
· - .

HEWLE II-PACKARD 9820A CALCULATOR

WHY THIS BOOK?

The Operating and Programming Manual supplied with your Calculator describes the Calculator, very completely,
in a formal way. Being the 'formal' manual, it includes essentially all operating and programming procedures for
the Calculator. When the manuals for earlier HP calculators were written they were organized to serve the dual
purpose of teaching the user how to operate and program the calculator, and of acting as quick.reference
manuals. That type of organization required that, in each manual, much of the material be repeated in several
places. Obviously, if the same technique were to be applied to the manual for a calculator as sophisticated as the
9820, the size of the manual would become ridiculous.

The formal manual is, therefore. organized as a text-book; wltich means that you may well have to read many
pages before you learn to actually do anything. That 's why this book came into being - to enable you to sta rt
using your calculator almost immediately.

This book is arranged into two parts: The first part explains how to make keyboard calculations and how to run
pre-written programs. The second part is an introduction to writing programs for the 9820, based on the
assumption that the reader has never before written a program. ,

This book (the term 'manual' has been deliberately avoided) contains only selected topics, and does not contain
complete operating and programming information for the 9820 : for that you must refer to the formal manual.
However, even if you are an experienced programmer, you may well find that an hour or two spent with this
book will pay large dividends when you start to work with the formal manual.

Should you care to comment about this book, there is a prepaid reply card in the operating and programming
manual .

HEWLETT PACKARD

SIMPLIFIED OPERATINC INSTRUCTIONS

MODEL 9820A CALCULATOR

Copyright Hewlett-f'acka,d Company 1971

HEWLETT-l'ACKARD CALCULATOR PRODUCTS DIVISION
P.O. BOil 3m, Lov~lnd. Colorido 805J7, Tfil'I. 1303) 667 ·5(0]

Rue dll Bois-du·lan 7, CH·1211 Me'lnn 2. Geneva. Te4. (022) 41 54 00

TABLE OF CONTENTS

Why This Book?

PART 1: RUNNING THE CALCULATOR
Introduction to the Calculator
ROM's and the Half-Key Blocks
Turn-On Procedure
Loading Printer Paper
Initializing the Calculator
The Fundamental User-Operation
Diagnostic Notes , _ "
Keying Directions and Numbers
Use of CLEAR
Printing Keyboard-Operations
Positioning the Decimal Point
Making Arithmetic Ca lcu lations
The Arithmetic Operators , ,
The Arithmetic Hierarchy ,
Exceeding the Length of the Display
Making Corrections
The Data Memory
Storing Data
Implied Z

inside front cover

1
3
4
6
8
8
9

10
11
12
13
14
16
19
20
20
22
24
25

Arithmetic with Registers ' , , ,
Typical Uses of the Data Memory
Fixed- and Floating-Point Numbers
Range of Calculation
Operating the Printer
Programs
Program User- Instructions
An Example Program
Magnetic Program-Cards

PART 2: PROGRAMMING THE CALCULATOR
Program Writing
The Program Line
The Data Entry Statement
The 'Go To' Statement
The 'If' Statement
The STOP and END Statements
The Flags
Operating Programs - A Summary

APPENDIX
The Diagnostic Notes , ,,_
Another Example Program - N Factorial
Sales and Service Offices

26
27
30
33
34
3S
38
40
44

49
55
57
59
60
62
62
65

67
72

Part 1

RUNNING THE CALCULATOR

INTRODUCTION TO THE CALCULATOR
The -hp- 9B20A Calculator can be used equally well as a simple office machi ne or as a
sophisticated programmable calculator_ It can be tailored, by means of various pl u~in ROM's
(see Page 3) and periphera l devices, to suit any particular requirements. Even without any such
additions, the basic machine ' is still a powerful calculator and is Fully programmable.

T hB basic machine, shown in Figure 1, contains a magnetic card reader and an alphameric
printer as sta ndard equipment. Its memory consists of 179 registers·(see Page 221; ca lculators
wh ich have Option 001 installed have 256 more registers, giving a total of 435. Lift the lid on
the top of the calcUlator - if an option has been installed, there wil l be an identifying decal
located in the indent beh ind the printer (see Figure 1 I. The Option 00 1 decal shows 429
registers, not 435; the reason for this is explained with the description of the memory, later in
this book.

The basic keyboard is shown on the Foldout at the back of this manual.

-Ttl l, boo k describes only the b:.n lc calculellor; i nform~t i on for oocn pl l ··in ~nd peripho-rol dC'llice is conl .!l irMH:I In In 0\"4 n
manual.

ROM ~'u,' .. ~

,'nst,"'oti,," Erl\l~ lope

/~~"'''' 0",,1 til ,ny)

Pltper

.---·'''.!In",'O Cardre.<ler

~·Prl'n t., Window

Blocks of HoJIf-KI;'VS
Idefined bV ROM',)

Figure 1. Identifying the 9820A Features

ROM'S AND THE HALF-KEY BLOCKS

The three blocks of half-keys (not including tho~ along the top of the keyboard) are used with
the optional 'Read-only-memories' (ROM's). The ROM's plug into the slots on top of the
calculator (Figure 11. In general, each ROM uniquely determines the meaning of the half-key
block located immediately in front of it; for example, the Mathematics ROM assigns
mathematical functions such as sine, cosine and tangent and a Peripheral Control ROM enables
the calculator to control other devices, such as a plotter and a digitizer (some ROM's may affect
more than one of the key blocks).

If there is no plug-in ROM installed, the half-keys are used to print or display the characters
Which appear on them_ Any attempt to use t hese keys for other purposes results in a diagnostic
note (NOTE 11) being displayed; see Page 9 for an explanation of the diagnostic notes.

Ampt2 Amp Fu'ie

1,10 eo"OO<1.o"'lII1 Fan FiltlW

Figure 2. The 9820A Rear Panel

,..-

TUR N·ON PROCEDURE

NOTE
Refer to the Operati
informat ion reg<lrdi ng
and so on _ Inst ruct io
are included in the M

ng and Programming manual fo r complete
power and gro un ding requirements. fuses,

ns to run the calculator's exerciser progra m
odel 20 System Elect rica l In spection book let.

The ca lculator operates with power· line voltages of {nomi nally) 100. 120. 220 or 240 volts_
e, and the fuse requ ired, for each nomi na l vo ltage. Before
t t he two slide-switche-s on t he rea r panel are correct ly set

e covers th e line-voltage in your area (a lso ensure that the
ows the location o f the switches, Figure 3 shows the setting
age.

Table 1 indicates the operating rang
turning on the calcu lator. ensure t ha
to the voltage ,.."h05e operating rang
correct fuse is installed). Figure 2 sh
of the switches for each nominal vol t

Tab

NOMINAL
VOLTAGE
100 volts
120 volts
220 volt s
240 volts

Ie 1. Power· line Voltages
-=--r-----,

OPERATING RANGE
(-10%, +5% of nominal)

"-'--+---::----1
90 to 105 volts 2 amp

FUSE

108 to 126 volts 2 amp
198 to 23 I volts 1 amp
216 to 252 volts 1 amp

rrIn rrIn rrI1l rrI1l >0 0> >~ ~~ >0 0> >~ 0>
8'" "0 ON ~O

tJj ~ trJ [aj
100 volts 120 volts 220 volts 240 volts

Figure 3. Switch Settings for Nominal Power· Line Volta.ges

1. If the calculator is not plugged in: Plug one end of the power cord into the lowest of the
four sockets at the bock of the calcu lator ~ Figure 2); plug the other end of the cord into a
su itable power ou tlet, such as a wall-socket. Plugs and connectors are keyed, t hey cannot be
connected improper ly.

