A HEWLETT-PACKARD 9820A CALCULATOR
11222A USER DEFINABLE FUNCTIONS BLOCK

OPERATING MANUAL

11222A USER DEFINABLE FUNCTIONS BLOCK

HEWLETT-PACKARD CALCULATOR PRODUCTS DIVISION
P.0. Box 301, Loveland, Colorado 80537, Tel. (303) 667-5000
Rue du Bois-du-Lan 7, CH-1217 Meyrin 2, Geneva, Tel. {022) 41 54 00

Copyright by Hewlett—Packard Company 1972

PREFACE

> o o P P O O O

WHO NEEDS THE BLOCK?

The User Definable Functions Block brings a great deal of extra power to
the 9820A Calculator, although, on first acquaintance with the block, it
perhaps is not at all obvious what that power might be, or why one would
even need it.

The User Definable Functions Block enables up to 25 independent
subprogramst to be stored in the calculator at one time. Subprograms can
be of three types:

® Subroutines, which enable the programmer to more easily segment his
programs and so make more efficient use of his time.

® Functions, which can extend the language to include any special
mathematical functions in some specific discipline, functions perhaps not
normally available on a calculator.

® Procedures, which can be used to dedicate the calculator to perform
specific often-required tasks.

Following is a brief description of the special features in this block that
enable the three types of subprogram to be such powerful tools.

® FEach subprogram is named by one key; to refer to a particular
subprogram, just press its key — this saves having to spell out literals, or
‘go to’ line numbers. If the first statement in the subprogram is itself a
literal, then that literal (without its quotation marks) actually appears in
the display when the subprogram’s key is pressed.

® Each subprogram is entirely independent from each other subprogram —
you do not need to remember which subprograms use which line numbers;
nor do you have to change other subprograms whenever you lengthen or
shorten one of them.

® ‘Parameter Passing’ — this is an extremely powerful feature, normally
available only to the computer programmer. This feature enables you to
write subprograms using ‘dummy variables’ instead of actual values and
register names. When you use the subprogram you specify its ‘parameters’
— which values and register names are to correspond to the dummy
variables in that subprogram — for that time only. Even though you may
well specify a different set of parameters each time you use that
subprogram, you need not actually change the subprogram.

t The word ‘subprogram’ is used to denote any program defined by the User Definable Functions
Block.

PREFACE

PP —P——P—@—

Parameter passing eliminates the need for most of the time-consuming and
error-prone bookkeeping normally associated with program writing. You
no longer need to ask such questions as, ‘Has that register been reserved
for some other subprogram? Will this higher-numbered register become
part of the program area? If | use this register, will it split that block of
consecutive registers that | am saving for my statistics subprograms?’

Parameter passing also saves space, in both the program area and data
registers, by eliminating some of the cumbersome programming and
register manipulating previously required before branching to subroutines.
It is no longer necessary to move data to special registers before
branching, or to take the results from other registers after returning to the
mainline program. Now, one simple ‘call’ statement, with a parameter list,
controls the branch and tells the subprogram where to ‘look’ for its data
and where to put the results afterwards.

® The mathematical functions are written just like any other program, yet
they are used in a totally different way — a function and its argument can
be inserted directly into an expression, in exactly the same way, for
instance, as the square root function and its argument is inserted directly
into an expression. Defined functions can also have multi-parameter
arguments.

Functions enable you to orient your calculator towards some specific
discipline, by storing whichever functions you select — N-factorial, or the
square root of the sum of two (or more) squares for example; or, if you
already have the Mathematics ROM, you could extend its scope by adding
the hyperbolic and inverse-hyperbolic functions. in fact, if your work is
that specialized, you could even have a ‘Gudermannian’ key [gd x = tan’!
{sinh x}].

® The ‘immediate execute’ feature is associated with the procedure
subprograms. This feature enables the calculator to be dedicated to
perform specific often-required tasks, such as calculating mortgage pay-
ments, or calculating the stresses in a bridge truss. The power of the
immediate execute feature lies in that it enables the subprograms to be so
easily initialized and started — simply by pressing one key. As well as
saving time, this simplifies operation of the calculator to the point where
even highly complex calculations can be run by personnel who have little
or no special training, either in your discipline or in programming.

® Complete flexibility is retained, even though your calculator is dedicated
to specific tasks. Subprograms can be recorded on magnetic cards, and
reloaded into the calculator, just as easily as can any other program. The
calculator can be rapidly ‘switched’ from one discipline to another
whenever the need arises.

TABLE OF CONTENTS

PREFACE

CHAPTER 1. GENERAL INFORMATION
DESCRIPTION
Supplied Equipment
INSPECTION PROCEDURE
UDF BLOCK INSTALLATION
The Key Overlays
Selecting the Slot
Installing the Block
Memory Conversion

CHAPTER 2. CONCEPTS OF THE BLOCK
THREE TYPES OF SUBPROGRAMS
Subroutines
Functions
Procedures S
PARAMETERS AND VARIABLES
Dummy Variables
Local Variables
PARAMETER PASSING
P-Number Independence
USE OF THE MEMORY
The Memory Map
The Definable Area

CHAPTER 3. WRITING SUBPROGRAMS
THE KEY MNEMONICS
WHICH TYPE? S
GENERAL CONSIDERATIONS
THE PROCEDURE SUBPROGRAM
THE SUBROUTINE SUBPROGRAM
THE FUNCTION SUBPROGRAM
NAMING SUBPROGRAMS S .
NESTING ‘ENTER’ STATEMENTS — A DON'T

1-1
1-1
1-1
1-1
1-1
1-2
1-2
1-2

2-1
2-1
2-1
2-1
2-1
2-2
2-2
2-2
2-3
2-3
2-3
2-4

3-1
3-1
3-1
3-2
3-3
33
34
35

TABLE OF CONTENTS

CHAPTER 3. WRITING SUBPROGRAMS (CONTINUED)
SYNTAXES — A SUMMARY
P-Numbers .
The Value of a Function o
The ‘IMMEDIATE EXECUTE’ Statement
The ‘END’ Statement
The ‘RETURN’ Statement

CHAPTER 4. MECHANICS OF OPERATION

ESTABLISHING A HEADING

The Subroutine/Procedure

The Function -
SUBPROGRAM STORAGE

Accessing a Subprogram

Storing A Subprogram

Listing a Subprogram
EDITING SUBPROGRAMS

Recalling and Modifying

The ‘SCRATCH’ Statement
RUNNING SUBPROGRAMS

Using Procedure Subprograms

The ‘CALL’ Statement

Using Subroutine Subprograms

Using Function Subprograms
RECORDING SUBPROGRAMS

General Considerations

Single Subprograms

A Series of Subprograms

Loading Under Program-Control
DIAGNOSTIC NOTES

CHAPTER 5. ADDITIONAL INFORMATION
THE ‘IMMEDIATE EXECUTE" MODE
‘CALLING" LOCAL SUBROUTINES
CAUSES OF NOTE 09

35

3-6
3-6
3-6
36

4-1
4-1
4-1
4-1
4-1
4-1
4-2
4-2
4-2
4-2
4-2
4-2
4-3
4-3
4-3
4-4
4-4
45
45
4-5

. 46

5-1
5-1
5-1

vi

TABLE OF CONTENTS

APPENDIX
KEY MNEMONICS
KEY OVERLAYS

FIGURES
2-1. The Memory Map
2-2. The Definable Area

TABLE
1-1. Equipment Supplied

2-3
2-4

1-1

1-1

Chapter 1

GENERAL INFORMATION

oo oo —o—o—o DESCRIPTION o —2—o < o oo

The Hewlett-Packard 11222A User Definable
Functions Block (the UDF Block) consists of a
Read-Only Memory (ROM) and three key over-
lays. The ROM, which is for use in an HP 9820A
Calculator, enables the user to assign his own
unique meaning to each of up to 25 keys, by
storing (up to) 25 independent subprograms at
any one time. The ROM plugs into any of the
three slots on top of the calculator; the three key
overlays are then used to indicate the meanings
given to the keys by the block. Space is left on
those keys that the user can define so that he can,
if he wishes, write his own definition on them. A
more complete description of the block is con-
tained in the preface to this manual. The three
overlays, and the mnemonic associated with each
key, are shown on the foldout at the back of this
manual.

SUPPLIED EQUIPMENT

The items supplied with each UDF Block are
listed in Table 1-1.

Table 1-1. Equipment Supplied

QTy. DESCRIPTION -hp- PART NO.
1 Key Overlay | 71201689
1 Key Overlay 11 {LEFT) 7120—-1690
1 Key Overlay 11l (RIGHT) 7120—-1691
2 Operating Manual 09820—-90022

——<—< <o << [INSPECTION PROCEDURE <+ <<% <+ <+ <

The UDF Block was carefully inspected, both
mechanically and electrically, before it was ship-
ped to you. Inspect the block for physical damage
and also check that the equipment listed in Table
1-1 is present.

To check operation of the block, refer to the
Model 20 System Electrical Inspection Booklet,

—-o—o——o—o—o—o UUDF BLOCK

THE KEY OVERLAYS

Like most ROM blocks, the UDF Block can be
installed in any of the three numbered slots on
top of the calculator. As well as defining the
keyblock immediately in front of the slot in
which it is installed, the UDF Block also defines
the keyblock in front of any empty slot — hence
the requirement for three different overlays: |, 1l
(LEFT), and Il (RIGHT), shown on the foldout
at the back of this manual.

supplied with each calculator. Installation proce-
dures are given below.

if there is any damage or electrical malfunction,
contact your nearest HP Sales and Service office
— addresses are provided at the back of this
manual.

INSTALLATION <<% <+ <<

NOTE

The terms ‘left” and ‘right” correspond,
respectively, to the user's left and right
when facing the keyboard.

a. Regardless of which slot contains the UDF

Block, the l-overlay is always installed over
the half-keys immediately in front of that slot.

1-2 GENERAL INFORMATION

o< UDF BLOCK INSTALLATION *—<2—<o—<o—<o—<

THE KEY OVERLAYS (cont’d)

b. If there is only one other ROM block present,
then the ll-overlay is installed over the half-
keys in front of the empty slot. (The II-
overlay, then, might be to the left or to the
right of the l-overlay, and might or might not
be adjacent to it.)

c. If there is no other ROM block present when
the UDF Block is installed, then, of the two
empty slots, the !l-overlay is installed over the
half-keys in front of the left-most empty slot,
and the I[ll-overlay over the half-keys in front
of the right-most empty slot.

SELECTING THE SLOT

Even though a block can be installed in any of
the three slots, programs recorded on magnetic
cards dictate that any required block be in a
specific slot — namely, the same slot that the
block was in when the program was recorded.
Before loading any program from a magnetic card,
always check that program’s user instructions to
determine which ROM’s should be installed in
which slots (and, in the case of the UDF Block, if
any slots must remain empty) for that program.

As far as is practical, programs published by HP
require the UDF ROM to be in Slot #1.

INSTALLING THE BLOCK
To install the block:

1. Switch the calculator off — if you do inadver-
tently leave the calculator on, an installed
block will not be ‘accepted’ until MEMORY
ERASE is pressed.

