
ERAMCO SYSTEMS

HP-41

MLDL-ROM

Machine Language Development System

MLDL operating system eprom

CONTENTS

Introduction.
Installation.
Organisation o~ the instruction
MLDL write ~unctions ••
Utility ~unctions ••
Update ~unctions ••

Appendix A: Input I Output ••

Appendix B: Programmability.

Appendix C: Messages.

set.

3
3
3
5

2121
32

38

4121

41

Appendix D: XROM numbers .•••.••••••••.••••••••••••••• 43·

Appendix E: XROM and FAT structure •••••••••••••••.••. 44

Appendix F: Interrupting Points ••••••••••••••••..•.•• 46

Appendix 6: Assembly language in~ormation •••••••••••• 47

Functi en Index....................................... 59

Care and Warranty. 6121

How to set up your own EROM page .•• 62

Page 2

MLDL operating system eprom

INTRODUCTION

This manual deals with the ERAMCO MLDL operating system eprom. To
get a full understanding of all the routines and functions in
this eprom set, it is advisable to read through this manual
carefully before operating any of the functions or routines.

INSTALLATION

Follow the instructions of your ERAMCO MLDL-box carefully when
installing the eprom set in your box. It may be necessary to bend
the feet of the two eproms slightly inward to make them fit
easily into the eprom sockets. Do not forget to enable the page
on which you insert the eproms (for more detailed information on
how to insert the eproms, consult your hardware manual of the
ERAMCO MLDL-box). A lower address is the most appropiate page
for insertion of the eprom. This provides a quick acces~ to the
routines and functions available in the ERAMCO MLDL-eprom set.

ORGANISATION OF THE INSTRUCTION SET

As you will soon discover the routines and functions in this
eprom set are divided into three sections. The first section
contains.all the functions and routines that will change anything
in the MLDL-ram you are working on. So always be 'careful when
using any of these functions. A single mistake can destroy the
whole 4K ram block that is under development.

The second section contains the functions that facilitates
working with the MLDL-ram. They do not change anything in the ram
but will provide a quicker access to the ram (LROM will tell you
almost immediately where you can continue with writing in the ram
or where you can store a User-code program).

The third and last section in fact belongs to the two
above.' However, this is a seperate section to keep
with'the xrom numbers of an older version.

Page 3

mentioned
compatible

MLDL operating system eprom

Note: All inputs which has to be placed in the alpha-register
are related to hexadecimal

In the description of the functions it is assumed, that you have
one MLDL ram page available for exercising the examples. To
ensure that the examples work out in the way we have described
them, is it necessary to clear one block and to place it at the
proper page. Place the first block off your MLDL ram at page 7.
This is easily achieved by turning the appropriate (left) hex
rotary switch to 7. Disable the block by switching the left
enable switch down (off). To avoid problems with the second
block, it is advisable to switch this block of too.

After these preparations we can clear the whole block. Input for
this is 7 in ALPHA. Now execute the function CLBL. For detailed
information of it's operation see page 14.
Switch the MLDL ram page on line by switching the left enable
switch to the ON state. It is now ready for the examples.

INPUT: All the hexadecimal input in the ALPHA register is
checked on valid data. Data is valid only, if it
consists of the hexadecimal characters. These characters
are the numbers from 0 upto 9 and the letters A through
F. Any other character in ALPHA will cause an error. The
display will show DATA ERROR.
If the error occurs in a function during a running
program, the error will be displayed and the program is
halted at "the instruction, that caused the error.

OUTPUT: Eyery function in this MLDL rom that gives an
hexadecimal output to the ALPHA register, will
automaticcally execute an AVIEW after it has put it's
data into the ALPHA register. So, if you are using for
example the function LOCA in a program, it is net
necessary to do a AVIEW after the function. (Otherwise
the result will be displayed twice. In conjunction with
the printer your results will also be printed twice.

Page 4

MLDL operating system eprom

MLDL WRITE FUNCTIONS

RAMWR (RAM WRite)
XROM 11,01

This non programmable function allows the user to read every word
in a ROM, EPROM, or MLDL-ram (EROM). In case of MLDL-ram it is
also possible to change or write in this MLDL~ram. The addresses
and data are prompted for and given in hexadecimal form. This
function will redefine the keyboard as long as it is used to make
hexadecimal input easier.

After calling this function it will prompt for the absolute
address in ROM. The following keys are now active: 0-9, A-F,
back-arrow and the on key. The back-arrow key is used in the
usual way to correct the last given input. NULL will be displayed
if you hQld the last input-key. When you release this key after
NULL is displayed, you will be prompted again for the address.
Pressing back-arrow without input causes the function to exit to
normal operation of the HP-41.

The
AAAA

address and three prompt signs are shown in the display
). From now on the keyboard is defined as follows:

-STO will give you the data at this and the following
addresses. Each address and the data are displayed for about
0.5 sec. Pressing any key accept the RIS or the ON key, will
slow down the listing of the data that is displayed. The RIS
key will stop the listing at any desired place. The ON key
will switch off the machine in the usual way.

Example: If you press RAMWR and fill in the prompt with
XFD5 .(X represents the page the MLDL rom is
located) you will see 093. This is the last
letter of the xrom name of the MLDL rom. if you
p~ess STO, you will see the whole name of the rom,
displayed one character at the time. Stop the
display after you have seen 3E0. This is the end
of the xrom name.

Page 5

MLDL operating system eprom

-TAN or EST decre~ses the address by one. This enables you to
go through the listing by hand.

Example: After you have stopped the listing in the previous
example, you can see·the first letter of the xrom
name, by pressing TAN or EST once. The display
shows XFFD 005.

-SST increases the address by one, making it possible to step
through the listing by hand.

Example Pressing SST once places you at the end of the
xrom name. The display shows XFFE 3E0. Pressing
SST once more places you at address XFDF with data
092.

-back-arrow asks you for a new address if there is no data
input. Otherwise it will operate in the usual way to correct
the last input.

Example : Press back-arrow once. You are prompted for the
new address. Fill in the prompt with 2FFE. This
address contains the revision level of the second
operating system rom. The number represents the
position of the letter in the alphabet. So if you
see 006, your revision level is F.

-"0", "1", "2", "3" (numberkey's 0,1,2,3) are interpreted
as new data. In this way wrong data input is prevented,
because the first character of a data word can only be
0,1,2 or 3. For the re~t of the data i~put the hexadecimal
keyboard is available again. Holding the last data key will
NULL the input function and after releasing the key will
prompt for new da~a. With the back-arrow key it is possible
to correct the last given input. The address will be
increased by one after completion of data input. This will
facilitate the writing of long programs.

Page 6

E:<ampl e

MLDL operating system eprom

We will initialize our ram block with a name.
The~efore we have to go to page 7. Press back­arrow once and fill in .the prompt with 7000. At this address the XROM number of our rom is located, and we have to give the ram block an XROM number before writing to it. This is necessary, for RAMWR checks this address every time we write to ram. If it is zero, the message NO ROM is given and we are asked for an address again.
The XROM number we will use is 31. This is the same XROM number as the cardreader, so to avoid problems you should disconnect your cardreader. After this is done, we can start writing to our MLDL ram. Press back-arrow again and goto address 7086. The first thing to do, is to give the MLDL ram block a name. The name we are going to use is NEWUSER 01.
This name is coded as follows :

Address Data Comment

7086 I2!B1 1 end of the name
7087 030 12!
712!88 12!2121 space
712!89 12112 R
712!8A 12!05 E
71218B 12113 S
712!8C 12!15 U
712!8D 017 W
712!8E 12105 E
712!BF 121I21E N start of the name
712!9121 3EI2I s·tart of function

The name can easily be entered by pressing the data words after each other. If you make a mistake during· entry, you can correct it wi th the back­arrow key. If you discover the mistake after you have finished the data word, you can go back with SST or TAN and try it again. With AFAT we will complete the initialization of our MLDL ram page. Press backarrow twice to exit the RAMWR mode.

Page 7

MLDL operating system eprom

You can ex~t this function, when you are in input-mode, by means of pressing the back-arrow key twice.

If you ,are at address $0000 and you try to do a backstep, you will find yourself at $0001. This is done to avoid an unexpected wrap around to $FFFF. If you really want to backstep to $FFFF you have to press backarrow once and continue at this address.

WARNING Be careful with the addresses from xFF4 up to xFFA. These addresses are scanned by the operating system of your calculator. It's possible that the calculator will crash when these adresses contain error data. For more information see appendix F.

MMTORAM (Main Memory TO RAM >
XROM 11,02

The function MMTORAM is used to copy a program from main memory in the calculator to the desired MLDL-ram page in a MLDL-box. All the necessary translations for a good operation of this program are made automatically. The Function Access Table (FAT) is updated at the same time with the new Global Labels of the program. For good operation of this function it is necessary -to initialize the MLDL-ram in the proper way.

Preparation of the MLDL-ram: You need a block of ram words that is long enough to hold the desired program. The length of the program can be found with the help of CBT (see CBT >. Add two to this number of bytes and you have the number of bytes that will be needed for the program when loaded into the MLDL~ram. Now you must ~ind a block in the ram space that is large enough. Write down the starting address of th·is block •. BE CAREFUL Addresses in ram are given in hexadecimal form, but the length of the program (by CST) is given in decimal form. Key into ALPHA the starting address of the block (it's advisable to leave about 20 words between the starting address of the block where the program will be written and the first empty word in the ram you have found, for future revisions>.

When you are initializing a 4K block of'MLDL ram automatically with the help of IPAGE, you do not have to do all of this. The loading .address will be automatically given by IPAGE. Also the first next empty word will be returned by MMTORAM to the ALPHA register, to make loading easier.

Page 8

MLDL operating system eprom

User flags 0 and 1 can be set or cleared to achieve the desired
private status

flag 0 flag 1 status

cleared cleared program open
cleared set program open, after COpy

private
set cleared program private
set set program private

With the help of these two user flags it is possible to make the
program completely private in the MLDL-ram, e.g. you can not go
into PRGM mode to examine the program and it is not possible to
copy the program into the main memory with the help of the COpy
function. A partly private status is also possible. In this case
it is possible to examine the program, but after copying it into
the main memory it will be private. The third option means no
security at all. Programs are now free to examine and to copy (
compare with e.g. the math module).Please note that changes in
the program are only possible when it is stored in main memory (
see the manual of the calculator for it's behavior when you are
in rom).

With user flag 3 you can have the option to delete the numeric
labels in a program. (for more information about this option see
CMPDL).
When this flag is set, nothing unusual will happen. The program
is first compiled and then loaded into MLDL-ram with the desired
private status according to the settings of flag 0 and 1.
If this flag is cleared to the contrary, the program will be
loaded with all numeri~ labels deleted. (if this is possible)

MMTORAM can be executed after these preperations regarding the
user flags. The function will prompt for the name of the program
that has to be copied. It is enough to press ALPHA twice when
the program counter is already set in the wanted program.
Otherwise you must enter the name of the program in the same way
as with CLP or COpy.

MMTORAM calls one of the two present compilers, depending on the
status of user flag 3 and will compile the program (for messages
during compilation see COMPILE). When the program is compiled,
the message LOADING PGM will be displayed. When the whole process
is finished, a tone will sound and the message READY will be
displayed.

Page 9

MLDL ope~ating system eprom

When the function has been finished, it will return the address
of the next free byte in MLDL-ram. Be carefull. If you are
loading manually, this is the address of the first byte after the
program. It doesn't have to be necessarily empty. Whenever you
are loading, with the MLDL-page initialized with IPAGE, it will
be the next free byte available.

A CAT 2 or a CAT x (x is the pagenumber of the MLDL-ram where the
program has been written on) will show you the updated FAT with
the new labels.
Noting down the start and end-address of the used block will
allow you to make changes without address mistakes.

For an example of how to load your user code programs in the MLDL
box, we rever to How to set up your own EROM page. There a
complete description is given how to set up a MLDL ram page fer
loading user-code programs.