2. If the ca lculato r is switched off: The OFF/ON switch is located on the front of the
ca lculator, below the keyboard and to the right ~F i9ure 11. Set the switch to the ON position;
when the followi ng display appears, the calculator is ready to operate.

(0: Et·m ~

LOADING PRINTER PAPER

ami The paper key advances the printer paper as long as the key is being pressed. 00 not
press PAPER if t he printer is printing or if a program is runni ng. PAPER is purely a mechanical
key; it cannot be operated from the program.

Printer paper is loaded into the well .underneath the flap on top of the calculator. Three roll s of
paper are supplied with the calculator; extra rolls can be ordered from HP using the following
part numbers:

Pack of six rolls - -hp- Part No. 9281-0401-006

Case of sixty rolls - ·hp· Part No. 9281 - 0401 - 060

To load a new roll '

1. Lift the bail (see Figure 4}; remove and discard the paper core from the previous roll (if
any}.

2. Remove the first layer of paper from the new roll and insert the roll, with the free end
positioned as shown in Figu re 4, into the printeL Lower the bail.

3_ Hold the PAPER key pressed until the paper emerges from behind the printer window. The
paper is now loaded and the printer ready to use .

•

To remove an unfinished roll:

1. Unroll the paper until the roll can be lifted out of the printer.

2. Hold the roll firmly and pull it up and forward ; the paper guide will tear t he paper off
cleanly.

3. Press the PAPER key to push out the remaining paper.

Figure 4. Loading Printer Paper

INITIALIZING THE CALCULATOR
DmI The ERASE key has the same effect as switch ing the calculator off and then on aga in; it
erases all stored data and programs from memory , and cl ears t he results of any previous
calculat ion or operation.

THE FUNDAMENTAL USER-OPERATION
Commun ication wit h t he calculator is through th e display. In general, there are two basic steps
to fo llow when performing operations :

1. You 'writ e' a set of directions into the display (by pressing the appropriate keys) and t hen

2. You instruct the ca lcu lator to follow these directions; the result of any numerica l operat ion
is automatically displa yed. When making keyboard ca lculations. step 2 consists so lely of pressing
the EXECUTE key.

These two basic steps form the 'fundamenta l user·operation;' with some few exceptions, all
operations - mak ing calculations, loadi ng or running programs. giving directions to the printer,
etc. - consist of some variation of the 'fundamental user-operation' . (Numerous examples
appear in th is book; almost all of them can be cited as examples of the fundamental
user-operation.)

DIAGNOSTIC NOTES

In addition to displaying numbers, directions, and the results of operations, the calculator also
displays diagnostic notRS to inform you of operational errors or of special situations. The basic
notes are numbered from 01 to 16 (higher numbered notes are associated with the various
plug·in ROM's) ; the note number indicates the type of error or situation. For example, NOTE
01 indicates that you gave the calcu lator a direction which it could not understand; NOTE 16
indicates that the pr inter has run out of paper. A list of the basic notes and a brief description
of their mean ings is given in the append ix.

When a 'note' cond ition occurs in a program, the program stops; as well as showing the note,
the disp lay also shows the number o f the program line in which the no te condition occurred;
e.g. ,

ind icates that a note 02 condition occurred du ring line 4.

KEYING DIRECTIONS AND NUMBERS
Directions are written into the display by pressing the appropriate keys. Suppose, for example,
that you want to add 2 to 4 and print out the result; you press keys PRINT 2 + 4. The
calculator does not. however, fo llow your directions until it is instructed to do so, by your
pressing EXECUTE. It then prints (and displays) the result, 6.

(As you have not yet been shown how to initialize the display - see Positioning the Dedmal
Point, on Page 13 - the printout from the above keying sequence will p robably consist of 6
fol lowed by the decimal point and some zeros; also, it may end with 'E 00'.)

Numbers are keyed into the display, as on any standard office·machine, by pres~ing the number
keys (0 through 9) and the decimal point key in the required order. If a number is negative the
'minus sign ' should be keyed first before the number is keyed. Use of commas (such as in
32.341.61 is not allowed. (See 'Making Arithmetic Calculations' for examples of typical keying
sequences.)

As is the case with a direction, even though the keyed number is displayed, it wil l not be
'executed ' by the ca lculator unti l the EXECUTE key is pressed (step 2 of the FIJndamental User
Operation). An executed number may appear in a different form from the original number,
altho ugh it will still have the same value; the reason for this is explained under ' Fixed· and
Floating-Point Numbers ' on Page 30. You would not, of course, normally want to execute just a
single number ; the number wou ld be included in some set of directions and then the directions
wou ld be executed.

,

USE OF CLEAR
The CLEAR key clears the display; it operates immediately a nd does not have to be followed
by EXECUTE. An 'end of li ne' symbol (I-) appears in t he display when CLEAR is pressed; this
indicates tha t t he calculator is 'idle'.

It is not necessary to clear the display before keying the next direction as long as the previous
direction has been executed ; in this case use of CLEAR is optional. If no subsequent execution
has taken place since the last direct ion was keyed, then CLEAR must be used.

NOTE

As indicated on the inside front·cover. there is a great deal of
information about the 9820A Calculator which is not included in
thi s book. It is, therefore , conceivable that you might inadvertent­
ly press some combination of keys wh ich sets off some internal
activity that 'Iocks·out' t he keyboa rd - t he display may blank and
eVen the CLEAR key may have no effect !

If this should occur, keyboard operat ion can be retu rned by
pressing ERAS E; or if you do not wish to erase data and prog rams
stored in t he memory, by fi rst pressing STOP and then pressing
CLE AR.

PRINTING KEYBOARD-OPERATIONS
To make a printed record of your keyboard-operations, pr~ the following key sequence:

This establishes the 'trace' mode so that, as you perform subsequent operations, the printer
prints the operations performed, and the result, each time the EXECUTE key is pressed. (A few
keys, such as CLEAR, are not printed.)

To discontinue tracing, press the key sequence:

that operation will be printed and then tracing will cease.

" ':12

POSITIONING THE DEC IMAL POINT
The FIXED N key, followed by anyone of number keys 0 through 9, establishes the number of
digits to be seen to the right of the decimal point when the result of a calculation is displayed
or printed. For example, if you are working with whole numbers you will not want to see any
digits to the right of the decimal point; in this case press

(!moB I=--- 0 _J ((_teA J
If you are working with dollars and cents, two dig its are sufficient:

or, if hund redths of a cent are to be seen,

n d .. (4J(.......)
Often you wil l see a number which contains the letter 'E'; this type of number is known as a
'floating-point' number, discussed on Page 30.

MAKING ARITHMETIC CALCULATIONS
For arithmetic, the fundamental user-operation consists of writing an arithmetic expression into
the display and then pressing the EXECUTE key, to instruct the calculator to evaluate that
expression.

NOTE
Keying examples are included in the text for you to perform if
you wish to do so; the EXECUTE key is not shown in every case.
When a complete expression has been written into the display,
press the EXECUTE key if you want the calculator to evaluate
that expression. If you do not execute an expression, remember to
press CLEAR before keying the next one.

If you make an error when keying an expression either press the
CLEAR key or refer to 'Making Corrections' on Page 20.

Before starting the examples, initialize the display by pressing the
following keys:

An arithmetic expression is written into the disp lay by pressing keys in the same order as they
would be written on paper, one key per character or symbol.

