
m HEWLETT-PACKARD 9820A CALCULATOR
11222A USER DEFINABLE FUNCTIONS BLOCK

OPERATING MANUAL

11222A USER DEFINABLE FUNCTIONS BLOCK

HEWLETT-PACKARD CALCULATOR PRODUCTS DIVISION
P.o. Box 301, Loveland, Colorado 80537, Tel. (303) 667·5000

Rue du Bois·du·Lan 7, CH·1217 Meyrin 2, Geneva, Tel. (022) 41 5400

Copyright by Hewlett-Packard Company 1972

ii PREFACE

• • • • • • • • • •
WHO NEEDS THE BLOCK?

The User Definable Functions Block brings a great deal of extra power to
the 9820A Calculator, although, on first acquaintance with the block, it
perhaps is not at all obvious what that power might be, or why one would
even need it.

The User Definable Functions Block enables up to 25 independent
subprogramst to be stored in the calculator at one time. Subprograms can
be of three types:

• Subroutines, which enable the programmer to more easily segment his
programs and so make more efficient use of his time.

• Functions, which can extend the language to include any special
mathematical functions in some specific discipline, functions perhaps not
normally available on a calculator.

• Procedures, which can be used to dedicate the calculator to perform
specific often-required tasks.

Following is a brief description of the special features in this block that
enable the three types of subprogram to be such powerful tools.

• Each subprogram is named by one key; to refer to a particular
subprogram, just press its key - this saves having to spell out literals, or
'go to' line numbers. If the first statement in the subprogram is itself a
literal, then that literal {without its quotation marks} actually appears in
the display when the subprogram's key is pressed.

• Each subprogram is entirely independent from each other subprogram -
you do not need to remember which subprograms use which line numbers;
nor do you have to change other subprograms whenever you lengthen or
shorten one of them.

• 'Parameter Passing' - this is an extremely powerful feature, normally
available only to the computer programmer. This feature enables you to
write subprograms using 'dummy variables' instead of actual values and
register names. When you use the subprogram you specify its 'parameters'
- which values and register names are to correspond to the dummy
variables in that subprogram - for that time only. Even though you may
well specify a different set of parameters each time you use that
subprogram, you need not actually change the subprogram.

t The word 'subprogram' is used to denote any program defined by the User Definable Functions
Block.

PREFACE

• • • • • • • • • •
Parameter passing eliminates the need for most of the time-consuming and
error-prone bookkeeping normally associated with program writing. You
no longer need to ask such questions as, 'Has that register been reserved
for some other subprogram? Will this higher-numbered register become
part of the program area? If I use this register, will it split that block of
consecutive registers that I am saving for my statistics subprograms?'

Parameter passing also saves space, in both the program area and data
registers, by eliminating some of the cumbersome programming and
register manipulating previously required before branching to subroutines.
It is no longer necessary to move data to special registers before
branching, or to take the results from other registers after returning to the
mainline program. Now, one simple 'call' statement, with a parameter list,
controls the branch and tells the subprogram where to 'look' for its data
and where to put the results afterwards.

• The mathematical functions are written just like any other program, yet
they are used in a totally different way - a function and its argument can
be inserted directly into an expression, in exactly the same way, for
instance, as the square root function and its argument is inserted directly
into an expression. Defined functions can also have multi-parameter
arguments.

Functions enable you to orient your calculator towards some specific
discipline, by storing whichever functions you select - N-factorial, or the
square root of the sum of two (or more) squares for example; or, if you
already have the Mathematics ROM, you could extend its scope by adding
the hyperbolic and inverse-hyperbolic functions. In fact, if your work is
that specialized, you could even have a 'Gudermannian' key [gd x = tan- 1

(sinh x)].

• The 'immediate execute' feature is associated with the procedure
subprograms. This feature enables the calculator to be dedicated to
perform specific often-required tasks, such as calculating mortgage pay­
ments, or calculating the stresses in a bridge truss. The power of the
immediate execute feature lies in that it enables the subprograms to be so
easily initialized and started - simply by pressing one key. As well as
saving time, this simplifies operation of the calculator to the point where
even highly complex calculations can be run by personnel who have little
or no special training, either in your discipline or in programming.

• Complete flexibility is retained, even though your calculator is dedicated
to specific tasks. Subprograms can be recorded on magnetic cards, and
reloaded into the calculator, just as easily as can any other program. The
calculator can be rapidly 'switched' from one discipline to another
whenever the need arises.

iii

iv TABLE OF CONTENTS

PREFACE ii

CHAPTER 1. GENERAL INFORMATION

DESCR IPTION

Supplied Equipment

INSPECTION PROCEDURE

UDF BLOCK INSTALLATION

The Key Overlays

Selecting the Slot

Installing the Block

Memory Conversion

CHAPTER 2. CONCEPTS OF THE BLOCK

THREE TYPES OF SUBPROGRAMS

Subroutines

Functions .

Procedures

PARAMETERS AND VARIABLES

Dummy Variables

Local Variables

PARAMETER PASSING

P-Number Independence

USE OF THE MEMORY

The Memory Map

The Definable Area

CHAPTER 3. WRITING SUBPROGRAMS

THE KEY MNEMONICS

WHICH TYPE?

GENERAL CONSIDERATIONS

THE PROCEDURE SUBPROGRAM

THE SUBROUTINE SUBPROGRAM

THE FUNCTION SUBPROGRAM

NAMING SUBPROGRAMS

NESTING 'ENTER' STATEMENTS - A DON'T

1-1

1-1

1-1

1-1

1-1

1-2

1-2

1-2

2-1

2-1

2-1

2-1

2-1

2-2

2-2

2-2

2-3
2-3
2-3
2-4

3-1

3-1

3-1

3-2
3-3

3-3

3-4

3-5

TABLE OF CONTENTS

. ---....--'"~-,
CHAPTER 3. WRITING SUBPROGRAMS (CONTINUED)

SYNTAXES - A SUMMARY 3-5

P-Numbers

The Value of a Function .

The 'IMMEDIATE EXECUTE' Statement

The 'END' Statement

The 'RETURN' Statement

CHAPTER 4. MECHANICS OF OPERATION

ESTABLISHING A HEADING

The Subroutine/Procedure

The Function

SUBPROGRAM STORAGE

Accessing a Subprogram

Storing A Subprogram

Listing a Subprogram

EDITING SUBPROGRAMS

Recalling and Modifying

The 'SCRATCH' Statement

RUNNING SUBPROGRAMS

Using Procedure Subprograms

The 'CALL' Statement

Using Subroutine Subprograms

Using Function Subprograms

RECORDING SUBPROGRAMS

General Considerations

Single Subprograms

A Series of Subprograms

Loading Under Program-Control

DIAGNOSTIC NOTES

CHAPTER 5. ADDITIONAL INFORMATION

THE 'IMMEDIATE EXECUTE' MODE

'CALLING' LOCAL SUBROUTINES

CAUSES OF NOTE 09

3-5

3-6
3-6
3-6
3-6

4-1

4-1

4-1

4-1

4-1

4-1

4-2

4-2

4-2

4-2

4-2

4-2

4-3

4-3

4-3
4-4

4-4

4-5

4-5

4-5

4-6

5-1

5-1

5-1

v

vi TABLE OF CONTENTS

• • • • • • • • • •
APPENDIX

KEY MNEMONICS

KEY OVERLAYS

FIGURES

2-1. The Memory Map

2-2. The Definable Area

TABLE

2-3

2-4

1-1. Equipment Supplied 1-1

1-1

Chapter 1

GENERAL INFORMATION

• • • • • • • • DESCRIPTION • • • • • • • •

The Hewlett-Packard 11222A User Definable
Functions Block (the UDF Block) consists of a
Read-Only Memory (ROM) and three key over­
lays. The ROM, which is for use in an HP 9820A
Calculator, enables the user to assign his own
unique meaning to each of up to 25 keys, by
storing (up to) 25 independent subprograms at
anyone time. The ROM plugs into any of the
three slots on top of the calculator; the three key
overlays are then used to indicate the meanings
given to the keys by the block. Space is left on
those keys that the user can define so that he can,
if he wishes, write his own definition on them. A
more complete description of the block is con­
tained in the preface to this manual. The three
overlays, and the mnemonic associated with each
key, are shown on the foldout at the back of this
manual.

SUPPLIED EQUIPMENT

The items supplied with each UDF Block are
listed in Table 1-1.

Table 1-1. Equipment Supplied

QTY. DESCRIPTION ·hp· PART NO.

1 Key Overlay I 7120-1689

1 Key Overlay II (LEFT) 7120-1690

1 Key Overlay III (RIGHT) 7120-1691

2 Operating Manual 09820-90022

• • • • • • INSPECTION PROCEDURE • • • • • •

The UDF Block was carefully inspected, both
mechanically and electrically, before it was ship­
ped to you. Inspect the block for physical damage
and also check that the equipment listed in Table
1-1 is present.

To check operation of the block, refer to the
Model 20 System Electrical Inspection Booklet,

supplied with each calculator. Installation proce­
dures are given below.

If there is any damage or electrical malfunction,
contact your nearest HP Sales and Service office
- addresses are provided at the back of this
manual.

• • • • •• UDF BLOCK INSTALLATION • • • • • •

THE KEY OVERLAYS

Like most ROM blocks, the UDF Block can be
installed in any of the three numbered slots on
top of the calculator. As well as defining the
keyblock immediately in front of the slot in
which it is installed, the UDF Block also defines
the keyblock in front of any empty slot - hence
the requirement for three different overlays: I, II
(LEFT), and III (RIGHT), shown on the foldout
at the back of this manual.

NOTE

The terms 'left' and 'right' correspond,
respectively, to the user's left and right
when facing the keyboard.

a. Regardless of which slot contains the UDF
Block, the I-overlay is always installed over
the half-keys immediately in front of that slot.

1-2 GENERAL INFORMATION

• • • • • • UDF BLOCK INSTALLATION • • • • • •

THE KEY OVERLAYS (cont'd)

b. If there is only one other ROM block present,
then the II-overlay is installed over the half­
keys in front of the empty slot. (The 11-
overlay, then, might be to the left or to the
right of the I-overlay, and might or might not
be adjacent to it.)

c. If there is no other ROM block present when
the UDF Block is installed, then, of the two
empty slots, the II-overlay is installed over the
half-keys in front of the left-most empty slot,
and the III-overlay over the half-keys in front
of the right-most empty slot.

SELECTING THE SLOT

Even though a block can be installed in any of
the three slots, programs recorded on magnetic
cards dictate that any required block be in a
specific slot - namely, the same slot that the
block was in when the program was recorded.
Before loading any program from a magnetic card,
always check that program's user instructions to
determine which ROM's should be installed in
which slots (and, in the case of the UDF Block, if
any slots must remain empty) for that program.

As far as is practical, programs published by HP
require the UDF ROM to be in Slot #1.

INSTALLING THE BLOCK

To install the block:

1. Switch the calculator off - if you do inadver­
tently leave the calculator on, an installed
block will not be 'accepted' until MEMORY
E RASE is pressed.

2. Position the block vertically (with its label
'right-side-up' when viewed from the front of
the calculator) over the trap-door of the
selected slot. Push the block through the
trap-door, straight down into the slot, until it
is firmly seated.

3. (Refer to 'The Key Overlays', above, to deter­
mine which of the three overlays to install and
where to install them.) To install an overlay,
insert the tab at the top of the overlay into
the locking-slot at the head of the selected
key-block; then press the overlay down over
the keys.