AFAT (Append FAT entry)
XROM 11,03

The function AFAT enables the user to update the FAT, e.g. to
append the starting address of a routine that has heen written in
the MLDL-ram. Functions are only accessable to the HP-41 when
they have an entry in the FAT.' This.also holds true for programs
that are transferred to the MLDL-ram. The function MMTORAM takes
care of this automaticaly.

Input for AFAT is in the format UOPAAA. AAA is the start-address
of the function within a page, P is the page number where the
function is loaded, 0 is an offset and U tells the HP-41 if the
routine is a M-code routine or a User code program.

U=0 M-code function. The address points to the first word that
is executable
U=2 User code routine. The address points to a Global Label

Example: AAA=3FF The start of the function or routine is found
at X3FF.

Page 10

MLDL operating system eprom

In order to understand the interaction of 0 and P it is necessary
to realise that EF'ROM and I'1LDL-ram -can -be placed at every wanted
page, e.g. at any desired port. It must also be kept in mind that
an EPROM or MLDL-ram page contains only 4K. The value of P is
only pointing to the page where the I'1LDL-ram is positioned at at
this moment. The value of P will change when you address the
I'1LDL-ram to a different page. Opposite to this is -the behavior of
the value for O. 0 is a constant added to the pagenumber. It will
not change when you place the I'1LDL-ram at a different page. The
c6nstant 0 allows you the possibility to execute functions and
routines from another page other than the one where the FAT entry
is lodged. So it is evident that the page which is called must
always be 0 pages further in the memory.

Example : the page that contain the FAT is at page 8, and the
page that contain the routine itself is at page C,
address is 490. We want to make an entry for a User­
code routine with AFAT.

The value of 0 (the offset) is C - 8 = 4
The value of P (page containing the fat) is 8.
The value of AAA (start-address) is 490.
The value of U (M- or User code) is '"" "'-.
We do now need the following input for AFAT

248490

When we move the first ROM to another address we must also move
the second ROM the same number of pages in the same direction if
the value of 0 is something else then zero. Leading zero's in the
input can be omitted

,Page 11

Example

MLDL operating system eprom

For our MLDL ram we have written the rom name with the
help of RAMWR. To be able to see the rom name when we
are executing a catalog 2, we have to place the xrom
name entry into the FAT. This is done with AFAT.
We do have a function name, so the digit representing U
will be zero.
The rom name is not located at another page, so the
offset is also zero.
We are working at page 7, so the value of P will be 7.
The starting address of the function is the first
executable word of the function and is in our case
located at ~90.

This results in a total entry for AFAT of ~~7090

As leading zero's can be omitted, we can use 7090 as
the entry address for AFAT. Write the entry into ALPHA.
Go out of ALPHA and execute AFAT. If you do now a
catalog 2 you will see NEWUSER 01 in the display when
the catalog routine has arrived at page 7. if you
have no printer or timer module, it will be the first
name that appears in the catalog.

DFAT (Delete FAT entry)
XROM 11,04

The function DFAT is used when you want to delete an entry from
the FAT. The function or routine which is deleted will be
invisible for the HP-41 after execution of DFAT. The XROM numbers
of all the routines and functions that came after the deleted
function in the FAT, will get one lower. Pay attention to this
fact when you use functions or routines from the ram you are
working on. The same input format is used as with AFAT. The
difference is that you do not need to specify the value of U.
So the input format will be OPAAA (offset), (page), (address
) .
DFAT will search in the page with number P and delete the
specified entry. Leading ~eros may be omitted.

Page 12

Example

MLDL operating system eprom

In the example of the function AFAT we have added the
function name to the FAT, to give the MLDL ram page a
name. We will add another name to the FAT, USER 01, by
appending a name to the FAT with address 708D. (for
detailed instructions how to append an entry to the FAT
see AFAT).
If you execute a catalog 2, you will see NEWUSER 01 and
after this USER 01. The last entry has to be removed.
This is easily accomplished by getting the right entry
address into ALPHA and execution of DFAT.
Give in ALPHA the entry address of USER 01. This
address is 708D. Get out of ALPHA and execute DFAT.
With a catalog 2 you can check, that the entry has been
removed. You should only see NEWUSER 01 in the ~atalog.

MOVE (MOVE ram block)
XRDM 11,05

The function MOVE allows the user to move certain parts in a ROM,
EPROM or MLDL-ram to another place. Keep in mind that you can
only move into MLDL-ram. MOVE makes it possible to insert words
or delete words at any place in the MLDL-ram. It is also
advisable to copy only small routines or functions from another
page to the MLDL-ram page you are working on.

The input format in ALPHA is as follows: BBBBEEEEDDDD

BBBB gives the starting address of the block that has to be moved
(it is the first word that will be moved).

EEEE gives the end-address of the block that has to be moved (it
is the last word that will be moved).

DDDD gives the address of the first word of the block where the
source block will be copied. ,
The function will accept a destination address within the
original block.

Page 13

Example

MLDL operating system eprom

We want to copy the rom name to another part of the
rom, to be able to make some changes and to use it as a
second header. This second name has to start at address
7DDE. The rom name is located at 7086 to 7090.

The begin address is
The end address is
The destination address is

7086
7090
7DDE

This gives a total entry for move of 708670907DDE.
Enter this in ALPHA and execute MOVE.
With the help of RAMWR you can check, that the word at
7DDE is 0B1 and at 7DE8 is 3E0. These are the first and
last words of the rom name.

CLBL (Clear ram Block)
XROM 11,06

Clearing a block of MLDL-ram is done with the help of CLBL. Input
is in ALPHA in the format BBBBEEEE.
BBBB is the first word of the block that has to be cleared.
EEEE is the last word of the block that must be cleared.
Execution of CLBL puts zero in all the addresses between the
given ones, including the start and ~nd addresses.

Example: We discover after some time, that we don't want tci use
the seco~d rom name after all. We could leave it in the
ram page, but for good housekeeping we want it to be
cleared. This is accomplished by getting the right
begin and end address into ALPHA and execution of CLBL.
Switch to ALPHA and give as input the start and end
address of the block of code we created with MOVE. The
starting address of this block is 7DDE (destination
address when we moved). The end address is 7DE8 (this
we have found with RAMWR).
So the total entry for CLBL is 7DDE7DE8. Get out of
ALPHA and execute CLBL. With RAMWR you can check, that
the words at the specified addresses are deleted.

Page 14

MLDL operating. system eprom

Another option of.CLBL is to clear a whple 4K block at once. For this input P in ALPHA. P represents the pagenumber of the page you want to clear. **** ATTENTION **** This last option is dangerous. It operates like MEMORY LOST, but in this case it is a memory loss of the specified MLDL-ram page.

Example: Switch the other page of MLDL ram to page 6. Get into ALPHA and give the address of the page to be cleared (6). Get out of ALPHA and execute CLBL. Now you can switch the second MLDL ram page on line by setting the right enable switch to the ON position.

COPYR (COPY Rom page)
XROM 11,07

The function COPYR enables the user to copy an entire page of ROM or MLDL-ram to another page of MLDL-ram. This gives you the opportunity to change anything you want in the just copied block of ROM.

Input is in ALPHA and has the format SD.
S is the page from where the copy has to be made (Source). D is the page to which the copy is destined (Destination).

This function will sound a low tone to indicate the completion of the function.

Example: We want ·to make a copy of our working MLDL ram page. This could be done with move by giving as input 70007FFF6000. But this will take longer and asks for a more complicated input. Therefore we will make use of COPYR. The input for this example is 76 in ALPHA. When this is done, the function COPYR can be executed. After the tone has sounded we can check, if the second rom is available by executing a catalog 2. You will now see the romname NEWUSER 01 appearing twice in the catalog.

Page 15

ROMSUM
XROM 11,08

MLDL operating system eprom

To check if a ROM is still in good shape HEWLETT-PACKARD has put
a checksum in each ROM. With the function ROMSUM you are able to
compute this checksum and put it at the proper place in the MLDL­
ram you are developing. The checksum is calculated by ~dding all
the words on this page, take modulo 255 and put the remainder in
xFFF.
The input is P }n ALPHA. P is the page number of the MLDL-ram you
want to update the checksum.

Example To be able to detect if our rom is still in good shape,
we are going to compute the checksum of the rom. Give
the address of the rom in ALPHA. Attention, we are
using the second MLDL ram page now, so the input will
be 6 instead of 7. Get back to normal operation mode
again and execute the function ROMSUM. This will take a
few seconds. During this time the display will remain
blank.
When the function is completed, you can check if the
checksum is calculated in the proper way. This is
achieved by keying into the X-register the used xrom
number 31. Now execute ROMCHKX. The display will change
into 31 @@-@@ TST. After a few seconds it will change
to 31 @@-@@ OK.
(Remember 31 is the xrom number we used for our MLDL
ram page).

RE6)ROM (REGisters to ROM)
XROM 11,09

This function is the opposite of ROM)REG (for more information on
this function see:at ROM)REG). This routine will translate the
registers with it's 5 words/register back into 5 different words
and place them at the proper addresses in a MLDL-ram page.
The input in the V-register determines where the data will be put
back in the MLDL-ram. 3 different options are available to
achieve this.

Page 16

1. "Y"= fa

2. "Y"= P

MLDL operating system eprom

The block will be placed at the same
location as where the original was (if the
original was located from 83FF to 8456 it.
will be restored at the same addresses.

P represents a page number that is created
with the help of COD. The block will now be
loaded at the same relative addresses from
which it came from but at a different page(
if the original was located at 83FF to 8456
it will be restored at P3FF to P456).

3. Y = BBBB Here BBBB represents the start-address
where the block will be stored (BBBE >=
0010). The block will be loaded starting
at the address given by BBBB independent
from the original start-address of the
block.

The X-register must hold the number of the register that contains the first data words of the block that has to be read back (actually the first register contains a header that is used by REG)ROM and is made by ROM)REG).
Writing entire 4K blocks of MLDL-ram from a storage medium is facilitated by the functions SAVEROM and GETROM.
Example: Let us assume, that you have used the function ROM)REG before. This can be accomplished by getting to the example of ROM)REG at page 23. Here the romname is loaded to the registers in order to save it on magnetic cards or a cassette drive.

First we will load the data back to it's original place. To see this really happening, we must iirst clear the block, where the data is located. This is done by CLBL. Put in ALPHA the begin and end address of the block to be cleared (70867090). Execute CLBL to remove the data from the MLDL ram page.

Page 17 .

MLDL operating system eprom

We can now restore. the data by getting it back with
REG)ROM.
First we are going to get it back to the original place
in the MLDL ram page. This is necessary in order to get
our rom-name back. Input for this is zero in register Y
and zero in the X-register. The data will be loaded
back at it's original place. You can check this with
RAMWR.

We also want the data loaded back at a completely
different page. Therefore it is needed to get the page
number into the Y register This is accomplished with
the function COD. Place in ALPHA the letter
representing the page we want to store to (6). After
getting out of ALPHA we execute COD. The display will
change a little. Now press 0 to move the binairy
representation of the page to the Y register and get
the address of the header register in the X register.
Now execute REG>ROM. You will find at the addresses
6~86 to 6090 the da~a that also is located at 7086 to
7090.

The last option of REG)ROM is to restore the data at
completely different addresses. If we don't want to
have the data at address 7086, but at address 7AEE
instead, we must make use of the last option of
ROM)REG. Now we have to specify. the starting address in
the Y register. This is done as with the previous
example. Place in ALPHA the starting address (7AEE
and exec~te COD. Again the display may differ from what
you are used to. Press 0 to enter the starting address
to Y and place the first register to use into the X
register.
After these initial actions the function REG)ROM can be
executed. After termination you can check with RAMWR to
see if the data really got there.

Page 18

MLDL operating system eprom

XROM 11,10

This is not a normal function. It does not do anything when executed but it is used as a spacer from write routines and application routines within the MLDL-ram One possible application is to use it as a NOP. It will also terminate data input without raising the stack.