2. Position the block vertically (with its label
‘right-side-up’ when viewed from the front of
the calculator) over the trap-door of the
selected slot. Push the block through the
trap-door, straight down into the slot, until it
is firmly seated.

3. (Refer to ‘The Key Overlays’, above, to deter-
mine which of the three overlays to install and
where to install them.) To install an overlay,
insert the tab at the top of the overlay into
the locking-slot at the head of the selected
key-block; then press the overlay down over
the keys.

4. The block is now installed; switch the calcula-
tor on and the null program will appear in the
display:

MEMORY CONVERSION

When the UDF Block is installed, it automatically
converts 83 words of User Read-Write-Memory to
Internal Read-Write-Memory. This is equivalent to
the loss of 21 (actually 20%) R registers, which
will be reflected in the R number appearing at the
end of any program listing. {The requirement for
21 registers does not change even though more
than one keyblock is defined by the UDF ROM.)

2-1

Chapter 2

CONCEPTS OF THE BLOCK

—~—<—<—<—< THREE TYPES OF SUBPROGRAMS *+—<%—<%—<% <

Even though the name of the block uses the
words ‘definable functions’, there is far more
available with the UDF Block than just ‘functions’
in the mathematical sense of the word. The
description of the block, in the preface to this
manual, indicates that the definable keys can be
made to represent any of three types of sub-
program — subroutine subprograms, function sub-
programs, and procedure subprograms. {In this
manual the word ’‘subprogram’ denotes any pro-
gram directly associated with the UDF Block,
unless indicated otherwise.)

SUBROUTINES

Subroutine subprograms are, in general, subject to
the same syntax considerations as are local sub-
routines described in the calculator’s operating
and programming manual. However, the sub-
routine subprogram can be written using dummy
and local variables (described below), instead of
using real variables. The variables are then made
to correspond to actual values and registers, each
time the subprogram is called, by means of a
parameter list {the list can be different, if
required, for each call).

FUNCTIONS

Function subprograms are the ‘definable func-
tions' described briefly, under the heading ‘func-
tions’, in Chapter 4 of the calculator’s operating
and programming manual. These are functions in

——<—<—<—< PARAMETERS

One of the most important features of the UDF
Block is that of ‘parameter passing’. This enables
subroutine subprograms and function subprograms
to be written using ‘unknown’ variables. Values or
register names are then assigned to the variables
{(by means of a parameter list) each time the
subprogram is used.

There are two types of ‘unknown’ variable:
‘dummy’ variables and ‘local’ variables. For our

the mathematical sense of the word, and they are
used as such.

Functions are subject to essentially the same
syntax as is any supplied function (the square
root function, for example). However, a function
subprogram can have, if necessary, an argument
containing more than one parameter; multiple-
parameter arguments are not possible with the
function on the basic calculator (the square root
function) or with the functions supplied by the
Math ROM (HP 11221A Mathematics ROM}. Like
the subroutine subprogram, function subprograms
can be written using dummy and local variables;
the dummy variable(s) then corresponds to the
argument of the function.

PROCEDURES

Procedure subprograms are the same as any main-
line program except that the procedure can be
executed ‘immediately’. That is, as soon as the
key representing a procedure subprogram is pres-
sed, that subprogram is immediately started, with
out any other key having to be pressed. Uniike
subroutine subprograms and function subpro-
grams, procedures cannot have dummy or local
variables. They must have real variables (actual
register names) and known constants. (Dummy
variables cannot be used because it is not possible
to write a list of parameters after pressing a key
that causes ‘immediate execution’.)

AND VARIABLES o< < < <

purposes, the only absolute distinction between a
dummy variable and a local variable is that a
dummy variable is assigned a value by the user,
when the subprogram is used, whereas a local
variable is not. As will be seen, there are some
other ‘obvious’ differences but they are not neces-
sarily hard and fast. The variables are designated
by P-numbers (P{value)) — P1, P2, etc. (see ‘Para-
meter Passing’, below, for further explanation).

2-2 CONCEPTS OF THE BLOCK

——<o—<—<+—< PARAMETERS AND VARIABLES <&+ << <<

DUMMY VARIABLES

In general, dummy variables represent the input
and output data for the subprogram; whenever the
subprogram is used, a list of parameters assigns
the values and register names that are to corres-
pond to the dummy variables. For example, when
calling a subroutine subprogram designed to calcu-
late N-factorial (N!}, the parameter list would
most probably contain two parameters: an input
datum and an output datum. In this example, the
input datum is the value for N (the number whose
factorial is to be calculated); its parameter could
be anything that has a definite value — a constant,
an expression, a register name, etc. Of necessity,
the parameter for the output datum can be only a
register name; that is, the result has to be stored
somewhere before the return is made to the
calling program (assuming that the result is not
simply to be printed and then forgotten). ‘CALL

NI 6,A’, for example, would cause a branch to the
N! subprogram; the factorial of 6 would then«<be
calculated and the result stored in register A.

LOCAL VARIABLES

Local variables can be considered as the intermedi-
ate results of the subprogram and, as such, do not
require parameters. They represent working regis-
ters (or temporary storage) for those values that
are generated during the subprogram, that are
required for (at least part of) the remainder of the
subprogram, and that are of no further interest
once execution of the subprogram is completed.
For example, in the N! subprogram described
above, the multiplier (1, then 2, then 3, etc.) used
to generate each partial result is purely a local
variable and is of no consequence once the final
value is calculated.

- <o oo PARAMETER PASSING o o< < <<

The act of assigning values to dummy variables,
by means of a parameter list, is known as ’‘para-
meter passing’.

The variables in a subprogram (both dummy vari-
ables and local variables) are designated by means
of P-numbers: the ‘P()’ key followed by a num-
ber — P1, P2, P3, etc. (PO does not exist). When
the subprogram is used, the parameters in the list
correspond, in turn, to the P-numbers in numeri-
cal order — the first parameter in the list to P1,
the second to P2, and so on, regardless of the
order in which the P-numbers are used in the
subprogram. For example, instead of writing
V(AA + BB) - C, you could write V/(P2P2 +
P1P1) — P3 (the transposition of P1 and P2 is
deliberate). If this is (the essential part of) your
subprogram, then, obviously, P1, P2 and P3 are all
dummy variables and must have corresponding
parameters.

A typical parameter list for this subprogram might
be ‘A, B, C’' (commas must be included to separ-
ate the parameters). This list assigns registers A, B
and C to be used, respectively, in place of P1, P2
and P3 — notice that A, being the first parameter,
is assigned to P1 even though P2 appears first in
the subprogram. The next time the subprogram is
used, perhaps the same parameter list will be

passed, or perhaps it will be changed completely
(say to ‘6, 3X/4Y, R16’).

To illustrate the concept of a subprogram with a
flocal variable, the above example subprogram
could be expanded to +/(P2P2 + P1P1) — P4;
P4/2 — P3. In this case P4 is an intermediate
result {a local variable) and need not be included
in the parameter list. However, if for some reason
you did wish to pass a parameter to P4 then you
could do so, by adding a fourth parameter to the
list — by definition, P4 would then become a
dummy variable.

Local variables, which do not have parameters
passed to them, must all have higher P-numbers
than must the dummy variables, which do have
associated parameters. The P-numbers used to
designate variables should be consecutive and
should start with P1. If any numbers are missing
in the P-numbers used to designate dummy vari-
ables, then the parameters corresponding to the
missing numbers will simply be ignored. If any
numbers are missing in the local variables, then
more working registers than necessary will be
established for that call; this may be undesirable
(see ‘The Memory Map’, in this chapter).

CONCEPTS OF THE BLOCK 2-3

oo oo PARAMETER PASSING o< < < <

P-NUMBER INDEPENDENCE

Stored subprograms are entirely independent of
each other (unless .they are deliberately linked by
means of certain programming techniques}. There-
fore, a P-number used in one subprogram bears no
relationship to the same P-number used in any
other subprogram. However, it can be made to do

--o—oo—o—<o—<o>—o USE OF THE

THE MEMORY MAP

Figure 2-1 is a map of the calculator's memory,
showing how it is used when the UDF Block in
installed. The map shown is an extension of the
memory map shown in the calculator’s operating
and programming manual.

Bookkeeping for
Basic Calculator

Plug-in ROM's

INTERNAL RWM

' i }Buokkeeping for

2 Definable Area
{Halds Subprograms)

Line @

Mainfine Programming Area
(Moves up or down depending
on size of Definable Area)

) - Note 1

: Working Registers
1| (Local Variabies)

USER RWM
w

R Registers

RO

Alpha Registers

P [i

\]\Dne Ward

NOTE 1

This boundry moves according
to the amount of programming.

Figure 2-1. The Memory Map

so: for example, suppose P2 appears in two
subprograms and the parameter passed to P2 is, in
both cases, R4; or suppose that one subprogram
calls another and the third parameter in the list
happens to be P3. (One subprogram calling an-
other is known as ‘nesting’ subprograms and is
subject to essentially the same rules as is nesting
local subroutines in a mainline program.)

MEMORY oo o <% <

The area marked ‘1 — Bookkeeping for Plug-in
ROM’s" contains the 83 words (20% registers) of
User's RWM automatically converted to {nternal
RWM when the block is installed (see Chapter 1).

The area marked ‘2 — Definable Area’ holds
stored subprograms. This area, which is of zero
size until a subprogram is stored, automatically
increases and decreases in size, as subprograms are
stored and ‘scratched’ (deleted), so as to (exactly)
accommodate the subprograms currently stored.
The mainline program area, together with what-
ever programs it contains, automatically moves up
and down to reflect changes in the size of the
definable area; the number of available R registers
also changes accordingly. The definable area is
entirely separate from the mainline area; subpro-
grams cannot be accidentally accessed, deleted, or
changed while mainline programs are being stored
or edited.

NOTE
MEMORY ERASE (or turn-on) will erase
all subprograms stored in the definable
area; the area is part of User’'s RWM and,
as such, is volatile.

The third area shown in Figure 2-1 (‘3 — Working
Registers’) is used for the local variables in the
subprograms. For most practical purposes, this
area can be considered as existing only while a
subprogram is running, and then not at all if the
subprogram has no local variables. The area will
be only as large as necessary to accommodate all
local variables for a currently-running subprogram.
The area used for local variables is also available
to the R registers; the user must remember this

2-4 CONCEPTS OF THE BLOCK

—-o—o—<o—<o—<o—o USE OF THE MEMORY o222 <<

THE MEMORY MAP (cont’d)

when storing data into the higher-numbered R
registers. Because programming usually ends some-
where in the middle of an R register, and the
working registers start where the programming
ends, the working registers and the R registers will
rarely coincide; therefore, if, after running a sub-
program with local variables, you display the
contents of the highest available R registers, you
will probably see meaningless numbers.

The area used by the dummy variables depends
upon the type of parameter passed. When the
parameter is a register name, then that actual
register is used during execution of the subpro-
gram; if the subprogram changes the value in that
register {e.g., 2P2 — P2) then that register will
retain its changed value after completion of the
subprogram. When the parameter passed is a value
that is not a register name (i.e., is a number or an
expression), then the ‘bookkeeping’ area (not
otherwise available to the user} is used; once the
subprogram is completed, such values are lost.

