HEWILETT.- PAGCKARID

HIR:65

Owner’s Handbook

HEWLETTPACKARD

HP-65
Owner’s Handbook

January 1974

00065-90200

PRINTED IN U.S.A. ©HEWLETT-PACKARD COMPANY 1974

Table of Contents

Introduction 4-17)

Three Ways to Use the HP-65 4
1. Calculating Manually 5
2. Running a Prerecorded Program 11
3. Creating Your Own Program 14

1. General Instructions (18-26)

Clear Operationscoiiiunninn.... 18
Displayoouiii 19
Keying in Large and Small Numbers 23
Last X ... 24
Stack Lift Enable, Disable 26

2. Registers (27-35)

Addressable Registers 27
Additional Stack Operations 30
Recalling 7 ..o 32
A Compound Growth Schedule 33

3. Functions (35-47)

Functions Involving Angles 36
CoNVersions ... 43
Functions of x and the Exponential Function (yx) . 44

4. Programming (48-78)

LookingataProgram 48
Control Operationso, 50
Editing Operations 57
TestOperationst 59
A Complete Problem 66
Miscellaneous Programming Topics 76

Programming is a Creative Process 78

Appendices (79-96)

Appendix A: Operating Limits 79
Appendix B: Accessories 83
Appendix C: Service and Maintenance 85
Appendix D: Common Errors 95

List of Illustrations

Figure 1-1. Blinking Display Errors 22
Figure 3-1. Functions Involving Angles 37
Figure 3-2. Conversionsof X 42
Figure 3-3. Functions of x and Exponential

Function (yX) 45
Figure 4-1. Memory, Codes, and the

Single StepKey 51
Figure 4-2. Control Operations for

Defining Functions 52
Figure 4-3. Control Operations for

Stopping and Branching 56
Figure 4-4. Editing Operations 60
Figure 4-5. Operations Used for

Programmed Decisions 63
Figure 4-6. CalculationResults 67

Figure 4-7. Graphic Representation of
Program Tasks 68

Introduction
Three Ways to Use the HP-65

Congratulations on purchasing your HP-65 Programmable
Pocket Calculator. In addition to all the computational capa-
bilities that have made the earlier HP-35 and HP-45 models so
popular with professional people, your new HP-65 offers a fea-
ture that no other pocket calculator can provide: true program-
mability.

Simply defined, programmability is the HP-65s ability to learn,
remember, and automatically execute the keystroke sequence
required to solve a particular type of problem. The value of this
feature becomes clearer when we consider that most of us who
routinely work with numbers spend a great deal of time doing
the same types of calculations over and over again. No matter
whether we're preparing flight plans, surveying construction sites,
calculating returns-on-investment, or designing power supplies,
we can all identify repetitive, time-consuming problems which
diminish our productivity and frustrate our goals.

Although programmable computers and desk-top calculators
have been available for some time, their expense, complexity
and non-portability have made them inappropriate or impractical
for many tasks. The real significance of the HP-65 is that it
overcomes these limitations and lets almost anyone enjoy the
advantages —speed, accuracy, convenience —of a programmable
calculating device.

You can use this powerful device in three ways:
1. To Calculate Manually

You control every step of the calculation by pressing keys in the
actual order of execution: you enter data, perform functions,
store results, control display, etc., by pressing keys.

2. To Run a Prerecorded Program

By using prerecorded magnetic cards (like those supplied in the
Standard Pac shipped with your calculator) you can do highly
complex calculations with minimal effort or study of the calcu-
lator itself. You load a card into the calculator and let the stored

4

program handle the busy part of the calculation. Typically, you
just key in the data and start the program running. The program
stops when it needs more data or when it displays a result.

3. To Create, Record, and Execute Your Own Programs

No prior programming experience is necessary to program the
HP-65. You can easily define the five top row keys to calculate
functions of your own creation for use alone or with other pro-
grams. You plan your problem in terms of the keystrokes needed
for calculation and the additional keystrokes needed to control
your program. You set the mode switch to W/PRGM position
and key the keystroke sequence into memory. You may then re-
cord your program for future re-entry by merely passing a mag-
netic card through the calculator. Upon switching back to RUN
mode, you can execute your stored program.

In this introduction, we will briefly demonstrate these three
methods. We suggest that you do the examples to confirm that
your calculator works properly and to become familiar with it.

1. Calculating Manualily
Getting Started

Your HP-65 Pocket Calculator is shipped fully assembled includ-
ing a battery. Before using the calculator for portable use, charge
it for 14 hours as described in Appendix C. You may run the
calculator on battery power alone or you may connect the battery
charger and run while the battery is charging. To get started:

Set W/PRGM —RUN switch to RUN position.
Turn OFF—ON switch to ON position.

You should now see displayed [lili}; if not, please turn to Ap-
pendix C.

Keying In Numbers

Key in the number and include the decimal point if it is a part
of the number. For example, try keying in 314.32 which would
be done by merely pressing:

BoEHBEE

/Display

| W/PRGM-RUN Switch
OFF-ON Switch —]

Window
User Definable Function Keys
[AQcHcEoNE]
Blue Downshift K
Gold Upshift Keys ue Downshift Key
o =
Arithmetic Keys

X +

If you make a mistake when keying in a number, clear the entire
number by pressing ‘€LX (clear X); then key in the number cor-
rectly.

Negative Numbers. To key in a negative number, press

(change sign) after keying in the positive value. For example, to
key in —12:

Press: 12 [CHs
To change the sign of a negative or positive number, press CHS .
For example, to change the previous number back to a positive
12:

Press: CHS

Performing Simple Arithmetic

In the HP-65 arithmetic answers are calculated by pressing + ,
=, x , or + . For any problem having two numbers and one
arithmetic operator, you key in the first number and save it by
pressing |ENTER4 ; then you key in the second number and follow
it by the arithmetic operator. For example, add 12 and 3 by
pressing:

12 ENTER® 3 +

The calculator uses the last number saved and the last number
keyed in: it adds the latter to the number saved; it subtracts the

latter from the number saved; it multiplies the latter by the num-
ber saved; or it divides the latter into the number saved. For

example, you can subtract 3 from 12 by pressing:
12 ENTER4 3 -

To divide 12 by 3, press:
12 ENTER4 3 +

Nonarithmetic Functions

A blue symbol on the inclined lower key surface denotes the
function of the key when preceded by the downshift [@ key. A
gold symbol above the key denotes the function of the key when

preceded by the upshift [# key; the same gold symbol above a
key denotes the inverse (or complement) of the function of the
key when preceded by the [key. To use a blue or gold function,
press the appropriate shift key ([8, [, or 1) immediately be-
fore pressing the selected key. For example, you

Compute By Pressing See Displayed
sin (90°)=1

arc sin (.5)=30°
1/5=.2

The Operational Stack

There are four working registers in the HP-65 called X, Y, Z, and
T. They are arranged in a ‘stack’ with X on the bottom (see below).

To avoid confusion between

Contents Location N
— — T — the name of a register and its
S t T contents, the register is desig-

z z nated in this handbook by a
y |y | capital letter and the contents
xﬁ I ; by a small letter. Thus x, y, z,

—and t are the contents of the
X, Y, Z, and T registers.
When you key in a number, it goes into X, the displayed register.
When you press [ENTER® , this number is also reproduced in Y.

At the same time Y is transferred to Z, z is transferred to T, and
tis lost (see below):

Press Contents Location

(lost)
T

\\

\

ENTER4

z
Y
X

Introduction
The HP-65 can save a number in each of the four registers.

Most problems can be solved by keying in the numbers in the
same order as they appear in the original expression, that is, from
left-to-right. To work a problem, key in the first number. If there
is an operation you can perform at this point, do it. If there is

operation that can be done (+,—,X,+, etc.). If there is no
operation you can perform, [ENTER#] this number and repeat the
procedure, keying in the next number. The following examples
illustrate this procedure.

Arithmetic and the Stack. When you press the addition key the
contents of X and Y are added together. The stack then drops,
with t reproduced in T and Z, z transferred to Y, (y+x) trans-
ferred to X, and x transferred to Last X. (Last X is described in
Section 1.)

Contents Location

Last X

The same dropping action takes place with any arithmetic oper-
ator (+,—, X, or=-); the result is placed in X.

Combined Arithmetic Operations. Anytime a new number is
entered after an operation, the HP-65 performs an automatic
ENTER4 on the result of that operation. This feature allows you

to work serial calculations as well as chain and mixed chain cal-
culations. Notice that we implicitly used this in the following:

Sample Case:
[(4X5)/ 2+3)] —6 = —2
Press See Displayed
4 ENTER4
5 x
2 |[ENTER4
3+

6 —

Notice that the numbers are entered in the same order as they
appear in the problem. Now consider the stack contents as we
do the same example.

Stack Register

20 20
4 4 20 2 2 20 4
X 4 4 5 20 2 2 3 5 4 6 -2

Keys 4] 4 [5] x [2] '+ [3] + = [6] =

Note: ENTER# is here abbreviated as ¢+ .

< N -

Sample Case: (12 X 5) 4 (11 X 4) + (10X 3)="?
Press See Displayed
12 ENTER4 5 %

11 ENTER4 4 X +
10 ENTER® 3 X +

More Computing Power

The calculator also has nine addressable registers so that the
calculator can hold intermediate results or frequently used con-
stants. This means that calculations of considerable complexity
can be performed without reentering data or intermediate re-
sults. You now have some practice in calculating manually. We
will consider these registers and further capabilities for manual
calculation in the body of this handbook. In the meantime, let
us move on to the question of running a prerecorded program.

2. Running a Prerecorded Program

A built-in magnetic card reader/writer allows a program to be
permanently preserved on magnetic cards for future use. By
reading such a card, your general purpose calculator gains a
highly specific capability in a matter of seconds. Some users may
wish to use professionally programmed cards without themselves
doing any programming.

Irrespective of your major interests, we think that you may find
a use for the Personal Investment Program, the first program in
the Standard Pac shipped with your calculator. You will find the
prerecorded magnetic card for this program in the card case,
along with 18 additional programs, a head cleaning card, and
20 blank cards for recording your own programs.

The programs vary from general to specialized. Some programs
were selected from other pacs available through HP. For ex-
ample, the Pi Network Matching Program is from the EE Pac I,
the Mean and Standard Deviation program is from the Stat Pac,
etc. As leisure permits, you may wish to familiarize yourself with
them all and work the numerical examples. The Personal In-
vestment Program, however, is from no other pac. It was created
for you, to allow you to calculate the growth of a regular monthly

savings plan. Information about this as well as any of the pac’s
prerecorded programs is in the Standard Pac Instruction Book:
what a program does, how to use it, etc. For our present pur-
poses, we merely load the program and execute it, using sample
data.

Loading the Program

1. Select the Personal Investment Card from the card case.

2. Set the W/PRGM-RUN switch to RUN.

3. Imsert the card in the right lower slot as shown. When the
card is part way in, the motor engages and passes the card
through the calculator and out the left side. Let it move
freely.

4. If the card does not read properly, the display will blink
and program memory will be cleared; press and re-
insert the card.

5. Upon completion insert the card in the upper “window”
slot to identify the top row keys.

You are now ready to use the program:

Sample Case: Growth of a Savings Plan

Starting on January 1, 1974, you add $100 per month to your
savings of $1000 invested at 12% per annum, compounded
monthly. How much will you have saved on September 1, 1975?

To solve the problem, just follow the instructions given in
standard format in Figure 0-1. You read the “instructions,” line
by line, keying in the required “input,” pressing the indicated
“key(s),” and observing the displayed “output.” The amount
saved is displayed after the future date is entered via the [key.

—

step wstrucTons o ity ks o

} 1 Enter program (Personal L - ‘ ‘
Investment Program) as |]
shown above . 7,]

| 27 Key in start date (Jan., 1974) 1.1974 JA] - ~ 0.00

3 Key in present savings ($1000) 1000 [) 1000.00

Key in monthly savings (100} 00 | B 1000.00

L,,S,, Kgy in annual interest rate (12) 12 . C r N 1000.00

| 6 Keyinfuture date (Sept. 1975) 91975 | E ||| 344411

I - ANSWER |

NOTE: ENTER4 here is

abbreviated as '+ {

Figure 0-1. /nstructions for Running Personal Investment Program

A pad of program worksheet in this format is included with your
HP-65 for use with the blank cards when you write your own
programs.

3. Creating Your Own Program

Programmability and Definable Keys

Highly sophisticated calculations can be achieved by sequences
of keystrokes. Since the calculator is truly programmable, in-
cluding both branching and testing capability, it is quite possible
to set a program to iterate all night. Programs can consist of up
to 100 memory locations.

We have seen how the top row key functions can be defined to a
particular use by loading an appropriately prerecorded magnetic
card. Using a very simple example, we will now define the [
key. We first plan the function, key it into memory, and then
test it. If it tests satisfactorily, we will record it on a magnetic
card for future use.

Planning the Function

The following key sequence computes x* (the cube of whatever
value k is in the X register).

T

z k

Y k k k
X k kK Kk®

Key ¢+ ¢+ X X

Note: ENTER4 is here
abbreviated as ¢ .

To adapt the sequence to be a function that is callable by the
key, we precede the sequence by B (c0 identify the func-

tion) and conclude the sequence by (to return control to
the keyboard).

Putting the Function in Memory

1. Set W/PRGM-RUN switch to W/PRGM and press
to clear the program memory.
2. Press the keys in the order shown:

Key(s) Comment

LBL - .
Defines beginning of function [[§.

[A]

ENTER4

ENTER4
Calculates x3.

X

X

RTN Defines the end of function [§.

If (for now) you make a mistake, clear the program and start
over. In section 1 you will learn how to correct mistakes and the
meaning of the numbers in the display. The calculator has now

“learned” to calculate x* when you press [§ in RUN mode.

Testing the Function

Switch W/PRGM-RUN switch to RUN.
Key in a number and press . You should see the cube
of the nuymber.