4. The block is now installed; switch the calcula­
tor on and the null program will appear in the
display:

!:J;; ~:::. i"'! .U

MEMORY CONVERSION

When the UDF Block is installed, it automatically
converts 83 words of User Read-Write-Memory to
Internal Read-Write-Memory. This is equivalent to
the loss of 21 (actually 20%) R registers, which
will be reflected in the R number appearing at the
end of any program listing. (The requirement for
21 registers does not change even though more
than one keyblock is defined by the UDF ROM.)

2-1

Chapter 2

CONCEPTS OF THE BLOCK

• • • • • THREE TYPES OF SUBPROGRAMS • • •••

Even though the name of the block uses the
words 'definable functions', there is far more
available with the UDF Block than just 'functions'
in the mathematical sense of the word. The
description of the block, in the preface to this
manual, indicates that the definable keys can be
made to represent any of three types of sub­
program - subroutine subprograms, function sub­
programs, and procedure subprograms. (I n th is
manual the word 'subprogram' denotes any pro­
gram directly associated with the UDF Block,
unless indicated otherwise.)

SUBROUTINES

Subroutine subprograms are, in general, subject to
the same syntax considerations as are local sub­
routines described in the calculator's operating
and programming manual. However, the sub­
routine subprogram can be written using dummy
and local variables (described below), instead of
using real variables. The variables are then made
to correspond to actual values and registers, each
time the subprogram is called, by means of a
parameter list (the list can be different, if
required, for each call).

FUNCTIONS

Function subprograms are the 'definable func­
tions' described briefly, under the heading 'func­
tions', in Chapter 4 of the calculator's operating
and programming manual. These are functions in

the mathematical sense of the word, and they are
used as such.

Functions are subject to essentially the same
syntax as is any supplied function (the square
root function, for example). However, a function
subprogram can have, if necessary, an argument
containing more than one parameter; multiple­
parameter arguments are not possible with the
function on the basic calculator (the square root
function) or with the functions supplied by the
Math ROM (HP 11221A Mathematics ROM). Like
the subroutine subprogram, function subprograms
can be written using dummy and local variables;
the dummy variable(s) then corresponds to the
argument of the function.

PROCEDURES

Procedure subprograms are the same as any main­
line program except that the procedure can be
executed 'immediately'. That is, as soon as the
key representing a procedure subprogram is pres­
sed, that subprogram is immediately started, with
out any other key having to be pressed. Unili(e
subroutine subprograms and function subpro
grams, procedures cannot have dummy or local
variables. They must have real variables (actual
register names) and known constants. (Dummy
variables cannot be used because it is not possible
to write a list of parameters after pressing a key
that causes 'immediate execution'.)

• • • • • PARAMETERS AND VARIABLES • • • • •

One of the most important features of the UDF
Block is that of 'parameter passing'. This enables
subroutine subprograms and function subprograms
to be written using 'unknown' variables. Values or
register names are then assigned to the variables
(by means of a parameter list) each time the
subprogram is used.

There are two types of 'unknown' variable:
'dummy' variables and 'local' variables. For our

purposes, the only absolute distinction between a
dummy variable and a local variable is that a
dummy variable is assigned a value by the user,
when the subprogram is used, whereas a local
variable is not. As will be seen, there are some
other 'obvious' differences but they are not neces­
sarily hard and fast. The variables are designated
by P-numbers (P(value») - P1, P2, etc. (see 'Para­
meter Passing', below, for further explanation).

2-2 CONCEPTS OF THE BLOCK

• • • • • PARAMETERS AND VARIABLES • • • • •

DUMMY VARIABLES

In general, dummy variables represent the input
and output data for the subprogram; whenever the
subprogram is used, a list of parameters assigns
the values and register names that are to corres­
pond to the dummy variables. For example, when
calling a subroutine subprogram designed to calcu­
late N-factorial (N!), the parameter list would
most probably contain two parameters: an input
datum and an output datum. In this example, the
input datum is the value for N (the number whose
factorial is to be calculated); its parameter could
be anything that has a definite value - a constant,
an expression, a register name, etc. Of necessity,
the parameter for the output datum can be only a
register name; that is, the result has to be stored
somewhere before the return is made to the
calling program (assuming that the result is not
simply to be printed and then forgotten). 'CALL

N! 6,A', for example, would cause a branch to the
N! subprogram; the factorial of 6 would then ,be
calcu lated and the resu It stored in register A.

LOCAL VARIABLES

Local variables can be considered as the intermedi­
ate results of the subprogram and, as such, do not
require parameters. They represent working regis­
ters (or temporary storage) for those values that
are generated during the subprogram, that are
required for (at least part of) the remainder of the
subprogram, and that are of no further interest
once execution of the subprogram is completed.
For example, in the N! subprogram described
above, the multiplier (1, then 2, then 3, etc.) used
to generate each partial result is purely a local
variable and is of no consequence once the final
value is calculated.

• • • • • • PARAMETER PASSING • • • • • •
The act of assigning values to dummy variables,
by means of a parameter list, is known as 'para­
meter passing'.

The variables in a subprogram (both dummy vari­
ables and local variables) are designated by means
of P-numbers: the 'P()' key followed by a num­
ber - P1, P2, P3, etc. (PO does not exist). When
the subprogram is used, the parameters in the list
correspond, in turn, to the P-numbers in numeri­
cal order - the first parameter in the list to P1,
the second to P2, and so on, regardless of the
order in which the P-numbers are used in the
subprogram. For example, instead of writing
V(AA + BB) ~ C, you could write V(P2P2 +
P1 P1) ~ P3 (the transposition of P1 and P2 is
deliberate). If this is (the essential part of) your
subprogram, then, obviously, P1, P2 and P3 are all
dummy variables and must have corresponding
parameters.

A typical parameter list for this subprogram might
be 'A, B, C' (commas must be included to separ­
ate the parameters). This list assigns registers A, B
and C to be used, respectively, in place of P1, P2
and P3 - notice that A, being the first parameter,
is assigned to P1 even though P2 appears first in
the subprogram. The next time the subprogram is
used, perhaps the same parameter list will be

passed, or perhaps it will be changed completely
(say to '6, 3X/4Y, R16').

To illustrate the concept of a subprogram with a
local variable, the above example subprogram
could be expanded to y(P2P2 + P1P1) ~ P4;
P4/2 ~ P3. In this case P4 is an intermediate
result (a local variable) and need not be included
in the parameter list. However, if for some reason
you did wish to pass a parameter to P4 then you
could do so, by adding a fourth parameter to the
list - by definition, P4 would then become a
dummy variable.

Local variables, which do not have parameters
passed to them, must all have higher P-numbers
than must the dummy variables, which do have
associated parameters. The P-numbers used to
designate variables should be consecutive and
should start with P1. If any numbers are missing
in the P-numbers used to designate dummy vari­
ables, then the parameters corresponding to the
missing numbers will simply be ignored. If any
numbers are missing in the local variables, then
more working registers than necessary will be
established for that call; this may be undesirable
(see 'The Memory Map', in this chapter).

CONCEPTS OF THE BLOCK 2-3

• • • • • • PARAMETER PASSING • • • • • •

~NUMBER INDEPENDENCE

Stored subprograms are entirely independent of
each other (unless .they are deliberately linked by
means of certain programming techniques). There­
fore, a P-number used in one subprogram bears no
relationship to the same P-number used in any
other subprogram. However, it can be made to do

so: for example, suppose P2 appears in two
subprograms and the parameter passed to P2 is, in
both cases, R4; or suppose that one subprogram
calls another and the third parameter in the list
happens to be P3. (One subprogram calling an­
other is known as 'nesting' subprograms and is
subject to essentially the same rules as is nesting
local subroutines in a mainline program.)

• • • • • • USE OF THE MEMORY • • • • • •

TH E M EMORY MAP
Figure 2-1 is a map of the calculator's memory,
showing how it is used when the UDF Block in
installed. The map shown is an extension of the
memory map shown in the calculator's operating
and programming manual.

::2'
S
cr:
....J

«
z
cr:
UJ
f­
Z

::2'
S
cr:
cr:
UJ
U)

:::J

Line 0

R0

}
Bookkeeping for
Basic Calculator

I-r-rrr-rr-rrr-rr-rTT-rr-rl

)
Bookkeeping for
Plug-in ROM's

~~,u.,.L.I.,,-l--I,J-I:-'-+~l..1) 0 ef i nab Ie A rea

(Holds Subprograms)

3

Mainline Programming Area
(Moves up or down depending
on size of Definable Area)

: Working Registers
I (Local Variables)

I-'>--'--'''----''-'-........ .:........:.---'--l

))--- Note 1

One Word

R Registers

NOTE 1

This boundry moves according
to the amount of programming.

Figure 2-1. The Memory Map

The area marked '1 - Bookkeeping for Plug-in
ROM's' contains the 83 words (20% registers) of
User's RWM automatically converted to Internal
RWM when the block is installed (see Chapter 1).

The area marked '2 - Definable Area' holds
stored subprograms. This area, which is of zero
size until a subprogram is stored, automatically
increases and decreases in size, as subprograms are
stored and 'scratched' (deleted), so as to (exactly)
accommodate the subprograms currently stored.
The mainline program area, together with what­
ever programs it contains, automatically moves up
and down to reflect changes in the size of the
definable area; the number of available R registers
also changes accordingly. The definable area is
entirely separate from the mainline area; subpro­
grams cannot be accidentally accessed, deleted, or
changed while mainline programs are being stored
or edited.

NOTE
MEMORY ERASE (or turn-on) will erase
all subprograms stored in the definable
area; the area is part of User's RWM and,
as such, is volatile.

The third area shown in Figure 2-1 ('3 - Working
Registers') is used for the local variables in the
subprograms. For most practical purposes, this
area can be considered as existing only while a
subprogram is running, and then not at all if the
subprogram has no local variables. The area will
be only as large as necessary to accommodate all
local variables for a currently-running subprogram.
The area used for local variables is also available
to the R registers; the user must remember this

2-4 CONCEPTS OF THE BLOCK

• • • • • • USE OF THE MEMORY • • • • • •

THE MEMORY MAP (cont'd)

when storing data into the higher-numbered R
registers. Because programming usually ends some­
where in the middle of an R register, and the
working registers start where the programming
ends, the working registers and the R registers will
rarely coincide; therefore, if, after running a sub­
program with local variables, you display the
contents of the highest available R registers, you
will probably see meaningless numbers.

The area used by the dummy variables depends
upon the type of parameter passed. When the
parameter is a register name, then that actual
register is used during execution of the subpro­
gram; if the subprogram changes the value in that
register (e.g., 2P2 ~ P2) then that register will
retain its changed value after completion of the
subprogram. When the parameter passed is a value
that is not a register name (i.e., is a number or an
expression), then the 'bookkeeping' area (not
otherwise available to the user) is used; once the
subprogram is completed, such values are lost.

THE DEFINABLE AREA

Each stored subprogram is represented by one of
the definable keys, FA through FE (also G A
through GJ and HA through HJ , if available - see
'UDF Block Installation', in Chapter 1). A key
cannot represent more than one subprogram at a
time.

Up to 25 subprograms can be stored in the
definable memory at the same time, but they do
not necessarily have to be in any specific order.
As an example, Figure 2-2 shows the definable
area when subprograms F D , FB and Fc have just
been stored, in that order.

I I I I I
Internal RWM

Line 0
FD

END I-

Line 0 Definable Area FB
END I- (Subprograms)

Line 0
Fe

END I-

Line 0

Figure 2-2. The Definable Area

If a new subprogram is now stored, it appears
immediately below the last subprogram in the area
(in the case shown in Figure 2-2, below Fc); the
definable area expands and the mainline area
moves down. The number of available R registers
decreases accordingly.

If a subprogram is scratched (deleted), then the
subprograms below it, and the mainline area,
move up to fill the gap. The number of available
R registers increases accordingly.