Page 19

COMPILE
XROM 11,11

MLDL operating system eprom

UTILITY FUNCTIONS

The function COMPILE places in every numerical GTO and XEQ the distance to that numerical label. Programs prepared with the help of COMPILE will usually run faster than programs that have to calculate these distances while running. Two byte GOTO's that can not make the distance will be transformed to three byte GOTO·s. Therefore your program can be made longer by this routine and it is required to have at least three registers left after the program. <.END. REG xxx with xxx not equal to zero).

Compile prompts for the name of the program you want to compile. Input is in the same way as with the mainframe function CLP. So if you are not in the program you want to compile, you must input the complete name. Otherwise it is possible to press ALPHA twice. The function will first pack the program (PACKING), then handle the two byte GOTO's (COMPL 2B G) and if needed (in this case compile has found a 2 byte GTO that can not make it and will replace it with a three byte GTO, thus causing insertion of null bytes that have to be packed as well) repeat this sequence. After this is done it will continue with the three byte's GOTO's and XEQ's (COMPL 3B G/X). After the routine is finished it will put the message READY in the display. Labels not found will give the error condition NO LBL xx, with the number xx as the label not found. When you switch to program mode you will find the program step that caused the error condition.

If the program has the .END •. as last statement instead of a normal END, it will change the .END. into a normal one. This is done for MMTORAM, which expects a program to be terminated with a normal END.

To be able to change the .END. into a normal one, the compiler needs at least one empty register after the program. During the initial packing of ' the program a check is made to see if. there is at least one register available. If this is not the case, the program will terminate with the message TRY AGAIN. If so you should decrease the number of allocated memory registers. change size)

Page 20

MLDL operating system eprom

After execution of compile you will be placed at the first step
of the program.

Deleting steps or adding .teps in a program, will change the
status of the program ~nto a decompiled one. Reusing the compiler
will speed up the execution after the editing session.

Example : Create the next program in your calculator

1211 LBL 'TST
02 LBL 1210
03 LBL 01
04 GTO 02
05 LBL 1213
06 GTO 1214
1217 LBL 1215
1218 GTO 06
09 LBL 07
1121 GTO 08
11 LBL 1219
12 GTO 1121
13 LBL 11
14 GTO 12
15 LBL 13
16 GTO 14
17 LBL 15

18 GTO 16
19 LBL 17
20 BEEP
21 GTO 00
22 LBL 02
23 GTO 1213
24 LBL 1214
25 GTO 1215
26 LBL 1216
27 GTO 1217
28 LBL 1218
29 GTO 1219
30 LBL 1121
31 GTO 11
32 LBL 12
33 GTO 13
34 LBL 14
35 GTO 15
36 LBL 16
37 GTO 17

If you execute this program after you have loaded it,
you will notice the significant time it takes before

,you hear the first beep. You will hear the second one
much sooner. Stop the program and goto step 1. Delete
the superfluous label 1211.
Execute the function COMPILE. You will be prompted for
the name of the program to be compiled. Press ALPHA
twice, since we are in the program already. (It's also
possible to give the full name of the program (TST)).
Now the message PACKING is displayed. If you do not
have enough room after the program, COMPILE will
terminate with the message TRY AGAIN. Then the messages
CMPL 2B G and CMPL 3B G/X will be showed shortly after
each other. When the compiler is through these
messages, a tone will be sounded and the display gives
the message READY.

Page 21

MLDL operating system eprom

If you press PRGM once, you
start address of the program.
press RIS. Notify the fact
before the first beep sounds.

will find yourself at the
Press PRGM once more and

that there is no delay

Goto step one once more and delete label 00. Execution
of COMPILE will give the error message NO LBL 00. If
you go into PRGM mode you will be at the step that
caused the error, step 19. Please restore the program
with LBL 00 at step 01 again,because we are going to
use this program again in the example of CMPDL.

LOCA (LOCAte word
XROM 11,12

This function allows you to locate a data-word in a 4K block of
ROM, EPROM or MLDL-ram.
The input format in ALPHA is as follows: BBBBDDD.
BBBB specifies the address from where LOCA starts searching in
the 4K block. Actually it will start at BBBB + 1 to allow
repeated search in the block. NONE will be displayed when the
wanted data (DDD) is not found in this 4K block. Whenever a
data-word is found, it will be displayed together with the
address at which it is found. The data in ALPHA (adress + word)
will be replaced w~th the data found. This makes it possible to
continue searching for the same word.

Example: With a small user code program you can easily print out
all the occurrences of an instruction in a rom or MLDL
ram page. Create the following user code program (make
sure you saved the TST program)

1211 LBL "LOCATE
1212 "ADD + DATA
1213 ~ON
1214 PROMPT

05 AOFF
06 LBL 01
1217 LOCA
08 GTO 1211

Input for this program could be a starting address like
X000 and the data to search for could be 1214121. This
would give you a complete list of all the MLDL WRITE
instructions in the MLDL rom. Enter for X the page
address where the MLDL rom is located (usually page F
).

Page 22

MLDL operating system eprom

LROM (Last ROM word)
XROM 11,13

LROM searches ~2£k~2Cg§ for the last non zero word in a block beginning at a given start-address. Input is AAAA in ALPHA. The display will give the address of the last non zero word and the value at this address. NONE will be returned when the block between the start address and the ~§ginning of this 4K page does not contain any word (other than zero).
This function can be very useful when the end-address of the last program entered has to be found. In this case the easiest way is to put xFF4 into ALPHA and execute LROM. It will give you the address of the last word that is occupied by the program.

Example If we want to find out where we can load our next user code programs, we could search for empty space with the help of RAMWR, but this would be rather cumbersome. To avoid this, we are going to use the function LROM. In this case we want to search on page 7, starting from the end and working backwards. Input for this is 7FFF in ALPHA. Execution of LROM will return 7AF73E0 to the display after ~ short search time. This tells us, that the next available word in our rom is at address 7AFS. If we are searching on a completely empty page, LROM will return the message NONE to the display, because it can not find any word unequal to zero on the page. Try this with page 5 for example. Input for this is 5FFF in ALPHA. Execute LROM. After a short while the message NONE will be displayed.

COD (CODe
XROM 11,14

The hexadecimal number in the ALPHA-register is converted to it"s -bit-representation and this will be placed in the X-register. The contents of the ALPHA-register is unchanged. The stack will be rolled up and the value in the X-register ~efore COD was executed is placed in the LASTX-register.
The display won"t be intelligable after the function COD has been executed. For the synthetic programmer this will sound normal.

Page 23

Example

MLDL operating system eprom

Input in ALPHA the hexadecimal address of our romname and the start address of our romname (70867090). Execute COD after placing the address in ALPHA. If we change the display format to fix 9, the display will look like this 0.0000708 90 Save this coded representation of the address, for we are using it to demonstrate an example with DECOD.
These so called non normalized numbers (NNN's) should not be used to make calculations, for they can hang up the calculator for quite some time. Also they can not be stored and recall ed in the s~.ne mannner as normal numbers, for they are normalized after being recalled. This is easily d~monstrated by pressing STO 01 and RCL 01 af ter eac~1 other. The resul tis a zero X regi ster.

DECOD (D~CODe
XROM ! 1,15

The function DE COD is the opposite of the function COD. It will translate a -bit-representation in the X-register to the same hexadecimal form as is used by the function COD. The output is given in the ALPHA-register. When DECOD is execufed manually DECOD will also give the hexedecimal representation in the display.

Example : We are going to use the same number as we have created with the function COD. First clear the ALPHA register. Now we must get back our just created number. If you do a RDN, it will come back to the X register. Execute the function DECOD. The hexadecimal representation of the number will appear in the display. If you press back­arrow once, it will disappear and the nonnormalized number is viewed again. Go into ALPHA and discover the hexadecimal representation here.

Page 24

ii

MLDL operating system eprom

ROMCHKX (ROMCHeck by X-reg.)
XROM 11,16

This function enables you to check if a ROM or MLDL-ram is still in good shape. Important though is the fact that a ROM or MLDL­ram must contain a good computed checksum (see ROMSUMfor the definition of the checksum). HP rom's will always contain a good checksum. During the test the XROM number is displayed along with the short form of the name and the revision number of the ROM. If the ROM or the MLDL-ram doesn't contain this short name or the revision number, the display will show @@-@@.

Input in the X-register, the XROM number of the ROM or MLDL-ram you want to test (an example is 30 for the cardreader). During the test XX NN-RR TST will be displayed. XX is the XROM number of the ROM that is tested, NN is the shortened name and RR is the revision number.

Output of ROMCHKX is the display XX NN-RR BAD (indicates a bad ROM lor the display XX NN-RR OK (indicates a good ROM) These outputs will be given only when the function is executed from the keyboard.

The behavior of ROMCHKX will be different when it is executed in a program; when a ROM is found to,be ~ood it will do the next step in the program. Else it will skip the next step (compare the function FS?: the rule do if true is in force). When there is no ROM present with the desired XROM number the message NO ROM XX will be displayed. Again it's behavior in PRGM mode is different. It will act as if the ROM is bad and skip the next line.

Example : We can check if the MLDL operating system eprom is still good. For this we need an input of 11 in the X register (this is the xrom number of the MLDL rom). When we execute the function ROMCHKX, the display will change to 11 AS- A TST. This indicates that the rom with xrom number 11 is under test. The revision code of this rom is AS A. After a short time the display will change to 11 AS- A OK. When we execute ROMCHKX with a xrom number that is not present it will say NO ROM nn. This can be tried with zero in the X register because a rom never can have xrom nr 00. The display will show NO ROM 00 after ROMCHKX has been executed.

Page 25

MLDL operating system eprom

ROM>REG (ROM to REGisters)
XROM 11,17

All the credits for this function and its counterpart (REG)ROM) go to Paul Lind and Lynn Wilkins who have written these two routines. ROM)REG places 5 words of 10 bits each in one HP-41 register. To avoid damage to the stored data it is saved as alpha data. This guarantees an optimal use of the available registers in the main memory of the calcuiator. Because of these functions it is now possible to store the routines and functions that are written in a MLDL-ram on tape or cards and they make it easier to exchange M-code with other users.

To transfer complete blocks roms to and from tape the functions SAVEROM and GETROM are incorporated in this rom.

The input for this-function must be given in the V-register. has the form BBBBEEEE.
BBBB is the address of the first word to store. EEEE is the address of the last word to store. This input has to be in binary and right justified. This achieved by putting the BBBBEEEE form in .ALPHA and executing after this. The binary representation can be transferred to V-register by means of keying in a number in the X-register. X-register holds the number of the first data register that be used as data store. (normally this will be register 00) If the number of registers needed, exceeds the number of registers you will get the error message NONEXISTENT.

It

is
COD
the
The

will

free

There is also output from this function. In the LASTX-register the last used register is given. By subtracting X from LASTX you will get the number of used registers minus 1. If you add 1 to this you will get the number of registers needed to store the desired MLDL-ram block.

Page 26

MLDLoperating system eprom

Example: We will save our romname in the user registers. This block of registers is als6 used for the example of the function REG>ROM.To e!{ecute this function properly, we have to give the block to be saved in a binary representation in the Y register. In the previous example we have already created the address in the ALPHA register, so we only have to execute the function COD. This gives us the binary representation of the block to be saved in the X register. We want to save the block in the user registers starting at register 00, so we have to enter zero into the X register. Press 0. This also moves the binary representation of the block to be saved to the Y register. After these preparations the function ROM)REG can be executed. Pressing LASTX gives us the last used register. This means we needed 4 registers to store the block (3-0 + 1).

MNEM (MNEMonics
XROM 11,18

This fun~tion will give in conjunction with DISASM the name of a M-code instruction that is fetched with DISASM. The mnemonics that are used are the so called HP-mnemonics (there are also PPC (Jacobs) mnemonics). The mnemonics are left as a string in the Z-register. Eventual surplus information (jump-distance, value, field specificatio~s) is given in the T-register. In case of two word instructions the LASTX-register is used. The following User­code program makes it possible to translate every ROM that you want.

