x I) (x, - XI) (f(x,) - !(XI) (End of 

-;- (x , - x I)) program) 

When calculation halts, the average slope of j(x) between x 1 and X2 

appears in the display. Extra copies of -j(Xl) in the Y- , Z-, and T­
registers are ignored. 

Now key in the program and try the problems on the next page . Slide 
the PRGM-RUN switch to PROM ~. 

Keystrokes Display 

OJ CLEAR [PRGM J 000-
0[LBLI0 001- 25, 13, 11 
[sToiO 002- 23 0 
[X~YJ 003- 21 
[sTOI GO 004- 23, 41, 0 
[GSBJO 005- 13 0 
[cHSI 006- 32 
[x~YJ 007- 21 
[GSBIO 008- 13 0 

G 009- 51 
[RClIO 010- 24 0 

0 011- 71 
0[RTNI 012- 25 12 

0ITillO 013- 25,13, 0 
[BmR+J 014- 31 
[cHSI 015- 32 

[[)~ 016- 15 1 
0[LSTXJ 017- 25 0 

[[)~ 018- 15 3 

G 019- 51 

OJ~ 020- 14 1 
[CHSJ 021- 32 



Ix~)'1 

[]J~ 
[IJ 
[EJ I RTN 1 

022-
023-
024-
025-

21 
15 3 

51 
25 12 
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Slide the PRGM-RUN switch to ~RUN. Now find the average slope 
of I(x) between the following pairs of points: (0, 0.5) , (0 .55, 1.15), 
(1.25, 1.75). 

Answers: 0 .8097 , 0 .6623 , 1.8804. 

Subroutine Usage 
Subroutines give you extreme versatility in programming. A subroutine 
can contain a loop , or it can be executed as part of a loop. Another com­
mon and space-saving trick is to use the same routine as a subroutine and 
as part of the main program . 

Example: The program below simu­
lates the throwing of a pair of dice , paus­
ing to display first the value of one die 
(an integer from I to 6) and then pausing 
to display the value of the second die 
(another integer from 1 to 6). Finally the 
values of the two dice are added together 
to give the total value. 

The "heart" of the program is a random number generator (actually a 
pseudorandom number generator) that is executed first as a subroutine 
and then as part of the main program. When you key in a first number, 
called a "seed," and press 0 , the digit for the first die is generated and 
displayed using the [EJ I LBL 12 routine as a subroutine . Then ,;.e digit for 
the second die is generated using the same routine as part of the main 
program. The program then uses the generated number as a new seed for 
successive "throws" of the dice . 
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To key in the program: 

Set the calculator to PRGM~ mode. 

Keystrokes Display 

CD CLEAR I PRGM I 000-
IGTOII 001- 22 1 
(BILBLI0 002- 25, 13, 11 
ISTOIO 003- 23 0 
(B ILBLII 004- 25,13, 1 
0 005- 0 
ISTOll 006- 23 
IGSBI2 007- 13 2 (B IillJ 2 executed first as 

a subroutine . 
(B I LBLI2 008- 25,13, 2 
IRCLIO 009- 24 0 
9 010- 9 
9 011- 9 
7 012- 7 

0 013- 61 
(BIFRACI 014- 25 33 
ISTOIO 015- 23 0 
6 016- 6 

0 017- 61 
1 018- 1 (B IillJ 2 then executed as 
[±J 019- 51 the remainder of the main 
(BQill 020- 25 32 program. 
[J l£IK] 0 021-14,11, 0 
(BI pSEI 022- 25 74 
ISTOI[±J 1 023- 23, 51, 1 
IRCL 11 024- 24 1 
(BIRTNI 025- 25 12 Transfers execution to line 

008 when I LBL 12 executed 
as a subroutine; to line 000 
when I LBL 12 executed as the 
remainder of the main pro-
gram. 
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Now set the calculator to "RUN mode and " roll" the dice. To roll 
the dice, key in the initial decimal "seed" (that is, 0 < n < I). Then 
press 0. The calculator will display first the number rolled by the first 
die, then the number rolled by the second, and finally, when the program 
stops, you can see the total number rolled by the dice. To make another 
roll, press 1 RIS I. The program uses the last number as a new seed for the 
roll. 

You can playa game with your friends using the "dice." If your first 
"roll" is 7 or II, you win. If it is another number, that number becomes 
your "point." You then keep "rolling" (pressing !Rlsl) until the dice 
again total your point (you win) or you roll a 7 or II (you lose). To run 
the program: 

Keystrokes 

.2315478 

o 
!RISI 
1 RIS I 

1 RIS I 

Display 

0.2315478 
10. 
8. 
5. 
7. 

The seed. 
Your point is 10. 
You missed your point. 
Missed it again. 
Whoops! You lose. 

Now try it again using the last number as the new seed. 

Keystrokes 

!RIS I 
!RIS I 

Display 

8. 
8. 

Your point is 8. 
Congratulations! You win. 

Before you continue , reset the display to four decimal places . 

Keystrokes 

[I] §J 4 

Display 

8.0000 

Subroutine Limits 

A subroutine can call up another subroutine, and that subroutine can call 
up yet another subroutine. Subroutine branching is limited only by the 
number of returns that can be held pending by the calculator. Six 
subroutine returns can be held pending at anyone time in the HP-34C . 
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The diagram below should make this more clear. 

Main Program 

[LBLI0 

I , 
[GSBII 

[RTN I 

END 

/ 

/ 

.. 
/ 

.. 
\ 

[LBL II [ill] 5 

I , 
[GSBI6 

[GSBI2 

, 
[RTNI [RTNI 

~ 
[ LBL 16 

/ 

, [RTN I 

The calculator can return back to the main program from subroutines that 
are six deep, as shown. However, if you attempt to call up subroutines 
that are seven deep, the calc ulator will halt and display Error 8 when it 
encounters the instruction attempting to call the seventh subrout ine 
level. 

Main Program 

I LBL II 

I 
/ 

~ 0 0 0/ 

IGSBII 
IGSBI2 

[RTNI 

I LBL 16 

I , 
[GSBI7 

[RTNI 

Execut ion 
halts and 
Error 8 is 
disp layed. 

[ill] 7 

[ATNI 
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Naturally, the calculator can execute non-subroutine I RTN I instructions 
(transfer execution to line 000 and halt) any number of times. Also, if you 
press I GTO lor I GSB I with 0, [[), or 0 through 9 from the keyboard, 
any pending I RTN I instructions are forgotten by the calculator. 

Press I GSB 12 

Main Program 

I LBL 11 

IGSBI2 

Execution 
begins here . 

ILBLI2 

IGSBI3 

• IRTNI 

1 
~ • •• 1 
I I 

\ .. ~ 
\ 

[ill] 5 

IGSBI6 

IRTNI 

\ 
\ 
\ 
\ 

ILBLI6 

IRTNI 

Note that in PRGM mode, single-step execution of a program contain­
ing subroutines follows the same order of execution as in a running 
program. 

Using [EJ I RTN I at the End of Occupied 
Program Memory 

The programming examples in your HP-34C Owner's Handbook and 
Programming Guide include an 0 I RTN I as the last line in occupied 
program memory. This is done both to clearly indicate the ends of 
programs and to illustrate how I RTN I affects program execution. 
However, you can omit 0 I RTN I where it occurs as the last instruction 
in occupied program memory without affecting program execution. 
Why? Whenever the last instruction in program memory is not 0 
IRTN I, progr::tm execution performs just as if 0 I RTN I existed immedi­
ately following the last instruction you keyed in. In other words , when 
program execution encounters the end of occupied memory without 
finding an 0 I RTN I instruction: 
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I. If in a subroutine, execution returns to the first line after the last 
IGSBI instruction and resumes. 

2. If not in a subroutine, execution returns to line 000 and halts . 

If the last line in occupied memory contains a I GSB I instruction, the cal­
culator executes the indicated subroutine, returns to line 000, and halts . 

Notice that I GTO I and I GSB I instructions always cause the calculator to 
search forward in program memory for the specified label. This feature 
often allows you to write a program in such a way that it uses a given 
label more than once. 

Example: The following program to calculate the value of the expres­
sion y' x 2 + y2 + Z2 + (2 uses I LBL I 0to identify both the beginning of 
the program and a subroutine within the program. The program is 
executed by placing the variables x, y, z, and I in the stack and pressing 

0· 

Slide the PRGM-RUN switch to PRGM la. and key in the following 
program. 

Keystrokes Display 

IT] CLEAR I PRGM I 000-

01LBLI0 001- 25, 13, 11 
[[)[£) 002- 15 3 
IGSBI0 003- 13 11 
IGSBI0 004- 13 11 
IGSBI0 005- 13 11 

IT]r~ 006- 14 3 
01RTNI 007- 25 12 

01LBLI0 008- 25,13,11 
Ix~yl 009- 21 
[[)[£) 010- 15 3 

ill 011- 51 
01RTNI 012- 25 12 
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Slide the PRGM-RUN switch to .mJ][]RUN and key in the following set 
of variables: 

x = 4.3, Y = 7.9, z = 1.3, t = 8.0 

Keystrokes 

8 IENTERtl 
1.31ENTERtl 
7.9IENTERtI4.3 0 

Display 

8.000 
1.3000 
12.1074 
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Advanced Programming 

Controlling the I-Register 
The I-register is one of the most powerful programming tools available 
on your HP-34C. In addition to serving as a register for the simple storage 
and recall of data, the I-register can also be used in conjunction with other 
instructions to perform the following: 

• Increment or decrement a specified value from the current value 
in I for loop control or other functions. 

• Indirectly control the storage register address of [STO I, [RCL I, 
and storage register arithmetic. 

• Indirectly control the labe l address of 1 GTO 1 and 1 GSB I. 

• Indirectly control the number of digits displayed by the ~, 

~, and 1 ENG 1 modes. 

• Transfer execution to any line of occupied program memory. 

Storing a Number in the I-Register 

To store a number in the I-register , you use the key sequence [sTol CD 
OJ. For example , to store the number 7 in the I-register: 

Ensure that the PRGM-RUN switch is set to .-mmRUN . 

Keystrokes 

7 [sTol CD OJ 
Display 

7.0000 

To recall a number from the I-register into the di splayed X-register, you 
use the key sequence [RCL 1 CD OJ. 

Keystrokes 

[cLxl 
[RCLI CD OJ 

Display 

0.0000 
7.0000 

140 

A copy of the number stored 
in I is recalled. 
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Exchanging X and I 

In a manner similar to the Ix~)'1 operation, the (]] I x~11 (X exchange I) 
operation exchanges the contents of the displayed X-register with those 
of the I-register. For example , key the number 2 into the displayed X­
register and exchange the contents of the X-register with the value you 
stored in the I-register in the previous example. 

Keystrokes 

2 
(]] InI) 

Display 

2. 
7.0000 Contents of X-register and 

I-register exchanged. 

When you pressed I x>.ll , the contents of the stack and the I-register 
were changed ... 

... from this ... ...to this. 

[T] 0.0000 [T] 0.0000 

[Z] 0.0000 ~ 0.0000 

~ 7.0000 [E 7.0000 ... 
[Xl 2.0000 Display [Xl 7.0000 Display 

I 7.0000 I 2.0000 

To restore the X-register and I-register contents to their original 
positions: 

Keystrokes 

(]] I x>.I) 

Display 

2.0000 

Incrementing and Decrementing the I-Register 

Another way of altering the contents of the I-register, and one that is most 
useful in programming, is through the ISO (increment, then skip if 
greater) and DSE (decrement, then skip if less than or equal) functions. 
Both contain internal counters that allow you to control the execution of 
a loop, as well as the sequential addressing operations covered later in 
this section. 
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The ISG and DSE functions use a number that is stored in the I-register 
and interpreted in a special way . The number is called a loop control 
value. The usual format is: 

nnnnn.xxxyy 

A loop control value is interpreted as three separate integers, where : 

±nnnnn is the current counter value, 
xxx is the counter test value , and 
yy is the increment or decrement value. 

The nnnnn portion of the number tells your HP-34C that you wish to 
count the number of passes through the loop beginning with that number. 
If you do not specify an nnnnn value, the HP-34C assumes you wish to 
begin counting at zero. An nnnnn value can be specified as one to five 
digits. 

The xxx portion of the number tells the HP-34C that you wish to stop the 
counting at that number. The xxx value must always be specified as a 
three-digit number (e.g ., an xxx value of 10 would be specified as 010). 

The yy portion of the loop control number tells the calculator how you 
wish to count. Current counter value nnnnn is incremented or decre­
mented by the value of yy. If you do not specify a yy value , the HP-34C 
automatically assumes you wish to count by ones (yy default = 01). A 
specified yy value must be two digits (e .g., 02, 03 , 55). 

Increment, Then Skip if Greater. Each time mJ is executed, it first 
increments nnnnn by yy. It then tests to see if nnnnn is greater than xxx. 
If it is, the HP-34C skips the next line in the program. 

So, with the loop control value 100.20001 in the I-register, the mJ 
instruction would begin counting up from 100 . Each time the program 
executed IISG I, the nnnnn portion of the loop control value would be 
incremented by 1. 

Contents of the I-register = 100.20001 
Execution of mJ would: 

Start counting up from 100. 
Increment nnnnn by I. 
Test to see if nnnnn is greater 
than 200. 
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After one execution or pass through the loop containing ~, the 
I-register would contain 101.20001. After 10 executions or passes 
through the loop, the I-register would contain 110.20001. Each time 
~ increments , it then checks to see if the current counter value 
nnnnn is greater than 200 (xxx). When nnnnn is greater than 200, 
program execution skips the next line of program memory following 
the ~ instruction. You will see how skipping the next line in the 
program is useful in a moment. 

Decrement, then Skip if Equal (or Less Than). Each time IOSEI is 
executed, it first decrements nnnnn by yy. It then tests to see if nnnnn is 
equal to (or less than) xxx. If it is , the HP-34C skips the next line in the 
program. 

So , with the number 100.01001 in the I-register, the lOSE 1 instruction 
would begin counting down from 100. Each time the program executed 
lOSE I, the nnnnn portion of the loop control value would be decremented 
by 1. 

Contents of the I-register = 100.01001 
Execution of lOSE 1 would: 

Start counting down from 100. 
Decrement by 1. 
Test to see if xxx was equal to (or 
less than) 10. 

After one execution or pass through the loop, the I-register would contain 
99.01001. After 10 executions or passes through the loop, the I-register 
would contain 90.01001. Each time lOSE 1 decrements , it then checks to 
see if the counter value nnnnn is equal to or less than 010 (xxx). When 
nnnnn is equal to or less than 010 (xxx), the calculator skips the next line 
of the program. 

Example: Here is a program that illustrates how ~ works. It con­
tains a loop that pauses to display the current value in the I-register and 
uses ~to control the number of passes through the loop and the value 
of the squared number. The program generates a table of squares of even 
numbers from 2 through 50. 
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Slide the PRGM-RUN switch to PRGMmm. and key in the following 
program. 

Keystrokes Display 

CD CLEAR I PRGM) 000-

IBILBL)0 001 - 25, 13, 11 Program label 

CD~5 002- 14, 11, 5 

2 003- 2 Current counter value 

8 004- 73 (nnnnn) . 

0 005- 0 

} 5 006- 5 Counter test value (xxx) . 

0 007- 0 

0 008- 0 
} Increment value (yy) . 

2 009- 2 

ISTO) CD CD 010- 23,14,23 Store loop control value in I . 

IB ILBL)I 011- 25,13, 1 Begin the loop . 

IRCL) CD CD 012- 24, 14,23 Recall the number in I. 

IB C!:ill 013- 25 32 Take the integer portion. 

IBlpSE) 014- 25 74 Pause to display the integer. 

[[)~ 015- 15 3 Square the number. 

IBI PSE) 016- 25 74 Display the square of the 
number. 

[[) PSG I 017- 15 24 Increment I by 2 and check 
to see that the counter is not 
greater than the final number 
(50) . If the counter is 
greater than the final 
number, skip the next line in 
the program. 

IGTO)I 018- 22 1 Loop back to label I . 

IBIRTN) 019- 25 12 Halts the program. 
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Now run the program: 

Slide the PRGM-RUN switch to .. RUN and press III 

Keystrokes 

o 
Display 

2.00000 
4.00000 

4.00000 
16.00000 

50.00000 
2,500.00000 

When the HP-34C begins 
executing, it first pauses to 
display the number to be 
squared, then pauses to dis­
play the square of the num­
ber. When the loop counter 
increments beyond 50, the 
program halts. 

Here is what happens when you run the above program. 

1. Under label 0, the number 2.05002 is stored in the I-register 
as the loop control value. It is in the counter format: i.e. , 

nnnnn 

(0000)2 
Current counter 

Value 

xxx 

050 
Test 

Value 

yy 

02 
Increment 

Value 

2. Under label I, tITe following sequence occurs: 

After 2 and 4 (the square of 2) are displayed, the current counter value in 
I, 00002 (nnnnn), is incremented by the increment value 02 (yy) . The 
new number in the I-register is 4.05002, which is interpreted by your 
calculator as: 

nnnnn 

(0000)4 
Current Counter 

Value 

xxx 

050 
Test 

Value 

yy 

02 
Increment 

Value 

The new counter value is then compared to the test value 050 (xxx). As 
the counter value has not exceeded the test value , the calculator proceeds 
to the next line , IGTOi 1, and the process is repeated with the new 
number. 
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3. After 25 even-numbers (2-50) and their squares are displayed, 
the current counter value finally increments beyond 50. This 
causes the calculator to skip one line after the 00 ~ at line 17. 
As a result, the IGTol I command at line 18 is bypassed and the 
IRTNI command at line 19 is executed, causing the calculator 
to return to line 000 and halt. 

After running the program, press I RCL I [IJ CD. The recalled I-register 
value in your display should now look like this: 

Current 
Counter 

Value 
(nnnnn) 

Test 
Value 

(xxx) 

Increment 
Value 

(yy) 

Now let's add a second program which uses your HP-34C's lOSE I func­
tion. Remember, the nnnnn.xxxyy format is the same as for ~. 

You will, however, be decrementing the current counter value instead of 
incrementing it. 

The island of Manhattan was sold in the 
year 1624 for $24. The following pro­
gram shows a simplified method to cal­
culate growth of the original amount if it 
had been placed in a bank account draw­
ing 6% annual interest. The number of 
years for which you want to calculate 
growth is stored in the I-register as a loop 
control value. The lOSE I instruction is 
then used to keep track of the number of 
iterations through the loop. 
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Slide the PRGM-RUN switch to PRGM ~ . Executing the IRTNI 
instruction in line 019 of the previous program returned your calculator 
to line 000. To add the fo llowing program to the end of currently occu­
pied program memory, press m IBST I (or IGTOIGJ 0 19) to return to 
line 019. 

Keystrokes Display 

[EJ I BST I 019 - 25 12 Last line of previous 
program. 

[EJ I lBl I [[) 020- 25,13,12 New program label. 
QJ (£!!] 2 021-14,11, 2 
ISTOI QJ CD 022- 23,14,23 Stores user-input loop con-

trol value nnnnn.xxxyy in 
the I-register. 

I 023-

} 6 024- 6 
Initial year. 2 025- 2 

4 026- 4 
[B 027- 51 Final year . 
ISTOIO 028- 23 0 Stores final year. 
2 029- 2 } Initial dollar amount. 
4 030- 4 
mllBll 2 031- 25,13, 2 Begins the loop. 
1 032- 1 

} 0 033- 0 Calculates annual growth. 
6 034- 6 

moo 035- 25 41 
OOIOSEI 036- 15 23 Decrements the current 

counter value nnnnn and 
compares with the counter 
test value xxx . 

IGTOl2 037- 22 2 If nnnnn> xxx , returns to 
I lBl 12. 

IRCllO 038- 24 0 

} mlpSEI 039- 25 74 
Ix~YI 040- 21 If nnnnn,;; xxx , displays 
mlRTNI 041- 25 12 final year, final growth 

value , and halts. 
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Slide the PRGM-RUN switch to .aJRUN and key in the number of 
years (loop control value) for which you want to see the accumulated 
amount. Press lID to store your input value in the I-register and to run 
the program. 

Keystrokes 

5 

15 

Display 

5. 

32.12 

15. 

57.52 

Loop control value; 
nnnnn = 5, xxx = 000, 
yy = 00 (defaults to 01 
internally). 
After five years, in 1629, the 
account would have been 
worth $32.12. 
Loop control value; 
nnn = 15, xxx = 000, 
yy = 00 (defaults to 01 
internally). 
After 15 years, in 1639, the 
account would have been 
worth $57.52. 

How it works: When you key in the number of years and press lID your 
entry is stored in the I-register and becomes the loop control value 
(nnnnn.xxxyy) . 

nnnnn 

(0000)5 
Current Counter 

Value 

xxx 

000 
Counter Test 

Value 

yy 

00 
Decrement Value 

(Defaults to 01 internally.) 

(Notice that when the test value is 000 and the increment or decrement 
value is 01, it is not necessary to enter them.) 

The loop control value is then added to the initial year. This sum is the 
final year and is stored in Ro for later recall. The initial dollar amount is 
then entered. Each time through the loop the dollar amount is increased 
by 6%. The lOSE I instruction then subtracts I from the I-register. If the 
loop control value in I is not then zero, execution returns to I LBL 12 and 
the loop is executed again . 
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When the loop control value in the I-register is decremented to zero 
(nnnnn=xxx), execution bypasses the IGTOl2 instruction at line 37 and 
resumes with the I RCL 10 instruction at line 38. The final year and dollar 
value then appear in succession and the program halts. 

ISG and DSE Limits 

Note that ~ and lOSE I can be used to increment and decrement any 
number that the HP-34C can display. However, the decimal portion of 
the loop control value will be affected by current counter values exceed­
ing the five-digit nnnnn value. 

For example, the number 99,950.50055 , when incremented using IISG I 
would become 100,005.5006. The initial number was incremented by 
55. But since the new number 100 ,005.50055, cannot be fully displayed, 
the decimal portion of the number was rounded . As the calculator 
assumes a two-digit number for the increment value (yy), the next in­
crement would be by 60 , not 55. And when the number becomes 
999,945.5006, the next number would be 1,000,005 .501, thus rounding 
the decimal portion of the number again . Since no increment value yy is 
present, the next increment would default to 01 instead of remaining at 
60. 

Problem: 
1. Write a program that will count from zero up to a limit using the 

IISG I function, and then, in the same program, count back down 
to zero using the lOSE I function. Use the flowchart on the follow­
ing page to help you . 
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Using The I-Register For Display, 
Storage Register, and Program Control 

You have seen how the value in the I-register can be altered using I STO I, 
Ix~II , ~ , and IOSEI operations. But the value contained in the 
I-register can also be used to control display, storage register, branching, 
and subroutine operations. First, let's get a brief overview of these 
operations. Then we'll examine each one in detail. 

I ospII (dispiay J) uses a number stored in the I-register to specify the 
number of decimal places appearing in the display. 

IX>C1iI1 (X exchange indirect) exchanges the contents of the displayed 
X-register with the contents of the available storage register addressed 
by the absolute value of the number in the I-register. 

ISTOI CD §j(store indirect) stores the value that is in the display in the 
storage register addressed by the absolute value of the number currently 
in the I-register. 

I RCL I CD §j (recall indirect) recalls the contents of the storage register 
addressed by the absolute value of the number currently in the I-register. 

ISTO I ([B, 0 , G , or 0) §j (indirect storage register arithmetic) 
performs storage register arithmetic on the contents of the storage register 
addressed by the absolute value of the number currently in the I-register. 

IGTOI CD CD (go to label or line l) with a positive number in the 
I-register transfers execution of a running program sequentially down­
ward in program memory to the next label specified by the number 
currently in 1. With a negative number in the I-register, execution 
transfers to the occupied line number specified by the absolute value of 
the number currently in 1. 