If a subprogram (say FB) is not scratched and a
new subprogram with the same name (F B) is to
be stored, then the new subprogram automatically
replaces the old; that is, the new subprogram
occupies the space in memory previously occupied
by the old subprogram. Subprograms with a lower
position in memory, and the mainline area, then
automatically move up or down to compensate
for any difference in length between the old and
the new subprograms. (However, as will be seen in
the next chapter, it is a good practice to first
scratch a subprogram if a new one is to replace
it.)

3-1

Chapter 3

WRITING SUBPROGRAMS

This chapter presents some rules for writing sub­
programs and includes some examples; at the end
of the chapter, a summary of some of the syn­
taxes is presented. The examples are very simple
because their purpose is to illustrate use of the

UDF Block. The simplicity of the examples does
not mean that subprograms necessarily have to be
short or simple; they can have as many lines, and
can be as complicated, within the limits of the
calculator, as the programmer pleases.

• • • • • • THE KEY MNEMONICS • • • •••

The three overlays, and a table of the mnemonics
associated with each key, are shown on the fold­
out at the back of this manual. The table shows
two groups of keys: the meanings of the 'control'
keys are fixed; the meanings of the 'user defin­
able' keys are determined by the subprograms
which they are made to represent.

Throughout the remainder of this manual, the
symbol 'F*' will be used to denote any, as
opposed to a specific, user definable key. Thus F*
can represent any of 25 keys: FA through FE'
GA through GJ , and HA through HJ . (There is no
actual mnemonic 'F*' in the calculator.)

• • • • • • • • WHICH TYPE? • • • • • • • •

Before you start to write a subprogram it is
important that you decide which type of subpro­
gram (a subroutine, a function or a procedure) it
is to be. The three types of subprogram each have
special requirements. The choice of type of sub­
program must be based not only on what the
subprogram is to do, but also on how you want
to use it (see the preface to th is manual). There
are few 'hard-and-fast' rules and in many cases a
particular subprogram (one to calculate N­
factorial, for example) could be easily rearranged
to fit all three types. In general your subprogram
should be:

a. A procedure - if it is some frequently

required activity that you wish to execute
easily from the keyboard.

b. A subroutine - if it is some activity that
you wish to call frequently from a pro­
gram and that results in either no value
(e.g. printing a message) or in many values.

c. A function - if it is a process that results
in only one value and if that value is to be
inserted into an arithmetic expression (in
the same way, for example, as the value
'2' is inserted in place of 'V 4' into the
expression '6 V4/R1 -+ A').

• • • • • GENERAL CONSIDERATIONS • • • • •

Each subprogram is completely isolated from all
other subprograms and from any mainline pro­
gram in the memory. Thus, a subprogram can be
written without regard to any other subprogram
or to the mainline program, unless (and this
applies in particular to the procedure subprogram)
the subprogram is to include actual register names
instead of dummy and local variables.

In each subprogram, the program lines are num­
bered consecutively and always start at line O.
Any branching statements in a subprogram can
apply only to lines within that same subprogram;
this does not apply to those statements used
specifically to branch to other subprograms (see
Chapter 4).

3-2 WRITING SUBPROGRAMS

• • • • • GENERAL CONSIDERATIONS • • • • •

(cont'd)
Except in procedure subprograms, P-numbers can
be used for all variables; that is, in place of values
and register names. Known constants can, of
course, be given their proper values - there is
nothing to be gained by making the parameter
lists passed to a subprogram longer than necessary.
Ensure that, in each subprogram, the P-numbers
are consecutive (that no number in the sequence
is missing) and that P1 is included. Also ensure
that the local variables have higher P-numbers
than the dummy variables.

Do not attempt to write subprograms in such a
way that the local variables in one correspond to

the local variables that have the same P-numbers
in another (unless those P-numbers are to be
passed in a parameter list). This sometimes can be
done, but its use is very limited; it requires that
no other subprogram with local variables be run as
long as you wish the correspondence of the local
variables between the original subprograms to last.

'END' must be the last statement in each subpro­
gram. END in the definable area behaves differ­
ently from END in the mainline area - it is closer
to being a RETURN statement rather than an
'END' statement (see 'The END Statement', at the
end of this chapter).

• • • • • THE PROCEDURE SUBPROGRAM • • • • •

The main difference between a mainline program
and a procedure subprogram is that the first
statement in the subprogram must be IMMEDI­
ATE EXECUTE (lEX); however, see 'Naming Sub­
programs', below. Once that subprogram is stored,
on Iy the key that represents it (F*) need be
pressed to start that subprogram.

As an example, suppose that you frequently total
lists of numbers and calculate the average value of
each list. The following three subprograms, stored
as procedures, would greatly simplify that process.
The first subprogram enables you to press one key
to initialize the list; the subprogram clears the two
registers that are to be used (respectively) to
count the numbers in the list, and to accumulate
the total of the list.

.L ;;

The second subprogram gives you an 'accumulate'
key, which is pressed after each number in the list
has been keyed; it increments a counter (R 1) and
adds the number just keyed into the display to
the current total (in R2):

(;:i ::
IE: ::.:: ;;:!. +, I:;:: :J. ":1' F: :l. \""
1. ;;
.... I. c· ••• •• 1"'.,"',1

1:::,"1""::: :::::":1'\'::: :::::1''''

The above subprogram utilizes the 'implied Z'
feature, which is why it uses the number just
keyed. If no number was keyed, then it uses
whatever number is currently in Z - which is not
necessarily the number currently displayed.

The third subprogram then gives you your 'aver­
age' key; it calculates the average of the list:

'I :1
.1. II

E t·~]) i""

(The procedure to store and run these subpro­
grams is given in Chapter 4).

Once a procedure subprogram is stored, you never
need to press any of the usual keys, such as GO

WRITING SUBPROGRAMS 3-3

• • • • • THE PROCEDURE SUBPROGRAM • • •••

TO, EXECUTE, or RUN PROGRAM, in order to
start the subprogram.

A procedure subprogram can also contain ENTER
statements; however, you must be careful not to

use this subprogram if you are currently halted in
the E NTE R mode for any other program or
subprogram (see 'Nesting Enter Statements', later
in this chapter).

• • • • • THE SUBROUTINE SUBPROGRAM • • • • •

The subroutine subprogram is similar in form to a
mainline subroutine, except that the subprogram
uses P-numbers. The subroutine subprogram is
used in essentially the same way as a local sub­
routine; it is called and executed, and then a
return is made to the calling program (to the next
line after the one containing the 'CALL' state­
ment - see Chapter 4).

Following is an example of a subroutine subpro­
gram. It clears selected consecutive R registers by
storing zeros into them. The registers to be
cleared are specified, whenever the subprogram is
called, by the two numbers in the parameter list.
The first parameter (corresponding to P1) is the
number of the first R register to be cleared, and
the second parameter (corresponding to P2) is the
number of the last R register to be cleared; the
subprogram itself generates the intermediate regis­
ter numbers, by incrementing (by one) the value
originally assigned to P1 until it is equal to P2.

'l ::
.I. II

IF P;;:::> F::1. ;; F::1. .oj..:I. ,,:'·F::l.
; eTO (il· .. ·
• .. ·111
~::. 11

E t··!]) I· .. ·

As an example, the statement 'CALL F* 40, 59'
results in registers R40 through R59 (inclusive)
being cleared. (Chapter 4 explains the use of
'CALL' and includes the procedure to store and
run the example subroutine subprogram.)

A subroutine subprogram can contain ENTER
statements.

• • • • • THE FUNCTION SUBPROGRAM • • • ••

A function subprogram, once stored, becomes a
keyboard function (in the mathematical sense)
and is used in exactly the same way as any other
keyboard function (such as the square root),
except that it can have a multi-parameter argu­
ment. The function subprogram is subject to the
same arithmetic hierarchy as are other functions.

A function subprogram is written in the same way
as a subroutine subprogram except that the final
result is treated in a different manner. The result
of a function subprogram has to be stored in a

special internal register (not otherwise available to
the user) named 'F'. In the subprogram, that value
which is to be the 'value of the function' must be
stored by means of the 'goes to F' key (~ F)t.
When the subprogram ends, the value last stored
in F becomes the value to be substituted for the
function in any arithmetic expression containing
the function (and its argument).

tThe mnemonic ~F is obtained by means of the DEFINE/~F
key; it cannot be obtained using the assignment key (--1 and the F
key.

3-4 WRITING SUBPROGRAMS

• • • • • THE FUNCTION SUBPROGRAM • • • • •

(cont'd)
Following is an example function subprogram, to
calculate N-factorial:

1:::\ ::

(:1 ,,:1, F> ;;:::;: :l. ":i' F>:] I· .. ,
:I. ::

I F' Ft ;;::~ I:I:~ F! 1 ;: F' ;;::: "I" :I. ":1' FI ;;;::
;: F* ;;::: F' ::::: ";1- FI ::::: ;; ,J 1'1'1 r::' () i·",
.''', II
.:::. II

."', II
") II

The argument (N) for this function is designated
in the same way as for any function - the
function key followed by the argument (e.g., F*
6). In this case, N corresponds to P1, while P2
and P3 are local variables. The final result of the
function is stored into F in line 2. Notice that the
result first had to be generated in (in this case) P3
because F cannot be manipulated in any way; the
user has no control over F other than to store a
value into it, by means of the 'goes to F' state-

ment in a function subprogram. The fact that, in
the example, END follows immediately after the
'goes to F' statement is not intended to imply
that this must always be so; there can be other
statements between.

Unlike the square root function and the functions
supplied by the 11221 A Mathematics Block, func­
tion subprograms can have mu Iti-parameter argu­
ments. For example, the following subprogram,
which calculates the square root of the sum of
two squares, requires a two-parameter argument:

l~~ ::

1 II
.!. II

When the argument of a function contains more
than one parameter, the argument must be en­
closed in parentheses; using the preceding ex­
ample, 'F* (3,4)' assigns 3 and 4 to P1 and P2
respectively; which, in this case, results in five
being returned as the value of the function.

Function subprograms cannot contain ENTER
statements.

• • • • • • NAMING SUBPROGRAMS • • • • • •

The 'name' of a subprogram is usually the mne­
monic (F*) of the key that represents it. How­
ever, the mnemonic never appears in a listing of
the subprogram. To facilitate identifying a subpro­
gram both in the listing and in the display, it can
be named by means of a literal (characters inside
a quote field). For example, the N-factorial func­
tion subprogram might reasonably be named
"N!"; the listing of the N! subprogram then
appears as:

:I ::
I F' F' ;;::: j:i:~ F' 1 FI ;? ..j.. :i. ":i' FI ;;:::
;; FI :;::~ F> ::::: ";i' F':J .j (i I::> Cl !" ..

·'''t /I

", \I

The literal must be the first statement in the
subprogram; then, whenever the key (F*) defined
by that subprogram is pressed (or displayed, or
printed), the name (e.g. N!, without the quotation
marks) is automatically substituted for the normal
mnemonic (F*). Even though the name can have
up to 16 characters (see below), once it is stored
in the subprogram, it requires no more memory
space, when appearing as a key mnemonic in a
statement in another program, than does the key
'F*'.

The literal used to name a subprogram can have as
many characters as line length will allow; however,
it is effectively limited to 16 characters because
only the first 16 will ever be displayed, or
printed, as the mnemonic for F*.

When writing a literal to name a subprogram, it is
often useful to include a blank space as the last
character in the name. The space serves to separ-

WRITING SUBPROGRAMS 3-5

• • • • •• NAMING SUBPROGRAMS • • • • • •

ate the name from the next character (usually the
start of a parameter list) in the display or in a
program listing. Without that space, confusion
sometimes arises as to which is the last character
in the name and which the first in the parameter
list.