Press See Displayed Comment
28 23
3@ 38
Y\ | 4

5chis @@ (=5)

Recording the Function
To record the program

1. Select an unprotected (unclipped) magnetic card.

unprotected protected

2. Switch to W/PRGM. (A reminder: W/PRGM stands for
Write.)

3. Pass the card through the right lower slot exactly as in
loading a program (above). Providing the card is unpro-
tected, it now contains your program.

In the above example, we left keys [. . . [@ undefined.
We could have keyed in definitions for them, also.

We have just shown how you can write a program for a simple
function and identify it with one of the five user-definable keys.
Your HP-65 can also be programmed without any reference to
the top keys. You will see an example of this when you turn again
to the subject of programming later in this handbook. It is easy
to create simple functions. With very little additional effort, you
can create functions or other programs of considerable com-
plexity.

Onward

We hope that you have enjoyed your introduction to the HP-65
Pocket Calculator. The rest of the handbook presents the aspects
of the calculator not covered thus far. In regard to the reference
information (enclosed in blocks, to distinguish it from the narra-
tive), it is probably sufficient to study this material casually on
first reading, postponing a more thorough reading until comple-
tion of the entire book. You can quickly become familiar with
the keyboard and gain assurance by merely keying in the nu-
merous sample cases and making sure that you understand each
of them.

Sections 1 through 3 elaborate on the subject of calculating man-
ually. Section 1 tells how to set the display and how to enter
data in scientific format. Section 2 tells how to use the address-
able registers and to manipulate the stack, while Section 3 tells
how to use the built-in functions.

Section 4 covers the subject of programming, telling how to re-
vise (edit) your programs, how to have them repeat themselves,
to stop themselves, to make decisions, etc. The programming
section also illustrates the use of the program worksheets shipped
with you calculator.

The HP-65 Quick Reference Guide

The guide summarizes the more important procedures given in
this handbook and explains the key functions, arranged in order
of keyboard symbol for ease of reference. Use the guide to check
details. It can be carried in the soft case.

If we have not answered all of your questions, contact your near-
est HP office, or, if you are in the U.S., dial (408) 996-0100,
collect, and ask for Customer Service. We want you to be com-
pletely satisfied with your HP-65.

Section 1

General Operations

In this section we will describe how to = perform the clear op-
erations ® control the display * enter numbers in scientific no-
tation ® recover from wrong keystrokes using the Last X feature.
In addition, a reference block is devoted to the operation of the
Stack Lift (automatic enter).

Clear Operations

Four separate clearing operations are possible with the HP-65,
using the M functions of the fourth row of keys.

Clearing Unwanted Prefix

o) 71X] cancels the effect of a prefix so that a non-prefix
operation can be done. Let’s say you accidentally press [, # ,
or 8, before keying in a number. If you then press the number
key, you will get an alternate function of that key instead of the
desired number-entry operation. To prevent this from happening,
press B[to cancel the effect of the unwanted prefix

key, then key in a number. If a wrong prefix key is pressed when
another prefix is wanted, the error can be corrected by simply
pressing the correct prefix and proceeding from there.

The following keys (not yet explained) are also prefix keys:

sto mer (S EQ [(EW

Clearing Stack Registers

[579 clears all four registers (X, Y, Z, and T) of the operational
stack. To clear only the X-register, press CLX .

Clearing Addressable Registers

5| clears all nine addressable registers. (These will be de-
scribed in a later section.)

18

Clearing Entire Calculator

The entire calculator can be completely cleared by turning the
power switch off, then on. When the power comes on, however,
programs for the default functions corresponding to the window

legends above the top row keys (4], [], , ,2])

will be automatically placed in program memory.

Clearing Program Memory

t clears the HP-65’s 100-step program memory but is
effective only when the W/PRGM-RUN switch is in W/PRGM
position. In RUN position, [[PRGI_| has the same effect as
CLX .

Display

The display-is used to show results, operational errors, low bat-
tery condition, program in execution, and program steps. Addi-
tionally, in W/PRGM mode, the display allows you to “see” each
step of a program in memory (this use of the display will be de-
scribed in the Programming section).

Setting Display

The HP-65 displays up to 15 characters: mantissa sign, 10-digit
mantissa, decimal point, exponent sign, and 2-digit exponent. In
RUN mode, the display shows a rounded version of the number
in the X register. Two display modes (fixed and scientific nota-
tion) with a variety of rounding options may be selected from the
keyboard. (Rounding options affect the display only; the HP-65
always maintains full accuracy internally.)

Fixed Display. Fixed notation is specified by pressing BEg [+]
followed by the appropriate number key to specify the number
of decimal places (0-9) to which the display is to be rounded.
Fixed notation allows all answers to be displayed with the same
precision. The display is left-justified and includes trailing zeros
within the setting selected. When the calculator is turned off,

then on, it always reverts to fixed notation with the display
rounded to two decimal places. For example:

Press See Displayed

(Make sure W/PRGM-RUN switch
is set to RUN. Turn the
calculator off, then on.)

123.4567 ENTER4

(0sP NERIEY
C=R (] (6]
(DsP NERRFY
E=3 (-] [0

Scientific Display. This is useful when you are working with
large or very small numbers and allows answers to be displayed
with the same number of significant digits. It is specified by

pressing [followed by the appropriate number key to specify

the number of decimal places to which the mantissa is rounded.
Again, the display is left-justified and includes trailing zeros
within the selected setting. For example:

Press See Displayed Comment

(Turn the calculator
off, then on.)

000~
123.4567 enters KRR
E&3 (2] EEEP] Equals 1.23x 10
R @ BT Equals 1.2346 x 10°
[Dsp| EERESIE Equals 1.234567 x 10°

Now return to eight decimal places in fixed notation.

Press See Displayed Comment

[ose I EEREEIRE *Equ:ls 1.23456700 x 10:

*If a number is too large to fit the specified display, the number is displayed in
full (10 digit) scientific notation.

Now return to two decimal places in fixed notation:

Press See Displayed

os> IEIFY 12346 |
(-] 0005 cns [Enters [ERETHE ()

Blinking Display

The display blinks when any of several improper operation are
attempted. Depressing any key stops the blinking without other-
wise performing the key function. €LX is the recommended
blink stopper. Figure 1-1 lists these improper operations.
lllegible Display

During execution of a stored program, the display continuously

changes and is purposely illegible to indicate that the program is
running. When the program stops, the display is steady.

Multiple Decimal Point Display

The battery provides approximately 3 hours of continuous opera-
tion. By turning off the power when the calculator is not in im-
mediate use, the battery power will be conserved. To conserve
power without losing program or results, leave the calculator
on, key in a[+], and leave it there until ready to resume cal-
culation.

All decimal points light in the display when 2 to 5 minutes of
operation time remain in the battery pack. Even when all decimal

points are turned on, the true decimal position is known because
an entire digit position is allocated to the true decimal position.

Example:

T—True Decimal Position

*If a result develops that is too small to be expressed in the specified display,
zero is displayed (with minus sign in case of a negative result).

Function

Natural log (base €)
Common log (base 10)
Square root

Arc sine

Arc cosine

Add .
{Subtract } degrees, minutes, seconds

Convert angle expressed decimally
to/from degrees, minutes, seconds

Decimal to octal
Octal to decimal

Reciprocal
Exponential
Factorial

Divide

Magnetic card read

Error

x<0

x<0

x <0

[x] > 1

[x] >1

[X| or |y| or |y = x| > 99999.59599 D.MS
[X] > 99999.99999 degrees or
equivalent in radians or grads

X is noninteger or
[X| > 1073741823,, = 7777777777,

X is noninteger or |x| > (12222222221), =
9999999999, = 1380525201,

x=0

y<o0

X is nonintegerorx < 0

x=0

Blank card; bit or word dropped
during reading

Figure 1-1. Blinking Display Errors

If the decimal points light while the reader/writer motor is run-
ning and then go out, the battery is almost discharged.

Operating the calculator for more than 2 to 5 minutes after this
low power indication first occurs may result in wrong answers.
The battery pack must be replaced or recharged by connecting
the calculator to the battery charger. Be sure to turn off the cal-
culator before connecting the recharger to the calculator.

Also, be sure to start with at least partially charged batteries be-
fore using the card reader/writer.
Keying in Large and Small Numbers

You can key in numbers having power of ten multipliers by
pressing EEX (enter exponent). For example, key in 15.6 trillion
(15.6 X 10%?), and multiply it by 25.

Press See Displayed Comment

15.6 [EBX REC s

12 R (56x 10+
ENTER4 [1.560000000 13 IEERIRSTUE
25 % _ Answer

Exact Powers of Ten

You can save time when keying in exact powers of ten by press-
ing [EEX and then pressing the desired power of ten. For example,
key in 1 million (10°) and divide by 52.

Press See Displayed

EEX 6 oHEREaETS
ENTER | 100000000 |
52 % o307]
To see your answer in scientific notation with 6 decimal places,

Press See Displayed

ose 1) [1.923077 04 |

*To key in a negative number (e.g., —15.6 X 10) you would press CHS before
pressing EEX .

Small Numbers (Negative Exponents)

To key in negative exponents, key in the number, press EEX ,
press CHS to make the exponent negative, then key in the power

of ten. For example, key in Planck’s constant (h) — roughly,
6.625 X 107*7 erg. sec. — and multiply it by 50.

Press See Displayed

6.625 EEX
27

CHS
ENTER4
50 x

If you return to B[R [] [2] the result is rounded to zero.

Last X

Last X is the name of the register reserved for storing the latest
value of X (the number you see in the display) just after an opera-
tion using it has been specified and prior to its use in a calculation.
Initially set to zero when the power comes on, Last X remains
unchanged until a calculation of X or X and y is attempted; at
such a time, X is first saved in Last X as an automatic prelude
to the calculation. The saved value is recallable to X (repeatedly,

if desired) by the [operation. Last X is useful in re-
covering from accidental wrong keystrokes such as pressing the
wrong arithmetic key or entering a wrong number. For example,
if you were performing a long calculation where you meant to
substract 3 from 12 and divided instead, you could compensate
as follows:

Press See Displayed Comments

12 ENTER¢ 3 + - Oops —you wanted to
subtract.

] 3.00 | Retrieves last number pre-

ceding division operation.

X - Reverses division operation:
you are back where you
started.

B 3.00 | Retrieves last number dis-

played before multiplica-
tion operation.

= - Correct operation produces
desired results.

If you want to correct a number in a long calculation, Last X
can save you from starting over. For example, divide 12 by 2.157
after you have divided by 3.157 by mistake.

Press See Displayed Comments

12 ENTER4 3.157 You wanted to divide by
- 2.157, not 3.157.

Retrieves last number dis-
played preceding operation.

B (s]

X
2.157 =

You're back at the beginning.

Correct operation produces
desired results.

Another, and possibly more important, use for Last X is in
functions where X appears more than once. Without going into
details since we have not yet discussed functions, examples might

be: sin X

x

y* — VX, sin X + cos® X

In each case x is saved in Last X after the first operation is per-
formed.

The following operations (including inverses) save x in
Last X:

#,8 . &, B, Gows], [oms+], [nT], [in],
.[>*],[aBS] . Note that CLX does not affect the

Last X register.

Stack Lift Enable/Disable

We saw, in the Introduction, that when you key in a new number
after a calculation, the calculated result is automatically lifted
in the stack, relieving you of the need to save the result (by press-
ing ENTER4) before keying in the number. The same lifting ac-
tion occurs if you recall a value to X from a storage register value
the Last X register, or if you recall the permanently stored value
of qr. You may have observed that certain other operations also
enable the Stack Lift while €LX and ENTER# disable the lift.
You will generally be quite unaware of the lift status because the
operation is so natural for most calculations. For reference, the
keys affecting lift status are tabulated below. Notice that many
operations have no effect on the Stack Lift. Most of the opera-
tions are yet to be presented in this handbook.

Operations that disable the Stack Lift: within a
program if the program puts a number into X from pro-
gram memory just before executing the , and
CLX or ENTER4 at any time.

Operations that enable the Stack Lift: All number entry

keys:.@ . ,@,E’, EEX ,, but not CHS .

All calculating keys: = , + , X , = , , [Eo3],
o] (o).) [0 [[@
ool B G0 [- A (5. %)

Stack manipulating keys: ,[B*], [*2], but not

ENTER4 Storage register keys: STO , RCL .

Operations not affecting Stack Lift status: All other keys
have no effect on the lift status. They include: all pro-
gramming keys, angular mode keys, display control keys,
clear keys (except CLX), and CHS .

Section 2

Registers

In this section we will describe the use of the nine addressable
storage registers and the manipulation of information in the stack.
Also, to illustrate a use of the stack registers we will present a
manual solution to a problem of compound interest.

Addressable Registers

Registers R, R,, . . ., R, constitute the addressable registers.
Their respective contents are referred to as ry, 15, . . . , I. Opera-
tions refer to them by number. The registers are typically used
to accumulate sums or to store constants or intermediate results.
You can store the value of the stack’s X-register in any addres-
sable register, or you can recall the value in any addressable
register to the X-register. Additionally, you can store in any
register an arithmetic sum, difference, product, or quotient of
the contents of the given register and the X-register. For example,
if R; contains 100 and if X contains 70, you can store the dif-

ference (100 — 70 = 30) in R; simply by pressing [ST0 = [5].

Storing and Recalling Data

To store a number appearing in the display (whether the result
of a calculation or keystroke entry):

1. Press STO .
2. Press a number key [1] through [9] to specify in which of
the nine registers the number is to be stored.
If the selected storage register already has a number in it, the old

number will be overwritten by the new one. The value in X will
remain unchanged.

To recall a number previously stored in one of the nine addres-
sable memory registers:

1. Press RCL .
2. Press a number key ([1]through[9]) to specify which of
the nine registers the number is to be recalled from.

27

Recalling a number does not remove it from the storage register.
Rather, a copy of the stored number is transferred to the display
—the original remains in the storage register until either: (1) a
new number is stored in the same register, (2) the calculator is
turned off, or (3) all nine storage registers are cleared by pressing
f' [REC). Recalling a number from a register will cause the stack
to lift unless the lift is disabled.