I GSB I CD CD (go to label or line J subroutine) with a positive number 
in the I-register transfers execution of a running program sequentially 
downward in program memory to the next label specified by the number 
currently in 1. With a negative number in the I-register, execution 
transfers to the occupied line number specified by the absolute value of 
the number currently in 1. In both cases , when a I RTN I is then encoun­
tered, execution transfers back to the line following the I GSB I instruc­
tion, and continues. 
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When executing anyone of the above operations, if the number in the 
I-register is inappropriate for that operation, the display will show an 
Error message. Also, when using a number in I for display, storage regis­
ter, or program control, remember that the calculator uses only the in­
teger portion of the number in 1. Thus, 12.99041276 stored in the 
I-register retains its full value there, but when used to control any of 
the above operations it is read as 12 by the calculator. 

You can already see that using the I-register in conjunction with other 
functions gives you a tremendous amount of computing power and 
exceptional programming control. Now let's have a closer look at 
these operations. 

I-Register Display Control 

You can use a number in the I-register to control the number of decimal 
places appearing in the display. When 01 oSP II is performed, the 
display is seen rounded to the number of decimal places specified by the 
current value contained in the I-register. (The display is seen rounded, 
but of course, the calculator maintains its full accuracy, 10 digits multip­
lied by 10 raised to a two-digit exponent, internally.) The above opera­
tion is most useful as part of a program, but it can also be executed 
manually from the keyboard. For example, execute the following in 
RUN mode. 

Keystrokes Display 

IClxl ITJ [@J 4 0.0000 Clears display; normal FIX 
display. 

1 STD 1 ITJ CO 0.0000 Insures that zero is in the 
I-register. 

9.123456789 9.123456789 
010sPII 9. FIX display specified by the 

zero value in the I-register. 
[]JIISGI 9. Increments value in 

I-register to I . 
010sPII 9.1 FIX display specified by the 

the value in the I-register. 
[]J IISG I 9.1 Increments value in 1-

register to 2. 
010sPII 9.12 FIX display specified by the 

value in the I-register. 
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Example: The following program pauses and displays an example of 
FIX display format for each possible decimal place. It utilizes a loop 
containing a lOSE I instruction to automatically change the number of 
decimal places. 

Slide the PRGM-RUN switch to PRGM ~ and key in the following 
program. 

Keystrokes Display 

m CLEAR I PRGM I 000-
lliJ I LBLI 0 001- 25, 13,11 
9 002- 9 
ISTOl m m 003- 23, 14, 23 
lliJ I LBL I 0 004- 25, 13, 0 
lliJ I oSP II 005- 25 11 
IRCLl m m 006- 24, 14,23 
lliJ I PSE I 007- 25 74 
[[] lOSE I 008- 15 23 
IGTOIO 009- 22 0 
[[] Ix>ol 010- 15 51 
IGTOI O 011- 22 0 
lliJ I RTN I 012- 25 12 

To display fixed point notation for all possible decimal places on your 
HP-34C . 

Slide PRGM-RUN switch to -.J RUN . 

Keystrokes 

o 
Display 

9.000000000 
8.00000000 
7.0000000 
6.000000 
5.00000 
4.0000 
3.000 
2.00 
1.0 
O. 
O. 
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To display scientific or engineering notation for all possible places, 
replace the 9 at line 002 with a 6 and shift the calculator to SCI or ENO 
mode by pressing [I) ~ or [I) I ENG I and any digit 0-7. * Then press 
o as you did in the above example. 

Slide the PROM-RUN switch PRGM ~ to PROM. 

Keystrokes 

IGTol GJ 002 
[EJ I DEL I 
6 

Display 

002- 9 
001-25,13,11 
002- 6 

Slide the PROM-RUN switch to "RUN 

Keystrokes Display 

OJ@ 4 0.0000 00 Normal 
or 

OJ: EN" I 4 0.0000 00 Normal 

0 6.000000 00 
5.00000 00 
4.0000 00 
3.000 00 
2.00 00 
1.0 00 
O. 00 
o. 00 

~display. 

@O:GJ display . 

If any number less than 0 is stored in the I-register, executing [EJ I DSP II 
results in the same number of digits in the display as when you execute 
[EJ I DSP II with 0 in the I-register. t If a number greater than 9 is stored in 
the I-register, executing [EJI DSP II results in the same number of digits 
in the display as when you execute [EJ I DSP II with 9 in the I-register. 
Note that in SCI and ENO modes any number greater than 6 in the 
I-register results in a maximum of 6 digits and a 2-digit exponent 

* In PROM mode , pressing OJ IIITJ or OJ ~ followed by 8 or 9 automatically 
results in an OJ @ID 7 or OJ ~ 7 in program memory. 

t During execution of IZIJ only , a number -6 through +9 in the I-register is used by I DSP II 
as an automatic parameter for IZIJ calculations (more on IZIJ in section 9) . 
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appearing to the right of the decimal. (Remember, however, that 
~ or I ENG 17 rounds the display to one more digit than does ~ or 
IENGI 6.) 

Execute the following : 

Keystrokes Display 

ITJ lli!J 4 0.0000 Normal FIX display . 
1 .999999999 1.999999999 
I STO 1 ITJ CD 2.0000 Display rounds to last 

display format command. 
[EJ I OSPI 1 2.0 Only the integer portion of 

the value in I is read by 
IOSPI I . 

. 9852 0.9852 
1 STO 1 ITJ CD 1.0 Display rounds to last format 

command. 
[EJ I OSP II 1. A value of < 1 brings the 

same result as a value of O. 
19 19. 
I STO 1 ITJ CD 19. 
[EJ I OSPI 1 19.00000000 With 2 digits to the left of the 

decimal occupied , a value 
> 9 stored in I brings 
the same result as a value of 
8 or 9. 

I cHsl1 STO 1 ITJ CD -19.00000000 Stores a negative number 
in I. 

[EJ losp I 1 -19. A negative number stored in 
I brings the same result as 
a positive number < 1. 

ITJ~ 4 -1.9000 01 Normal SCI display . 
1.1111119 I ENTERtl 1.1111 00 
7 ISTOI ITJ CD lx~)'1 1.1111 00 
[EJ IOSPI 1 1.111111 00 Display rounded to 7 

decimal places. 
6 ISTOI ITJ CD lx~)'1 1.111111 
[EJ losp I 1 1.111112 00 Display rounded to 6 

decimal places . 
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Exchanging X and (i) 

Using Inwl you can exchange the contents of the displayed X-register 
with those of any available storage register indirectly addressed by the 
absolute value of any number -21 < n < 21 in the I-register. The integers 
from 0 through ±9 address storage registers Ro through R9 . The 
integers from ± 10 through ± 19 address registers Ro through R. 9 . With 
the number ±20 in the I-register, Ix~wl addresses the I-register itself! 

The following diagram illustrates these addresses more clearly: 

(i) Address (i) Address 

Ro CJ 0 R.oD 10 

R1 D R.1D 11 

R2 D 2 R.2D 12 

R3 D 3 R.3D 13 

R. D 4 R·.D 14 

Rs D 5 R.sD 15 

Rs D 6 R.6D 16 

R7 D 7 R.7D 17 

Ra D 8 R.aD 18 

Rg D 9 R·gD 19 

D 20 

Before proceeding, set the display to FIX 4 and clear both the displayed 
X-register and all storage registers. 

Keystrokes Display 

m[@] 4 ICLXI 0.0000 
m CLEAR I REG I 0.0000 

Now try the following examples using IX~1U1 to store 1.234 in registers 
R3 , R. 5 , and I. 



Keystrokes 

3 ITJI x~I! 

1.2345 0Ix~(j)1 

IRCLI 3 

15 ITJlx~I! 

ITJ CLEAR I REG I 

15 .3974 ICHSI 
ITJI x~I! 

Display 

0.0000 

0.0000 

1.2345 

3.0000 

1.2345 

0.0000 

1.2345 

1.2345 

-15.3974 
0.0000 

1.2345 

0.0000 

1.2345 
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Exchanges contents of dis­
played X-register and 
I-register. 

Exchanges contents of dis­
played X-register and R3 , 

using the integer 3 in I for an 
address. 

Recalls a copy of the 
contents of R3 . 

Exchanges contents of dis­
played X-register and 1. 

Exchanges contents of dis­
played X-register and Y­
register. 

Exchanges contents of dis­
played X-register and R.5 
using the integer 15 in I as 
an address. 

Recalls a copy of the 
contents of R.5. 
Clears the contents of all 
storage registers to o. 

Exchanges the contents of 
the displayed X-register and 
1. 
Exchanges the contents of 
the displayed X-register and 
the Y -register. 

Exchanges contents of dis­
played X-register and R.5 
using the integer portion of 
the absolute value of 
- 15.3974 stored in I as an 
address. 

Recalls a copy of the con­
tents of R.5 
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Keystrokes Display 

20 CD Ix~JI - 15.3974 Exchanges the contents of 
the displayed X-register and 
1. 

Ix~Y I 1.2345 Exchanges the contents of 
the displayed X-register and 
the Y -register. 

mlx~1iI 1 20.0000 Exchanges the contents of 
the displayed X-register and 
I, using the integer stored in 
I as an address. 

IRCLICD OJ 1.2345 Recalls a copy of the con-
tents of 1. 

CD CLEAR I REG I 1.2345 Clears the contents of all 
storage registers to O. 

I CL X II ENTER. II ENTER. I 
I ENTER. I 0.0000 Clears all stack registers . 

Indirect Store and Recall 

Like I X~IiI I , you can use the I-register to indirectly address all 21 storage 
registers for I STO I and I RCL I operations. When you press I STO I CD @D , 
the value in the display is stored in the storage register addressed by the 
number in the I-register. I RCL I CD @D addresses the storage registers in a 
I ike manner, as do the storage register arithmetic operations I STO I CB 
@D , ISTO I G @D , ISTOI0 @D ,and ISTOIG @D .(Ifyouhavefor­
gotten the normal operation of the storage registers, or of storage regis­
ter arithmetic , go back and review section 4, Storing and Recalling 
Numbers, in Solving Problems With Your Hewlett-Packard Calculator.) 

When us ing I STO I CD @D , I RCL I CIJ @D , or any of the storage register 
arithmetic operations utilizing the @D function, the I -register can contain 
the same positive or negative values from 0 through 20, as used with 
I x~wl. 
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By using the calculator manually , you can easily see how I STO I []] @D 
and IRCLI []] @D are used in conjunction with the I-register to address 
the different storage registers: 

Ensure that the PRGM-RUN switch is set to "RUN. 

Keystrokes Display 

ICLX I []] 1£!K)4 0.0000 

[]] CLEAR I REG I 0.0000 Clears all storage registers, 
including I, to zero. 

5 I STO I []] CD 5.0000 Stores the number 5 in the 
I-register. 

1.23 I STO I []] @D 1.2300 Stores the number 1.23 in 
the storage register ad-
dressed by the number in 
I-that is, storage register 
R5 · 

19 ISTOI []] CD 19.0000 Stores the number 19 in the 
I-register. 

85083 I STO I []] @D 85,083.0000 Stores the number 85083 in 
the storage register R.9 
addressed by the current 
number 19 in I. 

12 ISTOI []] CD 12.0000 Stores the number 12 in the 
I-register. 

77 I EEX 143 77. 43 

ISTOI []] @D 7.7000 44 Stores the number 7.7 x 1044 

in the storage register ad-
dressed by the number in 
I-that is, in storage register 

R.2 · 
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To recall numbers that are stored in any register, you can use the IRCLI 
(recall) key followed by the number of the register address. However , 
when the number currently stored in the I-register addresses the storage 
register you want, you can recall the contents of that register with I RCL I 

mITiD · 

Keystrokes 

IRcLI5 

Display 

1.2300 

7.7000 44 

Contents of storage register 
Rs recalled to displayed 
X-register. 
Since the I-register still 
contains the number 12, this 
operation recalls the con­
tents of storage register R. 2 , 

which is addressed by the 
number 12. 

By changing the number in the I-register, you change the address 
specified by ISTO I m ITiD or I RCL I m ITiD . For example: 

Keystrokes 

19 ISTOI m OJ 
IRCLl m ITiD 

5 ISTOI m OJ 
IRCLI m ITiD 

Display 

19.0000 
85,083.0000 

5.0000 
1.2300 

Contents of storage register 
R.9 recalled to displayed 
X-register. 

Contents of storage register 
Rs recalled to displayed 
X-register. 

Storage register arithmetic is performed upon the contents of the register 
addressed by I by using ISTO I C±J ITiD , ISTO I G ITiD , ISTO I 0 ITiD , and 
ISTO I G ITiD . Notice that it is not necessary to use the m shift function 
key with these four operations. 
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Keystrokes Display 

1 ISTOI [B [ill] 1.0000 One added to number in 
storage register (R5) cur-
rently addressed by the 
I-register. 

IRCLI CD [ill] 2.2300 Recalls the number stored 
in R5. 

2 ISTOI 0 [ill] 2.0000 Multiplies the contents of 
R5 by 2. 

IRCLI CD [ill] 4.4600 Recalls the new contents of 

R5· 
ICLXI 0.0000 Clears display. 
IRCLI5 4.4600 Directly recalls the contents 

of R5. 

Note: When programming, storage register arithmetic 
commands for register Ao through Ag can be keyed in as 
either direct or indirect storage operations. However, storage 
register arithmetic commands for registers A.o through A.g 
and the I-register are implemented using indirect storage 
operations only. 

Naturally, the most effective use of the I-register as an address for ISTO I 
and I RCL I is in a program. 

Example: The following program uses a loop to place the number 
representing its address in storage registers Ro through R9 and registers 
R.o through R.9. During each iteration through the loop, program execu­
tion pauses to show the current value of I. When I reaches 20, execution 
is finally transferred out of the loop by the 00 IISG I instruction and the 
program returns to line 000 and halts . 
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Slide the PRGM-RUN switch to PRGM mm. and key in the following 
program . 

Keystrokes Display 

[IJ CLEAR I PRGM I 000-

01LBLI0 001- 25, 13, 11 

GJ 002- 73 

} 0 003- 0 
Loop control number. 

I 004-
9 005- 9 

I STO I [IJ CO 006- 23,14,23 Store loop control number. 

01LBLI1 007- 25,13, 1 

IRCLI [IJ CO 008- 24,14,23 

I 
Current integer value of I 

0@J 009- 25 32 stored in storage register 

ISTOI [IJ @D 010- 23, 14,24 addressed by (i). 

01pSEI 011- 25 74 Pause to display current 
value of I. 

[[] "5G I 012- 15 24 Add one to value in 1-
register and compare with 
counter test value (019). 

IGTOII 013- 22 If! ~ 19, execute loop again . 

01RTNI 014- 25 12 If I> 19, execution transfers 
to line 000 and halts. 

Slide the PRGM-RUN switch to ..mIIRUN . 

When the program is run , it begins by placing zero in the I-register. 
Then the program recalls the current value in the I-register (loop control 
value) and stores the integer part of that number in the corresponding 
address - for example , when the I-register contains the number 17 .019 , 
that number is recalled and the integer portion , 17, is stored in the indirect 
storage register (R17) that is addressed by the number 17. Each time 
through the loop the I-register is incremented and the result is used both 
as data and as an address by the I STO I [IJ @D instruction. When the 
number in the I-register reaches 20 , execution transfers out of the loop 
and the program stops. 
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Keystrokes 

[II 

Display 

0.0000 
1.0000 
2.0000 

19.0000 
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Notice that the contents of the I-register have been incremented to 
20 .0190. 

Keystrokes 

I RCL 1 [[] [[] 

Display 

20.0190 

I-Register Control of Branches and Subroutines 

Like the addressing of storage registers using 1 STO 1 [[] (ili)and I RCL 1 [[] 
(ili) , you can address routines, subroutines , even entire programs, 
with the I-register. 

To address a routine using the I-register, use the instruction IGTOI [[] 
[[] . When a running program encounters a 1 GTO 1 [[] OJ instruction , 
execution is transferred sequentially downward to the 1 LBL 1 that is 
addressed by the number in the I-register. Thus, with the number 7 stored 
in I, when the instruction I GTO 1 [[] OJ is encountered, execution is 
transferred downward in program memory to the next I LBL 17 instruction 
before resuming . 

1 
7 

I STO 1 [[] OJ 
IGTOI [[] OJ 

CIJILBLI7 
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Naturally, you can also execute IGTOI m OJ from the keyboard when 
you want the calculator to go to the label addressed in the I-register and 
halt. 

Subroutines can also be addressed and utilized with the I-register. When 
I GSB 1 m OJis executed in a running program, execution transfers to the 
specified I LBL 1 and executes the subroutine. When a I RTN 1 is then encoun­
tered, execution transfers back to the next instruction after the 
I GSB 1 m OJ and resumes . For example, with the number 7 stored in the 
I-register, IGSBI m OJ causes execution of the subroutine defined by 
ILBLI7 and IRTNI. 

lliJ I LBL 17 ! /-f 7 
/ 

ISTOI m OJ / 
/ 

IGSBI m OJ / 

lliJ I RTN 1 ! .......... 
...... 

....... 

You can also execute I GSB 1 m OJfrom the keyboard when you want the 
calculator to execute the program or subroutine addressed by the number 
in I, then halt. 

The simple-to-remember addressing using the I-register is the same for 
IGTOI m OJand IGSBI m OJ. If the I-register contains zero or apositive 
number from 1 through 9, I GTO 1 or I GSB 1 m OJ addresses I LBL 1 0 
through 9. When the number in I is a positive 10 or 11 , I LBL 1 0 or 
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I LBL I ~ is addressed . Label addressing is illustrated below. 

If the number 
in I is: 

o 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

IGTOI [IJ OJ or IGSBI [IJ OJ 
transfers execution to: 

mlLBLIO 
mlLBLl1 
miLBLI2 
miLBLI3 
miLBLI4 
miLBLI5 
miLBLI6 
miLBLI7 
miLBLI8 
miLBLI9 
miLBLI0 
mlIill~ 

Remember that label address numbers in the I-register must be 0 or a 
positive value less than 12 (negative numbers cause transfer of program 
execution, which we will discuss later), and that the calculator looks at 
only the integer portion of the number in I when using it for an address. 

Example: One method of generating pseudorandom numbers in a 
program is to take a number (called a "seed"), square it , and then 
remove the center of the resulting square and square that, etc . Thus, a 
seed of 5182 when squared yields 26853124. A random number 
generator could then extract the four center digits, 8531, and square that 
value. Continuing for several iterations through a loop would generate 
several pseudorandom numbers. * 
The following program uses the I GTO I [IJ OJinstruction to permit you to 
key in a four-digit seed in any of three forms: nnnn, .nnnn , or nn.nn. 
The seed is squared and the square truncated by the main part of the 
program, and the resulting four-digit random number is displayed in the 
form of the original seed: nnn, .nnnn, or nn.nn . 

• As indicated, the numbers are not really random. After several such "pseudorandom" 
numbers have been generated by this mid· square method they may well begin behaving in a 
very systematic , non-random way. The art of generating truly random numbers is beyond 
the scope of this handbook . 
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A flowchart for the program might look like this: 
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The use of the I GTO 1 [JJ OJ instruction lets you select, via your seed 
format, the operations that are performed upon the number after the main 
portion of the program. 

By storing 1, 2, or 3 in the I-register depending upon the format of the 
seed, the program selects the form of the result after it is generated by 
the main portion of the program. Although the program shown here stops 
after each result, it would be a simple matter to create a loop that would 
iterate several times, increasing the apparent randomness of the result 
each time. 

Slide the PRGM-RUN switch to PRGM mm.. and key in the program. 

Keystrokes 

[JJ CLEAR I PRGM 1 

[B I LBL 14 
IEEXI 
2 

G 
1 

IGTOl7 
[B ILBLI 5 
IEEXI 
2 

o 
2 

Display 

000-
001- 25, 13, 4 

002- 33 ) 
003- 2 Changes nnnn to nn.nn. 
004- 71 
005- Places 1 in X-register for 

storage in I. 
006- 22 7 
007- 25,13, 5 

008- 33 ) 
009- 2 
010- 61 
011- 2 

012- 22 7 
013- 25,13, 6 
014- 3 

015- 25, 13, 7 
016- 23, 14,23 

Changes .nnnn to nn .nn . 

Places 2 in X-register for 
storage in I. 

Places 3 in X-register for 
storage in I. 

Stores address of later 
operation in I. 
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Keystrokes Display 

Ix~.Y1 017- 21 Brings nn.nn to X-register. 

[]]~ 018- 15 3 Squares nn.nn. 
I EEXI 019- 33 
2 020- 2 } Truo,,""wo firuli digit,,' 

square. 

0 021- 61 

m~ 022- 25 32 
I EEX 1 023- 33 ) 4 024- 4 Truncates two leading digits 
G 025- 71 of square. 
mlFRACI 026- 25 33 
IGTOI CD CD 027- 22,14,23 Transfers execution to 

appropriate operational 
routine . 

mlLBLl1 028- 25,13, 1 I R"olt 'ppeo" " ""M. 
IEEXI 029- 33 
4 030- 4 

0 031- 61 

CD CillJ O 032- 14, 11, 0 

mlRTHI 033- 25 12 
miLBLI2 034- 25,13, 2 

) Result appears as . nnnn. CD CillJ 4 035- 14, 11, 4 
mlRTHI 036- 25 12 
miLBLI3 037- 25,13, 3 I R"olt 'PP'''''' "M.M 

I EEX 1 038- 33 
2 039- 2 

0 040- 61 

CD CillJ 2 041-14,11,2 
mlRTHI 042- 25 12 

We could also have stored the digits for 100 (that is, I EEX 12) and recalled 
them for use in lines 002-003 , 008-009,019-020, and 038-039 , but we 
have used this more straightforward program to illustrate the use of the 
I GTol CD CD instruction. 
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When you key in a four-digit seed number in one of the three formats 
shown, an address (1,2, or 3) is placed in the Ro-register. This address 
is used by the I GTO) CIJ CD instruction in line 27 to transfer program 
execution to the proper routine so that the new random number is seen 
in the same form as the original seed. 

Now run the program for seeds of 5182, .5182 and 51.82. To run the 
program: 

Set the calculator to "RUN 
Keystrokes Display 

5182 IGsa) 4 8,531. 

. 5182 IGsa) 5 0.8531 
51.82 IGsa) 6 85.31 

Random number generated 
in the proper form . 

The program generates a random number of the same form as the seed 
you keyed in. To use the random number as a new seed (simulating the 
operation of an actual random number generator, in which a loop would 
be used to decrease the apparent predictability of each succeeding 
number), continue pressing IGSB) and the appropriate label key: 

Keystrokes 

IGSB) 6 
IGSB) 6 
IGsa) 6 

Display 

77.79 
51.28 
29.63 

With a few slight modifications of the program , you could have used a 
I Gsa) CIJ CD instruction instead of the I GTO) CIJ CD instruction. 
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Problem 

Create and load a program using IISG land I STO I [D @Dthat permits you 
to key in a series of values during successive halts. The values should be 
stored in storage registers Ro through R9 , R.o through R9 and I in the 
order you key them in. Use the following flowchart to help you. 

Yes 

Store counter 
test value in I. 
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Branching and Subroutines Using Line Number Addressing 

Using IGTOI CD [D or IGSBI CD [D, with a negative number stored in 
the I-register, you can actually branch to any occupied line number in 
program memory . 

As you know, when IGTOI CD [D or IGSBI CD [D is executed in a 
running program, the calculator searches downward through program 
memory until it locates the I LBL I addressed by the positive number in 1. 
Then execution resumes. However, when IGTOI CD [D or IGSBI CD [D 
is executed in a running program with a negative number stored in I , the 
calculator does not search for a label. Instead , execution is transferred to 
the occupied line number in program memory specified by the absolute 
value of the negative number in 1. This feature allows you to transfer 
program execution even when all labels have been used or when you want 
to execute only part of a subroutine or program without using an addi­
tional label. 

For example , in the section of program memory shown below , -35 is 
stored in the I-register. Then, when line 047, I GTol CD [D, is executed , 
the running program jumps immediately to line 035, where execution 
begins again . 