If a procedure subprogram is to be named, then
the literal must be the first statement, and the
IMMEDIATE EXECUTE must be the second
statement, of that subprogram. The main reason
for naming a procedure is to more easily identify
a listing of the subprogram.

• • • NESTING 'ENTER' STATEMENTS - A DON'T •••

When using (and writing) subprograms, take great
care to ensure that you do not nest 'ENTE R'
statements. When halted in the 'ENTER' mode, it
is not possible to run any subprogram containing
an 'ENTER' statement. If you do so, 'NOTE 11'
will appear - if this occurs, press no other keys,
but carefully follow this procedure:

1. Press CLEAR.

2. Press STOP as often as necessary until the
mnemonic 'STP' appears in the display .

3. Press CLEAR RETURN EXECUTE.

The procedure will also set the program line
counter to line zero in the mainline program;
however, it is the only sure way to clear the
nested 'ENTE R' statements (without pressing
ERASE).

• • • • • • SYNTAXES - A SUMMARY ••••••

P-NUMBERS

F' (quantity> or F' (expression>::

~ ... : :

P-numbers designate both dummy and local vari­
ables. Parameters correspond to dummy variables,
but not to local variables, whenever the subpro­
gram is used.

P-numbers are used in subroutine and function
subprograms, but not in procedure subprograms.

P-numbers may be used in any order in a subpro­
gram; however, the numbers used should be con­
secutive and should include Pl (PO does not
exist).

If a dummy variable is assigned a register name
(A, R1, RR16, etc.) as its parameter, then that
actual register is used during execution of the

subprogram. If the value in that register is
changed during execution, then it retains that
changed value afterwards.

If a dummy variable is assigned a value other than
a register name, then that value is stored in a part
of memory that is not otherwise available to the
user.

Local variables have working registers established
for them, whenever the subprogram is executed,
immediately below the programming in the main­
line area. The number of working registers that
will be established can be determined by subtract­
ing the number of parameters passed (i.e., the
number of dummy variables) from the number of
the highest P-number used in that subprogram.
The working registers use the same area as the
highest numbered (available) R registers; however,
working registers rarely coincide with specific R
registers.

3-6 WRITING SUBPROGRAMS

•••• •• SYNTAXES - A SUMMARY ••••••

THE VALUE OF A FUNCTION

<value)·.:,.;:::· ('goes to F')

; ••• = ::::: •• :;. ~ •••

Used only in a function subprogram. Designates
the result of the subprogram; that is, that value
that is to be returned as the 'value of the
function'. If there is more than one 'goes to F'
statement in the subprogram, only the last one
executed designates the final value of the func­
tion. When function subprograms are nested, or
when more than one function is used in an
expression, the calculator automatically distingu­
ishes between the final values of the different
functions.

If the DEFINE/--+ F key is used as the first key in
a statement, it has its DEFINE meaning; other­
wise, it has its 'goes to F' meaning.

THE 'IMMEDIATE EXECUTE' STATEMENT

IMMEDIATE EXECUTE is used only in procedure
subprograms. It must be the first statement in the
subprogram, unless the subprogram is to be named
(see 'Naming Subprograms'), in which case IM­
MEDIATE EXECUTE must be the second
statement.

IMMEDIATE EXECUTE causes the subprogram to
be started as soon as its key (F*) is pressed.

(See also 'The I mmediate Execute Mode', in
Chapter 5.)

THE'END'STATEMENT

~:::. (! .U r'"

Every subprogram should have END as its last,
and only as its last, statement.

'END' in the definable area of memory does not
have the same properties that it has in the main­
line area (clearing flags and return addresses, etc.).
In the definable area END acts as follows:

1. When END is executed from the keyboard,
or when STORE is pressed to store an
'END' statement, the program line counter
goes to line zero in the mainline area.

2. When any type of subprogram is executed
from the keyboard, END causes program
execution to cease and returns the pro­
gram line counter to line zero in the
mainline area.

3. When a subroutine subprogram is executed
under program control, the END statement
acts exactly like a RETURN statement in
the mainline area - it causes a return to
the program line following the line con­
taining the subroutine subprogram call.

4. In a function subprogram the END causes
the last value stored into F (see 'The
Value of a Function' in this chapter) to be
returned as the value of that function. The
calculator then automatically continues to
complete the statement that caused the
function subprogram to be executed.

THE'RETURN'STATEMENT

In a subprogram, a 'RETURN' statement which
has no matching 'GO TO SUB' statement acts like
the 'END' statement, described above. The excep­
tion is that when R ETU R N is stored, the program
line counter goes to the next line in the subpro­
gram, and not back to the mainline area.

4-1

Chapter 4

MECHANICS OF OPERATION

This chapter describes the mechanics associated
with using subprograms: establishing the place in
memory where a particular subprogram is to start;
storing the subprogram; editing it; using it; and,
finally, recording it.

As in Chapter 3, 'F*' is used to denote any key
(as opposed to a specific key) which can be
defined by a subprogram. Thus F* can represent
any of twenty-five keys: FA through FE' GA
through GJ , and HA through HJ .

• • • • • • ESTABLISHING A HEADING • • • • • •

Each subprogram has a 'heading' which indicates
(to the calculator) what type of subprogram it is
- a subroutine/procedure or a function - and the
key, F*, which represents it. The heading locates
the starting point of the subprogram in the defin­
able area. The 'GO TO' statement is used to
establish the headings for procedure subprograms
and for subroutine subprograms. The 'DEF IN E'
statement establishes the headings for function
subprograms only.

THE SUBROUTINE/PROCEDURE

Press GO TO F* EXECUTE (where F* is to be a
subroutine or a procedure subprogram).

This establishes the heading (if it does not already
exist) for either a subroutine or procedure sub­
program. It also sets the program line counter to

line zero for that subprogram. Once a heading is
established, it remains established until it is
'scratched' (see also 'The Scratch Statement' and
'Accessing a Subprogram' below).

THE FUNCTION

Press DEFINE F* EXECUTE (where F* is to be a
function subprogram).

DEFINE F* is similar to GO TO F* (above)
except that it establishes the heading for a func­
tion subprogram.

The mnemonic 'DEF' (define) is obtained by
pressing the DEFINE/--+ F key as the first key in
the statement, otherwise the key has its 'goes to
F' meaning.

• • • • • • SUBPROGRAM STORAGE • • • • • •

ACCESSING A SUBPROGRAM

Press GO TO F* EXECUTE
(where F* can be the name of any type of
subprogram) .

Executed from the keyboard, sets the program
line counter to line zero in the subprogram F* (if
already established). Subsequent activity then
depends upon the next key pressed.

GO TO F* is not normally used within a program.
It can be used but the result will depend upon the
circumstances (e.g., the EN D in the subprogram
would cause NOTE 07 to appear, and the 'goes to
F' would cause NOTE 02).

STORING A SUBPROGRAM

First establish the heading by 'GO TO F*' for a
subroutine or procedure subprogram, or by
'DEFINE F*' for a function subprogram (these
statements also set the program line counter to
line zero for that subprogram). Then key and
store the lines of the subprogram in exactly the
same way as the lines of a mainline program are
keyed and stored. Branching statements apply to
lines only within that subprogram, until the pro­
gram line counter has returned to the mainline
area.

When STORE is pressed to store an 'END' state­
ment, the line containing the 'END' is not seen;

4-2 MECHANICS OF OPERATION

• • • • • • SUBPROGRAM STORAGE • • • • • •

STORING A SUBPROGRAM (cont'd)

only the 'end-of-line' symbol appears, indicating
that the program line counter has returned to the
mainline area, to line zero.

LISTING A SUBPROGRAM

GO TO F* LIST causes the printer to make a
listing of the subprogram (F*). When the listing is
completed the program line counter returns to

line zero in the mainline area.

Attempting to list a subprogram whose heading
has not yet been established results in a heading
being established and an 'END' statement being
stored as the subprogram. This will use approxi­
mately the equivalent of one R-register. (With a
completely empty definable area, if you listed all
twenty-five definable keys, you would use up the
equivalent of twenty-five R-registers.)

• • • • • • EDITING SUBPROGRAMS • • • • • •

RECALLING AND MODIFYING

Once the program line counter is set to a line
within a subprogram, lines can be recalled and
modified, deleted or inserted, exactly as in the
mainline area. Any 'GO TO' statements executed
from the keyboard must be to line numbers
within the subprogram currently being edited.

Any of the following operations returns the pro­
gram line counter to line zero in the mainline
area:

1. Storing or executing an 'END' statement.

2. Pressing RECALL when the line containing
the 'END' statement is currently displayed.

3. Stepping, by means of the FORWARD
key, past the 'END' statement.

4. Executing a R ETU R N when there was no
matching GO TO SUB executed while in
the subprogram.

THE'SCRATCH'STATEMENT

(MEMORY ERASE automatically erases all sub­
programs as well as all mainline programs and
stored data.)

Press SCRATCH F* EXECUTE
or SCRATCH F*!, F*2 EXECUTE

SCRATCH is used to selectively scratch (delete)
one or more subprograms. Once a subprogram
(F*) is scratched, its heading is no longer con­
tained in memory.

Subprograms can be scratched only from the
keyboard; an attempt to scratch from a program
results in NOTE 24 appearing, indicating an error
during execution.

See also 'Recording Subprograms' in this chapter.

• • • • • • RUNNING SUBPROGRAMS • • • • • •

(When loading the example subprograms given
below, refer if necessary to the foldout, at the
back of this manual, which shows the mnemonics
obtained when the keys associated with the UDF
Block are pressed.)

Once a subprogram IS stored it is very straight­
forward to use:

The Procedure Subprogram is started by press­
ing the key (F*) which it defines.

The Subroutine Subprogram is started by
means of a 'CALL' statement (explained
below).

The Function Subprogram is used when a
statement containing its name and argument is
executed.

USING PROCEDURE SUBPROGRAMS

A procedure subprogram is started by pressing its
key, F*. Depending upon how the subprogram is

MECHANICS OF OPERATION 4-3

• • • • • • RUNNING SUBPROGRAMS • • • • • •

written, data may have to be keyed either before
it is run or during an 'ENTER' statement, if it has
one. Halts for data entries require RUN PRO­
GRAM to be pressed, in the normal way, in order
to resume subprogram execution.

As an example of procedure subprograms, load
and run the three procedures (described in
Chapter 3, under the heading 'The Procedure
Subprogram') which are used to total a list of
numbers and to calculate its average value. The
following process loads the three procedures as
FA' FB, and Fc ' respectively.

(Press ERASE)
1. Press GO TO FA EXECUTE, and store the

following program lines:

,":, "
~:.! II

IE::·:: ; !;~I ":i' P :I. ,,:1' F: ;;::: I·,,·
.j It

J. ::

2. Press GO TO FB EXECUTE, and store the
following program lines:

.\ II

.i. ::

.... , II

I:::. II

3. Press GO TO Fc EXECUTE, and store the
following program lines:

(:1 ::

I E ::< ;; II ~:::; F P ;;::: ,"" F: :!. !~ ..

With the above three subprograms stored, a list of
numbers can be totalled and averaged as follows:

1. Press FA ('initialize').

2. Key each number in the list and press FB
('accumulate') after each number.

3. Press Fe ('average') - the average of the list
appears in the display.

THE'CALL'STATEMENT

C:L.,L.(Subroutine Subprogram Name) [(List)] i

C::L .. ,L .. F'* (Parameter) [,,(parameter) ...] i"-

CALL is used to branch to a subroutine subpro­
gram. The 'CALL' statement must be the last
statement in a line. A parameter list is not
required if the subprogram called has no dummy
variables - a subprogram to print a message, for
example. When execution of the subprogram is
completed, a return is made to the calling pro­
gram (or calling subprogram) - to the line follow­
ing the line which contains the 'CALL' statement.
If the call is executed from the keyboard, then
program execution ceases and the program line
counter is set to line zero in the mainline area.