Sample Case 1. A customer has bought three items priced at
$1,000, $2,000, and $3,000, respectively. Your policy is to grant
a 5% discount on all purchases over $5,000. How much will the
customer pay for each of the three items? What is the total cost?

Solution:
Press See Displayed Comment
1 ENTER4 .05 — STO Stores constant 0.95 —

95% in register R;.

(]
1000 RCL x Amount customer will

pay for first item.

Amount customer will
pay for second item.

2000 RCL

3000 [ReL (1] Amount customer will
pay for third item.
& & Total cost.

X

Sample Case 2. The capacity and height of three tanks are listed
below in U.S. units. What is the capacity and height of each tank
in metric units?

Capacity (gal.) Height (in.)
Tank 1 3.6 135
Tank 2 5.5 209
Tank 3 11.3 32.8

Remember that: 1 U.S. gallon = 3.7854 liters
1 inch = 2.5400 centimeters

We will store these constants in R, and R,.
Solution:

Press See Displayed Comment

(osPIDINEY

3.7854 [STO 3.7854 | Stores liters/gallons
conversion constant in R;.

2.54 's10 (2] 2.5400 Stores centimeters/inch
conversion constant in R,.

3.6 [RCL N 13.6274 | Capacity of tank 1 in
liters.

13.5 Retl 2] xR Height of tank 1 in
centimeters.

55 [Rew (1] x| EEEEEE Capacity of tank 2 in
liters.

20.9 [Ret 2] x |EENEEE Height of tank 2 in
centimeters.

11.3 [ReL N 42.7750 | Capacity of tank 3
in liters.

32.8 Ret (2] x |EEEEEE Height of tank 3 in
centimeters.

Dse JENRPY 83.31 | Resets display.

Choosing Addressable Registers

Except for the case of registers Ry and Ry, it is immaterial as to
which registers you use.

R; is the special object of the Decrement and Skip on Zero (8
[DSZ]) operation (presented in Section 4), which uses it as a de-
scending counter (index) in program applications. If this use is
contemplated, Rs should be avoided for other uses. Otherwise,
it may be freely used.

R, is subject to alteration by the trigonometric functions (includ-
ing the rectangular/polar conversions) and the relational tests
(used in programs). These functions use R, for intermediate cal-
culations (scratch). At other times R, is available for your use.

The following operations destroy R,.

(] [cod] [E=7) (trigonometric functions and their inverses)
(relational tests)

Calculating in Addressable Registers

Thus far, all calculations have involved the X-register or the X
and Y-registers to produce a result in X. In the-case of addressable
register arithmetic, the result is left in the addressable register and
X is unchanged.

Subtraction. To subtract x from r,,, press sT0 = [n]
Addition. To add x to 1,,, press st0 [+ [n]
Multiplication. To multiply x and r,,,press §10 % [n]
Division. To divide x into r,,, press st0 = [n]

For example, store 6 in register R, and then increment it by 2.

Press See Displayed Comment
6 sTo [1] [6.00 | Stores 6 in R;.
2 870 * [1) | 2.00 | Adds 2 to ;.
RCL (1] | 8.00 | Confirms that r,
equals 8.

Now, subtract 5 from the contents of R;.
5 s10 = (1]
RCL (1]

Confirms that r, has
been reduced to 3.

Finally, multiply the remaining contents of R, by 2:
2 |st0 x [1]
RCL [1]

Confirms that r; has
been increased to 6.

Additional Stack Operations

You already know that, except for the case of the storage register
arithmetic just described, all calculations are done in the stack.
You simply put the problem numbers into place and press the
appropriate function key. You already know of the possibility of

keeping intermediate results in the stack above those being cal-
culated. To lift information in the stack, you have used ENTER4

and the automatic lift. To drop the stack, you have used the arith-
metic functions. We will now consider the three remaining op-
erations to move information in the stack.

Roll Up | Roll Down | Exchange
t T t T t T
z z z z z z
y Y y Y y Y
X X X X X >< X

You use these operations to verify (display) the contents of stack
registers other than X and to move information into place for
calculation..

Notice that
L allows you to conveniently see t.

L saves X in the T-Register.

= allows you to look at y without altering t or 2.

= , and are functions appearing on the[9],(8],
and [7] keys.

You may notice that and are also available on the B}
and [@ keys when the power is first turned on. The five functions
shown in the window were selected because they are the most
commonly used. Their primary intent is for manual use from the
keyboard, as in this case. They each permit single keystroke op-
eration of functions that otherwise would require two keystrokes.
When the [, . . . , @ keys are redefined by a program, the
window functions are still available by two keystrokes.

Sample Case: Turn the calculator off, then on, put the values 4,
3,2,and 1in the T, Z, Y, and X-registers, respectively, and review

the stack. using [¥27], [R+], @ , [R*], and [} -

T 4 4
z 4 4 3 3
Y 4 4 3 3 2 2
X 4/ 4/3 3 2 2 1
key 4] '+ (8] *+ [2] » (1]

Note: ENTER#4 is here abbreviated as t .

T 4 4 4 4
z 3 3 3 3
Y 1 2 1 2
X 2 121
key B> E(® @03

ﬁ—/_._/

using B using @

Notice that using [&l or [@ twice leaves the stack in its
original condition.

T 1 2 3 4 1234
z 4 1 2 3 4 1 2 3
Y 3 4 1 2 3 4 1 2
X 2 | 3. 4 12 3 41
JEF) EF -,\E o] E o,
Y
using [[77] Usmg D]

Notice that using [or [[J four times leaves the stack in
its original condition.

<< |N =
= w
Ao
I PN

N WA =

4 3
key B[R E[F) EEY EEYJ

Notice that using four times leaves the stack in its original
condition.

Recalling 77
Tis a fixed constant provided in your HP-65. Merely press
{81 () whenever you need it in a calculation.

Sample Case: Calculate the area of a circle with a radius of 3.
Area = 732,

Press See Displayed Comment

B Recall 7to X

3 |[ENTER4 X Calculate 3 X 3

X Answer 9 X T

Innovative Use of Calculator —
A Compound Growth Schedule

There is considerable room for innovation and creativity in using
HP pocket calculators. Our customers have amazed us by solving
problems using highly original manipulations on the calculator.
Here is such a routine to calculate a geometric series, showing
the compound growth of invested capital.

A geometric series is a set of numbers in which each term is cal-
culated by multiplying the previous term by some factor. For
example: 4, 8, 16, 32, etc. In this case, the factor is 2. In the
practical world, the growth of $1000 invested at 10% per period
would constitute a geometric series in which the first term is 1000
and the growth factor is 1.10. Our customer’s solution to gener-
ating the series was:

X

x

etc.

See Displayed Comment

Original
amount

Amount after
1 period

Amount after
2 periods

Amount after
3 periods

Amount after
4 periods

Amount after
5 periods

Amount after
6 periods

In other words, you put the growth factor (1.10) in the Y, Z, and
T stack registers and put the first term (1000) in the X-register.
Thereafter, you get the next term whenever you press X . For
example, when you press (X the first time, you calculate 1000 X
1.10 (i.e., xXy). The result (1100.00) is displayed in the X-
register and a new copy of the growth factor (1.10) drops into
the Y-register. Since a new copy of the growth factor is gener-
ated each time the stack drops, you never have to reenter it.

Contents
t(1.10) —

2 (1.10)
y (1.10)
x (1000)

(xxy)

Register

T (1.10) Stack contents before and
Z (1.10) after first multiplication

Y (1.10)
X (1100)

Section 3

Functions

You have already learned to use the arithmetic functions ([#,

: 1) in both the stack and the addressable registers. You
have also learned to move numbers among the calculator’s regis-
ters and to enter and display data in both fixed and scientific
format. To complete the subject of manual calculation, we will
return to the non-arithmetic functions, things like sine, logarithm,
square root . . .

Keys Introduced in this Section

(>oms] [INT] [m} E-R [A]
(oms+] [N] [=0cT] [Si] [&]
[og [Rap] [mN) []

HEE

bEy (&)

Taken as a whole, the functions are both powerful and impor-
tant. While, conceivably, you might not use them directly, you
will almost surely use them indirectly when you use prepro-
grammed cards from the Standard Pac and other pacs. For ex-

ample, you already used the exponential function ([¥¥]) and
the integer function([INT]), when you used the Personal Invest-
ment program presented in the Introduction. Without [7*], the
program would have to use more laborious arithmetic methods,
repeatedly.

The functions are both easy to learn and easy to use. In the
Introduction you found that to do a function, you press a
prefix key([f, [, or @) and follow it by the desired function
key: you use the 8 prefix to calculate a function having a blue
symbol, you use [f to calculate a function having a gold symbol,
and you use ! to calculate the inverse or complement of the
function denoted by a gold symbol.

35

Using this rule and common sense, you may have already cal-
culated several functions effectively. Missing from the presenta-
tion thus far, has been a systematic review of just which functions
are available, and the respective conditions that apply to them
individually. To meet this need, all essentials are included in
Figures 3-1, 3-2, and 3-3.

To calculate a given function, the respective table entry shows
any conditions that apply to the input value(s), the keys to use,
and conditions applying to the result(s). If your need is to start
calculation immediately, you might even end your study of func-
tions with the tables, skipping the sample cases.

Functions Involving Angles

These functions are listed in Figure 3-1. They include the
trigonometric functions (sine, cosine, tangent and their inverses),
the rectangular-polar conversions, the addition and subtraction
of angles expressed in degrees, minutes, seconds, and conversions
of angles expressed decimally' to/from degrees, minutes, and
seconds.

Angular Mode

Operations involving angles assume the angles to be expressed in
units of the prevailing angular mode, which is set to decimal
degrees whenever the calculator is switched on. You can set the
mode to radians or grads or decimal degrees by using the mode
functions.

Angular Mode Functions

Keys Function

. Set mode to grads
)] Set mode to radians
g Set mode to degrees

400 grads = 360 degrees = 2 77 radians
Keys to which Angular Mode applies:

(N [cog [N 2R [=Dwms]

In the examples, the degree mode is assumed except as noted otherwise.

Function - ~Input Value(s) [- Result(s)

Cosine Angle* Cosine (x) in X

Arc cosine x not be greaterthan1or = Principal value of arc cosine (x) in X
lessthan —1 (/x| < 1) | (0° < result < 180°)**

Sine Angle* Sine (x) in X

] Arc sine x not be greater than 1 or = Principal value of arc sine (x) in X

lessthan —1 (x| <1) (—90° < result <90°)**

Tangent Angle* Tangent (x) in X

Arc tangent Unrestricted x Principal value of arc tangent (x)in X

(—90° < result < +90°)**

Convert rectangular coordinates (x, y) to polar x,yinX,Y ro*inX,Y

form (r, 0)

Convert polar coordinates (r,) to rectangular rdinX,Y x,yin X, Y. (Program halt on underflow in X.)

form (x,y)

Convert decimal angle to DDDDD.MMSS format*** ' Decimal angle**** DDDDD.MMSS in X

Convert DDDDD.MMSS* ** angle to decimal format DDDDD.MMSS Decimal angle**** in X

Add (x+y) in DDDDD.MMSS format*** Z } DDDDD.MMSS**** | DDDDD.MMSS in X (Sum)****

Subtract (x—y) in DDDDD.MMSS format*** i } DDDDD.MMSS**** DDDDD.MMSS in X (Difference)****

* Decimal angle in prevailing angular mode.
** Or equivalent in grads or radians.
*** DDDDD.MMSS format. D = degrees, MM = minutes, SS = seconds.
**** Magnitude of angle should not exceed 99999.99999 decimal degrees (or equivalent in radians
or grads) or 99999.59599 in DDDDD.MMSS format.

Figure 3-1. Functions Involving Angles

2

38 Functions
Degrees, Minutes, Seconds

You can convert from the decimal form of an angle to degrees,
minutes, seconds. You can also do the inverse. The format for
degrees, minutes, and seconds is DDDDD.MMSS. Thus, you use
B=3 (] (4] to display this format. This function depends on the

mode setting as illustrated below.

Sample Case Part 1. Convert%Tradians to degrees, minutes
seconds.
Press See Displayed Comment
=3 (][4 Set display to four fixed places.
Em7E IR 7
] - Set radian mode.

f | 25.4251 | Answer: 25° 42’ 517,

Sample Case Part 2. Now do the inverse, but converting back
to grads (instead of radians). Note: This method allows you to
convert between angle modes.

i.e. decimal degrees = radians
decimal degrees = grads
radians = grads

Press See Displayed Comment

B (cro)
&

Set grad mode.

Answer in grads.

Sample Case Part 3. Now convert to decimal degrees.

Press See Displayed Comment

9] | 25.4251 | 25° 427 51”.

[| [25.4251] Set degree mode.

2] Bxa Answer in decimal degrees.
B

(osP NERJFY

Reset display.

Functions

Sample Case: Adding/Subtracting DDDDD.MMSS. Find the
sum of 45° 10’ 50” and 44° 49’ 10”.

Press See Displayed Comment

(ose JEIIEY 0.0000 |

45.1050 | 45.1050 |

ENTER®. [45,1050

44.4910 -

it - Answer, 90° 00" 00”.

A musical selection begins at 9:25” 7 and ends at 9:39” 47”.
How long is the piece?

Press See Displayed Comment
(DsP NENIEY
9.3947 Completion time.

Starting time.
Answer, 14’ 40" duration.
Reset display to two places.

Sample Case: Trigonometric Functions. Compute cosine 60°.

Press See Displayed Comment

Embde [EH
& [0.50]
Compute arc cosine (—1.) expressed in radians.

Press See Displayed Comment

] 1 [cHs

i Answer in radians.
Compute sine 30°.

Press See Displayed Comment

] 30 [30.]

i@ [sin - Answer.

Compute arc sine (1.00) expressed in radians.

Press See Displayed Comment

B [ao] ! 1.
1 [Sin] - Answer in radians.

Compute tangent 45°.

Press See Displayed Comment

B [ea) 45 [45._]
il [Tan] - Answer.

Compute arc tangent (39.4), expressed in radians.

Press See Displayed Comment
e+ BN
1 [Tan] [1.55 | Answer in radians.