Page 27

1

E:<ample

'MLDL operating system eprom

With the following user code ,program you are able to
print out the machine code on a rom page.

01 LBL 'mdis
02 CLST
03 STO L
04 SF 21
05 'start add?
06 AON
07 PROMPT
08 AoFF
09 COD
10 LBL 1211
11 DISASM
12 AVIEW

13 MNEM
14 CLA
15 ARCL Z
16 '@
17 ARCL T
18 AVIEW
19 GTO 01

Name of program
initialize the stack registers
initialize the LAST X-register
makes program stop at aview
ask for start-address
make ready for input
ask and wait for input
leave the ALPHA mode
put the start-address in X
start of the loop
get the instruction
view the address, value and the
character
build the mnemonic in the stack
initialize the ALPHA-register
get the first part of the mnemonic
append a space
get the second part of the mnemonic
view the mnemonic
restart the loop

This routine is meant to be used in 'manual' mode. For
use with the printer it must be rewritten. The choice
is up to the user.

DISASM { DISASeMbler
XRoM 11,19

The function DISASM makes it possible to put the contents of ROM
into the display. At the same time the character representation
from the word is given in the display.

Input: The X-register must contain the address of the wanted word
(this can be done with the help of COD).

Output: The X-register will be incremented by one to make it easy
to use DISASM in a loop. The V-register holds the binary value of
the address and the data at this address (these values can be
made visible with DECOD). The ALPHA-register contains AAAA WWW L

Page 28

MLDL operating system eprom

AAAA is the address of the wanted word.
WWW is the value of this word.
L is the character representation of the word.

There are two ways to represent characters in the HP-41. One way
is the use of the ASCII standard. The other way is derived from
this standard by subtracting 40 [he:<) from the codes in the range
from 40 hex through 5F [hex). This gives you codes that lay in
the range from 0 hex to IF [hex). These are the codes, that are
used for the display. Therefore DISASM will translate these codes
to normal characters.

Example : To see how the function DISASM is used see the function
MNEM and the related user code program to print the
contents of a rom with microcode functions.

CAT (CATalog
XROM 11,20

The function CAT gives you a selective CAT 2. This routine is
especially useful when you have to examine the catalog of a ROM
that is located at a higher numbered port. When the system is
loaded with a lot of roms it will take a long time before you
arrive at the desired ROM (maybe you must go through the TIMER,
PRINTER, IL-MODULE before you reach the wanted ROM). The
function prompts in the same way as the CAT function of the HP-
41. The prompt can "be answered with the hex digits 0-F (CAT will
redefine the keyboard in the same way as RAMWR). Entering digits
0-3 results in the normal CAT function from the HP-41. Digits 5-F
will start the catalog at the wanted page. For further details we
refer to the manual of the HP-41.

Users of an HP-41CX have to be careful using
some cases there have been crashes reported,
the functioning of the CAT function of the
highly dependant of the contents of the status

Page 29

this function.
due to changes
HP-41CX. This
registers.

In
in
is

Example

MLDL operating system eprom

If the MLDL rom is installed at page F this will
usually be the case, when the box is delivered to you
straight from the supplier) you would see with a
normal CAT 2 all the functions of the roms that are
physically located before the MLDL rom. At least one is
located there at the moment, and that is the test rom,
we are working on in our examples. 50 if you do a
normal CAT 2 you will first see NEWU5ER 01. To skip
this part, we can start our catalog at page F. Execute
the function CAT and fill the prompt with the digit F.
The catalog will start up immediately at page F thus
showing the contents of the MLDL rom.

CBT (Count Bytes)
XROM 11,21

This function counts the number of bytes that is occupied by a
program. The END statement is taken in account. At the prompt the
name of the desired program must be keyed in or if you are
already in the desired program press ALPHA twice (compare with
the functionCLP).

Output is given in the display only. The stack and the ALPHA­
register are left undisturbed.
If you try to get the length of a program that is resident in a
rom module the error message ROM is given.

Example : At the explanation of COMPILE we have written a short
user code program to demonstrate you the advantages of
COMPILE. Execute COMPILE once more on this program to
make sure the program is as compact as possible. Now
you can find out how long the program actually is. If
you execute CBT and press ALPHA twice, the display will
change to 68 BYTES. This is the length of your program
including the END statement
Remember this length for you will see that the use of
CMPDL will significantly decrease the number of used
bytes, thus giving you a lot of memory back.

Page 30

MLDL operating system eprom

SYNT (SYNTesize
XROM 11,22

With this function you can create two- and some three bytes instructions in program memory without using the bytegrabber. Data for this function needs to be given in the X- and Y­register. The first byte of the instruction (decimal coded) is g~ven in the X-register. The second byte is given in the Y­register. SYNT will place the instruction after the program line where the program counter is pointing at that moment. ATTENTION: this routine works both in PRGM and RUN mode. Therefore you must be very careful when assigning SYNT to a key. Carelessly pressing the assigned key will produce an unwanted line in your program or even worse.

Example: 159 ENTER A 58 execute SYNT will give a TONE 8 in your program which is completely different from the normal TONE 8. An input of 247 in X and Y will give you a byte grabber.

5E (50 to .End)
XROM 11,23

This function is a sort of replacement of the GTO •• function of the HP-41. It will put you at the end of program memory, but it is not packing the memory. Furthermore it does not put an end to the last program in memory. When you do not know where you are in main memory use GE and you are at a familiar place again. This routine will display 00 REG NNN and also circumvents the line number bug in the HP-41 operating system.

XROM 11,24

This is just a seperator for the second and third section. For more details see page 16.

Page 31

SAVEROM
XROM 11,25

MLDL operating system eprom

UPDATE FUNCTIONS

With this function you can save the contents of an entire rom on
cassette tape. The input format for this function is a name in
the alpha register and the desired page number in x.
A file will be created on tape of 64~ registers, occupying 20
records.
Because there are a lot of users who have been using the Mountain
Computer eprom burner set with the functions READROM and WRTROM
we also included a user code program to be able to read back rom
files in the old 824 format. This is the program 'RROM in
appendix H.
The file identifier on tape for the new file created by SAVEROM
is $ 07. This means that the files are presented in the DIR as :

NAME ??,S 640

We have chosen for a nonexistant file type to be sure that the
data is not accidently destroyed •. Therefore the file is also
automatically secured after creation. SAVEROM saves 7 records per
file compared to WRTROM or 'WROM. Now you will be able to get the
maximum number of ~oms on your tape (e.g. 24 files).

To get the maximum number of files on your tape it is recommended
to do a NEWM with 27. file directory entry's. You can write 12
files on each side of the tape then. After having written 12
files you should protect the tape from rewinding from one side to
the other by creating a dummyfile "ENDTAPE" of 300 registers.

Page 32.

E;<ample

MLDL operating system eprom

If you have a cassette drive you can try the following example. We will save the con~ents of our rom at page 7 on tape and read it back with GETROM. Give a filenam~ in ALPHA, for example USER1. Since we have our rom at page 7, were also the HPIL module resides, we have to move it to another page. This could be page 5. If you can not use this page, place your rom at another page. If so replace in the following example the pagenumber with your new page number
We have the name in ALPHA and now we have to give the page address in the X register. In our example this will be 5. Execute SAVEROM. You will hear the cassette drive working for some time. If you watch the drive closely, you will notice that it writes 20 blocks after each other.
When the drive is ready again you could do a DIR and see as entry in the directory of the tape our just created romfile. It will be in the form as described under the function description,
e.g. USERl ??,S 640.

GETROM
XROM 11,26

This is the counterpart of the SAVER'OM function. Input format is the same, so the name must be in alpha and the page number must be in n. For more information on the format of the files, we refer to the function SAVEROM.
Getrc~ will read back the contents of the rom file and put it in the desired ram page. There is no checking done to see if the specified page is actually a ram page. This is to allow you to get a rom file to a page that is not switched on.

Example : If you have saved our rom file on tape, we can demonstrate it coming back. First of all clear the page we are working on. This is done with CLBL. You probably know by now how this function works, so it is left up to you to clear the block. Put in ALPHA the name of the file we want to read back, e.g. USERl. In the X register the page address should be entered to which we want the rom read back. In our case this will be page 5. Now the function GETROM can be executed. After it has finished, you can check if it is back again in the usual way with a CAT 2.

Page 33

MLDL operating system eprom

CMPDL
XROM 11,27

This is in fact nearly the same function as the normal COMPILE. Therefore we are refering to COMPILE for the set up of the flags and the input format for COMPILE. They are both equal.

The only difference is that this function will delete the numeric labels in the program while compiling. This shortens the program and speeds it up. This can be done, because the HP-41 remembers where to jump to in the jump and execute functions. So after the first run of a program, the HP-41 knows the distances to all the labels and will always jump this distance. It does not matter if there is a label or not. Therefore the labels can easily be deleted. Only when the program contains indirect jumps or xeq's is it impossible to do so. This is due to the fact, that the HP-41 can not remember all the possible addresses of all labels in the program. For this reason you can not use this function when the program contains a GTO ind or XEQ indo

The program respects all the local labels. So the labels A through J and the labels a through e are respected and will not be deleted. This is necessary because the HP~41 searches for them when you use them from the keyboard.

When this function is executed, it will make use of the user registers to hold the addresses of the deleted labels. Therefore make sure that the number of allocated registers is more then the number of labels in the programs. If you don't take care of this the calculator might crash.

To protect the compiled.status as much as possible we change the terminated by the .END. This protects you from accidently writing at the end of the program if you want to continue at the end of the programmemory with new programs.

During program compilation, you will see the following messages after each other. PACKING
COMPL 2B G
COMPL 3B G/X
PACKING
COMPL 2B G
COMPL 3B G/X
READY

Page 34

MLDL operating system eprom

The compiler makes use of the normal· c~mpiler. First ·the whole p~ogram is compiled to find out whe~e to jump to. Then all the LBL's a~e deleted and their addresses are remembe~ed in the use~ registers. This is done during the packing stage. After this the program is compiled again. When the function is through you are at the beginning of the program.

The use~ registers contain the information where the p~ogram resided and where the specified labels in the program were. The structure of a register is as follows 1~0SSSSLLLL0NN. The first two digits indicate alpha type of data. The SSSS part gives you the start address of the program in program counte~ format. The LLLL part gives you the address of the label in the packed program without the labels. The NN part gives you the deleted label at this address.

Example: We will compile the program that we used by the example of COMPILE again. This time we are going to compile it with CMPDL. This is easily done. First make sure we have enough empty registers by setting the size to 18 or greater. We can now execute CMPDL. At the prompt give the name of the program: TST. After the compiler has finished we can see the results. Just run the program. Again there is no delay in the first beep. Also notify· the fact that the flying goose does not move anymore. This is because the goose only moves one place to the right wheneve~ the prog~am encounters·a label. But since all labels a~e deleted, it is not necessary anymore to move the goose. If you stop the program and execute the function CST, you will get as result 48 BYTES. This implies that we have saved 20 bytes of memory, and in this case it means that the
p~ogram is shortened by roughly one third of it's original length.

IPA6E
XROM 11,28

This function sets up a ram page to load user programs assembler code functions. The entire specified page is and the specified xrom numbe~ and the name in alpha are at the appropriate places. This we have already done when w~ explained RAMWR and AFAT. With this fun~tion it much easier.

