ERAMCO SYSTEMS

HP-41
MLDL-ROM

Machine Language Development System

MLDL operating system eprom

CONTENTS
Introduction.......... cessesceesansassnnnes cseecenavan 3
Installation.......... “eeeacansacs tecnesenessnanasena 3
Organisation of the instruction set.......cccvvenveee 3
MDL write functions........... seceasanas cssveesnasnes O
Utility functions. ... cecininneeiecrecnnccsnnanseenees 20
Update functions............. teesanecancnn secesenaneas JI2
Appendix A: Input / Output......... cesessveacrssmsenna 38
Appendix B: Programmability....... srsessranacssesasse 40
Appendix C: Messages;........ ceanses i eeeeceaneane 41
Appendix D: XROM NUMDErS....cceeeereecansceancaccennses 43
Appendix E: XROM and FAT sStructUreé...ceeeeececceceacee. 44
Appendix F: Interrupting Foints....... essessecsassnns 45
Appendix G: Assembly language information....c.cee.. . 47

Function IndexX.....cceeeeeecncceccancccnnannaccnncnne 59
Care and Warranty...c.cceeeceeeccccenccsccanccnncaneses 6@

How to set up your own EROM page....L.......;........ 62

Page 2

MLDL operating system eprom

INTRODUCTION

This manual deals with the ERAMCO MLDL operating system eprom. To
-get a full understanding of all the routines and functions in
this eprom set, it is advisable to read through this manual
carefully before operating any of the functions or routines.

INSTALLATION

Follaow the instructions of your ERAMCO MLDL-box carefully when
installing the eprom set in your box. It may be necessary to bend
the feet of the two eproms slightly inward to make them fit
easily into the eprom sockets. Do not forget to enable the page
on which you insert the eproms (for mare detailed information on
how to insert the eproms, consult your hardware manual of the
ERAMCO MLDL-box). A lower address is the most appropiate page
for insertion of the eprom. This provides a quick access to the
routines and functions available in the ERAMCO MLDL-eprom set.

ORGANISATION OF THE INSTRUCTION SET

As you will soon discover the routines and functions in this
eprom set are divided into three sections. The first section
contains all the functions and routines that will change anything
in the MLDL-ram you are working on. So always be careful when
using any of these functions. A single mistake can destroy the
whole 4K ram block that is under development.

The second section contains the functions that facilitates
working with the MLDL-ram. They do not change anything in the ram
but will provide a quicker access to the ram (LROM will tell you
almost immediately where you can continue with writing in the ram
or where you can store a User—-code program).

The third and last section in fact belongs to the two mentioned

above. However, this 1is a seperate section to keep compatible
with the xrom numbers of an older version.

"Page 3

MLDL operating system eprom

Note : All inputs which has to be placed in the alpha-register
are related to hexadecimal

In the description of the functions it is assumed, that you have
one MLDL ram page available for exercising the examples. To
ensure that the examples work out in the way we have described
them, is it necessary to clear one block and to place it at the
proper page. Flace the first block off your MLDL ram at page 7.
This 1is easily achieved by turning the apprapriate (left) hex
rotary switch to 7. Disable the block by switching the 1left
enable switch down (off). To avoid problems with the second
block, it is advisable to switch this block of too.

After these preparations we can clear the whole block. Input for
this is 7 in ALFHA. Now execute the function CLBL. For detailed
information of it's operation see page 14.

Switch the MLDL ram page on line by switching the 1left enable
switch to the ON state. It is now ready for the examples.

INPUT ¢ All the hexadecimal input in the ALPHA register is
checked on valid data. Data is wvalid only, if it
consists of the hexadecimal characters. These characters
are the numbers from @ upto 9 and the letters A through
F. Any other character in ALFHA will cause an error. The
display will show DATA ERROR.

If the error occurs in a function during a running
program, the error will be displayed and the program is
halted at the instruction, that caused the error.

OUTPUT : Every function in this MDL rom that gives an
hexadecimal output to the ALFHA register, will
automaticcally execute an AVIEW after it has put it°‘s
data into the ALPHA register. So, if you are using for
example the function LOCA in a program, it is not
necessary to do a AVIEW after the function. { Otherwise
the result will be displayed twice. In conjunction with
the printer your results will also be printed twice.

Page 4

MLDL operating system eprom

MLDL WRITE FUNCTIONS

RAMWR (RAM WRite)
XROM 11,81

This non programmable function allows the user to read every ward
in a ROM, EPRCOM, or MLDL-ram (EROM). In case of MLDL-ram it is
also possible to change or write in this MLDL-ram. The addresses
and data are prompted for and given in hexadecimal form. This
function will redefine the keyboard as long as it is used to make
hexadecimal input easier.

After calling this function it will prompt for the absolute
address in ROM. The following keys are now active: -9, A-F,
back—-arrow and the on key. The back—-arrow key is'used in the
usual way to correct the last given input. NULL will be displayed
if you hald the last input-key. When you release this key after
NULL is displayed, you will be prompted again for the address.
Pressing back-arrow without input causes the function to exit to
normal operation of the HF-41.

The address and three prompt signs are shown in the display (
AAAA ___). Fraom now on the keyboard is defined as focllows:

-STO will give you the data at this and the following
addresses. Each address and the data are displayed for about
@.5 sec. Fressing any key accept the R/S or the ON key, will
slow down the listing of the data that is displayed. The R/S
key will stop the listing at any desired place. The ON key
will switch off the machine in the usual way.

Example : If you press RAMWR and fill in the prompt with
XFDS (X represents the page the MLDL rom is
located) you will see 093. This is the last
letter of the xrom name of the MLDL rom. if you
press ST0, you will see the whole name of the rom,
displayed one character at the time. Stop the
display after you have seen IE@. This is the end
of the xrom name.

Page S5

MLDL operating system eprom

—=TAN or BST decreases the address by one. This enables you to
go through the listing by hand.

Example : After you have stopped the listing in the previous
example, you can see the first letter of the xrom

name, by pressing TAN or BST once. The display
shows XFFD @@S.

—8ST increases the address by one, making it possible to step
through the listing by hand.

Example : Pressing SST once places vyou at the end of the
Xrom name. The display shows XFFE 3EQ. Fressing

SST once more places you at address XFDF with data
a9z,

-back-arrow asks you for a new address if there is no data
input. Otherwise it will operate in the usual way to correct
the last input.

Example : Press back~arrow once. You are prompted for the
new address. Fill in the prompt with 2FFE. This
address contains the revision level of the second
operating system rom. The number represents the
position of the letter in the alphabet. So if you
see 886, your revision level is F.

-"a", i, "2%, "3" (numberkey’s 2,1,2,3) are interpreted
as new data. In this way wrong data input is prevented,
because the first character of a data word can only be
2,1,2 or 3. For the rest of the data input the hexadecimal
keyboard is available again. Holding the last data key will
NULL the input function and after releasing the key will
prompt for new data. With the back-arrow key it is possible
to correct the 1last given input. The address will be
increased by one after completion of data input. This will
facilitate the writing of long programs.

Page &

Eﬁample

MLDL operating system eprom

We will initialize our ram block with a name.

Therefore we have to go to page 7. Fress back-
arrow -once and fill in the prompt with 7008. at
this address the XROM number of our rom is
located, and we have to give the ram block an XROM
number before writing to it. This is necessary,
for RAMWR checks this address every time we write
to ram. If it is zero, the message NO ROM is given
and we are asked for an address again.

The XROM number we will use is 31. This is the
same XROM number as the cardreader, so to avoid
problems you should disconnect your cardreader.
After this is done, we can start writing to our
MLDL ram. Press back-arrow again and goto address
7086. The first thing to do, 1is to give the MLDL
ram block a name. The name we are going to use is
NEWUSER @1.

This name is coded as follows :

Address Data Comment
7086 @B1 1 end of the name
7287 7647} Q
7888 020 space
7289 @12 R
708A Bes E
7888 213 S
7@8C 1S 8]
788D 017 W
7808E RS E
788F 7171 4 N start of the name
7892 3ED start of function

The name can easily be entered by pressing the
data words after each other. If you make a mistake
during - entry, you can correct it with the back-
arrow key. If you discover the mistake after you
have finished the data ward, vyou can go back with
BST or TAN and try it again. With AFAT we will
complete the initialization of our MLDL ram page.
Fress backarrow twice to exit the RAMWR mode.

Page 7

MLDL operating system eprom

You can exit this fuhction, when you are in input-mode, by‘means
of pressing the back-arraw key twice.

If you are at address $200@ and you try to do a backstep, you
will find yourself at $00@1. This is done to avoid an unexpected
wrap around to $FFFF. If you really want to backstep to $FFFF you
have to press backarrow once and continue at this address. ‘

WARNING : Re careful with the addresses from xFFa up to xFFA.
These addresses are scanned by the cperating system of
your calculator. It's possible that the calculator will
crash when these adresses contain error data. For maore
information see appendix F.

MMTORAM (Main Memory TO RAM)
XROM 11,02

The function MMTORAM is used to copy a program from main memaory
in the calculator to the desired MLDL-ram Page in a MLDL-box. All
the necessary translations for a good operation of this program
are made automatically. The Function Access Table (FAT) is
updated at the same time with the new Global Labels of the
program. For good operation of this function it is necessary - to
initialize the MLDL-ram in the proper way.

Freparation of the MLDL-ram: You need a block of ram words that
is 1long enough to hold the desired program. The length of the
program can be found with the help of CBT (see CET). Add two to
this number of bytes and you have the number of bytes that will
be needed for the program when loaded into the MLDL-ram. Now you
must find a block in the ram Space that is large enough. Write
down the starting address of this block.. BE CAREFUL Addresses in
ram are given in hexadecimal form, but the length of the program
(by CBT) is given in decimal form. Key into ALPHA the starting
address of the block (it's advisable to leave about 2@ words
between the starting address of the block where the program will

be written and the first empty word in the ram you have found,
for future revisions).

When vyou are initializing a 4K block of MLDL ram 'automatically
with the help of IFAGE, you do not have to do all of this. The
loading .address will bevautomatically given by IPAGE. Also the
tfirst next empty word will be returned by MMTORAM to the ALFPHA
register, to make loading easier.

Pagé B8

MLDL operating system eprom

User flags @ and 1 can be set ar cleared to achieve the desired
private status

status

flag @ : flag 1 :
1]
cleared b ‘cleared H program open
cleared : set : program open, after COFY
: : private
" set : cleared : program private
set i set H program private

With the help of these two user flags it is possible to make the
program completely private in the MLDL-ram, e.g. you can not ga
into FPRGM mode to examine the program and it is not possible to
copy the program 'into the main memory with the help of the COPY
function. A partly private status is also possible. In this case
it is possible to examine the program, but after copying it into
the main memory it will be private. The third option means no
security at all. Programs are now free to examine and to copy ¢
compare with e.g. the math module).Flease note that changes in
the program are only possible when it is stored in main memary (

see the manual of the calculator for it‘'s behavior when you are
in rom). '

With user <flag 3 you can have the option to delete the numeric
labels in a program. (for more information about this option see
CMFDL).

When this flag is set, nothing unusual will happen. The program
is first compiled and then loaded into MLDL-ram with the desired
private status according to the settings of flag @ and 1.

If - this +flag is cleared to the contrary, the program will be
loaded with all numeric labels deleted. (if this is possible)

MMTORAM can be executed after these preperations regarding the
user flags. The function will prompt for the name of the program
that has to be copied. It is encugh to press ALPHA twice when
the program counter is already set in the wanted programe.

Otherwise you must enter the name of the program in the same way
as with CLF or COFY.

MMTORAM calls one of the two present compilers, depending on the
‘status of user flag 3 and will compile the program (for messages
during compilation see COMFILE). When the program is compiled,
the message LOADING FGM will be displayed. When the whole process

is finished, a tone will sound and the message READY will be
displaved.

Page 9

MLDL operating system eprom

When the function has been finished, it will return the address
of the next free byte in MLDL-ram. Be carefull. If yau are
loading manually, this is the address of the first byte after the
program. It dcesn’t have to be necessarily empty. Whenever you
are loading, with the MLDL-page initialized with IFAGE, it will
be the next free byte available.