(~-!' (:;:-'1 (-~- ,
~- - " "--' '---)

,-- - -,
I fH~."t I
, ----'

r- - --
'.f!l.I fI I

"-----,

4+ :-:

\.:4+::::) (;:; -::::)

4 . >313

THE ARITHMETIC OPERATORS
Apart from the number keys the fol lowing operationa l keys are available for writing ari t hmetic
expressions (press EXECUTE after each expression) .

• Addition:

• 1. Subtraction:

2. Unary minus (negative of a quantit y):

(

•

a Multiplication:

(

• Division:

• Square root:

1 --:- .--,) I • • • ~1

.~

0 ~I) (.
.-

O[i) -~: . •

THE ARITHMETIC OPERATORS (Con,inuodl

D.
1. Grouping: as in the above examples, quantities in parentheses are treated as one quantity.
Thus V (4+5) is equivalent to v'9, whereas. v4+5 adds 5 to t~e square root of 4.

2. Implied Mu ltiplication: 4(3+2) is the equivalent of 4-(3+2); in this case use of the
'multiply' sign is opt ional.

Parentheses can be nested (Le., parentheses inside parentheses, inside parentheses, etc.) but they
. must always be balanced, that is, there must be the same number of left·handed parentheS(l'S as

there are right-handed.

(H3.0l1 J

Notice that the preceding example contains too many keystrokes to be displayed all at one time
and that the display shifts left to accomodate the 'extra ' keystrokes .

. .

EXCEEDING THE LENGTH OF THE DISPLAY

The length of an expression is not limited to the length of the display. When you keyed the last
example under The Arithmetic Operators (Page 18), you saw that the expression contained too
many symbols to be displayed at one time; as each 'excess' symbol was keyed. the display
sh ifted left to make room. The maximum allowable length for an expression varies between 35
and 69 keystrokes, depending upon the nature of the expression. If too many keys are pressed,
the display shows ' NOTE 09' (s"" the Appendix); depending upon the nature of the expression,
the note may appear either before or after the EXECUTE key is pressed. In either case, press
CLEAR and write a shorter expression.

MAKING CORRECTIONS

The BACK and FORWARD keys enable a displayed expression to be al tered or corrected
without nrkeying the entire sequence.

1. If a wrong key is pressed when writing an expression, it can be corrected immediately by
press ing the BACK key and then press ing the correct key .

I

2. A displayed expression can be blanked, key by key in reverse order, by pressing BACK once
for each displayed key. The b lanked keys can then be returned to the display one at a time by
pressing FORWARD. If an expression contains a wrong key, press BACK unti l that key is
blanked, press the correct key and then press FORWARD to return each subsequent key (or, if
extra keystrokes are required, key in the remainder of the expression). For example, suppose
the number 123456789 is keyed incorrectly into the display:

1 2 :~ : 4 4 4 "? ::::: 1::1)

To correct. press:

1 2 :~:4)

and then press:
(-~-, ,--,
1 51 1 6 1'="''='' ~ ... _--' '--_)

3. If the incorrect expression has beoen executed but no key has since been pressed, t he
expression can be returned to the display (by pressing BACK), corrected as before, and then
again executed.

THE DATA MEMORY
The calculator's memory serves the dual purpose of storing data-numbers and of storing
programs, The memory-map of Figure 6 shows that the memory is divided into rows, referred to
as 'registers', Six registers are given alphabetic names and have their own keys (A, B. C, X, Y, ZI,
The rest have alphameric names - R (for 'register') followed by numbers, starting with zero; the
R-registers do not have their own keys but are selected by pressing the RI) key and following it
by the appropriate number keys,

A 172

R428 In / :

R2
Rl
RO

Z
Y
X
C
B
A

Programs st.art in
highe:n numbe-r regist.,-

Figure 6, The Memory Map

Program "nd
dlltil 5tora!)C

Data 1toraqe only

The basic calculator contains 179 registers: six alphabetic and 173 R-registers (RO through
Rl72). Calculators with the Option 001 memory installed have an additional 256 R-registers
(R 173 through R428) giving a total of 435 registers (the decal shows 429 because it does not
include the six alphabetic registers) .

Some of the ROM blocks (see Page 3) require part of the memory for their OWfl use. When
one of these ROM's is installed, it automatically takes the required registers, starting at the
highest numbered register and working downwards. Those registers are then temporarily not
available for program or data storage, until the ROM is removed.

When programs are stored they start in the highest-numbered available R·register and sequen­
tially fi ll the memory downwards; programs cannot be stored in the alphabetic registers. It is,
therefore, most convenient to store data first in the alphabetic registers and then in the lower
numbered R-registers. If the memory contains no program (I.e. at turn·on, or if ERASE has
been pressedl. then all registers (except those required by a ROM) will be available for data
storage. If the memory does contain a program, then the higher· numbered registers will not be
available for data; 'NOTE 06' will be displayed if you attempt to store data in a register which
is not avai lable.

The number of available R·registers can be detenmined at any time by pressing CLEAR LIST
STOP. The printer will start to list the program (the STOP saves having to wait for the whole
program to be listed); at the bottom of the list will be a number preceded by the letter R,
Indicating the number of R-registers available. (The lowest·numbered register is RO; subtract 1
from the number printed to obtain the name of the highest·numbered register available for data
storage) .

STORING DATA
One reg ister can contain one data-number_ It is not necessary to clear a register before storing a
number in it because the number being stored automatically substitutes for the exist ing stored
number_ The enti re memory is, however, cleared at turn-<>n or if ERASE is pressed_

• Storing data refluires use of the 'goes into' key:

r ~'1 L'-z-)- \..1--:--) (7'1 r=. 1 (A '\ I ,,,<on< 'I
_---' _ _ ,_I l2J ~ ~_--'

stores the value (12.6) in the A register. Similar ly,

C~J 8 G"J C 'll"'" -J
510res 6 into register X and

stores 19 into R12.

If you wish to see a stored number, use eithe r the DISPLAY or the PR INT keys:

~(A,! r-..... "l
'--.- '---

displays the number currently stored in A; the number remains stored in A.

(,.'~r I 8 1 (0 (~I r ~m~rt J
prints the contents of R12; the number remains stored in R12.

IMPLIED Z

In genera l, if a stored number is to be kept for any length of t ime it should not be stored into
the Z register because of the 'implied Z' feature. The resu lt of any ari thmetic express ion is
automatically stored in Z if no other place is specified; thus

(-;-, (-;-'I I~I 12-) ("~.,, 'I
. 1...- ~ '--" .~~.

is equivalent to

both expressions disp lay 14.2 ami also store it in Z. Similarly.

(3J (~) C~ C:J C~:I (6) C~) (3J C ''''~'_J
is equ iva lent to

ARITHMETIC WITH REGISTERS
Arithmetic expressions can be written using register names instead of actual numbers. When the
expression is executed, the va lues currently stored in those reg isters will be automatically
substituted for the register names in order to evaluate the expression. For example, if you have
just performed the examples under 'Storing Data' (Page 24), the following numbers should be
currently stored in the memory:

With the above values stored , keying

12.6
6

19

,n
in
in

A
X
R12

O '+' r;;;-,I (-;-') (21 r='11xI C ~I
\~J 'C.:.J l _ "-_-' '_J l:J '

would be equivalent to keying

C~J C~J 0 CD G ('0 0 (~ (~J '=-:::J
Other values stored in these registers WOUld, of course, give a different result fo r t he same
expression.

Numbers and rllgister·names can be mixed in an expression:

(~0 (+ -; C~) (=J G"J (a""'_J
would be the equivalent of keying

c:) (~J C1J CD (= c~) I~) C~J 8 C~: 0'''"''J
(again assuming that the values previously stored in A and X have not been changed).

