HEWLETT-PACKARD

. HP-41C

STANDARD
APPLICATIONS

NOTICE

The program material contained herein is supplied without
representation or warranty of any kind. Hewlett-Packard
Company therefore assumes no responsibility and shall
have no liability, consequential or otherwise, of any kind
arising from the use of this program material or any part
thereof.

A cickaro

HP-41C

Standard Applications
Handbook

May 1981

00041-90366

Printed in U.S.A. ©Hewlett-Packard Company 1980

INTRODUCTION

This applications handbook contains a collection of programs that demonstrate
the power and versatility of your HP-41C in programmed problem-solving.
You will find the programs useful, entertaining, and fascinating. By entering
and executing them, you’ll get an immediate ‘‘hands-on’’ glimpse of the
advanced capabilities of your HP-41C, and—thanks to its Continuous Memory
—you’ll have them available in the future ready to use.

Studying all of these professionally designed programs will help you
develop your own programming expertise. The benefits of owning an HP-41C
can be realized through the imaginative exploitation of its programming power
and versatility, which enable you to customize your HP-41C to suit your
particular needs.

For each of the 10 programs in this handbook we’ve included a
description, instructions, one or more example problems, program
highlights, and a program listing. Before entering any of the programs,
take a few minutes to study the sections Keying a Program Into the
HP-41C and Format of User Instructions at the front of this handbook.
You might understand them better and learn a lot more from them if
you've first read through the HP-41C Owner’s Handbook and
Programming Guide.

When you’ve selected a program you’d like to execute, key it in by following
the program listing, then refer to the table of instructions for detailed informa-
tion on how to use the program. You’ll probably need to refer to these instruc-
tions only the first few times you run the program. Afterwards, the program’s
prompting should provide the necessary instructions, including which
data should be input, the keys to press, and the kind of output.

The Program Highlights present programming techniques of particular interest.
Studying them will help you understand the operation of parts of the program,
and you may find uses for them as part of programs you write yourself. For an
in-depth understanding of the program’s operation, and to learn more about
efficient and versatile programming techniques, also study the comments
included in the program listings.

Except for the blackjack game, all programs in this handbook can be keyed into
the basic HP-41C. The blackjack game requires one additional memory mod-
ule. As you expand your HP-41C system, you will find that some of these
programs work well as a basis for larger programs of your own. You might want
to modify some programs slightly to suit your individual needs—that’s the
beauty of programmability.

CONTENTS

Introduction e e 3
Format of User Instructionso, 5
Keying A Program Into The HP-41C 6

RPN Primer 8
Teaches RPN by showing you the stack.

Calendar Functions 14
Answers most day-date questions.

Word Guessing Game i 18
Try to guess a hidden word.

Arithmetic Teacher 22
Get 10 problems right and hear a fanfare.

Hexadecimal-Decimal Converter 28
Converts your favorite numbers to a new system.

Financial Calculations it 32
Converts your HP-41C into a powerful financial calculator.

Root Finder e 38
Locates zeros quickly and accurately.

Curve Fitting 42
Fits up to 4 curves to your data.

Vector Operations i 50
Allows easy operations with complex numbers.

Blackjack 54
Plays a simplified game of “21”. Requires one additional
memory module.

FORMAT OF USER INSTRUCTIONS

The User Instructions which accompany each program are your guide to
operating the programs in this handbook.

The form is composed of five labeled columns. Reading from left to right, the
first column, labeled STEP, gives the instruction step number.

The INSTRUCTIONS column gives instructions and comments concerning the
operations to be performed.

The INPUT column specifies the input data, the units of data if applicable, or
the appropriate alpha response to a prompted question. Data Input keys consist
of 0 to 9 and the decimal point (the numeric keys), (EEX] (enter exponent), and
(change sign).

The FUNCTION column specifies the keys to be pressed after keying in the
corresponding input data.

Whenever a statement in the INPUT or FUNCTION column is printed in gold,
the ALPHA mode must be on before the statement can be keyed in. For
example, A4C means press the following keys: Al 4C
(aLPHa]. Of course, you could assign the function A4C to any key you chose by
pressing [l Al 4C . Then you could simply
press in USER mode to execute the function.

The DISPLAY column specifies prompts as well as intermediate and final
answers and (where applicable) their units.

Above the DISPLAY column is a box which specifies the SIZE or minimum
number of data registers used by the program. Program memory should be
SIZEd before keying in the program or it might not fit. Refer to pages 73 and
117 in the Owner’s Handbook for a complete description of how to size
calculator memory.

KEYING A PROGRAM INTO THE HP-41C

There are several things that you should keep in mind while you are keying in
programs from the program listings provided in this book. The output from the
HP 82143 A printer provides a convenient way of listing and an easily under-
stood method of keying in programs without showing every keystroke. This
type of output is what appears in this handbook. Once you understand the
procedure for keying programs in from the printed listings, you will find this
method simple and fast. Here is the procedure:

1. Atthe end of each program listing is a listing of status information required
to properly execute that program. Included is the SIZE allocation required.
Before you begin keying in the program, press SIZE
and specify the allocation (three digits; e.g., 10 should be specified as
010).

Also included in the status information is the display format and status of
flags important to the program. To ensure proper execution, check to see
that the display status of the HP-41C is set as specified and check to see
that all applicable flags are set or clear as specified.

2. Set the HP-41C to PRGM mode (press the (PRGM] key) and press B (GTO)
(:JCJ to prepare the calculator for the new program.

3. Begin keying in the program. Following is a list of hints that will help you
when you key in your programs from the program listings in this hand-
book.

a. When you see ** (quote marks) around a character or group of charac-
ters in the program listing, those characters are ALPHA . To key them
in, simply press(ALPHA] , key in the characters, then press
again. So @& " SAMFLE " would be keyed in as SAMPLE
:

b. The diamond in front of each LBL instruction is only a visual aid to
help you locate labels in the program listings. When you key in a pro-
gram, ignore the diamond.

c. The printer indication of the divide sign is /. When you see / in the
program listing, press(+] .

d. The printer indication of the multiply sign is #: . When you see :#:in the
program listing, press (] .

e. The#+ character in the program listing is an indication of the

function. When you see + , press lll(APPEND)in ALPHA mode (press
B and the K key).

f. All operations requiring register addresses accept those addresses in
these forms:
nn (a two-digit number)
IND nn (INDIRECT: - , followed by a two-digit number)
X,Y,Z, T, or L (a STACK address: (2] followed by X,Y,Z, T,
or L)
INDX,Y,Z,T,or L INDIRECT stack: M (2] followed byX,Y,Z,
T, or L)
Indirect addresses are specified by pressing @8 and then the indirect
address. Stack addresses are specified by pressing 2] followed by
X,Y,Z, T, or L. Indirect stack addresses are specified by pressing
-E] and X, Y, Z, T,or L.
Printer Listing Keystrokes Display
Jeteiel csan EREL) SAMPLE 01 LBLT SAMPLE
G2 “THIS Is THIS IS A 02'THIS IS A
B beanp e CiPHA) W APPEND) saMpLE 03T+ SAMPLE
T @8 AviEw 04 AVIEW
B4 AYIEM 6 056
Ge ENTERT 06 ENTER /
@7 -z 2 07 -2
[SR=
3% AERS (] 08/
16 =570 IND (XEQ)(ALPHA] Apg (ALPHA] 09 ABS
L
11 "R3=v CoOEE L 10§TOINDL
i5 Avreu . AR Ro- @) 0s :; A:gt.: 03
14 RTH
- 13 AVIEW
14 RTN
-

RPN PRIMER

This program is an aid to understanding and using RPN, the logic system used
in the HP-41C. All four registers of the operational stack are visible simultane-
ously so that the effect of a given keystroke sequence can be seen rather than
inferred. The functions provided, assigned as shown in the instructions, appear
on the keyboard below. These functions all exit to a routine which displays the
operational stack. It is possible to observe the effect on the stack of functions
which are not included within this program. Simply execute the desired func-
tion, then press the key, to which STACK is assigned. The only opera-
tional differences between this redefined calculator and the actual one are that
only single-digit numbers can be keyed in and that STO/RCL address only a
single register (thus requiring no address).

rf

Y=y
= a8 e

=EHEEE

LSTX

=)

® M EWULET T-PACKARD 4acC

RPN Primer

9

SIZE. 001

STEP

INSTRUCTIONS

INPUT

FUNCTION DISPLAY

Set status and key in the

the program

Assign * its routines as shown
and select USER mode.

These suggested assignments
result in the keyboard

shown on the previous page.