USING SUBROUTINE SUBPROGAMS

Following is the procedure to store and call the
example subroutine subprogram shown under the
heading 'The Subroutine Subprogram', in Chapter
3; this subprogram can be used to clear any
number of (consecutive) R-registers. Load the
subprogram as Fo.

Press GO TO Fo EXECUTE and store the follow­
ing program lines:

IFF> ;;::: :> F' :i. ;; F' :!. +. :I. ,,:j. r:> :l
;; G 'r C) C! I""

The following 'CALL' statement will call Fo and
clear registers R40 through R59, inclusive:

The 'CALL' statement can be executed from the
keyboard - press EXECUTE - or stored as the
last statement in a line, of either a mainline
program or of another subprogram.

USING FUNCTION SUBPROGRAMS

A function subprogram is used in an expression
by pressing its key, F*, followed by its argument;
if the argument is negative, or includes more than
one parameter, or is an expression, then it must

4-4 MECHANICS OF OPERATION

• • • • • • RUNNING SUBPROGRAMS • • • • • •

USING FUNCTION SUBPROGRAMS (cont'd)

be enclosed in parentheses. When the expression
containing the function is executed, execution of
the expression is temporarily suspended while the
function is executed; when the value of the
function is returned, execution of the (suspended)
expression is continued.

Following is the procedure to store and run the
N-factorial function (see 'The Function Subpro­
gram' in Chapter 3), as FE:

Press DEFINE FE EXECUTE and store the
following program lines (the exclamation in the
literal is obtained by pressing the STOP key):

" !",I ! " :: I;) ':" I:::' ;;::: :: J ':" F':::: !, ..
'1 ::

I F' r::: ;? ;:I:~ FI:l. F: ;? +, 1 ";i' FI :;::~

;; Fl;? F: :J ":!. FI :J . ..J ['1'1 I:::: i;J I""
") II
t;,., II

I:) ::::: u;!. F' I····
·"'1 n
',) 11

The following are example statements illustrating
use of the function subprogram (the mnemonic
'N!' will appear, not 'FE" because the first state­
ment in the subprogram is a literal):

calculates 6! (=720).

calculates the expression 16x3 /3! and stores the
result in C (the actual value stored into C depends
upon the val ue cu rrently stored in register X).

calculates (3!)! (=6!=720).

All of the above statements can be executed from
the keyboard - press EXECUTE - or stored as
statements in a program.

• • • • • RECORDING SUBPROGRAMS • • • ••

This discussion describes the recording and loading
of subprograms on magnetic cards. The informa­
tion given in the calculator's Operating and Pro­
gramming Manual, describing the general aspects
of recording and loading, still applies.

GENERAL CONSIDERATIONS

A record can be made either of one subprogram
or of a series of subprograms. The advantage of
single-subprogram records is that they enable any
combination of subprograms to be loaded, in any
order. The 'series' record, on the other hand, has
the advantage that it enables a specific combina­
tion of subprograms to be loaded very rapidly.

Recording always starts at the current setting of
the program line counter and continues until all
programming below that point has been recorded.
Loading works in essentially the same way. It is
not possible to record just subprograms - main­
line programming, even though it might be only

the null program, will also be included on the
record. The mainline programming currently in
the memory will always be lost whenever a record
of one or more subprograms is loaded. In general,
mainline programs should have their own records,
although in some cases it is advantageous to have
both subprograms and mainline programs on the
same record.

If a mainline program does not require the UDF
Block, then it is a good rule to record it when
that block is not installed. This does not apply if
you can be sure that the UDF Block will always
be installed in the calculator. The reason is, that if
such a program is recorded with the block in­
stalled, then that record cannot be properly
loaded into a calculator which does not have the
block installed. On the other hand, a record made
when the UDF Block is not installed, can be
properly loaded into a calculator which does have
the block.

MECHANICS OF OPERATION 4-5

• • • • • RECORDING SUBPROGRAMS • • • • •

SINGLE SUBPROGRAMS

When only one subprogram is to be recorded, it
should be the only subprogram in memory. Also,
there should be no mainline programming, other
than the null program. When the record is made,
it includes the first statement in the subprogram
but it does not include the subprogram's heading
(see 'Establishing A Heading' at the beginning of
this chapter); the heading specifies which key
(F*!) represents that subprogram. Without the
heading, there is nothing on the record to specify
which key represents that subprogram; therefore,
the user can specify any key (F*2) he pleases
when he loads that record back into memory.

The initializing process for both making and load­
ing the record of a single subprogram depends
upon the type of subprogram:

a. If it is a subroutine or a procedure, press GO
TO F* EXECUTE.

b. If it is a function, press DEFINE F*
EXECUTE.

Then start the recording or loading in the usual
way, by pressing either RECORD EXECUTE or
LOAD EXECUTE, as appropriate. Be sure to
mark on the record whether a 'GO TO' statement
or a 'DEFINE' statement is to be used to initialize
loading; the subprogram will not run properly if
the wrong statement is used (scratch the wrong
subprogram and reload it).

Before loading a subprogram always ensure that
the key (F*) that you are about to use does not
already represent a subprogram currently in
memory. Either press E RASE or, when that is not
desirable, execute a 'SCRATCH' statement
(SCRATCH F*) to scratch the current subprogram
from the memory.

When single subprograms are loaded they are
stored in the definable area of memory in the
same order as the order in which they are loaded
(see Figure 2-2 in Chapter 2).

A SERIES OF SUBPROGRAMS

This type of record is a complete 'map' of all
programming in memory at the time the record
was made. Unlike the single-subprogram record, it

does include the heading (i.e., the specific key,
F*) for each subprogram. This type of record can,
if required, include the necessary mainline pro­
gramming (that is, other than just the null
program).

Before recording, ensure that only the required
programming is in the memory. To initialize both
the record and load processes, press:

GO TO SCRATCH EXECUTE

Then record or load in the usual way, by pressing
RECORD EXECUTE or LOAD EXECUTE, as
appropriate.

When loading, the record automatically replaces
all programming in memory; it is not necessary to
first press ERASE.

LOADING UNDER PROGRAM-CONTROL

The 'LOAD' statement can be executed as a
statement in a program; however, from a practical
point of view, its use is limited (as far as loading
subprograms is concerned) to loading subprograms
which have been recorded by means of the 'GO
TO SCRATCH' statement. When the 'LOAD'
statement is encountered, program execution is
suspended while the programming on the record
completely replaces all programming currently in
memory. Program execution then resumes auto­
matically at line zero in the mainline area.

The programmed 'load', which must be only in a
mainline program, requires two statements, 'GO
TO SUB SCRATCH' and 'LOAD', used as follows:

The two statements must be on the same line and
'LOAD' must be the last statement on the line.

Do not use 'GO TO SCRATCH' in place of 'GO
TO SUB SCRATCH'. If you do, then program
execution will resume at the beginning of the first
subprogram instead of at line zero in the mainline
area.

4-6 MECHANICS OF OPERATION

--.----...---..--.........- DIAGNOSTIC NOTES • ..

Most of the execution and syntax errors associated with the UDF Block are similar in form to those of the
basic calculator and cause the same 'notes' to appear. The UDF Block adds only one new note - NOTE
24.

Following is a brief description of the most likely errors (not all possible errors are listed). The symbol i····
implies either the STaR E or EXECUTE instructions.

1. 'CAll' statement not the last statement on the line.

2. Key other than F* or lEX follows SCR.

3. Key other than 'comma', 'semicolon' or !"" following F* in a 'SCRATCH'
statement.

4. Any other key in an 'I EX' statement (other than SCR I EX - see 'The
Immediate Execute Mode', in Chapter 5).

5. Cll not the first key in a statement (also use of Cll during a halt for
an 'ENTER' statement).

6. Any key following Cll except F* or a label enclosed in quote
marks. (A 'label in quote marks' is the same as the line label in the
mainline area; it is not the same as the literal that is the first
statement in a subprogram - in a 'CAll' statement, the former has
to be keyed character by character while the latter appears as soon
as the key F* is pressed.)

7. Key other than 'semicolon' or !"" after 'DEFINE F*'.

8. More than one F* used in a 'GO TO' or 'GO TO SUB' statement.

1. Executing a 'goes to F' statement when the function was started by
means of a 'GO TO' statement.

2. Executing a P-number as a value in an expression when the subprogram
was called incorrectly (e.g., by a 'GO TO' statement), or the P-number
was included in a procedure subprogram.

Attempt to use a P-number whose parameter is zero or less then zero [PO,
P{-1}, etc.].

Attempt to store into a 'local register' (Pn) when the subprogram was called
incorrectly (e.g., by a 'GO TO' statement) or when the P-number is used in a
procedure subprogram.

Executing a RET or an END (only in the definable area) without a matching
GSB, Cll, or function subprogram call.

See Chapter 5 _

See 'Nesting Enter Statements' in Chapter 3.

Attempting to execute a 'SCRATCH F*'during program execution.

5-1

Chapter 5

ADDITIONAL INFORMATION

This chapter contains information, about the UDF
Block, that will be needed only occasionally.
Mostly it will be needed to enable the user to

understand certain occurrences, such as the
'immediate execute' mode, which might otherwise
be a source of confusion.

...... THE 'IMMEDIATE EXECUTE' MODE ~

The immediate execute mode is established any
time an 'I EX' statement is executed, except when
it is executed in the usual way in a procedure
subprogram. Once the mode is established, all
subprograms, except function subprograms, auto­
matically become 'immediately executable', even
though they do not contain an 'I EX' statement.

Even though the mode is established, all subpro­
grams can still be used exactly as before. How­
ever, a subroutine subprogram is immediately
executed if its key (F*) is pressed as the fi rst key
in a statement. When started in this way, the
subroutine subprogram will not run properly if it
contains P-numbers (either NOTE 02 or NOTE 06
appears). On the other hand, if the subroutine
does not use P-numbers, but instead uses actual
values and register names, then it will run
properly (notice that such a subroutine subpro-

gram is actually a procedure subprogram without
the 'lEX' statement).

The mode can be established in anyone of three
ways:

1. Executing an 'lEX' statement from the
keyboard.

2. Executing an 'lEX' statement in a mainline
program or in any subprogram (except in the
usual way in a procedure subprogram).

3. Executing a procedure subprogram as if it
were a subroutine subprogram (i.e., by means
of a 'CALL F*' statement).

A 'SCRATCH' statement is used to remove the
'immediate execute' mode:

• • ... 'CALLING' LOCAL SUBROUTINES • ... •

When the UDF Block is installed, local subroutines
(in the mainline area) can be written using dummy
and local variables (P-numbers) and can then be
called by means of a 'CALL' statement with
parameters. In general, the rules applicable to
calling subroutine subprograms apply to these local
subroutines except that the call must be by means

of a literal - a name inside a quote field. The same
literal must be the first statement in the subroutine
and R ETU RN must be the last statement. It is not
possible to branch to a local subroutine by means
of its line number when the 'CALL' statement is
used.

... CAUSES OF NOTE 09 .. • .. • • • •
Several things cause NOTE 09, but it is often
difficult to trace the actual cause because too many
variable factors are involved. The one obvious cause
is writing or storing too long a line.