TYPICAL USES OF THE DATA MEMORY
Following are two examples illustrating the type of calculation which you can make using the
memory.

Example 1. Storing a value whic h is to be used many times.

Suppose the unit-price of some item is S132.57 and you are to calculate the cost of buying
various quantities. To save keying in the price for each calculation, you can store it and then
refer to it by registe r-name.

Assume you have the fol lowing list of quantities: 47, 29, 36, etc.

Fin;t store the unit·price into t he memory (say in register A) :

8 !::B (~ C l [5) :~;; (: J 8 c :;:;;--) (r---------l~:=:-; :"'=-:-'-.--::5:-:~~·:"

TYPICAL USES OF THE DATA MEMORY ICo"tlnu"'~

Now make the calculations for each quantity in tu rn using the price stored in A:

and so on for each quantity.

EXample 2. Accumulating a total.

5:3

4 ···' .. ' · .. ·· ",.-.)
I'(~ • . ..} '::' .

Suppose you have a liang) list of numbers to be added: 9, 36, 25, , etc.

The total can be accumulated, one number at a time, in a storage register. Be sure that the
register is first cleared (store zero) or the fina l total may be wrong.

l 0 -) -J 0 C:::-J

08 G.) 8 0 C:::J

.
•

and so on for each number on the list. The acc umulative total will be displayed and stored in
register-B at each step.

Because of th e 'implied Z' t he above sum Can also be made as follows:

,---- \ .~--~ l or u _t(.• u)
" ~ ----) , .

~ ,-, ,'-, ,'--, .---.
I Z)! +1 !31 \ 6 ('"0''' I ~_t ,----' '_.I ,--...J __ _,

the total will be disp layed and stored in Z. (Page 40 conta ins a program which shows how to
even further simplify tota lling a list.)

•

FIXED- AND FLOATING-POINT NUMBERS
Numbers can be keyed into the display and displayed in either of two forms: 'fixed-poi nt' or
'floating-point'.

'Fixed-point' means that the number appears as commonly written, with the decimal point
correctly located (e.g. 123.45).

'F loating-point' numbers are written with the decimal point immediately fo llowing the firs t diQit
(discounting leading zeros) and with an exponent. The exponent, which represents a positive or
negative power of ten, indicates the direction, and the number of places, that the decimal point
should be moved, to express the number as a fixed-point number. In the calculator the
exponent can be any integer within the range -99 to +99.

Examples:

a.
b.
c.

FIXED FLOATING

1234.5 = 1.2345 X 1()l~
0.0012345 = 1.2345 X 10- 3 (exponent)
1.2345 = 1.2345 X 100

taD selects fixed-point display of (executed 1 numbers. The letter N indicates that the key
must be followed by one of the number keys (0 through 91 to select the number of digits to be
displayed to the right of the decimal point.

For example:

,----,
L '! 111 1 I

--' 1 ,-,., 4 <= .- '-'
.::::.,..::.. II ,I b ·~·

)

notice that the last displayed digit is automatically rounded up from 7 to 8 because the next
(non-displayed digit) is greater than 5. Even though it was rounded in the display, the number
was not changed:

lID! FLOAT N (and its associated numeric key) operate in the same way as FIXED N (and
its numeric key) except that floating·point display is selected. (When the calcu lator is first
turned on. FLOAT 9 is automatically assumed.)

For example: (with the number from the previous example in the display)

1 .-, .-, 4' ~ ,-..., ,-,,~ '1 E
• .::.. • .:.. ' .~.I b f '::. ~. ~ ~J 2)

FIXED- AND FLOATING-POINT NUMBERS (Con\;nued l

The 'E' indicates that the next two digits constitute the exponent. I f the exponen t is negative
the minus sign follows the E.

•

NOTE
No more than ten significant dig its can be displayed; therefore, if
a number becomes too large to be properly displayed as a
fixed ·point number, it will be automatically displayed as a
floating·point number. If the number becomes too small, only
zeros are displayed but the number can still be seen if 'floati ng' is
then se I ected .

'Enter Exponent' is used to designa te the E (exponent) when numbers are being keyed
in floating·poin t form.

2. 5'-:,OOE ~J2]

4.7300 E- 02]

When keying numbers in floating-point, the decimal point need not always be keyed immediate­
ly after the most significant digit; for example, 12345 could be keyed in many different ways,
here are a fBw of them:

RANGE OF CALCULATION
The range of the calculator is from ±1 0-99 to ±9.999999999 X 10~9; when this range is
exceeded dUring a calculation, 'NOTE 10' is displayed. Calculations which normally reSUlt in
zero, such as subtracting a number from a number equal to itself, do not exceed the range.

OPERATING THE PRINTER
IZIDI Refer to 'Loading Printer Paper' on Page 6.

lED lED Refer to 'Printing Keyboard Operations' on Page 12.

.. Lists programs stored in the memory; see 'An Example Program' on Page 40.

... The print key is used to pri nt both numerical values and messages. The fo rm of a
numerical printout is changed by the FIXED N and FLOAT N keys in the same way as the
display is changed Isea 'Positioning the Decimal Point', on Page 13).

To print numbers:
.-) r

1'"[1 "I I 2 1 (:.:L! lill I
,-- _ .1 '-__ J

; --', ~-'1 ,--) (---,

, ,,, •• 11 1]1 2 Il 3 I tx~:vtt J
' __ _ _ } ,-_..J ',-_) ''"'--__ -'

To print the result of a calculation:

(>,,-D ~I CD C~J CD C~:I cu,~, J

To print the contents of a storage register:

o C~) 0 G 0 c::::J
I " 'Nt I 0 C tHcm J

Similarly ~ 0 or , .. ,,, , 8 8 0
To print an alphanumeric message: This requires the use of the 'quote' key (..) to both start
and end the message (the 'quote' symbol is not printed):

f,;\ = ===0==aiill}==Or:\ f,;\ C J , ... " , U ',--,I I~ 'u U A \-.-J I~ ~' l~ ',--) . ~~) U "'''''

No more than sixteen characters (including spaces) can be printed on one line of a message;
each line must be enclosed in quotes. When following the same PRINT instruct ion, lines must be
separated by commas; for example:

~ CJ····· · --CJ 0 CJ · -- ... -- CJ C """. J
prints two lines.

OPERATING THE PRINTER (Cont inuedi

If messages and values are to be mixed, they must be separated by a comma:

00080C "" mJ
[@JCJ 0 8 CJ 0 0 C "''''' J

FI=
456.00

EI!I Followed by number keys (anyone of the set 0 through 15) causes the printer to space
vertically (line-feed). The number key specifies the number of lines spaced.

[@J CJ U 0 (2) u CJ C ""'" J
1 ""'t~J 0 C mCI!U J
[f'IIlrfll 0 C mCOlE J DR'.,'S

l

•

When used in a message, most keys result in the character printed being the same as the
character on the key; following are the exceptions:

~ U prints one blank character-space.

8 prints ;~I

8 prints:

8 prints

§ prints 't'

The following keys either cannot be used in a message or they result in some meaningless
character being printed:

1. All of the half-keys at the top of the keyboard and the four blank keys in the left-hand
keyblock.

2. These three large keys: C DOwn J C'" .. " J C "'" J
3. These keys in the right-hand keyblock: 8 G 8 @ G:) 8 mh

PROGRAMS
A program enables the calculator to automatically execute the keys necessary to solve a
particular problem. First the program must be loaded into the calculator's memory; this
'teaches' the calculator which key sequences are required and the order in which they are to be
executed. Once loaded, the calculator can 'remember' that program until a new one is loaded
over it or until the calculator is switched off.