A CAT 2 or a CAT x (x is the pagenumber of the MLDL-ram where the
program has been written on) will show you the updated FAT with
the new labels. .
Noting down the start and end-address of the used block will
allow you to make changes without address mistakes.

For an example of how to load your user code programs in the MLDL
box, we rever to How to set up your own EROM page. There a
complete description is given how to set up a MLDL ram page fcr
loading user-code programs.

AFAT (Append FAT entry)
XROM 11,23

The function AFAT enables the user to update the FAT, e.g. to
append the starting address of a routine that has been written in
the MLDL-ram. Functions are only accessable to the HF-41 when
they have an entry in the FAT. This .alsoc holds true for programs
that are transferred to the MLDL-ram. The function MMTORAM takes
care of this automaticaly.

Input for AFAT is in the format UCOFARA. AAA is the start-—-address
of the function within a page, P is the page number where the
function is loaded, 0O is an affset and U tells the HP-41 if the
routine is a M—-code routine or a User code program.

U=@ M-code function. The address points to the first word that
is executable
U=2. User code routine. The address points to a Global Label

Example : AAA=3FF The start of the function or routine is found
at X3FF.

Page 10

MLDL operating system eprom

In order to understand the interaction of O and F it is necessary
to realise that EFROM and MLDL-ram .can be placed at every wanted
page, e.g. at any desired port. It must alsoc be kept in mind that
an EFROM or MLDL-ram page contains only 4K. The value of F is
only pointing to the page where the MLDL-ram is positioned at at
"this moment. The value of P will change when you address the
MLDL-ram to a different page. Opposite to this is the behavior of
the value for 0. O is a constant added to the pagenumber. It will
not change when you place the MLDL-ram at a different page. The
constant 0 allows you the possibility to execute functions and
routines from another page other than the one where the FAT entry
is lodged. So it is evident that the page which is called must
"always be 0 pages further in the memary.

Example : The page that contain the FAT is at page 8, and the
page that contain the routine itself is at page C,
address 1is 490. We want to make an entry for a User-
code routine with AFAT.

The value of O (the offset) is C -8 = 4

The value of P (page containing the fat) is B.
The value of ARA (start-address) is 49@.

The value of U (M- or User code) is 2.

We do now need the following input for AFAT

248490
When we mave the first ROM to ancther address we must alsoc move
the second ROM the same number of pages in the same direction if

the value of O is something else then zera. Leading zero's in the
input can be omitted

v\Page 11

MLDL operating system eprom

Example : For our MLDL ram we have written the rom name with the
help of RAMWR. To be able to see the rom name when we
are executing a catalog 2, we have to place the xrom
name entry into the FAT. This is done with AFAT.

We do have a function name, sc the digit representing U
will be zero.

The rom name is not located at ancther page, so the
offset is also zero.

We are working at page 7, so the value of F will be 7.
The starting address of the functicn 1is the first
executable ward of the function and is in our case
located at 090.

This results in a total entry for AFAT of Q07090

As leading zero’'s can be comitted, we can use 7898 ac
the entry address for AFAT. Write the entry intoc ALFHA.
Go ocut of ALFHA and execute AFAT. I¥f vyou do now a
catalog 2 you will see NEWUSER @1 in the display when
the catalocg routine has arrived at page 7. (if vyou
have no printer or timer module, it will be the first
name that appears in the catalog.

DFAT (Delete FAT entry)
XRCM 11,04

The function DFAT is used when you want to delete an entry from
the FAT. The function or routine which is deleted will be
invisible for the HP-41 after execution of DFAT. The XROM numbers
of all the routines and functions that came aftter the deleted
function in the FAT, will get one lower. Fay attention toc this
fact when vyou use functions or routines fraom the ram yaou are
working on. The same input format is used as with AFAT. The
difference is that you do not need to specify the value of U.

So the input format will be OFRAA (offset), (page),(address
). :

DFAT will search in the page with number F and delete the
specified entry. Leading zeros may be omitted.

Page 12

MLDL operating system eprom

Example : In the example of the function AFAT we have added the .
function name to the FAT, to give the MLDL ram page a
name. We will add another name ta the FAT, USER @1, by
appending a name to the FAT with address 7@8D. (for
detailed instructions how to append an entry to the FAT
see AFAT).

If you execute a catalog 2, you will see NEWUSER 81 and
after this USER @1. The last entry has to be removed.
This 1is easily accomplished by getting the right entry
address into ALPHA and execution of DFAT.

Give in ALFHA the entry address of USER 01. This
address is 7@8D. Get out of ALFHA and execute DFAT.
With a catalog 2 you can check, that the entry has been
removed. You should only see NEWUSER @1 in the tatalog.

MOVE (MOVE ram block)
XRH 11,05

The function MOVE allows the user to move certain parts in a ROM,
EPROM or MLDL-ram to another place. Keep in mind that you can
only move into MLDL-ram. MOVE makes it possible to insert words
or delete words at any place in the MLDL-ram. It is also
advisable to copy only small routines or functions from another
page to the MLDL-ram page you are working on.

The input format in ALPHA is as follows : BERBREEEEDDDD

BBBB gives the stafting address of the block that has to be moved
(it is the first word that will be moved).

EEEE gives the end-address of the block that has to be moved (it
is the last_word that will be moved).

DDDD gives the address of the first word of the block where the
source block will be copied.

The function will accepf a destination address within the
original block.

Page 13

'MLDL operating system eprom

Example : We want to copy the rom name to anather part of the
rom, to be able to make some changes and to use it as a
second header. This second name has to start at address
7DDE. The rom name is located at 7086 to 709@.

The begin address is 7886
The end address is 7090
The destination address is 7DDE

This gives a total entry for move of 788467@9@7DDE.
Enter this in ALFHA and execute MOVE.

With the help of RAMWR you can check, that the word at
7DDE is BB1 and at 7DEB is 3IE@. Thece are the first and
last words of the rom name.

CLBL (Clear ram Block)
XROM 11,86

Clearing a block of MLDL-ram is done with the help of CLBL. Input
is in ALFHA in the format BBBBEEEE.

BEBB is the first word of the block that has to be cleared.

EEEE is the last word of the block that must be cleared.
Execution of CLBL puts zero in all the addresses between the
given ones, including the start and end addresses.

Example : We discover after some time, that we don‘t want to use
the second rom name after all. We could leave it in the
ram page, but for good housekeeping we want it tg be
cleared. This is accomplished by getting the right
begin and end address into ALFHA and execution of CLBL.
Switch to ALPHA and give as input the start and end
address of the block of code we created with MOVE. The
starting address of this block is 7DDE ¢ destination
address when we moved). The end address is 7DE8 (this
we have found with RAMWR).

So the total entry for CLBL is 7DDE7DEB. Get out of
ALFHA and execute CLBL. With RAMWR you can check, that
the words at the specified addresses are deleted. :

Page 14

MLDL. operating_system'eprom

Another option of CLBL is to clear a whole 4K block at once. For
this input P in ALFHA. P represents the pagenumber of the page
you want to clear. #*%%% ATTENTION #%%* This last option is
dangerous. It operates like MEMORY LOST, but in this case it is a
memory loss of the specified MLDL-ram page.

Example : Switch the other page of MLDL ram to page 6. Get into
ALFHA and give the address of the Page to be cleared (
&). Get out of ALPHA and execute CLBL. Now you can
switch the second MLDL ram Page on line by setting the
right enable switch to the ON position.

COPYR (COFY Rom page)
XROM 11,07

The function COFYR enables the user to copy an entire page of ROM
or MLDL-ram to another page of MLDL-ram. This gives vyou the

opportunity to change anything you want in the just copied block
of ROM.

Input is in ALFHA and has the format SD.
S is the page from where the copy has to be made (Source).
D is the page to which the copy is destined (Destination).

This function will sound a low tone to indicate the completion of
the function.

Example : We want to make a copy of our working MLDL ram page.
This could be done with move by giving as input
700@7FFF600@. But this will take longer and asks for a
more complicated input. Therefore we will make use of
COFYR. The input for this example is 76 in ALFHA. When
this is done, the function COPYR can be executed. After
the tone has sounded we can check, if the second rom is
available by executing a catalog 2. You will now see
the romname NEWUSER @1 appearing twice in the catalog.

. Page 15

MLDL operating system eprom

ROMSUM
XROM 11,28

To check if a ROM is still in good shape HEWLETT-FACKARD has put
a4 checksum in each ROM. With the function ROMSUM you are able to
compute this checksum and put it at the proper place in the MLDL-
ram you are developing. The checksum is calculated by adding all
the words on this page, take modulc 255 and put the remainder in
xFFF.

The input is P in ALFHA. P is the page number of the MLDL-ram you
want to update the checksum.

Example : To be able to detect if our rom is still in good shape,

we are going to compute the checksum of the rom. Give
the address of the rom in ALPHA. Attention, we are
using the second MLDL ram page now, so the input will
be & instead of 7. Get back to normal operation mode
again and execute the function ROMSUM. This will take a
few seconds. During this time the display will remain
blank.
When the function is completed, vyou can check if the
checksum is calculated in the proper way. This is
achieved by keying into the X-register the used xrom
number I1. Now execute ROMCHKX. The display will change
into 31 @e-@@ TST. After a few seconds it will change
to 31 ee—-ee DK.

(Remember 31 is the xrom number we used for our MLDL
ram page).

REG>ROM (REGisters to ROM)
XROM 11,09

This function is the opposite of ROMMREG (for more information on
this function see‘at ROMYREG). This routine will translate the
registers with it‘s 5 words/register back into S different words
and place them at the proper addresses in a MLDL-ram page.

The input in the Y-register determines where the data will be put .

back in the MLDL-ram. 3 different options’ are available to
achieve this.

Page 164

MLDL operating system eprom

1. "vy"= 0@ The block will be Placed at the same
location as where the original was (if the
original was located from B3FF to B456 it
will be restored at the same addresses.

2. "Y'= F P represents a page number that is created
with the help of COD. The block will now be
loaded at the same relative addresses from
which it came from but at a different page (
if the original was located at BZFF to B4Ss
it will be restored at F3IFF to F45s6).

S. Y = EBBE Here BEBE represents the start-address
where the block will be stored (BEBEB >=
8218). The block will be loaded starting
at the address given by BBBBE independent
from the original start-address of the
block.

The X-register must hold the number of the register that contains
the first data words of the block that has to be read back ¢
actually the Ffirst register contains a header that is used by
‘REG>ROM and is made by ROM>REG).

Writing entire 4K blocks of MLDL-ram from a storage medium is
facilitated by the functions SAVEROM and GETROM.

Example : Let us assume, that you have used the function ROM>MREG
before. This can be accomplished by getting to the
example of ROMM>REG at page 23. Here the romname is
loaded to the registers in order to save it on magnetic
cards ar a cassette drive.

First we will 1load the data back to it's original
place. To .see this really happening, we must first
clear the block, where the data is located. This is
done by CLBL. Put in ALFHA the begin and end address of
the block to be cleared (70867890). Execute CLEL to
remove the data from the MLDL ram page.

Page 17

MLDL. operating system eprom

We can now restore the data by getting it back with
REG>ROM. ‘

First we are going to get it back to the original place
in the MLDL ram page. This is necessary in order to get
our rom—name back. Input for this is zero in register Y
and zero in the X-register. The data will be loaded

back at it's original place. You can check this with
RAMWR.

We also want the data loaded back at a completely
different page. Therefore it is needed to get the page
number into the Y register This is accomplished with
the function COD. Place in ALFHA the letter
representing the page we want to store to (&6). After
getting out of ALPHA we execute COD. The display will
change a 1little. Now press @ to move the binairy
representation of the page to the Y register and get
the address of the header register in the X register.
Now execute REGXROM. VYou will find at the addresses

6886 to 4090 the data that alsao is located at 7886 to
70%0Q.

The 1last option of REGPROM is to restore the data at
completely different addresses. If we don‘t want to
have the data at address 78846, but at address 7AEE
instead, we must make use of the last option of
ROM>REG. Now we have to specify. the starting address in
the Y register. This is done as with the previous
example. Flace in ALFHA the starting address (7AEE)
and execute COD. Again the display may differ from what
you are used to. Fress @ to enter the starting address
to Y and place the first register to use into the X
register.