1. When [!J is 
pressed, execution 
begins at line 
041. 

2. With -35 stored 
in I, execution 
transferred to 
line 035 by I GTO I 
CD [D. 

033- [IJ~ 

034- 3 

~ 035- ISTOl3 
036- 4 
037- 5 
038- 00 ~ 
039- [IJ rm 0 
040- [IJ I RTN I 
041- [IJ I LBL I [[) 

042- CD I LOG I 
043- 3 

044- 5 

045- ICHSI 

L 
046- ISTOI CD [D 

- 047- IGTOI CD [D 

048- ooITAN-'1 

3. Execution 
resumes here 
and continues 
until the [IJ 
I RTN I at line 
040 is encoun­
tered. 
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When I GTO I []] OJ is performed in a running program, execution then 
continues until the next I RTN lor I RIS I instruction is encountered, and 
then halts. If you pressed (!]with the instructions shown above loaded 
into the calculator, the instructions in lines 041 through 047 would be 
executed in order. Then program execution would jump backward and 
resume at line 035 and continue with 036, 037, etc., until the I RTN I 

instruction was encountered in line 040. Program execution would then 
halt and the calculator would return to line 000. 

Note that executing I GTO I []] OJ from the keyboard . brings the same 
results as execution in a running program except the calculator halts at 
the specified line number instead of resuming program execution. 

With a negative number stored in the I-register, I GSB I []] OJalso trans­
fers execution to the occupied line of program memory specified by the 
absolute value of the negative number in I. However, just as when using 
IGSBI with labels, subsequent instructions are then executed as a sub­
routine . Therefore, when the next I RTN I is encountered , execution trans­
fers back to the instruction following the I GSB I []] OJ instruction . 

The section of program memory below shows how IGSBI []] OJ oper­
ates. If you press (!], -35 will be stored in the I-register. When the 
I GSB I []] OJ at line 047 is then executed, the running program jumps 
back to line 035 and resumes execution. When the I RTN I instruction at 
line 040 is encountered, execution returns to line 048 and continues. 



1 When [!)is 
pressed, execution 
begins at line 
041. 

2. Execution trans­
ferred to line L _ 
035 by I GSB I [IJ 

CD· 
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033 [E](B 

034 3 

035 tSTol3 

036 4 

037 5 

038 []] lli:B 
039 [E] (ill 0 

040 [E]IRTNI 

041 [E]ILBLI [!) 

042 [IJ t LOG I 

043 3 

044 5 

045 ICHSI 

046 t STO I [IJ CD 
047 tGSBI [IJ CD 
048 []] I TAN-' I 

• 
• 
• 

j 
3. Execution re-

sumes here . 

- ,4. The subroutine 

I ends here . 

I 
I 
I 
I 
I 

Execution trans-,5. , fers back to first 

,J line after IGSBI 
and resumes. 

Like t GTO I [IJ CD, I GSB I [IJ CD can be used to jump to a specific line of 
program memory without running your entire program. When you exe­
cute IGSBI [IJ CD from the keyboard using the absolute value of a 
negative number in I as an occupied line address, the calculator jumps to 
that line and begins execution. However, unlike the execution of 
tGSBI [IJ CD in a running program , when a tRTNlis encountered, the 
calculator returns to line 000 and halts . 
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Finding the Roots of an Equation 

In many applications you need to solve equations of the form 

f(x) = 0.* 
This means finding the values of x that 
satisfy the equation. Each such value of x 
is called a root of the equation f(x) = 0 
and a zero of the function f(x). These 
roots (or zeros) that are real numbers are 
called real roots (or real zeros). For many 
problems the roots of an equation can be 
determined analytically through algebraic 
manipulation; in many other instances, 
this is not possible. Numerical techniques 
can be used to estimate the roots when 

f(x) 

-+---..;,;,:---x 

analytical methods are not suitable . When you use the ISOlVEI key on 
your HP-34C, you utilize an advanced numerical technique that lets 
you effectively and conveniently find real roots for a wide range of 
equations. 

Using ISOLVEI 

The basic rules for using ISOLVEI are: 

1. Key in a subroutine that evaluates the functionf(x) that is to be 
equated to zero. This subroutine must begin with the instruction 
01 LBL I followed by 0, I, 2, 3, 0, or (I] , and must place 
the value off(x) into the X-register. 

2. Key two initial estimates of the desired root, separated by 1 ENTERtl , 
into the X- and Y-registers. These estimates merely indicate to the 
calculator the approximate range of x in which it should initially 
seek a root off(x) = o. 

3. Press [IJ ISOLVEI followed by the label of your subroutine. The 
calculator then searches for the desired zero of your function and 

• Actually, any equation with one variable can be expressed in this form. For example , 
f(x) = a is equivalent tof(x) - a = 0, andf(x) = g(x) is equivalent tof(x) - g(x) = o. 

174 
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displays the result. If the function that you are analyzing equals 
zero at more than one value of x, the routine will stop when it finds 
anyone of those values. To find additional values, you can key in 
different initial estimates and use ISOLVEI again. 

Immediately before ISOLvEl uses your function subroutine, a value of x is 
placed in the X-, Y-, Z-, and T-registers. This value is then used by your 
subroutine to calculatef(x) . Because the entire stack is filled with thex 
value , this number is continually available to your subroutine. (The use 
of this technique is described on page 76). 

Example: Use ISOLVEl to find the values of x for which 

f(x) = x 2 
- 3x - 10 = O. 

Using Horner' s method (refer to page 79), you can rewritef(x) so that it 
is programmed more efficiently: 

f(x) = (x - 3)x - 10. 

Slide the PRGM-RUN switch to PRGM ~ and key in the following 
subroutine that evaluates f(x). 

Keystrokes Display 

[I] CLEAR IPRGMI 000- Clear program memory. 
(BILBLIO 001- 25,13, 0 Begin with I LBL I 

instruction. 
3 002- 3 
G 003- 41 
0 004- 61 
1 005- 1 
0 006- 0 
G 007- 41 
(B(RTNI 008- 25 12 
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Now slide the PROM-RUN switch back to PRGM~ . Key two initial 
estimates into the X- and Y -registers. Try estimates of 0 and 10 to look 
for a positive root. 

Keystrokes 

o I ENTBIt I 
10 

Display * 
0.0000 
10. 

} Initial estimates. 

You can now find the desired root by pressing QJ ISOLVEI O. When you do 
this, the calculator will not display the answer right away . The HP-34C 
uses an iterative algorithmt to estimate the root. The algorithm analyzes 
your function by sampling it many times , perhaps a dozen times or more. 
It does this by repeatedly executing your subroutine. Finding a root will 
usually require about 30 seconds to 2 minutes; but sometimes the process 
will require even more time. 

Press QJ ISOLVEI 0 and sit back while your HP-34C exhibits one of its 
powerful capabilities: 

Keystrokes 

QJ ISOLVEI 0 

Display 

5.0000 The desired root. 

After the routine finds and displays the root , you can ensure that the 
displayed number is indeed a root of/ex) = 0 by checking the stack. You 
have seen that the displayed X-register contains the desired root. The 
Y -register contains a previous estimate of the root, which should be very 
close to the displayed rool. The Z-register contains the value of your 
function evaluated at the displayed root. 

• Press CD @K) 4 to obtain the displays in this section. The display setting does not 
influence the operation of ISOLVE!. 

t An algorithm is a step-by-step procedure for solving a mathematical problem. An 
iterative algorithm is one containing a portion that is executed a number of times in the 
process of solving the problem. 
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Keystrokes Display 

[[)§] 5.0000 

0.0000 

A previous estimate of the 
root. 
Value of the function at the 
root, showing that 
f(x) = o. 

Quadratic equations, such as the one you are solving, can have two roots. 
If you specify two new initial estimates, you can check for a second root. 
Try estimates of 0 and -10 to look for a negative root. 

Keystrokes Display 

o IENTBItl 0.0000 } 10 I cHsl -10. 
m ISOLVEI O -2.0000 
[[)§] -2.0000 

[[)§] 0.0000 

You have now found the two roots of 
f(x) = O. Note that this quadratic equa­
tion could have been solved 
algebraically-and you would have ob­
tained the same roots that you found 
using ISOLVEI. 

Initial estimates. 

The second root. 
A previous estimate of the 
root. 
Value off(x) at second root. 

f(x) 
30 

Graph of f(x) 
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The convenience and power of the IsoLvEl key becomes more apparent 
when you solve an equation for a root that cannot be determined 
algebraically. 

Example: Champion ridget hurler 
Chuck Fahr throws a rid get with an 
upward velocity of 50 meters/second. 
If the height of the ridget is expressed as 

h = 5000(1 - e-ti20 ) - 200t, 

how long does it take for it to reach the 
ground again? In this equation, h is the 
height in meters and t is the time in 
seconds. 

Solution: The desired solution is the positive value of t at which 
h = O. 

Slide the PRGM-RUN switch to PRGM ~ and key in the following 
subroutine that calculates the height. 

Keystrokes Display 

(IJILBLI0 001- 25, 13, 11 Begin with ILBLI 
instruction. 

2 002- 2 
0 003- 0 

G 004- 71 
ICHSI 005- 32 
OO~ 006- 15 
ICHSI 007- 32 
1 008- 1 

m 009- 51 
5 010- 5 
0 011- 0 
0 012- 0 
0 013- 0 

0 014- 61 
Ix .. yl 015- 21 Bring t value into 

X -register. 
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Keystrokes Display 

2 016- 2 
0 017- 0 
0 018- 0 

0 019- 61 

G 020- 41 
01RTNI 021- 25 12 

Next, set the PRGM-RUN switch to ..:JRUN . Key in two initial 
estimates of the time (for example,S and 6 seconds) and execute ISOLVEI. 

Keystrokes Display 

5 IENmI+1 5.0000 } Initial estimates . 
6 6. 
[[) ISOLVEI 0 9.2843 The desired root. 

Verify the root by reviewing the Y- and Z-registers. 

Keystrokes 

rn~ 

Display 

9.2843 

0.0000 

Pahr's ridget falls to the ground 9.2843 
seconds after he hurls it-a remarkable 
toss . 

A previous estimate of the 
root. 
Value of the function at the 
root, showing that h = O. 

hit) 
120 

Graph of h versus t 
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When No Root Is Found 
You have seen how the ISOLVEI key estimates and displays a root of an 
equation of the formj(x) = O. However , it is possible that an equation 
has no real roots (that is, there is no real value ofx for which the equality 
is true) . Of course, you would not expect the HP-34C to find a root in this 
case. Instead, it displays Error 6. 

Example: Consider the equation 

Ixl = -I 
which has no solution since the absolute 
value function is never negative. Ex­
press this equation in the required form 

Ixl +I=O 
and attempt to use ISOLVEI to find a solu­
tion. With the PRGM-RUN switch set 

'(x) 
10 

Graph off(x) = I x I + 1 

to PRGM mm.I , key in the required function subroutine. 

Keystrokes 

01LBLI1 

Display 

001- 25,13, 

002-
003-
004-
005-

2534 

51 
25 12 

Begin subroutine with 
ILBLI instruction. 

Because the absolute-value function is minimum near an argument of 
zero, specify the initial estimates in that region, for instance 1 and -1. 
Then attempt to find a root. After setting the PRGM-RUN switch to 
..nI]RUN: 

Keystrokes 

1 IENTERtl 
1 ICHSI 
OJ ISOLVEl l 

Display 

1.0000 
-1. 
Error 6 

} Initial estimates. 

This display indicates that 
no root was found. 

r r u rI It 'v1 I if 
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As you can see, the HP-34C stopped seeking a root off(x) = 0 when it 
decided that none existed-at least not in the general range ofx to which 
it was initially directed. The Error 6 display does not indicate that an 
"illegal" operation has been attempted; it merely states that no root was 
found where ISOLVEI presumed one might exist (based on your initial 
estimates) . 

If the HP-34C stops seeking a root and displays an error message, one of 
these four types of conditions has occurred: 

• If repeated iterations all produce a constant non-zero value for the 
specified function, execution stops with the display Error 6. 

• If numerous samples indicate that the magnitude of the function 
appears to have a nonzero minimum value in the area being 
searched, execution stops with the display Error 6. 

• If an improper argument is used in a mathematical operation as 
part of your subroutine, execution stops with the display Error O. 

• If the result of any calculation has a magnitude greater than 
9 .999999999 X 1099 , execution stops with all 9' s and the appro­
priate sign (or Error 1 in the case of register overflow) in the 
display. 

In the case of a constant function value, the routine can see no indica­
tion of a tendency for the value to move toward zero. This can occur for 
a function whose 10 most significant digits are constant (such as when 
its graph levels off at a nonzero horizontal asymptote) or for a function 
with a relatively broad, local "flat" region in comparison to the range of 
x values being tried. 

In the case where the function's magnitude reaches a nonzero minimum, 
the routine has logically pursued a sequence of samples for which the 
magnitude has been getting smaller. However, it has not found a value of 
x at which the function's graph touches or crosses the x-axis. 

The two final cases point out a potential deficiency in the subroutine 
rather than a limitation of the root-finding routine . Improper operations 
may sometimes be avoided by specifying initial estimates that focus the 
search in a region where such an outcome will not occur. However, the 
lSOLVEl routine is very aggressive and may sample the function over a 
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wide range. It is a good practice to have your subroutine test or adjust 
potentially improper arguments prior to performing an operation (for 
instance , use I ABS I prior to ~). Rescaling variables to avoid large 
numbers can also be helpful. 

The success of the ISOLVEI routine in locating a root depends primarily 
upon the nature of the function it is analyzing and the initial estimates at 
which it begins searching. The mere existence of a root does not ensure 
that the casual use of the IsoLvElkey will find it. If the function/(x) has a 
nonzero horizontal asymptote or a local minimum of its magnitude, the 
routine can be expected to find a root of lex) = 0 only if the initial 
estimates do not concentrate the search in one of these unproductive 
regions-and, of course , if a root actually exists . 

Choosing Initial Estimates 
When you use ISOLVEI to find the root of an equation, the two initial 
estimates that you provide determine the values of the variable x at which 
the routine begins its search. In general, the likelihood that you will find 
the particular root you are seeking increases with the level of under­
standing that you have about the function you are analyzing . Realistic, 
intelligent estimates greatly facilitate the determination of a root. 

The initial estimates that you use may be chosen in a number of ways: 

If the variable x has a limited range in which it is conceptually meaning­
ful as a solution, it is reasonable to choose initial estimates within this 
range. Frequently an equation that is applicable to a real problem has, in 
addition to the desired solution, other roots that are physically meaning­
less. These usually occur because the equation being analyzed is appro­
priate only between certain limits of the variable . You should recognize 
this restriction and interpret the results accordingly. 

If you have some knowledge of the behavior of the function/(x) as it 
varies with different values of x , you are in a position to specify initial 
estimates in the general vicinity of a zero of the function . You can also 
avoid the more troublesome ranges of x such as those producing a rela­
tively constant function value or a minimum of the function ' s magnitude . 
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Example: Using a rectangular piece of 
sheet metal 4 decimeters by 8 deci­
meters, an open-top box having a vol­
ume of 7.5 cubic decimeters is to be 
formed . How should the metal be 
folded? (A tall box is preferred to a 
short one.) 

Solution: You need to find the height 
of the box (that is, the amount to be 

iI!J' M ...... ~ 

l~_ 

U I~ 

folded up along each of the four sides) that gives the specified volume. 
If x is the height (or amount folded up) , the length of the box is (8 - 2x) 
and the width is (4 - 2x). The volume V is given by 

V = (8 - 2x)(4 - 2x)x . 

By expanding the expression and then using Horner' s method (page 79), 
this equation can be rewritten as 

V = 4((x - 6)x + 8)x. 

To get V = 7.5 , find the values of x for which 

I(x) = 4((x - 6)x + 8)x - 7.5 = O. 

Set the PRGM-RUN switch to PRGM ~ and key in the following 
subroutine that calculates f(x) . 

Keystrokes Display 

01lBll3 001- 25,13, 3 Begin with IlBll 
instruction . 

6 002- 6 
G 003- 41 
0 004- 61 
8 005- 8 
[I) 006- 51 
0 007- 61 
4 008- 4 
0 009- 61 
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Keystrokes 

7 
8 
5 
G 
01RTNI 

Display 

010- 7 
011- 73 
012- 5 
013- 41 
014- 25 12 

It seems reasonable that either a tall, narrow box or a short, flat box 
could be formed having the desired volume. Because the tall box is 
preferred , larger initial estimates of the height are reasonable. How­
ever, heights greater than 2 decimeters are not physically possible 
(because the metal is only 4 decimeters wide). Initial estimates of 1 and 
2 decimeters are therefore appropriate . 

Set the PROM-RUN switch to .. RUN and find the desired height. 

Keystrokes Display 

1 I ENTER. I 1.0000 } 2 2. 
[]] ISOLVEI 3 1.5000 

[[)lliB 1.5000 

[[)lliB 0.0000 

By making the height 1.5 decimeters , a 
5 .0 x 1.0 x 1.S-decimeter box is 
specified. 

If you ignore the upper limit on the 
height and use initial estimates of 3 and 4 
decimeters (still less than the width) , 
you will obtain a height of 4.2026 
decimeters-a root that is physically 
meaningless. If you use small initial 
estimates such as 0 and I decimeter, you 
will obtain a height of 0.2974 decimeter 
-producing an undesirable short , 
flat box. 

Initial estimates . 

The desired height. 
Previous estimate. 
I(x) at root. 

'(x) 
30 

Graph of f(x) 
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As an aid for examining the behavior of a function , you can easily evalu­
ate the function at one or more values ofx if your subroutine is in program 
memory . To do this , key the value of x into the X-register, then press 
I EHmI+ I!EHmI+ I!EHmI+ I to fill the stack. Calculate the value of the func­
tion by pressing 0, ®, or IGSBI followed by your function label, 
whichever is appropriate. The values you calculate can be plotted to give 
you a graph of the function. This procedure is particularly useful for a 
function whose behavior you do not know. A simple-looking function 
may have a graph with relatively extreme variations that you might not 
anticipate . A root that occurs near a localized variation may be hard to 
find unless you specify initial estimates that are close to the root. 

If you have no informed or intuitive concept of the nature of the function 
or the location of the zero you are seeking, you can search for a solu­
tion using trial-and-error. The success of finding a solution depends 
partially upon the function itself. Trial-and-error is often-but not 
always-successful. 

• If you specify two moderately large positive or negative estimates 
and the function's graph does not have a horizontal asymptote , the 
routine will seek a zero which might be the most positive or 
negative (unless the function oscillates many times , as the 
trigonometric functions do) . 

• If you have already found a zero ofthe function, you can check for 
another solution by specifying estimates that are relatively distant 
from any known zeros. 

• Many functions exhibit special behavior when their arguments 
approach zero. You can check your function to determine values 
of x for which any argument within your function becomes zero, 
and then specify estimates at or near those values. 

Although two different initial estimates are usually supplied when using 
ISOLVEI , you can also use ISOLVElwith the same estimate in both the X- and 
Y-registers. If the two estimates are identical, a second estimate is 
generated internally. If your single estimate is nonzero, the second 
estimate differs from your estimate by one count in the seventh signifi­
cant digit. If your estimate is zero, I X 10-7 is used as the second 
estimate . Then the root-finding procedure continues as it normally would 
with two estimates. 
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How ISOLVEI Works 

You will be able to use [SOLVEr most effectively by having a basic 
understanding of how the algorithm works . 

In the process of searching for a zero of 
the specified function , the algorithm 
uses the value of the function at two or 
three previous estimates to approximate 
the shape of the function's graph. The 
algorithm uses this shape to intelligently 
"predict" a new estimate where the 
graph might cross the x-axis. The func­
tion subroutine is then executed, com­
puting the value of the function at the 
new estimate. This procedure is performed 
algorithm. 

If any two estimates yield function 
values with opposite signs , the algo­
rithm presumes that the function 's graph 
must cross the x -axis in at least one 
place in the interval between these 
estimates. The interval is systematically 
narrowed until a root of the equation is 
found. 

A root is successfully found either if the 
computed function value is equal to zero 

'(x) 

repeatedly by the [SOLVEr 

'(x) 

or if two estimates, differing by less than two or three units in their 
least-significant (tenth) digit, give function values having opposite 
signs. In this case, execution stops and the estimate is displayed . 

As discussed earlier (refer to page 180), the occurrence ·of other situa­
tions in the iteration process indicate the apparent absence of a function 
zero . This is a result of there being no way to logically predict a new 
estimate that is likely to have a function value closer to zero. In such 
cases, Error 6 is displayed. 
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You should note that the initial estimates you provide are used to begin 
the "prediction" process . By permitting more accurate predictions than 
might otherwise occur, properly chosen estimates greatly facilitate the 
determination of the solution you seek. 

The IsoLvEl algorithm will always find a root provided one exists, if any 
one of four conditions are met: 

• Any two estimates have function 
values with opposite signs. 

• The function is monotonic, mean­
ing that f(x) either always 
decreases or else always increases 
as x is increased. 

fix 

fix) 



188 Finding the Roots of an Equation 

• The function's graph is either 
convex everywhere or concave f(x) 
everywhere. 

-f1;.c-----x 

• The only local minimums and 
maximums of the function's f(x) 
graph occur singly between 
adjacent zeros of the function . 

In addition, it is assumed that the ISOLVEI algorithm will not be inter­
rupted by an improper operation or overflow condition. 

Accuracy of the Root 
When you use the IsoLvEl key to find a root of an equation , the root is 
found accurately. The displayed root either gives a calculated function 
value (j(x» exactly equal to zero or else is a lO-digit number virtually 
adjacent to the place where the function ' s graph crosses the x-axis. Any 
such root has an accuracy within two or three units in the tenth significant 
digit. 
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In most situations the calculated root is an accurate estimate of the 
theoretical (infinitely precise) root of the equation. However, certain 
conditions can cause the finite accuracy of the calculator to give a result 
that appears to be inconsistent with your theoretical expectation. 

If a calculation has a result whose magnitude is smaller than 
1. 000000000 x 10-99 , the result is set equal to zero . This effect is 
referred to as "underflow. " If the subroutine that calculates your func­
tion encounters underflow for a range of x and if this affects the value of 
the function, then a root in this range may be expected to have some 
inaccuracy. For example , the equation 

has a root at x = O. Because of underflow, ISOLVEI produces a root of 
1.5060 -25 (for initial estimates of I and 2). As another example, 
consider the equation 

whose root is infinite in value. Because of underflow, ISOLVEI gives a root 
of 3.1707 49 (for initial estimates of 10 and 20). In each of these 
examples, the algorithm has found a value of x for which the calculated 
function value equals zero . By understanding the effect of underflow, 
you can readily interpret results such as these . 

The accuracy of a computed value sometimes can be adversely affected 
by "round-off" error, by which an infinitely precise number is rounded 
to 10 significant digits. If your subroutine requires excessive precision 
to properly calculate the function for a range of x, the result obtained by 
IsoLvEl may be inaccurate . For example, the equation 

has a root atx = Vs. Because no 1 O-digit number exactly equals Vs, the 
result of using ISOLVEI is Error 6 (for any initial estimates) because the 
function never equals zero nor changes sign . On the other hand, the 
equation 
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has no roots because the left side of the equation is always greater than 
the right side. However, because of round-off in the calculation of 

the root 1.0000 is found for initial estimates of 1 and 2. By recognizing 
situations in which round-off error may influence the operation of ISOLVEI , 
you can evaluate the results accordingly and perhaps rewrite the function 
to reduce the effects of round-off. 

In a variety of practical applications, the parameters in an equation-or 
perhaps the equation itself-are merely approximations. Physical para­
meters have an inherent accuracy (or inaccuracy). Mathematical repre­
sentations of physical processes are only models of those processes , 
accurate only to the extent that the underlying assumptions are true . An 
awareness ofthese and other inaccuracies can be used to your advantage. 
By structuring your subroutine to return a function value of zero when the 
calculated value is negligible for practical purposes, you can usually save 
considerable time in finding a root with IsoLvEI-particularly for cases 
that would nonnally take a long time. 

Example: Ridget hurlers such as Chuck Fahr can throw a ridget to 
heights of 105 meters and more. In fact, Fahr's hurls usually reach a 
height of 107 meters. How long does it take for his remarkable toss, 
described on page 178 , to reach 107 meters? 

Solution: The desired solution is the value of t at which h = 107 . The 
subroutine from the earlier example calculates the height of the ridget. 
This subroutine can be used in a new function subroutine to calculate 

f(t)=h(t)-107. 