Page 35

and/or
cleared
written

manually
will be

MLDL operating system eprom

Input for this function in ALPHA is the name of the rom. This
name must be from one to 11 characters. As it is the name of the
rom it is advisable to make it at least 8 characters. This has
two reasons. First, a function name of more then 7 characters can
not be executed. Second and more important is the fact that the
CAT function of the HP-41 CX searches for names that are longer
then 7 characters. So, if you use a name of less ,then 8
characters, the rom name will not show up in the header catalog
of the HP-41 CX. This is also the case with the CCD module, a
module likely to spread out as much as the PPC rom. Second thing
to give as input is the MLDL ram page number to be initialized.
This page number is given in the X register. (in decimal)

When the function is executed, it will prompt you for the xrom
number of the page. There is no checking done on the input,
because it is possible to use other xrom numbers, but you can not
execute a function in a rom with a xrom number higher then 31, so
it is advisable to use a xrom number between 1 and 31. See fer
the already used xrom numbers appendix D.

The name that will be written to MLDL ram consists of the first
eleven characters in the alpha register when you have no more
then 12 characters. If you have more then 12 characters in alpha
the name will be the first 11 characters that are left in the
display after having it displayed. In other words the first 11
characte~s of the last 12 characters in the alpha register will
be used and write into MLDL ram.
When you have less then 11 characters the last character can be
an underscore.

Output of the function is in alpha the address of the first empty
word as it is used for the function MMTORAM.

E:<ampl e We will now initialize our page with the help of IPAGE.
First switch the HLDL ram page back from page 5 to page
7. Give the desired name in ALPHA. We will make use of
the same name as we used in the examples before. It
will be NEWUSER 01. Give the right page number in the X
register (7). Now execute the function IPAGE. At the
prompt the desired xrom number can be given. We will
make use of xrom number 21. This is the xrom number for
user roms. After a short while a tone will sound and
the message READY will be in the display. Pressing
ALPHA once gives you the first free byte available to
load from. This will be address 7092.

Page 36

MLDL operating system eprom

MKPR
XROM 11,29

This function allows you to make your programs private, even if you do not have a card reader. The function will respect the compiled status of the program. At the prompt you must fill in the name of the program that has to become private or if you want to make the current program private press alpha twice.

Example If we want to secure our program compiled with CMPDL from accidently .being altered we could make it private. Execute private and fill in the prompt with TST. If you switch to program mode you will now discover that the program is private.

Page 37

XROM

11,1211
11,1212

11,03
11,04
11,05
11,06
11 ,07
11,1218
11,09

11,1121
11,11
11,12
11,13
11,14
11,15
11,16
11,17

NAME

RAMWR
MMTORAM

AFAT
DFAT

·MOVE
CLBL
COPYR
ROMSUM

-REG)ROM

COMPILE
LOCA
LROM
COD
DECOD
ROMCHKX

-ROM>RE-G-

11,18 -MNEM-
11,19 DISASM

11,2121 --CAT
11,21 CBT
11,22 -SYNT

11,23 -GE

MLDL operating system eprom

APPENDIX A

INPUT

0-F he!{
BBBB in ALPHA
flags 0, 1 and 3
UOPAAA in ALPHA
OPAAA in ALPHA
BBBBEEEEDDDD in ALPHA
P I BBaBEEEE in ALPHA
SD in ALPHA
P in ALPHA
0/P/BBBB in reg Y
first reg in X

name of program
BBBBDDD in ALPHA
BBBB in ALPHA
hex in ALPHA
binary in X
XROM in X
BBBBEEEE in reg Y
first reg in X
AAAADDD in Y
BBBB in X

P at prompt
name at prompt
X first dec. byte
Y second dec. byte
pc. at .END.

Page 38

OUTPUT

word in ram
stored program

FAT updated
FAT updated
block is moved
block cleared
copied block
romsum in xFFF
data in ram

compi 1 ed program'
AAAADDD I NONE
AAAADDD I NONE
binary in X
hex in ALPHA
bad I ok do if true·
data in registers
last reg in LASTX
mnemonic in Z and T
BBBB + 1 in X
AAAADDD in Y
cat from page P
length of program
instruction after pc.

Ii

>

MLDL operating system eprom

XROI'1 NAME

11,24
11,25 SAVEROH

11,26 GETROH

11,27 CMPDL
11,28 IPAGE

11,29 MKPR

SHORT FORM LETTER

A
B
D
E
o
P
S
U

APPENDIX A

INPUT OUTPUT

name
dec.
name
dec.
name
name
dec.
xrom
name

in ALPHA 4K in file on tape
page in X
in ALPHA 4k of tape in ram
page in X
of program short comp. program
in ALPHA desired page cleared
page in X name + xrom in page
at prompt load addr. in ALPHA
of program private program

REPRESENTING

address digit
begin address digit
data digit or destination digit
end-address digit
offset digit
page number digit
source digit

·user digit

Page ·39

MLDL operating system aprcm

APPENDIX B

PRQSRAMJ1 INS AND THE I'I...DL EPROM SET

Most functions provided by the ERAMCO I'1LDL-EPROM can be entered in program whenever the eprom-set is plugged in an ERAMCO MLDL­box connected to the calculator. When the ERAMCO MLDL-box containing the eprom set is connected program lines with eprom functions are displayed and printed as standard functions.

If the box is disconnected, these program lines are displayed and printed as XROM functions with two identification numbers. The first number -11- indicates that the functions are provided in the ERAMCO MLDL-EPROM. The second number identifies the particular function. The XROM numbers for the ERAMCO MLDL-EPROM are listed below.

Function XROI't Number: Function XROM Number Function XROM Number
____________________ 1 _____________________

---------------------AFAT XROM 11,O3 DISASM XROM 11,19 Bat!~B XROM 11,O1 1;81 XROM 11,2O GE XROM 11,23 RE6)ROM XROM 11,O9
~~I XROM 11,21 SETROM XROM 11,26 ROMCHKX XROM 11,16 CLBL XROM 11,O6 !Ea§~ XROM -11,28 ROMSUM XROM 11,O8
~t1EQb XROM 11,27 LOCA XROM 11,12 ROM)RE6 XROM 11,17 COD XROM 11,14 LROM XROM 11,13 SAVER OM XROM 11,25
~Qt1E!bg XROM 11,11 t!~EB XROM 11,29- §Y~I XROM 11,22 COPYR XROM 11,O7 MNEM XROM 11,18 XROM 11,1O DECOD XROM 11,15 t1t1IQa6.t! XROM 11,O2 XROM 11,24 DFAT XROM 11,O4 MOVE XROM 11,O5

Underlined functions are not programmable.

If program lines using the ERAMCO MLDL eprom are entered when the eprom set is not connected, the function is recorded and displayed as XEQ followed by the function name. Program execution will be slowed down by lines in this form because the calculator will first search in main memory for a program or program line with the specified label.

Page 40_

MLDL operating system eprom

APPENDIX C

MESSAGES

This is a list of messages and errors r:elated to the functions in
the ERAMCO MLDL-EPROM set. When any of these errors are generated
the attempted function is not performed, except as noted.

DISPLAY

BAD MLDL

ENTRY)64

GTO/XEQ IND

NO ENTRY

NO HPIL

NO LBL xx

NONE

NONEXISTENT

NO ROM

NO ROM xx

FUNCTION

RAMWR

AFAT

CMPDL
MMTORAM

DFAT

SAVEROM
GETROM

COMPILE
CMPDL
MMTORAM

LROM
LOCA

-all-

ROM)REG

RAMWR

ROMCHKX

MEANING

The MLDL ram page is malfunctioning.

There are already 64 entry's in the FAT.

The program contains GTO or XEQ ind
statements.

No such entry exists in the FAT.

The HPIL module is not plugged in.

The GTO or XEQ has no corresponding LBL
in this program.

The whole block is empty.
There is no such word in the block from
start-address up to the end of the page.

The ERAMeO MLDL-EPROM set is not plugged
in or is disabled or is malfunctioning.
There are not enough registers available
to store the specified block.

An attempt has been made to write to an
page which does not have a valid XROM
number at the first address of this
page.

The ROM with the given XROM number is not
plugged in or disabled.

Page 41

DISPLAY

NO. WRITE

PAGE > 15

ROM

xx NN-RR BAD

xx NN-RR OK

COMPL 2B G

COMPL ~B G/X

LOADING PGM

PACKING

READY

MLDL operating system eprom

FUNCTION

RAHWR

GETROH
IPAGE
SAVEROM

HKPR
HHTORAH
COMPILE
CHPDL
CBT

ROMCHKX

ROHCHKX

COMPILE
CHPDL
MMTORAM

COMPILE
CMPDL
HHTORAH

HHTORAH

COHPILE
CHPDL
HHTORAM

COMPILE
CMPDL
IPAGE
MHTORAH

APPENDIX C

MEANING

The data is not written at the desired
address. It is impossible to write to an
EPROM or ROM page. Also you can not
write at a disabled page.

There is an invalid pagenumber in reg X.

The named program doesn't exist in main
memory but is found in ROM

The ROM with the XROM number xx is bad.

The ROM with the XROM number xx is ok.

The 2 byte GTO's are handled.

The 3 byte GTO's and XEQ's are handled.

The program is loaded to l'1LDL ram.

A byte is deleted and the program is
packed to reduce the length of the
program.

The function is ready.

Page 42

MLDL operating system eprom

APPENDIX D

XROM numbers range from 1 up to ,31 inclusive. As quite a few ROM"s ~re available-at the moment of this writing it is advisable to choose a XROM number with care to avoid conflicts with other modules.

------------:----------:---------------:--------ROM name XROM 10 I ROM name I XROM ID -----------------______ 1 ______ ---______ 1 ______ --

MATH
STAT
SURVEY
FINANCE
STANDARD
CIR ANAL
STRUCT-A
STRESS
HOME MN
GAMES
C PPC 1981
AUTODUP
REAL EST
MACHINE
THRML
NAVIS
PETROL
PETROL
PLOTTER
PLOTTER

01
02
03
04
05
06
07
08
09
10 *
10 *
10 *
11
12
13
14
15
16
17
18

SECUR
CLINLAB
AVIATION
MONITOR
STRUCT-B
C PPC 1981
ASSEMBLER 3
IL-DEVEL
I/O
IL-DEVEL
-EXTFCN
-TIME-
- WAND
-MASS ST
(- CTL FNS
HP-IL MODULE)
-PRINTER
CARD READER
PPC ROM 2 ??
ERAMCO-MLDL

19 *
19 *
19 *
19 * +
19 *
20
21
22
23
24
2S
26
27
28

29
30
31
11

+ Only a small number of this ROM, an early version of IL-DEVEL ROM, were made and are not stocked or sold by ·HP.

Those marked with an asterisks share their identifying number, and should not be used in the HP-41 at the same time. Of two functions with the same XROM ID the one at the lowest address (i.e. the lowest numbered port) will be accessed first and the other will be ignored. So use discretion when choosing your own XROM number if you want to avoid these kind of problems.

Page 43

MLDL operating system eprom

APPENDIX E

X ROM 5 T R U C T U R E

XROM's are located at whole 4k blocks of addresses. The lowest addresses in an XROM, and a few of the highest have special func­tions. The remainder may be filled in any way. The locations in the 4k blocks must be filled by ten bit words, giving 2 A 10 diffe­rent codes. They may be read as instructions, or as alpha-numeric data. The following summary, adapted from J. Schwartz' January 1983 PPC Conference paper, should be taken into account when studying an application ROM, e.g. the MLDL-ROM. A listing can easily be prepared by using the MLDL-ROM functions DISASM and MNEM.

Relative
address (hex)

X 00121
X001

X002-3
X004-5
X005-7

II

II

X12J12J2+2n
X003+2n

II

II

X002+2m
X003+2m
X004+2m
X005+2m

II

Function of code at that 'address

The XROM ID number in hexadecimal digits.
The number of functions in the XROM (m),

including the XROM name.
Address of XROM name .
Address of first routine, program, etc.
Address of second routine, etc.

II II

.11 II

Address of n'th routine

II II

II II

Address of last (m'th) routine
(m < 64)

Compulsory null 00121.
Compulsory null 0121121.