After these initial actions the functicn REG>*ROM can be
executed. After termination you can check with RAMWR to
see if the data really got there.

Page 18

MLDL operating system eprom

XROM 11,10

This is not a normal function. It does not do
executed but it is used as a spacer from write
application routines within the MLDL-ram
application is to use it as a NOF.
input without raising the stack.

anything when
routines and
. One possible
It will also terminate data

Page 19

MLDL operating system eprom

UTILITY FUNCTIONS

COMPILE
XROM 11,11

The function COMFILE places in every numerical GTO and XEQ the
distance to that numerical label. Programs prepared with the help
of COMFILE will usually run faster than programs that have to
calculate these distances while running. Two byte GOTO's that can
not make the distance will be transformed to three byte GOTO's.
Therefore vyour program can be made longer by this routine and it
is required to have at least three registers 1left after the
Program. (.END. REG xxx with xxx not equal to zero).

Compile prompts for the name of the program you want to compile.
Input is in the same way as with the mainframe function CLP. So
if you are not in the program you want to compile, you must input
the complete name. Otherwise it is possible to press ALFHA twice.
The function will first pack the program (FACKING), then handle
the two byte GOTO's (COMFL 2B G) and if needed (in this case
compile has found a 2 byte GTO that can not make it and will
replace it with a three byte GTO, thus causing insertion of null
bytes that have to be packed as well) repeat this sequence.
After this is done it will continue with the three byte‘'s GOTO’'s
and XE@'s (COMPL 3B G/X). After the routine is finished it will
put the message READY in the display. Labels not found will give
the error condition NGO LEL XX, wWith the number xx as the 1label
not found. When you switch to program mode you will find the
program step that caused the error condition.

If the program has the .END. -as last statement instead of a
normal END, it will change the .END. into a normal one. This is

done for MMTORAM, which expects a program to be terminated with a
narmal END.

To be able to change the .END. into a normal one, the compiler
needs at least one empty register after the program. During the
initial packing of the program a check is made to see if there is
at least one register available. If this is not the case, the
program will terminate with the message TRY AGAIN. If so vyou
should decrease the number of allocated memory registers. (
change size)

Page 20

MLDL operating system eprom

"After execution of compile you will be placed at the first step
of the program.

Deleting steps or adding steps in a pkogram,” will change the
status of the program into a decompiled one. Reusing the compiler

will speed up the execution after the editing session.

Example : Create the next Program in your calculator

B1 LBL °TST 18 GTD 164
02 LBL R0 19 LBL 17
B2 LEL @1 20 EBEEF
B4 GTO @2 21 GT0O o@
@S LBL @T 22 LBL B2
@5 GTO o4 23 GT0 @83
87 LBL @5 24 LBL 04
@8 GTO Bs 25 GTO @5
2% LBL @7 26 LBL Bs&
18 GTO @es 27 GTO @7
11 LBL @9 28 LBL @8
12 G700 1@ 29 GT0 a9
13 LBL 11 3@ LBL 1@
14 GTO 12 31 GTO 11
15 LBL 13 S2 LBL 12
16 GTO 14 33 BTO. 13
17 LBL 15 34 LBL 14
35 GTO 15
36 LBL 16
37 GTO 17

If you execute this program after you have loaded it,
you will notice the significant time it takes before
,You hear the first beep. You will hear the second one
much sooner. Stop the pProgram and goto step 1. Delete
the superflucus label B1.

Execute the function COMFILE. You will be prompted for
the name of the program to be compiled. Press ALPHA
twice, since we are in the program already. (It's alspo
possible to give the full name of the program (TST)).
Now the message FACKING is displayed. If you do not
have enough room after the program, COMFILE will
terminate with the message TRY AGAIN. Then the messages
CMFL 2B G and CMFL 3IF G/X will be showed shortly after
each other. When the compiler is through these
messages, a tone will be sounded and the display gives
the message READY.

Page 21

MLDL operating system eprom

If you press PRGM once, you will find yourself at the
start address of the program. Press PRGM once more and
press R/S. Notify the fact that there is no delay
before the first beep sounds.

Goto step one once more and delete label 8B@. Execution
of COMFILE will give the error message NO LEL 0. If
you go into PRGM mode you will be at the step that
caused the error, step 19. Please restore the program
with LBL @@ at step 01 again,because we are going to
use this program again in the example of CMFDL.

LOCA ¢ LOCAte word)
XROM 11,12

This function allows you to locate a data—word in a 4k block of
ROM, EFROM or MLDL-ram.

The input format in ALPHA is as follows: BEEEDDD.

BEEB specifies the address from where LOCA starts searching in
the 4K block. Actually it will start at BEBE + i to allow
repeated search in the block. NONE will be displayed when the
wanted data (DDD) is not found in this 4K block. Whenever a
data—-word is found, it will be displayed together with the
address at which it is found. The data in ALPHA (adress + word)
will be replaced with the data found.This makes it possible ta
continue searching for the same word.

Example : With a small user code program you can easily print ocut
all the occurrences of an instruction in a rom or MLDL
ram page. Create the following user code program (make
sure you saved the TST program)

@1 LBL °‘LDCATE BS ACFF
B2 °‘ADD + DATA 86 LBL @1
B3 AON B7 LOCA

@4 FROMPT @8 GTO @1

Input for this program could be a starting address 1like
X802 and the data to search for could be @4@. This
would give you a complete list of all the MLDL WRITE
instructions in the MLDL rom. Enter for X the page
address where the MLDL rom is located ¢ usually page F
).

Page 22

- MLDL operating system éprom

LROM (Last ROM word)
XROM 11,13 ‘

LROM searches backwards for the last non zero word in a block
beginning at a given start-address. Input is AAAA in ALFHA. The
display will give the address of the last non zero word and the
value at this address. NONE will be returned when the block
between the start address and the beginning of this 4k page does
not contain any word (other than zero).

This function can be very useful when the end-address of the last
program entered has to be found. In this case the easiest way is
to put xFF4 into ALPHA and execute LROM. It will give you the
address of the last word that is occupied by the praogram.

Example : If we want to find out where we can load our Rext user
code programs, we could search for empty space with the
~help of RAMWR, but this would be rather cumbersome. To
avoid this, we are going to use the function LROM. In
this case we want to search on pPage 7, starting from
the end and working backwards. Input for this is 7FFF
in ALFHA. Execution of LROM will return 7AF73EB to the
display after a short search time. This tells us, that
the next available word in our rom is at address 7AFB.
I+ we are searching on a completely empty page, LROM
will return the message NONE to the display, because it
can not find any word unequal to zero on the page. Try
this with page 5 for example. Input for this is SFFF in
ALFHA. Execute LROM. After a short while the message

NONE will be displayed.

COD ¢ CODe)
XROM 11,14

The hexadecimal number in the ALFHA-register is converted to it’'s
-bit-representation and this will be placed in the X-register.
The caontents of the ALFHA-register is unchanged. The stack will
be rolled up and the value in the X-register before COD was
executed is placed in the LASTX~register.

The display won't be intelligable after the function COD has been
executed. For the synthetic programmer this will sound normal.

Page 23

MLDL operating system eprom

Example : Input. in ALPHA the hexadecimal address of our romname

and the start address of our romname (70@847290).
Execute COD after Placing the address in ALFHA. If we
change the display format to fix 9, the display will
look like this 0.2000708 9@ Save this coded
representation of the address, for we are using it to
demonstrate an example with DECOD.
These so called non normalized numbers (NNN's) should
not be used to make calculations, for they can hang up
the calculator for quite some time. Also they can not
be stored and recalled in the szine mannner as normal
numbers, for they are normalized after being recalled.
This is easily dzmonstrated by pressing STO @1 and RCL
@1 after each other. The result is a zero X register.

DECOD (D=cODe)
XROM 11,15

The function DECOD is the opposite of the function COD. It will
translate a -bit-representation in the X-register to the same
hexadecimal form as is used by the function COD. The output is
given in the ALFHA-register. When DECOD is executed manually

DECOD will also give the hexedecimal representation in the
display. ' »

Example : We are going to use the same number as we have created
with the function COD. First clear the ALFHA register.

Now we must get back our just created number. If you do

a RDN, it will come back to the X register. Execute the
function DECOD. The hexadecimal representation of the
number will appear in the display. If you press back-
arrow once, it will disappear and the nonnormalized
number is viewed again. Go into ALPHA and discover the
hexadecimal representation here.

FPage 24

MLDL operating system eprom

ROMCHKX (ROMCHeck by X-reg.)
XROM 11,16

This function enables you to check if a ROM or MLDL-ram is still
in good shape. Important though is the fact that a ROM or MLDL-
ram must contain a good computed checksum ¢ see ROMSUM for the
definition of the checksum). HF rom's will always contain a good
checksum. During the test the XROM number is displayed along with
the short form of the name and the revision number of the ROM. If
the ROM or the MLDL-ram doesn 't contain this short name or the
revision number, the display will show @e-ge.

Input in the X-register, the XROM number of the ROM or MLDL-ram
you want to test (an example is IO for the cardreader). During
the test XX NN-RR TST will be displayed. XX is the XROM number of
the ROM that is tested, NN is the shortened name and KRR is the
revision number.

Output of ROMCHKX is the display XX NN-RR BAD (indicates a bad
ROM) .or the display XX NN-RR OK (indicates a good ROM) These

outputs will be given only when the function is executed from the
keyboard. :

The behavior of ROMCHKX will be different when it is executed in
@ program; when a ROM is found to .be good it will do the next
step in the program. Else it will skip the next step (compare
the function FS?: the rule do if true is in force).

When there is no ROM present with the desired XROM number the
message NO ROM XX will be displayed. Again it’'s behavior in PRGM

mode is different. It will act as if the ROM is bad and skip the
next line.

Example : We can check if the MLDL operating system eprom is
still good. For this we need an input of 11 in the X
register (this is the xrom number of the MLDL rom).
When we execute the function ROMCHKX, the display will
change to 11 AS- A TST. This indicates that the rom
with xrom number 11 is under test. The revision code of
this rom is AS A. After a short time the display will
change to 11 AS- A OK . When we execute ROMCHEX with a
Xxrom number that is not present it will say NO ROM nn.
This can be tried with zerc in the X register because a
rom never can have xrom nr 80Q. The display will show NO
ROM B2 after ROMCHKX has been executed.

Page 25°

MLDL operating system eprnm

ROM>REG (ROM to REGisters)
XROM 11,17

All the credits for this function and its counterpart (REG>ROM)
go to Faul Lind and Lynn Wilkins who have written these two
routines. ROMMREG places 5 words of 1@ bits each in one HF-41
register. To avoid damage to the stored data it is saved as alpha
data. This guarantees an optimal use of the available registers
in the main memory of the calculator. Because of these functions
it is now possible to store the routines and functions that are
written in a MLDL-ram on tape or cards and they make it easier
to exchange M-code with other users.

To transfer complete blocks roms to and from tape the functions
SAVEROM and GETROM are incorporated in this rom.

The input for this. function must be given in the Y-register. It
has the form EBBEBEEEE.

BEEB is the address of the first word to store.

EEEE is the address of the last word to store.

This input has to be in binary and right justified. This 1is
achieved by putting the BBBBEEEE farm in ALFHA and executing COD
after this. The binary representation can be transferred to the
Y-register by means of keying in a number in the X-register. The
X-register holds the number of the first data register that will
be used as data store. (normally this will be register 02)

If the number of registers needed, exceeds the number of free
registers you will get the error message NONEXISTENT.

There is also output from this function. In the LASTX-register
the last used register is given. By subtracting X from LASTX you
will get the number of used registers minus 1. If you add 1 to

this you will get the number of registers needed to store the
desired MLDL-ram block.