A program need not be keyed into the calculator more than once because a· loaded program can
be recorded on magnetic cards; recorded programs can then be loaded back into the memory
any time in the future. Magnetic cards are a convenient way of permanently storing programs
because they enable even long programs to be loaded back into the memory in seconds.

When the program has been loaded, you run it by initializing it in some way and then by
pressing the RUN PROG RAM key to start it running. Most programs have one or more halts in
them to enable you to key in any required data numbers.

PROGRAM USER-INSTRUCTIONS
The versatility of the calculator and the variety of programs makes it impractical to give here a
precise set of instructions which will enable you to run all programs. User-instructions to load
and run a particular program should be provided by whoever writes the program. Without

.
•

user-instructions, the user who knows nothing about programming would find it impossible to
determine the steps necessary to run the program; even an experienced programmer might, in
many cases, find it easier to write a new program rather than try to run an existing one without
any user-instructions!

Following are some general gUidelines to the type of information which a set of user-instructions
should contain (these guidelines assume that the program has already been recorded on a
magnetic card and that it is known to work properly) :

1. What the program does.

2. How many magnetic program cards are to be loaded and how they are identified.

3. Where, and how, to start loading the program . . . usually this will be at the beginning of
memory, but not always.

4. Where, and how, to start running the program ... usually program execution will start at
the beginning of the program, but, again, not always.

5. When to key in data numbers and when to press RUN PROGRAM.

6. How to interpret the display or printout and where to look for results.

7. Any other special information you may need (such as which ROM's should be installed).

8. A set of data numbers with known results which you can use to test-run the program and
check that you are interpreting and following the instructions properly.

AN EXAMPLE PROGRAM
The purpose of this program is to show you the type of operation which you will have to
perform to run programs. It is also used to demonstrate use of the magnetic cards.

Before the program can be demonstrated it must first be keyed into the calculator's memory;
use the following key sequences to do this. As you will see, the program consists of lines, which
are loaded one at a time; before pressing the STORE key at the end of each line, check the
display to ensure that the line has been keyed correctly - if necessary the BACK, FORWARD
and CLEAR keys can be used as before to correct a line before it is stored. If you need to
correct a line after it has been stored, wait until you have stored all of the remaining lines. The
incorrect line can then be recalled by pressing

[c:mltl 8 ~ine Numbe~ [mALlj

Correct the line as before, and press STORE to re-store it (even though the corrected line may
have been lengthened or shortened, it will not be necessary to move any subsequent stored lines
to compensate for the correction; the calculator does this automatically).

To load the program; first initialize the calculator: t t

Load line 0:

NOTE
A keyed line is not loaded until the STORE key is pressed; after
pressing STORE, do not press CLEAR before starting to key the
next line - if you do, then the next line will erase the previous
line.

0@00 C 0 JG0C n, .. J)
Notice that the line number (0) and the end-of-l ine symbol (1-) were added when STORE was pressed.

Load line 1:

r.:\==0=~===t.:I==r.:I00C J [§)uUU X UUUU U \.!J UUU' A ~ ..
Load line 2:

8®8008080C no" J
Load line 3:

@J00080G0088C n .. , J

AN EXAMPLE PROGRAM (cont;nued)

Load line 4:

@DCJ uu u 0u0CJ0 0C ,.on J
Load line 5 :

Be .. ~.)
The program is now loaded.

To check that the program has been loaded correctly
print a 'listing' (shown opposite) and compare that to
the keying sequence used :

(the R-number at the end of the list will probably differ
from that shown, because of different calculator con­
figurations)_

0:
~;F'C 2 ; 0·,81-
'1 :
ENT " NE XT NUMBER
" , r, I··
2:
IF FLG 13=1;GTCi
4 1-

F'PT A;A+B"B;G'fO
If-

F' F:T "TOTAL=":,B~'
" . ,_I •

EHD I­
F:414

l

The program just loaded enables you to total any list of numbers (as was done manually in
Example 2, on Page 28); as each number is keyed, it is printed automatically; then, at the end
of the program, the total is printed and identified. The program has been arranged so that the
list of numbers can be any length .

Before running the program, position the decimal point so that you will obtain the desired
printout. For example:

Start the program:

[§§) (-0 J C ,n",. J
". " 1-,·i t:. ,:.:.

(Using the same list of numbers as before, 9, 36, 25,) key in the first number from the list and
press RUN PROG RAM. When that number has been printed, key in the next number and again
press RUN PROGRAM; continue in the same way for all remaining numbers. When all numbers
have been printed, press RUN PROG RAM, without pressing any other key, so that the program
will print (and display) the final total. The program has now ended; it can be started again for a
new list of numbers by pressing END RUN·PROGRAM and then keying the list as before. (If
you cannot re-run the program, press STOP and CLEAR, and then press END RUN-PROGRAM.)

Here is the printout from the example program, using the
list of numbers given above.

TOHIL=

MAGNETIC PROGRAM-CARDS
Figure 6 shows a magnetic card, which is used to permanently (or temporarily) store programs
or data. The card has two sides, identified by the word 'SIDE', space being left for you to write
any other identifying information. The sides are used independently, somewhat in the same way
as the two sides of a tape are used in a standard tape·recorder.

~ROQAA"" ___________ tlOE __

Protect Tab
C=========,: .. :,~:.:> CI-<--. Protect Tab

11'i.I1 ~~L~~~~:=~~RA'" CARD 1112 . 0012

~ <~========:J
SIDIi PROGRA,M

Figure 6. Magnetic Program Card

Once a recording has been made on a card-side, that card·side can be protected from erasure by
tearing out the protect tab (see Figure 6). The recording on a protected card-side cannot be
changed, so never protect a recording until you have ensured that the recording is correct -
load the program back into memory and run it.

, .

Figure 7. Inserting the Card

Figure 7 shows a card being inserted into the card reader, either for recording or for loading;
the printed face faces the keyboard and the card·side to be used is the side with the arrow
pointing down (notice that the card is leaned slightly towards the keyboard). Always start the
card·reader motor (keying sequences given below) before inserting the card. When the card is
about an inch into the slot it will be automatically pulled through the card reader and partially
ejected from the lower slot. When the card stops moving, remove it from the slot.

MAGNETIC PROGRAM-CARDS IContinued)

This procedure enables you to record the example program (Page 40)' load it into the memory,
and run it, to ensure that it is loaded correctly. Press:

8 C U(Clilf J ImOll~J C lUCillE J
The card·reader motor will start; insert an unprotected card into the card reader; when the card
stops, the recording is completed.

To load the program from the card into the memory, first clear the memory:

Then press:

8 c mCU1t J [§J C meu" J
and insert the card (with the arrow on the card·side containing the program pointing down) into
the card reader. When the card stops moving, the program is loaded and ready to run as before
(press END RUN-PROGRAM)'

The procedure given above is intended specifically for the example program. The same
procedure will, however, apply to most other programs which start at line 0 and which do not
require more than one card-side.

Other ways of recording and loading programs and data are included in the Operating and
Programming Manual. The loading procedures for specific (pre-recorded) programs should be
included in those programs' user-instructions (see Page 38).

Notes 12 through 15 (see Appendix) apply to magnetic card operations.

,

NOTES

. .

Part 2

PROGRAMMING THE CALCULATOR

PROCRAM WRITINC

Writing programs for the 9820A Calculator is, in general, easier than you might expect. It
consists of writing 'statements' (such as the arithmetic expressions, inst ructions to the printer,
data storage instructions, etc., used earlier in this book) and then combining them with other
special (programming) statements, in some logical order, to form a program.