THE DEFINABLE AREA

Each stored subprogram is represented by one of
the definable keys, F, through F; (also G,
through G, and H, through H, if available — see
‘UDF Block Installation’, in Chapter 1). A key
cannot represent more than one subprogram at a
time.

Up to 25 subprograms can be stored in the
definable memory at the same time, but they do
not necessarily have to be in any specific order.
As an example, Figure 2-2 shows the definable
area when subprograms F, Fg and F. have just
been stored, in that order.

[
internal R’WM
Line 0
Fp
END +
Line @ Fg Definable Area
END — (Subprograms)
Line @
Fc
END +
Line @
Mainline Area
P22 S

Figure 2-2. The Definable Area

if a new subprogram is now stored, it appears
immediately below the last subprogram in the area
(in the case shown in Figure 2-2, below F;); the
definable area expands and the mainline area
moves down. The number of available R registers
decreases accordingly.

If a subprogram is scratched {deleted), then the
subprograms below it, and the mainline area,
move up to fill the gap. The number of available
R registers increases accordingly.

If a subprogram (say Fg) is not scratched and a
new subprogram with the same name (Fg) is to
be stored, then the new subprogram automatically
replaces the old; that is, the new subprogram
occupies the space in memory previously occupied
by the old subprogram. Subprograms with a lower
position in memory, and the mainline area, then
automatically move up or down to compensate
for any difference in length between the old and
the new subprograms. (However, as will be seen in
the next chapter, it is a good practice to first
scratch a subprogram if a new one is to replace
it.)

3-1

Chapter 3

WRITING SUBPROGRAMS

This chapter presents some rules for writing sub-
programs and includes some examples; at the end
of the chapter, a summary of some of the syn-
taxes is presented. The examples are very simple
because their purpose is to illustrate use of the

UDF Block. The simplicity of the examples does
not mean that subprograms necessarily have to be
short or simple; they can have as many lines, and
can be as complicated, within the limits of the
calculator, as the programmer pleases.

——<o—<—<o—<o—< THE KEY MNEMONICS <+ <<+ <+ < <

The three overlays, and a table of the mnemonics
associated with each key, are shown on the fold-
out at the back of this manual. The table shows
two groups of keys: the meanings of the ‘control’
keys are fixed; the meanings of the ‘user defin-
able’ keys are determined by the subprograms
which they are made to represent.

Throughout the remainder of this manual, the
symbol ‘Fx’ will be used to denote any, as
opposed to a specific, user definable key. Thus Fx
can represent any of 25 keys: F, through Fg,
G, through G, and H, through H,. (There is no
actual mnemonic ‘F*’ in the calculator.)

Before you start to write a subprogram it is
important that you decide which type of subpro-
gram (a subroutine, a function or a procedure) it
is to be. The three types of subprogram each have
special requirements. The choice of type of sub-
program must be based not only on what the
subprogram is to do, but also on how you want
to use it (see the preface to this manual). There
are few ‘hard-and-fast’ rules and in many cases a
particular subprogram (one to calculate N-
factorial, for example) could be easily rearranged
to fit all three types. In general your subprogram
should be:

a. A procedure — if it is some frequently

required activity that you wish to execute
easily from the keyboard.

b. A subroutine — if it is some activity that
you wish to call frequently from a pro-
gram and that results in either no value
(e.g. printing a message) or in many values.

c. A function — if it is a process that results
in only one value and if that value is to be
inserted into an arithmetic expression (in
the same way, for example, as the value
‘2" is inserted in place of “/4' into the
expression ‘6 v/4/R1 - A’).

—~—<—<—<—< GENERAL CONSIDERATIONS << < <

Each subprogram is completely isclated from all
other subprograms and from any mainline pro-
gram in the memory. Thus, a subprogram can be
written without regard to any other subprogram
or to the mainline program, unless (and this
applies in particular to the procedure subprogram)
the subprogram is to include actual register names
instead of dummy and local variables.

In each subprogram, the program lines are num-
bered consecutively and always start at line O.
Any branching statements in a subprogram can
apply only to lines within that same subprogram;
this does not apply to those statements used
specifically to branch to other subprograms (see
Chapter 4).

3-2 WRITING SUBPROGRAMS

—o—o—<o—<o—<o GENERAL CONSIDERATIONS o 2o < <

(cont’'d)

Except in procedure subprograms, P-numbers can
be used for all variables; that is, in place of values
and register names. Known constants can, of
course, be given their proper values — there is
nothing to be gained by making the parameter
lists passed to a subprogram longer than necessary.
Ensure that, in each subprogram, the P-numbers
are consecutive (that no number in the sequence
is missing) and that P1 is included. Also ensure
that the local variables have higher P-numbers
than the dummy variables.

Do not attempt to write subprograms in such a
way that the local variables in one correspond to

——<o—<o—<o—< THE PROCEDURE

The main difference between a mainline program
and a procedure subprogram is that the first
statement in the subprogram must be IMMEDI-
ATE EXECUTE (IEX); however, see ‘Naming Sub-
programs’, below. Once that subprogram is stored,
only the key that represents it (Fx) need be
pressed to start that subprogram.

As an example, suppose that you frequently total
lists of numbers and calculate the average value of
each list. The following three subprograms, stored
as procedures, would greatly simplify that process.
The first subprogram enables you to press one key
to initialize the list; the subprogram clears the two
registers that are to be used (respectively) to
count the numbers in the list, and to accumulate
the total of the list.

The second subprogram gives you an ‘accumulate’
key, which is pressed after each number in the list
has been keyed: it increments a counter (R1) and
adds the number just keyed into the display to
the current total (in R2):

the local variables that have the same P-numbers
in another (unless those P-numbers are to be
passed in a parameter list). This sometimes can be
done, but its use is very limited; it requires that
no other subprogram with local variables be run as
long as you wish the correspondence of the local
variables between the original subprograms to last.

‘END’ must be the last statement in each subpro-
gram. END in the definable area behaves differ-
ently from END in the mainline area — it is closer
to being a RETURN statement rather than an
‘END’ statement (see ‘The END Statement’, at the
end of this chapter).

SUBPROGRAM oo <

The above subprogram utilizes the ‘implied Z’
feature, which is why it uses the number just
keyed. If no number was keyed, then it uses
whatever number is currently in Z — which is not
necessarily the number currently displayed.

The third subprogram then gives you your ‘aver-
age’ key; it calculates the average of the list:

(The procedure to store and run these subpro-
grams is given in Chapter 4).

Once a procedure subprogram is stored, you never
need to press any of the usual keys, such as GO

WRITING SUBPROGRAMS 3-3

—~—<——< << THE PROCEDURE SUBPROGRAM <&+ <<+ <+ <

TO, EXECUTE, or RUN PROGRAM, in order to
start the subprogram.

A procedure subprogram can also contain ENTER
statements; however, you must be careful not to

use this subprogram if you are currently halted in
the ENTER mode for any other program or
subprogram (see ‘Nesting Enter Statements’, later
in this chapter).

—&—<—<—< < THE SUBROUTINE SUBPROGRAM <<+ <+ o

The subroutine subprogram is similar in form to a
mainline subroutine, except that the subprogram
uses P-numbers. The subroutine subprogram is
used in essentially the same way as a local sub-
routine; it is called and executed, and then a
return is made to the calling program (to the next
line after the one containing the ‘CALL’ state-
ment — see Chapter 4).

Following is an example of a subroutine subpro-
gram. It clears selected consecutive R registers by
storing zeros into them. The registers to be
cleared are specified, whenever the subprogram is
called, by the two numbers in the parameter list.
The first parameter (corresponding to P1) is the
number of the first R register to be cleared, and
the second parameter (corresponding to P2) is the
number of the last R register to be cleared; the
subprogram itself generates the intermediate regis-
ter numbers, by incrementing (by one) the value
originally assigned to P1 until it is equal to P2.

As an example, the statement ‘CALL Fx 40, 59’
results in registers R40 through R59 (inclusive)
being cleared. (Chapter 4 explains the use of
‘CALL’ and includes the procedure to store and
run the example subroutine subprogram.)

A subroutine subprogram can contain ENTER
statements.

—~—<—<o—<—< THE FUNCTION SUBPROGRAM <<+ < <

A function subprogram, once stored, becomes a
keyboard function (in the mathematical sense)
and is used in exactly the same way as any other
keyboard function (such as the square root),
except that it can have a multi-parameter argu-
ment. The function subprogram is subject to the
same arithmetic hierarchy as are other functions.

A function subprogram is written in the same way
as a subroutine subprogram except that the final
result is treated in a different manner. The result
of a function subprogram has to be stored in a

special internal register (not otherwise available to
the user) named ‘F’. In the subprogram, that value
which is to be the ‘value of the function’ must be
stored by means of the ‘goes to F’ key (— F)t.
When the subprogram ends, the value last stored
in F becomes the value to be substituted for the
function in any arithmetic expression containing
the function (and its argument).

T The mnemonic —F is obtained by means of the DEFINE/—F
key; it cannot be obtained using the assignment key () and the F
key.

3-4 WRITING SUBPROGRAMS

—~+—<o—<o—<o—< THE FUNCTION SUBPROGRAM —*o—<—<% <<

(cont’d)
Following is an example function subprogram, to
calculate N-factorial:

The argument (N) for this function is designated
in the same way as for any function — the
function key followed by the argument (e.g., F*
6). In this case, N corresponds to P1, while P2
and P3 are local variables. The final result of the
function is stored into F in line 2. Notice that the
result first had to be generated in (in this case) P3
because F cannot be manipulated in any way; the
user has no control over F other than to store a
value into it, by means of the ‘goes to F’ state-

ment in a function subprogram. The fact that, in
the example, END follows immediately after the
‘goes to F’' statement is not intended to imply
that this must always be so; there can be other
statements between.

Unlike the square root function and the functions
supplied by the 11221A Mathematics Block, func-
tion subprograms can have multi-parameter argu-
ments. For example, the following subprogram,
which calculates the square root of the sum of
two squares, requires a two-parameter argument:

When the argument of a function contains more
than one parameter, the argument must be en-
closed in parentheses; using the preceding ex-
ample, ‘Fx (3,4)" assigns 3 and 4 to P1 and P2
respectively; which, in this case, results in five
being returned as the value of the function.

Function subprograms cannot contain ENTER
statements.

—-—eo—eo—eo—eo—< NAMING SUBPROGRAMS +o—-<—<2—< < <

The ‘name’ of a subprogram is usually the mne-
monic (F*) of the key that represents it. How-
ever, the mnemonic never appears in a listing of
the subprogram. To facilitate identifying a subpro-
gram both in the listing and in the display, it can
be named by means of a literal (characters inside
a quote field). For example, the N-factorial func-
tion subprogram might reasonably be named
“NI”; the listing of the N! subprogram then
appears as:

B
TR R R L AP RE
W

;

The literal must be the first statement in the
subprogram; then, whenever the key (F%) defined
by that subprogram is pressed (or displayed, or
printed), the name (e.g. N!, without the quotation
marks) is automatically substituted for the normal
mnemonic (Fx}. Even though the name can have
up to 16 characters (see below), once it is stored
in the subprogram, it requires no more memory
space, when appearing as a key mnemonic in a
statement in another program, than does the key
"Fx’,

The literal used to name a subprogram can have as
many characters as line length will allow; however,
it is effectively limited to 16 characters because
only the first 16 will ever be displayed, or
printed, as the mnemonic for Fx.