Page 264

MLDL-operating system eprom

Example : We will] Save our romname in the user registers. This
block of registers isg also used for the example of the
functiaon REG>ROM. To execute this function properly, we
have to give the block to be saved in a binary
representation in the Y register. In the previocus
example we have already created the address in the
ALPHA register, so we only have to execute the function
COD. This gives us the binary representation of the
block to be saved in the X register. We want to save
the block 1in the user registers starting at register
B2, so we have tg enter zero into the X register. Fress
@. This also moves the Binary representation of the
block to be saved to the Y register.

After these preparations the function ROMMREG can be
executed. Fressing LASTYX gives us the last used

register. This means we needed 4 registers tg store the
Block (3-8 + 1).,

MNEM ¢ MNEMonics)
XROM 11,18

This function will give in conjunction with DISASM the name of a
M-code instruction that is fetched with DISASM. The mnemonics
that are used are the so called HF-mnemonics (there are also FFC
(Jacabs) mnemanics). The mnemonics are left as a string in the
Z-register. Eventual surplus information ¢ jump—distance, value,
field specifications) is given in the T-register. In case of two
word instructions the LASTX~register is used. The following User-

code program makes it possible to translate every ROM that you
want.

Page 27

"MLDL operating sysfem eprdm

Example : With the following user code .program you are able to
print ocut the machine code on a rom page.

@1 LBL 'mdis Name of program

@2 CLST initialize the stack registers

83 STO L initialize the LAST X-register

@4 SF 21 makes program stop at aview

@S ‘start add? ask for start-address

Q6 AON make ready for input’

@7 FROMPT ask and wait for input

@8 AOFF leave the ALFHA mode

@2 COD : put the start-address in X

12 LBL @1 start of the loop

11 DISASM get the instruction

12 AVIEW view the address, value and the
character

13 MNEM build the mnemonic in the stack

14 CLA initialize the AlLFHA-register

15 ARCL Z get the first part of the mnemonic

16 @ append a space

17 ARCL T get the second part of the mnemonic

18 AVIEW view the mnemonic

19 GTO @1 restart the loop

This routine is meant to be used in ‘manual’ mode. Far

use with the printer it must be rewritten. The chaoice
is up to the user.

DISASM (DISASeMbler)
XROM 11,19

The function DISASM makes it possible to put the contents of ROM
into the display. At the same time the character representation
from the word is given in the display.

Input: The X-register must contain the address of the wanted word
{ this can be done with the help of COD).

Output: The X-register will be incremented by ane to make it easy
to use DISASM in a loop. The Y-register holds the binary value of
the address and the data at this address (these values can be
made visible with DECOD). The ALPHA—register contains AARAA WWW L

Page 28

'MLDL operating system eprom

.AAAA is the address of the wanted word.
WWW 1is the value of this word.
L is the character representation of the word.

There are two ways to represent characters in the HP-41. One way
is the use of the ASCII standard. The other way is derived from
this standard by subtracting 4@ Chex] from the codes in the range
from 4@ hex through SF [hexl. This gives you codes that lay in
the range from @ hex to 1IF Chex]. These are the codes, that are
used for the display. Therefore DISASM will translate these codes
to normal characters.

Example : To see how the function DISASM is used see the function
MNEM and the related user code program to print the
contents of a rom with microcode functions.

CAT (CATalog)
XROM 11,20

The function CAT gives you a selective CAT 2. This routine is
especially useful when you have to examine the catalog of a ROM
that is located at a higher numbered port. When the system is
loaded with a lot of roms it will take a long time before you
arrive at the desired ROM ¢ maybe you must go through the TIMER,
FRINTER, IL-MODULE before you reach the wanted ROM). The
function prompts in the same way as the CAT function of the HP-
41. The prompt can be answered with the hex digits B-F (CAT will
redefine the keyboard in the same way as RAMWR). Entering digits
B-3 results in the normal CAT function from the HF-41. Digits S-F
will start the cataleg at the wanted page. For further details we
refer to the manual of the HF-41.

Users of an HF-41CX have to be careful using this function. In
some cases there have been crashes reported, due to changes in
the functioning of the CAT function of the HF-41CX. This is
highly dependant of the contents of the status registers.

Page 29

MLDL operating system eprom

Example : If the MLDL rom is installed at page F (this will
usually be the case, when the box is delivered to you
straight fraom the supplier) you would see with a
normal CAT 2 all the functions of the roms that are
Physically located before the MLDL rom. At least one is
located there at the moment, and that is the test rom,
we are working on in our examples. So if you do a
normal CAT 2 you will first see NEWUSER B1. To skip
this part, we can start our catalog at page F. Execute
the function CAT and fill the prompt with the digit F.
The catalog will start up immediately at page F thus
showing the contents of the MLDL rom.

CBT (Count BYtes)
XROM 11,21

This function counts the number of bytes that is occupied by a
program. The END statement is taken in account. At the prompt the
name of the desired program must be keyed in or if you are
already in the desired pPregram press ALPHA twice (compare with
the function CLP).

Output is given in the display only. The stack and the AL FHA-
register are left undisturbed.)

If you try to get the length of a program that is resident in a
rom module the error message ROM is given.

Example : At the explanation of COMPILE we have written a short
user code program to demonstrate you the advantages of
COMFILE. Execute COMFILE once more cn this program to
make sure the program is as compact as possible. Now
you can find out how long the program actually is. If
you execute CBT and press ALFHA twice, the display will
change to 68 BYTES. This is the length of your program
including the END statement
Remember this length for you wWill see that the use of
CMFDL will significantly decrease the number of used
bytes, thus giving vyou a lot of memory back.

Page 30

MLDL operating system eprom

SYNT (SYNTesize)
XROM 11,22

with this function you can create two- and some three bytes
instructions in program memory without using the bytegrabber.
Data for this <function needs to be given in the X- and Y-
register. The first byte of the instruction (decimal coded) is
given in the X-register. The second byte is given in the Y-
register. SYNT will place the instruction after the program line
where the program counter is pointing at that moment. ATTENTION :
this routine works both in PRGM and RUN mode. Therefare you must
be very careful when assigning SYNT to a key. Carelessly pressing

the assigned key will produce an unwanted line in your program or
even worse.

Example : 159 ENTER™ S8 execute SYNT will give a TONE B in your
program which is completely different from the normal

TONE B. An input of 247 in X and Y will give you a byte
grabber.

GE (Go to .End)
XROM 11,23

This function is a sort of replacement of the GTO.. function of
the HF-41. It will put you at the end of program memory, but it
is not packing the memory. Furthermore it does not put an end to
the last program in memaory. When you do not know where you are in
main memory use GE and you are at a familiar place again.

This routine will display @@ REG NNN and also circumvents the
line number bug in the HF-41 operating system.

XROM 11,24

This is just a seperator for the second and third section. For
more details see page 16.

Page 31

MLDL operating system eprom

UPDATE FUNCTIONS

SAVEROM
XROM 11,25

With this function you can save the contents of an entire raom on
cassette tape. The input format for this function is a name in
the alpha register and the desired page number in x.

A file will be created on tape of 64@ registers, occupying 220
records.

Because there are a lot of users who have been using the Mountain
Computer eprom burner set with the functions READROM and WRTROM
we also included a user code program to be able to read back rom
files in the old B24 format. This is the program ‘RROM in
appendix H.

The Ffile identifier on tape for the new file created by SAVERGCM
is ¥ @7. This means that the files are presented in the DIR as :

NAME P75 640

We have chosen for a nonexistant file type to be sure that the
data is not accidently destroyed. ' Therefore the file is also
automatically secured after creation. SAVEROM saves 7 records per
file compared to WRTROM or °‘WROM. Now you will be able to get the
maximum number of roms on your tape (e.g. 24 files).

To get the maximum number of files on your tape it is recommendead
to do a NEWM with 27 file directory entry’s. You can write 12
files on each side of the tape then. After having written 12
files you should protect the tape from rewinding from one side to
the other by creating a dummyfile "ENDTAPE" of IDO registers.

Page 32

MLDL operating system eprom

Example : If you have a cassette drive you can try the following
example. We will save the contents of cur rom at page 7
on tape and read it back with GETROM. Give a filename
in ALFHA, <for example USER1. Since we have our rom at
page 7, were also the HFIL module resides, we have to
move it to another page. This could be page S. If you
can not use this page, place your rom at another page.
I¥f so replace in the following example the pagenumber
with your new page number
We have the name in ALPHA and now we have to give the
Page address in the X register. In our example this
will be 5. Execute SAVEROM. You will hear the cassette
drive working = for some time. If you watch the drive
closely, you will notice that it writes 2@ blocks after
each other.

When the drive is ready again you could do a DIR and
see as entry in the directory of the tape our just
created romfile. It will be in the form as described
under the function description,

e.g. USER1 ?7,8 640.

GETROM
XROM 11,26

This is the counterpart of the SAVEROM function. Input format is
the same, so the name must be in alpha and the page number must
be in x. For more information on the format of the files, we
refer to the function SAVEROM.

Getrcm will read back the contents of the rom file and put it 1in
the desired ram page. There is nao checking done to see if the
specified page is actually a ram page. This is to allow you to
get a rom file to a page that is not switched on.

Example : If you have saved our rom file on tape, we can
demonstrate it coming back. First of all clear the page
we are working on. This is done with CLBL. You probably
know by now how this function works, so it is left up
to you to clear the bleock. Fut in ALFHA the name of the
file we want to read back, e.g. USER1. In the X
register the page address should be entered to which we
want the rom read back. In our case this will be page
S. Now the function GETROM can be executed. After it
has finished, you can check if it is back again in the
usual way with a CAT 2.

Page 33

MLDL operating system eprom

CMPDL |
XROM 11,27

This is in fact nearly the same function as the normal COMFILE.
Therefore we are refering to COMPILE for the set up of the flags
and the input format for COMFILE. They are both equal.

The only difference is that this function will delete the numeric
labels in the program while compiling. This shortens the program
and speeds it up. This can be done, because the HF-41 remembers
where to jump to in the jump and execute functions. So after the
first run of a program, the HF-41 knows the distances to all the
labels and will always jump this distance. It does not matter if
there is a 1label or not. Therefore the labels can easily be
deleted. Only when the program contains indirect jumps or xeq’'s
is it impossible to do sa. This is due to the fact, that the HF-
41 can not remember all the possible addresses of all labels in
the program. For this reason you can not use this function when
the program contains a GTO ind or XE& ind.

The program respects all the local labels. So the labels A
through J and the labels a through e are respected and will not
be deleted. This is necessary because the HF-41 searches for them
when you use them from the keyboard.

When this function is executed, it will make use of the wuser
registers to hold the addresses of the deleted labels. Therefore
make sure that the number of allocated registers is more then the
number of labels in the programs. If you don't take care of this
the calculator might crash.

To protect the compiled.status as much as Possible we change the
terminated by the .END. This protects you from accidently writing
at the end of the program if you want to continue at the end of
the Programmemory with new programs.

During program compilation, you will see the following messages
after each other. FACKING

COMPL 2B G

COMFL 2B G/X

FACKING

COMFL 2B G

COMFL 3B G/X

READY

Page 34

MLDL operating system eprom

The compiler makes use of the normal- compiler. First the whole
program is compiled to find out where to Jump to. Then all the
LBL’'s are deleted and their addresses are remembered in the user
registers. This is done during the packing stage. After this the
program is compiled again. When the function is through you are
at the beginning of the pragram.

The user registers contain the information where the program
resided and where the specified labels in the program were. The
structure of a register is as follows 10@SSSSLLLL@NN. The first
two digits indicate alpha type of data. The SSE88 part gives you
the start address of the program in program counter format. The
LLLL part gives vyou the address of the 1label in the packed
program without the labels. The NN part gives you the deleted
label at this address.

Example : We will compile the program that we used by the example
of COMPILE again. This time we are going to compile it
with CMPDL. This is easily done. First make sure we
have enough empty registers by setting the size to 18
or greater. We can now execute CMPDL. At the prompt
give the name of the program : TST. After the compiler
has finished we can see the results. Just run the
program. Again there is no delay in the first beep.
Also notify the fact that the flying goose 'does not
move anymore. This is because the goose only moves one
place to the right whenever the program encounters . a
label. PBut since all labels are deleted, it is not
necessary anymore to move the goose. If you stop the
program and execute the function CBT, vyou will get as
result 48 BYTES. This implies that we have saved 2@
bytes of memary, and in this case it means that the
program is shortened by roughly one third of it-‘s
original length.