Sample Case: Polar to Rectangular. Convert polar coordinates
(r=8, §=120°) to rectangular coordinates:

(x,y)
16.93

6=120°

Press See Displayed Comment

" [0.00 |

120 [ENTER# [120.00 | 9

8 8 r

il R-rl - x coordinate.
. - y coordinate.

Sample Case: Rectangular to Polar. Convert rectangular coordi-
nates (x=4, y=3) to polar form with the angle expressed in
degrees:

Y
3 4,3)
r
0
a X

Press See Displayed Comment

[| 3 enters XTI y coordinate.

4 x coordinate.

2]
fl f-F] 5.00 | r (magnitude).
1] - 6 (angle).

Functions

Keys | ~ Function

[=oc1]| Convert decimal integer to

| octal (base 8).

| #[>0cT]| Convert octal integer to
| decimal (base 10).

7 Truncate to signed integer.

& [INT] | Truncate to signed fraction.

] Absolute value.

© inputValue(s) | Result |
X, a decimal integer of | x;in X
magnitude less than ;
1073741824,

Xg an octal integer * X in X
| | |
|
—+integer.fractionin X ‘ +integer.0in X |
+integer.fractionin X +0.fractionin X
+ X If x is negative, —xin X; |

otherwise, no change.

1 *As an additional feature, the ““octal to decimal” conversion will accept non-octal arguments containing |

| the digits 8 or 9. A non-octal number such as 998 will be interpreted as (9 X 8%)+ (9 X 8) + 8 = 656

998
6560

— 15610
— 6560 |

Figure 3-2. Conversions of X

Functions 43

Conversions

The conversions are listed in Figure 3-2. The conversions all
expect an input value in the X-register and leave the result there.
Note that angle conversions are given in Figure 3-1.

Sample Case: Octal/Decimal Conversions. Many computers are
designed to work with octal (base 8) numbers instead of decimal

(base 10) numbers. The function on your HP-65 allows

you to make octal/deCImal conversions with ease. For example,
find the octal equivalent of the decimal number 512.

Press See Displayed Comment
512 [f| i - Octal representation of 512,,.

Convert the octal number 2000 to its decimal equivalent:

2000 [§ [1024.00 | Decimal equivalent of 20005.

Sample Case: Truncating at Decimal Point. The Personal Invest-
ment Program (presented in the Introduction) expects you to key
in the dates using the format mm.yyyy. The program separates
mm from yyyy using the truncation functions. Do the same for
the date 12.1980.

Press See Displayed Comment
E=2 () 4
12.1980
£ (7]
=
£ (7]
E=a [2

Answer: integer part.
Recall original value.
Answer: fractional part.

Reset display to two places.

Sample Case. Absolute Value. Some calculations require the mag-
nitude of a number. To get this from the keyboard you could

From a program, you use the function which changes the

sign, if negative. For example, calculate the absolute value of 3
and —3.

Press See Displayed Comment
3@ 500 SRS

CHs [—3.00]

u 2.0 [

Functions of x and the Exponential Function (y*)

These functions are listed in Figure 3-3. They all leave the
result in the X-register. All expect an input value to be in the
X-register. [X | expects, in addition, a y value in the Y-register.
It is worth noting that the conditions given for INPUT VAL-
UE(S) can generally be predicted by common sense. For exam-
ple, the table tells us that to calculate the reciprocal, the input
value cannot be 0, which is exactly what we would expect be-
cause we ordinarily attach no meaning to 1+0. If we attempt
to calculate the reciprocal of zero, the blinking display em-
phatically warns us of the error. Try it. Just press cLX [&] [/ |-
You can stop the blinking by pressing any key.

Sample Case: Common Logarithm. Calculate the power gain in
decibels of an amplifier yielding twice the value of the input
power.

Note: decibels =10 log (2)

Press See Displayed Comment

10 [ENTER# [10.00 | Save value 10.
2 [f [Log B Log?2.

b3 - Answer.

Keys Function Input Value(s)
| | Natural logarithm (basee) X not zero or less (x>0)
| ¥ [v] | Natural antilogarithm (ex) Unrestricted x
‘ f] [Log ' Common logarithm (base 10) X not zero or less (x>0)
1 [Log] ‘ Common antilogarithm (10%) Unrestricted x
f1 =] | Square root (VX) Non negative x (x>0)
1 [=] | Square (x?) Unrestricted x
B () Reciprocal (1/x) Non zero x (x540)
| B[Integer factorial (n!) Non negative integer nin x
1 3'!::-2-3-...-(n—1)-n (x>0; x an integer)
| [/} | Exponential (y*) P(zsiti\(/)()e y and unrestricted
‘ ‘ X (y>

Figure 3-3. Functions of x and the Exponential Function (y*)

Result
In (x) in X
exin X |
log (x) in X ‘
10%in X
VXin X
x2in X
1/xin X
n!in X

y*in X; stack drops.

46 Functions

Sample Case: Natural Antilogarithm. Display the constant e to
nine places (e=e'=natural antilog I).

Press See Displayed Comment

1 272]

Ll _ Answer.

L2 BB Resct display.

Sample Case: Square and Square Root. What size square has the
same area as a circle whose radius is 3?

Method. 77< 32 is the area of the circle. The square root of this
value gives the side of a square of equal area.

Equal Areas

Square
5 -
(5.32)

Press See Displayed Comment

o [3.74] ™

3/ EIR 32

x - Area of circle.
L - Size of square.

Functions 47

Sample Case: Reciprocals. Calculate: ¥4 =.25.

Press See Displayed Comment

4@ [0.25 | Reciprocal of 4.

Naturally, you can use this value in another calculation. For
example, to go on and calculate

1
Vi 415

V4 is already calculated. We need only

Press See Displayed Comment

[0.25 | Reciprocal of 4.

3@ 0.33 | Reciprocal of 3.
[+ - Sum of reciprocals.
g - Answer: reciprocal of sum.

Sample Case: Factorial. Calculate the number of ways 6 people
can line up for a photograph.

Press See Displayed Comment

6 8l [7] | 720.00 | Answer.

Sample Case: Exponential. In the preceding section we calculated
the successive terms of a geometric series to find that after 6
periods, $1000 invested at 10% grows to $1771.56. Using the

function, the same result'is obtained by evaluating the fol-
lowing:
1000 (1.10)°

Press See Displayed Comment

I

1000 [ENTER® _ Original amount

L B (or
x - Answer.

Section 4

Programming

In the Introduction you learned to run a prerecorded program
and to create a simple program. You have since explored the
preprogrammed abilities of the calculator. This section provides
the information for creating more ambitious programs, com-
parable in scope to the recorded programs in the Standard Pac
and other pacs. You are encouraged to create and use your own
programs even though you otherwise take full advantage of your
calculator’s power by merely using prerecorded programs. We
think you will find it as exciting as it has been for us.

To create a program, you need to:

. Define the problem.

. Work out the keystroke sequence that solves the problem.

. Add control operations for automatic execution.

. Key the keystroke sequence, including control operations,
into program memory.

. Edit, verify, and record the sequence for later use.

. Run the sequence, automatically, with your data.

AW —

AN

To key a program into the machine, press the successive keys
with the switch in W/PRGM position. Then, by passing an un-
protected magnetic card through the right lower slot of the cal-
culator, you can save the program (contents of the 100-step pro-
gram memory) for future use.

The subject is discussed under four major headings: Look-
ing at a Program. = The Control Operations needed in pro-
grams to start, to repeat, and to stop. ® The Editing Operations
that allow you to correct and change programs in memory.
Test Operations that allow your program to make decisions.

Looking at a Program

Quite obviously, it is not possible to see the entire program at
once; you see one step at a time as determined by the program
pointer (defined in Figure 4-1). Recall that program memory

48

consists of 100 locations. Above the first location is the top of
memory, which displays as:

Top of Memory Display

Whenever you see this display, you know that the program
pointer is at the top.

To see this, turn the calculator OFF, then ON, and switch to
W/PRGM. This clears any programs and replaces them with the
default programs.

To move the pointer to display the next (first) location:
Press See Displayed

SST | 23

Except for the digit keys, the display indicates the row and
column of the key that the display represents.
Thus 23 is read as row two, column three or [lEN.

Column 3

Row 2

f-—————-—«———-CLEAn.—-—-————-.ﬁ i
PREFIX 8TK REG PRGM.

For ease of recognition, the digit keys [0], . . ., [9] are displayed
simply as 00, . . ., 09. You can now read the remaining con-
tents of memory.

Press See Displayed Comment
Represents .
Represents [§.
Represents [@].
Represents *
Represents [GQ] -

Etc. Etc.

Thus, starting at the top, you can now see that the first five codes
(23, 11, 35, 04, 24) represent the default function defined for

the top row ¥ key. This function, BE G, does
nothing more than compute the reciprocal of x.

The key is discussed in Figure 4-1. Note that is used
also in RUN mode to execute a program, one step at a time.
Also, note that to conserve memory, the most frequently used
prefix-suffix pairs are each merged into single codes. Thus, 8

is encoded and displayed as:

Control Operations

In creating a program, you take into account how it is to be
started and how it is to stop. You may recall that in the function
created in the Introduction, you put a label () ahead of
the actual calculating steps so that the beginning of the program
could be found. You also put a return (@) at the end so that
the program could stop itself:

3 ENTER+ ENTER4 X X

* Notice that 35, representing the . prefix, determines that the next code 04
be interpreted as , the blue alternate function on the [4] key.

rogramming

Thus programmed, when you pressed the [} key (in RUN mode),

the calculator searched the program memory for the correspond-
ing label). Upon finding the label, the calculator
executed the steps following the label, one after the other in se-
quential order, until the return (@) told the calculator to stop.

Figure 4-2 summarizes the above operations used to define

functions.

| Program Memory: Program memory contains the user’s |

stored program.

Capacity: 100 locations Top is above first location.
Bottom is last location.

Pointer: The pointer is an internal part of the calculator.
It determines which memory location is executed or dis-
played.

Codes: In W/PRGM mode, keystrokes are stored in
memory as codes: Top of memory code is 00 00. The

| codes for keys 0-9 are 00-09. For other keys, a code

denotes a row and a column. Example: Code for
(row 8, column 4) is 84.

Merged Codes: Program codes for the following are

merged with their respective prefix codes: [LsTx],

(vor], (7], (R, (R+], B2, E22. B, B0, and 4], . . .,

when prefixed by [§T0] or [REL . = Example: [§ |
in program mode is merged and displayed as

35 00; [sT0] [5] as 33 05, etc. Note that [sT0! [9] and

[ReL! @ are not merged.

Single Step: = In W/PRGM mode, advances the
program pointer to the next memory location, displaying
the code. Repeated use of the key enables you to re-
view a program and to position the pointer for editing.
= In RUN mode executes the program step de-
noted by the program pointer. In the case of single
stepping a call to a user defined function, (. . . . , @,
the entire function executes (as one step) before re- |

turning control to the keyboard.

Figure 4-1. Memory, Codes, and the Single Step Key

Label (prefix). identifies its suffix (a digit [0],
...,[9], or top row key,[¥,...,@) as a label in a
stored program. A branch to the labeled part of the pro- |
gram can then be done by executing followed by :
the same suffix. For user-defined functions, the label
suffix must be a top row key (H,...,3).

B.B.38 .8, @ Top Row Keys. These keys can be re-

defined by inserting a program into memory. When used
without a prefix, a top row key finds and executes the
corresponding user defined function.

|<—Window
 <—Top Row

Default Functions. When the calculator is turned on, de-
fault functions as defined in the window above the top

row are automatically inserted into memory. [
clears these functions so that alternate functions may
| be keyed in.

Return. = If executed manually from the keyboard,
merely resets the program pointer to the top of
memory. = In a stored program, is the logical end
of a user defined function.

If a function is executed from the keyboard, stops
the program.

Program

£ . Stops the program
Stop < B~ (leaves pointer here)

Figure 4-2. Control Operations for Defining Functions

- .]
| = If a function is executed in a program, execution of |
i resumes the program.
|
|

Program

LEVEL 1 LEVEL 2

Resumes calling
program

Resumes calling
program
Stop :
= A function executed from the keyboard or a nonfunc- |
tion program can execute another function. The latter,
however, cannot properly execute yet another function.
Program
LEVEL 1 LEVEL 2 LEVEL 3

Resumes LEVEL 1
calling program

Does not resume
Stop actual LEVEL 2

calling program
Note that:

1. can prefix a digit as well as a top row key, thus
allowing up to 15 unique labels. We shall presently |
use a digit label in a program that repeats.

2. can be used if pressed manually to move the pro- |
gram pointer to the top of memory. We shall use this |
to start execution at the very first step in program ‘
memory. |

3. If a program calls another programmed function, the |

terminating the function does not cause a stop, |

but rather resumes the sequential execution of the }
calling program.

Figure 4-2. Control Operations for Defining Functions (cont.)

Sample Case: Repeating and Stopping

Assume that you get a 15% discount (i.e., you pay 85%) on the
following purchases:

Quantity Price of Each
5 $2.00
7 4.00
8 5.00
22 6.00

Create a program at the top of memory to display the cumulative
cost.

Only two unfamiliar operations ([§{g) and [FY)

are needed. They are summarized in Figure 4-3.
Method. After clearing the stack once at the start, let the pro-

gram stop to accept data and to display any previous accumu-
lation (zero, at first). Then key in:

Quantity [ENTER%® Price

Have the program then calculate the discounted cost (5 X 2 X
.85, the first time), adding the cost to the previously accumulated
total. Repeat this for the second, third, and fourth pairs which
are to be entered after the respective stops. The flowchart (p. 55),
shows the process.

Writing the Program

1. To key in the program set the mode switch to W/PRGM.

2. Press [to clear program memory.
3. Key in the program.

Again, for now, if you make a mistake, clear memory and start
over.

Press Comment
¥
51 Clear the stack.
LBL . -
S Identify place to start repetition.
Stop the calculator.
R/S During the stop, key in a pair of

values and press to restart
the program.

Programming 55

X

FEE Calculate gua.ntity X price X .85
= for one pair and add product to
- previous accumulation.