When writing a literal to name a subprogram, it is
often useful to include a blank space as the last
character in the name. The space serves to separ-

WRITING SUBPROGRAMS 3-5

—~—<—<o—<o—<o—< NAMING SUBPROGRAMS o< <+ <+ <

ate the name from the next character (usually the
start of a parameter list) in the display or in a
program listing. Without that space, confusion
sometimes arises as to which is the last character
in the name and which the first in the parameter
list.

If a procedure subprogram is to be named, then
the literal must be the first statement, and the
IMMEDIATE EXECUTE must be the second
statement, of that subprogram. The main reason
for naming a procedure is to more easily identify
a listing of the subprogram.

—~—<—o NESTING ‘ENTER’ STATEMENTS - A DON'T o<

When using (and writing) subprograms, take great
care to ensure that you do not nest ‘ENTER’
statements. When halted in the ‘ENTER’ mode, it
is not possible to run any subprogram containing
an ‘ENTER’ statement. If you do so, ‘NOTE 11’
will appear — if this occurs, press no other keys,
but carefully follow this procedure:

1. Press CLEAR.

2. Press STOP as often as necessary until the
mnemonic ‘STP’ appears in the display.

o o oo SYNTAXES

P-NUMBERS

F(guantity) or ¥ i{expression):

P-numbers designate both dummy and local vari-
ables. Parameters correspond to dummy variables,
but not to local variables, whenever the subpro-
gram is used.

P-numbers are used in subroutine and function
subprograms, but not in procedure subprograms.

P-numbers may be used in any order in a subpro-
gram; however, the numbers used should be con-
secutive and should include P1 (PO does not
exist).

If a dummy variable is assigned a register name
(A, R1, RR16, etc.) as its parameter, then that
actual register is used during execution of the

3. Press CLEAR RETURN EXECUTE.

The procedure will also set the program line
counter to line zero in the mainline program;
however, it is the only sure way to clear the
nested ‘ENTER’ statements (without pressing
ERASE).

-A SUMMARY o2 —<o << <

subprogram. |f the wvalue in that register is
changed during execution, then it retains that
changed value afterwards.

if a dummy variable is assigned a value other than
a register name, then that value is stored in a part
of memory that is not otherwise available to the
user.

Local variables have working registers established
for them, whenever the subprogram is executed,
immediately below the programming in the main-
line area. The number of working registers that
will be established can be determined by subtract-
ing the number of parameters passed (i.e., the
number of dummy variables) from the number of
the highest P-number used in that subprogram.
The working registers use the same area as the
highest numbered (available) R registers; however,
working registers rarely coincide with specific R
registers.

3-6 WRITING SUBPROGRAMS

—>—o—o—o <o SYNTAXES - A SUMMARY << <o <+ <

THE VALUE OF A FUNCTION

{value) -

& {'goes to F’)

Used only in a function subprogram. Designates
the result of the subprogram; that is, that value
that is to be returned as the ‘value of the
function’. If there is more than one ‘goes to F’
statement in the subprogram, only the last one
executed designates the final value of the func-
tion. When function subprograms are nested, or
when more than one function is used in an
expression, the calculator automatically distingu-
ishes between the final values of the different
functions.

If the DEFINE/— F key is used as the first key in
a statement, it has its DEFINE meaning; other-
wise, it has its ‘goes to F’ meaning.

THE ‘IMMEDIATE EXECUTE’ STATEMENT

IMMEDIATE EXECUTE is used only in procedure
subprograms. |t must be the first statement in the
subprogram, unless the subprogram is to be named
{see ‘Naming Subprograms’), in which case IM-
MEDIATE EXECUTE must be the second
statement.

IMMEDIATE EXECUTE causes the subprogram to
be started as soon as its key {Fx) is pressed.

(See also ‘The Immediate Execute Mode’, in
Chapter 5.)

THE ‘"END’ STATEMENT

Every subprogram shouid have END as its last,
and only as its last, statement.

‘END’ in the definable area of memory does not
have the same properties that it has in the main-
line area (clearing flags and return addresses, etc.).
In the definable area END acts as follows:

1. When END is executed from the keyboard,
or when STORE is pressed to store an
'‘END’ statement, the program line counter
goes to line zero in the mainline area.

2. When any type of subprogram is executed
from the keyboard, END causes program
execution to cease and returns the pro-
gram line counter to line zero in the
mainline area.

3. When a subroutine subprogram is executed
under program control, the END statement
acts exactly like a RETURN statement in
the mainline area — it causes a return to
the program line following the line con-
taining the subroutine subprogram call.

4. In a function subprogram the END causes
the last value stored into F (see ‘The
Value of a Function’ in this chapter) to be
returned as the value of that function. The
calculator then automatically continues to
complete the statement that caused the
function subprogram to be executed.

THE ‘RETURN’ STATEMENT

In a subprogram, a ‘RETURN’ statement which
has no matching ‘GO TO SUB’ statement acts like
the ‘END’ statement, described above. The excep-
tion is that when RETURN is stored, the program
line counter goes to the next line in the subpro-
gram, and not back to the mainline area.

Chapter 4

MECHANICS OF OPERATION

This chapter describes the mechanics associated
with using subprograms: establishing the place in
memory where a particular subprogram is to start;
storing the subprogram; editing it; using it; and,
finally, recording it.

As in Chapter 3, ‘F*’ is used to denote any key
(as opposed to a specific key) which can be
defined by a subprogram. Thus F* can represent
any of twenty-five keys: F, through Fg, G,
through Gj, and H, through H,.

—~—<——< <o << ESTABLISHING A HEADING =+ oo < <o <

Each subprogram has a ‘heading’ which indicates
(to the calculator) what type of subprogram it is
— a subroutine/procedure or a function — and the
key, F*, which represents it. The heading locates
the starting point of the subprogram in the defin-
able area. The ‘GO TO’ statement is used to
establish the headings for procedure subprograms
and for subroutine subprograms. The ‘DEFINE’
statement establishes the headings for function
subprograms only.

THE SUBROUTINE/PROCEDURE

Press GO TO F* EXECUTE (where Fx is to be a
subroutine or a procedure subprogram).

This establishes the heading (if it does not already
exist) for either a subroutine or procedure sub-
program. It also sets the program line counter to

line zero for that subprogram. Once a heading is
established, it remains established until it is
‘scratched’ (see also ‘The Scratch Statement’ and
‘Accessing a Subprogram’ below).

THE FUNCTION

Press DEFINE Fx EXECUTE (where Fx is to be a
function subprogram).

DEFINE Fx is similar to GO TO Fx (above)
except that it establishes the heading for a func-
tion subprogram.

The mnemonic ‘DEF’ (define) is obtained by
pressing the DEFINE/—~ F key as the first key in
the statement, otherwise the key has its ‘goes to
F’ meaning.

<< <+ <+ < SUBPROGRAM STORAGE <+ =+ <+ <+ <+ <

ACCESSING A SUBPROGRAM

Press GO TO Fx EXECUTE
(where F* can be the name of any type of
subprogram).

Executed from the keyboard, sets the program
line counter to line zero in the subprogram Fx (if
already established}. Subsequent activity then
depends upon the next key pressed.

GO TO Fx is not normally used within a program.
It can be used but the result will depend upon the
circumstances (e.g., the END in the subprogram
would cause NOTE 07 to appear, and the ‘goes to
F’" would cause NOTE 02).

STORING A SUBPROGRAM

First establish the heading by ‘GO TO F*' for a
subroutine or procedure subprogram, or by
‘DEFINE Fx' for a function subprogram (these
statements also set the program line counter to
line zero for that subprogram). Then key and
store the lines of the subprogram in exactly the
same way as the lines of a mainline program are
keyed and stored. Branching statements apply to
lines only within that subprogram, until the pro-
gram line counter has returned to the mainline
area.

When STORE is pressed to store an ‘END’ state-
ment, the line containing the ‘END’ is not seen;

4-2 MECHANICS OF OPERATION

—~—< < <<+ < SUBPROGRAM STORAGE &< <+ <+ < <

STORING A SUBPROGRAM (cont’d)

only the ‘end-of-line’ symbol appears, indicating
that the program line counter has returned to the
mainline area, to line zero.

LISTING A SUBPROGRAM

GO TO Fx LIST causes the printer to make a
listing of the subprogram (Fx). When the listing is
completed the program line counter returns to

line zero in the mainline area.

Attempting to list a subprogram whose heading
has not yet been established results in a heading
being established and an ‘END’ statement being
stored as the subprogram. This will use approxi-
mately the equivalent of one R-register. (With a
completely empty definable area, if you listed all
twenty-five definable keys, you would use up the
equivalent of twenty-five R-registers.)

—~—<—<o—<—<+—< EDITING SUBPROGRAMS << <+ <<

RECALLING AND MODIFYING

Once the program line counter is set to a line
within a subprogram, lines can be recalled and
modified, deleted or inserted, exactly as in the
mainline area. Any ‘GO TQO’ statements executed
from the keyboard must be to line numbers
within the subprogram currently being edited.

Any of the following operations returns the pro-
gram line counter to line zero in the mainline
area:

1. Storing or executing an ‘END’ statement.

2. Pressing RECALL when the line containing
the ‘END’ statement is currently displayed.

3. Stepping, by means of the FORWARD
key, past the 'END’ statement.

4. Executing a RETURN when there was no
matching GO TO SUB executed while in
the subprogram.

THE ‘SCRATCH’ STATEMENT

(MEMORY ERASE automatically erases all sub-
programs as well as all mainline programs and
stored data.)

Press SCRATCH Fx EXECUTE
or SCRATCH Fx,, Fx, EXECUTE

SCRATCH is used to selectively scratch (delete)
one or more subprograms. Once a subprogram
{(Fx) is scratched, its heading is no longer con-
tained in memory.

Subprograms can be scratched only from the
keyboard; an attempt to scratch from a program
results in NOTE 24 appearing, indicating an error
during execution.

See also ‘Recording Subprograms’ in this chapter.

—~+—<o—<—<o—<o—< RUNNING SUBPROGRAMS << <+ <+ <+ <

(When loading the example subprograms given
below, refer if necessary to the foldout, at the
back of this manual, which shows the mnemonics
obtained when the keys associated with the UDF
Block are pressed.)

Once a subprogram is stored it is very straight-
forward to use:

The Procedure Subprogram is started by press-
ing the key (F*} which it defines.

The Subroutine Subprogram is started by
means of a ‘CALL’ statement (explained
below).

The Function Subprogram is used when a
statement containing its name and argument is
executed.

USING PROCEDURE SUBPROGRAMS

A procedure subprogram is started by pressing its
key, Fx. Depending upon how the subprogram is

MECHANICS OF OPERATION 4-3

—— ¢ << RUNNING SUBPROGRAMS <+ <2< < <

written, data may have to be keyed either before
it is run or during an ‘ENTER’ statement, if it has
one. Halts for data entries require RUN PRO-
GRAM to be pressed, in the normal way, in order
to resume subprogram execution.