SWAP
ST
Er

ClR &
PL
MU

RDWN
RC
CHSN (Chrs)
Mi
DI
8
6
4
2
1 0
LSTX STACK

Press desired keystroke sequence
and watch stack contents
change

The functions RUP and CLSTK
are obtained by

and

(or you could assign these
functions as well)

WO~ O

*To assign a function, say FCN,
to a key, say the key,

RUP
CLSTK

(asw) (arpva)
FCN (npa] (=]

Example 1:
Evaluate the expression

2+b)b

8-D0

forb=3

Keystrokes:
Function
CLSTK

2

Display

X:0Y:0Z:0T:0
X:2Y:0Z:0T:0
X:2Y:22:0T:0

10 RPN Primer
X:3Y:2Z:0T:0

3

X:5Y:0Z:0T:0
[] X:3Y:52:0T:0
=] X:15Y:0Z:0 T:0
8 X:8Y:15Z:0T:0
[] X:3Y:82Z:15T:0
= X:5Y:152Z:0T:0
B3 X:3Y:0Z:0T:0
Example 2:

Without disturbing the above results, compute

2+409-17)
6— 4
Function Display
9 X:9Y:32:0T:0
X:9 ¥:92:3T:0 After an ,
the stack does not
lift when new data
is keyed in
7 X:7Y:92:3T:0
=] X:2 Y:3Z:0 T:0
4 X4Y:2Z:3T:0
E3) X:8Y:3Z:0T:0
2 X:2Y:8Z:3T:0
X:10Y:3Z:0T:0
6 X:6Y:102Z:3T:0
X:6 Y:6 Z:10 T:3
4 X:4Y:62:10 T:3
=) X:2Y:102:3T:3
X:5Y:3Z:3T:3 Notice that the

answer remaining
from Example 1
did not cause a
difficulty in
Example 2

RPN Primer 11
Example 3:

Convert the complex number 3 + 4i to polar form.

4 X:4Y:52:3T:3

X:4Y:42:57:3

3 X:3Y:42:5T7T:3

[| 5

STACK X:5Y:532:5T:3 Remember that
STACK is as-
signed to

Programming Highlight

What is especially useful in this program is the display routine STACK. You
might like to keep it handy to view the entire stack from time to time as you
solve your own problems.

12 RPN Primer

Q1eLEL “CLG
TH ™

@z CLST

83 GTO 14
ad4eLBL "1v

@n

43 GTO 14
44eLEL "9
45 .

46
47 @

48 GTO 14
43+LEL @~

Clear stack.

If lift disabled clear x
first
Input a 1.

See note

Input a 2.

Input a 3.

Input a 4.

Input a 5.

Input a 6.

Inputa 7.

Input an 8.

Input a 9.

DL I I I RO R R
ERE I SO I PR S v
]
-
[
-
poy

o moTy
[l U]

o

EHTERT
GTo 14
«LEL “RDU

ER TN N I o O 00 (O A
[)
o
b
@
o

=

&IH
GTO
«LEL

DL |

el mg

o

R

SelLEBL

v ORET

260 GTO 132
21eLBL "“PL"
g2z +

22 GTO 13
S4+LEL "HMI-"

o
25 —

8¢ GTO 13
a7 eLEL
g o+
2% GTo 13
96eLEL "DI"
21

2z GTO 13
93eLEL "C

94 SF a4t

input a 0.

Enable stack lift.

Display stack.

Disable stack lift.

Roll down.

Swap x and y.

Roll up.

Plus.

Minus.

Multiply.

Divide.

ROO Storage

RPN Primer

13

25 CLx
96 GTO 14
ST7eLBL "CHS
M

22 CHS

29 GTOo 14
168«LBL S
181 STO 6o
182 GTG 14
184Z«LBL "RC*™
184 FS?TC @5
185 CL=x

189e RCL @B
187 GTO 14
iBa«lBL "LST
e

1899 FS?C a3
116 CLX

111 LASTH
112 GTO 14

Important Status
Size = 001
Fix 0

Flags used

FO5 Set = Stack lift

disable
F29 Ciear for no
radix point

Disable stack lift and
clear x.

Change sign.
Store.

If lift disabled clear x
first.
Recall.

This step need not
be keyed in.

Note: You will find it convenient to assign FS?C to some key, for example @ (ASN)
FsS?C assigns FS?C to the (tN) key. You can then press
once to get FS?C_ __ in the display and a second time to create FS?C 05. Remember
that you must be in USER mode or you will get two LN’s instead.

CALENDAR FUNCTIONS

This program provides an interchangeable solution of dates and days between
dates. Given two dates, the program can determine the number of days between
them, or it can compute a second date from a first one and a number of days.
Dates are input in the form mm.ddyyyy. They are output as MONTH dd,yyyy.

Another feature of this program is that it can convert a date to its day of the
week, displaying the result with the correct day name.

This program is valid from March 1, 1900 to February 28, 2100. The
program does not check input data. Thus, if an improper format or an
invalid date (i.e., February 30) is keyed in, erroneous answers will result.

SIZE: 010

STEP INSTRUCTIONS INPUT FUNCTION DISPLAY

1 |Set status, key in the program

and select USER mode
DAY OF THE WEEK

2a |Input date and calculate day DATE*
3a |Repeat step 2a for a new date
DAYS BETWEEN DATES

2b |Input two of the following:
First date D1
Second date D2
Days between dates D

3b |Calculate one of the following:
First date

Second date

Days between dates

4 [Repeat step 2b for new data (values
which do not change need not be
re-entered)

=

Day of Week

Date 1*
Date 2*

Date 1*
Date 2*

EEE AR

* Dates are input in the form
mm.ddyyyy; they are output in
the form MONTH dd,yyyy.

Example 1:
On what day of the week was February 19, 19467

Keystrokes: Display:
2.191946(€) TUESDAY

14

Calendar Functions 15
Example 2:
What date is 10,000 days after August 4, 1978?

Keystrokes: Display:
8.041978(A) 10000(S])(e] DEC 20,2005
Example 3:

A man born on December 18, 1913, is the father of a boy born on February
19, 1946. On what date will the father be twice as many days old as his son?

Keystrokes: Display:

12.181913(4) DEC 18,1913

2.191946(e] FEB 19,1946

© 11751 Number of days.

2((€)E) APR 23,1978 Twice as many
days after Date 1.

Programming Highlight

This program utilizes the ‘selectable radix point’’ feature of the HP-41C to
format its date display. With a date of the form mm.ddyyyy in the x-register,
(xEQ) IND X executes a subroutine which places the three-letter month designa-
tion in the alpha-register. The program then multiplies the fractional part of X
by 100, clears the decimal point flag, and appends the day and year to the alpha
display. Thus an original x-value of 12.251978 yields a display of DEC
25,1978.

Note: Because of its length, this program was written using only local labels.
If the program pointer should ever point to somewhere else in memory, you
can move it back using CAT 1 as described on page 140 of your Owner’s
Handbook.

16 Calendar Functions

al1eLEL R
Bz RCL 84
B3 RCL 81
a4 -

as 2
Aas GTO
R7eLEL
Bz RCOL
83 RCL
18 +
11 4
1zeLBL 2@
13 ST0O 82
14 RDH

15 3F&65.25
16 S5TO 85
17 3@.60681
18 =TO @6
12 RDH

2@ RDH

21 Fs?C 2=
22 GTo 21
23 STO IHD
az

24 tzz.1

=
23

i)

DM
(0]

[

2& RCL @535
2v -

22 INT
29 STo
38 RCL
31 =*
32 INT
3 RCL

Lol
[]

IMI

]

B U) el G Gd) PG
DA IEN N Y

ZHS
STO
RCL
INT
ETQ Ay
41 RCL aa

Calculate A days and
put control 3 in display.

Caiculate A days and
put control 4 in display.

Store control code.

Store constants.

Retun A days to
display.

Store A days according
to control code.

Calculate day of month.

S

7o

RCL &7
14

REQ 22
RCL @82
1 E&

+

GTO 25
sLBL 21
RDN
FC? Bg
STO IHD

ENTERT
INT
STO av

1 EzZ

*
ENTERT
INT
STO a3
1 E4

#*

S7T0 a3
=CL &7
1

+
ENTERT
1%

+
CHS
HER
RCL
*

IHT
FECL
RCL

DM
T [

L]
[VY]

*
INT

Break date input into
the individual com-
ponents ofmm,dd,yyyy.

Compute day number.

ROO = Scratch

RO1 = Adays

RO2 = Pointer
RO3 = Day #1
R04 = Day #2

RO5 = 365.25
R06 = 30.600
RO7 = m
RO8 = d

RO9 =y

Calendar Functions

17

187 EHTERT
la4 HEQ THD
b

185 FRC

18
1a7v

_
=
S0 3

el il el e]
000 = T if &

[R e) Gy WP

FMOn

13

+

“ER IHD

145 AVIEM

15a«LEL 14
“"SATURLDRA

FTH

Compute day of week.

1SG3ZeLEBL 15
154 “SUNWDAY"
5SS RTH
156eLBL 15
157 “MOMDAY"
158 RTHN
199eLBL 17
156 “TUESDAY

161 RTH
15Z2eLEL 13
162 “HWEDHNESD
Qv

164 RTH
1eSeLEL 13
156 “THURSDR

RTH

13a«¢LEL A%
131 -“mMay
RTH
*LEBL @5
“ dUM
FETH
*LEL @7
RN]
RETH
1S3eLEL 8=
198 “AUG
191 RTH
132«LEL a3
193 “ZEF
194 RETH
195«LEL 1&
“QCT
ETH
133eLEL 11
13 “HOY
286 RETH
ZOolelLBL 12
“DEC

Important Status
Size = 010

Fix 4

Flags used

F06

F22

F28
F29

WORD GUESSING GAME

This program is a version of the word game ‘‘hangman.’’ The first player makes
up a six-character word and gives it to the calculator. The second player guesses
various letters until he has completed the word. After each guess, the calculator
displays all correctly guessed characters in their appropriate places. When the
entire word has been guessed, the number of guesses is displayed.