Program writing can be considered as having three main steps:

1. Define the objectives of the program - the problem to be .so lved, how the results are to be
presented, etc.

2. Decide what operations are necessary, and the order in which they are to be performed, in
order to achieve the objectives.

3. Write precise instructions, in a manner which the calculator can understand, instructing it to
perform the required operations.

, .

PROGRAM WRITING (Continued)

To illustrate the three steps described above, consider the program from Page 40.

1. Define program objectives :
The program is to be used to total any list of numbers; each number in the list is to be printed
and then the final total is to be printed and identified.

2. Decide necessary operations:
This step is best achieved by means of a 'flowchart' - a diagramatic representation of the
operations to be performed. Figure 8 is the flowchart of the example program ; the arrows
indicate the order of operations, the ovals represent user operations, and the rectangles
calculator operations. The diamond represents a question which the calculator must ask in order
to decide which way to 'branch'. The calculator itself makes this decision , whethe r to branch
back around the 'loop', or whether to branch out of the loop and finish the program; in this
case t he decision is based on whether or not a new number was keyed in . Notice, in particular,
that there is considerable sim ilarity between the operations shown on the flowchart and the
operations which you might perform in order to total a list of numbers on paper.

NOTE
It is perhaps only fair to point out to the novice programmer that
a final flowchart (such as that shown) usually results only after
several attempts to produce it.

ADD NUMBER
TO TOTAL

PR INT
NUMBER

START

1. PRESS: END
2. PR ESS: RUN PROGRAM

1. KEY NEXT NUMBER (if any)

2. PRESS: RUN PROGRAM

YES

Figure 8. Example Flowchart

PRINT
TOTAL

PROGRAM WRITING (Continued)

3 . Write the program :

I
,~ .
~, .
SPC 2;0~ B f-
1 :
ENJ "NEXT NUMBER
",At-
2:
IF FLG 13=H GTO
4f-
3:
PRJ AiA+B.;.BiGTO
It-
4:
PRJ "TOJAL=",Bt-
5:
END f-

From the program listing it can be seen that a program
consists of numbered lines (of varying length); in this
program the lines are numbered 0 through 5. (One
'program line ' may occupy more than one 'printed line'
because the printer can print no more than sixteen
characters on a line.) A line's number is assigned auto·
matically, in numerical sequence, when the line is stored
into the calculator's memory. When the loaded program
is run, the lines will be executed in the same numerical
order, unless special instructions (see 'The Go To State·
ment' on Page 59) are included to change that order.

Each line consists of one or more statements; the
statements on anyone line are separated from each other
by mearis of the semi-colon. Several of the statements in
the sample program will already be quite familiar to you
while others will be new - the following discussion
concentrates mostly on the types of statement wh ich are
new. While reading this material, correlate the operations
shown in the flowchart with the statements of the
program.

NOTE

The 'end-of-line' symbol (I-) is automatically added to each line
when the line is stored (by pressing the STORE key).

Line 0 contains two familiar statements:

SPC 2 (not shown in the flowchart) advances the printer paper two lines; this separates the
printout for this program from any previous printout.

0 B stores zero into register B so that the initial total for the list is zero.

Line 1 contains an 'enter' statement (a request for data); this halts the program to enable the
user to key in a number and then press RUN PROGRAM to continue running the program. This
particular 'enter' statement consists of two parts, separated, as is proper, by the comma: the
characters in quotation marks (N EXT NUMBE R) will be displayed when the program halts; the
part following the comma is a register name (in this case A) - the keyed number will be
automatically stored in that register as soon as program execution resumes.

Line 2 contains an 'if' statement, which enables the calculator to ask the question shown in the
diamond in the flowchart. A more complete explanation of the 'if' is given later in this book;
for the present, it is sufficient to know that jf a new number has just been keyed (YES in the

PROGRAM WRITING IContinued)

flowchart) then the program will ignore the rest of line 2 and go on to the next line, line 3; if
no new number was keyed (NO in the flowchart) then the calculator will execute the GTO 4
(go to line 4) so that program execution continues at line 4 (instead of the next sequential line,
line 3).

Line 3 contains three statements; these (1) cause the value currently stored in A (the last keyed
number) to be printed; (2) add the value in A to the current total of the list, stored in the B
register; and (3) 'unconditionally' branch the program back to line 1. The branch is
unconditional because there is no 'if' statement preceding the GTO 1; the calculator is not able
to exercise any option in this case, it must make the branch and continue program execution at
line 1. The program will continue to 'branch around the loop' (do line 1, ignore the 'go to' in
line 2, do line 3, do line 1, and so on) until such time as the user reaches the end of the list
and so presses RUN PROGRAM without first keying any number. When this occurs, then the
'conditional' branch (GTO preceded by an 'if' statement) in line 2 will be executed, so that
program execution then resumes at line 4.

Line 4 is an ordinary 'print' statement, enabling the final total , in register B, to be identified
(TOTAL =) and printed. Again notice the use of the comma to separate the two parts of a
single statement.

Line 5 contains the 'end' statement to indicate that the program is finished and to stop program
execution.

THE PROGRAM LINE
Even though the lines of a program are stored in the same memory as is data (see The Data
Memory, Page 22). the length of individual lines bears no relationship to the length of a register;
the calculator simply uses however many registers are necessary to accommodate a part ic ular
line.

The length of a line is determined by the programmer and depends upon the requirements of his
program; however, t he length is limited by machine requirements, in the same way that an
individual expression is limited (see Exceeding the Length of the Display, Page 20) . NOTE 09
appears, either before or after STORE is pressed, if the line is too long. When NOTE 09 occurs,
press CLEAR and key in a complete ly new (shortened) line; do not attempt to shorten an
existing line once it has been stored and NOTE 09 has appea red - it is easier to rewrite the
line.

Line numbers are auto matically assigned, by the calculator, in strict numerical sequence,
beginning with line O. You do not have to key the line number (in fact, you cannot) when you
are keying in the line, but you must know what numbers will be assigned if there are any 'go
to' statements (see Page 59) in your program.

The line numbers are not strictly a part of the program because they will automatically change
if the program is moved to a different location in memory. For example, suppose a program
(No.1) is a ten-line program (lines 0 through 9) and is already stored in the memory. If a
second program (No.2) is now loaded below program No.1, then No. 2's first line will be line

THE PROGRAM LINE (Con t inued)

10, whereas, if No.2 had been the only program in the memory, then its first line would have
been line O. (Any 'go to' statements must be corrected, by the programmer, to reflect any such
line number changes.)

A line can have one or more statements, separated by semi-colons. The actual number of
statements on anyone line is generally not significant, it being more important to have the
statements in the correct order rather than on a particular line. Position of a statement does
become significant where a line contains an 'if' statement (Page 60) or where a branch is to be
made. In the former case, those statements which are to be conditionally executed must be on
the same line as the 'if' statement and must come after the 'if'. In the latter case, a branch is
always made to the beginning of a line; therefore, the first statement to be executed after a
branch must be the first statement of the line to which the branch is made.

It is recommended that you do not put too many statements on one line because a short line is
easier to change (once stored) than is a long line.

THE DATA ENTRY STATEMENT

IllIiliI

Enter statements are used to halt the program so that the user can key in data (the program
shown on Page 52 contains a typical 'enter' statement). The simplest statement contains only a
register name; the program then halts with that name displayed. The data keyed during the halt
is stored, into the register designated, when RUN PROG RAM is subsequently pressed. For
example:

nn A,
results in the keyed data being stored in register A.