As an example of procedure subprograms, load
and run the three procedures (described in
Chapter 3, under the heading ‘The Procedure
Subprogram’) which are used to total a list of
numbers and to calculate its average value. The
following process loads the three procedures as
Fa. Fg, and Fg, respectively.

(Press ERASE)
1. Press GO TO F, EXECUTE, and store the
following program lines:

2. Press GO TO Fg EXECUTE, and store the
following program lines:

3. Press GO TO F. EXECUTE, and store the
following program lines:

With the above three subprograms stored, a list of
numbers can be totalled and averaged as follows:

1. Press F, (‘initialize’).

2. Key each number in the list and press Fg
(‘accumulate’) after each number.

3. Press F. (‘average’) — the average of the list
appears in the display.

THE ‘CALL" STATEMENT

(Subroutme Subprogram Name) [{List)]
LoOF * (Parameter) [{parameter). . .]

CALL is used to branch to a subroutine subpro-
gram. The ‘CALL’ statement must be the last
statement in a line. A parameter list is not
required if the subprogram called has no dummy
variables — a subprogram to print a message, for
example. When execution of the subprogram is
completed, a return is made to the calling pro-
gram {or calling subprogram) — to the line follow-
ing the line which contains the ‘CALL’ statement.
If the call is executed from the keyboard, then
program execution ceases and the program line
counter is set to line zero in the mainline area.

USING SUBROUTINE SUBPROGAMS

Following is the procedure to store and call the
example subroutine subprogram shown under the
heading ‘The Subroutine Subprogram’, in Chapter
3; this subprogram can be used to clear any
number of (consecutive) R-registers. Load the
subprogram as F

Press GO TO F; EXECUTE and store the follow-
ing program lines:

The foltowing ‘CALL’ statement will call Fy and
clear registers R40 through R59, inclusive:

The ‘CALL’ statement can be executed from the
keyboard — press EXECUTE — or stored as the
last statement in a line, of either a mainline
program or of another subprogram.

USING FUNCTION SUBPROGRAMS

A function subprogram is used in an expression
by pressing its key, F*, followed by its argument;
if the argument is negative, or includes more than
one parameter, or is an expression, then it must

4-4 MECHANICS OF OPERATION

—~—<o—< <o —<o—< RUNNING SUBPROGRAMS o< << < <

USING FUNCTION SUBPROGRAMS (cont'd)

be enclosed in parentheses. When the expression
containing the function is executed, execution of
the expression is temporarily suspended while the
function is executed; when the value of the
function is returned, execution of the (suspended)
expression is continued.

Following is the procedure to store and run the
N-factorial function (see ‘The Function Subpro-
gram’ in Chapter 3), as F:

Press DEFINE Fg EXECUTE and store the
following program lines (the exclamation in the
literal is obtained by pressing the STOP key):

PRI SR N
KU T TR RS

The following are example statements illustrating
use of the function subprogram (the mnemonic
‘N!" will appear, not ‘F.’, because the first state-
ment in the subprogram is a literal):

calculates 6! (=720).

calculates the expression 16x3/3! and stores the
result in C (the actual value stored into C depends
upon the value currently stored in register X).

calculates (3!)! (=6!=720).

All of the above statements can be executed from
the keyboard — press EXECUTE — or stored as
statements in a program.

—~—<o——<o—<o < RECORDING SUBPROGRAMS <+ << < <

This discussion describes the recording and loading
of subprograms on magnetic cards. The informa-
tion given in the calculator’s Operating and Pro-
gramming Manual, describing the general aspects
of recording and loading, still applies.

GENERAL CONSIDERATIONS

A record can be made either of one subprogram
or of a series of subprograms. The advantage of
single-subprogram records is that they enable any
combination of subprograms to be loaded, in any
order. The ‘series’ record, on the other hand, has
the advantage that it enables a specific combina-
tion of subprograms to be loaded very rapidly.

Recording always starts at the current setting of
the program line counter and continues until all
programming below that point has been recorded.
Loading works in essentially the same way. It is
not possible to record just subprograms — main-
line programming, even though it might be only

the null program, will also be included on the
record. The mainline programming currently in
the memory will always be lost whenever a record
of one or more subprograms is loaded. In general,
mainline programs should have their own records,
although in some cases it is advantageous to have
both subprograms and mainline programs on the
same record.

If a mainline program does not require the UDF
Block, then it is a good rule to record it when
that block is not installed. This does not apply if
you can be sure that the UDF Block will always
be installed in the calculator. The reason is, that if
such a program is recorded with the block in-
stalled, then that record cannot be properly
loaded into a calculator which does not have the
block installed. On the other hand, a record made
when the UDF Block is not installed, can be
properly loaded into a calculator which does have
the block.

MECHANICS OF OPERATION 4-5

—~—<—< << RECORDING SUBPROGRAMS &+ <<% <<

SINGLE SUBPROGRAMS

When only one subprogram is to be recorded, it
should be the only subprogram in memory. Also,
there should be no mainline programming, other
than the null program. When the record is made,
it includes the first statement in the subprogram
but it does not include the subprogram’s heading
(see ‘Establishing A Heading’ at the beginning of
this chapter); the heading specifies which key
(F*,) represents that subprogram. Without the
heading, there is nothing on the record to specify
which key represents that subprogram; therefore,
the user can specify any key (F%,) he pleases
when he loads that record back into memory.

The initializing process for both making and load-
ing the record of a single subprogram depends
upon the type of subprogram:

a. |f it is a subroutine or a procedure, press GO
TO Fx* EXECUTE.

b. If it is a function, press DEFINE Fx
EXECUTE.

Then start the recording or loading in the usual
way, by pressing either RECORD EXECUTE or
LOAD EXECUTE, as appropriate. Be sure to
mark on the record whether a ‘GO TQO’ statement
or a ‘DEFINE’ statement is to be used to initialize
loading; the subprogram will not run properly if
the wrong statement is used ({scratch the wrong
subprogram and reload it).

Before loading a subprogram always ensure that
the key (Fx) that you are about to use does not
already represent a subprogram currently in
memory. Either press ERASE or, when that is not
desirable, execute a ’'SCRATCH’ statement
(SCRATCH F=*) to scratch the current subprogram
from the memory.

When single subprograms are loaded they are
stored in the definable area of memory in the
same order as the order in which they are loaded
(see Figure 2-2 in Chapter 2).

A SERIES OF SUBPROGRAMS

This type of record is a complete ‘map’ of all
programming in memory at the time the record
was made. Unlike the single-subprogram record, it

does include the heading (i.e., the specific key,
F*) for each subprogram. This type of record can,
it required, include the necessary mainline pro-
gramming (that is, other than just the null
program).

Before recording, ensure that only the required
programming is in the memory. To initialize both
the record and load processes, press:

GO TO SCRATCH EXECUTE

Then record or load in the usual way, by pressing
RECORD EXECUTE or LOAD EXECUTE, as
appropriate.

When loading, the record automatically replaces
all programming in memory; it is not necessary to
first press ERASE.

LOADING UNDER PROGRAM-CONTROL

The '‘LOAD’ statement can be executed as a
statement in a program; however, from a practical
point of view, its use is limited (as far as loading
subprograms is concerned) to loading subprograms
which have been recorded by means of the ‘GO
TO SCRATCH’ statement. When the ‘LOAD’
statement is encountered, program execution is
suspended while the programming on the record
completely replaces all programming currently in
memory. Program execution then resumes auto-
matically at line zero in the mainline area.

The programmed ‘load’, which must be only in a
mainline program, requires two statements, ‘GO
TO SUB SCRATCH’ and ‘LOAD’, used as follows:

The two statements must be on the same line and
'LOAD’ must be the last statement on the line.

Do not use ‘GO TO SCRATCH’ in place of ‘GO
70 SUB SCRATCH'. If you do, then program
execution will resume at the beginning of the first
subprogram instead of at line zero in the mainline
area.

4-6 MECHANICS OF OPERATION

———p——p———a———— DIAGNOSTIC NOTES —o o< oo o

Most of the execution and syntax errors associated with the UDF Block are similar in form to those of the
basic calculator and cause the same ‘notes’ to appear. The UDF Block adds only one new note — NOTE
24,

Following is a brief description of the most likely errors {not all possible errors are listed). The symbol i~
implies either the STORE or EXECUTE instructions.

1. ‘CALL’' statement not the last statement on the line.
2. Key other than Fx or 1EX follows SCR.

3. Key other than ‘comma’, ‘semicolon’ or i~ following F* in a ‘SCRATCH’
statement.

4. Any other key in an ‘[EX’ statement (other than SCR IEX — see ‘The
Immediate Execute Mode’, in Chapter b).

5. CLL not the first key in a statement (also use of CLL during a halt for
an ‘ENTER’ statement).

6. Any key following CLL except Fx or a label enclosed in quote
marks. (A ‘label in quote marks’ is the same as the line label in the
mainline area; it is not the same as the literal that is the first
statement in a subprogram — in a ‘CALL’ statement, the former has
to be keyed character by character while the latter appears as soon
as the key Fx is pressed.)

7. Key other than ‘semicolon’ or - after ‘DEFINE Fx’.
8. More than one Fx used in a ‘GO TO’ or ‘GO TO SUB’ statement.

1. Executing a ‘goes to F’ statement when the function was started by
means of a ‘GO TO’ statement.

2. Executing a P-number as a value in an expression when the subprogram
was called incorrectly (e.g., by a ‘GO TQ’ statement), or the P-number
was included in a procedure subprogram.

"""" Attempt to use a P-number whose parameter is zero or less then zero [PO,
P(-1), etc.].

Attempt to store into a ‘local register’ (Pn) when the subprogram was called
incorrectly (e.g., by a ‘GO TO’ statement) or when the P-number is used in a
procedure subprogram.

Executing a RET or an END (only in the definable area) without a matching
GSB, CLL, or function subprogram call.

See Chapter 5.

See ‘Nesting Enter Statements’ in Chapter 3.

ek Attempting to execute a ‘SCRATCH F*'during program execution.

5-1

Chapter 5

ADDITIONAL INFORMATION

This chapter contains information, about the UDF
Block, that will be needed only occasionally.
Mostly it will be needed to enable the user to

understand certain occurrences, such as the
‘immediate execute’ mode, which might otherwise
be a source of confusion.

—~—<+—<—< THE ‘IMMEDIATE EXECUTE’ MODE o<+ <

The immediate execute mode is established any
time an ‘IEX’ statement is executed, except when
it is executed in the usual way in a procedure
subprogram. Once the mode is established, all
subprograms, except function subprograms, auto-
matically become ‘immediately executable’, even
though they do not contain an ‘|EX’ statement.

Even though the mode is established, all subpro-
grams can still be used exactly as before. How-
ever, a subroutine subprogram is immediately
executed if its key (F*) is pressed as the first key
in a statement. When started in this way, the
subroutine subprogram will not run properly if it
contains P-numbers (either NOTE 02 or NOTE 06
appears). On the other hand, if the subroutine
does not use P-numbers, but instead uses actual
values and register names, then it will run
properly (notice that such a subroutine subpro-

—>—<o—eo——<o— ‘CALLING’ LOCAL

When the UDF Block is installed, local subroutines
(in the mainline area) can be written using dummy
and local variables (P-numbers) and can then be
called by means of a ‘CALL’ statement with
parameters. In general, the rules applicable to
calling subroutine subprograms apply to these local
subroutines except that the call must be by means

oo o o> CAUSES OF

Several things cause NOTE 09, but it is often
difficult to trace the actual cause because too many
variable factors are involved. The one obvious cause
is writing or storing too long a line.