SIZE: 019
STEP INSTRUCTIONS INPUT FUNCTION DISPLAY
1 Set status and
key in the program.
Begin running the program WORDS | KEY IN WORD
First player: Key in your word any of six A7S LETTER?
characters
4 | Second player: Guess a any character RIS word so far
character LETTER?
5 | Repeat step 4 to guess more
characters. When word is
complete, you will see DONE,
WORD IS <word>, and
YOU TOOK nn GUESSES.
Example:
Hide ‘‘HP-41C’’ and then guess it.
Keystrokes: Display:
WORDS KEY IN WORD
HP-41C LETTER? (Notice that the
program stops in
ALPHA mode.)
A[R7S]
LETTER?
P(R/S) P
LETTER?
crrs] P C
LETTER?
H(R7S) HP C
LETTER?
P HP4C
LETTER?

18

Word Guessing Game 19

L} HP 41C
LETTER?

.- DONE
WORD IS C HP-41C)
YOUTOOK 7 GUESSES

Programming Highlight

Two special routines were used while developing this program: SPEL and
DESPEL. Their function was to build up a word from a collection of letters and
to take apart a word into its component letters. Only DESPEL remains in the
final program because the job performed by SPEL was already done by the
letter-comparison portion of the program.

A code must be passed through the x-register to SPEL and DESPEL. This code
tells SPEL where to find its letters, DESPEL, where to put its letters. The code
is of the form

J1.0ll for SPEL or /1.0ff for DESPEL
where

f1 = register for first letter
Il = register for last letter

fF=f-1

SPEL and DESPEL or other similar routines may be used to encode and decode
many types of strings. A similar routine was used in the hexadecimal conver-
sion program (page 28).

_O1+LBL “SPE Assumes a cleared poltLBL "IES Store the counter
a5z STO 67 ALPHA reglster. a2 STO a7 llOff
NZ¢LEL @2 B3 ASTC an
b4 mRCL 1np Store the counterfl.ON. 53 FeTC @ Save the word.
B . a5 o
SS 15C @y Build the word. we mrcL e Save all but the
8¢ GT0 83 If not last letter, or psto 23 last letter.
A then repeat loop. @3 ASTO IND Save the last
a7 l
etter.

18 DSE a7
11 GTO &7 If not all letters,

12 RTH
then repeat
loop.

20 Word Guessing Game

Al+LEL “WOR 43 GTO aa Then display i.
nsSe 44 - - Elsedisplay blank.
Az “HEEY IH 45 STO =
WORT ™ 45 eLBL @@
832 AOH 47 CLA
a4 FROMPT 2 FIF'LL a3 Add a letter to the
BS ASTO 82 Store secret word. display.
BE & Place letters in RO1 to
87 ®E@ “DE= | to R0O6
FEL
as .
83 STO 17
1~ " | 6 spaces. S5 CLHA
11 ASTO a2 S& ARCL Y
12 1&.81 57 ASTO IHD
13 ®#E& ~DE= | Place blanks in R11
PEL " to R16. Repeat loop six times.
1d4eLBEL “LTT
15 CLA
16 ASTOG A9
iv "LETTERT | Askplayer for letter.
18 AOH If words are same, then
19 PROMFT done.
26 ASTO 1@ Save letter. Else
z1 ISG 17 Count # letters. ask for another
22 1.886 Initialize guess.
23 3TO 18 counter.
"‘40LE‘L =133 Begin loop 6.
z32
k1s) Display word.
31 ARCL IHD
= AYIEW
Z2 RDH If position already has FSE
2T OASTO = letter, then display it. FSE
34 H=¥T FECL 17
25 GTO Qg INT
25 CLA O Too
RRECL 18
3z ASTO YW ARCL =
I3 CLA 24 “"F GUESS
48 ARCL IHD ES-
1& 855 AVIEW Display
41 If guess is correct 2E RTH #guesses.
4z a7eLEL "TES
FEL
R00 = Temporary R0O7 = Counter
RO1 = 1%t letter, SW RO8 = Secret word, (SW)
RO2 = 2™ |etter, SW RO9 = Player's word, (PW)
RO3 = 3 letter, SW R10 = Current letter
RO4 = 4t letter, SW R11 = 1%t letter, PW
ROS5 = 5™ letter, SW R12 = 2" |etter, PW
RO6 = 6™ letter, SW R13 = 3 letter, PW

Word Guessing Game

21

2z STo a7d
29 ASTQ aa
SaelLEL @7
2z ARCL @9
2T ASTO @0
24 ASHF
945 ASTO IMD
9 DSE @87
27 GTO av
FE RTH

Important Status

Size = 019

Fix Q

CF 29

Flags used

F29 Clear to suppress

decimal point

Subroutine to separate
a word into its letters.

R14 = 4% [etter, PW
R15 = 5 Jetter, PW
R16 = 6™ letter, PW
R17 = Counter
R18 = Counter

ARITHMETIC TEACHER

This program generates arithmetic practice problems. You may choose the
maximum values of the numbers used and whether the problems are addition,
subtraction, multiplication or division. After 10 problems have been worked, a
percentage score is displayed.

The program can be started by TEACH . The calculator
prompts for the largest number to use in the problems. After keying in the
maximum number and pressing(®7S] , you will see a display of *‘+, —, %, /"
with the ALPHA annunciator turned on. Simply press the gold shift key, one of
the arithmetic functions, and[®7S] to begin the exercise. ALPHA mode will be
turned off automatically.

After each problem is presented, key in your answer and press(R/S] . A correct
answer is rewarded with YES and a new problem is presented. An incorrect
answer elicits an unpleasant sound and the message NO, and you are given a
second chance. The machine tells you the answer if you make two mistakes on
the same problem, then it continues with a new one. If all 10 were worked
correctly the first time, a fanfare is played. The program then begins again with
the <+, —, %, /7" question.

The series of problems is determined by a seed (number) between 0 and 1 that is
in the X-register when you begin the program. If you want to repeat a particular
series of problems, key in the same seed each time. If no seed is keyed in, the
program simply uses the number already in the X-register.

Reference: Knuth, The Art of Computer Programming, Addison Wesley,
Reading, Mass., 1978.

SIZE: 010
STEP INSTRUCTIONS INPUT FUNCTION DISPLAY
1 |Set status and
key in the program
2 {Input a seed (0 < seed < 1)
and begin program. seed TEACH |MAX NUMBER?
3 |Input the largest number to use N RS +, =% N
4 |[Select equation callouts
addition - (ny) + (n;) =2
subtraction - () — (n)=2?
muitiplication % (n,) % (ng) = ?
division / 7S)/ (ng) = ?
Key in your answer. answer R7S YES or NO
After 10 problems have been
worked, your score is displayed
and you may continue at step 4. (SCORE)% RIGHT

22

Example:

Arithmetic Teacher 23

Using a seed of .021946, do some subtraction problems with arguments up to

14.

Keystrokes:

021946
TEACH (AtPra]
14 [R7S]

B EE)

7(R5)

1([®73)

8 (73)
7(@r3)

3[r7s)

6 (R7S]
8 (R7§)

11 (R7S]
1([R7S)
4(875)
3(®rr3)

4 (E78)

Programming Highlight

Display:

MAX NUMBER?
+, —, %, 1?
12—-5=?
YES
14-13=?
YES
13-6=?
NO 13-6=?
YES
14—-11=?
YES
14-7=?
NO 14-7=?
NO 14-7=7
13—-2=?
YES
14—13=?
YES
14-10=?
YES
12-9=2?
YES
14-10=?
YES

90% RIGHT
+, =, %, 1?

This program uses a combination of the HP-41C’s alpha capabilities: indirect
subroutine calls together with output labels consisting of user-supplied alpha

characters.

24 Arithmetic Teacher

At one point in the program, you are asked to key ina +, —, %, or [symbol
depending on which type of problem you wish to work. The program stores
this symbol in register 06, generates two numbers, and then executes the
subroutine whose name was stored in Ro. That same symbol is then recalled
to help create the display showing the problem you must work.

Another interesting portion of this program is the random number generator:

r,.,=FRC (9821 X 1, + .211327)

This generator was developed by Don Malm as part of an HP-65 Users’ Library
program. It passes the spectral test (Knuth, V.2, § 3.4) and, because its
parameters satisfy Theorem A (op. cit., p. 15), it generates one million distinct
random numbers between 0 and 1 regardless of the value selected for ro.

Because the basic random number generator delivers numbers betweenOand 1,
it is necessary to do further manipulation of the random numbers to get the
integers required for the arithmetic problems. By multiplying the random
numbers by an integer N, then taking the integer part, numbers from 0 to
N-1 may be generated. This program uses your maximum desired number plus
1 to generate numbers from O to your desired maximum.