IPAGE
XROM 11,28

This function sets Up a ram page to load user programs and/or
assembler code functions. The entire specified page is cleared
and the specified xrom number and the name in alpha are written
at the appropriate places. This we have already done manually
when we explained RAMWR and AFAT. With this function it will be
much easier.

Page 35

MLDL operating system eprom

Input for this function in ALPHA is the name of the rom. This
name must be from one to 11 characters. As it is the name of the
rom it is advisable to make it at least 8 characters. This has
two reasons. First, a function name of more then 7 characters can
not be executed. Second and more important is the fact that the
CAT function of the HP-41 CX searches for names that are 1longer
then 7 characters. So, if you use a name of less then 8
characters, the rom name will not show up in the header catalog
of the HF-41 CX. This is also the case with the CCD module, a
maodule likely to spread cut as much as the FPC rom. Second thing
to give as input is the MLDL ram page number top be initialized.
This page number is given in the X register. (in decimal)

When the function is executed, it will prompt you for the xrom
number of the page. There is no checking done on the input,
because it is possible to use other xrom numbers, but you can not
execute a function in a rom with a xrom number higher then 31, so
it is advisable to use a xrom number between 1 and J1. See fcr
the already used xrom numbers appendix D.

The name that will be written to MLDL ram consists of the first
eleven characters in the alpha register when you have nag mare
then 12 characters. 1If you have mare then 12 characters in alpha
the name will be the first 11 characters that are left in the
display after having it displayed. 1In other words the first 11
characters of the last 12 characters in the alpha register will
be used and write into MLDL ram.

When you have less then 11 characters the last character can be
an underscore. :

Output of the function is in alpha the address of the first empty
word as it is used for the function MMTORAM.

xample : We will now initialize ocur page with the help of IPAGE.
First switch the MLDL ram page back from page S5 to page
7. Give the desired name in ALFHA. We will make use of
the same name as we used in the examples before. It
will be NEWUSER @1. Give the right page number in the X
register (7). Now execute the function IFAGE. At the
prompt the desired xrom number can be given. We will
make use of xrom number 21. This is the xrom number for
user roms. After a short while a tone will sound and
the message READY will be in the display. Fressing
ALFHA once gives you the first free byte availéble to
load from. This will be address 7092.

Pageb36

MLDL operating system eprom

MKPR
XROM 11,29

This function allows you to make your pragrams private, even i+f
you do not have a card reader. The function will respect the
compiled status of the Program. At the prompt you must fill in
the name of the program that has to become private or if you want
to make the current program private press alpha twice.

Example : If we want to Secure our program compiled with CHMFDL
from accidently.being altered we could make it private.
Execute private and fill in the prompt with TST. If you
switch to pProgram mode you will now discover that the
program is private.

Page 37

XROM

11,01
11,02

11,83
11,04
11,05
11,06
11,07
11,@8
11,09

11,10
11,11
11,12
11,13
11,14
11,15
11,16
11,17

11,18
11,19

11,20
11,21

11,22

11,22

NAME

" RAMUWR

MMTORAM

AFAT
DFAT
‘MOVE
CLBL
COFYR
ROMSUM

"REG>ROM

COMFILE
LQOCA
LROM
cap
DECOD
ROMCHIKX

~-ROM>REG-

~MNEM -
DISASM

-CAT
CBT
SYNT

GE

MLDL operating system eprom

APPENDIX A

INPUT

@-F hex

BBBEB in ALFHA

flags @, 1 and 3
UOFAAA in ALFHA

OPAAA in ALFHA ‘
BEBBBEEEEDDDD in ALPHA
F / BEBBEEEE in ALFHA
SD in ALFHA

F in ALPHA

@/F/BBEE in reg Y
first reg in X

name of program
BBEEBBDDD in ALPHA
BEBE in ALFHA

hex in ALFHA
binmary in X

XROM in X
BBBEEEEE in reg Y
first reg in X
AAAADDD in Y

BEEB in X

F at prompt

name at prompt

X first dec. byte
Y second dec. byte
pc. at .END.

Page 38

QUTPUT

word in ram
stored program

FAT updated
FAT updated
block is moved
block cleared
copied block
romsum in xFFF
data in ram

compiled program °
AAAADDD 7/ NONE
AARAAADDD / NONE
binary in X

hex in ALPHA

bad / ok do if true’
data in registers
last reg in LASTX
mnemonic in Z and T
EBBB + 1 in X '
AAAADDD in Y

cat from page P
length of program
instruction after pc.

MLDL operating system eprom

APPENDIX A
XROM NAME INPUT OUTPUT
11,24 ——
11,25 SAVEROM name in ALPHA 4K in file on tape
» dec. page in X . 4
11,26 GETROM name in ALPHA 4K of tape in ram
dec. page in X
11,27 CMPDL name of program short comp. program
11,28 IPAGE name in ALPHA desired page cleared
dec. page in X name + xrom in page
Xxrom at prompt load addr. in ALPHA
11,29 MKPR name of program private program
SHORT FORM LETTER REPRESENTING
A address digit
B begin address digit
D data digit or destination digit
E end—-address digit
o - offset digit
P page number digit
S source digit
u ‘user digit

Page 39

MLDL operating system eprom

APPENDIX B

PROGRAMMING AND THE MLDL EPROM SET

Most functions provided by the ERAMCO MLDL-EPROM can be entered
in program whenever the eprom—set is plugged in an ERAMCO MLDL-
box connected to the calculator. When the ERAMCO MLDL-box
containing the eprom set is connected program lines with eprom
functions are displayed and printed as standard functions.

If the box is disconnected, these program lines are displayed and
printed as XROM functions with two identification numbers. The
first npumber -11- indicates that the functions are provided in
the ERAMCO MLDL-EPROM. The second number identifies the
particular <function. The XROM numbers for the ERAMCO MLDL-EPROM
are listed below.

Function XROM Number! Function XROM Number! Function XROM Number

]

AFAT XROM 11,83 ! DISASM XROM 11,19 ! RAMWR XROM 11,01
CAT XROM 11,208 ! GE XROM 11,23 | REG>ROM XROM 11,@9
CBT XROM 11,21 ! BETROM XROM 11,26 ! ROMCHKX XROM 11,16
CLBL XROM 11,86 ! IPAGE XROM 11,28 ! ROMSUM XROM 11,08
CMPDL XROM 11,27 ! LOCA XROM 11,12 | ROM>REG XROM 11,17
cap XROM 11,14 ! LROM XROM 11,13 | SAVEROM XROM 11,25
COMPILE XROM 11,11 ! MKPR XROM 11,29 ! SYNT XROM 11,22
COPYR XROM 11,87 ! MNEM XROM 11,18 | ——-= XROM 11,10
DECOD XROM 11,15 ! MMTORAM XROM 11,82 | ——— XROM 11,24
DFAT XROM 11,84 ! MOVE XROM 11,085 !

Underlined functions are not programmable.

If program lines using the ERAMCO MLDL eprom are entered when the
eprom set is not connected, the function is recorded and
displayed as XEQ followed by the function name. Frogram execution
will be slowed down by lines in this form because the calculator
will first search in main memory for a program or program line
with the specified label.

Page 40

MLDL operating system eprom

APPENDIX C

MESSAGES

This is a list of messages and errors related to the functions in
the ERAMCO MLDL-EPROM set. When any of these errors are generated
the attempted function is not performed, except as noted.

DISPLAY
BAD MLDL
ENTRY>&64

GTO/XER IND

NO ENTRY

NO HPIL

NO LBL xx

NONE

NONEXISTENT

NO ROM

NO ROM xx

FUNCTION

RAMWR
AFAT

CMPDL
MMTORAM

DFAT

SAVEROM
GETROM

COMPILE
CMPDL
MMTORAM

LROM
LOCA

-all-

ROM>REG

RAMWR

ROMCHKX

MEANING
The MLDL ram page is malfunctioning.
There are already 64 entry’'s in the FAT.

The program contains GTO or XEQ@ ind
statements.

No such entry exists in the FAT.
The HPIL module is not plugged in.

The GTO or XER has no corresponding LEL
in this program.

The whole block is empty.
There is no such word in the block from
start-address up to the end of the page.

The ERAMCO MLDL-EPROM set is not plugged
in or is disabled or is mal functioning.
There are not enough registers available
to store the specified block.

An attempt has been made to write to an

page which does not have a valid XROM
number at the first address of this
page. ‘ :

The ROM with the given XROM number is not
Plugged in or disabled.

Page 41

DISPLAY

NO WRITE

PAGE > 13

ROM

xx NN-RR BAD

xx NN—-RR OK

COMPL 2B G
COMPL 3B G/X

LOADING PGM

PACKING

READY

MLDL operating system eprom

FUNCTION

RAMWR

GETROM
IPAGE
SAVEROM

MKPR
MMTORAM
COMPILE
CMPDL
CBT

ROMCHKX

ROMCHKX

COMPILE
CMPDL
MMTORAM

COMPILE
CMPDL
MMTORAM

MMTORAM

COMPILE
CMPDL
MMTDRAM

COMFILE
CMPDL
IPAGE
MMTORAM

APPENDIX C

MEANING

The data is not written at the
address. It is impossible to write to an
EPROM or ROM page. Also you can not
write at a disabled page.

desired

There is an invalid pégenumber in reg X.

~

The named program doesn’'t exist in main
memory but is found in ROM

The ROM with the XROM number xx is bad.

The ROM with the XROM number xx is ok.

The 2 byte GTO‘s are handled.
The 3 byte GTO’s and XER’'s are handled.

The program is loaded to MLDL ram.

A byte is deleted and the program is
packed to reduce the length of the
program.

The function is ready.

Page 42;

MLDL operating system eprom
APPENDIX D

XROM numbers range from 1 up to 31 inclusive. As quite a few
ROM’s are available at the moment of this writing it is advisable
to choose a XROM number with care to avoid conflicts with other
modules.

ROM name ! XROM ID ! ROM name ! XROM ID
1 [) []
MATH i 01 ! SECUR i 19 »
STAaT i B2 i CLINLAE i 19 *
SURVEY i @3 ! AVIATION i 19 »
FINANCE i B4 { MONITOR P19 % +
STANDARD ! @5 { STRUCT-B P19 »
CIR ANAL i Bs i C PPC 1981 i 20
STRUCT-A S ', I 4 i ASSEMBLER 3 i 21
STRESS i @8 } IL-DEVEL P 22
HOME MN i @9 i I/0 i 23
GAMES i 10 = ¢ IL-DEVEL i 24
CPPC 1981 ! 10 = { —EXTFCN i 25
AUTODUP i 18 » i -TIME- i 26
REAL EST T11 i — WAND 127
MACHINE T 12 i —MASS ST i 28
THRML T13 ! (- CTL FNS - !
NAVIG i 14 { HP-IL MODULE) !
PETROL i 1S i —PRINTER i 29
PETROL T 16 i CARD READER i 30
PLOTTER i 17 i PPC ROM 2 2?27 1 31
PLOTTER i 1B ! ERAMCO-MLDL P11

+ Only a small number of this ROM, an early version of IL-DEVEL
ROM, were made and are not stocked or sald by HP.

Those marked with an asterisks share their identifying number,
and should not be used in the HP-41 at the same time. 0OFf two
functions with the same XROM ID the one at the 1lowest address
(i.e. the lowest numbered port) will be accessed first and the
other will be ignored. So use discretion when choosing your own
XROM number if you want to avoid these kind of problems.

Page 43

MLDL operating system eprom

APPENDIX E

XROM STRUCTURE

XROM's are located at whole 4k blocks of addresses. The lowest
addresses in an XROM, and a few of the highest have special func-
tions. The remainder may be filled in any way. The locations in
the 4k blocks must be filled by ten bit words, giving 2718 diffe-
rent codes. They may be read as instructions, or as alpha-numeric
data. The following summary, adapted from J. Schwartz’ January
1983 PPC Conference paper, should be taken into account when
studying an application ROM, e.g. the MLDL-ROM. A listing can

easily be prepared by using the MLDL-ROM functions DISASM ' and
MNEM.