II II

Page 44

Add. of
"
"

Add. of
"
"

Add. of
"
"
"

XFF4-A
XFFB-E
XFFF

name

Fn# I

Fn# 2

MLDL operating system eprom

Name of ROM (running backwards)
" "
" u

start of Fn# I code
" "
" "

Start of Fn# 2 code
" "
" "
" "

Special interrupt jump locations (see table).
ROM name abbreviation and revision #.
ROM checksum for diagnostic use

Word pairs containing function addresses:
First word of pair: b 0 0 0
Second word of pair: 0 0 a7 a6

o 0 all al0 a9 as
a5 a4 a3 a2 al a0

This results in the following address in this 4k block if 0000 is
zero:

p3 p2 pI p0 all al0 a9 as a7 a6 as a4 a3 a2 a1 a0

Where p0-3 is the bit representation of the 4k page number
a0-l1 represent the relative offset from the beginning of
page. When 0000 is not equal to zero it must be added to p0-3.
more information see the function AFAT.

and
the

For

If the two words would read 003, 0FF this would represent a
starting address of a function at address X3FF (hex). The bit b
in the first word indicates USER code or microcode. If set the
address is the start of a USER code program (e.g. 200, 0A1 in the
printer module is address 60Al, start of USER code program
"PRPLOT")

Page 45

xFF4
xFF5
xFF6
xFF7
xFF8
xFF9
xFFA

MLDL operating system eprom

APPENDIX F

THE SPECIAL INTERRUPT POINTS

Interrupts during PSE loop.
Interrupts after each program line.
Wake-up with no key down.
Interrupts when turned off.
Interrupts when peripheral flag is set.
wake-up with ON key.
Wake-up after memory lost.

Do not use these points unless you know exactly what you are
doing~ Careless use of these points may cause CRASHES.

Page 46

MLDL operating system eprom

ASSEMBLY LANGUAGE INFDRI"IATION

SHORT REVIEW OF THE HP-41 INSTRUCTIONS

The HP41 CPU has three main arithmetic registers: A,B and C. These are 56 bits long (14 nibbles) and instructions can operate in various "fields" of the register.

13 12 11 HZ) 9 8 7 6

ALL

5 4 3 2

XS
:<-->:

1

<---+--+----+------> MS l M S & X <-->:<-------------------------------------->:<---------->

ALL · The whole register · M · Mantissa · MS · Mantissa Sign · XS : eXponent Sign
St.cX eXponent and Sign off exponent

@R · At specified pointer · R<- : from digit R to digit 121
PQ : Between P and Q

There are two pointers P and Q, of which the value is 121-13. One of them is selected at the time (through slct p or slct q), the selected pointer is called R. These are three extra fields, which depend on the value of the pointer), R<- (up to R, from digit R to digit 121) and P-Q (between pointer P and Q, Q must be greater than P).

There is a register G, 8 bits long, that may be copied to or from or exchanged with the nibbles Rand R+1 of register C. (R<=12). There are 14 flags, 121-13, of which flags 121-7 are located in the 8-bits ST (status) register, and there is a 8-bits TONE register T, of which the contents floats every machine cycle through a speaker.

Page 47

MLDL operating system eprom

Then there are two auxilary storage r.egisters, M and N, which can operate only in the field ALL. They are S6 bits long.

There is a 16-bit program counter, which addresses the machine language, and a KEY register of 8-bits, which is loaded when a key is pressed. The returnstack is 4 addresses long and is situated in the CPU itself.

The CPU may be in HEX or DEC mode. In the last mode the nibbles act as if they can have a value from 0 to 9.

The USER-code RAM is selected by C(s&xJ through RAM SLCT, and can be written or read through WRITE DATA or READ DATA. If chip 0 is selected (RAM address 000 to 00F) the 16 stack registers may be addressed by WRIT and READ 0 to 15.

Peripherals (such as display, card reader, printer) may be selected by C(s&xJ through PRPH select or by SELP (see page 19).

The mnemonics are a kind of BASIC structure.

Arithmetic instructions (operate on a specified field)

A=0 C=B C=C+1 ?A<B B=0 A=A+l C=C+A ?A#C C=0 A=A+B C=A-C ?A#0 A<>B A=A+C C=0-C RSHFA B=A A=A-1 C=-C-1 RSHFB A<>C A=A-B ?B#0 RSHFC A=C A=A-C ?C#0 LSHFA C<>B C=C+C ?A<C

CLRF, SETF, ?FSET, ?R=. ?FI (peripheral flag set?) , RCR (rotate right) have a parameter 0-13.

LD@R (load C at R) and SELP (select peripheral) have a parameter 0-F.

WRIT and READ have a parameter 0-15, called 0(T), 1 (Z), 2(Y), 3(X), 4(L), 5(M), 6(N), 7(0), 8(P), 9«(;2), 10(1-), 11(a), 12(b), 13(c), 14(d), 15(e).

Page 48

ii

MLDL operating system eprom

Jumps:
There are two classes jumps:

a. JNC (jump if no carry) and JC (jump if carry). These
instructions provide to jump relative 3F in positive
direction or 40 in negative direction.

b. ?NC GO and ?C GO. These instuctions provide to jump to an
absolute 16 bits address.

?NC XQ and?C XQ are jump-subroutine instructions to absolute
addresses. (remember the return stack is just 4 addresses long).

Miscelaneous instructions:

ST=0 C=G
CLRKEY C<>G
?KEY C=M
R=R-1 M=C
R=R+1 C<>M
6=C T=ST
GOTO ADR (CC6:3J) ?C RTN
C=KEY ?NC RTN
SETHEX RTN
SETDEC N=C
DSPOFF C=N
DSTTOG C<>N
FETCH Sf.cX C=C or
WRIT Sf.cX (for MLDL) C=C and

A
A

ST=T
ST<>T
ST=C
C=ST
ST<>C
XQ->60
PUSH (CC6: 3J)
PDP (CC6: 3J)
GOTD KEY
RAM SLCT
WRITE DATA
READ DATA
PRPH SLCT

PDWOFF
SLCT P
SLCT Q
?P=Q -
?LOWBAT
A=B=C=0

Note: various arithmetic and all test instuctions may set the
carry flag. This flag keeps set only one machine cycle, so
a jump dependent on this flag must be immediate after the
arithmetic or test instruction, otherwise the carryflag
will always be cleared.

Page 49

MLDL operating system eprom

CLASS I IJIERATIDIS

p= : I 1 : 2 : 3 : 4 : 5 : 6 : 7 : 8 : 9 : II : 11 : 12 : 13 : 14 : 15
---'-- --'--'--'--'--'--'--:--:--'--'-'--'--'--'-

IIOP III 141 181 ICI 111 HI 181 lCi : 2. : 241
284 : 114 : 2«
288 : 118 : 248
2BC I llC : 24C

281 21:1 38 341 381 lei
ClRF , l84 314 214 H4 1« 184 1« 1C4 184 3« 21:4
S£TF , 3aB 318 21B 118 14B 188 148 ItS 188 34B 2C8
?fSET, 38C 3IC 21C IIC 14C lac 14C ICC lac 34C 2el:
---,--,--,- --,--,--,-- --:-:--:--,-- --,--,--,--,-
LDfR
?R=
R=
saP

, : 111 : 151 : 191 101: 111 I 151 : 191 101\:(211: 251 I 291 , 2D1 : 311 : 351 I 391 : 301
, : 394 I 314 I 214 114 I 154 : 194 I 154 29(:"114 I 254 : ID4 : 194 : 354 : 2D4 : - : -
, I 39C : 31C 121C I1C: 1St : 19C : 1st 29C": 11C : 25C I IDe I 19C : 3st I 2DC I - I -
, I 3A4 I 324 : 224 124 I 164 I 1A4 : 164 2A4 I 124 I 264 I 1E4 I 1A4 I 364 : 2E4 I lE4 I lE4

---:--:--:--,--:--:--:-- --1--:--:--1--1--:--:--1-
IIRIT ,: 128 I 168 I lAS : IEB : 128 I 168 I lAS 1EB: 22B : 268 I 2.A8 : 2EB : 32B : 36a : 3AB : lEB
?FI ,: "3AC : 321: : 22C : I2C : 16C : lAC : 16C 2AC: 121: : 26C : lEI: : lAC : 3I"C : 2E1: : - : -
~ ,:m:rn:ml~:mlrnlm ~l~lm:mlm:m:mlml~

RCR , I 3BC I 33C : 23C : IX I 17C I lBe I 17C 2BC: 13C : 27C I IFC I 1BC I 37C : 2Ft I - I -

IIIEJIOIII C

IIDP
Cl.RF ,
SElF ,
?FSET ,
LD@fI ,
?R= ,
R= ,
sap ,
IIRIT ,
?FI ,
READ ,
RCR I

OPERATIDI

IkI opentioo
Cleus systee flag nUMer ,
Sets syste. flag nUMer ,
Set the carry flag if syste. flag , is set

Load , into ·C· at nibble pointed at by pointer and decre.ent pointer
Set the cury flag if the active pointer equals,
Set the active pointer to I
TriRSfer control to the d!5ired peripheral ,

Mrite ·C· to RAft IelOry or to the selected device in register, of the selected block
Set the cury flag if peripheral fJig I is set
Read ·C· frOi RAR letary or the selected device to register, in the selected block
Rotate ·C· right by , digits

Page 5(21

MLDL operating system eprcm

CLASS I SPECIAL IIISTRI£TIIil I£l CODES

IIIEJIIIII C 1£1 IftRATIIil IIIEJIIIII C lEI Il'ERATIOI

UIlJSED 134 lot ia lISe C=KEY 221 Copy key register into digit 4, 3 of "C"
IJIIUSED 174 • !iETHEI 261 Use hexadecilal ifithaetic
UNUSED 1B4 • • smEC 2A1 Use decilal arithletic
IJNUSED xF4 • DSPOFF 2£1 Turn off the display

51=1 3C4 Cleirs flag I to 7 ('ST" register) DSPT06 321 Toggle the state of the display
ClRKEY 3C8 Cleirs the 'key pressed' flag CRTM 301 Return fra. subroutine if the Cifry is set
?KEY 3CC Set the Cifry flig tIIlen a key hiS been pressed Me R1H lAl Return froa subroutine if cirry flag cleare
R=R-l 3D4 Decreaent the current pointer RTH ~i Do a subroutine return iltiYs
R=R+1 lOC Incresent the current pointer

IJNUSED 118 Not in use tJIIUSED 131 lot in use
&--C 158 Copy digits r,r+l frol "C" to "S" JI::C 171 Copy "C" into "H"
C=6 198 Copy 'S' into digits r,t+l fra. 'C" C=M UI Copy "N" into "C"
C06 108 ExchiAge 'S" lith digits r,r+l frOi "C" CON IFI ExchiAge "C" lith "N"

IJIIUS£D 118 lot ia use LDI 131 Load next rOI word into digits 2-1 of "C"
It=C 158 Copy "C' into "ft" PUSH 171 Push iddress digits 6-3 in "C" onto stack
C=It 198 Copy 'ft" into 'C' PDP IBI Pop address frol stack into digits 6-3 of •
COli 108 Exchange 'C" lith 'ft" IIWSED IF! Not in use

IICUS£D 218 lot in use 6010 KEY 231 Load key register into IOler 8 bits of 'PC'
T=5T 258 Copy 'ST' into 'T~ RAIl SLCT 271 5et ril address to digits 2-1 of "C"
ST=T 298 Copy 'T' into 'ST' IJIIUSED 211 lot in use
STOT 2D8 Elchange 'ST" Ii th "T' IIRITEDATA 2F1 Write register ·C· to the selected register

UNUSED 318 IIat in use FETCH 331 Load 2-' of "C" frol rOI address 6-3 of ·C·
ST=e 358 Copy digits 1, I frDl 'C" into 'ST" C=e OR A 371 Logicil or of "C' lith "A" bit by bit
C=ST 398 Copy 'ST' into digits 1, I fra. "C' C=C AND A lBl Logical aid of "C' lith "A" bit by bit
COST 3DB ExchiAge digits 1, I fro. ·C· .ith eST" PRPHSlCT 3F. Set peripheral address to digit 2-1 of "C"

111->&0 121 Drop stiCk to convert III into GO ?P=Q 121 Set the ciTry flag if the pointers ire equa
PDMOFF 161 60 to standby lOde ?lOliBAT 16. Set the Cirry flag if low battery
SlCT P IAI Select 'P" as the active pointer A=B=C=I lAI Clear registers 'A" "B" and "C"
SlCT g lEI Select "g" as the active painter &OTD ADR lEI Copy digits 6-3 of 'C" into .the 'PC"

Page 51

MLDL operating system eprom

CLASS 1 INSTRUCTIONS

Class 1 instructions are absolute GOTOs and EXECUTEs •. They
consist of two consecutive ROM words of the following format

A1e-Aa is the 16-bit address to branch to. The pp field of the
second word determines what type of instruction it is. The next
table shows values for pp :

pp MNEMONIC OPERATION

00 NC XQ
01 C XQ

10 NC GO
01 C GO

Example

execute subroutine if carry is clear
execute subrr:i.ltine if carry is set

goto rom address if carry is clear
goto rom address if carry is set

NC GO 0232 which jumps to the memory lost routine is
coded as.:

0011 0010 01 = 0C9 as first word
0000 0010 10 = 00A as second word

page 52

FIELD

ALL
M
MS
XS
S~X

@R
R<­
PQ

MLDL operating system eprom

CLASS 2 FIELDS OF OPERATION

AREA OF OPERATION

All digits.
Mantissa digits 12 - 3.
Mantissa sign digit 13.
Exponent sign digit 2.
At exponent digits 2 - 0.
At digit specified by the current pointer.
Up to and including pointer from the right.
from pointer P, left up to Q, including pointers.