Repeat, starting at .

Notice that we arbitrarily chose [9] to mark the part to
repeat.

Clear Stack
Stop Program

Operator:
Key in pair of values
and restart program.

Calculate:

Quantity X price X .85
and add to previous
accumulation.

RUN STOP. = If is keyed in and a stored pro-
gram is not executing, the stored program starts exe- |
cuting at the step denoted by the program pointer.

If executed in a stored program, stops the pro-
gram, displaying the X-register and allowing keystrokes
from the operator. = If a in a program is immedi- |
ately preceded by a numerical entry from the program,
the automatic lift is disabled upon return to the key- |
| board. This allows a program to display prompting in-
formation that will not be lifted in the stack if you enter
a number from the keyboard. Except for this case, GE |
does not affect the stack lift.

Go to (prefix). When followed by a digit ([0], ...,
[9]) or aletter (A, ..., A), advances the program
pointer to the first occurrence of the corresponding pro-
gram label (i.e., followed by the same digit or letter). |

Figure 4-3. Control Operations for Stopping and Branching

The function programming sequence of [EY, . . ., was not
used. The method shown conserves function labels, using
instead. By this method you could still define all five functions,
keeping all six programs in memory simultaneously (within the
100 step limit).

Running the Program

Switch to RUN mode and

Press See Displayed Comment

Start program at top
of memory.

5 entert 2 B 5%X2X .85

7 [ENTER? 4) 7 X 4% .85+ 8.50
8 [ENTERY 5 [8 X 5% .85+32.30
22 [ENTERA 6 | 178.50 | 22 X 6 X .85 + 66.30

Editing Operations

You edit with the mode switch set to W/PRGM. The edit op-
erations make it easier to key in programs because, in case of
mistakes, you can correct a wrong step by (1) stepping through
your program using until the wrong step is in the display,
(2) pressing [@l (delete program step) and by reentering
the step correctly.

To insert an operation following the one on display, just key it
in. Now you will be able to step through your program and in-
sert a step between any two steps.

Revising a Program

Sample Case. To demonstrate the editing process, let us revise
the default] function to calculate the factorial function in-
stead of the reciprocal function. The desired function will be
B E [, which is identical to what is already in
memory except for the fourth key. We need only delete the

and insert [n}].

Editing Procedure: Before we can delete[/x |, we must move the
pointer to (code 04). Conceivably we could repeatedly press
in W/PRGM mode. This would advance the pointer to

the bottom of memory, through the top, and to the first loca-
tion, etc. in circular fashion.

Bottom 100
Top advances the
pointer downward
in this direction.
Pointer — 3

It is easier, however, to switch back to RUN and to move the
pointer to the top of memory (by pressing [l) or to the label
(by pressing [E}). Let us do the latter:
Switch to RUN.
Press B.
Switch to W/PRGM.
Press See Displayed Comment
R A
=
SST o4] 1/x

To delete the :
Press See Displayed Comment
[- 04 has been deleted.

Notice that the pointer has backed up to the [(code 35). To
insert the [nl] , just

Press See Displayed =~ Comment

(1] fog 7] 03 has been inserted.

Testing the Revision. To verify that the [[§ key is redefined to
calculate the factorial, switch to RUN and

Press See Displayed =~ Comment

] A | [120.00 | 51=120

Figure 4-4 summarizes the editing process. You can tell when
memory is full by observing the display:

One “—" sign indicates
full memory.

Note that if memory is full, and if you try to delete a step, you
will also delete the bottom code; be sure to reinsert it.

You can tell when the pointer is at the bottom:

Two “—" signs indicate
pointer is at bottom.

If the pointer is at the bottom, and you try to insert a step, the
code(s) will be generated in the display, but will not go into
memory. Deleting the bottom step also deletes the step ahead
of it. For a critical case like this, be sure to reinsert the last step.

Test Operations

To complete the discussion of programming the HP-65, we will
consider the test operations summarized in Figure 4-5. The test
operations are particularly valuable for performing iterative cal-
culations.

Using the Flags for Programmed Decisions

The calculator has two flags (called flag 1 and flag 2) available
for your use. A flag is an invisible piece of information with just
two possible conditions: on or off. The flag operations are given
in Figure 4-5, p. 63. You can set a flag on or off by using the
Set Flag operations. These operations can be executed from the
keyboard or from a program. The reason for setting a flag is so
that a program can later make a decision based on the condition
of the flag (using the test flag operations).

Sample Case: Flags. Create a function Y that computes (1/x)?

if flag 1 in on and computes (x?) if flag 1 is off. Assume that the
desired condition of flag 1 has been previously set.

1 Switch to W/PRGM

u Clear memory by pressing [[PRCM].
= Key in the following steps.

Keys Comment

n

(f Test flag 1 for on.
B If on, calculate (1/x).
i (<] Square x or 1/x.

RTN Stop.

*If flag 1 is on, these steps are not skipped. If off, they are skipped and x is not
replaced by 1/x.

' Positioning the Pointer. = To move the pointer to the
' top of memory, press in RUN mode. = To move

where [n] is the same digit or top row key as in [n]
(the label). = To step through your program, use

in W/PRGM mode. You will see the successive program
codes in the display.

Insert: = Pressing a key in W/PRGM mode stores the
instruction code in program memory between the dis-
played code and the following instruction code and
moves the pointer to display the code just inserted. The
bottom location drops off. = Insert is not performed:

(1) For [PrGw |, [DEL], B - (2) For the second key of a

merged code. (3) When the pointer is at the bottom.
Display Display

- T - SEERTE

o1 g —— |

Figure 4-4. Editing Operations

the pointer to a label, press in RUN mode, [[n] , |

Before After
Pressing Pressing
B |

Delete Program Step. = With the switch set to
\ W/PRGM, [@] [pEL] (1) deletes the program step denoted
1 by the program pointer, (2) moves all the following steps |
| up one step, and (3) inserts a.code in the vacated i
! bottom position of memory. = When switched to RUN, |
@ acts only ascLx!. = [&] can be used to back i
‘ up the pointer (after which you reinsert the deleted |
} codes). = If memory is full (i.e., a minus sign shows in \
| display), [8] [DEL] causes the bottom memory step to be ‘
' lost. = If the program pointer is at the bottom (i.e., two |

| minus signs show in display),)] deletes two loca-

|
|
|

|
Before After After
‘ Pressing Pressing Pressing

\ |
| Clear Program Memory. In program mode, [f |
' [[Prem] or [[PrGM | clears the entire program memory 1

‘ to ““‘no operation” codes (35 01), leaving the pointer at

“ the top of the memory. = In run mode, [f is
| equivalent to cLx.
[:

Figure 4-4. Editing Operations (cont.)

62

Programming

Running the Sample Case.
Switch to RUN.

Press [f to turn flag 1 on so that the square of the re-
ciprocal will be computed.

Press

o A |
s

Press

puted.

Press

o3 A |
sB

See Displayed =~ Comment

[0.25 | 172y
| 4.00] (1/.5)

to turn flag 1 off so that the square will be com-

See Displayed =~ Comment

[4.00 | @
[0.25 | (59

Establish

Invert
Input

Square
X

|nteger in register R, then SkIpS two program memory |
locations if Ry contains zero. The decrement opera-
tion is suppressed outside the limits: 1<|rs| <10%.
Useful for looping.

' EZ1.EZ] . =] EE3. Relational tests of x and y. Each
| test compares the values in the X and Y registers, and
| skips two memory locations if the test condition is not
| met. The tests use R, and alter the contents.

[NoP] No Operation. Useful as afiller in tests = [f]

in W/PRGM mode clears the entire memory to [8l -
‘ (merged code 35 01). |

. Set Flag 1, Set Flag 2. = [[f] [5F1] sets flag 1
1] sets it off. = [f] performs similarly,

| but usmg flag 2. Initially turned off when the calculator
| is turned on, flags retain their settings until changed by
these operations. ‘

. Test Flag 1, Test Flag 2. = [f] tests flag

1, skipping 2 memory locations if flag 1 is off, while [

skips if flag 1 is on. = [f] performs similarly, |
L but uses flag 2.

Figure 4-5. Operations Used in Programmed Decisions

Relational Test Operations

The four relational tests allow you to program a decision based
on the relationship of x to y. This can be valuable in iterative
calculations or in simpler applications such as the following.

Sample Case: Relational Test. Create a function B to calculate

the arc sine of an input value x (x must be within the limits of
—1 and +-1). If the resulting angle in decimal degrees is nega-
tive or zero, add 360 degrees to it.

Switch to W/PRGM.
Clear memory by pressing [l
Key in following sequence.

Keys Comment

= A

Compute arc sine.

[
0] 0 to X lifts arc sine to Y.
B x> Put 0inY and arc sine in X.
B EE
(3] Test and skip these steps
(6] if angle is negative.
0] Add 0 or 360.*
+
RTN Stop.

Running the Function
Switch to RUN
Press See Displayed

50 T (ccorees)
5 cis B [330.00 |

Looping N Times

The operation is useful in repeating a labelled segment of a
program a given number of times. The repeated segment is called
a loop. Rule: To execute a labeled program segment n times,
preset n in Rg and end the segment with a to determine
whether or not to repeat the segment.

*If the angle is negative, @ @ @ are put into the X register as 360.
If the angle is positive, @ @ are skipped and @ puts zero into X.
Thus, either 0 or 360 are added to the angle.

Step saving techniques like this will undoubtedly occur to you in writing your
own programs.

Sample Case: Sum of First n Digits. Calculate the sum of 1 4 2
+ 3 + ... -+ n where n is in the x-register at the beginning.

Switch to W/PRGM.

Press [f V] to clear memory.

Key in the following steps.

Keys Comments

(4]

STO Preset n in R..

i (st Clear stack.

1] Beginning of repeat segment.
RCL Recall rs to X.

+ Add to previous sum.

] Decrement r (rs —

1— Ry) and test for zero.

4] Repeat if 15 is not zero.
RTN Stop after nth iteration.

Calculating the Function
Switch to RUN.

Press See Displayed Comment

G A | - Sumof1 ++2+4...45.
20 B [210.00 | Sumof 1 42+ ...+ 20.

Rl A | Sumof 1 42 +4...425.

66 Programming

A Complete Problem

Thus far we have covered all of the operations possible in pro-
grams, illustrating them with small, individual examples. In the
real world, things are not quite so simple. Consequently, we
present a real problem and will take you through the program-
ming using the following aids provided with your HP-65.

HP-65 Program Form

HP-65 User Instruction Form
HP-65 Blank Magnetic Cards
HP-65 Pocket Instruction Card

Assume that you need $4000 to make a downpayment on a
house and your current savings are $2000. Assume further that
you are able to add the amount of $185 to your savings monthly
and that your total savings earn 1% per month. By delaying pur-
chase of the house, the required downpayment increases through
inflation by 0.5% per month. Given these assumptions, answers
to the following questions are desired:

What is the new required downpayment each and every
month?

What are your total savings each month?

What is the difference between savings and required down-
payment each month?

When will you be able to purchase the house (assuming it
is still on the market)?

What is the difference in a particular month (possibly to
see if a projected bonus could make it possible to pur-
chase earlier)?

To start, we will break this seemingly complex problem into man-
ageable pieces and, following the steps outlined at the beginning
of this section, create a program to give us the desired answers.
Conveniently, there are five answers desired. One way to look at
the problem is to have keys I, . . . , @ each defined to pro-
vide one answer. We shall do this.

Label A: Given $4000 required downpayment increasing at
0.5% per month. What is the monthly total downpayment? You
may recall that this problem is that of calculating a monthly
compound growth schedule with a growth (inflation) factor of
1.005.

Label B. Given $2000 initially plus $185 per month invested
at 1% per month. What is the monthly total savings? This also
is a compound growth schedule with a growth (interest) factor
of 1.01 but with an addition of $185 monthly to the amount
being compounded.

Label C: This is simply the difference between required down-
payment and savings (label A minus label B).

Label D: What is the number of months required for the savings
to overtake the required downpayment?

Label E: What is the difference between savings and required
downpayment at a specified month—say 8 months hence?

Figure 4-6 shows the monthly answers for labels A, B, and C
for the first 12 months.

Label A .

Required Label B Label C

Month Downpayment Savings Difference
(4000) (2000)

1 4020.00 2205.00 —1815.00
2 4040.10 2412.05 —1628.05
3 4060.30 2621.17 —1439.13
4 4080.60 2832.38 —1248.22
5 4101.01 3045.71 —1055.30
6 4121.51 3261.16 — 860.35
7 414212 3478.77 — 663.34
8 4162.83 3698.56 — 464.27
9 4183.64 3920.55 — 263.09
10 4204.56 4144.75 — 59.81
11 4225.58 4371.20 145.62
12 4246.71 4599.91 353.20

*Note that the calculation assumes the monthly amount to be deposited at
the end of the month; this is an ordinary annuity in business parlance. The
Personal Investment Program in the Standard Pac, on the other hand,
assumes the monthly amount to be deposited at the beginning of the
month; this is an annuity due in business parlance.

Figure 4-6. Calculation Results

68 Programming

Figure 4-7. Graphic Representation of Program Tasks

Figure 4-7 is a graphic presentation of the problem with the
specified values.

A good programming technique is to permit variation of the
input values (you might only be able to save $110 per month
after carefully considering all of your actual expenses and in-

come). We shall accomplish this by manually storing all of the
values in registers prior to performing the calculations using the
program. Assume that the following registers are used:

Initial downpayment ($4000) ST (1]

sTO (2]
Monthly inflation factor (1.005) STO [3]
Initial savings ($2000) [sTO (4]
sto [5]
Monthly savings ($185) Isto0 (6]

Monthly interest factor (1.01) g7

Note that the initial downpayment is stored in both R; and R..
This is because in our program r, will remain the same as the
initial value but R, will contain the downpayment in successive
months. We can at will reset R, to the initial value saved in R,
and start over again. The same reasoning holds for R, and R;
containing the initial savings.

One final word before we actually start our program. Normal
procedure is to write the entire program sequence, enter it, and
then test it. For the sake of greater understanding, we will write
one label at a time and obtain the answers for that segment of
the problem as we go along.