Arithmetic Teacher 25

Ble¢LBL "“TER 42 FS?C @8 | 2nd time, get new
CH* 432 GTO @e problem
, ez CF 29 Initialize. 44 SF 0O6 else
, 83 FIx A 45 1
| 64 STO Q@ 46 ST+ @9 count wrong answer
B5S+LEBL A 47 GTO “TRY | and repeat problem
@6 “MAX HUM | Ask for max number. -
BER™?" 4z+LBL @@
87 FROMPT 49 ARCL @5 Disptay correct answer.
[ZE= S8 ARCL @6
@09 + 51 ARCL 82
18 STO a4 52 k="
11+LEL “AGH | Label to start over. 532 ARCL 83
" S4 AVIEW
iz @ SS GTO 62
12 ZT7TO g2 S&¢LBL "YEZ=
14 ST0O &9 -
15 1@ S7 CF @@
16 ST @7 S& "YES*® Display “YES”.
17 "+. —. * | Ask which operation. 59 AVIEN
B " 66 1 Count right answer.
12 ROGH &1 ST+ 3
19 FROMFT €Z2+LEBL 80
28 ROFF 63 DSE @87 If not all problems, then
Z1 ASTO & 64 GTO @3 repeat loop.
2z2«LEL 9% Begin loop. 65 RCL @9
27 KER “RHD EE K=B87 If no wrong
M 67 XE@ “FF - | answers, then play
24 STO B2 Generate operands. €& RCL @2 tune.
2% HER “RHD 59 .1
N e -
Z& STO as 1 CLA
27 RCL @z 72 ARCL ¥
28 REG IND Generate problem. 73 "Fx RIGH | Display %RIGHT.
ag T«
ZQeLEBL “TRY 74 AVIEW
7S FSE
zZa as 76 PSE
ES1 (513 77 GTO "AGH | Start over.
32 a2z -
3 e Pose problem. VSeLEL "+
34 PROMPT To o+ Make + problem.
325 RCL @@= 2@ STD 63
36 w®=v7 If correct, then 51 LASTH
Z7¥ GToO ~vES | “YES”. 8z -
. 83 LASTH
35 "HO - 34 CLH
29 AvIEW 85 RTHN
48 TOHE = S6¢LEL "
41 TONE 2 87 - Make — problem.
R00 = random number RO5 = n1
RO1 = not used RO6 = kind of problem
R0O2 = n2 RO7 = counter
RO3 = answer RO8 = # right
RO4 = 1 + max number R0O9 = # wrong

26 Arithmetic Teacher

88 H<{=@7
89 XEG @g
96 STO 62
91 LASTX
oz +

32 LASTX
94 CLA

95 RTHN
95¢LEBL B8
97 CHS

a8 RCL B2
29 KJ{> 0%
180 X<> B2
RDHN
182 RTHN
183eLEBL “**
184 *
STaO 83
RCL @S
LASTH
CLA
RTH
118esLBL -~
111 X=@a7
Eti
STO @z
R
STO a3
*
STO @5
CLA
* RTH
+LEL

DO B W

“RHD

RCL @&
9sz1

Ed
.211327
:

126 FRC

27 STO @@
125 SGRT
129 RCL @4
138 =*
121 INT
132 RTH
133+LEL
134 TOME
125 TONE
136 XEQ 8

 ta] T =

Pt b et ek T el b ek b e b ek b e
PO PRI AR 2) b bt bt ot bk ot s b
0

o

=

SwmTm

Make ¥ problem.

Make / problem.

Random number
generator

Skew and scale the
numbers.

Play a tune.

137
138
139
140
141
142
143
144
145
146
147
148
149
158
151
152
153
154
155
156
157

RTHN

158+LBL B8

159
1606
1€1
162
163
164
165

KLY
XY
RI>Y
RS>

RL2Y
KLY
RTHN

Important status:
Size = 010

Fix 0

CF 29

Flags used

FOO set if wrong
answer

F 29 clear for no
radix point

Subroutine to use up
time.

Notes

27

HEXADECIMAL-DECIMAL CONVERSION

This program converts numbers between the hexadecimal and decimal number
systems. Decimal integers up to 1048575 and hexadecimal integers up to

FFFFF can be converted by this program.

SIZE: 021
STEP INSTRUCTIONS INPUT FUNCTION DISPLAY

1 Set status, key in the program
and select USER mode.
Initialize ® READY
To convert a decimal number to
hexadecimal key in the number D (€] H

4 | To convert a hexadecimal number
to decimal key in the number in
ALPHA mode H (e D

5 |To convert the number back, just
press E again (3 Hor D
NOTE: D represents an integer
less than 1048576,
H represents an integer
less than 1000000,

Example 1:
Convert 123, to a hexadecimal number
Keystrokes Display Comments
(a] READY Initialize program
123(€] 7B

Example 2:
Convert 123,4 to a decimal number

Keystrokes Display
123 (€ 291.

Programming Highlight

This program uses the digit-entry and alpha-entry flags, flags 22 and 23, to
decide whether your number is in base 10 (decimal) or 16(hexadecimal). The
first line of the program checks flag 22 to see if digits were input. If so, flag 23 is
cleared so that the program can continue with step 6. If flag 22 is not set, flag 23
is tested, causing a branch to LBLO04 if alpha data was keyed in. At the end of
the program these flags are adjusted so that reconversion can be automatic.

28

Hexadecimal-Decimal Conversion

29

DielLEBL E
|z FS?C 22
BZ CF 22
a4 FS? 23
a5 GTo a4
8s =STO 19
a7y ¥EQ a2
as +

B« BL @1
1@ LRASTH
11 ISG 16
12«LEL @B
12 1 EZz

14 -~

1S IHNHT

1& x®=@a7

17 GTO a1
ie CLA

1% LASTH
ZBelLBL B3
21 1 EZ=2

22 #*

22 HRCL IND
-

24 FRC

25 DSE 1é&
26 GTO @3
27 SF 23
28 ASTO X
2% BEEF

e RTH
31«LEBL B4
32 RASTO 18
23 .eezaz
34 STO 17
35 @
STO 1
+LEL @5
£ [5)

ST0 1=

a0 () el 1a)
[T N B

41 ASTO ¥
42 ARCL 16

If alpha data
GTO Label 04.
Convert decimal
to coded hex
Loop 1

Increment count
Dummy label to be

skipped.

While digits remain,
repeat loop 1.

Begin loop 3
Build up hex #.

Repeat loop 3 until
R16is 0.

Display hex #.

Set up to convert hex
to decimal.

Begin loop 5.

Strip hex # apart.

28 X=Y7
51 GTO 65
SZeLEL @c
53 RCL IND
18

54 M=¥Y7
5% GTO @87
56 REIDH

57 ISG 18
S58«LBL 66
59 GTO ac
e@+LEL Q7
2l RCL 1%
&2 RCL 17
52 IMNT

&4 16T
&5 *

66 ST+ 13
&7 ISG 17
&2 GTOo as

W
4
r
m
r
@

0

1&

STO 1=
1

£T0 17
a

STO 1s
1 Ez
STO 28
F&? 23
GTOo @9
3@ RCL 13
31 M<{> 2@
82 STD 18
B3+LBL a9
34 RCL 19
83«LEL 1@
36 RCL ZzZB
a7 -

8¢ =TD 13
82 FRC

9@ RCL 28
31 =*

fz RECL 17

DURat N () O N)

i B B YR Y VN B

If character is null, then
repeat loop 5.

Build coded hex #.

Count up to 5 hex
characters.

Routine to

store constants in
proper registers and
setup for conversion.

Begin loop 10.
Convert number from
one base to the other.

4Z ASTO 1& 23
44 ASHF 4 ST+ 16

5 ASTO = 25 RCL 18

4€ H=Y¥7 If character is blank, SE ST 17

7 GTO @a then jump out of loop. a7 RCL 19

42 CLA 92 INT

49 ASTO v I K=xBT If not done,
R0OO = “0” RO6 = “6”

RO1 = “1” RO7 = “7"

RO2 = “2” R0O8 = “8”

RO3 = “3” R09 = “9”

RO4 = “4” R10 = “A”

RoO5 = 5" Rt1 = “B”

ii

R16 = alpha

30 Hexadecimal-Decimal Conversion
160 GTO 16 then repeat loop 10.
181 H<> 16
182 CLHAH
193 FsS?C 23
194 BEEFP
185 RTH
186+LBL A Initialization routine.
187 CF z2z
188 CF 23
189 "8~
11® ASTO B0
111 “1-

112 ASTO B1
113 2~

114 ASTO B2
115 -3~

116 ASTO @3
117 ~4-

118 ASTO 24
119 =5-

126 ASTO BS
121 ~g-

122 ASTO @6
123 <7~

124 ASTO @7
125 =&~

126 ASTO @8
127 =g-

128 ASTO B9
129 “A"

136 ASTO 10
131 B

132 ASTO 11
132 »C*

134 ASTO 12
135 =D~

136 ASTO 13
137 g~

138 ASTO 14
139 "F-~

14@ ASTO 15
141 “READY"
142 ASTO X
Important status:
Size =021

Fix 0

Flags used

F22 Digit entry
F23 Alpha entry
R12 = “C” R17 = loop counter, digit counter
R13 = “D” R18 = base constant, loop counter
R14 = "E” R19 = decimal-coded number built here
R156 = “F” R20 = base constant

Notes

31

FINANCIAL CALCULATIONS

This program converts your HP-41C into a powerful financial calculator. It has
the ability to solve for any of the unknowns relating to a cash flow situation as
shown below.