NOTE 09 can be caused by nesting subroutines and

subprograms too deeply, but it is often not possible
to predict beforehand what constitutes 'too
deeply'. Without the UDF Block and given 'ideal'
circumstances (nothing else affecting the depth),
local subroutines can be nested thirty-one deep.
When the UDF Block is installed this depth is

5-2 ADDITIONAL INFORMATION

• • • • • • • CAUSES OF NOTE 09 • • • • • • •

essentially doubled, but, as subprograms can also be
nested, the depths that local subroutines can be
nested depends (in part) on how many subprograms
are nested. By themselves subroutine subprograms
can be nested as deeply as can local subroutines
(except that no more than 25 subprograms can be
stored at one time). Function subprograms, on the
other hand, cannot be nested more than four deep.

Additional factors which affect the nesting include:
the type of subprograms currently being nested; the
nature and length of any expression whose
execution has been temporarily suspended to allow
a function subprogram, within that expression, to
be executed; the number of parameters currently
being passed; and the nature of the current
parameters, whether they are register names,
numbers, or expressions (expressions which might
themselves contain defined functions!).

It is also possible, without exceeding line length, to
have too many parameters in a 'CA L L' statement
and so cause NOTE 09 to appear during execution.
Again, what may be too many parameters in one
situation may be perfectly acceptable in another
situation. The following examples illustrate this.

The maximum possible number of parameters in
any given call depends upon the types of
parameters used and is limited by line length.
Numbers with many digits obviously require more
keystrokes than do, say, two-digit register names.
The largest number of parameters, twenty-five, can
be passed if they are all one-digit, unsigned integers:

~! ~:5 !! (: !! '? !' ::;: !! '::~l !! CI!I :I. !! 2
, :3 !! 4 !1 ~::; !! !:::I !l '? !! f: !! I) !! I~:!

!! 1 !! ;;:::!I :::::!! 41'"''

Even though this call has twenty-five parameters, it
is actually the 'worst case' situation because none
of the parameters are register names. As each

number is used, it will be stored in the internal
read-write-memory, in the same area shared by the
'nesting' information; thus, the length of the call
can also affect the depth of nesting.

The following subprogram cannot be called by the
above 'CALL' because it cannot accept that many
parameters. Instead, it starts printing meaningless
numbers and then stops with NOTE 09 displayed.
If the parameter list is shortened to seventeen
parameters, then the subprogram will operate
correctly.

el ::
F' I:;~: T' P:l.!1 F' :;::~ , Fl ::::: , P 4 !!

F' ~::) !I F' (I !! F: '? , P:J !! F' ':~I !! p

.j II

.f. :I

F' j:;;: 'r F':i.:I.!! F' :J. ;;;:: !! PI:::: ,
1:::1 :I. 1::1· !' F' :I, ~:::; !1 F' 1 i:::, !! F' 1. ? !!

F' :1. :;::: !! F' :I. I;) !! P 2: 1;::1 I""
") ~
~." ::

Fl P T F' ;;:~ :I. !1 F> ;~:: ;;::~ !! F' ;;;:: :;:: ,
P ;;:: 4 !! F' ;;:: ~::i t' ..
•••• , H

"::: II

If the same subprogram is written to generate its
own P-numbers then it can be passed all twenty-five
parameters, and it will accept all of them:

'j I:
.!. II

IF;;:: (, :> ::< ; P I? 'r F: ::<;; :I.

+. >:: ":i' ::< ;;1 1':', F' I;) t .. "
•••• , II

1:::. ::

E: t··I:n t·,,·

The above represent extreme situations; in general,
it is fair to say that line length will most often be
the deciding factor in determining the maximum
number of parameters in a 'CALL' statement, and
that there will usually be sufficient nesting-depth
for most purposes.

Note 1. ' b' represents a blank space.

Note 2. Used as first key in a statement has 'DEFINE' meaning;
otherwise has '~F' meaning.

Note 3. Other USER DEFINABLE keys (F B , GB , etc.) have similar
mnemonics (FB, GB, etc.).

The mnemonic for any of these keys is changed if the subpro­
gram which it represents has a literal as its first statement (see
'Naming Subprograms' in Chapter 3).

APPENDIX ..
FOLDOUT .,

•

APPENDIX
.. • • • • • • KEY MNEMONICS • • • • • • • CONTROL KEYS USER DEFINABLE KEYS KEY MNEMONIC KEY MNEMONIC g :::; C: F~ b ~ j···!b D ro

(Note 1)
(Note 1&3)

~ T E:;:'::b ~ C;r:lb
.i.

EJ ~ (Note 1)
(Notel&3)

EXECUTE

~ C:L..L..b ~ i···ij:::!b [;J EJ (Note 1)
(Note 1&3)

~ :UE:r:· b
or

- --liiJ ··:;·F· b _~ F

(Note 1&2)

~

c;J : ... , - --,

••••• •• KEY OVERLAYS •••••••
® ® H~ {$\ ~ E~ [D"\ ~ ~~ {N\ CD

(/),
z~ g D ~"D D ~"EJ EJ
0

~ HA

i=
- G

()

~ A
Z
::J

(/)

u.

Z
(/)

0
z

w f%\ ~ i= iT\ [J\ 0 ["0\ {r\

-'

;::

Ql

()
«

D z

D EJ
()

EJ EJ
z

::J

Z

u:: ~ u.

::J u..

W EXECUTE

W

0

-'

w

a:
Ql

-'
«

Ql

w

Z

«

(/)
::J {&\ ~ u:: {F\ (I<') z

{P\ {lj\

w
u::

0

w [;J EJ D EJ
0

EJ EJ
a:

a:
w
(j)

w
::J

(/)
::J ~ ~ {G\ {l\ (Q\ {V"\ liiJ ~F EJ EJ EJ EJ EJ ("?\ (SPA"CE) (ti\ [M) (R"\ (YJ\ c;J EJ D EJ EJ EJ -

UNITED STATES
ALABAMA
P.O. Box 4207
2003 Byrd Spring Road S.W.
Huntsville 35802
Tel, (205) 881-4591
TWX, 810-726-2204

ARIZONA
2336 E. Magnolia St.
Phoenix 85034
Tel, (602) 252-5061
TWX, 910-951-1330

5737 East Broadway
Tucson 85716
Tel< (602) 298-2313
TWX, 910-952-1162

CALIFORNIA
1430 East Orangethorpe Ave.
Fullerton 92631
Tel, (714) 870-1000

3939 lankershim Boulevard
North Hollywood 91604
Tel, (213) 877-1282
TWX, 910-499-2170

1101 Embarcadero Road
Palo Alto 94303
Tel, (415) 327-6500
TWX, 910-373-1280

2220 Watt Ave.
Sacramento 95825
Tel, (916) 482-1463
TWX, 910-367-2092

9606 Aero Drive
San Diego 92123
Tel, (714) 279-3200
TWX, 910-335-2000

COLORAOO
7965 East Prentice
Englewood 80110
Tel, (303) 771-3455
TWX, 910-935-0705

CANADA
ALBERTA
Hewlett·Packard (Canada) Ltd.
11745 Jasper Ave.
Edmonton
Tel, (403) 482-5561
TWX, 610-831-2431

CONNECTICUT
508 Tolland Street
East Hartford 06108
Tel, (203) 289-9394
TWX, 710-425-3416

111 East Avenue
Norwalk 06851
Tel, (203) 853-1251
TWX, 710-468-3750

FLORIOA
P.O. Box 24210
2806 W. Oakland Park Blvd.
Ft. Lauderdale 33307
Tel, (305) 731-2020
TWX, 510-955-4099

P.O. Box 20007
Herndon Station 32814
621 Commonwealth Avenue
Orlando
Tel, (305) 841-3970
TWX, 810-850-0113

GEORGIA
P.O. Box 28234
450 Interstate North
Atlanta 30328
Tel, (404) 436-6181
TWX, 810-766-4890

ILLINOIS
5500 Howard Street
Skokie 60076
Tel< (312) 677-0400
TWX, 910-223-3613

INDIANA
3839 Meadows Drive
Indianapolis 46205
Tel, (317) 546-4891
TWX, 810-341-3263

BRITISH COLUMBIA
Hewlett·Packard (Canada) ltd.
4519 Canada Way
North Burnaby 2
Tel, (604) 433-8213
TWX, 610-922-5059

SALES & SERVICE OFFICES

LOUISIANA
P.O. Box 856
1942 Williams Boulevard
Kenner 70062
Tel, (504) 721-6201
TWX, 810-955-5524

MARYLAND
6707 Whitestone Road
Baltimore 21207
Tel, (301) 944-5400
TWX, 710-862-9157

P.O. Box 1648
2 Choke Cherry Road
Rockville 20850
Tel, (301) 948-6370
TWX, 710-828-9684

MASSACHUSETTS
32 Hartwell Ave.
Lexington 02173
Tel, (617) 861-8960
TWX: 710-326-6904

MICHIGAN
21840 West Nine Mile Road
Southfield 48075
Tel, (313) 353-9100
TWX, 810-224-4882

MINNESOTA
2459 University Avenue
St. Paul 55114
Tel, (612) 645-9461
TWX, 910-563-3734

MISSOURI
11131 Colorado Ave.
Kansas City 64137
Tel, (816) 763-8000
TWX, 910-771-2087

2812 South Brentwood Blvd.
St. Louis 63144
Tel, (314) 962-5000
TWX, 910-760-1670

NEW JERSEY
W. 120 Century Road
Paramus 07652
Tel, (2at) 265-5000
TWX, 710-990-4951

MANITOBA
Hewlett·Packard (Canada) Ltd.
511 Bradford Ct.
Winnipeg
Tel, (204) 786-7581
TWX, 610-671-3531

1060 N. Kings Highway
Cherry Hill 08034
Tel, (609) 667-4000
TWX, 710-892-4945

NEW MEXICO
P.O. Box 8366
Station C
6501 Lomas Boulevard N.E.
Albuquerque 87108
Tel, (505) 265-3713
TWX, 910-989-1665

156 Wyatt Drive
Las Cruces 88001
Tel, (505) 526-2485
TWX, 910-983-0550

NEW YORK
1702 Central Avenue
Albany 12205
Tel, (518) 869-8462
TWX, 710-441-8270

1219 Campville Road
Endicott 13760
Tel, (607) 754-0050
TWX, 510-252-0890

82 Washington Street
Poughkeepsie 12601
Tel, (914) 454-7330
TWX, 510-248-0012

39 Saginaw Drive
Rochester 14623
Tel, (716) 473-9500
TWX, 510-253-5981

5858 East Molloy Road
Syracuse 13211
Tel, (315) 454-2486
TWX, 710-541-0482

1 Crossways Park West
Woodbury 11797
Tel, (516) 921-0300
TWX, 510-223-0811

NORTH CAROLINA
P.O. Box 5188
1923 North Main Street
High Point 27262
Tel, (919) 885-8101
TWX, 510-926-1516

NOVA SCOTIA
Hewlett·Packard (Canada) Ltd.
2745 Dutch Village Rd.
Suite 206
Halifax
Tel, (902) 455-0511
TWX, 610-271-4482

CENTRAL AND SOUTH AMERICA
ARGENTINA
Hewlett-Packard Argentina
S.A.C.e.l
Lavalle 1171 .3°
Buenos Aires
Tel: 35-0436, 35-0627, 35-0431
Telex: 012-1009
Cable: HEWPACKARG

BRAZIL
Hewlett-Packard Do Brasil
l.e.C Ltda.
Rua Frei Caneca 1119
Sao Paulo· 3, SP
Tel: 288·7111, 287·5858
Cable: HEWPACK Sao Paulo

Hewlett-Packard Do Brasil
Praca Dam Feliciano 78
Salas 806/808
Porto Alegre
Rio Grande do Sui (RS)-Brasil
Tel: 25·8470
Cable: HEWPACK Porto Alegre