Relative Function of code at that address
address (hex) '

X200 The XROM ID number in hexadecimal digits.
Xea1 The number of functions in the XROM (m),
including the XROM name.
Xee2-3 Address of XROM name . '
Xen4-3 Address of first routine, program, etc.
Xeas-7 Address of second routine, etc.
XBa2+2n Address of n'th routine
X@a3+2n
" [1] n
XPB2+2m Address of last (m'th) routine.
X003+2m (m < &4)
X@2@4+2m Compulsory null - 220.
' X@@s+2m Compulsory null - @@00.

Page 44

MLDL operating system eprom

Add. of name Name of ROM (running backwards)

" n 113

" " "
Add. of Fn# 1| Start of Fn# 1 code

(1] [1] "

" (1] £t}
Add. of Fn# 2 Start of Fn# 2 code

XFF4-A Special interrupt jump locations (see table).
XFFB-E ROM name abbreviation and revision #.
XFFF ROM checksum for diagnostic use

Word pairs containing function addresses:
First word of pair: b @] a o 0 all ai@ a9 aB
Second word of pair: @ @ a7 a6 a5 a4 a3 a2 al aB

This results in the following address in this 4k block if 0000 is
zera:

PS p2 pl p@ all al® a9 aB a7 ab a5 a4 a3 a? al a@

Where pB-3 is the bit representation of the 4k page number and
al-11 represent the relative offset from the beginning of the
page.When 0000 is not equal to zero it must be added to pB@-3. For
more information see the function AFAT.

If the two words would read P83, OFF this would represent a
starting address of a function at address X3IFF (hex). The bit b
in the first word indicates USER code or microcode. If set the
address is the start of a USER code program (e.g. 200, BAl in the

printer module is address 6BA1, start of USER code program
"PRPLOT")

Page 45

xFF4
xFF3S
XFFé&
xFF7
xFFB8
XFF9
xFFA

Do

MLDL operating system eprom

APPENDIX F

THE SPECIAL INTERRUPT POINTS

Interrupts during PSE loop.

Interrupts after each program line.
Wake-up with no key down.

Interrupts when turned off.

Interrupts when peripheral flag is set.
wake—-up with ON key.

Wake—-up after memory lost.

not use these points unless you know exactly what vyou

doing. Careless use of these points may cause CRASHES.

Page 46

are

MLDL operating system eprom

ASSEMBLY LANGUAGE INFORMATION

SHORT REVIEW OF THE HP-41 INSTRUCTIONS

The HP41 CFU has three main arithmetic registefs: A,B and C.
These are 56 bits long (14 nibbles) and instructions can operate
in various “"fields" of the register.

P13) 12 11 1@ 9 8 7 & S 4 312 11 e !
: H i X8 ! H
H i ALL 1 {==>1 !
i< + + + >
i MS M : S & X H
<> >i< >

ALL : The whole register

M t Mantissa

MS : Mantissa Sign

XS : eXponent Sign

S&X : eXponent and Sign off exponent

@R : At specified pointer

R<{- : from digit R to digit @

P@ : Between P and @

There are two pointers P and R, of which the value is B-13. One
of them is selected at the time (thraugh slct p or slct q), the
selected pointer is called R. These are three extra fields, which
depend on the value of the pointer), R<- (up to R, from digit R

to digit @) and P-Q (between pointer P and @, @ must be greater
than P). :

There is a register G, B8 bits long, that may be copied to or
from or exchanged with the nibbles R and R+1 of register C.
(R{=12). There are 14 flags, @-13, of which flags B-7 are located
in the 8-bits ST (status) register, and there is a B-bits TONE

register T, of which the contents floats every machine cycle
through a speaker.

Page 47

MLDL operating system eprom

Then there are two auxilary storage registers, M and N, which
can operate only in the field ALL. They are 5S¢ bits long.

There is a 16-bit program counter, which addresses the machine
language, and a KEY register of B-bits, which is loaded when a
key is pressed. The returnstack is 4 addresses 1long and is
situated in the CPU itself.

The CPU may be in HEX or'DEC mode. In the last mode the nibbles
act as if they can have a value from B to 9.

The USER-code RAM is selected by Cls%x1 through RAM SLCT, and
can be written or read through WRITE DATA or READ DATA. If chip @
is selected (RAM address 088 to B@F) the 14 stack registers may
be addressed by WRIT and READ @ to 15.

Peripherals (such as display, card reader, printer) may be
selected by Cls%x] through PRPH select or by SELP (see page 19).

The mnemonics are a kind of BASIC structure.

Arithmetic instructions (operate on a specified field)

A=0 C=B C=C+1 ?A<B
B=0 A=A+1 C=C+A ?A#C
C=0 A=A+B C=A-C 7A#0
AL>E A=A+C C=8-C RSHFA

=A A=A-1 C=-C-1 RSHFEB
A<>C A=A—-B 7B#@ RSHFC
A=C =A—-C ?C#Q LSHFA
C<{>B C=C+C ?AKC

CLRF, SETF, ?FSET, ?R=. 7?FI (peripheral flag set?) » RCR (rotate
right) have a parameter 0-13. ’

LD@R (load C at R) and SELP (select peripheral) have a parameter
a-F.

WRIT and READ have é parameter 0-15, called

a(Ty, 1(2), 2(Y), I(X), a4Lr, SMM, 6N, 7Dy, B, 92(,
1a¢i-), 11¢a), 12¢), 13(c), 14(d), 15(e).

Page 48

b.

2?NC

MLDL operating system eprom

Jumps:
There are two classes jumps:

INC (jump if no carry) and JC (jump if carry). These
instructions provide to jump relative 3IF in positive
direction or 4@ in negative direction. ’

?NC GO and ?C GO. These instuctions provide to jump to an
absolute 16 bits address. ’

X and ?C X2 are jump-subroutine instructicns to absoclute

addresses. (remember the return stack is just 4 addresses long).

Misce

lanecus instructions:

ST=08 C=6 ST=T FOWOFF
CLRKEY C<>6 STL>T SLCT P
?KEY C=M ST=C SLCT @
=R-1 M=C C=8T 7P=Q -
R=R+1 C<>M ST<L>C TLOWBAT
6=C T=ST xQ->G0o A=B=C=0
GOTO ADR (Cr6:31) ?C RTN PUSH (CL6:31)

C=KEY ?NC RTN PopP (CL6:231)

SETHEX RTN GOTO KEY

SETDEC N=C RAM SLCT

DSFOFF C=N WRITE DATA

DSTTOG C<>N READ DATA

FETCH S%X C=C or A PRFPH SLCT

WRIT

Note

S¥X (for MLDL) C=C and A

¢ various arithmetic and all test instuctions may set the
carry flag. This flag keeps set only one machine cycle, sa
a Jjump dependent on this flag must be immediate after the
arithmetic or test instruction, otherwise the carryflag
will always be cleared.

Page 49

MLDL. operating system eprom

CLASS 8 OPERATIONS

240 | 289) 20B 32@ : 348) 389 308

4 1E4

-

83
Tox
) owt o
- -
S8%
g

g3
~ox
- el o=l
—-4-.‘.:'- .=
-

SEF

139C 1 31C ¢ 21C

’
!
!

R:
SELP

VAT — | —

328 | 368 | 3A8 } JEB
L 2 2AC L — } —
338 § 378 | 3BB ! IFB

278 | 288 |
8EC ! 1AC

268
25C

238 § 278 | 2B8 | 2F8

8
B
¢ @7C 1 @BC { 17C 3 2BC § 13C } 27C ¢ WFC ¢ 1BC

228
120

IE
1FB

1A8 &
16C &
188 1}

&8
AC
18

1
]
1

OPERATION

E
.
K}
~ %
g ~%
EEE
gEx
<5<
“f
S525
- n n
£ w2
gias
2585
o W, &

FE

Load p inta °C* at nibble pointed at by pointer and decresent painter
Set the carry flag if the active pointer equals p

Set the active pointer to »
Transfer coatrol to the desired peripheral p

LDBR
R=

’

Read *C* froa RAN sesory or the selected device to register # in the selected block

Krite "C* to RAM mesory or to the selected device in register p of the selected block
Rotate °C* right by p digits

Set the carry flaq if peripheral flag p is set

Page 5@

MLDL operating system eprom

CLASS B SPECIAL INSTRUCTION HEX CODES

MNENDMIC HEX OPERATION MENDNIC HEI OPERATION

UNUSED ~ z34 Mot in ase C=XEY 228 Copy key register into digit 4, 3 of °C*
UNUSED x74 * . SETHEX 268 Use hexadecisal arithsetic

UNUSER xB4 * * SETDEC 2AB Use decimal arithsetic

UNUSED xF4 * . DSPOFF 23 Turn off the display

513 3C4 Clears flag 8 to 7 ("ST® register) DSPTOS 328 Toggle the state of the display

CLRKEY 3CB Clears the "key pressed’ flag C RTH 360 Return fros subroutine if the carry is set
KEY 3CC Set the carry flag when a key has been pressed NC RTN 3A8 Return frcs subroutine if carry flag cleare
R=R-1 304 Decresent the curreat pointer RN 3E? Do a subroutine return always

=R+1 30C Incresent the current painter

UNUSED 818 Not in use UNUSED 838 Mot in use

B=C 858 Copy digits r,r#{ fros *C" tao °5* N=C 878 Copy *C* into °N*

C=6 B8 Copy "6" into digits r,7#1 froa °C* C=x 888 Copy °N* inta *C"

LOs 808 Exchange "6° with digits r,r¢1 fros °C* CON OF3 Exchange °C* with *X*

UNUSED 118 Mot in use LD1 138 Load next ros word into digits 2-8 of °C"
B=C 158 Copy *C* into *M* PUSH 1780 Push address digits &4-3 in °C* onto stack
C=H 198 Copy "N°® into *C* POP B8 Pop address fros stack into digits -3 of *
con 108 Exchange °C* with °M* UNUSED IFR Not in use

UNUSED 218 Not in use 60TD KEY 238 Lload key register into lower 8 bits of "PC
T=8T 258 Copy °"ST® into °T* RAM SLCT 270 Set ras address to digits 2-4 of *C*

ST1=1 298 Copy *T" into "ST* UNUSED 2B8 Mot in use

STOT 28 Exchange °ST® with °T° WRITEDATA ZF® Write register °C" to the selected register
UNUSED 318 Not in use : FETCH 338 Load 2-8 of "C* from rom address &3 of °C*
ST=C 358 Copy digits 1, O froa *C* into "ST" C=COR A J78 Logical or of °C* with *A® bit by bit

c= 398 Copy "ST® into digits 1, @ fros °C* C=C AND A JBR Logical and of °C" with *A® bit by bit
COST 308 Exchange digits 1, ® from "C® with °ST* PRPHSLCT IFB Set peripheral address to digit 2-8 of °C*
I0-)60 @28 Drop stack to convert IQ into 60 ?=Q 120 Set the carry flag if the pointers are equa
POWOFF 848 6o to standby sode TLOWBAT 168 Set the carry flag if low battery

SLCT P 8AB Select °P* as the active pointer A=B=C=8 1AB Clear registers "A® "B" and °C*

SCT @ BED Select *Q" as the active painter 6OTO ADR 1ER Copy digits 6-3 of °C* into the °PC*

Page 51

MLDL operating system eprom.

CLASS 1 INSTRUCTIONS

Class 1 instructions are absolute GOTOs and EXECUTEs. ‘They
consist of two consecutive ROM words of the following format :

A Aa An Aa A= A= A, Ao B 1

Ais Aia Ais Aix Aii1 Aie As Ae g p

Ais—Ama is the 16-bit address to branch to. The pp field of the

second word determines what type of instruction it is. The next
table shows values for pp :

pp MNEMONIC OPERATION

8@ NC XR execute subroutine 1f carry is clear
a1 C Xx@ execute subrroutine if carry is set
1@ NC GO goto rom address if carry is clear
21 C GO goto rom address if carry is set

Example : NC GO 8232 which jumps to the memory lost routine is
coded as :

2211 2O12 @1
202 2’1e 10

PC? as first word
B2A as second word

Page 52

FIELD
ALL

MS
Xs
5%X
@R
R{~
PQ

MLDL operating system eprom

CLASS 2 FIELDS OF OPERATION

AREA OF OPERATION

All digits.