PV
N periods
Cash in /—¢—-\
shown 1 2 3 N
positive |
R ERR
shown PMT |
negative 1
FV
PV = Present Value: the amount loaned, borrowed, invested, etc.
I = Periodic Interest rate.
N = Number of periods.
PMT = Payment amount: the amount paid on a loan or earned on an
investment.
FV = Future Value: the amount remaining, accumulated, saved, etc.

The sketch above shows a standard loan amortization cash flow from the
borrower’s point of view. From the lender’s point of view, PV would be shown
negative and the PMT stream would be positive. By changing the signs of PV,
PMT, and FV, different cash flow situtations may be realized. Cash flow
diagrams for the four basic compound interest problems are presented below
along with some of the more common terminology.

I T
RN

Mortgage Mortgage w/Balloon
Lease Lease w/Buy Back
Direct Reduction Loan Lease w/Residual
Installment Loan Annuity
Amortization

Annuity

T T

Compound Growth Savings Plan
Savings Account Sinking Fund
Appreciation Pension Fund

Annuity (series of payments)

32

Financial Calculations 33

The five top-row keys([A] through(E])are used to enter or calculate these
financial parameters. If you key in any three parameters, pressing one of the
other two keys calculates the corresponding value; if you key in any four
parameters, pressing the remaining key calculates its corresponding value.
Previously input values can be recalled by pressing followed by the
appropriate key. The key sequence {§ (2] may be used to clear all the
registers used by this program. When the registers have been cleared in this
manner, the message N, I, PV, PMT, FV is put into the display to remind you
of the functions of the keys.

For some combinations of values, this program fails to converge to a solu-
tion for periodic interest i. This effect may be avoided by using a different
initial value for i.

Reference:

More information regarding cash-flow analysis may be found in
Grant, E.L. and Ireson, W.G., Principles of Engineering Economy, Fourth
Edition, The Ronald Press Company, New York, 1964.

SIZE: 010
STEP INSTRUCTIONS INPUT FUNCTION DISPLAY
1 |Key in the program, check status,
then place the calculator in
USER mode.
To clear the finance registers [|0y N, |, PV, PMT, FV
Store inputs as desired
number of periods N Y] N
periodic interest rate, percent | |
present value of investment PV* © PV
periodic payment PMT* ()] PMT
future value of investment Fv* 3 v
4 |Compute desired output
number of periods 0y N=(N)
periodic interest rate I = (1)% (See Note)
present value of investment © PV = $(PV)*
periodic payment (@ PMT = $(PMT)*
future value of investment = vV = §(FV)*
5 |You may return to step 4 to
re-compute any of the five values
or you may return to step 3 to
change any or all of them.
Note: Shouid the routine for i fail to return an answer, you may try your own non-zero initial value for i.
For example to try a guess of 1%:
.01 [S10]09 (XEQ]06

*Positive for cash received, negative for cash paid out.

34 Financial Calculations
Example 1:

A couple purchases a $50,000 house, borrowing $40,000 at 8.5% for 30 years
less one month. What is their monthly payment?

Keystrokes Display
@ () 40000(c) 40,000.00
8.5 121 0.71

0@y 12(¢) 1E5@E) PMT=$-307.75

Example 2:

The couple in example 1 sold their house 18 months later, netting $25,000.
At what interest rate would they have had to invest their original $10,000
and $307.75 monthly payments to obtain $25,000?

Keystrokes Display

18(a)

25000(€) 25,000.00

10000(¢Hs] (€] (&) 1=321% Monthly
interest rate.

12(x] 38.51 Annual rate

Programming Tip

This program demonstrates a technique called an ‘‘interchangeable solution.”’
Each of the five variables in the equation can be written in terms of the
remaining four. The five top-row keys are used both for storing inputs and
computing outputs using the program structure outlined below.

LBL £ One of the labels A-J or a-e.

STO r Store the variable in register r.

FS?C22 Test the digit-entry flag and clear it.
RTN Stop here if this data was just keyed in.

} Compute the value of the unknown.
STO r Store the computed value in register r.
} Display the new value.
RTN

This building block may be repeated as many times as necessary depending on
the number of variables.

Financial Calculations

35

R I Y U

ARV T

O A b b b et ek bk s e ()
SURN R e Y I T AP YU

Store N

if new data,
then stop,
else calculate
new N.

Display new N.

Store 1 and some

Initial guess.

Begin loop.

functions of I.
28 STO a2
29 1
A o+
1 ETO A7
32 RCL B2
32 FEPL 22 If new data, 23 -
34 RTH then stop, €4 +
25 RCL B4 else g5 RCL Q2
35 HKza? if PMT=0, 26 RCL &7
27 GTO a1 then compute 27
3% RCL 65 new | by 28 RCL 21
39 RCL &= simple formuia. 29 *
4@ - oA STOD A&
41 © o1 1
z =B 92 RCL ASg
3 23 -
44 34 RCL 8%
= 95 -
46 — 96 -
47 STO B2 97 RCL B2
45 GTO & 25 RCL &9
45«LEL @1 a9 -
50 RCL 8% Else compute new ! 1@ =+

by Newton’s method. 181 RCL 8%
ROO = used R06 = used
RO1=n RO7 = 1 + /100
RO2 = i RO8 = used
RO3 = PV RO9 = /100
R04 = PMT
RO5 = FV

36 Financial Calculations
182 RCL @& 154 AVIEMW
163 * 155 RTH
164 - 156«LBL E
165 -~ 157 STO 8BS Store FV.
186 ST— B9 158 FS?C 22 | If new data,
1a7? HABS 159 RTH then stop,
188 1 E-7 169 XEQ @8 else compute
199 HL=Y7? If Al not small, then 161 RCL B4 new FV.
119 STO 86 repeat loop. 162 #
111 RCL 89 163 RCL A3
112¢LBL B 164 +
113 1 E=2 165 RCL @2g
114 * 166 ~
115 STO @z . 167 CHS
116 =1= Display new I. 168 STO @S
117 ARCL ¥ 169 "Fv=%-
118 “Fx- 178 ARCL ¥
119 AVIEW 171 AYIEH
120 RTH 172 RTHN
121+ BL C 173«LBL B2 Subroutine to compute
122 STO @3% |Store PV. 174 1 o
122 FS?C Z2Z |[If new data, 175 XEQ g% i
124 RTH then stop, 176 RCL 91 1+ —
125 RCL @4 | elsecompute 177 CH3 100
126 XEQ @2 new PV. 178 YT i
127 * 179 STO as R
128 RCL 85 136 - - f1+—=
129 RCL @8 131 RCL 89 100
128 * 182 ~ T
131+ 163 RTH 1100
132 CHS 184«LEL A% Subroutine to
133 STO @3 185 RCL @9 compute 1 + /100
124 “PY=%" 186 1
135 ARCL ¥ Display new PV. 187 +
136 AYIEW 188 STO &7
137 RTH 189 RTH
132+LEBL DT 19P¢LEBL =
129 STC o4 Store PMT. 191 LY
14@ F37?C Z2 If new value, 192 STO @1
i41 RTH then stop, 192 S7T0 B8z
142 XER B2 else compute 194 STO 6=
143 1-¥ new PMT. 195 STO 24
144 RCL 03 196 STO B85
145 RCL @S 197 STO B9
146 RCL B3 128 "H, I, F
147 * v, PMT.F-
148 + 199 ~FY-
149 * 208 AYIEW
15@ CHS 281 RTH
151 STCQ B4
152 “PMT=%$"
152 ARCL ¥ Display new PMT.
Important status
Size = 010
Fix 2
Flags used

F22 Digit entry

Notes

37

ROOT FINDER

A root finder is used to find values of an independent variable, x, which cause
some function f(x) of that variable to be equal to zero. These values are called
the zeros of the function f(x), or the roots of the equation f(x) = 0. For
example, in the equation
fx)=2x—-6
x = 3 is a root, because
f3)=2%x3-6=0

There are many techniques that can be employed to locate the roots of an
equation. Usually root-finding algorithms (procedures) begin with an initial
guess and then iterate, making better and better guesses until an acceptable
solution is reached. Some algorithms fail to yield an answer (converge),
iterating forever. Others, even though guaranteed to converge, require a long
time.