NOTE 09 can be caused by nesting subroutines and

gram is actually a procedure subprogram without
the ‘IEX’ statement).

The mode can be established in any one of three

ways:

1. Executing an ‘IEX’ statement from the
keyboard.

2. Executing an ‘IEX’ statement in a mainline
program or in any subprogram ({except in the
usual way in a procedure subprogram).

3. Executing a procedure subprogram as if it
were a subroutine subprogram (i.e., by means
of a ‘CALL F*’ statement).

A ‘SCRATCH’ statement is used to remove the
‘immediate execute’ mode:

SUBROUTINES <2+ <<

of a literal — a name inside a quote field. The same
literal must be the first statement in the subroutine
and RETURN must be the last statement. It is not
possible to branch to a local subroutine by means
of its line number when the ‘CALL’ statement is
used.

NOTE 09 oo —o <o oo o

subprograms too deeply, but it is often not possible
to predict beforehand what constitutes ‘too
deeply’. Without the UDF Block and given ‘ideal’
circumstances (nothing else affecting the depth),
local subroutines can be nested thirty-one deep.
When the UDF Block is installed this depth is

5-2 ADDITIONAL INFORMATION

oo oo oo CAUSES OF NOTE 09 o< <o <o <o <

essentially doubled, but, as subprograms can also be
nested, the depths that local subroutines can be
nested depends (in part) on how many subprograms
are nested. By themselves subroutine subprograms
can be nested as deeply as can local subroutines
{except that no more than 25 subprograms can be
stored at one time). Function subprograms, on the
other hand, cannot be nested more than four deep.

Additiona! factors which affect the nesting include:
the type of subprograms currently being nested; the
nature and length of any expression whose
execution has been temporarily suspended to allow
a function subprogram, within that expression, to
be executed; the number of parameters currently
being passed; and the nature of the current
parameters, whether they are register names,
numbers, or expressions (expressions which might
themselves contain defined functions!).

It is also possible, without exceeding line length, to
have too many parameters in a ‘CALL’" statement
and so cause NOTE 09 to appear during execution.
Again, what may be too many parameters in one
situation may be perfectly acceptable in another
situation. The following examples illustrate this.

The maximum possible number of parameters in
any given call depends upon the types of
parameters used and is limited by line length.
Numbers with many digits obviously require more
keystrokes than do, say, two-digit register names.
The largest number of parameters, twenty-five, can
be passed if they are all one-digit, unsigned integers:

Even though this call has twenty-five parameters, it
is actually the 'worst case’ situation because none
of the parameters are register names. As each

number is used, it will be stored in the internal
read-write-memory, in the same area shared by the
‘nesting’ information; thus, the length of the call
can also affect the depth of nesting.

The following subprogram cannot be called by the
above ‘CALL’ because it cannot accept that many
parameters. Instead, it starts printing meaningless
numbers and then stops with NOTE 09 displayed.
If the parameter list is shortened to seventeen
parameters, then the subprogram will operate
correctly.

If the same subprogram is written to generate its
own P-numbers then it can be passed all twenty-five
parameters, and it will accept all of them:

The above represent extreme situations; in general,
it is fair to say that line length will most often be
the deciding factor in determining the maximum
number of parameters in a ‘CALL’ statement, and
that there will usually be sufficient nesting-depth
for most purposes.

Note 1.
Note 2.

Note 3.

“b' represents a blank space.

Used as first key in a statement has ‘DEFINE’ meaning;
otherwise has ‘~F’ meaning.

Other USER DEFINABLE keys (Fg, Gg, etc.) have similar
mnemonics (FB, GB, etc.).

The mnemonic for any of these keys is changed if the subpro-
gram which it represents has a literal as its first statement (see
‘Naming Subprograms’ in Chapter 3).

APPENDIX
FOLDOUT

»

APPENDIX

Cs

UNITED STATES

ALABAMA

P.0. Box 4207

2003 Byrd Spring Road S.W.
Huntsville 35802

Tel: (205) 881-4691

TWX: 810-726-2204

ARIZONA

2336 E. Magnolia St.
Phoenix 85034

Tel: (602) 252-5061
TWX: 910-951-1330

5737 East Broadway
Tucson 85716

Tel: (602) 298-2313
TWX: 910-952-1162

CALIFORNIA

1430 East Orangethorpe Ave.
Fullerton 92631

Tel: (714) 870-1000

3939 Lankershim Boulevard
North Hollywood 51604
Tel: (213) 877-1282

TWX: 910-499-2170

1101 Embarcadero Road
Palo Alto 94303

Tel: (415) 327-6500
TWX: 910-373-1280

2220 Watt Ave.

Sacramento 95825
Tel: (916) 482-1463
TWX: 910-367-2092

9606 Aero Drive
San Diego 92123
Tel: (714) 279-3200
TWX: 910-335-2000

COLORADO

7965 East Prentice
Englewood 80110
Tel: (303) 771-3455
TWX: 910-935-0705

CONNECTICUT
508 Tolland Street
East Hartford 06108
Tel: (203) 289-9394
TWX: 710-425-3416

111 East Avenue
Norwalk 06851

Tel: (203) 853-1251
TWX: 710-468-3750

FLORIDA

P.0. Box 24210

2806 W. Oakland Park Bivd.
Ft. Lauderdale 33307

Tel: (305) 731-2020

TWX: 510-955-4099

P.0. Box 20007

Herndon Station 32814
621 Commonwealth Avenue
Orlando

Tel: (305) 841-3970

TWX: 810-850-0113

GEORGIA

P.0. Box 28234

450 Interstate North
Atlanta 30328

Tel: (404) 436-6181
TWX: 810-766-4890

ILLINOIS

5500 Howard Street
Skokie 60076

Tel: (312) 677-0400
TWX: 910-223-3613

INDIANA

3839 Meadows Drive
Indianapolis 46205
Tel: (317) 546-4891
TWX: 810-341-3263

SALES & SERVICE OFFICES

LOUISIANA

P.0. Box 856

1942 Wiltiams Boulevard
Kenner 70062

Tel: (504) 721-6201
TWX: 810-955-5524

MARYLAND

6707 Whitestone Road
Baltimore 21207

Tel: (301) 944-5400
TWX: 710-862-9157

P.0. Box 1648

2 Choke Cherry Road
Rockville 20850
Tel: (301) 948-6370
TWX: 710-828-9684

MASSACHUSETTS
32 Hartwell Ave.
Lexington 02173
Tel: (617) 861-8960
TWX: 710-326-6904

MICHIGAN

21840 West Nine Mile Road
Southfield 48075

Tel: (313) 353-9100

TWX: 810-224-4882

MINNESOTA

2459 University Avenue
St. Paul 55114

Tel: (612) 645-9461
TWX: 910-563-3734

MISSOUR!

11131 Colorado Ave.
Kansas City 64137
Tel: (816) 763-8000
TWX: 910-771-2087

2812 South Brentwood Blvd.
St. Louis 63144

Tel: (314) 962-5000

TWX: 910-760-1670

NEW JERSEY

W. 120 Century Road
Paramus 07652

Tel: (201) 265-5000
TWX: 710-990-4951

1060 N. Kings Highway
Cherry Hill 08034

Tel: (609) 667-4000
TWX: 710-892-4945

NEW MEXICO

P.0. Box 8366

Station C

6501 Lomas Boulevard N.E.
Albuquerque 87108

Tel: (505) 265-3713

TWX: 910-989-1665

156 Wyatt Drive
Las Cruces 88001
Tel: (505) 526-2485
TWX: 910-983-0550

NEW YORK

1702 Central Avenue
Albany 12205

Tel: (518) 869-8462
TWX: 710-441-8270

1219 Campville Road
Endicott 13760

Tel: (607) 754-0050
TWX: 510-252-0890

82 Washington Street
Paughkeepsie 12601
Tel: (914) 454-7330
TWX: 510-248-0012

39 Saginaw Drive
Rochester 14623
Tel: (716) 473-9500
TWX: 510-253-5981

5858 East Molloy Road
Syracuse 13211

Tel: (315) 454-2486
TWX: 710-541-0482

1 Crossways Park West
Woodbury 11797

Tel: (516) 921-0300
TWX: 510-223-0811

NORTH CAROLINA
P.0. Box 5188

1923 North Main Street
High Point 27262

Tel: (919) 885-8101
TWX: 510-926-1516

OHIO

25575 Center Ridge Road
Cleveland 44145

Tel: (216) 835-0300

TWX: 810-427-9129 \

3460 South Dixie Drive
Dayton 45439

Tel: (513) 298-0351
TWX: 810-459-1925

1120 Morse Road
Columbus 43229
Tel: (614) 846-1300

OKLAHOMA

2918 United Founders Boulevard
Oklahoma City 73112

Tel: (405) 848-2801

TWX: 910-830-6862

OREGON

Westhills Mali, Suite 158
4475 S.W. Scholls Ferry Road
Portland 97225

Tel: (503) 292-9171

TWX: 910-464-6103

PENNSYLVANIA

2500 Moss Side Boulevard
Monroeville 15146

Tel: (412) 271-0724

TWX: 710-797-3650

1021 8th Avenue
King of Prussia Industrial Park

" King of Prussia 19406

Tel: (215) 265-7000
TWX: 510-660-2670

RHODE ISEAND
873 Waterman Ave.
East Providence 02914
Tel: (401) 434-5535
TWX: 710-381-7573

TEXAS

P.0. Box 1270

201 E. Arapaho Rd.
Richardson 75080
Tel: (214) 231-6101
TWX: 910-867-4723

P.0. Box 22813
6300 Westpark Drive
Suite 100

Houston 77027

Tel: (713) 781-6000
TWX: 910-881-2645

231 Billy Mitchell Road
San Antonio 78226
Tel: (512) 434-4171
TWX: 910-871-1170

2890 South Main Street
Salt Lake City 84115
Tel: (801) 487-0715
TWX: 910-925-5681

VERMONT

P.0. Box 2287

Kennedy Drive

South Burlington 05401
Tel: (802) 658-4455
TWX: 510-299-0025

VIRGINIA

P.0. Box 6514
2111 Spencer Road
Richmond 23230
Tel: (703) 285-3431
TWX: 710-956-0157

WASHINGTON
433-108th N.E.
Bellevue 98004
Tel: (206) 454-3971
TWX: 910-443-2303

*WEST VIRGINIA
Charleston N
Tel: (304) 768-1232

FOR U.S. AREAS NOT
LISTED:

Contact the regional office near-
est you: Atlanta, Georgia...
North Hollywood, California. ..
Paramus, New Jersey . . . Skokie,
Illinois. Their complete ad-
dresses are listed above,

*Service Only

CANADA

ALBERTA

Hewlett-Packard (Canada) Ltd.
11745 Jasper Ave.