Programming Label [[§ : Monthly Total Downpayment

1. Switch to W/PRGM.
2. Press f| [PRCV | to clear memory.
3. Key in the sequence of steps below.

ety | sfown COMMENTS
LBL | 23
A "o
ReL 2 34 02 Dl}pmf
RCL 3 3403 Inilation factor Dnpmt X 1.005 = New Dnpmt

X 7/
S70 2| 3302 New dnpmt
RN | 24

If you make any errors, use the editing procedures to make cor-
rections.

To operate:

4. Switch to RUN.
5. If you have not already done so, store your input variables
in R, through R-. Follow the user instruction below:

STEP. INSTRUCTIONS AT URITS KEYS DAAoRITS
% see anpmt For months /, 2, 3, ete. a4l Y020.co
repeqtedly press A Yoyo./0

A Y060.30
£re. ETC.

Programming Label [E] : Monthly Total Savings

1. Switch to W/PRGM. You should see 24, the code for Gl
Since in I there are no instructions following [FI,
you can immediately key in the sequence below. Do not

press [f] [0 .

KEY | CODE |
ey | SR | couments
y2.74 23

B /2

RL S ;f/’ 57 J’aw’njf et
7 /ot X
“} 7 7/0 soreres er (Savings X 1.001) + $185 =
FCL b JZ// 26 _/monthfy Savings
*

New Savings
870 & 3305 MNew Savings
RN | 24
To operate:
2. Switch to RUN.
3. Follow the instructions below.

STEP INSTRUCTIONS DA:":?SLITS KEYS DAOTUA.‘;TJ‘;‘(TTS
78 see savings for months 2,3, efe. B 2205 %0
repeatedly press g 2412.05

3 262117
£rc.

Ere.

Programming 71

Programming Label : Difference Between Savings and Down-
payment.

Here we are looking for successive values of the difference be-
tween the label [[and label [calculations for each month.

The program has to start by recalling the initial values for sav-
ings and downpayment so that the difference for month 1, 2, 3,

.. etc. can be calculated. This means that we cannot press
and get successive values for the difference. Therefore, a slightly
different technique using looping and is used in writing
the program.

1. Switch to W/PRGM. Do not press [f] [PRGV .
2. As before, you should see 24, the code for at the end
of B You are ready to enter the sequence below.

COMMENTS
L8L | 23
e | /3
|\ gee 1|39 0/) peset savings and
Sro 2| 33 02, dnpm? Fo
ReL | 34 04\ snitral cendihons
S0 5| 33085
180" | 23 .
o | 0o | Retvrn pornt.
8 /2 | Calevlate savings

A Il | Caleviate dnpm Savings — Dnpmt = Difference
- 5/ drffere nce "’ 9 P

| &s | &Y

670 | 22

o oo

Note that Label first calls [E} to calculate the savings and
then calls [to calculate the downpayment before subtracting
and stopping.

To operate:

3. Switch to RUN.
4. Follow the instructions below.

STEP) INSTRUCTIONS) DA{’;’;ELHS KEYS TS
70 see_difference #or month I,
press [CJ. 7o see svccessive c = /845,00
d.Herences, repeatedly press s ~1628.05

s -1439.13
£re. .

Programming Label [B) : Months for Savings to Overtake
Downpayment

Instead of calculating monthly a sequence like before, the task
here is to calculate a specific answer—the month at which sav-
ings are great enough to permit purchase of the house. We will
set up a counter for the number of months in R and use a logical
test (x>y, downpayment >savings) to decide if we should con-
tinue for another month or if the increased savings has overtaken
the required downpayment.

1. Switch to W/PRGM. Do not press [f!

2. See 84, the code for . Since was not the last in-
struction in , press ,see 22, the code for [E9) .

3. Now press (34, see 00, the code for [0]. You are now at
the end of the previous segment of the program and are
ready to key in the sequence below.

f.z%v ,Psﬁg% ~ COMMENTS
L8L 23
D /4
RCL/ (39 01 .
sr0 2 3302 (Reset savings and
®LY (3904 (dnprmt |
S0 5 33 05
o oo | Start month zero
S0 § 3308
LBL 2
/ o/ | Returp pornt
L o/
Sro | 33 Rdd one to mont
+ o/ covnter
g o8
8 /2 | Calcv/ate savings
A]! Calcvlate dppm
gxry 35 24 [F savings less |
Yro' 22 | than dlnpmt retymn
/ o/ | Fo LBL 1, oterwise
RLLE 3Y 08 recall month
7y | 24 |

To operate:

4. Switch to RUN.
5. Follow the instructions below.

r
|STEP. INSTRUCTIONS

|
—t— -

|72 see month af which sa vings
overtake dnpm?, press P2 //.00

INPUT | outPut
| DATA/UNITS KEYS | DATA/UNITS

Programming Label [: Difference Between Savings and Down-
payment at a Specified Month.
Here again, a specific answer is required— the difference between
downpayment and savings at a specified month. We will use
to cycle through the requisite number of times.

1. Switch to W/PRGM.

2. See 24, the code for at the end of B. You are
ready to key in the sequence below:

ey VSC:NO'%IEN (COMMENTS
(BL 23

£ /5 .
sro & (3308 Store desired month
mL) |3Y 0!

$70 2 |33 02 Resel savings and
LY 3404 dnpm? B
570 533 05,)
LBL 3 | Return point
12

2

| B 12 | Calev/gre sa w'nj.j)
A /I Caleviate dnpiit
BES Al

I, \ . .

?r; gi ?’%”L»ir‘; 7 Rs Savings — Dnpmt = Difference
2 02 | 7pen calcvlate |
- &/ | difference

RN | 24

To operate:

3. Switch to RUN.
4. Foliow the instruction below.

T et T | outeur

[STEP| INSTRUCTIONS - | DATA/UNITS | _ KEYS | pATA/UNITS
| £ |- %427

3 £ -/439./3

£TC, ETC.

HP-65 Program Form

swircn rowrpaom press {1] 1o cLear memony
eNThy | shown COMMENTS
LBL 23
A 122
RCL 2|34 02 Dppmt
RCL 3 3Y 03 /nilation factor
X 7/
Sro2 3302 New onpm’
RTN 24
LBl | 23

12
RCLS 34 05 Sqvings
A’f(L 7 3407 Interest factor

7/

ReL | 34 06 monthly .qu/'n5$
+ </

Sr0 £~ 33 05 New savings
V24
LBL 23

c /3
AL 39 0] Reset .rqw'ngx and
S702 3302 dnpmt

#eed 34 04 to snitial
Sro 5 3305) condi/tions

L8L 23

o 00 Retorn peoint
B /2 calev/qte Savings
A Il calev/ate dnpr
= Y o/ fference
s 39

Gro 22

o o0

8L 23

D /4

Ree) 340/

8§70 2| 3302 Reset Savings
ReL Y 34 04 and dnpm
Sr0 8 33085

o OC Start menth zero
S0 8 3308
28¢ 23

/ o/ _Retenn pornt

/ o/
Sro | 33 (Add one to month

+ 6/ covnter

8

o8
B 12 (alev/ale savings
A 1l Cqelev/ate dnpm?
x>y 3524 I/ savings /ess Han
6ro 22 dnpm? ‘return to
/ 0/ | 1BL |, otherwise
RCLE 3408 recall month

KEY
ENTRY

RN
LBL
E
sro &
ReL 1
Sr0 2
RreL Y
S70 &
LBL

2
8

A
25%
éro

2

RTN

CODE
SHOWN

2
23
5

3
3302

3¢ 04
3305,

Page /ot

COMMENTS

7
33 08 Store desired monmth
ol

Reset J\w/nys and
dnpm?

Retvrn pornt
Calevlate savings
Calevlate dnpm?

Repeat vntiy
coﬁ/gn/s a/ rzgister

then calcv/ate
dyfference

AT wiPRGM.

REGISTERS

R1/nitraf
dnpmt

Ry 2npmt
any month

Ra/nflation

ctor

Ra /nitial
Savin 95

Rs Savings
any
menth
Re/Tenthly
addition
fo savings
Rrmonthly
snterest
Factor
Rg month
Counter

Ro

LABELS

vsed
vsed
ysed

CONONAWN=-OMOO®>

FLAGS

/SAviNGs VERSUS Downmarment |

B3 [Sovings ‘,’iF; - Sovn ek | -
;TEP INSTRUCTIONS DA}&?EL]TS KEYS DAquAB'l’J‘:ITTS
/.| Load program
2| Key /n initial dnpmt dpo sro |l dpo
Sro |2 dp
3. \Key in nflation factor (monthly) — inf) fact| STO N3 | nf]. fact
4. \Key in initial savings sav,, ST0 |4 sav,
Sro | s sav,
S.\Key in monthly savings msay. | ST01l6 | | m sav.
6. Key in [nterest factor (monthly) int. fact STO |7 Int. foct
7. 7o see dnpmt for month 1, 2, 3, ete.
repeatedly press A dp /o
8. 7o see savings for month 1,2 3,ctc.
repeatedly " press B sav /2.
9|70 see oifference for month I, press c say,-dpl
o get-months 2, 3, etc. repeatedly pres % dfFa,3.
10.|To see month at which savings
overtake dnpmt, press) o (&#Py)
I1.\To see a/fference al any month ,enfer rro. E diff

The entire program requires 68 memory locations as sitown on
the following filled-out program form.

To save the program, just pass a blank card through the calcu-
lator, switched to W/PRGM. Write the new definitions of keys
B. B3 on the magnetic card together with the program
title. Then fill out the HP-65 User Instruction Form to remind
you how to run the program at a later time. Finally, if you wish,
you can write your instructions on the HP-65 Pocket Instruction
Card. You may carry the magnetic program card in it.

What we have presented is one possible way to write a program
which gives us the required answers. Doubtless you can think
of other ways. You may wish to build your variable entry capa-
bility into the program instead of storing them manually. You may
wish to have the labels calculate differently than we did. Perhaps
you can find a way to show what month you are calculating for

in labels [} and [l . We urge you to try your own way.

Miscellaneous Program Topics
Program Debugging

Including Temporary Stops. Where space permits it is advisable
to include additional operations in long programs to display
intermediate results while writing and checking the program.
When the program is finally checked out, the unwanted stops can
be deleted.

Single Stepping. When switched to RUN mode, executes
the program, one step at a time. You can observe the effect of
your program in slow motion. To single step through a function,

first press followed by, . . . , @ or[0], . . . ,[9], then press
, repeatedly. However, the at the end of the function
will be ignored.

Numerical Examples. It is usually absolutely necessary to work
out a sample problem by independent means and then to do the
same calculation using your program.

Magnetic Cards

Prerecorded Cards. Now that you have seen how programs work
you can understand that the answers to the following question
depends on the program:

“During a program stop, can | use the
stack, the other registers, the flags, etc?”

It is safest to follow the printed procedures when using the pre-
recorded programs. Departures should not be made without
studying the program listing in detail.

Read/Write Operations. Reading or writing a card does not
change the contents of the registers. A program can utilize data
developed by a prior program. Whenever a magnetic card is
written or read, all 100 steps are transferred. If a read operation
fails, program memory is cleared to [codes and the dis-
play blinks. Reading a blank card will have the same effect.

Identifying Stops

Blinking Display Stops. Errors that cause a blinking zero dis-
play, if executed in a program, also stop the program. You can
identify the stop by switching momentarily to W/PRGM to see
the code of the offending operation.

Normal Stops. To confirm that a program stops normally (i.e.,
via a or @A) switch momentarily to W/PRGM position
and observe the displayed code. It should be 24 or 84.

Accidental Stops. Remember, that pressing any key will stop a
program. Be careful to avoid pressure on the keyboard during
program operation.

Cued Stops. If memory space permits, it is sometimes helpful
to put a familiar number into the X register before stopping for
data. Thus when the program stops, the displayed number identi-
fies the desired input. For example if your program requires 8
stops for input, it is very helpful to have the numbers 1, ..., 8
appear so you know which input is needed.

If a cue number is created as a program step immediately pre-

ceding the @8, it is not lifted into the stack and the number

is overwritten by the data you key in. (Cue numbers generated
by other means will be lifted.)

Concerning W/PRGM Mode Display

Another feature of the W/PRGM display is that it allows you
to see the last key pressed in a series of manual operations (ex-
cept program operations). For example, in RUN mode you intend
to key in
4.032 1+

when the phone rings. After talking on the phone you can’t re-
member whether or not you pressed the + key. Switch to
W/PRGM, you will see 61 if you pressed + .

If you have been calculating manually, and then wish to display
a program, pressing will resume the program memory dis-

play.

«

Programming Is a Creative Process

As you may have observed, programming the HP-65 is sur-
prisingly easy to learn. Once you learn the operations, and follow
the few rules, a whole world of possibilities is open to you. We
have purposely presented the calculator with minimal use of
formulas in case some of your mathematical training has dimmed
by lack of use. You can adapt what you have learned here to
your own purposes. In case you write a program that exceeds
memory, remember that most programs can be shortened upon
reexamination. Impromptu programs prepared for special pur-
poses are usually faster to program and debug. Larger general
programs can take considerable persistence. Good luck!

Appendix A
Operating Limits

Accuracy

The accuracy of the HP-65 depends upon the operation being
performed. Also, in the case of transcendental functions, it is
impractical to predict the performance for all arguments alike.
Thus, the accuracy statement is not to be interpreted strictly, but
rather as a general guide to the calculator’s performance. The
accuracy limits are presented here as a guide which, to the best
of our knowledge, defines the maximum error for the respective
functions.

The elementary operations [], [f| (=], [l [0S] have
a maximum error of =1 count in the 10th (least significant)
digit. Errors in these elementary operations are caused by
rounding answers to the 10th digit.

An example of roundoff error is seen when evaluating (1/5)2
Rounding /5 to 10 significant digits gives 2.236067977. Squar-
ing this number gives the 19-digit product 4.999999997764872-
529. Rounding the square to 10 digits gives 4.999999998. If the
next largest approximation (2.236067978) is squared, the result
is 5.000000002237008484. Rounding this number to 10 signifi-
cant digits gives 5.000000002. There simply is no 10-digit num-
ber whose square when rounded to 10-digits is 5.000000000.