An enter statement may contain more than one register name (these must be separated by
commas); the program will then halt for each register in turn. For example :

Et 'T H- c·l·-· , " :." ...• ,
is the equivalent of the three separate statements

ENT A,ENT R13;ENT '. , ' II ,"', ,
A 'label' (followed by a comma) may precede the register name; in this case the label will be
displayed, instead of the name, when the halt occurs:

ErH "A=?",A,
displays A=? and stores the subsequent data entry into register A.

THE DATA ENTRY STATEMENT ICon,inued)

AN IMPORTANT NOTE

When the calculato r halts for a data entry, it remains in the 'enter'
mode until the requirements for t he entry are properly satisfied.
Failure to complete the entry will cause NOTE 01 to appear if
any subsequent program activ ity is attempted, even though certain
keyboard activities, such as executing an arithmetic expression,
can be performed normally. To avoid confusion (which may not
occur until several hours later! l. always complete a data entry; any
one of the following ways may be used:

1. Key a number and press RUN PROGRAM.

2. Press RUN PROGRAM.

3. If you do not wish to resume running the program, press
STOP.

Remember: always satisfy the requirements of an 'enter'
statement.

THE 'GO TO' STATEMENT

Program lines are normally executed in numerical sequence; however, some statements cause the
sequence of execution to be changed. Th is is known as 'branching'; instead of the program going
to the next sequential line, it branches to so me other (specified) line and continues program
execution there. The branching statement consists of the GO TO key followed by numerica l
keys to specify the line number, for example:

C; T (I 4; or I::; T 0 1 5 ;
Wther types of branching statements are described in the Operating and Programming manual.)
The example program on Page 52 contains two 'go to' statements.

In a program, the 'go to' statement causes program execution to continue with the line whose
number is specified.

From the keyboard and followed by RUN PROG RAM, the 'go to' statement causes program
execution to start at the line whose number is specified.

From the keyboard and followed by EXECUTE, the 'go to' statement causes the calculator to
go to the line specified but not to start program execution. Any subsequent activity then
depends upon t he next key pressed.

A line number is valid only if a curren tly stored program has a line identified by that number,
or if it is the next higher number after the number identifying the last stored line. All other
numbers are non·va lid and, if used in a 'go to' statement, will cause NOTE 08 to be displayed .

•

THE 'IF' STATEMENT
The 'if' statement enables the calculator to decide whether or not to execute the succeeding
statement(s) on the same line as that 'if' statement. The general form of the 'if' statement is:

I F [condition] ;

For example:
I F H- _.:.' - ,_I'

tells the calculator to check the truth of the condition "the value in the A register is equal to
3" and to act accordingly. If the condition is true (YES). the rest of the current line is
executed; if false (NO). the rest of the line is ignored and the next line is executed.

The 'conditions' all use one of the following keys :

[) "-greater than-"

o "-less than or equal to-"

o "-equal to- "

o "-not equal to-"

thus, the general form of the 'if' statement can be written as:

I F [h;O' (OO~ Of) ,";O~;
where the 'thing' parts of the statement can be values, register names, arithmetic expressions or
flags (explained later). Typical 'if' statements might be:

IF A<:;
IF F.:i4} (4A+2) r.:.,

When the calcu lator makes the check, it substitutes the appropriate value for any register name
or for any arithmetic expression, just as it does in other types of statement.

The most common use of the 'if' is to make conditional branches (that is, to conditionally
execute a 'go to' statement). Consider this line, taken from an imaginary program:

10: IF 4}Y;Y+l~Y;GTO 7~
As long as Y is less than 4, the condition is true; the program then adds 1 to Y and branches
back to line 7. The program will continue to 'loop', executing lines 7, 8, 9 and 10 until the test
is made when Y has a value of 4; now the condition is no longer true so the program goes on to
line 11. In this example, line 10 also acts as a counter and counts the number of times the
branch (GTO 7) will be made; if Y is initially equal to zero, then the branch will be made four
times (so that lines 7, 8 and 9 will be executed five times).

THE STOP AND END STATEMENTS

• The STOP key, used as a statement in a program or pressed while a program is running,
stops program execution. STOP should be used only to 'abort' a program (in the sense

that you no longer wish to run the program, or that you wish to stop it and start again at the
beginning) .

• END serves the dual purpose of stopping program execution and of initia lizing the
calculator ready to start program execution at line O.

THE FLAGS •• The calculator has sixteen 'flags' ; these are selected by the FLAG N key, followed by numeric
keys to des ignate one of the set: 0 through 15. For example :

G:) 0 (mnemonic F L C; 4-)

selects flag 4. Flags are used mostly as part of an 'if' statement to enable the user to define
some special condition.

The basic concept of 'flagging ', although quite simple, is sometimes difficult to grasp; an analogy
may be helpfu l: imagine, as the driver of a car, that you are given these instructions; "Half a

•

mile down the road is a flagman; if his flag is raised , turn right; if his flag is lowered, turn left."
The progra mmer's 'flag' is just that - a flag! Notice that the condition - a raised or lowered
flag - does not specify any particu lar reason for the state of the flag ; in this case, the flag could
be raised for road repairs, for floods, or for stock on the road . The flags in the calculator are
somewhat like this; you select any reason you wish for raising or lowering them.

The calcu lator terminology used to describe flags is quite simple: If you raise a fl ag, you SET it;
a set fla g is considered to have the value 1. If you lower a flag , you CLEAR it ; a cleared flag is
considered to have t he value O.

Flags are set and cleared by means of the SET/CLEAR FLAG N key; press once to 'set', twice
to 'clear': 80
sets flag 12;

(mnemonic ., '-")
J . .:::.

(mnemonic eFG 7)

clears flag 7. Once set, a f lag remains set until it is deliberately cleared ; however, all f lags are
automat ically cleared at turn -on, or when MEMORY ERASE is pressed, or when an END
statement is executed.

The following program lines illustrate a typical use of the fl ag:
., ,
~t • SFG 31-
::: : IF FLG 3=1;CFG 3,GTO 5f-

THE FLAGS IConlinuedl

In this case the purpose is to execute lines 5, 6 and 7 twice and then to go on to line 9. A flag
is set in line 4 so that- the first time line 8 is reached the 'if' condition is true; therefore the
branch back to line 5 is made. Before the branch is made, the flag is cleared so that, the second
time line 8 is reached, the condition is not true and the program will go on to line 9.

As long as no program is being executed, the state of any flag can be determined by using this
key sequence:

S 0umbe~ em,"" J
The state (value) of the flag will be displayed; a 1 for a set flag or a zero for a cleared flag.
(The test will not change the state of any flag.)

In addition to their normal use, flags 0 and 13 also have a special purpose.

Flag 0 can be set from the keyboard whi le a program is actually running, by pressing the
SET/CLEAR FLAG N key.

Flag 13 - set automatically if the program halts for an 'enter' statement and RUN PROGRAM
is then pressed without any data being keyed (t his feature is used to advantage in t he example
program sh,own on Page 40).

• •

OPERATING PROGRAMS - A SUMMARY
1. To clear the memory, press:

2. Before loading, set the calculator to the beginning of me mory, press :

8 C .""n J
3. Load the program by keying one line at a time, in numerical sequence; at the end of each
line press STORE. Statements can be co rrected by means of the BACK and FORWARD keys.

4. To obtain a printout of the program, press:

5. To correct a line after it has been stored, press:

('":1 !line Numbe~ !§iD
,-_.J \..': "-J

Then correct the program by means of the BACK and FORWARD keys and re-store it. Even
though the line length may have been changed it will not be necessary to change any subsequent
lines to compensate; the calculator automatically moves the subsequent lines up or down in the
memory.