Edmonton

Tel: (403) 482-5561

TWX: 610-831-2431

BRITISH COLUMBIA
Hewlett-Packard (Canada) Ltd.
4519 Canada Way

North Burnaby 2

Tel: (604) 433-8213

TWX: 610-922-5059

MANITOBA

Hewlett-Packard (Canada) Ltd.
§11 Bradford Ct.

Winnipeg

Tel: (204) 786-7581

TWX: 610-671-3531

NOVA SCOTIA
Hewlett-Packard (Canada) Ltd.
2745 Dutch Village Rd.

Suite 206

Halifax

Tel: (802) 455-0511

TWX: 610-271-4482

ONTARIO

Hewlett-Packard (Canada) Ltd.
880 Lady Ellen Place

Ottawa 3

Tel: (613) 722-4223

TWX: 610-562-1952

Hewlett-Packard (Canada) Ltd.
50 Galaxy Blvd.

Rexdale

Tel: (416) 677-9611

TWX: 610-492-4246

QUEBEC

Hewlett-Packard (Canada) Ltd.
275 Hymus Boulevard

Pointe Claire

Tel: (514) 697-4232

TWX: 610-422-3022

Telex: 01-20607

FOR CANADIAN AREAS NOT
LISTED:

Contact Hewlett-Packard (Can-
ada) Ltd. in Pointe Claire, at

the complete address listed
above.
CENTRAL AND SOUTH AMERICA .
ARGENTINA Hewlett-Packard Do Brasil ECUADOR MEXICO PERU URUGUAY

Hewlett-Packard Argentina
S.AC.e.l

Lavalte 1171 -3°

Buenas Aires

Tel: 35-0436, 35-0627, 35-0431
Tefex: 012-1009

Cable: HEWPACKARG

BRAZIL

Hewlett-Packard Do Brasil
i.e.C Ltda.

Rua Frej Caneca 1119

Sao Paulo - 3, SP

Tel: 288-7111, 287-5858
Cable: HEWPACK Sao Paulo

Hewlett-Packard Do Brasil
Praca Dom Feliciano 78
Salas 806/808

Porto Alegre

Rio Grande do Sul (RS)-Brasil
Tel: 25-8470

Cable: HEWPACK Porto Alegre

Hewlett-Packard Do Brasil
l.e.C. Ltda.

Rua da Matriz 29

Botafogo 2C-02

Rio de Janeiro, GB

Tel: 246-4417

Cable: HEWPACK Rio de Janeiro

Inddstria e Comercia Ltda.
Praca Dom Feliciano 78
Salas 806-8

Porto Alegre RGS

CHILE

Héctor Calcagni y Cia, Ltda.
Bustos, 1932-3er Piso
Casilla 13942

Santiago

Tel: 423 96

Cabfe: CALCAGNI Santiago

COLOMBIA

tnstrumentacion

Henrik A. Langebaek & Kier
Ltda.

Carrera 7 No. 48-59

Apartado Aereo 6287

Bogota, 1 D.E.

Tel: 45.78-06, 45-55-46

Cable: AARIS Bogota

Telex: 44400 INSTCO

COSTA RICA

Lic. Alfredo Gallegos Gurdisn
Apartado 10159

San José

Tel: 21-86-13

Cable: GALGUR San José

Laboratorios de Radio-Ingenieria
Calle Guayaquil 1246

Post Office Box 3199

Quito

Tel: 212-496; 219-185

Cable: HORVATH Quito

EL SALVADOR

Electrénica

Apartado Postal 1589

Blvd. Venezuela 1231

San Salvador

Tel: 217527; 214895

Cable: ELECTRONICA
San Salvador

Hewlett-Packard Mexicana, S.A.
de C.V.

622 Adolfo Prieto

Col. del Valle

Mexico 12, D.F.

Tel: 543-4232; 523-1874

Telex: 0017-74507

NICARAGUA

Roberto Terdn G,
Apartado Postal 689
Edificio Terén

Managua

Tel: 3451, 3452

Cable: ROTERAN Managua

PANAMA

Electrénico Balboa, S.A.

P.0. Box 4929

Ave. Manuel Espinosa No. 13-50
Bldg. Alina

Panama City

Tel: 230833

Telex: 3481003, Curundu,
Canal Zone

Cable: ELECTRON Panama City

Compafiia Electro Medica S.A.
Ave. Enrique Canaual 312
San Isidro

Casilla 1030

Lima

Tel: 22-3900

Cable: ELMED Lima

PUERTO RICO

San Juan Electronics, Inc.
P.0. Box 5167

Ponce de Leon 154

Pda. 3-PTA de Tierra

San Juan 00906

Tel: (809) 725-3342, 722-3342
Cable: SATRONICS San Juan
Telex: SATRON 3450 332

SURINAME
Surtel-Radio Holland N.V.
P.0. Box 155

Paramaribo

Tel: 72118

Cable: Treurniet Paramaribo

Pablo Ferrando S.A.
Comerclal e Industrial
Avenida Malia 2877
Casilla de Correo 370
Montevideo

Tel: 40-3102

Cabie: RADIUM Montevideo

VENEZUELA
Hewiett-Packard De Venezuela
C.A.

Apartado 50933 ~

Caracas

Tel: 71.88.05, 71.88,69, 71.99.30
Cable: HEWPACK Caracas

Telex: 39521146

FOR AREAS NOT LISTED,

CONTACT:

Hewlett-Packard
INTERCONTINENTAL

3200 Hillview Ave.

Palo Alto, California 94304

Tel: (415) 493-1501

TWX: 910-373-1267

Cable: HEWPACK Palo Alto

Telex: 034-8461

E 671

EUROPE

AUSTRIA

Unilabor GmbH

Wissenschaftliche Instrumente

Rummelhardtgasse 6

P.0. Box 33

A-1095 Vienna

Tel: (222) 4261 81, 43 13 94

Cable: LABORINSTRUMENT
Vienna

Telex: 75 762

BELGIUM

Hewlett-Packard S.A. Benelux
348 Boulevard du Souverain
B-1160 Brussels

Tel: (02) 722240

Cable: PALOBEN Brussels
Telex: 23 494

DENMARK
Hewlett-Packard A/S
Datavej 38

DK-3460 Birkerod
Tel: (01) 81 66 40
Cable: HEWPACK AS
Telex: 66 40

Hewlett-Packard A/S
Torvet 9

DK-8600 Sitkehorg
Tel: (06)-82-71-66

FINLAND
Hewlett-Packard Oy
Bulevardi 26

P.0. Box 12185

Helsinki 12

Tel: 13-730

Cable: HEWPACKOY-Helsinki
Telex: 12-1563

Hewlett-Packard France
4 Quai des Etroits

F-69 Lyon 5eme

Tel: 78-42 63 45

Cable: HEWPACK Lyon
Telex: 31617

Hewlett-Packard France
29 rue de fa Gara

F-31 Blagnac

Tel: (61) 85 82 29
Telex: 51957

GERMANY

Hewlett-Packard Vertriebs-GmbH
Berliner Strasse 117

Postfach 560/40

D6 Nieder-Eschbach/Ffm 56
Tel: (0611) 50 10 64

Cable: HEWPACKSA Frankfurt
Telex: 41 32 49 FRA

Hewlett-Packard Vertriebs-GmbH
Wilmersdorfer Strasse 113/114
D-1000 Berlin W. 12

Tel: (0311) 3137046

Telex: 18 34 05

Hewlett-Packard Vertriebs-GmbH
Herrenbergerstrasse 110
D7030 Bidhlingen, Wirttemberg
Tel: (Q7031) 66 72 86

Cable: HEPAG Béblingen

Telex: 72 65 739
Hewlett-Packard Vertriebs-GmbH
Vogelsanger Weg 38

D4 Diisseldorf

Tel: (0211 63 80 31/35

Telex: 85/86 533

Hewlett-Packard Vertriebs-GmbH
Reginfriedstrasse 13

D8 Miinchen 9

Tel: (0811} 69 59 71/75

Cable: HEWPACKSA Miinchen
Telex: 52 43 85

GREECE

Kostas Karayannis

18, Ermou Street

Athens 126

Tel: 230301,3,5

Cable: RAKAR Athens
Telex: 21 59 62 RKAR GR

IRELAND

Hewlett-Packard Ltd.

224 Bath Road

Slough, SLI 4 DS, Bucks .
Tel: Slough 753-33341
Cable: HEWPIE Slough
Telex; 84413

ITALY

Hewlett-Packard [taliana S.p.A.
Via Amerigo Vespucci 2
1-20124 Milan

Tel: (2) 6251 (10 lines)

Cable: HEWPACKIT Milan
Telex: 32046

Hewlett-Packard ltaliana S.p.A.
Palazzo !talia

Piazza Marconi 25

1-00144 Rome - Eur

Tel: 6-591 2544

Cable: HEWPACKIT Rome
Telex: 61514

NETHERLANDS
Hewlett-Packard Benelux, N.V.
Weerdestein 117

P.0. Box 7825

Amsterdam, Z 11

Tel: 020-42 77 77

Cable: PALOBEN Amsterdam
Telex: 13 218

NORWAY
Hewlett-Packard Norge A/S
Box 149

Nesveien 13

N-1344 Haslum

Tel: (02)-53 83 60

Cable: HEWPACK Oslo
Telex: 16621

PORTUGAL

Telectra

Empresa Tecnica de
Equipamentos

Electricos, S.a.r.l.

Rua Rodrigo da Fonseca 103

P.0. Box 2531

Lisbon 1

Tel: 68 60 72

Cable: TELECTRA Lisbon

Telex: 1598

SPAIN

Ataio Ingenieros SA
Enrique Larreta 12
Madrid, 16

Tel: 215 35 43

Cable: TELEATAIO Madrid
Telex: 2724SE

Ataio Ingenieros SA
Ganduxer 76

SWEDEN

Hewlett-Packard Sverige AB

Enighetsvéagen 1-3

Fack

S-161 20 Bromma 20

Tel: (08) 98 12 50

Cable: MEASUREMENTS
Stockholm

Telex: 10721

Hewlett-Packard Sverige AB
Hagakersgatan 9C

$-431 41 Miindal

Tel: 031 - 27 68 00

Telex: 21 312 hpmindl

SWITZERLAND

Hewlett Packard Schweiz AG
Zurcherstrasse 20

CH-8952 Schlieren Zurich
Tel: (051) 98 18 21/24
Cable: HPAG CH

Telex: 53933

Hewlett Packard Schweiz A.G.
Rue du Bois-du-Lan 7

1217 Meyrin 2 Geneva

Tel: (022) 41 54 00

Cable: HEWPACKSA Geneva
Telex: 27333 HPSA CH

TURKEY

Telekom Engineering Bureau
P.0. Box 376

Karakoy

Istanbul

Tel: 49 40 40

Cable: TELEMATION Istanbul

UNITED KINGDOM
Hewlett-Packard Ltd.
224 Bath Road

Slough, SLI 4 DS, Bucks
Tel: Slough (0753) 33341
Cable: HEWPIE Slough
Telex: 84413

Hewlett-Packard Ltd.
The Graftons
Stamford New Road
Altrincham, Cheshire
Tel: 061 928-8626
Telex: 668068

YUGOSLAVIA

Belram S.A.