Hewlett·Packard 00 Brasil
l.e.C. ltda.
Rua da Matriz 29
Botafogo ZC-02
Rio de Janeiro, GB
Tel: 246-4417
Cable: HEWPACK Rio de Janeno

Hewlett·Packard Do Brasil
Industria e Comercia Ltda.
Praca Dom FeliCiano 78
Salas 806·8
Porto Alegre RGS

CHILE
H~ctor Calcagni y Cia, Uda.
Bustos, 1932·3er Piso
Casilla 13942
Santiago
Tel: 423 96
Cable: CALCAGNI Santiago

COLOMBIA
Instrumentacion
Henrik A. Langebaek & Kier

Ltda.
Carrera 7 No. 48·59
Apartado Aereo 6287
Bogota, 1 D.E.
Tel, 45-78-06, 45-55-46
Cable: AARIS Bogota
Telex: 44400 INSTCO

COSTA RICA
lic. Alfredo Gallegos Gurdian
Apartado 10159
San Jose
Tel: 21-86-13
Cable: GALGUR San Jos~

ECUADOR
Laboratorios de Radio-Ingenieria
Calle Guayaquil 1246
Post Office Box 3199
Quito
Tel: 212-496; 219·185
Cable: HORVATH Quito

EL SALVADOR
Electr6nica
Apartado Postal 1589
Blvd. Venezuela 1231
San Salvador
Tel: 217527; 214895
Cable, ElECTRONICA

San Salvador

MEXICO
Hewlett·Packard Mexicana, S.A.
de C.V.
622 Adolfo Prieto
Col. del Valle
Mexico 12, D.F.
Tel, 543-4232; 523-1874
Telex: 0017-74507

NICARAGUA
Roberto Terin G.
Apartado Postal 689
Edlficio Teran
Managua
Tel, 3451, 3452
Cable: ROTE RAN Managua

PANAMA
Electr6nico Balboa, S.A.
P.O. Box 4929
Ave. Manuel Espinosa No. 13-50
Bldg. Alina
Panama City
Tel, 230833
Telex: 3481003, Curundu,
Canal Zone
Cable: ELECTRON Panama City

OHIO
25575 Center Ridge Road
Cleveland 44145
Tel, (216) 835-0300
TWX, 810-427-9129

3460 South Dixie Drive
Dayton 45439
Tel, (513) 298-0351
TWX, 810-459-1925

1120 Morse Road
Columbus 43229
Tel, (614) 846-1300

OKLAHOMA
2919 United Founders Boulevard
Oklahoma City 73112
Tel, (405) 848-2801
TWX, 910-830-6862

OREGON
Westhllls Mall, Suite 158
4475 S.W. Scholls Ferry Road
Portland 97225
Tel, (503) 292-9171
TWX, 910-464-6103

PENNSYLVANIA
2500 Moss Side Boulevard
Monroeville 15146
Tel, (412) 271-0724
TWX, 710-797-3650

1021 8th Avenue
King of Prussia Industrial Park

, King of Prussia 19406
Tel, (215) 265-7000
TWX, 510-660-2670

RHODE ISbI\ND
873 Waterman Ave.
East Providence 02914
Tel, (401) 434-5535
TWX, 710-381-7573

TEXAS
P.O. Box 1270
201 E. Arapaho Rd.
Richardson 75080
Tel, (214) 231-6101
TWX, 910-867-4723

ONTARIO
Hewlett·Packard (Canada) Ltd.
880 lady Ellen Place
ottawa 3
Tel, (613) 722-4~23
TWX, 610-562-1952

Hewlett·Packard (Canada) Ltd.
50 Galaxy BlVd.
Hexdale
Teb (416) 677-9611
TWX, 610-492-4246

PERU
Compania Electro Medica SA
Ave. Enrique Canaual 312
San Isidro
Casilla 1030
lima
Tel: 22-3900
Cable: ELMED lima

PUERTO RICO
San Juan Electronics, Inc.
P.O. Box 5167
Ponce de Leon 154
Pda. 3-PTA de Tierra
San Juan 00906
Tel, (809) 725-3342, 722-3342
Cable: SATRONICS San Juan
Telex: SATRON 3450 332

SURINAME
Surtel·Radio Holland N.V.
P.O. Box 155
Paramaribo
Tel: 72118
Cable: Treurniet Paramaribo

P.O. Box 22813
6300 Westpark Drive
Suite 100
Houston 77027
fej, (713) 781-6000
TWX, 910-881-2645

231 Billy Mitchell Road
San Antonio 78226
Tel, (512) 434-4171
TWX, 910-871-1170

UTAH
2890 South Main Street
Salt Lake City 84115
Tel, (801) 487·0715
TWX, 910-925-5681

VERMONT
P.O. Box 2287
Kennedy Drive
South aurllngton 05401
Tel, (802) 658-4455
TWX, 510-299-0025

VIRGINIA
P.O. Box 6514
2111 Spencer Road
Richmond 23230
Tel, (703) 285-3431
TWX, 710-956-0157

WASHINGTON
433-108th N.E.
Bellevue 98004
Tel, (206) 454-3971
TWX, 910-443-2303

'WEST VIRGINIA
Charleston
Tel, (304) 768-1232

FOR U.S. AREAS NOT
LISTED:
Contact the regional office near­
est you: Atlanta, Georgia ..
North Hollywood, California.
Paramus, New Jersey ... Skokie,
Illinois. Their complete ad­
dresses are listed above.

·Servlce Only

QUEBEC
Hewlett-Packard (Canada) Ltd.
275 Hymus Boulevard
Pointe Claire
Tel, (514) 697-4232
TWX, 610-422-3022
Telex: 01-20607

FOR CANADIAN AREAS NOT
LISTED:
Contact Hewlett·Packard (Can­
ada) ltd. in Pointe Claire, at
the complete address listed
above.

URUGUAY
Pablo Ferrando S.A.
Comerclal e Industrial
Avenida Italia 2877
Casilla de Correo 370
Montevideo
Tel, 40-3102
Cable: RADIUM Montevideo

VENEZUELA
Hewlett·Packard De Venezuela
C.A.
Apartado 50933 - •
Caracas
Tel, 71.88.05,71.88.69, 71.99.30
Cable: HEWPACK Caracas
Telex: 39521146

FOR AREAS NOT LISTED,

CONTACT:
Hewlett-Packard

INTERCONTINENTAL
3200 Hillview Ave.
Palo Alto, California 94304
Tel, (415) 493-1501
TWX, 910-373-1267
Cable: HEWPACK Palo Alto
Telex: 034-8461

E 6-71

EUROPE
AUSTRIA
Unilabor GmbH
Wissenschaftliche Instrumente
Rummelhardtgasse 6
P.O. Box 33
A-lOgS Vienna
Tel, (222) 42 6181,431394
Cable: LABORINSTRUMENT

Vienna
Telex: 75 762

BELGIUM
Hewlett-Packard SA Benelux
348 Boulevard du Souverain
8-1160 Brussels
Tel, (02) 722240
Cable: PAlQBEN BrUssels
Telex: 23494

DENMARK
Hewlett-Packard A/S
Datavej 38
DK-3460 Birkerod
Tel, (01) 81 66 40
Cable: HEWPACK AS
Telex: 66 40

Hewlett-Packard A/S
Torvet 9
OK-860D Silkeborg
Tel: (06}-82-71-66

FINLAND
Hewlett·Packard Qy
Bulevardi 26
P.O. Box 12185
Helsinki 12
Tel: 13-730
Cable: HEWPACKOY-Helsinki
Telex: 12-1563

FRANCE
Hewlett-Packard France
Quartier de Courtaboeuf
Bolte Postafe NO.6
F-91 Orsay
Tel; 1-9208801
Cable: HEWPACK Orsay
Telex: 60048

Hewlett-Packard France
4 Quai des Etroits
F-69 Lyon 5eme
Tel: 78-426345
Cable: HEWPACK Lyon
Telex: 31617

Hewlett-Packard France
29 rue de la Gara
F-31 Blagnac
Tel, (61) 85 82 29
Telex: 51957

GERMANY
Hewlett-Packard Vertriebs-GmbH
Berliner Strasse 117
Postfach 560/40
06 Nieder-Eschbach/Ffm 56
Tel, (0611) 50 10 64
Cable: HEWPACKSA Frankfurt
Telex: 41 32 49 FRA

Hewlett-Packard Vertriebs-GmbH
Wilmersdorfer Strasse 113/114
o-iooo Berlin W. 12
Tel: (0311) 3137046
Telex: 18 34 05

Hewlett-Packard Vertriebs-GmbH
Herrenbergerstrasse 110
07030 Boblingen, Wurttemberg
Tel: (07031) 66 72 86
Cable: HEPAG Boblingen
Telex: 72 65 739

Hewlett-Packard Vertriebs-GmbH
Vogelsanger Weg 38
04 DUsseldorf
Tel: (0211 63 80 31/35
Telex: 85/86 533

Hewlett-Packard Vertriebs-GmbH
Wendenstr. 23
02 Hamburg 1
Tel, (0411) 24 05 51/52
Cable: HEWPACKSA Hamburg
Telex: 21 53 32

Hewlett-Packard Vertriebs-GmbH
Reginfriedstrasse 13
08 Mi.inchen 9
Tel: (0811) 695971/75
Cable: HEWPACKSA Munchen
Telex: 524985

GREECE
Kostas Karayannis
18, Ermou Street
Athens 126
Tel: 230301.3,5
Cable: RAKAR Athens
Telex: 21 59 62 RKAR GR

IRELAND
Hewlett-Packard Ltd.
224 Bath Road
Slough, SLI 4 OS, Bucks
Tel: Slough 753-33341
Cable: HEWPIE Slough
Telex: 84413

ITALY
Hewlett-Packard ltaliana S.p.A.
Via Amerigo Vespucci 2
1-20124 Milan
Tel: (2) 6251 (10 lines)
Cable: HEWPACKIT Milan
Telex: 32046

Hewlett-Packard Ital(ana S.p.A.
Palazzo Italia
Piazza Marconi 25
1-00144 Rome· Eur
Tel: 6-591 2544
Cable: HEWPACKIT Rome
Telex: 61514

AFRICA, ASIA, AUSTRALIA
ANGOLA
Telectra Empresa Tecnia

de Equipamentos Electricos
SAR

Rua de Barbosa Rodrigues
42-JO

Box 6487
Luanda
Cable: TELECTRA luanda

AUSTRALIA
Hewlett-Packard Australia

Ply_ ltd_
22·26 Weir Street
Glen Iris, 3146
Victoria
Tel: 20.1371 (6 lines)
Cable: HEWPARO Melbourne
Telex: 31024

Hewlett-Packard Australia
Pty. Ltd.

61 Alexander Street
Crows Nest 2065
New South Wales
Tel: 43.7866
Cable. HEWPARO Sydney
Telex: 21561

Hewlett-Packard Australia
Ply. Ltd.

97 Churchill Road
Prospect 5082
South Australia
Tel: 65.2366
Cable: HEWPARD Adelaide

Hewlett Packard Australia
Ply. ltd.

2nd Floor, Suite 13
Casablanca Buildings
196 Adelaide Terrace
Perth, W.A. 6000
Tel: 21-3330
Cable: HEWPARD Perth

Hewlett-Packard Australia
Pty. Ltd.