Mantissa digits 12 - 3.

Mantissa sign digit 13.

Exponent sign digit 2.

At exponent digits 2 - B.

At digit specified by the current pcinter.

Up to and including pointer from the right.

from pointer F, left up to @, including pointers.

Page 53

MNEMONIC

A=0
B=0
C=0
AL>E
B=A
<>C
C=B
C<i>B
A=C
A=A+B
A=A+C
=A+1
A=A-B
A=A~1
=A-C
C=C+C
C=A+C
C=C+1
=A—-C-
C=C-1
C=0-C
C=-C-1
TB#@
TC#0
?ALC
?A<B
TA#8
?A#C
RSHFA
RSHFB
RSHFC
LSHFA

MLDL operating system eprom

CLASS 2 INSTRUCTIONS

OPERATION

clear A

clear B

clear C
exchange A with
copy A into B
exchange A with
copy B inta C

exchange B with

copy C into A
add B into A
add C into A
increment A
subtract B from
decrement A
subtract C from
double C

add A intoc C
increment C

A-C into C
decrement C
complement C

nines complement C

set carry flag
set carry flag
set carry flag
set carry flag
set carry flag
set carry flag

if

if
if
if
if
if

B#0
C#0
ALC
A<B
A8
A#*C

shift A right 1 digit
shift B right 1 digit
shift C right 1 digit

shift A left

1 digit

eR

0az2
@2z
@42
@&z
882
QR2
acz2
BEZ2
1@2
122
142
162
182

C1AZ2

1c2
1E2
202
222
242
262
282

2A2

2C=2
2E2
38z
322
342
362
382
3A2
3C2
3E2

Page S4.

SqX

Bas
8264
246
Bss
v8s6
BASL
BCs
RES
186
125
146
1866
186
1As
1C6
1E&
286
226
246
266
286
2A6
2Cs6
2E4
386
326
346
386
386
3A6
3C6
3E&

R<—

aaA
a82Aa
B4A
asA
B8A
BAA
ACcA
BEA
18A
12A
14A
16A
1BA
1AA
1CA
1EA
28A
22A
244A
2&A
2BA
2AA
2CA
2EA
38A
3I2A
34A
I&A
38A
JAA
3CA
JEA

ALL

0OoE
B2E
RaE
B&E
BEE
BAE
BCE
@EE
12E
12E
14E
16E
18E
1AE
1CE
1EE
20E
22F
24k
26E
28E
2AE
2CE
2EE
38E
32

34E
S&E
38E
3AE
SCE
3EE

PQ

B12

32

as2
B72
292
@aB2
@p2
@BF2
112
132
152
172
192
1B2
iD2
1F2
212
232
252
272
292
2B2
2D2
2F2
312
332
352
372
392
3IB2
3D2
IF2

XS

@16
36
@56
876
896
BB&
@Dhé
arFs
116
136
156
174
196
1B6
1Ds&
1F&
216
23
256
276
2946
2B&
2Dé&
2ZF &
316
336
356
376
3946
3IB&
3D6
3F&

M

B1A
8zA
@5A
@7Aa
B9A
@EBA
@DA
@FA
11A
13A
15A
17A
19A
1BA
1DA
1FA
21A
23A
25A
27A
29A
2BA
2DA
2FA
31A
3I3A
3SA
37A
3I9A
3IBA
3DA
3FA

S

B1E
azE
BSE
B7E
PPE
ABE
@ADE
BFE
11E
13E
15
17E
1%E
1BE
1DE
1FE
21E

SE

25E

27E
29E
2BE
2DE
2FE
31E
3IZIE
33SE
I7E
3%E
3BE
SDE
3FE

MLDL operating syétem ebram

CLASS 3 INSTRUCTIONS

DISTANCE JNC- JC- JNC+ JC+ DISTANCE JNC- JC- JNC+ JC+
+/- 81 3FB 3IFF @BB OOF - H/—- B2 SF3 3IF7 @13 017
+/- @2 3EB 3EF @1B @1F +/~ @4 3EZ ZE7 023 @27
+/- 85 3DB 3DF B2E @zF +/- @6 3D 3D7 @33 @37
+/— @7 3CB 3CF @3B @3F +/—- 08 3C3T 3IC7 @4z 047
+/- B89 3BEBE 3IBF @4B B4F +/— @A 3B 3IB7 @53 057
+/— 8B 3AB 3IAF @SB @SF +/—- @C 3AZ A7 @& @&7
+/- @D 39B 3I9F B6B B&F +/—- BE 393 397 073 077
+/— OF 38B IBF @7B @7F +/- 1@ 383 3IB7 083 087
+/- 11 378 3I7F BSBEB BSF +/- 12 373 377 @93 @97
+/- 13 S6B 3I4F @9B @SF +/—- 14 363 3867 BAZ 0A7
+/- 135 35B 3IS5F BAB @AF +/— 16 353 357 ©B3I OB7
+/= 17 34B 3I4F BBB @BF +/—- 18 343 347 @C3I ec7
+/- 19 3B 33 BCB QCF +/—= 1A 33 3I3I7 BDIT @an7
+/- 1B 32B 32F @DB ODF +/—"1C 323 327 BE3I B@E7
+/- 1D S1B 31F BEB BEF +/—- 1E 313 317 OF3 OF7
+/- 1F 3BB 3IBF @FB OFF +/—- 20 383 327 183 1@7
+/- 21 2FE 2FF 1@0B 1@F +/=- 22 2FS 2F7 113 117
+/—~ 23 2EB 2EF 11B 11F /- 24 2ET 2E7 123 127
+/~ 25 Z2DB 2DF 12B 12F +/= 26 2D3 27 133 137
+/- 27 2CB 2CF 13B 13F +/— 28 2C 2C7 143 147
+/-~ 29 2BB 2BF 14B 14F +/— 2A 2B 2B7 152 157
+/—- 2B 2AB 2AF 1SB 1ISF +/—- 2C 2R3 2A7 163 147
+/— 2D 29B 29F 16B 14F +/- 2E 29T 297 173 177
+/—- 2F 28B 28F 17B 17F +/- 2@ 283 287 1B3 187
+/- 31 27B 27F 18BB 18F +/- 32 273 277 193 197
+/= 33 26B 26F 19B 1%F +/—- 24 263 2467 1AS 1A7
+/=- 35 25B 25F 1AB 1AF +/—- 36 253 257 1B 1B7
+/= 37 24B 24F 1BB 1BF +/— 328 243 247 1C3 1C7
+/- 39 23B 23F ICB ICF +/— 3A 233 237 1DI 1D7
+/~ 2B 22B 22F 1DB 1IDF +/— 3C 223 227 1EI 1E7
+/- 3D 21B 21F 1EB 1FEF +/— 3E 213 217 1F3 1F7
+/—- 3F 20B 2B8F 1IFB 1IFF +/—- 40 285 207 ~—= ——=

Class 3 instructions allow the program to jump up to 63 words

forward or backward from its present location. The mnemonics are
JNC and JC.

Page 355

MLDL operating system eprom

ROM CHARACTER TABLE

lower 4: B 1 1 1 21 3 1 4!S 16171 81!69 i Al BIC!D!'E
u @ e A!BIC!D!E}'YFI!GI!HI'!I:4a t K1 LIMIN
p H H i ! i : H H ; i ! b H : :
P 1 I PIBIRIS!ITIU!V!IW!X 'Y Z O O N I
e : H : : : ; H H ! : : : i H :
r 2 | L N R 2 A N B R G T T RS S y + = 1 .
2 : H H H ! : H : i H H : H i H
S 1811121314151 6!7:181!9:: Py <=0
]) [] 1 1] 3)] l____,: : : : : :
4 | i-taitblecl!d!e: : H H : } : HE

Note : The colan (ZA) displays as a boxed star. The comma (2C) is
also the left facing goose when used in a function name or

display and the period (2E) is aleso the right facing
goose.

You get the hexadecimal code of a character by taking the number
in the upper2 column and place the number in the lower row behind
it. Last step is to place a zero in front of the number.

Example : The hexadecimal code of the letter W is @17.
Of the equal sign it is @3D

FUNCTION NAMES

When a function is executed, the operating system checks the ROM
words containing the first two characters of the function name
and the two words immediately following. The catalog table entry
for a microcode function (both mainframe and XROM functions)
points to the first word of executable code. The function name is
listed in reverse order immediately preceding the first word of
executable code.

Page 5&

- MLDL operating_system eprom

Example : This example shows you how a normal function name is
coded.

13CE @81 A Hex @80 added to indicate end of name.
12CF @eC L

18DB3 @B C

18D1 xxx First executable word of CLA.

FUNCTION PROMPTING

To tell the operating system that the end of the function name
has been reached, add @808 hex to the final character. To provide
a prompt set the top two bits in the first two characters of the
function name by adding the hex constants in the following table

NULL . IND &
1ST 2ZND alpha alpha #dig. ind stack stack none example

geg@ any . X CLA,CLST
100 9002 X X . CLP,COPY
iga 100 A 3,4 SI1ZE
1@ 200 . X
1@ 320 1 X CAT, TONE
200 @eo 2 X X ' STO,RCL
208 100 2 X X STO,RCL
200 200 2 X FS?,SF
20@ 3@ X 2 X

. 32@ 020 X 2 LBL

388 100 X 2 X XE@(alpha)
Iea 200 X 2

‘308 300 X 2 X X(.ddd) GTO

The operating system examine these ROM bits and executes a prompt
{if the appropiate bits are set) before the function is executed.
These prompts are only executed when you execute the function
from the keyboard. However, when the function is executed in a
program there will be no prompt at all. Take care of this.

If the prompt accepts an alpha string, the input data is loaded
into the R register, right justified in reverse order in ASCII.

Example : Execution of the function ASN with the alpha argument

"COFY" will 1load 02 B@ BP@ S9 SB@ 4F 4C into the @
register before the function is executed.

Page 57

MLDL operating system eprom

I¥f the prompt is numeric the input data is loaded intoc the "A"
register in binary. Whenever the prompt also accepts indirect,
the value in the "A" register is increased with hex &0.

Example : Execution of the function RCL with a numeric argument
of 53 will return 80 02 20 20 82 B2 37 in the "a"
register. '

If the prompt would have been filled in with IND 55,
the "A" register contains 0@ 0@ 22 82 22 @28 E7.

PROGRAMMABILITY

Two other ROM words of a microcode function are examined by the
cperating system. The Ffirst executable word, if a nop (@2@),
indicates that the function is non—-programmable. This means that
if you execute the function in program mode, it executes rather
than being entered as a program line. SIZE, ASN and CLP are non-
programmable functions. '

If the first two executable words of a XROM function are both
zero, then the function is both non—-programmable and executes
immediately. This means that no function name is displayed and
that the function will not NULL. The function is executed when
the key is pressed rather than when the key is released. FPRGM,
SHIFT and back-arrow are non—programmable, immediate executing
functions. Note that unless your routine checks for key release,
and the key to which your function is assigned is held down, the
function will be executed repeatedly until the key is released.
These two words affect the function operation only if the
calculator is in PRGM mode. In RUN mode, they are ignored.

Example : these are a few examples of function name promptings.

12D2 897 W 1185 @99 Y 12CC @85 E
12D @es E 1186 018 P 12CD @@E N
12D4 109 1 1187 @@F O 12CE 3SBF O
12DS 216 V 11808 183 C 12CF 114 T.