When subtracting numbers having 10 significant digits, the an-
swer is correct to 1 count in the 10th (least significant) digit of
the algebraically larger operand.

Factorial function (|8l [n!]) is accurate to =1 count in the ninth
digit. Values converted to degrees-minutes-seconds [=015 |
are correct to =1 second, as are the results of [f D15+ | and
& (5rs).

The accuracy of the remaining operations (trigonometric, loga-

rithmic, and exponential) depends upon the argument. The an-
swer that is displayed will be the correct answer for an input

79

argument having a value that is within =N counts (see table
below) in the 10th (least significant) digit of the actual input argu-
ment. For example, 1.609437912 is given as the natural log of 5
when calculated on the HP-65. However, this is an approxima-
tion because the result displayed (1.609437912) is actually the
natural log of a number between 4.999999998 and 5.000000002,
which is +2 counts (N=2 for logarithms) in the 10th (least sig-
nificant) digit of the actual input argument.

OPERATION VALUES FOR N

2*
trigonometric 3**
B) 4 fory,and 10 for x
o 7
8 (-7
= ¢

*An additional error in the 10th least significant digit of
the displayed result is = 1 count for [f] (L] and = 3
counts for [[Loc

**Trigonometric operations have an additional accuracy
limitation of == 1 X 10-% in the displayed answer.

Calculating Range

To ensure greater accuracy, the HP-65 performs all calculations
by using a 10-digit number and a power of 10. This abbreviated
form of expressing number is called scientific notation; i.c.,
23712.45=2.371245 % 10! in scientific notation.

Underflow

If a result develops that is too small in magnitude (< 10-%?) to be
carried in a Tregister, the register is set to zero and the program
stops, if running.

Overflow

If a computation develops a magnitude that exceeds the capacity
(>10) of a register, the result is set to all 9’s (with appropriate
sign), the largest magnitude expressable in a register and the
program stops, if running.

Temperature Range

The operating temperature range for the HP-65, including charg-
ing, is 10° to 40°C (50° to 104°F).

Appendix B
Accessories

To order additional standard or optional accessories for your
HP-65, fill out the Accessory Order Form in the Important In-
formation Envelope and return it with check, money order, or
company purchase order to:

HEWLETT-PACKARD, Advanced Products Division
19310-19320 Pruneridge Avenue, Cupertino, Calif. 95014

If outside the U.S., please contact the Hewlett-Packard Sales Of-
fice nearest you.

Standard Accessories

Your HP-65 comes complete with one each of the following
standard accessories:

Accessory Model/Part No.
Battery Pack 82001A
Battery Charger (115/230 Vac) 82002A
Travel Safety Case 82018A
Soft Case 82017A
HP-65 Owner’s Handbook 00065-90200
Personalized Labels (4) 7120-2946
HP-65 Quick Reference Guide 00065-90203
Standard Application Pac including: 0065-67008

® /nstruction Book

m Blank Pocket Instruction Cards (20)
m Prerecorded Magnetic Cards (19)
®m Head Cleaning Card

® Blank Magnetic Cards (20)

Programming Worksheet Pad 9320-0616

83

Optional Accessories

Other accessories, including software application pacs, are speci-
fied on the Accessory Order Form in the Important Information
Envelope. Optional accessories include:

Accessory Model/Part No.
Battery Holder and Pack 82004A
Security Cradle 82015A
Field Case 82016A
Blank Cards (40) 00065-67010
Progr ing Worksheet Pad 9320-0616
Blank Pocket Instruction Cards (20) 9320-0613

The HP 82004 A Battery Holder and Pack consists of a charging
attachment and a spare battery pack so that one battery pack
can charge while the other is in use.

Additional software pacs may be announced from time to time.
Individual programs are available from the Users’ Library. Please
refer to the Users’” Library Subscription Card shipped with your
calculator (U.S. only).

Appendix C
Service and Maintenance

Calculator Checkout Procedure

Note
Charge battery pack before portable use.

A rechargeable battery pack is provided with your calculator.
The calculator will operate while charging; however, be sure to
fully charge the battery pack for 14 hours before portable use.
Charge in either ON or OFF position.

CAUTION
Calculator can be damaged by strong static charge.

Low Power

All decimal points light to warn you that you have 2 to 5 minutes
of operating time left on battery power. You must then either:

1. Operate from ac power.
2. Charge the battery pack.
3. Insert a fully charged battery pack.

Blank Display

If the display blanks out, turn the HF-65 off, place the
W/PRGM-RUN switch in RUN position, and turn the HP-65
back on. If 0.00 does not appear on the display, check the fol-
lowing:
1. Examine the battery pack to see if it is discharged and
whether it is making proper contact with the calculator.

2. If the display is still blank, try operating the HP-65 from
the ac line.

85

3. With the battery charger connected to the HP-65, make
sure the charger is plugged into a live ac outlet.

4. If the display is still blank, the HP-65 is defective (refer
to warranty information below).

Warranty

The HP-65 is automatically warranted against defects in ma-
terials and workmanship for one (1) year from date of delivery
to original purchaser. During the warranty period, Hewlett-
Packard will repair or, at its option, replace components that
prove to be defective when the calculator is returned, shipping
prepaid, to a Hewlett-Packard Customer Service Facility (refer
to Shipping Instructions).

This warranty does not apply if the calculator has been damaged
by accident or through misuse or as a result of service or modifi-
cation by any person other than at an authorized Hewlett-Packard
Customer Service Facility.

No other warranty is expressed or implied. Hewlett-Packard is
not liable for consequential damages.
Out of Warranty

Beyond the one-year warranty period, your HP-65 will be re-
paired for a moderate charge. Return the HP-65 along with
battery pack, recharger and travel case (refer to Shipping In-
structions). If only the battery pack is defective, simply order a
replacement on the Accessory Order Form provided.

Shipping Instructions

Malfunctions traced to the calculator or battery charger require
that you return:

1. Your HP-65 with battery pack, recharger and travel case.

2. A completed Service Card (from the back cover of this
booklet).

If a battery pack is defective and within warranty, return:
1. Only the defective battery pack.

2. A completed Service Card (from the back cover of this
booklet).

Send items to be returned to the address nearest you shown on
the Service Card, after packaging them safely. Under normal con-
ditions, your calculator will be repaired and shipped to you within
5 days of receipt at this address. Should other problems or ques-
tions arise regarding service, please call the applicable service
telephone number on the Service Card, or call Advanced Products
Division, Customer Service Department, at (408) 996-0100.

Recharging and AC Line Operation

To avoid any transient voltage from the charger, the HP-65
should be turned off before plugging it in. It can be turned on
again after the charger is plugged into the power outlet and used
during the charging cycle.

A discharged battery will be fully charged after being connected
to the charger for a period of 14 hours; overnight charging is
recommended. Shorter charge periods will reduce battery oper-
ating time.

If desired, the HP-65 can be operated continuously from the ac
line. The battery pack is in no danger of becoming overcharged.
Since you cannot operate the card reader/writer without a
charged battery, even with the charger plugged in, the battery
should not be removed while running from the ac line. If a battery
is fully discharged, it must be charged for at least 5 minutes
before a card can be read or written. If the decimal points light
during card feed and then go out, your battery needs recharging.

CAUTION
Running the HP-65 from the ac line with the battery
pack removed may result in damage to your calculator.

The procedure for using the battery charger is as follows:

1. Make sure the line-voltage select switch on the battery
charger is set to the proper voltage. The two line voltage
ranges are 86 to 127 volts and 172 to 254 volts.

CAUTION
Your HP-65 may be damaged if it is connected to the charger
when the charger is not set for the correct line voltage.

2. Turn the HP-65 power switch to OFF.

3. Insert the battery charger plug into the rear connector of
the HP-65 and insert the power plug into a live power outlet.

4. Slide the power switch to ON. If the W/PRGM-RUN switch
is set to RUN, you should see a display of 0.00.

5. Slide the power switch to OFF if you don’t want to use the
calculator while it is charging.

6. At the end of the charging period, you may continue to use
your HP-65 with ac power or proceed to the next step for
battery-only operation.

7. With the power switch turned OFF, disconnect the battery
charger from both the power receptacle and the HP-65.

CAUTION
The use of a charger other than the HP 82002A Battery
Charger supplied with the calculator may result in dam-
age to your calculator.

Battery Operation

Use only the HP 82001A Battery Pack. A fully charged battery
pack provides approximately three hours of continuous opera-
tion. By turning the power off when the calculator is not in use,
the HP-65’s battery pack should easily last throughout a normal
working day.

All decimal points in the display light when 2 to 5 minutes of
operation time remain in the battery pack. Even when all the
decimal points are lit, the true decimal position is known be-
cause an entire digit position is allocated to it.

Battery Pack Replacement

To replace your battery pack use the following procedure:

1. Turn the power switch to OFF and disconnect the battery
charger.

2. Slide the two battery-door latches toward the bottom of the
calculator.

3. Let the battery door and
battery pack fall into
the palm of your hand.

4. See if the battery
connector springs have
been inadvertently flattened
inward. If so, bend them out
and try the battery again.

d Maintene

5. Insert the new battery pack
so that its contacts face

the calculator and contact

is made with the

battery connectors.

. Insert the top of the
battery door behind
the retaining groove
and close the door.

7. Secure the battery door
by pressing it gently
while sliding the two

battery-door latches upward.

NOTE: If you use your HP-65 extensively in field work or
during travel, you may want to order the HP 82004A Bat-
tery Holder and Pack, consisting of a battery charging
attachment and spare battery pack. This enables you to
charge one pack while using the other.

Temporary degradation, peculiar to nickel-cadmium batteries,
may cause a decrease in the operating period of the battery pack.
Should this happen, turn the HP-65 on for at least 5 hours to
completely discharge the battery pack. Then, put it on charge
for at least 14 hours. This procedure should correct the tem-
porary degradation.

If the battery pack won’t hold a charge, it may be defective. If
the warranty is in effect, return the pack to Hewlett-Packard ac-
cording to the shipping instructions previously discussed. If the
battery pack is out of warranty, use the Accessory Order Form
provided with your HP-65 to order a replacement.

Magnetic Cards
Protecting a Card

To protect a card containing a stored program, clip the notch
already there with scissors as shown below.

Clip here
Not here — you could lose part of the program.

Care and Maintenance

Try to keep your cards as clean and free of oil, grease, and dirt
as possible. Dirty cards can only degrade the performance of
your card reader. Cards may be cleaned with alcohol and/or
with a soft damp cloth.

Annendiv C
Appenaix U

Minimize the exposure of your calculator to dusty, dirty en-
vironments by storing it in the soft carrying case when not in
use. Each card pack contains one head cleaning card.

ABRASIVE CARD FOR CLEANING RECORDING HEAD

CONSULT MANUAL FOR RECOMMENDED USE =
— THIS SIDE UP — S

The magnetic recording head is similar to magnetic recording
equipment. As such, any collection of dirt or other foreign matter
on the head can prevent contact between the head and card,
with consequent failure to read or write. The head cleaning card
consists of an abrasive underlayer designed to remove such
foreign matter. However, use of the card without the presence
of a foreign substance will remove a minute amount of the head
itself. Thus, extensive use of the cleaning card can reduce the
life of the card reader in your HP-65. If you suspect that the
head is dirty, or if you have trouble reading or writing programs,
by all means use the cleaning card; that’s what it is for. How-
ever, if one to five passes of the cleaning card does not clear up
the situation, send your calculator in for servicing.

Annotating a Card

You can write on the non-magnetic side of your card using any
writing implement that does not emboss the card. It is customary
to write a program name on the top and to write symbols identi-
fying the functions of the top row keys in the spaces below.
Annotating magnetic cards with a typewriter may impair the
read/write properties of the cards.

Using Alternate Track

It is possible to store a program on the opposite edge of a card
(and to later read it) by inserting the other end (opposite to the
arrowhead), face up. Thus, a card can hold two 100-step pro-
grams. However, we recommended that you use only one track
since:

Q aVilal=
oervice

1. Second program cannot easily be labelled.

2. Extreme care must be taken in protecting the second pro-
gram. (Do not clip more than you would on the first track
or you may lose information.)

3. The motor roller is over the second track. Over a period of
time, it may not read properly.

Improper Card Reader/Writer Operation

If your calculator appears to be operating properly except for the
reading or writing of program cards:

1. Make sure that the W/PRGM-RUN switch is in the correct
position for desired operation: RUN position for reading
cards; W/PRGM for recording cards.

2. If the drive motor does not start when a card is inserted,
make sure the battery pack is making proper contact and
has ample charge. Remember that the battery charger
alone does not deliver enough current to operate the drive
motor. A charger must be used in conjunction with a par-
tially charged battery in order to drive the card reader
motor. If the battery has been completely discharged, plug
in the charger and wait 5 minutes before attempting to
operate the card reader/writer.

3. If the card drive mechanism functions correctly, but your
HP-65 will still not read or write program cards, the trouble
may be due to dirty record/playback heads. Use the head-
cleaning card once as directed. Then, test the calculator
using the two diagnostic program cards furnished with it,
following the instructions provided. If difficulty persists,
your HP-65 should be taken or sent to an authorized
Hewlett-Packard customer service facility.

CAUTION

Cards can be accidentally erased if subjected to extreme
magnetic fields (magnetometers at airports

are in the safe range).

10.

11.
12,

Appendix D
Common Errors

. Having unwanted duplicate names (/abels) for user defined

functions in memory because [f [_PRGV | was not pressed
in W/PRGM mode before keying in a program.

. Inadvertently erasing a program in memory by inserting a

magnetic card when W/PRGM-RUN switch is set to RUN.

. Inadvertently erasing a program on a magnetic card by in-

serting an unprotected magnetic card when W/PRGM-RUN
switch is set to W/PRGM.

. Keying unwanted operations into program memory because

the W/PRGM-RUN switch is set to W/PRGM when keys are
pressed.