The algorithm implemented in this program will always find a root when given
initial guesses straddling an odd number of roots. If the guesses do not straddle a
root properly, new ones must be chosen. Thus, the price of rapid, guaranteed
convergence is that you must know certain information about your function
before using this program.
Before running the root finder, it is necessary to program the function whose
zeros you wish to find. This is done by pressing (6T (2J(] and keying in
your program. The sequence ROOT then begins the root finding program.
It requests you to key in the name you used for your function and then prompts
for the two initial guesses. If both guesses yield function values on the same .
side of the x-axis, the message ‘‘F1:%F2>0"’appears briefly, and you will be
prompted for new guesses.
The program needs registers 01 through 07 for its own use, so register 00 and as
many as are available above register 07 may be used when evaluating your
function. The answer is labeled and displayed when the value of the function is
less than 1078, A closer tolerance can be obtained simply by keying in a
different value when the program is entered.
This program will calculate the closest obtainable approximations to a root,
but may continue to iterate when the magnitude of the function evaluated at
these approximations exceeds the tolerance. You can check the progress of the
solution by inspecting the current guesses in registers 1 and 2 using the VIEW
function. You may find it convenient to assign VIEW to some key.
References: The Illinois algorithm used here is described in M. Dowell & P.
Jarratt, ‘‘A modified regula falsi method for computing the root
of an equation’’, BIT 11 (1971), pp. 168-174.
A similar algorithm with slightly faster convergence was de-
veloped by the same two authors: M. Dowell & P. Jarratt, ‘‘The
Pegasas method for computing the root of an equation,’’ BIT 12
(1972), pp. 503-508.

38

Root Finder 39

SIZE: 008
STEP INSTRUCTIONS INPUT FUNCTION DISPLAY
1 Set status and key in the program.
2 |Key in your function, giving it a
global name (i.e., not A-J, a-e, or
00-99).
3 [Begin executing this program ROOT |FUNCTION NAME?
4 |Key in the name of your function Name RIS GUESS1="?
5 |Key in the first guess X1 A/S GUESS2=7?
6 |Key in the second guess and either X2 RIS X=(ROOT)
a root will appear or, the program
will return to step 5 FI%F2>0

Example 1:
Find a value of x such that R(x) = x3— 6x?+ 11x— 1 = 0. Note that a sketch of

the function indicates a root between O and 1.

Keystrokes:

@ (c79) (-] (-] (ProM]

B (tei)(ArHA] R [ALPHA]

(ENTER+] (ENTERY] (ENTERY] 6(=] [X]

11EE1EMeEN]
ROOT (ALPHA]
R(R7S)
o(r75)
1(R75)

Display:

FUNCTION NAME?
GUESS1=?
GUESS2=?
X = 0.0958

Example 2:

Find the root of W(x) = sin(x — 30) — cos(2x + 60) which is between 200 and
300 degrees.

40 Root Finder
Keystrokes: Display:

8 (G7o) (-] (-] (rraM]
@ (t8L) (APHa) wAVE (ALPHA]
30(=)(sN] 04
2(x] 60(x)(c0s) (=) MR (RTN]

ROOT FUNCTION NAME?
WAVE GUESS1=?
200 (R7S] GUESS2=?

300 X = 260.0000

Programming Highlight

The root finder program asks you to key in the name of your function. It
stores that name and then executes that function indirectly as needed. Note
that the function AON is executed before PROMPT so that the HP-41C will
stop in ALPHA mode. The function AOFF must be executed before the next
PROMPT, however, or ALPHA mode will still be on. AON and AOFF are
useful for controlling the mode in which the calculator stops as a further
reminder of what sort of data you should provide.

With the name of your function in register 3, the program can execute it any
time with XEQ IND 03. Thus, a program which might have required modifica-
tion for each function you could have wished to use, requires only the names of
those functions.

FUNCTION NAME?

AON

PROMPT Display the message, stopping with
ALPHA mode on.

ASTO 03 The name is stored in R3.

AOFF Tumn off ALPHA.

XEQ IND 03 Execute the program whose name is inR3.

Root Finder 41

BlelLBL "ROC
T

8z "FUMHCTIO
M HAME?

B3 AHON

a4 PROMPT
]S HOFF

de ASTO a3

AT eLEL A

) G P e
=Ry

@ o@D
oy R XRCRT

[R

=@

Ask user for the name
of the function.

Store guesses.

Begin loop.

New x.

If f(x)=0 then done.

ARCL @<
PROMFT
*LEL @s
“F1#F2:@

-

AYIEW
FSE

LT A
-EHD.

SRR
L PNEY

Important status:
Size = 008
DEG

Fix 4

Tolerance value.
If [f(x)] <1E - 8
then done.

Select new guesses per
requirements of lllinois
algorithm.

Done.

Display answer.

Error message.

Return to input

ROO = unused
RO1 = X1
R02 = X2
RO3 = Name
RO4 = X

RO5 = f(X1)
RO6 = (X2)

RO7 = £(X3)

CURVE FITTING

For a set of data points (x;, y3),i= 1, 2, ..., n, this program can be used to fit
the data to any of the following curves:

1. Straight line (linear regression): y = a + bx.
2. Exponential curve: y = ae* (a > 0),

3. Logarithmic curve: y = a + b 1n x,

4. Power curve: y = ax? (a> 0).

The regression coefficients a and b are found by solving the followmg equiva-
lent system of linear equations.

An + BZX, = 3Y,

Ale + BEX]Z = EY|Xi

The relations of the variables are defined by the following:

Regression A B Xy Y,
Linear a b Xi Yi
Exponential In a b Xy Iny;
Logarithmic a b Inx, Vi
Power Ina b Inx; Iny;

The coefficient of determination is:

AEYI + ble Yi - i (EY.)Z
R2 = n

) 04

Linear Regression Exponential Curve Fit

y=aeb*

/ y=a+ bx .

42

Curve Fitting 43

Power Curve Fit . . .
Logarithmic Curve Fit

y=axP
y=a+blinx

X / X

1. The program applies the least square method, either to the original equa-
tions (straight line and logarithmic curve) or to the transformed equations
(exponential curve and power curve).

Remarks:

2. Negative and zero values of x; will cause a calculator error for logarithmic
curve fits. Negative and zero values of y; will cause a machine error for
exponential curve fits. For power curve fits both x; and y; must be positive,
non-zero values.

3. Asthedifferences between x and/or y values become small, the accuracy of
the regression coefficients will decrease.

SIZE: 016
STEP INSTRUCTIONS INPUT FUNCTION DISPLAY
1 [Set status and key in the program
2 [Initialize the program
for STRAIGHT LINE LIN LIN
or for EXPONENTIAL CURVE EXP EXP
or for LOGARITHMIC CURVE LOG LOG
or for POWER CURVE POW POW
3 |Repeat step 3 and 4 fori=1,2,...,
n input; x; X;
Yi Yi ® (0]
4 |If you made a mistake in input-
ting x, and y,, then correct by— X«
Y« © k=1)
5 |Calculate R2 and regression
coefficients a and b ® R2=(R?
a=(a)
RIS b=(b)

44 Curve Fitting
STEP INSTRUCTIONS INPUT FUNCTION DISPLAY
6 |Calculate estimated y from
regression, input x X R/S Y.=(¥)
7 | Repeat step 6 for different x's
8 | Repeat step 5 if you want the
results again
9 |To use the same program for
another set of data, initialize
the program by — |0y LIN or
EXP or
LOG or
POW
then go to step 3
10 | To use another program, go to
step 2
Example 1:
Fit a straight line to the following set of data and compute § for x = 37
and x = 35.
x | 40.5 |38.6|37.9]36.2[35.1]34.6
Vi |104.5 | 102 | 100 |97.5|95.5| 94
Keystrokes: Display:
| ALPHA] [N (ALPHA] LIN
40.5 [ENTERY] 104.5(4] 1.00
38.6 (EnTere) 102(4] 2.00
37.9 (enters] 100(A] 3.00
36.2 [eNTERY] 97.5(A) 4.00
35.2 (enTers] 95.5(4) 5.00 Oops!
35.2 95.5(C] 4.00 Correct error.
35.1 95.5(4) 5.00 Use proper values.
34.6 (EMERY) 94(A) 6.00
3 R2 = 0.99
a = 3353
b=176
37(R7s) Y. = 98.65

35 Y. = 95.13

Curve Fitting 45
Example 2:

Fit an exponential curve to the following set of data and compute § forx = 1.5
and x = 2.

x| 72]1.31]1.95|2.583.14
y1|2.16|1.6lll.16| 85(0.5

Keystrokes: Display

(xeq](ALPHA | EXP (ALPHA | EXP

.72 (exTERY) 2.16(A) 1.00

1.31 1.61(4) 2.00

1.95 1.16(2] 3.00 If you don’t
2.58 85(4) 4.00 make a mistake
3.15 [ENERY) .05(A) 5.00 you can skip
3.15 .05(c] 4.00 two steps.
3.14 (enTere] 0.5(A) 5.00

(€] R2 = 0.98

a=2345

b = -0.58

1.5 Y. = 1.44

2.0 Y. = 1.08

Example 3:

Fit a logarithmic curve to the following set of data and compute § for x = 8
and x = 14.5.