Slide the PRGM-RUN switch to PRGM ~ and key in a subroutine 
that calculatesf(t). 

Keystrokes 

01LBLI ill 
Display 

001- 25, 13, 12 

002- 13 11 

Begin with I LBL I 
instruction . 
Calculates h(t) . 



Keystrokes 

1 
o 
7 

G 
~IRTNI 
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Display 

003-
004-
005-
006-
007-

~ } Calculates h(t) - 107. 
41 

25 12 

Now slide the PROM-RUN switch to "RUN. In order to find the 
first time at which the height is 107 meters , use initial estimates of 0 and 
1 second. 

Keystrokes Display 

o IENTERtl 0.0000 } 1 1. Initial estimates. 

CD ISOLVEI [[] 4.1718 The desired root. 
[]]§J 4.1718 A previous estimate of the 

root. 
[]]§J 0.0000 Value of f(t) at root. 

It takes 4 .17 18 seconds for the rid get to reach a height of exactly 107 
meters. (It takes approximately one minute to find this solution.) 

However, suppose you assume that the function h(t) is accurate only to 
the nearest whole meter. You can now change your subroutine to give 
f(t) = 0 whenever the calculated magnitude of f(t) is less than 0.5 
meter. Slide the PROM-RUN switch to PRGM ~ and key in the 
following changes to your subroutine: 

Keystrokes Display 

IGTOl8006 006- 41 Line before I RTN I 
instruction. 

~IABsl 007- 25 34 Magnitude off(t). 

8 008- 73 } Accuracy . 5 009- 5 
CD IX>YI 010- 14 51 } Return zero if accuracy > 
ICLXI 011- 34 magnitude . 
[]] Ix .. o I 012- 15 61 } Restoref(t) if value is 
~ILSTXI 013- 25 0 nonzero . 
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Slide the PRGM-RUN switch to .mlJ RUN and execute ISOlVEI again. 

Keystrokes Display 

o IENmItl 0.0000 } Initial estimates. 
1 1. 
m ISOlVEl (1) 4.0681 The desired root. 
[]]~ 4.0681 A previous estimate of the 

root. 
[]]~ 0.0000 Value of modified!(t) at 

root. 

After 4.0681 seconds, the ridget is at a height of 107 ±0.5 meters. This 
solution, although different from the previous answer, is correct con­
sidering the uncertainty of the height equation. (And this solution is 
found in just under half the time of the earlier solution.) 

Interpreting Results 
The numbers that ISOLvEl places in the X-, Y-, and Z-registers help you 
evaluate the results of the search for a root of your equation. * Even when 
no root is found , the results are still significant. 

When ISoLvElfinds a root of the specified 
equation, the root and function values '(x) 
are placed in the X- and Z-registers. A 
function value of zero is the expected 
result. However, a nonzero function 
value is also acceptable because it indi­
cates that the function's graph appar­
ently crosses the x-axis within an 
infinitesimal distance from the calcu­
lated root. In most such cases, the 
function value will be relatively close to zero. 

• The number in the T-register is the same number that was left in the Y-register by the 
final execution of your function subroutine. Generally , this number is not of interest. 
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Special consideration is required for a 
different type of situation in which f(x) 
ISOLvEl finds a root with a nonzero func-
tion value. If your function's graph has a 
discontinuity that crosses the x-axis , 
ISOLVEI specifies as a root an x value 
adjacent to the discontinuity. This is 
reasonable because a large change in the 
function value between two adjacent 
values of x might be the result of a very 

-+-""";;---x 

rapid, continuous transition. Because this cannot be resolved 
algorithm, the root is displayed for you to interpret. 

f(x) 

by the 

A function may have a pole , where its 
value approaches infinity. If the function 
value changes sign at a pole , the corre­
sponding value of x looks like a possible 
root of your equation, just as it would for 
any other discontinuity crossing the x­
axis. However, for such functions , the 
function value placed into the Z-register 
when that root is found will be relatively 
large. If the pole occurs at a value of x 

-I--+ ---x 

that is exactly represented with 10 digits, the subroutine may try that 
value and halt prematurely with an error or overflow indication. In this 
case, the ISOLvEloperation will not be completed. Of course , this may be 
avoided by the prudent use of a conditional statement in your subroutine. 
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Example: In her analysis of the stresses 
in a structural component , design con­
sultant Lucy I. Beame has determined 
that the shear stress can be expressed as 

Q = { 3x3 
- 45x 2 + 350 for O< x< 10 

1000 for 10~x < 14 

where Q is the shear stress in newtons 

,..----= 

and x is the distance from one end in meters. Write a subroutine to com­
pute the shear stress fo r any value of x . Use ISOLVElto find the location of 
zero shear stress . 

Solution: The equation fo r the shear stress for x between 0 and 10 is 
more efficiently programmed after rewriting it using Horner's method: 

Q = (3x - 45)x 2 + 350 for O<x< lO . 

Slide the PRGM-RUN switch to PRGM rnmrr. and key in the subroutine: 

Keystrokes Display 

CD CLEAR 1 PRGM 1 000- Clear program memory. 
(I] 1 LBL 12 001- 25,13, 2 Begin with 1 LBL 1 

instruction. 
1 002- 1 

) 0 003- 0 Test for x range . 
CD Ix~y 1 004- 14 41 
IGTOl9 005- 22 9 Branch fo r x~ 10. 
ICLXI 006- 34 
3 007- 3 
0 008- 61 
4 009- 4 
5 010- 5 
G 011- 41 

0 012- 61 
0 013- 61 
3 014- 3 
5 015- 5 
0 016- 0 
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Keystrokes 

m 
[BIRTN) 
[B I LBL)9 
IEEX) 
3 
[BIRTN) 

Display 

017- 51 
018- 25 12 
019- 25, 13, 9 
020- 33 
021- 3 
022- 25 12 

Now slide the PRGM-RUN switch to "RUN . Use initial estimates 
of 7 and 14 to start at the outer end of the beam and search for a point of 
zero shear stress. 

Keystrokes 

7 IENTER.) 
14 
CD ISOLVE) 2 
(!]~(!]~ 

Display 

7.0000 
14. 
10.0000 
1,000.0000 

} Initial estimates. 

Possible root. 
Stress not zero. 

The large stress value at the root points out that the IsoLvE) routine has 
found a discontinuity. This is a place on the beam where the stress 
quickly changes from negative to positive. Start at the other end of the 
beam (estimates of a and 7) and use ISOLVE) again. 

Keystrokes Display 

a I ENTER.) 0.0000 } 7 7. 
CD ISOLVE) 2 3.1358 

(!]~(!]~ 2.0000 -07 

Beame's beam has zero shear stress at 
approximately 3.1358 meters and an 
abrupt change of stress at 10.0000 
meters. 

Initial estimates. 

Possible root. 
Negligible stress. 

Graph of Q versus x 



196 Finding the Roots of an Equation 

When no root is found and Error 6 is displayed , you can press any key to 
clear the display and observe the estimate at which the function was 
closest to zero. By also reviewing the numbers in the Y- and Z-registers , 
you can often de termine the nature of the function near the root estimate 
and use this info rmation constructively. 

If the algorithm terminates its search 
near a local minimum of the function's fix) 
magnitude, clear the Error 6 display and 
observe the numbers in the X- , Y- , and 
Z-registers by rolling down the stack . If 
the value of the function saved in the Z­
register is relati ve ly close to zero , it is 
possible that a root of your equation has 
been found-the number returned in the 
X-register may be a lO-digit number 
very close to a theoretical root. You can explore this potential minimum 
further by rolling the stack until the returned estimates are back in the 
X- and Y-registers and then executing IsoLvel again using these numbers 
as initial estimates. If an actual minimum has been found, Error 6 will 
again be displayed and the number in the X-register will be approxi­
mately the same as before , but possibl y closer to the actual location of 
the minimum . 

Of course , you may deliberately use IsoLvel to find the location of a local 
minimum of the function ' s magnitude. However, in this case you must 
be careful to confine the search in the reg ion of the minimum. Remem­
ber, IsoLvel tries hard to find a zero of the function. 

If the algorithm stops searching and 
displays Error 6 because it is working on 
a horizontal asymptote (when the value 
of the function is essentially constant for 
a large range of x ), the estimates in the 
X- and Y-registers usually are signifi­
cantly different from each other. The 
number in the Z- register is the value of 
the potential asymptote . If you execute 
IsoLvelagain using as initial estimates the 
numbers that were returned in the X-

fix) 

I~~ 

-+-----x 

and Y-registers, a horizontal 
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asymptote may again cause Error 6, but with numbers in the X- and 
Y -registers that will differ from the previous numbers . The value of the 
function in the Z-register would then be the same as that obtained 
previously . 

If Error 6 is displayed as a result of a 
search that is concentrated in a local fix) 
"flat" region of the function, the esti­
mates in the X- and Y -registers will be 
relatively close together or extremely 
small. Execute ISOLVEI again using for 
initial estimates the numbers from the 
X- and Y -registers (or perhaps two 
numbers somewhat further apart). If the 
magnitude of the function is not a mini-

- + -+-71:--- X 

mum nor constant, the algorithm will eventually expand its search and 
find a more significant result . 

Example: Investigate the behavior of the function 

f(x) = 3 + e - Ixl/IO _ 2ex'e - 1xl . 

First set the PRGM-RUN switch to PRGM~ and key in the following 
subroutine to calculate f(x). 

Keystrokes 

lliJ I LBL 1 0 

lliJ I ABSI 
ICHSI 
[[]~ 
Ix~)'1 

[[]~ 
0 
[[]~ 
2 

0 
ICHSI 

Display 

001- 25,13, 0 

002- 25 34 
003- 32 
004- 15 
005- 21 

006- 15 3 
007- 61 
008- 15 1 
009- 2 
010- 61 
011- 32 

Begin with I LBL 1 

instruction . 

Bring x value into 
X-register. 
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Keystrokes Display 

Ix~YI 012- 21 Bring x value into 
X-register. 

[BIABSI 013- 25 34 
ICHSI 014- 32 
1 015 - 1 

0 016- 0 

GJ 017- 71 
[]J[B 018- 15 1 
IT) 019- 51 
3 020 - 3 
IT) 021- 51 
[B IRTNI 022- 25 12 

Slide the PRGM-RUN switch to .. RUN and use ISOLVEI with the 
fo llowing single initial estimates: 10, 1, and 10-2

0. 

Keystrokes Display 

10 IEHmI+1 10.0000 Single estimate. 
[I] ISOLVEI O Error 6 
ICLX I 455.4335 Best x value . 

[]J~ 48,026,721.85 Previous value. 
[]J~ 1.0000 Function value . 
[I]§)[I]§) 455.4335 Restore the stack. 
[I] ISOLVEIO Error 6 
ICLX I 48,026,721.85 Another x value . 

[]J~[]J~ 1.0000 Same function value (an 
asymptote). 

1 IEHmI+1 1.0000 Single estimate . 
[I] ISOLVEI O Error 6 
ICLXI 2.1213 Best x value. 

[]J~ 2.1471 Previous value . 

[]J~ 0.3788 Function value. 
[I]§)[I]§) 2.1213 Restore the stack. 
[I] ISOLVEIO Error 6 
ICLX I 2.1213 Same x value. 
[]J~[]J~ 0.3788 Same function value (a 

minimum). 
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Keystrokes Display 

I EEX II CHS I 20 I ENTER. I 1.0000 -20 
CD ISOLVEI O Error 6 
ICLXI 1.0000 -20 
(]][@ 1.1250 -20 
(]][@ 2.0000 

CD~CD~ 1.0000 -20 
CD ISOLVEI O Error 6 
ICLXI 1.1250 -20 
(]][@ 1.5626 -16 
(]][@ 2.0000 

In each of the th ree cases , ISOLVEI ini­
tially searched for a root in a direction 
suggested by the graph around the initial 
estimate . Using 10 as the initial esti­
mate, ISOLVEI fo und the horizo nt al 
asymptote (value of 1.0000). Using I as 
the initi al estimate, a mini mum of 
0 .3788 at x = 2.1213 was fou nd . 
Using 10-20 as the initial estimate , the 
function was essentially constant (at a 
value of 2.0000) for the small range of 
x that was sampled. 

Using ISOLVEI in a Program 

Single Estimate. 

Best x value. 
Previous value. 
Function value. 
Restore the stack. 

Another x value. 
Previous value . 
Same function value. 

f( ) 
3 third case 

second case 
first case 

............ 
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You can use the IsoLvEloperation as part of a program. Be sure that the 
program provides initial estimates in the X- and Y -registers just prior to 
the IsoLvEl operation. The IsoLvEl routine stops with a value of x in the 
X-register and the corresponding function value in the Z-register. If the 
x value is a root (as explained on page 192), the program proceeds to 
the next line. If the x value isn't a root (as explained on page 196), the 
next line is skipped. Essentially, the IsoLvEl instruction tests whetherthex 
value is a root and then proceeds according to the " DO IF TRUE" rule . 
The program can then handle the case of not finding a root , such as by 
choosing new initial estimates or changing a func tion parameter. 
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The use of ISOLVEI as an instruction in a program utilizes one of the six 
pending returns in the calculator. Since the subroutine called by ISOLVEI 
utilizes another return, there can be only four other pending returns. 
Executed from the keyboard, on the other hand, ISOLVEI itself does not 
utilize one of the pending returns, so that five pending returns are avail­
able for subroutines within the subroutine called by ISOLVEI . Remember 
that if all six pending returns have been utilized, a call to another sub­
routine will result in a display of Error 8. (Refer to page 135). 

Restriction on the Use of ISOLVEI 

The one restriction regarding the use of ISOLVEI is that ISOLVEI cannot be 
used recursively . That is, you cannot use ISOLVEI in a subroutine that is 
called during the execution of ISOLVEI. If this situation occurs, execution 
stops and Error 5 is displayed. 

It is possible, however, to use ISOLVEI with lm, thereby using the 
advanced capabilities of both of these keys. An example of a combined 
application is given in appendix A. 

For Further Information 
In appendix A, Advanced Use of ISOLVEI , additional techniques and 
applications for using IsoLvEl are presented. These include: 

• Using ISOLVEl with polynomials. 

• Finding several roots. 

• Finding local extremes of a function. 

• Limiting the estimation time. 

• Using ISOLVEl with lm. 
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Numerical Integration 

Many problems in mathematics, sci­
ence, and engineering require calculat­
ing the definite integral of a function. If 
the function is denoted by lex) and the 
interval of integration isa tob, the integ­
ral can be expressed mathematically as 

b 

1= IJ(x) dx. 

ffx) 

x 

The quantity I can be interpreted geometrically as the area of a region 
bounded by the graph of/ex), thex-axis, and the limitsx = a andx = b. * 
When an integral is difficult or impossible to evaluate by analytical 
methods, it can be calculated using numerical techniques. In the past, 
this could be done only with a fairly complicated computer program. 
With your HP-34C, however, you can easily do numerical integration 
using the [ill (integrate) key. 

Using [ilJ 
The basic rules for using [ill are: 

I. Key in a subroutine that evaluates the function/(x) that you want 
to integrate. This subroutine must begin with the instruction 
o I LBL I followed by 0, 1,2,3, 0 , or [[], and must place the 
value otf(x) in the X-register. 

2. Key the lower limit of integration (a) into the displayed X-register , 
then press I ENTER+ I to lift it into the Y -register. 

3. Key the upper limit of integration (b) into the X-register. 

4. Press []] [ill followed by the label of your subroutine. 

• Provided thatf(x) is nonnegative throughout the interval of integration. 

202 
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Example: Certain problems in physics and engineering require calcu­
lating Bessel junctions. The Bessel function of the first kind of order 0 
can be expressed as 

Find 

1 f7T 
Jo (x) =- J( cos (x sin 0) dO. 

'TT 0 

I f7T 
Jo (1) =- J( cos (sin 0) dO. 

'TT 0 

First , slide the PROM-RUN switch to PRGM lmm. and key in the follow­
ing subroutine that evaluates the functionj(O) = cos (sin 0). 

Keystrokes Display 

[IJ CLEAR I PRGM I 000- Clear program memory . 
lliJlLBLIO 001- 25,13, 0 Begin subroutine with a 

I LBL I instruction. Sub-
routine assumes a value 
of 0 is in X-register. 

[IJ@m 002- 14 7 Calculate sin O. 
[IJ leosl 003- 14 8 Calculate cos (sin 0). 
lliJlRTNI 004- 25 12 

Now, slide the PROM-RUN switch back to .mm RUN , and key the 
lower limit of integration into the Y-register and the upper limit into the 
X-register. For this particular problem, you also need to specify radians 
mode for the trigonometric functions. 

Keystrokes 

o I ENTER + I 

Display 

0.0000 

3.1416 

3.1416 

Key lower limit , 0, into 
Y -register. 
Key upper limit , 'TT, into 
X-register. 
Specify radians mode for 
trigonometric functions. 



204 Numerical Integration 

Now you are ready to press OJ [llJ 0 to calculate the integral. When you 
do so, you'll find that-just as with IsoLvEI-the calculator will not 
display the result right away , as it does with other operations. Your 
HP-34C calculates integrals using a sophisticated iterative algorithm . 
Briefly, this algorithm evaluates!(x), the function to be integrated, at 
many values of x between the limits of integration. At each of these 
values , the calculator evaluates the function by executing the subroutine 
you write for that purpose. You may recall that some of the programs and 
subroutines you executed earlier in this handbook required several 
seconds to yield an answer. This may not seem too long, but when the 
calculator must execute the subroutine many times-as it does when you 
press [llJ-you can't expect an answer right away. Most integrals will 
require on the order of 30 seconds to 2 minutes; but some integrals will 
require even more. Later on we'll discuss how you can decrease the 
time somewhat; but for now, press OJ [llJ 0 and take a break (or read 
ahead) while your HP-34C takes care of the drudgery for you. 

Keystrokes Display 

2.4040 = fa" cos (sin 0) dO. 

In general, don't forget to multiply the value of the integral by whatever 
constants, if any , are outside the integral. In this particular problem, we 
need to mUltiply the integral by 1/7T to getJ 0 (1): 

Keystrokes 

00 
G 

Display 

3.1416 
0.7652 J 0(1) . 

Before calling the subroutine that evaluates !(x) , the [llJ algorithm­
just like the IsoLvElalgorithm-places the value ofx in the X-, Y- , Z-, and 
T-registers. Because every stack register contains the x value, your 
subroutine can calculate with this number without having to recall it from 
a storage register. The subroutines in the next two examples take advan­
tage of this feature. (A polynomial evaluation technique that assumes the 
stack is filled with the value of x is discussed on page 79.) 
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Note: Since the calculator puts the value of x into all the stack 
registers, any numbers previously there will be replaced by x. 
Therefore, if the stack contains intermediate results that you'll 
need after you calculate an integral , store those numbers in 
storage registers and recall them later. 

Occasionally you may want to use the subroutine that you 
wrote for the (il] operation to merely evaluate the function at 
some value of x. If you do so with a function that gets x from 
the stack more than once, be sure to fill the stack manually with 
the value of x, by pressing I ENffiltll ENffiltll ENffiltl ' before you 
execute the subroutine. 

Example: The Bessel function of the first kind of order I can be 
expressed as 

Find 

I f7T 
II (x) =- cos (0 - x sin 0) dO. 

11' 0 

I f7T 
II (I) =- cos(O-sinO)dO. 

11' 0 

First, slide the PRGM-RUN switch to PRGM ~ and key in the follow­
ing subroutine that evaluates the functionj(O) = cos (0 - sin 0). 

Keystrokes Display 

(BCillJ I 001- 25,13, Begin subroutine with a 
I LBL I instruction. 

CD~ 002- 14 7 Calculate sin O. 
G 003- 41 Since a value of 0 will be 

placed into the Y-register by 
the (il] algorithm before it 
executes this subroutine, the 
G operation at this point 
will calculate (0 - sin 0). 

CD Icosl 004- 14 8 Calculate cos (0 - sin 0) . 
(BIRTHI 005- 25 12 
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Now , slide the PROM-RUN switch back to IIlIIl RUN, and key the 
limits of integration into the X- and Y-registers . Ensure that the trigono­
metric mode is set to radians, then press [IJ [il) I to calculate the inte­
gral. Finally , multiply the integral by l/7r to calculate 1,(1). 

Keystrokes Display 

o I ENTER. I 0.0000 

rB0 3.1416 

OOIRAOI 3.1416 

[IJ [il) 1 1.3825 

rB0G 0.4401 

Example: Certain problems in com­
munic at ion s theory (for example, 
pulse transmission through idealized 
networks) require calculating an 
integral (sometimes called the sine 
integraL) of the form 

Si(t) = It sinx dx. 
o x 

Find Si (2). 

Key lower limit into 
Y -register. 
Key upper limit into 
X-register. 
Ensure that trigonometric 
mode is set to radians. (This 
step is not necessary if you 
have not switched your 
calculator off nor reset the 
trigonometric mode since 
you last set it to radians .) 

= fo" cos (0 - sin 0) dO. 

1,(1) . 
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First, slide the PROM-RUN switch to PAGM ~ and key in the follow­
ing subroutine that evaluates the functionj(x) = (sin x)/x . * 

Keystrokes Display 

01LBLI 2 001- 25,13, 2 Begin subroutine with a 
ITill instruction. 

m~ 002- 14 7 Calculate sin x. 
Ix .. )'1 003- 21 Since a value of x will be 

placed in the Y-regi ster by 
the [ill algorithm before it 
executes this subroutine, the 
Ix .. )'loperation at this point 
will return x to the X-
register and move sin x to 
the Y -register. 

GJ 004- 71 Divide sin x by x. 
01RTNI 005- 25 12 

Now , slide the PROM-RUN switch back to ... RUN , and key the 
limits of integration into the X- and Y-registers. Ensure that the trigono­
metric mode is set to radians, then press m [ill 2 to calculate the 
integral. 

• If the calculator attempted to evaluate f(x) = (sin x )/x at x = 0, the lower limit of 
integration, it would terminate with Error 0 in the display (sign ifying an attempt to divide by 
zero), and the integral could not be calculated. However, the 1m algorithm nonnally does 
not evaluate functions at either limit of integration, so the calculator can calculate the 
integral of a function that is undefined there. Only when the endpoints of the interval of 
integration are extremely close together, or the number of sample points is extremely large , 
does the algorithm evaluate the function at the limits of integration . 
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Keystrokes 

o I ENTER. , 

2 

CD [ill 2 

Display 

0.0000 

2. 

2.0000 

1.6054 

Accuracy of 1m 

Key lower limit into 
Y -register. 
Key upper limit into 
X-register. 
Ensure that trigonometric 
mode is set to radians . (This 
step is not necessary if you 
have not switched your 
calculator off nor reset the 
trigonometric mode since 
you last set it to radians .) 
Si (2). 

The accuracy of the integral of any function depends on the accuracy of 
the function itself. Therefore, the accuracy of an integral calculated using 
[ill is limited by the accuracy of the function calculated by your subrou­
tine. * To specify the accuracy of the function , set the display format so 
that the display shows no more than the number of digits that you con­
sider accurate in the function's values. t If you specify fewer digits , the 
calculator will compute the integral more quickly;+ but it will presume 
that the function is accurate to only the number of digits specified in the 
display format. We'll show you how you can determine the accuracy of 
the calculated integral after we say another word about the display 
format. 

• It is possible that integrals of functions with certain characteristics (such as spikes or very 
rapid oscillations) might be calculated inaccurately . However, this possihi/iry is very small. 
The general characteristics of functions that could cause problems, as well as techniques for 
dealing with them , are discussed in appendix B. 

t The accuracy of a calculated function depends on such considerations as the accuracy of 
empirical constants in the function as well as round-off error in the calculations. These 
considerations are discussed in more detail in appendix B. 

:j: The reason for this is discussed in appendix B. 
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You'll recall that your HP-34C provides three types of display format­
ting: @K) , ~, and I ENG I. Which display format should be used is 
largely a matter of convenience, since for many integrals you'll get about 
the same results using any of them (provided that the number of digits is 
specified correctly, considering the magnitude of the function). Because 
it's more convenient to use ~display format when calculating most 
integrals , we'll use ~ when calculating integrals in examples 
throughout the rest of this handbook . 