83 avenue des Mimosas
Brussels 1150, Belgium
Tel: 34 33 32, 34 26 19
Cable: BELRAMEL Brussels
Telex: 21780

SOCIALIST COUNTRIES
PLEASE CONTACT:
Hewlett-Packard Ges.m.b.H
Innstrasse 23/2

Postfach

A1204 Vienna, Austria

Tel: {222) 3366 06/09
Cable: HEWPACK Vienna
Telex: 75823

ALL OTHER EUROPEAN

COUNTRIES CONTACT:

Hewlett-Packard S.A.

Rue du Bois-du-tan 7

1217 Meyrin 2 Geneva
Switzerland

Tel: (022) 41 54 00

Hewlett-Packard Vertriebs-GmbH Barcelona 6 Cable: HEWPACKSA Geneva
FRANCE Wendenstr. 23 Tel: 211-44-66 Telex: 2.24.86
Hewlett-Packard France D2 Hamburg 1 Cable: TELEATAIO Barcelona
Quartier de Courtaboeuf Tel: (0411) 24 05 51/52
Boite Postale No. 6 Cable: HEWPACKSA Hamburg
F-91 Orsay Telex: 21 53 32
Tel: 1-920 88 01
Cable: HEWPACK Orsay
Telex: 60048
AFRICA, ASIA, AUSTRALIA
ANGOLA CEYLON Blue Star Ltd. Yokogawa-Hewlett-Packard Ltd. PAKISTAN (EAST) TAIWAN
Telectra Empresa Técnia United Efectricals Ltd. Blue Star House, Nisei Ibaragi Bldg. Mushko & Company, Ltd. Hewlett Paclgard Taiwan
de Equipamentos Eléctricos P.0. Box 681 34 Ring Road 2-2-8 Kasuga 1, Jinnah Avenue 39 Chung Shiac West Road
SAR Yahala Building Lajpat Nagar Ibaragi-Shi Dacca 2 Sec. 1
Stapies Street New Delhi 24, India Osaka Tel: 280058 Overseas Insurance

Rua de Barbosa Rodrigues
42-1°

Box 6487
Luanda
Cable: TELECTRA Luanda

AUSTRALIA

Hewlett-Packard Australia
Pty. Ltd.

22-26 Weir Street

Glen Iris, 3146

Victoria

Tel: 20.1371 (6 lines)

Cable: HEWPARD Melbourne

Telex: 31024

Hewlett-Packard Australia
Pty. Ltd.

61 Alexander Street

Crows Nest 2065

New South Wales

Tel: 43.7866

Cable: HEWPARD Sydney

Telex: 21561

Hewlett-Packard Australia
Pty. Ltd.

97 Churchill Road

Prospect 5082

South Australia

Tel: 65.2366

Cable: HEWPARD Adelaide

Hewlett Packard Australia
Pty. Ltd.

2nd Floor, Suite 13

Casablanca Buildings

196 Adelaide Terrace

Perth, W.A, 6000

Tel: 21-3330

Cable: HEWPARD Perth

Hewiett-Packard Australia
Pty. Ltd.
10 Woolley Street
P.0. Box 191
Dickson A.C.T. 2602
Tel: 49-8194
Cable: HEWPARD Canberra ACT

Hewlett-Packard Australia
Pty. Ltd.

75 Simpsons Road
Bardon

Queensland, 4068

Tel: 36-5411

Colombo 2
Tel: 5496
Cable: HOTPOINT Colombo

CYPRUS

Kypronics

19 Gregorios & Xenopoulos Road
P.0. Box 1152

Nicosia

Tel: 6282-75628

Cable: HE-I-NAMI

ETHIOPIA

African Salespower & Agency
Private Ltd., Co.

P. 0. Box 718

58/59 Cunningham St.

Addis Ababa

Tel: 12285

Cable: ASACO Addisababa

HONG KONG

Schmidt & Co. (Hong Kong) Ltd.
P.0. Box 297

1511, Prince’s Building 15th Floor
10, Chater Road

Hong Kong

Tel: 240168, 232735

Cable: SCHMIDTCO Hong Kong

INDIA

Blue Star Ltd.
Kasturi Buildings
Jamshedji Tata Rd.
Bombay 20BR, India
Tel: 29 50 21

Telex: 2156

Cable: BLUEFROST

Blue Star Ltd.

Band Box House
Prabhadevi

Bombay 250D, India
Tel: 45 73 01

Telex: 2156

Cable: BLUESTAR

Blue Star Lid.
14,40 Civil Lines
Kanpur, India
Tel: 6 88 82
Cable: BLUESTAR

Blue Star, Ltd.
7 Hare Street
P.0. Box 506
Calcutta 1, India
Tel: 23-0131
Telex: 655
Cable: BLUESTAR

Tel: 62 32 76
Telex: 463
Cable: BLUESTAR

Blue Star Ltd.
17-C Ulsoor Road
Bangalore-8

Blue Star, Ltd.

96 Park Lane
Secunderabad 3, India
Tel: 7 63 91

Cable: BLUEFROST

Blue Star, Ltd.

23/24 Second Line Beach
Madras 1, India

Tel: 2 39 55

Telex: 379

Cable: BLUESTAR

Blue Star, Ltd.

1B Kaiser Bungalow
Dindli Road
Jamshedpur, India
Tel: 38 04

Cable: BLUESTAR
INDONESIA

Bah Bolon Trading Cay. N.V.
Djaiah Merdeka 29
Bandung

Tel: 4915; 51560

Cable: ILMU

Telex: 08-809

IRAN

Telecom, Ltd.

P. 0. Box 1812

240 Kh. Saba Shomali
Teheran

Tel: 43850, 48111
Cable: BASCOM Teheran

ISRAEL

Electronics & Engineering
Div. of Motorola Israel Ltd.

17 Aminadav Street

Tel-Aviv

Tel: 36941 (3 lines)

Cable: BASTEL Tel-Aviv

Telex: Bastel Tv 033-569

JAPAN
Yokogawa-Hewlett-Packard Ltd.
Ohashi Building

1-53-1 Yoyogi

Shibuya-ku, Tokyo

Tel: 03-370-2281/7

Telex: 232-2024YHP

Cable: YHPMARKET TOK 23-724

Tel: (0726) 23-1641
Telex: 385-5332 YHPOSAKA

Yokogawa-Hewlett-Packard Ltd.
Ito Building

No. 59, Kotori-cho
Nakamura-ku, Nagoya City
Tel: (052) 551-0215

Yokogawa-Hewiett-Packard Ltd.
Nitto Bldg.

2300 Shinchara-cho,
Kohoku-ku

Yokohama 222

Tel: (405) 432-1504/5

KENYA

Kenya Kinetics
P.0. Box 18311
Nairobi, Kenya
Tel: 57726
Cable: PROTON

KOREA

American Trading Co.,

Korea, Ltd.

Seoul P.O. Box 1103

7th & 8th floors, DaeKyung Bldg.
107 Sejong Ro

Chongro-Ku, Seoul

Tel: 75-5841 (4 lines)

Cable: AMTRACO Seoul

LEBANON

Constantin E. Macridis
Clemenceau Street

P.0. Box 7213

Beirut

Tel: 220846

Cable: ELECTRONUCLEAR Beirut

MALAYSIA

MECOMB Malaysia Ltd.

2 Lorong 13/6A

Section 13

Petaling Jaya, Selangor
Cable: MECOMB Kuala Lumpur

MOZAMBIQUE

A. N. Goncalves, LDA.
4.1 Apt. 14 Av. D. Luis
P.0. Box 107
Lourenco Marques
Cable: NEGON

NEW ZEALAND
Hewlett-Packard (N.Z.
94-96 Dixson St.
P.0. Box 9443
Wellington, N.Z.

Tel: 56-559

Cable: HEWPACK Wellington

Hewlett Packard (N.Z.) Ltd.
Box 51092

Pukuranga

Tel: 573-733

Cable: HEWPACK, Auckland

L) Ltd.

Cable: NEWDEAL Dacca

PAKISTAN (WEST)
Mushko & Company, Ltd.
Oosman Chambers

Abdullah Haroon Road
Karachi 3

Tel: 511027, 512927

Cable: COOPERATOR Karachi

PHILIPPINES
Electromex Inc.

Makati Commercial Center
2129 Pasong Tamo
Makati, Rizal D 708

P.0. Box 1028

Manifa

Tel: 89-85-01; 88-91-71
Cable: ELEMEX Manila

SINGAPORE

Mechanical and Combustion
Engineering Company Ltd.

9, Jalan Kilang

Red Hill Industrial Estate

Singapore, 3

Tel: 642361-3; 632611

Cable: MECOMB Singapore

Hewlett-Packard Far East
Area Office

P.0. Box 87

Alexandra Post Office
Singapore 3

Tel: 633022

Cable: HEWPACK SINGAPORE

SOUTH AFRICA

Hewlett Packard South Africa
(Pty.), Ltd.

P.0. Box 31716

Braamfontein Transvaal

Milnerton

30 De Beer Street

Johannesburg

Tel: 725-2080, 725-2030

Telex: 0226 JH

Cable: HEWPACK Johannesburg

Hewlett Packard South Africa
(Pty), Ltd.

Breecastle House

Bree Street

Cape Town

Tel: 3-6019, 3-6545

Cable: HEWPACK Cape Town

Telex: 5-0006

Hewlett Packard South Africa
(Pty.), Ltd.

30B Glenwood Centre

Corner Hunt & Moore Roads

P.0. Box 99

Overport, Natal

Tel: 347536

Corp. Bldg. 7th Floor

Taipei

Tel: 579-605, 579-610, 579-613
Telex: TP824 HEWPACK

Cable: HEWPACK Taipei

THAILAND

The International
Engineering Co., Lid.

P. 0. Box 39

614 Sukhumvit Road

Bangkok

Tel: 910722 (7 lines)

Cable: GYSOM

TLX INTENCO BK-226 Bangkok

UGANDA

Uganda Tele-Electric Co., Ltd.
P.0. Box 4449

Kampala

Tel: 57279

Cable: COMCO Kampala

VIETNAM

Peninsular Trading Inc.

P.0. Box H-3

216 Hien-Vuong

Saigon

Tel: 20805, 93398

Cable: PENTRA, SAIGON 242

ZAMBIA

R. 1. Tilbury (Zambia) Ltd.
P.0. Box 2792

Lusaka

Zambia, Central Africa
Tel: 73793

Cable: ARJAYTEE, Lusaka

MEDITERRANEAN AND
MIDDLE EAST COUNTRIES
NOT SHOWN PLEASE
CONTACT:

Hewlett-Packard Correspondence
Office

Piazza Marconi 25

1-00144 Rome-Eur, Italy

Tel: (6) 59 40 29

Cable: HEWPACKIT Rome
Telex: 61514

OTHER AREAS NOT
LISTED, CONTACT:
Hewlett-Packard

INTERCONTINENTAL
3200 Hillview Ave.
Palo Alto, California 54304
Tel: (415) 326-7000

(Feb. 71 493-1501)

TWX: 910-373-1267
Cable: HEWPACK Palo Aitc
Telex: 034-8461

E 6-71

A ‘

Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