x|3] 4] 6]10]12

Vi I 1.5 I 9.3| 23.4|45.8|60.1

Keystrokes: Display:
(xEq] (AtPHA] | O (ALPHA LOG

3 1.5(&) 1.00

4 9.3(a) 2.00

6 23.4(4) 3.00

10 458(A) 4.00

12 6.01(a) 5.00 Another mistake!
12 6.01 (€] 4.00

12 60.1(&) 5.00

3 R2 = 0.98
a = -47.02
b= 41.39
8 Y. = 39.06

145 Y. = 63.67

46 Curve Fitting
Example 4:

Fit a power curve to the following set of data and compute § for x = 18

and x =

x,|f3'|12|15|17|20|22|25|27|30|32|35

y:|0.95[1.05[1.25]1.411.73|2.00{2.53 |2.98 |3.85] 4.59 |6.02

Keystrokes:

pow (AtpHa]

10 (evTERe) 0.95(A]
12 [ENTERY] 1.05(A)
15 (ENTERY) 1.25(4]
17 (ENTERs] 1.41(A)
20 (EnTERy) 1.73(A)
22 (EnTERY) 2.00(A]
25 (enTers) 2.53(4)
27 (enTers] 2.98(4]
30 (enTERe) 3.85(A)
32 ([enTERY) 4.59(A)
35 (ENTERe] 60.2(A)
35 ([EnTERy) 60.2(C]
35 (ENTERe] 6.02[A]
3

18 (R7S)

23 (k7S]

Programming Highlight

Display:

POW
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

10.00

11.00

10.00

11.00

R2 = 0.94

a=0.03

b = 146
.= 1.76

Y. = 2.52

Error correction again.

This program uses a single section of code for most of the calculations it needs
to do. Since each of the four types of curve fitting requires the input data to be in
a different form, it would seem that a different program should be used for each
curve type. Instead, each of the set-up programs, LIN, LOG, EXP, and POW,
stores a code in register 00. Then the single function on line 32, XEQ IND 00,
takes care of the four different ways of processing the input data by executing

the function whose label is stored in register 00.

Curve Fitting 47

aielLEL “LIN 4SeLEL E
" £ 15
az = 47 11
a3 “LIKN® 14 Calculate A, b and a, b.
84 GTO 13 Linear. 14
aSeLBL “EXF
“ &
e & 1z
ar "EXF 11
as GTo 13 Exponential. 1G
BoeLEL “LOG 14
" a3
1@ 7 az
i1 vLoG
12 GTO 132 Logarithmic. =F!
1ZeLEBL PO IHD
o]
15
Power. 14
18
1z
(5=
a3

Beep, display and set
> registers.

Correction.

Input data.

Log.

LH
ETH

+LEL &=
22 LH Power and exp.
48+LEL @&

ROO = Index RO5= b

RO1 = x RO6 = a

RO2 =y RO7 = used

R03 = det RO8 = LIN or EXP or LOG or POW
RO4 = A RO9 = (Sy) 2/n

48 Curve Fitting

9% GTO o1
P€+LEL B
I7eLBL B2
2 ETk
9%«LEL 85
186eLEL @7
161 RETH
18z2«LEL @23
1832 +

184 STO a7
185 RIDHN
186 *=

147 RCL a7
192 —

182 ETH
1ia+LEL QG
111 Y.~
11ZeLEL o1
113 =pF=n
114 ARCL ¥
115 AVIENW
116 FS57 55
117 STOF
118+ BL B84
119 GTO IND

an

1zZB«+LEL @z
121 RCL @S
22 Y1TX
123 GTO B9
124«LEL @86
125 RCL 895
126 #*

127 EtX
126+LEBL 673
129 ECL 8¢
13a *

131 GTO @@
13z2«LEL &7
132 LN
1Z4eLEL a5
RCL &3
*

RCL B

Inverse transform

Coefficient of
Determination

Calculate r2.

Input x to calculate y.

145«LEBL a
14& GTO IHD
1=
147eLBL
T-

148 CLRG
1492 CF @o
156 CF a1l
151
15z
152
154
155

“INI

important status
Size = 016
=10

Fix 2

Flags used
F0O
Fo1
Fo2
F21
F27
F29
F55

Re-initialize.

For initializing.

144 RTH
R10 = 3x
R11 = 3x?
R12 = 3y
R13 = Sy
R14 = Zxy

R15=n

Notes

49

VECTOR OPERATIONS

This program enables you to add, subtract, multiply or divide two vectors.
Before executing any of the routines, load the stack with the vector components
as shown below.

Initial Stack Configuration Resulting Display
Tv,
Zu, U=uV=v
Y Vo
X Usg

where the two vectors are denoted by:
u, + iv, and u, + iv,

Note that some people prefer the alternate notation of u + vi,u + jv, orui + vj.

SIZE: 000
STEP INSTRUCTIONS INPUT FUNCTION DISPLAY

1 Key in the program and
choose a convenient display
mode. You might wish to
assign the routines as shown
here
CADD (®) (as8) CADD
CSUB (=] csus =2
CMULT () [(2s8) CMULT ()
CovVE]\

2a | Place the inputs in the operational
stack
imaginary part of first vector v,
Real part of first vector u

2b Imaginary part of second vector u,
Real part of second vector

3 | Select the desired function
Vector addition CADD
Vector subtraction CSuB
Vector multiplication CMULT
Vector division CDIvV

4 | To use this answer as part of
another vector calcula-

tion, it is not neces-

sary to re-input what

was just output. Simply
continue with subsequent
vectors at step 2b.

cccc
o
PR
TTe.
<c<<<
[[T
<T<T<<
—_————

50

Vector Operations 51
Example 1
Add 1+ i3 to 4+ i6.

Keystrokes Display:

Choose a
|Ex) convenient
display.
6 [ENTER+] 4 [ENTERe] 3 [ENTERY) 1 I Setup the
(xeQ) (ALPHA] CADD [ALPHA] U=5.00 V=900 . vectors.
Example 2
Evaluate s> + 1 whens = 3 + j2
Keystrokes Display:
2 3
2 3
CMULT U =5.00,V = 1200
0 (EnTeRe) 1 (xEQ) Add 1 + jo.
(apia] CADD (ALPHA] U=6.00,V=1200

Programming Highlight

Many problems require only one number from the user, that is, you need key in
only one number before executing the desired function. Vectors, however, are
each described by two numbers; and two vectors must be input before the
problem can be solved. Many programs can be shortened by judicious use of the
stack for input data. The implementation of this program shows how short a
program can become when the user is required to be careful with his input.

Notice that if the output section is replaced with LBL ‘“UV’’ RTN, the four
routines can be used as subroutines to any of your programs requiring vector
operations. The output values # and v are returned in the X- and Y-registers
respectively.

A convenient way to use this program is to assign the various routines to the
=5, , and(&) keys for instant execution of the functions when in USER
mode.

52

Vector Operations

el BEL “CTI

AvIEH

2 RTH

@ JEND.
Important Status:
Size = 000

Subtract.

Change sign of second
vector, then add.
ADD.

Divide.

Invert second vector,
then multiply.

Multiply.

Display routine.

Notes

53

BLACKJACK

This program plays a simple version of the card game blackjack (twenty-one).
The calculator deals (without replacement) from a 104-card deck, reshuffling
when all but 13 cards have been dealt. The player may bet any amount; if he
doesn’t place a bet, the value of his previous one will be used.

The player and dealer each receive two cards, one of the dealer’s cards being
exposed. The player may then either draw additional cards (hit) or not draw
(stand). The object of the game is to reach, but not exceed, a score of 21 points,
counting 10 for face cards, 1 or 11 for aces, and the face value for the remaining
cards. If a player’s first two cards count 21, he has blackjack and immediately
collects 1% times his bet unless the dealer also has blackjack.

When hitting, a player who draws a card bringing his score over 21 is said to
““bust’’ or ‘*be busted’’ and he loses his bet. When the player stands on a score
of 21 or less, the dealer must hit his own hand until his score exceeds 16. At that
point the higher hand wins and the player’s bank is updated. If the player and
dealer should have the same score, the bet is a stand-off or a push.

Options allowed in casino-style blackjack such as splitting pairs, going down
for double, and purchasing insurance are not included in this program.

You must have an HP-41C with one additional Memory Module to run this
program.

54

1 NOTE: If you get blackjack in
step 4, the display will show
BLACKJACK, and [S(TAND)]
will be executed automatically.

*c is any card, cards is a string
of cards—the card numbers are
linked so a 10 and a 7 will look
like 107.

Biackjack 55
SIZE: 027
STEP INSTRUCTIONS INPUT FUNCTION DISPLAY
1 |Key in program, checks status, and
assign DL, HT, and S as desired.
A seed (0< seed <1) may
be placed on Royo.
Store your initial bank. bank 21
To shuffle the deck SH [SHUFFLING
4 Place your bet BET DL | SHOW ¢*
YOU HAVE 71
YOU HAVE 71 2%
5a | Hit, then repeat this step or go to HT YOU HAVE cards
5b
or,
5b | Stand, and the dealer will show S | HAVE cards
his hand and then hit or stand as :
appropriate :
YOUR BANK IS
6 Repeat from step 4 as desired $ bank

Example:

Shuffle the deck, key in a seed of 7, and play Blackjack using a $2 bet.