Note: Remember that once you have set the display format 
to ~, I ENG I. or @K). you can change the number of 
digits appearing in the display by storing a number in the 1-
register and then pressing CEJ I DSP II . as described in section 
7. This capability is especially useful when 0Jis executed as 
part of a program. and is essential in a particular situation 
described in appendix B under Calculating Integrals of Max­
imum Accuracy. 

Because the accuracy of any integral is limited by the accuracy of the 
function (as indicated in the display format). the calculator cannot com­
pute the value of an integral exactly , but rather only approximates it. 
Your HP-34C places the uncertainty* of an integral 's approximation in 
the Y-register at the same time it places the approximation in the X­
register. To determine the accuracy of an approximation, check its 
uncertainty by pressing Ix~YI . 

* No algorithm for numerical integration can compute the exact difference between its 
approximation and the actual integral. But the algorithm in your HP-34C computes an 
" upper bound" on this difference. which is the uncertainty of the approximation. For 
example. if the integral Si(2) is 1.6054 ± 0.0001, the approximation to the integral is 
1.6054 and its uncenainty is 0.0001. This means that while we don' t know the exact differ­
ence between the actual integral and its approximation , we do know that the difference is 
no bigger than 0.0001. 
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Example: With the display format set to ~ 2, calculate the integral 
in the expression for 1 1(1) (from the example on page 205) . 

Keystrokes Display 

o IENmItl 0.0000 Key lower limit into 
Y -register. 

[BEl 3.1416 Key upper limit into 
X-register. 

®IRADI 3.1416 Ensure that trigonometric 
mode is set to radians. (This 
step is not necessary if you 
have not switched your cal-
culator off nor reset the 
trigonometric mode since 
you last set it to radians.) 

ITJ~ 2 3.14 00 Set display format to 
~2. 

ITJlm 1.38 00 Integral approximated in 
~2. 

Ix~yl 1.88 -03 Uncertainty of ~ 2 
approximation. 

The integral is 1.38 ± 0.00188. Since the uncertainty would not affect 
the approximation until its third decimal place, you can consider all the 
displayed digits in this approximation to be accurate. In general, though , 
it is difficult to anticipate how many digits in an approximation will be 
unaffected by its uncertainty . This depends on the particular function 
being integrated, the limits of integration, and the display format. 

If the uncertainty of an approximation is larger than what you choose to 
tolerate, you can decrease it by specifying a greater number of digits in 
the display format and repeating the approximation. * 

* Provided that f(x) is still calculated accurately to the number of digits shown in 
the display . 
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Whenever you want to repeat an approximation, your HP-34C can save 
you the trouble of keying the limits of integration back into the X-and Y­
registers. After an integral is calculated, not only are the approximation 
and its uncertainty placed in the X- and Y-registers, but in addition the 
upper limit of integration is placed in the Z-register, and the lower limit 
is placed in the T-register. To return the limits to the X- and Y-registers 
for calculating an integral again, simply press []] ~ []] ~ . 

Example: For the integral in the expression for J,(1), you want an 
answer accurate to four decimal places instead of only two. 

Keystrokes Display 

ITJ@ 4 1.8826 -03 Set display format to @ 4. 
[]]~[]]~ 3.1416 00 Roll down stack until upper 

limit appears in X-register. 

ITJrm 1.3825 00 Integral approximated in 
@ 4. 

Ix~yl 1.7091 -05 Uncertainty of @ 4 
approximation . 

The uncertainty indicates that this approximation is accurate to at least 
four decimal places. Note that the uncertainty of the @ 4 approxima­
tion is about one-hundredth as large as the uncertainty of the @ 2 
approximation. In general, the uncertainty of any rm approximation 
decreases by about a factor of 10 for each additional digit specified in 
the display format. 

In the preceding example, the uncertainty indicated that the approxima­
tion might be correct to only four decimal places. If we temporarily 
display all 10 digits of the approximation, however, and compare it to the 
actual value of the integral (actually, an approximation known to be 
accurate to a sufficient number of decimal places), we find that the 
approximation is actually more accurate than its uncertainty indicates. 

Keystrokes 

Ix~YI 

Display 

1.3825 00 

1382459676 

Return approximation to 
display. 
All 10 digits of approxi­
mation. 
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The value of this integral, correct to eight decimal places, is 1.38245969. 
The calculator's approximation is accurate to seven decimal places rather 
than only four. In fact, since the uncertainty of an approximation is cal­
culated very conservatively, the calculator's approximation in most 
cases will be more accurate than its uncertainty indicates . However, 
normally there is no way to determine just how accurate an approxima­
tion is; we know only that the difference between it and the actual integral 
is no bigger than the number in the Y-register. 

We'll take a more detailed look at the accuracy and uncertainty of Iill 
approximations in appendix B. 

Using [ilJ in a Program 
Iill can appear as an instruction in a program provided that the program 
is not called (as a subroutine) by Iill itself. In other words , Iill cannot be 
used recursively. Consequently, you cannot use Iill to calculate 
multiple integrals; if you attempt to do so, the calculator will halt with 
Error 5 in the display. However, Iill can appear as an instruction in a 
subroutine called by ISOLVEI . An example of doing so will be shown at 
the end of appendix A. 

The use of Iill as an instruction in a program utilizes one of the six 
pending returns in the calculator. Since the subroutine called by Iill 
utilizes another return, there can be only four other pending returns . 
Executed from the keyboard , on the other hand, Iill itself does not 
utilize one of the pending returns , so that five pending returns are avail­
able for subroutines within the subroutine called by Iill . Remember that 
if all six pending returns have been utilized, a call to another subroutine 
will result in a display of Error 8. (Refer to page 135). 
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For Further Information 
This section has given you the infonnation you need to use lZIJ with 
confidence over a wide range of applications . In appendix B, A More 
Detailed Look at lZIJ , we will discuss more esoteric aspects of lZIJ . 
These include: 

• How lZIJ works. 

• Accuracy, uncertainty, and calculation time. 

• Accuracy of the function to be integrated. 

• Uncertainty and the display format. 

• Calculating integrals of maximum accuracy . 

• Obtaining the current approximation to an integral. 

• Considerations that could cause incorrect results . 

• Considerations that prolong calculation time. 
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Advanced Use of ISOLVEI 

Section 8 includes the basic information needed for the effective use of 
the ISOLVEI algorithm. This appendix presents more advanced, supple­
mental considerations regarding ISOLVEI . 

Using ISOLVEI With Polynomials 

In many practical applications , functions known as polynomials are 
useful for representing physical processes or more complex mathemat­
ical functions. Polynomials are easily understood and can be structured 
to have a wide range of mathematical characteristics. 

A polynomial of degree n can be represented as 

an xn + an-I x n-1 + ... + a I x + a o . 

This function has at most n real values for which the function equals 
zero. A limit to the number of positive zeros of this function can be 
determined by counting the number of times the signs of the coeffi­
cients change as you scan the polynomial from left to right. Similarly, a 
limit to the number of negative zeros can be determined by scanning a 
new function obtained by substituting -x in place of x in the original 
polynomial. If the actual number of real positive or negative zeros is less 
than its limit, it will differ by an even number. (These relationships are 
known as Descartes ' Rule of Signs.) 

As an example, consider the third-degree polynomial function 

f(x) =x3 - 3x2 - 6x + 8. 

It can have no more than three real zeros. It has at most two positive 
real zeros (observe the sign changes from the first to second. and third 
to fourth terms) and one negative real zero (obtained fromf(-x) = _x 3 

-3x2 + 6x + 8). 

214 
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Polynomial functions are best programmed by rewriting them in a 
slightly different form that uses nested multiplication. This is sometimes 
referred to as Horner ' s method. As an illustration , the function from the 
previous example can be rewritten as 

j(x) = [(x - 3)x - 6J x + S. 

This representation is more easily programmed and more efficiently 
executed than the original form, especially since the stack contains the 
value of x in all four registers. (This technique is described on page 79.) 

Example: During the winter of ' 7S, Arctic explorer Jean-Claude 
Coulerre, isolated at his frozen camp in the far north, began scanning 
the southern horizon in anticipation of the sun's reappearance. Coulerre 
knew that the sun would not be visible to him until early March, when it 
reached a declination of 5° IS'S. On what day and time in March was the 
chilly explorer's vigil rewarded? 

Solution: The time in March when the sun reached 5° IS'S declination 
can be computed by solving the following equation for t: 

where D is the declination in degrees , t is the time in days, and 

G 4 = 4.2725 X 10-8 

G3 = -1.9931 X 10-5 

G2 = 1.0229 X 10-3 

GI = 3.76S0 X 10-1 

ao = -S.IS06. 

This equation is valid for I ~t < 32 , representing March, 1978. 

First convert 5° IS'S to decimal degrees by pressing S.IS [cHsl 00 EBl 
and obtaining -5.3000 (using lI!KJ4 display mode). (Southern latitudes 
are expressed as negative numbers for calculation purposes.) 
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The solution to Coulerre's problem is the value of t satisfying 

Expressed in the form required by ISOLVEI , the equation is 

where the last, constant term now incorporates the value of the declina­
tion. 

Using Homer's method, the function to be set equal to zero is 

To shorten the subroutine, store and recall the constants using the regis­
ters corresponding to the exponent of t . Slide the PRGM-RUN switch to 
PRGM~ and key in the subroutine: 

Keystrokes Display 

OJ CLEAR I PRGM I 000- Clear program memory . 
!BILBLI0 001- 25, 13, 11 Begins with I LBL I 

instruction. 
IRcLI4 002- 24 4 

0 003- 61 
IRCLI3 004- 24 3 

CB 005- 51 

0 006- 61 
IRCLI2 007- 24 2 

CB 008- 51 

0 009- 61 
IRCL 11 010- 24 1 

CB 011- 51 

0 012- 61 
IRCLIO 013- 24 0 

CB 014- 51 
!BIRTNI 015- 25 12 
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Now set the PRGM-RUN switch to .nJRUN and key in the five coef-
ficients: 

Keystrokes Display * 
4.2725IEEXllcHSI8 4.2725 -08 
ISTOl4 4.2725 -08 Coefficient of t4. 
1. 9931 I CHS II EEX I 
ICHSI5 ISTOI 3 -1.9931 -05 Coefficient of t3. 
1.0229 IEEXIlcHSI3 1.0229 -03 
ISTOl2 0.0010 Coefficient of t2. 
3.7680 IEEXllcHSl1 3.7680 -01 
ISTOII 0.3768 Coefficient of t . 
2.8806 I cHsl1 STO 10 -2.8806 Constant term . 

Because the desired solution should be between I and 32, key in these 
two values for initial estimates. Then use ISOLVEI to find the root. 

Keystrokes Display 

I I ENTER. I 1.0000 } Initial estimates. 
32 32. 
CIJ ISOLVEI 0 7.5137 Root found . 
[]J(@ 7.5137 Same previous estimate. 
[]J(@ 0.0000 Function value. 
CIJ(@CIJ(@ 7.5137 Restore stack . 

The day was March 7th . Convert the fractional portion of the number to 
decimal hours and then to hours, minutes , and seconds. 

Keystrokes 

01FRACI 
24 0 
CIJ I+H.MS I 

Display 

0.5137 
12.3293 
12.1945 

Fractional portion of day. 
Decimal hours. 
Hours, minutes, seconds. 

* Press ITl (£IKJ 4 to obtain the display settings in this appendix. 
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Explorer Coulerre saw the sun on March 7th at 12h 19m 455 (Coordinated 
Universal Time). 

By examining Coulerre's functionf(t), you realize that it can have as 
many as four real roots-three positive and one negative. Try to find 
additional positive roots by using ISOLVEI with larger positive estimates. 

Keystrokes Display 

1000 I ENTER. I 1100 1,100. Two larger, positive 
estimates. 

OJ ISOLVEI 0 Error 6 No root found. 
ICLXI 278.4497 Last estimate tried. 

[[][@ 276.7942 A previous estimate. 

[[][@ 7.8948 Non-zero value of function. 

OJ§]OJ§] 278.4497 Restore stack to original 
state. 

OJ ISOLVEI 0 Error 6 Again, no root found. 
ICLXI 278.4398 Approximately same 

estimate. 
[[][@ 278.4497 A previous estimate. 

[[][@ 7.8948 Same function value. 

You have found a positive local minimum rather than a root. Now try to 
find the negative root. 

Keystrokes 

1000 I CHS II ENTER. I 
1100 ICHSI 
OJ ISOLVEI 0 
[[][@ 
[[][@ 

Display 

-1,000.0000 
-1,100. 
-108.9441 
-108.9441 

1.6000 

} 

-08 

Two larger, negative 
estimates. 
Negative root. 
Same previous estimate. 
Function value. 
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There is no need to search further-you 
have found all possible roots. The nega­
tive root has no meaning since it is out­
side of the range for which the declina­
tion approximation is valid. The graph 
of the function confirms the results you 
have found. 

Finding Several Roots 

Graph of f(t) 

Many equations that you encounter have more than one root. For this 
reason, you will find it helpful to understand some techniques for finding 
several roots of an equation. 

The simplest method for finding several roots is to direct the root search 
in different ranges of x where roots may exist. Your initial estimates 
specify the range that is initially searched. This method is used through­
out section 8, Finding the Roots of an Equation. You can often find the 
roots of an equation in this manner. 

A more advanced method is know as deflation. This technique is useful 
when the function in an equation has characteristics that make it difficult 
for ISOLvEl to find all of the roots. Deflation is a method by which roots 
are "eliminated" from an equation . This involves modifying the equa­
tion so that the first roots found are no longer roots, but the rest of the 
roots remain roots . 

If a function f(x) has a value of zero at x = a, then the new function 

(
f(x) will not approach zero in this region (if a is a simple root 
x -a) 

of f(x) = 0). You can use this information to eliminate a known 
root. Simply add a few program lines at the end of your function sub­
routine. These lines should subtract the known root (to 10 significant 
digits) from the x value and divide this difference into the function 
value. In many cases the root will be a simple one, and the new function 
will direct ISOLVEI away from the known root. 
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On the other hand , the root may be a multiple root . A multiple root is one 
that appears to be present repeatedly, in the fo llowing sense: at such a 
root , not only does the graph off(x) cross the x -axis , but its slope (and 
perhaps the next few higher-order derivatives) is equal to zero. If the 
known root of your equation is a multiple root, the root is not eliminated 
by merely dividing by the factor described above . For example, the 
equation 

f(x) = x (x - a)3 = 0 

has a multiple root at x = a (with a multiplicity of 3). This root is not 
eliminated by di vidingf(x) by (x - a). But it can be eliminated by divid­
ing by (x-a)3. 

Example: Use deflation to help find the roots of 

60x 4 
- 944x 3 + 3003x2 + 617lx - 2890 = O. 

Using Horner's method, this equation can be rewritten in the form 

«(60x - 944)x + 3003)x + 6171)x - 2890 = O. 

Slide the PRGM-RUN switch to PRGM ~ . Key in a subroutine to 
evaluate the polynomial. 

Keystrokes Display 

o [ill] 2 001- 25,13, 2 
6 002- 6 
0 003- 0 

0 004- 61 
9 005- 9 
4 006- 4 
4 007- 4 

G 008- 41 

0 009- 61 
3 010- 3 
0 011- 0 
0 012- 0 
3 013- 3 
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Keystrokes Display 

CB 014- 51 

0 015- 61 
6 016- 6 

017-
7 018- 7 
1 019-

CB 020- 51 

0 021- 61 
2 022- 2 
8 023- 8 
9 024- 9 
0 025- 0 

G 026- 41 
(B I RTN I 027- 25 12 

Slide the PROM-RUN switch to ..mmRUN . Key in two large, negative 
initial estimates (such as -10 and -20) and use ISOLvEl to find the most 
negative root. 

Keystrokes 

10 I CHS II EMmIt I 
20lcHSI 
CD ISOLVEI 2 
ISTOIO 

OO®JOO®J 

Display 

-10.0000 
-20 
-1.6667 
-1.6667 

4.0000 

} Initial estimates. 

First root. 
Store root for deflation. 

-06 Function value near zero. 

Slide the PROM-RUN switch to PRGM~. Add instructions to your 
subroutine to eliminate the root just found . 

Keystrokes Display 

IGTOI GJ 026 026- 41 Line before I RTN I 
instruction. 

Ix~YI 027- 21 Bring x into X-register. 
IRCLIO 028- 24 0 

) Divide by (x - a) , where a G 029- 41 
GJ 030- 71 

is known root. 
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Now slide the PRGM-RUN switch to .mJ]RUN. Use the same initial 
estimates to find the next root. 

Keystrokes 

10 I cHsllENTERt I 
20 ICHSI 
CD ISOLVEI 2 
ISTO 11 
[]]§)[]]§) 

Display 

-10.0000 
-20. 

0.4000 
0.4000 
0.0000 

} Same initial estimates . 

Second root. 
Store root for deflation. 
Deflated function value . 

With the PRGM-RUN switch set to PRGM", modify your sub­
routine to eliminate the second root. 

Keystrokes Display 

IGTOIG] 030 030- 71 Line before I RTN I 
instruction. 

Ix~yl 031- 21 Bring x into X-register. 
IRcLll 032- 24 ) G 033- 41 Deflation for second root. 

G 034- 71 

Slide the PRGM-RUN switch to .mJ]RUN. Again, use the same initial 
estimates to find the next root. 

Keystrokes 

10 I CHS I IENTERt I 
20 ICHsl 
CD ISOlVEl 2 
ISTOl2 
[]]§)[]]§) 

Display 

-10.0000 
-20 

8.4999 
8.4999 

-1.0929 

} Same initial estimates. 

Third root. 
Store root for deflation. 

-07 Deflated function value near 
zero. 
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With the PRGM-RUN switch set to PRGM~, change your subrou­
tine to eliminate the third root. 

Keystrokes Display 

IGTOl8034 034- 71 Line before I RTN I 
instruction. 

Inyl 035- 21 Bring x into X-register. 

IRCLI2 036- 24 2 I Deflation for third root. G 037- 41 

G 038- 71 

Slide the PRGM-RUN switch to "RUN and find the fourth root. 

Keystrokes 

10 I cHsilENTER+1 
20 ICHSI 
OJ ISOLVEI 2 
ISTOI3 

OO~OO~ 

Display 

-10.0000 
-20. 

8.5001 
8.5001 

-0.0009 

Using the same initial estimates each 
time , you have found four roots for 
this equation involving a fourth-degree 
polynomial. However, the last two roots 
are quite close to each other, and are 
actually one root (with a multiplicity of 
2). That is why the root was not elim­
inated when you tried deflation once at 
this root. (Round-off error causes the 
original function to have small positive 
and negative values for values of x 
between 8.4999 and 8.500 I; for x = 8.5 
the function is exactly zero.) 

} Same initial estimates. 

Fourth root. 
Store root for reference. 
Deflated function value near 
zero. 

Graph of f(x) 
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In general , you will not know in advance the mUltiplicity of the root you 
are trying to eliminate. If, after you have attempted to eliminate a root, 
ISOLvEl finds that same root again , you can proceed in a number of ways: 

• Use different initial estimates with the deflated function in an 
attempt to search for a different root. 

• Use deflation again in an attempt to eliminate a multiple root. If 
you do not know the multiplicty of the root, you may need to 
repeat this a number of times. 

• Examine the behavior of the deflated function at x values near the 
known root. If the function's calculated values cross the x-axis 
smoothly, either another root or a greater multiplicity is indicated. 

• Analyze the original function algebraically. It may be possible to 
determine its behavior for x values near the known root. (A 
Taylor series representation, for example , may indicate the multi­
plicity of a root.) 

Finding Local Extremes of a Function 

Using the Derivative 

The traditional way to find local maximums and minimums of a func ­
tion ' s graph uses the derivative of the function. The derivative is a 
function that describes the slope of the graph. Values of x at which the 
derivative is zero represent potential local extremes of the function . 
(Although less common for well-behaved functions, values of x where 
the derivative is infinite or undefined are also possible extremes .) If you 
can express the derivative of a function in closed form, you can use ISOLVEI 
to find where the derivative is zero-showing where the function may be 
maximum or minimum . 
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Example: For the design of a vertical 
broadcasting tower, radio engineer Ann 
Tenor wants to find the angle from the 
tower at which the relative field intensity 
is most negative. The relative intensity 
created by the tower is given by 

E = COS(27Th cos 0) - COS(27Th) 

[I - COS(27Th)] sin 0 

where E is the relative field intensity , h is the antenna height in wave­
lengths, and 0 is the angle from vertical in radians. The height is 0 .6 
wavelengths for her design. 

Solution: The desired angle is one at which the derivative of the inten­
sity with respect to 0 is zero . 

To save program memory space and execution time, store the following 
constants in registers and recall them as needed: 

RO=27Th 
R I = COS(27Th) 
R 2 = 1/[ l-cos(27Th)] 

and is stored in register Ro, 
and is stored in register R" 
and is stored in register R2 . 

The derivative of the intensity E with respect to the angle 0 is given by 

~= R2 ~O sin(RO cos 0) _ cos(RO cos 0) - R I] . 
dO r sinOtanO 
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Slide the PRGM-RUN switch to PRGM~ and key in a subroutine to 
calculate the derivative. 

Keystrokes Display 

ITJ CLEAR I PRGM I 000-
01lBliO 001- 25,13, 0 
ITJI cosl 002- 14 8 
IRCllO 003- 24 0 

0 004- 61 
ITJlcosl 005- 14 8 
IRclll 006- 24 1 

G 007- 41 
Ix~YI 008- 21 

ITJ~ 009- 14 7 

GJ 010- 71 
Ix~YI 011- 21 
ITJITANI 012- 14 9 

GJ 013- 71 
ICHSI 014- 32 
Ix~YI 015- 21 
ITJI cosl 016- 14 8 
IRCllO 017- 24 0 

0 018- 61 

ITJ~ 019- 14 7 
IRCllO 020- 24 0 

0 021- 61 
IT) 022- 51 
IRCll2 023- 24 2 

0 024- 61 
01RTNI 025- 25 12 

Now slide the PRGM-RUN switch to "'RUN . In radian mode, calcu­
late and store the three constants. 

Keystrokes 

OOIRAOI 

Display 

0.0000 Specify radian mode. 
(Assumes display has been 
cleared.) 
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Keystrokes Display 

20~0 6.2832 
.6 01sToi 0 3.7699 Constant RO . 

CD Icosi isTOI 1 -0.8090 Constant R 1. 

ICHsl1 [±] 1.8090 
o lID ISTOI 2 0.5528 Constant R 2. 

The relative field intensity is maximum at an angle of 90° (perpendicular 
to the tower) . To find the minimum, use angles closer to zero as initial 
estimates, such as the radian equivalents of 10° and 60°. 

Keystrokes 

1O []]~ 
60 []]~ 
CD ISOLVEI 0 

Display 

0.1745 
1.0472 
0.4899 

} Initial estimates. 

Angle giving zero slope . 
[]]®J[]]®J 
CD®JCD®J 
CD@) 

-5.5279 
0.4899 
28.0680 

-10 Slope at specified angle . 

The relative field intensity is most nega­
tive at an angle of 28.0680° from verti­
cal. 

Using an Approximate Slope 

The derivative of a function can also be 
approximated numerically. If you sam­
ple a function at two points relatively 
close to x (namely x +.:l and x - .:l), you 
can calculate an average slope of the 
function's graph 

s = 
f(x +.:l) - f(x -.:l) 

2.:l 

Restore the stack. 
Angle in degrees. 

Graph of dE/dO Versus 0 
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The accuracy of this approximation depends upon the increment ~ and 
the nature of the function. Smaller values of ~ give better approxima­
tions to the derivative, but excessively small values can cause round-off 
inaccuracy. A value of x at which the slope is zero is potentially a local 
extreme of the function. 

Example: Solve the previous example without using the equation for 
the derivative dE/d(). 

Solution: Find the angle at which the derivative (determined numeri­
cally) of the intensity E is zero. 