Page 53

..

HLDL operating system eprom

CLASS 2 INSTRUCTIONS

MNEMONIC OPERATION @R 5&X R<- ALL PQ XS M 5

A=0 clear A 002 006 0121A 00E 012 016 01A 01E
8=0 clear 8 022 026 02A 02E 032 036 03A 03E
C=0 clear C 042 046 04A 1Z14E 052 056 1215A 05E
A<>B exchange A with B 062 066 06A 1216E 072 076 07A 07E
B=A copy A into 8 082 086 08A 08E 092 096 09A 09E
A<>C exchange A with C 0A2 0A6 0AA 0AE 0B2 0B6 0BA 08E
C=B copy B into C I2IC2 0C6 0CA 0CE I2ID2 006 0DA 0DE
C<>8 exchange B with C I2IE2 I2IE6 I2IEA 0EE I2IF2 0F6 0FA 0FE
A=C copy C into A 102 11216 10A 10E 112 116 l1A l1E
A=A+B add 8 into A 122 126 12A 12E 132 136 13A 13E
A=A+C add C into A 142 146 14A 14E 152 156 15A 15E
A=A+l increment A 162 166 16A 16E 172 176 17A 17E
A=A-8 subtract B from A 182 186 18A 18E 192 196 19A 19E
A=A-l decrement A lA2 lA6 lAA lAE 182 IB6 IBA lBE
A=A-C subtract C from A lC2 lC6 lCA lCE ID2 ID6 IDA IDE
C=C+C double C lE2 lE6 lEA lEE IF2 IF6 IFA lFE
C=A+C add A into C 202 21216 20A 20E 212 216 21A 21E
C=C+l increment C 222 226 22A 22E 232 236 23A 23E
C=A-C· A-C into C 242 246 24A 24E 252 256 25A 25E
C=C-l decrement C 262 266 26A 26E 272 276 27A 27E
C=0-C complement C 282 286 28A 28E 292 296 29A 29E
C=-C-l nines complement C 2A2· 2A6 2AA 2AE 282 2B6 28A 2BE
?B~0 set carry flag·if B~0 2C2 2C6 2CA 2CE 202 206 2DA· 20E
?C~0 set carry flag if C~0 2E2 2E6 2EA 2EE 2F2 2F6 2FA 2FE
?A<C set carry flag if A(C 302 306 3121A 30E 312 316 31A 31E
?A<8 set carry flag if A<B 322 326 32A 32E 332 336 33A 33E
?A~12I set carry flag if A:#0 342 346 34A 34E 352 356 35A 35E
?A~C set carry flag if A:#C 362 366 36A 36E 372 376 37A 37E
RSHFA shift A right 1 digit 382 386 38A 38E 392 396 39A 39E
RSHF8 shift B right 1 digit 3A2 3A6 3AA 3AE 3B2 386 3BA 3BE
RSHFC shift C right 1 digit 3C2 3C6 3CA 3CE 302 306 30A 30E
LSHFA shift A left 1 digit 3E2 3E6 3EA 3EE 3F2 3F6 3FA 3FE

Page 54.

MLDL operating system eprom

CLASS 3 INSTRUCTIONS

DISTANCE JNC- JC- JNC+ JC+ DISTANCE JNC- JC- JNC+ JC+

+/- 1211 3FB 3FF I2II21B I2II21F +/- 1212 3F3 3F7 12113 12117 +/- 1213 3EB 3EF 12I1B 12I1F +/- 1214 3E3 3E7 12123 12127 +/- 1215 3DB 3DF 1212B 1212F +/- 1216 3D3 3D7 12133 12137 +/- 1217 3CB 3CF 1213B 1213F +/- 1218 3C3 3C7 12143 12147 +/- 1219 3BB 3BF 1214B 1214F +/- I2IA 3B3 3B7 12153 12157 +/- I2IB 3AB 3AF 1215B 1215F +/- I2IC 3A3 3A7 12163 12167 +/- I2ID 39B 39F 1216B 1216F +/- I2IE 393 397 12173 12177 +/- I2IF 38B 38F 1217B 07F +/- 1121 383 387 12183 12187 +/- 11 37B 37F 1218B 1218F +/- 12 373 377 12193 12197 +/- 13 36B 36F 1219B 1219F +/- 14 363 367 121 A 3 I2IA7 +/- 15 35B 35F I2IAB I2IAF +/- 16 353 357 I2IB3 I2IB7 +/- 17 34B 34F I2IBB 0BF +/- 18 343 347 I2IC3 I2IC7 +/- 19 33B 33F I2ICB I2ICF +/- 1A 3"T"T 337 I2ID3 I2ID7 +/- 1B 32B 32F I2IDB I2IDF +/- 1C 323 327 I2IE3 I2IE7 +/- 1D 318 31F I2IEB I2IEF +/- 1E 313 317 I2IF3 I2IF7 +/- 1F 3121B 3121F I2IFB I2IFF +/- 2121 31213 31217 11213 11217 +/- 21 2FB 2FF 1121B 1121F +/- 22 2F3 2F7 113 117 +/- 23 2EB 2EF I1B 11F +/- 24 2E3 2E7 1?"T -.... 127 +/- 25 ·2DB 2DF 12B 12F +/- 26 2D3 2D7 133 137 +/- 27 2CB 2CF 13B 13F +(- 28 2C3 2C7 143 147 +/- 29 2BB 28F 14B 14F +/-. 2A 283 2B7 153 157 +/- 2B 2AB 2AF 15B 15F +/- 2C 2A3 2A7 163 167 +/- 2D 29B 29F 16B 16F +/- 2E 293 297 173 177 +/- 2F 28B 28F 17B 17F +/- 3121 283 287 183 187 +/- 31 27B 27F 18B 18F +/- 32 273 277 193 197 +/- 33 26B 26F 19B 19F +/- 34 263 267 lA3 lA7 +/- 35 25B 25F lAB lAF +/- 36 253 257 IB3 IB7 +/- 37 24B 24F IBB IBF +/- 38 243 247 1C3 1C7 +/- 39 23B 23F lCB lCF +/- 3A ...,~~ 237 ID3 1D7 +/- 3B 22B 22F 1DB IDF +/- 3C 223 227 1E3 1E7 +/- 3D 21B 21F lEB lEF +/- 3E 213 217 IF3 IF7 "t"/- 3F 2121B 20F 1FB 1FF +/- 40 21213 21217

Class 3 instruc:tions allow the program to jump up to 63 words forward or bac:kward from its present loc:ation. The mnemonic:s are JNC and JC.

Page 55

MLDL operating system eprom

ROM CHARACTER TABLE

lower 41 0 : 1 1 2 1 3 1 4 : 5 : 6 I 7 I 8 : 9 : A : B : C 1 DIE I F
---:---J---:---'---:---:---:---:---:---:---:---'---:---:---:---:--

u 0 1 @ : A : B C 1 DIE : F : G : H I I I J KILIM:NI£
p
p
e

- __ ' ___ 1 ___ ' __ -
---,-__ ' ___ 1 ___ ' __ -,---,---,--- ---'---1---1---1--

1

r 2
2

3

4

Note

P R S T U v W x y z \ J I
• I -___ 1_-

II # $ 7- * + ,

1 2 3 4 5 6 7 B 9 < =

1- a b c d e
---:---

The colon (3A) displays as a boxed star. The comma (2C) is
also the left facing goose when used in a function name or
display and the period (2E) is also the right facing
goose.

>

You get the hexadecimal code of a character by taking the number
in the upper2 column and place the number in the lower row behind
it. Last step is to place a zero in front of the number.

Example: The hexadecimal code of the letter W is 017.
Of the equal sign it is 03D

FUNCTION NAMES

When a function is executed, the operating system checks the ROM
~ords containing the first two characters of the function name
and the two words immediately following. The catalog table entry
for a microcode function (both mainframe and XROM functions)
points to the first word of executable code. The function name is
listed in reverse order immediately preceding the first word of
executable code.

Page 56

..

. ,I'1LDL operating system eprom

Example: This example shows you how a normal function name is
coded.

10CE
10CF
1000
1001

081 A
00C .L
01213 C
xxx

Hex 080 added to indicate end of name.

First executable word of CLA.

FUNCTION PROMPTING

To tell
has been
a prompt
function

the operating system that the end of the function name
reached, add 1218121 hex to the final character. To provide
set the top two bits in the first two characters of the

name by adding the hex constants in the following table . .
NULL IND ~

1ST 2ND alpha alpha #dig. ind stack stack none example

000
100
11210
11210
1121121
2121121
20121
200
2121121
3121121
3121121
30121

. 3121121

any
000
1121121
20121
31210
1210121
10121
2121121
30121
121121121
10121
200
30121

X X

X

x
X
X
X
X

X CLA,CLST
CLP,COPY

3,4 SIZE

1 X CAT ,TONE
2 X X STO,RCL
2 X X STO,RCL
2 X FS?,SF
2 X
2 LBL
2 X XEQ(alpha)
2
2 X X (. ddd) GTO

The operating system examine these ROM bits and executes a prompt
.(if the appropiate bits are set) before the function is executed.
These prompts are only executed when you execute the function
from the keyboard. However, when the function is executed in a
program there will be no prompt at all. Take care of this.
If the prompt accepts an alpha string, the input data is loaded
into the Q register, right justified in reverse order in ASCII.

Example: Execution of the f~nction ASN with the alpha argument
"COPY" will load 121121 0121 121121 59 5121 4F 4C into the Q
register before the function is executed.

Page 57

MLDL operating system eprom

If the prompt is numeric the input data is loaded into the "A"
register in binary. Whenever the prompt also accepts indirect,
the value in the "A" register is increased with hex 6121.

E:<ample : E:cecution of the function RCL with a numeric
of 55 will return 121121 121121 00 00 00 121121 37 in
register.

argument
the "A"

If the prompt would have been filled in with INO 55,
the "A" register contains 121121 0121 1210 121121 121121 121121 B7.