Keystrokes:

@8 (AsN] (ALPHA] DL [aLPHA B4
@B (AsN][ALPHA] HT ((ALPHA (7]
@B (ASN](ALPHA] S [ALPHA] (F)

(xeQ](ALPHA] SH [(ALPHA]

0 (819] 21

@~ (sT9) 00
2DL

Display:
ASN DL 11
ASN HT 12
ASN S 13

SHUFFLING

104 Only FRC

() is used.
NOTE: The DL function was
assigned to (%], Remember, your
calculator must be in user mode
or you will get 3+,

56 Blackjack

1 SHOW 2
YOU HAVE 107
S 1 HAVE 24 NOTE: The S
1 HAVE 2JK function was
assigned to

BUST

YOUR BANK IS $2
DL 1 SHOW &

YOU HAVE A5
HT YOU HAVE A57
HT YOU HAVE A575
S 1 HAVE 6K

1 HAVE 6K8

BUST

YOUR BANK IS $4

Program Highlight

With the 11 registers left after keying in this program, you can write a program
to play blackjack using simple playing and betting schemes. The routine shown
checks registers and flags used by the blackjack program to determine whether
to hit or stand. If the playing program loses, it doubles its bet, eventually win-
ing. By adding still more memory modules to your HP-41C, more complicated
playing strategies may be tried.

Notice that this program requires the data memory size to be increased to 28.

G1eLEL "FL" 18 HKEG@ “HT"

az = Place new bet 12 GTo aa

B3 SF 2z ZoeLEL G1

ad+LBL 82 21 FS7 B89 If no blackjack
nS ®E@ DL Deal 22 RKE® 3¢ Then stand
ne+LEL @a 2F RCL 27

87 RCL 24 check score 24 RCL 21

as 12 25 STO 27 Save last bank
A9 EHTERT Adjustment for Ace 26 —

18 18 If no Ace 27 X497 If game won,
11 F57 @7 Clear adjustment 28 GTO “PL" Place new bet.
Z CLX 29 x=87 If game drawn,
12 - 36 GTO 82 ILste 'aStlbett
14 R®{=¥7 If 12 = score or 31 = game ‘ost,
15 GTo o1 if blackjack 32 5T+ 22 Double the bet.
ie FC7? @9 Then stand 33 GTO 82

17 GTO @1 Otherwise hit 34 EHND

Blackjack

57

BlelLEL "CRD
a8z CLA

@83 ASTOo 19

a4 1

85 3T0 15

@E RCL @8

ay 9g21

[SEST o

B9 (211327
ia +

11 FRC

1z STO aa
1Z RCL 14
14 =

1S INHT

1 1

17 +
1s+LEL B2
12 RCL IHD

= e
GTO a3

2 ISG 15

Z4eLEL 99

25 GTo az

2ol BL a3z
v DSE IHD

-

=
=
2z
e
=1
3=
34
35
37
4@
41
4z
43
44

Routine to get a card.

Random number
generator.

If only 12 cards remain,
then shuffle deck.

Store card.

47 ARCL ¥
48 GTO &1
43« BL B0
58 STO 1e&
51 CLX

Sz 1@
H=YT

GTO

TE “t1@-
FreLEL @1
TE ARASTO 19
¥ RCL 18
26 RETH
S1eLEL “SH-"
82 “SHUFFL!
HG ™
232 AYIEW
24 1.813
EHTERT

14
IHD

ooy
14

14

~1@-

Store card alpha.

Subroutine to recon-
struct deck.

RO0 = Random number

RO1 = Aces
RO2 = 2's
RO3 = 3's
RO4 = 4's

RO5 = §'s
R06 = 6's
RO7 = 7's
RO8 = 8's
R09 = 9's

58

Blackjack

-

1
1

-
[
&

1

-
2
-8

-
o
& -

oy

Do g ped

B

Bl e e
[O I SV N ol g
N e) P o= 2D 00 =)

1
1

1
1
1

Do e 2

-
(RO
AR I

123

CF @a
cF
CF a2
CF ©
CF @
RTH
«LEL DL
CF ag
2 SF @ay
A3 AEBES
INT
F57C
s5TO 22
v RCL ZzZz
STO zZd
SF 86
CLA
ASTO Z&
ASTO 2%
=E®R

o T (RS TR
iR R (Rt R I

1
J

2=

a5

|
X

~CRD

el ™
ol [o) s S

FECL
=TO
RER

-
™4

ST

CLH

ARCL
RRECL
RSTO 2%
1 SHOW

1=

e
]

ARCL 25
AV IEW
SF @7
za g
3@ STO
=1 MER

26

24
“CRD

I

i

=ER
REQ

“ PN
"CRED

(|

il

“ER
RCL
1a

.
24

Blackjack. No ace.

Use old bet or store new
bet.

Get dealer’s first card.

Get dealer's second
card.

Save dealer's A-flag.

Dealer’'s hand.

Display dealer’s up
card. No ace.

Get player’s card.

Get player's 2nd card.

Display player’'s hand.

P
Bofaia] W
AR R RN |

GTO a5

11

24
GTO &S
1@

ST+ =4
LEL @5
CF &

GT
21.%

If no blackjack, then set
Flag 9.

Blackjack.

Go directly to
“STAND".

Player not busted. If not
blackjack, skip to 05.

Reinstate Dealer’'s
Ace-flag.

Recover Dealer’s
hole card.
Display Dealer's hand.

If no dealer ace, skip
to LBL 07.

R10 = 10’s
R11=Js

R12= Q's
R13 = K's

R14 = # cards left in deck

R15 = counter

R16 = Value of current card
R17 = Dealer’s hidden card

R18 = not used

R19 = Current card in ALPHA form

Blackjack 59
182 XEQ@ " CRD |Dealer hits. 227 RCL 24
" 228 21.5
183 XE@ “DH* 229 X>¥? Check for bust.
184«LBL B7 Dealer hitor stand? if | 23@ RTHN
185 F5? @66 player busted, then 231 “BUST*"
186 GTO 69 settle bets. If player 232 AVIEW
187 FC? 09 blackjack setthe black-| 233 gT0 @5
188 GTO &8 jack. If dealer’s score is 234«LBL ~DE" | Dealer bust.
189 RCL 232 above 17, then seﬁlleA 235 “BUST~
19@ 17 gnr;o ace, then dealer 236 AVIEMW
191 R4<=Y¥7? : 237 o
182 GTO a3 238 RETH
192 F537 @7 232<LEL ~FH" | Display player's hand.
194 GTO 8% z4a ST+ 24
195 11 241 CLA
136 RCL =23 If ace and score is 242 ARCL 2¢
137 Hevwz between7and 11,then | 4= BRCL 19
198 GTO @& dealer hits. 244 ASTO 2
1929 7 245 “¥OoU HAY
AEY? -
GTD B 24& ARCL Z&
16 Add 10 for ace. 247 AVIEMW
ST+ 42 ETH
JeLEL “DH" | Display dealer's hand.
256e ST+ 232
Check for dealerbust. | zs1 cLA
292 RHECL 2%
E" 253 ARCL 13
z 254 ASTO 25
21@ Check for push. 255 "1 HAVE
211 .
=1< Set bust flag if player | 22& HRCL 25
e s . loses settle bets 25y AvlIEN
214 = & : 258 RTH
Z1Se«LEL B 259+t EBL “FP*" Take care of push.
216 RCL 28 268 "H PUSH®"
217 F57? Bé if plg%er loses subtract | z51 AV IEM
218 CHS= payoft. 262 ST+ =Z@
219 ST+ 21
‘sﬁa I i 2'_‘_*‘ EH Important status
221 BRCL 21 | Display new bank. Size = 028
222 AYIEW Fix 00
222 RTH CF 29
224«+LEL “HT" | Player hits. Flag 21 Should match
225 HKER “CRED | Getanew card. Flag 55
226 HER “FH* | Display new hand.
R20 = Payoff Flags used
R21 = Player's bank FOO clear
R22 = FO1 clear
R23 = Dealer's score FO2 clear
R24 = Player's score FO3 clear
R25 = Dealer's hand FO4 clear
R26 = Player's hand F06 Player busted
FO7 Set = no Ace Clear = Ace
FO8 Set = no dealer Ace Clear = dealer Ace
F09 Set = no blackjack Clear = blackjack
F29 Clear to suppress decimal point
F21 Should match the printer existence flag

(F55)

F22 Keyboard entry

00041-90366

-

(&F HEWLETT

PACKARD

" 1000 N.E. Circle Bivd.. Corvallis, OR 97330

For additional sales and service information contact
your local Hewlett-Packard Sales Office or call
800/547-3400. (in Oregon call 768-1010.}

Printed in U.S.A

Scan Copyright ©
The Museum of HP Calculators
www.hpmuseum.org

Original content used with permission.

Thank you for supporting the Museum of HP
Calculators by purchasing this Scan!

Please to not make copies of this scan or
make it available on file sharing services.