Slide the PRGM-RUN switch to PRGMmm.I and key in two subrou­
tines: one to estimate the derivative of the intensity and one to evaluate 
the intensity function E. In the following subroutine, the slope is calcu­
lated between () + 0.001 and () - 0.001 radians (a range equivalent to 
approximately o. n. 
Keystrokes Display 

(BILBLI0 001- 25, 13, 11 
IEEXI 002- 33 

) 
ICHSI 003- 32 
3 004- 3 Evaluate E at () + 0.001. 
[±) 005- 51 

IENTERtl 006- 31 
IGSBI ® 007- 13 12 
Ix~yl 008- 21 
IEEXI 009-

~) ICHS I 010- 32 
3 011- 3 Evaluate E at () - 0.001 . 
G 012- 41 

IENTERtl 013- 31 
IGSBI ® 014- 13 12 
G 015- 41 
2 016- 2 
IEEXI 017- 33 
ICHSI 018- 32 
3 019- 3 
GJ 020- n 
(BIRTNI 021- 25 12 
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Keystrokes Display 

[EJ I LBl I [[] 022- 25, 13, 12 
[IJ Icosl 023- 14 8 
IRCllO 024- 24 0 

0 025- 61 
[IJ Icosl 026- 14 8 
IRClll 027- 24 1 
G 028- 41 
Ix~yl 029- 21 
[IJ ISINI 030- 14 7 

G 031- 71 
IRCll2 032- 24 2 
0 033- 61 
[EJIRTNI 034- 25 12 

Slide the PRGM-RUN switch to "'RUN . In the previous example, 
the calculator was set to radian mode and the three constants were stored 
in registers 0 , 1, and 2. Key in the same initial estimates as before and 
execute ISOlVEI . 

Keystrokes Display 

1O (]]~ 0.1745 } Initial estimates. 
60 (]] ~ 1.0472 
[IJ ISOlVEI 0 0.4899 Angle giving zero slope . 
(]][@(]][@ 0.0000 Slope at specified angle. 
[IJ[@[IJ[@ 0.4899 Restore the stack. 
IENmI+IIENmI+I m -0.2043 Use function subroutine to 

calculate minimum inten-
sity. 

Ix~YI 0.4899 Recall () value. 
[IJEQJ 28.0679 Angle in degrees. 

This numerical approximation of the derivative indicates a minimum 
field intensity of -0.2043 at an angle of 28.0679°. (This angle differs 
from the previous solution by 0.0001° .) 
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Using Repeated Estimation 

A third technique is useful when it is not 
practical to calculate the derivative. It is 
a slower method because it requires the 
repeated use of the !SOLVE! key. On the 
other hand, you do not have to find a 
good value for ~ of the previous method. 
To find a local extreme of the function 
f(x), define a new function 

g (x) = f(x) - e 

where e is a number slightly beyond the 
estimated extreme value off(x). If e is 
properly chosen, g (x) will approach 
zero near the extreme off(x) but will not 
equal zero. Use ISOLVE! to analyze g (x) 
near the extreme. The desired result is 
Error 6. 

t(x} 

-+-----x 

• If Error 6 is displayed the number in the X-register is an x value 
near the extreme. The number in the Z-register tells roughly how 
far e is from the extreme value off(x). Revise e to bring it closer 
(but not equal) to the extreme value. Then use ISOLVE! to examine 
the revised g (x) near the x value previously found. Repeat this 
procedure until successive x values do not differ significantly. 

• If a root of g (x) is found, either the number e is not beyond the 
extreme value of f(x) or else ISOLVE! has found a different region 
wheref(x) equalse. Revisee so that it is close to-but beyond­
the extreme value of f(x) and try ISOLVE! again. It may also be 
possible to modify g (x) in order to eliminate the distant root. 
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Example: Solve the previous example without calculating the deriva­
tive of the relative field intensity E. 

Solution: The subroutine to calculate E and the required constants have 
been entered in the previous examples . 

Slide the PROM-RUN switch to PRGM~ . Key in a subroutine 
which subtracts an estimated extreme number from the field intensity E. 
The extreme number should be stored in a register so that it can be man­
ually changed as needed. 

Keystrokes 

01LBLI1 

Display 

001- 25,13, 

002-
003-
004-
005-

13 12 
24 9 

41 
25 12 

Begin with I LBL I 
instruction. 
Calculate E. 

} Subtract extreme estimate . 

Slide the PRGM-RUN switch to "RUN . Estimate the minimum 
intensity value by manually sampling the function. 

Keystrokes Display 

lO rn~ 0.1745 
IENTeItl m -0.1029 

30 rn~ 0.5236 ) S,mp" tho '""lio" " 
IENTeIt'm -0.2028 10°, 30°, 50°, . .. 

50 rn~ 0.8727 
I ENTeIt , m 0.0405 
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Based on these samples, try using an extreme estimate of -0.25 and 
initial ISOLVE! estimates (in radians) near 10° and 30°. 

Keystrokes Display 

.25 !CHS!!STO! 9 -0.2500 Store extreme estimate . 

. 2 IENTER+! 0.2000 } Initial estimates . . 6 0.6 
CD ISOLVE! 1 Error 6 No root found. 
ICLX!lsTO! 4 0.4849 Store () estimate . 
[]] ~ISTOI 5 0.4698 Store previous () estimate. 

[]]~ 0.0457 Distance from extreme. 

.9 0 0.0411 } 
Revise extreme estimate 

ISTO I C±J 9 0.0411 by 90 percent of the 
distance. 

IRCL!4 0.4849 Recall () estimate. 
I ENTER+ 1/ ENTER+ I (I) -0.2043 Calculate intensity E. 

ICLXI 0.0000 } 
Recall other () estimate, 

IRCL!5 0.4698 
keeping first estimate 
in Y -register. 

CD ISOLVE! Error 6 No root found. 
ICLXI 0.4898 () estimate. 
Ix~y! 0.4893 Previous () estimate . 
Ixu! 0.4898 Recall () estimate . 
I ENTER+ II ENTER+ I (I) -0.2043 Calculate intensity E. 
Ix~YI 0.4898 Recall () value. 
CDr:Q) 28.0660 Angle in degrees. 

The second iteration produces two () estimates that differ in the fourth 
decimal place. The field intensities E for the two iterations are equal 
to four decimal places. Stopping at this point, a minimum field intensity 
of -0.2043 is indicated at an angle of 28.0660°. (This angle differs from 
the previous solutions by about 0.002°.) 

Limiting the Estimation Time 
Occasionally, you may desire to limit the time used by ISOLVE! to find a 
root. You can use two possible techniques to do this-counting iterations 
and specifying a tolerance . 



Advanced Use of ISOLVE) 233 

Counting Iterations 

While searching for a root, ISOLVE) typically samples your function at least 
a dozen times. Occasionally, ISOLVE) may need to sample it one hundred 
times or more. (However, )SOLVE) will always stop by itself.) Because 
your function subroutine is executed once for each estimate that is tried, it 
can count and limit the number of iterations . An easy way to do this is 
with an )ISG) instruction to accumulate the number of iterations in the 
I-register. If you store an appropriate number in the I-register before 
using )SOLVE) , your subroutine can interrupt the )SOLVE) algorithm when 
the limit is exceeded. The ~ instruction is discussed on page 141.) 

Specifying a Tolerance 

You can shorten the time required to find a root by specifying a tolerable 
inaccuracy for your function . Your subroutine should return a function 
value of zero if the calculated function value is less than the specified 
tolerance. This tolerance that you specify should correspond to a value 
that is negligible for practical purposes or should correspond to the 
accuracy of the computation. This technique eliminates the time required 
to define the estimate more accurately than is justified by the problem. 
(Example of thi s method are given on page 190 and below.) 

Using ISOLVEJ With [ill 
Example: For a phase-modulated radio signal , the amplitude of the 
carrier signal is proportional to J o(x), the zero-order Bessel function of 
the first kind , where x is the modulation index. What is the smallest 
modulation index at which the carrier signal is suppressed (that is, its 
amplitude is zero)? 

Solution: The desired index is the smallest value of x for which 

J o(x) = f" cos (x sin B) dB = O. 
o 7T 

You can use )SOLVE) to determine this value. The function Jo(x) must 
be calculated by using [il) . 
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The approximation of J o(x) calculated by [ill has an uncertainty that is 
returned in the Y -register. Whenever the magnitude of J o(x) is less than 
this uncertainty , J o(x) can be considered to be zero. By using this 
technique, you can prevent ISoLvEl from seeking unreasonable accuracy. 

Slide the PRGM-RUN switch to PRGM~. Key in a subroutine that 
calculates J o(x) and a subroutine that calculates the function to be 
integrated. 

Keystrokes Display 

CD CLEAR I PRGM I 000- Clear program memory. 
o ILBLI 0 001-25, 13,11 Begin with I LBL I 

instruction. 
ISTOIO 002- 23 0 Store argument x. 
0 003- 0 } Limits of integration. 
00 004- 25 73 
CD [ill 3 005- 14, 72, 3 Calculate Joex). 

o I ABSI 006- 25 34 Magnitude of J o(x) . 

CD I x~y I 007- 14 41 } Return zero if 
ICLXI 008- 34 Jo(x) ~ uncertainty. 
[]] I x .. o I 009- 15 61 } ~estore J o(x) if value 
o ILST xl 010- 25 0 IS nonzero. 
o I RTN I 011- 25 12 

o I LBL I 3 012- 25, 13, 3 

CD~ 013- 14 7 
IRCL IO 014- 24 0 

0 015- 61 Calculate function 

CD I cosl 016- 14 8 to be integrated. 

00 017- 25 73 

GJ 018- 71 

o I RTN I 019- 25 12 

In order to shorten the time to find the desired root, initially specify 
~ 0 display mode for the integration. After an approximate solution 
has been found, specify a greater integration accuracy (by using ~3). 

Then let ISOLVEI home in on the root using the more accurate function. 
This procedure eliminates the need to integrate with great accuracy for 
values of x not near the root, saving considerable time . 
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Slide the PRGM-RUN switch to "RUN and perform the following 
steps. Keep in mind that ISoLvEl samples your function many times and 
that [ilJ often requires up to a minute or more to evaluate an integral. For 
these reasons the IsoLvEl executions that fo llow take about 3 and 6 minutes 
to be completed. 

Keystrokes Display 

[]] (ill) a O. 00 Specify the [ilJ 
accuracy. 
(Assumes that the display 
has been cleared.) 

[[) IRAD I O. 00 
a lemA. I O. 00 } Initial estimates to 
I 1. search near O. 
[]] ISOLVEI 0 2. 00 Desired root. 
[]] (ill) 3 2.480 00 Specify greater [ilJ 

accuracy. 
2.4 lemA. I 2.4Q0 00 } Initial estimates near 
2.5 2.5 first approximation. 
[]] ISOLVEI 0 2.4Q5 00 Desired root. 
[]] (£!K] 4 2.4049 View in (£!K] 4 format. 
[[)§)[[)§) 0.0000 J o(x) is less than 

uncertainty. 
[[)§) 0.0001 Uncertainty from [ilJ . 

A modulation index of 2.4049 causes the carrier signal amplitude to be 
suppressed by at least 99.99% . (That is, its amplitude is less than 0.0001 
of maximum.) 



Appendix B 

A More Detailed Look at 1m 

Section 9 presented the basic information you need to use [ill know­
ledgeably in most applications. This appendix discusses more esoteric 
aspects of [ill that may be of interest to you if you use [ill often. 

How 1m Works 
The [ill algorithm calculates the integral of a functionj(x) by computing 
a weighted average of the function's values at many values of x (known 
as sample points) within the interval of integration. The accuracy of the 
result of any such sampling process depends on the number of sample 
points considered: the more sample points, the greater the accuracy. If 
j(x) could be evaluated at an infinite number of sample points , the 
algorithm could-neglecting the limitation imposed by the inaccuracy 
in the calculated functionj(x)-provide an exact answer. 

Evaluating the function at an infinite number of sample points would 
take a very long time (namely , forever). Fortunately , this is not neces­
sary, since the maximum accuracy of the calculated integral is limited by 
the accuracy of the calculated function values. Using only a finite num­
ber of sample points, the algorithm can calculate an integral that is as 
accurate as is justified considering the inherent uncertainty in j(x). 

The [ill algorithm at first considers only a few sample points , yielding 
relatively inaccurate approximations. If these approximations are not 
yet as accurate as the accuracy ofj(x) would permit, the algorithm is 
iterated (that is, repeated) with a larger number of sample points. These 
iterations continue, using about twice as many sample points each time , 
until the resulting approximation is as accurate as is justified considering 
the inherent uncertainty inj(x). 

The uncertainty of the final approximation is a number derived from the 
display format , which indicates the uncertainty in the function. * At the 
end of each iteration , the algorithm compares the approximation calcu­
lated during that iteration with the approximations calculated during two 

* The relationship between the display format , the uncertainty in the function , and the 
uncertamty in the approximation to its integral are discussed later in this appendix. 

236 
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previous iterations. If the difference between any of these three approxi­
mations and the other two is less than the uncertainty of the final approx­
imation , the algorithm terminates , placing the current approximation in 
the X-register and its uncertainty in the Y -register. 

The [ill algorithm is designed so that it is extremely unlikely that the 
error in each of three successive approximations-that is , the differences 
between the actual integral and the approximations-would all be less 
than the disparity among the approximations themselves. Consequently, 
the error in the final approximation will be less than its uncertainty . * 
Although we can ' t know the error in the final approximation, we can 
be very confident that the error is less than the displayed uncertainty of 
the approximation. Thus, the uncertainty of the approximation is an 
" upper bound" on the difference between the approximation and the 
actual integral. 

Accuracy, Uncertainty, and Calculation Time 
The accuracy of an [illapproximation does not always change when you 
increase by just one the number of digits specified in the display format. 
Similarly , the time required to calculate an integral sometimes changes 
when you change the display format , but sometimes does not. 

Example: The Bessel function of the first kind of order four can be 
expressed as 

l ix) = ~ f1T cos (40-x sinO)dO. 
7T Jo 

Calculate the integral in the expression for 14( I) , 

I f1T 
- cos (40 - sin 0) dO. 
7T 0 

• Provided that!(x) is sufficiently smooth, a consideration we will discuss in more detail later 
in this appendix. 
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First, slide the PRGM-RUN switch to PRGM~ , and key in a sub­
routi ne that evaluates the function/CO) = cos (40 - sin 0) . 

Keystrokes Display 

OJ CLEAR I PRGM I 000-
~ ILBLI 0 001- 25,13, 0 
4 002- 4 

0 003- 61 
Ix~YI 004- 21 

OJ~ 005- 14 7 

G 006- 41 

OJ Icosl 007- 14 8 

~IRTNI 008- 25 12 

Now, slide the PRGM-RUN switch back to "'RUN, and key the 
limits of integration into the X- and Y -registers. Ensure that the trigo­
nometric mode is set to radians, and set the display format to @ 2. 
Finally, press OJ 1m 0 to calculate the integral. 

Keystrokes 

o IENTERtl 

OJ@ 2 

Display 

0.0000 

3.1416 

3.1416 

3.14 

7.79 

1.45 

00 

-03 

-03 

Key lower limit into 
Y -register. 
Key upper limit into 
X-register. 
Ensure that trigonometric 
mode is set to radians. (This 
step is not necessary if you 
have not switched your cal­
culator off nor reset the 
trigonometric mode since 
you last set it to radians.) 
Set display format to 
@ 2. 
Integral approximated in 
@ 2. 
Uncertainty of @ 2 
approx imation . 
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The uncertainty indicates that the displayed digits of the approximation 
might not include any digits that could be considered accurate. Actually, 
just like the last approximation in section 9, this approximation is more 
accurate than its uncertainty indicates. 

Keystrokes 

Ix .. yl 

Display 

7.79 -03 

7785820888 

Return approximation to 
display. 
All 10 digits of @ 2 
approximation. 

The actual value of this integral, correct to five significant digits, is 
7.7805 X 10- 3. Therefore , the error in this approximation is about 
(7.7858 -7.7805) X 10- 3 = 5.3 X 10- 6. This error is considerably less 
than the uncertainty, 1.45 X 10-3

. The uncertainty is only an upper 
bound on the error in the approximation; the actual error will generally 
be smaller. 

Now let's calculate the integral in @ 3 and compare the accuracy of the 
resulting approximation to that of tne @ 2 approximation. 

Keystrokes Display 

ITl!ED 3 7.786 -03 Change display format to 

!ED 3. 
OO§)OO§) 3.142 00 Roll down stack until upper 

limit appears in X-register. 
ITlIm 0 7.786 -03 Integral approximated in 

!ED 3. 
Ix"YI 1.448 -04 Uncertainty of !ED 3 

approximation. 
Ix .. yl 7.786 -03 Return approximation to 

display . 
01 MANT I 7785820888 All 10 digits of !ED 3 

approximation. 
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All 10 digits of the approximations in ~ 2 and in ~ 3 are identi­
cal: the accuracy of the approximation in ~ 3 is no better than the 
accuracy in ~2, despite the fact that the uncertainty in ~3 is less 
than the uncertainty in ~ 2. Why is this? Remember that the accuracy 
of any approximation depends primarily on the number of sample points 
at which the function f(x) has been evaluated. The lm algorithm is 
iterated with increasing numbers of sample points until the disparity 
among three successive approximations is less than the uncertainty , 
which is a number derived from the display format. After a particular 
iteration , the disparity among the approximations may already be so 
much less than the uncertainty that it would still be less if the uncertainty 
were decreased by a factor of 10. In such cases, if you decreased the 
uncertainty by specifying one more digit in the display format , the algo­
rithm would not have to consider additional sample points , and the result­
ing approximat ion would be identical to the approx imation calculated 
with the larger uncertainty. 

If you calculated the two preceding approximations on your calculator, 
you may have noticed that it took just as long to calculate the integral in 
~ 3 as in ~ 2. This is because the time to calculate the integral of a 
given function depends on the number of sample points at which the 
function must be evaluated to achieve an approximation of acceptable 
accuracy. For the ~ 3 approximation, the algorithm did not have to 
consider more sample points that it did in ~ 2, so it did not take any 
longer to calculate the integral. 

Often, however, increasing the number of digits in the display format 
will require evaluating the function at additional sample points, so that 
calculating the integral will take more time . Let ' s now calculate the same 
integral in ~ 4: 

Keystrokes Display 

ITJ~ 4 7.7858 -03 Change display format to 
~4. 

OO§)OO§) 3.1416 00 Roll down stack until upper 
limit appears in X-register. 

ITJ lm 0 7.7807 -03 Integral approx imated in 
~4. 
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This approximation took about twice as long as the approximation in 
@ 3 or @ 2. In this case, the algorithm had to evaluate the function 
at about twice as many sample points as before in order to achieve an 
approximation of acceptable accuracy. Note, however, that we received 
a reward for our patience: the accuracy of this approximation is better, 
by almost two digits, than the accuracy of the approximation calculated 
using half the number of sample points. 

The preceding examples show that repeating the approximation of an 
integral in a different display format sometimes will give you a more 
accurate answer, but sometimes it will not. Whether or not the accuracy 
is changed depends on the particular function , and generally can be 
determined only by trying it. 

Furthermore, if you do get a more accurate answer, it will come at the 
cost of about double the calculation time. This unavoidable trade-off 
between accuracy and time is important to keep in mind if you are con­
sidering decreasing the uncertainty in hopes of obtaining a more accurate 
answer. 

Note: The time required to calculate the integral of a given 
function depends not only on the number of digits specified in 
the display format, but also, to a certain extent, on the limits 
of integration. When the calculation of an integral requires an 
excessive amount of time, the width of the interval of integra­
tion (that is, the difference of the limits) may be too large 
compared with certain features of the function being inte­
grated. For most problems, however, you need not be con­
cerned about the effects of the limits of integration on the 
calculation time. These considerations, together with exam­
ples where the limits may be unduly prolonging the calcula­
tion time as well as techniques for dealing with such 
situations, will be discussed later in this appendix . 

Accuracy of the Function to be Integrated 

The accuracy of an integral calculated using rm depends on the accuracy 
of the function calculated by your subroutine. This accuracy, which you 
specify using the display format , depends primarily on three consider­
ations: 

1. The accuracy of empirical constants in the function . 
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2. The degree to which the function may accurately describe a 

physical situation. 

3. The extent of round-off error in the internal calculations of the 
calculator. 

Functions Related to Physical Situations 

The functions we ' ve integrated so far in section 9 and this appendix­
cos (sin 0), cos (0 - sin 0), cos (40 - sin 0) , and (sin x )/x-are exam­
ples of pure mathematical functions. In this context, this means that 
the functions do not contain any empirical constants, and neither the 
variables nor the limits of integration represent actual physical quantities . 
For such functions, you can specify as many digits as you want in the 
display format (up to nine) to achieve the desired degree of accuracy in 
the integral. * All you need to consider is the trade-off between the 
accuracy and calculation time . 

There are additional considerations , however , when you're integrating 
functions relating to an actual physical situation. Basically, with such 
functions you should ask yourself whether the accuracy you would like 
in the integral is justified by the accuracy in the function. For example, 
if the function contains empirical constants that are specified to only, 
say, three significant digits , it might not make sense to specify more than 
three digits in the display format. 

Another important consideration-and one which is more subtle and 
therefore more easily overlooked-is that nearly every function relating 
to a physical situation is inherently inaccurate to a certain degree, 
because it is only a mathematical model of an actual process or event. A 
mathematical model is itself an approximation that ignores the effects of 
known or unknown factors which are insignificant to the degree that the 
results are still useful. 

An example of a mathematical model is the normal distribution function 

e -(X -1' )'12cr' 

yI2; dx , 
a 27T 

• Provided thatf(x) is still calculated accurately , despite round-off error, to the number of 
digits shown in the display. 
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which has been found to be useful in deriving information concerning 
physical measurements on living organisms , product dimensions , 
average temperatures , etc. A similar mathematical model is 

C - Co f '" -y2/4DI d ---- e y 
V 7TDt x/2vTh ' 

which is a particular solution of the diffusion equation for semiconduc­
tors. Such mathematical descriptions typically are either derived from 
theoretical considerations or inferred from experimental data. To be 
practically useful, they are constructed with certain assumptions, such 
as ignoring the effects of relatively insignificant factors. For example, 
the accuracy of results obtained using the normal distribution function as 
a model of the distribution of certain quantities depends on the size of the 
population being studied. The accuracy of results obtained using the 
solution to the diffusion equation ignores quantum effects. And the 
accuracy of results obtained from the equation s = So - Y2gt 2

, which 
gives the height of a falling body, ignores the variation with altitude of g, 
the acceleration of gravity. 

Thus, mathematical descriptions of the physical world can provide 
results of only limited accuracy . If numerical results of the model are 
needed to only, say, three significant digits, the effects of many factors 
and assumptions can be ignored. On the other hand, such factors and 
assumptions might, if they could be included in a more precise mathe­
matical description-which would still be only a model-affect the 
digits in the fifth and succeeding decimal places. If you calculated an 
integral with an apparent accuracy beyond that with which the model 
describes the actual behavior of the process or event, you would not be 
justified in using the calculated value to the full apparent accuracy. 

Round-Off Error in Internal Calculations 

With any computational device-including your HP-34C-calculated 
results must be "rounded off" to a finite number of digits (10 digits in 
your HP-34C). Because of this round-off error, calculated results­
especially results of evaluating a function that contains several mathe­
matical operations-may not be accurate to all 10 digits that can be 
displayed. Note that round-off error affects the evaluation of any mathe­
matical expression , not just the evaluation of a function to be integrated 
using rm. 
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Iff(x) is a function relating to a physical situation, its inaccuracy due to 
round-off typically is insignificant compared to the inaccuracy due to 
empirical constants, etc. Iff(x) is what we have called a pure mathemat­
ical function, its accuracy is limited only by round-off error. Generally, 
it would require a complicated analysis to determine precisely how many 
digits of a calculated function might be affected by round-off. In prac­
tice, its effects are typically (and adequately) determined through exper­
ience rather than analysis. 

In certain situations round-off error can cause peculiar results, particu­
larly if you should compare the results of calculating integrals that are 
equivalent mathematically but differ by a transformation of variables. 
Describing such situations-which you are unlikely to encounter in 
typical applications-is beyond the scope of this handbook. 