10 Woolley Street
P.O. Box 191
Dickson A.C.T. 2602
Tel· 49-8194
Cable: HEWPARO Canberra ACT

Hewlett-Packard Australia
Ply. Ltd.
75 Simpsons Road
Bardon
Queensland, 4068
Tel: 36-5411

CEYLON
United Electricals Ltd.
P.O. Box 681
Yahala Building
Staples Street
Colombo 2
Te" 5496
Cable: HOTPOINT Colombo

CYPRUS
Kypronics
19 Gregorios & Xenopoulos Road
P.O. Box 1152
Nicosia
Tel, 6282-75628
Cable: HE-I·NAMI

ETHIOPIA
African Salespower & Agency

Private Ltd., Co.
P. O. Box 718
58/59 Cunningham St.
Addis Ababa
Tel: 12285
Cable: ASACO Addisababa

Blue Star Ltd.
Blue Star House,
34 Ring Road
lajpat Nagar
New Delhi 24, India
Tel: 62 32 76
Tele'C: 463
Cable: BLUESTAR

Blue Star Ltd.
17·C Ulsoor Road
Bangalore·8

Blue Star, Ltd.
96 Park Lane
Secunderabad 3, India
Tel: 7 63 91
Cable: BlUEFROST

Blue Star, Ltd.
23/24 Second Line Beach
Madras 1, India
Tel: 2 39 55
Telex: 379
Cable: BLUESTAR

Blue Star, ltd.
1B Kaiser Bungalow

HONG KONG Dindli Road
Schmidt & Co. (Hong Kong) ltd. J h did'
P.O. Box 297 T~~S 3~ ~~r, n la
1511, Prince's Building 15th Floor Cable: BlUESTAR
10, Chater Road
Hong Kong
Tel: 240168, 232735
Cable: SCHMIOTCO Hong Kong

INDIA
Blue Star ltd.
Kasturi Buildings
Jamshedji Tata Rd.
Bombay 20BR, India
Tel: 29 50 21
Telex: 2156
Cable: BLUEFROST

Blue Star ltd.
Band Box House
Prabhadevi
Bombay 2500, India
Tel: 45 73 01
Telex: 2156
Cable: BlUESTAR

Blue Star ltd.
14/40 Civil Lines
Kanpur, India
Tel: 68882
Cable: BLUESTAR

Blue Star, Ltd.
7 Hare Street
P.O. Box 506
Calcutta 1, India
Tel: 23-0131
Telex: 655
Cable: BLUESTAR

INDONESIA
Bah Bolon Trading Coy. N.V.
Djalah Merdeka 29
Bandung
Tel: 4915; 51560
Cable: IlMU
Telex: 08-809

IRAN
Telecom, ltd.
P. O. Box 1812
240 Kh. Saba Shomali
Teheran
Tel: 43850, 48111
Cable: BASCOM Teheran

ISRAEL
Electronics & Engineering

Div. of Motorola Israel Ltd.
17 Aminadav Street
Tel·Aviv
Tel: 36941 (3 lines)
Cable: BASTEL Tel-Aviv
Telex. Baste! Tv 033-569

JAPAN
Yokogawa·Hewlett-Packard Ltd.
Ohashi Building
1-59-1 Yoyogi
Shibuya-ku, Tokyo
Tel: 03-370-2281/7
Telex: 232-2024YHP
Cable: YHPMARKET TDK 23·724

NETHERLANDS
Hewlett-Packard BenelUX, N.V.
Weerdestein 117
P.O. Box 7825
Amsterdam, Z 11
Tel: 020-4277 77
Cable: PALOB£N Amsterdam
Telex: 13 216

NORWAY
Hewlett-Packard Norge A/S
Box 149
Nesveien 13
N-1344 Haslum
Tel, (02)-53 83 60
Cable: HEWPACK Oslo
Telex: 16621

PORTUGAL
Telectra
£mpresa Tecnica de

Equipamentos
£Iectricos, S.a.r.1.
Rua Rodrigo da Fonseca 103
P.O. Box 2531
Lisbon 1
Tel: 68 60 72
Cable: TELECTRA Lisbon
Telex: 1598

SPAIN
Ataio Ingenieros SA
Enrique Larreta 12
Madrid, 16
Tel: 215 3543
Cable: TELEATAIO Madrid
Telex: 27249E

Ataio Ingenieros SA
Ganduxer 76
Barcelona 6
Tel: 211-44-66
Cable: TELEATA!O Barcelona

Yokogawa-Hewlett-Packard ltd.
Nisei Ibaragi Bldg.
2-2-8 Kasuga
Ibaragi-Shi
Osaka
Tel: (0726) 23-1641
Telex: 385·5332 YHPOSAKA

Yokogawa·Hewlett·Packard Ltd.
Ito Building
No. 59, Kotori-cho
Nakamura-ku, Nagoya City
Tel: (052) 551-0215

Yokogawa-Hewlett-Packard Ltd.
Nitta Bldg.
2300 Shinohara-cho,
Kohoku-ku
Yokohama 222
Tel: (405) 432-1504/5

KENYA
Kenya Kinetics
P.O. Box 18311
Nairobi, Kenya
Tel: 57726
Cable: PROTON

KOREA
American Trading Co.,
Korea, Ltd.
Seoul P.O. Box 1103
7th & 8th floors, DaeKyung Bldg.
107 Sejong Ro
Chongro·Ku, Seoul
Tel: 75-5841 (4 lines)
Cable: AMTRACO Seoul

LEBANON
Constantin E. Macridis
Clemenceau Street
P.O. Box 7213
Beirut
Tel: 220846
Cable: ELECTRDNUClEAR Beirut

MALAYSIA
MECOMB Malaysia Ltd.
2 Lorang 13/6A
Section 13
Petaling Jaya, Selangor
Cable: MECOMB Kuala lumpur

MOZAMBIQUE
A. N. Goncalves, LOA.
4.1 Apt. 14 Av. D. Luis
P.O. Box 107
Lourenco Marques
Cable: NEGON

NEW ZEALAND
Hewlett·Packard (N.l.) ltd.
94·96 Dixson St.
P.O. Box 9443
Wellington, N.Z.
Tel: 56-559
Cable: HEWPACK Wellington

Hewlett Packard (N.Z.) Ltd.
Box 51092
Pukuranga
Tel: 573·733
Cable: HEWPACK, Auckland

SWEDEN
Hewlett-Packard Sverige AB
Enighetsvagen 1·3
Fack
S·161 20 Bromma 20
Tel, (08) 981250
Cable, MEASUREMENTS

Stockholm
Telex: 10721

Hewlett-Packard sverige AS
Hagakersgatan 9C
S-431 41 Molndal
Tel: 031 - 27 68 00
Telex: 21 312 hpmlndl

SWITZERLAND
Hewlett Packard Schweiz AG
Zurcherstrasse 20
CH-8952 Schlieren Zurich
Tel, (051) 98 18 21/24
Cable: HPAG CH
Telex: 53933

Hewlett Packard Schweiz A.G.
Rue du Bois-du·Lan 7
1217 Meyrin 2 Geneva
Tel, (022) 41 54 00
Cable: HEWPACKSA Geneva
Telex: 27333 HPSA CH

TURKEY
Telekom Engineering Bureau
P.O. Box 376
Karakoy
Istanbul
Tel, 49 40 40
Cable: TELEMATION Istanbul

PAKISTAN (EAST)
Mushko & Company, Ltd.
1, Jinnah Avenue
Dacca 2
Tel, 280058
Cable: NEWDEAL Dacca

PAKISTAN (WEST)
Mushko & Company, ltd.
Oosman Chambers
Abdullah Haroon Road
Karachi 3
Te" 511027, 512927
Cable: COOPERATOR Karachi

PHILIPPINES
Electromex Inc.
Makati Commercial Center
2129 Pasong Tamo
Makati, Rizal 0 708
P.O. Box 1028
Manila
Tel: 89-85-01; 88-91-71
Cable: ELEMEX Manila

SINGAPORE
Mechanical and Combustion

Engineering Company Ltd.
9, Jalan Kilang
Red Hill Industrial Estate
Singapore, 3
Tel: 642361-3; 632611
Cable: MECOMB Singapore

Hewlett-Packard Far East
Area Office
P.O. Box 87
Alexandra Post Office
Singapore 3
Tel: 633022
Cable: HEWPACK SINGAPORE

SOUTH AFRICA
Hewlett Packard South Africa

(Ply,), lId_
P.O. Box 31716
Braamfontein Transvaal
Milnerton
30 De Beer Street
Johannesburg
Tel: 725·2080, 725-2030
Telex: 0226 JH
Cable: HEWPACK Johannesburg

Hewlett Packard South Africa
(Ply,), lId,

Breecastle House
Bree Street
Cape Town
Tel: 3-6019, 3·6545
Cable: HEWPACK Cape Town
Telex: ,5-0006

Hewlett Packard South Africa
(Ply_), lld_

30B Glenwood Centre
Corner Hunt & Moore Roads
P.O. Box 99
Overport, Natal
Tel: 347536

UNITED KINGDOM
Hewlett-Packard Ltd.
224 Bath Road
Slough, SLI 4 DS, Bucks
Tel: Slough (0753) 33341
Cable: HEWPIE Stough
Telex: 84413

Hewlett-Packard Ltd.
The Graftons
Stamford New Road
Altrincham, Cheshire
Tel: 061 928-8626
Telex: 668068

YUGOSLAVIA
Belram S.A.
83 avenue des Mimosas
Brussels 1150, Belgium
Tel: 34 33 32,342619
Cable: BELRAMEL Brussels
Telex: 21790

SOCIALIST COUNTRIES
PLEASE CONTACT:
Hewlett-Packard Ges.m.b.H
Innstrasse 23/2
Postfach
A1204 Vienna, Austria
Tel, (222) 3366 06/09
Cable: HEWPACK Vienna
Telex: 75923

ALL OTHER EUROPEAN
COUNTRIES CONTACT:
Hewlett-packard S.A.
Rue du Bois-du-lan 7
1217 Meyrin 2 Geneva

Switzerland
Tel, (022) 41 54 00
Cable: HEWPACKSA Geneva
Telex: 2.24.86

TAIWAN
Hewlett Packard Taiwan
39 Chung Shiao West Road
Sec. 1
Overseas Insurance
Corp. Bldg. 7th Floor
Taipei
Tel: 579·605, 579-610, 579-613
Telex: TP824 HEWPACK
Cable: HEWPACK Taipei

THAILAND
The International

Engineering Co., ltd.
P. O. Box 39
614 Sukhumvit Road
Bangkok
Tel: 910722 (7 lines)
Cable: GYSQM
TLX INTENCD BK-226 Bangkok

UGANDA
Uganda Tele-Electric Co., Ltd.
P.O. Box 4449
Kampala
Tel: 57279
Cable: COMCO Kampala

VIETNAM
Peninsular Trading Inc.
P.O. Box H-3
216 Hien-Vuong
Saigon
Teh 20805, 93398
Cable: PENTRA, SAIGON 242

ZAMBIA
R. J. Tilbury (Zambia) ltd.
P.O. Box 2792
Lusaka
Zambia, Central Africa
Tel: 73793
Cable: ARJAYTEE, lusaka

MEDITERRANEAN AND
MIDDLE EAST COUNTRIES
NOT SHOWN PLEASE
CONTACT:
Hewlett-Pack;1rd Correspondence
Office
Piazza Marconi 25
1-00144 Rome-Eur, Italy
Tel, (6) 59 40 29
Cable: HEWPACKIT Rome
Telex: 61514

OTHER AREAS NOT
LISTED, CONTACT:
Hewlett·Packard

INTERCONTINENTAL
3200 Hillview Ave.
Palo Alto, California 94304
Tel, (415) 326-7000

(Feb_ 71 493-1501)
TWX: 910-373·1267
Cable: HEWPACK Palo Alto
Telex: 034-8461

Scan Copyright ©
The Museum of HP Calculators

www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