Page 5B

MLDL operating éystem eprom

FUNCTION INDEX

FUNCTION PAGE

AFAT. M R N N N N RN R I I I I . 1 B
CAT- » o 5w a8 s neeesesenas o awaase * 8 8 4 56 vs 0 0eenassacanasngs 29
CBT- ® e 9 e aaes0oerevesae ® v aaveoesmsvaeanee ® e s e awasae * s a0 00 eas 3

CLBL....... Cheeteeaeierenaaan. v
CMPDLI.. ----- ..lI-I-.I-.I-..Il..‘.-.l..-- IIIIIIIIII 34

T

:CDD---------IU------..----.---.. ------ ® ® ® 8% s 00 nasaosn L] e

COMFILE..... “Seesecaccscsetsascasseresannennas cennsa 200
COPYR.ceeevanesnna teesccsanscanneccssnnanaa “eecaces « 15
DECOD......... e s et ccant st atanncaasesarananrannns 24
DFAT...... cesenone mecesasesrsensncacssnnnes asceanaa 12

DISASMI..I.'l..l.-I.-I.-I--..-.....-I.I--....-'.... 28

BE e e e cieanecccsaasanccacanaceaeoscaccennoeonnnnna. 31
o] R
IPABE . e e ceeseeccsoncncecencannsansceancasanccnnenn. IS
e o
LROM. s e e e eeccnneccancnncoaneonn . .+
KPR 4 e et iteecnenscaoceenenceonnccnnceannconnnenns I7
MNEM. © i ieeitecrecacnceancneanacnccanccanacoanennn. 27
MMTORAM. o e e evonen. Cetetareeceaeaeneeaean Y -

MOVE . ¢ ieieteceenacacocacansnecacconccannceonnenn. 13
T ceee. S

0 D R 'S
ROMCHKX . v v e vu.. 1=
ROMSUM. « i e teeeteccnnccensocenanaccaceeanccaneenn. 16

RDM}REG..-I----I..II...--I.-I... ® B ® 5 0 " a8 e v e s 26

SAVERUMI....II-...I....I...l.ll..l.............l.-. 32

SYNT-.--------l-....-.-.ll.--...-..n-l.-.---.-----u 31

L R R R R R R I R R R N I I I T I T T T 19

T T e as e M A N R N E N s 31

Page 59

MLDL 6perating system eprum
CARE AND WARRANTY

Eprom care

Store the eprom set in a dry and clean place. Make sure that the
feet of the eprom’s are protected against bending. Otherwise a
pin could brake from the eprom and make it worthless. Do not
connect any external power supply to the eproms. Protect the
eproms against static charges, otherwise irrepairable damage to
the eproms can result. Do not remove under any circumstances the

labels on the eproms for these labels protect the eproms against
" loosing there data by accident through too much U.V. light on the
eprom’s.

Limited 180 day’'s warranty

The B83128A ERAMCO MLDL-Eprom set is warranted against defects in
materials and workmanship affecting electronic performance, -but
not software content- for 188 day’'s from the date of original
purchase. If you sell your unit or give it as a gift the warranty
is automatically transferred to the new owner and remains in
effect +for the original 188 days period. During the warranty
period we will repair or at our option replace at no charge a
product that proves to be defective, provided you return the
product, shipping prepaid, to ERAMCO SYSTEMS or their official
service representative.

Page 60

MLDL operating system epfom

CARE AND WARRANTY

WHAT IS NOT COVERED

This warranty doesn‘t apply if the product has been damaged by
accident, misuse or as the result of service or modification by
other than ERAMCO SYSTEMS or their official service
representative.

No other express warranty is given. Any other Emplied warranty of
merchantability or fitness is limited to the 188 days period of
this written warranty. In noc event shall ERAMCO SYSTEMS be liable
for consequential damages. This liability shall in no way exceed
the catalog price of the product at the moment of sale.

Obligation to Make Changes

Products are sald on the basis of specifications applicable at
the time of manufacture. ERAMCO SYSTEMS shall have no obligation
to modify or update products once saold.

Page 61

MLDL operating system eprom

HOW TO SET UP VDUR OWN .EROM PAGE

This part of the manual wiil tell you exactly how to set wup an
Erom image in your MLDL-box. This is done with the help of a few
user code routines that are locaded into the MLDL Erom pages. If
you follow the instructions to the letter, nothing can go wrong.
And with the help of these instructiocns you should be able to set
up your own Erom image.

step 1

The first thing that has to be done is to clear the Erocm page you
want to work at and to set the Erom block tao the proper page.
Therefore vyou must set the first block with the 1left rotary
switch at page A. Set the rotary switch of the other block to
page E. Disable both the switches to the left of the leftmost
rotary switch (pull them down). When you set the switches in
this position, vyou can compare the results of your actions with
the results that will be given in this appendix.

step 2

Now we will first clear both Erom pages. Key in alpha mode the
single character "A". Go out alpha mode and execute CLBL (fcor
more details see page 14) Repeat this sequence with the single
character “E" in alpha. At this moment your Erom pages should
both be clear. Now you can enable both the Erom pages by pushing
the both switches up. Don 't expect anything to happen yet. Both
pages are still empty.

step 3

Before doing anything else we have to make sure that both pages
are empty. Key in alpha "AFFF". Now execute LRBM. The display
should read ‘none’. If this is not the case you should control
the'setting of the switches and try step 2 again. This is done in
the same way for the second block, except you now have to key in
alpha “EFFF". The reading of the display should be again ‘none’.
If this isn't the case return to step 2.

Page &2

MLDL operating system eprom

step 4

To allow the HP-41 to find anything that is plugged into the
system it uses the first word on every page starting from page S.
1f this word doesn‘t contain a valid identifier, it can’t execute
a routine or function located at that page. Therefore we will
continue with the setting of these identifiers for both Erom
pages. In fact this identifier is the xrom number of a module. To
avoid any problems with other modules it is recommended in this
stage to unplug all your modules.

Also the name of the rom module has to be added. For this the
function IPAGE is used. It is enough to put the rom name into the
ALFHA register. After this you give the 4K page address in the X
register. Now you can execute the function IPAGE. It will prompt

you for a XROM number. Ta avoid problems we choose as XROM number
the number 21.

Note : In this manual we described two ways to set up an Erom
image. First time we did this with the function RAMWR (see
page 3). For this is quite a cumbersome way to prepare an
Erom image we did incorporate the function IFAGE (see page
33). Here we already gave you an example of how to create
your own Erom image.

Example : We will create one Erom image with xrom number 21 and
as name "TEST ROM 1A". For this we make use of the RAM
page that is controlled by the left rotary and enabling
switch. The block is already cleared and enabled in
step 2. The block is addressed at page "A". Now we have
all relevant data for the block, so we can initialize
it.

Key into ALFHA the name of the module and into the X
register the address of the RAM page that will hold the
Erom image. This address is 10.

Execute the function IPAGE. At the prompt you answer
with the desired xrom number E.G. 21. After a while a
tone will sound and the message READY is displayed.

Page 63

MLDL operating system eprom

step S

From now on the HP-41 can recognize anything that is written into
Erom block one. So lets give it a try. First of all we have to
create a little program in main memory that is to be stored in
the Erom block.

We will use the following program: LBL ‘test
LBL @1
BEEF
GTO @1
END

step &

You have now created a program in the memory of your calculator.
But we wanted to have this program in the MLDL-box, because it is
using up the last free bytes we had. That's no problem. We only
have to use MMTORAM to get the program in the Erom page we want
it. For this we have to initialize a few things.

When we have initialized cur Erom page manually (without use of
IPAGE), we have to give the starting address for our program.
This address will be the first word to be used by MMTORAM. Do not
use the reserved words in an Erom image in which you are to 1load
your programs (see appendix E and appendix F).

If you work with IPAGE however, the starting address is already
given in the ALPHA register. When you have to use the ALFHA
register between two sessions of loading programs, it is
advisable to keep the contents aof the ALPHA register in a normal
data storage register, or to note it down (be carefull saving the
address in a storage register, for MMTORAM can clear all the user
registers, when it makes use of CMPDL). This is handy for future
use. If you lost the address however, you can find it back with
the help of LROM. Increase the address given by LROM with one,
and you have the new starting address to store at.

Second thing we have to initialize is the setting of flags @ and
1, to achieve the desired private status of the loaded program.
There .are four cptions for these flags. For a full description of
these options we rever to the function MMTORAM at-page B.

Page &4

MLDL operating system eprom

Third and last initialisation we have to make is the setting of
flag . MMTORAM decides on this flag wether it shall use CMFDL or
the normal COMPILE function when it is loading a program. See the

function CMPDL for the difference between the two compilers.

Example : We are going to load the program described at step 5.
This program has to be locaded in a nonprivate, complete
open status. Furthermore we do not want the numeric
labels to be deleted.

We do not have to give the starting address, for this
is given in ALPHA by the functicn IPAGE.

For a complete open, nonprivate status flags @ and 1
have to be cleared.

Flag 3 has to be set for we do not want the numeric
labels ta be deleted.

When these settings are made, the function MMTORAM can
be executed. You will see the messages of the compiler
and then the message "LOADING PGM". When MMTORAM is
finished a tone will sound and the message "READY" is
displayed. The program is now loaded in the Erom image
and is ready for use.

Note : If you switch to ALFPHA you will see that the
starting address is changed. It now points to
the first free byte after the just 1loaded
program. This provides an easy way of loading
subsequent programs.

step 7

First thing we will do is deleting the prograt from main memory.
When you have done this, you should still be able to execute test
for it has been stored in the Erom page. So give it a try. VYou
will hear the familiar beeping every time the program is looping.
Stop execution of the program and switch to PRGM mode. Whenever
you ¢try to insert or delete a preogram step, you will see ¢the
message ‘ROM’. This proves that the program has realy been loaded
-into the MLDL-box. The program is alsc included in catalog 2. If
you execute CAT 2 you will see the label test showing up in vyour
display sooner or later, depending on the amount of other roms
that are plugged into the system.

Page &5

MLDL operating system eprom

When vyou want to store more and other programs, you can follow
the described procedure starting at -step 5.

Load also the programs described on page 21 (TST) and 28 (MDIS).
Load the TST program with flag 3 cleared. Look at the pragram
after you have deleted it in main memory. As you will see, it
does not contains the numeric labels any more. This and the fact
that it is in ROM now, will speed up the execution quite a 1lot.
Load the MDIS program with flags 1 and 3 set. The program will be
open in the erom page, but as soon as it is copied back to main
hemory, it will be private.

This is the end of the description of ocur MLDL ROM operating
system. We hope you will enjoy tao work with this rom. If you have
any complaints or wishes ycu want to see in a future rom, please
let us know. We will take these in account as much as possible.

ERAMCO SYSTEMS
W. van Alcmade str. S4
1785 LS Den Helder
The Netherlands

Page &6

Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

	41mldl_Page_01
	41mldl_Page_02
	41mldl_Page_03
	41mldl_Page_04
	41mldl_Page_05
	41mldl_Page_06
	41mldl_Page_07
	41mldl_Page_08
	41mldl_Page_09
	41mldl_Page_10
	41mldl_Page_11
	41mldl_Page_12
	41mldl_Page_13
	41mldl_Page_14
	41mldl_Page_15
	41mldl_Page_16
	41mldl_Page_17
	41mldl_Page_18
	41mldl_Page_19
	41mldl_Page_20
	41mldl_Page_21
	41mldl_Page_22
	41mldl_Page_23
	41mldl_Page_24
	41mldl_Page_25
	41mldl_Page_26
	41mldl_Page_27
	41mldl_Page_28
	41mldl_Page_29
	41mldl_Page_30
	41mldl_Page_31
	41mldl_Page_32
	41mldl_Page_33
	41mldl_Page_34
	41mldl_Page_35
	41mldl_Page_36
	41mldl_Page_37
	41mldl_Page_38
	41mldl_Page_39
	41mldl_Page_40
	41mldl_Page_41
	41mldl_Page_42
	41mldl_Page_43
	41mldl_Page_44
	41mldl_Page_45
	41mldl_Page_46
	41mldl_Page_47
	41mldl_Page_48
	41mldl_Page_49
	41mldl_Page_50
	41mldl_Page_51
	41mldl_Page_52
	41mldl_Page_53
	41mldl_Page_54
	41mldl_Page_55
	41mldl_Page_56
	41mldl_Page_57
	41mldl_Page_58
	41mldl_Page_59
	41mldl_Page_60
	41mldl_Page_61
	41mldl_Page_62
	41mldl_Page_63
	41mldl_Page_64
	41mldl_Page_65
	41mldl_Page_66