Uncertainty and the Display Format 

Because of round-off error, the subroutine you write for evaluating 
f(x) cannot calculatef(x) exactly, but rather calculates 

j(x) = f(x) ± o,(x), 

where 8,(x) is the uncertainty of f(x) caused by round-off error. 

Iff(x) relates to a physical situation, then the function you would like to 
integrate is notf(x) but rather 

F(x) = f(x) ± 8b), 

where 82(x) is the uncertainty associated withf(x) that is caused by the 
approximation to the actual physical situation. 

Sincef(x) = j(x) ± Ot(x), the function you want to integrate is 

or 

F(x) = j(x) ± o,(x) ± 02(X) 

F(x) = j(x) ± o(x), 

where o(x) is the net uncertainty associated withj(x). 
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Therefore, the integral you want is 

b b 

fa F(x) dx= fa [lex) ± 8(x)] dx 

= fab 

lex) dx ± ib 

8(x) dx 

=l±il 

b 

where I is the approximation to fa F (x) dx and il is the uncertainty 

associated with the approximation. The [TIl algorithm places the number 
I in the X-register and the number il in the Y -register. 

The uncertainty 8(x) of l(x), the function calculated by your subroutine, 
is determined as follows. Suppose you consider three significant digits of 
the function's values to be accurate, so you set the display format to ~ 
2. The display would then show only the accurate digits in the mantissa of 
a function's values: for example, 1.23 -04. 

Since the display format rounds the number in the X-register to the 
number displayed, this implies that the uncertainty in the function's 
values is ±O.OOS x 10-4 = ±O.S x 10-2 x 10-4 = ±O.S x IO-H Thus , 
setting the display format to ~n or IENGJ n, where n is an integer, 
implies that the uncertainty in the function's values is 

8(x) = O.S x lO-n x 10m (x) 

= O.S x lO- n+m(x) 

In this formula, n is the number of digits specified in the display format 
and m (x) is the exponent of the function's value atx that would appear if 
the value were displayed in ~ display format. 

The uncertainty is proportional to the factor IOm
(X ), which represents the 

magnitude of the function's value atx . Therefore, ~and IENGJ dis­
play formats imply an uncertainty in the function that is relative to the 
function's magnitude. 
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Similarly, if a function value is displayed in ~ n, the rounding of the 
display implies that the uncertainty in the function's values is 

o(x) = 0.5 x IO-n . 

Since this uncertainty is independent of the function 's magnitude, ~ 
display format implies an uncertainty that is absolute. 

Each time the !m algorithm samples the function at a value of x, it also 
derives a sample of o(x), the uncertainty of the function's value atx . This 
is calculated using the number of digits n currently specified in the dis­
play format and (if the display format is set to ~ or I ENG I) the mag­
nitude m (x) of the function's value at x . The number.:l, the uncertainty 
of the approximation to the desired integral , is the integral of 0 (x): 

.:l = fa
b 

o(x) dx 

b 

= f a [0.5 X IO-n+ m(x)] dx. 

This integral is calculated using the samples of o(x) in roughly the same 
way that the approximation to the integral of the function is calculated 
using the samples ofj(x). 

Because .:l is proportional to the factor I o-n, the uncertainty of an approx­
imation changes by about a factor of 10 for each digit specified in the 
display format. This will generally not be exact in ~ or I ENG I display 
format, however , because changing the number of digits specified may 
require that the function be evaluated at different sample points, so that 
o (x) - IOm

! X ) would have different values. 

Note that when an integral is approximated in ~ display format, 
m (x) = a and so the calculated uncertainty in the approximation turns 
out to be 

.:l = 0.5 x IO-n(b - a). 
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Normally you do not have to determine precisely the uncertainty in the 
function. (To do so would frequently require a very complicated analy­
sis .) Generally, it's more convenient to use ~or I ENG Idisplay format 
if the uncertainty in the function ' s values can be more easily estimated as 
a relative uncertainty. On the other hand, it's more convenient to use 
~ display format if the uncertainty in the function's values can be 
more easily estimated as an absolute uncertainty . ~display format 
may be inappropriate to use (leading to peculiar results) when you are 
integrating a function whose magnitude and uncertainty have extremely 
small values throughout the interval of integration, or a function whose 
magnitude and uncertainty vary through extremely large and small 
values within the interval of integration. Likewise , ~display format 
may be inappropriate to use (also leading to peculiar results) if the mag­
nitude of the function becomes much smaller than its uncertainty. If the 
results of calculating an integral seem strange , it may be more appropri­
ate to calculate the integral in the alternate display format. 

Calculating Integrals of Maximum Accuracy 

In ~ or I ENG I display format, numbers can be displayed with a man­
tissa containing up to seven digits. Specifying ~8 or ~9 generally 
results in the same display as @ 7 . However, the uncertainty of 
integrals calculated in ~8 or ~9 is smaller than the uncertainty of 
integrals calculated in @ 7 . The same is true, of course , for integrals 
calculated in I ENG I display format. 

You can calculate an integral of greatest possible accuracy with the 
display mode set to ~(or IENGI) 9. * If the calculator is in RUN mode, 
you can do so either directly by pressing CD@ 9, or indirectly by 
pressing 9 I STO I CD CD 01 DSP II (when the display format is already set 
to ~ or IENGI) . If the calculator is in PRGM mode, however, you 
cannot set the display mode directly to ~8, @ 9, IENGI 8,or IENGI9. 
If you attempt to do so, the resulting key code will indicate ~7 or I ENG I 
7 , and integrals will be calculated with an uncertainty derived from a 

• Provided , of course, thatf(x) is calculated accurately to 10 significant digits. 
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display format specifying seven digits. To calculate integrals of 
maximum accuracy in PROM mode, therefore, you must set the display 
format indirectly using I osp II. * 
To see how this is done, slide the PROM-RUN switch to PRGM~ 
and key in the following (trivial) program, which calculates the integral 
of (sin x)/x with maximum accuracy. Afterwards , we ' ll execute the 
program to calculate Si (2). 

Keystrokes Display 

~ ILBLI 0 001- 25,13,11 

9 
ISTOI []] OJ 
~IOSPII 

[]] rm 2 

[]]~ 
Ix~yl 

GJ 
~IRTNI 

002- 9 
003- 23, 14,23 
004- 25 11 

005- 15 22 

006- 14, 72, 2 

007- 25 12 
008- 25,13, 2 

009- 14 7 
010- 21 
011- 71 
012- 25 12 

Label of program containing 
rm in program line . 
Key 9 into X-register. 
Store 9 in I-register. 
Sets display format to nine 
digits. (This program 
assumes that the display 
format will have been 
manually set to (ill before 
the program is executed.) 
Roll down the stack so that 
the 9 entered into the X­
register in program line 002 
does not become the upper 
limit of integration. 
Calculate the integral 

fa b (sinx)/x dx. 

Label of subroutine that 
evaluates I(x) = (sin x )/x. 

* If there is a negative number in the I-register when you press 01 DSP I I, numbers will be 
displayed as they would ap ar if 0 were in the I-register. However, the negative number 
will be considered by the algorithm in determining the uncenainty of an approxima­
tion. The minimum number that can be considered in determining the uncenainty of an 
approximation is -6. If the I-register contains a number less than -6, the approximation 
will be performed as if -6 were in the I-register. 
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Now, slide the PRGM-RUN switch back to "RUN. To calculate 
Si (2), key the limits of integration into the X- and Y -registers, then 
press 0 to execute the program. 

Keystrokes Display 

OJ [ill] 3 0.000 00 

o 1em:R+1 0.000 00 

2 2. 

2.000 00 

1.605412 00 

6.000000-10 

1.605412 00 

1605412977 

Specify [ill] display for­
mat. Executing the subse­
quent program (by pressing 
0) will change the number 
of digits specified from 3 to 
9. (Display shown assumes 
no results remain from 
preceding example .) 
Key lower limit into 
Y -register. 
Key upper limit into 
X-register. 
Ensure that trigonometric 
mode is set to radians. (This 
step is not necessary if you 
have not switched your cal­
culator off nor reset the 
trigonometric mode since 
you last set it to radians .) 

Si (2) calculated with 
maximum accuracy. 
Uncertainty of 
approximation. 
Return approximation to 
display. 
All 10 digits of 
approximation. 

Since the most significant digit of the uncertainty occurs in the tenth 
decimal place, the uncertainty indicates that the estimate is correct to at 
least nine decimal places. Indeed , the estimate agrees to all nine decimal 
places with the value given for Si (2) in tables of mathematical functions. 
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Obtaining the Current Approximation to an 
Integral 

Pressing I RIS I while your HP-34C is calculating an integral halts the 
calculation , just as it halts the execution of a running program . When you 
do so , the calculator stops at the current program line in the subroutine 
you wrote for evaluating the function , and displays the result of execut­
ing the preceding program line. Note that after you halt the calculation, 
the current approximation to the integral is rwt the number in the X­
register nor the number in any other stack register. Just as with any 
program, pressing I RIS I again starts the calculation from the program 
line at which it was stopped. 

When the calculation of an integral is requiring more time than you care 
to wait , you may want to stop and display the current approximation. 
You can obtain the current approximation, but not its uncertainty . The 
[il) algorithm updates the current approximation and stores it in the 
LAST X register after evaluating the function at each new sample point. 
To obtain the current approximation , therefore, simply halt the calcu­
lator, single-step if necessary through your function subroutine until the 
calculator has finished evaluating the function and updating the current 
approximation , then recall the contents of the LAST X register. 

Note that while the calculator is Updating the current approximation , the 
display does not flash as it usually does while the calculator is executing 
your function subroutine. Therefore, you might avoid having to single­
step through your subroutine by halting the calculator at a moment when 
the display is blank . 

In summary , to obtain the current approximation to an integral , follow 
the steps below . 

1. Press I RIS I to halt the calculator, preferably while the display is 
blank. 

2. When the calculator halts with a number in the display , slide the 
PRGM-RUN switch to PRGMmm. . 

a . If the display shows the program line containing the label of 
your function subroutine , slide the PRGM-RUN switch back 
to ..:JRUN and proceed with step 3. 
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b. If you didn't press IRlslat a moment when the display was 
blank, the display will now show some other program line 
within your subroutine. Slide the PRGM-RUN switch back 
to EIIlJRUN and press [EJ I SST 1 repeatedly until the 
display shows 25 12 at the right (or 000- at the left*) while 
the I SST 1 key is held down; then release the key and wait 
for the calculator to halt with a number in the display. 

3. Press [EJ I LST X I. The current approximation will appear in the 
display. If you want to continue calculating the final approxima­
tion, press ICLXI CB IRlsl. This refills the stack with the current 
x value and restarts the calculator. 

For example, let's calculate the integral Si(2) again and obtain the 
current approximation after a minute or two. 

Keystrokes 

[ID§)[ID§) 

Display 

2.000000 00 

(flashing) 

Roll down stack until upper 
limit appears in X-register. 
Start calculation of integral. 

After a minute or two , halt the calculator and check the current 
approximation: 

Keystrokes 

IRlsl 

Display 

6.771087-01 Halt the calculator by pres­
sing I HIS 1 while the display 
is blank. (Of course, the 
particular number in your 
calculator's display depends 
on the moment you pressed 
I RIS I.) 

• This will occur only when you have not included a ~ instruction at the end of your 
subroutine. 
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Now slide the PRGM-RUN switch to PRGM~ to verify that the 
calculator has stopped at the label of your subroutine. 

Display 

001- 25, 13, 2 Label 2. 

Since the calculator stopped at the label of your subroutine , you can 
recall the current approximation from the LAST X register after sliding 
the PRGM-RUN switch back to ..m!lRUN 

Keystrokes 

01LsTxl 

Display 

1.605412 00 Current approximation to 
integral. (Again, the partic­
ular number in your calcu­
lator's display depends on 
the moment you pressed 
I RIS I.) 

To continue with the calculation and obtain the final approximation: 

Keystrokes 

[cLxl [±] 

Display 

6.771087-01 

1.605412 00 

Return current x value to 
X-register. 
Final approximation to 
integral. 

Considerations That Could Cause Incorrect 
Results 

Although the [ill algorithm in your HP-34C is one of the best available, 
in certain situations it-like nearly all algorithms for numerical 
integration-might give you an incorrect answer. The possibility a/this 
occurring is extremely remote. The [ill algorithm has been designed to 
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give accurate results with almost any smooth function. Only for func­
tions that exhibit extremely erratic behavior is there any substantial risk 
of obtaining an inaccurate answer. Such functions rarely occur in prob­
lems related to actual physical situations; when they do , they usually can 
be recognized and dealt with in a straightforward manner. 

Let ' s take a more detailed look at the operation of the [ilJ algorithm to 
see how it might calculate an incorrect answer. This will enable us to 
identify the general characteristics of functions that could cause prob­
lems. Finally , we'll see how you can verify the accuracy of an approxi­
mation if you should ever want to. 

As we discussed on page 236, the [ilJ algorithm samples the function 
lex) at various values of x within the interval of integration . By calcu­
lating a weighted average of the function ' s values at the sample points , 
the algorithm approximates the integral of/ex). 

Unfortunately , since all that the algorithm knows about/(x) are its values 
at the sample points , it cannot distinguish between/ex) and any other 
function that agrees with/ex) at all the sample points. This situation is 
depicted in the illustration below , which shows (over a portion of the 
interval of integration) three of the infinitely many functions whose 
graphs include the finitely many sample points. 

f(x) 

~--------------------------------------------~-x 
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With this number of sample points, the algorithm will calculate the same 
approximation for the integral of any of the functions shown. The actual 
integrals of the functions shown in black and gold are about the same, so 
the approximation will be fairly accurate iff(x) is one of these functions. 
However, the actual integral of the function shown in blue is quite dif­
ferent from those of the others, so the current approximation will be 
rather inaccurate if f(x) is this function . 

Suppose that the approximation using this number of sample points 
differs from previous approximations by less than the uncertainty, which 
was derived from the number of digits specified in the display format. 
The [il) algorithm will then terminate, returning the current approxima­
tion as the best approximation to the integral given the uncertainty you 
have implicitly agreed to tolerate. Thus, for certain functions-such as 
the function shown in blue-the calculator can give you a rather inac­
curate approximation because it samples the function at only a finite 
number of points. This situation represents the extreme case of the trade­
off we mentioned earlier (page 241) between accuracy and calculation 
time: because you don't want to wait an infinitely long time (to sample 
the function at an infinite number of points) , you can't be absolutely 
confident that the calculator's approximation is as accurate as its 
uncertainty indicates. 

Suppose, in contrast to the situation above, that the derived uncertainty 
in the approximation is so small (because you have specified sufficiently 
many digits in the display format) that the approximation to the integral 
using this number of sample points is not sufficiently accurate. The 
algorithm will then samplef(x) at additional sample points. -This situa­
tion is depicted in the next illustration, which shows the same three 
possible functions whose graphs include the first set of sample points. 
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f(x) 

~ ____________________________________________ L-_x 

Although all three functions shown in this illustration have identical 
values at the smaller number of sample points, the function shown in 
blue has very different values at the new sample points. When the algo­
rithm processes these new function values, it will find that the disparity 
between the current approximation and the previous ones is much larger 
than the acceptable uncertainty. Consequently , the algorithm will con­
tinue evaluating the function at more and more sample points until 
successive approximations agree sufficiently closely. In this case , the 
calculator can give you an accurate approximation because , in saying 
that you would accept only a relatively small uncertainty, you agreed to 
wait as long as necessary. 

Practically speaking, however, you wouldn't want to wait forever for an 
answer. (You probably wouldn't need it then!) By imposing this restric­
tion on the algorithm , you must accept that the function cannot be 
evaluated at infinitely many sample points and that consequently a sharp 
and narrow " spike" in the function can be overlooked by the algorithm. 
This situation is depicted in the next illustration, which shows a func­
tion that is smooth except for a prominent spike. 
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((x) 

~--------~~----------------------------------+---x 

Despite a relatively high density of sample points, none of the sample 
points happens to discover the spike in the function. Since the approxi­
mations after successive iterations agree quite closely , the algorithm 
would terminate with an approximation that is significantly incorrect 
because the spike remains undetected by the algorithm. 

Why is the spike not detected? Because it is so unlike the mild behavior 
of the function elsewhere throughout the interval of integration. Except 
for the spike, the function is smooth throughout the interval shown in the 
illustration. (Actually, if you viewed the graph of these functions over 
the entire interval of integration, they might not appear smooth but 
instead exhibit rapid fluctuations. The illustrations show an expanded 
view of a small portion of the interval of integration , so that characteris­
tic rapid variations in the functions appear to be smooth .) By sampling 
the function with sample points of sufficient density , the algorithm 
comes to know the general beha vi or of the function. If the spike were not 
so unlike the rest of the function , either it or similar variations would be 
detected by the algorithm at some iteration. When this happens, the 
number of sample points is increased until successive iterations yield 
approximations that take into account the presence of the most rapid , but 
characteristic, fluctuations . 
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For example, consider the approximation of 

Since we ' re evaluating this integral numerically, we might think (naively 
in this case, as we will see later) that we should represent the upper limit 
of integration by 1099 , which is virtually the largest number you can key 
into the calculator. Let's try it and see what happens. 

Slide the PRGM-RUN switch to PRGM ~ and key in a subroutine 
that evaluates the function f(x) = xe-X

• 

Keystrokes 

01lBli 1 
ICHsl 
[[)~ 
o 
01RTNI 

Display 

001- 25, 13, 1 
002- 32 
003- 15 1 
004- 61 
005- 25 12 

Now slide the PRGM-RUN switch back to "RUN, set the display 
format to @ 3, and key the limits of integration into the X- and 
Y-registers. 

Keystrokes Display 

[]J @ 3 0.000 00 Set display format to @ 
3. (Display shown assumes 
no results remain from 
preceding example.) 

o [ENTER. I 0.000 00 Key lower limit into 
Y -register. 

IEEXI99 1. 99 Key upper limit into 
X -register. 

[]Jrm l 0.000 00 Approximation of integral. 
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The answer returned by the calculator is clearly incorrect, since the 
actual integral off(x) = xe-x from 0 to 00 is exactly I. But the problem is 
not that we represented 00 by 1099 , since the actual integral of this function 
from 0 to 1099 is very close to 1. The reason we got an incorrect answer 
becomes apparent if we look at the graph of f(x) over the interval of 
integration: 

-$- f(x) 

The graph is a spike very close to the origin. (Actually, to illustrate 
f(x) we have considerably exaggerated the width of the spike . Shown in 
actual scale over the interval of integration, the spike would be indis­
tinguishable from the vertical axis of the graph.) Because no sample 
point happened to discover the spike, the algorithm assumed thatf(x) 
was identically equal to zero throughout the interval of integration. 
Even if you increased the number of sample points by calculating the 
integral in ~9, none of the additional sample points would discover 
the spike when this particular function is integrated over this particular 
interval. We'll mention a better solution after we briefly describe the 
general nature of functions that could cause problems. 

We have seen how the 1m algorithm can give you an incorrect answer 
whenf(x) has a wiggle somewhere that is very uncharacteristic of the 
behavior of the function elsewhere . Fortunately, functions exhibiting 
such aberrations are unusual enough that you are unlikely to have to 
integrate one unknowingly. 

Functions that could lead to incorrect results can be identified most 
precisely by describing them from the mathematical viewpoint of com-
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plex analysis. * But in more simple terms, such a function can be identi­
fied by how rapidly it and its low-order derivatives vary across the 
interval of integration. Basically, the more rapid the variation in the 
function or its derivatives , and the lower the order of such rapidly vary­
ing derivatives , the less quickly will the lZDalgorithm terminate, and the 
less reliable will the resulting approximation be . 

Note that the rapidity of variation in the function (or its low-order 
derivatives) must be determined with respect to the width of the interval 
of integration. With a given number of sample points, a function/(x) 
that has three ' 'wiggles" can be better characterized by its samples when 
these variations are spread out over most of the interval of integration 
than if they are confined to only a small fraction of the interval. (These 
two situations are shown in the next two illustrations.) Considering 
the variations or wiggles as a type of oscillation in the function, the cri­
terion of interest is the ratio of the period of the oscillations to the width 
of the interval of integration: the larger this ratio, the more quickly the 
algorithm will terminate, and the more reliable will be the resulting 
approximation. 

In many cases you will be familiar enough with the function you want to 
integrate that you ' ll know whether the function has any quick wiggles 
relative to the interval of integration . If you're not familiar with the 
function, and you have reason to suspect that it may cause problems , you 
can quickly plot a few points by evaluating the function using the 
subroutine you wrote for that purpose. 

If for any reason, after obtaining an approximation to an integral , you 
have reason to suspect its validity, there's a very simple procedure you 
can use to verify it: subdivide the interval of integration into two or more 
adjacent subintervals, integrate the function over each subinterval , then 
add the resulting approximations. This causes the function to be sampled 
at a brand new set of sample points , thereby more likely revealing any 
previously hidden spikes. If the initial approximation was valid, it will 
equal the sum of the approximations over the subintervals . 

• The approximations computed by the HP-34C will converge rapidly to the correct answer 
provided the integrandf(z), regarded as an analytic function of the complex variable z, 
has no singularities on nor too near the interval of integration, and has an average value on 
that interval not drastically smaller than its magnitude near that interval. 
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a 

a 

Calculated integral 
of this function 
will be accurate. 

Calculated integral 
of this function 
may be inaccurate. 

Considerations That Prolong Calculation 
Time 

b 

b 

In the example on page 257, we saw that the algorithm gave an incorrect 
answer because it never detected the spike in the function. This happened 
because the variation in the function was too quick relative to the width of 
the interval of integration. If the width of the interval were smaller, we 
would get the correct answer; but it would take a very long time if the 
interval were still too wide . 
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For certain integrals, such as the one in that example , ca lculating the 
integral may be unduly prolonged because the width of the interval of 
integration is too large relative to certain features of the function be ing 
integrated. Let ' s consider an integral where the interval of integration is 
wide enough to require excessive calculation time but not so wide that it 
would be calcu lated incorrectly. Note that because j(x) = xe- x ap­
proaches zero very quickly as x approac hes 00, the contribution to the 
integral of the function at large values of x is negligible. Therefore, 
we can eva luate the integral by replacing 00, the upper limit of integra­
tion , by a number not so large as 1099

, say 103
. 

Keystrokes Display 

o lamA. I 0.000 00 Key lower limit into 
Y -register. 

I EEXI 3 1. 03 Key upper limit into 
X-register. 

CIJ[ill 1.000 00 Approximation to integral. 
Ix-.yl 1.824 -04 Uncertainty of 

approximation. 

This is the correct answer, but it took a very long time. To understand 
why, compare the graph of the function over the interval of integration, 
which looks about identical to that shown on page 258, to the graph of the 
function between x = 0 and x = 10. 

f(x) 

10 
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By comparing the two graphs, you can see that the function is "inter­
esting" only at small values of x. At greater values of x, the function is 
"uninteresting ," since it decreases smoothly and gradually in a very 
predictable manner. 

As we discussed earlier, the lm algorithm will sample the function 
with higher densities of sample points until the disparity between suc­
cessive approximations becomes sufficiently small. In other words, the 
algorithm samples the function at increasing numbers of sample points 
until it has sufficient information about the function to provide an 
approximation that changes insignificantly when further samples are 
considered. 

If the interval of integration were (0 , 10) so that the algorithm needed to 
sample the function only at values where it was interesting but relatively 
smooth, the sample points after the first few iterations would contribute 
no new information about the behavior of the function . Therefore, only 
a few iterations would be necessary before the disparity between suc­
cessive approximations became sufficiently small that the algorithm 
could terminate with an approximation of a given accuracy. 

On the other hand , if the interval of integration were more like the one 
shown in the graph on page 261 , most of the sample points would capture 
the function in the region where its slope is not varying much. The few 
sample points at small values of x would find that values of the function 
changed appreciably from one iteration to the next. Consequently, the 
function would have to be evaluated at additional sample points before 
the disparity between successive approximations would become 
sufficiently small. 