OPERATING PROGRAMS - A SUMMARY lcontinuedl

6. To start the program, press:

7. To check a program, set the printer to the 'trace' mode; press:

and then run the program. As each line is executed, the printer will print the line number and
the numerical result (if any) of that line. This enables you to see where a numerical error
occurred, or where, for some reason, lines were not executed in the expected order.

Appendix

THE DIAGNOSTIC NOTES
The purpose of the diagnostic notes is described on Page 9.

In order to keep the following list reasonably short, it has been made 'one-way' only, in that it is intended to be used only when some note appears. The list contains guidelines to enable you to determine specifically what caused that note to be displayed at that time. The list does not contain sufficiently exhaustive information to enable you to predict in all cases which note will be displayed in any given set of circumstances.

The explanation of items marked with the symbol 't' is beyond the scope of this book; refer to the Operating and Programming manual for full details.

fl0T E (11
In view of the preceding keys, the last key pressed does not make sense to the calculator; for example, a 'multiply' following the R() key. Note 01 is the most commonly seen note and generally occurs as soon as the 'wrong' key is pressed.

Appendix

t·WTE Ci2
An attempt to execute an instruction which is followed by an improper value; for example, t he
FIX N key followed by a number larger than 9.

Taking a square root is a special case:
a. V- causes NOTE 01 when 'minus' is pressed.
b. v!=4i or -..fA (where A contains a negative number) when executed cause NOTE 02 to
appear.

t·10TE 0::::
Statement has an extra left·hand parenthesis [(] or a missi ng right·hand paren thesis [) 1 .

t·WTE ~j4
Statement has an extra right·hand parenthesis [) 1 or a missing left· hand parenthesis [(] .

t·WTE 05
a. Attempt to use a non·existent, or a non·available, R·register as a value in an expression.

b. Attempt to designate a flag other than one of Flags 0 through 15.

Appendix

t·WTE [16
a. Attempt to store into a non-existent, or a non·available, R-register.

b. Attempt to enter a number whose exponent has an absolute value greater than 99.

t·WTE t17(t)
Attempt to execute a RET not preceded by a matching GSB.

t·jOTE 0:::
Attem pt to execute a GTO followed by a non-valid line number or label(t) . Also applies to
GSB(t) and JM P(t) .

t·jO T E ~~1 9
a. Writing, or executing, or storing too long an expression or program line.

b. Nesting subroutines(t) too deeply.

t·WT E 1 [1
An intermediate or final resu lt of a calculation exceeded the range of the calculator.

____________________________________ ~.~JL_ __ __*_

Appendix

i··lO T E 1 i
a. Pressing any half-key in the three left-hand keyblocks when:

1) It is not part of a quote field; e.g. PRT " __ .. " and
2) The key is not defined by some plug-in ROM.

b_ Attempt to execute an 'enter' statement from the keyboard instead of in a program.

·t· i f_··.I··,- I '~_ i ,
, L .:. ,:~

a. Storing a program line [or loading a program or data(t) from a magnetic card] and
exceeding the memory.

b. (t)No GTO or GSB preceding LOD when loading a program (from a magnetic card) under
the control of the existing program.

[·lOTE 13
Attempt to record on a protected magnetic card .

[··IOTE 14 (t)
An additional card side is required when recording on, or loading from, a magnetic card. Press
EXECUTE and insert the next card-side.

__ J &1 L-____________________________________ __

• Appendix

rilH E 15(t)
Appearing after a program has been loaded from a magnetic card, indicates that the calculator
does not have the same ROM's installed (in the same slots) as it did when the card (or cards)
was recorded. This will not affect the running of the program as long as the particular ROM's
required for that program are installed in the same slots (press CLEAR and run the program in
the normal way).

Recordings made when no ROM'S are insta lled, do not result in NOTE 15 when they are loaded
into ca lcu lators which do have ROM's installed.

r·~OTE 16
Attempt to use the printer when there is no paper in the printer. To continue using the
calculator without printer paper: If the 'print' instruction came from the keyboard, press
CLEAR; if from the program press STOP RUN-PROGRAM.

Appendix
ANOTHER EXAMPLE PROGRAM - N FACTORIAL

This program calculates N factorial (N!) for any p0sit ive
integer value of N from zero to 69 (70! exceeds the
range of the calculator).

N! = 1 • 2 • 3 • N
6! = 1 • 2 • 3 • 4 • 5 • 6 = 720
O! = 1 (by definition)

Load the program at the beginning of memory. To run
the program, press END RUN·PROGRAM; then enter a
value for N and press RUN PROGRAM. The program
automatically prints the values of Nand N I, as shown
below.

[-.1=

~'J :
F'i-:D 1:1; ~:; F' C: 21··
1 :
Er'iT "rlEI,J t-i", Ai-

::::: ::
J 10 H'~O;' I~ TO 1:,1-
4;
I F (:"8 ; GTO 61 ..
t:;' •

~"
C+ 1 ·t C; E:Cc·E:; C;T U ":1·

f-
f.:, :
P P T " I·i = .. , A, "r··j ! ='
, Bf-
- ";' . ,. .

Appendix
START

1. PRESS: END
2. PRESS: RUN PROGRAM

1. KEY NUMBER iNI
2. PRESS: RUN PR OGRAM

1. STORE N - A
2. PARTIAL NI • 1 4 B
3. MULTIPLIER = 1 C

1. NEXT MULTIPLIER C + 1 C
2. NEXT PARTIAL NI BC -. B

A '" Current value for N
B "" Parl iol result 01 NI (l, then 1'2, then 1-2-3, e1d
C • Current multiplier term 0 , then 2, then 3, ett::.)

1. PRINT N (A)
2. PRINT NI (B)

= = plb
~, M ~ ...

Ac.r /~L == Jf' CD ., A' sm
11U

'" AAJ
CD = c;p=
" " ~

He

"'I ,Ly = = = CD

" " " ~ "A. ,AS
CD l@ll 7R CD

... ' 4.
~

rR6

= ,,'
= ,<>

CD
p.

5li'
CD
,~

S&
CD n,

=
~l'
CD
til,'

ill

DISPLAY
l eLuI I

' 3

The 9820A Keyboard

@@i
,--PAOGAAU-.
~~ f.((OIII)I

M Oh l O

HEWLETT-PACKARD SALES AND SERVICE OFFICES

To obtain servicing information and order replace­
ment parts . contact the nearest Hewlett-Packard
Sales and Service Office in HP Catalog. or contact
the nearest regional office.

IN THE UNITED STATES
CALIFORNIA

3939 Lankershim Blvd.
North Hollywood 91604
(213) 877-1282

GEORGIA
P. O. Box 28234
450 Inters tate North
Atlanta 30328
(404) 436-6181

ILLINOIS
5500 Howard Street
Skokie 60076
(312) 677-0400

NEW JERSEY
W. 120 Century Road
Paramus 07652
(201) 265-5000

IN CANADA
QUEBEC

Hewlett-Packard (Canada) Ltd.
275 Hymus Blvd.
Pointe Claire
(514) 697-4232

IN EUROPE

SWITZERLAND
Hewlett-Packard S. A.
7 rue du Bois-du- Lan
1217 Meyrin 2, GE
(022) 41 54 00

INTERCONTINENTAL SALES REGION

Hew leU- Packard Company
3200 Hillview Avenue
Palo Alto. California 94304
(415) 326-7000

I(hPJI

•
,

Scan Copyright ©
The Museum of HP Calculators

www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