PROGRAMMABILITY

Two other ROM words of a microcode function are examined by the
operating system. The first executable word, if a nop (121~0),

indicates that the function is non-programmable. This means that
if you execute the function in program mode, it executes rather
than being entered as a program line. S~ZE, ASN and CLP are non-
programmable functions. .
If the first two executable words of aX ROM function are both
zero, then the function is both non-programmable and executes
immediately. This means that no function name is displayed and
that the function will not NULL. The function is executed when
the key is pressed rather than when the key is released. PRGM,
SHIFT and back-arrow are non-programmable, immediate executing
functions. Note that unless your routine checks for key release,
and the key to which your function is assigned is held down, the
function will be ~xecuted repeatedly until the key is released.
These two words affect the function operation only if the
calculator is in PRGM mode. In RUN mode, they are ignored.

E:<ampl e . these are a few examples of function name promptings. .
1202 12197 W 111215 12199 Y 12CC 12185 E
1203 1211215 E 1106 01121 P 12CO 121I21E N
1204 11219 I 111217 1210F 0 12CE 3121F 0
1205 216 V 111218 11213 C 12CF 114 T.

Page 58

MLDL operating system eprom

FUNCTION INDEX'

FUNCTION PAGE

AFAT ••. ~ •••••
CAT .•••••
CBT •••
CLBL.
CMPDL.
:COD .••
COMPILE ..
COPYR ••••
DECOD •••
DFAT ••.••
DISASM •••
GE •••••
GETROM.
IPAGE •••
LOCA ••
LROM ••
MKPR •••
MNEM •••••••••••••
l1MTORAM •••••••
MOVE ••••••••
RAMWR .••.•••
REG)ROM ••
ROMCHKX ••
ROMSUM ••
ROM)REG •.
SAVEROM ••
SYNT.

Page S9

10
29
30
14
34

20
15
24
12
28
31
33
35
22
23
37
27
8
13
5
16
25
16
26
32
31
19
31

MLDL operating system eprom

CARE AND WARRANTY

Eprom care

Store the eprom set in a dry and clean place. Make sure that the
feet of the eprom's are protected against bending. Otherwise a
pin could brake from the eprom and make it worthless. Do not
connect any external power supply to the eproms. Protect the
eproms against static charges, otherwise irrepairable damage to
the eproms can result. Do not remove under any circumstances the
labels on the eproms for these labels protect the eproms against
loosing there data by accident through too much U.V. light on the
eprom's.

Limited 180 day's warranty

The 83120A ERAMCO MLDL-Eprom set is warranted against defects in
materials and workmanship affecting electronic performance, -but
not software content- for 180 day'~ from the date of original
purchase. If you sell your unit or give it as a gift the warranty
is automatically transferred to the new owner and remains in
effect for the o~iginal 180 days period. During the warranty
period we will repair or at our option replace at no charge a
product that proves to be defective, provided you return the
product, shipping prepaid, to ERAMCO SYSTEMS or their official
service representative.

Page 60

•

HLDL operating system eprOM

CARE AND WARRANTY

WHAT IS NOT COVERED

This warranty doesn"t apply if the product has been damaged by
accident, misuse or as the result of service or modification by
other than ERAMCO SYSTEMS or their official service
representative.

No other express warranty is given. Any other ~mplied warranty of
merchantability or fitness is limited to the 180 days period of
this written warranty. In no event shall ERAMCO SYSTEMS be liable
for consequential damages. This liability shall in no way exceed
the catalog price of the product at the moment of sale.

Obligation to Hake Changes

Products are sold on the basis of specifications applicable at
the time of manufacture. ERAMCO SYSTEMS shall have no obligation
to modify or update products once sold.

Page 61

Ii

MLDL operating system eprom

HOW TO SET UP YOUR OWNEROM PAGE

This part of the manual wiil tell you exactly how to set up an
Erom image in your MLDL-box. This is done with the help of a few
user code routines that are loaded into the MLDL Erom pages. If
you follow the instructions to the letter, nothing can go wrong.
And with the help of these instructions you should be able to set
up your own Erom image.

step 1

The first thing that has to be done is to clear the Erom page you
want to work at and to set the Erom block to the proper page.
Therefore you must set the first block with the left rotary
switch at page A. Set the rotary switch of the other block to
page E. Disable both the switches to the left of the leftmost
rotary switch (pull them down). When you set the switches in
this position, you can compare the results of your actions with
the results that will be given in this appendix.

step 2

Now we will first clear both Erom pages. Key in alpha mode the
single character "A". Go out alpha mode and execute CLBL (for
more details see page 14) Repeat this sequence with the single
character "E" in alpha. At this moment your Erom pages should
both be clear. Now you can enable both the Erom pages by pushing
the both switches up. Don't expect anything to happen yet. Both
pages are still empty.

step 3

Before doing anything else we have to make sure that both pages
are empty. Key in alpha "AFFF". Now execute LROM. The display
should read 'none'. If this is not the case you should control
the 'setting of the switches and try step 2 again. This is done in
the same way for the second block, except you now have to key in
alpha "EFFF". The reading of the display should be again none'.
If this isn't the case return to step 2.

Page 62

=

MLDL operating system eprom

step 4

To allow the HP-41 to find anything that is plugged into the system it uses the first word on every page starting from page 5. If this word doesn"t contain a valid identifier, it can"t execute a routine or function located at that page. Therefore we will continue with the setting of these identifiers for both Erom pages. In fact this identifier is the xrom number of a module. To avoid any problems with other modules it is recommended in this stage to unplug all your modules.

Also the name of the rom module has to be added. For this the function IPAGE is used. It is enough to put the rom name into the ALPHA register. After this you give the 4K page address in the X register. Now you can execute the function IPAGE. It will prompt you for a XROM number. To avoid problems we choose as XROM number the number 21.

Note: In this manual we described two ways to set up an Erom image. First time we did this· with the function RAMWR (see page 5). For this is quite a cumbersome way to prepare an Erom image.we did incorporate the function IPAGE (see page 35). Here we already gave you an example of how to create your own Erom image.

Example: We will create one Erom i~age with xrom number 21 and as name "TEST ROM 1A". For this we make use of the RAM page that is controlled by the left rotary and enabling switch. The block is already cleared and enabled in step 2. The block is addressed at page "A". Now we have all relevant data for the block, so we can initialize it.
Key into ALPHA the name of the module and into the X register the address of the RAM page that will hold the Erom image. This address is 10.
Execute the function IPAGE. At the prompt you answer with the desired xrom number E.G. 21. After a while a tone will sound and the message READY is displayed.

Page 63

MLDL operating system eprom

step 5

From now on the HP-41 can recognize anything that is written into
Erom block one. So lets give it a try. First of all we have to
create a little program in main memory that is to be stored in
the Erom block.

We will use the following program: LBL 'test
LBL 01
BEEP

step 6

GTO 01
END

You have now created a program in the memory of your calculator.
But we wanted to have this program in the MLDL-bo~, because it is
using up the last free bytes we had. That's no problem. We only
have to use MMTORAM to get the program in the Erom page we want
it. For this we have to initialize a few things.

When we h~ve initialized our Erom page manually (without use of
IPAGE), we have to give the starting address for our program.
This address will be the first word to be used by MMTORAM.Do not
use the reserved words in an Erom image in which you are to load
your programs (see appendix E and appendix F).
If you work with IPAGE however, the starting address is already
given in the ALPHA register. When you have to use the ALPHA
register between two sessions of loading programs, it is
advisable to keep the contents of the ALPHA register in a normal
data storage register, or to note it down (be carefull saving the
address in a storage register, for MMTORAM can clear all the user
regi~ters, when it makes use of CMPDL). This is handy for future
use. If you lost the address however, you can find it back with
the help of LROM. Increase the address given by LROM with one,
and you have the new starting address to store at.

Second thing we have to initialize is the setting of flags 0 and
1, to achieve the desired private status of the loaded program.
There.are four options for these flags. For a full description of
these options we rever to the function MMTORAM at"page 8.

Page 64

MLDL operating system eprom

Third and last initialisation we have to make is the setting of
flag 3. MMTORAM decides on this flag wether it shall use CMPDL or
the normal COMPILE function when it is loading a program. See the
function CMPDL for the difference between the two compilers.

Example : We are going to load the program described at step 5.

step 7

This program has to be loaded in a nonprivate, complete
open status. Furthermore we do not want the numeric
labels to be deleted.
We do not have to give the starting address, for this
is given in ALPHA by the function IPAGE.
For a complete open, nonprivate status flags 0 and 1
have to be cleared.
Flag 3 has to be set for we do not want the numeric
labels to be deleted.

When these settings are made, the function MMTORAM can
be executed. You will see the messages of the compiler
and then the message "LOADING PGM". When MMTORAM is
finished a tone will sound and the message "READY" is
displayed. The program is now loaded in the Erom image
and is ready for use.

Note: If you switch to ALPHA you will see that the
starting address is changed. It now points to
the first free byte after the just loaded
program. This proyides an easy way of loading
subsequent programs.

First thing we will do is deleting the progra& from main memory.
When you have done this, you should still be able to execute test
for it has been stored in the Erom page. So give it a try. You
will hear the familiar beeping every time the program is looping.
Stop execution of the program and switch to PRGM mode. Whenever
you try to insert or delete a program step, you will see the
message 'ROM'. This proves that the program has realy been loaded

. into the MLDL-bo:~. The program is also included in catalog 2. If
you execute CAT 2 you will see the label test showing up in your
display sooner or later, depending on the amount of other roms
that are plugged into the system.

Page 65

MLDL operating'system eprom

When you want to store more and other programs, you can follow the described procedure starting at ·step 5.

Load also the programs described on page 21 (TST) and 28 Load the TST program with flag 3 cleared. Look at the after you have deleted it in main memory. As you will does not contains the numeric labels any more. This and that it is in ROM now~ will speed up the execution quite Load the HDIS program with flags 1 and 3 set. The program open in the erom page, but as soon as it is copied back memory, it will be private.

(MDI S) •
program

see, it
the fact

a lot.
will be
to main

This is the end of the description of our MLDL ROM operating system. We hope you will enjoy to work with this rom. If you have any complaints or wishes you want to see in a future rom, please let us know. We will take these in account as much as possible.

£RAMea SYSTEMS

Page 66

W. van Alcmade str. 54
1785 LS Den Helder
The Netherlands

Scan Copyright ©
The Museum of HP Calculators

www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

	41mldl_Page_01
	41mldl_Page_02
	41mldl_Page_03
	41mldl_Page_04
	41mldl_Page_05
	41mldl_Page_06
	41mldl_Page_07
	41mldl_Page_08
	41mldl_Page_09
	41mldl_Page_10
	41mldl_Page_11
	41mldl_Page_12
	41mldl_Page_13
	41mldl_Page_14
	41mldl_Page_15
	41mldl_Page_16
	41mldl_Page_17
	41mldl_Page_18
	41mldl_Page_19
	41mldl_Page_20
	41mldl_Page_21
	41mldl_Page_22
	41mldl_Page_23
	41mldl_Page_24
	41mldl_Page_25
	41mldl_Page_26
	41mldl_Page_27
	41mldl_Page_28
	41mldl_Page_29
	41mldl_Page_30
	41mldl_Page_31
	41mldl_Page_32
	41mldl_Page_33
	41mldl_Page_34
	41mldl_Page_35
	41mldl_Page_36
	41mldl_Page_37
	41mldl_Page_38
	41mldl_Page_39
	41mldl_Page_40
	41mldl_Page_41
	41mldl_Page_42
	41mldl_Page_43
	41mldl_Page_44
	41mldl_Page_45
	41mldl_Page_46
	41mldl_Page_47
	41mldl_Page_48
	41mldl_Page_49
	41mldl_Page_50
	41mldl_Page_51
	41mldl_Page_52
	41mldl_Page_53
	41mldl_Page_54
	41mldl_Page_55
	41mldl_Page_56
	41mldl_Page_57
	41mldl_Page_58
	41mldl_Page_59
	41mldl_Page_60
	41mldl_Page_61
	41mldl_Page_62
	41mldl_Page_63
	41mldl_Page_64
	41mldl_Page_65
	41mldl_Page_66