In order for the integral to be approximated with the same accuracy over 
the larger interval as over the smaller interval, the density of the sample 
points must be the same in the region where the function is interesting. 
To achieve the same density of sample points, the total number of sam­
ple points required over the larger interval is much greater than the num­
ber required over the smaller interval. Consequently, several more 
iterations are required over the larger interval to achieve an approxima­
tion with the same accuracy, and therefore calculating the integral 
requires considerably more time. 
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Because the calculation time depends on how soon a certain density of 
sample points is achieved in the region where the function is interesting, 
the calculation of the integral of any function will be prolonged if the 
interval of integration includes mostly regions where the function is not 
interesting . Fortunately, if you must calculate such an integral , you can 
modify the problem so that the calculation time is considerably reduced. 
We will discuss two techniques of doing so: subdividing the interval of 
integration, and transformation of variables. 

Subdividing the Interval of Integration 

In regions where the slope off(x) is varying appreciably, a high density 
of sample points is necessary to provide an approximation that changes 
insignificantly from one iteration to the next. However, in regions where 
the slope of the function stays nearly constant, a high density of sample 
points is not necessary. This is because evaluating the function at addi­
tional sample points would not yield much new information about the 
function , so it would not dramatically affect the disparity between suc­
cessive approximations. Consequently , in such regions an approxima­
tion of comparable accuracy could be achieved with substantially fewer 
sample points; so much of the time spent evaluating the function in these 
regions is wasted. When integrating such functions , you can save time 
by using the following procedure: 

1. Divide the interval of integration into subintervals over which the 
function is interesting and subintervals over which the function is 
uninteresting. 

2. Over the subintervals where the function is interesting, calculate 
the integral in the display format corresponding to the accuracy 
you would like overall. 

3. Over the subintervals where the function either is not interesting 
or contributes negligibly to the integral, calculate the integral with 
less accuracy, that is, in a display format specifying fewer digits. 

4. To get the integral over the entire interval of integration , add 
together the approximations and their uncertainties from the 
integrals calculated over each subinterval. You can do this easily 
using the ~key. 
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Before subdividing the interval of integration, check whether the calcu­
lator underflows when evaluating the function around the upper (or 
lower) limit of integration. * Since there is no point in evaluating the 
function at values of x for which the calculator underflows , in some cases 
the upper limit of integration can be reduced , saving considerable 
calculation time. 

Remember that once you have keyed in the subroutine that evaluates 
j(x) , you can calculatej(x) for any value of x by keying that value into 
the X-register and pressing I ENTER. II ENTER. I I ENTER. I I Gsel followed by the 
label of the subroutine. 

If the calculator underflows at the upper limit of integration , try smaller 
numbers until you get closer to the point where the calculator no longer 
underflows. 

Keystrokes Display 

I EEX 13 1. 03 Key upper limit into 
X-register. 

I ENTER. II ENTER. I 
I ENTER. I 1.000 03 Fill the stack with x. 
IGse11 0.000 00 Calculator underflows at the 

upper limit. 
300 I ENTER. II ENTER. I 
I ENTER. I 3.000 02 Try a smaller value of x. 
IGse11 0.000 00 Calculator still underflows. 
200 I ENTER. II ENTER. I 
I ENTER. I 2.000 02 Try a smaller value of x. 
IGse11 2.768 -85 Calculator does not under-

flow at x = 200; try a num-
ber between 200 and 250. 

225 I ENTER. II ENTER. I 
I ENTER. I 2.250 02 
IGse11 4.324 -96 Calculator is close to 

underflow. 

At this point , you can use ISOLVEI to pinpoint the smallest value of x at 
which the calculator underflows. 

* Remember that when the calculation of any quantity would result in a number less than 
10-99

, the result is replaced by zero. This condition is known as underflow. 



Keystrokes 
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Display 

2.250 02 

2.280 02 

Roll down stack until the 
last value tried is in the X­
and Y -registers. 
The minimum value of x at 
which the calculator under­
flows is about 228. 

We have now determined that we need integrate only from 0 to 228. 
Since the function is interesting only for values of x less than 10, let 's 
divide the interval of integration there . The problem has now become: 

I 
1000 I 228 IIO I 228 

xe-x dx~ xe-x dx = xe-x dx + xe-x dx . 
o 0 0 10 

Keystrokes Display 

o letmRtl 0.000 00 Key in lower limit of 
integration over first 
subinterval. 

10 10. Key in upper limit of 
integration over first 
subinterval. 

mlm 1 9.995 -01 Integral over (0, 10) 
calculated in @ 3. 

mCLEAR m 9.995 -01 Clear statistical storage 
registers. 

m~ 1.000 00 Sum approximation and its 
uncertainty in registers R, 
and R3 . 

Ixul 1.841 -04 Uncertainty of 
approximation. 

[[]lli!l[[]lli!l 1.000 01 Roll down stack until upper 
limit of first integral appears 
in X-register. 
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Keystrokes Display 
228 228. Key upper limit of second 

integral into X-register. 
Upper limit of first integral 
is lifted into Y -register, 
becoming lower limit of 
second integral. 

CD (ill) 0 2. 02 Specify (ill) 0 display for-
mat for a quick calculation 
over (10,228). If the uncer-
tainty of the approximation 
turns out not to be accurate 
enough, we can repeat the 
approximation in a display 
format specifying more 
digits. 

CD 1m 1 5. -04 Integral over (10, 228) 
calculated in (ill) O. 

CD (ill) 3 5.328 -04 Change display format back 
to (ill) 3. 

Ix~YI 7.568 -05 Check uncertainty of 
approximation . Since it is 
less than the uncertainty of 
the approximation over the 
first subinterval, (ill) 0 
yielded an approximation of 
sufficient accuracy. 

Ix~)'1 5.328 -04 Return approximation and 
its uncertainty to the X-and 
Y -registers , respectively , 
before summing them in 
statistical storage registers. 

CD~ 2.000 00 Sum approximation and its 
uncertainty. 

IRCLI CD ~ 1.000 00 Integral over total interval 
(0, 228). 

Ix~)'1 2.598 -04 Uncertainty of integral. 

Calculating the integral over the two subintervals took only a fraction of 
the time to calculate the integral over (0,228); and the combined uncer-
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tainty of the total approximation is not appreciably larger than the 
uncertainty of the single approximation over the entire interval. 

Transformation of Variables 

In many problems where the function changes very slowly over most of a 
very wide interval of integration , a suitable transformation of variables 
may decrease the time required to calculate the integral. 

For example , consider again the integral 

Let 

Then 

and 

Substituting, 

x = -In u 

du 
dx= --. 

u 

Slide the PRGM-RUN switch to PRGM um. and key in a subroutine that 
evaluates the functionj(u) = In u . 

Keystrokes 

[B IlBll 3 
ITJ@J 
[B I RTN I 

Display 

001- 25, 13, 3 
002- 14 1 
003- 25 12 
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Slide the PRGM-RUN switch back to "RUN and key in the limits of 
integration, then press []J [ZD 3 to calculate the integral. 

Keystrokes Display 

I IENTERt I 1.000 00 Key in lower limit of 
integration. 

0 o. Key in upper limit of 
integration. 

[]J [ZD 3 9.998 -01 Approximation to equiva-
lent integral. 

Ix~yl 2.130 -04 Uncertainty of 
approximation. 

Considering the uncertainty of this approximation , it agrees with the 
value calculated above for the original integral. Yet , it required only a 
fraction of the calculation time. 





Appendix C 

Service and Maintenance 

Your Hewlett-Packard Calculator 
Your calculator is another example of the award-winning des ign , 
superior quality, and attention to detail in engineering and construction 
that have marked Hewlett-Packard electronic instruments for more than 
30 years. Each Hewlett-Packard calculator is precision crafted by people 
who are dedicated to giving you the best possible product at any price. 

AC Line Operation 
Your calculator contains a rechargeable battery pack conslstmg of 
nickel-cadmium batteries. When you receive your calculator , the battery 
pack inside may be disc harged , but you can operate the calculator 
immediately by using the ac adapter/recharger. 

Note: Do not attempt to operate the calculator from an ac 
line with the battery pack removed. 

The procedure for using the ac adapter/recharger is as follows: 

I . You need not turn the calculator off. 

2. Insert the ac adapter/recharger plug into the connector on the top 
of the calc ul ator, with the snap release tab on the plug facing 
toward the right side of the calc ulator. 

3. Insert the power plug into a live ac power outlet. 

Note: It is normal for the ac adapter/recharger (and the 
battery pack) to be warm to the touch when plugged into an 
ac outlet. 

270 
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CAUTION 

The use of a charger other than the HP recharger supplied 
with the calculator may result in damage to your calculator. 

Use only the " 8 " suffix version ac adapter/recharger 
shipped with your calculator (see product number on 
recharger) . Earlier "A" suffix version rechargers will not 
damage your calculator, but may clear continuous memory 
when plugged in . 

Battery Operation 
To operate the calculator from battery power alone , simply disconnect 
the recharger plug from the calculator by grasping the plug between your 
thumb and forefinger, squeezing to depress the snap release tab, and 
pulling gently. (Even when not connected to the calculator, the ac 
adapter/recharger may be left plugged into the ac outlet.) 

Using the calculator on battery power gives the calculator full port­
ability, allowing you to carry it nearly anywhere. A fully charged battery 
pack typically provides 3 hours of continuous operation . By turning the 
power off when the calculator is not in use, the charge on the battery 
pack should easily last throughout a normal working day. 

Low Power 

When you are operating from battery power and the batteries get low, a 
raised decimal is turned on at the far left of the display to warn you that 
you have between I minute and 25 minutes of operating time left. 

'1.23 

If the display contains the low power indication, the minus sign looks like 
an incomplete divide sign. 

':'1.23 

To return to full power either connect the ac adapter/recharger to the 
calculator as described under AC Line Operation, or substitute a fully 
charged battery pack for the one in the calculator. 
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Battery Charging 
The rechargeable batteries in the battery pack are charged while you 
operate the calculator from the ac adapter/recharger. Batteries will 
charge with the calculator on or off, provided batteries are in place and 
recharger is connected. Normal charging times between the fully dis­
charged state and the fully charged state are (depending on ac line voltage 
value): 

Calculator off: 5 to 9 hours 

Calculator on: 17 hours 

Shorter charging periods will reduce the operating time you can expect 
from a single battery charge . Whether the calculator is off or on , the 
calculator battery pack is never in danger of becoming overcharged . 

Note: The ac adapter/recharger is a sealed unit and is not 
repairable. Return it to Hewlett-Packard if service is required. 

Using Continuous Memory 
When you turn your calculator off, the following information is retained: 

• All programs that are loaded into the calculator. 

• Contents of the storage registers. 

• Display status (FIX, SCI, or ENG, and number of displayed 
digits). 

Regardless of where you stopped in a program , the calculator returns to 
line 000 (top of program memory) when you turn it on again. 

Numbers in the stack , LAST X, and trigonometric mode status (DEG, 
RAD , or GRAD) are not preserved when you turn the calculator off. 
Also , all flags and pending subroutines are cleared. 

Continuous memory requires that the batteries be kept in the calculator. 
If the low power indicator appears in the display, turn your calculator off 
immediately and connect it to an ac outlet or insert a new battery pack. 
If you allow the battery to discharge completely , the information in 
continuous memory will be lost. 
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If you drop or traumatize your calculator, or if power to the continu­
ous memory is interrupted, whether the calculator is off or on, the con­
tents of program memory and the data storage registers may be lost. If 
this occurs, when the calculator is next turned on with power available , 
Pr Error (power failure) will appear in the display . (Pressing any key will 
clear this and all other error signals .) 

Battery Pack Replacement 
If it becomes necessary to replace the battery pack , use only another 
Hewlett-Packard battery pack like the one shipped with your calculator. 
Continuous memory requires that batteries be replaced as quickly as 
possible . Normally you have a minimum of 5 seconds to change the 
batteries. Leaving batteries out of the calculator for extended periods will 
result in loss of information in continuous memory . 

CAUTION 

Use of any batteries other than the Hewlett-Packard battery 
pack may result in damage to your calculator. 

To replace the battery pack use the following procedure: 

I. Set calculator ON-OFF switch 
to OFF and disconnect the ac 
adapter/recharger from the 
calculator. 
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2. Press down on the short ridges 
of the battery door, close to the 
edge, until the door release 
snaps open. Slide the door 
open . 

3. When door is removed, turn 
calculator over and gently 
shake , allowing the battery 
pack to fall into the palm of your 
hand. 

4. Place the new battery pack into 
the calculator. Your calculator 
will turn on only if the battery 
pack is inserted correctly. 

5. Insert battery door and slide 
door back into place. 
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6. Turn calculator over and turn 
power on to assure proper 
battery installation. If the dis­
play does not light, make sure 
the battery pack is correctly 
placed in calculator. 

Battery Care 
When not being used , the batteries in your calculator have a self­
discharge rate of approximately I percent of available charge per day. 
After 30 days, a battery pack might have only 50 to 75 percent of its 
charge remaining, and the calculator might not even turn on. If a calcu­
lator fails to turn on, you should substitute a charged battery pack, if 
available, for the one in the calculator, or plug in the ac adapter/ 
recharger. The discharged battery pack should be charged for at least 12 
hours . 

If a battery pack will not hold a charge and seems to discharge very 
quickly in use, it may be defective . If the one-year warranty on the 
battery pack has not expired, return the defective pack to Hewlett­
Packard according to the shipping instructions . (If you are in doubt 
about the cause of the problem , return the complete calculator along with 
its battery pack and ac adapter/recharger.) If the battery pack is out of 
warranty, see your nearest dealer to order a replacement. 

WARNING 

Do not attempt to incinerate or mutilate the battery pack­
the pack may burst or release toxic materials. 

Do not connect together or otherwise short-circuit the battery 
terminals-the pack may melt or cause serious burns. 
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Temperature Range 
Temperature ranges for the calculator are: 

Operating 
Charging 
Storage 

Service 

Blank Display 

0° to 45°C 
15° to 40°C 

-40° to 55°C 

32°toI13°F 
59°to 104°F 

-40° to 131°F 

If the display blanks out , turn the calculator off, then on. If the display 
remains blank, check the following : 

1. If the ac adapter/recharger is attached to the calculator, make sure 
it is plugged into an ac outlet. 

2. Examine the battery pack to see if the contacts are dirty . 

3. Substitute a fully charged battery pack, if available, for the one 
that was in the calculator. 

4. Ifthe display is still blank, try operating the calculator using the ac 
adapter/recharger (with the batteries in the calculator). 

5. If, after step 4, the display is still blank, service is required. 
(Refer to Limited One-Year Warranty .) 

Limited One-Year Warranty 

What We Will Do 

The HP-34C and its accessories are warranted by Hewlett-Packard 
against defects in materials and workmanship for one year from date of 
original purchase. If you sell your calculator or give it as a gift, the war­
ranty is automatically transferred to the new owner and remains in effect 
for the original one-year period. During the warranty period we will 
repair or, at our option, replace at no charge a product that proves to be 
defective provided that you return the product , shipping prepaid, to a 
Hewlett-Packard repair center. 
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How to Obtain Repair Service 

Hewlett-Packard maintains repair centers in most major countries 
throughout the world . You may have your calculator repaired at a 
Hewlett-Packard repair center anytime it needs service , whether the 
unit is under warranty or not. There is a charge for repairs after the one­
year warranty period. Please refer to the Shipping Instructions in 
this handbook. 

Hewlett-Packard calculators are normally repaired and reshipped within 
five (5) working days of receipt at any repair center. This is an average 
time and could possibly vary depending upon time of year and work load 
at the repair center. 

The Hewlett-Packard United States Repair Center for handheld and 
portable printing calculators is located at Corvallis , Oregon . The mailing 
address is: 

Hewlett-Packard 
Corvallis Division. Service Department 

1000 N.E. Circle Boulevard/P.O. Box 999 
Corvallis, Oregon 97330 

What Is Not Covered 

This warranty does not apply if the product has been damaged by 
accident or misuse, or as a result of service or modification by other than 
an authorized Hewlett-Packard repair center. 

No other expressed warranty is given. The repair or replacement of a 
product is your exclusive remedy. ANY IMPLIED WARRANTY OF 
MERCHANT ABILITY OR FITNESS IS LIMITED TO THE ONE­
YEAR DURATION OF THIS WRITTEN WARRANTY. Some 
states do not allow the exclusion or limitation of incidental or conse­
quential damages , so the above limitation or exclusion may not apply to 
you. 

This warranty gives you specific legal rights, and you may also have 
other rights which vary from state to state. 
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Obligation to Make Changes 

Products are sold on the basis of specifications applicable at the time of 
manufacture . Hewlett-Packard shall have no obligation to modify or 
update products once sold. 

warranty Information Toll-Free Number 

If you have any questions concerning this warranty, please call 800/ 
648-4711. (In Nevada call 800/992-5710.) 

Shipping Instructions 
The calculator should be returned, along with completed Service Card, 
in its shipping case (or other protective package) to avoid in-transit 
damage. Such damage is not covered by warranty and Hewlett-Packard 
suggests that the customer insure shipments to the repair center . A calcu­
lator returned for repair should include the ac adapter/recharger and the 
battery pack. Send these items to the address shown on the Service Card. 
Remember to include a sales slip or other proof of purchase with your 
unit. 

Whether the unit is under warranty or not, it is your responsibility to pay 
shipping charges for delivery to the Hewlett-Packard repair center. 

After warranty repairs are completed, the repair center returns the unit 
with postage prepaid. On out-of-warranty repairs, the unit is returned 
C.O.D. (covering shipping costs and the service charge). 

Programming and Applications Assistance 
Should you need technical assistance concerning programming, calcu­
lator applications, etc., call Hewlett-Packard Customer Support at 
503/757-2000. This is not a toll-free number, and we regret that we 
cannot accept collect calls. As an alternative, you may write to: 

Hewlett-Packard 
Corvallis Division Customer Support 

1000 N.E. Circle Boulevard 
Corvallis, OR 97330 
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A great number of our users submit program applications or unique 
program key sequences to share with other HP owners . Hewlett-Packard 
will only consider using ideas given freely to us. Since it is the policy of 
Hewlett-Packard not to accept suggestions given in confidence , the 
following statement must be included with your submittal: 

"r am voluntarily submitting this information to Hewlett-Packard 
Company. The information is not confidential and Hewlett-Packard may 
do whatever it wishes with the information without obligation to me or 
anyone else ." 

Further Information 
Service contracts a re not a vailable . Calculator circuitry and des ign are 
proprietary to Hewlett-Packard , and service manuals are not available 
to customers . Should problems arise regarding repairs, please contact 
your nearest Hew lett-Packard repair center. The address for the United 
States Repair Center for handhe ld and portable printing calculators is: 

Hewlett-Packard Company 
Corvallis Division. Service Department 

1000 N.E. Circle Boulevard/P.O. Box 999 
Corvallis, Oregon 97330 

Note : Not all Hewlett-Packard repair centers offer service 
for all models of HP calculators. However, you can be sure 
that service may be obtained in the country where you bought 
your calculator. 

If you happen to be outside of the country where you bought 
your calculator, you can contact the local Hewlett-Packard 
repair center to see if service capability is available for your 
model. If service is unavailable , ship your calculator to the 
above address. A list of repair centers for other countries 
may be obtained by writing to the above address. 

All shipping and reimportation arrangements are your 
responsibility. 
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Error Conditions 

If you attempt a calculation containing an improper operation-say divi­
sion by zero-the display will show Error and a number. To clear an 
error message, press any key. 

The following operations will display Error plus a number: 

Error 0: Improper Mathematical Operation 

Illegal argument to math routine ; 
0, where x = o. 
~, where y = 0 and x .:; 0, or y < 0 and x is non-integer. 
@j , where x < o. 
CYiJ , where x = o. 
I LOG I ' where x':; o. 
~ , where x .:; o. 
I SIN""' I , where I x I is > 1. 
I cos-' I , where I x I is > 1. 
ISTol 0, where x = o. 
1.6% I , where the value in the y-register is O. 

Error 1: Storage Register Overflow 

Storage register overflow (except (g), ~) . Magnitude of number in 
storage register would be larger than 9.999999999 X 1099. 

Error 2: Improper Register Number 

Named storage register currently converted to program memory , or 
nonexistent storage register. 
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Error 3: Improper Statistical Operation 

00 n = 0 

m n :;;; I 

CO n :;;; 

m n :;;; 
@ n :;;; 

Note: Error 3 is also displayed if division by zero or the 
square root of a negative number would be required during 
computation with any of the following formulas: 

A= ~ 
M 

B = M "i.y - P"i.x 
n .M 

y= M"i. y +P (n·x -"i.x ) 
n· M 

where: 

M = n"i.x2 - ("i.X)2 
N = n"i.y2 - ("i.y)2 
P = n "i.xy - "i.x"i. y 

(A and B are the values re­
turned by the operation @ , 
wherey =Ax + B .) 

Error 4: Improper Line Number or Label Call 

Line number called for is currently unoccupied , or nonexistent (> 2 10), 
attempt to load more than 2 10 lines of program memory , or label 
called does not exist. 

Error 5 

Recursive call to rzIJ or IsoLve! , i .e . , rzIJ within a subroutine called by 
another rzIJ or IsoLve! within a subroutine called by another IsoLve!. 
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Error 6 

IsoLvEI unable to find a root using given estimates. 

Error 7 

Illegal label (4-9) used with 1m or IsoLvEI , or illegal flag name (4-9). 

ErrorS 

Subroutine level too deep. 

Error 9 

Self-test discovered circuitry problem. Note that program memory, 
storage register contents, and display setting are not cleared by executing 
the self-test I STO II EHmItl ). 

Pr Error 

Continuous memory cleared because of power failure. 
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Stack Lift and LAST X 

Your HP-34C calculator has been designed to operate in a natural 
manner. As you have seen as you worked through this handbook, you are 
seldom required to think about the operation of the automatic memory 
stack-you merely work through calculations in the same way you 
would with a pencil and paper, performing one operation at a time. 

There may be occasions, however, particularly as you program the 
HP-34C, when you wish to know the effect of a particular operation 
upon the stack. The following explanation should help you. 

Digit Entry Termination 
Most operations on the calculator, whether executed as instructions in a 
program or pressed from the keyboard, terminate digit entry. This means 
that the calculator knows that any digits you key in after any of these 
operations are part of a new number. 

Stack Lift 
There are three types of operations on the calculator, depending upon 
how they affect the stack lift. These are stack-disabling operations, 
stack-enabling operations , and neutral operations . 

Disabling Operations 

There are only four stack-disabling operations on the calculator. These 
operations disable the stack lift , so that a number keyed in after one of 
these disabling operations writes over the current number in the dis­
played X-register and the stack does not lift. These special disabling 
operations are: 

Enabling Operations 

The bulk of the operations on the keyboard, including one- and two­
number mathematical functions like ~ and 0, are stack enabling 
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operations . These operations enable the stack lift , so that a number keyed 
in after one of the enabling operations lifts the stack. Note that switching 
from PRGM mode to RUN mode is an enabling operation. 

Neutral Operations 

Some operations, like [cHsl and ITIKJ, are neutral; that is, they do not 
alter the previous status of the stack lift. Thus, if you disable the stack 
lift by pressing [ENTERtl, then press CD ~n and key in a new number, 
that number will write over the number in the X-register and the stack 
will not lift. Similarly, if you have previously enabled the stack lift by 
executing, say ~, then execute a ITIKJ instruction followed by a digit 
entry sequence, the stack will lift. 

The following operations are neutral on the HP-34C: 

ITIKJ 
~ 
IENGI 
IOEGI 
IRAOI 
IGAOI 
I oSP II 

LAST X 

IGTOI GJnnn 
I BST I 
[SSTI (In RUN mode ISSTI 

may execute an instruc­
tion that does enable 
the stack.) 

The following operations save x in LAST X: 

G 
m 
o 
GJ 
I+H.MS I 
8] 
IABSI 

~ 
E§) 

~ 
I LOG I 
~ 
@E) 
I SlW' I 
Icosl 
I COS-' I 
ITANI 
I TAN-' I 

CLEAR I PREFIX I 
CLEARIREGI 
CLEAR (I] 
ICHSI* 
IMANTI 
I RIS I 
IpSEI 

• @E!J is neutral during digit entry of a number from keys , as in I , 2, 3, @E!J to enter 
-123; or, 123 @]@E!J to enter 123 x 10-6 . But otherwise , @E!J enables the stack, as 
you would expect. 
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