. Failing to shift up to a gold function ('f orf!) or down

to a blue function ([8]) because prefix key was omitted.

. Losing the T-register contents because the entry of a new

number or the recall of a register lifts the stack.

. Destroying the contents of register R, because a trigono-

metric function, a relational test, or the rectangular-polar
conversion was done.

. Failing to take account of a merged code and to provide a

NOP as filler in a two-step skip.

. Performing a trigonometric function in the wrong angular

mode.

Mistakenly trying to call user defined functions labelled (0],
...,[8].onyl, ..., A can be used to label or call de-
fined functions.

Forgetting to clear flags before using them.

Expecting , stack, or registers to remain unchanged
after calling a user defined function from the keyboard
(lettersﬂ, cee, E) or within a program.

95

13.

14.
15.

16.

17.

Using in a program and forgetting to initialize register
R, to the proper value.

Calculating f(x,y) with the operands reversed.

Losing program and data by inadvertently switching the cal-
culator off, by unplugging the battery charger, or by plug-
ging in the battery charger.

Causing improper return from a defined function because
multi-level nesting was attempted. Proper usage is as fol-
lows: a program can call a function but that function
must return control to the caller before another function
can be executed. See description of RTN in section 4.

Using [CLX to put zero into X only to have it overwritten by

lift. Use (0] to put zero into X.

Index

= [#, X = (arithmetic operations), T, 9, 30
[0],...,[9] (digits)
data entry, 5-7, 23
display specification, 19-21
in program label, 52
in register specification, 27-29
(*] (decimal), 5
(recall to X), 33
10X (common antilogarithm), 45

A i N
B.B.8.8.8 op row keys), 52
(absolute value), 42-44
Accessories, 83-84
AC line operation, 87
Accuracy, 79-80
[# (add), 7,9, 30
Addition
degrees, minutes, seconds, 37, 39
stack, 7, 9
storage register, 30
Addressable registers, 27-30
choosing, 29
doing arithmetic in, 30
storing and recalling, 27
Angular mode, 36
Antilogarithm
common (10%), 45
natural (e¥), 45-46
Arc cosine, 37, 39
Arc sine, 37, 40
Arctangent, 37, 40
Arithmetic operations
stack, 7,9
storage registers, 30
Automatic stack lift, 26
97

B, 52

Battery
operation, 5, 85-94
recharging, 87
replacement, 84
Blinking display, 21-22
Bottom of memory, 51
Branch, program, 56

C

,52
Cards, magnetic. See Magnetic cards.
Chain arithmetic, 10
[CHS| (change sign), 7,23-24
Clearing

addressable registers, 18

calculator, entire, 19

flag, program, 61

memory, program, 19, 61

prefix, unwanted, 18

stack, entire, 18

step, program, 61

X-register, 7
Cleaning card, head, 92
[CLX| (clear x),7, 26
Codes, program

merged, 51

relation to keys, 51
Coding forms, 66
Common errors, Appendix D (95-96)
Comparisons of x and y, 63
Compound growth schedule, example of, 33-34
Control operations, program, 50
Conversions

decimal «> octal, 42-43

decimal angle <> degrees, minutes, seconds, 37-38

rectangular <> polar, 37, 40-41
(cosine/arc cosine), 37, 39
Customer service, 17

b
B.s52
Data
conversion, See Conversions.
display, 19-23
entry, 5, 23-24
moving, 8, 30-33
Debugging suggestions, 76
Decimal<>octal conversion, 42-43
Decimal point
in display, 19
keying it into a number, 5
Decrementing register Rg, 63
Defining a program label, 14, 52
(set degree angular mode), 36
Degrees, minutes, seconds
addition/subtraction, 37, 39
conversion to/from, 37-38
Degrees to radians/grads, conversion, 38

(delete program step), 61

Digits, See [0], . . ., [9] at beginning of index
Disabling stack lift, 26
Display

blinking, 21-22

fixed, 19-20

low battery indication, 21, 23

program operation, appearance during, 21

scientific, 20-21

W/PRGM mode codes, 51, 77
Division

stack, 7, 9

storage registers, 30

D.MS | (decimal angle<>degrees, minutes, seconds), 37-38

(add/subtract degrees, minutes, seconds), 37, 39

&3 (display), 19-21
(decrement and skip on zero), 63
Dynamic range, 80

E
3, 52

eX (natural antilogarithm), 45-46
Editing a program, 57-60
EEX (enter exponent), 23-24
Enabling stack lift, 26
ENTER% (copy xt0y), 7,26
Equals, test, 63
Errors
as indicated by blinking display, 21-22
common, 95-96
computational, 79-81
in data entry, 6
Exchange x and y, 31
Exponent entry, 23-24
Exponential function (y4), 45, 47

F

®, [F¥ (upshift, direct and inverse prefixes), 7-8
Factorial, 45, 47
Fixed display, setting, 19-20
Flags, setting and testing, 63, 59
Flashing zero, errors leading to, 22
Fraction part of a number, 42-43
Frequency, operating limits, 87-88
Functions, 35—47. See also Inverse functions.
absolute value, 42-44
angular mode, 36
cosine, 37, 39
decimal angle to degrees, minutes, seconds, 37-38
decimal to octal, 42—-43
degrees, minutes, seconds, add, 37, 39
exponential (y*), 45, 47

factorial (n!), 45, 47

integer part of a number, 42-43
logarithm, common (base 10), 44-45
logarithm, natural (base e), 45
reciprocal (I/x), 45, 47
rectangular to polar, 37, 41

set flags on, 59, 61

sine, 37, 39

square root, 45-46

tangent, 37, 40

test flags for on, 61

user defined, 14-16, 52

G

8 (downshift prefix), -8
Geometric series, example, 33-34
(set grad angular mode), 36
(go to a label), 56

Greater than, test, 63

H

Head cleaning card, 92

Index register R, 63, 29
Insert program step, 60
(integer /fraction part of a number), 42—-43
Interchange x and y, 30-32
Inverse functions, 35-47. See also Functions.
10* (antilogarithm, common), 45
arc cosine, 37, 39
arc sine, 37, 40
arc tangent, 37, 40
degrees, minutes, seconds to decimal angle, 37-38
degrees, minutes, seconds, subtract, 37, 39
e* (antilogarithm, natural), 45-46
fraction part of a number, 42—43
octal to decimal ,42-43

102 Index

polar to rectangular, 37, 40—-41
set flags off, 61
square, 45-46
test flags for off, 61
Iterative techniques, 59-75

K

Keyboard (picture), 6
Key codes, 51

L

Label, program, 14, 52
Last X

operations affecting, 25

recalling to X, 24-25
(label), 14, 52
Less than, test, 63
Lift, stack, 26
Limits, operating, Appendix A (79-81)
(natural logarithm/antilogarithm), 45-46
(common logarithm/antilogarithm), 44-45
Loading program cards, 12-13, 92-93
Logarithm

common (base 10), 44—-45

natural (base e), 45-46
Loop control, 63—65

(last x), 24-25

Magnetic cards
care and cleaning, 91-92
reading, 12, 76
using alternate track, 92-93
writing, 16, 76
Maintenance, Appendix C (85-93)
Memory, program, 51
Merged codes, 51

Index 103
Move operations. See [ENTER#] , [§T0], [ReL], [R+],[Rv],[x].
See also Stack lift; Stack drop
X Gnultiply), 7, 9, 30
Multiplication
stack, 7, 9
storage registers, 30

(n] (factorial), 45, 47

Negative numbers, entering, 7

Nonprogrammable operations. See ,[Prev |, B33
(no operation), 63

Not equal, test, 63

Number entry keys. See [0], . . ., [9],[+], [EEX], [CHS|.

()

(decimalesoctal), 42-43

OFF-ON Switch. “Power on”: clears all registers and flags.
u sets the display rounding to 2 fixed places (0.00).
= Jeaves program pointer at top of memory. = inserts
5 functions at the top of memory that are callable from the
top row keys to allow single stroke execution of the
5 functions shown in the window above the top row.

ON. See OFF-ON switch.

Overflow, register, 81

P

Pi, recalling, 33

Pointer, program, 51

Polar to rectangular conversion, 37, 40-41
Power operation (y*), 45, 47

Prefix keys, 7, 8

(clear prefix), 18

Prerecorded programs, running, 11-13

(clear program), 19, 61

ndex

Program
control, 50-56
debugging, 76
definition of concept, 4-5
editing, 57-60
entry from cards, 12
entry from keyboard, 15, 48
looking at a, 48-50
memory, 51
mode, display, 58-59
pointer, 51, 60
protection, 16
recording a, 16
stops, 77
writing a, 48
Programming a user defined function, 14-16

R

(roll up), 31

(roll down), 31

(set radian angular mode), 36
Radians to degrees/grads conversion, 38
Range, dynamic, 80

RCL (recall), 27-28

Reading prerecorded program cards, 12-13, 92-93
Recall last x to X, 24-25

Recall storage register r, to X, 27-28
Recall pi to X, 33

Reciprocal, 45, 47

Recording a program, 16

Rectangular to polar conversion, 37, 41
(clear addressable registers), 18

Registers
stack (X,Y,Z,7),8
storage (R', ..., R’), 27-30
Last X, 24-25

Relational tests of x and y, 63-64
Repeating a program, example, 54
Return, 52

Roll stack down, 31

Roll stack up, 31

Rounding display, 19-21

(rectangular<>polar conversion), 37, 40—41
(run/stop), 56

(return), 53

Run/stop, 56

RUN. See W/PRGM-RUN switch.

S

Scientific Display, 20
Scientific notation, data entry, 23-24
Scratch register Ry, 29-30
Service, Appendix C (85-93)
,[EF2)(set flag 1, set flag 2), 59-61
Sign
of exponents, 23-24
of numbers, 7
(sine/arc sine), 37, 39-40
Single step, 51, 76
Skip, two step, 63
Square, 45-46
Square root, 45-46
(single step), 51,76
Stack, operational, 8
arithmetic, 7-11
clearing, 18
drop, 9
lift, 26
manipulation, 31-33
Starting a program, 52, 56
Step, program, 51
Stepping through a program, 48-51, 76
[ETK] (clear stack), 18
[STOI(store), 27-30
Stopping a program, 56
Storing in register R,,, 27-30
Storage register arithmetic, 30

106 Index

Subroutines. See User Defined Functions.
Subtraction
of degrees, minutes, seconds, 37, 39
stack, 7,9
storage register, 30

T

T-register, 8
(tangent/arctangent), 37, 40
Temperature, operating limits, 81
Test operations, 59-65

, (test flag-1, test flag-2), 59-63
Top of memory, 51
Top row keys, 52
Trigonometric functions, See also Angular mode
cosine/ arc cosine, 37, 39
sine/arc sine, 37, 39-40
tangent/arc tangent, 37, 40
rectangular/polar, 37, 40-41
Truncating to fraction/integer, 42-43

U

Underflow, register, 80
User defined functions, 14-16

v

Voltage, operating limits, 87-88

w_

Warranty, 86

W/PRGM-RUN Switch. = W/PRGM position sets program
mode, used to: = create and edit a stored program or = write
program memory on a magnetic card. = RUN position sets
run mode, used to: = read a magnetic card into program
memory = do calculations = execute stored programs.

X

X-register, 8
(reciprocal), 45, 47
(square root/square), 45—-46

(exchange x and y), 31
, , , (relational tests of x and y), 63

Y

Y-register, 8. For functions that use the Y-register
see [, =1, X, =, %],
(exponential), 45, 47

z

Z-register, 8

[Addendum

This addendum contains information for correcting
errors made in the HP-65 Owner’s Handbook, manu-
al part number 00065-90200, printed January 1974.

Page 7, line 4. Add [CHS]at end of line.

Page 14, fourth line from bottom. Add [¥ at
end of line. ‘

Page 15, step 1. Add [f] at end of
first line of step 1.

Page 17, line 10. Change “you” to read
“your.”

Page 26, second sentence. Change to read
“The same lifting action occurs if you recall
a value to X from a storage register, from
the Last X register, or if you recall the per-
manently stored value of 7.”

Page 37, last line in Function column.
Change “x-y” to read “y-x.”

Page 42, bottom of figure 3-2. Conversion
example should read:

998 [t1] — 65610

6560 [f] — 1220
Page 49. Calculator in figure should have
OFF-ON switch set to ON and W/PRGM-

RUN switch set to W/PRGM.
Page 51, figure 4-1. Last line of Merged

Codes should read* [9]are not merged.”
K (continued on back of card) /

Page 58. Insert step after third line to read
“Switch calculator off, then on.”

Page 62, line 8. Change sentence to read
“Press [1] [SF1] to turn flag 1off so that the
square will be computed.”

Page 64, line 11. Change “negative” to read
“positive.”

Page 64, lines 18 and 19. Change (Y to] .
Page 70. Change formula under Program-
ming Label [} : Monthly Total Savings to
read “Savings X 1.01 -} $185 — New
Savings.”

Page 83. Change Standard Application Pac
Part No. to “00065-67008.”

HEWLETT@PACKARD

= :

9320-2246

HEWLETT PACKARD

For Additional Sales and Service Information Con-
tact Your Local Hewlett-Packard Sales Office or Call
408/996-0100 (Ask for Calculator Customer Service).

Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

	Cover
	Contents
	Introduction
	Three Ways to Use the HP-65
	1. Calculating Manually
	2. Running a Prerecorded Program
	3. Creating Your Own Program

	General Operations
	Clear Operations
	Display
	Keying in Large and Small Numbers
	Last X
	Stack Lift Enable/Disable

	Registers
	Addressable Registers
	Additional Stack Operations
	Recalling Pi
	A Compound Growth Schedule

	Functions
	Functions Involving Angles
	Degrees, Minutes, Seconds
	Conversions
	Functions of x and the Exponential Function (y^x
)

	Programming
	Looking at a Program
	Control Operations
	Editing Operations
	Test Operations
	A Complete Problem
	Miscellaneous Program Topics

	A Operating Limits
	B
Accessories
	C
Service and Maintenance
	D Common Errors
	Index
	Addendum

